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Abstract

When small, modern-day devices surface with neoteric features and promise benefits
like streamlined business processes, cashierless stores, and autonomous driving, they are
all too often accompanied by security risks due to a weak or absent security component. In
particular, the lack of data privacy protection is a common concern that can be remedied
by implementing encryption. This ensures that data remains undisclosed to unauthorized
parties. While having a cryptographic module is often a goal, it is sometimes forfeited
because a device’s resources do not allow for the conventional cryptographic solutions.
Thus, smaller, lower-energy security modules are in demand. Implementing a cipher in
hardware as an application-specific integrated circuit (ASIC) will usually achieve better
efficiency than alternatives like FPGAs or software, and can help towards goals such as
extended battery life and smaller area footprint.

The Advanced Encryption Standard (AES) is a block cipher established by the National
Institute of Standards and Technology (NIST) in 2001. It has since become the most widely
adopted block cipher and is applied in a variety of applications ranging from smartphones
to passive RFID tags to high performance microprocessors. PRESENT, published in 2007,
is a smaller lightweight block cipher designed for low-power applications.

In this study, low-area and low-energy optimizations in ASICs are addressed for AES
and PRESENT. In the low-area work, three existing AES encryption cores are imple-
mented, analyzed, and benchmarked using a common fabrication technology (STM 65 nm).
The analysis includes an examination of various implementations of internal AES opera-
tions and their suitability for different architectural choices. Using our taxonomy of design
choices, we designed Quark-AES, a novel 8-bit AES architecture. At 1960 GE, it features a
13% improvement in area and 9% improvement in throughput/area2 over the prior smallest
design. To illustrate the extent of the variations due to the use of different ASIC libraries,
Quark-AES and the three analyzed designs are also synthesized using three additional
technologies. Even for the same transistor size, different ASIC libraries produce signifi-
cantly different area results. To accommodate a variety of applications that seek different
levels of tradeoffs in area and throughput, we extend all four designs to 16-bit and 32-bit
datawidths.

In the low-energy work, round unrolling and glitch filtering are applied together to
achieve energy savings. Round unrolling, which applies multiple block cipher rounds in a
combinational path, reduces the energy due to registers but increases the glitching energy.
Glitch filtering complements round unrolling by reducing the amount of glitches and their
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associated energy consumption. For unrolled designs of PRESENT and AES, two glitch
filtering schemes are assessed. One method uses and-gates in between combinational
rounds while the other used latches. Both methods work by allowing the propagation of
signals only after they have stabilized. The experiments assess how energy consumption
changes with respect to the degree of unrolling, the glitch filtering scheme, the degree of
pipelining, the spacing between glitch filters, and the location of glitch filters when only
a limited number of them can be applied due to area constraints. While in PRESENT,
the optimal configuration depends on all the variables, in a larger cipher such as AES, the
latch-based method consistently offers the most energy savings.
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Chapter 1

Introduction

1.1 Cryptography

Cryptography saw its beginnings thousands of years ago. Coming from two Greek words
‘krypto’, meaning ‘secret’, and ‘graphene’, meaning ‘writing’ [1], it refers to the use of
secret codes to conceal meaning of information. One of the earliest known cryptographic
techniques is the Caesar cipher, which substitutes each letter by another letter some fixed
number of positions down the alphabet. A more sophisticated encryption device is the
Enigma machine, used by the Germans in World War II to protect military communication.
In modern days, cryptography is a branch of information security that concerns itself with
the protection of digital information in computer systems. Encryption is the process of
converting readable information, called plaintext, into unintelligible form, called ciphertext,
while decryption is the reverse process. A pair of encryption and decryption algorithms
constitutes a cipher. The transformation of plaintext into ciphertext (and vice versa)
usually depends on the algorithm as well as a cryptographic key. Because it is often
difficult to keep the details of an algorithm secret, the security of an encryption system
relies on the secrecy of the key.

Information security has three primary objectives: confidentiality, integrity, and avail-
ability. Cryptography is a tool used primarily to attain confidentiality; it ensures that
the meaning of a message remains undisclosed to unauthorized parties. Cryptography
can be decomposed into two subcategories: symmetric-key and asymmetric key cryptogra-
phy. Whereas asymmetric-key ciphers use different keys for the encryption and decryption
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processes, symmetric-key algorithms use the same key for both operations. Furthermore,
symmetric key algorithms can be implemented as stream ciphers or block ciphers. Stream
ciphers generate a key stream which gets combined with the plaintext, while block ciphers
operate on a fixed size block using a fixed size key. Two block ciphers, AES and PRESENT,
are the focus of this work. The process of breaking and finding weaknesses in a cipher is
called cryptanalysis. Both cryptography and cryptanalysis fall under the broader umbrella
term, cryptology. The focus of this thesis is on cryptography and not cryptanalysis.

The Advanced Encryption Standard (AES) is a widely accepted encryption specifica-
tion established by the U.S. National Institute of Standards and Technology (NIST) in
2001. It became the successor to the Data Encryption Standard (DES), which was be-
coming vulnerable to attacks due to weaknesses in its algorithm and its small 56-bit key
size. The selection of the AES algorithm was a three-year process lasting from 1997 to 2000
that began as a call, made by NIST, for a new encryption algorithm to succeed DES. NIST
opened its doors to designs from the cryptographic community and welcomed submissions
from around the globe. Among fifteen submissions from several different countries, the
Rijndael cipher, submitted by two Belgian cryptographers (Vincent Rijmen and Joan Dae-
mem), was selected as the winner. AES supports a block size of 128-bits and three key
sizes: 128, 192, and 256 bits.

Although AES has become the most popular block cipher, finding use in consumer
phones and laptops, it is not always suitable for extremely constrained environments such
as radio-frequency identification (RFID) tags and sensor networks. To address this issue,
an ultra-lightweight block cipher called PRESENT was developed. Its design was published
in 2007 by the Orange Labs, Ruhr University Bochum, and the Technical University of
Denmark. Designed for low-power consumption, PRESENT supports a 64-bit block size
and key sizes of 80 and 128 bits.

1.2 Motivation

As technology advances, it brings creative solutions to existing problems in society, but it
can also inadvertently introduce new security issues that are vulnerable to exploitation.
The consequences of a security breach can range from theft of personal information to
invasion of privacy to something as fatal as a car crash. Regrettably, there is no shortage
of news reports recounting some of the sinister and unwanted effects.
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In the 2015 Black Hat conference, security researchers Charlie Miller and Chris Valasek
revealed they were able to take control of a Jeep Cherokee by remotely hacking the en-
tertainment system through a cellular network [2], [3]. They gained control over the car’s
brakes, accelerator, radio, horn, and windshield wipers. According to a senior security
researcher at Kaspersky Lab, the hack succeeded in part due to weak authentication algo-
rithms and a possible incorrect implementation of a cryptographic component [3]. Another
security breach that made headlines occurred in baby monitors, which have developed into
sophisticated WiFi-enabled, smart devices. TRENDnet’s baby monitoring webcams con-
tained faulty software that enabled a person to look and listen through it if he or she
obtained the camera’s IP address [4]. In early 2017, it was revealed that St. Jude Medi-
cal’s cardiac devices could allow a hacker to access the device and deplete the battery or
administer incorrect pacing or shocks [4]. It was the transmitter, which reads the device’s
data and remotely shares it with physicians, that presented a vulnerability.

These examples illustrate the rise of the Internet of Things (IoT), a network of devices
connected to the Internet. More importantly, however, these examples show how difficult
it is to build safe and secure smart devices. Being connected to the Internet introduces a
new set of challenges, whose solutions are still in their infancy. The use of radio frequency
identification (RFID) tags has emerged with great popularity and has a myriad of appli-
cations including inventory tracking, wireless sensor networks, and IoT. In 2016, research
showed that 73% of retailers had implemented RFID to minimize out-of-stock situations
and provide real-time merchandise location data [5]. The increase in these kinds of devices
implies a need for smaller, lower-energy security modules.

The motivation for implementing security in new devices is now clear. Yet, there are
several reasons why security is not implemented in a system. There could be a lack of
awareness from higher management. Perhaps getting the product to market as quickly
as possible is a criterion that trumps security. Other reasons include a lack of means or
resources; having a security component could be too costly, result in too much energy
consumption, or have too large an area footprint. The work in this thesis alleviates some
of the latter challenges related to energy and area.

Designing security components for small devices entails a different set of difficulties
compared to designing for resource-abundant devices such as laptops and mobile phones.
Although encryption standards do exist, the implementation details of a cipher, whether in
software or in hardware, depend on the application and are left to the designer’s discretion.
Software solutions may be suitable for general purpose processors, which are relatively
abundant in resources. Resource-constrained devices have higher efficiency demands and
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often implement hardware solutions. Generally, dedicated hardware circuits can offer better
performance and lower power consumption.

As a product improves and matures, specifications and requirements can change, which
may require modifications to an implementation. To keep up with continual change and
the ever-decreasing size of devices, security components need to be continually enhanced
as well, to provide higher throughput, lower energy and power consumption, lower area,
lower cost etc. With fast moving technology, it is beneficial to have a configurable design
to reduce development time as well as achieve desired tradeoffs.

1.3 Thesis Overview

Efficient digital hardware implementations of AES and PRESENT have been the topic of
many previous works. These works include both field-programmable gate array (FPGA)
and application-specific integrated circuit (ASIC) implementations, with objectives ranging
from high performance to low power and energy to low area. An ASIC is an integrated
circuit designed for a specific function rather than for general-purpose use. These contrast
with FPGAs, which are programmable logic blocks that can be reconfigured to be used
in many different applications. In this thesis, the cipher designs are implemented at the
register-transfer level (RTL) using a hardware description language (HDL) to describe the
behaviour of circuits.

In the years closely following the inception of the AES standard, research work relating
to it focused primarily on throughput optimizations, while, recently, low-area designs have
received more interest. Low-area designs can take on many different kinds of architectures
and employ different implementations of internal AES functions. While a straight-forward
implementation of the algorithm processes one block (128 bits) every clock cycle, a low-
area design would usually take on a serial approach, adopting a smaller datawidth. For
instance, a design might operate on only 16-bits per clock cycle, requiring 8 clock cycles to
process one round of encryption. In general, a smaller datawidth will result in lower area,
at the expense of increased latency.

One of the first low-area implementation of AES appeared in the work of Feldhofer
et al . in 2005 [6], which set a benchmark for future AES low-area designs. The authors
developed an 8-bit design with an area of 3400 GE and encryption latency of over 1000 clock
cycles. Hamalainen et al . [7] also developed an 8-bit encryption core, which has an area of
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3100 GE and a latency of 176 clock cycles. In 2011, Moradi et al . [8] achieved 2400 GE for
an encryption module by employing a row-major design, instead of the standard column-
major architecture. The first sub-2000 GE encryption design came from Mathew et al .[9],
who reported an area of 1947 GE with a latency of 336 clock cycles. Atomic-AES, developed
by Banik et al . [10], is a dual functionality core (i.e. it supports encryption and decryption)
built upon the work of Moradi and its area is 2060 GE.

The low-area work in this thesis has two parts. The first part is an analysis and
benchmark of existing architectures. Comparing existing works based on their reported
area values may be unreliable because of the different tools and ASIC cell libraries used for
each design. In this work, three existing low-area encryption architectures are implemented
on the same frabrication technology and synthesized with the same tools and settings so
that the comparison is more objective. The second part of this work describes a novel 8-bit
architecture, called Quark-AES, which is 13% smaller than the lowest area design indicated
by our benchmark in part one. Quark-AES combines the best features from Hamalainen’s
[7], Moradi’s [8], Jarvinen’s [11], and Ahmed’s [12] works into a low-area and low-latency
architecture.

The other element of this thesis pertains to energy optimizations in both AES and
PRESENT. In recent years, low energy has also become an important goal. To this end,
previous works have applied techniques such as round unrolling (a form of loop unrolling)
and operand gating to achieve energy savings. Its application to encryption modules is
called round unrolling, which performs unrolling at the granulairty of block cipher round.
Since this reduces the number of required registers, it should subsequently reduce the
overall energy consumption. However, this is not always the case because round unrolling
increases the number of glitches and thus, the glitching energy. Operand gating minimizes
energy by selectively blocking the propagation of glitches. Banik et al . [13] were the first
to explore the energy efficiency of loop unrolling in block ciphers and provided an analysis
of energy consumption under various degrees of round unrolling in ASICs. While round
unrolling proves to be effective for lower degrees of unrolling (as a result of a decrease
in energy consumption of registers), higher degrees of unrolling increases glitching power.
With two opposing forces, there exists an optimal number of rounds within a clock cycle
that minimizes energy consumption.

Operand gating complements round unrolling by effectively removing some glitches
and their associated energy consumption. Banik et al . [14] introduced a glitch reduction
technique called Round Gating, which applies and gates between combinational rounds.
The and gates are driven by enable signals, which assert only after enough time has
passed to allow the signal of a previous round to stabilize. In a similar technique called
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Combinational Checkpointing, the authors use latches in place of and gates [15] and
compare their technique against Round Unrolling. In this thesis, both Round Gating
(and-gate glitch filter) and Combinational Checkpointing (latch glitch filter) are compared
against a baseline in pipelined and non-pipelined designs of AES and PRESENT. The
assessment metrics include energy, area, and throughput.

In a design, high throughput, low area, low power, and low energy are all desirable,
but it is impossible to optimize all aspects simultaneously and therefore tradeoffs have
to be made. This can be a difficult process because 1) there are multiple parameters to
take into consideration and 2) a different version of RTL code is required for each design/-
circuit/configuration. Using a parameterized design, provided by this thesis, can reduce
some of the work and allow a designer to choose the best design by simply passing different
parameters. That is, one version of the RTL code supports all the possible configurations,
and different circuits can be generated based on the parameters passed to the tools during
synthesis. As a result, it becomes very easy to tune a design to achieve the desired tradeoffs
among energy, throughput, and area.

1.4 Contributions

There are many low-area AES implementations in the research community, and simply
comparing their reported area results can be unreliable and misguiding because the notion
of a gate equivalent (GE) varies for different ASIC libraries. A gate equivalent is a unit
of measure that is equivalent to the area of a two-input nand gate. The same design
synthesized using different ASIC libraries can result in significantly different results due
to differences in the relative size of a circuit component to the nand-gate. To remove
this bias, we provide an analysis and benchmark of existing 8-bit AES encryption cores
on a common technology. The rank of the area results of existing works differs on our
benchmark compared to the rank based on the reported values, which indicates that the
ASIC library used plays a significant role in the area results. The architectural analysis
presented in this thesis is developed from our iterations and variations of existing works,
from which the insights and lessons learned can be beneficial to other AES designers.

We also contribute our own encryption architecture, Quark-AES, which offers a 13%
improvement in area and 8% improvement in throughput/area2 compared to the next
smallest design. Quark-AES can find use in applications requiring a small area footprint,
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such as wearable devices, RFID tags, and sensor networks. Moreover, since power con-
sumption is often directly proportional to area, Quark-AES can also be used for low-power
applications.

In the territory of low-energy optimizations, a comparison of two glitch filtering tech-
niques for AES and PRESENT on ASICs is provided. The latch glitch filtering technique
has not been demonstrated on the PRESENT and AES-128 ciphers before, so we offer this
addition and compare the results to our results for the and-gate glitch filtering method.
While prior work explored the energy consumption as a function of the number of unrolled
rounds and as a function of the spacing between the glitch filters, they did not explore the
optimal placement of glitch filters when a limited number of them are available for use.
The work in this thesis investigates this problem using PRESENT and provides empirical
results for the optimum placement of 1, 2, and 3 glitch filters in 8 unrolled rounds. Con-
sequently, we illustrate how to achieve large energy savings with less area overhead than
other works have demonstrated. Part of our energy analysis shows the energy distribution
of the message signals in different unrolled rounds across time, which is an important step
towards building an analytical model for glitch filtering in future work. Finally, the effect
of energy on designs that are both unrolled and pipelined is explored, which has not been
done before. With the countless number of configurations resulting from the large number
of variables at play, this thesis can be used as a reference to select a design to achieve the
desired trade-offs in area and throughput while having low energy as the primary goal.

1.5 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 presents the background
knowledge required for understanding the work. It includes some mathematical background
on finite fields, a description of the AES and PRESENT algorithms, and an overview of
related works. Chapter 3 offers a discussion of FPGA vs ASIC, and explains the evaluation
metrics of throughput, area, and energy. In Chapter 4, a benchmark and analysis of three
existing 8-bit AES encryption cores is presented. Using our taxonomy of design choices,
a novel low-area and low-latency 8-bit AES encryption design is developed. The energy
optimizations for PRESENT and AES are discussed in Chapter 5, which examines the
efficacy of and-gate and latch glitch filtering techniques when they are used in conjunction
with round unrolling. Finally, a summary of the work in this thesis and recommendations
for future work are presented in Chapter 6.
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Chapter 2

Background and Related Work

Modern cryptography has matured from its early techniques into an advanced subject
based on mathematical foundations. To have a proper understanding of cryptographic
concepts, some knowledge of finite fields, presented in Section 2.1, is required. Section 2.2
provides background information on block ciphers, including block cipher modes, the AES
encryption algorithm, and the PRESENT encryption algorithm. Finally, existing works
related to low area and low energy are highlighted in Section 2.3.

2.1 Finite Fields

2.1.1 Definitions and Properties

Before introducing the concept of finite fields, it is necessary to understand what a field is.
A field is a set of elements on which addition, subtraction, multiplication, and division are
defined and which satisfy a number of properties. More formally, it is defined as follows.

Definition 2.1.1 A field, F, is a set of elements on which two operations addition, “+”,
and multiplication, “·”, are defined, and which satisfies the following field axioms:

1. Commutativity of addition: For all a, b ∈ F, a+ b = b+ a
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2. Associativity of addition: For all a, b, c ∈ F, a+ (b+ c) = (a+ b) + c

3. Additive identity: There exists an element 0 ∈ F such that a + 0 = 0 + a = a for all
a ∈ F

4. Additive inverse (subtraction): For any a ∈ F, there exists b ∈ F such that a + b =
b+ a = 0

5. Commutativity of multiplication: For all a, b ∈ F, a · b = b · a
6. Associativity of multiplication: For all a, b, c ∈ F, (a · b) · c = a · (b · c)
7. Multiplicative identity: There exists an element 1 ∈ F such that a · 1 = 1 · a = a for

all a ∈ F
8. Multiplicative inverse (division): For any a ∈ F such that a 6= 0, there exists a−1 ∈ F

such that a · a−1 = a−1 · a = 1.

9. Distributivity: For all a, b, c ∈ F, a · (b+ c) = a · b+ a · c
10. Closure: For all a, b ∈ F, it holds that a+ b = c ∈ F and a · b = d ∈ F

Some examples of fields are the set of real numbers, R, the set of complex numbers,
C, and the set of rational numbgers, Q, all of which have an infinite number of elements.
A field with a finite number of elements is called a finite field, denoted GF (pn) or Fpn ,
where p is prime and n is a positive integer. A finite field is also called a Galois field (GF),
in honour of its discoverer, Evariste Galois. The order of a field refers to the number of
elements in it and equals pn. If n = 1, then the finite field is called a prime field. The
elements of the prime field GF (p) can be represented by the integers 0, 1, . . . , p − 1. For
example, the field GF (5) = {0, 1, 2, 3, 4}. Operations on this field are performed modulo
p (e.g . 4 + 2 = 6 mod 5 = 1 and 4 · 2 = 8 mod 5 = 3).

Of particular interest is the finite field of order 2, GF (2) = {0, 1}, in which arithmetic
is performed modulo 2. The addition and multiplication operations are summarized in the
following tables.

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

The field GF (2) is important from a hardware perspective as addition in GF (2) is equiva-
lent to the binary xor operation, and multiplication in GF (2) is equivalent to the binary
and operation. In what follows, only finite fields with p = 2 will be considered.
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When n > 1, the field GF (pn) is called an extension field. For such fields, the repre-
sentation of field elements and the arithmetic rules differ from those of prime fields. The
elements of an extension field GF (2n) are represented as polynomials that have coefficients
in GF (2) and a maximum degree of n − 1. For instance, each element A ∈ GF (24) is
represented as

A(x) = a3x
3 + a2x

2 + a1x+ a0, ai ∈ GF (2)

Since there are four coefficients, each of which can take on two values, there are 24 = 16
unique polynomials that make up the finite field GF (24). As a concise notation, an element
can be represented by an n-bit vector of its coefficients:

A = (a3, a2, a1, a0)

For example, (1, 0, 1, 1) represents the polynomial x3 + x+ 1.

2.1.2 Arithmetic

Addition and subtraction in extension fields are performed like standard polynomial addi-
tion and subtraction. In other words, the coefficients of same powers of x are simply added
or subtracted modulo 2. Formally, the operations are given by Definition 2.1.2.

Definition 2.1.2 [16] Let A(x), B(x) ∈ GF (2n). The sum of the two elements is then
computed as

C(x) = A(x) +B(x) =
n−1∑
i=1

cix
i, ci ≡ ai + bi mod 2

The difference is computed as

C(x) = A(x)−B(x) =
n−1∑
i=1

cix
i, ci ≡ ai − bi ≡ ai + bi mod 2

Multiplication in finite fields is not as straightforward as addition. Recall from the
definition of a field that the closure property must be satisfied. When two polynomials are
multiplied together, the resulting polynomial may have a degree that is higher than n− 1
and thus, it must be reduced so that it remains an element in the field. The reduction is
performed by dividing the result of the multiplication by an irreducible polynomial, P (x),
and taking only the remainder (i.e. modulo operation). The definition of an irreducible
polynomial is given in Definition 2.1.3. It is similar to the concept of a prime number,
whose factors are only 1 and itself.
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Definition 2.1.3 A polynomial, P (x), is irreducible over a field F if it cannot be factored
into the product of two or more smaller-degree polynomials whose coefficients are in F .

To reduce a polynomial to degree less than or equal to n−1, the irreducible polynomial
must have degree n. There may exist many possible irreducible polynomials for a given
degree. In general, finding an irreducible polynomial is a non-trivial task [17]. For degrees
less than 20, irreducible polynomials can be found in reference tables [18]. Note that the
irreducibility of a polynomial depends on the field over which it is defined. For instance,
x4 + x3 + 1 is irreducible over GF (2). However, over GF (24), it is reducible.

The multiplication of two elements in an extension field is defined in Definition 2.1.4.

Definition 2.1.4 [16] Let A(x), B(x) ∈ GF (2n) and let P (x) =
∑n

i=0 pix
i, pi ∈ GF (2) be

an irreducible polynomial. Multiplication of the two elements A(x), B(x) is computed as

C(x) = A(x) ·B(x) mod P (x)

An example of the multiplication of two finite field elements is given in Example 2.1.1.

Example 2.1.1 Given A(x) = x2 + x and B(x) = x2 + 1 such that A(x), B(x) ∈ GF (23)
and irreducible polynomial P (x) = x3 + x+ 1, find C(x) = A(x) ·B(x) mod P (x).

C(x) = A(x) ·B(x) mod P (x)

= (x2 + x) · (x2 + 1) mod P (x)

= x4 + x3 + x2 + x mod P (x) (1)

x + 1

x3 + x+ 1
)

x4 + x3 + x2 + x
− x4 − x2 − x

x3

− x3 − x− 1

− x− 1

From Definition 2.1.2, −x− 1 = x+ 1. Therefore, C(x) = x+ 1.
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The inverse operation in finite field arithmetic is defined in Definition 2.1.5. It is a
core operation in many cipher algorithms. The inverse of an element can be found by a
brute-force approach (multiply by every element until the product equals one), by using the
extended Euclidean algorithm [16, Chapter 6.2.3], by exploiting Fermat’s Little Theorem
[16, Chapter 6.3.4], or by using lookup tables containing precomputed inverses.

Definition 2.1.5 [16] For a given element A(x) ∈ GF (2n) and irreducible polynomial
P (x), the inverse, A−1(x), of A(x) is defined as:

A−1(x) · A(x) = 1 mod P (x)

2.1.3 Construction of GF (2n) Field

For a given order pn, there is only one finite field. However, there may exist many isomor-
phic mappings of that field; that is, different element representations. Loosely speaking,
an isomorphism is a map that preserves the properties, operations, and relations of the set.

An element is a primitive element or generator if its powers generate all the nonzero
elements of a field. More formally, an element α is primitive if {0, 1, α, α2, . . . , αp

n−2} is the
set of all elements of the field GF (pn). Every finite field has a primitive element. A naive
method for finding a primitive element is to pick an element and compute its powers (up
to power pn) while adding them to a set [19]. If the cardinality of the set equals pn − 1,
then a primitive element is found. If not, pick another element and repeat the process.
Finding a primitive element efficiently is, in itself, an area of research [20].

A primitive polynomial is an irreducible polynomial whose roots are primitive elements.
When the irreducible polynomial of a finite field is primitive, then the field can be con-
structed as follows.

Let γ be a root of the primitive polynomial (i.e. P (γ) = 0). Then, all the non-zero
elements of the field can be generated recursively by the relation γj = γj−1 · γ, j ∈ Z > 0,
where the result is reduced when necessary. The construction of GF (23) using two different
primitive polynomials is shown in Table 2.1. The field constructed using P1(x) = x3+x+1
is isomorphic to the field constructed using P2(x) = x3 + x2 + 1. Let α be a root of P1 and
β be a root of P2. Since P1(α) = α3 + α + 1 = 0, then α3 = α + 1. In the same manner,
P2(β) = β3 + β2 + 1 = 0, so β3 = β2 + 1.
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Table 2.1: Construction of GF (23) using irreducible polynomials P1(x) = x3 + x + 1 and
P2(x) = x3 + x2 + 1

P1(x) = x3 + x+ 1, P1(α) = 0 P2(x) = x3 + x2 + 1, P2(β) = 0

Powers
of α

Polynomials
in α

Vector
repres.
(α2, α, 1)

Powers
of β

Polynomials
in β

Vector
repres.
(β2, β, 1)

0 0 (0,0,0) 0 0 (0,0,0)
1 1 (0,0,1) 1 1 (0,0,1)
α α (0,1,0) β β (0,1,0)
α2 α2 (1,0,0) β2 β2 (1,0,0)
α3 α + 1 (0,1,1) β3 β2 + 1 (1,0,1)
α4 α2 + α (1,1,0) β4 β2 + β + 1 (1,1,1)
α5 α2 + α + 1 (1,1,1) β5 β + 1 (0,1,1)
α6 α2 + 1 (1,0,1) β6 β2 + β (1,1,0)

For more information on finite fields, Understanding Cryptography: A Textbook for
Students and Practitioners [16], Handbook of Finite Fields [21], and Finite Fields [22] are
excellent resources.

2.2 Block Ciphers

Symmetric-key cryptography can be achieved by either stream ciphers or block ciphers.
This work concerns only with the latter, whose architecture is described in Section 2.2.1.
Block cipher modes of operation are explained in Section 2.2.2. Section 2.2.3 explains the
AES algorithm and Section 2.2.4 the PRESENT algorithm.

2.2.1 Overview

A block cipher applies a deterministic algorithm to a fixed-size block of bits at a time. The
encryption algorithm, enc, is a function of the message, M , and key, K, and produces a
ciphertext, C, as follows:

C = enc(M,K)
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Decryption, dec, takes the ciphertext, C, and key, K, as inputs, and outputs the original
plaintext message, M :

M = dec(C,K)

The internal structure of a block cipher encryption or decryption algorithm generally con-
sists of several iterations of a round function. Each round uses a round key, derived from
K using a key generation algorithm, to transform the message. The security of the cipher
is determined by the length of the key.

There are several design models for a block cipher, including substitution-permutation
networks (SP-networks), Feistel ciphers, and Lai-Massey ciphers [23, Chapter 1]. The two
ciphers presented in this thesis, AES and PRESENT, are SP-networks. In substitution-
permutation networks, the round function consists of a substitution stage followed by a
permutation stage, shown in Figure 2.1. This arrangement satisfies the confusion and
diffusion properties which Claude Shannon, known as “the father of information theory”,
described in his 1949 paper titled Communication Theory of Secrecy Systems [24]. Confu-
sion refers to the fact that each bit of the ciphertext should depend on several parts of the
key. To satisfy diffusion, if a single bit of the plaintext is changed, then half of the bits in
the ciphertext should change. The following is an excerpt from Shannon’s paper:

In the method of diffusion the statistical structure of M [the message] which
leads to its redundancy is “dissipated” into long range statistics—i.e. , into
statistical structure involving long combinations of letters in the cryptogram.
. . . The method of confusion is to make the relation between the simple statistics
of E [the encrypted message] and the simple description of K[the key] a very
complex and involved one. [24]

The substitution stage is implemented using substitution boxes (S-boxes). Each S-box
substitutes a small block of bits (eg. 8-bits) with another block of bits following certain
rules. It is a non-linear one-to-one mapping which achieves Shannon’s confusion property;
a small change in the input effects a significant change in the output. The permutation
stage is realized by a number of permutation boxes (P-boxes). This component takes a
block of bits and outputs a rearrangement (permutation) of the given bits. The operation
is linear and it ensures Shannon’s diffusion property, dissipating redundancies. In addition
to the substitution and permutation layers, at each round, the message is combined with
the round key, usually by an xor operation.
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Figure 2.1: Substitution-permutation network structure

2.2.2 Modes of Operation

A block cipher specifies the algorithm for encrypting or decrypting a single block of data.
However, a message is usually much longer than the length of a block so it is necessary
to employ a mode of operation, which specifies how the block cipher should be applied to
encrypt or decrypt a stream of blocks. Most modes of operation require, in addition to
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the key and plaintext, an initialization vector (IV) or a nonce. The IV ensures that when
the same plaintext and key are used together multiple times, the ciphertext is different. A
nonce is an arbitrary number that can be used just once and it serves the same purpose as
an IV.

In 2001, NIST published a report defining five modes of operation: Electronic Codebook
(ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB),
and Counter (CTR) [25]. The simplest mode of operation is ECB, which encrypts and
decrypts each block independently using the block cipher’s encryption module, decryption
module, and the same key. It is easy to implement but is weak in terms of security because
the same plaintext always produces the same ciphertext. As patterns can be easily revealed,
ECB becomes vulnerable to replay attacks. CBC overcomes the pitfalls of ECB mode by
having a chained dependency, where the ciphertext of one block depends on the ciphertext
of a previous block. Although this technique blurs the encrypted output, it presents two
disadvantages: blocks cannot be encrypted in parallel and errors are propagated. If one
bit of a plaintext is erroneous, all subsequent ciphertext blocks will be incorrect and thus,
cannot be decrypted.

The purpose of this section is not to provide a comprehensive overview of block cipher
modes, but rather to emphasize a point. In this work, only the encryption function of the
block cipher is implemented, which, initially, may not seem practical. However, modes of
operation like cipher feedback, output feedback, and counter require only a block cipher’s
encryption module. Among the three, counter mode is particularly popular. It effectively
makes the block cipher act as a stream cipher. Counter mode requires a nonce and a
counter. The counter is incremented for every block and combined with the nonce (by
an xor operation or concatenation). The nonce and counter combination is given as the
input to the block cipher. The output of the block cipher, serving as the key stream, is
xored with the plaintext to obtain the ciphertext. Encryption and decryption in counter
mode require only the block cipher’s encryption module, as illustrated in Figure 2.2.

Counter mode surmounts the pitfalls of both ECB and CBC modes: patterns are
concealed, parallelization is easily implemented, and errors are not propagated. Counter
mode can be easily parallelized because each thread needs only to do independent work;
there are no dependencies among blocks. Because of this independence, errors are also not
propagated. If one bit is faulty, it only affects that block it belongs in, whereas, in CBC,
every block thereafter would be affected. Correction algorithms can be used to restore the
original message.
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Figure 2.2: Counter mode

2.2.3 The Advanced Encryption Standard (AES)

AES supports a block size of 128 bits and key sizes of 128, 192, or 256 bits [26]. The
key size determines the number of rounds in the algorithm: 10, 12, or 14, respectively.
Hereafter, all mentions of AES refer to AES-128, which uses a 128-bit key. Except for the
final round, every round of the encryption algorithm consists of the following operations,
in the specified order:

1. SubBytes - substitution layer (S-boxes)
2. ShiftRows - permutation of bytes
3. MixColumns - mixing operation
4. AddRoundKey- state is combined with round key using xor operation

The AES rounds are prefaced by an initial step consisting of only AddRoundKey. The
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final round involves all the above operations except for MixColumns. The AES structure
is shown in Figure 2.3.

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

i_plaintext i_key

KeyExpansion

KeyExpansion

o_ciphertext

Initial
round

9
intermediate

rounds

Final
round

Figure 2.3: AES structure

The 128-bit data block, called the state, is often represented as a 4 × 4 column-major
matrix of bytes: 

b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15


The following sections describe each of the operations (AddRoundKey, SubBytes, ShiftRows,
MixColumns) in more detail.
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AddRoundKey

The initial step of the AES encryption algorithm is AddRoundKey, in which the key and
message are combined using a simple bitwise xor operator.

SubBytes

The SubByte operation is the substitution layer of AES. Each S-box operates on a byte.
The S-box is the only non-linear operation in the cipher and is a bijective function so that
it can be inverted (required for decryption). In Table 2.2, the S-box output for a given
input byte can be found by finding the row that corresponds to the most significant nibble,
and then finding the column that corresponds to the least significant nibble. For example,
the S-box output for input 0x4B is 0xB3.

Table 2.2: S-box lookup table in hexadecimal notation

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
A0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
B0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
C0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
D0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
E0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
F0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

The core of the SubBytes operation is actually a finite field inversion (with irreducible
polynomial P (x) = x8 + x4 + x3 + x+ 1) followed by an affine transformation. The affine
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function is composed of a linear function and a translation:

b0
b1
b2
b3
b4
b5
b6
b7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7


+



1
1
0
0
0
1
1
0


mod 2

The SubBytes operation can be implemented as lookup table or as a circuit which performs
the actual inverse and affine mapping computation.

ShiftRows

The ShiftRows layer performs a left circular shift for each row of the state matrix, except
the first. The second row shifts by one byte, the third row by two bytes, and the last row
by three bytes. 

b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15

 −→

b0 b4 b8 b12
b5 b9 b13 b1
b10 b14 b2 b6
b15 b3 b7 b11


MixColumns

The ShiftRows and MixColumns operations, together, form the permutation layer of the
AES SP-network. In MixColumns, every column of the matrix undergoes a linear transfor-
mation. If a0a1a2a3 are four bytes of a column, then the result of a MixColumns operation,
b0b1b2b3 is obtained as follows:


b0
b1
b2
b3

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2



a0
a1
a2
a3


The matrix multiplication is a dot product operation, with multiplication and addition

being finite field arithmetic operators.
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Key Expansion

Each round key is derived from the round key of the previous round (or from the input
cipher key, if it is the first round). Suppose the columns from left to right are indexed 0 to 3.
First, column 3, [k12, k13, k14, k15], is left rotated by one byte (RotWord): [k13, k14, k15, k12].
Then, each byte of the result undergoes the S-box function (SubWord) and the first byte
gets xored with the round constant, rcon. The value of rconi for a round i is generated
by

rconi =


1 if i = 1
2 · rconi−1 if i > 1 and rconi−1 < 0x80
(2 · rconi−1)⊕ 0x1B if i > 1 and rconi−1 ≥ 0x80

Table 2.3 lists the rconi values for 0 < i < 11.

Table 2.3: rcon values in hexadecimal format for 0 < i < 11

i 1 2 3 4 5 6 7 8 9 10
rconi 01 02 04 08 10 20 40 80 1B 36

Column 0 of the new key, [k′0, k
′
1, k
′
2, k
′
3], is obtained by xoring each byte of column 0

with each byte of the transformed column 3. Columns j = 1, 2, 3 of the new key are then
obtained by performing the xor of column j−1 of the new key and column j of the current
key. The key schedule is illustrated in Figure 2.4.

k0
k1
k2
k3

k4
k5
k6
k7

k8
k9
k10
k11

k12
k13
k14
k15

RotWord

SubWord

Rcon

k'0
k'1
k'2
k'3

k'4
k'5
k'6
k'7

k'8
k'9
k'10
k'11

k'12
k'13
k'14
k'15

Figure 2.4: AES KeyExpansion architecture
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2.2.4 PRESENT

Designed for hardware efficiency, PRESENT has a 64-bit state and supports key sizes of
80 bits and 128 bits [27]. This section describes the PRESENT encryption algorithm for
a key size of 80 bits. It has 31 rounds, each consisting of

1. AddRoundKey : state is combined with round key

2. sBoxLayer : substitution layer

3. pLayer : permutation layer

After the 31 rounds, a final AddRoundKey operation is performed. A high-level archi-
tecture of PRESENT is depicted in Figure 2.5.

AddRoundKey

sBoxLayer

pLayer

AddRoundKey

i_plaintext i_key

KeyUpdate

o_ciphertext

31 rounds

Figure 2.5: PRESENT structure

AddRoundKey

In AddRoundKey, the current state is combined with the 64 most significant bits of the
round key using an xor operation.
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sBoxLayer

The S-box in PRESENT operates on a 4-bit input. The mapping from input to output is
shown in Table 2.4 [27].

Table 2.4: PRESENT S-box in hexadecimal format

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

pLayer

The pLayer is a permutation layer of the SP-network. The bit i is moved to position P (i),
as shown in Table 2.5 [27].

Table 2.5: PRESENT P-layer

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 4 54 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Key Schedule

A round key is generated based on the previous round key and a round counter. The round
key ki is obtained by performing the following steps on the previous round key ki−1:

1. 61-bit rotation to the left

2. Apply PRESENT S-box to 4 left-most bits

3. XOR bits [19..15] with the round constant
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The round constant is a binary counter set to 1 at the beginning of the encryption
operation and incremented by 1 after every round. The structure of the key schedule is
shown in Figure 2.6.

sBox

[18..15][38..34]

[79..76] [75..61] [19..15] [14..0]

[14..0][79..39] [33..19]

[60..20]

keyi-1

keyi

round_const

Figure 2.6: PRESENT key schedule

2.3 Related Work

2.3.1 Low-area AES Works

Low-area implementations of AES have appeared since the outset. In the same year that
AES became standardized, Satoh et al . [28] introduced a compact architecture that com-
bined the encryption and decryption datapaths. They achieved an area of 5400 GE on a
0.11 um process and a latency of 54 clock cycles by using a datawidth of 32 bits. One of
the first 8-bit architectures of AES came from Feldhofer et al . [6], who implemented both
encryption and decryption cores on a 0.35 um process, which occupied 4400 GE altogether.
Encryption takes 1032 clock cycles and decryption 1165 clock cycles. The authors used a
single S-box for both encryption and key generation. Hamalainen et al . [7] also designed
an 8-bit encryption architecture, which occupies an area of 3100 GE on a 0.13 um process.
Performing on-the-fly key schedule and encryption in parallel, their design achieves a la-
tency of 160 clock cycles. The authors use two instances of the S-box (one for encryption,
one for key schedule), which borrows Canright’s design [29]. Their ShiftRow operation is
performed serially using Jarvinen’s Byte Permutation Unit [11], which outputs the bytes
of the state in ShiftRows order.

Moradi et al . [8] took a holistic approach for minimizing the total area, rather than
optimizing each component individually. Their 8-bit encryption module achieves an area of
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2400 GE on a 0.18 um process and has a latency of 226 clock cycles. Moradi uses a single S-
box that is shared between encryption and key generation and has nearly 100% utilization.
Building on the work of Moradi, Banik et al . [10] developed Atomic-AES and Atomic-AES
v2.0, which perform both encryption and decryption. The former has a 226 clock cycle
latency for both encryption and decryption and an area of 2605 GE on STM 90 nm CMOS
library. Atomic-AES v2.0 achieves a smaller area (2060 GE) at the cost of greater latency
(246/326 for encryption/decryption).

A sub-2000 GE implementation of an AES encryption module appeared in the work
of Mathew et al . [9]. Occupying 1947 GE on a 22 nm process, the design performs en-
cryption in 336 clock cycles. The 8-bit architecture performs encryption entirely in a new
composite field, applying the isomorphic mapping prior to the first round and then the
inverse mapping at the end of the final AES round. One S-box is used for both encryption
and key generation, which occur in alternation. The authors did an exhaustive test of
all possible polynomials for the ground-field and extension-field and chose the ones that
provided the smallest area. Their results show that the optimal encrypt and decrypt cores
use different polynomials. Sub-atomic AES, designed by Wamser et al . [30], is the smallest
encryption/decryption dual core to date, reported to be more than a 10% reduction in area
compared to Atomic-AES v2.0. However, it comes at a cost of a large increase in latency:
689/1281 clock cycles for encryption/decryption.

2.3.2 Low-energy Works

The works surrounding low-energy implementations of block ciphers are much less abun-
dant than those focused on low area. In 2015, Banik et al . [13] studied the energy efficiency
of unrolled rounds in a number of lightweight block ciphers and developed a model to pre-
dict the optimal number of rounds in a single clock cycle to achieve the lowest energy.
Banik et al . [14] provided a glitch filtering technique using and-gates for unrolled rounds,
which they termed Round Gating. The authors benchmarked the results for 10 lightweight
ciphers for number of unrolled rounds ranging from 1 to 4.

Dumpala et al . [31] presented a different technique for glitch filtering, which uses latches
instead of and gates. They showed their results for SIMON-128 and AES-256 on FPGA
and assessed the tradeoff between the energy reduction and the area increase when using
their glitch filter. Dhanuskodi [15] also explores a latch-based glitch filter for unrolled
designs, called Combinational Checkpointing, but on ASICs. The authors explained that
Round Gating causes unnecessary switching activity when the enable signals must be
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reset low at the end of each clock cycle. Since Combinational Checkpointing does not
require such resetting, it is more energy efficient than Round Gating. They compared both
Combinational Checkpointing and Round Gating against a baseline (no glitch filters) using
SIMON and AES. The authors also explored the optimal spacing between glitch filters for
their technique (i.e. how many rounds between each glitch filter).

26



Chapter 3

Digital Hardware Design and
Tradeoffs

As with all engineering designs, there are tradeoffs that need be considered with the AES
and PRESENT designs. Section 3.1 discusses the differences between FPGA and ASIC.
Section 3.2 introduces the metrics of throughput, area, and energy, each of which is ex-
plained more thoroughly in Section 3.2.1, Section 3.2.2, and Section 3.2.3, respectively.

3.1 FPGA vs ASIC

Hardware designs can be implemented in field programmable gate arrays (FPGA) or
application-specific integrated circuits (ASIC). ASICs are customized for a specific pur-
pose and perform only one function. FPGAs are made of thousands or even millions of
programmable logic blocks and interconnects. Because FPGAs are programmable, they
are suitable for prototyping a design and are often used for this purpose. In terms of
cost, ASICS are cheaper for large production volumes whereas FPGAs may be more cost
effective for smaller production volumes. The non-recurring engineering cost of an ASIC
is higher. If there are errors in an FPGA design, it can simply be reprogrammed. If there
are errors in an ASIC, it must be refabricated, increasing the cost. Generally, ASICs are
faster, more energy efficient, and take up smaller area.

The design flow for achieving an ASIC implementation is shown in Figure 3.1. First, the
product specifications are laid out. In this stage, the functionalities, features, architecture,
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Figure 3.1: ASIC design flow

design goals (i.e. area, power, throughput) are defined. For example, for an AES design,
the functionalities can include encryption or decryption or both, and the architecture
can be 8-bit datawidth if low area is a design goal. The next step is register transfer
level (RTL) implementation. The RTL code is constructed using a hardware description
language (HDL), such as VHDL or Verilog. These languages describe the behaviour of the
circuits and are also used to develop a testbench, which provides stimulus to simulate and
verify the logic of the design. The design being tested in the testbench is referred to as
the unit under test (UUT) or device under test (DUT). Simulations are performed using
simulation tools such as ModelSim, which display waveforms of the signals and aid with
debugging. The RTL design and functional verification can often take several iterations,
which is common and normal.
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Once the logic of the DUT is correct, the next step of the design flow, logic synthesis, can
be performed. Using a logic synthesis tool, such as Design Compiler by Synopsys, the RTL
code is translated into a gate-level netlist. The translation is a two-step process. The first
step is a translation into generic logic gates that do not have a physical implementation.
For the design to be physically achievable, the gates need a transistor-level implementation.
A collection of such gates, called a technology library or an ASIC cell library, is developed
and distributed by a foundry. The second step involves converting the generic logic gates
into gates from an ASIC cell library. The library usually contains multiple implementations
of the same logic function, differing in area and speed to allow for implementation tradeoffs.

The result of logic synthesis is a list of technology-dependent gates, which do not have
a determined location on silicon and so the design still cannot be physically realized yet.
The purpose of physical synthesis is to transform the netlist into a layout, in which every
gate has a location and wired connection to other gates. The steps in physical synthesis
include floor planning, placement, clock tree synthesis, and routing. Floorplan includes
defining the width and height of the die, finding placement for pins, while making sure
constraints are satisfied. Placement involves finding specific locations for the gates. Clock
tree synthesis builds the clock tree and assures that timing requirements are satisfied.
Routing determines how the wires are routed so that the gates are connected. During the
routing process, the delays of the nets are also calculated.

After physical synthesis generates a layout, timing simulation needs to be performed
to verify it. The same testbench used in functional simulation can be used for timing
simulation. Unlike in functional simulation, wherein the waveforms are ideal, the waveforms
in timing simulation actually reflect the timing delays of a signal through a wire.

Power analysis is optional and is performed using a tool like Cadence Encounter. En-
counter evaluates the power consumption of a design using the layout information and a
value change dump (VCD) file that was generated during timing simulation. The VCD file
contains information about the transitions of signal.

After physical synthesis passes verification, the design is ready to be signed off and sent
to a fabrication facility.

3.2 Design Tradeoffs

There are several considerations for tradeoffs, but the three that are of interest in this
work are throughput, area, and energy. As a general definition, throughput refers to
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how much work can be accomplished in a given amount of time. In the context of a
block cipher, throughput can be defined as the number of bits of ciphertext that are
generated per clock cycle. A high throughput is usually desirable, as it is a measure of
performance. Area (of the silicon) is a metric that is measured in physical units (square
microns) or gate equivalents (GE). Because advances in technology continue to create
smaller nanometer processes, comparing designs by the physical area is not entirely fair;
two identical designs will result in different areas if one is synthesized using a smaller
technology process. Thus, the notion of GE was introduced to normalize the size of a
circuit across different manufacturing technologies: one GE is equivalent to the silicon
area of a 2-input NAND gate. Like area, the energy consumed per unit operation is a
metric which should be minimized. Energy is the electrical effort expended during the
execution of an operation. Although power, the amount of energy consumed per unit time,
correlates to energy, optimizing for the former can be significantly different from optimizing
for the latter, as we’ll see in the following sections. In an ideal design, all aspects of high
throughput, low area, and low energy consumption should be present, but this is very hard
to achieve in practice; often, one metric is sacrificed in order to gain in another. In fact,
optimizations for different metrics can have opposing effects. For instance, designing for
high throughput often inevitably results in higher area, which contradicts a low area goal.

3.2.1 Throughput

The throughput of a block cipher refers to the number of ciphertext bits that are produced
per clock cycle. A block cipher design that implements one round per clock cycle, achieves
a throughput of m

R
, where m is the length of the block in bits and R is the number of

rounds in the algorithm. There are two ways to increase the throughput: pipelining and
loop unrolling.

Pipelining is a technique for parallelizing operations, achieved by splitting the entire
operation into stages and then overlapping the execution of the stages. It is analogous to
an assembly line, in which every person is responsible for one task and the parts move from
one workstation to another until it is complete. Pipelining improves throughput without
significantly affecting latency, which is the length of time between the start and completion
of an operation. In other words, pipelining allows a ciphertext to be produced at every
clock cycle, but the latency of encryption will remain at the same number of clock cycles
required in the sequential (non-pipelined) design.

A consequence of pipelining is an increase in hardware resources. In a sequential design,
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the hardware can be reused in each clock cycle. In a pipelined design, every stage must
have its own dedicated resources since it will run simultaneously with all other stages.
Therefore, increasing throughput comes at a cost of increased area. When one desires a
more balanced design, opting to sacrifice throughput in order to reduce area, a partially
pipelined design can be implemented. Whereas a fully pipelined design allows a ciphertext
to be generated at every clock cycle, a partially pipelined one generates output at a lower
frequency (e.g . every 4 clock cycles). The number of clock cycles per stage determines the
degree to which a design is pipelined and it is an important parameter that will be referred
to as ccps (clock cycles per stage) in upcoming sections. Throughput can be calculated as
m
ccps

. The difference between a sequential design, a fully piplined, and a partially pipelined
one is illustrated in Figure 3.2.

R1 Combinational
logic 1 R1 Combinational

logic 1 R1 Combinational
logic 1 R1 Combinational

logic 1input output

(a) Sequential (unpipelined): one stage

R1 Combinational
logic 1 R2 Combinational

logic 2 R3 Combinational
logic 3 R4 Combinational

logic 4input output

(b) Fully pipelined: four stages

R1 Combinational
logic 1 R1 Combinational

logic 1 R2 Combinational
logic 2 R2 Combinational

logic 2input output

(c) Partially pipelined: two stages

Blocks of the same colour indicate the same stage. Each stage requires its own
set of hardware resources. Within a stage, resources can be reused in different
clock cycles.

Figure 3.2: Sequential (unpipelined) vs pipelined

The second method of increasing throughput is loop unrolling. This technique removes
registers between some block cipher rounds, resulting in several back-to-back (unrolled)
rounds in combinational logic, as Figure 3.3 depicts. In this thesis, the degree of unrolling
is denoted by a parameter called rpcc (rounds per clock cycle). Loop unrolling increases
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throughput and reduces latency. Futhermore, it increases the critical path (within a clock
cycle) and subsequently, the minimum clock period, but reduces the total number of clock
cycles needed to encrypt a block of plaintext. The elimination of some registers causes the
datapath of the whole encryption operation to be shortened, hence reducing latency. The
throughput can be calculated as m

dR/rpcce , where m is the length of block in bits, and R is

the total number of rounds (of the cipher algorithm). Similar to pipelining, loop unrolling
increases area; each combinational round requires its own set of hardware.

Round logic Round logic Round logicinput outputRound logic

Figure 3.3: Loop unrolling with rpcc = 2

3.2.2 Area

In some applications, area has become less of a concern due to the decreasing size of
transistors and increasing size of die. However, in other applications, such as portable
devices, low area is still a design goal. Methods of optimizing for low area include serializing
some operations (i.e. performing them sequentially rather than in parallel) and employing
different field representations which allow for more efficient hardware. The cost of reducing
area is usually an increase in latency. In SP-networks, the component that takes up the
most area is typically the substitution layer. Instead of having the S-box function perfomed
in parallel (which requires many S-box instances), one might design the cipher to have
it executed serially (which requires just one instance of the S-box). In effect, this will
increase the total number of clock cycles required to complete the encryption operation,
thus increasing the latency of the operation. Both methods are illustrated in Figure 3.4,
in which the dotted lines represent a clock cycle boundary. In Figure 3.4(a), four different
instances of the S-box (indicated by the different colours) are executing in parallel and the
operation finishes in one clock cycle. In Figure 3.4(b), the same instance of the S-box is
used in each clock cycle (as indicated by the sole blue colour) and the operation requires
four clock cycles.

For ciphers whose designs are based on finite field representations, area optimizations
can be made by using a different representation of the field that offers a more efficient hard-
ware implementation. The AES cipher algorithm is based on the finite field GF (28) with
irreducible polynomial P (x) = x8+x4+x3+x+1. Certain composite field representations,
such as GF ((24)2), can produce the same functionality using a different hardware structure
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(b) Serial Sboxes

Figure 3.4: Parallel vs serial substitution layer

that is lower in area. It is important to note that not all composite field representations
lead to lower area; the hardware efficiency depends on the reduction polynomials, which
need to be selected with care. Composite fields are further discussed in Section 4.1.

3.2.3 Energy and Power

Due to the lively interest and development of IoT devices, low power and low energy have
become important optimization goals for ASIC designs. Although both goals sound similar,
there are important differences between them that should be distinguished. Energy is the
total electric work done by the system. Power is the rate of energy consumption. Low
energy consumption is often the objective for battery-powered devices, to ensure that the
battery lasts as long as possible. For passively powered devices (e.g . passive RFID tags),
the main concern is low power. In this case, the passive device relies entirely on, say, an
RFID reader for its power source. It uses energy in a signal sent from the RFID reader
to power its circuit and to generate a signal back to the RF system, a process known as
backscatter. Low power, rather than low energy, is the concern because it is the energy
consumed per unit time that matters. Typically, lower area designs lead to lower power
consumption, but not necessarily lower energy because the latency increases.
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Power dissipation has two components: static power dissipation and dynamic power
dissipation. Static power constitutes leakage power. Leakage power is dissipated when
there is no switching activity. It is due to the current lost in p-n junctions in CMOS
transistors. Dynamic power includes switching power and short-circuit power. Switching
power is dissipated when signals transition and it is dependent on the clock frequency and
the average switching activity. Short-circuit power dissipation is the power lost due to
a temporary direct connection between the supply voltage and ground when transistors
switch states. Short-circuit power is usually negligible.

While energy values cannot be directly obtained from electronic design automation
(EDA) tools, they can be derived from the power values that EDA tools are able to generate.
The energy per bit of a plaintext can be derived as:

energy

bit
=
power × clk period

throughput
(3.1)

There are several ways to reduce energy. Clock gating is a technique that reduces the
dynamic power dissipated by the clock signal by disabling it to certain registers when
there is no data. This reduces unnecessary switching activity, which reduces power as well
as energy. Clock gating can be added by synthesis tools and do not require changes to the
RTL code. It not only reduces power consumption of the clock signal but also removes
the need for chip-enabled registers, which occupy more area. The difference between a
register with chip-enable and one with clock gating is illustrated in Figure 3.5. Note that
Figure 3.5(a) is conceptual and does not represent the actual structure of a chip-enabled
register.

D

en
clk

Q

(a) Register with chip-enable

D Q

clk
en

(b) Register with clock gat-
ing

Figure 3.5: Clock-enabled register vs clock-gated register

Power gating is a low-power technique that reduces leakage power by blocking the
current to parts of the circuit that are not in use. Unlike clock gating, which can be
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conducted transparently from a design, power gating usually involves modifications to the
RTL code.

Loop unrolling, which was discussed in Section 3.2.1 as a method to improve through-
put, can also be applied for a low-energy objective. Loop unrolling can reduce energy
because it effectively removes registers from the datapath of the cipher, which in turn
decreases the energy consumption. However, the energy due to glitches increases as the
degree of unrolling increases. A glitch is a superfluous signal transition that does not pro-
vide any functionality. Glitch filtering methods can be employed to reduce the amount of
glitches and thus, energy. More details about glitch filters appear in Chapter 5.
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Chapter 4

Area Optimization in AES

Several kinds of architectures and mathematical structures have arisen in an effort to
achieve low area in AES. Recently, these designs and lightweight cryptography, in gen-
eral, have received a lot of attention because IoT devices demand more resource-efficient
modules. Section 4.1 discusses the finite field upon which AES is built and explains how
different representations yield different area efficiencies. The methodology is presented in
Section 4.2. Section 4.3 presents an analysis and benchmark of existing low-area AES
designs, showing how different component implementations lend themselves better to dif-
ferent kinds of architectures. Using this analysis, a novel AES architecture, presented in
Section 4.4, was created.

4.1 Composite Field

When an extension field GF (2k) has k that is not prime (i.e. k = n ·m for some integers
n,m 6= 1, k), it can be decomposed into a composite field, GF ((2n)m), which is a tower
of extension fields. GF (2n) defines the extension field over GF (2) (i.e. the elements of
GF (2n) have coefficients in GF (2)). Similarly, GF ((2n)m) defines the extension field over
GF (2n) (i.e. the elements of GF ((2n)m) have coefficients in GF (2n)).

Exploring composite field representations is interesting because they can sometimes
achieve more efficient hardware implementations than the standard binary extension field.
AES is based on mathematical structures in the field GF(28) with irreducible polynomial
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P (x) = x8 + x4 + x3 + x + 1. The S-box, comprising of the inverse operation plus an
affine transformation, is typically the most costly component (in terms of area). Several
works have shown that representing the finite field GF (28) as a composite field (such as
GF ((24)2) or GF (((22)2)2)) can yield a more efficient S-box [29], [32], [33], [34]. Such a
task entails two problems: 1. selecting the defining polynomials of the composite field to
construct the field, and 2. finding an isomorphic mapping between the binary field and
composite field, once the defining polynomials are fixed.

Methods for selecting the defining polynomials of the composite field have been explored
before [32], [9]. Finding an isomorphic mapping between a binary field and the composite
field is well documented by Paar [35]. The result of the process is a transformation matrix,
M , which maps an element, E, in the original field GF (28) to an element, E ′, in the
composite field through E ′ = ME. For example, the transformation matrix and its inverse
used in the following sections of this chapter (Mathew’s mapping) are

M =



1 0 1 0 0 1 0 0
0 1 1 1 1 0 1 0
0 1 0 1 0 1 0 0
0 1 0 0 0 1 1 0
0 0 1 1 0 0 0 0
0 1 0 0 1 1 1 0
0 1 1 1 0 0 0 0
0 0 0 0 0 1 0 1


M−1 =



1 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0
0 1 1 0 1 1 1 0
0 1 1 0 0 1 1 0
0 0 0 1 0 1 0 0
0 1 0 0 1 1 0 0
0 1 0 1 0 1 1 0
0 1 0 0 1 1 0 1


where the least significant bit is in the upper left corner. The algorithm proposed by
Paar applies when the defining polynomials are primitive. Zhang proposed an efficient
algorithm for finding isomorphic mappings when the defining polynomials, such as the
AES polynomial, are not primitive [34]. The procedure for generating the transformation
matrix above is listed in Appendix A.

4.2 Design Flow

Logic synthesis was performed with Synopsys Design Compiler version P-2019.03 us-
ing the compile ultra command and clock gating. Physical synthesis (place and route)
and power analysis were done with Cadence Encounter v14.13 using a density of 95%.
We used Mentor Graphics ModelSim SE v10.5c for simulations. Area results are post
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place-and-route and power analysis is based on timing simulation. We used the follow-
ing ASIC cell libraries: ST Microelectronics 65 nm CORE65LPLVT at 1.25V, TSMC
65 nm at tpfn65gpgv2od3 200c and tcbn65gplus 200a at 1.0 V, ST Microelectronics 90 nm
CORE90GPLVT and CORX90GPLVT at 1.0 V, and IBM 130 nm CMRF8SF LPVT with
SAGE-X v2.0 standard cells. Some past works have used scan-cell flip-flops to reduce area
because these cells include a 2:1 multiplexer in the flip-flop, which incurs less area than
using a separate multiplexer. We chose not to use scan-cell flip-flops because their use as
part of the design would prevent their insertion for fault-detection and hence, prevent the
circuit from being tested for manufacturing faults.

4.3 Benchmarking and Analyzing Existing Architec-

tures

The architectural and component options for an 8-bit design are ample. For example, the
bytes can be internally processed in a row-major or column-major fashion. AES operations
(AddRoundKey, ShiftRows etc.) can occur in parallel, requiring duplicate hardware, or
serially, which could offer better area at the cost of increased latency. AES operations can
also take on a different order as long as dependencies are maintained (e.g . the relative
order of ShiftRows and SubBytes does not matter).

There are three works focused on low-area AES encryption cores which stand out for
their area and time efficiency. Mathew’s work reports the smallest encryption-only area[9],
Moradi’s work achieves nearly the lowest possible latency for a single S-box design [8], and
Hamalainen’s work implements a serialized method of the ShiftRows operation [7]. To bet-
ter compare these designs, we implemented and synthesized them on a common technology:
STMicro 65 nm. In the analysis of these works in Section 4.3.1, the different architectural
and component options are introduced, and in Section 4.3.2, they are examined in greater
detail.

4.3.1 Architecture Comparison

It is important to note that the following analysis is on the architectures of Mathew,
Moradi, and Hamalainen’s works, thus our implementations follow their descriptions and
circuits as closely as possible, with the exception of common components which remain
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uniform across all designs. For instance, the same S-box (Mathew’s) is employed in all
three architectures. Since Moradi and Hamalainen’s design are done in the original AES
field, the isomorphic mappings are placed immediately before and after the S-box in our
implementation of their circuits. To allow rapid prototyping of many different architec-
tures, a binary encoding is used for the counters. Once an architecture is finalized, the
implementation can be optimized by replacing the binary counter with a linear feedback
shift register (LFSR), such as we’ve done for the optimized version of our design. See
Appendix B for a description of LFSRs.

Mathew’s Architecture

To our knowledge, the smallest prior reported encryption-only module of AES is from the
work of Mathew, who reported an area of 1947 GE on a 22 nm process. Mathew applies
their custom composite field to the entire algorithm and performs almost all AES operations
in the new basis. The design uses one instance of the S-box and has a total latency of 336
clock cycles. In each round, 16 clock cycles are dedicated to encryption and 16 clock cycles
to key expansion. During encryption, AddRoundKey, SubBytes, and MixColumns are
performed serially, and the results are stored in 128 intermediate registers. The ShiftRows
operation is performed in the first clock cycle of key expansion mode when the contents
of the intermediate register are transferred to the state register. Because AddRoundKey,
SubBytes, and MixColumns are applied in every clock cycle and MixColumns depends on
ShiftRows, the latter operation is moved to the beginning of the round. This has two
consequences: the input bytes must be loaded in ShiftRows order and the key must be
added to the state in a ShiftRows order by introducing a 4:1 multiplexer (mux). The
authors also use scan flip-flops in their design.

Analysis of Mathew’s Architecture

Our implementation of Mathew’s design achieves an area of 2640 GE. The large discrepancy
between our and Mathew’s area could be due to two reasons. First, we opted not to use
scan flip-flops. Since scan flip flops incur less area than the combined area of a mux and a
flip-flop, our implementation will be larger. Second, while the composite field selected by
Mathew may be optimal on their technology, it might not be on ours. See Appendix C for
our calculations of the S-box and MixColumns operations in Mathew’s composite field.
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The main drawbacks of Mathew’s design are the additional intermediate registers, the
need to reorder inputs, and the 336 clock cycle latency. Most of the intermediate registers
can be eliminated simply by writing the result of MixColumns directly into the data regis-
ters instead of into the intermediate registers. This eliminates 12 of the 16 8-bit registers
(4 are still needed for temporary storage of the result) and introduces four 8-bit multiplex-
ers. This version achieves 2240 GE in our experiments. Another option for MixColumns
is to have a 32-bit implementation that operates on a column at a time and to do it in
4 clock cycles after the ShiftRows operation. The advantage of this is the elimination of
all intermediate registers and no longer needing to reorder inputs. The area result for this
implementation is 2270 GE.

While Mathew decided it would be better to do the entire algorithm in the composite
field, Canright argues that this may be less efficient than having just the S-box in a
composite field because the simplicity of the constants in the MixColumns operation in the
original basis, 0x03 and 0x02, would be lost in the composite field [29]. As an experiment,
we implemented a version that performs the isomorphic mapping immediately before and
after the S-box, leaving all other operations in the original basis. The results showed a
decrease in area from 2640 GE to 2580 GE.

Moradi’s Architecture

Moradi’s 8-bit encryption architecture is next smallest at a reported 2400 GE and stood
out for its low latency for a single S-box design. Sixteen clock cycles are dedicated to
AddRoundkey and SubBytes, one to ShiftRows, and four to the simultaneous execution of
MixColumns and SubWord (of the key expansion), for a total round latency of 21 clock
cycles. The S-box borrows Canright’s design and MixColumns is performed on a column
at a time, requiring no additional registers. Moradi’s design also uses scan flip-flops and
requires both inputs and outputs to be reordered, as bytes are processed in a row-major
order.

Analysis of Moradi’s Architecture

Our implementation of the design occupies 2370 GE. We also point out that our imple-
mentation uses a larger S-box (the same one we used in our implementation of Mathew’s
design) and a regular binary counter (instead of an LFSR).
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A slight improvement on latency can be made by doing the ShiftRows operation in the
same clock cycle as the final AddRoundKey byte. This eliminates one clock cycle in each
round, resulting in a total cycle count of 216 compared to the original 226. Although this
causes the location of the muxes to change, the number of muxes remains the same (every
register in the second and third rows require a mux and the left-most register of the bottom
row requires a mux). In our experiments, making this change caused area to decrease by
20 GE, which could be attributed to how the tools optimize the design.

Other improvements have been suggested by Banik et al .[10], who extended Moradi’s
work to support both encryption and decryption. The registers in the two middle columns
of the key do not need to shift during clock cycles 17-20; thus, they do not need to be
scan flip-flops or, in our case, require muxes. In Atomic-AES v2.0, ShiftRows is performed
over 3 clock cycles, during which the rows are selectively shifted by one byte at a time.
This eliminates all muxes except the ones for the rightmost column. More details appear
in Section 4.3.2.

Moradi’s paper states that using a row-major design reduces area by 13.5% and that if
column-wise ordering is needed, 20 additional 8-bit wide 2-to-1 multiplexers are required.
However, in our experiments, the column-major design in fact showed a decrease in area:
2280 GE. According to our analysis, a column-major design should decrease area because
although more muxes are required for the ShiftRows operation, a greater number of muxes
are saved in the key register. In a row-major design, 18 muxes (9 for ShiftRows and 9
for key register) are required. In a column-major design, 15 muxes are needed (12 for
ShiftRows and 3 in key). See Section 4.3.2 for details. Moradi argues that the extra
registers and control logic associated with a serial version of MixColumns would exceed
the area of a combinational 32-bit MixColumns. Our analysis is presented in Section 4.3.2.

Hamalainen’s Architecture

At 3100 GE, Hamalainen’s architecture uses two instances of the S-box, one for encryption
and the other for the key schedule. The authors did the ShiftRows operation serially by
employing the Byte Permutation Unit (BPU) developed by Jarvinen et al .[11]. Consisting
of 12 8-bit state registers and some muxes, the BPU outputs the bytes in the correct order
by reading from one of four registers (depending on the clock cycle) and systematically
reordering the bytes as they shift through the state registers. Most of the BPU registers
simply maintain their normal shifting operation as a shift register and do not require muxes
to preface them. MixColumns is also performed serially, similar to the way Mathew did,
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using four additional 8-bit registers to store the accumulating result. The SubBytes oper-
ation is performed between ShiftRows and MixColumns operations, which differs slightly
from the AES specification, but this rearrangement has no effect on functional correctness.

Analysis of Hamalainen’s Architecture

Our implementation of the design achieves 2260 GE. Using the BPU has two benefits. First,
the area overhead is small. While in the straightforward implementation, the ShiftRows
operation requires twelve 8-bit 2-to-1 muxes, the BPU requires only three 8-bit 2-to-1
muxes and one 8-bit 4-to-1 mux (equivalent to three 2-to-1 muxes). Second, now that
every operation is serialized, every clock cycle is uniform, making the control logic very
simple and reducing the number of muxes. As a result, the round latency can be kept to
16 clock cycles, which is the minimum latency of an 8-bit design, since there are 16 bytes
of state.

Summary

Table 4.1 shows a summary of the discussed designs. Latency is measured from the clock
cycle the first byte goes in until the clock cycle the last byte becomes ready (i.e. it includes
cycles for loading and unloading the key and plaintext). To allow rapic prototyping of many
designs, we decided not to implement simultaneous loading and unloading in our designs.
While Moradi and Hamalainen report both the latency including loading/unloading and
the effective latency when load/unload is performed simultaneously, Mathew reports only
one latency value of 336, which appears to be the effective latency. To keep the comparisons
consistent, we add 16 clock cycles to Mathew’s reported latency to account for loading.

4.3.2 Taxonomy of Design Choices

In this section, we compare different ways of implementing MixColumns, ShiftRows, and
Key Expansion. Since SubBytes and AddRoundKey are byte-wise operations, they lend
themselves well to serial implementations and do not have many architectural options.
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Table 4.1: Benchmarking on ST 65 nm process

Design Notes Area Latency Power Energy

(GE) (clk cycles) (mW) (nJ/bit)
Mathew [9] 2640 352 0.109 29.9
Mathew variation 1 most intermediate

registers removed
2240 352 0.122 33.6

Mathew variation 2 no external reorder of
inputs

2270 352 0.090 24.6

Mathew variation 3 original AES basis 2580 352 0.110 30.1
Moradi [8] 2370 226 0.101 17.9
Moradi variation 1 latency reduced 2350 216 0.100 16.9
Moradi variation 2 column-major 2280 226 0.097 17.1
Hamalainen [7] 2260 176 0.145 20.0

Mix Columns

There are three methods of implementing MixColumns: 1. non-serialized, 2. serial with
four 8-bit registers, and 3. lightweight serial with two 8-bit registers. The non-serialized
method is simply the straightforward method of implementing MixColumns for a single
column. It can be done combinationally without the need for any registers. Hamalainen
and Mathew both opted for a serialized version, which requires four 8-bit registers to
store the temporary result. A third method appeared in the work of Wamser [30], who
implemented a serialized version of MixColumns requiring only two additional registers,
based on the work of Ahmed et al .[12]. Ahmed shows that, if [s0, s1, s2, s3] is a column,
then the MixColumns result, [s′0, s

′
1, s
′
2, s
′
3] can be calculated as

tmp = s0 ⊕ s1 ⊕ s2 ⊕ s3
s′0 = s0 ⊕ tmp⊕ [2× (s0 ⊕ s1)]
s′1 = s1 ⊕ tmp⊕ [2× (s1 ⊕ s2)]
s′2 = s2 ⊕ tmp⊕ [2× (s2 ⊕ s3)]
s′3 = s3 ⊕ tmp⊕ [2× (s3 ⊕ s0)]

In this method, only two values, tmp and s0 need to be stored in registers. Each
MixColumns byte is calculated and ready in one clock cycle, rather than accumulated
over four clock cycles. We also test the effect of implementing the methods in Mathew’s
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composite field. Table 4.2 lists the required number of registers and area for each method.
The lightweight serial method in the original basis achieves the lowest area and the non-
serial method in Mathew’s composite field gives the highest area. For a given method, the
original basis always produces lower area than Mathew’s basis. In the original basis, the
non-serial method obtains lower area than the serial method, but in the composite field,
the non-serial method obtains greater area than the serial method. This indicates that the
best method depends on the area trade-off between the combinational circuitry, which is
determined by the basis, and the registers. Since Moradi stays in the original basis, the
non-serial method is the better option. In Mathew’s basis, the combinational circuitry of
the non-serial method appears to be larger than the area of the four 8-bit registers, thus
the serial method is the better option.

Table 4.2: MixColumns implementations

Method Num Reg Area

(8-bit) (GE)

Original basis Mathew’s basis

Non-serial 0 226 366
Serial 4 267 303
Lightweight serial 2 202 234

ShiftRows

We saw three ways of implementing ShiftRows: 1. straightforward method in one clock
cycle, 2. over 3 clock cycles, and 3. serially using Jarvinen’s BPU. Since the ShiftRows
operation is a row-wise operation, a row-major design can offer efficiencies which a column-
major design cannot. In a column-major implementation, the single clock cycle method
requires 12 muxes (every register in the last 3 rows of the matrix needs one), shown in
Figure 4.1(a). However, in a row-major implementation, the ShiftRows operation for the
second row of the matrix (i.e. left shift by one byte) happens to be the same operation as
the shift register. Thus, the ShiftRows operation shown in Figure 4.1(b) requires one mux
for every register in the third and fourth rows and only one mux in the second row, for a
total of nine muxes. Even more registers can be saved if ShiftRows is done over three clock
cycles. In each clock cycle, the second, third, and fourth rows are selectively shifted and
they shift by only one byte at a time. Figure 4.1(d) demonstrates that this method requires
only three 8-bit muxes. The drawback is the increase in latency. In a column-major design,
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performing ShiftRows over three clock cycles doesn’t offer any benefits because the column-
major shifting doesn’t coincide with the row-wise shifting of ShiftRows shifting, shown in
Figure 4.1(c). Thus, it still needs 12 muxes. The final method of ShiftRows, the BPU, is
designed for a column-major ordering. It requires three 2:1 muxes and one 4:1 mux. If we
count the 4:1 mux as three 2:1 muxes, then the total mux count is six for BPU, depicted
in Figure 4.1(e). Table 4.3 lists the different methods and their corresponding mux count.

Column
major

Row
major

1 clock cycle

(a)

(b)

3 clock cycle

(c)

(d)

16 clock cycle

(e)

Register

Register prefaced
with mux

ShiftRows shifting

Shift register shifting

Figure 4.1: ShiftRow implementations

Key Expansion

The movement of the key schedule should be compatible with the movement of the state
register. That is, if the state register shifts in a row-major order, then the key register
should shift in row-major order as well, so that the AddRoundKey operation can be done
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Table 4.3: ShiftRows Implementations

Method Number of 2:1 muxes

Column-major Row-major

One clock cycle 12 9
Three clock cycle 12 3
BPU 6

efficiently. If the key and state registers differ in order, then additional circuitry is needed
to make them compatible, which adds area. For instance, in Mathew’s circuit, the state
register is in ShiftRows order when it is time to do AddRoundKey. Thus, they must use a
4:1 mux to select the correct byte from the key register to add to the state.

While a row-major design can offer area efficiency in the state register (as we saw in the
ShiftRows discussion), it complicates the circuitry surrounding the key register. We will
show how by using Moradi’s key schedule architecture and a corresponding column-major
version of it. The key algorithm naturally lends itself better to a column-major design.
The left-most column of the next round key is derived from a transformed version of the
right-most column. As we populate the left column, we can either rotate the right-most
column and keep reading from register 13 or keep the column static and use a 4:1 mux. In
a column-major design, keeping the column rotating is a better choice because it follows
the normal column-major shifting operation. Muxes need to preface the bottom registers
of the rightmost and leftmost columns, shown in blue in Figure 4.2(a). In a row-major
design, the column-wise shifting that is required to generate the first column forces a mux
to be used on each register in the left-most and right-most columns, shown in Figure 4.2(b).

4.3.3 Summary

Different design goals will motivate different design choices, and the analysis above can
facilitate the decision process. For instance, if reordering of inputs/outputs is acceptable,
then a row-major design could be the best choice. Given a row-major design, the ShiftRows
method that offers the lowest area would be doing it over three clock cycles. On the other
hand, if a column-major design is favoured (so that inputs and outputs do not require
reordering), then the ShiftRows could be implemented as the BPU, the lowest-area method
in a column-major design. Using this analysis, we developed our own design.
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(a) Column-major design requires 3 muxes
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(b) Row-major design requires 9 muxes

Figure 4.2: Key schedule implemented in column-major and row-major style. Blue registers
require muxes. The number of muxes needed for a register equals the number of arrows
going into the register minus one.

4.4 Quark-AES

We extract the best features of all the aforementioned designs to realize a novel design.
We wanted a single instance of the S-box, the minimum latency for a one-S-box design
(20 clock cycles), the lightweight MixColumns implementation, the byte permutation unit,
and a column-major design so that inputs and outputs do not have to be reordered ex-
ternally. The challenge is assembling the desired components into a low-area architecture
while adding as few registers and muxes as possible. Although every AES component
we chose is serial, we cannot simply stack all of them together in a combinational path;
the lightweight MixColumns algorithms requires four consecutive bytes of the ShiftRows
output to be available at the beginning of every four clock cycles. Because ShiftRows is
a serial operation, the MixColumns unit would require four extra registers to store these
bytes. To achieve this without the use of any additional registers, we delayed the Mix-
Columns operation by four clock cycles so we can use four state registers for storage. With
careful placement of components, all 16 state registers, which is exactly enough, can be
used for the 12 registers in the BPU and the 4 in MixColumns.
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4.4.1 Architecture

In our architecture, every encryption function (AddRoundkey, SubBytes, ShiftRows, Mix-
Columns) is performed serially, requiring only 16 clock cycles in a single AES round. The
remaining four clock cycles in the round are devoted to the SubWord operation in the
key schedule, during which the state register remains idle. Therefore, the S-box has 100%
utilization. The architecture is illustrated in Figure 4.3. To offer a fair comparison of our
design against existing works, we kept the S-box the same as the one used in our analysis
in Section 4.3, which is Mathew’s S-box. The area distribution of Quark-AES components
is shown in Figure 4.4.

4 80 12

1 5 9 13

6 102 14

3 7 11 15

i_plaintext

MixCol

4 80 12

1 5 9 13

6 102 14

3 7 11 15

i_key

S-box

rcon

rcon_en

key_mask

key[0]
key[12]

key[0] o_ciphertext

Figure 4.3: Quark-AES architecture

ShiftRows

The ShiftRows operation is implemented as the BPU (Figure 4.1(e)), which consists of
state registers [0..11], three 2:1 muxes, and one 4:1 mux. Refer to [11] for implementation
specifics.
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  1%
14%

ShiftRows   3%
MixColumns   9%
KeySchedule 35%
Control   5%
Other   6%

Figure 4.4: Area distribution of Quark-AES components

MixColumns

We employ the lightweight implementation of MixColumns (the third method in Table 4.2),
the circuit and behaviour of which is depicted in Figure 4.5. Because the values tmp and
s0 are required in clock cycles after they become available, their values must be saved to
registers. Every four clock cycles, the sum tmp is stored in register mc tmp and value s0
is stored in register mc buf . The MixColumns operation requires four consecutive bytes
to be available after the ShiftRows operation (to calculate tmp). Since ShiftRows is a
serial operation, it takes four clock cycles for four bytes to be ready. Thus, we delay the
MixColumns operation by four clock cycles (until state[12..15] is populated) and place the
circuitry after the state[12] register.

mc
buf

mc
tmp

x2

sbox_out 

state[13] 

state[14] 

state[15] 

mixcol

state[12] 

(a) Circuit

mixcol

mc_tmp

mc_buf

clock
cycle

s0 +mc_tmp +
2*(s0 + s1)

0 1 2 3

s1 +mc_tmp +
2*(s1 + s2)

s2 +mc_tmp +
2*(s2 + s3)

s3 +mc_tmp +
2*(s3 + mc_buf)

s0

s0 + s1 + s2 + s3

(b) Behaviour

Figure 4.5: MixColumns
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Key Expansion

The key generation for the next round begins in clock cycle 16 of the current round. For
four clock cycles, the left-most and right-most columns rotate by one byte to generate the
left-most column for the next round key. Once the first column is generated, subsequent
bytes are generated by doing (key[0] ⊕ key[4]), the result of which is written to key[3]. The
signal key mask is asserted for 12 clock cycles after the first column of the next round key
is generated. By clock cycle 12, all key bytes have been generated, so key mask is set to 0
and the key register needs only to shift the bytes out.

Control

There are two counters in our design: a 5-bit counter (byte count) for counting the clock
cycles within a round and 4-bit counter (round count) to keep track of the round. Condi-
tions are tested for the beginning and end of each block in Figure 4.6. Control signals are
generated for masks and select signals.

4.4.2 Dataflow

Clock cycles 0 to 15

ShiftRows, SubBytes, MixColumns, and AddRoundKey are all performed serially. Mix-
Columns and AddRoundkey are delayed by four clock cycles (relative to the start of the
round), starting in clock cycle 4 and extending 4 clock cycles into the next round, shown in
Figure 4.6. Shiftrows, requiring only 12 clock cycles, occurs in clock cycles 0 to 11. After
clock cycle 11, all the bytes are in the correct order and need only to be shifted out. In the
first round, we bypass the MixColumns circuitry and the AddRoundKey takes state[12]
instead of MixColumns output.

Clock cycles 16 to 19

The state register remains idle during these clock cycles. The S-box is used to calculate
the first four bytes of the next round key, which get stored in the left-most column of the
key register. During these four clock cycles, the left-most and right-most columns of the
key register rotate, while the rest of the key registers remain idle.
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ShiftRows
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RotWord
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Rcon

Figure 4.6: Dataflow of Quark-AES showing first 3 rounds. Blocks of the same colour
represent operations belonging to the same AES round.

4.5 Results

While an 8-bit datawidth may be an appealing design for some applications, other appli-
cations could prioritize throughput over area and desire a higher datawidth. We explored
these options and implemented 16-bit and 32-bit datawidth versions of Mathew, Moradi,
Hamalainen, and Quark-AES. In the higher datawidth designs of Mathew, the hardware
for AddRoundKey and SubBytes is simply duplicated. The MixColumns requires more
xors, but the number of registers remains the same. ShiftRows is performed the same in
all datawidths. In Moradi’s higher datawidth designs, ShiftRows is performed in one clock
cycle in all datawidths. The hardware of AddRoundKey, Sbox, and MixColumns is dupli-
cated. In Hamalainen’s higher datawidth architectures, the hardware for AddRoundKey
and S-box is duplicated. The higher datawidth versions of MixColumns require more xor
gates and do not require extra registers. The byte permutation units are unique for each
datawidth design (based on Jarvinen’s circuits [11]) and generally, the number of muxes
increases as the datawidth increases.

The results are summarized in Table 4.4. The last two rows include the area results
for Atomic-AES and Atomic-AES v2.0, which we synthesized using their publicly avail-
able source code. Although they are dual-featured cores supporting both encryption and
decryption, it is nice to see where they stand in comparison to encryption-only architec-
tures. The latency values include cycles required for the loading and unloading, and the
throughput values do not include simultaneous loading/unloading of the data. The last
two columns are optimality metrics of throughput/area and throughput/area2. The first
metric is useful if throughput and area are equally important, while the second metric takes
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power into account by using area as its approximation. Power is dependent on implemen-
tation technology, which makes it difficult to compare it against other libraries. Using
area to approximate it allows the result to be more dependent on design and less on the
library used. For convenience, we reiterate Mathew, Moradi, and Hamalainen’s reported
area results: 1947, 2400, and 3100 GE, respectively. At 1960 GE, Quark-AES has the
smallest area of all the designs. It features a 13% improvement in area, 9% improvement
in power, 14% improvement in energy, and 8% improvement in throughput/area2 over the
runner-ups when synthesized on STM 65 nm. In real-world applications, it is often the case
that data may not be ready or available every clock cycle. To be practical, our design
supports bubbles during loading. The 8-bit Quark-AES outperforms other 8-bit designs
in power, energy, and T/A2. Figure 4.7 shows how well the architectures extend to higher
datawidths (16-bit and 32-bit). While Mathew’s design has the highest area at an 8-bit
datawidth, the 32-bit version is smaller than Moradi’s and Hamalainen’s.
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Figure 4.7: Area vs data width

It is difficult to compare works that use different ASIC libraries and toolchains. Al-
though the GE metric attempts to normalize across different technologies, there are still
considerable variations among different libraries, illustrated in Table 4.5. As registers make
up approximately half the area of an 8-bit design, choosing a library with a small GE/flop
will naturally lead to smaller overall area. Figure 4.8 illustrates the area variations of the
AES designs on four different ASIC libraries. Figure 4.8(a) shows the area distribution of
the state and key registers and the S-box, which are independent of architectural design
choices. The area of the state and key registers, shown in orange, also serve as the min-
imum area threshold of a design. A tighter lower bound would include the area of other
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Table 4.5: Area of common cells for different libraries

NAND AND MUX XOR flop flopce
∗

µm2 GE µm2 GE µm2 GE µm2 GE µm2 GE µm2 GE

STM 65 nm 2.08 1.00 2.60 1.25 4.16 2.00 4.16 2.00 7.80 3.75 10.40 5.00
TSMC 65 nm 1.44 1.00 2.16 1.50 3.24 2.25 3.60 2.50 6.84 4.75 9.36 6.50
STM 90 nm 4.39 1.00 5.49 1.25 8.78 2.00 7.68 1.75 14.27 3.25 19.76 4.50
IBM 130 nm 5.76 1.00 7.20 1.25 12.96 2.25 11.52 2.00 24.48 4.25 34.56 6.00

∗Chip-enabled flip-flop

components. The S-box that we use is roughly 20% larger than the smallest published
S-box [36] to date. But this area difference can be used to account for the other AES
components. We will consider the lower bound for AddRoundKey to have 8 xor gates,
ShiftRows to have no area, MixColumns to have a multiply-by-2 unit and 8 xor gates,
and KeySchedule to have 8 xor gates and 8 registers for RCON counter. Altogether they
amount to less than 84 GE on STM 65 nm. This area is greater than the area difference
between our S-box and an optimal S-box. Thus, we believe the combined area of the state
and key registers and our S-box provides a tighter, but still loose, lower bound. While,
in theory, the same gate could be reused for multiple components, this would increase the
control circuitry and most likely negate the area decrease obtained from reuse. In Fig-
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Figure 4.8: Area on four different ASIC libraries
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ure 4.8(a), the area of Quark-AES is the lowest in each ASIC library category and the
area of Mathew is the highest in each category. But if we compare Quark-AES’s area on
TSMC 65 nm to Mathew’s area on STM 90 nm, they are almost the same. To more fairly
compare architectures of different designs synthesized with different libraries, only the area
owing to architectural design decisions (i.e. excludes state and key registers and S-box)
should be compared. This area is depicted in Figure 4.8(b), which shows smaller area
discrepancies across different ASIC libraries, for a given design. Now, Mathew’s area on
STM 90 nm is much higher than Quark-AES’s area on TSMC 65 nm, which better reflects
the actuality that Quark-AES’s architecture achieves smaller area than Mathew’s.

A comparison of the designs in terms of two optimality measures, throughput
area

and throughput
area2

,
is illustrated in Figure 4.9. Data points of the same colour have the same architecture and
the marker style indicates the datawidth in bits. In both graphs, the y axis is log scaled.
The x axis in Figure 4.9(a) is scaled as log(x) while the x axis in Figure 4.9(b) is scaled
as log(x2). The grey contour lines represent normalized optimality values: optimality

average optimality
.

The average optimality of all 12 datapoints is represented by the contour line labeled
1.00. Quark-AES consistently offers the lowest area in each datawidth category. In Fig-
ure 4.9(a), its optimality is slightly below Hamalainen’s for the 8-bit architecture, but on
par for the 16-bit and 32-bit designs. In Figure 4.9(b), Quark-AES outperforms (i.e. has
higher optimality than) every other architecture in each datawidth category.
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4.5.1 Optimized Quark-AES

In previous sections, many components were kept the same across all designs in order
to limit the comparison to just the architecture. Therefore, the final area results were
suboptimal. In Table 4.6, an optimized version of Quark-AES is provided. We replace
the S-box with Canright’s version [29] using the source code from [37]. Since Canright’s
publication, many new works (in [38],[36]) emerged with smaller S-box implementations.
Using any of these state-of-the-art S-boxes with Quark-AES will likely achieve even lower
area results than Table 4.6 reports. We also remove the round counter and use the RCON
counter in its place. The optimized Quark-AES encryption module is only 1870 GE, which
is smaller than all previously reported area results.

Table 4.6: Optimized versions of 8-bit Quark-AES

Sbox Counters Area Energy

(GE) (nJ/bit)

Mathew
round counter
byte counter

RCON
1960 15.4

Canright
byte counter

RCON
1870 15.9

4.6 Summary

In this chapter, an analysis of several architectural and component options for 8-bit AES
designs was conducted. ShiftRows can be implemented in one, three, or 16 clock cycles;
MixColumns can be implemented serially or in parallel; and the KeySchedule can have
a row-major or column-major design. Three existing encryption cores from the works of
Hamalainen, Moradi, and Mathew were implemented and synthesized on a common tech-
nology to provide a benchmark. In this benchmark, Hamalainen’s architecture came out on
top. Finally, a novel architecture, Quark-AES, was presented. It offers the benefits of low
latency, single S-box instance, and no requirement to reorder inputs or outputs externally.
Quark-AES has a 13% improvement in area and 8% improvement in throughput/area2

over Hamalainen’s design on STM 65 nm process.
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Chapter 5

Energy Optimization in AES and
PRESENT

In this part of the thesis, the goal is to reduce the energy consumed per bit, which is
the primary concern in battery-powered devices. The less energy the operation takes, the
more work can be done on one battery charge. Some of the energy optimizations that have
been explored in the research community include loop unrolling and operand gating, which
were previously mentioned in Sections 2.3 and 3.2.3. Section 5.1 describes a parameterized
implementation, applied to both PRESENT and AES, which allows for easy configuration
during design time. The datawidth in each implementation is the cipher’s block size.
Section 5.2 explains the low-energy techniques and their implementation. Section 5.3
describes the toolchain and libraries used. The results of the techniques, applied to both
ciphers, are presented in Section 5.4, which discusses the energy efficiency of non-pipelined
and pipelined designs, and the optimal glitch filter spacing and location. Finally, Section 5.5
summarizes and concludes the chapter.

5.1 Parameterized Implementation

In this work, a parameterized implementation of both ciphers was developed. A param-
eterized design is a design that can be easily re-used in different situations, through the
configuration of various developer-defined parameters. By choosing the parameters before
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synthesis, a variety of designs can be obtained from a single RTL core. To achieve this,
the hardware descriptive language must support such a feature. In VHDL, this is done
through the use of ‘generics’, shown in Figure 5.1.

entity PRESENT i s
generic (

rpcc : i n t e g e r := 2 ;
ccps : i n t e g e r := 1

)
port (

. . .
)

end entity PRESENT;

Figure 5.1: VHDL syntax for ‘generic’

The parameters in the parameterized implementation of AES and PRESENT are rpcc
and ccps. The parameter rpcc represents the number of encryption rounds per clock cycle:
that is, the degree of loop unrolling. The parameter ccps refers to the number of clock cycles
per stage: in other words, the degree of pipelining (i.e. ccps = 1 means fully pipelined while
ccps > 1 means partially pipelined). With these two parameters, different combinations of
loop unrolled and pipelined designs can be obtained and, depending on the application, the
parameters can be carefully chosen to get the desired tradeoffs in throughput, area, and
energy. For PRESENT, the rpcc and ccps values that are explored are 1, 2, 4, 8, 16, and
32, and for AES, they are 1, 2, 3, 4, 6, and 11. These values were selected so that as few
hardware components as possible would have a utilization less than 1, where utilization,
Ui, is defined below:

Ui =
Number of clock cycles that component i is in use

Number of clock cycles required to complete encryption operation
(5.1)

A utilization less than 1 means components are unused some of the time. The product of
rpcc and ccps should be less than or equal to the number of rounds. This is best reasoned
using the formula for number of stages, S:

S =

⌈
N

rpcc× ccps

⌉
(5.2)

where N represents the number of rounds in the algorithm. Suppose rpcc × ccps > 32
for PRESENT. Then the fraction inside the ceiling function would be less than 1, which
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means the utilization is less than 1 and this is undesirable. Since the number of rounds in
AES is a prime, it cannot be helped that some components will have utilization less than
1 when the degree of loop unrolling is greater than 1. For AES, the condition is restricted
to rpcc× ccps < 12.

A number of other helpful parameters can be derived from the rpcc and ccps values.
Let Bb represent the number of bits per block and Bk the number of bits per key.

To obtain ccps, given S:

ccps =

⌈
N

rpcc× S

⌉
(5.3)

To obtain rpcc, given S:

rpcc =

⌈
N

ccps× S

⌉
(5.4)

The number of clock cycles, C, required to complete the encryption operation is:

C =

⌈
N

rpcc

⌉
(5.5)

The throughput, T , in bits/cycle, is calculated as:

T =
Bb

ccps
(5.6)

The number of state registers, Rp, is:

Rp = S ×Bb (5.7)

The number of key registers, Rk, is:

Rk = S ×Bk (5.8)
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5.2 Glitch Filters

In a non-pipelined design, loop unrolling can reduce latency, as it reduces the number
of clock cycles required and subsequently the number of registers in the datapath. Fur-
thermore, it should eliminate the energy otherwise spent in those registers and, in turn,
reduce the overall energy per bit. However, in fact, an increase in energy is observed in
loop unrolled designs because it introduces more glitching, which arises from the longer
combinational paths. The effectiveness of loop unrolling on energy depends on the degree
of unrolling, and there exists some optimal number of rounds per clock cycle that offers
the greatest energy savings.

Fortunately, the glitching energy from loop unrolling can be reduced by applying
operand gating, a low-power technique that blocks the propagation of switching activ-
ity through the circuit. One method to achieve this is by gating each combinational round
with and gates, illustrated in Figure 5.2(a). As a result, the output of a round is only
propagated when the control signal, eni, is asserted. These enable signals effectively turn a
round ‘on’ or ‘off’. The idea is to turn a round off until the signals from the previous round
have stabilized. Another implementation of operand gating, illustrated in Figure 5.2(b),

Round
logic

Round
logic

Round
logic

en0 en1

(a) and-gate gating. AND-gates are shown in orange.

Round
logic

Round
logic

Round
logic

en0 en1

(b) Latch gating. Latches are shown in green.

Figure 5.2: Operand gating implementations

requires the use of latches and works similarly to the and-gate method. The positive
level-sensitive latches go transparent only when eni is asserted. Otherwise, they latch onto
the old value, preventing switching activity (glitching). There is some area overhead which
accompanies operand gating due to the and gates or latches themselves as well as the
circuitry required to generate the enable signals.
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5.2.1 Generating enable Signals

The enable signals need to asssert in successive intervals. In previous works, this was
accomplished using a delay chain [14], [15]. Instead of using delay units, we’ve opted to
use a secondary clock generated externally and passed into an input port of the cipher
module. On embedded systems, the system clock is usually generated from a crystal
oscillator using a circuit divider. It would not be difficult to generate the secondary clock
in a similar fashion; simply a different constant in the circuit divider is required. Thus, the
cipher module receives two clock signals as inputs: clk and clkfast, shown in Figure 5.3.
Input ports are listed on the left in Figure 5.3 while output ports are shown on the right.

Cipher interface

i_clk
i_clk_fast

i_valid

o_valid

i_plaintext
i_key

o_ciphertext

Figure 5.3: Interface of cipher module

The enable signals are generated using a secondary clock, clkfast whose frequency is
rpcc times that of the primary clock, clk. For rpcc rounds, rpcc − 1 enable signals are
needed. Within a clock cycle of clk, the enable signals are asserted successively at each
rising edge of clkfast. Figure 5.4 depicts the waveforms of the enable signals for and-gate
and latch glitch filtering methods. The waveforms of the enable signals for the two methods
are slightly different for a reason. In the and-gate method, the enable signals must remain
high until the round outputs are stored in a register. With latches, the enable signals can
go low at any time after the stabilized value has been latched. Theoretically, the enable
signals in Figure 5.4(a) could be used for the latch method as well. However, having the
falling edge of the enable signals close to the rising edge of clk can cause hold and setup
violations. This is further explained in Section 5.2.2.

The enable signals for the and-gate glitch filter and latch-based glitch filter are gen-
erated by the circuit depicted in Figure 5.5. The circuit elements in white are required
to generate the enable signals for the and-gate method. In addition to this, the green
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clk_fast
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(a) and-gate

clk

clk_fast

en0

en1

en2

(b) Latch

Figure 5.4: Enable signals waveforms

circuity is required to generate the enable signals for the latch-based method. A delayed
clock signal, clkd, follows the clk signal with a delay of one clkfast clock cycle. Pulse z is
a pulse with width equal to one clock cycle of clkfast occuring right after the rising edge
of clk. The first enable signal, enAND0 , is simply the signal z inverted. Subsequent enable
signals are generated using delayed versions of it (en dANDi ) that are masked by enAND0 . To

clkd

z
clk

clkfast

en0AND

en1AND

en_d0AND en_d1AND

en2AND

en0latch en1latch en2latch

latch_mask

Figure 5.5: Circuit for enable signal generation for rpcc=4

achieve the enable signals for the latch-based scheme, the enable signals of the and-gate
method are masked by a signal (latch mask) that causes the bits to go to zero half a clkfast
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clock cycle before the next rising edge of clk. The waveforms of the intermediate signals
in Figure 5.5 are shown in Figure 5.6.

clk

clk_fast

en0AND

en1AND

en2AND

clk_d

z

clk_fast_inv

en0LATCH

en1LATCH

en2LATCH

en_d0AND

en_d1AND

latch_mask

Figure 5.6: Waveform for signals in Figure 5.5

In order for the AND-gate glitch filter to function correctly and to properly eliminate
glitches, the time between the assertions of successive enable signals and, in turn, the
period of clkfast, tclkfast , must be longer than the propagation delay, tp, through one com-
binational round. That is, we need tfast clk > tp. As for the latch-based filter, the duration
of the transparency of a latch must be longer than the propagation delay through one
round. The latch that has the shortest transparency duration is the one that gates the last
combinational round; it is transparent for half a clkfast clock cycle. Thus, the constraint
imposed on the clock period of clkfast is tfast clk > 2tp. The number of unrolled rounds
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that can be implemented depends on the periods of clk and clkfast; rpccmax = tclk
tclkfast

.

5.2.2 Setup and Hold Timing

The waveforms shown in Figure 5.4 are ideal signals. In practice, setup and hold timing
need to be taken into account. For a rising-edge-triggered register, setup time refers to the
amount of time the data signal must be stable before the rising edge of the clock. Similarly,
the hold time refers to the amount of time the data signal must be stable after the rising
edge of the clock. For a positive level-sensitive latch, the setup time denotes the time the
data signal must be stable before the falling edge of the clock. The hold time denotes the
time the data signal must be stable after the falling edge of the clock. Hold and setup time
requirements for a flip-flop and a latch are illustrated in Figure 5.7.
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Figure 5.7: Setup and hold timing for a flip-flop and latch

In the and-gate scheme, the enable signals must satisfy the hold time and thus, should
go low after the next rising edge of the primary clock (so that the output of the last unrolled
round remains stable). In other words, they need to be held stable up until the end of the
yellow region in Figure 5.7(a).

For the latch design, in each primary clock cycle, the enable signals must go low before
data in the next clock cycle changes. If the enable signals go low too close to the rising
edge of clk, which is when data changes, then a setup or hold violation may occur. Even if
a timing violation does not occur, we want to prevent the erroneous case of latching onto
the data values of the next clock cycle. For this reason, the latch enable signals go low half
a clkfast clock cycle before rising edge of clk.
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5.3 Methodology

The and-gate and latch-based glitch filters were implemented for AES and PRESENT
block ciphers. The propagation delay of one encryption round is determined by synthesizing
the design with one round per clock cycle and obtaining the value reported by the tools.
In PRESENT, the propagation delay is 1.06 ns and in AES 3.04 ns.

The parameterized implementation presented in Section 5.1 is enhanced to accommo-
date the baseline, latch, and and-gate implementations. The glitch filter method can be
selected via the generic parameter method, which can take values 0, 1 or 2, representing the
baseline, latch-based glitch filtering, and and-gate glitch filtering designs, respectively. We
will also explore the optimal spacing between glitch filters, which can be selected using the
parameter gfs (glitch filter spacing), as well as the optimal placement of a fixed number
of filters, which can be selected using the parameter gfl (glitch filter location).

The low-energy optimizations are synthesized using ST Micro 65 nm CORE65LPLVT
at 1.25 V. Compilations were performed using the compile ultra command, with clock
gating and preservation of component hierarchies. Mentor Graphics ModelSim SE v10.5c
was used for simulations. Synopsys Design Compiler version P-2019.03 was used for logic
synthesis and Cadence Encounter v14.13 for physical synthesis, with density set to 90%.
Power analysis is also conducted by Cadence Encounter. Energy consumption (nJ/bit) is
derived using Equation 3.1. Timing simulations were performed using a clock period of
512 ns (≈ 2 MHz frequency), which is sufficient time to accommodate fully unrolled designs
of PRESENT and AES.

There are many variables at play in this analysis (rpcc, ccps, method, gfs, gfl) and
they all affect energy, area, and throughput differently depending on the combination of
variables. There are too many combinations to examine all of them. Thus, only one vari-
able will be changed at a time. First, the energy, area, and throughput for each method are
assessed in a non-pipelined implementation (i.e. single stage). In other words, only rpcc
is varied (ccps is derived from rpcc and S = 1). Next, we investigate the effect of chang-
ing the glitch filter spacing and the location of glitch filters, still only for non-pipelined
implementation. Finally, we explore the effect of glitch filters on energy in pipelined im-
plementations.
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5.4 Results and Analysis

5.4.1 Glitch Filters in Unrolled Rounds

In this section, we consider a non-pipelined design with glitch filters applied after every
round. Figure 5.8 depicts the energy, area, and throughput trends for PRESENT and AES.
In PRESENT, the optimal glitch filter method depends on the rpcc value. For rpcc ≤ 4, the
baseline method is the most energy efficient, as indicated in Figure 5.8(a). For rpcc > 4, the
and-gate scheme provides the lowest energy, although it is better than the latch method by
a negligible amount. The non-monotonicity in the PRESENT baseline trend demonstrates
that simply increasing the degree of loop unrolling does not increasingly save energy. At its
global minimum (rpcc = 2), the energy saved from the reduction in registers is greater than
the energy introduced by glitches, thus the overall energy consumption is lower than the
design with no loop unrolling (i.e. rpcc = 1). Still considering only the baseline trend, for
rpcc > 2, the glitching energy surpasses the energy saved from the reduction in registers,
thus the overall energy increases. When a glitch filtering technique is applied, the glitching
energy is reduced and the energy overhead instead comes from the glitch filter circuitry,
whose energy is much smaller than the glitching energy. Instead of having a local minimum
such as in the case of the baseline, the and-gate and latch glitch filtering trends appear to
be monotonically decreasing.

For AES, the latch glitch filtering technique provides the most energy savings for all
values of rpcc. The design that offers the lowest energy has rpcc = 6, illustrated in
Figure 5.8(b). Unfortunately, synthesis results could not be obtained for AES design with
and-gate and latch glitch filters for rpcc = 11 because the gate instance count exceeds
the maximum that our tool license supports. As the block size of AES (128) is twice that
of PRESENT (64) and the AES operations are more complex than that of PRESENT,
the baseline energy consumption of AES in Figure 5.8(b) is much greater than that of
PRESENT. Moreover, AES has a deeper datapath for a single round. As a result, applying
round unrolling without glitch filters is not beneficial; the glitching energy of unrolled
rounds always exceeds the energy saved by the reduction in registers. Like in the case of
PRESENT, using glitch filters significantly reduces the glitching energy without adding
much energy overhead.

In Figure 5.8(c) and Figure 5.8(d), the area overhead of each method is presented. Since
there is only one stage, the area is affected only by rpcc and the relationship is linear. This
makes sense because rpcc directly indicates how many duplicate combinational hardware

66



0 4 8 12 16 20 24 28 32
rpcc

2

4

6

8

10

12

14

16

En
er

gy
(n

J/
bi

t)

Baseline
AND-gate
Latch

(a) PRESENT Energy vs rpcc

1 2 3 4 5 6 7 8 9 10 11
rpcc

10

20

30

40

50

60

En
er

gy
(n

J/
bi

t)

Baseline
AND-gate
Latch

(b) AES Energy vs rpcc

0 4 8 12 16 20 24 28 32
rpcc

0

5

10

15

20

25

30

35

Ar
ea

(k
G

E)

Baseline
AND-gate
Latch

(c) PRESENT Area vs rpcc

1 2 3 4 5 6 7 8 9 10 11
rpcc

20

40

60

80

100

120

140

160

Ar
ea

(k
G

E)

Baseline
AND-gate
Latch

(d) AES Area vs rpcc

0 4 8 12 16 20 24 28 32
rpcc

0

10

20

30

40

50

60

Th
ro

ug
hp

ut
(b

its
/c

lk
 c

yc
le

)

Baseline
AND-gate
Latch

(e) PRESENT Throughput vs rpcc

1 2 3 4 5 6 7 8 9 10 11
rpcc

20

40

60

80

100

120

Th
ro

ug
hp

ut
(b

its
/c

lk
 c

yc
le

)

Baseline
AND-gate
Latch

(f) AES Throughput vs rpcc

Figure 5.8: Energy, area, and throughput trends for single stage design
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components are required. Because AES is a much larger cipher than PRESENT, the area
overhead of applying glitch filtering in AES is, as a percentage, much smaller than applying
it in PRESENT. In absolute terms, having glitch filtering in AES results in a higher area
overhead due to its block size being twice that of PRESENT. The throughput remains
independent of the glitch filtering method, illustrated in Figure 5.8(e) and Figure 5.8(f).

When there are multiple metrics by which to evaluate a design and an overall assessment
is desired, it can be helpful to use an optimality measure which combines the important
metrics. For instance, if both throughput and area are important in a design, we can use
the optimality measure O = throughput

area
, where higher values of O indicate a better design.

The metrics whose higher values indicate a better design should be in the numerator
while metrics whose lower values indicate a better design (i.e. costs) should be in the
denominator. In this discussion, energy, area, and throughput are all important. Thus,
we can use the optimality measure throughput

energy×area . Figure 5.9 plots this normalized optimality
measure against rpcc for a non-pipelined implementation. For PRESENT, the design that
gives the highest optimality is the and-gate design with rpcc = 32, shown in Figure 5.9(a).
For AES, the optimal designs are the latch designs with rpcc = 1, shown in Figure 5.9(b).
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Figure 5.9: Optimality trends

Table 5.1 summarizes the designs that achieved the lowest energy for each rpcc. The
design with the global minimum energy is in bold for each cipher.
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Table 5.1: Summary of designs having the lowest energy for each rpcc value

Cipher rpcc
Lowest energy

method
Energy Area Optimality

(nJ/bit) (GE)

PRESENT

2 Baseline 2.55 2210 71.0
4 Baseline 2.78 3320 86.7
8 Latch 2.75 9840 59.1
16 Latch 2.63 18700 65.1
32 Latch 2.53 36400 69.5

AES

2 Latch 6.98 32600 9.38
3 Latch 7.08 49600 9.11
4 Latch 7.10 66200 9.08
6 Latch 6.79 97100 9.71

5.4.2 Glitch Filter Spacing in Unrolled Rounds

In the previous section, the glitch filters were placed between every combinational round
within a clock cycle. Since the glitch filter circuitry consumes energy, some of the glitching
energy saved by the glitch filter will be offset by the energy cost of the glitch filter itself.
The goal of this section is to find the optimal spacing of glitch filters at which the total
energy consumption is minimized. The gfs parameter is used to indicate the glitch filter
spacing, where glitch filters are applied every gfs round.

Figure 5.10 shows how the glitch filter spacing in PRESENT affects the energy con-
sumption for different values of rpcc. For the and-gate scheme in Figure 5.10(a), the lowest
energy consumption occurs at rpcc = 32 and gfs = 1. When rpcc > 4, applying and-gate
glitch filters between every round provides the biggest energy savings. For the latch-based
scheme in Figure 5.10(b), the lowest energy consumption occurs at rpcc = 32 and gfs = 2.
The energy savings are maximized when the latch-based glitch filter is applied every second
round, for all rpcc values. An interesting observation is made when looking at combinations
rpcc = 4, gfs = 2 and rpcc = 4, gfs = 3 for the and-gate method. Both combinations
have the same number of glitch filters per round (i.e. 1), but the energy results differ. The
observation is also present when looking at rpcc = 8: the energy for gfs = 6 is lower than
the energy for gfs = 4. We will see why this is the case in the Section 5.4.3.

The effect of the glitch filter spacing on AES is depicted in Figure 5.11. For the
and-gate glitch filtering scheme, the baseline without unrolled rounds achieved the lowest
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Figure 5.10: Varying glitch filter spacing in PRESENT
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energy. For rpcc > 1, having a glitch filter spacing of 1 achieves the lowest energy for all
degrees of unrolling except rpcc = 3. Generally, the energy decreases as gfs decreases,
indicating that the energy cost of the glitch filter is small compared to the energy that it
saves. The latch-based method, in Figure 5.11(b), shows similar trends to the and-gate
scheme. A glitch filter spacing of 1 achieves the best results and compared to the and-gate
scheme, it is more energy efficient. While the and-gate method achieves the lowest energy
at rpcc = 2 and gfs = 1, the latch is more efficient at rpcc = 6 and gfs = 1. Because AES
is a much larger cipher than PRESENT, the area overhead of either glitch filtering scheme
is small, illustrated in Figures 5.11(c) and 5.11(d). The optimality trends, in Figure 5.11(e)
and Figure 5.11(f), correspond with the energy trends in each glitch filtering scheme; the
configurations that prevailed in the energy metric also prevailed in the optimality metric.
Table 5.2 summarizes the gfs value that achieved the lowest energy for each rpcc value.
Optimal energy consumption values are bolded for each cipher.

Table 5.2: Summary of best glitch filter spacing for each rpcc value

Cipher Method rpcc gfs Energy Area Optimality

(nJ/bit) (GE)

PRESENT

AND-gate

2 - 2.55 2210 71.0
4 3 2.57 3530 88.2
8 1 2.66 7050 85.3
16 1 2.54 13300 94.7
32 1 2.48 25700 100.4

Latch

2 - 2.55 2210 71.0
4 2 2.52 3840 12.4
8 2 2.54 7540 24.5
16 2 2.36 14500 52.8
32 2 2.29 28400 108.7

AES

AND-gate

2 1 10.5 32900 6.18
3 2 14.0 48000 4.76
4 1 16.4 64400 4.04
6 1 14.6 96300 4.55

Latch

2 1 6.98 32600 9.38
3 1 7.08 49600 9.11
4 1 7.10 66200 9.08
6 1 6.79 97100 9.71
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Figure 5.11: Varying glitch filter spacing in AES
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5.4.3 Glitch Filter Locations in Unrolled Rounds

In Section 5.4.2, the spacing between glitch filters was varied, which affected the number
of glitch filters as well as their location. However, the optimal location of the glitch filters
was not assessed. In situations wherein hardware area is a premium and only a limited
number of glitch filters can be employed, it is important to know where the glitch filters
should be placed such that energy is minimized. This section explores the optimal location
of having one, two, and three glitch filters in PRESENT. Let Ngf represent the number of
glitch filters. The parameter gflx (glitch filter location) will be used to denote the location
of the xth glitch filter, where 1 ≤ x ≤ Ngf . For example, gfl2 = 3 indicates that the
second glitch filter is placed after the third combinational round. We limit the exploration
to rpcc = 8.

We will first explore the optimal location of a single glitch filter. Figure 5.12 illustrates
the energy per bit as a function of the location of the single glitch filter. The global
minimum at gfl1 = 5 in Figure 5.12(a) indicates that the energy is minimized when the
and-gate glitch filter is placed after the fifth combinational round. For the latch glitch
filtering scheme, however, optimal energy savings are achieved when the glitch filter is
placed after the fourth combinational round, shown in Figure 5.12(b). To understand why
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Figure 5.12: Energy of designs with one glitch filter

this is the case, we examined the toggle frequency of the msg signal at the end of each
combinational round, shown in Figure 5.13. The toggle trends observed in the msg signal
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is a good estimation of the toggle trends for the whole circuit. Since energy is proportional
to the switching activity, the toggle trend could also provide a good estimation of the
energy trend of the entire circuit. Figure 5.13(a) illustrates the toggle activity of msg for
every round and Figure 5.13(b) depicts the total toggles of that signal (i.e. the sum of
the points in Figure 5.13(a)). The trend in Figure 5.13(b) closely resembles the trend in
Figure 5.12(a), while the trend in Figure 5.13(c) closely resembles that in Figure 5.12(b).
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Figure 5.13: Toggle activity of msg signal for designs with a single glitch filter
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Due to the nature of the and-gate glitch filtering scheme, there is an imbalance in
the amount of switching activity in the rounds preceeding the glitch filter compared to the
rounds proceeding the glitch filter. In the rounds before the glitch filter, toggles occur soon
after the rising edge of the clock, with the switching activity increasing in the later rounds.
The rounds proceeding the glitch filter will see glitches not only when the enable signal goes
high but also when it goes low at the beginning of the clock cycle. Thus, rounds after the
glitch filter will experience glitching on two separate occasions. Figure 5.13(a) demonstrates
that the rounds after the glitch filter have higher toggle frequency. Figure 5.14(a) illustrates
an example of the glitching activity in one clock cycle for rpcc = 4 and gfl1 = 2. Because
of this imbalance in switching activity, the optimal location of the single glitch filter lies
not at the halfway point of the combinational rounds, but rather at some point beyond
that. Unlike the AND-gate glitch filtering method, the rounds after the latch glitch filter
do not toggle at two different points in time; they toggle only when en goes high and not
when en goes low. Figure 5.14(b) shows an example of the toggle activity in a latch-based
glitch filtering scheme for rpcc = 4 and gfl1 = 2.
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round4_out

en

(a) AND-gate

clk
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round4_out
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Figure 5.14: Glitches (in blue) in a clock cycle for rpcc = 4 and gfl1 = 2

Next we will look at finding the optimal locations of two AND-gate glitch filters. With
eight combination rounds, there are 7 possible places to insert glitch filters. Two locations
need to be chosen so that gives

(
7
2

)
= 21 possible designs. To save time, a subset of all

combinations is explored. Glitch filters will be inserted at only the 5 middle locations,
which gives

(
5
2

)
= 10 possible designs. Figure 5.15(a) illustrates the energy per bit for

each of the 10 designs. The most energy savings come from the design with gfl1 = 4 and
gfl2 = 6, indicated by the global minimum. The energy for two latch-based glitch filters
is shown in Figure 5.15(b). The most energy-efficient design has gfl1 = 3 and gfl2 = 6.
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Figure 5.15: Energy of designs with two glitch filter

With three glitch filters, there are also
(
5
3

)
= 10 possible combinations if we limit

the locations of the glitch filters to the 5 inner rounds, similar to the investigation of
two glitch filters. The energy of designs with three and-based glitch filters appears in
Figure 5.16(a). The energy for three latch-based glitch filters is shown in Figure 5.16(b).
The most energy-efficient design for both the and-gate and latch glitch filtering schemes
occurs with gfl1 = 3, gfl2 = 5, and gfl3 = 6.
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Figure 5.16: Energy of designs with three glitch filter
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Table 5.3 summarizes the optimal configurations for designs having one, two, and three
glitch filters. The ‘glitch filter spacing’ exploration demonstrated that for rpcc=8 and
the and-gate filtering scheme, the most energy-efficient configuration is to have glitch
filters in between every round, which means having 7 glitch filters. The resulting energy
is 2.66 nJ/bit. Comparable energy savings can be achieved by using only 3 optimally
placed glitch filters for rpcc=8, which has a much lower area overhead. The ‘glitch filter
spacing’ exploration also showed that for rpcc = 8 and the latch-based glitch filtering
scheme, the most energy-efficient design has gfs = 2, which has three glitch filters. The
resulting energy is 2.54 nJ/bit. By assessing different combinations of the location of glitch
filters, the ‘glitch filter location’ exploration arrived at a better design that the ‘glitch filter
spacing’ exploration missed; the final row in Table 5.3 lists a design using three latch-based
glitch filters with an energy result of 2.51 nJ/bit.

Table 5.3: Summary of best glitch filter locations in PRESENT

Filter method Num. filters Lowest energy design Energy (nJ/bit)

AND
1 gfl1 = 5 3.45
2 gfl1 = 4, gfl2 = 6 2.92
3 gfl1 = 3, gfl2 = 5, gfl3 = 6 2.89

LATCH
1 gfl1 = 4 2.98
2 gfl1 = 3, gfl2 = 6 2.58
3 gfl1 = 3, gfl2 = 5, gfl3 = 6 2.51

5.4.4 Glitch Filters in a Pipelined Design

In this section, we investigate how energy, area, and throughput vary under different de-
grees of pipelining in unrolled designs. To limit the number of variables at play, we will only
consider designs in which glitch filters are applied every round. The degree of pipelining
can be controlled by modifying either ccps, the clock cycles per stage, or S, the number of
stages. The ccps parameter is useful because in pipelined designs, it dictates the through-
put. For instance, ccps = 2 means a ciphertext is ready every two clock cycles. The number
of stages directly relates to how much duplicate hardware is required. Having three stages,
for example, means three copies of hardware are required. The parameters rpcc, ccps, and
S are all interdependent and modifying one variable will affect at least one of the other two.
See Section 5.1 for details of the relationship among these variables. In previous sections,
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we considered round unrolling in non-pipelined designs. Although throughput can be in-
creased by unrolling rounds (i.e. having more rounds per clock cycle means less clock cycle
are required to complete the operation), the maximum number of unrolled rounds might
be limited by the clock period and further throughput gains would have to be attained by
pipelining. The purpose of this section is to explore whether for a given number of unrolled
loops, the degree of pipelining affects the total energy consumption.

Figure 5.17 depicts energy, area, and optimality as a function of rpcc for different
values of ccps in both the and-gate and latch glitch filtering schemes. For a given value
of rpcc, the energy consumption remains relatively independent of ccps, as depicted in
Figures 5.17(a) and 5.17(b). This makes sense because pipelining does not change the
datapath of the operation; it simply allows the parallel execution of multiple messages.
Whether there are two or four messages being encrypted simultaneously has no impact
on the amount of work (i.e. energy) required to encrypt one message. Area, shown in
Figures 5.17(c) and 5.17(d), is affected by both rpcc and ccps. For a given ccps, the area
decreases as rpcc increases because the number of stages decreases. For a given rpcc, the
area decrease as ccps increases also because the number of stages decreases. The global
maximum optimality values, shown in Figures 5.17(e) and 5.17(f), correspond with the
global minimum energy values. Figure 5.18 portrays the same data as Figure 5.17 except
the lines are grouped by stages instead of ccps.

Since pipelining does not have much effect on energy consumption of the circuit ( for a
given rpcc), but does on the area and throughput, the rpcc and glitch filter scheme should
be selected first to achieve the desired energy consumption, after which the the degree of
pipelining can be selected to achieve the desired area and throughput.

5.5 Summary

In this chapter, two glitch filtering schemes were analyzed for unrolled designs of PRESENT
and AES block ciphers. One method uses and-gates in between combinational rounds
while the other used latches. Both methods rely on enable signals to ‘activate’ the rounds,
allowing the propagation of signals only after they have stabilized. The energy consumption
of PRESENT and AES was assessed as a function of rpcc (rounds per clock cycle) and
gfs (glitch filter spacing). For PRESENT, two additional parameters, gfl (glitch filter
location) and ccps (clock cycles per stage), were also investigated.
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(f) Latch glitch filter optimality

Figure 5.17: Varying degree of pipelining by ccps
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Figure 5.18: Varying degree of pipelining by stages
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In general, the latch method achieved better energy savings than the and-gate method.
In PRESENT, the optimal energy savings occurred in 32 unrolled rounds with latch glitch
filters spaced every two rounds. When the number of glitch filters is limited to a few, near-
optimal energy savings can be obtained by placing the glitch filters at optimal locations.
For rpcc = 8, latch glitch filters should be placed after the third, fifth, and sixth rounds.
In AES, the latch glitch filters also provided the biggest energy savings. The most energy
efficient design had 6 unrolled rounds with latch glitch filters after every round. Because
AES is much larger, the energy overhead of the glitch filters, as a percentage, isn’t as great
as in PRESENT.
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Chapter 6

Conclusion and Future Work

In this final chapter, the research work is summarized. Major points of this thesis are
highlighted in Section 6.1 and ideas for future research work are presented in Section 6.2.

6.1 Summary

This thesis explored low-area and low-energy hardware optimizations for two block ciphers.
PRESENT is a lightweight block cipher designed for low-power applications such as IoT or
smart devices. AES is the most popular and widely adopted cipher, used in most smart-
phones and laptops and by the US government to protect highly classified information.
Despite being much larger than PRESENT, AES is often still the preferred choice for
embedded and resource-constrained applications because of its high level of security and
reliability.

To offer AES as an option for even extremely resource-constrained devices, we pro-
vided a low-area ASIC implementation of its encryption algorithm in Chapter 4. We also
implemented, analyzed, and compared three existing low-area AES encryption cores on a
common technology (STMicro 65 nm). Using our taxonomy of architectural and compo-
nent options for an 8-bit design, we showed how different design goals should motivate
different design decisions. Our benchmark offers results in the metrics of area, energy,
power, and optimality. Our architecture, Quark-AES, showed a 13% improvement in area
and 8% improvement in throughput/area2 compared to the runner-up. To illustrate the
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extent of variations due to the use of different ASIC libraries, we also synthesized the de-
signs on three additional technologies. Even for the same transistor size, different ASIC
libraries produce different area results for the same RTL design. Knowing this, comparing
the report area values from existing works can be unreliable and our benchmark remedies
this issue. Because some applications require a more balanced tradeoff between throughput
and area, we extended each architecture to higher datawidths, including 16-bit and 32-bit
datawidths.

The second part of this thesis assessed two glitch filtering methods in unrolled designs of
AES-128 and PRESENT. The first method used a bank of AND gates in between unrolled
rounds and allowed signals to be propagated only after they had stabilized in the previous
round. The output of the and gates were controlled by enable signals (one for each unrolled
round) which asserted in successive intervals. The second glitch filtering scheme worked in
a similar fashion, but used latches in place of and gates and whose transparent mode was
controlled by the enable signals. In the analysis, a non-pipelined implementation with loop
unrolling was first considered. When glitch filters are applied at every round in PRESENT,
the baseline (no glitch filter) offered the lowest energy consumption for rpcc ≤ 4 while the
latch glitch filtering scheme provided the lowest energy consumption for rpcc > 4. In AES,
the latch glitch filter was the best method for all values of rpcc. The energy consumption
of each cipher was also affected by the glitch filter spacing. In PRESENT, applying latch
glitch filters every other round provided the most energy savings. Applying them every
round caused the energy of the glitch filter to dominate the energy it saved, while applying
it less than every other round caused the glitching energy to dominate. In AES, it was
most energy-efficient to apply latch glitch filters every round. When the number of glitch
filters is restricted due to area requirements, significant energy savings can still be obtained
by placing the available glitch filters at optimal locations.

6.2 Future Work

The work in this thesis certainly leaves room for further research. On the low-area front,
this thesis only developed an encryption core of AES. Although Quark-AES still remains
practical when used as part of cipher feedback, output feedback, or counter modes, it
would benefit to have other options available by having a decryption core. The decryption
support can be added by either building a merged encryption/decryption datapath or a
separate decryption core.

83



While this thesis assessed architectural options for an 8-bit AES design, it didn’t explore
the details within a component, such as the internals of the S-box. Further research
should be done to examine different composite field constructions and polynomials, such
as Mathew did, to see (1) whether the architecture affects what the optimal polynomial
is, and (2) whether the ASIC library affects what the optimal polynomial is. Hardware
ciphers are often vulnerable to physical attacks such as side-channel attacks. It would
be worth exploring a masking implementation for Quark-AES, like Moradi did for their
cipher, as well as other side-channel countermeasure techniques.

The glitch filtering methods analyzed in this work were performed only for ASICs. It
may be interesting to extend the analysis to FPGAs to see how they compare to the results
in this thesis. If sufficient analysis is conducted on several different block ciphers, it may be
possible to achieve a model that predicts the optimal number of glitch filters for a cipher
depending on its size.
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Appendix A

Finding a Transformation Matrix
Between Two Fields

A.1 Method

A finite field GF (2n) can be regarded as an n-dimensional vector space over GF (2). Every
vector space has a basis; that is, a set of elements that are linearly independent. Every
element in the vector space can be represented as a linear combination of the basis vectors.
A vector space can have more than one bases.

Typically, finite fields are represented in one of three bases: standard (or canonical or
polynomial), normal, and dual [35, Chapter 2.1.3]. In this section, we are only concerned
with the polynomial basis, whose definition is given below:

Definition A.1.1 (Polynomial Basis) If α is a root of the irreducible polynomial P (x)
of degree n, then the set {1, α, α2, . . . , αn−1} forms a polynomial basis for the field GF (qn).

This representation is equivalent to the representation presented in Section 2.1. That
is, the polynomial representation A(x) = an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 is equivalent to

A(α) = an−1α
n−1 + · · ·+ a2α

2 + a1α + a0.
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Because a composite representation has different defining polynomials, it will also have
a different basis. The purpose of a transformation matrix is to perform a change of basis;
that is, to perform an isomorphic mapping of field elements represented with respect to
the binary field to elements represented with respect to the composite field. To obtain the
representation of an element, Eα, in basis α, perform matrix-vector multiplication of the
transformation matrix, M , with the representation of element Eβ in basis β: Eα = M ·Eβ.

Paar’s algorithm for finding an isomorphic mapping applies only to irreducible polyno-
mials that are primitive [35, Chapter 2.2]. The AES polynomial is not primitive, thus his
algorithm cannot be applied. Zhang [34] proposed an algorithm that works for polynomials
that are non-primitive. If α is a root of the irreducible polynomial P (x) = x8+x4+x3+x+1
used in AES, then the set {1, α, α2..., α7} forms a polynomial basis for the field [34]. The
basic idea is to find eight base elements, 1, β, β2, . . . , β7 of the composite field that map
to the base elements 1, α, α2, . . . , α7 of the binary field representation. The transformation
matrix is constructed by taking the binary representation of βj as the jth column entry.
A simplified version of Zhang’s algorithm is the following. Iterate over all the elements
in the composite field and check if the current element ω satisfies P (ω) = 0, where the
computation is carried out according to the arithmetic rules of the composite field. If the
condition is satisfied, then a base element β is found. Zhang’s algorithm is a more efficient
version of this as it removes elements of the same conjugacy class as ω, if ω doesn’t satisfy
P (ω) = 0. Their algorithm requires (2q − 1)/2q checkings, on average, for a field of order
2q.

For a given field construction, there are eight possible isomorphic mappings that map
the elements in GF (28) to elements in the composite field [34], each one differing in hard-
ware complexity. In Appendix A.2, the default bases (that GAP employs interally) is
used. GAP (Groups, Algorithms, and Programming) is a free software package for compu-
tation in discrete abstract algebra [39]. Particularly useful for this section are the functions
provided on Galois fields [39, Chapter 59].

A.2 GAP Code

toBinL i s t := func t i on ( x )
l o c a l i , s t r ;
s t r := [ ] ;

f o r i in x do
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i f i = 0∗Z(2) then
Add( s t r , 0 ) ;

e l s e
Add( s t r , 1 ) ;

f i ;
od ;

r e turn s t r ;
end ;

# Create indete rminate
x := X(GF( 2 ) , ”x ” ) ;

# Construct AES Galo i s F i e ld
a e s g f := GF(GF( 2 ) , xˆ8 + xˆ4 + xˆ3 + x + 1 ) ;

# Construct Mathew ’ s ground f i e l d
ground := GF(GF( 2 ) , xˆ4 + xˆ3 + 1 ) ;
y := X( ground , ”y ” ) ;

alpha := LinearCombination ( Bas i s ( ground ) , [ 0 , 1 , 1 , 0 ] ) ;
beta := LinearCombination ( Bas i s ( ground ) , [ 1 , 0 , 0 , 1 ] ) ;

# Construct Mathew ’ s ex tens i on f i e l d
extens i on := GF( ground , yˆ2 + alpha ∗ y + beta ) ;

# Find t rans fo rmat ion matrix us ing the b a s i s v e c t o r s

ae s bas := Bas i sVector s ( Bas i s ( a e s g f ) ) ;
M := [ ] ;

f o r i in ae s bas do

i e x t := C o e f f i c i e n t s ( Bas i s ( ex tens i on ) , i ) ;
app := [ ] ;
f o r j in i e x t do

c := C o e f f i c i e n t s ( Bas i s ( ground ) , j ) ;
Append( app , c ) ;

od ;
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tmp := toBinL i s t ( app ) ;
Add(M, tmp ) ;

od ;

M:= TransposedMat (M) ;
Minv := Inve r s e (M) mod 2 ;

A.2.1 Output Matrices

The transformation matrix and its inverse produced by the GAP code are

M =



1 0 1 0 0 1 0 0
0 1 1 1 1 0 1 0
0 1 0 1 0 1 0 0
0 1 0 0 0 1 1 0
0 0 1 1 0 0 0 0
0 1 0 0 1 1 1 0
0 1 1 1 0 0 0 0
0 0 0 0 0 1 0 1


M−1 =



1 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0
0 1 1 0 1 1 1 0
0 1 1 0 0 1 1 0
0 0 0 1 0 1 0 0
0 1 0 0 1 1 0 0
0 1 0 1 0 1 1 0
0 1 0 0 1 1 0 1


where the least significant bit is in the upper left corner.
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Appendix B

LFSR Counters

A linear feedback shift register (LFSR) is a shift register whose input bit is a linear function
of its previous states [40]. LFSRs are often used for generating pseudorandom sequences for
applications like communicaton systems, cryptographic algorithms, and hardware design
[41, Chapter 2.1]. They are also commonly used as event counters, serving as an alternative
to binary counters. While binary counters generally use registers, half adders and a high-
speed carry chain, LFSR counters typically require only a few xor or xnor gates in
addition to the registers [42]. Moreoever, the delay in a binary counter is related to the
number of bits, whereas the delay in LFSRs is independent of number of bits. Because of
its low area and delay, LFSRs are often an appealing choice for a counter.

An LFSR with m registers has a degree of m and can generate at most 2m − 1 unique
states, where the state refers to the sequence of bits contained in the registers. The period
of an LFSR is the number of shifts that happen before the initial state reoccurs. The initial
state of the LFSR is known as the seed.

An LFSR is defined by a characteristic polynomial, which has a degree of m. If we let
the registers represent all but the highest degree terms in the characteristic polynomial,
then a register representing a term with a coefficient of ‘1’, known as a tap, has an XOR
gate between it and the previous register, illustrated in Figure B.1. Taps are bit positions
that are involved in the feedback function and that affect the next state. They correspond
to the terms in the characteristic polynomial with a coefficient of ‘1’. The only exception
is the register representing x0: there is no XOR gate associated with it even when the
coefficient is ‘1’. The register shifts in the direction of increasing exponent.
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x4 x3 x2 x 1

Figure B.1: LFSR with characteristic polynomial x5 + x2 + 1

The period of an LFSR depends on the characteristic polynomial. Furthermore, more
than one possible period may be obtained depending on the initial state of the counter [43].
If the characteristic polynomial is primitive, then the LFSR will cycle through all 2n − 1
non-zero states (for an XOR feedback LFSR) and the LFSR is known as a maximum-length
LFSR [44].

LFSRs can have two types of feedback: XOR feedback or XNOR feedback. A state
with all zeroes is illegal when using XOR and a state with all ones is illegal when using
an XNOR feedback. These states are considered illegal because the counter would remain
stuck in the state [45]. A table of tap positions to achieve maximal-length XNOR-feedback
LFSR counters for degrees of 3 through 168 can be found in [45].

The LFSR configuration shown in Figure B.1 is called an internal or Galois LFSR.
In such LFSRs, the taps are XORed with the output bit before being stored in the next
position and the other bit positions are shifted as a regular shift register. Another type of
LFSR, called an external or Fibonacci LFSR, has the feedback function as a serial chain
of XOR or XNOR gates, and only the input bit is a function of the feedback function. All
remaining registers operate as a regular shift register. An external LFSR with the same
characteristic polynomial as in Figure B.1 is shown in Figure B.2. While an external LFSR
might have many XOR gates connected in serial, an internal LFSR has only one XOR gate
between registers and therefore internal LFSRs usually have lower delays.

x4 x3 x2 x 1

Figure B.2: External LFSR with characteristic polynomial x5 + x2 + 1

For Galois LFSRs, the state is commonly treated as the binary coefficients of a poly-
nomial and a register shift may be thought of as a polynomial multiplication by x, modulo
the shift register’s characteristic polynomial [46]. For example, the state 11001 represents
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x4 + x3 + 1. Using the LFSR in Figure B.1, one shift of the state 11001 is equivalent to
the multiplication (x4 + x3 + 1)x = x5 + x4 + x mod (x5 + x2 + 1) = x4 + x2 + x+ 1 and
the resulting state is 10111.

Because most applications require maximal-length LFSRs, there has not been much
research surrounding the generation of LFSRs with a specific period. Fitzpatrick [43] and
Kolouch [47] both explored this problem. Having an LFSR of a specific period is desirable
because it can simplify the control logic of a design. If the desired period cannot be
obtained, it is always possible to generate a counter of a specific cycle using a maximal-
length LFSR: choose the smallest (i.e. least number of bits) maximal-length LFSR that
has a period greater than the desired maximum count value, n. Pick a seed. Shift the
LFSR n times and note the resulting state, s. Assert a control signal when the LFSR state
equals s.

Given a state, finding the number of shifts that has occurred since the initial state
is called the discrete logarithm problem. It will not be discussed here, but additional
information may be found in [46], [42].
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Appendix C

Mathew Composite Field Derivations

The bases used in this thesis to implement Mathew’s composite field are listed in Sec-
tion C.1. Section C.2 and Section C.3 provide the hand calculations for functions in the
S-box and MixColumns operations.

C.1 Notations and Constructions

Mathew’s [9] composite field defining polynomials:

f(x) = x4 + x3 + 1

g(x) = x2 + αx+ β, α, β ∈ F24

Let f(ω) = 0 and g(λ) = 0. The polynomial bases (PB) of the composite field are the
following:

PBF24/F2 = {ω3, ω2, ω, 1}

PBF(24)2/F24
= {λ, 1}

PBF(24)2/F2 = {λω3, λω2, λω, λ, ω3, ω2, ω, 1}
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Reductions:

ω4 = ω3 + 1

ω5 = ω3 + ω + 1

ω6 = ω3 + ω2 + ω + 1

ω7 = ω2 + ω + 1

ω8 = ω3 + ω2 + ω

ω9 = ω2 + 1

λω4 = λω3 + λ

λω5 = λω3 + λω + λ

λω6 = λω3 + λω2 + λω + λ

λ2 = λω2 + λω + ω3 + 1

λ2ω = λω3 + λω2 + ω3 + ω + 1

λ2ω2 = λ+ ω3 + ω2 + ω + 1

λ2ω3 = λω + ω2 + ω + 1

λ2ω4 = λω2 + ω3 + ω2 + ω

λ2ω5 = λω3 + ω3 + 1

λ2ω6 = λω3 + λ+ ω3 + ω

C.2 S-box

Let s(ω) ∈ F24 , α = ω2 + ω, β = ω3 + 1.

Multiplication by constant α:

s(ω) · α = (a3ω
3 + a2ω

2 + a1ω + a0) · (ω2 + ω)

= a3ω
5 + a2ω

4 + a1ω
3 + a0ω

2 + a3ω
4 + a2ω

3 + a1ω
2 + a0ω

= a3(ω
3 + ω + 1) + a2(ω

3 + 1) + a1ω
3 + a0ω

2 + a3(ω
3 + 1) + a2ω

3 + a1ω
2 + a0ω

= ω3(a1) + ω2(a1 + a0) + ω(a3 + a0) + (a2)

Multiplication by constant β:

s(ω) · β = (a3ω
3 + a2ω

2 + a1ω + a0) · (ω3 + 1)

= a3ω
6 + a2ω

5 + a1ω
4 + a0ω

3 + a3ω
3 + a2ω

2 + a1ω + a0

= a3(ω
3 + ω2 + ω + 1) + a2(ω

3 + ω + 1) + a1(ω
3 + 1) + a0ω

3 + a3ω
3 + a2ω

2 + a1ω + a0

= ω3(a2 + a1 + a0) + ω2(a3 + a2) + ω(a3 + a2 + a1) + (a3 + a2 + a1 + a0)
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Square and multiplication with constant β:

s(ω)2 · β = (a3ω
3 + a2ω

2 + a1ω + a0)
2 · (ω3 + 1)

= a3ω
6 + a2ω

4 + a1ω
2 + a0) · (ω3 + 1)

= a3ω
9 + a2ω7 + a1ω

5 + a0ω
3 + a3ω

6 + a2ω
4 + a1ω

2 + a0

= a3(ω
2 + 1) + a2(ω

2 + ω + 1) + a1(ω
3 + ω + 1) + a0ω

3

+ a3(ω
3 + ω2 + ω + 1) + a2(ω

3 + 1) + a1ω
2 + a0

= ω3(a1 + a2 + a1 + a0) + ω2(a2 + a1) + ω(a3 + a2 + a1) + (a1 + a0)

Multiplication in GF (24): classic two-step [48, Chapter 7.1.1].

Affine transformation:

Original: Y (x) = Ax+B

New: Y ′(x) = M · A ·M−1 · x+M ·B

C.3 MixColumns

Constants 0x02 and 0x03 in AES original basis become 0x6E and 0x6F in the composite
field basis.

Multiplication by constant 6E:

6E · s(ω, λ) = (λω2 + λω + ω3 + ω2 + ω)(a7λω
3 + a6λω

2 + a5λω + a4λ+ a3ω
3 + a2ω

2 + a1ω + a0)

= λω3(a6 + a1)

+ λω2(a6 + a5 + a1 + a0)

+ λω(a5 + a4 + a3 + a0)

+ λ(a7 + a4 + a2)

+ ω3(a7 + a6 + a5 + a3 + a2 + a0)

+ ω2(a4 + a3 + a1 + a0)

+ ω(a7 + a2 + a0)

+ (a7 + a6 + a3 + a1)
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Multiplication by constant 6F :

6F · s(ω, λ) = (λω2 + λω + ω3 + ω2 + ω + 1)(a7λω
3 + a6λω

2 + a5λω + a4λ+ a3ω
3 + a2ω

2 + a1ω + a0)

= λω3(a7 + a6 + a1)

+ λω2(a5 + a1 + a0)

+ λω(a4 + a3 + a0)

+ λ(a7 + a2)

+ ω3(a7 + a6 + a5 + a2 + a0)

+ ω2(a4 + a3 + a2 + a1 + a0)

+ ω(a7 + a2 + a1 + a0)

+ (a7 + a6 + a3 + a1 + a0)
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