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Abstract 

 

Diabetic Retinopathy (DR) is a major cause of visual loss among the working-age 

population and has a globally high prevalence rate. This disease is caused by the capillary 

damage due to the chronic high blood glucose level that can progress to proliferated levels. DR 

affects retina, and its severity can be observable on fundoscopy or optical coherence tomography 

images. There are 10 major DR-associated lesions defined by the International Clinical Diabetic 

Retinopathy Scale (ICDRS). This system categorizes DR depending on its severity level and for 

each lesion it defines the initial presence in a certain level. Then, the grading is done through 

detection of each lesion type and number according to the grading system criteria. 

 

The diagnosis process is currently done manually; however, it is time consuming and 

requires a trained clinician. Thus, several automated alternatives have been proposed as a partial 

substitute in the diagnosis process. Deep Convolutional Neural networks (DCNNs) are among 

the most successful Computer-Aided Diagnosis methods in terms of performance. Even though 

these state-of-the-art architectures reach high performance scores, but they act as black boxes 

and their decision process and learned features are not clinically interpretable which becomes a 

major barrier for their adoption for ophthalmological purposes. This problem was initially 

addressed by eXplainable Artificial Intelligence (XAI) solutions. XAI methods can visualize the 

critical regions of an input image for a given DR grade. Initially, we applied some common 

fundamental XAI methods on customized trained DCNN model outputs. The attention map 

results of applied XAI solutions are either generic or sparse and do not provide sufficient 

interpretation for a predicted grade. 

 

Hence, we applied a publicly available dataset, FGADR, which has sufficient fundus 

images with pixel-wise annotation of six DR lesions. We selected 143 samples of FGADR 

database and annotated the missing lesions including vitreous-preretinal hemorrhage, intraretinal 

hemorrhage, venous beading (VB) and fibrous proliferation (FP) that are annotated for the first 

time as a public dataset. 
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Then, we applied distinct DCNNs with similar architectures of holistically nested edge 

detector network (HEDNet) and pretrained weights of backbone on ImageNet. These models 

were fine-tuned to segment each lesion, separately. Our net plan was to apply these segmentation 

outputs in grading the disease severity based on ICDRS criteria. 

 

Finally, we found that 4 out of 9 model outputs related to vascular abnormalities were not 

satisfying a defined level to use them in the grading step. these lesions include VB, IRMA,MA 

and FP with the mAP scores of 19%, 21%, 26% and 22%, respectively. The suggested solutions 

to improve their performance are reducing diversity of lesion morphological features in the 

image sets for training, increase number of dataset samples and try other network architectures 

related to graph patterns due to similarity to vessel patterns such as hierarchical networks. 

 

Overall, this study could provide a novel and comprehensive dataset of pixel-wise 

annotations of DR-related lesions, and it could be used for further research with focus on DR 

lesion segmentation. In addition, this study extended the use of HEDNet model to segment the 

newly annotated lesions. 
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1.1. Introduction 

 
        Diabetic retinopathy (DR) is a leading cause of visual impairment with a prevalent 

rate. This disease is screenable on retinal images and could be detectable through 

automated diagnosis solutions. Advancements in deep convolutional neural networks 

(DCNNs) in automating DR diagnosis has been proved to be promising and is the focus 

of this research [1] . The major barrier to adoption of this sort of methods is the lack of 

reasoning behind their decisions [2]. To add on their interpretability, explainable artificial 

intelligence (XAI) has proposed some methods to validate before percolation to 

healthcare systems. The major contributions of this thesis in the scope of model 

evaluation are: 

 

▪ Provide summaries over the most unique automated DR diagnosis approaches 

and their categorization to DCNN based solutions and others. 

▪ Introduce our DCNN model for disease grading, analysis of its main structure. 

▪ Implement a selection of explainability methods to generate explanation 

heatmaps of input images. 

▪ Evaluation of the XAI results from a clinician point of view. 

▪ Propose the alternative solution which is segmentation-based DR diagnosis 

▪ Introduce our collected FGADR 143-9 database 

▪ Evaluate existing DR segmentation networks 

▪ Segmentation results on our proposed dataset and the directions of future 

research 

        In this thesis, chapter 1 serves as a brief overview to DR, its screening and 

computerized diagnosis methods. In chapter 2 deep learning-based solutions in DR 

diagnosis are discussed. Chapter 3 covers the most common XAI approaches on DR 

diagnosis and demonstrate deficiencies of XAI solution with a clinical insight. Chapter 4 

and 5 discuss on the existing DR segmentation databases, the proposed database and the 

deep segmentation model with implementation details. A conclusion over the whole 

project and future improvement directions are also presented in chapter 6.  
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1.2. CAD methods in DR detection 
 

1.2.1.Diabetic Retinopathy 

 

        Diabetes mellitus (DM) is mainly caused by insulin resistance which directly affects 

blood glucose level and causes hyperglycemia. Hyperglycemia can have multiple effects 

on vessels. Among them, diabetic retinopathy is highly prevalent [3]. Among individuals 

with DM, DR had 22.27% prevalence rate in 2021, globally [4]. This disease is also 

affecting a higher portion of the global population, as it was reported to be 103.12 million 

in 2021 and estimated to be 160.5 million by 2045 [4]. This disease begins at a mild level 

and can progress to advanced levels with a progressive vision affection [1].  There are 

some clinical characteristics that indicate the presence of DR on retina that are observed 

through retinal imaging techniques.  

        DR progression state can be graded using a standard grading system such as the 

Early Treatment Diabetic Retinopathy Study (ETDRS) [5] that separates DR 

characteristics in high details to over 80 severity levels [1]. In addition, this system needs 

information from all seven fields of view (FOV) through retinal imaging to be qualified 

for grading. There are also more generic and widely used grading systems such as the 

International Clinical Diabetic Retinopathy Scale (ICDRS) [6] that defines 10 major DR-

associated lesions: Microaneurysms (MA), Intraretinal Haemorrhages (IHE), Hard 

Exudates (Ex), Cotton Wool Spots (CWS), Venous Beading (VB), Intraretinal 

Microvascular Abnormality (IRMA), Preretinal Haemorrhages (PHE), Vitreous 

Haemorrhages (VHE), Neovascularization (NV) and Fibrous Proliferation (FP). ICDRS 

also has five severity levels for DR as follows: 

1. No Retinopathy 

 

2. Mild Non-Proliferative Diabetic Retinopathy (NPDR): As the first stage of diabetic 

retinopathy, it includes tiny areas of swelling in retinal blood vessels known as 

microaneurysms (MA) [1, 3] (Figure 1.2A).  

 

3. Moderate NPDR: When left unchecked, mild NPDR progresses to a moderate stage when 

bleeding starts from the blocked retinal vessels. IHE signs should be less than 20 in at 

least one quadrant. At this level, hard exudates (Ex) may also exist (Figure 1.2B). Venous 

Beadings (VB) are signs on retinal funduscopy images that are caused as a result of the 

dilation and constriction of venules in the retina [1, 3]. At moderate NPDR, VB might be 

detected but it should be observed in less than 2 quadrants. 

 

4. Severe NPDR: In this level, in addition to MA and Ex, any of intra-retinal hemorrhages 

(IHE), Intra-Retinal Microvascular Abnormalities (IRMA) and VB could occur but none 

of lesions specific for the proliferative DR should be observed. As a threshold for the 

number of IHE, ICDR considers the images with over 20 IHE on all four fundus 
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quadrants as severe level (Figure 1.2C). There may also be IRMA which can be seen as 

bulges of thin vessels. IRMA could appear as small and sharp-bordered red spots in at 

least one quadrant. VB also should exist in over two quadrants [1, 3].  

 

5. Proliferative Diabetic Retinopathy (PDR): Different functional visual problems occur in 

PDR, such as blurriness, reduced field of vision, and even complete blindness in some 

cases. This progressive stage of DR mainly occurs when the retinal examination is left 

unchecked. At this level, which is also called vision threatening level of DR could have 

one or more of the following lesions. The creation of new blood vessel networks on retina 

to feed the areas of damaged blood vessels which is termed as Neovascularization (NV), 

Blood leakage from the tiny abnormal blood vessel networks and proliferation of fibrous 

tissue as a natural eye tissue recovery mechanism [1, 3] (Figure 1.2D).  

 

 

Figure 1.1.DR lesions on a sample retinal funduscopy image. 
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Figure 1.2. One FOV retinal funduscopy images of level 2-5 of DR (images courtesy of Rajiv Raman et al., 

Sankara Nethralaya, India). 

 

1.2.2.DR screening methods 

 
        DR diagnosis requires screening on which fine pathognomonic DR signs in the 

initial stages are detectable. In this scope, dilated stereoscopic fundoscopy, fundus 

analogue photography and optical coherence tomography (OCT) could be applied [7, 8]. 

The funduscopy systems could be divided to pupil dilation-required (mydriatic)or without 

pupil dilation (non-mydriatic). Since non-mydriatic fundus cameras may be unable to 

visualize DR with high quality in cases where cataract is also present, mydriatic fundus 

imaging is the most common solution in DR screening worldwide [9]. 

  

The academic gold standard DR grading system, ETDRS, requires seven- 30° FOV 

stereoscopic fundus photographs through a dilated pupil [1]. Then experienced clinicians 

apply ETDRS criteria to grade severity. ETDRS grading still remains the highest 

standard in academic research, however, it cannot be applied for practical screening 

among populations due to its time-consuming procedure and high number of funduscopy 

FOV images required for diagnosis [10]. Furthermore, seven-field stereoscopic fundus 

photographs require many trials per patient and are therefore not suitable for population 

screening with an incremental prevalence rate of the disease [11]. 
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With equally effectiveness, examining retina with slit-lamp biomicroscopic 

funduscopy is also considered the clinical gold standard in DR diagnosis, but this method 

is not applicable for large-scale screening [7]. Hence, there is space to introduce a 

standard grading system that is both applicable for clinical and academic purposes. In this 

research, ICDRS can satisfy these requirements. 

 

The detectability of DR colour fundus images was compared with ophthalmoscopy 

imaging in clinical application. The funduscopy camera detection rate was more than 

twice as high as ophthalmoscopy imaging through dilated pupils [7]. Hence, color fundus 

photography on dilated pupils is applied in this study.  

The next step is diagnosis, which is manually done through finding DR-associated 

lesions and comparing them with the selected grading system criteria. Currently, the 

latest automated diagnosis technologies such as IDx-DR [12] and EyeArt AI [13] have a 

different way of grading the disease. The core artificial intelligence (AI) unit in these 

devices classifies the images using the previously trained data samples and the extracted 

patterns. In section 1.2.3 we will briefly explain the automated diagnosis approaches. 

 

 

1.2.3.CAD history in DR studies 

 
Recent developments in CAD techniques, which mainly belong to the scope of 

artificial intelligence (AI), are becoming more prominent in modern ophthalmology [14] 

as they can save time, cost, and human resources for routine DR screening and involve 

lower diagnostic error factors [14]. CAD can also efficiently manage the increasing 

number of afflicted DR patients [15] and diagnose DR in early stages when fewer sight 

threatening effects are present. AI based approaches could be divided into machine 

learning-based (ML) and deep learning-based (DL) solutions [1]. Overall DL-based 

methods outperform ML-based solutions in the diagnosis of more than mild DR with area 

under the receiver operating characteristic (AUROC) values of 0.98 and 0.96 with 95% 

confidence interval, respectively [16]. There are also further limitations that ML solutions 

have in practice. 

 

ML methods apply hand-engineered image features which require a prior 

ophthalmological expert knowledge and extensive investigation of critical DR features. 

Furthermore, the ML solutions are unable to extract high level features such as the shape 

and texture of lesions as local objects on the image [1]. They are also vulnerable to direct 

bias if transferred to new imaging configuration [16]. Hence, there is space to look for 

other alternative solutions to address the DR diagnosis. DL-based models will be 

discussed with further details in chapter 2. 
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1.3. Discussion 

 
        DR is a major cause of visual blindness and there are several standard severity 

grading systems proposed for this disease. Among these systems ICDRS is the most 

convenient system in automated diagnosis studies which categorizes DR to five severity 

levels based on the type and number of detected lesions on one FOV retinal fundus 

image. The studies related to automated diagnosis of DR are categorized in the scope of 

CAD solutions which could include traditional image processing, ML and DL 

approaches. Generally, recent research of CAD solutions emphasizes on ML and DL and 

a combination of these two, however DL solutions proved to have higher performance in 

terms of sensitivity and AUROC [16], capable of learning high-level features in addition 

to low level features and transferable to new imaging system. We will further analyze the 

most relevant DL solution in addressing DR diagnosis in the next chapter. 

 

 

  



 

 

 

 
8 

 

 

 

Chapter 2 

 

 

Deep learning as a promising 

approach in DR diagnosis 
 

 

 

Based on: 

▪ Kheradfallah, Hoda, Balaji, Janarthanam Jothi, 

Jayakumar, Varadharajan, Abdul Rasheed, Mohammed 

and Lakshminarayanan, Vasudevan. “Annotation and 

Segmentation of Diabetic Retinopathy Lesions: An 

Explainable AI Application” SPIE Journal of Imaging, 

(2022):502-511. 
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2.1. Introduction 

 
        In general, DL research on DR can be categorized into two approaches: lesion 

segmentation and image-based grading [1]. In image-based grading, retinal images 

will go through a DL model that is trained for classification. The reference labels per 

image come from the prior image-wise clinical annotations. In lesion segmentation, 

the DL model is trained on a certain lesion and will detect that lesion on images based 

on the learnt features and then, the information about lesions such as type, number, 

size and location are determined [17].  

 

        DL approaches can be divided into several common branches including 

convolutional neural networks (CNNs), autoencoders (AEs), recurrent neural 

networks (RNNs) and deep belief networks (DBNs) [18]. Among these approaches, 

CNNs are the most common DL paradigm to address DR diagnosis which will be 

illustrated in detail [1]. 

 

 

2.2. Deep Convolutional Neural Networks 

 
        CNNs include some interconnected layers of neurones similar to human visual 

system. Its applications span computer vision, robotics, financial and weather 

forecasting, and text analysis through neural language processing [19]. Three main 

types of CNN layers are: convolutional, pooling and fully connected (FC). 

Convolutional layers contain filters that convolve with the original image to extract 

local features related to the filter. The pooling layers reduce the size of feature maps 

and adds generalizability to the model. The FC layers are also connected to all 

previous filter layers to combine and correlate their extracted information [20].  

 

        The number of convolutional windows in a layer and filter sizes are the 

adjustable parameters in a convolutional layer.  The final part of a convolutional layer 

is the activation function which controls the neuron’s activation through a unique 

mapping and a trained firing threshold. Trained weights are multiplied by the output 

of the previous neuron and accumulated as the input of the next layer to form neural 

connections to neighbouring layers. Depending on the type of problem (classification 

or segmentation), the generated CNN predictions are either probabilities of each class 

or probabilities of being a part of an object. 

 

        A CNN model is trained using backpropagation in an end-to-end manner by 

learning the hierarchy of features automatically [21]. These models can also come 

with the previously trained weights and have the capability to be optimized for 

various applications through transfer learning. Commonly used CNN models have 

multiple layers called deep CNNs (DCNNs) including VGGNet, ResNet and 

Inception modules.  
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        In this study, we initially started with a pretrained DenseNet121 over ImageNet 

dataset and transferred this model to fit for fundus image classification in ICDRS 

system [22]. This model was fine-tuned with the Asia Pacific Tele-Ophthalmology 

Society (APTOS) 2019 database [22]. Initially, the APTOS dataset was applied in the 

blindness detection challenge. This dataset with 3662 retinal fundus images was taken 

with various imaging devices [23]. The images are graded manually on ICDRS. The 

number of retinal images available in the dataset per severity level is presented in 

Table 2.1. According to Table 2.1 most of the images are normal and very few images 

belong to sever NPDR. Hence, as a preprocessing step, this class imbalance in the 

dataset is resolved by randomly down sampling to an equal value in each class. 

 
 

Severity level Number of samples 

Normal 1805 

Mild-NPDR 370 

Moderate-NPDR 999 

Severe-NPDR 193 

PDR 295 

Table 2.1. Distribution of the APTOS 2019 dataset per severity level [24]. 

        During the fine-tuning phase with the APTOS database, 80% and 20% of the 

data were used for training and validation, respectively. In the training phase, the loss 

function is cross entropy (CE) loss, optimizer is Adam, learning rate is 0.0001, batch 

size 16 and training was done in 20 epochs. 

 

        Figure 2.1 Shows the image classification model with detailed architecture of 

DenseNet121 model [24]. In this research, computations are all done on a 6 core Intel 

core i7 CPU at 2.6 GHz with 32GB RAM. The final mean classification accuracy, 

precision and recall scores over all DR severity levels was 73%, 70% and 68%, 

respectively.    

 

 
        A key barrier to the adoption of DCNNs for clinical applications in 

ophthalmology is the lack of medically supportable reasons behind decisions [2]. This 

makes it difficult to trust the medical system, both at clinical and health regulator 

Figure 2.1. DenseNet121 architecture applied for the DR classification task. 
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levels. Hence, they require either additional tools to explain their predictions or 

modification of the architecture to be intrinsically interpretable. 

 

2.3. Discussion 

 
        In the previous sections, an overview of the screening techniques and the 

concept of deep convolutional networks were presented. The major difference 

between traditional CAD and deep learning methods is that the feature maps 

generated automatically with DL make the preparation phase easier compared to the 

manual feature engineering in traditional CAD algorithms. As computing systems 

improved and their computational power and capacity increased, the application of 

DL solutions in various topics became more feasible.  

 

        DL also escalated the automated diagnosis of retinal diseases, considerably. The 

major applications of DL on retinal disease include classification of AMD, DME, and 

DR as well as segmentation of retinal lesions, optic disc, and vessels [25]. Not limited 

to classification and segmentation, DL could be also used for denoising, image 

generation and super-resolution tasks [26]. Various types of neural network designs, 

such as CNN, encoder-decoder and generative adversial network (GAN) have been 

well performed on a wide variety of tasks [2]. The selected classification method we 

applied to classify APTOS 2019 database images is DenseNet121. Previously, this 

DCNN was applied by Chaturvedi et al.[22], on the whole database images without 

down sampling and using different data preprocessing reported unweighted mean f1, 

precision and recall values of  70%, 67% and 75%. 

 

        The major problem with the DCNN family is the difficulty of reasoning 

verification which is an essential step before its practical application for 

ophthalmological applications.  The next section introduces the concept of 

explainability and its application to the DL model used for DR grading task. 
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3.1. Introduction 

 
        DCNNs are the most recently used CAD tools for the image analysis studies [1]. 

In the ophthalmology domain, DCNNs proved to have comparable performance to 

human experts in disease classification [13].  

 

  Despite their emergence as successful assistance in retinal image diagnosis, 

adoption for clinical applications requires further verification [11]. The main 

obstacles that cause a lack of trust in them are their black-box nature and the 

complexity of their models [28]. Complicated internal connections in deep models, on 

the other hand, can result in high-accuracy disease detection but cannot explain the 

logic behind their decision. 

 

  Simple ML models such as decision trees and k-nearest neighbors (KNNs) are 

self-explanatory as the decision boundary used for classification is visualizable [28]. 

But these simple ML models lack the required complexity for tasks such as the 

classification of 3D and most 2D medical images which include a high volume of 

detailed information [27].  

 

  The lack of tools to inspect the black-box behaviour of DCNN models creates a 

barrier to the application of deep learning in all domains where explainability, 

transparency and reliability are required to trust model decisions. Currently, newer 

regulations like the European General Data Protection Regulation (GDPR) are 

proposed which make it harder for the use of DCNNs in all businesses, including 

healthcare which requires decision retracability [2, 29]. 

 

3.2. Explainable AI methods 

 
   As mentioned in section 2.1, DCNNs require a determined amount of 

explainability to retrace the logic behind a certain decision. Presently, the two terms 

of interpretability and explainability are used interchangeably due to the lack of 

determined mathematical formulations [30].  

 

        Visualization of what a model focuses on while making a decision can make it 

trustable. It is also essential to verify critical features with the standard domain-

specific features medical professionals apply. To this end, the explainability methods 

should include some sort of solution to provide reasoning for model decisions [31]. A 

majority of XAI methods are called attribution-based methods since they compute the 

contribution value of each image pixel with the model output [2].  
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  In the first phase of this study, we will focus on attribution-based solutions since 

this group of methods has model invariant approaches and is available with open-

source implementations. Hence, DL practitioners can apply these convenient and 

explainable tools to understand their designed DCNN model independent of the type 

of the task they use the model for [27]. 

 

 

3.3. Application of XAI in DR grading models 

 
        Attribution or relevance value assignment to the input feature of a network can 

be done in several ways. Attribution methods, in general, determine the contribution 

of an input feature to the target neuron. In classification problems, the target neuron is 

the output neuron of the correct class. Attributions of all features are visualized on the 

input image in the form of heatmaps known as the attribution maps [2]. There are 

some common types of attribution based XAI solutions that are listed in Table 3.1. 

Figure 3.1 also shows some of these mentioned using a VGG16 model. 
 

 
XAI method Description 

Gradient [2] 
As the simplest approach to XAI, this method computes the gradient of target 

neuron output compared to the input. 

LRP z [32] 

 

Apply backward proportional decomposition of LRP rule of the upper layer 

relevance value to the previous layers. 

ε-Layer-wise relevance 

propagation (ε-LRP) [33] 

Proportional redistribution of the prediction score on the network by adding a 

small constant value ε to the denominator of LRP rule. 

  

Gradient × input [34] 

 

Multiplication of the signed partial derivative of the output with the input 

which enhances sharpness of attribution maps. 

 

Class activation map (CAM) 

and gradient-weighted class 

activation map (GradCAM) 

[35] 

 

Uses the gradients of the target neuron as it flows to the final convolutional 

layer.  Only models that end with a global average pooling and FC are eligible 

for CAM. 

Integrated gradient (IG) [36] 

The average gradient of target neuro output when the input value changes 

between the baseline (often zero) to the actual input value. 

 

Deep Taylor [37] 

On a certain input, a relevance score is assigned to the output prediction 

through Deep Taylor decomposition rule and then backpropagated to the input 

and produce a heatmap of relevance scores. 
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Saliency maps [27] 

By making the least perturbation on input, this approach aims to find the most 

important features on output predictions. It computes the absolute value of 

partial derivatives of target and backpropagates to the input. 

 

Local interpretable model 

agnostic explanations 

(LIME) [38] 

 

As a perturbation- based model, in each perturbation, LIME turns off some 

super pixels of the image which are interconnected pixels with similar colors 

[39]. 

Table 3.1. Most recently used XAI methods with descriptions [2]. 

        From the above list we applied 7 XAI methods on the trained DenseNet121 model: 

CAM, GradCAM, LIME, ε-LRP, IG, gradient × input and saliency maps. Figure 3.2 

shows the output attribution maps of each method on input image that was initially 

annotated as moderate NPDR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. XAI maps of different inputs using a VGG16 model. the XAI solutions used to evaluate this 

classification model are Gradient, Deep Taylor, Input × Gradient, IG, LRP-Z and ε-LRP. 
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Figure 3.2. XAI maps of the last convolutional layer from a DR fundus image. The images were obtained 

from the APTOS 2019 dataset.  The images on the top row from left to right are as follows: original, CAM, 

GradCAM, LIME, and on the bottom row from left to right are epsilon LRP, integrated gradient, 

gradient×input and saliency map. The yellow shapes on the original image around the lesions point to 

exudates and blue shapes point to the IHE regions which are more significant than other regions. The red 

shapes also show the regions that the method has highlighted, but there is no lesion.      

 

        On Figure 2.3, the first three XAI methods (CAM, GradCAM and LIME) 

provide generic explanation and miss the lesions that exist on the bottom right side 

of the image. The bottom four methods are also sparce and highlight the regions 

that do not have any lesion. 

 

3.4. Discussion 

 
        DL is a promising CAD method in DR diagnosis. Despite remarkable 

performance results in the medical domain, DL methods are not widely deployed in 

clinical applications [11]. The reason behind this fact is the internal connections in 

DCNN architectures and the high volume of contributing parameters. Hence, the 

first approach of adding explainability to DCNN methods is addressed by XAI 

solutions. Some XAI methods can visualize DCNN models independent of the 

internal architecture of the model since they are applied at the final step of 

prediction [2].  

        Among XAI methods we selected seven methods and applied them to the 

proposed DCNN model. The outputs of these models were either heatmaps that 

highlighted the most important regions of the image that indicated DR or provided 

some sparse and not meaningfully related attribution maps. These two fundamental 

shortcomings of XAI methods indicate their inability to give sufficient medically 

meaningful information such as number and size of detected lesions that could be 

verifiable with standard grading criteria. Hence, we propose an alternative solution 

based on lesion segmentation that will be discussed more in section 4. 
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4.1.  Introduction 
 

        Lesion segmentation is the second application of DCNNs in medical image analysis 

and needs databases that have lesion-wise annotation. According to ICDRS, DR has 10 

distinct lesions. Some of these lesions including HE, EX, CWS and MA are annotated 

pixel-wisely in several public databases [40, 41], however, lesions such as NV and FP are 

not reported previously in any databases. There are some crucial parameters that directly 

impact the dataset quality such as verification by specialized optometrists or 

ophthalmologists, high intra-rater agreement on annotations, the precision and quality of 

annotations and resolution and readability of images which are further illustrated in 

chapter 4.2.   

 

4.2.  Existing DR lesion annotation datasets 

 

        In the scope of DR image analysis, lesion annotation could be done with these two 

approaches: pixel-wise lesion annotation over the whole image and labelling lesions. 

Hence, several datasets are publicly available as sorted in Table 4.1. 
 

 

Dataset # 

Images 

Annotated lesions Image size Description 

IDRID [40] 81 MA, HE, Ex, CWS 4288×2848 High annotation resolution, Not 

annotated with clinicians 

Retinal Lesions 

[42] 

1593 MA, IHE, VHE, 

PHE, Ex, CWS, 

NV, FP 

896×896 

 

Low annotation resolution, 

annotated by 45 ophthalmologists 

eOphtha [43] 463 MA, Ex Multiple 

sizes 

High annotation quality, 

annotated by ophthalmologists 

RC-RGB-MA 

[41] 

250 MA 2595×1944 High annotation quality annotated 

with MA annotation tool (RC- 

MAT) by two experts 

FGADR [44] 1842 MA, Ex, CWS, 

IRMA, NV, HE 

1280×1280 High annotation quality with 

ICDRS-based grades 
Table 4.1. Existing DR lesion segmentation databases. 

        This table shows that the databases may be small, as IDRID or not annotated with 

high resolution, as Retinal Lesions. Small databases make the method limited and biased. 

Furthermore, Low annotation resolution will cause to have a model that does not detect 

fine lesions such as MAs in initial stages even the size of a database cannot compensate 

for this effect. Furthermore, it makes the final severity grade questionable if deciding on 

the number of an existing lesion. There is also a lack of a database that covers all DR-
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related lesions. A method can be used to diagnose disease if it performs well on all DR-

related lesions, but there is no database available that can address all requirements.  

 

4.3. FGADR 143-9 as a comprehensive DR lesion annotation 

database 
 

        In this study, we applied the Fine-Grained Annotated Diabetic Retinopathy 

(FGADR) database that contains two subsets: Seg-set (1842 images) and Grade-set (1000 

images). This database is collected from UAE hospitals and six ophthalmologists 

annotated images with five severity levels according to ICDRS with high intra-rater 

consistency [44].  

        FGADR database in addition to image-wise grading offers 6 pixel-wise lesion 

annotation masks of MA, Ex, CWS, IRMA, NV and the combination of all three 

hemorrhage types as one lesion. This database does not include annotation of two lesions 

(FIP and VB) and does not distinguish between the three hemorrhage types. VHE and 

PHE could be present if DR is proliferated. Hence, we can annotate VHE and PHE 

together in one lesion mask. In this study, on a set of 143 images of FGADR database we 

added the annotation of VB, FIP, IHE and VHE - PHE and have complete set of 

annotations on this subset. The distribution of selected images based on the disease 

severity is shown on Table 4.2. To have sufficient evidence per lesion in our subset we 

also considered the number of images that contain each lesion as Table 4.3 presents.  

        The annotation part of our study is done by one specialized optometrist from India, 

JJB, as the annotation reference and two optometrists from Canada, MAR and VJ [45].  

        We had multiple equalization meetings about the features of each lesion and the 

technical points such as the monitor resolution and the image size during annotation 

which is the scale of 100% of original size (1280  1280 pixels). By consensus, we 

agreed to do annotation with ImageJ software and use free hand selection tool for all 

lesion annotations except VB which needs to annotate the Region of Interest (ROI) of 

vessel parts containing VB with the paintbrush tool. For the intra-rater variation 

evaluation, 10 samples of FGADR database were selected such that the four lesions were 

present in at least two of them, and they were assigned to three annotators equally.  

         Next, the quality of annotation compared with the reference and among other 

annotators was evaluated in terms of Dice coefficient, Jaccard index and pixel accuracy. 

The annotation and evaluation results of equalization phase were available for the group 

members to do comparisons or verification during the main annotation phase. 

Furthermore, specific agreements were made on annotating the critical lesions such as 

VB to enhance inter-rater consistency over the same 10 samples. For VB, the variation of 

vessel diameter should be more than 50% in a length of 1 to 3 times of vessel diameter 
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were considered as being VB. The final mean scores of three annotators are listed in 

Table 4.4. The whole data selection and annotation process is shown on Figure 4.1. 

 

DR Grade Number of images in the cluster 

0, No DR 3 

1, mild NPDR 9 

2, moderate NPDR 24 

3, severe NPDR 41 

4, PDR 66 

Table 4.2. Distribution of selected images per DR grade according to ICDRS. 

 
Lesion 

Name 

Number of qualified images for segmentation 

model 

Train and evaluation  Test 

MA 58 6 

IHE 61/49 6 

VPHE 31/79 7 

NV* 12 / 35 6 

VB 41/66 6 

CWS* 34 / 206 11 

Ex 66 4 

IRMA* 22 / 57 5 

FP* 31 / 78 5 

Table 4. 3. Number of qualified images used for each lesion detection. The lesions that are marked with * 

initially used a subset of our 143 images (determined before “/”) and then added additional samples from the 

original FGADR set (after “/”). 

 

Lesion type Dice score Jaccard Index Pixel 

Accuracy 

IHE 69% 12% 75% 

VPHE 78% 15% 94% 

VB 23% 6% 51% 

FIP 57% 12% 84% 

Table 4.4. inter-rater agreement evaluation using Dice score, Jaccard index and IOU score. 
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Figure 4.1. Block diagram of data annotation phase. 

4.4. Discussion 
 

In this study, the lesion segmentation is done upon FGADR database samples. 

The reason behind choosing this database as our reference are: the database images are 

graded based on ICDRS criteria, images all have equal resolution and are partially 

annotated with high precision on HE, MA, Ex, IRMA, NV and CWS.  

Hence, we added the annotation of FP, VB, IHE and VPHE to a subset of 143 images of 

this database. Based on annotation evaluation metrics, the annotation of VB needs 

another type of annotation. This process is done by 3 optometrists with at least 5 years of 

experience. The database is publicly available on Github 1and through email2. 

 

 

  

 
1 https://github.com/hoda213/FGADR-143-9.git 
2 hkheradf@uwaterloo.ca 
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5.1. Introduction 

 
In the scope of DR-related lesion segmentation, there are some successful DCNN 

models that work well on certain lesions and have the potential to improve in architecture 

and be extended to further lesions. Son 2018 [46] proposed a modified UNet pipeline 

named VRT that achieves Area Under the Precision Recall Curve (PR-AUC) scores of 

0.71, 0,68, 0.49, 0.69 on Ex, HE, MA and CWS respectively. According to the IDRID 

challenge website, Liu et al. 2020 [47] applied a combination of DenseNet and the 

dilation block of UNet called PATech. PATech has PR-AUC scores of 0.88, 0.64 and 

0.47 on Ex, HE and MA which has better performance in Ex, but lower overall scores 

compared to VRT. 

Furthermore, Wang et al. 2020 [47] proposed another UNet-based pipeline, 

IFLYTEK-MIG, for DR lesion segmentation. IFLYTEK-MIG has almost similar 

performance in Ex pixel-wise segmentation to PATech and like VRT on MA, but it 

performs weaker than VRT and PATech on HE and CWS with 0.55 and 0.65 PR-AUC 

scores, respectively.  

Xue et al. 2019 [48] applied Mask-RCNN which maintains the information of 

previous layers in its residual architecture upon IDRID and eOphtha databases. They 

focused on the pixel-wise segmentation of MA and Ex and using IDRID, reported the 

sensitivity values of 76.4% and 77.9%, respectively.  

On the IDRID, Xiao et al. 2019 [49] proposed a pipeline, incorporating 

Holistically Nested Edge Detection Network (HEDNet) into Conditional Generative 

Adversarial Network (HEDNet-cGAN) that applies a class-based GAN loss to the 

segmentation loss of the HEDNet architecture. This network, in terms of average 

precision (AP) score on MA, CWS, Ex, and HE received 43.92%, 48.39%, 84.05% and 

48.12%, respectively. However, the results are not as good as some prior approaches on 

Ex and HE, but the pipeline overall has high average performance on all IDRID lesions, 

less implementation cost, and accessible results and technical details.  

 

 

5.2. Proposed DR lesion segmentation toolbox 
 

 

To obtain lesion segmentation, DCNN architectures have proved to be the highest 

performing method. Xiao et al.  compared HEDNet-cGAN with two DCNN 

architectures: UNet, modified HEDNet. Initially, the HEDNet model was used as a 

successful edge detector for semantic segmentation purposes. According to Xiao et al.’s 

results, on all IDRID lesions, MA, CWS, Ex and HE, HEDNet outperformed UNet with 

AP scores of 44.03%, 43.07%, 83.98% and 45.69% compared to UNet AP scores of 

41.84%, 42.22%, 79.05% and 41.93%, respectively. A comparison between HEDNet and 
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HEDNet-cGAN, showed that the HEDNet-cGAN resulted in a higher AP on CWS, Ex 

and HE, however, the time and computational cost of this model indicate that it is not 

efficient. The segmentation output of the three models based on Xiao et al’s study are 

shown in Figure 5.1. 

 

 

 

Figure 5.1. Left: a sample image of IDRID reported by Xiao et al. [50]. Right: the segmentation masks on 

each row from top to bottom belong to MA, CWS, EX, and HE. Each column from left to right shows Ground 

truth, the segmentation output of HEDNet and the output of HEDNet-cGAN. 

The complete HEDNet architecture is shown in Figure 5.2. In this study, HEDNet 

is applied with modified VGG 16 backbone. The backbone is pre-trained with ImageNet 

and the weights are loaded in the segmentation model. This helps the model to improve 

better during training since it is a deep model it will be difficult to start with all random 

connection weights. After upsampling to the original image size, the model could get five 

side outputs that their difference indicates the prediction performance variation between 

convolutional layers. 

   

 During implementation, we divided the training set to 80% and 20%. This 20% is 

randomly selected as the validation set. As the data preprocessing on both train and test 

sets, three tools could be applied: 1. brightness balancing, 2. contrast enhancement 

through CLAHE [50] method with the grid size of 8  8 used for histogram equalization. 

3. Image denoising. In Table 5.1, we put the exact preprocessing steps per lesion. 
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Lesion 

Name 

Applied preprocessing steps 

Brightness 

balance 

CLAHE Denoising 

MA ✓       ✓ ✓ 

IHE - ✓ ✓ 

VPHE - ✓ ✓ 

NV 
✓ ✓ ✓ 

VB - ✓ ✓ 

CWS - ✓ ✓ 

Ex ✓ ✓ ✓ 

IRMA ✓ - ✓ 

FP - ✓ ✓ 

Table 5.1. The preprocessing tools used per lesion 

 
 To have sufficient samples to train the model, the data augmentation is applied 

on the preprocessed training images. The optimum steps for augmentation and 

preprocessing are adjusted experimentally and depending on the total lesion set 

properties. Hence, as the data augmentation steps, random rotation with maximum 20-

degree, random crop to the size of 256  256, and normalization of image colors based on 

each lesion set’s properties (through measuring the mean and standard deviation of each 

lesion set). The loss function is CE and the wight of lesion pixels to non-lesion pixels is 

set to 10 according to equation 1: 

 

𝐵𝐶𝐸 𝐿𝑜𝑠𝑠 =  −(𝑤 𝑔𝑡 log 𝑝 + (1 − 𝑔𝑡) log(1 − 𝑝))     (1) 

 

where w is the weight of positive lesion prediction, gt is the ground truth label of a certain 

pixel and p is the prediction on the same pixel. The final hyperparamer values is 

mentioned in Table 5.2 for which the optimizer is SGD. The weight decay of SGD 

optimizer acts as a regularizer that could improve efficient training [51]. The images are 

given in the batches of 4 to train the model and 5-fold cross validation is used to get more 

accurate test error estimates. 

This phase of our study including training segmentation model and performance 

evaluations, were executed on a Intel Core i7 9700K 3.60GHz  8 core CPU, 64GiB 

RAM, Nvidia Titan V/PCIe/SSE2, 12GiB GPU and the training of each model takes 

14400 seconds on average. All the codes and implementation details will be accessible on 

Github3. 

 

 

 
3 https://github.com/hoda213/FGADR-143-9.git 
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Figure 5.2. HEDNet model architecture based on VGG16 backbone. The numbers on the convolutional blocks 

are the number of corresponding output channels, and after each 3  3 convolutional block there is an 

activation layer.  The output of each sigmoid channel indicates one side network output. 

 

5.3. Quantitative performance evaluation of segmentation models 
 

The metrics applied to evaluate performance were PR-AUC and mean AP (mAP) 

over test samples. Table 5.2 shows the performance scores of all nine models in terms of 

PR-AUC and mAP on four test images. Our results, show that HEDNet works well on 

segmentation of IHE, VPHE, Ex, CWS and NV and outperforms the results of Xiao et al’s 

study [49]. Our model needs improvement on MA since there is a gap of 18% with the 

results reported by Xiao et al. Lesions such as IRMA and VB that are related to vessel 

abnormalities and FP could not be detected properly in terms of mAP and PR-AUC metrics. 

Figure 5.3 shows the segmentation results of all nine HEDNet models on a random sample 

image. Figures 5.4, 5.5 show the Precision-Recall curves of the study done by Xiao et al. 

[49] and our results, respectively. The training loss variation per epoch is also shown on 

Figure 5.6. 

  



 

 

 

 
27 

 

Lesion 

model 

Hyperparameter values 

Learning rate Weight decay Momentum 

Loss function, 

Weights(lesion/non-

lesion) 

Epochs 

K-Fold 

cross-

validation 

MA −31 e −31 e 0.93 CE (20) 80 5 

IHE −41 e −35 e 0.9 CE (10) 100 5 

VPHE −31 e −35 e 0.93 CE (10) 100 5 

NV −31 e −35 e 0.93 CE (10) 100 5 

VB −31 e −41 e 0.93 CE (20) 60 5 

CWS −31 e −35 e 0.9 CE (10) 200 5 

Ex −31 e −35 e 0.9 CE (10) 200 5 

IRMA −51 e −21 e 0.93 CE (20) 200 5 

FP −41e  −21 e 0.9 CE (20) 60 5 

Figure 5.2. Hyper parameter values per lesion model. 

 

Lesions mAP % PR-AUC % AP% results of Xiao et 

al.[45] using HEDNet 

MA 26 41 44.03 

IHE 53 59 45.69 

VPHE 61 86 45.69 

NV 43 56 - 

VB 19 34 - 

CWS 48 51 43.07 

Ex 78 93 83.98 

IRMA 21 56 - 

FP 22 34 - 

Table 5. 3. Performance scores of each lesion’s segmentation model over four of the test images of each lesion 

set. The lesions such as VB, IRMA and FP are detected with both low mAP and PR-AUC results and require 

improvement. 
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Figure 5.3. Segmentation outputs of all nine HEDNet models for each lesion on random test images. The 

columns from left to right belong to original images, preprocessed images (color enhanced with CLAHE), 

ground truth annotations model predictions and highlighted segmentation mask, respectively. In the last 

column, blue marks show the false negative predictions and red marks show the false positive predictions. 
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Figure 5.4. Precision Recall curves of Xiao et al work. The charts on top row from left belong to MA and 

CWS. On the bottom row from left the charts belong to EX and HE (combination of IHE and VPHE). The blue 

and green lines show the HEDNet and HEDNet-cGAN curves. 

 

 

Figure 5.5. Precision Recall curve of the predictions shown in Figure 5.3 using HEDNet model. 

 



 

 

 

 
30 

 
Figure 5.6. Training loss variation per epoch. 

 
 

5.4. Discussion  
 

In our proposed approach, we prepared the first comprehensive segmentation and 

grading dataset that covers all DR- associated lesions with high annotation quality and 

intra-rater agreement.  This study offers a unique perspective on DR grading which is the 

most comparable to the clinical decision-making process. According to ICDRS as the 

reference grading system, we planned to grade DR based on the type and number of 

detected lesions compared to their range in ICDRS. The side outputs of the HEDNet 

model make verification of the segmentation process easier compared to a classification 

network. The classification part also would no longer need additional explainable tools 

due to its compatibility with ICDRS considerations.   

 

The reason behind the model’s inability to segment VB, IRMA, MA and FP, 

according to Table 5.2, could be the limited number of samples or the visual variation of 

some of these lesions in our dataset, so the model cannot find a unique morphological 

feature to detect these lesions. Furthermore, the anatomical semantics around retinal 

vessels are quite complicated. Perplexing structures and areas in retinal fundus images, 

including optic disc regions, pathological areas, hemorrhage, exudates, and low image 

contrast in some areas between damaged vessel and background, may easily result in false 

segmentation of abnormal vessels and lesions. 
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Chapter 6 

 

Conclusion and future steps 
 

 

 

 

 

          Currently, DCNNs have proved to be the most promising approach in DR 

diagnosis and grading, which has comparable performance to clinicians in terms of 

accuracy, sensitivity, and specificity. The major barriers to the clinical application of 

DCNNs are the black box behavior and the inability of DCNN models to explain how the 

network comes to a certain decision due to complicated architecture and internal 

connections. 

 

One approach to remove this barrier is to apply XAI methods that could be 

categorized to three types based on how to correlate the original image and output 

predictions. Initially, seven common XAI methods were selected from each of the three 

categories. The output attention maps show two main problems about the methods: the 

answers were either general or sparse. We found that the lack of detailed information on 

three of them and sparsity and high sensitivity of four of these methods results in less 

validity of produced attention maps for ophthalmology application. 

 

Our solution, as an interpretable approach, is like a clinician’s diagnosis process 

using fundus images: first look for the existing lesions and their significance, and next 

grade disease severity based on a standard grading system. Our optometrist group added 

annotation of lesions such as FP, IHE, VPHE and VB on a set of 143 images obtained from 

the FGADR fundus database. Then, the DCNN model used for segmentation, which is 

HEDNet, was trained over each lesion to segment all nine lesion masks, separately.  

 

Our models on IHE, VPHE, CWS, MA, NV and Ex have higher performance in 

terms of mAP and PR-AUC than the models tuned for FP, VB, and IRMA. The reason 
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behind it might be the diversity of morphological features that the latest lesions could have 

or that other annotation methods should be used. For instance, on VB, we annotated the 

beading part with a line. IRMA in the collected database has a wide variety of 

morphological shapes and is not as easily distinguishable from HE and NV as Ex is.   

 

One further modification that might help is to apply hierarchical networks to 

segment graphs which are vessel-related patterns in this case, such as IRMA, and VB. 

Aside from that, we should continue covering more images in our dataset that will add to 

the evidence and could directly affect model performances. Consequently, with sufficiently 

high segmentation performance over all DR lesions, we can move to the grading phase 

with ICDRS considerations. 

  



 

 

 

 
33 

References 

 

1. Lakshminarayanan, V., et al., Automated Detection and Diagnosis of Diabetic 

Retinopathy: A Comprehensive Survey. Journal of Imaging, 2021. 7(9): p. 165. 

2. Brar, A.S., Explainable AI for retinal OCT diagnosis. 2021, University of Waterloo. 

3. Qureshi, I., J. Ma, and Q. Abbas, Recent development on detection methods for the 

diagnosis of diabetic retinopathy. Symmetry, 2019. 11(6): p. 749. 

4. Teo, Z.L., et al., Global prevalence of diabetic retinopathy and projection of burden 

through 2045: systematic review and meta-analysis. Ophthalmology, 2021. 128(11): p. 

1580-1591. 

5. Group, E.T.D.R.S.R., Grading diabetic retinopathy from stereoscopic color fundus 

photographs—an extension of the modified Airlie House classification: ETDRS report 

number 10. Ophthalmology, 1991. 98(5): p. 786-806. 

6. Wilkinson, C., et al., Proposed international clinical diabetic retinopathy and diabetic 

macular edema disease severity scales. Ophthalmology, 2003. 110(9): p. 1677-1682. 

7. Gangwani, R.A., et al., Diabetic retinopathy screening: global and local perspective. 

Hong Kong Medical Journal, 2016. 

8. Fujimoto, J.G., et al., Optical coherence tomography: an emerging technology for 

biomedical imaging and optical biopsy. Neoplasia, 2000. 2(1-2): p. 9-25. 

9. Salz, D.A. and A.J. Witkin, Imaging in diabetic retinopathy. Middle East African journal 

of ophthalmology, 2015. 22(2): p. 145. 

10. Abramoff, M.D. and M. Niemeijer, Mass screening of diabetic retinopathy using 

automated methods, Teleophthalmology in Preventive Medicine. 2015, Springer. p. 41-

50. 

11. Abràmoff, M.D., et al., Improved automated detection of diabetic retinopathy on a 

publicly available dataset through integration of deep learning. Investigative 

ophthalmology and visual science, 2016. 57(13): p. 5200-5206. 

12. Savoy M. IDx-DR for diabetic retinopathy screening. American Family Physician, 2020. 

101(5): p. 307-308. 

13. Bhaskaranand, M., et al., The value of automated diabetic retinopathy screening with the 

EyeArt system: a study of more than 100,000 consecutive encounters from people with 

diabetes. Diabetes technology and therapeutics, 2019. 21(11): p. 635-643. 

14. Majumder, S., et al. A deep learning-based smartphone app for real-time detection of five 

stages of diabetic retinopathy. in Real-Time Image Processing and Deep Learning 2020. 

2020. International Society for Optics and Photonics. 

15. Bilal, A., et al., Diabetic retinopathy detection and classification using mixed models for 

a disease grading database. IEEE Access, 2021. 9: p. 23544-23553. 

16. Wu, J.-H., et al., Performance and limitation of machine learning algorithms for diabetic 

retinopathy screening: meta-analysis. Journal of medical Internet research, 2021. 23(7): 

p. e23863. 

17. Dai, L., et al., A deep learning system for detecting diabetic retinopathy across the 

disease spectrum. Nature communications, 2021. 12(1): p. 1-11. 



 

 

 

 
34 

18. Das, S.K., P. Roy, and A.K. Mishra, Deep learning techniques dealing with diabetes 

mellitus: a comprehensive study, in Health Informatics: A Computational Perspective in 

Healthcare. 2021, Springer. p. 295-323. 

19. Chen, Y., Convolutional neural network for sentence classification. 2015, University of 

Waterloo. 

20. O'Shea, K. and R. Nash, An introduction to convolutional neural networks. arXiv preprint 

arXiv:1511.08458, 2015. 

21. Asiri, N., et al., Deep learning based computer-aided diagnosis systems for diabetic 

retinopathy: A survey. Artificial intelligence in medicine, 2019. 99: p. 101701. 

22. Chaturvedi, S.S., et al., Automated diabetic retinopathy grading using deep convolutional 

neural network. arXiv preprint arXiv:2004.06334, 2020. 

23. Bodapati, J.D., et al., Blended multi-modal deep convnet features for diabetic retinopathy 

severity prediction. Electronics, 2020. 9(6): p. 914. 

24. Ji, Q., et al., Optimized deep convolutional neural networks for identification of macular 

diseases from optical coherence tomography images. Algorithms, 2019. 12(3): p. 51. 

25. Sengupta, S., et al., Ophthalmic diagnosis using deep learning with fundus images–A 

critical review. Artificial Intelligence in Medicine, 2020. 102: p. 101758. 

26. Kaji, S., et al., Overview of image-to-image translation by use of deep neural networks: 

denoising, super-resolution, modality conversion, and reconstruction in medical imaging. 

Radiological physics and technology, 2019. 12(3): p. 235-248. 

27. Singh, A., S. Sengupta, and V. Lakshminarayanan, Explainable deep learning models in 

medical image analysis. Journal of Imaging, 2020. 6(6): p. 52. 

28. Abd AL-Nabi, D.L. and S.S. Ahmed, Survey on classification algorithms for data 

mining: comparison and evaluation. International Journal of Computer Engineering and 

Intelligent Systems, 2013. 4(8): p. 18-27. 

29. Holzinger, A., et al., What do we need to build explainable AI systems for the medical 

domain? arXiv preprint arXiv:1712.09923, 2017. 

30. Linardatos, P., V. Papastefanopoulos, and S. Kotsiantis, Explainable ai: A review of 

machine learning interpretability methods. Entropy, 2020. 23(1): p. 18. 

31. Mahbooba, B., et al., Explainable artificial intelligence (xai) to enhance trust 

management in intrusion detection systems using decision tree model. Complexity, 2021. 

2021. 

32. Kohlbrenner, M., et al. Towards best practice in explaining neural network decisions 

with LRP. in 2020 International Joint Conference on Neural Networks (IJCNN). 2020. 

IEEE. 

33. Bach, S., et al., On pixel-wise explanations for non-linear classifier decisions by layer-

wise relevance propagation. PloS one, 2015. 10(7): p. e0130140. 

34. Shrikumar, A., et al., Not just a black box: Learning important features through 

propagating activation differences. arXiv preprint arXiv:1605.01713, 2016. 

35. Selvaraju, R.R., et al. Grad-cam: Visual explanations from deep networks via gradient-

based localization. in Proceedings of the IEEE international conference on computer 

vision. 2017. 

36. Sundararajan, M., A. Taly, and Q. Yan. Axiomatic attribution for deep networks. in 

International conference on machine learning. 2017. PMLR. 

37. Montavon, G., et al., Explaining nonlinear classification decisions with deep taylor 

decomposition. Pattern recognition, 2017. 65: p. 211-222. 



 

 

 

 
35 

38. Ribeiro, M.T., S. Singh, and C. Guestrin. " Why should i trust you?" Explaining the 

predictions of any classifier. in Proceedings of the 22nd ACM SIGKDD international 

conference on knowledge discovery and data mining. 2016. 

39. Haunschmid, V., S. Chowdhury, and G. Widmer, Two-level explanations in music 

emotion recognition. arXiv preprint arXiv:1905.11760, 2019. 

40. Porwal, P., et al., Indian diabetic retinopathy image dataset (IDRiD): a database for 

diabetic retinopathy screening research. Data, 2018. 3(3): p. 25. 

41. Team, R., RC-RGB-MA: RetinaCheck RGB Microaneurysm dataset. 2016. 

42. Wei, Q., et al. Learn to segment retinal lesions and beyond. in 2020 25th International 

Conference on Pattern Recognition (ICPR). 2021. IEEE. 

43. Decenciere, E., et al., TeleOphta: Machine learning and image processing methods for 

teleophthalmology. Irbm, 2013. 34(2): p. 196-203. 

44. Zhou, Y., et al., A benchmark for studying diabetic retinopathy: segmentation, grading, 

and transferability. IEEE Transactions on Medical Imaging, 2020. 40(3): p. 818-828. 

45. Kheradfallah, H., et al., Annotation and segmentation of diabetic retinopathy lesions: an 

explainable AI application. SPIE Journal of Medical Imaging, 2022. 12033: p. 502-511. 

46. Son, J., et al., Classification of findings with localized lesions in fundoscopic images 

using a regionally guided cnn, in Computational Pathology and Ophthalmic Medical 

Image Analysis. 2018, Springer. p. 176-184. 

47. Porwal, P., et al., Idrid: Diabetic retinopathy–segmentation and grading challenge. 

Medical image analysis, 2020. 59: p. 101561. 

48. Xue, J., et al., Deep membrane systems for multitask segmentation in diabetic 

retinopathy. Knowledge-Based Systems, 2019. 183: p. 104887. 

49. Xiao, Q., et al. Improving Lesion Segmentation for Diabetic Retinopathy using 

Adversarial Learning. in International Conference on Image Analysis and Recognition. 

2019. Springer. 

50. Kurosaka, T., et al., CLAHE (Contrast limited adaptive histogram equalization) image 

processing to improve the CR Portal Image in radiation therapy. Igaku Butsuri. 

Supplement, 2008. 28(suppl. 2): p. 158-159. 

51. Loshchilov, I. and F. Hutter, Decoupled weight decay regularization. arXiv preprint 

arXiv:1711.05101, 2017. 

 

 


	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1
	1.1. Introduction
	Diabetic retinopathy (DR) is a leading cause of visual impairment with a prevalent rate. This disease is screenable on retinal images and could be detectable through automated diagnosis solutions. Advancements in deep convolutional neural netw...
	1.2. CAD methods in DR detection
	1.2.1. Diabetic Retinopathy
	1.2.2. DR screening methods
	DR diagnosis requires screening on which fine pathognomonic DR signs in the initial stages are detectable. In this scope, dilated stereoscopic fundoscopy, fundus analogue photography and optical coherence tomography (OCT) could be applied [7, ...
	With equally effectiveness, examining retina with slit-lamp biomicroscopic funduscopy is also considered the clinical gold standard in DR diagnosis, but this method is not applicable for large-scale screening [7]. Hence, there is space to introduce a ...
	The detectability of DR colour fundus images was compared with ophthalmoscopy imaging in clinical application. The funduscopy camera detection rate was more than twice as high as ophthalmoscopy imaging through dilated pupils [7]. Hence, color fundus p...
	The next step is diagnosis, which is manually done through finding DR-associated lesions and comparing them with the selected grading system criteria. Currently, the latest automated diagnosis technologies such as IDx-DR [12] and EyeArt AI [13] have a...
	1.2.3. CAD history in DR studies
	Recent developments in CAD techniques, which mainly belong to the scope of artificial intelligence (AI), are becoming more prominent in modern ophthalmology [14] as they can save time, cost, and human resources for routine DR screening and involve low...
	ML methods apply hand-engineered image features which require a prior ophthalmological expert knowledge and extensive investigation of critical DR features. Furthermore, the ML solutions are unable to extract high level features such as the shape and ...

	1.3. Discussion
	DR is a major cause of visual blindness and there are several standard severity grading systems proposed for this disease. Among these systems ICDRS is the most convenient system in automated diagnosis studies which categorizes DR to five seve...

	Chapter 2
	Deep learning as a promising approach in DR diagnosis
	2.1. Introduction
	In general, DL research on DR can be categorized into two approaches: lesion segmentation and image-based grading [1]. In image-based grading, retinal images will go through a DL model that is trained for classification. The reference labels p...
	DL approaches can be divided into several common branches including convolutional neural networks (CNNs), autoencoders (AEs), recurrent neural networks (RNNs) and deep belief networks (DBNs) [18]. Among these approaches, CNNs are the most comm...
	2.2. Deep Convolutional Neural Networks
	CNNs include some interconnected layers of neurones similar to human visual system. Its applications span computer vision, robotics, financial and weather forecasting, and text analysis through neural language processing [19]. Three main types...
	The number of convolutional windows in a layer and filter sizes are the adjustable parameters in a convolutional layer.  The final part of a convolutional layer is the activation function which controls the neuron’s activation through a unique...
	A CNN model is trained using backpropagation in an end-to-end manner by learning the hierarchy of features automatically [21]. These models can also come with the previously trained weights and have the capability to be optimized for various a...
	In this study, we initially started with a pretrained DenseNet121 over ImageNet dataset and transferred this model to fit for fundus image classification in ICDRS system [22]. This model was fine-tuned with the Asia Pacific Tele-Ophthalmology ...
	During the fine-tuning phase with the APTOS database, 80% and 20% of the data were used for training and validation, respectively. In the training phase, the loss function is cross entropy (CE) loss, optimizer is Adam, learning rate is 0.0001,...
	Figure 2.1 Shows the image classification model with detailed architecture of DenseNet121 model [24]. In this research, computations are all done on a 6 core Intel core i7 CPU at 2.6 GHz with 32GB RAM. The final mean classification accuracy, p...
	2.3. Discussion
	In the previous sections, an overview of the screening techniques and the concept of deep convolutional networks were presented. The major difference between traditional CAD and deep learning methods is that the feature maps generated automati...
	DL also escalated the automated diagnosis of retinal diseases, considerably. The major applications of DL on retinal disease include classification of AMD, DME, and DR as well as segmentation of retinal lesions, optic disc, and vessels [25]. N...
	The major problem with the DCNN family is the difficulty of reasoning verification which is an essential step before its practical application for ophthalmological applications.  The next section introduces the concept of explainability and it...

	Chapter 3
	3.1. Introduction
	DCNNs are the most recently used CAD tools for the image analysis studies [1]. In the ophthalmology domain, DCNNs proved to have comparable performance to human experts in disease classification [13].
	Despite their emergence as successful assistance in retinal image diagnosis, adoption for clinical applications requires further verification [11]. The main obstacles that cause a lack of trust in them are their black-box nature and the complexity o...
	Simple ML models such as decision trees and k-nearest neighbors (KNNs) are self-explanatory as the decision boundary used for classification is visualizable [28]. But these simple ML models lack the required complexity for tasks such as the classifi...
	The lack of tools to inspect the black-box behaviour of DCNN models creates a barrier to the application of deep learning in all domains where explainability, transparency and reliability are required to trust model decisions. Currently, newer regul...
	3.2. Explainable AI methods
	As mentioned in section 2.1, DCNNs require a determined amount of explainability to retrace the logic behind a certain decision. Presently, the two terms of interpretability and explainability are used interchangeably due to the lack of determined ...
	Visualization of what a model focuses on while making a decision can make it trustable. It is also essential to verify critical features with the standard domain-specific features medical professionals apply. To this end, the explainability me...
	In the first phase of this study, we will focus on attribution-based solutions since this group of methods has model invariant approaches and is available with open-source implementations. Hence, DL practitioners can apply these convenient and expla...
	3.3. Application of XAI in DR grading models
	Attribution or relevance value assignment to the input feature of a network can be done in several ways. Attribution methods, in general, determine the contribution of an input feature to the target neuron. In classification problems, the targ...

	Chapter 4
	4.1.  Introduction
	4.2.  Existing DR lesion annotation datasets
	In the scope of DR image analysis, lesion annotation could be done with these two approaches: pixel-wise lesion annotation over the whole image and labelling lesions. Hence, several datasets are publicly available as sorted in Table 4.1.
	4.3. FGADR 143-9 as a comprehensive DR lesion annotation database
	4.4. Discussion

	Chapter 5
	5.1. Introduction
	In the scope of DR-related lesion segmentation, there are some successful DCNN models that work well on certain lesions and have the potential to improve in architecture and be extended to further lesions. Son 2018 [46] proposed a modified UNet pipeli...
	5.2. Proposed DR lesion segmentation toolbox
	5.3. Quantitative performance evaluation of segmentation models
	5.4. Discussion

	Conclusion and future steps
	References

