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Abstract 

Background: Ocular surface temperature (OST) is affected by changes in the physiology of the 

eye caused by normal homeostasis, environmental changes, or systemic and local disease. OST 

can help a physician to diagnose eye disease with improved accuracy and provide useful 

information for eye research. OST is assessed non-invasively using a thermal (infrared radiation 

(IR)) camera. Current methods of OST measurement are restricted in their ability to analyze 

individual pixel data across the area of measurement due to being unable to localize and track the 

cornea accurately during a period of measurement. They are also unable to detect eye blinks and 

are dependent on manual management of the data collection. 

Purpose: This thesis presents a novel hardware design, as well as several novel algorithms, for 

control of the hardware and for image processing of the captured data stream as part of a novel 

system to measure and track OST from the cornea automatically over any period of time. 

Methods/Results: The system uses an IR camera and a visible light camera to capture thermal and 

visible videos, respectively, from the eye surface. The videos are captured synchronously using 

designed hardware and an implemented algorithm (data acquisition). The frames for the two video 

sequences are then registered together (video registration) using two sets of control points. The 

points are manually selected on the first pair of timestamped thermal and visible frames, and then 

tracked over the subsequent frames using the Lucas–Kanade optical flow algorithm (point 

tracking). A mean square error of 5.43±2.01 pixels (equal to 5.43 * 0.09 mm) was reported for 

salient point tracking for the thermal video and 6.81±2.32 pixels (equal to 6.81 * 0.09 mm) for the 

visible video. The mean square error for the registration was 5.03 ±1.82, which is approximately 

0.45 mm. The corneal area was segmented in the visible images and localized on the images using 

semantic segmentation method (corneal segmentation). A mean Intersection over Union (IoU) of 

94.6% was found, representing the accuracy in identifying corneal pixels in the tracked corneal 

segmentation, was achieved. Using video registration, the corneal segmentation in the visible 

image was mapped to the thermal image. OST data extraction from the segmented corneal area in 

the thermal image was then possible. 

Conclusion: A system for measuring and tracking eye surface temperature over time was 

developed. The system captures thermal and visible image sequences synchronously from the eye 
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surface of corresponding thermal and visible images taken at the same time. The system is able to 

localise the cornea on both visible and thermal images. The system is able to report temperature 

profiles of the cornea over the period of measurement. Experimental results shows that the whole 

system can work as a tool for measuring and tracking OST over time. 
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1 Chapter 1: Introduction 
 

Body temperature reflects physiological information about human health. Several methods have 

been used to assess body temperature. Of these methods, thermal (infrared radiation (IR)) imaging 

has drawn much attention because of its many advantages, including that it is non-invasive, can be 

obtained in real-time, and is very accurate. Clinically, IR thermography can be used to observe 

areas of inflammation in the body, and it has been used to assist clinicians in diagnosing several 

ocular diseases. A precise IR thermogram can help physicians to diagnose eye diseases with much 

improved accuracy and opens new avenues in research. IR thermography has been used to monitor 

temperature changes over the surface of the eye for over 50 years. It has been used to look at tear-

film dynamics, temperature changes during contact lens wear, and for disease diagnosis. 

 

Current methods employ either a single camera or dual camera arrangement. A single camera uses 

an IR camera, but localisation of the cornea as the area of interest is limited due to the lack of 

thermal distinction across the ocular surface. Dual camera systems attempt to use a visual camera 

in combination with the thermal camera to assist in locating specific areas of interest on the ocular 

surface. However, these systems do not synchronise their video streams from each camera and are 

thus unable to accurately locate and track the corneal area of interest in the thermal image during 

a measurement sequence. This limits the available options for tracking changes in temperature 

over time, as well as limiting the possible analysis of OST across the cornea during the 

measurement period. Previous systems are also unable to detect and remove artefacts in the OST 

data due to eye movement and eyelid closure. Lastly, they are not fully automatic. Hence, a 

customised system for imaging the eye and gathering useful OST data across the full eye surface 

that incorporates a reliable and precise method to detect the corneal boundary on the thermal 

images, and can track the temperature across all parts of the cornea over time, is needed. 

 

 Thesis objective  
To develop: 

1- A novel dual camera system design for image/video recording of the eye surface  

2- A novel system for measuring and tracking OST over a period of time that incorporates: 
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a. A novel algorithm for managing the cameras and record synchronous thermal and 

visible videos from the eye surface. 

b. A novel algorithm that is able to register the video output from each camera 

c. A novel algorithm that is able to segment the cornea in the thermal camera video 

image sequence 

d. A novel algorithm that is able to remove the artifacts from the video files 

e. A novel algorithm that is able to extract the temperature profile within the 

segmented area from all of the thermal video frames and calculates statistics of the 

temperature profile  

 

 Thesis overview 
The main purpose of this thesis was to develop a system that could image the eye and adnexa 

across two electromagnetic radiation spectrums: visible light and infrared radiation, using two 

different cameras, both aimed and focused on the same region of interest; to use the overlapping 

regions of interest to isolate the corneal region as the primary area of interest in the infrared camera 

image; to use the infrared radiation data detected by the thermal camera to measure the ocular 

surface temperature of the cornea over a period of time; and to use removed artefacts produced by 

eye movement and eyelid blinking during the period of measurement. 

 

The designed system included hardware and software components capable of addressing all of the 

associated problems. A general system diagram of the development steps for the dual camera 

system is given in Figure 1-1. 

Background information and literature review are given in Chapter 2. The first step of the system 

development was physical system design and hardware selection. In this step, two cameras, one 

thermal (IR) and one visible, were selected for image sequence recording. These cameras were 

installed on a purpose-designed camera mount. Next, the initial steps were made in developing 

data acquisition and control software for the two cameras. A dual camera management algorithm 

was developed to access and control both cameras (Chapter 3). 

The images produced by each camera were normalized to remove any distortions in the images 

produced either by each camera’s sensor (intrinsic) or due to the relative camera positions 

(extrinsic) aberrations. A customised algorithm was developed to complete this task (Chapter 4). 
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Figure 1-1: The system diagram showing the different steps required for development of the ocular surface temperature 

measurement system. 
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Further algorithms were then developed for video registration and salient point selection of the eye 

and surrounding surface to map the timestamped video files from both cameras (Chapter 5). 

 

The salient points were selected on the first frames and then tracked and localized on all of the 

subsequent frames using optical flow algorithm for corresponding frame registration and video 

stabilization. Then, the video files were registered in this step using an image processing algorithm 

to overlay (map) each frame with its matching pair (Chapter 6). 

 

With the two video files mapped, the cornea was then localized on the visible video sequence. This 

enabled localization of the cornea on the thermal video sequences using a further corneal 

segmentation algorithm. By locating the corneal location in the thermal video sequence, the 

temperature data could then be extracted for the corneal area of interest (Chapter 7). 

 

To remove the eyelid blink artifact from the video sequences, an algorithm was developed to detect 

the blink frames in the video sequences and remove them from the sequences. To detect the blink, 

machine learning algorithms were used to extract blink frames from the video files (Chapter 7). A 

final discussion and conclusion are reported in Chapter 8. 
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2 Chapter 2: Overview of image formation and OST 
measurement methods 

 

This chapter provides background information in the area of thesis research. Section 2.1 provides 

background information on electromagnetic radiation (EMR) and image formation. Image 

capturing devices are also described in this section. In Section 2.2, human body temperature, 

human eye structure, and tear film structure are reviewed. Section 2.3 describes previous and 

current methods of the OST measurements. Finally, in Section 2.4, the specific issues of eye 

imaging and OST measurement and tracking are discussed. 

 Background 
2.1.1 Electromagnetic radiation  

Electromagnetic radiation (EMR) refers to the waves or photons radiating from any object in 

nature and carrying electromagnetic energy. The basic concept of EMR is that a wave is produced 

when an electrically charged particle is being accelerated. The wave possesses both magnetic and 

electrical characteristics that cannot be separated – in the same way that time and space cannot be 

separated. It is thus a fundamental principle of physics: a moving electric field will have an 

associated magnetic field that changes as the electric field changes; a changing magnetic field will 

also have an associated electric field that varies as the magnetic field varies.1 This concept is used 

practically to produce electricity using a dynamo (generator). EMR is classified by the wavelength 

or frequency of the wave. Figure 2-1 shows a representation of the electromagnetic spectrum. 

EMR can be described as both a wave and as a particle, and experiments using visible light and IR 

(two types of EMR) have revealed these two basic characteristics. Although simplistic as an 

explanation, considering how visible light interacts with the light-sensitive proteins in a retinal 

photoreceptor, can be helpful in understanding how these two EMR characteristics interact. The 

particle aspect describes the energy carried by the wave which is transferred when the 

wave/particle interacts with the light-sensitive protein. However, the protein is ‘tuned’ to respond 

to a limited range of wavelengths, so the wave aspect, as described by the wavelength or frequency, 

is also important. 
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Figure 2-1: The electromagnetic spectrum, showing visible light in color. EMR to the left of visible light on the spectrum has a 

shorter wavelength, while EMR to the right of visible light has a longer wavelength. The sub-divisions for the infrared spectrum 

are also shown.2 (Reproduced from: Gade R, Moeslund TB. Thermal cameras and applications: A survey. Mach Vision Appl. 

2014;25(1):245-262) 

For the light-sensitive protein, specific differences in the molecular structure of the protein make 

it more, or less, sensitive to EMR of a particular wavelength, depending on how close to the 

optimal wavelength the incident wave is. A wave closer to the optimal wavelength is more likely 

to produce the structural change needed to produce a neural signal that registers the detection of a 

light photon. The photoreceptors use three difference protein structures centered around three 

wavelength bands of 564–575 nm, 534–545 nm, and 420–440 nm (Figure 2-2).3,4 The range of 

response for any specific wavelength of light will vary for each light-sensitive protein, and this 

enables the retinal photoreceptors to be sensitive to the full spectrum of visible light. This process 

is called phototransduction.4 

EMR can interact with sub-atomic particles, atoms and molecules, with differing interactions and 

effects dependent on the EMR wavelength, the concentration of EMR particles, and the atomic 

structure and density of the target material. In a vacuum, no interactions occur since there is an 

absence of particles or molecules. In a gaseous atmosphere, some interactions will occur with the 

molecules in the gas, to the extent of the gas concentration and the molecular size of the gas 

molecules. In a liquid or solid, the concentration of available particles, atoms and molecules is 

much greater, greatly increasing the likelihood of an interaction. 
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Figure 2-2: Absorption spectra for each type of color sensitive photoreceptor, showing their peak wavelength for maximum 

sensitivity. 

There are three main forms of interaction: reflection, absorption, and transmission. The likelihood 

of any particular interaction depends on the EMR wavelength and the size of the atoms or 

molecules in the target material. Reflection occurs when the electrical charge of the atom or 

molecule of the material interacts with the EMR to alter its trajectory, but not its wavelength or 

frequency (e.g., visible light reflecting from a mirror). Absorption occurs when the radiation is 

absorbed by the atomic particles of the atom or of the molecule producing a destruction of the 

incident wave. The absorbed energy of the EMR can change the structure of the atom or particle, 

e.g., freeing an electron from the atom (photoablation), breaking the atomic bonds within the atom 

itself (nuclear fission), or altering the chemical bonds between atoms in a molecule to alter its 

structure (phototransduction). With this change in atomic or molecular structure, a new form of 

EMR may also be released and emitted by the target molecule (e.g., fluorescence, infrared 

radiation), which can act as a marker for the interaction by the EMR on the target material. 

Transmission occurs when radiation passes through the target material without any interaction. 

Whether a material is transparent for a particular EMR wavelength also depends on the atomic and 

molecular structure of the target material. For example, infrared radiation cannot transmit through 

crown glass, but it can through germanium, and x-rays can pass through most materials, but not a 

lead screen. 
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It is possible for all three interactions to occur simultaneously, with the proportion of each form of 

interaction depending on the EMR wavelength and the atomic structure of the material. For 

example, when observing a red flower under full spectrum visible light illumination, the longer 

(red) visible wavelengths are reflected towards the observer, while the shorter wavelengths are 

absorbed by the atoms/molecules of the flower. 

 

2.1.1.1 Types of electromagnetic radiation 
The concept of EMR was first proposed by James Clerk Maxwell in 1865, and since then each 

type of EMR has been described by many previous researchers. The variation in wavelength and 

frequency that characterizes each type of radiation and how that interacts with other particles or 

objects has allowed each type of EMR to be applied in a practical way, e.g., radio waves for 

communication, x-rays for imaging, microwaves for communication and cooking. 

 

Visible light is a small portion of the spectrum and ranges from 400-700 nm. It is described as 

visible light since the human eye contains specialized receptor cells that are able to detect these 

wavelengths and produce a neural signal that is processed by the brain to create a perception of 

the surrounding world. 

 

In Figure 2-1, the EMR to the right of the visible spectrum has longer wavelengths that are of 

lower frequencies. These longer wavelengths have lower energy and are less able to cause damage 

by directly interacting with other particles or materials and are not usually harmful to biological 

material. They consist of three broad radiation types: infrared (2.5-25 µm), microwaves (25 µm-1 

mm), and radio waves (>1 mm). 

 

The EMR to the left of the visible light has shorter wavelengths and higher frequencies. These 

wavelengths have higher energies that are more able to interact with particles and materials to 

cause damage, and they can be harmful to biological material. There are three main types of 

radiation: ultraviolet (400-1 nm), x-rays (1 nm-1 pm), and gamma rays (<1 pm). 
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2.1.1.2 Wavelength/frequency and energy of a photon 
One key aspect of this spectrum is that as the EMR wavelength increases, the wavefront frequency 

decreases. This relationship is important when considering the energy possessed by a photon of 

EMR of any particular wavelength. The relationship is described using Planck’s equation: 

 

E = hf 

 

where E is the energy per photon, f is the frequency of the photon, and h is Planck’s constant.  

 

Using the equation, it can be shown that a single photon of gamma radiation may possess ~100,000 

times more energy than a photon of visible light. The frequency of the wave is thus integral to the 

energy the wave possesses, and it explains why shorter wavelengths have more energy and are 

thus more dangerous for biological tissue. 

 

2.1.1.3 Infrared radiation 
Infrared radiation (IR) is EMR generated by the movement of particles in matter. The speed of 

movement reflects the kinetic energy of the particles, thus particles that possess more energy will 

have greater kinetic movement, and will produce higher amounts of IR. The object can also be 

said to have a higher temperature. Any object with a temperature above absolute zero (0 K) will 

therefore emit IR.5 It also follows that the temperature (kinetic energy of the particles) of the object 

influences the amount and wavelength of IR produced. An object of temperature between 190-

1000 K will emit IR in the mid- or long-wavelength range. 

 

IR describes those wavelengths that are immediately beyond visible red light (infrared comes from 

the Latin infra meaning ‘below’, and from red for the longer wavelength visible light that is 

perceived as being red in color and which marks the boundary wavelength for IR). IR is therefore 

not detectable by the photoreceptors of the human eye. IR lies between visible light and microwave 

radiation with a wavelength range of 0.78-1000 µm (Figure 2.1) and is divided into four sub-

divisions: near infrared (NIR) 0.78-1.4 µm, small-wave infrared (SWIR) 1.4-3 µm, mid-wave 

infrared (MWIR) 3-8 µm, long-wave infrared (LWIR) 8-15 µm, and far infrared (FIR) 15-

1000 µm.6,7 IR in the mid-wave and long-wave range is also referred to as thermal radiation. 
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Since IR has longer wavelengths within the EMR spectrum, it has lower frequencies, meaning that 

the energy contained in each photon is not large. When a photon of IR energy interacts with a 

surface, the energy is insufficient to produce changes in the atomic or molecular structure of the 

surface, but the energy is still absorbed by the atoms and molecules, which increases the kinetic 

energy of the object, producing heat. Heat is the term used to describe the increase in temperature 

(kinetic energy) that is occurring in the object. Depending on the molecular structure of the object, 

the heat may produce destructive effects on the molecular structure of the object by changing the 

physical state of the object from a solid to a liquid, or from a liquid to a gas. In biological tissues, 

heat can be very destructive to the molecular components of the tissues, leading to burning of the 

tissue. The increase in temperature also causes the emission of IR from the material at a wavelength 

that is dependent on the new temperature level produced by the incident radiation. An observer 

that can detect the IR and measure the wavelength would then be able to determine the temperature 

of the material. 

 

2.1.2 Black Body Physics and Emissivity 
As described above, EMR is produced by emission of radiation from a material. The ability of a 

material to emit EMR is called its emissivity, which is described as the ratio of the energy radiated 

from the surface of the material compared to the energy radiated from a black body (perfect 

emitter) at the same temperature and wavelength and under the same viewing conditions. 

Emissivity is described as a number between 0 and 1, where 0 is total reflection (and thus no 

absorption and no re-emission, e.g., polished silver surface has an emissivity of 0.02) and 1 

represents perfect absorption of EMR radiant on the surface and perfect emission of radiation from 

the surface. The emissivity depends on the surface and its nature. For example, a clean polished 

metal surface will reflect most of the radiation and has low emissivity. The polishing has the effect 

of purifying the molecular characteristics of the surface layer, thereby improving the regularity of 

the structure at a molecular level, with the effect that visible light is reflected from the surface. The 

reflection from the surface also means that there is less EMR absorption at the surface, and so less 

re-emission of EMR from the surface. On the other hand, a rough, oxidised metal surface has high 

emissivity. The irregular surface encourages EMR absorption at the surface, and subsequently 

increased re-emission from the surface. A surface covered by lampblack paint will absorb about 
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97% of the incident radiation and can be considered as a black body. On the other hand, a polished 

metal surface will only absorb 6% of the radiation and reflect the rest. 

 

A black body is a surface that absorbs all of the radiation falling on it. It is named a black body 

because the visible light incident on the surface is absorbed and none is reflected, and so the surface 

appears black. The best example of a black body is a blackened spherical cavity, supported within 

a box, with a small hole in the wall of the cavity through which radiation can enter the cavity 

(Figure 2-3). The inside of the cavity radiator is rough and blackened, and this surface absorbs the 

radiation. For a perfect black body surface, any radiation entering the cavity will be trapped inside 

– none of the radiation entering the cavity can escape. It will be absorbed, emitted, and reabsorbed 

by the surface in a continuing cycle within the cavity. 

 

 

 

 

Figure 2-3: A cavity radiator black body. The red line represents the ray-path for EMR that enters the cavity, and which is 

repeatedly reflected from the surface. 

 

In a thermodynamic equilibrium, the cavity absorbs radiation as much as it emits. For a non-perfect 

black body surface, some of radiation entering the cavity will not be absorbed and, along with 

some of the emitted radiation from the surface, will be able to escape form the cavity through the 

hole. In this way, the emission spectrum of the surface can be obtained using an analysis of the 

light radiating from the hole. 
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The EMR from a black body is called blackbody radiation. The intensity of the blackbody radiation 

depends on the incident EMR wavelength and surface temperature. The Stephan-Boltzmann law 

describes the relationship between EMR radiation and temperature.8,9 Based on the law, the 

temperature of an object can be calculated if the radiation and emissivity are known. The total 

radiation emitted by an object is proportional to the surface area, emissivity, and the fourth power 

of its absolute temperature: 

E = σT4 

where E is radiant energy emitted by surface, σ is the Stefan-Boltzman constant, and T is 

temperature. 

Emissivity is very important in non-contact temperature measurement and for heat transfer 

calculations. Radiation thermometers detect the radiated thermal energy emitted from a surface. 

The thermometers are generally calibrated using a black body reference surface, with an emissivity 

close to 1. 

 

2.1.3 Charge-Coupled Devices 
A charge-coupled device (CCD) is an integrated circuit of linked (coupled) capacitors 

(photodiodes). The photodiode (PD) has a dielectric component that can convert an incident 

photon of radiation into an electrical signal. The size of the electrical signal from the pixel 

describes the light intensity falling on the PD. Each PD represents one pixel in the CCD array and 

by combining the CCD with the optical components of a camera, the image of an object can be 

captured. The sampling resolution of the camera is directly-related to the pixel count on the camera 

sensor – the higher pixel count, the higher the resolution possible. 

 

An alternative to the CCD is the complementary metal-oxide-semiconductor or CMOS. Both 

sensors use a PD to capture light and convert it into an electric charge. The main difference 

between them comes from how they process these electronic signals. The CCD sensor groups 

together the electronic signals from the different PDs and then amplifies them all together. The 

CMOS sensor has one amplifier for each PD. This allows the output from each pixel to be accessed 

individually and at a much higher speed than the CCD. This also means that CMOS sensors use 

less power than the CCD. It also means that there is less noise in the signal since each signal is 

considered individually. However, the need to have an amplifier for each PD means that there are 
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less PDs per unit area on a CMOS sensor, compared to a CCD sensor, reducing the sensitivity of 

the CMOS sensor. To overcome this limitation, micro-lenses are placed in front of each PD to 

gather any light that might miss the sensor, thereby increasing the incident light falling on the PD. 

Lastly, since CMOS sensors are based on semiconductors used in computer memory, they are 

cheaper to produce. 

As a result of their advantages, CMOS sensors are more commonly used in still photography 

cameras and consumer level cameras, whereas the better sensitivity in a CCD sensor means that 

they are used for high-end, broadcast-quality, video cameras. The PDs in the CCD or CMOS can 

also be designed to be sensitive to different EMR wavelengths, making it possible to have cameras 

for visible light or IR. 

2.1.3.1 Visible Camera 
A visible camera sensor is designed to gather visible EMR (400-700nm) and convert it to an 

electric signal. The CMOS typically used is designed with PDs that are sensitive to visible light in 

the red, green, and blue wavelengths. This is made possible by two main methods. The first is to 

place a colored filter over each PD that permits the transmission of only one wavelength, e.g., red, 

and absorbs the other wavelengths. The electronic signal from each pixel is thus color-coded. The 

second is to use an array of layered sensors, each of which is sensitive to one wavelength. Every 

pixel location is now able to detect all three wavelengths. The signal is gathered by the CMOS for 

accurate color representation (Figure 2-4). 

  

a b 

Figure 2-4: Schematic diagram of the photodiode arrangement in CMOS image sensors: a) Two-dimensional, b) Three-

dimensional 10 (Reproduced from: Lim S, Leem D, Park K, et al. Organic-on-silicon complementary metal–oxide–

semiconductor colour image sensors. Scientific reports. 2015;5(1):1-7) 
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Figure 2-4 a) shows a two-dimensional CMOS sensor where each PD measures the intensity of 

incident visible light for blue (B), green (G) and red (R) wavelengths after passing through B, G, 

and R color filters, respectively. In this side-by-side PD array, twice as many photodiodes are 

assigned to detect G light than for B and R light. Figure 2.4 b) shows a three-dimensional, multi-

stacked, organic-on-Si hybrid CMOS sensor. The G array, which is placed on top of the B and R 

colored filters, detects the amount of G light, after which the B and R light are selectively detected 

through the B and R colored filters. 

 

2.1.3.2 Detecting IR 
Although IR was discovered by William Herschel in 1800, the practical use of non-contact 

thermography did not begin until the 1950’s for military applications and infrastructure inspection. 

The delay occurred because specialized detector technology was required to capture IR from an 

object and to measure its intensity. This also delayed the development of the first commercial 

products, which were introduced in 1983. These initial devices were dependent on liquid nitrogen 

cooling to cool the detector and improve sensitivity making them impractical for everyday use and 

very expensive. The development of the CCD removed the need for nitrogen cooling and 

simplified camera design. In combination with commercialization of the technology, access to 

imaging cameras has become cheaper and their use more widespread. 

 

There are two types of detectors used to image IR in thermal cameras: photon detectors and thermal 

detectors. Photon detectors convert the absorbed EMR into an electrical signal in a semiconductor, 

with the size of the change in energy distribution reflective of the intensity of the EMR. Photon 

detectors work in the MWIR band, where the temperature contrast is high. The detectors are very 

sensitive to small temperature changes and have a higher refresh rate compared to thermal 

detectors. However, they need to be cooled to a temperature below 77K to reduce the effect of 

thermal noise. Liquid nitrogen was typically used for cooling, but a cryocooler is now used for that 

purpose, which has high maintenance costs. Therefore, the overall price for a photon detector is 

higher than a thermal detector.2 

 

Thermal detectors also work by absorbing the EMR and in so doing convert the radiation into 

thermal energy. This increases the temperature of the detector, which alters the resistance of the 
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material and, in turn, the electrical current that can pass through the detector. Thermal detectors 

do not require external cooling and work in the LWIR band. There are two different types of 

uncooled thermal detectors: ferroelectric and microbolometers.11 

 

Ferroelectric detectors use the ferroelectric phase transition in certain dielectric materials. A 

dielectric material is one which functions as an electrical insulator below a specific temperature. 

Small fluctuations in temperature at or near the phase transition cause large changes in electrical 

polarization of the material. When the material receives EMR, it absorbs the IR, and the 

temperature of the material increases. In other words, the kinetic energy of the material at the 

atomic level increases, allowing electrons to move more easily. In effect, the electrical resistance 

of the material is changed by the IR and an electrical current can pass through the material, with a 

flow depending on the amount of incident IR. Barium strontium titanate (BST) is the material 

commonly used in ferroelectric detectors. 

 

A microbolometer, usually made of vanadium oxide and amorphous silicon, is a specific type of 

resistor. The electrical resistance of the material is changed by the IR when the radiation is 

absorbed by the material producing a change in temperature. This alters the electrical resistance, 

which is then measured. Microbolometers have a higher sensitivity, a smaller pixel size on the 

detector, and higher spatial resolution than ferroelectric sensors, and have gained a larger market 

share.2  

 

2.1.3.3 IR detector instruments/cameras 
The measurement instruments available today can be grouped into three categories: point sensors, 

line scanners, and focal plane arrays. A point sensor captures radiation emitting from a single point, 

and if the sensor is scanned across a visual scene, a line scan of the scene can be produced. With 

a 2-D focal plane array, all of the image elements are captured at the same time. The 2-D array is 

the dominant method as it has no moving parts, is faster, and has a higher spatial resolution than 

scanning devices. 

 

After choosing the detector for the thermal camera (2-D focal array), a lens should be selected. 

The lens serves to protect the sensor, as well as to focus the incident radiation on the sensor. Crown 
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glass has a very low transmittance for thermal radiation and is not suitable. Instead, germanium, a 

metalloid, grey-white material, is most often used in thermal camera lenses as it is transparent to 

IR light and reflects visible light. Germanium is, however, very expensive.2 

 

In appearance, a thermal camera is similar in shape and design to those used for visible light. A 

light-proof box contains the sensor array, with a transparent lens that permits entry of the IR to the 

sensor. The lens also acts to focus the IR on the sensor. Data transfer from the camera to a computer 

is by USB, Ethernet, Rs232, or FireWire. The data collection is managed by a customised software, 

which can display images in a greyscale format on an LCD screen. The images can also be 

displayed as a color map, with different temperatures corresponding to different colors. 

 

The thermal sensitivity range for most commercial instruments is 20 - 40 mK for uncooled and 

cooled thermal cameras. The spatial resolution of the cameras varies from 160 x 120 pixels to 1280 

x 1024 pixels, and the field of view from 1 to 58 degrees. 

 

There are two main factors that should be considered when choosing a thermal camera: sensitivity 

and resolution. Sensitivity can be described in two ways: the desired temperature range, and the 

ability to detect a difference in temperature. Spectral range describes the wavelength range that the 

camera can detect, and thus the temperature range. Thermal sensitivity describes the ability of the 

camera sensor to detect a change in temperature. It is the minimum difference in measurement 

value between two consecutive temperatures, which is equivalent to the thermal resolution. 

 

The sampling resolution of the thermal camera sensor or detector describes the number of pixels 

in the detector. The higher number of pixels, the higher the resolution. A higher resolution provides 

a sharper image, a more accurate measurement of the temperature at each individual point in the 

image, and a more reliable measurement. A higher resolution also provides the ability to measure 

smaller differences in temperature at a greater distance. 

 

The precision with which the measurement for each pixel is reported is relates to whether 8-bit or 

16-bit encoding is used. 8-bit provides a smaller number of data points available to describe the 

pixel output signal (256) versus 16-bit, which has a much greater number of data points (65536). 
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A greater number of data points will allow a more refined measurement. However, for most 

situations, 8-bit encoding is sufficient. 

 

For temperature measurement of the eye, the detector should be able to detect wavelengths 

between 8-12 microns, which is within the range of IR emitted from the human body. With this 

range, the camera can obtain a passive image of the eye at room temperature. 

 

 Human body temperature 
The temperature of the human body is produced as a result of respiratory activity in the cells and 

tissues of the body. The cells and tissues of the body also function best within a narrow temperature 

range. Maintaining body temperature is therefore very important and is part of the autonomic 

processes of the body. Humans can maintain body temperature within a narrow range even as the 

ambient environmental temperature varies. This is important since any abnormal change in body 

temperature is detrimental to health. 

 

A change in body temperature can occur due to systemic or local infection, or malfunction in a 

body system part. Hence, temperature data of the human body could be a good indicator of health 

status. Medical thermography has been used to detect different human body conditions, with most 

of the reported thermography studies being used to detect angiogenesis in tumours and abnormality 

of blood flow or inflammation. Inflammation is the body’s response to an injury or infection and 

results in a higher blood flow to the site of infection. This increased blood flow raises the local 

temperature of the area, and the increase in temperature is one of the four signs of inflammation, 

along with pain, swelling and redness. If an infection becomes more widespread in the body, a 

general increase in body temperature occurs, which is described as a fever. Inflammation is part 

of the body’s immune system. Both inflammation and fever can be harmful to human body if the 

immune response is too severe. 

 

Measurement of body temperature is a key part of any medical assessment for a disease that is 

causing, or can cause, a fever. A medical thermometer is used to take this measurement. Local 

measurement of temperature at the site of an infection may also be helpful in the diagnosis of 
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inflammation within a tissue. Thermography has become a useful method in many medical fields, 

including neurology, oncology, dentistry, and dermatology.12 

 

2.2.1 Structure of the human eye 
The eye is the most delicate and important sensory organ of the human body. It collects sunlight 

or reflected light (visible EMR) from the surrounding environment and converts it into a nerve 

impulse. The impulses are transferred to the visual cortex in the brain, via the optic nerves, where 

a perception of the surrounding visual scene is formed, and so providing the sense of sight. 

 

The human eyeball is in the shape of a globe and is covered by fatty and fibrous tissues to protect 

the eye. For additional protection, each eye rests within an orbit in the skull. The bones of the orbit 

also provide connection points for the six extra-orbital muscles that are attached to the outside of 

the eyeball. These muscles enable movement of the eyeball. The interior of the globe is formed by 

the posterior chamber that contains vitreous humor, the lens, and the anterior chamber that contains 

aqueous humor. Figure 2.5 shows a cross-sectional view of the structure of the eye.  

 

 

Figure 2-5: Cross-sectional view of the structure of the human eye13 (Reproduced from: Nishino K, Nayar SK. The world in 

an eye. 2004;1:I-I) 
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The enclosing wall of the eyeball consists of three coating layers: the outer, middle, and inner 

coats. The coats consist of different tissues and have different functions. The outer layer, also 

known as the fibrous tunic, is made of dense connective tissue that helps the eye to maintain its 

shape and to protect it from injury. The fibrous tunic parts comprise the cornea and sclera. The 

sclera covers nearly the entire eye surface and is white in color. The sclera provides attachments 

for the muscles that control eye movement. The cornea is a transparent tissue located in the front 

center of the external tunic. The cornea refracts the light passing into the eye and provides most of 

the eye’s focusing power. 

 

The middle layer is named the vascular tunic and includes the choroid, ciliary body, and iris. The 

choroid is the primary component of this layer and mainly consists of blood vessels. The major 

function of the layer is oxygen and nutrition supply for the retinal layer. In order to control 

unwanted scattering of light within the eye, the choroid contains a dark pigment. The anterior part 

of the choroid is connected to the ciliary body, to which the lens is attached. The ciliary muscles 

within the ciliary body are able to change the lens shape to adjust the focus of the eye between far 

and near objects. This process is called accommodation or control of the refractive power of the 

eye. The ciliary body also produces aqueous humor fluid that circulates in the anterior chamber of 

the eye and is a source of oxygen and nutrition to the cornea. The fluid fills the anterior and 

posterior chambers of the eye. The iris is connected to the anterior part of the ciliary body and is 

positioned in front of the lens. The iris controls the amount of light entering the eye through the 

pupil. The iris forms a circular, thin structure within the eyeball that controls the size of the pupil. 

The iris contains pigments to absorb light and so prevent it from entering the eye, so acting as an 

aperture stop. The density of the pigment determines eye color – less pigment for blue and more 

pigment for brown. 

 

The inner coat of the eye is the retina, which is responsible for detecting the light entering the eye 

and converting it into a neural signal. The retina consists of specialized photoreceptor cells and 

connecting nerves that work together to process the neural signals and to transfer the signal to the 

visual cortex. There are two types of photoreceptor cells: rods and cones, that function best at 

different light levels. The rods operate during low light levels and are linked together to improve 

the overall sensitivity of the eye to light. The rods thus provide a perception of black and white 



 

20 

 

only. The cones operate at normal light levels, and provide the perception of color, as described in 

Section 2.1. 

 

The conjunctiva forms the superficial surface of the eye over the anterior surface of the sclera. The 

conjunctiva is a mucous membrane that is important in the formation and structure of the tear film. 

It also acts as a physical barrier to prevent a foreign body entering the orbit. 

 

The tears, while not part of the eyeball, form the outermost component of the eye system. The tears 

help in lubrication of the eyelids during blinking, they assist in forming an in-focus image of an 

object on the retina by reducing optical aberrations, they provide nutrition to the cornea, they help 

to protect the eye by trapping dust and foreign objects, and they contain proteins important in 

protecting the eye from infection. The tears are formed of three main components: lipids, produced 

by the meibomian glands in the eyelids; aqueous, produced by the lacrimal glands; and mucus 

primarily produced by goblet cells in the conjunctiva. 

 

Surrounding the eye are the eyelids and eyelashes that have a protective function for the eye. 

Closing the eyelids presents a physical barrier for the eye, and the eye lashes act to prevent dust 

from entering the eye. 

 

2.2.2 Tear film 
The tear film is a moist, superficial layer between the ocular surface and the ambient environment. 

Classically described, the tear film is composed of three layers consisting of a superficial lipid 

layer, an intermediate aqueous layer, and underlying mucus layer.14 Figure 2.6 shows an 

illustration of the tear film layers.  

 



 

21 

 

 

Figure 2-6: An illustration of the tear film showing the tri-laminar structure.15 (Reproduced from: Cwiklik L. Tear film lipid 

layer: A molecular level view. Biochimica Et Biophysica Acta (BBA)-Biomembranes. 2016;1858(10):2421-2430) 

 

2.2.2.1 Lipid layer 
The lipid layer is a thin (around 0.1 µm thick), oily layer that is produced by the meibomian glands 

in the upper and lower eyelids.16 The layer contains a mixture of esters, tri-acylglycerols, fatty 

acids and free sterols that form into two phases: a thick, non-polar, outer layer, and a thin, polar, 

inner layer.17 The polar layer spreads over the aqueous layer to counteract the aqueous layer surface 

tension and provide a surface for spreading of the non-polar layer. This enables the lipid layer to 

provide a stable layer over the other layers of the tear film. The main function of the lipid layer is 

to reduce aqueous layer evaporation. Eye blinking provides the opportunity for the lipid layer to 

distribute over the eye surface. With each blink, new lipid is expressed from the meibomian gland 

and added to the lipid layer. Between blinks, the lipid layer structure becomes less stable and thins 

over time, which leads to the phenomenon of tear film break-up. A break-up of the tear film enables 

more evaporation from the tear film and a consequent increase in tear osmolarity. 

 

2.2.2.2 Aqueous layer 
The aqueous layer is the major part (between 6-10 µm thick) of the tear film and is formed of 

aqueous that is secreted from the main lacrimal gland, the accessory glands of Wolfring, and the 

accessory glands of Krause.18 It is primarily composed of water, but also includes numerous 

electrolytes, proteins, vitamins, peptide growth factors, hormones, anti-microbial factors, 

immunoglobulins, and cytokines. These components work to protect the ocular surface and 
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maintain tear film structure by lowering the tension of the ocular surface, allowing the tear film to 

spread smoothly, giving ocular defense against infection agents, moderating the osmolality of 

tears, and working as a buffer to maintain pH.17 

 

2.2.2.3 Mucus layer 
The mucus layer is the lowest layer of the tear film and is adjacent to superficial layers of the 

cornea. It is mainly secreted by the conjunctival goblet cells, with a small proportion secreted by 

the stratified epithelial cells of the ocular surface. The mucus layer mainly consists of glycoprotein 

molecules, which are high molecular weight proteins with a high carbohydrate-to-protein ratio and 

inorganic salts suspended in water.18,19 The mucus layer has different functions, including eyelid 

lubrication that helps the eyelid margins and palpebral conjunctiva to slide smoothly during 

blinking and ocular movements, and protection of the cornea from abrasion and foreign bodies. 

 

2.2.2.4 Tear break-up time (TBUT)  
The tear film loses its stability gradually after a blink. This happens because of insufficient quantity 

or quality in one or more components in the ordered structure.20 Normally, the tear film breaks up 

within 15-40 seconds after a blink, and dry spots begin to appear over the cornea.21 The time 

between a blink and the first appearance of the dry spots on the tear film is named the tear break-

up time (TBUT). The current standard method is to apply a moistened sodium fluorescein strip to 

the tear film and allow the fluorescein to spread in the tears after two or three blinks. The subject 

is asked to blink naturally and to then hold their eye open without blinking. The tear film is 

observed using a slit-lamp microscope under cobalt blue light illumination, and any fluorescein 

pattern break-up observed through a Wratten 12 yellow filter. Any break-up in the tear film is 

observed as a dark area and the TBUT is recorded as the time elapsed since the last blink. A TBUT 

of less than 10 seconds suggests an abnormal tear film.19 TBUT is one of the most commonly-used 

tests of tear film stability, and a reduced tear break-up time or limited ocular surface wetting is one 

of the main signs of tear film abnormality.19 

 

2.2.2.5 Tear evaporation 
Evaporation occurs when molecules in a liquid have sufficient energy to change from a liquid state 

to a gas state, and so escape from the liquid into the ambient environment immediately superficial 

to the liquid surface. In this way, heat is transferred from the liquid into the atmosphere, and the 
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liquid cools slightly. The process of sweating takes advantage of this phenomenon to reduce 

surface body heat. 

 

In the eye, evaporation can occur from the aqueous component of the tear film. The primary role 

of the lipid layer is to form a superficial layer over the tear film that is resistant to evaporation.22,23 

During tear break-up, the organized structure of the lipid layer breaks down and increased 

evaporation from the tear film becomes possible. The ocular surface cools as a result of the tear 

film evaporation.24 Observation of the cooling can be made using thermographic methods. 

 

The process of evaporation and evaporation rate is very important in ocular surface disease 

diagnosis. The tear evaporation rate has been shown to increase in pathological dry eye disease 

(DED). This increased evaporation rate may be responsible, at least in part, for the increased rate 

of cooling of the tear film observed in DED.25 

 

2.2.2.6 Tear production and drainage 
Tear production forms part of a sensory loop that includes the ocular surface sensory nerves and 

the main lacrimal glands.26 The relationship is most easily demonstrated in the presence of a 

foreign body on the ocular surface that stimulates the ocular surface sensory nerves. The neural 

response is processed centrally, leading to activation of the lacrimal glands to release a large 

volume of tears that flushes the foreign body from the eye surface. The sensory loop is also thought 

to be part of normal aqueous tear production stimulating a basal production rate.27 The stimulus 

for production is thought to be the cooling of the tear film caused by evaporation. The evaporation 

causes a reduction in tear volume, and basal production is necessary to replenish the tears.27 

 

Tear volume loss also occurs through normal tear drainage. Tears drain from the superior and 

inferior tear menisci, along the upper and lower eyelid margins, through the lacrimal puncta that 

are situated at the nasal side of each eyelid. The tears pass along the canaliculi or tear canals into 

the lacrimal sac and are absorbed through the nasal mucosa (Figure 2-7).28,29 
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Figure 2-7: Anatomy of tear production and drainage 30(Reproduced from:Marchioni D, Bettini M, Soloperto D. Anatomy of 

the lacrimal drainage system. In: Endoscopic surgery of the lacrimal drainage system. Springer; 2016:1-12) 

 

2.2.3 Ocular surface temperature (OST) 
Various methods are described in the literature for measuring ocular surface temperature (OST) 

either invasively or non-invasively. Since the eye is a very delicate organ, a non-invasive method 

for temperature measurement is preferable. Hence, thermography is a key solution to this problem. 

Data on OST changes are useful in the diagnosis of some eye diseases and for analysing tear-film 

stability. For example, OST measurement has been used in the diagnosis of detecting vascular, 

neoplastic and inflammatory pathologies31, lacrimal drainage system inflammation32, DED33, 

glaucoma disease34, unilateral proptosis35, and ophthalmic post-herpetic neuralgia36. It has also 

been used to diagnose retinoblastoma in children37 and vascular neuritis38 of the optic nerve. 

Hence, temperature measurement can be used in the diagnosis of a wide variety of ocular diseases. 

In addition, temperature measurement is useful in the study of tear-film stability39. 

 

Tear film instability will affect OST12,40 by increasing the level of evaporation from the surface, 

and is one of the key factors in DED41. Typically in DED patients, OST changes more rapidly, the 

size of the change is greater,33,42,43 and there is greater variation across the ocular surface.44,45 These 

effects can be observed using IR thermography40,46,47. Under normal conditions, the tear-film layer 

undergoes a repeated cycle of formation, destabilisation, break-up, and reformation. Since the tear 
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film is inherently unstable, variations in evaporation across the surface is a natural phenomenon, 

which may have a role in triggering a blink or in detecting changes in local ambient environmental 

conditions. Reformation occurs by the action of the eyelids during a blink cycle. TBUT is 

monitored clinically to provide a measure of the quality of the tear-film48. Using thermal imaging, 

the tear-film changes could be tracked over time over the corneal area. However, current methods 

for reporting the variation in OST across the cornea and within the tear film break-up area are very 

limited and frequently rely on manual assignment of OST recording at single locations. 

 

Previous studies have measured OST across the cornea either at single pixel locations, at multiple 

single locations, as the mean within a selected area, or as the mean across the whole cornea. For 

example, Efron et al. showed that the corneal temperature ranges between 32.8 to 35.4°C. 

However, there is considerable temperature variation across the eye surface. For instance, the 

temperature of the corneal center is different to that of the limbal edge in a healthy eye (due to the 

presence of the limbal blood supply). Also, during tear break-up, there is a rapid temperature 

decrease in the break-up area due to evaporation. Ideally, OST should be analyzed locally and 

globally to be useful in clinical application. 

 

2.2.4 Emissivity of human body and eye 
As noted, the strength of EMR emission from a body is described as the emissivity, with an 

emissivity of 1 for a perfect black-body emitter. Neither the human body nor the eye can act as 

perfect black body, but in certain EMR wavelengths, they may perform very close to a black body. 

By assuming the human body temperature to be 37°C, the emitted wavelength of 9.35 µm falls 

within the long-wave IR region. Previous studies have shown that the absorption band of the ocular 

surface is similar to water (emissivity of 1) and behaves like a black body radiator in wavelengths 

above 3 µm. The emitted spectrum of the ocular tissues is between 1 to 30 µm under normal 

circumstances (32°C). However, this is limited to a maximum distance of 9µm. As a result, the 

spectrum radiated by the ocular tissues are fully absorbed by the ocular tissues anterior to it. For 

example, the spectrum emitted by the vitreous is absorbed by the lens.  

 

This relationship also occurs with the cornea and tear film, but the effect varies depending on the 

thickness of the tear film. When the tear film thickness is about 10µm, the IR transmittance is 
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about 30%, and when the thickness is above 20µm, the transmittance is zero. Since tear film 

thickness ranges from 2-5.5 µm, the tear film will absorb 20-60% of the IR from deeper tissues.49  

 

For the eye, Mapstone50 determined that the ocular surface closely approximates a perfect black 

body with an emissivity of 0.97. This occurs since water behaves in the same way as a black body 

for IR radiation of wavelengths above 3µm.7 Thus, the emitted IR from the eye surface can be 

measured to determine OST. Reported ocular surface temperatures range between 32.8°C to 

35.4°C. Efron et al.51 

 

 Overview of OST measurement methods 

2.3.1 Earlier methods of OST measurements 
Earlier methods for corneal temperature measurement can be categorized into two main categories: 

invasive and non-invasive methods. Several previously reported methods for OST measurement 

were invasive in nature.44 The most commonly-reported methods used a thermistor in a probe or 

sandwiched between two contact lens layers. These methods lacked consistency in reporting 

normal corneal temperature. This was due to the type of sensor used, the placement of the probe 

on the eye, the location of measurement, the need for anesthesia, a single point of measurement, 

the influence of the probe temperature, and the ambient environment temperature effect. 

 

Mapstone was the first person to use a non-contact method to measure OST.50 A bolometer 

(thermal detector) was used to measure the radiation from the surface of the eye. In the 1970s, the 

emergence of new cameras with better sensitivity and magnification provided an improved facility 

to capture temperature data from the ocular surface. These early cameras incorporated some form 

of detector and required liquid nitrogen for cooling of the detector to enable detection of IR 

radiation. With the subsequent development of semi-conductor CCDs, the detectors have been 

revolutionized in their level of sensitivity, speed of operation, and they can work at room 

temperature. 

 

2.3.2 Current methods of OST measurement 
For IR measurement of the eye, studies suggest that radiated heat detected by a thermal camera 

derives principally from the tear film. The tear film is both absorbing and emitting radiation – it 

absorbs IR from deeper components of the eye, such as the cornea, and re-emits this absorbed 
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radiation, which is then detected. Therefore, the thickness of the tear film layer is a key factor in 

how much radiation is absorbed from deeper ocular layers. If the tear film was absent (due to 

thinning to irrelevant levels), the temperature detected would be that of the cornea itself. When the 

tear film thickness is between 4-10 µm, the tear film absorbs between 55-80% of IR radiation from 

deeper ocular layers, respectively. If the tear film thickness is more than 20µm, it will absorb 100% 

of the radiated infrared from deeper layers, and the emitted radiation detected will arise solely from 

the tear film.52,53 It is therefore important to note that the majority of IR detected by the thermal 

camera is emitted from the tear film, albeit with some absorption and re-emission of radiation from 

deeper layers. This concentration of information from the tear film, however, makes thermography 

a very useful tool for observing changes in tear film stability. 

 

With the invention of thermal cameras, thermography has become a valuable method to measure 

OST. Thermography has two advantages over the previous methods. First, it is non-invasive. 

Second, it reflects temperature variations over the total eye surface.2 IR thermography provides an 

opportunity to measure the temperature of the whole cornea, or a specific area, such as a circle 

around the center, or limbus. Many studies have been undertaken on the use of IR thermography 

and OST. Published studies reporting on the measurement of OST describe varying methods for 

analysis of the captured IR thermography image. The methods for estimation of the OST can be 

grouped into two categories: single camera and dual camera system. 

 

2.3.2.1 Single camera 
In these methods, a single thermal camera was used to measure the OST. Generally, these methods 

are divided into three categories: manual, semi-automatic, and automatic methods. 

 

2.3.2.1.1 Manual methods 
Originating with the earliest thermal cameras, the speed of response was slow and only a few 

frames could be captured in series, perhaps with a frame rate of 4Hz. Each image produced was 

analysed by the user manually selecting a single point or multiple points in the area of interest. In 

most cases, OST was then studied by comparison of several points or areas on the corneal surface. 

For example, Efron et al.51 (1989) measured OST at 11 points on the surface of the cornea to 

observe changes in OST after a blink. The points were placed along a horizontal line that crossed 

the geometric center of the cornea, and the points were separated by 0.5mm. 
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In another study, Morgan et al.54 (1995) used five 10x10 pixel boxes (Figure 2-8a), each of 

approximately 1mm2 area, located on the horizontal line across the center of the cornea. The mean 

OST of each area was used for statistical analysis. They found that DED patients have a higher 

OST in comparison to a normal eye group with the same age and conditions. Also, that tear film 

evaporation in a dry eye was approximately three times faster than from a normal eye. 

 

Galassi et al.55 (2007) used five different points in their study instead of five boxes (Figure 2-8b). 

The points were positioned along the horizontal line of the cornea, one point at the center, one on 

the internal and external canthi, and one half-way between the internal canthus and nasal limbus, 

and one half-way between the temporal limbus and external canthus. They applied the method to 

subjects with primary open-angle glaucoma (POAG) and found that OST was significantly lower 

in POAG patients compared to healthy eyes. 

 

A similar study by Sodi et al.56 (2007) assigned five different points on the horizontal line of the 

cornea. The points were placed equidistant from each other, with one placed on the estimated 

center of the cornea. They used IR thermography to measure OST in central retinal vein occlusion 

(CRVO) patients compared with a healthy control group. 

 

   

a b c 

Figure 2-8: Manual selection, a. Drawing multiple squares (10x10 pixels), Morgan et al., b. Single-point measurements (5 

pixels), Galassi et al., c. Drawing a circle over the cornea region, Chiang et al 

 

Murphy et al.57 (1999) used five boxes placed along a horizontal line centered on the cornea for 

OST measurement. They found that during non-contact cornea aesthesiometer (NCCA) air pulse 

usage, the rate of OST change was the principal mode of corneal nerve stimulation. Mori et al.43 

(1997) used OST measurement to evaluate the tear film layer by using a 20x20 pixel box (3.3mm2) 
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located at the center of cornea. They found that the rate of decrease in OST post-blink for DED 

patients was considerably less than for normal subjects. Chiang et al.58,59 (2006) placed an 

encircled area (4.4mm diameter) on the center of the cornea (Figure 2.8c). They used the extracted 

data to diagnose DED. Ng et al.59 (2008) also placed a circular area on the center of the cornea. 

They used the data to find a relationship between age and OST. In their experiment, OST was 

found to decrease with age at a rate of 0.0383°C per year. Purslow et al.12 (2005) recorded 

temperature at 23 points across the cornea, grouped in five regions: central, superior, inferior, 

nasal, and temporal. They used thermography to measure OST change that occurred while a person 

wore different types of contact lenses. 

 

Matteoli et al.60 (2016) used thermography to investigate OST change in the eyes affected by age-

related macular degeneration (AMD). They attempted to control for tear evaporation by only using 

the first frame of the opened eye for analysis to set the baseline. The images were acquired in RGB 

digital format and converted to greyscale for implementation of an image processing algorithm. 

Then, using a MATLAB software program, they selected five areas (small, oval shape) on the 

surface of the eye in which the OST was analysed in selected frames of a recorded movie file. 

They found that the OST of the AMD patients was significantly lower in comparison to a control 

group. 

 

Tan et al.61 (2016) used thermography to investigate the repeatability of thermal measurement in 

DED patients. OST was recorded and the region of interest (ROI) was selected manually using the 

diamond method, and the acquired data was recorded at 0, 5, and 10 secs. Inter-image, inter-

occasion and inter-examiner repeatability of the OST was evaluated by calculating coefficients of 

repeatability (COR). The study showed that most of the coefficients used in their experiment were 

highly repeatable. 

 

Sudarshan et al.62 (2017) also worked on DED using thermal imaging and extracted the OST ROI 

from the original image manually. They attempted further image processing by using discrete 

wavelet transforms and Gabor transforms for feature extraction. By analysing the features, they 

found that the OST changes in the lower part of the cornea were more accurate, using their 

algorithm, for diagnosis of DED. 
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Ding et al.63 (2021) investigated the effect of ocular surface cooling on the maximum inter-blink 

period. Using the Teledyne FLIR A655sc camera to record OST, Matlab programming was used 

to segment the cornea using the first full frame after a blink. The subject was asked to maintain a 

steady fixation during the recording, and the position of the cornea was considered to be the same 

for all subsequent frames after the first detected frame. Like other single camera methods, the OST 

measurement was considered on the estimated corneal area and the method was unable to track the 

cornea movement and precisely localize corneal area on the frames. 

 

2.3.2.1.2 Semi-automatic methods 
The manual methods, while simple in their performance, have deficiencies arising either from the 

camera technology itself – low thermal and temporal accuracy, varying degrees of invasiveness – 

or from the limitations of data analysis – they are non-automatic and require much post-processing. 

By improving both the thermal camera capabilities and quality, researchers have tried to improve 

their measurement results from the eye surface. Consequently, some image processing algorithms 

have been implemented on the thermal images to reduce user manual input. 

 

Acharya et al.45 (2009) proposed a semi-automated method to acquire OST. The original image of 

the eye was converted to grayscale for image processing purposes. Then, the image was cropped 

manually to localise the ROI of the image and resized to 400x200 pixels. The circular center of 

the cornea was detected by their algorithm by assuming that the corneal radius was one-fourth of 

the entire anterior ocular surface. Then, the profile line was plotted in the middle of the cornea for 

temperature measurements. Their main finding was that the average OST and temperature 

distribution reduced with age. 

 

In another study, Acharya et al.64 (2014) used thermography and a feature extraction method to 

find the treatment results in DED patients. The thermographs (thermal images) were captured 

immediately after a blink. Then the ocular region was segmented from the image. Feature 

extraction was used to extract some texture information of the thermal images. Using the extracted 

information, a decision could be made on the patient’s response to treatment. 
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Matteoli et al.65 (2018) proposed a new method based on image processing techniques for thermal 

image analysis. A fixed eye shape, bounded by two arches, symmetrical both horizontally and 

vertically, and narrower in the area representing both canthi, represented an ideal eye. Then, the 

thermal images of the eyes were adapted to this fixed eye shape by reversible geometric 

transformation. Their method did not depend on ocular geometry and could be applied to compare 

OST between the left and right eyes, or even between different groups of people.  

 

2.3.2.1.3 Fully automatic methods 
Although an improvement in both hardware and software processing, the semi-automatic methods 

still required user input. In response, some groups tried to produce a fully automatic method. The 

key technical challenge here is to locate the corneal boundary in the ocular thermogram. 

 

Tan et al.66 (2009) proposed a fully automated method to measure OST. Using their method, which 

included a snake algorithm and target tracing function, the eye was localised on the image, and the 

eyelash effects removed from the image. Finally, a circle was drawn in the center of the eye 

automatically to achieve cornea temperature data. However, their algorithm could not omit the 

influence of the eyelash completely and the accuracy of segmentation was not satisfactory. 

 

Shuang et al.67 (2016) used active contour modelling to extract the eye from other parts of the 

image. Their algorithm was able to deal with low resolution and blurred images. The algorithm 

was compared with the Tan et al. algorithm and, although the method had more processing time, 

it was improved in terms of accuracy compared with the other method. 

 

2.3.2.2 Dual camera systems 
The manual, semi-automatic and fully automatic methods described thus far depend on a single 

camera system. They are not suitable for OST measurement either because they are manual or 

have low accuracy in locating the corneal ROI. All of the algorithms only worked on the thermal 

images, but since the pixel intensity of a thermal image is based on temperature distribution, there 

is no clear edge between the corneal and surrounding area in the images. Hence, it is impossible 

to accurately segment (locate) the corneal area from the surface of the eye in the thermal images. 

To solve this problem, some groups have used a dual camera system to improve the accuracy of 
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the segmentation. They took the advantage of the visible image to find the corneal boundary in the 

thermal image. 

 

Kamao et al.68 (2011) used a visible (EMR) camera embedded in a thermal camera system to 

measure OST in DED patients in a semi-automatic method. Figure 2-9a shows the dual camera 

system. In the pre-processing level, the pupil of the subject’s eye was first located in the center of 

the visible camera image by touching the computer control screen. By means of camera alignment, 

the thermal camera was therefore also centered on the pupil of the subject’s eye. To provide semi-

simultaneous viewing, two mirrors (one fixed and one moving) were used to reflect visible light 

from the subject eye into the visible camera detector. Figure 2-9 b shows the mirror installation in 

the system. The moving mirror rotated 45° every 0.25 secs to reflect the visible light to a fixed 

mirror and finally into the visible camera. During visible light transmission to the camera, the IR 

radiation was blocked from entering the thermal camera by the moving mirror. After recording the 

data, a customised software was used for further processing. The ROI was segmented from the 

images manually and the extracted data analysed. The images were compared for TBUT in DED 

patients by visual comparison of the coincident images. 

 

  

a b 

Figure 2-9: Dual camera system introduced by Kamao et al. (2011) a. camera setup, b. internal camera architecture and mirror 

installation68 (Reproduced from: Kamao T, Yamaguchi M, Kawasaki S, Mizoue S, Shiraishi A, Ohashi Y. Screening for dry eye 

with newly developed ocular surface thermographer. Am J Ophthalmol. 2011;151(5):782-791) 

Introducing this method was a big achievement at that time (2011). The corneal boundary was 

detected with much improved accuracy, and the location of tear film break-up on the surface of 

the eye could be estimated by an experienced user in a more precise way. However, the method 

was not synchronous and required a lot of user input to extract the data. 
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Su et al.69 (2014) used a different dual camera system (thermal and visible camera) to analyse tear 

film break-up patterns. To permit simultaneous imaging of the thermal and visible cameras, a 

germanium beam-splitter was used (Figure 2-10). The beam-splitter transmitted IR light and 

reflected visible light. The thermal camera and beam-splitter were installed in front of the patient’s 

eye and the visible camera was located alongside. The system was an improvement in terms of 

synchronisation over the previous method. However, user input was still needed to analyse the 

tear-film patterns.  

 

 

Figure 2-10: Dual camera system using a semi-reflecting germanium beam-splitter to permit simultaneous visible and IR 

imaging of the eye surface, Su et al.69 (Reproduced from: Su T, Chang S, Yang C, Chiang HK. Direct observation and validation 

of fluorescein tear film break-up patterns by using a dual thermal-fluorescent imaging system. Biomedical optics express. 

2014;5(8):2614-2619) 

 

In 2015, Li et al.70 used a different camera installation to record two video files from the surface 

of the eye synchronously. The thermal and visible cameras were installed in front of the cornea 

within -15° and +15° off-axis from geometric center of the cornea. Then, two movies of the eye, 

one from each camera, were recorded for a specified amount of the time. After that, the movies 

were synchronised using FINAL CUT PRO X software (Apple Inc., Cupertino, CA, USA). Then, 

the tear film break-up area was estimated by an experienced user looking at the thermal and visible 

videos simultaneously. 
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Figure 2-11: Topology of the camera installation introduced by Li et al.70(Reproduced from: Li W, Graham AD, Selvin S, Lin 

MC. Ocular surface cooling corresponds to tear film thinning and breakup. Optom Vis Sci. 2015;92(9):e248-56) 

 

Kricancic et al.71 (2017) demonstrated another camera installation method (Figure 2-12) to monitor 

OST change on the surface of the eye. They used a germanium filter in a fixed position in front of 

the patient’s eye. The system was used to monitor OST change in the contact lens wearer. 

However, their method still required manual input of the user.  
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Figure 2-12: New camera installation using semi-reflecting Germanium beam-splitter introduced by Kricancic et 

al.71(Reproduced from: Kricancic H, McNeill H, Titze M, Alonso-Caneiro D, Collins MJ. Instrument for simultaneous 

assessment of fluorescein and thermal dynamics of the tear film. 2017) 

 

A dual camera system is a simple method that permits location of the corneal and eye contour area 

in the thermal image. All of the reported dual camera system methods tried to have the best camera 

installation and adjustment in order to have the same image from the eye surface. However, 

adjusting two cameras to have the same field of view from a scene is difficult, and the resultant 

images from the two different sources are not always identical. Images from different sensors can 

be affected by many factors, such as sensor pixel size, image resolution, lens distortion, 

environment light, distance, angle of photography, and sensor type. Therefore, working only on 

camera installation alignment will not yield data extraction with a high spatial accuracy. To 

improve the accuracy of cornea localisation, the images should be processed after finding the best 

camera installation. 

 

 Specific issues for imaging of eye 
To conclude, most of the described methods estimate the corneal location based on eyelid position 

and cannot track the corneal area during eye movement, blinking, or eccentric gaze. This occurs 

because the eye thermograph lacks a corneal boundary, which is clearly visible in color images. 

Also, other methods, which may have more accuracy, need user input to extract the data. Table 

2-1 summarize the previous and current methods of the OST measurement.  
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Table 2-1: Summary of the previous and current methods of the OST measurement 

Device Author Manual/Auto Method 

S
in

g
le cam

era
 

Efron et al. (1989)51 Manual Selecting 11points on the surface of the cornea and extracting temperature 

Morgan et al. (1995)54 Manual Drawing five 10x10 pixel boxes on the cornea surface  

Mori et al. (1997)43 Manual 
Extracting OST using a 20x20 pixel box (3.3mm2) located at the center of 

cornea 

Murphy et al. (1999)57 Manual Five boxes placed along a horizontal line centered on the cornea 

Purslow et al. (2005)12 Manual 
Locating 23 points across the cornea, grouped in five regions: central, 

superior, inferior, nasal, and temporal to measure OST 

Chiang et al. (2006)72 Manual Drawing an encircled area (4.4mm diameter) on the center of the cornea 

Galassi et al. (2007)55 Manual Locating five different points on the eye surface to measure the temperature 

Sodi et al. (2007)56 Manual Locating five different points on the horizontal line of the cornea 

Ng et al. (2008) 59 Manual Drawing a circular area on the center of the cornea 

Matteoli et al. (2016)60 Manual Drawing five areas (small, oval shape) on the surface of the eye 

Tan et al. (2016)61  Manual 
The region of interest (ROI) was selected manually using the diamond 

method 

Sudarshan et al. (2017)62 Manual Drawing a circle on the original image to extract the temperature manually 

Ding et al. (2021)63 Manual  Best fitted circle on the center of the eye was used to extract the temperature   

Acharya et al. (2014)64 
Semi-

automatic 

Cropped the eye part of the image and fitted a circle in the center of the 

image 

Matteoli et al. (2018)65 
Semi-

automatic 

A fixed eye shape, bounded by two arches, symmetrical both horizontally 

and vertically, and narrower in the area representing both canthi, represented 

an ideal eye 

Tan et al. (2009)66 Automatic 
Using snake algorithm and target tracing function, the eye was localised on 

the image automatically  

Shuang et al. (2016)67 Automatic 
Active contour algorithm was used to localize the cornea and extract the 

temperature  

D
u

al cam
era

 
Kamao et al. (2011)68 

Semi-

automatic 

Using a moving mirror to send visible light to visible camera every 0.25 sec- 

manual OST extraction by looking at visible and thermal images side by side  

Su et al. (2014)69 
Semi-

automatic 

A germanium filter was used as a beam splitter to capture synchronous 

images- manual OST extraction by looking at visible and thermal images 

side by side 

Li et al. (2015)70 
Semi-

automatic 

The cameras were installed in front of the cornea within -15° and +15° off-

axis from geometric center of the cornea to capture images- manual OST 

extraction by looking at visible and thermal images side by side 

Kricancic et al. (2017)71 
Semi-

automatic 

Using germanium beam splitter with different installation- manual OST 

extraction by looking at visible and thermal images side by side 
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All of the above methods made a good contribution to OST measurement, but there are some 

weaknesses with each method. For example, the manual methods need an experienced user input, 

and the semi-automatic and automatic methods (single thermal camera) using images in which the 

corneal boundary is indistinct and therefore only an approximation of the boundary can be 

provided. The dual camera systems provided better localisation accuracy, but the method still 

requires user input. None of the described methods are able to localize the cornea with high 

accuracy and track it over time. Also, the methods cannot detect and remove blink artefacts from 

the image sequences. 

 

Improvements can be made by overlaying high-resolution visible and thermal images, captured 

using a dual camera system, to maintain tracking of OST during eye movement and blinking, and 

detection of the elliptical palpebral aperture. Such a system provides an opportunity to analyse the 

ocular surface with much improved accuracy. As a result, the system could be applied in the 

diagnosis and management of DED, in monitoring changes in contact lenses during lens wear, and 

in understanding the role of temperature change as a stimulus for blinking. The main purpose of 

this thesis is to report on the design of an automatic system for recording and analysing OST of 

the human eye. 
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3 Chapter 3: System Design 
 

The best system for measuring and tracking OST over time is to use a dual camera system 

consisting of a thermal and a visible camera. The first step of the system design was to consider 

system requirements, and this is reported in Section 3.1. Hardware design and selected hardware 

are explained in Section 3.2. Section 3.3 describes the data acquisition algorithm and data 

gathering method. 

 

 System Requirements 
To develop a system for measuring and tracking OST over time, both hardware infrastructure and 

algorithm developments are required.  

The hardware consists of: 

 Thermal camera  

 Visible camera  

 Camera lenses  

 Connection cables  

 Camera mounts  

 Patient chin/head rest for adjustment  

To design the hardware infrastructure for imaging the eye surface, two cameras are required: a 

thermal (IR) camera and a visible (machine) camera. In selecting each camera, the following 

parameters should be considered: thermal resolution, thermal sensitivity, image resolution, frame 

rate (frames per second (fps)), field of view (FOV), and availability of digital I/O connection. 

 

 Thermal and image resolution describe the same characteristic: the ability to detect and 

record detailed information from the eye surface. A resolution of 640x480 pixels or higher 

provides enough information from the eye surface for the analysis step. 

 Thermal sensitivity describes the ability of the thermal camera to detect small changes in 

OST across the ocular surface. The temperature range across the eye is small and the 

precision of the measurement is very important. A detected temperature variation of at least 

two decimal places provides enough information for decision making. 
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 The frame rate describes the number of frames per second (fps). It is important to provide 

enough data for processing, but if the fps is too high, an excess of data is generated which 

would need additional processing time and a more powerful processor. If the fps is too low, 

then insufficient information is generated to track OST over time. A framerate of 12-25 fps 

provides enough information to track OST between two blinks. 

 The FOV is the coverage area across the ocular surface and nearby eye and face (adnexa) 

that can be seen by the camera. The FOV can be changed by lenses, with a close-up lens 

reducing the FOV, but enabling more detailed information of the eye surface. The lens 

should be selected based on the distance of photography and the required FOV. 

 For temperature measurement, the thermal camera should be close to the eye to capture the 

temperature with the highest accuracy. A close-up lens must therefore be fitted to enable a 

clear focus. To match the thermal camera FOV, the visible camera should also have a close-

up lens with a similar FOV. The visible camera should also be able to image the eye surface 

from the same viewing distance, or from a little further or closer for best mounting 

flexibility. 

 Another requirement for camera selection is a digital I/O port. The port helps to connect 

each camera via cable and enable synchronous imaging. 

 A further requirement for the system is a suitable camera mount. Each camera should be 

installed on the same mounting plate to ensure that alignment adjustments for each camera 

are made in conjunction with the other camera 

 The camera mount must also be attached to an adjustable mechanism that allows changes 

to the height and angle of the camera alignment with the head and eye of a subject. 

 Lastly, a head and chin holder are required to stabilise the subject’s head during image 

capture. 

 

A general schematic of the system is shown in Figure 3-1. The thermal (1) and visible (2) cameras 

were installed on the camera mount (3), which is flexible and can rotate to provide different angles 

of view and provide different relative positions of the cameras to the eye. The camera mount was 

installed on an adjustable arm (4) of a modified slit-lamp biomicroscope that could rotate the whole 

camera system in front of the subject eye. The adjustable arm was an integral component of the 

biomicroscope and could be rotated in front of the eye. The biomicroscope could also be moved 
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(5)(6) up/down, left/right, and forward/backward. The biomicroscope incorporated a chin/head 

rest (7) that could be adjusted for eye alignment and patient comfort (8). The camera imaging 

system was controllable by a computer system (9).  

 

Figure 3-1: General schematic of the instrument set-up for the system. 

 

 Hardware selection  

3.2.1 Thermal camera 
A Teledyne FLIR IR A655sc thermal camera (Teledyne FLIR LLC, Wilsonville, OR, USA) was 

chosen for this project. This camera uses an un-cooled CCD detector (microbolometer) that is 

sensitive for IR wavelengths from 7.5 to 14µm and is able to distinguish temperature differences 

down to 30mK. This wavelength range falls within the IR-C or Far IR range. The thermal camera 

can capture an image in temperature or radiometric (raw) format. For this project, the radiometric 

format was selected as it provided more sensitivity in the data, and the data could be converted 

into any desired format, i.e., Celsius, Fahrenheit, radiometric, or grey value. 
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The camera was able to capture full frame size (640x480) images at 50Hz, or a smaller window 

size at speeds up to 200Hz. For this project, the full frame size and 25Hz frame rate was chosen. 

Individual pixel size reported by the camera manufacturer on the CCD is 17µm, which provided 

detailed information of the ocular surface at the short focal lengths used, since the pixel size 

projected onto the ocular surface is 0.09 mm). For more detailed imaging of the eye and adnexa, a 

polished germanium close-up lens was attached to the objective lens of the camera. Germanium 

lenses have a high refractive index (about 4.0 for a 2-14 μm incident wavelength) and are 

transparent for IR radiation. This lens is designed to provide sampling resolution of extremely 

small targets (640 x 480 pixels with an on-eye pixel size of 0.09 mm) and has a field of view 

(FOV) of 64 x 48 mm with a 172 mm working distance, and a magnifying factor of 5.8x. By using 

the close-up lens, the image of the eye could be adjusted to fill the full frame size. Camera focus 

was controlled manually. Figure 3-2 shows the thermal camera and the germanium close-up lens. 

 

 
 

a b 

 

Figure 3-2: a) Teledyne FLIR IR A655sc thermal camera with close-up lens attached used for temperature recording; b) 

Germanium close-up lens (Image from: Teledyne FLIR LLC, Wilsonville, OR, USA) 

For operating control, the thermal camera used the Spinnaker Software Development Kit (SDK) 

(Teledyne FLIR LLC, Wilsonville, OR, USA). 

 

3.2.2 Visible camera 
Prior to selecting a suitable visible light camera, a prototype dual camera system was developed 

using a webcam in combination with the thermal camera. By analysing the system, it was found 

that a machine vision camera that could be controlled by a customized software was the best fit 

for the project. Therefore, the FLIR BFS 51S5C-C camera (Teledyne FLIR LLC, Wilsonville, OR, 

USA) was selected. This machine vision camera has a high frame-rate sampling speed, high spatial 
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resolution, and a distortion free lens. It uses a CMOS Sony IMX250 sensor (SONY Group Corp, 

Tokyo, Japan) with a pixel size of 3.45 µm which provides detailed information of the scene. The 

maximum resolution (progressive scan) of the camera is 2464x2056 pixels, which provides very 

good quality images of 5 mega pixels at a frame rate of 75 frames per second (fps). It has a dynamic 

range of 71 dB and saturation capacity of 10330 which provides an excellent dynamic range, 

permitting good quality images in poor lighting environments. The red/green/blue (RGB) pixel 

format was selected for image output as this provided the full range of color information for each 

image. 

 

The size of the camera is very small (3x3x4cm), which allowed it to be mounted beside the thermal 

camera on a single mount and with a minimal separation distance between the two cameras. A 

Fujinon HF12.5SA-1 close-up lens (Fujifilm Corp, Tokyo, Japan), which is designed for macro 

photography, was fitted to the camera. This lens has a focal length of 12.5 mm, which gives a field 

of view (FOV) of 12 x 9 cm at 17 cm. Figure 3-3 shows the selected machine vision camera and 

the close-up lens used for this project. Camera focus was controlled manually 

 

The visible camera could also be controlled using the Spinnaker Software Development Kit (SDK) 

(Teledyne FLIR LLC, Wilsonville, OR, USA), which enabled the development of a single software 

program that could control both cameras together. 

 

  
a 

 

b 

Figure 3-3: a) Teledyne FLIR BFS 51S5C-C machine vision camera selected for visible image recording, b) Fujinon 

HF12.5SA-1 close-up lens. (Image from: Teledyne FLIR LLC, Wilsonville, OR, USA) 

3.2.3 System integration  
Having selected the two cameras for the project, the next step was to design the dual camera 

system. Since the intention was to have both cameras focused on the same area of the eye and its 

adnexa, both the thermal and visible cameras needed to be positioned on a mount in front of the 
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subject’s eye. Ideally, both cameras should be aligned directly in front of, and perpendicular to, 

the eye, but with two separate cameras, that was not possible. A zero relative angle between the 

cameras is optimal as this would cause less skewing between the images. 

 

A decision was made to install the thermal camera perpendicularly in front of the patient’s eye 

(zero angle) on a horizontal mount positioned on top of an adjustable arm, and to have the visible 

camera installed on one side of the thermal camera on the same mount. The visible camera was 

small in size and could be installed very close to the thermal camera. Thus, for simplicity in 

hardware set-up, it was assumed that there was a zero angle between the cameras.  

 

The adjustable arm on which the camera mounting was positioned formed part of a slit-lamp 

biomicroscope that was mounted on a table, and this arrangement allowed the cameras to be moved 

up/down, left/right, forwards/backwards, and to rotate around the subject’s eye. This flexible 

arrangement allowed the capture of thermal and visible images at different angles and distances. 

The camera mount also allowed the visible camera to be adjusted to a range of different angles 

relative to the thermal camera, if needed (Figure 3-4 b). Lastly, the slit-lamp instrument included 

a headrest on which the subject could position their head. 

 

The cameras were installed in such a way that each camera imaged the same area of the face and 

eye during photography. To get the best performance in the image processing steps, it was better 

to have the same image size for both thermal and visible images. The maximum image size of the 

thermal camera is 640x480 pixels, therefore the same image size was chosen for the visible camera. 

The FOV for the visible camera was also adjusted to match the FOV of the thermal camera. By 

designing the system to have similar image sizes from both cameras, this gave the best images in 

terms of similar eye size in the images across the same pixel dimensions and size. 
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a b 

Figure 3-4: a) Mounting arrangement for the two cameras showing the movable arm mounted on the slit-lamp biomicroscope, 

the camera mounting and the subject headrest, b) different views of the visible camera mount (top, middle) that was attached 

to the thermal camera (bottom). 

 

3.2.4 Camera synchronization 
When two or more cameras are used to capture an image of the same scene or event at the same 

time, it is possible to synchronize when image capture occurs. Synchronization permits each 

camera to capture an image at the same time point or with any desired time interval. In this system, 

two cameras were used, and camera synchronization was an essential component of the image 

capture system. Camera synchronization can be arranged using either software or a hardware 

trigger.  

 

3.2.4.1 Software trigger 
In this arrangement, the different cameras are controlled by a single software program that acts as 

the trigger to control image capture by the cameras. When the software is running, a signal is sent 

to each camera commanding it to capture an image. However, although the initiation of the 

command for image capture can be synchronized, the exposure time of each camera might be 

different, since that can be affected by factors such as system processing power, memory, or type 
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of coding. Usually, thread programming is necessary for the camera management software to 

manage these problems, which is costly.  

 

3.2.4.2 Hardware trigger 
Another way of camera synchronization is hardware triggering, in which each camera is physically 

connected to the other camera by a cable. To synchronize the cameras, one camera is considered 

as the primary and the other as the secondary. The primary camera strobe is used to trigger the 

secondary to start image capture. The strobe is an electronic signal that occurs when a camera 

starts to capture an image. Since the two cameras are linked by a cable, the primary camera strobe 

triggers the secondary camera. In effect, the secondary camera is synchronized with the strobe, 

and so the frame rate of an image sequence for the secondary is the same as primary camera. If the 

system memory for the synchronized cameras is not able to store the images in real-time, the 

cameras must use their buffer to record the frames to slow the data stream and allow the system to 

read it by its speed. In this way, there is no loss of frames because of the system speed, and the 

system cannot affect the camera synchronized capturing. Since the secondary camera is controlled 

by the primary, the frames are recorded within a millisecond delay. 

 

3.2.5 System camera connection and synchronization 
The hardware trigger mechanism was chosen for this project, with the thermal camera used as the 

primary and the visible camera as the secondary. To connect the cameras, the data ports of each 

camera were connected in such a way that the thermal camera could send the trigger signal to the 

visible camera. Figure 3-5 and Figure 3-6 shows the port map for the thermal and visible cameras, 

respectively.  
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Figure 3-5: Teledyne FLIR A655sc digital in/out data connectors (Image from: Teledyne FLIR LLC, Wilsonville, OR, USA) 

 

For the thermal camera s primary, either Pin 3 or 4 could be used as an output. Pins 5 and 6 were 

used for the 12V power supply. 

 

 

Figure 3-6: Teledyne FLIR BFS GPIO digital in/out port connectors. (Image from: Teledyne FLIR LLC, Wilsonville, OR, 

USA) 

 

For the visible camera, Pins 2 and 5 were used for the trigger input from the thermal camera. To 

connect the cameras, a GPIO cable with a 6 pin Hirose circular connector was used (Figure 3-7). 
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Figure 3-7: 1m GPIO Cable with a 6 pin Hirose HR10 circular connector. (Image from: Teledyne FLIR LLC, Wilsonville, 

OR, USA) 

 

The cable is color-coded. Therefore, the GPIO connector was connected to the GPIO port of the 

visible camera and the trailing black wire from the cable was connected to pin 3 of the thermal 

camera. The blue trailing wire from the cable was connected to pin 6 of the thermal camera. 

Both cameras were connected to a PC computer. The thermal camera was connected via the GigE 

vision port to provide the maximum speed and minimum delay between frames in the video 

sequence. The visible camera was connected to the computer using a USB 3.1 cable. 

 

3.2.6 Frame rate 
There were three options for camera frame rate: 12.5, 25, or 50 fps, based on the available frame 

rates of the thermal camera at full resolution. A frame rate of 25 fps has a 40ms gap between 

frames. This was felt to be the optimum frame rate available since it would be fast enough to detect 

eyelid blinking during any video sequence, while not producing lots of data, and slow enough to 

provide detailed information of any temperature changes while the eye was open. In particular, 

during a blink there will always be a few frames captured that contain all or part of the eyelid 

closure. A 12.5 fps would reduce the overall temperature data collected while also providing less 

information about the blink – eyelid movement may only be observed in one or two frames. A 50 

fps frame rate would provide more detailed information, but processing of the data would be 

computationally costly and need more time. Therefore, the frame rate of 25fps was selected for the 

project. 
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 Camera Management and Data Acquisition 
 

To acquire data from the eye surface using the dual camera system, a software was required to 

manage the cameras and record the data on a disk. Before developing the software, an algorithm 

should be developed for the camera management. The algorithm should be designed and developed 

based on the system requirements. For the camera management and data acquisition software, the 

algorithm should be developed in a way to capture synchronous frames from both cameras and 

save it to the computer memory. Also, the algorithm should be developed in a way to write a 

timestamp on each image file for synchronization and to record time after blink. After developing 

the algorithm, a programming language should be selected to implement the algorithm. In the next 

section the programming method is described.  

 

3.3.1 Programming language 
Having selected the two primary cameras (IR and Visible) for the system, the next step was to 

develop a camera management software that could interact with the proprietary camera driver 

software of each camera. The software needed to be able to recognize the camera drivers and have 

access to each camera registry to be able to control each camera’s hardware. Each camera has a 

dynamic link library (dll) file and software development kit (SDK). Specifically, it was the SDK 

that was used to access the camera hardware and control it. Since the two cameras selected for the 

project were from Teledyne FLIR, both cameras were able to support the same SDK called 

Spinnaker SDK. Spinnaker SDK is a Teledyne FLIR next generation GenICam3 API library 

designed for machine vision software developers. Using the Spinnaker SDK, a customized 

software was developed to control the cameras. The SDK could also be imported as a library to a 

C++, C#, Matlab, or Python programming environment. 

 

After setting up the camera system installation and connecting the two cameras together using the 

synchronization cable for hardware triggering, the data acquisition and image processing steps 

were controlled by a customised software program. For this system, the Python programming 

language (Centrum Wiskunde & Informatica, Amsterdam, Netherlands) was selected to develop 

the camera management software, data acquisition software and image processing software as it 

was found to offer more flexibility and performance for these future steps of the project, and 

especially when using deep learning algorithms. 
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3.3.2 Management software interface 
A graphical user interface (GUI) was designed for the software to enable easier control of the 

system. Figure 3-8 shows the GUI of the dual camera management software. The graphical user 

interface (GUI) was designed from scratch. Before the design, all of the requirement for the 

program were considered. Then, a form was developed and two placements for the video were 

designed on the form. Six control buttons, each with a different function, were designed with a 

suitable background to provide the user-friendly user interface. The buttons were defined to work 

with a keyboard shortcut or mouse click. After designing the GUI, code development was started. 

The code was written for each part of the software. For example, each button needed several lines 

of codes to be functional, and the code written was based on the designed algorithm in the previous 

steps. 

 

Using the GUI interface, a preview of the video stream from each camera was displayed side-by-

side, and synchronous image sequences could be recorded using a single button click. This enabled 

the user to make a visual check that both cameras were operating and focused on the same area of 

the subject’s eye, and that the subject was not making excessive eye movements or blinking (Figure 

3-10). The software also had the ability to replay recorded video files beside each other to allow 

observation of any changes on the eye surface during the recorded video sequence or to see the 

final video output after image processing. 

 
 

Figure 3-8: Graphical user interface (GUI) for the dual camera management software showing the visible camera feed (left) 

and thermal camera feed (right), and software control buttons (top left). 
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The specific software management controls are shown in Figure 3-9. 

 

 

Figure 3-9: GUI control buttons for the dual camera management software. Button function: 1: Start/Resume camera preview; 2: 

Pause camera preview; 3: Capture image from the current view; 4: Record button; 5: Camera and record settings, 6: Stop 

cameras and Close program. 

 

3.3.3 Data acquisition 
Data acquisition from the two cameras was one of the primary requirements for the system, and a 

reliable method of collecting and recording the image sequences from each camera was essential. 

The customized software had the ability to record individual image frames from each camera in a 

synchronized sequence that started from a single reference frame in the thermal camera. 

 

To ensure synchronous data acquisition, the software relied on the video image timestamp for each 

image frame. When a camera captures an image it notes the exact time of the capture, which can 

be the system time or the camera time, and the time is attached (stamped) to the image frame. This 

is called the timestamp and it is a permanent feature of each image frame. The timestamp was used 

to check the synchronization between the cameras by looking for any time difference between two 

frames. In this system, although both cameras were manufactured by Teledyne FLIR, each camera 

used a different timestamp format. Thus, to create a single timestamp for both cameras, the 

timestamp format from the thermal camera was converted to the format of the visible camera. The 

timestamps for the two recorded frames of the target object (one from each camera) were compared 

to check that the cameras were capturing simultaneous images. Since both cameras were set to 

capture images at 25 fps, the timestamp was able to reveal a time difference between frames for 

both cameras of 40 milliseconds. 

 



 

51 

 

To obtain a set of paired thermal and visible video sequences recorded from the eye surface, the 

subject was asked to maintain fixation in primary gaze (straight-ahead) and to blink normally 

during the recording. Image synchronization of the two video streams could be checked visually 

by reviewing the video files from each camera that were presented side-by-side in the GUI. 

For subsequent image processing, a sequence of individual and timestamped frames was extracted 

from each video file and numbered in order from an initial reference frame. Figure 3-10 shows an 

example of the extracted frames from the visible and thermal videos. By looking at the frames, it 

is obvious that the cameras captured the frames synchronously. A blink can be observed to start at 

frame 32 and end at frame 40 in both video sequences. 

 

  

a b 

Figure 3-10: Visible (a) and thermal (b) extracted video frames used for side-by-side comparison, numbered from an initial 

reference frame. 

 

The algorithm was designed to record the video files and store them on a memory disk with a 

recorded timestamp for each frame. The frames were then extracted from the video files using a 

developed software. The frames were then sent to the image processing software for further 

processing.  
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4 Chapter 4: Image normalization 
 

After developing the dual camera operating software, the image sequences recorded by each 

camera in the system must be processed to remove the inherent aberrations in the image using a 

customised image processing algorithm. Each image captured by each camera is affected by the 

quality of the camera’s optics and by the sensor characteristics. These features can be calculated 

for each camera and used to calibrate the image by removing the associated artefacts. 

 

 Image normalization  
By having knowledge of the effect of the camera’s optical and sensor characteristics, the images 

can be pre-processed to remove these effects and be prepared for future processing steps. This 

process of identifying and correcting the errors is called image normalisation. Image normalisation 

can include a variety of pre-processing steps, such as contrast adjustment, size change, color 

change, and distortion removal. For this project, only image distortion will be corrected. 

 

Image normalization ultimately improves the output from the image processing algorithms used 

for object recognition, pattern recognition, corner detection, and image segmentation. In medical 

image processing (such as this project), it is important to have precise and accurate output images 

after image processing algorithm implementation, and so ensuring that the input images for that 

process are as unaffected by artefacts as possible is essential to that task. Hence, image pre-

processing is an essential part of the project. 

 

The first step of the pre-processing is the camera matrix calculation which involves determining 

and extracting the intrinsic and extrinsic camera parameters. The intrinsic parameters represent the 

optical characteristics of the camera, such as focal length, principal points, distortion, and skew. 

The extrinsic parameters represent the location and position of the camera in relation to the object 

which can produce rotational and translational artefacts. The calculated intrinsic parameters can 

be used to calculate the lens distortion coefficient, by which the images taken by the cameras can 

be undistorted. 
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Based on the manufacturer’s camera specification (Teledyne FLIR BFS), there should be no 

intrinsic image distortion with the images produced by the visible camera. However, the 

manufacturer’s camera specifications are measured under ideal conditions that do not match the 

operating parameters of this system, and some intrinsic effects are expected. Similarly, the thermal 

camera will be affected by a small number of intrinsic effects. Both cameras will have some 

extrinsic distortion, due to the side-by-side camera mounting needed to align the two cameras that 

must be removed from the images. 

 

 Intrinsic optical characteristics 
The optical performance of the camera lens (or lenses) has a direct impact on the quality of the 

image produced – in other words, the inherent optical aberrations of the optical system distort the 

image produced by that system of the object. Aberrations occur when the rays of light from a point 

source object that pass through a lens or optical system do not converge to form the image at a 

single point. These aberrations are an inevitable effect of how the EMR waves (either visible or 

IR) interact with the refracting lens material, and how the lens material is distributed across and 

through the body of the lens. 

 

There are two types of lens aberrations: monochromatic and chromatic. Monochromatic 

aberrations produce effects in the focus, magnification and distortion of the image, and chromatic 

aberrations produce dispersion of the EMR waves (according to their wavelength) to produce 

colored fringes around the locus of image formation. 

 

4.2.1 Monochromatic aberrations 
These types of aberrations are best described using a single wavelength of EMR and a point source 

as an object. The effect produced is that the image formed by the lens is not focused at a single 

point (locus). There are five different sub-types of monochromatic aberrations with a 3rd order 

approximation to Snell's law. 

 

4.2.1.1 Focus (or defocus) error 
This is the simplest type of aberration and occurs when the intended image plane of the optical 

system (e.g., the camera’s sensor or film) is not coincident with the actual image plane of the lens. 

It is a familiar error for any photographer and is corrected by adjusting either the focal power or 
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position of the focusing lens to move the image plane of the lens forward or backwards in optical 

space to be coincident with the image plane of the optical system. Defocus produces errors in the 

sharpness and contrast of the image. 

 

 

Figure 4-1: Ray diagram illustrating defocus aberration 

4.2.1.2 Spherical aberration 
This error is similar to focus error, but it is a consequence of how the EMR waves interact with 

the focusing lens. Even when defocus error has been removed by adjusting the lens image plane 

position, a small amount of focus error remains. This is caused by spherical aberration. 

 

 

Figure 4-2: Ray diagram illustrating spherical aberration for a distant object 

 

EMR waves (visible light or IR) passing through an optically transparent structure (e.g., a lens, 

prism, or glass block) are affected by the material in a process called refraction. The lens has an 

optical density that describes the strength of the interaction – the refractive index. A material with 

a higher refractive index will have a stronger effect. One benefit of this is that a thinner lens of 

higher refractive index will produce the same refractive effect as a thicker lens of lower refractive 

index. This thickness effect is also important for spherical aberration. 
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The thickness of a lens changes across its surface – a positive (convex) lens is thicker in the center 

of the lens compared to the periphery, while a negative (concave) lens is thicker in the periphery 

compared to the center. A ray of light passing through a thinner or thicker part of the lens will be 

affected (refracted) by the lens by different amounts – in this case, less and more, respectively – 

since it encounters differing amounts of the optically dense material. Light passing through air is 

unaffected since air considered to have a negligible optical density. 

 

There is a second feature of refraction that relates to the angle that the ray of light from an object 

makes with the surface of the transparent, refracting material. The central ray from the object that 

passes along the optical axis of the system will enter the material perpendicular to the front surface 

and will appear to be unaffected by the structure – the light will pass through the material un-

deviated. In comparison, a ray of light that leaves the object at an angle to the optical axis will 

meet the surface of the structure at an angle and, as a consequence, will be deviated as it passes 

through the material, with the size of deviation dependent on the angle. When the ray then exits 

the material, it experiences a further deviation. It is the cumulative effects of these two deviations 

that enables the lens to focus the light. This relationship is described by Snell’s Law (Figure 4-3: 

Ray diagram illustrating Snell’s Law. The blue line represents the incident ray path of light passing 

through air (refractive index n1=1). At the interface between the two refractive indices (refractive 

index n2>1), the light is refracted. The new ray path is represented by the green line.). 

 

 

Figure 4-3: Ray diagram illustrating Snell’s Law. The blue line represents the incident ray path of light passing through air 

(refractive index n1=1). At the interface between the two refractive indices (refractive index n2>1), the light is refracted. The 

new ray path is represented by the green line. 
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Spherical aberration is a consequence of these two effects. A ray of light travelling through the 

periphery of the convex camera lens has a greater incident angle than light passing through the 

center of the lens, and so experiences a greater level of refraction. This is also modified by the 

distance the light must travel within the optically denser material. The optical effect is that light 

from a point source of light passing through the lens is not all focused exactly at the same image 

locus. Rather, the image is spread out along the optical axis of the system (Figure 4-2). On the 

image plane, the visual effect for a point source of light is to see a central focused spot surrounded 

by a halo of light. The size of the halo represents the magnitude of the spherical aberration, and 

this is controlled by the refractive index of the lens, the dioptric power of the lens, the wavelength 

of light, and whether an aperture stop is used. By using an aperture stop in the optical system, 

peripheral light rays can be prevented from contributing to the image, but at the cost of reducing 

the image intensity. 

 

4.2.1.3 Coma or comatic aberration 
When considering a normal visual scene, rather than a point source, the effect of spherical 

aberration is repeated for each object point across the image that is imaged onto the camera’s film 

or sensor, but it is also further affected by the relative position of each object point in relation to 

the optical axis. 

 

The central ray of light from an off-axis object will not pass along the optical axis (by definition, 

since the object is off-axis) and so will not pass perpendicularly through the lens – indeed, no ray 

of any angle emitted from an off-axis object will be able to pass through the lens unaffected. Each 

off-axis object point is thus affected by spherical aberration that is distorted by the off-axis location 

of the object point - the further off-axis the object is, the greater will be the effect. The visual effect 

for an off-axis point source is that the central focus and circular halo of the object is distorted, and 

the image appears to have a tail (coma), like a comet (Figure 4-4). The magnitude of the comatic 

aberration is also controlled by the refractive index of the lens, the dioptric power of the lens, the 

wavelength of light, and whether an aperture stop is used. 
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Figure 4-4: Ray diagram illustrating comatic aberration for a distant target 

 

4.2.1.4 Astigmatism or astigmatic aberration 
Although a lens may be designed to have a spherical surface, errors in the manufacturing process 

may produce a lens surface that is slightly distorted. This effect is called astigmatism and all lenses 

have some degree of astigmatism unless they are very carefully manufactured. The aberration may 

be regular, in that it can be defined as following a pattern, or irregular, in having no pattern or 

predictability. The optical effect of this distortion is to produce multiple focal points for the lens 

that represent the multiple surface curvatures of the lens. 

 

 

Figure 4-5: Ray diagram illustrating astigmatic aberration showing location of the two line images produced from a single 

point source 

 

The simplest example of astigmatism is to consider the situation of regular astigmatism where the 

surface of the lens has been distorted to produce two axes of dioptric power that are at 90° to each 

other. (This is the familiar situation for an astigmatic lens used for correction of an ocular refractive 

error). The consequence of the two dioptric powers is that rays of light from a point source on the 

optical axis will be refracted by differing amounts depending on where they pass through the lens 

surface, and which results in two principal focal points, one for each dioptric surface. The image 
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produced at each focal point will take the form of a line of light, rather than a single spot (Figure 

4-5). 

 

The optical effect on the image depends on where the image plane of the system is placed in 

relation to each of the focal lines. If it is placed at one of the focal lines, the image will be in focus 

in one meridian and out of focus in the other. The best overall focus (least blur) is obtained halfway 

between the two focal lines, where a blurred image of the object will be produced. This point is 

often called the circle of least confusion. 

 

When the astigmatism is irregular, multiple focal lines are produced from the differing lens 

curvatures distributed over the surface of the lens. Identifying individual focal lines becomes 

impossible, and the effect is to blur the image. 

 

For an off-axis object, the effect of astigmatism is modified in a similar way that spherical 

aberration is affected to produce coma. In this situation, the off-axis effect produces oblique 

astigmatism. 

 

4.2.1.5 Field curvature 
Field curvature is an effect that relates to the shape of the image plane produced by the lens. The 

image plane has a curvature and is not flat (Figure 4-6). It is due to the different refractive effect 

on rays of light that pass through the periphery of a lens – an effect noted previously in spherical 

aberration and coma. It affects the whole image such that the center of the image is in focus, while 

the periphery is not. Modern lens design can control the majority of this aberration, but it cannot 

remove it entirely. Using an aperture stop to remove the peripheral rays will help to reduce the 

effect, but at the cost of image intensity. 
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Figure 4-6: Ray diagram illustrating field curvature aberration 

 

4.2.1.6 Distortion 
Distortion is a further example of the effect of light rays passing through the periphery of the lens. 

The effect is more obvious for a wide object scene, and the image produced is distorted to produce 

a barrel distortion, a pin-cushion distortion, or a moustache distortion (which is a combination of 

barrel and pin-cushion). The distortion can occur in any meridian. The visual effect is to cause a 

bending in the image, such that straight lines become bowed. Distortion is a greater problem when 

using short focal lengths. 

 

   

a b c 

Figure 4-7: Distortion in image produced for a square object (a) barrel (b) pincushion 

 

4.2.2 Chromatic aberration 
Visual and IR light can be presented in a single (monochromatic) wavelength or in a broad 

spectrum of wavelengths (chromatic). As discussed in Section 2.1, EMR wavelength has a 

controlling effect on how the EMR interacts with a material. This effect can be demonstrated using 
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white visible light, which contains all of the wavelengths of visible light. When white light is 

passed through a prism, the individual wavelengths of light are separated out, and the effect can 

be visibly observed as the colored light spectrum. The differing wavelengths of light have 

interacted with the prism material in slightly different ways, with the consequence that the speed 

of each wavelength as it travels through the material is altered and the waves become separated 

and ordered according to their wavelength. When the light leaves the prism, the effect on the 

wavelengths is retained and is seen visually as a colored spectrum. Since the effect is related to the 

optical density of the material, the magnitude of the chromatic aberration is controlled by the 

refractive index of the lens, the dioptric power of the lens, and the range of wavelengths of light 

used. 

 

The chromatic aberrations describe the effect that this EMR wavelength differentiation has on an 

image from a light source possessing multiple wavelengths. There are two sub-types of chromatic 

aberration. 

 

4.2.2.1 Longitudinal chromatic aberration 
This occurs when multi-wavelength light passes through a lens – each wavelength is focused at a 

separate focal point along the optical axis and not at a single locus. This type of aberration produces 

a colored fringe around the subject that spreads from the center of the object to the edge of the 

frame (Figure 4-8). 

 

 

Figure 4-8: Ray diagram illustrating longitudinal chromatic aberration 
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4.2.2.2 Lateral chromatic aberration 
Lateral chromatic aberration arises from an off-axis object. The different wavelengths are focused 

in the same focal plane, but are displaced laterally from each other. The produces a colored fringe 

that is visible at the edges of the frame spreading towards the center of the object (Figure 4-9). 

 

 

Figure 4-9: Ray diagram illustrating lateral chromatic aberration 

 

Chromatic aberration can be corrected by using an aperture stop to block the peripheral rays 

passing through the lens or with achromatic doublets, triplets, etc. With the technological advances 

in camera lens manufacture, most modern cameras are not significantly affected by chromatic 

aberration. 

 

4.2.3 Control of aberrations 
Aberrations are a significant issue for visible light and IR cameras, especially for cameras that use 

small objective lens size and/or short focal lengths. The ultimate effect is that they cause light to 

converge at different places on the camera sensor. The optical quality of the optical components, 

the efficiency of the lens design, the manufacturing quality, and the relative positioning of the 

optical components within the system all affect the size and effect of each aberration. However, 

with recent technological advances, visible cameras have very low amounts of chromatic 

aberration. IR cameras are affected by mono-chromatic aberrations. IR cameras with close-up 

lenses are more sensitive to focus error aberration as they have a small depth of view. The effect 

of other aberrations can be removed or minimized from the cameras. 
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The main way of controlling aberrations for both visible and IR cameras is to use an aperture stop. 

The aperture stop is effective by blocking (stopping) the light rays from the object that pass through 

the periphery of the lens contributing to the image formation. Distortion can be modified by 

changing the position of the lens elements. 

 

However, while these methods can help to control the effect from aberrations on an image, it 

cannot remove them all. It is therefore important to identify the remaining optical effects from 

these aberrations in an optical system so that they can be removed from the image, and thus 

produce a true image of the object. 

 

4.2.4 Intrinsic camera sensor characteristics 

Imaging electronics and optics play important roles in the quality of imaging system output. All 

of the camera components, including camera sensor, capture board, cables, and software, have an 

effect on the overall system performance. The heart of each camera is the sensor. Modern visible 

camera sensors contain millions of photodetector sites called pixels located on a charge-coupled 

device (CCD), and so an image is divided into small, discrete pixels each of which represents one 

small part of the object. The pixel might be a photodiode or a photo-capacitor, which generates an 

electrical signal with the charge varying according to the amount of light that shines on the pixel 

(see Section 2.4). The information from the pixels is collected and organized by the CCD for 

onward transmission and is then transferred to a monitor to be displayed or transferred to a 

computer for further processing. 

 

Individual pixels are usually square in shape in digital cameras, with a size of 3-10 μm. The pixels 

can be arranged on the sensor in any formation, but are most commonly organised into a rectangle. 

The individual pixel size, and the density of pixel distribution across the sensor, plays an important 

role in the sensitivity and resolution of the sensor. More pixels/unit area will produce a greater 

image resolution of the object since smaller details of the object can be detected by individual 

pixels. Alternatively, sensitivity can be increased by electronically combining the output from 

several pixels to enable less bright objects to be detected. However, this occurs at the price of 

reduced resolution. 
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Pixel size will also influence sensitivity. A larger pixel will gather light from a larger part of the 

object, increasing sensitivity, but reducing resolution. A large pixel has a high charge saturation 

capacity and a high signal-to-noise ratio. On the other hand, a smaller pixel will improve 

resolution, but reduce sensitivity. Small pixels are a fairly easy way to achieve high resolution 

(more details) for a fixed sensor size and magnification. A simple measure of sensor resolution is 

the number of pixels per millimetre. 

 

The size of the sensor active area (pixel array on the sensor) determines the camera’s field of view 

(FOV). By assuming a fixed focal length (which depends on the optical components of the 

camera), a greater FOV will be produced by a larger sensor. There are several standard area-scan 

sensor sizes: ¼", 1/3", ½", 1/1.8", 2/3", 1" and 1.2", with larger available. 

 

 

Figure 4-10: Effect of sensor size and focal point on camera field of view 

 

Although manufactured to high quality standards, the CCD sensors used in visible and thermal 

cameras can have some irregularity in their pixel arrangement, which may produce some localised 

distortion in the image. It might also be expected that two cameras manufactured with the same 

sensor by the same company should function in a similar manner, but small differences in the 

sensor manufacture and interface design can have an impact on sensor, and thus camera, 

performance. Any effects from these manufacturing defects must be identified and removed from 

the images. 

 

 Pinhole camera 
Image formation is the process of turning a three-dimensional (3D) object into a two-dimensional 

(2D) image projection. The simplest method to produce this effect is to use a pinhole camera 
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(Figure 4-11). In this model, a small, single aperture is used to produce an image without the action 

of a focusing lens. By removing the lens, there is no lens-related distortion in the image. 

 

 

Figure 4-11: Pinhole camera model 

In the pinhole camera model (Figure 4-12), the center of projection is placed at the center of the 

pinhole and is known as the camera center (C). The line passing perpendicularly through the 

camera center to the image plane is the principal axis (Z), and the point where the axis intersects 

with the image plane is the principal point (p). The distance between the camera center and the 

principal point is the focal length (f). X represents the location of the object (the world point) with 

coordinates X = (X, Y, Z)T. Light from the object passes through C. This projects X onto the image 

plane to form the image point with coordinates x=(x,y)T. 

 

  

Figure 4-12: Geometric description of the pinhole camera model73(Reproduced from: Hartley R, Zisserman A. Multiple view 

geometry in computer vision 2nd ed., 4th print. 2006) 

 

The mathematical relationship between the world point coordinates and image point coordinates 

is described in Equation 4-1, where f is the focal length. 
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(X, Y, Z)T → (fX/Z, fY/Z)T Equation 4-1 

 

By using homogeneous coordinates, Equation 4-1can be written as Equation 4-2: 
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) Equation 4-2 

 

Equation 4-2 describes the pinhole camera model when the world points are expressed in the 

pinhole camera coordinate system. However, points are often described in a different coordinate 

system in the real world and are affected by rotation and translation, which are artefacts produced 

by the location and position of the camera in relation to the object (Figure 4-13: Demonstrating 

camera and world coordinate system relationship).  

 

 

Figure 4-13: Demonstrating camera and world coordinate system relationship 

 

Rotation controls how the camera, is aligned to the x, y, and z axes. Translation refers to where an 

object is in space and whether the camera and object are in alignment along an axis. Both the 

rotation and translation parameters are using to transform 3D world coordinates to 3D camera 

coordinates. Rotation can be considered as a 3x3 matrix, with each column describing the rotation 

along an axis. Since the whole coordinate system rotates around the x, y, and z axes, this gives 

three columns of 3-vectors that results in a 3x3 matrix that is used to rotate the whole system based 

on another coordinate system. The translation vector maps the center of camera onto the center of 
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the world coordinate system. The translation is a 3-vector number that describes the difference 

between two coordinates along the x, y, and z axes. Translation and rotation change during 

photography with each new object or camera set-up and must be calculated for each image. 

 

Consequently, the coordinates from a 3D world point need to be rotated and translated into the 

camera coordinate system. The coordinate systems are rotated by a 3×3 matrix and translated by a 

3-vector.  

 

Therefore, Equation 4-2 can be written as Equation 4-3: 
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where r1..r9 represents the rotation matrix and t1..t3 represents the translation vector. 

 

 Camera manufacturer parameters 
Equation 4-3 describes an idealized projection of the points to the image plane. However, in reality 

some physical imperfection or manufacturer inaccuracy of some parameters of the camera system 

will affect the image projection. 

 

4.4.1 6.3.2.1 Principal point 

In the pinhole camera model, the principal point is located at the image plane. However, in a 

camera the principal point often does not lie exactly at the image plane. Therefore, the parameters 

px and py are used to express the coordinates of the principal point on the image. These parameters, 

in pixel dimension, are x0 = mxpx and y0 = mypy in the x and y directions, respectively, where mx 

and my = the number of pixels per unit. 

 

4.4.2 Non-square sensor 

For the pinhole camera, it is assumed that the number of the pixels in the image plane in both the 

x and y directions is equal in scale. However, for most CCD cameras, the pixels are arranged in a 
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rectangle. If it is assumed that a rectangular sensor is square, there will be a scaling error, producing 

distortion in the image. If the pixel coordinates are measured in pixels, the focal length should be 

multiplied by scaling factors mx and my, to be presented in pixel dimension at x and y direction. 

The focal length is generally expressed as: αx = fmx, αy = fmy in pixel dimension. 

 

4.4.3 Skew 

The arrangement of the pixels on a CCD sensor may not be perfectly square, resulting in a small 

distortion in the X or Y directions. There is an expected number of pixels per unit length in each 

direction on the CCD sensor. Where the distribution of pixels is not regular, the error can be used 

to produce the skew coefficient s. Usually, where there is no error, s is zero. 

 

Equation 4-3 can be modified to include s as: 
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In Equation 4-4, the 3×3 matrix describes the intrinsic parameters of the camera that remain 

unchanged during photography and so can be calculated. 

 

To take these into account, Equation 4-4 can be simplified as Equation 4-5: 

 

𝑃 = 𝐾[𝑅|𝑡] Equation 4-5 

 

where P is the camera matrix, K is the intrinsic parameters, R is the rotation matrix, and t is the 

translation vector. 

 

 Inherent camera aberrations 
A general description of optical aberrations that can affect an optical system was given in Section 

4.2. In considering the development of the camera matrix, only non-optical factors have been 
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considered by assuming that there is no lens attached to the camera. For this system, two kinds of 

distortion will occur: radial and tangential. 

 

4.5.1 Radial distortion 

Optical or radial distortion is the most common type of optical artefact that appears in an image. 

It is produced by the variation in magnification from the center to the edge of the lens. The amount 

of distortion is higher when the lens has poor quality of design and material or has a short focal 

length. Radial distortion is noticeable when the object distance to principal point is large and results 

in straight lines in the object appearing bent in the image. The radial distortion can be calculated 

using Equation 4-6: 

 

𝑥𝑑 = 𝑥(1 + 𝑘1 ∗ 𝑟2 + 𝑘2 ∗ 𝑟4 + 𝑘3 ∗ 𝑟6) 

𝑦𝑑 = 𝑦(1 + 𝑘1 ∗ 𝑟2 + 𝑘2 ∗ 𝑟4 + 𝑘3 ∗ 𝑟6) 
Equation 4-6 

 

where xd and yd are the coordinates of the distorted points, x and y are the coordinates of the 

undistorted pixel location in a normalized image. 

 

The normalized image coordinates are calculated from the pixel coordinates by translating their 

location with respect to the optical center and dividing by the focal length in pixels. Thus, x and y 

are dimensionless. k1..k3 are lens radial distortion coefficients, and r2=x2+y2. 

 

4.5.2 Tangential distortion 

Tangential distortion occurs when the lens and the image plane are not parallel. It occurs during 

lens assembly. Equation 4-7 describes the distorted pixel coordinates. 

 

𝑥𝑑 = 𝑥 + (2 ∗ 𝑝1 ∗ 𝑥 ∗ 𝑦 + 𝑝2 ∗ (𝑟2 + 2 ∗ 𝑥2))  

𝑦𝑑 = 𝑦 + (𝑝1 ∗ (𝑟2 + 2 ∗ 𝑦2) + 2 ∗ 𝑝2 ∗ 𝑥 ∗ 𝑦) 
Equation 4-7 

 

where xd and yd are distorted point coordinates, x and y are undistorted pixel location on a 

normalized image. 
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The normalized image coordinates are calculated from the pixel coordinates by translating their 

location with respect to the optical center and dividing by the focal length in pixels. Thus, x and y 

are dimensionless, p1 and p2 are tangential coefficients of the lens, and r2=x2+y2. 

 

 Camera matrix estimation 
Camera calibration, also known as camera re-sectioning, is the process of estimating the camera 

matrix. The camera matrix is the equation that defines the intrinsic and extrinsic artefacts for a 

camera system that incorporates an optical component. Equation 4-4 has 11 degrees of freedom 

and so to find the parameters, 11 equations should be solved. To solve the matrix, the 

corresponding points of a 3D object should be located in a 2D image. After point correspondence, 

each of them gives us two degrees of freedom. Hence, at least 6 correspondences are required to 

solve the camera matrix. To estimate the camera matrix parameters, the image produced by the 

camera of a known object should be analysed.  

 

4.6.1 Calibration checkerboard 
To determine the camera matrix parameters and so calibrate a camera system, several images 

produced by the system of an object of known dimensions are needed. In the photography 

literature, a variety of different test object patterns used to measure the camera matrix parameters 

have been reported. The most common object pattern is a checkerboard. A series of photos must 

be taken that capture the object at different depths and viewpoint angles from the camera objective 

lens to reveal the effect of rotation and translation on the image. Usually, 10 to 20 different views 

provide sufficient information for camera calibration. The full image of the checkerboard should 

be in focus to reduce the noise rate in the image and so reduce the potential size of errors in the 

camera matrix estimation. Since the data cannot be perfect and without noise, a large number of 

data points must be identifiable on the object to improve the signal/noise ratio on the image, and 

thus achieve a robust solution. A checkerboard is an ideal object since it is composed of a series 

of equally sized squares of alternating black and white color (Figure 4-14: Checkerboard pattern). 
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Figure 4-14: Checkerboard pattern 

 

For this project, finding a checkerboard that could be detectable by both the visible and IR cameras 

was a challenge. To be easily detectable to the thermal camera, the white areas of the checkerboard 

need to have a low emissivity, while the black areas need a high emissivity. However, while a 

black and white checkerboard printed on card will be suitable for the visible camera, the difference 

in emissivity between the black and white areas of the card will not produce a strong thermal 

image. 

 

In reviewing the literature, different methods for thermal camera calibration have been described. 

Saponaro et al.74 (2015) took a flat, glazed, ceramic tile, which has the capacity to maintain an 

even temperature across its surface, and attached a thin sheet of paper in front surface with a 10x7 

square, black and white checkerboard pattern printed on it. The front surface of the ceramic tile 

was heated using a lamp to produce a thermal source that could heat the paper. The checkerboard 

pattern on the surface of the paper created a strong visible image, but the emissivity difference 

between the black and white squares was insufficient to produce a strong thermal image. An 

aggressive corner detection algorithm was needed to find the corners with minimum error. Ursine 

et al.75 (2012) used a copper plate painted with black squares to produce a checkerboard. This 

solution worked well in an outdoor environment, but did not work well indoors because of specular 

reflection. Peric et al.76 (2014) and Campo et al.77 (2012) used aluminium foils to form the 

checkerboard, but they also had problems with specular reflection. Harguess et al.78 (2014) used a 

Dibond® board (a sandwich material covered by two sheets of aluminium) on which was painted 
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black and white circles. The circle targets provided a good contrast on sunny days, but had poor 

contrast in other conditions. St-Laurent et al.79 (2017) demonstrated that aluminium is the best 

foundation material since it possesses a low emissivity. They combined painting of the aluminium 

surface a black matte color with sand-blasted areas on the plain aluminium sheet to produce 

thermal images with very good visual and thermal contrast. 

Based on this previous literature, a checkerboard design was produced that could be printed onto 

an aluminium sheet. The aluminium sheet was sand-blasted before printing to increase the 

emissivity. Figure 4-15 shows the checkerboard target as (a) a visible image and (b) a thermal 

image. 

 

  

a b 

Figure 4-15: Checkerboard printed on an aluminium sheet showing its appearance as: a) visible image, b) thermal image. 

Comparing the two images, the light grey squares on the thermal image represent the black squares 

of the board, thus the thermal camera produces a negative image of the object. For this project, 

since a close-up lens was attached to the thermal camera with a very small field of view (around 4 

× 6 cm), a 5 × 4 cm checkerboard plate, with individual square size of 5 mm, was used for the 

camera calibration. 

4.6.2 Image Gathering Method 
After preparing the checkerboard calibration object, a series of images were captured using the 

dual camera system. The cameras were locked in position and the checkerboard was manually held 

directly in front of the two cameras in a position that allowed a full image of the object to be 

produced by both cameras. (It was not necessary to position the checkerboard in a holder at known 

offsets/angles since the angle and distance of the object are not required input parameters). Each 
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camera was separately focused on the checkerboard. A series of 30 images was then captured with 

the checkerboard located in different on-axis and off-axis positions, and object depth from the 

cameras. During photography, both the focal length and relative position of both cameras were not 

changed. As part of the standard camera set-up for the system, the resolution of the images was 

adjusted to a pixel array of 640 x 480 pixels and illumination was kept consistent. Figure 4-16 

shows a series of paired sample images produced by the two cameras from the checkerboard 

pattern in three different object positions. 

  

  

  

a b 

Figure 4-16: Corresponding calibration images of the checkerboard test object in three object positions: a) 

visible camera, b) thermal camera. 
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4.6.3 Checkerboard image normalization 
After camera parameter matrix calculation, the image distortion can be removed from the images. 

When the distortion is removed from the images, each pixel is in its correct size and location 

(Figure 4-17). As previously mentioned, the intrinsic parameters do not change during the 

photography and should be calculated only once. However, the extrinsic parameters of rotation 

and translation change when the camera position changes. To address this problem, the relative 

position of the cameras was fixed during camera installation and did not change for the remainder 

of the project. Hence, the calculated translation and rotation parameters can be used in all future 

steps. 

  

  

a b 

Figure 4-17: Demonstration of the effect of distortion removal on the checkerboard image from the visible camera (upper) 

and thermal camera (lower): a) distorted images, b) undistorted images. 

 

Figure 4-18 shows a sample of two video frames, one for the visible camera and one for the thermal 

camera, before and after normalization. Since the amount of lens distortion is very small, the image 

appearance does not change sufficiently that it can be detected by the human eye. 
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a b 

Figure 4-18: Demonstration of the effect of distortion removal on visible (upper) and thermal (lower) frames taken using the 

dual camera system: a) before normalization, b) after normalization. 

 

 Implementation details for image normalization 
The camera calibration algorithm was implemented using the same programming language used 

in the calibration process. A stereo camera calibration algorithm was used in for this system. 

Camera calibration was completed using the Python V 3.7 programming language (Guido van 

Rossum, Centrum Wiskunde & Informatica (CWI) in the Netherlands, 1980) and the OpenCV 

library (Gary Bradsky, Open Computer Vision, Intel, 1999). Python is an open source, high-level, 

object-oriented programming language with built-in high-level objects. The built-in objects make 

it easy to use and allows rapid software development. It is also easy to debug. Python programming 

enables the programmers to express their ideas with fewer lines of codes with high readability. 

OpenCV-python is a python library that can be used to solve computer vision problems. 
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Using Python and the OpenCV library, code was developed that used the checkerboard images as 

an input to calculate the camera parameters and matrix. Once the camera parameters were collected 

and stored, the OpenCV function for image distortion removal (cv.undistort) was used to undistort 

images. The function uses the checkerboard image and camera parameters as an input and 

calculates the distortion parameters using equations Equation 4-6 and Equation 4-7. Then, the 

function removes the distortion from the input image and gives an undistorted image as an output. 

Since the only parameter considered for normalization is distortion removal from the images, 

image normalization is completed after this step and the resultant image is available for the next 

image processing step. 

 

 Testing for error 
After camera calibration using the checkerboard patterns, the re-projection error was calculated. 

Re-projection error provides a qualitative measure of accuracy. It is the distance between detected 

key points and corresponding points in the world coordinate in the same image. The re-projection 

error for the visible image was calculated as 0.38 pixels which is equal to 0.38 * 0.09 mm, and the 

error for the thermal camera was calculated as 0.52 pixels, which is equal to 0.52 * 0.09 mm.  

 

 Next steps 
After normalizing each frame in each video sequence, the next step was to register each paired 

visible and thermal video frame. In the next chapter, the image registration methods are 

discussed. 
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5 Chapter 5: Image registration 
 
One key objective of the image calibration process was to produce an image from each camera 

that was unaffected by the respective intrinsic and extrinsic errors of each camera. Image 

calibration has resulted in two images, one from each camera, taken of the same object at the same 

timestamp that are 480 x 640 pixels in dimension. Each pixel on the visible camera image now has 

a corresponding pixel in the thermal camera image, but because of the misalignment of the two 

cameras, these matching pixels do not represent corresponding points in each image. There are 

translational and rotational errors between the two images. In effect, the two images do not overlap 

precisely. 

 

Processing the two images so that the corresponding pixels in each timestamped set of images also 

represent corresponding image points is crucial for this system. In later steps of system 

development, the visible camera image will be used to localize the cornea, and then the corneal 

localization from the visible camera will be used to identify the corneal area in the thermal image. 

To do that, the coordinates of the iris will be identified in the visible image and then those 

coordinates will be used as the location of the cornea in the thermal image. For this to work, the 

images from each camera must be mapped on top of each other. 

 

In this chapter the image registration techniques are described. Section 5.1 describes the camera 

alignment problem. Section 5.2 explains the concept of image registration, image registration 

techniques, and the evaluation method for image registration. Thermal-visible image registration 

is described in Section 5.3. Video registration and stabilization algorithm are described in Section 

5.4.   

 

 Camera alignment 
When the cameras were installed on the lens mounting (Section 3.2), the cameras were positioned 

in such a way that each camera was focused on the same general area of the eye and adnexa, so 

that they both produced an image of the same area. However, adjusting each camera’s physical 

position to ensure that the image precisely overlap from the two cameras is a difficult task. Even 

if such alignment could be obtained easily, the physical separation of the two cameras produces a 
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relative distortion between the two images. The result of these optical and physical errors is that a 

common location on the eye is not located at corresponding image points in the two images. The 

key factors involved in producing these errors are: pixel size, lens characteristics, field of view, 

distance, and angle of photography. The resulting effect is that the same location on the eye or 

adnexa does not have the same geometric coordinates in both images. 

 

 

Figure 5-1: An example of the misalignment of sample eye locations on two corresponding images taken by the dual camera 

system (left: visible camera; right: thermal camera). 

 

Figure 5-1 shows an example of two corresponding images taken by the visible and thermal 

cameras for the same area of the eye and adnexa at the same time point. Examining the images 

reveals that the eye size is different in the images and that three test eye locations (red dots) are 

not located at corresponding points on the two images. Three horizontal lines have been added to 

the images to help with this comparison. In the visible image (left), each line has been drawn 

through a physical feature of the eye and adnexa. By following the lines across the two images, it 

can be observed that the lines do not intersect at the same physical feature in both images, i.e., they 

are not mapped on top of each other. 
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Figure 5-2: An example of the error produced by point correspondence of the images taken by the visible (left) and thermal 

(right) cameras. 

 

Figure 5-2 gives an example of the relative image distortion that must be corrected. The lines have 

been drawn to intersect with the same physical feature of the eye, and it can be seen that the lines 

are no longer parallel to each other. The process of image registration will correct this distortion. 

 

 Image registration 
Image registration is a technique for overlaying two images taken at different times or from 

different viewpoints with the same camera, or at different times or different viewpoints with 

different sensors. When the images are taken from different sensors, the aim of the registration is 

to overlap the corresponding image pixels from both images taken by each camera for the same 

scene. The processing of the image re-aligns the images in geometric space using a transformation 

matrix. The transformation matrix is a mathematical formula that describes the error between the 

two images, and which can be used for image transformation. The pixel coordinates on one image 

are transformed using the matrix to form a transformed image in which the common location on 

the object is now imaged at corresponding pixel points on the two images. This process does not 

change the pixel values, but the geometry of the pixels. For this transformation, one image is 

assigned as the reference image – the fixed image – to which the other image will be aligned – the 

moving image. For this system, the visible camera image was assigned as the fixed image and the 

thermal camera image was assigned as the moving image. 
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Generally, image registration methods consist of four steps: 

1- Feature detection 

Salient image features are identified and selected. Each feature should have a distinctive 

characteristic, such as an edge, corner, or line intersection, that can be easily identified in 

both images. Figure 5-3 shows an example of feature selection in this system.  

 

Figure 5-3: Selected feature on the visible image 

 

2- Feature matching 

The next step is to find correspondence between the selected features in both images. The 

image features can be detected either automatically using a feature detection algorithm, or 

manually selected by the user. For automatic feature selection, a feature matching 

algorithm is used to identify and locate corresponding features in the two images. For 

manual point selection, the corresponding points are selected in each image by the user 

sequentially clicking on each item – the feature is marked in the first image and then the 

corresponding point marked in the second image. Therefore, the feature matching 

algorithm is not required. Figure 5-4 shows an example of the selected feature in the thermal 

and visible images. The matched features are the same, and there is the same number of 

matched features, in the thermal and visible images.  
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Figure 5-4: Matched features on the corresponding frames 

3- Transformation estimation 

Now that the two sets of corresponding points have been identified on each image, the 

geometric transformation between the images can be performed. Since only a small number 

of points have been selected, the resulting transformation is estimated for all of the other 

image locations. Figure 5-5 shows an example of the original images before 

transformation. 

 

  

a b 

Figure 5-5: Original visible(a) and thermal(b) images before transformation 

 

4- Image wrapping 

The last step is image resampling or transformation by applying the estimated 

transformation matrix. In this step, the transformation matrix gained from the previous step 

is applied to map the moving (thermal) image onto the fixed (visible) image. Figure 5-6 

shows an example of transformation applied on the sample image. The estimated 
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transformation function applied on the thermal image (Figure 5-6 b) to be registered on the 

visible image (Figure 5-6 a). 

 

  

a b 

Figure 5-6: Wrapped thermal image(b) to be mapped on the visible image(a) 

 

The final quality and accuracy of the image registration method is related to a careful application 

of these separate steps. 

 

5.2.1 Transformation matrix 
The fundamental step in any image registration algorithm is to choose a proper transformation 

method that is able to properly map the images. The most common transformation methods are: 

rigid body (Euclidean), similarity, affine, and projective transformation. 80 

 

5.2.1.1 Euclidean transformation 
This method is also known as rigid transformation and the algorithm acts to preserve the Euclidean 

distance between each pair of points. By doing so, the rigid transformation preserves the size of 

each feature and the angles between them. The only parameters which are affected by this 

transformation are rotation and translation. Translation means an adjustment that moves 

corresponding image points along the x-axis, y-axis, or both. Rotation means rotating 

corresponding points around a common point of rotation (usually the center of the image) by a 

value between 0° to 360°. If an image is only affected by these two parameters, the Euclidean 

transformation can be applied to overlay the images. To do so, a Euclidean transformation needs 

at least two pairs of corresponding control points in the matching images. An example of Euclidean 

transformation is illustrated in Figure 5.7 in the image taken of a floor tile. The transformed image 
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has been rotated and translated, but the size of the squares or circles and the distances between the 

points are unchanged between. 

 

 

 

a b 

Figure 5-7: Euclidean transformation: a) original image of the floor tile, b) transformed image73 (Reproduced from: Hartley 

R, Zisserman A. Multiple view geometry in computer vision 2nd ed., 4th print. 2006) 

 

The Euclidean transformation can be calculated using Equation 5-1. 

 

𝑝′ = 𝑅𝑝 + 𝑡 

where 𝑅 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] 
Equation 5-1 

 

where R is the rotation matrix, t is the translation vector, and p and p' are the original and 

transformed points, respectively. 

 

5.2.1.2 Similarity transformation 
The similarity transformation method preserves the angles between each feature point, as well as 

the ratio of length and ratio of areas. In addition to translation and rotation, the magnification of 

an object in the image is considered. The key point in this transformation is that the ratio of the 

length and areas are preserved. To register an image to a reference image that is affected by 
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translation, rotation, and scaling (resizing), the similarity transformation is the best method. 

Usually, two pairs of corresponding points are enough to calculate the similarity transformation 

between a pair of images. Figure 5-8 shows an example of a similarity transformation. In the 

transformed image, the circular patterns are imaged as circles and the square patterns are imaged 

as squares, which means the ratios are preserved. The parallel and perpendicular lines in the image 

preserve their relation after transformation. However, the size of the image is changed. The rotation 

is 30° and there is no translation in this example. Therefore, the only parameter needed to register 

the images is the scaling factor. 

 

 

 

a b 

Figure 5-8: Similarity transformation: a) original image, b) transformed image73(Reproduced from: Hartley R, Zisserman A. 

Multiple view geometry in computer vision 2nd ed., 4th print. 2006) 

 

The similarity transformation can be calculated using Equation 5-2. 

 

𝑝′ = 𝑠𝑅𝑝 + 𝑡 

where 𝑅 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] 
Equation 5-2 

 

where R is the rotation matrix, t is the translation vector, p and p' are the original and transformed 

points, respectively, and s is the scaling factor. 

 

5.2.1.3 Affine transformation 
An affine transformation is the most commonly used method. It preserves collinearity (i.e., all 

points initially lying on a line still lie on the line after transformation) and the ratios of distances 
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(e.g., the midpoint of a line segment remains the midpoint after transformation). All parallel lines 

remain parallel after an affine transformation, but not the angles between the lines. The affine 

transformation is composed of, translation, rotation, scaling, and shearing. Shearing produces 

distortion (or perhaps corrects distortion) in the image by moving one part of the image in one 

direction, and another part of the image in another direction. Affine transformation needs at least 

3 pairs of corresponding points to be calculated. Figure 5-9 shows an example of affine 

transformation. The sides of the square tile that are parallel in the untransformed image remained 

parallel in the transformed image, but the orthogonal lines in the untransformed image do not 

remain orthogonal in the transformed image. The ratio of the lines (distances) in the images are 

changed and there is some shearing in the image - the circles in the transformed image have been 

modified to appear as an ellipse. 

 

  

a b 

Figure 5-9: Affine transformation: a) original image, b) transformed image73(Reproduced from: Hartley R, Zisserman A. 

Multiple view geometry in computer vision 2nd ed., 4th print. 2006) 

 

The affine transformation can be calculated using Equation 5-3. 

 

𝑝′ = 𝐴𝑝 + 𝑡 

[
𝑥′

𝑦′] = [
𝑎11 𝑎12

𝑎21 𝑎22
] [

𝑥
𝑦] + [

𝑡𝑥
𝑡𝑦

] 
Equation 5-3 
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where p and p' are the original and transformed points, respectively, t is translation, and A is the 

matrix for scaling, rotation, and shearing. The matrix is calculated from multiplication of the 

matrices for each parameter. 

 

5.2.1.4 Projective transformation 
A transformation that maps lines to lines (but does not necessarily preserve parallelism) is a 

projective transformation. A projective transformation is the general case of a linear transformation 

on points in homogeneous coordinates. Therefore, the set of projective transformations in three-

dimensional (3D) space is the set of all four-by-four matrices operating on the homogeneous 

coordinate representation of 3D space. 

 

Figure5-10 shows an example of projective transformation. The circles and squares do not preserve 

their shape, and parallel world lines converge in the image. As a result, the circles closer to the 

camera are larger in size on the transformed image. 

 

  

a b 

Figure5-10: Projective transformation: a) original image, b) transformed image 73(Reproduced from: Hartley R, Zisserman A. 

Multiple view geometry in computer vision 2nd ed., 4th print. 2006) 

 

The projective transformation can be calculated using Equation 5-4. 

 

𝑝′ = 𝐻𝑝 

[
𝑥′

𝑦′

1

] = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] [
𝑥
𝑦
1
] 

Equation 5-4 
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where p and p' are the original and transformed points, respectively, and H is the homogeneous 

matrix to transform the points. h11, h12, h21, and h22 are the rotation matrix elements (this matrix 

defines the rotation, scaling, and shearing), h13 and h23 are the translation vectors, and h31 and 

h32 are the projection vectors. 

 

5.2.2 Image registration techniques 
There are several different methods reported in the literature for image registration. These can be 

divided into three main categories: point-based, surface-based, and intensity-based methods. 

 

5.2.2.1 Point-based methods 
Point-based methods use corresponding points on each image, called control or fiducial points, to 

perform the image registration task. Using a transformation matrix, the points can be mapped on 

each other. Ideally, every possible corresponding point in the two images should be identified and 

mapped together, but this is a processor-heavy image processing task. Instead, only some of the 

corresponding points are selected in the pair of images, and from that image registration, the 

transformation is applied to the whole of the image. This is called an estimated transformation 

matrix. Figure 5-11 shows an example of point-based image registration: a) moving image with 

control points, b) fixed image with control points, c) after finding the transformation matrix, the 

moving image is transformed and mapped onto the fixed image. 

 

 

a b c 

Figure 5-11:An example of point-based image registration; a) Moving image, b) Fixed image, c) Registered image showing 

the effect of the transformation on an image grid. 81(Reproduced from: Xie Z, Farin GE. Image registration using hierarchical 

B-splines. IEEE Trans Visual Comput Graphics. 2004;10(1):85-94) 
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5.2.2.2 Surface-based methods 
Surface contours or boundaries are usually distinct in medical images. A surface-based image 

registration looks for corresponding surfaces in different images and calculates the best 

transformation that aligns these surfaces. For example, the skin boundary surface and the outer 

cranial surface are two surface examples that could be used for image-to-image and image to 

physical registration in head images. 

The surface representation can be a point set, a faceted surface, an implicit surface, or a parametric 

surface. The surface that covers the largest area on the image is usually considered as complete 

and is used for surface model generation. After that, iterative closest point and feature matching 

algorithms are used for surface registration. 

 

  

a b 

Figure 5-12: An example of surface-based image registration: a) before registration, b) after registration82(Reproduced from: 

Fitzpatrick JM, Hill DL, Maurer CR. Image registration. Handbook of medical imaging. 2000;2:447-513.) 

 

Figure 5-12 shows an example of surface-based registration. In this example, the head is registered 

using the facial skin surface. The dots represent skin surface points acquired with a four-camera 

photogrammetry system. The surface rendering represents a triangle set model of the skin surface 

extracted from a magnetic resonance image. The left panel (a) shows the initial position of the data 

sets, and the right panel (b) shows the data sets after registration. The registration was performed 

using an independent implementation of the iterative closest point algorithm [68]. The surfaces 
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overlap only partially, which is a common situation in surface-based registration. The problem of 

partial overlap is dealt with by setting the weights of any outliers to zero after the first search, 

before running a second search. 

 

5.2.2.3 Intensity-based methods 
For this method, intensity refers to the scalar values in each image pixel. Intensity-based 

registration involves calculating a transformation between two images using the pixel values alone. 

The intensity-based registration works by iteratively optimizing some similarity measures and 

calculating the transformation between all pixel values. Intensity-based methods can also be used 

for 3D image registration, where the voxel similarity measure is used for each data point (voxel). 

Most intensity-based algorithms used a sub-set of pixels or voxels and require some sort of pre-

processing. The sub-set can be chosen using a regular grid or by randomly choosing points, or an 

algorithm might work in a defined region of interest in an image. In this kind of registration some 

sort of pre-segmentation of the image is required, which depends on the modalities being registered 

and the part of the image being studied. In some other intensity-based algorithms, the similarity 

measures work on derived image parameters, such as image gradients, rather than the original 

voxel values. The advantage of the intensity-based method over the point-based and surface-based 

methods is lower user interaction and pre-processing. This makes the method easier to automate. 

 

Figure 5-13 shows an example of intensity-based image registration: a) and b) show the fixed and 

moving images, respectively; c) shows the combined, but unregistered images; d) is the final 

registered image. 

 

    

a b c d 

Figure 5-13: Intensity-based image registration: a) fixed image, b) moving image, c) combined unregistered images, d) final 

registered image. 83(Reproduced from: Abdel-Basset M, Fakhry AE, El-Henawy I, Qiu T, Sangaiah AK. Feature and intensity 

based medical image registration using particle swarm optimization. J Med Syst. 2017;41(12):1-15) 
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In this project, since two different sensors were used for image capture, the sensor-dependent 

image formation for each camera is completely different and intensity-based methods cannot be 

used. Surface-based methods were also not suitable because they use 3D surface matching to 

determine the transformation between images. Therefore, the best method for thermal and visible 

image registration in this system is the point-based method. 

 

5.2.3 Image registration for a sequence of images 
The system is designed to record a series of images from the visible and thermal cameras in order 

to track OST over time. After recording the image sequence from each camera, each pair of 

corresponding timestamped image frames should be registered for the whole video sequence. To 

do this, a series of control points for each pair of frames should be selected. However, to identify 

salient points for each pair of images is impractical and inefficient. Instead, corresponding salient 

features are identified in the first image of each image sequence for each camera and then an 

algorithm continues to track these features in each subsequent image frame for each sequence. The 

image registration algorithm estimates the transformation between the features and then processes 

each image pair to produce a sequence of overlapped (registered) images. 

 

5.2.4 Feature matching 
The feature matching algorithm in Step 2 of the image registration process (Section 5.2) should be 

robust and efficient, but it can be affected by the pixel characteristics of the selected features. 

When selecting a suitable feature to mark for image registration, it is best to choose a feature that 

is distinctive (an edge, corner, or line intersection) that occurs in both sets of images. When a series 

of images is to be registered, this requirement is even more important. The features must 

consistently (or at least frequently) appear in each image frame from each image sequence for both 

cameras. This ensures that there is a consistent point of reference for each pair of images 

throughout the image sequence. For multimodal (i.e., two cameras, as used in this system) image 

registration, this step plays an important role in the result of the registration. The physical 

interpretability of the features is very important in this step. If automatic feature selection is used, 

the algorithm should also be able to detect the same features from different views of the projection. 

 

As well as needing to appear in each image sequence, the selected feature should have similar 

pixel characteristics for the best matching results. (Pixel characteristics can be defined according 
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to RBG/greyscale). However, in a multimodal system, the pixel characteristics for corresponding 

features can be dissimilar in the images from each camera due to different sensor sensitivities or 

capturing conditions that are more suitable for one camera than the other. This can make it more 

difficult for the matching algorithm to consistently identify the corresponding features that are 

used in image registration. 

Finally, the mapping function should be selected based on the image capturing device and 

acquisition process information. Based on this information, the effect of image degradation can be 

considered, and a suitable transformation function used. To sum up, the three steps are: accuracy 

of feature selection, reliability of feature correspondence detection, and accuracy of transformation 

estimation all play important roles in the process of image registration. 

 

5.2.5 Fiducial Registration Error 
A measure of the accuracy of the image registration produced by a transformation matrix can be 

determined by using the location of the marked features on the fixed image and comparing the 

alignment (registration) of the features in the transformed moving image. Different transformation 

matrices will produce different amounts of error in the registration – an ideal matrix would produce 

no error in the alignment. The size of the error can then be used as a measure of the accuracy of 

the transformation matrix. Since the marked features used for registration lie in discernible features 

(which makes them consistently visible and therefore reliable), they are called fiducial features. 

(Fiducial comes from the Latin fiducialis meaning reliable; and fiducia meaning trust). Fiducial 

localization is the process of determining these reference points and can be done using automatic 

or manual selection of the points. 

 

The fiducial registration error (FRE) can be calculated after transformation calculation. After 

selecting some points on the images (fixed and moving), the transformation matrix is calculated. 

To calculate the FRE, some salient points (not the first set of point used for transformation 

estimation) should be selected on the moving images. Then, the points should be transformed using 

the estimated transformation matrix and the actual position of the salient points on the transformed 

image selected manually as a reference. Figure 5-14 shows an example of FRE calculation, where 

the black filled circles are the manually selected reference points, and the unfilled circles are the 

location of the salient points as located by the transformation function. 
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Figure 5-14: FRE demonstration 

 

 Thermal-visible image registration 
To meet the main goal of the project, which was to extract temperature data from the thermal image 

by selecting the corresponding region of interest (ROI) in the visible image, and then mapping that 

ROI onto the thermal image, accurate image registration between the visible and thermal images 

is a critical requirement. As discussed previously, it is necessary to find some common features 

that can be consistently identified in both images. However, the sensors used in the project are 

designed to detect different wavelength spectrums for image formation. This makes it hard to 

match the features using an automatic feature-matching algorithm, as the pixel characteristics 

produced by the two sensors are dissimilar. Hence, all of the control points on the images (thermal 

and visible) used for transformation matrix estimation were selected manually by the user. 

 

Figure 5-15: Control point selection showing the corresponding salient points in a pair of visible (left and thermal (right) 

images. 
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Figure 5-15 shows an example of five corresponding points selected on the visible and thermal 

images, each marked by a red dot surrounded by a red circle. The points selected were judged to 

give a high degree of distinctiveness that would help in point identification in subsequent images. 

The points were also selected to be on the face rather than the eyelid or eye itself, as these facial 

areas will have less movement during blinking and eye movement, and not be obscured by eyelid 

closure. 

 

After manually selecting the two sets of points, the transformation between the points was 

calculated. In this project, since the visible image had a smaller pixel size and better quality 

compared to thermal image, it was used as the fixed image. Therefore, the calculated 

transformation matrix was applied to the thermal image to transform its shape and allow it to be 

overlayed onto the visible image. As any lens distortion was removed from the images using image 

normalization (Chapter 4), an affine transformation was used for the registration step. An affine 

transformation needs at least three corresponding points on the images to be calculated. However, 

more than three points were selected to improve the accuracy of the registration. 

 

   

a b c 

Figure 5-16: Image registration results showing a) the reference fixed visible image, b) the unregistered thermal image, and 

c) the transformed thermal image. 

 

Figure 5-16 shows the registration result with the thermal image mapped to the co-ordinates of the 

visible image. By looking at the images side-by-side, the change in eye size of the thermal image 

can be observed – the eye size is now the same in both images. The small black wedge on the left 

side of the transformed image reveals how the thermal image (Figure 5-16c) has been rotated as 

part of the transformation. Figure 5-17 demonstrates how the two images are now registered 
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together. The marked corresponding locations on each image are linked together by parallel 

horizontal lines. 

 

 

Figure 5-17: Alignment of the registered images is shown by the parallel lines connecting the corresponding points on the two 

images. 

 

Manual selection of the points results a good fiducial localization. The algorithm uses two methods 

to compute robust transformation, RANSAC and Least-Median robust method (LMEDS). The 

methods will find the best three matching points using the RANSAC or LMEDS at the first step, 

and then using the selected points on the images for affine transformation calculation. 

 

 Video registration and stabilization  
When considering two paired images, selection of the salient control points can be made manually 

or automatically using an algorithm. For this project, the first set of corresponding control points 

were manually selected on the images. However, this project uses the video output from each 

camera to record two separate video sequences. This raises the question of how to maintain image 

registration between paired images in two video sequences. Manual selection of control points on 

each paired frame set in the video sequences is not viable, and so for each subsequent frame pair 

after the first frame pair, the selected points must be tracked automatically. 

The output of the video registration should be two aligned video files that have the same 

coordinates on the corresponding frames points for the same location on the face. The most 

important part of video registration is control point selection. For a video file with a duration of 

20 seconds recorded at 25 fps, there are 500 frames for each video. It is not possible to select the 

control points on all of the corresponding frames. Instead, the control points must be selected on 
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the first frames pair and automatically followed on the remaining frames using an optical flow 

algorithm. There is also a further issue arises from movement by the subject during the video 

recording. This will mean that the position of the control points in the fixed images are not stable. 

This movement will have an effect on registration accuracy. However, by stabilizing the video 

files, the effect of subject movement can be removed from the video files and improved accuracy 

can be achieved. 

 

Stabilization can be done by registering the video frames on a reference frame. The reference frame 

should be selected manually in this algorithm. For this system, the first frame of the visible video 

sequence is taken as the reference frame. To stabilize the visible video, all of the visible frames 

are then registered with the reference frame (Figure 5-18). 

 

 
Figure 5-18: Video registration showing stabilization of the visible frame sequence 

 Next steps 
As previously mentioned, to register two video files, a series of control points must be identified 

on each pair of corresponding images. To do this, control points should be selected for all of the 

frames, but it is impossible to locate the control points on all of the frames manually. Instead, an 

optical flow algorithm was used to automatically locate the control points on all of the frames. In 

the next chapter, the details of the optical flow algorithm are described. 

 

  



 

95 

 

6 Chapter 6: Point tracking/Video registration 
 
The previous chapters have described the methods for image and video registration. However, one 

of the major problems for video registration is the effect of camera or object movement. In this 

system, the location of the camera is fixed and there is no camera movement. However, the subject 

might move their head or eyes during the recording. To remove the effect of subject movement, 

the video files must be stabilized. Video stabilization refers to algorithms that improve video 

quality by removing unwanted camera/subject movement. As discussed in the previous chapter, to 

register and stabilize two video files, corresponding control points are required on each pair of 

frames. However, it is intensely time-demanding and inefficient to select the control points on the 

frames manually. Therefore, in this project, the control points were selected on the first pair of 

frames manually, and the location of the salient points automatically tracked and localized on all 

subsequent frames using an optical flow algorithm. The concept of optical flow is described in 

Section 6.1. The optical flow algorithm and calculation method is described in Section 6.2. The 

application of the optical flow algorithm in this system is demonstrated in Section 6.3, and 

performance evaluation of the method is reported in Section 6.4.   

 

 Optical flow 
Optical flow is the process for following the actual or apparent motion of an object between two 

consecutive frames of a video sequence caused by object or camera movement, respectively. 

Optical flow algorithms provide a 2D vector in which the elements show the displacement of the 

control points from their position in the first frame to their position in the second frame. Salient, 

or control, points are located in the first frame of a video sequence either manually or 

automatically, and then their positions tracked in the subsequent image sequences using an optical 

flow algorithm. For this system, an optical flow algorithm was used to track the displacement of 

the manually selected control points in the video frames for both the visible and thermal video 

sequences. 

 

There are two main assumptions in the application of an optical flow algorithm. First, that the pixel 

intensities of the selected points do not change in two consecutive frames – a variation in pixel 

intensity between frames will make it more difficult to correctly identify the control point in each 
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subsequent frame. Second, that neighboring pixels move together – it is the contrasting pixel 

characteristics between neighboring pixels that enables the algorithm to locate the control point 

pixel. 

 

If we consider a control point in the first image frame of the video sequence as I (x,y,t) where the 

x,y is the coordinate of the point and t is the time, then the point can be displayed in the next image 

frame by I(x+dx, y+dy, t+dt), where the dx and dy represent displacement and dt shows the time 

difference. By assuming that the pixel intensity of the point has not changed between the two 

consecutive frames, then: 

 

I (x, y, t) = I(x+dx, y+dy, t+dt) Equation 6-1 

 

Then the Taylor series approximation can be used to removing common terms, to produce: 

 

𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) = 𝐼(𝑥, 𝑦, 𝑡) +
𝜕𝐼

𝜕𝑥
𝛿𝑥 +

𝜕𝐼

𝜕𝑦
𝛿𝑦 +

𝜕𝐼

𝜕𝑡
𝛿𝑡+… 

=>
𝜕𝐼

𝜕𝑥
𝛿𝑥 +

𝜕𝐼

𝜕𝑦
𝛿𝑦 +

𝜕𝐼

𝜕𝑡
𝛿𝑡 = 0 

Equation 6-2 

 

Equation 6-2 can be divided by dt to gain the optical flow equation: 

 

𝜕𝐼

𝜕𝑥
𝑢 +

𝜕𝐼

𝜕𝑦
𝑣 +

𝜕𝐼

𝜕𝑡
= 0 Equation 6-3 

 

where u=dx/dt, v=dy/dt, dI/dx is the image gradient of the horizontal axis, dI/dy is the image 

gradient of the vertical axis, and dI/dt is the image gradient of time. 

 

By solving u(dx/dt) and v(dy/dt), the movement of a control point between consecutive frames can 

be determined. 
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 Optical flow algorithms 
Optical flow algorithms are divided into two main categories: sparse and dense optical flow. In 

sparse optical flow, there are some salient features, such as a corner or edge, that are tracked in the 

consecutive frames to produce a vector for the selected points. Dense optical flow, on the other 

hand, tracks the flow between frames for all of the pixels in the frame and produces a vector for 

each pixel. Dense optical flow is more accurate, but also needs more computation time. The main 

goal for the optical flow algorithm in this system was to follow the salient points on the thermal 

and visible images used for point-based image registration, hence, the sparse optical flow method 

was used. 

 

6.2.1 Lucas-Kanade (LK) Optical Flow 
An effective sparse optical flow method to estimate motion between two consecutive frames was 

introduced by Lucas and Kanade (LK)84. There are three main assumptions in the LK algorithm. 

First, that there is a very short time difference between the two consecutive frames. Second, that 

the pixel intensity of the selected features changes very smoothly in the two consecutive frames. 

Third, a window of 3x3 pixels is considered instead of a single pixel, and it is assumed that the 

neighbor pixels are moving together. Taking the optical flow equation (Equation 6-3), then for a 

window of n pixels the equation will be: 

 

 

where q1, q2,…, qn denote the pixels inside the sample window (n = 9 for a 3x3 window) and 

Ix(qi), Iy(qi), and It(qi) denote the partial derivatives of image I with respect to position (x,y) and 

time t, for pixel qi at the current time. 

 

Equation 6-4 can then be written in a matrix form of Av=b as Equation 6-5: 

 

𝐼𝑥(𝑞1)𝑉𝑥 + 𝐼𝑦(𝑞1)𝑉𝑦 = −𝐼𝑡(𝑞1) 

𝐼𝑥(𝑞2)𝑉𝑥 + 𝐼𝑦(𝑞2)𝑉𝑦 = −𝐼𝑡(𝑞2) 
. 
. 
. 

𝐼𝑥(𝑞𝑛)𝑉𝑥 + 𝐼𝑦(𝑞𝑛)𝑉𝑦 = −𝐼𝑡(𝑞𝑛) 

Equation 6-4 
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𝐴 =  

[
 
 
 
𝐼𝑥(𝑞1) 𝐼𝑦(𝑞1)

𝐼𝑥(𝑞2)
⋮

𝐼𝑥(𝑞𝑛)

𝐼𝑦(𝑞2)

⋮
𝐼𝑦(𝑞𝑛)]

 
 
 

   𝑣 =  [
𝑉𝑥

𝑉𝑦
]  𝑏 = [

−𝐼𝑡(𝑞1)

−𝐼𝑡(𝑞2)
⋮

−𝐼𝑡(𝑞𝑛)

] Equation 6-5 

 

where A is the pixel matrix, v is the movement vector, and b is vector of the partial derivitives of 

pixel qi and time t. This produces n x n equations.  

 

By applying least square fitting, a two-equation/two-unknowns equation is gained as follows: 

 

[
𝑉𝑥

𝑉𝑦
] = [

∑ 𝐼𝑥(𝑞𝑖)2

𝑖
∑ 𝐼𝑥(𝑞𝑖)𝐼𝑦(𝑞𝑖)

𝑖

∑ 𝐼𝑦(𝑞𝑖)𝐼𝑥(𝑞𝑖)
𝑖

∑ 𝐼𝑦(𝑞𝑖)2

𝑖

]

−1

[

−∑ 𝐼𝑥(𝑞𝑖)𝐼𝑡(𝑞𝑖)
𝑖

−∑ 𝐼𝑦(𝑞𝑖)𝐼𝑡(𝑞𝑖)
𝑖

] Equation 6-6 

 

where Vx=dx/dt and Vy=dy/dt demonstrate movement in x and y directions over time, respectively. 

Solving for these two variables completes the optical flow problem. 

 

6.2.2 Pyramid Model for Optical Flow 
The LK algorithm only works for small motions. If the object has a large movement in the frame, 

the algorithm will fail. To solve this problem, the pyramid algorithm was introduced. The pyramid 

model is used with the LK algorithm to detect large movements. The solution is simple: the image 

is re-sized to a smaller size while the sample window size remains unchanged. The window can 

now cover a larger area on the image and detect the larger movement. The algorithm is called a 

pyramid model because the optical flow is calculated for each pair of images in a series of resizing 

steps to produce a range of optical flows from coarse to fine. It starts with the smallest image size 

and the optical flow calculated, then the image is warped (re-sized) and the optical flow re-

calculated, and so on until the final image size is reached. 

 

 Applying Optical Flow to the system 
As stated, optical flow is needed in this system to remove the artefacts produced by head and eye 

movement. The LK algorithm incorporating a 3-level pyramid was used for this purpose, and it 

can complete its’ calculations using the localized control points previously marked on the first 
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thermal and visible frames of the video files for image registration. The salient points selected 

were, for example, the corner of the eye or some points along the eyebrows. Any head or eye 

movement can then be tracked and localized on all of the subsequent frames on each video file 

independently. 

 

To implement the LK algorithm, the first step was to select some corresponding control points on 

the first thermal and visible frames. Since we are using two different sensors for recording, the 

pixel features on the corresponding frames have different values, and, as noted earlier, it is not 

possible to use automatic feature detection algorithms to find corresponding features. Since very 

accurate point tracking is required, the control points were selected manually. Figure 6-1 shows 

an example of six selected and corresponding control points on time-stamped visible and thermal 

frames.  

 

 

Figure 6-1: Control point selection on the first visible and thermal frames for optical flow algorithm input 

 

As noted in Section 5.4.3 three points is usually enough for an affine image transformation, but 

using more points bring higher accuracy for the image registration process. Consequently, between 

5 to 8 corresponding points were manually selected on the initial reference frames of each video 

sequence. The location of these points was then used as the input for the LK algorithm to track 

optical flow on the subsequent frames in each video file. For this system, the subject sits in front 

of the cameras on a headrest and so only very small head movements are expected. However, since 

both the head and the eye can move, and the eye can move independently from the face, some 

points were selected on the face as well as around the eye. Points were not selected on the surface 
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of the eye itself, but movement of the eye will produce movement in the eyelids, and this can be 

tracked. Consequently, points on the eye corners and eyebrows were selected. 

 

It is very important to have a minimum point selection error as this can have an impact on the 

registration accuracy. Minimum point selection error describes the error in location between two 

corresponding points in the two different images. A relatively small window size (5 x 5) was used 

in the optical flow algorithm. 

 

 Performance evaluation 
For any point-tracking method, the performance of the algorithm applied should be calculated. The 

optical flow algorithm error can be calculated by measuring the distance between the control point 

in the reference frame and the localized point produced by the optical flow algorithm. A 

timestamped and matched pair of thermal and visible video files of a subject’s face and eye, 

containing over 500 frames, was selected for performance evaluation. The L-K algorithm was 

applied to each video sequence separately. Figure 6-2a shows a sequence of reference images from 

the visible camera with manually-selected control points marked by red dots. Figure 6-2b shows 

the same sequence of video frames, this time unmarked there were used as the input for the optical 

flow algorithm. 

 

A software program was developed that could detect the location coordinates of each manually 

selected control point on a video frame and record the coordinates in a file (Figure 6-2a). Using 

this software, the control points were selected on the first frame of the video file (Figure 6-2b). 

After that, the video sequence was processed through the optical flow algorithm, and each point 

was tracked and localized using the software, with the location of the points in each subsequent 

frame stored in a file. The Euclidean distance between the locations for each matching point 

between two subsequent frames was calculated as the optical flow error. Then, the average of the 

distances was used to calculate the optical flow error for the whole video. The same process was 

repeated for the thermal video sequences. Table 6-1 shows the calculated error. 

 



 

101 

 

  
a b 

Figure 6-2: Performance evaluation of the point tracking method a) manually selected reference frames b) video frames 

produced as an input of the algorithm. 

 

Table 6-1: Calculated optical flow algorithm error 

Visible video MSE ± SD = 5.43 ±2.01 pixels=5.43 * 0.09 mm 

Thermal video MSE ± SD = 6.81 ±2.32 pixels= 6.81 * 0.09 mm 

 

After localizing the control points in each frame, the video files were registered using the point 

coordinates of the control locations on the visible and thermal frames \ using the image registration 

Affine transformation algorithm. 

 

Any misplacement of the points in the registration process is known as the registration error. A 

common measure of overall point misalignment is the root-mean square (RMS) error, which is 
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also called the fiducial registration error (FRE). To calculate the FRE, the Euclidean distance 

between the fixed and transformed points should be calculated, with the average of the distances 

as the FRE. In this project, the FRE calculation was done as follows: about 10 points were selected 

in both the fixed (visible) and moving (thermal) images. Then, the transformation matrix was 

calculated using 3 corresponding pairs of the points. After that, the remaining points were 

transformed by the transformation matrix. At the end, the transformed points distance with selected 

points was calculated and averaged as the FRE. This process was repeated for all of the frames 

and FRE of all frames were averaged as video registration error. Mean FRE ± SD= 5.03 ±1.82 

pixels, gained over 500 frames. With a pixel size of 0.09mm, the error is approximately 0.45mm.  

 

 Next steps 
The stabilized video files are aligned and prepared for the next step. In the next step, the cornea 

should be located on the visible frames. Then, the coordinates of the cornea should be used for 

temperature extraction. In the following section the methods for corneal segmentation and 

localization are described. 
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7 Chapter 7: Cornea localization 
 

To extract the OST values for the cornea from each thermal video frame, the corneal area must be 

localized on the thermal image of the eye. However, thermal image formation is based on the 

temperature distribution across the ocular surface and there is no clear boundary that separates the 

cornea from the conjunctiva in the thermal images. 

 

The previously reported steps of image and video registration for the dual camera system have 

produced an aligned visible and thermal image, with the effect that the same pixel coordinates in 

each corresponding visible and thermal frame represent the same location on the eye. Using this 

arrangement, the cornea can be localizing in the thermal image by first using the visible image to 

identify and segment the cornea, and then using this segmented area as a mask over the thermal 

image to locate the cornea in the thermal image. The limits of the cornea on the visible image are 

best found by identifying the underlying iris, since the iris provides a strong contrasting signal to 

the visual contrast of the neighboring sclera. The more precise the localization of the cornea in the 

thermal images, the more accurate and reliable the data will be for the data analysis steps. The 

concepts of image segmentation using deep learning are discussed in Sections 7.1 – 7.4. Previous 

methods of iris segmentation are reviewed in Section 7.5. The network used in this project and its 

performance evaluation are described in Section 7.6. The blink detection algorithm is described in 

Section 7.7, and the final outcomes of the system are reported in Section 7.8.  

 

 Image segmentation 
Image segmentation is the process of partitioning an image into a multiple number of segments 

that have similar features or characteristics. The objective is to divide an image into more 

meaningful segments, each of which could then be analysed separately. The effect is to simplify 

the analysis step of the project. Figure 7-1 shows two examples of image segmentation. Each image 

pair shows the original image and its segmentation mask, which shows the segmented areas in 

pixels of different colors. 
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Figure 7-1: An example of image segmentation with the original image on the left side and the segmentation mask on the 

right, with segmented areas shown in different colors. 

 

Image segmentation is one of the most important components of image processing. Indeed, it has 

been considered as the first step of image processing. An efficient image segmentation brings more 

accurate and reliable results in the later analysis of an image. It can be used as part of the analysis 

of a single frame or image, as well as in the dynamic situation of a moving scene in computer 

vision. It is an essential part of image analysis in many systems, enabling the automatic 

identification of areas of interest. It has many applications in different fields, such as medical 

image analysis, autonomous vehicle control, video surveillance, and robotic surgery. 

 

A wide variety of methods have been reported in the literature for image segmentation tasks, such 

as thresholding, region growing, clustering, morphological, edge detection, active contour, graph 

cuts, and neural network (learning-based). All of the methods have their own advantages and 
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disadvantages. Therefore, the selected method should be based on the needs of the project and 

perspective. Learning-based methods have shown a remarkable performance in the field of image 

segmentation and generally out-perform all previous methods in terms of accuracy and 

performance. To understand learning-based methods, it is first necessary to know about machine 

learning. 

 

 Machine learning 
Machine learning is an artificial intelligence (AI) application that provides the opportunity for a 

computer software system to learn from sample data on what should be correctly identified within 

an image, and by so learning to improve the output from more complex data without explicit 

programming. The developed algorithm can then be used to improve the efficiency and/or speed 

of identifying areas of interest in images for large data sets. The process of learning includes 

looking for patterns in the images that are consistent in each image and to use these patterns to 

improve decision making. Machine learning algorithms are categorized into three categories: 

supervised, unsupervised, and reinforcement learning. 

 

7.2.1 Supervised learning 
Supervised learning is a basic method that trains the algorithm on labeled images. The images need 

to be manually labeled accurately, but this method has very high accuracy when it is chosen for 

the right project. In this method, the original images and labeled images are given to the algorithm 

for training purposes. The algorithm finds the relationship between the parameters given by the 

labeled data and establishes the cause-and-effect relationship between the variables in the dataset. 

Supervised machine learning algorithms learn from the available labeled data and produce a 

function to predict output values. At the end of training, the model has the ability to compare the 

output data with ground truth and find the error, and then use the error to improve the model. 

 

7.2.2 Unsupervised learning 
An algorithm designed for unsupervised learning has the ability to learn from unlabeled data. Since 

the dataset is not required to be labeled by the user, much larger datasets can be used in the 

program. In supervised learning, the labels allow the algorithm to learn the exact nature of the 

relationship between the data points. On the other hand, in unsupervised learning there is no label 

to learn from. Instead, the relationship between the data points is calculated by the algorithm with 
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no outside input. The creation of these hidden structures is what makes unsupervised learning 

algorithms versatile. Instead of a defined problem statement, unsupervised learning algorithms can 

adapt to the data by dynamically identifying hidden structures. This offers more post-deployment 

development than supervised learning algorithms. 

 

7.2.3 Reinforcement learning 
Reinforcement learning imitates human learning behavior. The algorithm learns using a trial-and-

error method and gradually improves the accuracy of its output. Favorable outputs are reinforced 

(encouraged) and non-favorable outputs are punished (discouraged). The algorithm is put in a 

working environment accompanied by an interpreter and reward system. In every iteration of the 

algorithm, the output result goes to the interpreter to decide whether the outcome is favorable or 

not. The algorithm gets a reward when the outcome is favorable, and when the outcome is not 

favorable, the algorithm is forced to reiterate until a better result is found. The reward system is 

most-often defined on the effectiveness of the output. 

 

 Deep learning 
Deep learning is a sub-field of machine learning that tries to imitate human brain activity in 

learning. It is representation learning or, to put it another way, learning from examples. Deep 

learning is inspired by human brain structure and function to produce an artificial neural network 

(ANN), sometimes also called a deep neural network (DNN) when multiple layers are used. A 

DNN represents the structure of a human brain modeled in a computer and consists of neurons and 

synapses organized into layers. A DNN has millions of neurons connected together that enable the 

system to analyze large data sets or to memorize them. A DNN consists of: neurons, synapses, 

weights, biases, and functions. It automates the formation of data representation (machine 

learning) that could be useful in decision making. 

 

Neural networks are used to solve complex problems that need lots of computation and analytical 

calculations, like those of the human brain. The most common tasks for a neural network are 

classification, prediction, and recognition. 
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7.3.1 Neurons 
A neuron is the basic unit of a DNN that receives information, performs some simple calculations, 

and passes it on to another unit. Each neuron is composed of a cluster of pixels from one part of 

the image. Within that cluster of pixels there may be a variation in the textural information. 

Calculations are performed on this variation to determine whether the variation is sufficiently large 

(or small, depending on the purpose of the calculation) for the neuron to be activated. In this way, 

every neuron in the DNN contributes input data to the algorithm which is learning to extract a 

feature. 

 

Neurons are classified as input, hidden, or output. In a large DNN containing a large number of 

neurons and connections between them, neurons are organized in layers. Generally, there is an 

input layer to receive information, some hidden layers that contribute to information processing, 

and an output layer providing the results. 

 

7.3.2 Synapses and weights 
A synapse connects one neuron to another neuron. To add variation to the output from each neuron 

and to help the algorithm learn, every synapse has a weighting. This weighting is added to the 

output information, when the information is passed to another neuron that reflects the importance 

of the neuron in the network (Figure 7-2: An example of input weighting).  

 

Figure 7-2: An example of input weighting 

 

The amount of weighting guides the receiving neuron on whether to pass the information on to 

another neuron or not. Neurons with greater weights are dominant in how the receiving neuron 
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processes the information. During network initialization, weights are randomly assigned to each 

neuron, but as the system learns, the weights are updated by optimization. 

Some neurons are designated as bias neurons. A bias neuron (b1 & b2) allows for more variation 

in the weightings stored in a network (Figure 7-3).  

 

 

Figure 7-3:Demonstration of bias neurons in a neural network 

 

Although a DNN can work without bias neurons, they are an indispensable part of a neural network 

model. They add a richer representation of the input to the model weights and produce some 

variation in the output. When a bias neuron is added to a layer, it modifies the weightings to make 

it more or less likely that the receiving neuron receives sufficient input to be activated to transmit 

its signal on to another neuron, or to be in another way, to make it possible for the activation 

function of a feature to be promoted or demoted (Figure 7-4). This will affect the algorithm output 

in either a positive or negative way, thereby helping the algorithm to learn. In the same way as the 

weightings for processing neurons can be changed, the weightings from bias neurons can also be 

changed. It is this iterative process that allows the network algorithm to learn and improve the 

accuracy of the final output to produce a high-performance model. 

 

7.3.3 Activation functions 
As noted, each neuron is completing a series of calculations based on the input it receives. This 

input may be from the image pixels or the weighted input from a neuron in another layer of the 

DNN. These calculations are called activation functions. With each calculation, there is an 
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activation threshold that allows the continued transmission of the input data along the processing 

pathway of the model. Promotion of the activation function accentuates the feature in the next 

layer, thus producing reinforcement of the feature for subsequent analysis. Combining the 

functions togethers produces an image transformation that describes the formula behind the DNN 

function. 

 

There are a lot of activation functions, but the most common are linear, sigmoid, and hyperbolic 

tangent. Each function is looking for a different variation in textural pattern across the pixel cluster 

for each neuron. The main differences between them are the profile of change they respond to and 

the range of values they work with. 

 

 

Figure 7-4: Demonstration of the weight assignment to each input and producing final function  

 

7.3.4 Neural network training 
Using the output from the neurons, the DNN calculates the difference or error (delta) between the 

input data and the output data. It does so by using two masks: an input mask (ground truth) and a 

output mask (predicted). The input mask may be manually labelled or the output from a previous 

iteration of the DNN. The predicted mask is the output from the DNN. There are two main ways 

to calculate the error: Arctan and Mean Square Error. 

 

The amount of error reflects the deviation between the desired output (ground truth) and the 

calculated output, and it can be used to guide weighting changes for the next model iteration. In 
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this way, by repeatedly running the model, the prediction accuracy in the model is improved. The 

amount of error should decrease after each epoch (iteration). (An epoch is a term used to describe 

each training run through the entire set of training sets). The network layers optimize the 

weightings of the network through each epoch to reach a delta that is equal or close to zero, 

indicating that the network was able to predict the examples accurately. 

 

Training based on only one image will produce an algorithm that is excellent at identifying the 

areas of interest in that image, but will be of limited value for other images. The intent is therefore 

to produce an algorithm that is generalizable to other similar images. To do so, a large number 

(batch) of images is used, with the output from the images all contributing to DNN learning. Batch 

size describes the total number of training examples used. While having a larger batch size will 

improve the generalisability of the model, batch size should also be considered according to the 

available memory size. The higher the batch size, the more memory that will be required. 

 

7.3.5 Neural network types 
DNN design is based around two main methods: feed-forward and recurrent. Feed-forward neural 

networks are the simplest neural network which doesn’t need any memory. There is no backward 

movement in these types of networks, which makes it impractical for many tasks. Feed-forward 

networks can be used in supervised learning when the data are not sequential or time-dependent. 

The main advantage of feed-forward networks is that they are very fast and easy to build. Recurrent 

neural networks remember the results of the previous iteration and use them to make better 

decisions. These kinds of networks are widely used in natural language processing and speech 

recognition. 

 

7.3.5.1 Convolutional neural network 
Convolutional neural networks (CNN) are the standard method of deep machine learning (DNN) 

and are used to solve problems in many different fields (Figure 7-5). These networks can be either 

feed-forward or recurrent neural networks models. As described earlier, in CNN network 

architecture each neuron is connected to a small group of pixels in an image, each of which has 

the same weight. The network is given an image as an input, and each neuron in each layer 

performs a series of calculations on the pixel set to which it is linked. In this way, the pixel 

information in the image is transformed to produce a layer of neurons, each of which possesses a 
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weighted activation function. If the required activation function level is reached, the neuron is 

identified with this activation function. This process is called image convolution, and each neuron 

layer is called a convolutional layer. After each convolutional layer, the output from each neuron 

is assessed for a chosen activation function. 

 

A CNN has the ability to learn from a large number of filters running in parallel in each 

convolutional layer that are specific to a training dataset under the constraints of a specific 

problem, like classification or segmentation. This produces an algorithm for a very specific feature 

that can be detected anywhere on the input image. 

 

A key aspect of learning is the ability to summarize the neuron outputs after each convolutional 

layer to identify similar areas across the image. To do so, the output from all of the neurons in the 

layer is gathered together (pooled), ready to be passed through another convolutional layer. The 

output from this second layer is again assessed for activation function and the neuron output 

pooled. Pooling layers down-sample the output feature maps from each convolutional layer by 

summarizing the presence of features in each neuron. The two common pooling methods are 

average pooling and max pooling. Average pooling summarizes the average presence of a feature 

and max pooling summarizes the most activated presence of a feature. 

 

A third component, included in the pooling stage, is the rectified linear unit (ReLU). This is a 

linear function that assesses the received activation function input from a neuron. If the ReLU is 

positive, then the input is directly transferred as neuron output, but if the ReLU is negative, then 

input value is reduced to zero. In this way, those activation functions that are identifying features 

of interest are accentuated, while those functions that are not identifying features of interest are 

removed from the algorithm. ReLu is a default feature of many networks because it makes the 

network easier to train and gives better performance. 

 

After as many convolutional/pooling cycles as are necessary, those neurons that are linked together 

– they have similar activation functions – are identified. By the end of the processing, the network 

makes a prediction to find the output image class. In this example, the network has been asked to 

distinguish dog in another image. 
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Figure 7-5: Demonstration of a DNN in a classification task 

 

7.3.5.2 Encoder-decoder network 
Higher level neural networks are composed of encoder, decoder, or encoder-decoder networks. An 

encoder network finds patterns in the raw data to form a useful representation, while a decoder 

network generates high resolution data from the representation. Encoder-decoder architecture is a 

higher-level concept that builds on the encoding steps to make a high dimensional output in the 

decoding step by up-sampling the compressed representations. The encoder and decoder parts of 

the network can be completely different in form from each other. Application of the encoder-

decoder network includes semantic segmentation and machine translation. Figure 7-6 shows the 

general structure of an encoder-decoder network. In the left side of the network (encoder), the 

network consists of several convolutional and activation layers accompanied by pooling layers that 

down-sample feature maps to extract more detailed features. The right side of the network has 

several convolutional layers accompanied by up-sampling layers to return to original image 

resolution. 

 

If the network is part of a larger model of combined neural networks that are considering multiple 

classifications, there will be a Softmax function at the end of the decoder functions. The Softmax 

function acts as the activation function for further neural networks. 
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Figure 7-6: General structure of encoder-decoder network 

 

 Semantic segmentation 
Semantic segmentation can be assumed as a classification problem in which each pixel in the 

image is classified with a semantic label, for example, human, sky, car, tree. The goal of image 

segmentation is to classify each pixel in the image with its corresponding class. Since the 

prediction is done for each pixel, the task is referred to as a dense prediction. Figure 7-7 shows an 

example of semantic segmentation. 

In this example, there are 9 pre-defined classes: Kids, calendar, lamp, book, carpet, box, doll, chair, 

and background. The classes are labeled with different colors and the whole pixels in the image 

are classified into one of the nine classes. In semantic segmentation, there is no differentiation 

between objects in the same class and they are all shown with the same color. For example, all of 

the bicycles have the same green color. 
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Figure 7-7: semantic segmentation example 

 

Semantic segmentation is also very useful in the field of medical image diagnostics. For example, 

the analysis time performed by a radiologist when reviewing a diagnostic scan can be reduced by 

only having to examine a specific part of the image. Figure 7-8 illustrates an example of medical 

image segmentation of a radiology image. 

 

 

Figure 7-8: Medical image diagnosis with semantic segmentation86(Reproduced from: Novikov AA, Lenis D, Major D, 

Hladůvka J, Wimmer M, Bühler K. Fully convolutional architectures for multiclass segmentation in chest radiographs. IEEE 

Trans Med Imaging. 2018;37(8):1865-1876.) 
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The goal of semantic segmentation is to take an image (dimensions W x H) as an input and then 

process the image to produce an output segmentation map (with the same W x H dimensions), 

where each pixel element has been given a class label. Figure 7-9 shows an example of semantic 

segmentation. The output has five different classes, and therefore each pixel in the image must be 

classified into one of these five different classes. On the right-hand side of the image, the pixels 

belonging to each class are labelled using a class number. The image is labeled as a low-resolution 

output map in this example for visual clarity, but the prediction map should be the same size as 

the input image. 

 

  

Figure 7-9: representation of semantic segmentation task 

 

7.4.1 Deep learning for semantic segmentation 
The simplest way of a constructing a DNN for semantic segmentation is to stack a series of 

convolutional layers, each of which has the same padding to preserve dimensions, to produce an 

output segmentation map. In so doing, the network gradually learns to identify similar areas as the 

image passes through each layer. Image resolution is changed during the encoding/decoding 

stages, and this changes the image dimensions – padding adds columns or rows of black pixels to 

the image to maintain the same image dimensions. The black pixels do not affect the image 

processing. However, by requiring the preservation of the image dimensions, the network becomes 

computationally expensive. Figure 7-10 shows an example of a CNN structure. 
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Figure 7-10: Structure of a CNN with padding to preserve image dimensions 

 

CNNs are designed for image classification, but to reduce the computational expense of the 

network, the network can be customized and used for semantic segmentation. 

 

7.4.2 CNNs for segmentation 
In this kind of network, the neural architecture contains convolutional layers, non-activation layers, 

batch normalization, and pooling layers. Spatial information is not preserved. Spatial information 

is defined as the relative position of pairs of pixels in the image that can be defined by distance 

and orientation. 

 

Figure 7-11 shows a CNN composed of several layers for the task of classification. The neurons 

in the initial layers look for and learn low-level concepts, such as edges and colors, for small 

regions of the image. The neurons in the next layers look for and learn higher level concepts, such 

as identifying different objects, from large regions of the image. Having identified these concepts, 

a process of down-sampling is done by pooling layers. The pooling layer output is then passed 

through another series of convolutional layers which perform further analyses to look for patterns 

within the pooled layer data. By adding more layers to the network, a greater refinement in the 

analysis can be undertaken that assists in network learning. Thus, with each new layer, the size of 

the image decreases, and the number of processing channels (image refinements) increases. 

 

For the output classification task, the network looks for an output where all of the inputs from one 

layer are connected to every activation unit of the next layer. This will mean that every feature in 

the image has been categorised. However, fully connected layers destroy all of the spatial 

information. To preserve this spatial information, the spatial tensor (data describing the location 

of the feature in the image) in the final convolutional layer must be mapped to a fixed length vector. 

After learning, the vectors are used by the network to classify the objects in the image. 
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Figure 7-11: Spatial tensor is down-sampled and converted to a vector 

 

However, for the task of semantic segmentation, the spatial information should be preserved. 

Therefore, while a fully convolutional network is used, the fully connected layer is not used within 

an encoder-decoder network. The encoder down-samples the input and the decoder up-samples the 

output from the encoder to return to the original image resolution. The down-sampling (encoder) 

convolutional layers create a low-resolution tensor that is used to produce high resolution 

segmentation output by adding up-sampling (decoder) convolutional layers to the network. The 

output of the encoder is a spatial tensor containing the shape and size of the object. The decoder 

takes this information and produces a segmentation map. The segmentation map has the same 

dimensions (width and height) as the original image. 

 

If the encoder-decoder layers are stacked in a DNN, the low-level information from the original 

image will be lost. This will result in the final decoder for the network incorrectly identifying the 

segmentation boundaries produced in the output map. To resolve this error, the decoder is given 

access to the low-level features by using a skip connection. 

 

With sufficient training images that are combined with their semantically labeled mask, the DNN 

learns a mapping between the training images and their masks. The learning process make the 

network aware of various semantic concepts that consistently relate to the images. 

 

7.4.2.1 Base model 
Different DNN architectures can be used to perform the semantic segmentation task, but all 

networks consist of a base model (sometimes called a standard model) for the encoder part of the 
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network and a segmentation structure for the decoder part. The output analyses of the image by 

the base model form the initial layers of the network and are used as an encoder for subsequent 

models. The rest of the network is built on top of the base model layer(s). For most applications, 

a model pre-trained on ImageNet would be an ideal case. ImageNet is a dataset of over 15 million 

labeled high-resolution images belonging to roughly 22,000 categories. 

 

Commonly used base models include: 

 The ResNet (Residual Network) base model software (Microsoft Inc, Redmond, WA, 

USA) is a multi-layer approach to developing a DNN. It is composed of a large number of 

layers (up to 152) along with residual connections. The multi-layer approach improves 

accuracy at the cost of a slower training time period. An accuracy of 96.4% was reported 

for the ImageNet dataset.  

 VGG-16 is convolutional neural network base model, proposed by Simonyan and 

Zisserman from the University of Oxford, UK. It has less layers (16) compared to ResNet, 

which makes the training much faster. An accuracy of 92.7% was reported for the 

ImageNet dataset.  

 MobileNet (Google Inc, Mountain View, CA, USA) is a smaller sized base model that 

enables a higher speed. The model was designed for memory and power constrained 

devices, such as smart phones. The accuracy of the model was reported as 70.6%.  

 

7.4.2.2 Segmentation models 
After selecting the base model, the segmentation architecture should be considered. 

 

7.4.2.2.1 Fully convolutional network (FCN)  
A fully convolutional network (FCN) was the first proposed semantic segmentation model, and it 

has become the standard semantic segmentation model. In this model, standard image 

classification base models, such as Resnet or VGG, were converted to fully convolutional models 

by changing the fully connected layers to 1 x 1 convolution layers that produces a probability map 

for arbitrary input size. The spatial information from down-sampling is recovered by adding up-

sampling layers to a standard CNN. Different FCN versions are reported in literature including 

FCN8, FCN16, and FCN32. Figure 7-12 shows an example of FCN architecture.87 
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Figure 7-12: Fully convolutional network architecture  

 

7.4.2.2.2 Segnet 
The Segnet model is based on fully convolutional and symmetrical encoder-decoder layers. The 

trainable part of the network consists of an encoder that is identical to the first 13 layers of the 

VGG16 model. The decoder part of the network consists of pixel-wise classification layers. The 

indices of the max-pooling layers are used for the corresponding up-sampling layers to produce a 

sparse feature map, which uses convolution with a trainable filter bank to densify features. Figure 

7-13 shows an example of Segnet architecture.85  

 

 
Figure 7-13: An example of Segnet architecture 

 

7.4.2.2.3 U-net 
The U-net network was first proposed for biological microscopy image segmentation. The network 

consists of two parts: a contracting path for capturing the context, and a symmetric expanding path 

which provides precise localization. The training strategy of the U-net is based on data 
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augmentation to learn from small size dataset. Figure 7-14 shows an example of U-net 

architecture.88 

 

 
Figure 7-14: An example of U-net architecture 88 (Reproduced from: Ronneberger O, Fischer P, Brox T. U-net: 

Convolutional networks for biomedical image segmentation. 2015:234-241) 

 

7.4.2.2.4 Pyramid Scene Parsing Network (PSPNet) 
The Pyramid Scene Parsing Network (PSPNet) is a multiscale network optimized for learning 

global contexts in a scene. The Resnet network is used in this model as a base model feature 

extractor to extract multiple patterns. The extracted patterns are fed into a pyramid pooling module 

to separate patterns of different scales. The maps are pooled at four different pyramid levels and 

processed by 1 x 1 convolutional layers. The pyramid levels outputs are up-sampled and linked 

together by initial feature maps to detect both local and global context. At the end, the pixel-wise 

prediction is generated by a convolutional layer. Figure 7-15 shows an example of PSPNet 

architecture. 89 
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Figure 7-15: An example of PSPNet architecture89 (Reproduced from: Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene 

parsing network. . 2017:2881-2890) 

 

7.4.2.3 Data Augmentation  
One of the most important steps of each learning-based segmentation project is to gather enough 

images in the dataset, since a higher number of images in the dataset will produce more accurate 

results. Data augmentation is a way of increasing the number of labeled images in the sample 

dataset and is especially useful for small datasets, such as medical image datasets. This method 

increases the number of labeled images resulting in a higher performance for DNN segmentation 

models. In data augmentation, a set of transformations are applied to either the data space, feature 

space, or both. The typical transformations are translation, warping, rotation, flipping, resizing, 

color space shifting, scaling, and reflection. Data augmentation provides faster convergence, 

generalization enhancement, and less chance of overfit.  

 

7.4.2.4 Transfer learning 
A CNN trained for image classification produces meaningful information that can be used in the 

task of image segmentation. The pre-trained convolution layers of a network can be used in the 

encoder part of a DNN segmentation model. In this way, the accuracy of the segmentation can be 

improved significantly. Transfer learning is very useful when the number of training images is 

very low.  

 

7.4.3 Metrics for image segmentation models 
Different metrics are used to evaluate semantic segmentation models. Although multiple aspects, 

such as speed, storage usage, visual, and quantitative accuracy, should be calculated, most methods 

focus on quantitative measures of accuracy. The most frequently used metrics are described below. 
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7.4.3.1 Accuracy 
The accuracy of the segmentation achieved can be calculated by using the total number of correctly 

detected pixels over the total number of pixels. It can be calculated using the following equation: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

 

where TP represents the first class (true positive) pixels detected correctly, TN is the number of 

second class (true negative) pixels detected correctly, P and N are the total numbers of pixels of 

first class and second class in the ground truth image, respectively. 

 

7.4.3.2 Mean Error Rate (MER) 
Mean error rate (MER) was proposed in the NICE-I competition and is widely used in binary 

segmentation tasks. The error rate can be predicted by considering the ratio of all false predictions 

in the whole image. The error can be calculated using the following equation: 

 

𝑀𝐸𝑅 =
1

𝑁
×

1

𝑤 × ℎ
∑ ∑ 𝑀(𝑥, 𝑦) ⊕ 𝐺(𝑥, 𝑦)

ℎ

𝑦=1

𝑤

𝑥=1

 

 

where N is the number of testing images, w and h are the width and height of the test images, and 

M and G are predicted and ground truth masks, respectively. ⊕ is XOR operator calculating the 

dissimilar pixels between M and G. 

 

7.4.3.3 Intersection over Union (IoU) 
Intersection over Union (IoU) is an evaluation metric to compare the result of the predicted 

attention boundary with the ground truth boundary. It can be calculated using the following 

equation: 

 

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝑝) ∩ 𝑎𝑟𝑒𝑎(𝐺)

𝑎𝑟𝑒𝑎(𝑝) ∪ 𝑎𝑟𝑒𝑎(𝐺)
 

 

where p represents the predicted attention boundary, and G is the ground truth boundary.  
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7.4.3.4 Mean True Positive Rate (mTPR) 
Mean True Positive Rate (mTPR) computes the average ratio of the true predicted pixels over the 

whole ground truth pixels. It can be calculated as follows: 

 

𝑚𝑇𝑃𝑅 =
1

𝑁
×

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

where N is the total number of the testing images and TP and FN are the true positives and false 

negatives, respectively. 

 

7.4.3.5 F1 score 
The F1 score evaluates the ability of the model to recall true positive pixels in the positive cases 

and not miss any cases. This metric is given by following equation: 

 

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

 

where TP are the true positives, FN are the false negatives, and FP are the false positives. 

 

 Applying machine learning to iris segmentation 
As reported earlier, the transparent cornea is the outermost anterior layer of the eye that covers the 

iris and pupil of the eye on the surface. However, by being transparent, identification of its 

boundary with the sclera is difficult, but an approximate boundary that is suitable for this project 

can be obtained by detecting and localizing the outer boundary of the iris. Different datasets and 

types of networks for deep learning-based iris segmentation have been reported in the literature. 

 

7.5.1 Dataset used for iris segmentation 
Using a DNN for image segmentation requires a lot of training data for the DNN to perform the 

task accurately. Different datasets are available for use in training an iris recognition system. The 

main problem with these datasets is a lack of ground truth. However, some of the groups have 

manually segmented the images and thus provided a ground truth mask. These masks are publicly 

available and can be used for research. 
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The UBIRIS.V2 dataset (acquired in a visible light environment) consists of 11102 images from 

261 subjects. Image resolution is 400 x 300 pixels. The images were taken on-the-move and at 

different distances by a high-quality visible camera. Therefore, the images are accompanied by 

different noises such as poor focused, off-angle, motion blur, eyelid occlusion, irregular specular 

reflection, and partial iris images. Two sub-sets of the database were used in the NICE-I and NICE-

II competitions. The images were manually selected from the dataset by considering the high 

availability of noises in the images. In total, 1000 images were selected and used in both 

competitions. 

 

    

Figure 7-16: Examples of UBIRIS V2 datasets90 (Image reproduced from: Proença H, Filipe S, Santos R, Oliveira J, 

Alexandre LA. The UBIRIS. v2: A database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE 

Trans Pattern Anal Mach Intell. 2009;32(8):1529-1535) 

 

The CASIA.V4-distance dataset consists of 2567 near infrared (NIR) images taken from 142 

subjects. Each image was captured using a high-quality NIR camera at 3 meters distance from the 

eye. The ground truth masks were labeled manually and are publicly available. CASIA thousand 

is a sub-set of the dataset containing 1000 low quality and noisy images for segmentation. 

  

Figure7-17: Sample images from CASIA V4 dataset 91 (Image reproduced from: Tan T, He Z, Sun Z. Efficient and robust 

segmentation of noisy iris images for non-cooperative iris recognition. Image Vision Comput. 2010;28(2):223-230) 

The MICHE dataset was created to evaluate iris recognition methods for mobile devices. The 

visible images were taken by an iPhone5, Samsung Galaxy S4, or Samsung Galaxy Tab2 in 

uncontrolled conditions. The ground truth labels for the images are publicly available for the 

dataset. 
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Figure 7-18: Sample images from MICHE dataset92 (Image reproduced from: De Marsico M, Nappi M, Riccio D, Wechsler H. 

Mobile iris challenge evaluation (MICHE)-I, biometric iris dataset and protocols. Pattern Recog Lett. 2015;57:17-23)  

 

7.5.2 Previous methods of iris segmentation  
A multi-stage fully convolutional network (MFCN)93 was the first DNN iris segmentation model 

that could predict the respective iris and non-iris areas over the whole image. The MFCN was a 

fully convolutional network consisting of convolutional and pooling layers that could take 

arbitrary-sized images for input. The final convolutional layer was also able to up-sample the 

output of the previous layer to the size of the input image, so providing a mask for segmentation. 

The MFCN consisted of 31 convolutional and 6 pooling layers. Six layers with different depths 

from shallow to deep were used in the network structure to capture both local and global 

information. In order to have more accurate results for the segmentation, all of the local and global 

information was required. The detailed features were needed for those areas of the iris that were 

occluded by the eyelashes, specular reflection, or hair. Since both shallow and deep layers were 

used for the segmentation, a fusion layer was used to cover coarse to fine segmentation, which 

produced more accurate results. The designed model was an end-to-end network with no 

requirement of pre- or post-image processing. 

 

After fine-tuning by the datasets, the MFCN produced an iris segmentation MER of 0.9% for the 

UBIRIS dataset, making it the first method to obtain an error of <1%. The results showed that the 

network outperformed all previous methods in terms of accuracy. The model was robust to 

illumination variations and noises, such as specular reflection, off-axis image, and occlusion. 

However, the method did not perform well on dark skin images and images without an iris. Also, 

some small areas were mis-classified and mis-localized in the images as part of the iris. 
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Arsalan et al., 2017, proposed a CNN-based method to detect iris boundaries (inner and outer 

boundaries) accurately in an unconstrained imaging environment in two stages. In the first stage, 

the rough iris boundary was obtained from the input image to define the region of interest (ROI) 

for the next stage. The resultant image from Stage 1 was a rough estimation of the iris boundaries 

that included parts of the upper and lower eyelids and other areas, such as skin, eyelashes, and 

sclera. In the second stage, the CNN was applied to the segmented iris area to provide more precise 

iris boundaries with the help of learned features. The approximate position of the pupil was also 

found by considering the standard pupil/iris ratio between pupil contraction and dilation. For 

network training, the pre-trained VGG-face model was fine-tuned by the data to produce a 100% 

training accuracy. However, the need for pre-processing of the images using non-CNN algorithms 

increased the whole image processing time. 

 

Jalilian et al.94 introduced a fully CNN for iris segmentation. The network implemented and trained 

using the stochastic gradient descent (SGD) back-propagation method. In SGD, instead of the 

whole dataset, a few samples were randomly selected for each iteration. Five different datasets, 

visible and NIR, were used in the training stage. The network was implemented in two different 

structures, namely basic variant and Bayesian variant. The Bayesian variant algorithm 

outperformed the basic variant in terms of accuracy. The method also compared with non-deep 

learning models on all of the databases. The results showed better performance of the proposed 

method compared to previous methods. However, the method did not perform well on the UBIRIS 

dataset. Consequently, the method is not suitable for low quality or noisy images, especially those 

taken by visible sensors. 

 

In 2018 Arsalan et al introduced a method using a dense layer connection concept and an encoder-

decoder structure named IrisDenseNet95. The model is a densely connected, fully-convolutional 

network that doesn’t need any pre-processing and that uses gradient flow to prevent overfitting 

and vanishing gradients. The network was tested over challenging datasets and showed more 

robust results in noisy areas, such as eyelashes and eyelids. The network used both visible and NIR 

images in the training stage. The training accuracy reached 100% in the network. For the 

performance evaluation, the NICE-I evaluation protocol was used and the method was compared 
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to other methods, and an MER of 0.69% was found. The method out-performed previous non-deep 

learning methods with all datasets. 

 

The IrisDenseNet segmentation was performed on different iris datasets and the output of the 

proposed network was compared with the SegNet network (one of the most successful DNN 

approaches in semantic segmentation) and was found to have a better performance. The reason 

that IrisDenseNet outperformed the SegNet network was the re-using of features by dense 

connections. The method was conducted on five different datasets and showed a higher accuracy 

compared with previous methods for both visible and NIR images. However, the dense layers 

means that it needs a powerful GPU and a large memory. Therefore, it is not an optimal method 

for low powered devices, such as mobile phones. 

 

A fully convolutional DNN was proposed by Bazrafkan96 to target low-resolution images taken in 

an unconstrained environment. In network training and testing, the CASIA, UBIRIS.V2, and 

MICHE datasets were used. To prepare suitable data for training, different augmentation levels 

were done on the datasets. To test the generalization ability of the network, the first two datasets 

were used in the training stage, and all of the datasets were used for the test stage. The network 

showed very good accuracy on NIR datasets and a good ability to segment visible iris images. 

However, the network did not perform well on very noisy images in the UBIRIS dataset, due to 

the network not being trained for noisy images. When compared to the SegNet-basic network, the 

SegNet-basic network had a better performance than the proposed network on the CASIA and 

Bath800 datasets. However, the proposed method outperformed the SegNet-basic while using the 

UBIRIS and MobBio datasets, showing a better generalization ability for the network. 

 

The attention-guided U-Net was introduced by Lian97 in 2018 and used two-stage learning. The 

network estimated an iris area in a rectangle, and this provided a weight map for the second stage. 

Using the weight map, the network was focused to learn more discriminative features of the iris. 

The UBIRIS.V2 and CASIA-IrisV4-Distance datasets were used for performance evaluation, and 

the attention mask estimation reached a high performance in the UBIRIS and CASIA datasets, 

which means the network was able to accurately assign the attention mask on the iris regions. A 

performance evaluation for the segmentation part of the network was done and compared with two 
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other networks. The results showed that the ATT-UNet network, with a performance of 96.8% and 

96.3% for the UBIRIS and CASIA, respectively, surpassed the results for the MFCN and U-Net 

networks. 

 

The IrisParseNet 98 is the most recent study of iris segmentation in which a multi-task learning 

framework was used to perform iris localization and segmentation. The model also provided a 

rough estimation of the iris boundary and reserved it for future steps. Two types of attention model, 

Atrous Spatial Pyramid Pooling (ASPP) and pyramid pooling (PSP), were compared together, with 

the ASPP achieving better results in the task of iris segmentation. The CASIA-distance, 

UBIRIS.V2, and MICHE datasets were used for the training stage. The network was compared 

with previous methods and the ASPP implementation of the network outperformed all of the non-

deep methods and MFCN model. The method introduced a network to accurately segment and 

localize the iris area in visible and NIR images. All of the DNN methods showed better 

performance than the non-DNN methods. The results show that DNN methods, and especially 

FCN networks, can be used as an accurate method for an iris segmentation task. The model was 

time-efficient, and the overall runtime was less than 0.7 seconds. However, the model needed 

approximately 100MB memory, which limited its application on mobile devices. 

 

7.5.3 Summary of previous methods 

Generally, two different methods have been used for iris segmentation methods using DNN. The 

first method used end-to-end semantic segmentation, which can automatically learn the optimal 

features. This method does not need any user intervention and can take the whole image as an 

input and generate the output mask. There is no pre- or post-processing required in an end-to-end 

network. In the second method, some pre-processing was done on the images to prepare the images 

for the training. The pre-processing step segments the rough iris area on the images for network 

training and can be done by DNN or non-DNN methods. Using pre-processed images, the network 

has the advantage of learning more discriminative features. The network can be trained faster by 

the segmented area and the accuracy of the method could be improved. However, the overall speed 

of the model is affected by the number of stages. Both methods are not suitable for mobile devices 

with low power of processing or memory, which may be relevant for any future development of 

the system. 
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Some methods used encoder-decoder models to design an end-to-end network for iris 

segmentation. There are two paths in these types of networks. The encoder path of the network 

reduces the feature map size and increases the number of channels to encourage the model to learn 

local and global features. The decoder path of the network reduces the feature channels by up-

sampling to return the image to the original size. By setting some short connections between the 

encoder and decoder blocks, the network can learn both local and global features. The designed 

networks based on an encoder-decoder structure are good candidates for iris segmentation task. 

These networks can learn some geometrical (global) features of the images accompanied by pixel 

level (local) features. These kinds of learning produce better segmentation results in noisy areas, 

such as occluded areas by eyelashes or eyelids. 

 

The IrisParseNet method used a multi-task framework to detect the iris boundaries and region in a 

pixel-wise manner. The method showed better performance than the previous methods. Using 

localization and segmentation features together resulted in more accurate localization and 

segmentation separately. However, it was also found to have a high processing time, a high 

memory usage, and a higher CPU requirement. 

 

 Choice of iris segmentation method 
For the task of cornea segmentation in this project, there are several points that were considered. 

First of all, by paying attention to the problem of cornea segmentation, an encoder-decoder model 

for designing an end-to-end network was chosen. The encoder-decoder model consists of a base 

model and a segmentation model. The first priority is accuracy of segmentation. 

 

The base model with the highest accuracy should be chosen and since Resnet50 showed better 

accuracy on the ImageNet dataset, the base model of Resnet50 was chosen. 

 

The next priority was to choose the decoder part of the network. Different models have been used 

for iris segmentation. Some networks work better with a noisy dataset and some work better on 

low-powered devices. However, the most important factor was to gain the highest accuracy. Since 

the system would process the data offline, processing time was not an issue. Also, the data was 



 

130 

 

gathered in a controlled illumination room, resulting in less noise in the data. Nevertheless, the 

cornea and iris appeared in different shapes and sizes in the images, and the iris appeared in 

different colors. For example, the cornea is not circular when the eyelids are not open wide. 

Therefore, both local and global features were very important in the segmentation stage of the 

project. The best network for the segmentation was PSPNet (Pyramid Scene Parsing Network) 

because it learned global features at different scales. 

 

Thus, the model for the segmentation part of the project was Resnet50-PSPNet pre-trained on the 

ImageNet dataset. Although the processing time of the files was a bit longer than other networks, 

it had better accuracy. The accuracy of the FCN32, SegNet, U-Net, and PSPNet were calculated 

on the sample dataset with same data augmentation technique to choose the best model. Table 7-1 

shows the segmentation accuracy using out dataset.  

 

Table 7-1: comparison of the different segmentation models 

Model Mean IoU 

FCN32 89.2 

SegNet 92.3 

UNet 91.7 

PSPNet 94.6 

 

Among the models, PSPNet had the highest accuracy for iris segmentation and chosen in this work. 

 

7.6.1 Project dataset 
A total of 160 images of the eyes of 10 subjects were captured by the Teledyne FLIR BFS visible 

camera to produce the dataset used in this project. A total of 250 images were taken of each 

subject’s eye with their gaze directed straight ahead, upwards, downwards, to the left, to the right, 

and with the eyelid closed and then 10 numbers of the images from each subject were selected for 

network training and testing. Figure 7-19 shows some sample images from the dataset. The images 

were captured in a controlled illumination and normal room temperature. The subjects were asked 

to move their eye and blink naturally during images were taken. For the training step, 120 images 

were used, and for testing the network, 40 images were used. 
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As the total number of images for training purpose were low, data augmentation was used in the 

training step. Both feature and data transformation were used in data augmentation step. The 

augmentation methods used were: translation, warping, rotation, flipping, resizing, color space 

shifting, scaling, and changing contrast.  

 

Data annotation was done to create segmentation masks for the data set images. paint.net was used 

to produce black and white ground truth masks manually, where the white pixels represent the 

cornea pixels and black pixels represent the non-cornea pixels (Figure 7-20). 

 

     

     

Figure 7-19: Sample images of the eye in different directions of gaze from the training dataset. 

 

     

     

Figure 7-20: Sample images of the eye in different directions of gaze from the training dataset (top) with their respective 

ground truth masks (bottom). 

 

7.6.2 Iris segmentation results 
After training the network using the dataset, the model was created and used for prediction. The 

40 images not used in the training step were used for the model test and performance evaluation. 
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Figure 7-21 shows the result of prediction by the network on 15 sample images. The yellow areas 

show the cornea pixels detected by the network. After testing the network on all 40 test images, a 

mean IoU of 94.6% was calculated. 

 

 

Figure 7-21: Colored predicted masks produced by the network for 15 sample eyes in different directions of gaze from the test 

dataset. 

 

 Blink detection 
When analyzing the video files, artifacts may arise due to the presence of a blink within a frame 

and these must be removed. Considering again that the purpose of the system is to analyze the 

surface temperature of the cornea, it is essential to exclude any temperature data from the eyelid 

that might also be included for analyses when the eyelid is closed. Hence, the blink frames must 

be removed from the video files. 

Fortunately, the segmentation network could also be used as a blink detection tool. When the iris 

segmentation network failed to detect a cornea in the image (because of the presence of the eyelid 

during the blink), the network could distinguish between blink and non-blink frames, and the 

relevant frames removed from the video sequence. Figure 7-22 shows a series of example masks 

predicted by the trained network. 
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Figure 7-22: predicted masks by the network including video frames in which the subject has blinked 

Figure 7-23: BW masks generated by the network Figure 7-23 shows the black and white ground 

truth masks generated for this image set. 

 

Figure 7-23: BW masks generated by the network 
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For some frames, the masks were totally black (frames 98-101), which meant that the cornea was 

absent. Therefore, these frames could be considered as containing a blink. To assess the accuracy 

of the algorithm to perform this task, two video files, each with 250 frames, were assessed. The 

two video files had 1 and 2 faulty blink detections over 250 frames, respectively. Figure 7-24 

shows an example of two blink frames from the video in which the cornea was detected by mistake.  

 

  

Figure 7-24: An example of the misclassified corneal area in the blink frames 

 

 Eye tracking and Final image processing outcome 
A second possible artifact during the measurement was associated with eye movement. One of the 

major problems of previous systems was the lack of a method for eye tracking and localizing the 

cornea during eye movement. To track the cornea in a video sequence, the cornea must be localized 

in each frame of the sequence. 

 

As demonstrated, the cornea could be localized in all of the video frames by using the iris 

segmentation network to predict the corneal area. When the cornea was localized in all of the 

frames, the segmentation masks that were produced could be used for eye tracking. In this way, 

the corneal area could be tracked in both the visible and thermal video files ensuring that surface 

temperature could be tracked and extracted from the only the cornea for further analysis.  
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Figure 7-25: A series of frames taken from a sample video file between two blinks 

 

Figure 7.24 shows a sequence of mapped video frames after the whole algorithm implementation. 

The figure shows extracted consecutive frames from the video file between two blinks. The 

temperature profile is mapped on the corneal area which gained from the thermal image. The 

temperature changes are demonstrated by color change in the images. There is no temperature 

mapped on the blink frames, which means there is no cornea detected in the frame. The last row 

of the figure demonstrates the eye tracking by the proposed method. When the cornea was moved 

in the frames, the ROI is segmented correctly, and the temperature profile is mapped on the ROI. 
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8 Chapter 8: Data analysis and system application 
 

The system has been shown to be able to register image and video files, to segment the cornea and 

to deal with eye movement artefacts. However, for the system to be practically useful, it must also 

be able to extract OST data from each frame and record it in a file for data analysis. This now 

reveals a new challenge, since each frame contains around 12000 pixels (temperature points) 

contained within the segmented corneal area, and the data should be analyzed to be useful in 

clinical application. This is a previously unobtainable level of detail for the cornea, but which also 

possesses great potential for understanding how the OST varies across the cornea between blinks 

and in various clinical situations. The full investigation of this data output is beyond the scope of 

this thesis, but some simple analysis can reveal the potential. 

 

Taking the video sequence illustrated in Chapter 7 as the data source, a series of examples is 

presented: single point, multiple points, and the average of all data points across the cornea.  

 

 Single pixel point 
A single point can be selected on the corneal surface to track the temperature over time. Figure 

8-1 shows an example of the temperature trace from a single pixel point location in the center of 

the cornea. The presence of the blinks is revealed by the positive or negative temperature spikes. 

These temperature spikes can be detected by the eyelid blinking algorithm and removed from the 

trace (Figure 8-2). 

 

Figure 8-1: An example of single point location 
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Figure 8-2: Single pixel point temperature tracking over a period of 10 seconds. Recording began immediately after a blink. 

 

Considering Figure 8-2, it is interesting to note how much noise there is in the measurement. This 

might be due to eye movement or to poor thermal sensitivity in the camera (unlikely since the 

thermal camera resolution is very good). For this video sequence, the subject was asked to move 

their eye so that the video tracking and corneal segmentation could be tested, but it may be better 

to encourage the subject to maintain constant fixation. Alternatively, it may be better to record 

from a small cluster of pixels (e.g., a 9x9 square) to produce an average of several points. This is 

a question for further investigation. 

 

 Multiple pixel points 
Another way to analyse the data is to select single pixels at different corneal locations and compare 

the temperature profiles from each location (Figure 8-3). In this way, the OST change can be 

tracked and compared at different locations. 
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Figure 8-3: Selected pixel location for multi points tracking 

 

Figure 8-3 shows an example of the temperature profiles produced by tracking four locations on 

the corneal surface. The two central corneal locations (Points 3 and 4) are cooler than the two 

superior corneal locations (Points 1 and 2). This follows the previously published norms for OST, 

where the central cornea is known to be cooler than the peripheral cornea, which is assumed to be 

due to the closer proximity of a warming blood supply for the peripheral cornea. This effect of 

peripheral corneal warming can be observed by comparing Points 3 and 4, where a cooler 

temperature is recorded for Point 3 which is located at the approximate corneal center and thus 

farther from the warming limbal blood supply. 

 

 

Figure 8-4: Multiple pixel point temperature tracking over a period of 10 seconds. Recording began immediately after a blink. 
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 Selected region of interest 
The system is able to track all pixel points within a selected ROI on the corneal surface and produce 

an average across all of the frames in a video sequence. Figure 8-6 shows the average temperature 

within a selected area over the center of the cornea, tracked over time. The benefit of averaging 

the temperature can be seen in the generation of a smoother plot by the removal of the effect of 

signal noise. The presence of the unusual sharp dips in temperature are unexpected, but may be 

due to small errors in the eyelid blinking algorithm that permits images that include the colder 

eyelashes to be included in the trace. Once again, further investigation and refinement of the 

system is needed. 

 

 

Figure 8-5: Average temperature tracking for a selected region on the cornea over a period of 10 seconds. Recording began 

immediately after a blink. 

 

 Whole cornea  
The developed system is able to detect corneal area and track it on all of the frames. Therefore, all 

of the pixel points can be tracked together. Figure 8-6 shows the trace produced for the average 

temperature tracking over the whole cornea.  
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Figure 8-6: Whole cornea average temperature tracking over a period of 10 seconds. Recording began immediately after a 

blink. 

 

 Sample application 
One possible application of temperature tracking is to look at the rate of cooling in the tear film 

over the cornea between blinks. This cooling is thought to relate to tear stability, and thus the rate 

of cooling maybe a useful clinical biomarker: a steeper slope would reveal a faster cooling rate 

and a less stable tearfilm. Figure 8-7 shows the average temperature change over the first 4 seconds 

after a blink for the whole cornea. The slope of the best fitting line from the start of the trace to 

just before the first blink is 0.0008. In contrast, if the temperature change slope is calculated from 

after the first blink to the temperature spike at c.5 seconds, the slope is calculated as 0.002 (Figure 

8-7). 

 

Figure 8-7: Colling rate before blink 
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Figure 8-8: cooling rate after blink 

 

The faster cooling rate after the first blink suggests that the tear film is less stable, and is affected 

by increased tear evaporation, leading to a new blink being triggered, which happens at 

approximately 6 seconds.  
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9 Chapter 9: Discussion and conclusion 
 

This thesis reports on the development of a novel system and method for imaging, segmenting, 

temporal and spatial tracking, and analysis of visible and infrared images of the ocular surface and 

eye adnexa. For the first time, a complete system for imaging the ocular surface, synchronizing 

video sequences, segmenting the cornea, and extracting ocular surface temperature (OST) data 

from the eye has been developed. US patent (17/236,816) and Canadian patent (#3,116,492) 

applications have been made for this system. 

 

 Current situation  
OST measurement has the potential to provide useful information about ocular surface health. For 

example, knowledge of the OST can help a physician to diagnose some eye diseases with much 

improved accuracy.25-32 It can also be used for a better understanding tear film quality by looking 

at changes in OST associated with tear film break-up.33 

 

However, current methods for assessing OST clinically are severely limited. No commercial 

systems for assessing OST are available and researchers have instead relied on customized 

instruments. Of the instruments available, all are designed with either one camera (thermal) or two 

cameras (one thermal and one visible). The dual camera systems are designed to use the visible 

camera to help overcome the inherent lack of spatial resolution across the thermal image that 

makes precise identification of the corneal boundary very difficult. By overlapping the field of 

vision of both cameras, the corneal boundary seen in the visible camera image can be used to locate 

the corneal boundary in the thermal image. This lack of spatial resolution in thermal cameras has 

also meant that researchers must rely on manual selection of individual points or areas of interest 

on the ocular surface, and to a very restricted set of options in terms of data analysis. Data analysis 

typically means a comparison over time between individual data points on the ocular surface or 

between average temperatures within selected areas on the surface across the ocular surface. When 

one considers that the pixel count across the cornea in the thermal image typically exceeds 12000 

pixels per frame of a video sequence, this simplified manual approach inevitably leads to a huge 

amount of detail being lost. 
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There is a clear need for a new approach on instrument design and analysis for successful OST 

measurement. 

 

A series of requirements can be described: 

1) The ability to locate the corneal area in the thermogram by including a method for 

automatically detecting the corneal boundary, rather than requiring the input from the 

operator to manually select the point or area of interest. 

2) The ability to consistently measure from the same location on the ocular surface by 

tracking and compensating for any head or eye movements. These movements cause 

relative movements in the areas of interest on the eye and ocular surface during the period 

of measurement, which degrade the accuracy of measurement over the period of 

measurement. 

3) The ability to track OST changes over time by removing the effect of artefacts in the 

temporal temperature profile caused by eyelid blinking during a period of measurement. 

4) The ability to collect and analyse temperature data from all pixel points across the ocular 

surface within the image frame over the period of measurement. 

5) That all four previously listed requirements should be completed automatically. 

 

No current system for IR imaging of the eye can automatically complete any of these four 

requirements. Hence, a system to solve these problems was required. 

 

 A novel designed system 
In this thesis, a novel combination of instrument hardware design and customized software 

algorithms was developed to capture a synchronous image/video sequence of the eye surface from 

two cameras from which the corneal could be tracked in both video files. With the corneal area 

segmented, the system is capable of measuring and tracking OST at the individual pixel level of 

detail across the cornea, over any chosen period of time. 

 

9.2.1 Hardware development 
The first step in the system development was the physical system design and camera selection. 

Both cameras needed to have close-up lenses with good fields of view (FOV), high pixel resolution 

(640x480 pixels), and a high frame rate speed (25 fps) to enable good imaging of details on the 
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eye surface. The FLIR-Teledyne IR A655sc and FLIR-Teledyne BFS 51S5C cameras were 

identified as meeting these imaging parameters. Both cameras can support a faster frame rate, but 

a faster frame rate would have supplied more data which would have needed more processing time 

and a more powerful processor. 25 fps provided enough data for analysis. The visible camera had 

a greater FOV than the thermal camera, and so the FOV was cropped to limit the image area to a 

similar FOV as the thermal camera. 

 

The next requirement for the system installation was to choose a suitable camera base/mount. Slit-

lamp biomicroscope are designed with very flexible controls to allow easy alignment of the 

instrument with the face and eyes of a subject. This flexibility in alignment was ideal for mounting 

the two cameras, and for positioning the subject. The slit-lamp includes a chin-rest and head-rest 

for the subject, and two moveable arms on which a binocular microscope and an illumination 

system are mounted, respectively. For this system, an old slit-lamp was modified by first removing 

the microscope and illumination systems having, and then a custom mounting was attached to the 

microscope arm. The camera mount allowed both cameras to be mounted beside each other to 

ensure a consistent relative angle of photography between the cameras. This mount also gave the 

ability to adjust the camera positions such that the thermal camera was positioned perpendicular 

to, and directly in front of, the eye to be imaged.  

 

9.2.2 Algorithm development 
A customized algorithm was required to manage the cameras and capture the images. To that end, 

a software program based on the developed algorithm was developed to control the operation of 

the cameras and to record image/video from the eye surface using the Python programming 

language. A graphical user interface was designed to enable simple operation of the hardware. A 

further series of customized software algorithms (I-VII) were then developed for more detailed 

control over the hardware and for image processing of the image/video output from the two 

cameras. 

 

I. With the two cameras linked under software control, the first step was to synchronize their 

operation. The two cameras was configured in such a way that one of them acted as the primary 

camera and the other as the secondary camera. To do so, the cameras were connected via a cable 
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for hardware triggering, with the thermal camera acting as the trigger for the visible camera. A 

software was then developed for synchronous recorded of the video files/images from the eye 

surface. The software sent a command to the primary camera to capture an image. The hardware 

within the camera was activated to capture an image, and simultaneously sent a synchronous signal 

to the secondary camera to capture an image, and the two images were captured synchronously. 

Hardware triggering ensured that there was no delay in image capturing between the two cameras. 

This is an important step, since the corneal limits in the visible image were used to locate the 

corneal limits in the thermal image. It was therefore essential that the image from each camera 

represented the same moment in time. 

 

II. The captured images of the eye surface were taken using two different cameras, which meant 

that they had different sensors and optical qualities. It also meant that only one camera (thermal) 

could be mounted perpendicularly to the eye, leaving the visible camera with an oblique 

observation point relative to the eye surface. This latter effect produced a distortion in the visible 

camera image. Therefore, the images from each camera are not similar and the pixel coordinates 

of the visible image cannot simply be used to locate the cornea in the thermal image. An algorithm 

was developed that compared the gathered image from both cameras of a test object with known 

dimensions, in order to identify the presence of any distortion, and to then transform the images to 

remove that distortion. This calibrated each camera to produce an optically true image of any 

object. 

 

III. To be able to use the corneal coordinates from the visible image to locate the cornea in the 

thermal image, the images must be mapped on top of each other. This technique of image mapping 

is called image registration. The developed algorithm for image registration used corresponding 

salient points in both images to calculate the required transformation between the images necessary 

to warp the thermal image and allow it to be mapped onto the visible image. 

 

IV. In this project, two video files were recorded from the eye surface with the purpose of 

extracting the corneal OST over a period of time. Having developed algorithm for image 

registration for a pair of timestamped matched images, the next step was to develop an algorithm 

that was capable of continuing image registration for each subsequent timestamped matched 
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images in the video sequences for each camera. As noted, image registration algorithm uses 

corresponding salient points in each image to calculate the required transformation between the 

images. In video registration, these points must be continually selected on each new pair of 

corresponding frames. Manual control point selection for each image pair is cumbersome and time-

inefficient. Instead, the problem of point selection for all of the frames should be done 

automatically. For this system, an optical flow algorithm was developed for point localization. The 

initial salient point selection was completed manually, but thereafter the points were automatically 

located on each set of frames (thermal and visible) using the Lucas-Kanade algorithm. 

 

V. After registering the video files together, the pixel coordinates of the visible image were used 

to extract information from the thermal image on the corneal area. To do so, the first step was to 

localize the cornea in the visible images. On the eye, the corneal boundary is visible at the limbal 

junction with the white sclera, but this is not a distinct visible limit. The presence of the underlying 

iris visible through the transparent cornea provides a stronger visible limit, and so the outer 

boundary of the iris was assumed as the outer corneal boundary and used for corneal localization. 

A deep-learning, semantic segmentation method was used for cornea localization. After corneal 

segmentation in the visible image, the segmented area coordinates were used for temperature 

extraction of ROI in the thermal images. 

 

VI. The segmentation algorithm allowed for the removal of artefacts in data extracted from the 

segmented corneal area of the thermal video sequence. These artefacts occurred due to eye 

movements and eyelid closure. Small eye movements are a normal physiological feature, but larger 

eye excursions may also occur of the patient loses fixation. With these movements, small errors in 

the consistency of data collected from the cornea is possible. The developed algorithm for corneal 

segmentation ensured consistent eye tracking and the removal of eye movement artefacts. The 

corneal segmentation algorithm was also used to monitor and exclude video frames that included 

eye lid closure. Eyelid closure will interrupt the observation of the corneal area, and lead to an 

unwanted replacement of the corneal OST data with eyelid temperature data. Video frames were 

monitored for absence of corneal segmentation, and then removed from the data stream for 

analysis. 
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VII. With completion of these steps (I-VI), the corneal area temperature (OST) could be extracted 

from the thermal images. For proof of concept, only simple data values were extracted from the 

available data on each image frame, but with further development, the full data set can be analyzed 

to extract information on spatial temperature differences across the ocular surface or over time. 

 

 Future work 
Further developments are required for the system to be useful in clinical practice and research. 

These improvements can be considered in four areas: 

 

9.3.1 Algorithm design 
The first step would be to improve the accuracy of the point localization and video registration 

using deep learning techniques. This could be achieved using deep-learning techniques for video 

registration and point-tracking. Secondly, corneal segmentation accuracy could be improved by 

using more data for training and using a customized network. Thirdly, the GUI could be improved 

for better data output and OST reporting. Another, improvement can be made by developing an 

algorithm to remove any reflection artefacts from the thermal image. 

 

9.3.2 Instrument infrastructure 
The overall instrument design and system-set-up also needs to be refined from this basic prototype 

set-up to provide a simpler arrangement for the user. This includes a housing that fixes the dual 

camera mounting to avoid interference with the camera asset-up and critical image overlap 

between the two FOVs. 

 

9.3.3 OST data extraction 
Data output from the segmented corneal area will also need considerable work to extract the 

desired OST data from the thermal images. A criticism of previous systems has been that a very 

large amount of data is being left un-analyzed. Individual pixel data can be used to detect absolute 

as well as relative temperature change, in spatial or temporal terms, across the segmented cornea. 

For example, these relative temperature changes provide new methods for assessing tear film 

stability which will be of use for dry eye disease diagnosis and treatment. These steps can be added 

to the current system by developing new algorithms in the software part of the system. 
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9.3.4 Visual camera image analysis 
Further image analysis is possible for the visual image video sequences to develop methods for 

assessing ocular redness or fluorescein staining or tear film break-up.70 New algorithms can be 

developed as part of the software system. The dual camera system permits overlapping image 

analysis of the same ocular features, (e.g., tear film break-up) to reveal new detail on tear film 

structure and stability. 
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