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Abstract

This thesis is concerned with the classification of 7-dimensional nilpotent Lie alge-
bras. Skjelbred and Sund have published in 1977 their method of constructing all
nilpotent Lie algebras of dimension n given those algebras of dimension < n, and
their automorphism groups. By using this method, we construct all nonisomor-
phic 7-dimensional nilpotent Lie algebras in the following two cases: (1) over an
algebraically closed field of arbitrary characteristic except 2; (2) over the real field
R.

We have compared our lists with three of the most recent lists (those of Seeley,
Ancochea-Goze, and Romdhani). While our list in case (1) over C differs greatly
from that of Ancochea-Goze, which contains too many errors to be usable, it agrees
with that of Seeley apart from a few corrections that should be made in his list,
Our list in case (2) over R contains all the algebras on Romdhani’s list, which omits

many algebras.
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Introduction

This thesis is concerned with the classification of 7-dimensional nilpotent Lie algebras.
Skjelbred and Sund have published in 1977 their method of constructing all nilpotent Lie
algebras of dimension n given those algebras of dimension < n, and their automorphism
groups. By using this method, we construct all nonisomorphic 7-dimensional nilpotent
Lie algebras in the following two cases: (1) over an algebraically closed field of arbitrary
characteristic except 2; (2) over the real field R. Our lists are given in Chapter 4.

Many attempts have been made on this topic, and a number of lists have been published.
To mention just a few: The earliest list is given by Umlauf (1891) [37] in dimensions < 6
over complex field. Later on Dixmier (1958) [8] gives a complete list in dimensions < 5 over
a commutative field.

In dimension 6, there are various lists obtained by Morozov (1958, over a field of charac-
teristic 0) [20], Shedler (1964, over any field) [34],Vergne (1966, over C) [38], Skjelbred and
Sund (1978, over R) [36], Beck and Kolman (1981, over R) [3]. Nielsen (1983) [22] compares
the tables of Morozov, Vergne, Skjelbred and Sund, and Umlauf and gives for the first time
a complete and nonredundant list for nilpotent Lie algebras of dimension 6 over the real

field.

In dimension 7, there are also several lists available: Safiullina (1964, over C) [26], [27],
Romdhani (1985, over R and C) [24] [25], Seeley (1988, over C) [31], Ancochea and Goze
(1989, over C) [2]. The lists above are obtained using different invariants. By introducing
a new invariant — the weight system, Carles (1989) [6] compares the lists of Safiullina,
Romdhani and Seeley, and has identified omissions and some mistakes in all of them. Later
on in 1993, basing on his own thesis, by incorporating all the previous results, Seeley [33]
published his list over C.

There are also other partial classifications concerning some particular properties of nilpotent
Lie algebras. Among them are: Favre (1973) [10] for nilpotent Lie algebras of maximal rank;
Scheuneman (1967) [30], Gauger (1973) [11] and Revoy (1980) [23] for two-step nilpotent
algebras; Ancochea and Goze (1988) [1] for filiform Lie algebras.

Various tactics have been implemented. Morozov’s classification depends heavily on the
property that a nilpotent Lie algebra of dimension n contains a maximal Abelian ideal of



dimension m > 1/2((8n + 1)'/2 — 1) and a classification of the representations by nilpotent
transformations of a low dimensional Lie algebra. Safiullina’s list is obtained by using this
approach. Magnin (1986) [18] introduces a different approach, to enlarge a smaller algebra
by adjoining a derivation. He uses this method to construct all nilpotent Lie algebras
of dimension < 7 having a fixed Lie algebra of codimension 1, and also obtains among
others results, a new classification of 6-dimensional nilpotent Lie algebras over R (same
as Morozov’s). For algebraically closed fields, Favre [10] and Gauger [11] give another
method by regarding all nilpotent Lie algebras as quotients of some “free nilpotent Lie
algebras”. Later Santharoubane (1979) [28][29] further generalizes this idea and establishes
a link between nilpotent Lie algebras and Kac-Moody Lie algebras. Skjelbred and Sund
(1978) [36] reduce the classification of nilpotent algebras in a given dimension to the study
of orbits under the action of a group on the space of second degree cohomology of a smaller
Lie algebra with coeflicients in a trivial module. Seeley assumes knowledge of algebras in
dimensions less than seven, and considers the upper central series dimensions of a nilpotent
algebra as an invariant, which are usually shared by many non-isomorphic algebras. So he
also identifies some further invariants for each typical upper central series dimensions in
order to sort out various possibilities and resorts to many kinds of techniques trying to get
all the algebras without redundancy. So essentially, we might say, and to put in his own
words, Seeley obtains his list “without machinery, taking the attitude that no reduction in
the amount of hard work would result.” ([31], pp. vi).

One phenomenon worth mentioning is: there are only finitely many isomorphism classes of
nilpotent Lie algebras of dimension less than or equal to 6, whereas in higher dimensions
there are infinite families of pairwise nonisomorphic nilpotent Lie algebras. In dimension
7, each infinite family can be parametrized by a single parameter. Seeley (1992) [32] has
tackled the problem of determining the number F,, of parameters needed to classify the
laws of n-dimensional complex nilpotent Lie algebras, and comes up with the estimate that
Fanya > n(n — 1)(n+ 4)/6 — 3. In particular, for dimensions 8 and 10, the number of
parameters involved will be respectively > 4 and > 13, which makes it very difficult to give
a complete list (as for dimension < 7). Therefore it becomes all the more desirable to have
a complete and nonredundant list for 7-dimensional nilpotent Lie algebras.

We use the Skjelbred-Sund method to construct all the 7-dimensional algebras. From our
point of view, this is the best method, as it provides a systematic approach to construct
all the algebras, as the readers will see in the following chapters. But before our project
is carried out, it should be noted that many people think otherwise. In talking about this
method, Seeley [31] [33] said “it is difficult to use in practice”. Magnin [18] even claimed that
“le calcul des orbites présentant des difficultés, elle ne semble pas pouvoir étre actuellement
utilisée pour la classification des algeébres de dimension 7.

A detailed illustration of this method will be given in Chapter 2. Unlike many of the previous
7-dimensional lists, where “trial and error and good guesswork came into play” ([31], pp.

vii), we come up with all the necessary mathematical details that everyone can follow and



check — both for completeness and nonredundancy. Naturally we follow Seeley’s labelling
of algebras by using central series dimensions. There are two reasons: firstly because his
list is the most reliable one, and secondly also due to the method we use, which regards all

the algebras as central extensions of smaller dimensional Lie algebras.

We have compared our list with that of Seeley over C. It turns out that, although Seeley’s
list is almost perfect, there are still some errors — some of them Seeley himself has also been
aware of. The following four corrections should be made:

1,3,75: [b,c] = g should be replaced by [b,d] = g, otherwise it is
isomorphic to 1,3,7 4.

1,3,4,5,7g:  Not a Lie algebra, since Jac(a, b, ¢) = [a, [b, c]] + [b, [c, a]] +
[c,[a,b]] # 0. Should be deleted.

1,4,7g: One should impose a further restriction on the parameter:
£#£0,1. If £ =0, or 1, the center has dimension 2, and the
algebra is isomorphic to 2,4,7p.

1,3,56,75: One should impose a further restriction on the parameter:
& #£ 1. If £ =1, the center has dimension 2, and the algebra
is isomorphic to 2,3,5,7p.

These corrections are necessary, as people still refer to Seeley’s list without being aware of
some of these errors. In a recent paper by Cairns, Jessup and Pitkethly [5] in 1997, they
give the Betti numbers of nilpotent Lie algebras of dimensions at most 7, where they also
provide the Betti numbers for 1,3,4,5,7, which, according to above, should not be there at
all.

We have also compared Seeley’s list (as corrected above) with that of Ancochea and Goze’s.
Unfortunately, Ancochea and Goze’s list turns out to contain too many errors to be usable,
with a lot omissions, and among those being listed, many of them are not Lie algebras at

all, and others occur more than once.

Before our work, only Romdhani [24] [25] has provided a list for the real case. A comparison

with his list of real algebras reveals that he has also missed many algebras.

Maple v© plays a decisive role in our classification, and especially in our comparisons with
all the other lists. It is totally unimaginable to carry out this project without something
like Maple, and we do hope that the readers, while reading through the proofs, will ap-
preciate the power of this interactive computer algebra system, which has been used in
the computation of (1) the Jacobi identities; (2) the cocycles; (3) the orbits of normalized
cocycles under the automorphism group; (4) the isomorphism between two algebras, and as
a special case, the automorphism groups; (5) the derivation algebras; (6) solving all kinds

of equations, etc., among many other things.



Now we mention briefly the layout of the thesis.

In Chapter 1, we introduce some of the basic definitions of nilpotent Lie algebras which are
used throughout the thesis.

In Chapter 2, we describe the method of Skjelbred and Sund, and include some basic
introduction to cohomology theory of nilpotent Lie algebras.

In Chapter 3, we present the list of all six-dimensional nilpotent Lie algebras over an
arbitrary algebraically closed field, followed by the proof that the list is complete and
nonredundant. Included in the list are the weight system and the generic automorphism for
each algebra, as we need all this information for our construction of 7-dimensional nilpotent
algebras.

In Chapter 4, we present our lists of all indecomposable 7-dimensional nilpotent Lie algebras
over algebraically closed fields of arbitrary characteristic except 2, and also over R.

In Chapter 5, we construct all indecomposable two-step nilpotent Lie algebras ( i.e., central
extensions of Abelian algebras), both for the real field and for algebraically closed fields.

In Chapter 6, we give the proof for the case when the ground field is algebraically closed of
characteristic not 2.

In Chapter 7, we give the proof for the case when the ground field is real.

In Appendix A, we establish the correpondence between our list and Nielsen’s list for inde-
composable six-dimensional real nilpotent Lie algebras.

In Appendix B, we compare Seeley’s (corrected) list with that of Ancochea-Goze’s for all
the indecomposable 7-dimensional nilpotent Lie algebras over C.

In Appendix C, we compare our list of indecomposable 7-dimensional nilpotent real algebras
with that of Romdhani’s.

In Appendix D, we give a summary of all the 7-dimensional indecomposable nilpotent Lie
algebras as they arise from those of dimensions < 6 in our construction. The readers may
easily identify the central quotients of all the seven-dimensional algebras with this list, and
locate the details of the corresponding proofs if they wish.

In Appendix E, we provide some of the main Maple programs that have been used in our

computation.



Chapter 1

Some Concepts of Lie Algebras

In this chapter we introduce some basic definitions and notations that are used throughout
the thesis. Most of them can be found in any standard books on Lie algebras [15] [19].

1.1 Basic Definitions

Definition 1.1 Let g be a Lie algebra over a field F. Let D = g, C% = g, Cog = {0},
D*tlg = [D'g, D'g], C**'g = [C'g, 4], and Ciy1(g) = {z € gllz, o] C Ci(g)} for any i. We
call

g=D%>D'>--->DFg> ...

the derived series of g,

g=C% >C%>--->CkgD .-

the lower central series of g, and

{0} = Co(g) C C1(a) C -+~ C Clg) C - -

the upper central series of g. We also call respectively

dim C%, dimClg, - ,dimCFyg, - - -
and
dim Cy(g), dimCs(g), - - - , dim Cy(g), - - -

the lower central series dimensions of g and the upper central series dimensions of g. We

will simply denote them by (dimC%g,dimClg, - - ) and (dimC1(g), dimCs(g),- - ).

Definition 1.2 A Lie algebra g of dimension n is called filiform if

dimC*s=n—-k—-1 for k> 1.



Definition 1.3 A nilpotent Lie algebra g is called two-step nilpotent (or metabelian) if it
satisfies C*g = {0}.

Definition 1.4 The Heisenberg algebra H, of dimension 2p+1 is defined by the brackets:

[131, l‘z] = [133, 134] == [l'zp—l, l‘2p] = T2p+1,

and all other brackets [z;,z;| are 0, where ¢1,- - ,Z2p11 is a basis for Hy.

Definition 1.5 Let g be a nilpotent Lie algebra and Der g its derivation algebra. The Lie

algebra g is called characteristically nilpotent if every f € Der g is a nilpotent endomorphism

of g.

Definition 1.6 Let F be the free Lie algebra on g-generators yi,---,yq ([15], p.167). Let
F.. denote the subspace of F generated by all elements of the type [Yi,, Uiy, 1 Yipy_y s Yin) =
(o Wi Yinds o ) Yin_y ) Yin] where i; € {1,2,---,g}. F is graded with F,, as the homoge-
neous componet of degree n, and furthermore F" = @jZn F;. We call N(l,g) = F/F!H1
a free nilpotent Lie algebra of class | on g generators.




1.2 Weight Systems and Decomposability

Let g be a Lie algebra over an algebraically closed field F of characteristic 0. Denote by
Der g and Aut g its Lie algebra of derivations and the group of automorphisms. Let T by
a commutative subalgebra of Der g consisting of semi-simple endomorphisms. 7' is called
torus on g. A torus T on g is called maximal if it is not contained in any other torus of
larger dimension. A torus 7 on g defines naturally a representation in g, and the elements
of T' can be diagonalized simultaneously. Therefore g can be decomposed as a direct sum
of weight spaces, i.e.,
9= Bacr*g”

where T is the dual space of T, and

g ={z € glt(z) = a(t)z,Vt € T}.

Over algebraically closed fields, the conjugacy theorem of Mostow [21] shows that the weight
system associated with a maximal torus is invariant up to a permutation by isomorphim.
We define the rank of g to be the common dimension of maximal tori over g, and denote it

by rank(g).

Let T be a maximal torus on g, and

R(T) = {a € T"|dimg* > 0}.
Let W(T') be the set of all the pairs (a, da), where a € R(T') and do the multiplicity of «,
that is,

W(T) = {(a,da)|a € R(T), do=dimg®}.

Definition 1.7 The set W(T') is called the weight system associated to g, or we may say

that a weight system is just the set of weights together with their multiplicities.

Definition 1.8 Two weight systems W(T) and W'(T") are said to be equivalent if dimT =
dim T’ and the linear representation of T in g is equivalent to that of T' in g¢'.

Theorem 1.1 [10] The equivalence class of a weight system of a Lie algebra g is an in-

variant of g.
Let B be the set of all the weights corresponding to g/C?g.

Definition 1.9 A path in R(T) is a sequence 1, - -, B; of points in R(T) such that Bit1 —
Bi or Bi—Biy1 are in B for all1 <i<I1—1. A connected component of R(T) is an arcwise

connected component.



Theorem 1.2 [10, 17] Let g be a nilpotent Lie algebra.
1). If g = g1 @ gy (direct ideal sum), then rank(g) = rank(g;) + rank(g,);
2). If g is indecomposable, then R(T) is connected;

3). If Ry,---, Ry are the connected components of R(T) and let g; = @ucr; 8%, then each
g; is an ideal of g, and g is a direct product of g;: 9 = [[;<;<;8;- Furthermore, g; is
mdecomposable, i.e. it cannot be decomposed into the product of two nonzero Lie algebras.

Therefore we may use the weight system to determine the decomposability of an algebra
over an algebraically closed field of characteristic 0. Using Carles’s work on weight systems

for nilpotent Lie algebras [6], this has been made quite straightforward.



Chapter 2

The Skjelbred-Sund Method

2.1 Cohomology of Nilpotent Lie Algebras

We will introduce some basic definitions and properties of the cohomology of nilpotent Lie
algebras in this section. Readers may refer to [7] [13] [15] for details.

Let g be a Lie algebra, F a field, and consider F* as a trivial g-module.

Definition 2.1 A mapping f : g X --- X g(i times ) — F* is called an i-linear mapping if

[ sends an i-tuple (21, - ,2;), ¢4 € g, into f(zq, -+ ,2;) € F* in such a way that for fized
values of &1, -+, &q_1, g1, - -, ; the mapping zy, — f(z1,---,2;) is a linear mapping of
g into FF.

Definition 2.2 An i-linear mapping is skew symmetric or alternating if f takes value 0

when any two of the x4 are the same.

Definition 2.3 An _i-dimensional F*-cochain (or simply “an i-cochain”) for g is a skew
symmetric i-linear mapping of g X - -+ X g (i times) into F*,

The set Ci(g, F*) of all i-cochains is a vector space relative to the usual definitions of

addition and scalar multiplication of functions.

Definition 2.4 If f is an i-cochain, i > 1, f determines an (i 4+ 1)-dimensional cochain

df, called coboundary of f, defined by the formula

(df)(wl’ U ’mi-l-l) = Z(_l)m—l_lf(mla te aima te aila Cr L4, [J)m,illl]),

m<l

where the” over an argument means that this argument is omitted. If i = 0, we set df = 0.

d maps C(g, F*) linearly into C**'(g, F¥) and is called the coboundary operator.




Definition 2.5 An i-cochain f is called a cocycle if df = 0 and a coboundary if f = dg for

some (i — 1)-cochain g.

The set Zi(g, Fk) of i-cocycles is the kernel of the homomorphism d of C* into C*1!, so it
is a subspace of C*. Similarly, the set Bi(g, Fk) of i-coboundaries is a subspace of C* since
it is the image under d of C*~!. When i = 0, we define B°(g, F¥) = 0. Due to a well-known
result in cohomology theory, i.e., d> = 0, the coboundaries form a subspace of the cocycles.

Definition 2.6 We call the factor space, denoted by H'(g,F*) = Z'(g,F*)/B(g, FF),
the i-dimensional cohomology group of g (with coefficients in F* ).

Now we shall look at some properties of Hi(g, F) for i < 2. For i = 0 we have Z' = C* = F
and BY = 0 so that
H%g,F)=F.

For i = 1 we have B! = 0so that H* = Z'. If f € C'(g, F), then (df)(z1,22) = — f([z1, 22])-
Therefore f is a 1-cocycle if and only if it vanishes on [g, g]. Hence

Lemma 2.1 H'(g,F) is isomorphic to the dual space of g/[g, g]-
For ¢ = 2, if f € C?(g, F), then

(df)(@1, 22, z3) = — f(23, [21, 22]) + f(22, [21, 23]) — f(@1, [22, 23]).

Therefore, df = 0 or f € Z? if and only if the Jacobi identity holds:

Jac(zq, zq, 23) = f([21, 22], 23) + f([22, 23], 21) + f([®3, 21],22) = 0.

Let B?(g, F) be the set of all 2-coboundaries, i.e. elements f for which there exists g €
Hom(g, F) such that f(z,y) = g([z,y]) for any #,y € g. An immediate consequence follows:

Lemma 2.2 dim B%(g, F) = dim]g, g].

2.2 The Method

In this part, we will explain the method described by Skjelbred and Sund [35] for construct-
ing nilpotent Lie algebras of fixed finite dimension from those of smaller dimensions.

Firstly, we need to introduce some notations and definitions ([28, 29]).

Let g be a Lie algebra over a field F. For each B € C?%(g,F¥) and ¢ € Aut g, the auto-
morphism group of g, we define B® € C?(g, F¥) by B?%(z,y) = B(¢z, y) for any =,y € g.

10



Since Z2(g, F¥) and B?(g, F¥) are invariant under this action, we can define the action of
Aut g on H?(g, F¥) as well. For B € Z%(g, F), we denote B as its corresponding element in
H?(g,F), then we may write the action of Aut g on B as B? = B?.

For B € C%(g, F¥), the kernel of B will be defined as g3, with
95 ={z € g: B(z,g) = 0}.
Note that
C*(g,F*) = C*(g,F)*, H*(g,F*) = H*(g,F)*.
So for any B € C?(g, F*), we may write
B = (Bla U aBk) € C2(9a F)ka

and we have g3 :gﬁlﬂ---ﬂg%}k.

Define Gr(H?(g, F)) to be the Grassmannian of subspaces of dimension k in H?(g, F). There
is a natural action of Aut g on this Grassmannian. Let BiF @ - -- ® B,F € Gr(H*(g, F),

then ¢(B1F @ - -- @ ByF) = E%F R E;‘fF. It is well-defined ([28, 29]).
Denote the center of g by Z(g), and if BiF @ --- & ByF € Gi(H%(g, F), write B =
(B1,---,Bk). Then
Ui(e) = {B:F & --- @ ByF € Gi(H?(q,F)) : 05 ( | Z(e) = 0}
is well-defined, and is also Aut g stable ([28, 29]).
Let Ui (g)/Aut g be the set of (Aut g)-orbits of Uy (g).

Theorem 2.1 [35] Let g be a Lie algebra over a field F. The isomorphism classes of Lie
algebras g with center3 of dimension k, §/3 = g, and without Abelian direct factors, are in

bijective correspondence with the elements in Ui(g)/Aut g.

By this theorem, we may construct all the nilpotent Lie algebras of dimension n, given

those algebras of dimension less than n, by central extension.

We carry out the procedure for constructing 6 and 7-dimensional nilpotent Lie algebras in

the following way:

(1) For a given algebra of smaller dimension, we list at first its center (or the generators of
its center), to help us identify the 2-cocycles satifying g3 () Z(g) = 0.

(2) We also list its derived algebra (or the generators of the derived algebra), which is
needed in computing the coboundaries B?(g, F).

(3) Then we compute all the 2-cocycles Z2(g, F). For each fixed algebra g with given

base {#1,2s,---,2,}, we may represent a 2-cocycle B by a skew symmetric matrix B =

11



El<i<j<n C;;A;j, where A;; is the n X n matrix with (Z, j) element being 1, (7, %) element
being —1 and all the others 0. When computing the 2-cocycles, we will just list all the
constraints on the elements C}; of the skew symmetric matrix B.

(4) We have Z2(g, F) = B?(g, F)®W, where W is a subspace of Z%(g, F), complementary to
B2(g,F), and B%(g,F) = {df|f € C*(g,F) = g*} (d is the coboundary operator). One easy
way to obtain W is as follows. When a nilpotent Lie algebra g of dimension n = r + s has a
basis in the form {@;,- -, 2., &, 41, -, 2,45}, where {@1,---,2,} are the generators, and
{z;41, -+, 2,4,} forms a basis for the derived algebra [g, g], with z,,: = [z;,, 2;,], where
1< <je<rt+tand 1 <t<s,

Consider C'(g, F) = g* generated by the dual basis

<f1a"'af7'agla"'ags>
of
LBy, Ty pgdy T > -
Then
B2(ga F) — {dh|h € g*} =< dfla to adfradgla to adgs > .
Since dfi(z,y) = — fi([2,y]) = 0, we have B2(q,F) =< dgy, -, dg, > . Now we have

Z*(g,F) =< dgy,--- ,dg, > ®W.

For B € W, we may assume that B(z;,,z;) =0, ¢t =1,---,s, otherwise, if B(z;,,z;,) =
u;,5, 7 0, we choose B + u;,;,dg; instead. When we carry out the group action on W, we
do it as if it were done in H?(g, F), and may identify H2(g, F) with W, by calling all the
nonzero elements in W the normalized 2-cocycles.

(5) We also list the dimension of the second cohomology group.

(6) For a fixed basis {@1, 22, -+, 2,} of g, a basis for W in (4) is given, and we will simply
regard it as a basis for H%(g, F) without causing any confusion.

(7) An arbitrary element in the second cohomology group is given, together with the action
of the generic automorphism on it. Keep in mind that, though the elements are chosen
from W C Z%(g, F), we regard them as elements from H?(g, F). The group action on these
elements is carried out as if they were in H?(g, F).

(8) We determine all the representatives of the orbits in the Grassmanian G (H?(g, F))

under the action of the automorphism group that satisfy the condition mentioned in (1).

(9) With the representatives obtained in (8), we give the list of nonisomorphic central
extension algebras of g without Abelian factors, i.e., if B is a representative obtained, then
we can define a Lie algebra structure on g(B) = g @ F* by letting

[(m’ u)a (yav)] = ([ma y]a B(Jl,y)).
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We also have the following theorem describing the automorphism group of the new algebra
g(B)=g® F* as obtained by the above method through a 2-cocycle B from g:

Theorem 2.2 [35] Let g be a nilpotent Lie algebra, and ap € Aut g. Let B € H?(g, FF)
and g5 Z(g) = 0. The the automorphism group Aut g(B) of the eztended algebra g(B)
consists of all linear operators of the matriz form

a= ( C;O :; ) , where ag € Aut g, ¥ € Gly, ¢ € Hom(g, F¥),

and

B(ogX,00Y) =¢B(X,Y) + ¢[X,Y], all XY € g.

This is a very useful theorem, which will be used in our computation of the automorphism

groups.

We also like to point out that, from the method we described above, it is possible to get
decomposable Lie algebras (without Abelian factors, but could be the product of two or
more indecomposable nilpotent Lie algebras) by central extensions.

Fortunately, we have the following lemma by Seeley [31] [33]:

Lemma 2.3 In a decomposition of a finite-dimensional Lie algebra as a direct sum of
mdecomposable ideals, the isomorphism classes of the ideals are unique. If L = A1 ®---D A,
and L =C1®---®C, are two such decompositions, then r = s; after reordering the indices
the derived parts D*(A;) and DY(C;) are equal, A; = C;, and a set of of generators for A;
equals a set of generators for C; modulo adding to each generator a vector in Z(L).

Seeley has also observed that there are 31 decomposable nilpotent Lie algebras in dimension
7. All except one have an Abelian summand. Therefore it becomes a fairly easy job for
us to check the indecomposability — we just need to take care of the exceptional case,
which corresponds to the upper central series dimension (257), and can be done through

the comparison of the orbits.
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2.3 The Examples

We will illustrate the Skjelbred-Sund method through the following 6 examples. For the
labelling of the algebras, and also their automorphism groups, please refer to Chapter 3 or
4. We will explain our notations and conventions along the way. Make sure that you read
this part first before you dig into the proofs in the subsequent chapters. Please be reminded
that whenever we talk about central extensions, we always refer to those extensions that
are without Abelian factors.

Example 1 Find the central extensions without Abelian factors of dimension 6 over any
algebraically closed field of the algebra g = Ny 29 with basis z;, 1 < ¢ < 5, and nonzero
brackets (@1, ®s] = ¢4, [@1, 4] = [22, 23] = 25.

The center of Nj 5 5 is Fas, we will simply write later on in our proofs that Z(g) : 5.

The derived algebra [g, g] is generated by z4,25. Later on we will just write “Derived
Algebra: z4,25” or [g,g] : 24, 25.

Now we need to determine all the 2-cocycles B = El§i<j§n Ci;A;;, by using the basis
{21, -, 25}, as described in (3) of Section 2.2. By checking the Jacobi identity, we can easily
get the following constraints for B to be a 2-cocycle: {Ca5 = C35 = Cy5 = 0,C34+C15 = 0},
and we will write “Cocycle: Ca5 = Cs5 = Cy5 = 0,C34 + C15 = 07 or Z%(g) : Ca5 = Cs5 =
Cy45 = 0,034+ C15=0.

Since [#1, 2] = 24, [21, 4] = 25, and the derived algebra has dimension 2, we may normalize
2-cocycles by requiring B(z1, 2) = B(21,2z4) = 0, as described in (4) of Section 2.2, which
will give us the following two extra constraints on B: Ci2 = (14 = 0, and we will write
“Normalization: C1s = C14 = 0" or W(H?) : C15 = C14=0.

From the above, it is easy to see that the dimension of H?(g, F) is 4, and we will write
“dim H? : 4”.

Now we can get a basis for W as in (4) of Section 2.2, regarded also as a basis for H%(g, F),
and write “Basis: A13, A15 — A34, A23, A24”.

In this case, we are considering the 1-dimensional central extensions of g. We need to find a
set of representatives of the orbits of 1-dimensional subspaces of H%(g, F) under the action
of the automorphism group Aut g. With the chosen basis, we may denote an arbitrary
element in H%(g,F) by z := [a,b,¢,d] = aA13 + b(A15 — Aszy) + cAsz + dAzy. When a
generic element g in Aut g acts on z, we get g -2 = a’Ay3+ b (A5 — Ags) + ' Ags + d'Asy
mod B?(g, F), We will simply write ¢ — a’, b — b, ¢ — ¢’ and d — d'. In this example we
have

3 2 2.
a — aay; + baii(ass + as1a31 + ai11a41) + caj as1 — dagrasy;

b— bai’lan;
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2 )

c — caj;as2 + 2bajiassaz; — 2dajiasiass;
2

d— da11a22 — b611161226132.

As 25 is in the center, we must have b # 0 to ensure that the 2-cocycle does not have z5 in

its kernel. Since a1; and as2 are not 0, b will remain nonzero throughout.

By taking @11 = a2z =1, @21 = aq1 = 0, azs = d/b, as3 = —a/b (and ensuring at the same
time that the matrix of g is nonsingular), we make a — 0, d — 0.

With these new values for coefficients, the above formulae take simpler form:
a =0 — bayi(ass + az1a31 + a11041) + 00%1021;

b — bal ass;

¢ — ca?iass + 2bajasaasy;

d=0— —bayiassass.

Now we need to take into consideration the characteristic x of F.

Case 1: x # 2. Set @11 = a2z = 1, a1 = azs = a41 = as3 = 0, az; = —c/(2b), we obtain the
representative (1) [a, b, ¢, d] =10,1,0,0].

Case 2: x = 2. We now have ¢ — ca? az2. If ¢ = 0, then we get the representative (2)
[0,1,0,0]. If ¢ # 0, taking as; = as; = asy = aq; = ass = 0, we have

[a,b,c,d] — [0,ba3 ass, ca® ass, 0].
Make ba?,ass = ca? as by taking asp = 1 and aj; = c¢/b to get the representative (3)
I:O’ 1’ 1’ O:I'

(1) and (2) give us the same algebra, denoted by Ng 3 3 in Chapter 3. (3) gives us another
algebra, denoted by (B), which only exists over the field of x = 2. It can be easily seen that,
when x # 2, it is isomorphic to Ng 5 3. It is obvious that (B) and Ng 3 3 are not isomorphic
when x = 2, as the corresponding orbits are different.

Therefore the central extensions of N 5 o of dimension 6 are:

Ne 23 (21, 2] = 24, (21, 24] = 25, (21, 25] = 6,
(29, 23] = @5, [23, 24] = — 6.
(B)  (for x =2 only)
(21, 22] = 24, (21, 24] = @5, (21, 25] = 6,
(g, 3] = 25 + 26, [23,24] = —26.

Example 2 Find the central ertensions without Abelian factors of dimension 7 over an
algebraically closed field of x # 2 and the real field R of the algebra g = Ns 52 with basis

z;, 1 <1i<5, and nonzero brackets [z, ®s] = ¢4, |21, T4] = [22, 23] = @5.
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From Example 1, we have

Z(g) : @5; [g,0] : @4, @5; Z%(g) : Ca5 = C35 = Cas = 0, C15+ Cs34 = 0; W(H?) : C12 = Cag =
0, dim H2 : 4, Basis: A13, A15 — A34, A23, A24.

According to Theorem 2.1, we need to find the representatives of the orbits of 2-dimensional
subspaces of H%(g, F), i.e., orbits in G2(H?%(g, F)). Up to a scalar, we can always identify a
2-dimensional subspace with the wedge product of two vectors A, B € H?(g, F),i.e. AA B.

Let A = [a,b,¢,d] and B = [ay,b1,¢1,d;] in H%(g,F). As we require that the kernel of
(A, B) does not contain any central elements, we have one of b,b; # 0. Therefore we may
assume A = [a,1, ¢, d], which is always doable — if b6 = 0, then b; # 0, switch A and B so
b+ 0in A, then multiply A by b~! to get the above form for A. Bear in mind that we can
multiply any of our vectors by a scalar, as we are dealing essentially with the subspaces,
instead of the vectors.

From the discussions in Example 1, as x # 2, a representative for A can be chosen as

A=10,1,0,0]

Once we get A, we may assume B = [as,0, ¢1,d;] because we can replace B by a linear
combination B + AA. Although the original B = [ay, b1, ¢1, d1] is different from the new
B = [a1, 0, ¢1, dy], we still use the same notation B to denote it, same thing for a4, ¢; and
di. This is the convention throughout the proofs in our Thesis. The readers will be able to
tell the differences, without causing any confusion.

In the following we will mainly discuss the case when the ground field is R. The algebraically
closed case can be easily obtained with minor adjustments.

Now to fix A (up to a scalar), we require ag; = ags = 0 and a5z = —a11041.

For B, we have a; — alazl”l —|—c1a%1a21 — dlallagl; b1=0—0;¢c; — claflan —2d1a11a21099;
2
dl — d1a11a22.

Case 1: d; # 0. As the first step, we make ¢; = 0 by solving for as;, which can be done
by taking aj; = @z = 1 and as; = ¢1/(2d;). With these new values, the formulae above
become a; — alazl”l — dlallagl; by = 0;¢1 =0 — —2dia11as1a92; di — dlallagz.

In the second step, to keep ¢; = 0, we require as; = 0, which in turn makes a; — aja3;,
o 2 _ 3 2
by = ¢1 =0 and d; — diaj11a3,, or B = [a1a3,,0,0, d1as1a3,].

Case 1.1: a; = 0. We obtain our first representative B; = [0, 0,0, 1], and AA B; corresponds
to the 7-dimensional algebra (2357C).

Case 1.2: a1 # 0.

Subcase 1.2.1: a;d; > 0. Make alazl”l = d1a11a§2 in B by solving for as» and multiply B
by a scalar, which can be done by taking a;; = 1 and ass = /a1 /d;, and multiply by al_l,
we will obtain our second representative B, = [1,0,0,1], and A A B corresponds to the
7-dimensional algebra (2357D).

16



Subcase 1.2.2: a;d; < 0. Make ala:fl = —d1a11a§2 in B and multiply it by a scalar, which
can be done by taking a;; = 1 and ass = /—a;/d;, and multiply it by al_l, we will have
B; =[1,0,0,—1], A A Bs corresponds to the 7-dimensional algebra (2357D).

(If the ground field is algebraically closed, then By and Bj are in the same orbit.)
Case 2: d; = 0. Since b; = d; = 0 in B, we have a; — alazl”l + clafflazl; 1 — cla%1a22.
Subcase 2.1: ¢; = 0. We obtain B4 = [1,0,0,0], and A A By corresponds to (2357B).

Subcase 2.2: ¢; # 0. Taking a;; = 1 and as; = —ay/c;, we make a; = 0 to obtain
Bs =[0,0,1,0], and A A Bj corresponds to (2357A).

Now we have obtained 5 algebras:(2357A-D, D;). We need also to show that they are
mutually nonisomorphic, which can be done by comparing their corresponding orbits. As
an example, we will show that (2357D) and (2357D;) are nonisomorphic over R but are
isomorphic over an algebraically closed field of x # 2.

For (2357D), we have A =[0,1,0,0] and By = [1,0,0,1]. Under the group action,
A — [a11a53 + a11021a31 + 031041, 0:1)’1022, 2a11a22a31, —A11022032]
and
B — [ai’l — (111(131, 0, —2(111&21(122, (111(132].
Then
AANB — —(14111(122((1%1 — agl)A13 A (A15 — A34)
—2031022((053 + az1as1 + ar11@41)a21 + a31(a%1 - agl))Am A Ass
+a3; a22((as3 + a21a31 + a11041) 022 + asz2(af; — a31))Ars A Agy
—2(1‘111(132021(A15 — A34) A A23
-I-a‘fla‘;’z(Aw — Aza) N Aoy
+2a?,a2,(as1a22 — azaaa1)Aaz A Aoy

Compare with (2357D;), where A =[0,1,0,0] and B3 = [1,0,0, —1], in which case
AN B3 = (A15 — A34) A (A13 — A24).

If it is in the same orbit of (2357D), then the coefficients of (A15 — Agq) A Agz and Agz A Agy
are zero, which give as; = asz; = 0. As the coefficients of A3 A (A5 — Agy) and (A5 —
Asq) A Asy must be equal, i.e., —aj;assa?; = af a3, or a?; = —a2,, which has no solution
over the real field R but do have solutions over algebraically closed field. Therefore (2357D)
and (2357D;) are distinct over R and are isomorphic over an algebraically closed field of
X 7 2. All the other nonisomorphisms can be proved similarly.

In some cases, we may also use some other invariants, like minimal numbers, as used by
Seeley, to separate the algebras (see Chapter 5 for the definition of minimal numbers and
for examples).

Therefore the corresponding central extensions of N5 o 5 of dimension 7 over R are:
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(2357A):  [21, 2] = 24, [21, 4] = 25, [21,25] = @7,
(g, 3] = 25 + 26, [23,24] = —27;

(2357B):  [21,22] = 24, [21, 23] = @6, [21,24] = @5,
[131, 135] =27, [132, 133] = T3, [133, 134] = =7

(2357C):  [@1, 2] = 24, [21,24] = @5, [21,25] = 27,
[132, 133] = T3, [132, 134] = Zg, [133, 134] = =7

(2357D):  [@1, 2] = 24, [21, 23] = @6, [21,24] = @5,
[131, 135] =27, [132, 133] = T3, [132, 134] = Z¢,
[133,134] = —T7;

(2357D1):  [@1, 2] = 24, [21, 23] = @6, [21,24] = @5,
[131, 135] =27, [132, 133] = T3, [132, 134] = —Zs,
[23, 24] = —@7.

When the ground field F is algebraically closed and x # 2, then the central extensions of
N5 5 2 are (2357A-D), with (2357D)= (2357D,) in this case.

Remarks: (1) Throughout the computation above, although we may assign different values
to the entries of the matrix of ¢ € Aut g, we always ensure that the nonsingularity is
maintained; (2) Quite often, care is required so as not to disturb previous assumptions,
for example, when we assume b # 0, then we preserve it throughout the simplification
procedure, even though we may not point it out explicitly; (3) By abuse of terminology,
we refer to the elements in H?(g, R) as 2-cocycles (causing no confusion); (4) On some
occasions, we may provide an isomorphism between two algebras, and write it as z; —
axy + bxs + - - -, etc. Then the z; before the arrow is an element of the basis for the first
algebra (or the “old one”), and the ;s after the arrow are the elements of the basis for the

second algebra (or the “new one”).

Example 3 Find the central extensions of dimension 7 without Abelian factors of Ng 3 a:
[21, 2] = 23, [21, 23] = @6, [T4, T5] = T6.
Z(g): Ts; [9, 9]3 L3, Te; Z2(9)3 C16 = Cas = Cs4 = C35 = (g5 = Uy = Cs6 = 0;

It is obvious that Ng 32 has no central extension of the desired type, as all the 2-cocycles

have z¢ in their kernels.

Example 4 Find the central extensions of dimension 7 — over an algebraically closed field
of x # 2 and R — without Abelian factors of Ng11: [#1,2;] = 2iy1, 2 < @ <5, [2g,2;] =
Tit2, 1= 3a 4.

Z(9): ze; [g,0]: 23, 24, @5, z6; Z2(g): Cos = C35 = C36 = Cas = Cag = Css = 0, Cs4 +
Cas = C16, C15 = Cay; W(H2)i Cira=C13=C14=C15=0; dim H?: 3; Basis: Ass, A+
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Ags, Are+ Asy;

Group Action: alss + b(A1s + Azs) + c(Are + Ass):

a — aa}; + c(a11a3, — 243 a42);

b—bal; ¢— caly;

We must have b+ ¢ # 0 to ensure that the 2-cocycles do not contain ¢ in their kernel.
Case 1: b = 0. Then ¢ # 0, and make ¢ = 1, a = 0 (solving for a42) to obtain 4; = [0,0, 1];

Case 2: b # 0. Assume first that ¢ = 0. When a = 0, we get A2 = [0,1,0]. When a # 0,
we get [aa},,bal,,0]. If F is a algebraically closed, we can make it to be A3 = [1,1,0]. If
F = R, depending on the signs of a,b, we get two representatives A4 = [1,1,0]if ab > 0
and A5 =[1,-1,0]if ab < 0.

Next let ¢ # 0. Then make a = 0 by solving for a2, and get the representative [0, ba!,, cal,].
Because we are dealing with the subspaces of H?(g, F), we can multiply the representative

by a nonzero scalar as we like, and keep in mind that b4c # 0. So we obtain Ag = [0, A, 1— ]
(with A #0,1).

It is easy to see that if we allow A = 0,1, we can include A; and A, in Ag as special cases.

Now Aj and A4 correspond to the same algebra, written as (123457H). A5 corresponds to
(123457H;), which only exists when the ground field is R, and is isomorphic to (123457H)
when the ground field is algebraically closed, and Ag corresponds to (1234571). It is obvious
that (123457H,H,,I) are distinct, the corresponding orbits being different.

Therefore, the central extensions of Ng 1, of dimension 7 over R are:

(123457H):  [21, 2] = @i41, 2 <3 <5,  [@1, 6] = 27, [2g, 23] = @5 + 27,
[132, 134] = Zg, [132, 135] =27,
(123457H;1):  [21, @] = @41, 2 <1 <5,  [@1,26] = —27, [2g, 23] = @5 + 27,
(29, 24] = @6, [2g, 25] = —@7;
(123457I):  One parameter family.
[1, 2] = @ip1, 2 <1 <5, [21,26] = 27, (22, 2;] = @ita,i= 3,4,
(29, 25] = Azy, [23, 4] = (1 — A)z7.

When F is algebraically closed and x # 2, the central extensions of Ng; 1 are (123457H,I),
with (123457H)=(123457H,).

Example 5 Find the central extensions of dimension 6 over any algebraically closed fields,
without Abelian factors, of g = N5 o1: [21,2;] = 241,71 = 2,3,4.

Z(g): @s; [g,0]: @3, x4, @5, Z%(g): Caa = C35 = Cys = 0,Co5 + C34 = 0; W(H?):
Cia = Cis = C14 = 0; dim H?: 3; Basis: A5, Aas, Ags — Agy;
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Group Actions: a5 + bAgs + c(Ags — Asy):
4 3 .
a — aaj;as2 + caj;asass;
2 2.
b— ba11a22 + 2caq1a99a49 — €a110a39;
3 .2 .
€ — €aj a3y,

One of a,c # 0 (due to the reason that we require the kernel of the desired 2-cocycles
does not contain any central elements, this is also a requirement in all the proofs of the
subsequent chapters, and from time to time, we will use this assumption without further

explanation).

When ¢ # 0, make a = 0 by solving for as; and b = 0 by as» to get [0, 0, 1] (corresponding
to N67272).

When ¢ = 0, then a # 0. Get two representatives depending on whether b = 0 or not, i.e.,
[1,0,0] (corresponding to Ng 1) or [1,1,0] (corresponding to Ng 1 3);

So the central extensions of N5 51 of dimension 6 over any algebraically closed fields are:

Nois: [e1,2] =241,2<i<5, [22,23] = 2g;
Neoi1: [21,2] =2i41,2 <1 < 5;
Neao: [z1,25] = 2i41,1=2,3,4, [22,25] =2, [23,24] = —Z6.

Example 6 Find the central extensions of dimension 7 over an algebraically closed field of
X # 2, without Abelian factors, of g = N5 21: [€1,2;] = ¢41,1=2,3,4.
Z(g), [g, 9], W(H?), dim H?, Basis and group actions can all be found in Exmaple 5.

As we are considering the 2-dimensional central extensions of N5 51, we need to find a set
of representatives of orbits of the 2-dimensional subspaces of H?(g, F), or representatives of
the form A A B, where A and B are elements in H%(g, F) .

Let A =[a,b,c] and B = [as, b1, ¢1]. One of a, ¢, as,c; # 0. According to the discussions of
Example 5, WLOG, we may let A be (1) [1,0,0], (2) [1,1,0] or (3) [0,0,1].

Case 1: A=11,0,0]. Then B = [0,b;,c1]. Fix A (up to a scalar, which put no restrictions

on the entries of the automorphism group at all).

Subcase 1.1: ¢; # 0. Make ¢; =1 (by multiplying a scalar) to get B = [0, b1, 1]. Consider

the group action on B:
43 2 3 2
B = [011021022, 51011022 + 2a11022a42 — a11a32, 011022]-

By fixing A, we can always make a; = 0 by linear combination. Make further b; = 0 by
solving for ass to get B = [0, 0, 1], with A A B corresponding to (23457C).

Subcase 1.2: ¢; = 0. Then b; # 0, and get B = [0,1,0], with A A B corresponding to
(23457A).
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Case 2: A =[1,1,0]. Then assume B = [0,b1,¢;1]. To fix A (up to a scalar), we require
asy = a3;.
Subcase 2.1: ¢; # 0. Make ¢; =1 to get B = [0, by, 1]. From Subcase 1.1, we have

B = [aS,a31, b1a], + 2a},a45 — ay1a39, ad}].
Can make both a; = b; = 0 by solving for as; and a4, respectively to get B = [0, 0, 1], with
A A B corresponding to (23457D).

Subcase 2.2: ¢; = 0. Then b; # 0 to get B =[0,1,0]. But A A B will become Subcase 1.2.
So we omit it.

Case 3: A =10,0,1]. Then B = [a1,b1,0]. To fix A (up to a scalar), we may set ag; =

az2 = ago = 0. Consider the group action on B:

4 2
B = [(11(111(122, b1a11a22, 0]

Subcase 3.1: a3 # 0. If by = 0, then B = [1,0,0], and A A B is the same as Subcase 1.1,
omit it; If by # 0, we have B = [1,1,0], and A A B is the same as Subcase 2.1, omit it.

Subcase 3.2: a; = 0. Then b; # 0 to get B = [0, 1, 0], with AA B correponding to (23457B).

To prove that (23457A-D) are distinct, we let V; be the subspace generated by Aj; and
Asg, and V the space generated by Ajs, Ass and Ags — Agy. Then Vi is a submodule under
Aut g. Now it becomes obvious that (23457A) is different from all the other three algebras
in that only its corresponding 2-cocycles (i.e., A and B) are in V;.

To show that (23457B) is different from (23457C,D), we just need to compare their orbits.
For (23457B), we have A = [0,0,1] and B = [0,1,0]. Under the group action, we have
A — [a3,as1a22, 2a11a90a42 — a11a3,, a3,a2,] and B — [0, aj1a2,,0]. Then

ANB — (1‘111(121(132A15 A A23 + 0%1032(A25 — A34) A A23.
It is obvious that (23457C,D) cannot be in the same orbit. Therefore (23457B) is not
isomorphic to (23457C,D).
Similarly we can prove that (23457C) and (23457D) are distinct.

Therefore the central extensions of N5 1 of dimensions 7 over an algebraically closed field
(x # 2) are:

(23457A):  [21, 2] = 241,10 = 2,3,4, [21,25] = @6, [2g, 23] = @7;

(23457B):  [z1, 2] = ©i41,0 = 2,3,4, [@2, 23] = @7, (29, 25] = @6,
(23, 24] = —2;

(23457C):  [@1, 2] = ©i41,t = 2,3,4, [21,25] = @6, (29, 25] = @7,
[133,134] = =7

(23457D): [z, 2] = ©i41,t = 2,3,4, [21,25] = @6, (29, 23] = @6,
[132, 135] =27, [133, 134] = —7;
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Chapter 3

Nilpotent Lie Algebras of
Dimension <6

3.1 Notations

In this chapter, we will give a complete list of all the nilpotent Lie algebras of dimension 6
over an algebraically closed field F of any characteristic x.

We will firstly present the list, including all the algebras of dimension < 5, which was
obtained by Dixmier [8], together with their types, ranks, weight systems and automorphism
groups, and we will follow by providing the details of the proof for the classification of the
6-dimensional nilpotent Lie algebras.

As pointed out by Dixmier, for algebras of dimension less than 6, their structure constants
can be chosen to be independent of the characteristic x of the ground field. For dimension
6, we find that the only exception is when the characteristic equals 2.

Shedler [34] has obtained a list of all the 6-dimensional nilpotent Lie algebras for any field.
But his work has never been published, and his proof also contains many errors. Here we
reconstruct all the 6-dimensional nilpotent algebras over algebraically closed fields. Our list
agrees with that of Shedler’s when x # 2. When x = 2, Shedler has missed one algebra,
i.e., (B) of Example 1 in Section 2.3.

We will first give the list for all the algebras over algebraically closed field of characteristic
X 7 2, and then follow by those of characteristic x = 2.

The algebras have been ordered by the increasing lexicographic order of their types: the
dimension of the algebra, its rank, the sequence of dimensions of its upper and lower central

series.

We now explain our notations:
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— N; ;i The k-th algebra of dimension 7 and rank j, and when there is only one algebra

with the specific dimension and rank, we simply denote it by N; ;.

-(¢,4,---/m,n,---,), where ¢,7,--- and m,n,--- are respectively the dimensions of the

upper and lower central series.

— [, B,7,--]: The weight system of the corresponding Lie algebra L with respect to a
maximal torus of the automorphism group of L. More precisely, the basis vectors z; are

weight vectors, a is the weight of 21, 8 of z,, etc.
— CQ: The central quotient algebra L/Z where Z is the center of L.

— Aut L: The automorphism group of L. We use our Maple package to compute the generic
element of this automorphism group, except for the case N5 3. In general, it is easy to
figure out which maximal torus of Aut L is used when we consider the weight system
mentioned above. When Aut L is not connected, its identity component is denoted by
Autg L and o is a representative of the other component (as all the groups here have at

most two components).

— R, and S: The unipotent radical R,, and the Levi factor S of Aut L. By GLT" we denote
the direct product of m copies of GL;.

— a;: i-dimensional Abelian Lie algebra.

The matrices of the automorphisms are of course nonsingular, which imposes some obvious

restrictions that are not stated explicitly.
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3.2 The List

3.2.1 Algebras of Dimensions <5

INDECOMPOSABLE ALGEBRAS

Dimension 1

Nii: ag;
— Aut N171 : GLl

Dimension 2
None.

Dimension 3

Nsa: [21, 2] = 23;

— a Heisenberg Lie algebra, free nilpotent of class 2 with 2 generators;

— (1,3/3,1);
— [, 8,0+ B];
— CQ: Nyp;
— Aut N3 :
ai; Q12 0
a21 Q22 0 ’

ag1 Qg2 apjdzz — @12 421

with dim R, = 2 and S = GLs.

Dimension 4

Nyo: 1,2 = 241, 1=2,3,;
— (1,2,4/4,2,1);

— [, 8,a+ 8,20+ f];

— CQ: N3 p;
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— Aut N472 .

ail 0 0 0
as assg 0 0
1)
as1 Gzz Q11 Qa2 0
2
| @41 Q42 Q11 Q32 A117C22 |

with dim R, =5 and S = GL}.

Dimension 5

Nsi: (21, 2] = 241, for i = 2,3,4, [2g, 23] = 25;
— (1’ 2a 3a 5/5a 3a 2a 1)a
— e, 2a, 3, 4, bar];

— CQ: Nyp;
— Aut N571 . ) )
ail 0 0 0 0
2
as1  ail 0 0 0
3 0 0
ag; asz aiy )
10
Gq1 Q42 G110G32 a1x
5
| d51 G52 u v ail |

where © = aq11a49 + a91a39 — a%lag,l, v = azl”lag,z + a21a:1”1, dim R, =7 and S = GL;.
Nsoq: [®1,2] = 241, for i =2,3,4;

_ (1’ 2a 3a 5/5a 3a 2a 1)a

- [aaﬁaa+ﬁa2a+ﬁa3a+ﬁ];

— CQ: Nyp;
— Aut N57271 . ) )
a7 0 0 0 0
as1  QAg9 0 0 0
azy ass api a2 0 0 ,
2 0
G41 G422 Q11432 117022

2 3
as1 Gas2 Q411G42 Qa11°Ga32 411 Q22 |

with dim R, = 7 and S = GL2.
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Nsoo: [21,22] = 24, [21,24] = [22, 23] = 25;

— (1,3,5/5,2,1);

— [, B, 2a, a0+ 3,2+ f];
— CQ: Nygs;

— Aut N5 o4

aiy
Ga21
agy

G41

as1

0
a22
a3z
Q42

(£2:9)]

0 0
0 0
(1112 0

—Q21 @11 A11 Q22

ass u

0
0
0
0

2
a1~ azz |

where © = a1 a42 + as1 azs — a9 asy, dim R, = 8 and S = GL%.

Nsas: [21,2;] = ip1,for i = 2,3, [22, 23] = 255

— Free nilpotent Lie algebra of class 3 with 2 generators;

a1z

Ga23

ags

Q43

— (2,3,5/5,3,2);
— [, B, 0+ 3,20+ B, o+ 20];
— CQ: N3p;
— Aut N5»3: )
ai
as1
asi
aq1
| @51

where e = ay1a99 — a12as1, dimR,, = 6 and S = GLs.

(£2:9)]

Nsgq1: [21,22) = [23, 24] = @5;

— a Heisenberg Lie algebra;
— (1,5/5,1);

— [y =, 8,7 = B,7];

— CQ: Ny

0

e

a1 32 — aA12 431

G231 A32 — A22 431

26

0
0
aip €

asy €

aig €

Qg9 €




— Aut N57371 .
A4 0

u A2

]a }‘#Oa

0 1
D )
-1 0

u is an arbitrary 4-dimensional vector, dim R,, = 4, and S = (GL; x Spy)/Z-.

where A satisfies A'\JA = J, with

0 1
J =
-1 0

Nssa: [21,22] = 24, [21,23] = 5;

— (2,5/5,2);

— [, 8,7,0+ 8,0 +7];

— CQ: N33;

— Aut N5 3, : ) )
a7 0 0 0 0
a1 G2z Q23 0 0
a31 agz ass 0 0 )

Qg1 Q42 Q43 0a11Q22 4ail a2

as1 Gs2 Qas3 a11432 411433 |

with dim R,, = 8 and S = GL; x GLs.

DECOMPOSABLE ALGEBRAS

Dimension 2

Nao: ag;
— Aut N2 = GL2,
Dimension 3
N33 : as;
— Aut N373 = GL3
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Nys: Nsg X ap;or [21, 9] = @3;

— Aut N473 .

aiy

Ga21

agy

G41

a1z

Ga23

ags

Q43

with dlmRu = 5, S = GLl X GL2

Nyg: ag;

— Aut N474 = GL4

Ns33: Nia X ag;

— Aut N57373 .

aiy

Ga21

agy

G41

as1

with dim R, = 8, S = GL3.

Ns4: N3o X as;

— Aut N574 .

N5 1 as;

)

— Aut N575 = GL5

Ga23

ags

Q43

(£2:9)]

ay; Qa2

az1 Q32

az; asz

Gg1 Q42

as1  Qas2

with dim R, = 8, S = GL3.

Dimension 4

a11 g2 — A12 Q21 434

0
0

0

Dimension 5

0
0
a1 az2

a1 asz

0

0
0

0
0
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2
G117G22 Qa5

0

a1 Gg2 — A12 a21

0
0

Qg4

0
0

as5 |

0 0

0 0
a34 0asgs
Q44 Q45
a54 Q55




3.2.2 Algebras of Dimension 6 over Algebraically Closed Fields of y # 2

INDECOMPOSABLE ALGEBRAS

N6,1,1 : [mlaa}i] =241, 2 < 1 < 5, [m2a$i] = Tit+2, i1=3,4;
- (1a 2a 3a4a 6/6a4a 3a 2a 1)a
— [e, 2a, 3, 4a, by, 6a];

— CQ: Ns;
— Aut N67171 . ) )
ail 0 0 0 0 0
0 CL112 0 0 0 0
3
asy ass ail 0 0 0
4 1)
@41 Q42 G11Q32 411 0 0
2 5
as1  aso u ai1“azs  aig 0
3 6
| Q61 Qa2 v w ai1~asz a1

2 2 2 3 :
where v = aj1a49 — @j1031, vV = G11a52 — a7, 041, W = Q7;Q42 — aj;a31, dim R, = 8, and
S — GLl
N67172 . [231, Jll] = Ti41, 1= 2, 3,4, [232, 233] = Ts, [232, 235] = Tg, [233, 234] = —Zq.
_(1a 2a 3a 4a 6/6a 4a 3a 2a 1)a
— e, 2a, 3, 4a, by, Ta];

— CQ: N335
— Aut N67172 .

ail 0 0 0 0 0

0 ai? 0 0 0 0

asy ass 61113 0 0 0

2 I
a 4
@41 547 Gu1d32 411 0 0
2 5
as1 G52 u a11°ags aiq 0
4 7
| d61 Qg3 v w —agy a1 ayy; |

_ 2 2 2 _ 2 2 2 _ 3
where u = a;1a3,/(2a3;)—a3,a31, v = a32041—a7;a51—a3103,/(2a7,), w = a3;a41 —a31011a32,

dimR, =7, and S = GLq;
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Neis: [21,2;] = 241, 2 <3 <5, [29, 23] = 26;
- (1a 2a 3a4a 6/6a4a 3a 2a 1)a
— [e, 3a, 4, ba, 6, T

— CQ: N5,2,1;
— Aut N67173 . ) )
ail 0 0 0 0 0
3
as1 d4i11 0 0 0 0
4
az; azz  ap 0 0 0
5 1)
@41 Q42 G11Q32 411 0 0
2 6 0
G51 Gz Q110442 Q1170432 aiy
3 7
| Q61 Qa2 u v ai1~asz ail |

where © = aq1a59 + a91a39 — azl”lag,l, v = a%1a42 + a21a‘111, dim R, = 9 and S = GL;.

Ne1a: (21, 22] = @3, [21, 23] = T4, [21,24] = @6, [T2, 23] = @6, [22, T5] = Tg;
—(1,3,4,6/6,3,2,1);

— [e, 2a, 3, 4, 3, Ba];

— CQ: N533= Na2 X a;

— Aut N67174§
ail 0 0 0 0 0
2
as1 d4i11 0 0 0 0
3
az; asy ap 0 0 0
4 2 !
a41 Q42 G11G32 a11- —anay; 0
3

as1 aso 0 0 ail 0

5
ag1 Qg2 u v Qg aiy

where u = ajja40 + a2 (ass + ass) — a?,(as1 + as1), v = a?,a3s + asa3,, dim R, = 10 and
S = GL;.

Neoi: [21,2)] =241, 2 <@ <5

—(1,2,3,4,6/6,4,3,2,1);

— [o, B, a+ B,2a+ 3,3a+ 8,4a + f];

— CQ: Ns2.1;
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— Aut N67271 .

a;; 0 0 0 0 0

a1 G2z 0 0 0 0

asi Gzz Q11 22 0 0 0

@41 @42 Q11032 A11°G29 0 0 ,
0

2 3
Gs51 Qs 4a11Q42 Q11°4a32 411 a2

2 3 4
g1 Qg2 4110452 A117Q42 Aa11 G32 11 422 |

with dim R, = 9 and S = GL}.

Nepoo: [21,2;] = 2ip1, 1 = 2,3,4, [22, 5] = @6, [23,24] = —26;
- (1a2a3a4a6/6a4a3a2a1);

— [aaﬁaa+ﬁa2a+ﬁa3a+ﬁa3a+2ﬁ];

— CQ: N5,2,1;
— Aut N67272 .
[ ail 0 0 0 0 0 T
0 assg 0 0 0 0
az1  azz i1 Qa2 0 0 0
ass? 2 0 0 !
41 54, G11a32 11 A2
2
ai] a 2 3
as1 G5y Tt a117 03 a11°as2 0
2 3, .2
ag1 Qg2 u v —ag1 @117 Q22 G11 Q22

where © = agpaq; — ag2a5; — az1a2,/(2a22), v = aj1a22a41 — aziai1ass, dim R, = 7 and
S = GL;

Noos: [21,22] = 24, [21,2;] = @ip1, 1 = 4,5, [22, 23] = @5, [€3,24] = —6;
—(1,2,4,6/6,3,2,1);

— [, B, 2a, 0+ 3,20+ B, 3a+ B];

— CQ: Ny 29;
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— Aut N67273 .

with dim R, = 8 and S = GL2.

a11
a21
0
a41
as51

ag1

a22
0

Q42

as52

Qg3

0
0
0112
—a21 A11
—ai11 41

ag3

0

0
@11 Q22
@11 Q42

ay1 as2

Nesa: [21,22] = @3, [21, 23] = @4, [21,24] = s,
_ (1’?”4,6/6’3’2,1)’
— [aaﬁaa+ﬁa2a+ﬁa3aa3a+ﬁ];

— CQ: N5 33= Nys X ay;

— Aut N67274 .

aiy

Ga21

agy

G41

as1

ag1

0
a22
a3z
Q42
as52

Qg3

0

0
@11 Q22
@11 a3z2

0

Uu

o o O

2
a117G22
0

2
a117a32

o o o O

2
a11” Q22

2
a117 Q42

0
0
0
0
0

3
@11 G22 |

[132,135] = Tg,

0
0

2
—a21 A11

3
aiy

Qg

o o o o ©

3
a117az2 |

where u = a11a49 + as1a52 — assasy, dim R, = 10, and S = GL%.

N6,2,5 : [wlami] = Ti41, 1= 2a3a5a [232,23]'] =Zj42, ] — 3a4a

_ (1’3’4a6/6a4a3a1)a
— [aaﬁaa+ﬁa2a+ﬁaa+2ﬁa2a+2ﬁ];

— CQ: N5 2.3
— Aut N67275 .
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a;; 0 0 0 0 0
0  as 0 0 0 0
Auto : a31 azz @11 422 0 0 0 ,
Gs1 G423  G11G32 Q11702 0 0
as1 Gsz  —aa2031 0 a1y ags” 0
| 61 Qe2 u v w 01120222 i
01 0 -1
azl o-1]a o[-1],
1 0 -1 0
where © = aj1a52 — G92041, V = —a110G92031, W = G11092032, dim R, = 8 and S = GL% X Zi.
Ngae: (21, 25] = @4, [21, 23] = T5, [21,24] = 26, [T3, 25] = T6;
— (1,3,6/6,3,1);
— [, —a+28,8,28,a+ 8, a+20];
— CQ: N5 3.2;
— Aut Ngs6:
[ a7 O 0 0 0 0 1
az % — s 0 0 0
az; O ass 0 0 0
aq1 Qa2 a43 ass®  —asi dss 0 ’
asy O ass 0 ai1 ass 0
| 61 Q62 ag3 a1 A42 u aiy 0332 i

where u = aj1a43 + asyass — aszasi, dim R, = 10 and S = GL3.
N67277 : [231, ml] = Li41, 1= 2a 3a4a [332, 333] = Tg,
— (2’ 3’ 4a 6/6a4a 3a 2)a

— [e, B,a+ B,2a+ 3,3a+ B, a+ 208];
— CQ: Ny
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— Aut N67277 .

ail 0 0 0 0 0
as1  QAg9 0 0 0 0
as] azs Ay Gz 0 0 0
2 1)
@41 G427 A11G32 G117 Q22 0 0
2 3 0
as1 Gz A11 Q42 a11”-agzz a11 Q22
2
| 61 Qe2 u @11 Q21 A22 0 @11 G227 |
where u = as1a32 — assasy, dimR, = 9, and S = GL%.
Ngag: [21,22] = 23, [21,23] = @5, [21, 4] = 26, [22, 4] = 25;
— (2,4,6/6,3,1);
- [aaﬁaa+ﬁa2aa2a+ﬁa3ﬁ];
— CQ: Nyg;
— Aut N6,2,8 .
ail 0 0 0 0 0
as1  QAg9 0 0 0 0
az1 Gz2 A11Q22 G34 0 0
2 1)
a4q1 Qao 0 ail 0 0
2
as1  Qas2 u a54 Q117G22 v
0 3
| @61 Qg2 Q11042 Q64 a11 |

where u = aj1a3s + as1049 — @99a4; and v = aj1a34 + a%lazl, dim R, =12 and S = GL%.
Neso: [21,22] = @3, [1, 23] = 5, [T2, 23] = @6, [T2, 24] = Tg;

—(2,4,6/6,3,2);

- [aaﬁaa+ﬁaa+ﬁa2a+ﬁaa+2ﬁ];

— CQ: Ny3= N33 X ay;
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— Aut N67279 .

Autg :

a11
0

a31

a41

as1

and

g

ag1

|

with u = —ass (as; + a41), and dim R,, = 10, and S = GL? x Z,.

Ngaio: [21,22] = 23, [21, 23] = @5, [22, 23] = 26, [22,24] = 25;

— (2,4,6/6,3,2);

_ [aaﬁaa+ﬁa2aa2a+ﬁaa+2ﬁ];

— CQ: Ny3= N33 X o
— Aut N672710 .

a11
0

a31

a41

as1

ag1

I

a12
a22
a3z
Q42
as52

Qg3

0 0 0 0 0
3 0 0 0 0
azz Qi1 Az 0 0 0
Q42 0 a11 a2z 0 0
asy G11G32 G54 G11°Gag 0
g u a4 0 a1 sz

01 ] l -1 -1 ] 0 -1 ]
® ® )
1 0 0 1 -1 0
0 0 0 0 |
0 0 0 0
a1 Goo 0 0 0
0 a;? 0 0
u ase  @11%G22 11 022 a12
—Q22 031 Qe 0 a11 @y’

where u = aj1a32 — a12a3; — @22041, dim R, = 11 and S = GL%.

Nesi: [21,2;] = ¢iye, 1 = 2,3, [2a, 25] = [23,24] = 2¢;

— (1,3,6/6,3,1);

- [a’ﬁavaa+ﬁaa+7aa+ﬁ+7];

— CQ: Ns32;

35




— Aut N67371 .

ail 0 0 0 0 0
0 assg 0 0 0 0
0 0 ass 0 0 0
Autg : ,
(41 Qg2 43 ayy ass 0 0
a a.
as1 a5y o 0 a1 ass 0
| d61 Q62 ag3 —Q22 Q51 —Aaz3z Q41 G131 A220433 |

and

01 01
o= [ 1 ] ® ® & [1],
1 0 1 0
with dim R,, = 8 and S = GL3 x Z,.
Ngso: [21,29] = 23, [21,23] = 26, [24, 5] = Z6;
- (1a 4a 6/6a 2a 1)a
- [a’ﬁ+7 - 2aaﬁ+7_ aaﬁa7aﬁ+7];
— CQ: N5 4= N33 X as;
— Aut N67372 .
[ a;; O 0 0 0 0]
as a1812 0 0 0 0
asy a2 o % % 0
aq 0 0 A44 Q4s 0 ,
as1 0 0 as4a d4ss 0
| de1 Qg2 QA11G32 Q44 Qg5 € |

where e = aq4a55 — 45054, [ = G44Q51 — Q410Q54, § = Q45051 — Aq1055, dim R, = 9 and
S = GL; x GL».

Ness: (21, 22] = @3, [21,24] = T, [22, 23] = @5;

— (2,4,6/6,3,1);

— [a, 8,0+ 8,7, 2+ 28,2 +7];

— CQ: Ng3 = N3z X ag;
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— Aut N67373 .

[ ail 0
0 aa
az1 asz
a41 Q42
a51  Qs2
| Q61 Qa2

with dim R,, = 10 and S = GL3.

0
0

a1 az2

0

—Q22 a31

a1 A42

o o o O

Qg4

2
G54 Q11 A22

aga 0

Neosa: [X1,22] = 23, [29, 23] = 5, [22, 24]) = @6;

— (2,4,6/6,3,1);
- [a’ﬁaa+ﬁa7aa+2ﬁaﬁ+7];
— CQ: Ny3= N33 X ay;

— Aut N67374 : )
11 Q12
0 assg
a31 G32
a41 Q42
a51 G52
| Q61 Q62

with dim R,, = 12 and S = GL3.

0
0
@11 Q22
0
—Qs22 a31

—Q22 G471

0 0
0 0
a3q 0
Qg4 0

2
G54 Q11 G223

aga 0

Ness: [X1,22] = 25, [21,24] = 26, [22, 23] = T6;

— (2,6/6,2);

- [aaﬂ,’)’—ﬁ,Y—a,a‘|‘ﬁ,’Y];
— CQ: Ny g
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— Aut N67375 .

a1 12 0 0 0 0
G21 Q22 0 0 0 0
as; aso ‘1118‘166 _ a12ea66 0 0
as1 G52 ass a5q e 0
| Q61 Qa2 ag3 ag4 U Gee |

where ¢ = a11Q22 — A12Q21, U = A11042 + A91Qa32 — A12Q41 — A220431, dlmRu =12and S =

GL2 X GLl .

Neose: [X1,22] = 24, [21,23] = 5, [22, 23] = @6;

— Free nilpotent Lie algebra of class 2 with 3 generators;

— (83,6/6, 3);

—[o,8,7,0+ 8,047, +7];

— CQ: N33;

— Aut Ng36:
a;; aiz a3 0 0 O
as1 azp azz 0 0 O
azgy agy azgz 0 0 O
aq1 Q42 Q43 T 5 1 ,
51 4z Aas3 U UV W

| @61 Qg2 Gg3 T Y Z ]
where

T = a11ds2 — A12021, § = Q11023 — A13Q21, I = G12023 — A13022,
U = a11a32 — @12a31, V = 411433 — A13431, W = G120433 — @13032,
T = a210a32 — A22431, Y = 4210433 — A23431, =2z = Q22433 — G23032,

with dim R, = 9 and S = GLs.

DECOMPOSABLE ALGEBRAS

Ng211: Nsi X ag;
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— Aut N672711 .

ay 0 0 0 0 0
as1  ail 2 0 0 0 0
3
asy ass ail 0 0 0
4 1)
@41 Q42 Q11032 411 0 0
5
as1 Qg2 u v aiy Q56
agl ago 0 0 0 age

where u = a1 A42 + 91 A39 — 61112(131, v = (1112(132 + a9l 61113, dim Ru =10 and S = GL%

Ngsz7: Nsa1 X ag;

— Aut Ng37:
a1 0 0 0 0 0
a1 G2z 0 0 0 0
asi Gzz Q11 22 0 0 0
@41 @42 Q11032 A11°G29 0 0 |

2 3
as1 Qs a11Q42 a11°4az2 a1l A22 d4se

ag1 Q4g2 0 0 0 age

with dim R,, = 10 and S = GL2.

Ng3g: Nsaa X ag;

— Aut N6,3,8 .
ail 0 0 0 0 0
as1  QAg9 0 0 0 0
asy ass (1112 0 0 0
1)
@41 Q42 —a21G11 G11 Q22 0 0
2
as1  Qas2 as3 u a117a22 Gas6
| a1 ae2 ags3 0 0 agg |

with v = a1l 4o + Qa91 Q32 — Q22 431, dim Ru =12 and S = GL?

Ng3o: Nsa23 X ag;
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— Aut N67379 .

where u = aj1 @22 — @12 a21, v = @11 a32 — @12 a31, W = a1 azs — A2 azi, dim R, = 10,

S = GL2 X GLl

Ngai: Nssi X ag;

aiy

Ga21

agy

G41

as1

ag1

a9 0
assg 0
ass U
Qg9 U
ags W
ago 0

11U Qa12U G4

G21U Q22U Gas56

0

Ggp

— Aut N4 :dimR, =9, and S = S’ X GLy, with S = (GL; X Sp,)/Z..

Ngao: NsszaXag;

— Aut N67472 .

aiy

Ga21

agy

G41

as1

ag1

0
a22
a3z
Q42
as52

Qg3

with dim R, = 13, and S = GL? x GLs.

Ngas: Nia X as;

— Aut N67473 .

aiy

Ga21

agy

G41

as1

ag1

0
a22
a3z
Q42
as52

Qg3

0 0 0
ass 0 0
ass 0 0
Q43 Q11 @22 411423
G53 411 @32 411433
ags 0 0

0 0 0
0 0 0
a1 Ao2 0 0
@11 a3z2 0112022 Q45
0 ass
0 0 ags

with dim R, = 11, and S = GL% X GLs.

Ngaa: N3a X Nggjor [21,29] = 5, [23, 24]) = Zg;
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— Aut N67474 .

ajp aio 0 0 0 0
as; azp 0 0 0 0
0 0 aszs das4 0 0
Autg : ,

0 0 aaq3 Qa4 0 0
as; asy as3 asg u 0

| a61 ag2 aez ass 0 v |

[0 0 1 0]
0 0 01 01

g = b ,

1 0 0 O 1 0

| 01 0O |

where u = a11Q22 — A21Q12, U — A33Q44 — A340Q043, dim Ru = 8, and S = GL% X Z2.

Ngs: N3o X as;

— Aut N675 .
ai; a1 0 0 0 0

as1 Q22 0 0 0 0

ag; Qg2 G110Q22 —A120a21 G3z4 agzs; 0aze

(41 Q42 0 (44 Q45 Q46
as1 @52 0 G54 G55 Qs
ag1 Qg2 0 (g4 Qo5 Qg

with dim R, = 11, and S = GLs x GLs.

Neg: ag;

—Aut N6,6 = GL6

3.2.3 Algebras of Dimension 6 over Algebraically Closed Fields of y = 2

In addition to the algebras over algebraically closed fields of x # 2, we have the following 5

extra indecomposable algebras for y = 2:

(A): [z1,2] = 241, 2 <3 <5, [22, 23] = @5 + @6, [T2, 4] = @65

- (1a2a3a4a6/6a4a3a2a1);
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— Characteristically nilpotent Lie algebra;
— CQ: Ny 1;

Remarks: (1) This algebra was first observed by Bratzlavsky [4], which turns out to be the
only characteristically nilpotent Lie algebra in dimension 6 when x = 2; (2) When x # 2,
this algebra is isomorphic to Ng ;1 1, which is not characteristically nilpotent. In fact, in this
case, the smallest algebra which is characteristically nilpotent is of dimension 7 (see Favre

[9])-

(B)3 [l'la 132] = 24, [131, 134] = Zg, [131, 135] = Zg, [132, 133] = &5 + g, [133, 134] = —Zg;
- (1’ 2a 4a 6/6a 3a 2a 1)a
— CQ: Ns22;

Remark: When x # 2, this algebra is isomorphic to Ng s 3.

(C): [#1,2;] = zit1, 1 =2,3,5, [22, 23] = @5, [@2, 4] = [@2, T5] = Z¢;
_ (1’ 3,4, 6/6a 4,3, 1)a

— CQ: Ny 2 3;

Remark: When x # 2, this algebra is isomorphic to Ng s 5.

(D): [21,22] = 24, [21,23] = T35, [22, 5] = 26, [23,24] = @6, [23,25] = T6;
— (1,3,6/6,3,1);

— CQ: N5 3.2

Remark: When x # 2, it is isomorphic to Ng 3 1.

(B): [z1,22] = 23, [21, 23] = @5, [21, 4] = To,[@2, T3] = @6, [, 4] = 25;
— (2,4,6/6,3,2);

— CQ: Nyg;

Remark: When x # 2, it is isomorphic to Ng 2 10.
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3.3 The Proof for 6-Dimensional Algebras

From the description of Skjelbred and Sund’s method, it is easy to see that, if g’ is a
central extension of g without Abelian factors , then the dimension of Z(g’) cannot ex-
ceed dim H2(g, F). So an indecomposable 6 dimensional nilpotent Lie algebra cannot be
a central extension of any 2-dimensional nilpotent Lie algebra. Furthermore the only 3
dimensional nilpotent Lie algebra that has nontrivial central extensions of dimension 6 is
N33, the Abelian algebra. So we will start from considering its central extensions. The
5-dimensional Abelian algebra N; s has no 6 dimensional central extensions either, as all
the skew symmetric bilinear maps are singular on a 5 dimensional vector space.

Revoy [23] has obtained a complete list for all the 2-step nilpotent Lie algebras of dimension
< 7 with the number of generators < 4. There are 3 such algebras of dimension 6, i.e.,
L1, Le and Lg 3 in his list, which are the central extenisons of 3 or 4 dimensional Abelian
Lie algebras.

3.3.1 Extensions of 3-Dimensional Algebras

Central extensions of N33 :
Z(g): ®1,2,23; [g,0]: 0; dim H?: 3; Basis: A1z, Ays, Ags;

There is only one 3-dimensional subspace, therefore the only representative for Gs(H%(g, F))
can be chosen to be 4; =[1,0,0], A, = [0, 1, 0], A3 = [0, 0, 1], corresponding to Ng 3.

So the central extension of N33 of dimension 6 is:

‘ Nose: [21,22] =24, [21,23] =25 [29,23]= 2. ‘

Remark: Revoy [23] has also obtained this algebra (Lg ;). We can see that the Skjelbred-
Sund method works quite well in this case.

3.3.2 Extensions of 4-Dimensional Algebras

Central extensions of N4 5 :

Z(g): z4; [0,0]: 23,245 Z%(g): Cog = C34 = 0; W(H?): C15 = C13 = 0; dim H?: 2; Basis:
Ayy, Ags;

There is only one 2-dimensional subspace in H%(g,F). Then the only representative in
G2(H?(g, F)) can be chosen to be A =[1,0] and B = [0, 1], corresponding to Ng 2 7.

So the central extension of N4 5 of dimension 6 is

| Noop: [en,e]=2ip1,i=2,3,4, [e2, 23] = 2. |
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Central extensions of Ny 3:

Z(g): 23,245 [9,9]: 23; Zz(g): C3q = 0; W(Hz): Ci2 = 0; dim H?: 4; Basis: A1z, A4, Aos,
Asy;

Group Action: aAjz + bA14 + cAssz + dAsy, let 6 := aj1as9 — ajaasy, then

a — aai16 + cazd; b — aaqiass + bajiags + caziass + dasiass; ¢ — aa12d + cased; d —
aay2a3g + bajsagy + cassazy + dassayy.

Let Vj be the subspace generated by A4 and Ay, it is a submodule under the group action.

Let L be any two-dimensional subspace of H%(g,F). Denote L = A A B, where A, B €
H?(g, F).

Case 1: L Vo # 0. Then we assume that in A, both a = ¢ = 0. As one of b,d # 0, we can
always make b = 1 and d = 0 to assume A = [0,1,0,0]. Fixing A, we require a;2 = 0 and
aj1a44 = 1. Now assume B = [a,0, ¢, d] and one of a,c # 0. We have & — aai16 + cas6;
b =0 — aai1ass + caziaszs + daziaas; ¢ — cazed; d — canzazs + dazeaaq.

If ¢ # 0, then make a = d = 0 by solving for as; and as4 respectively to get (1) B =[0,0,1,0],
with A A B corresponding to Ng 3 3.

If ¢ = 0, then a # 0, depending on whether d = 0 or not, we get two representatives for
B: (2) B=11,0,0,0] (which can be easily showed to be in the same orbit as A A B, where
A =10,0,0,1] and B = [0,0, 1,0], corresponding to Ng¢34) and (3) B =[1,0,0,1] (AA B
corresponding to Ng s ).

Case 2: L\ Vo = 0. Then at least one of a,c in both A and B are nonzero. Assume
A =[1,b,¢,d]. Make b = ¢ = 0 in A, and depending on whether d = 0 or not, we get two
representatives for A =[1,0,0,0] and A =[1,0,0,1].

For A =1[1,0,0,0], assume B = [0,b,¢,d]. Then ¢ # 0 and one of b,d # 0. Fix A (up to a
scalar), we require a;2 = agq = 0. Now in B, we have

a = 0 — 0 (by subtracting a multiple of A from B); b — bai1a44 + das1a44; ¢ — cassd;
d— d022044;

If d # 0, make b = 0 and get (4) B =10,0,1,1] (A A B corresponding to Ng2).

If d =0, then b # 0 and get (5) B =[0,1,1,0] (A A B corresponding to Ng 2 10).

For A =11,0,0,1], assume B = [0,b, ¢, d], with ¢ # 0. To fix A (up to a scalar), we require
Agq = a%l, a1o =0, agy = —asi1a11. Then

a=0— casai1a22; b — baijasy + caziazs + daziags; ¢ — cazed; d — cazgaiiaz; + dazsasy;

Subcase 2.1: x # 2. We can make a = d by solving for as; and subtract a multiple of A from
B to make both ¢ = d = 0. Then depending on b = 0 or not, we get two representatives
for B: (4’) B =[0,1,1,0] (A A B corresponding to Ngs9) and (5’) B =[0,0,1,0] (AA B
corresponding to Ng 2 10).
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We prove at first that the following two pairs are isomorphic: (4) and (4’), (5) and (5).

For (4) and (4’), take 21 — &1 — 22, 22 — 21+ 22, &3 — 283, T4 — T3+ T4, 5 — 225 — 226,
rg — 2x5 + 224.

For (5’) and (5), take &1 — 3, 2 — &1, 23 — —3, T4 — —&4, 5 — —2e and zg — —5.

To show the nonisomorphism between the algebras, we just need to compare the algebras
among the same group as follows:

Group 1: (1), (2) and (3);
Group 2: (4) and (5’).

In Group 1, take (1) as an example. To show (1) is not isomorphic to (2) and (3), we just
compare their orbits. In (1), A =[0,1,0,0] and B = [0,0,1,0]. Under the group action, we
have A — [0, a11044, 0, (112(144] and B — [0215, a21034, (1225, (122(134].

So the wedge product is

ANB — 4210011044014 N D13+ 8a44034014 A Aoy + 0110440220 A 14 N\ Asgs
+a120440216 A4 A A1z + 120440220 A2g N Asgg

Now compare with (2) and (3), we know the coefficients of A1y A Agz , Agy A Ays and
Agy A Agg are zero, i.e., @11022044 = A12Q21044 = Q12022044 = 0, as asq # 0, we must have
a2 = 0, and aj2a9; = 0, which is impossible, so (1) cannot be isomorphic to (2) or (3).

Similarly we can prove the distinctness between all the other algebras.
Subcase 2.2: x = 2. Now we consider two subcases:

Subcase 2.2.1: d = 0. Then we can make a = d = 0 by taking a;; = 0. And depending on
b = 0 or not, we get two representatives for B: (6) B =[0,1,1,0] (A A B corresponding to
(E)) and (5”) B =[0,0,1,0] (AA B corresponding to Ng 5 10, which can be seen easily from
the isomorphim given between (5) and (5)).

Subcase 2.2.2: d # 0. Then depending on b = 0 or not, we get two representatives for B:
(4’): B=1[0,0,1,1]or (7) B=0,1,1,1] (A A B corresponding to Ng 2 9).

We can prove that (4”) is isomorphic to (4): 21 — —z3, 22 — 21+22, 3 — T3, L4 — T3—La,
T5 — &5 + T, 7 — —T7.

From Subcase 2.1, we know that (6) is isomorphic to (4) when x # 2. Now we compare the
orbits of (4) with both (6) and (7) under the condition that x = 2.

In (4), A = [1,0,0,0] and B = [0,0,1,1]. Then under the automorphism group, 4 —

45



[0115, 411034, 0125, 012034] and B — [0215, 021034 + A21044, 0225, Q22034 + a22a44]. Then

ANB — (a116a21044)A13 N A1y
+(a116a228 — a126a210) A3 A Asgg
+(0115(022034 + 022044) - 0120340215)A13 A Aagy
+(alla340225 - 0125(021034 + 021044))A14 AWADY:
+(alla34(azza34 + 022044) - 0120340225)A14 A Aoy
+(a120a22044) Aoz A Aoy
Compare with (6), if (6) and (4) are in the same orbit, we would require that the coefficients
of A3 A Agy and Ay A Asgg to be zero, which give us

—a11022044 (12021044

e

and leads to the singularitiy of the automorphism group. Therefore (4) and (6) cannot be
isomorphic when y = 2.

Compare with (7), if (7) and (4) are in the same orbit, then the coefficients of Az A Aqy,
A3 A Aoz, A1z AAog, A1gAAgg, Aoy AA1g and Agy A Agg are all equal (nonzero), while the
coefficient of A4 A Assz is 0. A simple computation shows that we can indeed find a set of
solutions while maintaining the nonsingularity of the automorphism group. Therefore (7)
and (4) are isomorphic.

So the central extensions of N4 3 of dimension 6 are:

Neog: [131, l‘z] = Z3, [131, 133] = T3, [131, 134] = Zg,
[z2, 24] = @5;

Ne 29 [131, l‘z] = Z3, [131, 133] = T3, [132, 133] = Zg,
[z2, 24] = @¢;

N 2,10: [131, l‘z] = Z3, [131, 133] = T3, [132, 133] = Zg,
[132,1134] = T5;

Negs3 [131, l‘z] = Z3, [131, 134] = Zg, [132, 133] = T5;
[

Z, l‘z] = T3, [132, 133] = Zg, [132, 134] = Zg;
(E): ( for x = 2 only)
[131 ] = T3, [131, 133] = Zg, [131, 134] = Zg,
[132, 133] = Zg, [132, 134] = 5.

Central extensions of Ny 4:

According to Revoy [23], the central extension of Ny 4 of dimension 6 is:

‘ Ness: [z1,22] =5, [21,24) =26, [22, 23] = 2¢;
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3.3.3 Extensions of 5-Dimensional Algebras

Central extensions of Nj ; :

Z(9): @5; [9,0]: @3, 24,255 Z2(g): C15 — Coa =0, Cs4+ Co5 = 0,C35 = Cy5 = 0; W(H?):
Ci12=Ci13=C14=0; dim H?: 3; Basis: A5 + Aags, Ags, Ags — Asy;

GI‘Ollp Action: CL(A15 + A24) + bA23 + C(A25 — A34)
6 5 . 4 5 2 2 2 .23 7.
a — aaj; + caj az1; b — —2aaf;as + baij; + cai1(2a7,a42 — a3, — ajia3,); ¢ — caqy;

One of a,c # 0. When ¢ # 0, make a = 0 by solving for as;, and b = 0 by solving for as,,
and get the representative [0, 0, 1] (corresponding to Ng 1 2).

When ¢ = 0, then a # 0, get a — aal; and b — —2aaj;as; + ba3;. If x # 2, make
b = 0 by solving for as; and get [1,0, 0] (corresponding to Ng 11 ); If x = 2, then we have
b — ba?,, and get two representatives [1, 0, 0] (corresponding to Ng ;1 ) for b = 0 and [1, 1, 0]
(corresponding to (A)) for b # 0.

So the central extensions of N5 ; of dimension 6 are:

(21, 2] = 2i11,2 < i <5, [22,23] = 25 + 2, (22, 24] = z¢;
N67171 : [231, Jll] = J)H_l, 2 S Z < 5, [232, Jll] = J)i.|_2,i— 3,4,
N6,1,2 : [131, wz] =Ti41,1 = 2a 3a4a [132, 233] = Ty,

[ [

The central extensions of N5 5 ; can be found in chapter 2, Example 5.

The central extensions of N 5 5 can be found in chapter 2, Example 1.

Central extensions of Ny s 3:

Z(9): @4, 25; (9,0 @3, 24,25 Z2(g): Ci15 — Cag = 0, C34 = Cs5 = Cy5 = 0; W(H?):
Ci2 =Ci3 =Ca3 = 0; dim H?: 3; Basis: A4, Ais 4 Agg, Ass;

Group Action: a4 + b(A1s + Ags) + cAos
Let ¢ := a11a99 — A120921.

a — (aa?; + 2bajias; + ca2;)8; b — (aaiiars + bajiazs + bajsas; + caziass)d; ¢ — (aal, +
2bayqags + cal,)d;

Case 1: x # 2.

Subcase 1: b2 — ac # 0. Assume b # 0. Then we can make a = ¢ = 0 by solving for ay; and

—b+ b2 —ac
c

as29, l.e.
—b+ /b2 —ac
e 1]

[

a1 = ayi, Qg2 = 2-
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Choose appropriately as; and ass to ensure that the automorphism is nonsingular, we get
the representative [0, 1, 0], corresponding to Ng 2 5.

Subcase 2: b2 — ac = 0. Assume ¢ # 0. Making a = 0 by solving for a;s, we get ass =
—bays/c. Plug in the formula for b, we have b — (aai;a12 —b%aji1a12/c+bajras; —bajsas) =
0, since b2 = ac. So we have the representative [0, 0, 1], which contains the central element

z4 in its kernel. Therefore we omit it.

Case 2: x = 2. Then we have a — (aa?,+ca2,)8, b — (aai1a12+bajiass+barsas; +caziass)d,
c — (aa?, + ca2,)d. If both a,c = 0, we get [0, 1,0] (corresponding to Ng 2 5), and if one of
a,c# 0, make ¢ =1 and a = 0, get [0,1, 1] (corresponding to (C)).

So the central extensions of Nj 5 3 of dimension 6 are:

(C):

~—~

for x = 2 only)

1,2 =211, 1=2,3,5 [zo, 23] =25 [@2,24] = g,
T2, T5] = e;

1,2 =211, 1=2,3,5 [zo, 23] =25 [@2,24] = .

— o

N6,2,5 :

Central extension of Nj 3 1:

Z(g): T5, [g,g]: T5, Z2(g)§ 015 = 0, 025 = 035 = 045 = 0, W(H2) 012 = 0, d1mH2 5,
Basis: Aqs, A1g, Asz, Aog, Asy;
It is obvious from this basis that all the elements in H?(g, F) have z5 in its kernel, so it

does not have any central extension without Abelian factors.

Central extensions of Ny 3 :

Z(9): ¢4, 255 [g,9]: T4, 255 Z2(g): Cas = 0, Cog — C3q4 = 0; W(H?): C12 = C13 = 0; dim H?:
6; Basis: Aq4, A1s, Aoz, A, Aos + Asy, Ass;

GI‘Ollp Action: CLA14 + bA15 + CA23 + dA24 + e(A25 + A34) + fA35;
a— aaflazz + ba%1a32 + dajiaz1a92 + eari(aziass + as2a31) + faiiasqass;
b— 0031023 + ba%1a33 + dajiaz1a23 + eari(aziass + azzasi) + faiiassas;

¢ — c(agzass — asgaae3) + d(ag2a43 — Ga2a23) + e(a22a53 — as2a23) + e(as2043 — asnass) +
f(a3za53 - 052033);

d — day1a3, + 2ea11a95032 + fai1a3,;

e — dajiassass + eaq1(az2ass + assass) + faiiasaass;

f — day1a33 + 2eas1as3as3 + faiiads.

We have e # 0 or when e = 0, one of a,d # 0 and one of b, f # 0.

Case 1. x # 2. As one of d, e, f # 0, otherwise the 2-cocyles will contain some nontrivial

elements from the center in their kernel.
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When e% — df # 0, we can always make e = 1. Then we further make d = f = 0 by solving
for ass and as3 respectively to get

—ex +/e2 —df
d

a2 = a32, Q23 =

—ex /2 — dfa33
—g a4

Choose appropriately as» and as3 to ensure that the automorphism is nonsingular, we will

get the representative [0, 0,0, 0, 1, 0] (corresponding to Ng31).

When e? = df, we can make d = e = 0 and f = 1 instead. Since e? = df, by solving for as,
to make d = 0, we get as2 = —eass/d. Plug in the expression for e, we have

day1a22023 + eaq1(az2ass + agsass) + faiiassass
= ay1(—easzas3/d + e(—eagzass/d + assass) + fagzass) = 0.

So we have d = e = 0, and assume f = 1. Now we can further make b = ¢ = 0 by solving for
as2 and as;. Now we need a # 0 and get a representative B =[1,0,0,0,0, 1] (corresponding
to N6,2,6)

Case 2. x = 2. Then d — dajial, + faiiai,; f — daiiai; + faials.

When both d, f = 0, then e # 0, we can make a = b = ¢ = 0 and get a representative
[0,0,0,0,1,0] (corresponding to Ng31). When one of d, f # 0, make d =0 and f =1. If
e # 0, then make a = b = ¢ = 0 and get the representative [0,0,0,0,1, 1] (correponding to
(D)), If e = 0, Then make b = ¢ = 0, and require a # 0 to get [1,0,0,0,0, 1] (corresponding
to N6,2,6)-

So the central extensions of N5 35 of dimension 6 are:

(D) (for x = 2 only)
[131, l‘z] = 24, [131, 133] = T3, [132, 135] = Zg,
[133, 134] = Zg, [133, 135] = Zg;
N6,2,6 : [131, l‘z] = T4, [131, 133] = 5, [131, 134] = Tg,
[133,1135] = Zg;
N6,3,1 : [131, l‘z] = T4, [131, 133] = 5, [132, 135] = Tg,
[23, 24] = 26.

Central extensions of Nj 3 3:

Z(g): T4, T5, [gag]: L3, 24; Z2(g): C’24 — C’34 = 035 = 045 = 0, W(H2) 012 = 013 = 0,
dimH2: 4, Basis: A14,A15,A23,A25;

Group Action: a4 + bA15 + cAgs + dAss;

3 . . 2. .
a — aayj as2; b — aayiags + bayyass + dasyass; ¢ — cajjazy; d — dassass;
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Both a,d # 0. Make b = 0, and get two representatives depending on whether ¢ = 0 or not,
ie., [1,0,0,1] (corresponding to Ng 3 4) or [1,0,1,1] (corresponding to Ng 1 4).

So the central extensions of N5 3 3 of dimension 6 are:

N6,1,4 : [331, ml] =2i41,1=2,3 [131, 134] = Te,
(22, 23] = 2o, (22, T5] = 26;
Nesa: [z, @] =2i1,1=2,3 [z1,24] = @6, [22,25] = 26;

Central extensions of Ny 4:

Z(g): @3,z4,25; [8,0]: 23; Z%(0): Csq = Cs5 = 0; W(H?): C15 = 0; dim H?: 7; Basis:
A13aA14aA15aA23aA24aA25aA45;

Group Action: aAis + Agg + A5+ cAoz + dAoy + eAos + fAs;

Let 6 :— aj1a29 — ajsasy, then

a — (aay1 + dasy)d;

b — aajiass + bajiaas + car1as4 + dasiass + eas1aas + fasiass + g(aa1a5s — a51a44);
¢ — aajiags + bajiass + carrass + dasiass + easiaas + fasiass + g(aaass — asiaas);
d — (aaiz + dass)d;

e — aa12034 + baj2a44 + car2a54 + daseass + €a22a44 + fasoass + g(@a2a54 — a52044);
[ — aaizags + bajsass + careass + dassags + eassaas + faseass + g(aazass — as2aas);
g — g(aqass5 — asgays);

One of a,d # 0. Can always make a =1 and d = 0. Make b = 0 by solving for as4, ¢ = 0
for ass. Now fix a, b, ¢, d and we have

a— a116 = 1; b — arrassteasiaaa+t fasiasa+9g(as1asa—as1aaq) = 0; ¢ — agiass+easiass+
fasias5+g(asiass —asi1as5) = 0; d — @120 = 0; e — a12a34 + €as2044+ fazaass+ g(aszass —
a52044); [ — a12035 + eagaass + fazaass + g(aa2a55 — a52045); g — (44055 — A54045);

So we have a;2 = 0, and we can solve for as4 and ags to keep b = ¢ = 0. If e # 0, we can
solve for asq (let ass = 0) to make it 0. Then we require g # 0 (to ensure that the kernel of

the cocyles do not contain z4). With g # 0, we can make further f = 0 by solving for a4..
So we get the representative [1,0,0,0, 0,0, 1], corresponding to Ng 3 ».

So the central extension of N 4 of dimension 6 is:

Nosz: [, 2] =23 [e1,25) =g, [24,25] = @6. |
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Chapter 4

List of 7-Dimensional Nilpotent Lie
Algebras

In this chapter we list the presentations of all nonisomorphic indecomposable 7-dimensional
nilpotent Lie algebras in the following two cases: (1) over algebraically closed fields of
characteristic # 2 and (2) over the real field. A multiplication table for each algebra is

given, with nonzero brackets only.

Over the algebraically closed fields, there are 6 one parameter continuous families, and 119
isolated algebras in total (when x = 3, there are 120). Over the real field, in addition to
the algebras in the first list, we find 3 one parameter continuous families and 21 isolated
algebras, which makes it a total of 9 one parameter continuous families and 140 isolated

algebras in this case.

We follow Seeley’s labelling of algebras when F is algebraically closed, i.e., each algebra
is labelled by its upper central series dimensions plus an additional letter to distinguish
nonisomorphic algebras. For example, the algebras having a center Z of dimension 3, and
a second center Z? of dimension 7 are listed as (37A), (37B), (37C),and (37D) — in total
4 algebras. The algebra in our list having the same label as an algebra in Seeley’s list are
always isomorphic. However, our presentations of the Lie algebras may be different from
those of Seeley’s. If this is the case, then an explicit isomorphism can be always found in
the proof where the algebras arise, for example, see (27A) and (27B) in Chapter 5.

When the ground field is R, we may get more algebras. In this case, we will use L; to
denote those algebras that are isomorphic to L over C. For example, if we consider all the
algebras with the upper central series dimension (37) over R, we get two more algebras,
denoted by (37B;) and (37D;), meaning that over C, these two algebras are isomorphic to
(37B) and (37D) respectively.

For the one-parameter continuous families, a variable ) is used to denote a structure constant
that may take on arbitrary values (with some exceptions) in F. An invariant I(A) is given
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for each family in which multiple values of X yield isomorphic algebras, i.e., if (A1) = I(A2),
then the two corresponding algebras are isomorphic and conversely.

The 6 one-parameter continuous families over algebraically closed fields ( x # 2) are:

(123457I): X arbitrary.

(12457N): X arbitrary, with invariant I(A) = A+ A7L.
(1357M): A % 0.

(1357N): X arbitrary.

(1357S): A # 1.

(147E): A # 0,1, with invariant I(A) = (L-A+A%)°

NO-1)2

Unlike in Seeley’s list over C, we no longer list separately those algebras which are just
special cases of the families of the same upper central series dimensions. To be exact, as
(123457G), (12457M), (1357K) and (147C) in Seeley’s list are respectively the special cases
of (123457I) by taking A = 1, (12457N) by taking A = 0, (1357M) by taking A = 1/2, and
(147E) by taking A = 1/2, instead of listing them separately, we include them in (1234571),
(1357M) and (147E) respectively as special cases. That is why our list has 119 (for x # 3)
isolated algebras while Seeley’s has 124, with the merging of the above 4 algebras and also
the deleting of (13457H), which is not a Lie algebra at all.

We also want to point out that in our list, (147E) becomes (247P) if we let A = 0 or 1,
(1357S) becomes (2357D) if A =1, (1357M) becomes (2357B) if A = 0. Although it is more
natural to include all these special cases in the corresponding continuous families, we still
list them separately, due to their different upper central series dimensions.

Over R, there are 3 additional one-parameter families:

(12457Ns): A > 0.
(1357QRS;1): A # 0, with invariant I(A) = A + A71.
(147Ey): A> 1.

The reason we use the notation (1357QRS;) is that because over C, if A = 1, this algebra
is isomorphic to (1357Q); if A = —1, it is isomorphic to (1357R), and for all other A # 0, it
is isomorphic to (1357S,A > 0). When A = 0, it becomes (2357D).

Some special features are: (i) Except in the case when x = 3, where we obtain an extra
algebra (147F), the structure constants of all the algebras can be chosen to be integers and
independent of the characteristic of the ground field; (ii) When the ground field is changed
from C to R, we may get more algebras. The only algebra that has three different real
forms is (1357Q). All the other algebras have at most two nonisomorphic real forms.

Carles [6] obtains a table giving the union of the tables of [24], [26] and [31] according to
the weight systems. He considers in particular the limit points of all the one parameter
continuous families. Readers may refer to [6] for more details. We want to mention that
the basis for each algebra in our list has been chosen so that it also diagonalizes a maximal
torus.
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4.1 List of 7-Dimensional Indecomposable Nilpotent Lie Al-

gebras over Algebraically Closed Fields (y # 2)

(37A):
(37B):
(37C):

(37D):

(357A):
(357B):

(357C):

(27A):
(27B):

(257A):
(257B):
(257C):

(257D):

[131,1132] = Ts,
[131,1132] = Ts,
[131,1132] = Ts,
[133,1134] = Ts;
[131,1132] = Ts,
[23, 24] = @5.
[131,1132] = T3,
[132,1134] = Ts;
[131,1132] = T3,
[132,1133] = Ts;
[131,1132] = T3,
[132,1133] = Tg,

[mla %2] = Tg,
[mla %2] = Tg,
[233, 234] = Zqg.

[131,1132] = T3,
[132,1134] = Ts;
[131,1132] = T3,
[132,135] =Z7;
[131,1132] = T3,
[132,135] =Z7;
[131,1132] = T3,
[132,1134] = Tg,

Upper Central Series Dimensions (37)

[%2, %3] = Tg,
[%2, %3] = Tg,

[%2, %3] = g,

[mla %3] = Tg,

[132, 134] = T7;
[133, 134] = T7;

[%2, %4] =7,

[%2, %4] = Ty,

Upper Central Series Dimensions (357)

[%1,%3] = s,
[%1,%3] = s,

[mla %3] = s,

[132,134] = s,

[mla %4] = Ty,
[mla %4] = Ty,

[mla %4] = Ty,

Upper Central Series Dimensions (27)

[mla %4] = Ty,
[mla %5] = Ty,

[133,135] =Z7;
[%2, %3] =7,

Upper Central Series Dimensions (257)

[mla %3] = Tg,
[mla %3] = Tg,
[mla %3] = ZTg,

[mla %3] = ZTg,
[132,135] =T7;

[mla %5] = Ty,
[mla %4] = Ty,
[%2, %4] = g,

[mla %4] = Ty,
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(257E):
(257F):
(257G):

(257H):

(2571):

(257J):

(257K):

(257L):

[z2, 24] = @7,
[z2, 24] = @7,
[z1, 5] = @7,
[z2, 24] = g,
[z1, 24] = g,
[z1, 5] = @7,
[z2, 23] = @7,

[%2, %3] = Ty,

[131, l‘z] = T3, [131, 133] = Zg,
[134,1135] = Zg;
[131, l‘z] = T3, [132, 133] = Zg,
[134,1135] = Zg;
[131,132] = T3, [131,133]
[132,134] =7, [134,135]
[131, l‘z] = T3, [131, 133] = Zg,
[134,135] =Z7;
[131, l‘z] = T3, [131, 133] =
[131, 135] =7, [132, 133] =
[131, l‘z] = T3, [131, 133] =
[132, 133] =7, [132, 134] =
[131, l‘z] = T3, [131, 133] =
[134,135] =Z7;
[131, l‘z] = T3, [131, 133] = Zg,
[132, 134] = Zg, [134, 135] =27
Ty, 2] = ®iy2,t=2,3,4,5;
Ty, 2] = 2iye,t=2,3,4
Ty, 2] = 2iye,t=2,3,4

]

[132,1134] Le,
[133,1135] = Ts;
[131,1135] = Tg,
[133,134] =7,
[132,1134] = Tg,
[133,1135] = Ts;
[132,1135] = Tg,
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[233, 235] = Tq.
[%2, %5] = Ty,

[%2, %5] = Ty,
[%2, %5] = Ty,
[%2, %4] = Tg,
[z3, 25] = Z¢;
[%2, %5] = Ty,
[%3, %4] = Tg,

[%2, %5] =7,

[%3, %4] = Ty,



(247TM):  [z1, 2] = ®iy2,1=2,3,4 |22, 23] = 26, [23,25] = 27;
(247N): [y, 2] = ®iya,1= 2,3, [21,25] = @6, [22,23] = 27,
(22, 24] = z6;
(2470):  [z1, 2] = ®iy2,1=2,3,4 [21,25] = 27, [22,23] = 27,
(23, 25] = z6;
(247P):  [z1, 2] = ®iye,1= 2,3, (29, 23] = @6, [22,25] = 27,
[133,134] =27,
(247Q):  [z1, 2] = ®iya,1=2,3,4, [22, 23] =26, [22,25] = 27,
[133,134] =27,
(247R):  [z1, %] = ®iy2,1=2,3,4  [21,25] = 26, [22, 23] = @6,
[132, 135] =27, [133, 134] =27,
Upper Central Series Dimensions (2457)
(2457A): [y, 2] = ®i41,1= 2,3, [21,2;] = ¢i2,1 =4, 5;
(2457B):  [z1, 2] = ®i41,1= 2,3, [@1, 4] = @7, [22, 25] = z6;
(2457C):  [x1, 2] = ®iy1,8= 2,3, [21,2;] = Tit2,0=4,5, [22,25] = z6;
(2457D):  [@1, 2] = ®iy1,8= 2,3, [21,2;] = T2, =4,5, [22,23] = 26,
(22, 25] = z¢;
(2457E):  [z1, 2] = ®i41,1= 2,3, [@1, 4] = @7, [24, 23] = 2,
(22, 25] = z¢;
(2457F):  [21, 2] = ®iy1,8= 2,3, [21,2;] = T2, =4,5, [22,23] = z6;
(2457G):  [z1, 2] = ®iy1,1= 2,3, [@1, 4] = @7, [21,25] = 2,
(22, 23] = z¢;
(2457H):  [21, 2] = ®i41,1= 2,3, [@1, 4] = 27, [24, 23] = 2,
[132,135] =27
(24571) [21,2;] = ®iy1,1 = 2,3, [21,24] = 26, [24, 23] = 2,
[132,135] =27
(2457J):  [z1, 2] = ®i41,1= 2,3, [21, 4] = @6, [2g, 23] = 26 + @7,
[132,135] =27
(2457K):  [z1, 2] = ®i41,1= 2,3, [@1,24] = 27, [21,25] = 2,
[132, 133] = Zg, [132, 135] =27,
(2457L):  [z1, 2] = ®i41,1= 2,3, [@1, 4] = @6, [21,25] = 27,
[132, 133] = T3, [132, 134] =27, [132, 135] = Zg;
(2457TM):  [z1, 2] = ®i41,1= 2,3, [@1, 4] = @7, [21,25] = 2,
[132, 133] = T3, [132, 134] = Zg;
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Upper Central Series Dimensions (2357)

(2357A):  [21, 23] = 24, [21,24] = @5, [21,25] = 27,
(g, 23] = 25 + 26, [23,24] = —27;
(2357B):  [z1, 23] = 24, [21, 23] = @6, [21,24] = @5,
[131, 135] =27, [132, 133] = T3, [133, 134] = =7
(2357C):  [21, 23] = 24, [21,24] = @5, [21,25] = @7,
[132, 133] = T3, [132, 134] = Zg, [133, 134] = =7
(2357D):  [2z1, 23] = 24, [21, 23] = @6, [21,24] = @5,
[131, 135] =27, [132, 133] = T3, [132, 134] = Zg,
[133,134] = =7
Upper Central Series Dimensions (23457)
(23457A):  [21, 2] = ®i41,8 = 2,3,4, [z1,25] = 26, [2q, 23] = 27;
(23457B):  [z1, 2] = ®it1,8 = 2,3,4, [@2, 23] = 27, (29, 25] = 26,
(23, 24] = —6;
(23457C):  [21, 2] = ®iy1,8 = 2,3,4, [z1,25] = w6, [2q,25] = 27,
[133,134] = =7
(23457D):  [z1, ;] = ®it1,8 = 2,3,4, [z1,25] = w6, (29, 23] = 26,
[132, 135] =27, [133, 134] = =7
(23457E):  [21, 2] = @41, = 2,3,4, [21,25] = w6, [2q, 23] = 25 + @7,
(22, 24] = z6;
(23457F):  [21, 2] = ®i41,1 = 2,3,4, [@2, 23] =25 + 27, [22,25] = @6,
(23, 24] = —6;
(23457G):  [z1, 2] = ®it1,8 = 2,3,4, [z1,25] = 26, (24, 23] = @5,
[132, 134] = Zg, [132, 135] =27, [133, 134] = =7
Upper Central Series Dimensions (17)
(17):  [e1,22) = @7, [@3,24] = 27, [25,26] = 27,

Upper Central Series Dimensions (157)

(157):  [z1,22] = 23, [21,23] =27, [22,24] = 27,

[135,136] = T7,
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Upper Central Series Dimensions (147)

(147A):  [21, 23] = 24, [21, 23] = @5, [21,26] = @7,
[132, 135] =27, [133, 134] =27,
(147B):  [21, 23] = 24, [21, 23] = @5, [21,24] = @7,
[132, 136] =27, [133, 135] =27,
(147D):  [@1, 23] = 24, [21, 23] = —@6, [21,25] = 27,
[131, 136] =27, [132, 133] = T3, [132, 136] =27,
(23, 24] = —227
(147E):  One parameter family, with invariant I(X) = %, A#0,1

[21, 2] = 24, [21, 23] = —2z6, [21,25] =

[22, 23] = 25, [22, 6] = Aw7, [@3,24] =

When A = 0 or 1, it is isomorphic to (247P).
(147F):  (for x = 3 only)

-7,

(1 - Nz

[21, 22] = 24, (1, 23] = —z¢, [21,25] = 27,
(1, 26] = 27, (2, 23] = 25,  [22,24] = 27,
[132, 336] =7, [233, 134] = 7.

Remark: (147C) in Seeley’s list is a special case of (147E) by taking A = 1.

Upper Central Series Dimensions (1457)

(1457A):  [z1,25] = €11, = 2,3, [@1,24) = 27, [@5,26] = @7;
(1457B):  [z1,25] = €11, = 2,3, [@1,24) = 27, [@2,23] = 27,

[135,136] = T7,

Upper Central Series Dimensions (137)

(137A):  [z1,22] = @5, [21,25] = 27, [23, 24] = 26,
[133,136] =27,

(137B): [z, z2] = @5, [21,25] = @7, (29, 24] = 27,
[133, 134] = Zg, [133, 136] =27

(137C):  [#1,22] = @5, [21,24] = @6, [21, 26] = 27,
[132, 133] = Zg, [133, 135] = =7

(137D):  [#1,z2] = @5, [21,24] = @6, [21, 26] = 27,
[132, 133] = Zg, [132, 134] =27 [133, 135] = =7
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Upper Central Series Dimensions (1357)
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One parameter family, with A £ 0

(1357M):

[131, ml]

= g,

(21, z2]

(1= XNz

[%3, %4]
When A = 0, it is isomorphic to (2357B).
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(1357Q):  [@1,22] = @3, [@1, 23] = @5, [21,25] = @7,
[132, 133] = Zg, [132, 134] = Zg, [132, 136] =27,

(1357R):  [@1,22]) = @3, [21,23] = @5, [21,2¢] = 27,
[132, 133] = Zg, [132, 134] = Zg, [132, 135] =27,
[133, 134] =27,

(1357S):  One parameter family, with A # 1
[21,22] = 23, [21,23] = @5, [z1, 5] = @7,
(21, 26] = 7, [22, 23] = g, [z2, 24] = g,

(@2, @] = 27, [22,26] = Awr, [23,24] = 275
When A = 1, it is isomorphic to (2357D).
Remark: (1357K) in Seeley’s list is a special case of (1357M) by taking A = 1/2.

Upper Central Series Dimensions (13457)

(13457A):  [z1, 2] = @ip1, 1= 2,3,4, [21,25] = 27, (29, 26] = @7;

(13457B):  [z1, ;] = ®iy1, 1= 2,3,4, [z1,25] = 27, (29, 23] = @7,
[132,136] =27,

(13457C):  [&1, 2] = ®iy1, 1 =2,3,4, [21,26] = 27, (29, 25] = @7,
[133,134] = =7

(13457D): [z1, ;] = ®i41,8=2,3,4, [z1,25] = 27, (29, 23] = @5,
[132, 134] =27, [132, 136] =27,

(13457E):  [21, 2] = ®i41,=2,3,4, [21,26] = 27, (29, 23] = @5,
[132, 135] =27, [133, 134] = =7

(13457F):  [z1, 2] = ®iy1, 1= 2,3,4, [21,25] = 27, (29, 23] = @6,
[132,136] =27,

(13457G):  [z1, 2] = @iy1, 1= 2,3,4, [21,26] = 27, (29, 23] = @6,
[132, 134] =27, [132, 135] =27, [133, 134] = =7

(134571 [&1, 2] = ®ip1, 1= 2,3,4, [z1,25] = 27, (29, 23] = @6,
(29, 25] = @7, (29, 26] = @7, [23, 24] = —@7.

Remark: (13457H) in Seeley’s list is not a Lie algebra, should be deleted.
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Upper Central Series Dimensions (12457)

(12457A):  [21, 2] = @41, 1= 2,3, [21,24] = @6, [21,26] = 27,
[132, 135] = Zg, [133, 135] =27,

(12457B):  [21, 2] = @ip1, 1= 2,3, [21,24] = @6, [21,26] = 27,
(29, 25] = 26 + 27, (23, 5] = z7;

(12457C):  [21, 2] = @ip1, 1= 2,3, [21,24] = @6, (24, 25] = 2,
[132, 136] =27, [133, 134] = =7

(12457D):  [&1, 2] = @ip1, 1= 2,3, [21,2;] = iy, =4,5, [&2,25] = zg,
[132, 136] =27, [133, 134] = =7

(12457E):  [21, 2] = ®i41,5 = 2, 3, [21,24] = @6, [21,26] = 27,
[132, 133] = Zg, [132, 134] =27 [132, 135] = Z¢,
[133,135] =27,

(12457F):  [21, 2] = ®i41,5 = 2, 3, [21,24] = @6, [2q, 23] = 26
(29, 2;] = ;41,1 = 5,6, (23, 24] = —7;

(12457G):  [z1, 2] = ®i41,5 = 2,3, [21,24] = @6, [21,25] = 27,
(29, 23] = @6, (2o, 2] = j41,1=5,6  [@3,24] = —27;

(12457H):  [21,2;] = ®it1, £ =2,3,5,6 [xg, 2] =2 42,5 = 3,4, [@3,24 =27;

(124571):  [21,2;] = ®it1, £ =2,3,5,6 [xg, 2] =2 42,5 = 3,4, [@2,25] =27,
[133,134] =27,

(124573):  [21, 2] = ®i41, 1 =2,3,5,6  [21,24] = 27, [2q, 23] = 5,
[132, 134] = Zg, [132, 135] =27, [133, 134] =27,

(12457K):  [21, 2] = ®i41, 1 =2,3,5,6  [21, 4] = 27, [2q, 23] = 5,
[132, 134] = Zg, [133, 134] =27,

(12457L):  [21,2;] = ®it1, ¢ =2,3,5,6 [xg, 2] =2 42,5 = 3,4, [@2,26] =27,
[133, 134] =27, [133, 135] = =7

(12457N):  One parameter family, with invariant I(A) = A + A7%
[21,2;] = @41, 1 =2,3,5,6 [21,24] = 27, [2q, 23] = 5,
(29, 24] = @6, (29, 25] = Az7, (24, 26] = 27,
[133, 134] =27, [133, 135] = =7

Remark: (12457M) in Seeley’s list is just a special case of (12457N) by taking A = 0.

Upper Central Series Dimensions (12357)

(12357A):  [21, 23] = 24, [21,2;] = iy1, 1 =4,5,6, [@2,23] = @5,
(23, 4] = —z6, [@3,25] = —27;

(12357B):  [z1, 23] = 24, [21,2;] = ®i41, 1 =4,5,6, [22,23] = &5 + @7,
(23, 4] = —z6, [@3,25] = —27;

(12357C):  [z1,®2] = ¢4, [T1,2;] = @iy1, ¢ =4,5,6, [22, 23] = @5,
(2, 24] = @7, [23,24] = —2g, [z3, 5] = —@7;



o~ — — —

(123457E):
(123457F):

(123457H):

(1234571):

123457A):
123457B):
123457C):
123457D):

Upper Central Series Dimensions (123457)

One parameter family.
[mlami] = Tj41, 2 S { S 5’

[%2, %4] = Tg,

[132, 135] =z7, [133, 134] = —z7.
[131, 136] =z7, [132, 133] = Zg,

(21, 26] = @7, (29, 23] = 26 + 27,
[131, 136] =z7, [132, 133] = Zg,
[133,134] = —Z7

(21, 26] = @7, (29, 23] = ©5 + 27,
[132,135] = T7,

[131, 136] =z7, [132, 133] = Zg,

[22, 5] = Az7, [@3,24] = (1 — A)ar.

Remark: (123457G) in Seeley’s list is a special case of (123457I) with A = 1.
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4.2 List of 7-Dimensional Indecomposable Nilpotent Lie Al-
gebras over the Real Field

Each of the algebras in the list of Section 4.1 can be interpreted as a Lie algebra over R.
In the case of infinte families, we have to restrict the parameter A to take real values. The
exceptional algebra which occurs in the case y = 3 should be omitted. In addition to these
algebras, we have the following 24 extra indecomposable algebras over the real field R.

Upper Central Series Dimensions (37)

(37B1):  [x1,22] = @5, [21, 23] = @6, [21,24] = 27,
[132, 134] = Zg, [133, 134] = —Ts5;

(37D4):  [&1, 22] = @5, [21, 23] = @6, [21,24] = 27,
[132, 133] = —Z7, [132, 134] = Zg, [133, 134] = —Ts5;

Upper Central Series Dimensions (257)

(257J1):  [21,22] = =3, [21,23] = 26, [21,24] = @6,

[131, 135] =z7, [132, 133] =z7, [132, 135] = Zg;

Upper Central Series Dimensions (247)

(247E1):  [21, 2] = ®i42,1=2,3,4  [22, 4] = 27, [z3, z5] = 27;
(247F41):  [z1, 2] = @i42,5= 2,3, (29, 24] = @6, (24, 25] = 27,
[133, 134] =27, [133, 135] = —Zs;
(247TH4):  [21, 2] = ®i42,1=2,3,4  [22, 4] = @6, (24, 25] = 27,
[133, 134] =27, [133, 135] = —Zs;
(247P1):  [z1, 2] = @i4a,5= 2,3, (29, 23] = @6,
[132, 134] =27, [133, 135] =27,
(247Rq):  [21, 2] = ®i42,1=2,3,4  [22, 23] = 26,
[132, 134] =27, [133, 135] =27,

Upper Central Series Dimensions (2457)

(2457L1):  [e1, @] = 241,81 = 2,3, [e1,24] = 26, [21,25] = 27,

[132, 133] = Zg, [132, 134] =z7, [132, 135] = —Zg;
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(2357D1):  [@1, 2] = 24, [21, 23] = @6, [21,24] = 5,
[131, 135] =27, [132, 133] = T3, [132, 134] = —Zs,
[133, 134] = =7
Upper Central Series Dimensions (147)
(147A4):  [21, 22] = 24, [21, 23] = @5, [21,26] = 27,
[132, 134] =z7, [133, 135] =T7;
(147E;):  One parameter family, with A > 1
[131, l‘z] = 24, [132, 133] = T3, [131, 133] = —Zs,
[21,26] = —Az7, [29,25] = Azy, [22,26) = 227,
[23, 24] = —227.
Upper Central Series Dimensions (137)
(137A4):  [@1, 23] = @5, [21,24] = 6, [21,25] = 27,
[132, 133] = —Zg, [132, 134] = T3, [132, 136] =27
(137B1):  [z1, 23] = @5, [21,24] = 6, [21,25] = 27,
[132, 133] = —Zg, [132, 134] = T3, [132, 136] =27,
[133, 134] =27,
Upper Central Series Dimensions (1357)
(1357F4): [21,22]) = 23, [21,23] = 27, (22, 2;] = @i12,1 = 3,4,
[132, 135] =27, [134, 136] =27,
(1357Py): [21,22] = 23, [21,2;] = ®;42,8=3,5, [22,23] = @6,
[132, 134] = T3, [132, 136] = —Z7, [133, 134] =27,
(1357Q4): [21,22] = 23, [21,23] = 5, [21,25] = 27,
[132, 133] = Zg, [132, 134] = Zg, [132, 136] = =7
(1357QRS;): One parameter family, with invariant I(A) = A+ A~! and A # 0.
[131, l‘z] =73 [131, 133] = Ts, [131, 134] = Ts
[131, 135] =27, [132, 133] = —Zg [132, 134] = T3,

Upper Central Series Dimensions (2357)

[22, 2] = Azr  [23,24] = (1 — N)z7.

When A =1, (1357QRS;)2 (1357Q) over C;

When A = —1, (1357QRS;)=(1357R) over C.
(1357QRS1, A # 0,41) becomes (1357S, A > 1) over C.
When A = 0, it becomes (2357D).
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Upper Central Series Dimensions (12457)

(12457J1):  [e1, 2] = 2441, ©=2,3,5,6 [21,24]) =27, [22,2;] = 2j12,5 = 3,4,

(22, 25] = —7, (23, 4] = z7;
(12457L4):  [21, 2] = @41, 2= 2,3, [21,24] = —ws, [21,26] = @7,
(22, 23] = 25, [22, z5] = —2q, (23, 5] = —27;
(12457N4):  [21, 2] = @41, 1= 2,3, [21,24] = —ws, [21,26] = @7,
(22, 23] = 25, (g, 5] = —26 + 27, [23,25] = —27;
It is isomorphic to (12457N, A = 1) over C.
(12457N3):  One parameter family, with A > 0.
(1, 2] = i1, 1= 2,3, [z1,24] = —2g, [z1, 5] = @7,
[mla mG] =T, [%2, %3] = Ts, [%2, %4] =27,
(22, 25] = —z¢ + Az, (23, 5] = —z7;
It is isomorphic to (12457N,\ # 1) over C.

Upper Central Series Dimensions (12357)

(12357B1):  [21, 2] = 24, (1, 2] = 2441, 1 =4,5,6, [z9,23] =25 — 27,

[133,134] = —Tg, [133,135] = —z7;

Upper Central Series Dimensions (123457)

(123457H1) [mla ml] = Ti41, 2 S 1 S 5’ [mla mG] = —Z7, [%2, $3] = 5 + Ty,

[132, 134] = Zg, [132, 135] = —z7;
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Chapter 5

Two-Step Nilpotent Lie Algebras

In this chapter, we consider all the central extensions of Abelian algebras — Ngg, N5 5 and
N4 4 — over both algebraically closed fields of characteristic # 2, and over the real field R.

Central extensions of Ngg = ag:
Basis: A;;, 1 <1< 3 <6.

In this case, we have Aut Ngg = GLg. To make sure that the central extension does not
have any Abelian direct factors, we require that the skew-symmetric matrix corresponding
to the 2-cocycles to be nonsingular, therefore by a classical result on the canonical form for
nonsingular skew-symmetric matrices (see [16] for example), we can immediately obtain a
representation in U;(g)/Aut g as Aj2 + Ass + Asg, which corresponds to the algebra (17).

Therefore the corresponding central extension of Ng g of dimension 7 over any field is:

‘ (17): [z1,22] = 27, [z3,24] = 27, [25,26] = 27. ‘

Central extensions of N5 5 = as:
Basis: Ay, A1z, A1g, Ags, Agz, Aoy, Ags, Azy, Ags, Ays.
Group action: aAjs + bA13 4 cAyy + dAgs + eDos+ fAss + gAss + hAgy + 1A35 + jAys:

a — aq1(aass + bass + caqs + dass) + az1(—aars + ease + fass + gass) + ag1(—bais — eass +
hags +ia52) + as1(—caiz — fase — hase + jase) + as1(—dais — gass — tase — jaas);

b — ay1(aaqs + bass + cass + dass) + az1(—aai3 + eass + fass + gass) + az1(—bais — eass +
hass + ias3) + as1(—cais — fass — hass + jass) + as1(—dais — gass — tass — jaas);

¢ — ay1(aags + bass + casa + dags) + a21(—aara + eazs + fasa + gasa) + az1(—bais — eass +
hags +3a54) + as1(—cara — fasa — hasa + jasa) + as1(—dais — gass — iaszs — jaaa);

d — ai1(aass + bass + cass + dass) + az1(—aays + eass + fass + gass) + az1(—bays — eass +
hags + iass) + as1(—cais — fass — hass + jass) + as1(—dais — gass — tass — jass);
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e — aja(aaqs + bags + cass + dass) + ase(—aais + eass + fass + gass) + aga(—bais — eass +
hass + ias3) + asa(—cais — fass — hass + jass) + asa(—dais — gass — tass — jaas);

[ — a12(aass + bass + casa + dass) + aza(—aars + eass + faaa + gasa) + aga(—bars — eass +
hags +ia54) + asa(—cara — fasa — hasa + jasa) + asa(—dars — gass — iaszs — jaaa);

g — a1a(aags + bags + cass + dass) + asa(—aars + eass + faas + gass) + as2(—bais — eass +
hags + ias5) + asa(—cais — fass — hass + jass) + asa(—dais — gass — tass — jass);

h — ajs(aass + bags + cass + dasa) + ass(—aars + eass + fasa + gass) + ass(—bajs — eazs +
hags +ias4) + ass(—cara — fasa — hasa + jasa) + ass(—dais — gass — iaszs — jaaa);

i — a13(aags + bags + cass + dass) + ass(—aars + eags + fass + gass) + ass(—bais — eass +
hags + iass) + ass(—cais — fass — hass + jass) + ass(—dais — gass — tass — jass);

j — aia(aass + bass + cags + dass) + aza(—aays + eass + fass + gass) + asa(—bays — eass +
hags + ias5) + asa(—cais — fass — hass + jass) + asa(—dais — gass — tass — jass);

Assume a # 0. Choose as; = ag; = aq1 = a51 = 0. Then make b = ¢ = d = 0 by solving for
as3, as4 and aoy respectively. To fix b, ¢, d, we require that as3 = a9y = ass = 0.

Choose a13 = @32 = @42 = a52 = 0, we can make e = f = g = 0 by solving for a3, a14 and
ay5 respectively. To fix e, f, g, we require that a;3 = a14 = a35 = 0.

Now

h — asz(hags + tass) + ass(—hass + jass) + ass(iass — jasa);

i — agg(hays + tass) + ass(—hass + jass) + ass(—iags — jass);
§ — aga(hays + iass) + asa(—hags + jass) + asa(—iags — jass);

If one of h,Z,j # 0, then make h # 0, and ¢ = j = 0 and get get case 1: a # 0, h # 0, while
b=c=d=e=f=g=i=j=0,1ie A; =][1,0,0,0,0,0,0,1,0,0].

Ifall h = ¢ = j = 0, then we get case 2: only ¢ # 0, and all the others are zero, or
A, =11,0,0,0,0,0,0,0,0,0].

Case 1: Al = [1,0,0,0,0,0,0,1,0,0]. Choose a13 = 414 =— Q15 = 493 = A94 = Q95 = 431 —
Q30 = G35 = a41 = A =ags = 0, we willfixb=c=d=e=f=g=i=35=0.

Assume B = [0,b,¢,d, e, f,g,h,%,7]. One of d,g,%,j # 0.

a=0— andass + asgass + 051(—d012 - gazz);

b — a11(bass + cass + dass) + as1(eass + faas + gass) + as1(—tass — jaas);
¢ — a11(bass + casq + dass) + as1(eass + fasa + gasa) + as1(—tase — jaaa);
d — anidass + az1gass;

e — a1a(bags + cass + dass) + ase(eass + fass + gass) + asa(—tass — jaas);

[ — a12(bass + casa + dass) + azz(eass + fasa + gasa) + asa(—iazs — jaas);
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g — aiadass + azegass;

h — as3(hass + iass) + ass(—hass + jass) + ass(—iass — jasa);
i — asslass + aa3jass;

J — aszaiass + agqjass;

Subcase 1.1: One of d,g # 0. Make d # 0 and g = 0. Fix g = 0, we require that a;» = 0.
Assume as; = a5; = 0. Make b = ¢ = 0 by solving for as3, and as4 respectively. Make a = h
by solving for ass, and further make them to be zero by subtracting a multiple of A from

B.
Subcase 1.1.1: One of ¢, # 0. Make ¢ # 0 and j = 0.

Nowbytakinga12:a34:a52:a53:a54:0,a:0—>0;b:0—>0;c:0—>0;
d — ajidass; e — asa(eass + faas); f — asafasa; g =0 — 0; A =0 — 0; ¢ — assiass;
j=0—0.

Now if f # 0, make e = 0 by solving for a3, to get a representative:

B1 =10,0,0,1,0,1,0,0,1,0].

If f =0, depending on e = 0 or not, we would have two representatives
B, =10,0,0,1,0,0,0,0,1,0]

and
B; =10,0,0,1,1,0,0,0,1,0].

Subcase 1.1.2: Both ¢ = 5 = 0. Taking a12 = a52 = a53 = as4 = 0, we have a = 0 — 0;
b=0—0;c=0—0;d— ajidass; e — aza(eass+ fass); f — aza(eass+ fass); 9 =0 — 0;
h=0—0;i=0—>0;7=0—0.

If one of e, f # 0, make e =1 and f = 0 to get a representative

Bs=10,0,0,1,1,0,0,0,0,0].

If both e, f = 0, then get B; =[0,0,0,1,0,0,0,0,0,0].

Subcase 1.2: Both d = ¢ = 0. Then one of ¢,j # 0. Make ¢ # 0 and 7 = 0. Taking
aze = 0, we have a = 0 — 0; b — ai1(bass + cass) + as1(eass + faas) + as1(—iass);
¢ = a11(caaq) + a21(faaa); d = 0; e — aja(bass + cass) + ase(eass + faas) + as2(—iass);
[ — aiz(casq) + asafass; g — 0; b — asz(hasq +iasq); i — assiass; j =0 — 0.

Make b = e = h = 0 by solving for as;, as2 and as4. If one of ¢, f # 0, then make ¢ =1
and f = 0, we get a representative B5 = [0,0,1,0,0,0,0,0,1,0]. If both ¢ = f = 0, then we
have B¢ = [0,0,0,0,0,0,0,0,1,0].
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Case 2: A, = [1,0,0,0,0,0,0,0,0]. To fix A up to a scalar, we require that a13 = a14 =

a5 = @23 = @94 = ag5 = 0. Let B =1[0,b,¢,d, ¢, f,g,h,t,7], we have

a =0 — ay1(bags + cass +dasz) + azi (eass + fass + gass) + as1(—bais — eass + hass +iass) +

a41(—ca12 — fass — hags + ja52) + 051(—d012 — gasy — tags — ja42);

b — ai1(bags + cass + dasg) + asi1(eass + faas + gass) + as1(+hass + iass) + as1(—hass +

jass) + as1(—tass — jaas);

¢ — a11(basa+casa+dass) +asi(eass+ fasa+ gasa) + asi(hasa+iasa) + aa1(—hasa+ jass) +

a51(—ia34 - ja44);

d — a11(bass + cass + dass) + azi(eass + fass + gass) + asi(hags + tass) + as1(—hags +

jass) + as1(—tass — jaas);

e — a12(bags + cass+dass) + asa(eass + faas +gass) + ase(hass +ias3) + ase(—hass + jass) +

a52(—ia33 - ja43);

[ — ai2(bass + cass + dass) + aso(eass + fass + gass) + asa(hass + iass) + ag2(—hagy +

Jasa) + asa(—tase — jaaa);

g — a12(bags + cays + dass) + aza(eass + fass + gass) + asz(hags + tass) + asa(—hags +

Jass) + asa(—tass — jaas);

h — asz(hass + tass) + ass(—hass + jass) + ass(—tass — jas);

i — agg(hays + tass) + ass(—hass + jass) + ass(—iags — jass);

§ — aga(hays + iass) + asa(—hags + jass) + asa(—iags — jass);

One of h,i,j # 0. Make ¢ # 0 and h = j = 0. We would have h — assiass+ ass(—iass) = 0;

1— a33(ia55) + a53(—ia35); j— a34(ia55) + a54(—ia35) =0.

We require that azy = a54 = 0 to have h = j = 0. Now

a =0 — aji(bass + cass + dass) + az1(eass + faas + gass) + asi(—baiz — eazs + iaze) +

a41(—ca12 - fazz) + 051(—d012 — gaz2 — ia32);

b — a11(bass + cass + dass) + as1(eass + faas + gass) + asi(tass) + as1(—iass);

¢ — a11(cass) + az1(fasq);

d — aq1(bass + cass + dass) + as1(eass + fass + gass) + asi(hags + tass) + as1(—tass);
(bags + cays + dass) + aza(eass + fass + gass) + asz(iass) + asz(—iass);

e — a12

[ — a12(caqs) + az2(fass);
g — a12(bags + cass + dass) + ase(eass + faas + gass) + asa(tass)as2(—iass);

Make g = 0 by solving for ass, e = 0 by ass, d = 0 by as;, b = 0 by as;. Now one of ¢, f # 0,
make ¢ = 1 and f = 0. We can always make a = 0 by subtracting a multiple of A from B.
So we get the representative for B as By =[0,0,1,0,0,0,0,0,1,0]
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Now we are going to prove that

(1) The representatives A; ABy, A;ABs, and A; A By are in the same orbit, and correponding
to (27B).

Consider the corresponding algebras:

(1.1) [21,29] = zg, [21, 5] = 27, [23, 24] = =6,
(22, 24) = @7, [23, 25] = 27;

(1.2) [21,29] = 26, [21, 5] = 27, [23, 24] = =6,
(29, 23] = @7, [23, T5] = 27;

(1.3) [21,29] = zg, [21, 5] = 27, [23, 24] = =6,
[2g, 23] = 27.

Then

(1.3) =2 (1.1): Taking ®; — @1, €2 — 2 + &4, T3 — —T4, L4 — —2&1 + 3,
Ty — —T5, g — Tg, T7 — —E7;
(1.3) = (1.2): Taking 1 — @3, 2 — —22 + T4, T3 — 21, L4 — T2 + 5,
T5 — T4, Tg — T + L7, T7 — Tg.
(2) The representatives A; A By, A; A Bs, A1 A Bg and Az A By are all in the same orbit,
corresponding to (27A).

Consider the corresponding algebras:

(2.1) [21,22] = @6, [21, T5] = 27, [T3, 24] = @6,
[133,135] =27

(2.2) [21,22] = @6, [21, T5] = @7, [T3, 24] = @6,

(2.3) [21,22] = @6, [@3, T5] = 7, [T3, 24] = 26.

(2.4) [21,22] = @6, [@1, T4] = ©7, [T3, 5] = 27.

Then

(2.4) = (2.1): Taking 1 — —21, €3 — &5, T3 — —&1 + T3, L4 — T2 + L4,
T — —Ty4, Tg — —T7, Ty — —Tg;

(2.4) = (2.2): Taking #; — @1, 22 — 25, &3 — T3, T4 — T2, L5 —> L4,
e — L7, L7 — Lg,

(2.4) = (2.3): Taking 1 — 23, 22 — @5, T3 — T2, T4 — —&4, L5 — L1,
e — L7, L7 — —Lg.

Now all we need to prove is that (1.3) and (2.4), which correspond to (27B) and (27A)
respectively, are not isomorphic. We can compare their orbits again, but here instead, we
use the ad hoc argument used by Seeley [31] to compare the so called minimal numbers.

For a given algebra, we consider all the nonzero elements in g/|[g, g] and look for an ordered
basis {z1 + [g,9], -, Zs + [g, 9]} with the smallest

(dimIm(z,),---,dimIm(z,))
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(called the minimal number) in lexicographic order, where Im(a) is the image of the adjoint

image of a. This is obviously an invariant for Lie algebra, and it offers us a very effective
way to distinguish two algebras.

In (27A), the basis of g/[g, g is {2, 23, Z4, 5,21 }. We have
dimIm(z;) = dimIm(z3) = dimIm(z4) = dimIm(z5) = 1,
and dimIm(z;) = 2, and we can prove that
(dimIm(zs),dimIm(zs), dimIm(24), dimIm(z5),dimIm(z;)) = (1,1,1,1, 2)

is the minimal number. It is easy to see that the first 4 numbers dimIm(zs), dimIm(z3),
dimIm(z4),dimIm(z5) are already the smallest, being 1.

Consider the image of ¢ = 21 + azs + bxs + cxq + dus.
Im(z) =< [z, 23], [z, 23], [2, 24], [2, 25] >=< zg, da7, 27, b27 >=< 26, 27 >,

therefore any element containing properly z; will have an image of dimension 2. So
(1,1,1,1,2) is the minimal number.

In (27B), the minimal number is going to be (1,1, 1,2,2), with the corresponding ordered
basis as {@3, 24, 25, 21, Z2}.

Hence (27A) and (27B) are not isomorphic.

Therefore the central extensions of Nj 5 of dimension 7 over any field (not necessarily alge-

braically closed) are:

(27A):  [z1,29) = 26, [21,24] =27, [23,25] =27;
(27B):  [z1,29] = 6, [21,25] =27, [23,24] = 26,
[2g, 23] = 27.

Remark: The correspondence between the above and the algebra in Seeley’s list are: (27A)—
27TA: 21 — —e, g = b, 23 > ¢, 4 — a, 25 — d, g — ¢ and 27 — f; (27TB) — 2,7B:
2y >d+e 2y —>3a+b—c,z3—> —e, 24 >2a+2b—c—d—e,z5 = —a,26 > —f+g
and z7 — f.

Central extensions of Ny 4:

Basis: A1z, A13, A1a, Asg, Ay, Asg;

Group Action: aAis + bA13+ cA1s + dAss + eAgy + fAzy4;
Let B¢ = a;,a;t — a;ta,, for 1 <4, j,s,t < 4. Then

@ — aXq3 + bXq3 + eXpf + dB53 + €N + fN5E;

b— aSi3 + 6313 + ¢Bif + d¥33 + eXad + 5
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¢ — a¥iy; + b¥y3 + cXyj + d¥g3 + eNyh + fXgy;

d — aX73 4 bXT3 + X1} + dN + eX5g + NG

e = aBi; + bNi; + eBi} + X33 + eX35 + FU5;

f — aBf3 + bET5 + cX}) + d¥35 + eX3) + FE55;

Now let A = [a,b,¢c,d,e, f]. It is obvious that one of a,b, ¢, d, e, f is nonzero. Make a = 0
and b =1 to get A=10,1,¢,d,e, f].

Let ag; = a41 = a42 = a43 = 0, we can make ¢ = d = f = 0 by solving for ag4, @12, a14
respectively, and get A =[0,1,0,0,¢,0].

Nowa=0—32+eXi5b=1—= 313 +eXl3 c=0— X5 +eX35; d =0 — B33 + eX23;
e— NX 4+ eXi f=0— X3 4 X237

Depending on e = 0 or not, we can obtain the two representatives A; = [0,1,0,0,0,0] and
A, =10,1,0,0,1,0]. It is easy to check that A; and A, are indeed in different orbits.

Case 1: A =1[0,1,0,0,0,0]. To fix A, we require that a =0 - £{2=0;6=1— X3 =1;
c=0—-%X13=0d=0—-%3=0;e=0—-%%=0; f=0— X3 =0.

We may just choose a15 = a14 = ag2 = a3z = azq4 = 0 and a135 = —1/as;.

Now assume that B = [a, 0, ¢, d, ¢, f], under the group action,

a — aXi? + 1% 4 dBi2 + X3 + fasiaas;

As one of a,c,d, e, f # 0. We may assume a = 1 in B, hence

A:[O’]"O’O’O’O]’ B:[]"O’c’d’e’f:l'

Now in B, we have a — aj1a2s + caijags + d(—assazi) + eXi? + fasjas; b = 0 — 0 (by
subtracting a multiple of A from B); ¢ — aj1as4 + cajiass + d(—assas1) + eX3t + fasiaqq;
d — (—a13022)+c(—a13a42) +e(a22043 — a3a42); € — 6232; f — a1sa0a+caisasat+e(arzass—
024043)-

If e #£ 0, then make a = ¢ = d = f = 0 by taking ass = a4z = 1, as2 = @41 = a44 = 0, and
solve for as1, a1, ass and a43 to get the representative

Case 1.1: A=0,1,0,0,0,0],B=10,0,0,0,1,0].

If e =0, then a — a11a22 + carraas + d(—az2a31) + fagiaaz; b = 0 — 0 (by subtracting
a multiple of A from B); ¢ — a11824 + ca11044 + d(—a24a31) + fasi1044; d — (—a1zaz2) +
c(—a13a42); e =0 = 0; f — a13024 + Ca13044.

We cannot make both d = f = 0, for otherwise the automorphism group is going to be
singular. Take a44 = 0 and as4 = a4 = 1, make d = 0 by solving for a2, make ¢ = 0 by
solving for a;;. Then by taking a11 = a2z = as4 = 0, we have a — fasjass; b =0 — 0 (by
subtracting a multiple of A from B); c=0—0;d=0—0;e=0— 0; f — a13024.
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Depending on f = 0 or not, we get two representatives for B: Case 1.2:B = [0,0,0,0,0,1];
and Case 1.3:B =[1,0,0,0,0,1].

Case 1.1: A = [0,1,0,0,0,0] and B = [0,0,0,0,1,0]. To fix A and B, we require that
Q12 = Q14 = Q2] = Q23 = A3z = G34 = Q41 = Q43 = A4q = 0, a1; = (013031 + 1)/033, and
agq = —1/ay4s.

Now assume C' = [a, 0, ¢, d, 0, f], under the group action, we have a — aajjass + cajjaqs +
d(—agza31) + fasiaaz; b — 0; ¢ — aagiass + d(—asi1a24); d — a(—aizass) + c(—aizaqz) +
dassass + f(—aszass); e = 0; f — aai3ass + d(—aszsass).

We may assume d = 0, for otherwise we can solve for ass to make d = 0. Then a — aai1a29+
ca11042 + fagia42; b = 0 — 0; ¢ — aaiia24; d — a(—a13a22) + c(—a13a42) + f(—a33042);
e — 0, f — Aa13a924.

One of a,c # 0, we may assume a = 0, for otherwise we can solve for as; to make it to be
zero. So ¢ # 0. Set a;3 =0 to get a — ca11842;6=0—0;¢c— 0;d— 0; e — 0; f — 0.

Then we have the representative C' = [1,0,0,0,0,0], with (1) A A B A C corresponding to
(37B).

Case 1.2: A =0,1,0,0,0,0], and B = [0,0,0,0,0,1]. To fix A and B (up to a nonzero

scalar), we require that a;s = ag; = a2 = @34 = @41 = @42 = 0, , A11022a33044 7 0.

Now consider C' = [a,0,¢,d,e,0]. Under the group action, a — aa@jias; b = 0 =0
(By subtracting a multiple of A from C); ¢ — a(a11824 — @14a21) + c@11044 + €a21044;
d — a(—a13a22) + c(—a13a42) + dassass + eassaas; € — a(—a14a22) + €a22a44; f =0 — 0
(By subtracting a multiple of B from C).

One of a,d,e # 0. If a # 0, taking as; = as3 = 0 and make ¢ = d = e = 0 by solving
for as4, a1 and a4 respectively to get a representative of C: C; =[1,0,0,0,0, 0], with (2)
A N B A Cy corresponding to (37B).

If a = 0 and e # 0, then we can make ¢ = d = 0 by solving for a,; and a43, and get the
representative C' = [0,0,0,0,1,0], with (3) AA B A C corresponding to (37B)

If a = e =0, then d # 0, depending on ¢ = 0 or not, we may obtain two representatives
¢y =10,0,0,1,0,0] and Cy = [0,0,1,1,0,0], with (4) AA B A C; corresponding to (37A)
and (5) A A B A Cy corresponding to (37C).

Case 1.3: A =10,1,0,0,0,0] and B = [1,0,0,0,0,1] . To fix A and B (up to a nonzero

scalar) we require that a;s = a14 = a24 = a3 = aszz = azs = 0, @11 = a33044)/a22,
ais = —033042/022-
Now consider C = [a,0,¢,d,e,0]. Under the group action, we have a — aaszass +

Ca33042044/as2+€eX12: b = 0 — 0 (By subtracting a multiple of A from C); ¢ — cagza2,/asq+
eas1a44; d — aassass + c(a33ai2/a22) + dagsass + 6(022043 - 023042); € — 6(022044 - 024042);
F=0— c(—a33a42044/022) + €a23044.
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If e =0, then one of a,c,d # 0. If ¢ # 0. Make a = f by solving for a4s, and further make
them to be zero by subtracting a multiple of B from C. Then taking a4s = 0 and depending
on whether d = 0 or not, we may get two representatives: (6) C' =1[0,0,1,0,0,0] (AABAC
corresponding to (37C)) and (7) C' =10,0,1,1,0,0] (A A B A C corresponding to (37B;)).

If ¢ = 0, then we may assume ¢ = 0, for otherwise a # 0, make d = 0 to get C =
[1,0,0,0,0,0], which is in the same orbit as (2). If a = 0, then d # 0 to get (8) C =
[0,0,0,1,0,0] (corresponding to (37C)).

If e #£ 0, make @ = f by solving for as3, and further make them to be zero by subtracting
a multiple of B from C. Make ¢ = 0 by solving for as1, d = 0 by a43. Then we get the
representative, C' =[0,0,0,0,1,0], with (9) A A B A C corresponding to (37B).

Case 2: A =1[0,1,0,0,1,0]. To fix A (up to a scalar), We may choose a3 = ags = ags =
a43 = Q44 = agg = 0, o4 = —1/a42, a13 = —1/ag1, as1 = 14031042, @21 = asi(a12 +
014042022)/042-

Now assume B = [a,0, ¢, d, e, f]. After fixing A, we have

a— aXii+ cBl2 + d(—agsasz) + e + faziasn; b = 0 — a(a1z + a14a42a22)/ a4z + carsaqs;
c — aEi;* + C(_a%4a31a42) + d/(as2a31) + e(as1/as2); d — a(ass/as1) + cass/as; e —
a¥?} + c(—ajsaq42) — €; f — a/(asiasn).

One of a,c¢,d,e, f # 0, we can make a = 1. Taking a;4 = 0, then ay; = 0 and ay; =
aisaz;. Make ¢ = 0 by choosing ay; = 0.Then by fixing a1; = @14 = as2 = 0, we have
a=1— %12+ easnarzas + fas1aaz; b =0 — a1a/asz; ¢ =0 — 0;d — 0; & — —ar2/asz — €;
f — 1/((131(142).

Make b = e by sloving for a;,, and further make them to be zero by subtracting a multiple
of A from B. Now taking a11 = @12 = a14 = @92 = 0, and get a = 1 — fagjags; b=0— 0;
c:0—>0,d:0—>0,e:0—>0,f—>1/(a31a42)

Depending on whether f = 0 or not, we have the following three representatives: (i)
f =0, then a = 0 and make f =1, B = [0,0,0,0,0,1}; (ii) f < 0, make a = —f =1,
B =11,0,0,0,0,—1]; (iii) f > 0, makea= f =1, B = [1,0,0,0,0,1].

Subcase (i): It can be easily shown that it is in the same orbit as Subcase 1.3. So we just
omit it.

Subcase (ii): A =10,1,0,0,1,0], B =[1,0,0,0,0, —1]. To fix A and B (up to a scalar), we
require that @11 = as1 = a3 = @99 = a4 = a3z = a34 = a4q = 0, @12 = —ay3, @13 = ay,
aq = —1/asgs, azs = —ass, aq = 1/ass.

Now consider C = [a,b,¢,d,0,0]. Under the group action, we have a — caqs/ass; b —
c(—aaa/as2); ¢ = ¢; d — aazzass + b(—aszasse) + CE%E + dagz; e = b+ casn/ase; [ —
—a + CCL43/CL32.

If ¢ # 0, make a = —f by solving for a43, and further make ¢ = f = 0 by subtracting a
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multiple of B from C'. Similarly, make b = e by solving for a4z, and further make b = e =0
by subtracting a multiple of A from C. Then taking a43 = a4 = 0, we have a = 0 — 0;
b=0—0;c—c;d—>dal,;e=0—0; f=0—0.

Then we get the following representatives for C: (10) if d = 0, then C = [0,0,1,0,0,0],
with A A B A C corresponding to (37B;); (11) if ed > 0, then C = [0,0,1,1,0,0], with
AN BAC corresponding to (37D); (12) if ed < 0, then C =[0,0,1, —-1,0,0], with AABAC
corresponding to (37D;).

Ifc=0,thena =—-f=b=e=c=0, and d # 0. We get the representative C =
[0,0,0,1,0,0], with (13) AA B A C corresponding to (37B).

Subcase (iii): A =[0,1,0,0,1,0], B =1,0,0,0,0,1]. To fix A, B (up to a scalar), we may
choose as; = a3; = a4 = agq = 0 and ays = —ay3, @13 = —ays, @14 = 41, Q22 = A33 =

011032/041, Q23 = 32, A44 = A11.

Consider C' = [a,b,¢,d,0,0]. Then a — aa?;aszs/as; + bajjazs + c(ajiass + agraqs); b —
aa11a32‘|‘ba%1a32/a41‘|‘C(alla43‘|‘a41a42); c— c(a%l—ail); d — a(—asrasa3t+a11a32042/aa1)+
b(—a11a32043/ g1+ a32a42)+c(aZy—ajs)+d(ai a3, /ad; —a3,); e = 0 = a(—a11032) —bagiass+
C(—alla43 - a4la42); [=0— —aasa3; + b(—alla32) + C(—alla42 - a4la43);

If ¢ = 0, then when at least one of a,b # 0, make d = 0 by solving for a42. Now depending
on the values of a,b, we can make either a = f or b = e, and further reduce them to be
zero, and by choosing properly the values of ay;, we may obtain the two representatives
C =10,0,0,0,1,0], which is the same as (9), so omit it; and (14) C =0,0,0,0,0,1]. When
a=>b=0, then d # 0, we get C =10,0,0,1,0,0], which is the same as (13), so omit it. It
can be shown that (14) corresponds to (37D).

If ¢ # 0, make a = f and b = e by solving for as3 and a4y respectively, and further
reduce them to be zero by linear combination. Then take a4 = a4s5 = 0, if d = 0, we
get the representative C' = [0,0,1,0,0,0], which is the same as (10), so omit it. If d # 0,
depending on whether ¢d > 0 or ed < 0, we obtain two representatives C' = [0,0,1,1,0, 0]
and C =[0,0,1,—1,0,0], which are the same as (11) and (12) respectively, so omit them.

Now we consider all the 14 algebras:
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(1):  [z1,22] = 25, (21, 23] = 6, (22, 24] = 27;

(2):  [z1,22] = 25, (21, 23] = 6, (23, 24] = 27;

(3):  [z1,23] = 25, (22, 24] = 6, (23, 24] = 27;

(4):  [z1,23] = 25, (22, 23] = 6, (23, 24] = 27;

(5):  [x1,23] = s, [21,24] = @6, (29, 23] = @6,
[133,134] =Z7;

(6):  [z1,22] = 25, (21, 23] = 6, (1, 24] = 27,
[133,1134] = Ts;

(7): [z1,22] = 25, (21, 23] = 6, (1, 24] = 27,
[132, 133] =27, [133, 134] = T3;

(8):  [z1,22] = 25, (21, 23] = 6, (22, 23] = 27,
[133,1134] = Ts;

(9):  [z1,22] = 25, (21, 23] = 6, (22, 24] = 27,
[133,1134] = Ts;

(10): [e1,z2] = 25, (21, 23] = 6, (21, 24] = 27,
(22, 24] = 26, (23, 4] = —25;

(11):  [e1, z2] = 25, (21, 23] = 6, (21, 24] = 27,
(22, 23] = 27, (22, 4] = 6, (3, 24) = —s5;

(12):  [e1, z2] = 25, (21, 23] = 6, (21, 24] = 27,
[22, 23] = —7, (22, 4] = 6, (3, 24) = —s5;

(13):  [e1,z2] = 25, (21, 23] = 6, (29, 23] = 27,
(22, 24] = 26, (23, 4] = —25;

(14):  [21,22] = 25, (21, 23] = 26,  [22,24] = 2,
(23, 24] = —25 + 27;

A) We will show that (1), (2), (3) are all isomorphic to (37B).

(1) (37B):
(2) (37B):

(3)= (37B):

L1 — L9, L9 — L3, L3 — L1, L4 — B4, L5 — LTg, Lg — — L,
Ty — L7,

&1 — L9, L9 — L1, L3 — L3, L4 — B4, L5 — —T5, Lg — Lg,
and z7 — z7.

L1 — T4, 9 — &1, 3 —> L3, L4 — Lo, L5 — —T7, Lg — L5
and z7 — —zg.

B) (4) is isomorphic to (37A).

(4) (37A):

£y — &1, Ly — L3, L3 — L9, L4 — L4, Ty — Ty, Lg — —Lg,
and z7 — x7.

C) (5), (6) and (8) are isomorphic to (37C).
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1

(5) = (370):

1

(6) = (37C):

12

(8) = (37C):

£, — L3, Ly — L1, £3 — L9, L4 — L4, Ty — —2Lg, Le — L5,
Ty — L7,

£, — L9, L9 — —&L1, 3 — L3, L4 — L4, L5 — L5, Le — Lg,
Ty — L7,

L1 — L3, Lo —» L4, L3 — Lo, 4 — — &1, Ty — L5, Le — —Lg
and z7 — —a7;

D) We will show that (9), (11) and (14) are isomorphic to (37D); (12) is also isomorphic to
(37D) over algebraically closed fields. Let a be a root of the equation  +1 = 0. Then

(9)= (37D):
(11)= (37D):

(14)= (37D):

(12) (11):

obvious

Ty — —T1+22, Ty > 21+ 22, Ty = T3+ T, T4 —> —T3+ Ta,
zy — —2¢y5, ¢g — —&g + @7, and 7 — 26 + @7.

L1 — 4, L9 — L9, L3 — L3, L4 — L1, Ly — — &7, Lg — — I3,
and ¢7 — —xg — @7;

L1 — Qig, Ly — T4, T3 — QTL3, 4 — L1, Ly — Qlg,
zg — —x7, and ¢7 — —aes.

E) We will show that (7), (10)=(37B;) and (13) are isomorphic to (37B) over algebraically

closed fields.
(10) = (7):

(10)2 (37B):

(13) = (10):

L1 — &1, g —> L4, L3 —» Lo, L4 — —IL3, Ly — L7, Tg — L5
and 7 — xg;

1 — QTo— L3, Lo — T1+QLy, T3 — QL1+Ty4, T4 — To+2T3,
Ty — —axs + &7, Tg — 5 — ary, and z7 — 2awg.

£, — T3, L9 — —L4, L3 — L1, L4 — —T9, 5 — Ty, e —
—zg, and 7 — x7.

To show that (37A), (37B), (37B4), (37C), (37D) and (37D;) are distinct, we compare the
minimal numbers again. We have

(37A):  minimal number (1,1, 1, 3), corresponding to the ordered ba-
sis {z1, z3, 24, 22},

(37B):  minimal number (1,1, 2, 2), corresponding to the ordered ba-
sis {z1, 24, 22, 23};

(37B;1): When the field is R, the minimal number is (2, 2, 3, 3), cor-
responding to the ordered basis {zs, 23,21, 24}; when the

field is algebraically closed, it is the same as (37B);

(37C):  minimal number (1, 2, 2, 3), corresponding to the ordered ba-
sis {z1, z3, 24, 22},

(37D):  minimal number (2, 2, 2, 2), corresponding to the ordered ba-
sis {@1, ©2, 23, 24}

(37D;1): When the field is R, the minimal number is (3, 3, 3, 3), cor-

responding to the ordered basis {z1, 22, 23, 24}; when the

field is algebraically closed, it is the same as (37D).
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Therefore the central extensions of N4 4 of dimensional 7 are:

(37A):
(37B):
(37B1):
(37C):
(37D):

(37D;):

[131,1132] = Ts,
[131,1132] = Ts,
[131,1132] = Ts,
[132,1134] = Tg,
[131,1132] = Ts,
[133,1134] = Ts;
[131,1132] = Ts,
[133,1134] = Ts;
[131,1132] = Ts,
[132,133] = —Z7,

[132,1133] = Tg,
[132,1133] = Tg,
[131,1133] = Tg,
[133,1134] = —Ts;
[132,1133] = Tg,

[132, 134] = T7;
[133, 134] = T7;
[131, 134] =7
[%2, %4] =7,

[%2, %4] = Ty,

[131,134] =7
[133,134] = —Z5;
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Chapter 6

Algebras over Algebraically Closed
Fields

In this chapter we will consider the central extensions over algebraically closed fields of
characteristics # 2. For those algebras whose central extensions give rise to new algebras
over the real field, their proofs can be found in Chapter 7.

Some of the algebras we obtain have different presentations from those of Seeley, in that

case, an isomorphism is provided.

6.1 Extensions of 4-Dimensional Algebras

All the 7-dimensional nilpotent Lie algebras without any Abelian factors have at most a 3-
dimensional center (considering the dimension of H?(g, F)). So we just consider the central

extensions of algebras of dimension at least 4.

Central extensions of N4 5 :

Nygo [z, 2] = 21,1 =2,3;

Z(g): z4; [g,0]: 23,245 Z%(g): Coqa = C34=0; W(H?): C12 = C13=0; dim H?: 2;

As the cohomology group is of dimension 2, then G3(H?(g,F)) = 0, hence Ny, has no

central extensions without Abelian factors of dimension 7.

Central extensions of Ny 3:

Z(g): z3,24; [g,0]: z3; Z%(g): C34 = 0; W(H?): C15 = 0; dim H?: 4; Basis: Ajs, Agg, Ao,
Asy;

Group action: a3+ bA14 + cAsz + dAoy;
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Let 6 := ay1a99 — ajsas;.

a — (aa; + cas)d;

b — ai1(aass + bags) + as1(caszs + dags);
¢ — (aais + cas2)d;

d — aiz2(aass + bags) + asa(cass + dags);

One of a,c # 0 and one of b,d # 0in A AN B A C, where A, B and C are of the form
a3+ bA14+ cAgz + dAsy.

Let A = [a,b,c,d], B = [al,bl,cl,dl], C = [a2,b2,c2,d2].

As one of a, ¢ # 0, we can assume that ¢ = 1. By subtracting scalar multiples of A from B

and C, we may let a; = a» = 0.

We may assume that at least one of b; and b, is not zero. For otherwise, one of ¢y, ¢s is

nonzero, we can make by or by # 0, as b; — ¢;as1034 + d;a21044.

Now we may assume b; # 0 (simply by switching B and C' if necessary) and make by = 0
(by subtracting a scalar multiple of B from C).

Case 1: ¢ # 0. By making a = b; = ¢ = 1, we may let, with respect to the wedge product,

A= [1a0a0ad]’ B = [0,1,0,(11], C= [analad2]‘

Considering the action of the group on A, B, C, we have

A= [a116,a11034 + das1a44, 0126, a12a34 + dagaaas),
B = [0, 11044 + d1a21044, 0, a12a44 + d1a22a44],
C= [0215, as1a34 + d2021044, 0225, Q22034 + d2a22a44].

We can make as = by = 0 by letting a»; = 0 and ds = 0 by solving for az4. Also make
di; = 0 by solving for a;2, and what is left can be changed into

A: [1’0’0’d:|’ B = [0’1’0’0]’ C: [0’0’1’0]'
And depending on whether d = 0 or not, we get two representatives for ANBAC: (1) A=

[1,0,0,0], B =10,1,0,0],C =0,0,1,0] (corresponding to (357B)); and (2) A = [1,0,0,1],
B=]0,1,0,0],C =0,0,1,0] (corresponding to (357C)).

Case 2: ¢ = 0. Then ds # 0. And get, WLOG,

A= [1a0aca 0]’ B = [0,1,61,0], C= [0,0,0,1]

Acting the automorphism group on A A B A C, we have
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A= [a116 + cazé, a11a34 + 21034, @126 + ca226, a12a34 + cazzass),
B = [c1a210, a11044 + 1021034, C10220, Q12044 + C1022034),
C= [0, 21044, 0, da22a44].

Let as; = 0, we make b, = 0, Also make ¢ = 0 by solving for a;», and get,

A= [1a0a0a0]’ B = [0,1,61,0], C= [0,0,0,1]

Depending on whether ¢; = 0 or not, we get the following two representatives for ANBAC:
(3) A=11,0,0,0], B =10,1,0,0] and C = [0,0,0,1] (corresponding to (357A)), and (4)
A=1]1,0,0,0], B=10,1,1,0] and C = [0,0,0,1]. But we can show that (4) and (2) are in
the same orbit.

By comparing the orbit, all the algebras (357A,B,C) can be easily showed to be distinct.

Therefore the corresponding central extensions of Ny 3 are:

(357TA):  [z1,22] = 23, [21,23] = @5,
[21,24] = 27, [22,24] = 2¢;

(357B):  [z1,22] = z3, [21,23] = @5,
[21,24] = 27, [29, 23] = 2¢;

(357C):  [#1,22] = @3, [x1,23] =5, [21,24] = 27,
(2o, 23] = @6, [22,24] = @5;
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6.2 Extensions of 5-Dimensional Algebras

Central extensions of Ny ;:

Z(g): zs5; [g,0]: T3, T4, @5; Z2(g): Cs5 = Cas =0, C15 — Cags = 0, Co5+ Cs4 = 0; W(H?):
Ci12 = C13=C14 = 0; dim H?: 3; Basis: A5 + Agg, Ags — Azy, Aos;

Group Action: a(A1s + Asg) + b(Ags — Asza) + cAas:

a — aa$; + ba3 ass;

b— bal;;

¢ — ca}y + 2ba3 aqs — bajiai, — 2aat;as — baiad;;

Consider the wedge product of A = [a, b, c] and B = [ay, b1, ¢1].

One of a, b, a1, by is nonzero, can always choose a # 0 (for example, if both a = a; = 0, then
b or by # 0. Make a or a; # 0, and switching A and B if necessary). So assume A = [1, b, ¢],
and by subtracting from B a multiple of A to get B = [0, by, ¢1].

Case 1: by # 0. Then take B = [0,1,¢;] and A = [1,0, ¢]. Observe the group action on B,
we have

— g5 7 5 3 2
B = [aj,a21, a1y, c1a7; + 247,043 — a1105,)-

Make both a; = ¢; = 0 by solving for as; and a4y to get B = [0,1,0]. Consider again the

group action on both A and B, we have
A= [aflila 0, cai)l - 2aélllaﬂ]
B = [a} a1,0];,2a 045 — a1103, — a} 03]
Now we can make ¢ = ¢; = 0 by solving for as; and a4. By subtracting a mulitiple of A
from B, we can also make a; = 0 and get
A=1][1,0,0], B=][0,1,0],
corresponding to (23457G).

Case 2: by = 0. Then ¢; # 0 and get B = [0,0,1] and A = [1,b,0]. Consider the group
action on both A and B, we have

— [46 5 7 3 2 4 3 2
A= [af] + ba3 as1,bai;, 2baj ass — bayia3, — 2at a9 — baj a3, ],
_ 5
B= 10,0,a3,],

Now depending b = 0 or not, we can get
A = I:]" 0’ 0]’ B = I:O’ 0’ 1]’

or

A = [0’1’0]’ B = [0’ 0’ 1]’
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as when b # 0, we can make a = 0, corresponding respectively to (23457E) and (23457F).

The non-isomorphism between all the algebras can be easily proven by comparing their
orbits.

Therefore the corresponding central extensions of N5 ; are:

(23457E):  [21, 2] = @41, = 2,3,4, [21,25] = @6,

(29, 23] = ©5 + 27, (22, 24] = z¢;
(23457F):  [21, 2] = ®i41,1=2,3,4, [@2, 23] = 25 + 27,

[132, 135] = Zg, [133, 134] = —Zs;
(23457G):  [z1, 2] = ®ip1,1=2,3,4, [21,25] = @6,

[132, 133] = T3, [132, 134] = Zg,

[132, 135] =27, [133, 134] = —7;

The central extensions of N5 5 ; can be found in chapter 2, Example 6.

The central extensions of N5 29 can be found in chapter 2, Example 1. By switching z3
with z4, and z¢ with z7 in (2357A,B,C), and in (2357D) by taking 1 — 221 + 22, 2 — @2,
r3 = —2e3+4dzy, 24 — 223, v5 — 425+ 227, 5 — 227, 7 — 8¢, We get exactly the same

representation as in Seeley’s paper.
The central extensions of N 5 3 can be found in chapter 7.

Central extensions of Nj 3 1:
Z(g): x5; [g,0]: @55 Z%(g): C15 = Ca5 = Cs5 = Cas = 0; W(H?): C12 = Cs4 = 0;

It is obvious that all the elements in H?(g, F) have @5 in their kernels. So there is no desired
central extension.

The central extensions of N5 3 5 can be found in chapter 7. By the following transformations,
we can get the exactly the same presentations as in Seeley’s paper. In (247C), switch zg
and z7; In (247D), take 21 — a, 23 —> ¢, 23 > b, 4 — e, x5 — d, 2z — g and 7 — f; In
(247E), switch zg and z7; In (247F), take 2; — a, 23 — —b+ ¢, 23 > b+ ¢, 24 — —d+ e,
zs > d+e 25— f+g,and 27— —f+g¢;In (247G), 21 > a+ b,z > b+ ¢, 23 = b— ¢,
g > d+e x5 >d—e 25— f+gand 27 — f— g; In (247TH), take z; — a + b + ¢,
zy — 2(b+c¢), 23 - —2(b—¢), 24 — 2(d+e€), z5 - —2(d —¢), z¢ — 4(f + g) and
z7 — —4(f—g); In (247]), take 2, — —a+c¢, 2 — b, 23 = ¢, 24 = —d, 5 — —€, g — —¢
and 7 — —f; In (247K), switch zg and z7; In (247TM), 21 — a, 2 — ¢, 3 — —b, 4 — ¢,
z5 — —d, z¢ — f and z7 — g; In (247N), switch z¢ and z7; In (2470), take z; — —a,
o — —c, 3 — b, 24 — e, 25 — —d, z¢ — —g and z7 — f; In (247Q), take z; — a, 2 — ¢,
23— —b, 2y — e, 25 - —d, z¢ — f and 27 — —g.

Central extensions of Nj 3 3:
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Z(g): Lq, Ly, [9, 9]3 L3, La; Z2(9)3 Cy5 =0,C24=0,C34 =0,C35 = 0; W(H2)i Ci2=0C13=
0; dim H?: 4; Basis: Aq4, A1s, Ass, Aos;

Group action: aAi4 + A5 + cAsz + dAss;
a — aai’lan; b— aai1aq45 + ba11a55 + da21a55; c — 6011032; d— d022055.

Let A = [a,b,¢,d] and B = [a1,b1,¢1,d1]. WLOG, we assume that ¢ # 0, and let A =
[1a ba ¢, d] and B = [Oa bla C1, dl]

Case 1: d; # 0. Then assume B = [0,b1,¢1,1]. We have a3 = 0 — 0; by — biajiass +
asiass = 0; (Solve for as;.) e1 — cra11a2,; di = 1 — assass = 1.

Depending on whether ¢; = 0 or not, we get B; = [0,0,0,1] and B, =[0,0,1,1].

Subcase 1.1: With B; = [0,0,0,1], we assume A = [1,b,¢,0]. Then a = 1 — a3,as5 = 1;
b — ajjaqs + bajiass = 0 (Solve for ays); ¢ — cajiad,; d — 0.

Depending on whether ¢ = 0 or not, we get A; = [1,0,0,0] (A1 A By corresponding to
(2457B)) and A, =[1,0,1,0] (A A B corresponding to (24571)).

Subcase 1.2: With B, = [0,0,1,1], assume A = [1, b, ¢,0]. Similar discussions would lead
to A; =[1,0,0,0] (A1 A Bs corresponding to (2457E)) and A2 = [1,0,1,0] (A2 A B2 corre-
sponding to (2457J)).

Case 2: dy = 0. Then B = [0, by, ¢1,0].

Subcase 2.1: If ¢; # 0, then depending on whether b; = 0 or not, we can get two represen-
tatives Subcase (2.1.1) B; = [0,0,1,0] and Subcase (2.1.2) B, =[0,1,1,0].

Subcase 2.1.1: With B; = [0,0,1,0], we may let A = [1,5,0,d], and make b = 0, then d # 0
to get a representative A = [1,0,0,1] (A A By corresponding to (2457H)).

Subcase 2.1.2: With B, = [0, 1, 1, 0], we may assume that A = [1,5,0,d], then make b = 0,
and depending on whether d = 0 or not, we get two representatives for A: A; =[1,0,0,0]
(A1 A By corresponding to (2457G)) and A, = [1,0,0, 1] (A2 A B2 corresponding to (2457K)).

Subcase 2.2: If ¢; = 0, then b; # 0. Assume B = [0,1,0,0] and A = [1,0,¢,d]. Now
a=1— (1?1(122 = ]_, b=0— ai1a4s5 + da21a55; c — 6011032; d— d022055.

We easily get four representatives for A: A; =[1,0,0,0] (41 A B corresponding to (2457A)),
Ay =11,0,0,1] (A2 A B corresponding to (2457C)), A5 = [1,0,1,0] (A3 A B corresponding
to (2457F)) and A4 = [1,0,1,1] (A4 A B corresponding to (2457D)).

It is fairly straightforward to show that all the algebras are distinct by comparing their
orbits.

Therefore the corresponding central extensions of N5 33 are:
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(24571):

(24573):

(2457A):
(2457B):

(2457C):
(2457D):
(2457E):
(2457F):
(2457G):

(2457H):

(2457K):

231,113@] = mi-l—lai_ 2a3a
231,113@] = mi-l—lai_ 2a3a
T2, T5) = Tg
wlami] = mi-l—lai: 2a3a
T2, T5) = Tg
wlami] = mi-l—lai: 2a3a

%2,%3] = g,
wlami] = mi-l—lai: 2a3a
%2,%3] = Tg,

: mi-l—lai: 2a3a
mlamf)] = g,
wlami] = mi-l—lai: 2a3a

%2,%3] = g,

wlami] = mi-l—lai: 2a3a
T2, 233] =g+ L7,
wlami] = mi-l—lai: 2a3a
mlamf)] = g,

Lo, 5| = 27.

[mla ml] - $i+2,i — 4’ 5’

[mla %4] = Ty,

[

[132,1135] = Zg;

[131,134] =T,

[132,1135] = Zg;

[21,2;] = 42,7 = 4,5,

[131, 134] =T,
[132, 133] = Zg;
[131, 134] =T,
[132, 135] =T7;
[131, 134] = Zg,
[132, 135] =T7;
[131, 134] = Zg,
[132, 135] =T7;
[131, 134] =T,
[132, 133] = Zg,

Remark: By taking 2; — a, 20 = b, 23 > ¢, 24 > d, z5 — —e, 26 — f+ g and z7 — —g,

we will get the exact presentation of (2457J) as in Seeley’s paper.

The central extensions of N5 4 can be found in Chapter 7.
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6.3 Extensions of 6-Dimensional Algebras

The central extensions of Ngi 1 can be found in Chapter 2, Example 3. Notice that
(123457G) of Seeley is just a special case of (123457I) by taking A = 1.
Central extensions of Ng 1

Z(9): @s; [0,0]: @3, 24, 5, ze; Z%(g): C16 = Cas = Cs5 = Cs5 = Cy5 = Cys = Cs6 =
0, 034 ‘|'025 = 0, 015 = 024; W(H2) 012 = 013 = 014 = 025 = 0; dlIIlI‘I2 2; Basis:
Ars + Asg, Asgs;

It is obvious that all the cocycles have ¢ in its kernel. So there is no central extension of

N67172 at all.

Central extensions of Ng 1 s:

Z(9): ze; [g,0]: 23, 24, @5, z6; Z2(g): Cos = C35 = C36 = Cas = Cag = Css = 0, Cs4 +
025 = 0, 016 = 024; W(H2) 012 = 013 = 014 = 015 = 0; dlIIlI‘I2 3; Basis: Alg +
Aoy, Asz, Ags — Asy;

Group action: a(Aig + Ags) + bAsz + c(Aas — Asa);
a— aad;; b— bal, + c(2a},a42 — a1103, — a$ia01); ¢ — caly;
We have a # 0.

Case 1: ¢ = 0. Then b goes to ba!,, get [aal,,bal;,0]. So if b = 0, we get [1,0,0],
correspondig to (123457D); And if b # 0, we get [1,1, 0], corresponding to (123457E);

Case 2: ¢ # 0. Make b = 0 by solving for a4» and get [aa},, 0, ca?,], and make it to [1,0,1],
corresponding to (123457F).

Therefore the corresponding central extensions of Ng 1 3 are:

(123457D):  [@1, ;] = @41, 2 <1< b, [21,26] = 27,
[132, 133] = Zg, [132, 134] =27,

(123457E):  [21, 2] = @41, 2 <1 <5, [21,26) = @7,
(22, 23] = 26 + 27, (29, 24] = 27;

(123457F):  [@1, ;] = @ip1, 2<i<5, [21,26) = @7,
[132, 133] = Zg, [132, 134] =27,
[132, 135] =T, [133, 134] = —ZT7

Central extensions of Ng 1 4:

Z(9): z6; [g,0]: 3, 24, zs; Z%(g): Cig = Coa = Cs5, Cog+ C34 = 0, C36 = Cy5 =
Cue = Cs6 = 0 W(H2) Ci2 = C13 = Co3 = 0; dim HZ: 5; Basis: A4, A5, A1g + Aoy +
Ass, Ao, Ao — Asy;
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GI‘Ollp action: CLA14 + bA15 + C(Alg + A24 + A35) + dA25 + e(A26 — A34)§
5 4 3 3 2 3 2 4 2 )
a — aai; + c(2a2103; + as2a7,) + e(aj a3, — 2a40a7; — aj;a21052 + a7;a51 + a35011);
3 4 2 2 3 3 2 )
b — —aagiay; + baj; + c(annaes — aj a3 + ajjas1) + daziay; + e(asiaes + az2iai;asi);
¢ — cab + ea’® asq:
11 11921,
4 3 5 2 3 2 4 4 2 )
d — c(—az1ai; +aj;as2) +daj; + e(ai; ags — 2a42a7; — a1 @21a52 + az1ay; + aj; a1 + a55011);
e — eal;
One of ¢, e # 0.

Case 1: e # 0. We can make a = ¢ = d = 0 by solving for as1, as; and ags respectively. What
is left is b, and it goes to baf, after we fix a, c,d. So we have two different representatives in
this case: [0,0,0,0,1] (b = 0) (corresponding to (12457F)) and [0, 1,0, 0, 1] (corresponding
to (12457G)) (b # 0);

Case 2: e = 0. We should have ¢ # 0. Can make ¢ =1, and @ = b = d = 0 by solving for
as2, ags and ag; respectively. And we have iii) [0, 0, 1,0, 0], corresponding to (12457E).

Therefore the corresponding central extensions of Ng 1 4 are:

(12457E):  [21, 2] = ®i41,1= 2,3, [21,24] = @6,
[131, 136] =27, [132, 133] = Z¢,
[132, 134] =27 [132, 135] = Z¢,
[133,135] =27,
(12457F):  [21, 2] = @41, = 2,3, [21,24] = @6,
[2g, 23] = @6 (22, 2;] = ;41,7 = 5,6,
[133,134] = —T7;
(12457G):  [21, 2] = ®i41,0= 2,3, [21,24] = @6,
[131, 135] =27, [132, 133] = Z¢,
(2o, 2] = ®j41,1=5,6 [@3,24] = —27;

Central extensions of Ng 2 1:

Z(g): zo; [o,0]: z3, T4, T5, T6; Z%(g): Coa = Ca6 = Cs5 = C36 = Cuz = Cyg = Cre =
0, 025 + 034 = 0; W(H2) 012 = 013 = 014 = 015 = 0; dim H2: 3; Basis: Alg, A23, A25 —
Asy;

Group action: alAig + bA23 + c(Ags — Ass):
a — aal ass; b — bajad, + c(2a11a22a42 — ar1a,); ¢ — cal,al,;
We have a # 0. Make a = 1.

Case 1: ¢ = 0. We can get representatives [1,0,0] (when b = 0) ( corresponding to
(123457A)) and [1, 1, 0] (when b # 0) (corresponding to (123457B)).
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Case 2: ¢ # 0. Make b = 0 by solving for as2 and get [1, 0, 1] (corresponding to (123457C)).

Therefore the corresponding central extensions of Ng o are:

(123457A):  [z1, ;] = @iq1, 2 <1 < 6;
(123457B):  [z1, ;] = @41, 2 <1 <6, [2q,23] =27
(123457C):  [21, ;] = Tiq1, 2<1 <6, [xq,25] =27, [3,24] = —27.

Central extensions of Ng 2 o

Z(g): T, [9,9]3 L3, L4, T5, Te; Z2(9)3 Ci6 = Ca4 = Cos = C35 = C35 = Oy = Cyg = O =
0, Co5 + C34 = 0; W(H?): C12 = C13=Crq = Ca5 = 0; dim H?: 2; Basis: Ajs, Agg;

It is obvious that there is no central extension.
The central extensions of Ng 23 can be found in Chapter 7. By taking z; — a, zo — b,

23 > d, 24y = ¢, 25 — e, g — f and 2g — g, we can get the exact presentations of
(12357A), (12357B) and (12357C) as in Seeley’s paper.

Central extensions of Ng 2 4:

Z(g): z6; [9,0]: @3, T4, T6; Z%(g): Coa = C36 = Cas = Cag = Csg = 0, Cog+C34 = 0, Cr6—
Css; W(H2)i Ci12=Ci13=C14=0; dim H?: 5; Basis: A5, A1g + Ass, Aas, Ass, Agg — Asy;

GI‘Ollp action: CLA15 + b(AlG + A35) + CA23 + dA25 + e(A26 — A34)§
4 3 3 2 .
a — aaj; + b(ar1aes + a3y as1) + daj,as + e(aszia6s + a7, a21031);
4 2 3 .
b — baj a3, + eaj;aszazs;
2, —b 2 g2 _ 2 3.
C— Ca11Q5, Q11022852 + e( 11022042 + 021022052 — G5505] 011032),
3 2 .
d — da3 ass + e(azzaes + a3;a20031);
3 2.
€ — eaj;dys;
One of b,e # 0.

Case 1: e = 0. Then b # 0. Make a = ¢ = 0 by solving for ags and as2, get two
representatives [0, 1,0, 0, 0] (when d = 0) (corresponding to(12457A)) and [0,1,0, 1, 0] (when
d # 0) (corresponding to (12457B)).

Case 2: e # 0. Make b = ¢ = d = 0 by solving for as;, as2 and ags, get two representa-
tives [0,0,0,0,1] (when a = 0) (corresponding to (12457C)) and [1,0,0,0,1] (when a # 0)
(corresponding to (12457D)).

Therefore the corresponding central extensions of Ng 9 4 are:
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(12457A): [z, 2] = ¢it1, £ = 2,3, [21,24] = @6,
[131, 136] =27, [132, 135] = Z¢,
[133,135] =Z7;

(12457B):  [21,2;] = ©itp1, £ = 2,3, [21,24] = @6,
(21, 2] = 7, (22, 25] = 26 + 27,
[133,135] =Z7;

(12457C):  [21, 2] = ©it1, £ = 2,3, [21,24] = @6,
[132, 135] = Zg, [132, 136] =27,
[133,134] = —T7;

(12457D):  [@1, ;] = @ip1, 1= 2,3, [@1,2;] = Tiq2,1=4,5,
[132, 135] = Zg, [132, 136] =27,
[133,134] = —ZT7

The central extensions of Ng 35 can be found in Chapter 7.

Central extensions of Ng 2 ¢:

Z(9): ze; [9,9]: T4, @5, T6; Z2(g): C16 = Cag = C36 = Ca5 = Cyg = Cg = 0, C34—Caz = 0;
W(H2)i C12 = C13 = C14 = 0; dim H?: 5; Basis: Ays, Ags, Az, Ags + Aszg, Ags;

It is obvious that all the elements in H?(g, F) have z¢ in its kernel. Therefore there is no
central extension of Ng 6.
Central extensions of Ng 2 7:

Z(g): zs5,26; [g,0]: z3, T4, @5, Tg; Z2(g): Cs5 = Cs6 = Cys = Cye = Cs6 = 0, Caq +
025 = 0, 016 — 024 = 0; W(H2) 012 = 013 = 014 = 023 = 0; dlIIlI‘I2 4; Basis:
Aqs, Arg + Agg, Ags — Azy, Asg;

GI‘Ollp action: CLA15 + b(AlG + A24) + C(A25 — A34) + dA26;
4 3 . 2 2 2 . 3 .2 . 3 .
a — aaj a2z + cajas1a22; b — baiaz, + dajjas,a01; ¢ — cajjas,; d — daqas,;

One of {a, c} and one of {b,d} are nonzero. If a = 0 (or b = 0), then b # 0 (or a # 0). If
c¢=0 (or d=0), then d # 0 (or ¢ # 0).

Case 1: d # 0. Make b = 0 by solving for as;. Then a # 0, and obtain two represen-
tatives [1,0,0,1] (when ¢ = 0) (corresponding to (13457F)) and [1,0,1,1] (when ¢ # 0)
(corresponding to (13457I)).

Case2: d = 0. Then b # 0 and ¢ # 0. Make a = 0 by solving for as; to get the representative
[0,1,1,0], corresponding to (13457G).

Therefore the corresponding central extensions of Ng o 7 are:
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(13457F): | [21,25] = @7,
[132, 133] = Zg, [132, 136] =27,

(13457G):  [o1, 2] = @ip1, 1= 2,3,4, [21,26] = 27,
[132, 133] = Zg, [132, 134] =27,
[132, 135] =27, [133, 134] = =7

(134571):  [&1, 2] = @ip1, ©=2,3,4, [21,25] = 27,
[132, 133] = Zg, [132, 135] =27,
(29, 26] = 27, [23, 24] = —@7.

Central extensions of Ng s s:

Z(9): z5,2¢; [g,0): 23, @5, ze; Z7(g): Cas = C35 = C36 = Cas = Cs6 = 0, Cy5 —
Csqy — Cog = 0O W(H2) Ci2 = C13 = Cqy = 0 dim H?: 6; Basis: Ais + Aszq, Ais +
Agg, Atg, Az, Aoy, Ayge;

Group action: a(Aqs + Ass) + b(A1s + Agg) + cA1s + dAss + eAss + fAug;
a — aad ass — fad ay;

b— bad azs + fad ays;

¢ — bad as + ca}; + fad aq;

d — —aaj1assaqs + bajiassass + dajjad, + fayialy;

2
e — 0(2011022041 — (42034 — 011021042) + b(a22a64 + aj1a92041 — aj aszs — 2611161216142) -

ca?iasn + d(azeass — a11a21a22) + eadqazs + f(aszass — a? a6 — a11041a42);
f— faj;
Then one of {a, b} and one of {b, ¢, f} are nonzero. And one of {b, f} is also nonzero.

Case 1: f # 0. Then make b = ¢ = e = 0 by solving for a4s, a41, ags and a # 0. Make
a = f = 1, we may get the orbit [a3;as2,0,0,dai1a2,,0,a%,]. This will give us a one
parameter representative [1,0,0, A, 0, 1], corresponding to (1357N).

Case 2: f = 0. Then b # 0. Make ¢ = e = 0 by solving for as; and ags. We may get
the following orbit [aa$;ass, ba3 ass,0, —aajiasasn + bajjassass + dajiai,,0,0]. If a # b,
then make d = 0, and get the orbit [aa3,ass,ba?;as2,0,0,0,0] (as now we require that
a+b # 0), which can be reduced to a one parameter representative [1 — A, A, 0,0, 0,0] (with
A # 0), corresponding to (1357M). If a = b, then depending on whether d = 0 or not, we
get two representatives [1,1,0,0,0,0] and [1,1,0,1,0,0], corresponding to (1357L). And the

representative [1,1,0,0,0,0] is just a special case of the one parameter representative.

Therefore the corresponding central extensions of Ng 9 g are:
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(1357L):  [21,@2] = 23, [21,2;] = @iye,1=3,4,5,
(29, 23] = @7, (29, 24] = @5,
(22, 6] = %JW, (23, 24] = %JW;

(1357M): One parameter family, with A #£ 0
[21,22] = @3, [21,2;] = @iye,1=3,4,5,
(29, 24] = @5, (29, 2] = A7,
[23, 4] = (1 — N)zr;

(1357N): A
[21,22] = @3, [21,2;] = @iye,1=3,4,5,
[2q, 23] = Az7, (29, 24] = @5,
(23, 24] = @7, [24, 26] = @7.

Remark: (1357K) of Seeley’s is just a special case of (1357M) by taking A = 1/2.

The central extensions of Ngsg9 can be found in Chapter 7. Notice that (1) By taking
r1 = a, e — —b s> —c—d, 24 — —c, 25 > —e, z¢ = f, z7 — —g, we can get the exact
presentation of (1357Q) as in Seeley’s paper; (2) By taking 21 — a, 2 — b, 23 — ¢+ d,
g — ¢, T5 — e, &g — f, 27 — g, we can get the exact presentations of (1357R) and (1357S)
as in Seeley’s paper.

The central extensions of Ng s 10 can be found in Chapter 7. By taking z; — b, 22 — a,
r3 — —¢, ¢4 — —d, x5y - —f, zg & —e, 27 — —g, we can get the exact presentations of
(13570) and (1357P) as in Seeley’s paper.

Central extensions of Ng 3 11:

Z(g): Ts5, Tp, [9, 9]3 L3, T4, Ts; Z2(9)3 Cs5 =C36 =Cys = Cy = Cs6 =0, C15 = Caq,Cas5 +
C3y = 0; W(H?): C12 = Ci13 = C14 = 0; dim H?: 5; Basis: Ajs + Agg, A, Agg, Ags —
Aszg, Asg;

Group action: a(Aqs + Ags) + bA16 + cAoz + d(Ags — Agy) + eAsg;

a— aal, + da? as;;

b — aajiase + baiiaes + daziase + easzacs;

c — ca3; + 2da3 aqs — ar1ad, — a3 a; — 2aai;as;

d— dal;;

e — da?,ase + eal age;

One of {a, d} and one of {b, e} are nonzero. One of {a, b} and one of {d, e} are nonzero.

Case 1: d # 0. Make a = ¢ = e = 0 by solving for as1, ass, ase respectively. Then b # 0,
and get a representative [0, 1,0, 1, 0], corresponding to (13457E);

Case 2: d =0. So a # 0 and e # 0. Make b = ¢ = 0 by solving for ass and as; respectively
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to get a representative [1,0,0, 0, 1], corresponding to (13457D).

Therefore the corresponding central extensions of Ng s 17 are:

(13457D): [z, ;] = ©ip1,t = 2,3,4, [21,25] = @7, (29, 23] = @5,
[132, 134] =27, [132, 136] =27,

(13457E):  [21, 2] = ©i41,0 = 2,3,4, [21,26] = @7, (29, 23] = @5,
[132, 135] =27, [133, 134] = —Z7;

Central extensions of Ng 3 1:

Z(g): z6; [9,0): T4, T5, Te; Z2(g): Cog = C36 = Cas = C56 = 0, C16+Cas =0, C16—Cus =
0; W(H2) 012 = 013 = 025 = 0;

It is obvious to see that Ng 31 has no central extension.
The central extensions of Ng 39 can be found in Chapter 2, Example 3.

Central extensions of Ng 3 3:

Z(9): @5, x6; [g,0]: 23, T5, ze; Z2(g): C15 = Cs5 = C36 = Cas = Cs6 = 0,C34 + Cas = 0;
W(H2)i C12 = Ci14 = C93 = 0; dim H?: 6; Basis:Ay3, A, Agg, Aos, Agg — Ay, Ayge;

Group action: a3+ bA16+ cAgs + dAgs + e(Agg — Ass) + fAus;
a — aa? ass + bad ass + ear1a22a41 + fa11a41a42;

b— 5031044 + fa11044041;

€ — CA22044 + dagaass + e(a22064 — a32044) + f(Aa2064 — A62044);
d— da11a§’2;

e — ea11as2a44 + fai1a44a42;

f— fa11a4214;

One of {b, f} is nonzero, and also d # 0. Can always make ¢ = 0.

Case 1: f = 0. Then b # 0. Make a = 0 by solving for a4y to get two representatives
[0,1,0,1,0,0] (when e = 0, corresponding to (1357G)) and [0,1,0,1,1,0] (when e # 0,
corresponding to (1357H));

Case 2: f # 0. Make b = e = 0 by solving for a4; and a42 respectively to get two
representatives [0,0,0,1,0,1] (when a = 0, corresponding to (1357I)) and [1,0,0,1,0,1]
(when a # 0, corresponding to (1357J)).

Therefore the corresponding central extensions of Ng 33 are:
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(1357G):  [@1, z2] = @3, [21,24) = 6, [21,26] = 27,
[132, 3] = 5, [132, 135] =27,

(1357TH):  [@1, 23] = @3, [21,24] = @6, [21,26] = 27,
[132, 133] T3, [132, 135] =27, [132, 136] =27,
[133,134] —Z7;

(13571):  [@1, z2] = @3, [21,24] = @6, [22,23] = 5,
[132, 135] 7, [134, 136] =27,

(1357J):  [@1, z2] = @3, [21,23) = 27, [21,24] = @6,
(29, 23] = @5, (2o, 25] = @7, [24,26] = 27.

Remark: By taking z; — b, 22 — a, 23 & —c¢, 24 > d, 25 — —e, zg — f, 27 — g in all the
four algebras above, we can get the exact presentations as in Seeley’s paper.

The central extensions of Ng 34 can be found in Chapter 7. By taking z; — b, 2o — a,
z3 = —c, 24 — —d, x5 — —e, g — — f, @7 — —g for all the algebras there, we can get the
exact presentations as in Seeley’s paper.

Central extensions of Ng 3 5:

Z(9): o5,z [8,0]: @5, 2e; Z2(g): Css = Cag = Csg = 0,C16 + Cs5 = 0,Ca6 — Cy5 = 0;
W(H2)i C12 = C14 = 0;dim H?*: 8; Basis:A13, A5, A1g—Ass, Asz, Aoy, Ags, Ase+Ays, Asgy;

Group action: a3+ bA15+ c(A1g — Ass) + dAss + eAos + fA25 + g(Ase + Aus) + hAz4;
Let A := a11a99 — A1204971.

2 2

a — {aajjace + bariass A +c(arnass — asiass) & +cariageas + dai1az1a66 — €as;ags +
~1.

fasiass A +g(az1aes A +as1ass A +asiasiass) — h(azias1a66 + a11a41066) YA

2
b — baj; Ac(ajyaa2+a11a21a32— 011012041 —2a11022a31+a12021a31)+ fas1 A+g(ari1azias+

2 .
A51a32 — 2a12a21041 — G21a22a31 + 011022041),
€ — Ca11066 + §A21a66;

d — {2aa11a12a66 + b A (a12a53 — a11a54) + ¢ A (agzar12 — a11064) + ¢ A (as1as4 — aseas3) +
cags(as2a11 + a12a51) + dags(@11022 + a12021) — 2eas1a22066 + f A (a53@22 — a5aa01) + 9 A
(a22a63 — a21a64) + g A (aa2a53 — as1a54) + gass(az1a52 + as2a51) — hags(aziass + aszas: +
a118042 + 012041)}A_1;

2 2

e — {—aaj,ae6 + baisass A +caizacs AN —cagaass AN —ca12a52a66 — da12a22a66 + €a55066 +
~1.

fassass A +gagaass A +gassass N —gassaeeass + hassassags + hai2as2ae6} A1

2
F — baia A Hcajraizasn + 2caiaa21a32 — €aj,a41 — €A12G22031 — CA110220a32 + faze N +2g

2 .
11022042 + §A21022032 — §G12022041 — 359031 — §G12021042;
g — ca12066 + ga22866;

—1.
h — —age{caiiass + caisass + gasaass + gasiass — hags} A7
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One of {¢, g} is nonzero. Can always make ¢ # 0 and g = 0. To fix ¢ = 0, we require that
ajo = 0. Let 91 = 431 = 441 — A1 = 459 — A3 — Qg1 = Agy — 0, we have

a — {aa? ags + cajraez} A7 b — bayy; A +ca?iaqz; ¢ — cajracs; d — {b A (—ajass) +
c A (—011064) + daggaiiazs — h066011042}A_1; e — {—6032054 A +€a§2066 + fazza54 A
+hassassags} AT f — —cariassass + fasalN; g — 0; b — —age{caiiasa — hags}A™;

Make h = 0 by solving for as4, f = 0 for aszs, a = 0 for agsz, b = 0 for a49, d = 0 for ag4.
Now take ags = a4 = as4 = azs = 0 also, and get a — 0; b — 0; ¢ — cajiaes; d — 0;
e — eaZ,age AL f —0; 9 — 0; A — 0;

Depending on whether e = 0 or not, we get two representatives [0,0,1,0,0,0,0,0] (when
e = 0), corresponding to (137C), and [0,0,1,0,1,0,0,0] (when e # 0), corresponding to
(137D).

Therefore the corresponding central extensions Ng 3 5 are:

(137C):  [#1,22] = @5, [21,24] = @6, [21, 26] = 27,
[132, 133] = Zg, [133, 135] = =7

(137D):  [#1,z2] = @5, [21,24] = @6, [21, 26] = 27,
[132, 133] = Zg, [132, 134] =27, [133, 135] = —Z7;

Remark: (1) By taking 2; — a+ %d, 2y > b+tc, 23 —>d, zg — b, 25 — %e + f, ¢ — € and
7 — g, we may get the exact presentation of (137C) as in Seeley’s paper; (2) By taking
ry — —a, zs = —¢, 23 > d, g = b, x5 = f, g — —e, ¥y — g, we can get the exact
presentation of (137D) as in Seeley’s paper.

The central extensions of Ng 3¢ can be found in Section 6.4.

Central extensions of Ng 37

Z(g): 5, 26; (g, 0]: T3, T4, T5; Z2(g): Caa = Cs5 = C36 = Cus = Cag = Cs6 = 0,Co5+C 34 =
0; W(H2)i Ci1a = C13=C14 = 0; dim H?: 5; Basis:A1s, A1g, A23, Aos — Agy, Agg;

Group action: a5 + bA16+ cAas + d(Ags — Ags) + eAogg;

a— aa‘lllan + dazl”la21a22;

b — aajiase + bajiaes + daziase + easiaee;

c— ca11a§2 + 2daj1as9a49 — da11a§2;

d — da3 al,;

e — dassase + eas2066;

In each of the four sets {a,d}, {b,e},{a,b} and {d, e}, at least one element is nonzero.

Case 1: d # 0. Then make a = ¢ = e = 0 by solving for as;, ass and ase respectively. Then
b # 0, we get a representative [0,1,0, 1, 0], corresponding to (13457C);
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Case 2: d = 0. Then a # 0 and e # 0. Make b = 0 by solving for as; and get two represen-
tatives depending on whether ¢ = 0 or not, i.e., [1,0,0,0,1] (when ¢ = 0, corresponding to
(13457A)) and [1,0,1,0, 1] (when ¢ # 0, corresponding to (13457B)).

Therefore the corresponding central extensions Ng 3 7 are:

(13457A):

(13457C):

[
[
(13457B):  [z1, 2] = @iq1, 1 = 2,3,4,
[
[
[

Central extensions of Ng 3 s:

Z(g): zs5,%6; [9,0]: T4, @5; Z%(g): Cos = C35 = Cys = Cag = Css = 0,C15 + C34 = 0;
W(H2)i C12 = C14 = 0; dim H?: 7; Basis: A1z, A1s — Asg, Arg, Aas, Ay, Agg, Asg;

GI‘Ollp action: CLA13 + b(A15 - A34) + CA16 + dA23 + €A24 + fA26 + gA36;

3 2 2 2
a — aa3; +b(a11a53+ a11a21a31 + a7 a41) +carrags +daj @21 —ear1a3, + fasiags + gasiacs —

2 )
gaiaei;
3 .
b— ba11a22,
¢ — bajiase + car1aes + fasiass + gasiaes;
2 2 .
d — 2bagiai1az2 + daj azs — 2ea11a22a21 + fassass + g(assass — ajiae2);
2.
e = —bajiaszaszs + eaq1a5,;
[ — fassaes + gasaace;
2 .
g — gaiaes;

One always have b # 0 and one of {f, g} is nonzero. Since b # 0, make a = ¢ = 0 by solving
for as3 and asg respectively.

Case 1: ¢ = 0. Then f # 0. Make e = 0 by solving for a3, and make d = 0 by solving for
as3 and get a representative [0,1,0,0,0,1, 0], corresponding to (1357A);

Case 2: g # 0. Make d = f = 0 by solving for ags and as, respectively and get represen-
tatives [0,1,0,0,0,0,1] (when e = 0, corresponding to (1357B)) and [0,1,0,0,1,0,1] (when
e # 0, corresponding to (1357C)).

Therefore the corresponding central extensions of Ng 35 are:
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(1357A):  [z1,22] = 24, [21,24] = @5, [21,25] = 27,
(29, 23] = @5, [29,26] = 27, [23, 24] = —27;

(1357B):  [z1,22] = 24, [21,24] = @5, [21,25] = 27,
(2o, 23] = @5, [23,24] = —27, [23,26] = 27;

(1357C):  [z1,22] = 24, [21,24] = @5, [21,25] = @7,
(2o, 23] = @5, [29,24] = 27, [23, 24] = —27,
[23, 2] = @7

Remark: By switching 23 and 24 in all the algebras above, we can get the exact presentations
as in Seeley’s paper.
Central extensions of Ng 3 g:

Z(9): @4, 5, 26; [, 0]: 23, 24, @55 Z°(g): Csq = C35 = Csg = Cas = Cyg = C56 = 0,C15 —
Caa = 0; W(H?): C12 = C13 = Ca3 = 0; dim H?: 5; Basis: Aqg, A15 + Asg, Agg, Ass, Asg;
A little bit of calculation will show that any element in H? has none trivial kernel in the

center of Ng3g9. So Ng 39 does not have the desired central extension.

Central extensions of Ng 4 1:

Z(9): z5,2¢; [8,0): @55 Z2(g): Cis = Ca5 = Cs5 = Cys = Cse = 0; W(H?): C12 = 0;
dim H?: 9; Basis: A1s, Aq4, A1g, Ass, Ags, Asg, Ass, Asg, Agg;

It is obvious that all the elements in H2(g, F) have 25 in the kernel, so Ng 41 has no central
extension.

The central extensions of Ng 49 can be found in Chapter 7.

Central extensions of Ng 4 3:

Z(g): @4, 5,265 [9,0]: 23,245 Z2(9)3 Cog = C34 = C35 = Cz6 = Cys = Cye = 0; W(H2):
C12 = C13 = 0; dim H?: 7; Basis: Aj4, A1s, Aig, Ass, Ass, Agg, Asg;

GI‘Ollp action: CLA14 + bA15 + CA16 + dA23 + €A25 + fA26 + gA56;

a — aai’lan;

b — aajiass + bajiass + cariass + easiass + fasiass + g(asiaes — assa61);
¢ — aa11046 + baiiase + cai1a66 + €asiase + fasiaes + g(as1ae66 — as1s56);
d — dajiad,;

e — edgaass + faseass + g(as2a65 — a55a62);

[ — eassase + faseace + g(as2aes — as2ass);

g — g(assass — agsase);

We have a # 0 and g # 0. Make b = ¢ = e = f = 0 by solving for ays, ase, ag2 and ass
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respectively (letting ags = ass = 0), and get two representatives [1,0,0,0,0,0,1] (when
d = 0) (corresponding to (1457A)) and [1,0,0,1,0,0,1] (when d # 0) (corresponding to
(1457B));

Therefore the corresponding central extensions of Ng 43 are:

(1457A): [z, 2] = €11, = 2,3, [@1,24) = 27, [@5,26] = @7;
(1457B):  [z1,2;] = ¢i11,1 = 2,3, [21,24] = 27,

[132, 133] =z7, [135, 136] = 7.

Central extensions of Ng 4 4:

Z(9): @5, z6; [0, 0]t 5, ze; Z2(g): Cro = Ca6 = Cs5 = Cas = Cs6 = 0; W(H?): Ci1a=Cs4 =
0; dim H?: 8; Basis: Ays, A1g, Ays, Ags, Asy, Ass, Asze, Aye;

Group action: a3+ bA14 + cAis + dAss + eAsy + fAss + gAse + hA4e;

The automorphism group of Ng 4 4 has two components, therefore we have

(1):

a — aayyass + bajiays + cayyass + dasyass + eaziaqs + fasiass — gassagy — hagsaey;
b — aayyass + bajiags + cajyasy + dasiasg + easyaaq + fasiass — gasiass — hagaaes;
c— C(aflazz - 011012021) + f(allazlaz2 - 031022);

d — aajsass + bajsays + cajsass + dassass + eazsays + fassass — gassags — hassags;
e — aa12a34 + baisa44 + caizasy + dassasy + €asa4q + fasaasy — gassass — hayyaes;
f— 0012(011022 - 012021) + fazz(allaz2 - 012021);

g — (gass + hass)(asztss — a3aa43);

h — (gass + hasa)(assass — asaas);

(2);:a——-a,b——-d,c—>g,d— -be——e, foh,g—obtc,h—e+f;

One of {c, f} and one of {g,h} are nonzero. We can always make ¢ # 0, ¢ # 0 and
f=h=0. Make a = b = d = 0 by solving for as3, a54 and ags respectively. Now by taking
G190 = Q34 = G53 = Gg3 = G43 = d54 = G91 — 0, we can makea =b=d = f = h = 0, and
depending on whether e = 0 or not, we may obtain two representatives [0,0,1,0,0,0,1, 0]
(when e = 0) (corresponding to (137A)) and [0,0,1,0,1,0,1,0] (when e # 0), corresponding
to (137B);

Therefore the central extensions of Ng 44 are:
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(137A):  [z1,22] = @5, [21,25] = 27,
[133, 4] = Zg, [133, 136] =27

(137B):  [@1,z2] = @5, [21,25] =27, [22,24] = 27,
[133, 134] = Zg, [133, 136] =27

Remark: There is an error in Seeley’s paper about (137B), instead of having [z, z4] = 27,
he had [z4, 3] = 27, which was not a Lie algebra at all.
Central extensions of Ng 5:

Z(g): @3, 24, T5,26; [0,0]: ®3; Z%(g): Csa = Cs5 = C36 = 0; W(H?): C12 = 0; dim H?: 11;
Basis: A13,A14,A15,Ale,A23,A24,A25,A26,A45,A46,A56;

GI‘Ollp action: CLA13—|—bA14—|—CA15—|—dA16—|—€A23—|—fA24 —|—gA25—|—hA26—|—7:A45 —|—jA46—|—kA56;
a — (aay1 + eas1)(@11022 — a12a21);

b — aajiass+bajiass+cariass+dariacs+easiass+ fasiasa+gasiassa+ hasiacs+ias1as54+
7041064 — 1044051 + kas1064 — Jasa061 — kag1asa;

¢ — aajiags+bajiass + cariass +dajiacs +easiass + fasiass + gasiass + hasiaes +iag1as5 +
J041065 — 1045051 + kasiaes — Jassas1 — kassas;

d — aajiase+bajiass+caiiase+dariase +eaziass+ faziass+ gaziase+ hasiass+ias1as6+
J 041066 — 1046051 + kas1a66 — Jascas1 — kaseas;

e — (aai2 + eass)(a11a22 — a12021);

[ — aaiza34+ba1sasq+carsass+darsacs+eassass+ fasaass + gasaass + hasaass +iasaass +
J 042064 — 1044059 + kas2064 — 44062 — kagaasa;

g — aajsass +bajsass +carsass +dajsaes + eassass + fassass + gassass + hasaags +1a42a55 +
J 042065 — 1045059 + kasaags — Jassass — kassags;

h — aai2a36+ baisase+ carzase + dajzacs + easaass + fazaass + gasaase + hasaacs +iasaass +
J 042066 — 1046052 + kasaags — Jascass — kassass;

17— 2(044055 - 045054) + ](044065 - 064045) + k(a54065 - 064055);

J— 2(044056 - a46054) + ](044066 - 064046) + k(a54a66 - 064056);

k— 2(045056 - 046055) + ](045066 - 065046) + k(a55a66 - 065056);

One of {a, e} is nonzero. We can make a # 0 and e = 0, then by taking as; = aq1 = a51 =
861 = a54 = agqg = 0, we can make b = ¢ = d = 0 by solving for as4, ass and agzg respectively.
One of {4, j, k} is nonzero. We can always make k # 0 and 7 = j = 0, as the coefficients

of 7,7, k are just the the second compound matrix of a nonsingular matrix. And we need
F#o.

Now take ajs = az1 = azq4 = ags = ase = @41 = G51 = Ag1 = Apa = Aea = G56 = Qg2 =
ags = ass = 0, wecanfix b =c=d=e =14¢ =35 = 0 and g — fassass + gassass;
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h — fassass + hazzags;
Make g = h = 0 by solving for a45 and a4e and get representative [1,0,0,0,0,1,0,0,0,0,1].

Therefore the central extensions of Ng 5 are:

(157):  [21, 2] = @3, [z1, 23] = 27,
[132, 134] =27, [135, 136] = Z7;
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6.4 Extensions of N3

Although we can use the same procedure as we do to all the other algebras to get the
desired central extensions, we find it very difficult to manipulate the parameters involved.
So instead we use an ad hoc method to deal with this case, which will give us a slightly
different invariant than the one used by Seeley.

Let V be a vector space of dimension 3 with a basis {a,b,c}. Because Ng3g is a free
nilpotent Lie algebra, by some standard arguments [11] [23], we have Ng36 = V @ A%V
And isomorphically, Ng 3¢ can be written as:

Nese: [a,b)]=d=aAb,[byc]=e=bAc,[c,a]=f=cAa.
Center: d, e, f;
[0, 0]: dye, f;

To find 2-cocycles, we need to find all ¢ : V @ A2V x V @ A2V — F such that they satisfy
the Jacobi identity

Jac(m,y,z) = (;5([13,3/],2) + ¢([y,z], m) + (;5([2, JZ],y) =0, Vz,y, 2.

As Z(g) = AV, it is obvious that for ¢ to be a cocycle, ¢ must vanish on A2V x AZV.

By normalizing the cocycles, we require that ¢(a,b) = ¢(b, c) = ¢(c,a) = 0, which means
that ¢(V,V) = 0.

Sofor ¢ : VALV xV@AZV — F to be a cocycle, we only need to check that the restriction
¢ :V x A’V — F satisfies the Jacobi identity.

For z,y,z € V, we define det(z,y, z) € F by
e AyAz=det(e,y,z)-aNbAc.

Explicitly, if
= aia+fib+yic

aza + Bab + yac
= oaga+ B3b+ ysc

z
Yy
z
then

ar 1 m
det(z,y,z) =det | az Bs 7
as B3 s

By direct computation, we have

P2,y A2)+ ¢y, 2N 2) + ¢(z,2 N\ y)
= det(ma Y, Z) ) (¢(aa bA C) + ¢(ba cA CL) + ¢(Ca a b)) =0.
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Therefore ¢ is a normalized cocycle if and only if for ¢ : V x A2V — F,

dla,bAc)+ @d(b,cha)+ ¢(c,and)=0.
The Levi factor of the automorphism group of Ng3g is G = GL(V), and its unipotent
radical R, acts trivially on H?(g, F), i.e., ¢(c(z),o(y) A o(2)) = ¢(z,y A 2).

Because the set of all the bilinear maps from V x A2V to F is isomorphic to the dual space
(V@ A2V)* of V ® A2V, we can show that, taking into account the previous statement,
H?(g, F) is isomorphic as a G—module to a submodule of (V x A2V)*, which will be denoted
by (V ® A*V);, and where G = GL(V).

Denote by (E, *) the G-module E = Endp (V') with the action

g*T =det(g)goT og™t.

We define a map e := V ® A’V — (E, *) by

e(z® (y A z))(v) =det(v,y,2)z

is an isomorphism of G-modules, as we have for any g € G,

g-e(z®@(yN2))(v)= det(g)ge(z® (y A z))(g7"(v))
det(g) det(g ™" (v), y, 2)g()

(9)g

(9)d

det(v, 9(y), 9(2))g(2)
(
(

228 (6(3) A 9()) (0
92 ® (v 1 2)))(v)

€

(
(

™

or

g-e(z@(yAz)=elg(z@(yAz))).

It follows easily that & acts on the basis of V ® A’V as

100



100 010
a®((bAc)— |0 0 0|, a®(cha)— |0 0 0 |,
000 00 0
00 1 [0 0 0
a®(aNb)y— |0 0 0|, b®@(bAc)— |1 0 0|,
00 0 000
"0 0 0] [0 0 0
b®(cha)y— |0 1 0], b@(anb)— |0 0 1|,
|00 0 |00 0
"0 0 0| [0 0 0]
c®bAc)— |0 0 0], c®(cha)y— |0 0 0 [,
1.0 0| 01 0
[0 0 0
c®(anbd)— | 0 0 O
|00 1

The dual G-module of (E, %) is isomorphic to the G-module (E, ) where
gOT = det(g) 'goTog™".
Indeed the map
¢ (E,0)— (E,*)"

defined by
®(T)(S) :=tx(TS5)

is an isomorphism, since

(g-2(T))(S)= (T)(g7"=3)

(1 I T
&+ &+ o+ o+
o oR R R
N TN N SN T
—
S &
0 =
3&
o =
n @
~ 0

~

O

S

—

O

n

~—

Hence

Let v = aa+ Bb+vc € V. Then

e(a® (bAc))(v) =det(v,b,c)a= aa.
Hence e(a ® (b A ¢)) = projector on Fa with kernel Fb + Fe.
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The operators (b ® (c A a)) and e(c ® (a A b)) have similar descriptions.

In particular,

ela®(bAc))+e(d®(cha))+e(c®(and)) =idy.
It follows that the transpose map
et (B, %) — (V@ A2V

induces an isomorphism of the G-module of linear functions that vanish on idy with the

G-modules (V @ A2V);.

We have
®(T)(idv) = tr(T o idy) = tr(T)

and so e o ® induces an isomorphism of G-modules
(Eo,0) — (V@ A2V}

where

Eg=ker(tr) ={T € E: tr(T) = 0}.
So we have proved the following
Theorem 6.1 The G-module H?(g, F) is isomorphic to (Ey,0).

It is an easy fact that any element in (Ep, ) is in the same orbit as one of the following

three elements:

(i)

E0 0
0 7 0 ;
0 0 —&£—19q
(ii)
E 10
0 & 1];
0 0 ¢
(iii)
E1 0
0 & 0
0 0 —-2¢

Now we try to find the corresponding elements in H2(g, F) for (i), (ii) and (iii).
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For an arbitrary element 7 in (E, ), we have the G-module isomorphism et o ® :

(V@ A2V)* with

eto ®(T)(v) = ®(T)(e(v)) = tr(Te(v)).
where v € V @ A?V.

In (i), we have
€0 0
T=10 179 0
00 —&—17

Therefore from (6.2), if the diagonal elements of ¢(v) are «, 3,7, we have

&' 0 &(T)(v) = B(T)(e(v)) = tr(Te(v)) = o + 1B + (7.

Let ¥ = (bAc)®@a+n(cha)®@b+((and)®@ce V*® (A*V)*. Then

¥(v) =Ea+nb+(y.
Combining (6.3) and (6.4), we have
et o &(T)(v) = ¥(v),

or

eo®(T)=(bAc)@a+n(cha)®@b+(and)®ec.
It is easy to check that
Y(a,bAc)=&,¥(b,cNha)=n,T¥(c,anNd)=(= - —n,
and all the other combinations are zero, which in turn will give us the algebra

(147E) :

(E,0) —

(6.2)

(6.3)

(6.4)

We may assume that none of £, 7, = —£ —n equals 0, otherwise ¥ would have some nonzero

element of Z(g) in its kernel.

By taking £ = —1,p = A and ( = - —n = 1 — A, we get exactly the same family as in

Seeley’s paper, i.e.,
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(147E) :

Let ( = —¢ — 1, and
e1r= {+n+¢=0,
ez = &n+&C+ G,
es= &nC.

In (i), for two elements diag(&, 7, ¢) and diag(¢’, 7, (') to be in the same subspace, we should
have & = 7&, 7' =10, = 7(, where (' = —¢' — 5. Let

and it is obvious that [ is an invariant.

Write ¢t = —g, then n = —t§,( = —§ —n = (t — 1)§. Then

ez = &n+&C+nG,
= E(-t—tt-1)+t-1)
= (-t?+t-1)

es= En(=&(-t)(t-1)

el (1-t44?)®

- ez~ 2(t-1)2 ¢

Therefore I(\) = —é = % is an invariant for (147E), with XA # 0,1. It is obvious
83 -

that (147C) is just a special case of (147E), by letting A = 1/2.

It is interesting to observe that, up to a constant factor, this invariant has the same ex-
pression as the so called j-invariant of the elliptic curve y?> = z(z — 1)(z,) (see [14], pp.83).
Seeley uses a somewhat different expression for his invariant in this case.

In (ii), when x # 3, as 3§ = 0, we have £ = 0, then it is easy to see that the corresponding
cocycle will contain a nonzero element of Z(g) in its kernel. So we just consider the case
when x = 3 and £ # 0. Then we have

(=T
=

o o m
o m
moR o
¢
o o =

And its corresponding cocycle is

T=0bAc)®(a+b)+(cha)®(b+c)+(and)®ec.
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It is easy to check that

¥(a,and)=0, ¥(a,bAc)=1, ¥(a,cha)=1,

¥(b,and)=1, ¥(b,bAc)=0, ¥(b,cha)=1,

¥(c,anb)y=1, ¥(c,bAc)=0, ¥(c,cha)=0.
The corresponding algebra is for xy = 3 only:

(147F) : (for x = 3 only)

[a,b] = d, [b,c] =e,
[aa C] = [aa e] =9,
[a,f]z [b,d] =g,
6, f]=49, [c,d]=g.

In (iii), when £ = 0, the corresponding cocycle will contain a nonzero element of Z(g) in its

kernel. And when £ # 0, we have

€1 0 11 0
0¢ 0 |~|01 o0
00 -2 00 -2

Its corresponding cocycle is
=(bArc)@(a+b)+(cha)@b—2(anbd)®ec.

It is easy to check that

¥(a,aNd)=0, ¥(a,bAc)=1, ¥(a,cNha)=1,
¥(b,and)=0, ¥(b,bAc)=0, ¥(bcha)=1,
¥(c,and)=—-2, ¥(c,bAc)=0, ¥(c,cha)=0.

Its corresponding algebra is

[a,b] = d, [b,c]=e, [a,c]=—F,
() [a’e]:g [aaf]:ga [baf]:ga
[Cad]:

which is isomorphic to (147D) of Seeley’s paper, an isomorphism from (1) to (147D) can be
given as: a - 1/2¢, b —>b,c—a,d— —1/2¢,e - —d, f - —1/2f and g — —1/4g.

Therefore the central extensions of Ng 3¢ of dimension 7 are:
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(147D):

1/2 gives (147C))

[a,c]:—f,
]

? ]

(&=

§#0,1

w3
_ -~

W

[ Wi el

>
—_
W
|
i
~—

s

f, - - .
I = o
IR ]
T =S

Y T o O

[t el S el Wi

N— T T T

Remark: (147C) is a special case of (147E) by taking £ = 1/2.
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Chapter 7

Algebras over the Real Field

In this chapter, we will consider the central extensions of the algebras of dimensions < 6
over the real field. We only provide the proofs for those cases where some new algebras
arised due to the change of the ground field. Our proofs also apply to the case when the
fields are algebraically closed with x # 2, with some minor modifications.

As we have discussed in Chapter 5, two new algebras arise from the central extensions of
the 3-dimensional Abelian Lie algebras. No new algebra arises from the central extensions
of 4-dimensional algebras. Therefore we start by considering the central extensions of 5-

dimensional nilpotent Lie algebras.

7.1 Extensions of 5-Dimensional Algebras

The central extensions of N5 5 9 over R can be found in chapter 2, Example 2.

Central extensions of Ny s 3:

Z(g): @4, z5; [g,0): 23, T4, @s5; Z2(g): Css = Cs5 = Cas = 0,C15 — Cog = 0; W(H?):
C12 = Ci13=Ch3 = 0; dim H?: 3; Basis: Aq1g, Aqs+ Aoy, Aos.

Group action: aAq4 + (A5 + Asa) + cAos:

Let A := ajjas2 — ajaas;. Then a — (aa?; + 2bajias; + ca3;)AN; b — (aaiags + b(agiazs +
a12021) + casiaze)N; ¢ — (aa%2 4 2baqsass + ca§2)A.

Let A =[a,b,c] and B = [ay, b1, ¢1]. It is obvious that in A one of a,b,c # 0. May assume
a =1 and have A =[1,b,c] and B = [0, by, ¢1]. By taking as; = 0 will ensure that a =1 in
A.

Now in B one of by,¢; # 0 and (as az; = 0) a3 = 0 — 0; by — bi1a11092; ¢1 — (2b1a12a92 +
crai,)A.
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If b; # 0, make ¢; = 0 by solving for a;4, and obtain the representative for B: B; = [0,1,0].
If by = 0, then ¢; # 0 and obtain another representative for B: B, = [0,0, 1].

Case1l: B; =[0,1,0]. Then A =[1,0, ¢]. To fix B; (up to ascalar), we require a2 = as; = 0.
Consider the group action on A: a =1 — a?;A; b =0 — 0; ¢ — ca, .

Subcase 1.1: ¢ = 0. we obtain the representative for A: A; = [1,0,0], with A; A B,
corresponding to (2457M).

Subcase 1.2: ¢ # 0. Then A — [a2,,0, caZ,]. If ¢ > 0, then we obtain the representative A, =
[1,0,1], with A; A By corresponding to (2457L); If ¢ < 0, then we obtain the representative
As; =11,0,—1], with A3 A B; corresponding to (2457Ly).

Case 2: By = [0,0,1]. Then A = [1,5,0]. To fix By (up to a scalar), we require as; = 0.
With B, being fixed, we can always make ¢ = 0 in A by linear combination.

Consider the group action on A: a — a2, A; b — (a11a12 + bajrazs)A.

We can obviously make b = 0 by solving for a5 and obtain the representative A = [1,0, 0],
with A A By also corresponding to (2457L).

At first we show that (1) A2 A By and (2) AA B; are in the same orbit, as both of them are
corresponding to (2457L). Compare the corresponding algebras: (1) [z1, ;] = ;41,7 = 2,3,
(21, 24] = @7, [21, 25] = [22, 24] = 26, [®2, T3] = @5, [22, 25] = 275 and (2) [21, 2] = 2411,4 =
2,3, [21, T4] = @, [22, 23] = 5, [22, 25] = 27.

By taking #1 — ¢y + 2, 22 — —21 + 24, 23 — 223, T4 — 224 + 225, 5 — —224 + 225,
g — —2xg + 227, ¥7 — 226 + 227, we map (1) to (2).

To prove the non-isomorphism among (2457L, 2457L;, 2457TM), we show that they are in
different orbits.

Consider (2457L), i.e., A A Bz, under the group action, A = [1,0,0] — Ala?,, aj1a12, a,],
and B, =[0,0,1] — A[azl,a21a22,a22] Then

AN By = {(031021022 - a11a12a§1)A14 A (A1 + Asgg)
+(a3,a3, — af,a3;) Ara A Ags
+(a11a12a3, — a25a91a22)(A1s + Agg) A Apg A2

Compare (2457L) and (2457M), then the coefficients of A4 A Ags and (Aqs+ Agg) AAgs are
zero. Then we have aj2a22 = 0 and aj1as2 + @12a21 = 0, which will lead to the singularity

of A.
Compare (2457L) and (2457L;), we would have

3 3
a11a21 A% = ajaa92 A 7A 0,

and ((111(122 + 6112(121)A3 =0.
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Simplification would lead to a%, + a2, = 0, which has a solution over algebraically closed
fields (and at the same time maintain the nonsingularity of the automorphism group), but
not over the real field.

Therefore, as real Lie algebras, (2457L) and (2457L;) are not isomorphic.
Similarly we can prove that (2457L;) and (2457M) are not isomorphic.

Therefore the corresponding central extensions of N5 o 3 are:

(2457L):  [Z1,2;] = ¢i41,0 = 2,3, [21,24] = @6,
[131, 135] =27, [132, 133] = T3,
[132, 134] =27, [132, 135] = Zg;

(2457Ly):  [21, 2] = ©i41,0 = 2,3, [21,24] = @6,
[131, 135] =27, [132, 133] = T3,
[132, 134] =27, [132, 135] = —Zs;

(2457TM): [z, 2] = ©i41,0 = 2,3, [21,24] = 27,
[131, 135] = Zg, [132, 133] = T3,
[132,1134] = Zg;

Central extensions of Ny 3 :

Z(g): T4, 55 [9,0]: T4, 5; Z2(9): Cas = 0,Ca5 — C34 = 0; W(H?): C12 = C13 =0; dim H%:
6; Basis: A4, A5, Az, Agy, Ags 4 Asy, Ass;

GI‘Ollp action: CLA14 + bA15 + CA23 + dA24 + e(A25 + A34) + fA35§

2 2 .
a — aajiass + baj ass + dajiasqas; + ears(az1ass + aseasi) + faiiasiass;
b— 0031023 + ba%1a33 + dajias1a93 + eari(aziass + asiaszs) + faiiasiass;

¢ — c(agzass — asgaae3) + d(ag2a43 — a23aaz) + e(a22a53 — as2a23) + e(as2043 — asnass) +
f(a3za53 - 052033);

2 2.

d — dajia3, + 2eajiassass + faii1a3,;

e — day1ag2a93 + ear1(az2ass + as3asz2) + faiiassass;
2 2.

[ — dajia3; + 2eajiaszass + faiiazs;

Let V; be the subspace generated by A4, Ajs, Ass, Vo the subspace generated by Ay, Ay,
Asy, Aos+Asy, Ass, and V3 = V1 (| Va. It is easy to see that all V1, V3 and V3 are submodules

under the group action.
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Let L be any two-dimensional subspace of H?(g, F). Assume L = A A B, with A and B of
the form aA14 + bA15 + cAgs + dAss + e(Ags + Asgs) + fAss.

Among A and B, we have the following restrictions: (1) e # 0; or (2) one of a,d # 0; or (3)
one of b, f # 0.

Case 1. L ¢ Vi, or at least one of d,e, f # 0 in A. When e? — df > 0, we can make e = 1
and b = f = 0, and also a = b = ¢ = 0 to get subcase (a) A = [0,0,0,0,1,0]. When
e? —df =0, maked = e = 0 and f = 1. We can make further b = ¢ = 0 by solving for
as; and asg respectively. Depending on whether @ = 0 or not, we get two subcases: (b)
A =10,0,0,0,0,1] and (c) A =[1,0,0,0,0,1]. When e? — df < 0, we can make e = 0 and
d = f = 1. We can further make a = b = ¢ = 0 by solving for as1, az; and a43 respectively

to get (d) A=10,0,0,1,0,1].
Subcase 1.1: L C V5. Or ¢ = 0 in both 4 and B.
Subcase 1.1.1: L[ V3 = 0, or we have at least one of d, e, f # 0 in B, consider the following

cases:

Subcase 1.1.1.1: A = [0,0,0,0,1,0]. To fix A, we require as; = az; = 0, a4 = ass,
assazs = 0, assaszz = 0, and 011(022033 + 023032) =1

Assume B = [a,b,¢,d,0, f]. Then if as3 = ass = 0, then @ — aa? as; b — ba? ass;
¢ — cagsass + dassass + f(—aszass); d — da11a§2; e=0—0; f— fa11a§3-

If instead a2 = azs = 0, we have a — ba? ass; b — aa?;ass; ¢ — c(—azza23) + daszass +
) 2., ) 2
fa32a53, d— fa11a32, e=0— 0, f — da11a23.

As one of f,d # 0, we can always assume f # 0 by the group action above. And if both
f,d # 0, we can always make ¢ = 1 when one of a,b # 0. Make ¢ = 0. Depending on the
values of a, b, d, we get all the following representatives for B: (1) B =[0,0,0,0,0, 1] (when
a=>b=4d=0, AA B corresponds to (2471)); (2) B = [0,0,0,1,0,1] (when a = b = 0,
df > 0, AA B corresponds to (247F)); (3) B = [0,0,0,1,0,—1] (when a = b =0, df < 0,
A A B corresponds to (247F,)); (4) B=10,1,0,0,0,1] (a =d =0, b# 0, AA B corresponds
to (247J)); () B =[1,0,0,0,0,1] (b =d =0, a # 0, A A B corresponds to (247K)); (5)
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B =[1,1,0,0,0,1] (ab # 0, d = 0, A A B corresponds to (247K)); (6) B = [1,0,0,1,0, 1]
(one of a,b # 0, df > 0, A A B corresponds to (247H)); (7) B = [1,0,0,1,0,—1] (one of
a,b# 0, df <0, AA B corresponds to (247H,)); (8) B =[1,1,0,1,0,1] (abdf # 0, f =1,
A A B corresponds to (247G)); (9) B = [1,1,0,1,0, f] (abdf # 0,f # 0,1). We will show
that when f < 0, it will become (247H;) and when f > 0 and f # 1, it will becomes (247H).

It is obvious that each pair of (247F) and (247F;), (247H) and (247H;) are isomorphic over
the algebraically closed field. We will prove later that they are different over the real field.

The isomorphism between (5) and (5’) will be shown later on.

Subcase 1.1.1.2: A =1[0,0,0,0,0,1]. Fix A, we require ag; = aszs = as2 = 0 and a;;a3; = 1.

Assume B = [a, b, ¢,d, e,0]. We must have e = 0, for otherwise we can change it into Subcase
1.1.1.1, as €2 — df = €2 > 0. Now with e = 0 and d # 0, make d = —1 by multiplying B
by —1/d, then A+ B = [, %, %, —1,0,1], which can be changed into Subcase 1.1.1.1 as well.
So we omit this case.

Subcase 1.1.1.3: A =11,0,0,0,0,1]. To fix A, we require asy = as2 = 0, az; = —aji1as3/ass,
a%lan = a11a§3 =1.

Assume B = [a,b,¢,d,e,0]. We will also omit this case, as by exactly the same argument
as in Subcase 1.1.1.2, it can be changed into Subcase 1.1.1.1.

Subcase 1.1.1.4: A =10,0,0,1,0,1]. To fix A, we may let as; = az; = 0, as2 = ass, and
a11 = @22 = a3z = 1, @42 = a43 = as2 = as3 = 0. Now consider B = [a, b, ¢, d, e,0]. We must
have e = 0, for otherwise we can change it into Subcase 1.1.1.1, as e? — df = e? > 0. Now
with e = 0 and d # 0, make d = 2 by multiplying B by 2/d, then subtracting from A by B,
A — B = [*,%,%,—1,0,1], which can be changed into Subcase 1.1.1.1 as well. So we omit
this case.

Subcase 1.1.2: Now consider the case when L[| V3 # 0, which means B € V.
Subcase 1.1.2.1: A = [0,0,0,0,1,0]. To fix A, we require as; = az; = 0, a4 = ass,

assazs = 0, assaszz = 0, and 011(022033 + 023032) =1
Assume B = [q,},0,0,0,0]. Then if as; = azs = 0, then a — aa?;as2; b — ba? ass.
If instead a9y = as3 = 0, we have a — ba%1a32; b— aa%1a23.

As one of a,b # 0, we can always assume a # 0 and get two representatives for B: (10)
B = [1,0,0,0,0,0] (A A B corresponds to (247D)) and (11) B = [1,1,0,0,0,0] (AN B
corresponds to (247E)).

Subcase 1.1.2.2: A =[0,0,0,0,0,1]. Fix A, we require ag; = aszs = as2 = 0 and a;;a3; = 1.
Assume B = [q,},0,0,0,0].

2 .
a — aaja22;
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2 2 gaat
b — aaj as3 + baj ass;

As a # 0, make b = 0 to get a representative for B: (12) B =[1,0,0,0,0,0], corresponding
to (247B).

Subcase 1.1.2.3: A =[1,0,0,0,0,1]. To fix A, we require asy = as2 = 0, az; = —aji1as3/ass,
a? ass = ajjai; = 1. Assume B = [a,5,0,0,0,0]. Then a — aa? asq; b — aal a3 +ba? ass.
If a # 0, make b = 0, and we will get exactly the same algebra as (12). Therefore we assume
a=0 and b# 0 to get (13) B =10,1,0,0,0,0], corresponding to (247C).

Subcase 1.1.2.4: A = [0,0,0,1,0,1]. To fix A, we may choose as; = as3, ass = —ass,
as1 = az1 = 0, aszazz = (033043 — Q23042 + a32a53).

Then for B = [a,},0,0,0,0], we have a — aa?;ass + bajass; b — —aa? ass + ba? ass.

One of a,b # 0, we can make a = 1 and b = 0 to get (14) B = [1,0,0,0,0,0], with AA B
corresponding to (247E,).

Subcase 1.2: L ¢ V3, which means ¢ # 0 in B.

Subcase 1.2.1: A =10,0,0,0,1,0]. Let B = [a,b, ¢,d,0, f]. Compare with the computation
as in Subcase 1.1.1.1, may assume d = f = 0. If one of a,b # 0, we can similarly assume
a # 0. Depending on the values of b, we get the following representatives for B: (15)
B =11,0,1,0,0,0], corresponding to (247Q). and (16) B = [1,1,1,0,0, 0], corresponding to
(247R).

If both @ = b = 0, then get the representative: (17) B = [0,0,1,0,0, 0], corresponding to
(247P).

Subcase 1.2.2: A =[0,0,0,0,0,1]. Assume B = [a,b,¢,d,e,0] with ¢ ## 0. Compare with
the computation as in Subcase 1.1.1.2, may assume d = ¢ = 0 and get a — aa? as;
b— aa%1a23 + ba%1a33; C — CA9a033.

As a # 0, make b = 0 to get a representative for B (18) B = [1,0,1,0,0, 0], corresponding
to (247M).

Subcase 1.2.3: A = [1,0,0,0,0,1]. Assume B = [a,b,¢,d,e,0]. Compare with the com-
putation as in Subcase 1.1.1.3, we may assume that d = e = f = 0. Then a — aa? ass;

2 2 .
b — aaj a23 + baj ass; ¢ — cazzass.

If a # 0, make b = 0 to get a representative for B: (18’) B = [1,0,1,0,0, 0], corresponding
to (247M).

If a = 0, then depending on the values of b, we get subcase (19) B =[0,0,1,0,0,0] (corre-
sponding to (247N)) and (20) B =[0,1,1,0,0,0] (corresponding to (2470)).

Subcase 1.2.4: A =[0,0,0,1,0,1]. Let B = [a,b,¢,d,e,0]. Compare with Subcase 1.1.1.4,
we may assume that d = e = 0 to get B = [a,b,¢,0,0,0]. Compare with 1.1.2.4, we have
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2 2 o 2 2 o 2 2
a — aaj;ass + baj asy; b — —aaj ass + baj ass; ¢ — c(az, + a3,).

If one of a,b # 0, make a = 1 and b = 0 to get (21) B = [1,0,1,0,0,0], corresponding to
(247R4). and if both @ = b = 0, then we have (22) B = [0,0,1,0,0,0], corresponding to
(247P,).

Case 2. L C Vi, ord =e = f = 0 in both A, B. Then one of a,b # 0. Make a =1
and b = 0 in A. Depending on whether ¢ = 0 or not, we get two cases: Subcase (2.1)
A=11,0,0,0,0,0] and Subcase (2.2) A =11,0,1,0,0,0].

Subcase 2.1: L C V3, or both A, B € V5. For A =[1,0,0,0,0,0], we require b # 0 in B and
get (23) B =10,1,0,0,0,0], corresponding to (247A).

Subcase 2.2: L ¢ V3. For A = [1,0,1,0,0,0], to fix it, we require ass = 0, a?,ass = 1,
and assazz = 1. Assume B = [a,b,0,0,0,0], with b # 0. Now a — aa?;as; + ba? ass;
b— ba%1a33.

Make a = 0 and get (21) B = [0,1,0,0,0,0], corresponding to (247L). If we consider
A=11,0,0,0,0,0], we get a representative which is in the same orbit as (24). So we omit

this case.

At first we will show that the following pairs are isomorphic: (5) and (5’), (18) and (18’).
We will prove this by providing an isomorphism between the two algebras:

To show that (5) and (5’) are in the same orbit, we may take a11 = as2 = ass = @42 = a53 =
1, ass = az; = 1/2, and as; = 1/4, and this will map A A B of (5) to that of (5).

For the isomorphism between (18) and (18’), we can actually establish an isomorphim
between the two algebras: z; — 21, 22 — —25 + 25, 3 — @3, T4 — —T4, &5 — Ty,

zg — —2g — ¢7 and ©7; — @7.

For (9), when f > 0 and f # 1, an isomorphism between (9) and (247H) is (let o be a

solution to the equation f = <z§+1>2) r — a?j_lazl + 3_|_1:132 + 3_|_1:L'3, ro — azs + 23,
r3 —> (o 3+1):1:2 _ o« + q,»3, L4 —> 3_|_1a:4—|— g‘il%, Ty — 331 Ty — a321:1:5, rg — 3_|_1a:6—|—

3_|_1:L'7 and T7— — % 11:6—|— 5 1137, when f < 0, an isomorphim between (9) and (247H,)
is (let o be a solution to the equation f = —z?2 <3m;2__31>2): T, — i(ajﬂa)wl —452zs +
232:;13133, Ty — azy + T3, T3 — aézj_f)iﬂ‘z - a23(;§2_13)1133, Ty — %Ji + &O{i—l{i;%,
r5 — (g‘ij_lf Ty — agﬁtll)Q T5, Tg — 7(062;(10)4( 3) ) + 2( ) z7, and 27 — 2“;040;-';11)2 g —
i,

We can also show that over the the algebraically closed field, (247E) and (247E,), (247P)
and (247P,), (247R) and (247R,) are isomorphic. (As the isomorphism between (247F, Fy,
H, H;) can be read off easily from the proof.) Let a be a root of 22 + 1 and 3 be the root
of 2 + 1. Then
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(247E1)= (247E): 21 — @1, &2 — 22 + @3, L3 — —0Xg + a®3, T4 — T4 + T3,
Ty — —axyg + azs, g — 2xg, T7 — 227;

(247P1)= (247P): 21 — 21, 2 — oy — 23), T3 — T2 + 23, T4 — aTs — T5),
Ty — T4+ x5, g — 2axe, and z7 — 2x7;

(247R;)= (247R): @1 — PBey, 22 — x5 + 23, T3 — B (—2s + 23), T4 — B(za +
z5), 5 — B3 (—24 + 25), T6 — 2B%2¢, and 27 — 2Bz7.

To show that all the algebras (247A-R), (247E,), (247F;), (247H,), (247P,), and (247R;)
are distinct, we just need to compare the algebras among the same groups as follows:

Group 1: (247A); Group 2: (247L); Group 3: (247B, C, D, E, E;); Group 4: (247F,F;, G,
H,H,, I,J, K); Group 5: (247M, N,0,P,Q,R, P4, Ry).

Take (247F) as an example. We will prove that it is distinct from all the other algebras in
Group 4. We have in this case A =[0,0,0,0,1,0] and B = [0,0,0,1,0,1]. Then under the
group action,

A— [011 (021032 + 022031), aiy (021033 + a31a23), (22053 — 52023+ A32043 — G42033, 2011022032,
011(022033 + 023032), 2611161236133]

and

B — [011(021022 + 032031), 011(021023 + a3la33), Q92043 — Q40093 + A32053 — A52033, 011(032 +
a§2), 011(022023 + a33a32), 011(033 + a§3)].

Consider the wedge product AA B, and the corresponding coefficients are: (let 6 = as2a33 —
023032)

ANPRAVANT S —a%

Ajg N Aoy —a%

Arg A (Aos + Asq): —a?

(

(

A5 A (Azs + Asa) 0 afy(a3; — afs)(az1a32 — azsaz)
Az N Ags : a?,(a3; — a3;)(az1a3s — assas;)
Aoy A (Ags + Asq) 1 —aiy (a3, — a3,)é

Azg NAgs : —2a3, (az2a03 — as3asz)d

(Ags + Azg) A Ass a%l(a?’;S - 033)5

Compare the coefficients of A A B with that of (247F;). If they are isomorphic, then the
coefficients of Agy A (Ags + Ags) and (Ags + Ags) A Ags are equal (nonzero), while all the
others are zero. Then assa93 — aszazs = 0 and a§2 — a§2 = a§3 — a§3. It is easy to see that
when it is over R, then it has no solution (otherwise the automorphism group is singular,
or, d = 0). (Notice that if it is over an algebraically closed field of x # 2, then it has a

solution.)

Compare with (2471). Then the only coefficients that is nonzero is a?(a2; — a2;)8 # 0, and
all the others are zero, which include that a§2 — a§2 = ag9a23 — asszasz = 0, and leads to

a2, = a2, contradiction. Therefore (2471) and (247F) are not isomorphic.
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All the other algebras can be proved similarly.

Therefore the corresponding central extensions of N5 35 are:

© [ - © O = - )
& 8 8 Q) 8 8 8 Q) &
I 1 I 1 I I
Yy " T s R s _|4_
) 8 8 ) 8 8 8 ) )
) o @ & Q@ ®» @ & )
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88 8 8 8 8 8 8 8 8 | 8 8 8 88 | 8
I 1 1 1 1 | 1 1 1 e e e 1 O { B 1 1
R R T R R R R R T T R )
88 8B 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
L N N R N R N N )
B8 8 8 8 8 B 8 8 8 8 8 8 8 8 8 8 8
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< < < <t <t <t <t <t
o o e e oy o o oy oy oy oy oy
NN NN o~ SN o~ o~ o~ o~ o~
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fes fes fes fes fes fes fes fes fes fes fes fes
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<+ < ol < < ol ol ol ol ol
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T
=~ T o~ LT o~ LT T L LS
8 § 8 §d 8 8 8 8 8 8§ 8
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(247P): [z, 2] = 242,01 = 2,3, (29, 23] = @6,
[132, 135] =27, [133, 134] =27

(247P1):  [@1, 2] = 2iq2,1= 2,3, (29, 23] = @6,
[132, 134] =27, [133, 135] =27

(247Q):  [z1, 2] = 2iy2,1=2,3,4, [22,23] = 26, [22,25] = 27,
[133,134] =27,

(247R):  [z1, 2] = 242, =2,3,4  [z1,25] = 26, [22, 23] = @6,
[132, 135] =27, [133, 134] =27

(247Rq):  [21,25] = @542, =2,3,4 [z, 23] = 2, [T2,24] = 27,
[133,135] =7

Central extensions of Ny 4:

Z(g): z3,24,25; [0,0]: z3; Z%(g): Csq = 0,C35 = 0; W(H?): C12 = 0; dim H?: 7; Basis:
A13aA14aA15aA23aA24aA25aA45;

Group action: a3+ bA14 4 cAys + dAss + eAoy + fAgs + gAus;

Let 6 := ay1a99 — ajsas;.

a — aay16 + das6;

b — ai1(aass + bass + cass) + as1(dags + eass + fasa) + g(as1a54 — a51044);
¢ — ai1(aass + baygs + cass) + az1(dass + eass + fass) + g(asass — asia4s5);
d — aaisé + dagsd;

e — a1z(aasgs + bags + casa) + aza(dass + easq + fasa) + g(@a2054 — a52a44);
[ — aiz(aags + bags + cass) + asa(dass + eass + fass) + g(aazass — as2aas);
g — g(asaass — asaass);

Let V7 be the subspace of H?(g, F) generated by Az, As, Ags, Ass, Asg, Ags, Vo the
subspace generated by A4, Ays, Aoy, Aoy, Ays, and V3 the intersection of V7 and V,. By
the group action above, we know that all V;, V, and V3 are submodules of H(g, F).
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Let L be any two-dimensional subspace of H?(g, F) with the desired property. Then it is
obvious that L(V; # 0 and L ¢ V5. Denote L = A A B, where A, B € H%(g, F).

Case 1: L ¢ Vi, or ¢ # 0 in A. We may assume A = [a,b,c,d,e, f,1] and B =
[a1, b1, c1,d1, €1, f1,0]. To fix A, we require that ¢ = 1 — ag4as55 — assass # 0, which is
always true, as aq4a55 — asqa45 is a factor of the determinant of the automorphism group
AutN574.

Subcase 1.1: L\ V3 = 0, or at least one of a;,d; # 0. Make a; = 1 and d; = 0. Then
for B = [1,by,¢1,0, €1, f1,0], we have a1 = 1 — a116; b1 — ai1(ass + b1a4a + c1a54) +
as1(e1a4a + frasa); 1 — ari(ass + biass + crass) + as1(e1asas + fiass); di — a126; g —
a12(ass+braga+crasq)+asz(erags+ frass); fr = ara(ass+brags+crass)+az(e1ass+ frass);
g1=0—0.

Choose a12 = 0. We can make by = ¢; = 0 by solving for a4 and ags respectively. Assume
that a;s = 0, we now have a; =1 — a110 = 1; by = 0 — a11a34 + as1(e1a44 + frasa) =0
(solve for as4); ¢1 = 0 — asiass + az1(e1ass + frass) = 0 (solve for asgs); di = 0 — 0;
e1 — aga(eraqs + frase); fi — azz(erass + frass); g1 =0 — 0.

If at least one of e, f1 # 0, then make e; = 1 and f; = 0 to get B; = [1,0,0,0,1,0,0]. If
both e; = f; =0, then get B, =[1,0,0,0,0,0,0].

Subcase 1.1.1: LV, # 0, or A € V5. For B; = [1,0,0,0,1,0,0], we may assume A =
[0,b,¢,0,¢, f,1]. To fix By, we require ajp = ass = ag5 = 0, asq4 = —as1a44/a11, 6116 =1
and ajsa34 + ag2a44 = 1. Now consider A. By taking also a5y = 0, we have a =0 — 0; b —
ai1bagy+asieasy — as1044; ¢ — ayicass +asy fass +agias55;, d =0 — 0; e — azseaqy — as2044;
[ — asafass + agoass; g =1 — agqass.

We make a = b =c =e = f = 0 by taking a1 = a51 = @41 = a52 = a42 = 0 and get a
representative for A: (1.1.1a) A =10,0,0,0,0,0,1] (A A B corresponds to (257H)).

For B, = [1,0,0,0,0,0,0], we assume A = [0,b,¢,0,¢, f,1]. To fix By, we require a2 =
asy = ass = 0 and a%lan = 1. Now consider 4, a =0 — 0; b — a11(basa+cass)+az(easa+
fasa) + (aa1a54 — as1044); ¢ — ar1(bass + cass) + as1(eass + fass) + (aa1a55 — as1045);
d— 0; e — ass(eass + fass) + (aa2a54 — a52044); f — aza(eass + fass) + (aszass — as2a45);
g9 — (044055 - 054045)-

By taking a45 = @54 = 0, we can make b = ¢ = e = f = 0 by solving for a5y, a41, as2 and a4
respectively to get A =10,0,0,0,0,0,1]. But this gives us a decomposable algebra (1.1.1b)
Nyga X N3a: 21, 23] = 23, [21, 23] = Zg, [24, 25] = 27.

Subcase 1.1.2: L\ V2 =0, or A ¢ V5, i.e., one of a,d # 0.

For B; = [1,0,0,0,1,0,0], we may assume A = [0,b,¢,d,e, f,1]. To fix By, we require
a19 = ags = a45 = 0, @34 = —as1aasa/as1, a116 = 1 and agsasqa = 1. Now consider A. By
taking also as4 = 0, we have a = 0 — das10; b — a11bass + as1(dass + eass) — as1a44; ¢ —

aricass +as1 fass +ag1as5; d — dagad; e — aza(dags+eaqs) — as2a44); f — aga fass +aszass;
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g = 1— aq4055.

We make ¢ = b = ¢c = e = f = 0 by taking a2y = a51 = a41 = a52 = a4 = 0. Because
d # 0, we get a representative for A: (1.1.2a) A =[0,0,0,1,0,0,1] (A A By corresponds to
(257L)).

For B, =[1,0,0,0,0,0, 0], we assume A = [0,b,¢,d,e, f,1].

To fix Bs, we require a15 = azq = azs; = 0 and a%lan = 1. Now consider 4, a =0 — 0 (By
subtracting a multiple of B, from A, we can always make a = 0); b — aj1(bass + cass) +
as1(eass+ fass)+(aa1054—as1044); ¢ — a11(bass+cass)+asi(eass+ fass)+(as1a55 —as1a45);
d — dagsb; e — a22(ea44—|—fa54)—|—(a42a54—a52a44); f— a22(ea45—|—fa55)—|—(a42a55—a52a45);
g9 — (044055 - 054045)-

By taking a45 = as4 = 0, we can make b = ¢ = e = f = 0 by solving for a5y, @41, a5 and
a4o respectively. As d # 0, we get (1.1.2b) A = [0,0,0,1,0,0,1] (A A By corresponds to
(257K)).

Subcase 1.2: L[ V3 # 0, or a1 = d; = 0 in B. In this case, it is obvious that we also have
L ¢ Vs, or AgVyoroneofad#0in A.

Then B = [0, by, ¢1,0, €1, f1,0] and one of by, ¢1, €1, fi # 0. May assume e; = 1. a; = 0 — 0;
by — ai1(b1ass + cra54) + a21(aaa + frass); ¢1 — ar1(biass + crass) + az1(ass + frass);
di=0—0; e =1— ara(br1ass + c1a54) + a22(@as + frasa) = 15 fi = a12(brass + crass) +
azz(ass + frass); g1 =0— 0.

Make b; = fi = 0 by solving for as; and as5. Now we get g = 0 — 0; by = 0 —
a11C1054 + a21a44 = 0; (021 = —61011054/044) €1 — a11€1855 + A21a45;d1 =0 = 059 =1 —
a12C1054 + Q22044 = 1; f1 = 0 — a12c1055 + aozass = 0; (@a5 = —c1a12a55/d22) g1 = 0 — 0.

Substitute as1, a45 into ¢1, combining with the fact that ajsciass + as2044 = 1, we get

2
c{a11354a12055
a22a44

_ C1354a12

= 1011055 <1—|- R )
€1Q54@12+@22244
a22a44

€1 — C1011855 +

= (10Q11055
a11a55
a22a44

Depending on whether ¢; = 0 or not, we get two representatives for B: B; = [0,0,0,0,1,0, 0]
and B, =[0,0,1,0,1,0,0].

Subcase 1.2.1: For B; = [0,0,0,0,1,0,0], we assume A = [a,b,¢,d,0, f,1]. To fix By, we
require ag; = ag45 = 0 and agzza44 = 1. Now consider A. a — aa116; b — a11(aass + bags +
cass) + (@a1054 — a51044); ¢ — a11(aass + cass) + aqias5; d — aa12d + dagxd; e = 0 —
a12(aass+bagy + casa) + asa(dass+ fasa) + (@a2a54 — as2a44) = 0 (By subtracting a multiple
of B1); f — ai2(aass + cass) + azz(dass + fass) + aasass; 9 =1 — agqas; = 1.

Make b = ¢ = f = 0 by solving for as;, as; and a4y respectively. Now if a # 0, make a = 1
and d = 0 by solving for a;s to get (1.2.1a) 4; = [1,0,0,0,0,0,1] (A; A By corresponds to
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(257E)). If a = 0, then d # 0, and get (1.2.1b) 4, =[0,0,0,1,0,0,1] (A2 A By corresponds
to (257F)).

Subcase 1.2.2: For B, = [0,0,1,0,1,0,0], we may assume A = [a,b,¢,d,0, f,1]. To fix B,
we require that

a21@44 + @11054 = 0, ajiass + aziaq5 = 1,

a12a54 + Q22044 = 1,  a12a55 + az2a45 = 0,

Oor G44 = 011/5, ass5 = 022/5, a45 = —012/5 and as4 = —021/5-

Now consider A. a — aa116 + das16; b — aq1(aass + bass + cass) + as1(dags + fass) +
(aa1054 — as1a44); ¢ — aii(aass + bass + cass) + as1(dass + fass) + (aa1a55 — as1a45);
d — aa120 + daged; e — ajz(aass + bass + cass) + as2(dass + fasa) + (@a2a54 — a52044);
J — ai2(aags +bass+ cass) + ase(dass + fass) + (aasass — as2045); § = 1 — (@a4055 — a54045).
Taking a12 = as; = ag5 = a54 = 0, we make b = ¢ = e = f = 0 by solving for asy1, a41, aso
and a4 respectively. Now for A, we have

a — aa115 + da2]_5
(aar1 + d(—ai1a54/a44))6
011(0044 - da54)5/a44
d— CLCLlQ(S + da225

(a(—as2a45/as5) + dags)d
azs(—aays + dass)d/ass

As one of a,d # 0, we can make a = 1 and d = 0 to get (1.2.2) A =11,0,0,0,0,0,1] (AA By
corresponds to (257G)).

Case 22 L C Vi, or g = 0in A,B. One of a,d # 0. Make a = 1 and assume that
A= [1,(),6, daeafa 0] and B = [Oablacladlaelaflao]'

Bearing in mind that to fix A, we require a;; + das; # 0.

Subcase 2.1: L[\V3 = 0. Since A € Vj, this case is the same as B ¢ V3, or d; # 0
in B. Assume d; = 1, B = [0,b1,¢1,1,e1, f1,0]. Now consider B, by taking as; = 0,
a1 =0 — 0; b1 — a11(b1a4q + c1054); ¢1 — ana(brass + cras5); d1 = 1 — azd = 1; 1 —
a12(b1asa+crass) +asa(assterags+ frass); fr = ara(brass+ciass)+aza(ass+erags+ frass);
g1 — 0.

Make a; = e; = f; = 0 by solving for as;, as4 and ags. Now B = [0, by, ¢1,1,0,0,0]. Taking
as1 = @12 = agq = ags = 0, a1 = 0 — 0; by — a11(b1aas + c1054); 1 — a11(b1ass + c1a55);
d1:1—>(1225:1; 61:0—>0; f1:0_>0agl_>0

If one of by,¢; # 0, then make ¢; = 1 and b; = 0 to get B; = [0,0,1,1,0,0,0]. If both
by = ¢; = 0, then get B, =[0,0,0,1,0,0,0].

Subcase 2.1.1: For B; = [0,0,1,1,0,0,0], we assume A = [1,b,¢,0,¢, f,0]. To fix By, we

require as; = asq = azq = 0, ags = —aj2a55/a20, 1155 = a11a§2 = 1. Consider A, we have
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a=1-— a116; b — ar1bass; ¢ — a11(ass+bass+cass); d — a120; € — a12basa+azzeaqqs; f —
a12(ass +bags + cass) +asz(eass + fass) = ara(—ai2as5/ass +bays + cass) +azz(eass + fass);
g— 0.

One of b,e # 0. If b # 0, then assume b = 1 and make e = 0 by solving for a;5, make ¢ =d
by solving for a45 and further make both ¢ = d = 0 by subtracting a multiple of B; from
A. Now taking a1s = ass = a4 =0, a=1—a1d =1;b=1— aj1044=1;¢c— 0; d — 0;
e=0—0; f — fassass; g — 0.

Now if f = 0, we obtain the representative: Subcase (2.1.1a) 4; =[1,1,0,0,0,0,0] (41 AB;
corresponds to (2571)); If f # 0, and f > 0, we have Subcase (2.1.1b) 4, =[1,1,0,0,0,1, 0]
(A2 A By corresponds to (257J4)); if f < 0, A3 =11,1,0,0,0,—1,0] (we will omit this case,

as we can show that it is in the same orbit as (2.1.1c) below, which has a simpler form).

If b = 0, then assume e = 1. Now, taking as; = 0, we have a = 1 — a116; b = 0 — 0;
¢ — a11(—a12a55/a22 + cass); d — a120; € — agsa4a = 1; f — a1s(ass + bags + cass) +
asz(ass + fass) = ar2(—a12a55/a22 + cass) + ase(ass + fass) = 0 (Solve for ays); g — 0.

We can make ¢ = d and subtracting a multiple of B from A to make ¢ = d = 0 and get
(2.1.1c) A4 =11,0,0,0,1,0,0] (A4 A By corresponds to (257J)). As it turns out to be in the
same orbit as (2.1.1b), and because (2.1.1c) has a simpler form, so we omit (2.1.1b) instead.

Subcase 2.1.2: For B, = [0,0,0,1,0,0,0], we assume A = [1,b,¢,0,¢, f,0]. To fix By, we
need a9y = ag4 = aszs = 0 and a11a§2 = 1. Now consider 4, a — a116; b — a;11(bass + casa);
¢ — ay1(bass + cass); d — a120; € — a12(baas + casa) + ase(eass + fasa); f — ar12(bass +
cass) + azz(eass + fass); g — 0.

One of b, ¢ # 0, for otherwise the 2-cocycles will contain some none trivial elements of the
center in the kernel. Make b = 1 and ¢ = 0. Make e = 0 by solving for a;5. Then f # 0,
and get A =[1,1,0,0,0,1,0] (A A By corresponds to (257I)). And it can be easily shown
that A A Bj is in the same orbit as (2.1.1a), so we omit it.

Subcase 2.2: L(V53# 0. Or B € V3, 0or d; =0 in B. Then B = [0, b1, ¢1,0, €1, f1,0]. One
of by, c1,e1, f1 # 0, assume f; = 1 to get B = [0,by,¢1,0,e1,1,0] and A = [1,b,¢,d,¢,0,0].
Consider B, a3 — 0; by — a11(b1a44 + c1054) + @21(e1a44 + as54); ¢1 — a11(braas + crass) +
az1(e1aas + as5); di — 0; e1 — a12(b1Gaa + c1054) + a22(e1044 +a54) = 0; f1 = 1 —
ar2(braas + crass) + aze(e1aas + as5) =15 g1 — 0.

Let as; = 0. When both b; = ¢; = 0, we can easily get a representative for B: Subcase

(2.2.1)
B1 =0,0,0,0,0,1,0].

When one of by,¢; # 0, then if b; # ejcq, we can always make by = 1, ¢; =0, e; =0
and keep f; = 1 to get Subcase (2.2.2) B, = [0,1,0,0,0,1,0]. If by = ej¢y, then b; —
c1011(€1044 + as54); 1 — c1011(€1a45 + as5); €1 — cra12(e1a44 + a54) + a22(e1044 + as4) = 0;
i =1 craiz(e1aas + ass) + azz(eraqas + ass) = 1.
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Make ¢; =1 and b; = e; = 0. Then make f; =1 to get Subcase (2.2.3)

B3 =10,0,1,0,0,1,0].

Subcase 2.2.1: With B; = [0,0,0,0,0,1,0], we assume A = [1,b,¢,d,e,0,0]. To fix By,
we need as; = asg = 0 and agqa55 = 1. Consider 4, a = 1 — a116; b — a11(ass + baas);
¢ — ayi(ass + bags + cass); d — 126 + dagad; e — aja(ass + bags) + azz(dass + eayy);
F =0 — aiz2(ass + bass + cass) + aza(dags + eaqs) (By subtracting a multiple of B, we can
always make f = 0); g =0 — 0.

We can make b = ¢ = d = 0 by solving for ass, ass and a;2 respectively. Now e £ 0. So we
make e = 1 and get subcase (2.2.1) A =[1,0,0,0,1,0,0] (A A B; corresponds to (257C)).

Subcase 2.2.2: With B, = [0,1,0,0,0,1,0], we assume A = [1,b,¢,d,¢,0,0]. To fix Bs, we
require

a11a44 + G21054 = 1,  ari1a4s + asrass = 0,

a12a44 + Q22054 = 0, arz2a45 + agsass =1

Or 44 = 022/5, Qg5 = —021/5, a54 = —012/5, a55 = 011/5-

We havea =1 — a115—|— da2]_5; b— 011(034 + ba44 + CCL54) + 6121(d(134 + 6(144); c — (111((135 +
bays+cass)+azi(dass+eayss); d — a126+dased; e — aiz(ass+bagy+casy)+asa(dass+eass);
F — aia(ass + bags + cass) + aze(dass + eass); g — 0.

By taking as; = a45 = 0, we can make ¢ = d = 0 and b = f by solving for ass, a2 and
a4 respectively. Then by subtracting a multiple of B from A, we can make b = f = 0.
Now depending on e = 0 or not, we may obtain the following two representatives for A:
Subcase (2.2.2a) 4; =[1,0,0,0,0,0,0] (A; AB; corresponds to (257B)) and Subcase (2.2.2b)
Ay, =11,0,0,0,1,0,0] (A2 A By corresponds to (257D)).

Subcase 2.2.3: With B; = [0,0,1,0,0,1,0], we assume A = [1,b,¢,d,e,0,0]. To fix Bs,
we require ass4 = 0 and (a11 + asg1)ass = 1 and (@12 + agz2)ass = 1. Then for A, we have
a=1—a116 + dasé; b — ar1(ass + bass) + as1(dass + eass); ¢ — aii(ass + bags + cass) +
as1(dags + eass); d — @120 + daged = (@12 + dag2)d; e — a12(ass + bass) + aza(dass + eass);
F — aia(ass + bags + cass) + aze(dass + eass); g — 0.

If d = 1, then make ¢ = d = 1. Taking as; = 0, we can make ¢ = f, by subtracting

a multiple of B3 from A, we have ¢ = f = 0. Then we need e # 0 to get the desired
representative: A; =[1,0,0,1,1,0,0], A; A Bs correponding to (257A).

If d # 1, we can make b = d = 0 and ¢ = f by solving for as4, a5 and azs. Then we need
e # 0 toget A, =[1,0,0,0,1,0,0], with A; A B3 corresponding to (257C), hence it is in the
same orbit as (2.2.1), we omit it.

Now we get all the possible representatives for the desired orbits, with the correponding
algebras:

(111&) A45 A (A13 + A24) — (257H),
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1.1.2a A45 + A23 A (A13 + A24) — (257L),
A45 + A23 A A13 — (257K),

)
1.1.2b )
Ags + Aqs)

)

A A24 — (257E),

(
(
(
(

1.2.1b) (A5 + Asz) A Aoy — (257F);

( )
( )
(1.2.1a)
( )
(1.2.2) (Ags + A13) A (A5 + Ags) — (257G);

(2.1.1a) (A13 4+ A14) A (A5 + Ass) — (2571);
(2.1.1b) (A3 + A1a + Ags) A (Ars + Ags) — (2574);
(2.1.1c) (A13+ Ags) A (A1s + Ags) — (257]);

(2.2.1) (A13 + Ags) A Ags — (257C);

(2.2.2a) A1z A (A1 + Ags) — (257B);

(2.2.2b) (A13+ Az4) A (A1s+ Ags) — (257D);
(2.2.3a) (A13 + A2z + Aza) A (A5 + Asgs) — (257A);

To prove that all the algebras are dintinct, we consider the following four groups of algebras:
Group 1: (257TA-D): L C V; and L V3 # 0;

Group 2: (2571,J,J1): L C Vi and L V53 = 0;

Group 3: (257E,F,G): L ¢ Vi, L V3 #0and L ¢ V5;

Group 4: (257K,L): L ¢ V4, L Vs =0and LN V2= 0.

Group 5: (257TH): L ¢ Vi, L[\ V3 =0 and L V> # 0.

We just need to prove that all the algebras among the same group are distinct.

In Group 1, (257B) corresponds to Ajs A (Ayg + Ags), under the group action, it will be
mapped to (a116A13+a11034A14+ 11835015+ 120 Aas+a12a34 24+ a12a35 A 25) A ((a11044+
a21054)A14 + (a11045 + a21055) A1 + (12044 + A22054) Ay + (a12045 + a22a55)Ass), or

0115(011044 + 021054)A13 A Ay

-|-61115(011045 + 021055)A13 NAqs

+0115(alza44 + 022054)A13 A Aagy

+0115(alza45 + 022055)A13 A Ags

-I-(alla34(alla45 + 021055) - (011044 + 021054)011035)A14 A A
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+(alla34(alza44 + 022054) (011044 + 021054)012034)A14 A Aagy
-I-(alla34(alza45 + 022055) (011044 + 021054)012035)A14 A Ags
+(alla35(alza44 + 022054) - 012034(011045 + 021055)A15 A Aoy
-I-(alla35(alza45 + 022055) - 012035(011045 + 021055)A15 A Ass
-I-al25(alla44 + 021054)A23 A Ay

-I-al25(alla45 + 021055)A23 A A

-I-al25(alza44 + 022054)A23 A Aoy

-I-al25(alza45 + 022055)A23 A Ass

-I-(al2a34(alza45 + 022055) - (012044 + 022054)012035)A24 A Ags.

If (257B) could me mapped to (257A), then the coefficients of Aj3AA14, A13AA24, AagAAy,
Aoz A Agy are zero, i.e.,

a116(a11044 + a21a54) =0 a116(a12044 + a22a54) =0
a126(a11044 + a21a54) =0 a126(a12044 + a22a54) = 0.

It is easy to see that there is no solution to the above system of equations, for otherwise the
automorphism group is going to be singular. Hence (257A) and (257B) are not isomorphic.

Compare (257B) with (257C), exactly the same thing will happen. So they are not isomor-
phic.

Compare (257B) with (257D), the coefficients of Aag A A4, Aag AA15, Aoz AAos, AagAAsgs
will be zero, while that of A4 A Ay is not. It is obvious that a;5 must be zero. As the
coeflicients of Aj3 A Aj4 and Az A Ags are not zero, we have ajjaqq + ag1054 # 0 and
a12045 + Ag2a55 7= 0. As the coefficient of Ay A Ags equals 0, we will have ag4 = 0 since
a12 = 0 and a;; # 0. Similarly we can prove that ag; = 0 by considering the coefficient of
A5 A Asy. The fact that both agy = aszs = 0 will make the coefficient of A4 A Agy to be
zero, a contradiction. Therefore (257B) and (257D) are not isomorphic.

Now we need to check whether (257B) is decomposable or not. Take (1.1.1b), then A =
[0,0,0,0,0,0,1] and B =[1,0,0,0,0,0,0]. By simply looking at the coefficients of A A B, it
is obvious that (257B) and (1.1.1b) are not isomorphic, i.e., (257B) is indecomposable.

Similarly, we can prove that all the other algebras are distinct and indecomposable.

In order that the basis for (257A) will also diagonalize a maximal torus, we make the
following basis transformation: #; — @1, ©2 — 1 + 2, &3 — T3, L4 — T4, &5 — 5,
zg — g and 7 — 7.

Therefore the corresponding central extensions of N5 4 are:
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Remark: To get Seeley’s presentations, (1) In (257B), by switching z4 and z5; (2) In (257F),

by taking 1 — —b, 2 — a+b; (3) In (257L), by taking 1 — b, 22 — a, 23 — —c, 24 — —d,

z5 > e, g — —g and 27 — —f.
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7.2 Extensions of 6-Dimensional Algebras

The central extensions of Ng;; can be found in chapter 2, Example 4.

Central extensions of Ng 2 3:

Z(a): ®6; [g,0]: @4, @5, 26; Z2(g): Ca5 = Ca6 = Cs6 = Cy5 = Cag = C56 = 0, C15 + Csy =
0, Ci6+ 035;W(H2)3 C13 = C14 = C15 = 0; dim H?: 4; Basis: Aig, A1g — Ags, Agg, Asy;

Group action: a3+ b(A1s — Ass) + cAaz + dAgy:
a— aa3; + b(ajiaes + a? as) + calyaz; — dajiady;
b — bai ass;

c— ca%lan — 2day1a21a99;

d — dajiai,;

Then we have b # 0. Make a = 0 by solving for ags.

Case 1: d = 0. Then we obtain the representatives [0, 1,0,0] (when ¢ = 0, corresponding
o (12357A)),[0,1,1,0] (when ¢ # 0 and bc > 0,corresponding to (12357B)) and [0,1, —1, 0]
(when ¢ # 0 and be < 0, corresponding to (12357B;)).

Case 2: d # 0. Then make ¢ = 0 by solving for as; and get a representative [0,1,0,1]
(corresponding to (12357C));

Therefore the corresponding central extensions of Ng o 3 are:

(12357A):  [z1, 2] = 24, [21,2;] = ®i41, 1 =4,5,6, [22, 23] = @5,
[133,134] —Zg, [133,135] = =7

(12357B):  [z1, 2] = 24, [21,2;] = ®j41, 1 =4,5,6, [@2, 23] = &5 + 27,
[133,134] —Zg, [133,135] = =7

(12357B;):  [21, 22] = 24, [21, 2] = ®i41, 1 =4,5,6, [@2, 23] = 25 — 27,
[133,134] —Zg, [133,135] = =7

(12357C):  [z1, 2] = 24, [21,2;] = ®i41, 1 =4,5,6, [22, 23] = @5,
[132, 134] 7 [133, 134] = —Ts, [133, 135] = —T7;

Central extensions of Ng 2 5:

Z(g): Z6; [9,9]3 T3, T4, Ts, ZTe; Zz(g): C’36 - C’45 - C’46 - C’56 = 0, 015 — 024 =
0, Cig — C34, Cos+ Cs5 = 0; W(H?): C12 = C13 = C15 = Ca3 = 0; dim H?: 4; Basis:
Ay, Agg + Aszy, Ass, Agg — Ass;

GI‘Ollp action: CLA14 + b(AlG + A34) + CA25 + d(A26 — A35);
Notice that the automorphism group of Ng 55 has two components, we have respectively

. 3 ... 3 2. 3. 2 3.
(1): a — aaj asz2; b — baj,a5,; ¢ — caiias,; d — daj;as,;
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and
(2): a <— —c and b +— —d simultaneously.
One of b,d # 0. Because of (2), we may always assume that b # 0.

Case 1: d = 0. We can get five representatives [0,1,0,0] (when a = ¢ = 0) (corresponding
to (12457H)), [0,1,1,0] when (a = 0,c¢ # 0) (corresponding to (124571)), [1,1,0,0] (when
a # 0,c = 0) (corresponding to (12457K)), [1,1,1,0] (when ac > 0) (corresponding to
(12457J)) and [1,1, —1,0] (when ac < 0) (corresponding to (12457J,));

Case 2: d # 0. We can get representatives [0,1,0,1] (when a = ¢ = 0) (corresponding to
(12457L)), [1,1,0,1] (when one of a, ¢ # 0, we may assume a # 0 using (2)) (corresponding
to (12457M)); And when both @ # 0,¢ # 0, we can get a one parameter representative
[1,1, A, 1] (corresponding to (12457N)) for any A # 0. Combining (1) and (2), we can show
that [1,1,A7! 1] is in the same orbit. So we may introduce the invariant 7(A) := A4+ A1

for this representative.

Therefore the corresponding central extensions of Ng o 5 are:

(12457H):  [zq, 2] = 2441, 1 =2,3,5,6 [2o,2;] = 42,5 = 3,4, [23,24] = 27;

(124571): (21, 2;] = ®it1, 1=2,3,5,6 [@3,2;] = 2j12,5 =3,4, [22,25] =27,
[133,134] =27,

(124573):  [21,2;] = 2iq1, £ =2,3,5,6 [21,24] = @7, (29, 23] = @5,
[132, 134] = Zg, [132, 135] =27, [133, 134] =27

(12457J4):  [21, 2] = @iq1, £ =2,3,5,6 [21,24] = @7, (29, 23] = @5,
[132, 134] = Zg, [132, 135] = —Z7, [133, 134] =27

(12457K):  [21,2;] = 2541, £ =2,3,5,6 [21,24] = 7, (29, 23] = @5,
[132, 134] = Zg, [133, 134] =27,

(12457L):  [zq, 2] = 2441, 1 =2,3,5,6 [zo,2;] = 42,5 = 3,4, [22,26] = 27,
[133, 134] =27, [133, 135] = =7

(12457N):  One parameter family, with invariant I(A) = A + A~!
[21, 2] = j31, 1 =2,3,5,6 [21,24] = 27, (29, 23] = @5,
[132, 134] = Zg, [132, 135] = Azy, [132, 136] =T,
[133, 134] =z7, [133, 135] = —T7;
(12457M) in Seeley’s list is a special case of (12457N) with A = 0.

Central extensions of Ng 2 g:

Z(g): L5, Le6; [9, 9]3 T3, Ty, Tg; Z2(9)3 Cs5 = Cs6 = Cy5 = C4e = Cs6 = 0, Crg = Ca5 = Ciy;
W(H2)i Ci2 = Ci3 = Ca3 = 0; dim H?: 5; Basis: Aqg, Ay, A+ Aoy + Agy, Mgy, Agg;

GI‘Ollp action: CLA14 + bA15 + C(Alg + A25 + A34) + dA24 + €A26;

As the automorphism group of Ng 29 has two components, we have
(1):
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2 . 3 . 2 92,
a — aaiiass + bajiasy + c(a11064 + a11a220a31); b — ba3asg; ¢ — caijazy; d — c(azasq +

2 2 2 ) 3 .
a11022042) + da1105, + e(22064 + A54041 — A55031); € —> €A1105,;
(2):a+— dibe— —e;c— —¢;

One of {b, c} and one of {c, e} are nonzero.

Case 1: ¢ # 0. Make a = d = 0 by solving for ag4 and as4. If none of b and e is 0, then get
representative [0,1,1,0,A] (A # 0), corresponding to (1357S); But as we notice that, when
A =1, it contains a two dimensional center, i.e., 5 — g and z7, so we just omit it. If one of
b and e is nonzero, may assume that b = 0 and get representative [0, 1, 1,0, 0], which could
be included as a special case of the previous one if we allow A = 0. If b = e = 0, then get
[0,0,1,0,0], corresponding to (1357R).

Case 2: ¢ = 0. Then b # 0, e # 0. Make a = d = 0 by solving for as4 and a4;, and get
the orbit [0, ba3 ass,0,0,eas;a3,]. When be > 0, then get the representative [0,1,0,0,1],
correponding to (1357Q) and when be < 0, we get instead [0,1,0,0,—1], corresponding to
(1357Q1).

Therefore the corresponding central extensions of Ng o g are:

(1357Q):  [21,22] = 23, [21,23] = @5, [21,25] = 27,
[132, 133] = Zg, [132, 134] = Zg, [132, 136] =27

(1357Q1):  [21,22] = 23, [21,23] = @5, [21,25] = 27,
[132, 133] = Zg, [132, 134] = Zg, [132, 136] = =7

(1357R):  [21,22] = 23, [21,23] = @5, [21,2¢] = 27,
[132, 133] = Zg, [132, 134] = Zg, [132, 135] =27,
[133, 134] =27,

(1357S):  One parameter family, with A £ 1
(1, 25] = 23, [21, 23] = s, (21, 25] = @7,
(21, 26] = &7, [22,23] = g, [z2, 24] = @6,
(g, 25] = 27, [23,2¢] = Azy, [23,24] = 27;

Central extensions of Ng 3 10

Z(g): L5, Te; [9, 9]3 T3, T5, Tg; Z2(9)3 Css = Cs6 = Cys = Cyg = C56 = 0, C15 = Cs4,Cl16 =
Cos; W(H2)i C12 = C13 = Ca3 = 0; dim H?: 5; Basis: Ays, Aqs + Asg, A1g+ Ass, Ass, Asg;

Group action: aAq4+ b(A15+ Ass) + (A6 + Ass) + dAss + eAsg;
a— aa:fl + b(ar1as4 + 031031) + cai1a4;

b — bad ass;

¢ — ba? ai2a0s + ca? al,;

2 .
d — aaj a2 + b(a12a54 + a11012a31 + 2011a22041) + c(@12064 + 22054 + A11022031);
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2 2 3.
e — bajiasaai, + 2caiia12a5, + eaq1a5,;
One of {b, c} and one of {c, e} are nonzero.

Case 1: b # 0. Make a = ¢ = d = 0 by solving for ag;, a;2, and a4; to get the representatives
[0,1,0,0,1] (when be > 0), corresponding to (1357P) and [0,1,0,0,—1] (when be < 0),
corrsponding to (1357P).

Case 2: b = 0. Then ¢ # 0. Make a = d = e = 0 by solving for ag4, ass, a2 to get the
representative [0, 0,1, 0, 0], corresponding to (13570).

Therefore the corresponding central extensions of Ng s 10 are:

(13570):

[131, 132] = T3 [131, 133] = T3, [131, 136] =27,
[132, 133] = Zg [132, 134] = T3, [132, 135] =27,
(1357P):  [x1,22] = 23, [21,®] = iye,1= 3,5, [&2, 23] = g,
[132, 134] = T3 [132, 136] =27, [133, 134] =27,
(1357P1):  [z1,22] = @3, [21,%] = iye,1= 3,5, [&2, 23] = g,
[132, 134] = Ty [132, 136] = —Z7, [133, 134] = Z7;

Central extensions of Ng 3 4:

Z(9): @5, 26; [g,0]: 23, o5, z6; Z2(g): C15 = Cs5 = C36 = Cas = Cs6 = 0,C16 — Cs4 = 0;
W(H2)i C12 = Ca3 = C94 = 0; dim H?: 6; Basis:A13, A14, A1s + Asg, Ass, Agg, Ayg;

GI‘Ollp action: CLA13 + bA14 + C(Alg + A34) + dA25 + €A26 + fA46;
2 2.
a — aaj a2 — 26’(111&22(141 — f6122(141,
b — aajiass + bajiass + c(a11064 + a31044 — a34041) + f(aa1064 — a44061);
€ — €a11a22044 + fa22041044;
3 .
d— da11a22,
— _I_ d 2 _I_ 2 _I_ f .
€ CA12a22044 A50A34 1T €059044 A22043044;
2 .
f — fa22a44,
One of {¢, f} is nonzero, and also d # 0. Can always make e = 0.

Case 1: f = 0. So ¢ # 0 and make a = b = 0 to get a representative [0,0,1,1,0,0],
corresponding to (1357D).

Case 2: f # 0. Make b = ¢ = 0 and get the representatives [0,0,0,1,0,1] (when a = 0,
corresponding to (1357E)), [1,0,0,1,0,1] (when a # 0, and af > 0, corresponding to
(1857F4)) and [1,0,0,1,0,—1] (when a # 0, and af < 0, corresponding to (1357F)).

Therefore the corresponding central extensions of Ng 34 are:
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(1357D):  [@1, 2] = 3, [21, 6] = 27, (22, 2;] = Zi49,1= 3,4,
[132, 135] =27, [133, 134] =T7;

(1357E):  [z1, 2] = @3, [@2, ;] = @it2,i= 3,4,
[132, 135] =27, [134, 136] =T7;

(1357F):  [21, 2] = 3, [21, 23] = 27, (22, 2;] = Zi49,1= 3,4,
[132, 135] =27, [134, 136] = —T7;

(1357F1):  [21,22] = 3, [21, 23] = 27, (22, 2;] = Zi49,1= 3,4,
[132, 135] =27, [134, 136] =T7;

Central extensions of Ng 4 :

Z(g): z4,25,26 [0,0]: Ta,25; W(H?): Cra = C13 = 0; Z%(g): Cas = Cag = Cse =
0,C95 — C34 = 0; dim H?*: 9; Basis: Aj4, Ays, Agg, Ass, Ay, Ags + Asy, Agg, Asgs, Asg;

GI‘Ollp action: CLA14 + bA15 + CA16 + dA23 + €A24 + f(A25 + A34) + gA26 + hA35 + iA36;
a — aa? asq + ba? f f h ;
11%22 aiass + eaiiasza21 + faiiasiass + faiiassasy + haiiasiass;
2 2 .
b — aaj ass + bajass + eai1as1a23 + faria21a33 + faiiasiass + hajiasiass;
¢ — aay1046 +bar1ase + car1a66 + €a21a46 + f(a21a56 + az1046) + gas1aes + hasi ase + tasi ags;

d — d(asgza33 — ag2a23) +€(A22a43 — Q42a93) + f(a22a53 + A32043 1 A32043 — As2a33 — A52023) +
9(022063 - 062023) + h(a32a53 - 052033) + i(a32063 - 062033);

e — eay1a3, + 2far1as0a32 + haiial,;

[ — ear1as2a93 + fa11a22a33 + a11a32a23) + haiiasaass;

g — eannaas + faz2a56 + a32a46) + gaa2a66 + hasaass + 1az2a66;

h— 6011033 + 2faji1aszass + halla§3;

i — easszass + f(az3ass + assaas) + gassacs + hassase + iassass;

In each of the sets {a, e, f},{b, f, h},{c, 9,1}, at least one element must be nonzero.

One of e, f, h # 0, for otherwise any element in the orbit will have none trivial kernel in the

center of Ng 4 9.
Case 1: f2 —eh # 0.

Subcase 1.1: f2 — eh > 0. We may assume that f # 0, for otherwise ek # 0, then we can
make f # 0 by using the group action. If eh = 0, then it is easy to make e = h = 0 by
solving for as3 and ass. And if eh # 0, then make h = e = 0 by solving for ass, ass, say

—f++/F?—eh ~f+ V[ —eh
e h '

we can ensure that assass — azsass # 0, i.e., the nonsingularity of the automorphism group.

G23 = Q33 and ags = ass

Let ass = azs = 0, then make a = b = d = g = i = 0 by solving for a3y, as1, ass, @se, ass

respectively. So ¢ # 0. Now we have a = 0 — fajias1a32+ fai1a22a31; 0 = 0 — fajjasiass+
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fai1as1as3; ¢ — cariaes+ f(az1a56+ as1a46); d = 0 — f(azeas3 + aseaas + asz2a43 — ag2a33 —
as2023); € = 0 = 2fajiassase; f — f(ai1@22a33 + a11a32023); 9 = 0 — f(azqa56 + as2046);
h =0 — 2fai1as3as3; ¢ = 0 — f(azsase + assass).

Take ass = ags = ag; = a21 = agg = as3 = asg = 0 and solve for a1; and agg, we can get the
representative [0,0,1,0,0,1,0,0,0], corresponding to (147A).

Subcase 1.2: f?2 — eh < 0. Then eh > 0, and we cannot make either e or h = 0. We may

assume f = 0, for example, let as35 = 0 and solve for az, will make f = 0.

Then take as3 = ags = 0, we may further make a = b = d = g = 7 = 0 by solving for
as1, G31, Gs3, a4¢ and asg respectively. Then we are left with ¢ — cajia¢6; € — ea11a§2;
h — ha11a§3.

Then since eh > 0, we can get the representative [0,0,1,0,1,0,0,1,0], corresponding to
(147A,4).

Case 2: f2 — eh = 0. Then one of e, h # 0. Assume that h # 0, then make e = 0, which
will automatically result in f = 0. Now a # 0. Make b = ¢ = d = ¢ = 0 by solving for ass,
@46, as2 and ase respectively. Then g # 0, and get a representative [1,0,0,0,0,0,1,1,0],
corresponding to (147B).

Therefore the central extensions of Ng 49 are:

(147A):  [@1,22) = @4, [@1,23] = @5, [21,26] = 27,
[132, 135] =27, [133, 134] =27,

(147A4):  [@1,22) = @4, [@1,23] = @5, [21,26] = 27,
[132, 134] =27, [133, 135] =27,

(147B):  [@1,22] = @4, [@1,23] = @5, [21,24] = @7,
[132, 136] =27, [133, 135] = Z7;
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7.3 Extensions of Ng3

The discussion is the same as that of complex case. And we also have Theorem 6.1 as in
Chapter 6. The difference arises only when we consider the number of orbits in (Ey, ). In

the real case we will have 4 orbits instead, as follows:

When all the three eigenvalues are real, we have

(i)

€0 0
0 7 0
00 —&—17
(ii)
0 10
0 01
0 00
(iii)
€1 0
0 & 0
0 0 —2¢

When there are nonreal eigenvalues, assume they are ¢ and £, then it must be in the same
orbit as

0 —|g 0

1 2Re¢ 0 ;

0 0 —2Reé
which can be replaced by (because Re§ = 0)

(iv)

0 —€¢ 0
& 2 0 |,
0 0 -2

with £ > 1.

To find the corresponding elements in H?(g, R) for (i)-(iv), we may use the same argument

as in the algebraically closed case.

For (i),let ¥ = (bAc)®@a+n(cAha)®@b+((anb)®ce V*® (A’V)*. Then
et o &(T)(v) = ¥(v),

or

eod(T)=(bAc)Ra+n(cha)®@b+{(aNnd)Dec,
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and

T(a,bAc) =& ¥(bcAa) =n, E(c,anb) = ¢ = —€ — 7,

with all the other combinations are zero, which in turn will give us the algebra

(147E) :
[a,b] =d, [b,c]=c¢,
[Caa]:fa [a,e]:fg,
6, fl=mng, [e,d]=(-§—n)g
Or
(147E) :

3 233
with the invariant I(A\) = —Z—% = %
3

and A # 0,1 as in the complex case.
It is obvious that (147C) is just a special case of (147E), by letting A = 1/2.

In (ii), it is easy to see that the corresponding cocycle will contain a nonzero element of
Z(g) in its kernel. So we just omit it.

In (iii), when £ = 0, the corresponding cocycle will contain a nonzero element of Z(g) in its

kernel. And when £ # 0, we have

€1 0 11 0
0¢ 0 |~|01 o0
00 -2 00 -2

Its corresponding cocycle is

¥T=0bAc)®(a+b)+(cha)®@b—2(aNd)Qc.

And it is trivial to check that

¥(a,aNd)=0, ¥(a,bAc)=1, ¥(a,cNha)=1,
¥(b,and)=0, ¥(b,bAc)=0, ¥(bcha)=1,
¥(c,and)=—-2, ¥(c,bAc)=0, ¥(c,cha)=0.

And its corresponding algebra is

[CL, b] =d, [ba C] =6 [CL, C] =-F
(1): lael=9, [a,fl=9g, [bfl=y,
[Ca d] =29
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which is isomorphic to (147D) of Seeley’s paper, an isomorphism from (1) to (147D) can be
given as: a - 1/2¢, b —>b,c—a,d— —1/2¢,e - —d, f - —1/2f and g — —1/4g.

In (iv), its corresponding cocyle is

T=0bAc)®(-€a)+ (cNha)® (a+2b)+ (a AND)Q (—2¢).
And it is easy to check that

¥(a,aNd)=0, ¥(a,bAc)=0, ¥(a,cAa)=-¢,
U(b,and)=0, ¥(b,bAc)=¢E, ¥(bcAha)=2,
¥(c,andb)=-2, ¥(c,bAc)=0, ¥(c,cAa)=0.

And its corresponding algebra is

[a,b] = d, [b,c]=e, [a,c]=—-1,
[a, f1=—&g, [b,e]=E&g [b, f]=2g,
[e,d] = —2g.

with £ > 1, and corresponds to (147E4).

Therefore the central extensions of Ng 3¢ of dimension 7 are:

(147D):
[aab]:da [aac]: -
[a,e]:g, [a,f]—g,
[bac]:ea [b,f]—g,
[Ca d] = —2g.
(1478): 100 = G5, A £ 0,1 (A =1/2 gives (147C))
[aab]:da [aac]: -
[a,e] = —g, [b,c] =e,
(5, f1=Ag, [e,d]= (1 - XA)g
(147E1): ()\ > )
[aab]:da [aac]: -1
[a, f]= —Ag, [b,c] =,
[b,e] = Ag, (b, f]1=2g,
[Ca d] = —2g
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7.4 Four More Real Algebras and Their Extensions

7.4.1 The Four Algebras

In the real field R, apart from all the algebras already listed over C, we have 4 more algebras,
which we will list in the following, with their corresponding automorphism groups. The
notation L, means that, as a Lie algebras over R, L, and L are nonisomorphic algebras,
but are isomorphic over the complex field C.

Our real 6-dimensional list is based on Nielson’s list, and the correpondence between these
two lists can be found in Appendix A.

Nessa: [@1,2] = 241, 1=2,3, [21,24] = —z6, [T2,23] = @5, [22, 25] = — 6.
- (1a 3a 4a 6/6a4a 3a 1)a
— CQ: N5,2,3;
— Aut N6,2,5a .

ajp; —Aaps 0 0 0 0

a9 ail 0 0 0 0

asy ass T 0 0 0

Autg : ,
aq aa9 r a7 —a19T 0
asy ass Yy appt  apt 0
2
agl ago u v w T
01 0 -1
o= o1& @ [-1],
1 0 -1 0
h 2 2 _ _ _ — _ _
where 7 = aj; + @iy, © = a11a32 + @12a31, ¥ = G12032 — 011031, U = —a11042 — Q12052
_ 2 2 2 2

Q12041 + A11851, U = —@a710a32 — G75032, W = a71031 + A75031.
Ne2oa: [21,22] = 23, [21, 2] = ®ita, 1= 3,4, [x2, 23] = —26, [T2,24] = @5;

—(2,4,6/6,3,2);
— CQ: Ny3= N33 X ay;
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— Aut N6,2,9a .

a;; —a;2 0 0 0 0
a2 a1 0 O 0 0
asy ass T 0 0 0
Autg : ,
agn age 0 7 0 0
as1 (£2:9)] T asg G117 A12T
| Q61 G2 U Qg4 —Q12T Q11T |
and
01 01
o= ol-1o1e ,
1 0 1 0

. _ 2 2 _ _
with 7 = aj;+af,, ¢ = a11a32+ 12042+ 012031 — 11041, U = Q11042 — Q12032+ 12041+ C11031.

Nesia: [T1,25] = Tiye, 1 =2,3, [2a, 24] = [23, 25] = z¢;

— (1,3,6/6,3,1);
— CQ: N5 3.2;
— Aut Ng31q:
[an 0 0 0 0 0 |
0 e -b O 0 0
0 b a 0 0 0
Autg : ,
as1 @42 @43 apa —apb 0
as1 ¢y anb ana 0
| A1 As2 Qg3 u v ai 0222 i
with a = as2c0s80, b = as98inf, € = ay3+asssinf, y = —ago+aszcosd, u = —assa4; cosl —

G90051 8N 6, a11, v = ags8inf — assas; cosb.

Nga4a: [21, 23] = [22, 24] = 25, [21,24] = —[23, 23] = z6.
— Aut N6,4,4a .
[ ao9 aio 0 0 0 0 1
—aj2 @z asy —aiz 0 O
asi ass 0 —a4s3 0 0
Autg : ,
a3z —a31 Q43 0 0 0

as1 (£2:9)] as53 Q454 U U

g1 gz Qg3 Qs T Y
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01 0 -1
o= olle[-1]o :
1 0 -1 0
where u = —aj12a43 — a13a31 — Q23032, U = —Q22043 + Q1332 — 023031, L = G22Q43 + G23031 —
a13as2, and y = —a12a43 — 13031 — A23033.

7.4.2 The Extensions

Central extensions of Ng 3 54:

Z(9): ze; [0,0): @3, 24, @5, 2g; Z2(g): Cs6 = Cu5 = Cye = Cs6 = 0, Ci6 + C35 =
0, 034 = 026, 015 = 024; W(H2) 012 = 013 = 014 = 023 = 0; dlIIlI‘I2 4; Basis:
Aqs + Aoy, Arg — Ass, Ass, Asg + Asy.

GI‘Ollp action: CL(A15 + A24) + b(AlG - A35) + CA25 + d(A26 + A34)§
(1):
a — a(aj; — ai,) + canaiz(af; + afy);

b— bayi(a3; + a3,)* + daya(ai; + ai,)%;
4.
1
2
1

2 2 4
¢ — —4aayiai2(ai; + af,y) + c(ai; — aiy);

2

)
d — —baiz(af; + a3,)* + daii(af; + a3,)%;
(2):a— —a,b— —d,c—c,d— —b;

One of b,d # 0. Make b =1 and d = 0 to get A = [a,1,¢,0]. Set a5 = 0, then we have
a—aat;;b=1—a;c—cal; d=0—0.

Case 1: ¢ # 0. When a = 0, we get a representative for A: A =0, 1,1, 0], corresponding to
(12457N;) (the reason we use this notation is because it is isomorphic to (12457N,A = 1)
over C). When a # 0, then we get A = [aa};, a};, ca};, 0]. Now it is easy to see that we get
a parameter A in A: [1,1, A, 0] for A # 0, corresponding to (12457N,). By the group action
(2), we may change A to [—-1,0, A, —1], and by (1) again and letting a;; = 0, we would
get [a2,, —a3,, —al, ), 0], which is in the same orbit as [1,1,—X,0] if we take a;s = —1.
Therefore an invariant for this parameter could be chosen as K(A) = |A[.

Case 2: ¢ = 0. Now depending on whether @ = 0 or not, we get two representatives for A:
A =10,1,0,0], corresponding to (12457L;), and A = [1,1,0,0], which can be included in
(12457Ns) as a special case by choosing A = 0.

Therefore the central extensions of Ng 5 5, are:
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(12457L4):  [21, 2] = @41, 1= 2,3, [21,24] = —ws,
(21, 26] = 27 (29, 23] = 5,
[132, 135] = —Zg, [133, 135] = =7

(12457N41):  [21, 2] = @41, 1= 2,3, [21,24] = —ws,
(21, 26] = @7, (29, 23] = 5,
(29, 25] = —2¢ + 27, (23, 5] = —z7;

(12457N3):  One parameter family, with invariant K (X) = ||
[21, 2] = ®iy1, 1 =2,3, [21,24] = —6,
[131, 135] =27, [131, 136] =27,
[132, 133] = T3, [132, 134] =27,
(g, 5] = —z¢ + Az, (23, 5] = —z7;

Central extensions of Ng 3 g4:

Z(g): w5,x6; [g,0]: @3, @5, 26; Z2(g): Cs5 = C36 = Cus = Cag = Cs6 = 0, Ci6 +
025 = 0, 015 — 034 — 026 = 0; W(H2) 012 = 013 = 014 = 0; dlIIlI‘I2 5; Basis:
A5+ Asg, Ars + Aszg, Agg — Ass, Aoz, Aoy;

Group action: a(Ags + Agg) + b(A1s + Asa) + c(A1s — Azs) + dAgs + eAsy:

(1):

a — a(ay; — af,) — ba,(ai; + afy) — 2canaiz(af; + al,);

b — b(af, + aiy)?;

¢ = 2aan1012(af; + afy) + barans(af; + aly) + c(al; — aiy);

d— a(—2a11a12a32—a%2a42—a%2a31—|—2a11a12a41—|—a%1a42—|—a%1a31)—|—b(—a11a12a32—2a%2a42—
032031 tajiaioas; — 031042) +c(—2ai1a12a42 —|—a%2a32 - 032041 —2aq1012a31 — 031032 —|—a%1a41);
e — a(—alza54-|-allae4)+b(—alza54-|-affla32+a%2032)+c(—012064—011054)%-6011(&%1 ‘|‘a%2);
(2):a—a+bb— —bc— —c,d— eand e > d.

One of a,c# 0, and when ¢ = 0, then a # 0 and a + b # 0. Make a # 0 and ¢ = 0,which is

always possible over R. Fix ¢ = 0 and let a;» = 0, we get a — aaf;; b — bal;; c =0 — 0;

2 2 2 : 2 3
d — a(aj a4z + aj1a31) + b(—aj a42); € — aaiiae64 + baj,ass + eaj;.

Make d = e = 0 by solving for a3; and ag4, depending on whether b = 0 or not, we get two
representatives for A: A =[1,0,0,0,0],and A =[X,1—X,0,0,0], with A # 0,1. Combining
these two, we may just assume A to be any nonzero real numbers. Using (2), we know that
A is in the same orbit as [1,A —1,0,0,0]. Since A # 0 in A, we can multiply A by 1/A and
get [1, % —1,0,0,0], now it is easy to see that K(A) = A+ 1/A can be used as an invariant
for A. This new algebra will be denoted by (1357QRS;), since over C, when A = 1, it is
isomorphic to (1357Q); when A = —1, it is isomorphic to (1357R); and for all the other
A # 0, it becomes (13578, A > 0, A # 1).
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Therefore the central extensions of Ng 5 g, are:

(1357QRS;): KA =A+Atand A#£0
[131, l‘z] = T3 [131, 133] = T3,
[131, 134] = Zg [131, 135] =27,
[132, 133] = —Zg [132, 134] = T3,
[22, 6] = Az7  [@3,24] = (1 — Nz

Central extensions of Ng 3 14:
Z(9): z6; [9,0]: za,25, z6; Z%(g): C16 = Ca6 = C36 = Cae = Cs6 = 0, Ca5 = 0, C34 = Clas;

Now it becomes obvious that Ng 31, has no desired central extensions.

Central extensions of Ng 4 44:

Z(g): @5, z6; [g,0]: 5, 2e; Z%(g): Cse =0, C36 — Cy5 = 0, C35+ Cgg = 0, C16+ Ca5 =
0, C15 — Cee = 0; W(H2) Ci3=C14 =0 dim HZ: 8; Basis: Ajs, A5 + Asg, A1g — Aoy,
A23) A24) A34) A35 - A46) A36 —I_ A45;

Group action: a1z +b(A15+ Agg) +¢c(A1e — Ags) + dAss+ eAgs+ fAz4+ g(Asgs — Aug) +
h(Ase + Ass);

(1):
a— a(a§2—|—a%2) +b(ag2a52 — a12062 — @12a51 — @22061) + ¢(A22a62 — Q12052+ A22051 — A12861) +

d(—a12a32 — as2as1) + e(aizas; — aszase) + f(—a?,l - 032) + g(asiass — agzaes — asiasz) +
h(a31062 + azsaso — azaae1 + a31061);

2
b — b(—2a12a22043 — 13031 A22 — Q22023033 — A12023031 + A12013032) + c(A54043 + A22a23031 —
2 2
A22a13032 — Q19043 — A12013031 — 012 023032) +g(—alza3la43 —a13a37 — 2a31a93a32 — A32022a43+
2 2 2 3.
013032) + h(a31a22a43 + azsaz; — 2a31013G32 — 32012043 — 023032),

2
c— C(—2012022043 — 13031022 — A22Q23032 — G12023A31 + 012013032) - 5(022043 + asoaszasy —
2 2
A22a13032 — Q19043 — A12013031 — 012023032) +h(—alza3la43 — 13031 — 2a31a23032 — A32022a43+
2 2 2 3.
013032) - 9(031022043 + azsaz; — 2a31a13a32 — 32012043 — 023032),

d — a(—a13a22 + a12a23 — G12a13 — A22023) + b(a22063 + A12053 — As2023 — A13A52 — Q22053 +
a12063 + a13a51 + A23061) + c(@12a63 — A22a53 + 2352 — Q13062 — A22063 — Q12053 — A51Q23 +
a13061) + d(—a23ass + as1a23) + e(az2a43 + a23a31 + A12043 + a23a32) + f(a32043 — a31043) +

g(as2a53 + as1a63 — a31053 + a32063) + h(as2ae3 + 43061 — A31a53 — Aa3a62 — A31A63 — A32053);

e — a(a13822— Q12023 — Q12013 — A22023) +b( 22064+ A12a54 — 52023+ 13062 — Q22054+ Q12064+
a23051 — A13061) 1 ¢(@12064 — Q22054 — Q1352 + A23a61 + A51013 — 22064 — Q12054 — Ga23062) +
d(—ag2a43 — 31013 — A12a43+ A13032) +e(—az2a13—a13a31) + f(—as2a43 — as1a43) +g(aszase +
a31064—031054-|-a32064-|-a3za54—a43a5l)+h(a32064—a43061—031054—|-a43062—031064—032054);

2 2
[ — a(—ajs3 — a35) + b(ai3as4 + assacs — aa3a53 + a13063) + c(a13064 — A23a54 — 13053 —
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a23063) + d(—as23a43) + e(ai13ass) + fa4213 + g(—a43a64 + a53a43) + h(assass + assass);

2 2

g — b(—a12013a43 — 75031 — 213023032 + A22023a43 + 55a31) + ¢(A13022043 + 213023031 —
2 2 2 2

a73032 + 1223043 + a33032) + g(— 220355 — Q43023031 + Aa3a13a32) + h(—a12055 — as3a13as; —

a43a23a32);

2 2 2

h — b(—al3azza43 — Qy3a32 — 2a13a23031 — 12023043 — 023032) + C(—012013a43 — Q73031 —
2 2 2

2013023032+ A22023043+ 31055) +g(@12055 + A43a13031 + Aa3a23a32) +h(—a22a55+ aaza13a32 —

a43a23a31);
(2);a— —-a,b— -bc—c,d——-de—e, f—>—f g— —h h— —g.

One of b,c,g,h# 0. Make b # 0 and ¢ = g = h = 0. Take a3z; = azs = 0, as; = a2 and

a12 = 29, then we have

a — a(a2, + a?,) + b(azsass — a12a62 — a12a51 — A22861);
b — b(—2a2,a43);

c=0—0;

d — a(—a13a22 + a12023 — 12013 — A22023) + b(2a22a63 + A12053 — Ge2a23 — A13G52 — Q22053 +
a13051 + @23061) + e(a22043 + a12043);

e — a(a13@22 — @12G23 — Q12013 — A22023) + (222064 + A12a54 + A13a62 — Q22054 — A13061) +

d(—a22a43 - 012043);

f— a(—a%S - 033) + b(a13a54 + a23a64 — A23a53 + a13a63) + d(—as3aas) + e(a13a43) + fai3;
g =0 — b(—a12a13843 + A22023043);

h =0 — b(—a13a22043 — G12023043);

Now make a = d = e = g = h = 0 by solving for ass, ags, agq, a13 and as3 respectively.
Then choose further a13 = as3 = a5; = a5y = ass = a5y = ag1 = ag2 = ags = agq = 0, to
get a=0— 0; b — b(—2a2,a43);¢c=0—0;d=0—0;e=0—0; f— faZs; 9=0— 0;
h=0—0.

Depending on whether f = 0 or not, we get two representatives [0, 1,0,0,0,0,0, 0], corre-
ponding to (137A4), and [0,1,0,0,0,1,0, 0], corresponding to (137B;).

Therefore the central extensions of Ng 4 4, are:

(137A4):  [@1, 23] = @5, [21,24] = 6, [21,25] = 27,
[132, 133] = —Zg, [132, 134] = T3, [132, 136] =27

(137B1):  [z1, 23] = @5, [21,24] = 6, [21,25] = 27,
[132, 133] = —Zg, [132, 134] = T3, [132, 136] =27,
[133,134] =T7;

139



Appendix A

Comparison with Nielsen’s List

For 6-dimensional nilpotent Lie algebras, Nielson [22] presents a list of 24 indecomposable
non-isomorphic algebras over the real field R and calculates a corresponding connected and
simply-connected Lie group and its coadjoint orbits, and related data for each algebra. He
also compares his list with those of Morozov [20], Skjelbred and Sund [35], Umlauf [37] and
Vergne [38].

In this part, we indicate the correspondence between our list and Nielsen’s list:

Ng 11 = Gei3; Ng 1,2 = Ge 145
Ng 13 = Gei1; Ng 1.4 = Ge3;
Ng 21 = Ge 105 Ng 22 = Ge12;
Ng 23 = Ger; Ng 2.4 = Gg o5
Ng a5 = Geo; Nea25a = Geg;
Ng a6 = Ges; Ng 27 = Ge o4
Ng 2.8 = G 205 Ng 29 = Ge 295
Ng 2,90 = G 23; Ng 2,10 = Go 215
Ngs1 = Gea; Ne 310 = Geg;
Ng 32 = Ge ;s Ng 33 = Go 195
Ng 3.4 = Go1s; Ng 35 = Go 165

Ngs6 = Go 155

Ng 4,40 = Gs 17



Appendix B

Comments on Ancochea-Goze List

In this appendix, we discuss the list of indecomposable complex nilpotent Lie algebras
of dimension 7 obtained by Ancochea-Bermudez and Goze [2] . The list was originally
published in Arch. Math. in 1989, which missed a lot of algebras and also contained many
errors. Later on the list was incorporated as part of the book “Nilpotent Lie Algebras” by
Goze and Khakimdjanov [12], with some adjustments and more algebras. This book was
published in 1996, three years after Seeley’s paper [33] appeared in Trans. AMS. We have
compared all the indecomposable algebras in Seeley’s list with this one, and as it turns out,
Ancochea-Goze’s list still misses many algebras, while some are not Lie algebras at all, and

others are included more than once.

Below we will present the results of our comparison concerning Ancochea-Goze’s list: (1)
At first we will point out those that are not Lie algebras at all, by providing 3 elements
which fail the Jacobi identity. We make no efforts in correcting the mistakes; (2) Secondly,
we will list all the algebras which have been included more than once, together with an
isomorphism between them; (3) Thirdly, we point out the correspondences between the two
lists by using the upper central series dimensions as our invariant, also mentioned are the

algebras that are missing from Ancochea-Goze list.

B.1 Decomposable or non-Lie Algebras

In this section, we will point out those algebras which are decomposable or not a Lie
algebra at all. In total, we found two decomposable algebras, and ten classes which are not

Lie algebras, including an infinite family.
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B.2

Decomposable, n

L7, 25, 2L >.

Wi—< 29,253,284 > X < Ty — Tg, 23 +

Decomposable, F(z; — #3) is an Abelian direct factor.
Not a Lie algebra, with Jac(z1, zg, z7) # 0.
Not a Lie algebra, it has obviously a typo, with [z, z7] =

1 1
5233 + 5233.

Not a Lie algebra, with Jac(zq, 25, 27)
Not a Lie algebra, with Jac(zq, 25, 27)

Not a Lie algebra, with Jac(z1, 25, 27
Not a Lie algebra, with Jac
Not a Lie algebra, with Jac
Not a Lie algebra, with Jac
Not a Lie algebra, with Jac(z1, 22, 24
Not a Lie algebra, with Jac(z1, 24, 27

Algebras That Occur More Than Once

In this section, we list all the algebras that have appeared more than once. For those

algebras with different presentations, we also provide an isomorphism between them. When

we write A = B, it means that A and B are isomorphic but of different presentations, then

the isomorphism given is from A to B. If the algebras are of exactly the same presentation,

we simply write A = B.

37

20_
ny; —=ny

9l~v,,94.
n7 —n7 .

106__
ny

108N
n; =

118~y
n; =ny

18.
7 .

=n;

38
n7 —n7 .

19N
ny

T4 — 4233
Ty — —27.

32

Taklng ry — ;:1:1 + J:7, ro —

1 1
3%2 — 3 : + 134, 3 — —33,

1
5T4, T5 — 1132 - §$3+ i

1 1
) 5%5, T — — 2 Lo,

2

By taking z; — a:l + J:7, o — ;:1:2 + a:5, T3 — T3 + Tg,

Ty — 21+ 2q+ J:7, Ty — To, Tg — T3 anda:7—>:1:4

124
121.
n,"l

By taking #1 — 21 — @9 4 24, 2 — 24, 23 > —23, T4 — 2o,

T5 — &5, T — 5 + Lg, L7 — T7.

126,

By taking 21 — 1 — 29 4+ @4, 23 — ¢4 + 27, 23 = —23 — Zg,

Ly — L9, Ly — L5, Lg — Lg, L7 —> L7.
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B.3 Comparison of Ancochea-Goze’s and Seeley’s Lists

In this section, we establish the correspondence between these two lists. We compare, of
course, the corrected Seeley’s, which in the case F = C is identical to our list in Chapter
4 (also see the Introduction for comments) with the modified and updated version of the
Ancochea-Goze list as presented in the book [12]. Also mentioned are the algebras that
are missing from Ancochea-Goze list. We use the upper central series dimensions as the

invariant.

(37):
145N (37A) 143g (37B) 144g (370) 142g (37D)

Mlssmg. none.

(357):
nif22 (357A); ni% = (357B); ni% = (357C).
Mlssmg. none.
(27):
nif’ = (27A); nl® =~ (27B).
Mlssmg. none.
(257)
np't = (257A);ni°" = (257B); ng'® = (257C);ni*® = (257D),
nll? > (257E); 110~(257F) 109~(257G) 108~(257H);
nll® = (2571); nil? 2 (257K);
Mlssmg. (257J), (257L)
(247):
nS" 2 (247A); n;01 >~ (247B); n§8 > (247C); nP® = (247E);
nd® = (247F); nd! = (247G); nf® = (247H); n 90 >~ (2471);
nd? =~ (247]); n$® = (247L); n 106 >~ (247N); n§6 >~ (2470);
nd® = (247Q);n 99 >~ (247R).
Missing: (247D), (247K), (247M), (247P).
(2457):
nd* = (2457A); nl” = (2457B); n® =~ (2457C); nS* =
(2457E); n8? = (2457F); nS" = (2457G) 30~ (2457H),
= (24571); 66~(2457J) 65~(2457K) 60~(2457L);nf51
> (2457M).
Missing: (2457D).
(2357):

nl = (2357A); n80 = (2357B); nS3 = (2357D).
Mlssmg. (2357C).
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(23457):
n2t = (23457A);n2® = (23457B); ni? = (23457C)ni! =
(23457D); n2® = (23457E); n2? = (23457F); ni® = (23457G).
Missing: none.

(17):
ng>? = (17).
Missing: none.
(157):
ny®" = (157).
Mlssmg. none.
(147):
nil? (147 )i
ni% 2 (147E) by taking A to be a root of 2% — = + 1;
ni*"® = (147E); (Compare the invariant for ¢ in (147E)).
Missing: (147A), (147D). (Notice that (147C) in Seeley is a
special case of (147E))
(1457):
n3? = (1457A);nS! = (1457B).
Missing: none.
(137):
ni® = (137A); ni?® = (137B); nil® = (137C).
Mlssmg. (137D).
(1357):
9 = (1357A); n#® = (1357B); ni” = (1357C);
;2 >~ (1357E); ni! = (1357F); nf® =~ (1357G); ni® =
(1357H)in 69 o (13571) 68 o (1357J) 79 = (1357L); n "
(1357M)A, 700 o (1357N)A,
noh o (13578), in the original A-G list, no>® is not a Lie
algebra, but after [z5, zg] = 2, is replaced by [z5, z¢] = —az,,
we have the above isomorphism.
Missing: (1357D), (13570), (1357P), (1357Q), (1357R). No-
tice that (1357K) in Seeley is a special case of (1357M).
(13457):

n3l 2 (13457A);nd0 = (13457B);n2 = (13457C);

n3? = (13457D); n3' = (13457E);nZ® = (13457F); n2! =
(13457G); ni® = (134571).

Missing: none. Notice that (13457H) in Seeley is not a Lie
algebra.
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(12457):

ni® = (12457A); nd" = (12457B); nd® = (12457C); n2® =
(12457D) n = (12457E) 27 o (12457G) nlé = (12457K);
n2® = (12457L);
ni?”o‘ 2 (12457N)y. In A-G list, there is no restriction on o
at all, compare A in (12457N).
nl* & (12457N) = —1).
Missing: (12457F), (12457H), (12457I),(12457J). Notice that
(12457M) in Seeley is just a special case of (12457N) by taking

A=0.
(12357):
n3® = (12357A); n3* = (12357B); n3® = (12357C).
Mlssmg. none.
(123457):

n = (123457A); n7 = (123457B); n ;= (123457E);

nt o (123457F); n? = (123457H); nl® = (1234571),; n? a
spec1a1 case of (1234571), with A = 1,
Missing: (123457C), (123457D). Notice that (123457G) in
Seeley is a special case of (1234571).
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Appendix C

Comments on Romdhani’s List

In this appendix, we discuss the list of indecomposable real nilpotent Lie algebras of dimen-
sion 7 obtained by Romdhani [24][25]. Carles [6] has compared Seeley’s list with Romdhani’s
over the complex field. Readers who are interested in more details should refer to [6]. Car-
les has a very nice discussion especially about the behaviour of the six continuous families
there.

Here we compare our list of 7-dimensional indecomposable real nilpotent Lie algebras with
that of Romdhani [24][25]. Also mentioned are the algebras that are missing from his list,
which are many in numbers. We use the upper central series dimensions as our invariant.
Our purpose is more on the correspondence between the two lists, hence we make no effort

in making corrections or providing the details of the isomorphism.

(37):
g7,127= (37TA); g7,126=87,128 = (37B); g7,124= (37D); g7 125 =
(37Dy).
Missing: (37C), (37By).

(357):

g7798% (357A)
Missing: (357B),(357C).
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g7,131 — (27A) gr130 = (27B)
Missing: None.

(257)
g7.121 = (25TA); gri110 = (257B); gr,123 = (257C); gr122 =
(257E);
gri20 = (257F); gri1s = (257G); gri1r = (257TH); gr106 =
(2571);
g7.105 = (257K); 87,104 = (257L).
Missing: (257D), (257J), (257J4).
(247):
gr92 = (247E) gro1 = (24TEq); grss = (24TF); grse =
(247G); gr.s1 = (24TH); gr.86 = (2471); g7.85 = (247T); 87,84 =
(247K); g7.00 =gr06 Zgror = (247P); grs0 = (247P1); gr 87
> (247Ry); grss = (247R).
Missing: (247A-D),(247F,, H,), (247L-0,Q).
(2457):
g7,78 = (2457A) g7,80 = (2457B) g7,77 = (24570) g7,58 =
(2457E);
grr6 = (245TF); gror = (2457G); greo 2 (2457H); grro =
(24571);
grsr 2 (2457)); grso =2 (2457K); grss = (2457L); gran =
(2457M).
Missing: (2457D),(2457L4).
(2357):
g710 = (2357A); gr1s = (2357B); grss = (23570), gros =
(2357D); gr.55 = (2357Dy).
Missing: None.
(23457):
gra1 2 (23457A); gras = (23457B); gr1s = (23457C); gras
= (23457D);
g7.30 2 (23457E); g727 = (23457F); gr11 = (23457G).
Missing: None.
(17):

g7.132 = (17).
Missing: None.
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(157):

(147):

(1457):

(137):

(1357):

(13457):

g7 129 = (157)
Missing: None.

g7.118 =gra1s = (147A1);87,114 87116 = (14TA); gr112 =
(147B)sgr 05 = (147D); g% = (147E); €70  (47E)
Missing: None. (Notice that (147C) in Seeley is a special case
of (147E))

87,103 = (145TA); g7,102 = (1457B).
Missing: None.

(137A); 87,100 = gr,110 = (137A4); gr107 = (137B);
g7,111 (137C)
Missing: (137B;), (137D).

g7,108

11211

g7.101 = (1357A); g7.100 = (1357B); gr.00 = (1357C); g7.60

(1357D)' g7,67 _g7 68 = (1357E) g7.65 — (1357F ) g7,66

(1357F) gr.7a = (1357G) gr,72 = (1357H);

g1 & (13571) gr70 = (1357J); gr.o3 = (1357L) 8rhs =

(1357M); g7 62 = (1357N) gé\ 5 = (1357P),g$‘ 53 = (1357Py);
1,
)

1R

)

251 = (1357Q); g)sh = (1357R); g5, ) = (1357QRS
A= —1); grzg = (13575, A > 1); gégg >~ (13575, A < 1);
g5 = (1357QRSy, A < 0,A # —1);

Missing: (13570), (1357Q1), (1357QRS;,A = 1). Notice that
(1357K) in Seeley’s is a special case of (1357M).

grs1 = (13457A); grso 2 (13457B); gra0 2 (13457C); grao
= (13457D);
g7.38 = (13457E); g7.20 2 (13457F); g7.26 = (13457G); gr.05
(134571).
Missing: None. Notice that (13457H) in Seeley is not a Lie
algebra.
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(12457):
g7,48 = (12457A) 87,47 = (12457B) g7,37 = (124570)
8735 = (12457D); gr46 = (12457E); gr 36 = (12457F); g7 3
> (12457G); gr2a = (1245TH); groe =2 (124571); g720
(12457J); gro1 = (12457J1); gras = (12457K); grio
(12457L) g7,18 = (12457L );g7, 16 = (12457N A =1); grar
= (12457N,); g7 15 = (12457N); g7 12 = (12457N,).
Missing: None. Notice that (12457M) in Seeley is special case
of (12457N) by choosing A = 0.

(12357):
8745 = (12357A)- g7.43 = (12357B); g7.44 = (12357B1); gr.40
>g741 Zg742 = (12357C).
Missing: None.

(123457):

g710 = (123457A); g79 o
gr.s = (123457D); gr7 = (1
(123457H); g7 5 = (123457H;
(123457L,A # 1).
Missing: None.

(123457B); 813 ~ (123457C);
23457E);g7.5 = (123457F);27.4 =
); g7.6 22 (12345711 = 1); g77 " =
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Appendix D

An Overview of the Construction
of the 7-Dimensional Algebras

Here we give the summary of all the 7-dimensional indecomposable nilpotent Lie algebras as
they arise from those of dimensions < 6 in our construction over algebraically closed fields
of x # 2. The readers may easily identify the central quotients of all the 7-dimensional
algebras with this list.

With regard to the number of algebras: Over the algebraically closed fields, there are 6
one parameter continuous families, together with 119 isolated algebras when x # 3 or 120
isolated algebras when x = 3 (the extra algebra is (147F)),

Over the real field, there are, in addition, 3 one parameter continuous families and 21

isolated algebras.

D.1 Algebras over Algebraically Closed Fields

Abelian Algebras and Their Extensions

N6,6: (17)
N575§ (27A,B)
N474§ (37A—D)
Four-Dimensional Algebras and Their Extensions
N4o: None.

N4 3. (357A—C)
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Five-Dimensional Algebras and Their Extensions

(23457E-G).
(23457A-D).
(2357A-D).
(2457L, M).
Non

(2 47A R).
(2 457A K).
(257A-L).

Six-Dimensional Algebras and Their Extensions

(123457H, I). (123457G) in Seeley’s list is just a special case
of (1234571I) by taking A = 1.

None.

(123457D-F).

(12457E-G).

(123457A-C).

None.

(12357A-C).

(12457A-D).

(12457H-L, N). (12457M) is just a special case of (12457N)
by taking A = 0.

None.

(13457F, G,I). (13457H) in Seeley’s list is not a Lie algebra
and should be deleted.

(1357L—-N). (1357K) in Seeley’s list is just a special case of
(1357M) by taking A = 1/2.

(1357Q-S).

(13570, P).

(13457D,E).

None.
None.

(1357G-J).
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(1357D-F).

(137C,D).

(147D,E) (and also(147F) if x = 3). (147C) in Seeley’s list is
a special case of (147E) by taking A = 1/2.

(13457A-C).
(1357A-C).
None.

None.

(147A, B).

(1457A,B).
(137A,B).
(157).
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D.2 Algebras over the Real Field

In addition to the above algebras over algebraically closed fields of x # 2, we have the
following indecomposable algebras over R.

Abelian Algebras and Their Extensions

N474§ (37B1, Dl)

Five-Dimensional Algebras and Their Extensions

Ns522: (2357Ds).
N57273§ (2457L1)
N5,3,2 (247E1a Fla Hla Pla Rl)
Ns 4 (257J1).
Six-Dimensional Algebras and Their Extensions
Neg 1.1 123457H,).

(
(12357B;).

N625§ (12457J1)
(12457Ly, Ny, Ny).
(

1357Q1).

No 294 (1357QRS;). The reason we use this notation is because over
C,if A=1, (1357QRS;)= (1357Q); if A = —1, (1357TQRS;)=
(1357R); and for other A, it corresponds to (1357S).

Ngo10:  (1357Py).

Ng314: None.
N6 3.4. (1357F1)

N6,3,6 (147E1)
N67472§ (147A1)
Ngasa: (137Ag, By).
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Appendix E

Maple Programs

In this part we provide the main Maple V programs that we have used in our computation.

E.1 Introduction

A Lie algebra is uniquely determined by its structural constants, which can be naturally
regarded as a 3-dimensional matrix in Maple V. Therefore we may expect that the compu-
tational systems such as Maple V are going to play a more and more important role in the

research of Lie algbras and related topics.

All of our routines are to be used together with the Linear Algebra Package provided by
Maple V, through the command with(linalg).

For example, the Heisenberg Lie algebra
N5,3,1 : [131, l‘z] = [133, 134] =I5
can be denoted in Maple V as
N5 3,=:array(sparse,1..5,1..5,1..5,[(1,2,5)=1, (2,1,6)=-1, (3,4,5)=1,
(4,3,5)=-11):
The procedures available are for the computation of:
— the Lie algebra conditions (including the Jacobi identity and the anticommutativity);
— the cocycles;
— the group actions;
— the isomorphism between two algebras (including automorphism groups);

— derivation algebras.
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E.2 The Programs

E.2.1 Lie Algebra Conditions

Calling Sequence:
check_lie(Algebra, Dimension)

Parameters:
Algebra — An algebra in the form of a 3-dimensional matrix
Dimension — The dimension of the given algebra

Synopsis:

— To check whether an algebra is a Lie algebra or not by checking the Jacobi identity and
the anticommutativity.

— Input is an algebra and its dimension.

— If the algebra is NOT a Lie algebra, then the output will specify the vectors where the
anticommutativity or the Jacobi identity fails; If the algebra is a Lie algebra, the output
will give a confirmation.

Procedure:
check_lie:=proc(A,n)
local i,j,k, 1, m;

for i from 1 by 1 to n do
for j from 1 by 1 to n do
for k from 1 by 1 to n do

if A[i, i, k]<>0 then
RETURN( ‘Input is NOT a Lie algebra (‘,i,i,k,‘)=°¢,
Ali,i,k], ¢ is not zero‘);
elif A[i,j,k]1+A[j,i,k]<>0 then
RETURN( ‘Input is NOT a Lie algebra, (‘,i,j,k ,“)+
(“,j,i,k,)=¢, Ali,j,k]1+A[j,i,k], ‘is not zero‘);

else
for 1 from 1 by 1 to n do
if
simplify(sum(A[i,j,mI*A[m,1,k]+A[j,1,m]I*A[m,]i, k]
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+A[1,i,m]*A[m,j, k], m=1..n))<>0
then
RETURN( ‘Input is NOT a Lie algebra---the Jac(‘,

i,j,1, ‘) is not zero‘);

£i;
od;

£i;

od;
od;
od;
print(‘Yes, input IS a Lie algebra‘);
end:

E.2.2 Cocycles

Calling Sequence:
cocycle(Lie_Algebra, Dimension)
Parameters:
Lie_Algebra — An Lie algebra in the form of a 3-dimensional matrix
Dimension — The dimension of the given algebra
Synopsis:
— To compute the cocycles of a given Lie algebra.
— Input is the given Lie algebra and its dimension.

— Output is the set of constraints on the entries of the cocycles expressed as antisymmetric
matrices.

Procedure:

cocycle:=proc(L,n)

local i,j,k,h, v,u,w,C,eqns,e,f,g;
v:=vector(n);

eqns:= { };

u:=vector(n);
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w:=vector(n);
C:=array(antisymmetric,1..n,1..n,[]1);

for i to n do
for j from i+l to n do
for k from j+1 to n do
for h to n do
v[h]:=L[i,j,h];
ul[h]:=L[j,k,h];
wlh] :=L[k,i,h];
od:
e:=array(sparse, 1..n, [k=1]);
f:=array(sparse,l..n, [i=1]);

g:=array(sparse,1..n,[j=1]1);

eqns:=eqns union multiply(transpose(e),multiply(C,v))+
multiply(transpose(f) ,multiply(C,u))+
multiply(transpose(g) ,multiply(C,w));
od:
od:
od:
print(‘The cocycles are‘, equns);

end:

Comments: The output will give us some constraints on the entries of the antisymmetric

matrix regarded as cocycles.

E.2.3 Isomorphisms

Calling Sequence:
isom(Lie_Algebra_1, Lie_Algebra_2, Dimension)
Parameters:
Lie_Algebra_1, Lie_Algebra_2 — Two given Lie algebras
Dimension — The common dimension of the two given algebras
Synopsis:

— To compute the isomorphism between two algebras (automorphism group can be obtained

when the two algebras are identical).

— Input are two given algebras and their common dimension.
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— Output is the isomorphism between the two given Lie algebras (or the automorphism

group when the two algebras are identical).

Procedure:
isom:=proc(4,B,n)
local i,j,k,s,r,eqns,t,TEST, Andre,sols,1,S1,S2,C;

C:=matrix(n,n);
Andre:=matrix(n,n);
TEST:=0;

eqns:={ };

for i to n-1 do
for j from i+l to n do
for 1 to n do

S1:=sum(’A[i,j,k]1*C[1,k]’,’k’=1..n);

S2:=sum(C[r,il*sum(C[s,jl*B[r,s,1],s=r+1..n),r=1..n-1)-
sum(C[lr,jl*sum(C[s,i]*B[r,s,1],s=r+1..n),r=1..n-1);

eqns:=eqns union S1-52=0;

od:
od:
od:

sols:=[solve(eqns)];
t:=nops(sols);
for i to t do
for j to n do
for k to n do
Andrelj,k]:=subs(sols[i],C[j,k1);
od:
od:

if simplify(det(Andre))<>0 then
print (Andre);

print(‘The det is ¢, simplify(det(Andre)));
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TEST:=1;
fi:
od:
if TEST=0 then
print(‘These two algebras are not isomorphic®);
fi:
end:

Comments: In some cases Maple V may give some error info, and not be able to find the
automorphism. Then we need to use the automorphism group theorem given by Skjelbred

and Sund to compute it.

E.2.4 Group Actions

Calling Sequence:
orbit (Automorphism_Group, Dimension, Element from H%(g, F))
Parameters:

Automorphism_Group — The generic automorphism for the given algebra in the form of

a 2-dimensional matrix
Dimension — The dimension of the given algebra

Element from H%*(g,F) - An element of H%(g, F), written as a linear combination of the
basis vectors

Synopsis:
— To compute the group actions on an arbitrary element in H%(g, F).

— Input is the automorphism group of the given Lie algebra, the dimension of the algebra

and an element from H?(g, F).

— Output are the corresponding entries under the group action.

Procedure:

orbit:=proc(aut,n,a,i,j,b,p,q,c,r,s,d,u,v,e,w,z)
local x,B,y;

B:=array(sparse,l..n,1..n,[(i,j)=a,(j,i)=-a,(p,q)=b,(q,p)=-D,
(r,s)=c,(s,r)=-c,(u,v)=d, (v,u)=-d,(w,z)=e,(z,w)=-¢€]);
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x:=transpose(aut);
y:=multiply(x,multiply(B,aut));
print(y);
end:

Comments: This program applies to the case when dim H2(g, F) = 5, and the antisym-
metric element from H?(g, F) has nonzero values a,b,¢c,d, e at (3,5), (p, 9), (7, s), (v, v) and
(w, z). The above program can be adjusted according to the different dimensions of the
H?(g,F). Refer to Chapter 2 for the computation of normalized cocycles.

E.2.5 Derivation Algebras

Calling Sequence:

derivation(Lie_Algebra, Dimension)
Parameters:

Lie_Algebra — A given Lie algebras

Dimension — The dimension of the given algebra
Synopsis:

— To compute the derivation of a given Lie algebra.

— Input is a given algebra and its dimension.

— Output is the derivation algebra.
Procedure:
derivation:=proc(A,n)

local i,j,k, t, s1,82,1,D, sols,eqns, Andre;
eqns:={ };

D:=matrix(n,n);

Andre:=matrix(n,n);

for i to n-1 do
for j from i+l to n do
for 1 to n do
s1:=sum(A[i,j,k]*D[k,1],k=1..n);
s2:=sum(A[k,j,11*D[i,k]+A[i,k,11*D[j,k],k=1..n);

eqns:=eqns union sl=s2;
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od:
od:
od:

sols:=[solve(eqns)];
t:=nops(sols);
for i to t do
for j to n do
for k to n do
Andrelj,k]:=subs(sols[i],D[j,k1);
od:
od:
print (Andre);
od:
end:
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