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Abstract

Robust optimization (RO) is a sub-field of optimization theory with set-based uncertainty.

A criticism of this field is that it determines optimal decisions for only the worst-case real-

izations of uncertainty. Several methods have been introduced to reduce this conservatism.

However, non of these methods can guarantee the non-existence of another solution that

improves the optimal solution for all non-worse-cases.

Pareto robust optimization ensures that non-worse-case scenarios are accounted for and

that the solution cannot be dominated for all scenarios. The problem with Pareto robust

optimization (PRO) is that a Pareto robust optimal solution may be improved by another

solution for a given subset of uncertainty. Also, Pareto robust optimal solutions are still

conservative on the optimality for the worst-case scenario.

In this thesis, first, we apply the concept of PRO to the Intensity Modulated Radiation

Therapy (IMRT) problem. We will present a Pareto robust optimization model for four

types of IMRT problems. Using several hypothetical breast cancer data sets, we show that

PRO solutions decrease the side effects of overdosing while delivering the same dose that

RO solutions deliver to the organs at risk.

Next, we present methods to reduce the conservatism of PRO solutions. We present a

method for generating alternative RO solutions for any linear robust optimization prob-

lem. We also demonstrate a method for determining if an RO solution is PRO. Then we

determine the set of all PRO solutions using this method. We denote this set as the “Pareto

robust frontier” for any linear robust optimization problem. Afterward, we present a set of

uncertainty realizations for which a given PRO solution is optimal. Using this approach,
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we compare all PRO solutions to determine the one that is optimal for the maximum num-

ber of realizations in a given set. We denote this solution as a “superior” PRO solution

for that set.

At last, we introduce a method to generate a PRO solution while slightly violating the

optimality of the optimal solution for the worst-case scenario. We define these solutions as

“light PRO” solutions. We illustrate the application of our approach to the IMRT prob-

lem for breast cancer. The numerical results present a significant impact of our method in

reducing the side effects of radiation therapy.
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Chapter 1

Introduction

Robust optimization (RO) is a sub-field of optimization theory with set-based uncertainty

used to determine optimal decisions for the worst-case realizations of uncertainty. This

approach was first introduced by Soyster [1973]. A robust optimal solution, denoted as an

RO solution, to a robust optimization problem is sometimes criticized for being too conser-

vative as it is only optimal for the worst-case realization of uncertainty. One of the methods

introduced in the literature to reduce this conservatism is applying Pareto efficiency Iancu

and Trichakis [2014] in robust optimization. Iancu and Trichakis [2014] defined Pareto

robust optimal solutions, denoted as a PRO solution, that provide the same protection as

RO solutions under worst-case scenario but are less conservative for non-worst-case sce-

narios. In this thesis, we first develop the concept of Pareto robust optimization (PRO)

in an intensity-modulated radiation therapy (IMRT) problem to generate PRO solutions.

We then define the concept of Superior PRO solution for a determined uncertainty set.

We also define Pareto robust frontier as the set of all PRO solutions for an RO problem
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and present an algorithm for generating the Pareto robust frontier for any linear robust

optimization problem along with an algorithm to present a set of uncertainties for which

a PRO solution is optimal, using inverse optimization. Finally, we propose solutions for

linear robust optimization problems that are less conservative than PRO solutions, denoted

as light Pareto robust optimal solutions.

In this chapter, we first discuss the literature on robust optimization and methods for han-

dling conservatism in this field. Then, we provide the background information in Pareto

robust optimization. Next, we discuss the background in IMRT and relevant robust op-

timization literature for this problem for handling uncertainty. We also briefly review

the literature on inverse optimization. Finally, we present the structure of the thesis and

highlight the contributions of this work.

1.1 Robust Optimization

Robust optimization was introduced by Soyster [1973] and has been extended over the

years. RO has been used in different applications such as health care [Meng et al., 2015],

inventory management [Bienstock and ÖZbay, 2008], field of machine learning [Xu, 2009]

and statistical problems [Fertis, 2009]. Ben-Tal et al. [2009] and Gabrel et al. [2014] pro-

vided a comprehensive review of robust optimization and discussed its applications. A

fundamental criticism of robust optimization is that the robust optimal solutions are too

conservative and only optimal for the worst-case realization of uncertainty. Recently, sev-

eral methods have been presented to mitigate this conservatism. Below, we will present

several approaches introduced to reduce the conservatism in robust optimization. Then,

2



we will explain and compare our approach with these methods.

Light Robustness: A problem in RO is that the robust optimal solution must be feasible

for all constraints and uncertainty realizations. The light robustness approach introduced

by Fischetti and Monaci [2009] proposed a method to violate RO solutions from optimality

for the worst-case scenarios. Fischetti and Monaci [2009] defined a hard upper bound for

the objective value. Then, they reduced the conservatism by allowing violations for the

constraints. They presented these violations using slack variables and proposed a model to

minimize the sum of the slacks. This well-known method for reducing conservatism, has

been discussed in several papers, such as Cacchiani and Toth [2012] and Schöbel [2014].

Decreasing Price of Robustness: Bertsimas and Sim [2004] suggested using the budget

of uncertainty as a parameter that controls the deviation between an uncertain parameter

and its nominal value. Thus, if this constant is zero, then the parameter is not uncertain,

and it is equal to its nominal, so the optimal solution to the problem is the same as the

solution to the nominal problem. The uncertainty will increase by increasing the budget

of uncertainty, so the solution’s conservatism will increase.

Bertsimas and Sim [2004] called this trade-off between the budget of uncertainty and the

optimal solution as a price of robustness. They proposed methods to decrease the price of

robustness. Their methodology has been discussed in several papers, such as, Dehghani Fi-

labadi and Mahmoudzadeh [2022] and Gorissen et al. [2015].

Globalized Robust Optimization: Globalized robust optimization defines a range of

uncertainty, called “normal range”, and considers that constraints are hard for the uncer-

tainties in this range. This approach also defines violations for the constraints regarding

uncertainty realizations outside the normal range. This violation is dependent on the dis-
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tance between the uncertainty scenarios and the normal range. For more information we

refer the readers to Ben-Tal et al. [2006] and Ben-Tal et al. [2017]. This method has been

discussed in several papers, such as Roos and den Hertog [2020] and Zhao et al. [2019].

There are other methods for reducing conservatism in RO. For more information, we refer

readers to the review by Goerigk and Schöbel [2016] on methods for reducing conservatism

in robust optimization.

All of these methods still focus on the worst-case scenario to the best of our knowledge.

Therefore, the optimal solutions, that all these methods present, can be improved by an-

other solution for non-worst-cases. That is, if an RO problem has multiple solutions using

any method for reducing conservatism, these methods do not compare the performance of

the optimal solutions for the non-worst-case scenarios.

Using the concept of Pareto efficiency, Iancu and Trichakis [2014] introduced new solutions

in robust optimization. They defined Pareto robust optimal solutions for linear robust

optimization problems with multiple optimal solutions as a subset of RO solutions that

cannot be dominated by any other RO solutions for all uncertainty realizations, including

non-worst-case scenarios. This method focuses on the behaviour of RO solutions for all

realizations of uncertainty at the same time and proposes an RO solution with less conser-

vatism.
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1.2 Pareto Robust Optimization

Pareto robust optimization, introduced by Iancu and Trichakis [2014], aims to improve the

non-worst-case behaviour of RO solutions. A Pareto robust optimal solution is a solution

that has the same worst-case performance as an RO solution but cannot be dominated

in non-worst-case scenarios. Iancu and Trichakis [2014] presented a method to generate

a PRO solution for any linear robust optimization problem, along with a procedure for

determining whether all RO solutions are PRO. They applied this new methodology to

inventory management, portfolio optimization, and project management.

This new concept of Pareto efficiency in robust optimization has been noticed and discussed

in several papers. Dunning [2016] extended this work to two-stage adaptive robust opti-

mization. Gorissen et al. [2014], following a similar approach, developed a re-optimization

procedure to improve the average performance of the robust adjustable counterpart. Botte

and Schöbel [2019] generalized the concept of Pareto robust solutions for multi-objective

cases.

Although Pareto robust optimization proposes a solution with better outcome for non-

worst-cases than the RO solution, there is still some criticism of this approach. 1) It is not

guaranteed that there is no other RO solution that is optimal for more non-worst-cases

than a PRO solution. 2) A PRO solution is still an optimal solution to the traditional

form of the robust optimization and is still focusing on the worst-case scenario.

To tackle these problems, we propose two methods. For the first one, we suggest generating

the Pareto robust frontier and proposing a method to compare PRO solutions to find the

optimal one for more uncertainty realizations in a given subset of uncertainty.

5



For the second problem, we will present solutions by violating the Pareto robust solutions

from the optimal solution for the worst-case scenarios. We call these solutions light Pareto

robust optimal solutions.

To the best of our knowledge, there has been no research on generating Pareto robust fron-

tiers. However, several methods exist to generate such Pareto frontiers in multi-objective

optimization. This thesis presents a method for generating multiple RO solutions in linear

robust optimization problems. This study also proposes a method for determining whether

an RO solution is PRO and presents an algorithm to generate the Pareto robust frontier

for any linear robust optimization problem using these two methods. We also define the

superior PRO solution for a predetermined subsets of the uncertainty set. That is, a solu-

tion optimal for the largest number of uncertainty uncertainty in that set.

Moreover, this thesis introduces a method to generate PRO solutions while slightly violat-

ing the optimality from optimal solution for the worst-case realization and reducing the

conservatism of robustness, light Pareto robust optimal solutions.

1.3 Intensity Modulated Radiation Therapy

IMRT is a well-known method in radiation therapy that was first presented by Brahme

et al. [1982]. It uses a computer-controlled device called a linear accelerator to deliver

a precise radiation dose to a malignant tumour or specific areas within the tumour. To

do so, the linear accelerator continuously shoots a high-energy beam to the target tissue

[Ahunbay and Li, 2007]. The beam, however, also damages any healthy tissue around the

tumour. Therefore, radiation doses are delivered to the cells from different angles so that
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they all overlap on the tumour. Thus, as little dose as possible is delivered to adjacent

healthy tissue. For more information about IMRT, we refer readers to reviews by Jiang

[2008], Bortfeld et al. [2008], Lin et al. [2018] and Park et al. [2018].

IMRT treatment includes three steps: 1) imaging the tumour tissue; 2) delineating different

organs, including the target and healthy tissues; and, 3) planning treatment. A computed

Tomography (CT) scan, used for the imaging step, takes a 3D image of the organs exposed

to radiation. In the second step, different organs, such as the healthy organs at risk (OAR)

and the tumour in the target region, are delineated on the CT scan. Finally, the prescribed

dose of radiation for the tumour and the maximum allowed dose for the healthy tissues are

determined, and a treatment plan, consisting of the angles, shapes, and intensities of each

beam, is prepared.

Treatment planning is an essential step in the radiation therapy procedure. To determine

what the treatment will involve, an oncologist first determines a set of dose criteria for

the tumour and/or the organs at risk. For example, at most 10% of the lung volume can

receive a dose higher than 21.1 Gray (GY), a Gray being the standard unit of measurement

for radiation doses, which is an example of a dose-volume criterion.

Suitable criteria are necessary for the evaluation and comparison of treatment plans. Quan-

titative evaluation of dose-volume histograms (DVH), a histogram that captures the dose

to every volume of tissue, provides meaningful criteria for radiation treatment planning.

Figures 1.1(a) and 1.1(b) show two examples of distributions of the dose delivered to the

tissues. Figure 1.1(a) is related to the tumour, and Figure 1.1(b) corresponds to healthy

tissues. It can be seen that for treating the tumour, it is essential to have both under-dose

and overdose criteria. However, since we need to deliver as little radiation as possible to
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(a) Dose distribution of a clinical target volume (b) Dose distribution of an organ at risk

Figure 1.1: Examples of differential dose volume histograms. The dashed line indicates
the dose limits for the organs

healthy tissues, only overdose criteria are necessary for the organs at risk. The concept of

dose-volume criteria is equivalent to the value-at-risk (VaR) metric of a loss distribution.

The VaR metric measures the probability that a case will not exceed or break a threshold

loss value. The VaR metric for a confidence level β is the lowest amount of loss such that

the probability of having more than that loss is at most β Abad et al. [2014]. VaR metric

measures the tail of the loss distribution, and has applications in different areas such as

finance (e.g., Duffie and Pan [1997], Ghaoui et al. [2003]) and healthcare (e.g., Chan et al.

[2014], Romeijn et al. [2006, 2003]).

One drawback of using VaR metrics is that optimization problems with VaR measures are

non-convex. An alternative measure is conditional value-at-risk (CVaR). CVaR qualifies

the average of the tail of the loss distribution and is convex (Rockafellar et al. [2000]).

Romeijn et al. [2006, 2003] introduced a conditional value at risk (CVaR) formulation for

IMRT to present bounds in the tails of the dose distribution for the overdose of healthy

tissues and under-dose of the target. CVaR helps formulate clinical DVH criteria while
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keeping the model tractable.

IMRT planning is subject to uncertainties. Examples include uncertainty in dose calcu-

lation and organ motion during treatment. Robust optimization allows for incorporating

uncertainties into IMRT planning (e.g., Chan et al. [2006], Lohr et al. [2009], Chu et al.

[2005]). In IMRT, it is essential to know the exact location of the tumour and healthy

tissues. However, the measurement of these locations is prone to errors of two types: 1)

“systematic errors,” which are due to the methods of observation or instruments used,

for example, the image of the tumour may be not accurate; 2) “random errors,” which

are due to any natural variations in the process. An example for a random error is that

patients may not always remain in the same position on the treatment couch. These errors

cause uncertainty about the tumour’s location and the organs at risk. Another example

is breathing motion uncertainty, because the chest may move unpredictably during treat-

ment. These uncertainties cause blurring of the dose distribution, which may result in

excessive radiation to healthy tissues and under-dosing of the tumour. The dose blurring

can be modelled statistically as a dose-distribution problem with the motion probability

mass function (PMF). Bortfeld et al. [2008],Baum et al. [2006] and Unkelbach and Oelfke

[2004] developed a robust optimization for the problem with motion uncertainty. Chan

et al. [2014] presented a robust optimization framework for IMRT models with CVaR con-

straints and applied it to the IMRT for breast cancer. In their problem, the constraints

limit overdosing and under-dosing of a partial volume of the healthy organs and the tumour,

respectively, by considering that a tumour’s position may be uncertain due to breathing

motion. Several papers proposed RO models for the IMRT problem. We refer the readers

to An et al. [2017], Unkelbach et al. [2018], Vrančić et al. [2009] and Barragán-Montero
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et al. [2019] for more information.

One drawback of robust optimization for IMRT is that it considers only the worst-case

uncertainty scenario. However, in IMRT, it is also essential to consider non-worst-case sce-

narios. Using the concept of Pareto efficiency in robust optimization, this thesis presents

PRO solutions for IMRT problems that focus on both worst-case and non-worst-case sce-

narios.

We also propose light Pareto robust optimal solutions for the robust form of the IMRT

problem. These solutions focus on non-worst case scenarios more than PRO solutions.

1.4 Inverse Optimization

A conventional “forward” optimization problem determines the optimal value of a problem

considering a given set of parameters. Inverse optimization, on the other hand, estimates

the parameters of a mathematical optimization model considering a given observation as its

optimal solution [Ahuja and Orlin, 2001]. The inverse approach aims to find the underlying

optimization model needed to render a given solution optimal.

Inverse optimization has found applications in different areas, such as, finance [Bertsimas

et al., 2012], and medical sciences [Erkin et al., 2010, Ayer, 2015], and the subject has been

studied in different frameworks, such as, integer and mixed-integer (Schaefer [2009], Wang

[2009], Lamperski and Schaefer [2015]) and combinatorial optimization (Ahmadian et al.

[2018]).

In Chapter 3, we propose an inverse optimization model to determine if an RO solution is

PRO. We also use this concept to determine an uncertainty set corresponding to a PRO
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solution where that solution is optimal for all members of the uncertainty set. Inverse

optimization has also been applied to IMRT optimization. In chapter 5, we apply inverse

optimization to the IMRT problem and present a robust inverse model for this problem.

We will discuss the robust inverse IMRT problem as a potential topic for future work in

Chapter 5.

1.5 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 will present Pareto robust

optimization models for four types of IMRT problems. These models present solutions

that other RO solutions cannot dominate. We will present an application of the Pareto

optimization for an IMRT problem of breast cancer with a hypothetical data set. We will

show that Pareto robust optimization significantly decreases the side effects of overdosing

on the tissues.

Chapter 3 will define Pareto robust frontier as the set of all PRO solutions to a robust

optimization problem. This chapter will present a method to generate alternative optimal

solutions for any linear optimization problem. In Chapter 3, we will propose an algorithm

to generate all RO solutions for a robust optimization problem using this method. We

will also present a method to determine if an RO solution is PRO. Using this method, we

will examine all RO solutions and present a procedure to determine all PRO solutions to

a robust optimization problem. We will denote the set of all PRO solutions as the Pareto

robust frontier for an RO problem.

Chapter 3 will present a method to generate a set of all uncertainty realizations for which
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a given PRO is optimal. Using this method, we can compare PRO solutions and present

the one that is an optimal solution for the maximum number of elements in a given subset

of uncertainty. We denote this PRO solution as a “superior” PRO solution for the given

set.

Chapter 4 will define new solutions for robust optimization problems by violating the RO

solutions from optimality for the worst-case scenario. We call these solutions light PRO

solutions. We will prove that these solutions are less conservative than the PRO solutions.

Chapter 5 will present an idea for the direction of the future work. We will present a robust

inverse optimization form for the IMRT problem. We will discuss the idea of generating

PRO solutions and light Pareto robust optimal solutions for this problem as a direction

for the future research.

Finally, Chapter 6 will conclude the thesis.
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Chapter 2

Pareto Efficiency in Radiation

Therapy

2.1 Introduction

Intensity-modulated radiation therapy is a well-known method of radiation therapy. It has

been modeled as an optimization problem. Due to many sources of uncertainty in this

methodology, one of the well-studied area in this subject is robust optimization. A robust

optimal solution to the RT problem is optimal for the worst-case scenario. However, it

is conservative and may not be the ideal solution for a non-worst-case scenario. In this

chapter, to present a less conservative solution, we use Pareto robust optimization to

generate a PRO solution for this problem.

Several criteria can be considered in the IMRT problem. This chapter will discuss two
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general forms of criteria: namely, the full volume and the partial volume criteria. For both

forms, we present models that result in a PRO solution. In Section 2.2, based on the work

of Iancu and Trichakis [2014], we discuss the background of using Pareto efficiency for

robust optimization. We then present the general definitions of PRO solutions and basic

theoretical results related to these solutions in Section 2.2. Next, the general optimization

form of the IMRT problem is presented in Section 2.3. Lastly, we present PRO solutions

for four categories of the IMRT problem in Section 2.4.

2.2 PRO Solutions for Robust Optimization Prob-

lems

A PRO solution for a robust optimization problem assures improvement in the objective

function or slack size for a non-worst-case scenario without deteriorating the function in

other scenarios. We first present the definition of PRO solutions and a method for finding a

PRO solution of a robust optimization problem with uncertainty in the objective function

[Iancu and Trichakis, 2014]. Then, we present the background for a setting with uncertainty

in its constraints. Finally, the robust optimization problem with multiple constraints will

be discussed.
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2.2.1 Uncertainty in the objective function

Consider the following robust optimization problem with uncertainty in the objective func-

tion:

max
x∈X

min
p∈U

p′x, (2.1)

where X is the feasible region for decision variable x, and U is the uncertainty set on

parameter p defined as:

X = {x ∈ Rn : Ax ≤ b}, and

U = {p ∈ Rn : Dp ≥ d},

respectively. Note that A ∈ Rmx×n, D ∈ Rmu×n, b ∈ Rmx , and d ∈ Rmu for some positive

integers n, mx and mu. Iancu and Trichakis [2014] presented the definition for a PRO

solution. To solve this problem, first we reformulate minp∈U p′x using the dual of this

model as follows:

maximize
y

y′d

subject to D′y = x,

y ≥ 0,

y ∈ Rmu .

(2.2)
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Therefore, we can write Model (2.1) as

max
x∈X

max
y

y′d (2.3)

subject to: D′y = x,

y ≥ 0,

y ∈ Rmu ,

and so,

max
x

y′d (2.4)

subject to: D′y = x

Ax ≤ b

y ≥ 0

y ∈ Rmu ,x ∈ Rn.

Let zRO be equal to y∗′d for an optimal solution y∗ to Model (2.4). Thus, for any optimal

solution (x∗,y∗) to Model (2.4), we have D′y∗ = x∗, Ax∗ ≤ b and y∗′d ≥ zRO. Since

Model (2.4) is a reformulation of Model (2.1), we can present the set of all robust optimal

solutions to Model (2.1) as

XRO = {x ∈ X : ∃y ∈ Rmu
+ such that D′y = x,y′d ≥ zRO}.
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Based on Iancu and Trichakis [2014], a solution x is a PRO solution for problem (2.1), if

it is robustly optimal and there is no other x̄ such that

p′x̄ ≥ p′x, ∀p ∈ U , and

p̄′x̄ > p̄′x, for some p̄ ∈ U .

For set U , consider ri(U) as the relative interior of U which is defined as ri(U) = {p1 ∈

U|∀p2 ∈ U ∃λ > 1 : λp1 + (1− λ)p2 ∈ U}. Now, we can find a PRO solution to Model

(2.1) using an element of ri(U).

For any p̄ ∈ ri(U), it is shown that all of the optimal solutions for the problem

max
x∈XRO

p̄′x (2.5)

are PRO solution [Iancu and Trichakis, 2014]. The following example presents two robust

optimal solutions for a network problem such that one of them is a Pareto robust optimal

solution that dominates the other one which is not a PRO solution. The general form of

this example with n ≥ 3 number of links is discussed by Iancu and Trichakis [2014]. The

following example discusses the problem with thirteen links.

Example 2.2.1. Consider the following network structure which has two channels, A and

B. Both channels have unit capacity. Consider 13 links l0, l1, ..., l12 such that l0 and l1

utilize channel A, l2 utilizes both channels A and B. Links l3, ..., l12 utilize channel B. The

transmission rate of link li over channel A is denoted by ai for i = 0, 1, 2. The transmission

rate of link li over channel B is denoted by bi for i = 2, ..., 12. Link l0 is for general
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purposes, and l1, ..., l12 are for emergency purposes. Let xi be the transmission rate of the

Figure 2.1: Network structure of two channels utilized by thirteen links [Iancu and
Trichakis, 2014]

links li for i = 1, ..., 12. Then x1 = a1, x2 = a2 + b2 and xi = bi for i = 3, ..., 12. Consider

fi as the fraction of emergency transmission via li for i = 1, ..., 12. Therefore, the net

emergency transmission rate is fTx =
∑12

i=1 fixi. Let U = {f ∈ R12
+ ,1Tf = 1} be the set of
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all realizations of vector f . Therefore, we have the following robust problem.

maximize
x, a,b

min
f∈U

f ′x

subject to x1 = a1,

x2 = a2 + b2,

xi = bi for i = 3, ..., 12,

a0 + a1 + a2 = 1,

b2 + b3 + ...+ b12 = 1,

ai, bi ≥ 0

(2.6)

The optimal objective value for this problem is fTx = 1
10
. Let X be the set of all feasible

solutions to (2.6). The set of all robust optimal solutions is XRO = {(a,b,x) ∈ X ,x ≥ 1
10
1}

where a = (1 − x1 − x2, x1, x2), b = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) and

x = (x1, x2, 0.1, ..., 0.1) where x1 + x2 ≤ 1. These solutions are optimal considering worst-

case realization of f . For instance, the following solutions are robust optimal solution to

Model (2.6).

aRO = (0.8, 0.1, 0.1),bRO = (0, 0.1, 0.1, ..., 0.1),xRO = (0.1, 0.1, ..., 0.1)

and

aP = (0, 0.9, 0.1),bP = (0, 0.1, 0.1, ..., 0.1).xP = (0.9, 0.1, ..., 0.1),

We will next show that xP is not dominated by other RO solutions and is a PRO one,
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and also xP dominates xRO. Each element f of U can be written as a linear combination

of e1, e2, ..., e12, such that ei is a unit vector in R12, with i-th entry of ei being 1, and all

other entries zero. Thus, we can write f as
∑12

i=1 ciei such that ci ≥ 0 for all 1 ≤ i ≤ 12.

To prove that xp is a PRO solution, suppose there exists xp1 = (x1, x2, 0.1, ..., 0.1) that

dominates xp. We have ei
′xP = ei

′xp1 for all 1 ≤ i ≤ 12. Without loss of generality,

suppose that e1
′xP < e1

′xp1 . Thus, x1 > 0.9. Since, x1 + x2 ≤ 1, x2 < 0.1, and so

e2
′xP > e2

′xp1 . Therefore, xp1 does not dominate xP, and it is a contradiction. Hence,

xP is not dominated by other RO solutions, and is PRO.

Now, we prove that xp dominates xRO. We have e1
′xP > e1

′xRO and for each i = 1, ..., 12,

ei
′xP = ei

′xRO. Thus, for each f ∈ U , f ′xp ≥ f ′xRO. Therefor, xp dominates xRO. Thus,

xp has the same objective value as the solution x for the worst-case scenario, and xp,

however, it has a better objective value for non-worst-cases.

2.2.2 Uncertainty in constraints

Now, consider a problem with uncertainty in constraints as follows:

min
x

c′x (2.7)

subject to: Ax ≥ b ∀A ∈ UA,

where c ∈ Rn, b ∈ Rm and UA ⊂ Rm×n for some positive integers n and m. A PRO solution

is defined by Iancu and Trichakis [2014] as follows.
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Let

XRO = {x ∈ Rn : c′x ≤ zRO,Ax− b ≥ 0, ∀A ∈ UA}

denote the set of all of the RO solutions. A solution x is a PRO solution for problem (2.7)

if it is a robust optimal solution and there is no solution x̄ ∈ XRO such that

v′s(x̄,A) ≥ v′s(x,A), ∀A ∈ UA, and (2.8)

v′s(x̄, Ā) > v′s(x, Ā), for some Ā ∈ UA

where v is a slack value vector in Rm and s(x,A) = Ax− b [Iancu and Trichakis, 2014].

Assuming U = {p = A′v : A ∈ UA}, for any p̂ ∈ ri(U), all solutions to the problem

max
x∈XRO

p̂′x

are PRO solutions for problem (2.7), [Iancu and Trichakis, 2014].

Problem (2.7) can be expanded as

minimize
x

c′x

subject to a′
ix ≥ bi ∀ai ∈ Uai , for i = 1, ...,mx,

x ∈ Rn

(2.9)

where bi ∈ R, and Uai = {ai|Diai ≥ di} for some Di ∈ Rmu×n and di ∈ Rmu . We will be

using this expanded form in Chapter 3.
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2.2.3 Multiple types of constraints

In this section, we extend the idea of Pareto robust optimality for problems with uncertainty

in multiple types of constraints. The problem can have both types of greater-than or less-

than constraints. Consider the following problem:

min
x

c′x (2.10)

Subject to: A1x ≥ b1 A1 ∈ U1,

A2x ≤ b2 A2 ∈ U2.

The vector of slacks for the constraints is as follows

s(x,A1) = A1x− b1 for A1 ∈ U1,

s(x,A2) = b2 −A2x for A2 ∈ U2.

Considering slack value vectors v1 ∈ Rm1 and v2 ∈ Rm2 , we have the following definition.

A solution x is called a Pareto robust optimal solution if it is a robust optimal solution

and there is no x̄ such that

v′s(x̄,A) ≥ v′s(x,A) ∀A ∈ U1 ∪ U2

v′s(x̄, Ā) > v′s(x, Ā) for some Ā ∈ U1 ∪ U2,
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where v = v1 if A ∈ U1 and v = v2 if A ∈ U2.

Let V1 = {p1|p1 = A1v1 for all A1 ∈ U1} and V2 = {p2|p2 = A2v2 for all A2 ∈ U2}.

Then, we can generate a PRO solution for problem (2.10) as follows.

Proposition 2.2.1. If p̄1 ∈ ri(V1) and p̄2 ∈ ri(V2), the solutions of the following problem

are Pareto robust optimal solutions:

max
x∈XRO

(p̄1 − p̄2)x. (2.11)

Proof. See Appendix A.1.1.

2.3 PRO Formulation of the IMRT Problem

In IMRT planning, each beam is assumed to be divided into many small beamlets, each of

which can take a different radiation intensity. The decision variable is to find the optimal

intensity of each beamlet subject to a set of constraints that capture the resulting dose to

the tumour and healthy tissue.

To model the IMRT problem, we have the following parameters. The set of all beamlets is

denoted by B. The irradiated area divided to a set of small volume elements called voxel.

The dose points to the voxels. Thus, we can represent each tissue by a set of voxels. We

denote the tumour by the voxel set T and the healthy tissues by the voxel set H. The set of

all voxels, including the tumour and the adjacent healthy tissues, is denoted by V = T ∪H.

Consider Dv,b as the dose that voxel v receives from beamlet b, θv as the prescribed dose

for v ∈ T , and δv as an upper bound for the dose delivered to the tumour voxel v. Let A
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and Ā sets index the upper α levels for H and lower β levels for T , respectively. let Uα be

an upper bound for the average dose received by the voxels in H and Lβ be a lower bound

for the average dose received by the voxels in T .

The decision variable is the intensity of each beamlet b ∈ B, denoted as wb. Variable ζ̄α

is the minimum dose level such that no more than (1− α)% of H receives more than that

dose level. Variable ζ
β
is the maximum dose level such that no more than (1− β)% of T

receives less than that dose level. Variable d̄v,α is the difference between the dose received

by voxel v and ζ̄α. Similarly, dv,β is the difference between the dose received by voxel v

and ζ
β
.

The general optimization form of the IMRT problem is presented in (2.12). The goal is

to minimize the total dose received by all voxels while meeting the dose constraints on T

and H. Therefore, the objective function of the problem is the total dose delivered to all

voxels:

min
wb

∑
v∈V

∑
b∈B

Dv,bwb.

We consider four types of constraints for this problem.

(1) Under-dosing of the tumour: Each voxel of the tumour should receive the pre-

scribed dose of radiation for the tumour.

(2) Overdosing of healthy tissues: Each voxel of the organ at risk must receive lower

than a certain radiation dose threshold. This constraint provides an upper bound for the

dose delivered to the OAR.

(3) Dose-volume criteria for the tumour: A lower bound for the mean dose received

by the subset of “voxels” in the tumour.
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(4) Dose-volume criteria for healthy tissues: An upper bound for the mean dose

received by the subset of “voxels” in healthy tissues.

The general IMRT problem is as follows:

Minimize
∑
v∈V

∑
b∈B

Dv,bwb (2.12a)

Subject to:
∑
b∈B

Dv,bwb ≥ θv ∀v ∈ T , (2.12b)

∑
b∈B

Dv,bwb ≤ δv ∀v ∈ H, (2.12c)

ζ
β
− 1

(1− β)|T |
∑
v∈T

dv,β ≥ Lβ, ∀β ∈ A, (2.12d)

dv,β ≥ ζ
β
−

∑
b∈B

Dv,bwb, ∀v ∈ T ,∀β ∈ A, (2.12e)

ζ̄α +
1

(1− α)|H|
∑
v∈H

d̄v,α ≤ Uα, ∀α ∈ Ā, (2.12f)

d̄v,α ≥
∑
b∈B

Dv,bwb − ζ̄α, ∀v ∈ H, α ∈ Ā, (2.12g)

ζ̄α ≥ 0, ∀α ∈ Ā, (2.12h)

ζ
β
≥ 0, ∀β ∈ A, (2.12i)

d̄v,α ≥ 0, ∀v ∈ V , α ∈ Ā, (2.12j)

dv,β ≥ 0, ∀v ∈ V , β ∈ A, (2.12k)

wb ≥ 0,∀b ∈ B. (2.12l)
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Constraint (2.12b) presents a lower bound for the dose that is received by the tumour, and

constraint (2.12c) presents an upper bound for the dose that is received by healthy tissues

around the tumour. Constraints (2.12d) and (2.12e) control the tail of the dose distribution

to the tumour, by defining a lower bound for different lower β levels. Constraints (2.12f)

and (2.12g) control the tail of the dose distribution to healthy tissues, by defining an upper

bound for different lower α levels.

In this model, as mentioned in Chapter 1, there exist uncertainties in the location of

the tumour or healthy tissues around it, which can be modelled as a robust optimization

problem.

Let X be a finite set of possible phases of the motion (e.g., inhale, exhale). The probability

mass function (PMF) of the breathing motion determines the proportion of time that

patient spends in each of a breathing motion states x ∈ X , from inhale to exhale. We

define the motion PMF by a non-negative real function f : X → R, where
∑

x∈X f(x) = 1.

We start with a nominal motion PMF denoted as p, which is constructed with the data

taken during treatment planning. Now, we consider a realized PMF denoted as p̃, where

p(x)− p(x) ≤ p̃(x) ≤ p(x) + p̄(x) x ∈ X ,

such that p and p̄ are the bounds for lower and upper errors between the actual and

nominal PMF, respectively. We assume that p − p ≥ 0 and p + p̄ ≤ 1. Therefore, the

uncertainty set can be defined as follows:

Up ={p̃ ∈ R|X | : p̃(x) ∈ [p(x)− p(x),p(x) + p̄(x)] ∀x ∈ X ;
∑
x∈X

p̃(x) = 1}. (2.13)
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The motion affects the tumour and the healthy tissues surrounding it.

In Section 2.4, we consider different classes of IMRT problems by choosing different con-

straints from the Model (2.12).

2.4 Application of Pareto Approach in IMRT

Consider the following four RO models for the IMRT problem.

(1) Delivering the prescribed dose to all voxels of the tumour with uncertainty in the

tumour’s motion; we call this model “Uncertainty in the constraint: Full volume criteria”.

(2) Having dose criteria for a partial volume of the tumour with uncertainty in the tumour’s

motion; “Uncertainty in the constraint: Partial volume criteria ”.

(3) Delivering the prescribed dose to all voxels of the tumour with uncertainty in OAR’s

motion; “Uncertainty in the objective function: Full volume criteria ”.

(4) Having dose criteria for a partial volume of the healthy organs while delivering the

prescribed dose to the tumour with uncertainty in OAR’s motion; we call this model

“Uncertainty in the objective function: Partial volume criteria ”.

In the remainder of this chapter, we present the PRO solutions for them in the following

four subsections.
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2.4.1 Uncertainty in the constraint: full volume criteria

The full volume IMRT problem with uncertainty in constraint has uncertainty in the po-

sition of the tumour. This problem aims to minimize the total radiation dose received by

all of the voxels, considering that the tumour receives the required dose.

We consider two types of problems. First, we only have one constraint on the lower bound

for the dose received by the tumour voxels. The second one presents both the lower bound

and upper bound on the dose delivered to the tumour. We discuss these problems with

single and multiple constraints, in what follows. Suppose ∆v,x,b is the dose of the per-unit

intensity of beamlet b, delivered to voxel v when the anatomy is in the phase x.

Single Constraint: Using the approach demonstrated by Bortfeld et al. [2008], the for-

mulation of the single constraint problem is

min
wb

∑
v∈V

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb (2.14)

subject to:
∑
b∈B

∑
x∈X

∆v,x,bp̃(x)wb ≥ θv ∀v ∈ T , p̃ ∈ Up, wb ≥ 0, b ∈ B.

This problem is an RO problem and the RO solution is optimal for the worst case. The

worst-case occurs when the slack is as low as possible for all constraints. Here, we assume

that the goal is to deliver as much radiation as possible to the tumour. In other words,

the left side of the constraint should be as high as possible. Therefore, larger slacks are

preferable. The PRO solution for this problem is a robust solution such that no slacks

can be improved without sacrificing other slacks. Using the approach given by Iancu

and Trichakis [2014], we present a PRO solution for this problem in Theorem 2.4.1. Let
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t = (t1, ..., t|T |) be the value vector of constraints of Model (2.14); that is, a vector that

determines the importance of the voxel of the tumour. Consider ZRO as the optimal

objective value of the problem (2.14). The following theorem presents an RO solution to

Model (2.14) such that there is not another solution that delivers more dose to the tumour

in all tumour motion’s PMFs.

Theorem 2.4.1. For p̂ ∈ ri(Up), the solution of following problem is a PRO solution to

Model (2.14).

max
(w1,...,w|B|)

∑
v∈T

∑
b∈B

∑
x∈X

ti∆v,x,bp̂(x)wb (2.15)

subject to:∑
v∈V

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb ≤ ZRO,

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb −
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb+

∑
x∈X

p(x)qv −
∑
x∈X

rv,x ≥ θv ∀v ∈ T ,

(p̄(x) + p(x))qv − rv,x ≤
∑
b∈B

∆v,x,b(p̄(x) + p(x))wb ∀v ∈ T , ∀x ∈ X ,

qv ≥ 0 ∀v ∈ T ,

rv,x ≥ 0 ∀v ∈ T , x ∈ X .

Proof. See Appendix A.1.2.

Sometimes overdosing the tumour can cause side effects such as skin burns. The goal

in such cases is to minimize the side effect by minimizing the total dose delivered to the
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tumour while still delivering the prescribed dose to each tumour voxel. To find such a PRO

solution, we have the same model as problem (2.15) except that its objective function, is

changed to

min
(w1,...,w|B|)

∑
v∈T

∑
b∈B

∑
x∈X

ti∆v,x,bp̂(x)wb.

To avoid overdosing to the tumour, we define an upper bound for the dose delivering to

each tumour voxel. Thus, in this case, the IMRT problem has two types of constraints.

We will discuss this problem and present a PRO solution for it.

Multiple Constraints: Now consider the case where both upper bound and lower bound

are imposed the tumour dose. The mathematical formulation of this problem can be

written as follows,

min
∑
v∈V

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb (2.16)

subject to:
∑
b∈B

∑
x∈X

∆v,x,bp̃(x)wb ≥ θv ∀v ∈ T , p̃ ∈ Up, wb ≥ 0, b ∈ B, (2.17)

∑
b∈B

∑
x∈X

∆v,x,bp̃(x)wb ≤ δv ∀v ∈ T , p̃ ∈ Up, wb ≥ 0, b ∈ B. (2.18)

Let t = (t1, ..., t|T |) and s = (s1, ..., s|T |) be the value vectors of the tumour voxels corre-

sponding to the first and second constraints respectively. Vectors t and s determine the

importance of the tumour voxels for the constraints (2.17) and (2.18), respectively. Con-

sider WRO as the set of all RO solutions for Model (2.16). Theorem 2.4.1 can be extended

as follows.

Theorem 2.4.2. Pick p̂ ∈ ri(Up), then the solution of the following problem is a PRO

30



solution to Model (2.16).

max
(w1,...,w|B|)∈WRO

∑
v∈T

∑
b∈B

∑
x∈X

(ti − si)∆v,x,bp̂(x)wb. (2.19)

Proof. See Appendix A.1.3.

2.4.2 Uncertainty in the constraint: partial volume criteria

In most cases, clinicians consider a percentage of a structure (either the tumour or the

adjacent healthy tissues) and determine dose-volume criteria for that volume. We develop

this PRO formulation base on the RO formulation of Chan et al. [2014] that includes DVH

criteria. The CVaR modelling for IMRT with uncertainty in the constraints can be written

as follows [Chan et al., 2014],

min
∑
v∈H

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb (2.20)

subject to: ζ
β
− 1

(1− β)|T |
∑
v∈T

dv,β ≥ Lβ, ∀β ∈ A,

dv,β ≥ ζ
β
−

∑
x∈X

∑
b∈B

∆v,x,bp̃(x)wb, ∀v ∈ T , β ∈ A, p̃ ∈ Up,

ζ
β
≥ 0, ∀β ∈ A,

dv,β ≥ 0, ∀v ∈ T , β ∈ A,

wb ≥ 0,∀b ∈ B.
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Consider ZRO as the optimal objective value of Model (2.20). Theorem 2.4.3 presents

PRO solutions for the case in which there is only one DVH constraint (|A| = 1). We then

present PRO solutions for problem (2.20) in Proposition 2.4.1.

Theorem 2.4.3. For p̂ ∈ ri(Up), the solution of the following problem is a PRO solution

for the problem with A = {β},

max
(W,D,ζ

β
)

∑
v∈T

tv(dv,β − ζ
β
+
∑
x∈X

∑
b∈B

∆v,x,bp̂(x)wb) (2.21)

subject to:
∑
v∈H

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb ≤ ZRO,

ζ
β
− 1

(1− β)|T |
∑
v∈T

dv,β ≥ Lβ,

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb −
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb +
∑
x∈X

p(x)qv

−
∑
x∈X

rv,x ≥ ζ
β
− dv,β ∀v ∈ T ,

∑
b∈B

∆v,x,b(p̄(x) + p(x))wb + rv,x + (p̄(x) + p(x))qv ≥ 0 ∀x ∈ X , v ∈ T .

Proof. See Appendix A.1.4.

Theorem 2.4.3 discusses the case in which A has one member; the following proposition

presents the PRO solutions for the general case. Let ZRO be the optimal objective value

of problem (2.20).

Proposition 2.4.1. For p̂ ∈ ri(Up), the solution of the following problem is a PRO solution
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for problem (2.20),

max
(W,D,ζ)

∑
β∈A

∑
v∈T

tv(dv,β +
∑
x∈X

∑
b∈B

∆v,x,bp̂(x)wb − ζ
β
) (2.22)

subject to:
∑
v∈H

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb ≤ ZRO,

ζ
β
− 1

(1− β)|T |
∑
v∈T

dv,β ≥ Lβ ∀β ∈ A,

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb −
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb +
∑
x∈X

p(x)qv,β −
∑
x∈X

rv,x,β ≥ ζ
β
− dv,β,

∀v ∈ T , β ∈ A,∑
b∈B

∆v,x,b(p̄(x) + p(x))wb + rv,x,β + (p̄(x) + p(x))qv,β ≥ 0 ∀x ∈ X , v ∈ T , β ∈ A,

qv,β ≥ 0 ∀v ∈ T , β ∈ A,

,rv,x,β ≥ 0 ∀v ∈ T , x ∈ X , β ∈ A.

Proof. See Appendix A.1.5.

So far, we considered uncertainty in constraints. We next, consider uncertainty in the

objective function.

2.4.3 Uncertainty in the objective function: full volume criteria

This section presents a method to find a PRO solution for the IMRT problem with un-

certainty in the objective parameters. This problem aims to minimize the worst-case dose

to all voxels while delivering the prescribed dose to the tumour. This robust optimization
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problem is as follows

min
w

max
p̃

∑
v∈V

∑
b∈B

∑
x∈X

∆v,x,bp̃(x)wb (2.23)

Subject to:
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb ≥ θv ∀v ∈ τ

wb ≥ 0

To find the PRO solutions, we first formulate this problem similar to the formulation

of the robust optimization problem given by Iancu and Trichakis [2014] which was a

“maxmin” problem. To do so, we multiple ∆v,x,b by (-1) and change “minmax” func-

tion to a “maxmin” one. Thus, the problem is as follows,

max
w

min
p̃

∑
v∈V

∑
b∈B

∑
x∈X

−∆v,x,bp̃(x)wb (2.24)

Subject to:
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb ≥ θv ∀v ∈ τ

wb ≥ 0.

Let ZRO be the optimal value of problem (2.24). We present the Pareto robust optimal

solutions of this problem in Theorem 2.4.4.

Theorem 2.4.4. For any p̂ ∈ ri(Up) an optimal solution to the following problem is a
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PRO solution:

max
(w1,..,w|B|)

∑
v∈V

∑
b∈B

∑
x∈X

−∆v,x,bp̂(x)wb

subject to:
∑
v∈V

∑
b∈B

∑
x∈X

−∆v,x,bp̄(x)wb +
∑
x∈X

p̄(x)q̄x −
∑
x∈X

p(x)q
x
≥ ZRO,

∑
x∈X

∑
b∈B

∆v,x,bp̄(x)wb ≥ θv ∀v ∈ T ,

y + q̄x + q
x
=

∑
v∈V

∑
b∈B

−∆v,x,bwb ∀x ∈ X .

Proof. See Appendix A.1.6.

In this problem, the goal of the treatment was to minimize the dose delivered to all

voxels. Next, we discuss PRO solutions for partial volume criteria.

2.4.4 Uncertainty in the objective function: partial volume cri-

teria

In IMRT, the goal is often to minimize the total dose received by a percentage of the voxels.

Chan et al. [2014] presented CVaR modelling for this problem in which the uncertainty is

in the objective function, and they minimize the mean dose received by a subset of the

voxels. The following problem is a robust optimization.
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min
w,ζ̄α

ζ̄α +
1

(1− α)|H|
∑
v∈H

(
∑
x∈X

∑
b∈B

∆v,x,bp̃(x)wb − ζ̄β)
+ (2.25)

Subject to:
∑
x∈X

∑
b∈B

∆v,x,bwbp(x) ≥ θv ∀v ∈ T ,

ζ̄α ≥ 0

wb ≥ 0

p̃ ∈ Up.

An RO solution is optimal for the worst-case, and it may not be optimal for any other

scenarios, as we mentioned. The PRO solution to this problem is a solution that no other

feasible robust solution exists that has a better objective value for at least one scenario, and

for all other scenarios, the objective value is not worst. Let ZRO be the optimal objective

value to Model (2.25). The following theorem presents a procedure to find a PRO solution

for problem (2.25).

Theorem 2.4.5. For any p̂ ∈ Up, the solution of the following problem is a PRO solution
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if problem (2.25).

max
(W,Z,ζ̄α)

∑
v∈H

(zv + ζ̄α −
∑
x∈X

∑
b∈B

∆v,x,bp̂(x)wb) (2.26)

subject to: ζ̄α +
1

(1− α)|H|
∑
v∈H

zv ≤ ZRO,

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb ≥ θv ∀v ∈ T ,

zv + ζ̄α −
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb +
∑
x∈X

p̄(x)rv,x +
∑
x∈X

p(x)sv,x ≥ 0 ∀v ∈ V

qv + rv,x + sv,x =
∑
b∈B

∆v,x,bwb ∀v ∈ H, x ∈ X

rv,x ≤ 0, sv,x ≥ 0 ∀v ∈ H, x ∈ X .

Proof. See Appendix A.1.7.

2.5 Case Study

This section tests the proposed methodology using a hypothetical breast cancer data set.

This data set includes 2108 voxels, including 1224 tumour voxels and 884 heart voxels,

which is the organ at risk. We focus on uncertainty in the constraints and full volume

criteria, as discussed in Section 2.4.1.
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2.5.1 IMRT formulation

We consider the following RO problem for this data set,

min
wb

∑
v∈H

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb (2.27)

subject to:
∑
b∈B

∑
x∈X

∆v,x,bp̃(x)wb ≥ θv ∀v ∈ T , p̃ ∈ Up, wb ≥ 0, b ∈ B,

which is the same as Model (2.14) with the objective of minimizing the total dose delivered

to the heart under a nominal breathing pattern p. The prescribed dose, to each tumour

voxel is θv = 42.5 for all tumour voxels. The RO solution delivers about a total dose of

14 × 106 GY to the tumour for a random PMF p̂, that is,
∑
v∈T

∑
b∈B

∑
x∈X

∆v,x,bp̂(x)w
RO
b for

a robust solution wRO. This solution is clinically unacceptable. This causes severe side

effects, such as skin burns.

To tackle this problem, we found a PRO solution that delivers a significantly lower dose

to the tumour voxels and the same dose to the heart. We found this solution using the

following model, which is based on Model (2.15) in Section 2.4.1.
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min
(w1,...,w|B|)

∑
v∈T

∑
b∈B

∑
x∈X

∆v,x,bp̂(x)wb (2.28)

subject to:
∑
v∈H

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb ≤ ZRO,

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb −
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb+

∑
x∈X

p(x)qv −
∑
x∈X

rv,x ≥ θv ∀v ∈ T ,

(p̄(x) + p(x))qv − rv,x ≤
∑
b∈B

∆v,x,b(p̄(x) + p(x))wb ∀v ∈ T ,∀x ∈ X ,

qv ≥ 0 ∀v ∈ T ,

rv,x ≥ 0 ∀v ∈ T , x ∈ X

In the following section, we present the results for an RO solution and a PRO one and

compare them with each other.

2.5.2 IMRT results

Using Model (2.28) we could find a PRO solution to Model (2.27). We computed the

total dose delivered to each voxel for both RO and PRO solutions for the realization of

uncertainty p̂. The following table compares the RO and PRO solutions for heart and

tumour voxels.
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Table 2.1: Comparing RO and PRO solutions for both heart

and tumour voxels for a specific PMF

RO solution PRO solution

Dose(GY) tumour Heart tumour Heart
Min 42.6 0 42.6 0

Average 12001 2.91 3494 2.91
Max 425079 49 165481 59

95% CI (9411,14591) (2.26,3.57) (2747,4241) (2.26,3.57)

The performance of both solutions is the same for the heart voxels. However, the PRO

one delivers significantly less dose to the tumour voxels for the specific p̂. We also compared

these solutions regarding tumour voxels. The average and maximum dose delivered to each

tumour voxel by the PRO solution is much lower than the RO solution.

We also presented the box plot regarding the dose delivering to the tumour voxels. That

is, for the amount of
∑
b∈B

∑
x∈X

∆v,x,bp̂(x)wb for all voxels. The blue box corresponds to the

PRO solution, wPRO, and the pink one corresponds to the RO solution, wRO.
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Figure 2.2: Comparison of box plot regarding dose delivered to the tumour voxels for a specific

PMF

Figure 2.3: Comparison of box plot regarding dose delivered to the tumour voxels for a specific

PMF without outlier
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Figure 2.2 indicates that the PRO one delivers significantly less dose to the tumour

voxels. Even the median of the box related to the PRO one is less than the box’s minimum

for the RO solution, and the maximum of the PRO box is less than the median of the RO

one. To make it more clear, we presented Figure 2.3, that is, the boxes without outliers.

We also compared the solutions using DVH histograms. Figure 2.4 presents the DVH

histogram for tumour voxels comparing PRO solution and RO solution for a specific PMF

p̂. The red line indicates the prescribed dose 42.5.

Figure 2.4: Comparison of the tumour dose volume histogram for RO and PRO solution for a

specific PMF

In Figure 2.4, the x-axis is related to the dose delivered to the voxels, and the y-axis

presents the number of voxels. It indicates that while both solutions deliver at least the

prescribed dose to all tumour voxels, these voxels receive significantly more doses for the
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robust solution than the PRO solution. The number of voxels that receive at least a

determined dose by the PRO solution is about half of the number of voxels that receive

this dose by the RO solution.

We propose a DVH histogram for the tumour and heart voxels and at most 100 GY dose

to clear the comparison.

Figure 2.5: Comparison of the dose volume histogram for an RO and a PRO solution for
a specific PMF

Figure 2.5 presents DVH for both tumour and heart voxels. The heart DVH histogram for

both solutions is the same, and both solutions deliver the same dose to the heart voxels.

However, the solutions’ dose delivers to the tumour voxels is significantly different. Thus,

while the PRO solution has the same performance regarding the worst-case scenario, it has

a better performance for the non-worst-case p̂.
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2.5.3 Extending the results for thirty random scenarios

So far, we only considered a specific PMF. Next, we examine the performance of the

PRO solution for other realizations of uncertainty. We generated 30 random PMFs and

compared the RO and PRO solutions for all these scenarios. We labelled these PMFs

as {p1,p2, ...,p30}, computed the total dose delivered to each voxel for each pi for i ∈

{1, ..., 30}, and calculated the average dose delivered to each voxel. That is, for each voxel,

we computed

∑30
i=1

∑
b∈B

∑
x∈X

∆v,x,bpi(x)wb

30
for the RO and PRO solutions, where wb is the intensity

of beamlet b in each solution.

Figure 2.6 presents the DVH plot for average tumour voxels across all scenarios comparing

RO and the PRO one. The red dash line presents the prescribed dose, that is 42.5. This

figure indicates that, on average, the PRO solution delivers much lower total doses to the

tumour.

We also compared the DVH histogram for the heart voxels for both solutions on average

in Plot 2.7. This histogram indicates that the performances of the solutions are the same

as each other.
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Figure 2.6: Comparison of the tumour dose volume histogram for a PRO and an RO solution

for thirty random PMFs

Figure 2.7: Comparison of the dose volume histogram for a PRO and an RO solution for thirty

random PMFs

We compared the RO and PRO solutions for all thirty random ps. The following table
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compares the RO and PRO solutions in minimum, average and maximum dose delivered to

each tumour voxel for all random uncertainty realizations. Each row presents the results

for each p.

Table 2.2: Comparing the dose delivered to a tumour voxel
for thirty random PMFs

Minimum dose (GY) Average dose (GY) Maximum dose (GY)

RO PRO RO PRO Gap percentage RO PRO

42.6 42.6 12125 3469 71 426798 164650
42.6 42.6 11984 3523 70 424358 156709
42.6 42.6 11908 3521 70 423656 155572
42.6 42.6 11793 3484 70 422124 163961
42.6 42.6 11999 3513 71 425082 155752
42.5 42.5 11947 3552 70 424438 156111
42.5 42.5 11861 3539 70 423824 141350
42.5 42.5 12013 3551 70 424541 162097
42.5 42.5 11882 3531 70 423345 157891
42.6 42.6 11985 3482 71 425284 164483
42.5 42.5 11927 3512 70 424519 160226
42.6 42.6 12079 3516 71 425106 165286
42.5 42.5 11893 3515 70 423847 160303
42.5 42.5 11918 3555 70 423620 153964
42.5 42.5 12021 3518 71 424984 161931
42.5 42.5 11886 3532 70 424323 150384
42.5 42.5 11751 3542 69 421583 152160
42.6 42.6 11776 3519 70 421836 156790
42.5 42.5 11912 3550 70 423702 151951
42.5 42.5 12118 3498 71 425911 166908
42.6 42.6 11994 3516 71 424771 154500
42.5 42.5 11886 3514 70 424259 155373
42.5 42.5 11916 3465 71 424402 166463
42.5 42.5 11842 3531 70 423324 154930
42.6 42.6 12069 3465 69 425992 170162
42.5 42.5 11894 3539 70 423620 158297
42.6 42.6 12013 3526 71 424764 156628
42.6 42.6 11974 3489 71 424380 163500
42.6 42.6 11927 3482 71 424080 166203
42.5 42.5 11841 3462 71 423367 167724

This table indicates that the PRO solution delivers a much lower dose to the tumour
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voxels on average for all scenarios. The PRO one delivers about 70% GY lower than the

RO solution on average to the tumour voxels. Also, the maximum dose the PRO solution

delivers to tumour voxels is much lower than the RO solution. Therefore, the PRO one

dominates the RO solution on average for all thirty PMFs.

We also solved this problem for four other samples. All samples have the same size. We

found a PRO solution using the same p̂ for all samples. For each sample, we compared the

dose delivered to a tumour voxel for the RO and PRO solutions and uncertainty realization

p̂.

Table 2.3: Comparing the dose delivered to a tumour voxel for
five samples and thirty random PMFs

Minimum dose (GY) Average dose (GY) Maximum dose (GY)

Sample RO PRO RO PRO Gap percentage RO PRO

1 42.6 42.6 12001 3494 71 425079 165481
2 42.5 42.5 8316 4370 48 406751 203626
3 42.5 42.5 10015 4248 58 414023 178268
4 42.5 42.5 9826 4379 55 435941 215239
5 42.6 42.6 13786 4315 69 430374 220647

Table 2.3 indicates that for all samples the PRO solutions dominate the RO ones in

average. The gap percentage determines that the PRO solutions deliver a much lower dose

to the tumour voxels.

2.6 Conclusion

Pareto robust optimization presents an RO solution with less conservatism. A Pareto

robust optimal solution is a robust optimal solution that any other RO solution cannot

dominate.
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It is important for the robust IMRT problem to find an optimal solution for all uncer-

tainty realizations. We discussed four types of robust IMRT problems. For each type, we

presented a method to find a PRO solution. We also demonstrated an application of our

method for a hypothetical breast cancer data set. We presented a PRO solution for the

IMRT problem with uncertainty in the tumour motion.

The PRO one delivered a much lower dose to the tumour voxels while delivering the pre-

scribed dose to those voxels.
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Chapter 3

Finding the Pareto Robust Frontier

3.1 Introduction

In this chapter, we propose an algorithm to generate the Pareto Robust frontier for a linear

robust optimization problem. To do so, we first present an algorithm to generate alternative

optimal solutions for a linear optimization problem with multiple optimal solutions. We

then provide a method to determine if an RO solution is PRO. We also, define a “superior”

PRO solution for a subset of uncertainty when the solution is optimal for a larger proportion

realizations in that subset. Lastly, we present an algorithm to generate the corresponding

subset of uncertainty for which a given PRO solution is superior. The rest of this chapter

is organized as follows. In Section 3.2, we present the definition of a superior PRO solution

for a given subset of uncertainty. Next, we present an algorithm to generate the Pareto

robust frontier and demonstrate a procedure to find a superior PRO solution for a given
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subset of uncertainty in Section 3.3. In Section 3.4, we generalize the results for the robust

problem with uncertainty in the constraint. At last, we present an application of our

approach for a network structure and present a superior PRO solution for a given subset

of uncertainty in Section 3.5.

3.2 Problem Definition

Robust optimization is used to determine optimal decisions for the worst-case realization

of a parameter in an uncertainty set. This chapter considers the following robust problem.

maximize
x ∈ X

min
p∈U

p′x, (3.1)

where X = {x ∈ Rn : Ax ≤ b} is the feasible region, U = {p ∈ Rn : Dp ≥ d} is the

uncertainty set of parameter p, and parameters A ∈ Rm×n, D ∈ Rl×n, b ∈ Rm and d ∈ Rl

are given. The solution to this problem is optimal for the worst-case realization of p.

However, non-worst-case realizations of p are not taken into account. If Model (3.1) has

multiple optimal solutions, the behaviour of these solutions may differ for non-worst-case

realizations of uncertainty. Pareto robust optimization [Iancu and Trichakis, 2014] aims to

improve the non-worst-case behaviour of RO solutions.

Let XRO be the set of all robust optimal solutions to Model (3.1) and ri(U) be the relative

interior of uncertainty set U . It has been shown that each PRO solution is an optimal
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solution to the following problem for p̂ ∈ ri(U)

maximize
x ∈ XRO

p̂′x. (3.2)

A PRO solution is an RO solution that cannot be dominated in non-worst-case scenarios.

Multiple PRO solutions can often be found by varying p̂ in formulation (3.2). Now, assume

that a subset of the uncertain realizations are considered more important than the rest.

The problem is to find a PRO solution that works best for the non-worst-case scenarios

within this specific uncertainty subset. Consider a given discrete set with finite cardinality

V ⊂ U . We denote a PRO solution as “superior” for V when it is optimal to Model (3.2)

for the largest number of cases in the set V , as defined below.

Definition 3.2.1. A PRO solution is “superior” for discrete subset of uncertainty V ⊂ U

if it is the optimal solution of Model (3.2) for the largest number of elements in V.

For a given PRO solution x̂ define

V x̂ = {p ∈ V|x̂ ∈ arg max
x∈XRO

p′x}.

The cardinality of the set V x̂, denoted by |V x̂|, is the number of scenarios in V x̂. Since |V|

is finite, |V x̂| is also finite for all x̂ ∈ XRO. That is, |V x̂| is the number of p ∈ V for which

x̂ is an optimal solution to Model (3.2).

Consider two PRO solutions x1 and x2. We say x1 performs better than x2 for V if

|Vx1 | > |Vx2 |. That is, x1 performs better than x2 if the number of p ∈ V for which x1 is

an optimal solution to Model (3.2) is larger than that of p ∈ V for which x2 is an optimal
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solution to Model (3.2).

Our goal is to find a superior PRO solution x̂ for each subset V . To do so, we suggest to

generate the Pareto robust frontier, that is defined below, and compare Pareto solutions

based on the number of elements p in V for which the solution x̂ is optimal.

Definition 3.2.2. For any linear robust optimization problem, the Pareto robust frontier

is the set of all PRO solutions.

To find a superior PRO solution for a given subset of uncertainty, we need to generate

the Pareto robust frontier and compare Pareto solutions based on the number of elements

p in V for which the solution x̂ is optimal.

We next discuss how PRO solutions can be compared. Consider a Pareto robust optimal

solution x̂. Let Ux̂ be the set of all p̂ ∈ U for which x̂ is an optimal solution for Model

(3.2); that is,

Ux̂ = {p ∈ U|x̂ ∈ arg max
x∈XRO

p′x}.

Therefore, for a given V ⊆ U , V x̂ = Ux̂∩V . To find x which is superior for set V among all

Pareto robust optimal solutions, after generating the Pareto robust frontier, we compute

|Ux̂ ∩ V| for each PRO solution. Since V is a set with finite cardinality, the cardinality of

Ux̂ ∩ V is also finite. Then, we pick x̂, which is an optimal solution to

max
x∈XPRO

|Ux ∩ V|,

where X PRO is the set of all PRO solutions to Model (3.1). Therefore, we need to find Ux̂

for each PRO solution x̂.
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In the next sections, we propose an approach to generate the Pareto robust frontier and

also develop a method for finding the corresponding Ux̂ for each Pareto robust optimal

solution x̂.

3.3 Determining the Superior RPO Solution

This section presents an algorithm to generate the Pareto robust frontier for any robust

optimization problem with uncertainty in the objective function. A robust problem has

either multiple PRO solutions, or only one PRO solution. In this chapter, we consider the

first case.

The idea behind our algorithm for generating the Pareto robust frontier is to search for

robust optimal solutions one by one until there are no more unique PRO. First, we generate

a PRO solution x0 using the method by Iancu and Trichakis [2014] given in equation (2.5).

Then, we find a new RO solution that is not equal to the RO solutions found so far, at each

iteration. Therefore, we need a search method to generate multiple optimal solutions. We

present a method that results in alternative optimal solutions for any linear optimization

problem in Section 3.3.1. Using this method, we will generate alternative RO solutions for

Model (3.1). After finding a new RO solution at each iteration, we check if that solution

is PRO. For this purpose, we present a method to determine if an RO solution is PRO in

Section 3.3.2. Lastly, we construct an algorithm to generate the Pareto robust frontier for

any robust optimization problem in Section 3.3.3.

After finding each Pareto solution x̂, we present another algorithm to generate the set Ux̂

in Section 3.3.4.
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3.3.1 Generating alternative optimal solutions for a linear prob-

lem

Consider the following linear optimization problem with a finite feasible region and multiple

optimal solutions

min
x

c′x (3.3)

Subject to Ax ≥ b

where x ∈ Rn. Let XOPT be the set of all optimal solutions to the Model (3.3), that is,

XOPT = {x ∈ Rn|Ax ≥ b, c′x ≤ wOPT} where wOPT is the optimal objective value to

Model (3.3). Suppose we find an optimal solution x0 to this problem. Let x1 be another

element in XOPT . We define the distance between x0 and x1 using L1-norm. That is,

||x0 − x1||1 =
∑n

i=1 |x0
i − x1

i|. The idea behind our method is to find an optimal solution

that has a maximum distance with a given set of optimal solutions. Specifically, if we have

a given set G = {x0,x1, ...,xk} ⊂ XOPT , the goal is to find the solution to

max
x∈XOPT

min
xi∈G

||x− xi||1.

First, we present a method to find an optimal solution x1 to Model (3.3) that has a

maximum distance with a given optimal solution x0 in Theorem 3.3.1

Theorem 3.3.1. Suppose x0 is an optimal solution to Model (3.3). The solution to the

following problem is the farthest optimal solution from x0, where wOPT is the optimal
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objective value for problem (3.3).

max
x,l,z

n∑
i=1

li (3.4)

Subject to Ax ≥ b (3.5)

c′x ≤ wOPT (3.6)

x0 − x+ l ≤ Mz

x− x0 + l ≤ M(1− z)

l ∈ Rn
+, z ∈ {0, 1}n,x ∈ Rn.

Proof. See Appendix A.2.1.

Now, let x0,x1, ...,xk−1 be k optimal solutions to problem (3.3). We seek to find an

optimal solution xk that is far from previous solutions x0,x1, ...,xk−1:

xk ∈ argmax{min
x

||x− xj||1, ∀j ∈ {0, ..., k − 1}}

The following corollary presents such a solution.

Corollary 3.3.1. An optimal solution of the following model has the maximum distance
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from all elements of X ′ = {x0, ...,xk−1} ⊂ XOPT .

max
x,l,z,m

m (3.7)

subject to: Ax ≥ b

c′x ≤ wOPT

xj − x+ lj ≤ Mzj for j = 0, ..., k − 1

x− xj + lj ≤ M(1− zj) for j = 0, ..., k − 1

m ≤
n∑

i=1

lji for j = 0, ..., k − 1 (3.8)

x ∈,Rn, lj ∈ Rn
+, z

j ∈ {0, 1}n,m ∈ R+.

Proof. See Appendix A.2.2.

As we mentioned in Section 2.2.1, we can write Model (3.1) as

max
x

y′d (3.9)

subject to: D′y = x

Ax ≤ b

y ∈ Rmu
+ ,x ∈ Rn.

Therefore, we can use Corollary 3.9 to find alternative optimal solutions for Model (3.1)

at each iteration in our algorithm.

We next present a method to determine if an RO solution is PRO using inverse optimiza-
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tion. To do so, we first briefly discuss inverse optimization.

We know that an RO solution x̂ is a PRO solution to Model (3.1) if and only if there exists

some p in ri(U) where x̂ is an optimal solution to

max
x∈XRO

p′x. (3.10)

To check if x̂ is PRO, we can find p for which x̂ is an optimal solution to (3.10), and then

evaluate if p can be in ri(U) or not. We use inverse optimization to find p.

Inverse optimization for linear programming was introduced by Ahuja and Orlin [2001].

Consider the following problem as a forward linear optimization (FO) problem for a specific

c ∈ Rn,

FO(c) : min
x

c′x (3.11)

subject to: Ax ≥ b,

where x ∈ Rn and b ∈ Rm. Suppose that X is the set of all feasible solutions to Model

(3.11), and XOPT (c) is the set of all optimal solutions to model FO(c). Let XOPT =⋃
cXOPT (c) for all c ̸= 0 is a non-empty set.

Now, consider x∗ ∈ XOPT be a given optimal solution. The goal in inverse optimization is

to find c for which x∗ is an optimal solution to FO(c). A basic form of inverse optimization
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(IO) can be written as follows:

IO(x∗) : min
c,y

0 (3.12a)

Subject to: A′y = c (3.12b)

c′x∗ = b′y (3.12c)

||c||1 = 1 (3.12d)

y ≥ 0. (3.12e)

Constraints (3.12b) and (3.12e) apply dual feasibility and constraint (3.12c) applies strong

duality. Constraint (3.12d) imposes a norm on c to avoid trivial solution.

3.3.2 Determining if an RO solution is PRO

Using inverse optimization, we can find p̂ for which x∗ is a solution to Model (3.10). The

following theorem presents a method to determine if an RO solution is PRO.

Theorem 3.3.2. An RO solution x∗ is PRO if and only if m > 0 at optimality in the
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following problem:

max
w,v,s,p

m (3.13)

subject to: bs+ zROw − px∗ = 0

s′A− v − p = 0

Dv +wd ≥ 0

Dp− d ≥ m1

s ≥ 0, w ≤ 0, s ∈ Rmx ,v ∈ Rn,p ∈ Rn, w ∈ R,m ∈ R+,

where vector 1 is an all-ones vector.

Proof. See Appendix A.2.3.

In the following section, we use the elements discussed so far to develop an algorithm

for finding the Pareto robust frontier.

3.3.3 Pareto robust frontier

The idea behind our algorithm is to search across the set XRO and find distinct RO

solutions. First, we find a PRO solution by solving Model (3.10) for some p̂ ∈ ri(U).

Then, Corollary 3.3.1 presents an RO solution that has maximum distance from the RO

solutions that have been found so far, at each iteration. After finding each RO solution,

we check if that RO solution is PRO using Theorem 3.3.2.
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The following theorem provides a stopping criteria for the algorithm, and Corollary provides

proof of convergence.

Theorem 3.3.3. If the solution m for Model (3.7) at any iteration is zero, then all RO

solutions to Model (3.1) have been generated.

Proof. See Appendix A.2.4.

Corollary 3.3.2. The proposed algorithm will converge to the set of all RO solutions to

Model (3.1).

Proof. See Appendix A.2.5.

Therefore, the proposed algorithm can generate all PRO solutions. For computational

purposes, we define a threshold ϵx for the distance between the new solution and the

solutions that we already have and stop the algorithm when this distance is less than ϵx.

That means, we stop the algorithm if

max
x∈XRO

min
0≤j≤k−1

||xj − x||1 < ϵx.

Algorithm 1 returns the Pareto Robust frontier for Model (3.1).
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Algorithm 1 Generating Pareto Robust Frontier for Model (3.1)

Pick p′ ∈ ri(U)

Solve maxx∈XRO p′x to find a PRO solution x0

Define R = {x0}

Solve Model (3.4) for x0 and the robust problem (3.1)

Denote the solution by x1

Define X ′ = {x0,x1}

Solve model (3.13) for x1

Define m∗ equal to the optimal objective value of Model (3.13)

if m∗ is positive then

R = R∪ {x1}

end if

Set d = ||x0 − x1||1

while d ≥ ϵx do

Solve Model (3.7) for X ′ and the robust problem (3.1)

Denote the solution by x∗

Set d = minx∈X ′ ||x∗ − x||1

Set X ′ = X ′ ∪ {x∗}

Solve (3.13) for x∗

Set m∗ equal to the optimal objective value

if m∗ is positive then

R = R∪ {x∗}

end if

end while

Return the set R 61



3.3.4 Corresponding set of uncertainty for each PRO solution

For each PRO solution x∗ we need to find Ux∗ which denotes the corresponding subset of U

for which x∗ is preferred. In this section, we present an algorithm that finds such subsets

of U . First, we present a model that presents the inverse optimization model for problem

(3.10).

Proposition 3.3.1. The following problem is an inverse optimization model for a specific

RO solution x∗ of Model (3.10),

min
w,v,s,p

0 (3.14)

bs+ zROw − px∗ = 0

s′A− v − p = 0

Dv +wd ≥ 0

Dp ≥ d

s ≥ 0, w ≤ 0, s ∈ Rmx ,v ∈ Rn,p ∈ Rn, w ∈ R.

Proof. The proof of this proposition is provided in the proof of Theorem 3.3.2, in Appendix

A.2.3.

Using Model (3.14), we first find p1 ∈ U such that x∗ is an optimal solution to

maxx∈XRO p1x. Next, we look for p2 that is the farthest p from p1 such that x∗ is an

optimal solution for maxx∈XRO p2x. That is, we seek for a new solution p2 that has a

maximum distance ||p2 − p1||1 from p1 using Theorem 3.3.1. Using Corollary 3.3.1, we
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can find different p ∈ Ux∗ at each iteration.

The following theorem provides a stopping criteria for the algorithm, and Corollary pro-

vides proof of convergence.

Theorem 3.3.4. If the algorithm returns zero as minimum distance between new p and

the ps that have already been found, then all ps for which x∗ is an optimal solution to

Model (3.10) have been determined.

Proof. The proof of this theorem is similar to the proof of Theorem 3.3.3, presented in

Appendix A.2.4.

Corollary 3.3.3. The proposed algorithm will converge to the set of all p ∈ U for which

x∗ is an optimal solution to model maxx∈XRO p′x.

Proof. The proof of this corollary is similar to the proof of Corollary 3.3.2, presented in

Appendix A.2.5.

We define a threshold ϵu for the minimum distance between new p and the set of ps

that we already have, and stop the algorithm when this distance is less than ϵu. That is,

minp̂∈Ux||p− p̂||1 < ϵu.

Algorithm 2 returns Ux∗ for any PRO solution x∗.
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Algorithm 2 Corresponding Uncertainty Set for a PRO Solution to Model (3.1)

Solve model (3.14) to find p0 for the PRO solution x∗

Solve Model (3.4) for p0 and linear problem (3.14)

Denote the solution by p1

Define Ux∗ = {p0,p1}

Define d = ||p0 − p1||1

while d ≥ ϵu do

Solve Model (3.7) for linear problem (3.14) and the set of optimal solutions Ux∗

Denote the solution by p∗

Set d = minp∈Ux∗ ||p∗ − p||1

Ux∗ = Ux∗ ∪ {p∗}

end while

Return Ux∗

3.4 Generalization

The main problem that we discussed in this chapter was the robust optimization problem

with uncertainty in the objective function, as shown in (3.1). In this section, we consider

robust optimization problems with uncertainty in the constraints as follows

min
x

c′x (3.15)

subject to: Ax ≥ b ∀A ∈ UA,
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where c ∈ Rn, b ∈ Rm and UA ⊂ Rm×n. Note that PRO solutions for this type of problems

were discussed in Section 2.2.2. In this section, we present an algorithm to generate the

Pareto robust frontier for this problem. Consider the expanded form of Model (3.15) as

follows.

minimize
x

c′x

subject to a′
ix ≥ bi ∀ai ∈ Uai , for i = 1, ...,mx,

x ∈ Rn

(3.16)

where bi ∈ R, Uai = {ai|Diai ≥ di} for some Di ∈ Rmu×n, di ∈ Rmu , and each vector ai is

the i−th row of matrix A. Let f = minp∈U p′x. Then, we can write Model (3.1) as follows

maximize
x ∈ X

f

subject to p′x ≥ f ∀p ∈ U
(3.17)

It can be seen that Model (3.16) is a general form of (3.17), and in turn, (3.1). Iancu

and Trichakis [2014] defined Pareto robust optimal solutions for this type of problems. For

each constraint aix ≥ bi and each robust optimal solution x, define

si(x, ai) = a′
ix− bi.
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It can be seen that an RO solution x̂ is PRO if there does not exist any other RO solution

x such that

mx∑
i=1

visi(x, ai) ≥
mx∑
i=1

visi(x̂, ai) ∀(a1, ..., amx) s.t. ai ∈ Uai , for 1 ≤ i ≤ mx, (3.18)

mx∑
i=1

visi(x, āi) >
mx∑
i=1

visi(x̂, āi) for some (ā1, ..., āmx) s.t. āi ∈ Uai , for 1 ≤ i ≤ mx

for some slack value vector v that determines the relative value of the constraints. Define

vector p such that

pj =
mx∑
i=1

aijvi

and

Up = {p ∈ Rn|pj =
mx∑
i=1

aijvi and ai ∈ Uai ∀1 ≤ i ≤ mx}.

Iancu and Trichakis [2014] also proved that an RO solution x̂ is a PRO solution if and only

if there exists an element p̂ ∈ ri(Up) such that x̂ is an optimal solution to

maximize
x ∈ XRO

p̂′x, (3.19)

where XRO is the set of all robust optimal solutions to Model (3.16).

Consider a given sequence of sets (W1, ...,Wmx) where Wi is a discrete finite subset of Uai .

Consider the following set regarding this sequence:

W = {p ∈ Rn|pj =
mx∑
i=1

aijvi and ai ∈ Wi ∀1 ≤ i ≤ mx}.
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For each PRO solution x̂ define

W x̂ = {p ∈ W|x̂ ∈ arg max
x∈XRO

p′x}.

Consider two PRO solutions x1 and x2 to problem (3.16). We say x1 performs better than

x2 for W if |Wx1 | > |Wx2 |. Our goal is to find a PRO solution which is superior for W

among all PRO solutions. That is a PRO solution which is a solution to maxx∈XPRO |Wx|

where X PRO is the set of all PRO solutions to Model (3.16). Therefore, we need to find

all PRO solutions and for each PRO solution x̂ we need to find the set of all p̂ ∈ Up for

which x̂ is an optimal solution to Model (3.19). We define this set as

Ux̂ = {p ∈ Up|x̂ ∈ arg max
x∈XRO

p′x}.

Suppose that we have the Pareto robust frontier of Model (3.16), that is the set of all

PRO solutions, and Ux̂ for each PRO solution x̂. For a given W , the PRO solution x̂ is a

superior PRO if x̂ has maximum |Ux̂ ∪W| among all x ∈ X PRO. We present an algorithm

to generate the Pareto robust frontier for Model (3.16). We also present an algorithm to

generate the set Ux̂ for each PRO solution x̂.

For both algorithms, we first need to write Model (3.16) as a linear programming model.
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Consider the problem (3.16). We can write this model as

min
x

c′x (3.20)

s.t.

 minai
a′
ix

Diai ≥ di

 ≥ bi. (3.21)

Using duality for each 1 ≤ i ≤ mx we can write constraint (3.21) as


maxyi

y′
idi

D′
iyi = x

yi ≥ 0

 ≥ bi (3.22)

Therefore, we can write Model (3.16) as follows

minimize
x,y1, ...,ymx

c′x

subject to y′
idi ≥ bi for i = 1, ...,mx,

D′
iyi = x for i = 1, ...,mx,

yi ≥ 0,

x ∈ Rn,

yi ∈ Rmu

(3.23)

Thus, there exists a linear form of problem (3.16), and the set of all robust optimal solutions

is

XRO = {x ∈ Rn|c′x ≤ zRO ∃ yi ≥ 0, y′
idi ≥ bi, D′

iyi = x}
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where zRO is the optimal objective value to Model (3.16). Now, we can use the methodology

in Section 3.3.1 to search for multiple robust optimal solutions to Model (3.16). We showed

before in this section, that an RO solution is PRO, if and only if it is an optimal solution

to Model (3.19). Therefore, using a similar approach to the one discussed in Section 3.3.2,

we can determine if an RO solution is PRO using inverse optimization. Consider Model

(3.19). Using the definition of XRO, we can write this model as follows.

maximize
x,y1, ...,ymx

p′x

subject to c′x ≤ zRO,

y′
idi ≥ bi for i = 1, ...,mx,

D′
iyi = x for i = 1, ...,mx,

yi ≥ 0,

x ∈ Rn,

yi ∈ Rmu

(3.24)
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To write the inverse model of this problem we need its dual. The dual of this model is

minimize
g, q1, ..., qmxf1, ..., fmx

zROg +
mx∑
i=1

biqi

subject to c′g
mx∑
i=1

fi = p,

qidi +Difi ≥ 0 for i = 1, ...,mx,

g ≥ 0,

qi ≤ 0 for i = 1, ...,mx,

fi ∈ Rn

(3.25)

Suppose that we have an optimal solution x∗ to Model (3.24) for some p ∈ Up. Using the

primal Model (3.24) and the dual Model (3.25), we can enforce optimality conditions on x∗

and write the following inverse optimization problem that provides us with the intended
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p, which makes this specific x∗ optimal for (3.24),

max
g,q1,...,qmx f1,...,fmx ,p

0 (3.26)

subject to: zROg +
mx∑
i=1

biqi − px∗ = 0 (3.27)

c′g −
mx∑
i=1

fi = p (3.28)

qidi +Difi ≥ 0 for i = 1, ...,mx (3.29)

p ∈ Up (3.30)

g ≥ 0

qi ≤ 0 for i = 1, ...,mx

fi ∈ Rn.

Constraint (3.27) applies strong duality. Constraints (3.28) and (3.29) guarantee dual

feasibility and constraint (3.30) guarantees that p is in Up.

The goal is to determine if a robust optimal solution x∗ is PRO. Therefore, we have to
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change constraint (3.30) to p ∈ ri(Up) as follows

max
g,q1,...,qmx f1,...,fmx ,p

0 (3.31)

Subject to: zROg +
mx∑
i=1

biqi − px∗ = 0 (3.32)

c′g −
mx∑
i=1

fi = p (3.33)

qidi +Difi ≥ 0 for i = 1, ...,mx (3.34)

p ∈ ri(Up) (3.35)

g ≥ 0

qi ≤ 0 for i = 1, ...,mx

fi ∈ Rn.

If this model has a feasible solution, then x∗ is PRO. Otherwise, it is not a PRO solution.

Therefore, using a similar approach to the one discussed in Section 3.3.1, we can generate

a new robust optimal solution to Model (3.16). Also, at each iteration, we can determine

if the new solution is PRO using Model (3.31). Algorithm 3 returns the Pareto robust

frontier for Model (3.16).
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Algorithm 3 Generating Pareto Robust Frontier for Model (3.16)

Pick p′ ∈ ri(Up)

Solve maxx∈XRO p′x to find a PRO solution x0

Define R = {x0}

Solve Model (3.4) for x0 and the robust problem (3.23)

Denote the solution by x1

Define X ′ = {x0,x1}

Solve (3.31) for x1

if Model (3.31) has a solution then

R = R∪ {x1}

end if

Set d = ||x0 − x1||1

while d ≥ ϵx do

Solve Model (3.7) for X ′ and the robust problem (3.23)

Denote the solution by x∗

Set d = minx∈X ′ ||x∗ − x||1

Set X ′ = X ′ ∪ {x∗}

Solve (3.31) for x∗

if Model (3.31) has a solution then

R = R∪ {x∗}

end if

end while

Return the set R
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Now, for each PRO solution x∗ to Model (3.16) we have to find the set Ux∗ . For this

purpose we have the same idea that is presented in Section 3.3.4. The difference is in

the inverse model which gives us the corresponding p̂ for any PRO solution x∗ which is

an optimal solution to maxx∈XRO p̂′x. In this algorithm Model (3.26) returns such a p̂.

Algorithm 4 returns the corresponding set Ux∗ for each PRO solution x∗.

Algorithm 4 Finding the Subset of Uncertainty for a Specific PRO Solution to Model
(3.16)

Solve Model (3.26) to find p0 for the PRO solution x∗

Solve Model (3.4) for p0 and linear problem (3.26)

Denote the solution by p1

Define Ux∗ = {p0,p1}

Define d = ||p0 − p1||1

while d ≥ ϵu do

Solve Model (3.7) for linear problem (3.26) and the set of optimal solutions Ux∗

Denote the solution by p∗

Set d = minp∈Ux∗ ||p∗ − p||1

Ux∗ = Ux∗ ∪ {p∗}

end while

Return Ux∗
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3.5 Numerical Result for a Network Structure

The following network structure is the one that we discussed in Example 2.2.1. We present

the Pareto robust frontier for this problem and find a superior PRO solution for a deter-

mined subset of uncertainty.

Example 3.5.1. Consider the following network structure which has been discussed in

Example 2.2.1.

maximize
x, a,b

min
f∈U

f ′x

subject to x1 = a1,

x2 = a2 + b2,

xi = bi for i = 3, ..., 12,

a0 + a1 + a2 = 1,

b2 + b3 + ...+ b12 = 1,

ai, bi ≥ 0.

(3.36)

As we mentioned, the optimal objective value for this problem is fTx = 1
10
. We considered

the set of all robust optimal solutions as XRO = {(a,b,x) ∈ X ,x ≥ 1
10
1} where a =

(a0, a1, a2), b = (b2, b3, ..., b12) and x = (x1, x2, ..., x12). Given a randomly generated subset

V ⊂ U where |V| = 50, the goal is to find a superior PRO solution for V Such that a robust

optimal solution is PRO one and maximizes the net emergency transmission rate for the

elements in V .

Using Algorithm 1, we were able to generate 200 robust optimal solutions to problem (3.36)

and 31 of them were PRO solutions captured in the set X PRO = {x1, ...,x31}.
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We computed |Vxi|, the cardinality of the set Vxi
for each PRO solution xi ∈ X PRO where

Vxi

= {f ∈ V|xi ∈ arg max
x∈XRO

f ′x}.

In Figure 3.1, we present each PRO solution using a star and each element of V using a

dot. x1, denoted by the red star, is an optimal solution to model

maximize
x ∈ XRO

f ′x (3.37)

for 29 dots, including red and blue dots. x2, denoted by the green star, is an optimal solu-

tion to Model (3.37) for 23 dots, including green and blue dots. All other PRO solutions,

denoted by blue stars, are optimal for two blue dots.

Figure 3.1: Illustration of the relationship between PRO solutions and elements of V

Therefore,

|Vx1 | = 29, |Vx2 | = 23, |Vxi| = 2 ∀3 ≤ i ≤ 31.

Figure 3.2(a) presents the box plots for the difference in outcomes of x1 and other PRO

solutions for 29 fs for which x1 is superior. The first (blue) box represents the data set

76



f ′x1 − f ′x2 for all 29 fs for which x1 is superior.

The second (pink) box represents the data set f ′x1− f ′xi for all 3 ≤ i ≤ 31 and 29 fs. Both

blue and pink boxes are non-negative, and it indicates that x1 has a better performance

than other PRO solutions for these 29 elements in V .

Figure 3.2(b) presents the the box plots for the difference in the outcomes of x2 and other

PRO solutions for 23 elements in V that x2 is superior for. The blue box compares x2 and

x1 that is about the data set f ′x2 − f ′x1 for 23 fs and the pink box compares x2 and all

xi for 3 ≤ i ≤ 31 that is about the data set f ′x2 − f ′xi for all 3 ≤ i ≤ 31. Both boxes are

non-negative, and so the performance of x2 is better than the performance of other PRO

solutions. Therefore, x1 is superior for V .

(a) f ′x1 − f ′xi for i = 2, 3, ..., 31 (b) f ′x2 − f ′xi for i = 1, 3, 4..., 31

Figure 3.2: Comparison of performance of PROs for elements in V
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3.6 Conclusion

In this chapter, we proposed a method to generate alternative optimal solutions for any

linear optimization problem with multiple solutions. Next, we presented a method to

determine if an RO solution is PRO. Then, we discussed a method to generate the set of

all PRO solutions, denoted as the Pareto robust frontier, for linear robust optimization

problems. We also presented a method to generate a set of uncertainty realizations for

which a given solution is optimal. Using this method, we proposed a procedure to compare

PRO solutions and present a PRO solution, denoted as a superior PRO solution, optimal

for the maximum number of elements in a given set of uncertainty realizations.

78



Chapter 4

Light Pareto Robust Optimal

Solutions

4.1 Introduction

This chapter proposes “light PRO solutions” that accept a small optimality gap for the

worst-case realization to improve non-worst-case solutions. We demonstrate the proposed

method using the IMRT case study, introduces in Chapter 2. We observed empirically,

that: (i) the worst-case scenario is often very unlikely to occur and (ii) giving up on the

optimality of the worst-case solution may provide an opportunity to perform considerably

better under non-worst-case scenarios. With this observation in mind, in this Chapter, we

formally introduce light PRO solutions and discuss their theoretical properties.

In Section 4.2, we define light Pareto robust optimal solutions mathematically. Next, we
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discuss the theoretical properties of the improvement that light PRO solutions make for

the non-worst-case scenarios, in Section 4.3. We define light PRO solutions for robust

optimization problems with uncertainty in the constraints and analyze these solutions in

Section 4.4. Lastly, we present an application of these solutions for an IMRT case study.

4.2 Definition

The robust optimal solution to the following problem is a solution that is optimal for the

worst-case scenario of uncertainty.

max
x∈X

min
p∈U

p′x, (4.1)

where X = {x ∈ Rn : Ax ≤ b} and U = {p ∈ Rn : Dp ≥ d} for a given A ∈ Rm×n,

D ∈ Rl×n, b ∈ Rm and d ∈ Rl. To reduce the conservatism of RO solutions, PRO

solutions can be used to improve the objective of the non-worst-case performance without

deteriorating the worst-case performance.

As we mentioned in Section 2.2.1, the set of all robust optimal solutions to Model (4.1) is

XRO = {x ∈ X : ∃y ∈ Rmu
+ such that D′y = x,y′d ≥ zRO},

where zRO is an optimal objective value to Model (4.1). To reduce the conservatism of the

robust optimal solutions we let the zRO be slightly worsened to zRO − ϵ. We refer to this

ϵ parameter as the ”worst-case loss”.
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Definition 4.2.1. A solution x is a light RO solution if we worsen the value of the optimal

solution for the worst-case scenario by ϵ. The set of all light RO solutions is,

XRE
ϵ = {x ∈ X : ∃y ∈ Rmu

+ such that D′y = x,y′d ≥ zRO − ϵ}.

where ϵ ∈ R+.

Definition 4.2.2. A solution x̂ in XRE
ϵ is a light PRO solution if there is not any x ∈ XRE

ϵ

that dominates x̂, that is, there is not any x ∈ XRE
ϵ such that

p′x̄ ≥ p′x, ∀p ∈ U , and

p̄′x̄ > p̄′x, for some p̄ ∈ U .

Using the same approach as Iancu and Trichakis [2014], we can find a light PRO

solution, when considering XRE
ϵ instead of XRO.

Theorem 4.2.1. For some p̂ ∈ ri(U), the solution to the following problem is a light PRO

solution.

maximize
x ∈ XRE

ϵ

p̂′x. (4.2)

Proof. See Appendix A.3.1.

We will discuss the theoretical properties of the improvement that light PRO solutions

make for non-worst-case scenarios in the following section.
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4.3 Non-Worst-Case Gain

So far, we have defined the concept of light PRO solutions and hypothesized that slightly

worsening the RO objective for worst-case may improve the objective for the non-worst-case

scenarios. This section formalizes this gain as a function of ϵ and analyzes and discusses

its theoretical properties.

Definition 4.3.1. For a worst-case loss of ϵ, the gain function for non-worst-case scenario

p̂ is defined as

f(ϵ; p̂) = max
x∈XRE

ϵ

p̂′x− max
x∈XRO

p̂′x.

The gain function f(ϵ; p̂) determines the improvement of the objective function of the

RO model, for the non-worst-case p̂ where we deteriorate p′x for the worst-case scenario

by ϵ.

Proposition 4.3.1. f(ϵ; p̂) is an increasing function of ϵ.

Proof. See Appendix A.3.2.

Using the concept of global dependence of the optimal cost on the right hand side of

a constraint, presented by Bertsimas and Tsitsiklis [1997], f(ϵ; p̂) is a concave function.

Therefore, either this function is strictly increasing or at some point it becomes a constant

function, that is, there exists ϵ∗ > 0 such that for any ϵ1 < ϵ2 < ϵ∗, f(ϵ1; p̂) < f(ϵ2; p̂) <

f(ϵ∗; p̂) and for any ϵ > ϵ∗, f(ϵ; p̂) = f(ϵ∗; p̂). We choose ϵ∗ such that for any ϵ > ϵ∗, the

fraction of f(ϵ;p̂)−f(ϵ∗;p̂)
ϵ−ϵ∗

is less than a determined threshold. The target ϵ can be the lowest

such ϵ∗.
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4.4 Generalization

Now, consider the following form of a robust optimization problem with uncertainty in

constraints, as discussed in Section 3.4,

minimize
x

c′x

subject to a′
ix ≥ bi ∀ai ∈ Uai , for i = 1, ...,mx,

x ∈ Rn,

(4.3)

where bi ∈ R and Uai = {ai|Diai ≥ di} for some Di ∈ Rmu×n and di ∈ Rmu . Recall that

the set of robust optimal solutions to this problem is

XRO = {x ∈ Rn|c′x ≤ zRO ∃ yi ≥ 0, y′
idi ≥ bi, D′

iyi = x}.

A light PRO solution would then belong to:

XRE = {x ∈ Rn|c′x ≤ zRO + ϵ ∃ yi ≥ 0, y′
idi ≥ bi, D′

iyi = x}.

Because XRO is a subset of the set XRE, for any objective function, a problem with feasible

region XRE has the same or better optimal solution for the problem with feasible region

XRO.

Now, we consider the elements of this set as our feasible solutions for the set of all robust

solutions. We define a PRO solution in XRE, for the new feasible region as a solution that

cannot be dominated by any other solution in XRE. That is, a solution x̂ ∈ XRE is a light
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PRO solution if there is not any x ∈ XRE where,

mx∑
i=1

visi(x, ai) ≤
mx∑
i=1

visi(x̂, ai) ∀(a1, ..., amx) s.t. ai ∈ Uai , for 1 ≤ i ≤ mx,

mx∑
i=1

visi(x, āi) <
mx∑
i=1

visi(x̂, āi) for some (ā1, ..., āmx) s.t. āi ∈ Uai , for 1 ≤ i ≤ mx.

for si(x, ai) = a′
ix− bi, and a value vector v.

Theorem 4.4.1. A solution in XRE is a light Pareto robust one if it is an optimal solution

to the following problem for some p̂ ∈ ri(Up)

minimize
x ∈ XRE

p̂′x. (4.4)

Now, the question is about the improvement that right PRO solutions make for non-

worst-case scenarios. The following definition formalize this improvement.

Definition 4.4.1. For a worst-case loss of ϵ, the gain function for non-wosrt-case scenario

p̂ is defined as

f(ϵ; p̂) = min
x∈XRO

p̂′x− min
x∈XRE

p̂′x.

Using same method in Section 4.3, we have the following proposition.

Proposition 4.4.1. f(ϵ; p̂) is an increasing function of ϵ.

Proof. The proof of this theorem is similar to the proof of Proposition 4.3.1.

Also, the function f(ϵ; p̂) is concave. Therefore, it is enough to pick the lowest ϵ∗ such

that for any ϵ > ϵ∗, the function of f(ϵ;p̂)−f(ϵ∗;p̂)
ϵ−ϵ∗

is less than a given threshold.
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4.5 Case Study

Consider the problem of IMRT treatment planning for the breast cancer with the heart

as the organ at risk. Recall the following problem parameters. The set of all beamlets is

denoted by B. Also, we denote the tumour by the voxel set T and the healthy tissues by

the voxel set H. We denote the intensity of beamlet b by wb. Consider Dv,b as the dose

that voxel v receives from beamlet b, and θv as the prescribed dose for v ∈ T .

Let the goal of IMRT be minimizing the total dose received by the heart voxels while

meeting dose constraints on the tumour voxels. The robust IMRT problem with uncertainty

in the tumour position can be written as follows [Bortfeld et al., 2008].

min
wb

∑
v∈H

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb (4.5)

subject to:
∑
b∈B

∑
x∈X

∆v,x,bp̃(x)wb ≥ θv ∀v ∈ T , p̃ ∈ Up, wb ≥ 0, b ∈ B,

where θv is the prescribed dose to the tumour voxel, v. The uncertainty set

Up ={p̃ ∈ R|X | : p̃(x) ∈ [p(x)− p(x),p(x) + p̄(x)] ∀x ∈ X ;
∑
x∈X

p̃(x) = 1} (4.6)

is the set of all motion PMFs where p and p̄ are the bounds for the difference between the

actual and nominal PMF p during treatment. In our case study θv = 42.5 for all v ∈ T .
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A PRO solution ŵ is a solution for which there is not any RO solution w such that

∑
v∈T

(
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb − θv) ≤
∑
v∈T

(
∑
b∈B

∑
x∈X

∆v,x,bp(x)ŵb − θv) ∀p ∈ Up,

∑
v∈T

(
∑
b∈B

∑
x∈X

∆v,x,bp̂(x)wb − θv) <
∑
v∈T

(
∑
b∈B

∑
x∈X

∆v,x,bp̂(x)ŵb − θv) ∃p̂ ∈ Up,

Using Model (2.28), we can find a PRO solution for a given p̂. It is evident that the PRO

solutions reported in Chapter 2 are overly conservative and provide a very high dose to the

tumour, as seen in Figures 2.4 and 2.6. Therefore, we generated light PRO solutions for

this problem. Using the approach discussed in this chapter, we relaxed the worst-case dose

by a loss parameter ϵ, and calculated the gain for different non-worst-case scenario. That

is, we allowed an increase in the total dose delivered to the heart voxels for the worst-case

breathing realization to decrease the total dose delivered to the tumour for non-worst-case

scenarios. We solve the following model for different non-worst-case loss values of ϵ.
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min
(w1,...,w|B|)

∑
v∈T

∑
b∈B

∑
x∈X

∆v,x,bp̂(x)wb (4.7)

subject to:∑
v∈H

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb ≤ ZRO + ϵ,

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb −
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb+

∑
x∈X

p(x)qv −
∑
x∈X

rv,x ≥ θv ∀v ∈ T ,

(p̄(x) + p(x))qv − rv,x ≤
∑
b∈B

∆v,x,b(p̄(x) + p(x))wb ∀v ∈ T ,∀x ∈ X ,

qv ≥ 0 ∀v ∈ T ,

rv,x ≥ 0 ∀v ∈ T , x ∈ X .

We ran this model for ϵ = 0.1, 0.2, 0.3, 0.4 and 0.5 for a random p̂ ∈ ri(Up), and denoted

the solutions by w0.1, w0.2, w0.3, w0.4 and w0.5 respectively. The results were considerably

better than the PRO solutions with ϵ = 0, denoted as wPr.

Let Ws = {wPr,w0.1,w0.2,w0.3,w0.4,w0.5}. Figure 4.1 presents the box plots for the

total dose delivered to each tumour voxel for the specific uncertainty realization p̂, that

is,
∑

b∈B
∑

x∈X ∆v,x,bp̂(x)wb for v ∈ T and w ∈ Ws. We magnified the boxes for ϵ =

0.1, 0.2, 0.3, 0.4 and 0.5 to clarify the differences. It can be seen that the dose delivered to

the tumour voxels decreases by increasing ϵ.
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Figure 4.1: Box plots for the dose delivered to each tumour voxel for a specific uncertainty

realization

We also extend our results for all realizations of the uncertainty. For this purpose, we

generated a sample of Up by randomly picking thirty ps in Up and denote the set of all

these ps by Q. For each solution in Ws the average dose delivered to each tumour voxel

for elements of Q is computed. That is, for each w ∈ Ws and v ∈ T we computed

∑
p∈Q

(
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb)

30
. (4.8)
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Figure 4.2 presents the box plot of the data set generated by (4.8) for each w ∈ Ws

and v ∈ T . It is clear that when we add 0.1 dose on average to each heart voxel, we

significantly deliver less dose to the tumour voxels. We see this result for w0.2 and w0.3.

However, w0.4 and w0.5 do not have a significant improvement. That is, the boxes related

to this solutions are almost similar to the box plot related to w0.3, and the best result is for

w0.3. We presented the boxes for all six element of Ws, and magnified the boxes related

to the solutions for ϵ = 0.1, 0.2, 0.3, 0.4, 0.5 to clarify the differences.

Figure 4.2: Box plots for the average dose delivered to each tumour voxel for 30 uncertainty

realizations
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We also compared the DVH plot for the average dose delivered to the tumour voxels for the

elements in Ws in Figure 4.3. The red dash line presents the prescribed dose. All voxels

receive the prescribed dose. This figure indicates that the average dose delivered to the

tumour voxels decreases remarkably when we increase the average dose delivered to each

heart voxel. Figure 4.4 compares the DVH plot for the average dose delivered to the heart

voxels. This figure implies that the solutions in Ws do not have significant differences in

delivering dose to the heart voxels, and all histograms are almost the same as others.

Figure 4.3: Comparison of dose volume histogram for the tumour voxels for solutions in Ws
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Figure 4.4: Comparison of dose volume histogram for the heart voxels for solutions in Ws

We also generated fifty hypothetical data sets for the IMRT problem for breast cancer.

The size of the data sets is different, and the total number of voxels for each sample is in

the range (2108, 5058). For each data set, we generated a PRO solution. We also found

light PRO solutions by adding ϵ = 0.1, 0.2, 0.3, 0.4, 0.5 to the average dose delivered to

each heart voxel for each sample. These solutions delivered less dose to the tumour voxels

than the original PRO solution on average for all the fifty samples.

We added the results of all fifty samples together and presented the average, min, max,

and the confidence interval for 95 percent of the dose delivered to each tumour voxels for
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different PRO solutions corresponding to different ϵ in the following table.

Epsilon added to

average heart voxel

Min Average Max 95% CI

ϵ = 0 42.5 3554 265002 (3452, 3655)

ϵ = 0.1 42.5 58 21588 (57.12, 58.73)

ϵ = 0.2 42.5 45 132 (44.75, 44.79)

ϵ = 0.3 42.5 44.2 80.8 (44.19, 44.22)

ϵ = 0.4 42.5 44 84.3 (44.04, 44.07)

ϵ = 0.5 42.5 44 82.6 (43.98, 44)

Table 4.1: Comparing the dose delivered to each tumour voxel for fifty samples

Comparing the solutions, the difference between the original PRO solution with the one

by adding 0.1 GY dose to the average heart voxels is considerable. Also, the solution will

improved by adding 0.2 and 0.3 GY to the heart’s average dose. However, the difference

between the solutions for ϵ = 0.3, 0.4, and 0.5 is negligible, and we can consider the light

PRO solutions by adding 0.3 GY to the average heart dose as the best solutions for these

fifty samples of the IMRT problem.

4.6 Conclusion

In this chapter, we defined new solutions by violating PRO solutions from optimal solutions

for the worst-case scenario, denoted as light PRO solutions. We discussed and analyzed
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the improvement of the optimal solution for the non-worst-cases, that light PRO solutions

make. We illustrated an application of light PRO solutions to breast cancer IMRT treat-

ment planning. The results indicate that the light PRO solutions considerably decrease

the side effects of overdosing.
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Chapter 5

Future Research: Pareto Robust

Inverse Optimization

In this chapter, we explore a possible extension of this work to the field of robust inverse

optimization for the IMRT problem. In Section 5.1, we briefly introduce the problem and

literature. We discuss the results from literature in robust inverse optimization in Section

5.2. We will present a robust inverse optimization model for the IMRT problem in Section

5.3. Lastly, we will discuss Pareto robust optimization for the robust inverse IMRT problem

as the future research direction in Section 5.4.

5.1 Introduction

Considering that there are multiple or noisy observations for an optimization problem,

the goal is to find an objective function that would make all observations “near-optimal”
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Bertsimas et al. [2015],Keshavarz et al. [2011]. Recently, Ghobadi et al. [2018] combined

the inverse optimization approach with robust optimization and considered uncertainty

around observations. The robust inverse optimization then finds parameters that would

render the worst-case scenario of the optimal observation. This method has not been

applied to IMRT treatment planning to the best of our knowledge.

One of the ideas that the planners use for radiation therapy is to consider a given set of

clinically “good” treatment plans and find the objective function that makes these solutions

optimal by using inverse optimization. We use the approach presented by Ghobadi et al.

[2018] to model the IMRT problem as a robust inverse optimization problem.

5.2 Robust Inverse Optimization

Ghobadi et al. [2018] used a robust approach to present an inverse optimization problem

with multiple observations as a robust inverse optimization problem. Consider the following

optimization problem,

FO(c) :min
x

c′x (5.1)

subject to: Ax ≥ b,
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where x ∈ Rn, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. They proved that the inverse optimization

of this problem is as follows,

min
c,y,x

d(x,x0) (5.2)

subject to: A′y = c,

c′x = b′y,

Ax ≥ b,

y ≥ 0,

where d(x,x0) is the distance function between x and a given solution x0, and y ∈ Rm.

They proved that we could consider the multiple data points as an uncertainty set that

encapsulates all possible realizations of the input data, and they present Problem (5.2)

with multiple observations as a robust inverse optimization problem as follows.

min
c,y,x

max
x0∈U

d(x,x0) (5.3)

subject to: A′y = c,

c′x = b′y,

Ax ≥ b,

y ≥ 0.

We can present the inverse IMRT problem with multiple “good” observations in the fol-

lowing section using this approach.
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5.3 Robust Inverse Optimization Form of the IMRT

Problem

To follow the concept of Section 5.2, we first model the IMRT problem as an inverse opti-

mization problem. Suppose that a “good” treatment exists that is considered an optimal

solution to an IMRT problem. The goal is to define an objective function to have an

optimal solution equal to the observation. Consider the general formulation of the IMRT

problem as

min
wb

∑
v∈V

tv
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb (5.4)

subject to:
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb ≥ θv ∀v ∈ T ,

where t is the value vector of the voxels. Now, define

zv =
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb,

the problem can be written as

min
zv

∑
v∈V

tvzv (5.5)

subject to: zv ≥ θv ∀v ∈ T .

Suppose that there exists a good observation w0. Then, we define an inverse optimization

problem that give us a value vector such that the result of model (5.4) be w0. First, define
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z0 ∈ R|V| such that z0v =
∑

x∈X
∑

b∈B ∆v,x,bp(x)w
0
b for each v ∈ V .

Let the first |T | elements of V be the voxels of the tumour T , and the last |H| elements

are the healthy voxels from H. Define the vector α as

αi =


θi if i ∈ T

0 otherwise.

(5.6)

By using Formulation (5.2), we can write the following inverse optimization model for this

problem.

min
z,t,q

d(z, z0) (5.7)

subject to: A′q = t,

t′z = α′q,

A′z ≥ α,

q ≥ 0,

where the matrix A is

A =

I|T |×|V|

0|H|×|V|

 (5.8)

such that I is the identity matrix.

There are some cases in radiation therapy in which the health care researchers have mul-

tiple “good” treatments, and their goal is to find an optimization problem for which all of
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the observations are “near-optimal”.

To present a model which results in good observations, we can use robust inverse optimiza-

tion. Using this approach, we can present the inverse IMRT problem with multiple “good”

observations as follows:

min
z,t,q

max
ẑ∈U

d(z, ẑ) (5.9)

subject to: A′q = t,

t′z = αq,

Az ≥ α,

q ≥ 0.

5.4 PRO Solutions of the Robust Inverse IMRT Prob-

lem

Since most voxels confirm the prescription dose while a small fraction may deviate markedly

from prescription, the good treatment z is sparse. Therefore, the robust problem (5.9)

would have lots of RO solutions. A question is which solution we should choose. We

suggest applying Pareto robust optimization for this problem.

Since Model (5.9) is a nonlinear optimization problem, the idea for our future work is to

reformulate this model as a linear robust optimization problem. Then, we can find Pareto

solutions for this model. We also can generate the Pareto robust frontier for the new linear

form of the robust inverse IMRT problem.
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Chapter 6

Conclusions

Robust Optimization (RO) is a sub-field of optimization with deterministic uncertainty.

This field is sometimes criticized for producing overly conservative solutions. A robust

solution is optimal for worst-case scenarios and may not be optimal for non-worst-cases.

Several methods have been introduced to reduce this conservatism, such as light robustness

and globalized robust optimization. All of these methods focus on the worst-case scenario,

however, the optimal solution may be dominated by another solution for non-worst-case

scenarios. Pareto robust optimization (PRO) presents a solution that is optimal for the

worst-case scenario and cannot be improved by other solutions for a non-worse-case sce-

nario without deteriorating the outcome for another non-worst-case scenario.

In this thesis, we applied the concept of PRO to the intensity-modulated radiation therapy

(IMRT) problem. We focused on two types of delivering radiation dose to the tissues, full

volume or partial volume criteria. For each type, we considered uncertainty in either the

tumour’s motion or the organs at risk’s motion. Therefore, we discussed four types of the
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IMRT problem. We applied PRO to these four IMRT problems and presented a method

for finding a PRO solution for each of these problems.

Next, we applied our method to several hypothetical data sets for the breast cancer IMRT

problem with the goal of decreasing the side effects of delivering overdose to the tumour.

We demonstrated a PRO and an RO solution. We compared the dose that the PRO and

RO solutions deliver to the tumour and OAR tissues for thirty random uncertainty real-

izations. Both PRO and RO solutions delivered the same dose to the OAR tissues while

delivering the prescribed dose to the tumour. However, the PRO solution decreased the

overdosing to the tumour (for about 70%).

Although Pareto robust optimization presents a solution that another RO solution cannot

dominate, the existence of another RO solution that is optimal for more non-worst-case

scenarios cannot be guaranteed. Also, a PRO solution is still conservative in the worst-case

scenario. To tackle these problems, we proposed two methods.

In the first method, we defined the superior PRO solutions for a given subset of uncertainty.

A PRO solution has a better performance than another one for an uncertainty set if it is an

optimal solution for more uncertainty realizations in that set. A PRO solution is superior

for a given uncertainty set if no PRO solution has a better performance. We presented a

method to find a superior PRO solution for a predetermined subset of the uncertainty set

with finite cardinality.

To find such a solution, we suggested generating the set of all PRO solutions, denoted

as the Pareto robust frontier, and then comparing the performance of the PRO solution

for the given subset of uncertainty. We presented an algorithm to generate the Pareto

robust frontier for any linear robust optimization problem. For this purpose, we presented
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a method for generating alternative optimal solutions for any linear optimization problem

with multiple solutions. We also presented a method to determine if an RO solution is

PRO.

To compare PRO solutions, we need to know the set of uncertainty realizations for which

a given PRO solution is optimal. We demonstrated an algorithm to generate such a set of

uncertainty for a given PRO solution.

The second method that we suggested to reduce the conservatism of PRO solutions is vi-

olating the PRO solution from optimal solutions for the worst-case scenario. We denoted

these new solutions as light Pareto robust optimal solutions. We demonstrated that these

solutions improve the optimality for the non-worse-case realizations and cannot be domi-

nated by another solution for all uncertainty realizations. We discussed the practical result

of this approach in the breast cancer IMRT problem for fifty hypothetical data sets. We

showed that these solutions significantly decrease the side effects of overdosing. Light PRO

solutions deliver at least the prescribed dose to the tumour tissues. However, they do not

deliver a high dose volume to these tissues. It can decrease the side effects of overdosing,

such as skin burns. Note that the increased dose that these solutions deliver to the OAR

is negligible.

We believe that our approach for presenting superior PRO solutions for a subset of un-

certainty can be applied to more real-world robust optimization problems. One of these

problems is the robust inverse IMRT problem. We discussed this problem in Chapter 5

and presented a non-linear model for it. We suggest reformulating this model as a linear

RO problem and presenting a method to find a superior PRO solution for a given subset

of uncertainty. We also suggest presenting light PRO solutions for this problem.
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Another future research direction is to apply our approach for generating light PRO so-

lutions to more real-world robust optimization problems, such as inventory management

and communication problems.
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Appendix A

A.1 Appendix 1: Proofs of Chapter 2

We present the proofs of the theorems and propositions herein. Each section will provide

the proof of one theorem discussed in this chapter.

A.1.1 Proof of Proposition 2.2.1

The method to prove this proposition is similar to the proof of the theorem that presented

a PRO solution for a problem with one type of constraint [Iancu and Trichakis, 2014].

Let x be a solution to model (2.11). Suppose that there exists an RO solution x∗ for model

(2.10) that dominated x. Thus,

v′s(x∗,A) ≥ v′s(x,A) ∀A ∈ U1 ∪ U2

v′s(x∗, Ā) > v′s(x, Ā) for some Ā ∈ U1 ∪ U2
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That is p1x
∗ ≥ p1x for all p1 ∈ V1, p2x

∗ ≤ p2x for all p2 ∈ V2 and either p̂1x
∗ > p̂1x

for some p̂1 ∈ V1 or p̂2x
∗ < p̂2x for some p̂2 ∈ V2. Without loss of generality, we consider

∃p̂1 ∈ ext(V1) such that p̂1x
∗ > p̂1x, where p̂1 is a solution to maxp∈V1 p(x

∗ − x).

Since p̄1 ∈ ri(V1), we can write p̄1 as a convex combination of all extreme points of V1.

That is, ∃λ1 ∈ R|ext(V1)| such that λ1 > 0 and 1′λ1 = 1 and p̄1 =
∑

i∈E1 p1
iλ1

i where

ext(V1) = {p1
i|i ∈ E1}. With the same method, there exists λ2 ∈ R|ext(V2)| such that

λ2 > 0 and 1′λ2 = 1 and p̄2 =
∑

i∈E2 p2
iλ2

i where ext(V2) = {p2
i|i ∈ E2}. Thus,

(p̄1 − p̄2)(x
∗ − x) =

∑
i∈E1

p1
i(x∗ − x)−

∑
i∈E2

p2
i(x∗ − x)

= p̂1(x
∗ − x) +

∑
i∈E1,p1

i ̸=p̂1

p1
i(x∗ − x)−

∑
i∈E2

p2
i(x∗ − x).

Therefore, (p̄1− p̄2)(x
∗−x) > 0 and so (p̄1− p̄2)x

∗ > (p̄1− p̄2)x and x is not an optimal

solution to model (2.11). It is a contradiction, and so x is not dominated by x∗. Thus, x

is a PRO solution.

A.1.2 Proof of Theorem 2.4.1

To prove this theorem, we have to reformulate model (2.14) as the following model,

min
x

c′x (A.1)

subject to: Ax ≥ b ∀A ∈ UA.
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Consider vector c ∈ R|B| as cb =
∑
v∈V

∑
x∈X

∆v,x,bp(x). Also, let Ãv,b =
∑

x∈X ∆v,x,bp̃(x) for all

v ∈ T , b ∈ B, and p̃ ∈ Up, and let UA be the set of all such A. Thus, we can write model

(2.14) as follows,

min
w

c′w (A.2)

subject to: Ãw ≥ θ ∀A ∈ UA.

Now, using the result in section 2.2.2, a solution w is a PRO solution if it is a solution to

the following problem,

min
w∈WRO

t′Âw, (A.3)

where t is a value vector for the tumour voxels, and Â ∈ ri(UA).

Now, we have the following lemma.

Lemma A.1.1. Let Ãv,b =
∑

x∈X ∆v,x,bp̃(x) be an element of the uncertain matrix Ã|V|×|B| ∈

UA. We have Ã ∈ ri(UA) if and only if p̃(x) ∈ ri(Up).

Proof. We prove each direction of the statement separately.

[Ã ∈ ri(UA) =⇒p̃ ∈ ri(Up)]: Let Mv be a matrix such that the entry (Mv)b,x is the

dose delivered from beamlet b to voxel v in phase x. Suppose Ã ∈ ri(UA), it is sufficient to

prove that p̃ ∈ Up and for every p1 ∈ Up there exists λ > 1 such that λp̃+ (1− λ)p1 ∈ U .
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For each p1 we an rewrite A1 as

A1 =


p′
1M

′
1

...

p′
1M

′
|T |

 .

We know that Ã is in ri(UA), thus there exists λ > 1 such that λÃ+ (1− λ)A1 ∈ UA. We

have

λÃ+ (1− λ)A1 = λ


p̃′M′

1

...

p̃′M′
|T |

+ (1− λ)


p′
1M

′
1

...

p′
1M

′
|T |

 =


(λp̃+ (1− λ)p1)

′M′
1

...

(λp̃+ (1− λ)p1)
′M′

|T |

 .

Therefore, λP̃+ (1− λ)p1 ∈ Up and so p̃ ∈ ri(Up).

[Ã ∈ ri(UA)⇐=p̃ ∈ ri(Up)]: We know Ã ∈ UA, and need to prove that for each

A1 ∈ UA, there exists λ > 1 such that λÃ + (1 − λ)A1 ∈ UA. Since p̃ ∈ ri(Up), for each

p1 ∈ Up we have λp̃+ (1− λ)p1 ∈ Up for some λ > 1. We know that A1 ∈ UA, thus there

exists p1 ∈ Up such that

A1 =


p′
1M

′
1

...

p′
1M

′
|T |

 .
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We have λp̃+ (1− λ)p1 ∈ Up for some λ > 1, thus

A =


(λp̃+ (1− λ)p1)

′M′
1

...

(λp̃+ (1− λ)p1)
′M′

|T |

 ∈ UA.

Hence, we can write

A = λ


p̃′M′

1

...

p̃′M′
|T |

+ (1− λ)


p′
1M

′
1

...

p′
1M

′
|T |

 = λÃ+ (1− λ)A1 ∈ UA.

Therefore, Ã ∈ ri(UA).

Now, we reformulate model (A.3), as

max
(w1,...,w|B|)∈WRO

∑
v∈T

∑
b∈B

∑
x∈X

ti∆v,x,bp̂(x)wb (A.4)

Now, the question is what is WRO. To find the PRO solutions, we need to determine the

set of all solutions which are feasible for all uncertainty scenario and have the optimal

value. We denote this set by WRO. Lemma 2, presents this set.
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Lemma A.1.2. The set of robust optimal solutions of formulation (2.14) is

WRO = {(w1, ..., w|B|) ∈ R+|B||
∑
v∈V

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb ≤ ZRO,

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb −
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb+

∑
x∈X

p(x)qv −
∑
x∈X

rv,x ≥ θv ∀v ∈ T ,

(p̄(x) + p(x))qv − rv,x ≤
∑
b∈B

∆v,x,b(p̄(x) + p(x))wb ∀v ∈ T , ∀x ∈ X ,

qv ≥ 0 ∀v ∈ T ,

rv,x ≥ 0 v ∈ T , x ∈ X}.

where ZRO is the optimal value of the problem.

Proof. consider the following linear programming model for the radiotion therapy problem

which is derived from Theorem 1 in Bortfeld et al. [2008],

min
w,q,r

∑
v∈V

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb (A.5)

subject to:
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb −
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb+

∑
x∈X

p(x)qv −
∑
x∈X

rv,x ≥ θv ∀v ∈ T
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(p̄(x) + p(x))qv − rv,x ≤
∑
b∈B

∆v,x,b(p̄(x) + p(x))wb ∀v ∈ T ,∀x ∈ X

qvfree ∀v ∈ T

rv,x ≥ 0 ∀v ∈ T ,∀x ∈ X ,

wb ≥ 0 ∀b ∈ B.

Thus,

WRO = {(w1, ..., w|B|) ∈ R+|B||
∑
v∈V

∑
b∈B

∑
x∈X

∆v,x,bp(x)wb ≤ ZRO, (A.6)

and ∃qv for v ∈ T , ∃rv,x for v ∈ T and x ∈ X ,∑
b∈B

∑
x∈X

∆v,x,bp(x)wb −
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb+

∑
x∈X

p(x)qv −
∑
x∈X

rv,x ≥ θv ∀v ∈ T and

(p̄(x) + p(x))qv − rv,x ≤
∑
b∈B

∆v,x,b(p̄(x) + p(x))wb ∀v ∈ T ,∀x ∈ X}.

Using Lemma A.1.1, it is sufficient to find the solution of

max
(w1,...,w|B|)∈WRO

∑
v∈T

∑
b∈B

∑
x∈X

ti∆v,x,bp̂(x)wb.

Using Lemma A.1.2, we can find WRO.
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A.1.3 Proof of Theorem 2.4.2

The idea to proof this theorem is similar to the proof of Theorem 2.4.1. Add the constraint

Ãw ≥ θ ∀A ∈ UA to model (A.2). Now, using Proposition 2.2.1 and Lemmas A.1.1 and

A.1.2 any solution to problem

max
(w1,...,w|B|)∈WRO

∑
v∈T

∑
b∈B

∑
x∈X

(ti − si)∆v,x,bp̂(x)wb. (A.7)

is a PRO solution.

A.1.4 Proof of Theorem 2.4.3

To prove this theorem, first we reformulate problem (2.20) as model

min
x

c′x (A.8)

subject to: Ax ≥ b ∀A ∈ UA.

to present the PRO solutions.

Consider the decision variable f ∈ R|B|+1+|T | such that

(f)i =


wi for i = 1, ..., |B|

ζ
β

for i = |B|+ 1

di−|B|−1,β for i = |B|+ 2, ..., |B|+ 1 + |T |

; (A.9)
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Let y1 ∈ RB|+1+|T | be y1 is a vector in Ro such that

(y1)i =


1 if i = |B|+ 1

0 otherwise

; (A.10)

Considery2 as a vector in R|B|+1+|T | with the following entries

(y2)i =


−1

(1−β)|T | if |B|+ 2 ≤ i ≤ |B|+ |T |+ 1

0 otherwise

; (A.11)

; and matrix D as

(D)k,l =


1 if l = |B|+ 1 + k

0 otherwise

(A.12)

The following matrix is denoted by A which is a |T | × (|B|+ 1 + |T |) matrix:

(A)k,l =


−1 if l = |B|+ 1

0 otherwise

(A.13)

First suppose that for a specific voxel j, ∆j is a matrix such that (∆j)i,b = ∆j,i,b. Consid-

ering that for each voxel k ∈ T , we have ãk = p̃′(∆k)
′ for some p̃ ∈ UP .
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Let matrix G̃,be

(G̃)k,l =


(ãk)l if 1 ≤ l ≤ |B|

0 otherwise

(A.14)

. Now we can model the problem (2.20) as

min
f

jγHf (A.15)

Subject to: y1f + y2f ≥ Lβ,

Df +Af + G̃f ≥ 0,

Now, if U1 = {M̃ = D̄+A+ G̃; for all G̃}. Using the result in Section 2.2.2, solutions to

the following problem are PRO solutions for some M̂ ∈ ri(U1),

max
f∈FRO

tM̂f

where t is a value vector of the tumour voxels, and FRO = {f | f is constructed by(W ,D, ζ
β
) ∈

SRO} such that W = {w1, ..., w|B|},D = {dv,β|v ∈ T } and SRO is the set of all robust op-

timal solutions to problem (2.20) with a single β.

Using the same idea for proving Lemma A.1.1, we prove that if M is generated by p, then

M ∈ ri(U1) if and only if p ∈ ri(Up). Therefor, the solutions to the following problem are
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PRO solutions for some p̂ ∈ ri(Up),

max
(W,D,ζ

β
)∈SRO

∑
v∈T

tv(dv,β − ζ
β
+
∑
x∈X

∑
b∈B

∆v,x,bp̂(x)wb) (A.16)

Now, the question is about the set SRO. Using equation (B.2) in Chan et al. [2014], model

(2.20) can be reformulated as the following linear problem

min
∑
v∈H

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb (A.17)

Subject to: ζ
β
− 1

(1− β)|T |
∑
v∈T

d̄v,β ≥ Lβ,

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb −
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb +
∑
x∈X

p(x)qv−

∑
x∈X

rv,x ≥ ζ
β
− dv,β, ∀v ∈ T ,

∑
b∈B

∆v,x,b(p̄(x) + p(x))wb + rv,x + (p̄(x) + p(x))qv ≥ 0 ∀x ∈ X , v ∈ T .

Therefore, we can write the set of all robust optimal solutions of problem (2.20) with a

single β as follows:
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SRO = {(W = {w1, ..., w|B|},D = {dv,β|v ∈ T }, ζβ), (A.18)∑
v∈H

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb ≤ ZRO,

ζ
β
− 1

(1− β)|T |
∑
v∈T

dv,β ≥ Lβ , and

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb −
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb +
∑
x∈X

p(x)qv −
∑
x∈X

rv,x ≥ ζ
β
− dv,β, ∀v ∈ T ,

∑
b∈B

∆v,x,b(p̄(x) + p(x))wb + rv,x + (p̄(x) + p(x))qv ≥ 0

∀x ∈ X , v ∈ T ,

q̄v ≥ 0 ∀v ∈ T ,

rv,x ≥ 0 ∀v ∈ T , x ∈ X}.
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Thus, all solutions to the following problem are PRO solutions for some p̂ ∈ ri(Up),

max
(W,D,ζ

β
)

∑
v∈T

tv(dv,β − ζ
β
+
∑
x∈X

∑
b∈B

∆v,x,bp̂(x)wb) (A.19)

subject to:
∑
v∈H

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb ≤ ZRO,

ζ
β
− 1

(1− β)|T |
∑
v∈T

dv,β ≥ Lβ,

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb −
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb +
∑
x∈X

p(x)qv

−
∑
x∈X

rv,x ≥ ζ
β
− dv,β ∀v ∈ T ,

∑
b∈B

∆v,x,b(p̄(x) + p(x))wb + rv,x + (p̄(x) + p(x))qv ≥ 0 ∀x ∈ X , v ∈ T .

A.1.5 Proof of Proposition 2.4.1

The idea to prove this proposition is similar to the proof of Theorem 2.4.3 by considering

a similar set of constraints for each β ∈ A. Thus, we just need to add the result of the

problems related to each β ∈ A.
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A.1.6 Proof of Theorem 2.4.4

To prove this theorem, first we reformulate problem (2.24) to the following model

max
x∈X

min
p∈U

p′x, (A.20)

that is the form of problem (2.1). Consider matrix Gv = (−∆v,x,b)v; that is, the matrix

Gv is the negative of ∆v,x,b for the specific v. Let, ãv = p′Gv for all v ∈ V . Denote the

matrix A =



a1

a2

...

a|T |


for a constant p such that ai = p′Gi.

Now, let

s̃ = j



ã1

ã2

...

ã|V|


and vector δ = −θ; also, denote the set of all s with Us. Then, the model can be written

as

max
w

min
s̃

s̃w (A.21)

subject to: Aw ≤ δ,

w ≥ 0.
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Now, using the results in Section 2.2.1 to find a PRO solution, if there exists ŝ ∈ ri(Us),

then all of the optimal solutions to the problem

max
w∈WRO2

ŝw

are PRO solutions, where WRO2 is the set of RO solutions.

Using the same idea for proving Lemma A.1.1, we prove that if s is generated by p, then

s ∈ ri(Us) if and only if p ∈ ri(Up). Therefore, a solution to the following problem is a

PRO one for some p̂ ∈ ri(Up).

max
(w1,..,w|B|)∈WRO2

∑
v∈V

∑
b∈B

∑
x∈X

−∆v,x,bp̂(x)wb

are Pareto optimal solutions.

Now, the question is about the set WRO2. To answer this question, we find the dual of the

following problem for a constant w:

min
p̂

∑
v∈V

∑
b∈B

∑
x∈X

−∆v,x,bp̂(x)wb (A.22)

subject to:
∑
x∈X

p̂(x) = 0

− p(x) ≤ p̂(x) ≤ p̄(x) ∀x ∈ X
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The dual of this problem is

max
qx,q′x,y

∑
x∈X

p̄(x)qx −
∑
x∈X

p(x)q′(x) (A.23)

subject to: y + qx + q′x =
∑
v∈V

∑
b∈B

−∆v,x,bwb ∀x ∈ X ,

y is free,

qx ≤ 0,

q′x ≥ 0.

Therefore, we can write the original problem as follows.

max
qx,q′x,y,w

∑
v∈V

∑
b∈B

∑
x∈X

−∆v,x,bp(x)wb +
∑
x∈X

p̄(x)qx −
∑
x∈X

p(x)q′(x) (A.24)

subject to:
∑
b∈B

∑
x∈X

∆v,x,bp(x)wb ≥ θv ∀v ∈ τ

y + qx + q′x =
∑
v∈V

∑
b∈B

−∆v,x,bwb ∀x ∈ X ,

wb ≥ 0

y is free,

qx ≤ 0,

q′x ≥ 0.
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Hence, we can write the set of robust optimal solutions of problem (2.24) as the set of all

optimal solutions of the above set. Thus,

WRO2 = {(w1, ..., w|B|) ∈ R+|B||∑
v∈V

∑
b∈B

∑
x∈X

−∆v,x,bp̄(x)wb +
∑
x∈X

p̄(x)q̄x −
∑
x∈X

p(x)q
x
≥ ZRO and

∑
x∈X

∑
b∈B

∆v,x,bp̄(x)wb ≥ θv ∀v ∈ T ,

y + q̄x + q
x
=

∑
v∈V

∑
b∈B

−∆v,x,bwb ∀x ∈ X ,

q̄x ≤ 0 ∀x ∈ X ,

q
x
≥ 0 ∀x ∈ X}.

Therefor, the solution to the following problem is a PRO solution,

max
(w1,..,w|B|)

∑
v∈V

∑
b∈B

∑
x∈X

−∆v,x,bp̂(x)wb

subject to:
∑
v∈V

∑
b∈B

∑
x∈X

−∆v,x,bp̄(x)wb +
∑
x∈X

p̄(x)q̄x −
∑
x∈X

p(x)q
x
≥ ZRO,

∑
x∈X

∑
b∈B

∆v,x,bp̄(x)wb ≥ θv ∀v ∈ T ,

y + q̄x + q
x
=

∑
v∈V

∑
b∈B

−∆v,x,bwb ∀x ∈ X .
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A.1.7 Proof of Theorem 2.4.5

First, we reformulate model (2.25) as follows

min
x

c′x (A.25)

subject to: Ax ≥ b ∀A ∈ UA.

that is the form of problem (2.1). For this purpose, let f ∈ R|B|+|H| be

fi =


wi for i = 1, ..., |B|

zi−|B| for i = |B|+ 1, ..., |B|+ |H|

ζ̄β for i = 1 + |B|+ |H|

, (A.26)

Consider G1 as a (|T | × q) matrix where

(G1)k,l =


(ak)l if 1 ≤ l ≤ |B|

0 otherwise

, (A.27)

such that aj = p′(∆j)
′ for each 1 ≤ j ≤ |T | for a specific p. Denote the following matrix

by G̃2; that is, a |H| × q matrix,

130



(G̃2)k,l =



−(ãk)l if 1 ≤ l ≤ |B|

1 if l = |B|+ k

1 if l = |B|+ |H|+ 1

0 otherwise

(A.28)

such that ãj = p̃′(∆j)
′ for each 1 ≤ j ≤ |H|. Since we have uncertainty for p̃, then G̃2 is

also uncertain. Now, model (2.25) can be reformulated as follows,

min
f

e|B|+|H|+1f +
1

(1− β)|H|
yf (A.29)

Subject to: G1f ≥ θ, (A.30)

G̃2f ≥ 0, (A.31)

where y is a |B| + |H| + 1 vector such that yj = 1 for |B| ≤ j ≤ |B| + |H| and yj = 0 in

other places.

Therefore, to find a Pareto robust solutions pick Ĝ2 ∈ ri(UG), the solution of the following

problem is a Pareto robust optimal solution,

max
f∈FRO

Ĝ2f (A.32)

Using the same method as Lemma A.1.1, we prove that if G2 is generated by p, then

G2 ∈ ri(UG) if and only if p ∈ ri(Up).
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We have G2f =
∑

v∈H(zv + ζ̄β −
∑

x∈X
∑

b∈B ∆v,x,bp(x)wb).

Hence, for any p̂ ∈ ri(Up), the solution of the following problem is a PRO solution,

max
(W,Z,ζ̄β)∈SRO

∑
v∈H

(zv + ζ̄β −
∑
x∈X

∑
b∈B

∆v,x,bp̂(x)wb). (A.33)

Now, the question is about the set SRO. To answer this question, we demonstrate the

following linear program model of the problem (2.25):

min
z,ζ̄β ,wb

ζ̄β +
1

(1− β)m

∑
v∈H

zv (A.34)

Subject to:
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb ≥ θv ∀v ∈ T ,

zv + ζ̄β −
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb + Cv(w) ≥ 0 ∀v ∈ H,

zv ≥ 0,

β ∈ Ās,

w ∈ W ,

where

Cv(w) = min
p.

∑
b∈B

∑
x∈X

∆v,x,bp
.(x)wb (A.35)

Subject to:
∑
x∈X

p̂(x) = 0,

− p(x) ≤ p.(x) ≤ p̄(x) ∀x ∈ X .
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Using the dual of problem (A.35), we have the following linear programming.

min
z,ζ̄β ,wb

ζ̄β +
1

(1− β)|H|
∑
v∈H

zv (A.36)

Subject to:
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb ≥ θv ∀v ∈ T ,

zv + ζ̄β −
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb +
∑
x∈X

p̄(x)rv,x +
∑
x∈X

p(x)sv,x ≥ 0 ∀v ∈ V

qv + rv,x + sv,x =
∑
b∈B

∆v,x,bwb ∀v ∈ H, x ∈ X

zv ≥ 0, ∀v ∈ H

β ∈ Ās,

w ∈ W ,

rv,x ≤ 0, ∀v ∈ H

sv,x ≥ 0, ∀v ∈ H, x ∈ X

qv free, ∀v ∈ H.

Therefore, SRO is the set of all optimal solutions to model (A.36), and so all solutions
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to the following problem are PRO solutions.

max
(W,Z,ζ̄β)

∑
v∈H

ti(zv + ζ̄β −
∑
x∈X

∑
b∈B

∆v,x,bp̂(x)wb) (A.37)

subject to: ζ̄β +
1

(1− β)|H|
∑
v∈H

zv ≤ ZRO,

∑
x∈X

∑
b∈B

∆v,x,bp(x)wb ≥ θv ∀v ∈ T ,

zv + ζ̄β −
∑
x∈X

∑
b∈B

∆v,x,bp(x)wb +
∑
x∈X

p̄(x)rv,x +
∑
x∈X

p(x)sv,x ≥ 0 ∀v ∈ V

qv + rv,x + sv,x =
∑
b∈B

∆v,x,bwb ∀v ∈ H, x ∈ X

rv,x ≤ 0, sv,x ≥ 0 ∀v ∈ H, x ∈ X .

A.2 Appendix 2: Proofs of Chapter 3

A.2.1 Proof of Theorem 3.3.1

In model (3.4), constraints (3.5) and (3.6) present an optimal solution to model (3.3). We

are looking for a solution that has the maximum distance from x0. That is, a solution that

has maximum ||x0 − x||1 =
∑n

i=1 |x0
i − xi|. Consider l = (l1, ..., ln) such that

|x0
i − xi| ≥ li for i = 1, ..., n,
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that is, either x0
i − xi ≥ li or xi − x0

i ≥ li for i = 1, ..., n. Define z = (z1, ..., zn) where

zi ∈ {0, 1} for i = 1, ..., n. Therefore, it is easy to see that

x0
i − xi + li ≤ Mzi

xi − x0
i + li ≤ M(1− zi)

for a large enough M . Now, it is sufficient to maximize
∑n

i=1 li to find x with maximum

distance from x0, that is, ||x− x0||1.

A challenge in model (3.4) is selecting a proper value for M . Suppose that we have an

upper bound ux for each entry of any feasible solution x to model (3.3); that is, xi ≤ ux for

any entry 1 ≤ i ≤ n of feasible solution x to model (3.3). Since a feasible solution to model

(3.4) is a feasible solution to model (3.3), we have xi ≤ ux for any feasible solution x to

(3.4) and 1 ≤ i ≤ n. Also since x0 is an optimal solution to model (3.3), we have x0
i ≤ ux

for any 1 ≤ i ≤ n. Therefore, li ≤ |xi − x0
i| ≤ ux for 1 ≤ i ≤ n, and xi − x0

i + li ≤ 2ux.

Thus, it is sufficient to have M ≥ 2ux

A.2.2 Proof of Corollary 3.3.1

Model (3.7) is an extension of model (3.4). We are looking for a solution that maximizes

m = min{||xk − xj||1, 0 ≤ j ≤ k − 1}. With the same method as model (3.4), we define lj

and zj for each solution xj, 0 ≤ j ≤ k−1. That is, define lj = (lj1, ..., l
j
n) for 0 ≤ j ≤ k−1

such that

|xj
i − xi| ≥ lji for i = 1, ..., n,
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that is, either xj
i−xi ≥ lji or xi−xj

i ≥ lji for i = 1, ..., n. Define zj = (zj1, ..., z
j
n) ∈ {0, 1}n

for 0 ≤ j ≤ k − 1 to have

xj
i − xi + lji ≤ Mzji

xi − xj
i + lji ≤ M(1− zji)

It is sufficient to maximize m = min{||xk − xj||1, 0 ≤ j ≤ k− 1}. Constraint (3.8) and the

objective function address this goal.

A.2.3 Proof of Theorem 3.3.2

First, we demonstrate how we can use inverse optimization to find p̂ ∈ U . Therefore, we

need the inverse model of problem (3.10). First, we have to write model (3.10) as a linear

programming. Since

XRO = {x ∈ Rn|∃y ∈ Rmu
+ such that Ax ≤ b,D′y − x = 0,y′d ≥ zRO},
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We can wirte model (3.10) as

maximize
x,y

p̂′x

subject to Ax ≤ b,

D′y − x = 0,

y′d ≥ zRO,

x ∈ Rn,y ∈ Rmu
+ ,x ≥ 0

(A.38)

Therefore, model (3.10) is a linear programming. As it was mentioned in Section ??, to

present its inverse model, we have to combine both primal and dual model of this problem.

The dual of model (3.10) is,

minimize
w,v, s

bs+ zROw

subject to s′A− v = p,

Dv +wd ≥ 0,

s ≥ 0,w ≤ 0,s ∈ Rmx ,v ∈ Rn,w ∈ R

(A.39)

Suppose we have a robust optimal solution x∗, combining the primal model (A.38) and

dual problem (A.39), the inverse optimization model for problem (3.10) is as follows for x∗
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min
w,v,s,p

0 (A.40a)

bs+ zROw − px∗ = 0 (A.40b)

s′A− v − p = 0 (A.40c)

Dv +wd ≥ 0 (A.40d)

Dp ≥ d (A.40e)

s ≥ 0, w ≤ 0, s ∈ Rmx ,v ∈ Rn,p ∈ Rn, w ∈ R.

Where constraint (A.40b) is presenting strong duality. Constraints (A.40c) and (A.40d)

apply dual feasibility and constraint (A.40e) guarantees that p̂ ∈ U .

Therefore, using model (A.40), for each RO solution x∗ ∈ XRO we can find p ∈ U for

which x∗ is an optimal solution to model (3.10). Now, the problem is how we can find a p

as a solution to model (A.40) where p ∈ ri(U) for a specific RO solution x∗.

We know p ∈ U if D′p ≥ d, so p is in ri(U) if and only if D′p > d. Thus, it is enough

and sufficient to have some m > 0 where

Dp− d ≥ mj

and j be the vector of all ones. If the optimal objective value to model (3.13) is not positive,

then it means that such a positive m does not exist, and so such a p ∈ ri(U) does not exist

and x∗ is not a PRO one. If the result is positive, then there exists p ∈ ri(U) corresponding

138



to x∗ and so x∗ is a PRO solution.

A.2.4 Proof of Theorem 3.3.3

Assume that there exists an element in XRO that has not been observed in the algorithm.

Suppose we have found the subset S = {x0,x1, ...,xq} ⊂ XRO at some iteration in the

algorithm and the optimal objective value to model (3.1) is zero. Let x∗ ∈ XRO \ S.

Consider model (3.7). One of the feasible solutions to this model for the set of optimal

solutions S is

x = x∗, lji = |xj
i − x∗

i|,

and

zji =

 1 if xj
i − x∗

i > 0

0 O.W.

for 0 ≤ j ≤ q. Since x∗ is not in S, for all xj ∈ S, we have ||xj − x∗||1 > 0. Therefore, the

optimal value for m for model (3.7) is greater than zero. It is a contradiction, and so all

of the elements in XRO must be met if the optimal objective value to model (3.7) is zero

at some iteration.

A.2.5 Proof of Corollary 3.3.2

We prove this corollary with contradiction. Suppose that there exists x̃ ∈ XRO that is not

generate with the algorithm. Thus, there must be a loop in this algorithm, and we only

meet the elements in a set X̄ ∈ XRO, and X̄ ≠ XRO. Since it is a loop in the algorithm,
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after generating all elements in X̄ , we must generate an element in X̄ again. Therefor, the

solution m for model (3.7) will be zero. Using Theorem 3.3.3, the algorithm must generate

all elements in XRO if it returns zero for the value of m. Thus, it is a contradiction and

the algorithm generates all elements in XRO.

A.3 Appendix 3: Proofs of Chapter 4

A.3.1 Proof of Theorem 4.2.1

The method to prove this proposition is similar to the proof of the theorem that presented a

PRO solution for this problem [Iancu and Trichakis, 2014]. Let x be a solution to problem

(4.2). Suppose that there exists a light RO solution x∗ for model (4.1) that dominated x.

Thus,

p′x∗ ≥ p′x, ∀p ∈ U , and

p̄′x∗ > p̄′x, for some p̄ ∈ U .

Suppose, ∃p̄ ∈ ext(U) such that p̄x∗ > p̄x, where p̄ is a solution to maxp∈U p(x∗ − x).

Since p̂ ∈ ri(V1), we can write p̂ as a convex combination of all extreme points of U . That is,

∃λ ∈ R|ext(U)| such that λ > 0 and 1′λ = 1 and p̂1 =
∑

i∈E p
iλi where ext(U) = {pi|i ∈ E}.

Thus,

p̂(x∗ − x) =
∑
i∈E

pi(x∗ − x) = p̄(x∗ − x) +
∑

i∈E,pi ̸=p̄

pi(x∗ − x).

140



Therefore, p̂(x∗−x) > 0 and so p̂x∗ > p̂x and x is not an optimal solution to model (4.2).

It is a contradiction, and so x is not dominated by another light RO solution. Thus, x is

a light PRO solution.

A.3.2 Proof of Proposition 4.3.1

Consider model

max
x∈XRO

p̂′x. (A.41)

Since zRO is the optimal objective value to model (4.1), then we have y′d = zRO for a

solution to model (A.41). Thus, the constraint y′d ≥ zRO is binding, and the solution

will change by deducting ϵ from the raight hand side of this constraint. Depending on the

shadow price of this constraint, the value of p̂′x might not change. Assuming the shadow

price is non-zero, the optimal objective value to model (A.41) will increase by increasing

ϵ. Let the shadow price be δ, the cost will improve by δ(ϵ). Thus, maxx∈XRE
ϵ1

p̂′x ≥

maxx∈XRE
ϵ2

p̂′x if ϵ1 > ϵ2. If we consider the function fp̂(ϵ) for different ϵs, we have

f(ϵ1; p̂) ≥ f(ϵ2; p̂) if ϵ1 > ϵ2,

and so the function f(ϵ; p̂) is an increasing function.
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