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Abstract

In this thesis, we study drawings of maximal outerplanar graphs that place vertices
on integer coordinates. We introduce a new class of graphs, called umbrellas, and a new
method of splitting maximal outerplanar graphs into systems of umbrellas. By doing so,
we generate a new graph parameter, called the umbrella depth (ud), that can be used to
approximate the optimal height of a drawing of a maximal outerplanar graph. We show
that for any maximal outerplanar graph G, we can create a flat visibility representation of
G with height at most 2 · ud(G) + 1. This drawing can be transformed into a straight-line
drawing of the same height. We then prove that the height of any drawing of G is at
least ud(G) + 1, which makes our result a 2-approximation for the optimal height. The
best previously known approximation algorithm gave a 4-approximation. In addition, we
provide an algorithm for finding the umbrella depth of G in linear time. Lastly, we com-
pare the umbrella depth to other graph parameters such as the pathwidth and the rooted
pathwidth, which have been used in the past for outerplanar graph drawing algorithms.
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Chapter 1

Introduction

1.1 Background

Graph drawing is the art of creating a picture of a graph that is both functional and visually
appealing. Although there are many possible objectives for such a drawing, a common goal
is to keep the area small without making the graph hard to see. One way to accomplish this
is by minimizing the area while restricting the placement of vertices to integer coordinates.
By doing so, one can create drawings in which the representations of vertices and edges
are not overly crowded or small. Such an approach has many applications, including data
visualization [9], DNA mapping [25], and circuit layout [20].

Of particular interest are drawings of planar graphs, which are graphs that can be
drawn without edge crossings. Planar graphs are very popular, and have been studied
for many years. (See, for example, [9] and the references therein.) Numerous results that
bound the total area of planar graph drawings have been found (which are summarized in
[11]), but there are still many questions left unsolved.

It is known that finding the minimum area drawing for a given planar graph is NP-hard
[19]. However, for some subclasses of planar graphs, such as planar 3-trees, it is possible
to find a minimum area drawing in polynomial time [21]. For general planar graphs, it
has been known for a while that a straight-line drawing can always be found that uses an
O(n) × O(n) grid [16, 22], where n is the number of vertices. It is also known that there
are certain planar graphs that require an Ω(n)× Ω(n) grid [15].

When visualizing any kind of graph in a software application, such as a program for
visualizing computer networks, it is important that the information be easy for a user to see
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and process. If a drawing doesn’t fit on a single screen, then the user would need to scroll
in order to see all of the information. Scrolling in one direction is easy and intuitive, but
scrolling in multiple directions (up-down and left-right, for example), can quickly become
overwhelming. Thus it is often better to focus on minimizing one dimension of a 2D
drawing at a time in order to avoid this situation.

In this thesis, we focus on minimizing the height of a planar graph drawing, but note
that minimizing the width is equivalent after rotation. So far, it not known whether or
not finding the minimum height is NP-hard for general planar graphs. The closest result is
an NP-hardness proof by Heath and Rosenberg [18] for so-called proper drawings in which
the y-coordinates of the endpoints for every edge are exactly one unit apart. We also know
that when given the height H, testing whether a drawing of height H exists for a particular
graph is fixed parameter tractable in H [12].

It is also known that any graph with a planar drawing of height H has pathwidth at
most H [13]. This makes the pathwidth a useful parameter for approximating the height
of a planar graph drawing. Indeed, when one considers only trees, upper and lower bounds
based on the pathwidth have been found for a variety of different drawing styles (including
proper, straight-line, upward, order-preserving, etc.). A selection of such results can be
found in [23, 7, 2]. For the specific case of straight-line drawings of trees, a linear-time
algorithm for finding the minimum height was discovered later [1].

1.2 Existing Results for Outerplanar Graphs

This thesis introduces drawing algorithms for a subclass of planar graphs, the so-called
maximal outerplanar graphs. In this section, we review a number of previous results for
the area and height of outerplanar graph drawings. One of the first results in this field is
the following by Biedl, which establishes an upper bound for flat visibility representations,
a drawing style that we will use often in this thesis. Figure 1.1 illustrates a flat visibility
representation as well as a straight-line drawing of an outerplanar graph.

Theorem 1.1. [3] Every outerplanar graph with n vertices has a flat visibility representa-
tion in a (3

2
n− 2)× (3 log n− 1) grid.

For straight-line drawings, one of the first results for the area was based on the degree
of an outerplanar graph, which is the maximum number of edges incident to a single vertex
in the graph.
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Figure 1.1: A straight-line drawing including the dual tree (left, dashed edges) and a shaded
outerplanar path, and a flat visibility representation (right) of a maximal outerplanar graph.
Each drawing has height 4.

Theorem 1.2. [17] Every outerplanar graph with n vertices and degree d admits a planar
straight-line drawing with area O(dn1.48).

Theorem 1.2 was further improved by Frati.

Theorem 1.3. [14] Every outerplanar graph with n vertices and degree d admits a planar
straight-line drawing with area O(dn log n).

A few years later, the first sub-quadratic upper bound for the area of straight-line
drawings was found by Di Battista and Frati.

Theorem 1.4. [10] Every outerplanar graph with n vertices admits a planar straight-line
drawing with area O(n1.48).

Lastly, we have the following result, which gives a linear upper bound for a particular
subclass of outerplanar graphs.

Theorem 1.5. [10] Every balanced outerplanar graph with n vertices admits a planar
straight-line drawing for which both the height and the width are O(

√
n).

The results above all establish bounds on the area, which is the product of the width
and height of a drawing. If we only care about one dimension, say the height of a drawing,
then for flat visibility representations we have an O(log n) bound [3], and for straight-line
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drawings we have an O(d log n) bound [14]. These bounds can be derived from the results
for the area in Theorems 1.1 and 1.3, respectively.

Lastly, Biedl improved her result from Theorem 1.1 by approximating the optimal
height using bounds based on the pathwidth of the dual tree. This result holds for
all maximal outerplanar graphs, and even more broadly for all outerplanar graphs that
are 2-connected. Recall that if the solution to a minimization problem is H, then a k-
approximation algorithm finds a solution that is always less than or equal to k · H. The
following result is therefore a 4-approximation for the optimal height.

Theorem 1.6. [5] Every 2-connected outerplanar graph G has a flat visibility representa-
tion with height 4pw(G)− 3, where pw(G) is the pathwidth of G.

Theorem 1.6 was the primary motivation for this thesis. We were interested in finding
a better approximation for the height of maximal outerplanar graphs using a parameter
other than the pathwidth.

1.3 Overview of Thesis

After giving preliminaries in Chapter 2, we introduce a new parameter for maximal out-
erplanar graphs called the umbrella depth. Details on the umbrella depth and what it
represents can be found in Chapter 3. Then, in Chapter 4, we show that any outerplanar
graph G has a flat visibility representation of height at most 2ud(G) + 1, where ud(G) is
the umbrella depth of G. In Chapter 5, we show that the optimal height for any drawing
of G is at least ud(G) + 1. This proves that our result is a 2-approximation for the optimal
height, which must fall in the range [ud(G) + 1, 2ud(G) + 1].

Our algorithm to compute the visibility representation assumes that the umbrella depth
of G is known. In Chapter 6, we provide an algorithm for finding the umbrella depth in
O(n) time. In Chapter 7, we compare the umbrella depth to the pathwidth and rooted
pathwidth, which have been used in previous papers to establish bounds on the optimal
height for drawings of a maximal outerplanar graph. We show that our height-bounds are
never worse than the bounds from those papers except for a small additive term. Lastly,
in Chapter 8, we discuss possibilities for future research and other problems that remain
open.
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Chapter 2

Preliminaries

Let G = (V,E) be a simple graph with n vertices and m edges. A special class of graphs
are the planar graphs, which are graphs that admit a straight-line drawing without edge
crossings. In this thesis, all graphs will in fact be outerplanar, which means they have a
standard planar embedding in which all vertices are in the outer face, the infinite connected
region outside the drawing. By contrast, any finite region enclosed by edges in an outer-
planar graph is called an interior face, which is denoted by the vertices and edges that are
adjacent to it. A cutting edge of a graph G is an edge that, when its ends are removed,
splits G into multiple disjoint subgraphs. In the left side of Figure 1.1, the edge (x, y) is a
cutting edge, while (`2, y) is not. All other edges in G are referred to as non-cutting edges.

We say a graph G is maximal outerplanar if adding any edge to it makes it no longer a
simple outerplanar graph. In this thesis, we are concerned only with maximal outerplanar
graphs that have at least 3 vertices, which are always 2-connected and in which all interior
faces are triangles. An example of a maximal outerplanar graph can be found on the left
side of Figure 1.1. A cutting edge in a maximal outerplanar graph can be seen to be
the same as an edge that borders two interior faces of G. If (u, v) is a cutting edge in a
general graph G, then G−{u, v} splits into k connected components S1, S2, . . . , Sk. Define
a cut-component of (u, v) to be Si∪ (u, v) for any i ∈ [1, k]. A simple (but frequently used)
fact is that any cutting edge in an outerplanar graph has exactly two cut-components.

The dual tree of a maximal outerplanar graph G has a vertex for each interior face of
G, and edges between vertices if their corresponding faces in G share an edge. Note that
this definition is different from the so-called dual graph of G, which includes the outer face
of G as a vertex. In this thesis, we will not make use of the dual graph. Since G is assumed
to be maximal, and all faces are triangles, it follows that the maximum degree of the dual
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tree of G is 3. Figure 1.1 includes an example of a dual tree for a maximal outerplanar
graph as well.

Let an outerplanar path be any maximal outerplanar graph whose dual tree is a path.
We will refer to any path between the vertices themselves as a vertex path to differentiate
them from the outerplanar variety. We say the endpoints of an outerplanar path P are
the vertices of degree 2 in P . Note that in any outerplanar path where n > 3, there will
be exactly two such vertices. If n = 3, then G is a triangle, and all three vertices are
endpoints by definition. We say that the four incident edges to an endpoint of P are the
end-edges of P . In the left side of Figure 1.1, the shaded subgraph is an outerplanar path
with endpoints `1 and r1, and end-edges (`1, `2) and (r1, r2).

If edges (`1, `2) and (r1, r2) are distinct non-cutting edges in a maximal outerplanar
graph G, then each of them is adjacent to a single inner face in the standard embedding
of G. For any two such edges, we define the outerplanar path between (`1, `2) and (r1, r2)
as the path whose dual connects the inner faces adjacent to (`1, `2) and (r1, r2) in G.
Such a definition makes (`1, `2) and (r1, r2) end-edges of the resulting path. This idea is
summarized in the following observation.

Observation 2.1. For any two non-cutting edges (`1, `2) and (r1, r2) in a maximal out-
erplanar graph G, there exists an outerplanar path P in G that has (`1, `2) and (r1, r2) as
end-edges.

A drawing of a graph consists of a point or an axis-aligned box for every vertex, and a
curve for every edge that intersects each of the points/boxes of its endpoints once. Such a
drawing is planar if none of the points, boxes, or curves intersect unless the corresponding
elements do in the original graph. Note that a planar drawing need not reflect a graph’s
standard planar embedding. In this thesis, whenever we discuss a drawing of a graph, we
are referring to one that is planar. Of primary interest are flat visibility representations,
in which vertices are represented by horizontal line segments, and edges are vertical or
horizontal straight-line segments. For convenience, we will use boxes to represent vertices
in flat visibility representations. We will also consider straight-line drawings, in which
vertices are represented by points and edges are line segments between points. An example
of both can be found in Figure 1.1.

In either type of drawing, we require that the vertex points or the ends of vertex
segments are placed at points with integer y-coordinates. We call such a drawing a layered
graph drawing, where each layer is the horizontal line defined by a single y-value. Two
vertices are said to be in the same layer if they have the same y-coordinate. Note that in a
layered drawing, vertex points and the ends of vertex segments do not need to be placed on

6



integer x-coordinates. The height of a layered graph drawing is the total number of layers
in the drawing, including layers that contain no vertices. In any layered graph drawing,
we can define a left-to-right ordering of vertices based on their x-coordinates. In a flat
visibility representation, we can also define a left-to-right ordering of the vertical edges in
the same manner.

In our thesis, we create flat visibility representations of maximal outerplanar graphs.
However, some of the previous results concerning outerplanar graphs create straight-line
drawings instead. If the objective is to minimize the height of the drawing, then this
distinction is unimportant because of the following.

Theorem 2.2. [6] Any planar straight-line drawing can be transformed into a planar flat
visibility representation of the same height that preserves y-coordinates and left-to-right
orders.

The reverse direction is also possible.

Theorem 2.3. [6] Any flat visibility representation can be transformed into a planar
straight-line drawing of the same height that preserves y-coordinates and left-to-right orders.
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Chapter 3

New Graph Parameters

3.1 Umbrellas and Umbrella Systems

In this section, we introduce a special class of outerplanar graphs called umbrellas, and a
method of splitting maximal outerplanar graphs into systems of umbrellas. These systems
are the key to achieving the main results of this thesis, which are presented in later sections.

Definition 3.1. Let an umbrella U be a maximal outerplanar graph that can be split into
three outerplanar paths P, F1, and F2 such that:

1. P is an outerplanar path with two end-edges (u, v) and (x, y) that are non-cutting
edges of U .

2. F1 contains only u and neighbors of u, while F2 contains only v and neighbors of v.

3. In the standard embedding of U , the paths P, F1, and F2 have no faces in common.

We refer to the edge (u, v) as the cap of U , P as the handle, and F1 and F2 as the
fans. See Figure 3.1 for an example.

Note that in any umbrella, each non-empty fan shares a single edge with the handle P .
This edge is a cutting edge that is adjacent to one face of P , and one face of the fan in the
standard embedding. In this thesis, we will use a consistent ordering for the vertices in the
fans. Let a1, a2, . . . , a` be the ` neighbors of u in fan F1, labeled such that the outer face
of F1 in the standard embedding is u, a1, a2, . . . , a` with (u, a`) as the single edge shared
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Figure 3.1: An umbrella as the union of three outerplanar paths (left) and an example of an
umbrella with the handle shaded (right).

between P and F1. We define the r neighbors b1, b2, . . . , br of v in fan F2 similarly, with
(v, br) as the common edge of P and F2. See Figure 3.1 for an example of this labeling.

We now introduce a special type of cutting edge and cut-component, both of which will
be used to partition maximal outerplanar graphs in many of the results in this thesis. This
partitioning depends on the location of a given root-edge, which is any non-cutting edge.

Definition 3.2. Given a maximal outerplanar graph G with root-edge (u, v) and a maximal
outerplanar subgraph U of G that contains (u, v), an anchor edge (or just anchor) of U
is any cutting edge of G that belongs to U but is not a cutting edge of U . For any such
anchor edge, the cut-component that does not contain (u, v) is called a hanging subgraph
of U .

See also Figure 3.2. Given any maximal outerplanar graph G and a root-edge (u, v) of
G, we can partition G into a collection of umbrellas in the following manner.

Definition 3.3. Given an outerplanar graph G with non-cutting root-edge (u, v), a rooted
umbrella system U on G is a collection of umbrellas that satisfy the following:

1. There exists one umbrella U0 ∈ G, called the root umbrella, that contains all neigh-
bors of u and v in G and has cap (u, v).

2. If S1, . . . , Sk are the hanging subgraphs of U0 for some k ≥ 0, then U = {U0} ∪ U1 ∪
· · · ∪ Uk, where Ui is a rooted umbrella system on Si whose root-edge is the anchor
edge of U0 that has Si as its hanging subgraph. We call Ui a hanging umbrella system
of U0.
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u v

x

y

US

Figure 3.2: A graph with root-edge (u, v), root umbrella U , anchor edge (x, y), and hanging
subgraph S.

u v

x y

Figure 3.3: A rooted umbrella system of depth 2 with root-edge (u, v) and root umbrella
shaded. Edge (x, y) is the root-edge of a hanging umbrella system of depth 1.

See also Figure 3.3. Given a rooted umbrella system U with root umbrella U0, if
U = {U0}, let the depth d(U) = 1. Otherwise, if U = {U0}∪U1∪ · · ·∪Uk, where U1, . . . ,Uk
are hanging umbrella systems of U0, the depth is

d(U) = 1 + max [d(U1), d(U2), . . . , d(Uk)] .

For any maximal outerplanar graph G and non-cutting edge (u, v) ∈ G, we say that the
rooted umbrella depth with respect to (u, v) (denoted udrooted(G, u, v), or just ud(G) if the
root-edge is clear from the context) is the minimum depth of all possible rooted umbrella
systems on G with root-edge (u, v). Note that normally G is required to have at least 3
vertices, but it will be convenient to define ud(G) = 0 if G is a single edge.
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The following lemma will be helpful later.

Lemma 3.4. Given a rooted umbrella system U on a maximal outerplanar graph G with
root-edge (u, v), no hanging subgraph of the root umbrella U0 contains u or v in its anchor.

Proof. Assume that some hanging subgraph S of U0 had anchor edge (u, x), for some vertex
x ∈ G. By definition, (u, x) is a cutting edge of G with S as a cut-component. By the
properties of cut-components, u has at least one neighbor in S that is not in U0. This
contradicts the fact that all neighbors of u must be part of the root umbrella U0. It follows
that (u, x) cannot be the anchor of S, as desired. The argument is similar for vertex v.

3.2 Free vs. Rooted Umbrella Depth

For any rooted umbrella system on a maximal outerplanar graph G, the root-edge must be
given. One can also consider a free umbrella system on G in which the root-edge for the
entire graph can be any non-cutting edge of G. Let the free umbrella depth of G (denoted
udfree(G)) be the minimum depth of any free umbrella system on G. We will argue that
the difference between the free umbrella depth and the rooted umbrella depth for a given
root-edge is at most one. This difference is therefore small enough that we can ignore it
for practical purposes, and in the remainder of this thesis, we will use the term umbrella
depth in place of the rooted umbrella depth unless otherwise noted.

To prove this claim, we first make the following observation.

Lemma 3.5. If U is an umbrella with cap (u, v) and S is a subgraph of U that is maximal
outerplanar with at least 3 vertices, then S is an umbrella.

Proof. Recall that an umbrella is the union of three outerplanar paths P , F1, and F2,
where P is the handle, and F1 and F2 are the fans such that u ∈ F1 and v ∈ F2. If S is
a subgraph of P, F1, or F2, then it is an outerplanar path, and therefore an umbrella by
definition. Now let SP , S1, and S2 be the portions of S inside P, F1, and F2, respectively.
Then there are three cases to consider.

1. If SP , S1, and S2 are all non-empty, then S must contain (u, v), and is therefore an
umbrella with cap (u, v).

2. If only SP and S2 are non-empty, and (u, v) ∈ S, then S is an umbrella with cap
(u, v) by definition. If (u, v) 6∈ S, then S must contain vertex v, since v is in both
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SP and S2. In this case, by using the end-edge of SP that is incident to v and not
shared with S2 as the cap, we again see that S is an umbrella. See Figure 3.4 for an
example in which edge (v, w) is the cap of S.

u v

w

Figure 3.4: An umbrella with shaded subgraph S = SP ∪ S1, where SP is the lightly shaded
region and S1 is the darker region.

3. If SP and S1 are non-empty, then the argument is the same as case 2 above, except
that S must contain u if (u, v) 6∈ S.

Note that S1 and S2 cannot be the only non-empty subgraphs, as then S would not be a
connected graph. It follows that any subgraph of U is an umbrella, as desired.

Using Lemma 3.5, we can prove the following lemma, which states that the rooted
umbrella depth of G cannot increase if we consider a subgraph of G.

Lemma 3.6. If G is a maximal outerplanar graph with root-edge (u, v), and (x, y) is a
cutting edge of G, then

udrooted(Sx,y, x, y) ≤ udrooted(G, u, v)

where Sx,y is the cut-component of (x, y) that does not contain edge (u, v).

Note that Lemma 3.6 is not trivial because the root umbrella of any rooted umbrella
system on G must include all neighbors of the root-edge, and therefore a change of root-
edge may trigger changes for one or more umbrellas in hanging subgraphs.

Proof. We proceed by induction on the rooted umbrella depth of G. For the base case, let
H = ud(G) = 1, which makes G an umbrella with cap (u, v). By Lemma 3.5, Sx,y is an
umbrella, and therefore has umbrella depth 1, as desired.
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For the inductive step, there are two cases to consider. In the first case, (x, y) is part
of a hanging subgraph of U0 (and possibly an anchor edge of U0). This hanging subgraph
by definition has umbrella depth at most H − 1. It follows by induction that the umbrella
depth of Sx,y is also at most H − 1.

In the second case, (x, y) does not belong to a hanging subgraph of U0, and is therefore
a cutting edge of U0. As in Figure 3.5, consider the rooted umbrella system U ′ on Sx,y

defined as follows. Let U1 be the union of (Sx,y ∩U0) and the remaining neighbors of x and
y in Sx,y. Since (x, y) is not an anchor edge of U0, (Sx,y ∩ U0) is a maximal outerplanar
graph with at least 3 vertices and a subgraph of U0. Lemma 3.5 tells us that it is also
an umbrella, which implies that U1 is an umbrella as well. We aim to make U1 the root
umbrella of a rooted umbrella system of depth at most H on Sx,y.

u v

x y

U0

U1

Figure 3.5: An example from the proof of Lemma 3.6 where (x, y) ∈ U0 and Sx,y is part of
the handle of U0.

Consider any hanging subgraph S ′ of U1 with anchor edge (x′, y′). Since (Sx,y∩U0) ⊆ U1,
(x′, y′) is part of a hanging subgraph S of U0. Any hanging subgraph of U0 has rooted
umbrella depth at most H − 1, so by induction applied to S ′ and S with edge (x′, y′), the
subgraph S ′ has rooted umbrella depth at most H − 1, and therefore the rooted umbrella
depth of Sx,y is at most H, as desired.

We now proceed with the main result of this section, which relates the rooted umbrella
depth to the free umbrella depth of a maximal outerplanar graph G.

Lemma 3.7. Given a maximal outerplanar graph G, we have the following relationship
between the free umbrella depth of G and the rooted umbrella depth of G:

udfree(G) = min
(u,v)

(
udrooted(G, u, v)

)
≤ max

(u,v)

(
udrooted(G, u, v)

)
≤ udfree(G) + 1
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where the minimum and maximum are taken over all non-cutting edges (u, v) of G.

Proof. Recall that the free umbrella depth of G is by definition the minimum rooted um-
brella depth of G from any root-edge in G. The second inequality is obvious, so we will
focus on the claim that max(u,v) ud

rooted(G, u, v) ≤ udfree(G) + 1. Let U be a rooted um-
brella system on G with depth H = udfree(G). Let U∗0 be the root umbrella of U , and let
(u∗, v∗) be the cap of U∗0 . We will show that there exists a rooted umbrella system on G
for any non-cutting edge (u, v) 6= (u∗, v∗) whose depth is at most H + 1.

u∗ v∗

u

v

x∗

y∗

U∗
0

U0U∗
0

Figure 3.6: An example from the proof of Lemma 3.7 where the shaded umbrella is U0, the
striped region is U0 ∩ U∗0 , and the unshaded regions are part of U∗0 .

Recall that root-edges are always non-cutting edges by definition. Therefore, by Obser-
vation 2.1, there exists an outerplanar path with (u, v) and (u∗, v∗) as end-edges. Let P be
that path, and let U0 be the umbrella defined by the union of P and all neighbors of u and
v in G (see Figure 3.6). Let S be any hanging subgraph of U0, and let (x, y) be the anchor
of S. Then (x, y) is a cutting edge of G, and its cut-component S does not contain U0,
and in particular does not contain (u∗, v∗). Therefore, by Lemma 3.6, its rooted umbrella
depth is at most H. Therefore U0 is the root umbrella of a rooted umbrella system of
depth at most H + 1, as desired.
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Chapter 4

From Umbrella Systems to Flat
Visibility Representations

In this chapter, we show how to create a flat visibility representation given a maximal
outerplanar graph G and a rooted umbrella system on G. The drawings we create will not
be standard drawings ofG (i.e., with all vertices on the outer face), as we will allow drawings
of hanging subgraphs to be rotated and placed inside an inner face of the root umbrella.
We will also only consider flat visibility representations in this section, as Theorem 2.3 can
be used to transform any flat visibility representation into a straight-line drawing of the
same height.

4.1 Drawing the Root Umbrella

In this section, we create a flat visibility representation for the root umbrella of a rooted
umbrella system. In such a drawing, we would like the root-edge (u, v) to span the top
layer, which means that u touches the top left corner of the drawing, and v touches the
top right corner, or vice versa (see for example Figure 4.1).

Crucial to our construction is the following result, which will be used both for the base
case and the induction step of the drawing for a rooted umbrella system in the following
section.

Lemma 4.1. Let U0 be the root umbrella of a rooted umbrella system with root-edge (u, v).
Then there exists a flat visibility representation Γ of U0 on three layers such that
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1. (u, v) spans the top layer of Γ.

2. Any anchor edge of U0 is drawn horizontally in the middle or bottom layers.

The remainder of this section is dedicated to the proof of Lemma 4.1. Recall that the
umbrella U0 is the union of the handle P and two fans, where edge (u, v) is the cap of U0

and, by definition, an end-edge of the outerplanar path P . Assume that u is an endpoint
of P (the construction is similar, but flipped horizontally, if v is the endpoint). Let FA be
the fan of U0 that contains u, and FB the fan that contains v. As before, let a1, a2, . . . a`
be the ` neighbors of u in FA, and let b1, b2, . . . br be the r neighbors of v in FB, with a` as
the single vertex from FA in P , and br is the single vertex from FB in P . Now, either all
vertices in P other than u and v are neighbors of u or v, or not. We will discuss each case
in turn below.

Assume first that all vertices in U0 are either u, v, or neighbors of the two. In this case,
we can create a drawing of U0 on two layers in which (u, v) spans the top layer (to have
3 layers, assume there is an empty layer in the middle). Let f1, f2, . . . , fk be the k inner
faces in the standard embedding of U0 such that fi shares an edge with fi−1 and fi+1 for
all i ∈ [2, k − 1]. Using two layers, assign to each face a square in order from left to right.
Since edge (u, v) is a non-cutting edge of G, at most one face of U0 can be adjacent to both
u and v. Let fi be that face, and assign u a flat box that extends from fi to cover the entire
top side of all faces from f1 to fi−1. Do the same for vertex v so that it covers the entire
top side of all faces from fi+1 to fk. Doing so defines a unique placement in the bottom
layer for all other vertices in U0. See Figure 4.1 for an illustration of this construction. One
can easily verify all conditions since (v, a1) and (v, b1) cannot be anchor edges by Lemma
3.4.

vu

fif1 fk

a1

a` br

b1u v

f1 fi fk

a1 br b1a`

Figure 4.1: An umbrella U0 for which all vertices are neighbors of u or v (left) and a
construction for U0 on two layers where edge (u, v) spans the top layer (right).

Now assume that some vertex of U0 is neither u, v, or adjacent to them. This implies
that there is some endpoint x of P that is not adjacent to u or v. By the definition of an
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umbrella, at least one end-edge incident to x is not a cutting edge, and therefore not an
anchor edge of U0. Let (x, y) be that edge. We explain how to draw the handle P in the
following claim.

Claim 4.2. There exists a flat visibility representation Γ of P on two layers that meets
the following conditions (see also Figure 4.2).

1. Edge (u, a`) is the vertical edge farthest to the left among all vertical edges in Γ.

2. Edge (x, y) is the vertical edge farthest to the right among all vertical edges in Γ.

3. Edge (u, v) is the horizontal edge that is farthest to the left in the top layer.

4. Edge (v, br) is a horizontal edge in the top layer.

u v

a` br

xy

f1

f2

f3
u v br

a`

x

y

f1 f3f2 P

Figure 4.2: An example standard embedding of the handle P of an umbrella (left) and a
drawing of P that satisfies Claim 4.2 (right).

Proof. Let f1, f2, . . . , fk be the k inner faces in the standard embedding of P such that f1

is incident to (u, v), fk is incident to (x, y), and fi shares an edge with fi−1 and fi+1 for
all i ∈ [2, k − 1]. Using two layers, assign to each face a square in order from left to right.
Now assign the vertices in P to boxes as follows.

- Assign u to the top left corner. Since u is an endpoint of P , it has degree 2 and gets
drawn as a point (shown as a small square in Figure 4.3).

- Assign a` (which is a neighbor of u) to the bottom-left corner, and expand its segment
horizontally to touch all squares of all faces that a` is incident to. With this, condition
1 is satisfied.
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- If the clockwise (or counterclockwise) order of vertices around the outer face of P is
a`, u, v, br, . . . , x, y, . . . , then assign x to the top right corner. Otherwise, the order
of vertices will be a`, u, v, br, . . . , y, x, . . . . In this situation, assign x to the bottom
right corner. For either case, place y on the opposite layer of x so that edge (x, y) is
on the right side of fk, thus satisfying condition 2. Vertex x is an endpoint of P , and
is therefore drawn as a point in the same manner as vertex u. Note that x 6= a`, since
it is not adjacent to u, and therefore this does not contradict the earlier placement
of a`. Vertex y is expanded horizontally to touch all squares of all faces that it is
incident to. In the situation where y = a`, its box occupies the entire bottom layer.

- Draw all other vertices as flat boxes that touch all squares of faces that the vertex is
incident to. The choice between layers is done so that the order along the outer face
of P in the standard embedding is respected. In particular, v will be to the right of
u in the top layer, and br will be to the right of v. If y = br, then u, v, y = br fill the
top layer. We know that x 6= br, since x is not adjacent to v, and so the placement
of v and br does not contradict the placement of x. With this, conditions 3 and 4 are
satisfied.

vu

vu

P

a`

br x

y

P

x

ya`

br

Figure 4.3: Releasing edge (u, v) in a flat visibility representation so that (u, v) spans the
top layer.

Claim 4.2 gives us a drawing of the handle P with end-edge (u, v) in the top layer. We
would like to have (u, v) span the top layer. In any drawing where (u, v) is in the top layer
but does not span the top layer, we can release (u, v) as in [5] by adding a layer to the
drawing and moving (u, v) so that it spans the new layer. To do this, first place (u, v) in
the new layer, then, if u is to the left of v, extend u so it reaches the top left corner of Γ,
and extend v so it reaches the top right corner. Do the opposite if u is to the right of v. For
any neighbor w of u, w was connected to u by either a vertical or a horizontal line before u
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was moved. In the former case, simply extend the existing line so it reaches u in the new
top layer. In the latter case, replace the horizontal line with a vertical line connecting w
and u. This is possible because Γ is a flat visibility representation, and therefore w and u
must be in the same layer if they are connected by a horizontal edge. In a similar manner,
reconnect v with all of its neighbors. See Figure 4.3 for an illustration of releasing an edge.

To complete the drawing of U0, we must add the vertices a1, . . . , a`−1 and b1, . . . , br−1,
which form fans with (u, a`) and (v, br), respectively. By construction, u and a` are the
leftmost vertices in their respective layers, and br has no immediate neighbor to its left
after releasing edge (u, v). Thus we can draw a1, . . . , a`−1 in order to the left of a` in the
bottom layer of Γ, and b1, . . . , br−1 to the left of br in the middle layer. Expanding the box
of u so that its left end aligns vertically with the left end of a1 completes the construction
of U0. See Figure 4.4 for an example of the final drawing.

vu

a`

br P

a1

b1

Figure 4.4: A flat visibility representation of a root umbrella on three layers.

We now argue that all anchor edges are horizontal. In the drawing of Claim 4.2, all
vertical edges other than (x, y) are either cutting edges of P , or incident to u. Releasing
(u, v) adds more vertical edges, but all of them are incident to u or v. Likewise, all vertical
edges added when inserting the fans are incident to u or v.

Recall from Lemma 3.4 that no anchor edge (a, b) of U0 can contain u or v. Also, (a, b)
cannot be a cutting edge of U0 since any cutting edge in a maximal outerplanar graph has
at most two cut-components. Finally, (a, b) 6= (x, y), since an anchor edge by definition
is a cutting edge of G, and (x, y) was chosen to be a non-cutting edge. Therefore, any
anchor edge of U0 is drawn horizontally in the bottom two layers. This finished the proof
of Lemma 4.1.
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4.2 Drawing an Umbrella System

We now state the main result of this chapter. Its proof provides the algorithm for con-
structing a drawing of any maximal outerplanar graph.

Lemma 4.3. Given a rooted umbrella system U of depth H on a maximal outerplanar
graph G, there exists a flat visibility representation Γ of G with height 2H + 1 such that
the root-edge spans the topmost layer of Γ.

Proof. We prove this lemma by induction on the depth H of U . For the base case, let
H = 1. Here our rooted umbrella system consists of the single umbrella U0. By Lemma
4.1, we can draw U0 on 3 layers, as desired.

For the inductive step, assume that our rooted umbrella system has depth H, with U0

as the root umbrella. Let Γ0 be the flat visibility representation for U0 on three layers
created with Lemma 4.1. Thus any anchor edge (a, b) in Γ0 is drawn as a horizontal edge
in the bottom two layers of Γ0.

Now add 2H − 2 layers to Γ0 between the middle and bottom layers. More precisely, if
there are k hanging subgraphs S1, S2, . . . , Sk, then it suffices to add max1≤i≤k (height of Si)−
1 layers to Γ0. Each of the hanging umbrella systems of U0 has depth at most H− 1, so by
induction the hanging subgraphs can be drawn using at most 2H−1 layers with the anchor
edge (a, b) spanning the top layer. Let Γ1 be one such drawing of one such subgraph. For
the merge step, we distinguish cases by the layer containing (a, b).

1. If (a, b) is in the bottom layer of U0, then we can rotate (and reflect, if necessary)
Γ1 so that (a, b) is in the bottom layer and the left-to-right order of a and b in Γ1 is
the same as their left-to-right order in Γ0. This updated drawing of Γ1 can then be
inserted in the space between (a, b) in Γ0. This fits because Γ1 has height at most
2H − 1, and in the insertion process we can re-use the layer spanned by (a, b).

2. If (a, b) is in the middle layer of U0, then we can reflect Γ1 (if necessary) so that (a, b)
has the same left-to-right order in Γ1 as in Γ0. This updated drawing of Γ1 can then
be inserted in the space between (a, b) in Γ0.

Inserting all hanging subgraph drawings through one of the cases above completes the
drawing. See Figure 4.5 for an example with inserted drawings highlighted. Since we added
2H − 2 layers to a drawing of height 3, the total height of the final drawing is 2H + 1, as
desired.
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u v

b1

br

a1 a`

O

b2

a2

Γ1 Γ2

Γ3

Γ4

Figure 4.5: Inserting the drawings of hanging subgraphs into the flat visibility representation
from Figure 4.4.

The following theorem summarizes the results of our construction, and provides a new
upper bound for the optimal height of a maximal outerplanar graph. This bound will be
compared to previous results in Chapter 7.

Theorem 4.4. Any maximal outerplanar graph G has a planar flat visibility representation
of height at most 2ud(G) + 1.
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Chapter 5

From Drawings to Umbrella Systems

In this chapter, we will show that the height of a planar flat visibility representation
of a maximal outerplanar graph can be lower-bounded by the depth of a rooted umbrella
system. We will focus only on flat visibility representations in this section, as Theorems 2.2
and 2.3 can be used to convert from straight-line drawings to flat visibility representations
and vice versa. We make no assumptions about the embedding of the graph induced by
the visibility representation. In particular, we do not assume that the embedding must be
the same as the standard embedding.

5.1 Left-free and Right-free Edges

We begin with the introduction of a few definitions and lemmas that will be needed in the
lower bound argument. Let Γ be a flat visibility representation of a maximal outerplanar
graph G, and let BΓ be a minimum-height bounding box of Γ. A vertex v ∈ G has a left
escape path in Γ if there exists a polyline inside BΓ from v to a point on the left side of BΓ

that is vertex-disjoint from Γ except at v, and for which all bends are on layers. We say
that (`1, `2) is a left-free edge of Γ if it is vertical, and for every intersection point of (`1, `2)
with a layer, the layer is empty to the left of that point. In particular, this implies that
there is a left escape path from this intersection point by walking along the layer. Let right
escape paths and right-free edges be defined symmetrically. See Figure 5.1 for an example.

Lastly, let a dividing path P in Γ be any polyline from the left side of the bounding box
BΓ to the right, and for which all bends are on layers. A dividing path P in BΓ divides
it into two disjoint regions, the top region which contains the top layer, and the bottom
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r1

r2

`1

`2

w

q

Figure 5.1: A flat visibility representation in which vertex w has a left escape path, r1 has a
right escape path, (`1, `2) is a left-free edge, and (r1, r2) is a a right-free edge.

region that contains the bottom layer. We say that a subgraph of G that is vertex disjoint
from P is above P if it is in the top region, and below P if it is in the bottom region. An
example of a dividing path is the union of edge (`1, w), edge (w, r1), the left escape path
from `1, and the right escape path from r1 in Figure 5.1. In this example, vertex q would
be above the dividing path, and r2 would be below it. If P consists of the entire top layer
in BΓ, then the top region is empty. Similarly, the bottom region is empty if P consists of
the entire bottom layer. We also have the following lemma.

Lemma 5.1. Given a visibility representation Γ of a graph G with height H and dividing
path P , any subgraph S of G that is vertex disjoint from P uses at most H− 1 layers in Γ.

Proof. This follows from the definition of a dividing path. If the subgraph S is above
the dividing path P , then S cannot touch the bottom layer of the drawing Γ without
intersecting P . Similarly if S is below P , then S cannot intersect the top layer of Γ
without intersecting P .

We now introduce the following lemma concerning the existence of left-free and right-
free edges in flat visibility representations of maximal outerplanar graphs.

Lemma 5.2. Any flat visibility representation Γ of a maximal outerplanar graph G with
n ≥ 3 vertices has at least one left-free edge and at least one right-free edge.

Proof. We only provide the proof for the left-free edge, as the right-free case is symmetrical.
Since G is maximal, and n ≥ 3, it contains cycles, and therefore the height of Γ is at least
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2. Furthermore, since Γ is flat, there must be at least one vertical edge in Γ. Consider the
vertical edge (v1, v2) that is farthest to the left, breaking ties arbitrarily. We claim that
(v1, v2) is a left-free edge in Γ. To see why, assume to the contrary that layer i is non-empty
to the left of the intersection point ρ of (v1, v2) and layer i. This implies that there is either
a vertical edge to the left of (v1, v2) that crosses layer i, or there are one or more vertices
to the left of ρ on layer i. The former case is a contradiction to the choice of (v1, v2).
For the latter case, let v` be the leftmost vertex on layer i. Since all maximal outerplanar
graphs are 2-connected and n ≥ 3 by assumption, v` must have at least two neighbors.
Furthermore, since v` is the leftmost vertex in its layer and the drawing is flat, at least one
of its neighbors must lie on a different layer, and the edge to it must be vertical. But then
there is a vertical edge in Γ that is farther to the left than (v1, v2), which is a contradiction.
It follows that (v1, v2) must be a left-free edge in the flat visibility representation Γ.

For the proof of the lower bound, we will want to create handles for umbrellas using
outerplanar paths that have left-free and right-free edges as end-edges. This requires
that the left-free and right-free edges are non-cutting edges, which isn’t always the case
in drawings of maximal outerplanar graphs. This motivates the following lemma, which
allows us to convert any flat visibility representation of an outerplanar graph to another
that contains non-cutting left-free and right-free edges.

Lemma 5.3. Let Γ be a flat visibility representation of a maximal outerplanar graph G.
We have the following.

1. Let (r1, r2) be a right-free edge of Γ, and let vr be a vertex that has a right escape
path. Then there exists a drawing Γ′ in which vr has a right escape path, (r1, r2) is
a right-free edge, and there exists at least one left-free edge that is not a cutting edge
of G.

2. Let (`1, `2) be a left-free edge of Γ, and let v` be a vertex that has a left escape path.
Then there exists a drawing Γ′ in which v` has a left escape path, (`1, `2) is a left-free
edge, and there exists at least one right-free edge that is not a cutting edge of G.

In either case, the height of Γ and y-coordinates of all vertices in Γ are unchanged in Γ′.

Proof. We prove the claim by induction on the number of vertices n in the maximal out-
erplanar graph G. We will show only the first claim, since the other is symmetric. For the
base case, let n = 3, and note that G is a triangle without cutting edges. Therefore, by
Lemma 5.2, Γ contains a left-free edge which is not a cutting edge.
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For the induction step, let (`1, `2) be a left-free edge of Γ, which exists by Lemma 5.2.
If (`1, `2) is not a cutting edge of G, we are done. Otherwise, (`1, `2) is a cutting edge of
G. Let A and B be the cut-components of (`1, `2) such that vr ∈ A.

`1

`2

a

b

Γ

`′1

`′2

`1

`2

a

b
r1

r2

ΓA

Γ′′
B

r1

r2

Figure 5.2: Expanding Γ′ as part of the proof of Lemma 5.3

Let ΓA be the drawing of A induced by Γ, and let ΓB be the drawing of B induced
by Γ. Note that (`1, `2) is a left-free edge for both ΓA and ΓB, and the height of ΓA and
ΓB cannot exceed the height of Γ. Now let Γ′B be the drawing of ΓB reflected horizontally
so (`1, `2) is now a right-free edge of Γ′B. Observe that Γ′B has at least one fewer vertex
than Γ′, since B is a cut-component. By induction, we can create a drawing Γ′′B from
Γ′B in which (`1, `2) is a right-free edge and there is a left-free edge (`′1, `

′
2) that is not a

cutting edge of B. Since the y-coordinates of `1 and `2 are the same in both ΓA and Γ′′B,
we can create a new drawing that places Γ′′B to the left of ΓA and extends `1 and `2 to join
the two copies. This is possible since (`1, `2) is left-free in ΓA and right-free in Γ′′B. The
drawing ΓA is unchanged, so vr will have the same right escape path in Γ′ as in Γ, and Γ′

will have right-free edge (r1, r2) and left-free edge (`′1, `
′
2), as desired. See Figure 5.2 for an

illustration of this drawing.

5.2 Lower Bound

We now prove the lower bound for the optimal height of drawings of maximal outerplanar
graphs that meet certain conditions.

Lemma 5.4. Let Γ be a flat visibility representation of a maximal outerplanar graph G
with height H, and let (u, v) be a non-cutting edge of G. If there exists an escape path from
u or v in Γ, then G has a rooted umbrella system with root-edge (u, v) and depth at most
H − 1.
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The remainder of this section is dedicated to the proof of Lemma 5.4. We will proceed
by induction on H.

Assume without loss of generality that there exists a right escape path from v (all other
cases are symmetric). Using Lemma 5.3, we can modify Γ without increasing the height so
that v has a right escape path, and there is a left-free edge in Γ that is a non-cutting edge
of G. Let (`1, `2) be that edge, with the left escape path from `1 touching the bounding box
of Γ above the left escape path from `2. Define the outerplanar path P as the outerplanar
path between (`1, `2) and (u, v), which exists by Observation 2.1. Let U0 be the union of
P , the neighbors of u, and the neighbors of v. By definition, U0 is an umbrella. Define ΓU

to be the drawing of U0 induced by Γ, and Γ∗U to be the standard planar embedding of U0

in which all vertices are on the outer face. See also Figures 5.3 and 5.4.

u v

x

y`1

`2

Γ∗
U

Γ∗
S

Π1

Π2

Figure 5.3: The standard embedding of the root-umbrella U0 and one of its hanging subgraphs
S. The dotted path represents the dividing path Π1 while the dashed path represents Π2.

Now we define two dividing paths using U0 as follows. Let P1 be the vertex path in U0

that starts from `1, and continues along the outer face of Γ∗U in the opposite direction of `2

until it reaches v. Similarly, let P2 be the path that starts from `2, and continues along the
outer face of Γ∗U in the opposite direction of `1 until it reaches v. Let Π1 be the dividing
path that contains P1, the escape path from v, and the escape path from `1. Similarly, let
Π2 be the dividing path that contains P2, the escape path from v, and the escape path
from `2. Note that by definition, all vertices of Π1 − {v} are above Π2, and all vertices of
Π2 − {v} are below Π1 in Γ. In Figure 5.4, Π1 is the path marked by a dotted line, while
Π2 is the path marked by a dashed line.

We now proceed with the induction. For the base case, let H = 2. We claim that in

26



this case, G = U0, which gives the desired umbrella depth of 1. To see why, assume to the
contrary that there exists a hanging subgraph S of U0 with anchor edge (x, y). Recall that
a hanging subgraph of U0 is any maximal outerplanar subgraph of G with at least 3 vertices
that intersects U0 only at the anchor edge (x, y). We also know that the anchor edge must
be a cutting edge of G. This rules out (`1, `2) as an anchor edge, as it was chosen to be a
non-cutting edge of G. Furthermore, by Lemma 3.4, the anchor edge cannot contain vertex
u or v. Thus S must be vertex-disjoint from one of Π1 and Π2, and therefore by Lemma
5.1 it must be drawn with height 1. However, no maximal outerplanar graph with n ≥ 3
can be drawn in one layer. It follows that S cannot exist, and thus G = U0, as desired.

For the induction step, we once again let S be a hanging subgraph of U0 with anchor
(x, y). As before, S is disjoint from Π1 or Π2, and hence drawn with height at most H − 1.
To apply induction, we must show that there exists a valid escape path from x or y that
occupies the same H − 1 layers as S. The following cases cover all possible locations for
(x, y), because (x, y) is neither incident to v nor a cutting edge of U0.

Case 1: (x, y) belongs to Π1 − {v}. After a possible renaming of x and y, we may assume
that y is the vertex in (x, y) that is closer to vertex `1 in Π1. Let ΓS be the drawing of
S induced by Γ. Since ΓS intersects Π1 − {v} at (x, y), it is above the dividing path Π2.
The subpath of Π1 from y to `1 is also above Π2, and in combination with the left escape
path from `1 is an escape path for ΓS in the top H − 1 layers of Γ (see Figure 5.4). By
induction, S has a rooted umbrella system of depth at most H − 2 for which (x, y) is the
cap of the root umbrella.

u v

y x

`1

`2

ΓS

Figure 5.4: Extracting dividing paths from a flat visibility representation. The dotted path
represents Π1 while the dashed path represents Π2.

Case 2: (x, y) belongs to Π2 − {v}. The argument is similar to Case 1, except we use Π1

as our dividing path, with Π2 − {v} below it.
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The cases above show that we can define a rooted umbrella system of depth at most
H−2 on any hanging subgraph S of U0. It follows that U0 is the root umbrella of a rooted
umbrella system with depth at most H − 1, as desired. This ends the proof of Lemma 5.4.

The following theorem summarizes the lower bound argument.

Theorem 5.5. Given any flat visibility representation Γ of a maximal outerplanar graph
G with height H, we can create a rooted umbrella system for G with depth at most H − 1.

Proof. Using Lemma 5.3, we can convert Γ into a drawing Γ′ in which some edge (u, v) is
a non-cutting right-free edge. This implies that there is a right escape path from v, and it
follows from Lemma 5.4 that we can define a rooted umbrella system on G with root-edge
(u, v) and depth H − 1, as desired.

Recall that a 2-approximation algorithm for a minimization problem with optimal so-
lution H is an algorithm that finds a solution that is always less than or equal to 2H. By
Theorem 4.4, we know that any maximal outerplanar graph G can be drawn with height
at most 2ud(G) + 1. Furthermore, Theorem 5.5 gives us a lower bound of ud(G) + 1
for the optimal height. It follows that our algorithm produces a drawing that is always
less than twice the optimal height, and is therefore a 2-approximation by definition. This
significantly improves on the result of [5], which was only a 4-approximation.
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Chapter 6

Finding the Umbrella Depth

The algorithm in Chapter 4 requires that we have a rooted umbrella system of small
depth. In this chapter, we introduce a dynamic programming algorithm for finding the
rooted umbrella depth of a maximal outerplanar graph G with root-edge (u, v). As always,
we assume that the root-edge is a non-cutting edge of G. The runtime of our algorithm
is linear in the number of edges m in G. Since m = 2n − 3 in any maximal outerplanar
graph, this is an O(n) algorithm. For each edge, we calculate the umbrella depth of a
cut-component with that edge as the root-edge. The goal is to find the rooted umbrella
depth of the entire graph with respect to the root-edge (u, v).

Our algorithm performs a tree traversal on the rooted dual tree T of G, whose root is
the vertex that corresponds to the inner face of G containing the root-edge (u, v). For each
cutting edge (a, b) in G, let Sa,b be the cut-component of (a, b) that does not contain (u, v).
We use ud(a, b) as a shorthand for udrooted(Sa,b, a, b), and note that ud(u, v) = ud(G).

We now introduce a collection of special umbrella types, each of which will be important
for finding the umbrella depth ud(a, b).

1. A handle umbrella with cap (a, b) is an outerplanar path P with end-edge (a, b).

2. A partial umbrella of a is an umbrella with cap (a, b) in which b has exactly two
neighbors.

3. A partial umbrella of b is an umbrella with cap (a, b) in which a has exactly two
neighbors.

4. A fan umbrella of a is an umbrella with cap (a, b) in which all vertices other than a
are neighbors of a.
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5. A fan umbrella of b is an umbrella with cap (a, b) in which all vertices other than b
are neighbors of b.

Informally speaking, a partial umbrella is an umbrella where one of the fans is missing,
a handle umbrella is missing both fans, and a fan umbrella is missing one fan, and has a
handle with only a single inner face. See Figure 6.1 for some examples of these umbrellas.

a b a b

Figure 6.1: A fan umbrella of b (left) and a partial umbrella of b (right).

The umbrella depth ud(a, b) can be derived from the handle umbrella depth, the partial
umbrella depth, and the fan umbrella depth of edge (a, b), which we will define in turn
below. First we introduce some notation. Let c be the neighbor of a and b in Sa,b, which
must exist since we only study maximal outerplanar graphs with at least 3 vertices. Now
let d be the neighbor of both a and c that is not b, and let e be the neighbor of b and c
that is not a. Note that d and e need not exist. This situation is illustrated in Figure 6.2.
Using this notation, we discuss each intermediate value below.

a b

cd e

Figure 6.2: The labeling used for the formulas in the dynamic programming algorithm.

Definition 6.1. The handle umbrella depth of (a, b), denoted udhandle(a, b), is defined as

udhandle(a, b) = min
Uh
a,b

(
max

S⊆Sa,b−Uh
a,b

ud(S)
)

where Uh
a,b is a handle umbrella with cap (a, b), and S is a hanging subgraph of Uh

a,b in Sa,b.
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The following lemma describes how to calculate the handle umbrella depth using the
notation from Figure 6.2.

Lemma 6.2. The handle umbrella depth of (a, b) can be calculated as follows:

udhandle(a, b) = min
(
max

[
udhandle(a, c), ud(b, c)

]
,max

[
udhandle(b, c), ud(a, c)

])
.

a b

c

Sa,c

Figure 6.3: A handle umbrella Uh
a,b with cap (a, b). The shaded region is Uh

a,b ∩Uh
b,c, and the

dashed lines indicate possible anchor edges.

Proof. Let Uh
a,b be the handle umbrella in Sa,b with cap (a, b) that achieves the minimum

in Definition 6.1. This gives us the following equation for the handle umbrella depth

udhandle(a, b) = max
S⊆Sa,b−Uh

a,b

ud(S).

By the definition of a handle umbrella, at least one of the edges (a, c) and (b, c) is not a
cutting edge of Uh

a,b. Assume without loss of generality that this edge is (a, c). Then Sa,c

either does not exist (if (a, c) is not a cutting edge of Sa,c) or Sa,c is a hanging subgraph of
Uh
a,b. In either case, the above equation is equivalent to the following

udhandle(a, b) = max
(
ud(a, c), max

S′⊆Sb,c−Uh
b,c

ud(S ′)
)

where Uh
b,c is the subgraph of Uh

a,b in Sb,c. This implies that

udhandle(a, b) ≥ max
(
ud(a, c),min

Uh
b,c

[
max

S′⊆Sb,c−Uh
b,c

ud(S ′)
])
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where the minimum goes over all possible handle umbrellas of Sb,c. It follows by Definition
6.1 that

udhandle(a, b) ≥ max
(
ud(a, c), udhandle(b, c)

)
.

Equality is shown easily. If Uh
b,c is the handle umbrella of Sb,c that minimizes udhandle(b, c),

then we can extend Uh
b,c by adding a in order to obtain a handle umbrella of Sa,b for which

all hanging subgraphs are either Sa,c, or a hanging subgraph of Uh
b,c (see also Figure 6.3).

When (b, c) is an anchor edge of Uh
a,b, the situation is symmetric, and we get the following

equality

udhandle(a, b) = max
(
ud(b, c), udhandle(a, c)

)
.

Combining the results from both cases gives us the desired formula.

The next two values are the fan umbrella depths of both a and b, denoted udfan(a; b)
and udfan(b; a), respectively. Note that we separate the a and b with a semi-colon here
because the order of the vertices is important.

Definition 6.3. The fan umbrella depth of a is defined as

udfan(a; b) = max
S⊆Sa,b−Uf

a,b

b 6∈S

ud(S)

where U f
a,b is the unique fan umbrella with cap (a, b) that contains all neighbors of a in

Sa,b, and S is any hanging subgraph of U f
a,b in Sa,b that does not contain vertex b. The fan

umbrella depth of b is defined symmetrically, and denoted udfan(b; a).

a b

c

Sa,c

e

Figure 6.4: A fan umbrella Uf
b,a of b. The shaded region is Uf

b,a ∩ Uf
b,c, and the dashed lines

indicate possible anchor edges.

The following lemma describes how to calculate the fan umbrella depth using the no-
tation from Figure 6.2.
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Lemma 6.4. The fan umbrella depth of a is 0 if there are no neighbors of a and c other
than b in Sa,b. Otherwise, if vertex d 6= b is adjacent to a and c, we have

udfan(a; b) = max
[
udfan(a; c), ud(d, c)

]
.

The fan umbrella depth of b is 0 if there are no neighbors of b and c other than a in Sa,b.
Otherwise, if vertex e 6= a is adjacent to b and c, we have

udfan(b; a) = max
[
udfan(b; c), ud(c, e)

]
.

Proof. We will consider only the fan umbrella depth for b, as the argument for a is similar.
Let U f

b,a be the fan umbrella for b in Sa,b, and let U f
b,c be the fan umbrella for b in Sb,c.

Then all neighbors of b in U f
b,a are shared with U f

b,c except for a, and thus U f
b,c ⊂ U f

b,a (see

also Figure 6.4). By Definition 6.3, the fan umbrella depth of U f
b,c is the maximum of the

umbrella depth for all hanging subgraphs in U f
b,a except for those with anchor edge (c, e)

or (a, c). The desired formula follows.

Lastly, we need to find the partial umbrella depth of both a and b, denoted udpartial(a; b)
and udpartial(b; a), respectively.

Definition 6.5. The partial umbrella depth of a is defined as

udpartial(a; b) = min
(

max
S⊆Sa,b−Up

a,b

b 6∈S

ud(S)
)

where Up
a,b is a partial umbrella of a with cap (a, b) that contains all neighbors of a in Sa,b,

and S is any hanging subgraph of Up
a,b in Sa,b that does not contain vertex b. The partial

umbrella depth for b is defined symmetrically, and denoted udpartial(b; a).

The following lemma describes how to calculate the partial umbrella depth using the
notation from Figure 6.2.

Lemma 6.6. The partial umbrella depth of a is 0 if there are no neighbors of a and c other
than b in Sa,b. Otherwise, if vertex d 6= b is adjacent to a and c, we have

udpartial(a; b) = min
(
max

[
udpartial(a; c), ud(d, c)

]
,max

[
udfan(a; c), udhandle(d, c)

])
.

The partial umbrella depth of b is 0 if there are no neighbors of b and c other than a in
Sa,b. Otherwise, if vertex e 6= a is adjacent to b and c, we have

udpartial(b; a) = min
(
max

[
udpartial(b; c), ud(c, e)

]
,max

[
udfan(b; c), udhandle(c, e)

])
.
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a b

c

Sa,c

Figure 6.5: A partial umbrella Up
b,a of b. The shaded region is Up

b,a ∩ Up
b,c, and the dashed

lines indicate possible anchor edges.

The proof of this lemma is very similar to that of Lemma 6.2, and is left to the reader.
Note the similarities between the situation illustrated in Figures 6.3 and 6.5. Lastly, using
the fan and partial umbrella depths together, we can calculate the umbrella depth of Sa,b

as follows.

Lemma 6.7. The umbrella depth of (a, b) can be calculated as follows:

ud(a, b) = 1 + min
(
max

[
udpartial(a; b), udfan(b; a)

]
,max

[
udpartial(b; a), udfan(a; b)

])
.

Proof. Let U0 be the root umbrella of a rooted umbrella system that achieves the umbrella
depth ud(a, b). Let P be the handle of U0 and let FA and FB be the fans of U0 such that
a ∈ FA and b ∈ FB. Note that P must have at least one of the edges (a, c) and (b, c) as a
non-cutting edge. Assume without loss of generality that this edge is (a, c), which implies
that (a, c) ∈ FA. We can define a partial umbrella Up

a,b of b and a fan umbrella U f
b,a of a

which are subgraphs of U0 such that U0 = Up
a,b ∪U f

b,a. Both Up
a,b and U f

b,a include the inner
face {a, b, c} (see also Figure 6.6).

By Definition 6.5, we know that the partial umbrella depth of Up
a,b is equal to the

maximum umbrella depth for any hanging subgraph of Up
a,b that does not have vertex b in

its anchor edge. By Definition 6.3, we know that the fan umbrella depth of U f
b,a is equal to

the maximum umbrella depth for any hanging subgraph of U f
b,a that does not have vertex

a in its anchor edge. The hanging subgraphs of Up
a,b and U f

a,b coincide exactly with the
hanging subgraphs of U0. Hence

ud(Sa,b) = 1 + max
(

max
S⊆Sa,b−Uf

a,b

b 6∈S

ud(S), max
S⊆Sa,b−Up

a,b

a6∈S

ud(S)
)
.
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It then follows from Definitions 6.3 and 6.5 that

ud(a, b) ≥ 1 + max
(
udfan(a, b), udpartial(b, a)

)
.

Equality is then easily proven as in Lemma 6.2. A similar argument can be made when
(b, c) is an anchor edge of P , and the desired formula follows.

a b

c

Figure 6.6: An umbrella as the union of a fan umbrella of a (shaded) and a partial umbrella
of b (unshaded). The striped region belongs to both the fan and partial umbrellas, and the
dashed lines indicate possible anchor edges.

We now discuss our dynamic programming algorithm, which is a standard bottom-up
traversal in a tree. Given a maximal outerplanar graph G with dual tree T and root-edge
(u, v), let X be the set of all non-cutting edges of G with the exception of edge (u, v). For
each edge (a, b) ∈ X, set the handle umbrella depth, the fan umbrella depths, and the
partial umbrella depths to zero. Note that the faces of G whose corresponding vertex in T
is a leaf will have two such non-cutting edges and one cutting edge.

Now for each dynamic programming step, consider any face F in the standard embed-
ding of G for which the umbrella depth has been computed for all but one edge. Such a
face is guaranteed to exist at each step since the dual T of G is a tree. Let (a, b) be the
edge on the face for which the umbrella depth has not been computed yet. Since we are
traversing T from the leaves to the root vertex, we can use the formulas above to calcu-
late all six values, including the umbrella depth, for (a, b). Repeat this process until the
umbrella depth for the root-edge (u, v) is found.

For every edge (a, b) in G, our algorithm computes a total of six values. Each of these
values has a closed-form expression that can be computed in O(1) time using a lookup
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table. It follows that the runtime is linear in the number of edges in G, as desired. This
result is summarized in the following theorem.

Theorem 6.8. Given a non-cutting edge (u, v), there exists an O(n) algorithm for finding
the rooted umbrella depth of a maximal outerplanar graph G with n vertices and root-edge
(u, v).

Note that our algorithm computes the rooted umbrella depth for G, since the root-edge
(u, v) must be given. One way to instead find the free umbrella depth is to repeat the
process described above for every choice of root-edge in G. This would give an O(n2)
algorithm for finding the free umbrella depth. One could likely compute the free umbrella
depth in O(n) time by initializing ud(a, b) at all leaves of the (unrooted) dual tree, and
then updating at the face where the resulting umbrella depth is minimized. However, by
Lemma 3.7, the free umbrella depth is at most one more than the rooted umbrella depth,
and therefore it does not seem worth the minor improvement to pursue this line of research.
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Chapter 7

Comparison with Pathwidth

In this section, we will compare our results concerning the height of layered drawings of
maximal outerplanar graphs to the current state of the art. The most recent bounds on the
height come from Theorem 1.6, which establishes a 4-approximation based on the path-
width of the dual tree in 2-connected outerplanar graphs. We therefore want to compare
the umbrella depth of a maximal outerplanar graph to the pathwidth of the dual tree. We
will do the same for the so-called rooted pathwidth, which has also been used a parameter
for drawings of maximal outerplanar graphs.

7.1 Definitions

We say that a graph G has pathwidth at most k if there exists an ordering of the vertices
v1, v2, . . . , vn of G such that, for any j ≥ k, there are at most k vertices in {v1, v2, . . . , vj}
that are adjacent to vertices in {vj+1, vj+2, . . . , vn}. By this definition, a graph with path-
width 0 has no edge, while a graph with pathwidth 1 is a caterpillar, i.e., a tree in whch
deleting all leaves results in a path. For general trees, the pathwidth can also be described
recursively using the idea of main paths that was introduced by Suderman [23].

Lemma 7.1. (Based on [23]) The pathwidth of a tree T , denoted pw(T ), satisfies the
following.

1. pw(T ) = 0 if T is a single vertex.

2. pw(T ) = 1 + minP (maxT ′ pw(T ′)), where P is a path in T and T ′ is a component of
T − P .
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Any path where the minimum is achieved is called a main path.

Restating Lemma 7.1, for any tree T with pathwidth ρ and main path P , all components
of T − P have pathwidth at most ρ − 1. We may further assume that every main path
ends at leaves of T , otherwise it could be extended to leaves of T while remaining a main
path. When considering maximal outerplanar graphs, we will only be interested in the
pathwidth of the dual tree, as opposed the graphs themselves.

The algorithm in [5] and the upper bound in Theorem 1.6 are based on the pathwidth.
This algorithm splits a graph G at the outerplanar path P whose dual is a main path,
recursively draws each connected component in G−P , then merges them into a drawing of
P . This process was the primary motivation for the definition of an umbrella. We wanted
to extend the concept of an outerplanar path while maintaining a subgraph small enough
to be drawn on 3 layers.

In this section, we will also consider the rooted pathwidth, which was first defined by
Biedl [7]. A rooted tree is a tree with a single vertex r called the root. In a rooted tree, a
root-to-leaf path is a path in T from its root r to a leaf of T . We now have the following
definition for the rooted pathwidth, which is very similar to the characterization in Lemma
7.1.

Definition 7.2. The rooted pathwidth of a rooted tree T , denoted rpw(T ), is defined as
follows.

1. rpw(T ) = 1 if T is a root-to-leaf path.

2. rpw(T ) = 1 + minP (maxT ′ rpw(T ′)), where P is a root-to-leaf path in T , and T ′ is a
component of T − P .

Any path where the minimum is achieved in is called a rooted main path.

There is a strong relationship between the umbrella depth of a maximal outerplanar
graph and the rooted pathwidth of its dual tree. Note that the dual of an umbrella is a
root-to-leaf path plus two paths for the fans. As such, the umbrella depth is never more
than the rooted pathwidth of the dual tree. This will be proved in more detail in Lemma
7.5. We will also need the following result from [7], which relates the pathwidth to the
rooted pathwidth in a rooted tree.

Lemma 7.3. [7] For any rooted tree T , we have

pw(T ) ≤ rpw(T ) ≤ 2pw(T ) + 1.
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One can show (Biedl, private communication) that the bound on the height of outer-
planar graph drawings in Theorem 1.6 can be described as follows.

Theorem 7.4. (Based on [5]) Let G be a 2-connected outerplanar graph. For any choice
of root-vertex in the dual tree T of G, there exists a flat visibility representation of G with
height at most 2rpw(T ).

7.2 Umbrella Depth Inequalities

We now compare our graph parameter (umbrella depth) to the graph parameters used in
Theorems 1.6 and 7.4 (pathwidth and rooted pathwidth, respectively). We begin with the
rooted pathwidth in Lemma 7.5, and afterwards discuss the pathwidth in Lemma 7.6.

Lemma 7.5. In any maximal outerplanar graph G with dual tree T , we have

rpw(T )

2
≤ ud(G) ≤ rpw(T ).

More precisely, for every non-cutting edge (u, v) of G, if we root T at the inner face adjacent
to (u, v), then

rpw(T )

2
≤ udrooted(G;u, v) ≤ rpw(T ).

Proof. As before, we use the shorthand ud(G) to represent udrooted(G;u, v). We will show

by induction on ud(G) that rpw(T )
2
≤ ud(G), which is equivalent to rpw(T ) ≤ 2 · ud(G).

Recall that an umbrella is the union of three outerplanar paths P , F1, and F2, where P is
the handle, and F1 and F2 are the fans.

For the base case, let H = 1 be the umbrella depth of G, which makes G an umbrella.
We show that the dual tree T of G has rooted pathwidth at most 2 when the dual tree P
of the handle (which is a vertex path) is chosen as the first root-to-leaf path. In this case,
the dual trees of F1 and F2 are the only components of T − P , and they each have rooted
pathwidth at most 1 since they are paths with leaves as their roots.

For the induction step, let U be a rooted umbrella system on G with depth H, and let
U0 be the root umbrella of U with cap (u, v), handle P , and fans F1 and F2. Let P ∗ be the
dual tree of P , and F ∗i for i = 1, 2 be the dual tree of Fi. Let S∗1 be the component of T−P ∗
that contains F ∗1 , and S∗2 be the component of T − P ∗ that contains F ∗2 . See Figure 7.1
for an example of this labeling. Now let P ∗1 be the root-to-leaf path created by extending
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F ∗1 to a leaf of S∗1 . Recall that by definition and Lemma 3.6 any hanging subgraph of U0

with its anchor edge in F1 has umbrella depth at most H − 1. Since F ∗1 ⊆ P ∗1 , it follows
by induction that the rooted pathwidth of any component of S∗1 − P ∗1 is at most 2H − 2.

u v

S∗
1

S∗
2

S∗

P ∗

F ∗
1 F ∗

2

Figure 7.1: A root umbrella with the dual trees for the handle and both fans included. S∗1 , S
∗
2 ,

and S∗ indicate components of T − P ∗, where T is the dual tree of the entire graph.

Therefore, the rooted pathwidth of S∗1 is at most 2H − 1. Similarly, one can show
that the rooted pathwidth of S∗2 is at most 2H − 1. Any other component S∗ of T − P ∗
corresponds to the dual of a hanging subgraph of U0, which has umbrella depth at most
H − 1. By induction, the rooted pathwidth of S∗ is at most 2H − 2. It follows that the
rooted pathwidth of T is at most 2H, and the left inequality holds, as desired.

We will now show that ud(G) ≤ rpw(T ) through induction on the rooted pathwidth.
For the base case, let H = 1, which implies that T consists of a single root-to-leaf path.
Thus G is an outerplanar path with (u, v) as an end-edge, and it follows by definition that
G is an umbrella with cap (u, v) that has umbrella depth 1, as desired.

For the inductive step, let P ∗ be a rooted main path of T . By definition, P ∗ is a path
from the face containing (u, v) to a leaf of T . We can define a root umbrella U0 for G
with cap (u, v) and the outerplanar path whose dual is P ∗ as the handle, plus all other
neighbors of u and v in G. Now let S be any hanging subgraph of U0. Then the dual S∗ of
S is part of a subtree of T −P ∗ that is rooted at the face adjacent to the anchor edge of S.
Thus rpw(S∗) ≤ rpw(T )− 1 = H − 1. By induction, we have ud(S) ≤ rpw(S∗) ≤ H − 1,
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and it follows that the umbrella depth of G is at most H, as desired.

The following bounds for the pathwidth follow directly from Lemmas 7.3 and 7.5.

Corollary 7.6. In any maximal outerplanar graph G with dual tree T , we have

pw(T )

2
≤ ud(G) ≤ 2 · pw(T ) + 1.

7.3 Comparison of Bounds

In this section, we prove that the bounds introduced in this thesis are as good as the current
state of the art (up to a constant term). Using Lemmas 7.5 and 7.6, we can compare our
results directly to previous results that use the pathwidth and rooted pathwidth. First,
for the rooted pathwidth, we have the following corollary of Theorem 4.4 and Lemma 7.5.

Corollary 7.7. For any maximal outerplanar graph G with dual tree T , the construction
in Chapter 4 gives a flat visibility representation of height at most 2rpw(T ) + 1.

The bound established in Corollary 7.7 matches the one in Theorem 7.4, except for a
constant term. A similar result for the pathwidth follows from Theorem 4.4 and Lemma
7.6, which match Theorem 1.6 up to a ‘+6’ term.

Corollary 7.8. For any maximal outerplanar graph G with dual tree T , the construction
in Chapter 4 gives a flat visibility representation of height at most 4pw(T ) + 3.

We can also compare our result to the construction from [3], where the height is based
on the number of vertices n in a maximal outerplanar graph. To this end, we need the
following result.

Lemma 7.9. [7] Any rooted tree T has rpw(T ) ≤ log(n+ 1).

Combining Lemma 7.9 with Corollary 7.7 gives us the following, which proves that our
bounds are better than those established in Theorem 1.1 for all n > 9.

Corollary 7.10. For any maximal outerplanar graph G with dual tree T , the construction
in Chapter 4 gives a flat visibility representation of height at most 2 log(n+ 1) + 1.

In summary, we can say that our bounds are better than the bound of [3] (Theorem
1.1) for all n > 9, and that they match, up to a small constant term, the bound of [5]
(Theorems 1.6 and 7.4). In the next section, we will see an example of a graph where our
construction is strictly better than the one from [5].
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7.4 Tightness of Bounds

In this section, we show that the bounds in Lemmas 7.5 and 7.6 are tight. We will
accomplish this through the following three lemmas, each of which introduce a recursively
defined family of maximal outerplanar graphs for which one or more of the bounds are
tight.

Lemma 7.11. For all H ≥ 1, there exists a maximal outerplanar graph GH with dual tree
TH for which the rooted umbrella depth of GH is H for some choice of root-edge, and the
rooted pathwidth of TH is H if TH is rooted at the face adjacent to the root-edge of GH .

Proof. For H = 1, let G1 be defined as follows (see also Figure 7.2).

1. Start with a single edge (u, v), which will be the root-edge of G1.

2. Add a vertex b that is adjacent to both u and v.

3. Add a vertex a that is adjacent to both u and b.

4. Add a vertex c that is adjacent to both a and b.

u v

a b

c

Figure 7.2: A drawing of G1 from the proof of Lemma 7.11. The dotted lines indicate anchor
edges for components of GH when H > 1.

G1 is an outerplanar path, and its dual tree, rooted at the face adjacent to (u, v), is a
root-to-leaf path. Therefore G1 has umbrella depth 1, and T1 has rooted pathwidth 1.

For GH when H > 1, attach two copies of GH−1 to a copy of G1 for such that (a, c)
and (b, c) are the root-edges of the copies. Let P ∗ be any root-to-leaf path in TH . Since
there are two copies of GH−1 in GH , one component of TH − P ∗ must contain a copy of
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TH−1. Since the rooted pathwidth of TH−1 is H − 1, it follows that the rooted pathwidth
of TH is at least H. One can easily show equality using the copy of T1 that contains the
root vertex of TH (extended to a leaf) as the rooted main path.

Now we show that the ud(GH) ≥ H, which proves the claim since ud(GH) ≤ rpw(TH) =
H by Lemma 7.5. Clearly, this holds for G1, which is itself an umbrella. Now consider an
arbitrary umbrella system of GH with root-edge (u, v). The root-umbrella U0 can have at
most one of the edges (a, c) and (b, c) as a cutting edge. The other edge is therefore an
anchor edge, and thus a copy of GH−1 is a hanging subgraph of U0. Since ud(GH−1) ≥ H−1
by induction, this implies that ud(GH) ≥ H, as desired.

Lemma 7.11 defines a family of graphs GH with dual trees TH for which rpw(TH) =
ud(GH), and therefore the upper bound in Lemma 7.5 is tight. The following lemma defines
a different family for which ud(GH) = 2 · pw(TH).

Lemma 7.12. For all H ≥ 1, there exists a maximal outerplanar graph GH with dual tree
TH for which the pathwidth of TH is H, while the rooted umbrella depth of GH is 2H for
some choice of root-edge.

Proof. For H = 1, let G1 be defined as follows (see also Figure 7.3).

1. Start with a single edge (u, v), which will be the root-edge of G1.

2. Add a vertex x that is adjacent to both u and v.

3. Add a vertex y` that is adjacent to both u and w.

4. Add a vertex a` that is adjacent to both y` and w.

5. Add a vertex b` that is adjacent to both y` and a`.

6. Add a vertex c` that is adjacent to both a` and b`.

7. Add a vertex yr that is adjacent to both v and x.

8. Add a vertex ar that is adjacent to both x and yr.

9. Add a vertex br that is adjacent to both ar and yr.

10. Add a vertex cr that is adjacent to both ar and br.
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u v

a`

b`

c`

ar

br

y`

x

yr

cr

Figure 7.3: A drawing of G1 from the proof of Lemma 7.12. The dotted lines indicate anchor
edges for components of GH when H > 1.

G1 is an outerplanar path, and therefore T1 has pathwidth one. For the umbrella
depth, note that any handle P of an umbrella U0 with cap (u, v) can only contain one
of the endpoints of the outerplanar path G1. This endpoint is not in either fan of U0 by
construction. Thus the umbrella depth of G1 cannot be 1. One can verify that it has
umbrella depth 2.

For GH when H > 1, start with a copy of the outerplanar path G1, then use each of its
four end-edges as anchors, and attach four copies of GH−1 as hanging subgraphs. Clearly,
TH has pathwidth at most H by using the copy of T1 that contains the root-edge of TH
as a main path. Equality can be shown since the pathwidth of TH−1 is H − 1, and TH
contains four copies of TH−1.

For the umbrella depth of GH , consider any umbrella U0 with cap (u, v), and let P0

be its handle. (x, y`) and (x, yr) cannot both be cutting edges of U0, so let one of them,
say (x, yr), be the anchor of a hanging subgraph S of U0 that contains two copies of GH−1

as hanging subgraphs. Now consider any root umbrella U1 of S with cap (x, yr). U1 can
have at most one of (ar, cr) and (br, cr) as a cutting edge, with the other being the anchor
of a hanging subgraph of U1. This subgraph contains a copy of GH−1, and therefore has
umbrella depth at least 2H−2 by induction. It follows that the umbrella depth of GH is at
least 2H. Equality is shown easily by covering G1 with two umbrellas and recursing.

Lemma 7.12 proves that the upper bound in Lemma 7.6 is almost tight, leaving only
an O(1) gap. In our final lemma, we define a family of graphs GH with dual trees TH for
which pw(TH) = 2 ·ud(GH) and rpw(TH) = 2 ·ud(GH), thus proving that the lower bounds
in Lemma 7.5 and Lemma 7.6 are tight as well.

Lemma 7.13. For all H ≥ 1, there exists a maximal outerplanar graph GH with dual tree
TH for which the rooted umbrella depth of GH is H for some choice of root-edge, while the
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pathwidth and rooted pathwidth of TH are 2H, if TH is rooted at the face adjacent to the
root-edge of GH .

Proof. For H = 1, let G1 be defined as follows (see also Figure 7.4).

1. Start with a single edge (u, v), which will be the root-edge of G1.

2. Let a1, a2, a3, a4 be four other neighbors of u labeled in counterclockwise order around
u with a4 also adjacent to v.

3. Let b1, b2, b3, b4 be four other neighbors of v labeled in clockwise order around v with
b4 also adjacent to a4.

4. Lastly, let c1, c2, c3 be four other neighbors of b4 labeled in counterclockwise order
around b4 with c1 also adjacent to a4.

u v
a1

a2

a3

b1

b2

b3b4a4

c1
c2

c3

Figure 7.4: A drawing of G1 from the proof of Lemma 7.13 with the dual tree included. The
dotted lines indicate anchor edges for components of GH when H > 1.

It is easy to see that G1 is an umbrella, with the outerplanar path P between (u, v)
and (b4, c3) as the handle, and the remaining inner faces as part of the two fans F1 and F2.
Furthermore, the dual tree of G1 is not a caterpillar, so it cannot have pathwidth 1. One
can verify that it has pathwidth 2, using the dual of the handle P as a main path.

For GH when H > 1, start with a copy of G1, then attach nine copies of GH−1 such that
each of them has one of the dotted edges in Figure 7.4 as its root-edge. This construction
makesG1 the root umbrella of a rooted umbrella system of depthH onGH , so ud(GH) ≤ H.

We will show that pw(TH) ≥ 2H by induction on H. For the base case when H = 1,
we have already shown that the pathwidth of G1 is 2. For the inductive step, consider any
main path P ∗1 of TH for H > 1. TH contains three copies of a path of length 3, each with
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three copies of TH−1 attached, and P ∗1 can contain at most two of these paths. Therefore,
there must be at least one component S∗1 of T −P ∗1 that contains three copies of TH−1. For
any main path P ∗2 of S∗1 , there must be at least one component S∗2 of S∗1 −P ∗2 that contains
a copy of TH−1. By induction, the pathwidth of TH−1 is at least 2H − 2, and therefore the
pathwidth of S∗2 is at least 2H − 2. This makes the pathwidth of S∗1 at least 2H − 1, and
the pathwidth of TH at least 2H. One can show that equality holds by splitting the copy of
T1 that contains the root of TH into two paths and recursing in all attached copies of TH−1.
Thus pw(GH) = 2H, and ud(GH) ≥ pw(GH)/2 = H, and it follows that ud(GH) = H, as
desired.

For the rooted pathwidth, we have rpw(TH) ≥ pw(TH) ≥ 2H by Lemma 7.3. This is
easily shown to be tight using the dual of the handle P in the copy of G1 that contains the
root-edge as the rooted main path of GH . In each component S of GH −P that contains a
fan of G1, let the dual of the fan be the rooted main path of S. Recursing on the remaining
components gives the desired result.

vu

a4

b4

a2

b1

a3a1

b2 b3

c1 c2 c3

Figure 7.5: A flat visibility representation of the graph from Figure 7.4 created using the
algorithm from Chapter 4.

Lemma 7.13 proves that the umbrella depth of the graph GH in Figure 7.4 is strictly
less than the pathwidth and the rooted pathwidth. One can also verify that the drawing
produced by our algorithm has smaller height than the drawing from [5]. To see why, we
include drawings of G1 from both algorithms in Figure 7.5 and Figure 7.6. While we do
not explain exactly how the algorithm from [5] works, we include some intermediate steps
in Figure 7.6 to hint at how the final drawing was obtained.

Our drawing requires a total of 3 layers, while the drawing from [5] requires 4 layers.
More generally, one can show that our drawing of GH for H > 1 has height 2H + 1 while
the drawing from [5] has height 3H − 1. Thus our algorithm is strictly better than the
algorithm from [5] on some graphs.
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a4

b4

a2

b1

a3a1

b2 b3

c1 c2

c3

vu

a4

b4

a2

b1

a3a1

b2 b3

c1 c2

c3

vu

a4

b4

a2 a3a1 c1 c2

c3

Figure 7.6: Drawing the dual of a main path (top), merging the recursively created subgraph
(middle), and releasing edge (u, v) (bottom) as part of the algorithm from [5] (Theorem 1.6)
for creating a flat visibility representation of the graph from Figure 7.4.
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Chapter 8

Conclusions and Future Work

In this thesis we presented an algorithm for drawing maximal outerplanar graphs that is a
2-approximation for the optimal height. To this end, we introduced the umbrella depth as a
new graph parameter for bounding the optimal height. Previous approximation algorithms
were based on the pathwidth and rooted pathwidth of the dual tree. When compared to
these approximation algorithms, we found that our bounds are never worse, and that there
exist graphs for which our algorithm produces a flat visibility representation with height
smaller than the drawing described in [5] (Theorem 1.6). Lastly, we showed that for all
n > 9, our bound is better than the O(log n) bound established in [3] (Theorem 1.1).

There are still a number of problems that remain open.

• Our result only holds for maximal outerplanar graphs. Can the algorithm be modified
so that it works for all outerplanar graphs?

• The algorithm from Chapter 4 creates a drawing that does not place all vertices
on the outer face. Can we create an algorithm that minimizes or approximates the
optimal height when the planar embedding is fixed?

• What is the width achieved by the algorithm from Chapter 4? Any visibility repre-
sentation can be modified without changing the height so that the width is at most
m+n, where m is the number of edges and n is the number of vertices [6]. Thus the
width is O(n), but what is the constant?

• Is it possible to determine the optimal height for maximal outerplanar graphs in
polynomial time, or can we at least achieve a smaller approximation factor? Since the
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pathwidth of outerplanar graphs can be approximated efficiently [8], the algorithm to
find the optimal height in [12] becomes faster. Does this give us a pseudo-polynomial
algorithm for the optimal height?

• The algorithm in Chapter 4 can be generalized to any system of subgraphs in which
each subgraph can be drawn on three layers with (u, v) spanning the top layer. This
includes umbrellas, but can be generalized to special umbrellas where the “handle” is
an outerplanar path for which the cap (u, v) is not necessarily an end-edge. Perhaps
this could even work for a maximal outerplanar graph whose dual is a tripod (i.e., a
subdivision of K1,3)? Could this be used to find better approximation factors? The
bottleneck here is proving better lower bounds.

• Finally, are there approximation algorithms for the height or the area of drawings for
other, more general planar graph classes? Of particular interest are planar 3-trees,
which are graphs that, like maximal outerplanar graphs, naturally feature a tree-like
description.
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