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Abstract

In this thesis we propose a distributed-memory parallel-computer simulation system

called PUPPET (Performance Under a Pseudo-Parallel EnvironmenT). It allows

the evaluation of parallel programs run in a pseudo-parallel system, where a single

processor is used to multitask the program's processes, as if they were run on the

simulated system. This allows development of applications and teaching of parallel

programming without the use of valuable supercomputing resources. We use a

standard message-passing language, MPI, so that when desired (e.g., development

is complete) the program can be run on a truly parallel system without any changes.

There are several features in PUPPET that do not exist in any other simulation

system. Support for all deterministic MPI features is available, including collective

and non-blocking communication. Multitasking (more processes than processors)

can be simulated, allowing the evaluation of load-balancing schemes. PUPPET is

very loosely coupled with the program, so that a program can be run once and then

evaluated on many simulated systems with multiple process-to-processor mappings.

Finally, we propose a new model of direct networks that ignores network tra�c,

greatly improving simulation speed and often not signi�cantly a�ecting accuracy.

iv



Acknowledgements

First and foremost I would like to thank my advisor, David Taylor. He provided

great support throughout my programme. I am overly impressed by how fast he

reads my papers while catching the mistakes. I would like to thank the two readers,

Thomas Kunz and Ken Salem, for their comments on this work. Thomas has also

read some of my papers, to which he provided crucial comments, even on short

notice. Ken Salem amazingly took on the role of a reader only one week before this

thesis went on display.

A large part of this thesis was the experiments, which required parallel systems.

The Shoshin group provided the network of IBM RS/6000 workstations. Thanks to

the Dept. of Oceanography of Dalhousie University for access to Dalhousie's IBM

SP2. Joe Potworka of IBM made several tools and contacts available, including the

SP2 at Queen's University. Christian Foisy provided test programs and access to

the SP2 at Universit�e de Sherbrooke. The interest expressed by the above people

made this work more enjoyable.

Without my friends here at the University of Waterloo, my programme would

have been tremendously boring. I would like to thank in particular Research As-

sociate Mike Nidd for his help in getting this acknowledgement section to work,

among other things.

Most of all I would like to thank my father, Marty Demaine, for his continual

love and support, particularly when I was frustrated gathering results. He also

gave impressive comments for someone who knew little about the subject. My dog,

v



The Missing Link, was particularly good at guarding my house while I worked.

Although he didn't make any comments, I think he understands the world more

than anyone.

Thanks go to the many bands and musicians for making great music that helped

a lot during the writing phase, and in fact all my writing. Contemporary artists

include REM, U2, The Cranberries, Timbuk 3, and The Tragically Hip; classical

artists include Amadeus Mozart, Ludwig van Beethoven, Johann Sebastian Bach,

and George Gershwin.

Finally, thanks to the Natural Sciences and Engineering Research Council

(NSERC) and the Information Technology Research Centre (ITRC) for their �-

nancial support.

vi



Contents

1 Introduction 1

1.1 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 PUPPET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Survey 8

2.1 Parallel-Computer Simulators . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Overall Organization . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Simulation-Program Coupling . . . . . . . . . . . . . . . . . 10

2.1.3 Method of Timing . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Network-Simulation Accuracy . . . . . . . . . . . . . . . . . 14

2.1.5 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.6 Parallelism and Concurrency . . . . . . . . . . . . . . . . . . 16

2.1.7 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Simulating Components . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Processor Simulators . . . . . . . . . . . . . . . . . . . . . . 21

vii



2.2.2 Network Simulators . . . . . . . . . . . . . . . . . . . . . . . 23

3 Proposed Evaluation Technique 26

3.1 Timing a Pseudo-Parallel Program . . . . . . . . . . . . . . . . . . 27

3.2 Network Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Overall Model . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Network-Link Model . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Point-to-Point Communication . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Collective Communication . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Multicasting . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Other Collective Operations . . . . . . . . . . . . . . . . . . 40

3.5 Discrete-Event Simulation . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . 41

3.5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.3 Multitasking . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Implementation 51

4.1 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Point-to-Point Communication . . . . . . . . . . . . . . . . 52

4.1.2 Collective Communication . . . . . . . . . . . . . . . . . . . 53

4.1.3 Unsupported Features . . . . . . . . . . . . . . . . . . . . . 54

4.2 Logging Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Other Logging Libraries . . . . . . . . . . . . . . . . . . . . 56

viii



4.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 ParaGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Network Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Experiments and Results 63

5.1 Test Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Merge-Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.2 Cholesky Factorization . . . . . . . . . . . . . . . . . . . . . 65

5.1.3 Scalable BLAS . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Simulation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 SP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Speed of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Scaled Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Di�erent Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 ParaGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7.1 Merge-Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7.2 Cholesky Factorization . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusion 93

6.1 New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A Raw Data 96

ix



Bibliography 101

x



List of Tables

2.1 A summary of various distributed-memory parallel machine simula-

tors, including PUPPET. . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 The latency of various switching techniques. . . . . . . . . . . . . . 36

4.1 Overview of the MPI standard by chapter. . . . . . . . . . . . . . . 52

A.1 Accuracy results for the Ethernet. . . . . . . . . . . . . . . . . . . . 97

A.2 Accuracy results for Cholesky factorization on the SP2. . . . . . . . 97

A.3 Accuracy results for the scalable BLAS library on the SP2. . . . . . 98

A.4 Various speedup metrics for the merge-sort program, as evaluated

by the simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.5 Convergence of the simple load-balancing scheme. . . . . . . . . . . 99

A.6 Utilization (in percent) of the nine processors used to solve a 32-

process merge-sort problem for two process-to-processor mappings. . 100

A.7 Scaled speedup for the merge-sort program with two di�erent topolo-

gies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



List of Figures

3.1 A sample parallel-program execution, illustrating the notion of com-

putation blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Illustration of the various switching techniques on a 3-processor lin-

ear array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 An example of the smart multicasting approach: the hypercube

broadcast algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 A complete binary tree multicast-network. . . . . . . . . . . . . . . 39

3.5 Architecture of the discrete-event simulation, illustrated by a small

example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Pseudo-code for the discrete-event simulation. . . . . . . . . . . . . 45

3.7 Pseudo-code to process an event (non-multitasking version). . . . . 46

3.8 Pseudo-code to schedule operation-issue events (non-multitasking

version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Pseudo-code to schedule operation-issue events (multitasking version). 48

3.10 Pseudo-code for advancing a process's computation to a speci�ed time. 49

3.11 Modi�cation of completion case for Procedure Process event to allow

multitasking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xii



4.1 BNF-like grammar for a model �le, an input to the simulator. . . . 58

5.1 The two column-oriented serial Cholesky-factorization algorithms. . 65

5.2 The fan-in parallel Cholesky-factorization algorithm. . . . . . . . . 66

5.3 The fan-out parallel Cholesky-factorization algorithm. . . . . . . . . 67

5.4 Raw data from the network evaluator applied to the Ethernet net-

work, with a least-squares �t. . . . . . . . . . . . . . . . . . . . . . 70

5.5 Data from Figure 5.4 with outliers removed. . . . . . . . . . . . . . 71

5.6 Simulation accuracy for the merge-sort program on the Ethernet. . 71

5.7 Simulation accuracy for the Cholesky-factorization programs (fan-in

and fan-out) on the Ethernet. . . . . . . . . . . . . . . . . . . . . . 72

5.8 Simulation accuracy for the Cholesky-factorization programs (fan-in

and fan-out) on the SP2. . . . . . . . . . . . . . . . . . . . . . . . . 74

5.9 Simulation accuracy for the Scalable BLAS with a 800� 800 matrix

on the SP2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.10 Simulation accuracy for the Scalable BLAS with a 1600�1600 matrix

on the SP2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.11 Simulation accuracy for the Scalable BLAS with a 2400�2400 matrix

on the SP2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.12 Time for a node of the SP2 and a RISC/6000 to simulate Cholesky-

factorization executions on the SP2 and the Ethernet, respectively. . 79

5.13 Time for a node of the SP2 to simulate various Scalable BLAS pro-

grams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiii



5.14 The typical notion of speedup (time for serial algorithm over time

for parallel algorithm) for the bubble-based merge-sort algorithm on

the simulated Ethernet. . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.15 The square-root of typical speedup for the bubble-based merge-sort

algorithm on the simulated Ethernet. . . . . . . . . . . . . . . . . . 82

5.16 Scaled speedup for the bubble-based merge-sort algorithm on the

simulated Ethernet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.17 Iteration-by-iteration view of the simple load-balancing scheme for

fan-in for three attempts. . . . . . . . . . . . . . . . . . . . . . . . . 84

5.18 Utilization of processors for initial random mapping of attempt three. 84

5.19 Utilization of processors for best mapping found in attempt three. . 85

5.20 Scaled speedup for merge-sort program for two di�erent topologies. 86

5.21 The hypercube display after animation for the merge-sort program. 87

5.22 The tail-end of the space-time diagram for the merge-sort program. 88

5.23 A window of the space-time diagram for the fan-in program. . . . . 89

5.24 A window of the space-time diagram for the fan-out program. . . . 90

5.25 Phase portraits for fan-in and fan-out. . . . . . . . . . . . . . . . . 90

5.26 A snapshot of the queue lengths at each processor for fan-in, includ-

ing the maximum sizes reached so far. . . . . . . . . . . . . . . . . . 91

5.27 A snapshot of the queue lengths at each processor for fan-out, in-

cluding the maximum sizes reached so far. . . . . . . . . . . . . . . 92

xiv



Chapter 1

Introduction

A popular method for testing parallel programs, which we call pseudo-parallelism,

is to use a single workstation and emulate a parallel computer via multitasking or

multithreading. One can develop, debug, and test the correctness of a parallel ap-

plication, without using valuable supercomputing resources. To use such resources

at the development phase of a program is most often a waste. For example, it may

not yet be clear that an iterative algorithm ever satis�es a convergence condition,

causing an in�nite loop; this may in turn cause problems with the supercomputer's

scheduler. It is also useful to run a program in interactive mode for debugging pur-

poses, which is not possible in several supercomputing setups. Once the program

is ready to go, one can port the program to a desired parallel computer; this is

usually a simple task provided a portable language is used.

Another important application of pseudo-parallelism is education. Educational

institutes do not need to obtain expensive supercomputing resources to teach par-

allel programming. Students obviously do not require high performance to obtain

1



CHAPTER 1. INTRODUCTION 2

experience in parallel programming, provided there exists a parallel environment

on the pseudo-parallel system that has similarities to a \real" parallel computer.

A problem does arise, however. How do students know how e�cient their pro-

grams are? For example, how much speedup would be achieved if the programs

were run on a particular truly parallel system? This question does not only apply

to students; researchers would greatly appreciate insight into the performance of

their parallel algorithms without the use of supercomputing resources. In particu-

lar, this applies to performance debugging; since supercomputing power would not

(yet) be fully exploited, and so should not likely be used.

The solution is to simulate the supercomputer, subject to the parallel program

as the \workload." At least conceptually, the processes are delayed at certain points

of execution so that the processes think that they are running on a supercomputer,

and that they are running in parallel. One can then measure a value such as the

total parallel execution time, and hence derive speedup.

The area of parallel-computer simulation is new and a great amount of interest

has been paid in recent years; previous work is detailed in Chapter 2. However,

there is still a signi�cant amount of work to be done. We shall focus on distributed-

memory parallel computers, since they o�er higher scalability and performance than

shared-memory multiprocessors; in addition, less interest has been given to the

simulation of distributed-memory systems. Some of the topics which we address

in this thesis are ease-of-use, trading accuracy for e�ciency, and the simulation

of multitasking. We also see how simulation can be used in combination with

performance-visualization tools (such as ParaGraph) and with the message-passing
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standard MPI.

1.1 MPI

MPI (Message-Passing Interface) [40] is becoming an industry-wide standard for

message-passing. The MPI Forum consists of universities, research centers, na-

tional laboratories, and multi-national high-performance-computing vendors. MPI

was designed by over forty organizations and sixty people. The initial version,

MPI1 [29], was published in June, 1993. The latest MPI (1.1) [55] was published

in late 1994. MPI-2 will be published this year at Supercomputing'96. The goal

is to create a universal communication language implemented on all parallel sys-

tems. The MPI Forum studied the existing message-passing systems, and instead

of taking one as the \standard," they took the most attractive features out of

these systems. MPI is based on CHIMP, PICL, EUI (for IBM SPx), Zipcode, p4,

CMMD (for CM5), TCGMSG, PVM, NX (for Intel NX/2), PARMACS, Express,

and Chameleon [55]. The main advantage of MPI is portability; it has been imple-

mented (both in public domain and commercially) on a variety of parallel systems

and networks of workstations. Many free MPI implementations, such as LAM [13]

and MPICH [10], support pseudo-parallelism.

Several libraries for pro�ling MPI programs have been developed [10]. Unfor-

tunately, all of them rely heavily on a shared real-time clock and record events of

a program execution with this value. When the MPI program is run in a pseudo-

parallel manner, this does not provide data useful for predicting behavior in a

truly parallel environment. First, since multiple processes must share the machine,
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each pseudo-processor e�ectively sees the machine at 1=nth of its speed, where n

is the number of pseudo-processors (we do not take into account the operating-

system overhead of context switches, making real-time values even worse). Thus,

if the program is completely parallel, no speedup would be reported by a typical

MPI pro�ling library. Second, communication is measured incorrectly: on a single

uniprocessor workstation, no network is involved and the operating system converts

\message passing" to shared-memory references, which are often much faster oper-

ations. Even on a parallel computer, using real-time often yields incorrect results:

the latest supercomputers, as they rarely cost under US$10,000,000 [37], are often

shared, and so both the CPU and network speed viewed by the pro�ling library are

inaccurate.

1.2 PUPPET

As we have seen, on both pseudo-parallel and truly parallel computers, the existing

MPI pro�ling libraries are insu�cient when full parallelism is not available. The

proposed system, called PUPPET, attempts to remedy this problem with a set of

tools including an MPI pro�ling library that is based primarily on (user) CPU time

and ignores communication time (since this is inaccurate without full parallelism).

The pro�ling library (or logging library) is based on the assumption that a pro-

gram consists of computation and communication, and ignores other factors such

as I/O. The simulator (another tool provided) takes a program execution log along

with information about a network, and estimates true parallel execution time and

speedup based on this network. Finally, the network evaluator is a program that
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estimates the network speed assuming that the computer is dedicated to running

the evaluator.

PUPPET is useful in several ways. It allows e�ective evaluation of parallel

programs without the use of a parallel computer (that is, on a pseudo-parallel

machine). Researchers can implement various parallel algorithms and compare their

running times and speedups. When one technique is chosen, it can be run on a

supercomputer without any change to the program's code. Students can implement

and test parallel programs and can also compare them; no supercomputing resource

at their university is required. In fact, a student can estimate program run-time

on any distributed-memory supercomputer, testing di�erent topologies and speeds

of the network. Assuming su�cient memory is available on the workstation, as

many (pseudo) processors as desired may be used, thereby testing scalability of

algorithms without a massively parallel computer.

1.2.1 Features

A key di�erence between PUPPET and existing parallel-computer simulations is

that PUPPET is designed for MPI. To use PUPPET does not involve learning a new

(simulation) language, and possibly recoding existing algorithms in that language.

In fact, one need only link in the logging library, run the program as usual, and

then run the simulator to collect results. The simulator can be run many times

on the same log with various simulation parameters. This allows several questions

such as \what if I used the following hypercube multicomputer instead?" to be

answered rapidly.
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The main theoretical contribution of PUPPET is its approximate network

model, which is what makes the simulation phase so fast. The idea is to ignore

network tra�c and congestion, and simply approximate the time to send a mes-

sage by assuming an otherwise isolated system. For most applications, this does

not signi�cantly a�ect accuracy, but it has a much better performance than, say, a

detailed network simulation.

PUPPET uses CPU time and a non-tra�c network model. Sometimes it may

be useful to obtain higher accuracy than what these features o�er. Fortunately,

PUPPET is a fairly 
exible system. It is possible to use other computation-time

measures, such as augmentation or instruction-level simulation, as well as a network

simulator or a di�erent analytical model. There is no point in developing such

components in this project, since they have received signi�cant attention before.

PUPPET supports all deterministic features of MPI. In addition to typical

send/receive operations, non-blocking operations (including a wait operation to

delay until an operation completes) are available. One can also use synchronization,

multicasting, reduction, and other collective operations of MPI. As far as we know,

these features are unique to PUPPET.

Several modern-day programs exploit concurrency in addition to parallelism.

That is, they use more processes than available processors. PUPPET has the

ability to simulate multitasking, and so it allows such programs. This allows one

to evaluate various load-balancing schemes.



CHAPTER 1. INTRODUCTION 7

1.3 Outline

The rest of the thesis is organized as follows. Chapter 2 surveys existing work

done on parallel-computer simulation, as well as various processor and network

simulators. In Chapter 3 we present the methods of PUPPET in a theoretical

manner. We describe the implementation of PUPPET in Chapter 4. Chapter

5 gives results validating PUPPET and shows its usefulness in combination with

performance-visualization tools. Finally, we conclude in Chapter 6 and overview

possibilities for future work.



Chapter 2

Literature Survey

In this chapter we look at related work that has been described in the literature.

Section 2.1 describes competing parallel-computer simulators and compares them

to PUPPET. In Section 2.2, we examine simulators for components of parallel

computers that have the potential of being used in conjunction with PUPPET. We

discuss processor and network simulators in Sections 2.2.1 and 2.2.2, respectively.

2.1 Parallel-Computer Simulators

Many vendors have examined the use of simulation to evaluate the performance

of parallel computers prior to building them. Researchers have also used simu-

lation to evaluate new techniques for solving problems, in particular, cache co-

herency. Much of the development in parallel-computer simulation has targeted

shared-memory systems, which are not of interest to us. Such simulators include

Chief [12], MINT [77], SPASM [68], PSIMUL [70], Talisman [3], Tango [24], and

8
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Threads [53].

Unfortunately, far less attention has been given to simulation of distributed-

memory (message-passing) systems. The known projects that have addressed this

problem are the topic of this section. They have a variety of common properties,

and hence we cover common features instead of going into detail for each simula-

tor. Similarly, we compare the individual features (instead of entire systems) to

PUPPET.

2.1.1 Overall Organization

Most modern-day simulators involve discrete-event simulation (that is, are event-

driven) [32]. This means that (a �nite number of) events control the simulation;

for example, their occurrence causes the advance through time. The simulator

essentially \waits" for an event to occur, does some processing, and then continues.

The times at which events occur are the only points when anything is done; these

computations usually depend on the nature of the event. Most events are not known

ahead of time: processing an event usually involves creating new events. The main

advantage of discrete-event simulations is that events can be scheduled at any time.

An alternative to the event-driven approach is discrete-time (time-driven) [32]

simulation. In this method, there is a global clock that all resources (e.g., proces-

sors) are consistent with. During each iteration, some operations are done, and

the clock is incremented by a constant amount. One way to use this is to mark

events with a time-left attribute which says how many clock ticks are left until the

event occurs; when the clock is incremented, this value is decreased, and when it
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reaches zero the event is executed. This makes the simulation in
exible in terms

of granularity of timings. In order to achieve complete generality, the clock unit

would have to be extremely small, for example, a microsecond; this however would

cause a large overhead if no events occurred during entire seconds.

If time cannot easily be discretized into multiples of a single value, then time-

driven simulations are ine�ective. For this reason, all simulators that we know of

are based on the discrete-event technique.

2.1.2 Simulation-Program Coupling

Some simulations are designed to measure the performance of a parallel computer,

and assume an arti�cial workload such as \delays between message-sends follow a

negative-exponential distribution" (for example, a similar assumption is made in

Calahan and Bailey [14]). On the other hand, we are interested in the case where

the workload is generated by the user's parallel program. There are two ways that

the program can describe the workload to the simulator, which involve di�erent

levels of coupling between the simulator and the program.

The �rst option, which is used in PUPPET, is to have a loose coupling (some-

times called a trace-driven simulation [31]). The program executes on an arbitrary

host, such as a pseudo-parallel system, and records a log of its communication and

(amount of) computation. Then as a post-processing phase, the execution is simu-

lated with a particular parallel computer in mind. Note that none of the simulation

parameters come into play when the log is generated. Therefore, various options

can be tweaked and the program can be re-simulated, without needing to re-run it.
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Assuming that the simulation is fast (as it is with PUPPET), a complex program

can be evaluated for many platforms in little more time than required for a single

platform.

An alternative is to make a tight coupling and in fact combine the simulator and

the program. The program is instrumented either by the user or an automated tool

so that relevant events are handled by the simulation portion. Various delays are

made so that the program thinks that its environment is the simulated system. This

has the obvious disadvantage that the simulation is not a post-processing phase and

model changes require a complete re-execution. It does, however, have two main

advantages that are worth noting.

First, no log �les are created. For extremely long-running programs, loose cou-

pling causes particularly large logs to be created. In such cases, however, it is likely

well worth using loose coupling if even two sets of model parameters are to be

tested.

Second, processes are allowed to be non-deterministic in the way that they

communicate with others. For example, suppose that a process attempts to receive

a message, but it may timeout. With a loose coupling, the process might timeout in

the pseudo-parallel environment although it would not have in the parallel computer

being simulated. On the other hand, a tightly coupled simulation would correctly

detect whether a timeout occurred.

Fortunately, there are a wide variety of applications (e.g., most scienti�c codes)

that are network-deterministic1 , that is, the timing of the various communication

1We add the \network" quali�er to avoid confusion with the non-determinism involved with
random numbers.
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events a�ects little in the program other than speed. In these cases, loose coupling

applies well.

In the future, it would be worth considering the extension of PUPPET to have

the option of being tightly coupled to the program. This would broaden the set of

potential uses of PUPPET.

2.1.3 Method of Timing

The program's computation is timed by either a log-generator (for loose coupling)

or by the simulator itself (for tight coupling). In either case, the way in which we

measure the computation cost of a particular block of code is important. There

are three basic techniques that are commonly used in simulators, each with its own

advantages and disadvantages.

Instruction-level simulations are the most accurate possible. They use processor

simulators (see Section 2.2.1) to simulate each instruction of the program, thereby

determining the time to execute a particular group of instructions. This allows

complicated factors such as caches and the speedup of vector operations to be

accurately measured. Unfortunately, instruction-level simulations cause programs

to speed-down by around 300 times [71]. It also takes signi�cant e�ort to build

a simulator for a particular processor, and building a portable instruction-level

simulation is almost impossible. Since the overhead of instruction-level simulations

is so high, it does not make sense in combination with loose program-simulation

coupling.

Another possibility is to time computation using CPU time, such as the facil-
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ity provided by UNIX (sometimes called an execution-driven simulation2). The

advantage of this method is that it is extremely portable and easy to implement.

However, most UNIX systems limit their accuracy to multiples of ten milliseconds.

This can be insu�cient for very �ne-grain programs. The method also requires that

the program run on a processor identical to one of the simulated parallel computer.

Much of the recent simulation development has been towards program augmenta-

tion, which is a compromise between the previous two methods. Augmentation was

�rst used by Threads [53], later re�ned in RPPT [19], and perfected in Tango [24]

and Proteus [8]. The idea is to count (at compile-time) the number of processor

clock cycles required for each basic block (a block of code without any control 
ow

or communication instructions) by examining the involved instructions. The code

is then instrumented so that the simulator is noti�ed of any computation done in

terms of clock cycles. This fails to take into account caches and vector operations

(as the instruction-level approach did), although it is more accurate than CPU

time. Augmentation is faster and more portable than instruction-level simulations,

although it still takes a fair amount of e�ort to support a wide variety of processor

architectures.

Other advantages of augmentation include non-intrusive debugging and pro�l-

ing. The simulator will not notice any di�erences if the program is a little less

e�cient because of adding pro�ling or other data-collection code used for debug-

ging, provided that the basic blocks of the added code are ignored by the augmenter.

This is in contrast to a parallel computer (or any live system) where the probe ef-

2Unfortunately, the augmentation method is also sometimes called execution-driven [20].
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fect [35] may cause a phenomenom to disappear when one attempts to measure it.

In addition, augmentation allows unfortunate errors such as stack over
ow to be

detected and reported in an e�cient way [7].

The above three advantages are also possible with instruction-level simulations.

In fact, the most common use of processor simulators is to exactly evaluate per-

formance of the processor, avoiding the probe e�ect. Stack over
ow is also easy to

detect and report, although it cannot be done as e�ciently as augmentation; the

stack pointer must be checked after each instruction instead of each basic block3.

Currently, PUPPET uses the CPU-time approach. Given time to do so, aug-

mentation could also be implemented. Augmentation essentially provides the same

information as CPU time, but with higher accuracy.

2.1.4 Network-Simulation Accuracy

In addition to processor-timing accuracy, we can also examine the amount of accu-

racy obtained in simulating the network. The most common method is to employ a

network simulator (see Section 2.2.2). This allows the measurement of all network

latencies, including routing, tra�c, and congestion (i.e., hot spots). Unfortunately,

network simulations often take a signi�cant amount of time. Thus, the major ad-

vantage is accuracy and the major disadvantage is speed.

The obvious simpli�cation is to use an analytical model to approximate the

latencies and improve performance. Agarwal [1] proposed a model for a wormhole-

3It is possible to improve on this. For example, provided that the stack-pointer is at least 100
units from over
owing, the processor simulation could continue for 100 units before checking (or
some fraction thereof, depending on what kinds of instructions are available).



CHAPTER 2. LITERATURE SURVEY 15

routed k-ary n-cube interconnection network (an n-dimensional k � k torus) em-

bedded into two-dimensional space. The model attempts to take into account

congestion based on the frequency of past requests, providing speedups of between

two and four over a detailed network simulation [9]. Unfortunately, such models do

not yet exist for all networks, and it may be di�cult or even impossible to create

models with reasonable accuracy for some networks.

Another approach, proposed in Sections 3.2 and 3.3, is to ignore congestion

caused by multiple messages. In other words, the arrival time of a message is

calculated as if the network were otherwise empty. This method yields immense

performance bene�ts and (as we shall see in Section 5.2) often maintains consid-

erable accuracy. Currently, it is the method used by PUPPET, but it is certainly

possible to extend PUPPET to allow the other methods to be used.

Such an ability to vary accuracy would be extremely useful. It would allow one

to get a rough idea of performance during debugging and testing, and also get high

accuracy with the 
ick of a switch. If a loosely coupled simulation is used, this can

even be done without re-running the program.

2.1.5 Language

An important human factor of parallel-computer simulation is its ease-of-use. A

signi�cant part of this is the programming paradigms (i.e., languages) that the

simulator supports. The best scenario is that the program is written in a supported

language; for example, an MPI program to be used with PUPPET. Usually, little

user e�ort is required to simulate fully supported programs. Popular message-
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passing environments include MPI and PVM (Parallel Virtual Machine) [37]. In

addition, programs written in parallel languages (which eventually translate into

message-passing programs) may be used; a small sample of them consists of HPC

(High Performance C) [30], HPF (High Performance Fortran) [51], and pC++ [4].

Unfortunately, simulators do not always directly support a popular parallel-

programming language. This implies that the user must �rst spend a certain

amount of time learning the language. If the parallel program is already writ-

ten, it must be converted to that language. These steps can be very tedious and

should be avoided whenever possible.

2.1.6 Parallelism and Concurrency

Our �nal consideration is parallelism present within the simulator. In simulating

a parallel program, some authors claim that there is inherent parallelism available,

which can be exploited to yield good speedup [26, 71]. The idea is that the simula-

tor needs to use communication only when the program's processes communicate.

Essentially, the parallelism from the program is carried over to the simulator.

For tightly coupled simulation systems, this makes sense: part of the overall sys-

tem is the parallel program. Parallelization is e�ective since typically the overhead

is in the computation-measurement process described in Section 2.1.3.

It is questionable how useful a parallel simulator is, since parallel resources are

rare. However, networks of workstations (NOWs) and workstation clusters are be-

coming increasingly popular; even having two processors to simulate many would

be bene�cial. Unfortunately, because of several complications (e.g., a mix of both
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operating-system multitasking and hand-written multithreading), few tightly cou-

pled simulators allow parallelism, and those that do usually sacri�ce some e�ciency

in the process.

On the other hand, loosely coupled systems can automatically exploit paral-

lelism. This is because the simulation is broken up into two phases: the parallel

program execution (which is parallel) and the post-processing simulation (which

is serial). The execution includes the major source of overhead mentioned in Sec-

tion 2.1.3, namely computation measurement, and there is no reason that the exe-

cution cannot use a parallel system. Hence, for these systems (such as PUPPET),

parallelism can already be easily achieved.

An issue related to parallelism, brie
y mentioned above, is how concurrency is

provided. The simplest option is to allow the operating system to see the processes,

and allow it to multitask them. This often yields a very high overhead, although

it allows parallelism to be accomplished (for example, UNIX processes can execute

on multiple processors). An alternative is to provide custom multithreading code,

greatly improving task-switching latency and message-passing e�ciency. However,

this method requires that the entire program be run in pseudo-parallel and so

performance enhancement via parallelism is not possible.

PUPPET does not necessarily take either option; rather, it depends on the un-

derlying MPI implementation. To date, all UNIX-based MPI implementations use

UNIX processes; however, it is quite possible that a multithreaded implementation

could be developed. Such an e�ort has been made by Villanueva [75] for PVM. The

results are very impressive: 50,000 processes can be used e�ciently on a personal
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computer.

2.1.7 Survey

We shall now brie
y describe various distributed-memory parallel-computer simu-

lators, relative to the above considerations. Their characteristics are summarized

in Table 2.1.

The Rice Parallel Processing Testbed (RPPT) [19] was developed at Rice Uni-

versity. It is based on top of the parallel language Concurrent C [52], also

from Rice, which provides multithreading support. The Parallel Tracer/Debugger

(TRAPP) [20] allows graphical debugging of the program.

Proteus [8] is the most advanced parallel-architecture simulator, developed by

Brewer and Dellarocas at M.I.T. for their Master's theses [7]. The authors claim

it to be \fast, accurate, and 
exible" [9]. It achieves its speed partly from aug-

mentation and its built-in threads, and partly from its module system (which also

provides 
exibility). The idea is that there are several implementations for each

task (such as network simulation), each with its own level of accuracy and e�-

ciency. Proteus also provides some useful graphical utilities for generating plots of

performance data.

The EPPP simulator [63] is an extension of Proteus for High Performance C

(HPC) [30] programs. Even though it is augmentation-based, the simulator at-

tempts to evaluate pipelining and vector operations. The EPPP (Environment for

Portable Parallel Programming) project [47] provides other tools for HPC, includ-

ing a performance visualizer and debugger. It is based at the Centre de Recherche
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Informatique de Montr�eal (CRIM), McGill University, and Concordia University.

LAPSE (Large Application Parallel Simulation Environment) [26], developed

by Dickens, Heidelberger, and Nicol, focuses on parallel simulation. In general,

they �nd reasonably good speedup, although it greatly depends on the amount

of parallelism in the simulated program. LAPSE is currently based on the Intel

Paragon multicomputer, which uses the NX message-passing library.

PAPS [78, 79] is a simulator developed by Wabnig and Haring at the University

of Vienna. It uses Petri nets, a model of parallel processes, to model the network.

To do this, it enforces that the \programs" are speci�ed as task graphs, an abstract

view of the components involved in the computation and their ordering. This es-

sentially corresponds to a log of a program execution, thereby making it loosely

coupled. Task graphs make PAPS restrictive in the types of communications al-

lowed. The generation of the task graphs is not a part of PAPS.

PerPreT [5], created by Brehm, is also based on a task-graph model of programs,

but does not limit the communication forms as much as PAPS. Programs may be

coded in a language called LOOP [6], also written by Brehm. The computation

portions are then analyzed statically, and hence the program must have a static

pattern. Conditionals do not exist, although loops are allowed. Some parallel

algorithms, such as conjugant-gradient, are programmable in this way, provided

the number of iterations is constant.

ExtraP [57] is a pC++ [4] tool for extrapolating pseudo-parallel performance

to parallel performance from the University of Oregon. It is a part of the � (TAU,

Tuning and Analysis Utilities) tool-set [11], which includes several performance-
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visualization and analysis programs for pC++. A graphical interface to ExtraP is

provided by speedy (Speedup and Parallel Execution Extrapolation DisplaY).

After the implementation of PUPPET was completed, we became aware of

APNM (Abstract Parallel Numerical Machine) [67] which was developed at TUM

(Technische Universit�at M�unchen) simultaneously with and independently from

PUPPET. It uses a network model along the same lines as ours, but they ignore

network topology, hence also ignoring switching methods. Furthermore, they do

not support collective operations. Both PVM and NX (the language of the Intel

NX multicomputer) programs are supported. A feature unique to APNM is that

either loose or tight coupling can be used.

2.2 Simulating Components

Signi�cant work has been done on simulating the two main components (processors

and networks) of parallel computers independent of the rest of the system. The

following two sections overview proposed systems.

2.2.1 Processor Simulators

We are interested in processor simulators because they o�er insight into the com-

putation portion of a parallel program. Traditionally, they have been used for

simulating workstations, which allows exact benchmark measurement. Six major

systems have been proposed, allowing simulation of certain processors designed by

HP, SUN, and DEC.

DEC's SPIM (MIPS spelled backwards) [61, p. A-36] supports MIPS
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R2000/R3000 processors. It includes an X-windows debugger, since powerful de-

bugging is the main focus of SPIM. Programs typically run 100 times slower than

using real MIPS processors.

MINT (MIPS Interpreter) [77] simulates MIPS R3000 and some MIPS R4000

instructions, although it has a 
exible design so that it can be extended for other

architectures. Several host platforms are supported, including SGI, DEC, and SUN

SPARC workstations. It uses a mix between executing instructions on the host

system and simulating the instructions to achieve e�ciency. MINT also includes

support for shared-memory multiprocessors that use a MIPS instruction-set.

Paint (PA Interpreter) [73] is an instruction-set simulator for the PA-RISC

architecture [18]. It is based on MINT, illustrating MINT's 
exibility; this has the

e�ect that shared-memory multiprocessors are also supported in Paint. Although

it is under a di�erent name, Paint is essentially an extension of MINT.

SimICS [65] is a system-level interpreter for the SPARC V8 [72] instruction-set

and architecture. It typically achieves a slowdown factor of 15 when running on

other Sun architectures. SimICS's goal is to run an operating system; currently, it

only supports a UNIX-compatible mode.

Shade [16, 17] simulates SPARC V8 and V9 architectures, as well as the MIPS I

instruction set. The host machine is forced to be a SPARC, as with SimICS| this is

rather unexpected for the MIPS simulator. Shade introduces dynamic compilation

and caching techniques for fast cross-architecture simulation. Slowdowns range

from 6.1 to 31.2, depending on the level of output.

Mable [23] is a general framework for instruction-level machine simulation. Typ-
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ical slowdown factors range from 20 to 200, depending on the detail of simulation. It

has been used to develop three processor simulators: Multiprocessor (MP) Mable,

designed for shared-memory multiprocessors using the MIPS-III instruction set;

Tsim, a simulation of the TORCH processor [69] which supports speculative exe-

cution; and PPsim, a simulator for the FLASH shared-memory multiprocessor.

In general, processor simulators provide high accuracy but have signi�cant over-

head. They are particularly useful when e�ects such as vectorization and caching

play crucial roles in the performance of parallel programs. PUPPET currently does

not support any processor simulators, although it could be extended to do so.

2.2.2 Network Simulators

Independent interest has also been spawned in the area of networks. Network sim-

ulators are typically designed to evaluate the performance of a network subject to

some randomly generated message patterns. This is particularly useful for design

of new networks; simulators can be used to evaluate metrics such as average latency

under a particular load. Similarly, simulations can be used to evaluate new rout-

ing algorithms. Network simulators can also be used for overall parallel-computer

simulation (our interest), since they evaluate delays involved in sending messages.

NETSIM [49] is designed for all three uses. It forms a part of RPPT (see

Section 2.1.7), as well as serving as an independent network simulator. NET-

SIM supports direct and indirect (multistage) interconnection networks. A routing

algorithm can be speci�ed by the user, using one of packet switching, virtual cut-

through, or wormhole routing techniques.
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NetSim [42], although it has a name clash with NETSIM, is entirely di�erent.

It is designed for simulating circuit-switched networks (both direct and indirect),

which is the one switching mechanism that NETSIM does not support. NetSim

has also been used to simulate a recon�gurable multicomputer network called the

Interconnection Cached Network (ICN). The load of a simulation is measured by a

single parameter, m, the probability of sending a message in each time-step.

PP-MESS-SIM [64] is the most recent network simulator. A key feature is

that it is object-oriented (via C++), making it very 
exible. It supports the same

switching techniques as NETSIM, namely packet switching, virtual cut-through,

and wormhole routing, and allows the k-ary n-cube direct interconnection net-

work [21]. Network workload is only slightly more complex than NetSim; for ex-

ample, a negative-exponential distribution of send operations can be used.

PARSE (Parallel ARchitecture Simulator Environment) [60] is meant to help

design networking hardware in distributed-memory supercomputers, although it

allows simulation of a general (SPMD) program. It uses a very detailed model,

going down to the data-link layer, including the 
ow-control protocol, and also

examines factors such as copying bu�ers in routing. As Olk [60] says, it \properly

model[s] all performance aspects."

XPOS�E [81] is designed for local-area networks. It would be useful for simulat-

ing a network of workstations when many networks are involved. These networks

must be primarily buses, connected by various links. It was developed to facilitate

the development of hardware as well as software.

It seems that much of the research in network simulation has been repetitive.
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Although the above �ve systems each have distinct features, there is a large amount

of intersection. In the future, we hope that PUPPET can bring together the avail-

able features, o�ering (as an option) a detailed simulation of the network.



Chapter 3

Proposed Evaluation Technique

This chapter describes the models and theory that PUPPET is based on. Sec-

tion 3.1 examines the portions of a parallel program running in a pseudo-parallel

environment that should be timed, de�ning an execution log. In Section 3.2 we

describe an overall model for the underlying network and the performance of the

network links. Sections 3.3 and 3.4 detail this model, showing how to estimate

the latency involved in point-to-point and collective communications, respectively.

Finally, in Section 3.5 we see how the entire model can be simulated using discrete-

event techniques, including details on supporting multitasking.

Before we begin, we make note of implicit assumptions in our reasoning. These

essentially specify the target applications of PUPPET. Obviously, we are only in-

terested in distributed-memory parallel programs, in particular, those that use a

message-passing paradigm. Second, we assume that processes consist of a series

of computation and communication instructions; we ignore any overhead such as

that associated with I/O. Finally, it is assumed that the parallel applications are

26
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network-deterministic (see Section 2.1.2 for a de�nition).

3.1 Timing a Pseudo-Parallel Program

When dealing with programs running in a dedicated parallel environment, the basic

metric used for further analysis is the total execution time. In other words, this is

the maximum amount of time that a processor takes to complete, including both

the communication and computation time. From this we normally calculate other

metrics such as speedup. Parallel-execution time must be measured using the wall

(real-time) clock, or else synchronization and communication factors will not be

properly taken into account.

Such a simple evaluation method cannot be used when the program is run in

a pseudo-parallel environment. First, the computation portion stays similar to

the serial case because each pseudo-processor obtains one-nth of the CPU power,

where n is the number of pseudo-processors, assuming that a fair time-sharing

algorithm is employed. Second, the communication portion is not accurate, since

a network is not used to transfer messages. Instead, the operating system replaces

communication primitives with shared-memory references. Finally, any context-

switching overhead is included in the measure. Similarly, with parallel systems

shared by multiple users, the processors and network appear weaker and hence the

timing is inaccurate.

This problem is not unique. When time-sharing uniprocessors became common

and multiple programs were run simultaneously, it was di�cult to determine the

amount of time that any one program actually took, in other words, the amount of
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time that the program was computing and not waiting for its time-slice. For this

reason, the concept of CPU time was introduced, measuring the amount of time

that a program occupies the CPU, that is, computes.

We wish to create the analog of CPU time for pseudo-parallel programs. A

�rst attempt would be to measure the CPU time spent by each pseudo-processor.

Unfortunately, this has the e�ect of incorrectly measuring communication time. We

would hope that this measure included only computation, so that in a second phase

we could incorporate communication time. However, communication is achieved

using shared-memory references (possibly through a TCP/IP stack), which can

take a signi�cant amount of CPU time.

Instead, we must be careful not to incorporate the time taken by the under-

lying message-passing layer. To do this, we can instrument the program so that

we stop (start) timing immediately before (after) each call to a communication

routine. Hence, we have timed the computation blocks, each corresponding to a

communication call (Figure 3.1). By convention, we associate the computation

block immediately preceding a communication with that communication.

In the remainder of this chapter we will see how the computation blocks, along

with details of the communication calls (together called an execution log), can

be used to simulate the parallel program. In this way, we can estimate parallel

execution of the program as if it were run on a speci�ed parallel computer. First we

will look at how the parallel computer's network can be speci�ed (that is, modeled),

and later at how it can be simulated.
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Time

p2

p1
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Figure 3.1: A sample parallel-program execution. The shaded rectangles represent
computation blocks. Blank spaces represent blocking (waiting for a receive to com-
plete). Arrows denote messages.

3.2 Network Simulation

A fundamental part of a parallel computer is the network, which is used to trans-

mit data between processors. Network simulation is a large area of research (see

Section 2.2.2). The standard approach is to monitor the (simulated) travel of each

message, including what processors and other hardware (such as switches) it en-

counters. Each encounter creates a certain amount of delay, and after a certain

amount of time the message arrives at its destination.

Such a simulation also takes note of any con
icts when multiple messages re-

quire the same piece of hardware. In other words, the message delay caused by

network congestion is taken into account. Although this delay a�ects parallel ex-

ecution, much congestion is usually required before the program is slowed down

signi�cantly. In addition, reaching this (maximum) amount of accuracy greatly

increases simulation time.
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We take the view that simulation should be a post-processing phase. Hence,

one could vary model parameters (that is, the speci�cation of the simulated parallel

computer) several times but only run the program once. This allows one to ask

several questions such as \what if the network was twice as fast?" or \what if

I added a bus for broadcasting data?" If we achieve e�cient simulation, such

questions can be answered almost instantaneously.

We thus set out to create an e�cient simulation of the network that does not

take into account network tra�c or congestion. In many cases (as we shall see in

Sections 5.2 and 5.3), this does not signi�cantly a�ect accuracy and leads to an

immense performance bene�t.

3.2.1 Overall Model

We assume that the network is direct (or static) so that each network link allows

exactly two processors to communicate. Hence, we can represent the network as a

connected directed graph G = (V;E), called the network graph, where the vertices

(edges) correspond to processors (links). Typical topologies (i.e., graphs) include

meshes, hypercubes, tori, and rings [62]. Since we model the network as a directed

graph, the links need not be bi-directional.

Next we shall examine how we can model the performance of individual links.

For simplicity we assume that each link is identical with respect to speed. (This is

almost always the case except in heterogeneous systems, which are not considered

in this thesis because of their many complications.)
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3.2.2 Network-Link Model

The goal of network links is to achieve transmission times proportional to the

message size. Unfortunately, current technology limits us to achieving this only

when messages are su�ciently large. When small messages are sent, the dominating

factor is the initialization time that it takes to prepare the link for transmission.

Another complication of link performance is packets. In many networks, mes-

sages are split up into �xed-size packets each of which is transmitted separately. For

example, Ethernet-based networks employ a packet size of 1500 bytes [58, p. 101].

Since each packet is transmitted separately, an initialization cost must be paid for

each packet.

Therefore, we adopt the following model to estimate typical network-link per-

formance. The parameters are i (the initialization time per packet), p (the size of

a packet), and t
1
(the time to send one unit of information across the link). Given

the size k of the message, the total time to transmit the message across a single

link is

t(k) = i �

&
k

p

'
+ k � t

1
:

In the case where packets are not employed, i.e., p = 1, we must modify the

formula to

t(k) = i+ k � t
1

so that initialization time is paid.
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When extremely large messages (large than a megabyte) are involved, perfor-

mance drops [66]. Since little is known about the exact behavior in this case, we

suggest a simple generalization of the above model: let t be a piecewise-linear func-

tion. This incorporates the idea of packets, as well as allowing non-monotonicity.

Since large messages are somewhat uncommon, we have not yet implemented this

extension in PUPPET.

3.3 Point-to-Point Communication

It is rare that the graph de�ning the network topology is completely connected,

because of inherent cost restrictions. In this section we examine how to simulate

the travel of a message through several links. For the moment, we assume that

only one source node and one destination node are involved; in Section 3.4 this

restriction will be removed.

3.3.1 Routing

The problem of routing a message through a network to avoid congestion, deadlock,

livelock, and starvation has long been studied [25]. Many routing algorithms have

been proposed for various networks [33, 36, 59]. Each can be de�ned as a possibly

non-deterministic function yielding a path between two given nodes. Fortunately, in

our less detailed simulation we do not need a routing algorithm. Instead, we assume

that optimal routes are always taken; which route is chosen does not matter, since

we are not considering congestion. In our case, the only identifying feature of a

route is its length, that is, the number of links that must be traversed to send the
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message. The length of a shortest route between two nodes is called the distance

and will be denoted by d.

Determining for each pair of processors (src; dest) the value d is equivalent

to the all-pairs shortest path graph problem. It can be easily solved in O(n3)

time using the classical algorithms of Dijkstra [27] and Floyd [34], where n is

the number of processors. Using more complicated techniques, one can achieve

O
�
n3 (log log n= log n)1=2

�
time [74] or O(n2 log n) expected time [56].

3.3.2 Switching

Routing consists of more than determining a path from the source to the destination

processor. The switching technique determines the way that messages travel along

a chosen path. There are four common methods: packet switching, virtual cut-

through, circuit switching, and wormhole routing, illustrated in Figure 3.2.

Packet switching (or store-and-forward routing) [33] is the most intuitive switch-

ing method. A message being transmitted simply travels over all the links on the

path, reaching intermediate processors as it goes. The processors are interrupted

and determine which way the message should go next, and then transmit it to the

next processor, until the destination is reached. At any point in time, only one link

in the path is reserved for a single message. Packet switching o�ers good solutions

to deadlock and other problems. It has the severe disadvantage that latency (the

time to reach the destination) is proportional to d.

To improve packet switching, virtual cut-through [50] was proposed. In this

method, special switching hardware is employed so that a message will only inter-
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Figure 3.2: Illustration of the various switching techniques on a 3-processor linear
array. (a) Packet switching. (b) Virtual cut-through. (c) Circuit switching. (d)
Wormhole routing. Filled squares represent the entire message. Filled and empty
rectangles represent 
its and headers, respectively. Gray lines denote inactive links.
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rupt a processor when the next required link is busy (or the destination has been

reached), sending a header of size h to set up the hardware. The message trails

behind the header. Virtual cut-through improves the performance so that for mes-

sages much longer than the header, d does not a�ect latency. In particular, in the

latency formula, the distance d and t(s) (the actual communication time) are not

in the same term.

Two other methods have been proposed to achieve this. In circuit switching [41],

a control packet of size c is sent through the network to reserve all of the links on

the path. As soon as they have all been reserved, special hardware allows the links

to combine and become a single \circuit" that the message can be sent through

at a speed similar to that of a single link. Circuit switching is similar to virtual

cut-through except that the message waits for the header to �nish reserving instead

of trailing behind it. If we ignore congestion, circuit switching ends up using the

same amount of time as virtual cut-through by letting c = h [59].

The �nal method, wormhole routing [22], is often accepted as the best. Each

message is split into a sequence of �xed-size 
its (
ow control units); 
its are

typically only a byte or two long. The 
its are then sent in a pipeline manner along

the path. An important point is that each 
it must follow the same path; this way,

less initialization cost is likely needed for all 
its but the �rst. As with typical

pipelining, if the number of inputs (
its) is su�ciently larger than the number of

operations (links), then the number of operations (links) does not a�ect the total

time. Thus with extremely small 
it sizes, a great performance bene�t is obtained.

We summarize the time taken by the switching techniques in Table 3.1.



CHAPTER 3. PROPOSED EVALUATION TECHNIQUE 36

Switching technique Latency when there is no congestion
Packet Switching d � t(s)
Virtual Cut-Through d � t

0
(h) + t(s)

Circuit Switching d � t
0
(c) + t(s)

Wormhole Routing (d � 1 + ds=fe) � t(f)

Table 3.1: The latency of the various switching techniques. d is the distance between
the source and destination. c, h, and f are the sizes of the control packet, header,
and 
it, respectively. t(k) is the time to send a message of size k across a link (see
Section 3.2.2); t

0
is the same but may have di�erent parameters than t. s is the

size of the message.

Systems that apply packet switching include the Cosmic Cube, iPSC-1, Ncube-1,

Ametek 14, and FPS T-series [59]. The University of Michigan's HARTS (Hexag-

onal Architecture for Real-Time Systems) multicomputer [28] uses virtual cut-

through as its switching method. Circuit switching is used by the Intel iPSC-2

and iPSC/860 multicomputers. Multicomputers that use wormhole routing include

the Ametek 2010, Symult 2010, Ncube-2, Intel/DARPA's Touchstone Delta, Intel

Paragon, MIT's J-machine, Intel/CMU's iWarp, and the Transputer IMS T9000

family.

3.4 Collective Communication

Collective communication, in contrast to point-to-point communication, involves

several, potentially all, processors in the network. Whereas point-to-point commu-

nication has essentially one basic form (send-receive), there are several operations

that are collective. We shall consider the following:
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� Barrier synchronization: certain processes cannot complete until they have

all reached the barrier.

� Multicasting: send the same message from one process to several others.

� Scatter : send di�erent messages from one process to several others.

� Gather : send messages from several processes to one process.

� All-to-all : several processes send messages to every other process in the group.

� Reduce: operations such as global maximum. One variant leaves the result at

a single process, whereas the other gives the result to all involved processes.

As with the point-to-point case, we will examine models that ignore network

congestion. If more detail is required, a network simulator (such as those described

in Section 2.2.2) can be used.

3.4.1 Multicasting

There are three general techniques employed in parallel systems to send a message

m from process 0 to processes 1 through n:

1. Obvious: process 0 issues n send operations, and the remaining processes

issue receives. This technique is really only useful if the send operations are

bu�ered, so that process i need not receive before the message even starts

traveling to process i+ 1.
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Figure 3.3: An example of the smart multicasting approach: the hypercube broadcast
algorithm [48]. During a phase, each processor that has the message (those in bold)
sends in a particular direction (shown with arrows), which varies over time. (a{c)
show time steps 1{3, respectively, for a three-dimensional hypercube.

2. Smart : in some prescribed manner depending on the network topology, the

message propagates from process 0 to involved processes on the same or ad-

jacent processors, eventually reaching all of the destinations (Figure 3.3).

3. Extra hardware: a bus, hierarchical bus, or other additional hardware is

present to allow faster multicasting.

Analogous to the point-to-point case, the problem is much simpler when con-

gestion is ignored. In fact, the obvious and smart approaches are nearly equivalent:

the ine�ciency of the obvious approach, that the multiple messages cause high

congestion and may collide, is nulli�ed.

The extra-hardware approach can be considered to be the obvious approach,

except that a network other than the one for point-to-point communication is used.

In the case of a bus, this network is completely connected (that is, processor dis-

tances are one). We can view a multi-level bus as a tree network (Figure 3.4) with



CHAPTER 3. PROPOSED EVALUATION TECHNIQUE 39
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Figure 3.4: A complete binary tree multicast-network. This can be used as a multi-
level bus, or (if the link speeds are doubled) as a smart approach using a recursive
structure. Smaller circles denote dummy processors.

internal nodes that are dummy processors, that is, processors with no processes

running on them.

Therefore, the general model that we use takes the obvious approach, where the

sender issues many (bu�ered) sends, and the receivers issue typical receives, but a

separate multicast network is used for this kind of communication. This may have

a di�erent topology, link speed, and switching technique compared to the point-to-

point network. Potentially, the two networks are the same, in which case the model

is simply the obvious approach. Note that the generated messages are not confused

with usual point-to-point messages since they come from a di�erent network.

The smart approach may in fact employ a recursive (tree) structure of commu-

nication (such as that in the hypercube algorithm in Figure 3.3), which is entirely

di�erent from the obvious approach. In this case, the general model still applies

if we use a complete binary tree as the multicast network (Figure 3.4), where only

the leaves are not dummy processors (giving the desired recursive structure), and

the links have twice of the actual performance (so that we do not count both the

time to go up the tree and the time to go down).
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3.4.2 Other Collective Operations

Similar reasoning applies to the scatter and gather operations: the various messages

are simply sent to the appropriate destinations. Multicasting is a special case of

the scatter operation, although nowhere in our solution did we use the fact that

the same message was being sent. All-to-all communication can be viewed as n

scatter (or gather) operations, executed simultaneously. From this we can de�ne

a barrier synchronization to have the performance of an all-to-all communication

of k units, where k is likely 0 or 1 (it simply represents a header) [54]. Finally, a

reduce operation can be viewed as a gather, possibly followed by a scatter (if the

result of the reduction is to be known on several processes). Improvements on this

simply reduce the amount of congestion.

It is possible that a separate network is used for each type of collective operation,

but this is rare because of the cost. In the model, however, this is useful. For

example, suppose that an all-to-all communication takes n times longer than the

equivalent scatter operation (on a particular parallel computer), since it uses a bus.

This could be modeled by specifying that the performance of the all-to-all network-

links is n times slower than those of the scatter network. In addition, the multiple

networks allow easy distinguishing between various types of messages.

Now that we have a model of the parallel computer's network, we can form a

simulation of this model.
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3.5 Discrete-Event Simulation

In this section we describe how we can use discrete-event-simulation techniques

for the model developed in previous sections of this chapter. In Section 3.5.1 we

overview the simulation architecture. Section 3.5.2 gives full detail of the algorithm.

Finally, Section 3.5.3 discusses how multitasking can be dealt with.

First, we shall overview the general idea of a discrete-event simulation [32]; more

detail can be found in Section 2.1.1. The simulation is driven by the occurrence

of events, which are the only cause of moving forward in time. The events are

processed in the order in which they occur, and are stored in a priority queue

called the global event list. Processing an event may cause states to change, and

may even cause new events to be created. For example, a send event (where a

process issues a point-to-point send command) would likely create a message-arrival

event for some time in the future; a blocking receive event, if no matching message

is waiting, would cause the process to block (a state change). The key point of

discrete-event simulation is that it is not time driven, that is, there is not a global

clock incremented by a constant amount as the simulation continues.

3.5.1 Overall Architecture

As one can see from the overview of general discrete-event simulations, there is a

lot of detail to be �lled in. To begin, we give a brief description of the overall

architecture (Figure 3.5).

Throughout we have been careful to separate the terms \process" and \proces-

sor." This is because we would like to simulate multitasking, that is, allow multiple
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Figure 3.5: Architecture of the discrete-event simulation, illustrated by a small ex-
ample. (a) Process states. (b) Global event list.

processes running on a single processor. Each process contains a single thread of

execution, issuing various communication events. The timing of these events is

not known prior to simulation; delays in blocking (which are only known during

simulation) cause the times to vary.

Each process has a list of waiting messages. These are messages that have been

sent by other processes (they may correspond to point-to-point, multicast, or other

operations) but have not yet been matched with a receive operation. The message

stores information such as the source process, the message tag (a value that must

be matched on receipt), and the time at which it arrived. A message is added to

the list even if the send operation which created the message is synchronous (in real

life it would likely not take up resources at the receive-side), so that the receiver

can easily identify any waiting messages, no matter how they were sent.

Each process also has a list of pending operations. They include any operations
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(such as point-to-point sends and receives) that have not yet completed or are

otherwise of interest. This has several applications. For non-blocking operations,

we can store a 
ag indicating whether or not the operation has already completed.

Then when a wait command is issued by the process, we know if the process should

be blocked. Waiting messages also store the sender's pending send operation that

created the message. This way, the receiver can notify the sender of completion of

the message-transfer by updating information about the operation.

A process has a state indicator. This speci�es whether it is blocked (that is,

waiting for one of its pending operations to complete) or whether it is computing

(later to issue a communication request). Alternatively, a process may have exited

(dead) or may not have been started yet (prenatal). If neither of these is the case,

we call the process alive. Using this classi�cation method, we can consider the

process space to be �xed by starting with enough prenatal processes.

In addition, processes have an internal clock. This indicates how far in the

simulation the process has progressed; since events are local to processes, they may

not remain entirely synchronized. Whenever an event for a particular process is

executed at time t, the process's clock is updated to t. The process's clock is useful

to calculate the time that its next communication event will occur (the clock value

plus the amount of computation prior to the event).

There are three main types of events that may be scheduled. The �rst (and

simplest) is the issue of a communication operation. Such events are extracted

from the execution log; they are scheduled throughout the simulation automatically,

provided processes are not blocked (in which case they cannot issue any). There are
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three operation-issue events: point-to-point send and receive, and a wait operation

(where a process pauses until a non-blocking operation is complete); collective

operations are converted into the appropriate sends and receives. The second type

is a message-arrival event, where a message moves into the waiting-messages pool

(marked with its arrival time, that is, the time that the event occurred). Finally,

an operation-completion event is used to tell a process that one of its pending

operations has �nished. For example, if the operation was blocking, this would

cause the process to wake up.

We shall now turn to a more detailed description of the simulation.

3.5.2 Algorithm

The simulation consists of four main steps, aside from initialization (Figure 3.6).

First, we take the next-occurring event from the global event list. Second, this

event is processed, as we shall describe in the following few paragraphs. The last

two steps are a kind of \cleaning up" for the next simulation step. We check for

any waiting messages that match a pending receive operation on the same process,

in which case we schedule an operation-completion event for the receive at the time

that the message arrived or the time that the operation was issued, whichever is

greater. Finally, we schedule operation-issue events for those processes that are not

blocked and have no operation-issue events scheduled.

Processing an operation-issue event is reasonably straightforward (Figure 3.7).

Suppose that the event occurred at time t on process p. For send and receive

events, the operation is copied into process p's pending-operation list. For bu�ered
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Procedure Simulation
Initialize process states
Schedule operation-issue events
While the global event list is not empty,

Remove the �rst event e in the global event list
Process event e
Match waiting messages
Schedule operation-issue events

Figure 3.6: Pseudo-code for the discrete-event simulation. Details of event pro-
cessing and scheduling of operation-issue events are given in Figures 3.7 and 3.8,
respectively.

sends, this operation is considered already done (on the send-side). A send event

causes a message-arrival event to be scheduled on the destination process at time

t +N , where N is the induced network time under the model of Sections 3.2 and

3.3. Furthermore, if the send is synchronous and blocking, process p is blocked.

Similarly, if a receive operation is blocking, process p is blocked.

Finally, we must consider how to process a wait event, where a process explicitly

asks to wait for a previously issued non-blocking operation (now in the pending-

event list) to complete. If the operation's done 
ag is set (e.g., it is a bu�ered

send), then the operation is deleted and the process is not blocked. If this trivial

case does not occur, the process is blocked and the operation is transformed into a

blocking one.

Completion events allow processes to be unblocked if the operation previously

caused the process to block. Furthermore, if the operation was a receive, it can

notify the corresponding send that the message-transaction is complete.

For the moment, let us ignore multitasking. Then scheduling new operation-
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Procedure Process event e
Advance e.process.clock to e.time
Case e is a send event:

Add e to pending-operation list for e.process
If e is asynchronous (bu�ered), then

The pending operation's done 
ag is set to true
The pending operation is set to non-blocking

Schedule a message-arrival event for the destination process
If e is blocking, block e.process

Case e is a receive event:
Add e to pending-operation list for e.process
If e is blocking, block e.process

Case e is a wait event:
If the pending operation being waited for is not done, then

Block e.process
Convert the pending operation into a blocking operation

Case e is a message-arrival event:
Add e.message to waiting-messages list for e.process

Case e is a completion event:
If the operation is blocking, unblock e.process
Otherwise, set the operation's done 
ag
If the operation is a receive operation, then

Process a send-completion event for the source process

Figure 3.7: Pseudo-code to process an event (non-multitasking version). Explicit
garbage-collection details are not given for simplicity.

Procedure Schedule operation-issue events
For each process p,

If p is not blocking and has no operation-issue events scheduled, then
Schedule the next operation-issue event using p.clock

Figure 3.8: Pseudo-code to schedule operation-issue events (non-multitasking ver-
sion).
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issue events is easy (Figure 3.8). We simply look for unblocked needy processes, and

schedule operation-issue events for them. The time at which the event will occur is

the value of the process's clock plus the amount of computation before that event

(stored in the execution log). Note that this is not true when multiple processes

execute concurrently on a single processor, since then a block of computation is not

measured in real time but rather in CPU time. We will consider this in the next

section.

3.5.3 Multitasking

Let us consider the case where potentially several processes share a single processor.

We shall only consider the case where the processes have equal priorities and are

scheduled in a round-robin fashion. We do not take into account any task-switching

latency, thereby assuming that it is negligible. For purpose of discussion, assume

that there is only one processor; this makes it easy to identify \the other processes

on the same processor" (they are simply all other processes).

Multitasking complicates the simulation in two major ways. We need to modify

the way in which completion events are processed (since they can cause processes

to unblock), and the way in which we schedule operation-issue events. In fact, we

do not want one operation-issue event scheduled per process, since the completion

of one of these (possibly blocking the process) may change the occurrence times for

the operation-issue events of other processes.

Instead, we only want to schedule one operation-issue event per processor. We

store the next operation-issue events for the other processes (if any) with the pro-
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Procedure Schedule operation-issue events
For each process p,

If p is not blocking and has no operation-issue events in the
processor's list, then

Add the next operation-issue event to the processor's list
For each processor P ,

If no processes on P have operation-issue events scheduled, then
Using r to �nd the occurrence time, schedule the operation-issue

event in P 's list with smallest time
When the operation-issue event occurs, advance processes

to that time

Figure 3.9: Pseudo-code to schedule operation-issue events (multitasking version).
r is the number of running processes.

cessor, in a list sorted by time. The one that we schedule is the �rst in the list.

In addition, whenever we schedule a new operation-issue event, we must advance

the clocks of the other processes to the scheduled time, and change the time at

which their next operation-issue events will occur. In other words, whenever some

computation is done to complete an operation-issue event, we must do the same

amount of computation on the other processes, since they are all running concur-

rently. Thus, computation takes r times longer, where r is number of running

processes. Figures 3.9 and 3.10 summarize.

Before r changes, all computation that occurs before the change must be com-

pleted, so that the overhead of multiple processes can easily be measured. If r

varied over a block of computation, it would be di�cult to calculate the total

(real) time to execute the block. We handled the decrementation of r by changing

Procedure Schedule operation-issue events. r is incremented whenever a process is
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Procedure Advance processes to t0

For each other process on the current processor,
t p.clock
Advance p.clock to t0

Decrease the computation (CPU) time prior to p's next
operation-issue event (if it exists) by (t0 � t)=r

Figure 3.10: Pseudo-code for advancing a process's computation to a speci�ed time.

Case e is a completion event:
If the operation is blocking, then

If event is scheduled for processor, then
Unschedule it and place in processor's list

Advance processes to e.time
Unblock e.process

Otherwise, set the operation's done 
ag
If the operation is a receive operation, then

Schedule a send-completion event for the source process

Figure 3.11: Modi�cation of completion case for Procedure Process event to allow
multitasking. The only modi�cation is the addition of the call to Advance processes.

unblocked, which only happens during the completion of an event. In this case,

we must advance the clocks of the other processes to the completion time, and

change the time at which their next operation-issue events occur, using Procedure

Advance processes. Furthermore, the next event occurring on the processor may

change because of a new running process, so we must unschedule such an event if

it exists. The modi�cation to Procedure Process event is given in Figure 3.11.

Although all of this is rather complicated, multitasking is an important feature.

It greatly increases the set of applications on which the simulator can be used, since
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many programs use concurrency in addition to parallelism. For these programs,

various other factors, such as load-balancing schemes, can be varied and optimized,

using the simulator.



Chapter 4

Implementation

An important part of this work is the implementation of the PUPPET system,

described generally in the previous chapter. In this chapter we give details on the

implementation. Section 4.1 provides a correspondence between MPI routines and

the operations of Chapter 3. In Section 4.2, we discuss how MPI pro�ling libraries

were used to automatically instrument programs. We describe the user interface to

the simulator in Section 4.3. Section 4.4 looks at our use of ParaGraph, a parallel-

program performance-visualization tool. Finally, we describe the network evaluator

in Section 4.5.

4.1 MPI

The MPI 1.1 standard [55] de�nes an interface to 128 message-passing routines,

categorized in Table 4.1. The only ones that are of interest to us (for simulation)

are those that perform actual communication (dynamic process management is not

51
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Chapter Category Count
3 Point-to-point communication 52
4 Collective communication 16
5 Groups, contexts, and communicators 30
6 Process topologies 16
7 Environmental management 13
8 Pro�ling interface 1

Table 4.1: Overview of the MPI standard by chapter. \Count" speci�es the number
of routines de�ned in that category (chapter).

provided by MPI). There are 32 and 16 of these in Chapters 3 and 4, respectively,

of the MPI standard. Many of them correspond to the operations that we de�ned

in Chapter 3. This section describes this correspondence for operations supported

by PUPPET.

Sections 4.1.1 and 4.1.2 look at point-to-point and collective MPI communica-

tions that are supported by PUPPET. In Section 4.1.3, we examine the unsupported

routines out of the 48, and see why nine of them cannot be supported in the current

form of PUPPET.

4.1.1 Point-to-Point Communication

There are eight types of send commands in MPI, half of which are non-

blocking versions of the other four (denoted by pre�xing an I (for immediate)

to the name). Bu�ered sends (MPI Bsend/MPI Ibsend) and synchronous sends

(MPI Ssend/MPI Issend) correspond to our notions: a bu�ered send copies the

data into a bu�er and returns, and a synchronous send waits for a matching re-

ceive to be posted. A standard send (MPI Send/MPI Isend) is typically a bu�ered

send, although it may be synchronous, usually because of limited resources. Since
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there is no way to determine what method is used, we assume that standard sends

are bu�ered. Finally, a ready send (MPI Rsend/MPI Irsend) can be used when a

matching receive is guaranteed to be already posted. In this case, using a syn-

chronous send does not signi�cantly decrease performance, so one is typically used

(with a few optimizations to the protocol); this is what we simulate.

MPI Recv is a typical blocking receive-operation, and MPI Irecv is the non-

blocking version of it. MPI Wait provides a wait feature, where a process explicitly

asks to wait for a non-blocking operation to complete.

4.1.2 Collective Communication

There are several collective operations in MPI. Some have a variation (with a v

post�x) where variable-length bu�ers are used. Groups are created to de�ne the

processes involved in a collective operation; these can be converted into a list of

global process numbers using MPI Group translate ranks.

MPI Barrier, MPI Bcast, MPI Scatter, and MPI Gather correspond to the

barrier synchronization, multicast, scatter, and gather operations, respectively.

MPI Reduce (MPI Allreduce) is the reduce operation where the result is left in

one (all) process(es). MPI Allgather forms a non-personalized all-to-all communi-

cation, where only p messages are involved (where p is the number of processes),

and a personalized version (with p2 involved messages) is given by MPI Alltoall.



CHAPTER 4. IMPLEMENTATION 54

4.1.3 Unsupported Features

The above features are all supported by PUPPET. Some MPI facilities are not simu-

lated: some we feel are not important and could be added by request, but others are

in fact impossible to simulate. The former include MPI Waitall (a repeated wait op-

eration), MPI Probe (a receive but without actually receiving the message), inactive

requests (a way to avoid repeatedly passing the same parameters), MPI Sendrecv (a

combination of a send and a receive operation), MPI Reduce scatter (a combina-

tion of a reduce and a scatter operation), and MPI Scan (a rare collective operation).

The latter operations form the network-non-deterministic portions of MPI, which

(as we noted in Section 2.1.2) are impossible to simulate with a loose coupling be-

tween the simulator and program. These features include MPI Test and its variants,

MPI Waitany, MPI Waitsome, MPI Iprobe, MPI Cancel, and MPI Test cancelled,

which we now describe brie
y.

MPI Test returns a 
ag indicating if a pending request (returned by a non-

blocking operation) has completed. Similarly, MPI Iprobe checks if a matching

message is available. The result of either routine usually completely changes the

application's behavior; the result also likely varies signi�cantly between the pseudo-

parallel and simulated systems. Hence, loosely coupled simulation is inappropriate

for these operations. MPI Waitany and MPI Waitsome allow non-deterministic se-

lection between pending requests; the same argument applies.

MPI Cancel attempts to cancel an operation, and MPI Test cancelled checks

if the cancel succeeded. MPI Test cancelled is similar to MPI Test, and so for

similar reasons it is not supportable in the current simulation system. In addition,



CHAPTER 4. IMPLEMENTATION 55

MPI Cancel does not make sense without MPI Test cancelled.

The above features cannot be supported because of PUPPET's loose coupling.

They would be entirely possible, however, in a tightly coupled version.

4.2 Logging Library

A loosely coupled simulation requires that an execution log be created. In this

section, we see how MPI programs can be automatically instrumented. We also

brie
y examine other logging libraries that have been proposed.

MPI provides a pro�ling interface which de�nes how any instrumentation of MPI

programs is performed. To do this, it places the following two main restrictions on

an implementation of MPI:

1. An alternative library can be linked in where routine names start with PMPI

instead of MPI .

2. A no-op routine MPI Pcontrol is provided.

The idea is that the instrumenter can write a set of routines (whose names start

with MPI ) that does any special logging or other operations before and after a call

to the corresponding PMPI routine. In addition, one can provide an MPI Pcontrol

operation to allow enabling, disabling, or otherwise controlling the instrumentation.

If the standard MPI library is used instead, the MPI Pcontrol operations will be

ignored.

PUPPET's logging library creates a log �le for each process. Each call to the

relevant routines (listed in the previous section) induces an entry consisting of
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the routine name, properly encoded parameters, and the length of the previous

computation block. Using MPI Pcontrol, recording can be enabled or disabled,

and bu�ers can be 
ushed or reset. Resetting bu�ers causes all log entries to be

removed, except for the original MPI Init entry (since it cannot be regenerated).

The format of the log �les is simple and portable. It is designed so that it could

also be used for future versions of MPI, or other message-passing systems such as

PVM [37]. Once all of the processes exit, the logs can be combined into a single �le

via the UNIX cat utility, or PUPPET's combinelogs simplifying interface to cat.

4.2.1 Other Logging Libraries

The MPICH project [10] consists mostly of a portable MPI implementation, but also

includes some utilities for use with any MPI implementation. In particular, MPE

(MultiProcessing Environment) provides (among other things) a logging library

for use with upshot [46], a performance-visualization tool. Similarly, the LAM

project [13] has log-collection and display tools. Finally, Govindan et al. [39] have

developed a logging library for use with the ParaGraph visualization tool [44].

All of these logging libraries append a real-time clock measure to each entry in

the log. This is of course inappropriate for simulation of another parallel computer.

Hence, none of these pro�ling systems are \accurate" in a pseudo-parallel system.

It would be possible to embed the entire simulator in PUPPET's logging library,

yielding a tightly coupled simulation. In this case, we could (via the pro�ling

interface) replace the MPI Wtime routine (which normally returns the wall-clock

time) to return the current simulation time. In this case, the above three logging
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libraries could be used so that a log compatible with a performance visualizer could

be generated, since then the \real-time measure" would re
ect the correct value for

the simulated system. Unfortunately, the current MPI standard does not support

multiple pro�ling interfaces; it may be possible by using the wrappergen utility of

the MPICH project.

4.3 User Interface

The simulator takes either two or three command-line parameters. The �rst two

are the names of a log �le and a model �le, respectively. The most interesting

portion is the model �le, which we look at in this section. Optionally, a PICL log

�le can be written, whose name is speci�ed by the third parameter. The PICL log

�le is for use with the ParaGraph visualization tool (see Section 4.4).

Figure 4.1 gives a BNF-like grammar for model �les. Basically, a model �le

consists of a sequence of commands, separated by newline characters. A command

is either a comment (pre�xed by a pound character) or an option. An option can

either be global to the entire simulation, or local to a network for a particular kind

of communication. In either case, the option that is latest in the �le is the one

used. For example, one could de�ne the network for all communication types, and

then de�ne it for a particular one, \overriding" the previous declaration (but only

for a single communication type).

There are currently two global options. The barrier-size option speci�es the

size of the message sent around to con�rm that a barrier was reached, making a

barrier simply a non-personalized all-to-all operation. In Section 3.4.2, we called
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model ! command nn ...
command ! globalopt j networkopt [for MPI ... ...] j # ...comment...
globalopt ! barrier-size k j coll-sendtype sendtype
sendtype ! buffered j synchronous j nospace
networkopt ! network net j map P

1
... Pn j switching model

j link-speed i t
1
j packet-size p

net ! complete n j tree arity level j mesh k
1
... km

j ...etc.... j custom �le
model ! packet j wormhole j circuit

Figure 4.1: BNF-like grammar for a model �le, an input to the simulator.

this value k.

coll-sendtype sets the type of the send operation when a collective commu-

nication is expanded into point-to-point operations. In addition to bu�ered and

synchronous sends, a \no-space" send is possible. This is simply a send that com-

pletes once the message arrives. Such a send is likely what would be used when

the standard send switches to \synchronous mode" because of resources becoming

scarce; in the future, we might be able to determine when this happens, and in

such a case switch to simulating a no-space send. In any case, we may use it for

collective communication.

Each network, corresponding to a particular type of communication, requires

that �ve options be provided. The �rst, obviously, is the network topology (speci�ed

by network). This can either be a built-in network, such as a completely-connected

network of n processors, a k-ary tree of depth d, or a k
1
� � � � � km mesh (which

includes linear arrays and hypercubes), or it can be a custom user-speci�ed network.

In the latter case, the name of a network-speci�cation �le is given. This �le lists
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those processors that each processor can send to directly; that is, it gives the

incidence lists of the network graph (Section 3.2.1).

Second, a method for mapping processes to processors must be speci�ed. This

is particularly useful when doing multitasking, but can also be used to arbitrarily

renumber built-in network topologies. There are two partially con
icting desires

for the speci�cation of this mapping:

1. It should be possible to arbitrarily assign processes to processors for a partic-

ular number of processes.

2. It should be possible to re-use a model �le for any number of processes.

With a wrap-mapping scheme we assign process i to processor i mod P , where

P is the number of processors (note that MPI processes are numbered 0 up). Obvi-

ously, this only satis�es condition 2. The opposite extreme is to list the processor

assigned to each process. However, this only satis�es condition 1.

To satisfy both conditions, we chose a generalized wrap-mapping scheme, which

essentially mixes the above two techniques. The user speci�es a list P
1
; :::; Pn of

processors. The �rst n processes are placed on the respective processor in this

list. In addition we wrap, so that the (n + 1)st process is placed on processor

P
1
. If Pi = i � 1 for each 1 � i � n and n is the number of processors, then

this corresponds to a typical wrap-map. On the other hand, if n is the number of

processes, we have an arbitrary mapping.

Since the processor numbering and even the number of processors may vary

across the various networks, we have no way of determining the correspondence
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between processors on the networks. To make any sense, each processor used for

computation must be realized on each network; of course, the id of the processor

may vary. Hence, we specify the mapping from processes to processors on each

network. We also ensure that the mappings are identical aside from applying an

invertible function to change the numbering. It would be possible to specify these

functions instead of re-specifying the maps; we opted for the simpler approach.

The �nal three options specify the parameters to the network-link model (Sec-

tion 3.2.2). They consist of the switching method, the link speed (initialization

time per block and seconds per byte), and the size of a packet.

In addition to optionally generating a ParaGraph-compatible log �le, the sim-

ulator gathers a few quantitative statistics. These include the time at which each

process exited (and hence parallel execution time), the total amount of computation

time (which equals the execution time if all processes were multitasking on a single

processor, and hence we obtain a notion of speedup), the total amount of blocking

(idle) time, and the utilization of each processor (plus an average utilization).

These statistics are useful for several reasons. First, ParaGraph does not yet

support multitasking, and so some other output is needed when this feature is

used. Second, creating a log �le is typically very slow for reasonably long-running

programs; it can be useful just to get an idea of where the program or model stands

before going into detail. ParaGraph also does not support all of the statistics; for

reporting on results, such as we do in Chapter 5, it is useful to have these numbers.

The overhead of starting ParaGraph may also be una�ordable when several models

are used, or if the user is on a slow network connection or even on a textual system
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where ParaGraph (which uses X-windows) can not be used.

4.4 ParaGraph

The simulator can generate an estimated real-time log �le since we end up schedul-

ing each event generated by the program. In particular, we chose the (new) format

of PICL logs [80], since such logs can be used with the ParaGraph [44] parallel-

program performance-visualization tool.

We chose ParaGraph because it is probably the most developed system of its

kind. Heath et al. [45] state the design goals to be ease of understanding, ease of

use, and portability; we feel that it has largely achieved these goals. It has many

di�erent displays, some of which are entirely unique from other visualization tools.

Furthermore, it is very general; most other systems assume a particular parallel

computer or a very speci�c architecture. ParaGraph is also probably the only free

system under active development. We hope that it soon supports more processes

than processors; if it does so, it will likely be the �rst system to do this.

We will see the usefulness of ParaGraph in Section 5.7.

4.5 Network Evaluator

A simple MPI program is provided in PUPPET to measure the performance of a

network link. It assumes that the parallel system is completely isolated, so that

wall-clock times are accurate. The basic idea is to use a ping-pong benchmark, in

other words, measure the time for process A to send a message to process B and
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then send a message in the opposite direction. The simplest method is to do this for

various messages sizes, and use a linear regression to �nd the link-speed parameters.

However, we want the measuring to be robust, so that no or few outliers need to be

removed. A particularly e�ective method for this is to pass messages of the same

size several times, and take the median time to send a message. Outliers do not

a�ect the median, which makes this method particularly robust.

We would also like to diminish the overhead of determining the current real-

time clock value. To do this, one usually passes messages of the same size several

times, but only measures the clock at the beginning and at the end. This length is

then divided by the number of messages sent, resulting in the mean time to send a

message. Unfortunately, a few outliers can signi�cantly a�ect the mean.

Therefore, we adopt a hybrid approach, which we call the mixed median-mean

approach. Essentially we use the mean approach several times for each message

size, and then take the median of these values. This attempts to remove outliers

while using the real-time clock relatively fewer times.



Chapter 5

Experiments and Results

In this chapter we validate the PUPPET simulation system. We evaluate its accu-

racy and show its usefulness for developing parallel applications. In Section 5.1, we

overview the test applications that we use. Sections 5.2 and 5.3 examine the sim-

ulation accuracy and speed, respectively. We analyze the meaning of the speedup

metric determined by the simulator in Section 5.4. Section 5.5 illustrates how the

simulator allows evaluating load-balancing schemes. In Section 5.6, we see how one

can experiment with di�erent network topologies. Finally, Section 5.7 shows how

we can understand programs and their performance with ParaGraph.

The reader may refer to Appendix A for the raw data that produced most of

the plots found in this chapter.

63
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5.1 Test Programs

We use three main programs throughout the evaluation. Two (which we developed

ourselves) solve the sorting and Cholesky-factorization problems, respectively. The

third is the Scalable BLAS library [15]. We describe these applications in the

following three sections.

5.1.1 Merge-Sort

Sorting is a classic computer-science problem. A well-known �(n log n) algorithm

to solve it is merge-sort. The idea is to split the data in half, recursively sort each

piece, and then merge them (a linear-time operation). We can generalize this to

split into k (� 2) pieces.

A parallel sorting algorithm is obtained by performing a single generalized

merge-sort iteration with k equal to the number of processors P . In other words,

we split the data up into P approximately-equal pieces, each lying on its respective

processor. Any serial sorting algorithm can then be applied to each piece.

Finally comes a merging phase. For simplicity, we assume that P = 2t for some

integer t. In this case, we can view merging as t typical serial merging phases.

All processors p with odd identi�ers (numbering them from zero up) send their

messages to processors p � 1. Even-numbered processors then merge their data

with the received data. The merging problem is then reduced to P=2 processors by

discarding odd-numbered processors, and we continue as above.

As an example, we chose the bubble-sort �(n2)-time algorithm for local sorting.

This has the advantage that small problems yield large execution times, making



CHAPTER 5. EXPERIMENTS AND RESULTS 65

For j = 1 to n,
For k = 1 to j � 1,

L�j  L�j � ljkL�k

ljj  
q
ljj

L�j  L�j=ljj

(a)

For k = 1 to n,
lkk  

p
lkk

L�k  L�k=lkk
For j = k + 1 to n,

L�j  L�j � ljkL�k

(b)

Figure 5.1: The two column-oriented serial Cholesky-factorization algorithms, as-
suming that L is initially A. L�j denotes the jth column of the matrix L. (a) Left-
looking (jki) algorithm. (b) Right-looking (kji) algorithm.

them less susceptible to slight deviations in measured running-time. It is also an

interesting algorithm since using the conventional de�nition it obtains super-linear

speedup.

5.1.2 Cholesky Factorization

A popular problem in numerical linear algebra is that of Cholesky factorization. The

object is to factor a symmetric, positive-de�nite matrix into the form A = L � LT ,

where A and L are both n� n and L is lower-triangular. We will assume that the

matrix is dense, that is, there is no special zero-element structure; in this case, the

problem is simple to parallelize.

Figure 5.1 gives the two main (equivalent) Cholesky-factorization algorithms.

The L�j  L�j� ljkL�k operation is called the update of column j by column k, and

the ljj  
q
ljj, L�j  L�j=ljj group operation is called the normalization of column

j. The left-looking algorithm (Figure 5.1(a)) uses previous columns to update

the current one, whereas the right-looking algorithm (Figure 5.1(b)) updates later

columns once a column is completed. These algorithms can each be parallelized by



CHAPTER 5. EXPERIMENTS AND RESULTS 66

For j = 1 to n,
If column j is owned, then

For each owned column 1 � k < j,
Update column j by column k

While column j is not completely updated,
Receive and apply a combined contribution for some column j0

Normalize column j

Else if at least one 1 � k < j is owned, then
Calculate combined contribution x of all such k for j
Send x to the owner of column j

Figure 5.2: The fan-in parallel Cholesky-factorization algorithm.

evenly distributing the columns of L, yielding the fan-in and fan-out algorithms,

respectively.

The fan-in algorithm (Figure 5.2) acts much like its serial counterpart. Each

processor loops over j, the column to be updated, and decides its contribution to

column j. All owned columns, say k
1
, ..., km, with numbers less than j are needed.

If the processor owns column j, these updates are done locally; otherwise, they are

collected via

x =
mX
i=1

ljkiL�ki

(note that this computation can be done locally) and then x is sent to the owner of

column j. Hence, the owner of j must also receive these \combined contributions"

until j is completely updated. A small complication is that contributions may be

received for some column j0 > j since the processors are not synchronized; in this

case, column j0 is updated and more messages are awaited.

The fan-out algorithm [38] (Figure 5.3) was the �rst distributed-memory
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If column 1 is owned, then
Normalize column 1
Send column 1 to all processors needing it

While the last owned column is not complete,
Receive some column k

For each owned column k < j � n,
Update column j by column k

If column j is completely updated, then
Normalize column j

Send column j to all processors needing it

Figure 5.3: The fan-out parallel Cholesky-factorization algorithm.

Cholesky-factorization algorithm. Whenever a processor completes a column, the

column is sent to all processors (including the local processor) that own a column

a�ected by it. To make fan-out reduce to a serial algorithm when only one processor

is available, one can change a \send column k to myself" instruction into adding k

to a queue. When a receive is issued, the queue is �rst checked; if it is non-empty,

column k (which is stored locally) can be used.

It is worth noting that the communication patterns of fan-in and fan-out are

extremely di�erent. Fan-in combines messages wherever possible, greatly reducing

the total message volume and the number of messages. On the other hand, fan-out

signi�cantly reduces the latency in waiting for messages, since messages are often

sent before they are needed, and so they arrive (hopefully) before they are needed.
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5.1.3 Scalable BLAS

Scalable BLAS (sB BLAS) [15] is a parallel implementation of the level 3 BLAS

(Basic Linear Algebra Subprograms). It is based on the partitioning of matrices

into blocks (hence the abbreviation sB) in the SUMMA (Scalable Universal Matrix

Multiplication Algorithm) [76]. The SUMMA work was extended to all of the

matrix-matrix operations in the (serial) level 3 BLAS. These include multiplication

of general, triangular, and symmetric matrices; symmetric rank-K and rank-2K

updates (forming A �AT and A �BT +B �AT , respectively); and back-substitution

(solving L � x = y for x) with multiple right-hand sides.

The algorithms are proven to be very scalable under a reasonable model. That

is, if P is proportional to the problem size (the order of the matrix squared),

then the e�ciency (speedup over the number of processors) is 1= (1 +O (log p)).

Experimental results also show that this theoretical bound is realized.

We will not cover the algorithms in detail. The basic MPI operations that are

used include collective communication (multicasting and reduction), synchronous

communication, and non-blocking communication. Hence, these programs o�er

extensive tests of most of the simulator's features.

5.2 Simulation Accuracy

In this section we evaluate the accuracy of simulation for the various applications

in many problem sizes. To do this, we run the parallel programs on a real parallel

system, and compare to the simulation output for a pseudo-parallel run using a
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single node of the system. The measure that we compare is total parallel execution

time. Throughout this section, the number of processes equals the number of

processors.

We used two parallel systems in these experiments. The �rst is a network of eight

identical IBM RISC System/6000 workstations connected via a 1.25 Mbyte/sec.

Ethernet. This was provided by the Shoshin lab at the University of Waterloo.

The second is Dalhousie University's IBM SP2 with four \thick" nodes connected

by a 35.5 Mbyte/sec. switch.

Obviously, the SP2 provides much higher performance than the Ethernet LAN;

it has superior processing power and networking. This has the interesting e�ect

that \granularity" has a di�erent interpretation. That is, the same program with

the same problem size has much less computation between each communication, if

we use an absolute measure (e.g., seconds) instead of one relative to the network

speed. We will see how this is important in Section 5.2.2 since we use CPU time

(which is measured in centiseconds) when logging pseudo-parallel runs.

5.2.1 Ethernet

We used the network evaluator (Section 4.5) to determine the performance of

message-passing via the MPICH [10] implementation of MPI. The raw out-

put is given in Figure 5.4. Currently, we manually remove outliers (yielding

Figure 5.5) and do a least-squares �t. The resulting model is approximately

1449:848 + 1:008644k microseconds for a k-byte message. As one can see from

Figure 5.5, the linear model is accurate; obviously, this is a necessary condition for
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Figure 5.4: Raw data from the network evaluator applied to the Ethernet network,
with a least-squares �t. The outliers cause this �t to be inaccurate.

an accurate simulation. Since we ignore network tra�c, the Ethernet is simulated

as a completely-connected network with links of this speed.

Figures 5.6 and 5.7 summarize simulation accuracy for various applications and

problem sizes. Overall, we can see that accuracy is quite impressive. Error is

consistently below 10%, and often below 5%. In the rest of this section we suggest

reasons for the observed accuracy pattern.

There are two basic points where the simulation may not be accurate: simulating

the computation and simulating the network. We use CPU time to measure the

length of computation blocks, which is only accurate to centiseconds. Second, we do

not simulate network congestion (from the above results we are convinced that the

network-link model is not at fault). CPU time is more accurate when computation
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Figure 5.5: Data from Figure 5.4 with outliers removed. This allows the least-
squares �t to be accurate.
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Figure 5.6: Simulation accuracy for the merge-sort program on the Ethernet. The
sign of the error has no predictable trend.
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Figure 5.7: Simulation accuracy for the Cholesky-factorization programs (fan-in and
fan-out) on the Ethernet. The simulation almost always under-predicts execution
time.

blocks are larger, and the network simulation is more accurate when there is less

network tra�c.

Let us �rst examine the merge-sort results (Figure 5.6). Here there are two

simple trends: (1) more processors implies less accuracy, and (2) a larger problem

implies less accuracy. It is likely that both are caused mainly by network tra�c.

Using more processors causes more messages, and using larger problems causes

larger messages. Using more processors also causes some inaccuracy in CPU time,

but this is likely minimal or else bigger problems (yielding larger computation

blocks) would greatly improve accuracy.

An important point is that the Ethernet is a bus, but we simulate a completely-

connected network. Only one message can occupy the bus at a time. For small-
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enough messages and few con
icts (that is, few processors), the di�erence is not

noticeable. For the largest problem and four processors, it is likely that this serial-

izing of messages (which we do not simulate) is causing much of the 5% inaccuracy.

Let us now turn to the Cholesky-factorization algorithms (Figure 5.7), where

the interaction is more complicated. Here we run into both inaccuracy problems.

Fan-out has much more communication than fan-in. In addition, fan-out has some

very small computation blocks in between message-sends. For a 1000�1000 matrix,

fan-out is not simulated as well as fan-in, likely for both reasons. When we move

to 2000� 2000, fan-out becomes better for two processors and returns to (slightly)

worse than fan-in at four processors. This is likely because tra�c is not an issue

when only two processors are involved, and hence the bene�t in CPU-time accuracy

is high; since CPU-time accuracy is more important in fan-out, it ends up having

more accuracy in this case.

We were unable to run further tests (for example, with eight processors) because

of problems in using the Ethernet. In particular, we did not gather any results for

the Scalable BLAS. In this case, however, more results are likely unnecessary, since

the sorting and Cholesky-factorization applications are accurately simulated.

5.2.2 SP2

An advantage of the SP2 is that an a�ne model of network link performance is

published. The model states that the time to send a message of length k is approx-

imately 39 + 0:026864k milliseconds. Thus, we did not need to run the network

evaluator.
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Figure 5.8: Simulation accuracy for the Cholesky-factorization programs (fan-in
and fan-out) on the SP2. The simulator consistently over-predicts for fan-in, and
under-predicts for fan-out.

As mentioned earlier, the SP2 has much faster processors. Because of this,

the merge-sort and Cholesky-factorization problems of the above sizes are trivial

to solve. The merge-sort algorithm takes so little time that it was impossible to

measure accuracy because of slight variance in runs. Cholesky factorization was not

as bad, but it still does not o�er a coarse-enough grain with problems that �t in

main memory. Hence, CPU times are very inaccurate and the results (Figure 5.8)

are poor.

For the above reasons we need larger (and therefore coarser-grain) applications

that do not require as much memory. This is why we chose the Scalable BLAS

library. We ran the four main subroutines each with matrices of size 800 � 800,

1600� 1600, and 2400� 2400. The results are given in Figures 5.9, 5.10, and 5.11,
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Figure 5.9: Simulation accuracy for the Scalable BLAS with a 800� 800 matrix on
the SP2. For two and four processors, the simulator consistently over-predicts the
execution time.

respectively.

It is clear that the 800 � 800 problem has too �ne a grain. This can also be

derived from the fact that the problem is too small, as it takes less than three

seconds to run in each case. This leads to the inaccuracies shown in Figure 5.9,

which is only two times better than the Cholesky-factorization results in the worst

case. Fortunately, it was easy to use larger problems.

The 1600�1600 results (Figure 5.10) are impressive, consistently staying below

6% relative error. Hence, this problem size yields a satisfactory granularity, and

CPU time is good at approximating the length of computation blocks1. As ex-

1Note however that it is not perfect, since 1-processor simulation has some inaccuracy, because
we sum the (approximate) lengths of computation blocks instead of taking total execution time.
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Figure 5.10: Simulation accuracy for the Scalable BLAS with a 1600� 1600 matrix
on the SP2. For two and four processors, the simulator consistently over-predicts
the execution time.

pected, the accuracy goes down with more processors, since then the computation

blocks shrink signi�cantly.

Surprisingly, some of the results get worse when we switch to a 2400 � 2400

matrix. One would expect that, since the computation blocks get larger, CPU time

is more accurate, and hence the simulation is more accurate. The reason for partial

failure (sometimes reaching 8% error) is not the same as with the Ethernet, where

network tra�c was incorrectly simulated. With the SP2 switch, there is no network

tra�c.

Note that there are essentially two sets of lines. The top group (with two lines)

reaches up to the 8% error, whereas the bottom group (with three lines) only reaches

up to 3% error, which is much better than the 6% obtained with the 1600 � 1600
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Figure 5.11: Simulation accuracy for the Scalable BLAS with a 2400� 2400 matrix
on the SP2. For two and four processors, the simulator consistently over-predicts
the execution time.

problem. Thus, there is only a problem with the top two lines, which correspond

to general matrix-matrix multiplication and symmetric rank-2K updates.

After considerable e�ort we found the reason that we obtain lower accuracy

for these two problems is memory limitations. The two problems used signi�cantly

more (approximately double) memory than the others. General matrix-matrix mul-

tiplication does not have a symmetric problem, and the symmetric rank-2K update

has another matrix involved. We noticed the same di�culty when 1-processor runs

were attempted with a 2400� 2400 matrix and the program attempted to allocate

blocks that were larger than the maximum allowed (hence the missing data points

in Figure 5.11). For simulating two and four processors (where the programs at

least run), the single node that was used in pseudo-parallel swapped to disk.
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One would hope that swapping would not a�ect the user CPU time measure,

which is what the logging library uses. Unfortunately, experiments on the SP2

show that 30% error in CPU times can be observed in conjunction with a fair

amount of swapping. This was determined by running a program whose execution

time is proportional to the amount of memory used, so that the actual amount of

computation is predetermined by running it with multiple problem sizes. Because of

this error, computation blocks in the two Scalable BLAS problems were incorrectly

measured, yielding the observed inaccuracy.

5.3 Speed of Simulation

A primary goal in the development of PUPPET was an extremely fast simula-

tion. We developed an approximate but highly e�cient network model by ignoring

network tra�c. This also applies to collective operations, greatly improving the

performance of simulating them.

As Figures 5.12 and 5.13 show, the goal was reached. The delay involved in

simulating appears to be linear in the number of log entries. Furthermore, the

constant involved is very low. More than 10,000 entries are needed before the

simulation takes �ve seconds. All of the Scalable BLAS programs, which made up

to 3,376 entries, took less than a third of a second.
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Figure 5.12: Time for a node of the SP2 and a RISC/6000 to simulate Cholesky-
factorization executions on the SP2 and the Ethernet, respectively.
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5.4 Scaled Speedup

Given just a parallel execution, the simulator estimates notions of serial execution

time and speedup. These are not the traditional interpretations of Amdahl [2];

obviously, if a serial execution is not given, typical serial time cannot be calculated.

Instead, serial execution time represents the time it would take to run the parallel

program on a single processor by multitasking.

As one would expect, speedup is this measure divided by estimated parallel

execution time. Gustafson, Montry, and Benner [43] were the �rst to use this metric,

and called it scaled speedup. It compares the advantage of using multiple processors

(parallelism) to the advantage of using a single processor (fast communication).

Scaled speedup is a good measure for evaluating parallel-program performance.

It accounts for implicit change in problem complexity when the number of proces-

sors changes. Thus, it is never super-linear.

As an example, let us examine the parallel merge-sort application; recall that

it is based on an O(n2) serial algorithm and hence obtains super-linear speedup

(Figure 5.14). Assuming a perfect parallelization of bubble sort, one would expect

speedups of 4, 16, 64, ... for 2, 4, 8, ... processors. To convert this to something

that makes more sense, we could take the square-root of the speedups (Figure 5.15).

Of course, this doesn't take into account the merging phase, which consists of

O(n log n) computation and O(log n) message-send phases.

As one would hope, scaled speedup (Figure 5.16) is slightly lower than the

square-root of typical speedup, since the merge phase makes the algorithm some-

what less e�cient. It essentially scales speedup appropriately, using a function like
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Figure 5.14: The typical notion of speedup (time for serial algorithm over time
for parallel algorithm) for the bubble-based merge-sort algorithm on the simulated
Ethernet.

square-root. However, it is very general, and requires no insight into the underlying

algorithm (e.g., O(n2) complexity).

5.5 Load Balancing

One of the unique features of PUPPET is its support for multitasking, that is,

more processes can be simulated than processors. The user can specify an arbitrary

process-to-processor mapping. In particular, this can be used to evaluate various

load-balancing schemes.

In this section we examine a simple load-balancing method, as applied to the

fan-in algorithm run on the Ethernet. To make the problem interesting, we choose
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P (the number of processors) to not evenly divide p (the number of processes).

Namely, P is 9 and p is 32.

The balancing algorithm that we chose to evaluate starts with a random map-

ping. This mapping is then evaluated via the simulator; since PUPPET is loosely

coupled, the program only has to be run once. We move one process from the best-

utilized processor to the least-utilized processor. We then continue by simulating

and moving another process, until we cycle back to a mapping that we have seen

before. That is, we try to balance processor utilization.

Figure 5.17 shows the evolution of three attempts, each starting at di�erent

randomly-chosen mapping. We use parallel execution time as an indication of how

good the mapping is. One can see that the e�ectiveness of the load-balancing

algorithm depends greatly on the starting point.

To illustrate the improvement over a random mapping, we plotted the utiliza-

tions at iterations zero (Figure 5.18) and nine (Figure 5.19) for attempt three,

which represent the worst and best mappings for this attempt. The load-balancing

scheme seems to be doing well at distributing the work given enough attempts.

5.6 Di�erent Topologies

A crucial advantage of simulation is that one can evaluate systems that one does

not have access to, or that do not even exist. In this section we consider a simple

example of this; there are many situations where it is useful.

Suppose we are considering buying a small LAN for use with a special applica-

tion that has characteristics similar to merge-sort. There are two options available
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Figure 5.19: Utilization of processors for best mapping found in attempt three.

to us from our vendor, who provides network links of speed similar to the Ethernet.

Either we obtain a hypercube topology or a ring topology, the former being more

expensive. (Note that a hypercube topology is optimal for merge-sort, since the

communication pattern is a subset of a hypercube; see Section 5.7.1.) We would

like to evaluate if it is worth the extra money for the extra performance.

Figure 5.20 shows results for sorting a 10,000-integer array on the two possible

(simulated) computers. It is clear that 16 processors (yielding a scaled speedup of

11) are not e�ciently used. For 8 processors and less, there is a small di�erence

between the two systems (for this application). Hence, we would likely opt for

the cheaper ring network. If we are willing to buy 16 processors, we would also

likely buy a hypercube network, or else it would hardly be worth the eight extra

processors.
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Figure 5.20: Scaled speedup for merge-sort program for two di�erent topologies.

As one can see, it is easy to estimate performance for a ring (or other topology)

supercomputer using the proposed simulator. In addition, multiple topologies can

be tested and compared, without rerunning the programs. For example, one could

compare a program's performance on a Cray T3D and an Intel iWarp, which have

3-D torus and hypercube topologies, respectively, without access to these machines,

assuming that the network model is su�cient, and the network-link model parame-

ters are known. (Without augmentation or instruction-level simulation, one would

also need access to processors equivalent to those on the supercomputers.)
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Figure 5.21: The hypercube display after animation for the merge-sort program.

5.7 ParaGraph

Recall that the simulator can generate PICL logs for use with the ParaGraph [44]

parallel-program performance-visualization tool. In this section we demonstrate

the usefulness of ParaGraph for performance- and program-understanding. In

particular, we show snapshots of ParaGraph using the merge-sort and Cholesky-

factorization algorithms.

5.7.1 Merge-Sort

Let us �rst consider the merge-sort program.

We can verify that the communication pattern for merge-sort is in fact a subset

of a hypercube using a built-in ParaGraph feature. The hypercube display animates

the communications in the program, and at the end (Figure 5.21) shows all links

that were used. Those that are outside a hypercube topology are colored gray.

Since all of the links are colored black, a hypercube is optimal for merge-sort.

One can also visualize the estimated real-time log with horizontal trace lines
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Figure 5.22: The tail-end of the space-time diagram for the merge-sort program.

(representing processors) and other lines denoting messages traveling between pro-

cessors. This is called a space-time diagram (Figure 5.22). This view is useful to

get an overall idea of what the parallel program is doing. At times it can even be

used to spot bugs in the program by noting failed assertions such as processor 0

sending to processor 2 before processor 1 when it is supposed to communicate with

processors in ascending order.

5.7.2 Cholesky Factorization

Let us now turn to the Cholesky-factorization problems, fan-in and fan-out. It is

not clear exactly how the two compare (for example, we may ask which is faster

for a 1000 � 1000 problem). In this section we attempt to answer such questions

by understanding the performance of the two programs.

First we look at the space-time diagrams for each (Figures 5.23 and 5.24). We

found it quite interesting to see this pattern for an algorithm which we have long



CHAPTER 5. EXPERIMENTS AND RESULTS 89

Figure 5.23: A window of the space-time diagram for the fan-in program.

worked with, but have only now \understood." For example, the fan-in algorithm

has a kind of cascaded pattern of computation blocks; this suggests that overlapping

computation and communication may be useful. One can also see that, as we

guessed from examining the algorithms, fan-out has much more communication

but less idle time (smaller gaps in the trace lines).

This is made clearer by the phase portraits of the two executions (Figure 5.25).

A phase portrait is a history of processor utilization (x axis) and network utilization

(y axis) summaries. The various points are connected by line segments to show the

order. One can see that fan-out typically has higher values in both dimensions,

signifying that there is less idle time but that there is more network tra�c.

As a �nal example, we examine the message queue on each processor (Fig-

ures 5.26 and 5.27). This view is most useful as an animation, which is di�cult to

show here. We give snapshots to illustrate the general idea. Fan-in tends to have

concentrated \waves" of queue congestion that move in increasing order among the
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Figure 5.24: A window of the space-time diagram for the fan-out program.

(a) (b)

Figure 5.25: Phase portraits for (a) fan-in and (b) fan-out.
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Figure 5.26: A snapshot of the queue lengths (black) at each processor for fan-in,
including the maximum sizes reached so far (gray).

processors; in Figure 5.26 the wave is currently centered around processor 1. On

the other hand, fan-out tends to have signi�cant queue lengths at every processor,

although it reaches a much lower maximum than fan-in. Again, we have obtained

more insight into the programs than we had before.
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Figure 5.27: A snapshot of the queue lengths (black) at each processor for fan-out,
including the maximum sizes reached so far (gray).



Chapter 6

Conclusion

In this thesis, we have shown that parallel-computer simulation is a powerful tech-

nique. Users can develop their programs in a pseudo-parallel environment and

estimate the performance of a real parallel computer. This allows avoiding use of

supercomputing resources when it is not necessary, for example, during the devel-

opment phase of an application or for learning to program in parallel. Simulation

also allows one to evaluate systems that do not yet exist, which is useful when

considering buying a parallel computer.

This thesis focused on the development of PUPPET (Performance Under a

Pseudo-Parallel EnvironmenT), a system for simulating MPI-based distributed-

memory parallel computers. In compromising the accuracy of network simulation

somewhat, it achieves incredible performance. The simulation has a loose coupling

with the program, so that a program can be evaluated on many architectures by

running the program only once.

93
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6.1 New Features

PUPPET has several features that have not been provided (as far as we know)

by any other simulation system. One primary di�erence is that it automatically

instruments the user's program, written in MPI. MPI is one of the most popular

programming languages based on the message-passing paradigm. Most simulation

systems require that the user write in a special or uncommon language, making it

di�cult to later port and use the program on a supercomputer.

The overall goal of a simulation is to schedule each program-generated event to

determine the program's performance, essentially making an estimated real-time log

of the execution. PUPPET is the �rst simulator that actually generates a real-time

log in a popular format that can be used by other programs, instead of taking on the

large research area of performance visualization when there is already signi�cant

progress. In particular, we chose the log format supported by ParaGraph, since it

is likely the most-developed public-domain visualization tool.

This thesis proposes a new model of direct networks, including details on how to

support both point-to-point and collective operations. The model ignores network

tra�c, which is particularly e�ective when tra�c is not an issue (for example, in an

IBM SP2 which uses a crossbar switch). PUPPET adopts this scheme for network

simulation since it o�ers great performance bene�ts.

Because of this network model, PUPPET supports the collective communication

constructs of MPI, which is also unique. In fact, PUPPET supports all of MPI's

deterministic features, including non-blocking communication. Three kinds of send

operations are supported, bu�ered, synchronous, and no-space (where the send
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completes once the message arrives), the latter two of which we believe to be entirely

new.

Another feature that has not been examined before is multitasking. PUPPET

can simulate more processes than processors, that is, multiple processes can share

individual processors, and are scheduled in a round-robin fashion. This allows one

to evaluate various load-balancing schemes. Because PUPPET is loosely coupled,

many schemes can be evaluated by running the program only once.

6.2 Future Work

There are several possibilities for extending the PUPPET project. One option is

to bring features from other simulators to PUPPET. These include augmentation

and/or instruction-level simulation, providing much higher accuracy than CPU

time; an accurate network model for use when speed is less important or the network

is simple (e.g., the Ethernet); the potential to have tight-coupling to simulate non-

determinism; and simulation of an I/O subsystem.

Another possible direction is to add additional unique features. Dynamic pro-

cess management is supported by the LAM MPI implementation, and it would

likely be worth supporting in PUPPET; this would also have the consequence that

a port to PVM (a popular message-passing system) would be quite simple. MPI-2

o�ers many new features and is currently under development; we hope to support

it once it becomes o�cial. Finally, we are currently considering the development

of an MPI implementation that uses threads instead of UNIX processes to achieve

high-speed task-switching for high-speed pseudo-parallelism.



Appendix A

Raw Data

This appendix contains the raw data that produced the plots of Chapter 5, ex-

cept for the network-evaluator and simulation-speed results (for which there are

hundreds of data points).
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2 procs. 4 procs.
Program Problem Size Act. Sim. Act. Sim.

10,000 13.92 13.92 3.69 3.67
Merge-

20,000 55.69 55.50 14.06 14.25
sort

30,000 124.11 123.39 33.65 32.08
1,000 216.44 215.64 108.05 108.46

Fan-in
2,000 1719.95 1706.43 843.06 823.50
1,000 223.34 220.73 119.47 112.51

Fan-out
2,000 1773.13 1764.49 908.84 887.56

Table A.1: Accuracy results for the Ethernet. The problem size represents the
number of integers for the sorting programs, whereas it indicates the double precision
matrix order for fan programs. Times are in seconds; act. and sim. stand for actual
and simulated execution time, respectively.

2 procs. 4 procs.
Program Problem Size Act. Sim. Act. Sim.

1,000 6.66 7.38 3.62 5.32
Fan-in

2,000 50.51 51.30 29.09 31.12
1,000 6.81 6.69 3.68 4.19

Fan-out
2,000 54.58 51.76 40.05 28.00

Table A.2: Accuracy results for Cholesky factorization on the SP2.
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1 proc. 2 procs. 4 procs.
Program Size Act. Sim. Act. Sim. Act. Sim.

800 7.01 7.00 3.69 3.79 1.91 2.22
GEMM 1600 55.99 55.70 28.70 28.87 14.70 15.30

2400 | | 96.06 99.32 47.83 51.20
800 3.67 3.67 1.93 1.98 1.06 1.26

TRMM 1600 28.66 28.47 14.67 15.03 7.75 8.11
2400 96.04 95.55 48.91 49.23 24.86 25.37
800 3.72 3.71 1.97 2.05 1.11 1.35

SYRK 1600 28.85 28.65 14.86 15.16 7.91 8.36
2400 96.30 95.84 49.25 50.10 25.63 26.39
800 7.41 7.39 3.92 4.06 2.22 2.59

SYR2K 1600 57.62 57.29 29.67 30.25 15.83 16.52
2400 | | 98.24 103.02 51.35 55.37
800 3.56 3.55 1.87 1.97 1.06 1.19

TRSM 1600 28.20 28.01 14.47 14.70 7.79 7.95
2400 95.00 94.62 48.42 48.88 24.98 25.19

Table A.3: Accuracy results for the scalable BLAS library on the SP2. GEMM,
TRMM, SYRK, SYR2K, and TRSM stand for general matrix multiplication, trian-
gular matrix multiplication, symmetric rank-K update, symmetric rank-2K update,
and triangular solve, respectively. Dashes (|) denote problems that attempted to
allocate data blocks larger than the maximum allowed, and so could not be run.
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Typical Square- Scaled
P speedup root speedup
2 4.2071 2.0511 1.9766
4 15.1805 3.8962 3.6051
8 44.9873 6.7073 5.6018
16 68.5619 8.2802 5.8087
32 76.1486 8.7263 6.0604

(a)

Typical Square- Scaled
P speedup root speedup
2 4.0408 2.0102 1.9793
4 17.7372 4.2116 3.8603
8 61.1046 7.8169 6.8294
16 146.5111 12.1042 9.0301
32 239.7313 15.4833 8.9786

(b)

Typical Square- Scaled
P speedup root speedup
2 4.0744 2.0185 1.9969
4 17.3316 4.1631 3.9074
8 67.8781 8.2388 7.1970
16 201.0915 14.1807 11.1338
32 386.9224 19.6703 12.5176

(c)

Typical Square- Scaled
P speedup root speedup
2 3.9459 1.9864 1.9976
4 15.9474 3.9934 3.9446
8 67.6620 8.2257 7.6259
16 245.9580 15.6830 13.2327
32 633.9893 25.1791 17.4460

(d)

Table A.4: Various speedup metrics for the merge-sort program, as evaluated by
the simulator, with a problem size of (a) 10,000, (b) 20,000, (c) 40,000, and (d)
80,000.

Iteration number

Attempt 0 1 2 3 4 5 6 7 8 9 10

1 23.63 21.94 21.24 20.64 20.37 20.33

2 22.40 21.54 20.31 20.10 19.22

3 22.90 21.35 19.51 19.19 19.10 18.33 17.93 18.10 17.53 17.20 17.60

Table A.5: Convergence of the simple load-balancing scheme for three attempts.
Numbers are recorded until the last non-repetitive mapping is reached.
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Case p1 p2 p3 p4 p5 p6 p7 p8 p9
It. 0 5.98 69.33 86.67 52.03 12.50 25.25 94.35 36.96 12.36
It. 9 59.38 60.01 71.81 70.90 60.11 56.51 74.12 66.48 74.77

Table A.6: Utilization (in percent) of the nine processors used to solve a 32-process
merge-sort problem with two process-to-processor mappings: the initial random
mapping from attempt three and the best mapping found in attempt three.

Number of processors
Topology 2 4 8 16
Hypercube 1.98 3.82 6.85 10.97
Ring 1.98 3.80 6.37 7.34

Table A.7: Scaled speedup for the merge-sort program with two di�erent topologies.
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