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Abstract

This thesis is concerned with the classi�cation of 7-dimensional nilpotent Lie alge-

bras. Skjelbred and Sund have published in 1977 their method of constructing all

nilpotent Lie algebras of dimension n given those algebras of dimension < n, and

their automorphism groups. By using this method, we construct all nonisomor-

phic 7-dimensional nilpotent Lie algebras in the following two cases: (1) over an

algebraically closed �eld of arbitrary characteristic except 2; (2) over the real �eld

R.

We have compared our lists with three of the most recent lists (those of Seeley,

Ancochea-Goze, and Romdhani). While our list in case (1) over C di�ers greatly

from that of Ancochea-Goze, which contains too many errors to be usable, it agrees

with that of Seeley apart from a few corrections that should be made in his list,

Our list in case (2) overR contains all the algebras on Romdhani's list, which omits

many algebras.
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Introduction

This thesis is concerned with the classi�cation of 7-dimensional nilpotent Lie algebras.

Skjelbred and Sund have published in 1977 their method of constructing all nilpotent Lie

algebras of dimension n given those algebras of dimension < n, and their automorphism

groups. By using this method, we construct all nonisomorphic 7-dimensional nilpotent

Lie algebras in the following two cases: (1) over an algebraically closed �eld of arbitrary

characteristic except 2; (2) over the real �eld R. Our lists are given in Chapter 4.

Many attempts have been made on this topic, and a number of lists have been published.

To mention just a few: The earliest list is given by Umlauf (1891) [37] in dimensions � 6

over complex �eld. Later on Dixmier (1958) [8] gives a complete list in dimensions � 5 over

a commutative �eld.

In dimension 6, there are various lists obtained by Morozov (1958, over a �eld of charac-

teristic 0) [20], Shedler (1964, over any �eld) [34],Vergne (1966, over C) [38], Skjelbred and

Sund (1978, overR) [36], Beck and Kolman (1981, overR) [3]. Nielsen (1983) [22] compares

the tables of Morozov, Vergne, Skjelbred and Sund, and Umlauf and gives for the �rst time

a complete and nonredundant list for nilpotent Lie algebras of dimension 6 over the real

�eld.

In dimension 7, there are also several lists available: Sa�ullina (1964, over C) [26], [27],

Romdhani (1985, over R and C) [24] [25], Seeley (1988, over C) [31], Ancochea and Goze

(1989, over C) [2]. The lists above are obtained using di�erent invariants. By introducing

a new invariant { the weight system, Carles (1989) [6] compares the lists of Sa�ullina,

Romdhani and Seeley, and has identi�ed omissions and some mistakes in all of them. Later

on in 1993, basing on his own thesis, by incorporating all the previous results, Seeley [33]

published his list over C.

There are also other partial classi�cations concerning some particular properties of nilpotent

Lie algebras. Among them are: Favre (1973) [10] for nilpotent Lie algebras of maximal rank;

Scheuneman (1967) [30], Gauger (1973) [11] and Revoy (1980) [23] for two-step nilpotent

algebras; Ancochea and Goze (1988) [1] for �liform Lie algebras.

Various tactics have been implemented. Morozov's classi�cation depends heavily on the

property that a nilpotent Lie algebra of dimension n contains a maximal Abelian ideal of

1



dimension m � 1=2((8n+ 1)1=2� 1) and a classi�cation of the representations by nilpotent

transformations of a low dimensional Lie algebra. Sa�ullina's list is obtained by using this

approach. Magnin (1986) [18] introduces a di�erent approach, to enlarge a smaller algebra

by adjoining a derivation. He uses this method to construct all nilpotent Lie algebras

of dimension � 7 having a �xed Lie algebra of codimension 1, and also obtains among

others results, a new classi�cation of 6-dimensional nilpotent Lie algebras over R (same

as Morozov's). For algebraically closed �elds, Favre [10] and Gauger [11] give another

method by regarding all nilpotent Lie algebras as quotients of some \free nilpotent Lie

algebras". Later Santharoubane (1979) [28][29] further generalizes this idea and establishes

a link between nilpotent Lie algebras and Kac-Moody Lie algebras. Skjelbred and Sund

(1978) [36] reduce the classi�cation of nilpotent algebras in a given dimension to the study

of orbits under the action of a group on the space of second degree cohomology of a smaller

Lie algebra with coe�cients in a trivial module. Seeley assumes knowledge of algebras in

dimensions less than seven, and considers the upper central series dimensions of a nilpotent

algebra as an invariant, which are usually shared by many non-isomorphic algebras. So he

also identi�es some further invariants for each typical upper central series dimensions in

order to sort out various possibilities and resorts to many kinds of techniques trying to get

all the algebras without redundancy. So essentially, we might say, and to put in his own

words, Seeley obtains his list \without machinery, taking the attitude that no reduction in

the amount of hard work would result." ([31], pp. vi).

One phenomenon worth mentioning is: there are only �nitely many isomorphism classes of

nilpotent Lie algebras of dimension less than or equal to 6, whereas in higher dimensions

there are in�nite families of pairwise nonisomorphic nilpotent Lie algebras. In dimension

7, each in�nite family can be parametrized by a single parameter. Seeley (1992) [32] has

tackled the problem of determining the number Fn of parameters needed to classify the

laws of n-dimensional complex nilpotent Lie algebras, and comes up with the estimate that

F2n+2 � n(n � 1)(n + 4)=6 � 3. In particular, for dimensions 8 and 10, the number of

parameters involved will be respectively � 4 and � 13, which makes it very di�cult to give

a complete list (as for dimension � 7). Therefore it becomes all the more desirable to have

a complete and nonredundant list for 7-dimensional nilpotent Lie algebras.

We use the Skjelbred-Sund method to construct all the 7-dimensional algebras. From our

point of view, this is the best method, as it provides a systematic approach to construct

all the algebras, as the readers will see in the following chapters. But before our project

is carried out, it should be noted that many people think otherwise. In talking about this

method, Seeley [31] [33] said \it is di�cult to use in practice". Magnin [18] even claimed that

\le calcul des orbites pr�esentant des di�cult�es, elle ne semble pas pouvoir être actuellement

utilis�ee pour la classi�cation des alg�ebres de dimension 7".

A detailed illustration of this method will be given in Chapter 2. Unlike many of the previous

7-dimensional lists, where \trial and error and good guesswork came into play" ([31], pp.

vii), we come up with all the necessary mathematical details that everyone can follow and
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check | both for completeness and nonredundancy. Naturally we follow Seeley's labelling

of algebras by using central series dimensions. There are two reasons: �rstly because his

list is the most reliable one, and secondly also due to the method we use, which regards all

the algebras as central extensions of smaller dimensional Lie algebras.

We have compared our list with that of Seeley over C. It turns out that, although Seeley's

list is almost perfect, there are still some errors { some of them Seeley himself has also been

aware of. The following four corrections should be made:

1,3,7B: [b; c] = g should be replaced by [b; d] = g, otherwise it is

isomorphic to 1,3,7A.

1,3,4,5,7H: Not a Lie algebra, since Jac(a; b; c) = [a; [b; c]] + [b; [c; a]] +

[c; [a; b]] 6= 0. Should be deleted.

1,4,7E: One should impose a further restriction on the parameter:

� 6= 0; 1. If � = 0; or 1, the center has dimension 2, and the

algebra is isomorphic to 2,4,7P .

1,3,5,7S: One should impose a further restriction on the parameter:

� 6= 1. If � = 1, the center has dimension 2, and the algebra

is isomorphic to 2,3,5,7D.

These corrections are necessary, as people still refer to Seeley's list without being aware of

some of these errors. In a recent paper by Cairns, Jessup and Pitkethly [5] in 1997, they

give the Betti numbers of nilpotent Lie algebras of dimensions at most 7, where they also

provide the Betti numbers for 1,3,4,5,7H, which, according to above, should not be there at

all.

We have also compared Seeley's list (as corrected above) with that of Ancochea and Goze's.

Unfortunately, Ancochea and Goze's list turns out to contain too many errors to be usable,

with a lot omissions, and among those being listed, many of them are not Lie algebras at

all, and others occur more than once.

Before our work, only Romdhani [24] [25] has provided a list for the real case. A comparison

with his list of real algebras reveals that he has also missed many algebras.

Maple V c
 plays a decisive role in our classi�cation, and especially in our comparisons with

all the other lists. It is totally unimaginable to carry out this project without something

like Maple, and we do hope that the readers, while reading through the proofs, will ap-

preciate the power of this interactive computer algebra system, which has been used in

the computation of (1) the Jacobi identities; (2) the cocycles; (3) the orbits of normalized

cocycles under the automorphism group; (4) the isomorphism between two algebras, and as

a special case, the automorphism groups; (5) the derivation algebras; (6) solving all kinds

of equations, etc., among many other things.
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Now we mention brie
y the layout of the thesis.

In Chapter 1, we introduce some of the basic de�nitions of nilpotent Lie algebras which are

used throughout the thesis.

In Chapter 2, we describe the method of Skjelbred and Sund, and include some basic

introduction to cohomology theory of nilpotent Lie algebras.

In Chapter 3, we present the list of all six-dimensional nilpotent Lie algebras over an

arbitrary algebraically closed �eld, followed by the proof that the list is complete and

nonredundant. Included in the list are the weight system and the generic automorphism for

each algebra, as we need all this information for our construction of 7-dimensional nilpotent

algebras.

In Chapter 4, we present our lists of all indecomposable 7-dimensional nilpotent Lie algebras

over algebraically closed �elds of arbitrary characteristic except 2, and also over R.

In Chapter 5, we construct all indecomposable two-step nilpotent Lie algebras ( i.e., central

extensions of Abelian algebras), both for the real �eld and for algebraically closed �elds.

In Chapter 6, we give the proof for the case when the ground �eld is algebraically closed of

characteristic not 2.

In Chapter 7, we give the proof for the case when the ground �eld is real.

In Appendix A, we establish the correpondence between our list and Nielsen's list for inde-

composable six-dimensional real nilpotent Lie algebras.

In Appendix B, we compare Seeley's (corrected) list with that of Ancochea-Goze's for all

the indecomposable 7-dimensional nilpotent Lie algebras over C.

In Appendix C, we compare our list of indecomposable 7-dimensional nilpotent real algebras

with that of Romdhani's.

In Appendix D, we give a summary of all the 7-dimensional indecomposable nilpotent Lie

algebras as they arise from those of dimensions � 6 in our construction. The readers may

easily identify the central quotients of all the seven-dimensional algebras with this list, and

locate the details of the corresponding proofs if they wish.

In Appendix E, we provide some of the main Maple programs that have been used in our

computation.
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Chapter 1

Some Concepts of Lie Algebras

In this chapter we introduce some basic de�nitions and notations that are used throughout

the thesis. Most of them can be found in any standard books on Lie algebras [15] [19].

1.1 Basic De�nitions

De�nition 1.1 Let g be a Lie algebra over a �eld F. Let D0
g = g, C0

g = g; C0g = f0g;
Di+1

g = [Di
g; Di

g], Ci+1
g = [Ci

g; g], and Ci+1(g) = fx 2 gj[x; g] � Ci(g)g for any i. We

call

g = D0
g � D1

g � � � � � Dk
g � � � �

the derived series of g,

g = C0
g � C1

g � � � � � Ck
g � � � �

the lower central series of g, and

f0g = C0(g) � C1(g) � � � � � Ck(g) � � � �

the upper central series of g. We also call respectively

dimC0
g; dimC1

g; � � � ; dimCk
g; � � �

and

dimC1(g); dimC2(g); � � � ; dimCk(g); � � �
the lower central series dimensions of g and the upper central series dimensions of g. We

will simply denote them by (dimC0
g; dimC1

g; � � �) and (dimC1(g); dimC2(g); � � �).

De�nition 1.2 A Lie algebra g of dimension n is called �liform if

dimCk
g = n � k � 1 for k � 1:
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De�nition 1.3 A nilpotent Lie algebra g is called two-step nilpotent (or metabelian) if it

satis�es C2
g = f0g.

De�nition 1.4 The Heisenberg algebra Hp of dimension 2p+1 is de�ned by the brackets:

[x1; x2] = [x3; x4] = � � � = [x2p�1; x2p] = x2p+1;

and all other brackets [xi; xj] are 0, where x1; � � � ; x2p+1 is a basis for Hp.

De�nition 1.5 Let g be a nilpotent Lie algebra and Der g its derivation algebra. The Lie

algebra g is called characteristically nilpotent if every f 2 Der g is a nilpotent endomorphism

of g.

De�nition 1.6 Let F be the free Lie algebra on g-generators y1; � � � ; yg ([15], p.167). Let

Fn denote the subspace of F generated by all elements of the type [yi1 ; yi2 ; � � � ; yin�1
; yin] =

[� � � ; [[yi1; yi2 ]; � � � ; yin�1
]; yin] where ij 2 f1; 2; � � � ; gg. F is graded with Fn as the homoge-

neous componet of degree n, and furthermore Fn =
L

j�n Fj. We call N(l; g) = F=F l+1

a free nilpotent Lie algebra of class l on g generators.
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1.2 Weight Systems and Decomposability

Let g be a Lie algebra over an algebraically closed �eld F of characteristic 0. Denote by

Der g and Aut g its Lie algebra of derivations and the group of automorphisms. Let T by

a commutative subalgebra of Der g consisting of semi-simple endomorphisms. T is called

torus on g. A torus T on g is called maximal if it is not contained in any other torus of

larger dimension. A torus T on g de�nes naturally a representation in g, and the elements

of T can be diagonalized simultaneously. Therefore g can be decomposed as a direct sum

of weight spaces, i.e.,

g = ��2T �g�

where T � is the dual space of T , and

g
� = fx 2 gjt(x) = �(t)x; 8t 2 Tg :

Over algebraically closed �elds, the conjugacy theorem of Mostow [21] shows that the weight

system associated with a maximal torus is invariant up to a permutation by isomorphim.

We de�ne the rank of g to be the common dimension of maximal tori over g, and denote it

by rank(g).

Let T be a maximal torus on g, and

R(T ) = f� 2 T �j dimg
� > 0g :

Let W (T ) be the set of all the pairs (�; d�), where � 2 R(T ) and d� the multiplicity of �,

that is,

W (T ) = f(�; d�)j� 2 R(T ); d� = dim g�g :

De�nition 1.7 The set W (T ) is called the weight system associated to g, or we may say

that a weight system is just the set of weights together with their multiplicities.

De�nition 1.8 Two weight systems W (T ) and W 0(T 0) are said to be equivalent if dimT =

dimT 0 and the linear representation of T in g is equivalent to that of T 0 in g
0.

Theorem 1.1 [10] The equivalence class of a weight system of a Lie algebra g is an in-

variant of g.

Let B be the set of all the weights corresponding to g=C2
g.

De�nition 1.9 A path in R(T ) is a sequence �1; � � � ; �l of points in R(T ) such that �i+1�
�i or �i��i+1 are in B for all 1 � i � l�1. A connected component of R(T ) is an arcwise

connected component.

7



Theorem 1.2 [10, 17] Let g be a nilpotent Lie algebra.

1). If g = g1 � g2 (direct ideal sum), then rank(g) = rank(g1) + rank(g2);

2). If g is indecomposable, then R(T ) is connected;

3). If R1; � � � ; Rl are the connected components of R(T ) and let gi = ��2Ri
g
�, then each

gi is an ideal of g, and g is a direct product of gi: g =
Q

1�i�l gi. Furthermore, gi is

indecomposable, i.e. it cannot be decomposed into the product of two nonzero Lie algebras.

Therefore we may use the weight system to determine the decomposability of an algebra

over an algebraically closed �eld of characteristic 0. Using Carles's work on weight systems

for nilpotent Lie algebras [6], this has been made quite straightforward.
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Chapter 2

The Skjelbred-Sund Method

2.1 Cohomology of Nilpotent Lie Algebras

We will introduce some basic de�nitions and properties of the cohomology of nilpotent Lie

algebras in this section. Readers may refer to [7] [13] [15] for details.

Let g be a Lie algebra, F a �eld, and consider Fk as a trivial g-module.

De�nition 2.1 A mapping f : g� � � � � g(i times )! Fk is called an i-linear mapping if

f sends an i-tuple (x1; � � � ; xi), xq 2 g, into f(x1; � � � ; xi) 2 Fk in such a way that for �xed

values of x1; � � � ; xq�1; xq+1; � � � ; xi the mapping xq ! f(x1; � � � ; xi) is a linear mapping of

g into Fk.

De�nition 2.2 An i-linear mapping is skew symmetric or alternating if f takes value 0

when any two of the xq are the same.

De�nition 2.3 An i-dimensional Fk-cochain (or simply \an i-cochain") for g is a skew

symmetric i-linear mapping of g� � � � � g (i times) into Fk.

The set Ci(g;Fk) of all i-cochains is a vector space relative to the usual de�nitions of

addition and scalar multiplication of functions.

De�nition 2.4 If f is an i-cochain, i � 1, f determines an (i + 1)-dimensional cochain

df , called coboundary of f , de�ned by the formula

(df)(x1; � � � ; xi+1) =
X
m<l

(�1)m+lf(x1; � � � ; x̂m; � � � ; x̂l; � � � ; xi+1; [xm; xl]);

where the^over an argument means that this argument is omitted. If i = 0, we set df = 0.

d maps Ci(g;Fk) linearly into Ci+1(g;Fk) and is called the coboundary operator.
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De�nition 2.5 An i-cochain f is called a cocycle if df = 0 and a coboundary if f = dg for

some (i� 1)-cochain g.

The set Zi(g;Fk) of i-cocycles is the kernel of the homomorphism d of Ci into Ci+1, so it

is a subspace of Ci. Similarly, the set Bi(g;Fk) of i-coboundaries is a subspace of Ci since

it is the image under d of Ci�1. When i = 0, we de�ne B0(g;Fk) = 0. Due to a well-known

result in cohomology theory, i.e., d2 = 0, the coboundaries form a subspace of the cocycles.

De�nition 2.6 We call the factor space, denoted by H i(g;Fk) = Zi(g;Fk)=Bi(g;Fk),

the i-dimensional cohomology group of g (with coe�cients in Fk).

Now we shall look at some properties of H i(g;F) for i � 2. For i = 0 we have Z0 = C0 = F

and B0 = 0 so that

H0(g;F) = F:

For i = 1 we have B1 = 0 so thatH1 = Z1: If f 2 C1(g;F), then (df)(x1; x2) = �f([x1; x2]).
Therefore f is a 1-cocycle if and only if it vanishes on [g; g]. Hence

Lemma 2.1 H1(g;F) is isomorphic to the dual space of g=[g; g].

For i = 2, if f 2 C2(g;F), then

(df)(x1; x2; x3) = �f(x3; [x1; x2]) + f(x2; [x1; x3])� f(x1; [x2; x3]):

Therefore, df = 0 or f 2 Z2 if and only if the Jacobi identity holds:

Jac(x1; x2; x3) = f([x1; x2]; x3) + f([x2; x3]; x1) + f([x3; x1]; x2) = 0:

Let B2(g;F) be the set of all 2-coboundaries, i.e. elements f for which there exists g 2
Hom(g;F) such that f(x; y) = g([x; y]) for any x; y 2 g. An immediate consequence follows:

Lemma 2.2 dimB2(g;F) = dim[g; g].

2.2 The Method

In this part, we will explain the method described by Skjelbred and Sund [35] for construct-

ing nilpotent Lie algebras of �xed �nite dimension from those of smaller dimensions.

Firstly, we need to introduce some notations and de�nitions ([28, 29]).

Let g be a Lie algebra over a �eld F. For each B 2 C2(g;Fk) and � 2 Aut g, the auto-

morphism group of g, we de�ne B� 2 C2(g;Fk) by B�(x; y) = B(�x; �y) for any x; y 2 g.
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Since Z2(g;Fk) and B2(g;Fk) are invariant under this action, we can de�ne the action of

Aut g on H2(g;Fk) as well. For B 2 Z2(g;F), we denote ~B as its corresponding element in

H2(g;F), then we may write the action of Aut g on eB as eB� = fB�.

For B 2 C2(g;Fk), the kernel of B will be de�ned as g
?
B, with

g
?
B = fx 2 g : B(x; g) = 0g:

Note that

C2(g;Fk) = C2(g;F)k; H2(g;Fk) = H2(g;F)k:

So for any B 2 C2(g;Fk), we may write

B = (B1; � � � ; Bk) 2 C2(g;F)k;

and we have g
?
B = g

?
B1

T � � �T g
?
Bk
.

De�ne Gk(H
2(g;F)) to be the Grassmannian of subspaces of dimension k inH2(g;F). There

is a natural action of Aut g on this Grassmannian. Let eB1F � � � � � eBkF 2 Gk(H
2(g;F),

then �( eB1F� � � � � eBkF) =
f
B�
1F� � � � � fB�

kF. It is well-de�ned ([28, 29]).

Denote the center of g by Z(g), and if eB1F � � � � � eBkF 2 Gk(H
2(g;F), write B =

(B1; � � � ; Bk). Then

Uk(g) = f eB1F� � � � � eBkF 2 Gk(H
2(g;F)) : g?B

\
Z(g) = 0g

is well-de�ned, and is also Aut g stable ([28, 29]).

Let Uk(g)=Aut g be the set of (Aut g)-orbits of Uk(g).

Theorem 2.1 [35] Let g be a Lie algebra over a �eld F. The isomorphism classes of Lie

algebras eg with center ez of dimension k, eg=ez �= g, and without Abelian direct factors, are in

bijective correspondence with the elements in Uk(g)=Aut g.

By this theorem, we may construct all the nilpotent Lie algebras of dimension n, given

those algebras of dimension less than n, by central extension.

We carry out the procedure for constructing 6 and 7-dimensional nilpotent Lie algebras in

the following way:

(1) For a given algebra of smaller dimension, we list at �rst its center (or the generators of

its center), to help us identify the 2-cocycles satifying g
?
B

T
Z(g) = 0.

(2) We also list its derived algebra (or the generators of the derived algebra), which is

needed in computing the coboundaries B2(g;F).

(3) Then we compute all the 2-cocycles Z2(g;F). For each �xed algebra g with given

base fx1; x2; � � � ; xng, we may represent a 2-cocycle B by a skew symmetric matrix B =
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P
1�i<j�n Cij�ij , where �ij is the n � n matrix with (i; j) element being 1, (j; i) element

being �1 and all the others 0. When computing the 2-cocycles, we will just list all the

constraints on the elements Cij of the skew symmetric matrix B.

(4) We have Z2(g;F) = B2(g;F)�W , whereW is a subspace of Z2(g;F), complementary to

B2(g;F), and B2(g;F) = fdf jf 2 C1(g;F) = g
�g (d is the coboundary operator). One easy

way to obtain W is as follows. When a nilpotent Lie algebra g of dimension n = r+ s has a

basis in the form fx1; � � � ; xr; xr+1; � � � ; xr+sg, where fx1; � � � ; xrg are the generators, and
fxr+1; � � � ; xr+sg forms a basis for the derived algebra [g; g], with xr+t = [xit ; xjt], where

1 � it < jt < r+ t and 1 � t � s.
Consider C1(g;F) = g

� generated by the dual basis

< f1; � � � ; fr; g1; � � � ; gs >

of

< x1; � � � ; xr; xr+1; � � � ; xr+s > :

Then

B2(g;F) = fdhjh 2 g
�g =< df1; � � � ; dfr; dg1; � � � ; dgs > :

Since dfi(x; y) = �fi([x; y]) = 0, we have B2(g;F) =< dg1; � � � ; dgs > : Now we have

Z2(g;F) =< dg1; � � � ; dgs > �W:

For B 2 W , we may assume that B(xit; xjt) = 0, t = 1; � � � ; s, otherwise, if B(xit; xjt) =
uitjt 6= 0, we choose B + uitjtdgt instead. When we carry out the group action on W , we

do it as if it were done in H2(g;F), and may identify H2(g;F) with W , by calling all the

nonzero elements in W the normalized 2-cocycles.

(5) We also list the dimension of the second cohomology group.

(6) For a �xed basis fx1; x2; � � � ; xng of g, a basis for W in (4) is given, and we will simply

regard it as a basis for H2(g;F) without causing any confusion.

(7) An arbitrary element in the second cohomology group is given, together with the action

of the generic automorphism on it. Keep in mind that, though the elements are chosen

from W � Z2(g;F), we regard them as elements from H2(g;F). The group action on these

elements is carried out as if they were in H2(g;F):

(8) We determine all the representatives of the orbits in the Grassmanian Gk(H2(g;F))

under the action of the automorphism group that satisfy the condition mentioned in (1).

(9) With the representatives obtained in (8), we give the list of nonisomorphic central

extension algebras of g without Abelian factors, i.e., if B is a representative obtained, then

we can de�ne a Lie algebra structure on g(B) = g� Fk by letting

[(x; u); (y; v)] = ([x; y]; B(x; y)):
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We also have the following theorem describing the automorphism group of the new algebra

g(B) = g� Fk as obtained by the above method through a 2-cocycle B from g:

Theorem 2.2 [35] Let g be a nilpotent Lie algebra, and �0 2 Aut g. Let B 2 H2(g;Fk)

and g
?
B

T
Z(g) = 0. The the automorphism group Aut g(B) of the extended algebra g(B)

consists of all linear operators of the matrix form

� =

 
�0 0

�  

!
; where �0 2 Aut g;  2 Glk; � 2 Hom(g;Fk);

and

B(�0X;�0Y ) =  B(X; Y ) + �[X; Y ]; all X; Y 2 g:

This is a very useful theorem, which will be used in our computation of the automorphism

groups.

We also like to point out that, from the method we described above, it is possible to get

decomposable Lie algebras (without Abelian factors, but could be the product of two or

more indecomposable nilpotent Lie algebras) by central extensions.

Fortunately, we have the following lemma by Seeley [31] [33]:

Lemma 2.3 In a decomposition of a �nite-dimensional Lie algebra as a direct sum of

indecomposable ideals, the isomorphism classes of the ideals are unique. If L = A1�� � ��Ar

and L = C1� � � ��Cs are two such decompositions, then r = s; after reordering the indices

the derived parts D1(Ai) and D
1(Ci) are equal, Ai

�= Ci, and a set of of generators for Ai

equals a set of generators for Ci modulo adding to each generator a vector in Z(L).

Seeley has also observed that there are 31 decomposable nilpotent Lie algebras in dimension

7. All except one have an Abelian summand. Therefore it becomes a fairly easy job for

us to check the indecomposability | we just need to take care of the exceptional case,

which corresponds to the upper central series dimension (257), and can be done through

the comparison of the orbits.
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2.3 The Examples

We will illustrate the Skjelbred-Sund method through the following 6 examples. For the

labelling of the algebras, and also their automorphism groups, please refer to Chapter 3 or

4. We will explain our notations and conventions along the way. Make sure that you read

this part �rst before you dig into the proofs in the subsequent chapters. Please be reminded

that whenever we talk about central extensions, we always refer to those extensions that

are without Abelian factors.

Example 1 Find the central extensions without Abelian factors of dimension 6 over any

algebraically closed �eld of the algebra g = N5;2;2 with basis xi; 1 � i � 5, and nonzero

brackets [x1; x2] = x4; [x1; x4] = [x2; x3] = x5.

The center of N5;2;2 is Fx5, we will simply write later on in our proofs that Z(g) : x5.

The derived algebra [g; g] is generated by x4; x5. Later on we will just write \Derived

Algebra: x4; x5" or [g; g] : x4; x5.

Now we need to determine all the 2-cocycles B =
P

1�i<j�n Cij�ij , by using the basis

fx1; � � � ; x5g, as described in (3) of Section 2.2. By checking the Jacobi identity, we can easily
get the following constraints for B to be a 2-cocycle: fC25 = C35 = C45 = 0; C34+C15 = 0g,
and we will write \Cocycle: C25 = C35 = C45 = 0; C34+ C15 = 0" or Z2(g) : C25 = C35 =

C45 = 0; C34+ C15 = 0.

Since [x1; x2] = x4; [x1; x4] = x5, and the derived algebra has dimension 2, we may normalize

2-cocycles by requiring B(x1; x2) = B(x1; x4) = 0, as described in (4) of Section 2.2, which

will give us the following two extra constraints on B: C12 = C14 = 0, and we will write

\Normalization: C12 = C14 = 0" or W (H2) : C12 = C14 = 0.

From the above, it is easy to see that the dimension of H2(g;F) is 4, and we will write

\dimH2 : 4".

Now we can get a basis for W as in (4) of Section 2.2, regarded also as a basis for H2(g;F),

and write \Basis: �13; �15 ��34;�23;�24".

In this case, we are considering the 1-dimensional central extensions of g. We need to �nd a

set of representatives of the orbits of 1-dimensional subspaces of H2(g;F) under the action

of the automorphism group Aut g. With the chosen basis, we may denote an arbitrary

element in H2(g;F) by x := [a; b; c; d] = a�13 + b(�15 � �34) + c�23 + d�24. When a

generic element g in Aut g acts on x, we get g � x = a0�13 + b0(�15 ��34) + c0�23 + d0�24

mod B2(g;F), We will simply write a! a0, b! b0, c! c0 and d! d0. In this example we

have

a! aa311 + ba11(a53 + a21a31 + a11a41) + ca211a21 � da11a221;
b! ba311a22;
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c! ca211a22 + 2ba11a22a31 � 2da11a21a22;

d! da11a
2
22 � ba11a22a32.

As x5 is in the center, we must have b 6= 0 to ensure that the 2-cocycle does not have x5 in

its kernel. Since a11 and a22 are not 0, b will remain nonzero throughout.

By taking a11 = a22 = 1, a21 = a41 = 0, a32 = d=b, a53 = �a=b (and ensuring at the same

time that the matrix of g is nonsingular), we make a! 0, d! 0.

With these new values for coe�cients, the above formulae take simpler form:

a = 0! ba11(a53 + a21a31 + a11a41) + ca211a21;

b! ba311a22;

c! ca211a22 + 2ba11a22a31;

d = 0! �ba11a22a32.
Now we need to take into consideration the characteristic � of F.

Case 1: � 6= 2. Set a11 = a22 = 1, a21 = a32 = a41 = a53 = 0, a31 = �c=(2b), we obtain the

representative (1) [a; b; c; d] = [0; 1; 0; 0].

Case 2: � = 2. We now have c ! ca211a22. If c = 0, then we get the representative (2)

[0; 1; 0; 0]. If c 6= 0, taking a21 = a31 = a32 = a41 = a53 = 0, we have

[a; b; c; d]! [0; ba311a22; ca
2
11a22; 0]:

Make ba211a22 = ca211a22 by taking a22 = 1 and a11 = c=b to get the representative (3)

[0; 1; 1; 0].

(1) and (2) give us the same algebra, denoted by N6;2;3 in Chapter 3. (3) gives us another

algebra, denoted by (B), which only exists over the �eld of � = 2. It can be easily seen that,

when � 6= 2, it is isomorphic to N6;2;3. It is obvious that (B) and N6;2;3 are not isomorphic

when � = 2, as the corresponding orbits are di�erent.

Therefore the central extensions of N5;2;2 of dimension 6 are:

N6;2;3: [x1; x2] = x4; [x1; x4] = x5, [x1; x5] = x6;

[x2; x3] = x5, [x3; x4] = �x6.
(B) (for � = 2 only)

[x1; x2] = x4; [x1; x4] = x5, [x1; x5] = x6;

[x2; x3] = x5 + x6; [x3; x4] = �x6.

Example 2 Find the central extensions without Abelian factors of dimension 7 over an

algebraically closed �eld of � 6= 2 and the real �eld R of the algebra g = N5;2;2 with basis

xi; 1 � i � 5, and nonzero brackets [x1; x2] = x4; [x1; x4] = [x2; x3] = x5.
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From Example 1, we have

Z(g) : x5; [g; g] : x4; x5; Z
2(g) : C25 = C35 = C45 = 0, C15 + C34 = 0; W (H2) : C12 = C24 =

0; dimH2 : 4; Basis: �13;�15��34;�23;�24:

According to Theorem 2.1, we need to �nd the representatives of the orbits of 2-dimensional

subspaces of H2(g;F), i.e., orbits in G2(H
2(g;F)). Up to a scalar, we can always identify a

2-dimensional subspace with the wedge product of two vectors A;B 2 H2(g;F), i.e. A^B.
Let A = [a; b; c; d] and B = [a1; b1; c1; d1] in H2(g;F). As we require that the kernel of

(A;B) does not contain any central elements, we have one of b; b1 6= 0. Therefore we may

assume A = [a; 1; c; d], which is always doable { if b = 0, then b1 6= 0, switch A and B so

b 6= 0 in A, then multiply A by b�1 to get the above form for A. Bear in mind that we can

multiply any of our vectors by a scalar, as we are dealing essentially with the subspaces,

instead of the vectors.

From the discussions in Example 1, as � 6= 2, a representative for A can be chosen as

A = [0; 1; 0; 0].

Once we get A, we may assume B = [a1; 0; c1; d1] because we can replace B by a linear

combination B + �A. Although the original B = [a1; b1; c1; d1] is di�erent from the new

B = [a1; 0; c1; d1], we still use the same notation B to denote it, same thing for a1, c1 and

d1. This is the convention throughout the proofs in our Thesis. The readers will be able to

tell the di�erences, without causing any confusion.

In the following we will mainly discuss the case when the ground �eld isR. The algebraically

closed case can be easily obtained with minor adjustments.

Now to �x A (up to a scalar), we require a31 = a32 = 0 and a53 = �a11a41.
For B, we have a1 ! a1a

3
11+c1a

2
11a21�d1a11a221; b1 = 0! 0; c1 ! c1a

2
11a22�2d1a11a21a22;

d1 ! d1a11a
2
22.

Case 1: d1 6= 0. As the �rst step, we make c1 = 0 by solving for a21, which can be done

by taking a11 = a22 = 1 and a21 = c1=(2d1). With these new values, the formulae above

become a1 ! a1a
3
11 � d1a11a221; b1 ! 0; c1 = 0! �2d1a11a21a22; d1 ! d1a11a

2
22.

In the second step, to keep c1 = 0, we require a21 = 0, which in turn makes a1 ! a1a
3
11,

b1 = c1 = 0 and d1 ! d1a11a
2
22, or B = [a1a311; 0; 0; d1a11a

2
22].

Case 1.1: a1 = 0. We obtain our �rst representative B1 = [0; 0; 0; 1], and A^B1 corresponds

to the 7-dimensional algebra (2357C).

Case 1.2: a1 6= 0.

Subcase 1.2.1: a1d1 > 0. Make a1a
3
11 = d1a11a

2
22 in B by solving for a22 and multiply B

by a scalar, which can be done by taking a11 = 1 and a22 =
p
a1=d1, and multiply by a�11 ,

we will obtain our second representative B2 = [1; 0; 0; 1], and A ^ B2 corresponds to the

7-dimensional algebra (2357D).
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Subcase 1.2.2: a1d1 < 0. Make a1a311 = �d1a11a222 in B and multiply it by a scalar, which

can be done by taking a11 = 1 and a22 =
p
�a1=d1, and multiply it by a�11 , we will have

B3 = [1; 0; 0;�1], A ^B3 corresponds to the 7-dimensional algebra (2357D1).

(If the ground �eld is algebraically closed, then B2 and B3 are in the same orbit.)

Case 2: d1 = 0. Since b1 = d1 = 0 in B, we have a1 ! a1a
3
11 + c1a

2
11a21; c1 ! c1a

2
11a22.

Subcase 2.1: c1 = 0. We obtain B4 = [1; 0; 0; 0], and A ^ B4 corresponds to (2357B).

Subcase 2.2: c1 6= 0. Taking a11 = 1 and a21 = �a1=c1, we make a1 = 0 to obtain

B5 = [0; 0; 1; 0], and A ^B5 corresponds to (2357A).

Now we have obtained 5 algebras:(2357A-D, D1). We need also to show that they are

mutually nonisomorphic, which can be done by comparing their corresponding orbits. As

an example, we will show that (2357D) and (2357D1) are nonisomorphic over R but are

isomorphic over an algebraically closed �eld of � 6= 2.

For (2357D), we have A = [0; 1; 0; 0] and B2 = [1; 0; 0; 1]. Under the group action,

A! [a11a53 + a11a21a31 + a211a41; a
3
11a22; 2a11a22a31;�a11a22a32]

and

B ! [a311 � a11a221; 0;�2a11a21a22; a11a222]:
Then

A ^ B ! �a411a22(a211 � a221)�13 ^ (�15 ��34)

�2a211a22((a53 + a21a31 + a11a41)a21 + a31(a
2
11 � a221))�13 ^�23

+a211a22((a53 + a21a31 + a11a41)a22 + a32(a
2
11 � a221))�13 ^�24

�2a411a222a21(�15 ��34) ^�23

+a411a
3
22(�15 ��34) ^�24

+2a211a
2
22(a31a22 � a32a21)�23 ^�24

Compare with (2357D1), where A = [0; 1; 0; 0] and B3 = [1; 0; 0;�1], in which case

A ^B3 = (�15 ��34) ^ (�13 ��24):

If it is in the same orbit of (2357D), then the coe�cients of (�15��34)^�23 and �23^�24

are zero, which give a21 = a31 = 0. As the coe�cients of �13 ^ (�15 � �34) and (�15 �
�34) ^�24 must be equal, i.e., �a411a22a211 = a411a

3
22 or a

2
11 = �a222, which has no solution

over the real �eld R but do have solutions over algebraically closed �eld. Therefore (2357D)

and (2357D1) are distinct over R and are isomorphic over an algebraically closed �eld of

� 6= 2. All the other nonisomorphisms can be proved similarly.

In some cases, we may also use some other invariants, like minimal numbers, as used by

Seeley, to separate the algebras (see Chapter 5 for the de�nition of minimal numbers and

for examples).

Therefore the corresponding central extensions of N5;2;2 of dimension 7 over R are:
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(2357A): [x1; x2] = x4; [x1; x4] = x5; [x1; x5] = x7;

[x2; x3] = x5 + x6, [x3; x4] = �x7;
(2357B): [x1; x2] = x4; [x1; x3] = x6, [x1; x4] = x5;

[x1; x5] = x7; [x2; x3] = x5, [x3; x4] = �x7;
(2357C): [x1; x2] = x4; [x1; x4] = x5; [x1; x5] = x7;

[x2; x3] = x5, [x2; x4] = x6, [x3; x4] = �x7;
(2357D): [x1; x2] = x4; [x1; x3] = x6, [x1; x4] = x5;

[x1; x5] = x7; [x2; x3] = x5, [x2; x4] = x6,

[x3; x4] = �x7;
(2357D1): [x1; x2] = x4; [x1; x3] = x6, [x1; x4] = x5;

[x1; x5] = x7; [x2; x3] = x5, [x2; x4] = �x6,
[x3; x4] = �x7.

When the ground �eld F is algebraically closed and � 6= 2, then the central extensions of

N5;2;2 are (2357A-D), with (2357D)�= (2357D1) in this case.

Remarks: (1) Throughout the computation above, although we may assign di�erent values

to the entries of the matrix of g 2 Aut g, we always ensure that the nonsingularity is

maintained; (2) Quite often, care is required so as not to disturb previous assumptions,

for example, when we assume b 6= 0, then we preserve it throughout the simpli�cation

procedure, even though we may not point it out explicitly; (3) By abuse of terminology,

we refer to the elements in H2(g;R) as 2-cocycles (causing no confusion); (4) On some

occasions, we may provide an isomorphism between two algebras, and write it as xi !
ax1 + bx2 + � � � , etc. Then the xi before the arrow is an element of the basis for the �rst

algebra (or the \old one"), and the xi's after the arrow are the elements of the basis for the

second algebra (or the \new one").

Example 3 Find the central extensions of dimension 7 without Abelian factors of N6;3;2:

[x1; x2] = x3; [x1; x3] = x6; [x4; x5] = x6:

Z(g): x6; [g; g]: x3; x6; Z
2(g): C16 = C26 = C34 = C35 = C36 = C46 = C56 = 0;

It is obvious that N6;3;2 has no central extension of the desired type, as all the 2-cocycles

have x6 in their kernels.

Example 4 Find the central extensions of dimension 7 { over an algebraically closed �eld

of � 6= 2 and R { without Abelian factors of N6;1;1: [x1; xi] = xi+1; 2 � i � 5, [x2; xi] =

xi+2; i = 3; 4.

Z(g): x6; [g; g]: x3; x4; x5; x6; Z2(g): C26 = C35 = C36 = C45 = C46 = C56 = 0; C34 +

C25 = C16; C15 = C24; W (H2): C12 = C13 = C14 = C15 = 0; dimH2: 3; Basis: �23; �16+
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�25; �16 +�34;

Group Action: a�23 + b(�16 +�25) + c(�16+ �34):

a! aa511 + c(a11a
2
32 � 2a311a42);

b! ba711; c! ca711;

We must have b+ c 6= 0 to ensure that the 2-cocycles do not contain x6 in their kernel.

Case 1: b = 0. Then c 6= 0, and make c = 1; a = 0 (solving for a42) to obtain A1 = [0; 0; 1];

Case 2: b 6= 0. Assume �rst that c = 0. When a = 0, we get A2 = [0; 1; 0]. When a 6= 0,

we get [aa511; ba
7
11; 0]. If F is a algebraically closed, we can make it to be A3 = [1; 1; 0]. If

F = R, depending on the signs of a; b, we get two representatives A4 = [1; 1; 0] if ab > 0

and A5 = [1;�1; 0] if ab < 0.

Next let c 6= 0. Then make a = 0 by solving for a42, and get the representative [0; ba
7
11; ca

7
11].

Because we are dealing with the subspaces of H2(g;F), we can multiply the representative

by a nonzero scalar as we like, and keep in mind that b+c 6= 0. So we obtainA6 = [0; �; 1��]
(with � 6= 0; 1).

It is easy to see that if we allow � = 0; 1, we can include A1 and A2 in A6 as special cases.

Now A3 and A4 correspond to the same algebra, written as (123457H). A5 corresponds to

(123457H1), which only exists when the ground �eld is R, and is isomorphic to (123457H)

when the ground �eld is algebraically closed, and A6 corresponds to (123457I). It is obvious

that (123457H,H1,I) are distinct, the corresponding orbits being di�erent.

Therefore, the central extensions of N6;1;1 of dimension 7 over R are:

(123457H): [x1; xi] = xi+1, 2 � i � 5, [x1; x6] = x7, [x2; x3] = x5 + x7,

[x2; x4] = x6, [x2; x5] = x7;

(123457H1): [x1; xi] = xi+1, 2 � i � 5, [x1; x6] = �x7, [x2; x3] = x5 + x7,

[x2; x4] = x6, [x2; x5] = �x7;
(123457I): One parameter family.

[x1; xi] = xi+1; 2 � i � 5; [x1; x6] = x7, [x2; xi] = xi+2; i = 3; 4,

[x2; x5] = �x7; [x3; x4] = (1� �)x7.

When F is algebraically closed and � 6= 2, the central extensions of N6;1;1 are (123457H,I),

with (123457H)�=(123457H1).

Example 5 Find the central extensions of dimension 6 over any algebraically closed �elds,

without Abelian factors, of g = N5;2;1: [x1; xi] = xi+1; i = 2; 3; 4.

Z(g): x5; [g; g]: x3; x4; x5; Z2(g): C24 = C35 = C45 = 0; C25 + C34 = 0; W (H2):

C12 = C13 = C14 = 0; dimH2: 3; Basis: �15; �23; �25 ��34;
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Group Actions: a�15 + b�23 + c(�25 ��34):

a! aa411a22 + ca311a21a22;

b! ba11a
2
22 + 2ca11a22a42 � ca11a232;

c! ca311a
2
22;

One of a; c 6= 0 (due to the reason that we require the kernel of the desired 2-cocycles

does not contain any central elements, this is also a requirement in all the proofs of the

subsequent chapters, and from time to time, we will use this assumption without further

explanation).

When c 6= 0, make a = 0 by solving for a21 and b = 0 by a32 to get [0; 0; 1] (corresponding

to N6;2;2).

When c = 0, then a 6= 0. Get two representatives depending on whether b = 0 or not, i.e.,

[1; 0; 0] (corresponding to N6;2;1) or [1; 1; 0] (corresponding to N6;1;3);

So the central extensions of N5;2;1 of dimension 6 over any algebraically closed �elds are:

N6;1;3 : [x1; xi] = xi+1; 2 � i � 5; [x2; x3] = x6;

N6;2;1 : [x1; xi] = xi+1; 2 � i � 5;

N6;2;2 : [x1; xi] = xi+1; i = 2; 3; 4; [x2; x5] = x6; [x3; x4] = �x6:

Example 6 Find the central extensions of dimension 7 over an algebraically closed �eld of

� 6= 2, without Abelian factors, of g = N5;2;1: [x1; xi] = xi+1; i = 2; 3; 4.

Z(g), [g; g], W (H2), dimH2, Basis and group actions can all be found in Exmaple 5.

As we are considering the 2-dimensional central extensions of N5;2;1, we need to �nd a set

of representatives of orbits of the 2-dimensional subspaces of H2(g;F), or representatives of

the form A ^B, where A and B are elements in H2(g;F) .

Let A = [a; b; c] and B = [a1; b1; c1]. One of a; c; a1; c1 6= 0. According to the discussions of

Example 5, WLOG, we may let A be (1) [1; 0; 0], (2) [1; 1; 0] or (3) [0; 0; 1].

Case 1: A = [1; 0; 0]. Then B = [0; b1; c1]. Fix A (up to a scalar, which put no restrictions

on the entries of the automorphism group at all).

Subcase 1.1: c1 6= 0. Make c1 = 1 (by multiplying a scalar) to get B = [0; b1; 1]. Consider

the group action on B:

B = [a311a21a22; b1a11a
2
22 + 2a11a22a42 � a11a32; a311a222]:

By �xing A, we can always make a1 = 0 by linear combination. Make further b1 = 0 by

solving for a32 to get B = [0; 0; 1], with A ^ B corresponding to (23457C).

Subcase 1.2: c1 = 0. Then b1 6= 0, and get B = [0; 1; 0]; with A ^ B corresponding to

(23457A).
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Case 2: A = [1; 1; 0]. Then assume B = [0; b1; c1]. To �x A (up to a scalar), we require

a22 = a311.

Subcase 2.1: c1 6= 0. Make c1 = 1 to get B = [0; b1; 1]. From Subcase 1.1, we have

B = [a611a21; b1a
7
11 + 2a411a42 � a11a32; a911]:

Can make both a1 = b1 = 0 by solving for a21 and a42 respectively to get B = [0; 0; 1], with

A ^ B corresponding to (23457D).

Subcase 2.2: c1 = 0. Then b1 6= 0 to get B = [0; 1; 0]. But A ^B will become Subcase 1.2.

So we omit it.

Case 3: A = [0; 0; 1]. Then B = [a1; b1; 0]. To �x A (up to a scalar), we may set a21 =

a32 = a42 = 0. Consider the group action on B:

B = [a1a
4
11a22; b1a11a

2
22; 0]:

Subcase 3.1: a1 6= 0. If b1 = 0, then B = [1; 0; 0], and A ^ B is the same as Subcase 1.1,

omit it; If b1 6= 0, we have B = [1; 1; 0], and A ^ B is the same as Subcase 2.1, omit it.

Subcase 3.2: a1 = 0. Then b1 6= 0 to get B = [0; 1; 0], with A^B correponding to (23457B).

To prove that (23457A{D) are distinct, we let V1 be the subspace generated by �15 and

�23, and V the space generated by �15, �23 and �25��34. Then V1 is a submodule under

Aut g. Now it becomes obvious that (23457A) is di�erent from all the other three algebras

in that only its corresponding 2-cocycles (i.e., A and B) are in V1.

To show that (23457B) is di�erent from (23457C,D), we just need to compare their orbits.

For (23457B), we have A = [0; 0; 1] and B = [0; 1; 0]. Under the group action, we have

A! [a311a21a22; 2a11a22a42 � a11a232; a311a222] and B ! [0; a11a
2
22; 0]. Then

A ^B ! a411a21a
3
22�15 ^�23 + a411a

4
22(�25 ��34)^�23:

It is obvious that (23457C,D) cannot be in the same orbit. Therefore (23457B) is not

isomorphic to (23457C,D).

Similarly we can prove that (23457C) and (23457D) are distinct.

Therefore the central extensions of N5;2;1 of dimensions 7 over an algebraically closed �eld

(� 6= 2) are:

(23457A): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x5] = x6, [x2; x3] = x7;

(23457B): [x1; xi] = xi+1; i = 2; 3; 4, [x2; x3] = x7, [x2; x5] = x6,

[x3; x4] = �x6;
(23457C): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x5] = x6, [x2; x5] = x7,

[x3; x4] = �x7;
(23457D): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x5] = x6, [x2; x3] = x6,

[x2; x5] = x7, [x3; x4] = �x7;
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Chapter 3

Nilpotent Lie Algebras of

Dimension � 6

3.1 Notations

In this chapter, we will give a complete list of all the nilpotent Lie algebras of dimension 6

over an algebraically closed �eld F of any characteristic �.

We will �rstly present the list, including all the algebras of dimension � 5, which was

obtained by Dixmier [8], together with their types, ranks, weight systems and automorphism

groups, and we will follow by providing the details of the proof for the classi�cation of the

6-dimensional nilpotent Lie algebras.

As pointed out by Dixmier, for algebras of dimension less than 6, their structure constants

can be chosen to be independent of the characteristic � of the ground �eld. For dimension

6, we �nd that the only exception is when the characteristic equals 2.

Shedler [34] has obtained a list of all the 6-dimensional nilpotent Lie algebras for any �eld.

But his work has never been published, and his proof also contains many errors. Here we

reconstruct all the 6-dimensional nilpotent algebras over algebraically closed �elds. Our list

agrees with that of Shedler's when � 6= 2. When � = 2, Shedler has missed one algebra,

i.e., (B) of Example 1 in Section 2.3.

We will �rst give the list for all the algebras over algebraically closed �eld of characteristic

� 6= 2, and then follow by those of characteristic � = 2.

The algebras have been ordered by the increasing lexicographic order of their types: the

dimension of the algebra, its rank, the sequence of dimensions of its upper and lower central

series.

We now explain our notations:
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{ Ni;j;k: The k-th algebra of dimension i and rank j, and when there is only one algebra

with the speci�c dimension and rank, we simply denote it by Ni;j .

{(i; j; � � �=m; n; � � � ; ), where i; j; � � � and m;n; � � � are respectively the dimensions of the

upper and lower central series.

{ [�; �; 
; � � � ]: The weight system of the corresponding Lie algebra L with respect to a

maximal torus of the automorphism group of L. More precisely, the basis vectors xi are

weight vectors, � is the weight of x1, � of x2, etc.

{ CQ: The central quotient algebra L=Z where Z is the center of L.

{ Aut L: The automorphism group of L. We use our Maple package to compute the generic

element of this automorphism group, except for the case N5;3;1. In general, it is easy to

�gure out which maximal torus of Aut L is used when we consider the weight system

mentioned above. When Aut L is not connected, its identity component is denoted by

Aut0 L and � is a representative of the other component (as all the groups here have at

most two components).

{ Ru and S: The unipotent radical Ru and the Levi factor S of Aut L. By GLm1 we denote

the direct product of m copies of GL1.

{ ai: i-dimensional Abelian Lie algebra.

The matrices of the automorphisms are of course nonsingular, which imposes some obvious

restrictions that are not stated explicitly.
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3.2 The List

3.2.1 Algebras of Dimensions � 5

INDECOMPOSABLE ALGEBRAS

Dimension 1

N1;1 : a1;

| Aut N1;1 : GL1:

Dimension 2

None.

Dimension 3

N3;2 : [x1; x2] = x3;

| a Heisenberg Lie algebra, free nilpotent of class 2 with 2 generators;

| (1; 3=3; 1);

| [�; �; �+ �];

| CQ: N2;2;

| Aut N3;2 : 2664
a11 a12 0

a21 a22 0

a31 a32 a11 a22 � a12 a21

3775 ;
with dim Ru = 2 and S = GL2.

Dimension 4

N4;2 : [x1; xi] = xi+1; i = 2; 3;

| (1; 2; 4=4; 2; 1);

| [�; �; �+ �; 2�+ �];

| CQ: N3;2;
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| Aut N4;2 : 26666664
a11 0 0 0

a21 a22 0 0

a31 a32 a11 a22 0

a41 a42 a11 a32 a11
2a22

37777775 ;

with dim Ru = 5 and S = GL21.

Dimension 5

N5;1 : [x1; xi] = xi+1; for i = 2; 3; 4; [x2; x3] = x5;

| (1; 2; 3; 5=5; 3; 2; 1);

| [�; 2�; 3�; 4�; 5�];

| CQ: N4;2;

| Aut N5;1 : 26666666664

a11 0 0 0 0

a21 a11
2 0 0 0

a31 a32 a11
3 0 0

a41 a42 a11 a32 a11
4 0

a51 a52 u v a11
5

37777777775
;

where u = a11a42 + a21a32 � a211a31, v = a311a32 + a21a
3
11, dim Ru = 7 and S = GL1.

N5;2;1 : [x1; xi] = xi+1; for i = 2; 3; 4;

| (1; 2; 3; 5=5; 3; 2; 1);

| [�; �; �+ �; 2�+ �; 3�+ �];

| CQ: N4;2;

| Aut N5;2;1 : 26666666664

a11 0 0 0 0

a21 a22 0 0 0

a31 a32 a11 a22 0 0

a41 a42 a11 a32 a11
2a22 0

a51 a52 a11 a42 a11
2a32 a11

3a22

37777777775
;

with dimRu = 7 and S = GL21.
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N5;2;2 : [x1; x2] = x4; [x1; x4] = [x2; x3] = x5;

| (1; 3; 5=5; 2; 1);

| [�; �; 2�; �+ �; 2�+ �];

| CQ: N4;3;

| Aut N5;2;2 : 26666666664

a11 0 0 0 0

a21 a22 0 0 0

a31 a32 a11
2 0 0

a41 a42 �a21 a11 a11 a22 0

a51 a52 a53 u a11
2a22

37777777775
;

where u = a11 a42 + a21 a32 � a22 a31, dimRu = 8 and S = GL21.

N5;2;3 : [x1; xi] = xi+1; for i = 2; 3; [x2; x3] = x5;

| Free nilpotent Lie algebra of class 3 with 2 generators;

| (2; 3; 5=5; 3; 2);

| [�; �; �+ �; 2�+ �; �+ 2�];

| CQ: N3;2;

| Aut N5;2;3 : 26666666664

a11 a12 0 0 0

a21 a22 0 0 0

a31 a32 e 0 0

a41 a42 a11 a32 � a12 a31 a11 e a12 e

a51 a52 a21 a32 � a22 a31 a21 e a22 e

37777777775
;

where e = a11a22 � a12a21, dimRu = 6 and S = GL2:

N5;3;1 : [x1; x2] = [x3; x4] = x5;

| a Heisenberg Lie algebra;

| (1; 5=5; 1);

| [�; 
 � �; �; 
 � �; 
];
| CQ: N4;4;
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| Aut N5;3;1 : "
�A 0

u �2

#
; � 6= 0;

where A satis�es AtJA = J , with

J =

"
0 1

�1 0

#
�
"

0 1

�1 0

#
;

u is an arbitrary 4-dimensional vector, dimRu = 4; and S = (GL1 � Sp4)=Z2.

N5;3;2 : [x1; x2] = x4; [x1; x3] = x5;

| (2; 5=5; 2);

| [�; �; 
; �+ �; �+ 
];

| CQ: N3;3;

| Aut N5;3;2 : 26666666664

a11 0 0 0 0

a21 a22 a23 0 0

a31 a32 a33 0 0

a41 a42 a43 a11 a22 a11 a23

a51 a52 a53 a11 a32 a11 a33

37777777775
;

with dimRu = 8 and S = GL1 �GL2:

DECOMPOSABLE ALGEBRAS

Dimension 2

N2;2 : a2;

| Aut N2 = GL2;

Dimension 3

N3;3 : a3;

| Aut N3;3 = GL3:
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Dimension 4

N4;3 : N3;2� a1; or [x1; x2] = x3;

| Aut N4;3 : 26666664
a11 a12 0 0

a21 a22 0 0

a31 a32 a11 a22 � a12 a21 a34

a41 a42 0 a44

37777775 ;
with dimRu = 5, S = GL1 �GL2.

N4;4 : a4;

| Aut N4;4 = GL4:

Dimension 5

N5;3;3 : N4;2 � a1;

| Aut N5;3;3 : 26666666664

a11 0 0 0 0

a21 a22 0 0 0

a31 a32 a11 a22 0 0

a41 a42 a11 a32 a11
2a22 a45

a51 a52 0 0 a55

37777777775
;

with dimRu = 8, S = GL31:

N5;4 : N3;2� a2;

| Aut N5;4 : 26666666664

a11 a12 0 0 0

a21 a22 0 0 0

a31 a32 a11 a22 � a12 a21 a34 a35

a41 a42 0 a44 a45

a51 a52 0 a54 a55

37777777775
;

with dimRu = 8, S = GL22.

N5;5 : a5;

| Aut N5;5 = GL5:
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3.2.2 Algebras of Dimension 6 over Algebraically Closed Fields of � 6= 2

INDECOMPOSABLE ALGEBRAS

N6;1;1 : [x1; xi] = xi+1; 2 � i � 5; [x2; xi] = xi+2; i = 3; 4;

| (1; 2; 3; 4; 6=6; 4; 3; 2; 1);

| [�; 2�; 3�; 4�; 5�; 6�];

| CQ: N5;1;

| Aut N6;1;1 : 26666666666664

a11 0 0 0 0 0

0 a11
2 0 0 0 0

a31 a32 a11
3 0 0 0

a41 a42 a11 a32 a11
4 0 0

a51 a52 u a11
2a32 a11

5 0

a61 a62 v w a11
3a32 a11

6

37777777777775
;

where u = a11a42 � a211a31; v = a11a52 � a211a41; w = a211a42 � a311a31; dimRu = 8; and

S = GL1:

N6;1;2 : [x1; xi] = xi+1; i = 2; 3; 4; [x2; x3] = x5; [x2; x5] = x6; [x3; x4] = �x6:
|(1; 2; 3; 4; 6=6; 4; 3; 2; 1);

| [�; 2�; 3�; 4�; 5�; 7�];

| CQ: N5;1;

| Aut N6;1;2 :

26666666666664

a11 0 0 0 0 0

0 a11
2 0 0 0 0

a31 a32 a11
3 0 0 0

a41
a32

2

2 a112
a11 a32 a11

4 0 0

a51 a52 u a11
2a32 a11

5 0

a61 a62 v w �a31 a114 a11
7

37777777777775
;

where u = a11a
2
32=(2a

2
11)�a211a31, v = a32a41�a211a51�a31a232=(2a211), w = a311a41�a31a11a32,

dimRu = 7; and S = GL1;
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N6;1;3 : [x1; xi] = xi+1; 2 � i � 5; [x2; x3] = x6;

| (1; 2; 3; 4; 6=6; 4; 3; 2; 1);

| [�; 3�; 4�; 5�; 6�; 7�];

| CQ: N5;2;1;

| Aut N6;1;3 : 26666666666664

a11 0 0 0 0 0

a21 a11
3 0 0 0 0

a31 a32 a11
4 0 0 0

a41 a42 a11 a32 a11
5 0 0

a51 a52 a11 a42 a11
2a32 a11

6 0

a61 a62 u v a11
3a32 a11

7

37777777777775
;

where u = a11a52 + a21a32 � a311a31, v = a211a42 + a21a
4
11, dimRu = 9 and S = GL1.

N6;1;4 : [x1; x2] = x3; [x1; x3] = x4; [x1; x4] = x6; [x2; x3] = x6; [x2; x5] = x6;

| (1; 3; 4; 6=6; 3; 2; 1);

| [�; 2�; 3�; 4�; 3�; 5�];

| CQ: N5;3;3 = N4;2 � a1;

| Aut N6;1;4 : 26666666666664

a11 0 0 0 0 0

a21 a11
2 0 0 0 0

a31 a32 a11
3 0 0 0

a41 a42 a11a32 a11
4 �a21a211 0

a51 a52 0 0 a11
3 0

a61 a62 u v a65 a11
5

37777777777775
;

where u = a11a42 + a21(a32 + a52) � a211(a31 + a51), v = a211a32 + a21a
3
11; dimRu = 10 and

S = GL1:

N6;2;1 : [x1; xi] = xi+1; 2 � i � 5;

| (1; 2; 3; 4; 6=6; 4; 3; 2; 1);

| [�; �; �+ �; 2�+ �; 3�+ �; 4�+ �];

| CQ: N5;2;1;
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| Aut N6;2;1 : 26666666666664

a11 0 0 0 0 0

a21 a22 0 0 0 0

a31 a32 a11 a22 0 0 0

a41 a42 a11 a32 a11
2a22 0 0

a51 a52 a11 a42 a11
2a32 a11

3a22 0

a61 a62 a11 a52 a11
2a42 a11

3a32 a11
4a22

37777777777775
;

with dimRu = 9 and S = GL21.

N6;2;2 : [x1; xi] = xi+1; i = 2; 3; 4; [x2; x5] = x6; [x3; x4] = �x6;
| (1; 2; 3; 4; 6=6; 4; 3; 2; 1);

| [�; �; �+ �; 2�+ �; 3�+ �; 3�+ 2�];

| CQ: N5;2;1;

| Aut N6;2;2 :

26666666666664

a11 0 0 0 0 0

0 a22 0 0 0 0

a31 a32 a11 a22 0 0 0

a41
a32

2

2a22
a11 a32 a11

2a22 0 0

a51 a52
a11 a32

2

2 a22
a11

2a32 a11
3a22 0

a61 a62 u v �a31 a112a22 a11
3a22

2

37777777777775
;

where u = a32a41 � a22a51 � a31a
2
32=(2a22), v = a11a22a41 � a31a11a32, dimRu = 7 and

S = GL21;

N6;2;3 : [x1; x2] = x4; [x1; xi] = xi+1; i = 4; 5; [x2; x3] = x5; [x3; x4] = �x6;
| (1; 2; 4; 6=6; 3; 2; 1);

| [�; �; 2�; �+ �; 2�+ �; 3�+ �];

| CQ: N5;2;2;
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| Aut N6;2;3 : 26666666666664

a11 0 0 0 0 0

a21 a22 0 0 0 0

0 0 a11
2 0 0 0

a41 a42 �a21 a11 a11 a22 0 0

a51 a52 �a11 a41 a11 a42 a11
2a22 0

a61 a62 a63 a11 a52 a11
2a42 a11

3a22

37777777777775
;

with dimRu = 8 and S = GL21.

N6;2;4 : [x1; x2] = x3; [x1; x3] = x4; [x1; x4] = x6; [x2; x5] = x6;

| (1; 3; 4; 6=6; 3; 2; 1);

| [�; �; �+ �; 2�+ �; 3�; 3�+ �];

| CQ: N5;3;3 = N4;2 � a1;

| Aut N6;2;4 : 26666666666664

a11 0 0 0 0 0

a21 a22 0 0 0 0

a31 a32 a11 a22 0 0 0

a41 a42 a11 a32 a11
2a22 �a21 a112 0

a51 a52 0 0 a11
3 0

a61 a62 u a11
2a32 a65 a11

3a22

37777777777775
;

where u = a11a42 + a21a52 � a22a51, dimRu = 10; and S = GL21.

N6;2;5 : [x1; xi] = xi+1; i = 2; 3; 5; [x2; xj] = xj+2; j = 3; 4;

| (1; 3; 4; 6=6; 4; 3; 1);

| [�; �; �+ �; 2�+ �; �+ 2�; 2�+ 2�];

| CQ: N5;2;3;

| Aut N6;2;5 :
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Aut0 :

26666666666664

a11 0 0 0 0 0

0 a22 0 0 0 0

a31 a32 a11 a22 0 0 0

a41 a42 a11 a32 a11
2a22 0 0

a51 a52 �a22 a31 0 a11 a22
2 0

a61 a62 u v w a11
2a22

2

37777777777775
;

� =

"
0 1

1 0

#
� [�1]�

"
0 �1
�1 0

#
� [�1] ;

where u = a11a52� a22a41, v = �a11a22a31, w = a11a22a32, dimRu = 8 and S = GL21 � Z2.

N6;2;6 : [x1; x2] = x4; [x1; x3] = x5; [x1; x4] = x6; [x3; x5] = x6;

| (1; 3; 6=6; 3; 1);

| [�;��+ 2�; �; 2�; �+ �; �+ 2�];

| CQ: N5;3;2;

| Aut N6;2;6 : 26666666666664

a11 0 0 0 0 0

a21
a33

2

a11
�a31 a33

a11
0 0 0

a31 0 a33 0 0 0

a41 a42 a43 a33
2 �a31 a33 0

a51 0 a53 0 a11 a33 0

a61 a62 a63 a11 a42 u a11 a33
2

37777777777775
;

where u = a11a43 + a31a53 � a33a51, dimRu = 10 and S = GL31.

N6;2;7 : [x1; xi] = xi+1; i = 2; 3; 4; [x2; x3] = x6;

| (2; 3; 4; 6=6; 4; 3; 2);

| [�; �; �+ �; 2�+ �; 3�+ �; �+ 2�];

| CQ: N4;2;
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| Aut N6;2;7 : 26666666666664

a11 0 0 0 0 0

a21 a22 0 0 0 0

a31 a32 a11 a22 0 0 0

a41 a42 a11 a32 a11
2a22 0 0

a51 a52 a11 a42 a11
2a32 a11

3a22 0

a61 a62 u a11 a21 a22 0 a11 a22
2

37777777777775
;

where u = a21a32 � a22a31, dimRu = 9; and S = GL21.

N6;2;8 : [x1; x2] = x3; [x1; x3] = x5; [x1; x4] = x6; [x2; x4] = x5;

| (2; 4; 6=6; 3; 1);

| [�; �; �+ �; 2�; 2�+ �; 3�];

| CQ: N4;3;

| Aut N6;2;8 : 26666666666664

a11 0 0 0 0 0

a21 a22 0 0 0 0

a31 a32 a11 a22 a34 0 0

a41 a42 0 a11
2 0 0

a51 a52 u a54 a11
2a22 v

a61 a62 a11 a42 a64 0 a11
3

37777777777775
;

where u = a11a32 + a21a42 � a22a41 and v = a11a34 + a211a21, dimRu = 12 and S = GL21.

N6;2;9 : [x1; x2] = x3; [x1; x3] = x5; [x2; x3] = x6; [x2; x4] = x6;

| (2; 4; 6=6; 3; 2);

| [�; �; �+ �; �+ �; 2�+ �; �+ 2�];

| CQ: N4;3 = N3;2 � a1;
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| Aut N6;2;9 :

Aut0 :

26666666666664

a11 0 0 0 0 0

0 a22 0 0 0 0

a31 a32 a11 a22 0 0 0

a41 a42 0 a11 a22 0 0

a51 a52 a11 a32 a54 a11
2a22 0

a61 a62 u a64 0 a11 a22
2

37777777777775
;

and

� =

"
0 1

1 0

#
�
" �1 �1

0 1

#
�
"

0 �1
�1 0

#
;

with u = �a22 (a31 + a41) ; and dimRu = 10; and S = GL21 � Z2.

N6;2;10 : [x1; x2] = x3; [x1; x3] = x5; [x2; x3] = x6; [x2; x4] = x5;

| (2; 4; 6=6; 3; 2);

| [�; �; �+ �; 2�; 2�+ �; �+ 2�];

| CQ: N4;3 = N3;2 � a1;

| Aut N6;2;10 : 26666666666664

a11 a12 0 0 0 0

0 a22 0 0 0 0

a31 a32 a11 a22 0 0 0

a41 a42 0 a11
2 0 0

a51 a52 u a54 a11
2a22 a11 a22 a12

a61 a62 �a22 a31 a64 0 a11 a22
2

37777777777775
;

where u = a11a32 � a12a31 � a22a41, dimRu = 11 and S = GL21.

N6;3;1 : [x1; xi] = xi+2; i = 2; 3; [x2; x5] = [x3; x4] = x6;

| (1; 3; 6=6; 3; 1);

| [�; �; 
; �+ �; �+ 
; �+ � + 
];

| CQ: N5;3;2;
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| Aut N6;3;1 :

Aut0 :

26666666666664

a11 0 0 0 0 0

0 a22 0 0 0 0

0 0 a33 0 0 0

a41 a42 a43 a11 a22 0 0

a51 a52
a33 a42
a22

0 a11 a33 0

a61 a62 a63 �a22 a51 �a33 a41 a11 a22 a33

37777777777775
;

and

� =
h
1
i
�
"
0 1

1 0

#
�
"
0 1

1 0

#
� [1] ;

with dimRu = 8 and S = GL31 � Z2.

N6;3;2 : [x1; x2] = x3; [x1; x3] = x6; [x4; x5] = x6;

| (1; 4; 6=6; 2; 1);

| [�; � + 
 � 2�; � + 
 � �; �; 
; �+ 
];

| CQ: N5;4 = N3;2 � a2;

| Aut N6;3;2 : 26666666666664

a11 0 0 0 0 0

a21
e

a112
0 0 0 0

a31 a32
e
a11

f
a11

g
a11

0

a41 0 0 a44 a45 0

a51 0 0 a54 a55 0

a61 a62 a11 a32 a64 a65 e

37777777777775
;

where e = a44a55 � a45a54, f = a44a51 � a41a54; g = a45a51 � a41a55, dimRu = 9 and

S = GL1 �GL2.

N6;3;3 : [x1; x2] = x3; [x1; x4] = x6; [x2; x3] = x5;

| (2; 4; 6=6; 3; 1);

| [�; �; �+ �; 
; �+ 2�; �+ 
];

| CQ: N4;3 = N3;2 � a1;

36



| Aut N6;3;3 : 26666666666664

a11 0 0 0 0 0

0 a22 0 0 0 0

a31 a32 a11 a22 0 0 0

a41 a42 0 a44 0 0

a51 a52 �a22 a31 a54 a11 a22
2 0

a61 a62 a11 a42 a64 0 a44 a11

37777777777775
;

with dimRu = 10 and S = GL31.

N6;3;4 : [x1; x2] = x3; [x2; x3] = x5; [x2; x4] = x6;

| (2; 4; 6=6; 3; 1);

| [�; �; �+ �; 
; �+ 2�; � + 
];

| CQ: N4;3 = N3;2 � a1;

| Aut N6;3;4 : 26666666666664

a11 a12 0 0 0 0

0 a22 0 0 0 0

a31 a32 a11 a22 a34 0 0

a41 a42 0 a44 0 0

a51 a52 �a22 a31 a54 a11 a22
2 a22 a34

a61 a62 �a22 a41 a64 0 a44 a22

37777777777775
with dimRu = 12 and S = GL31:

N6;3;5 : [x1; x2] = x5; [x1; x4] = x6; [x2; x3] = x6;

| (2; 6=6; 2);

| [�; �; 
� �; 
 � �; �+ �; 
];

| CQ: N4;4;
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| Aut N6;3;5 : 26666666666664

a11 a12 0 0 0 0

a21 a22 0 0 0 0

a31 a32
a11 a66

e �a12 a66
e 0 0

a41 a42 �a21 a66
e

a22 a66
e 0 0

a51 a52 a53 a54 e 0

a61 a62 a63 a64 u a66

37777777777775
;

where e = a11a22 � a12a21, u = a11a42 + a21a32 � a12a41 � a22a31, dimRu = 12 and S =

GL2 �GL1.

N6;3;6 : [x1; x2] = x4; [x1; x3] = x5; [x2; x3] = x6;

| Free nilpotent Lie algebra of class 2 with 3 generators;

| (3; 6=6; 3);

| [�; �; 
; �+ �; �+ 
; � + 
];

| CQ: N3;3;

| Aut N6;3;6 : 26666666666664

a11 a12 a13 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 0 0 0

a41 a42 a43 r s t

a51 a52 a53 u v w

a61 a62 a63 x y z

37777777777775
;

where
r = a11a22 � a12a21; s = a11a23 � a13a21; t = a12a23 � a13a22;
u = a11a32 � a12a31; v = a11a33 � a13a31; w = a12a33 � a13a32;
x = a21a32 � a22a31; y = a21a33 � a23a31; z = a22a33 � a23a32;

with dimRu = 9 and S = GL3.

DECOMPOSABLE ALGEBRAS

N6;2;11 : N5;1 � a1;
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| Aut N6;2;11 : 26666666666664

a11 0 0 0 0 0

a21 a11
2 0 0 0 0

a31 a32 a11
3 0 0 0

a41 a42 a11 a32 a11
4 0 0

a51 a52 u v a11
5 a56

a61 a62 0 0 0 a66

37777777777775
;

where u = a11 a42 + a21 a32 � a112a31, v = a11
2a32 + a21 a11

3, dimRu = 10 and S = GL21.

N6;3;7 : N5;2;1� a1;

| Aut N6;3;7 : 26666666666664

a11 0 0 0 0 0

a21 a22 0 0 0 0

a31 a32 a11 a22 0 0 0

a41 a42 a11 a32 a11
2a22 0 0

a51 a52 a11 a42 a11
2a32 a11

3a22 a56

a61 a62 0 0 0 a66

37777777777775
;

with dimRu = 10 and S = GL21.

N6;3;8 : N5;2;2� a1;

| Aut N6;3;8 : 26666666666664

a11 0 0 0 0 0

a21 a22 0 0 0 0

a31 a32 a11
2 0 0 0

a41 a42 �a21 a11 a11 a22 0 0

a51 a52 a53 u a11
2a22 a56

a61 a62 a63 0 0 a66

37777777777775
;

with u = a11 a42 + a21 a32 � a22 a31, dimRu = 12 and S = GL31.

N6;3;9 : N5;2;3� a1;
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| Aut N6;3;9 : 26666666666664

a11 a12 0 0 0 0

a21 a22 0 0 0 0

a31 a32 u 0 0 0

a41 a42 v a11 u a12 u a46

a51 a52 w a21 u a22 u a56

a61 a62 0 0 0 a66

37777777777775
where u = a11 a22 � a12 a21, v = a11 a32 � a12 a31, w = a21 a32 � a22 a31, dimRu = 10;

S = GL2 �GL1.

N6;4;1 : N5;3;1� a1;

| Aut N6;4;1 : dimRu = 9, and S = S0 � GL1, with S
0 = (GL1 � Sp4)=Z2.

N6;4;2 : N5;3;2� a1;

| Aut N6;4;2 : 26666666666664

a11 0 0 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 0 0 0

a41 a42 a43 a11 a22 a11 a23 a46

a51 a52 a53 a11 a32 a11 a33 a56

a61 a62 a63 0 0 a66

37777777777775
;

with dimRu = 13; and S = GL21 � GL2.

N6;4;3 : N4;2 � a2;

| Aut N6;4;3 : 26666666666664

a11 0 0 0 0 0

a21 a22 0 0 0 0

a31 a32 a11 a22 0 0 0

a41 a42 a11 a32 a11
2a22 a45 a46

a51 a52 0 0 a55 a56

a61 a62 0 0 a65 a66

37777777777775
;

with dimRu = 11; and S = GL21 � GL2.

N6;4;4 : N3;2 �N3;2; or [x1; x2] = x5; [x3; x4] = x6;
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| Aut N6;4;4 :

Aut0 :

26666666666664

a11 a12 0 0 0 0

a21 a22 0 0 0 0

0 0 a33 a34 0 0

0 0 a43 a44 0 0

a51 a52 a53 a54 u 0

a61 a62 a63 a64 0 v

37777777777775
;

� =

26666664
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

37777775�
"
0 1

1 0

#
;

where u = a11a22 � a21a12, v = a33a44 � a34a43, dimRu = 8; and S = GL22 � Z2.

N6;5 : N3;2� a3;

| Aut N6;5 : 26666666666664

a11 a12 0 0 0 0

a21 a22 0 0 0 0

a31 a32 a11 a22 � a12 a21 a34 a35 a36

a41 a42 0 a44 a45 a46

a51 a52 0 a54 a55 a56

a61 a62 0 a64 a65 a66

37777777777775
;

with dimRu = 11; and S = GL2 � GL3.

N6;6 : a6;

|Aut N6;6 = GL6:

3.2.3 Algebras of Dimension 6 over Algebraically Closed Fields of � = 2

In addition to the algebras over algebraically closed �elds of � 6= 2, we have the following 5

extra indecomposable algebras for � = 2:

(A): [x1; xi] = xi+1; 2 � i � 5; [x2; x3] = x5 + x6; [x2; x4] = x6;

| (1; 2; 3; 4; 6=6; 4; 3; 2; 1);
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| Characteristically nilpotent Lie algebra;

| CQ: N5;1;

Remarks: (1) This algebra was �rst observed by Bratzlavsky [4], which turns out to be the

only characteristically nilpotent Lie algebra in dimension 6 when � = 2; (2) When � 6= 2,

this algebra is isomorphic to N6;1;1, which is not characteristically nilpotent. In fact, in this

case, the smallest algebra which is characteristically nilpotent is of dimension 7 (see Favre

[9]).

(B): [x1; x2] = x4; [x1; x4] = x5; [x1; x5] = x6; [x2; x3] = x5 + x6; [x3; x4] = �x6;
| (1; 2; 4; 6=6; 3; 2; 1);

| CQ: N5;2;2;

Remark: When � 6= 2, this algebra is isomorphic to N6;2;3.

(C): [x1; xi] = xi+1; i = 2; 3; 5; [x2; x3] = x5; [x2; x4] = [x2; x5] = x6;

| (1; 3; 4; 6=6; 4; 3; 1);

| CQ: N5;2;3;

Remark: When � 6= 2, this algebra is isomorphic to N6;2;5.

(D): [x1; x2] = x4; [x1; x3] = x5; [x2; x5] = x6; [x3; x4] = x6; [x3; x5] = x6;

| (1; 3; 6=6; 3; 1);

| CQ: N5;3;2;

Remark: When � 6= 2, it is isomorphic to N6;3;1.

(E): [x1; x2] = x3, [x1; x3] = x5, [x1; x4] = x6,[x2; x3] = x6, [x2; x4] = x5;

| (2; 4; 6=6; 3; 2);

| CQ: N4;3;

Remark: When � 6= 2, it is isomorphic to N6;2;10.
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3.3 The Proof for 6-Dimensional Algebras

From the description of Skjelbred and Sund's method, it is easy to see that, if g
0 is a

central extension of g without Abelian factors , then the dimension of Z(g0) cannot ex-

ceed dimH2(g;F). So an indecomposable 6 dimensional nilpotent Lie algebra cannot be

a central extension of any 2-dimensional nilpotent Lie algebra. Furthermore the only 3

dimensional nilpotent Lie algebra that has nontrivial central extensions of dimension 6 is

N3;3, the Abelian algebra. So we will start from considering its central extensions. The

5-dimensional Abelian algebra N5;5 has no 6 dimensional central extensions either, as all

the skew symmetric bilinear maps are singular on a 5 dimensional vector space.

Revoy [23] has obtained a complete list for all the 2-step nilpotent Lie algebras of dimension

� 7 with the number of generators � 4. There are 3 such algebras of dimension 6, i.e.,

L6;1; L6;2 and L6;3 in his list, which are the central extenisons of 3 or 4 dimensional Abelian

Lie algebras.

3.3.1 Extensions of 3-Dimensional Algebras

Central extensions of N3;3 :

Z(g): x1; x2; x3; [g; g]: 0; dimH2: 3; Basis: �12;�13;�23;

There is only one 3-dimensional subspace, therefore the only representative for G3(H
2(g;F))

can be chosen to be A1 = [1; 0; 0]; A2 = [0; 1; 0];A3 = [0; 0; 1], corresponding to N6;3;6.

So the central extension of N3;3 of dimension 6 is:

N6;3;6 : [x1; x2] = x4; [x1; x3] = x5 [x2; x3] = x6.

Remark: Revoy [23] has also obtained this algebra (L6;1). We can see that the Skjelbred-

Sund method works quite well in this case.

3.3.2 Extensions of 4-Dimensional Algebras

Central extensions of N4;2 :

Z(g): x4; [g; g]: x3; x4; Z
2(g): C24 = C34 = 0; W (H2): C12 = C13 = 0; dimH2: 2; Basis:

�14;�23;

There is only one 2-dimensional subspace in H2(g;F). Then the only representative in

G2(H
2(g;F)) can be chosen to be A = [1; 0] and B = [0; 1], corresponding to N6;2;7.

So the central extension of N4;2 of dimension 6 is

N6;2;7 : [x1; xi] = xi+1; i = 2; 3; 4, [x2; x3] = x6.
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Central extensions of N4;3:

Z(g): x3; x4; [g; g]: x3; Z
2(g): C34 = 0; W (H2): C12 = 0; dimH2: 4; Basis: �13;�14; �23;

�24;

Group Action: a�13 + b�14 + c�23 + d�24, let � := a11a22 � a12a21, then
a ! aa11� + ca21�; b ! aa11a34 + ba11a44 + ca21a34 + da21a44; c ! aa12� + ca22�; d !
aa12a34 + ba12a44 + ca22a34 + da22a44.

Let V0 be the subspace generated by �14 and �24, it is a submodule under the group action.

Let L be any two-dimensional subspace of H2(g;F). Denote L = A ^ B, where A;B 2
H2(g;F).

Case 1: L
T
V0 6= 0. Then we assume that in A, both a = c = 0. As one of b; d 6= 0, we can

always make b = 1 and d = 0 to assume A = [0; 1; 0; 0]. Fixing A, we require a12 = 0 and

a11a44 = 1. Now assume B = [a; 0; c; d] and one of a; c 6= 0. We have a ! aa11� + ca21�;

b = 0! aa11a34 + ca21a34 + da21a44; c ! ca22�; d ! ca22a34 + da22a44.

If c 6= 0, then make a = d = 0 by solving for a21 and a34 respectively to get (1)B = [0; 0; 1; 0],

with A ^B corresponding to N6;3;3.

If c = 0, then a 6= 0, depending on whether d = 0 or not, we get two representatives for

B: (2) B = [1; 0; 0; 0] (which can be easily showed to be in the same orbit as A ^B, where
A = [0; 0; 0; 1] and B = [0; 0; 1; 0], corresponding to N6;3;4) and (3) B = [1; 0; 0; 1] (A ^ B
corresponding to N6;2;8).

Case 2: L
T
V0 = 0. Then at least one of a; c in both A and B are nonzero. Assume

A = [1; b; c; d]. Make b = c = 0 in A, and depending on whether d = 0 or not, we get two

representatives for A = [1; 0; 0; 0] and A = [1; 0; 0; 1].

For A = [1; 0; 0; 0], assume B = [0; b; c; d]. Then c 6= 0 and one of b; d 6= 0. Fix A (up to a

scalar), we require a12 = a34 = 0. Now in B, we have

a = 0 ! 0 (by subtracting a multiple of A from B); b ! ba11a44 + da21a44; c ! ca22�;

d! da22a44;

If d 6= 0, make b = 0 and get (4) B = [0; 0; 1; 1] (A ^ B corresponding to N6;2;9).

If d = 0, then b 6= 0 and get (5) B = [0; 1; 1; 0] (A ^ B corresponding to N6;2;10).

For A = [1; 0; 0; 1], assume B = [0; b; c; d], with c 6= 0. To �x A (up to a scalar), we require

a44 = a211, a12 = 0, a34 = �a21a11. Then
a = 0! ca21a11a22; b! ba11a44 + ca21a34 + da21a44; c! ca22�; d! ca22a11a21 + da22a44;

Subcase 2.1: � 6= 2. We can make a = d by solving for a21 and subtract a multiple of A from

B to make both a = d = 0. Then depending on b = 0 or not, we get two representatives

for B: (4') B = [0; 1; 1; 0] (A ^ B corresponding to N6;2;9) and (5') B = [0; 0; 1; 0] (A ^ B
corresponding to N6;2;10).
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We prove at �rst that the following two pairs are isomorphic: (4) and (4'), (5) and (5').

For (4) and (4'), take x1 ! x1�x2, x2 ! x1+x2, x3 ! 2x3, x4 ! x3+x4, x5 ! 2x5�2x6,
x6 ! 2x5 + 2x6.

For (5') and (5), take x1 ! x2, x2 ! x1, x3 ! �x3, x4 ! �x4, x5 ! �x6 and x6 ! �x5.
To show the nonisomorphism between the algebras, we just need to compare the algebras

among the same group as follows:

Group 1: (1), (2) and (3);

Group 2: (4) and (5').

In Group 1, take (1) as an example. To show (1) is not isomorphic to (2) and (3), we just

compare their orbits. In (1), A = [0; 1; 0; 0] and B = [0; 0; 1; 0]. Under the group action, we

have A! [0; a11a44; 0; a12a44] and B ! [a21�; a21a34; a22�; a22a34].

So the wedge product is

A ^ B ! a21�a11a44�14 ^�13 + �a44a34�14 ^�24 + a11a44a22��14 ^�23

+a12a44a21��24 ^�13 + a12a44a22��24 ^�23

Now compare with (2) and (3), we know the coe�cients of �14 ^ �23 , �24 ^ �13 and

�24 ^�23 are zero, i.e., a11a22a44 = a12a21a44 = a12a22a44 = 0, as a44 6= 0, we must have

a22 = 0, and a12a21 = 0, which is impossible, so (1) cannot be isomorphic to (2) or (3).

Similarly we can prove the distinctness between all the other algebras.

Subcase 2.2: � = 2. Now we consider two subcases:

Subcase 2.2.1: d = 0. Then we can make a = d = 0 by taking a21 = 0. And depending on

b = 0 or not, we get two representatives for B: (6) B = [0; 1; 1; 0] (A ^ B corresponding to

(E)) and (5") B = [0; 0; 1; 0] (A^B corresponding to N6;2;10, which can be seen easily from

the isomorphim given between (5) and (5')).

Subcase 2.2.2: d 6= 0. Then depending on b = 0 or not, we get two representatives for B:

(4"): B = [0; 0; 1; 1] or (7) B = [0; 1; 1; 1] (A ^B corresponding to N6;2;9).

We can prove that (4") is isomorphic to (4): x1 ! �x2, x2 ! x1+x2, x3 ! x3, x4 ! x3�x4,
x5 ! x5 + x6, x7 ! �x7.
From Subcase 2.1, we know that (6) is isomorphic to (4) when � 6= 2. Now we compare the

orbits of (4) with both (6) and (7) under the condition that � = 2.

In (4), A = [1; 0; 0; 0] and B = [0; 0; 1; 1]. Then under the automorphism group, A !
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[a11�; a11a34; a12�; a12a34] and B ! [a21�; a21a34 + a21a44; a22�; a22a34 + a22a44]. Then

A ^ B ! (a11�a21a44)�13 ^�14

+(a11�a22� � a12�a21�)�13 ^�23

+(a11�(a22a34 + a22a44)� a12a34a21�)�13 ^�24

+(a11a34a22� � a12�(a21a34 + a21a44))�14 ^�23

+(a11a34(a22a34 + a22a44)� a12a34a22�)�14 ^�24

+(a12�a22a44)�23 ^�24

Compare with (6), if (6) and (4) are in the same orbit, we would require that the coe�cients

of �13 ^�24 and �14 ^�23 to be zero, which give us

a34 =
�a11a22a44

�
=
a12a21a44

�
:

and leads to the singularitiy of the automorphism group. Therefore (4) and (6) cannot be

isomorphic when � = 2.

Compare with (7), if (7) and (4) are in the same orbit, then the coe�cients of �13 ^�14,

�13^�23, �13^�24, �14^�23, �24^�14 and �24^�23 are all equal (nonzero), while the

coe�cient of �14 ^�23 is 0. A simple computation shows that we can indeed �nd a set of

solutions while maintaining the nonsingularity of the automorphism group. Therefore (7)

and (4) are isomorphic.

So the central extensions of N4;3 of dimension 6 are:

N6;2;8 : [x1; x2] = x3, [x1; x3] = x5, [x1; x4] = x6,

[x2; x4] = x5;

N6;2;9 : [x1; x2] = x3, [x1; x3] = x5, [x2; x3] = x6,

[x2; x4] = x6;

N6;2;10: [x1; x2] = x3; [x1; x3] = x5, [x2; x3] = x6;

[x2; x4] = x5;

N6;3;3 : [x1; x2] = x3, [x1; x4] = x6, [x2; x3] = x5;

N6;3;4 : [x1; x2] = x3, [x2; x3] = x5, [x2; x4] = x6;

(E): ( for � = 2 only)

[x1; x2] = x3, [x1; x3] = x5, [x1; x4] = x6,

[x2; x3] = x6, [x2; x4] = x5:

Central extensions of N4;4:

According to Revoy [23], the central extension of N4;4 of dimension 6 is:

N6;3;5 : [x1; x2] = x5; [x1; x4] = x6; [x2; x3] = x6;
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3.3.3 Extensions of 5-Dimensional Algebras

Central extensions of N5;1 :

Z(g): x5; [g; g]: x3; x4; x5; Z
2(g): C15 � C24 = 0; C34 + C25 = 0; C35 = C45 = 0; W (H2):

C12 = C13 = C14 = 0; dimH2: 3; Basis: �15 + �24;�23;�25 ��34;

Group Action: a(�15 + �24) + b�23 + c(�25��34)

a! aa611 + ca511a21; b! �2aa411a21 + ba511 + ca11(2a
2
11a42 � a232 � a211a221); c! ca711;

One of a; c 6= 0. When c 6= 0, make a = 0 by solving for a21, and b = 0 by solving for a32,

and get the representative [0; 0; 1] (corresponding to N6;1;2).

When c = 0, then a 6= 0, get a ! aa611 and b ! �2aa411a21 + ba511. If � 6= 2, make

b = 0 by solving for a21 and get [1; 0; 0] (corresponding to N6;1;1 ); If � = 2, then we have

b! ba511, and get two representatives [1; 0; 0] (corresponding to N6;1;1 ) for b = 0 and [1; 1; 0]

(corresponding to (A)) for b 6= 0.

So the central extensions of N5;1 of dimension 6 are:

(A): (for � = 2 only)

[x1; xi] = xi+1; 2 � i � 5; [x2; x3] = x5 + x6; [x2; x4] = x6;

N6;1;1 : [x1; xi] = xi+1; 2 � i � 5; [x2; xi] = xi+2; i = 3; 4;

N6;1;2 : [x1; xi] = xi+1; i = 2; 3; 4; [x2; x3] = x5;

[x2; x5] = x6; [x3; x4] = �x6:

The central extensions of N5;2;1 can be found in chapter 2, Example 5.

The central extensions of N5;2;2 can be found in chapter 2, Example 1.

Central extensions of N5;2;3:

Z(g): x4; x5; [g; g]: x3; x4; x5; Z2(g): C15 � C24 = 0, C34 = C35 = C45 = 0; W (H2):

C12 = C13 = C23 = 0; dimH2: 3; Basis: �14;�15 +�24;�25;

Group Action: a�14 + b(�15 +�24) + c�25

Let � := a11a22 � a12a21.
a ! (aa211 + 2ba11a21 + ca221)�; b ! (aa11a12 + ba11a22 + ba12a21 + ca21a22)�; c ! (aa212 +

2ba12a22 + ca222)�;

Case 1: � 6= 2.

Subcase 1: b2� ac 6= 0. Assume b 6= 0. Then we can make a = c = 0 by solving for a21 and

a22, i.e.

a21 =
�b�pb2 � ac

c
a11; a22 =

�b� pb2 � ac
c

a12:
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Choose appropriately a21 and a22 to ensure that the automorphism is nonsingular, we get

the representative [0; 1; 0], corresponding to N6;2;5.

Subcase 2: b2 � ac = 0. Assume c 6= 0. Making a = 0 by solving for a12, we get a22 =

�ba12=c. Plug in the formula for b, we have b! (aa11a12�b2a11a12=c+ba12a21�ba12a21) =
0, since b2 = ac. So we have the representative [0; 0; 1], which contains the central element

x4 in its kernel. Therefore we omit it.

Case 2: � = 2. Then we have a! (aa211+ca
2
21)�; b! (aa11a12+ba11a22+ba12a21+ca21a22)�,

c! (aa212 + ca222)�. If both a; c = 0, we get [0; 1; 0] (corresponding to N6;2;5), and if one of

a; c 6= 0, make c = 1 and a = 0, get [0; 1; 1] (corresponding to (C)).

So the central extensions of N5;2;3 of dimension 6 are:

(C): (for � = 2 only)

[x1; xi] = xi+1; i = 2; 3; 5 [x2; x3] = x5 [x2; x4] = x6;

[x2; x5] = x6;

N6;2;5 : [x1; xi] = xi+1; i = 2; 3; 5 [x2; x3] = x5 [x2; x4] = x6:

Central extension of N5;3;1:

Z(g): x5; [g; g]: x5; Z
2(g): C15 = 0, C25 = C35 = C45 = 0; W (H2): C12 = 0; dimH2: 5;

Basis: �13;�14;�23;�24;�34;

It is obvious from this basis that all the elements in H2(g;F) have x5 in its kernel, so it

does not have any central extension without Abelian factors.

Central extensions of N5;3;2:

Z(g): x4; x5; [g; g]: x4; x5; Z
2(g): C45 = 0, C25 � C34 = 0; W (H2): C12 = C13 = 0; dimH2:

6; Basis: �14;�15;�23;�24;�25 +�34;�35;

Group Action: a�14 + b�15 + c�23 + d�24 + e(�25 + �34) + f�35;

a! aa211a22 + ba211a32 + da11a21a22 + ea11(a21a32 + a22a31) + fa11a32a31;

b! aa211a23 + ba211a33 + da11a21a23 + ea11(a21a33 + a23a31) + fa11a33a31;

c ! c(a22a33 � a32a23) + d(a22a43 � a42a23) + e(a22a53 � a52a23) + e(a32a43 � a42a33) +

f(a32a53 � a52a33);
d! da11a

2
22 + 2ea11a22a32 + fa11a

2
32;

e! da11a22a23 + ea11(a22a33 + a23a32) + fa11a32a33;

f ! da11a
2
23 + 2ea11a23a33 + fa11a

2
33:

We have e 6= 0 or when e = 0, one of a; d 6= 0 and one of b; f 6= 0.

Case 1. � 6= 2. As one of d; e; f 6= 0, otherwise the 2-cocyles will contain some nontrivial

elements from the center in their kernel.
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When e2 � df 6= 0, we can always make e = 1. Then we further make d = f = 0 by solving

for a22 and a23 respectively to get

a22 =
�e�

p
e2 � df
d

a32; a23 =
�e �

p
e2 � df
d

a33:

Choose appropriately a22 and a23 to ensure that the automorphism is nonsingular, we will

get the representative [0; 0; 0; 0; 1; 0] (corresponding to N6;3;1).

When e2 = df , we can make d = e = 0 and f = 1 instead. Since e2 = df , by solving for a22
to make d = 0, we get a22 = �ea32=d. Plug in the expression for e, we have

da11a22a23 + ea11(a22a33 + a23a32) + fa11a32a33
= a11(�ea32a23=d+ e(�ea32a33=d+ a23a32) + fa32a33) = 0:

So we have d = e = 0, and assume f = 1. Now we can further make b = c = 0 by solving for

a52 and a31. Now we need a 6= 0 and get a representative B = [1; 0; 0; 0; 0; 1] (corresponding

to N6;2;6)

Case 2. � = 2. Then d! da11a
2
22 + fa11a

2
32; f ! da11a

2
23 + fa11a

2
33:

When both d; f = 0, then e 6= 0, we can make a = b = c = 0 and get a representative

[0; 0; 0; 0; 1; 0] (corresponding to N6;3;1). When one of d; f 6= 0, make d = 0 and f = 1. If

e 6= 0, then make a = b = c = 0 and get the representative [0; 0; 0; 0; 1; 1] (correponding to

(D)), If e = 0, Then make b = c = 0, and require a 6= 0 to get [1; 0; 0; 0; 0; 1] (corresponding

to N6;2;6).

So the central extensions of N5;3;2 of dimension 6 are:

(D): (for � = 2 only)

[x1; x2] = x4, [x1; x3] = x5; [x2; x5] = x6;

[x3; x4] = x6; [x3; x5] = x6;

N6;2;6 : [x1; x2] = x4, [x1; x3] = x5; [x1; x4] = x6;

[x3; x5] = x6;

N6;3;1 : [x1; x2] = x4, [x1; x3] = x5; [x2; x5] = x6;

[x3; x4] = x6:

Central extensions of N5;3;3:

Z(g): x4; x5; [g; g]: x3; x4; Z
2(g): C24 = C34 = C35 = C45 = 0; W (H2): C12 = C13 = 0;

dimH2: 4; Basis: �14;�15;�23;�25;

Group Action: a�14 + b�15 + c�23 + d�25;

a! aa311a22; b! aa11a45 + ba11a55 + da21a55; c! ca11a
2
22; d! da22a55;
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Both a; d 6= 0. Make b = 0, and get two representatives depending on whether c = 0 or not,

i.e., [1; 0; 0; 1] (corresponding to N6;2;4) or [1; 0; 1; 1] (corresponding to N6;1;4).

So the central extensions of N5;3;3 of dimension 6 are:

N6;1;4 : [x1; xi] = xi+1, i = 2; 3 [x1; x4] = x6;

[x2; x3] = x6; [x2; x5] = x6;

N6;2;4 : [x1; xi] = xi+1; i = 2; 3 [x1; x4] = x6; [x2; x5] = x6;

Central extensions of N5;4:

Z(g): x3; x4; x5; [g; g]: x3; Z
2(g): C34 = C35 = 0; W (H2): C12 = 0; dimH2: 7; Basis:

�13;�14;�15;�23;�24;�25;�45;

Group Action: a�13 +�14 + b�15 + c�23 + d�24 + e�25 + f�45;

Let � := a11a22 � a12a21, then
a! (aa11 + da21)�;

b! aa11a34 + ba11a44 + ca11a54 + da21a34 + ea21a44 + fa21a54 + g(a41a54 � a51a44);
c! aa11a35 + ba11a45 + ca11a55 + da21a35 + ea21a45 + fa21a55 + g(a41a55 � a51a45);
d! (aa12 + da22)�;

e! aa12a34 + ba12a44 + ca12a54 + da22a34 + ea22a44 + fa22a54 + g(a42a54 � a52a44);
f ! aa12a35 + ba12a45 + ca12a55 + da22a35 + ea22a45 + fa22a55 + g(a42a55 � a52a45);
g ! g(a44a55 � a54a45);
One of a; d 6= 0. Can always make a = 1 and d = 0. Make b = 0 by solving for a34, c = 0

for a35. Now �x a; b; c; d and we have

a! a11� = 1; b! a11a34+ea21a44+fa21a54+g(a41a54�a51a44) = 0; c! a11a35+ea21a45+

fa21a55+g(a41a55�a51a45) = 0; d! a12� = 0; e! a12a34+ea22a44+fa22a54+g(a42a54�
a52a44); f ! a12a35 + ea22a45 + fa22a55 + g(a42a55 � a52a45); g ! g(a44a55 � a54a45);
So we have a12 = 0, and we can solve for a34 and a35 to keep b = c = 0. If e 6= 0, we can

solve for a44 (let a52 = 0) to make it 0. Then we require g 6= 0 (to ensure that the kernel of

the cocyles do not contain x4). With g 6= 0, we can make further f = 0 by solving for a42.

So we get the representative [1; 0; 0; 0; 0; 0; 1], corresponding to N6;3;2.

So the central extension of N5;4 of dimension 6 is:

N6;3;2 : [x1; x2] = x3 [x1; x3] = x6; [x4; x5] = x6:
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Chapter 4

List of 7-Dimensional Nilpotent Lie

Algebras

In this chapter we list the presentations of all nonisomorphic indecomposable 7-dimensional

nilpotent Lie algebras in the following two cases: (1) over algebraically closed �elds of

characteristic 6= 2 and (2) over the real �eld. A multiplication table for each algebra is

given, with nonzero brackets only.

Over the algebraically closed �elds, there are 6 one parameter continuous families, and 119

isolated algebras in total (when � = 3, there are 120). Over the real �eld, in addition to

the algebras in the �rst list, we �nd 3 one parameter continuous families and 21 isolated

algebras, which makes it a total of 9 one parameter continuous families and 140 isolated

algebras in this case.

We follow Seeley's labelling of algebras when F is algebraically closed, i.e., each algebra

is labelled by its upper central series dimensions plus an additional letter to distinguish

nonisomorphic algebras. For example, the algebras having a center Z of dimension 3, and

a second center Z2 of dimension 7 are listed as (37A), (37B), (37C),and (37D) | in total

4 algebras. The algebra in our list having the same label as an algebra in Seeley's list are

always isomorphic. However, our presentations of the Lie algebras may be di�erent from

those of Seeley's. If this is the case, then an explicit isomorphism can be always found in

the proof where the algebras arise, for example, see (27A) and (27B) in Chapter 5.

When the ground �eld is R, we may get more algebras. In this case, we will use Li to

denote those algebras that are isomorphic to L over C. For example, if we consider all the

algebras with the upper central series dimension (37) over R, we get two more algebras,

denoted by (37B1) and (37D1), meaning that over C, these two algebras are isomorphic to

(37B) and (37D) respectively.

For the one-parameter continuous families, a variable � is used to denote a structure constant

that may take on arbitrary values (with some exceptions) in F. An invariant I(�) is given
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for each family in which multiple values of � yield isomorphic algebras, i.e., if I(�1) = I(�2),

then the two corresponding algebras are isomorphic and conversely.

The 6 one-parameter continuous families over algebraically closed �elds ( � 6= 2) are:

(123457I): � arbitrary.

(12457N): � arbitrary, with invariant I(�) = �+ ��1.

(1357M): � 6= 0.

(1357N): � arbitrary.

(1357S): � 6= 1.

(147E): � 6= 0; 1, with invariant I(�) =
(1��+�2)3

�2(��1)2 :

Unlike in Seeley's list over C, we no longer list separately those algebras which are just

special cases of the families of the same upper central series dimensions. To be exact, as

(123457G), (12457M), (1357K) and (147C) in Seeley's list are respectively the special cases

of (123457I) by taking � = 1, (12457N) by taking � = 0, (1357M) by taking � = 1=2, and

(147E) by taking � = 1=2, instead of listing them separately, we include them in (123457I),

(1357M) and (147E) respectively as special cases. That is why our list has 119 (for � 6= 3)

isolated algebras while Seeley's has 124, with the merging of the above 4 algebras and also

the deleting of (13457H), which is not a Lie algebra at all.

We also want to point out that in our list, (147E) becomes (247P) if we let � = 0 or 1,

(1357S) becomes (2357D) if � = 1, (1357M) becomes (2357B) if � = 0. Although it is more

natural to include all these special cases in the corresponding continuous families, we still

list them separately, due to their di�erent upper central series dimensions.

Over R, there are 3 additional one-parameter families:

(12457N2): � � 0.

(1357QRS1): � 6= 0, with invariant I(�) = �+ ��1.

(147E1): � > 1.

The reason we use the notation (1357QRS1) is that because over C, if � = 1, this algebra

is isomorphic to (1357Q); if � = �1, it is isomorphic to (1357R), and for all other � 6= 0, it

is isomorphic to (1357S,� > 0). When � = 0, it becomes (2357D).

Some special features are: (i) Except in the case when � = 3, where we obtain an extra

algebra (147F), the structure constants of all the algebras can be chosen to be integers and

independent of the characteristic of the ground �eld; (ii) When the ground �eld is changed

from C to R, we may get more algebras. The only algebra that has three di�erent real

forms is (1357Q). All the other algebras have at most two nonisomorphic real forms.

Carles [6] obtains a table giving the union of the tables of [24], [26] and [31] according to

the weight systems. He considers in particular the limit points of all the one parameter

continuous families. Readers may refer to [6] for more details. We want to mention that

the basis for each algebra in our list has been chosen so that it also diagonalizes a maximal

torus.
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4.1 List of 7-Dimensional Indecomposable Nilpotent Lie Al-

gebras over Algebraically Closed Fields (� 6= 2)

Upper Central Series Dimensions (37)

(37A): [x1; x2] = x5; [x2; x3] = x6, [x2; x4] = x7;

(37B): [x1; x2] = x5, [x2; x3] = x6, [x3; x4] = x7;

(37C): [x1; x2] = x5; [x2; x3] = x6; [x2; x4] = x7,

[x3; x4] = x5;

(37D): [x1; x2] = x5, [x1; x3] = x6, [x2; x4] = x7,

[x3; x4] = x5:

Upper Central Series Dimensions (357)

(357A): [x1; x2] = x3; [x1; x3] = x5, [x1; x4] = x7,

[x2; x4] = x6;

(357B): [x1; x2] = x3; [x1; x3] = x5, [x1; x4] = x7,

[x2; x3] = x6;

(357C): [x1; x2] = x3; [x1; x3] = x5, [x1; x4] = x7,

[x2; x3] = x6, [x2; x4] = x5;

Upper Central Series Dimensions (27)

(27A): [x1; x2] = x6, [x1; x4] = x7, [x3; x5] = x7;

(27B): [x1; x2] = x6, [x1; x5] = x7; [x2; x3] = x7,

[x3; x4] = x6:

Upper Central Series Dimensions (257)

(257A): [x1; x2] = x3; [x1; x3] = x6, [x1; x5] = x7,

[x2; x4] = x6;

(257B): [x1; x2] = x3; [x1; x3] = x6, [x1; x4] = x7,

[x2; x5] = x7;

(257C): [x1; x2] = x3; [x1; x3] = x6, [x2; x4] = x6,

[x2; x5] = x7;

(257D): [x1; x2] = x3; [x1; x3] = x6, [x1; x4] = x7,

[x2; x4] = x6, [x2; x5] = x7;
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(257E): [x1; x2] = x3; [x1; x3] = x6, [x2; x4] = x7,

[x4; x5] = x6;

(257F): [x1; x2] = x3; [x2; x3] = x6, [x2; x4] = x7,

[x4; x5] = x6;

(257G): [x1; x2] = x3; [x1; x3] = x6, [x1; x5] = x7,

[x2; x4] = x7, [x4; x5] = x6;

(257H): [x1; x2] = x3; [x1; x3] = x6, [x2; x4] = x6,

[x4; x5] = x7;

(257I): [x1; x2] = x3; [x1; x3] = x6, [x1; x4] = x6,

[x1; x5] = x7; [x2; x3] = x7;

(257J): [x1; x2] = x3; [x1; x3] = x6, [x1; x5] = x7,

[x2; x3] = x7, [x2; x4] = x6;

(257K): [x1; x2] = x3; [x1; x3] = x6, [x2; x3] = x7,

[x4; x5] = x7;

(257L): [x1; x2] = x3; [x1; x3] = x6, [x2; x3] = x7,

[x2; x4] = x6, [x4; x5] = x7;

Upper Central Series Dimensions (247)

(247A): [x1; xi] = xi+2; i = 2; 3; 4; 5;

(247B): [x1; xi] = xi+2; i = 2; 3; 4 [x3; x5] = x7;

(247C): [x1; xi] = xi+2; i = 2; 3; 4 [x1; x5] = x7, [x3; x5] = x6.

(247D): [x1; xi] = xi+2; i = 2; 3; [x1; x4] = x6, [x2; x5] = x7,

[x3; x4] = x7;

(247E): [x1; xi] = xi+2; i = 2; 3; 4 [x1; x5] = x6, [x2; x5] = x7,

[x3; x4] = x7;

(247F): [x1; xi] = xi+2; i = 2; 3; [x2; x4] = x6, [x2; x5] = x7,

[x3; x4] = x7, [x3; x5] = x6;

(247G): [x1; xi] = xi+2; i = 2; 3; 4 [x1; x5] = x6, [x2; x4] = x6,

[x2; x5] = x7, [x3; x4] = x7, [x3; x5] = x6;

(247H): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x4] = x6, [x2; x5] = x7,

[x3; x4] = x7, [x3; x5] = x6;

(247I): [x1; xi] = xi+2; i = 2; 3; [x2; x5] = x6, [x3; x4] = x6,

[x3; x5] = x7;

(247J): [x1; xi] = xi+2; i = 2; 3 [x1; x5] = x6, [x2; x5] = x7,

[x3; x4] = x7, [x3; x5] = x6;

(247K): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x5] = x7, [x3; x4] = x7,

[x3; x5] = x6;

(247L): [x1; xi] = xi+2; i = 2; 3; 4; 5 [x2; x3] = x6;
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(247M): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x3] = x6, [x3; x5] = x7;

(247N): [x1; xi] = xi+2; i = 2; 3; [x1; x5] = x6, [x2; x3] = x7,

[x2; x4] = x6;

(247O): [x1; xi] = xi+2; i = 2; 3; 4 [x1; x5] = x7, [x2; x3] = x7,

[x3; x5] = x6;

(247P): [x1; xi] = xi+2; i = 2; 3; [x2; x3] = x6, [x2; x5] = x7,

[x3; x4] = x7;

(247Q): [x1; xi] = xi+2; i = 2; 3; 4; [x2; x3] = x6, [x2; x5] = x7;

[x3; x4] = x7;

(247R): [x1; xi] = xi+2; i = 2; 3; 4 [x1; x5] = x6, [x2; x3] = x6,

[x2; x5] = x7, [x3; x4] = x7;

Upper Central Series Dimensions (2457)

(2457A): [x1; xi] = xi+1; i = 2; 3; [x1; xi] = xi+2; i = 4; 5;

(2457B): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7, [x2; x5] = x6;

(2457C): [x1; xi] = xi+1; i = 2; 3; [x1; xi] = xi+2; i = 4; 5, [x2; x5] = x6;

(2457D): [x1; xi] = xi+1; i = 2; 3; [x1; xi] = xi+2; i = 4; 5, [x2; x3] = x6,

[x2; x5] = x6;

(2457E): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7, [x2; x3] = x6,

[x2; x5] = x6;

(2457F): [x1; xi] = xi+1; i = 2; 3; [x1; xi] = xi+2; i = 4; 5, [x2; x3] = x6;

(2457G): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7, [x1; x5] = x6,

[x2; x3] = x6;

(2457H): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7, [x2; x3] = x6,

[x2; x5] = x7;

(2457I): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6, [x2; x3] = x6,

[x2; x5] = x7;

(2457J): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6, [x2; x3] = x6 + x7,

[x2; x5] = x7;

(2457K): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7, [x1; x5] = x6,

[x2; x3] = x6, [x2; x5] = x7;

(2457L): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6, [x1; x5] = x7,

[x2; x3] = x5; [x2; x4] = x7, [x2; x5] = x6;

(2457M): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7, [x1; x5] = x6,

[x2; x3] = x5; [x2; x4] = x6;
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Upper Central Series Dimensions (2357)

(2357A): [x1; x2] = x4; [x1; x4] = x5; [x1; x5] = x7;

[x2; x3] = x5 + x6, [x3; x4] = �x7;
(2357B): [x1; x2] = x4; [x1; x3] = x6, [x1; x4] = x5;

[x1; x5] = x7; [x2; x3] = x5, [x3; x4] = �x7;
(2357C): [x1; x2] = x4; [x1; x4] = x5; [x1; x5] = x7;

[x2; x3] = x5, [x2; x4] = x6, [x3; x4] = �x7;
(2357D): [x1; x2] = x4; [x1; x3] = x6, [x1; x4] = x5;

[x1; x5] = x7; [x2; x3] = x5, [x2; x4] = x6,

[x3; x4] = �x7;

Upper Central Series Dimensions (23457)

(23457A): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x5] = x6, [x2; x3] = x7;

(23457B): [x1; xi] = xi+1; i = 2; 3; 4, [x2; x3] = x7, [x2; x5] = x6,

[x3; x4] = �x6;
(23457C): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x5] = x6, [x2; x5] = x7,

[x3; x4] = �x7;
(23457D): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x5] = x6, [x2; x3] = x6,

[x2; x5] = x7, [x3; x4] = �x7;
(23457E): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x5] = x6, [x2; x3] = x5 + x7,

[x2; x4] = x6;

(23457F): [x1; xi] = xi+1; i = 2; 3; 4; [x2; x3] = x5 + x7, [x2; x5] = x6;

[x3; x4] = �x6;
(23457G): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x5] = x6; [x2; x3] = x5,

[x2; x4] = x6, [x2; x5] = x7; [x3; x4] = �x7;

Upper Central Series Dimensions (17)

(17): [x1; x2] = x7; [x3; x4] = x7, [x5; x6] = x7;

Upper Central Series Dimensions (157)

(157): [x1; x2] = x3, [x1; x3] = x7, [x2; x4] = x7,

[x5; x6] = x7;
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Upper Central Series Dimensions (147)

(147A): [x1; x2] = x4, [x1; x3] = x5; [x1; x6] = x7,

[x2; x5] = x7, [x3; x4] = x7;

(147B): [x1; x2] = x4, [x1; x3] = x5; [x1; x4] = x7,

[x2; x6] = x7, [x3; x5] = x7;

(147D): [x1; x2] = x4; [x1; x3] = �x6, [x1; x5] = x7;

[x1; x6] = x7, [x2; x3] = x5; [x2; x6] = x7,

[x3; x4] = �2x7:
(147E): One parameter family, with invariant I(�) =

(1��+�2)3

�2(��1)2
; � 6= 0; 1

[x1; x2] = x4, [x1; x3] = �x6, [x1; x5] = �x7;
[x2; x3] = x5; [x2; x6] = �x7; [x3; x4] = (1� �)x7.
When � = 0 or 1, it is isomorphic to (247P).

(147F): (for � = 3 only)

[x1; x2] = x4; [x1; x3] = �x6, [x1; x5] = x7;

[x1; x6] = x7, [x2; x3] = x5; [x2; x4] = x7;

[x2; x6] = x7, [x3; x4] = x7:

Remark: (147C) in Seeley's list is a special case of (147E) by taking � = 1.

Upper Central Series Dimensions (1457)

(1457A): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7, [x5; x6] = x7;

(1457B): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7, [x2; x3] = x7,

[x5; x6] = x7;

Upper Central Series Dimensions (137)

(137A): [x1; x2] = x5; [x1; x5] = x7, [x3; x4] = x6,

[x3; x6] = x7;

(137B): [x1; x2] = x5; [x1; x5] = x7, [x2; x4] = x7,

[x3; x4] = x6, [x3; x6] = x7;

(137C): [x1; x2] = x5; [x1; x4] = x6; [x1; x6] = x7,

[x2; x3] = x6, [x3; x5] = �x7;
(137D): [x1; x2] = x5; [x1; x4] = x6; [x1; x6] = x7,

[x2; x3] = x6, [x2; x4] = x7 [x3; x5] = �x7;
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Upper Central Series Dimensions (1357)

(1357A): [x1; x2] = x4; [x1; x4] = x5, [x1; x5] = x7,

[x2; x3] = x5; [x2; x6] = x7, [x3; x4] = �x7;
(1357B): [x1; x2] = x4; [x1; x4] = x5, [x1; x5] = x7;

[x2; x3] = x5; [x3; x4] = �x7, [x3; x6] = x7;

(1357C): [x1; x2] = x4; [x1; x4] = x5, [x1; x5] = x7,

[x2; x3] = x5; [x2; x4] = x7, [x3; x4] = �x7;
[x3; x6] = x7;

(1357D): [x1; x2] = x3; [x1; x6] = x7, [x2; xi] = xi+2; i = 3; 4;

[x2; x5] = x7, [x3; x4] = x7;

(1357E): [x1; x2] = x3; [x2; xi] = xi+2; i = 3; 4; [x2; x5] = x7,

[x4; x6] = x7;

(1357F): [x1; x2] = x3; [x1; x3] = x7, [x2; xi] = xi+2; i = 3; 4;

[x2; x5] = x7; [x4; x6] = �x7;
(1357G): [x1; x2] = x3; [x1; x4] = x6; [x1; x6] = x7,

[x2; x3] = x5; [x2; x5] = x7;

(1357H): [x1; x2] = x3; [x1; x4] = x6; [x1; x6] = x7,

[x2; x3] = x5; [x2; x5] = x7, [x2; x6] = x7,

[x3; x4] = �x7;
(1357I): [x1; x2] = x3; [x1; x4] = x6; [x2; x3] = x5;

[x2; x5] = x7, [x4; x6] = x7;

(1357J): [x1; x2] = x3; [x1; x3] = x7; [x1; x4] = x6;

[x2; x3] = x5; [x2; x5] = x7, [x4; x6] = x7;

(1357L): [x1; x2] = x3; [x1; xi] = xi+2; i = 3; 4; 5; [x2; x3] = x7,

[x2; x4] = x5; [x2; x6] =
1
2x7, [x3; x4] =

1
2x7;

(1357M): One parameter family, with � 6= 0

[x1; x2] = x3; [x1; xi] = xi+2; i = 3; 4; 5; [x2; x4] = x5;

[x2; x6] = �x7, [x3; x4] = (1� �)x7;
When � = 0, it is isomorphic to (2357B).

(1357N): One parameter family.

[x1; x2] = x3; [x1; xi] = xi+2; i = 3; 4; 5; [x2; x3] = �x7,

[x2; x4] = x5; [x3; x4] = x7; [x4; x6] = x7;

(1357O): [x1; x2] = x3; [x1; x3] = x5; [x1; x6] = x7,

[x2; x3] = x6; [x2; x4] = x5, [x2; x5] = x7;

(1357P): [x1; x2] = x3; [x1; xi] = xi+2; i = 3; 5; [x2; x3] = x6;

[x2; x4] = x5, [x2; x6] = x7, [x3; x4] = x7;
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(1357Q): [x1; x2] = x3; [x1; x3] = x5; [x1; x5] = x7;

[x2; x3] = x6; [x2; x4] = x6; [x2; x6] = x7;

(1357R): [x1; x2] = x3; [x1; x3] = x5; [x1; x6] = x7;

[x2; x3] = x6; [x2; x4] = x6; [x2; x5] = x7;

[x3; x4] = x7;

(1357S): One parameter family, with � 6= 1

[x1; x2] = x3; [x1; x3] = x5; [x1; x5] = x7,

[x1; x6] = x7; [x2; x3] = x6; [x2; x4] = x6;

[x2; x5] = x7, [x2; x6] = �x7, [x3; x4] = x7;

When � = 1, it is isomorphic to (2357D).

Remark: (1357K) in Seeley's list is a special case of (1357M) by taking � = 1=2:

Upper Central Series Dimensions (13457)

(13457A): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x5] = x7, [x2; x6] = x7;

(13457B): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x5] = x7, [x2; x3] = x7,

[x2; x6] = x7;

(13457C): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x6] = x7, [x2; x5] = x7,

[x3; x4] = �x7;
(13457D): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x5] = x7; [x2; x3] = x5,

[x2; x4] = x7; [x2; x6] = x7;

(13457E): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x6] = x7; [x2; x3] = x5,

[x2; x5] = x7; [x3; x4] = �x7;
(13457F): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x5] = x7; [x2; x3] = x6,

[x2; x6] = x7;

(13457G): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x6] = x7; [x2; x3] = x6,

[x2; x4] = x7, [x2; x5] = x7, [x3; x4] = �x7;
(13457I): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x5] = x7; [x2; x3] = x6,

[x2; x5] = x7, [x2; x6] = x7, [x3; x4] = �x7:
Remark: (13457H) in Seeley's list is not a Lie algebra, should be deleted.
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Upper Central Series Dimensions (12457)

(12457A): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6; [x1; x6] = x7,

[x2; x5] = x6, [x3; x5] = x7;

(12457B): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6; [x1; x6] = x7,

[x2; x5] = x6 + x7, [x3; x5] = x7;

(12457C): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6; [x2; x5] = x6,

[x2; x6] = x7; [x3; x4] = �x7;
(12457D): [x1; xi] = xi+1; i = 2; 3; [x1; xi] = xi+2; i = 4; 5; [x2; x5] = x6,

[x2; x6] = x7; [x3; x4] = �x7;
(12457E): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6, [x1; x6] = x7;

[x2; x3] = x6, [x2; x4] = x7 [x2; x5] = x6;

[x3; x5] = x7;

(12457F): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6; [x2; x3] = x6
[x2; xi] = xi+1; i = 5; 6; [x3; x4] = �x7;

(12457G): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6, [x1; x5] = x7;

[x2; x3] = x6, [x2; xi] = xi+1; i = 5; 6 [x3; x4] = �x7;
(12457H): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x2; xj ] = xj+2; j = 3; 4; [x3; x4] = x7;

(12457I): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x2; xj ] = xj+2; j = 3; 4; [x2; x5] = x7;

[x3; x4] = x7;

(12457J): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x1; x4] = x7; [x2; x3] = x5,

[x2; x4] = x6, [x2; x5] = x7; [x3; x4] = x7;

(12457K): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x1; x4] = x7; [x2; x3] = x5,

[x2; x4] = x6, [x3; x4] = x7;

(12457L): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x2; xj ] = xj+2; j = 3; 4; [x2; x6] = x7,

[x3; x4] = x7, [x3; x5] = �x7;
(12457N): One parameter family, with invariant I(�) = �+ ��1.

[x1; xi] = xi+1; i = 2; 3; 5; 6 [x1; x4] = x7; [x2; x3] = x5;

[x2; x4] = x6, [x2; x5] = �x7; [x2; x6] = x7,

[x3; x4] = x7, [x3; x5] = �x7;
Remark: (12457M) in Seeley's list is just a special case of (12457N) by taking � = 0.

Upper Central Series Dimensions (12357)

(12357A): [x1; x2] = x4; [x1; xi] = xi+1; i = 4; 5; 6; [x2; x3] = x5;

[x3; x4] = �x6; [x3; x5] = �x7;
(12357B): [x1; x2] = x4; [x1; xi] = xi+1; i = 4; 5; 6; [x2; x3] = x5 + x7;

[x3; x4] = �x6; [x3; x5] = �x7;
(12357C): [x1; x2] = x4; [x1; xi] = xi+1; i = 4; 5; 6; [x2; x3] = x5;

[x2; x4] = x7; [x3; x4] = �x6; [x3; x5] = �x7;
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Upper Central Series Dimensions (123457)

(123457A): [x1; xi] = xi+1; 2 � i � 6:

(123457B): [x1; xi] = xi+1; 2 � i � 6; [x2; x3] = x7.

(123457C): [x1; xi] = xi+1; 2 � i � 6; [x2; x5] = x7, [x3; x4] = �x7.
(123457D): [x1; xi] = xi+1; 2 � i � 5; [x1; x6] = x7; [x2; x3] = x6;

[x2; x4] = x7;

(123457E): [x1; xi] = xi+1; 2 � i � 5; [x1; x6] = x7; [x2; x3] = x6 + x7,

[x2; x4] = x7;

(123457F): [x1; xi] = xi+1; 2 � i � 5; [x1; x6] = x7; [x2; x3] = x6;

[x2; x4] = [x2; x5] = x7; [x3; x4] = �x7.
(123457H): [x1; xi] = xi+1, 2 � i � 5, [x1; x6] = x7, [x2; x3] = x5 + x7,

[x2; x4] = x6, [x2; x5] = x7;

(123457I): One parameter family.

[x1; xi] = xi+1; 2 � i � 5; [x1; x6] = x7, [x2; x3] = x5,

[x2; x4] = x6, [x2; x5] = �x7; [x3; x4] = (1� �)x7.
Remark: (123457G) in Seeley's list is a special case of (123457I) with � = 1.
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4.2 List of 7-Dimensional Indecomposable Nilpotent Lie Al-

gebras over the Real Field

Each of the algebras in the list of Section 4.1 can be interpreted as a Lie algebra over R.

In the case of in�nte families, we have to restrict the parameter � to take real values. The

exceptional algebra which occurs in the case � = 3 should be omitted. In addition to these

algebras, we have the following 24 extra indecomposable algebras over the real �eld R.

Upper Central Series Dimensions (37)

(37B1): [x1; x2] = x5, [x1; x3] = x6; [x1; x4] = x7,

[x2; x4] = x6; [x3; x4] = �x5;
(37D1): [x1; x2] = x5, [x1; x3] = x6; [x1; x4] = x7,

[x2; x3] = �x7; [x2; x4] = x6; [x3; x4] = �x5;

Upper Central Series Dimensions (257)

(257J1): [x1; x2] = x3; [x1; x3] = x6, [x1; x4] = x6,

[x1; x5] = x7, [x2; x3] = x7, [x2; x5] = x6;

Upper Central Series Dimensions (247)

(247E1): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x4] = x7, [x3; x5] = x7;

(247F1): [x1; xi] = xi+2; i = 2; 3; [x2; x4] = x6, [x2; x5] = x7,

[x3; x4] = x7, [x3; x5] = �x6;
(247H1): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x4] = x6, [x2; x5] = x7,

[x3; x4] = x7, [x3; x5] = �x6;
(247P1): [x1; xi] = xi+2; i = 2; 3; [x2; x3] = x6,

[x2; x4] = x7, [x3; x5] = x7;

(247R1): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x3] = x6,

[x2; x4] = x7, [x3; x5] = x7;

Upper Central Series Dimensions (2457)

(2457L1): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6, [x1; x5] = x7,

[x2; x3] = x5; [x2; x4] = x7, [x2; x5] = �x6;
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Upper Central Series Dimensions (2357)

(2357D1): [x1; x2] = x4; [x1; x3] = x6, [x1; x4] = x5;

[x1; x5] = x7; [x2; x3] = x5, [x2; x4] = �x6,
[x3; x4] = �x7;

Upper Central Series Dimensions (147)

(147A1): [x1; x2] = x4, [x1; x3] = x5; [x1; x6] = x7,

[x2; x4] = x7, [x3; x5] = x7;

(147E1): One parameter family, with � > 1

[x1; x2] = x4, [x2; x3] = x5; [x1; x3] = �x6;
[x1; x6] = ��x7; [x2; x5] = �x7; [x2; x6] = 2x7;

[x3; x4] = �2x7:

Upper Central Series Dimensions (137)

(137A1): [x1; x3] = x5, [x1; x4] = x6, [x1; x5] = x7,

[x2; x3] = �x6, [x2; x4] = x5, [x2; x6] = x7;

(137B1): [x1; x3] = x5, [x1; x4] = x6, [x1; x5] = x7,

[x2; x3] = �x6, [x2; x4] = x5, [x2; x6] = x7,

[x3; x4] = x7;

Upper Central Series Dimensions (1357)

(1357F1): [x1; x2] = x3; [x1; x3] = x7, [x2; xi] = xi+2; i = 3; 4;

[x2; x5] = x7; [x4; x6] = x7;

(1357P1): [x1; x2] = x3; [x1; xi] = xi+2; i = 3; 5; [x2; x3] = x6;

[x2; x4] = x5, [x2; x6] = �x7, [x3; x4] = x7;

(1357Q1): [x1; x2] = x3; [x1; x3] = x5; [x1; x5] = x7;

[x2; x3] = x6; [x2; x4] = x6; [x2; x6] = �x7;
(1357QRS1): One parameter family, with invariant I(�) = �+ ��1 and � 6= 0.

[x1; x2] = x3 [x1; x3] = x5, [x1; x4] = x6
[x1; x5] = x7, [x2; x3] = �x6 [x2; x4] = x5,

[x2; x6] = �x7 [x3; x4] = (1� �)x7.
When � = 1; (1357QRS1)�= (1357Q) over C;

When � = �1, (1357QRS1)�=(1357R) over C.
(1357QRS1, � 6= 0;�1) becomes (1357S, � > 1) over C.

When � = 0, it becomes (2357D).
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Upper Central Series Dimensions (12457)

(12457J1): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x1; x4] = x7; [x2; xj ] = xj+2; j = 3; 4,

[x2; x5] = �x7; [x3; x4] = x7;

(12457L1): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = �x6, [x1; x6] = x7,

[x2; x3] = x5; [x2; x5] = �x6, [x3; x5] = �x7;
(12457N1): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = �x6, [x1; x6] = x7;

[x2; x3] = x5; [x2; x5] = �x6 + x7, [x3; x5] = �x7;
It is isomorphic to (12457N, � = 1) over C.

(12457N2): One parameter family, with � � 0.

[x1; xi] = xi+1; i = 2; 3; [x1; x4] = �x6, [x1; x5] = x7,

[x1; x6] = x7; [x2; x3] = x5; [x2; x4] = x7,

[x2; x5] = �x6 + �x7, [x3; x5] = �x7;
It is isomorphic to (12457N,� 6= 1) over C.

Upper Central Series Dimensions (12357)

(12357B1): [x1; x2] = x4; [x1; xi] = xi+1; i = 4; 5; 6; [x2; x3] = x5 � x7;
[x3; x4] = �x6; [x3; x5] = �x7;

Upper Central Series Dimensions (123457)

(123457H1): [x1; xi] = xi+1, 2 � i � 5, [x1; x6] = �x7, [x2; x3] = x5 + x7,

[x2; x4] = x6, [x2; x5] = �x7;
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Chapter 5

Two-Step Nilpotent Lie Algebras

In this chapter, we consider all the central extensions of Abelian algebras { N6;6, N5;5 and

N4;4 { over both algebraically closed �elds of characteristic 6= 2, and over the real �eld R.

Central extensions of N6;6 = a6:

Basis: �ij ; 1 � i < j � 6.

In this case, we have Aut N6;6 = GL6. To make sure that the central extension does not

have any Abelian direct factors, we require that the skew-symmetric matrix corresponding

to the 2-cocycles to be nonsingular, therefore by a classical result on the canonical form for

nonsingular skew-symmetric matrices (see [16] for example), we can immediately obtain a

representation in U1(g)=Aut g as �12 + �34 + �56, which corresponds to the algebra (17).

Therefore the corresponding central extension of N6;6 of dimension 7 over any �eld is:

(17): [x1; x2] = x7; [x3; x4] = x7, [x5; x6] = x7.

Central extensions of N5;5 = a5:

Basis: �12, �13, �14, �15, �23, �24, �25, �34, �35, �45.

Group action: a�12 + b�13 + c�14 + d�15 + e�23 + f�24 + g�25+ h�34 + i�35 + j�45:

a! a11(aa22+ ba32+ ca42+ da52) + a21(�aa12+ ea32+ fa42+ ga52) + a31(�ba12� ea22 +
ha42 + ia52) + a41(�ca12 � fa22 � ha42 + ja52) + a51(�da12 � ga22� ia32 � ja42);
b! a11(aa23+ ba33+ ca43 + da53) + a21(�aa13 + ea33+ fa43 + ga53) + a31(�ba13� ea23 +
ha43 + ia53) + a41(�ca13 � fa23 � ha33 + ja53) + a51(�da13 � ga23� ia33 � ja43);
c! a11(aa24+ ba34+ ca44 + da54) + a21(�aa14 + ea34+ fa44 + ga54) + a31(�ba14� ea24 +
ha44 + ia54) + a41(�ca14 � fa24 � ha34 + ja54) + a51(�da14 � ga24� ia34 � ja44);
d! a11(aa25+ ba35+ ca45+ da55) + a21(�aa15+ ea35+ fa45+ ga55) + a31(�ba15� ea25 +
ha45 + ia55) + a41(�ca15 � fa25 � ha35 + ja55) + a51(�da15 � ga25� ia35 � ja45);
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e! a12(aa23 + ba33+ ca43+ da53) + a22(�aa13 + ea33 + fa43+ ga53) + a32(�ba13� ea23 +
ha43 + ia53) + a42(�ca13 � fa23 � ha33 + ja53) + a52(�da13 � ga23� ia33 � ja43);
f ! a12(aa24+ ba34+ ca44+ da54) + a22(�aa14+ ea34 + fa44+ ga54) + a32(�ba14� ea24 +
ha44 + ia54) + a42(�ca14 � fa24 � ha34 + ja54) + a52(�da14 � ga24� ia34 � ja44);
g ! a12(aa25 + ba35+ ca45+ da55) + a22(�aa15 + ea35 + fa45 + ga55) + a32(�ba15� ea25 +
ha45 + ia55) + a42(�ca15 � fa25 � ha35 + ja55) + a52(�da15 � ga25� ia35 � ja45);
h! a13(aa24+ ba34+ ca44+ da54) + a23(�aa14+ ea34+ fa44 + ga54) + a33(�ba14� ea24 +
ha44 + ia54) + a43(�ca14 � fa24 � ha34 + ja54) + a53(�da14 � ga24� ia34 � ja44);
i! a13(aa25+ ba35+ ca45 + da55) + a23(�aa15 + ea35 + fa45 + ga55) + a33(�ba15 � ea25 +
ha45 + ia55) + a43(�ca15 � fa25 � ha35 + ja55) + a53(�da15 � ga25� ia35 � ja45);
j ! a14(aa25 + ba35+ ca45+ da55) + a24(�aa15 + ea35 + fa45+ ga55) + a34(�ba15� ea25 +
ha45 + ia55) + a44(�ca15 � fa25 � ha35 + ja55) + a54(�da15 � ga25� ia35 � ja45);
Assume a 6= 0. Choose a21 = a31 = a41 = a51 = 0. Then make b = c = d = 0 by solving for

a23; a24 and a25 respectively. To �x b; c; d, we require that a23 = a24 = a25 = 0.

Choose a12 = a32 = a42 = a52 = 0, we can make e = f = g = 0 by solving for a13; a14 and

a15 respectively. To �x e; f; g, we require that a13 = a14 = a15 = 0.

Now

h! a33(ha44 + ia54) + a43(�ha34 + ja54) + a53(ia34 � ja44);
i! a33(ha45 + ia55) + a43(�ha35 + ja55) + a53(�ia35 � ja45);
j ! a34(ha45 + ia55) + a44(�ha35 + ja55) + a54(�ia35 � ja45);
If one of h; i; j 6= 0, then make h 6= 0, and i = j = 0 and get get case 1: a 6= 0, h 6= 0, while

b = c = d = e = f = g = i = j = 0, i.e. A1 = [1; 0; 0; 0; 0; 0; 0; 1; 0; 0].

If all h = i = j = 0, then we get case 2: only a 6= 0, and all the others are zero, or

A2 = [1; 0; 0; 0; 0; 0; 0; 0; 0; 0].

Case 1: A1 = [1; 0; 0; 0; 0; 0; 0; 1; 0; 0]. Choose a13 = a14 = a15 = a23 = a24 = a25 = a31 =

a32 = a35 = a41 = a42 = a45 = 0, we will �x b = c = d = e = f = g = i = j = 0.

Assume B = [0; b; c; d; e; f; g; h; i; j]. One of d; g; i; j 6= 0.

a = 0! a11da52 + a21ga52 + a51(�da12 � ga22);
b! a11(ba33+ ca43 + da53) + a21(ea33 + fa43 + ga53) + a51(�ia33 � ja43);
c! a11(ba34+ ca44 + da54) + a21(ea34 + fa44 + ga54) + a51(�ia34 � ja44);
d! a11da55 + a21ga55;

e! a12(ba33 + ca43 + da53) + a22(ea33 + fa43 + ga53) + a52(�ia33 � ja43);
f ! a12(ba34 + ca44 + da54) + a22(ea34 + fa44 + ga54) + a52(�ia34 � ja44);
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g ! a12da55 + a22ga55;

h! a33(ha44 + ia54) + a43(�ha34 + ja54) + a53(�ia34 � ja44);
i! a33ia55 + a43ja55;

j ! a34ia55 + a44ja55;

Subcase 1.1: One of d; g 6= 0. Make d 6= 0 and g = 0. Fix g = 0, we require that a12 = 0.

Assume a21 = a51 = 0. Make b = c = 0 by solving for a53, and a54 respectively. Make a = h

by solving for a52, and further make them to be zero by subtracting a multiple of A from

B.

Subcase 1.1.1: One of i; j 6= 0. Make i 6= 0 and j = 0.

Now by taking a12 = a34 = a52 = a53 = a54 = 0, a = 0 ! 0; b = 0 ! 0; c = 0 ! 0;

d ! a11da55; e ! a22(ea33 + fa43); f ! a22fa44; g = 0 ! 0; h = 0 ! 0; i ! a33ia55;

j = 0! 0:

Now if f 6= 0, make e = 0 by solving for a43, to get a representative:

B1 = [0; 0; 0; 1; 0; 1; 0; 0; 1; 0]:

If f = 0, depending on e = 0 or not, we would have two representatives

B2 = [0; 0; 0; 1; 0; 0; 0; 0; 1; 0]

and

B3 = [0; 0; 0; 1; 1; 0; 0; 0; 1; 0]:

Subcase 1.1.2: Both i = j = 0. Taking a12 = a52 = a53 = a54 = 0, we have a = 0 ! 0;

b = 0! 0; c = 0! 0; d! a11da55; e! a22(ea33+ fa43); f ! a22(ea34+ fa44); g = 0! 0;

h = 0! 0; i = 0! 0; j = 0! 0:

If one of e; f 6= 0, make e = 1 and f = 0 to get a representative

B4 = [0; 0; 0; 1; 1; 0; 0; 0; 0; 0]:

If both e; f = 0, then get B5 = [0; 0; 0; 1; 0; 0; 0; 0; 0; 0].

Subcase 1.2: Both d = g = 0. Then one of i; j 6= 0. Make i 6= 0 and j = 0. Taking

a34 = 0, we have a = 0 ! 0; b ! a11(ba33 + ca43) + a21(ea33 + fa43) + a51(�ia33);
c ! a11(ca44) + a21(fa44); d ! 0; e ! a12(ba33 + ca43) + a22(ea33 + fa43) + a52(�ia33);
f ! a12(ca44) + a22fa44; g ! 0; h! a33(ha44 + ia54); i! a33ia55; j = 0! 0:

Make b = e = h = 0 by solving for a51, a52 and a54. If one of c; f 6= 0, then make c = 1

and f = 0, we get a representative B5 = [0; 0; 1; 0; 0; 0; 0; 0; 1; 0]. If both c = f = 0, then we

have B6 = [0; 0; 0; 0; 0; 0; 0; 0; 1; 0].
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Case 2: A2 = [1; 0; 0; 0; 0; 0; 0; 0; 0]. To �x A up to a scalar, we require that a13 = a14 =

a15 = a23 = a24 = a25 = 0. Let B = [0; b; c; d; e; f; g; h; i; j], we have

a = 0! a11(ba32+ca42+da52)+a21(ea32+fa42+ga52)+a31(�ba12�ea22+ha42+ ia52)+
a41(�ca12 � fa22 � ha42 + ja52) + a51(�da12 � ga22 � ia32 � ja42);
b ! a11(ba33 + ca43 + da53) + a21(ea33 + fa43 + ga53) + a31(+ha43 + ia53) + a41(�ha33 +
ja53) + a51(�ia33 � ja43);
c! a11(ba34+ca44+da54)+a21(ea34+fa44+ga54)+a31(ha44+ ia54)+a41(�ha34+ja54)+
a51(�ia34 � ja44);
d ! a11(ba35 + ca45 + da55) + a21(ea35 + fa45 + ga55) + a31(ha45 + ia55) + a41(�ha35 +
ja55) + a51(�ia35 � ja45);
e! a12(ba33+ca43+da53)+a22(ea33+fa43+ga53)+a32(ha43+ ia53)+a42(�ha33+ja53)+
a52(�ia33 � ja43);
f ! a12(ba34 + ca44 + da54) + a22(ea34 + fa44 + ga54) + a32(ha44 + ia54) + a42(�ha34 +
ja54) + a52(�ia34 � ja44);
g ! a12(ba35 + ca45 + da55) + a22(ea35 + fa45 + ga55) + a32(ha45 + ia55) + a42(�ha35 +
ja55) + a52(�ia35 � ja45);
h! a33(ha44 + ia54) + a43(�ha34 + ja54) + a53(�ia34 � ja44);
i! a33(ha45 + ia55) + a43(�ha35 + ja55) + a53(�ia35 � ja45);
j ! a34(ha45 + ia55) + a44(�ha35 + ja55) + a54(�ia35 � ja45);
One of h; i; j 6= 0. Make i 6= 0 and h = j = 0. We would have h! a33ia54+a53(�ia34) = 0;

i! a33(ia55) + a53(�ia35); j ! a34(ia55) + a54(�ia35) = 0:

We require that a34 = a54 = 0 to have h = j = 0. Now

a = 0 ! a11(ba32 + ca42 + da52) + a21(ea32 + fa42 + ga52) + a31(�ba12 � ea22 + ia52) +

a41(�ca12 � fa22) + a51(�da12 � ga22 � ia32);
b! a11(ba33+ ca43 + da53) + a21(ea33 + fa43 + ga53) + a31(ia53) + a51(�ia33);
c! a11(ca44) + a21(fa44);

d! a11(ba35+ ca45 + da55) + a21(ea35 + fa45 + ga55) + a31(ha45 + ia55) + a51(�ia35);
e! a12(ba33 + ca43 + da53) + a22(ea33 + fa43 + ga53) + a32(ia53) + a52(�ia33);
f ! a12(ca44) + a22(fa44);

g ! a12(ba35 + ca45 + da55) + a22(ea35 + fa45 + ga55) + a32(ia55)a52(�ia35);
Make g = 0 by solving for a32, e = 0 by a52, d = 0 by a31, b = 0 by a51. Now one of c; f 6= 0,

make c = 1 and f = 0. We can always make a = 0 by subtracting a multiple of A from B.

So we get the representative for B as B7 = [0; 0; 1; 0; 0; 0; 0; 0; 1; 0]
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Now we are going to prove that

(1) The representativesA1^B1, A1^B3, and A1^B4 are in the same orbit, and correponding

to (27B).

Consider the corresponding algebras:

(1:1) [x1; x2] = x6; [x1; x5] = x7; [x3; x4] = x6;

[x2; x4] = x7; [x3; x5] = x7;

(1:2) [x1; x2] = x6; [x1; x5] = x7; [x3; x4] = x6;

[x2; x3] = x7; [x3; x5] = x7;

(1:3) [x1; x2] = x6; [x1; x5] = x7; [x3; x4] = x6;

[x2; x3] = x7:

Then

(1.3) �= (1.1): Taking x1 ! x1, x2 ! x2 + x4, x3 ! �x4, x4 ! �x1 + x3,

x5 ! �x5, x6 ! x6, x7 ! �x7;
(1.3) �= (1.2): Taking x1 ! x3, x2 ! �x2 + x4, x3 ! x1, x4 ! x2 + x5,

x5 ! x4, x6 ! x6 + x7, x7 ! x6.

(2) The representatives A1 ^ B2, A1 ^ B5, A1 ^ B6 and A2 ^ B7 are all in the same orbit,

corresponding to (27A).

Consider the corresponding algebras:

(2:1) [x1; x2] = x6; [x1; x5] = x7; [x3; x4] = x6;

[x3; x5] = x7;

(2:2) [x1; x2] = x6; [x1; x5] = x7; [x3; x4] = x6;

(2:3) [x1; x2] = x6; [x3; x5] = x7; [x3; x4] = x6:

(2:4) [x1; x2] = x6; [x1; x4] = x7; [x3; x5] = x7:

Then

(2.4) �= (2.1): Taking x1 ! �x1, x2 ! x5, x3 ! �x1 + x3, x4 ! x2 + x4,

x5 ! �x4, x6 ! �x7, x7 ! �x6;
(2.4) �= (2.2): Taking x1 ! x1, x2 ! x5, x3 ! x3, x4 ! x2, x5 ! x4,

x6 ! x7, x7 ! x6;

(2.4) �= (2.3): Taking x1 ! x3, x2 ! x5, x3 ! x2, x4 ! �x4, x5 ! x1,

x6 ! x7, x7 ! �x6.
Now all we need to prove is that (1.3) and (2.4), which correspond to (27B) and (27A)

respectively, are not isomorphic. We can compare their orbits again, but here instead, we

use the ad hoc argument used by Seeley [31] to compare the so called minimal numbers.

For a given algebra, we consider all the nonzero elements in g=[g; g] and look for an ordered

basis fx1 + [g; g]; � � � ; xs + [g; g]g with the smallest

(dimIm(x1); � � � ; dimIm(xs))
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(called the minimal number) in lexicographic order, where Im(a) is the image of the adjoint

image of a. This is obviously an invariant for Lie algebra, and it o�ers us a very e�ective

way to distinguish two algebras.

In (27A), the basis of g=[g; g] is fx2; x3; x4; x5; x1g. We have

dimIm(x2) = dimIm(x3) = dim Im(x4) = dimIm(x5) = 1;

and dim Im(x1) = 2, and we can prove that

(dimIm(x2); dimIm(x3); dimIm(x4); dimIm(x5); dimIm(x1)) = (1; 1; 1; 1; 2)

is the minimal number. It is easy to see that the �rst 4 numbers dimIm(x2); dimIm(x3);

dimIm(x4); dimIm(x5) are already the smallest, being 1.

Consider the image of x = x1 + ax2 + bx3 + cx4 + dx5.

Im(x) =< [x; x2]; [x; x3]; [x; x4]; [x; x5] >=< x6; dx7; x7; bx7 >=< x6; x7 >;

therefore any element containing properly x1 will have an image of dimension 2. So

(1; 1; 1; 1; 2) is the minimal number.

In (27B), the minimal number is going to be (1; 1; 1; 2; 2), with the corresponding ordered

basis as fx3; x4; x5; x1; x2g.
Hence (27A) and (27B) are not isomorphic.

Therefore the central extensions of N5;5 of dimension 7 over any �eld (not necessarily alge-

braically closed) are:

(27A): [x1; x2] = x6, [x1; x4] = x7, [x3; x5] = x7;

(27B): [x1; x2] = x6, [x1; x5] = x7; [x3; x4] = x6;

[x2; x3] = x7.

Remark: The correspondence between the above and the algebra in Seeley's list are: (27A)!
2,7A: x1 ! �e, x2 ! b, x3 ! c, x4 ! a, x5 ! d, x6 ! g and x7 ! f ; (27B) ! 2,7B:

x1 ! d + e, x2 ! 3a+ b� c, x3 ! �e, x4 ! 2a + 2b� c� d� e, x5 ! �a, x6 ! �f + g

and x7 ! f .

Central extensions of N4;4:

Basis: �12;�13;�14;�23;�24;�34;

Group Action: a�12 + b�13 + c�14 + d�23 + e�24 + f�34;

Let �st
ij = aisajt � aitajs, for 1 � i; j; s; t � 4. Then

a! a�12
12 + b�12

13+ c�12
14 + d�12

23 + e�12
24 + f�12

34;

b! a�13
12 + b�13

13 + c�13
14 + d�13

23 + e�13
24 + f�13

34;
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c! a�14
12 + b�14

13 + c�14
14 + d�14

23 + e�14
24 + f�14

34;

d! a�23
12 + b�23

13 + c�23
14 + d�23

23 + e�23
24 + f�23

34;

e! a�24
12 + b�24

13+ c�24
14 + d�24

23 + e�24
24 + f�24

34;

f ! a�34
12 + b�34

13+ c�34
14 + d�34

23 + e�34
24 + f�34

34;

Now let A = [a; b; c; d; e; f ]. It is obvious that one of a; b; c; d; e; f is nonzero. Make a = 0

and b = 1 to get A = [0; 1; c; d; e; f ]:

Let a21 = a41 = a42 = a43 = 0, we can make c = d = f = 0 by solving for a34; a12; a14
respectively, and get A = [0; 1; 0; 0; e; 0].

Now a = 0! �12
13 + e�12

24; b = 1 ! �13
13 + e�13

24; c = 0 ! �14
13 + e�14

24; d = 0 ! �23
13 + e�23

24;

e! �24
13 + e�24

24; f = 0! �34
13 + e�34

24:

Depending on e = 0 or not, we can obtain the two representatives A1 = [0; 1; 0; 0; 0; 0] and

A2 = [0; 1; 0; 0; 1; 0]. It is easy to check that A1 and A2 are indeed in di�erent orbits.

Case 1: A = [0; 1; 0; 0; 0; 0]. To �x A, we require that a = 0 ! �12
13 = 0; b = 1 ! �13

13 = 1;

c = 0! �14
13 = 0; d = 0! �23

13 = 0; e = 0! �24
13 = 0; f = 0! �34

13 = 0:

We may just choose a12 = a14 = a32 = a33 = a34 = 0 and a13 = �1=a31.
Now assume that B = [a; 0; c; d; e; f ], under the group action,

a! a�12
12 + c�12

14+ d�12
23 + e�12

24 + fa31a42;

As one of a; c; d; e; f 6= 0. We may assume a = 1 in B, hence

A = [0; 1; 0; 0; 0; 0]; B = [1; 0; c; d; e; f ]:

Now in B, we have a ! a11a22 + ca11a42 + d(�a22a31) + e�12
24 + fa31a42; b = 0 ! 0 (by

subtracting a multiple of A from B); c! a11a24 + ca11a44 + d(�a24a31) + e�14
24 + fa31a44;

d! (�a13a22)+c(�a13a42)+e(a22a43�a23a42); e! e�24
24; f ! a13a24+ca13a44+e(a23a44�

a24a43):

If e 6= 0, then make a = c = d = f = 0 by taking a24 = a42 = 1, a22 = a41 = a44 = 0, and

solve for a21; a11, a23 and a43 to get the representative

Case 1.1: A = [0; 1; 0; 0; 0; 0];B = [0; 0; 0; 0; 1; 0]:

If e = 0, then a ! a11a22 + ca11a42 + d(�a22a31) + fa31a42; b = 0 ! 0 (by subtracting

a multiple of A from B); c ! a11a24 + ca11a44 + d(�a24a31) + fa31a44; d ! (�a13a22) +
c(�a13a42); e = 0! 0; f ! a13a24 + ca13a44:

We cannot make both d = f = 0, for otherwise the automorphism group is going to be

singular. Take a44 = 0 and a24 = a42 = 1, make d = 0 by solving for a22, make c = 0 by

solving for a11. Then by taking a11 = a22 = a44 = 0, we have a ! fa31a42; b = 0! 0 (by

subtracting a multiple of A from B); c = 0! 0; d = 0! 0; e = 0! 0; f ! a13a24:
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Depending on f = 0 or not, we get two representatives for B: Case 1.2:B = [0; 0; 0; 0; 0; 1];

and Case 1.3:B = [1; 0; 0; 0; 0; 1].

Case 1.1: A = [0; 1; 0; 0; 0; 0] and B = [0; 0; 0; 0; 1; 0]: To �x A and B, we require that

a12 = a14 = a21 = a23 = a32 = a34 = a41 = a43 = a44 = 0; a11 = (a13a31 + 1)=a33; and

a24 = �1=a42.
Now assume C = [a; 0; c; d; 0; f ], under the group action, we have a! aa11a22 + ca11a42 +

d(�a22a31) + fa31a42; b ! 0; c ! aa11a24 + d(�a31a24); d ! a(�a13a22) + c(�a13a42) +
da22a33 + f(�a42a33); e! 0; f ! aa13a42 + d(�a24a33):
We may assume d = 0, for otherwise we can solve for a22 to make d = 0. Then a! aa11a22+

ca11a42 + fa31a42; b = 0 ! 0; c ! aa11a24; d ! a(�a13a22) + c(�a13a42) + f(�a33a42);
e! 0; f ! aa13a24:

One of a; c 6= 0, we may assume a = 0, for otherwise we can solve for a22 to make it to be

zero. So c 6= 0. Set a13 = 0 to get a! ca11a42; b = 0! 0; c! 0; d! 0; e! 0; f ! 0:

Then we have the representative C = [1; 0; 0; 0; 0; 0], with (1) A ^ B ^ C corresponding to

(37B).

Case 1.2: A = [0; 1; 0; 0; 0; 0], and B = [0; 0; 0; 0; 0; 1]. To �x A and B (up to a nonzero

scalar), we require that a12 = a31 = a32 = a34 = a41 = a42 = 0, , a11a22a33a44 6= 0.

Now consider C = [a; 0; c; d; e; 0]. Under the group action, a ! aa11a22; b = 0 != 0

(By subtracting a multiple of A from C); c ! a(a11a24 � a14a21) + ca11a44 + ea21a44;

d ! a(�a13a22) + c(�a13a42) + da22a33 + ea22a43; e ! a(�a14a22) + ea22a44; f = 0 ! 0

(By subtracting a multiple of B from C).

One of a; d; e 6= 0. If a 6= 0, taking a21 = a43 = 0 and make c = d = e = 0 by solving

for a24, a13 and a14 respectively to get a representative of C: C1 = [1; 0; 0; 0; 0; 0], with (2)

A ^ B ^ C1 corresponding to (37B).

If a = 0 and e 6= 0, then we can make c = d = 0 by solving for a21 and a43, and get the

representative C = [0; 0; 0; 0; 1; 0], with (3) A ^B ^ C corresponding to (37B)

If a = e = 0, then d 6= 0, depending on c = 0 or not, we may obtain two representatives

C1 = [0; 0; 0; 1; 0; 0] and C2 = [0; 0; 1; 1; 0; 0], with (4) A ^ B ^ C1 corresponding to (37A)

and (5) A ^B ^ C2 corresponding to (37C).

Case 1.3: A = [0; 1; 0; 0; 0; 0] and B = [1; 0; 0; 0; 0; 1] . To �x A and B (up to a nonzero

scalar) we require that a12 = a14 = a24 = a31 = a32 = a34 = 0, a11 = a33a44)=a22,

a13 = �a33a42=a22.
Now consider C = [a; 0; c; d; e; 0]. Under the group action, we have a ! aa33a44 +

ca33a42a44=a22+e�12
24; b = 0! 0 (By subtracting a multiple ofA fromC); c! ca33a

2
44=a22+

ea21a44; d! aa33a42+ c(a33a242=a22)+da22a33+ e(a22a43�a23a42); e! e(a22a44�a24a42);
f = 0! c(�a33a42a44=a22) + ea23a44:
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If e = 0, then one of a; c; d 6= 0. If c 6= 0. Make a = f by solving for a42, and further make

them to be zero by subtracting a multiple of B from C. Then taking a42 = 0 and depending

on whether d = 0 or not, we may get two representatives: (6) C = [0; 0; 1; 0; 0; 0] (A^B^C
corresponding to (37C)) and (7) C = [0; 0; 1; 1; 0; 0] (A ^B ^ C corresponding to (37B1)).

If c = 0, then we may assume a = 0, for otherwise a 6= 0, make d = 0 to get C =

[1; 0; 0; 0; 0; 0], which is in the same orbit as (2). If a = 0, then d 6= 0 to get (8) C =

[0; 0; 0; 1; 0; 0] (corresponding to (37C)).

If e 6= 0, make a = f by solving for a23, and further make them to be zero by subtracting

a multiple of B from C. Make c = 0 by solving for a21, d = 0 by a43. Then we get the

representative, C = [0; 0; 0; 0; 1; 0], with (9) A ^B ^ C corresponding to (37B).

Case 2: A = [0; 1; 0; 0; 1; 0]. To �x A (up to a scalar), We may choose a23 = a33 = a32 =

a43 = a44 = a34 = 0, a24 = �1=a42, a13 = �1=a31, a41 = a14a31a42, a21 = a31(a12 +

a14a42a22)=a42.

Now assume B = [a; 0; c; d; e; f ]. After �xing A, we have

a! a�12
12+ c�12

14+ d(�a22a31) + e�12
24+ fa31a42; b = 0! a(a12+ a14a42a22)=a42+ ca14a42;

c ! a�14
12 + c(�a214a31a42) + d=(a42a31) + e(a41=a42); d ! a(a22=a31) + ca42=a31; e !

a�24
12 + c(�a14a42)� e; f ! a=(a31a42):

One of a; c; d; e; f 6= 0, we can make a = 1. Taking a14 = 0, then a41 = 0 and a21 =

a12a31. Make c = 0 by choosing a11 = 0.Then by �xing a11 = a14 = a22 = 0, we have

a = 1! �12
12+ ea42a12a31+ fa31a42; b = 0! a12=a42; c = 0! 0; d! 0; e! �a12=a42� e;

f ! 1=(a31a42):

Make b = e by sloving for a12, and further make them to be zero by subtracting a multiple

of A from B. Now taking a11 = a12 = a14 = a22 = 0, and get a = 1! fa31a42; b = 0! 0;

c = 0! 0; d = 0! 0; e = 0! 0; f ! 1=(a31a42):

Depending on whether f = 0 or not, we have the following three representatives: (i)

f = 0, then a = 0 and make f = 1, B = [0; 0; 0; 0; 0; 1]; (ii) f < 0, make a = �f = 1,

B = [1; 0; 0; 0; 0;�1]; (iii) f > 0, make a = f = 1, B = [1; 0; 0; 0; 0; 1].

Subcase (i): It can be easily shown that it is in the same orbit as Subcase 1.3. So we just

omit it.

Subcase (ii): A = [0; 1; 0; 0; 1; 0], B = [1; 0; 0; 0; 0;�1]. To �x A and B (up to a scalar), we

require that a11 = a21 = a31 = a22 = a24 = a33 = a34 = a44 = 0, a12 = �a43, a13 = a42,

a14 = �1=a32, a23 = �a32, a41 = 1=a32.

Now consider C = [a; b; c; d; 0; 0]. Under the group action, we have a ! ca43=a32; b !
c(�a42=a32); c ! c; d ! aa32a43 + b(�a42a32) + c�23

14 + da232; e ! b + ca42=a32; f !
�a+ ca43=a32:

If c 6= 0, make a = �f by solving for a43, and further make a = f = 0 by subtracting a
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multiple of B from C. Similarly, make b = e by solving for a42, and further make b = e = 0

by subtracting a multiple of A from C. Then taking a43 = a42 = 0, we have a = 0 ! 0;

b = 0! 0; c! c; d! da232; e = 0! 0; f = 0! 0:

Then we get the following representatives for C: (10) if d = 0, then C = [0; 0; 1; 0; 0; 0],

with A ^ B ^ C corresponding to (37B1); (11) if cd > 0, then C = [0; 0; 1; 1; 0; 0], with

A^B^C corresponding to (37D); (12) if cd < 0, then C = [0; 0; 1;�1; 0; 0], with A^B^C
corresponding to (37D1).

If c = 0, then a = �f = b = e = c = 0, and d 6= 0. We get the representative C =

[0; 0; 0; 1; 0; 0], with (13) A ^B ^ C corresponding to (37B1).

Subcase (iii): A = [0; 1; 0; 0; 1; 0], B = [1; 0; 0; 0; 0; 1]. To �x A, B (up to a scalar), we may

choose a21 = a31 = a24 = a34 = 0 and a12 = �a43, a13 = �a42, a14 = a41, a22 = a33 =

a11a32=a41, a23 = a32, a44 = a11:

Consider C = [a; b; c; d; 0; 0]. Then a ! aa211a32=a41 + ba11a32 + c(a11a42 + a41a43); b !
aa11a32+ba

2
11a32=a41+c(a11a43+a41a42); c! c(a211�a241); d! a(�a32a43+a11a32a42=a41)+

b(�a11a32a43=a41+a32a42)+c(a242�a243)+d(a211a232=a241�a232); e = 0! a(�a11a32)�ba41a32+
c(�a11a43 � a41a42); f = 0! �aa41a32 + b(�a11a32) + c(�a11a42 � a41a43);
If c = 0, then when at least one of a; b 6= 0, make d = 0 by solving for a42. Now depending

on the values of a; b, we can make either a = f or b = e, and further reduce them to be

zero, and by choosing properly the values of a11, we may obtain the two representatives

C = [0; 0; 0; 0; 1; 0], which is the same as (9), so omit it; and (14) C = [0; 0; 0; 0; 0; 1]. When

a = b = 0, then d 6= 0, we get C = [0; 0; 0; 1; 0; 0], which is the same as (13), so omit it. It

can be shown that (14) corresponds to (37D).

If c 6= 0, make a = f and b = e by solving for a43 and a42 respectively, and further

reduce them to be zero by linear combination. Then take a42 = a43 = 0, if d = 0, we

get the representative C = [0; 0; 1; 0; 0; 0], which is the same as (10), so omit it. If d 6= 0,

depending on whether cd > 0 or cd < 0, we obtain two representatives C = [0; 0; 1; 1; 0; 0]

and C = [0; 0; 1;�1; 0; 0], which are the same as (11) and (12) respectively, so omit them.

Now we consider all the 14 algebras:
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(1): [x1; x2] = x5; [x1; x3] = x6, [x2; x4] = x7;

(2): [x1; x2] = x5; [x1; x3] = x6; [x3; x4] = x7;

(3): [x1; x3] = x5; [x2; x4] = x6; [x3; x4] = x7;

(4): [x1; x3] = x5; [x2; x3] = x6; [x3; x4] = x7;

(5): [x1; x3] = x5; [x1; x4] = x6, [x2; x3] = x6;

[x3; x4] = x7;

(6): [x1; x2] = x5, [x1; x3] = x6; [x1; x4] = x7;

[x3; x4] = x5;

(7): [x1; x2] = x5, [x1; x3] = x6; [x1; x4] = x7;

[x2; x3] = x7, [x3; x4] = x5;

(8): [x1; x2] = x5, [x1; x3] = x6; [x2; x3] = x7,

[x3; x4] = x5;

(9): [x1; x2] = x5, [x1; x3] = x6; [x2; x4] = x7;

[x3; x4] = x5;

(10): [x1; x2] = x5, [x1; x3] = x6; [x1; x4] = x7,

[x2; x4] = x6; [x3; x4] = �x5;
(11): [x1; x2] = x5, [x1; x3] = x6; [x1; x4] = x7,

[x2; x3] = x7; [x2; x4] = x6; [x3; x4] = �x5;
(12): [x1; x2] = x5, [x1; x3] = x6; [x1; x4] = x7,

[x2; x3] = �x7; [x2; x4] = x6; [x3; x4] = �x5;
(13): [x1; x2] = x5, [x1; x3] = x6; [x2; x3] = x7;

[x2; x4] = x6; [x3; x4] = �x5;
(14): [x1; x2] = x5, [x1; x3] = x6; [x2; x4] = x6,

[x3; x4] = �x5 + x7;

A) We will show that (1), (2), (3) are all isomorphic to (37B).

(1)�= (37B): x1 ! x2, x2 ! x3, x3 ! x1, x4 ! x4, x5 ! x6, x6 ! �x5,
x7 ! x7;

(2)�= (37B): x1 ! x2, x2 ! x1, x3 ! x3, x4 ! x4, x5 ! �x5, x6 ! x6,

and x7 ! x7.

(3)�= (37B): x1 ! x4, x2 ! x1, x3 ! x3, x4 ! x2, x5 ! �x7, x6 ! x5
and x7 ! �x6.

B) (4) is isomorphic to (37A).

(4)�= (37A): x1 ! x1, x2 ! x3, x3 ! x2, x4 ! x4, x5 ! x5, x6 ! �x6,
and x7 ! x7.

C) (5), (6) and (8) are isomorphic to (37C).
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(5) �= (37C): x1 ! x3, x2 ! x1, x3 ! x2, x4 ! x4, x5 ! �x6, x6 ! x5,

x7 ! x7;

(6) �= (37C): x1 ! x2, x2 ! �x1, x3 ! x3, x4 ! x4, x5 ! x5; x6 ! x6,

x7 ! x7;

(8) �= (37C): x1 ! x3, x2 ! x4, x3 ! x2, x4 ! �x1, x5 ! x5, x6 ! �x6
and x7 ! �x7;

D) We will show that (9), (11) and (14) are isomorphic to (37D); (12) is also isomorphic to

(37D) over algebraically closed �elds. Let � be a root of the equation x2 + 1 = 0. Then

(9)�= (37D): obvious

(11)�= (37D): x1 ! �x1+x2, x2 ! x1+x2, x3 ! x3+x4, x4 ! �x3+x4,
x5 ! �2x5, x6 ! �x6 + x7, and x7 ! x6 + x7.

(14)�= (37D): x1 ! x4, x2 ! x2, x3 ! x3, x4 ! x1, x5 ! �x7, x6 ! �x5,
and x7 ! �x6 � x7;

(12)�= (11): x1 ! �x2, x2 ! x4, x3 ! �x3, x4 ! x1, x5 ! �x6,

x6 ! �x7, and x7 ! ��x5.
E) We will show that (7), (10)=(37B1) and (13) are isomorphic to (37B) over algebraically

closed �elds.

(10) �= (7): x1 ! x1, x2 ! x4, x3 ! x2, x4 ! �x3, x5 ! x7, x6 ! x5
and x7 ! x6;

(10)�= (37B): x1 ! �x2��x3, x2 ! x1+�x4, x3 ! �x1+x4, x4 ! x2+x3,

x5 ! ��x5 + x7, x6 ! x5 � �x7, and x7 ! 2�x6.

(13) �= (10): x1 ! x3, x2 ! �x4, x3 ! x1, x4 ! �x2, x5 ! x5, x6 !
�x6, and x7 ! x7.

To show that (37A), (37B), (37B1), (37C), (37D) and (37D1) are distinct, we compare the

minimal numbers again. We have

(37A): minimal number (1; 1; 1; 3), corresponding to the ordered ba-

sis fx1; x3; x4; x2g;
(37B): minimal number (1; 1; 2; 2), corresponding to the ordered ba-

sis fx1; x4; x2; x3g;
(37B1): When the �eld is R, the minimal number is (2; 2; 3; 3), cor-

responding to the ordered basis fx2; x3; x1; x4g; when the

�eld is algebraically closed, it is the same as (37B);

(37C): minimal number (1; 2; 2; 3), corresponding to the ordered ba-

sis fx1; x3; x4; x2g;
(37D): minimal number (2; 2; 2; 2), corresponding to the ordered ba-

sis fx1; x2; x3; x4g.
(37D1): When the �eld is R, the minimal number is (3; 3; 3; 3), cor-

responding to the ordered basis fx1; x2; x3; x4g; when the

�eld is algebraically closed, it is the same as (37D).

76



Therefore the central extensions of N4;4 of dimensional 7 are:

(37A): [x1; x2] = x5; [x2; x3] = x6, [x2; x4] = x7;

(37B): [x1; x2] = x5, [x2; x3] = x6, [x3; x4] = x7;

(37B1): [x1; x2] = x5, [x1; x3] = x6; [x1; x4] = x7
[x2; x4] = x6; [x3; x4] = �x5;

(37C): [x1; x2] = x5; [x2; x3] = x6; [x2; x4] = x7,

[x3; x4] = x5;

(37D): [x1; x2] = x5, [x1; x3] = x6, [x2; x4] = x7,

[x3; x4] = x5;

(37D1): [x1; x2] = x5, [x1; x3] = x6; [x1; x4] = x7
[x2; x3] = �x7; [x2; x4] = x6; [x3; x4] = �x5;
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Chapter 6

Algebras over Algebraically Closed

Fields

In this chapter we will consider the central extensions over algebraically closed �elds of

characteristics 6= 2. For those algebras whose central extensions give rise to new algebras

over the real �eld, their proofs can be found in Chapter 7.

Some of the algebras we obtain have di�erent presentations from those of Seeley, in that

case, an isomorphism is provided.

6.1 Extensions of 4-Dimensional Algebras

All the 7-dimensional nilpotent Lie algebras without any Abelian factors have at most a 3-

dimensional center (considering the dimension of H2(g;F)). So we just consider the central

extensions of algebras of dimension at least 4.

Central extensions of N4;2 :

N4;2 : [x1; xi] = xi+1; i = 2; 3;

Z(g): x4; [g; g]: x3; x4; Z2(g): C24 = C34 = 0; W (H2): C12 = C13 = 0; dimH2: 2;

As the cohomology group is of dimension 2, then G3(H2(g;F)) = 0, hence N4;2 has no

central extensions without Abelian factors of dimension 7.

Central extensions of N4;3:

Z(g): x3; x4; [g; g]: x3; Z2(g): C34 = 0; W (H2): C12 = 0; dimH2: 4; Basis: �13; �14; �23;

�24;

Group action: a�13 + b�14 + c�23 + d�24;
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Let � := a11a22 � a12a21.
a! (aa11 + ca21)�;

b! a11(aa34 + ba44) + a21(ca34 + da44);

c! (aa12 + ca22)�;

d! a12(aa34 + ba44) + a22(ca34 + da44);

One of a; c 6= 0 and one of b; d 6= 0 in A ^ B ^ C, where A, B and C are of the form

a�13 + b�14 + c�23 + d�24.

Let A = [a; b; c; d], B = [a1; b1; c1; d1], C = [a2; b2; c2; d2].

As one of a; c 6= 0, we can assume that a = 1. By subtracting scalar multiples of A from B

and C, we may let a1 = a2 = 0.

We may assume that at least one of b1 and b2 is not zero. For otherwise, one of c1; c2 is

nonzero, we can make b1 or b2 6= 0, as bi ! cia21a34 + dia21a44.

Now we may assume b1 6= 0 (simply by switching B and C if necessary) and make b2 = 0

(by subtracting a scalar multiple of B from C).

Case 1: c2 6= 0. By making a = b1 = c2 = 1, we may let, with respect to the wedge product,

A = [1; 0; 0; d]; B = [0; 1; 0; d1]; C = [0; 0; 1; d2]:

Considering the action of the group on A;B;C, we have

A = [a11�; a11a34 + da21a44; a12�; a12a34 + da22a44];

B = [0; a11a44 + d1a21a44; 0; a12a44 + d1a22a44];

C = [a21�; a21a34 + d2a21a44; a22�; a22a34 + d2a22a44]:

We can make a2 = b2 = 0 by letting a21 = 0 and d2 = 0 by solving for a34. Also make

d1 = 0 by solving for a12, and what is left can be changed into

A = [1; 0; 0; d]; B = [0; 1; 0; 0]; C = [0; 0; 1; 0]:

And depending on whether d = 0 or not, we get two representatives for A^B ^C: (1) A =

[1; 0; 0; 0]; B = [0; 1; 0; 0]; C = [0; 0; 1; 0] (corresponding to (357B)); and (2) A = [1; 0; 0; 1];

B = [0; 1; 0; 0]; C = [0; 0; 1; 0] (corresponding to (357C)).

Case 2: c2 = 0. Then d2 6= 0. And get, WLOG,

A = [1; 0; c; 0]; B = [0; 1; c1; 0]; C = [0; 0; 0; 1]:

Acting the automorphism group on A ^ B ^ C, we have
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A = [a11� + ca21�; a11a34 + a21a34; a12� + ca22�; a12a34 + ca22a34];

B = [c1a21�; a11a44 + c1a21a34; c1a22�; a12a44 + c1a22a34];

C = [0; a21a44; 0; da22a44]:

Let a21 = 0, we make b2 = 0, Also make c = 0 by solving for a12, and get,

A = [1; 0; 0; 0]; B = [0; 1; c1; 0]; C = [0; 0; 0; 1]:

Depending on whether c1 = 0 or not, we get the following two representatives for A^B^C:
(3) A = [1; 0; 0; 0], B = [0; 1; 0; 0] and C = [0; 0; 0; 1] (corresponding to (357A)), and (4)

A = [1; 0; 0; 0], B = [0; 1; 1; 0] and C = [0; 0; 0; 1]. But we can show that (4) and (2) are in

the same orbit.

By comparing the orbit, all the algebras (357A,B,C) can be easily showed to be distinct.

Therefore the corresponding central extensions of N4;3 are:

(357A): [x1; x2] = x3; [x1; x3] = x5,

[x1; x4] = x7, [x2; x4] = x6;

(357B): [x1; x2] = x3; [x1; x3] = x5,

[x1; x4] = x7, [x2; x3] = x6;

(357C): [x1; x2] = x3; [x1; x3] = x5, [x1; x4] = x7,

[x2; x3] = x6, [x2; x4] = x5;
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6.2 Extensions of 5-Dimensional Algebras

Central extensions of N5;1:

Z(g): x5; [g; g]: x3; x4; x5; Z
2(g): C35 = C45 = 0; C15 � C24 = 0; C25 + C34 = 0; W (H2):

C12 = C13 = C14 = 0; dimH2: 3; Basis: �15 + �24; �25 ��34; �23;

Group Action: a(�15 + �24) + b(�25 ��34) + c�23:

a! aa611 + ba511a21;

b! ba711;

c! ca511 + 2ba311a42 � ba11a232 � 2aa411a21 � ba311a221;
Consider the wedge product of A = [a; b; c] and B = [a1; b1; c1].

One of a; b; a1; b1 is nonzero, can always choose a 6= 0 (for example, if both a = a1 = 0, then

b or b1 6= 0. Make a or a1 6= 0, and switching A and B if necessary). So assume A = [1; b; c],

and by subtracting from B a multiple of A to get B = [0; b1; c1].

Case 1: b1 6= 0. Then take B = [0; 1; c1] and A = [1; 0; c]. Observe the group action on B,

we have

B = [a511a21; a
7
11; c1a

5
11 + 2a311a42 � a11a232]:

Make both a1 = c1 = 0 by solving for a21 and a42 to get B = [0; 1; 0]. Consider again the

group action on both A and B, we have

A = [a611; 0; ca
5
11� 2a411a21]

B = [a511a21; a
7
11; 2a

3
11a42 � a11a232 � a311a221]

Now we can make c = c1 = 0 by solving for a21 and a42. By subtracting a mulitiple of A

from B, we can also make a1 = 0 and get

A = [1; 0; 0]; B = [0; 1; 0];

corresponding to (23457G).

Case 2: b1 = 0. Then c1 6= 0 and get B = [0; 0; 1] and A = [1; b; 0]. Consider the group

action on both A and B, we have

A = [a611 + ba511a21; ba
7
11; 2ba

3
11a42 � ba11a232 � 2a411a21 � ba311a221];

B = [0; 0; a511];

Now depending b = 0 or not, we can get

A = [1; 0; 0]; B = [0; 0; 1];

or

A = [0; 1; 0]; B = [0; 0; 1];
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as when b 6= 0, we can make a = 0, corresponding respectively to (23457E) and (23457F).

The non-isomorphism between all the algebras can be easily proven by comparing their

orbits.

Therefore the corresponding central extensions of N5;1 are:

(23457E): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x5] = x6,

[x2; x3] = x5 + x7, [x2; x4] = x6;

(23457F): [x1; xi] = xi+1; i = 2; 3; 4; [x2; x3] = x5 + x7,

[x2; x5] = x6; [x3; x4] = �x6;
(23457G): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x5] = x6;

[x2; x3] = x5, [x2; x4] = x6,

[x2; x5] = x7; [x3; x4] = �x7;

The central extensions of N5;2;1 can be found in chapter 2, Example 6.

The central extensions of N5;2;2 can be found in chapter 2, Example 1. By switching x3
with x4, and x6 with x7 in (2357A,B,C), and in (2357D) by taking x1 ! 2x1+x2, x2 ! x2,

x3 ! �2x3+4x4, x4 ! 2x3, x5 ! 4x5+2x7, x6 ! 2x7, x7 ! 8x6, we get exactly the same

representation as in Seeley's paper.

The central extensions of N5;2;3 can be found in chapter 7.

Central extensions of N5;3;1:

Z(g): x5; [g; g]: x5; Z
2(g): C15 = C25 = C35 = C45 = 0; W (H2): C12 = C34 = 0;

It is obvious that all the elements in H2(g;F) have x5 in their kernels. So there is no desired

central extension.

The central extensions ofN5;3;2 can be found in chapter 7. By the following transformations,

we can get the exactly the same presentations as in Seeley's paper. In (247C), switch x6
and x7; In (247D), take x1 ! a, x2 ! c, x3 ! b, x4 ! e, x5 ! d, x6 ! g and x7 ! f ; In

(247E), switch x6 and x7; In (247F), take x1 ! a, x2 ! �b+ c, x3 ! b+ c, x4 ! �d+ e,

x5 ! d+ e, x6 ! f + g, and x7 ! �f + g; In (247G), x1 ! a+ b, x2 ! b+ c, x3 ! b� c,
x4 ! d + e, x5 ! d � e, x6 ! f + g and x7 ! f � g; In (247H), take x1 ! a + b + c,

x2 ! 2(b + c), x3 ! �2(b � c), x4 ! 2(d + e), x5 ! �2(d � e), x6 ! 4(f + g) and

x7 ! �4(f�g); In (247J), take x1 ! �a+c, x2 ! b, x3 ! c, x4 ! �d, x5 ! �e, x6 ! �g
and x7 ! �f ; In (247K), switch x6 and x7; In (247M), x1 ! a, x2 ! c, x3 ! �b, x4 ! e,

x5 ! �d, x6 ! f and x7 ! g; In (247N), switch x6 and x7; In (247O), take x1 ! �a,
x2 ! �c, x3 ! b, x4 ! e, x5 ! �d, x6 ! �g and x7 ! f ; In (247Q), take x1 ! a, x2 ! c,

x3 ! �b, x4 ! e, x5 ! �d, x6 ! f and x7 ! �g.

Central extensions of N5;3;3:
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Z(g): x4; x5; [g; g]: x3; x4; Z2(g): C45 = 0; C24 = 0; C34 = 0; C35 = 0; W (H2): C12 = C13 =

0; dimH2: 4; Basis: �14;�15;�23;�25;

Group action: a�14 + b�15 + c�23 + d�25;

a! aa311a22; b! aa11a45 + ba11a55 + da21a55; c! ca11a
2
22; d! da22a55.

Let A = [a; b; c; d] and B = [a1; b1; c1; d1]. WLOG, we assume that a 6= 0, and let A =

[1; b; c; d] and B = [0; b1; c1; d1].

Case 1: d1 6= 0. Then assume B = [0; b1; c1; 1]. We have a1 = 0 ! 0; b1 ! b1a11a55 +

a21a55 = 0; (Solve for a21.) c1 ! c1a11a
2
22; d1 = 1! a22a55 = 1.

Depending on whether c1 = 0 or not, we get B1 = [0; 0; 0; 1] and B2 = [0; 0; 1; 1].

Subcase 1.1: With B1 = [0; 0; 0; 1], we assume A = [1; b; c; 0]. Then a = 1 ! a311a22 = 1;

b! a11a45 + ba11a55 = 0 (Solve for a45); c! ca11a
2
22; d! 0.

Depending on whether c = 0 or not, we get A1 = [1; 0; 0; 0] (A1 ^ B1 corresponding to

(2457B)) and A2 = [1; 0; 1; 0] (A2 ^B1 corresponding to (2457I)).

Subcase 1.2: With B2 = [0; 0; 1; 1], assume A = [1; b; c; 0]. Similar discussions would lead

to A1 = [1; 0; 0; 0] (A1 ^ B2 corresponding to (2457E)) and A2 = [1; 0; 1; 0] (A2 ^B2 corre-

sponding to (2457J)).

Case 2: d1 = 0. Then B = [0; b1; c1; 0].

Subcase 2.1: If c1 6= 0, then depending on whether b1 = 0 or not, we can get two represen-

tatives Subcase (2.1.1) B1 = [0; 0; 1; 0] and Subcase (2.1.2) B2 = [0; 1; 1; 0].

Subcase 2.1.1: With B1 = [0; 0; 1; 0], we may let A = [1; b; 0; d], and make b = 0, then d 6= 0

to get a representative A = [1; 0; 0; 1] (A ^B1 corresponding to (2457H)).

Subcase 2.1.2: With B2 = [0; 1; 1; 0], we may assume that A = [1; b; 0; d], then make b = 0,

and depending on whether d = 0 or not, we get two representatives for A: A1 = [1; 0; 0; 0]

(A1^B2 corresponding to (2457G)) and A2 = [1; 0; 0; 1] (A2^B2 corresponding to (2457K)).

Subcase 2.2: If c1 = 0, then b1 6= 0. Assume B = [0; 1; 0; 0] and A = [1; 0; c; d]. Now

a = 1! a311a22 = 1; b = 0! a11a45 + da21a55; c! ca11a
2
22; d! da22a55.

We easily get four representatives for A: A1 = [1; 0; 0; 0] (A1^B corresponding to (2457A)),

A2 = [1; 0; 0; 1] (A2 ^ B corresponding to (2457C)), A3 = [1; 0; 1; 0] (A3 ^B corresponding

to (2457F)) and A4 = [1; 0; 1; 1] (A4 ^B corresponding to (2457D)).

It is fairly straightforward to show that all the algebras are distinct by comparing their

orbits.

Therefore the corresponding central extensions of N5;3;3 are:
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(2457A): [x1; xi] = xi+1; i = 2; 3; [x1; xi] = xi+2; i = 4; 5;

(2457B): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7,

[x2; x5] = x6
(2457C): [x1; xi] = xi+1; i = 2; 3; [x1; xi] = xi+2; i = 4; 5,

[x2; x5] = x6
(2457D): [x1; xi] = xi+1; i = 2; 3; [x1; xi] = xi+2; i = 4; 5,

[x2; x3] = x6, [x2; x5] = x6;

(2457E): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7,

[x2; x3] = x6, [x2; x5] = x6;

(2457F): [x1; xi] = xi+1; i = 2; 3; [x1; xi] = xi+2; i = 4; 5,

[x2; x3] = x6;

(2457G): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7,

[x1; x5] = x6, [x2; x3] = x6;

(2457H): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7,

[x2; x3] = x6, [x2; x5] = x7;

(2457I): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6,

[x2; x3] = x6, [x2; x5] = x7;

(2457J): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6,

[x2; x3] = x6 + x7, [x2; x5] = x7;

(2457K): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7,

[x1; x5] = x6, [x2; x3] = x6,

[x2; x5] = x7.

Remark: By taking x1 ! a, x2 ! b, x3 ! c, x4 ! d, x5 ! �e, x6 ! f + g and x7 ! �g,
we will get the exact presentation of (2457J) as in Seeley's paper.

The central extensions of N5;4 can be found in Chapter 7.
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6.3 Extensions of 6-Dimensional Algebras

The central extensions of N6;1;1 can be found in Chapter 2, Example 3. Notice that

(123457G) of Seeley is just a special case of (123457I) by taking � = 1.

Central extensions of N6;1;2:

Z(g): x6; [g; g]: x3; x4; x5; x6; Z
2(g): C16 = C26 = C35 = C36 = C45 = C46 = C56 =

0; C34 + C25 = 0; C15 = C24; W (H2): C12 = C13 = C14 = C25 = 0; dimH2: 2; Basis:

�15 + �24;�23;

It is obvious that all the cocycles have x6 in its kernel. So there is no central extension of

N6;1;2 at all.

Central extensions of N6;1;3:

Z(g): x6; [g; g]: x3; x4; x5; x6; Z
2(g): C26 = C35 = C36 = C45 = C46 = C56 = 0; C34 +

C25 = 0; C16 = C24; W (H2): C12 = C13 = C14 = C15 = 0; dimH2: 3; Basis: �16 +

�24; �23; �25 ��34;

Group action: a(�16 +�24) + b�23 + c(�25 ��34);

a! aa811; b! ba711 + c(2a411a42 � a11a232 � a611a21); c! ca911;

We have a 6= 0.

Case 1: c = 0. Then b goes to ba711, get [aa811; ba
7
11; 0]. So if b = 0, we get [1; 0; 0],

correspondig to (123457D); And if b 6= 0, we get [1; 1; 0], corresponding to (123457E);

Case 2: c 6= 0. Make b = 0 by solving for a42 and get [aa811; 0; ca
9
11], and make it to [1; 0; 1],

corresponding to (123457F).

Therefore the corresponding central extensions of N6;1;3 are:

(123457D): [x1; xi] = xi+1; 2 � i � 5; [x1; x6] = x7;

[x2; x3] = x6; [x2; x4] = x7;

(123457E): [x1; xi] = xi+1; 2 � i � 5; [x1; x6] = x7;

[x2; x3] = x6 + x7, [x2; x4] = x7;

(123457F): [x1; xi] = xi+1; 2 � i � 5; [x1; x6] = x7;

[x2; x3] = x6; [x2; x4] = x7,

[x2; x5] = x7; [x3; x4] = �x7.

Central extensions of N6;1;4:

Z(g): x6; [g; g]: x3; x4; x6; Z2(g): C16 = C24 = C35; C26 + C34 = 0; C36 = C45 =

C46 = C56 = 0; W (H2): C12 = C13 = C23 = 0; dimH2: 5; Basis: �14;�15;�16 + �24 +

�35;�25;�26��34;
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Group action: a�14 + b�15 + c(�16 +�24 +�35) + d�25 + e(�26 ��34):

a! aa511 + c(2a21a
4
11 + a52a

3
11) + e(a311a

2
21 � 2a42a

3
11 � a211a21a52 + a411a51 + a232a11);

b! �aa21a311 + ba411 + c(a11a65 � a211a221 + a311a31) + da21a
3
11 + e(a21a65 + a21a

2
11a31);

c! ca611 + ea511a21;

d! c(�a21a411+a311a52)+da511+ e(a211a65� 2a42a311�a211a21a52+a31a411+a411a51+a232a11);
e! ea711;

One of c; e 6= 0.

Case 1: e 6= 0. We can make a = c = d = 0 by solving for a51, a21 and a65 respectively. What

is left is b, and it goes to ba411 after we �x a; c; d. So we have two di�erent representatives in

this case: [0; 0; 0; 0; 1] (b = 0) (corresponding to (12457F)) and [0; 1; 0; 0; 1] (corresponding

to (12457G)) (b 6= 0);

Case 2: e = 0. We should have c 6= 0. Can make c = 1, and a = b = d = 0 by solving for

a52, a65 and a21 respectively. And we have iii) [0; 0; 1; 0; 0], corresponding to (12457E).

Therefore the corresponding central extensions of N6;1;4 are:

(12457E): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6,

[x1; x6] = x7; [x2; x3] = x6,

[x2; x4] = x7 [x2; x5] = x6;

[x3; x5] = x7;

(12457F): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6;

[x2; x3] = x6 [x2; xi] = xi+1; i = 5; 6;

[x3; x4] = �x7;
(12457G): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6,

[x1; x5] = x7; [x2; x3] = x6,

[x2; xi] = xi+1; i = 5; 6 [x3; x4] = �x7;

Central extensions of N6;2;1:

Z(g): x6; [g; g]: x3; x4; x5; x6; Z
2(g): C24 = C26 = C35 = C36 = C45 = C46 = C56 =

0; C25 + C34 = 0; W (H2): C12 = C13 = C14 = C15 = 0; dimH2: 3; Basis: �16;�23;�25 �
�34;

Group action: a�16 + b�23 + c(�25 ��34):

a! aa511a22; b! ba11a
2
22 + c(2a11a22a42 � a11a232); c! ca311a

2
22;

We have a 6= 0. Make a = 1.

Case 1: c = 0. We can get representatives [1; 0; 0] (when b = 0) ( corresponding to

(123457A)) and [1; 1; 0] (when b 6= 0) (corresponding to (123457B)).
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Case 2: c 6= 0. Make b = 0 by solving for a42 and get [1; 0; 1] (corresponding to (123457C)).

Therefore the corresponding central extensions of N6;2;1 are:

(123457A): [x1; xi] = xi+1; 2 � i � 6;

(123457B): [x1; xi] = xi+1; 2 � i � 6; [x2; x3] = x7;

(123457C): [x1; xi] = xi+1; 2 � i � 6; [x2; x5] = x7, [x3; x4] = �x7.

Central extensions of N6;2;2:

Z(g): x6; [g; g]: x3; x4; x5; x6; Z
2(g): C16 = C24 = C26 = C35 = C36 = C45 = C46 = C56 =

0; C25 + C34 = 0; W (H2): C12 = C13 = C14 = C25 = 0; dimH2: 2; Basis: �15;�23;

It is obvious that there is no central extension.

The central extensions of N6;2;3 can be found in Chapter 7. By taking x1 ! a, x2 ! b,

x3 ! d, x4 ! c, x5 ! e, x6 ! f and x6 ! g, we can get the exact presentations of

(12357A), (12357B) and (12357C) as in Seeley's paper.

Central extensions of N6;2;4:

Z(g): x6; [g; g]: x3; x4; x6; Z
2(g): C24 = C36 = C45 = C46 = C56 = 0; C26+C34 = 0; C16�

C35; W (H2): C12 = C13 = C14 = 0; dimH2: 5; Basis: �15;�16+�35;�23;�25;�26��34;

Group action: a�15 + b(�16+ �35) + c�23 + d�25 + e(�26 ��34):

a! aa411 + b(a11a65 + a311a31) + da311a21 + e(a21a65 + a211a21a31);

b! ba411a
2
22 + ea311a21a22;

c! ca11a
2
22 � ba11a22a52 + e(2a11a22a42 + a21a22a52 � a222a51 � a11a232);

d! da311a22 + e(a22a65 + a211a22a31);

e! ea311a
2
22;

One of b; e 6= 0.

Case 1: e = 0. Then b 6= 0. Make a = c = 0 by solving for a65 and a52, get two

representatives [0; 1; 0; 0; 0] (when d = 0) (corresponding to(12457A)) and [0; 1; 0; 1; 0] (when

d 6= 0) (corresponding to (12457B)).

Case 2: e 6= 0. Make b = c = d = 0 by solving for a21, a42 and a65, get two representa-

tives [0; 0; 0; 0; 1] (when a = 0) (corresponding to (12457C)) and [1; 0; 0; 0; 1] (when a 6= 0)

(corresponding to (12457D)).

Therefore the corresponding central extensions of N6;2;4 are:
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(12457A): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6;

[x1; x6] = x7, [x2; x5] = x6,

[x3; x5] = x7;

(12457B): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6;

[x1; x6] = x7, [x2; x5] = x6 + x7,

[x3; x5] = x7;

(12457C): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6;

[x2; x5] = x6, [x2; x6] = x7;

[x3; x4] = �x7;
(12457D): [x1; xi] = xi+1; i = 2; 3; [x1; xi] = xi+2; i = 4; 5;

[x2; x5] = x6, [x2; x6] = x7;

[x3; x4] = �x7.

The central extensions of N6;2;5 can be found in Chapter 7.

Central extensions of N6;2;6:

Z(g): x6; [g; g]: x4; x5; x6; Z
2(g): C16 = C26 = C36 = C45 = C46 = C56 = 0; C34�C25 = 0;

W (H2): C12 = C13 = C14 = 0; dimH2: 5; Basis: �15;�23;�24;�25+ �34;�35;

It is obvious that all the elements in H2(g;F) have x6 in its kernel. Therefore there is no

central extension of N6;2;6.

Central extensions of N6;2;7:

Z(g): x5; x6; [g; g]: x3; x4; x5; x6; Z
2(g): C35 = C36 = C45 = C46 = C56 = 0; C34 +

C25 = 0; C16 � C24 = 0; W (H2): C12 = C13 = C14 = C23 = 0; dimH2: 4; Basis:

�15;�16 +�24;�25 ��34;�26;

Group action: a�15 + b(�16+ �24) + c(�25 ��34) + d�26;

a! aa411a22 + ca311a21a22; b! ba211a
2
22 + da11a

2
22a21; c! ca311a

2
22; d! da11a

3
22;

One of fa; cg and one of fb; dg are nonzero. If a = 0 (or b = 0), then b 6= 0 (or a 6= 0). If

c = 0 (or d = 0), then d 6= 0 (or c 6= 0).

Case 1: d 6= 0. Make b = 0 by solving for a21. Then a 6= 0, and obtain two represen-

tatives [1; 0; 0; 1] (when c = 0) (corresponding to (13457F)) and [1; 0; 1; 1] (when c 6= 0)

(corresponding to (13457I)).

Case 2: d = 0. Then b 6= 0 and c 6= 0. Make a = 0 by solving for a21 to get the representative

[0; 1; 1; 0], corresponding to (13457G).

Therefore the corresponding central extensions of N6;2;7 are:
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(13457F): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x5] = x7;

[x2; x3] = x6, [x2; x6] = x7;

(13457G): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x6] = x7;

[x2; x3] = x6, [x2; x4] = x7,

[x2; x5] = x7, [x3; x4] = �x7;
(13457I): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x5] = x7;

[x2; x3] = x6, [x2; x5] = x7,

[x2; x6] = x7, [x3; x4] = �x7:

Central extensions of N6;2;8:

Z(g): x5; x6; [g; g]: x3; x5; x6; Z
2(g): C25 = C35 = C36 = C45 = C56 = 0; C15 �

C34 � C26 = 0; W (H2): C12 = C13 = C14 = 0; dimH2: 6; Basis: �15 + �34;�15 +

�26;�16;�23;�24;�46;

Group action: a(�15 +�34) + b(�15+ �26) + c�16 + d�23 + e�24 + f�46;

a! aa311a22 � fa311a42;
b! ba311a22 + fa311a42;

c! ba311a21 + ca411 + fa311a41;

d! �aa11a22a42 + ba11a22a42 + da11a
2
22 + fa11a

2
42;

e ! a(2a11a22a41 � a42a34 � a11a21a42) + b(a22a64 + a11a22a41 � a211a32 � 2a11a21a42) �
ca211a42 + d(a22a34 � a11a21a22) + ea211a22 + f(a42a64 � a211a62 � a11a41a42);
f ! fa511;

Then one of fa; bg and one of fb; c; fg are nonzero. And one of fb; fg is also nonzero.
Case 1: f 6= 0. Then make b = c = e = 0 by solving for a42; a41; a62 and a 6= 0. Make

a = f = 1, we may get the orbit [a311a22; 0; 0; da11a
2
22; 0; a

5
11]. This will give us a one

parameter representative [1; 0; 0; �; 0; 1], corresponding to (1357N).

Case 2: f = 0. Then b 6= 0. Make c = e = 0 by solving for a21 and a64. We may get

the following orbit [aa311a22; ba
3
11a22; 0;�aa11a22a42 + ba11a22a42 + da11a

2
22; 0; 0]. If a 6= b,

then make d = 0, and get the orbit [aa311a22; ba
3
11a22; 0; 0; 0; 0] (as now we require that

a+ b 6= 0), which can be reduced to a one parameter representative [1��; �; 0; 0; 0; 0] (with
� 6= 0), corresponding to (1357M). If a = b, then depending on whether d = 0 or not, we

get two representatives [1; 1; 0; 0; 0; 0] and [1; 1; 0; 1; 0; 0], corresponding to (1357L). And the

representative [1; 1; 0; 0; 0; 0] is just a special case of the one parameter representative.

Therefore the corresponding central extensions of N6;2;8 are:
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(1357L): [x1; x2] = x3; [x1; xi] = xi+2; i = 3; 4; 5;

[x2; x3] = x7, [x2; x4] = x5;

[x2; x6] =
1
2x7, [x3; x4] =

1
2x7;

(1357M): One parameter family, with � 6= 0

[x1; x2] = x3; [x1; xi] = xi+2; i = 3; 4; 5;

[x2; x4] = x5; [x2; x6] = �x7,

[x3; x4] = (1� �)x7;
(1357N): �

[x1; x2] = x3; [x1; xi] = xi+2; i = 3; 4; 5;

[x2; x3] = �x7, [x2; x4] = x5;

[x3; x4] = x7; [x4; x6] = x7.

Remark: (1357K) of Seeley's is just a special case of (1357M) by taking � = 1=2.

The central extensions of N6;2;9 can be found in Chapter 7. Notice that (1) By taking

x1 ! a; x2 ! �b; x3 ! �c�d, x4 ! �c, x5 ! �e, x6 ! f , x7 ! �g, we can get the exact
presentation of (1357Q) as in Seeley's paper; (2) By taking x1 ! a; x2 ! b; x3 ! c + d,

x4 ! c, x5 ! e, x6 ! f , x7 ! g, we can get the exact presentations of (1357R) and (1357S)

as in Seeley's paper.

The central extensions of N6;2;10 can be found in Chapter 7. By taking x1 ! b; x2 ! a;

x3 ! �c, x4 ! �d, x5 ! �f , x6 ! �e; x7 ! �g, we can get the exact presentations of

(1357O) and (1357P) as in Seeley's paper.

Central extensions of N6;2;11:

Z(g): x5; x6; [g; g]: x3; x4; x5; Z2(g): C35 = C36 = C45 = C46 = C56 = 0; C15 = C24; C25+

C34 = 0; W (H2): C12 = C13 = C14 = 0; dimH2: 5; Basis: �15 + �24;�16;�23;�25 �
�34;�26;

Group action: a(�15 +�24) + b�16 + c�23 + d(�25��34) + e�26;

a! aa611 + da511a21;

b! aa11a56 + ba11a66 + da21a56 + ea21a66;

c! ca511 + 2da311a42 � a11a232 � a311a221 � 2aa411a21;

d! da711;

e! da211a56 + ea211a66;

One of fa; dg and one of fb; eg are nonzero. One of fa; bg and one of fd; eg are nonzero.
Case 1: d 6= 0. Make a = c = e = 0 by solving for a21; a42; a56 respectively. Then b 6= 0,

and get a representative [0; 1; 0; 1; 0], corresponding to (13457E);

Case 2: d = 0: So a 6= 0 and e 6= 0. Make b = c = 0 by solving for a56 and a21 respectively
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to get a representative [1; 0; 0; 0; 1], corresponding to (13457D).

Therefore the corresponding central extensions of N6;2;11 are:

(13457D): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x5] = x7; [x2; x3] = x5,

[x2; x4] = x7; [x2; x6] = x7;

(13457E): [x1; xi] = xi+1; i = 2; 3; 4; [x1; x6] = x7; [x2; x3] = x5,

[x2; x5] = x7; [x3; x4] = �x7;

Central extensions of N6;3;1:

Z(g): x6; [g; g]: x4; x5; x6; Z
2(g): C26 = C36 = C46 = C56 = 0; C16+C45 = 0; C16�C45 =

0; W (H2): C12 = C13 = C25 = 0;

It is obvious to see that N6;3;1 has no central extension.

The central extensions of N6;3;2 can be found in Chapter 2, Example 3.

Central extensions of N6;3;3:

Z(g): x5; x6; [g; g]: x3; x5; x6; Z
2(g): C15 = C35 = C36 = C45 = C56 = 0; C34 + C26 = 0;

W (H2): C12 = C14 = C23 = 0; dimH2: 6; Basis:�13;�16;�24;�25;�26��34;�46;

Group action: a�13 + b�16 + c�24 + d�25 + e(�26 ��34) + f�46;

a! aa211a22 + ba211a42 + ea11a22a41 + fa11a41a42;

b! ba211a44 + fa11a44a41;

c! ca22a44 + da22a54 + e(a22a64 � a32a44) + f(a42a64 � a62a44);
d! da11a

3
22;

e! ea11a22a44 + fa11a44a42;

f ! fa11a
2
44;

One of fb; fg is nonzero, and also d 6= 0. Can always make c = 0.

Case 1: f = 0. Then b 6= 0. Make a = 0 by solving for a42 to get two representatives

[0; 1; 0; 1; 0; 0] (when e = 0, corresponding to (1357G)) and [0; 1; 0; 1; 1; 0] (when e 6= 0,

corresponding to (1357H));

Case 2: f 6= 0. Make b = e = 0 by solving for a41 and a42 respectively to get two

representatives [0; 0; 0; 1; 0; 1] (when a = 0, corresponding to (1357I)) and [1; 0; 0; 1; 0; 1]

(when a 6= 0, corresponding to (1357J)).

Therefore the corresponding central extensions of N6;3;3 are:
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(1357G): [x1; x2] = x3; [x1; x4] = x6; [x1; x6] = x7,

[x2; x3] = x5; [x2; x5] = x7;

(1357H): [x1; x2] = x3; [x1; x4] = x6; [x1; x6] = x7,

[x2; x3] = x5; [x2; x5] = x7, [x2; x6] = x7,

[x3; x4] = �x7;
(1357I): [x1; x2] = x3; [x1; x4] = x6; [x2; x3] = x5;

[x2; x5] = x7, [x4; x6] = x7;

(1357J): [x1; x2] = x3; [x1; x3] = x7; [x1; x4] = x6;

[x2; x3] = x5; [x2; x5] = x7, [x4; x6] = x7.

Remark: By taking x1 ! b, x2 ! a, x3 ! �c, x4 ! d, x5 ! �e, x6 ! f , x7 ! g in all the

four algebras above, we can get the exact presentations as in Seeley's paper.

The central extensions of N6;3;4 can be found in Chapter 7. By taking x1 ! b, x2 ! a,

x3 ! �c, x4 ! �d, x5 ! �e, x6 ! �f , x7 ! �g for all the algebras there, we can get the

exact presentations as in Seeley's paper.

Central extensions of N6;3;5:

Z(g): x5; x6; [g; g]: x5; x6; Z
2(g): C36 = C46 = C56 = 0; C16 + C35 = 0; C26 � C45 = 0;

W (H2): C12 = C14 = 0; dimH2: 8; Basis:�13;�15;�16��35;�23;�24;�25;�26+�45;�34;

Group action: a�13 + b�15+ c(�16��35) + d�23+ e�24+ f�25 + g(�26+�45) + h�34;

Let 4 := a11a22 � a12a21.
a ! faa211a66 + ba11a53 4 +c(a11a63 � a31a53) 4 +ca11a66a51 + da11a21a66 � ea221a66 +

fa21a534+g(a21a634+a41a534+a21a51a66)� h(a21a31a66 + a11a41a66)g4�1;

b! ba114+c(a211a42+a11a21a32�a11a12a41�2a11a22a31+a12a21a31)+fa214+g(a11a21a42+
a221a32 � 2a12a21a41 � a21a22a31 + a11a22a41);

c! ca11a66 + ga21a66;

d! f2aa11a12a66 + b4 (a12a53 � a11a54) + c4 (a63a12 � a11a64) + c4 (a31a54 � a32a53) +
ca66(a52a11 + a12a51) + da66(a11a22 + a12a21) � 2ea21a22a66 + f 4 (a53a22 � a54a21) + g 4
(a22a63 � a21a64) + g4 (a42a53 � a41a54) + ga66(a21a52 + a22a51)� ha66(a21a32 + a22a31 +

a11a42 + a12a41)g4�1;

e ! f�aa212a66 + ba12a54 4+ca12a644�ca32a544�ca12a52a66 � da12a22a66 + ea222a66 +

fa22a544+ga64a224+ga42a544�ga22a66a52 + ha22a32a66 + ha12a42a66g4�1;

f ! ba12 4 +ca11a12a42 + 2ca12a21a32 � ca212a41 � ca12a22a31 � ca11a22a32 + fa224 +2g

a11a22a42 + ga21a22a32 � ga12a22a41 � ga222a31 � ga12a21a42;
g ! ca12a66 + ga22a66;

h! �a66fca11a54 + ca12a53 + ga22a53 + ga21a54 � ha66g4�1;
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One of fc; gg is nonzero. Can always make c 6= 0 and g = 0. To �x g = 0, we require that

a12 = 0. Let a21 = a31 = a41 = a51 = a52 = a53 = a61 = a62 = 0, we have

a ! faa211a66 + ca11a63g4�1; b ! ba11 4 +ca211a42; c ! ca11a66; d ! fb4 (�a11a54) +
c 4 (�a11a64) + da66a11a22 � ha66a11a42g4�1; e ! f�ca32a54 4 +ea222a66 + fa22a54 4
+ha22a32a66g4�1; f ! �ca11a22a32 + fa224; g ! 0; h! �a66fca11a54 � ha66g4�1;

Make h = 0 by solving for a54, f = 0 for a32, a = 0 for a63, b = 0 for a42, d = 0 for a64.

Now take a63 = a42 = a54 = a32 = 0 also, and get a ! 0; b ! 0; c ! ca11a66; d ! 0;

e! ea222a664�1; f ! 0; g! 0; h! 0;

Depending on whether e = 0 or not, we get two representatives [0; 0; 1; 0; 0; 0; 0; 0] (when

e = 0), corresponding to (137C), and [0; 0; 1; 0; 1; 0; 0; 0] (when e 6= 0), corresponding to

(137D).

Therefore the corresponding central extensions N6;3;5 are:

(137C): [x1; x2] = x5; [x1; x4] = x6; [x1; x6] = x7,

[x2; x3] = x6, [x3; x5] = �x7;
(137D): [x1; x2] = x5; [x1; x4] = x6; [x1; x6] = x7,

[x2; x3] = x6, [x2; x4] = x7, [x3; x5] = �x7;

Remark: (1) By taking x1 ! a+ 1
2d, x2 ! b+ c, x3 ! d, x4 ! b, x5 ! 1

2e+ f , x6 ! e and

x7 ! g, we may get the exact presentation of (137C) as in Seeley's paper; (2) By taking

x1 ! �a, x2 ! �c, x3 ! d, x4 ! b, x5 ! f , x6 ! �e, x7 ! g, we can get the exact

presentation of (137D) as in Seeley's paper.

The central extensions of N6;3;6 can be found in Section 6.4.

Central extensions of N6;3;7:

Z(g): x5; x6; [g; g]: x3; x4; x5; Z
2(g): C24 = C35 = C36 = C45 = C46 = C56 = 0; C25+C34 =

0; W (H2): C12 = C13 = C14 = 0; dimH2: 5; Basis:�15;�16;�23;�25 ��34;�26;

Group action: a�15 + b�16 + c�23 + d(�25 ��34) + e�26;

a! aa411a22 + da311a21a22;

b! aa11a56 + ba11a66 + da21a56 + ea21a66;

c! ca11a
2
22 + 2da11a22a42 � da11a232;

d! da311a
2
22;

e! da22a56 + ea22a66;

In each of the four sets fa; dg; fb; eg; fa; bg and fd; eg, at least one element is nonzero.

Case 1: d 6= 0. Then make a = c = e = 0 by solving for a21, a42 and a56 respectively. Then

b 6= 0, we get a representative [0; 1; 0; 1; 0], corresponding to (13457C);
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Case 2: d = 0. Then a 6= 0 and e 6= 0. Make b = 0 by solving for a21 and get two represen-

tatives depending on whether c = 0 or not, i.e., [1; 0; 0; 0; 1] (when c = 0, corresponding to

(13457A)) and [1; 0; 1; 0; 1] (when c 6= 0, corresponding to (13457B)).

Therefore the corresponding central extensions N6;3;7 are:

(13457A): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x5] = x7,

[x2; x6] = x7;

(13457B): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x5] = x7,

[x2; x3] = x7, [x2; x6] = x7;

(13457C): [x1; xi] = xi+1; i = 2; 3; 4, [x1; x6] = x7,

[x2; x5] = x7, [x3; x4] = �x7;

Central extensions of N6;3;8:

Z(g): x5; x6; [g; g]: x4; x5; Z2(g): C25 = C35 = C45 = C46 = C56 = 0; C15 + C34 = 0;

W (H2): C12 = C14 = 0; dimH2: 7; Basis: �13;�15 ��34;�16;�23;�24;�26;�36;

Group action: a�13 + b(�15��34) + c�16 + d�23 + e�24 + f�26 + g�36;

a! aa311+b(a11a53+a11a21a31+a
2
11a41)+ca11a63+da

2
11a21�ea11a221+fa21a63+ga31a63�

ga211a61;

b! ba311a22;

c! ba11a56 + ca11a66 + fa21a66 + ga31a66;

d! 2ba31a11a22 + da211a22 � 2ea11a22a21 + fa22a63 + g(a32a63 � a211a62);
e! �ba11a22a32 + ea11a

2
22;

f ! fa22a66 + ga32a66;

g ! ga211a66;

One always have b 6= 0 and one of ff; gg is nonzero. Since b 6= 0, make a = c = 0 by solving

for a53 and a56 respectively.

Case 1: g = 0. Then f 6= 0. Make e = 0 by solving for a32 and make d = 0 by solving for

a63 and get a representative [0; 1; 0; 0; 0; 1; 0], corresponding to (1357A);

Case 2: g 6= 0. Make d = f = 0 by solving for a62 and a32 respectively and get represen-

tatives [0; 1; 0; 0; 0; 0; 1] (when e = 0, corresponding to (1357B)) and [0; 1; 0; 0; 1; 0; 1] (when

e 6= 0, corresponding to (1357C)).

Therefore the corresponding central extensions of N6;3;8 are:
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(1357A): [x1; x2] = x4; [x1; x4] = x5, [x1; x5] = x7,

[x2; x3] = x5; [x2; x6] = x7, [x3; x4] = �x7;
(1357B): [x1; x2] = x4; [x1; x4] = x5, [x1; x5] = x7;

[x2; x3] = x5; [x3; x4] = �x7, [x3; x6] = x7;

(1357C): [x1; x2] = x4; [x1; x4] = x5, [x1; x5] = x7,

[x2; x3] = x5; [x2; x4] = x7, [x3; x4] = �x7;
[x3; x6] = x7;

Remark: By switching x3 and x4 in all the algebras above, we can get the exact presentations

as in Seeley's paper.

Central extensions of N6;3;9:

Z(g): x4; x5; x6; [g; g]: x3; x4; x5; Z
2(g): C34 = C35 = C36 = C45 = C46 = C56 = 0; C15 �

C24 = 0; W (H2): C12 = C13 = C23 = 0; dimH2: 5; Basis: �14;�15+ �24;�16;�25;�26;

A little bit of calculation will show that any element in H2 has none trivial kernel in the

center of N6;3;9. So N6;3;9 does not have the desired central extension.

Central extensions of N6;4;1:

Z(g): x5; x6; [g; g]: x5; Z
2(g): C15 = C25 = C35 = C45 = C56 = 0; W (H2): C12 = 0;

dimH2: 9; Basis: �13;�14;�16;�23;�24;�26;�34;�36;�46;

It is obvious that all the elements in H2(g;F) have x5 in the kernel, so N6;4;1 has no central

extension.

The central extensions of N6;4;2 can be found in Chapter 7.

Central extensions of N6;4;3:

Z(g): x4; x5; x6; [g; g]: x3; x4; Z
2(g): C24 = C34 = C35 = C36 = C45 = C46 = 0; W (H2):

C12 = C13 = 0; dimH2: 7; Basis: �14;�15;�16;�23;�25;�26;�56;

Group action: a�14 + b�15 + c�16 + d�23 + e�25 + f�26 + g�56;

a! aa311a22;

b! aa11a45 + ba11a55 + ca11a65 + ea21a55 + fa21a65 + g(a51a65 � a55a61);
c! aa11a46 + ba11a56 + ca11a66 + ea21a56 + fa21a66 + g(a51a66 � a61a56);
d! da11a

2
22;

e! ea22a55 + fa22a65 + g(a52a65 � a55a62);
f ! ea22a56 + fa22a66 + g(a52a66 � a62a56);
g ! g(a55a66 � a65a56);
We have a 6= 0 and g 6= 0. Make b = c = e = f = 0 by solving for a45; a46; a62 and a52
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respectively (letting a65 = a56 = 0), and get two representatives [1; 0; 0; 0; 0; 0; 1] (when

d = 0) (corresponding to (1457A)) and [1; 0; 0; 1; 0; 0; 1] (when d 6= 0) (corresponding to

(1457B));

Therefore the corresponding central extensions of N6;4;3 are:

(1457A): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7, [x5; x6] = x7;

(1457B): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7,

[x2; x3] = x7, [x5; x6] = x7.

Central extensions of N6;4;4:

Z(g): x5; x6; [g; g]: x5; x6; Z2(g): C16 = C26 = C35 = C45 = C56 = 0; W (H2): C12 = C34 =

0; dimH2: 8; Basis: �13;�14;�15;�23;�24;�25;�36;�46;

Group action: a�13 + b�14 + c�15 + d�23 + e�24 + f�25 + g�36+ h�46;

The automorphism group of N6;4;4 has two components, therefore we have

(1):

a! aa11a33 + ba11a43 + ca11a53 + da21a33 + ea21a43 + fa21a53 � ga33a61 � ha43a61;
b! aa11a34 + ba11a44 + ca11a54 + da21a34 + ea21a44 + fa21a54 � ga61a34 � ha44a61;
c! c(a211a22 � a11a12a21) + f(a11a21a22 � a221a22);
d! aa12a33 + ba12a43 + ca12a53 + da22a33 + ea22a43 + fa22a53 � ga33a62 � ha43a62;
e! aa12a34 + ba12a44 + ca12a54 + da22a34 + ea22a44 + fa22a54 � ga34a62 � ha44a62;
f ! ca12(a11a22 � a12a21) + fa22(a11a22 � a12a21);
g ! (ga33+ ha43)(a33a44 � a34a43);
h! (ga34+ ha44)(a33a44 � a34a43);
(2): a! �a, b! �d, c! g, d! �b; e! �e, f ! h, g ! b+ c, h! e+ f ;

One of fc; fg and one of fg; hg are nonzero. We can always make c 6= 0, g 6= 0 and

f = h = 0. Make a = b = d = 0 by solving for a53, a54 and a62 respectively. Now by taking

a12 = a34 = a53 = a63 = a43 = a54 = a21 = 0, we can make a = b = d = f = h = 0, and

depending on whether e = 0 or not, we may obtain two representatives [0; 0; 1; 0; 0; 0; 1; 0]

(when e = 0) (corresponding to (137A)) and [0; 0; 1; 0; 1; 0; 1; 0] (when e 6= 0), corresponding

to (137B);

Therefore the central extensions of N6;4;4 are:
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(137A): [x1; x2] = x5; [x1; x5] = x7,

[x3; x4] = x6, [x3; x6] = x7;

(137B): [x1; x2] = x5; [x1; x5] = x7, [x2; x4] = x7,

[x3; x4] = x6, [x3; x6] = x7;

Remark: There is an error in Seeley's paper about (137B), instead of having [x2; x4] = x7,

he had [x2; x3] = x7, which was not a Lie algebra at all.

Central extensions of N6;5:

Z(g): x3; x4; x5; x6; [g; g]: x3; Z
2(g): C34 = C35 = C36 = 0; W (H2): C12 = 0; dimH2: 11;

Basis: �13;�14;�15;�16;�23;�24;�25;�26;�45;�46;�56;

Group action: a�13+b�14+c�15+d�16+e�23+f�24+g�25+h�26+i�45+j�46+k�56;

a! (aa11 + ea21)(a11a22 � a12a21);
b! aa11a34+ba11a44+ca11a54+da11a64+ea21a34+fa21a44+ga21a54+ha21a64+ ia41a54+

ja41a64 � ia44a51 + ka51a64 � ja44a61 � ka61a54;
c! aa11a35+ba11a45+ca11a55+da11a65+ea21a35+fa21a45+ga21a55+ha21a65+ ia41a55+

ja41a65 � ia45a51 + ka51a65 � ja45a61 � ka55a61;
d! aa11a36+ba11a46+ca11a56+da11a66+ea21a36+fa21a46+ga21a56+ha21a66+ ia41a56+

ja41a66 � ia46a51 + ka51a66 � ja46a61 � ka56a61;
e! (aa12 + ea22)(a11a22 � a12a21);
f ! aa12a34+ba12a44+ca12a54+da12a64+ea22a34+fa22a44+ga22a54+ha22a64+ ia42a54+

ja42a64 � ia44a52 + ka52a64 � ja44a62 � ka62a54;
g ! aa12a35+ba12a45+ca12a55+da12a65+ea22a35+fa22a45+ga22a55+ha22a65+ ia42a55+

ja42a65 � ia45a52 + ka52a65 � ja45a62 � ka55a62;
h! aa12a36+ba12a46+ca12a56+da12a66+ea22a36+fa22a46+ga22a56+ha22a66+ ia42a56+

ja42a66 � ia46a52 + ka52a66 � ja46a62 � ka56a62;
i! i(a44a55 � a45a54) + j(a44a65 � a64a45) + k(a54a65 � a64a55);
j ! i(a44a56 � a46a54) + j(a44a66 � a64a46) + k(a54a66 � a64a56);
k ! i(a45a56 � a46a55) + j(a45a66 � a65a46) + k(a55a66 � a65a56);
One of fa; eg is nonzero. We can make a 6= 0 and e = 0, then by taking a21 = a41 = a51 =

a61 = a54 = a64 = 0, we can make b = c = d = 0 by solving for a34, a35 and a36 respectively.

One of fi; j; kg is nonzero. We can always make k 6= 0 and i = j = 0, as the coe�cients

of i; j; k are just the the second compound matrix of a nonsingular matrix. And we need

f 6= 0.

Now take a12 = a21 = a34 = a35 = a36 = a41 = a51 = a61 = a54 = a64 = a56 = a62 =

a65 = a52 = 0, we can �x b = c = d = e = i = j = 0 and g ! fa22a45 + ga22a55;
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h! fa22a46 + ha22a66;

Make g = h = 0 by solving for a45 and a46 and get representative [1; 0; 0; 0; 0; 1; 0; 0; 0; 0; 1].

Therefore the central extensions of N6;5 are:

(157): [x1; x2] = x3, [x1; x3] = x7,

[x2; x4] = x7, [x5; x6] = x7;
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6.4 Extensions of N6;3;6

Although we can use the same procedure as we do to all the other algebras to get the

desired central extensions, we �nd it very di�cult to manipulate the parameters involved.

So instead we use an ad hoc method to deal with this case, which will give us a slightly

di�erent invariant than the one used by Seeley.

Let V be a vector space of dimension 3 with a basis fa; b; cg. Because N6;3;6 is a free

nilpotent Lie algebra, by some standard arguments [11] [23], we have N6;3;6
�= V � ^2V .

And isomorphically, N6;3;6 can be written as:

N6;3;6 : [a; b] = d = a ^ b; [b; c] = e = b ^ c; [c; a] = f = c ^ a.
Center: d; e; f ;

[g; g]: d; e; f ;

To �nd 2-cocycles, we need to �nd all � : V � ^2V � V � ^2V ! F such that they satisfy

the Jacobi identity

Jac(x; y; z) = �([x; y]; z)+ �([y; z]; x) + �([z; x]; y) = 0; 8x; y; z:

As Z(g) = ^2V , it is obvious that for � to be a cocycle, � must vanish on ^2V � ^2V .
By normalizing the cocycles, we require that �(a; b) = �(b; c) = �(c; a) = 0, which means

that �(V; V ) = 0.

So for � : V �^2V �V �^2V ! F to be a cocycle, we only need to check that the restriction

� : V � ^2V ! F satis�es the Jacobi identity.

For x; y; z 2 V , we de�ne det(x; y; z) 2 F by

x ^ y ^ z = det(x; y; z) � a ^ b^ c:
Explicitly, if

x = �1a+ �1b+ 
1c

y = �2a+ �2b+ 
2c

z = �3a+ �3b+ 
3c

then

det(x; y; z) = det

264 �1 �1 
1
�2 �2 
2
�3 �3 
3

375 :
By direct computation, we have

�(x; y ^ z) + �(y; z ^ x) + �(z; x^ y)
= det(x; y; z) � (�(a; b^ c) + �(b; c^ a) + �(c; a^ b)) = 0:
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Therefore � is a normalized cocycle if and only if for � : V � ^2V ! F,

�(a; b^ c) + �(b; c^ a) + �(c; a^ b) = 0:

The Levi factor of the automorphism group of N6;3;6 is G = GL(V ), and its unipotent

radical Ru acts trivially on H
2(g;F), i.e., �(�(x); �(y)^ �(z)) = �(x; y ^ z).

Because the set of all the bilinear maps from V �^2V to F is isomorphic to the dual space

(V 
 ^2V )� of V 
 ^2V , we can show that, taking into account the previous statement,

H2(g;F) is isomorphic as a G�module to a submodule of (V �^2V )�, which will be denoted
by (V 
 ^2V )�0, and where G = GL(V ).

Denote by (E; �) the G-module E = EndF(V ) with the action

g � T = det(g)g � T � g�1:

We de�ne a map " := V 
 ^2V ! (E; �) by

"(x
 (y ^ z))(v) = det(v; y; z)x

is an isomorphism of G-modules, as we have for any g 2 G,

g � "(x
 (y ^ z))(v) = det(g)g"(x
 (y ^ z))(g�1(v))
= det(g) det(g�1(v); y; z)g(x)

= det(v; g(y); g(z))g(x)

= "(g(x)
 (g(y)^ g(z)))(v)
= "(g(x
 (y ^ z)))(v)

or

g � "(x
 (y ^ z)) = "(g(x
 (y ^ z))):

It follows easily that " acts on the basis of V 
 ^2V as
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a
 (b ^ c)!

264 1 0 0

0 0 0

0 0 0

375 ; a
 (c ^ a)!

264 0 1 0

0 0 0

0 0 0

375 ;
a
 (a ^ b)!

264 0 0 1

0 0 0

0 0 0

375 ; b
 (b^ c)!

264 0 0 0

1 0 0

0 0 0

375 ;
b
 (c^ a)!

264 0 0 0

0 1 0

0 0 0

375 ; b
 (a ^ b)!

264 0 0 0

0 0 1

0 0 0

375 ;
c
 (b^ c)!

264 0 0 0

0 0 0

1 0 0

375 ; c
 (c^ a)!

264 0 0 0

0 0 0

0 1 0

375 ;
c
 (a ^ b)!

264 0 0 0

0 0 0

0 0 1

375 :
The dual G-module of (E; �) is isomorphic to the G-module (E;�) where

g�T = det(g)�1g � T � g�1:

Indeed the map

� : (E;�)! (E; �)�

de�ned by

�(T )(S) := tr(TS)

is an isomorphism, since

(g � �(T ))(S) = �(T )(g�1 � S)
= tr(T � (g�1 � S))
= tr(T � det(g)�1g�1 � S � g)
= tr(det(g)�1g � T � g�1 � S)
= tr((g�T ) � S)
= �(g�T )(S)

Hence

g � �(T ) = �(g�T ):

Let v = �a+ �b+ 
c 2 V . Then

"(a
 (b^ c))(v) = det(v; b; c)a= �a:

Hence "(a
 (b^ c)) = projector on Fa with kernel Fb+ Fc:
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The operators "(b
 (c ^ a)) and "(c
 (a ^ b)) have similar descriptions.

In particular,

"(a
 (b ^ c)) + "(b
 (c ^ a)) + "(c
 (a ^ b)) = idV :

It follows that the transpose map

"t : (E; �)� 7�! (V 
 ^2V )�

induces an isomorphism of the G-module of linear functions that vanish on idV with the

G-modules (V 
 ^2V )�0.
We have

�(T )(idV ) = tr(T � idV ) = tr(T )

and so "t � � induces an isomorphism of G-modules

(E0;�) 7�! (V 
 ^2V )�0
where

E0 = ker(tr) = fT 2 E : tr(T ) = 0g :

So we have proved the following

Theorem 6.1 The G-module H2(g;F) is isomorphic to (E0;�).

It is an easy fact that any element in (E0;�) is in the same orbit as one of the following

three elements:

(i) 264 � 0 0

0 � 0

0 0 �� � �

375 ;
(ii) 264 � 1 0

0 � 1

0 0 �

375 ;
(iii) 264 � 1 0

0 � 0

0 0 �2�

375 :
Now we try to �nd the corresponding elements in H2(g;F) for (i), (ii) and (iii).
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For an arbitrary element T in (E;�), we have the G-module isomorphism "t �� : (E;�) 7!
(V 
 ^2V )� with

"t � �(T )(v) = �(T )("(v)) = tr(T"(v)): (6:2)

where v 2 V 
 ^2V .
In (i), we have

T =

264 � 0 0

0 � 0

0 0 �� � �

375 :
Therefore from (6.2), if the diagonal elements of "(v) are �; �; 
, we have

"t � �(T )(v) = �(T )("(v)) = tr(T"(v)) = �� + �� + �
: (6:3)

Let 	 = (b ^ c)
 a+ �(c^ a)
 b+ �(a ^ b)
 c 2 V � 
 (^2V )�. Then

	(v) = �� + �� + �
: (6:4)

Combining (6.3) and (6.4), we have

"t � �(T )(v) = 	(v);

or

"t � �(T ) = (b^ c)
 a + �(c ^ a)
 b+ �(a ^ b)
 c:

It is easy to check that

	(a; b^ c) = �;	(b; c^ a) = �;	(c; a^ b) = � = �� � �;

and all the other combinations are zero, which in turn will give us the algebra

(147E) :

[a; b] = d; [b; c] = e;

[c; a] = f; [a; e] = �g;

[b; f ] = �g; [c; d] = (�� � �)g:

We may assume that none of �; �; � = ���� equals 0, otherwise 	 would have some nonzero

element of Z(g) in its kernel.

By taking � = �1; � = � and � = �� � � = 1 � �, we get exactly the same family as in

Seeley's paper, i.e.,

103



(147E) :

[a; b] = d; [b; c] = e;

[a; c] = �f; [a; e] = �g;
[b; f ] = �g; [c; d] = (1� �)g:

Let � = �� � �, and
e1 = � + � + � = 0;

e2 = �� + �� + ��;

e3 = ���:

In (i), for two elements diag(�; �; �) and diag(�0; �0; �0) to be in the same subspace, we should

have �0 = ��; �0 = ��; �0 = ��, where �0 = ��0 � �0. Let

I = �e
3
2

e23

and it is obvious that I is an invariant.

Write t = ��
� , then � = �t�; � = �� � � = (t� 1)�. Then

e2 = �� + �� + ��;

= �2(�t � t(t � 1) + t � 1)

= �2(�t2 + t � 1)

e3 = ��� = �3(�t)(t � 1)

I = � e3
2

e2
3

= (1�t+t2)3

t2(t�1)2 :

Therefore I(�) = � e3
2

e2
3

= (1��+�2)3

�2(��1)2
is an invariant for (147E), with � 6= 0; 1. It is obvious

that (147C) is just a special case of (147E), by letting � = 1=2.

It is interesting to observe that, up to a constant factor, this invariant has the same ex-

pression as the so called j-invariant of the elliptic curve y2 = x(x� 1)(x�) (see [14], pp.83).
Seeley uses a somewhat di�erent expression for his invariant in this case.

In (ii), when � 6= 3, as 3� = 0, we have � = 0, then it is easy to see that the corresponding

cocycle will contain a nonzero element of Z(g) in its kernel. So we just consider the case

when � = 3 and � 6= 0. Then we have

264 � 1 0

0 � 1

0 0 �

375 �
264 1 1 0

0 1 1

0 0 1

375 :
And its corresponding cocycle is

	 = (b^ c)
 (a+ b) + (c ^ a)
 (b+ c) + (a ^ b)
 c:
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It is easy to check that

	(a; a ^ b) = 0; 	(a; b^ c) = 1; 	(a; c^ a) = 1;

	(b; a^ b) = 1; 	(b; b^ c) = 0; 	(b; c^ a) = 1;

	(c; a^ b) = 1; 	(c; b^ c) = 0; 	(c; c^ a) = 0:

The corresponding algebra is for � = 3 only:

(147F ) : (for � = 3 only)

[a; b] = d; [b; c] = e;

[a; c] = �f; [a; e] = g;

[a; f ] = g; [b; d] = g;

[b; f ] = g; [c; d] = g:

In (iii), when � = 0, the corresponding cocycle will contain a nonzero element of Z(g) in its

kernel. And when � 6= 0, we have

264 � 1 0

0 � 0

0 0 �2�

375 �
264 1 1 0

0 1 0

0 0 �2

375
Its corresponding cocycle is

	 = (b^ c)
 (a+ b) + (c ^ a)
 b� 2(a ^ b)
 c:

It is easy to check that

	(a; a ^ b) = 0; 	(a; b^ c) = 1; 	(a; c^ a) = 1;

	(b; a^ b) = 0; 	(b; b^ c) = 0; 	(b; c^ a) = 1;

	(c; a^ b) = �2; 	(c; b ^ c) = 0; 	(c; c^ a) = 0:

Its corresponding algebra is

(1) :

[a; b] = d; [b; c] = e; [a; c] = �f;
[a; e] = g; [a; f ] = g; [b; f ] = g;

[c; d] = �2g:
which is isomorphic to (147D) of Seeley's paper, an isomorphism from (1) to (147D) can be

given as: a! 1=2c, b! b, c! a, d! �1=2e, e! �d, f ! �1=2f and g ! �1=4g.
Therefore the central extensions of N6;3;6 of dimension 7 are:
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(147D):

[a; b] = d; [a; c] = �f ,
[a; e] = g; [a; f ] = g,

[b; c] = e; [b; f ] = g,

[c; d] = �2g:
(147E): I(�) = (1��+�2)3

�2(��1)2 ; � 6= 0; 1 ( � = 1=2 gives (147C))

[a; b] = d, [a; c] = �f ,
[a; e] = �g; [b; c] = e;

[b; f ] = �g; [c; d] = (1� �)g.
(147F): (for � = 3 only)

[a; b] = d; [a; c] = �f ,
[a; e] = g; [a; f ] = g,

[b; c] = e; [b; d] = g;

[b; f ] = g, [c; d] = g:

Remark: (147C) is a special case of (147E) by taking � = 1=2.
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Chapter 7

Algebras over the Real Field

In this chapter, we will consider the central extensions of the algebras of dimensions � 6

over the real �eld. We only provide the proofs for those cases where some new algebras

arised due to the change of the ground �eld. Our proofs also apply to the case when the

�elds are algebraically closed with � 6= 2, with some minor modi�cations.

As we have discussed in Chapter 5, two new algebras arise from the central extensions of

the 3-dimensional Abelian Lie algebras. No new algebra arises from the central extensions

of 4-dimensional algebras. Therefore we start by considering the central extensions of 5-

dimensional nilpotent Lie algebras.

7.1 Extensions of 5-Dimensional Algebras

The central extensions of N5;2;2 over R can be found in chapter 2, Example 2.

Central extensions of N5;2;3:

Z(g): x4; x5; [g; g]: x3; x4; x5; Z2(g): C34 = C35 = C45 = 0; C15 � C24 = 0; W (H2):

C12 = C13 = C23 = 0; dimH2: 3; Basis: �14; �15 +�24; �25.

Group action: a�14 + b(�15+ �24) + c�25:

Let 4 := a11a22 � a12a21. Then a! (aa211 + 2ba11a21 + ca221)4; b! (aa11a12 + b(a11a22 +

a12a21) + ca21a22)4; c! (aa212 + 2ba12a22 + ca222)4.
Let A = [a; b; c] and B = [a1; b1; c1]. It is obvious that in A one of a; b; c 6= 0. May assume

a = 1 and have A = [1; b; c] and B = [0; b1; c1]. By taking a21 = 0 will ensure that a = 1 in

A.

Now in B one of b1; c1 6= 0 and (as a21 = 0) a1 = 0! 0; b1 ! b1a11a22; c1 ! (2b1a12a22 +

c1a
2
22)4.
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If b1 6= 0, make c1 = 0 by solving for a12, and obtain the representative for B: B1 = [0; 1; 0].

If b1 = 0, then c1 6= 0 and obtain another representative for B: B2 = [0; 0; 1].

Case 1: B1 = [0; 1; 0]. Then A = [1; 0; c]. To �x B1 (up to a scalar), we require a12 = a21 = 0.

Consider the group action on A: a = 1! a2114; b = 0! 0; c! ca2224.
Subcase 1.1: c = 0. we obtain the representative for A: A1 = [1; 0; 0], with A1 ^ B1

corresponding to (2457M).

Subcase 1.2: c 6= 0. Then A! [a211; 0; ca
2
22]. If c > 0, then we obtain the representativeA2 =

[1; 0; 1], with A2 ^B1 corresponding to (2457L); If c < 0, then we obtain the representative

A3 = [1; 0;�1], with A3 ^B1 corresponding to (2457L1).

Case 2: B2 = [0; 0; 1]. Then A = [1; b; 0]. To �x B2 (up to a scalar), we require a21 = 0.

With B2 being �xed, we can always make c = 0 in A by linear combination.

Consider the group action on A: a! a2114; b! (a11a12 + ba11a22)4.
We can obviously make b = 0 by solving for a12 and obtain the representative A = [1; 0; 0],

with A ^B2 also corresponding to (2457L).

At �rst we show that (1) A2 ^B1 and (2) A^B2 are in the same orbit, as both of them are

corresponding to (2457L). Compare the corresponding algebras: (1) [x1; xi] = xi+1; i = 2; 3;

[x1; x4] = x7, [x1; x5] = [x2; x4] = x6, [x2; x3] = x5; [x2; x5] = x7; and (2) [x1; xi] = xi+1; i =

2; 3; [x1; x4] = x6, [x2; x3] = x5; [x2; x5] = x7:

By taking x1 ! x1 + x2, x2 ! �x1 + x2, x3 ! 2x3, x4 ! 2x4 + 2x5, x5 ! �2x4 + 2x5,

x6 ! �2x6 + 2x7, x7 ! 2x6 + 2x7, we map (1) to (2).

To prove the non-isomorphism among (2457L, 2457L1, 2457M), we show that they are in

di�erent orbits.

Consider (2457L), i.e., A ^ B2, under the group action, A = [1; 0; 0]! 4[a211; a11a12; a212],
and B2 = [0; 0; 1]! 4[a221; a21a22; a222]. Then

A ^B2 ! f(a211a21a22 � a11a12a221)�14 ^ (�15 +�24)

+(a211a
2
22 � a212a221)�14 ^�25

+(a11a12a222 � a212a21a22)(�15 +�24) ^�25g42

Compare (2457L) and (2457M), then the coe�cients of �14^�25 and (�15+�24)^�25 are

zero. Then we have a12a22 = 0 and a11a22 + a12a21 = 0, which will lead to the singularity

of 4.
Compare (2457L) and (2457L1), we would have

a11a2143 = a12a2243 6= 0;

and (a11a22 + a12a21)43 = 0.
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Simpli�cation would lead to a221 + a222 = 0, which has a solution over algebraically closed

�elds (and at the same time maintain the nonsingularity of the automorphism group), but

not over the real �eld.

Therefore, as real Lie algebras, (2457L) and (2457L1) are not isomorphic.

Similarly we can prove that (2457L1) and (2457M) are not isomorphic.

Therefore the corresponding central extensions of N5;2;3 are:

(2457L): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6,

[x1; x5] = x7, [x2; x3] = x5;

[x2; x4] = x7, [x2; x5] = x6;

(2457L1): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x6,

[x1; x5] = x7, [x2; x3] = x5;

[x2; x4] = x7, [x2; x5] = �x6;
(2457M): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = x7,

[x1; x5] = x6, [x2; x3] = x5;

[x2; x4] = x6;

Central extensions of N5;3;2:

Z(g): x4; x5; [g; g]: x4; x5; Z2(g): C45 = 0; C25�C34 = 0; W (H2): C12 = C13 = 0; dimH2:

6; Basis: �14; �15; �23; �24; �25 + �34; �35;

Group action: a�14 + b�15 + c�23 + d�24 + e(�25 + �34) + f�35:

a! aa211a22 + ba211a32 + da11a22a21 + ea11(a21a32 + a22a31) + fa11a31a32;

b! aa211a23 + ba211a33 + da11a21a23 + ea11(a21a33 + a31a23) + fa11a31a33;

c ! c(a22a33 � a32a23) + d(a22a43 � a23a42) + e(a22a53 � a52a23) + e(a32a43 � a42a33) +

f(a32a53 � a52a33);
d! da11a

2
22 + 2ea11a22a32 + fa11a

2
32;

e! da11a22a23 + ea11(a22a33 + a23a32) + fa11a32a33;

f ! da11a
2
23 + 2ea11a23a33 + fa11a

2
33;

Let V1 be the subspace generated by �14;�15;�23, V2 the subspace generated by �14;�15;

�24;�25+�34;�35, and V3 = V1
T
V2. It is easy to see that all V1, V2 and V3 are submodules

under the group action.
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Let L be any two-dimensional subspace of H2(g;F). Assume L = A ^ B, with A and B of

the form a�14 + b�15+ c�23 + d�24 + e(�25 +�34) + f�35.

Among A and B, we have the following restrictions: (1) e 6= 0; or (2) one of a; d 6= 0; or (3)

one of b; f 6= 0.

Case 1. L 6� V1, or at least one of d; e; f 6= 0 in A. When e2 � df > 0, we can make e = 1

and b = f = 0, and also a = b = c = 0 to get subcase (a) A = [0; 0; 0; 0; 1; 0]. When

e2 � df = 0, make d = e = 0 and f = 1. We can make further b = c = 0 by solving for

a31 and a52 respectively. Depending on whether a = 0 or not, we get two subcases: (b)

A = [0; 0; 0; 0; 0; 1] and (c) A = [1; 0; 0; 0; 0; 1]. When e2 � df < 0, we can make e = 0 and

d = f = 1. We can further make a = b = c = 0 by solving for a21, a31 and a43 respectively

to get (d) A = [0; 0; 0; 1; 0; 1].

Subcase 1.1: L � V2. Or c = 0 in both A and B.

Subcase 1.1.1: L
T
V3 = 0, or we have at least one of d; e; f 6= 0 in B, consider the following

cases:

Subcase 1.1.1.1: A = [0; 0; 0; 0; 1; 0]. To �x A, we require a21 = a31 = 0, a42 = a53,

a22a32 = 0, a23a33 = 0, and a11(a22a33 + a23a32) = 1.

Assume B = [a; b; c; d; 0; f ]. Then if a23 = a32 = 0, then a ! aa211a22; b ! ba211a33;

c! ca22a33 + da22a43 + f(�a52a33); d! da11a
2
22; e = 0! 0; f ! fa11a

2
33:

If instead a22 = a33 = 0, we have a ! ba211a32; b ! aa211a23; c ! c(�a32a23) + da23a42 +

fa32a53; d! fa11a
2
32; e = 0! 0; f ! da11a

2
23:

As one of f; d 6= 0, we can always assume f 6= 0 by the group action above. And if both

f; d 6= 0, we can always make a = 1 when one of a; b 6= 0. Make c = 0. Depending on the

values of a; b; d, we get all the following representatives for B: (1) B = [0; 0; 0; 0; 0; 1] (when

a = b = d = 0, A ^ B corresponds to (247I)); (2) B = [0; 0; 0; 1; 0; 1] (when a = b = 0,

df > 0, A ^ B corresponds to (247F)); (3) B = [0; 0; 0; 1; 0;�1] (when a = b = 0, df < 0,

A^B corresponds to (247F1)); (4) B = [0; 1; 0; 0; 0; 1] (a = d = 0, b 6= 0, A^B corresponds

to (247J)); (5) B = [1; 0; 0; 0; 0; 1] (b = d = 0, a 6= 0, A ^ B corresponds to (247K)); (5')
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B = [1; 1; 0; 0; 0; 1] (ab 6= 0, d = 0, A ^ B corresponds to (247K)); (6) B = [1; 0; 0; 1; 0; 1]

(one of a; b 6= 0, df > 0, A ^ B corresponds to (247H)); (7) B = [1; 0; 0; 1; 0;�1] (one of
a; b 6= 0, df < 0, A ^ B corresponds to (247H1)); (8) B = [1; 1; 0; 1; 0; 1] (abdf 6= 0, f = 1,

A ^ B corresponds to (247G)); (9) B = [1; 1; 0; 1; 0; f ] (abdf 6= 0,f 6= 0; 1). We will show

that when f < 0, it will become (247H1) and when f > 0 and f 6= 1, it will becomes (247H).

It is obvious that each pair of (247F) and (247F1), (247H) and (247H1) are isomorphic over

the algebraically closed �eld. We will prove later that they are di�erent over the real �eld.

The isomorphism between (5) and (5') will be shown later on.

Subcase 1.1.1.2: A = [0; 0; 0; 0; 0; 1]. Fix A, we require a31 = a32 = a52 = 0 and a11a
2
33 = 1.

AssumeB = [a; b; c; d; e; 0]. We must have e = 0, for otherwise we can change it into Subcase

1.1.1.1, as e2 � df = e2 > 0. Now with e = 0 and d 6= 0, make d = �1 by multiplying B

by �1=d, then A+B = [�; �; �;�1; 0; 1], which can be changed into Subcase 1.1.1.1 as well.

So we omit this case.

Subcase 1.1.1.3: A = [1; 0; 0; 0; 0; 1]. To �x A, we require a32 = a52 = 0, a31 = �a11a23=a33,
a211a22 = a11a

2
33 = 1.

Assume B = [a; b; c; d; e; 0]. We will also omit this case, as by exactly the same argument

as in Subcase 1.1.1.2, it can be changed into Subcase 1.1.1.1.

Subcase 1.1.1.4: A = [0; 0; 0; 1; 0; 1]. To �x A, we may let a21 = a31 = 0, a22 = a33, and

a11 = a22 = a33 = 1, a42 = a43 = a52 = a53 = 0. Now consider B = [a; b; c; d; e; 0]. We must

have e = 0, for otherwise we can change it into Subcase 1.1.1.1, as e2 � df = e2 > 0. Now

with e = 0 and d 6= 0, make d = 2 by multiplying B by 2=d, then subtracting from A by B,

A � B = [�; �; �;�1; 0; 1], which can be changed into Subcase 1.1.1.1 as well. So we omit

this case.

Subcase 1.1.2: Now consider the case when L
T
V3 6= 0, which means B 2 V3.

Subcase 1.1.2.1: A = [0; 0; 0; 0; 1; 0]. To �x A, we require a21 = a31 = 0, a42 = a53,

a22a32 = 0, a23a33 = 0, and a11(a22a33 + a23a32) = 1.

Assume B = [a; b; 0; 0; 0; 0]. Then if a23 = a32 = 0, then a! aa211a22; b! ba211a33:

If instead a22 = a33 = 0, we have a! ba211a32; b! aa211a23:

As one of a; b 6= 0, we can always assume a 6= 0 and get two representatives for B: (10)

B = [1; 0; 0; 0; 0; 0] (A ^ B corresponds to (247D)) and (11) B = [1; 1; 0; 0; 0; 0] (A ^ B
corresponds to (247E)).

Subcase 1.1.2.2: A = [0; 0; 0; 0; 0; 1]. Fix A, we require a31 = a32 = a52 = 0 and a11a
2
33 = 1.

Assume B = [a; b; 0; 0; 0; 0].

a! aa211a22;
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b! aa211a23 + ba211a33;

As a 6= 0, make b = 0 to get a representative for B: (12) B = [1; 0; 0; 0; 0; 0], corresponding

to (247B).

Subcase 1.1.2.3: A = [1; 0; 0; 0; 0; 1]. To �x A, we require a32 = a52 = 0, a31 = �a11a23=a33,
a211a22 = a11a

2
33 = 1. Assume B = [a; b; 0; 0; 0; 0]. Then a! aa211a22; b! aa211a23+ba

2
11a33:

If a 6= 0, make b = 0, and we will get exactly the same algebra as (12). Therefore we assume

a = 0 and b 6= 0 to get (13) B = [0; 1; 0; 0; 0; 0], corresponding to (247C).

Subcase 1.1.2.4: A = [0; 0; 0; 1; 0; 1]. To �x A, we may choose a22 = a33, a23 = �a32,
a21 = a31 = 0, a52a33 = (a33a43 � a23a42 + a32a53).

Then for B = [a; b; 0; 0; 0; 0], we have a! aa211a22 + ba211a32; b! �aa211a32 + ba211a33:

One of a; b 6= 0, we can make a = 1 and b = 0 to get (14) B = [1; 0; 0; 0; 0; 0], with A ^ B
corresponding to (247E1).

Subcase 1.2: L 6� V2, which means c 6= 0 in B.

Subcase 1.2.1: A = [0; 0; 0; 0; 1; 0]. Let B = [a; b; c; d; 0; f ]. Compare with the computation

as in Subcase 1.1.1.1, may assume d = f = 0. If one of a; b 6= 0, we can similarly assume

a 6= 0. Depending on the values of b, we get the following representatives for B: (15)

B = [1; 0; 1; 0; 0; 0], corresponding to (247Q). and (16) B = [1; 1; 1; 0; 0; 0], corresponding to

(247R).

If both a = b = 0, then get the representative: (17) B = [0; 0; 1; 0; 0; 0], corresponding to

(247P).

Subcase 1.2.2: A = [0; 0; 0; 0; 0; 1]. Assume B = [a; b; c; d; e; 0] with c 6= 0. Compare with

the computation as in Subcase 1.1.1.2, may assume d = e = 0 and get a ! aa211a22;

b! aa211a23 + ba211a33; c! ca22a33:

As a 6= 0, make b = 0 to get a representative for B (18) B = [1; 0; 1; 0; 0; 0], corresponding

to (247M).

Subcase 1.2.3: A = [1; 0; 0; 0; 0; 1]. Assume B = [a; b; c; d; e; 0]. Compare with the com-

putation as in Subcase 1.1.1.3, we may assume that d = e = f = 0. Then a ! aa211a22;

b! aa211a23 + ba211a33; c! ca22a33:

If a 6= 0, make b = 0 to get a representative for B: (18') B = [1; 0; 1; 0; 0; 0], corresponding

to (247M).

If a = 0, then depending on the values of b, we get subcase (19) B = [0; 0; 1; 0; 0; 0] (corre-

sponding to (247N)) and (20) B = [0; 1; 1; 0; 0; 0] (corresponding to (247O)).

Subcase 1.2.4: A = [0; 0; 0; 1; 0; 1]. Let B = [a; b; c; d; e; 0]. Compare with Subcase 1.1.1.4,

we may assume that d = e = 0 to get B = [a; b; c; 0; 0; 0]. Compare with 1.1.2.4, we have
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a! aa211a22 + ba211a32; b! �aa211a32 + ba211a33; c! c(a222+ a232):

If one of a; b 6= 0, make a = 1 and b = 0 to get (21) B = [1; 0; 1; 0; 0; 0], corresponding to

(247R1). and if both a = b = 0, then we have (22) B = [0; 0; 1; 0; 0; 0], corresponding to

(247P1).

Case 2. L � V1, or d = e = f = 0 in both A;B. Then one of a; b 6= 0. Make a = 1

and b = 0 in A. Depending on whether c = 0 or not, we get two cases: Subcase (2.1)

A = [1; 0; 0; 0; 0; 0] and Subcase (2.2) A = [1; 0; 1; 0; 0; 0].

Subcase 2.1: L � V3, or both A;B 2 V3. For A = [1; 0; 0; 0; 0; 0], we require b 6= 0 in B and

get (23) B = [0; 1; 0; 0; 0; 0], corresponding to (247A).

Subcase 2.2: L 6� V3. For A = [1; 0; 1; 0; 0; 0], to �x it, we require a23 = 0, a211a22 = 1,

and a22a33 = 1. Assume B = [a; b; 0; 0; 0; 0], with b 6= 0. Now a ! aa211a22 + ba211a32;

b! ba211a33:

Make a = 0 and get (21) B = [0; 1; 0; 0; 0; 0], corresponding to (247L). If we consider

A = [1; 0; 0; 0; 0; 0], we get a representative which is in the same orbit as (24). So we omit

this case.

At �rst we will show that the following pairs are isomorphic: (5) and (5'), (18) and (18').

We will prove this by providing an isomorphism between the two algebras:

To show that (5) and (5') are in the same orbit, we may take a11 = a22 = a33 = a42 = a53 =

1; a23 = a31 = 1=2; and a21 = 1=4; and this will map A ^B of (5) to that of (5').

For the isomorphism between (18) and (18'), we can actually establish an isomorphim

between the two algebras: x1 ! x1, x2 ! �x2 + x5, x3 ! x3, x4 ! �x4, x5 ! x5,

x6 ! �x6 � x7 and x7 ! x7.

For (9), when f > 0 and f 6= 1, an isomorphism between (9) and (247H) is (let � be a

solution to the equation f =
�
x3+1
x3�1

�2
): x1 ! �2

�3+1x1 +
�4

�3+1x2 +
1

�3+1x3, x2 ! �x2 + x3,

x3 ! �(�3+1)
�3�1 x2 � �3+1

�3�1x3, x4 ! �3

�3+1x4 +
�2

�3+1x5, x5 ! �3

�3�1x4 � �2

�3�1x5, x6 ! �2

�3+1x6 +
�4

�3+1x7 and x7 ! � �2

�3�1x6+
�4

�3�1x7; when f < 0, an isomorphim between (9) and (247H1)

is (let � be a solution to the equation f = �x2
�

x2�3
3x2�1

�2
): x1 ! (�2+1)2

�(�2�3)x1 � 4 �
�2�3x2 +

2�
2�1

�2�3x3, x2 ! �x2 + x3, x3 ! �(�2�3)
3�2�1 x2 �

�2(�2�3)
3�2�1 x3, x4 ! (�2+1)2

�2�3 x4 +
(�2+1)2

�(�2�3)x5,

x5 ! (�2+1)2

3�2�1 x4 �
�(�2+1)2

3�2�1 x5, x6 ! (�2�1)(�2+1)2

�(�2�3) x6 + 2 (�
2+1)2

�2�3 x7, and x7 ! 2�(�
2+1)2

3�2�1 x6 �
(�2+1)2(�2�1)

3�2�1 x7.

We can also show that over the the algebraically closed �eld, (247E) and (247E1), (247P)

and (247P1), (247R) and (247R1) are isomorphic. (As the isomorphism between (247F, F1,

H, H1) can be read o� easily from the proof.) Let � be a root of x2 + 1 and � be the root

of x4 + 1. Then
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(247E1)�= (247E): x1 ! x1, x2 ! x2 + x3, x3 ! ��x2 + �x3, x4 ! x4 + x5,

x5 ! ��x4 + �x5, x6 ! 2x6, x7 ! 2x7;

(247P1)�= (247P): x1 ! x1, x2 ! �(x2 � x3), x3 ! x2 + x3, x4 ! �(x4 � x5),
x5 ! x4 + x5, x6 ! 2�x6, and x7 ! 2x7;

(247R1)�= (247R): x1 ! �x1, x2 ! x2 + x3, x3 ! �2(�x2 + x3), x4 ! �(x4 +

x5), x5 ! �3(�x4 + x5), x6 ! 2�2x6, and x7 ! 2�x7.

To show that all the algebras (247A-R), (247E1), (247F1), (247H1), (247P1), and (247R1)

are distinct, we just need to compare the algebras among the same groups as follows:

Group 1: (247A); Group 2: (247L); Group 3: (247B, C, D, E, E1); Group 4: (247F,F1, G,

H,H1, I,J, K); Group 5: (247M, N,O,P,Q,R, P1, R1).

Take (247F) as an example. We will prove that it is distinct from all the other algebras in

Group 4. We have in this case A = [0; 0; 0; 0; 1; 0] and B = [0; 0; 0; 1; 0; 1]. Then under the

group action,

A! [a11(a21a32+a22a31); a11(a21a33+a31a23); a22a53�a52a23+a32a43�a42a33; 2a11a22a32;
a11(a22a33 + a23a32); 2a11a23a33]

and

B ! [a11(a21a22+ a32a31); a11(a21a23+ a31a33); a22a43� a42a23+ a32a53� a52a33; a11(a222+
a232); a11(a22a23 + a33a32); a11(a223 + a233)].

Consider the wedge product A^B, and the corresponding coe�cients are: (let � = a22a33�
a23a32)

�14 ^�15 : �a211(a221 � a231)�
�14 ^�24 : �a211(a222 � a232)(a21a32 � a22a31)
�14 ^ (�25 + �34) : �a211(a222 � a232)(a21a33 � a23a31)
�15 ^ (�25 + �34) : a211(a

2
33 � a223)(a21a32 � a22a31)

�15 ^�35 : a211(a
2
33 � a223)(a21a33 � a23a31)

�24 ^ (�25 + �34) : �a211(a222 � a232)�
�24 ^�35 : �2a211(a22a23 � a33a32)�
(�25 +�34) ^�35 : a211(a

2
33 � a223)�

Compare the coe�cients of A ^ B with that of (247F1). If they are isomorphic, then the

coe�cients of �24 ^ (�25 + �34) and (�25 + �34) ^�35 are equal (nonzero), while all the

others are zero. Then a22a23 � a33a32 = 0 and a222 � a232 = a223 � a233. It is easy to see that

when it is over R, then it has no solution (otherwise the automorphism group is singular,

or, � = 0). (Notice that if it is over an algebraically closed �eld of � 6= 2, then it has a

solution.)

Compare with (247I). Then the only coe�cients that is nonzero is a211(a
2
33� a223)� 6= 0, and

all the others are zero, which include that a222 � a232 = a22a23 � a33a32 = 0, and leads to

a223 = a233, contradiction. Therefore (247I) and (247F) are not isomorphic.
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All the other algebras can be proved similarly.

Therefore the corresponding central extensions of N5;3;2 are:

(247A): [x1; xi] = xi+2; i = 2; 3; 4; 5;

(247B): [x1; xi] = xi+2; i = 2; 3; 4 [x3; x5] = x7;

(247C): [x1; xi] = xi+2; i = 2; 3; 4 [x1; x5] = x7, [x3; x5] = x6.

(247D): [x1; xi] = xi+2; i = 2; 3; [x1; x4] = x6,

[x2; x5] = x7, [x3; x4] = x7;

(247E): [x1; xi] = xi+2; i = 2; 3; 4 [x1; x5] = x6,

[x2; x5] = x7, [x3; x4] = x7;

(247E1): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x4] = x7, [x3; x5] = x7;

(247F): [x1; xi] = xi+2; i = 2; 3; [x2; x4] = x6, [x2; x5] = x7,

[x3; x4] = x7, [x3; x5] = x6;

(247F1): [x1; xi] = xi+2; i = 2; 3; [x2; x4] = x6, [x2; x5] = x7,

[x3; x4] = x7, [x3; x5] = �x6;
(247G): [x1; xi] = xi+2; i = 2; 3; 4 [x1; x5] = x6, [x2; x4] = x6,

[x2; x5] = x7, [x3; x4] = x7, [x3; x5] = x6;

(247H): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x4] = x6, [x2; x5] = x7,

[x3; x4] = x7, [x3; x5] = x6;

(247H1): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x4] = x6, [x2; x5] = x7,

[x3; x4] = x7, [x3; x5] = �x6;
(247I): [x1; xi] = xi+2; i = 2; 3; [x2; x5] = x6, [x3; x4] = x6,

[x3; x5] = x7;

(247J): [x1; xi] = xi+2; i = 2; 3 [x1; x5] = x6, [x2; x5] = x7,

[x3; x4] = x7, [x3; x5] = x6;

(247K): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x5] = x7,

[x3; x4] = x7, [x3; x5] = x6;

(247L): [x1; xi] = xi+2; i = 2; 3; 4; 5 [x2; x3] = x6;

(247M): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x3] = x6, [x3; x5] = x7;

(247N): [x1; xi] = xi+2; i = 2; 3; [x1; x5] = x6,

[x2; x3] = x7, [x2; x4] = x6;

(247O): [x1; xi] = xi+2; i = 2; 3; 4 [x1; x5] = x7,

[x2; x3] = x7, [x3; x5] = x6;
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(247P): [x1; xi] = xi+2; i = 2; 3; [x2; x3] = x6,

[x2; x5] = x7, [x3; x4] = x7;

(247P1): [x1; xi] = xi+2; i = 2; 3; [x2; x3] = x6,

[x2; x4] = x7, [x3; x5] = x7;

(247Q): [x1; xi] = xi+2; i = 2; 3; 4; [x2; x3] = x6, [x2; x5] = x7;

[x3; x4] = x7;

(247R): [x1; xi] = xi+2; i = 2; 3; 4 [x1; x5] = x6, [x2; x3] = x6,

[x2; x5] = x7, [x3; x4] = x7;

(247R1): [x1; xi] = xi+2; i = 2; 3; 4 [x2; x3] = x6, [x2; x4] = x7,

[x3; x5] = x7.

Central extensions of N5;4:

Z(g): x3; x4; x5; [g; g]: x3; Z
2(g): C34 = 0; C35 = 0; W (H2): C12 = 0; dimH2: 7; Basis:

�13;�14;�15;�23;�24;�25;�45;

Group action: a�13 + b�14 + c�15 + d�23 + e�24 + f�25 + g�45;

Let � := a11a22 � a12a21.
a! aa11� + da21�;

b! a11(aa34 + ba44 + ca54) + a21(da34 + ea44 + fa54) + g(a41a54 � a51a44);
c! a11(aa35 + ba45 + ca55) + a21(da35+ ea45 + fa55) + g(a41a55 � a51a45);
d! aa12� + da22�;

e! a12(aa34 + ba44 + ca54) + a22(da34 + ea44 + fa54) + g(a42a54 � a52a44);
f ! a12(aa35 + ba45 + ca55) + a22(da35 + ea45 + fa55) + g(a42a55 � a52a45);
g ! g(a44a55 � a54a45);
Let V1 be the subspace of H2(g;F) generated by �13;�14; �15;�23; �24;�25, V2 the

subspace generated by �14;�15;�24;�25;�45, and V3 the intersection of V1 and V2. By

the group action above, we know that all V1, V2 and V3 are submodules of H2(g;F).

H2(g;F)

V1 V2

V3 = V1
T
V2

�
�
��

@
@
@@

@
@
@@

�
�
��
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Let L be any two-dimensional subspace of H2(g;F) with the desired property. Then it is

obvious that L
T
V1 6= 0 and L 6� V2. Denote L = A ^ B, where A;B 2 H2(g;F).

Case 1: L 6� V1, or g 6= 0 in A. We may assume A = [a; b; c; d; e; f; 1] and B =

[a1; b1; c1; d1; e1; f1; 0]. To �x A, we require that g = 1 ! a44a55 � a54a45 6= 0, which is

always true, as a44a55 � a54a45 is a factor of the determinant of the automorphism group

AutN5;4.

Subcase 1.1: L
T
V3 = 0, or at least one of a1; d1 6= 0. Make a1 = 1 and d1 = 0. Then

for B = [1; b1; c1; 0; e1; f1; 0], we have a1 = 1 ! a11�; b1 ! a11(a34 + b1a44 + c1a54) +

a21(e1a44 + f1a54); c1 ! a11(a35 + b1a45 + c1a55) + a21(e1a45 + f1a55); d1 ! a12�; e1 !
a12(a34+b1a44+c1a54)+a22(e1a44+f1a54); f1 ! a12(a35+b1a45+c1a55)+a22(e1a45+f1a55);

g1 = 0! 0.

Choose a12 = 0. We can make b1 = c1 = 0 by solving for a34 and a35 respectively. Assume

that a12 = 0, we now have a1 = 1 ! a11� = 1; b1 = 0 ! a11a34 + a21(e1a44 + f1a54) = 0

(solve for a34); c1 = 0 ! a11a35 + a21(e1a45 + f1a55) = 0 (solve for a35); d1 = 0 ! 0;

e1 ! a22(e1a44 + f1a54); f1 ! a22(e1a45 + f1a55); g1 = 0! 0.

If at least one of e1; f1 6= 0, then make e1 = 1 and f1 = 0 to get B1 = [1; 0; 0; 0; 1; 0; 0]. If

both e1 = f1 = 0, then get B2 = [1; 0; 0; 0; 0; 0; 0].

Subcase 1.1.1: L
T
V2 6= 0, or A 2 V2. For B1 = [1; 0; 0; 0; 1; 0; 0], we may assume A =

[0; b; c; 0; e; f; 1]. To �x B1, we require a12 = a35 = a45 = 0 , a34 = �a21a44=a11, a11� = 1

and a12a34 + a22a44 = 1. Now consider A. By taking also a54 = 0, we have a = 0! 0; b!
a11ba44+a21ea44�a51a44; c! a11ca55+a21fa55+a41a55; d = 0! 0; e! a22ea44�a52a44;
f ! a22fa55 + a42a55; g = 1! a44a55.

We make a = b = c = e = f = 0 by taking a21 = a51 = a41 = a52 = a42 = 0 and get a

representative for A: (1.1.1a) A = [0; 0; 0; 0; 0; 0; 1] (A ^B corresponds to (257H)).

For B2 = [1; 0; 0; 0; 0; 0; 0], we assume A = [0; b; c; 0; e; f; 1]. To �x B2, we require a12 =

a34 = a35 = 0 and a211a22 = 1. Now consider A, a = 0! 0; b! a11(ba44+ca54)+a21(ea44+

fa54) + (a41a54 � a51a44); c ! a11(ba45 + ca55) + a21(ea45 + fa55) + (a41a55 � a51a45);

d! 0; e! a22(ea44 + fa54) + (a42a54 � a52a44); f ! a22(ea45 + fa55) + (a42a55 � a52a45);
g ! (a44a55 � a54a45).
By taking a45 = a54 = 0, we can make b = c = e = f = 0 by solving for a51, a41, a52 and a42
respectively to get A = [0; 0; 0; 0; 0; 0; 1]. But this gives us a decomposable algebra (1.1.1b)

N4;2 �N3;2: [x1; x2] = x3, [x1; x3] = x6, [x4; x5] = x7.

Subcase 1.1.2: L
T
V2 = 0, or A 62 V2, i.e., one of a; d 6= 0.

For B1 = [1; 0; 0; 0; 1; 0; 0], we may assume A = [0; b; c; d; e; f; 1]. To �x B1, we require

a12 = a35 = a45 = 0 , a34 = �a21a44=a11, a11� = 1 and a22a44 = 1. Now consider A. By

taking also a54 = 0, we have a = 0! da21�; b! a11ba44 + a21(da34 + ea44)� a51a44; c !
a11ca55+a21fa55+a41a55; d! da22�; e! a22(da34+ea44)�a52a44); f ! a22fa55+a42a55;
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g = 1! a44a55.

We make a = b = c = e = f = 0 by taking a21 = a51 = a41 = a52 = a42 = 0. Because

d 6= 0, we get a representative for A: (1.1.2a) A = [0; 0; 0; 1; 0; 0; 1] (A ^ B1 corresponds to

(257L)).

For B2 = [1; 0; 0; 0; 0; 0; 0], we assume A = [0; b; c; d; e; f; 1].

To �x B2, we require a12 = a34 = a35 = 0 and a211a22 = 1. Now consider A, a = 0! 0 (By

subtracting a multiple of B2 from A, we can always make a = 0); b ! a11(ba44 + ca54) +

a21(ea44+fa54)+(a41a54�a51a44); c! a11(ba45+ca55)+a21(ea45+fa55)+(a41a55�a51a45);
d! da22�; e! a22(ea44+fa54)+(a42a54�a52a44); f ! a22(ea45+fa55)+(a42a55�a52a45);
g ! (a44a55 � a54a45).
By taking a45 = a54 = 0, we can make b = c = e = f = 0 by solving for a51, a41, a52 and

a42 respectively. As d 6= 0, we get (1.1.2b) A = [0; 0; 0; 1; 0; 0; 1] (A ^ B2 corresponds to

(257K)).

Subcase 1.2: L
T
V3 6= 0, or a1 = d1 = 0 in B. In this case, it is obvious that we also have

L 6� V2, or A 62 V2 or one of a; d 6= 0 in A.

Then B = [0; b1; c1; 0; e1; f1; 0] and one of b1; c1; e1; f1 6= 0. May assume e1 = 1. a1 = 0! 0;

b1 ! a11(b1a44 + c1a54) + a21(a44 + f1a54); c1 ! a11(b1a45 + c1a55) + a21(a45 + f1a55);

d1 = 0! 0; e1 = 1! a12(b1a44 + c1a54) + a22(a44 + f1a54) = 1; f1 ! a12(b1a45 + c1a55) +

a22(a45 + f1a55); g1 = 0! 0.

Make b1 = f1 = 0 by solving for a21 and a45. Now we get a1 = 0 ! 0; b1 = 0 !
a11c1a54+ a21a44 = 0; (a21 = �c1a11a54=a44) c1 ! a11c1a55+ a21a45; d1 = 0! 0; e1 = 1!
a12c1a54 + a22a44 = 1; f1 = 0! a12c1a55 + a22a45 = 0; (a45 = �c1a12a55=a22) g1 = 0! 0.

Substitute a21, a45 into c1, combining with the fact that a12c1a54 + a22a44 = 1, we get

c1 ! c1a11a55 +
c2
1
a11a54a12a55
a22a44

= c1a11a55

�
1 + c1a54a12

a22a44

�
= c1a11a55

c1a54a12+a22a44
a22a44

= c1
a11a55
a22a44

Depending on whether c1 = 0 or not, we get two representatives forB: B1 = [0; 0; 0; 0; 1; 0; 0]

and B2 = [0; 0; 1; 0; 1; 0; 0].

Subcase 1.2.1: For B1 = [0; 0; 0; 0; 1; 0; 0], we assume A = [a; b; c; d; 0; f; 1]. To �x B1, we

require a21 = a45 = 0 and a22a44 = 1. Now consider A. a ! aa11�; b ! a11(aa34 + ba44 +

ca54) + (a41a54 � a51a44); c ! a11(aa35 + ca55) + a41a55; d ! aa12� + da22�; e = 0 !
a12(aa34+ba44+ca54)+a22(da34+fa54)+(a42a54�a52a44) = 0 (By subtracting a multiple

of B1); f ! a12(aa35 + ca55) + a22(da35 + fa55) + a42a55; g = 1! a44a55 = 1.

Make b = c = f = 0 by solving for a51, a41 and a42 respectively. Now if a 6= 0, make a = 1

and d = 0 by solving for a12 to get (1.2.1a) A1 = [1; 0; 0; 0; 0; 0; 1] (A1 ^B1 corresponds to
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(257E)). If a = 0, then d 6= 0, and get (1.2.1b) A2 = [0; 0; 0; 1; 0; 0; 1] (A2 ^ B1 corresponds

to (257F)).

Subcase 1.2.2: For B2 = [0; 0; 1; 0; 1; 0; 0], we may assume A = [a; b; c; d; 0; f; 1]. To �x B2,

we require that
a21a44 + a11a54 = 0; a11a55 + a21a45 = 1;

a12a54 + a22a44 = 1; a12a55 + a22a45 = 0;

or a44 = a11=�, a55 = a22=�, a45 = �a12=� and a54 = �a21=�.
Now consider A. a ! aa11� + da21�; b ! a11(aa34 + ba44 + ca54) + a21(da34 + fa54) +

(a41a54 � a51a44); c ! a11(aa35 + ba45 + ca55) + a21(da35 + fa55) + (a41a55 � a51a45);

d ! aa12� + da22�; e ! a12(aa34 + ba44 + ca54) + a22(da34 + fa54) + (a42a54 � a52a44);
f ! a12(aa35+ba45+ca55)+a22(da35+fa55)+(a42a55�a52a45); g = 1! (a44a55�a54a45).
Taking a12 = a21 = a45 = a54 = 0, we make b = c = e = f = 0 by solving for a51, a41, a52
and a42 respectively. Now for A, we have

a! aa11� + da21�

= (aa11 + d(�a11a54=a44))�
= a11(aa44 � da54)�=a44

d! aa12� + da22�

= (a(�a22a45=a55) + da22)�

= a22(�aa45 + da55)�=a55

As one of a; d 6= 0, we can make a = 1 and d = 0 to get (1.2.2) A = [1; 0; 0; 0; 0; 0; 1] (A^B2

corresponds to (257G)).

Case 2: L � V1, or g = 0 in A;B. One of a; d 6= 0. Make a = 1 and assume that

A = [1; b; c; d; e; f; 0] and B = [0; b1; c1; d1; e1; f1; 0].

Bearing in mind that to �x A, we require a11 + da21 6= 0.

Subcase 2.1: L
T
V3 = 0. Since A 2 V1, this case is the same as B 62 V3, or d1 6= 0

in B. Assume d1 = 1, B = [0; b1; c1; 1; e1; f1; 0]. Now consider B, by taking a21 = 0,

a1 = 0 ! 0; b1 ! a11(b1a44 + c1a54); c1 ! a11(b1a45 + c1a55); d1 = 1 ! a22� = 1; e1 !
a12(b1a44+c1a54)+a22(a34+e1a44+f1a54); f1 ! a12(b1a45+c1a55)+a22(a35+e1a45+f1a55);

g1 ! 0.

Make a1 = e1 = f1 = 0 by solving for a21, a34 and a35. Now B = [0; b1; c1; 1; 0; 0; 0]. Taking

a21 = a12 = a34 = a35 = 0, a1 = 0 ! 0; b1 ! a11(b1a44 + c1a54); c1 ! a11(b1a45 + c1a55);

d1 = 1! a22� = 1; e1 = 0! 0; f1 = 0! 0; g1 ! 0.

If one of b1; c1 6= 0, then make c1 = 1 and b1 = 0 to get B1 = [0; 0; 1; 1; 0; 0; 0]. If both

b1 = c1 = 0, then get B2 = [0; 0; 0; 1; 0; 0; 0].

Subcase 2.1.1: For B1 = [0; 0; 1; 1; 0; 0; 0], we assume A = [1; b; c; 0; e; f; 0]. To �x B1, we

require a21 = a34 = a54 = 0, a35 = �a12a55=a22, a11a55 = a11a
2
22 = 1. Consider A, we have
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a = 1! a11�; b! a11ba44; c! a11(a35+ba45+ca55); d! a12�; e! a12ba44+a22ea44; f !
a12(a35+ba45+ca55)+a22(ea45+fa55) = a12(�a12a55=a22+ba45+ca55)+a22(ea45+fa55);
g ! 0.

One of b; e 6= 0. If b 6= 0, then assume b = 1 and make e = 0 by solving for a12, make c = d

by solving for a45 and further make both c = d = 0 by subtracting a multiple of B1 from

A. Now taking a12 = a35 = a45 = 0, a = 1! a11� = 1; b = 1! a11a44 = 1; c! 0; d! 0;

e = 0! 0; f ! fa22a55; g ! 0.

Now if f = 0, we obtain the representative: Subcase (2.1.1a)A1 = [1; 1; 0; 0; 0; 0; 0] (A1^B1

corresponds to (257I)); If f 6= 0, and f > 0, we have Subcase (2.1.1b) A2 = [1; 1; 0; 0; 0; 1; 0]

(A2 ^B1 corresponds to (257J1)); if f < 0, A3 = [1; 1; 0; 0; 0;�1; 0] (we will omit this case,

as we can show that it is in the same orbit as (2.1.1c) below, which has a simpler form).

If b = 0, then assume e = 1. Now, taking a21 = 0, we have a = 1 ! a11�; b = 0 ! 0;

c ! a11(�a12a55=a22 + ca55); d ! a12�; e ! a22a44 = 1; f ! a12(a35 + ba45 + ca55) +

a22(a45 + fa55) = a12(�a12a55=a22 + ca55) + a22(a45 + fa55) = 0 (Solve for a45); g ! 0.

We can make c = d and subtracting a multiple of B from A to make c = d = 0 and get

(2.1.1c) A4 = [1; 0; 0; 0; 1; 0; 0] (A4 ^B1 corresponds to (257J)). As it turns out to be in the

same orbit as (2.1.1b), and because (2.1.1c) has a simpler form, so we omit (2.1.1b) instead.

Subcase 2.1.2: For B2 = [0; 0; 0; 1; 0; 0; 0], we assume A = [1; b; c; 0; e; f; 0]. To �x B2, we

need a21 = a34 = a35 = 0 and a11a
2
22 = 1. Now consider A, a! a11�; b! a11(ba44+ ca54);

c ! a11(ba45 + ca55); d ! a12�; e ! a12(ba44 + ca54) + a22(ea44 + fa54); f ! a12(ba45 +

ca55) + a22(ea45 + fa55); g ! 0.

One of b; c 6= 0, for otherwise the 2-cocycles will contain some none trivial elements of the

center in the kernel. Make b = 1 and c = 0. Make e = 0 by solving for a12. Then f 6= 0,

and get A = [1; 1; 0; 0; 0; 1; 0] (A ^ B2 corresponds to (257I)). And it can be easily shown

that A ^B2 is in the same orbit as (2.1.1a), so we omit it.

Subcase 2.2: L
T
V3 6= 0. Or B 2 V3, or d1 = 0 in B. Then B = [0; b1; c1; 0; e1; f1; 0]. One

of b1; c1; e1; f1 6= 0, assume f1 = 1 to get B = [0; b1; c1; 0; e1; 1; 0] and A = [1; b; c; d; e; 0; 0].

Consider B, a1 ! 0; b1 ! a11(b1a44 + c1a54) + a21(e1a44 + a54); c1 ! a11(b1a45 + c1a55) +

a21(e1a45 + a55); d1 ! 0; e1 ! a12(b1a44 + c1a54) + a22(e1a44 + a54) = 0; f1 = 1 !
a12(b1a45 + c1a55) + a22(e1a45 + a55) = 1; g1 ! 0.

Let a21 = 0. When both b1 = c1 = 0, we can easily get a representative for B: Subcase

(2.2.1)

B1 = [0; 0; 0; 0; 0; 1; 0]:

When one of b1; c1 6= 0, then if b1 6= e1c1, we can always make b1 = 1, c1 = 0, e1 = 0

and keep f1 = 1 to get Subcase (2.2.2) B2 = [0; 1; 0; 0; 0; 1; 0]: If b1 = e1c1, then b1 !
c1a11(e1a44 + a54); c1 ! c1a11(e1a45 + a55); e1 ! c1a12(e1a44 + a54) + a22(e1a44 + a54) = 0;

f1 = 1! c1a12(e1a45 + a55) + a22(e1a45 + a55) = 1:
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Make c1 = 1 and b1 = e1 = 0. Then make f1 = 1 to get Subcase (2.2.3)

B3 = [0; 0; 1; 0; 0; 1; 0]:

Subcase 2.2.1: With B1 = [0; 0; 0; 0; 0; 1; 0], we assume A = [1; b; c; d; e; 0; 0]. To �x B1,

we need a21 = a54 = 0 and a22a55 = 1. Consider A, a = 1 ! a11�; b ! a11(a34 + ba44);

c ! a11(a35 + ba45 + ca55); d ! a12� + da22�; e ! a12(a34 + ba44) + a22(da34 + ea44);

f = 0! a12(a35 + ba45 + ca55) + a22(da35+ ea45) (By subtracting a multiple of B, we can

always make f = 0); g = 0! 0.

We can make b = c = d = 0 by solving for a34, a35 and a12 respectively. Now e 6= 0. So we

make e = 1 and get subcase (2.2.1) A = [1; 0; 0; 0; 1; 0; 0] (A ^B1 corresponds to (257C)).

Subcase 2.2.2: With B2 = [0; 1; 0; 0; 0; 1; 0], we assume A = [1; b; c; d; e; 0; 0]. To �x B2, we

require
a11a44 + a21a54 = 1; a11a45 + a21a55 = 0;

a12a44 + a22a54 = 0; a12a45 + a22a55 = 1

or a44 = a22=�; a45 = �a21=�, a54 = �a12=�, a55 = a11=�.

We have a = 1! a11�+da21�; b! a11(a34+ ba44+ ca54)+a21(da34+ ea44); c! a11(a35+

ba45+ca55)+a21(da35+ea45); d! a12�+da22�; e! a12(a34+ba44+ca54)+a22(da34+ea44);

f ! a12(a35 + ba45 + ca55) + a22(da35 + ea45); g ! 0.

By taking a21 = a45 = 0, we can make c = d = 0 and b = f by solving for a35, a12 and

a34 respectively. Then by subtracting a multiple of B from A, we can make b = f = 0.

Now depending on e = 0 or not, we may obtain the following two representatives for A:

Subcase (2.2.2a)A1 = [1; 0; 0; 0; 0; 0; 0] (A1^B2 corresponds to (257B)) and Subcase (2.2.2b)

A2 = [1; 0; 0; 0; 1; 0; 0] (A2 ^B2 corresponds to (257D)).

Subcase 2.2.3: With B3 = [0; 0; 1; 0; 0; 1; 0], we assume A = [1; b; c; d; e; 0; 0]. To �x B3,

we require a54 = 0 and (a11 + a21)a55 = 1 and (a12 + a22)a55 = 1. Then for A, we have

a = 1! a11� + da21�; b! a11(a34 + ba44) + a21(da34 + ea44); c! a11(a35 + ba45+ ca55) +

a21(da35+ ea45); d! a12� + da22� = (a12+ da22)�; e! a12(a34 + ba44) + a22(da34+ ea44);

f ! a12(a35 + ba45 + ca55) + a22(da35 + ea45); g ! 0.

If d = 1, then make a = d = 1. Taking a21 = 0, we can make c = f , by subtracting

a multiple of B3 from A, we have c = f = 0. Then we need e 6= 0 to get the desired

representative: A1 = [1; 0; 0; 1; 1; 0; 0], A1 ^B3 correponding to (257A).

If d 6= 1, we can make b = d = 0 and c = f by solving for a34, a12 and a35. Then we need

e 6= 0 to get A2 = [1; 0; 0; 0; 1; 0; 0], with A2 ^B3 corresponding to (257C), hence it is in the

same orbit as (2.2.1), we omit it.

Now we get all the possible representatives for the desired orbits, with the correponding

algebras:

(1.1.1a) �45 ^ (�13 + �24)! (257H);
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(1.1.2a) (�45 +�23) ^ (�13 +�24)! (257L);

(1.1.2b) (�45 + �23) ^�13 ! (257K);

(1.2.1a) (�45 +�13) ^�24! (257E);

(1.2.1b) (�45 + �23) ^�24 ! (257F);

(1.2.2) (�45 +�13) ^ (�15 +�24)! (257G);

(2.1.1a) (�13 +�14) ^ (�15 +�23)! (257I);

(2.1.1b) (�13 + �14 +�25) ^ (�15 +�23)! (257J1);

(2.1.1c) (�13 + �24) ^ (�15 + �23)! (257J);

(2.2.1) (�13 +�24) ^�25 ! (257C);

(2.2.2a) �13 ^ (�14 + �25)! (257B);

(2.2.2b) (�13 + �24) ^ (�14 + �25)! (257D);

(2.2.3a) (�13 +�23 + �24) ^ (�15 + �25)! (257A);

To prove that all the algebras are dintinct, we consider the following four groups of algebras:

Group 1: (257A-D): L � V1 and L
T
V3 6= 0;

Group 2: (257I,J, J1): L � V1 and L
T
V3 = 0;

Group 3: (257E,F,G): L 6� V1, L
T
V3 6= 0 and L 6� V2;

Group 4: (257K,L): L 6� V1, L
T
V3 = 0 and L

T
V2 = 0.

Group 5: (257H): L 6� V1, L
T
V3 = 0 and L

T
V2 6= 0.

We just need to prove that all the algebras among the same group are distinct.

In Group 1, (257B) corresponds to �13 ^ (�14 + �25), under the group action, it will be

mapped to (a11��13+a11a34�14+a11a35�15+a12��23+a12a34�24+a12a35�25)^((a11a44+
a21a54)�14 + (a11a45 + a21a55)�15 + (a12a44 + a22a54)�24 + (a12a45 + a22a55)�25), or

a11�(a11a44 + a21a54)�13 ^�14

+a11�(a11a45 + a21a55)�13 ^�15

+a11�(a12a44 + a22a54)�13 ^�24

+a11�(a12a45 + a22a55)�13 ^�25

+(a11a34(a11a45 + a21a55)� (a11a44 + a21a54)a11a35)�14 ^�15
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+(a11a34(a12a44 + a22a54)� (a11a44 + a21a54)a12a34)�14 ^�24

+(a11a34(a12a45 + a22a55)� (a11a44 + a21a54)a12a35)�14 ^�25

+(a11a35(a12a44 + a22a54)� a12a34(a11a45 + a21a55)�15 ^�24

+(a11a35(a12a45 + a22a55)� a12a35(a11a45 + a21a55)�15 ^�25

+a12�(a11a44 + a21a54)�23 ^�14

+a12�(a11a45 + a21a55)�23 ^�15

+a12�(a12a44 + a22a54)�23 ^�24

+a12�(a12a45 + a22a55)�23 ^�25

+(a12a34(a12a45 + a22a55)� (a12a44 + a22a54)a12a35)�24 ^�25:

If (257B) could memapped to (257A), then the coe�cients of �13^�14, �13^�24, �23^�14,

�23 ^�24 are zero, i.e.,

a11�(a11a44 + a21a54) = 0 a11�(a12a44 + a22a54) = 0

a12�(a11a44 + a21a54) = 0 a12�(a12a44 + a22a54) = 0:

It is easy to see that there is no solution to the above system of equations, for otherwise the

automorphism group is going to be singular. Hence (257A) and (257B) are not isomorphic.

Compare (257B) with (257C), exactly the same thing will happen. So they are not isomor-

phic.

Compare (257B) with (257D), the coe�cients of �23^�14, �23^�15, �23^�24, �23^�25

will be zero, while that of �14 ^ �24 is not. It is obvious that a12 must be zero. As the

coe�cients of �13 ^ �14 and �13 ^ �25 are not zero, we have a11a44 + a21a54 6= 0 and

a12a45 + a22a55 6= 0. As the coe�cient of �14 ^ �25 equals 0, we will have a34 = 0 since

a12 = 0 and a11 6= 0. Similarly we can prove that a35 = 0 by considering the coe�cient of

�15 ^�24. The fact that both a34 = a35 = 0 will make the coe�cient of �14 ^�24 to be

zero, a contradiction. Therefore (257B) and (257D) are not isomorphic.

Now we need to check whether (257B) is decomposable or not. Take (1.1.1b), then A =

[0; 0; 0; 0; 0; 0; 1] and B = [1; 0; 0; 0; 0; 0; 0]. By simply looking at the coe�cients of A^B, it
is obvious that (257B) and (1.1.1b) are not isomorphic, i.e., (257B) is indecomposable.

Similarly, we can prove that all the other algebras are distinct and indecomposable.

In order that the basis for (257A) will also diagonalize a maximal torus, we make the

following basis transformation: x1 ! x1, x2 ! x1 + x2, x3 ! x3, x4 ! x4, x5 ! x5,

x6 ! x6 and x7 ! x7.

Therefore the corresponding central extensions of N5;4 are:
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(257A): [x1; x2] = x3; [x1; x3] = x6, [x1; x5] = x7,

[x2; x4] = x6;

(257B): [x1; x2] = x3; [x1; x3] = x6,

[x1; x4] = x7, [x2; x5] = x7;

(257C): [x1; x2] = x3; [x1; x3] = x6,

[x2; x4] = x6, [x2; x5] = x7;

(257D): [x1; x2] = x3; [x1; x3] = x6, [x1; x4] = x7,

[x2; x4] = x6, [x2; x5] = x7;

(257E): [x1; x2] = x3; [x1; x3] = x6,

[x2; x4] = x7, [x4; x5] = x6;

(257F): [x1; x2] = x3; [x2; x3] = x6,

[x2; x4] = x7, [x4; x5] = x6;

(257G): [x1; x2] = x3; [x1; x3] = x6, [x1; x5] = x7,

[x2; x4] = x7, [x4; x5] = x6;

(257H): [x1; x2] = x3; [x1; x3] = x6,

[x2; x4] = x6, [x4; x5] = x7;

(257I): [x1; x2] = x3; [x1; x3] = x6, [x1; x4] = x6,

[x1; x5] = x7; [x2; x3] = x7;

(257J): [x1; x2] = x3; [x1; x3] = x6, [x1; x5] = x7,

[x2; x3] = x7, [x2; x4] = x6;

(257J1): [x1; x2] = x3; [x1; x3] = x6, [x1; x4] = x6,

[x1; x5] = x7, [x2; x3] = x7, [x2; x5] = x6;

(257K): [x1; x2] = x3; [x1; x3] = x6,

[x2; x3] = x7, [x4; x5] = x7;

(257L): [x1; x2] = x3; [x1; x3] = x6, [x2; x3] = x7,

[x2; x4] = x6, [x4; x5] = x7;

Remark: To get Seeley's presentations, (1) In (257B), by switching x4 and x5; (2) In (257F),

by taking x1 ! �b, x2 ! a+b; (3) In (257L), by taking x1 ! b, x2 ! a, x3 ! �c, x4 ! �d,
x5 ! e, x6 ! �g and x7 ! �f .
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7.2 Extensions of 6-Dimensional Algebras

The central extensions of N6;1;1 can be found in chapter 2, Example 4.

Central extensions of N6;2;3:

Z(g): x6; [g; g]: x4; x5; x6; Z
2(g): C25 = C26 = C36 = C45 = C46 = C56 = 0; C15 + C34 =

0; C16 + C35;W (H2): C12 = C14 = C15 = 0; dimH2: 4; Basis: �13;�16��35;�23;�24;

Group action: a�13 + b(�16��35) + c�23 + d�24:

a! aa311 + b(a11a63 + a211a51) + ca211a21 � da11a221;
b! ba411a22;

c! ca211a22 � 2da11a21a22;

d! da11a
2
22;

Then we have b 6= 0. Make a = 0 by solving for a63.

Case 1: d = 0. Then we obtain the representatives [0; 1; 0; 0] (when c = 0, corresponding

to (12357A)), [0; 1; 1; 0] (when c 6= 0 and bc > 0,corresponding to (12357B)) and [0; 1;�1; 0]
(when c 6= 0 and bc < 0, corresponding to (12357B1)).

Case 2: d 6= 0. Then make c = 0 by solving for a21 and get a representative [0; 1; 0; 1]

(corresponding to (12357C));

Therefore the corresponding central extensions of N6;2;3 are:

(12357A): [x1; x2] = x4; [x1; xi] = xi+1; i = 4; 5; 6; [x2; x3] = x5;

[x3; x4] = �x6; [x3; x5] = �x7;
(12357B): [x1; x2] = x4; [x1; xi] = xi+1; i = 4; 5; 6; [x2; x3] = x5 + x7;

[x3; x4] = �x6; [x3; x5] = �x7;
(12357B1): [x1; x2] = x4; [x1; xi] = xi+1; i = 4; 5; 6; [x2; x3] = x5 � x7;

[x3; x4] = �x6; [x3; x5] = �x7;
(12357C): [x1; x2] = x4; [x1; xi] = xi+1; i = 4; 5; 6; [x2; x3] = x5;

[x2; x4] = x7; [x3; x4] = �x6; [x3; x5] = �x7;

Central extensions of N6;2;5:

Z(g): x6; [g; g]: x3; x4; x5; x6; Z2(g): C36 = C45 = C46 = C56 = 0; C15 � C24 =

0; C16 � C34; C26 + C35 = 0; W (H2): C12 = C13 = C15 = C23 = 0; dimH2: 4; Basis:

�14;�16 +�34;�25;�26��35;

Group action: a�14 + b(�16+ �34) + c�25 + d(�26��35);

Notice that the automorphism group of N6;2;5 has two components, we have respectively

(1): a! aa311a22; b! ba311a
2
22; c! ca11a

3
22; d! da211a

3
22;
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and

(2): a ! �c and b ! �d simultaneously.
One of b; d 6= 0. Because of (2), we may always assume that b 6= 0.

Case 1: d = 0. We can get �ve representatives [0; 1; 0; 0] (when a = c = 0) (corresponding

to (12457H)), [0; 1; 1; 0] when (a = 0; c 6= 0) (corresponding to (12457I)), [1; 1; 0; 0] (when

a 6= 0; c = 0) (corresponding to (12457K)), [1; 1; 1; 0] (when ac > 0) (corresponding to

(12457J)) and [1; 1;�1; 0] (when ac < 0) (corresponding to (12457J1));

Case 2: d 6= 0. We can get representatives [0; 1; 0; 1] (when a = c = 0) (corresponding to

(12457L)), [1; 1; 0; 1] (when one of a; c 6= 0, we may assume a 6= 0 using (2)) (corresponding

to (12457M)); And when both a 6= 0; c 6= 0, we can get a one parameter representative

[1; 1; �; 1] (corresponding to (12457N)) for any � 6= 0. Combining (1) and (2), we can show

that [1; 1; ��1; 1] is in the same orbit. So we may introduce the invariant I(�) := �+ ��1

for this representative.

Therefore the corresponding central extensions of N6;2;5 are:

(12457H): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x2; xj] = xj+2; j = 3; 4; [x3; x4] = x7;

(12457I): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x2; xj] = xj+2; j = 3; 4; [x2; x5] = x7;

[x3; x4] = x7;

(12457J): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x1; x4] = x7; [x2; x3] = x5,

[x2; x4] = x6, [x2; x5] = x7; [x3; x4] = x7;

(12457J1): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x1; x4] = x7; [x2; x3] = x5,

[x2; x4] = x6, [x2; x5] = �x7; [x3; x4] = x7;

(12457K): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x1; x4] = x7; [x2; x3] = x5,

[x2; x4] = x6, [x3; x4] = x7;

(12457L): [x1; xi] = xi+1; i = 2; 3; 5; 6 [x2; xj] = xj+2; j = 3; 4; [x2; x6] = x7,

[x3; x4] = x7, [x3; x5] = �x7;
(12457N): One parameter family, with invariant I(�) = �+ ��1

[x1; xi] = xi+1; i = 2; 3; 5; 6 [x1; x4] = x7; [x2; x3] = x5,

[x2; x4] = x6, [x2; x5] = �x7; [x2; x6] = x7,

[x3; x4] = x7, [x3; x5] = �x7;
(12457M) in Seeley's list is a special case of (12457N) with � = 0.

Central extensions of N6;2;9:

Z(g): x5; x6; [g; g]: x3; x5; x6; Z2(g): C35 = C36 = C45 = C46 = C56 = 0; C16 = C25 = C34;

W (H2): C12 = C13 = C23 = 0; dimH2: 5; Basis: �14;�15;�16 +�25 +�34;�24;�26;

Group action: a�14 + b�15 + c(�16 +�25 +�34) + d�24 + e�26;

As the automorphism group of N6;2;9 has two components, we have

(1):
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a ! aa211a22 + ba11a54 + c(a11a64 + a11a22a31); b ! ba311a22; c ! ca211a
2
22; d ! c(a22a54 +

a11a22a42) + da11a
2
22 + e(a22a64 + a222a41 � a222a31); e! ea11a

3
22;

(2): a ! d; b ! �e; c ! �c;
One of fb; cg and one of fc; eg are nonzero.
Case 1: c 6= 0. Make a = d = 0 by solving for a64 and a54. If none of b and e is 0, then get

representative [0; 1; 1; 0; �] (� 6= 0), corresponding to (1357S); But as we notice that, when

� = 1, it contains a two dimensional center, i.e., x5�x6 and x7, so we just omit it. If one of

b and e is nonzero, may assume that b 6= 0 and get representative [0; 1; 1; 0; 0], which could

be included as a special case of the previous one if we allow � = 0. If b = e = 0, then get

[0; 0; 1; 0; 0], corresponding to (1357R).

Case 2: c = 0. Then b 6= 0, e 6= 0. Make a = d = 0 by solving for a54 and a41, and get

the orbit [0; ba311a22; 0; 0; ea11a
3
22]. When be > 0, then get the representative [0; 1; 0; 0; 1],

correponding to (1357Q) and when be < 0, we get instead [0; 1; 0; 0;�1], corresponding to

(1357Q1).

Therefore the corresponding central extensions of N6;2;9 are:

(1357Q): [x1; x2] = x3; [x1; x3] = x5; [x1; x5] = x7;

[x2; x3] = x6; [x2; x4] = x6; [x2; x6] = x7;

(1357Q1): [x1; x2] = x3; [x1; x3] = x5; [x1; x5] = x7;

[x2; x3] = x6; [x2; x4] = x6; [x2; x6] = �x7;
(1357R): [x1; x2] = x3; [x1; x3] = x5; [x1; x6] = x7;

[x2; x3] = x6; [x2; x4] = x6; [x2; x5] = x7;

[x3; x4] = x7;

(1357S): One parameter family, with � 6= 1

[x1; x2] = x3; [x1; x3] = x5; [x1; x5] = x7,

[x1; x6] = x7; [x2; x3] = x6; [x2; x4] = x6;

[x2; x5] = x7, [x2; x6] = �x7, [x3; x4] = x7;

Central extensions of N6;2;10:

Z(g): x5; x6; [g; g]: x3; x5; x6; Z
2(g): C35 = C36 = C45 = C46 = C56 = 0; C15 = C34; C16 =

C25; W (H2): C12 = C13 = C23 = 0; dimH2: 5; Basis: �14;�15+�34;�16+�25;�24;�26;

Group action: a�14 + b(�15+ �34) + c(�16 +�25) + d�24 + e�26;

a! aa311 + b(a11a54 + a211a31) + ca11a64;

b! ba311a22;

c! ba211a12a22 + ca211a
2
22;

d! aa211a12 + b(a12a54 + a11a12a31 + 2a11a22a41) + c(a12a64 + a22a54 + a11a22a31);
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e! ba11a22a
2
12 + 2ca11a12a222 + ea11a

3
22;

One of fb; cg and one of fc; eg are nonzero.
Case 1: b 6= 0. Make a = c = d = 0 by solving for a31; a12; and a41 to get the representatives

[0; 1; 0; 0; 1] (when be > 0), corresponding to (1357P) and [0; 1; 0; 0;�1] (when be < 0),

corrsponding to (1357P1).

Case 2: b = 0. Then c 6= 0. Make a = d = e = 0 by solving for a64; a54; a12 to get the

representative [0; 0; 1; 0; 0], corresponding to (1357O).

Therefore the corresponding central extensions of N6;2;10 are:

(1357O): [x1; x2] = x3; [x1; x3] = x5; [x1; x6] = x7,

[x2; x3] = x6; [x2; x4] = x5, [x2; x5] = x7;

(1357P): [x1; x2] = x3; [x1; xi] = xi+2; i = 3; 5; [x2; x3] = x6;

[x2; x4] = x5, [x2; x6] = x7, [x3; x4] = x7;

(1357P1): [x1; x2] = x3; [x1; xi] = xi+2; i = 3; 5; [x2; x3] = x6;

[x2; x4] = x5, [x2; x6] = �x7, [x3; x4] = x7;

Central extensions of N6;3;4:

Z(g): x5; x6; [g; g]: x3; x5; x6; Z
2(g): C15 = C35 = C36 = C45 = C56 = 0; C16 � C34 = 0;

W (H2): C12 = C23 = C24 = 0; dimH2: 6; Basis:�13;�14;�16 +�34;�25;�26;�46;

Group action: a�13 + b�14 + c(�16 +�34) + d�25 + e�26 + f�46;

a! aa211a22 � 2ca11a22a41 � fa22a241;
b! aa11a34 + ba11a44 + c(a11a64 + a31a44 � a34a41) + f(a41a64 � a44a61);
c! ca11a22a44 + fa22a41a44;

d! da11a
3
22;

e! ca12a22a44 + da222a34 + ea222a44 + fa22a42a44;

f ! fa22a
2
44;

One of fc; fg is nonzero, and also d 6= 0. Can always make e = 0.

Case 1: f = 0. So c 6= 0 and make a = b = 0 to get a representative [0; 0; 1; 1; 0; 0],

corresponding to (1357D).

Case 2: f 6= 0. Make b = c = 0 and get the representatives [0; 0; 0; 1; 0; 1] (when a = 0,

corresponding to (1357E)), [1; 0; 0; 1; 0; 1] (when a 6= 0, and af > 0, corresponding to

(1357F1)) and [1; 0; 0; 1; 0;�1] (when a 6= 0, and af < 0, corresponding to (1357F)).

Therefore the corresponding central extensions of N6;3;4 are:
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(1357D): [x1; x2] = x3; [x1; x6] = x7, [x2; xi] = xi+2; i = 3; 4;

[x2; x5] = x7, [x3; x4] = x7;

(1357E): [x1; x2] = x3; [x2; xi] = xi+2; i = 3; 4;

[x2; x5] = x7, [x4; x6] = x7;

(1357F): [x1; x2] = x3; [x1; x3] = x7, [x2; xi] = xi+2; i = 3; 4;

[x2; x5] = x7; [x4; x6] = �x7;
(1357F1): [x1; x2] = x3; [x1; x3] = x7, [x2; xi] = xi+2; i = 3; 4;

[x2; x5] = x7; [x4; x6] = x7;

Central extensions of N6;4;2:

Z(g): x4; x5; x6; [g; g]: x4; x5; W (H2): C12 = C13 = 0; Z2(g): C45 = C46 = C56 =

0; C25� C34 = 0; dimH2: 9; Basis: �14;�15;�16;�23;�24;�25 +�34;�26;�35;�36;

Group action: a�14 + b�15 + c�16 + d�23 + e�24 + f(�25 + �34) + g�26 + h�35 + i�36;

a! aa211a22 + ba211a32 + ea11a22a21 + fa11a21a32 + fa11a22a31 + ha11a31a32;

b! aa211a23 + ba211a33 + ea11a21a23 + fa11a21a33 + fa11a31a23 + ha11a31a33;

c! aa11a46+ba11a56+ca11a66+ea21a46+f(a21a56+a31a46)+ga21a66+ha31a56+ ia31a66;

d! d(a22a33�a32a23)+e(a22a43�a42a23)+f(a22a53+a32a43+a32a43�a42a33�a52a23)+
g(a22a63 � a62a23) + h(a32a53 � a52a33) + i(a32a63 � a62a33);
e! ea11a

2
22 + 2fa11a22a32 + ha11a

2
32;

f ! ea11a22a23 + f(a11a22a33 + a11a32a23) + ha11a32a33;

g ! ea22a46 + f(a22a56 + a32a46) + ga22a66 + ha32a56 + ia32a66;

h! ea11a
2
23 + 2fa11a23a33 + ha11a

2
33;

i! ea23a46 + f(a23a56 + a33a46) + ga23a66 + ha33a56 + ia33a66;

In each of the sets fa; e; fg; fb; f; hg; fc; g; ig, at least one element must be nonzero.

One of e; f; h 6= 0, for otherwise any element in the orbit will have none trivial kernel in the

center of N6;4;2.

Case 1: f2 � eh 6= 0.

Subcase 1.1: f2 � eh > 0. We may assume that f 6= 0, for otherwise eh 6= 0, then we can

make f 6= 0 by using the group action. If eh = 0, then it is easy to make e = h = 0 by

solving for a23 and a32. And if eh 6= 0, then make h = e = 0 by solving for a23; a32, say

a23 = a33
�f +

p
f2 � eh
e

and a32 = a22
�f +

p
f2 � eh
h

:

we can ensure that a22a33�a23a32 6= 0, i.e., the nonsingularity of the automorphism group.

Let a23 = a32 = 0, then make a = b = d = g = i = 0 by solving for a31; a21; a53; a56; a46
respectively. So c 6= 0. Now we have a = 0! fa11a21a32+fa11a22a31; b = 0! fa11a21a33+
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fa11a31a23; c! ca11a66+f(a21a56+a31a46); d = 0! f(a22a53+a32a43+a32a43�a42a33�
a52a23); e = 0 ! 2fa11a22a32; f ! f(a11a22a33 + a11a32a23); g = 0 ! f(a22a56 + a32a46);

h = 0! 2fa11a23a33; i = 0! f(a23a56 + a33a46).

Take a23 = a32 = a31 = a21 = a46 = a53 = a56 = 0 and solve for a11 and a66, we can get the

representative [0; 0; 1; 0; 0; 1; 0; 0; 0], corresponding to (147A).

Subcase 1.2: f2 � eh < 0. Then eh > 0, and we cannot make either e or h = 0. We may

assume f = 0, for example, let a23 = 0 and solve for a32 will make f = 0.

Then take a23 = a32 = 0, we may further make a = b = d = g = i = 0 by solving for

a21, a31, a53, a46 and a56 respectively. Then we are left with c ! ca11a66; e ! ea11a
2
22;

h! ha11a
2
33.

Then since eh > 0, we can get the representative [0; 0; 1; 0; 1; 0; 0; 1; 0], corresponding to

(147A1).

Case 2: f2 � eh = 0. Then one of e; h 6= 0. Assume that h 6= 0, then make e = 0, which

will automatically result in f = 0. Now a 6= 0. Make b = c = d = i = 0 by solving for a23,

a46; a52 and a56 respectively. Then g 6= 0, and get a representative [1; 0; 0; 0; 0; 0; 1; 1; 0],

corresponding to (147B).

Therefore the central extensions of N6;4;2 are:

(147A): [x1; x2] = x4, [x1; x3] = x5; [x1; x6] = x7,

[x2; x5] = x7, [x3; x4] = x7;

(147A1): [x1; x2] = x4, [x1; x3] = x5; [x1; x6] = x7,

[x2; x4] = x7, [x3; x5] = x7;

(147B): [x1; x2] = x4, [x1; x3] = x5; [x1; x4] = x7,

[x2; x6] = x7, [x3; x5] = x7;
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7.3 Extensions of N6;3;6

The discussion is the same as that of complex case. And we also have Theorem 6.1 as in

Chapter 6. The di�erence arises only when we consider the number of orbits in (E0;�). In

the real case we will have 4 orbits instead, as follows:

When all the three eigenvalues are real, we have

(i) 264 � 0 0

0 � 0

0 0 �� � �

375 :
(ii) 264 0 1 0

0 0 1

0 0 0

375 :
(iii) 264 � 1 0

0 � 0

0 0 �2�

375 :
When there are nonreal eigenvalues, assume they are � and ��, then it must be in the same

orbit as 264 0 �j�j2 0

1 2Re� 0

0 0 �2Re�

375 ;
which can be replaced by (because Re� 6= 0)

(iv) 264 0 �� 0

� 2 0

0 0 �2

375 ;
with � > 1.

To �nd the corresponding elements in H2(g;R) for (i){(iv), we may use the same argument

as in the algebraically closed case.

For (i), let 	 = (b^ c)
 a+ �(c^ a)
 b+ �(a ^ b)
 c 2 V � 
 (^2V )�. Then

"t � �(T )(v) = 	(v);

or

"t � �(T ) = (b^ c)
 a + �(c ^ a)
 b+ �(a ^ b)
 c;
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and

	(a; b^ c) = �;	(b; c^ a) = �;	(c; a^ b) = � = �� � �;
with all the other combinations are zero, which in turn will give us the algebra

(147E) :

[a; b] = d; [b; c] = e;

[c; a] = f; [a; e] = �g;

[b; f ] = �g; [c; d] = (�� � �)g:

Or
(147E) :

[a; b] = d; [b; c] = e;

[a; c] = �f; [a; e] = �g;
[b; f ] = �g; [c; d] = (1� �)g;

with the invariant I(�) = � e3
2

e2
3

= (1��+�2)3

�2(��1)2 and � 6= 0; 1 as in the complex case.

It is obvious that (147C) is just a special case of (147E), by letting � = 1=2.

In (ii), it is easy to see that the corresponding cocycle will contain a nonzero element of

Z(g) in its kernel. So we just omit it.

In (iii), when � = 0, the corresponding cocycle will contain a nonzero element of Z(g) in its

kernel. And when � 6= 0, we have

264 � 1 0

0 � 0

0 0 �2�

375 �
264 1 1 0

0 1 0

0 0 �2

375
Its corresponding cocycle is

	 = (b^ c)
 (a+ b) + (c ^ a)
 b� 2(a ^ b)
 c:

And it is trivial to check that

	(a; a ^ b) = 0; 	(a; b^ c) = 1; 	(a; c^ a) = 1;

	(b; a^ b) = 0; 	(b; b^ c) = 0; 	(b; c^ a) = 1;

	(c; a^ b) = �2; 	(c; b ^ c) = 0; 	(c; c^ a) = 0:

And its corresponding algebra is

(1) :

[a; b] = d; [b; c] = e; [a; c] = �f;
[a; e] = g; [a; f ] = g; [b; f ] = g;

[c; d] = �2g:
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which is isomorphic to (147D) of Seeley's paper, an isomorphism from (1) to (147D) can be

given as: a! 1=2c, b! b, c! a, d! �1=2e, e! �d, f ! �1=2f and g ! �1=4g.
In (iv), its corresponding cocyle is

	 = (b ^ c)
 (��a) + (c ^ a)
 (�a+ 2b) + (a ^ b)
 (�2c):

And it is easy to check that

	(a; a ^ b) = 0; 	(a; b^ c) = 0; 	(a; c^ a) = ��;
	(b; a^ b) = 0; 	(b; b^ c) = �; 	(b; c^ a) = 2;

	(c; a^ b) = �2; 	(c; b^ c) = 0; 	(c; c^ a) = 0:

And its corresponding algebra is

[a; b] = d; [b; c] = e; [a; c] = �f;
[a; f ] = ��g; [b; e] = �g [b; f ] = 2g;

[c; d] = �2g:
with � > 1, and corresponds to (147E1).

Therefore the central extensions of N6;3;6 of dimension 7 are:

(147D):

[a; b] = d; [a; c] = �f ,
[a; e] = g; [a; f ] = g;

[b; c] = e; [b; f ] = g,

[c; d] = �2g:
(147E): I(�) = (1��+�2)3

�2(��1)2 ; � 6= 0; 1 ( � = 1=2 gives (147C))

[a; b] = d, [a; c] = �f ,
[a; e] = �g; [b; c] = e;

[b; f ] = �g; [c; d] = (1� �)g.
(147E1): (� > 1)

[a; b] = d, [a; c] = �f;
[a; f ] = ��g; [b; c] = e;

[b; e] = �g; [b; f ] = 2g;

[c; d] = �2g:
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7.4 Four More Real Algebras and Their Extensions

7.4.1 The Four Algebras

In the real �eldR, apart from all the algebras already listed overC, we have 4 more algebras,

which we will list in the following, with their corresponding automorphism groups. The

notation La means that, as a Lie algebras over R, La and L are nonisomorphic algebras,

but are isomorphic over the complex �eld C.

Our real 6-dimensional list is based on Nielson's list, and the correpondence between these

two lists can be found in Appendix A.

N6;2;5a : [x1; xi] = xi+1; i = 2; 3; [x1; x4] = �x6; [x2; x3] = x5; [x2; x5] = �x6:
| (1; 3; 4; 6=6; 4; 3; 1);

| CQ: N5;2;3;

| Aut N6;2;5a :

Aut0 :

26666666666664

a11 �a12 0 0 0 0

a12 a11 0 0 0 0

a31 a32 � 0 0 0

a41 a42 x a11� �a12� 0

a51 a52 y a12� a11� 0

a61 a62 u v w �2

37777777777775
;

� =

"
0 1

1 0

#
� [�1]�

"
0 �1
�1 0

#
� [�1] ;

where � = a211 + a212, x = a11a32 + a12a31, y = a12a32 � a11a31, u = �a11a42 � a12a52 �
a12a41 + a11a51, v = �a211a32 � a212a32, w = a211a31 + a212a31.

N6;2;9a : [x1; x2] = x3; [x1; xi] = xi+2; i = 3; 4; [x2; x3] = �x6; [x2; x4] = x5;

| (2; 4; 6=6; 3; 2);

| CQ: N4;3 = N3;2 � a1;
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| Aut N6;2;9a :

Aut0 :

26666666666664

a11 �a12 0 0 0 0

a12 a11 0 0 0 0

a31 a32 � 0 0 0

a41 a42 0 � 0 0

a51 a52 x a54 a11� a12�

a61 a62 u a64 �a12� a11�

37777777777775
;

and

� =

"
0 1

1 0

#
� [�1]� [1]�

"
0 1

1 0

#
;

with � = a211+a
2
12, x = a11a32+a12a42+a12a31�a11a41, u = a11a42�a12a32+a12a41+a11a31.

N6;3;1a : [x1; xi] = xi+2; i = 2; 3; [x2; x4] = [x3; x5] = x6;

| (1; 3; 6=6; 3; 1);

| CQ: N5;3;2;

| Aut N6;3;1a :

Aut0 :

26666666666664

a11 0 0 0 0 0

0 a �b 0 0 0

0 b a 0 0 0

a41 a42 a43 a11a �a11b 0

a51 x y a11b a11a 0

a61 a62 a63 u v a11 a22
2

37777777777775
;

with a = a22 cos �, b = a22 sin �, x = a43+a53 sin �, y = �a42+a53 cos �, u = �a22a41 cos ��
a22a51 sin �; a11, v = a22 sin � � a22a51 cos �.

N6;4;4a : [x1; x3] = [x2; x4] = x5; [x1; x4] = �[x2; x3] = x6:

| Aut N6;4;4a :

Aut0 :

26666666666664

a22 a12 0 0 0 0

�a12 a22 a23 �a13 0 0

a31 a32 0 �a43 0 0

a32 �a31 a43 0 0 0

a51 a52 a53 a54 u v

a61 a62 a63 a64 x y

37777777777775
;
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� =

"
0 1

1 0

#
� [1]� [�1]�

"
0 �1
�1 0

#
;

where u = �a12a43� a13a31� a23a32, v = �a22a43+ a13a32� a23a31, x = a22a43+ a23a31�
a13a32, and y = �a12a43 � a13a31 � a23a32.

7.4.2 The Extensions

Central extensions of N6;2;5a:

Z(g): x6; [g; g]: x3; x4; x5; x6; Z
2(g): C36 = C45 = C46 = C56 = 0; C16 + C35 =

0; C34 = C26; C15 = C24; W (H2): C12 = C13 = C14 = C23 = 0; dimH2: 4; Basis:

�15 + �24; �16 ��35; �25; �26 +�34.

Group action: a(�15 +�24) + b(�16��35) + c�25 + d(�26+ �34):

(1):

a! a(a411 � a412) + ca11a12(a
2
11 + a212);

b! ba11(a211 + a212)
2 + da12(a211 + a212)

2;

c! �4aa11a12(a211 + a212) + c(a411 � a412);
d! �ba12(a211 + a212)

2 + da11(a
2
11 + a212)

2;

(2): a! �a, b! �d, c! c, d! �b;
One of b; d 6= 0. Make b = 1 and d = 0 to get A = [a; 1; c; 0]. Set a12 = 0, then we have

a! aa411; b = 1! a511; c! ca411; d = 0! 0.

Case 1: c 6= 0. When a = 0, we get a representative for A: A = [0; 1; 1; 0], corresponding to

(12457N1) (the reason we use this notation is because it is isomorphic to (12457N,� = 1)

over C). When a 6= 0, then we get A = [aa411; a
5
11; ca

4
11; 0]. Now it is easy to see that we get

a parameter � in A: [1; 1; �; 0] for � 6= 0, corresponding to (12457N2). By the group action

(2), we may change A to [�1; 0; �;�1], and by (1) again and letting a11 = 0, we would

get [a212;�a312;�a212�; 0], which is in the same orbit as [1; 1;��; 0] if we take a12 = �1.
Therefore an invariant for this parameter could be chosen as K(�) = j�j:
Case 2: c = 0. Now depending on whether a = 0 or not, we get two representatives for A:

A = [0; 1; 0; 0], corresponding to (12457L1), and A = [1; 1; 0; 0], which can be included in

(12457N2) as a special case by choosing � = 0.

Therefore the central extensions of N6;2;5a are:
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(12457L1): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = �x6,
[x1; x6] = x7 [x2; x3] = x5;

[x2; x5] = �x6, [x3; x5] = �x7;
(12457N1): [x1; xi] = xi+1; i = 2; 3; [x1; x4] = �x6,

[x1; x6] = x7; [x2; x3] = x5;

[x2; x5] = �x6 + x7, [x3; x5] = �x7;
(12457N2): One parameter family, with invariant K(�) = j�j

[x1; xi] = xi+1; i = 2; 3; [x1; x4] = �x6,
[x1; x5] = x7, [x1; x6] = x7;

[x2; x3] = x5; [x2; x4] = x7,

[x2; x5] = �x6 + �x7, [x3; x5] = �x7;

Central extensions of N6;2;9a:

Z(g): x5; x6; [g; g]: x3; x5; x6; Z
2(g): C35 = C36 = C45 = C46 = C56 = 0; C16 +

C25 = 0; C15 � C34 � C26 = 0; W (H2): C12 = C13 = C14 = 0; dimH2: 5; Basis:

�15 + �26; �15 +�34; �16 ��25; �23; �24;

Group action: a(�15 +�26) + b(�15+ �34) + c(�16 ��25) + d�23 + e�24:

(1):

a! a(a411 � a412)� ba212(a211 + a212)� 2ca11a12(a
2
11 + a212);

b! b(a211 + a212)
2;

c! 2aa11a12(a
2
11 + a212) + ba11a12(a

2
11 + a212) + c(a411� a412);

d! a(�2a11a12a32�a212a42�a212a31+2a11a12a41+a211a42+a211a31)+b(�a11a12a32�2a212a42�
a212a31+a11a12a41�a211a42)+c(�2a11a12a42+a212a32�a212a41�2a11a12a31�a211a32+a211a41);
e! a(�a12a54+a11a64)+b(�a12a54+a211a32+a212a32)+c(�a12a64�a11a54)+ea11(a211+a212);
(2): a! a+ b, b! �b, c! �c, d! e and e! d.

One of a; c 6= 0, and when c = 0, then a 6= 0 and a+ b 6= 0. Make a 6= 0 and c = 0,which is

always possible over R. Fix c = 0 and let a12 = 0, we get a ! aa411; b! ba411; c = 0 ! 0;

d! a(a211a42 + a211a31) + b(�a211a42); e! aa11a64 + ba211a32 + ea311:

Make d = e = 0 by solving for a31 and a64, depending on whether b = 0 or not, we get two

representatives for A: A = [1; 0; 0; 0; 0], and A = [�; 1��; 0; 0; 0], with � 6= 0; 1. Combining

these two, we may just assume � to be any nonzero real numbers. Using (2), we know that

A is in the same orbit as [1; �� 1; 0; 0; 0]. Since � 6= 0 in A, we can multiply A by 1=� and

get [1; 1� � 1; 0; 0; 0], now it is easy to see that K(�) = �+ 1=� can be used as an invariant

for �. This new algebra will be denoted by (1357QRS1), since over C, when � = 1, it is

isomorphic to (1357Q); when � = �1, it is isomorphic to (1357R); and for all the other

� 6= 0, it becomes (1357S, � > 0, � 6= 1).
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Therefore the central extensions of N6;2;9a are:

(1357QRS1): K(�) = �+ ��1 and � 6= 0

[x1; x2] = x3 [x1; x3] = x5,

[x1; x4] = x6 [x1; x5] = x7,

[x2; x3] = �x6 [x2; x4] = x5,

[x2; x6] = �x7 [x3; x4] = (1� �)x7.

Central extensions of N6;3;1a:

Z(g): x6; [g; g]: x4; x5; x6; Z
2(g): C16 = C26 = C36 = C46 = C56 = 0; C45 = 0, C34 = C25;

Now it becomes obvious that N6;3;1a has no desired central extensions.

Central extensions of N6;4;4a:

Z(g): x5; x6; [g; g]: x5; x6; Z
2(g): C56 = 0; C36 � C45 = 0; C35 + C46 = 0; C16 + C25 =

0; C15 � C26 = 0; W (H2): C13 = C14 = 0; dimH2: 8; Basis: �12, �15 + �26, �16 ��25,

�23, �24, �34, �35 ��46, �36 + �45;

Group action: a�12+ b(�15+�26)+ c(�16��25)+d�23+ e�24+ f�34+ g(�35��46)+

h(�36 + �45);

(1):

a! a(a222+a
2
12)+b(a22a52�a12a62�a12a51�a22a61)+c(a22a62�a12a52+a22a51�a12a61)+

d(�a12a32 � a22a31) + e(a12a31 � a22a32) + f(�a231 � a232) + g(a31a52 � a32a62 � a51a32) +
h(a31a62 + a32a52 � a32a61 + a31a61);

b! b(�2a12a22a43�a13a31a22�a22a23a32�a12a23a31+a12a13a32)+c(a222a43+a22a23a31�
a22a13a32�a212a43�a12a13a31�a12a23a32)+g(�a12a31a43�a13a231�2a31a23a32�a32a22a43+
a13a

2
32) + h(a31a22a43 + a23a

2
31 � 2a31a13a32 � a32a12a43 � a23a232);

c! c(�2a12a22a43�a13a31a22�a22a23a32�a12a23a31+a12a13a32)�b(a222a43+a22a23a31�
a22a13a32�a212a43�a12a13a31�a12a23a32)+h(�a12a31a43�a13a231�2a31a23a32�a32a22a43+
a13a

2
32)� g(a31a22a43 + a23a

2
31 � 2a31a13a32 � a32a12a43 � a23a232);

d! a(�a13a22+ a12a23� a12a13 � a22a23) + b(a22a63+ a12a53� a62a23� a13a52� a22a53 +
a12a63+ a13a51+ a23a61) + c(a12a63� a22a53+ a23a52� a13a62� a22a63� a12a53� a51a23+
a13a61) + d(�a23a32+ a31a23) + e(a22a43+ a23a31+ a12a43+ a23a32) + f(a32a43� a31a43) +
g(a32a53+a31a63�a31a53+a32a63)+h(a32a63+a43a61�a31a53�a43a62�a31a63�a32a53);
e! a(a13a22�a12a23�a12a13�a22a23)+b(a22a64+a12a54�a52a23+a13a62�a22a54+a12a64+
a23a51� a13a61) + c(a12a64� a22a54� a13a52+ a23a61+ a51a13� a22a64� a12a54� a23a62) +
d(�a22a43�a31a13�a12a43+a13a32)+e(�a32a13�a13a31)+f(�a32a43�a31a43)+g(a43a52+
a31a64�a31a54+a32a64+a32a54�a43a51)+h(a32a64�a43a61�a31a54+a43a62�a31a64�a32a54);
f ! a(�a213 � a223) + b(a13a54 + a23a64 � a23a53 + a13a63) + c(a13a64 � a23a54 � a13a53 �
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a23a63) + d(�a23a43) + e(a13a43) + fa243 + g(�a43a64 + a53a43) + h(a43a54 + a43a63);

g ! b(�a12a13a43 � a213a31� 2a13a23a32 + a22a23a43 + a223a31) + c(a13a22a43+ 2a13a23a31 �
a213a32+a12a23a43+a

2
23a32)+ g(�a22a243�a43a23a31+a43a13a32)+h(�a12a243�a43a13a31�

a43a23a32);

h ! b(�a13a22a43 � a213a32 � 2a13a23a31 � a12a23a43 � a223a32) + c(�a12a13a43 � a213a31 �
2a13a23a32+a22a23a43+a31a

2
23)+g(a12a

2
43+a43a13a31+a43a23a32)+h(�a22a243+a43a13a32�

a43a23a31);

(2): a! �a, b! �b, c! c, d! �d, e! e, f ! �f , g ! �h, h! �g.
One of b; c; g; h 6= 0. Make b 6= 0 and c = g = h = 0. Take a31 = a32 = 0, a51 = a52 and

a12 = a22, then we have

a! a(a222 + a212) + b(a22a52 � a12a62 � a12a51 � a22a61);
b! b(�2a222a43);
c = 0! 0;

d! a(�a13a22+ a12a23� a12a13� a22a23) + b(2a22a63+ a12a53� a62a23� a13a52� a22a53+
a13a51 + a23a61) + e(a22a43 + a12a43);

e! a(a13a22� a12a23� a12a13� a22a23) + b(2a22a64+ a12a54+ a13a62� a22a54� a13a61) +
d(�a22a43 � a12a43);
f ! a(�a213 � a223) + b(a13a54 + a23a64 � a23a53 + a13a63) + d(�a23a43) + e(a13a43) + fa243;

g = 0! b(�a12a13a43 + a22a23a43);

h = 0! b(�a13a22a43 � a12a23a43);
Now make a = d = e = g = h = 0 by solving for a52, a63, a64, a13 and a23 respectively.

Then choose further a13 = a23 = a51 = a52 = a53 = a54 = a61 = a62 = a63 = a64 = 0, to

get a = 0! 0; b ! b(�2a222a43); c = 0 ! 0; d = 0 ! 0; e = 0 ! 0; f ! fa243; g = 0! 0;

h = 0! 0:

Depending on whether f = 0 or not, we get two representatives [0; 1; 0; 0; 0; 0; 0; 0], corre-

ponding to (137A1), and [0; 1; 0; 0; 0; 1; 0; 0], corresponding to (137B1).

Therefore the central extensions of N6;4;4a are:

(137A1): [x1; x3] = x5, [x1; x4] = x6, [x1; x5] = x7,

[x2; x3] = �x6, [x2; x4] = x5, [x2; x6] = x7;

(137B1): [x1; x3] = x5, [x1; x4] = x6, [x1; x5] = x7,

[x2; x3] = �x6, [x2; x4] = x5, [x2; x6] = x7,

[x3; x4] = x7;
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Appendix A

Comparison with Nielsen's List

For 6-dimensional nilpotent Lie algebras, Nielson [22] presents a list of 24 indecomposable

non-isomorphic algebras over the real �eld R and calculates a corresponding connected and

simply-connected Lie group and its coadjoint orbits, and related data for each algebra. He

also compares his list with those of Morozov [20], Skjelbred and Sund [35], Umlauf [37] and

Vergne [38].

In this part, we indicate the correspondence between our list and Nielsen's list:

N6;1;1
�= G6;13; N6;1;2

�= G6;14;

N6;1;3
�= G6;11; N6;1;4

�= G6;3;

N6;2;1
�= G6;10; N6;2;2

�= G6;12;

N6;2;3
�= G6;7; N6;2;4

�= G6;2;

N6;2;5
�= G6;9; N6;2;5a

�= G6;8;

N6;2;6
�= G6;5; N6;2;7

�= G6;24;

N6;2;8
�= G6;20; N6;2;9

�= G6;22;

N6;2;9a
�= G6;23; N6;2;10

�= G6;21;

N6;3;1
�= G6;4; N6;3;1a

�= G6;6;

N6;3;2
�= G6;1; N6;3;3

�= G6;19;

N6;3;4
�= G6;18; N6;3;5

�= G6;16;

N6;3;6
�= G6;15; N6;4;4a

�= G6;17.
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Appendix B

Comments on Ancochea-Goze List

In this appendix, we discuss the list of indecomposable complex nilpotent Lie algebras

of dimension 7 obtained by Ancochea-Bermudez and Goze [2] . The list was originally

published in Arch. Math. in 1989, which missed a lot of algebras and also contained many

errors. Later on the list was incorporated as part of the book \Nilpotent Lie Algebras" by

Goze and Khakimdjanov [12], with some adjustments and more algebras. This book was

published in 1996, three years after Seeley's paper [33] appeared in Trans. AMS. We have

compared all the indecomposable algebras in Seeley's list with this one, and as it turns out,

Ancochea-Goze's list still misses many algebras, while some are not Lie algebras at all, and

others are included more than once.

Below we will present the results of our comparison concerning Ancochea-Goze's list: (1)

At �rst we will point out those that are not Lie algebras at all, by providing 3 elements

which fail the Jacobi identity. We make no e�orts in correcting the mistakes; (2) Secondly,

we will list all the algebras which have been included more than once, together with an

isomorphism between them; (3) Thirdly, we point out the correspondences between the two

lists by using the upper central series dimensions as our invariant, also mentioned are the

algebras that are missing from Ancochea-Goze list.

B.1 Decomposable or non-Lie Algebras

In this section, we will point out those algebras which are decomposable or not a Lie

algebra at all. In total, we found two decomposable algebras, and ten classes which are not

Lie algebras, including an in�nite family.
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n
117
7 : Decomposable, n117

7 =< x2; x3; x4 > � < x1 � x2; x3 +

x7; x5; x6 >.

n
128
7 : Decomposable, F(x2 � x3) is an Abelian direct factor.

n
6
7: Not a Lie algebra, with Jac(x1; x6; x7) 6= 0.

n
9
7: Not a Lie algebra, it has obviously a typo, with [x6; x7] =

1
2x3 +

1
2x3:

n
17
7 : Not a Lie algebra, with Jac(x1; x5; x7) 6= 0.

n
62;�
7 : Not a Lie algebra, with Jac(x1; x5; x7) 6= 0.

n
81
7 : Not a Lie algebra, with Jac(x1; x5; x7) 6= 0.

n
97
7 : Not a Lie algebra, with Jac(x1; x4; x7) 6= 0.

n
98
7 : Not a Lie algebra, with Jac(x1; x4; x7) 6= 0.

n
100
7 : Not a Lie algebra, with Jac(x1; x4; x7) 6= 0.

n
120
7 : Not a Lie algebra, with Jac(x1; x2; x4) 6= 0.

n
122
7 : Not a Lie algebra, with Jac(x1; x4; x7) 6= 0.

B.2 Algebras That Occur More Than Once

In this section, we list all the algebras that have appeared more than once. For those

algebras with di�erent presentations, we also provide an isomorphism between them. When

we write A �= B, it means that A and B are isomorphic but of di�erent presentations, then

the isomorphism given is from A to B. If the algebras are of exactly the same presentation,

we simply write A = B.

n
37
7 =n38

7 .

n
19
7
�=n18

7 : Taking x1 ! 1
2x1 +

1
2x7, x2 ! 1

4x2 � 1
2 +

1
4x4, x3 ! �1

4x3,

x4 ! 1
4x3 � 1

2x4, x5 ! 1
4x2 � 1

2x3 +
1
4x4 � 1

2x5, x6 ! �1
2x6,

x7 ! �x7.
n
29
7 =n32

7 .

n
91
7
�=n94

7 : By taking x1 ! x1 +
1
2x7, x2 ! 1

2x2 +
1
2x5; x3 ! x3 + x6,

x4 ! x1 + x4 +
3
2x7, x5 ! x2, x6 ! x3 and x7 ! x4.

n
106
7 =n124

7 .

n
108
7
�=n121

7 : By taking x1 ! x1 � x2 + x4, x2 ! x4, x3 ! �x3, x4 ! x2,

x5 ! x5, x6 ! x5 + x6, x7 ! x7.

n
118
7
�=n126

7 : By taking x1 ! x1 � x2 + x4, x2 ! x4 + x7, x3 ! �x3 � x6,
x4 ! x2, x5 ! x5, x6 ! x6, x7 ! x7.
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B.3 Comparison of Ancochea-Goze's and Seeley's Lists

In this section, we establish the correspondence between these two lists. We compare, of

course, the corrected Seeley's, which in the case F = C is identical to our list in Chapter

4 (also see the Introduction for comments) with the modi�ed and updated version of the

Ancochea-Goze list as presented in the book [12]. Also mentioned are the algebras that

are missing from Ancochea-Goze list. We use the upper central series dimensions as the

invariant.

(37):

n
145
7
�= (37A); n143

7
�= (37B); n144

7
�= (37C);n142

7
�= (37D).

Missing: none.

(357):

n
102
7
�= (357A); n104

7
�= (357B); n103

7
�= (357C).

Missing: none.

(27):

n
147
7
�= (27A); n146

7
�= (27B).

Missing: none.

(257):

n
111
7
�= (257A);n107

7
�= (257B); n113

7
�= (257C);n123

7
�= (257D);

n
112
7
�= (257E); n110

7
�= (257F);n109

7
�= (257G); n108

7
�= (257H);

n
116
7
�= (257I); n119

7
�= (257K);

Missing: (257J), (257L).

(247):

n
87
7
�= (247A); n101

7
�= (247B);n88

7
�= (247C); n96

7
�= (247E);

n
93
7
�= (247F); n91

7
�= (247G); n89

7
�= (247H); n90

7
�= (247I);

n
92
7
�= (247J); n85

7
�= (247L); n106

7
�= (247N); n86

7
�= (247O);

n
95
7
�= (247Q);n99

7
�= (247R).

Missing: (247D), (247K), (247M), (247P).

(2457):

n
84
7
�= (2457A); n77

7
�= (2457B); n83

7
�= (2457C); n64

7
�=

(2457E); n82
7
�= (2457F); n67

7
�= (2457G); n50

7
�= (2457H); n76

7�= (2457I);n66
7
�= (2457J); n65

7
�= (2457K); n60

7
�= (2457L); n61

7�= (2457M).

Missing: (2457D).

(2357):

n
74
7
�= (2357A); n80

7
�= (2357B); n63

7
�= (2357D).

Missing: (2357C).
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(23457):

n
24
7
�= (23457A);n26

7
�= (23457B); n12

7
�= (23457C);n11

7
�=

(23457D); n25
7
�= (23457E); n22

7
�= (23457F); n10

7
�= (23457G).

Missing: none.

(17):

n
152
7
�= (17).

Missing: none.

(157):

n
137
7
�= (157).

Missing: none.

(147):

n
114
7
�= (147B);

n
105
7
�= (147E) by taking � to be a root of x2 � x+ 1;

n
127;�
7

�= (147E)� (Compare the invariant for � in (147E)).

Missing: (147A), (147D). (Notice that (147C) in Seeley is a

special case of (147E))

(1457):

n
52
7
�= (1457A);n51

7
�= (1457B).

Missing: none.

(137):

n
118
7
�= (137A); n125

7
�= (137B); n115

7
�= (137C).

Missing: (137D).

(1357):

n
49
7
�= (1357A); n48

7
�= (1357B); n47

7
�= (1357C);

n
72
7
�= (1357E); n71

7
�= (1357F); n75

7
�= (1357G); n73

7
�=

(1357H);n69
7
�= (1357I); n68

7
�= (1357J); n79

7
�= (1357L); n78;�

7�= (1357M)�; n
70;�
7
�= (1357N)�;

n
62;�
7
�= (1357S), in the original A-G list, n62;�

7 is not a Lie

algebra, but after [x5; x6] = x2 is replaced by [x5; x6] = ��x2,
we have the above isomorphism.

Missing: (1357D), (1357O), (1357P), (1357Q), (1357R). No-

tice that (1357K) in Seeley is a special case of (1357M).

(13457):

n
41
7
�= (13457A);n40

7
�= (13457B);n29

7
�= (13457C);

n
39
7
�= (13457D); n31

7
�= (13457E);n20

7
�= (13457F); n21

7
�=

(13457G); n18
7
�= (13457I).

Missing: none. Notice that (13457H) in Seeley is not a Lie

algebra.
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(12457):

n
15
7
�= (12457A); n37

7
�= (12457B); n30

7
�= (12457C); n28

7
�=

(12457D);n36
7
�= (12457E); n27

7
�= (12457G);n16

7
�= (12457K);

n
23
7
�= (12457L);

n
13;�
7
�= (12457N)�. In A-G list, there is no restriction on �

at all, compare � in (12457N).

n
14
7
�= (12457N,�= �1).

Missing: (12457F), (12457H), (12457I),(12457J). Notice that

(12457M) in Seeley is just a special case of (12457N) by taking

� = 0.

(12357):

n
35
7
�= (12357A); n34

7
�= (12357B); n33

7
�= (12357C).

Missing: none.

(123457):

n
8
7
�= (123457A);n7

7
�= (123457B); n5

7
�= (123457E);

n
4
7
�= (123457F); n3

7
�= (123457H); n1;�

7
�= (123457I)�; n2

7 a

special case of (123457I), with � = 1;

Missing: (123457C), (123457D). Notice that (123457G) in

Seeley is a special case of (123457I).
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Appendix C

Comments on Romdhani's List

In this appendix, we discuss the list of indecomposable real nilpotent Lie algebras of dimen-

sion 7 obtained by Romdhani [24][25]. Carles [6] has compared Seeley's list with Romdhani's

over the complex �eld. Readers who are interested in more details should refer to [6]. Car-

les has a very nice discussion especially about the behaviour of the six continuous families

there.

Here we compare our list of 7-dimensional indecomposable real nilpotent Lie algebras with

that of Romdhani [24][25]. Also mentioned are the algebras that are missing from his list,

which are many in numbers. We use the upper central series dimensions as our invariant.

Our purpose is more on the correspondence between the two lists, hence we make no e�ort

in making corrections or providing the details of the isomorphism.

(37):

g7;127�= (37A); g7;126�=g7;128 �= (37B); g7;124�= (37D); g7;125 �=
(37D1).

Missing: (37C), (37B1).

(357):

g7;98�= (357A).

Missing: (357B),(357C).
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(27):

g7;131 �= (27A); g7;130 �= (27B).

Missing: None.

(257):

g7;121 �= (257A); g7;119 �= (257B); g7;123 �= (257C); g7;122 �=
(257E);

g7;120 �= (257F); g7;118 �= (257G); g7;117 �= (257H); g7;106 �=
(257I);

g7;105 �= (257K); g7;104 �= (257L).

Missing: (257D), (257J), (257J1).

(247):

g7;92 �= (247E); g7;91 �= (247E1); g7;83 �= (247F); g7;82 �=
(247G); g7;81 �= (247H); g7;86 �= (247I); g7;85 �= (247J); g7;84 �=
(247K); g7;90 �=g7;96 �=g7;97 �= (247P); g7;89 �= (247P1); g7;87
�= (247R1); g7;88 �= (247R).

Missing: (247A-D),(247F1, H1), (247L-O,Q).

(2457):

g7;78 �= (2457A); g7;80 �= (2457B); g7;77 �= (2457C); g7;58 �=
(2457E);

g7;76 �= (2457F); g7;61 �= (2457G); g7;60 �= (2457H); g7;79 �=
(2457I);

g7;57 �= (2457J); g7;59 �= (2457K); g7;33 �= (2457L); g7;32 �=
(2457M).

Missing: (2457D),(2457L1).

(2357):

g7;73 �= (2357A); g7;75 �= (2357B); g7;56 �= (2357C), g7;54 �=
(2357D); g7;55 �= (2357D1).

Missing: None.

(23457):

g7;31 �= (23457A); g7;28 �= (23457B); g7;13 �= (23457C); g7;12
�= (23457D);

g7;30 �= (23457E); g7;27 �= (23457F); g7;11 �= (23457G).

Missing: None.

(17):

g7;132 �= (17).

Missing: None.
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(157):

g7;129 �= (157).

Missing: None.

(147):

g7;113 �=g7;115 �= (147A1);g7;114 �=g7;116 �= (147A); g7;112 �=
(147B);g7;95 �= (147D); g� 6=07;93

�= (147E); g�6=07;94
�= (147E1).

Missing: None. (Notice that (147C) in Seeley is a special case

of (147E))

(1457):

g7;103 �= (1457A); g7;102 �= (1457B).

Missing: None.

(137):

g7;108 �= (137A); g7;109 �= g7;110 �= (137A1); g7;107 �= (137B);

g7;111 �= (137C).

Missing: (137B1), (137D).

(1357):

g7;101 �= (1357A); g7;100 �= (1357B); g7;99 �= (1357C); g7;69 �=
(1357D); g7;67 �=g7;68 �= (1357E); g7;65 �= (1357F1); g7;66 �=
(1357F); g7;74 �= (1357G); g7;72 �= (1357H);

g7;71 �= (1357I); g7;70 �= (1357J); g7;63 �= (1357L); g�6=07;64
�=

(1357M); g�7;62
�= (1357N); g�=07;52

�= (1357P);g�=07;53
�= (1357P1);

g�=17;52
�= (1357Q); g�=17;53

�= (1357R); g�=�17;52
�= (1357QRS1,

� = �1); g�>07;52
�= (1357S, � > 1); g�>07;53

�= (1357S, � < 1);

g�<0;�6=�17;52
�= (1357QRS1, � < 0; � 6= �1);

Missing: (1357O), (1357Q1), (1357QRS1,� = 1). Notice that

(1357K) in Seeley's is a special case of (1357M).

(13457):

g7;51 �= (13457A); g7;50 �= (13457B); g7;39 �= (13457C); g7;49
�= (13457D);

g7;38 �= (13457E); g7;29 �= (13457F); g7;26 �= (13457G); g7;25 �=
(13457I).

Missing: None. Notice that (13457H) in Seeley is not a Lie

algebra.
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(12457):

g7;48 �= (12457A); g7;47 �= (12457B); g7;37 �= (12457C);

g7;35 �= (12457D); g7;46 �= (12457E); g7;36 �= (12457F); g7;34
�= (12457G); g7;24 �= (12457H); g7;22 �= (12457I); g7;20 �=
(12457J); g7;21 �= (12457J1); g7;23 �= (12457K); g7;19 �=
(12457L); g7;18 �= (12457L1);g7;16 �= (12457N, � = 1); g7;17
�= (12457N1); g

�
7;15
�= (12457N); g�7;14

�= (12457N2).

Missing: None. Notice that (12457M) in Seeley is special case

of (12457N) by choosing � = 0.

(12357):

g7;45 �= (12357A); g7;43 �= (12357B); g7;44 �= (12357B1); g7;40
�=g7;41 �=g7;42 �= (12357C).

Missing: None.

(123457):

g7;10 �= (123457A); g7;9 �= (123457B); g7;3 �= (123457C);

g7;8 �= (123457D); g7;7 �= (123457E);g7;2 �= (123457F);g7;4 �=
(123457H); g7;5 �= (123457H1); g7;6 �= (123457I,�= 1); g�6=17;1

�=
(123457I,� 6= 1).

Missing: None.
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Appendix D

An Overview of the Construction

of the 7-Dimensional Algebras

Here we give the summary of all the 7-dimensional indecomposable nilpotent Lie algebras as

they arise from those of dimensions � 6 in our construction over algebraically closed �elds

of � 6= 2. The readers may easily identify the central quotients of all the 7-dimensional

algebras with this list.

With regard to the number of algebras: Over the algebraically closed �elds, there are 6

one parameter continuous families, together with 119 isolated algebras when � 6= 3 or 120

isolated algebras when � = 3 (the extra algebra is (147F)),

Over the real �eld, there are, in addition, 3 one parameter continuous families and 21

isolated algebras.

D.1 Algebras over Algebraically Closed Fields

Abelian Algebras and Their Extensions

N6;6: (17).

N5;5: (27A,B).

N4;4: (37A{D).

Four-Dimensional Algebras and Their Extensions

N4;2: None.

N4;3: (357A{C).
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Five-Dimensional Algebras and Their Extensions

N5;1: (23457E{G).

N5;2;1: (23457A{D).

N5;2;2: (2357A{D).

N5;2;3: (2457L, M).

N5;3;1: None.

N5;3;2: (247A{R).

N5;3;3: (2457A{K).

N5;4: (257A{L).

Six-Dimensional Algebras and Their Extensions

N6;1;1: (123457H, I). (123457G) in Seeley's list is just a special case

of (123457I) by taking � = 1.

N6;1;2: None.

N6;1;3: (123457D-F).

N6;1;4: (12457E-G).

N6;2;1: (123457A-C).

N6;2;2: None.

N6;2;3: (12357A{C).

N6;2;4: (12457A{D).

N6;2;5: (12457H{L, N). (12457M) is just a special case of (12457N)

by taking � = 0.

N6;2;6: None.

N6;2;7: (13457F, G,I). (13457H) in Seeley's list is not a Lie algebra

and should be deleted.

N6;2;8: (1357L{N). (1357K) in Seeley's list is just a special case of

(1357M) by taking � = 1=2.

N6;2;9: (1357Q{S).

N6;2;10: (1357O, P).

N6;2;11: (13457D,E).

N6;3;1: None.

N6;3;2: None.

N6;3;3: (1357G{J).
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N6;3;4: (1357D{F).

N6;3;5: (137C,D).

N6;3;6: (147D,E) (and also(147F) if � = 3). (147C) in Seeley's list is

a special case of (147E) by taking � = 1=2.

N6;3;7: (13457A{C).

N6;3;8: (1357A{C).

N6;3;9: None.

N6;4;1: None.

N6;4;2: (147A, B).

N6;4;3: (1457A,B).

N6;4;4: (137A,B).

N6;5: (157).
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D.2 Algebras over the Real Field

In addition to the above algebras over algebraically closed �elds of � 6= 2, we have the

following indecomposable algebras over R.

Abelian Algebras and Their Extensions

N4;4: (37B1, D1).

Five-Dimensional Algebras and Their Extensions

N5;2;2: (2357D1).

N5;2;3: (2457L1).

N5;3;2: (247E1, F1, H1, P1, R1).

N5;4: (257J1).

Six-Dimensional Algebras and Their Extensions

N6;1;1: (123457H1).

N6;2;3: (12357B1).

N6;2;5: (12457J1).

N6;2;5a: (12457L1, N1, N2).

N6;2;9: (1357Q1).

N6;2;9a: (1357QRS1). The reason we use this notation is because over

C, if � = 1, (1357QRS1)�= (1357Q); if � = �1, (1357QRS1)�=
(1357R); and for other �, it corresponds to (1357S).

N6;2;10: (1357P1).

N6;3;1a: None.

N6;3;4: (1357F1).

N6;3;6: (147E1)

N6;4;2: (147A1).

N6;4;4a: (137A1, B1).
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Appendix E

Maple Programs

In this part we provide the main Maple V programs that we have used in our computation.

E.1 Introduction

A Lie algebra is uniquely determined by its structural constants, which can be naturally

regarded as a 3-dimensional matrix in Maple V. Therefore we may expect that the compu-

tational systems such as Maple V are going to play a more and more important role in the

research of Lie algbras and related topics.

All of our routines are to be used together with the Linear Algebra Package provided by

Maple V, through the command with(linalg).

For example, the Heisenberg Lie algebra

N5;3;1 : [x1; x2] = [x3; x4] = x5

can be denoted in Maple V as

N5;3;1=:array(sparse,1..5,1..5,1..5,[(1,2,5)=1, (2,1,5)=-1, (3,4,5)=1,

(4,3,5)=-1]):

The procedures available are for the computation of:

{ the Lie algebra conditions (including the Jacobi identity and the anticommutativity);

{ the cocycles;

{ the group actions;

{ the isomorphism between two algebras (including automorphism groups);

{ derivation algebras.
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E.2 The Programs

E.2.1 Lie Algebra Conditions

Calling Sequence:

check lie(Algebra, Dimension)

Parameters:

Algebra | An algebra in the form of a 3-dimensional matrix

Dimension { The dimension of the given algebra

Synopsis:

{ To check whether an algebra is a Lie algebra or not by checking the Jacobi identity and

the anticommutativity.

{ Input is an algebra and its dimension.

{ If the algebra is NOT a Lie algebra, then the output will specify the vectors where the

anticommutativity or the Jacobi identity fails; If the algebra is a Lie algebra, the output

will give a con�rmation.

Procedure:

check_lie:=proc(A,n)

local i,j,k, l, m;

for i from 1 by 1 to n do

for j from 1 by 1 to n do

for k from 1 by 1 to n do

if A[i, i, k]<>0 then

RETURN(`Input is NOT a Lie algebra (`,i,i,k,`)=`,

A[i,i,k], ` is not zero`);

elif A[i,j,k]+A[j,i,k]<>0 then

RETURN(`Input is NOT a Lie algebra, (`,i,j,k ,`)+

(`,j,i,k,`)=`, A[i,j,k]+A[j,i,k],`is not zero`);

else

for l from 1 by 1 to n do

if

simplify(sum(A[i,j,m]*A[m,l,k]+A[j,l,m]*A[m,i,k]
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+A[l,i,m]*A[m,j,k], m=1..n))<>0

then

RETURN(`Input is NOT a Lie algebra---the Jac(`,

i,j,l, `) is not zero`);

fi;

od;

fi;

od;

od;

od;

print(`Yes, input IS a Lie algebra`);

end:

E.2.2 Cocycles

Calling Sequence:

cocycle(Lie Algebra, Dimension)

Parameters:

Lie Algebra | An Lie algebra in the form of a 3-dimensional matrix

Dimension { The dimension of the given algebra

Synopsis:

{ To compute the cocycles of a given Lie algebra.

{ Input is the given Lie algebra and its dimension.

{ Output is the set of constraints on the entries of the cocycles expressed as antisymmetric

matrices.

Procedure:

cocycle:=proc(L,n)

local i,j,k,h, v,u,w,C,eqns,e,f,g;

v:=vector(n);

eqns:= f g;
u:=vector(n);
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w:=vector(n);

C:=array(antisymmetric,1..n,1..n,[]);

for i to n do

for j from i+1 to n do

for k from j+1 to n do

for h to n do

v[h]:=L[i,j,h];

u[h]:=L[j,k,h];

w[h]:=L[k,i,h];

od:

e:=array(sparse, 1..n, [k=1]);

f:=array(sparse,1..n, [i=1]);

g:=array(sparse,1..n,[j=1]);

eqns:=eqns union multiply(transpose(e),multiply(C,v))+

multiply(transpose(f),multiply(C,u))+

multiply(transpose(g),multiply(C,w));

od:

od:

od:

print(`The cocycles are`, eqns);

end:

Comments: The output will give us some constraints on the entries of the antisymmetric

matrix regarded as cocycles.

E.2.3 Isomorphisms

Calling Sequence:

isom(Lie Algebra 1, Lie Algebra 2, Dimension)

Parameters:

Lie Algebra 1, Lie Algebra 2 | Two given Lie algebras

Dimension { The common dimension of the two given algebras

Synopsis:

{ To compute the isomorphismbetween two algebras (automorphismgroup can be obtained

when the two algebras are identical).

{ Input are two given algebras and their common dimension.
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{ Output is the isomorphism between the two given Lie algebras (or the automorphism

group when the two algebras are identical).

Procedure:

isom:=proc(A,B,n)

local i,j,k,s,r,eqns,t,TEST, Andre,sols,l,S1,S2,C;

C:=matrix(n,n);

Andre:=matrix(n,n);

TEST:=0;

eqns:=f g;

for i to n-1 do

for j from i+1 to n do

for l to n do

S1:=sum('A[i,j,k]*C[l,k]','k'=1..n);

S2:=sum(C[r,i]*sum(C[s,j]*B[r,s,l],s=r+1..n),r=1..n-1)-

sum(C[r,j]*sum(C[s,i]*B[r,s,l],s=r+1..n),r=1..n-1);

eqns:=eqns union S1-S2=0;

od:

od:

od:

sols:=[solve(eqns)];

t:=nops(sols);

for i to t do

for j to n do

for k to n do

Andre[j,k]:=subs(sols[i],C[j,k]);

od:

od:

if simplify(det(Andre))<>0 then

print(Andre);

print(`The det is `, simplify(det(Andre)));

158



TEST:=1;

fi:

od:

if TEST=0 then

print(`These two algebras are not isomorphic`);

fi:

end:

Comments: In some cases Maple V may give some error info, and not be able to �nd the

automorphism. Then we need to use the automorphism group theorem given by Skjelbred

and Sund to compute it.

E.2.4 Group Actions

Calling Sequence:

orbit(Automorphism Group, Dimension, Element from H2(g;F))

Parameters:

Automorphism Group | The generic automorphism for the given algebra in the form of

a 2-dimensional matrix

Dimension { The dimension of the given algebra

Element from H2(g;F) { An element of H2(g;F), written as a linear combination of the

basis vectors

Synopsis:

{ To compute the group actions on an arbitrary element in H2(g;F).

{ Input is the automorphism group of the given Lie algebra, the dimension of the algebra

and an element from H2(g;F).

{ Output are the corresponding entries under the group action.

Procedure:

orbit:=proc(aut,n,a,i,j,b,p,q,c,r,s,d,u,v,e,w,z)

local x,B,y;

B:=array(sparse,1..n,1..n,[(i,j)=a,(j,i)=-a,(p,q)=b,(q,p)=-b,

(r,s)=c,(s,r)=-c,(u,v)=d,(v,u)=-d,(w,z)=e,(z,w)=-e]);
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x:=transpose(aut);

y:=multiply(x,multiply(B,aut));

print(y);

end:

Comments: This program applies to the case when dimH2(g;F) = 5, and the antisym-

metric element from H2(g;F) has nonzero values a; b; c; d; e at (i; j); (p; q); (r; s); (u; v) and

(w; z). The above program can be adjusted according to the di�erent dimensions of the

H2(g;F). Refer to Chapter 2 for the computation of normalized cocycles.

E.2.5 Derivation Algebras

Calling Sequence:

derivation(Lie Algebra, Dimension)

Parameters:

Lie Algebra | A given Lie algebras

Dimension { The dimension of the given algebra

Synopsis:

{ To compute the derivation of a given Lie algebra.

{ Input is a given algebra and its dimension.

{ Output is the derivation algebra.

Procedure:

derivation:=proc(A,n)

local i,j,k, t, s1,s2,l,D, sols,eqns, Andre;

eqns:=f g;
D:=matrix(n,n);

Andre:=matrix(n,n);

for i to n-1 do

for j from i+1 to n do

for l to n do

s1:=sum(A[i,j,k]*D[k,l],k=1..n);

s2:=sum(A[k,j,l]*D[i,k]+A[i,k,l]*D[j,k],k=1..n);

eqns:=eqns union s1=s2;
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od:

od:

od:

sols:=[solve(eqns)];

t:=nops(sols);

for i to t do

for j to n do

for k to n do

Andre[j,k]:=subs(sols[i],D[j,k]);

od:

od:

print(Andre);

od:

end:
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