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Abstract

The main purpose of this thesis is to create and validate a visual acuity model with

experimentally obtained aberrations of human eyes. The other motivation is to come up with a

methodology to objectively predict the potential benefits of photorefractive procedures such as

customized corrections and presbyopic LASIK treatments.

A computational model of visual performance was implemented in MATLAB based on a

template matching technique. Normalized correlation was used as a pattern matching algorithm.

This simulation describes an ideal observer limited by optics, neural filtering, and neural noise.

Experimental data in this analysis were the eye’s visual acuity (VA) and 15 modes of Zernike

aberration coefficients obtained from 3 to 6 year old children (N=20; mean age= 4.2; best

corrected VA= 0 (in log MAR units)) using the Welch Allyn Suresight instrument.   The model

inputs were Sloan Letters and the output was VA. The images of Sloan letters were created at

LogMAR values from -0.6 to 0.7 in steps of 0.05. Ten different alphabet images, each in ten

sizes, were examined in this model.  For each simulated observer the results at six noise levels

(white Gaussian noise) and three levels of threshold (probability of the correct answer for the

visual acuity) were analyzed to estimate the minimum RMS error between the visual acuity of

model results and experimental result.

Our statistical results show that the Pearson Correlation is 0.56 and 2-tailed p value is 0.011

which demonstrates that the model tracks the variations in acuity with aberration.

Even though this study is limited to children’s eyes it can be extended to adult data and can be

used to objectively predict potential benefits of customized corrections using photorefractive

treatment modalities.
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Chapter 1

Introduction

According to the American Association of Ophthalmology 80-85% of a person's learning is

through the visual pathway, and therefore having optimal visual performance is crucial in the

learning process [1].

High-contrast visual acuity is a common clinical measure of visual performance. Recent advances

in the development of wave-front guided refractive surgery have greatly increased the importance

of finding a link between optical quality and aberrations of the eye [2, 3 and 4].

Today due to the development of viable clinical wavefront aberrometers, measuring the

monochromatic aberration of the human eye is routinely possible, (e.g. using Hartmann-Shack

methods [5],[6]), but accurately predicting visual acuity and hence visual performance that results

from a measured set of aberrations  has  not yet been achieved and this is an area of considerable

interest [7].  One reason for developing such a detailed description of the optics of the eye from

aberrations is the potential to obtain highly accurate automated prescriptions of sphero-cylinder

corrections (the spectacle Rx) as well as objective measurements of visual acuity.

Developing a computational model which objectively determines the best correction of the eye

based on measurements of aberration would solve this problem, and could have many clinical

applications. One example of clinical application is predicting the potential benefits of customized

corrections with photorefractive treatments. Such a model should also have an acceptable degree

of correlation with experimental results.

An important question is whether the objective method correctly estimates the best subjective

refraction of the observer’s eye. This objective method should take into account the effects of
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higher order aberrations of the eye when estimating refraction.  This is because, even though

eliminating second order aberrations minimizes the root mean square (RMS) wavefront error, this

minimization does not necessarily optimize the quality of the retinal image.

Thus another motivation for this study derives from the need for an alternative single valued metric

instead of RMS to quantify the effects of aberrations on acuity tasks. This metric should show us

the visual consequences of low levels of wave aberrations remaining after customized refractive

surgery.

Previously Watson and Ahumada [7] described a template matching model that includes optical

and neural filtering, and neural noise for predicting visual acuity. They found an excellent account

of acuity in the presence of various aberrations. The aberrations they examined were controlled

simplified combinations of second and fourth order aberration coefficients [7].

Naturally, aberrations of the human eye include more than just these two orders of aberrations, and

therefore assessing the visual acuity metric and model with aberrations of real human eyes is worth

pursuing.  This is the purpose of the research described in this thesis.

Visual Acuity

The spatial resolution of the visual system is usually evaluated using a simple measure of high

contrast visual acuity.  Visual acuity shows how well an observer can see fine details and it

depends on the ability of the eye to resolve a given visual angle. Most tests vary the angle by

changing either the size of the stimuli or its distance from the eye. A normal visual acuity test

consists of a number of high contrast, black-on-white letters of progressively smaller size.  The

smallest letter that can successfully be read is referred to one's visual acuity [9], [10].

Results of visual acuity are recorded as a fraction known as the Snellen fraction. In the Snellen

fraction the numerator represents the observer’s distance from the stimulus and the numerator

divided by the denominator represents the minimum visual angle perceived by the observer. The

standard distance used for visual acuity assessments is twenty feet or 6 meters.  A visual acuity of
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20/20 (6/6) indicates that the observer recognizes a stimulus whose lines subtend one minute of arc

at a distance of 20 feet [9].

Different types of visual acuity may be considered depending upon the specific task or detail to be

resolved. The most familiar visual acuity task is recognition. The task evaluates the observer's

ability to recognize and name various sized letters or symbols. The smallest recognizable letter

indicates the minimum angle of detail that can be resolved [10].

Snellen charts are the most common among a variety of recognition task charts that have been

developed. The charts are composed of rows of letters or symbols in progressively smaller sizes

and are commonly used in eye clinics. One type of Snellen chart is shown in Figure 1. A method

of measuring high contrast visual acuity to various levels of aberration is to count all letters read

correctly until a set number of letters are not seen, typically five letters. Then the total number of

letters read correctly is converted to a visual acuity score [11].

In the case of retarded populations or young children who do not have the necessary

language skills or understand the instructions required for such tests, a reliable and accurate

method for visual acuity assessment needs to be developed. Cambridge Uncrowded cards, FPL

(forced preferential looking) and Teller cards are examples of experimental measurements of

visual acuity in these situations.

Reference:

Figure 1: LogMAR high contrast visual acuity chart
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Wavefront Aberrations

In optics, rays and wavefronts are used to describe the propagation of light waves. Rays describe

the path along which the light travels and a wavefront is a surface of points with identical phases

(constant optical path length (OPL)) made by the tips of the rays.  The optical path length is

defined as the product of the geometric length of a ray and the refractive index of the medium. The

rays of light are always perpendicular to the surface of the wavefront at every point of the surface

[12].

Wavefronts radiate outward in a homogeneous medium in spherical shapes while they are

concentric to the source. When the refractive medium changes the shape of wavefront will not be

spherical anymore.

In a perfect optical system the light distribution of a perfect image has the same form as that of the

object but there could be a difference in size or orientation due to the magnification of the imaging

system [12]. There could be a shift in phase as well but this is important only for certain very off-

axis situations or for highly aberrated systems.

A perfect optical imaging system gathers rays from a point source and then converges them to a

point called an image point, but in the case of an imperfect optical system no point image can be

formed.  The reason is that in an imperfect optical system the OPL is not the same for all of the

rays.

In an imperfect optical system, the light distribution in the image space is different from its

distribution in the object space.  The difference between these two light distributions makes a

blurred image.  One cause of a blurred image is aberrations. When the wavefront is aberrated it

means it deviates from its perfect shape and the same phase points are not on a perfect spherical or

plane surface any more.  This is schematically shown in Figure 2. It could be seen in the figure that

a surface of points with identical phases when passing through exit pupil (imperfect optical

system) is not a spherical surface any more.
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The wavefront aberration is usually measured in micrometers but sometimes in wavelengths

between an actual wavefront and a reference (ideal) wavefront centered on the ideal image point

[13].

Figure 2 : Formation of Wavefront aberration

The difference between the ideal wavefront and the actual wavefront is described using a

mathematically well behaved polynomial, known as Zernike polynomials.  Zernike polynomials

form a good orthonormal basis set of functions and are described over a unit circle. The wavefront

aberrations of the eye, W(x, y), can be described as shown in equation (1) [14].

)1(),(  
m n

m
n

m
n ZcW 

From these, an aberration map can be produced in order to visualize how aberrations vary across

the pupil of the eye.  These aberrations produce image formation errors at the retina [15].

When constructing an aberration map of the eye several formats can be used, namely, displaying

them in terms of rays striking the retina, in terms of the object and retinal optical distance through

different points of entry in the pupil, or in terms of the shape of the wavefront of light produced by

the optical system of the human eye [16].

Exit
pupil

Aberrated wavefront

Rays of light are always orthogonal to
wavefront

Ideal
wavefront
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Figure 3 shows an example of an aberration map in terms of the shape of the wavefront produced

by the optical system of a six years old subject’s eye from the data set. This wavefront aberration

map is computed from a set of 14 Zernike modes (J=14) using a model implemented in MATLAB.

The color coding shows a deviation of the wavefront from the (x, y) plane perpendicular to the

path of the chief ray, in µm. The color bar at the right side of the figure demonstrates numbers

corresponds to each color.

Figure 3: WA map obtained from 20/20 visual acuity over a 5 mm pupil diameter.

Zernike Polynomials

Using normalized Zernike polynomial expansions is a standard method [16] for mathematical

expression of eye wavefront aberration (wavefront error).  These polynomials are based on circular

geometry and are ideal for describing the wavefront aberrations of the eye considering that the eye

pupil has circular geometry as well.  All the aberrations coefficients in Zernike's expansion, except

for one, have a zero mean error for computational simplicity [16].
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They also have useful mathematical properties such as completeness, orthogonallity, and are

normalized [16].  Their completeness means that any wavefront function W (ρ, θ) can be expressed

as a linear combination of Zernike polynomials.  Orthogonality implies that all Zernike

polynomials are independent from each other which simplify fitting the polynomials to the

wavefront. Therefore each aberration coefficient
m
nc  can be obtained independently.  Normality

indicates that the pupil radius ranges from 0 to 1.

One advantage of describing ocular aberration with the normalized Zernike expansion is that the

value of the coefficient of each mode represents the root mean square (RMS) wavefront error

attributable to that mode [15].

Zernike polynomials have circular symmetry and therefore can be described in polar co-ordinates,

(ρ, θ) in the pupil plane, where ρ is the radius of pupil ranging from 0 to 1 and θ is the angular

component ranging from 0 to 2π.

The Zernike terms are ordered based on the power of the radial component of the Zernike

polynomial. For example z
1

1
shows a first order term with the frequency component equal to one or

in z
3

3


 order is 3 and frequency component is -3. The first two orders represent tilt and defocus.

Larger orders show higher-order aberrations and some of which are named [14]. Figure 4 shows

the example of some Zernike modes.
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Reference: http://www.mathworks.com/company/newsletters/digest/2008/jan/zernike.html

Figure 4: Ten Zernike modes.

Aberrations Types

Aberrations are divided into two general types. They are either monochromatic or chromatic [13].

In the case of monochromatic aberrations, the light is composed of a single wavelength, while

chromatic aberrations occur only in polychromatic light and are due to the dispersion of the optical

medium. The studies of this thesis are performed for monochromatic light therefore the chromatic

aberrations will not be discussed in this area.

Monochromatic aberration shows several kinds of defects in the optical system including defocus,

spherical aberration, astigmatism, coma, and curvature of the field [17], [18].  These are the third-

order monochromatic aberrations that are called Seidel aberrations.

Defocus

http://www.mathworks.com/company/newsletters/digest/2008/jan/zernike.html
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Defocus simply means out of focus or the axial deviation from the best focus location. Optically it

refers to a condition in which the image is not formed on the focal plane (surface of best focus) but

at a point longitudinally displaced from it.

Generally defocus reduces the sharpness and contrast of the image, hence fine details of images are

blurred or even indistinguishable.  Nearly all eye optical systems include some form of defocus.  In

some systems defocus is balanced with another aberration hence the combined aberration is

minimized.  If the eye only had defocus, then the shape of wavefronts in the image space would

remain spherical but would not be centered at the image plane [18], [19].

In the Zernike polynomial expansion, the defocus wavefront aberration is indicated by the second

order aberration and is shown by this coefficient: c
m

n
where, n= order of coefficient =2, m=

frequency of coefficient = 0

Astigmatism

Astigmatism can occur for rays of light coming from on-axis point objects when the optical system

is not symmetric about the optical axis The human eye often exhibits this form of aberration due to

imperfections in the shape of the cornea or the lens.

Astigmatism can also arise from an off-axis point object caused by the tilting of a wavefront

relative to the optical surface [19]. When an optical system has astigmatism distortion the rays that

propagate in two perpendicular planes end up at two different foci.

In the Zernike polynomial expansion of wavefront aberration astigmatism is among the second and

fourth order aberrations and is shown by these coefficients:

c
m

n
= {c

2

2



,c
2

2 ,c
2

4



,c
2

4 }
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Spherical aberration

This kind of aberration happens when the marginal rays of the light source come to a shorter focus

than rays of light from the central portion.  This shifting of focal length for different rays of light is

caused by deviations in the surface of the optical system of the eye (lens or cornea) from an exact

sphere.  This aberration can be inferred as an excess or lack of peripheral refractive power that

creates a symmetrical blur circle of light around a point image. [19]

When an optical system has more power peripherally its corresponding spherical aberration (SA) is

called under-corrected or positive. On the contrary, if an optical system has less power peripherally

then its SA is referred to as overcorrected or negative [17].

In the Zernike polynomial expansion of wavefront aberration, spherical aberration is indicated by

the fourth order aberration and is shown by this coefficient: c
m

n
 =c

0

4

n= order of coefficient =4, m= frequency of coefficient = 0.

Coma

Coma is another type of distortion, in the phase of light entering the eye, due to non optimal

surface shape and misalignments in the optical elements of the eye.

Coma occurs when a bundle of light rays entering an optical system is not parallel to the optic axis.

It is a variation of image magnification with radial distance of incident rays from the optical axis.

In general, coma wavefront aberration results from tilting the incident wavefront with respect to

the optical surface, or axial displacement from optical surface. The image of a point source looks

like the coma tail of a comet, hence the name. Coma forms when the refractive surfaces have

asymmetrical shapes or when the optical elements are misaligned with respect to the optical axis

[17].
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The coma effect is frequently combined with other aberrations, such as astigmatism and chromatic

aberration. In the Zernike polynomial expansion of wavefront aberration, coma is indicated by the

third order aberration and is shown by these coefficients:

c
m

n = {c
1

3



,c
1

3



}

Curvature of the Field

This type of monochromatic aberration can simply be defined as an optical system imperfection in

which the objects at the edge of the field of view can not be brought into sharp focus at the same

time as the objects in the center, and vice versa[18].

Curvature of field is an aberration that makes an extended object focus on a curved surface instead

of a flat image plane. Almost all optical systems suffer from field curvature, which is a function of

the refractive index of the optical elements and their curvature of surface. The image surface is

almost spherical near the optical axis and is called the Petzval surface.[16], [17].

If a flat image surface focuses the on-axis point of the object surface then the image of off-axis

points have circular blur since they are defocused at this plane.  The level of defocus increases

with the distance of the off-axis point. Field curvature can be corrected with the right combination

of surface shapes and their refractive indices [19]. One solution could be making the object or

image recording surface curve to compensate for field curvature.

Field curvature has same order and frequency as defocus in the Zernike terms expansion.

It is indicated byc
0

2
.

Distortion

Varying image magnification with the distance from the optical axis causes distortion. The more

off-axis is an object point, the larger is the change in magnification.
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Distortion deforms the image as a whole; hence it is the most easily recognized aberration.  It has

two types: pincushion and barrel distortion.  When the magnification increases with off-axis

position, the distortion is named as positive or pincushion distortion. When the magnification

decreases with distance from the optical axis, it is called negative or barrel distortion.

In the Zernike polynomial expansion of wavefront aberration, distortion is indicated by the first

order of aberration and is shown by these coefficients: c
m

n
= {c

1

1


,c

1

1
}.

Interaction between Aberrations

Mathematical independence of the Zernike modes does not mean that their impact on visual

performance is also independent [20]. Interaction between Zernike modes causes increase or

decrease in the optical quality of the eye.  In some situations, a slight aberration in the eye can

provide some relative visual benefits [21], therefore two combinations of wavefronts with the same

value of RMS error, could result in a different image quality, and consequently different visual

acuity.  This fact shows that RMS is not a good metric for predicting visual acuity from wavefront

aberrations [14].

One aberration could be applied to interact with another such that the resultant improves the

modulation transfer function (MTF), and consequently improves image quality.  This is known as

aberration balancing.  The Zernike modes which have the same signed coefficients with two radial

orders apart (e.g., radial orders 1 and 3) and have equal angular frequency (e.g., angular

frequencies –1, or 1) can be combined such that the effect on acuity is less degrading than each by

itself.  These combinations, when in correct proportions, reduce the wavefront error over the center

of the pupil [20], [21]. An application of interaction between aberrations is when using aberration

combination to make the spherical aberration to nearly zero using two or more lenses in

collimated, monochromatic light.

Contrast Sensitivity Function
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The Contrast Sensitivity Function (CSF) is a measure of   the ability of the visual system to see

detail at various contrast levels. It is a plot of sensitivity (defined as the inverse threshold) as a

function of spatial frequency.  The contrast sensitivity function tells us how sensitive we are to the

various spatial frequencies in the visual stimuli.  If the spatial frequency of visual stimuli is very

high we will not be able to recognize the stimuli pattern any more since it will be beyond the

resolution limit [22, 23].  For example, if an image consists of very thin vertical black and white

stripes, we can not distinguish the pattern any more.

Contrast is created by the difference in luminance between the light and dark bars. It is usually

quantified by equation (2) and is also known as Michelson contrast and is usually expressed as a

percentage. If lmax = maximum luminance (the lighter surface) and l min = minimum luminance

on (the darker surface), then contrast is defined as:

Contrast = (2)

When the darker surface is completely black it reflects no light, the ratio (contrast) is 1.

Among the people with normal sight this function has a maximum (normalized) value of

approximately 1, at f =8.0 cycles/degree, and is meaningless for spatial frequencies above 60

cycles/degree. The Contrast Sensitivity Function has neural and optical components. The MTF is

the optical contribution to the contrast sensitivity function (CSF) and neural transfer function is its

neural part. [24, 25]

The contrast sensitivity function (Figure 5), shows how sensitive the visual system is to the various

spatial frequencies contained in the visual stimuli.



14

Refrence: www.cg.tuwien.ac.at/.../matkovic/node20.html
Figure 5: Contrast Sensitivity Function.

The reason that the human eye can not distinguish patterns with high frequencies is believed due to

the limited number and dimensions of photoreceptors in the eye.  It is also limited by the sampling

characteristics of the photoreceptors and the multiplexing between the photoreceptors and the

underlying neural substrates such as ganglion cells.

The Contrast sensitivity function is impacted by the presence of the aberration of the eyes. Yamane

et.al [26] demonstrated that induced changes in the contrast sensitivity function significantly

correlated with increases in ocular higher order aberrations.

Point Spread Function

The Point Spread Function (PSF) is one of several metrics used to describe the optical quality of

the eye or any optical system.  Point spread function represents the response of an imaging system

to a point object.  As a result of being imperfect optical systems, the stimuli undergo a certain

amount of degradation, when visual stimuli are passed through the cornea and lens and the media

[23].

www.cg.tuwien.ac.at/
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The PSF shows this image degradation, represented as a plot of relative intensity of a point of

light, as a function of distance from the center of the retina.  In other words, PSF is the irradiance

distribution of a single point source, which shows the degree of blurring of the point object, when

projected onto an image plane.

There are number of reasons for the image of a point source not being just a point any more. First,

aberrations in the optical system will spread the image over a finite area. Second, diffraction

effects will also spread the image, even in a system that has no aberrations [22].  Scattering in the

media will also play a role.

The Fourier transform of the PSF is called the Optical Transfer Function. In other words PSF is the

spatial domain version of the optical transfer function (which is in the frequency domain) [22].

Optical Transfer Function

Optical transfer function presents the relation between the image produced by an optical system

and the amplitude and phase of an object at various spatial frequencies.

It can show how well the contrast has been transferred from object to image. The OTF is a

complex function; its real term gives the ratio of amplitudes, and the imaginary term gives the

phase relationship between the object and the image. [25, 26]

The modulus or absolute value of the optical transfer function is called the modulation transfer

function ( (3) ).

),(*),(),(  PSFMTFOTF 

Where

),(),(  OTFMTF 
(3)

)),(2exp(),(  iPSF 
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The MTF is the ratio of image contrast over the object contrast as a function of spatial frequency.

It can be seen in Figure 6 that the eye can not distinguish features smaller than one minute of arc

(60 cycles per degree). The value of MTF drops down when pupil radius increases.

Figure 6:  Modulation Transfer Function for two different pupil diameters.

Neural Transfer Function

When rays of light from an object are imaged the retina, they are captured by photoreceptor cells,

which transform the light into electrical impulses, to carry out to the brain by the optic nerve, for

final visual processing.  The mathematical function that has been developed to show this process is

a Neural Transfer Function (NTF).  The neural transfer function is also sometimes called neural

contrast sensitivity function.

NTF shows how well the retinal image is interpreted by the neural portion of the visual system.

The overall contrast sensitivity function of the eye is the product of optical and neural transfer

functions. This can be seen by the fact that the low frequency fall off in sensitivity seen in the CSF

can be attributed to receptive field organization of neural cells in the retina and beyond.   Therefore

0 10 40 50 6

0Spatial Frequency (cycle per degree)

20 30

0.2

0.4

0.8

1

0.6

2mm

pupil
6mm Pupil

MTF



17

the neural transfer function can be derived if one has values of contrast sensitivity function and

optical transfer function [7].

Usually a standard form for CSF is defined, and then the optical component of the function is

removed.  The remaining function is the neural transfer function, which shows the ability of a

visual system to transform visual information to the brain [27] and is given by equation (4).

OTF

CSF
NTF 

(4)

Frequency Scale

Using a standard contrast sensitivity function and a mean value for the optical transfer function to

measure neural transfer function provides a fixed value for NTF [28, 29]. Usually different

observers have different neural transfer functions (NTF); therefore a parameter should be included

in the computation to show possible variations in the neural transfer functions for different

observers. Thus the value of the neural transfer function would be more accurate for each observer

[7].

A frequency scale, Φ, is used for this purpose.  This scale, Φ has the effect of shifting Standard

Contrast Sensitivity Function (SCSF) horizontally in the amplitude vs. spatial frequency

coordinates .The result is the shifting of the neural transfer function to the higher values which

mean better ability of the neural transfer function in transferring information from higher spatial

frequencies to the brain.  Consequently higher values of the frequency scale demonstrate higher

values of acuity.

This method of randomly varying the value of neural transfer function has the advantage of

providing a single parameter that can control the most important aspect of NTF, i.e. its sensitivity

at higher spatial frequency [7].
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Neural Noise Levels

For the same stimulus, different subjects can have different thresholds (or sensitivities).  This is

due not only to the criterion used by the subjects but also due to the presence of different amounts

of neural noise.  Hence, the model should incorporate a parameter that takes into account noise in

the neural system.  Therefore, in addition to the frequency scale the other parameter that governs

the performance of the acuity model is the amount of neural noise σn, [7]. Trial and error are the

best way of finding the proper value of σn for each subject. Thus for each individual a sequence of

values of σn should be tested to find the best fitting value.  It is clear that each observer has a

different σn.  Generally this estimation of σn should be in agreement with the empirical result in the

observer’s sensitivity.  In this simulation the noise is taken as always zero-mean Gaussian noise.

Therefore the nature of the noise does not change; only the amount of it is variable [7]. The reason

of existence of this free parameter in the model is to make discrimination between subjects’ neural

sensitivities.

Metrics and Models

A distinction should be introduced between metrics and models.  Metrics consist of computations

or equations that describe quantitative relationships.  Metrics can quantify the results in

measurable terms.  On the other hand, models include dynamic statements that attempt to clarify

why the relationship exists [7].

A model is a symbolic representation of the basic structure of an object or event in the real world.

Modeling is used as a tool to explore the obscure workings of complex systems. Commonly, the

greater the number of simplifying statements made regarding the basic structure of the real world,

the simpler the model [31].

The goal of a scientist is to create simple models that have a great deal of descriptive power.  The

relation between aberrations and visual acuity of the human eye is an example of such a model.
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Metrics may have more practical advantages due to their simplicity, while models present a

scientific purpose [31].

To find a link between aberrations and visual acuity, at least four types of metrics and models can

be used depending on the expected accuracy we are looking for in the result.

The simplest ones are the metrics and models that incorporate only optics.  For example the RMS

error of the wavefront takes into account only the optics of the eye.  The second types are metrics

and models that include some explanation of post-optical (neural) processing.  Approximately all

of the acuity models that have been developed previously are of these first two types [31].

One step forward is having the metrics or models that include the defined acuity targets, such as

Sloan letters, in the computation.

The last and most complete are metrics and models that also simulate the particular task

undertaken in the acuity measurement, like identification of each Sloan letter. The model and the

metric that will be using in this dissertation both fall into this last group.

The model and metric are designed to predict letter acuity from wavefront aberrations.  The model

is a Monte Carlo simulation [30] of a decision process and its component is an ideal observer

limited by optics, neural filtering, and neural noise. The metric is a deterministic calculation

including optics, letters, and a theoretical neural transfer function.

Acuity Model

Practically and theoretically it has been always a matter of interest how humans can distinguish

between the letters of the alphabet.  The principles that have been discovered in the study of letter

recognition could be generalized to perception of more complicated types of letter discrimination
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and feature analysis. The numerous proposed theories on letter discrimination could be divided

into two general categories: feature-based and image-based theories [33].

In the feature-based theories, the hypothesis is that letters are identified through their component

features like horizontal lines or concave curves, etc.  But the feature-based models neither indicate

the method by which the image of the letter is transformed into features nor do they describe the

nature of the features, or the processes involved in mapping features onto abstract letter characters.

Therefore feature-based models are not regularly applied for example in font design. Image-based

models measure the luminance image of the letters. Both models have a common defect.  They are

not well generated by basic principles of pattern recognition; consequently they do not work

accurately [33].

Here a “minimal” image-based model is used.  In other words its measurement is based on

luminance image of the letters. A minimal model is one which is as simple as possible and only

contains the processes that are essential. For that reason implementing (and running a simulation) a

program based on a minimal model, takes less time than for complex models.  The overall

structure of the recognition process of the model is illustrated in

Figure 7.

The main and unavoidable components are Sloan letter image, optical and neural filters of the eye,

and normalized correlation (matching component). The optical and neural filters represent the

limited resolution of the visual system. As demonstrated in the Figure 7, first an image passes

through filters and then the matching process is applied on a result of noised filtered image. If the

model does the correct match the letter of output is same as the input letter image.

The model is implemented in the digital image domain. Inputs and outputs of the model at every

stage are discrete finite digital images. Details about this model are explained in chapter 2 of this

thesis.
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Figure 7: Simple model of human eye recognition process.

Aberrations and Visual Acuity

In this section, the literature on the relationship between acuity and wavefront aberrations is briefly

reviewed.  Applegate et.al [8] have measured letter acuity for three observers in the presence of 34

different combinations of two Zernike modes whose total RMS error was fixed at 0.25 µm, over a

6.0 mm pupil. Although the RMS wave-front error was constant, the performance varied by up to

0.2 Log MAR values (logarithm of minimum angle o f resolution). Therefore The RMS wave-front

error and the equivalent defocus (Me= ) are not good predictors of visual

performance.

In conclusion they mention that visual acuity varies significantly depending on which Zernike

modes are included in the analysis and their relative contributions. Modes of two radial orders

apart in the Zernike expansion can be combined to improve visual acuity. They also pointed out

that the RMS is not a good predictor of visual acuity for low levels of aberration while previous

studies showed that for high levels of aberrations RMS is a good predictor of visual performance.

Guirao and Williams [35] have examined seven metrics to calculate the impact of high order

aberrations of the eye on subjective refraction. Their metrics were divided to two types, pupil plane

metrics and image plane metrics. The pupil plane metrics calculated the wave-front over the pupil

and image plane metrics consisted of calculations in the retinal image plane. They collected
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aberration data and subjective refraction in different settings for 146 observers. They concluded

that their image plane metrics presented good prediction of refraction while the quality of the pupil

plane metrics declined as higher order aberrations increased, and that higher order aberration

influenced the amount of spherical and cylindrical correction required.

Cheng, et al. [36] have studied the impact of higher-order monochromatic aberrations on lower-

order subjective sphero-cylindrical refractions. In their experiments visual acuity (VA) was

determined while monochromatic computationally-aberrated, Sloan letters were viewed by an

observer through a 2.5mm pupil. Then they compared the results to the prediction of 31 metrics.

Their results showed that presence of fourth order aberrations changes the effect of defocus; in

other words the amount of defocus required for the best acuity depends on the amount of higher

order aberration. Several of the metrics that they examined correlated well with measured letter

acuity.

Thibos, et al [32] have assessed the ability of the same metrics in addition to two other metrics to

predict best refraction. They used the aberration map of 200 subjectively corrected eyes. They

simulated subjective refraction by computationally varying spherical and cylindrical corrections

for each metric and each map, in order to maximize the predicted acuity.  Then the resulting

simulated correction was compared with the actual correction.  They found that among all metrics

only five were reasonably accurate.

Marsack, et al have compared the experimental results from Applegate, et al [18] to compute the

values of 31 metrics that Thibos, et al [29] assessed. These investigators changed the distribution

of 0.25 µm RMS wavefront error across the pupil and measured the correlation of 31 metrics of

optical quality to high contrast visual acuity.  The best metric was found to be the VSOTF (Visual

Strehl ratio Optical Transfer Function) which accounted for 81% of the variance. The VSOTF is

the contrast-sensitivity-weighted OTF divided by contrast-sensitivity-weighted OTF for diffraction

limited optics.
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Conclusion

The simplified Visual Acuity Model (Figure 7) proposed here is an attempt to find an alternative

value for RMS wavefront error to predict visual acuity from 14 modes of wavefront aberrations of

the eye. The elaborated Visual Acuity Model is explained in more details in the next chapter.

The reason for the challenge to seek such a model is to find an automated objective measurement

of visual acuity and of automated prescription of sphero-cylindrical corrections that provides the

best visual acuity.
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Chapter 2

Methods

Introduction

As noted earlier, visual acuity is the most broadly used metric to describe the quality of an

individual’s overall visual performance [10].  To subjectively evaluate people's visual acuity a

standard eye chart is required [11]. The Sloan letter chart is a logMAR chart and is used in low

vision studies frequently.

Sloan Visual Acuity (VA) is measured by asking the subject to recognize the targets. The

minimum size of the targets for which the number of correct answers is above a specified threshold

determines the subject’s visual acuity.  This visual acuity is usually expressed as a LogMAR

(Logarithm of the Minimum Angle of Resolution) value.

Sloan VA has a high sensitivity to optical imperfections such as aberrations.  It can detect defocus

values equal to or less than ¼ Diopter (D) [38]. Unfortunately this measurement does not give any

information about the amount or type of the higher order aberrations involved.

Based on the recognition task of Sloan visual acuity, Watson & Ahumada [7] have proposed an

acuity model to objectively predict visual acuity from the total aberrations of the eye.  They

examined controlled simplified combinations of a second and a fourth order aberration and found

an excellent account of acuity in the presence of those aberrations.

In this thesis a model was implemented using MATLAB based on Watson and Ahumada’s idea to

develop a computational acuity model.  As aberrations of the human eye include more than just

two orders, this implemented visual acuity model assessed the real aberrations of the eye up to 14

terms of aberration.
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Template Matching Model

I have applied an instance of a “Template Matching” model for the algorithm of the visual acuity

model I have implemented.  This model presents an excellent fitting match with experimental data

while having very few assumptions, parameters and calculations. It is a simple model while

meeting all the conceptual requirements of a visual acuity model as previously described in

Chapter 1.

The basic conceptual requirements of an acuity model are specific target images, optical and neural

filters of the images, an additive neural noise, and a set of template letters to perform the matching

process.  The Sloan letters are an example of a specific target image set.  The additive neural noise

simulates a biological task which always includes some natural noise. It is known the brain

maintains certain level of noise to optimize visual acuity performance.

Usually after several exposures to the alphabet letter patterns, over a number of years, a person’s

brain constructs templates for those patterns.  The template matching model assumes that, several

same shapes, but perhaps different size and patterns of each particular letter are stored in the brain

[31].  Recognition consists of finding the best match between a target letter and one of these

templates in the brain.

Figure 8 shows the overview of this acuity model.  Its components include a digital Sloan letter

image as the input, two optical and neural filters, that this letter image passes through, an additive

Gaussian white noise, and a set of template images.  These templates are compared with the noisy

neural image.  One set of templates is used for each candidate letter to select the closest match.

Finally the output is the visual acuity of a subject in LogMAR value.
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Figure 8: Letter acuity template matching flowchart
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For a template matching model three types of templates could be considered: the original letters,

the neural images of the aberrated letters, and the neural images of the diffraction-limited letters.

The original letter template type corresponds to a subject who retains templates with minimal

optical degradation.  These templates may be learned at a larger size and then mentally scaled

down to the suitable size. The neural images of the aberrated letters template type corresponds to

subjects who retain templates from prior experiences of the letters passed through the optics of

their eyes. The diffraction-limited letters template type is appropriate when an observer’s brain

stores the patterns of the letters under diffraction limited conditions.

Experimental Data

Three to six year old pre-school children were chosen as the subjects of this study. (N=20; mean

age= 4.2 years; best corrected VA= 0 (in log MAR units)). These subjects were part of a larger

school screening study conducted by Dr. W.R. Bobier of the School of Optometry at the

University of Waterloo. Two sets of data were used in this computational model. The image of

each subject’s eye was used to calculate aberration coefficient of the eye and the subjective visual

acuity of each subject was used to evaluate the performance of this model.

The first set of data, are the images of each subject’s eye. An aberrometer, Welch Allyn

Suresight®, was used to capture these images.  This instrument is based on the Hartmann-Shack

aberrometer principles [5, 6]. Welch Allyn Suresight® image data is used by MATLAB language

software to calculate up to 64 modes of aberration coefficients. This software finds the aberration

(Zernike) coefficients by independently fitting each Zernike polynomial term to the eye wavefront.

These aberration coefficients were obtained by courtesy of my college Damber Thapa (Vision

Science graduate student, University of Waterloo, Canada). The Optical Transfer Function (OTF)

of the acuity model was then calculated from these coefficients.

The other set of data, the subjective visual acuity, was obtained from Cambridge Uncrowded

Cards. This test does not require the subjects to name the letters. They should only match the test

letters with the letters on matching board. The single letter testing was conducted in this
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experimental study not the crowded acuity test. The subject was at a distance of 3 meters from the

cards.

In order to evaluate the performance of the model, these empirical results for visual acuity were

compared with the visual acuity achieved from the computational model.  The RMS error between

the two visual acuities is then calculated.

From approximately 2000 three to six year old, Oxford country pre-school children (data collected

from 2001 to 2006), I have randomly selected subjects from 2006 data (subject’s eye images were

taken by the Welch Allyn Suresight® autorefractor, software dev 2.2), among all age groups to

create a set of 20 subjects (10 boys and 10 girls) pupil images of the right eye and visual acuities.

Data shows that most of the children in this study are hyperopic, because the optical structure of

young children’s eyes is not completely developed yet. The mean pupil size of the subjects was 5.6

mm, ranging from 2.2 to 6.9 mm.  The mean spherical equivalent (= spherical power + 0.5 *

cylindrical power) was 1.19 D, ranging from -1.90 to +4.77D.

Sloan Letters

Sloan letters are the test images of the model. They are ten letters of the English alphabet (Z, R, K,

D, C, V, N, O, S, and H). The experimental visual acuity is measured using Cambridge

Uncrowded Cards. The letters of Cambridge Uncrowded cards are U, X, O, H, V, T and A. The

images of Sloan letters used in the acuity model were created using Mathematica software. These

images were 256 x 256 pixels, with a resolution of 313.91 pixels per degree; consequently the

images subtended 0.815 degrees.

Each of the ten alphabet images used in this model created in 27 sizes, in units of LogMAR value.

The letter size varies from LogMAR -0.6 to 0.7 with a step size of 0.05 resulting in a total of 27

different sizes. The letters are black on a white background. In the simulation, the image pixel

values are scaled to real numbers in the range 0 to 1.  Zero is black and one is absolute white.
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Passing through Optical Filter

A visual system can be divided into optical and neural parts.  Optical Transfer Function (OTF) and

Neural Transfer Function (NTF) are the corresponding parts of the visual acuity model.  To get the

aberrated retinal image, each letter image of the Sloan chart, is first filtered by OTF, the optical

filter of the eye.  Then to generate the neural image of the Sloan letters, it is filtered by NTF, the

neural filter of the eye.

To calculate the OTF of a subject’s eye, the first step is finding the Zernike coefficients

(aberrations coefficients) from the image of the eye.  These coefficients are used to calculate the

two dimensional wave-front aberration functions, WA(x, y).  This function is used to compute the

generalized pupil function, GP(x, y).Figure 9 Shows an example of calculated WA(x,y) map for a

six year old subject with a 5mm pupil and a standard visual acuity (6/6).

Figure 9: WA(x,y) map - VA=6/6, J=14, age=6
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The eye’s optical performance is characterized by the generalized pupil function, GP(x, y)

(equation 5) which is a complex function that describes the wavefront at the exit pupil plane.
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The pupil function P(x, y) is the transmittance (portion of photons transmitted) as a function of

position within the plane of the pupil.  In equation (5) the transmittance is defined as 1 where the

pupil lets light through and 0 elsewhere.

GP(x,y) is used to calculate the Point Spread Function (PSF), the response of the optical part of the

eye to a point source.  The PSF is squared modulus of the Fourier transform of the generalized

pupil image. Appendix A gives the MATLAB code for calculating PSF from GP where P is the

pupil function and apw is pupil area in unit of wavelength.

Figure 10: Example of PSF simulated by the model for the subject#28 with VA=6/6.

The letter image is convolved with PSF to obtain the aberrated retinal letter image.  The spatial

domain convolution is equivalent to a simple multiplication in the frequency domain.  Discrete

Fourier Transform (DFT) is used to change the domain from spatial to frequency.  OTF is the

Discrete Fourier Transform of the Point Spread Function.  The aberrated retinal letter image is
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obtained by multiplication of the OTF and DFT of the letter image, followed by an inverse DFT.

The corresponding MATLAB code is given in appendix A.

Figure 11: Example of OTF simulated by the model for the subject#28 with VA=6/6.

The PSF and OTF of all subjects are displayed in Appendix B

Passing through Neural Filter

As mentioned in Chapter One the neural filter of an image is called Neural Transfer Function

(NTF).  NTF indicates how well a retinal image is interpreted by the neural portion of a visual

system.  It is calculated by removing the optical component (OTF) from the Contrast Sensitivity

Function (CSF).  CSF contains both optical and neural components and is defined in the frequency

domain.
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By sampling the one dimensional CSF shown in equation (6) a two dimensional CSF filter is

created as a discrete digital Finite Impulse Response (FIR) filter.

Among a number of different versions of the CSF a standard functional form for the radially

symmetric CSF is used in this thesis as shown (equation 6).
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The CSF is a band pass function; consequently the structure of Standard Contrast Sensitivity

Function (SCSF) is composed of a high-frequency lobe minus a low-frequency lobe.

The parameter 0f scales frequency in the high-frequency lobe, the parameter 1f  scales frequency

in the low-frequency lobe, and the parameter a determines the weight of the low-frequency lobe.

SCSF is divided by the Mean Optical Transfer Function (MOTF) to remove the optical component.

MOTF is constructed by calculating the average of OTF matrices for all the subjects.
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Figure 12: 3D presentation of SCSF simulated by the model.

Figure 13: 3D Presentation of MOTF used to make the NTF.

Figure 14: 3D Presentation of NTF calculated from dividing SCSF to MOTF.
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Using this method results in the same NTF for every subject. We know it may not be accurate for

all observers because people have different NTFs. Therefore for solving this problem a parameter

“frequency scale” is introduced here.

Frequency Scale Assessment

To consider potential variations in the neural transfer functions of different observers the

frequency scale multiplies the two parameters 0f and 1f of Standard Contrast Sensitivity

Function. As previously mentioned in the introduction chapter, the frequency scale (Φ) has the

effect of shifting SCSF horizontally.  Consequently the neural transfer function shifts to higher

values, and transfers information from higher spatial frequencies to the brain. A larger frequency

scale corresponds to a higher value of visual acuity meaning the individual can see more details.

Frequency scale is a parameter that changes the value of NTF to be specific to each subject rather

than being based on the average population.  To find the optimal Φ for each observer several

random values for frequency scale are examined and the result of visual acuity from calculations is

compared with the experimental result. Finding the optimal Φ to get the best fit to the experimental

data is somewhat arbitrary and time-consuming.

Specifying Additive Noise for Each Subject

Most biological organs have some amount of internal noise.  The same applies to the neural part of

the visual system.  This additive noise is usually useful for vision [48]. For example in very dim

light an imperceptible image can be seen due to this additive noise. The noise can exceed the

threshold sensitivity and the image is perceived Therefore performance of the acuity model is
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governed by the amount of neural noise.  One can hypothesis that in the brain some process is

implemented to generate just the right noise level where the visual sensitivity of the individual is at

its maximum.  In this model a zero-mean Gaussian white noise is added to the neural image to

simulate this additive noise.

A computational model that is as similar as possible to the real natural biological procedure is

needed to find the optimum noise level for each subject.

A simple technique for finding the right noise level for each subject, is to find the smallest Root

Mean Square (RMS) error between the experimental data and computational model when

examining several values of noise, n . The noise that results in this minimum amount is the

suitable noise for that person. Finding the best fit for each subject is possible at the last step of the

modeling procedure after applying the matching rule and obtaining the Visual Acuity (VA) from

the model. Figure 15 shows an example of finding the best noise level for four subjects based on

the minimum RMS error.

Figure 15: Each subject’s RMS error as a function of the neural noise.
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Matching Rule

Normalized Correlation

There are several pattern matching algorithms that could be used. An experimental study of five

template matching algorithms, when various image distortions are present, shows that normalized

correlation presents the best performance [41].  In the normalized correlation matching rule, letter

images filtered by aberrated optics and neural filter are used as templates.

The discriminant for normalized correlation is shown in equation (7). Templates are normalized

but they are not perturbed by any noise.  When normalization is applied the patterns will be

matched on the basis of shape rather than mean value.

The test letter image )(xsk and the candidate images )(xt j differ only by a shift along the x-axis.

Cross-correlation is used to find out the amount )(xsk +n(x) must be shifted along the x-axis to

make it identical to )(xt j . The equation slides )(xsk along the x-axis, calculating the integral of

the test and the candidate image product for each possible amount of sliding. When the functions

match, the value of  ))()(()( xnxsxt kj  is maximized.

  )7())()(()(max xnxsxtg kjj 

Here, jt is the normalized template for the letter indexed by j.

In the Normalized correlation rule the observer is limited by optics of the eye and internal noise.

The output of correlation of the test letter )(xsk and the candidate images )(xt j is itself an image,

and the value at each pixel of the result image reflects the correspondence of the two other images.

Taking the maximum selects the greatest correspondence.
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Visual Acuity Model

The model computes visual acuity from the measured wavefront aberrations for each subject.  The

visual acuity is simulated in the digital image domain and is implemented in MATLAB language.

Inputs and outputs of the model are discrete finite digital images. (Appendix A).

Two main factors limit the visual perception of individuals.  One is the ability of the optics of the

eye to form the image on the retina (optical filtering) and the other is the capability of the retina to

transfer the details of that image to the brain (neural filtering).

Other parameters affect the visual acuity therefore this model is based on the letter acuity task that

contains, optical and neural filtering, neural noise and a template matching rule.

In all the simulations the pupil diameter was set to a standard size of 5 mm.  This is the result of

using a 5 mm pupil in calculation of the Zernike coefficients from the experimental data.

Figure 16 shows the overall flowchart for an individual trial.
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Figure 16: An individual trial
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Figure 17 shows a retinal image at different steps of the model.

Figure 17: A retinal letter image (Top left); Image passed through NTF filter (Top right)

; Neural image with added noise (Bottom left); result of the matching process (Bottom right)

.

Performance Evaluation

The last step is to find out the degree that the performance of the acuity task of the model is

matched with the visual acuity obtained from experimental data.

Finding the RMS error between model and data is a good measure of performance. Note that

n should be optimized separately for each subject, because individuals possible presentation of

different average acuities. Therefore, for each observer, different values of n are tested

separately and the RMS error as a function of n is plotted.

Every point of Figure 15 is obtained based on 100 trials at each observer’s eye aberration

conditions while trying to find suitable noise values. The frequency scale has a constant value of

Φ= 1.
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Among the several n s for each observer the one that presents the minimum amount of RMS

error is taken as the optimized neural noise level.

More explanation of the process of finding the best RMS error for each subject is in the Results

chapter of this thesis.
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Chapter 3

Results

Visual Acuity Estimation Using a Psychometric Function

A psychometric function demonstrates the relationship between a physical stimulus and the

responses of an individual about a certain parameter of that stimulus. Usually the psychometric

function has an S-shape and is also called an ogive shape and represents a cumulative probability

distribution. The y-axis represents the probability of success in a certain number of experiments at

that stimulus level and the x-axis shows the value of the physical stimuli.  Finding the proper range

of the stimulus value is important in getting correct results from the psychometric function [44].

The stimulus should not be easily perceptible or completely indistinguishable for the subject. If the

stimulus is indistinguishable, it is probable that the subject responds randomly; therefore the

results of the function would not be reliable. On the other hand, if the person is always able to

respond correctly then the threshold of perception of the stimulus can not be obtained since the

strength of the stimulus is always above threshold.  The sensory threshold is the point where a

transition between correct and incorrect responses occurs.

A common application of a psychometric function is estimating subjective visual acuity using an

eye chart stimulus. The subject of study observes letters of different sizes, such as in LogMAR

value, on the acuity chart. These letters are the physical stimuli.  As long as the subject responds

correctly in distinguishing the letters, smaller sizes are tested.  The line on the chart where the

subject can not recognize some of the letters usually shows the sensory threshold and corresponds

to the visual acuity.

In this model a similar method was simulated to estimate each subject’s visual acuity. After

finding the portion of correct responses for each size of the letter the data were fit by a Logistic
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model of Sigmoidal Function. Using the fit plot, acuity was calculated as the value of LogMAR at

which the probability of a correct response was P = 0.66.

An example of one simulation is shown in Figure 18. This procedure of acuity estimation was

applied to each of the 20 subjects with 15 terms of aberration coefficients and 6 levels of noise.

Aberrated letters were used as the template for this simulation.

Figure 18 shows the estimated acuity for an observer at noise level = 60%. The black points show

the proportion correct at different letter sizes.  The blue lines indicate the VA estimation as the

LogMAR for which the probability correct is 0.66.

Figure 18: Simulation using aberrated letters as the template

Table 1 shows an example of the results at different sizes to plot the psychometric function for a

subject.
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Subj#4; VA=0

Noise = 20 40 60 80 100 120
Letter sizes LogMAR Probability of Correct Response

5 -0.4 0.3 0.3 0.3 0.2 0.3 0.4
7 -0.3 0.2 0.2 0.2 0.2 0.2 0.2
9 -0.2 0.3 0.2 0.2 0.3 0.2 0.3

11 -0.1 0.8 0.8 0.8 0.8 0.8 0.7
13 0 0.7 0.7 0.7 0.7 0.7 0.7
15 0.1 0.7 0.7 0.7 0.7 0.7 0.7
17 0.2 0.9 0.9 0.8 0.9 0.9 1
19 0.3 0.9 0.9 0.9 1 1 1
21 0.4 1 1 1 1 1 1
23 0.5 0.9 0.9 0.9 0.9 0.9 0.8

Thresholds: 0.5 -0.15 -0.14 -0.14 -0.15 -0.14 -0.159
0.6 -0.09 -0.07 -0.06 -0.09 -0.07 -0.08

0.66
Calculated VA :

-0.05 -0.03 -0.02 -0.06 -0.03 -0.04

Table 1- Data calculated to plot psychometric function.

Calculations similar to those that generated Table 1 were performed for each of the 20 subjects.

Each table is used to plot six psychometric functions, one for each noise level. On each

psychometric function three levels of threshold of probability of correct answer at 50%, 60% and

66% were applied to find the visual acuity.  Results Tables for all subjects can be found in

Appendix C.

Root Mean Square Error

To quantify the difference between the values of the model estimated VA and the experimental VA

a root mean square error was calculated. This parameter measures the average of the square of the

error. The error is obtained by subtracting the estimated VA value from the experimental result

Table 2.

The RMS error assesses the quality of the simulation result in terms of its variation. For an

unbiased estimator, the RMS error is equal to the standard deviation. Like the standard deviation,

the RMS error has the same unit of measurement as the quantity being estimated.
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Table 1 shows an example of finding the probability of a correct response of the model while

varying the amount of Gaussian white noise.  The result is then assessed by finding the RMS error

between the experimental VA and the calculated VA.

As could be seen in the Table 1, for each subject 10 letter sizes and 6 noise levels are used. Letter

sizes are spaced 0.1 logMAR apart.  The portion of correct matching of the test letter with the

template letters was calculated.

From the obtained data, the psychometric function was plotted for each noise level. To estimate the

subject’s visual acuity, three different threshold criteria were examined (threshold criterion of

Probability = 0.5, 0.55 and 0.6). Then to choose the best threshold the RMS error between

experimental result and computational result was calculated. Table 2 shows an example of the

values of RMS error for all thresholds and noise levels for the subject 4 (see Appendix C for all 20

subject’s tables).

Noise   = 20 40 60 80 100 120

Exp. VA Thresholds RMS Error

0.5 0.11 0.10 0.10 0.11 0.10 0.11

0.6 0.06 0.05 0.04 0.07 0.05 0.06
6/6 = 0

LogMAR
0.66 0.03 0.02 0.015* 0.04 0.02 0.03

Table 2- The RMS error between the experimental VA and the calculated VA, for three different thresholds,

and six noise levels, for subject 4.

Among all calculated visual acuity RMS errors in Table 2 the value corresponding to the noise

level 60 and threshold 0.66 presents the smallest visual acuity RMS error (one example is shown in

the Figure 19). Threshold 0.66 was the best choice for all other subjects of this study.
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Effect of Different Parameters

Templates

Two types of templates were tested in the model: the original letter images and the aberrated letter

images. Based on comparing the average of the calculated VAs and the average of the

experimental VAs, the visual acuity approximations when using the images of the aberrated letters

as a template were much closer to the experimental results.

This was apparent even when comparing VAs for each subject. Therefore the aberrated letters

were chosen as the template for the simulation.

Each subject has his/her own set of templates. Each subject’s OTF is used to optically filter the

original images to make a set of aberrated image templates (10 different alphabet images at ten

different sizes).

Noise Level

The letters presented to subjects are a combination of perfect images and noise in the subjects’

memory.  This noise was simulated in the model as an additive Gaussian white noise.

The noise level was defined as a percentage of the signal amplitude. The signal was the discrete,

finite digital Sloan letter image used in the model. The images were 256*256 pixels with

amplitude in the range of 0 to 256. Normalizing the images changes the range to be from 0 to 1.

For example, when applied to a normalized image, a noise level of 60 means the maximum value

of the absolute amplitude of a pixel of noise is 0.6 (60% of 1), while for an original image the

maximum value of the absolute amplitude of a pixel of noise is 154 (60% of 256)

No logical algorithm has been found to estimate the noise level for various observers.  For each

subject ten levels of noise were tested and the noise level that results in minimum RMS error

between experiment and model VA was selected.  For some subjects better results were obtained at
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higher noise levels, while in other subjects, lower noise levels resulted in better results. There was

not any correlation between subject’s age and their noise levels.  This is shown in Table 3.

Subj# Selected
noise

Subj# Selected
noise

3 60 38 120

4 60 46 80

12 80 47 120

13 80 49 20

14 60 50 80

15 20 53 20

19 120 56 100

28 60 66 20

30 20 87 20

37 60 88 100

Table 3 - Selected best noise for each subject

Figure 19 shows the variation of RMS error for a subject versus noise level.  Noise levels 20 to

120 in steps of 20 were used.  Noise level of 60 has the smallest RMS error.

Figure 19: RMS error for subject#4 as a function of noise level.
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Frequency Scale

The frequency scale, Φ, is a parameter used in the equation of the standard contrast sensitivity

function. A higher value of the frequency scale shows that the individual can see more details.

Examining three different values for the frequency scale (Φ = 0.5, 1, 1.5, and 2) concluded that the

best value of visual acuity is calculated at Φ=1. Therefore, the value of Φ in all stages of

simulation was fixed to one. Figure 20 shows the variation of RMS error vs. the frequency scale.

Figure 20: Sample of frequency scale as a function of RMS error for specific subject#28.

Thresholds for Visual Acuity

A visual acuity recognition threshold (the level at which a letter can not only be detected but also

recognized) [44] to obtain the model VA results, should be chosen.

For each psychometric function, three values of threshold were tested.  The threshold level that

resulted in a smaller VA RMS error was selected.
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Figure 21 shows the average value of estimated visual acuity using three different thresholds. It

can be seen that the estimated VA, for threshold of 0.66, is the closest to the experimental VA.

The error is 0.0828 - 0.07357= 0.0093.

Figure 21: Estimated and experimental average values of visual acuity for 20 subjects.

The plot of RMS error as a function of noise level, Figure 19, also shows that for subject 4 the

threshold of 0.66 corresponds to the smallest amount of RMS error, across all noise levels.  This

holds true for most other subjects as well. Therefore the threshold for VA estimation for this

simulation is chosen to be a probability of 66% correct response.

In Figure 22, Figure 23 and Figure 24, visual acuity estimated by the model versus their

experimental visual acuity is plotted for 20 subjects for thresholds of 0.66, 0.6, and 0.5. As the P

and r (Pearson correlation) values for threshold of 0.66 indicate, these correlation plots emphasize

that the 66% threshold is the best choice for the threshold.
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Figure 22: Correlation between Data and Model; Threshold 0.66

Figure 23: Correlation between Data and Model; Threshold 0.60

Figure 24: Correlation between Data and Model; Threshold 0.50
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Mean Optical Transfer Function

As explained previously, to find the neural filter of the model (Neural Transfer Function) the

optical component of Standard Contrast Sensitivity Function (SCSF) should be removed. This

optical component is the Mean Optical Transfer Function (MOTF).

Two methods for finding MOTF were examined. In the first method, the average of the OTFs of

the 20 subjects was calculated. The NTF was obtained by dividing SCSF by this MOTF. But this

technique for finding the NTF did not result in acceptable values for VAs, as the dynamic range of

the MOTF was too large (10 to the power of 7).

When MOTF was normalized to a maximum value of 1, its minimum was around 10-7 while the

same minimum for the MOTF of the second method was around 10-3.  As MOTF is in the

denominator of the NTF formula, these small values and the large dynamic range caused very

large values for NTF and a large dynamic range as well. As shown in Figure 25.

When moving away from the origin (zero) the NTF values drop down at a very high rate.  The

problem was attempted to be fixed by reducing the dynamic range of the MOTF.  The MOTF

values less than 10-3 were truncated to 10-3.  This did not improve the NTF that much.

Figure 25: NTF from the first method (MOTF average of OTFs of all the subjects)
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In the second method a formula for the MOTF proposed by IJspeert, .et.al was used [43].  This

MOTF resulted in very promising estimations for VAs and hence was used in all simulations.

Equation (9) shows this MOTF formula.   Here, f is the spatial frequency and the age factor is

given by (Age Factor = 1 + (age/70) ^4  (equation(8))

MOTF (I, J) = 1/ (1+AgeFactor/7) * (0.426*exp (-0.028*f) + 0.574*exp (-0.37*f))

+ 1/ (1+7/AgeFactor)*(0.125*exp (-37*f) + 0.877*exp (-360*f))     (9)

Number of Matching Trials

To find out the probability of a correct response for each letter size, each of the alphabet letters

should be compared to all of the other letters of the same size. When this process is done once,

each letter is compared to ten template letters.  The result of each of these comparisons depends on

the effects of the additive noise.  Due to the random nature of the additive noise, the same

comparison can pass or fail at different trials.  To increase the precision of the model each trial can

be performed multiple times.  When this process is done five times, each letter is compared to fifty

template letters that is ten template letters each with five random additive noises.

The results were in the same range as the results from the single trial case.

Figure 26 shows the correlation (r =0.721, p= 0.279) between the single trial and the five times

repeated trial, for subject 4.  Due to the computational complexity and time consuming nature of

this process, it was carried out for only five randomly chosen subjects.
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Reapeted trial vs. Single trial
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Figure 26: Correlation between 5 time repeating trials vs. Single trial.

Visual Acuity RMS error vs. Different Orders of Aberration

An assumption that was tested was finding if there is any correlation between the RMS values of

different orders of aberration and the RMS error of the calculated visual acuity.

In order to test this assumption four experiments were carried out. The correlation between the 2nd

order aberrations total RMS and VA RMS error, the correlation between the 3rd order aberrations

total RMS and VA RMS error, the correlation between the 4th order aberrations total RMS and VA

RMS error, and at last the correlation between the all 15 modes of aberrations total RMS and VA

RMS error.  Each of these experiments was performed on the twenty subjects.

The results obtained from these correlation calculations as shown in Figure 27 did not reveal any

significant relation between VA RMS error and 2nd order aberrations total RMS (defocus and

astigmatism). Between these two modes of second order aberrations defocus has more value than

astigmatism. Only 2% of the children have greater than 1D of astigmatism. Children’s eyes in the

experimental data were cyclopedia (paralysis of the ciliary muscle of the eye) so that there was no

accommodation of the eye and therefore the actual amount of defocus were obtained. Even though
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the defocus and astigmatism terms had different values (one of them small value and the other

large) none of them showed any correlation with VA RMS error. There was no significant relation

for the 4th order aberrations (spherical aberration) or all 15 modes of aberrations cases either.

Despite the fact that children eyes are hyperopic because they have high amplitude of

accommodation they can overcome it because of having long range of accommodation compare to

adults.

The subjects’ VA RMS errors and 3rd order aberrations total RMS (Coma (m=-1, 1) and Trefoil

(m=-3, 3)) correlation plots showed P= 0.02, and r = -0.515 which reveals not a very significant

but a medium inverse correlation between theses two sets of variables.  This inverse correlation

implies that this model is particularly efficient at estimating the visual acuity of subjects with

higher values of 3rd order aberrations total RMS.

Figure 27: Correlation between 2nd, 3rd, 4th order and total Wrms aberration with VA RMS error.
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Chapter 4

Discussion

In this Chapter, I will consider the various parameters and techniques used in this model and will

discuss the advantages and disadvantages of the same.

a. Template Matching Algorithm

Several template matching algorithms could be used in the computational model to estimate visual

acuity, such as the method of an ideal observer, the minimum distance algorithm, or the

normalized correlation [50]. The method used in this model, the normalized correlation, is a widely

used pattern matching algorithm [51]. When normalization is used, the effect of the mean value is

canceled, and patterns are matched on the basis of shape.  MATLAB provides normalized

correlation as a predefined function, which simplified the model implementation.  As shown in  the

Results chapter (chapter 3), the template matching algorithm used in this model, performed very

well in estimating visual acuity, when using 15 terms of aberrations.

b. Contrast Sensitivity in Children Eyes

The experimental data available were visual acuities of 3 to 6 years old preschool children. Adults

and children have similar contrast sensitivity functions; except that the sensitivity of the children is

slightly lower than that of adults at all spatial frequencies in this age range [52]. It seems that

contrast sensitivity develops quickly in first 3 years of age and then more slowly until it finally

reaches adult-like levels at about 9 years of age. The Variability in contrast sensitivity decreases

progressively with age [58]. Therefore although the SCSF used in this model was obtained based

on adult experimental data it worked quiet well for children as well, as all stages of the model used

normalized values.
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The other interesting point in development of contrast sensitivity functions is that its development

during the “toddler” years has relatively greater improvements at the higher spatial frequencies but

after 4 yr of age appears to be mainly improvement at the lower spatial frequencies [58]. For

example, from 4 yr of age until maturity, CS improves by about 0.27 log units at the two lowest

spatial frequencies, but only by about half of that value (~0.14 log units) at the two highest SF.

The frequency scale (Φ), the parameter responsible for varying CSF, was set to 1 for all subjects.

Changing Φ to 0.5, 1.5, 2 and 2.5, did not present any improvement on the result of the calculated

VA, as shown in Figure 20.  Therefore a constant value of contrast sensitivity function was used

for all the subjects.

c. Alternative Single Valued Metric

One purpose of implementing this computational model was to find an alternative reliable metric

instead of RMS wavefront error to quantify the effects of aberrations on the acuity task. In the case

of high values of eye aberrations, RMS wavefront error is a good predictor of visual acuity but

when RMS wavefront error is less than 0.25 µm, it is no longer a reliable metric of acuity.  This

model provides an alternative metric of acuity [38]. This model has shown to be a good predictor

of visual acuity as it incorporates the effects of each individual aberration coefficient rather than

relying on the RMS wavefront error.

d. Visual Acuity of Preschool Children

There is no universally accepted standard format for finding visual acuity in children. A variety of

methods have been proposed by different researchers [53, 54]. For example, the drawing method in

which a series of test characters of visual acuity chart are shown to a child and the child is asked to

make copies of what he sees using the provided paper and pencil [52].
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The other method is the block selection method in which cut-out wooden blocks, the same shape

as the test letters, are set before the child, and the child is asked to select a block that matches the

picture letter shown [53].

There are a number of more new optotype matching tests that Saunders explained in her book [59].

In her tests all correct responses of child are praised to encourage the child to continue with testing

and maintain co-operation. Some acuity tests that are designed for younger children use familiar

pictures as targets rather than letters. Some times the child loose interest to answer correctly

therefore it is important to know whether failure to match is due to lack of interest or acuity

limitations [59].

Different types of children visual acuity are: The Kay Picture test, Allen cards, Fooks symbols,

tumbling E test, Lighthouse test, LH symbols, Siiigren's hand test… [59].

In the method that provided the experimental VA data for this model, Cambridge Uncrowded

Cards were shown to children and most of the visual acuities found were 6/6.  There were a few

children with 6/9 or 6/12 VAs (Courtesy of Dr. Bobier’s lab).

The experimental data available for this research was restricted to a visual acuity range from 6/6 to

6/12 and age range from 3 to 6 years old. In addition the step sizes changes were larger than the

typical of LogMAR. Fortunately these limitations do not have any effects on reliability of the

computational results. The only effect was on value of correlation obtained between experimental

and computational VA.

This model is similar to that proposed by Watson and Ahumada [7]. Their simulation results had a

correlation of over 0.86 with the experimental data of 67 subjects with only two nonzero terms of

aberrations (second and forth orders aberration terms), and visual acuities in the range of -0.3 to

0.4 LogMAR.  This model has a correlation of 0.56 with the experimental data of 20 subjects with

15 terms of aberrations.  The lower correlation could be due to the higher number of aberration

terms (15 vs. 2) or the limited distribution of the visual acuity of the subjects from the

experimental data.
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e. Effects of Noise

This research attempted to find an algorithm to estimate the noise level of each subject’s visual

system.  It is unclear which neural stage is critical in the observer’s performance in letter

identification. It seems behavior of neurons responsible for the noise follows probabilistic

distributions that can be roughly approximated [55]. A better understanding of the role of spatial

frequency channels in human letter identification, could guide one in the finding of a rule for

determining exact values for the noise level of each individual’s visual system.

For some subjects increasing the noise makes the VA results better, showing that adding some

noise to a weak signal can improve signal detection (one can think of this as a case of stochastic

resonance). The model demonstrated that each observer has a different estimate of the best noise

level. Perhaps it is not very surprising to know that the subjects should be differing in this aspect,

having for example, variations in their retinal cone density, or ganglion cell connectivity, etc. [48].

f. Effects of Infra Red vs. Visible Light on VA

Zernike expansions of the experimental wave-front aberration functions were used to determine

aberration coefficients. These aberration coefficients, obtained from images of the subject’s eye,

were used to find the optical filter (OTF) of the model and ultimately to estimate the VA.  The

wavelength of the light used to get the images of the eyes was 780 nm, which is in the near

infrared region of the electromagnetic spectrum.

Finding the experimental visual acuity of the individuals was carried out under visible light with

wavelengths from 400 to 700 nm.

Using infrared light, for which the eye has relatively low efficiency compared to the visible light,

might be the reason that the simulated VAs were mostly better than the experimental VAs.
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As is well known, newborn infants are hyperopic, and a process of emmetropization occurs as the

child gets older [57].  Most of the subjects for whom data were available had moderate hyperopia

(~ 3.00 diopters).

g. Different MOTFs

Even though using the average of the Optical Transfer Functions (OTF) of all the subjects as the

MOTF sounds rational, but it did not give an acceptable estimation for the MOTF.

A third method that could be used (not examined in this study) for estimating the MOTF is to

calculate the average of all the subjects wavefront aberrations terms, and use the resulting 15 terms

to calculate the OTF to be used as the estimation for the MOTF.

h. Using Adaptive Procedures in Template Matching

To improve the speed and accuracy of the template matching model, an adaptive procedure can be

applied to the size selection at each trial [49]. Instead of testing all the letters of each of the ten

sizes, the test size of the next trial would be based on the percentage of correct answers of the

previous one or more sizes.

For example if the percentage of correct answers for letter size of 0 LogMAR is 80% the next trial

would test letter size -0.3 LogMAR, but if the percentage of correct answers for letter size of 0

LogMAR is 40% the next trial would test letter size 0.3 LogMAR.

i. Running the Simulation on a Larger Population

Statistically it is likely that having more degrees of freedom would give more accurate results.

Therefore it is expected that running the model on more than twenty subjects with a variety of VAs

(and not just 6/6, 6/9 and 6/12) and more age variation as well could result in a higher level of

correlation between calculated VAs and experimental VAs. On the other hand simulating the
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model for 20 subjects needed three computers to run for 10 hours. Therefore first the speed

improvement for running the model should be obtained.

Analyzing the output raw data and plotting of the psychometric functions to calculate the VAs took

at least twice as much time.  The model can be optimized for speed.  A faster computational

algorithm (or faster processors) would make simulations for more subjects possible.

It can be concluded that a variety of factors were contributing to the outcome of the calculations,

with the three main factors being:

The Optimum noise level for each observer.

Accuracy and range of VAs of the experimental data.

The MOTF used for calculating the neural filter.

Conclusion

The model presented in this research makes it possible to find visual acuity in people whose visual

acuity can not be measured subjectively.  For example preschool children, individual whose mental

development are relatively slow, non-verbal individuals or anyone who cannot read the English

alphabet on VA letter charts.

The RMS error obtained using this model was about 0.01 LogMAR. The small value of the error

means that this model is able to estimate visual acuity from the 15 terms of aberrations.  The model

can also determine the effect of removing one or more of the aberration terms on the visual acuity.

An application of the model is to predict the effects of laser correction of one or more aberration

terms on visual acuity.  This will be subject for future study.
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Appendices

Appendix A

 MATLAB  Simulation Codes

Main.m

The following parameters are defined in the “Parameters to Change” section:

Subject numbers (goodSubjects)

Type of MOTF used (motfType)

Type of Template used (templateType)

Then MOTF , and NTF are calculated.

Next for each subject WA, PSF and OTF are calculated and for 10 sizes the templates are created,

then for 6 noise levels, each of the 10 letters are filtered and compared with the templates,

probability corrects are calculated, and the result is saved in an excel file.

clear; close all; clc;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% P A R A M E T E R S   T O   C H A N G E
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
goodSubjects = [3  4 12 13 14 15   19 28 47 49 50 53   37 38 56 87 46 30   66 88];

motfType = 1; % 0: avg90,    1: Ahumada
templateType = 1; % 0: original, 1: retinal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sizeValues = [5 7 9 11 13 15 17 19 21 23 ];
noise = [0 0 20 40 60 80 100 120]; % IMPORTANT: keep 0, is place holder for Wrms js
visActThreshold = [0.5, 0.6, 0.66];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sizePad = zeros(1,27);
for i = 1:length(sizeValues)
sizePad (1, i) = sizeValues (1, i);
end

result (2, 6:8) = visActThreshold(1:3);
result (2, 10:36) = sizePad (1, 1:27);

if (motfType == 0)
disp('Creating  NTF ... from avg90(OTF)');
MOTF = make_MOTF_avg90;
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NTF = make_NTF(MOTF);
else
disp('Creating  NTF ... from Ahumada MOTF');
MOTF = make_MOTF;
NTF = make_NTF(MOTF);
end

for cnt_subj = 1:length(goodSubjects);
subjNum = goodSubjects(cnt_subj);

disp(['SubjNum = ', int2str(subjNum)]);

disp('Initializing ...');
[Wrmsj, xw, yw, jmax, dw, P, apw, lambda] = make_initials(subjNum);

disp('Creating  WA ...');
W = make_WA(Wrmsj, xw, yw, jmax, dw);

disp('Creating  PSF ...');
PSF = make_PSF(P, apw, W, lambda);

disp('Creating  OTF ...');
OTF = make_OTF(PSF);

if (templateType == 0)
disp('Original letter Template ...');
else
disp('Retinal Template ...');
end

prob = zeros(length(noise), 27);
correct(1:27) = 0;
numberOfLetters = 10;

disp('Sampling ...');

for cnt_size = 1:length(sizeValues);
letterSize = sizeValues(cnt_size);
template_spat = make_template(letterSize, OTF, templateType);

result ((subjNum*length(noise))+1, 1) = subjNum;
result ((subjNum*length(noise))+1, 4:15) = Wrmsj(4:15)*1000;

for cnt_noise = 2:length(noise);
noiseScale = noise(cnt_noise);

disp(['Noise = ', int2str(noiseScale)]);

for letterNumber = 1:numberOfLetters; % 1C 2D 3H 4K 5N 6O 7R 8S 9V 10Z
noised_spat = filter_freqDomain(letterNumber, letterSize, OTF, NTF, noiseScale);
correctness = match_normxcorr2(letterSize, letterNumber, noised_spat, template_spat);
correct(letterNumber) = correctness;
prob(cnt_noise, cnt_size) = prob(cnt_noise, cnt_size) + correctness;
end
disp(['Size = ', int2str(letterSize), ' correct = ', int2str(correct(1)),
int2str(correct(2)), int2str(correct(3)), int2str(correct(4)), int2str(correct(5)),
int2str(correct(6)), int2str(correct(7)), int2str(correct(8)), int2str(correct(9)),
int2str(correct(10))]);

result ((subjNum*length(noise))+cnt_noise, 1) = subjNum;
result ((subjNum*length(noise))+cnt_noise, 2) = noiseScale;
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result ((subjNum*length(noise))+cnt_noise, 3) = motfType;
result ((subjNum*length(noise))+cnt_noise, 4) = templateType;

prob(cnt_noise, cnt_size) = prob(cnt_noise, cnt_size) / numberOfLetters;
end

row = (subjNum*length(noise))+2;
result (row:(row+length(noise)-2), 10:36) = prob(2:length(noise), 1:27);
end

xlswrite ('resultSubj12Size10Noise5_0_20.xls', result);
end

disp('End!');

make_initials.m

function [Wrmsj, xw, yw, jmax, dw, P, apw, lambda] = make_initials (subjNum)

d = 5;
expZer = xlsread('90Subj_Normalized.xls', 'a1:o90');

Wrmsj = expZer(subjNum, :);
jmax = length(Wrmsj)-1;
lambda = 780;

Wrmst =0;
for j=0:jmax
Wrmst=Wrmst+Wrmsj(j+1)^2;
end
Wrmstotal=sqrt(Wrmst); %total rms wavefront error in um

% =======================================================
% Convert units for calculation

Wrmsj=Wrmsj*1e-3; %rms wavefront error coefficients in mm
Wrmstotal=Wrmstotal*1e-3; %total rms wavefront error in mm

lambda=lambda*1e-6; %wavelength in mm
dw=d/lambda; %pupil diameter in number of wavelengths
PRw=0.5*dw; %pupil radius in number of wavelengths
apw=pi*PRw^2; %pupil area in wavelength^2

% =======================================================

%rsh 1 pixel = 0.00318 deg ==> 1 pixel = 70.42 lambda ==>
%rsh lambda = 570 ==> 1 pixel = 0.040 mm ==> 5 mm = 125 pixel
%rsh lambda = 780 ==> 1 pixel = 0.055 mm ==> 5 mm =  91 pixel
pixel = round( 5 / (70.42 * lambda) );
xylimit = PRw;
dxyw = PRw*2/pixel; %x-coordinate pixel width in number of wavelengths

xywmin = -xylimit; %minimum x-coordinate in number of wavelengths
xywmax = xylimit; %maximum x-coordinate in number of wavelengths
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xw=xywmin:dxyw:xywmax; %x-coordinates in number of wavelengths
yw=xw; %y-coordinates in number of wavelengths
size(xw);
Imax=length(xw);
Jmax=length(yw);

% Set-up circular pupil
for I=1:Imax
for J=1:Jmax
P(I,J)=(sqrt(xw(I)^2+yw(J)^2) <= PRw);
end
end

Make_WA.m

function W = make_WA(Wrmsj, xw, yw, jmax, dw)

W=zeros(length(xw),length(yw));
for j=0:jmax
n=ceil((-3+sqrt(9+8*j))/2); %highest power or order of the radial polynomial term
m=2*j-n*(n+2); %azimuthal frequency of the sinusoidal component
W=W+Wrmsj(j+1)*zernike(n,m,xw,yw,dw);
end

Zernike.m

function Znm=zernike(n,m,x,y,d)

% zernike.m  is a function that computes the values of a Zernike Polynomial
%            over a circular pupil of diameter d
% Output:
% Znm is the Zernike polynomial term of order n and frequency m

%Input:
% n = highest power or order of the radial polynomial term, [a positive integer]
% m = azimuthal frequency of the sinusoidal component, [a signed integer, |m| <= n]
% x = 1-D array of pupil x-coordinate values, [length(x) must equal length(y)]
% y = 1-D array of pupil y-coordinate values, [length(y) must equal length(x)]
% d = pupil diameter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% initialize circular pupil function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Imax=length(x);
Jmax=length(y);
a=d/2;

for I=1:Imax %initialize circular pupil
for J=1:Jmax
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p(I,J)=(sqrt(x(I)^2+y(J)^2) <= a);
end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute Normalization Constant
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Nnm=sqrt(2*(n+1)/(1+(m==0)));

Zj = ((n*(n+2))+m)/2;
nnn = length(x);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute Zernike polynomial
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% if n==0
%   Znm=p;
% else
%   Znm=zeros(Imax,Jmax);
%   for I=1:Imax
%      for J=1:Jmax
%         r=sqrt(x(I)^2+y(J)^2);
%         if (x(I)>=0 && y(J)>=0) || (x(I)>=0 && y(J)<0)
%            theta=atan(y(J)/(x(I)+1e-20));
%         else
%            theta=pi+atan(y(J)/(x(I)+1e-20));
%         end
%         for s=0:0.5*(n-abs(m))
%            Znm(I,J)=Znm(I,J)+(-1)^s*factorial(n-s)*(r/a)^(n-2*s)/(factorial(s)*...
%                     factorial(0.5*(n+abs(m))-s)*factorial(0.5*(n-abs(m))-s));
%         end
%         Znm(I,J)=p(I,J)*Nnm*Znm(I,J)*((m>=0)*cos(m*theta)-(m<0)*sin(m*theta));
%      end
%   end
% end
%
%
% disp(['Saving Zernike ...', int2str(nnn)]);
% ZerWFid=fopen(['Zer_j_',int2str(Zj),'_',int2str(nnn),'.zer'],'w');
% count = fwrite(ZerWFid, Znm, 'float64')
% fclose('all');
%
%
% disp(['Reading Zernike ...', int2str(nnn)]);
ZerRFid=fopen(['Zer_j_',int2str(Zj),'_',int2str(nnn),'.zer'],'r');
Znm = fread(ZerRFid,'float64');
fclose('all');
Znm = reshape(Znm, nnn, nnn);

Make_PSF.m

function PSF = make_PSF(P, apw, W, lambda)
sizeP = size(P)
npadding = (256 - sizeP(1))/2;

P2 = padarray(P,[npadding,npadding]);
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W2 = padarray(W,[npadding,npadding]);

PSF=fft2((P2.*exp(-i*2*pi*W2/lambda)))/apw;
PSF=fftshift(PSF);
PSF=PSF.*conj(PSF);
PSF=rot90(PSF);
PSF=flipud(PSF);
PSF=PSF/max(max(PSF)); % Normalize PSF

Make_OTF.m

function OTF = make_OTF(PSF)
OTF=fft2(PSF);
OTF=OTF/max(max(OTF));
OTF=fftshift(OTF);
OTF=rot90(OTF);
OTF=flipud(OTF);

Make_CSF.m

function SCSF = make_CSF
f0 = 4.1726;
f1 = 1.3625;
a  = 0.8493;
p  = 0.7786;
phi = 1; % phi (frequency scale) manually set equal to 1

% test peak values
fmax = 3.45;
Gain = 373.08;
maximum = Gain*(sech((fmax/(phi*f0))^p) - a*sech(fmax/(phi*f1)));

%M = 0.0142, N=18017.5
%1 pixel = 70.3809 cyc/rad
%1 pixel = 1.2283 cyc/deg
%256 pixels = 314.4448 cyc/deg
xyflim=157.2224; %minimum xf-coordinate in degree/cycle
dxyf=xyflim/127.5; %xf-coordinate pixel width in number of frequencies
xf = -xyflim:dxyf:xyflim; %x-coordinates in number of frequencies
yf = -xyflim:dxyf:xyflim; %y-coordinates in number of frequencies
size(yf);
Imax=length(xf);
Jmax=length(yf);

SCSF = zeros(Imax, Jmax);

for I=1:Imax
for J=1:Jmax
f = sqrt(xf(I)^2+yf(J)^2);
SCSF(I,J) = Gain*(sech((f/(phi*f0))^p) - a*sech(f/(phi*f1)));
end
end
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SCSF = SCSF/max(max(SCSF));

Make_MOTF.m

function MOTF = make_MOTF;
age = 35;
D = 70;

%M = 0.0142, N=18017.5
%1 pixel = 70.3809 cyc/rad
%1 pixel = 1.2283 cyc/deg
%256 pixels = 314.4448 cyc/deg
xyflim=157.2224; %minimum xf-coordinate in degree/cycle
dxyf=xyflim/127.5; %xf-coordinate pixel width in number of frequencies
xf = -xyflim:dxyf:xyflim; %x-coordinates in number of frequencies
yf = -xyflim:dxyf:xyflim; %y-coordinates in number of frequencies
size(yf);
Imax=length(xf);
Jmax=length(yf);

MOTF = zeros(Imax, Jmax);

ageFactor = 1 + (age/D)^4;
for I=1:Imax
for J=1:Jmax
f = sqrt(xf(I)^2+yf(J)^2);
MOTF(I,J) = 1/(1+ageFactor/7)*(0.426*exp(-0.028*f)+0.574*exp(-0.37*f)) +
1/(1+7/ageFactor)*(0.125*exp(-37*f)+0.877*exp(-360*f));
end
end

MOTF = MOTF/max(max(MOTF));

Make_MOTF_avg90.m

function MOTF = make_MOTF_avg90

% numberOfSubjects = 90;
%
% MOTF = zeros(256);
%
% for subjCnt = 1:numberOfSubjects
%
% disp('Initializing ...');
% [Wrmsj, xw, yw, jmax, dw, P, apw, lambda] = make_initials(subjCnt);
%
% disp('Creating  WA ...');
%  W = make_WA(Wrmsj, xw, yw, jmax, dw);
%
% disp('Creating  PSF ...');
% PSF = make_PSF(P, apw, W, lambda);
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%
% disp('Creating  OTF ...');
% OTF = make_OTF(PSF);
%
% MOTF = MOTF + OTF;
%
% end
%
% MOTF = MOTF / numberOfSubjects;
%
% this is to reduce the dynamic range of MOTF which is 10^20 or so
% MOTF = abs(MOTF);
% MOTF = MOTF / max(max(MOTF));
% MOTF = (MOTF>=0.001) .* MOTF;
% MOTF = MOTF + 0.001;

% disp('Saving MOTF avg90 ...');
% MotfWFid=fopen('MotfAvg90.aza','w');
% count = fwrite(MotfWFid, MOTF, 'float64');
% fclose('all');

disp('Reading MOTF avg90 ...');
MotfRFid=fopen('MotfAvg90.aza','r');
MOTF = fread(MotfRFid,'float64');
fclose('all');
MOTF = reshape(MOTF, 256, 256);

Make_NTF.m

function NTF = make_NTF(MOTF)
SCSF = make_CSF;
NTF = SCSF ./ MOTF;
NTF = NTF / max(max(NTF)); % normalizing NTF to its max
Imageread_LetterMatrix.m
function letter_image = imageread_LettMatrx(num_let, num_size)
imfid =
fopen(['LettMatrix/Num',int2str(num_let),'_Size',int2str(num_size),'.Lett'],'r');
letter_image = fread(imfid);
fclose('all');
letter_image = reshape(letter_image, 256, 256);

filter_frequencyDomain.m
function noised_spat = filter_freqDomain(num_let, num_size, OTF, NTF, noise_scale)

letter_spat = imageread_LettMatrx(num_let, num_size);

scale = 2^8;
scale_image = (1/4);

retinal_freq = fft2(letter_spat) .* OTF;
retinal_spat = abs(ifftshift(ifft2(retinal_freq)));
retinal_spat = retinal_spat*scale/max(max(retinal_spat));

neural_freq = retinal_freq .* NTF;
neural_spat = abs(ifftshift(ifft2(neural_freq)));
neural_spat = neural_spat*scale/max(max(neural_spat));

noisedB = 1;
whiteGN = wgn(size(neural_spat,1),size(neural_spat,2),noisedB);
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noised_spat = neural_spat + whiteGN*noise_scale/100*scale/max(max(whiteGN));

Make_template.m

function template_spat = make_template(num_size, OTF, templateType)
%if templateType is 0:original, do NOT do OTF
%if templateType is 1:retinal, do OTF
for num_let=1:10
letter_spat = imageread_LettMatrx(num_let, num_size);
retinal_spat = letter_spat;

if (templateType == 1) % if retinal, do OTF
retinal_freq = fft2(letter_spat) .* OTF;
retinal_spat = abs(ifftshift(ifft2(retinal_freq)));
end
template_spat(:,:,num_let) = retinal_spat/max(max(retinal_spat)) * 2^8;
end

match_normxcorr2.m

function  correctness = match_normxcorr2(num_size, num_let, noised_spat, template_spat)

discriminant=zeros(1, 10);

for i=1:10
cc = normxcorr2(template_spat(:,:,i), noised_spat);
discriminant(i) = max(max(cc));
end

[max_discriminant, num_lett_matched] = max(discriminant);

matched_image = imageread_LettMatrx(num_lett_matched, num_size);

if (num_lett_matched == num_let)
correctness = 1;
else
correctness = 0;
end
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Appendix B

PSF and OTF Images
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Appendix C

Calculated data to plot psychometric function
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