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Abstract 
 

The Laurentian Great Lakes are the largest system of freshwater on earth containing 

22% of the world’s supply. Although part of a single system, each lake shows substantial 

variation regarding physical, chemical and biological parameters. The main goals of this 

thesis were to characterize the nutrient status of natural phytoplankton communities while 

comparing several commonly used measurements of nutrient status and Chlorophyll a (Chl 

a) fluorescence measurements.  The study sites include the western basin (WB), west-central 

basin (WCB), and central basin (CB) of Lake Erie, the Bay of Quinte in Lake Ontario, and 

Colpoys Bay in Lake Huron.  Independent measures of nutrient status were assessed by 

measurements of nitrogen (N) debt, phosphorus (P) debt, particulate C:N:P ratios, and 

alkaline phosphatase activity (APA). Variable fluorescence of chlorophyll a was measured 

by pulse amplitude modulated (PAM) fluorometry and fast repetition rate (FRR) 

fluorometry in parallel with the independent measures.  In 2005, the phytoplankton 

communities in Lake Erie were generally N deficient in May, P deficient in June, and 

neither N nor P deficient in September.  The maximum dark adapted quantum yield (Fv/Fm) 

measured by PAM or FRRF was lower in May and June, and maximal in September, while 

the functional absorption cross section of photosystem II (σPSII) was maximal in May and 

June, and minimal in September.  Relationships between the variable fluorescence indicators 

and independent measures of nutrient status showed strong associations with N or P 

deficient sites having low Fv/Fm and high σPSII.  In 2006, the electron transport rate (ETR) 

and the initial slope (α) derived from the PAM fluorescence rapid light-response curves 

(RLC) were compared to independent measures and Fv/Fm measurements in Lake Erie.  

Relationships between ETR, α, independent measures of nutrient status, and Fv/Fm 
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measurements revealed strong associations with nutrient status.  Confirming previous 

reports, N deficiency was highest in the WB during isothermal conditions while P deficiency 

was highest in the CB during summer stratification.  The fluorescence parameters generally 

decreased as the severity of N and P deficiency increased.  N and P enrichment assays also 

revealed increased values of Fv/Fm, ETR, and α from N and P deficient samples over twenty-

four hours.  Additionally, spatial variability of P status was evaluated during summer 

stratification.   Colpoys Bay, the most oligotrophic site, had the strongest P deficiency, and 

evidence for existence of P deficiency was weakest in the Bay of Quinte, the most eutrophic 

site.  Nutrient enrichment assays revealed that all fluorescence parameters showed a positive 

response to P additions in oligotrophic sites, with no response in eutrophic sites.  

Community structure was also associated with nutrient status and Chl a fluorescence at all 

locations.  In P deficient sites, nano-flagellates such as chrysophytes and cryptophytes were 

prevalent; cyanobacteria were dominant at sites that displayed N deficiency.   
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Examining Traditional Methods and New Fluorometric Methods for Detecting 

Phytoplankton Nutrient Status in Freshwater Ecosystems, and Their Application in the 
Lower Laurentian Great Lakes 

 

1.1 Introduction 
The ability to identify factors limiting algal growth is of considerable importance to 

our understanding of algal ecology and management for ecosystem health (Hecky and 

Kilham 1988).  “Established” methods used to identify limiting nutrients include metabolic 

assays and particulate stoichiometric ratios and have yielded valuable information. 

However, these methods for estimating phytoplankton nutrient status all have potential 

problems of interpretation and some have limited spatial and temporal resolution since they 

require experimental incubations and/or are labor intensive. Also, these methods rely on 

nutrient stress to be sufficiently constant in time to induce gene expression for the activation 

of enzymes or compositional changes in nutrient content. This lack of sensitivity may cause 

an underestimation of nutrient stress and its effect on algal photosynthesis (Young and 

Beardall 2003). 

Commercial fluorometers such as pulse amplitude modulated fluorometers (PAM) 

and fast rate repetitition fluorometers (FRRF) have been used to estimate the physiological 

status of phytoplankton based on the fluorescence of chlorophyll a (Chl a) in photosystem II 

(PS II) (Kolber et al. 1993,  Falkowski et al. 1995, Beardall 2001a and Sylvan et al. 2007).  

The fluorescence parameters derived from PAM and FRRF may allow for quick, sensitive 

and non-invasive assessment of the nutrient status of phytoplankton, and were used here to 

provide detailed information about the physiological state of the phytoplankton communities 

in Great Lakes sites of varying trophic status (Lake Erie, Bay of Quinte (Lake Ontario) and 

Colpoys Bay (Lake Huron).  



 2

 

1.2 Background  
 
1.2.1 Nutrient Limitation  

One of the important and early definitions of nutrient limitation involving plant 

growth is Liebig’s Law of the Minimum, which states that biomass will become limited by a 

single resource  (Odum 1971). The law is applicable in steady state conditions (the inflow of 

energy and materials is equivalent to the outflow of energy and materials) in which essential 

nutrients available with the lowest ratio of supply: demand tends to be the limiting one. 

Liebig’s law of the minimum is less applicable under transient state condition when the 

amounts of nutrients are rapidly changing.  

Growth rates of phytoplankton are often limited by one or more nutrients and 

nutrient requirements differ between species (Hecky and Kilham 1988, Beardall et al. 

2001a). The Law of Limiting Factors (Blackman 1905) assumes that when several factors 

such as nutrients are required for a metabolic process, the nutrient that is most limiting will 

determine the rate of process (Lampert and Somner 1997). In essence, Blackman models are 

used to determine the growth rate of an organism using the nutrients considered to be most 

limiting.  However, other factors must be considered since suboptimal temperature and light 

conditions can change nutrient requirements for growth (Rhee and Gotham 1981a, b).  

Nutrient deficiency results in morphological and  physiological changes that can help 

phytoplankton cope with limiting nutrient supplies but it still reduces the overall 

performance of the phytoplankton as primary producers (Beardall et al. 2001a). Severe 

nutrient deficiency will result in a complete shutdown of physiological processes and 

eventually cell death (Beardall et al. 2001a). Nutrient limitation is presumed to lead to 

varying degrees of deficiency, with increased deficiency and restriction of growth occurring 
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as the nutrient supply:demand ratio decreases and nutrient uptake fails to match biosynthetic 

demand. In measuring nutrient deficiency, we are therefore making an indirect assessment 

of the variations of nutrient-limited growth rates, which in turn are hypothesized to regulate 

phytoplankton dynamics.  

 

1.2.2 Chemical and Biological Assays for Nutrient status  
  

 Methods for identifying limiting nutrients include those which can be termed nutrient 

status assays.  These include particulate stoichiometric ratios (Redfield ratio), the alkaline 

phosphate activity assay (APA), the phosphorus (P) and nitrogen (N) debt assays, the 

phosphorus deficiency index (PDI), and phosphate turnover time. They have been widely 

used for natural communities and validated to varying degrees in laboratory studies. In this 

study, P and N debt, APA assay, and elemental composition ratios were used to determine 

nutrient status for comparison with other methods. Table 1.1 shows the quantitative 

interpretation of these assays.  

 
Table 1.1  Nutrient status indicators. Values either show an absence, presence or the degree 
of nutrient limitation for phytoplankton. Criteria for nutrient limitation are based on Healey 
and Hendzel (1979b) and adapted from Guildford et al. (2005) 
Indicator Nutrient  No 

deficiency 
Moderate 
deficiency  

Extreme 
deficiency  

Deficient 

C/N (atomic ratio)   N <8.3 8.3-14.6 >14.6  
N debt (µmol N µg Chl a -1)   N <0.15   >0.15 
C/P (atomic ratio)    P <129 129-258 >258  
N/P (atomic ratio)    P <22   >22 
P debt (µmol P µg Chl a -1)   P <0.075   >0.075 
APA (µmol P µg Chl a -1 h-1)   P <0.003 0.003-0.005 >0.005  
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A brief description of the principle assay and some of their known limitations are as follows:

  

1.2.2.1 Elemental Composition Ratios 
 

Ideally, the elemental composition of algae reflects the macromolecular composition 

of cells, which in turn reflects the integration of the various processes involved in nutrient 

uptake and assimilation (Healey and Hendzel 1979b). For example, when P and N become 

limited in supply and growth is reduced after exhaustion of stored nutrients, phytoplankton 

can accumulate carbohydrates during photosynthesis. As a result, C:P and C:N values are 

considerably higher compared to nutrient sufficient conditions. Particulate ratios, however, 

are susceptible to interference from non-algal material such as bacteria, microzooplankton 

and detritus (Arrigo 2005) and are influenced by environmental factors other than nutrient 

limitation, such as light availability.  

 
1.2.2.2. Nutrient uptake assays  
  

In nutrient deficient conditions, phytoplankton are able to respond either by 

increased uptake of the limited nutrient(s) or produce a more efficient uptake systems for the 

limiting nutrient (Arrigo 2005). The uptake of PO4
3- is a metabolically driven process that 

requires active transport.  In addition, the utilization of NO3
- requires phytoplankton to 

reduce NO3
- to NH4

+ via NO3
- reductase.  NH4

+
 is the preferred form for uptake by many 

phytoplankton because it is the most reduced of the commonly available combined inorganic 

nitrogen forms, NH4
+

 contains N at the oxidation level of proteins. In contrast, NO3
- uptake 

involves assimilative nitrate reduction, a process in which energy that is captured 

photosynthetically is used to reduce oxidized NO3
-  to NH4

+ Cyanobacteria have the ability to fix 
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atmospheric N2 (diazotrophs).  Diazotrophs provide a source of utilizable N to the biosphere 

from the large pool of N2 and balance losses of NO3
-  by denitrification (Kalff 2002). The 

enzyme used to fix N2 is nitrogenase.  

  Severe nutrient deficiency can impede the physiological processes necessary for a 

cell’s survival (Healey and Hendzel 1979b). The metabolic uptake assays developed by 

Healey and Hendzel (1979b) are based on controlled laboratory culture experiments 

showing that under growth rate limitation by N or P, phytoplankton increase their capacity 

for uptake of the limiting nutrient.  This capacity can be measured when high (saturating) 

concentrations of the nutrient are added, and is expressed per unit chl a. This surge of uptake 

by N or P deficient algae is commonly known as N or P debt (Guildford et al. 2005).  

Disadvantages of debt assays are that the experiments require incubations, so they are 

relatively time consuming, and the assays are calculated as the N or P removed over a 24 

hour period per unit of Chl a. Using Chl a as a proxy for algal biomass may introduce error 

because Chl a values can vary among species especially under low temperature and light 

conditions.   

   
1.2.2.3 Alkaline phosphatase activity (APA) assay 

 

Alkaline phosphatase (AP) activity has been used as an indicator of P deficiency 

because it is synthesized at low levels of P availability (Rose and Axler 1998). When P 

levels are low, the phosphatase enzyme hydrolyzes the ester bonds between P and dissolved 

organic molecules, such as polyphosphates making P available for assimilation.  The APA 

assay has been used as an indicator for P status (Healey and Hendzel 1979, Smith and Kalff 

1981, Pick 1987, Rose and Axler 1998, Sterner et al. 2004, Guildford et al. 2005, Sylvan et 
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al. 2007) however, bacteria and microzooplankton contribute to AP under P limited 

conditions (Taylor and Lean 1991) which can confuse attempts to determine the P status of 

the phytoplankton.    

 

1.2.3 Phytoplankton Nutrient Status in the Great Lakes  
 

P is the nutrient element most likely limiting algal production in the Great Lakes 

(Lean et al. 1983, Allen and Smith 2002, Guildford et al. 2005). Historically, excessive P 

loads to the Great Lakes promoted phytoplankton growth, which in turn degraded both water 

column and benthic habitats by inducing algal blooms, reduced water clarity and depleted 

oxygen in deep waters (Carrick 2004). The determination that P was the limiting nutrient in 

freshwater systems was the major factor behind the Great Lake Water Quality Agreement, 

which set limits for P loading into the lake. The reduction of P loads to Lake Erie since 1970 

has been credited with a return of the lake to a meso-oligtophic condition (Charlton  et al. 

1993).  

Lake Erie, Bay of Quinte (Lake Ontario) and Georgian Bay (Lake Huron) represent a 

range of physical and chemical environments that can be used to study changes along a 

trophic gradient of nutrient concentrations (Table 1.2).  
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Table 1.2 P and N deficiency measured by traditional methods in lower Great Lakes sites  
 

 
 
 
1.2.3.1 Georgian Bay (Lake Huron) 
  

Based on studies of nutrient chemistry, the open basins of Lake Huron (Georgian 

Bay) are oligotrophic (Weiler 1988, Beeton and Saylor 1995). From 1978 to 1995, open-

lake spring total phosphorus concentrations were stable and, with one minor exception, 

remained below the target level of P control of 5.0 mg·m–3 (Beeton and Saylor 1995).  

During the period prior to and subsequent to the reduction in phosphorus loadings, a number 

of studies classified all three basins of Lake Huron as oligotrophic (Beeton and Saylor 

1995). Regarding nutrient status, little research has been conducted in Georgian Bay. For 

example, Furgal et al. (1997), used the phosphorus deficiency index (PDI) which is  the ratio 

of light saturated C-uptake to P saturated P uptake. PDI values <10 denote extreme P 

deficiency,values between 10 and 100 indicate moderate to low deficiency, and values >100 

denote P sufficiency (Lean and Pick 1981).  The results of their study show that the western 

System Bioassay Deficiency Occurrence  Reference  
Bay of Quinte C:P P (moderate)  July S. Yakobowski 

(per. comm..) 
L. Erie (West) N/P debt, C:P, 

C:N, N:P, APA, 
Biosensor 

N (moderate) 
P (moderate)  

May 
June 

Guildford et al. 
(2005), Wilhelm 
et al. (2003) 

L. Erie 
(Central) 

N/P debt, C:P, 
C:N, N:P, APA, 
32 P (P uptake), 
(Phosphorus 
deficiency 
index) PDI 

P (moderate) July  Lean et. al. 
(1983),  
Allen  and Smith 
(2002), 
Guildford et al. 
(2005)  

Georgian Bay 
(West) 

Phosphorus 
deficiency index 
(PDI) 

P (severe)  July  Furgal et al 
(1998) 
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portion of Georgian Bay can be strongly P deficient (PDI = 1.31) in summer stratified 

conditions.  

 

1.2.3.2 Lake Erie 
   

Lake Erie is the shallowest of the Laurentian Great Lakes with a maximum depth of 

64 m in the eastern basin. However, it is also the most heavily impacted of the Laurentian 

Great Lakes. In the early 20th century, early signs of eutrophication were observed. During 

the 1950’s and 1960’s, Lake Erie total phosphorus (TP) concentrations were reported as 

being high as  50 μg L-1 (Dobson et al. 1974) and toxic metals such as mercury are present 

due to atmospheric transport (Jackson 1998, Munawar et al. 2002).  Also, populations of fish 

and invertebrates decreased and large blooms of cyanobacteria occurred,  reducing both 

water-column transparency and hypolimnetic dissolved oxygen levels  (Beeton 2002).  By 

the 1970’s, the Great Lakes Water Quality Agreement (GLWQA) set limits and measures on 

pollution and eutrophication, especially in Lake Erie. The ecosystem of Lake Erie rapidly 

responded to these abatement efforts and, overall, reduced P led to decreases in 

phytoplankton biomass and improved water quality in both western and central Lake Erie 

(Makarewicz and Bertram 1991, Makarewicz 1993). Studies regarding nutrient status in 

Lake Erie (Lean and Pick 1981, Guildford and Hecky 1994, Twiss et al. 2000, Wilhelm et 

al. 2003, Guildford et al. 2005, North et al. 2007) suggest that the phytoplankton populations 

are not as severely P deficient compared to smaller lakes found in the Canadian Shield or in 

other large lakes (Lake Superior).  
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1.2.3.3 Bay of Quinte (Lake Ontario) 
 

Like Lake Erie, the Bay of Quinte has been strongly influenced by human settlement. 

After colonization in the 1800’s, watershed deforestation, mining, and agricultural practices 

all resulted in increased nutrient inputs to the bay (Nicholls et al. 2001).  In the 1900’s, a 

growing population furthered eutrophication and algal blooms had already been reported 

twice in the Bay of Quinte by the 1930’s (Minns 1995). In 1909, the Boundary Waters 

Treaty established the International Joint Commission in which the main goal of the 

Commission was to control pollution and toxic substances in the Great Lakes.  In 1972, the 

first Great Lakes Water Quality Agreement between the governments of Canada and the 

United States was put into action to reduce the causes of eutrophication (controlling TP 

concentrations). In 1987 the governments signed a Protocol called the "Remedial Action 

Plan"  which was implemented to examine the effects of eutrophication in areas of concern 

(including Bay of Quinte) (Nicholls et al. 2004).  

Although measures were taken for the reduction of eutrophication and pollution, in 

the 1980’s a new threat emerged that posed a risk to the integrity of the Bay of Quinte. The 

invasion of dreissenids quickly resulted in an undesirable species shift in which Microcystis 

sp.  showed a significant increase, while other algal taxa remained the same or decreased 

(Nicholls et al. 2002). The dominant presence of Microcystis sp. may be a result of 

inefficient grazing (colonies are large), and the dreissenids’ capability to differentiate 

between toxic and non-toxic forms of Microcystis sp. by selectively rejecting still viable 

toxic cells as pseudofeces, hence promoting harmful blooms ( Vanderploeg et al. 2001). 

Another important factor is that dreissenids may indirectly promote the growth of 
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Microcystis sp. by altering the ratio of available TN:TP.  This process occurs when nutrients 

are regenerated, as mussel excretion enhances P relative to N (excreted N:P ratios can be 

<20, Arnott and Vanni 1996). Regarding nutrient status of phytoplankton communities in 

the Bay of Quinte, research is needed to examine eutrophication and harmful algal bloom 

development. Studies have found a relationship between TP concentrations and Microcystis  

(Raikow et al. 2004, Nicholls et al. 2002).  Although metabolic assays and particulate ratios 

of C:P and C:N have been useful in determining nutrient status of natural phytoplankton 

communities, more recent research, largely in marine environments, suggest that newer 

fluorometric methods could provide robust, sensitive and instantaneous measures of the  

physiological status  in phytoplankton that would overcome some of the drawbacks 

experienced by traditional methods.  

 

1.2.4 Chlorophyll a Fluorescence   
  

 The principle of Chl a fluorescence analysis is based on the assumption that when a 

pigment absorbs the energy of a photon and enters an excited electronic state, there are only 

three competing routes for dissipation of the excitation energy:  i) it can be used to drive 

photosynthesis (photochemistry) ii) excess energy can be dissipated as heat, or iii) in can be 

re-emitted as fluorescence (Krause and Weiz 1991, Campbell 1998). By measuring 

fluorescence,  information about heat dissipation and photochemistry can be obtained. 

Figure 1.1 depicts the Z scheme showing the pathway of electron transfer from water to 

NADPH. 
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Figure 1.1 The Z scheme showing the pathway of electron transport from water to NADPH 
(http://bio/Courses/biochem2/Photosynthesis/Photosystem1.html) 

 

 

For any pigment, the level of fluorescence emission depends on the pigment 

concentration, the excitation light intensity and the fluorescence yield or efficiency of 

florescence emission (Campbell 1998). When the light source is sufficiently low, or in the 

absence of solar irradiance, a low level of fluorescence emanating from the light harvesting 

antenna is measured. Fluorescence, reemission as light of excess energy, is one of the three 

possible fates that light energy absorbed by a cell can undergo, the other two being 

reemission as heat or utilization for photosynthesis/photochemistry.  Most of the 

fluorescence signal at ambient temperature is emitted by photosystem (PS) II and is a 
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function of the state of reaction centers (RC) in the cells.  When cells are exposed to light, 

RC of PSII get progressively reduced or “closed”, increasing the fluorescence yield, with the 

rate of fluorescence emission (F) being proportional to the amount of absorbed light energy 

and divided by the rate constant of fluorescence kF (Krause and Weis 1991) (Eq. 1): 

 

F = kF/( kD + kT + kP)  Eq. 1 

Where kD is the rate constant for heat de-excitation, kT  is the rate constant for energy transfer 

to non-fluorescent pigments, and kP is rate constant for photochemical reaction.  

Fluorescence yield is minimal (Fo) when all RC are active or “open”, all primary quinine 

acceptor of (QA) of PSII are oxidized, and when kP is >> kF + kD + kT, maximum fluorescence 

(Fm) is achieved where all  RC are closed and Q-
A is fully reduced, impeding excitation of 

PSII.  The potential yield of photochemistry of PSII is therefore given by the ratio of the 

maximum variable fluorescence (Fv) and the maximum total fluorescence (Fm) Eq. 2: 

      

(Fm - F0)/Fm = Fv / Fm      Eq. 2 

 Nutrient starved cells often show a decline in Fv/Fm suggesting damage to some PS II 

centres resulting in a reduced fraction of functional PS II centres. For example, N and P 

starved cells may be impaired due to the lack of nitrogen rich amino acids to produce vital 

proteins such as the D1 turnover protein located in PS II reaction centres, and reduced ATP 

regeneration that leads to an accumulation of non functional PSII centres (Lippenmier et al. 

2001).  
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1.2.5 Fluorometric Methods for Assessing Phytoplankton Nutrient Status and 
Community Composition  

 

The use of variable fluorescence involves two basically similar but significantly 

different ways of measuring Chl a fluorescence (Suggett et al. 2003).  The two protocols 

have been incorporated in various ways in the designs of commercially available 

fluorometers such as the Pulse amplitude modulated (PAM) fluorometer and Fast Repetition 

Rate Fluorometer (FRRF).  

The PAM fluorometer can be applied to detect fluorescence signals rapidly (Fig. 

1.2).  The fluorescence parameters have been used to determine the effect of environmental 

perturbations (metal toxicity, light shock and nutrient starvation) that may inhibit 

photosynthesis (Marwood et al. 2000, Lippemeier et al. 2001, Yentsch et al. 2004).  In the 

presence of photosynthetic (actinic) irradiance the functional quantum yield of  PS II can be 

measured and can provide estimates of photosynthetic electron transport rates through PS II 

(Genty 1989, Geider et al. 1993, Kobler et al. 1993, Ralph and Gademann 2005). The rapid 

fluorescence light response curves (RLC’s) can be constructed and these curves can be fit 

with models to estimate the light harvesting efficiency (α) and the light saturated rate of 

maximum electron transport (ETRmax) (Kalff 2002, Sorousi and Beer 2007) (Fig. 1.3).  
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Figure 1.2 Principle of saturation pulse quenching method derived by Pulse Amplitude 
Modulated (PAM) fluorometry, adapted from Walz,  (1998) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3 Generalized photosynthesis-irradiance curve.  ETR = electron transport rate, 
PAR= Photosynthetic active radiation, α = light limiting slope, Ik = index of the onset of 
light saturated photosynthesis, ETRmax = the saturation rate of the electron transfer rate, 
adapted from Kalff, (2002) 

ETR 
Slope = α 

PAR 

Ik = ETRmax/α 
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 The FRRF is quite sensitive for use in oligotrophic systems (Chl a concentrations 

ranging from <0.1  to 30 mg m-3 ) (Suggett et al. 2003). The FRRF allows quick, non-

invasive assessment of phytoplankton in vivo fluorescence signatures, including  

measurements of photosynthetic parameters such as Fv/Fm and the functional absorption 

cross section of PS II (σ PS II).  The FRRF uses short flashlets to progressively reduce PS II 

and measure the fluorescence rise kinetics (Kromkamp and Forster 2003).  By quantifying 

the kinetics of the fluorescence rise, the FRRF can estimate σ PS II. σ PS II describes the 

functional ‘target area’ of the light harvesting antenna that is energetically coupled to the 

O2-evolving reaction centres (RCIIs) (Suggett et al. 2009). Therefore, the measurements of 

σ PS II can be valuable, since this variable is able to detect physiological responses to 

changes in environmental conditions (Suggett et al. 2009).   

 The two instruments differ in the duration of saturating light (flash) used to obtain 

Fm. The FRFF applies single turnover (ST) flashes that allows for only one charge 

separation during the flash and reduces only the primary acceptor QA, raising F to a level of 

Fm. The PAM applies multiple turnovers (MT) flashes, in which repeated charge separation 

is achieved until all electron acceptors of PS II are reduced. The longer flash induces a 

relaxation of quenching and thus raise the F to Fm. Application of these different approaches 

to phytoplankton communities may result in differing values of Fm. That is, the MT protocol 

may elicit higher Fv/Fm values, compared to the ST protocol (Kolber et al. 1998; Suggett et 

al. 2003).  
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1.3 Research Objectives   
  

Measurements of nutrient concentrations can be used to indicate trophic status of 

aquatic systems and can also be used to indicate whether or not a particular nutrient is 

limiting. In north temperate lakes, the role of phosphorus (P) as a controlling factor for 

phytoplankton biomass has been widely accepted and total P (TP) concentrations adopted as 

an indicator of trophic status (Dillon and Rigler 1974, Carlson 1977, Schindler 1978, 

McQueen et al. 1986, Downing and McCauley 1992).  We might therefore expect that P 

deficiency is generally the strongest in lakes with low Chl and TP concentrations and is the 

lowest or negligible in high TP conditions. However, there are certainly other factors besides 

P that can affect algal biomass. Other nutrients such as N can be limiting in nutrient rich 

lakes where the growth of filamentous cyanobacteria can lead to undesirable toxic 

consequences such as liver or neurological impairment for fish and humans.  Also, 

measurements of P status may show that phytoplankton communities in P limited lakes are 

not as severely P limited due to biotic and abiotic factors such as light penetration, mixing 

depth, temperature, other nutrients and grazing. To address these issues, I examined the use 

of “established” nutrient status indicators and Chl a fluorescence to determine the nutrient 

status of phytoplankton communities in Lake Erie, Napanee (Bay of Quinte) and Colpoys 

Bay (Georgian Bay).  

  This thesis consists of 3 data chapters each written as separate, but related, studies.  

The first data chapter (chapter 2) lays the basis for the other two chapters.  It compares 

previous nutrient status assessments of phytoplankton to the measurements of the 

photosynthetic efficiency (Fv/Fm and  σ PS II) of the phytoplankton community when 
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measured in a dark acclimated state. The specific objective was to test that variable 

fluorescence, particularly Fv/Fm, was a reliable indicator of N and P deficiency in freshwater 

phytoplankton. The second objective was to examine if  N and P deficiency in Lake Erie has 

a spatially and temporally limited occurrence. The third objective was to examine if nutrient 

status may be related to the taxonomic composition of the phytoplankton community, which 

may in turn influence the relationship between nutrient status and variable fluorescence 

properties.  

In Chapter 3, the first objective was to confirm, with additional observations in a 

subsequent year, that previous indications of N and P deficiency in Lake Erie are 

reproducible. The second objective was to use additional methods (nutrient amendment 

experiments) to further test whether the previously-used assays were correct in their 

indications of N and P deficiency.  The third objective was to examine the idea that variable 

fluorescence measured under excitation pressure (RLC’s) may provide better a more 

sensitive measures of nutrient status indicators and even an indication of which nutrient 

might be limiting.  

In Chapter 4, the specific objectives were to first determine whether the relationships 

between Fv/Fm, σ PSII, RLC parameters, and nutrient deficiency still apply to sites with a 

wide range in the severity of deficiency and taxonomic composition. The second objective 

was to further test the nutrient amendment /variable florescence assays as a tool for 

quantifying deficiency and identifying the limiting nutrient in each site. The third objective 

was to determine if P deficiency would apply in more oligotrophic and eutrophic sites in 

other lakes, and the last objective was to determine if the severity of summer P deficiency is 

systematically related to trophic status among a set of these Great Lakes sites. All chapters 
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were based predominately on field work in Lake Erie (western, west-central and central 

basin), Lake Ontario (Bay of Quinte) and Georgian Bay (Colpoys Bay-Lake Huron) in 2005 

and 2006. 
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Chapter 2. Nutrient status of phytoplankton in an oligo-mesotrophic lake (Lake Erie): 
Evidence from new fluorescence methods 

 

Overview  
The variable fluorescence of chlorophyll a was measured by pulse amplitude 

modulated (PAM) and fast repetition rate (FRR) fluorometry in parallel with independent 

measures of nutrient status to investigate nutrient status and its relationship to community 

structure of phytoplankton in Lake Erie in May, June, and September, 2005. Nutrient status 

was assessed by measurements of nitrogen (N) debt, phosphorus (P) debt, particulate C:N:P 

ratios and alkaline phosphatase activity (APA).  Sampling sites revealed P deficiency was 

most common in June, while N deficiency was most common in May; neither N nor P 

deficiency was common in September.  The maximum quantum yield (Fv/Fm) measured by 

PAM or FRRF was generally lower in May and June and maximal in September, while the 

functional absorption cross section of photosystem II (σPSII) was maximal in May and June, 

and minimal in September. Fv/Fm and σPSII were correlated with nutrient status indicators, 

with N or P deficient sites having low Fv/Fm and high σPSII.  Community structure was also 

associated with nutrient status. Cyanobacteria contributed a larger, often dominant, share of 

total biomass at sites that displayed N deficiency. Chrysophyte and cryptophyte flagellates 

were more important, and usually dominant, at P deficient stations in all basins. The 

occurrence of N deficiency is surprising in a lake with generally high inorganic N (as NO3
-), 

but is supported by a variety of measures and by its association with cyanobacteria. The 

results indicate that nutrient deficiency helps to structure the phytoplankton community in 

this large lake, and that variable fluorescence measures can characterize the strength of 

nutrient deficiency.     
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2.1 Introduction  
 

Total dissolved nutrient concentrations are strongly related to variations in 

phytoplankton biomass and composition among temperate lakes (e.g. Watson et al. 1997) 

and to seasonal and spatial variations within lakes (e.g. Teubner and Dokulil 2002). 

Aqueous nutrient concentrations were the earliest data used to estimate nutrient limitation 

(Ketchum 1939). However, the effect of nutrient limitation as assessed using static nutrient 

concentrations are varied and complex. For example, nutrient concentrations in surrounding 

water may not be analytically detectable, however phytoplankton communities if nutrient 

limited, may be able to maintain an adequate supply of available nutrients  though rapid 

recycling. Nutrient concentration data are therefore difficult to interpret in terms of growth 

limitation. Indirect methods of determining the degree of physiological nutrient control 

(“nutrient status”) can help provide a better understanding of the effects of nutrient 

limitation on growth and composition of phytoplankton.  

A common index of nutrient status is the elemental composition (stoichiometry) of 

suspended particles (e.g. Guildford and Hecky 2000), which is assumed to reflect the 

macromolecular composition of cells and the balance between demands for synthetic 

processes and rates of nutrient uptake and assimilation. Nutrient addition bioassays (e.g., 

Moon and Carrick 2007) can reveal growth responses of phytoplankton and help identify 

limiting nutrients. Nutrient debt assays measure the capacity of phytoplankton for nutrient 

uptake, which tends to be higher in nutrient-deficient algae (Healey and Hendzel 1979b, 

1980). Enzymatic assays include alkaline phosphatase activity (APA), which can be 

expressed when available phosphorus (P) concentrations are low (Healey and Hendzel 
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1979b, Smith and Kalff 1981, Rose and Axler 1998, Renefors et al. 2003). Such assays have 

provided useful information on variability of nutrient status (e.g. Guildford et al. 2005) but 

none is without drawbacks.  Particle stoichiometry is the most practical for assessing 

variability in natural systems, where numerous measurements are typically needed, but it is 

under complex control and can include contributions from non algal particles (e.g. Teubner 

et al. 2003).  Other methods for estimating phytoplankton nutrient stress typically have 

limited spatial and temporal resolution because they require experimental incubations and 

are not ideally suited to routine or extensive surveys.  

Chlorophyll a (Chl a) variable fluorescence has been used to provide sensitive and 

rapid estimates of phytoplankton condition (Kolber and Falkowski 1993, Graziano et al 

1996, Behrenfield et al. 2006, Sylvan et al 2007 and Juhl and Murrell 2008), primarily in 

marine environments, and offers potential to deal with the typical variability of natural 

systems. The quantum efficiency of electron transport in photosystem II (PS II) reaction 

centres can be assessed by the variable fluorescence ratio (Fv/Fm) of Chl a.  Kolber et al. 

(1988) found that some species of unstressed diatoms, chlorophytes and chrysophytes are 

commonly assumed to manifest Fv/Fm close to 0.65, although this optimal value may be 

lower for some taxa (e.g. Suggett et al. 2009).  Many stressors can lower the observed value.  

Pulse amplitude modulated (PAM) and fast repetition rate (FRR) fluorometers have been 

used to measure (Fv/Fm) (Kolber and Falkowski 1995, Beardall 2001 a, Young et al. 2005, 

Behrenfeld et al. 2006, Juhl and Murrell 2008). A potential advantage to FRRF is that it can 

additionally measure the efficiency of energy capture by PSII reaction centres (σ PSII).   

These new technologies have had some success in evaluating nutrient status of 

marine phytoplankton. For example, Beardall et al. (2001 a) were able to assess P deficiency 
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in several groups of phytoplankton using Fv/Fm derived from PAM.  Sylvan et al. (2007) 

used APA and nutrient addition experiments to document P limitation in the Mississippi 

River plume, and showed that variable fluorescence was diminished and σ PS II was 

increased under P limited conditions.  However, the reliability of variable fluorescence as an 

indicator of growth rate or nutrient status has been questioned in other studies. Kruskopf and 

Flynn (2006) found no consistent relationships between nutrient status and Fv/Fm in cultures 

of several different phytoplankton taxa while Cullen et al. (1992) and Parkhill et al. (2001) 

have suggested that Fv/Fm responds to nutrient stress mainly in laboratory situations of 

extreme non-steady state deficiency.  Suggett et al. (2009) have shown that taxonomic 

affiliation accounts for much variation of Fv/Fm, potentially masking signals induced by 

varying physiological condition.  Additional studies, preferably of natural communities and 

particularly in freshwater systems, are needed to better characterize the relationship between 

variable fluorescence and physiological stresses such as nutrient deficiency in nature. 

In this study, Lake Erie  provided a relevant and useful system in which to study 

spatial and temporal variations of nutrient status, community composition and the 

corresponding variable fluorescence attributes of phytoplankton.  Like many temperate lakes 

(Sommer et al. 1986, Currie 1990, Lean and Nalewajko 1979), Lake Erie exhibits a spring or 

early summer maximum of biomass and production followed by a summer period of low P 

availability, relatively rapid P cycling and signs of P deficiency in the phytoplankton (Lean 

et al. 1983, Allen and Smith 2002, Guildford et al. 2005).  Lake Erie is also an example of a 

lake in which P loading controls have been used to constrain phytoplankton biomass (e.g. 

Makarewicz and Bertram 1991, Charlton et al. 1999) and therefore can be considered a “P-

limited” lake.  Nonetheless, at times there is evidence for N deficiency  (Guildford et al. 
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2005) as well as limitation or co-limitation by both N and Fe (Twiss et al. 2000, North et al. 

2007).  There is a pronounced seasonal succession, leading from spring diatom dominance 

to summer dominance by chromophyte flagellates, chlorophytes and cyanobacteria, varying 

among different regions of the lake (Makarewicz 1993, Makarewicz et al. 1999, Barbiero 

and Tuchman 2001 and Moon and Carrick 2007). Nutrient loading and the yet-uncertain 

details of how nutrients regulate algal composition in the lake are vital in understanding and 

controlling problematic algal blooms (e.g. Budd et al. 2001) and hypolimnetic hypoxia (e.g. 

Carrick 2004). In addition to a pronounced temporal sequence of nutrient and phytoplankton 

development, Lake Erie also has a strong longitudinal gradient from  meso-eutrophic in the 

west to oligotrophic in the east (Charlton 1999, Makarewicz et al. 2000, Barbiero and 

Tuchman 2004), and there are suggestions that the proximate nutrient controls vary along 

this spatial gradient (Guildford et al. 2005). This large and dynamic lake is a clear example 

of a situation where more efficient means of surveying the physiological state of 

phytoplankton are sorely needed. 

   This study used multiple indicators of N and P status to determine how nutrient 

limitation relates to phytoplankton community composition and variable fluorescence 

properties in Lake Erie. I sought to determine whether previous reports of the spatial and 

temporal incidence of N and P deficiency could be confirmed and whether variable 

fluorescence parameters at the community level would reflect nutrient limitation. By 

measuring species composition of the community, I also sought to determine whether 

nutrient limitation may be associated with community composition, and whether such 

associations might contribute to the variation in Chl a fluorescence properties. To my 

knowledge, this is the first time that relationships between nutrient status, Chl a fluorescence 
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and community composition have been simultaneously determined for any natural aquatic 

system. The specific objectives were, first, to test the hypothesis that variable fluorescence, 

particularly Fv/Fm, is a reliable indicator of N and P deficiency in freshwater phytoplankton. 

The second objective was to test the hypothesis that, even in this P-limited system, P 

deficiency has a spatially and temporally limited occurrence, and that N deficiency can be 

frequently observed in the spring. The third objective was to test the hypothesis that nutrient 

deficiency may be associated with the taxonomic structure of the phytoplankton in ways 

consistent with previous inter-lake comparisons (e.g. prevalence of flagellates from the 

cryptophyte and chrysophyte groups under P limitation (e.g., Graham and Wilcox 2000; 

Urabe et al. 2000).  Finally, I sought to examine if some of the relationships between 

variable fluorescence properties and nutrient deficiency are due, at least in part, to the 

intrinsic variable fluorescence characteristics of different algal taxa.   

 

2.2 Material and Methods 
 
2.2.1 Study Area and Sampling Design  

 

Lake Erie contains three morphometrically different basins (western (WB), central 

(CB) and east (EB), Fig. 1) with the shallow (mean depth 10 m) WB receiving most of the 

lake’s external nutrient load from the Detroit and Maumee Rivers. Nutrient concentrations 

are typically highest in WB compared to the deeper CB (mean depth 20 m) and lowest in the 

relatively deep EB (mean depth 47 m; Charlton et al. 1999).  There is often a particularly 

strong gradient in nutrients and plankton abundance from WB to CB, with the western part 

of CB often denoted as an additional sub-basin, the west central basin (WCB) due to its 

distinctive nutrient, plankton and circulation features (e.g. Leon et al. 2005). Sampling sites 
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for this study (Fig. 1) were distributed in WB, WCB and CB to obtain the best 

representation of the strong spatial variability in the western part of the lake. 

Three cruises were conducted in 2005, in which water samples were obtained from 

the CCGS Limnos and the RV Lake Guardian in spring overturn (early May), early summer 

stratification (late June) and late summer stratification (mid- September) (Fig. 2.1).  All data 

presented here are from samples collected at 2-m depth with a sampling CTD-Rosette 

(Seabird) equipped with 8-L Niskin bottles and immediately transferred to 20-L 

polyethylene carboys, darkened to prevent light shock. The ship’s schedule dictated the 

sampling times, which explains the different sampling times among sites. I selected a subset 

of stations for further analysis of phytoplankton composition (Fig. 2.1-3). The stations were 

selected based on whether or not they manifested N or P deficiencies in the nutrient status 

assays described below. The threshold values used to determine if samples were N or P 

deficient or nutrient sufficient are found in Table 2.1. An effort was made to represent 

nutrient status categories equally based on months and basins.  Stations classified as N 

deficient showed N deficiency as indicated by N debt and C:N but no P deficiency, and 

stations classified as P deficient showed P deficiency with all P status indicators.  

 
Table 2.1 Nutrient status indicators. Values either show an absence, presence or the degree 
of nutrient limitation for phytoplankton. Criteria for nutrient limitation are based on Healey 
and Hendzel (1979b) and adapted from Guildford et al. (2005 
Indicator Nutrient  No 

deficiency 
Moderate 
deficiency  

Extreme 
deficiency  

Deficient 

C/N (atomic ratio)   N <8.3 8.3-14.6 >14.6  
N debt (µmol N µg Chl a -1)   N <0.15   >0.15 
C/P (atomic ratio)    P <129 129-258 >258  
N/P (atomic ratio)    P <22   >22 
P debt (µmol P µg Chl a -1)   P <0.075   >0.075 
APA (µmol P µg Chl a -1 h-1)   P <0.003 0.003-0.005 >0.005  
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Physical measurements important to this study were temperature profiles from the 

Seabird CTD and vertical profiles of photosynthetically active radiation (PAR) from a PAR 

sensor attached to the Fast Repetition Rate fluorometer (FRRF FasttrackaTM Chelsea 

Instruments). The vertical attenuation coefficient (Kd) was estimated by linear regression of 

the natural logarithm of PAR versus depth. The mixing depth (Zmix) and mean PAR of the 

surface mixed layer were calculated according to Hiriart et al. (2002).   

 
2.2.2 Nutrient and Chlorophyll Analysis  

 

Samples for ammonium (NH4
+) analysis were passed through a (0.2 μm) 

polycarbonate filter and were measured with the orthophtaldialdehyde (OPA) method 

outlined in Holmes et al. (1999) using a Turner Designs (TD) fluorometer  with a detection 

limit of 0.02 µmol L-1. Filtered samples were measured for nitrate (NO3
-), and nitrite (NO2

-) 

on an Dionex ICS 2500 ion chromatograph. All samples were frozen in the field and 

analyzed immediately upon returning to the laboratory.  Particulate C and N samples were 

analyzed using methods described by Stainton et al. (1977). The samples were collected on 

pre- combusted GF/F (pore size 0.7, 47 mm) filters then  dried and placed in desiccators 

containing hydrochloric acid for 24 h. A CEC-440 elemental analyzer (Exeter Analytical 

Inc) was used to analyze the samples.   

 Samples for total phosphorus (TP) and total dissolved P (TDP) concentrations were 

analyzed following preservation and analytical procedures of NLET (1994). Soluble reactive 

P (SRP) was analyzed according to Stainton et al. (1977). Particulate P (PP) concentration 

was measured by the ascorbic acid method following persulphate digestion (Stainton et al. 

1977, North et al 2007).  Soluble reactive silicate (SrSi) concentration was analyzed within 



 27

48 h according to Stainton et al. (1977). Triplicate Chl a measurements were made by 

filtration onto glass fiber filters (GF/F pore size 0.7 µm, 47 mm)  followed by extraction 

method outlined by Strickland and Parsons (1972) in 90% acetone, without mechanical 

dispersion, and analysis by a fluorometric method (North et al. 2007)  using a Turner 

Designs 10-AU fluorometer.   

 

2.2.3 Phytoplankton Nutrient Status Indicators  
 

P and N limitations were assessed by elemental ratios of particulate C:P, N:P, C:N 

and by the results of nutrient debt and phosphatase enzyme assays (Healey and Hendzel 

1979b). For the N debt assay, NH4Cl was added (final concentration = 5 µmol L-1) to sample 

water. The NH4
+ concentrations were measured at the beginning and end of 24 h incubation 

in the dark at room temperature. The P debt assay followed the same procedure, except that 

KH2PO4 was added and SRP concentrations were measured at the beginning and end of 

incubation. N and P debt were calculated by the amount of N or P removed over a 24 h 

period per Chl a (µmol N/P µg Chl a L – 1) (Healey and Hendzel 1979b). Alkaline 

phosphatase activity (APA) assays used the fluorometric method of Healey and Hendzel 

(1979a), with 5 µmol L-1 of O-methyl-fluorescein-phosphate as the substrate (Table 1). 

Total and soluble forms of APA were measured, and particulate activity was determined by 

difference.  

2.2.4 Chl a Variable Fluorescence Measurements 
  

For PAM measurements, 1-L water samples were concentrated onto 24-mm glass 

fiber filters (GF/F, Whatman, Springfield Mill, U.K.) under low (<10 mm Hg) vacuum. 
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Samples were dark adapted for 30 min in covered Petri dishes to keep cells hydrated. A 

Diving PAM (Heinz Walz, Germany) was used to measure minimum (Fo) and maximum 

(Fm) fluorescence using white light with a  measurement intensity of 0.15 µmol m-2 s-1 and a 

saturation pulse intensity of 18,000 µmol m-2 s-1 PAR (Walz 1993). The ratio of variable 

fluorescence to Fm (Fv/Fm), was calculated by instrument software.  Fluorescence rise 

kinetics were inspected to verify that Fm was indeed obtained, that is, to verify that a clear 

plateau in fluorescence was observable within the period of the saturation pulse. Gain was 

adjusted as necessary and all measurements were corrected for background signal using a 

blank consisting of 24 mm glass fiber filters through which distilled water had been filtered  

(Walz 1998).  

 A fast repetition rate fluorometer (FRRF), FastTracka, Chelsea Instruments, UK, was 

used to measure Fv/Fm and σPSII. The FastTracka FRRF used blue excitation light centred at 

470 nm. Dark-adapted, unfiltered samples (50 ml) were measured in a 100ml quartz cuvette 

using the dark chamber in benchtop (discrete acquisition) mode.  For each sample, 50 

successive acquisitions were collected, with each acquisition comprising 5 consecutive flash 

sequences, with each flash sequence in turn comprising 100-200 flashlets, each 1.5 µs in 

length and delivered at 2.8 µs intervals (Falkowski and Kolber 1995).  While the PAM uses 

a relatively long saturation pulse to completely reduce PSII and plastiquinone (PQ) in a so-

called multiple turnover protocol, the FRRF uses these very short flashlets to progressively 

reduce PSII and measure the fluorescence rise in a so-called single-turnover protocol 

(Kromkamp and Forster 2003).  By quantifying the kinetics of the fluorescence rise, the 

FRRF can estimate the effective cross section of PSII, (σPSII). The variable fluorescence 

parameters from the raw FRRF fluorescence data were derived using Submersible FRR Data 
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Reduction software (FRS1 ver. 1.8 Chelsea Instruments Ltd.). Although this commercial 

software provides estimates of photosynthetic properties, Laney (2003) reports that the 

design of the measurement protocol and the numerical algorithm used to fit the 

physiological model to measure fluorescence yield transient F(t) can introduce error in 

derived properties such as estimates of connectivity of electron transfer (p) and the time 

constant for PS II reoxidation (τ). Also, FRS protocol may overestimate Fv/Fm by 20% on 

average (Laney 2003) and may fail to completely saturate Fm.  However, I have inspected 

the fluorescence rise kinetics to verify that Fm was indeed acquired and that Fv/Fm was truly 

obtained. Lake water blanks were prepared by filtering 1 L of sample water through a 47-

mm glass fiber filters (0.7 mm pore size, GF/F, Whatman, Springfield Mill, U.K.) and used 

to correct the FRRF for background fluorescence.  

 

2.2.5 Phytoplankton Cell Counts 
 

Phytoplankton composition was measured using samples from 2 m depth at the same 

station where nutrient status measurements were made. The samples were preserved with 

1% Lugol’s solution and 1% glutaraldehyde. Taxa were enumerated to the lowest level 

possible following Prescott (1975, 1978), Komarek and Anagnostidis (1986), Lee (1999), 

Carty (2003), Komarek (2003), and Nicholls and Wujek (2003). Phytoplankton were 

counted using the Utermohl method at 400x on an inverted phase contrast microscope 

(Axiovert 35, Zeiss).  In total, at least 300 individuals were counted from randomly chosen 

microscope fields. For biovolume measurements, the dimensions of the algal cell were 

measured using ocular micrometers and cell dimensions were fit to geometrical shapes that 

portray the shape of the taxon (Wetzel 1991).  
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2.2.6 Statistical analyses 
   

Pearson’s correlation coefficients was used to evaluate statistical significant 

relationships  between nutrient status indicators and variable fluorescence parameters (Systat 

ver. 10). Multivariate analysis (Canonical correspondence analysis) was used to further 

characterize relationships among nutrient status variables and variable fluorescence 

parameters in samples across the range of locations and dates.  Multivariate analysis was 

also used to visualize relationships between environmental variables, Chl a fluorescence and 

nutrient status measurements. Detrended correspondence analysis (DCA) was preformed on 

the phytoplankton data to determine if unimodal or linear ordination techniques were most 

appropriate to analyze the data. The gradient length of the first axis was 2.090 and the 

gradient length of the second axis was 1.981. According to Pienitz et al. (1995), if the 

gradient length of the first axis is above 2 standard deviation units, unimodal ordination 

techniques should be employed. Canonical correspondence analysis (CCA) provides the 

power of regression methodology to ordination because CCA uses, as linear regression does, 

linear combination of environmental variables to explain optimally the species variables 

(Ter Braak and Verdonschot 1995). Additionally, the features of CCA are that the measure 

of fit is unconventional (weighted variance of species centroids) and that the data of many 

species are  explained simultaneously.  CCA has been widely used to evaluate 

phytoplankton communities in light of environmental data (Dixit et al. 1989; Enache and 

Prairie 2002).  The ordination analysis was performed using PC-ORD version 4 (MjM 

Software, Oregon USA). The input data consisted of two files: one that contained 
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biovolumes of phytoplankton (for all months) and one that contained the nutrient status 

variables at each site over the same time periods.  

The eigenvalues represent the proportion of variance in the phytoplankton data 

accounted  for by the respective canonical variates.  These canonical variates are interpreted 

by examining the weights or importance of each variable with respect to the canonical 

variates. These weights are called canonical weights and, in general, a larger weight 

indicates that a variable has a greater contribution to those canonical variables. Their values 

are standardized as correlations to 0 +/- 1, where 0 indicates no relationship (Mc Cune 

1997).    

 In the CCA analyses, rare phytoplankton species were discarded (1% of total 

biomass) and the results were plotted as ordination diagrams to illustrate the relationships 

between environmental variables and species. The relationships between the nutrient status 

variables and the principal axes are depicted as arrows, and species and site scores depicted 

by points. In this study, the site scores have been shaded to emphasize the relationships 

between species and the environmental variables. The length of an arrow reflects the 

strength of the correlations between an environmental variable and the axes and is 

considered to be proportional to the relative importance of that environmental variable.   The 

direction represents the nature of those correlations.   
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2.3 Results  
 
2.3.1 Environmental conditions 
  

 Physical measurements (Tables 2.2 to 2.4) revealed a gradient from the WB to the 

CB. In May, there was no thermal stratification and mean surface temperatures ranged from 

5.7 to 8.9 oC with highest values in west basin (WB).  All three basins were thermally 

stratified in June but in September only the deeper central basin (CB) and west central basin 

(WCB) remained stratified.  Surface temperatures in the WB were 2-3oC higher than 

elsewhere. Mean PAR was highest during the summer stratification period in which the 

mixing depth were shallower and vertical attenuation coefficients (kd) were smaller.  In 

May, kd was high due to the high concentrations of algal and non-algal material in the water 

column (Tables 2.2-4).  

 In all three basins, concentrations of TP and SRP were lowest (Tables 2.2-4) in early 

summer stratification (June) and highest in late stratification (September), although 

concentrations at spring overturn (May) were almost as high. TP and SRP concentrations 

were highest in WB in May and June, while the lowest concentrations were in CB or WCB.  

Spatial gradients of TP and SRP were weaker in September. NO3
- and NH4

+ concentrations 

were highest in WB , but the spatial trend from WB to CB, especially for NH4
+, was weaker 

and more variable than for TP and SRP (Tables 2.2-4).  Seasonally, concentrations were 

lowest in June.  Unlike the pattern for N and P, the June survey showed the highest (by far) 

concentrations of soluble reactive silicate (SrSi) in CB. Otherwise, the temporal and spatial 

variations of SrSi concentrations were mostly similar to those for N or P, with relatively low 

values in June and higher values in WB than in other basins.  
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 Mean Chl a concentrations (Tables 2.2-4) were higher in WCB and WB in September 

but differed little among basins in May. Over all basins, concentrations were higher in 

September than in other months (Fig. 2.4 a-c).  

 
 
Table 2.2 Initial conditions (mean + standard deviation (number of samples)) of chemical, 
biological and physical parameters, Central Basin (Bold = values above the threshold of 
deficiency) 

 
Chemical  Variables May  June  September 

 TP (µmol L-1) 0.55 + 0.22  (7) 0.55 + 0.09 (6) 0.74 + 0.12 (6) 
 SRP(µmol L-1) 0.09 + 0.02 (7) 0.10 + 0.09 (6) 0.15 + 0.01 (6) 
 NO3

-(µmol L-1) 12.98 + 5.43 (7) 13.81 + 2.82 (6) 16.65 + 2.33 (6) 
 NH4

+(µmol L-1) 1.73 + 0.21 (7) 1.05 + 0.33 (6) 1.65 + 0.21 (6) 
 SrSi (µmol L-1) 10.5 + 5.62 (7) 26.5 + 12.2 (6) 8.63 + 1.23 (6) 
     

Biological Chl (ug/L) 2.93 + 2.58 (7) 2.34 + 1.65 (6) 5.45 + 1.93 (6) 
 CN (atomic ratio) 10.72 + 0.928 (7) 7.62 + 2.1 (6) 7.94 + 1.19 (6) 
 N Debt (µmol N µg Chl a-1) 0.16 + 1.12 (7) 0.14 + 0.07 (6) 0.12 + 0.04 (6) 
 CP (atomic ratio) 208.1 + 152.2 (7) 239.1 + 42.3 (6) 217.0 + 96.6 (6) 
 NP (atomic ratio)  12.85 + 1.22 (7)  18.91 + 3.22 (6)  14.21 + 1.45 (6)  
 APA (µmol P µg Chl a-1h-1) 0.002 + 0.001 (7) 0.015 + 0.003 (6) 0.004 + 0.002 (6) 
 P Debt (µmol P µg Chl a-1) 0.07 + 0.04 (7) 0.18 + 0.06 (6) 0.072 + 0.02 (6) 
 Fv/Fm(PAM) 0.170 + 0.112 (7) 0.086 + 0.078 (6) 0.313 + 0.112 (6) 
 Fv/Fm(FRRF) 0.201 + 0.212 (7) 0.140 + 0.052 (6) 0.251 + 0.154 (6) 
 σ PS II  718.01 + 270 (7) 768.3 + 211.3 (6) 261.24 + 114 (6) 
     
Physical Surface Temp (oC) 6.4+ 1.4 (7) 19.23 + 0.9 (6) 21.6 + 1.9 (6) 
 Max Depth (m) 17.8 + 6.0 (7) 17.3 + 4.9 (6) 18.2 + 5. (6) 
 Mixing Depth (m) 17.8 + 6.0 (7) 7.7 + 2.9 (6) 9.6 + 3.7 (6) 
 kd (m-1) 0.38 +0 .33 (7) 0.18 + 0.04 (6) 0.34 +.13 (6) 

  Mean PAR (µmol m-2 s-1) 93.21 + 3.67 (7) 
216.97 + 23.21 
(6) 102.3+ 10.34 (6) 
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Table 2.3 Initial conditions (mean + standard deviation (number of samples) of chemical, 
biological and physical parameters, Central – west Basin  (Bold = values above the threshold 
of deficiency) 
 
Chemical Variables May June September 

 TP (µmol L-1) 0.68 + 0.08 (6) 0.45 + 0.01 (3) 0.64 + 0.01 (3) 
 SRP(µmol L-1) 0.09 + 0.01 (6) 0.07 + 0.09 (3) 0.13 + 1.35 (2) 
 NO3

-(µmol L-1) 15.30 + 2.33 (6 12.48 + 2.33 (3) 19.74 + 2.23 (3) 
 NH4

+(µmol L-1) 1.68 + 0.09 (6) 0.74 + 0.08 (3) 1.55 + 0.01 (3) 
 SrSi (µmol L-1) 6.84 + 1.14 (6)  9.24 + 0.22 (3)  4.87 + 0.09 (3) 
     
Biological Chl (ug/L) 2.35 + 1.39 (6) 2.26 + 1.49 (3) 11.22 + 1.48 (3) 
 CN (atomic ratio) 9.68 + 1.23 (6) 7.52 + 1.43 (3) 8.02 + 0.65 (3) 
 N Debt (µmol N µg Chl a-1) 0.16 +0.29 (6) 0.140 + 0.04 (3)  0.14+ 0.03 (3) 
 CP (atomic ratio) 158.7 + 40.7 (6) 219.0 + 138.9 (3) 132.2 + 15.4 (3) 
 NP (atomic ratio)  18.64 + 1.22 (6)  13.22 + 1.31 (3)  20.22 + 2.21 (3)  
 APA (µmol P µg Chl a-1h-1) 0.001 + 0.001 (6) 0.08 + 0.004 (3) 0.002 + 0.001 (3) 
 P Debt (µmol P µg Chl a-1) 0.04 + 0.02 (6) 0.12 + 0.06 (3) 0.06  + 0.02 (3) 
 Fv/Fm(PAM) 0.194 + 0.008 (6) 0.137 + 0.035 (3) 0.466 + 0.024 (3) 
 Fv/Fm(FRRF) 0.154 + 0.062 (6) 0.198 + 0.062 (3) 0.512 + 0.216 (3) 

 σ PS II  
745.41 + 210.34 
(6)  

797.33 + 122.10 
(3) 186.33 + 67.12 (3) 

     
Physical  Surface Temp (oC) 5.7 + 0.5 (6) 19.9 + 0.3 (3) 23.0 +0.5 (3) 
 Max Depth (m) 15.0 + 4 (6) 16.0 + 2.3 (3) 15.6 + 5.1 (3) 
 Mixing Depth (m) 15.0 + 4.0 (6) 6.2 + 3.5 (3) 6.8 + 5.1 (3) 
 kd (m-1) .42 + .22 (6) .36 + 0.18 (3) .31 + .12 (3) 
  Mean PAR (µmol m-2 s-1) 99 + 5.58 (6) 178.22 + 3.51 (3) 127.43 + 0.85 (3) 
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Table 2.4 Initial conditions (mean + standard deviation and number of samples)) of 
chemical, biological and physical parameters, West Basin. (Bold = values above the 
threshold of deficiency). 
 
 

  Variables May June  September 

Chemical TP (µmol L-1) 0.75 + 0.5 (9) 0.65 + 0.09 (7) 0.75 + .051( 7) 
 SRP(µmol L-1) 0.139 + 0.5 (9) 0.13 + 0.08 (7) 0.19 + .41 (7) 
 NO3

-(µmol L-1) 16.45 + 2.22 (9) 14.32 + 1.22 (7) 22.81 + 4.51 (7) 

 NH4
+(µmol L-1) 2.15 + 1.2 (9) 0.94 + 0.44 (7) 1.71 + 1.44 (7) 

 SrSi (µmol L-1) 28.66 + 2.31 (9) 8.01 + 2.2 (9) 13.05 + 1.4 (7)  

     
Biological Chl (ug/L) 2.57 + 1.01 (9) 6.67 + 3.43 (7) 11.06 + 6.43 (7) 
 CN (atomic ratio) 9.15 + 1.53 (9) 8.36 + 2.32 (7) 7.54 + 1.73 (7) 
 N Debt (µmol N µg Chl a-1) 0.19 + 0.02 (9) 0.14 + 0.10 (7) 0.13 + 0.03 (7) 
 CP (atomic ratio) 197.9 + 43.3 (9) 166.5 + 61.2 (7) 164.8 + 14 (7) 
 NP (atomic ratio)  21.44+ 1.22 (9)  12.22 + 2.22 (7)  10.22 + 2.12 (7)  
 APA (µmol P µg Chl a-1h-1) 0.004 + 0.002 (9) 0.006 + 0.002 (7) 0.002 + 0.001 (7) 
 P Debt (µmol P µg Chl a-1) 0.07 + 0.02 (9) 0.06 + 0.01 (7) 0.04 + 0.03 (7) 
 Fv/Fm(PAM) 0.193 + 0.127 (9) 0.335+ 0.166 (7) 0.521 + 0.077 (7) 
 Fv/Fm(FRRF) 0.206 + 0.141 (9) 0.376 + 0.133 (7) 0.566 + 0.042 (7) 
 σ PS II  616.34 + 143.32 (9) 558.33 + 102.11 (9) 112.2 + 72.23 (7) 
     
Physical Surface Temp (oC) 8.9 + 0.8 (9) 21.7 + 1.2 (7) 23.6 + 0.6 (7) 
 Max Depth (m) 8.1 + 1.9 (9) 6.8 + 2.1 (7) 7.1 + 2.0 (7) 
 Mixing Depth (m) 8.1 + 1.9 (9) 3.8 + 1.6 (7) 7.1 + 2.0 (7) 
 kd (m-1) 0.62 + 0.13 (9) 0.54 + 0.14 (7) 0.52 + 0.22 (7) 
  Mean PAR (µmol m-2 s-1) 87.00 + 12.33 (9) 97.02+ 13.58 (7) 111.21 + 2.26 (7) 
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(a) May 

 

 

 

 

 

 

 

(b) June  

 

 

 

 

 

( c) September  

Figure 2.1 (a-c) Chlorophyll distributions (µg L-1) across WB, CWB and CB of Lake Erie 
(2005). Red dots = sampling stations 
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2.3.2 Phytoplankton Nutrient Status 
   

 In May, average values for both N status indicators (N debt and C:N) were above the 

threshold for inferring N deficiency in all three basins and numerous sites were classified as 

N deficient, especially in WB (Tables 2.1to 2.4).  In other months, only one or neither 

indicator suggested N deficiency in any of the basins, except possibly June in WCB, when 

average C:N was near threshold, and fewer stations were classified as N deficient (Fig. 2.2 

to 2.4). There was little evidence of N deficiency in September except in WCB where one of 

three stations had relatively high indicator values.  In no case did the average C:N value for 

any basin or month indicate severe N deficiency.  

 For the P status indicators, the average particulate C:P  ratios suggest moderate P 

deficiency in all months and basins except CB in June, when values corresponded to 

extreme deficiency (Tables 2.2 to 2.4). Average particulate N:P ratios were below the 

threshold of deficiency in every month in CB, June only in WCB, and May and June in WB.  

N:P was highest overall in June and lowest in September. Average P debt and APA values 

revealed similar P deficient patterns among basins and months, except in June and 

September where APA showed P deficiency in WB.  The P debt assays did support the APA 

pattern of greatest overall deficiency in June and least in September. While N deficiency 

also appeared minimal in September, it was most prevalent in May rather than June in all 

months and basins. Average APA was above the deficiency threshold. 
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Figure 2.2.Distribution of nutrient status among sample sites in western, central-western 
and central basin of Lake Erie, May 2005. N = Nitrogen deficient, P= Phosphorus deficient, 
C= Nutrient sufficient. * denotes sites selected for phytoplankton taxonomic analysis  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 2.3 As Fig. 1 but for June 2005. 
 
 

 
Figure 2.4 As Fig. 1 but for September, 2005. 
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2.3.3 Variable Fluorescence 
  

 Fv/Fm as measured by PAM or FRRF showed lowest measurements in June (CB, 

WCB) or May (WB) (Tables 2.2-4). The highest Fv/Fm, approaching the commonly accepted 

optimal value of 0.65 (Kolber et al. 1988) in WB, was observed in September. September 

was also the month of minimal N and P deficiency according to the nutrient status 

measurements. Over all months, Fv/Fm was lowest in CB and highest in WB. 

 Linear regression analysis indicated a high degree of correlation between PAM and 

FRRF measures of Fv/Fm ( y = 0.6200 + 0.99x, R2 = 0.92, n = 22, p <0.05). Relationships 

between variable fluorescence, nutrient status, and environmental factors were examined 

with both the PAM and FRRF data and the results were quite similar.  Therefore, I show 

only the results for the FRRF data  here. 

   In assessing site-and date-specific relationships between Fv/Fm and nutrient status, 

data were screened to focus on the nutrient of interest.  To examine relationships with N 

deficiency, for example, sites also showing P deficiency or SrSi depletion were excluded. 

Most of the sites with N debt below the deficiency threshold had relatively high Fv/Fm 

values and occurred in September (Fig. 2.5). Sites with N debt above the deficiency 

threshold had mostly low Fv/Fm values and occurred mainly in May. The pattern was similar 

but not as clear when the particulate C:N ratio was plotted against Fv/Fm (not shown). The 

relationship between N debt and Fv/Fm was strong (r = -0.85, n = 33, p<0.05), whereas the 

relationship between C:N ratio and Fv/Fm was weaker (r = -0.45, n = 33, p <0.05).  
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Figure 2.5. Scatter plot of Fv/Fm versus N debt. Each point represents sampling station. 
Dashed line = threshold of deficiency (N debt = 15 (Healey and Hendzel (1979b)).  
 

With N deficient and/or SrSi-depleted sites excluded, P debt and APA  suggested a trend 

towards higher Fv/Fm  at sites below the threshold of deficiency, and lower Fv/Fm values at 

sites above the threshold of deficiency (Fig. 2.6a and b). Most of the sites that were not P 

deficient were from September, while sites that were P deficient were mainly from June. 

Pearson correlation analysis revealed a strong relationship between P debt and Fv/Fm ( r =  -

0.66 n = 27, p<0.05) as well as APA and Fv/Fm (r = -0.72, n = 27 p<0.05), while the Fv/Fm vs 

C:P relationship (not shown) was not as strong ( r = -0.38, n = 27, p <0.05).  

 FRRF-derived σPSII values were highest in May (WB, WCB) or June (CB), and 

lowest in September (Fig. 2.7 a-b, Table 2.2 to 2.4). There was an inverse relationship with 

Fv/Fm. With sites screened for P or Si limitation as for the inter-site analysis of Fv/Fm, σPSII 

varied positively with N debt (Fig. 2.7 a) and C:N (not shown).  The relationship with C:N 

was weak but significant (r = 0.32 n = 33 p<0.05) but the relationship with N debt was 
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highly significant (r = 0.73 n = 33 p<0.05).  With N and Si deficient sites excluded, σPSII 

was significantly and positively correlated with P debt (Fig. 2.7 b) and APA (not shown) (r 

= 0.38, 0.42 n = 27, p<0.05) although relationships were weaker than with N debt.    
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(b) 

Figure 2.6 Scatter plot of Fv/Fm vs. P debt (b) Fv/Fm vs. APA. Each point represents 
sampling station. Dashed line = threshold of deficiency (P debt = 0.075, APA = 0.003 
(Healey and Hendzel (1975, 1979b)).  
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Figure 2.7. Scatter plot of (a) Sigma PSII vs. N debt and (b) Sigma PS II vs. P debt. Each 
point represents sampling station. Dashed line = threshold of deficiency. 
 

 

 

0.05 0.10 0.15 0.20 0.25
N debt (µmol N µg Chl a L-1 )

0

100

200

300

400

500

600

700

800

900

S
ig

m
a 

P
S

 II

September
June
May

Month

R = 0.73

0.05 0.10 0.15 0.20 0.25
N debt (µmol N µg Chl a L-1 )

0

100

200

300

400

500

600

700

800

900

S
ig

m
a 

P
S

 II

September
June
May

Month

R = 0.73R = 0.73r =0.73r = 0.73

0.05 0.10 0.15 0.20 0.25
N debt (µmol N µg Chl a L-1 )

0

100

200

300

400

500

600

700

800

900

S
ig

m
a 

P
S

 II

September
June
May

Month

R = 0.73

0.05 0.10 0.15 0.20 0.25
N debt (µmol N µg Chl a L-1 )

0

100

200

300

400

500

600

700

800

900

S
ig

m
a 

P
S

 II

September
June
May

Month

R = 0.73R = 0.73r =0.73

0.05 0.10 0.15 0.20 0.25
N debt (µmol N µg Chl a L-1 )

0

100

200

300

400

500

600

700

800

900

S
ig

m
a 

P
S

 II

September
June
May

Month

R = 0.73

0.05 0.10 0.15 0.20 0.25
N debt (µmol N µg Chl a L-1 )

0

100

200

300

400

500

600

700

800

900

S
ig

m
a 

P
S

 II

September
June
May

Month

R = 0.73R = 0.73r =0.73r = 0.73

0.00 0.05 0.10 0.15 0.20 0.25
P debt (µmol P µg Chl a L-1 )

0

100

200

300

400

500

600

700

800

900

1000

S
ig

m
a 

P
S

 II

September
June
May

Month

R = 0.38

0.00 0.05 0.10 0.15 0.20 0.25
P debt (µmol P µg Chl a L-1 )

0

100

200

300

400

500

600

700

800

900

1000

S
ig

m
a 

P
S

 II

September
June
May

Month

R = 0.38r = 0.38

0.00 0.05 0.10 0.15 0.20 0.25
P debt (µmol P µg Chl a L-1 )

0

100

200

300

400

500

600

700

800

900

1000

S
ig

m
a 

P
S

 II

September
June
May

Month

R = 0.38

0.00 0.05 0.10 0.15 0.20 0.25
P debt (µmol P µg Chl a L-1 )

0

100

200

300

400

500

600

700

800

900

1000

S
ig

m
a 

P
S

 II

September
June
May

Month

R = 0.38r = 0.38



 43

2.3.4 Phytoplankton Composition and Nutrient Status  
  

 Selected samples from May, June and August were enumerated to the lowest 

possible taxonomic denomination. In total, 158 phytoplankton taxa, belonging to six major 

groups, were identified.  

 For each month, 18 stations of varying nutrient status were analyzed to assess 

relationships with phytoplankton biomass and nutrient status. In spring, all basins supported 

populations of diatoms such as Asterionella formosa, Aulacoseira islandica, Stephanodiscus 

binderanus, and Cyclotella ocellata. Summer phytoplankton communities had more 

cyanobacteria, cryptophytes, chyrysophytes and pyrrophytes compared to diatoms (Figure 

2.8 a-c) but seasonal and inter-basin patterns were significantly affected by variations 

associated with nutrient status. For P deficient stations, cryptophytes generally appeared in 

extensive populations usually represented by members of Rhodomonas and Cryptomonas. 

Chrysophytes were also prevalent and were often represented by Dinobryon divergens, 

Dinobryon boregii, Rhizochromonas endoricata and Rhizochrysis spp. Overall, P deficient 

stations tended towards dominance by flagellates and small or medium sized taxa.  

 In all basins and months, N deficient stations had a higher proportion of 

cyanobacteria than P deficient or nutrient sufficient sites. In spring, major taxa included 

Synechococcus spp., Chroococcus sonoresis, Cyanothece spp. and Aphanothece clathrata. 

During summer stratification and the onset of autumn turnover, species from larger-sized 

taxa such as Microcystis aeruginosa, Cylindrospermopsis spp., Limnothrix spp., and 

Anabaena spp. were important. 

 For nutrient sufficient stations, pyrrophytes and cyanobacteria were dominant in 

summer stratified conditions (Fig. 2.8 a-c). Cylindrospermopsis spp. (cyanobacteria), and 
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Peridinium spp. (Pyrrophyta) were often seen in the WB, CWB and CB.  In spring, the 

major contributors to the biovolume of phytoplankton were from bacillariophytes and 

pyrrophytes.  
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(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 (a-c) .Average Biovolume (cubic (CU)µm.mL) of phytoplankton groups in (a) 
Central, (b) West-Central and (c) West basins of Lake Erie 2005. Samples were collected in 
May (M), June (J) and September (S). C = nutrient sufficient stations, P = P deficient 
stations, and N = N deficient stations 
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2.3.5 Multivariate Analyses 
  

  The highest correlations among canonical variates were seen with Fv/Fm (PAM) and 

Fv/Fm (FRRF) (Table 2.5).  CCA was able to capture 45% and 37% of the variance in the 

phytoplankton data on the first two canonical variates (Table 2.6).   All variables except N 

debt, C:N, C:P, P debt and σ PS II showed high correlations (>0.5) with axis 1, and all 

variables except for C:P  and  C:N ,showed high correlations with axis 2 (Table 2.5).   
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Table  2.5 Weighted correlations of the selected environmental variables/fluorescence for Lake Erie 2005 (Bold = significant 
correlation between variables (p>0.05) 
 

 Weighted correlation matrix (weight = sample total) 
Chl a N debt C:N Ratio P debt APA C:P Fv/Fm (PAM) Fv/Fm (FRRF) σ PS II

Chl a 1.00
N debt -0.26 1.00
C:N Ratio -0.25 0.70 1.00
P debt -0.19 -0.13 -0.05 1.00
APA -0.13 -0.28 -0.25 0.72 1.00
C:P -0.12 -0.19 -0.08 0.61 0.70 1.00
Fv/Fm (PAM) 0.79 -0.83 -0.71 -0.22 -0.33 -0.31 1.00
Fv/Fm (FRRF) 0.72 -0.81 -0.72 -0.41 -0.25 -0.24 0.87 1.00
σ PS II -0.51 0.24 0.14 0.52 0.62 0.43 -0.84 -0.88 1.00  
 
 
 
Table 2.6  Interset correlations between first two axes and environmental variables/fluorescence  

  

Variable Axis 1 Axis 2
Chl a -0.64 -0.55
N debt -0.32 0.52
C:N Ratio -0.24 0.34
P debt 0.22 -0.45
APA 0.23 -0.62
C:P 0.66 -0.22
Fv/Fm (PAM) -0.56 -0.55
Fv/Fm (FRRF) -0.53 -0.51
σ PS II 0.22 -0.72  
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Figure 2.9 CCA plot of phytoplankton taxa, variable fluorescence parameters and nutrient 
status variables. Brown circles = cryptophytes, orange circles = pyrrophytes, red circles = 
chrysophytes, teal triangles = cyanobacteria, purple squares = diatoms and green diamonds = 
chlorophytes. Phytoplankton species enclosed in the upper right-hand circle  
were dominant in the western basin, and phytoplankton species enclosed in the lower right-
hand circle were dominant in the central basin 
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 Species of cyanobacteria were positioned to the right of the second axis, and were 

positively related  to N debt and C:N and negatively related to Fv/Fm and Chl a (Fig. 2.9). 

Chl a and Fv/Fm (PAM and FRRF) were located opposite planes from the N deficiency 

variables, indicating a negative relationship between the two groups of variables. That is, 

high N debt and C: N samples were associated with populations displaying low Fv/Fm and 

Chl a values.  P deficiency vectors (APA, P debt, C:P) were orthogonal to those for N 

deficiency variables and had weak associations with species from the cyanobacteria group.

 In contrast, flagellate groups (chrysophytes and cryptophytes) were positioned to the 

lower right of the first axis and had strong positive relations with P debt, APA, C:P and σ  

PSII (Fig 2.9).  Rhodomonas, Cryptomonas, Dinobryon and Rhizochromonas  were were 

prominently associated with elevated values of the P deficiency indicators.  

 Species within the dinoflagellate group were spread along the first axis and second 

axis (Fig 2.9). This group was more weakly associated with nutrient status although some 

taxa could show associations with N or P deficiency (e.g. Gymnodinium punctata with N 

deficiency).  Chlorophytes were strongly associated with higher Chl a and fluorescence 

parameters in all seasons and basins, and negatively associated with N deficiency. Diatoms 

plotted primarily to the left of axis 2 but not far from the origin.  They did not show a strong 

association with N or P status variables and were more associated with moderate to higher 

values of Chl a and fluorescence parameters.  

 

2.4 Discussion    
 

The present results confirmed previous findings (Guildford et al. 2005) that 

phytoplankton communities in Lake Erie can display both P and N deficiency according to a 
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suite of commonly-used indicators.  In isothermal conditions when nutrient concentrations 

are relatively high, nutrient deficiency would not normally be expected (Lean et al. 1983, 

Millard et al. 1996), but the present study supports Guildford et al. (2005) in finding 

indications of moderate N deficiency under such conditions, particularly in the WB.  The 

prevalence of P deficiency in summer-stratified conditions observed here was consistent 

with many previous reports (Lean et al. 1983, Allen and Smith 2002, Guildford et al. 2005, 

Moon and Carrick 2007) and would be expected in a lake such as Erie which, through its 

ecosystem-level responses to altered P loading, would appear to be a P-limited system 

displaying low concentrations of SRP (Makarewicz and Bertram 1993, Charlton et al 1993).  

The current results additionally show an association between nutrient deficiency symptoms 

(both N and P) and photosynthetic physiology as inferred from variable fluorescence, 

strengthening the evidence that both N and P deficiency occur and advancing the case for 

believing that variable fluorescence can help assess nutrient status in natural communities.  

However, the results also indicate associations between nutrient status, variable 

fluorescence, and phytoplankton community composition, notably a tendency for heightened 

importance of cyanobacteria in samples showing N deficiency and depressed quantum yield 

(Fv/Fm).  These additional associations suggest that selective changes in community 

composition may be driven in part by variations in nutrient status while contributing to the 

apparent effects of nutrient deficiency on variable fluorescence.   

In temperate lakes, N limitation of phytoplankton is expected to be more common in 

eutrophic than oligotrophic lakes (e.g. Guildford and Hecky 2000) and at least short-term N 

limitation can be quite common in lakes of intermediate trophic status (Elser et al. 2007, 

Elser 2008). As discussed in Moon and Carrick (2007), the eutrophication of Lakes Erie and 
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Ontario in the 1960’s and 1970’s was associated with development of N limitation in some 

areas (e.g., Murphy 1980).  P loading controls subsequently implemented through the Great 

Lakes Water Quality Agreement (GLWQA) were believed to strengthen P limitation and 

eliminate N limitation. Since the mid-1990’s, and consequent to colonization by dreissenid 

mussels in the late 1980’s, a renewed upward trend in total P extending at least into the early 

2000’s was noted (Charlton 2001, Moon and Carrick 2007). Unrecognized P loading and 

nutrient recycling by dreissenid mussels could both be agents of renewed N limitation 

(Moon and Carrick 2007, Boegman et al. 2008) in the early to mid-2000’s. In the present 

results, N deficiency was most prevalent in May, particularly in the WB where both N 

indicators revealed N deficiency (Table 2-4).  Although they are consistent with Guildford et 

al. (2005) and may have been favored by the recent (since 1995) nutrient changes in the 

lake, these observations are still surprising in the timing and apparent primacy of N 

deficiency that they suggest. There is evidence from enrichment experiments performed in 

the early 2000’s for N, P, and Fe co-limitation (but not N limitation) of phytoplankton in 

eastern Lake Erie in summer (North et al. 2007).  However, the nitrate and ammonium 

concentrations observed here (and in Guildford et al. 2005) were much higher, especially for 

NO3
-.  Enrichment experiments in the CB also showed N limitation in Lake Erie in the early 

2000’s, but again in later seasons (summer-fall) and only secondary to P limitation 

(DeBruyn et al. 2004, Moon and Carrick 2007).  

It is possible that my N status indicators were influenced by factors other than actual 

physiological deficiency of the phytoplankton and gave misleading results.  Particulate C: N 

ratios, for example, could be affected by inclusion of non-algal material, particularly 

resuspended and/or riverine sediments that would be especially abundant in the shallow west 
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basin and during the spring mixing period. The N debt assay could in theory reflect non-

algal N dissimilatory processes such as nitrification as well as actual algal assimilation. 

Despite these uncertainties, both of the N status indicators (and especially N debt) were 

correlated with Fv/Fm and σ PS II, suggesting that algal physiology really was altered and 

that N deficiency actually did occur.   

Iron (Fe) can at times be a limiting nutrient for phytoplankton growth in the Great 

Lakes (Sterner et al. 2004, Twiss et al. 2000, 2005) and can limit NO3
- utilization, resulting 

in Fe-N co-limitation (North et al. 2007).  Although Fe was not measured in the current 

study, it seems unlikely that low measurements of Fe would be responsible for appearance 

of N deficiency in spring, particularly in the shallow, well-mixed and strongly river-

influenced WB.  Sterner et al. (2004) reported higher Fe values in May (18 nmol L-1) 

compared to summer stratified conditions in July (1.5 nmol L-1) in western Lake Superior.  

Twiss et al. (2005) characterized trace metal limitation of Lake Erie phytoplankton as 

occurring infrequently and primarily in summer stratified conditions. While direct 

investigations of Fe availability in the spring season have not been done to my knowledge, 

Fe limitation or co-limitation would seem unlikely. 

The seasonal incidence of N deficiency suggests that the lower light and/or 

temperatures in May might be critical in promoting N deficiency.  The N requirements of 

phytoplankton have been shown to increase as temperature decreases in the sub-optimal 

range, so that higher N assimilation rates are required to maintain N-sufficient growth (e.g. 

Rhee and Gotham 1981). Acclimation to low irradiance is also associated with increased N 

requirements and N:P ratios (e.g. Wynne and Rhee 1986, Leonardos and Geider 2004, 

Finkel et al. 2006).  The observed  NO3
- concentrations in May were mostly in the range 13 
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to 18 μmol/L. Although relatively high, such concentrations would still limit nitrate uptake 

to approximately 70 to 90% of the maximum rate given the range of half-saturation 

constants for growth (approximately 1.5 to 5.0 μmol/L) considered typical of freshwater 

phytoplankton in culture (Lehman 1975). Ammonium (NH4
+) uptake from the typical May 

concentrations of 1.5 to 3.0 μmol/L would also be limited to 80% or less of maximum rates 

for most taxa (including some relatively efficient marine species).  Utilization of the more 

abundant NO3
- could be additionally impeded by the effect of the lower mean irradiance in 

May on NO3
- reductase activity (Falkowski and Raven 2007) and through competitive 

inhibition by NH4
+ (Dortch 1990). The situation in May could be a state of temperature, 

light and N co-limitation, in which the elevated need for N cannot quite be met despite fairly 

high available N concentrations.  In this situation, I would not expect N deficiency to be 

severe and indeed the N status indicators indicated only a mild or moderate degree of 

limitation. 

In contrast to N deficiency, P deficiency as indicated by P debt and APA was 

prevalent under summer stratified conditions (June).  Previous studies in the CB showed that 

phosphate turnover times became shorter and indicative of P limitation in summer, but were 

longer and less suggestive of limitation in spring (Lean et al. 1983, Allen and Smith 2002, 

Smith unpub. data), while enrichment bioassays have shown consistent primary limitation 

by P in summer and fall, with maximum response in summer (Moon and Carrick 2007). 

Using the same P status indicators as those used here, Guildford et al. (2005) showed that P 

deficiency was largely absent in spring and fall and maximal in summer, with greatest 

deficiency in CB and EB.  Studies from the late 1970’s (Lean et al. 1983), mid-to-late 

1990’s (Allen and Smith 2002, Guildford et al. 2005) and the early to mid-2000’s (Moon 
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and Carrick 2007, present results), these studies suggest a consistent summer condition of P 

deficiency over much of the lake.  However, all studies of turnover times, P debt and APA 

have suggested that deficiency is typically mild or moderate, with only isolated episodes of 

severe P deficiency.  Comparative lake studies, including measurements in Lake Ontario, 

suggest that large lakes such as Erie tend to have less severe P deficiency than smaller lakes 

(Guildford et al. 1994, Millard et al. 1996).   Stronger mixing together with lower 

temperatures and mean irradiance in large lakes can contribute to this difference but in Lake 

Erie a relatively efficient P regeneration cycle may also be involved (Guildford et al. 2005).  

The stoichiometry of C, N and P has been used in biogeochemical models to link 

phytoplankton production and the carbon cycle to the nitrogen and phosphorus cycles 

(Finkel et al. 2006) and to infer the identity of limiting nutrients (Healey and Hendzel 

1979b, Guildford and Hecky 2000, Elser et al. 2008).  In the present study, the average C:P 

ratio was above the nominal threshold for P deficiency in every month and basin, while the 

average N:P ratio was below.  The disparate results probably reflect the plasticity of 

stoichiometry for balanced growth both within and among taxa (e.g. Finkel et al. 2006, 

Sterner et al. 2008), which can make fixed thresholds such as those used here misleading. At 

least in May, it may also be that the same cold, well-mixed and comparatively low-

irradiance conditions that could promote higher N:P ratios in the phytoplankton could also 

favour re-suspension of sedimentary and detrital particles with relatively high C:P, thus 

inflating the estimate of the planktonic C:P ratio.  Sediment re-suspension could also, in 

opposition to the expected effects on phytoplankton physiology, depress N:P ratios 

(Niemistö et al. 2008). The stoichiometry of the seston may furthermore respond on 

different time scales from more physiological measures such as P debt and APA and thus 
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suggest different patterns, depending on the recent history of conditions at any given site. 

The C:P ratios (and C:N) did have weaker among-site correlations with Fv/Fm and  σ PS II in 

this study than did the nutrient debt or APA measurements but the relationships were 

nonetheless statistically significant. At least C:P and C:N, if not N:P, therefore appeared to 

have some relationship with physiological nutrient deficiency in the phytoplankton.  

 The significant relationships between site-specific values of Fv/Fm and the indicators 

N debt and C:N are the most extensive evidence to date that N deficiency in natural 

communities, as measured by independent assays of algal condition, can produce consistent, 

quantitative decreases in Fv/Fm and diminished quantum efficiency in PSII across a range of 

community composition and environmental conditions. Although the physiological 

mechanisms were not resolved here, the results were consistent with suggestions that N 

deficiency, among its other effects, specifically limits the supply of proteins essential to the 

function of PSII, notably the D1 protein (Falkowski and Raven 2007, Shelley et al. 2007).  

The relationships between N debt, C:N  and σ PS II  are likewise the most direct and 

extensive demonstration for natural communities that the effective cross section of PSII is 

increased by N deficiency.   These results for Fv/Fm and σ PS II were consistent with a 

number of laboratory studies of algal cultures grown under N limitation (e.g. Kolber et al. 

1988, Geider et al. 1993).    

 P status indicators (P debt and APA) also revealed strong negative associations with 

Fv/Fm and positive associations with σ PS II.  There is considerable laboratory evidence for 

decreases of Fv/Fm under P limitation (e.g. Geider et al. 1993, Beardall et al. 2001a, Shelley 

et al. 2005) but similar evidence for increases of σ under P deficiency is limited to one study 

of a marine diatom (Geider et al. 1993).  The response of σ to P deficiency did appear 
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weaker than that of Fv/Fm, however, which may reflect differences in the physiological 

mechanisms by which N and P deficiency affect photosynthesis. While N deficiency may 

specifically and differentially impede synthesis of key reaction centre proteins relative to 

PSII light harvesting components (Kolber et al. 1988, Falkowski et al. 1989) the effect of P 

deficiency may be less specific. Nucleic acids, and especially RNA, comprise a large part of 

the total cellular P content (Geider et al. 1993, Arrigo 2005, Falkowski and Raven 2007).  P 

limitation will constrain synthesis of proteins, including those in the reaction centre of PSII, 

but the most severe effects will not necessarily be concentrated in PSII.  The primary effects 

could include, for example, diminished activity of RUBISCO due either to reduced protein 

synthesis capacity or diminished rates of substrate phosphorylation  (Falkowski and Raven 

2007).  Comparatively little work appears to have been done on the mechanisms by which P 

limitation regulates photosynthesis and variable fluorescence in microalgae, but the present 

results point to some possibly distinctive differences in response to these two 

macronutrients.  

 The results in this study show promise for application of Fv/Fm and σ PS II in 

determining nutrient status in freshwater phytoplankton communities, but some reports 

suggest otherwise.  Some laboratory studies using cultures of marine phytoplankton have 

concluded that Fv/Fm is not a reliable indicator of nutrient status (Cullen et al. 1992, Parkhill 

et al. 2001, and Kruskopf and Flynn 2006).  For example, Kruskopf and Flynn (2006) 

examined the relationship of Fv/Fm to both N- and P-limited growth rate in continuous 

cultures of four different phytoplankton species.  They failed to find consistent relationships 

between Fv/Fm and the degree of nutrient stress, as quantified by the growth rate.  Under 

nutrient replete conditions, Fv/Fm can vary widely among algal taxa, confounding the effects 
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of physiological variations (Parkhill et al. 2001, Suggett et al. 2009).  Diatoms and 

chlorophytes, for example, have been observed to have higher Fv/Fm values compared to 

most species of cyanobacteria and rhodophytes.  According to these studies, a common 

maximum value for Fv/Fm cannot be assigned for all algal groups (Suggett et al. 2009) and 

deviations from it are not necessarily interpretable in terms of nutrient deficiency.  This also 

opens the possibility that correlations between Fv/Fm and nutrient status in natural 

communities may actually reflect underlying shifts in community structure. 

 The selection of samples for analysis of phytoplankton community composition in 

this study was representative of samples from nutrient sufficient, P-deficient and N-deficient 

sites.  It was not intended as a systematic survey of community composition in the lake, 

which limits the scope for comparison to previous studies.   The total number of 

phytoplankton taxa observed in the WB, WCB, and CB, for example, was 158 whereas from 

1983 to 1993, 286-288 taxa were reported from offshore stations of Lake Erie (Makarewicz 

et al. 1999 and Barbiero and Tuchman 2001).  Here, the more limited sampling effort 

(including absence of samples from EB) in the present study likely played a role.    

 Cyanobacteria were important in most samples from nutrient-sufficient and N-

deficient sites (Fig. 8 a-c), particularly in WB and especially in June, when they dominated 

the biomass. The general tendency towards a higher proportion of cyanobacteria in WB than 

CB, and in summer (June) compared to spring (May) was consistent with descriptions from 

the late 1990s (Barbiero and Tuchman 2001, Carrick 2004) but the overall importance of 

cyanobacteria was greater. This could reflect differences in sampling designs, but it is 

consistent with indications that cyanobacterial biomass increased from the mid- to late-

1990’s to the early 2000’s (Conroy et al. 2005). Cyanobacterial importance was greater at 
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sites showing N deficiency, and less at those showing P deficiency, compared to nutrient 

sufficient sites. This was apparent in both May and June despite differences in the species 

composition of the cyanobacteria and of the basin-average degree of N deficiency between 

the two months. It appears that N deficient conditions can offer an advantage to 

cyanobacteria of diverse size and morphology in Lake Erie.  

The small cyanobacteria that predominated in spring are mostly not known to fix 

atmospheric nitrogen but may be good competitors where light is limited and small size 

confers an advantage in taking up NH4
+ (Murphy 1980, Morel et al. 1991, Stolte and 

Reigman 1996, Roberts and Howarth 2006).  Compared to the green alga Scenedesmus, for 

example, the unicellular form of Microcystis can be an effective competitor for ammonium 

(Yoshida et al. 2007) while Synechococcus can be successful at low concentrations of both 

NO3
- and NH4

+  (Hyenstrand et al. 2000).  Another possible advantage to cyanobacteria, 

both large and small, is the ability to mobilize nitrogen from their phycobilisomes in times 

of shortage (Stolte and Riegman 1996, Campbell et al. 1998.  In summer, larger filamentous 

and colonial taxa became important. Some of these (e.g. Anabaena sp. and 

Cylindrospermopsis sp.) have heterocysts, suggesting nitrogen fixation activity. Others, such 

as Microcystis sp., are not known to fix nitrogen.  However, Microcystis sp. was also an 

example of the diversity evident within the major phytoplankton groups. Although important 

in June, it violated the general pattern for cyanobacteria in having little association with 

either N or P deficiency according to the CCA (Fig. 2.9).   

The increased importance of cyanobacteria at N deficient sites would likely 

contribute to the observed inter-site correlations between Fv/Fm, σ PS II and N deficiency.   

Both Fv/Fm and σ PS II measurements have been reported for cyanobacterial species, 
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particularly those containing a considerable amount of phycocyanin (Campbell et al. 1998).  

The cellular phycobiliprotein content influences the Fo level fluorescence, particularly when 

phycobiliprotein levels are high.  As a result, higher values of phycobiliprotein may 

contribute to a lower value of Fv/Fm, and σ PS II values may appear to be lower than other 

taxa due to the blue excitation waveband employed by the FRRF.   Since PS II absorption is 

dominated by phycobilisomes, the fluorescence excitation spectrum in PS II for 

cyanobacteria is much lower in blue than orange light (Campbell et al. 1998).     

Previous reports of Fv/Fm for cyanobacteria cultures in nutrient replete conditions 

were usually in the range of 0.3-0.6 (Suggett et al. 2009). In this study, Fv/Fm values were 

observed at N deficient sites ranging from 0.17-0.2 much lower than the observed laboratory 

values.  Also, evidence from traditional nutrient status indicators suggests N deficiency, 

primarily in the WB of Lake Erie.  Furthermore, another possibility of low Fv/Fm values at N 

deficient sites could be that the phytoplankton biomass was not exclusively cyanobacterial, 

and other groups often contributed half or more of the total. While controlled studies on 

many of the important cyanobacterial (and other) phytoplankton taxa that were important in 

our samples are lacking, it appears that variable fluorescence values in this study could track 

changes in taxonomy, it could also be an indication on changes in nutrient status. Further 

experimental work is needed to address this challenge. For example, nutrient amendment 

experiments, in conjunction with studies like the present one may have potential for 

assessing this possibility.   

Flagellates from the chrysophyte and cryptophyte groups were generally more 

important in CB than WB, and in June and September than in May.  Their increased 

prevalence in summer was consistent with the findings of Barbiero and Tuchman (2001) but 
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their importance in WB was less then other basins.  This could again reflect differences in 

sampling design or a real difference between the algal communities in the late 1990s and 

2005.  These algal groups showed the most pronounced association with nutrient status, 

being greatly elevated in importance under P deficiency in all basins and sampling months 

(Fig. 2.8). Some species within these groups are known to be nutritionally opportunistic, 

switching between autotrophy and heterotrophy depending upon cellular and environmental 

conditions (Watson et al. 1997).  One can consider mixotrophic capabilities a successful 

strategy when resources are limited, particularly where P is limiting and bacterioplankton, 

with their typically low C:P ratios, are available.  Experiments with cultured mixotrophic 

flagellates (Nygaard and Tobiesen 1993 and Olrik et al. 2007) support the view that 

phagotrophic activity can be induced under conditions of limited inorganic nutrient 

availability. The apparent selection for chrysophyte flagellates under P deficiency observed 

here echoes the strong association of such phytoplankton with very low P lakes (e.g.  

Watson et al. 1997).   

  At P deficient sites much lower Fv/Fm values were observed compared to nutrient 

sufficient sites (Table 2.2 to 2.4). In this study, Fv/Fm values ranged from 0.9 to 0.2. These 

values show a striking contrast to known laboratory  values for nutrient replete flagellates. 

Suggett et al. (2009) have showed that nutrient replete flagellates often have high values of 

Fv/Fm ranging from 0.5-0.7. Based on these measurements, it seems that taxonomic shifts 

may not be the main cause of variation in the fluorescence indicators. Also, based on the 

traditional P status assays, evidence of physiological deficiency was observed when Fv/Fm 

measurements were low. 
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 While changes in taxonomic composition seem unlikely to fully explain the 

correspondence between Fv/Fm and nutrient status observed in this study, it remains unclear 

why such relationships are evident in this study and some others on natural communities 

(e.g. Sylvan et al. 2007), when more controlled measurements on algal cultures are less 

encouraging (e.g. Parkhill et al. 2001, Kruskopf and Flynn 2006).   One possibility is that 

relatively ideal laboratory steady state conditions involving highly predictable 

environmental conditions may not be as applicable in natural environments, where 

variations of temperature, light, mixing energy, grazing and nutrient inputs could affect the 

uptake rates of nutrients to optimize nutrient utilization in phytoplankton. The costs of 

accommodating the additional stressors and variable (but often suboptimal) environmental 

conditions in nature may prevent phytoplankton from fully maintaining the physiology of 

PSII.   

 The CCA biplot (Fig. 2.9) gave a somewhat different view of relationships among 

nutrient status and variable fluorescence, compared to the bi-variate analyses (Fig. 2.5 and 

2.6).  For example, the demonstrated bi-variate relationships between Fv/Fm and P 

deficiency, and between σ PS II and N deficiency, were scarcely evident and it would appear 

that N deficiency was much the strongest influence on Fv/Fm.  In part this could be a result 

of compressing the multi-dimensional relationships into just two dimensions (Table 2.5 and 

2.6). However, it also reflects the greater observed frequency of low Fv/Fm and N deficiency, 

compared to low Fv/Fm and P deficiency, and the strong association between N deficiency 

and community composition. This surprising result for the “P-limited” Lake Erie is an 

example of how the long-term biogeochemical limitation (in this case, P) can nonetheless be 

accompanied by significant occurrence of other limitations (Elser et al. 2007, Sterner 2008). 
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The CCA plot also confirmed and helped further visualize the strong associations between 

nutrient status and community composition. In addition to the associations already noted, it 

shows that dinoflagellates such as Gymnodinium were particularly associated with nutrient 

sufficient conditions, as were some diatoms.    

This study was the first to combine determinations of variable fluorescence, 

independent measures of nutrient status, and analysis of phytoplankton species composition 

to assess their inter-relationships in natural communities.  The fluorescence parameters 

revealed strong responses to nutrient deficiency, despite changes in community composition.  

Two distinct patterns of nutrient status were observed:  the highest Fv/Fm and lowest σ PS II 

values were reported in nutrient sufficient sites, and the lowest Fv/Fm and highest σ PS II 

values were reported in N and P deficient sites (Fig. 2.10).  
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Figure 2.10 Scatter plot of Fv/Fm vs. Sigma (σ) PS II. Points represent samples/station 
 

Despite some indictions that Fv/Fm and σ PS II differed in their responses to N and P 

deficiency, as noted above, the two measures were unfortunately not able to distinguish 

between N and P deficiency in this sample set.  Additional work would be desirable to 
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further assess the significance of the apparent incidence of both N and P deficiency in lakes 

such as Erie, and to further fortify the conclusion that both types of limitation really occur.  

Such work could include additional sampling in locations where P deficiency is likely to be 

strong (e.g. some small inland lakes) or weak (nutrient rich lakes) and to determine if the 

incidence of N deficiency would follow the expected pattern of greater frequency in more 

eutrophic habitats.  Simple extensions of the experimental protocols described here, notably 

experimental amendments with N and/or P, also have promise for further assessing the basis 

for, and implications of, variable patterns of N and P deficiency in lakes.  
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Chapter 3.  Nutrient deficiency and the irradiance response of pulse-amplitude 
modulated (PAM) fluorescence in Lake Erie phytoplankton. 

 
Overview  
    Phytoplankton in Lake Erie have displayed seasonally- and spatially varying patterns 

of P and N deficiency in previous studies. To further assess these patterns and examine  

more informative measures of nutrient status, I used PAM fluorescence to measure the 

maximum quantum efficiency (Fv/Fm) of photosystem II (PSII) and rapid light-response 

curves (RLC) of natural communities in 2006. Parallel measurements of nutrient status, 

using chemical and physiological assays as well as enrichment experiments, provided 

independent indices of nutrient status.   Confirming previous reports, Fv/Fm was generally 

maximal in the more eutrophic west basin (WB) and minimal in the central basin (CB), 

while P deficiency was generally highest in the CB during summer stratification and N 

deficiency was highest in the WB during isothermal conditions.  Like Fv/Fm, the electron 

transport rate at light saturation (ETRmax) and the initial slope of the ETR vs. irradiance 

curve (α) decreased as the severity of N and P deficiency increased. N and P enrichment for 

24 hours stimulated increased Fv/Fm, ETRmax and α in N and P deficient samples 

respectively. The enrichment results were consistent with the view that the N and P 

deficiency assays, and corresponding variations of variable fluorescence parameters, were 

valid indicators of widely variable N and P deficiency in the phytoplankton.   Contrary to 

my hopes, it did not appear that RLC responses provided more sensitive measures of 

deficiency than Fv/Fm alone, or a reliable discrimination between N and P deficiency. 

Identification of the most limiting nutrient still demanded additional information beyond the 

variable fluorescence measurements. 
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3.1 Introduction 

 

In freshwater ecosystems, nitrogen (N) and phosphorus (P) frequently appear  to be 

the two most important nutrients limiting phytoplankton growth (Lean et al. 1981, Hecky 

and Kilham 1988, Dodds et al. 1993) and can result in manifestation of deficiency 

symptoms in phytoplankton (e.g. Healey and Hendzel 1980). The severity of nutrient 

limitation is variable and is thought to help shape phytoplankton community dynamics (e.g. 

Teubner and Dokulil 2002, Teubner et al. 2003). Measures of the nutrient status of 

phytoplankton, based on their physiological response to deficiency, can help identify the 

patterns of nutrient limitation and elucidate how nutrients determine seasonal and spatial 

patterns in phytoplankton communities (Healey and Hendzel 1980). As explained in chapter 

2, effective indices of, and assays for, nutrient status of phytoplankton have been developed 

but none is without its limitations.  A particular need is for methods that are rapid to use, 

specific to phytoplankton, unambiguous in their diagnosis and, ideally, capable of 

discriminating which inorganic nutrient is most limiting at the time.  

The variable fluorescence of chlorophyll a (Fv/Fm) has for some time been considered 

a promising tool for detecting nutrient deficiency (e.g. Kolber and Falkowski 1993) that can 

meet at least some of the aforementioned criteria.  It can be measured using Pulse Amplitude 

Modulated (PAM) and Fast Repetition Rate (FRR) fluorometers that are commercially 

available and convenient to use even on natural phytoplankton samples with low 

concentrations of chlorophyll a (Chl a). Chapter 2 described some of the disparate results 

that other researchers have obtained with Fv/Fm, including evidence (mainly from laboratory 

cultures) that constitutive differences between taxonomic groups, and widely variable 
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physiological responsiveness of Fv/Fm within some taxa, might confound its use as a nutrient 

status indicator.  Despite this, chapter 2 showed that Fv/Fm correlated well with independent 

indices of N and P deficiency in Lake Erie, and encouraging results have been obtained in 

other field applications (e.g., Sylvan et al. 2007).  Although taxonomic composition in Lake 

Erie also varied with Fv/Fm, the range of variation in fluorescence and its excellent 

correlation with other nutrient status assays showed that it was most likely reflecting 

physiological variations of nutrient deficiency and not just taxon-based constitutive 

differences. The purpose of this chapter is to verify and strengthen the conclusions from 

Chapter 2 with evidence from an additional type of assay, nutrient amendments,  and to 

explore the potential of some of the additional capabilities of PAM fluorometry. Of 

particular interest was the variable fluorescence expressed under photosynthetically-useful 

irradiance (also known as actinic irradiance). 

Dark adapted Fv/Fm values reflect the maximum quantum yield of PS II, which is 

sensitive to many environmental factors that alter the algal physiological state (Kolber et al. 

1988, Falkowski and Raven 2007).  In the presence of photosynthetic irradiance, the 

functional quantum yield (denoted ΔF/Fm’) of photosystem II (PS II) is measured and can 

provide estimates of photosynthetic electron transport rates (ETR) through PS II (Genty 

1989, Geider et al. 1993, Kobler et al. 1993, Ralph and Gademann 2005). Commercially-

available PAM fluorometers make it quite easy to measure the functional relationship 

between photosynthetic irradiance and ΔF/Fm’ (and by inference ETR).  The resulting ETR 

vs irradiance relationships, termed rapid light curves or RLCs, have been proposed as useful 

tools for determining physiological changes in algae (Ralph and Gademann 2005). Insofar as 

nitrogen, iron and phosphorus deficiency affects the irradiance dependence and maximum 
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values of photosynthesis in many types of algae (e.g. Senft 1978, Osborne and Geider 1986, 

Cleveland and Perry 1987, Greene et al. 1991), RLCs may be a more robust indicator of 

nutrient stress than Fv/Fm.  

ETR measurements can have a variable relationship to oxygen evolution or inorganic 

carbon fixation (Gilbert et al. 2000 and Beer and Axelsson 2004), in part because of the 

existence of multiple pathways for electron flow (Prasil et al. 1996, Kana et al.  2002). Such 

alternative pathways (i.e., alternative to a linear electron flow to carbon fixation) may allow 

cells to dissipate excitation energy and maintain high ΔF/Fm’ even if linear electron flow is 

inhibited. The Mehler reaction, for example, can maintain electron flow through PSII 

without any net production of oxygen or fixation of carbon (Falkowski and Raven 2007).  

Nonetheless, Kolber et al. (1988) found that nitrogen deficiency increased the susceptibility 

of the ETR to photoinhibition in some marine phytoplankton taxa, while Shelley et al. 

(2007) demonstrated that N deficiency decreased the light-saturated ETR in the green algal 

Chlorella emersonii. P starvation causes re-allocation of excitation energy and changes in 

light-saturated PSII activity in some algae (Wykoff et al. 1998), while  Hiriart- Baer et al. 

(2008) showed that high C:P ratios (indicative of P deficiency) in benthic macroalgae in 

Lake Ontario were associated with decreased Fv/Fm and ETR. 

In addition to allowing an estimate of light-saturated ETR, the initial slope of an 

RLC provides a measure of the efficiency of the phytoplankton in translating light into 

electron transport at limiting irradiance levels.  This offers another metric of photosynthetic 

performance that may be less influenced by alternate electron pathways.  Not only the 

Mehler reaction but also some other alternate pathways (e.g. plastoquinone terminal oxidase, 

Mackey et al. 2008) are thought to be less important under limiting than saturating 
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irradiance.  There may also be potential for discriminating between different types of 

nutrient deficiency (e.g. N versus P) by comparison of light-saturated ETR and the initial 

slope of the RLC. N deficiency tends to limit production of many cell proteins, but 

chloroplast-encoded proteins essential to PSII functioning appear to suffer more relative to 

nuclear-encoded proteins associated with light harvesting chlorophyll complexes in at least 

some algae (Kolber et al. 1988, Falkowski et al. 1989). This tends to depress Fv/Fm (and 

ΔF/Fm’) while elevating the PSII-specific light harvesting efficiency (functional cross 

section).  This effect may be relatively specific to N deficiency, which is proposed to limit 

amino acid synthesis and favour translation of the nuclear-encoded proteins (Falkowski and 

Raven 2007). The same mechanisms might not be specifically induced by P limitation, 

which might rather be expected to constrain overall protein synthesis rates (Arrigo 2005) 

and the availability of phosphorylated substrates for carbon fixation (ATP production and 

Calvin – Benson cycle intermediates). Specific predictions are difficult to make, and it is 

important to recognize that the functional cross section of PSII is a different quantity from 

the initial slope of an RLC.  It nonetheless seems possible that N and P deficiency might be 

manifested in differential effects on maximum ETR versus initial slope, but no evidence on 

this appears to have been published. 

 Another useful extension of variable fluorescence methods involves measuring 

responses to nutrient additions. Such assays have potential to provide a more convincing 

demonstration that any impairment of variable fluorescence is truly due to nutrient 

deficiency and to identify the nutrient responsible. The nutrient induced fluorescence 

transient (NIFT) bioassay examines short term (minutes) changes in Fv/Fm (Turpin and 

Wegner 1988). The response can include a transient drop in fluorescence and a subsequent 
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increase (Wood and Oliver 1995), which can complicate interpretation, but NIFTs have been 

studied in laboratory cultures to characterize responses to phosphate, nitrate and ammonia 

amendments (Turpin and Weger 1988, Wood and Oliver 1995, Shelley et al. 2007).  Longer 

term (hours) responses to the addition of a limiting nutrient should normally reveal an 

increase in Fv/Fm, as shown by Sylvan et al. (2007) for P-deficient marine phytoplankton 

communities.   

Lake Erie has been shown to display variable degrees of both N and P deficiency 

(Guildford et al. 2005, Chapter 2 of this thesis) associated with shifts in community 

structure, suggesting an important structuring effect of both nutrients in this lake. However, 

there are still aspects of the results for Lake Erie that present challenges to my 

understanding. Notably, the occurrence of N deficiency in such a high nitrate lake is 

unexpected and still not well-explained, raising the possibility that the nutrient assays used 

to date are somehow misleading. There was also frequent disagreement between some of the 

stoichiometric indicators (N:P and C:P), metabolic bioassays (N/P debt and APA) and Fv/Fm 

measurements used to infer nutrient status.  A more direct confirmation that Fv/Fm truly 

reflects nutrient status in this lake, and progress towards better means of identifying the 

limiting nutrient, would be highly desirable.   

 The first objective of this study was to confirm, with additional observations in a 

subsequent year (2005), that previous indications of N and P deficiency in Lake Erie are 

reproducible. The second objective was to use amendment experiments to further test 

whether the previously-used assays are correct in their indications of N and P deficiency. 

The third objective was to test the idea that variable fluorescence measured under excitation 
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pressure (RLC’s) may provide a more sensitive measure of nutrient status and even an 

indication of which nutrient might be limiting.  

 
 
3.2 Methods 
3.2.1 Study Site and Design 

 

 Water samples were collected in early May and late June of 2006 in the western 

basin (WB), western-central basin (WCB) and central basin (CB) of Lake Erie aboard the 

CGGS Limnos. There is often a particularly strong gradient in nutrients and plankton 

abundance from WB to CB, with the western part of CB often denoted as an additional sub-

basin (west central basin, or WCB) due to its distinctive nutrient, plankton and circulation 

features (e.g. Leon et al. 2005). Sampling sites for this study (Fig. 1) were distributed in 

WB, WCB and CB to obtain the best representation of the strong spatial variability in the 

western part of the lake. 

 

 

Figure 3.1 Distribution of sampling stations in the western, central-west and central basin of 
Lake Erie 2006.  
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 Water samples were collected using 8 L Niskin bottles mounted on a Rosette  with a 

CTD (Seabird TM) sampler. Immediately after collection, water was transferred to 20 L 

polyethylene carboys covered in black plastic bags to prevent light shock.  

The physical variables measured in this study were temperature profiles from the 

Seabird CTD and vertical profiles of photosynthetically active radiation (PAR) from a PAR 

sensor attached to the Fast Repetition Rate fluorometer (FRRF Fasttracka TM Chelsea 

Instruments). The vertical attenuation coefficient (Kd) was estimated by linear regression of 

the natural logarithm of PAR vs. depth. The mixing depth (Zmix) and mean PAR of the 

surface mixed layer were calculated according to Hiriart et al. (2002). 

 

3.2.2. Nutrient and Chl a Analysis  
 

Samples for NH4
+  were first run through a polycarbonate filter (0.2 μm pore size) 

and were measured with the orthophtaldialdehyde (OPA) method outlined in Holmes et al. 

(1999). Filtered samples were also analyzed for NO3
-, and nitrite (NO2

-), using a Dionex Ion 

Chromatograph (ICS 2500). All samples were frozen in the field and analyzed immediately 

upon returning to the laboratory.  

Particulate C and N samples were analyzed by the methods described by Strickland 

and Parsons (1972). The filters were dried and placed in desiccators containing hydrochloric 

acid for 24 h. C/N filters were autoclaved for 5 hours at 980oC. A C/N autoanalyzer (Exeter 

Analytical Inc. CEC-440) was used to measure particulate C and N.  

 TP and SRP analysis followed the same procedure outlined in Chapter 2  and Chl a 

measurements were done in triplicate using GFF glass fiber filters (0.7 µm, 47 mm) using 

the method outlined by Strickland and Parsons (1972).  
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3.2.3 Phytoplankton Nutrient Status Indicators  
 

 P and N limitation were assessed by stoichiometric ratios (particulate C:P and C:N) 

and metabolic assays (N/P debt and APA) (Healey and Hendzel 1979b). The analysis of N 

debt, P debt and APA followed the procedure outlined in Chapter 2. Sites were only 

classified as N deficient when N status indicators (N debt and C:N) were both above the 

threshold of deficiency (Table 3.1), and as P deficient when P debt, C:P and APA were 

above the threshold of deficiency. 

3.2.4 Chl a Fluorescence  
 

Phytoplankton samples (1 L) obtained from the sampling sites, were concentrated 

onto 24-mm glass fiber filters (GF/F, Whatman, Springfield Mill, U.K.) under low 

(<10mmHg) vacuum. Phytoplankton were dark adapted for 30 min on filtered lake water in 

covered Petri dishes to keep cells hydrated. A pulse amplitude modulated (PAM) 

fluorometer (Diving PAM, Heinz Walz, Germany) was used to measure Chl a fluorescence. 

The quantum efficiency of PS II (Fv/Fm) was calculated by instrument software (Walz 1993) 

and fluorescence rise kinetics were inspected to verify that maximum fluorescence (Fm) was 

obtained (i.e. to verify that a clear plateau in fluorescence was observable within the period 

of the saturation pulse). Gain was adjusted and all measurements were corrected for 

background signal using a blank consisting of distilled water filtered onto 24-mm glass fiber 

filters (Walz 1993). 

 Rapid light curves (RLCs) were constructed by exposing the sample to 9 

progressively-increasing actinic (photosynthetic) light levels.  Maximum actinic light was 
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1150 µmol m-2s-1 and the exposure period per level was 20 s. The instrument measures the 

effective quantum yield of PS II (Fv’/Fm’) and calculates the relative ETR as the product of 

Fv’/Fm’ and actinic light flux. The RLCs were fitted to a model that allows for 

photoinhibition at high irradiance (Platt et al. 1982): 

 

PB = pB
s [1 - exp (-α l/ PB

s)  exp (-βI/PB
s)     Eq. 3.1 

 

Where PB in the original application is the carbon fixation rate normalized to the chlorophyll 

biomass but here is ETR (which is intrinsically normalized to chlorophyll).  pB
s [mg C (mg 

Chl a) -1 h -1] is thus the maximum ETR of the experimental population if there were no 

photoinhibition, α[(mg C mg Chl a) -1 h-1 (W m-2) -1] is the initial slope of the  RLC, β 

describes the strength of the photoinhibition and  I is the  actinic light level.   If there is no 

photoinhibition then β is not significantly different from zero.  In such cases, a simpler 

model was used: 

 

PB = pB
s [1 - exp (-α l/ PB

s)   Eq. 3.2  

 

Amendment experiments were used to assess responses to potentially limiting 

nutrients. From each site, water samples were collected into three 1L acid washed carboys. 

Two of the carboys contained 5 µM aliquots of either ammonia (NH4Cl) or phosphate 

(KH2PO4
3-). The third carboy was the control and received no additions. All three carboys 

were incubated in temperature controlled and dark adapted environments with a maximum 

deviation of site temperature of +5oC. After 24 h, Fv/Fm and RLC’s were measured as 
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described above.   Two-way Analysis of Variance (ANOVA) was used to test for differences 

between lake sites (basins), treatments, and their interactions on Chl a fluorescence 

parameters (Fv/Fm, α and ETRmax).  When significant effects were detected, the Holm-Sidak 

multiple comparison test was used to test for differences between site/treatment means and 

Chl a fluorescence values.  This was chosen over the more commonly applied Tukey’s test 

and Boneferroni tests because it is considered to be more for independent comparisons 

(Shaw 2003). 

 
3.3 Results 
 
3.3.1 Environmental Conditions 
  

 In May, there was no thermal stratification and mean surface temperatures ranged 

from 6.01 to 9.10 oC, highest in the WB.  All three basins were thermally stratified in June 

and temperature values ranged from 22.30 to 25.60oC with the highest values in WB.  Mean 

PAR was highest in June, as the mixing depth became shallower and vertical attenuation 

coefficients (Kd) were smaller (Tables 3.2 and 3.3). 

 Spatially, TP and SRP concentrations were highest in WB in May and June while the 

lowest concentrations were reported in CB.  NO3
- and NH4

+ concentrations were also high in 

May (WB) and low in June. However, the spatial trend from WB to CB was weak compared 

to TP and SRP (Tables 3.2 and 3.3). In contrast,  soluble reactive silicate (SrSi) values were 

highest in the CB for both May and June. Mean Chl a concentrations (Tables 3.2 and 3.3) 

were higher in the WB for both sampling months, with June concentrations being much 

higher due to the presence of Microcystis sp. blooms.  
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Table 3.1 Nutrient status indicators. Values either show an absence, presence or the degree 
of nutrient limitation for phytoplankton. Criteria for nutrient limitation are based on Healey 
and Hendzel (1979b) and adapted from Guildford et al. (2005) 

 

 

3.3.2 Phytoplankton Nutrient Status Assays  
  

 The average values of N debt and C:N in May were both above the threshold of 

deficiency (Table 3.1)  in the WCB and WB, however the highest values were found in the 

WB. In June there was no evidence of N deficiency. For the P status indicators, the average 

particulate C:P  ratios in May suggested moderate P deficiency in the WCB and CB, and in 

June in the WCB and CB (Tables 3.2 and 3.3). In May, average APA values were above the 

deficiency threshold in CB, while in June the values were highest in WCB and CB. Values 

were highest overall in June and lowest in May. Average P debt values had a similar pattern 

among basins and months as APA except that May values in WCB were in the non-deficient 

range.  The P debt values did support the APA pattern of greatest overall deficiency in June 

and least in May.  

 
 
 
 
 

Indicator Nutrient  No 
deficiency 

Moderate 
deficiency  

Extreme 
deficiency  

Deficient 

C/N (atomic ratio)   N <8.3 8.3-14.6 >14.6  
N debt (µmol N µg Chl a -1)   N <0.15   >0.15 
C/P (atomic ratio)    P <129 129-258 >258  
N/P (atomic ratio)    P <22   >22 
P debt (µmol P µg Chl a -1)   P <0.075   >0.075 
APA (µmol P µg Chl a -1 h-1)   P <0.003 0.003-0.005 >0.005  
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Table 3.2  Concentrations of chemical, biological and physical data, May 2006 Lake Erie. 
(Bold = values above the threshold of deficiency) 
 
Chl a Fluorescence Western Basin Central-west Basin Central Basin
Chl a (µg L-1) 2.01 + 0.62  (8) 1.85 + 0.74 (3) 1.78 + 1.34 (8)
Fv/Fm 0.154 + 0.081 (8) 0.205 + 0.066 (3) 0.125 + 0.062 (8)
Fv/Fm C 24 0.144 + 0.006 (8) 0.293 + 0.037 (3) 0.288 + 0.037 (8)
Fv/Fm N 24 0.401 +0.147 (8) 0.312 + 0.088 (3) 0.287 + 0.051 (8)
Fv/Fm P 24 0.276+ 0.043(8) 0.211 + 0.114 (3) 0.289 + 0.040 (8)

Ik 210.12+ 9.30 (8) 157.20 + 18.08 (3) 200.90 + 11.73 (8)
Ik C 24 222.30+ 9.60 (8) 187.30 + 17.54 (3) 192.22 + 10.43 (8)
Ik N 24 173.20 + 39.15 (8) 222.40 + 15.90 (3) 212.22 + 1.41(8)
Ik P 24 232.22  + 18.1 (8) 198.40 + 16.45 (3) 202.41 + 17.75 (8)
ETRmax 25.20 + 5.02 (8) 22.20 + 4.87 (3) 18.73 + 4.34 (8)
ETRmax C 24 39.44 + 1.10 (8) 27.40 + 4.54  (3) 35.30 + 8.15(8)
ETRmax N 24 61.22 + 1.14 (8) 61.10 + 5.01 (3) 51.22 + 7.07 (8)
ETRmax P 24 50.11+ 2.81 (8) 51.20 + 2.45 (3) 48.50 + 2.81 (8)
α 0.12 + 0.04  (8) 0.14 + 0.87 (3) 0.09  + 0.06 (8)
α C 24 0.19+ 0.06 (8) 0.12 + 15.06 (3) 0.15 + 0.12 (8)
α N 24 0.34 +0 .01 (8) 0.26 + 0.02 (3) 0.19 + 0.14 (8)
α P 24 0.20 + 0.11(8) 0.21 + 0.06 (3) 0.13 + 0.16 (8)
Physiological Assays
CN (atomic ratio) 13.22 + 2.61 (8) 10.72 + 2.29 (3) 7.30 + 2.36 (8)

N Debt (µmol N µg Chl a-1) 0.21 + .02 (8) 0.18 + 0.12 (3) 0.14 + 0.06 (8)
CP (atomic ratio) 111.5 + 152.2 (8) 144.2 + 150.2 (3) 155.4 + 12.3 (8)

APA (µmol P µg Chl a-1h-1) 0.001 + 0.002 (8) 0.002 + 0.002 (3) 0.002 + 0.001 (8)
P Debt (µmol P µg Chl a-1) 0.05 + 0.01 (8) 0.04 + 0.01 (3) 0.07+ 0.02 (8)

Physical
Surface Temp (oC) 9.10 + 2.10 (8) 6.33 + 1.21 (3) 6.01 + 1.32 (8)
Max Depth (m) 6.65 + 0.91 (8) 13.20 + 0.60 (3) 14.65 + 2.20(8)
Mixing Depth (m) 6.65 +0 .91(8) 13.20+ 0.60 (3) 14.65 + 2.20 (8)
kd (m-1) 0.52 + 0.33 (8) 0.47 + 0.63 (3) 0.35 + 0.30 (8)
Mean PAR (µmol m-2 s-1) 83.57  + 12.75 (8) 79.54 + 27.03 (3) 83.25 + 13.01 (8)
Chemical
TP (µmol L-1) 0.69 + 0.09 (8) 0.52+ 0.05  (3) 0.38 + 0.05 (8)
SRP(µmol L-1) 0.16 + 0.00 (8) 0.11 + 0.03 (3) 0.07 + 0.03 (8)
NO3

-(µmol L-1) 13.53 + 2.44 (8) 12.07 + 3.22 (3) 12.04 +1.79 (8)
NH4

+(µmol L-1) 1.58 + 0.17 (8) 0.85 + 0.04(3) 0.78 + 0.06 (8)
SrSi (µmol L-1) 1.42 + 0.91 (8) 0.94 + 0.03 (3) 2.32 + 0.53 (8)  
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Table 3.3  Concentrations of chemical, biological and physical data, June 2006 Lake Erie. 
(Bold = values above the threshold of deficiency) 
 
Chl a Fluorescence Western Basin Central-west Basin Central Basin
Chl a (µg L-1) 16.01 + 4.62  (8) 4.85 + 1.74 (3) 0.87 + 0.34 (8)
Fv/Fm 0.454 + 0.181 (8) 0.105 + 0.166 (3) 0.089 + 0.052 (8)
Fv/Fm C 24 0.444 + 0.212 (8) 0.193 + 0.137 (3) 0.158 + 0.137 (8)
Fv/Fm N 24 0.401 +0.221 (8) 0.282 + 0.258 (3) 0.187 + 0.151 (8)
Fv/Fm P 24 0.386+ 0.103(8) 0.311 + 0.214 (3) 0.519 + 0.240 (8)
Ik 121.12+ 6.30 (8) 125.20 + 18.08 (3) 146.90 + 1.73(8)
Ik C 24 167.30+ 5.60 (8) 145.30 + 17.54 (3) 180.30 + 19.46 (8)
Ik N 24 182.20 + 19.15 (8) 173.40 + 13.90 (3) 172.22 + 9.43 (8)
Ik P 24 182.22  + 18.63 (8) 178.40 + 166.45 (3) 180.41 + 11.75 (8)
ETRmax 34.20 + 5.02 (8) 32.20 + 4.87 (3) 24.73 + 8.34 (8)
ETRmax C 24 39.44 + 4.27 (8) 37.40 + 6.50  (3) 40.30 + 1.21 (8)
ETRmax N 24 51.22 + 4.15 (8) 49.20 + 5.02 (3) 41.22 + 7.07 (8)
ETRmax P 24 50.11+ 7.84 (8) 54.20 + 8.65 (3) 65.50 + 2.82 (8)
α 0.28 + .04  (8) 0.26 + 0.87 (3) 0.12  + 0.06 (8)
α C 24 0.24+ .06 (8) 0.22 + 15.06 (3) 0.25 + 0.12 (8)
α N 24 0.28 + .01 (8) 0.21 + 0.02 (3) 0.24 + 0.14 (8)
α P 24 0.28 + .11 (8) 0.25 + 0.06 (3) 0.36 + 0.16 (8)
Biological
CN (atomic ratio) 5.24 + 2.01 (8) 5.72 + 2.29 (3) 7.30 + 2.36 (8)
N Debt (µmol N µg Chl a-1) 0.12 + .02 (8) 0.14 + 0.12 (3) 0.12 + 0.06 (8)
CP (atomic ratio) 111.5 + 152.20 (8) 144.2 + 150.20 (3) 201.2 + 52.30 (8)

APA (µmol P µg Chl a-1h-1) 0.001 + .002 (8) 0.008 + 0.002 (3) 0.015 + 0.009 (8)

P Debt (µmol P µg Chl a-1) 0.05 + .05 (8) 0.08 + 0.04 (3) 0.11 + 0.04 (8)

Physical
Surface Temp (oC) 25.60 + 0.90 (8) 22.3 + 0.60 (3) 23.2 + 2.20 (8)
Max Depth (m) 6.65 +0.90 (8) 13.2 + 0.60 (3) 14.65 + 2.20 (8)
Mixing Depth (m) 4.80 + 2.30 (8) 6.01 + 1.10 (3) 4.68+ 0.11 (8)
kd (m-1) 0.45 + 0.33 (8) 0.42 + 0.63 (3) 0.35 + 0.30 (8)
Mean PAR (µmol m-2 s-1) 123.5  + 12.75 (8) 167.4 + 27.03 (3) 219.29 + 33.04 (8)
Chemical
TP (µmol L-1) 0.59 + 0.09 (8) 0.52+ 0.05  (3) 0.48 + 0.05 (8)
SRP(µmol L-1) 0.12 + 0.00 (8) 0.10 + 0.03 (3) 0.07 + 0.03 (8)
NO3

-(µmol L-1) 15.53 + 2.44 (8) 11.03 + 1.12 (3) 12.44 +1.79 (8)
NH4

+(µmol L-1) 1.08 + 0.17 (8) 0.95 + 0.24(3) 1.78 + 0.06 (8)
SrSi (µmol L-1) 0.94 + 0.03 (8) 0.54 + 0.01(3) 1.12 + 0.13 (8)  
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3.3.3 Variable Fluorescence  
  

 In May, the mean values for Fv/Fm ranged from 0.125 to 0.154, where the lowest 

values were in CB. In June, the average value for Fv/Fm was high in WB and low in CB.  

Overall, the mean values of Fv/Fm were lowest in CB and highest in WB. 

 To examine site and date specific relationships between Fv/Fm and nutrient status 

were examined in which the data were screened to focus on the nutrient of interest.  To 

examine relationships with N deficiency, sites that were P and Si deficient were excluded. 

Most of the sites located in the WCB and WB in June, had high Fv/Fm values and these 

values were well below the threshold of deficiency (Fig. 3.2, Table 3.2 and 3.3).  

 

 

 

 

 

 

 

 

 
 
 
Figure 3.2 Scatter plot of Fv/Fm vs. N debt. Each point represents sampling station. Dashed 
line = threshold of deficiency (Healey and Hendzel 1979b) 
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  Sites with N debt above the deficiency threshold had mostly low Fv/Fm values and occurred 

mainly in May. The pattern was similar when the particulate C:N ratio was plotted against 

Fv/Fm (not shown). Pearson’s correlation analysis was used to analyze the relationships 

between the nutrient status variables and Fv/Fm. The relationship between N debt and Fv/Fm 

was significant (r = -0.62, n = 14, p<0.05), whereas the relationship between C:N ratio and 

Fv/Fm was weaker (not shown) (r= -0.38, n = 14, p <0.05).  

 Excluding N and Si deficient sites, P debt and APA values were highest and above 

the threshold of deficiency when Fv/Fm values were low. The reverse was seen when high 

Fv/Fm values were observed when P status indicator values were below the threshold of 

deficiency (Fig. 3.3).  Most of the recordings of  P deficient sites occurred in June. 

Correlation analysis revealed a strong relationship between P debt and Fv/Fm (r = -0.69, n = 

17 p<0.05) as shown in Fig. 3.3, as well as APA and Fv/Fm (not shown) (r = -0.66, n =17, 

p<0.05), though not as strong as for Fv/Fm vs C:P (not shown) ( r = -0.29, n = 17, p <0.05).  

 The fitted parameters of the RLC were used to examine relationships with N debt 

and P debt assays. I chose N and P debt assays instead of particulate ratios to examine the 

associations since the strongest relationships were reported between Fv/Fm and the metabolic 

assays.  Excluding P and Si deficient sites, α values were higher when N debt values were 

low or below the threshold of deficiency (Fig. 3.4). Correlation analysis showed strong 

relationships between α and N debt (r = -0.59, n = 17, p<0.05). However, weak associations 

were witnessed between C:N and α (r = - 0.28, n = 17, p <0.05). The same trend was seen  



 80

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 Scatter plot of quantum yield (Fv/Fm versus P debt. Points represent site/station. 
Dashed line = threshold of deficiency (Healey and Hendzel 1979b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4 Scatter plot of alpha (α) versus N debt. Points represent site/station. Dashed line 
= threshold of deficiency (Healey and Hendzel 1979b)  
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Figure 3.5 Scatter plot of α versus  P debt. Each point represents site/station. Dashed line = 
threshold of deficiency (Healey and Hendzel 1979b).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 Scatter plot of ETR versus N debt. Each point represents site/station. Dashed line 
= threshold of deficiency (Healey and Hendzel 1979b). 
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Figure 3.7 Scatter plot of ETR versus P debt. Each point represents site/station. Dashed line 
= threshold of deficiency (Healey and Hendzel 1979b). 
 

when α was regressed with P debt where r=  -0.68 (n = 17, p<0.05) (Fig. 3.5).  Like C:N, 

C:P values regressed with α had a weaker relationship (r = -0.38 n = 17, p<0.05). ETRmax 

values regressed with N and P debt showed significant and strong associations (r = -0.72, -

0.71, n =17, p<0.05), where low ETRmax values revealed N and P debt values above the 

threshold of deficiency (Fig. 3.6 and 3.7).  When C:P and C:N were regressed with ETRmax, 

like α, the relationships were weak  (r = -0.28, -0.31, n = 17, p<0.05).  

 The response to the amendment assays were visualized by the shapes of the RLC 

fitted to the chosen P-I model for the treatment in question (Fig. 3.8 and 3.9). These curves 

provided interesting results regarding the use of ETRmax as an indicator of nutrient status. N 

deficient samples (Fig. 3.8) showed strong photoinhibition of ETR and low values of 

ETRmax. After 24 hours in darkness but without added nutrient (Control, or C-24 treatment)  
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Figure 3.8  Relationships between ETR and irradiance for N deficient samples. RLC’s  were 
labeled as Initial (N deficient), control (non-amended dark adapted for 24 h), N amended 
(dark adapted for 24 h) and P amended (dark adapted for 24 h). Error bars show  1 + 0.5 
SEM 

 

 
Figure 3.9  Relationships between ETR and irradiance for P deficient samples. RLC’s  were 
labeled as Initial (P deficient), control (non-amended dark adapted for 24 h), N amended 
(dark adapted for 24 h) and P amended (dark adapted for 24 h). Error bars show 1 + 0.5 
SEM 
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higher ETRmax and initial slopes were observed but photoinhibition was still apparent.  

Addition of P (P-amended, or P-24, Fig. 3.8) produced results similar to the no-nutrient 

treatment.  Addition of N (N-amended or N-24 treatment) mostly abolished photoinhibition 

and produced the highest ETRmax and initial slopes.  

 Results were similar for P-deficient samples (Fig. 3.9) in showing strong 

photoinhibition and low ETRmax in the nutrient deficient state (Initial, or P deficient 

treatment).  Holding samples in darkness (C-24) or adding the putative non-limiting nutrient 

(in this case, N) produced similar improvements in ETRmax but photoinhibition was still 

observed. Adding P mostly abolished photoinhibition and resulted in high ETRmax and initial 

slope.  

 One of the objectives of my study was to evaluate if ETRmax and/or α was more 

specific in determining nutrient deficiency compared to Fv/Fm. Amendment assays were also 

used to evaluate the response to N and P addition using Fv/Fm. N deficient phytoplankton 

indeed revealed a positive response to N additions in which average Fv/Fm values increased 

from 0.144 to 0.460 (Fig. 3.10 a). Holding the samples in darkness (C 24) produced only a 

small increase of Fv/Fm in N deficient samples.  P addition produced more of an increase in 

Fv/Fm, but still much less observed with N addition (Fig. 3.10 a). Chl a fluorescence 

parameter, Fv/Fm,  were analyzed using 2- way analysis of variance (ANOVA) to determine 

if significant differences were seen between sites and nutrient addition experiments.  

Samples were screened based upon N or P deficiency. For N deficient samples, Fv/Fm values 

showed significant variation, between sites, treatments, and the interaction between sites and 

treatments (Table 3.4 and 3.5). Post-hoc tests revealed significant differences (p< 0.05) 

between initial N deficient and N 24 treatments in all three basins.  Also, N 24 and P 24 
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treatments differed significantly in all three basins. Initial N deficient and C 24 samples did 

not differ significantly, however initial N deficient and P 24 samples did differ significantly 

in the CB. 

 P deficient phytoplankton likewise showed a strong positive response to P addition, 

with average Fv/Fm values increasing from 0.105 to 0.485 (Fig. 3. 10b).  Based on 2-way 

ANOVA, post-hoc tests revealed significant differences (p<0.05) between initial P deficient 

and P 24 treatments in the CB and WCB. No significant differences (p>0.05) between initial 

and P 24 treatments were observed in the WB.  N 24 and P 24 treatments differed 

significantly, however C 24 and N 24 treatments had comparatively little effect on Fv/Fm of 

the P deficient samples, and showed no statistically significant difference (p> 0.05) between 

initial P deficient with C 24 and N 24 treatments in all lake sites.  

 In comparison, average α and ETRmax measurements were used to evaluate the 

effects of N and P additions on N/P deficient and C 24 sites (Fig. 3.11 a, b and 3.12 a, b).  N 

deficient phytoplankton revealed a strong positive response to N addition in which average α 

values increased from 0.16 to 0.31 and average ETRmax values increased from 23 to 59 (3. 

12 a).  P addition samples did not produce a strong response however, increases in α and 

ETRmax were more pronounced in P addition samples compared to C 24. The RLC 

parameters ETRmax and a were analyzed using 2- way analysis of variance (ANOVA) to 

determine if significant differences were seen between sites and nutrient addition 

experiments.  Samples were also screened based upon N or P deficiency.  ETRmax 

measurements based on post-hoc tests revealed significant differences (p<0.05) between 

initial N deficient, C 24 and N 24 treatments in the CB, WCB, and CB. Initial N deficient 

and P 24 treatments also were significantly different as well as C 24 and P 24 treatments. 
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Likewise, α measurements revealed statistical significant differences between initial N 

deficient, C 24 and N addition treatments for all basins.  Initial N deficient and C 24 

treatments did not differ significantly for ETR and α parameters, however initial N deficient 

and P 24 treatments differed significantly in the CB.  

 Initial P deficient treatments showed a strong positive response to P addition, with 

average α values increasing from 0.12 – 0.30 (3. 11 b) and average ETRmax values increasing 

from 20-58 (Fig. 3. 12b).  N amended treatments produced moderate increases in α and 

ETRmax, however C 24 treatments also had a modest effect on α and ETRmax of the P 

deficient samples.   ETRmax and α  measurements based on post-hoc tests revealed 

statistically significant differences between initial P deficient, C 24, N 24  and P 24 

treatments in all basins.  Initial P deficient and C 24 treatments did not differ significantly. 
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Figure 3.10 a and b. Amendment experiments using Fv/Fm as a response to nutrient status 
change in phytoplankton. The nutrient status data were categorized based on conditions of 
Initial (N deficient), control (non- amended dark adapted for 24 h), N amended ( N 24) and 
P amended  (P 24).  Error bars show  1 +  0.5 SEM  
 



 88

 

Figure 3.11 a and b. Amendment experiments using Fv/Fm as a response to nutrient status 
change in phytoplankton. The nutrient status data were categorized based on conditions of 
Initial (N deficient), control (non- amended dark adapted for 24 h), N amended ( N 24) and 
P amended  (P 24).  Error bars show  1 +  0.5 SEM  
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Figure 3.12 a and b Amendment experiments using ETRmax as a response to nutrient status 
change in phytoplankton. The nutrient status data were categorized based on conditions of 
Initial (P deficient), control (non- amended dark adapted for 24 h), N amended ( N 24) and P 
amended (P 24).  Error bars show  1 +  0.5 SEM 
 



 90

 
Table 3.4 2-way ANOVA revealing significant differences (p <0.05) for Chl a fluorescence 
parameters using lake sites (basins) and nutrient addition treatments as factors.  
 
 

Comparison F-statistic df p value 
Fv/Fm    
Site 45.25 13 0.011 

Treatment 55.65 3 <0.001 
Interaction 124.22 39 <0.001 

    
ETRmax    

Site 22.30 13 0.031 
Treatment 113.00 3 <0.001 
Interaction 102.40 39 0.036 

    
α    

Site 42.12 13 0.011 
Treatment 92.31 3 <0.001 
Interaction 99.68 39 <0.001 

 
 
Table 3.5 2-way ANOVA revealing significant differences (p <0.05) for Chl a fluorescence 
parameters using lake sites (basins) and nutrient addition treatments as factors.  
 
 

Comparison F-statistic df p value 
Fv/Fm    
Site 50.25 16 0.021 

Treatment 85.20 3 <0.001 
Interaction 102.21 48 <0.001 

    
ETRmax    

Site 20.12 16 0.012 
Treatment 98.51 3 <0.001 
Interaction 113.25 48 0.003 

    
α    

Site 38.65 16 0.002 
Treatment 95.41 3 <0.001 
Interaction 112.54 48 <0.001 
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The photosynthesis-irradiance curves of nutrient sufficient sites were compared to those 

observed in nutrient deficient samples after amendment with the limiting nutrient (N or P as 

appropriate; Fig. 3.13).  Despite their initially deficient condition, the amended samples 

appeared to display physiological status comparable to that of nutrient sufficient sites after 

the 24 hour amendment period.  

 

 

 

 
Figure 3.13  Relationships between ETR and irradiance. RLC’s  were labeled as Nutrient 
sufficient,  N amended (dark adapted for 24 h) and P amended (dark adapted for 24 h). Error 
bars show  1 +  0.5 SEM 
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Figure 3.14 Scatter plot of Fv/Fm versus ETRmax for N deficient (N), nutrient sufficient (NS) 
and P deficient (P) sites.  
 
 

Linear regression analyses demonstrated strong associations (R2 = 0.82, n = 30, p 

<0.05) between  Fv/Fm, and  ETRmax (Fig. 3. 14).  The same trend was observed when Fv/Fm 

was regressed with α where R2= 0.79 (n = 30, p<0.05) (Figure not shown). One of the 

objectives was to evaluate if ETRmax and α could provide a more sensitive measure of 

nutrient status compared to Fv/Fm and also reveal which nutrient might be limiting. The 

scatter plot actually revealed two distinct clusters, one of nutrient sufficient sites (high Fv/Fm 

and ETRmax), and another of nutrient deficient sites (low Fv/Fm and ETRmax).  In this sample 

set, the N-deficient and P-deficient sites clustered together and could not be distinguished on 

the basis of Fv/Fm and ETRmax. A similar pattern was observed with Fv/Fm vs α.   

 
3.4 Discussion  
  

 The results in my study corroborated previous studies (Chapter 2, Guildford et al. 

2005) that phytoplankton can display N limitation in isothermal conditions and P limitation 

in summer stratified conditions.  In chapter 2, I discussed possible explanations for the 
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occurrence of N deficiency under the relatively high NO3
- conditions in the WB of Lake 

Erie.  The occurrence of P deficiency in summer-stratified conditions was also consistent 

with previous reports (Lean et al. 1983, Allen and Smith 2002, Guildford et al. 2005 Chapter 

2) where P deficiency was mainly detected in the CB.  The maximum quantum yield of 

fluorescence (Fv/Fm) showed strong associations between N and P metabolic deficiency 

indicators, similar to the results found in Chapter 2. Here, I have additionally shown that the 

RLC derived parameters ETRmax and α, revealed strong associations with N and P 

deficiency indicators and that amendment with the putative limiting nutrient had specific 

effects on variable fluorescence. These results provide further evidence that both N and P 

deficiency truly occur in Lake Erie, and that variable fluorescence can be used to assess 

nutrient status in natural communities.  

 Previous studies have shown N limitation can occur due to co-limitation, mediated 

by Fe limitation during periods of strong thermal stratification (North et al.2007), while 

NO3
- assimilation may be impeded in low PAR, low temperature conditions, even as algal N 

requirements are increased (Falkowski and Raven 2007). In Chapter 2, I suggested that each 

of these factors could be involved in Lake Erie but that light and temperature effects, 

together with a limited supply of ammonium, were likely the most important, at least in 

spring. In this study, the metabolic indicator, N debt again showed a strong negative 

association with Fv/Fm, consistent with some previous studies of cultures (Kolber et al. 1988, 

Falkowski and Kolber 1995) and natural communities Chapter 2).  However, changes in 

Fv/Fm could also be determined by the taxonomic signature of phytoplankton groups 

(Suggett et al. 2009).  In chapter 2, phytoplankton communities were shown to display 

different patterns in algal dominance depending on the nature of nutrient deficiency.  In N 
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deficient sites, cyanobacterial species were often dominant, possibly due to competitive 

advantages such as N2 fixation and utilization of internal N sources (phycobilisomes).  

Cyanobacteria contain phycobilisomes as light harvesting antennae for PSII. The phycobilin 

pigment phycocyanin can lower Fv/Fm values due to interference of the fluorescence 

emission bands of phycocyanin and Chl a (Campbell et al. 1998).  In this study, I did not 

enumerate phytoplankton communities; however in Chapter 2, cyanobacteria were prevalent 

in N deficient sites, and might manifest lower Fv/Fm independent of their N status.  Not all 

cyanobacteria have constitutively low Fv/Fm.  Microcystis sp. for example, was associated 

with  high values of Fv/Fm (0.454; chapter 2) and displays values close to those for many 

eukaryotes in culture (R. Smith, pers. comm.). I concluded in chapter 2 that taxonomic 

selection could contribute to the observed relationships between variable fluorescence and N 

status but was unlikely to be the main factor.  More evidence to support the actual 

occurrence of N deficiency would nonetheless be desirable; especially as the occurrence of 

N deficiency in Lake Erie is not entirely expected or easy to explain with current 

information.   

 Historically, the lower Laurentian Great Lakes have been demonstrated to be P 

limited at least in offshore regions, although secondary N limitation has been documented 

and recent (since 1995) changes to the lake may have increased the incidence of N limitation 

(Moon and Carrick 2007). Lean et al. (1983), Guildford et al. (2005) and Moon and Carrick 

(2007) have examined patterns of nutrient status of phytoplankton in Lake Erie and revealed 

a common occurrence of P deficiency of phytoplankton in offshore regions (CB) in the 

summer stratified season (June-August).  In Chapter 2, I have also confirmed a similar trend 

in P deficiency using metabolic indicators (P debt, APA). In 2005, I found the highest 
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occurrence of P deficiency was at low TP concentrations and during summer-stratified 

conditions.  In 2006, my results revealed a similar trend in P status of phytoplankton with 

the highest values of deficiency in June.   

Measurements of Fv/Fm revealed strong associations with P debt and APA values. 

Like N deficient sites, P deficiency in phytoplankton resulted in consistently lower  Fv/Fm 

measurements compared to nutrient sufficient sites.  However, changes in Fv/Fm may also be 

caused by different kinds of phytoplankton that predominate under P deficiency.  In chapter 

2, flagellates such as cryptophytes and chrysophytes were shown to be dominant in P 

deficient sites.  The ecological advantage of flagellates is that they are nutritionally 

opportunistic (Watson et al. 1997).  Experiments with cultured mixotrophic flagellates 

support this statement (Nygaard and Tobiesen 1993 and Olrik et al. 2007), which suggests 

that an inverse relationship should be expected between dissolved inorganic nutrient 

concentrations and the phagotrophic activity of mixotrophs.  Eukaryotes such as diatoms, 

dinoflagellates and some species of cryptophytes contain chlorophyll –xanthophyll based 

light harvesting complexes (Chl a/b, Chl a/c and Chl a/ peridinin) that may induce higher 

Fv/Fm values compared to cyanobacteria for which blue light from the FRRF can be an 

efficient excitation source (Suggett et al. 2004).  Fv/Fm reflects the maximum quantum yield 

of PSII in its dark adapted state, and the effects of taxonomic and cell size variations are 

clearly important influences on its variations among phytoplankton species and 

communities. Measurements of the functional quantum yield of PSII under photosynthetic 

illumination, by contrast, can provide estimates of photosynthetic electron transport rates 

through PS II (Genty et al. 1989) and may reveal more of the physiological influences of 

nutrient deficiency. 
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Photosynthesis-irradiance curves (RLC’s) and the derived parameters, ETRmax and α 

were used here to additionally evaluate nutrient stress.  In nutrient deficient conditions, 

impairments of PS II functional reaction centres can cause impairment of the electron flow.  

However nutrient limitation may cause an impairment of the electron flow downstream of 

PS II due to limitation of RUBISCO activity, inhibition of phosphorylation reactions, and 

other effects.   If such downstream limitation is the dominant effect of nutrient limitation, it 

may not be detectable for Fv/Fm because the cells can use the dark adaptation period to 

gradually re-oxidize the photosynthetic electron chain and PS II. As a result, values of Fv/Fm 

may appear to reflect conditions in which cells are generally stress free.  However, in light 

saturating conditions, cells cannot keep up with the electron flow and the functional yields 

will be lower than in nutrient sufficient algae.  In this case, ETR could be a more sensitive 

detector than Fv/Fm.  

Regarding light interception and optimization, phytoplankton have a range of 

mechanisms to change actual photosynthesis activity and maximize photosynthetic capacity 

in response to prevailing light intensity conditions. These mechanisms include  non-

photochemical quenching mechanisms which  serve to protect phytoplankton by down-

regulating the yield of PS II chemistry without causing photo-damage and also protect the 

photosynthetic apparatus during summer when photon flux is high (Ralph et al. 1998). Also, 

alternate pathways for dissipating excitation energy and reduction of O2 can occur at various 

points downstream of PS II. In the Mehler reaction, O2 is reduced at the acceptor side of PS 

I, where O2 is generated by the oxidation of water is reduced, and eventually leads to the 

production of water by the ascorbate peroxidase activity (Falkowski and Raven 2007).  

Another pathway involves the plastoquinol terminal oxidase (PTOX), which uses electrons 
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from the plastoquinone (PQ) pool to reduce O2 (Mackey et al. 2008). The third possibility is 

that for both N and P deficiency, the primary effect includes changes to PS II (increased 

prevalence of non-functional reaction centres) that can decrease its maximum quantum 

efficiency.  These alternative pathways may allow cells to dissipate excitation energy and 

maintain high functional yields even if linear electron flow is inhibited.    

The results of this study suggest that impairment of the maximum quantum yield of  

PSII, and possibly the operation of alternative pathways, are important in nutrient deficient 

phytoplankton in Lake Erie because neither ETRmax nor α seemed to be more sensitive to 

nutrient deficiency than Fv/Fm.  Fv/Fm, ETRmax and α were similarly sensitive to N and P 

deficiency as judged by nutrient status assays, and responded similarly to nutrient 

amendments.  However, the results also showed nutrient deficiency can cause inhibition of 

ETR at high nutrient limitation in both N and P deficient samples, revealing effects of 

nutrient deficiency beyond the decrease of maximum quantum efficiency in PSII, and the 

relative electron transport rates were diminished under nutrient deficiency. Alternate 

electron pathways do not abolish the effects of nutrient deficiency, however, these pathways 

are able to moderate the effects of deficiency. The occurrence of photoinhibition was 

consistent with the occurrence of downstream limitation of electron transport, and would 

suggest that the combination of nutrient limitation and high irradiance could be more 

damaging than either factor on its own.    

The amendment assays were intended to further test whether nutrient status assays 

and variable fluorescence variations were truly indicating nutrient deficiency and correctly 

identifying the limiting nutrient, particularly in the case of the rather surprising N deficient 

samples. Unlike the more studied NIFT approach, the amendment protocol used here was 
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intended not to detect the short-term changes in electron flow induced by addition of the 

limiting nutrient but rather to reveal the longer-term beneficial effects of restoring the 

limiting nutrient. NIFT experiments examine very short term (minutes) changes in 

fluorescence and  have been used in laboratory cultures to diagnose and study PO4
3-, NO3

- 

and NH4
+ limitation (Turpin and Weger 1988, Wood and Oliver 1995, Young et al. 1999).  

The NIFT approach is powerful, not least because it offers a potentially fast assessment, but 

proper interpretation of the response kinetics is still an object of research. Wood and Oliver 

(1999) for example, used additions of NH4
+, NO3

- and PO4
3- in laboratory cultures of 

Microcystis aeruginosa to test fluorescence responses to nutrient enrichment. Their values 

of  Fv/Fm were maximal within the first 2 minutes after spiking, with variable fluorescence 

returning to pre-enrichment steady-state levels generally within 10 minutes but the kinetics 

are likely to be variable and make a standard protocol hard to design. In this study, 

amendment assays were simply dark incubated for 24 hours to provide time for nutrient 

restoration and the (presumed) resumption of protein synthesis it allows to permit repair and 

replacement of damaged PSII and other photosynthetic electron transport components.  This 

type of amendment protocol has enjoyed apparent success in other applications (Sylvan et 

al. 2007) but there still is some question of whether 24 hours in darkness can provide enough 

time (and energy) for effective repair.  

In this study, the amendment treatments did seem to be successful in restoring a high 

level of photosynthetic function to nutrient deficient phytoplankton.  Simply holding 

nutrient deficient samples in darkness (C 24 treatments) did improve Fv/Fm and RLC 

parameters, but the samples still displayed lower average light saturation values (410 µmol 

m-2 s-1) Fv/Fm, α and ETRmax compared to nutrient sufficient samples or nutrient deficient 
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samples amended with the putative limiting nutrient.  These results showed that dark 

adaptation of 24 h was not sufficient to restore the quantum efficiency of PSII or remove the 

downstream limitation suggested by the occurrence of photoinhibition. By contrast, 

amendment with the putative limiting nutrient restored all measures of photosynthetic 

function to those typical of nutrient sufficient samples.  

Jimenez del Rio et al. (1995) and Longstaff et al. (2002) also reported strong positive 

responses to NO3
- and NH4

+ enrichments in the marine alga Ulva rigida. Both studies 

demonstrated that NH4
+ availability controlled the level of RUBISCO activity and pigment-

protein synthesis, contributing to the known influence of N limitation on net photosynthetic 

rates (Osborne and Geider 1986).  In N deficient samples of this study, ETRmax occurred at a 

lower saturating irradiance (315 µmol m-2 s-1) compared to N amended samples or those 

from nutrient sufficient sites (750 µmol m-2 s-1). These results suggested that under N 

limitation the relative abundance of RUBISCO, Chl a, and accessory pigments decreased 

compared to nutrient sufficient phytoplankton at different saturating irradiances. As a result, 

the reduction of cell pigment concentration can be considered as a down-regulation of the 

photosynthetic apparatus that brings light harvesting in closer balance with the energy 

demands for growth and maintenance (Geider et al. 1993).  

For P deficient samples, ETRmax and α were considerably lower compared to the P 

amended samples or nutrient sufficient sites (Table 3.2 and 3.3 Fig. 3.8 and 3.9).  Also, ETR 

for P deficient samples had low light saturated irradiance (414 µmol m-2 s-1) compared to P 

amended samples (760 µmol m-2 s-1 ). These results, like those for N deficiency, suggest that 

under P deficiency, photoinhibition could occur due to an increased demand of P for growth 

(Geider et al. 1998).  Nutrient deficiency may result in a decreased rate of photochemistry 
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through down-regulation of carbon fixation enzymes and loss of PS II reaction centres.  

Healey (1979) reported suppression of net oxygen evolution in P-starved S. quadricauda 

and Wykoff et al (1998) reported that P starvation in C. reinhardtii  resulted in a 75% 

decrease of maximal O2 evolution. Their results suggest that P deprivation may cause a 

decline in the levels of reductive pentose phosphate cycle intermediates, and diminished 

regeneration of intermediates in the Calvin-Benson cycle, thus inhibiting the ability to use 

higher irradiance fluxes for linear electron transport.   

  This study revealed strong associations between nutrient status (N/P debt, APA), 

Fv/Fm, ETRmax and α. The association between photoinhibition of ETR and nutrient 

deficiency provided further evidence that nutrient stress, and not only constitutive taxon-

specific characteristics, were responsible for the observed patterns.  The amendment assays 

appeared to provide very strong support for this interpretation, showing strong and highly 

specific response to the putative limiting nutrient, including N.  These results make it hard to 

deny that N deficiency really does occur frequently even in this “P-limited” lake.  Future 

work should aim to elucidate the biogeochemical processes responsible for such limitation, 

and the consequences of both N and P limitation for phenomena such as the resurgence of 

Microcystis in Lake Erie (Vanderploeg et al.2001) and elsewhere (Raikow et al. 2004).  

The results did not reveal the identity of the limiting nutrient solely by variable 

fluorescence, even with the additional information from the RLCs. Fv/Fm and ETRmax 

measurements were correlated and the results revealed strong associations (R2 = 0.82, n = 

31, p<0.05; Fig. 3.13) although the pattern was more one of nutrient-sufficient vs. nutrient-

deficient samples rather than a continuous relationship. Fv/Fm and α  were likewise 

correlated (R2 = 0.75 n = 31, p<0.05, plot not shown). When Fv/Fm values were high (or 
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low), ETRmax and α values were also high (or low).  Both N and P limitation can affect cell 

physiology through processes that involve synthesis of proteins and nucleic acids. For 

example, N is needed for the synthesis of proteins, and chlorophylls. P is used for RNA, 

DNA, phospholipids and polyphosphates synthesis (Geider et al. 1998). Hence, both 

nutrients are key components for a cell’s survival and Figure 3.14 illustrates the importance 

of N and P. One might expect some differences in the effects of N vs. P deficiency on these 

different measures of photosynthesis (Fv/Fm, ETRmax, α) and the nutrient amendment results 

did hint at some differences.  However, the differences were not significant, and Fig. 3.14 

exemplifies the essential similarity of response in both N and P deficient samples.  Overall, 

this study showed that variable fluorescence in conjunction with metabolic, enzymatic 

assays may provide additional information pertaining to photosynthetic cellular processes 

such as nutrient and light acquisition in determining the degree of nutrient status under 

dynamic environmental conditions.  
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Chapter 4 . Comparative analyses of physiological assays and Chl a fluorescence 

parameters: Investigating the importance of phosphorus availability in oligotrophic 
and eutrophic systems 

 

Overview  
  Diverse measurements of nutrient status indicators were used in this study  to test 

how the severity of physiological P limitation of phytoplankton varies among lake systems 

ranging from oligotrophic to eutrophic, based on P and Chl a concentrations. Metabolic 

assays and particulate ratios of C:N, C:P and N:P were used to estimate nutrient status  at 

sites located in Lake Erie, Lake Ontario and Lake Huron. Variable fluorescence ratios 

(Fv/Fm), relative electron transport rates (ETR) and their response to irradiance, and the 

effective cross section of photosystem II (σ PS II) were measured by  Pulse Amplitude 

Modulated (PAM) and/or Fast Repetition Rate  (FRR) fluorometers. Community structure 

was also associated with nutrient status, where chrysophytes and cryptophytes were more 

important in P deficient sites and cyanobacteria, pyrrophytes and diatoms were prevalent in 

nutrient rich sites. Under the summer stratified conditions studied here, P deficiency was 

strongest in the most oligotrophic site and least in the most eutrophic site. N status indicators 

and variable fluorescence revealed no N deficiency.  In a series of nutrient amendment 

assays, P additions showed a positive effect on Fv/Fm, and RLC parameters at P deficient 

sites and little or no effect on the least deficient site. N additions revealed a modest positive 

effect on Fv/Fm and RLC parameters compared to P additions, in the most oligotrophic sites. 

The results confirmed that Fv/Fm, σ PS II and RLC parameters can reveal P deficiency and 

indicate its severity among the range of sites sampled.  
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4.1 Introduction  
  

Research on phosphorus (P) dynamics in lakes has been a major focus for 

limnologists, largely due to problems of cultural eutrophication. There is ample evidence 

that phytoplankton biomass, primary production and community composition are correlated 

with total phosphorus (TP) among many north temperate lakes (Schindler 1977, Guildford et 

al. 1994, Sterner et al. 1997, Guildford and Hecky 2000, Jeppessen et al. 2005, Sterner 

2008).  Also, it has been predicted that an increase of P can lead to eutrophic conditions and 

undesirable characteristics such as the formation of potentially harmful algal blooms 

(Schindler 1977, Smith 1983, Watson et al. 1997, Ouellette et al. 2006). For example, 

Schindler et al. (2008) observed changes in the phytoplankton community at the 

Experimental Lakes Area (ELA) when concentrations of P were increased.  The outcome of 

the experiment was an increase of surface blooms of N2- fixing cyanobacteria.  Therefore, to 

reduce the impact of eutrophication, the focus of management must be on decreasing inputs 

of P.  

 There is nonetheless evidence that phytoplankton in P-limited lakes may be limited or 

co-limited by other nutrients such as N and Si (Guildford et al. 2005, North et al. 2007, 

Moon and Carrick 2007 and Sterner 2008).  N is often considered as a secondary limiting 

nutrient, but considerable evidence suggests it may often be co-limiting with P or even be 

the primary limiting nutrient, at least on within-season time scales (Sterner 2008, Lewis and 

Wurtsbaugh 2008). Enrichment experiments with N and P reveal that phytoplankton can 

exhibit a strong synergistic response to combined N and P additions compared to the 

addition of either N or P alone (Elser et al 2007, Moon and Carrick 2007, Sterner 2008). 

Understanding how P regulates biomass, composition and production  in plankton 
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communities thus requires an improved understanding of how P and other nutrients may 

limit growth rates on various times scales. Direct measurements of growth rates of nutrient 

limited natural populations are relatively difficult, however, while inferences from inorganic 

nutrient concentrations in the water can be problematic as measurements may not reflect the 

actual bioavailable concentrations. A particular problem for P is that the standard 

spectrophotometric analysis of SRP can seriously overestimate phosphate concentrations 

(Hudson et al. 2000).   

 Indirect measures have been developed that are intended to reflect the degree of 

physiological deficiency that the phytoplankton experience and, by inference, the nutrient-

limited growth rates. For example, the P debt assay is based on the work by Healey and 

Hendzel (1979b) who demonstrated that several different groups of algae could take up 

PO4
3- when P deficient. The particulate stoichiometric ratios of C:P and N:P have been the 

most widely-used as indicators of P status. When P or N become limited in supply, cell 

division will be reduced after exhaustion of stored nutrients but the phytoplankton can still 

store excess photosynthetic carbon.  C:P and C:N ratios are then expected to be considerably 

higher compared to the ratios under  nutrient sufficient conditions (Leonardos and Geider 

2004).   

 The use of such indicators as well as additional measurements of nutrient 

concentrations and cycling rates, have already shown that the phytoplankton of P limited 

lakes do not  always  appear to be P deficient. This likely reflects, in part, a degree of 

balance between supply and demand  for P, mediated by  efficient grazing and nutrient 

recycling (Capblanq 1990, Graziano et al. 1996, Hudson et al. 2000, Dodds et al. 2003, 

Lewis and Wurtsbaugh 2008) as well as periodic or recurrent deficiencies of other nutrients. 
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Knowledge of patterns in the severity of limitation is currently limited, however, due to 

limitations in the existing assays and indices of nutrient stress, as explained in chapters 2 

and 3.  There are issues of practicality and of interpretation, but also uncertainties around 

response times and sensitivity. Most methods require nutrient deficiency to be sufficiently 

persistent in time to induce activation of nutrient uptake enzymes or compositional changes 

in nutrient content or taxonomic composition. This lack of sensitivity to  short-term 

variations of  phytoplankton nutrient stress may cause us to underestimate  the frequency of 

nutrient stress and its effects on algal photosynthesis (Moore et al. 2005, Suggett et al. 2004, 

2009).  

 In chapter 2 and 3, variable fluorescence parameters appeared to offer a more 

sensitive alternative method  for assessing nutrient status of phytoplankton  in Lake Erie.  

The parameters explored in those chapters included Fv/Fm,, a measure of the maximum 

quantum efficiency of photosystem II (PS II). When nutrient availability diminishes relative 

to the cellular demand, a decline in Fv/Fm in response to stress may infer a decline in the 

proportion of reaction centres in PS II that are functional (Geider et al. 1994). The functional 

absorption cross section of PS II (σ PS II) has been shown to increase under  P and N 

limitation (Kolber et al. 1988, Geider et al. 1993, Falkowski and Kolber 1995, Sylvan et al. 

2007, Suggett et al. 2009). This response can reflect the sharing of excitation energy among 

a smaller number of functional reaction centres when cells are nutrient deficient (Falkowski 

and Kolber 1995, Kolber et al. 1998). Therefore, σ PS II may provide additional information 

on the physiological status of nutrient limited phytoplankton.   

 In the presence of photosynthetic (actinic) irradiance, the functional quantum yield of 

photosystem II (PS II) is measured and can provide estimates of photosynthetic electron 
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transport rates (ETR) through PS II.  ETR measurements can have a variable relationship to 

oxygen evolution or inorganic carbon fixation (Gilbert et al. 2000 and Beer and Axelsson 

2004) but do provide an index of photosynthetic competence at a range of irradiance levels.  

When the physiological apparatus of a cell is impaired due to a lack of nutrients, 

photosynthetic down regulation of carbon fixation is observed and can be apparent in ETR 

and its relationship to irradiance (chapter 3).  

 In this study, five distinct lake sites with varying nutrient, light and Chl a 

concentrations were examined to study spatial variations of nutrient status, Chl a 

fluorescence and community composition. I wanted to see if results from this study 

corroborate with previous results (Chapter 2 and 3) that increased nutrient deficiency could 

effect variable fluorescence measurements and in turn reflect changes in phytoplankton 

composition.   

The specific objectives of this study were first to determine whether the relationships 

between Fv/Fm, σ PSII, RLC parameters, and nutrient deficiency shown to exist among sites 

in Lake Erie (Chapter 2 and 3), still apply to sites with a wide range in the severity of 

deficiency and taxonomic composition. The second objective was to further test  the nutrient 

amendment variable fluorescence assays  as a tool for quantifying deficiency and identifying 

the limiting nutrient in each site. The third objective was to determine if the pattern of 

mainly P (as opposed to N) deficiency in summer conditions noted in Lake Erie (Chapters 2 

and 3) would apply in more oligotrophic as well as more eutrophic sites in other lakes, and 

the fourth objective was to determine if the severity of summer P deficiency is 

systematically related to trophic status among a set of these Great Lakes sites.  

 



 107

 

4.2 Method and Materials  
 
4.2.1 Study Area 

 

Water samples were collected in late June of 2006 from the western basin (WB), 

west-central basin (WCB), central basin (CB) of Lake Erie (41o20’N, 83o33’W). On July 6th  

of 2006, water samples were collected from Napanee (Bay of Quinte- Lake Ontario) 

(44o50’N, -77o05’W) and on July 15th of 2006, water samples were collected from Colpoys 

Bay (Georgian Bay- Lake Huron) (44°50′N, 81°02′W).  Stratification was assumed to have 

occurred when there was a vertical gradient of >1oC per meter (Guildford et al. 2000). Lake 

Erie, Bay of Quinte and Colpoys Bay sites were chosen based on their differences in 

nutrient, light, and Chl a concentrations.  

Nutrient concentrations in the Bay of Quinte have been well documented (Millard 

and Sager 1994; Nicholls et al. 1977, 1999, 2002, 2004) and reports have indicated  TP and 

Chl a concentrations to be as high as 70 µg L-1 and 29.3 µg L-1 before P  loading control  

and 46 µg L-1 and 19.8 µg L-1 after  P loading control (Robinson 1986). In the current study, 

the Bay of Quinte represented the most eutrophic (nutrient rich) site. Lake Erie contains 3 

morphometrically different basins based on the conditions of the water column. The WB 

receives most of its nutrient load from the Detroit and Maumee Rivers and typically contains 

higher nutrient concentrations compared to the eastern basin (Charlton et al. 1999). WB in 

this study is classified as meso-eutrophic. The WCB and CB concentrations of Chl a are 

usually lower than the WB, and in this study, these sites were classified as meso-

oligotrophic. Regarding Colpoys Bay, only a few studies have examined the water chemistry 
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chemistry and nutrient status of phytoplankton. From these studies TP and Chl a 

concentrations have been reported to be as low as 4.7 µg L-1 and 0.19 µg L-1 (Weiler 1988,  

Furgal and Smith 1997). In this study, Colpoys Bay represented the most oligotrophic 

(nutrient poor) site.  

In Lake Erie, water samples at 2 m depth, were collected using 8L Niskin bottles 

mounted on a Rosette (CTD Seabird TM) sampler. Immediately after collection, water was 

transferred to 20L polyethylene carboys covered in black plastic bags to prevent excess light 

shock. In the Bay of Quinte water samples were taken at 2m depth using a 5L Van Dorn 

sampler and transferred to acid-cleaned and covered polyethylene carboys. Samples 

collected in Colpoys Bay were taken at 5m depth with a 5L Van Dorn sampler and also 

transferred to covered polyethylene carboys. All water samples were stored in a cooler 

during transport to University of Waterloo for analysis of nutrient chemistry.  

The physical variables measured in this study were temperature profiles from the 

Seabird CTD and vertical profiles of photosynthetically active radiation (PAR) from a PAR 

sensor attached to the Fast Repetition Rate fluorometer (FRRF Fasttracka TM Chelsea 

Instruments). The vertical attenuation coefficient (Kd) was estimated by linear regression of 

the natural logarithm of PAR vs. depth. The mixing depth (Zmix) and mean PAR of the 

surface mixed layer were calculated according to Hiriart et al. (2002). 

 
4.2.2 Nutrient Analysis   
   

Samples for soluble reactive phosphorus (SRP) and soluble reactive silicate analysis 

were filtered through 0.4-μm pore size polycarbonate filters. SRP was measured with the 

molybdate–ascorbate assay, and silicate concentration with the molybdate method 
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(Strickland and Parsons 1972). Samples for TP were analyzed following the same procedure 

outlined in Chapter 2 and 3. For particulate P samples were filtered (GFF:nominal pore-size 

0.7 μm, 47 mm) filters and placed in clean petri dishes where samples were kept frozen until 

later analysis.  Samples were then measured using the persulphate digestion method (Parsons et 

al. 1984). 

Samples for NH4
+ analysis were first run through a 0.2 μm polycarbonate filter and 

were measured with the orthophtaldialdehyde (OPA) method outlined in Holmes et al. 

(1999). The filtered samples were also analysed for NO3
-, and nitrite (NO2

-) on a Ion 

Chromatograph Dionex ICS 2500. Particulate C and N samples were analyzed by the 

methods described by Strickland and Parsons (1972). C/N filters were dried and placed in 

desiccators containing hydrochloric acid for 24 h. An C/N autoanalyzer (Exeter Analytical 

Inc. CEC-440) was used to measure particulate C and N after samples were placed in a 

muffle furnace for 5 h at 9800C.   

For Chl a analysis, water samples water were filtered  onto glass fiber filters 

(GF/F:nominal pore-size 0.7 μm, 47 mm) that were kept in the dark and stored frozen (-20
o
C) 

before passive extraction with 90% acetone (North et al. 2007). Chl a concentrations were then 

determined fluorometrically using a Turner Designs model 10AU fluorometer calibrated 

against pure chlorophyll a (North et al. 2007). 

 

4.2.3 Nutrient Status Analysis  
 

P and N limitation were assessed by particulate ratios of C:P, N:P and C:N, and by 

metabolic assays (nutrient debt and alkaline phosphatase enzyme assays (Healey and 

Hendzel 1979b).  The analysis of N debt, P debt and APA follow the same procedures in 
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Chapter 2  and 3. Lake sites were classified as N (or  P)  deficient only when all N  (or P) 

status indicators revealed values above the threshold of deficiency (Table 4.1).  

 

Table 4.1 Nutrient status indicators. Values either show an absence, presence or the degree 
of nutrient limitation for phytoplankton. Criteria for nutrient limitation are based on Healey 
and Hendzel (1979b) and adapted from Guildford et al. (2005) 
 
Indicator Nutrient  No 

deficiency 
Moderate 
deficiency  

Extreme 
deficiency  

Deficient 

C/N (atomic ratio)   N <8.3 8.3-14.6 >14.6  
N debt (µmol N µg Chl a -1)   N <0.15   >0.15 
C/P (atomic ratio)    P <129 129-258 >258  
N/P (atomic ratio)    P <22   >22 
P debt (µmol P µg Chl a -1)   P <0.075   >0.075 
APA (µmol P µg Chl a -1 h-1)   P <0.003 0.003-0.005 >0.005  
 
 
 

4 .2.4 Phytoplankton Cell Counts 
 

Water samples were collected at 2 m depth (WC, WCB, CB, Napanee) and 5 m 

depth (Colpoys Bay) for phytoplankton enumeration.  Samples were preserved with 1% 

Lugol’s solution and 1% glutaraldehyde. Taxa were enumerated to the lowest level possible 

following Prescott (1975, 1978), Komarek and Anagnostidis (1986), Lee (2002), Carty 

(2003), Komarek (2003), and Nicholls and Wujek (2003). Phytoplankton were counted 

using the Utermohl method at 400x on an inverted phase contrast microscope (Axiovert 35, 

Zeiss).  In total, at least 300 individuals were counted from randomly chosen microscope 

fields. For biovolume measurements, the dimensions of the algal cell were measured using 

ocular micrometers and cell dimensions were fit to geometrical shapes that portray the shape 

of the taxon (Wetzel 1991).  
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4.2.5 Chl a Fluorescence Analyses 
   

1L phytoplankton samples were concentrated onto 24-mm glass fiber filters (GF/F, 

Whatman, Springfield Mill, U.K.) under low (<10 mm Hg) vacuum. Phytoplankton were 

dark adapted for 30 min on filtered lake water in covered Petri dishes to keep cells hydrated.  

A pulse amplitude modulated (PAM) fluorometer (Diving PAM, Heinz Walz, Germany) 

was used to measure the quantum efficiency of PS II on dark adapted cells (Fv/Fm). 

Measurements of Fv/Fm measured by PAM were the initial (ambient) values. For each 

measurement, a blank or correction filter was applied. The blank consisted of distilled water 

filtered onto 24-mm glass fiber filters (Walz 1993).  

 The RLC’s were constructed by exposing the sample to 9 actinic (photosynthetic) 

light levels. Maximum actinic light level attained was 1150 µmol m-2s-1 under the light 

exposure period per level at 20 s. For each level of actinic light, the electron transport rates 

(ETR) and effective quantum yield of PS II (Fv’/Fm’) were measured.  The light response 

curve was characterized by fitting an exponential model (Platt et al. 1982).  Each RLC was 

fitted to a double-exponential decay function in order to quantify the characteristic 

parameters, α and ETR (Platt 1982). The initial slope of the RLC (α) is a measure of the 

light harvesting efficiency  and the asymptote of the curve, the maximum electron transport 

rate at light saturation, ETRmax, is a measure of the capacity of the photosystems to utilize 

the absorbed light energy (Soroussi and Beer 2007).  
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Figure 4.1  Rapid light curve (RLC) parameters derived from PAM fluorometry. α = initial 
slope and function of light intensity, ETRmax = maximal ETR at light saturation, Ik= light 
saturation  

 

The fast repetition rate fluorometer (FRRF, FastTracka, Chelsea, UK) was used to 

measure Fv/Fm and σ PS II. The FastTracka FRRF used excited light at 470 nm (blue light) 

and samples were analyzed in a 100 ml quartz cuvette using the dark chamber in benchtop 

mode (discrete acquisition model). 50 mL aliquots of lake water were placed in the cuvette 

for 50 acquisitions. Acquisitions were determined using five consecutive flash    sequences 

(100-200 flashlets, each 1.5 µs in length) at 2.8 µs intervals (Falkowski and Kolber 1995). 

The variable fluorescence parameters from the raw fluorescence data were derived using 

Submersible FRR Data Reduction (FRS1 ver. 1.8 Chelsea Instruments Ltd.) to deliver the 

calculated Fv/Fm and  σ PSII values.  For each measurement, a blank or correction filter of 

lake water was applied to correct for any background noise.   
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Samples were amended with P and N to assess nutrient sufficiency or deficiency in 

the selected sites. From each site, water samples were collected into three 1L acid washed 

carboys. Two of the carboys contained 5 µM aliquots of either ammonia (NH4Cl) or 

phosphate (KH2PO4). The third carboy was the control and did not receive any nutrient 

amendment. All three carboys were incubated at temperature controlled environments with a 

maximum deviation of site temperature of + 5oC. After 24 h, dark adapted samples were 

examined for changes in Chl a fluorescence parameters (Fv/Fm, σ PSII, ETR and α).     

Two-way Analysis of Variance (ANOVA) was used to test for differences between 

lake sites, treatments, and their interactions on Chl a fluorescence parameters (Fv/Fm, α, σ 

PS II and ETRmax).  When significant effects were detected, the Holm-Sidak multiple 

comparison test was used to test for differences between site/treatment means and Chl a 

fluorescence values.  This was chosen over the more commonly applied Tukey’s test and 

Boneferroni tests because it is considered to be more for independent comparisons (Shaw 

2003). 

 
 
4.3 Results  
 
4.3.1 Environmental Conditions and Trends in Water Quality Parameters 

 

During seasonal thermal stratification, surface water temperatures varied over the 

spatial scale among sites. Average values from each site ranged from 22.3oC  to 24.5oC in 

which the highest temperature was observed in the Bay of Quinte, at Napanee and the lowest 

in Colpoys Bay (Table 4.2). Mean PAR values measured during this study period ranged 

from 69.9 to 241.06 µmol m-2 s-1, with highest values measured in Colpoys Bay and lowest 

values measured in the Napanee station. Measurements of the light extinction coefficient (kd) 
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variable showed an opposite trend to that of irradiance, where kd decreased from 0.79 m-1 in 

Napanee to 0.11 m-1 in Colpoys Bay.  

 Average TP, SRP and  NH4
+ concentrations were highest in the Napanee station and 

lowest in Colpoys Bay (Table 4.1).  NO3
- concentrations showed a similar trend to that of P; 

however, the highest concentrations were reported in the WB of Lake Erie, not in the 

Napanee station.  Chl a concentrations also revealed the same trend as NO3
-, where the 

highest values were reported in the WB and the lowest in Colpoys Bay.  
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Table 4.2  Initial concentrations of chemical, biological and physical data (mean + standard 
deviation (number of samples)) for Napanee (Bay of Quinte), West Basin (Lake Erie), West-
Central Basin (WCB), Central Basin (CB) and Colpoys Bay (Georgian Bay) Bold = Values 
above threshold of deficiency 
   
Parameters Napanee WB WCB CB Colpoys Bay
Chemical
TP (µmol L-1) 1.27 +.02 (3) 0.49 + 0.09 (5) 0.32+ 0.05  (4) 0.32 + 0.05 (5) 0.16 + 0.08 (4)
SRP(µmol L-1) 0.12 + 0.10 (3) 0.10 + 0.00 (5) 0.08 + 0.03 (4) 0.07 + 0.03 (5) 0.05 + 0.02 (4)
NO3

-(µmol L-1) 23.03 + 2.53 (3) 33.53 + 2.44 (5) 26.07 + 3.22 (4) 15.44 +1.79 (5) 15.23 + 2.45 (4)

NH4
+(µmol L-1) 1.93 + .08 (3) 1.68 + 0.17 (5) 1.55 + 0.94(4) 1.02 + 0.06 (5) 0.91 + 0.09 (4)

Biological
Chl (µg L -1) 7.56+ 2.36 (3) 10.62 + 8.62 (5) 2.27 + 1.72( 4) 2.29 + 2.19 (5) 0.61 + 0.05 (4)
Algal biovolume (CUµm. mL) 7.41 x 10+6 5.61 x 10+ 6 3.46 x 10 + 6 1.08 x 10+6 9.58 x 10+5

α 0.25 + 0.11  (6) 0.18 + 0.07 (5) 0.11  + 0.02 (4) 0.08 + 0.03 (5) 0.05+ 0.00 (4)
ETRmax 48.85+ 14.31 (3) 28.20 + 5.02 (5) 22.20 + 4.87 (4) 18.73 + 4.34 (6) 5.0+ 0.00 (4)
Fv/Fm(FRRF) 0.483 + 0.028 (3) 0.289+ .154 (5) 0.187 + .004(4) 0.121 + 0.052 (5) 0.102 + 0.017 (4)
σ PSII 148.32 +38.14 (3) 362.94 + 22.59 (5) 530.01 + 84.06 (4) 899.60 + 246.37 (5) 914.94 + 210.05 (4)
N debt 0.03 + 0.00 (3) 0.12 + 0.00 (5) 0.11+ 0.09 (4) 0.14 + 0.01 (5) 0.14 + 0.02 (4) 
C:N (atomic ratio) 7.41 + 0.11 7.22 + 0.21 8.01 + 0.08 7.58 + 0.15 7.95 + 0.21
N:P (atomic ratio) 12 + 1.14 18 + 0.39 16 + 0.86 15 + 0.25 18 + 0.05
C:P (atomic ratio) 133 + 12.52 154.12 + 0.24 184.33 + 14.65 218.01 + 14.20 255.85 + 12.65
P debt 0.04 + 0.00 (3) 0.05 + 0.00 (5) 0.08 + 0.01(4) 0.13 + 0.02 (5) 0.32 + 0.03 (4)

APA 0.002 + 0.002 (3) 0.002 + 0.001 (6) 0.003+ 0.001 (4) 0.008 + 0.002 (5) 0.021 + 0.001 (4)

Physical
Surface Temp (oC) 24.9 + .60 (3) 23.1 + .90 (5) 22.3 + 0.60 (4) 18.9 + 0.80 (5) 22.3 + 0.90 (4)
Max Depth (m) 5.3 + 0.00 (3) 9.1 + 1.32 (5) 14.3 + 3.80 (4) 14.6 + 3.9 (5) 50.0+ 0.00(4)
Mixing Depth (m) 5.3 + 0.00 (3) 4.8 + 2.01 (5) 6.03 + 1.16 (4) 4.6 + 1.10 (5) 19.3 +2.70 (4)
kd (m-1) 0.79 + .18 (3) 0.52 + 0.13 (5) 0.47 + 0.23 (4) 0.36 + 0.10 (5) 0.11 + 0.00 (4)
Mean PAR (µmol m-2 s-1) 69.9 +0.04 (3) 83.57  + 12.75 (5) 79.54 + 27.03 (4) 93.25 + 13.01 (5) 241.06 + 24.12 (4)  
 
 
 

4.3.2 Independent Measures of Nutrient Status 
   

 The average values for both C:N and N debt were below the threshold of deficiency 

for all 5 study areas (Table 4.2). Spatial variations for P debt and AP revealed a gradient in P 

deficiency.  The lowest values were observed in the WCB and the highest in Colpoys Bay.  

Average values of P debt and C:P were below the threshold value of deficiency in the 

Napanee station and WB, and  P deficiency was not observed at these sites.  P deficiency 

measured by C:P and N:P ratios gave different accounts of the relative degree of deficiency; 
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C:P measurements showed P deficiency in all study sites and N:P ratios showed P 

deficiency in none.  

 

4.3.3 Variable Chl a Fluorescence  
  

 The maximum quantum efficiency of PSII (Fv/Fm) on dark adapted samples was 

measured using PAM and FRRF as a general indicator of nutrient status. Linear regression 

analysis (Fig. 4.2) indicated a high degree of association between PAM and FRRF ( y = 0.58 

+ 0.98x , R2 = 0.92, n = 22, p <0.05). Therefore, for this study I chose Fv/Fm values measured 

by the FRRF to illustrated relationships between metabolic assays and stoichiometric ratios. 
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Figure 4.2  Scatter plot of quantum yield of PS II (Fv/Fm) values measured from commercial 
fluorometers (PAM and FRRF) 
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Average values of Fv/Fm were highest in the Napanee station and lowest in Colpoys Bay 

(Table 4.2). P debt and APA values suggested a trend towards higher Fv/Fm values at sites 

below the threshold of deficiency, and lower Fv/Fm values at sites above the threshold of 

deficiency (Fig.4.3 a and b). Pearson’s correlation analysis revealed a strong relationship 

between P debt APA and Fv/Fm  r=  -0.89, and -0.71 (n = 18, p<0.05). C:P and N:P values 

were also regressed with Fv/Fm, however the relationships were weaker. (C:P and Fv/Fm (r = 

-0.41, n = 18, p<0.05, N:P and Fv/Fm (r = -0.29, n = 18, p<0.05)).  N status indicators were 

not regressed with Fv/Fm due to a lack of N deficiency reported (Table 4.2).   

 σ PSII values derived from the FRRF revealed an opposite trend compared to Fv/Fm. 

The highest average values were reported in Colpoys Bay, and the lowest values were 

observed in the Napanee station (Table 4.2). Like the inter-site analysis of Fv/Fm, σPSII varied 

positively with P debt (Fig. 4.4 a, r = 0.74 n = 18, p<0.05) and APA (Fig. 4.3b, r = 0.71, n = 

18, p <0.05).   
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Figure 4.3 Scatter plots of Fv/Fm versus  (a) P debt and (b) APA. Each point represents 
site/station. Dashed line = threshold of deficiency (Healey and Hendzel 1979b).  
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Figure 4.4 Scatter plots of σ PS II versus (a) P debt (b) and APA. Each point represents 
site/station. Dashed line = threshold of deficiency (Healey and Hendzel 1979b). 
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(a )  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)  
 
Figure 4.5 Scatter  plots of ETR versus (a) P debt (b) APA.  Each point represents 
site/station. Dashed line = threshold of deficiency (Healey and Hendzel 1979b). 
 
 
 

0.0 0.1 0.2 0.3 0.4 0.5
P debt (µmol P µg Chl a L-1)

0

10

20

30

40

50

E
TR

m
ax

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R= -0.81

0.0 0.1 0.2 0.3 0.4 0.5
P debt (µmol P µg Chl a L-1)

0

10

20

30

40

50

E
TR

m
ax

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R= -0.81r = -0.81

0.0 0.1 0.2 0.3 0.4 0.5
P debt (µmol P µg Chl a L-1)

0

10

20

30

40

50

E
TR

m
ax

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R= -0.81

0.0 0.1 0.2 0.3 0.4 0.5
P debt (µmol P µg Chl a L-1)

0

10

20

30

40

50

E
TR

m
ax

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R= -0.81r = -0.81

0.00 0.01 0.02 0.03 0.04
APA (µmol P µg Chl a L-1 h-1)

0

10

20

30

40

50

E
TR

m
ax

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R = -0.68

0.00 0.01 0.02 0.03 0.04
APA (µmol P µg Chl a L-1 h-1)

0

10

20

30

40

50

E
TR

m
ax

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R = -0.68r = -0.68

0.00 0.01 0.02 0.03 0.04
APA (µmol P µg Chl a L-1 h-1)

0

10

20

30

40

50

E
TR

m
ax

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R = -0.68

0.00 0.01 0.02 0.03 0.04
APA (µmol P µg Chl a L-1 h-1)

0

10

20

30

40

50

E
TR

m
ax

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R = -0.68r = -0.68



 121

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) 
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Figure 4.6   Scatter plots of α versus (a) P debt and (b)  APA. Each point represents 
site/station. Dashed line = threshold of deficiency (Healey and Hendzel 1979b). 
 

 

0.0 0.1 0.2 0.3 0.4 0.5
P debt (µmol P µg Chl a L-1)

0.0

0.1

0.2

0.3

A
lp

h a

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R=-0.75

0.0 0.1 0.2 0.3 0.4 0.5
P debt (µmol P µg Chl a L-1)

0.0

0.1

0.2

0.3

A
lp

h a

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R=-0.75r = -0.75

0.0 0.1 0.2 0.3 0.4 0.5
P debt (µmol P µg Chl a L-1)

0.0

0.1

0.2

0.3

A
lp

h a

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R=-0.75

0.0 0.1 0.2 0.3 0.4 0.5
P debt (µmol P µg Chl a L-1)

0.0

0.1

0.2

0.3

A
lp

h a

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R=-0.75r = -0.75

0.00 0.01 0.02 0.03 0.04
APA (µmol P µg Chl a L-1 h-1)

0.0

0.1

0.2

0.3

0.4

A
lp

h a

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R= - 0.68

0.00 0.01 0.02 0.03 0.04
APA (µmol P µg Chl a L-1 h-1)

0.0

0.1

0.2

0.3

0.4

A
lp

h a

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R= - 0.68r = -0.68

0.00 0.01 0.02 0.03 0.04
APA (µmol P µg Chl a L-1 h-1)

0.0

0.1

0.2

0.3

0.4

A
lp

h a

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R= - 0.68

0.00 0.01 0.02 0.03 0.04
APA (µmol P µg Chl a L-1 h-1)

0.0

0.1

0.2

0.3

0.4

A
lp

h a

Napanee (BQ) - Lake Ontario
West Basin - Lake Erie
West-Central Basin (WCB) - Lake Erie
Central Basin (CB) - Lake Erie
Colpoys Bay (GB) - Lake Huron

Location

R= - 0.68r = -0.68



 122

 The fitted parameters of RLC’s were used to examine relationships with P debt 

and APA.  I chose P debt and APA instead of particulate ratios to examine the 

associations between α and ETR since the strongest relationships were observed with 

Fv/Fm and the metabolic assays. ETR values were highest when P debt values were low or 

below the threshold of deficiency (Fig 4.5a). Correlation analysis showed strong 

relationships between ETR and P debt (r = -0.81, n = 18, p<0.05). Also, regression 

analysis  revealed strong relationships between APA and ETR (Fig4.4b. r=- 0.71, n =18, 

p<0.05). Likewise, α values regressed with P debt and APA showed strong associations (r 

= -0.75, r = -0.68, n =18, p<0.05) where α values were highest when P debt and APA 

values were low (Fig. 4.6 a and b).  

 Amendment experiments were also used to evaluate the response to N and P 

addition using Fv/Fm, ETRmax and α (Table 4.3). Initial Chl a fluorescence indices of P 

deficient phytoplankton indeed showed a positive response to P additions in Colpoys 

Bay, CB, WCB and in some sites located in WB (Fig. 4.7 a-d). Interestingly, initial Chl a 

fluorescence measurements of sites from Colpoys Bay and CB revealed that 

phytoplankton were N deficient and the Chl a fluorescence indicators responded 

positively to N additions; however, P additions produced more increase in Fv/Fm, ETRmax 

and α in the oligotrophic sites. Initial Chl a fluorescence values in the Napanee station 

and some sites in WB did not show any response to N and P additions.  Chl a 

fluorescence measurements were analyzed using 2-way analysis of variance (ANOVA) to 

determine any significant differences between sites and nutrient addition experiments 

(Table 4.4). Chl a fluorescence values showed significant variation between sites, 

treatments, and the interaction between sites and treatments.  Based on post-hoc tests, the 
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N  addition treatments showed statistically significant differences (p<0.05)  in all Chl a 

fluorescence parameters between initial and N 24, and C24 and N 24 treatments in 

Colpoys Bay, CB and WCB. Only ETRmax, α and σ PS II showed statistically significant 

differences between initial, C 24 and N 24 treatments in WB.  In all Chl a fluorescence 

parameters, statistically significant differences were revealed between initial, C24 and P 

24 treatments in Colpoys Bay, CB and WCB.  Only statistically significant differences 

between initial, C 24 and P 24 treatments based on α and σ PS II were revealed in WB. 

No statistical significant differences were observed between the initial and C 24 

treatments for all Chl a fluorescence parameters and C 24 treatments did not differ 

significantly from N 24 or P 24 treatments in Napanee. Detailed lists of the comparisons 

are presented in Appendix A3 respectively. 
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Table 4.3 Nutrient amendment assays (N and P) for variable fluorescence parameters 
(mean + standard deviation (number of samples)) for Napanee (Bay of Quinte), West 
Basin (Lake Erie), West-central basin (WCB), Central Basin (CB) and Colpoys Bay 
(Georgian Bay) * denotes significant difference (p<0.05) between C 24 and nutrient 
amended samples  
 
Parameters  Napanee WB WCB CB Colpoys Bay 
ETR C 24 50.03 + 3.26 

(3) 
39.44 + 2.45 
(5) 

22.10 + 3.54 
(4) 

15.22 + 4.51 
(5) 

8.79 + 0.05 (4) 

ETR N 24 48.01 + 1.23 
(3) 

32.22 + 1.14 
(5) 

35.20 + 5.21 
(4)* 

31.22 + 8.15 
(5)* 

32.71 + 0.09 
(4)* 

ETR P 24 52.02 + 3.22 
(3) 

41.11 + 9 .81 
(5) 

35.20 + 2.45 
(4)* 

50.50 + 3.28 
(5)* 

59.03 + 4.01 
(5)* 

α C 24 0.28 + 0.04 (3) 0.22 + 0.01 (5) 
 

0.14 + 0.01 (4) 0.08 + 0.04 (5) 0.09 + 0.01 (4) 

α N 24 0.31 + 0.01 (3) 
 

0.25 + 0.08 (5) 0.23 + 0.02 
(4)* 

0.19 + 0.04 
(5)* 

0.19 + 0.03 
(4)* 

α P24 0.29 + 0.01 (3) 0.25 + 0.01 (5) 0.25 +0.05 (4)* 0.28 + 0.06 
(5)* 

0.29 + 0.03 
(4)* 

Fv/Fm C 24 0.403 + 0.01 
(3) 

0.351 + 0.06 
(5) 

0.216 + 0.02 
(4) 

0.174 + 0.14 
(5) 

0.144 + 0.08 
(4) 

 
Fv/Fm N 24 

0.437 + 0.02 
(3) 

0.411 + 0.03 
(5) 

0.253 + 0.04 
(4) 

0.255 + 0.01 
(5)* 

0.292 + 0.10 
(4)* 

Fv/Fm P 24 0.439 + 0.01 
(3) 

0.372 + 0.02 
(5) 

0.312 + 0.102 
(4) * 

0.389 + 0.10 
(5)* 

0.533 + 0.09 
(4)* 

σ PS II C 24 187.05 + 6.33 
(3) 

311.21 + 19.25 
(5) 

561.40 + 14.23 
(4) 

714.30 + 75.21 
(5) 

814.25 + 25.64 
(4) 

σ PS II N 24 198.02 +10.22 
(3) 

280.49 + 22.31 
(5) 

310.33+ 12.31 
(4)* 

565.25 + 21.38 
(5)* 

502.22  + 25.25 
(4)* 

σ PS II P 24 210.33 + 5.22 
(3) 

200.30 + 21.23 
(5) 

280.22 + 25.31 
(4)* 
 

280.22 + 15.61 
(5)* 

154.03 + 14.02 
(4)* 
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(a) 

 
 
                                                                                                    (b) 
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((d) 
Figure 4.7 (a-d) Amendment experiments of N and P additions in Colpoys Bay (1), 
central basin of Lake Erie (2), west-central basin of Lake Erie (3), western basin (4) and 
Napanee (5).   
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Table 4.4 2-way ANOVA revealing significant differences (p <0.05) for Chl a 
fluorescence parameters using lake sites (basins) and nutrient addition treatments as 
factors.  
 

Comparison F-statistic df p value 
Fv/Fm    

Site 23.51 20 0.031 
Treatment 102.61 3 <0.001 
Interaction 93.67 60 0.035 

    
σ PS II    

Site 46.84 20 0.035 
Treatment 92.36 3 <0.001 
Interaction 166.72 60 <0.001 

    
ETRmax    

Site 59.34 20 0.022 
Treatment 154.31 3 <0.001 
Interaction 133.58 60 <0.001 

    
α    

Site 10.25 20 0.034 
Treatment 155.98 3 <0.001 
Interaction 198.36 60 0.041 

 

 

 The response of ETR to irradiance and to nutrient amendments at the different 

sites can be visualized by the shapes of the RLCs as fitted to the chosen P-I model (Fig. 

4.8).  Measurements taken on dark-adapted samples represent the initial condition and 

showed a wide range among sites (Fig. 4.8 a). The lowest values of ETR were in Colpoys 

Bay, with an ETRmax of only 8.71, with severe inhibition at higher irradiance.  Sites with 

higher TP and Chl a showed progressively higher ambient ETR and less inhibition at 

high irradiances, with Napanee showing no photoinhibition. Holding samples in darkness 

for 24 hours (C 24, the control treatment for the amendment experiments) had little 
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apparent effect on the shape of the RLC curves compared to the initial measurements 

(Fig. 4.8 b).  Samples receiving nitrogen (N 24 samples, Fig. 4.8 c) compared to ambient 

samples had elevated ETR at some sites, especially in Colpoys Bay (ETRmax increased to 

28.33) but also in CB. The saturating irradiance was higher in N 24 than C 24 or initial 

for Colpoys Bay and CB and the onset of severe photoinhibition was displaced to higher 

irradiance values (Fig. 4.8 c). Samples  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 129

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200

Irradiance (umol m-2 s-1)

ET
R

Colpoys Bay
Central Basin
West-central Basin
West Basin
Napanee

 
(a)  
 
 
 
 

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200

Irradiance (umol m-2 s-1)

ET
R

Colpoys Bay
Central Basin
West-Central Basin
West Basin
Napanee 

 
(b) 
 
 
 



 130

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200

Irradiance (umol m-2 s-1)

ET
R

Colpoys Bay
Central Basin
West-central Basin
West Basin
Napanee 

 
 
(c ) 
 

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200
Irradiance (umol m-2 s-1)

ET
R

Colpoys Bay
Central Basin
West-Central Basin
West Basin
Napanee

 
 
 
(d) 
 
Figure 4.8  ETR versus Irradiance (PFD) curves. (a) Inital measurements, ( b) Control 24 
h (C 24) treatments ( c) N amended  24 h (N 24) treatments and (d) P amended 24 h (P 
24) treatments  
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treatments (Table 4.4).  Multiple comparison tests were conducted to investigate where 

the differences existed in the data. In receiving P additions (P 24) showed the greatest 

changes relative to initial or C 24 treatments (Fig. 4.8 d). Particularly large increases in 

ETR values for CB (ETRmax 50.50) and Colpoys Bay (59.0) were observed, with higher 

values of saturating irradiance and far less photoinhibition.  Table 4.3 summarizes the 

RLC parameters α and ETRmax for the sites and nutrient amendment treatments, while 

Table 4.2 presents initial values.   

  

4.3.4 Phytoplankton Composition  
  

 Water samples for phytoplankton enumeration were collected in summer stratified 

conditions from the Napanee station, WC, WCB, CB and Colpoys Bay. In total, 112 

phytoplankton taxa, belonging to six major groups, were identified (Figure 4.9). Colpoys 

Bay and CB summer phytoplankton communities had a prevalence of cryptophytes and 

chrysophytes. These results are similar to those found in Chapter 2 where in P deficient 

stations, cryptophytes generally were prevalent and usually represented by members of 

Rhodomonas and Cryptomonas. Chrysophytes were also prevalent and were often 

represented by Dinobryon divergens, Rhizochromonas endoricata and Rhizochrysis spp. 

Overall, Colpoys Bay and CB tended towards dominance by flagellates and small or 

medium sized taxa.  

  The Napanee station and WB sites had a prevalence of cyanobacteria and 

pyyrophytes. For example, in Napanee, all sites were considered nutrient sufficient and 

the phytoplankton community was mainly from the cyanobacteria group; however non N-
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fixing species such as Microcystis aeruginosa., Microcystis weisenbergii and 

Chroococcus sp. composed 50-60% of the total algal biomass. N2-fixing species such as 

Anabaena sp. and Anabaena flos-aquae were also present, however, their contribution to 

biomass was considerably less.  
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Figure 4.9 Average Biovolume (µm 3. mL) (expressed as %)  of phytoplankton groups in 
Colpoys Bay (Col B), CB, WCB, WB and Napanee (Nap).  
 

4.4 Discussion 
 

In this study, the results from independent measures of nutrient status, variable 

fluorescence, and nutrient addition assays revealed that natural phytoplankton 

communities in summer stratified conditions were mainly limited by P availability. 

Independent measures of nutrient status and variable fluorescence parameters indicated 
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severe P limitation in the most oligotrophic sites (Colpoys Bay and CB), while P 

limitation was negligible in the most eutrophic sites (WB and Napanee). The nutrient 

amendment assays showed positive effects of N and P additions on all variable 

fluorescence measures in Colpoys Bay and CB, however P additions exerted a stronger 

positive effect compared to N additions.  Nutrient additions in the eutrophic sites did not 

reveal any effects on variable fluorescence measurements. These results confirm that a 

trend in the severity of P limitation was seen across a trophic gradient of TP and Chl 

concentrations, and that Chl fluorescence (Fv/Fm, σ PSII, and RLC parameters) 

measurements were able to detect this trend.  

The concentrations of NO3
-, NH4

+ and Chl a were highest in Napanee and WB 

compared to Colpoys Bay (Table 4.2). N debt and C:N values for all lake sites were 

generally below the threshold of deficiency.  The N additions showed positive effects on 

ETRmax, α and σ PS II in Colpoys Bay, CB and WCB sites (Table 4.3).  For example, 

initial average values of ETRmax from Colpoys Bay was 5.0 compared to average N 

amended values (ETRmax = 32.7).  However, the N amended treatments on the initial 

samples in all three sites did not show the same effect on the maximum quantum 

efficiency (Fv/Fm). Based on these results, the N amended treatment tended to exert 

effects on fluorescence indices related to efficiency of light harvest for photosynthesis.   

To maximize light harvesting and trapping of excitation energy, the synthesis of 

specific proteins are required. Under N limitation, a decrease in the fluorescence yield 

indicates a reduction in the photochemical energy conversion efficiency of PS II 

(Falkowski and Raven 2007). The decreased photochemical efficiency in PS II under N 

limited conditions could relate to non-radiative dissipation of absorbed excitation energy 
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in the pigment bed, in which changes correspond to the reduction in the relative 

abundance of D1 and CP47 proteins (Falkowski and Raven 2007). As a result, high 

irradiance levels in N limited conditions could increase the  turnover rate of D1 protein.  

However, in the absence of sufficient amino acids to sustain a constant pool, high 

turnover rates could lead to a reduction in proteins. Under these conditions,  fewer 

electron equivalents per unit Chl can be produced by a saturating flash, with the result 

being that excess excitation energy is dissipated (Kolber and Falkowski, 1988; 

Falkoswski and Raven 2007).  The addition of NH4
+ to N limited phytoplankton can lead 

to the recovery of maximal photosynthetic energy conversion in which a decrease in σ 

PSII and increases in α and ETRmax are observed (Kolber and Falkowski 1988, Chapter 2, 

3).   

Previous reports on phytoplankton nutrient status in Georgian Bay have primarily 

focused on P and Si limitation (Furgal and Smith 1997, Furgal et al. 1998) because NO3
- 

and light were usually high during summer stratification. My results also revealed high 

NO3
- and light measurements. However, average values of NH4

+ were lower compared to 

the eutrophic sites.  An explanation of N deficiency in an otherwise high NO3
- site, may 

be due to co-limitation.  Iron (Fe) limitation has been suggested to be common in 

temperate meso-oligotrophic lakes, such as the Laurentian Great Lakes (Twiss et al. 

2000, Sterner et al. 2004, North et al. 2007). Fe is involved  in many biochemical 

reactions as a cofactor of enzymes and proteins involved in chlorophyll synthesis, 

electron transport, and NO3
- /NO2

-  assimilation (Paerl and Zehr 2000).   For example, 

North et al. (2007) used enrichment experiments involving the addition of Fe, P, and N in 

the offshore and nearshore waters of the eastern basin of Lake Erie. Initial measurements 
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of Fe were below the detection level (2.0 nmol L-1) while N and P limitation were evident 

in these sites. Their results suggest that a combination of Fe, P and N revealed a 

significant increase in biomass compared to measurements of only Fe, N or P enrichment. 

In this study I did not measure Fe concentrations, however previous work cited above 

suggests Fe availability can be limiting in summer stratified conditions.   

In this study, the results of N status measured by the independent measures, Chl 

fluorescence and amendment treatments for all lake sites, showed variable effects  of N 

addition.  According to the N status indicators,  no sites had values above the threshold of 

deficiency.  The initial Chl a fluorescence measurements were relatively low in Colpoys 

Bay and CB, however the greatest response to N additions, was observed with the RLC 

parameters and σ PS II (Fig. 4.8 a-d).  Although Chl a fluorescence indices showed 

strong and significant relationships with N debt (Chapter 2 and 3), the fluorescence 

indices suggest that  the light harvesting efficiency and photosynthetic capacity of PS II 

could be affected by decreases in N concentrations.  

In chapters 2 and 3, all Chl a fluorescence indices and metabolic assays were 

highly correlated. In fact, the lowest Fv/Fm and RLC parameters were observed when 

Lake Erie phytoplankton were generally P deficient in the CB during summer 

stratification. My studies corroborate with these results (eg. Lean et al. 1983, Guildford et 

al. 2005) and suggest that Lake Erie phytoplankton exhibited moderate P deficiency.  In 

this study, my results also revealed strong associations between metabolic and Chl a 

fluorescence parameters in Lake Erie, however the sites in Colpoys Bay were more P 

deficient compared to Lake Erie. The initial measurements of fluorescence parameters in 

the oligotrophic sites suggest that P limited conditions can affect photosynthetic energy 
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conversion (Falkowski and Raven 2007).  In contrast, high TP, SRP and Chl a 

concentrations were highest in Napanee and WB. The nutrient status results based on P 

debt, APA and Chl a fluorescence suggested little or no P deficiency in these sites.   

The P amendment treatments (Table 4.3) showed positive effects on all Chl a 

fluorescence indicators in Colpoys Bay, CB, WCB and some WB sites. The RLC’s also 

revealed changes in the efficiency of electron transport and light harvesting when the 

initial samples were amended with P (Fig 4.8 a and d).   Both N and P amendment 

treatments showed the same positive effect on most oligotrophic sites, though the 

response to P additions in Colpoys Bay and CB revealed changes on the order of 40-70% 

for Fv/Fm, σ PSII and RLC parameters. Thus, it appears that P was the nutrient more 

limiting in summer stratification.  

Oligotrophic lakes have been of special interest in the diagnosis of nutrient 

limitation. Their plankton dynamics depend mostly on internal mechanisms which act to 

recycle the limiting nutrient many times over within the surface waters. Hence, internal P 

recycling may alleviate P deficiency. As a result, the efficiency of nutrient regeneration 

should increase as P sources become depleted (Capblanq 1990).  However, there are 

some cases in which the efficiency of P regeneration may not vary with TP. Hudson et al. 

(1999, 2000) measured P regeneration in  lakes of varying TP and Chl a using a new 

bioassay developed to directly assess PO4
3- concentrations.  The bioassay was developed 

to estimate phosphate (PO4
3-) concentrations in conditions where  concentrations of PO4

3- 

were too low to be estimated using chemical measurements and  where the turnover of 

PO4
3- is rapid and the uptake of PO4

3- and regeneration are equal (Dodds 1993).  Using 

this method, Hudson et al. (2000) found that P regeneration rates expressed per unit of 
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particulate P (turnover rate), did not vary with TP status. In fact the efficiency of P 

turnover rates, were generally the same in P limited and P-rich lakes. Thus, lake 

phytoplankton were able to utilize P within plankton communities, rather than from 

external loading. In this study, I’ve used the colorimetric analysis of SRP in conjunction 

with TP, PP, P debt and APA measurements. In contrast to Hudson et al. (2000) study, I 

found that decreasing TP concentrations was related to the trophic status among the Great 

Lakes sites. Perhaps additional factors such as light climate, lake size and mixing depth 

could play an important role in determining the extent of P deficiency in these sites.  

 The trophic gradient from Colpoys Bay to Napanee, was accompanied by a 

gradient in algal biomass (Table 4.2).  Based on TP and SRP measurements, Napanee and 

WB sites were more eutrophic with average Chl values from 7.56-10.62 µg L-1 (Table 

4.2). According to the nutrient status and Chl a fluorescence indicators, P deficiency was 

negligible or less severe compared to sites with low TP and Chl a (Colpoys Bay). Also, 

mean PAR measurements were lower (69-83 µmol m-2 s-1) in Napanee and WB.  

Therefore, a combination of shallow depth, light, constant vertical mixing, high loading 

of nutrients and re-suspension may be the cause for eutrophic conditions. Trophic 

conditions in the mesotrophic sites (WCB) were probably influenced by the water 

exchange between the WB and CB.  Due to low P, Chl a and high light conditions, the 

oligotrophic sites showed more P deficiency compared to the other sites. Therefore, 

nutrients and light climate can contribute to the gradient of P deficiency observed. 

Millard et al. (1996) reported that a gradient of P deficiency was observed when the 

seasonal transition from light to P limitation was driven by the change in the vertical 

mixing.  Guildford et al. (1994) examined the effects of lake size and phytoplankton 
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nutrient status in seven Canadian Shield lakes, Lake Superior and Lake Nipigon. During 

summer stratification, all lakes exhibited P deficiency, however differences in the 

severity were noticeable when larger lakes (Lake Superior) were compared to smaller 

lakes (Canadian Shield lakes).  For example, the deep turbulent mixed layers in larger 

lakes resulted in a more efficient retention of P in the epilimnion compare to the smaller 

lakes.  I compared my results to those from Guildford et al. (1994), and found that the 

severity of P deficiency in Colpoys Bay was comparable to Lake Superior and Lake 

Nipigon. These results were interesting since irradiance values in Colpoys Bay were 

greater than Lake Superior, although TP measurements were similar  (0.15 umol L-1, 

Lake Superior; 0.16 umol L-1, Colpoys Bay). Therefore, it seems that TP values have a 

greater influence on trophic status.  

The results of this study provided evidence of P limitation and its effect on algal 

biomass. The relationship between P deficiency and trophic status showed that varying P 

deficiency corresponded well with the independent measures of nutrient status and Chl a 

fluorescence, despite influences of taxonomic effects. In chapter 2, phytoplankton 

composition was used to examine the effects of nutrient deficiency and Chl a 

fluorescence.  The samples were categorized based on nutrient status and the results 

displayed interesting patterns of behavior in phytoplankton communities.  In summer 

stratified conditions, larger filamentous species such as Anabaena sp. were able to 

produced  heterocysts, suggesting N fixation activity (Chapter 2). In relation to Chl a 

fluorescence, the increased importance of cyanobacteria was probably due to cellular 

phycobiliprotein content. The cellular phycobiliprotein content influences the Fo level 

fluorescence, particularly when phycobiliprotein levels are high.  As a result, higher 
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values of phycobiliprotein may contribute to a lower value of Fv/Fm (Campbell et al. 

1998).  Most sites sampled in this study were not found to be N deficient, however the 

phytoplankton communities in Napanee and WB mainly (65%) consisted of non-N2 

fixing species such as Microcystis aeruginosa, Microcystis weisenbergii and 

Chroococcus sp. Pyrrophyta were also present and comprised of 10% of the total 

phytoplankton community (Fig. 4.8). These results were consistent with nutrient 

sufficient sites in Lake Erie (Chapter 2) where pyrrophytes and cyanobacteria were 

dominant in summer stratified conditions.  Even though, Fig. 4.8 illustrates that 

fluorescence properties were not responsive to nutrient amendments experiments at the 

more cyanobacteria dominated sites such as Napanee and WB, unlike Chapter 2, these 

particular sites did not show N or P deficiency but relatively high values of Fv/Fm, α, 

ETRmax and low σ PS II.  Therefore, Fig. 4.8 provides evidence that cyanobacteria 

dominance does not necessarily lead to variable fluorescence properties typical of 

nutrient stressed phytoplankton.  

In chapter 2, flagellates from the chrysophyte and cryptophyte groups were 

generally more important in CB than WB during summer stratification.   Some species 

within these groups are known to be nutritionally opportunistic, switching between 

autotrophy and heterotrophy depending upon cellular and environmental conditions 

(Watson et al. 1997) For example, experiments with cultured mixotrophic flagellates 

(Olrik et al. 2007) support the view that phagotrophic activity  can be induced under 

conditions of limited inorganic nutrient availability. In relation to variable fluorescence, 

cell size may be a contributing factor for decreases in Fv/Fm and increases in σ PS II.  

Values of Fv/Fm are highest in well-mixed systems dominated by large diatom cells and 
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lowest in summer stratified conditions where small flagellates (nanoflagellates) are 

prevalent. In this study, low Fv/Fm values in P deficient sites may reflect this seasonal 

change.  Most sites were  P deficient and phytoplankton communities in Colpoys Bay and 

CB consisted largely of  chrysophytes (35-45%), cryptophytes (35-45%), and to a smaller 

extent dinoflagellates (10-12 %). In comparison, Smith and Maly (1993) have reported in 

Colpoys Bay a mixed community of diatoms, chrysophytes and chlorophytes during 

summer stratification in where species of the chrysophyte group dominated in the 

epilimnion and cryptophytes were prevalent in the metalimnion.  These results were also 

consistent with P deficient sites in Lake Erie where in summer stratified conditions 

chrysophytes and cryptophytes were prevalent.  

 
 In conclusion, the outcome of this comparative study validates that algal 

productivity is strongly dependent on P availability in these systems.  Based on the P and 

Chl a concentrations, metabolic assays and variable fluorescence; initial measurements of 

nutrient status in the oligotrophic sites depicted values suggesting an imbalance between 

P availability and demand. Also, the addition of PO4
3- caused the phytoplankton to 

positively respond as shown by the increase in photosynthetic efficiency. The eutrophic 

sites revealed no P deficiency and amendment experiments also confirmed that the 

phytoplankton communities did not respond to PO4
3-  additions.  Although this study has 

focused on providing evidence that the severity of P deficiency increases as P 

concentrations decrease, Chl a fluorescence parameters were able to predict this same 

trend among the range of sites sampled.   
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Chapter 5. Summary and Conclusions 
 
5.1 Thesis summary 

 

In this thesis, I have used a suite of nutrient status indicators and Chl a 

fluorescence parameters to explore that freshwater phytoplankton can become limited by 

the availability of nutrients.  Pertinent issues discussed in this thesis include the 

consistency of nutrient status measurements, the use of Chl a fluorescence as a sensitive 

measure of the physiological condition of phytoplankton, and predicting which nutrient 

has the greatest effect in natural phytoplankton communities. 

 To examine spatial and temporal incidences of nutrient deficiency in Lake Erie 

phytoplankton, the nutrient status indicators, Chl a fluorescence, and the taxonomic 

structure of the phytoplankton communities were applied (Chapter 2).  The occurrence of 

N limitation was confirmed by the  N debt assay, and generally occurred in isothermal 

conditions. The occurrence of N deficiency is likely related to  suboptimal temperature 

and light conditions that may increase NH4
+  requirements of phytoplankton. The 

occurrence of P status was  confirmed using P debt and APA assays, and P deficiency 

was generally observed more often in June than in May or September.  These results for 

P were comparable to previous reports (Lean et al. 1983, Allen and Smith 2002, 

Guildford et al. 2005, Moon and Carrick 2007). The quantum yield of PS II (Fv/Fm)  and 

the functional absorption cross section of PS II (σ PSII) correlated well with N and P debt 

and APA.  C:N, C:P and N:P correlated weakly with the metabolic assays and Chl a 

fluorescence, suggesting that these ratios may respond on different time scales or be less 

sensitive compared to the metabolic assays. Also, re-suspension of sedimentary and 
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detrital particles can increase C:P and C:N ratios, resulting in  an over-estimate of 

nutrient deficiency. The phytoplankton community structures in WB, WCB and CB of 

Lake Erie was analyzed and associated with nutrient status and Chl a fluorescence 

measurements. The occurrence of cyanobacterial species dominance in N deficient sites 

could be explained by adaptation (N fixation and utilizing N reserves from 

phycobilisomes) to extreme environmental conditions. Research on nutrient replete 

cyanobacteria cultures suggests that their optimal Fv/Fm values are between 0.3-0.4 

(Suggett et al. 2009), lower than the suggest optimal value of 0.65 (Kolber et al. 1988). 

Based on these results I would expected that in N deficient sites dominated by 

cyanobacteria, I might obtain similar Fv/Fm values. However, I obtained, since my Fv/Fm 

values were well below 0.3 (0.1-0.2) and σ PSII values that were extremely high (800-

1000).  Since the phytoplankton biovolume at N deficient sites was not exclusively 

cyanobacterial (other groups contributed 30-40% of the total biovolume), influences from 

other groups may have contributed to these very extreme values. The apparent selection 

for chrysophyte and cryptophyte flagellates under P deficiency may be due to their 

mixotrophic capabilities (Urabe et al. 2000). Phagotrophic activity is known to be 

induced under conditions of limited inorganic nutrient availability. At P deficient sites, 

much lower Fv/Fm values were observed compared to nutrient sufficient sites. Cell size 

may also be a contributing factor for decreases in Fv/Fm and increases in σ PS II. 

 Chapter 3 introduces ETR vs. Irradiance relationships (termed as rapid light 

curves or RLC’s), as a useful tool for determining physiological changes in natural 

phytoplankton communities. The specific goals of Chapter 3 were:  to confirm with 

additional observations in a subsequent year that previous indications of N and P 
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deficiency in Lake Erie are reproducible, to examine the use of amendment experiments  

to further test whether the previously-used assays are correct in their indications of N and 

P deficiency, and to test the idea that variable fluorescence measured under excitation 

pressure (RLC’s) may provide a more sensitive measure of nutrient status and even an 

indication of which nutrient might be limiting.   

 The nutrient deficiency patterns in Lake Erie observed in previous years (Lean et 

al. 1983, Allen and Smith 2002, Guildford et al. 2005) were similar to my findings in 

Chapter 2 and in Chapter 3. N deficiency occurred in isothermal conditions and P 

deficiency generally occurred in summer stratification.  Like Fv/Fm, ETRmax and α values 

decreased as the severity of N and P deficiency increased. These results suggest that 

Fv/Fm is important in detecting nutrient status in phytoplankton because neither ETRmax 

nor α seemed to be more sensitive to nutrient deficiency than Fv/Fm. However, the results 

also show that N or P deficiency can cause inhibition of ETR at high nutrient limitation, 

revealing effects of nutrient deficiency beyond the decrease of maximum quantum 

efficiency in PSII. The amendment treatments were used to evaluate the response of N 

and P additions using Fv/Fm, ETR and α. The treatments were successful in restoring a 

high level of photosynthetic function to nutrient deficient phytoplankton. Also the 

treatments showed a strong and highly specific response to the limiting nutrient. 

However, measurements based solely on Chl a fluorescence parameters were not able to 

diagnose the identity of the limiting nutrient. This result can be explained by examining 

the effect of both N and P limitation on cell physiology. For example, N is needed for the 

synthesis of  RNA, DNA, proteins, and chlorophylls. P is required for RNA, DNA, 

phospholipids and polyphosphates synthesis (Geider et al. 1993 a).  
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The main objectives of the works reported in Chapter 4, were to examine the 

diagnostic capabilities of Chl a fluorescence indicators at more widely varying Great 

Lake sites, evaluating the response of N and P additions on the variable fluorescence 

indicators as a tool for quantifying deficiency, and to determine if the severity of summer 

P deficiency is systematically related to trophic status among a set of these Great Lakes 

sites.  P debt and APA values suggested that the severity of P deficiency increased when 

TP values decreased. The phytoplankton communities were generally not N deficient. 

Initial variable fluorescence measurements were strongly associated with N and P debt 

and APA assays. The amendment experiments revealed significant differences between 

initial and P amended samples in Colpoys Bay, CB, WCB and some sites in WB, and 

significant differences (p<0.05) were observed between initial and N amended samples in 

Colpoys Bay and CB. The amendment experiments provided evidence that P deficiency 

was the strongest in Colpoys Bay and weakest at Napanee. Even though N deficiency 

was detected in the most oligotrophic sites, the addition of P provoked more of a response 

(50%) in the Chl a fluorescence indicators.  As in the study reported in Chapter 2, P 

deficient sites were dominated by nanoflagellates such as cryptophytes and chrysophytes, 

and nutrient sufficient sites had more larger cyanobacterial species (Microcystis sp.), 

dinoflagellates and diatoms. 

 

5.2 Future Directions and Recommendations 
 

The spatial and temporal scales in this study were relevant in order to address the 

issue of what nutrient limits phytoplankton communities in these lakes.  In Chapter 2, I 

examined sites in three basins of Lake Erie in different seasons. The sum of evidence 
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from each nutrient status indicator and variable fluorescence supported the notion that N 

deficiency mainly occurred in conditions where light could be limiting, and P deficiency 

occurs in summer stratified conditions. The same study was conducted in the following 

year and concurred  with the results in Chapter 2 of spatial and temporal patterns of N 

and P deficiency. In Chapter 4, I added two more lake sites (Colpoys Bay and Bay of 

Quinte at Napanee) to broaden the scale of nutrient status. The evidence revealed that P 

generally controlled phytoplankton growth and production in summer stratified 

conditions.  Based on these results, I feel that time and space analyses on nutrient status 

should include multiple sampling or increased sampling frequency during the time period 

where N deficiency could occur.  Also, including more temperate lake sites could be 

beneficial in order to examine the severity of P deficiency.  

Ammonium (NH4
+) deficiency occurring in the Great Lakes seem rather puzzling,  

however in both sampling years, the results proved that N deficiency existed in  

isothermal conditions. Previous work on NH4
+ and NO3

- uptake rates (Lehman et al. 

1975) in freshwater phytoplankton have focused on several different phytoplankton 

cultures, however most of the phytoplankton species examined were not found in the 

Great Lakes.  Future work on examining the patterns of N deficiency should include 

single nutrient (N) addition experiments to test the uptake capacity of different forms of 

N on freshwater phytoplankton. In addition to the enrichment experiments, I also suggest 

that manipulating other factors such as light, temperature and other nutrients could 

provide more answers on what certain environmental conditions could prevent N uptake 

in phytoplankton.   
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In Chapters 2 and 4, the characterization of natural phytoplankton communities in 

Lake Erie, Napanee, and Colpoys Bay provided fascinating results on how phytoplankton 

communities existed in differing seasons, trophic status and Fv/Fm. The main 

phytoplankton groups included cyanobacteria, chlorophytes, cryptophytes, chrysophytes, 

bacillariophytes and pyrrophytes. Fv/Fm values for nutrient replete or sufficient sites were 

between 0.34 -0.5. Contrary to Kolber et al. (1993), my results show that a common value 

of 0.65 for nutrient replete phytoplankton was not applicable since nutrient replete 

cultures of different groups of phytoplankton show a wide range of Fv/Fm values from 

0.3-0.8 (Suggett et al. 2009). Future work on key taxa found in various nutrient status 

conditions will continue to aid in the interpretation of Chl a fluorescence data; however 

large scale environmental assessments should be considered.  Based on these results, I 

suggest for future fluorometry work to utilize additional instrumentation for examining 

phytoplankton community structure and fluorescence indices simultaneously.  The 

PHYTO-PAM (Walz) phytoplankton analyzer which allows for sensitive readings (Chl a 

detection limit = 0.1 µg L-1), is able to differentiate between different pigment groups of 

algae (green algae, diatoms and cyanobacteria), and Fv/Fm of various types of 

phytoplankton. Another suggestion is using the video plankton recorder (VPR).The VPR 

is an underwater video system with magnifying optics that images and identifies 

plankton. It has been routinely used in marine systems and recently this system has been 

used to map mesoscale variations of plankton in the Sargasso Sea (McGillcuddy et al. 

2007). Using the VPR along with physiological measurements including Fv/Fm, could 

help differentiate different phytoplankton groups, nutrient status and Fv/Fm 

instantaneously.  
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Appendices 
Appendix A1: Appendices of all pairwise multiple comparisons for N deficient 

samples 
 
 Table A1.1 Holm-Sidak matrices of all pairwise multiple comparison procedure  of sites 
(basins) and treatments (N deficient only) for Chl a fluorescence parameters  
 

Fv/Fm 

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Sites

Comparison Difference of Means t Unadjusted P Significant?
CB vs. WCB 11.200 5.231 0.002 Yes
CB vs. WB 12.300 4.222 0.003 Yes

WCB vs. WB 11.000 3.540 0.005 Yes

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Treatments

Comparison Difference of Means t Unadjusted P Significant?
N 24 vs. Initial 0.318 8.412 0.000 Yes
N 24 vs. C 24 0.289 6.554 0.001 Yes
N 24 vs.P 24 0.266 5.548 0.001 Yes
P 24 vs. Initial 0.112 4.672 0.312 No
P 24 vs.  C 24 0.095 1.220 0.230 No
C 24 vs. Initial 0.040 0.876 0.122 No  

 
 

ETRmax 

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Sites

Comparison Difference of Means t Unadjusted P Significant?
CB vs. WCB 9.200 7.100 0.002 Yes
CB vs. WB 5.600 3.300 0.002 Yes

WCB vs. WB 10.000 4.100 0.001 Yes

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Treatments

Comparison Difference of Means t Unadjusted P Significant?
 N 24 vs. Initial 17.550 12.351 0.000 Yes
N 24 vs. C 24 16.540 11.554 0.000 Yes
N 24 vs. P 24 15.468 9.645 0.000 Yes
P 24 vs. Initial 13.564 8.466 0.000 Yes
P 24 vs.  C 24 12.323 6.554 0.004 Yes
C 24 vs. Initial 1.000 0.614 0.504 No  
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Table A1.1 Continued  
 
 

Alpha (α)
All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Sites

Comparison Difference of Means t Unadjusted P Significant?
CB vs. WCB 6.900 10.200 0.002 Yes
CB vs. WB 9.200 7.320 0.003 Yes

WCB vs. WB 5.300 8.010 0.003 Yes

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Treatments

Comparison Difference of Means t Unadjusted P Significant?
 N 24 vs. Initial 0.310 21.139 0.000 Yes
N 24 vs. C 24 0.266 20.148 0.000 Yes
P 24 vs. N 24 0.201 15.193 0.000 Yes
P 24 vs. Initial 0.122 2.113 0.090 No
P 24 vs.  C 24 0.060 0.920 0.060 No
C 24 vs. Initial 0.010 0.991 0.360 No  
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Appendix A2: Pair wise multiple comparison tests for P deficient samples  
 
Table A2.1 Holm-Sidak matrices of all pairwise multiple comparison procedure  of sites 
(basins) and treatments (P deficient only) for Chl a fluorescence parameters 
 

Fv/Fm 

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Sites

Comparison Difference of Means t Unadjusted P Significant?
CB vs. WCB 11.200 5.231 0.002 Yes
CB vs. WB 12.300 4.222 0.003 Yes

WCB vs. WB 11.000 3.540 0.005 Yes

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Treatments

Comparison Difference of Means t Unadjusted P Significant?
P 24 vs. Initial 0.382 8.412 0.000 Yes
P  24 vs. C 24 0.294 6.554 0.001 Yes
N 24 vs. Initial 0.122 2.212 0.561 No
N 24 vs. C 24 0.100 1.232 0.522 No
N 24 vs.  P 24 0.089 0.856 0.511 No
C 24 vs. Initial 0.056 0.745 0.452 No  

 
 

ETRmax 

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Sites

Comparison Difference of Means t Unadjusted P Significant?
CB vs. WCB 9.200 7.100 0.002 Yes
CB vs. WB 5.600 3.300 0.002 Yes

WCB vs. WB 10.000 4.100 0.001 Yes

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Treatments

Comparison Difference of Means t Unadjusted P Significant?
 P 24 vs. Initial 18.000 11.139 0.000 Yes
P 24 vs. C 24 17.000 10.520 0.000 Yes
N 24 vs. Initial 15.000 9.283 0.000 Yes
N 24 vs. C 24 14.000 8.664 0.000 Yes
P 24 vs.  N 24 12.362 7.854 0.621 Yes
C 24 vs. Initial 1.000 0.619 0.559 No  
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Table A2.1 Continued  
 

Alpha (α)
All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Sites

Comparison Difference of Means t Unadjusted P Significant?
CB vs. WCB 6.900 10.200 0.002 Yes
CB vs. WB 9.200 7.320 0.003 Yes

WCB vs. WB 5.300 8.010 0.003 Yes

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Treatments

Comparison Difference of Means t Unadjusted P Significant?
 P 24 vs. Initial 0.386 20.020 0.000 Yes
P 24 vs. C 24 0.301 18.220 0.000 Yes
N 24 vs. P 24 0.211 14.252 0.000 Yes
N 24 vs. C 24 0.100 1.233 0.133 No
N 24 vs. Initial 0.080 0.920 0.132 No
C 24 vs. Initial 0.010 0.991 0.360 No  
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Appendix A3  Pairwise multiple comparisons for all data sets 
 
Table A3.1  Holm-Sidak matrices of all pairwise multiple comparison procedure  of sites  
and treatments for Chl a fluorescence parameters 

Fv/Fm 

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Sites

Comparison Difference of Means t Unadjusted P Significant?
Col. Bay vs. Nap. 0.430 3.499 0.005 Yes

CB vs. Nap. 0.410 3.500 0.002 Yes
WCB vs. Nap. 0.410 4.100 0.001 Yes

Col. Bay vs. WB 0.408 5.120 0.001 Yes
Col. Bay vs. WCB 0.405 3.900 0.010 Yes

CB vs. WB 0.390 4.560 0.001 Yes
Col. Bay vs. CB 0.070 0.560 0.584 No

WB vs. Nap. 0.060 2.360 0.281 No
WCB vs. WB 0.056 0.460 0.661 No
CB vs. WCB 0.014 0.113 0.912 No

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Treatments

Comparison Difference of Means t Unadjusted P Significant?
 P 24 vs. Initial 0.560 5.121 0.000 Yes
P 24 vs. C 24 0.540 4.986 0.000 Yes

N 24 vs. Initial 0.480 4.363 0.001 Yes
N 24 vs. C 24 0.440 4.228 0.001 Yes
P 24 vs.  N 24 0.080 0.759 0.463 No
C 24 vs. Initial 0.015 0.135 0.895 No

Comparisons for factor: Treatments within Col. Bay
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 0.422 5.200 0.001 Yes
P 24 vs. C 24 0.410 5.010 0.001 Yes

N 24 vs. Initial 0.302 4.750 0.001 Yes
N 24 vs. C 24 0.288 4.220 0.002 Yes

Comparisons for factor: Treatments within CB
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 0.401 6.010 0.001 Yes
P 24 vs. C 24 0.388 5.770 0.002 Yes

N 24 vs. Initial 0.301 5.550 0.001 Yes
N 24 vs. C 24 0.254 4.740 0.003 Yes

Comparisons for factor: Treatments within WCB
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 0.440 4.893 0.010 Yes
P 24 vs. C 24 0.401 4.810 0.001 Yes

N 24 vs. Initial 0.321 4.520 0.001 Yes
N 24 vs. C 24 0.290 4.221 0.001 Yes  
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Table A3.1 Continued  
 
Sigma (σ) PS II 
All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Sites

Comparison Difference of Means t Unadjusted P Significant?
Col. Bay vs. Nap. 419.320 10.200 0.002 Yes

CB vs. Nap. 401.560 7.840 0.001 Yes
WCB vs. Nap. 352.610 7.500 0.001 Yes

Col. Bay vs. WB 302.500 6.510 0.010 Yes
Col. Bay vs. WCB 301.400 5.210 0.001 Yes

CB vs. WB 298.650 4.540 0.002 Yes
Col. Bay vs. CB 102.500 0.920 0.410 No

WB vs. Nap. 84.520 0.590 0.661 No
WCB vs. WB 70.200 0.320 0.784 No
CB vs. WCB 45.580 0.120 0.844 No

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Treatments

Comparison Difference of Means t Unadjusted P Significant?
 P 24 vs. Initial 679.000 10.667 0.000 Yes
P 24 vs. C 24 649.000 10.196 0.000 Yes

N 24 vs. Initial 590.333 9.274 0.000 Yes
N 24 vs. C 24 560.333 8.803 0.000 Yes
P 24 vs.  N 24 88.667 1.393 0.213 No
C 24 vs. Initial 30.000 0.471 0.654 No

Comparisons for factor: Treatments within Col. Bay
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 699.500 6.210 0.010 Yes
P 24 vs. C 24 601.550 6.020 0.010 Yes

N 24 vs. Initial 522.200 5.220 0.020 Yes
N 24 vs. C 24 302.600 5.190 0.001 Yes

Comparisons for factor: Treatments within CB
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 622.360 5.010 0.001 Yes
P 24 vs. C 24 603.510 5.220 0.002 Yes

N 24 vs. Initial 579.550 4.030 0.010 Yes
N 24 vs. C 24 501.240 3.790 0.010 Yes

Comparisons for factor: Treatments within WCB
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 599.210 6.220 0.001 Yes
P 24 vs. C 24 501.520 6.010 0.001 Yes

N 24 vs. Initial 479.250 5.220 0.002 Yes
N 24 vs. C 24 401.650 5.650 0.001 Yes

Comparisons for factor: Treatments within WB
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 501.250 4.650 0.001 Yes
P 24 vs. C 24 479.850 4.100 0.001 Yes  
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Table A3.1 Continued  
 

ETRmax 

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Sites

Comparison Difference of Means t Unadjusted P Significant?
Col. Bay vs. Nap. 10.500 3.900 0.002 Yes

CB vs. Nap. 10.010 3.714 0.003 Yes
WCB vs. Nap. 9.750 3.621 0.004 Yes

Col. Bay vs. WB 9.010 3.343 0.006 Yes
Col. Bay vs. WCB 8.520 3.210 0.002 Yes

CB vs. WB 7.990 3.170 0.002 Yes
Col. Bay vs. CB 0.750 0.279 0.785 No

WB vs. Nap. 0.750 0.279 0.785 No
WCB vs. WB 0.500 0.186 0.856 No
CB vs. WCB 0.250 0.093 0.928 No

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Treatments

Comparison Difference of Means t Unadjusted P Significant?
 P 24 vs. Initial 16.200 6.727 0.000 Yes
P 24 vs. C 24 14.600 6.062 0.000 Yes

N 24 vs. Initial 13.400 5.564 0.000 Yes
N 24 vs. C 24 11.800 4.900 0.000 Yes
P 24 vs.  N 24 2.800 1.163 0.268 No
C 24 vs. Initial 1.600 0.664 0.519 No

Comparisons for factor: Treatments within Col. Bay
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 20.210 5.620 0.002 Yes
P 24 vs. C 24 16.220 5.610 0.002 Yes

N 24 vs. Initial 15.220 5.010 0.000 Yes
N 24 vs. C 24 10.260 4.780 0.030 Yes

Comparisons for factor: Treatments within CB
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 21.200 6.780 0.003 Yes
P 24 vs. C 24 20.100 6.540 0.020 Yes

N 24 vs. Initial 14.510 6.020 0.001 Yes
N 24 vs. C 24 13.020 5.740 0.001 Yes

Comparisons for factor: Treatments within WCB
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 22.610 6.110 0.003 Yes
P 24 vs. C 24 20.010 5.480 0.001 Yes

N 24 vs. Initial 14.560 4.660 0.001 Yes
N 24 vs. C 24 13.020 4.020 0.001 Yes

Comparisons for factor: Treatments within WB
Comparison Difference of Means t Unadjusted P Significant?

N 24 vs. Initial 14.520 6.320 0.003 Yes
N 24 vs. C 24 13.010 6.140 0.001 Yes  
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Table A3.1 Continued 
 
Alpha (α) 
All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Sites
Comparison Difference of Means t Unadjusted P Significant?
Col. Bay vs. Nap. 0.190 4.210 0.004 Yes

CB vs. Nap. 0.160 4.010 0.002 Yes
WCB vs. Nap. 0.150 3.200 0.001 Yes

Col. Bay vs. WB 0.110 2.740 0.001 Yes
Col. Bay vs. WCB 0.110 2.160 0.001 Yes

CB vs. WB 0.120 2.010 0.010 Yes
Col. Bay vs. CB 0.060 0.680 0.500 No

WB vs. Nap. 0.070 0.570 0.620 No
WCB vs. WB 0.050 0.338 0.740 No
CB vs. WCB 0.050 0.050 0.930 No

All Pairwise Multiple Comparison Procedures:
Comparisons for factor: Treatments

Comparison Difference of Means t Unadjusted P Significant?
 P 24 vs. Initial 0.186 7.032 0.000 Yes
P 24 vs. C 24 0.184 6.956 0.000 Yes

N 24 vs. Initial 0.136 5.142 0.000 Yes
N 24 vs. C 24 0.134 5.066 0.000 Yes
P 24 vs.  N 24 0.050 1.890 0.083 No
C 24 vs. Initial 0.002 0.076 0.941 No

Comparisons for factor: Treatments within Col. Bay
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 0.150 6.250 0.002 Yes
P 24 vs. C 24 0.140 6.010 0.002 Yes

N 24 vs. Initial 0.133 5.220 0.001 Yes
N 24 vs. C 24 0.140 5.160 0.002 Yes

Comparisons for factor: Treatments within CB
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 0.160 5.260 0.001 Yes
P 24 vs. C 24 0.140 5.030 0.002 Yes

N 24 vs. Initial 0.150 4.780 0.001 Yes
N 24 vs. C 24 0.120 4.010 0.001 Yes

Comparisons for factor: Treatments within WCB
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 0.160 6.220 0.001 Yes
P 24 vs. C 24 0.160 6.130 0.010 Yes

N 24 vs. Initial 0.210 5.240 0.010 Yes
N 24 vs. C 24 0.110 5.030 0.001 Yes

Comparisons for factor: Treatments within WB
Comparison Difference of Means t Unadjusted P Significant?

 P 24 vs. Initial 0.150 5.690 0.002 Yes
P 24 vs. C 24 0.160 5.030 0.001 Yes

N 24 vs. Initial 0.110 4.990 0.001 Yes
N 24 vs. C 24 0.130 4.780 0.001 Yes  
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