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Abstract

The main purpose of thisthesisisto create and validate a visua acuity model with
experimentally obtained aberrations of human eyes. The other motivation isto come up with a
methodology to objectively predict the potential benefits of photorefractive procedures such as
customized corrections and presbyopic LASIK treatments.

A computational model of visual performance was implemented in MATLAB based on a
templ ate matching technique. Normalized correlation was used as a pattern matching algorithm.
This simulation describes an ideal observer limited by optics, neural filtering, and neural noise.

Experimental data in this analysis were the eye’s visual acuity (VA) and 15 modes of Zernike
aberration coefficients obtained from 3 to 6 year old children (N=20; mean age= 4.2; best
corrected VA= 0 (inlog MAR units)) using the Welch Allyn Suresight instrument. The model
inputs were Sloan Letters and the output was VA. The images of Sloan letters were created at
LogMAR vauesfrom -0.6 to 0.7 in steps of 0.05. Ten different alphabet images, each in ten
sizes, were examined in this model. For each simulated observer the results at six noise levels
(white Gaussian noise) and three levels of threshold (probability of the correct answer for the
visual acuity) were analyzed to estimate the minimum RMS error between the visua acuity of

model results and experimental result.

Our statistical results show that the Pearson Correlation is 0.56 and 2-tailed p valueis 0.011
which demonstrates that the model tracks the variationsin acuity with aberration.

Even though this study is limited to children’s eyes it can be extended to adult data and can be

used to objectively predict potential benefits of customized corrections using photorefractive

treatment modalities.
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Chapter 1

I ntroduction

According to the American Association of Ophthalmology 80-85% of a person'slearningis
through the visual pathway, and therefore having optimal visual performanceis crucial in the

learning process[1].

High-contrast visual acuity isacommon clinical measure of visual performance. Recent advances
in the development of wave-front guided refractive surgery have greatly increased the importance
of finding alink between optical quality and aberrations of the eye [2, 3 and 4].

Today due to the development of viable clinical wavefront aberrometers, measuring the
monochromatic aberration of the human eye is routinely possible, (e.g. using Hartmann-Shack
methods [5],[6]), but accurately predicting visual acuity and hence visual performance that results
from a measured set of aberrations has not yet been achieved and thisis an area of considerable
interest [7]. One reason for developing such a detailed description of the optics of the eye from
aberrations is the potentia to obtain highly accurate automated prescriptions of sphero-cylinder

corrections (the spectacle Rx) as well as objective measurements of visual acuity.

Developing a computational model which objectively determines the best correction of the eye
based on measurements of aberration would solve this problem, and could have many clinical
applications. One example of clinical application is predicting the potential benefits of customized
corrections with photorefractive treatments. Such amodel should also have an acceptable degree

of correlation with experimental results.

An important question is whether the objective method correctly estimates the best subjective
refraction of the observer’s eye. This objective method should take into account the effects of
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higher order aberrations of the eye when estimating refraction. Thisis because, even though
eliminating second order aberrations minimizes the root mean square (RMS) wavefront error, this

minimization does not necessarily optimize the quality of the retinal image.

Thus another motivation for this study derives from the need for an alternative single valued metric
instead of RM S to quantify the effects of aberrations on acuity tasks. This metric should show us
the visual consequences of low levels of wave aberrations remaining after customized refractive

surgery.

Previously Watson and Ahumada [ 7] described a template matching model that includes optical
and neural filtering, and neural noise for predicting visual acuity. They found an excellent account
of acuity in the presence of various aberrations. The aberrations they examined were controlled

simplified combinations of second and fourth order aberration coefficients [7].

Naturally, aberrations of the human eye include more than just these two orders of aberrations, and
therefore assessing the visual acuity metric and model with aberrations of real human eyesisworth

pursuing. Thisisthe purpose of the research described in thisthesis.

Visual Acuity

The spatial resolution of the visual system is usually evaluated using a simple measure of high
contrast visual acuity. Visua acuity shows how well an observer can see fine details and it
depends on the ability of the eye to resolve a given visual angle. Most tests vary the angle by
changing either the size of the stimuli or its distance from the eye. A normal visual acuity test
consists of anumber of high contrast, black-on-white letters of progressively smaller size. The
smallest |etter that can successfully be read is referred to one's visual acuity [9], [10].

Results of visual acuity are recorded as a fraction known as the Snellen fraction. In the Snellen
fraction the numerator represents the observer’s distance from the stimulus and the numerator
divided by the denominator represents the minimum visual angle perceived by the observer. The

standard distance used for visual acuity assessments is twenty feet or 6 meters. A visual acuity of
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20/20 (6/6) indicates that the observer recognizes a stimulus whose lines subtend one minute of arc
at adistance of 20 feet [9].

Different types of visual acuity may be considered depending upon the specific task or detail to be
resolved. The most familiar visual acuity task is recognition. The task evaluates the observer's
ability to recognize and name various sized letters or symbols. The smallest recognizable | etter

indicates the minimum angle of detail that can be resolved [10].

Snellen charts are the most common among a variety of recognition task charts that have been
developed. The charts are composed of rows of letters or symbolsin progressively smaller sizes
and are commonly used in eye clinics. One type of Snellen chart isshown in Figure 1. A method
of measuring high contrast visual acuity to various levels of aberration isto count all letters read
correctly until a set number of letters are not seen, typically five letters. Then the total number of

letters read correctly is converted to a visual acuity score[11].

In the case of retarded populations or young children who do not have the necessary
language skills or understand the instructions required for such tests, areliable and accurate
method for visual acuity assessment needs to be devel oped. Cambridge Uncrowded cards, FPL
(forced preferential looking) and Teller cards are examples of experimental measurements of

visual acuity in these situations.
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Reference: @ 2005 Elsevier Ltd. $palton et al: Atlas of Clinical Ophthalmology 3e

Figure 1: LogM AR high contrast visual acuity chart
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Wavefront Aberrations

In optics, rays and wavefronts are used to describe the propagation of light waves. Rays describe
the path along which the light travels and a wavefront is a surface of points with identical phases
(constant optical path length (OPL)) made by the tips of the rays. The optical path length is
defined as the product of the geometric length of aray and the refractive index of the medium. The
rays of light are aways perpendicular to the surface of the wavefront at every point of the surface
[12].

Wavefronts radiate outward in a homogeneous medium in spherical shapes while they are
concentric to the source. When the refractive medium changes the shape of wavefront will not be
spherical anymore.

In a perfect optical system the light distribution of a perfect image has the same form as that of the
object but there could be a difference in size or orientation due to the magnification of the imaging
system [12]. There could be ashift in phase as well but thisisimportant only for certain very off-

axis situations or for highly aberrated systems.

A perfect optical imaging system gathers rays from a point source and then convergesthem to a
point called an image point, but in the case of an imperfect optical system no point image can be
formed. The reason isthat in an imperfect optical system the OPL is not the same for all of the

rays.

In an imperfect optical system, the light distribution in the image space is different from its
distribution in the object space. The difference between these two light distributions makes a
blurred image. One cause of a blurred image is aberrations. When the wavefront is aberrated it
means it deviates from its perfect shape and the same phase points are not on a perfect spherical or
plane surface any more. Thisis schematically shown in Figure 2. It could be seen in the figure that
asurface of points with identical phases when passing through exit pupil (imperfect optical

system) is not a spherical surface any more.



The wavefront aberration is usually measured in micrometers but sometimes in wavelengths
between an actua wavefront and areference (ideal) wavefront centered on the ideal image point
[13].

Ideal
wavefront
Exit

Rays of light are always orthogonal to
wavefront

Aberrated wavefront

Figure 2 : Formation of Wavefront aberration

The difference between the ideal wavefront and the actual wavefront is described using a
mathematically well behaved polynomial, known as Zernike polynomials. Zernike polynomials
form a good orthonormal basis set of functions and are described over a unit circle. The wavefront

aberrations of the eye, W(X, y), can be described as shown in equation (1) [14].
W(p.0)=2 > ciZy (D

From these, an aberration map can be produced in order to visualize how aberrations vary across
the pupil of the eye. These aberrations produce image formation errors at the retina[15].

When constructing an aberration map of the eye several formats can be used, namely, displaying
them in terms of rays striking the retina, in terms of the object and retinal optical distance through
different points of entry in the pupil, or in terms of the shape of the wavefront of light produced by
the optical system of the human eye [16].



Figure 3 shows an example of an aberration map in terms of the shape of the wavefront produced
by the optical system of a six years old subject’s eye from the data set. This wavefront aberration
map is computed from a set of 14 Zernike modes (J=14) using amodel implemented in MATLAB.
The color coding shows a deviation of the wavefront from the (X, y) plane perpendicular to the
path of the chief ray, in um. The color bar at the right side of the figure demonstrates numbers

corresponds to each color.

RAS W urdm

# Pl zooicinate

Figure 3: WA map obtained from 20/20 visual acuity over a5 mm pupil diameter.

Zernike Polynomials

Using normalized Zernike polynomia expansionsis a standard method [16] for mathematical

expression of eye wavefront aberration (wavefront error). These polynomials are based on circular
geometry and are ideal for describing the wavefront aberrations of the eye considering that the eye
pupil has circular geometry aswell. All the aberrations coefficientsin Zernike's expansion, except

for one, have a zero mean error for computational simplicity [16].



They also have useful mathematical properties such as completeness, orthogonallity, and are
normalized [16]. Their completeness means that any wavefront function W (p, 8) can be expressed
asalinear combination of Zernike polynomias. Orthogonality impliesthat all Zernike

polynomials are independent from each other which simplify fitting the polynomials to the

wavefront. Therefore each aberration coefficient Co can be obtained independently. Normality

indicates that the pupil radius ranges from 0 to 1.

One advantage of describing ocular aberration with the normalized Zernike expansion is that the
value of the coefficient of each mode represents the root mean square (RMS) wavefront error
attributable to that mode [15].

Zernike polynomials have circular symmetry and therefore can be described in polar co-ordinates,
(p, 6) in the pupil plane, where p is the radius of pupil ranging from 0 to 1 and 6 is the angular

component ranging from 0 to 2.

The Zernike terms are ordered based on the power of the radial component of the Zernike

polynomial. For example Zishows afirst order term with the frequency component equal to one or

in Zf order is 3 and frequency component is-3. The first two orders represent tilt and defocus.

Larger orders show higher-order aberrations and some of which are named [14]. Figure 4 shows

the example of some Zernike modes.
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Figure4: Ten Zernike modes.

Aberrations Types

Aberrations are divided into two general types. They are either monochromatic or chromatic [13].
In the case of monochromatic aberrations, the light is composed of a single wavelength, while
chromatic aberrations occur only in polychromatic light and are due to the dispersion of the optical
medium. The studies of thisthesis are performed for monochromatic light therefore the chromatic
aberrations will not be discussed in this area.

Monochromatic aberration shows several kinds of defectsin the optical system including defocus,

spherical aberration, astigmatism, coma, and curvature of the field [17], [18]. These are the third-
order monochromatic aberrations that are called Seidel aberrations.

Defocus


http://www.mathworks.com/company/newsletters/digest/2008/jan/zernike.html

Defocus simply means out of focus or the axial deviation from the best focus location. Optically it
refersto a condition in which theimage is not formed on the focal plane (surface of best focus) but

at apoint longitudinally displaced from it.

Generally defocus reduces the sharpness and contrast of the image, hence fine details of images are
blurred or even indistinguishable. Nearly all eye optical systemsinclude some form of defocus. In
some systems defocus is balanced with another aberration hence the combined aberration is
minimized. If the eye only had defocus, then the shape of wavefronts in the image space would
remain spherical but would not be centered at the image plane[18], [19].

In the Zernike polynomial expansion, the defocus wavefront aberration isindicated by the second
order aberration and is shown by this coefficient: Cnm where, n= order of coefficient =2, m=

frequency of coefficient =0

Astigmatism

Astigmatism can occur for rays of light coming from on-axis point objects when the optical system
is not symmetric about the optical axis The human eye often exhibits this form of aberration due to

imperfectionsin the shape of the corneaor the lens.

Astigmatism can aso arise from an off-axis point object caused by the tilting of awavefront
relative to the optical surface [19]. When an optical system has astigmatism distortion the rays that

propagate in two perpendicular planes end up at two different foci.

In the Zernike polynomial expansion of wavefront aberration astigmatism is among the second and

fourth order aberrations and is shown by these coefficients:

2 2 2 2
C::{CZ ’Cz’C4 ,C4}



Spherical aberration

Thiskind of aberration happens when the marginal rays of the light source come to a shorter focus
than rays of light from the central portion. This shifting of focal length for different rays of light is
caused by deviationsin the surface of the optical system of the eye (Iens or cornea) from an exact
sphere. This aberration can be inferred as an excess or lack of peripheral refractive power that
creates a symmetrical blur circle of light around a point image. [19]

When an optical system has more power peripheraly its corresponding spherical aberration (SA) is
called under-corrected or positive. On the contrary, if an optical system has less power peripherally

then its SA isreferred to as overcorrected or negative [17].

In the Zernike polynomial expansion of wavefront aberration, spherical aberration isindicated by
the fourth order aberration and is shown by this coefficient: ¢ =,

n= order of coefficient =4, m= frequency of coefficient = 0.

Coma

Comais another type of distortion, in the phase of light entering the eye, due to non optimal

surface shape and misalignments in the optical elements of the eye.

Coma occurs when a bundle of light rays entering an optical system is not parallél to the optic axis.
It isavariation of image magnification with radial distance of incident rays from the optical axis.
In general, comawavefront aberration results from tilting the incident wavefront with respect to
the optical surface, or axial displacement from optical surface. The image of a point source looks
like the comatail of a comet, hence the name. Coma forms when the refractive surfaces have

asymmetrical shapes or when the optical e ements are misaligned with respect to the optical axis
[17].
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The coma effect is frequently combined with other aberrations, such as astigmatism and chromatic
aberration. In the Zernike polynomial expansion of wavefront aberration, comais indicated by the

third order aberration and is shown by these coefficients:
m -1 +1
Ci={C G

Curvature of the Field

This type of monochromatic aberration can simply be defined as an optical system imperfectionin
which the objects at the edge of the field of view can not be brought into sharp focus at the same

time as the objects in the center, and vice versa[18].

Curvature of field is an aberration that makes an extended object focus on a curved surface instead
of aflat image plane. Almost al optical systems suffer from field curvature, which is afunction of
the refractive index of the optical elements and their curvature of surface. Theimage surfaceis
almost spherical near the optical axis and is called the Petzval surface.[16], [17].

If aflat image surface focuses the on-axis point of the object surface then the image of off-axis
points have circular blur since they are defocused at this plane. Thelevel of defocus increases
with the distance of the off-axis point. Field curvature can be corrected with the right combination
of surface shapes and their refractive indices [19]. One solution could be making the object or
image recording surface curve to compensate for field curvature.

Field curvature has same order and frequency as defocus in the Zernike terms expansion.

Itisindicated by C; -

Distortion

Varying image magnification with the distance from the optical axis causes distortion. The more

off-axisis an object point, the larger is the change in magnification.
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Distortion deforms the image as awhole; henceit is the most easily recognized aberration. It has
two types: pincushion and barrel distortion. When the magnification increases with off-axis
position, the distortion is named as positive or pincushion distortion. When the magnification
decreases with distance from the optical axis, it is called negative or barrel distortion.

In the Zernike polynomial expansion of wavefront aberration, distortion isindicated by the first

order of aberration and is shown by these coefficients: Cnm: { dl : d} :

I nteraction between Aberrations

Mathematical independence of the Zernike modes does not mean that their impact on visual
performance is also independent [20]. Interaction between Zernike modes causes increase or
decrease in the optical quality of the eye. In some situations, a slight aberration in the eye can
provide some relative visua benefits [21], therefore two combinations of wavefronts with the same
value of RMS error, could result in adifferent image quality, and consequently different visual
acuity. Thisfact showsthat RMSis not agood metric for predicting visua acuity from wavefront
aberrations[14].

One aberration could be applied to interact with another such that the resultant improvesthe
modulation transfer function (MTF), and consequently improves image quality. Thisisknown as
aberration balancing. The Zernike modes which have the same signed coefficients with two radial
orders apart (e.g., radial orders 1 and 3) and have equal angular frequency (e.g., angular
frequencies—1, or 1) can be combined such that the effect on acuity is less degrading than each by
itself. These combinations, when in correct proportions, reduce the wavefront error over the center
of the pupil [20], [21]. An application of interaction between aberrations is when using aberration
combination to make the spherical aberration to nearly zero using two or more lensesin

collimated, monochromatic light.

Contrast Sensitivity Function
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The Contrast Sensitivity Function (CSF) isameasure of the ability of the visual system to see
detal at various contrast levels. It isaplot of sensitivity (defined as the inverse threshold) as a
function of spatial frequency. The contrast sensitivity function tells us how sensitive we are to the
various spatial frequenciesin the visual stimuli. If the spatial frequency of visual stimuli isvery
high we will not be able to recognize the stimuli pattern any more since it will be beyond the
resolution limit [22, 23]. For example, if an image consists of very thin vertical black and white

stripes, we can not distinguish the pattern any more.

Contrast is created by the difference in luminance between the light and dark bars. It isusually
quantified by equation (2) and is also known as Michelson contrast and is usually expressed as a
percentage. If Imax = maximum luminance (the lighter surface) and | min = minimum luminance

on (the darker surface), then contrast is defined as:

|max_lmin

Contrast = 2

Imin + Imin

When the darker surface is completely black it reflects no light, the ratio (contrast) is 1.

Among the people with normal sight this function has a maximum (normalized) value of
approximately 1, at f =8.0 cycles/degree, and is meaningless for spatia frequencies above 60
cycles/degree. The Contrast Sensitivity Function has neural and optical components. The MTF is
the optical contribution to the contrast sensitivity function (CSF) and neural transfer function isits
neura part. [24, 25]

The contrast sensitivity function (Figure 5), shows how sensitive the visual system isto the various
gpatial frequencies contained in the visual stimuli.

13



CSF value

0 10 20 30 40 50 60

Freguency [eycles/degrea]
Refrence: www.cg.tuwien.ac.at/.../matkovic/node20.html

Figure5: Contrast Sensitivity Function.

The reason that the human eye can not distinguish patterns with high frequenciesis believed due to
the limited number and dimensions of photoreceptorsin the eye. Itisalso limited by the sampling
characteristics of the photoreceptors and the multiplexing between the photoreceptors and the

underlying neural substrates such as ganglion cells.

The Contrast sensitivity function isimpacted by the presence of the aberration of the eyes. Y amane
et.a [26] demonstrated that induced changes in the contrast sensitivity function significantly

correlated with increases in ocular higher order aberrations.

Point Spread Function

The Point Spread Function (PSF) is one of several metrics used to describe the optical quality of
the eye or any optical system. Point spread function represents the response of an imaging system
to apoint object. Asaresult of being imperfect optical systems, the stimuli undergo a certain
amount of degradation, when visua stimuli are passed through the cornea and lens and the media
[23].
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The PSF shows this image degradation, represented as a plot of relative intensity of a point of
light, as afunction of distance from the center of theretina. In other words, PSF is the irradiance
distribution of a single point source, which shows the degree of blurring of the point object, when

projected onto an image plane.

There are number of reasons for the image of a point source not being just a point any more. First,
aberrations in the optical system will spread the image over afinite area. Second, diffraction
effects will also spread the image, even in a system that has no aberrations [22]. Scattering in the

mediawill also play arole.

The Fourier transform of the PSF is called the Optical Transfer Function. In other words PSF is the
spatial domain version of the optical transfer function (which isin the frequency domain) [22].

Optical Transfer Function

Optical transfer function presents the relation between the image produced by an optical system
and the amplitude and phase of an object at various spatial frequencies.

It can show how well the contrast has been transferred from object to image. The OTFisa
complex function; itsreal term gives the ratio of amplitudes, and the imaginary term givesthe

phase rel ationship between the object and the image. [25, 26]

The modulus or absolute value of the optical transfer function is called the modulation transfer
function ( (3) ).

OTF (,7) =MTF (7,7)* PS=(1,7)
Where
MTF (17,7) =|OTF (1,7)|

PSF (17,7) =exp( 1274 (17,7))
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The MTF isthe ratio of image contrast over the object contrast as a function of spatial frequency.
It can be seen in Figure 6 that the eye can not distinguish features smaller than one minute of arc

(60 cycles per degree). The value of MTF drops down when pupil radius increases.
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Figure 6: Modulation Transfer Function for two different pupil diameters.

Neural Transfer Function

When rays of light from an object are imaged the retina, they are captured by photoreceptor cells,
which transform the light into electrical impulses, to carry out to the brain by the optic nerve, for
final visual processing. The mathematical function that has been developed to show this processis
aNeural Transfer Function (NTF). The neural transfer function is also sometimes called neural

contrast sensitivity function.

NTF shows how well the retinal image is interpreted by the neural portion of the visual system.
The overall contrast sensitivity function of the eye is the product of optical and neural transfer
functions. This can be seen by the fact that the low frequency fall off in sensitivity seen in the CSF
can be attributed to receptive field organization of neura cellsin the retinaand beyond. Therefore
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the neural transfer function can be derived if one has values of contrast sensitivity function and

optical transfer function [7].

Usually a standard form for CSF is defined, and then the optical component of the function is
removed. The remaining function isthe neura transfer function, which shows the ability of a
visual system to transform visual information to the brain [27] and is given by equation (4).

NTF = S5
OTF (4)
Frequency Scale

Using a standard contrast sensitivity function and a mean value for the optical transfer function to
measure neural transfer function provides afixed value for NTF [28, 29]. Usually different
observers have different neura transfer functions (NTF); therefore a parameter should be included
in the computation to show possible variations in the neural transfer functions for different
observers. Thus the value of the neura transfer function would be more accurate for each observer

[7].

A frequency scale, @, is used for this purpose. This scale, ® has the effect of shifting Standard
Contrast Sensitivity Function (SCSF) horizontally in the amplitude vs. spatial frequency
coordinates .The result is the shifting of the neural transfer function to the higher values which
mean better ability of the neural transfer function in transferring information from higher spatial
frequencies to the brain. Consequently higher values of the frequency scale demonstrate higher

values of acuity.
This method of randomly varying the value of neural transfer function has the advantage of

providing asingle parameter that can control the most important aspect of NTF, i.e. its sensitivity

at higher spatia frequency [7].
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Neural Noise Levels

For the same stimulus, different subjects can have different thresholds (or sensitivities). Thisis
due not only to the criterion used by the subjects but also due to the presence of different amounts
of neura noise. Hence, the model should incorporate a parameter that takes into account noisein
the neural system. Therefore, in addition to the frequency scale the other parameter that governs
the performance of the acuity model is the amount of neural noise an, [7]. Trial and error are the
best way of finding the proper value of on for each subject. Thus for each individual a sequence of
values of on should be tested to find the best fitting value. It isclear that each observer has a
different on. Generally this estimation of on should be in agreement with the empirical result in the
observer’s sensitivity. In this simulation the noise is taken as always zero-mean Gaussian noise.
Therefore the nature of the noise does not change; only the amount of it isvariable [7]. The reason
of existence of this free parameter in the model is to make discrimination between subjects’ neural

sensitivities.

Metricsand Mode's

A distinction should be introduced between metrics and models. Metrics consist of computations
or equations that describe quantitative relationships. Metrics can quantify the resultsin
measurable terms. On the other hand, models include dynamic statements that attempt to clarify
why the relationship exists [7].

A modd is asymbolic representation of the basic structure of an object or event in the rea world.
Modeling is used as atool to explore the obscure workings of complex systems. Commonly, the
greater the number of simplifying statements made regarding the basic structure of the real world,
the simpler the model [31].

The goal of ascientist isto create simple models that have a great deal of descriptive power. The

relation between aberrations and visual acuity of the human eye is an example of such amodel.
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Metrics may have more practical advantages due to their smplicity, while models present a

scientific purpose [31].

To find alink between aberrations and visual acuity, at least four types of metrics and models can

be used depending on the expected accuracy we are looking for in the result.

The ssimplest ones are the metrics and models that incorporate only optics. For examplethe RMS
error of the wavefront takes into account only the optics of the eye. The second types are metrics
and models that include some explanation of post-optical (neural) processing. Approximately all

of the acuity models that have been developed previously are of these first two types|[31].

One step forward is having the metrics or models that include the defined acuity targets, such as

Sloan letters, in the computation.

The last and most compl ete are metrics and models that also simulate the particular task
undertaken in the acuity measurement, like identification of each Sloan letter. The model and the

metric that will be using in this dissertation both fall into thislast group.

The model and metric are designed to predict letter acuity from wavefront aberrations. The model
isaMonte Carlo ssimulation [30] of adecision process and its component is an ideal observer
limited by optics, neural filtering, and neural noise. The metric is a deterministic calculation

including optics, letters, and atheoretical neural transfer function.

Acuity Model

Practically and theoretically it has been always a matter of interest how humans can distinguish
between the | etters of the alphabet. The principles that have been discovered in the study of letter

recognition could be generalized to perception of more complicated types of |etter discrimination
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and feature analysis. The numerous proposed theories on |etter discrimination could be divided

into two general categories. feature-based and image-based theories [33].

In the feature-based theories, the hypothesis is that |etters are identified through their component
features like horizontal lines or concave curves, etc. But the feature-based models neither indicate
the method by which the image of the letter is transformed into features nor do they describe the

nature of the features, or the processes involved in mapping features onto abstract letter characters.

Therefore feature-based models are not regularly applied for example in font design. Image-based
models measure the luminance image of the letters. Both models have a common defect. They are
not well generated by basic principles of pattern recognition; consequently they do not work
accurately [33].

Here a “minimal” image-based model isused. In other words its measurement is based on
luminance image of the letters. A minimal model is one which is as simple as possible and only
contains the processes that are essential. For that reason implementing (and running a simulation) a
program based on aminima model, takes less time than for complex models. The overall
structure of the recognition process of the model isillustrated in

Figure 7.

The main and unavoidable components are Sloan letter image, optical and neural filters of the eye,
and normalized correlation (matching component). The optical and neural filters represent the
limited resolution of the visual system. As demonstrated in the Figure 7, first an image passes
through filters and then the matching processis applied on aresult of noised filtered image. If the

model does the correct match the letter of output is same as the input letter image.
The model isimplemented in the digital image domain. Inputs and outputs of the model at every

stage are discrete finite digital images. Details about this model are explained in chapter 2 of this
thesis.
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Figure 7: Simple model of human eye recognition process.

Aberrationsand Visual Acuity

In this section, the literature on the relationship between acuity and wavefront aberrationsis briefly
reviewed. Applegate et.al [8] have measured |etter acuity for three observersin the presence of 34
different combinations of two Zernike modes whose total RM S error was fixed at 0.25 um, over a
6.0 mm pupil. Although the RMS wave-front error was constant, the performance varied by up to
0.2 Log MAR values (logarithm of minimum angle o f resolution). Therefore The RM S wave-front
error and the equivalent defocus (Me= 47+/3RMS ) are not good predictors of visual

performance. pupilArea

In conclusion they mention that visual acuity varies significantly depending on which Zernike
modes are included in the analysis and their relative contributions. Modes of two radia orders
apart in the Zernike expansion can be combined to improve visual acuity. They aso pointed out
that the RM S is not agood predictor of visual acuity for low levels of aberration while previous
studies showed that for high levels of aberrations RM S is agood predictor of visual performance.

Guirao and Williams [35] have examined seven metrics to calcul ate the impact of high order
aberrations of the eye on subjective refraction. Their metrics were divided to two types, pupil plane
metrics and image plane metrics. The pupil plane metrics calculated the wave-front over the pupil

and image plane metrics consisted of calculations in the retinal image plane. They collected
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aberration data and subjective refraction in different settings for 146 observers. They concluded
that their image plane metrics presented good prediction of refraction while the quality of the pupil
plane metrics declined as higher order aberrations increased, and that higher order aberration

influenced the amount of spherical and cylindrical correction required.

Cheng, et a. [36] have studied the impact of higher-order monochromatic aberrations on lower-
order subjective sphero-cylindrical refractions. In their experiments visual acuity (VA) was
determined while monochromatic computationally-aberrated, Sloan letters were viewed by an
observer through a 2.5mm pupil. Then they compared the results to the prediction of 31 metrics.
Their results showed that presence of fourth order aberrations changes the effect of defocus; in
other words the amount of defocus required for the best acuity depends on the amount of higher
order aberration. Several of the metrics that they examined correlated well with measured letter

acuity.

Thibos, et a [32] have assessed the ability of the same metricsin addition to two other metricsto
predict best refraction. They used the aberration map of 200 subjectively corrected eyes. They
simulated subjective refraction by computationally varying spherical and cylindrical corrections
for each metric and each map, in order to maximize the predicted acuity. Then the resulting
simulated correction was compared with the actual correction. They found that among all metrics

only five were reasonably accurate.

Marsack, et a have compared the experimental results from Applegate, et al [18] to compute the
values of 31 metricsthat Thibos, et al [29] assessed. These investigators changed the distribution
of 0.25 um RM S wavefront error across the pupil and measured the correlation of 31 metrics of
optical quality to high contrast visual acuity. The best metric was found to be the VSOTF (Visual
Strehl ratio Optical Transfer Function) which accounted for 81% of the variance. The VSOTF is
the contrast-sensitivity-weighted OTF divided by contrast-sensitivity-weighted OTF for diffraction
limited optics.
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Conclusion

The simplified Visua Acuity Model (Figure 7) proposed hereis an attempt to find an alternative
value for RM S wavefront error to predict visual acuity from 14 modes of wavefront aberrations of
the eye. The elaborated Visual Acuity Mode is explained in more detailsin the next chapter.

The reason for the challenge to seek such amodé isto find an automated objective measurement

of visual acuity and of automated prescription of sphero-cylindrical corrections that provides the

best visual acuity.
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Chapter 2
M ethods

I ntroduction

As noted earlier, visua acuity isthe most broadly used metric to describe the quality of an
individual’s overall visual performance [10]. To subjectively evaluate people's visual acuity a
standard eye chart isrequired [11]. The Sloan letter chart isalogMAR chart and is used in low

vision studies frequently.

Sloan Visua Acuity (VA) is measured by asking the subject to recognize the targets. The
minimum size of the targets for which the number of correct answersis above a specified threshold
determines the subject’s visual acuity. Thisvisual acuity isusually expressed asa LogMAR

(Logarithm of the Minimum Angle of Resolution) value.

Sloan VA has a high sensitivity to optical imperfections such as aberrations. It can detect defocus
values equal to or less than ¥ Diopter (D) [38]. Unfortunately this measurement does not give any

information about the amount or type of the higher order aberrations involved.

Based on the recognition task of Sloan visual acuity, Watson & Ahumada [7] have proposed an
acuity model to objectively predict visual acuity from the total aberrations of the eye. They
examined controlled simplified combinations of a second and a fourth order aberration and found

an excellent account of acuity in the presence of those aberrations.

In this thesis amodel was implemented using MATLAB based on Watson and Ahumada’s idea to
develop acomputational acuity model. As aberrations of the human eye include more than just
two orders, thisimplemented visual acuity model assessed the real aberrations of the eye up to 14

terms of aberration.
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Template Matching Model

I have applied an instance of a “Template Matching” model for the algorithm of the visual acuity
model | have implemented. Thismodel presents an excellent fitting match with experimenta data
while having very few assumptions, parameters and calculations. It is a simple model while
meeting all the conceptual requirements of avisual acuity model as previously described in
Chapter 1.

The basic conceptual requirements of an acuity model are specific target images, optical and neural
filters of the images, an additive neural noise, and a set of template letters to perform the matching
process. The Sloan letters are an example of a specific target image set. The additive neura noise
simulates a biological task which aways includes some natural noise. It is known the brain

maintains certain level of noise to optimize visual acuity performance.

Usually after several exposures to the alphabet letter patterns, over a number of years, a person’s
brain constructs templates for those patterns. The template matching model assumes that, several
same shapes, but perhaps different size and patterns of each particular letter are stored in the brain
[31]. Recognition consists of finding the best match between atarget |etter and one of these
templatesin the brain.

Figure 8 shows the overview of this acuity model. Its componentsinclude adigital Sloan letter
image as the input, two optical and neural filters, that this letter image passes through, an additive
Gaussian white noise, and a set of template images. These templates are compared with the noisy
neural image. One set of templatesis used for each candidate letter to select the closest match.
Finally the output is the visual acuity of a subject in LogMAR value.
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Figure 8: Letter acuity template matching flowchart
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For atemplate matching model three types of templates could be considered: the original letters,

the neural images of the aberrated letters, and the neural images of the diffraction-limited letters.

The original |etter template type corresponds to a subject who retains templates with minimal
optical degradation. These templates may be learned at alarger size and then mentally scaled
down to the suitable size. The neural images of the aberrated | etters template type corresponds to
subjects who retain templates from prior experiences of the letters passed through the optics of
their eyes. The diffraction-limited letters template type is appropriate when an observer’s brain

stores the patterns of the letters under diffraction limited conditions.

Experimental Data

Three to six year old pre-school children were chosen as the subjects of this study. (N=20; mean
age= 4.2 years; best corrected VA= 0 (in log MAR units)). These subjects were part of alarger
school screening study conducted by Dr. W.R. Bobier of the School of Optometry at the
University of Waterloo. Two sets of data were used in this computational model. The image of
each subject’s eye was used to calculate aberration coefficient of the eye and the subjective visual
acuity of each subject was used to evaluate the performance of this model.

The first set of data, are the images of each subject’s eye. An aberrometer, Welch Allyn
Suresight®, was used to capture these images. Thisinstrument is based on the Hartmann-Shack
aberrometer principles [5, 6]. Welch Allyn Suresight® image datais used by MATLAB language
software to calculate up to 64 modes of aberration coefficients. This software finds the aberration
(Zernike) coefficients by independently fitting each Zernike polynomial term to the eye wavefront.
These aberration coefficients were obtained by courtesy of my college Damber Thapa (Vision
Science graduate student, University of Waterloo, Canada). The Optical Transfer Function (OTF)
of the acuity model was then calcul ated from these coefficients.

The other set of data, the subjective visual acuity, was obtained from Cambridge Uncrowded
Cards. Thistest does not require the subjects to name the letters. They should only match the test
letters with the letters on matching board. The single letter testing was conducted in this
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experimental study not the crowded acuity test. The subject was at a distance of 3 meters from the

cards.

In order to evaluate the performance of the model, these empirical results for visual acuity were
compared with the visual acuity achieved from the computational model. The RMS error between

the two visual acuitiesisthen calculated.

From approximately 2000 three to six year old, Oxford country pre-school children (data collected
from 2001 to 2006), | have randomly selected subjects from 2006 data (subject’s eye images were
taken by the Welch Allyn Suresight® autorefractor, software dev 2.2), among all age groups to
create a set of 20 subjects (10 boys and 10 girls) pupil images of the right eye and visual acuities.

Data shows that most of the children in this study are hyperopic, because the optical structure of
young children’s eyes is not completely developed yet. The mean pupil size of the subjects was 5.6
mm, ranging from 2.2 to 6.9 mm. The mean spherical equivalent (= spherical power + 0.5 *
cylindrical power) was 1.19 D, ranging from -1.90 to +4.77D.

Sloan L etters

Sloan letters are the test images of the model. They are ten |etters of the English alphabet (Z, R, K,
D,C,V, N, O, S, and H). The experimental visual acuity is measured using Cambridge
Uncrowded Cards. The letters of Cambridge Uncrowded cardsare U, X, O, H, V, T and A. The
images of Sloan letters used in the acuity model were created using Mathematica software. These
images were 256 x 256 pixels, with aresolution of 313.91 pixels per degree; consequently the
images subtended 0.815 degrees.

Each of the ten alphabet images used in thismodel created in 27 sizes, in units of LogMAR value.
The letter size variesfrom LogMAR -0.6 to 0.7 with a step size of 0.05 resulting in atotal of 27
different sizes. The letters are black on a white background. In the simulation, the image pixel

values are scaled to real numbersintherangeOto 1. Zero isblack and one is absolute white.
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Passing through Optical Filter

A visua system can be divided into optical and neural parts. Optical Transfer Function (OTF) and
Neural Transfer Function (NTF) are the corresponding parts of the visual acuity model. To get the
aberrated retinal image, each letter image of the Sloan chart, isfirst filtered by OTF, the optical
filter of the eye. Then to generate the neural image of the Sloan letters, it isfiltered by NTF, the
neural filter of the eye.

To calculate the OTF of a subject’s eye, the first step is finding the Zernike coefficients
(aberrations coefficients) from the image of the eye. These coefficients are used to calculate the
two dimensiona wave-front aberration functions, WA(X, y). Thisfunction is used to compute the
generalized pupil function, GP(X, y).Figure 9 Shows an example of calculated WA(X,y) map for a
six year old subject with a 5mm pupil and a standard visual acuity (6/6).

Wave Aberration Function

¥ pupil coordinate (mm)

% pupil coordinate (mm)

Figure9: WA(x,y) map - VA=6/6, J=14, age=6
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The eye’s optical performance is characterized by the generalized pupil function, GP(X, y)
(equation 5) which is a complex function that describes the wavefront at the exit pupil plane.

& (x.y) = P(xy)ep |22

}w (xy) ©

The pupil function P(x, y) is the transmittance (portion of photons transmitted) as a function of
position within the plane of the pupil. In equation (5) the transmittance is defined as 1 where the
pupil lets light through and O elsewhere.

GP(x,y) is used to calculate the Point Spread Function (PSF), the response of the optical part of the
eyeto apoint source. The PSF is squared modulus of the Fourier transform of the generalized
pupil image. Appendix A givesthe MATLAB code for calculating PSF from GP where Pisthe
pupil function and apw is pupil areain unit of wavelength.

Figure 10: Example of PSF simulated by the model for the subject#28 with VA=6/6.

The letter image is convolved with PSF to obtain the aberrated retinal letter image. The spatial
domain convolution is equivalent to a simple multiplication in the frequency domain. Discrete
Fourier Transform (DFT) is used to change the domain from spatial to frequency. OTF isthe

Discrete Fourier Transform of the Point Spread Function. The aberrated retinal letter imageis
30



obtained by multiplication of the OTF and DFT of the letter image, followed by an inverse DFT.
The corresponding MATLAB codeis given in appendix A.

OTF

cyclesideg

Figure 11: Example of OTF simulated by the model for the subject#28 with VA=6/6.

The PSF and OTF of all subjects are displayed in Appendix B

Passing through Neural Filter

As mentioned in Chapter One the neural filter of an imageis called Neura Transfer Function
(NTF). NTF indicates how well aretinal imageisinterpreted by the neural portion of a visual
system. It iscalculated by removing the optical component (OTF) from the Contrast Sensitivity
Function (CSF). CSF contains both optical and neural components and is defined in the frequency

domain.
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By sampling the one dimensional CSF shown in equation (6) atwo dimensional CSF filter is

created as adiscrete digital Finite Impulse Response (FIR) filter.

Among a number of different versions of the CSF a standard functional form for the radially

symmetric CSF is used in this thesis as shown (equation 6).

SCSF (f: 1o, T2, p)=sech{(fi)p}—asechH ©

0 1

The CSF is aband pass function; consequently the structure of Standard Contrast Sensitivity

Function (SCSF) is composed of a high-frequency lobe minus alow-frequency lobe.

The parameter f, scales frequency in the high-frequency lobe, the parameter f, scales frequency

in the low-frequency lobe, and the parameter a determines the weight of the low-frequency lobe.

SCSF is divided by the Mean Optical Transfer Function (MOTF) to remove the optical component.
MOTF is constructed by calculating the average of OTF matrices for al the subjects.

aCEF

A

: Spatial Fregquency
Spatial Frequency (cycle per degree)
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Figure 12: 3D presentation of SCSF simulated by the model.
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Figure 13: 3D Presentation of MOTF used to makethe NTF.
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Figure 14: 3D Presentation of NTF calculated from dividing SCSFto MOTF.
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Using this method results in the same NTF for every subject. We know it may not be accurate for
all observers because people have different NTFs. Therefore for solving this problem a parameter

“frequency scal€” isintroduced here.

Frequency Scale Assessment

To consider potential variationsin the neura transfer functions of different observersthe
frequency scale multiplies the two parameters fo and f, of Standard Contrast Sensitivity
Function. As previously mentioned in the introduction chapter, the frequency scale (®) has the
effect of shifting SCSF horizontally. Consequently the neural transfer function shifts to higher
values, and transfers information from higher spatial frequencies to the brain. A larger frequency

scale corresponds to a higher value of visual acuity meaning the individual can see more details.

Freguency scale is a parameter that changes the value of NTF to be specific to each subject rather
than being based on the average population. To find the optimal ® for each observer several
random values for frequency scale are examined and the result of visual acuity from calculationsis
compared with the experimental result. Finding the optimal ® to get the best fit to the experimental

datais somewhat arbitrary and time-consuming.

Specifying Additive Noise for Each Subject

Most biological organs have some amount of internal noise. The same appliesto the neural part of
the visual system. Thisadditive noiseis usually useful for vision [48]. For examplein very dim
light an imperceptible image can be seen due to this additive noise. The noise can exceed the

threshold sensitivity and the image is perceived Therefore performance of the acuity model is
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governed by the amount of neural noise. One can hypothesisthat in the brain some processis
implemented to generate just the right noise level where the visual sensitivity of theindividual is at
its maximum. In this model a zero-mean Gaussian white noise is added to the neural image to

simulate this additive noise.

A computational model that is as similar as possible to the real natural biological procedureis

needed to find the optimum noise level for each subject.

A simple technique for finding the right noise level for each subject, isto find the smallest Root
Mean Square (RMS) error between the experimental data and computational model when
examining several values of noise, ¢ . The noise that results in this minimum amount is the
suitable noise for that person. Finding the best fit for each subject is possible at the last step of the
modeling procedure after applying the matching rule and obtaining the Visua Acuity (VA) from
the model. Figure 15 shows an example of finding the best noise level for four subjects based on

the minimum RMS error.
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Figure 15: Each subject’s RMS error as a function of the neural noise.
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Matching Rule

Normalized Correlation

There are severa pattern matching algorithms that could be used. An experimental study of five
template matching algorithms, when various image distortions are present, shows that normalized
correlation presents the best performance [41]. In the normalized correlation matching rule, letter

images filtered by aberrated optics and neural filter are used as templates.

The discriminant for normalized correlation is shown in equation (7). Templates are normalized
but they are not perturbed by any noise. When normalization is applied the patterns will be

matched on the basis of shape rather than mean value.

The test letter image s, (X) and the candidate images tj(x) differ only by a shift along the x-axis.
Cross-correlation is used to find out the amount s, (X) +n(x) must be shifted along the x-axis to
make it identical totj(X) . Theequation sides s, (x) aong the x-axis, calculating the integral of
the test and the candidate image product for each possible amount of diding. When the functions

match, the value of (fj (X) @ (s (%) +N(x) )) iS maximized.
g;=max (£;() ®(s,(¥+n(x))) (7

Here, tj isthe normalized template for the letter indexed by j.

In the Normalized correlation rule the observer is limited by optics of the eye and internal noise.

The output of correlation of the test letter s (X)and the candidate images tj(x) isitself an image,

and the value at each pixel of the result image reflects the correspondence of the two other images.

Taking the maximum selects the greatest correspondence.
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Visual Acuity Model

The model computes visual acuity from the measured wavefront aberrations for each subject. The
visual acuity is simulated in the digital image domain and isimplemented in MATLAB language.
Inputs and outputs of the model are discrete finite digital images. (Appendix A).

Two main factors limit the visual perception of individuals. Oneisthe ability of the optics of the
eye to form the image on the retina (optical filtering) and the other is the capability of the retinato
transfer the details of that image to the brain (neural filtering).

Other parameters affect the visual acuity therefore this model is based on the letter acuity task that
contains, optical and neural filtering, neural noise and a template matching rule.

In all the simulations the pupil diameter was set to a standard size of 5 mm. Thisisthe result of

using a5 mm pupil in calculation of the Zernike coefficients from the experimental data.

Figure 16 shows the overall flowchart for an individual trial.
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Figure 17 shows aretinal image at different steps of the model.
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Figure17: A retinal letter image (Top left); Image passed through NTF filter (Top right)

; Neural image with added noise (Bottom left); result of the matching process (Bottom right)

Perfor mance Evaluation

Thelast step isto find out the degree that the performance of the acuity task of the model is

matched with the visual acuity obtained from experimental data.

Finding the RM S error between model and datais a good measure of performance. Note that

o n should be optimized separately for each subject, because individuals possible presentation of

different average acuities. Therefore, for each observer, different valuesof ¢  aretested

separately and the RM S error asafunction of ¢  isplotted.

Every point of Figure 15 is obtained based on 100 trials at each observer’s eye aberration

conditions while trying to find suitable noise values. The frequency scale has a constant val ue of

®=1.



Among the several ¢, sfor each observer the one that presents the minimum amount of RMS

error istaken as the optimized neural noise level.

More explanation of the process of finding the best RM S error for each subject isin the Results
chapter of thisthesis.
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Chapter 3

Results

Visual Acuity Estimation Using a Psychometric Function

A psychometric function demonstrates the relationship between a physical stimulus and the
responses of an individual about a certain parameter of that stimulus. Usually the psychometric
function has an S-shape and is also called an ogive shape and represents a cumulative probability
distribution. The y-axis represents the probability of successin a certain number of experiments at
that stimulus level and the x-axis shows the value of the physical stimuli. Finding the proper range

of the stimulus value isimportant in getting correct results from the psychometric function [44].

The stimulus should not be easily perceptible or completely indistinguishable for the subject. If the
stimulus isindistinguishable, it is probable that the subject responds randomly; therefore the
results of the function would not be reliable. On the other hand, if the person is always able to
respond correctly then the threshold of perception of the stimulus can not be obtained since the
strength of the stimulusis aways above threshold. The sensory threshold is the point where a

transition between correct and incorrect responses occurs.

A common application of a psychometric function is estimating subjective visual acuity using an
eye chart stimulus. The subject of study observes letters of different sizes, such asin LogMAR
value, on the acuity chart. These |etters are the physical stimuli. Aslong as the subject responds
correctly in distinguishing the letters, smaller sizes aretested. The line on the chart where the
subject can not recognize some of the letters usually shows the sensory threshold and corresponds

to the visual acuity.

In this model a similar method was simulated to estimate each subject’s visual acuity. After

finding the portion of correct responses for each size of the letter the data were fit by aLogistic
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model of Sigmoida Function. Using the fit plot, acuity was calculated as the value of LogMAR at
which the probability of a correct response was P = 0.66.

An example of one simulation is shown in Figure 18. This procedure of acuity estimation was
applied to each of the 20 subjects with 15 terms of aberration coefficients and 6 levels of noise.
Aberrated |etters were used as the template for this simulation.

Figure 18 shows the estimated acuity for an observer at noise level = 60%. The black points show

the proportion correct at different letter sizes. The blue linesindicate the VA estimation as the
LogMAR for which the probability correct is 0.66.

Subg# 28, Experirmental

1-
- Vi= 0 loghl &R, - -
034 - ~ -
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032 -
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|1 e °
.  —— g t t 1
05 03 o1 00 0t 03 05

LogMAR

Figure 18: Simulation using aberrated letters asthe template

Table 1 shows an example of the results at different sizesto plot the psychometric function for a
subject.

42



Subj#4; VA=0
Noise = 20 | 40 | 60 | 80 | 100 | 120
Letter sizes LogMAR Probability of Correct Response
5 -04 0.3 0.3 0.3 0.2 0.3 0.4
7 -0.3 0.2 0.2 0.2 0.2 0.2 0.2
9 -0.2 0.3 0.2 0.2 0.3 0.2 0.3
11 -0.1 0.8 0.8 0.8 0.8 0.8 0.7
13 0 0.7 0.7 0.7 0.7 0.7 0.7
15 0.1 0.7 0.7 0.7 0.7 0.7 0.7
17 0.2 0.9 0.9 0.8 09 0.9 1
19 0.3 0.9 0.9 09 1 1 1
21 04 1 1 1 1 1 1
23 05 0.9 0.9 0.9 0.9 0.9 0.8
Thresholds: 0.5 -0.15 -014 -014 -015 -0.14 -0.159
0.6 Calculated VA : | -0.09 -0.07 -0.06 -0.09 -0.07 -0.08
0.66 -0.05 -0.03 -0.02 -0.06 -0.03 -0.04

Table 1- Data calculated to plot psychometric function.

Calculations similar to those that generated Table 1 were performed for each of the 20 subjects.
Each table is used to plot six psychometric functions, one for each noise level. On each
psychometric function three levels of threshold of probability of correct answer at 50%, 60% and
66% were applied to find the visual acuity. Results Tablesfor all subjects can be foundin
Appendix C.

Root Mean Square Error

To quantify the difference between the values of the model estimated VA and the experimental VA
aroot mean square error was calculated. This parameter measures the average of the square of the
error. The error is obtained by subtracting the estimated VA value from the experimental result
Table 2.

The RMS error assesses the quality of the simulation result in terms of its variation. For an
unbiased estimator, the RMS error is equal to the standard deviation. Like the standard deviation,
the RM S error has the same unit of measurement as the quantity being estimated.

43



Table 1 shows an example of finding the probability of a correct response of the model while
varying the amount of Gaussian white noise. The result is then assessed by finding the RMS error
between the experimental VA and the calculated VA.

As could be seen in the Table 1, for each subject 10 letter sizes and 6 noise levels are used. Letter
sizes are spaced 0.1 logMAR apart. The portion of correct matching of the test letter with the
template letters was cal cul ated.

From the obtained data, the psychometric function was plotted for each noise level. To estimate the
subject’s visual acuity, three different threshold criteria were examined (threshold criterion of
Probability = 0.5, 0.55 and 0.6). Then to choose the best threshold the RM S error between
experimental result and computational result was calculated. Table 2 shows an example of the
values of RMS error for all thresholds and noise levels for the subject 4 (see Appendix C for all 20

subject’s tables).

Noise = 20 40 60 80 100 120
Exp. VA Thresholds RMS Error
0.5 0.11 0.10 0.10 0.11 0.10 0.11
6/6=0
0.6 0.06 0.05 0.04 0.07 0.05 0.06
LogMAR
0.66 0.03 0.02 0.015* 0.04 0.02 0.03

Table2- TheRM Serror between the experimental VA and the calculated VA, for three different thresholds,

and six noise levels, for subject 4.

Among all calculated visua acuity RMS errorsin Table 2 the value corresponding to the noise
level 60 and threshold 0.66 presents the smallest visual acuity RMS error (one example is shown in
the Figure 19). Threshold 0.66 was the best choice for al other subjects of this study.



Effect of Different Parameters

Templates

Two types of templates were tested in the model: the original letter images and the aberrated |etter
images. Based on comparing the average of the calculated VAs and the average of the
experimental VAS, the visual acuity approximations when using the images of the aberrated letters

as atemplate were much closer to the experimental results.

This was apparent even when comparing VAs for each subject. Therefore the aberrated letters

were chosen as the template for the simulation.

Each subject has his/her own set of templates. Each subject’s OTF is used to optically filter the
original images to make a set of aberrated image templates (10 different al phabet images at ten
different sizes).

Noise L evel

The letters presented to subjects are a combination of perfect images and noise in the subjects’

memory. This noise was simulated in the model as an additive Gaussian white noise.

The noise level was defined as a percentage of the signal amplitude. The signal was the discrete,
finite digital Sloan letter image used in the model. The images were 256* 256 pixels with
amplitude in the range of 0 to 256. Normalizing the images changes the range to be from 0 to 1.
For example, when applied to a normalized image, anoise level of 60 means the maximum value
of the absolute amplitude of apixel of noiseis 0.6 (60% of 1), while for an origina image the

maximum value of the absolute amplitude of apixel of noiseis 154 (60% of 256)

No logical algorithm has been found to estimate the noise level for various observers. For each
subject ten levels of noise were tested and the noise level that resultsin minimum RMS error

between experiment and model VA was selected. For some subjects better results were obtained at
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higher noise levels, while in other subjects, lower noise levels resulted in better results. There was

not any correlation between subject’s age and their noise levels. Thisisshown in Table 3.

3 60 38 120
4 60 46 80
12 80 47 120
13 80 49 20
14 60 50 80
15 20 53 20
19 120 56 100
28 60 66 20
30 20 87 20
37 60 88 100

Table 3 - Selected best noise for each subject
Figure 19 shows the variation of RMS error for a subject versus noise level. Noise levels 20 to

120 in steps of 20 were used. Noise level of 60 has the smallest RMS error.

WA RS error vs. Noise

Subject #4
0.12 7
= 01
& ' —— Threshold= 0.5
v} 008 Threshold =0.60
E L8 Threshold = 066
< ]

. \/\/
0.0z 4

20 40 0 20 100 120

Moise

Figure 19: RMSerror for subject#4 asa function of noise level.
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Frequency Scale

The frequency scale, @, is aparameter used in the equation of the standard contrast sensitivity

function. A higher value of the frequency scale shows that the individual can see more details.

Examining three different values for the frequency scale (® = 0.5, 1, 1.5, and 2) concluded that the
best value of visual acuity is calculated at ®=1. Therefore, the value of ® in al stages of
simulation was fixed to one. Figure 20 shows the variation of RM S error vs. the frequency scale.

EMIE error wa. Frequency scale

16
1.4 1 .
1.2 1

0.5 o
06 1
0.4 1
0.2 >

|:| —_ T
0z 0.5 1 1.5 2 25

FMS errar

Frequency scale

Figure 20: Sample of frequency scale asa function of RM Serror for specific subject#28.

Thresholdsfor Visual Acuity

A visual acuity recognition threshold (the level at which aletter can not only be detected but also
recognized) [44] to obtain the model VA results, should be chosen.

For each psychometric function, three values of threshold weretested. The threshold level that
resulted in asmaller VA RMS error was sel ected.
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Figure 21 shows the average value of estimated visua acuity using three different thresholds. It
can be seen that the estimated VA, for threshold of 0.66, is the closest to the experimental VA.
The error is0.0828 - 0.07357= 0.0093.

Noise = 60 Experimenta VA vs Simulated VA

0.1+ Exp.VA; 0.0828 Threshold = 0.66;
0.08 A 0.07357
0.06 -
0.04 4
r 0.02 - mExp.VA
s Threshold=0.5
= 0 ' 7] :
§’ -0.02 -0.002845 o Threshold = 0.6
] o Threshold = 0.66
-0.04 4
-0.06 4
0084 Threshold=0.5; -
-0.14 0.075695

Figure 21: Estimated and experimental average values of visual acuity for 20 subjects.

The plot of RMS error as afunction of noiselevel, Figure 19, also shows that for subject 4 the
threshold of 0.66 corresponds to the smallest amount of RMS error, across all noise levels. This
holds true for most other subjects as well. Therefore the threshold for VA estimation for this
simulation is chosen to be a probability of 66% correct response.

In Figure 22, Figure 23 and Figure 24, visual acuity estimated by the model versus their
experimental visual acuity is plotted for 20 subjects for thresholds of 0.66, 0.6, and 0.5. Asthe P
and r (Pearson correlation) values for threshold of 0.66 indicate, these correlation plots emphasize
that the 66% threshold is the best choice for the threshold.
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Figure 22: Correlation between Data and Model; Threshold 0.66
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Figure 24: Correlation between Data and Model; Threshold 0.50

49



Mean Optical Transfer Function

As explained previoudly, to find the neural filter of the model (Neural Transfer Function) the
optical component of Standard Contrast Sensitivity Function (SCSF) should be removed. This
optical component isthe Mean Optical Transfer Function (MOTF).

Two methods for finding MOTF were examined. In the first method, the average of the OTFs of
the 20 subjects was calculated. The NTF was obtained by dividing SCSF by this MOTF. But this
technique for finding the NTF did not result in acceptable values for VAS, as the dynamic range of
the MOTF was too large (10 to the power of 7).

When MOTF was normalized to a maximum value of 1, its minimum was around 10-7 while the
same minimum for the MOTF of the second method was around 10-3. AsMOTF isinthe
denominator of the NTF formula, these small values and the large dynamic range caused very

large values for NTF and alarge dynamic range as well. As shown in Figure 25.

When moving away from the origin (zero) the NTF values drop down at avery highrate. The
problem was attempted to be fixed by reducing the dynamic range of the MOTF. The MOTF
values |ess than 10 were truncated to 10, This did not improve the NTF that much.

NTF

—
T HV:DD

2 Bl .
Spalial Fraquercy loyclazioen) 200 Gamial [ equency (cyclzs/deq)

Figure 25: NTF from thefirst method (M OTF average of OTFsof all the subjects)
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In the second method aformulafor the MOTF proposed by 1Jspeert, .et.al was used [43]. This
MOTF resulted in very promising estimations for VAs and hence was used in al simulations.
Equation (9) showsthisMOTF formula. Here, f isthe spatial frequency and the age factor is
given by (Age Factor = 1 + (age/70) 4 (equation(8))

MOTF (I, J) = 1/ (1 +AgeFactor/7) * (0.426* exp (-0.028*f) + 0.574* exp (-0.37*f))
+ 1/ (1+7/AgeFactor)* (0.125*exp (-37*f) + 0.877*exp (-360*f))  (9)

Number of Matching Trials

To find out the probability of acorrect response for each letter size, each of the aphabet letters
should be compared to all of the other |etters of the same size. When this process is done once,
each letter is compared to ten template letters. The result of each of these comparisons depends on
the effects of the additive noise. Due to the random nature of the additive noise, the same
comparison can pass or fail at different trials. To increase the precision of the model each trial can
be performed multiple times. When this process is done five times, each letter is compared to fifty
template letters that is ten template letters each with five random additive noises.

The results were in the same range as the results from the single trial case.
Figure 26 shows the correlation (r =0.721, p= 0.279) between the singletrial and the five times
repeated trial, for subject 4. Due to the computational complexity and time consuming nature of

this process, it was carried out for only five randomly chosen subjects.
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Reapeted trial vs. Single trial
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Figure 26: Correlation between 5 timerepeating trialsvs. Singletrial.

Visual Acuity RMSerror vs. Different Ordersof Aberration

An assumption that was tested was finding if there is any correlation between the RM S values of
different orders of aberration and the RM S error of the calculated visual acuity.

In order to test this assumption four experiments were carried out. The correlation between the 2™
order aberrations total RMS and VA RMS error, the correlation between the 3 order aberrations
total RMS and VA RMS error, the correlation between the 4™ order aberrations total RMS and VA
RMS error, and at |ast the correlation between the all 15 modes of aberrations total RMS and VA

RMS error. Each of these experiments was performed on the twenty subjects.

The results obtained from these correlation calculations as shown in Figure 27 did not reveal any
significant relation between VA RMS error and 2nd order aberrations total RM S (defocus and
astigmatism). Between these two modes of second order aberrations defocus has more value than
astigmatism. Only 2% of the children have greater than 1D of astigmatism. Children’s eyes in the
experimental data were cyclopedia (paralysis of the ciliary muscle of the eye) so that there was no

accommodation of the eye and therefore the actual amount of defocus were obtained. Even though
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the defocus and astigmatism terms had different values (one of them small value and the other
large) none of them showed any correlation with VA RMS error. There was no significant relation
for the 4th order aberrations (spherical aberration) or all 15 modes of aberrations cases either.
Despite the fact that children eyes are hyperopic because they have high amplitude of
accommodation they can overcome it because of having long range of accommodation compare to

adults.

The subjects’ VA RMS errors and 3" order aberrations total RMS (Coma (m=-1, 1) and Trefoil
(m=-3, 3)) correlation plots showed P=0.02, and r = -0.515 which reveals not a very significant
but a medium inverse correlation between theses two sets of variables. Thisinverse correlation
implies that this model is particularly efficient at estimating the visual acuity of subjects with
higher values of 3" order aberrations total RMS.

Figure 27: Correlation between 2nd, 3rd, 4th order and total Wrms aberration with VA RMSerror.
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Chapter 4

Discussion

In this Chapter, | will consider the various parameters and techniques used in this model and will

discuss the advantages and disadvantages of the same.

a. Template Matching Algorithm

Severa template matching algorithms could be used in the computational model to estimate visua
acuity, such as the method of an ideal observer, the minimum distance algorithm, or the
normalized correlation [50]. The method used in this model, the normalized correlation, is awidely
used pattern matching algorithm [51]. When normalization is used, the effect of the mean valueis
canceled, and patterns are matched on the basis of shape. MATLAB provides normalized
correlation as a predefined function, which simplified the model implementation. Asshownin the
Results chapter (chapter 3), the template matching algorithm used in this model, performed very

well in estimating visual acuity, when using 15 terms of aberrations.

b. Contrast Sensitivity in Children Eyes

The experimental data available were visual acuities of 3 to 6 years old preschool children. Adults
and children have similar contrast sensitivity functions; except that the sensitivity of the childrenis
slightly lower than that of adults at all spatial frequenciesin this age range [52]. It seems that
contrast sensitivity develops quickly in first 3 years of age and then more slowly until it finaly
reaches adult-like levels at about 9 years of age. The Variability in contrast sensitivity decreases
progressively with age [58]. Therefore although the SCSF used in this model was obtained based
on adult experimental data it worked quiet well for children aswell, as all stages of the model used

normalized values.



The other interesting point in development of contrast sensitivity functionsisthat its development
during the “toddler” years has relatively greater improvements at the higher spatial frequencies but
after 4 yr of age appears to be mainly improvement at the lower spatial frequencies[58]. For
example, from 4 yr of age until maturity, CS improves by about 0.27 log units at the two lowest
gpatia frequencies, but only by about half of that value (~0.14 log units) at the two highest SF.
The frequency scale (®), the parameter responsible for varying CSF, was set to 1 for all subjects.
Changing ® to 0.5, 1.5, 2 and 2.5, did not present any improvement on the result of the calculated
VA, asshown in Figure 20. Therefore a constant value of contrast sensitivity function was used

for al the subjects.

c. Alternative Single Valued Metric

One purpose of implementing this computational model wasto find an alternative reliable metric
instead of RM S wavefront error to quantify the effects of aberrations on the acuity task. In the case
of high values of eye aberrations, RMS wavefront error is a good predictor of visual acuity but
when RMS wavefront error isless than 0.25 pum, it isno longer areliable metric of acuity. This
model provides an aternative metric of acuity [38]. This model has shown to be a good predictor
of visual acuity as it incorporates the effects of each individual aberration coefficient rather than

relying on the RM S wavefront error.

d. Visual Acuity of Preschool Children

There is no universally accepted standard format for finding visual acuity in children. A variety of
methods have been proposed by different researchers [53, 54]. For example, the drawing method in
which a series of test characters of visual acuity chart are shown to a child and the child is asked to

make copies of what he sees using the provided paper and pencil [52].

55



The other method is the block selection method in which cut-out wooden blocks, the same shape
asthetest |etters, are set before the child, and the child is asked to select a block that matches the
picture letter shown [53].

There are anumber of more new optotype matching tests that Saunders explained in her book [59].
In her tests all correct responses of child are praised to encourage the child to continue with testing
and maintain co-operation. Some acuity tests that are designed for younger children use familiar
pictures as targets rather than letters. Some times the child loose interest to answer correctly
therefore it isimportant to know whether failure to match is due to lack of interest or acuity
limitations [59].

Different types of children visual acuity are: The Kay Picture test, Allen cards, Fooks symbols,
tumbling E test, Lighthouse test, LH symbols, Siiigren’'s hand test... [59].

In the method that provided the experimental VA data for this model, Cambridge Uncrowded
Cards were shown to children and most of the visual acuities found were 6/6. There were afew
children with 6/9 or 6/12 VAs (Courtesy of Dr. Bobier’s lab).

The experimental data available for this research was restricted to avisual acuity range from 6/6 to
6/12 and age range from 3 to 6 years old. In addition the step sizes changes were larger than the
typical of LogMAR. Fortunately these limitations do not have any effects on reliability of the
computational results. The only effect was on value of correlation obtained between experimental

and computational VA.

Thismodel is similar to that proposed by Watson and Ahumada [7]. Their smulation results had a
correlation of over 0.86 with the experimental data of 67 subjects with only two nonzero terms of
aberrations (second and forth orders aberration terms), and visual acuitiesin the range of -0.3 to
0.4 LogMAR. Thismodel has a correlation of 0.56 with the experimental data of 20 subjects with
15 terms of aberrations. The lower correlation could be due to the higher number of aberration
terms (15 vs. 2) or the limited distribution of the visual acuity of the subjects from the
experimental data.
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e. Effects of Noise

This research attempted to find an algorithm to estimate the noise level of each subject’s visual
system. It is unclear which neural stage is critical in the observer’s performance in letter
identification. It seems behavior of neurons responsible for the noise follows probabilistic
distributions that can be roughly approximated [55]. A better understanding of the role of spatial
frequency channels in human letter identification, could guide onein the finding of arule for

determining exact values for the noise level of each individual’s visual system.

For some subjects increasing the noise makes the VA results better, showing that adding some
noise to aweak signal can improve signal detection (one can think of this as a case of stochastic
resonance). The model demonstrated that each observer has a different estimate of the best noise
level. Perhapsit is not very surprising to know that the subjects should be differing in this aspect,

having for example, variations in their retinal cone density, or ganglion cell connectivity, etc. [48].

f. Effectsof Infra Red vs. Visible Light on VA

Zernike expansions of the experimental wave-front aberration functions were used to determine
aberration coefficients. These aberration coefficients, obtained from images of the subject’s eye,
were used to find the optical filter (OTF) of the model and ultimately to estimate the VA. The
wavelength of the light used to get the images of the eyes was 780 nm, which isin the near
infrared region of the electromagnetic spectrum.

Finding the experimental visual acuity of the individuals was carried out under visible light with

wavel engths from 400 to 700 nm.

Using infrared light, for which the eye has relatively low efficiency compared to the visible light,
might be the reason that the ssimulated VAs were mostly better than the experimental VAs.
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Asiswell known, newborn infants are hyperopic, and a process of emmetropization occurs as the
child gets older [57]. Most of the subjects for whom data were available had moderate hyperopia
(~ 3.00 diopters).

g. Different MOTFs

Even though using the average of the Optical Transfer Functions (OTF) of all the subjects asthe
MOTF sounds rational, but it did not give an acceptable estimation for the MOTF.

A third method that could be used (not examined in this study) for estimating the MOTF isto
calculate the average of all the subjects wavefront aberrations terms, and use the resulting 15 terms
to calculate the OTF to be used as the estimation for the MOTF.

h. Using Adaptive Proceduresin Template Matching

To improve the speed and accuracy of the template matching model, an adaptive procedure can be
applied to the size selection at each trial [49]. Instead of testing all the letters of each of the ten
sizes, the test size of the next trial would be based on the percentage of correct answers of the

previous one or more sizes.

For example if the percentage of correct answers for letter size of 0 LogMAR is 80% the next trial
would test letter size -0.3 LogMAR, but if the percentage of correct answers for |etter size of O
LogMAR is 40% the next trial would test letter size 0.3 LogMAR.

I. Running the Simulation on a Larger Population

Statistically it is likely that having more degrees of freedom would give more accurate results.
Thereforeit is expected that running the model on more than twenty subjects with avariety of VAs
(and not just 6/6, 6/9 and 6/12) and more age variation as well could result in ahigher level of

correlation between calculated VAs and experimental VAs. On the other hand simulating the
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model for 20 subjects needed three computers to run for 10 hours. Therefore first the speed

improvement for running the model should be obtained.

Analyzing the output raw data and plotting of the psychometric functions to calculate the VAs took
at least twice as much time. The model can be optimized for speed. A faster computational
algorithm (or faster processors) would make simulations for more subjects possible.

It can be concluded that a variety of factors were contributing to the outcome of the calculations,
with the three main factors being:

The Optimum noise level for each observer.

Accuracy and range of VAs of the experimental data.

The MOTF used for calculating the neural filter.

Conclusion

The model presented in this research makes it possible to find visual acuity in people whose visual
acuity can not be measured subjectively. For example preschool children, individual whose mental
development are relatively slow, non-verbal individuals or anyone who cannot read the English
alphabet on VA letter charts.

The RMS error obtained using this model was about 0.01 LogMAR. The small value of the error
means that this model is able to estimate visual acuity from the 15 terms of aberrations. The model
can also determine the effect of removing one or more of the aberration terms on the visual acuity.
An application of the model isto predict the effects of laser correction of one or more aberration

terms on visual acuity. Thiswill be subject for future study.
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Appendices
Appendix A

MATLAB Simulation Codes

Main.m

The following parameters are defined in the “Parameters to Change” section:

Subject numbers (goodSubjects)

Type of MOTF used (motf Type)

Type of Template used (templateType)

Then MOTF, and NTF are cal culated.

Next for each subject WA, PSF and OTF are calculated and for 10 sizes the templates are created,
then for 6 noise levels, each of the 10 letters are filtered and compared with the templates,

probability corrects are calculated, and the result is saved in an excd file.

clear; close all; clc;

37 38 56 87 46 30 66 88];

not f Type = 1; % 0: avg9o0, 1: Ahunada

t enpl at eType = 1; % 0: original, 1: retina

sizeValues =[5 7 9 11 13 15 17 19 21 23 ];

noise = [0 0 20 40 60 80 100 120]; % | MPORTANT: keep O, is place holder for Wns js
i Threshold = [0.5, 0.6, 0.66];

sizePad = zeros(1,27);

for i = 1:1ength(sizeVal ues)
sizePad (1, i) = sizeValues (1, i);
end

result (2, 6:8) = visActThreshol d(1: 3);
result (2, 10:36) = sizePad (1, 1:27);

if (rmotfType == 0)
disp('Creating NTF ... from avg90(OTF)');
MOTF = nake_MOTF_avg90
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NTF = make_NTF( MOTF) ;

el se

disp('Creating NTF ... from Ahumada MOTF');
MOTF = nake_MOTF;

NTF = make_NTF( MOTF) ;

end

for cnt_subj = 1:1ength(goodSubjects);
subj Num = goodSubj ect s(cnt _subj);
di sp([' Subj Num =", int2str(subjNum]);

disp('Initializing ...");
[Wnsj, xw, yw, jmax, dw, P, apw, |anbda] = make_initial s(subj Nunj;

disp('Creating WA ...');
W= nake_ WA(Wnsj, xw, yw, jnmax, dw);

disp('Creating PSF ...');
PSF = nmake_PSF(P, apw, W |anbda);

disp('Creating OIF ...");
OTF = make_OTF( PSF);

if (tenplateType == 0)

disp('Oiginal letter Template ...");
el se

di sp(' Retinal Tenplate ...");

end

prob = zeros(length(noise), 27);
correct(1:27) = 0;
nunber O Letters = 10;

di sp(' Sanpling ...");

for cnt_size = 1:1ength(sizeVal ues);
letterSize = sizeVal ues(cnt_size);
tenpl ate_spat = make_tenplate(l etterSi ze, OTF, tenplateType);

result ((subj Nuntlength(noise))+1, 1) = subj Num
result ((subj Nuntlength(noise))+1, 4:15) = Wnsj (4:15)*1000;

for cnt_noise = 2:1ength(noise);
noi seScal e = noi se(cnt _noi se);

di sp([' Noise ="', int2str(noiseScale)]);

for letterNunber = 1:nunmberOfLetters; % 1C 2D 3H 4K 5N 60 7R 8S 9V 10Z

noi sed_spat = filter_freqDomai n(l etterNunber, letterSize, OTF, NTF, noiseScale);
correctness = match_normxcorr2(letterSize, |etterNunber, noised_spat, tenplate_spat);
correct (|l etterNunber) = correctness;

prob(cnt _noi se, cnt_size) = prob(cnt_noise, cnt_size) + correctness;

end

disp(['Size =", int2str(letterSize), ' correct ="', int2str(correct(1)),
int2str(correct(2)), int2str(correct(3)), int2str(correct(4)), int2str(correct(5)),
int2str(correct(6)), int2str(correct(7)), int2str(correct(8)), int2str(correct(9)),
int2str(correct(10))]);

result ((subj Nuntlength(noise))+cnt_noise, 1)
result ((subj Nuntlength(noise))+cnt_noise, 2)
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result ((subj Nuntl ength(noise))+cnt_noise, 3)
result ((subj Nuntlength(noise))+cnt_noi se, 4)

not f Type;
tenpl at eType;

prob(cnt _noi se, cnt_size) = prob(cnt_noise, cnt_size) / numberflLetters;
end

row = (subj Nun¥l engt h( noi se)) +2;
result (row (row+l ength(noise)-2), 10:36) = prob(2:1ength(noise), 1:27);
end

xIswite ('resultSubj12Si zelONoi se5_0_20.xls"', result);
end

di sp(' End!");

make initials.m

function [Wnsj, xw, yw, jmax, dw, P, apw, |anbda] = nake_initials (subjNum

d = 5;
expZer = x| sread(' 90Subj _Nornmalized. xIs', "al:090");

Wnsj = expZer(subj Num :);
jmax = length(Wnmsj)-1,
| anbda = 780;

Wnst =0;

for j=0:] max

W st =W st +W nsj (j +1) ~2;

end

W st ot al =sqrt (W nst) ; % otal rns wavefront error in um

% -—==—=—= == == == ===

% Convert units for calcul ation

W nsj =W nsj * le- 3; % ms wavefront error coefficients in mm
W nstotal =Wnstotal *1e-3; %otal rns wavefront error in nm

| anbda=| anbda* le- 6; %wvavel ength in nmm

dw=d/ | anbda; %upi | dianmeter in nunber of wavel engths
PRw=0. 5* dw;, %upi | radius in nunber of wavel engths
apw=pi * PRw\2; %upi | area in wavel engt h"2

% === == == == ===

% sh 1 pixel = 0.00318 deg ==> 1 pixel = 70.42 | anrbda ==>

% sh | anbda = 570 ==> 1 pixel = 0.040 mm ==> 5 mm = 125 pi xel

% sh | anrbda = 780 ==> 1 pixel = 0.055 mMm==> 5 mm = 91 pi xel

pi xel = round( 5/ (70.42 * |anbda) );

xylimt = PRw

dxyw = PRw*2/ pi xel ; 9%-coordinate pixel width in nunmber of wavel engths

-xylimt; %m ni nrum x-coordi nate in nunber of wavel engths
xylimt; %raxi mum x- coordi nate i n nunber of wavel engt hs

XYWTi n
XY WTax
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XWEXYWT n: dXyw. Xywnax; %- coordi nates in nunber of wavel engt hs
YW=XW, % - coordi nates in nunber of wavel engths

si ze(xw);

I max=l engt h( xw) ;

Jmax=l engt h(yw) ;

% Set-up circul ar pupil

for |=1:1max

for J=1:Jmax
P(1,J)=(sqgrt(xw(l)"2+yw(J)"2) <= PRw);
end

end

Make WA.m

function W= make_WA(Wnsj, xw, yw, jnax, dw)

Wezer os( | engt h(xw), | engt h(yw));
for j=0:jmax

n=cei |l ((-3+sqrt(9+8*j))/2); % i ghest power or order of the radial polynonmal term
Me2*%j - n* (n+2) ; %zi mut hal frequency of the sinusoidal conponent
VWEWW s (] +1) *zer ni ke(n, m xw, yw, dw) ;

end

Zernikem

function Znnrzerni ke(n, mx,y, d)

% zernike.m is a function that conputes the values of a Zerni ke Pol ynom al

% over a circular pupil of dianeter d

% Qut put :

% Znmis the Zerni ke polynonial termof order n and frequency m

% nput :

% n hi ghest power or order of the radial polynomal term [a positive integer]

% m

= azimuthal frequency of the sinusoidal conponent, [a signed integer, |n <= n]
= 1-D array of pupil x-coordinate values, [length(x) must equal |ength(y)]

%y = 1-D array of pupil y-coordinate values, [length(y) must equal |ength(x)]

= pi | dianeter

i I

I max=l engt h(x) ;
Jmax=l engt h(y);
a=d/ 2;

for 1=1:1nmax %nitialize circular pupil
for J=1:Jmax
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p(l,J)=(sart(x(1)"2+y(J)"2) <= a);
end

end

Nnmesqgrt (2*(n+l1)/ (1+(m==0)));

Zj = ((n*(n+2))+m/2;
nnn = | engt h(x);

%if n==0
%  Znmep;
% el se

%  Znmezer os( | max, Jmax) ;
% for I=1.1max

% for J=1:Jnmax

% r=sqrt(x(l)"2+y(J)"2);

% if (x(1)>=0 && y(J)>=0) || (x(1)>=0 && y(J)<0)

% theta=atan(y(J)/(x(1)+1le-20));

% el se

% t het a=pi +atan(y(J)/ (x(1) +1le-20));

% end

% for s=0:0.5*(n-abs(nm)

% zZnm(1,J)=Znnm(1,Jd) +(-1)"s*factorial (n-s)*(r/a)~(n-2*s)/(factorial (s)*...
% factorial (0.5*(n+abs(n))-s)*factorial (0.5*(n-abs(m)-s));
% end

% Znm( 1, J)=p(!,J)*Nnn*Znm( 1, J) *((nP=0) *cos(nttheta)-(nm<0) *si n(nrtheta));
% end

% end

% end

%

%

% di sp([' Saving Zernike ...', int2str(nnn)]);

% Zer WFi d=fopen([' Zer_j _',int2str(Zj),' _',int2str(nnn),'.zer'],"'wW);

% count = fwite(ZerWFid, Znm 'float64')
% fclose('all');

%

%

% di sp([' Reading Zernike ...', int2str(nnn)]);

Zer RFid=fopen([' Zer j_',int2str(Zj)," ',int2str(nnn),' .zer'],'r");

Znm = fread(ZerRFid, ' float64');
fclose('all');
Znm = reshape(Znm nnn, nnn);

Make PSF.m

function PSF = nake_PSF(P, apw, W | anbda)
sizeP = size(P)
npaddi ng = (256 - sizeP(1))/2;

P2 = padarray(P, [ npaddi ng, npaddi ng]);



W2 = padarray(W [ npaddi ng, npaddi ng] ) ;

PSF=fft 2((P2. *exp(-i*2*pi *W2/ | anbda) ) )/ apw,
PSF=f f t shi ft ( PSF) ;

PSF=PSF. * conj ( PSF) ;

PSF=r ot 90( PSF) ;

PSF=f | i pud( PSF) ;

PSF=PSF/ max(max(PSF)); % Nornulize PSF

Make OTF.m

function OTF = nake_OTF( PSF)
OTF=fft 2( PSF) ;

OTF=0TF/ max( max( OTF) ) ;
OTF=fftshift(OTF);

OTF=r ot 90( OTF) ;

OTF=f | i pud( OTF);

Make CSF.m

function SCSF = make_CSF

fO = 4.1726;
f1 = 1.3625;
a = 0.8493;
p = 0.7786;
phi = 1; % phi (frequency scale) manually set equal to 1

% test peak val ues

frmax = 3.45;

Gain = 373.08;

maxi mum = Gai n*(sech((fmax/ (phi *f0))*p) - a*sech(fmax/(phi*fl)));

9%M = 0.0142, N=18017.5

% pixel = 70.3809 cyc/rad

% pixel = 1.2283 cyc/deg
%256 pixels = 314.4448 cyc/ deg

xyflime157. 2224, % ni mum xf -coordi nate in degree/cycle

dxyf=xyflim 127.5; %f - coordi nate pixel width in nunber of frequencies
xf = -xyflimdxyf:xyflim %- coordi nates in nunmber of frequencies

yf = -xyflimdxyf:xyflim %-coordi nates in nunber of frequencies
size(yf);

I max=Il engt h( xf);
Jmax=l engt h(yf);

SCSF = zeros(|l max, Jmax);

for 1=1:1max

for J=1:Jmax

f = sqgrt(xf(l)"r2+yf(J)"2);

SCSF(1,J) = Gain*(sech((f/(phi*f0))~p) - a*sech(f/(phi*fl)));
end

end
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SCSF = SCSF/ max( max( SCSF) ) ;

Make MOTF.m

functi on MOTF = make_MOTF;
age = 35;
D = 70;

9% = 0.0142, N=18017.5

% pixel = 70.3809 cyc/rad

% pixel = 1.2283 cyc/deg
%256 pixels = 314. 4448 cyc/ deg

xyflime157. 2224, % ni mum xf -coordi nate in degree/cycle

dxyf=xyflim 127.5; %f - coordi nate pixel width in nunber of frequencies
xf = -xyflimdxyf:xyflim %«-coordi nates in nunber of frequencies

yf = -xyflimdxyf:xyflim % - coordi nates in nunber of frequencies
size(yf);

I max=l engt h( xf);
Jmax=l engt h(yf);

MOTF = zeros(|max, Jnmax);

ageFactor = 1 + (age/ D) "4;

for I=1:1mx

for J=1:Jnmax

f = sqgrt(xf(l)"r2+yf(J)"2);

MOTF(I1,J) = 1/(1l+ageFactor/7)*(0.426*exp(-0.028*f)+0.574*exp(-0.37*f)) +
1/ (1+7/ ageFact or) * (0. 125*exp(-37*f) +0. 877*exp(-360*f));

end

end

MOTF = MOTF/ max( max( MOTF) ) ;

Make MOTF_avg90.m

function MOTF = make_MOTF_avg90

% nunber O Subj ects = 90;

%

% MOTF = zeros(256);

%

% for subj Cnt = 1:nunber O Subj ects

%

%disp('Initializing ...");

% [Wnsj, xw, yw, jmax, dw, P, apw, |anbda] = nake_initial s(subjCnt);
%

% disp('Creating WA ...");

% W= make WA(Wnsj, xw, yw, jmax, dw);
%

% disp('Creating PSF ...");

% PSF = make_PSF(P, apw, W |anbda);
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%

% di sp(' Creating OIF ...");
% OTF = make_OTF( PSF);

%

% MOTF
%

% end
%

% MOTF = MOTF / nunber O Subj ect s;

MOTF + OTF;

%

%this is to reduce the dynam c range of MOTF which is 10720 or so
% MOTF = abs(MOTF);

% MOTF = MOTF / max(max( MOTF));

% MOTF = (MOTF>=0.001) .* MOTF;

% MOTF = MOTF + 0.001;

% di sp(' Savi ng MOTF avg90 ...");

% Mot f WFi d=f open(' Mot f Avg90. aza','wW );
% count = fwite(MtfWid, MOTF, 'float64');
% fclose('all');

di sp(' Readi ng MOTF avg90 ...");
Mot f RFi d=f open(' Mot f Avg90. aza','r');
MOTF = fread(MdtfRFid, float64");
fclose('all');

MOTF = reshape( MOTF, 256, 256);

Make NTF.m
function NTF = make_NTF( MOTF)

SCSF = nmake_CSF;
NTF = SCSF ./ MOTF;

NTF = NTF / max(max(NTF)); % normalizing NTF to its nmax
| mageread_LetterMatrix. m

function letter_image = imageread_LettMatrx(num.let, numsize)
infid =

fopen([' LettMatrix/Num ,int2str(numlet),' Size',int2str(numsize),' .Lett"],"'r");
letter_image = fread(infid);

fclose('all");

letter_i mage = reshape(letter_i mage, 256, 256);

filter_frequencyDomai n. m
function noised_spat = filter_freqDonmai n(numlet, numsize, OTF, NTF, noise_scale)

| etter_spat = inmmgeread_LettMatrx(numlet, numsize);

scale = 278;
scal e_image = (1/4);

retinal _freq
retinal _spat
retinal _spat

fft2(letter_spat) .* OIF;
abs(ifftshift(ifft2(retinal _freq)));
retinal _spat*scal e/ max(max(retinal _spat));

neural _freq
neur al _spat
neur al _spat

retinal _freq .* NTF;
abs(ifftshift(ifft2(neural _freq)));
neur al _spat *scal e/ max( max(neural _spat));

1;
wgn(si ze(neural _spat, 1), si ze(neural _spat, 2), noi sedB);
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noi sed_spat = neural _spat + whiteG\noi se_scal e/ 100*scal e/ max(max(whiteGN));

Make template.m

function tenpl ate_spat = make_tenpl ate(numsi ze, OTF, tenplateType)
%f tenplateType is O:original, do NOT do OTF

%f tenplateType is 1l:retinal, do OTF

for num.let=1:10

| etter_spat = inmageread_LettMatrx(numlet, numsize);

retinal _spat = letter_spat;

if (tenplateType == 1) %if retinal, do OTF

retinal _freq = fft2(letter_spat) .* OIF;

retinal _spat = abs(ifftshift(ifft2(retinal _freq)));

end

tenplate_spat(:,:,numlet) = retinal _spat/max(max(retinal _spat)) * 278;
end

match_normxcorr2.m

function correctness = match_nornxcorr2(numsize, numlet, noised_spat, tenplate_spat)

di scri m nant=zeros(1, 10);

for i=1:10

cc = nornxcorr2(tenplate_spat(:,:,i), noised_spat);
di scrimnant (i) = max(max(cc));

end

[ max_di scrimnant, numlett_matched] = max(discrim nant);

mat ched_i mage = i nageread_LettMatrx(num|lett_matched, num si ze);
if (numlett_nmatched == numlet)

correctness = 1;

el se

correctness = 0;

end
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Appendix B

PSF and OTF Images
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Appendix C

Calculated datato plot psychometric function

Subj #3; VA=0
Noise = 20 40 60 80 _100] 120
Letter sizes LogMAR Probability of Correct Response
5 04 0.2 0.2 0.3 0.2 0.2 0.2
7 0.3 0.4 0.4 04 0.5 0.4 0.4
9 02 01 01 01 01 01 01
11 0.1 07 07 07 07 07 07
13 0 0.8 0.8 09 0.8 0.8 0.8
15 0.1 07 07 07 07 07 07
17 02 0.8 0.8 08 0.8 0.8 0.8
19 0.3 0.8 0.8 08 0.8 0.8 0.8
21 04 0.9 0.9 09 0.9 0.9 0.9
23 05 09 09 09 09 09 09
Thresholds=0.5 -0.13 -0.13 0.14 -0.15 -0.14 0.14
0.6 Calculated VA: -0.07 -0.07 0.06 -0.07 -0.07 0.07
0.6 002  -002 000 002 -002 002
RMS Error
_ 0.10 0.10 0.10 0.14 013 0.13
Experimental VA 6/6 005 005 004 008 008 008
0 0.01 0.01 0.00 0.05 0.05 0.05
Subj#4;, VA=0
Noise = 20 40] 60] 30 100 120
Letter sizes LogMAR | Probability of Correct Response
5 04 0.3 0.3 03 02 0.3 0.4
7 03 02 02 02 02 02 02
9 0.2 0.3 0.2 0.2 0.3 0.2 0.3
11 0.1 0.8 0.8 08 08 0.8 0.7
13 0 0.7 0.7 o7 o7 0.7 0.7
15 0.1 0.7 0.7 o7 o7 0.7 0.7
17 02 09 08 08 08 08 1
19 0.3 09 08 09 1 1 1
21 0.4 1 1 11 1 1
23 05 09 08 09 08 09 08
Thresholds=0.5 D16 D14 D014 015 D14 0.6
06 ca';"gafmd 009 007 006 009 007 0.09
0.66 - 0.05 003 002 006 003 0.04
RMS Error
: 011 010 040 0.1 0410 0.1
Experimental VA 616 0.06 005 004 007 0.05 0.06
0 0.03  0.02 0.01 0.04 0.02 0.03
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Subj #12; VA=0

Noise = 20 40| 60 80 100 120

Letter sizes LogMAR | Probability of Correct Response

5 0.4 0.2 0.2 0.2 0.3 0.2 0.3

7 0.3 0.3 0.2 0.3 0.2 0.4 0.2

9 0.2 0.1 0.1 0.1 0.1 0.1 0.1

11 0.1 0.3 0.7 0.8 0.7 0.5 0.5

13 0 0.3 0.7 0.7 0.7 0.7 0.7

15 0.1 0.8 0.8 0.8 0.7 0.8 0.8

17 0.2 0.7 0.7 0.7 0.7 0.7 0.7

19 0.3 0.7 0.7 0.7 0.8 0.7 0.7

21 0.4 0.9 0.9 0.8 0.8 0.9 0.8

23 05 0.8 0.8 0. 0.9 0.8 0.8
Thresholds=0.5 Caleulated -0.15 -0.14 0.13 -0.11 -0.09 .08
06 VA -0.11 -0.12 0.07 -0.03 -0.01 0.01

0.66 -0.07 -0.11 0.04 0.02 0.05 0.04

RMS Error
; 011 010 010 0.07 0.07  0.06
Gl 6/6 0.08 009 006 002 001 0.01
3 0 0.05 0.08 0.03 0.02 004 0.03
Subj#13; VA=0

Noise = 20 | 40 | 60 | 80| 100] 120

Letter sizes LogMAR Probability of Correct Response

5 0.4 0.2 0.2 0.2 0.2 0.1 0.2

7 0.3 0.4 0.4 0.4 0.5 0.4 0.4

9 0.2 0.1 0.1 0.1 0.2 0.1 0.1

11 0.1 0.6 0.6 0.6 0.7 0.6 0.6

13 0 0.9 1 0.8 0.9 0.9 1

15 0.1 0.7 0.7 0.7 0.7 0.7 0.7

17 0.2 0.9 0.9 0.9 0.8 0.9 0.9

19 0.3 0.9 0.9 0.9 0.9 0.9 1

21 0.4 0.9 1 0.9 1 0.9 0.9

23 0.5 1 0.9 1 1 1 1
Thresholds=0.5 -0.13 £0.15 -0.12 0.18 -0.13 0.15
0.6 Calculated VA  -0.07 £.09 -0.05 0.10 -0.08 -0.09

0.66 -0.03 0.06 -0.01 0.05 -0.04 -0.06

RMS Error

0.09 010 0.08 012 0.09 0.10

Experimental VA 6-/6- 0.05 0.07 0.04 0.07 0.05 0.06
0.00 0.02 0.04 0.00 0.03 0.03 0.04
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Subj#14; VA=0

Noise = 20]  40] 60 80] 100 120

Letter sizes LogMAR Probability of Correct Response
5 -0.4 0.1 0.1 0.1 0.1 0.1 0.1
7 -0.3 0.4 04 03 04 04 0.4

9 -0.2 0.1 0.1 0.1 0.1 0.2 0.1
1 -0.1 0.6 0.6 0.6 0.6 0.5 0.5
13 0 0.6 0.8 0.7 0.8 0.7 0.7
15 0.1 0.7 0.7 0.7 0.7 0.7 0.6
17 0.2 0.8 0.3 0.8 0.8 0.9 0.3

19 0.3 0.9 1 1 1 1 1

21 0.4 1 1 1 0.9 0.9 1
23 0.5 0.9 0.9 0.9 0.8 0.3 0.9
Thresholds=0.5 -0.08 -011 -0.09 -0.12 0.11 -0.07
0.60 Calculated VA 0.00 -0.05 -0.03 -0.06 -0.04 0.01
0.66 0.04 -0.01 001 0.02 0.00 0.05

RMS Error

i 0.05 0.08 006 0.08 0.07 0.05

E""e{",':e"ta' 6/6 0.00 0.04 002 0.04 0.03 0.00

0 0.03 0.01 001 0.01 0.00 0.04

Subj #15; VA=0

Noise = 20 40 60 80| 100] 120

Letter sizes LogMAR Probability of Correct Response
5 0.4 0.2 02 02 02 02 0.2
7 0.3 03 03 03 03 03 0.3

9 2.2 01 01 041 01 01 0.1
11 0.1 04 03 02 03 02 03
13 0 0.7 07 0.6 06 0.6 0.7
15 0.1 08 07 07 07 07 0.7
17 0.2 06 06 0.6 06 0.6 0.6
19 0.3 06 06 0.6 06 06 0.6
21 0.4 0.7 07 0.6 07 07 0.6
23 0.5 0.8 08 08 03 038 0.3
Thresholds=0.5 20.04 -0.02 -0.03 0.01 0.15 -0.02
0.6 Calculated VA 003 000 0.02 013 003 0.10
0.66 012 019 0.28 0.23 0.24 0.23

RMS Error

0.03 001 0.02 0.01 011 0.01
Experimental VA = 6/6 0.02 007 0.01 0.09 0.02 0.07
0 0.08 014 0.20 016 017 0.16
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Subj #19; VA=0

Noise = 20 40| 60| 80 100 120
Letter sizes LogMAR Probability of Correct Response
5 0.4 0.2 0.2 0.1 0.2 0.1 0.2
7 0.3 0.5 0.6 0.6 0.6 0.5 0.5
9 0.2 0.2 0.2 0.2 0.2 0.2 0.2
11 0.1 0.8 0.8 0.8 0.8 0.8 0.7
13 0 0.9 0.9 0.9 0.9 0.9 0.8
15 0.1 1 1 1 1 1 1
17 0.2 0.9 0.9 0.9 0.9 0.9 0.9
19 0.3 0.9 0.8 0.3 09 0.3 0.8
21 0.4 1 1 1 1 1 0.9
23 0.5 1 1 1 1 1 1
Thresholds = 0.5 R 0.2 -0.22 0.21 -0.22 0.19 -0.19
0.6 . -0.153 -0.16 0.16 -0.17 -0.15 -0.127
0.66 0.12 -0.129 -0.129 -0.129 -0.12 -0.09
RMS Error
_ 014 016 015 016 0.13 0.13
S 6/6 041 011 011 012 041  0.09
- 0 0.08 0.09 0.09 0.09 008 0.06
Subj #28; VA=0
Noise = 20 40 60 80 100 120
Letter sizes LogMAR | Probability of Correct Response
5 0.4 0.1 0.1 0.1 0.1 0.1 0.1
7 0.3 0.3 0.3 0.2 0.3 0.3 0.2
9 0.2 0.1 0.1 0.1 0.1 0.1 0.1
1 0.1 0.5 0.5 0.5 0.5 04 0.5
13 0 0.7 0.7 0.7 0.7 0.7 0.7
15 0.1 0.7 0.7 0.7 0.6 0.7 0.6
17 0.2 0.9 0.7 0.9 0.8 0.8 0.7
19 0.3 0.8 0.8 0.8 0.8 0.8 0.8
21 0.4 1 0.9 0.9 1 0.9 0.8
23 05 0.9 0.8 0.8 0.7 0.9 0.9
Thresholds=0.5 0.08 -0.07 -0.08 -0.07 -0.06 -0.05
0.6 c“"ﬁ;‘f‘“ 0.02 -0.007 -0.033 0 0008 0.01
0.66 0.022  0.04 0.001 0.05 0.05 0.062
RMS Error
; 006 005 0.06 005 0.04 0.04
S 6/6 0.01 000 0.02 000 0.01 0.01
- 0 0.02 003 0.00 0.04 0.04 0.04
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Subj #30; VA=0.176

Noise = 20 40 60| 80| 100] 120

Letter sizes LogMAR Probability of Correct Response

5 0.4 02 02 02 02 02 02

7 0.3 06 05 05 03 03 02

9 0.2 04 03 02 02 04 03

11 0.1 09 09 07 08 07 08

13 0 07 07 07 07 07 07

15 0.1 1 1 1 1 1 1

17 0.2 09 09 09 09 1 0.9

19 0.3 1 1 1 1 1 0.9

21 0.4 09 09 09 089 09 09

23 05 09 09 09 089 09 09
Thresholds=0.5 026 022 D018 D16 018 -017
0.6 Calculated VA 020 0.17 0.12 012 013 013

0.66 0163 0.13 .08 0.09 013 -0.01

| RMS Error

0.31 0.28 0.25 0.24 0.25 0.24

Experimental VA = 6/9 0.27 0.24 021 0.21 0.03 0.03
0.176 0.01 0.22 018 019 0.22 0.13

Subj #37;, VA=0.176

Noise = 200 40| 60| 80 100| 120

Letter sizes LogMAR Probability of Correct Response
5 0.4 0.2 02 02 0.2 0.2 0.2

7 0.3 0.8 08 07 0.7 0.7 06

9 0.2 0.1 01 041 0.1 0.1 0.1

11 0.1 0.8 08 07 0.7 0.8 0.7

13 0 0.8 09 09 0.8 0.9 0.8

15 0.1 0.7 07 07 0.7 0.7 0.7

17 0.2 0.9 09 09 0.9 0.9 0.9

19 0.3 0.9 09 09 0.9 0.9 0.9

21 0.4 0.9 09 09 0.9 0.9 0.9

23 05 1 1 1 0.9 0.9 0.9
Thresholds=0.5 028 03 024 02 022 017
0.6 Calculated VA 009 011 006 01 -014 0.09

0.66 0011 0008 0031 0044 -0.093 -0.038

| RMS Error

0.32 034 0.29 0.27 0.28 0.24

Experimental VA = 6/9 019 0.20 017 0.20 0.22 0.19
0.176 012 013 010 016  0.19  0.15
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Subj # 38; VA=0.176

0.4
0.3
0.2
0.1

=]

A
2
3

oo o

0.4
05

20 40| 60[ 8 100] 120

Probability of Correct Response

0.2 02 0.2 0.2 02 0.2
0.4 0.3 0.3 0.4 0.3 0.3

09 08 09 09 08 0.9

D14 D008 D010 D010 004 002
007 000 002 2002 004 008
017 005 003 004 010  0.16

RMS Error

Experimental VA =

6/9

0.176

0.10 006 0.07 0.07 0.03 0.02
0.05 000 002 0.01 003 006
012 004 002 002 0.07 011

Subj #46; VA=0.176

20| 40 60| 80 100] 120

Probability of Correct Response
o1 01 01 01 0 0.1

05 04 04 04 04 04
02 02 02 02 04 03
08 0.8 0.8 0.8 08 08
05 09 09 09 1 09
05 0.8 09 09 08 1]
09 0.9 08 0.9 09 09
05 09 09 09 09 09
" 1 0.9 g 0.9 0a 0.g
05 05 09 09 09 09 09 |
0194 018 018 048 0461 0197
c"ﬁ;‘“d 0146 014 014 014 0129  0.155
0415 012 0412 0112 0408 0427
RMS Error
69 0.26 025 025 025 024 026
Experimental VA 5126 | 023 022 022 022 022 023

0.21  0.20 0.20 0.20 0.20 0.21
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Subj #47; VA=0
20] 40| 60 80| 100 120
Probability of Correct Response
0.4 0.2 0.2 02 02 02 02
0.3 0.2 0.2 0.2 0.2 02 0.2
0.2 0.1 01 01 01 01 01
0.1 0.3 0.2 03 03 03 03
0 0.7 0.6 07 07 06 0.7
0.1 0.7 0.7 07 07 07 07
0.2 0.7 0.7 0.7 0.7 0.7 0.7
0.3 0.7 0.7 07 07 07 07
0.4 1 1 1 0.9 1 1
05 0.8 0.8 08 0.8 07 07
003 0.007 -0.03 -0.03 -0.01 -0.04
calbl®®d 004 008 004 003 006 003
0.00  0.122 009 0.08 011 0.08]
RMS Error
- 0.02 0.01 0.02 0.02 001 0.03
Expaimenelva 6/6 0.03  0.05 0.03 0.02 004 0.02
0 0.06 _ 0.09 0.6 0.06 0.08 0.05

Subj #49; VA=0

Noise = 20 40| 60 80 100 120
| Probability of Correct Response

5 0.4 0.1 01 01 0.1 0.1 0.1
7 0.3 03 03 03 03 03 0.3
9 0.2 02 02 02 02 02 0.1
11 0.1 02 02 02 02 03 0.2
13 0 05 05 05 05 05 0.5
15 0.1 05 04 04 05 04 0.4
17 0.2 06 05 05 05 06 0.5
19 0.3 07 07 07 06 06 0.6
21 0.4 09 08 08 07 06 0.7
23 0.5 07 07 07 06 07 0.6
Calculated 0146 0.189 0.189 0.228 0.126 0.252
a °\';,'A 0.26 0.302 0.302 0.362 0.229 0.374
0.32 0.361 0.361 0432 0.45 0.438

RMS Error

0.10 0143 0.13 0.6 0.02 0.8

Expenmentat VA 6/6 0.18 021 021 026 016 0.26

0 0.23 0.26 0.26 0.3 0.32 0.31

82



Subj#50; VA=0
Noise = 20 40 60 | 80 | 100 120
Probability of Correct Response
5 0.4 01 0.1 0.1 0.1 0.1 0.1
7 03 05 05 04 04 04 0.4
9 0.2 0.3 0.1 0.2 0.3 0.1 0.1
11 0.1 o7 0.7 0.7 0.6 0.6 0.6
13 0 0.7 0.7 0.7 0.7 0.8 07
15 0.1 (1] 0.8 0.8 0.7 0.8 03
17 0.2 09 09 08 08 08 08
19 0.3 08 0.8 0.8 0.8 0.8 038
21 0.4 09 1 0.9 0.9 1 0.9
23 0.5 09 09 09 09 09 0.9
£.18 014 0.15 0.13 -0.12 0.11
Calowlated 911 007 009 006 -007 0.05
0.06 0.03 0.05 0002 -0.027 -0.003
RMS Error
: 6/6 0.13 0.10 0.10 0.09  0.09 0.08
RapsRaEl 0 0.08 005 006 004 005 0.03
0.05 0.02 0.03 0.00 0.02 0.00
Subj#53; VA=0
Noise = 20 40 60| 80 100 120
Probability of Correct Response
5 0.4 0.2 0.2 0.2 0.2 0.2 0.2
7 0.3 0.3 0.3 0.3 0.3 0.2 0.3
9 02 02 02 02 02 02 02
11 0.1 0.7 Q7 0.7 06 0.6 0.6
13 0 0.8 Q7 0.8 08 0.8 0.7
15 0.1 07 07 08 07 08 07
17 0.2 0.8 0.8 0.8 0s 0.8 08
19 03 0.7 Q.7 0.7 07 Q.7 0.7
21 0.4 0.9 0.9 0.9 0.9 0.9 09
23 05 1 1 1 1 1 1
514 042 045 007 042 04
c“':.::t‘d 008 004 01 007 -007 -0.01
003 0012 005 015 -003  0.04
RMS Error
: 0.10 _ 0.08 _0.11 _ 0.05 0.08  0.07
Experimental VA 6/6 0.05 003 007 0.05 005 0.01
0 0.02 001 004 010 003 0,03
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Subj#36; VA=0.176

Noise = 200 40 60 80| 100 120
Letter sizes LogMAR | Probability of Correct Response
5 04 01 0.1 0.1 0.1 0.1 01
7 03 04 0.3 0.4 0.3 0.4 04
9 0.2 04 0.3 0.2 0.3 0.2 01
11 041 06 0.6 0.6 0.6 0.6 06
13 0 06 0.7 0.7 06 06 06
15 0.1 07 0.7 06 06 06 07
17 0.2 07 0.7 0.7 0.7 0.7 07
19 0.3 08 08 08 08 08 08
21 0.4 09 0.9 0.9 0.9 09 09
23 0.5 08 08 08 08 08 08
Thresholds=0.5 Calculated 0.14 0.13 D0.101 £09 008 0.08
0.6 VA 0.04 006 0013 -0.005 002 0005
0.66 0.022 0.002 0.05 007 009 0.06
RMS Error
. 022 022 0.20 019 018 0.18
E"p“"m:"ta' VA 6/9 0.15 017 013 013 014 0.3
0.176 011 043 0.09  0.07 0.06  0.08
Subj#66; VA= 0.3
Noise = 20 40| 60 80 100 120
Letter sizes LogMAR | Probability of Correct Response
5 0.4 0.1 01 01 0.1 0.1 01
T 0.3 0.2 0.2 02 0.2 0.2 0.2
9 0.2 0.2 0.2 02 0.2 0.2 0.2
11 0.1 0.1 0.1 01 0.2 0.2 0.2
13 0 0.1 0.1 01 0.1 0.1 01
15 01 04 05 05 0.3 0.3 03
17 02 0.2 0.2 01 0.1 0.1 01
19 0.3 0.4 0.5 0.3 0.2 0.1 0.1
21 04 04 04 04 04 0.3 03
23 05 0.7 0T 05 0.5 0.1 01
Thresholds=0.5 0.4 04 0.52 0.5 0.46 0.46
06 Calculattd VA 547 047 05 05 049 049
0.66 | 0.5 0.52 0.61 0.57 0.49 0.49
RMS Error
i 0.09 0.06 016 014 011 0.1
Experimental VA 6/12 012 0412 019 011 013 0.3
0.3 014 045 0.22 019 014 0.14




Subj#87;, VA=0.176

Noise = 20 40| 60| 80 100 120
Letter sizes LogMAR Probability of Correct Response
5 0.4 0.1 0.1 0.2 0.1 0.1 0.2
7 0.3 0.5 0.5 0.5 0.5 0.4 0.5
9 0.2 0.3 0.2 0.3 0.3 0.2 0.2
1 0.1 06 06 0.5 0.5 0.5 0.5
13 0 0.8 07 07 0.8 0.7 0.8
15 0.1 0.8 08 0.8 0.8 0.8 0.8
17 0.2 1 1 1 1 1 1
19 0.3 0.9 0.9 0.9 0.9 0.9 0.9
21 0.4 0.9 09 0.9 0.9 0.9 0.9
23 0.5 1 1 1 1 1 1
Thresholds=0.5 017 -0.14 -0.15 -0.15 =0.11 -0.15
0.6 ca'c\j'fte" 011 -0.07 -0.07 -0.00 -0.05 -0.08
0.66 £0.07 -0.03 -0.02 -0.045 -0.012 -0.031
! RMS Error
- 0.24 0.22 0.23 0.23  0.20 0.23
Ex'"""“"f“"a' B 6/9 0.20 017 017 019 016  0.18
0.176 017 015 014 016 013 0.15
Subj#88; VA=0.3
Noise = 20 40 | 60 80  100] 120
Letter sizes LogMAR | Probability of Correct Response
5 0.4 0.2 0.2 0.2 0.2 0.2 0.2
7 0.3 0.4 0.3 0.4 0.3 04 0.3
9 0.2 0.1 0.1 0.1 0.1 0.1 0.1
1 0.1 0.4 0.4 0.3 0.3 0.3 0.1
13 0 0.6 0.6 0.6 0.6 0.6 0.6
15 0.1 0.7 0.7 0.7 0.7 0.7 0.6
17 0.2 0.6 0.6 0.6 0.7 0.6 0.6
19 0.3 0.7 0.7 0.7 0.6 0.6 0.6
21 0.4 0.8 0.8 0.8 0.7 0.7 0.8
23 0.5 0.7 0.8 0.7 0.7 0.7 0.7
Thresholds=05 calculated £0.03 -0.02 -0.005 -0.01 0.007 0.16
0.6 o 0.09  0.09 0.12 01 015 0.28
0.66 0.189 0.164 0.21  0.21 0.3 0.35
RMS Error
_ 0.23  0.23 0.22 0.22 021 0.10
Experimental VA 6112 015 045 013 044 011 0.01
0.3 0.08  0.10 0.06 0.06 0.00 0.04
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