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Abstract

A map is an embedding of the vertices and edges of a graph into a compact 2-
manifold such that the remainder of the surface has components homeomorphic to open
disks. With the goal of proving the Four Colour Theorem, Tutte began the field of map
enumeration in the 1960’s. His methods included developing the edge deletion decom-
position, developing and solving a recurrence and functional equation based on this
decomposition, and developing the medial bijection between two equinumerous infinite
families of maps.

Beginning in the 1980’s Jackson, Goulden and Visentin applied algebraic methods
in enumeration of non-planar and non-orientable maps, to obtain results of interest for
mathematical physics and algebraic geometry, and the Quadrangulation Conjecture and
the Map-Jack Conjecture. A special case of the former is solved by Tutte’s medial bijection.
The latter uses Jack symmetric functions which are a topic of active research.

In the 1960’s Walsh and Lehman introduced a method of encoding orientable maps.
We develop a similar method, based on depth first search and extended to non-orientable
maps. With this, we develop a bijection that extends Tutte’s medial bijection and par-
tially solves the Quadrangulation Conjecture.

Walsh extended Tutte’s recurrence for planar maps to a recurrence for all orientable
maps. We further extend the recurrence to include non-orientable maps, and express
it as a partial differential equation satisfied by the generating series. By appropriately
interpolating the differential equation and applying the depth first search method, we
construct a parameter that empirically fulfils the conditions of the Map-Jack Conjecture,
and we prove some of its predicted properties.

Arquès and Béraud recently obtained a continued fraction form of a specialisation
of the generating series for maps. We apply the depth search method with an ordinary
differential equation, to construct a bijection whose existence is implied by the continued
fraction.
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Chapter 1

Introduction

A map is an embedding of a graph, with vertices sent to points and edges sent

to continuous paths (joining the images of the vertices to which the edge is in-

cident), into a closed surface without boundary (compact 2-manifold), such that

the remainder of the surface has components each of which homeomorphic to an

open disk. Maps are formalised combinatorially in Chapter 2. For fixed values

of certain sets of parameters of maps, the number of maps is, up to isomorphism,

finite.

There are three general objectives of enumeration in this thesis. The first ob-

jective is to a find simple formulae for the cardinalities of finite sets in a given

infinite family of sets, such as the family of finite sets of maps defined above by

a certain set of parameters. As often occurs in enumeration, there is a limit to the

simplicity of the formulae. But on occasion such formulae are shown to give the

cardinality of sets from a different infinite family of finite sets. The second ob-

jective of enumeration is to construct a bijection between the corresponding sets

1



CHAPTER 1. INTRODUCTION 2

of the two families. The methods used to obtain the formula, may or may not

be useful in constructing the bijection. The third objective, a converse to the first

objective, is to construct an infinite family of finite sets with cardinalities given

by a desired formula.

The specific topics of this thesis are the three problems from the enumeration

of maps in surfaces, briefly described as follows.

� The Quadrangulation Conjecture [JV90a]: this involves constructing a bi-

jection between rooted quadrangulations and rooted maps in arbitrary ori-

entable surfaces.

� The Map-Jack Conjecture [GJ96a]: this involves finding a combinatorial

interpretation for an indeterminate b where 1+ b appears as the parameter

of Jack symmetric functions in the generating series for maps.

� The continued fraction bijection problem [AB97]: this involves construct-

ing a bijection between rooted maps and a certain set of trees enumerated

by continued fractions.

These three problems share certain features. Each was suggested from the devel-

opment of an enumerative result whose proof contained algebraic steps which

defy easy combinatorial interpretation. The problems then, are to find combina-

torial, constructive solutions for each of these enumerative results. In this, very

little help was forthcoming from a study of the original algebraic proof. There-

fore other approaches were needed.

The approach taken in this thesis is to employ two other methods, depth first
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search and edge deletion. Depth first search is used to canonically and naturally

label rooted maps. These labels permit further combinatorics on rooted maps.

Edge deletion is a more general operation upon maps, and facilitates inductive

definitions and proofs. Edge deletion induces recurrence relations for the num-

ber of maps, and thence a differential equation for the generating series of these

numbers. With these two methods, new advances, beyond the original develop-

ments of the three problems, are made here.

The advance in the Quadrangulation Conjecture is a partial solution. The

advance in the Map-Jack Conjecture is a candidate solution. The advance in the

continued fraction bijection problem is a complete solution.

The two conjectures are briefly reviewed in x1.1. More detailed information

is provided in later chapters as needed. Implications for the solutions of these

conjectures are discussed in x1.1.3. The continued fraction bijection problem is

given in x1.2. The original applications and the new usage of the two combinato-

rial methods are briefly discussed in x1.3. An outline of the remaining chapters

is provided in x1.4.

1.1 Brief Overview of the Conjectures

The algebraic method, developed in [JV90b, JV90a, GJ96b, GJ96a] involves encod-

ing maps with permutations. Extensive knowledge of permutations and their

algebra is then applied to map enumeration. Chapter 3 describes the algebraic

method in greater depth. There the Quadrangulation Conjecture and the Map-

Jack Conjecture are stated with a simple overview of their original development.
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More complete definitions and details are to be found in Chapters 2 and 3.

The cycle structure of permutations can be described by partitions. The three

cycle partitions of two permutations and their product, have corresponding in-

terpretations as natural parameters of maps, the degree partitions of vertices,

edges and faces. In the case of orientable maps, the centre of the group algebra

of the symmetric group, CSn , is the algebra that we use for enumerative pur-

poses. In the case of locally orientable maps it is another algebra spanned by

permutations, the double coset algebra of the hyperoctahedral group. In both

cases, the enumeration of maps with respect to vertex and face degrees, is ex-

pressible in terms of the structure constants, or connection coefficients, of these

algebras.

Since the connection coefficients can be found with symmetric functions [Mac95,

Sag91], maps can be enumerated by means of symmetric functions [JV90b]. Schur

functions, s
�
, can be used to find characters of the symmetric group and thus its

connection coefficients. The generating series for rooted orientable maps, ex-

pressed in terms of Schur symmetric functions, [JV90a] is

Ω(x;y; z)= ∑
�;�;n

!
�;�;nx

�
y
�
zn

= 2z
@

@z
log ∑

n>0
∑
�`n

H
�
s
�
(x)s

�
(y)s

�
(z)

�����pj(x)7!xj ; pj(y) 7!yj
pj(z)7!zÆ j;2

(1.1)

where: x = (x1; x2; : : : ), and for partition � = (�1; �2; : : : ), x
�

denotes x
�1 x

�2 � � � ;

!
�;�;n is the number of rooted orientable maps with face partition, vertex parti-

tion and number of edges given by �; � and n respectively; pj is the power sum
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symmetric function pj(x) = xj
1+ xj

2+ : : : ; and H
�

is the product of hook lengths

of �.

1.1.1 The Quadrangulation Conjecture

In [JV90a], there is a factorisation result for characters of the symmetric group.

Characters are proportional to coefficients of power sum symmetric functions in

Schur functions, so this factorisation may be expressed as:

�
p[4n]

�
s
�
=

1
2n

�
p[22n]

�
s
�

(1)s
�

(2) (1.2)

which holds only for a restricted subset of partitions �, those which are [JV90a]

2-balanced, the coefficient being zero otherwise. The partitions �(1) and �(2) form

the 2-factorisation [JV90a] of the partition �.

Under suitable transformations of Ω(x;y; z), generating series M(u; x; y; z)

and Q(u; x; y; z) can be formed which enumerate, rooted orientable maps, and

rooted quadrangulations, i.e. rooted face-4-regular maps, respectively. (The vari-

ables u; x; y; z mark genus, faces, vertices and edges, respectively.) The factorisa-

tion result (1.2) leads to the following relationship:

Q(4u2; x; y; z)= bisuM(4u2; y+ u; y; xz2); (1.3)

where bisu f denotes the even bisection 1
2f f (u) + f (�u)g of the formal power

series f .

The result (1.3) implies existence of bijections between two sets of rooted
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maps, Q rooted orientable quadrangulations, andA, decorated rooted orientable

maps, which are defined in Chapter 5. There are pairs of corresponding weight-

functions defined on Q and A, and the generating series equality (1.3) further

implies that there exists a weight-preserving bijection � : Q! A. It was not pos-

sible to combinatorialise each step of the proof of (1.3). Thus a construction of

such a bijections � : Q! A does not immediately follow from the proof of (1.3).

Conjecture 1.1 (Quadrangulation Conjecture [JV90a]). There exists a construc-

tive, weight-preserving bijection Ξ : Q ! A admitting an element-wise action

having a combinatorial description.

Of course, the construction in Conjecture 1.1 for the bijection Ξ, if found,

would provide a new and purely combinatorial proof of (1.3).

In Chapter 5, a bijection eΞ : Q! A which preserves one of the two required

weight functions is found. Thus eΞ is a partial solution to Conjecture 1.1.

1.1.2 The Map-Jack Conjecture

A scalar product h�; �i
�

can be defined on the ring of symmetric functions by:

hp
�
; p

�
i
�

= �`(�)z
�
Æ
��
; (1.4)

where z
�
= ∏i imi(�)mi(�)!, and Æ

��
is the Kronecker delta function. Jack sym-

metric functions J(�)
�

are defined as the result of orthogonalising the monomial

symmetric functions m
�

with respect to this scalar product. Chapter 3 gives a

more complete definition of Jack symmetric functions. Jack symmetric functions
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are also described in [Mac95, Sta89].

Since J(1)
�

= H
�
s
�
, Jack symmetric functions are a generalisation of Schur func-

tions. For � = 2, Jack symmetric functions specialise to Zonal polynomials Z
�
=

J(2)
�

. Zonal polynomials play an analogous role to Schur functions in the enumer-

ation of locally orientable maps [GJ96b]. It follows [GJ96a] that the series:

Ψ(�)(x;y; z)= 2�z
@

@z
log ∑

n>0
∑
�`n

J(�)
�

(x)J(�)
�

(y)J(�)
�

(z)D
J(�)
�
; J(�)
�

E
�

������pj(x) 7!xj ; pj(y) 7!yj
pj(z) 7!zÆ j;2

(1.5)

enumerates rooted orientable maps when � = 1, and locally orientable maps

when � = 2. This is consistent with the following conjecture, extracted from

[GJ96a]:

Conjecture 1.2 (Map-Jack Conjecture [GJ96a]). There exists a parameter # of rooted

locally orientable maps, such that:

1. For �(m); �(m) and n(m), the face degree partition, the vertex degree parti-

tion, and the number of edges of a map m, we have:

Ψ(b+1)(x;y; z)= ∑
m2L

b#(m)x
�(m)y�(m)zn(m) (1.6)

where L is the set of rooted locally orientable maps,

2. #(m) is a non-negative integer,

3. #(m) = 0 if and only if m is orientable.

Condition 3 suggests that the hypothetical parameter # should be regarded
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as a parameter associated with non-orientability.

Hitherto, the main evidence for Conjecture 1.2 has been numerical compu-

tations of the smaller coefficients of Ψ(b+1)(x;y; z), which turn out to be non-

negative integers. In fact, the current theory of Jack symmetric functions only

shows that coefficients
�
x
�

y
�
zn
�

Ψ(b+1) are rational functions of b, while Conjec-

ture 1.2 claims that these are polynomials in b with non-negative integer coeffi-

cients.

In Chapter 7, a parameter � of rooted maps is defined. With # = �, Condi-

tions 2 and 3 are met, and Condition 1 holds to the extent of all the computed

data. (These computations include all maps up to 4 edges, and all single vertex

maps with 6 or less edges.)

1.1.3 Implications

There are several implications of the combinatorial solutions to the two conjec-

tures. The enumerative results associated with the conjectures have been applied

to two areas, 2-dimensional quantum gravity and algebraic geometry.

The enumerative result (1.3) proved [JPV96] physicist’s suspected connection

between the'4-model and Penner model of 2-dimensional quantum gravity. The

related hypothetical bijection Ξ of the Quadrangulation Conjecture could pro-

vide a physical interpretation of the connection between these two models, at

the level of Feynman diagrams and mesons.

Related general applications of map enumeration to string theory and quan-

tum field theory are given in [Hoo74, BIZ80]. In algebra, Grothendieck’s theory
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of Galois groups, dessins d’enfants [Sch94], involves enumerative aspects of maps.

The Map-Jack Conjecture is related, via Jack symmetric functions, to the Calogero-

Sutherland model [LPS95] in quantum physics. The Map-Jack Conjecture also

has potential applications to algebraic geometry. For b = 0 and b = 1 respec-

tively, the enumeration of maps (especially monopoles) has been used to find

the virtual Euler characteristic of the moduli space of complex [HZ86] and real

algebraic curves respectively. When b is left unspecialised, there is potential ap-

plication to an algebraic construction of a moduli space that interpolates between

these two moduli spaces, and the hypothetical parameter #would have a promi-

nent rôle in the structure of this moduli space.

1.2 Continued Fraction Bijection Problem

In [AB97], the following result was proved.

Theorem 1.1. Let !k;n be the number of rooted orientable maps with k vertices

and n edges. Then

∑
k;n

!k;nykzn
=

y

1�
(y+ 1)z

1�
(y+ 2)z

1� : : :

(1.7)

The proof in [AB97] involves relating the solutions to an iterative family of

Ricatti equations. The Ricatti equation was established by the edge deletion
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method. But the iterative solution method to the Ricatti equation does not give

a combinatorial explanation for the continued fraction in (1.7). The problem of

finding a combinatorial explanation for (1.7), in the form of a bijection, was pro-

posed in [AB97].

In Chapter 8, such a bijection Θ is found. Advantage is taken of the depth first

search method for rooted maps to construct Θ. Hence, Theorem 1.1 is provided

with a bijective proof.

1.3 Background and Overview of the Combinatorial

Methods

Two methods, depth first search and edge deletion, appeared early in the enu-

meration of maps. These methods pre-date the algebraic methods of the Quad-

rangulation Conjecture and the Map-Jack Conjecture, and may be regarded as

more elementary than the algebraic methods.

1.3.1 Edge Deletion

Edge deletion was used by Tutte in [Tut62]. A recurrence relation was found for

the number of slicings, which are certain labelled planar maps, by considering

the enumerative effect of edge deletion. Later, Walsh extended this method and

applied it to all labelled orientable maps.

In Chapter 6, the edge deletion method is extended to include non-orientable

maps. Moreover, the recurrence is expressed in a new form, as a partial differ-
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ential equation. A variable b is then introduced into the partial differential equa-

tion. This b appears to have the rôle of the Jack parameter � of the Map-Jack

Conjecture.

1.3.2 Depth First Search

Depth first search is a standard, general combinatorial algorithm, with applica-

tions to optimisation and to finding strongly connected orientations of graphs.

It is less frequently applied to enumeration [GW79, GS96]. In the enumeration

of maps it is implicitly used in [Wal71].

The canonical integer-parenthesis system for rooted maps was developed by

Lehman [Wal71]. The system was used to obtain some enumerative results, in-

cluding a recurrence form of the Ricatti equation involved in the proof of a con-

tinued fraction result. (The solution (8.7) given in [Wal71] is different from the

continued fraction.)

In Chapter 4, a similar system for rooted maps is defined, and the underlying

mechanism is identified to be depth first search. We develop the edge diagram

model of a rooted map, a combinatorial object similar to the integer-parenthesis

system. The edge diagram model of a rooted map is applied to the Quadrangu-

lation Conjecture and to the continued fraction problem.

A canonical ordered digraph, using the same depth first search method, is

also defined for each rooted map, in Chapter 4. The canonical ordered digraph

is then used to define � of Chapter 7, the candidate parameter for the Map-Jack

Conjecture.
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1.4 Outline of the following chapters

Below are listed brief summaries of the chapters and their logical dependencies.

Chapter 2 defines essential combinatorial notions for the study of maps: parti-

tions, permutations, and of course topological and combinatorial maps.

Chapter 3 addresses the algebraic method behind the Quadrangulation Conjec-

ture and Map-Jack Conjecture. The material is not crucial to later chapters,

but rather motivates them.

Chapter 4 develops depth first search methods. Chapters 5,7 and 8 depend

heavily on these methods.

Chapter 5 uses edge diagrams defined in Chapter 4, to construct a bijection eΞ
which is a partial solution to the Quadrangulation Conjecture. The con-

struction of eΞ involves non-orientable maps, although the domain and

range consist of orientable maps.

Chapter 6 introduces the edge deletion method. A partial differential equation

is obtained for the generating series of ordered digraphs. A parameter �

of non-orientability of ordered digraphs is defined, which is empirically

related to the Jack parameter of the the Map-Jack Conjecture.

Chapter 7 combines the depth first search method (Ch. 4) with the edge dele-

tion method (Ch. 6) to define a parameter �, which is a candidate for the

parameter # of the Map-Jack Conjecture. Some properties of this param-

eter � will be discussed, including some invariance and additivity results,
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and a summation result known to hold for any hypothetical parameter #

of the Map-Jack Conjecture.

Chapter 8 also combines the depth first search method (Ch. 4) with the edge

deletion method, but to develop a bijection whose existence is implied by

a recent continued fraction result in the enumeration of maps.

Logical sequences of chapters include: Chapters 2,3 for the motivation behind

the two conjectures; Chapters 2,4,5 for the partial solution to the Quadrangu-

lation Conjecture; Chapters 2,4,6,7 or 2,6,4,7 for the candidate solution to the

Map-Jack Conjecture; and Chapters 2,4,8 for the continued fraction bijection.



Chapter 2

Preliminary Combinatorics

In the theory of combinatorial enumeration, a combinatorial definition of a map

is more convenient than a topological definition, although the definitions are

equivalent through the Embedding Theorem. This chapter gives both defini-

tions.

Also given is the definition of a rooted map. Rooted maps are crucial to enu-

meration because their lack of nontrivial automorphisms facilitates far more ef-

fective enumeration. Most enumeration results of the following chapters con-

cern rooted maps. Maps and rooted maps are defined in x2.3, following some

preliminary combinatorial notions.

A permutation is a more basic combinatorial object than a map, but funda-

mental to the theory of maps. In particular, combinatorial definitions of a map

are usually expressed in terms of permutations. It is through the study of the

multiplicative properties of permutations that the algebraic method of Chapter 3

enumerates maps. The combinatorial definition of a map in this chapter, uses a

14
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special type of permutation, a matching. Notational conventions for permuta-

tions are defined in x2.2.

Integer partitions will also be used extensively since they are useful in de-

scribing properties of permutations and of maps. The face partition and vertex

partition of a map give information about the degrees of the faces and vertices

of a map, respectively. The cycle partition of a permutation gives information

about the length of its cycles. Partitions are also indices for symmetric functions

of Chapter 3. Because of their use in describing features of permutations and

maps, partitions are defined first, in x2.1.

2.1 Partitions

Definition 2.1. Let n and k be nonnegative integers. An ordered k-tuple �= (�1; �2; : : : ; �k)

of non-ascending positive integers �i, i.e. �1 > �2 > : : : > �k, is a partition of the inte-

ger n if n = �1+ �2+ � � �+ �k. And

1. The weight, j�j, of � is n,

2. The length, `(�), of � is k,

3. To signify that � is a partition of n specifically, write � ` n,

4. Each �i is called a part of �,

5. The number of i such that �i = j, is the multiplicity of j in �, denoted by mj(�).
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When multiplicities are important we write

� = [1m1(�)2m2(�) : : : ];

omitting terms of the form j0 and superscripts 1. For example, � = (4; 2; 2; 2; 1)

can be written as � = [1234], or in the opposite (descending) order as � = [4231].

The set of all partitions is denoted by P; the set of all partitions of n is denoted

by Pn. The unique partition of 0 is denoted by ?.

In the theory of symmetric functions, the partition indexed value

z
�
= �1�2�3 � � �m1(�)!m2(�)! � � �

occurs frequently.

2.1.1 Lexicographic and Dominance Orders

Lexicographic order of partitions of n is defined as follows. We write � < � if and

only if there exists j such that � j < � j and �i = �i for 1 6 i < j. Lexicographic

order is a total order since any two partitions of n are comparable. For partitions

of n = 5, the order is [15] < [213] < [221] < [312] < [32] < [41] < [5].

Dominance order is a partial order. We write � � � precisely when �1+ � � �+

� j 6 �1 + � � �+ � j for all j. Dominance order is the same as lexicographic order

for partitions of n 6 5, but for n = 6, we have [32] < [412], in the lexicographic

order, but [32]� [412] in the dominance order. But conversely, �� � =) � < �.

(The distinction becomes relevant in the theory of Jack Symmetric functions.)
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2.1.2 Conjugates, Tableaux and Hook Lengths

The conjugate (partition) of � is the partition �0 such that �0i = ∑ j>i mj(�) for i =

1; : : : ; �1.

The Ferrers diagram of a partition �, is the set of points (i; j) with i 6 �i. It is

represented combinatorially by an array of squares, with i indexing rows of �i

squares and index j for columns. For example,

is the Ferrers diagram for (5; 3; 1; 1). Note that �i is the length of the ith row. The

conjugate partition �0 is more simply explained as the partition whose Ferrers

diagram is the transpose of the Ferrers diagram of �, i.e. the reflection across the

main diagonal.

For each square s 2 �, in the Ferrers diagram of �, the arm length, a
�
(s), is the

number of squares to the right of s, the leg length, l
�
(s), is the number of squares

below s. The hook length is h
�
(s)= a

�
(s)+ l

�
(s)+ 1. The product of hook lengths

is denoted by

H
�
=∏

s2�

h
�
(s):

A tableau T of shape sh T = � is a Ferrers diagram of � with a positive integer

assigned to each square. A tableau is semi-standard if it weakly increasing (non-
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decreasing) left to right in each row, and strictly increasing downwards in each

column. For example,

T1 =

1 1 2 2 7

2 3 3

4

5

is a semi-standard tableau of shape (5; 3; 1; 1). Associated with each tableau is

a monomial xT, formed by replacing each entry i by xi, and multiplying these

together. For example, xT1 = x2
1x3

2x2
3x4x5x7.

2.2 Permutations

The set of permutations � of a finite set X is denoted by Sym(X) = f� : X! X j

� is bijectiveg. Let Sn = Sym(f1; 2; : : : ;ng). An example of a permutation � 2S6

is

� =

0B@1 2 3 4 5 6

5 2 6 1 4 3

1CA (2.1)

which indicates that �(1) = 5, �(2) = 2, �(3) = 6, and so on. A permutation

has a disjoint cycle factorisation. Thus � = (1; 5; 4)(3; 6)(2), because � in (2.1)

interchanges 3 and 6, and sends 1 7! 5 7! 4 7! 1. The lengths of the cycles of

a permutation � form a partition � (�), its cycle type. For example, � (�) = [321]

above. A matching is a permutation �whose cycle type is of the form � (�)= [2n].
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The set of matchings on a set X is Match(X) � Sym(X).

2.3 Maps

Two definitions of a map are now provided, a topological map and a combina-

torial map. These definitions are equivalent for enumerative purposes, so the

term map on its own is used refer to either definition in the contexts where it

does not matter. Similar, but more detailed, treatments of topological maps and

combinatorial maps are given in [GT87] and [Tut84], respectively.

2.3.1 Topological Maps

A locally orientable surface [Tut84] is a compact 2-manifold. Up to homeomor-

phism, two parameters, the Euler characteristic � 2 Z and orientability, suffice

to determine locally orientable surfaces. Orientable surfaces are the sphere, the

torus, the double torus and more generally the sphere with g handles, with Eu-

ler characteristics � = 2; 0;�2,and generally 2� 2g, respectively. The number g

is the genus of the orientable surface. Non-orientable surfaces are the real pro-

jective plane, Klein bottle, and generally the previous two with g handles, with

Euler characteristics � = 1; 0, and generally 1� 2g, or �2g, respectively.

A topological map M = (G; S; i) consists of a 2-cell embedding i of a graph G

in a surface S, meaning that all the components of the topological space S� i(G)

are 2-cells, i.e. homeomorphic to open disks. The 2-cells are the faces of the map

M. The Euler characteristic of S may be computed as �= f � e+ v, where f ; e; v
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are the number of faces, edges and vertices of a topological map M= (G; S; i).

Topological maps M = (G; S; i) and M
0
= (G0; S0; i0) are isomorphic if there

is a homeomorphism h : S! S0 which preserves the images of the graphs, i.e.

h(i(G))= i0(G0). It follows that if M and M
0 are isomorphic, M�=M

0, then the un-

derlying graphs are isomorphic, G �= G0 and the underlying surfaces are home-

omorphic, S �= S0. The converse, however, need not be true. (For example, the

graph consisting of a two edge path plus a loop incident to the middle vertex of

the path, has two non-isomorphic embeddings in the sphere. On the other hand,

3-connected graphs [Tut84] have at most one embedding in the sphere.)

2.3.2 Combinatorial Maps

In preparation for the following definition consider a topological mapM= (G; S; i).

For each edge e 2 G, the curve i(e) has two sides and two ends. Choose four

points on S, each very close to one side and one end of i(e). Having done this

for each edge e, forming a set of such points X, let these points be the (side-end)

positions of M. Thus, if G has n edges, then of course jXj= 4n.

The side-end positions are related to each other by the local topology of M.

More precisely, the positions in X can be naturally paired up in three different

ways.

1. Pairs in X associated with the same end of one edge but on different sides.

2. Pairs in X belonging to the same corner of a face.

3. Pairs in X associated with the same side of one edge, but at different ends.
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This leads to three matchings �i; i = 1; 2; 3 on X and to the definition given by

Tutte [Tut84] of a combinatorial map, stated purely in finite terms, without ref-

erence to any topology.

Definition 2.2. A quadruple m = (X; �1; �2; �3) is a combinatorial map if:

1. X is a finite set,

2. �i is a matching on X, for i = 1; 2; 3,

3. The permutation product �1�3 is also a matching on X,

4. The group h�1; �2; �3i acts transitively on X.

We write m = 
(M) for a combinatorial map m associated with a given topo-

logical map M, by means of the previous description.

If Condition 3 is omitted, m is called a hypermap. If Condition 4 is omitted, m

is called a premap.

Definition 2.3. A quintuple m= (X; �1; �2; �3; r) is a rooted map if r 2 X and (X; �1; �2; �3)

is a combinatorial map.

A combinatorial map or hypermap can be viewed through its matchings

graph:

Definition 2.4. The matchings graph of a map (or hypermap) m = (X; �1; �2; �3) is

Γ = Γ(m) with vertex set VΓ = X, and edge set

EΓ = ffx; yg : y = �k(x) for some 1 6 k 6 3g:
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The matchings graph Γ is vertex-3-regular (trivalent). The indices of the

matchings �k provide a proper edge-3-colouring, or Tait colouring, of Γ. Any

Tait-coloured trivalent graph determines a unique pre-hypermap. Condition 4

in Definition 2.2 is equivalent to Γ(m) being connected.

For each topological map M, we have shown above how to define an asso-

ciated combinatorial map m = 
(M). Vertices, edges and faces of M have the

following corresponding structures in Γ(m):

1. Faces correspond to cycles of Γ(m) consisting of (alternating) edges from �2

and �3.

2. Edges correspond to cycles of Γ(m) consisting of (alternating) edges from

�3 and �1.

3. Vertices correspond to cycles of Γ(m) consisting of (alternating) edges from

�1 and �2.

In a combinatorial map, Condition 3 in Definition 2.2 implies that cycles corre-

sponding to the edges in item 2 above correspond are 4-cycles in the matchings

graph Γ(m).

Isomorphisms between combinatorial maps

m = (X; �1; �2; �3) and m
0
= (X0; �01; �

0

2; �
0

3)

are bijections � : X ! X0 such that � Æ �k = �0k Æ � for 1 6 k 6 3. Two combina-

torial maps m and m
0 arising from isomorphic topological maps M and M

0 are

themselves isomorphic.
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Let ϒ denote the construction that associates with each combinatorial map

m a topological map M = ϒ(m). The three sets of cycles in Γ(m) associated to

the faces, edges and vertices, serve as boundaries to which can be attached open

disks, forming a surface S, with skeleton Γ(m). The functions ϒ and 
 are in-

verses, up to isomorphism. This result, in an equivalent form, is known as the

Embedding Theorem [Tut84, GT87].

The Euler characteristic of a combinatorial map m is determinable from Γ(m)

by counting its cycles corresponding to the faces, edges and vertices of ϒ(m). The

next result explains how to express orientability of m in terms of Γ(m).

Lemma 2.1. Let M= (G; S; i) be a topological map. The surface S is orientable if

and only if Γ(
(M)) is a bipartite graph.

Proof. To see this, fix the global orientation of S as clockwise. Use the global

orientation to assign a bipartition of X, by classifying positions at each vertex

as being on the clockwise or counterclockwise side of the edge in clockwise (the

global orientation) circulation of the vertex.

Conversely, given a bipartition (X1;X2) of the matchings graph Γ(
(m)), de-

fine a global orientation of S as follows. In the a neighbourhood of each vertex,

the positions alternate from X1 to X2. Choose a local orientation of the neigh-

bourhood of the vertex in such a way that the positions in X1 are on the clockwise

earlier side of the edges incident to the vertex. These local orientations are consis-

tent across the neighbourhoods of the edges, because (X1;X2) is a bipartition of

Γ(m). Finally, each face is contractible to a point, so the local orientation defined

above for a neighbourhood of G can be extended consistently to all of S.
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The dual of a map m= (X; �1; �2; �3; r) is (X; �3; �2; �1; r). The Euler characteristic

and the orientability of the dual are the same as those of the original.

2.3.3 A mnemonic convention

For mnemonic convenience we can replace �1; �2; �3 by f; e; v respectively. One

may think of �1 as a function which changes (at least locally) the face which

contains a position, and therefore �1 is denoted by f. (The same vertex and edge

contain positions x and f(x), while x and f(x) may or may not belong to the same

face.) One may think of �2 as changing the edge containing a position, and

therefore �2 is denoted by e. The vertex and face of the position are unaffected

by e. One may think of �3 as changing the vertex containing a position, and

therefore �3 is denoted by v. The face and edge containing a position are the

same for positions x and v(x).

The permutations ev; vf and fe are associated with faces, edges and vertices,

respectively. In each permutation, there is a correspondence between a pair of

disjoint cycles and faces, edges or vertices, respectively. That is, each face corre-

sponds to a pair of cycles in ev, each vertex corresponds to a a pair of cycles in

the permutation fe, and each edge corresponds to a pair of cycles in vf.

2.3.4 Edge Deletion and Submaps

Given an edge e in a map m= (X; �1; �2; �3), one can form a (pre)map m
0
=m� e

by deleting e from m.

Definition 2.5. Let m = (X; �1; �2; �3) be a premap. Let e be an edge of m, i.e. a 4-
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cycle in the matchings graphs Γ(m) with edges from �1 and �3. Let the positions in e be

x1; x2; x3; x4, where �1 : x1$ x2; x3$ x4 and �3 : x1$ x4; x2$ x3. Then the premap

m
0
= m� e is:

m
0
= (X0; �01; �

0

2; �
0

3)

where X0
= X n fx1; x2; x3; x4g,

�02(x) =

8>><>>:
(�2 Æ �1 Æ �2)(x) if �2(x) 2 fx1; x2; x3; x4g,

�2(x) otherwise, and

the other two matchings are �0

1 = �1jX0 and �03 = �3jX0 , restrictions to X0 of the match-

ings of m.

If multiple edges are deleted, the result does not depend on the order the

edges are deleted because (m � e1)� e2 = (m � e2) � e1. Thus we may define

m � D, for any set of edges D, as the result of the successive deletion of the

edges in D. Since this is analogous to deletion in graphs, the following notion

applies:

Definition 2.6. Let D = fe1; : : : ; edg be a set of edges in a map m. Then s = m�D =

(: : : ((m� e1)� e2)� � � � � ed) is a submap of m.

2.3.5 Rotation Systems

It will be convenient to define an orientable combinatorial map in terms of a pair

of permutations called a rotation system.
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Definition 2.7. A rotation system with n edges, vertex partition � and face partition

� is a pair (�; ") with � 2S2n and " 2Match(N2n), such that � (�)= � and � (�")= �.

The encoding is done by placing a label at each end of an edge. Then " is

the matching whose pairs are the pairs of labels on each edge. The cycles of

permutation � are formed by listing the labels in cyclic clockwise order around

each vertex. This can be done consistently through the global orientation of the

map. The cycles of �" then correspond to the faces of the map.

The resulting rotation system associated with a map is such that the permu-

tation group h�; "i generated by � and " is transitive (has one orbit on the set

N2n).

2.3.6 Generating Series for Maps

Associated with each map m = (X; f; e; v), are two partition-valued parameters,

�(m) and �(m), the face (degree) partition and vertex (degree) partition, respectively,

and the integer parameter n(m), the number of edges. In terms of a topologi-

cal map, the vertex partition consists of the degrees (number of incident ends

of edges) of each of the vertices, and the face partition consists of the degrees

(number of incident sides of edges) of each of the faces.

In the terms of combinatorial maps, the vertex partition consists of the half-

lengths of the cycles in Γ(m) representing vertices, the fe-cycles. The face par-

tition consists of the half-lengths of the cycles in Γ(m) representing faces, the

ev-cycles.

Let L be the set of all rooted, locally orientable maps. (This includes both
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orientable and non-orientable maps.) Let O be the set of all rooted orientable

maps (so O � L). The generating series for rooted (locally orientable) maps L is

defined to be

L = L(x;y; z)= ∑
m2L

x
�(m)y�(m)zn(m)

(where for any partition x
�
= x

�1 x
�2 : : : , and y

�
is similarly defined). The gener-

ating series for rooted orientable maps O is defined to be

Ω = Ω(x;y; z) = ∑
m2O

x
�(m)y�(m)zn(m):

For partitions �; � ` 2n, let the coefficient of x
�

y
�
zn in L and Ω be m

�;�;n and

!
�;�;n, respectively. These coefficients are non-negative integers which count the

number of either locally orientable or orientable rooted maps m with n edges,

and face and vertex partitions � and �, respectively.

It was claimed that (1.5) has the specialisations Ψ(1)
= Ω (with � = 1) and

Ψ(2)
= L (with � = 2). To elaborate on the definition of (1.5) one needs the theory

of symmetric functions.



Chapter 3

On the Algebraic Method

The Quadrangulation Conjecture and the Map-Jack Conjecture are based on re-

sults developed by the algebraic method of map enumeration. Although later

chapters do not use the material contained here, this chapter provides a back-

ground and context with an overview of the original development. Many of

the details of this development are omitted, since they are peripheral to the ap-

proach described in this thesis, and the interested reader is directed to the origi-

nal sources.

The Quadrangulation Conjecture is defined in Chapter 5, together with a par-

tial solution. This chapter outlines some of the methods in the complicated proof

of [JV90a] for the enumerative result from which the Quadrangulation Conjec-

ture arises. These methods are not required in Chapter 5, so the treatment here

is to motivate the origin of the bijection.

In the case of the Map-Jack Conjecture, Chapters 6 and 7 only use the material

of this chapter to support the relevance of the combinatorial parameters � and �

28
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(to be defined in Chapters 6 and 7). The interest in these parameters derives from

the computational evidence of their association with the Jack parameter �. By

defining Jack symmetric functions, this chapter makes the Map-Jack Conjecture

(Conjecture 1.2) precise.

This chapter also contains a re-derivation, by the algebraic method, of a result

of Walsh. Walsh obtained a recurrence relation by the edge deletion method,

and then solved this recurrence. Analogous steps are taken in Chapter 6 but on

rather different objects. The same result is derived again in this chapter, but by

the algebraic method. In the case of Walsh’s formula, an algebraic method is

used to re-establish a result of the edge deletion method. In later chapters, the

opposite occurs: the edge deletion method is used to produce some predicted

results of the algebraic method.

3.1 Group Algebras and Some Subalgebras

This section gives (without proof) the essential aspects that are needed for char-

acter theory and certain group algebras. Details are to be found in [Sag91, Irv98,

Mac95, JV90b, GJ96b, GJ96a].

Let Sn be the set of permutations acting on Nn = f1; 2; : : : ;ng. The group al-

gebra of Sn over C is denoted CSn , and consists of formal linear combinations of

permutations. Addition in CSn is usual vector space addition ∑
�

a
�
�+∑

�
b
�
� =
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∑
�
(a
�
+ b

�
)�. Multiplication uses the product from the symmetric group,

∑
�

a
�
��∑

�

b
�
� =∑

�;�

a
�
b
�
�� =∑

�

 
∑
�

a
��

�1b
�

!
�:

The centre Z(CSn ) of the group algebra of the symmetric group consists

of all a = ∑
�

a
�
� such that a

�
is constant on each conjugacy class, and hence

Z(CSn ) is called the class algebra. Since a permutation’s conjugacy class is deter-

mined by its cycle type, it follows that conjugacy classes C
�

are naturally indexed

by partitions. For example, the conjugacy classes of S3 are C[13] = f1g;C[21] =

f(1; 2); (2; 3); (3; 1)g and C[3] = f(1; 2; 3); (1; 3; 2)g.

A natural basis for the class algebra is the set of class sums C
�
= ∑

�2C
�

�. The

integers

[C
�
]C

�
C
�

(3.1)

are connection coefficients. Connection coefficients count factorisations of permu-

tations into permutations of specific cycle types, since

jC
�
j [C

�
]C

�
C
�
= jf(�; �; � ) : � 2 C

�
; � 2 C

�
; � 2 C

�
; ��� = 1gj :

Thus the number of rotation systems (�; ") with vertex partition � and face parti-

tion � is jC
�
j

�
C
�

�
C[2n]C� , since � 2 C

�
, " 2 C[2n] and �" 2 C

�
. It is therefore possible

to express a generating series for rotation systems in terms of connection coef-
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ficients. A generating series for rooted orientable maps can be found from the

generating series for rotation systems by applying a differential operator to its

logarithm.

3.1.1 Characters and Orthogonal Idempotents

For each partition � ` n, the group Sn has an irreducible character �� : Sn! C ,

and these constitute all irreducible characters. Characters are constant on each

conjugacy class. Let ��
�
= �

�
(�) for � 2 C

�
. Irreducible characters can be used to

express the orthogonal idempotents F
�

of CSn in terms of the class sums by

F
�
=

��[1n]

n! ∑
�

��
�
C
�
: (3.2)

Orthogonal idempotents are called so because of the property that

F
�
F
�
= Æ

��
F
�
: (3.3)

Class sums are expressed in the orthogonal idempotent basis as follows:

C
�
= jC

�
j∑
�`n

1
��[1n]

��
�
F
�

(3.4)

From (3.2), (3.4) and (3.3), connection coefficients may be expressed in terms of

characters by

[C
�
]C

�
C
�
=

jC
�
j � jC

�
j

n! ∑
�`n

��
�
��
�
��
�

��[1n]

: (3.5)
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Thus rotation systems may be enumerated using characters of the symmetric

group. Therefore orientable rooted maps may also be enumerated. But char-

acters of the symmetric group are themselves very difficult to compute and, in

practice, character sums are often intractable. Certain special cases and special

properties of characters can be used to obtain enumerative results about maps,

including the enumerative result behind the Quadrangulation Conjecture. More

importantly, characters of the symmetric group are an intermediate device to the

introduction of symmetric functions into map enumeration.

3.1.2 Two Double Coset Algebras

Non-orientable maps cannot be encoded by rotation systems, so an algebra dif-

ferent from the class algebra is needed for their enumeration. This is the double

coset algebra of the hyperoctahedral group, as was used [GJ96a].

Each subgroup H of a finite group G partitions the group G into double cosets

HgH= fh1gh2jh1; h2 2 Hg. The double coset algebra D(G;H) is a subalgebra of C G,

which has for a basis sums of elements in the double cosets of H. If D(G;H) is a

commutative algebra then (G;H) is called a Gel’fand pair [Mac95].

Fix a matching "n = (1; 2)(3; 4) � � � (2n� 1; 2n) 2S2n. The hyperoctahedral group

Hn is the centraliser group of "n, that is all permutation commuting with "n. Then

(S2n;Hn), is a Gel’fand pair. The double cosets of Hn may be naturally indexed

by partitions, and thus, so may the corresponding basis fK
�
g
�`n of D(S2n;Hn)

[HSS92].

The structure constants [K
�
]K

�
K
�
, may be used to enumerate labelled locally
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orientable maps, in a similar way to the way connection coefficients (3.1) enu-

merate rotation systems. For the double coset algebra of the hyperoctahedral

group, there is also a set of scalar-valued functions which behave like characters

of the symmetric group with respect to a set of orthogonal idempotents E
�

in the

double coset algebra D(S2n;Hn).

There is another double coset algebra, described by Macdonald in [Mac95],

which can be used to enumerate orientable maps and which has, moreover, a

close affinity to the double coset algebra for locally orientable maps. We now

digress briefly to describe it.

Let Gn =Sn�Sn, considered as a subgroup of S2n, acting independently on

odd and even numbers. For example (2; 8; 6)(1; 5)(3; 7) 2 G4. Let Ln = Gn \ Hn.

Then (Gn; Ln) is also a Gel’fand pair. The algebra D(Gn; Ln) has a double coset

sum basis fL
�
g
�`n indexed by partitions, which is such that [L

�
]L

�
L
�
= [C

�
]C

�
C
�
.

Thus, theoretically the algebra D(Gn; LN) may replace the class algebra Z(CSn )

for the enumeration of the orientable maps. For further discussion, see x3.2.4.

3.2 Symmetric Functions

Symmetric functions are formal power series of bounded degree, over (count-

ably) infinitely many ground variables, that are invariant under permutation

of the ground variables. Let the ground variables be x1; x2; x3; : : : , and let x =

(x1; x2; : : : ).

Each product of finitely many xi is a monomial. The collection of degrees of

the xi in a monomial is its degree partition. Thus for the partition �= (�1; �2; : : : ; �k),
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the corresponding monomial symmetric function is

m
�
(x) = ∑

i1;i2;:::;ik

x�1
i1

x�2
i2
� � � x�k

ik
;

summed over distinct monomials with degree partition �, each appearing once.

The ring of symmetric functions is

Λ =
M

�

Zm
�
;

the set of Z-linear combinations of monomial symmetric functions. The rings

formed by allowing other coefficients, such as the rational numbers or complex

numbers, are denoted by ΛQ or ΛC , respectively.

Other symmetric functions include the complete symmetric functions

hn(x) = ∑
�`n

m
�
(x) = ∑

i16:::6in

xi1 � � � xin ;

the elementary symmetric functions en(x) = m[1n](x) = ∑i1<���<in xi1 � � � xin , and the

power sum symmetric functions pn(x) = m[n](x) = xn
1 + xn

2 + � � � . For the parti-

tion � = (�1; �2; : : : ), let h
�
= h

�1h�2 � � � , e
�
= e

�1e�2 � � � and p
�
= p

�1 p
�2 � � � .

The ring Λ has fh
�
g and fe

�
g as Z-bases, and fp

�
g is a Q -basis for ΛQ . More-

over, fhng and feng are algebraic bases for Λ, i.e.: Λ = Z[h1; h2; h3; : : : ]. Similarly,

fpng is an algebraic basis for ΛQ = Q [p1 ; p2; : : : ].

A symmetric function is homogeneous if all its monomial terms have the

same total degree. The set of homogeneous symmetric functions of (total) degree

n is indicated Λn and has fm
�
g
�`n, fh

�
g
�`n, and fe

�
g
�`n as Z-bases.
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3.2.1 Jack Symmetric Functions

Introduce a scalar product h � ; � i
�

on ΛQ(�) , uniquely determined by:

hp
�
; p

�
i
�

= Æ
��

z
�
�`(�) (3.6)

where

Æ
��
=

8>><>>:
1 if � = �,

0 if � 6= �,

and for partitions � = [1m1(�)2m2(�) : : : ], recall that

z
�
=∏

i

mi(�)!imi(�):

Since fp
�
g is a basis for ΛQ(�) , and a scalar product is by definition linear in each

of its arguments, equation (3.6) suffices to define h � ; � i
�

over all of ΛQ(�) . One

has: hp[2]; p[12]i
�

= 0, but hp[2]; p[2]i
�
= 2� and hp[12]; p[12]i

�

= 2�2.

Put the Q (�)-basis fm
�
g
�`n of Λn

Q(�) into lexicographic order. Use Gram-

Schmidt orthogonalisation on this ordered basis. Let fJ(�)
�
g
�`n be the resulting

ordered basis, which satisfies the triangulation condition

J(�)
�
= a

��
m
�
+ ∑

�<�

a
��

m
�
; (3.7)
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for some a
��
2 Q (�), the orthogonality condition

D
J(�)
�
; J(�)
�

E
�

= 0 if i 6= j;

and the normalisation condition

�
m[1n]

�
J(�)
�

= n!

Then J(�)
�

is a Jack symmetric function. (The symmetric function J(�)
�

is called the

integral form of a Jack symmetric function in [Mac95], where Jack symmetric

functions are defined to be P(�)
�

with a different normalisation condition.)

Equation (3.7) still holds if lexicographic order in (3.7) is replaced by the

weaker dominance order. Moreover, Jack symmetric functions are still unique

if this condition is weakened. This non-trivial result is proved by using certain

differential, self-adjoint operators, the Sekiguchi-Debiard operators.

The Macdonald-Stanley Conjecture [Sta89] asserted that the a
��

are polyno-

mials in � with nonnegative integer coefficients. This conjecture was proved

recently independently in [KS97] and [LV95]. It is not clear how this recent re-

sult can be used to show a necessary consequence of the Map-Jack Conjecture:

that Ψ(b+1)(x;y; z), from (1.5), is a non-negative integer formal power series.

We include a briefly explained calculation of J(�)
[12] and J(�)

[2] for the above defi-

nition, in the power sum basis, since these functions are so essential to the Map-

Jack Conjecture. We now compute J(�)
�

for � ` n 6 2. For n = 1, there is only

one basis element m[1], so J(�)
[1] = m[1]. For n = 0, one has J(�)

? = m? = 1 by similar
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reasoning. For n = 2, lexicographic order is [12] < [2], so the first step of orthog-

onalisation is simply J(�)
[12] = 2m[12]. Next, we must have J(�)

[2] = a[2];[2]m[2] + 2m[12]

for some a[2];[2] = X 2 Q (�), and, by orthogonality:

0 =
D

J(�)
[12]; J(�)

[2]

E
�

= h2m[12];Xm[2]+ 2m[12]i
�

=



p[12]� p[2];Xp[2]+

�
p[12]� p[2]

��
�

= (X� 1) hp[12]; p[2]i
�

� (X� 1) hp[2]; p[2]i
�

+ hp[12]; p[12]i
�

� hp[12]; p[2]i
�

= 0� (X� 1)2�+ 2�2
� 0

= 2�(�X+ 1+ �);

using m[12] =
1
2(p[12]� p[2]) and m[2] = p[2]. Solving yields X= 1+�, and therefore

J(�)
[2] = (1+ �)m[2] + 2m[12]. Consequently,

J(�)
[2] = �p[2] + p[12];

J(�)
[12] =�p[2]+ p[12]:

in the power sums basis. The need for expressing of Jack symmetric functions in

terms of power sum symmetric functions is seen clearly in (1.5).

3.2.2 Schur Symmetric Functions

When � = 1, Jack symmetric functions specialise, up to a scalar factor, to Schur

symmetric functions since J(1)
�
= H

�
s
�
, where, recall, H

�
is the product of the
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hook lengths of the partition �. Schur symmetric functions are also given by

s
�
(x1; : : : ; xn) =

det(x� j+n� j
i )16i; j6n

det(xn� j
i )16i; j6n

(3.8)

and

s
�
= det(h

�i�i+ j)16i; j6n for n > `(�) (3.9)

(the equality of (3.8) and (3.9) is essentially the Jacobi-Trudi identity). Schur

symmetric functions are also given by

s
�
= ∑

j�j=j�j

z�1
�
��
�

p
�

(3.10)

The above three definitions do not seem to have corresponding generalisations

in terms of Jack symmetric functions. There is a combinatorial characterisation

of Schur symmetric functions as

s
�
(x) = ∑

sh T=�

xT (3.11)

summed over semi-standard tableau T of shape �. Equation (3.11) does have a

generalisation to the setting of Jack symmetric functions. For further details on

symmetric functions see [Mac95].

Because irreducible characters of the symmetric group appear both in (3.10)

and (3.5), Schur symmetric functions may be applied to the enumeration of ro-

tation systems and therefore to the enumeration of rooted orientable maps. In
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particular, the following generating series, already seen in (1.1), for orientable

rooted maps, is expressed in terms of Schur symmetric functions as

Ω(x;y; z)= 2z
@

@z
log ∑

n>0
∑
�`n

H
�
s
�
(x)s

�
(y)s

�
(z)

�����pj(x)7!xj ;pj(y) 7!yj
pj(z)7!zÆ j;2

The expression (3.9) for Schur symmetric functions in terms of complete sym-

metric functions is useful for obtaining the factorisation (1.2), which expresses�
p[4n]

�
s
�

in terms of two other Schur symmetric functions s
�

(1) and s
�

(2) .

This factorisation is achieved by setting pj = 0 for j 6= 4 in the determinant

det(h
�i�i+ j). Since hn = ∑

�`n z�1
�

p
�
, this can be done quite simply. Entries hn of

the matrix with n not divisible by 4 become zero under this substitution. Thus

the determinant may be factorised as the product of two determinants. This also

means the character ��[4n] can be expressed simply in terms of some characters

��[2k].

To restrict to quadrangulations set �= [4n]. The number of quadrangulations

may be expressed in terms of the number of all maps, by using the above factori-

sation. A natural bijection for this enumerative result is sought in the Quadran-

gulation Conjecture. More detail can be found in [JV90a].

3.2.3 Zonal Polynomials

When � = 2, a Jack symmetric function specialises to a zonal polynomial Z
�
=

J(2)
�

. While zonal polynomials do not share all the corresponding properties of
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Schur symmetric functions, they do share one property (not known to generalise

to Jack symmetric functions), a property corresponding to equation (3.10),

Z
�
= jHnj∑

�n

z�1
2�!

�

�
p
�

where !�
�
= !�(�) for any � 2 D

�
, the double coset of Hn indexed by �, and the

function !� is defined

!�(s) =
1

2nn! ∑
h2Hn

�2�(sh):

in [HSS92] with a full account of the character theory.

The same functions !� occur for double coset algebra of the hyperoctahedral

groups in the conversions from the double coset sum basis to the orthogonal

idempotents. These !� have the same rôle as characters do for the class algebra.

It then follows that Zonal polynomials Z
�

may be used to enumerate locally

orientable maps.

3.2.4 Symmetric Functions and Double Coset Algebras

The relationship between symmetric functions and the two double coset algebras

of x3.1.2 is summarised in this section. The following applies to the class algebra

Z(CSn ) as well, because it is related to the double coset algebra D(Gn; Ln) by

having equal connection coefficients [L
�
]L

�
L
�
= [C

�
]C

�
C
�
.

Let D(1)
�
=

1
jLnj

L
�
, and D

(2)
�
=

1
jHnj

K
�

(normalised double coset sums). For i =

1; 2, let E(i)
�

be the orthogonal idempotent indexed by �, of D(Gn; Ln) and D(S2n;Hn)
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respectively. Then for i = 1; 2 the following is true

∑
�`n

J(i)
�
E

(i)
�
= ∑

�`n

p
�
D

(i)
�
: (3.12)

The chosen normalisation of D(i)
�

gives (3.12) its simple form. The fundamen-

tal relationship of Jack symmetric functions at � = 1 and � = 2 to the structure

of the double coset algebras is made clear by the simplicity of (3.12). The result

(3.12) will not proven here. However, the usefulness of (3.12) is demonstrated by

simultaneously outlining part of the development of symmetric function based

generating series for both the set of orientable maps and the set of locally ori-

entable maps.

By taking coefficients of each side (3.12), it is possible to change bases, ei-

ther between power sums and Schur functions or zonal polynomials, or between

double cosets and orthogonal idempotents. For example

�
p
�

�
J(i)
 
=

h
p
�
E

(i)
 

i
∑
�`n

J(i)
�
E

(i)
�
=

h
p
�
E

(i)
 

i
∑
�`n

p
�
D

(i)
�
=

h
E

(i)
 

i
D

(i)
�
:
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More importantly,

h
D

(i)
�

i
D

(i)
�
D

(i)
�
=

h
p
�
(x)p

�
(y)D(i)

�

i 
∑
�`n

p
�
(x)D(i)

�

! 
∑
 `n

p
 

(y)D(i)
 

!

=

h
p
�
(x)p

�
(y)D(i)

�

i 
∑
�`n

J(i)
�

(x)E(i)
�

! 
∑
 `n

J(i)
 

(y)E(i)
 

!
=

h
p
�
(x)p

�
(y)D(i)

�

i
∑
�`n

J(i)
�

(x)J(i)
�

(y)E(i)
�

= ∑
�`n

�
p
�
(x)p

�
(y)
�

J(i)
�

(x)J(i)
�

(y)
h
D

(i)
�

J(i)
�

(z)
i
∑
�`n

J(i)
�

(z)E(i)
�

= ∑
�`n

�
p
�
(x)p

�
(y)
�

J(i)
�

(x)J(i)
�

(y)
h
D

(i)
�

J(i)
�

(z)
i
∑
�`n

p
�
(z)D(i)

�

= ∑
�`n

��
p
�
(x)
�

J(i)
�

(x)
���

p
�
(y)
�

J(i)
�

(y)
��h

J(i)
�

(z)
i

p
�
(z)
�

But

h
J(�)
�

i
p
�
=

D
J(�)
�

; p
�

E
�D

J(�)
�
; J(�)
�

E
�

=

hp
�
; p

�
i
�D

J(�)
�
; J(�)
�

E
�

D
J(�)
�

; p
�

E
�

hp
�
; p

�
i
�

=

z
�
�`(�)D

J(�)
�
; J(�)
�

E
�

�
p
�

�
J(�)
�

:

Therefore, for i = 1 and i = 2,

h
D

(i)
�

i
D

(i)
�
D

(i)
�
= z

�
i`(�) �p

�
(x)p

�
(y)p

�
(z)
�
∑
�`n

J(i)
�

(x)J(i)
�

(y)J(i)
�

(z)D
J(i)
�

; J(i)
�

E
i

(3.13)

For i = � = b+ 1, the right hand side of (3.13) is part of the generating series for

maps Ψ(b+1) of (1.5) and the Map-Jack Conjecture. For i = �, the left hand side

of (3.13) has no interpretation because D
(�)
�

has no interpretation, except at the

values � = 1 and � = 2.
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3.3 Algebraic Re-derivation of Walsh’s Monopole For-

mula

An example is given of the use of the algebraic method to obtain an explicit re-

sult. The result is a new proof of a result of Walsh and Lehman [Wal71] obtained

originally by the edge deletion method. It concerns a simple expression for the

number of orientable rooted monopoles (map with a single vertex) with a give

face partition.

The starting point of the new proof is a generating series for maps in terms

of Schur symmetric functions. It is shown that in the case of monopoles, the

generating series simplifies into the form discovered by Walsh and Lehman. The

proof is divided between the next three subsections for convenience.

3.3.1 Walsh’s formula

Walsh and Lehman obtained a formula, which is equivalent to the following

expression for !
�;[2n];n, the number of orientable monopoles (rooted, single vertex

maps) with n edges and face partition �,

!
�;[2n];n =

n!
2nz

�

�
un+1� `(�)

∏
j=1
f(1+ u)� j � (1� u)� jg: (3.14)

The coefficient in (3.14) may be extracted to obtain the sum

!
�;[2n];n =

n!
22g�1z

�

∑
i j>0

i1+���+i
`(�)=g

`(�)

∏
j=1

�
� j

2i j+ 1

�
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where g= 1
2(2��)= 1

2(2� (`(�)�n+1))= n+1�`(�)
2 is the genus of the monopoles

being enumerated by !
�;[2n];n.

For example,

![3213];[8];4 =
4!

2�1(3 � 2)3!

(�
3
1

��
2
1

��
1
1

�3
)
= 8;

![6;4];[10];5 =
5!

23(6 � 4)

��
6
3

��
4
3

�
+

�
6
5

��
4
1

��
= 65

![9;2;1];[12];6 =
6!

23(9 � 2 � 1)

��
9
5

��
2
1

��
1
1

��
= 1260

which can be compared to the tables of Appendix B. In xB.4.1, xB.5.1, and xB.6.1

(respectively), these values are found in the column with B = 0 and in the row

with [3213], [6; 4] and [9; 2; 1] (respectively). Incidentally, the values given in

Appendix B are coefficients of the generating series Φ of Chapter 6, and are com-

puted by a recurrence that extends the one used by Walsh originally.

3.3.2 From Walsh’s formula to special Schur symmetric func-

tions

The simple formula (3.14) is now manipulated into a form involving a special

class of Schur symmetric functions s
�
: those where � is a hook partition. To

obtain a generating series W(p; z) for the expression (3.14), multiply by p
�
zn,

and sum over all partitions �, to give

W(p; z) = ∑
n>0

zn ∑
�`2n

p
�

n!
2nz

�

�
un+1� `(�)

∏
j=1
f(1+ u)� j � (1� u)� jg:
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Proving the validity of Walsh’s formula (3.14) is equivalent to verifying that

W(p; z) is a generating series for orientable rooted monopoles. If the algebraic

method is to be used, then W(p; z) should be shown to equal the expression for

the generating series expressed in terms Schur symmetric functions.

Let mj =mj(�). As � varies over all partitions, mj varies over all non-negative

integers. So sum over all mj > 0.

W(p; z)= ∑
mj>0

n!
2nm1!m2!m3! : : :

zn
�
un+1�∏

j>1

�
pj

(1+ u) j
� (1� u) j

j

�mj

= ∑
mj>0

n!
�
tn+1�∏

j>1

1
mj!

 
pj

�r
z
2

� j
(1+ t) j

� (1� t) j

j

!mj

where n= 1
2(1m1+ 2m2+ � � �+ jmj+ : : : ) is assumed. Extraction of the coefficient

of un+1 and tn+1 may seem problematic if n is not an integer. However, the issue

is resolved by letting u = w2 and t = w2 respectively, from which it is seen that

coefficient should be zero when n is a half-integer. Let Θz be an operator defined

by Θz : zn
7! n!zn, and extended linearly. Then

W(p; z)= Θz ∑
mj>0

[t1]∏
j>1

1
mj!

 
pj

1
j

�r
z
2t

� j

((1+ t) j
� (1� t) j)

!mj

= Θz[t1]∏
j>1

exp

 
pj

1
j

�r
z
2t

� j

((1+ t) j
� (1� t) j)

!

= Θz[t1] exp ∑
j>1

 
pj

j

�r
z
2t

(1+ t)
� j

�

pj

j

�r
z
2t

(1� t)
� j
!

= Θz[t1] exp
�

log H
�r

z
2t

(1+ t)
�
� log H

�r
z
2t

(1� t)
��

= Θz[t1]
H
�
(1+ t)

p z
2t

�
H
�
(1� t)

p z
2t

�
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where H(z)= ∑m>0 hmzm. With E(z) = ∑m>0 emzm below,

W(p; z)= Θz[t1]H
�

(t+ 1)
q

z=(2t)
�

E
�

(t� 1)
q

z=(2t)
�

(3.15)

From [Mac95], it can easily be deduced that

H(u)E(yu) = (1+ y) ∑
06n;

06k6n�1

s[n�k;1k]y
kun: (3.16)

Hence (3.15), under the substitutions u = (t+ 1)
p

z=(2t) and y = t�1
t+1 into (3.16),

becomes

W(p; z)= Θz
�
t1��1+

t� 1
t+ 1

�
∑

06n;
06k6n�1

s[n�k;1k]

�
t� 1
t+ 1

�k�
(t+ 1)

r
z
2t

�n

: (3.17)

3.3.3 Determination of the monopole series M

For orientable rooted maps, the algebraic method gives a generating series in-

volving a sum of a product of three Schur symmetric functions. This is now

specialised to include only monopoles.

M(p(x); z) = 2z
@

@z
[y]∑

�

H
�
s
�
(x)s

�
(y)s

�
(z)

�����pj(y)=y
pj(z)=zÆ j;2

; (3.18)
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where z is an ordinary marker variable for edges, and each face of degree k is

marked by a factor of pk(x). To evaluate this begin by recalling that

s
�
= ∑

�`j�j

z�1
�
��
�

p
�

(3.19)

where, ��
�
= hs

�
; p

�
i is a character. Recall (3.9) which states that

s
�
= det(h

�i�i+ j)16i; j6n;

for any n > `(�). Since

hn = ∑
�`n

z�1
�

p
�

for n > 0, and since hn = 0 for n < 0, with some work [Mac95] or [JV90a], it

follows that

��[n] =

8>><>>:
(�1)k if � = [n� k; 1k],

0 otherwise,
(3.20)

where 0 6 k 6 n� 1. Thus ��[n] vanishes unless � has a hook shape.

Therefore only those � that are hooks contribute to the sum in (3.18). This

simplifies the sum in (3.18) considerably, because only a small portion of parti-

tions are hooks.
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For � ` n,

�
y
�

s
�

��
pj(y)=y = [pn]s

�

because when s
�

is expanded into power symmetric functions of degree n, the

only term of degree one as a polynomial over the variables p1; p2; p3; : : : is the

term containing pn. From (3.19)

[pn]s
�
= z�1

[n]�
�

[n]:

Now we can use (3.20) to simplify the sum in (3.18):

2z
@

@z ∑
n>0
06k6n�1

H[n�k;1k]s[n�k;1k](x)z�1
[n](�1)k

 
∑

m>0
zm �p[2m]

�
s[n�k;1k]

!
: (3.21)

The last factor in (3.21) can be explained by observing that when s
�

is expanded

into a polynomial of power symmetric functions the only nonzero terms in s
�
(z)

arise from the terms of pm
2 in s

�
for some m, because of the condition that pj(z)= 0

if j 6= 2.

It follows that, in (3.21), n must be even. So replace n by 2n. Then m = n.

Hence

M(p(x); z) = 2z
@

@z ∑
n>0
06k62n�1

H[2n�k;1k]s[2n�k;1k](x)z�1
[2n](�1)kzn

�
p[2n]

�
s[2n�k;1k]: (3.22)

Since z�1
[2n] =

1
2n cancels the effect of the differential operator 2z @

@z in (3.22), we
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have

M(p(x); z) = ∑
n>0
06k62n�1

(�1)kznH[2n�k;1k]s[2n�k;1k](x)z�1
[2n]�

[2n�k;1k]
[2n] (3.23)

Clearly z�1
[2n] =

1
2nn! . From [Mac95], the value of the character indexed by a hook

partition [2n� k; 1k] evaluated at a permutation with cycle partition � may be

deduced to be

�[2n�k;1k]
�

= [uk]
1

1+ u ∏
i>1

�
1� (�u)i�mi(�)

:

In particular, when � = [2n],

�[2n�k;1k]
[2n] =

�
uk
� 1

1+ u

�
1� u2�n

=

�
uk
�

(1� u)
�
1� u2�n�1

=

�
uk
�

(1� u)
�

1�
�

n� 1
1

�
u2
+

�
n� 1

2

�
u4
� � � �

�
=

�
uk��1� u�

�
n� 1

1

�
u2
+

�
n� 1

1

�
u3
+

�
n� 1

2

�
u4

�

�
n� 1

2

�
u5
�

�
n� 1

3

�
u6
+ � � �

�
= (�1)d

k
2e

�
n� 1
b

k
2c

�
:

(3.24)

Omitting the argument (x), and by noting that (�1)k+d k
2e = (�1)b

k
2c, (3.23) can
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now be re-expressed as

M(p; z) = ∑
n>0
06k62n�1

(�1)b
k
2 czn

� n�1
bk=2c

�
2nn!

H[2n�k;1k]s[2n�k;1k];

But the product of the hook lengths of the partition [2n� k; 1k] is H[2n�k;1k] =

(2n)k!(2n� k� 1)!. Therefore

M(p; z) = ∑
n>0

06k62n�1

(�1)b
k
2 czn k!
b

k
2c!
� 21�n

�
(2n� k� 1)!�
n� 1�b k

2c
�
!
s[2n�k;1k]; (3.25)

3.3.4 Completing the equality

To complete the proof we show that W(p; z)= M(p; z). From (3.17)

W(p; z)=Θz
�
t1� ∑

06n;
06k6n�1

s[n�k;1k]

�
(t� 1)k

(t+ 1)k

2t
t+ 1

��
(t+ 1)

r
z
2t

�n

=Θz
�
t1� ∑

06n;
06k6n�1

s[n�k;1k]

�
(t� 1)k(t+ 1)n�1�k(2t)

	
zn=2(2t)�n=2

=Θz
�
t0� ∑

06n;
06k6n�1

s[n�k;1k]

�
2(t� 1)k(t+ 1)n�1�k	 zn=2(2t)�n=2

=Θz ∑
06n;

06k6n�1

2s[n�k;1k]

h
tn=2
i�

(t� 1)k(t+ 1)n�1�k	 (2z)n=2

= ∑
06n;

06k6n�1

21�n=2 �n=2
�
!zn=2s[n�k;1k]

h
tn=2
i�

(t� 1)k(t+ 1)n�1�k
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which forces n to be even. (Again, this is made clearly rigorous by setting t=w2.)

Replacing n by 2n,

W(p; z)= ∑
06n;

06k62n�1

21�nn!zns[2n�k;1k] [tn] (t� 1)k(t+ 1)2n�1�k:

We need to evaluate

[tn] (t� 1)k(t+ 1)2n�1�k
=∑

i

(�1)k�i
�

k
i

��
2n� k� 1

n� i

�
=∑

i

(�1)k(�1)�i k!
i!(k� i)!

(2n� k� 1)!
(n� i)!(n� 1� k+ i)!

=

k!(2n� k� 1)!
n!(n� 1)!

(�1)k

�∑
i

(�1)�i n!(n� 1)!
i!(n� i)!(k� i)!(n� 1� k+ i)!

=

k!(2n� k� 1)!
n!(n� 1)!

(�1)k ∑
i

(�1)�i

�
n
i

��
n� 1
k� i

�
=

k!(2n� k� 1)!
n!(n� 1)!

(�1)k
�
uk
�

(1� u)n(1+ u)n�1

=

k!(2n� k� 1)!
n!(n� 1)!

(�1)k �uk� (1� u)(1� u2)n�1

which, by (3.24),

=

k!(2n� k� 1)!
n!(n� 1)!

(�1)k(�1)d
k
2 e

�
n� 1
b

k
2c

�
=

k!(2n� k� 1)!
n!(n� 1)!

(�1)k(�1)d
k
2 e

�
n� 1
b

k
2c

�
=

1
n!

k!
b

k
2c!

(2n� k� 1)!
(n� 1�b k

2c)!
(�1)b

k
2 c
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Hence

W(p; z)= ∑
06n

06k62n�1

21�nzns[2n�k;1k]
(2n� k� 1)!
(n� 1�b k

2c)!
(�1)b

k
2c

= M(p; z)

This completes the proof of Walsh’s formula using the algebraic method.

3.4 Summary

The algebraic method was briefly described, in order to indicate the origins of

the Quadrangulation Conjecture and the Map-Jack Conjecture and to define the

latter. A new application of the algebraic method was given, reproving a result

of Walsh.



Chapter 4

Depth First Search

Depth first search is an essential tool in the description of the bijections eΞ and Θ,

and the parameter �. By imposing some canonical structures, depth first search

on the matching graphs of rooted maps provides a starting point for the later

constructions. Utilising depth first search, we introduce the following canonical

structures associated with rooted maps: a canonical position labelling (x4.1), a

canonical ordered digraph (x4.2) structure, a canonical edge classification (x4.3),

and a canonical representation as an edge diagram (x4.4). Examples of each of

these canonical structures for three different rooted maps are given at the end of

this chapter in Table 4.1.

The construction of the bijection eΞ of Chapter 5 employs both the canonical

edge classifications and the canonical edge diagram representation. The con-

struction of the parameter � of Chapter 7 is defined by a composition: first the

canonical ordered digraph structure is required, followed by an evaluation of the

parameter � of Chapter 6. The canonical edge diagram representation of rooted

53
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maps is employed again in Chapter 8 in a bijective proof of a continued fraction

result concerning numbers of rooted maps of without regard to genus.

According to Chapter 2, a rooted map has many different but isomorphic

representations (X; �1; �2; �3; r), and should itself be regarded as the collection

of all these representations. Until this chapter, we have not described a means

choosing one of these representations as canonical. Such a unique and natural

canonical representation expands (as we shall see) the possibilities for decom-

positions of rooted maps. Indeed, as will be seen in Chapters 5, 7 and 8, the

canonical structures of this chapter assist in the interpretation of some previ-

ously uninterpreted enumerative results.

In particular, the canonical representation and other related canonical struc-

tures described in this chapter, may be applied to yield progress on some enu-

merative results formerly requiring powerful algebraic techniques. Firstly, in

the original development of Conjectures 1.1 and 1.2, rooted maps were rep-

resented in a special but not unique form, namely (X; �1; �2; �3; r) with X =

f1�; 1+; : : : ; 2n�; 2n+g, �1 = (1�; 1+) : : : (2n�; 2n+), �3 = (1�; 2+)(1+; 2�) : : : and

r = 1�. There is therefore the potential consequence that even if the algebraic

steps could be converted into combinatorial steps, these steps may depend on

the particular representative of the rooted map. By providing canonical rep-

resentations, this chapter contributes some progress on these two conjectures.

Secondly, the continued fractions result of [AB97] for rooted maps uses an edge

deletion decomposition for rooted maps. One step in the proof is an iterative

algebraic solution of a Ricatti equation, and it is this step that lacked a combina-
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torial interpretation. With the canonical representations of this chapter, however,

a fully combinatorial interpretation can be obtained. This is presented in Chap-

ter 8.

It will be seen that if a certain depth first search is performed on the match-

ings graph of a rooted map, according to the rules of Algorithm 4.1, then the

order in which the search visits the positions provides a unique canonical rep-

resentation (X; �1; �2; �3; r) of the rooted map. Once a unique representation is

chosen, rooted maps can be manipulated with greater ease. Element-wise ac-

tions upon rooted maps, and special properties of rooted maps, may be defined

in terms of the unique representation. This more exact level of detail facilitates

the precise description of complicated operations upon rooted maps.

Precise and complicated operations of this sort on rooted maps are required

for expressing algorithmically the desired properties of the constructions Ξ and #

of Conjectures 1.1 and 1.2. By careful examination of the associated enumerative

results, it can be concluded that both constructions depend on the rooting of

the map, so different rootings of the same map may give different results. In

addition, by their definitions, �, Θ and eΞ are necessarily (through depth first

search) root dependent operations.

Lehman’s integer-parenthesis system [Wal71], as a canonical representation

of rooted maps, resembles the edge diagram. In this thesis, an extension of a

structure equivalent to integer-parenthesis systems (namely orientable edge di-

agrams) are applied for enumerative and constructive purposes. Walsh, in his

thesis [Wal71], applies integer-parenthesis systems to obtain enumerative re-
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sults about orientable rooted maps, so Walsh’s association between orientable

rooted maps and integer-parenthesis systems is analogous to the depth first

search method. However, here we extend the use of depth first search to non-

orientable rooted maps. Moreover, the applications to �, eΞ and Θ, constitute a

new use of depth first search.

4.1 The Canonical Position Labelling Algorithm

The following algorithm describes a canonical labelling `m : X! N
jXj of the po-

sition set of an arbitrary locally orientable, rooted map m = (X; �1; �2; �3; r).

Algorithm 4.1 (Canonical Position Labelling). Letm= (X; �1; �2; �3; r) be a rooted

map.

1. Let j := 1 and x := r.

2. Let xj = x.

3. Let k := 1.

4. If �k(x) 62 fx1; : : : ; xjg then let Parent(�k(x)) = x, x := �k(x), j := j+ 1 and

goto Step 2.

5. Let k := k+ 1. If k 6 3 then goto Step 4.

6. If x 6= r then let x := Parent(x) and goto Step 3.

7. Halt.

Let `m : xj 7! j. Then `m : X! N
jXj, is the canonical position labelling of m.
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An example of the execution of the algorithm upon a rooted map is given in

x4:1:1. The example is general enough in the sense that the algorithm uses all of

its steps, and all three values of k.

Since Algorithm 4.1 finds a unique position labelling, these labels can be used

to define a unique representation (X; �1; �2; �3; r) for each rooted map:

Definition 4.1. A rooted map m = (N4n; �1; �2; �3; 1) is canonical if `m(i) = i for all

1 6 i 6 4n.

Besides having X = N4n and r = 1, a canonical map has special forms for the

matchings �1; �2 and �3. These forms are successively less restricted in a sense

that will be seen in x4.1.2.

Algorithm 4.1 is one of the simplest ways to assign position labels canonically

to a rooted map. Clearly, the method is depth first search on the matchings graph

since elements accessible from the active position x are searched exhaustively

before backtracking. Clearly, the method is greedy, searching with �1, �2, and �3

in that order. Moreover, as discussed in x4.1.3, Algorithm 4.1 is an instance of

Prim’s algorithm.

4.1.1 Example of the execution of Algorithm 4.1

Consider the planar rooted map in the second column of Table 4.1(a) on page 93,

as redrawn in Figure 4.1. We intend to explain how to obtain the canonical po-

sitional labelling of Table 4.1(b). The tail of the arrow in Figure 4.1 indicates the

root position of this map. The root position is the starting point for the algorithm,

and is assigned the label 1 in Figure 4.2.
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Figure 4.1: A planar rooted embedding of the complete graph K4

1

Figure 4.2: The algorithm begins at the root position

Consider the three positions adjacent to 1 in the matchings graph. These

positions are �1(1), �2(1) and �3(1). To this point, all these positions are new in

the execution of the algorithm. Thus, the algorithm next visits the first of these

positions, namely �1(1), as in Figure 4.3.

Once a position is labelled with a 2, the positions �1(2), �2(2) and �3(2) are

considered in order. It is found that the position �1(2) has already been labelled

with a 1. The next position to consider is �2(2). This position has not been la-

belled, and therefore, according to the algorithm, it is labelled with a 3, as in

Figure 4.4.

Continuing in this fashion, labels 4 5,and 6 are added, alternating between �1

and �2, as in Figure 4.5. After label 6 has been assigned, �1(6) = 1 and �2(6) = 5.
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�11
2

�3

�2

Figure 4.3: The algorithm moves along �1 first

3

2
�21

�3

�1

Figure 4.4: If �1(x) has been labelled, look at �2(x)
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Thus �3(6) is the only adjacent position to 6 that is not yet labelled, and therefore

it receives the next label, 7, as in Figure 4.5.

�1

4
3

�3

1 2

�2
5

6

Figure 4.5: First instance that �3 is used

Continue assigning labels to the positions around the vertex where label 7 is

located. Thus, labels 1,...,12 will be used and the result is shown in Figure 4.6(a).

For convenience, in this example we replace these numerals by a; b; c; d; : : : ; k; l,

in alphabetical order, in Figure 4.6(b) (since there are only 24 positions in this

map, we shall not run out letters).

Proceed in the same fashion, assigning letters to positions of the third vertex

the algorithm visits, by taking �3 from position l. The first letter assigned will be

m, followed by n; o; p; q; r. This is shown in Figure 4.7.

Observe that all three positions adjacent to r have been assigned labels: a;m

and q. Thus backtrack to q, and check if there are any positions adjacent to q,

which have not been assigned a label yet. In this case there are no such positions,
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a

f
e

b

c
d

11

h

i
j

l

g

k

(a) Labels as numbers (b) Labels as letters

1

6
5

2

3
4

8

9
10

12

7

Figure 4.6: Use letters instead of number for labels

a

f
e

b

c
d

r

h

i
j

l

g

k

m
nopq

Figure 4.7: Assignment of labels m;n; o; p; q and r
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because the neighbouring positions of q have already been labelled with b; p and

r. Therefore, the algorithm backtracks further, to p.

In Figure 4.7, �3(p) has not yet been assigned a label. The next available label

is s, so s := �3(p), as in Figure 4.8.

a

f
e

b

c
d

h

i

s

j

l

g

k

m
nopq

r

Figure 4.8: Assign label s, by backtracking from r to p.

The algorithm terminates with this map by adding labels t;u; v;w; x around

the vertex where s is located, and then backtracking all the way from x to a. At a

(the root position) no further backtracking is possible, so the algorithm halts.

The trace of the algorithm is indicated by the curve in Figure 4.9. Such curves

can in general be drawn to trace the algorithm, without intersecting themselves.

4.1.2 Properties of Canonical Position Labellings

Let "N = (1; 2)(3; 4) � � � (2N�1; 2N) and "b
a = (2a+2; 2a+3)(2a+4; 2a+5) � � �(2a+

2b; 2a+ 1), permutations which are products of transpositions.
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a

Figure 4.9: The trace of the algorithm around the rooted map

For a canonical rooted map m:

�1 = "2n = (1; 2)(3; 4)(5; 6) : : : (4n� 1; 4n):

The interpretation of this is that canonical position labels at the same end of an

edge are consecutive, with the odd label less than the even label.

Now, �2 has the form

�2 = "k1
0 "

k2
k1
"k3

k1+k2
� � �"kv

k1+k2+���+kv�1

= (2; 3)(4; 5) � � � (2k1; 1)| {z }
first vertex

(2k1+ 2; 2k1+ 3) � � � (2k1+ 2k2; 2k1+ 1)| {z }
second vertex

� � �

where v is the number of vertices of the rooted map m. The ki are the degrees

of the vertices in the order they are encountered by the algorithm. The match-

ing �2 has this property because the algorithm cycles once around each vertex,
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assigning a set of consecutive labels [a; b]\N to the set of positions at that vertex.

Consider the first position that Algorithm 4.1 encounters at each vertex. The

parent of this position will have a smaller label, and these two will be paired by

�3. Therefore, for i > 1:

�3(2k1+ 2k2+ � � �+ 2ki + 1) = hi

for some hi < 2k1+ 2k+ � � �+ 2ki+ 1. Moreover, if

hi < j < 2k1+ � � �+ 2ki+ 1 (4.1)

then �3( j) < 2k1 + � � �+ 2ki + 1, because at position j the algorithm continued

backtracking to hi before finding a position with an unlabelled neighbour.

4.1.3 Relationship to Prim’s Algorithm

Let jXj = 2m. Let m = (X; �1; �2; �3; r) be a rooted map. Then the canonical

position labelling `m of m is characterised as the unique bijection `m= ` : X!N2m

satisfying:

1. `(r) = 1,

2. For L= 1; : : : ; 2m� 1, let xi be such that `(xi)= i for 16 i6 L, then amongst

all pairs ( j; k) satisfying:

(a) 1 6 j 6 L,

(b) 1 6 k 6 3, and
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(c) �k(xj) 62 fx1; : : : ; xLg,

there is a pair ( j; k) = ( j0; k0) which

(d) maximises the value of j,

(e) minimises the value of k, and

(f) satisfies `(�k0(xj0)) = L+ 1.

The canonical position labelling algorithm is a depth first search on the match-

ings graph of Γ = Γ(m) of a rooted map m. Because of 2(e) above, it is also a

special case of Prim’s algorithm acting on the matchings graph, for finding a

minimum-weight spanning tree of an edge-weighted version of the matchings

graph where edges associated with �i are given weight i.

4.2 Canonical Ordered Digraphs

Definition 4.2. An ordered digraph d with n edges is a map (X; �1; �2; �3), together

with the following additional information:

1. each edge is assigned a direction,

2. each edge is assigned a label from Nn,

3. each vertex is assigned a cyclic orientation.

The map m = (X; �1; �2; �3) is the underlying map of the ordered digraph d

above. For a rephrasing of the definition of ordered digraphs, in terms of match-

ings, see Proposition 4.1.
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Algorithm 4.2 (Canonical Ordered Digraph). Letm= (X; �1; �2; �3; r) be a rooted

map. Its canonical ordered digraph d = Æ(m) is determined by its canonical la-

belling `m as the unique ordered digraph satisfying the following conditions.

1. d has the underlying map (X; �1; �2; �3).

2. Each edge e of m has a pair of positions at one end with higher labels under

`m than at the other end. In d, make the higher end of e its head, and its

lower end the tail.

3. Each edge e has four positions, one of which maximises the value of the la-

belling `m over e. Use these maxima to sort the edges in d, i.e. the edge with

the lowest maximum becomes e1 and the edge with the highest maximum

becomes en.

4. To determine the cyclic orientation of a vertex v, recall that the set of labels

under `m assigned to the positions at each vertex v is a set of the form

[a; b]\ N . Then

� If v has degree greater than one, the cycle in the matchings graph Γ(m)

can be given a cyclic orientation by starting at the `m-minimiser, and

in the direction of the next lowest, around the associated cycle of Γ(m).

� Otherwise, if v has degree one, then the cycle associated with v in

Γ(m) has two edges, one associated with �1 and one associated with

�2. Direct the �1 edge, from the lower position to the higher position,

and the �2 edge in the opposite direction.

Chapter 7 uses Æ to define the candidate Map-Jack parameter �.
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4.2.1 Example of a canonical ordered digraph

Consider once again the rooted planar of embedding of the complete graph K4

on four vertices, together with its (alphabetical) canonical position labelling in

Figure 4.10.

a b c
d

e
f g

h
i

o

j k l

m
nq

r

s t
u

vw
x

p

Figure 4.10: Canonical position labelling of a planar K4 embedding (alphabetical
form)

The edges sorted by their highest position label are fe; f ; g; hg; : : : ;fc; d;w; xg,

so the assignments of the labels in fe1; : : : ; e6g to these are

e1 fe; f ; g; hg; e2 fk; l;m;ng; e3 fa; b; q; rg;

e4 fo; p; s; tg; e5 fi; j;u; vg; e6 fc; d;w; xg:

This determines how each edge is to be assigned a label from N6.

As an example of the determination of edge directions, consider e3. The tail

of e3 is to contain the lower positions fa; bg, and the head the higher positions

fq; rg. Thus e3 is directed towards fq; rg.

The vertices have sets of canonical position labels

fa; b; c; d; e; fg;fg; h; i; j; k; lg;fm;n; o; p; q; rg;fs; t;u; v;w; xg:
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These determine cyclic orientations of the four vertices. All four cyclic orien-

tations are clockwise in this instance. The resulting canonical ordered digraph

m
nopq

r

s t

u
w

x
v

a

f
e

b

c
d

h

i
j

l

(b) Canonical Ordered Digraph

g

k

e1

e2
e3

e4

e6 e5

(a) Canonical Position Labeling

Figure 4.11: Canonical ordered digraph structure

structure is given in Figure 4.11(b).

4.2.2 An equivalent formulation in terms of triples

The definition of an ordered digraph (X; �1; �2; �3) may be rephrased in terms

of conditions on the matchings and the set of positions X, in such a way that

the additional information required for an ordered digraph is contained within

(X; �1; �2; �3). The set of positions is to have the form X = Nn � f�1; 1g �

f�1; 1g. Then, the extra information is to be interpreted as follows:

� The two positions (i;�1;�1) and (i;�1;+1), are the positions at the tail of

the directed edge ei.
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� The two positions (i;+1;�1) and (i;+1;+1), are the positions at the head

of the directed edge ei.

� At a given vertex v of an ordered digraph d, the positions around v may be

arranged (im; jm; km), in the cyclic order according to the structure of d, and

will satisfy i2m�1 = i2m, j2m�1 = j2m and k2m�1 = �1 and k2m =+1.

Thus:

Proposition 4.1. A map (X; �1; �2; �3) is an ordered digraph if X=Nn�f�1; 1g�

f�1; 1g and:

1. �1 : (i; j; k) 7! (i0; j0; k0)) i0 = i; j0 = j; k0 = �k,

2. �2 : (i; j; k) 7! (i0; j0; k0)) k0 =�k,

3. �3 : (i; j; k) 7! (i0; j0; k0)) i0 = i; j0 =� j.

for all (i; j; k); (i0; j0; k0) 2 X.

Proof. This is just a re-statement of Definition 4.2.

Figure 4.12 gives an example by means of triples description of the positions

of an ordered digraph in the Klein bottle. With this description, it is possible to

define the notion of an edge ei preserving or reversing the cyclic orientations at

its ends, as follows

� Edge ei preserves local cyclical orientations if �3 : (i;�1;�1) 7! (i;+1;+1).

� Edge ei reverses local cyclical orientations if �3 : (i;�1;�1) 7! (i;+1;�1).
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�3

(2;�1;1)

(1;1;1)

(1;1;�1)

(2;�1;�1)

(2;1;�1)(2;1;1)

(1;�1;�1)

(1;�1;1)

�2

�1

e1

e2

Figure 4.12: Formal position descriptions in an ordered digraph in the Klein
bottle
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An ordered digraph is oriented if all its edges preserve cyclic orientations. An

ordered digraph d is orientable if the k-values alone can be changed so the digraph

becomes oriented. An ordered digraph is orientable if and only if the surface its

map is embedded in is orientable. In the digraph d of Figure 4.12, the edge e2

reverses local cyclic orientation of d, while e1 preserves local cyclic orientation.

Algorithm 4.2 may be rephrased as follows for ordered digraphs of Proposi-

tion 4.1.

Algorithm 4.3 (Canonical Ordered Digraph, II). Given a rooted mapm= (X; �1; �2; �3; r)

with n edges, the canonical ordered digraph d = Æ(m) of m is computed as fol-

lows:

1. Let Y = Nn�f�1; 1g� f�1; 1g.

2. Execute Algorithm 4.1 to compute `m.

3. Assume without loss of generality that m is canonical. In particular, assume

that X = N4n.

4. Let ei be the edge of X containing position ai < bi < ci < di, such that d1 <

d2 < d3 < � � � < dn.
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5. Let ' : X! Y be the bijection such that

'(x)=

8>>>>>>>>>><>>>>>>>>>>:

(i;�1;�1) if x = ai

(i;�1; 1) if x = bi

(i; 1;�1) if x = ci

(i; 1; 1) if x = di

6. Let �k = ' Æ �k Æ '
�1.

Then

d = Æ(m) = (Y; �1; �2; �3):

is the canonical ordered digraph of m.

4.3 Canonical Spanning Trees, Struts and Cuts

Most often, the occurrences of Step 4 of Algorithm 4.1 in which the re-assignment

x := �k(x) is made, the value of k is 1 or 2, because these values are considered

before the value k = 3. In fact, k = 3 for v� 1 of these re-assignments, because

one such re-assignment x := �3(x) is needed each time the algorithm visits a new

vertex (excluding the root vertex).

When this happens, we say that the edge of m containing the positions x and

�3(x) has been traversed by Algorithm 4.1. The set of the traversed edges of the
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rooted map m form a spanning subtree of the underlying graph of m. (Not the

matchings graph.) This tree is the canonical spanning subtree of m. Its edges are

called canonical tree edges.

For example, consider the rooted planar map of Figure 4.13, which is an em-

bedding of the complete graph K4 on four vertices. All the canonical position

a

f
e

b

c
d

h

i
j

l

g

k

v

m
nopq

r

s t

u
w

x

�3

�3�3

Figure 4.13: The traversed edges of a planar embedding of K4

labels are indicated. The letters a; b; c; d; : : : indicate the order. Note that Algo-

rithm 4.1 uses �3 to move to a new vertex in exactly three instances: f ! g, l!m

and p! s. (In the last case, the algorithm backtracks from r, explaining why s is

not the immediate successor to p). Hence the canonical spanning subtree is indi-

cated by the solid edges of Figure 4.14. Note that the canonical spanning subtree

of m is also a depth first search tree.



CHAPTER 4. DEPTH FIRST SEARCH 74

Figure 4.14: The canonical spanning subtree

4.3.1 Struts and Cuts

Recall that depth first search has been used to classify edges canonically into tree

edges and non-tree edges. Later, in the construction of the bijection eΞ, we shall

need a more refined classification, one which separates non-tree edges into cuts

and struts. We now provide such a classification.

Algorithm 4.4 (Cuts and Struts). Let m be a rooted map with n edges. Let d =

Æ(m) be its canonical ordered digraph. Determine the canonical tree edges of m.

Then

1. Let i := n and b := m.

2. If ei is

� not a canonical tree edge, and

� bounds two distinct faces,

then let ei 2 Cm and let b := b� ei.

3. Let i := i� 1. If i > 0, goto Step 2.

Then
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� the edges in Cm are the cuts of m.

� the terminal value of the submap b is the backbone of m,

� the edges of b which are not canonical tree edges are the struts of m.

There are V � 1 tree edges. Because each time a cut is removed from b the

number of faces is reduced by one, there are F� 1 cuts. Therefore there are 2��

struts. For orientable maps, � = 2� 2g, so the number of struts is 2g.

4.3.2 Example of the determination of cuts and struts

To explain the definitions of struts and cuts let us refer to a running example

involving the rooted map m, which is an embedding of K5 in the torus. The map

m is given in Figure 4.15.

Figure 4.15: The rooted map m, an embedding of K5 in the torus

First, perform Algorithm 4.1 on the positions of the map m, as in Figure 4.16,

where, to avoid clutter, the letters a;A; b; B; : : : rather than numbers have been
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assigned to the positions. Recall that edges have a canonical order, based on

b

d
E

a

I

j

J

M

t

Q

s S D

c
C

B
A

e
f
F

g G
h
H

i
L
l
K k

m

N n
o
O

p P

r
R

q
T

Figure 4.16: The canonical labelling from depth first search

the order of the highest letter (position) on each edge. For m, this edge order is

illustrated in Figure 4.17 by the symbols e1; e2; : : : ; e10 in increasing order of the

subscripts. Edge order plays a prominent role in distinguishing struts from cuts.

As before, certain edges are canonical tree edges and these form a canonical

spanning subtree of the underlying graph K5. In m, the tree edges e1; e2; e4; e7,

and are shown with thickened line segments in Figure 4.17.

The non-tree edges of m in descending order are e10; e9; e8; e6; e5; e3. To test

which of these are struts and which are cuts, conditionally delete them in suc-

cession by descending order. Delete an edge only if it separates two distinct

faces. The edges that are deleted in this process are the cuts. The edges that are

not deleted are the struts. The result of this conditional deletion process is, in

general, a submap of m, that

� consists of only the tree edges and struts,
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e10

e1

e2

e3

e4

e5

e6
e7

e8

e9

Figure 4.17: The canonical order of edges and the canonical tree edges

� has only one face, and

� has the same surface structure as m.

This submap is called the backbone of the rooted map m.

Figure 4.18(a) shows that e10 separates two distinct faces in m. Therefore,

delete e10 from m. Figure 4.18(b) shows that e9 separates two distinct faces in

m� e10. Therefore, delete e9 too. Thus e10 and e9 are cuts.

In m� fe10; e9g, the next edge to test, e8, does not separate two faces. There-

fore e8 is a strut. It is not deleted by the process. To emphasise that e8 is a strut,

it is now drawn with a double line, as in Figure 4.19(a). The next non-tree edge

is e6 which is another cut, Figure 4.19(b). Finally, e5 is a strut and e3 is a cut, for

reasons similar to the previous.
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(b) e9 is a cut

e10

e9

(a) e10 is a cut

Figure 4.18: The first two cuts to be tested

e6

e8

(a) e8 is a strut (b) e6 is a cut

Figure 4.19: The next two non-tree edges, a strut and a cut
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e3

e5

(a) e5 is a strut (b) e3 is a cut

Figure 4.20: Another strut and another cut

4.3.3 Associating Cuts with Non-root Faces

Recall that the backbone of a rooted map consists of the canonical tree edges and

the struts (and all the vertices). In the specific example, the backbone consists of

the edges fe1; e2; e4; e5; e7; e8g. The remaining edges are cuts.

Form submaps mi of m by taking the backbone to be m1 and successively

adding the cuts, in ascending order. The resulting maps are m1;m2; : : : ;mF = m,

where m has F faces. Then mi in this sequence has i faces.

As each cut is added, it cuts an existing face into two faces. One of these faces

will be considered the new face, in a manner to be described shortly. This new

face will become associated with the cut.

Of course, subsequently, the face of mi+1 that is associated with the ith cut,

may itself divided into faces by later cuts. Nevertheless, the association remains

between the original cut, and whatever remains after new faces are cut off the
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Figure 4.21: The backbone of the rooted embedding of K5

face associated with the original cut.

The root face is treated differently. In each submap mi, the root face Ri is the

face that would have contained the root position. Note that Ri is not associated

with any cuts. The root face Ri is cut into two faces, Ri+1 and Si+1. When the next

cut is added to mi to form mi+1, the root face Ri+1 has fewer edges than Ri, and

the face Si+1 is associated with the cut just added.

With the example, m2 = m1+ e3, the backbone with e3 (the lowest cut) added,

as in Figure 4.22. Here, e3 cuts the root face of m1 into two faces. Since the root

position of m actually lies on e3 itself, it is straightforward to see which of the

two faces in e3 is the non-root face. To indicate that the cut e3 is associated with

the non-root face of m2, an arrow is drawn in Figure 4.22, extending from one

side of e3 into the face with which it is associated.

The next cut, e6, cuts the face of m2 associated with e3. In m3 one of these two

resulting faces is incident with e3 and the other not. The other face is the new
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Figure 4.22: The submap m2, with association of e3 to the non-root face

Figure 4.23: The submap m3, with the association of e6 to the new non-root face
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face. It is not a root face, and is not associated with any cuts. Therefore associate

it with the cut e6. This is indicated in Figure 4.23, with an arrow on the side of e6.

(b) The final cut e10(a) Addition of the cut e9

Figure 4.24: The cuts e9 and e10 and associated faces

The next two cuts, e9 and e10, also cut non-root faces, so are treated similarly

to e6. See Figure 4.24(a) for e9 and Figure 4.24(b) for e10.

4.4 Edge Diagrams and Integer-Parenthesis Systems

The canonical position labelling algorithm sorts the positions of a rooted map

into linear order. The edge diagram is a linearisation of a rooted map, in the sense

that the positions are ordered linearly on a base line. The edges are drawn as

semicircular arcs from the base line to itself. Combinatorially, edge diagrams

may be encoded with a single matching, together with some distinguished sub-

sets. The pairs in the matching correspond to arcs (which represent edges) in the

edge diagram.
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First we introduce the notation for matchings:

Definition 4.3. Let � 2Match(N2n). Let �+ = fi 2 N2n : �(i) < ig.

Thus, �+ is the set of upper members of the pairs in �.

An edge diagram consists of a system of arcs, which may be formalised as a

matching �, together with two sets of specially designated right ends of arcs: V

for the vertices (associated tree edges) and T for the edges marked by an “�”.

Definition 4.4. Let n be a non-negative integer. An edge diagram is a quadruple

e = (n; �;V;T) satisfying:

1. � 2Match(N2n),

2. V;T � �+,

3. V \ T = ?,

4. If v 2 V and �(v) < u < v then �(u) < v.

A quadruple (n; �;V;T) which only satisfies Conditions 1–3 is an edge configuration.

Considering how we want to form edge diagrams e = "(m), it is natural to

refer to the pairs of � (or equally well, the elements of the �+) as the edges of the

edge diagram e. Those edges whose right end contains a vertex (belongs to V)

are vertex-beginner edges (called tree edges in m). Those edges whose right end

bears an “�”, are called twisted edges.

The justification for the usage of the term twisted is as follows. Given an edge

diagram or configuration e, we can form a topological map as follows. Form
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vertices homeomorphic to open disks. Join these by ribbons corresponding to

the edges. The rule for twisted edges is that a 180Æ twist must be introduced to

the ribbon before it joins to vertices. The surface is completed by sewing discs to

the boundary.

The following is a formal description of an algorithm that determines an edge

diagram from a rooted map.

Algorithm 4.5 (Edge Diagram). Given a rooted map m form its edge diagram

e = "(m) = (n; �;V;T) as follows:

1. Let n = n(m).

2. Use Algorithm 4.1, to construct a canonical representative (N4n; �1; �2; �3; 1)

of m.

3. For 1 6 i 6 2n, let �(i) =
l
�3(2i)

2

m
.

4. Let i 2 V if and only if i 2 �+ and �2(2i� 1) 6= 2i� 2.

5. Let i 2 T if and only if i 2 �+ and �3(2i) is even.

In x4.4.1 below, examples are given of the application of Algorithm 4.5.

4.4.1 Example formation of an edge diagram

Consider the planar embedding of K4 again, with its canonical position labelling

in Figure 4.25(a). For what follows, it is convenient to replace the alphabetical

labels a; b; c; d; : : : by the labels a;A; b; B; : : : , since doing this will cause pairs of
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labels common to an end of an edge to differ only in capitalisation. This is done

in Figure 4.25(b).

m
nopq

r

s t

u
w

x
v

a

f
e

b

c
d

h

i
j

l

g

k L

(a) Labels a; b; c; d; : : : (b) Labels a; A; b; B; : : :

a A

b
B

c
C

d
D

e
E

f F

g
GhHi

I

j J

k
Kl

Figure 4.25: A more convenient set of labels

To draw the edge diagram, draw a base line, with the position labels a;A; b; B; : : :

beneath. For each edge ei of m, draw a semicircular arc above the base line which

joins two points located above the position labels that the edge ei contains, as in

Figure 4.26(b). Place a vertex (black disc) at the left end of the base line, and at

the right end of each tree edge (semicircular arc).

The edge diagram itself does not include the canonical position labels. (These

are easily recovered because they appear in order a;A; b; B; : : : .)

When the rooted map m is non-orientable such as in Table 4.1 (p. 93), redrawn

in Figure 4.27, there is an additional consideration for each edge. Since the m is

non-orientable, its matching graph is non-bipartite. This means that �3 some-

times pairs even (uppercase capital letter) position labels with even (uppercase
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(a) Canonical position labels

a A

b
B

c
C

d
D

e
E

f F

g
Gh

(b) Edge diagram with canonical position labels

Hi
I

j J

k
Kl

L

IaA bB cC Dd eE fF gG hH i LlKkJj

Figure 4.26: Linearising a rooted map into an edge diagram

Figure 4.27: A rooted map in the Klein bottle
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capital letter) position labels. In this instance we have:

�3(A) = F:

To mark when this happens, place an “�” at the right end of the corresponding

edge (semicircular arc). This is shown in Figure 4.28. Note that this cannot occur

A bB c C d D e E f FaC
d

a

eE

Ff

D A
b
B

c

Figure 4.28: Adding an “�” to the edge diagram of a non-orientable map

in a tree edge, so “�” will not be placed on a vertex.

Up to this point it is clear that e = "(m) is an edge configuration. That "(m) is

always an edge diagram, is seen in x4.4.2

4.4.2 Forbidden Sub-configurations

A rooted map m = �(e) can be recovered from any edge configuration e, by re-

drawing the positions a;A; b; B; : : : and determining �1; �2 and �3 directly from

the configuration. However, only edge diagrams are the images of rooted maps

under ". The recovery function � is an inverse to " on the set of edge diagrams.

Condition 4 of Definition 4.4 is equivalent to the absence of one of the forms

in Figure 4.29 as a a sub-configuration of the edge diagram. In other words,
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: : :: : : : : : : : : : : :

: : :

: : :: : : : : : : : : : : :

: : :: : : : : : : : :

Figure 4.29: Forbidden sub-configurations

an edge diagram is an edge configuration such that no vertex-beginner edge is

crossed to the right.

Forbidden sub-configurations provide a combinatorial means for distinguish-

ing edge diagrams from edge configurations. Lemma 4.2 establishes that the

function " defined by Algorithm 4.5, always yields an edge diagram rather than

an edge configuration.

Lemma 4.2. Let m be a rooted map. Then "(m) is an edge diagram.

Proof. It is immediate that "(m) is an edge configuration. (Any linear ordering of

the ends, not just the canonical one, produces an edge configuration.)

The more substantial task is to show that the depth first search used in the

canonical position labelling algorithm implies the absence of the forbidden sub-

configurations (Condition 4 of Definition 4.4). Recall that if (4.1) occurs, then it
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was concluded that �3( j) < 2k1 + � � �+ 2ki + 1, by the nature of backtracking in

the Algorithm 4.1. When linearised into an edge configuration, this inequality

translates to Condition 4 of Definition 4.4.

4.4.3 Tracing Faces in an Edge Diagram

The number n(m) of edges and the vertex partition �(m) of a rooted map m are

read off its edge diagram e = "(m). The number of semicircular arcs of e gives

n(m), and the numbers of arc ends following each black disk (vertex) of e gives

the vertex degrees of m, which only need to be sorted to give �(m).

Edge diagrams are therefore very effective in questions concerning only edges

and vertices. However, for questions regarding faces, or surface structure (which

requires knowledge of the number of faces), edge diagrams are less effective.

Face structure is not as easily determinable from an edge diagram, as edge and

vertex structure are. This difficulty in handling the face structure in edge dia-

grams leads to the primary defect of the bijection eΞ of Chapter 5: the parameter

associated with surface structure is not preserved.

Nevertheless, in the operation e = "(m), no information is lost (m is recover-

able from e). Therefore the face partition �(m) of m is directly recoverable from

the edge diagram e. This can be done by tracing along edges. In Figure 4.30, two

faces are traced out in a edge diagram. The rules for tracing the boundary of a

face are

� trace along a side of a semicircular arc (edge),

� if the right end of the arc has an “�” (it is twisted or 2 T), then the bound-
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Figure 4.30: How to trace a face in an edge diagram

ary crosses the arc,

� in the gaps (corners) between the arcs trace along the base line, except

when

� there is a vertex to the right of the gap, or the gap is the first or last gap,

then trace underneath the base line towards the other such gap associated

with the same vertex.

4.4.4 Integer-Parenthesis Systems

Lehman introduced a integer-parenthesis system for encoding rooted orientable

maps in [Wal71]. One way to build an integer-parenthesis system from an edge

diagram is, beginning from the right end and moving left, put an integer or

parenthesis under every end. Vertex-beginner edges are assigned matching paren-

theses. Other edges are labelled with positive integers, the same label at each

end. Edges are labelled in ascending order as they are first encountered moving

right to left, Figure 4.31. Reverse the order of the resulting list and also reverse

the parentheses. The result is an example of Lehman’s integer-parenthesis sys-
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12

12(3)()2()13

)3()(2)(13

Figure 4.31: Building an integer-parenthesis system

tem.

Definition 4.5. A sequence �1�2 : : : �2n is an integer-parenthesis system if

1. each �i 2 f“(”; “)”; 1; 2; 3; : : :g,

2. for 1 6 i 6 j the number of �i = “)” never exceeds the number of �i = “(”, for

j = 1; : : : ; 2n,

3. for m 2 N , the number of �i = m is either 0 or 2,

4. �1 = 1 and if � j > 1 then for some k < j, it must hold that �k = � j � 1,

5. the subsystem m(m) is forbidden, meaning that there does not exist i1 < i2 < i3 <

i4 with �i1 = m; �i2 = “(”; �i3 = m; �i4 = “)”.

An extended integer-parenthesis system is integer parenthesis system where a subset

of the integer pairs �i = � j = m 2 N is distinguished, (such pairs denoted by � i = � j =

m̃).
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For non-orientable maps m, the set T 6= ? in "(m). These edges become the

distinguished pairs in an extended integer-parenthesis system. Note that the

forbidden sub-configuration for edge diagrams (Condition 4 of Definition 4.4), is

equivalent to the forbidden subsystem i(i). (The parentheses are self-forbidding,

as (()) is never interpreted as a beginner right-crossing a beginner, but a beginner

over a beginner.)

4.5 Summary

Depth first search can be used to choose a canonical structure for a rooted map.

Table 4.1 illustrates some of the canonical structures for three different rooted

maps.

The following constructions:

� eΞ of Chapter 5,

� � of Chapter 7,

� Θ of Chapter 8,

take advantage of these canonical structures (which result from depth first search).

In fact, each of these constructions aims to combinatorialise an enumerative re-

sult. The original derivation of each of the three corresponding results about

rooted maps involved at least one algebraic step for which no combinatorial ex-

planation is apparent.

It would seem that depth first search is fundamental to the combinatorial

treatment of rooted maps. Indeed, the only combinatorial proofs of certain enu-
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(a) Rooted Map:

(b) Canonical Position Labelling:
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(c) Canonical Spanning Subtree:

(d) Canonical Ordered Digraph: (clockwise vertex orientations for planar maps)

6

1

2 3

4

5

6

1

23 4

5

2

1

3

(e) Edge Diagram:

(f) Integer-Parenthesis System:
1(())()(())1 12(3)()2()13 1̃(2)21̃

Table 4.1: Some canonical structures for three different rooted maps
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merative results for rooted maps (results first obtained by powerful algebraic

methods) make essential use of depth first search.



Chapter 5

On Extending Tutte’s Medial

Bijection

The Quadrangulation Conjecture (Conjecture 1.1) was developed with charac-

ter theory of the symmetric group of permutations. With this character theory,

[JV90a] first established the existence of a bijection � : Q! A between the set

Q of rooted quadrangulations and A, the set of all maps with a particular dec-

oration. The Quadrangulation Conjecture of [JV90a] then postulates that there

is a bijection Ξ : Q! A, which is natural, in the sense that it has combinatorial,

element-wise description. In [JV99], this work is generalised to a bijection be-

tween Eulerian maps and hypermaps.

A natural bijection Ξ has not been recovered from the existence proof. No

interpretation in terms of rooted maps has been found for the character theory

involved in the existence proof.

Independent constructions for Ξ (not depending on the character-theoretic

95



CHAPTER 5. ON EXTENDING TUTTE’S MEDIAL BIJECTION 96

existence proof) have not been found. However, a partially suitable natural bi-

jection is presented in this chapter. Advantage is taken of the Depth First Search

Algorithm, and of the resulting edge diagram model of a rooted map, to make

progress towards the bijection Ξ. More precisely, a bijection eΞ : Q! A is con-

structed, which is natural, but only preserves one of the two desired parameters

(to be defined below in x5.1) for Ξ. Moreover, eΞ extends a bijection of Tutte, the

medial bijection [Tut62, Tut63].

5.1 The Quadrangulation Conjecture

Recall that the genus of an orientable map m is g = g(m) = 1
2(2� �), where the

� = f � e+ v is the Euler characteristic, if m has f faces, e edges and v vertices.

For any rooted map m, let V(m) be its set of vertices. A dual-strut of m is an edge

e of m whose associated edge e@ in the dual m@ is a strut. Let S(m) be its set of

dual-struts (a certain canonical subset of the edges).

Let O be the set of rooted orientable maps. Let On be the set of maps in Owith

n edges.

Definition 5.1. Let n > 1. Let 0 6 g 6 bn+1
2 c. Let

Qg;n = fq j q 2 O; g(q) = g; �(q)= [4n]g:

A map q 2 Qg;n is a quadrangulation. Let

Ag;n = f(o;W; F) j o 2 On;W � V(o); F � S(o); jWj

2 + g(o) = gg:
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An object a 2 Ag;n is a decorated map.

A decorated map a = (o;W; F) may be represented as the orientable map o

with its vertices in W coloured white, the remaining vertices black, and its dual-

struts in S(o) bearing positive and negative flags, with F consisting of the dual-

struts with negative flags. Table 5.1(b) illustrates all the decorated maps in A1;2

using this representation of coloured vertices and flagged dual-struts. Observe

that since g and g(o) are integers, the number of white vertices is even in any

decorated map.

In [JV90a], Ag;n was defined without the use of flagged dual-struts (without

any equivalent to F) but rather by counting maps of genus h with multiplicity 4h.

However, since a map of genus h always has 2h dual-struts, there are 4h ways to

assign +=� flags to the dual-struts. Both definitions therefore lead to the same

cardinality for Ag;n.

Character factorisation leads to a proof [JV90a] that:

jQg;nj = jAg;nj ; 8g;n (5.1)

Let Q=
S

g;nQg;n andA=
S

g;nAg;n. Then (5.1) implies the existence of a bijection

� : Q! A;

which preserves the two parameters g and n, meaning �(Qg;n) = Ag;n.

Naturally, the authors in [JV90a] went on to propose what is here referred

to as Conjecture 1.1, the Quadrangulation Conjecture, namely that there exists a
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(b) A1;2 — Decorated, two-edged maps (with w+ h = 1)

a1:2:1 a1:2:2 a1:2:3 a1:2:5

a1:2:10a1:2:9a1:2:8a1:2:7a1:2:6

a1:2:11 a1:2:12 a1:2:13 a1:2:14 a1:2:15

q1:2:1 q1:2:2 q1:2:3 q1:2:5

q1:2:6 q1:2:7 q1:2:8 q1:2:9 q1:2:10

q1:2:15q1:2:14q1:2:13q1:2:12q1:2:11

q1:2:4

a1:2:4

(a) Q1;2 —Two-faced quadrangulations of genus one

Table 5.1: Listings of Q1;2 and A1;2 such that eΞ(q1:2:i) = a1:2:i for i = 1; : : : ; 15.
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natural (constructive) bijection, by which is meant a bijection with an algorithmic

combinatorial element-wise action,

Ξ : Q! A;

which also preserves g and n. So far, all attempts at recovering a Ξ directly from

the proof of (5.1) have been unsuccessful. The character factorisation is one of

the primary bottlenecks which makes such a recovery so difficult.

For such a hypothetical constructive bijection, Ξ, consider a family of more

specific bijections

Ξg;n : Qg;n! Ag;n;

by restriction of the domain, Ξg;n = ΞjQg;n .

In the special instance g = 0, prior to [JV90a], Tutte had already proven the

special case jQ0;nj = jA0;nj, and constructed a bijection M :
S

nQ0;n !
S

nA0;n,

which preserves n. This bijection M is the medial construction. Then Mn = MjQ0;n

serves as a valid Ξ0;n. But, for g > 1, no general Ξg;n was known. For n 6 2,

we can shall show how to provide such bijections, as restrictions of a bijectioneΞ : Q! A, which only preserves the parameter n.

Let Qn =
S

gQg;n and An =
S

gAg;n. Let Ξn = ΞjQn . No general Ξn is known

that preserves the weight functions for g (since no Ξ is known). However, if the

constraint of preserving g is lifted, then there is construction. In fact, we shall
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construct a bijection

eΞ : Q! A

which both satisfies

eΞ���S
nQ0;n

= @ ÆM; (5.2)

where @ is the operation of forming the dual, thereby extending Tutte’s medial

construction, and

eΞ(Qn) = An; (5.3)

thereby preserving the weight function for n.

For n = 1 and n = 2, one has g 6 b3
2c = 1, so that

Qn = Q0;n [ Q1;n;

An = A0;n [A1;n:

Since eΞ is bijective, (5.2) and (5.3) imply that eΞ(Q1;n) = A1;n, and therefore thateΞ���
Q1;n

serves as a construction of Ξ1;n, for n 6 2.

For n > 3 though, eΞ, as it stands, is not guaranteed to yield any more con-

structions Ξg;n. In fact, eΞ(Q1;3) 6= A1;3.
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Effect of eΞ on Q1;2

Table 5.1(a) shows the set Q1;2, with labels q1:2:i for i = 1; : : : ; 15. These are all

orientable rooted quadrangulations with two vertices on the torus.

Table 5.1(b) shows the members of the setA1;2, with labels a1:2:i for i= 1; : : : ; 15,

such that a1:2:i = eΞq1:2:i. For each of these rooted maps, some even number 2w of

the vertices may be coloured white. If h is the genus of one of these maps, then

w+ h = 1. (This is part of the definition of A1;2.)

The definition of eΞ describes how to determine the rooted map, the black and

white vertex colours, and the flagged dual-struts of a decorated map a = eΞ(q)

from any given quadrangulation q.

Observe that there are 15 maps in Q1;2. Thus there are 15! bijections �1;2 :

Q1;2 ! A1;2. Prior to the discovery of eΞ, the only known bijections between Q1;2

and A1;2 consisted of listing both sets in some arbitrary order. The bijectivity of

such a correspondence requires the result jQ1;2j= jA1;2j.

The construction eΞ, on the other hand, although perhaps not the simplest

construction, provides independent proof that jQ1;2j = jA1;2j, altogether distinct

from (5.1) and from exhaustive listing of both sets.

Enumerative Clue for eΞ
By specialising a more general character-based formulae it was shown in [JV90a]

that

jQnj= [xn] 4x
@

@x
log ∑

n>0

(4n)!
(2n)!n!16n

xn:
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But it is also true that

Ln = jLnj= [xn] 4x
@

@x
log ∑

n>0

(4n)!
(2n)!n!16n

xn; (5.4)

where Ln = fm 2 L j n(m) = ng is the set of rooted, locally orientable maps with

n edges. (To show (5.4) use Lemmas 8.7 and 7.2 and let b = 1 and y = 1, or use

the algebraic method, or use a direct argument with matchings.)

Therefore, there exists bijections �n : Qn ! Ln. In fact, we will construct a

bijection Λ : Q! L, which preserves n.

Then, we will construct a bijection A : L! A, also preserving n, leading to a

chain of bijections:

Q
Λ
���! L

A
���! A

and

eΞ = A Æ Λ: (5.5)

5.2 On Tutte’s Medial Construction

Tutte’s medial bijection is a natural bijection M :
S

nQ0;n !
S

nA0;n which pre-

serves the parameter n. Each face of a planar quadrangulation q 2 Q0;n is an

edge of its medial a = M(q). Suppose a = (o;W; F), and note that jWj = jFj = 0,
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since a 2 A0;n. Thus, a = (o;?;?) is determined by the planar rooted map o.

Tutte’s medial bijection, in its original form, was a bijection between (rooted)

planar quadrangulations and rooted planar maps (without decorations). For the

following discussion, we shall identify a with o.

We formally define the inverse M�1.

Definition 5.2. Let o= (X; �1; �2; �3; r). Then q= M�1(o) is the map

q= (X�f�1;+1g; �+2 �
�

2 ; �
+

1 �
�

3 ; �; (r;+1))

where � : (x; s) 7! (x;�s) and

��i :

8>><>>:
(x;�1) 7! (�i(x);�1);

(x;�1) 7! (x;�1):

(Note that the notation �+ has a different meaning here than in its previous use.)

Intuitively, q = M�1(o) is constructed from o by inserting a new vertex into

each face of o and joining this new vertex by an edge to each old vertex in the

boundary of the face; then delete all the former edges of o. The result is q. The

root position of q is located at the same (old) vertex of o, on the edge that leads

into the new vertex placed in the root face of o, and on the side of the edge nearest

to the root position of o.

As an example, consider the rooted planar map o of Figure 5.1. It may be

represented by the formal specification given in Figure 5.2.
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Figure 5.1: A planar rooted map o.

1
2

3

8

4

5
6

7

X = f1; 2; 3; 4; 5; 6; 7; 8g
�1 = (1; 2)(3; 4)(5; 6)(7; 8)
�2 = (1; 5)(6; 7)(2; 8)(3; 4)
�3 = (1; 3)(2; 4)(5; 8)(6; 7)
r = 1

Figure 5.2: A formal representation of o

Then q = M�1(o), may be superimposed upon this representation of o, as in

Figure 5.3. The planar map o appears with dashed lines for edges, and solid

disks for vertices. Graphically, place a vertex of q on top of each vertex of o and

place one vertex of q into each face of o. In Figure 5.3 the vertices of q are drawn

as empty circles.

An edge of q is drawn at each corner of o, joining vertices of q obtained from

a vertex and face of o. In Figure 5.3 the formal pairs (x;�1) are abbreviated as

x�. Then the positions x+ of q are located at the vertices arising from vertices of

o. The positions x� of q are located at the vertices arising from faces of o. The

resulting rooted map is given in Figure 5.4.

The domain of M�1, as described above, may be extended from being only

planar maps to being all rooted maps (orientable or not). Let N be this natural ex-

tension of M�1. The images of N are quadrangulations (possibly non-orientable).
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3+1+5+

7�
6+

8+
2+

4+

2�
8� 4�

3�1�5�

7+
6�

X = f1+; 1�; 2+; 2�; : : : ; 8+; 8�g
�1 = (1+; 5+)(6+; 7+)(2+; 8+)(3+; 4+)

(1�; 5�)(6�; 7�)(2�; 8�)(3�; 4�)
�2 = (1+; 2+)(3+; 4+)(5+; 6+)(7+; 8+)

(1�; 3�)(2�; 4�)(5�; 8�)(6�; 7�)
�3 = (1+; 1�)(2+; 2�) � � � (8+; 8�)
r = 1+

Figure 5.3: Superimposition of q on o

Figure 5.4: The planar quadrangulation q= M�1(o)
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However, the range does not include all quadrangulations. Observe that the ver-

tices of q= N(m), may be classified into those originating from vertices and faces

of m. The edges of q only join opposite kinds of vertices in this sense. Therefore

q is bipartite.

The range of N consists of all bipartite quadrangulations. The nature of N im-

plies that N(m) and m are in the same underlying topological surface. Although

N�1 serves as a natural extension of Tutte’s medial construction M, its domain

only contains bipartite quadrangulations, and therefore N�1 cannot fulfill the

role of Ξ, whose domain includes all quadrangulations.

There is another construction R, defined by R�1
= N�1

Æ@, the radial construc-

tion [Sch98], where @ is the operation of forming the dual. Its domain consists of

face-bipartite quartic (vertex-4-regular) maps. The radial construction is related

to the dual of the medial construction. The radial construction will arise in the

construction of eΞ.

Returning to the planar case, it is not immediately evident that the range of

M�1 includes all planar quadrangulations. It certainly includes all planar bipar-

tite quadrangulations, since N�1 may be applied to these. To show that M is the

desired bijection, M :
S

nQ0;n !
S

nA0;n, it therefore suffices to show that every

planar quadrangulation is bipartite. Equivalently, by duality, it suffices to prove

that every planar quartic map is face-bipartite. Non-planar, non-face-bipartite

quartic maps exist, so the proof must make essential use of planarity.

Lemma 5.1. Every planar, quartic map q is face-bipartite.

Proof. Use the Jordan curve theorem.
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The edges of q may be covered by a set of closed curves, which pass through

vertices at diametrically opposite edges. (This can be done whether or not the

map is planar.) These curves may not be simple, they may self-intersect. Nev-

ertheless, the Jordan curve theorem, in extended form, states that each has an

inside and an outside. (This fails in the non-planar cases.) Then each face of q

is either inside an even or odd number of these curves. This parity classification

forms the desired biparititon of the faces.

5.3 Sample Computation: eΞ(q1:2:9) = a1:2:9

We now explain the action of eΞ, given by (5.5), by referring to the example given

in Table 5.3.

The table shows by a sequence of rooted maps and edge diagrams, how to

compute in stages that eΞ(q1:2:9) = a1:2:9. The rooted map (1) in the first stage is

the rooted orientable quadrangulation q1:2:9 2 Q1;2. The following stages track

the progress of the construction eΞ. The rooted map (13) of the final stage in the

sequence is the decorated rooted orientable map a1:2:9 2 A1;2.

Before getting into the details of all the intermediate stages, let us consider

some more general aspects of the stages. The topology of the underlying sur-

face changes at precisly two points in the process. (Table 5.2 tracks the surface

topology in the small example.) These are from stages 3–4 and 7–8. It is not a

coincidence either that stages 3,4,7 and 8 are in the form of an edge diagram.

These stages use depth first search to implicitly make some changes to the sur-
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face structure. Although the construction eΞ begins and ends with orientable

Stages Surface
1 – 3 Torus
4 – 7 Projective Plane

8 – 13 Sphere

Table 5.2: Changes in the topology through the various stages

maps, its intermediate stages usually involve non-orientable maps.

One of the key steps is to use the radial construction between stages 5 and

6, (which will usually be non-orientable maps.) It is this step that reduces the

number of edges by half. Note that face and vertex partitions of stage 6 merge to

form the face partition of stage 5.

The following subsections explain the twelve steps in the computation of eΞ
shown in Table 5.3. Each step is shown to be reversible (when it is not obvious)

so that eΞ and eΞ�1 are well-defined, and thus eΞ is a bijection.

5.3.1 Stages 1–2: Duality (i)

The two rooted maps in Stages 1 and 2 of Table 5.3 are duals of each other. (This

is the first of two instances of duality in the construction of eΞ.) Figure 5.5 shows

these two maps superimposed. Stage 1, the quadrangulation, is drawn with

filled vertices and single lines for edges. Stage 2, a quartic (vertex-4-regular)

map, is drawn with hollow vertices and double lines for edges.

Note that each edge of Stage 2 crosses a unique edge of Stage 1. The relation

of the rootings is indicated by the arrows sharing the tail. (Recall the tail of the
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�+

Radial

Edge diagram

Construction

Twist by
Corner

3-4:

12

1.

2.

3.

4.

5.

6. 7.

8.

9.

10.

11.

12.

13.

Colours

Edge diagram
2-3:

Duality
1-2:

4-5:

5-6:

6-7: Edge diagram

7-8:

8-9:

9-10:

11-12:

10-11:

12-13:
White: �
Black: +

Duality

Root Face Sign
by Parity

Sign Transfer
From Cuts
to Associated
Faces

Edge diagram

Twist: �

Table 5.3: Thirteen stages of the computation eΞ(q1:2:9) = a1:2:9. (Explained in
xx5.3.1–5.3.12)
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Stage � � Orientable? Face-Bipartite?
1. [42] [71] Yes No
2. [71] [42] Yes No
3. [71] [42] Yes No
4. [431] [42] No Yes
5. [431] [42] No Yes
6. [31] [4] No —
7. [31] [4] No —
8. [212] [4] Yes —
9. [212] [4] Yes —
10. [212] [4] Yes —
11. [212] [4] Yes —
12. [4] [212] Yes —
13. [4] [212] Yes —

Table 5.4: Properties of the various stages

Figure 5.5: Stages 1 – 2
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arrow indicates the root position.)

In general, the map in Stage 2 can be any rooted, orientable, quartic (vertex-

4-regular) map.

5.3.2 Stages 2–3: Edge Diagram (I)

Stage 3 of Table 5.3 is the edge diagram of the Stage 2 map. (This step is the

first of four steps in eΞ that convert a map to its edge diagram or vice versa.)

Edge diagrams are constructed by depth first search. Figure 5.6 reviews how

depth first search is performed on the map of Stage 2 (on the left), the thin lines

indicating the path of the search, and the letters a;A; b; B; c; : : : indicating the

order in which the positions are visited. In the right of Figure 5.6, the same letters

e

h

H

aA bB cC dD eE f F hHgG

a

A

bB

c

C

d

E

f F
g
G

D

Figure 5.6: Stages 2 – 3

a;A; b; B; : : : are written in linear order beneath the edge diagram of Stage 3.

Edges appear as arcs from one pair of letters to another, the same pairs joined by

edges in Stage 2. At the lowest letter belonging to each vertex of Stage 2, a vertex
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is drawn in the edge diagram, Stage 3.

In the opposite direction, recall that each edge diagram determines a unique

rooted map.

In general, the edge diagram in Stage 3 may be any diagram that

� has no twists, and

� is quartic in the sense that vertices are located before the first end, at the

fifth end, and at every fourth subsequent end, (the ninth, the thirteenth

end, and so on).

5.3.3 Stages 3–4: Adding Twists

The Stage 3 edge diagram represents an orientable, but not face-bipartite map.

We want to add some twists to the edge diagram in such a way that the map

becomes face-bipartite. To do this, alternately shade the corners of vertices black

and white, and use tree edges to initiate later vertices.

It will be easier to visualize this alternating shading procedure, if the base

line of the edge diagram is replaced by a series of rectangles corresponding to

the vertices, as in Figure 5.7. Then the corners, or what corresponds to corners of

a map, should be more apparent. Begin by shading the corner to which the root

belongs. In Figure 5.7, this first corner extends all the way underneath the first

rectangle.

On top of the first rectangle, there are three more corners. The outer two

of these are left white, while the inner is shaded. Thereby, the corners are al-

ternately shaded and not shaded in the neighbourhood of the first vertex. The
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Figure 5.7: Shading the corners of the first (root) vertex of the Stage 3 edge dia-
gram

shading provides a face-bicolouring, but only the immediate vicinity of the root

vertex.

The next step is to alternately shade the corners of the second vertex. Once

one corner of the second vertex is shaded, alternation determines the shading of

the remaining corners.

Figure 5.8: Shading the corners of the second vertex of the Stage 3 edge diagram

The first corner of the second vertex may be shaded by using the canonical

tree edge joining the second vertex and first edge. Shade the entire length of

the tree edge on the side determined by the shaded corner of the first vertex.

The shaded side of this tree edge at the second vertex determines its first shaded

corner.

Once all the corners have been shaded, the resulting shading is a face-bicolouring

in the vicinity of the canonical spanning tree. Where the shading may fail as a



CHAPTER 5. ON EXTENDING TUTTE’S MEDIAL BIJECTION 114

face-bicolouring is at the non-tree edges. The shaded corners at the ends of a

non-tree edges may lie on different sides of the non-tree edge. For these edges,

the face-bicoloring fails.

Figure 5.9: Adding twists to the Stage 3 edge diagram to correct failures to the
face-bicolouring

To correct this, add a twist in the edge diagram to these failing non-tree edges.

In Figure 5.9, the dashed lines drawn along the sides of non-tree edges begin at

the shaded corner of the left (lower) end of the non-tree edge.

Note that dashed line of the rightmost non-tree edge arrives at a shaded cor-

ner of the right end. Therefore no twist is needed for this non-tree edge.

For the two other non-tree edges, however, the dashed lines arrive on the

right at unshaded (white) corners. Therefore, twists are added in the edge dia-

gram to these two non-tree edges. The result is the Stage 4 edge diagram.

In general, the Stage 4 edge diagram is any quartic edge diagram, for which

the alternate shading procedure, when applied on the diagram without twists,

results in the same set of twists. But this is equivalent in the corresponding map

(Stage 5) to the edge diagram Stage 4 being face-bipartite.

To reverse this step, remove all twists to obtain an untwisted (orientable) edge

diagram.
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5.3.4 Stages 4–5: Edge Diagram (II)

The rooted map in Stage 5, is the map represented by the edge diagram of

aA bB cC dD eE f F gG hH

g
G

D

H

h

e

a

A

bB

c

C

d

E

f F

Figure 5.10: Stages 4 – 5

Stage 4. In Stage 4, the two edges on positions fa;A; c;Cg and fb; B; f ; Fg are

twisted. It follows that in Stage 5, that �3 pairs a with c, A with C, b with f and

B with F (thus destroying biparticity of the matchings graph).

In Figure 5.10, Stage 5 is on the right, and is drawn on the projective plane.

Any edge that arrives at the boundary of this representation, comes out on the

opposite side, but with the opposite orientation. The edges fa;A; c;Cg and

fb; B; f ; Fg each cross this boundary once, achieving the desired twist.

5.3.5 Stages 5–6: Radial Construction

Since the rooted map of the Stage 5 is quartic and face-bipartite (by construction),

the radial construction may be applied. Figure 5.11 shows Stage 6 superimposed
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Figure 5.11: Stages 5 – 6

with a hollow vertex and double lined edges on Stage 5, shown with solid ver-

tices and single lined edges.

Stage 6 is the radial of Stage 5. The radial of a quartic map q is the Tutte’s

medial of the dual of q (a quadrangulation). Each (quartic) vertex of Stage 5 is

replaced by an edge of Stage 6. If the faces of Stage 5 are properly 2-coloured

with the root face being shaded, then each shaded face of Stage 5 is replaced by a

vertex of Stage 6. The edges of Stage 6 pass through the vertices of Stage 5, from

one shaded corner to another.

As with duality, the rooting is handled pictorially by sharing of a tail.

In Figure 5.11, the root face is the only shaded face. It has degree 4. It becomes

a vertex of Stage 6 of degree 4. The two unshaded faces of Stage 5 have degrees

1 and 3, and become faces of Stage 6 of degrees 1 and 3, respectively.

In general, Stage 6 can be any rooted, locally orientable map. To reverse this

step (to find Stage 5) one inverts the radial construction. This involves placing
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a vertex of Stage 5 on each edge of Stage 6. For each corner of Stage 6, draw an

edge of Stages 5 by following the boundary of the corner closely.

Stage 6 is the halfway point in the computation eΞ. If Stage 1 is q then Stage 6

is Λ(q).

5.3.6 Stages 6–7: Edge Diagram (III)

Stage 7 is the edge diagram of Stage 6. In Figure 5.12, these two stages are shown,

aA

B
b

c C d
D aA bB cC dD

Figure 5.12: Edge diagram (Stage 7) of the projective-plane map (Stage 6)

together with alphabetical canonical position labels.

5.3.7 Stages 7–8: Twists Become Signs

The twists are removed from the edge diagram of Stage 7 to yield an orientable

edge diagram for the eighth stage. Formerly twisted edges are marked by a neg-

ative sign (�), while untwisted non-tree edges are marked by a positive sign (+).

Since the signs mean no information is lost, this step is reversible, as required.
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+

7!

�

Figure 5.13: Replacing a twisted edge by a negatively signed edge

5.3.8 Stages 8–9: Edge Diagram (IV)

Stage 8 is the edge diagram of Stage 9. Note that the information of the signs

of the non-tree edges is retained. (In this example, both edges happen to be

non-tree edges. In a more general case, a non-tree edge would be left unsigned.)

Figure 5.14, reviews this now familiar relation, with alphabetised canonical po-

sition labels.

�+

12aA bB cC dD

a
A b

B
c

Cd
D

Figure 5.14: Determining the map (Stage 9) from the edge diagram (Stage 8), and
carrying over the edge-signs

Recall that depth first search also provides a canonical ordering of the edges

of a rooted map. (For example in the ordered digraph structure.) The labels 1

and 2 indicate the order. The highest canonical position on e1 is C, while on e2

it is D. This order is relevant for the association between the non-root faces and

the cuts.
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5.3.9 Stages 9–10: Sign the Non-root Faces

In our example there are no tree edges, and no struts. Both edges are cuts.

Figure 5.15 shows how to transfer the signs from the two cuts to the two non-

root faces.

e1 e2 e1

(b)(a)

Figure 5.15: Transferring signs from the cuts of Stage 9 to the faces of Stage 10

Recall that cuts are naturally associated with non-root faces. The edge that

has become e1 under the canonical edge order of rooted maps, is the first cut. In

Stage 9, e1 carries a + sign. But e1 is a cut, and in fact separates the root face (of

the single vertex map) into two faces. In Figure 5.15(a), the submap consisting of

the edge e1 is shown. (The edge e2 is drawn dotted, in order to keep track of the

root position.) Of these two faces one is the non-root face, and this non-root face

is where the sign of e1 is transferred.

In Figure 5.15(b), the edge e2 has been added, again separating the root face

into two faces. It is the non-root face of these two, that the � sign of e2 is trans-

ferred to.

The root face is left unsigned for the moment.

To reverse directions, one has only to determine the cuts of the rooted map,

and their associations to non-root faces, and then transfer the non-root face signs
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to their associated edges.

5.3.10 Stages 10–11: Sign the Root Face

In Stage 10, all the faces carry a sign except the root face. To arrive at Stage 11,

the root face is assigned the unique sign which makes the product of all the face

signs positive. Equivalently, the root face sign is to be the unique sign that makes

the number of negative signs even.

To reverse this step, simply remove the root face sign.

5.3.11 Stages 11–12: Duality (ii)

Stage 12 is the dual map to Stage 11 map. The signs of faces becomes the signs

of vertices.

In our example there are no struts, because the genus is zero. In a general

example of genus h, there is 2h struts, and each of these edges carries a sign in

Stage 11. These signs are carried over to Stage 12, using the natural correspon-

dence between edges in dual maps.

5.3.12 Stages 12–13: Signs to Colours

Replace negative vertices by white vertices, and positive vertices by black ver-

tices. The number of white vertices is necessarily an even number 2w.

There is still 2h signed struts, where h is the genus. The signed struts may be

ignored, but then the map are counted with multiplicity 22h
= 4h.
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5.4 Formal Summary of eΞ and Planar Restriction

Recall that eΞ = A Æ Λ, for certain bijections Λ : Q! L and A : L! A. These bi-

jections are composed of simpler bijections (corresponding to the steps between

the stages of Table 5.3), as follows:

Λ = R Æ "�1
Æ' Æ " Æ @

A = ! Æ @ Æ � Æ � Æ "�1
Æ Æ "

where Table 5.5 summarises these bijections.

@ dualize
" form edge diagram
' face-bipartise (by adding twists in edge diagram)
R radial construct
 sign and untwist (in edge diagram)
� cuts (move their signs to faces)
� parity of root face sign
! white vertices (from negative vertices)

Table 5.5: The component bijections

It is worth noting that

� Only ' and  alter the underlying topological surface

� Only R changes the number of edges. (It halves them.)

Let q 2 Q be planar. Simplify Λ(q) as follows. First, note that @(q) is planar

and quartic. Then by Lemma 5.1, @(q) is face-bipartite. Therefore ' does not
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twist any edges of the edge diagram of @(q). Hence

Λ(q) = R Æ @(q)= M(q)

It follows that Λ(q) is planar.

In particular Λ(q) is orientable so, more generally, let o be some orientable

rooted map, and consider A(o). Since o is orientable, its edge diagram has no

twists, and thus  has no effect on the edge diagram other than to assign + to

each edge. Since all the edge signs are+, then �makes all the non-root face signs

+, and � then makes the root face sign +.

At this point (Stage 11), there is a rooted orientable map with all positive

faces and all positive struts. Applying @ leaves all the signs positive, and leaves

the map orientable. Then ! produces no white vertices, because there are no

negative signs.

The final result, a = A(o), has black vertices and positive dual-struts. Thus

a= (o0;?;?). In fact, o0 = @(o), because none of the operations �; � and ! affects

the underlying map, while  does not affect the underlying map because there

was nothing to untwist in the edge diagram of o.

Thus A(o) = (@(o);?;?). In particular, when q is planar, then eΞ(q) = A Æ

Λ(q) = (@ ÆΛ(q);?;?) = (@ ÆM(q);?;?).

Therefore eΞ extends Tutte’s medial construction.
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�+

Construction
Radial

Edge diagram

3-4:

Corner
Twist by

13.1.

2.

3.

4.

5.

6. 7.

Colours

Edge diagram
2-3:

Duality
1-2:

4-5:

5-6:

6-7: Edge diagram

7-8:

9-10:

11-12:

10-11:

12-13:
White: �
Black: +

Duality

Root Face Sign
by Parity

Sign Transfer
From Cuts
to Associated
Faces

Twist: �

8.

9. & 10.

(no cuts)

Edge diagram
8-9:

11.

12.

Figure 5.16: The computation of eΞ(q1:2:7), with flagged dual-struts
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5.5 An Example with Struts: q1:2:7

The decorated map a1:2:7 provides an example with flagged dual-struts. Whereas

a1:2:9 had no dual-struts (being planar it has 0 dual-struts), a1:2:7 has two dual-

struts (having genus 1), and so in the calculation of eΞ(q1:2:7) some of the edges

will retain their signs.

Figure 5.16 portrays all the stages in the computation of eΞ(q1:2:7).

In fact, this calculation is simpler than eΞ(q1:2:9), because of the absence of cuts

in Stage 9. It follows that Stage 9 is the same as Stage 10.

5.6 Genus Non-preservation, with Possible Correc-

tions

When n = 3, the parameter g 2 f0; 1; 2g. As we have shown, eΞ preserves the

parameter when g = 0. But there are quadrangulations q 2 Q1;3 such that eΞ(q) 2

A2;3, such as the quadrangulation in Stage 1 of Figure 5.17.

Therefore, for n = 3, the parameter g is not preserved by eΞ unless it is zero.

Observe that jQ3j = jL3j = jA3j = 297, and that eΞ puts these 297 objects in

bijection with each other. The pre-image and image sets, and their sizes, which
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���

Construction
Radial

Edge diagram

Corner

3-4:
Twist by

3

2

3

2

1

1

1.

2.

3.

4.

5.

6. 7.

8.

9.

10.

11.

12.

13.

Colours

Edge diagram
2-3:

Duality
1-2:

4-5:

5-6:

6-7: Edge diagram

7-8:

8-9:

9-10:

11-12:

10-11:

12-13:
White: �
Black: +

Duality

Root Face Sign
by Parity

Sign Transfer
From Cuts
to Associated
Faces

Edge diagram

Twist: �

Figure 5.17: A counterexample to preservation of g. (g = 1 in Stage 1 and g = 2
in Stage 13)
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are meant to be preserved by Ξ, are

jQ0;3j= jA0;3j = 54;

jQ1;3j= jA1;3j = 198;

jQ2;3j= jA2;3j = 45:

Then we may note eΞ provides a bijection between Q1;3 [ Q2;3 and A1;3 [ A2;3,

which are sets of cardinality 243 = 198+ 45. But eΞ combines up some of the

198 elements of one set with the 45 elements of the other set. However, Ξ must

not separate these elements.

It is conceivable that eΞ can be corrected to become the bijection Ξ that we

seek. The case of n = 3 is first case where eΞ fails, and therefore should be the

starting point of a thorough investigation of how to correct eΞ.

For example, consider bijections bΞ = A Æ Π Æ Λ, where Π : L! L is a bijec-

tion of locally orientable, rooted maps. If Π preserves n (the number of edges)

and preserves planarity, then bΞ will share the properties of eΞ: it preserves n and

g = 0. However, it may be that there is some particular choice of Π that causesbΞ to preserve all values of g. This observation applies to every stage of the com-

putation eΞ: one may insert a permutation amongst the class of rooted maps (or

edge diagrams) of that stage.

The strategy to correct eΞ, in the case of n = 3 and hopefully thereby all n > 3,

should be to analyse the pattern of failures of eΞ (instances eΞ does not preserve

g), with the hope that some corrective, natural permutation, such as Π above,

becomes evident.
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5.7 Summary

A partial solution eΞ to the Quadrangulation Conjecture was constructed. This

bijection preserves one of the two parameters required in the Quadrangulation

Conjecture. The bijection eΞ extends Tutte’s medial bijection.



Chapter 6

Partial Differential Equations

Tutte obtained many enumerative results for planar maps in his study of the

Four Colour Problem. Among these is the medial construction. In this chapter,

we focus attention on a particular one of his results, namely the one for Eulerian

planar slicings [Tut62], which we generalise here. A slicing is a map in which

the vertices are labelled and for each vertex v one of the edges incident to v

is selected. The equivalence of this definition to Tutte’s original definition of

slicings has been given by Walsh [Wal71]. The result states that the number of

Eulerian planar slicings with n edges, k vertices and vertex partition � is

(n� 1)!
(n� k+ 2)!

k

∏
i=1

�i!�
�i
2

�
!
�
�i
2 � 1

�
!
: (6.1)

Tutte proved this result as the solution of a recurrence equation for all planar

slicings that he derived by the method of edge deletion. This recurrence equation

was extended by Walsh to include all orientable maps. (Walsh also used his

128



129

recurrence equation to obtain an explicit solution for the number of orientable

monopoles (3.14).)

Note that the results (6.1) and (3.14) give information about the numbers of

maps with a given vertex partition � or given face partition �, but not both.

This limitation is inherent to the edge deletion analysis that gave the recurrence

equation and its extension. The algebraic method does not have this limitation.

However, edge deletion is effective in the development of the parameter � in

this chapter.

We note in passing that the edge deletion method gives a recurrence equation

that permits greater computational efficiency than does the algebraic method

using symmetric functions or characters.

In this chapter, Walsh’s extension of Tutte’s recurrence equation is extended

further to include all locally orientable maps. The recurrence equation is ex-

pressed in the form of the partial differential equation (6.2). A parameter b is

introduced into the differential equation which interpolates between separate

differential equations for the orientable and locally orientable cases. Thus b ap-

pears to emulate the rôle of the parameter � in the Jack symmetric function in

the algebraic method of map enumeration. In fact, in the computations of the

lower degree coefficients of the generating series (corresponding to the enumer-

ation of maps with 4 or fewer edges and monopoles with 6 or fewer edges) the

two methods produce identical results if b+ 1 is substituted with �.

The recurrence equation (and therefore the partial differential equation), is

proved by the edge deletion method, introduced and used by Tutte, and used
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again by Walsh. In this method, maps with n edges are counted by considering

the deletion of a certain edge to obtain a map with n� 1 edges. Then, since by

induction with maps n� 1 edges have been counted, it is a matter of determining

how many ways a map with n � 1 edges can be obtained from a map with n

edges by edge deletion. This relationship, once determined, forms the recurrence

equation, which then may be expressed as a partial differential equation that the

generating series satisfies.

Summarising, we achieve two goals:

� extending and expressing Tutte’s recurrence equations in partial differen-

tial equation form,

� introduction of a new parameter � defined on ordered digraphs, and marked

by a variable b in the differential equations. The � and b appear to be re-

lated to the hypothetical parameter # and the Jack parameter �, respec-

tively.

Furthermore, we discuss: how (6.2) specialises to smaller sets of maps; a bound

on the parameter �; refinements of � which lead to further properties of �; and

a partial proof that the differential equation has a solution which could be a

generating series for rooted maps (rather than just for the ordered digraphs over

which � is defined).

A discussion of a parameter � of rooted maps, a parameter which we put

forward as a candidate for the parameter #, is delayed until Chapter 7. However,

since � is defined as a composition involving the parameter �, the material of this

chapter is a prerequisite for work on �, the candidate Map-Jack parameter.
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6.1 Edge Deletion Types and the Parameter �

The recurrence equation proven in this chapter depends on an edge deletion de-

composition for ordered digraphs. Tutte and Walsh both proved special cases

of this recurrence by working with an equivalent decomposition for slicings and

dicings, respectively (dicings are the duals of slicings and both slicings and dic-

ings are maps with similar decorations to ordered digraphs). Here we shall work

with ordered digraphs (see Definition 4.2), since they permit the more conve-

nient manipulation of non-orientable maps. All ordered digraphs are considered

in this chapter, canonical or otherwise.

Let d2D be an ordered digraph, with n> 2 edges e1; e2; : : : ; en. Let d0= d� en.

Either d0 is an ordered digraph, or has two components which, with re-indexing

of edge labels, become two ordered digraphs d1 and d2. For the decomposition

used in this chapter, we need to classify digraphs d according to the relationship

between d and d
0. In particular, we are concerned with the relationship between

the face partition of d and d
0, and the following classification indicates the possi-

ble types of relationships between �(d) and �(d0).

Definition 6.1 (Deletion Type, Exhaustive Analysis). Let d 2 D be an ordered di-

graph with n edges. The deletion type of the ordered digraph d, which is determined by

the following (clearly exhaustive) case analysis:

1. If n = 1, and:

(a) If d has one vertex, and:

i. is orientable, then d has loop deletion type.
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ii. is non-orientable, then d has cross-loop deletion type.

(b) If d has two vertices, then d has link deletion type.

2. If n > 1, and:

(a) If there is a vertex of degree 1 incident to the edge en, then d has leaf deletion

type.

(b) If en is not incident to a vertex of degree 1, and:

i. If the ends en are incident to two different faces in d
0, and:

A. If d0 has two components, then d has bridge deletion type.

B. If d0 has one component, and:

� If d0 is orientable, and:

– If global orientation of d0 is preserved by en, then d has handle

deletion type.

– If global orientation of d0 is reversed by en, then d has cross-

handle deletion type.

� If d0 is non-orientable, and:

– If vertex orientation in d is preserved by en, then d has handle

deletion type.

– If vertex orientation in d is reversed by en, then d has cross-

handle deletion type.

ii. If both ends of en are incident to the same face f in d
0, and:

A. The face f is divided in two by en, then d has border deletion type.
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B. The face f is not divided in two by en, then the d has cross-border

deletion type.

The highest labelled edge en of d has the same deletion type as the ordered

digraph d. The deletion type of a general edge ei of d is defined inductively

as the deletion type of ei as an edge of d0 = d� en. If d0 has two components

d1;d2, then the deletion type of ei in d is the deletion type of ei in d j, where the

component d j contains ei.

Digraphs d of each these nine deletion types are given in Table 6.1. (The other

information in the table relates to the partial differential equation is to be ignored

for the moment.) We gather below, as a convenient check list, the deletion types

of a digraph d with n edges as follows:

Loop deletion type: d consists of a planar map with one vertex and one edge

(which is therefore a loop).

Cross-loop deletion type: d consists of a map in the projective plane with one

vertex and one edge (which is therefore a loop).

Link deletion type: d consists of a planar map with two vertices linked by one edge.

Leaf deletion type: d consists of d0 having a extra vertex of degree 1 adjoined

by en.

Border deletion type: d consists of d0 and en, where en separates one of the faces

of d.
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Cross-border deletion type: d consists of d0 and en, where a cross-cap has been

added to one of the faces of d0, and en passes through the cross-cap.

Handle deletion type: d consists of d0 and en, where a handle has joined two of

the faces of d0, and en has been embedded into the handle.

Cross-handle deletion type: d consists of d0 and en, where an orientation-reversing

handle has joined two of the faces of d0, and en has been embedded in the

(surface of the) handle.

Bridge deletion type: d consists of two ordered digraphs d1;d2, with a face from

each joined together by a cylinder. Edge en is embedded into (drawn onto)

the cylinder. Edges are monotonically re-labelled such that the set of com-

bined edge labels becomes fe1; : : : ; eng (as required for the ordered digraph

d).

More detailed analysis of these deletion types and the relationship between �(d)

and �(d0) follows in x6.2.

We now define the parameter � of ordered digraphs.

Definition 6.2. Let d be an ordered graph with n edges. If n = 1 then

�(d) =

8>><>>:
0 if d has loop or link deletion type,

1 if d has cross-loop deletion type.
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Deletion Type Term of
@D
@z

Example d
(edge en in bold)

Corresponding
d� en

Loop p2
1v ?

Cross-loop bp2v ?

Link 2p2tv2
?

Leaf ∑
i>1

4ipi+2tv
@D
@pi

Border ∑
i; j>1

(i+ j� 2)pi p j
@D

@pi+ j�2

Cross-border ∑
i; j>1

b(i+ j� 2)pi+ j
@D

@pi+ j�2

Handle ∑
i; j>1

i jpi+ j+2
@2D
@pi@pj

Cross-handle ∑
i; j>1

bi jpi+ j+2
@2D
@pi@pj

Bridge ∑
i; j>1

2i jpi+ j+2t
@D
@pi

@D
@pj

 
;

!

Table 6.1: Nine deletion types of en and their contribution to @D
@z
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If n > 1 then

�(d) =

8>>>>>><>>>>>>:

�(d0) if d has leaf, border, handle deletion type

�(d1)+ �(d2) if d fits the bridge deletion type,

�(d0)+ 1 if d has cross-border or cross-handle deletion type.

Equivalently, � counts the number of edges whose deletion type is among

cross-loop, cross-border, and cross-handle. None of these deletion types of edges

ei in d can occur if d is orientable. Hence, if d is orientable then �(d) = 0. Con-

versely, if �(d) = 0, then d is orientable. Therefore � is associated with non-

orientability, or more precisely, a departure from orientability.

6.2 A Partial Differential Equation

With deletion types defined, we now study the effect of edge deletion on the

face partition for each deletion type. This results in a new recurrence for locally

orientable maps which is succinctly expressed as a partial differential equation

for a generating series of ordered digraphs, which we now define.

Edges of d that are classified as a link, a leaf or a bridge, constitute tree edges,

and all other edges are non-tree edges. Let � (d) be the number of tree edges of

a digraph d. By induction, it can be seen that the tree edges form a spanning

subtree of the underlying graph of d. Hence the number of tree edges is � (d) =

V� 1, where V = `(�(d)) is the number of vertices of d.
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Definition 6.3. The generating series D for ordered digraphs is:

D = D(b;p; t; v; z)= ∑
d2D

b�(d)p
�(d)t� (d)v`(�(d)) zn(d)

n(d)!

where p
�
= p

�1 p
�2 : : : , for a partition �, and p represents the infinite set of indetermi-

nates p1; p2; : : : .

Vertices and edges in D are marked by v and z, respectively. Faces of degree

i, are marked by pi, which may be (but need not be) regarded as power sum

symmetric functions. The generating series D is exponential in the variable z

since the ordered digraph has labelled edges and these labels have a significant

rôle in the edge deletion decomposition.

The variable t captures no extra information in the generating series D, be-

cause t marks V� 1 and v marks V. All terms of D will have the factors vVtV�1.

But t is included in D to permit later substitutions t= b+1
2 involved in transform-

ing D to enumerate rooted maps. The variable t enables fractions to be avoided

in the generating series D for ordered digraphs.

We now state and prove a partial differential equation for D.

Theorem 6.1. The generating series for ordered digraphs, D, satisfies the follow-
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ing partial differential equation:

@

@z
D = (p2

1v+ bp2v+ 2p2tv2)+∑
i>1

4ipi+2tv
@D
@pi

+ ∑
i; j>1

(i+ j� 2)fpi p j+ bpi+ jg
@D

@pi+ j�2

+ i jpi+ j+2

�
2t
�
@D
@pi

��
@D
@pj

�
+ (b+ 1)

@2D
@pi@pj

�
(6.2)

Proof. The proof involves the enumerative consequences of the case analysis of

edge deletion. The left hand side of (6.2) is

@

@z
D = ∑

d2D

b�(d)p
�(d)t� (d)v`(�(d)) zn(d)�1

(n(d)� 1)!
:

The right hand side of (6.2) is obtained by summing over

� all nine deletion types (see p.133), and then for each of these deletion types:

� all instances of the digraph d
0
= d� en, (or pairs (d1;d2) in the bridge dele-

tion type), and then for each possible d
0:

� all ways that en can be added to d
0 to form d.

To complete the proof it suffices to verify that the contributions to @D
@z of each

of the nine deletion types of en are exactly as given in Table 6.1

Loop Deletion Type

In this deletion type n = 1 and d has one vertex and is orientable. Then � =

F� E+ V = F. But the sums of the degree of the faces is twice the number of
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edges. Hence �(d) = [1; 1] or [2]. In the latter case, F = 1 which would mean

� = 1, violating the fact that orientable surfaces have even characteristic.

Therefore �(d) = [1; 1], and � = 2. The underlying surface is the sphere. By

definition �(d) = 0. The edge of d is not classified as a tree edge, because it does

not have leaf, link or bridge deletion type. There is one vertex and two faces of

degree 1, so any d belonging to this deletion type is marked by p2
1v. There is a

unique ordered digraph, up to isomorphism, of the loop deletion type. Therefore

the contribution of the loop deletion type to @D
@z is

p2
1v (6.3)

as given in Table 6.1.

e1

Figure 6.1: The unique ordered digraph of loop deletion type
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Cross-Loop Deletion Type

Given one vertex and one edge then, according to the analysis of the loop dele-

tion type, �(d) = [2], because �(d) = [1; 1] implies the loop deletion type. Then

indeed � = F = 1, whose oddness implies non-orientability (as desired).

The edge of d is a non-tree edge, and �(d) = 1 by definition, so any d belong-

ing to the cross-loop deletion type is marked by bp2v.

e1

Figure 6.2: The ordered digraph of cross-loop deletion type

The ordered digraph d of the cross-loop deletion type is unique. Therefore

the contribution of digraphs d of cross-loop deletion type to @D
@z is

bp2v (6.4)

as given in Table 6.1.
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Link Deletion Type

When E= n = 1 and V = 2, one has �= F� E+V = F+ 1. Since � 6 2, one has

F 6 1. And �(d) ` 2n = 2, so it follows that �(d)= [2].

Hence d lies on the sphere. By definition its edge is a tree edge so � (d) = 1,

and �(d)= 0. Hence d is marked by tp2v2 in the generating series D.

There are, however, two possible ordered digraphs belonging to the link dele-

tion type. Recall that there are two vertices, and associated to each of these ver-

tices is some cyclical orientation. Then as one moves from one to the other by

means of the edge either these orientations are preserved or reversed. (In fact,

since the surface is orientable, either one orientation is consistent or inconsistent

with the other as it is extended globally over the whole surface.)

e1 e1

Figure 6.3: Both ordered digraphs of link deletion type

Therefore the contribution of this deletion type to @D
@z is the term

2p2tv2 (6.5)
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as given in Table 6.1.

Leaf Deletion Type

e3

e1

e2

Figure 6.4: A three edge ordered digraph of leaf deletion type in the torus

When en has leaf deletion type, en must be attached to a corner of a face of the

digraph d
0
= d� en. Let i be the degree of this face. This face of degree i in d

0 is,

once edge en is added, transformed into a face of degree i+ 2 in d.

To account for this action enumeratively, pi+2
@D
@ pi

represents the replacement

of a face marked with pi by a face marked with a face marked with pi+2. If d0

has 3 faces of degree i, then the factor p3
i appears in its weighted contribution

to D. Then p3
i is replaced by 3p2

i pi+2, the factor of three accounting for the three

different choices of faces of degree i in d
0 to which en can be attached to form d.

Each face of degree i has i corners to which en may be attached. This intro-

duces a factor i.

By definition, en is classified as a tree edge, so the factor of t must be intro-
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duced, since � (d) = � (d0)+ 1. Also, at the opposite end of en from d
0 is a new

vertex, which must be accounted for with a factor v.

The edge en in d is a directed edge. It has two possible directions, towards d0

or away from d
0. This introduces a factor of 2.

Recall that d is an ordered digraph, so that the new vertex of en must be given

a cyclic orientation. This orientation may be locally consistent (along en) with

the cyclic orientation in d
0 of the other vertex of en, or it may not be. These two

possibilities introduce a second and final factor of 2.

Each value of i > 1 corresponds to a distinct set of ordered digraph d of link

deletion type. The total contribution to @D
@z is

∑
i>1

4ipi+2tv
@D
@pi

(6.6)

as given in Table 6.1.

Border Deletion Type

If d has border deletion type, then en is on the boundary of two distinct faces of

d, as in shown in Figure 6.5, where the dashed line represents en. Let the faces on

either side of en are f1 and f2. Let f1 be the face which is earlier with respect to

the vertex-local cyclical orientation at the tail of en. Let f1 and f2 have degrees i

and j, respectively.

Then in d
0
= d� en, the removal of en, merges f1 and f2 into a single face f of

degree i+ j� 2.

For each face of f of each d
0, having degree i+ j� 2, there are i+ j� 2 corners
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Figure 6.5: A border en between a triangle and a quadrangle in d, leaves a pen-
tagon in d

0

where the tail of en may be attached.

Therefore, using D to enumerate the choices for d
0, differentiating by pi+ j�2

selects and removes some face f in d
0 as above, yielding @D

@ pi+ j�2
; then, multiplying

by (i+ j� 2)pip j accounts for the faces in f1 and f2, and the number of choices for

the position of the tail of en in the face of f ; then, one must consider all possible

values of the degrees i and j, yielding the final contribution to @D
@z of

∑
i; j>1

(i+ j� 2)pj p j
@D

@p(i+ j�2)
(6.7)

as given in Table 6.1.

Observe that for indices i= j= 1, there is a zero contribution to the sum (6.7).

These degenerate values were already accounted for by the loop deletion type,

where two adjacent faces of degree one in d were separated by en(= e1).

Cross-Border Deletion Type

In d
0
= d� en, the corners to which en attachs will belong again to a single face,

say f .
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To construct d topologically, cut a circular hole out of the interior of f . Insert

a cross-cap into this hole. This is done by topologically identifying the circular

boundary of this hole with the circular boundary of a Möbius band. Then draw

en in the resulting surface, by travelling through the cross-cap that has resulted

from gluing the Möbius band to the hole.

Alternatively, attach a narrow ribbon from one segment to another segment

of the boundary of the circular hole, and add a twist to the ribbon. Draw en

along this ribbon. The new surface for f still has a single hole with one circular

topological boundary, to which we attach a disk.

Figure 6.6: The cross-border deletion type. Cut a large hole in a face, attach a
twisted ribbon.

Suppose that the single change was made to the way en was added to d
0, to

make en have border deletion type. For example, suppose that the extra twist

were not applied to the ribbon. Then f would become two faces, of degrees say i

and j, determined by the number of sides of f between the two corners where en

is attached. But in the cross-border deletion type, en does not divide the face f ,

but makes a new face of degree i+ j. The edge en occurs twice on the boundary
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of a single face, i.e. the same face is incident to en on both sides. Hence en is an

isthmus.

Nevertheless, each pair of positive values of i and j, still represents a distinct

possibility for d, so we still sum over all i; j > 1. As in the border deletion type,

there are still i+ j� 2, choices of a corner in f for the tail of en.

By definition �(d) = �(d0)+ 1, so a factor of b is introduced to account for the

increase is this parameter. The parameter � does not change.

Therefore the total contribution to @D
@z digraphs d having the the cross-border

deletion type is

∑
i; j>1

bpi+ j
@D

@pi+ j�2
(6.8)

as given in Table 6.1.

Handle Deletion Type

The edge en is again an isthmus. In d
0
= d� en, the single faces decomposes into

two faces. The corners of d0 to which en’s head and tail are attached belong to

distinct faces f+ and f�, of degrees say i and j, respectively.

Topologically, one may add a handle to the surface of d0. The ends of the

handle are inserted into the faces f+ and f�. There are two topologically distinct

ways to do this, depending on the choice of circular direction the ends of the

handle are glued to the surface. We shall shortly determine how to decide which

one applies in this deletion type. As in Figure 6.7, the edge en is drawn from the

given corner of the former face f�, along the length of the handle, to the given
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corner of the face f+.

The handle therefore joins the faces f� and f+, into a single face, say f , of d.

The degree of f is i+ j+ 2, the sum of the degrees of f� and f+, plus two, for

the two sides of en.

So far, we have explained a contribution of pi+ j+2
@

2D
@ pi@ pj

. But observe that in

d
0, the face f+ has i corners, to any of which en could be attached (in some d).

Similarly, there are j choices of a corner for f�. Thus we must multiply by i j, to

account for all possible d that can be obtained from each d
0.

The faces f+ and f� may have any positive integer degrees. Therefore we

must sum over i; j > 1. The total contribution to @D
@z of digraphs d of handle

deletion type is

∑
i; j>1

i jpi+ j+2
@2D
@pi@pj

(6.9)

as given in Table 6.1.

The rule for topological glueing of the handle, or topological cylinder, to the

surface of d0 is as follows. First cut circular holes out of the surface of d0. The ends

of the topological cylinder are identified with the circular boundaries of these

two holes. Once the first end is attached, the second end may be attached in two

ways according to the cyclical direction used to identify the circular boundaries.

The correct direction to identify these circular boundaries in this case is the

direction that causes the path along en in d to preserve the global orientation

if d is orientable, and otherwise to preserve the local cyclic orientations of the

vertices at both ends of en if d is non-orientable.



CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS 148

(c) A cut cylinder is homeomorphic to a disk.

i j

i
j

(a) Distinct faces of degree i and j in a map on the torus.

(b) Attach a handle, and draw an edge along it.

Figure 6.7: Joining two faces by a handle
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Cross-Handle Deletion Type

This deletion type is identical to the handle deletion type, except that:

� The edge en must reverse the orientations that would be preserved for en of

handle deletion type.

� The contribution is multiplied by b, because �(d) = �(d0)+ 1.

Hence the contribution to @D
@z of the cross-handle deletion type is b times the

contribution of the handle deletion type,

∑
i; j>1

bi jpi+ j+2
@2D
@pi@pj

(6.10)

as given in Table 6.1.

Bridge Deletion Type

In the bridge deletion type, two ordered digraphs, say d
� and d

+, are the com-

ponents d� en, where d
� and d

+ contain the corner to which is attached en’s tail

and head, respectively.

The reasoning is similar to the handle and cross-handle deletion types: two

faces of degrees i and j in d� en, are joined to form a face of degree i+ j+ 2.

There are the same number i j of choices for the corners of attachment. However,

the differences are:

� The joining cylinder is from one surface, that of d�, to another surface, that

of d+.
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� The edge en is a tree edge, so a factor of t must be introduced.

� Both directions of attachment must considered, the one that preserves the

local orientations of the end-vertices of en along its length, and the one that

reverses them. This leads to a factor of 2.

� The edges in d
� and d

+ must be re-labelled so that the the union of the

labels is f1; 2; : : : ;n� 1g. Enumeratively, this relabelling is taken care of by

the Product Lemma for exponential generating series, since edges in D are

marked exponentially by the variable z.

Thus the contribution to @D
@z of ordered digraphs d of the bridge deletion type is

∑
i; j>1

2ti jpi+ j+2
@D
@pi

@D
@pj

(6.11)

as given in Table 6.1.

Summing (6.3)–(6.11) to get the right hand side of (6.2) completes the proof

of Theorem 6.1.

Theorem 6.1 is presented as a natural enumerative context for the parame-

ter �. The apparent relation of � to the Jack parameter � is another reason for

presenting the recurrence equation as a partial differential equation, since Jack

symmetric functions are eigenfunctions of a similar partial differential equation.

Some low degree coefficients of D are determined explicitly in x6.3 by means

of the differential equation, as a concrete example of the application of Theo-

rem 6.1.
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6.3 The low degree terms of D

To illustrate the combinatorial action and computational applicability of the edge

deletion method in Theorem 6.1, some coefficients of the generating series D

are now computed in two ways. In x6.3.1 the coefficients
�
z1
�

D and
�
z2=2!

�
D

are calculated by means of the partial differential equation (6.2). Although the

computations involve many terms, all the algebraic manipulations are straight-

forward. In x6.3.2, the equality between the computed coefficient
�
z2=2

�
D and

the defined contribution to D from the set of 80 ordered digraphs with n = 2

edges, and their values of the parameters �; k;n and � (the parameter associated

with the Jack parameter � and departure from orientability) is confirmed. The

corresponding equality for the coefficient
�
z1
�

D is found directly in the proof of

Theorem 6.1.

The partial differential equation for D implies a recurrence equation for its

coefficients. With the symbolic algebra package Maple a recurrence equation in

differential operator form was used to compute more coefficients of D. These

coefficients of D were used to compute the coefficients of Φ, a transformation of

D for rooted maps defined in x6.7. The results are tabulated in Appendix B.

6.3.1 Calculations with the partial differential equation

Write D in the form D = ∑n>1 Dn
zn

n! . Since
�
z0
�
@

@z D = D1,

D1 = p2
1v+ bp2v+ 2p2tv2 (6.12)
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by noting that, in the coefficient of z0 in the right hand side of (6.2), all the terms

with D vanish. Thus there are four ordered digraphs with one edge. In the link

deletion type (one edge two vertices) the orientations of the two vertices may be

preserved or reversed along the length of the edge. This accounts for the factor

of 2 in the last term of (6.12).

In general, (6.2) yields a recursion for Dn+1 in terms of differential operators

evaluated at Dk for 1 6 k 6 n.

For example, D2 = [z] @

@z D, so we need the coefficient of z in the right hand

side of (6.2). We may discard the first group of three terms because they do not

involve z. Then all remaining occurrences of D may be replaced by D1. (Note

that [z] and @

@u commute.) The quadratic in D also vanishes, because its smallest

power of z is two. Next note that @D1
@ pi
= 0 if i> 3, and the second order derivative

of D1 vanishes unless i = j = 1. It follows that

D2 = 4p3tv
@D1

@p1
+ 4 � 2p4tv

@D1

@p2| {z }
leaf deletion type: i = 1 and i = 2

+2(1+ 2� 2)(p1p2+ bp3)
@D1

@p1| {z }
border deletion type: fi; jg= f1; 2g

+ (2+ 2� 2)(p2
2+ bp4)

@D1

@p2| {z }
border deletion type: i = j = 2

+

2(1+ 3� 2)(p1 p3+ bp4)
@D1

@p2| {z }
border deletion type: fi; jg= f1; 3g

+ p4(b+ 1)
@2

@p2
1

D1| {z }
handle and cross-handle deletion types: i = j = 1

(6.13)
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Evaluating the partial derivatives:

D2 = 4p2 p2
1v+ 4p2

2tv2
+ 16p3p1tv2

+ 16p4t2v3

+ 2bp2
2v+ 8bp3 p1v+ 4bp4tv2

+ 16bp4tv2

+ 2(1+ b+ 3b2)p4v

(6.14)

Confirmation of this is given in the next subsection.

6.3.2 Maps with two edges

We now examine ordered digraphs with two edges, to confirm that D2 in (6.14)

is correct. There are 11 distinct unrooted maps with two edges, 24 distinct rooted

maps with two edges, and 80 distinct ordered digraphs with two edges. Polyg-

onal representations of the 11 distinct unrooted maps u1; : : : ;u11 are given in Ta-

ble 6.2.

Also in Table 6.2 is the information about the parameter � (the face partition),

k (the number of vertices), n (the number of edges, 2), the value of 2n+k�2(n� 1)!,

the number of rootings, and finally the contribution, with respect to the param-

eter �, of all of the ordered digraphs associated with the unrooted map ui to the

generating series D. It follows the product of the numbers in the third to last and

second to last columns equals the value of the last column under the substitu-

tion b = 1, because both are the number of ordered digraphs associated with the

unrooted map ui.

We now compute the values of � for two edge ordered digraphs d according

to the unrooted map ui of Table 6.2 with which they are associated.
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Unrooted 2n+k�2 # of Contribution to
Map � k n �(n� 1)! Rootings

�
p
�
vk zn

n!

�
D

u1 [212] 1 2 2 2 4

u2 [22] 2 2 4 1 4

u3 [31] 2 2 4 4 16

u4 [4] 3 2 8 2 16

u5 [22] 1 2 2 1 2b

u6 [31] 1 2 2 4 8b

u7 [4] 2 2 4 1 4b

u8 [4] 2 2 4 4 16b

u9 [4] 1 2 2 1 2

u10 [4] 1 2 2 2 2b+ 2b2

u11 [4] 1 2 2 2 4b2

Totals: (at b = 1) 24 80

Table 6.2: Unrooted maps with two edges
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u1–u4 : The unrooted maps in these rows are planar, and therefore orientable. It

follows that �(d)= 0 for all the ordered graphs d associated with these four

unrooted maps.

u5 : Let d be one of the two ordered digraphs associated with this unrooted map.

Then e1 has cross-loop type, and e2 has border type, so �(d) = 1.

u6 : Let d be one of the eight ordered digraphs associated with this unrooted

map. Then e1 and e2 have either cross-loop and border types respectively

or loop and cross-border types respectively. In either case �(d) = 1.

u7 : Let d be one of the four ordered digraphs associated with this unrooted

map. Then e1 and e2 have link and cross-border types respectively. Thus

�(d) = 1.

u8 : Let d be one of the sixteen ordered digraphs associated with this unrooted

map. Then e1 and e2 have either link and cross-border types respectively or

cross-loop and leaf types respectively. In either case �(d)= 1.

u9 : This unrooted map is in the torus, and therefore is orientable. It follows

�(d) = 0 for all ordered digraphs associated with this map.

u10 : Let d be one of the four ordered digraphs associated with this unrooted

map. Then e1 and e2 have either link and cross-handle types respectively or

cross-loop and cross-border types respectively. In the former case �(d)= 1,

and in the latter case �(d) = 2.



CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS 156

u11 : Let d be one of the four ordered digraphs associated with this unrooted

map. Then e1 and e2 have cross-loop and cross-border types respectively.

Thus �(d) = 2.

6.4 Specialisations

The partial differential equation (6.2) has eight specialisations which enumerate

eight different sets of ordered digraphs D;O;P;B;T;M;W;U, whose descrip-

tions are given in Table 6.3. The containments among these sets is given by Fig-

D Locally orientable O Orientable P Planar
B Bipartite planar T Trees M Monopoles
W Orientable monopoles U Planar monopoles

Table 6.3: Eight sets of ordered digraphs

ure 6.8. Note that M\O =W,M\P = U, and M\B = ?.

To place the earlier results in this context, note that Tutte exhibited [Tut62]

a recurrence equation for P (or more precisely, for the version of P consisting

of slicings — the enumeration of which differs only by a trivial scaling factor

from that of ordered digraphs) and found an explicit solution for B � P. Walsh

extended [Wal71] the recurrence equation to include all of O, and found an ex-

plicit solution for W� O. This information is summarised in Table 6.4. Since

W\B = ?, these two explicit formulae do not have specialisations to a common

set, despite the similarities in their forms.

These eight sets may be enumerated by means of the partial differential equa-
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D

O

P

B

T

M

W

U

Figure 6.8: A Hasse diagram for containment between the eight sets

[Tut62] [Wal71]
explicit solution B W

recurrence equation P O

Table 6.4: Recurrence equations and solutions
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tion, by eliminating the contribution of certain terms from (6.2). Recall that each

term is associated with a particular edge deletion type. This leads to eight dif-

ferent partial differential equations, each of whose solutions enumerate one of

restricted subsets D;O;P;B;T;W;M;U of the set of ordered digraphs D. Which

deletion types to retain for which sets is summarised in Table 6.5. We now dis-

cuss the restrictions.

Set
Edge deletion type D O P B T M W U

link ✓ ✓ ✓ ✓ ✓

leaf ✓ ✓ ✓ ✓ ✓

bridge ✓ ✓ ✓ ✓ ✓

border ✓ ✓ ✓ � ✓ ✓ ✓

loop ✓ ✓ ✓ ✓ ✓ ✓

handle ✓ ✓ ✓ ✓

cross-handle ✓ ✓

cross-border ✓ ✓

cross-loop ✓ ✓

✓ Include the contribution of this deletion type
� Include a modified contribution

Table 6.5: Eight sets and nine deletion types

We can impose restrictions on the topological surfaces of the ordered di-

graphs:

� to D, ordered digraphs in all locally orientable surfaces (not really a re-

striction of sets), by setting b= 1 in the differential equation (6.2). (Thereby

ignoring the parameter �.)

� toO, ordered digraphs in orientable surfaces, by eliminating the cross-loop,
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cross-border and cross-handle deletion type, or equivalently, simply by set-

ting b = 0 in the differential equation (6.2). (Any of these cross- deletion

types lead to a non-orientable surface for any edge ei, which subsequent

edge additions cannot correct.)

� to P, ordered digraphs on planar surfaces, by eliminating the cross-loop,

cross-border, cross-handle deletion types as for O and, additionally, the

handle deletion type. (Any edge ei which fits the handle deletion type leads

to a non-planar surface, which subsequent edge additions cannot correct.)

In a bipartite map, all the face degrees must be even. If the map is planar, then

the converse of this is true. Evenness of face degrees can be ensured algebraically

by setting p1 = p3 = p5 = � � �= 0.

� For B, bipartite planar ordered digraphs, we must modify the border dele-

tion type to ensure that an even face is not separated into two odd faces by

a border.

� For T, ordered digraphs which are trees (characterised by being planar and

one-faced) we must eliminate the border deletion type, because it creates

an extra face, which subsequent edges cannot eliminate.

(Note the generating series for non-planar, even-faced ordered digraphs cannot

easily be given a differential equation by the restriction p1 = p3 = � � � = 0 be-

cause, in the handle deletion type, it is possible for two odd faces to unite to

form an even face. Therefore, ordered digraphs with odd faces must be included

to account for all even-faced maps.)
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To restrict to the sets M;W;U, which are the monopole (single vertex) ver-

sions of D;O;P, we must prevent those edge deletion types which lead to the

creation of extra vertices:

� For the sets M;W;U, additionally eliminate the link, leaf and bridge dele-

tion types, from the the deletion types that remain for the set D;O;P, re-

spectively.

We now write out the explicit differential equations for each of the eight sets

D;O;P;B;T;M;W;B. (We set b = 1 for D, but for M, we consider both b gener-

ally and b = 1.)

Surface restrictions

To count all locally orientable ordered digraphs, but without regard to the pa-

rameter �, we set b = 1 in (6.2). Let A = Djb=1. Then A satisfies the partial

differential equation

@A
@z
= (p2

1v+ p2v+ 2p2tv2)+∑
i>1

4ipi+2tv
@A
@pi

+ ∑
i; j>1

(i+ j� 2)fpi p j+ pi+ jg
@A

@pi+ j�2

+ i jpi+ j+2

�
2t
�
@A
@pi

��
@A
@pj

�
+ 2

@2A
@pi@pj

�
(6.15)

To count orientable ordered digraphs O, set b = 0 in (6.2). This eliminates

terms from the cross-loop, cross-border and cross-handle deletion types. Let
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O = Djb=0. Then O satisfies the following partial differential equation

@O
@z

= (p2
1v+ 2p2tv2)+∑

i>1

4ipi+2tv
@O
@pi

+ ∑
i; j>1

(i+ j� 2)pi p j
@O

@pi+ j�2
+ i jpi+ j+2

�
2t
�
@O
@pi

��
@O
@pj

�
+

@2O
@pi@pj

�
(6.16)

A recurrence equation form of (6.16) was first obtained in [Wal71] (except dic-

ings, rather than ordered digraphs, were enumerated).

To count planar ordered digraphs P, take (6.16) and further eliminate the

handle term. Let P be the generating series for planar ordered digraphs, then P

satisfies the following differential equation:

@P
@z
= (p2

1v+ 2p2tv2)+∑
i>1

4ipi+2tv
@P
@pi

+ ∑
i; j>1

(i+ j� 2)pi p j
@P

@pi+ j�2
+ i jpi+ j+2

�
2t
�
@P
@pi

��
@P
@pj

��
(6.17)

A recurrence equation form of (6.17) was first obtained in [Tut62] (except slicings,

rather than ordered digraphs, were enumerated). Since P � O, the recurrence

equation of Walsh corresponding to (6.16) extends the recurrence equation of

Tutte corresponding to (6.17).

To count bipartite planar ordered digraphs B, we take (6.17) and modify the

term associated with border deletion type and eliminate the term from loop dele-

tion type. We also re-index the summation, since only variables p2i appear. Let

B be the generating series for bipartite planar ordered digraphs. Then B satisfies
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the following differential equation:

@B
@z
= 2p2tv2

+∑
i>1

8ip2i+2tv
@B
@p2i

+ ∑
i; j>1

(2i+ 2 j� 2)p2i p2 j
@B

@p2i+2 j�2
+ 4i jp2i+2 j+2

�
2t
�
@B
@p2i

��
@B
@p2 j

��
(6.18)

Since B � P, (6.18) is a restriction of (6.17). Tutte used the recurrence equation

form of (6.18) to numerically compute the coefficients of B. He then surmised an

expression for these coefficients and verified by induction that this expression

satisfied the recurrence equation.

To enumerate the set T, those ordered digraphs which are trees, take (6.18)

and eliminate the term arising from the border deletion type. Let T be the gen-

erating for T, then T satisfies the following differential equation:

@T
@z

= 2p2tv2
+∑

i>1

8ip2i+2tv
@T
@p2i

+ ∑
i; j>1

4i jp2i+2 j+2

�
2t
�
@T
@p2i

��
@T
@p2 j

��
(6.19)

Note that the generating series T is straightforward and has the explicit form:

T = ∑
n>1

1
n+ 1

�
2n
n

�
22n�1(n� 1)!p2ntnvn+1 zn

n!
:

Monopoles

Let M =

�
v1
�

D. Thus M = M(b;p; z) is the generating series for those ordered

digraphs with a single vertex, M, those which are monopoles. The variable b
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marks �. Since M =
D
v jv=0, we can divide both sides of (6.2) by v, and set v = 0,

to form the simpler equation

@M
@z

= (p2
1+ bp2)+ ∑

i; j>1

(i+ j�2)fpip j+ bpi+ jg
@M

@pi+ j�2
+ (b+1)i jpi+ j+2

@2M
@pi@pj

:

(6.20)

To enumerate M without regard to the parameter �, set b = 1 in (6.20) above.

A further simplified equation holds for W =

�
b0
�

M, which enumerates ori-

entable ordered digraphs of a single vertex, the set W.

@W
@z

= p2
1+ ∑

i; j>1

(i+ j� 2)pi p j
@W

@pi+ j�2
+ i jpi+ j+2

@2W
@pi@pj

(6.21)

In [Wal71], an expression for the coefficient of W is proven by inductively veri-

fying it satisfies a recurrence equation form of (6.21).

Finally, to enumerate the set U of planar single-vertex ordered digraphs, spe-

cialise (6.21) by eliminating the term from deletion of a handle deletion type

edge.

@U
@z
= p2

1+ ∑
i; j>1

(i+ j� 2)pi p j
@U

@pi+ j�2
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6.5 A Bound on �

Evidently, we have �(d)= 0 for orientable ordered digraphs d and � > 1 for non-

orientable ordered digraphs d (and of course �(d) 2 Z). It is natural to consider

next if there are upper bounds on �. There are, as in the following lemma.

Lemma 6.2. Let d be an ordered digraph. Then

�(d) 6 2� �(d)

where �(d) is the Euler characteristic of d.

Proof. Assume that d has F faces, E edges, and V vertices. Each of the E edges

of d falls into one of the nine deletion types (see p.133). Sorting edges into these

deletion types, will eliminate a number that cannot contribute to �(d). Since

there are V vertices and the tree edges of d form a spanning subgraph, there are

are V� 1 links, leaves and bridges. None of these V� 1 edges contributes to �(d)

(hence �(d) 6 E� V + 1). As edges are deleted from d and subsequent smaller

ordered digraphs, multiple components may be created. Let Ci, be the (ordered)

collection of ordered digraphs during a process of successive edge deletion, with

a total of i edges. Then CE has just one component, d itself. (For counting pur-

poses, recognise as components those trivial ordered digraphs obtained from the

deletion of the edge in a single edged ordered digraph.)

Let Fi and Ki be the total number of faces and components, respectively, in

the collection Ci. Let Gi = Fi � Ki. Then G0 = F0 � K0 = 0 (because each edgeless

map has one face) and GE = FE � KE = F� 1.



6.5. A BOUND ON � 165

Let gi = Gi�Gi�1. Then F� 1 = g1+ � � �+ gE. But

gi =

8>>>>>><>>>>>>:

1 if ei is a loop or border,

0 if ei is a leaf, link, bridge, cross-loop, or cross-border,

�1 if ei is a handle, cross-handle.

(6.22)

Thus the number of loops plus borders is at least F � 1. Since a link, leaf, or

bridge cannot be a loop or border, the number of links, leaves, bridges, loops

and borders is at least (V� 1)+ (F� 1).

Therefore � 6 E� (V� 1)� (F� 1) = 2� �.

This bound � 6 2� �, depends on a fundamental topological parameter of the

surface, �, the Euler characteristic. This suggests that the parameter � could

have a more topological characterisation.

Note that Lemma 6.2 implies that the coefficients
�
p
�
vk zn

n!

�
D, which are poly-

nomials in b, have degree at most 2� `(�)+ n� k in b. In fact, it follows from

the proof of Lemma 6.2 that the degree in b of
�
p
�
vk zn

n!

�
D is exactly 2 � � =

2� `(�)+ n� k. The same holds for the coefficients of the transformation Φ of

of the generating series D (see x6.7). If, as the evidence supports, Φ=Ψ(b+1)
jyj 7!y,

then Ψ(b+1)
jyj 7!y shares the same property. If true, it would mean that the hy-

pothetical parameter # of Conjecture 1.2 would also satisfy the same bound

# 6 2� �.
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6.6 Refinements of � and corollaries

The parameter � can be expressed as a sum of two more refined parameters:

1. the number �1 of edges with cross-loop or cross-border deletion type, and

2. the number �2 of edges with cross-handle deletion type.

Thus �(d) = �1(d)+ �2(d). These parameters are refinements of �. A formal

power series D�(b1; b2;p; t; v; z) is straightforwardly a solution to an appropriate

modification of the partial differential equation (6.2). In D�(b1; b2;p; t; v; z) , the

two different variables b1 and b2 mark the two parameters �1 and �2, respectively.

The handle and cross-handle terms may be combined into a single term

(b2+ 1) ∑
i; j>1

i jpi+ j+2
@2D�

@pi@pj
:

Thus D� is a generating series in b1 and h = b2 + 1. In particular, let 
(d) be the

number of handles and cross-handles of an ordered digraph d. Then D� is also

the generating series for Dwith �1 marked by b1, and 
 marked by h = (b2+ 1).

Recall that the number of non-tree edges is E�V+ 1, (where F; E and V are

the number of faces, edges and vertices, respectively). The non-tree edges may

be further divided as:

1. � loop or border edges,

2. �1 cross-loop or cross-border edges,

3. 
 handle or cross-handle edges.
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Hence � + �1+ 
 = E�V+ 1. But according to equation (6.22),

F� 1 = � � 


Therefore 2� � = (E� V + 1)� (F � 1) = �1 + 2
. Thus terms of D� always

have factors of the form b2���2

1 h
 . In other words, we have proved the following

assertion.

Lemma 6.3. The coefficients
�
p
�

tV�1vVzE
�

D� are homogeneous polynomials of

degree
� 2��

2

�
in b2

1 and (b2+ 1), times a correction factor of b1 when � is odd.

But D = D�
jb1;b2=b, so the same coefficients of D are homogeneous polyno-

mials of b2 and b+ 1, with the correction factor of 1 or b. This structure of the

coefficients of D has the immediate corollaries:

Corollary 6.4. The series Djb=�1 enumerates only fully non-orientable ordered

digraphs d, (those for which �(d) = 2� �(d)), with a sign factor of (�1)�.

Corollary 6.5. The series Djb=� 1
2

enumerates all (locally orientable) ordered di-

graphs with the weight factor of (�2)��2.

More generally:

Corollary 6.6. The series D satisfies:

Djb 7! �b
b+1
= (b+ 1)2D

���pi 7!�(b+1)pi; v 7!�(b+1)v
z 7!�(b+1)z

(6.23)
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Note that the transformation of b in the left hand side of (6.23), corresponds

to the transformation � 7! 1
�

. For Jack symmetric functions this transformation

is understood [Mac95], and its effect on Ψ(b+1) is consistent with the right hand

side of (6.23).

6.7 Rooted maps

Up to this point in the chapter, only ordered digraphs have been considered.

Generally however, the focus of attention in map enumeration is rooted maps.

A simple multiplicity factor, namely the number 2n+k�2(n � 1)! of ordered di-

graphs per rooted map with n edges and k vertices, suffices to switch from the

enumeration of ordered digraphs to rooted maps. For generating series, this fac-

tor is reproduced by some elementary substitutions of the arguments of D and

this leads to the following definition of a series Φ:

Φ= Φ(b) = Φ(b; x; y; z) = 2(b+ 1)z
@

@z
D

�����2t 7!b+1; pj 7!xj

v 7! y
b+1 ; z 7!z=2

: (6.24)

However, this does not imply Φ is a generating series of rooted maps where b

marks an explicit invariant of rooted maps, because � is not defined for rooted

maps. Moreover, (6.24) does not imply that Φ is a formal power series with non-

negative integer coefficients in its arguments, because of the substitution v 7!

y=(b+ 1). But, if � is ignored by setting b = 0 or b = 1, then, as shown in x6.7.1,

Φ(0) is a generating series of orientable rooted maps and Φ(1) is a generating

series of locally orientable rooted maps (where, in both cases, the variable xi
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marks faces of degree i, the variable y marks vertices and the variable z marks

edges).

Numerical computations of the low degree coefficients of the Jack symmetric

function based generating series Ψ and the coefficients of Φ lead to the following

conjecture.

Conjecture 6.1. Let Ψ be as in (1.5).

Φ=Ψ(b+1)(x;y; z)jyj 7!y (6.25)

This is closely related to the Map-Jack Conjecture (Conjecture 1.2). It differs

in two ways. First, the substitution yj 7! y means it concerns a less refined gen-

erating series. Second, since it is not apparent what the variable b marks in Φ

because � (marked by b in D) is defined for ordered digraphs not rooted maps,

Conjecture 6.1 does not yet propose a candidate for the Map-Jack parameter #.

(A Map-Jack parameter is proposed in Chapter 7.)

If the Map-Jack Conjecture and Conjecture 6.1 are true, then Φ is a formal

power series with non-negative integer coefficients. It is not apparent whether

the fact that D satisfies differential equation (6.2) implies algebraically that Φ is

a formal power series with non-negative integer coefficients.



CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS 170

6.7.1 Rooted maps with b = 0 and b = 1

The parameter �, although a natural combinatorial parameter on D, does not

immediately induce a parameter on L, the set of locally orientable rooted maps.

A barrier to this is that the series D is exponential in z, whereas Φ is ordinary

in z. In other words, a multiple of (n� 1)! objects in D correspond to one object

in L, and there are cases where � is not constant over these multiple of (n� 1)!

objects. Nevertheless, the following theorem about Φ, the transformation of D

given by (6.24), supports the truth of Conjecture 6.1.

Theorem 6.7. With Φ(b) defined as in (6.24), and bΨ(b) = Ψ(b+1)(x;y; z)jyj 7!y, the

right hand side of (6.25),

1. Φ(0) = bΨ(0), a generating series for orientable rooted maps,

2. Φ(1) = bΨ(1), a generating series for locally orientable rooted maps,

3. [zn] Φ(b) = [zn] bΨ(b), for n = 1; 2; 3; 4 and 5 and
�
z6y
�
Φ(b) =

�
z6y
� bΨ(b).

Proof. For the first part, begin by noting that

Φ(0) = 2z
@

@z
Djb=0

����2t 7!1; pj 7!xj
v 7!y; z 7!z=2

(6.26)

and that Djb=0 enumerates O, orientable ordered digraphs, as implied by (6.16).

The remaining transformations and substitutions of (6.26), ensure that orientable

rooted maps instead of orientable ordered digraphs are enumerated. The rela-

tion is that there are 2n+k�2(n � 1)! orientable ordered digraphs for every ori-

entable rooted map. According to the algebraic method, bΨ(0) also enumer-
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ates orientable rooted maps (with respect to the same parameters). Therefore

Φ(0) = bΨ(0).

The second point follows the same argument as the first point, except that all

(locally orientable) ordered digraphs and rooted maps are enumerated.

The third point has been established with computer assistance. The Maple

package SF of John Stembridge, described in [Ste95], was used to compute Jack

symmetric functions for the determination of [zn] bΨ(b). The limit of this com-

putation was n = 5. Similarly, the coefficients [zn] Φ(b) were determined by

Maple, and found to equal the coefficients [zn] bΨ(b). These coefficients are listed

in Appendix B, up to n = 6. (With the recurrence equation form of (6.2), these

coefficients can be computed much more efficiently than with symmetric func-

tions.)

A weaker result than Conjecture 6.1 is to establish that Φ has non-negative in-

teger coefficients. Some progress in establishing this is made in x6.7.2, where

advantage is taken of some simple properties of � and depth first search.

6.7.2 Towards showing the coefficients of Φ are integers

Let Dn;k and Φn;k be given by

D = ∑
n>1

n+1

∑
k=1

Dn;k(b;p)tk�1vk zn

n!
;

Φ= ∑
n>1

n+1

∑
k=1

Φn;k(b;p)ykzn:
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The Dn;k are polynomials in b; p1; p2; : : : with nonnegative integers for coeffi-

cients. We would like to establish that Φn;k has the same property.

The relation between Dn;k and Φn;k is

Φn;k(b;p) =
Dn;k(b;p)

2n+k�2(n� 1)!
: (6.27)

Therefore it suffices to prove that 2n+k�2(n� 1)! j Dn;k to demonstrate that Φn;k

has integer coefficients. (Non-negativity is now implied by non-negativity of

Dn;k and (6.27).)

From the combinatorial interpretation of Dn;k as a generating series for or-

dered digraphs, it is straightforward to show part of this divisibility criterion.

Lemma 6.8. 2n�1
j Dn;k(b;p).

Proof. Consider the effect of ignoring the edge directions in an ordered digraph

d, except the direction of e1.

First, note that exactly 2n�1 distinct ordered digraphs d
0 will have the same

resulting structure after this operation. This is because, each of the remaining

n� 1 edges could have been directed in two possible ways; and maintaining the

direction of e1 prevents any new symmetries from forming.

Second, observe that parameters �; � and � are independent of the edge di-

rections. Therefore each of the 2n�1 ordered digraphs equivalent in the above

sense make the same contribution to Dn;k.

As a next step to achieving the divisibility criterion, we would like find a

further factor of 2k�1. The idea is ignore the local cyclic orientations of all the
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vertices, except v1 which is defined by the vertex at the tail of e1.

Lemma 6.9. 2n+k�2
j Dn;k(b;p).

Proof. As above ignore all edge directions except that of e1 and local cyclic ori-

entations at all vertices except at v1, the vertex at the tail of e1. Note that � and

� are do not depend either on edge directions, or on cyclic orientations at ver-

tices. But � does depend on the cyclic orientations of an ordered digraph d. This

dependency is restricted to the handle and cross-handle deletion types. To over-

come this problem, define a new parameter of non-orientability �0 for ordered

digraphs. For the ordered digraph d, where we have ignored all but one edge

direction, and one cyclic orientation, we may define a rooted map r, as follows.

The root position is defined to be the position at the tail of e1, on the side

that is cyclically earlier in the local orientation of v1. Then, recall that upon this

rooted map r may be imposed a canonical digraph structure d
0 by using depth

first search. The edge labels of d0 may be different from those of d so ignore them.

But consider the local vertex orientations. Add these to d to form an ordered

digraph d̂. These may differ from d too, but we may use them in spite of this to

define a new parameter � 0.

Consider the choice of d� en, where we are adding a handle or cross-handle

at specific locations. There are two ways to add en, one incrementing �, the other

not. Using � 0 instead, there are two further ways to add en, one incrementing � 0

and one not. Whether en preserves or reverses the orientations of its end-vertices

in \d� en, determines whether or not to increment �0.

For all other deletion types of en, the behaviour � 0 is identical to that of �.
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Therefore, D and thus Dn;k(b;p) serves as the generating series for the replace-

ment of the parameter � by �0.

But 2(n�1)+(k�1)
= 2n+k�2, ordered digraphs d will be treated exactly the same

by � 0, since the all edge directions and vertex orientations are ignored, except for

those of e1 and v1, respectively.

The apparent next step in proving the divisibility criterion would be to addition-

ally ignore all the edge labels of an ordered digraph d, except for the label e1. In

effect, then we would be considering rooted maps. But a proof was not forth-

coming, as it was for the previous two lemmas, in part because any other edge

could serve as en, significantly altering the edge deletion type which d has.

6.8 PDE’s for Vertex-Labelled Disconnected Ordered

Digraphs

Let F be the set of disconnected ordered digraphs with labelled vertices. Allow

components of f 2 F consisting of a single vertex. Let Fo denote the set of those

f 2 F all of whose components are orientable. Since f 2 F consists of unordered

collections of components in f�g [D, it is easy to form a generating series F for

F from the generating series D for D.

The motivation for considering F is its resemblance to an intermediate gen-

erating series of the algebraic method. Recall that the algebraic method begins

with a generating series for disconnected collections of maps. A logarithm is

then applied to the generating series in order to restrict to the connected case.
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This section demonstrates a partial differential equation for F. The significance

of doing this is that it is a step towards a potential proof of Conjecture 6.1, be-

cause it bypasses the complication of the logarithm. Conjecture 6.1 is equivalent

to proving that

F = ∑
�

J(b+1)
�

(x)J(b+1)
�

(y)J(b+1)
�

(z)D
J(b+1)
�

; J(b+1)
�

E
b+1

�������pj(x) 7!pj ; pj(y) 7!y
pj(z) 7!zÆ j;2

: (6.28)

The data support this equality with F.

Let F be defined by

F = F(b; p0; p1; p2; : : : ; y; z)=expfp0y+ Dg
���2t 7!b+1

v 7! y
b+1

:

Then Fjb=0 and Fjb=1 have the following interpretations as generating series:

Fjb=0 = ∑
f2Fo

p
�
0(f)

yk(f)

k(f)!
zn(f)

n(f)!
;

Fjb=1 = ∑
f2F

p
�
0(f)

yk(f)

k(f)!
zn(f)

n(f)!

where �0(f) is the union of the face partitions of the ordered digraph of com-

ponents of family f with a zeros to indicate each isolated vertices. For example,

�0(� �) = [0; 0], (where � � indicates the element of F consisting of two iso-

lated vertices). The parameters k(f) and n(f) are the numbers of vertices and

edges, respectively. Note that F is now exponential in the variable y because the

vertices are labelled.
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By (6.2), F satisfies the differential equation in the following lemma. Combi-

natorially, the distinction between the bridge deletion type and the handle and

cross-handle deletion type is ignored in the differential equation for F.

Lemma 6.10. With F as above we have

@

@z
F = ∆(F) (6.29)

where ∆ is the differential operator:

∆ =
2

b+ 1

�
(p2

1+ bp2)
@

@p0
+ p2

@2

@p2
0

�
+∑

i>1
4ipi+2

@2

@p0@pi

+ ∑
i; j>1

�
2(i+ j� 2)(pi p j+ bpi+ j)

@

@pi+ j�2
+ 2(b+ 1)i jpi+ j+2

@2

@pi@pj

�
: (6.30)

Proof. Since @

@z F = F �

 
@D
@z

��
2t 7!b+1
v 7! y

b+1

!
, we can use (6.2) to expand @D

@z in the left

hand side of (6.29) and then compare this to the right hand side.

To evaluate the right hand side, we need to understand the effect of @

@ pi
upon

F. Observe that @

@ p0
F = yF and that for i > 1, we have

@

@pi
F = F�

0@ @D
@pi

����2t 7!b+1
v 7! y

b+1

1A : (6.31)

There is a second order derivative term in ∆ which must be applied to F.
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Using (6.31) twice, we have

@2

@pi@pj
F =

@

@pi

8<:F�

0@ @D
@pi

����2t 7!b+1
v 7! y

b+1

1A9=;
= F�

�
@D
@pi

@D
@pj

+

@2D
@pi@pj

�����2t 7!b+1
v 7! y

b+1

:

It therefore follows that

∆(F) = F�

24 2
b+ 1

�
(p2

1+ bp2)y+ p2y2	
+∑

i>1
4ipi+2y

0@ @D
@pi

����2t 7!b+1
v 7! y

b+1

1A
+ ∑

i; j>1

8<:2(i+ j� 2)(pi p j+ bpi+ j)

0@ @D
@pi+ j�2

����2t 7!b+1
v 7! y

b+1

1A
+ 2(b+ 1)i jpi+ j+2

�
@D
@pi

@D
@pj

+

@2D
@pi@pj

�����2t 7!b+1
v 7! y

b+1

9=;
35 (6.32)

Comparing the right hand side of (6.2) to the right hand side of (6.32), we have

∆(F) = F�

0@ @D
@z

����2t 7!b+1
v 7! y

b+1

1A
and hence @F

@z = ∆(F).

Although the differential equation (6.29) for F suggests that there may be a way

of lifting the parameter � for D to a parameter for F, this has not been found.

So (6.29) is more interesting for its algebraic potential to prove that (6.28) is true,

than for its combinatorial interpretation on F.



CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS 178

6.9 Summary

We proved a recurrence equation for (locally orientable) ordered digraphs (maps

with certain decorations). This recurrence equation is stated as a partial differ-

ential equation for generating series. This recurrence equation extends that of

Walsh’s [Wal71] which, in turn, extends that of Tutte’s [Tut62]. We identified

how to specialise the partial differential equation to these former two recurrence

equation as well as others. Furthermore, we parameterised the partial differen-

tial equation with a variable b. Combinatorially, in the generating series, b marks

a parameter � which we defined for ordered digraphs. This parameter � appears

to be associated with the departure of an ordered digraph from orientability, be-

cause �(d) = 0 if and only d is orientable and otherwise, if d is non-orientable,

�(d) is a positive integer.

We computed the small terms of the generating series with �, both by using

the definition of � and by using the partial differential equation. This exhibits,

for small cases, how the partial differential equation accounts for the process of

edge deletion.

We analysed a few properties of � and the generating series D for ordered

digraphs. We presented a transformation Φ of D which appears to equal Ψ(b+1)

of Conjecture 1.2, the Map-Jack Conjecture. We gave partial proof that Φ has the

form conjectured for Ψ(b+1). This has to do with the enumeration of rooted maps

(rather than ordered digraphs).

We continue to use � quite extensively in Chapter 7. There, another param-

eter � is defined, applicable to rooted maps, in terms of a composition of two
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functions, one of which is �.



Chapter 7

On a Candidate Map-Jack Parameter

Conjecture 1.2, the Map-Jack Conjecture, postulates the existence of a parameter

# that is associated with the non-orientability of rooted maps. This conjecture is

based on extensive empirical evidence and is defined in terms of Jack symmetric

functions. Jack symmetric functions, part of an active area of research in alge-

braic combinatorics, also arise in such diverse areas as the Calegero-Sutherland

model in quantum physics [LPS95] (n particles in the unit circle acting under a

certain quantum potential). More closely related to map enumeration is the de-

termination of the Euler characteristic of the moduli spaces of real and complex

algebraic curves [GHJ99]. The Jack parameter � provides a way to interpolate

between these two Euler characteristics that is natural in the sense that it is rea-

sonable to suppose that b has a geometric interpretation in this context. An in-

terpretation for this interpolation is very desirable. The parameter # may well

have a major rôle in this interpretation. Thus, the hypothetical parameter # is an

object of considerable interest to combinatorics, to mathematical physics and to

180
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algebraic geometry.

The candidate parameter for # is the composition � = � Æ Æ, where � and Æ

are the given as follows.

� Let m be any rooted map. Then Æ(m) is its canonical ordered digraph, as

defined Chapter 4.

� Let d be any ordered digraph. Then �(d) is the non-orientability parameter,

as defined in Chapter 6.

Convincing empirical evidence for the suitability of � is provided by a compu-

tational comparison of coefficients of the generating series Ψ(b+1), computed up

to terms with z5, with the corresponding coefficients from the generating series

for rooted maps with up to five edges, where b marks the parameter �. For coef-

ficients involving z6 and higher degrees, the amount of computation required is

prohibitive for either generating series.

The status of the coefficients  
�;�;n =

�
x
�

y
�
zn
�
Ψ(b+1) is that

� they have been computed and found to be:

– polynomials in b, with

– non-negative integer coefficients,

but,

� no proofs of the above properties are known, and therefore, of course

� no suitable parameter # of rooted maps has been found which proves the

above properties.
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The parameter � is the first instance of a parameter that meets these conditions

for at least those rooted maps with five or fewer edges. However, in [GJ96a],

two parameters (statistics) are exhibited that work for infinite sets of hypermaps.

These sets are hypermaps with hyperedge partition [12n] and with [212n�2]. Since

maps may are regarded as hypermaps with hyperedge partition [2n], the two

parameters in [GJ96a] are not applicable to maps.

It has been computed that the parameters �; �; � and n partition rooted maps

into sets whose cardinalities equal [bm] 
�;�;n, for n 6 4. To see the significance

of the extent of this computational verification, note that there are 214 triples

(�; �;n) with �; � ` 2n and 0 6 n 6 4 and `(�)� n+ `(�) 6 2. The parameter �

reproduces each of the coefficients of each of the polynomials  
�;�;n.

With the above favourable, finite amount of computation, but no complete

proof of the suitability of � in sight, this chapter contains proofs of some proper-

ties of �. If � is the correct parameter for #, these properties should be deducible

from the formulation of Ψ(b+1) in terms of Jack symmetric functions. By con-

sidering several properties of �, it is hoped that the analogues of some of these

properties can be proven for Ψ(b+1). Proof of these analogous properties requires

the theory of Jack symmetric functions and would provide additional confirma-

tion of the suitability of � for the Map-Jack Conjecture.

In fact, one of the properties of �, discussed in x7.2, is already an analogue of

an existing property [GJ96a] of the coefficients  
�;�;n, regarding

� a simple form for the marginal sums of the coefficients.

This is further positive evidence for the suitability of �. Although perhaps not
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as convincing as the extensive but finite collection of data discussed above, this

shared property does provide confirmation across the whole of the infinite set of

rooted maps.

We present three other properties of �. Each of these properties may be ex-

pressed as a decomposition for rooted maps, which preserves information about

the parameter �. The three decompositions are:

� A decomposition of rooted maps into non-separable rooted maps.

� A decomposition to remove digons (faces of degree two) from rooted maps.

� A decomposition that relates two sets of rooted maps with two faces, one

set where one of the faces is a digon, and the other set where one of faces

is a degree one face.

Potential analogues of these properties may be expressed either in terms of par-

ticular coefficients  
�;�;n or in terms of the entire series Ψ(b+1), although they are

not proven.

The suitability of � = � Æ Æ as the hypothetical parameter # is phrased in

terms of generating series in the following conjecture.

Conjecture 7.1. Let

H = ∑
m2L

b�(m)x
�(m)y�(m)zn(m): (7.1)

Then

H =Ψ(b+1): (7.2)
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Hence H is generating series for locally orientable, rooted maps m, with b

marking the parameter �. We recall the definition (1.5) of Ψ(b+1) which states

that

Ψ(b+1)
= 2(b+ 1)z

@

@z
log ∑

n>0
∑
�`n

J(b+1)
�

(x)J(b+1)
�

(y)J(b+1)
�

(z)D
J(b+1)
�

; J(b+1)
�

E
b+1

�������pj(x) 7!xj
pj(y) 7!yj
pj(z) 7!zÆ j;2

:

7.1 Small example

We now consider a coefficient of Ψ(b+1) of lowest degree in z, for simplicity, whose

value implies that the hypothetical parameter # has to depend on the root. We

explain why this coefficient implies that # depends on which position is the root

in a rooted map, by examining the relevant rooted maps. We then demonstrate

how � replicates the corresponding coefficient of H. This particular coefficient

is

�
x[4]y[4]z2�Ψ(b+1)

= 3b2
+ b+ 1 (7.3)

The reason that this coefficient indicates the root dependence of the hypothetical

parameter # is that of the five rooted maps m with �(m) = [4] and �(m) = [4],

there is only one whose associated unrooted map has a unique rooting. The
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other four are partitioned as unrooted maps into two pairs by their isomorphism

type, as we shall show. But (7.3) indicates that there is a single rooted map with

#(m)= 0 and a single rooted map with #(m)= 1. Thus, for the other three rooted

maps, the parameter # must have the value of 2. It follows that for one of the

above two pairs of rooted maps, the parameter # has the value 2 for one member

and the value 0 or 1 for the other member. These two rooted maps differ only

by their root, but have different values of #. This demonstrates that # is root

dependent.

Therefore any candidate for # depends on the rooting of map. We verify

below that � is indeed root dependent, for the five rooted maps mentioned above

and confirm that

�
x[4]y[4]z2�H = 3b2

+ b+ 1 (7.4)

By setting b= 1 in (7.3) we find that there are five rooted maps m with �(m)=

�(m) = [4]. These are given in Figure 7.1. Observe that � = `(�)� n+ `(�) =

1� 2+ 1= 0, so the underlying surfaces of these are maps are either the torus or

the Klein bottle. The rooted map a in Figure 7.1(a) is embedded in the torus, and

the maps b; c;d and e in Figures 7.1(b)-(d) are embedded in the Klein bottle.

Recall that root positions are indicated by rooting arrows along the root edge.

(The side of the root edge on which the root position is located is the side of the

root edge where the rooting arrow is drawn. The end of the root edge where

the root position is located is the end of the root edge which is nearest the tail
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(a) a (b) b (c) c

(d) d (e) e

Figure 7.1: The five rooted maps m with �(m) = �(m) = [4]

of the rooting arrow.) Observe that rooted maps b; c of Figures 7.1(b) and (c) are

the two different rootings of the same unrooted map. The same holds for d; e of

Figures 7.1(d) and (e).

The five computations of �

We now confirm the suitability of � in the above sense, in that it yields (7.4).

For this, compute the value of parameter of � for each of the five rooted maps

a;b; c;d and e given in Figure 7.1. These values are given in Table 7.1. Since

�(m) = �(Æ(m)), we first determine Æ(m), the canonical ordered digraph for each

of these five rooted maps. In order to determine Æ(m), we execute Algorithm 4.1

to find the canonical position labelling `m of each rooted map. This is shown in

Figure 7.2. For each of the five rooted maps, the execution of Algorithm 4.1 is
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m �(m)
a 0
b 2
c 2
d 2
e 1

Table 7.1: Five values of �

straightforward. It begins with a label 1 at the root, cycles around the sole vertex,

placing labels, backtracks to the root and then terminates.

34

7 8

2
16

5

(a) `a (b) `b (c) `c

(d) `d (e) `e

1
2
3

45
6
7

8
1

23
4
5

6 7
8

1

34

7 8

2
16

5

2
3
4

5 6
7
8

Figure 7.2: The canonical position labellings

Given `m, the canonical ordered digraph Æ(m) can be determined. The cyclic

order of the canonical position labels around vertices determines the cyclic ori-

entation of each vertex. The highest canonical position labels on the edges de-
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termine their directions and the ordering. This is shown for all the maps a;b; c;d

and e in Figure 7.3.

(b) Æ(b) (c) Æ(c)

(d) Æ(d) (e) Æ(e)

(a) Æ(a)

e1 e2

e1

e1

e2

e2 e1

e2

e2 e1

Figure 7.3: The five canonical ordered digraphs

In order to compute the value of � on each of these five ordered digraphs

Æ(m), we must consider the ordered digraphs Æ(m)� e2 and, by doing this, de-

termine to which of nine types the edges e1 and e2 belong. The five ordered

digraphs Æ(m)� e2 are given in Figure 7.4, in which dotted lines indicate where

the ends of e2 are to be attached. The two ordered digraphs in Figures 7.4(a) and

(e) are embeddings in the sphere and show that e1 has loop type. The three or-

dered digraphs of Figures 7.4(b)-(d) are embeddings in the projective plane and

show that e1 has cross-loop type.

The types which e2 has, in each of the five ordered digraphs are:

� the handle type for e2 in Æ(a),
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e1

e1

e1e1

e1

(b) Æ(b)� e2 (c) Æ(c)� e2

(d) Æ(d)� e2 (e) Æ(e)� e2

(a) Æ(a)� e2

Figure 7.4: Deletion of e2

� the cross-border type for e2 in both of Æ(b) and Æ(c),

� the cross-border type for e2 in Æ(d),

� the cross-handle type for e2 in Æ(e).

We summarise these intermediate results and compute the final results in Ta-

ble 7.2.

7.2 Suitability of � under specialisation of H

We now prove that � is suitable (as the Map-Jack parameter) to the extent that

H and Ψ(b+1) are equal under the specialisation of ignoring the face partition.

Equivalently, sums of the coefficients of H over all face partitions � ` 2n and
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m e1 �(Æ(m)� e1) e2 �(m)
a loop 0 handle 0
b cross-loop 1 cross-border 2
c cross-loop 1 cross-border 2
d cross-loop 1 cross-border 2
e loop 0 cross-handle 1

Table 7.2: The cases of e1 and e2

fixed vertex partition � ` 2n, are equal to the corresponding sums of coefficients

of Ψ(b+1).

Such sums were first considered in [GJ96a], where connection series are de-

fined

c�
��

(b) =
�

tn p
�
(x)p

�
(y)p

�
(z) jC

�
j

n!(1+ b)`(�)

�
∑
�2P

J(b+1)
�

(x)J(b+1)
�

(y)J(b+1)
�

(z)tj�jD
J(b+1)
�

; J(b+1)
�

E
b+1

:

These c�
��

(b) were conjectured to be polynomials of b with non-negative integer

coefficients, and are closely related to the coefficients  
�;�;n, both being defined

as coefficients of expressions involving sums of Jack symmetric functions. (The

generating series for the two families of coefficients differ by an application of a

logarithm, a differential operator, and a specialisation of some of the Jack sym-

metric functions.)

In [GJ96a], the connection series are proven to sum as follows:

∑
�`n

c�
��

(b) = jC
�
j (1+ b)n�`(�):
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The fact that these sums of connection series are polynomials of b with non-

negative integer coefficients supports the conjecture that c�
��

(b) are polynomials

with non-negative integer coefficients.

A closely related result is that the marginal sums of  
�;�;n also have a similar

form (7.5). For the following lemma, let  
�;�;n(b) =  

�;�;n. The proof is adapted

from [GJ96a].

Lemma 7.1. Let n > 1 and � ` 2n. Then

∑
�`2n

 
�;�;n(b) = (1+ b)n�`(�)+1 ∑

�`2n

 
�;�;n(0): (7.5)

Proof. Let

Q(b) = ∑
n>0

∑
�`2n

(
∑
�`2n

 
�;�;n(b)

)
y
�
zn

It suffices to prove that

Q(b) = (b+ 1)Q(0)

�����yj 7!yj=(b+1)
z 7!(b+1)z

:

On the other hand,

Q(b) =Ψ(b+1)
jxj 7!1

Let e1 = (1; 0; 0; : : : ). Then pj(e1) = 1 j
+ 0 j

+ � � � = 1. Thus p
�
(e1) = 1 for all
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partitions �. The composition of the substitutions xj 7! pj(x) and x 7! e1 is xj 7!

1 = pj(e1). Hence

Q(b) = 2(b+ 1)z
@

@z
log ∑

m>0
∑
�`m

J(b+1)
�

(e1)J(b+1)
�

(y)J(b+1)
�

(z)D
J(b+1)
�

; J(b+1)
�

E
b+1

�������pj(y) 7!yj
pj(z) 7!zÆ j;2

(7.6)

But it is known [GJ96a] that J(b+1)
�

(e1) = 0 unless `(�) = 1. Therefore, we may

delete such terms from (7.6), giving

Q(b) = 2(b+ 1)z
@

@z
log ∑

m>0

J(b+1)
[m] (e1)J(b+1)

[m] (y)J(b+1)
[m] (z)D

J(b+1)
[m] ; J(b+1)

[m]

E
b+1

�������pj(y) 7!yj
pj(z) 7!zÆ j;2

It is also known [GJ96a] that

J(b+1)
[m] = ∑

�`m

(b+ 1)m�`(�)m!z�1
�

p
�
;

J(b+1)
[m] (e1) = (b+ 1)m

�
1

b+ 1

�(m)

;

D
J(b+1)
[m] ; J(b+1)

[m]

E
b+1
= (b+ 1)2mm!

�
1

b+ 1

�(m)

;

where u(m)= u(u+ 1) : : : (u+m� 1) is the rising factorial notation.
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So,

Q(b) = 2(b + 1)z
@

@z
log ∑

m>0
∑

�;�`m

(b+ 1)2m�`(�)�`(�)m!2p
�
(y)p

�
(z)

(b+ 1)mm!z
�
z
�

�����pj(y) 7!yj
pj(z)7!zÆ j;2

(7.7)

Note that p
�
(z)jpj(z) 7!zÆ j;2 = 0, unless � = [2k] for some k, implying that m = 2k, so

m is even. Now (7.7) may be simplified to

Q(b) = 2(b+ 1)z
@

@z
log ∑

k>0
∑
�`2k

(b+ 1)2k�`(�)�k(2k)!y
�

zk

z
�
2kk!

= (b+ 1)

(
2z
@

@z
log ∑

k>0
∑
�`2k

(2k)! y
�

(b+1)`(�)fz(b+ 1)gk

z
�
2kk!

)

= (b+ 1)Q(0)

�����yj 7!yj=(b+1)
z 7!z(b+1)

as required.

If H = Ψ(b+1), which we conjecture, then there is a corresponding relation

between sums of coefficients h
�;�;n =

�
x
�

y
�
zn
�

H of H. We now prove such a

relation.

Lemma 7.2. Let n > 0 and � ` 2n.

∑
�`2n

h
�;�;n(b) = (b+ 1)n�`(�)+1 ∑

�`2n

h
�;�;n(0): (7.8)

Proof. Let E
�

be the set of edge diagrams whose corresponding rooted maps have

n edges and vertex partition �. The sum in the left hand side of (7.8) is the gen-
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erating series for the set E
�
, with a single variable b which marks the parameter

�. (Let �(e)= �("�1(e)) for any edge diagram e.)

Let o : E
�
! Eo

�
: (n; �;V;T) 7! (n; �;V;?), which deletes twists from edge dia-

grams, and therefore gives edge diagrams of orientable maps. We claim that for

each twist-free (orientable) edge diagram eo = (n; �;V;?) 2 Eo
�
, the generating

series for its pre-image set o�1(eo), where b marks �, is

(b+ 1)n�`(�)+1: (7.9)

To prove (7.8) it suffices to prove the claim (7.9), because the right hand side

of (7.8) is (7.9) multiplied by the number of edge diagrams in Eo
�
. This claim is

proven by induction on the number of arcs n.

Suppose n > 1. Let e 2 o�1(eo). Let a and ao be the rightmost arcs of the edge

diagrams e and eo respectively. Let e0 = e� a and e
0

o = eo � ao. Then o(e0) = e
0

o.

There are two cases to consider, either a and ao possess vertices or they do not.

Case (a): The arc a possesses a vertex. It follows that the edge associated with

a is classified into the leaf type by the parameter �. Therefore, �(e) = �(e0). This

holds for all e 2 o�1(eo). Therefore the generating series for o�1(eo) equals the

generating series for o�1(e0o), which equals (b+ 1)(n�1)�(`(�)�1)+1 by induction. This

proves (7.9) for this case.

Case(b): The arc a does not possess a vertex. Now either a does or does not

carry a twist. Then, depending on the classification by � of the edge associated
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with a,

�(e) =

8>><>>:
�(e0) if a has border or handle deletion type,

�(e0)+ 1 if a has cross-border or cross-handle deletion type.

Let ẽ be the edge diagram identical to e except in its rightmost arc ã which is

twisted if a is not, and is not twisted if a is. Clearly this operation is a pairing,

˜̃e= e and the effects of deletion of a and ã are the same, ẽ0 = e
0. In fact, e and ẽ are

the unique two edge diagram solutions f determined by f
0
= e

0 and o(f) = eo.

Now note that a is a border if and only if ã has cross-border type, and a is a

handle if and only if ã has cross-handle type. Thus for all e 2 o�1(eo):

b�(e)
+ b�(ẽ)

= (b+ 1)� b�(e0):

Therefore the generating series for o�1(eo) is

∑
e2o�1(eo)

b�(e)
= (b+ 1) ∑

e02o�1(e0o)

b�(e0):

By the inductive hypothesis, this equals

(b+ 1)� (b+ 1)(n�1)�`(� 0)+1

and the proof is complete.
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7.3 Reduction of � to Non-Separable Maps

We present a useful property of �: its additivity across non-separable blocks of a

map. Since maps naturally decompose into non-separable maps, this is further

evidence that the parameter � is natural. An inherent enumerative limitation of

this natural decomposition into non-separable maps is that the vertex and face

partitions are lost. However, the number of faces and the number of vertices are

preserved by the decomposition.

Thus, for the generating series, we may set x1 = x2 = x3 = � � � = x and y1 =

y2 = � � �= y. Then the decomposition leads to a simple functional equation relat-

ing the generating series for all maps to the generating series for non-separable

maps. To define the decomposition and non-separability, we first define a split-

vertex.

7.3.1 Split-Vertices

In a connected graph a cut-vertex is a vertex whose removal separates the graph

into two or more components. Walsh [Wal71] defined a split-vertex as a map’s

analogue of a graph’s cut-vertex. We use the notion of the matchings graph

Γ(m) of a map m to extend Walsh’s definition of a split-vertex to include non-

orientable maps.

Definition 7.1. A vertex v of a map m = (X; �1; �2; �3) is a split-vertex of m, if each

of the following holds:

1. there exists non-empty disjoint sets P;Q, with P[Q = X,
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2. �1(P) = P and �3(P) = P,

3. �2(P)� P = fp1; p2; q1; q2g, the symmetric difference, where pi 2 P and qi =

�2(pi) 2 Q, and

4. p1; p2; q1 and q2 are on the cycle of Γ(m) associated with the vertex v.

We say that the sets P and Q are separated at v. The positions p1 and p2 are the

separators for the set P.

A split-vertex of a mapm is a cut-vertex of its underlying graph. The converse

is not true in general. The two edges fp1; q1g and fp2; q2g comprise an edge cutset

of the matchings graph Γ(m).

A topological characterisation of a split-vertex v of a map m is the existence

of a closed curve C in the underlying surface of S of the map m, that

1. passes once through v, entering and leaving from different corners,

2. does not pass through any other edges or vertices,

3. when removed, cuts the surface S into two components.

An example of such a curve is illustrated on a triple torus is given in Figure 7.5.

A split-vertex may also be characterised as being the contraction, in the sense of

[Tut84] of an edge whose deletion separates the map (a cut edge in graph theory

terminology).

To determine the effect of � on a rooted map m with a split-vertex, first we

show how the canonical position labelling `m is affected.
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p1

p2 q2

q1
v

C

| {z }
P

| {z }
Q

Figure 7.5: A split vertex in the triple torus

Lemma 7.3. 1. Let P and Q be separated at the split-vertex v of the rooted

map m = (X; �1; �2; �3; r), where r 2 P. Let `m be the canonical position

labelling of m. Then,

`m(Q n v)= [a; b] := fa; a+ 1; : : : ; bg

for some a; b 2 N , where Q n v indicates those positions of Q not incident

with the vertex v.

2. Moreover, if mP and mQ are the rooted submaps of m induced by the po-

sition sets P and Q, and if P = fr1; r2; : : :g with `m(r1) < `m(r2) < : : : and

Q = fs1; s2; : : :g with `m(s1) < `m(s2) < : : : , then `mP(ri) = i and `mQ(si) = i.

Proof. Consider the action of Algorithm 4.1 on the rooted map m. Assume the

first position visited in Q is q1. The algorithm then cycles around v to q2. If there

are still unvisited positions at v, then the algorithm leaves Q and visits these.

Algorithm 4.1 cannot return to Q until it backtracks to q2. It then visits posi-
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tions in Q and eventually backtracks to q1, after which it visits no further posi-

tions of Q.

Now we are ready to show the additivity of � under splitting rooted maps at

vertices.

Lemma 7.4. With the same hypotheses as Lemma 7.3, we have

�(m) = �(mP)+ �(mQ)

Proof. The canonical ordered digraphs, dP = Æ(mP) and dQ = Æ(mQ) are precisely

the induced ordered sub-digraphs of d = Æ(m), by Lemma 7.3. (Thus the edges

are labelled in the same order.)

Consider edge ei of d. Recall that its type is the deletion type of the component

di of d� fei+1; : : : ; eng containing ei. If di is a component of dP � fei+1; : : : ; eng or

dQ�fei+1; : : : ; eng, then ei has the same type in dP or dQ, whichever it belongs to,

as it has in d. Otherwise di has a split-vertex vi induced by the split-vertex v of d.

Precisely, there are Pi � P and Qi � Q, which are separated at vi in di. Then (di)Pi

is a component of dP�fei+1; : : : ; eng.

Suppose the edge ei 2 (di)Pi . Then the deletion type of di is the same as (di)Pi ,

except if ei is the only edge incident to vi in (di)Pi . Then the deletion types of di

and (di)Pi are, respectively, the members of the following pairs:

� bridge and leaf,

� leaf and link,
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� border and loop,

� cross-border and cross-loop.

Therefore the type ei in d is one of cross-loop, cross-border or cross-handle, if and

only if the type of ei in dP is one of cross-loop, cross-border or cross-handle. This

applies to every edge, so �(d) = �(dP)+ �(dQ).

By iterating Lemma 7.4, it is possible to express �(m) as a sum over � evaluated

at several rooted submaps, until there are no further split-vertices. Thus the

computation of � is be reduced by this process to the special set of maps given

by the following definition.

Definition 7.2. A map m is non-separable if it has no split-vertices.

7.3.2 Block decomposition

In the same way that graphs may be decomposed into cut-vertices and blocks

(subgraphs without cut-vertices, or 2-connected subgraphs), maps may be de-

composed into non-separable submaps joined at split-vertices. First, we show

how to partition the set of positions.

Lemma 7.5. Let m = (X; �1; �2; �3) be a map. Let � be the relation on X deter-

mined by p � q if and only if there does not exist P;Q and v such that

1. p 2 P and q 2 Q, and

2. P and Q are separated at v.

Then � is an equivalence relation.
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Proof. Since separated P and Q are disjoint, p � p.

The sets P and Q and separated at v, if and only if Q and P are. Thus p �

q =) q � p.

Suppose p� r� q, but p 6� q. Then there is some P;Q separated at v, with p 2

P and q 2 Q. Either r 2 P implying r 6� q, or r 2 Q implying r 6� p, a contradiction.

Therefore p � r � q =) p � q.

The relation � induces a decomposition of a map into its blocks.

Definition 7.3. Let m = (X; �1; �2; �3) be a map. Let the equivalence classes of X

under� be X1;X2; : : : ;Xs. The blocks of m are the submaps induced by the Xi, namely

bi = (Xi; �
(i)
1 ; �

(i)
2 ; �

(i)
3 )

where �(i)
k = �kjXi for k = 1; 3 and �(i)

2 is evaluated for x 2 Xi

�(i)
2 (x) = (�2�1) j�2(x)

with j > 0 is chosen to be as small as possible while meeting the constraint � (i)
2 (x) 2 Xi,

Blocks of a map are its maximal non-separable submaps.

Let m be a rooted map. There is a natural way to assign roots to each of its

blocks: this is choosing the minimum position under the canonical labelling `m

of m to be the root position of each block.

Theorem 7.6. If a rooted map m has rooted non-separable blocks b1;b2; : : : ;bc,
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then

�(m) = �(b1)+ �(b2)+ � � �+ �(bc):

In other words, � is additive over decomposition into non-separable submaps.

Proof. Follows immediately from Lemma 7.4.

In particular, the study of � over rooted maps is reduced by these means to

the study of � over non-separable rooted maps, and advantage is now taken of

this.

7.3.3 Enumeration of non-separable maps

Now, we relate the two generating series

M(b; x; y; z) and N(b; x; y; z)

for the set of rooted maps and the set of non-separable, rooted maps respectively,

where the variables b; x; y and z mark �, the number of faces, the number of

vertices and number of edges respectively. (Thus, in contrast to some previous

generating series, M(b; x; y; z) does not record any information about the face

and vertex partitions apart from their lengths.) We use a decomposition of rooted

maps, related to the block decomposition, to prove the following result.
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Corollary 7.7. Let M(z) = M(b; x; y; z) and N(z) = N(b; x; y; z). Then

M(z) = N

 
z
�

M(z)
xy

�2
!

(7.10)

Proof. We do this with another decomposition of rooted maps. Take the root

block b of a rooted map m (the block containing the root position). Then m con-

sists of b with a rooted map (possibly edgeless) adjoined to every corner.

A rooted map m = (X; �1; �2; �3; r) may be partitioned into non-separable

blocks, as we have seen. One of these non-separable submaps, say

b1 = (X1; �
(1)
1 ; �

(1)
2 ; �

(1)
3 );

contains the root position of m.

Suppose that b1 has m edges. Then it has 2m corners c1; : : : ; c2m. At each of

these corners ci of b1, given by some pair of positions fp; p0g � X1 with p0 =

�(1)
2 (p), either p0 = �2(p) or p and p0 are separators for position sets Pi;Qi, with

X1 � Pi. In the latter case, assign a root q to the induced submap mi =mQi , where

q minimises `m over Qi.

This decomposition between rooted maps and rooted, non-separable maps

with two (arbitrary) rooted maps attached per edge.

Moreover �(m) = �(b1)+ �(m1)+ � � �+ �(m2m). Note, that the root vertices

and faces of the maps mi do not introduce new vertices or faces into m. (Thus we

divide by xy in (7.10).
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This generalises a result of Walsh [Wal71] and a result of Brown and Tutte [BT64].

With the functional equation (7.10), N can be determined from M. More pre-

cisely, the coefficients Nn = [zn]N(x; y; z; b) can be expressed in terms of the co-

efficients Mn = [zn]M(x; y; z; b). We use Lagrange’s Implicit Function Theorem

to determine N(z). For the following, it is convenient to write M(x; y; z; b) =

Mx;y;b(z) = M(z) and N(x; y; z; b) = Nx;y;b(z) = N(z), and let M
�
= M

�1 M
�2 � � �

where � = (�1; �2; : : : ). Let

F(z) = z
�

M(z)
xy

�2

;

then the functional equation can be written as, M(z) = N(F(z)). Let G(z) =

F<�1>(z) be the compositional inverse of F(z), which exists since
�
z0
�

F(z) = 0

and
�
z1
�

F(z) 6= 0. So now we have [zn] N(z) = [zn]M(G(z)) and G satisfies the

functional equation

z = F(G(z)) = G(z)
�

M(G(z))
xy

�2

or, equivalently

G(z) = z
�

xy
M(G(z))

�2

:

Lagrange’s theorem gives:

[zn] N(z) = [zn] M(G(z))

=

1
n

�
sn�1�M0(s)

�
xy

M(s)

�2n
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Some elementary manipulations express the coefficient of N as sum indexed by

partitions involving coefficients of M:

[zn] N(z) =
1
n

�
sn�1��1

2n
d
ds

�
M(s)
xy

�
�2n+1

= [sn]
�1
2n

�
M(s)
xy

�
�(2n�1)

= �
1

2n
[sn]

1

∑
j=0

�
�(2n� 1)

j

��
M1

xy
s+

M2

xy
s2
+ : : :

� j

= �
1

2n
[sn]

1

∑
j=0

�
�(2n� 1)

j

�
∑

�2P;`(�)= j

`(�)!
m1(�)!m2(�)! � � �

M
�

(xy) j
sj�j

= �
1

2n ∑
�`n

�
�(2n� 1)
`(�)

�
`(�)!

m1(�)!m2(�)! � � �
M

�

(xy)`(�)

= ∑
�`n

(�1)`(�)�1 (2n)(`(�)�1)M
�

m1(�)!m2(�)! � � � (xy)`(�) ;

(7.11)

with the notations M
�
= M

�1 M
�2 : : : , the rising factorial n(k)

= n(n+ 1) : : : (n+

k� 1), and the multiplicity mi(�) of the part i in the partition �.

Note that M is a specialisation of H. If H = Ψ(b+1), as conjectured, then the

corresponding specialisation of Ψ(b+1) equals M. A functional equation may be

solved to an expression similar to (7.11) with occurrences of coefficients of M

replaced by coefficients of the corresponding specialisation of Ψ(b+1). Since, ac-

cording to the conjecture, this would equal N, we expect this expression, a sum

involving Jack symmetric functions, to be a polynomial in b with non-negative

integer coefficients. An independent proof of this, using the theory of symmet-

ric functions, would provide further evidence in support of Conjecture 7.1 that

H = Ψ(b+1).
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7.4 Reduction of � to Digon-Free Maps

The additivity proven in x7.3 of � for the natural decomposition into non-separable

blocks supports the assertion that � is a natural parameter. Further evidence that

the parameter � is natural is provided by the value it attains on maps with digons

(faces of degree two). Digons in a map may be deleted topologically by removing

from the surface of the map the open disk corresponding to the face of degree

two. Then the two edges which make up the boundary of the digon are glued

together by identification. Deleting a digon is equivalent to deleting of one of

the edges in its boundary.

Digon deletion is easily reversed: replace an edge with two edges bounding

a single face. We call this process digon insertion. (The operation dual to digon

insertion is more familiar in graph theory as subdividing an edge.) A digon-free

map is a map without digons. Each map can be reduced to a unique digon-free

map by a sequence of digon deletions and insertions. (Dually, each map is a

subdivision of a map without bivalent vertices.)

A significant property of � is that it is invariant under digon deletion. Con-

sequently, the computation of � can be reduced to digon-free maps. Moreover,

this invariance property implies a simple functional equation for the generating

series H of rooted maps.

7.4.1 Proof for digon deletion invariance

Lemma 7.8. Let m0 be a rooted map with digon bounded by edges e and e0. Let

m = m
0
� e0. Then �(m)= �(m0).
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Proof. There are two cases to consider: (a) e is a canonical tree edge of m, or (b) e

is a canonical non-tree edge of m.

Case (a): Canonical Tree Edge. When e is a tree edge of m, it follows that either

e or e0 is a tree edge of m0. Without loss of generality, assume that e is a canonical

tree edge of m0. Since depth first search uses e to travel from a vertex u to a vertex

v, when backtracking past e0 at v, it does not travel to u, which has already been

seen, nor does it backtrack along e0 from u to v. Therefore e0 is a canonical non-

tree edge.

Suppose hasm0 has the following canonical descending chain of rooted submaps:

m
0
= m

0

n+1 � m
0

n � � � � � m
0

1:

Assume that e is the high edge of m0

i and e0 the high edge of m0

j. Then i < j, depth

first search first visits v by travelling from u along e. The end of e0 at v is visited

after depth first search cycles around the vertex v.

Consider the addition of e0 to m
0

j�1. The rooted map m
0

j�1 already has the edge

e. In m
0

j, edge e0 forms a digon with e. On the other side of e0, is a face, say f 0. This

face arises from a face f in m
0

j�1. Indeed e0 is attached to two adjacent corners of

f . In fact, e0 cuts the face f into two faces: f 0 and the digon. Therefore the edge

e0 is an border edge of Æ(m0

j). Since e and e are canonical tree edges, they are

either link or leaf edges of Æ(mi) and Æ(m0

i) respectively. Thus, e and e0 make a

contribution of 0 to �(m0), as does e to �(m).

Case (b): Canonical Non-tree Edge. When e is not a canonical tree edge of m,
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neither of e or e0 are canonical tree edges of m0.

Let m have the canonical descending chain of rooted submaps m=mn � � � � �

m1. If e is the high edge of submap mi, then e and e0 are the high edges of m0

i and

m
0

i+1, and without loss of generality respectively so.

Then e and e0 fall into the same of the nine (eight excluding the bridge) pos-

sible cases, therefore making identical contributions to �(m) and �(m0) respec-

tively. As before e0 belongs to the border case, therefore making no contribution

to �(m0).

For the purpose of describing the decomposition it is convenient to use the

term bundle of adjacent digons to mean the dual of a path of adjacent bivalent ver-

tices. Since each map decomposes into a digon-free map with its edges replaced

by bundles of adjacent digons, we get a decomposition of the generating series

H for rooted maps as follows.

7.4.2 Enumeration of Digon-Free Maps

Recall that H(b; x;y; z) = H(b; x1; x2; : : : ; y1; y2; : : : ; z) is an ordinary generating

series for rooted maps, where b marks �, xi marks faces of degree i, yi vertices of

degree i, and z marks edges. The generating series for digon-free rooted maps

is Hjx2=0. Every rooted map decomposes into a digon-free rooted map with its

edges replaced by bundles of adjacent digons, we can express H in terms of

Hjx2=0 with a substitution as follows.
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Lemma 7.9. Writing H(x2; z)= H(b; x;y; z), the following holds:

H(x2; z)= H
�

0;
z

1� x2z

�

Proof. The right hand side is the functional composition of z 7! H(0; z) with z 7!

z=(1� x2z). But H(0; z) enumerates digon-free maps. If each edge, marked by

z, is replaced by a bundle of adjacent digons, then z should be replaced by z+

x2z2
+ x2

2z3
+ � � �= z=(1� x2z).

But the set of all rooted maps, enumerated by H(x2; z), decomposes into the

set of digon-free rooted maps with these bundles of adjacent digons substituting

edges. Thus the left hand side equals the right hand side.

Presumably, Ψ(b+1) can be shown to have the similar property, but it is not imme-

diate from the established theory of Jack symmetric functions.

7.5 Doubling Construction

On numerical examination of the coefficients of Ψ(b+1), one can find many strik-

ing apparent patterns. The section addresses a simple one of these. As in the

previous two sections, we do not prove the property of Ψ(b+1), but do prove it for

H by combinatorial considerations concerning �.

For a partition � ` 2n, let  
�;k = ∑

�`2n;`(�)=k �;�;n, where  
�;�;n =

�
x
�

y
�
zn
�
Ψ,
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a polynomial in b. The relationship

 [2n�1;1];k = 2 [2n�2;2];k:

holds from the numerical data (which is for n 6 5). The corresponding rela-

tionship for coefficients of H, as determined by the parameter �, can be proven

combinatorially.

Lemma 7.10. Let H be as in (7.1). Let h
�;k = ∑

�`2n;`(�)=k

�
x
�

y
�
zn
�

H. Then

h[2n�1;1];k = 2h[2n�2;2];k:

Proof. A map m with k vertices, and face partition �(m) = [2n� 1; 1] is enumer-

ated by h[2n�1;1];k. The face of m of degree one, must be bounded by an edge e,

which is a loop (in the usual graph theory sense of being doubly incident with a

single vertex).

Recall that in Æ(m) one end of e is chosen to be the tail. Re-attach the tail of e

to one of the corners of the face of degree 2n� 1 which are adjacent to the tail of

e. The new version e0 of the former e, now bounds a digon. Thus the resulting

map m
0, as shown in Figure 7.6, has face partition [2n� 2; 2]. (And m

0 still has k

vertices.)

This procedure is in fact a two-to-one function, because the digon in m
0 has

two edges, either of which could have been formed from the loop bounding the

face of degree one in m. Thus two maps of face partition [2n� 1; 1] result in the
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e e0

m m
0

7!

Figure 7.6: Replacing a degree one face by a digon

same map with face partition [2n� 2; 2].

This action does not affect �. The edge e of m bounding the face of degree 1

makes no contribution to �, because it has either loop or border deletion type.

Thus �(m)= �(m� e). Note that m0
� e0=m� e. By Lemma 7.8, �(m0)= �(m0

� e0),

because e0 bounds a digon. Therefore �(m) = �(m� e) = �(m0
� e0) = �(m0), as

desired.

7.6 Summary

We defined and examined properties of a candidate Map-Jack parameter � =

� Æ Æ. The numerical evidence as the suitability of � for the hypothetical pa-

rameter # of Conjecture 1.2 is fairly convincing. We confirmed a property of �

necessitated by a result from [GJ96a]. We found further properties of � which aid

in simplifying its computation and provide evidence that � is a more natural pa-

rameter than the algorithm to compute � would suggest. Indeed, it would seem

that � is associated with a departure from orientability of rooted maps: the num-

ber of edges whose canonical deletion type is one of cross-loop, cross-border or
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cross-handle.

Moreover, concerning three properties of �, we have noted that these can be

regarded as tests for the suitability of �, insofar that if any of these latter prop-

erties is proven to be false for #, then the suitability of � is proven to be false.

(The converse does not hold, of course; actual proof of the suitability of � re-

quires more than the proof of these properties of #.) The difficulty in testing

these properties of # directly is the prohibitive amount of computation required

to compute all the Jack symmetric functions needed to form the generating se-

ries Ψ(b+1), and to compute the logarithm of the sum of scaled products of Jack

symmetric functions appearing in the definition (1.5) of Ψ(b+1).



Chapter 8

A Bijection for Continued Fractions

Consider the numbers, Mv;e, of orientable rooted maps with v vertices and e

edges. Their ordinary generating series is

M(y; z) =∑
v;e

Mv;eyvze: (8.1)

Previous chapters addressed enumerative results that involved the numbers

(or degrees) of each of the vertices, the edges and the faces. Now information

about the number of faces is suppressed, and, as a result, the numbers Mv;e count

maps without regard to genus g = 1
2(2� (v� e)� f ). While this means that the

numbers Mv;e do not count maps in such a refined way as previously consid-

ered, the generating series M(y; z) has an elegant presentation as a continued

fraction (8.2).

We establish a simple combinatorial interpretation of this continued fraction

213
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as a generating series for a set of trees Tl. To prove the continued fractions iden-

tity we exhibit a bijection

Θ :M! Tl

where M is the set of rooted orientable maps. This bijection preserves the num-

ber of edges. Moreover, it maintains a a one-to-one correspondence from vertices

of a rooted map and the saturated vertices (to be defined) of trees in Tl. The ex-

istence of such a bijection is implied by (8.2). The bijection Θ which we construct

provides independent proof of (8.2). The problem of finding such a bijection Θ

was proposed in [AB97], where (8.2) was proven with an iterative solution to a

Ricatti equation. Thus, Θ is a solution to that problem.

We shall define Θ by Θ= � Æ ", where ", as defined in Algorithm 4.5, sends

rooted maps to edge diagrams, and � sends edge diagrams to level labelled trees

and is to be defined later. Therefore depth first search, in this chapter, as in

others, has a crucial rôle. Edge deletion is applied again, not to ordered digraphs

but directly to rooted maps, leading to ordinary (Ricatti) differential equations.

8.1 Continued Fractions and Trees

The main result in this chapter is a purely bijective proof the following theorem

of Arquès and Didier [AB97].

Theorem 8.1 ([AB97]). The ordinary generating series (8.1) for orientable rooted
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maps with y marking vertices and z marking edges is

M(y; z) =
y

1�
(y+ 1)z

1�
(y+ 2)z

1�
(y+ 3)z

1� : : :

: (8.2)

To prove this result bijectively with a bijection Θ, it is necessary to have an-

other set onto which Θ sends the set of orientable rooted maps M. This set con-

sists of trees, labelled in a certain way, and is enumerated directly by the right

hand side of (8.2). We now show how continued fractions are related to the enu-

meration of trees.

Definition 8.1. The set T(�M) of rooted trees, is the set of planar rooted maps with

one face.

Rooted trees can also be characterised as rooted maps whose underlying

graphs have no cycles. A rooted tree t with e edges has e+ 1 vertices. For what

follows, the set T of rooted trees includes the map consisting of a single, isolated

vertex (the vertex map).

Definition 8.2. The distance (number of edges) from a vertex v of a rooted tree t from

the root vertex is the level lt(v) of the vertex.

The following well known lemma (see, for example, [GJ83]) shows that con-

tinued fractions enumerate rooted trees with respect to the number of vertices at
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each level. The proof is included because it serves as the basis for the proof of

Corollary 8.3.

Lemma 8.2. Let T = T(z; y0; y1; y2; : : : ) be the generating series for T where yi

marks vertices at level i, and z marks edges. Then

T =
y0

1�
y1z

1�
y2z

1� : : :

Proof. The decomposition T �

 !f�g�

S
k>0T

k is obtained by decomposing (through

root vertex deletion) a tree t into its root vertex and an ordered collection of sub-

trees t
0 rooted at each neighbour of the root vertex. The root vertex is marked

by y0. Levels in the subtree must be incremented by 1 in the tree t. (lt(v) =

1+ lt0(v).) Thus, subtrees are enumerated by T(z; y1; y2; : : : ). The root vertex is

joined by an edge, marked by z, to each subtree, so the decomposition for rooted

trees gives:

T(z; y0; y1; : : : ) = y0 ∑
k>0

(zT(z; y1; y2; : : : ))k
=

y0

1� zT(z; y1; y2; : : : )
:

This relation, when iterated, gives the result.

The continued fraction that enumerates the set T can be specialised to the right

hand side of (8.2), so to accommodate this specialisation, the following modifi-
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cation of the set T is introduced.

Definition 8.3. The set of level-labelled trees Tl is the set of pairs (t; `) where

� t 2 T,

� ` : V(t)! N is a label function on the vertex set (V)(t) of t, satisfying:

� 0 6 `(v) 6 lt(v) for all v 2 V(t).

A vertex v 2 V(t) is saturated if `(v) = lt(v).

A level-labelled tree t is given in Figure 8.1. This level-labelled tree has 5 sat-

6 3

0

0 1 0 1

1 201

03

6 0

6 1

6 2

Figure 8.1: A level-labelled tree

urated vertices and 10 edges. Thus, in a generating series Tl(y; z) for Tl, where

y marks saturated vertices and z marks edges, t is marked with y5z10. The rele-

vance of this set Tl of trees lies in the following result.
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Corollary 8.3. Let Tl(y; z) be the generating series for Tl, where y marks satu-

rated vertices and z marks edges. Then

Tl(y; z) =
y

1�
(y+ 1)z

1�
(y+ 2)z

1� : : :

:

Proof. Given a rooted tree t 2 T and a vertex v 2 V(t) with lt(v) = i, if v is to be

saturated then `(v) = i, and otherwise there are the i choices for `(v) determined

by 0 6 `(v) 6 i � 1. Thus yi in T is to be replaced by y + i in Tl, so Tl(y; z) =

T(z; y; y+ 1; y+ 2; : : : ). Now apply Lemma 8.2.

Therefore, to prove Theorem 8.1 it suffices to find a bijection Θ :M! Tl such

that for all m 2M:

� m and Θ(m) have the same number of edges, and

� the number of vertices of m equals the number of saturated vertices of Θ(m).

8.2 Ricatti Equations

We construct Θ as a composition Θ = � Æ " of two bijections. The bijection

" :M! E, computed with Algorithm 4.5, takes orientable rooted maps into edge

diagrams (without twists). The bijection � : E! Tl takes an edge diagram to a
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level-labelled tree. Crucial to construction of the second bijection � are some de-

compositions for the set E of edge diagrams without twists that we now develop.

Let E(y; z) be the generating series for E, where y marks vertices and z marks

arcs (edges). Because the bijection " : M! E preserves the number of vertices

and edges,

E(y; z) = M(y; z):

Lemma 8.4. The following Ricatti equation holds for E = E(y; z):

E = f1� zEg�1
fy+ (zE+ 2z2 @

@z
E)g

Proof. Decompose E by considering successive leftmost arcs. A schematic dia-

?

�

 !
: : : eee e

Figure 8.2: Ricatti decomposition for edge diagrams

gram for this decomposition is given in Figure 8.2. The ? indicates that terminal

structure is optionally present. More precisely, if there is at least one arc, there

are two cases:

1. The leftmost arc a1 has a vertex at its right endpoint, or
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2. the leftmost arc a1 does not possess a vertex.

In the former case, no other arcs may cross a1. Thus a1 encloses part of an entire

edge diagram. Let a2 be the next leftmost arc after a1.

Continuing, suppose a1; a2; : : : ; ak were all such successive leftmost arcs with

vertices. Then either

� there are no more arcs to the right of ak, or

� the next leftmost arc ak+1 does not possess a vertex.

Each of the enclosed edge diagrams under the arcs a1; : : : ; ak is marked by zE,

the z due to the arc ai itself. The vertex on the arc ai fulfils the rôle of the root

vertex of the enclosed diagram.

As k > 0, the contribution from these initial arc diagrams is ∑k>0(zE)k
= f1�

zEg�1.

If ak is the last arc, then only the root vertex adds any further contribution.

Thus the contribution is f1� zEg�1y.

If ak+1 exists, but does not have a vertex, consider the edge diagram e
0 formed

by removal of the arc ak+1 and all the initial enclosed diagrams. If e0 has n arcs,

there 2n + 1 gaps in its base line. The right endpoint of ak+1 could have been

placed in any of these gaps, because the left endpoint is not beneath any arcs with

vertices. In the terms of the generating series E+ 2z @

@z E, a factor zn is replaced

with (2n+ 1)zn, because (1+ 2z @

@z)zn
= (2n + 1)zn. Multiply this by z to mark

the arc ak+1. Multiply by f1� zEg�1 for the initial enclosed edge diagrams. This

completes the proof.
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The corresponding Ricatti equation was proven for M(y; z) in [AB97] (by

combinatorial means). It was then verified algebraically that the continued frac-

tion solution satisfied this Ricatti equation. Because M(y; z)= E(y; z), Lemma 8.4

re-proves the fact that M(y; z) satisfies the corresponding Ricatti equation.

We will show how rather more can be obtained from the proof of Lemma 8.4,

by using the decomposition in the proof in part of the construction of the bijec-

tion �.

To do this, we need a second decomposition for E, in terms of another set of

objects. Another way to count edge diagrams in E is to consider all arrangements

of arcs, and then to determine how many of these arcs are permitted to possess

vertices. Therefore let us consider configurations of arcs without vertices.

8.2.1 Unbroken arc configurations

Similar to, but simpler than an edge diagram, an arc configuration is represented

by a base line, semicircular arcs attached to the same side of the base line. There

are no vertices or twists, and no forbidden sub-configurations. Combinatorially,

all the information in an arc configuration with n arcs is captured by a single

matching � 2Match(N2n).

An unbroken arc configuration is an arc configuration such that no vertical line

separates the arcs into two sets. (Or conversely, every vertical line intersecting

an internal gap of the base line, also intersects an arc.) Such separating vertical

lines are given for an arc configuration that fails to be unbroken in Figure 8.3.

An example of an unbroken arc configuration is given in Figure 8.4. Unbroken
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Figure 8.3: A broken arc configuration with separating vertical lines

Figure 8.4: An unbroken arc configuration

arc configurations with n arcs are determined by precisely those matchings � 2

Match(N2n) for which there does not exist 1 6 m 6 n� 1, such that i 6 2m =)

�(i) 6 2m.

Let U be the set of unbroken arc configurations. Let U = U(y; z) be the fol-

lowing generating series for U:

U(y; z) = ∑
u2U

yr(u)za(u)�1

where

� r(u) is the number of arcs of u not crossed to the right, and therefore avail-

able to posses a vertex,
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� a(u) is the number of arcs of u.

For example, with u from Figure 8.4, r(u) = 2.

An edge diagram is formed from an arc configuration by addition of a root

vertex and some vertices on certain arcs. For each arc that is not crossed to the

right, it is possible to add a vertex to it or not. And since an arc configuration

decomposes naturally into a chain of unbroken arc configuration, we have the

following.

Lemma 8.5. E(y; z) = yf1� zU(y+ 1; z)g�1:

Proof. In U(y; z) each y marks a non-right crossed arc. Each of these r(u) arcs may

or may not have a vertex added to form an edge diagram. The former is marked

by y in E(y; z), the latter by 1. So, each y in U(y; z) is substituted by y+ 1.

The z in front of zU(y+ 1; z) ensures that the rightmost arc is marked. Then

f1� zU(y+ 1; z)g�1 is a geometric series, because an edge diagram breaks into

a chain of unbroken configurations. Finally, the factor y marks the root vertex,

which is present at the left end of every edge diagram.

In fact, U(y; z) and E(y; z) are equal. This will be shown by finding a Ricatti

equation for U(y; z). This Ricatti equations is proven in a way that is very sim-

ilar to the the proof of the first Ricatti equation. Advantage can be taken of the

comparability of the two decompositions to determine a bijection � : E! U.
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8.2.2 A second Ricatti equation

A similar Ricatti equation for U(y; z) is proven with a very similar decomposition

for U.

Lemma 8.6. The following Ricatti equation holds for U = U(y; z):

U = f1� zUg�1
fy+ (zU+ 2z2 @

@z
U)g:

Proof. Decompose U by considering the leftmost arc a of an unbroken arc con-

figuration u. A schematic diagram for this decomposition is given in Figure 8.5.

�

 ! uu
?

u: : :u

Figure 8.5: Ricatti decomposition for edge diagrams

The ? indicates that terminal structure is optionally present.

Removal of the arc a from u results in a possibly broken arc configuration.

This broken arc configuration is decomposed into an ordered collection of un-

broken arc configurations. There are two cases to consider for the location of the

other endpoint of a.

1. The arc a intersects none of the other arcs.

2. The arc a intersects the last unbroken arc configuration.
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In both cases there is a (possibly empty) ordered collection of unbroken arc con-

figurations beneath the first arc a. These initial configurations lead to a factor of

f1� zUg�1. The multiplication by z ensures all the arcs in the initial configura-

tions are counted.

In Case 1, arc a is not crossed to the right, so is marked by y. No z is necessary,

because the power of z is already a(u)� 1.

In Case 2, arc a is crossed to the right, so is not marked by y. We mark a

by z. Since a intersects the last unbroken arc configuration u
0, its right endpoint

is in one of the gaps internal to u
0. If u0 has n+ 1 arcs, then there are 2n+ 1 of

these internal gaps. Since u0 is marked by zn in U, the term U+ 2z @

@zU counts the

possible u
0 together with a selected internal gap.

As formal power series, E(y; z) and U(y; z) are determined uniquely by their

Ricatti equations. Therefore, it follows that E(y; z) = U(y; z). This equality is

substituted back into Lemma 8.5 to yield:

E(y; z) = yf1� zE(y+ 1; z)g�1 (8.3)

which proves immediately, in conjunction with M(y; z) = E(y; z), the continued

fraction in Theorem 8.1. This proof is different from that of [AB97], but not yet

the bijective proof we seek.

For a fully bijective proof, we need a combinatorial decomposition corre-

sponding to (8.3). Since we used E(y; z)=U(y; z) to prove (8.3), all that is needed

is a bijection � : E! U.



CHAPTER 8. A BIJECTION FOR CONTINUED FRACTIONS 226

8.2.3 The bijection � : E! U

The bijection � : E! U is defined recursively, and by the comparability of the

Ricatti decompositions for E and U.

Compare the decompositions for E and U. These are given together in Fig-

ure 8.6.

?

�

 !
: : : eee e

�

 ! uu
?

u: : :u

Figure 8.6: Comparison of the two Ricatti decompositions

In the decomposition for E, an edge diagram e is decomposed into a sequence

of edge diagrams (e1; : : : ; ek; e
?), where the last e? is either absent or, if e? has n

edges, one of its 2n+ 1 gaps between its arcs is selected for the location of the

right endpoint of an arc, as given in Figure 8.6.

In the decomposition for U, an unbroken arc configuration u is decomposed

into a sequence of unbroken arc configurations (u1; : : : ;uk;u
?), where the last one

u
? is either absent or, if u? has n+ 1 arcs, one of its 2n+ 1 internal (not initial or

final) gaps between its arcs is selected for the location of the right endpoint of

the leftmost arc of u, as given in Figure 8.6.

In both cases, the numbers of possible selected gaps for e? and u
? is (2n+ 1).
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Algorithm 8.1 (Computation of u= �(e)). The unbroken arc configuration u =

�(e) is the one whose decomposition is

(�(e1); : : : ; �(ek); �(e)?)

where, if gap i of e? is selected, then �(e)? has internal gap i selected.

Moreover, in executing �, we maintain a correspondence between the vertices

of e and the r(u) arcs of u which are not right-crossed.

Small cases of the correspondence � are given in Table 8.1. The correspon-

3:

1:

2:

Table 8.1: The correspondences �(e) for e with two or less edges
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dence is indicated by the translated placements of the edge diagrams e and un-

broken arc configurations u. The parameter r(u) is indicated for convenience

when there are three arcs in Table 8.1.

8.3 Recursive construction of �

Now that we have a bijection � : E! U, we have a combinatorial decomposition

corresponding to (8.3), in which an edge diagram e decomposes into

1. a root vertex, and

2. an ordered collection of edge diagrams ei, each with a selected subset of

vertices .

The case 2 corresponds to the substitution y 7! y+ 1, and the correspondence

that has been maintained in � between vertices of e and non-right-crossed arcs

of u. We write this as e 7! (�; e+1 ; : : : ; e
+

k ), where e+i is the edge diagram ei together

with a selected subset of vertices.

There is an analogous decomposition for the set of level-labelled trees Tl cor-

responding to the identity

Tl(y; z) = yf1� zTl(y+ 1; z)g�1:

A level-labelled tree (t; `) decomposes into

1. a root vertex, and
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2. an ordered collection of level-labelled trees (t0; `0), for each of which a sub-

set of saturated vertices v has been selected to have their labels incremented

by one, `(v) = `0(v)+ 1.

Thus t 7! (�; t+1 ; : : : ; t
+

k ), where t
+

i denotes a level-labelled tree ti together with a

selected subset of its saturated vertices.

Thus we have comparable decompositions for E and Tl, as we also have for

E and U. From the latter pair of comparable decompositions, we formed a re-

cursive construction of the bijection � : E! U. We apply the same principle to

define a recursive bijection � : E! Tl.

Algorithm 8.2 (Computation of (t; `) = �(e)). The level-labelled tree (t; `)= �(e)

is the one whose decomposition is

(�;�(e1)+; : : : ; �(ek)+)

where, the selected subset of vertices in e
+

i is chosen to correspond to the selected

subset of saturated vertices in �(ei)+.

Table 8.2 gives an example of the computation of Θ= � Æ ". The recursive use

of � is evident.

8.4 Specialisations and Generalisations

Let L(b; y; z) be the generating series for locally orientable rooted maps, where

b marks �, y marks vertices and z marks edges. Thus L(0; y; z) = M(y; z). By
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+ +

0

0

0

0+

1

0+

0

0

0

11

1

j

a

b

c

d

h
i

a b c d e f g h i j

e f
g

Θ

�

�

�

"

Table 8.2: Sample computation of Θ



8.4. SPECIALISATIONS AND GENERALISATIONS 231

Lemma 7.2,

L(b; y; z) = (b+ 1)M
�

y
b+ 1

; (b+ 1)z
�
:

Moreover, letting u mark gaps not under arcs with vertices,

L(b;u; y; z) = (b+ 1)F
�

u;
y

b+ 1
; (b+ 1)z

�
:

Let M(z) = M(1; z) and L(z) = L(1; z). Then

M(z) =
1

1�
2z

1�
3z

1� : : :

(8.4)

and

L(z) =
1

1�
3z

1�
5z

1� : : :

(8.5)

Then M(z) � 1 � 1+ 0z + 0z2
+ : : : mod 2 and L(z) � 1 � 1+ 0z+ 0z2

+ : : :

mod 3. Hence, the numbers Mn (resp. Ln) of orientable (resp. locally orientable)

rooted maps with n > 1 edges is a multiple of 2 (resp. 3). This fact can be seen
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directly from considering the nature of the rightmost arc of the edge diagram.

It is not clear how to prove these two divisibility results from the alternate ex-

pressions for M(y; z). Moreover, (8.4) and (8.5) imply the eventual periodicity

modulo m of Mn and Ln, for each modulus m, with the exception of m= 2 for Ln.

8.5 Alternate expressions for M(y; z)

The generating series M(y; z) has at least three other forms besides its continued

fraction form.

Derived originally [JV90a] by specialising Schur functions in the genus series

for maps, there is a direct combinatorial argument to prove the following.

Lemma 8.7.

M(y; z) = y+ 2z
@

@z
log ∑

n>0

1
2nn!

zny(2n);

where y(2n)
= y(y+ 1) � � � (y+ 2n� 1), the rising factorial.

Proof. We claim that the generating series for the set of permutations � 2 SN

where y marks disjoint cycles is y(N). We use induction on N.

When N = 1, we have y(N)
= y and SN = f(1)g.

Consider � 2 SN for N > 1.

Case 1: �(N) = N. Thus � has (N) for a cycle. The contribution is

y � y(N�1):
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Case 2: �(N) 6= N. Delete N from its cycle in � to get �0 2 SN�1. The contri-

bution is

(N� 1) � y(N�1)

because � is determined by � 0 and �(N), for which there are N� 1 choices.

This proves the claim.

An orientable rooted map m with n edges, is encoded by a 2n�1(n� 1)! differ-

ent permutations � 2 S2n, such that

h�; "ni (8.6)

where "n = (1; 2)(3; 4) � � � (2n� 1; 2n), is a transitive permutation group. Recall

that this is done by assigning labels 2i� 1 and 2i to the ends of the edges, with 1

at the root vertex. Then the cycles of the � are taken from the clockwise order of

the labels in circulations of the vertices.

Combinatorially, if (8.6) is not transitive, � is interpreted as a rotation system,

an unordered collection of labelled maps. Transitivity then is regarded as the

equivalent to connectivity, with orbits becoming components.

Therefore by the claim, ∑n>0
1
n! z

ny(2n) is the exponential generating series in

z for rotation systems with n edges. The variable y is an ordinary marker for

vertices.

Taking the logarithm restricts the generating series to only connected (transi-
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tive) rotation systems. The differential operator 2z @

@z and scaling z 7! z=2 correct

for the fact that 2n�1(n� 1)! connected rotation systems encode a single rooted

map.

The term y must be added for the vertex map, which cannot be encoded by a

rotation system.

Using integer-parenthesis systems, Walsh derived [Wal71] the Ricatti equa-

tion for M(y; z) in its recurrence form. Walsh then gave the solution

M(y; z) = ∑
n>0

zn 1�
p

1� 4yz
2z

(1� 4yz)�ngn

 
f1� 4yzg�

1
2 � 1

2

!
(8.7)

to the recurrence, where the gn are polynomials with positive integer coefficients

satisfying another recurrence. The first few polynomials are g0(x) = g1(x) = 1,

g2(x) = 5x+ 3, and g3(x) = 60x2
+ 65x+ 15.

Finally, there is an expansion of M(y; z) as a continued product:

M(y; z) = A0+ B0(A1+ B1(A2+ B2(A3+ : : : ))); (8.8)

where the Ai and Bi satisfy a simultaneous recurrence. To find and prove this

system of recurrence equations we need an additional lemma.

8.5.1 An Ordinary Differential-Functional Equation

Lemma 8.8. Let F = F(u; y; z) be the generating series for edge diagrams, where

u marks gaps not beneath an arc with a vertex, y marks vertices, and z marks
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edges. (Clearly E = E(y; z) = F(1; y; z).) The following holds:

F = uy+ u3z
@

@u
F+ u2yz

F� E
u� 1

: (8.9)

Proof. Let e 2 E be an edge diagram to be enumerated by F. We decompose e by

attempting to remove the rightmost edge (arc). There are three cases to consider.

Case (a): There are no arcs. There is just one vertex, and one gap, as in Fig-

ure 8.7. Hence the term uy of the right hand side.

Figure 8.7: An edge diagram with no arcs

Otherwise, there is a rightmost arc a. Let e0 = e� a. Suppose that e0 has h gaps

not underneath an arc with a vertex.

Case (b): The rightmost arc a does not possess a vertex. The left end of a can be

located in any of these h gaps. Thus the factor of uh for the term of F counting

e
0 is multiplied by h. Furthermore, e has h+ 2 gaps not underneath an arc with

vertex, as well as one more arc than e
0. Hence the contribution of this case is

u3z @

@u F.

Case (c): The rightmost arc a possesses a vertex. Suppose the gaps of e
0 are


1; : : : ; 
h. Let the gap containing the left end of a be 
i.

Since arc a possesses a vertex, gaps 
i+1; : : : ; 
i+1 are underneath an arc with

a vertex, namely the arc a, and therefore is not marked by u in e. One new gap
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appears at the very right end of the base line. Thus e has i+ 1 gaps not under an

arc with a vertex.

Thus the factor uh marking e
0 is replaced by u2

+ u3
+ � � �+ uh+1

= u2 uh
�1

u�1 .

Multiply by yz because of the new arc a and vertex on a. To do this to every term

of F marking e, giving the contribution of this case, transform F into u2yz F�E
u�1 .

Sometimes, the operator ∆u is defined by ∆uF = F�Fju=1
u�1 , and the operator Du by

Du =
@

@u . Then (8.9) is rewritten as N = uy+ (b+ 1)u3zDuN+ u2yz∆uN. The op-

erator ∆u arises in some of Tutte’s equations for planar maps. But, while Tutte’s

equations contained a quadratic term, (8.9) contains a term with the operator Du.

The most obvious approach for finding E from (8.9) is to eliminate F. Regard

(8.9) as a first order linear differential equation in F and u, regard E as a constant,

and use an integrating factor. This approach leads to a functional equation for E

alone but involves a power series in u�1 and z�1, which seems no easier to solve.

Another approach, however, gives a continued product expansion of M.

8.5.2 A continued product expansion for E(y; z)

Let v = u� 1, and thus u = v+ 1. Let Fj be determined by the expansion F =

∑ j>0 Fjvj, where Fj is a constant in v, and therefore a constant in u. In particular,

F0 = E. Then the differential-functional equation (8.9) implies

∑
j>0

Fjvj
= (v+ 1)y+ (v+ 1)3z ∑

j>1

jFjv j�1
+ (v+ 1)2yz ∑

j>1

Fjvj�1:
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Equating coefficients of vj on both sides:

F0 = y+ z(1+ y)F1; (8.10)

F1 = y+ z(3+ 2y)F1 + z(2+ y)F2; (8.11)

F2 = z(3+ y)F1 + z(6+ 2y)F2+ z(3+ y)F3; (8.12)

and for j > 3:

Fj = zf( j� 2)gFj�2+ zf3( j� 1)+ ygFj�1

+ zf3 j+ 2ygFj + zf( j+ 1)+ ygFj+1:

(8.13)

Solving for Fj in the jth of these equations to get another series of equations:

Fj = Aj+ BjFj+1;

proves the continued product (8.8), because M = F0 = A0+ B0F1 = A0+ B0(A1+

B1F2) = � � � .

We now describe initial conditions and the recurrence relation for the terms

Aj and Bj. Firstly,

A0 = y; B1 = (1+ y);

directly from (8.10).
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Secondly, solving for F1 in (8.11), gives:

F1 =
y+ z(2+ y)F2

1� z(3+ 2y)
;

so that

A1 =
y

1� z(3+ 2y)
; B1 =

z(2+ y)
1� z(3+ 2y)

:

Similarly, expressions can be found for A2 and B2.

More generally, for j > 3, we get the simultaneous recurrence equations:

Aj = z
( j� 2)Aj�2+ f( j� 2)Bj�2+ 3( j� 1)+ ygAj�1

1� Cj
;

Bj = z
( j+ 1)+ y

1� Cj
;

where

Cj = zff( j� 2)Bj�2+ 3( j� 1)+ ygBj�1+ 3 j+ 2yg :

8.6 Summary

We discussed the straightforward way that continued fractions enumerate level-

labelled trees. By use of depth first search and edge diagrams, we constructed a

bijection between level-labelled trees and orientable rooted maps. Such a bijec-

tion was sought in [AB97], where enumeration of rooted maps with continued
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fractions was established by different means.

We note that the enumerative problem of this chapter is not as refined as in

previous chapters. The generating series M(y; z) contains no information about

the number of faces, the genus or the degrees of faces and vertices of the rooted

maps which are enumerated. Only the number of vertices and the number of

edges are recorded in M(y; z). For more refined problems, it is unlikely that the

generating series has a form as simple as a continued fraction.

We discussed other solutions to the same enumerative problem. These for-

mulae include: Walsh’s recurrence form; the expression with logarithm of a sum

containing rising factorials of Jackson and Visentin (for which we provided an

elementary proof avoiding character theory); and a continued product expan-

sion whose factors satisfied a double recurrence. It is not obvious algebraically

why these four expressions for the generating series M(y; z) are equal.
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Further Work

Below are suggestions for further work.

A.1 On Double Coset Algebras

A natural interpolation corresponding the Jack parameter � between the two

double cosets D(S2n;Hn) and D(Gn; Ln) would be helpful. Efforts to realise such

an algebra have been unsuccessful. Abstractly, such an interpolation may be de-

fined using Jack symmetric functions, but nothing is gained in doing so. Perhaps

a concrete realisation can be provided by an algebra similar to certain Hecke al-

gebras which are a parameterised generalisation CSn and have applications to

knot theory. (In this algebra, the relations between the n � 1 generators si =

(i; i + 1) of Sn are modified, with a parameter q such that q = 1 recovers the

algebra CSn .)

240
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A.2 On eΞ

Clearly the aim is to find Ξ. Although eΞ has a complicated description, it may

be possible to simplify this, and even to modify in it some way to fulfil all the

requirements of the Quadrangulation Conjecture.

It is promising that there is another, entirely different bijection � : Q ! A,

which preserves the number of edges, as eΞ does. This bijection � does not extend

Tutte’s medial bijection, because planarity is not preserved. This � is an adaption

of a bijection between embeddings of digraphs into locally orientable surfaces

and projections of knots into orientable surfaces.

A.3 On �

A proof that the appropriate specialisation of Ψ(b+1) is a solution of the differen-

tial equation (6.2) is very desirable. Considering that Jack symmetric functions

are themselves eigenfunctions to a very similar differential operator, such a proof

seems plausible. Moreover, it is a hopeful indication that a very similar differen-

tial equation, for minimal transitive factorisations, has been explicitly solved in

[GJ97b].

A strategy to achieve such a proof is to provide a proof for a narrower class of

rooted maps, relating specialisations of the differential equation to correspond-

ing specialisations of Jack symmetric functions. These proofs might then be ex-

tended to the fully general equation (6.2).

In two instances, Walsh’s monopole formula and Tutte’s formula for Eule-
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rian planar maps, the solutions are sufficiently simple to be regarded as explicit

in the sense of not referring to symmetric functions. These two formulae were

proven by explicit verification that they satisfied the recurrence associated with

specialisations of (6.2). Perhaps these two formulae could be unified to a sin-

gle formula, with a unified proof by recurrence (verification of the differential

equation). Then compare this with the corresponding symmetric functions ex-

pressions.

Another desirable goal is to show that Φ has integer coeffients, which would

be true if Φ= bΨ(b+1) and the Map-Jack Conjecture are true.

Macdonald has defined some symmetric functions J
�
(q; t) with two param-

eters, which generalise Jack symmetric functions. One might generalise Ψ(b+1)

of (1.5) to a generating series Ψ(q; t). A quick calculation shows that in this raw

form, the desired coefficients are rational functions in q and t. However, there

may be a transformation, generalising the transformation �= b+ 1, which yields

non-negative integer polynomials.

In x6.6 a generating series D� is defined, where b has been replaced by two

variables b1 and b2. A series Φ� could be defined from D� in similar way to (6.24).

A very speculative, further strengthening of the Conjecture 1.2 is:

Conjecture A.1. There is a transformation ϒ : C 2
! C 2 , mapping (b1; b2) to (q; t),

the two parameters of Macdonald’s generalisation of Jack symmetric functions,

that is Φ�
jϒ:(b1;b2)!(q;t) = Ψ(q; t)jyj 7!y.
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A.4 On �

Ideally one could prove that # = � meets all the conditions set in the Map-Jack

Conjecture. Such a proof might require new results about Jack symmetric func-

tions. It is promising that two new characterisations of Jack symmetric functions

have been recently discovered [KS97, LV95], providing independent proof of the

Macdonald-Stanley Conjecture. One of these characterisations uses a new sort a

tableau, which might perhaps amenable to the combinatorics of �. Perhaps the

thorough investigation of the properties of � proved in Chapter 7 and of their

potential analogues for Ψ(b+1) will lead to a proof of suitability of �.

A more modest achievement is to show that � is in fact consistent with the

partial differential equation of Chapter 6, in the sense that Φ= H. Considering

that � used � in its definition, such a proof seems very attainable. A crucial step

would be to show that depth first search is sufficient to go from ordered digraphs

(�) to rooted maps (�). An even weaker aim is establish this monopoles only.

For monopoles the action of the depth first search is extremely simple. The main

content the canonical ordered digraph function Æ when applied to monopoles, is

in ordering the edges.

Because � 6 2� � and 2� � gives the rank of some homology groups of the

surface, a more natural description of � might be found in terms of homology.

Specifically, the dual of the matchings graph (as a map in the same surface) is a

simplicial complex. The root position corresponds to a root simplex. So perhaps,

associated with the choice of root simplex there is naturally defined subgroup of

the homology group with rank �. Such a semantic description of � may even be
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used to prove the Map-Jack Conjecture.

A.5 On Θ

The bijection Θ of Chapter 8 may have a simpler description than the one given.

More interestingly, perhaps Θ could be modified so that it extends the bijection

that has been found [CV81] between planar rooted maps and well-labelled trees.

Interestingly, in [Sch98] there is a bijection between rooted orientable maps

and well-labelled single faced rooted maps of the same genus. These single faced

maps are called g-arbres and generalise trees. Thus the bijection in [Sch98] is

another way to extend the bijection given in [CV81].

A.6 On random matrices

An integration theory of random matrices accompanies the theory of Zonal poly-

nomials and Schur symmetric functions [Mac95], and can be used to characterise

these symmetric functions. Moreover, matrix integration can be applied directly

to the enumeration of maps [Bro95, GJ97a, Jac96, Jac94]. However, the rôle of

Jack symmetric functions in the matrix integration framework is not fully un-

derstood, either in the theoretical relationship of [Mac95] or in the enumerative

method for maps.

Selberg’s theorem, used in [GHJ99], provides an integration result for Jack

symmetric functions. However, the Selberg integrals is taken over variables cor-

responding to the eigenvalues of matrices, after diagonalization. Matrix inte-
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grals before diagonalization, like those for Schur symmetric functions and Zonal

polynomials but parameterized by some parameter corresponding to the Jack

parameter �, would be far more useful for a combinatorial interpretation di-

rectly useful to map enumeration. In particular, such integrals may be a means

to construct a Map-Jack parameter #, or to prove that � is a valid Map-Jack pa-

rameter.

Matrix integration has applications to string theory and quantum field theory

[Hoo74, BIZ80] and many other areas of physics and even the Riemann hypoth-

esis [Meh91].

A.7 Products in the Category of Rooted Maps

The definition of isomorphisms between rooted maps can be broadened to a

definition of homomorphisms between rooted maps. This endows the set of

rooted maps with a category structure. (Combinatorial pre-maps also form a

category by similar means.) The category of rooted maps possesses a product.

Properties such as regularity and orientability can be characterised in terms of

this product. Moreover, the product is root dependent. Because of these features

of the product, it might be useful in the Quadrangulation Conjecture or the Map-

Jack Conjecture.
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A.8 On Jucys-Murphy elements

Other algebraic approaches to connection coefficients of Sn, not using Schur

symmetric functions, are given in [FH59], [Juc74] and [GJ94]. The second uses

certain sums of transpositions called Jucys-Murphy elements. The third uses

certain symmetric functions defined by Macdonald using Lagrange inversion.

(These symmetric functions are distinct from Macdonald’s generalisation of Jack

symmetric functions [Mac95].) A close relationship between these approaches

can be proved inductively [Bro98]. If these approaches can be extended to in-

clude connection coefficients of D(S2n;Hn), then perhaps their combinatorics can

be used to find a Map-Jack parameter # (at least for a subset of maps).
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Tables of coefficients of Φn, for n 6 6

The following sections display all the non-zero coefficients
�
x
�

ykbB
�
Φn for n 6 6. Their

format is that of Table B.1. The leftmost column indicates �, corresponding to the face
partition. The remaining columns contain computer-generated coefficients of Φn. Notice
that these are nonnegative integers, so could represent a number of rooted maps with
corresponding properities.

The numbers in Table B.1 correspond to rooted maps with three faces, eight edges
and two vertices. These numbers were computed, using the recursion obtained from the
partial differential equations. Computing the analogous numbers using Jack symmetric
functions would take far more time. Similarly, computing these numbers on a map by
map basis, and using the parameter �, would also take an prohibitive amount of time.

Therefore, the partial differential equations approach to map enumeration gives an
efficient method to compute these coefficients. (Assuming all three methods yield equal
analogous coefficients.) If, however, one wants more detailed, refined numbers, the
coefficients with respect to both � and � , (the face partition and vertex partition), these
partial differential equations will not help.

B.1 Number of Edges = 1 (n = 1)

B.1.1 Number of Vertices = 1 (k = 1)
� : B 0
[1; 1] 1

� : B 1
[2] 1

247
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� : B 1 2 3 4 5
[6; 5; 5] 210928 421856 890232 679304 344008
[6; 6; 4] 219496 438992 919244 699748 345316
[7; 5; 4] 452736 905472 1901728 1448992 726720
[7; 6; 3] 504480 1008960 2131184 1626704 815408
[7; 7; 2] 322448 644896 1309672 987224 478632
[8; 4; 4] 246954 493908 1032008 785054 383760
[8; 5; 3] 528688 1057376 2240432 1711744 857712
[8; 6; 2] 655256 1310512 2660560 2005304 957488
[8; 7; 1] 1206544 2413088 4899824 3693280 1777968
[9; 4; 3] 586816 1173632 2480832 1894016 936448
[9; 5; 2] 699104 1398208 2854544 2155440 1040816
[9; 6; 1] 1248224 2496448 5079600 3831376 1837712

[10; 3; 3] 353360 706720 1502376 1149016 566952
[10; 4; 2] 785904 1571808 3182536 2396632 1129128
[10; 5; 1] 1347936 2695872 5488720 4140784 1983408
[11; 3; 2] 957600 1915200 3923472 2965872 1408848
[11; 4; 1] 1533120 3066240 6227968 4694848 2216832
[12; 2; 2] 648984 1297968 2540356 1891372 858732
[12; 3; 1] 1875648 3751296 7617088 5741440 2704608
[13; 2; 1] 2595936 5191872 10161424 7565488 3434928
[14; 1; 1] 2410512 4821024 9435608 7025096 3189576

Table B.1: Coefficents
�
x
�

y2bB
�

Φ8 for `(�) = 3
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B.1.2 Number of Vertices = 2 (k = 2)
� : B 0
[2] 1

B.2 Number of Edges = 2 (n = 2)

B.2.1 Number of Vertices = 1 (k = 1)
� : B 0

[2; 1; 1] 2
� : B 1
[2; 2] 1
[3; 1] 4

� : B 0 1 2
[4] 1 1 3

B.2.2 Number of Vertices = 2 (k = 2)
� : B 0
[2; 2] 1
[3; 1] 4

� : B 1
[4] 5

B.2.3 Number of Vertices = 3 (k = 3)
� : B 0
[4] 2

B.3 Number of Edges = 3 (n = 3)

B.3.1 Number of Vertices = 1 (k = 1)
� : B 0

[2; 2; 1; 1] 3
[3; 1; 1; 1] 2

� : B 1
[2; 2; 2] 1
[3; 2; 1] 12
[4; 1; 1] 9

� : B 0 1 2
[3; 3] 1 1 5
[4; 2] 3 3 9
[5; 1] 6 6 18

� : B 1 2 3
[6] 13 13 15

B.3.2 Number of Vertices = 2 (k = 2)
� : B 0

[2; 2; 2] 1
[3; 2; 1] 12
[4; 1; 1] 9

� : B 1
[3; 3] 9
[4; 2] 15
[5; 1] 30

� : B 0 1 2
[6] 10 10 32



APPENDIX B. TABLES OF COEFFICIENTS OF Φn 250

B.3.3 Number of Vertices = 3 (k = 3)
� : B 0
[3; 3] 4
[4; 2] 6
[5; 1] 12

� : B 1
[6] 22

B.3.4 Number of Vertices = 4 (k = 4)
� : B 0
[6] 5

B.4 Number of Edges = 4 (n = 4)

B.4.1 Number of Vertices = 1 (k = 1)
� : B 0

[2; 2; 2; 1; 1] 4
[3; 2; 1; 1; 1] 8
[4; 1; 1; 1; 1] 2

� : B 1
[2; 2; 2; 2] 1
[3; 2; 2; 1] 24
[3; 3; 1; 1] 16
[4; 2; 1; 1] 36
[5; 1; 1; 1] 16

� : B 0 1 2
[3; 3; 2] 4 4 20
[4; 2; 2] 6 6 18
[4; 3; 1] 16 16 64
[5; 2; 1] 24 24 72
[6; 1; 1] 20 20 60

� : B 1 2 3
[4; 4] 19 19 24
[5; 3] 40 40 56
[6; 2] 52 52 60
[7; 1] 104 104 120

� : B 0 1 2 3 4
[8] 21 42 181 160 105

B.4.2 Number of Vertices = 2 (k = 2)
� : B 0

[2; 2; 2; 2] 1
[3; 2; 2; 1] 24
[3; 3; 1; 1] 16
[4; 2; 1; 1] 36
[5; 1; 1; 1] 16

� : B 1
[3; 3; 2] 36
[4; 2; 2] 30
[4; 3; 1] 112
[5; 2; 1] 120
[6; 1; 1] 100

� : B 0 1 2
[4; 4] 15 15 53
[5; 3] 32 32 128
[6; 2] 40 40 128
[7; 1] 80 80 256

� : B 1 2 3
[8] 215 215 260
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B.4.3 Number of Vertices = 3 (k = 3)
� : B 0

[3; 3; 2] 16
[4; 2; 2] 12
[4; 3; 1] 48
[5; 2; 1] 48
[6; 1; 1] 40

� : B 1
[4; 4] 38
[5; 3] 96
[6; 2] 88
[7; 1] 176

� : B 0 1 2
[8] 70 70 234

B.4.4 Number of Vertices = 4 (k = 4)
� : B 0
[4; 4] 9
[5; 3] 24
[6; 2] 20
[7; 1] 40

� : B 1
[8] 93

B.4.5 Number of Vertices = 5 (k = 5)
� : B 0
[8] 14

B.5 Number of Edges = 5 (n = 5)

B.5.1 Number of Vertices = 1 (k = 1)
� : B 0

[2; 2; 2; 2; 1; 1] 5
[3; 2; 2; 1; 1; 1] 20
[3; 3; 1; 1; 1; 1] 5
[4; 2; 1; 1; 1; 1] 10
[5; 1; 1; 1; 1; 1] 2

� : B 1
[2; 2; 2; 2; 2] 1
[3; 2; 2; 2; 1] 40
[3; 3; 2; 1; 1] 80
[4; 2; 2; 1; 1] 90
[4; 3; 1; 1; 1] 70
[5; 2; 1; 1; 1] 80
[6; 1; 1; 1; 1] 25

� : B 0 1 2
[3; 3; 2; 2] 10 10 50
[3; 3; 3; 1] 10 10 50
[4; 2; 2; 2] 10 10 30
[4; 3; 2; 1] 80 80 320
[4; 4; 1; 1] 30 30 120
[5; 2; 2; 1] 60 60 180
[5; 3; 1; 1] 70 70 250
[6; 2; 1; 1] 100 100 300
[7; 1; 1; 1] 50 50 150
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� : B 1 2 3
[4; 3; 3] 80 80 125
[4; 4; 2] 95 95 120
[5; 3; 2] 200 200 280
[5; 4; 1] 340 340 450
[6; 2; 2] 130 130 150
[6; 3; 1] 380 380 500
[7; 2; 1] 520 520 600
[8; 1; 1] 455 455 525

� : B 0 1 2 3 4
[5; 5] 33 66 289 256 189
[6; 4] 65 130 600 535 375
[7; 3] 70 140 690 620 450
[8; 2] 105 210 905 800 525
[9; 1] 210 420 1810 1600 1050

� : B 1 2 3 4 5
[10] 753 1506 2889 2136 945

B.5.2 Number of Vertices = 2 (k = 2)
� : B 0

[2; 2; 2; 2; 2] 1
[3; 2; 2; 2; 1] 40
[3; 3; 2; 1; 1] 80
[4; 2; 2; 1; 1] 90
[4; 3; 1; 1; 1] 70
[5; 2; 1; 1; 1] 80
[6; 1; 1; 1; 1] 25

� : B 1
[3; 3; 2; 2] 90
[3; 3; 3; 1] 90
[4; 2; 2; 2] 50
[4; 3; 2; 1] 560
[4; 4; 1; 1] 210
[5; 2; 2; 1] 300
[5; 3; 1; 1] 430
[6; 2; 1; 1] 500
[7; 1; 1; 1] 250

� : B 0 1 2
[4; 3; 3] 65 65 295
[4; 4; 2] 75 75 265
[5; 3; 2] 160 160 640
[5; 4; 1] 270 270 1010
[6; 2; 2] 100 100 320
[6; 3; 1] 300 300 1120
[7; 2; 1] 400 400 1280
[8; 1; 1] 350 350 1120

� : B 1 2 3
[5; 5] 355 355 500
[6; 4] 740 740 965
[7; 3] 870 870 1180
[8; 2] 1075 1075 1300
[9; 1] 2150 2150 2600

� : B 0 1 2 3 4
[10] 483 966 4294 3811 2589
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B.5.3 Number of Vertices = 3 (k = 3)
� : B 0

[3; 3; 2; 2] 40
[3; 3; 3; 1] 40
[4; 2; 2; 2] 20
[4; 3; 2; 1] 240
[4; 4; 1; 1] 90
[5; 2; 2; 1] 120
[5; 3; 1; 1] 180
[6; 2; 1; 1] 200
[7; 1; 1; 1] 100

� : B 1
[4; 3; 3] 230
[4; 4; 2] 190
[5; 3; 2] 480
[5; 4; 1] 740
[6; 2; 2] 220
[6; 3; 1] 820
[7; 2; 1] 880
[8; 1; 1] 770

� : B 0 1 2
[5; 5] 120 120 490
[6; 4] 250 250 910
[7; 3] 300 300 1140
[8; 2] 350 350 1170
[9; 1] 700 700 2340

� : B 1 2 3
[10] 2200 2200 2750

B.5.4 Number of Vertices = 4 (k = 4)
� : B 0

[4; 3; 3] 60
[4; 4; 2] 45
[5; 3; 2] 120
[5; 4; 1] 180
[6; 2; 2] 50
[6; 3; 1] 200
[7; 2; 1] 200
[8; 1; 1] 175

� : B 1
[5; 5] 215
[6; 4] 380
[7; 3] 490
[8; 2] 465
[9; 1] 930

� : B 0 1 2
[10] 420 420 1450

B.5.5 Number of Vertices = 5 (k = 5)
� : B 0
[5; 5] 36
[6; 4] 60
[7; 3] 80
[8; 2] 70
[9; 1] 140

� : B 1
[10] 386

B.5.6 Number of Vertices = 6 (k = 6)
� : B 0
[10] 42
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B.6 Number of Edges = 6 (n = 6)

B.6.1 Number of Vertices = 1 (k = 1)
� : B 0

[2; 2; 2; 2; 2; 1; 1] 6
[3; 2; 2; 2; 1; 1; 1] 40
[3; 3; 2; 1; 1; 1; 1] 30
[4; 2; 2; 1; 1; 1; 1] 30
[4; 3; 1; 1; 1; 1; 1] 12
[5; 2; 1; 1; 1; 1; 1] 12
[6; 1; 1; 1; 1; 1; 1] 2

� : B 1
[2; 2; 2; 2; 2; 2] 1
[3; 2; 2; 2; 2; 1] 60
[3; 3; 2; 2; 1; 1] 240
[3; 3; 3; 1; 1; 1] 64
[4; 2; 2; 2; 1; 1] 180
[4; 3; 2; 1; 1; 1] 420
[4; 4; 1; 1; 1; 1] 63
[5; 2; 2; 1; 1; 1] 240
[5; 3; 1; 1; 1; 1] 132
[6; 2; 1; 1; 1; 1] 150
[7; 1; 1; 1; 1; 1] 36

� : B 0 1 2
[3; 3; 2; 2; 2] 20 20 100
[3; 3; 3; 2; 1] 60 60 300
[4; 2; 2; 2; 2] 15 15 45
[4; 3; 2; 2; 1] 240 240 960
[4; 3; 3; 1; 1] 150 150 654
[4; 4; 2; 1; 1] 180 180 720
[5; 2; 2; 2; 1] 120 120 360
[5; 3; 2; 1; 1] 420 420 1500
[5; 4; 1; 1; 1] 180 180 684
[6; 2; 2; 1; 1] 300 300 900
[6; 3; 1; 1; 1] 220 220 740
[7; 2; 1; 1; 1] 300 300 900
[8; 1; 1; 1; 1] 105 105 315

� : B 1 2 3
[3; 3; 3; 3] 34 34 60
[4; 3; 3; 2] 480 480 750
[4; 4; 2; 2] 285 285 360
[4; 4; 3; 1] 804 804 1188
[5; 3; 2; 2] 600 600 840
[5; 3; 3; 1] 864 864 1272
[5; 4; 2; 1] 2040 2040 2700
[5; 5; 1; 1] 816 816 1080
[6; 2; 2; 2] 260 260 300
[6; 3; 2; 1] 2280 2280 3000
[6; 4; 1; 1] 1704 1704 2250
[7; 2; 2; 1] 1560 1560 1800
[7; 3; 1; 1] 1992 1992 2520
[8; 2; 1; 1] 2730 2730 3150
[9; 1; 1; 1] 1456 1456 1680

� : B 0 1 2 3 4
[4; 4; 4] 45 90 447 402 297
[5; 4; 3] 288 576 2868 2580 2016
[5; 5; 2] 198 396 1734 1536 1134
[6; 3; 3] 150 300 1598 1448 1130
[6; 4; 2] 390 780 3600 3210 2250
[6; 5; 1] 708 1416 6348 5640 4068
[7; 3; 2] 420 840 4140 3720 2700
[7; 4; 1] 720 1440 6804 6084 4320
[8; 2; 2] 315 630 2715 2400 1575
[8; 3; 1] 840 1680 7968 7128 5040
[9; 2; 1] 1260 2520 10860 9600 6300

[10; 1; 1] 1134 2268 9774 8640 5670

� : B 1 2 3 4 5
[6; 6] 1215 2430 4841 3626 1695
[7; 5] 2508 5016 9996 7488 3564
[8; 4] 2721 5442 10884 8163 3780
[9; 3] 3180 6360 13004 9824 4620

[10; 2] 4518 9036 17334 12816 5670
[11; 1] 9036 18072 34668 25632 11340
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� : B 0 1 2 3 4 5 6
[12] 1485 4455 24630 41835 51876 31701 10395

B.6.2 Number of Vertices = 2 (k = 2)
� : B 0

[2; 2; 2; 2; 2; 2] 1
[3; 2; 2; 2; 2; 1] 60
[3; 3; 2; 2; 1; 1] 240
[3; 3; 3; 1; 1; 1] 64
[4; 2; 2; 2; 1; 1] 180
[4; 3; 2; 1; 1; 1] 420
[4; 4; 1; 1; 1; 1] 63
[5; 2; 2; 1; 1; 1] 240
[5; 3; 1; 1; 1; 1] 132
[6; 2; 1; 1; 1; 1] 150
[7; 1; 1; 1; 1; 1] 36

� : B 1
[3; 3; 2; 2; 2] 180
[3; 3; 3; 2; 1] 540
[4; 2; 2; 2; 2] 75
[4; 3; 2; 2; 1] 1680
[4; 3; 3; 1; 1] 1158
[4; 4; 2; 1; 1] 1260
[5; 2; 2; 2; 1] 600
[5; 3; 2; 1; 1] 2580
[5; 4; 1; 1; 1] 1188
[6; 2; 2; 1; 1] 1500
[6; 3; 1; 1; 1] 1260
[7; 2; 1; 1; 1] 1500
[8; 1; 1; 1; 1] 525

� : B 0 1 2
[3; 3; 3; 3] 28 28 146
[4; 3; 3; 2] 390 390 1770
[4; 4; 2; 2] 225 225 795
[4; 4; 3; 1] 648 648 2760
[5; 3; 2; 2] 480 480 1920
[5; 3; 3; 1] 696 696 2952
[5; 4; 2; 1] 1620 1620 6060
[5; 5; 1; 1] 648 648 2424
[6; 2; 2; 2] 200 200 640
[6; 3; 2; 1] 1800 1800 6720
[6; 4; 1; 1] 1350 1350 5046
[7; 2; 2; 1] 1200 1200 3840
[7; 3; 1; 1] 1560 1560 5568
[8; 2; 1; 1] 2100 2100 6720
[9; 1; 1; 1] 1120 1120 3584

� : B 1 2 3
[4; 4; 4] 569 569 786
[5; 4; 3] 3684 3684 5484
[5; 5; 2] 2130 2130 3000
[6; 3; 3] 2082 2082 3072
[6; 4; 2] 4440 4440 5790
[6; 5; 1] 7812 7812 10632
[7; 3; 2] 5220 5220 7080
[7; 4; 1] 8460 8460 11196
[8; 2; 2] 3225 3225 3900
[8; 3; 1] 9888 9888 13032
[9; 2; 1] 12900 12900 15600

[10; 1; 1] 11610 11610 14040

� : B 0 1 2 3 4
[6; 6] 795 1590 7468 6673 4849
[7; 5] 1644 3288 15480 13836 10332
[8; 4] 1785 3570 16785 15000 10737
[9; 3] 2100 4200 20344 18244 13276
[10; 2] 2898 5796 25764 22866 15534
[11; 1] 5796 11592 51528 45732 31068

� : B 1 2 3 4 5
[12] 23178 46356 90727 67549 30669
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B.6.3 Number of Vertices = 3 (k = 3)
� : B 0

[3; 3; 2; 2; 2] 80
[3; 3; 3; 2; 1] 240
[4; 2; 2; 2; 2] 30
[4; 3; 2; 2; 1] 720
[4; 3; 3; 1; 1] 504
[4; 4; 2; 1; 1] 540
[5; 2; 2; 2; 1] 240
[5; 3; 2; 1; 1] 1080
[5; 4; 1; 1; 1] 504
[6; 2; 2; 1; 1] 600
[6; 3; 1; 1; 1] 520
[7; 2; 1; 1; 1] 600
[8; 1; 1; 1; 1] 210

� : B 1
[3; 3; 3; 3] 118
[4; 3; 3; 2] 1380
[4; 4; 2; 2] 570
[4; 4; 3; 1] 2112
[5; 3; 2; 2] 1440
[5; 3; 3; 1] 2256
[5; 4; 2; 1] 4440
[5; 5; 1; 1] 1776
[6; 2; 2; 2] 440
[6; 3; 2; 1] 4920
[6; 4; 1; 1] 3696
[7; 2; 2; 1] 2640
[7; 3; 1; 1] 4008
[8; 2; 1; 1] 4620
[9; 1; 1; 1] 2464

� : B 0 1 2
[4; 4; 4] 198 198 766
[5; 4; 3] 1296 1296 5544
[5; 5; 2] 720 720 2940
[6; 3; 3] 740 740 3100
[6; 4; 2] 1500 1500 5460
[6; 5; 1] 2640 2640 10248
[7; 3; 2] 1800 1800 6840
[7; 4; 1] 2880 2880 10656
[8; 2; 2] 1050 1050 3510
[8; 3; 1] 3360 3360 12384
[9; 2; 1] 4200 4200 14040

[10; 1; 1] 3780 3780 12636

� : B 1 2 3
[6; 6] 4006 4006 5436
[7; 5] 8352 8352 11808
[8; 4] 8982 8982 11916
[9; 3] 11080 11080 14952

[10; 2] 13200 13200 16500
[11; 1] 26400 26400 33000

� : B 0 1 2 3 4
[12] 6468 12936 58856 52388 36500
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B.6.4 Number of Vertices = 4 (k = 4)
� : B 0

[3; 3; 3; 3] 32
[4; 3; 3; 2] 360
[4; 4; 2; 2] 135
[4; 4; 3; 1] 540
[5; 3; 2; 2] 360
[5; 3; 3; 1] 576
[5; 4; 2; 1] 1080
[5; 5; 1; 1] 432
[6; 2; 2; 2] 100
[6; 3; 2; 1] 1200
[6; 4; 1; 1] 900
[7; 2; 2; 1] 600
[7; 3; 1; 1] 960
[8; 2; 1; 1] 1050
[9; 1; 1; 1] 560

� : B 1
[4; 4; 4] 331
[5; 4; 3] 2508
[5; 5; 2] 1290
[6; 3; 3] 1398
[6; 4; 2] 2280
[6; 5; 1] 4404
[7; 3; 2] 2940
[7; 4; 1] 4500
[8; 2; 2] 1395
[8; 3; 1] 5232
[9; 2; 1] 5580

[10; 1; 1] 5022

� : B 0 1 2
[6; 6] 800 800 3046
[7; 5] 1680 1680 6792
[8; 4] 1785 1785 6591
[9; 3] 2240 2240 8416
[10; 2] 2520 2520 8700
[11; 1] 5040 5040 17400

� : B 1 2 3
[12] 17905 17905 22950

B.6.5 Number of Vertices = 5 (k = 5)
� : B 0

[4; 4; 4] 54
[5; 4; 3] 432
[5; 5; 2] 216
[6; 3; 3] 240
[6; 4; 2] 360
[6; 5; 1] 720
[7; 3; 2] 480
[7; 4; 1] 720
[8; 2; 2] 210
[8; 3; 1] 840
[9; 2; 1] 840

[10; 1; 1] 756

� : B 1
[6; 6] 864
[7; 5] 1992
[8; 4] 1842
[9; 3] 2400

[10; 2] 2316
[11; 1] 4632

� : B 0 1 2
[12] 2310 2310 8178
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B.6.6 Number of Vertices = 6 (k = 6)
� : B 0
[6; 6] 100
[7; 5] 240
[8; 4] 210
[9; 3] 280

[10; 2] 252
[11; 1] 504

� : B 1
[12] 1586

B.6.7 Number of Vertices = 7 (k = 7)
� : B 0
[12] 132



Appendix C

Numbers of Rootings of Maps

Let �
�;�

be the partition with one part for each unrooted map u with face partition �

and vertex parition � , equal to the number of rootings of u. For example, � [4];[4] = [221],
becuase there are three unrooted maps u with face and vertex partititon [4], and two of
these u have two rootings and one of the u has a single rooting.

Partitions �o
�;�

and �
n
�;�

, include only those parts associated with orientable and
non-orientable unrooted maps respectively. Then clearly �

�;�
= �

o
�;�

[ �n
�;�

. Computer-
generated values of ��

�;�
, for �= o;n are given in xxC.1.1–C.8.1. The values �o

�;�
are given

first, for planar maps in xC.1, for maps on the torus in xC.2, and for maps on the double
torus in xC.3. The values �n

�;�
are given in xC.4–C.8. Since ��

�;�
= �

�

�;�
, some values are

redundant and are ommitted.
These rooting partitions �

�;�
are valuable enumeratively. For example, because

 [4];[4];2 = 3b2
+ b+ 1;

the value �[4];[4] = [221] implies that the hypothetical parameter # fo the Map-Jack Con-
jecture must depend in some way upon the root of a map. The values of � o

[4k];� are rel-
evant to the set Qg;n of the Quadrangulation Conjecture. When compared to the appro-
priate other values of �o

�;�
for the set Ag;n, it can be demonstrated that the hypothetical

bijection Ξ must also depend on the root of map.
Many of the partitions ��

�;�
given here can also be determined from the information

given in [JV00], where many diagrams of maps and many tables of numbers of maps
are given. Each section that follows is specific to a single surface, and numbers of edges
determine the subsection. The convention from [JV00], that an orientable surface has
genus g= 1

2 (2��) and a non-orientable surface has genus g̃= 2�� is used to designate
the surfaces.

The partitions ��
�;�

were obtained by generating complete sets of rooted maps, and
then checking for isomorphism as unrooted maps by applying the canonical position
labelling algorithm. (By this means, combinatorial maps can be tested for isomorphism

259



APPENDIX C. NUMBERS OF ROOTINGS OF MAPS 260

in polynomial time.) Note that `(��
�;�

) gives the number of unrooted maps of the specific

type, and
�
����
�;�

�
�� gives the number of rooted of the specific type.

C.1 Surface: Genus 0 ( � = 2; orientable)

C.1.1 Number of Edges: 1
� : � [2]

[1; 1] [1]

C.1.2 Number of Edges: 2
� : � [3; 1] [2; 2]

[3; 1] [4] ?

[2; 2] ? [1]

� : � [4]

[2; 1; 1] [2]

C.1.3 Number of Edges: 3
� : � [5; 1] [4; 2] [3; 3]

[4; 1; 1] [6] ? [3]
[3; 2; 1] [6] [6] ?

[2; 2; 2] ? ? [1]

� : � [6]

[3; 1; 1; 1] [2]
[2; 2; 1; 1] [3]

C.1.4 Number of Edges: 4
� : � [6; 1; 1] [5; 2; 1] [4; 3; 1] [4; 2; 2] [3; 3; 2]

[6; 1; 1] [8; 4] [8] [16] ? [4]
[5; 2; 1] [8] [16; 8] [8] ? [8]
[4; 3; 1] [16] [8] [82] [8] ?

[4; 2; 2] ? ? [8] [4] ?

[3; 3; 2] [4] [8] ? ? [4]
� : � [7; 1] [6; 2] [5; 3] [4; 4]

[5; 1; 1; 1] [8] ? [8] ?

[4; 2; 1; 1] [16] [8] [8] [4]
[3; 3; 1; 1] [8] [4] ? [4]
[3; 2; 2; 1] [8] [8] [8] ?

[2; 2; 2; 2] ? ? ? [1]

� : � [8]

[4; 1; 1; 1; 1] [2]
[3; 2; 1; 1; 1] [8]
[2; 2; 2; 1; 1] [4]
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C.1.5 Number of Edges: 5
� : � [8; 1; 1] [7; 2; 1] [6; 3; 1] [6; 2; 2] [5; 4; 1] [5; 3; 2] [4; 4; 2] [4; 3; 3]

[7; 1; 1; 1] [102] [10] [20; 10] ? [20] [10] ? [10]
[6; 2; 1; 1] [20; 10] [202

; 10] [20; 10] ? [202] [20; 102] ? [10]
[5; 3; 1; 1] [20; 102] [20; 10] [20; 10] [10] [20; 102] [10] [10] [10]
[5; 2; 2; 1] [10] [20; 10] [20; 10] [10] [10] [10] [10] [10]
[4; 4; 1; 1] [102] [10] [20; 10] [5] [10] ? [10] [5]
[4; 3; 2; 1] [202] [202

; 10] [20; 102] [102] [20; 102] [20; 10] [10] [10]
[4; 2; 2; 2] ? ? ? ? [10] [10] ? ?

[3; 3; 3; 1] [10] [10] ? ? [10] [10] ? ?

[3; 3; 2; 2] [5] [10] [10] [5] ? ? [5] [5]
� : � [9; 1] [8; 2] [7; 3] [6; 4] [5; 5]

[6; 1; 1; 1; 1] [10] ? [10] ? [5]
[5; 2; 1; 1; 1] [20; 10] [10] [20] [10] [10]
[4; 3; 1; 1; 1] [20; 10] [10] [10] [102] ?

[4; 2; 2; 1; 1] [20; 10] [20] [102] [10] [52]
[3; 3; 2; 1; 1] [20; 10] [102] [10] [10] [10]
[3; 2; 2; 2; 1] [10] [10] [10] [10] ?

[2; 2; 2; 2; 2] ? ? ? ? [1]

� : � [10]

[5; 1; 1; 1; 1; 1] [2]
[4; 2; 1; 1; 1; 1] [10]
[3; 3; 1; 1; 1; 1] [5]
[3; 2; 2; 1; 1; 1] [102]
[2; 2; 2; 2; 1; 1] [5]

C.2 Surface: Genus 1 ( � = 0; orientable)

C.2.1 Number of Edges: 2
� : � [4]

[4] [1]

C.2.2 Number of Edges: 3
� : � [6]

[5; 1] [6]
[4; 2] [3]
[3; 3] [1]
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C.2.3 Number of Edges: 4
� : � [7; 1] [6; 2] [5; 3] [4; 4]

[7; 1] [162
; 8] [16] [82] [8]

[6; 2] [16] [8; 4] [8] [4]
[5; 3] [82] [8] [8] ?

[4; 4] [8] [4] ? [2; 1]

� : � [8]

[6; 1; 1] [82
; 4]

[5; 2; 1] [16; 8]
[4; 3; 1] [82]
[4; 2; 2] [4; 2]
[3; 3; 2] [4]

C.2.4 Number of Edges: 5
� : � [9; 1] [8; 2] [7; 3] [6; 4] [5; 5]

[8; 1; 1] [206
; 103] [20; 103] [202

; 103] [202
; 10; 5] [102

; 5]
[7; 2; 1] [207

; 10] [204
; 10] [203

; 10] [20; 104] [20; 10]
[6; 3; 1] [206

; 10] [202
; 102] [20; 103] [103] [20; 10]

[6; 2; 2] [20; 10] [20; 5] [102] [10; 5] [52]
[5; 4; 1] [205

; 102] [202
; 10] [20; 102] [20; 103] [10]

[5; 3; 2] [202
; 102] [104] [20; 10] [20; 10] ?

[4; 4; 2] [20; 10] [102] [10] [5] [52]
[4; 3; 3] [103] [10; 5] [10] [5] [5]

� : � [10]

[7; 1; 1; 1] [20; 103]
[6; 2; 1; 1] [203

; 104]
[5; 3; 1; 1] [202

; 103]
[5; 2; 2; 1] [202

; 102]
[4; 4; 1; 1] [102

; 52]
[4; 3; 2; 1] [202

; 104]
[4; 2; 2; 2] [52]
[3; 3; 3; 1] [10]
[3; 3; 2; 2] [52]

C.3 Surface: Genus 2 ( � = �2; orientable)

C.3.1 Number of Edges: 4
� : � [8]

[8] [82
; 4; 1]



C.4. SURFACE: GENUS 1̃ ( � = 1; NONORIENTABLE) 263

C.3.2 Number of Edges: 5
� : � [10]

[9; 1] [208
; 105]

[8; 2] [204
; 102

; 5]
[7; 3] [20; 105]
[6; 4] [20; 104

; 5]
[5; 5] [102

; 52
; 2; 1]

C.4 Surface: Genus 1̃ ( � = 1; nonorientable)

C.4.1 Number of Edges: 1
� : � [2]

[2] [1]

C.4.2 Number of Edges: 2
� : � [4]

[3; 1] [4]
[2; 2] [1]

C.4.3 Number of Edges: 3
� : � [5; 1] [4; 2] [3; 3]

[5; 1] [12; 6] [6] [6]
[4; 2] [6] [6] [3]
[3; 3] [6] [3] ?

� : � [6]

[4; 1; 1] [6; 3]
[3; 2; 1] [62]
[2; 2; 2] [1]

C.4.4 Number of Edges: 4
� : � [7; 1] [6; 2] [5; 3] [4; 4]

[6; 1; 1] [162
; 82] [8; 4] [16; 82] [8]

[5; 2; 1] [162
; 82] [16; 82] [16; 82] [8]

[4; 3; 1] [163
; 8] [16; 8] [82] [82]

[4; 2; 2] [8] [8] [8] [4; 2]
[3; 3; 2] [82] [8; 4] [8] ?

� : � [8]

[5; 1; 1; 1] [82]
[4; 2; 1; 1] [16; 82

; 4]
[3; 3; 1; 1] [82]
[3; 2; 2; 1] [83]
[2; 2; 2; 2] [1]
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C.4.5 Number of Edges: 5
� : � [8; 1; 1] [7; 2; 1] [6; 3; 1] [6; 2; 2] [5; 4; 1] [5; 3; 2] [4; 4; 2] [4; 3; 3]

[8; 1; 1] [204
; 107] [204

; 104] [208
; 102] [10; 5] [207

; 10] [202
; 104] [102] [202

; 10; 5]
[7; 2; 1] [204

; 104] [209
; 103] [207

; 102] [20; 102] [206
; 102] [204

; 105] [20; 10] [20; 103]
[6; 3; 1] [208

; 102] [207
; 102] [205

; 102] [20; 102] [207
; 103] [203

; 103] [20; 10] [103]
[6; 2; 2] [10; 5] [20; 102] [20; 102] [10; 5] [20; 102] [20; 102] [10; 5] [10; 5]
[5; 4; 1] [207

; 10] [206
; 102] [207

; 103] [20; 102] [203
; 105] [20; 102] [202

; 10] [104]
[5; 3; 2] [202

; 104] [204
; 105] [203

; 103] [20; 102] [20; 102] [20; 102] [103] [20; 10]
[4; 4; 2] [102] [20; 10] [20; 10] [10; 5] [202

; 10] [103] [10] [5]
[4; 3; 3] [202

; 10; 5] [20; 103] [103] [10; 5] [104] [20; 10] [5] [5]
� : � [9; 1] [8; 2] [7; 3] [6; 4] [5; 5]

[7; 1; 1; 1] [204
; 102] [102] [202

; 103] [20; 10] [20; 10]
[6; 2; 1; 1] [208

; 102] [203
; 103] [204

; 103] [202
; 102] [20; 104]

[5; 3; 1; 1] [207
; 104] [202

; 103] [203
; 10] [202

; 104] [20; 10]
[5; 2; 2; 1] [203

; 103] [202
; 103] [202

; 103] [20; 103] [102]
[4; 4; 1; 1] [204

; 10] [103] [20; 102] [20; 102
; 5] [5]

[4; 3; 2; 1] [209
; 103] [205

; 103] [203
; 103] [20; 106] [202

; 10]
[4; 2; 2; 2] [10] [10] [10] [10] [52]
[3; 3; 3; 1] [202] [102] [10] [10] [10]
[3; 3; 2; 2] [103] [102

; 5] [102] [10; 5] ?

� : � [10]

[6; 1; 1; 1; 1] [102
; 5]

[5; 2; 1; 1; 1] [202
; 104]

[4; 3; 1; 1; 1] [202
; 103]

[4; 2; 2; 1; 1] [202
; 104

; 52]
[3; 3; 2; 1; 1] [202

; 104]
[3; 2; 2; 2; 1] [104]
[2; 2; 2; 2; 2] [1]

C.5 Surface: Genus 2̃ ( � = 0; nonorientable)

C.5.1 Number of Edges: 2
� : � [4]

[4] [22]
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C.5.2 Number of Edges: 3
� : � [6]

[5; 1] [12; 62]
[4; 2] [6; 32]
[3; 3] [32]

C.5.3 Number of Edges: 4
� : � [7; 1] [6; 2] [5; 3] [4; 4]

[7; 1] [169
; 82] [163

; 82] [163
; 84] [16; 82]

[6; 2] [163
; 82] [16; 83

; 42] [16; 83] [8; 42]
[5; 3] [163

; 84] [16; 83] [16; 82] [8]
[4; 4] [16; 82] [8; 42] [8] [4; 24]

� : � [8]

[6; 1; 1] [162
; 85

; 42]
[5; 2; 1] [164

; 84]
[4; 3; 1] [163

; 84]
[4; 2; 2] [8; 44]
[3; 3; 2] [82

; 42]

C.5.4 Number of Edges: 5
� : � [9; 1] [8; 2] [7; 3] [6; 4] [5; 5]

[8; 1; 1] [2027
; 106] [205

; 1010] [2013
; 106] [209

; 103
; 52] [203

; 106
; 52]

[7; 2; 1] [2028
; 104] [2015

; 106] [2014
; 105] [208

; 108] [206
; 103]

[6; 3; 1] [2029
; 102] [2011

; 105] [209
; 105] [206

; 107] [205
; 103]

[6; 2; 2] [204
; 104] [203

; 103
; 52] [202

; 105] [20; 104
; 52] [102

; 54]
[5; 4; 1] [2025

; 104] [2010
; 103] [208

; 106] [207
; 109] [202

; 102]
[5; 3; 2] [2011

; 108] [205
; 1010] [206

; 103] [204
; 104] [20; 10]

[4; 4; 2] [205
; 102] [20; 106] [20; 103] [20; 102

; 52] [102
; 54]

[4; 3; 3] [205
; 106] [202

; 103
; 52] [20; 103] [103

; 52] [102
; 52]

� : � [10]

[7; 1; 1; 1] [207
; 106]

[6; 2; 1; 1] [2014
; 1012]

[5; 3; 1; 1] [2013
; 106]

[5; 2; 2; 1] [208
; 108]

[4; 4; 1; 1] [203
; 107

; 54]
[4; 3; 2; 1] [2015

; 1010]
[4; 2; 2; 2] [102

; 54]
[3; 3; 3; 1] [202

; 102]
[3; 3; 2; 2] [104

; 54]
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C.6 Surface: Genus 3̃ ( � = �1; nonorientable)

C.6.1 Number of Edges: 3
� : � [6]

[6] [12; 63
; 33
; 2]

C.6.2 Number of Edges: 4
� : � [8]

[7; 1] [1617
; 87]

[6; 2] [164
; 811

; 43]
[5; 3] [165

; 87]
[4; 4] [86

; 43
; 2]

C.6.3 Number of Edges: 5
� : � [9; 1] [8; 2] [7; 3] [6; 4] [5; 5]

[9; 1] [20140
; 107] [2057

; 109] [2056
; 1014] [2044

; 1015] [2022
; 107]

[8; 2] [2057
; 109] [2027

; 1028] [2025
; 1013] [2018

; 1013
; 55] [207

; 1010
; 53]

[7; 3] [2056
; 1014] [2025

; 1013] [2019
; 109] [2012

; 1011] [208
; 105]

[6; 4] [2044
; 1015] [2018

; 1013
; 55] [2012

; 1011] [207
; 1019

; 55] [204
; 1010

; 53]
[5; 5] [2022

; 107] [207
; 1010

; 53] [208
; 105] [204

; 1010
; 53] [20; 102]

� : � [10]

[8; 1; 1] [2057
; 1028

; 53]
[7; 2; 1] [2074

; 1016]
[6; 3; 1] [2056

; 1014]
[6; 2; 2] [208

; 1022
; 56]

[5; 4; 1] [2049
; 1015]

[5; 3; 2] [2026
; 1016]

[4; 4; 2] [207
; 1013

; 58]
[4; 3; 3] [206

; 1015
; 53]

C.7 Surface: Genus 4̃ ( � = �2; nonorientable)

C.7.1 Number of Edges: 4
� : � [8]

[8] [1619
; 819

; 47
; 22]
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C.7.2 Number of Edges: 5
� : � [10]

[9; 1] [20230
; 1028]

[8; 2] [2099
; 1042

; 58]
[7; 3] [2081

; 1028]
[6; 4] [2057

; 1046
; 58]

[5; 5] [2026
; 1023

; 510]

C.8 Surface: Genus 5̃ ( � = �3; nonorientable)

C.8.1 Number of Edges: 5
� : � [10]

[10] [20358
; 10100

; 513
; 22]
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