
Deep Learning for Object Relationships:
Applications to Road Safety and Bin

Picking

by

Auguste Lawrence Whelan Koh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2024

© Auguste Lawrence Whelan Koh 2024

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in the thesis. This is a true copy of the thesis, including any required
final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

The bin-picking project on which I worked, treated in Chapter 3, was started as part of
the Federated Learning for Robot Picking (FLAIROP) project and was done under the
supervision of Professor Paul Fieguth and the mentorship of Research Assistant Professor
Yuhao Chen.

Elements of the work treated in an extended abstract [1] submitted for the 8th Annual
Conference on Vision and Imaging Systems (CVIS 2022) and treated in an associated poster
session [2] are presented in Chapter 4 of this thesis. The co-authors of the aforementioned
extended abstract and poster are myself, Jinman Park, and Paul Fieguth. The work treated
in Chapter 4 was performed under the supervision of Professor Paul Fieguth and was done
as part of a collaboration with Miovision Technologies Incorporated.

iii

Abstract

Estimating the relationships between objects is fundamental to certain problems that
require an understanding of a scene captured by a camera. This object-relationship theme
is explored in two contexts in this thesis: (i) the task of identifying relative placements of
objects for bin picking in potential clutter and (ii) the task of estimating distances between
vehicles in 3D given some wide-angle video.

Bin picking generally refers to the task of picking up an object in a bin with a robotic
arm, given some measurement of the scene. This problem can have a number of challenges
and difficulties, one of which being the potential for the objects in the scene to be piled up
or in a clutter. If the target object to manipulate is partially occluded by other objects
in the scene, there can be some difficulty not only in terms of detecting the object, but
also in terms of deciding how to clear the way to this target object or how to grasp
and lift it appropriately without damaging or excessively displacing the neighbouring
objects. Herein is presented a deep-learning module to help deal with potentially cluttered
scenes: To account for neighbouring objects when estimating the relationship between two
objects, a graph-network architecture was designed and implemented. This architecture
relies on the bounding boxes and feature maps that would be outputted by an upstream
detector to estimate the relationships for pairs of detected objects. The starting edge and
vertex attributes of this proposed graph-network architecture are bounding box coordinates
(or values derived from such coordinates) and feature-map crops. In addition to this
architecture, some definitions for precision and recall that are tailored to this problem are
proposed for comparing a ground-truth graph to a predicted graph. Finally, the proposed
architecture was evaluated against a baseline model using existing datasets: one containing
computer-rendered images, and one with real images.

The problem of estimating distances between vehicles is motivated by the more general
problem of estimating the risk of accidents at any given intersection or road segment.
The number of traffic accidents per year in Canada, albeit generally decreasing, is still
substantial. Estimating the risk of accident at any given traffic intersection or road segment
could provide insight and actionable information to municipalities to help determine which
intersection or road segment should be prioritized and potentially improved in order to
increase road safety. To estimate this risk of accidents, tracking the number of close calls
or near misses is more desirable than merely tracking the number of accidents, as it does
not require the observer to wait for accidents to occur, and close calls are presumably
much more frequent than actual accidents. In order to determine whether a close call has
occurred, one could simply refer to the distance between any two given vehicles; although
this is not a perfect metric for detecting close calls, it is a starting point and a metric

iv

that is simple and easy to interpret. As such, this thesis addresses the more specific
problem of estimating distances between any two detected vehicles from wide-angle videos.
The wide-angle nature of images or videos introduces a difficulty, as it challenges a core
assumption of normal convolutional neural networks—that of translational equivariance. A
size-estimation model which uses spherical convolutions was evaluated on a simple, artificial
dataset, and results showed that the use of spherical convolutions, as opposed to normal
planar convolutions, was able to offer better performance in the tested scenario. In addition
to this work, a deep-learning module to estimate distances between vehicles, given some
bounding box coordinates and an image, is proposed. An ablation study was performed
on this distance-estimating architecture, the results of which quantified the amount of
performance gain that could be attributed to the use of pixel information in addition to
bounding-box coordinates.

v

Acknowledgements

I would first like to thank my MASc advisor, Professor Paul Fieguth, for his mentorship
and support during this thesis work. In addition, I would like to thank Research Assistant
Professor Yuhao Chen for his guidance and help on the bin picking project.

I thank Jinman (Eddie) Park and Miovision Technologies Incorporated for their collabo-
ration and help on the traffic safety project. I also acknowledge the financial support of
Miovision Technologies Incorporated, NSERC-Alliance, and OCI-VIP II.

I thank Emily Zhixuan Zeng for the help that she has given me toward using the
MetaGraspNet datasets [3, 4] for the bin picking project.

Finally, I am grateful for all the support that I have received from family and friends
throughout my studies.

vi

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements vi

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivations and Problem Descriptions . 1

1.1.1 Bin Picking in Clutter . 1

1.1.2 Detecting Close Calls in Road Traffic 3

1.2 Contributions . 4

2 Background 6

2.1 The Bin Picking Problem . 6

2.2 Object Detection Using Deep Learning . 8

2.2.1 Two-Stage Approaches . 10

2.2.2 One-Stage Approaches . 11

vii

2.3 Graph Networks . 12

2.4 Spherical Convolutional Neural Networks 14

3 Bin Picking for Cluttered Scenes 18

3.1 Problem Formulation . 18

3.2 Dataset Challenges . 21

3.2.1 Cycle Problem . 22

3.2.2 Occluded-Boundary Problem . 23

3.2.3 Small-Overlap Problem . 25

3.3 Baseline Model . 26

3.4 Proposed Model . 29

3.5 Performance Metrics . 37

3.6 Results . 41

4 Predicting Distances Between Vehicles 44

4.1 Problem Formulation . 44

4.2 Dataset Creation with the CARLA Simulator 47

4.3 Signal Acquired by a Wide-Angle Camera 48

4.4 Spherical Convolutional Layers . 58

4.5 Distance Estimation from Bounding Boxes and Images 63

5 Conclusion 71

References 74

viii

List of Figures

2.1 Illustration of a bin-picking system with robotic arm and camera. 7

3.1 An RGB image from a simulation of a set of objects in a scene, with annotations
showing relationships. 20

3.2 Cycles of two or more vertices can be present. 23

3.3 Example of a fully occluded boundary. 24

3.4 Example of image with small overlap between two objects. 26

3.5 The proposed GN block compared to the full GN block [56]. 33

3.6 Overview of the main edge-update mechanism for an edge e between vertices
va and vb. 35

3.7 Overview of the main vertex-update mechanism for a vertex v with two incident
edges e1 and e2. 36

3.8 Types of edge detection errors between a ground-truth and a predicted graph. 40

3.9 Results for three training runs with synthetic RGB images of the MetaGrasp-
NetV2 [4] dataset. 42

3.10 Results for two training runs with the VMRD dataset. 43

4.1 Image from a CARLA [83] simulation of traffic at an intersection, with a wide
field of view. 46

4.2 An orthographic projection of 3D objects on a 2D plane is equivariant to
translation. 49

4.3 A rectilinear projection (with a large field of view) is not equivariant to
translation of objects. 50

4.4 Illustration for Proposition 4.2. 53

ix

4.5 Illustration for Proposition 4.3. 54

4.6 Examples of generated images for training and evaluation. 60

4.7 RPN Architecture used. 61

4.8 Planar vs. spherical RPN. 62

4.9 Architecture of Dd. 64

4.10 Training performance for one training run per architecture. 68

4.11 Plots of validation performance for one training run. 69

4.12 Validation performance as a function of knoise (at validation time, ranging from
0 to 0.4) of models trained with knoise = 0.2. 70

x

List of Tables

4.1 Mapping between channel hyperparameter and trainable-parameter count. 61

4.2 Best epoch (with total) and corresponding mean absolute validation error, for
multiple training runs, with knoise = 0.2. 67

xi

Chapter 1

Introduction

Since the rise in popularity of deep learning [5–7], object detection has met a great deal
of success through substantial improvements in detection accuracy. From R-CNN [8] to
CenterNet [9] and DETR [10], deep learning methods have repeatedly surpassed classical
methods in terms of object detection accuracy [11]. A derived field [12] which directly
relies on the ability to detect objects is the prediction of relationships between detected
objects in a scene; this task is generally referred to as scene graph generation [12–14]. This
field is important in applications where there is an interest in understanding the general
structure of a scene rather than characteristics of each object on its own. This thesis will
focus on the applications of deep learning for predicting relationships between objects for
two applications: bin picking and traffic road safety.

1.1 Motivations and Problem Descriptions

Motivations and brief problem statements for two problems—bin picking in clutter and
detecting close calls in road traffic—will be given in the two subsections that follow. The
problem formulations will become more precisely defined in Chapter 3 and Chapter 4.

1.1.1 Bin Picking in Clutter

Bin picking [15–19] is the task of grasping, with a robotic arm, objects placed in a bin; a
description of this problem is provided in the background in Section 2.1. In the presence of
clutter, some objects may be occluded from the perspective of the camera. The presence

1

of such occluding objects can not only make object detection more challenging, but can
also lead to challenges or shortcomings with respect to the grasping process if the relative
placements of the objects neighbouring the targeted object are not accounted for. Three
such issues are described below.

Collision between the arm and non-targeted objects: Upon attempting to grasp
a targeted object, the robotic arm may come into physical contact with neighbouring objects
in the scene. This could cause the grasp attempt to fail, as the non-targeted objects could
either prevent the robotic arm from placing the end effector in the correct position or, when
using a gripper, a non-targeted object could prevent the end effector from closing on and
grasping the object effectively.

Accidentally lifting non-targeted objects: Assuming that a grasp attempt was
successful and that the end effector has securely gripped the targeted object: Upon lifting
the targeted object, the lifting motion of the arm may partly lift some neighbouring
objects that were physically supported by the targeted object. Inadvertently moving such
neighbouring objects may be undesirable for two reasons: first, after being inadvertently
moved, these other objects in the scene might not return to their original positions, and
the model might require a new picture of the scene to be taken in order to detect, once
again, the remaining objects; and second, some neighbouring objects could be lifted to such
an extent as to fall out of the bin or out of the field of view of the camera, which could
damage these objects or make them not visible to the system.

Lower overall speed due to unnecessary grasps: Even if the grasping system is
aware that the targeted object is occluded, without knowledge of exactly which objects
are obstructing the way to the targeted object, clearing the scene in order to access the
non-targeted object might be done in a suboptimal sequence of grasps by unnecessarily
removing some objects from the bin.

Together, these issues call for a bin-picking model that is able to reason about the
relative placements of objects in a scene, that is able to understand which objects might get
moved as a consequence of a targeted object being lifted, and that can find a suitable order
in which to remove objects which are obstructing the targeted object.∗ In particular, a
part of this thesis focuses on a proposed deep-learning model that can learn to understand
which objects are subject to being displaced when the targeted object is picked up.

∗Note that once a neighbouring object is identified as one that must be picked up before the targeted
object, this neighbouring object itself temporarily becomes the targeted object, and it might also be
occluded by other objects; there is thus a recursive nature to this problem.

2

The scope of this problem addressed in this thesis is the following: Given an image of
a cluttered set of objects in a bin or on a flat surface, for any given object in the scene
(the targeted object), design a model to predict which detected objects must be moved before
grasping and lifting the targeted object.

1.1.2 Detecting Close Calls in Road Traffic

Although there has been a general trend of decrease in the number of collisions resulting
in injury or death in the past two decades in Canada (156 415 reported for 2002, 124 682
reported for 2012, and 79 563 reported for 2021 [20]), the number of total injuries in Canada
is still substantial: 108 018 injuries (excluding deaths) caused by motor vehicle collisions
were reported for 2021 [20]. As such, there is an interest in making roads safer by first
identifying the main causes of accidents and any road segments or intersections that are
particularly dangerous to drivers, cyclists, and pedestrians. This can be done by referring
to the number of reported accidents for any area of interest.

However, although the number of accidents per year is substantial, the number of road
segments and intersections, especially in large cities, is considerable. Thus, the number of
accidents per year per intersection can be relatively low for some intersections, especially
for those that are less frequently used. Furthermore, merely referring to accident statistics
to determine the level of risk of a certain road segment or intersection means that it is
impossible to reliably identify high-risk areas or find recurring causes of accidents before
any accidents occur! As such, there is motivation to instead refer to some other metrics
that can be collected before accidents ever happen. Close calls (or near misses) that occur
between a vehicle and a pedestrian, cyclist, or other vehicle are presumably more common
than actual accidents∗ and strongly correlated to the risk of accidents. Thus, referring to
the prevalence of close calls seems, a priori, to be more desirable than only tracking the
prevalence of actual accidents when assessing the degree of risk of a given area.

Miovision Technologies Incorporated, a company which has collaborated on this project,
offers products for traffic monitoring and data analysis. In order to monitor traffic, wide-
angle monocular RGB cameras have been installed on tall structures at a number of
intersections in such a way that they are placed above pedestrians, cyclists, and typical

∗Even if close calls do not occur much more often than accidents, they supplement the accidents
data, and they should allow a faster identification of those road segments and intersections that are most
dangerous.

3

vehicles. Consequently, assumptions about the data being collected and the equipment used
for this road-safety project have been based on the real-world circumstances and constraints
under which data is collected by Miovision.

The high-level objective of this project is to identify close calls and near misses based
on RGB footage produced by these fixed wide-angle cameras. In this thesis, this project
is focused on estimating distances between two vehicles, which is a simple and easy-to-
interpret indicator of whether a close call took place between those two vehicles. The
problem formulation of this project in this thesis is thus the following: Given an RGB
video from a wide-angle, monocular, fixed camera of known specifications, design a model to
estimate the 3D distance between any two vehicles that are simultaneously visible in this
video.

1.2 Contributions

Generally, the objectives for this thesis are to provide, for each of the two main problems,
insight into limitations of past methods, and why some proposed methods should be well-
suited to each problem. The main contributions of this thesis, in the order that they are
presented, are as follows:

1. A graph-network-based architecture for predicting relative object placements in a
scene.

2. Formalization of performance metrics for object relationship prediction models in the
context of bin picking, as rigorous metric definitions suited to this problem appear to
be lacking in the related literature.

3. An evaluation of the suitability of spherical convolutions for 3D distance estimation
in wide-angle images.

4. A model to estimate distance between vehicles on a fixed plane, based on the output
of a detector.

The remainder of the thesis contains four chapters. Chapter 2 provides some background
theory on four major topics: the bin picking problem, object detection using deep learning,
graph networks, and spherical convolutional networks. The background content on the bin
picking problem, object detection, and graph networks includes information germane to
the problem of bin picking in clutter introduced in Section 1.1.1, while the background on

4

spherical convolutional networks and the background on object detection are relevant to the
distance-estimation problem introduced in Section 1.1.2. Chapter 3 further formulates the
problem of bin picking in clutter described in Section 1.1.1, and it presents a proposed model
along with some performance results. Chapter 4 focuses on the distance-estimation problem
introduced in Section 1.1.2 by providing motivation for the use of spherical convolutions
and by presenting a module architecture, designed to be placed downstream of a detector,
for estimating distances between detected vehicles. Finally, Chapter 5 concludes both
Chapter 3 and Chapter 4 and includes suggestions for any continuations of these projects.

5

Chapter 2

Background

Before delving into each of the two main computer vision problems of this thesis, some
background concepts are given in this current chapter in order to provide context to the
reader. Some fields and methods used for this thesis work already have a large presence in
the literature, and before starting to use any of them, the reader might benefit from first
getting a summary for each, some relevant definitions, as well as an introduction to the
notation that will later be used in some subsequent chapters.

2.1 The Bin Picking Problem

Bin picking [15–19] generally refers to the task, for a robotic system, of picking up an object
in a scene with a robotic arm; as illustrated in Figure 2.1, the robotic system typically
includes one or more imaging sensors (such as an RGB camera and/or depth camera) that
provide measurements of the scene. Thus, the problem of robotic object grasping is a
compound one, which can include the following sub-tasks (depending on what type of
approach is used): scene analysis, object detection, pose estimation, and grasp and path
planning (how the robotic arm should be placed on the object) [15, p. 3].

While a large portion of object-grasping approaches rely on estimating the poses of
objects and using geometric models (e.g., CAD models of the objects to manipulate), there
has recently been an increase in popularity in data-driven approaches which do not rely on
predetermined geometric models of the objects to manipulate [16, 21], which offers flexibility.
Furthermore, model-free approaches have been reported to allow for generalization to objects
not previously seen by the grasping system [21, 22].

6

ROBOTIC
ARM

CAMERA

BIN

Figure 2.1: Illustration of a bin-picking system comprising of a
robotic arm and a camera pointed towards the bin. At this point in
the process, the camera has already captured an image, an object
has been detected, a path has been planned, and the robotic arm
is in the process of positioning the end effector around an object to
grasp it.

In addition to the possibility of dealing with objects without knowing their geometric
models, or dealing with novel objects, bin picking and object grasping can include additional
challenges: The objects to manipulate may be shiny, transparent, or translucent, which
introduces difficulty at the perception level. Challenges can also be present at the object
manipulation level: Objects may be fragile or shaped in a way which greatly restrict the
range of acceptable ways in which to grasp the object, or multiple objects to manipulate
may be piled up or in a clutter. This last difficulty motivates, and is partly addressed in,
Chapter 3.

The challenge of dealing with clutter in bin picking has a history which dates at least
as far back as 1983 [23]. This work by K. Ikeuchi et al. [23] presented a system which
segmented the scene based on photometric stereo measurements, estimated the attitude and
position of the object to grasp, and determined where to grasp the object. As summarized
in [24], later works related to this challenge of dealing with clutter have investigated different

7

approaches, ranging from using supervised machine learning to learn how to interact with
the model [25, 26], to physically interacting with the pile of objects in order to either probe
or change the arrangements of the objects [27–29].

Robotic object grasping is generally a broad and fundamental problem in autonomous
robotics, and there are multiple applications that motivate research in this field [30]: these
include anthropomorphic service robots for household scenarios [18], picking objects in
industrial, automotive settings [31], and warehouse automation [32].

2.2 Object Detection Using Deep Learning

In computer vision, the task of an object-detection model (or detector) consists in locating
and classifying some physical objects that appear in an RGB image or video (possibly
including pixel-wise depth information, D) [11, 33, 34]. For greater clarity and precision, a
description for each of the main concepts in the preceding statement is given:

• Objects: A (physical) object is to be interpreted in the usual meaning of the word,
including animate objects: e.g., a banana, a car, a pair of scissors, etc.

• Images or videos: Using a notation and mathematical framework similar to that
described in [35], let an image of c channels (c = 3 for an RGB image, and c = 4
for an RGB-D image) be mathematically described as a function which maps from
a 2D integer lattice (set of discrete coordinates), Z2, to a set of three-dimensional
real-valued vectors, the elements of which are all non-negative and no greater than 1:

Z2 →
{
v ∈ Rc

∣∣ 0 ≤ min(v) ∧max(v) ≤ 1
}
.

This set of coordinates Z2 is for specifying two spatial dimensions: a horizontal
direction ȷ̂ and a vertical direction k̂. This definition of an image can be extended
to also encompass videos (lists of images); this results in a function with the same
target set, but a different domain: Z3. Thus, a video is such a function where the
domain is a set of discrete coordinates, each specifying a horizontal position (along ȷ̂),
a vertical position (along k̂), and a temporal position (along t̂).

• Model : An object detection model is the implementation of some function D which
maps from the set of all images (or videos), M, to the set of all multisets of pairs in
which the first element is a bounding box and the second element is a class:

D : M → P ′(B × C) ,

8

where P ′(□) is the set of all multisets which have a subset of □ as their underlying
set.∗ The wording “implementation” is used here because a model is not merely a
function, since the general architecture and algorithm used for making an inference are
defining characteristics of the model. In contrast, a function can be entirely described
as simply a “set of ordered pairs” [36, p. 42].

• Locating : Expressing the location of an object is usually carried out by placing
bounding boxes (rectangles) on the 2D planes of the images or video frames. The set
of all possible 2D bounding boxes is denoted by B:

B :=


[
b1,1 b1,2
b2,1 b2,2

]
∈ R2×2

∣∣∣∣∣∣ b1,1 < b1,2 ∧ b2,1 < b2,2

 ,

where [b1,1 b2,1]
T is the bottom-left corner vertex of the bounding box and [b1,2 b2,2]

T

is the top-right corner vertex.

• Classifying : In this context, classification is the process of assigning some categorical
label, i.e., a class, out of all classes C = {c1, c2, . . . , ck} considered, to each of the
estimated locations (bounding boxes). Generic classes might include, for example,
“person”, “chair”, “fruit”, “vehicle”, etc. [37]; the specific classes would depend on the
dataset and the application for which the detection algorithm is used. The definition of
a class itself can be approached in a variety of ways, but it is reasonable to restrict its
definition to only depend on properties that can have a direct effect on the measured
image or video (e.g., shape, colour, degree of scattering, degree of absorption, etc.).

The field of object detection has existed since at least the 1990s [11, 33], but the
use of deep learning for this purpose has become particularly popular [11] following the
introduction [38] of AlexNet [39] in 2012. The year 2014 marks the start of a period
of widespread use of deep-learning methods for object detection [11, 33, 34], with the
introduction of R-CNN [8] and, in 2015, the introduction [40] of YOLO [41]. Around this
time, a distinction between two categories of such models becomes apparent: “two-stage
detectors” and “one-stage detectors” [11]. A two-stage detector, such as Faster R-CNN [42],
includes a region proposal stage, DRP : M → P ′(B), which generates a large number of
proposed regions of interest (RoIs) [43]. Each proposed RoI is then inputted into the

∗The idea of multiset is used here instead of simply set because it could technically be possible for a
detector to output two bounding boxes with the same coordinates, and with the same classes assigned to
both of them, indicating that two objects of the same class have the same location on the image (e.g., two
trees, one behind the other, that have the same height, width, and location on the image).

9

second stage, DH : P ′(B) → P ′(B × C), which assigns a class to each proposal and refines
the bounding-box coordinates [42, 43]. A two-stage detector is thus an algorithm for a
function of the form DH ◦ DRP, with distinct implementations (algorithm sections) for each
of DRP and DH. One-stage detectors, such as YOLO [41], produce both bounding-box
coordinates and assign a class to each bounding box in a single stage, without intermediate
proposals [43]. Thus, a one-stage detector is not composed of distinct algorithms for DRP

and DH.

Subsections 2.2.1 and 2.2.2 gives a brief overview of these two categories of detectors,
with a greater focus on the two-stage approaches, as this is the category of deep-learning
models that were used in the main studies for this thesis.

2.2.1 Two-Stage Approaches

The two stages involved in these approaches are the following, in the order that the
processing is performed [33]:

1. A region proposal stage, which proposes many bounding boxes in the image
regardless of the apparent classes of the objects that are detected—this stage is class
agnostic.

2. A prediction stage which gives a classification output [33], assigning an object class
to each region proposal. This stage may also refine the bounding-box coordinates of
the selected region proposals from the first stage [33].

Region Proposal Stage

Fundamentally, the purpose of a region proposal stage is to produce a large number of
bounding boxes as hypotheses for object locations. As such, an adequate region proposal
stage should have high recall and make proposals that are class agnostic.

The region proposal stage can either be implemented using classical methods, such as
selective search [8, 44] and multiscale combinatorial grouping [45], or using deep-learning
approaches [42, 46, 47]. An advantage of using deep-learning for the region proposal stage
is that it allows for end-to-end training with the weights of the prediction stage [42].

The Region Proposal Network (RPN) introduced in [42], as part of Faster R-CNN, is
the first such instance of a deep-learning approach to generating region proposal. The
processing steps of this RPN are the following, based on [42]:

10

1. The image is first fed into a convolutional feature extractor which outputs a feature
map. (This feature map can then be re-used by the prediction stage of the detector.)

2. A small fully-connected network is applied in a sliding-window fashion along the two
spatial dimensions of the output feature map—this is effectively a convolutional layer.
Spatial overlap between windows is permitted.

3. To each window is assigned a set of predefined reference boxes, named anchors. These
anchors include a variety of predefined scales and aspect ratios.

4. For each anchor, two predictions are performed: (a) the probability that the anchor
corresponds to an object, and (b) regression in each of the four bounding-box parameter
dimensions, corresponding to the amount of offset by which to adjust the anchor
coordinates to fit the bounds of object that has been detected.

The number of resulting proposals can then be adjusted by selecting a threshold for the
probability scores of step 4(a).

Prediction Stage

Given the output of the region proposal stage and the original image (or feature map from
step 1 of the RPN), the role of the prediction stage is to further refine the bounding-box
coordinates and to assign to each bounding box an object class [48]. This stage typically
starts by producing a crop of the image or feature map for each bounding box received,
and then performs pooling on each crop [48]. In the case of [48], the pooled features-map
crop is then fed into some fully-connected layers, which then branch off to a classification
module and a bounding-box regression module.

2.2.2 One-Stage Approaches

The defining characteristic of one-stage detectors is that they do not rely on using bounding-
box proposals that were dynamically created by an upstream module; instead, object
classification (specifying the type of object) is performed without directly using the predicted
bounding-box coordinates [43]. These detectors often work in a grid-search-like fashion,
with the image being processed at different locations [49] (and sometimes in combination
with different scales and aspect ratios; e.g., [50]).

11

One of the main appeals of one-stage detectors is their inference speed, which is often
higher than two-stage detectors (this depends on the number of proposals to process), albeit
at the cost of prediction accuracy [41].

Popular one-stage detectors include the following [11]: YOLO [41] (and various deriva-
tives with improvements in inference speed and accuracy; e.g., YOLOv2 [51], YOLOv3 [52],
YOLOv4 [53], and YOLOv7 [54]), Single Shot Multibox Detector [50], RetinaNet [49],
CornerNet [55], and CenterNet [9].

Since the two main projects covered by this thesis do not require real-time inference,
the two-stage class of detectors was selected.

2.3 Graph Networks

Graph networks [56–59], a generalization of graph neural networks [60–64], are models that
process data that has a graph structure [56]. Any graph can be defined by a set of vertices
V and a set of edges E which is a subset of V2. As such, a graph G can simply be defined
as (V , E). In the context of graph networks, there is also the concept of an attribute, which
is defined per graph-processing iteration and is associated to each vertex, edge, and the
graph as a whole [56]. For a state i ∈ N and a graph G, this concept of attributes can be
represented by a V ∪ E ∪ {G} → ∪∞

n=1Rn function f iG which maps any vertex or edge of
the graph G (or maps G itself) to a feature vector of some dimensionality. (As an abuse
of notation, the more succinct form f i will frequently be used, especially when there is no
ambiguity as to which graph this function corresponds to.) A graph network processes
and updates all of these attributes in iterations, each of which has its update performed
by a dedicated “GN block” [56] (a processing & update block). A GN block responsible
for processing a graph state i (and producing state i + 1) is thus a function f i 7→ f i+1,
which processes all the attributes of the edges, the vertices, and the graph. A GN block is
composed of six fundamental functions [56]:

1. The edge-update function: ϕe

2. The vertex-update function: ϕv

3. The global-update function: ϕg

4. The local edge-aggregation function: ρe→v

5. The global edge-aggregation function: ρe→g

12

6. The vertex-aggregation function: ρv→g

Any of the three update functions could be implemented as artificial neural networks, while
the three aggregation functions would need to be able to accept a variable input size (but
they could still include some processing component implemented using some artificial neural
network) [56].

The output of the ρe→v aggregation function for an input f i(vt) (for some vertex vt) is
independent of the attributes of the edges that do not have vertex vt as their heads; i.e., if
{{□1,□2, . . . }} denotes a multiset with elements □1,□2, . . ., then f i+1(vt) is independent of
{{f i(v1, v2) | v1 ∈ V ∧ v2 ̸= vt}}. Since ρe→v operates on multisets of edge attributes, it is
convenient to define a new function to refer to the multiset of attributes of a set of edges:
Let Fi

G be a function analogous to f iG that can be applied to any subset of the domain of f iG
(and let Fi be a more succinct form); i.e.,

Fi
G : P

(
V ∪ E ∪ {G}

)
→ ∪∞

n=1 P ′(Rn)

S 7→ {{f iG(s) | s ∈ S}} ,

where P(□) is the power set of □ and P ′ is the multiset counterpart (defined on page 9).
Further, let e→ be the function which, for an input vertex vt, outputs the set of edges that
have vertex vt as their heads:

e→ : V → P(E)

vt 7→
{
(v1, v2)

∣∣ v1 ∈ V ∧ v2 = vt
}
.

At last, with these notations defined and using the framework from [56], for any given edge
e := (v1, v2) and ∀i ∈ N, the updated attributes are defined in a recursive fashion and can
be expressed using the six fundamental functions:

f i+1(e) = ϕe

(
f i(e), f i(v1), f i(v2), f i(G)

)
f i+1(v) = ϕv

(
ρe→v ◦ Fi+1 ◦ e→(v), f i(v), f i(G)

)
f i+1(G) = ϕg

(
ρe→g ◦ Fi+1(E), ρv→g ◦ Fi+1(V), f i(G)

)
.

One notable aspect of updating attributes in this fashion is that after n iterations,
information from the attribute of any vertex va can have an effect on the attributes of all
edges and vertices along all walks of length n [56]. Conversely, if the shortest path from a

13

node va and a node vb is of length n+ 1, then it is guaranteed that after only n (or fewer)
iterations, the attribute of va will have neither affected that of vb and nor that of any edge
which has vb as its head.

Graph-network or graph-network-like models have been previously applied on tasks such
as molecular design [59], road traffic forecasting [65, 66], and visual scene understanding [67,
68]. Such networks are generally suitable when the data on which to make a prediction has
the structure of a graph, but where the topology of the graph is not constant across the
dataset. This idea of variable topology is relevant to both problems addressed in Chapter 3
and Chapter 4: indeed, in the case of the bin-picking problem, the number of objects in a
bin can vary across images, and in the case of the close-call detection problem, the number
of vehicles, pedestrians, and cyclists in a scene can vary across videos and even frames.

2.4 Spherical Convolutional Neural Networks

Spherical convolutional neural networks (S2-CNNs) [69] are convolutional neural networks
(CNNs) [70] which use spherical convolutional layers instead of regular 2-dimensional (planar)
convolutional layers that operate on a 2-dimensional Euclidean space E2. Thus, an image
processed by an S2-CNN is assumed to lie on a sphere; in contrast to a typical (planar)
image where to each point in R2 is associated an RGB value (a triplet), a spherical image
can be described as an association of each point on a 2-dimensional sphere S2 with an RGB
value. Formally, and as a generalization of definitions of image given in [35, 69], a k-channel
image (k-dimensional signal) on a space S can be described as an S → Rk function, where
an input is the coordinates of a point on the image, and the output is the pixel value
at that point. As such, a continuous-domain RGB image on E2 can be described as an
R2 → R3 function (or a restriction of this function, as applicable), with its discrete-domain
counterpart being described as an Z2 → R3 function [35]. Similarly, a continuous-domain
RGB image on a 2-sphere S2 can be described as an S2 → R3 function [69].

The convolution operator “∗” is an S(Rk) × S(Rk) → SR function. When S = R2, the
convolution operation between an image f and a kernel κ is defined as follows [71, p. 95]:

(κ ∗ f)(x, y) :=
∫ ∞

−∞

∫ ∞

−∞
f(tx, ty) · κ(x− tx, y − ty) dtx dty .

Using a vector notation, the following definition is equivalent:

(κ ∗ f)(x⃗) =
∫
R2

f (⃗t)
T
κ(x⃗− t⃗) dt⃗ . (2.1)

14

Now, what would convolution on the sphere look like? Over what space would integration
be done, and how would one deal with the x⃗ − t⃗ component, which is not applicable to
coordinates on a sphere? In order to choose a definition which is adequate, it is essential
to first identify what properties of the convolution operator should be maintained. The
convolution operator has a number of properties [35, 69] that have contributed to its success
in deep learning for computer vision:

1. It is equivariant with respect to translation. More rigorously, let θκ : f 7→ κ∗f for any
kernel κ ∈ (R2)

(Rk). Thus, θκ(f) is simply the result of convolving some given kernel κ
with the input image f . Such θκ functions are equivariant with respect to translation;
i.e., if translation is described as a group action τ of the group T = (R2,+) on
(R2)

(Rk)∪ (R2)
(R) such that τ (⃗t, f) = (x 7→ f(x+ t⃗)), then the translation equivariance

property is as follows:

∀t⃗ ∀κ ∀f

(
θκ

(
τ
(
t⃗, f
))

= τ
(
t⃗, θκ(f)

))
.

This same idea can be expressed in a commutative diagram [72], clearly showing that
applying convolution via θκ followed by some translation τt⃗ : f 7→ τ (⃗t, f) is equivalent
to applying translation τt⃗ followed by convolution via θκ:

(R2)
(Rk)

(R2)
R

(R2)
(Rk)

(R2)
R

τt⃗

θκ

τt⃗

θκ

2. The input to θκ and its output are both signals on the same space, E2; thus, it is easy
to chain convolutional layers by simply using a dedicated θκ function for each of the
k desired output channels.

3. It is simple to discretize θκ, as E2 (the domain of both kernel κ and feature map f)
can be discretized with a tessellation that is symmetric with respect to translation
(with square tiles forming a grid)—a regular tessellation.

15

Ideally, for convolution operations on the sphere, the three properties listed above should
be satisfied; however, working with images on S2 comes with some complications which
require substantial adjustments to the definition and implementation of regular convolutions.
Two such complications are presented below:

(A) The space of rotations is not isomorphic to S2 [69]: The E2 space possesses
multiple symmetries; notably, its symmetry group E2 includes the subgroup T2 of all
translations in 2D, which is isomorphic to E2 itself [73, p. 19]. Practically, this means
that a convolution kernel moving over E2 can do so in a way that will result in a signal
on E2 and that the input and output of a convolution on E2 are both signals on E2.
This is convenient because such convolution can be composed (chained) with itself
without any change in the underlying space on which the signal lies. Further this also
allows for translational equivariance. While allowing for self-composition is feasible,
preserving translational equivariance is not possible on the sphere, as translation is not
part of the symmetry group of the sphere. As rotations of the sphere are analogous to
translations on E2, one could consider defining a spherical convolution operator that
is equivariant to rotations on the sphere; however, the symmetry group of the sphere,
ignoring reflections, is the three-dimensional group SO(3), which is not isomorphic to
S2 (different numbers of dimensions), and the output of spherical convolution of two
signals on S2 is three-dimensional [69]. Although one could conceive of a spherical
convolution operator which outputs a two-dimensional signal, this operator would
have to be, for each location on the sphere, non-equivariant to a certain rotation (since
there would be one fewer rotation dimension)—such as the one in [74], as pointed out
by [69].

(B) Very limited tessellation options: Since, practically, it is convenient to store an
image f : S → Rk in memory in an array structure, computation of convolution would
typically be done on a discretized version of f . In the case that S := E2, this poses
no major problem; however, in the case of S2, there is no non-degenerate regular
tessellation on the sphere other than the five tessellations which are each analogous
to one of the five platonic solids [75, pp. 128–130]. The platonic solid with the most
faces has 20 faces [75, p. 130], which is clearly too coarse-grained for many computer
vision applications. This calls for the need to interpolate values when performing
spherical convolution at resolutions of more than 20 pixels over the entire sphere.

T. S. Cohen et al. [69] have proposed two definitions for correlation∗—one for signals on
S2 and one for signals on SO(3). Their definitions, after adapting them to be consistent

∗For real-valued signals, cross-correlation and convolution are equivalent, up to some reflections of one
of the two input functions; in contemporary computer vision, it is common to use the term “convolution”

16

with the notation used in (2.1), are as follows, for a spherical image (of feature map) f and
a spherical kernel κ:

∀R ∈ SO(3) ∀κ, f ∈ (S2)
(Rk)

(
(κ ∗ f)(R) :=

∫
S2

f (⃗t)
T
κ(R−1t⃗) dt⃗

)
, (2.2)

∀R ∈ SO(3) ∀κ, f ∈ (SO(3))(R
k)

(
(κ ∗ f)(R) :=

∫
SO(3)

f(Q)Tκ(R−1Q) dQ

)
, (2.3)

where dQ is an integration measure on SO(3) (the definition of which is omitted here) [69].
There are three notable points to emphasize from these definitions [69]:

• The R of (2.2) and (2.3) is a 3-by-3 rotation matrix that is analogous to the x⃗ in (2.1);
an input to the function κ ∗ f is a rotation matrix. Thus, any kernel placement on the
sphere is defined by a rotation, and any pixel of a feature map on SO(3) is positioned
at a particular rotation.

• The input signals in (2.2) are on S2, while the output signal is on SO(3); the input
signals in (2.3) and the output signal are both on SO(3). Thus, the convolution
of (2.2) cannot be naturally chained with itself, while the convolution of (2.3) can.

• SO(3) is a three-dimensional manifold, and thus the space over which the kernel
travels in (2.2) and (2.3) is three-dimensional, and the kernel and feature maps in (2.3)
are three-dimensional. This can substantially increase the computational complexity
of a spherical convolution algorithm [69].

Despite the popularity and relative simplicity of convolutions on E2, which are contrasted
by the practical complications that can arise from spherical convolutions, this latter type of
convolution does have its place in some applications where the signal on which to make
some inference has a spherical geometry. The concept of spherical convolutions and its
limitations will become relevant in Chapter 4, and the use of spherical convolutions will be
justified therein, as it will be shown that the images collected by a wide-angle camera are
inherently spherical due to the geometry of the measurement system.

when actually referring to the cross-correlation operation, such as in the name for CNNs (as mentioned
in [69]).

17

Chapter 3

Bin Picking for Cluttered Scenes

This chapter will more precisely define the bin-picking problem introduced in Chapter 1. It
will also outline and discuss some of the main challenges associated with the bin-picking
problem in cases of potential clutter in a scene, and it will describe a proposed model
architecture for improving detection performance on highly realistic datasets such as the
MetaGraspNetV2 dataset [4].

3.1 Problem Formulation

As explained in Section 2.1, the bin picking problem generally refers to the task of using a
robotic arm to pick up some targeted object in a bin based on some measured data, such
as RGB or RGB-D images. This current section will focus on the problem of interpreting
the scene and, in particular, on understanding the relative arrangements of objects in the
scene, especially in cases of possible clutter. In situations in which objects are cluttered in
a pile, identifying which object to grasp first is not necessarily obvious. Some objects might
be physically obstructing the path that the robotic arm might follow to grasp the targeted
object, or neighbouring objects might be visually occluding the targeted object. In order to
reason about the scene and about how to proceed in cases of clutter, it is important for
the bin-picking system to first be able to identify the occlusion or obstruction relationships
between the objects in the scene (and thus, their relative placements). A formulation is
given below for this identification problem.

18

For a given image of a scene containing N objects V := {v0, v1, . . . , vN} that are visible
to a camera, the relationship between objects V can be specified by a function

c2,→ : E→ → K2,→ (3.1)

where

E→ = {(vk, vm) ∈ V × V | vk ̸= vm} (3.2)

are all the possible ordered pairs of distinct objects in the given image and where K2,→ =
{“obstructing” , “not obstructing”} are the possible classes for the edges. Notice the subscript
“→” used in variable notation to indicate that a variable corresponds to the directed-edges
case. Similarly, the subscript “↔” will be used to indicate correspondence the undirected-
edges cases. With this formulation,

G→ := (V,E→) (3.3)

is a directed simple graph that is complete. When an edge (vk, vm) is illustrated by an arrow
(such as in Figure 3.1), this arrow points from vk to vm. Thus, for any (vk, vm) ∈ E→, if any
part of the object vk is physically obstructing any part of the object vm, then c2,→(vk, vm) =
“obstructing”, and if no such obstruction is present, then c2,→(vk, vm) = “not obstructing”.

Since K2,→ only contains two elements (classes), the relationships between any two
distinct vertices in V can also be described by the spanning subgraph

Gs
→ := (V,Es

→) (3.4)

of G→ where

Es
→ := {(vk, vm) ∈ E→ | c2,→(vk, vm) = “obstructing”} . (3.5)

That is, for any two objects vk and vm, some part of the object vk is physically obstructing
some part of vm if and only if the directed edge (vk, vm) is in Es

→.

It is with purpose that these two (equivalent) formulations have been introduced above:
the formulation of G→—consisting of (3.1), (3.2), and (3.3)—is considered more suitable
when discussing the nature of a relation between any two given vertices, while the formulation
of Gs

→—consisting of (3.4) and (3.5)—is more succinct and simpler to represent in the
form of a graph diagram. The problem on which this chapter focuses is the design of a
model MG,→ which, given an RGB or RGB-D image of a scene containing N ≥ 0 objects,
estimates the graph Gs

→ corresponding to that image—or, equivalently, estimates G→ and

19

C

E

F

B

D

A

Figure 3.1: An RGB image from a simulation of a set of objects in a
scene, with the relationships between objects shown with annotations
illustrating Gs

→. Object E is obstructed by object C and obstructed
by object A, which is obstructed by object B. The image without
annotation is from the MetaGraspNetV2 [4] dataset.

its corresponding c2,→. This should not be considered as simply a (binary) classification
problem on the directed edges E→ of the complete graph G→. Rather, for any given image
m⃗, the model MG,→ should detect the vertices and assign a class to each ordered pair of
vertices. The model MG,→ can thus be separated into two modules: an object (i.e., vertex)
detector DV that outputs an estimate V̂ of V and a module CE,→ that outputs an estimate
ĉ2,→ of the function c2,→ that specifies the class of all the edges of the complete graph of
V . The model MG,→ essentially predicts a set of vertices and equips the complete graph
of these vertices with a ĉ2,→ function; this is equivalent to mapping each of the predicted

20

edges Ê→ to a class in K2,→.

DV (m⃗) = V̂

CE,→(Ê→) = ĉ2,→

MG,→(m⃗) =
(
V̂ , Ê→, ĉ2,→

)
H. Zhang et al. [76, 77] refer to the concept of a “tree-like structure” [76, 77] for

representing relationships between objects, and the use of a tree structure (although
perhaps not in the strict sense) for representing relationships is also mentioned in [78]
and [79]. In [80] and [81], the relationship structures are described as graphs, but it seems
that the possibility of the presence cycles is analyzed neither in those works, nor in [76–79]
(perhaps because cycles are not possible in the dataset(s) that those authors used or because
they considered that there must always be at least one object that can be picked up before
any other object). For the problem formulation given above in this current section, using a
graph allows for the representation of relevant scenarios that a tree representation would
fail to capture (unless duplicate nodes can appear in the tree): as is shown in Section 3.2,
cycles—which cannot exist in a tree—can indeed be present in a scene.

3.2 Dataset Challenges

The MetaGraspNet datasets [3, 4] were the main datasets of focus for the relationship-
prediction problem described in Section 3.1. The MetaGraspNetV2 dataset contain RGB
images with depth information and different types of labels [4]. The dataset is composed of
a real-world part and a simulated part: over 3 200 real images and over 296 000 synthetic
(computer-rendered) images [4]. Each image is of a bin with zero or more objects (out of
82 classes of objects) in positions that result from simulating the process of dropping the
objects into the bin [4]. For the purpose of the work in this thesis, only the synthetic images
are used, as they are more abundant, and as their ground-truth labels are presumably more
consistent∗.

∗It appears that synthetic part of the MetaGraspNetV2 [4] dataset contains some issues in the object-
ordering labels used for this project, where, for some RGB images, the number of objects present according
to these ordering labels differs from the number objects that are actually visible in the bin. For at least
some of these cases, the relationships (ordering) of objects were erroneous or misinterpreted. Although this
may impact the results for some of those affected images, it seems that less than 0.5% of the synthetic
RGB images of MetaGraspNetV2 are affected.

21

As a consequence of the randomness in the positions of the objects, at least three
categories of difficult scenarios can arise in this dataset:

1. Cycles: In a set S ⊆ V of at least two objects, all objects in S can reciprocally
obstruct each other in such a way that there is no object in S that is unobstructed
by all other objects in S. In such a case, all vertices in S must be forming one or
multiple cycles, and thus a cycle would be present in Gs

→. (Indeed, if a vertex vk were
not part of a cycle in S, then there would exist a path (v1, v2, . . . , vk, . . .) of one or
more vertices in S with v1 not being obstructed by any other object in S.)

2. Occluded Boundary: This refers to cases where one object is obstructing an other
object, but there is a third object which partially or completely occludes the occlusion
boundary between the first two objects. This is a special case of a situation where there
are three objects (va, vb, vc) such that (va, vb) ∈ Es

→, (vc, va) ∈ Es
→, and (vc, vb) ∈ Es

→.

3. Small Overlap: In some cases, one object does obstruct an other object, but the
area of overlap (or obstruction) between the two objects is very small.

Each of these categories of problems are discussed and illustrated below.

3.2.1 Cycle Problem

Clutter can lead to situations where each object within a set is obstructed by an other object
in this set. Such a situation indicates the presence of cycles in the graph representation of
the scene. It should be noted that, as a result of this, trees are too restrictive to represent
the arrangement of objects in a scene (especially for cycles of more than two vertices), and
thus, there may at times be no obvious order in which the objects in a cluttered scene
should be picked up. In some of the most extreme cases of this, due to the shapes of some
of the objects that can appear in the scene, it is possible for only two objects to reciprocally
obstruct each other (i.e., a 2-cycle, a cycle of two vertices, is present). Figure 3.2 illustrates
a case where two 2-cycles are present in a scene.

The presence of cycles is relevant as it is a situation in which picking any of the objects in
the cycle may cause an other object to move in the process. Depending on the requirements
or specifications desired for the bin-picking robot, this situation could call for different
courses of action (e.g., human intervention, picking the object that is the least obstructed,
etc.), but in a lot of cases, a first important step would still be the detection of such a
scenario.

22

C

E
F

B

D
A

(a)

A

B

C

D

EF

(b)

Figure 3.2: Cycles of two or more vertices can be present: (a) Ex-
ample of a scene containing two 2-cycles and one 3-cycle, which are
each formed by wire cutters (original image, without annotations,
is from the MetaGraspNetV2 [4] dataset). (b) Illustration of the
corresponding graph Gs

→.

As a remark: This situation could be partly addressed by the use of weighted edges in
the predicted graph, where the weight of each edge would indicate an estimate for the area
of overlap between the two objects.

3.2.2 Occluded-Boundary Problem

In a case where an object va occludes an other object vb, it is possible for a third object
vc to partially or fully occlude the overlap area between va and vb. Based on some of the
results in [77, 80] and intuition, it would be expected that this overlap area would be highly
relevant for determining c2,→(va, vb) and c2,→(vb, va). Figure 3.3 illustrates an example of a
fully-occluded boundary.

The case of full occlusion might be too difficult to deal with in practice, but it is
expected that it should be possible to properly classify cases where a significant part of the

23

Figure 3.3: Example of a fully occluded boundary. Two separate
yellow objects are present in this scene, but they are both partially
obstructed by a same object. The area of overlap and the occlusion
boundary are both fully occluded. This image is from the Meta-
GraspNetV2 [4] dataset.

occlusion boundary is still visible. In the case of partial occlusion of an occlusion boundary,
it would be important to consider objects other than va and vb when making a prediction
about the edges (va, vb) and (vb, va); in particular, it would be important to account for
the object(s) which are partially occluding this occlusion boundary. This motivates the
use of a graph network to predict c2,→(va, vb) of any pair (va, vb) ∈ E→, as graph networks
allow for message passing [56] between vertices in a graph: Information from the features
of a vertex vc that is occluding the boundary between va and vb could be thus taken into
account when predicting c2,→(va, vb) and c2,→(vb, va).

24

3.2.3 Small-Overlap Problem

In the case of one object va occluding an other object vb, the amount of occluded area can
be very small. Figure 3.4 shows such an example of small overlap. Correctly classifying the
type of relationship in this type of situation can be particularly challenging, especially if
the resolution of the input image is reduced at preprocessing time or when convolutions are
performed. Mis-classification of small overlap scenarios might not always be inconsequential,
as even a small amount of overlap could be sufficient to lift an occluding object and move
it substantially. Thus, in the absence of an indicator of the probability that va would be
excessively moved if vb were to be picked up, it is more prudent to assume that no amount of
(non-zero) overlap should be ignored when determining whether vb should be lifted directly.

25

(a) Original image. (b) Enlarged crop of the orig-
inal image.

Figure 3.4: Example of image with small overlap between two objects.
The image in the right panel is included to more clearly show the
small area of overlap. (The original image, left, is from the Meta-
GraspNetV2 dataset [4].)

3.3 Baseline Model

The task of predicting relative placements of objects for the purposes of robotic grasping
has been studied in [76], which has been cited in some related works [78, 79, 81], and as
such, it is deemed to be a suitable starting point for a baseline deep-learning model for
predicting relationships between objects in a scene. In this current section, the “Visual
Manipulation Relationship Network” (abbreviated as “VMRN”) [76] model will be discussed,
as it was used as a basis for the implementation of a baseline relationship-prediction model
which was used for comparison against the model which will be presented in Section 3.4.

The architecture of the VMRN model consists of a backbone (“feature extractor” [76]),
an object detector, and a relationship-prediction module dedicated to predicting the
relationships of pairs of objects appearing in the scene (the “Object Pairing Pooling
Layer” [76], together with the “Manipulation Relationship Predictor” [76]). The VMRN
makes predictions on unordered pairs of objects, and there are three possible classes [76]:

26

K3,↔ := {“A is obstructing B” , “B is obstructing A” , “No relationship”}∗. The backbone
of the VMRN is a function of type M → M, and it is composed of convolutional layers.
The detector of the VMRN uses the output of the backbone as input, and the detector is a
function of type M → P ′(B). The VMRN’s relationship-prediction module takes as input
pairs of bounding boxes along with the feature map produced by the backbone; thus, it is a
function of type B × B ×M → K3,↔. If the bounding box B(va) ∈ B of an object va is
written as

B(va) =

[
ba1,1 ba1,2
ba2,1 ba2,2

]

with [ba1,1 ba2,1]
T corresponding to the bottom-left corner of the bounding box and [ba1,2 ba2,2]

T

corresponding to the top-right corner, then the union bounding box [76] of the bounding
boxes

B(va) =

[
ba1,1 ba1,2
ba2,1 ba2,2

]
B(vb) =

[
bb1,1 bb1,2
bb2,1 bb2,2

]
of two objects va and vb is

B∪(va, vb) :=

min
α

(bα1,1) max
α

(bα1,2)

min
α

(bα2,1) max
α

(bα2,2)

 . (3.6)

In [76], for each pair of objects {va, vb} on which to make a prediction, three crops of
the feature map obtained from the backbone are used together to classify the object pair
{va, vb}:

1. a feature-map crop corresponding to the bounding box of object va,

2. a feature-map crop corresponding to the bounding box of object vb, and

3. a feature-map crop corresponding to the union bounding box of objects va and vb.

In order for ternary classification (with classes K3,↔) to be meaningful, there must be a
way to know what A and B each refer to in the names of the classes in K3,↔. Thus, for the
discussion that follows, it shall be assumed that for any given set of objects V in a given

∗The quotation marks here around each of the three class names are not meant to indicate quotations
from [76]; the names of the classes given here are intended to be consistent with the wording in Section 3.1.

27

image, there exists some way to order the vertices; i.e., that for any {v1, v2, . . . , vn} ⊆ V ,
there is some strict total order relation denoted “<” (the definition of which is unimportant)
such that v1 < v2 < · · · < vn.

For a given V , ternary classification on unordered pairs of objects is nearly equivalent
to binary classification on G→: with the complete directed graph G→ = (V,E→) can be
defined a corresponding complete undirected counterpart G↔ := (V,E↔) containing the
same vertices V , where

E↔ := {{va, vb} | (va, vb) ∈ E→} .

This definition of E↔ halves the number of edges, but it still gives a bijection bE : E→ → E↔
between the set E→ of all edge sets of the form E→ and the set E↔ of all edge sets of
the form E↔ (that is, an element of E→ corresponds to the all the edges of a particular
complete directed graph, and an element of E↔ to those of a particular complete undirected
graph). With the undirected edges E↔, it is still possible to define a counterpart to c2,→ for
undirected edges, without loss of information: Let the function c4,↔ for any G↔ be defined
as

c4,↔ : E↔ → K2,→ ×K2,→

{va, vb} 7→

{
(t1, t2) if va < vb

(t2, t1) if vb < va
with (t1, t2) :=

(
c2,→(va, vb), c2,→(vb, va)

)
.

With such a definition, one can obtain any c4,↔ from any c2,→, and vice versa: this definition
gives a bijection bC : C2,→ → C4,↔ between the set C4,↔ of functions of type c4,↔ and the set
C2,→ of functions of type c2,→. Therefore, using a module CE,→ to predict c2,→ of the edges
E→ of a complete directed graph is the same as converting E→ to its undirected version
E↔, then using a module CE,↔ to find c4,↔, and then converting c4,↔ to c2,→:

CE,→ = bC
−1 ◦ CE,↔ ◦ bE .

Quaternary classification, through c4,↔, on undirected edges can thus be considered equiva-
lent to performing binary classification on directed edges; however, ternary classification
on undirected edges must result in a loss of information, as c4,↔ could be surjective and
therefore it is not possible to always recover it from a function c3,↔ : E↔ → K3,↔ which
assigns one of three classes to each undirected edge. (For a fixed V , there is no bijection
between C4,↔ and C3,↔, since there is a difference in cardinality.) Therefore, this motivates
the estimation of c2,→ or c4,↔ rather than c3,↔.

28

The baseline relationship-prediction model which was heavily based on the VMRN
of [76] was implemented for the purpose of comparing its performance to the model which
will be presented in Section 3.4. A major aspect of this baseline model that differs from the
architecture described in [76] is that the baseline model was designed to perform binary
classification of directed edges rather than ternary classification of undirected edges (i.e.,
prediction, for each image, of a c2,→ rather than a c3,↔). This is consistent with the problem
formulation from Section 3.1, which specifies the classification of directed edges and allows
for 2-cycles to be present in any given scene.

3.4 Proposed Model

In this section, a model architecture to estimate Gs
→ of a scene in a given image will be

presented, with the intent of addressing, at least partly, each of the three main categories
of problems described in Section 3.2.

In contrast to the architecture described in [76], the model being proposed in this current
thesis chapter uses a graph-network architecture∗ and makes prediction on ordered pairs of
objects. The related works in which a graph-based architecture is presented include [80,
81]. In addition, to make a prediction on any given edge (va, vb), instead of using the union
bounding boxes of va and vb, it uses the intersection-with-margin bounding box (defined
later) of the two objects under consideration (incidentally, the use of the intersection was
recently proposed by [79]). Furthermore, the proposed model uses bounding box coordinates
(or coordinate embeddings) as features of the edges or vertices of the graph. Descriptions
and motivations for each of these main architectural features are given below. In addition
to these major changes, instead of setting the feature extractor to output a 512-channel
feature map as in [76], the number of such channels was reduced set to only 256, and the
resolution of the cropped feature maps was set to 14× 14, instead of 7× 7 as in [76].

Graph network architecture: With the use of graph networks come some potentially
favourable characteristics, namely message passing and global features:

• Message passing: By allowing information to flow from one vertex to another and from
vertices to vertices, it is hypothesized that the model would be able to better account
for the presence and potential effects that neighbouring objects (vc, vd, . . .) have on

∗Although it might be the case that the model in [76] could technically fall under the definition of a
graph network, it would be a rather simple graph network, as it is missing common aspects of a graph
network, such as global features and message passing.

29

the camera image representation of the two objects (va, vb) under consideration. This
is particularly relevant when a neighbouring object vc is affecting the content of each
of the three cropped feature maps for (va, vb): e.g., vc can affect the representation
of va by partially occluding it, and va could also affect the amount by which the
occlusion boundary between va and vb is visible (this is the occluded-boundary problem
described in Subsection 3.2.2).

• Global feature map: A global feature map was used with the motivation of allowing
the model to account for global image properties such as the angle of the camera with
respect to the bin, the distance between the camera and the bin, or some properties
of the lighting in the scene (e.g., angle, magnitude, colour, and number of sources).

Intersection-with-margin bounding box: The intersection-with-margin, defined
below with (3.9), was used instead of the union of the bounding boxes in order to allow
the model to be more sensitive to small overlaps between two objects va and vb. If the
same notation system as in (3.6) is used, then the intersection bounding box of two objects
(va, vb) is

B∩(va, vb) :=

max
α

(bα1,1) min
α

(bα1,2)

max
α

(bα2,1) min
α

(bα2,2)

 , (3.7)

only defined when ∀i max
α

(bαi,1) < min
α

(bαi,2) . (3.8)

Similarly, the intersection-with-margin bounding box is

Bm
∩ (va, vb) :=

max
α

(bα1,1) min
α

(bα1,2)

max
α

(bα2,1) min
α

(bα2,2)

+ ϵm

[
−1 1
−1 1

]
, (3.9)

only defined when ∀i max
α

(bαi,1)− ϵm < min
α

(bαi,2) + ϵm (3.10)

(for some given, relatively small hyperparameter ϵm that sets the size of the margin; in
practice, a rule is also included to prevent Bm

∩ (va, vb) from having a corner fall outside of
the bounds of the image).

The motivation for using the intersection-with-margin is as follows: Since the 2D
representation of an object on the image must be entirely contained within its (ground-
truth) bounding box, any occlusion area and occlusion boundary between va and vb must
be entirely contained within the (ground-truth) intersection bounding box B∩(va, vb). Since

30

the rest of object va and vb can already be captured or represented by the features falling
exclusively in B(va) or B(vb), using the union bounding box might introduce redundancy
in the information given to the relationship-prediction module. Furthermore, avoiding this
redundancy allows for a greater resolution for the area of overlap between the two objects
without increasing the size of the (discrete) convolution kernel or reducing the convolution
stride—i.e., without increasing the number of training parameters.

Bounding box coordinates: Only using the cropped feature maps forgoes information
that could easily be used to estimate the relative position of the projections of va and vb
on the 2D image (although it might be possible to infer their relative positions through
the feature maps alone). Information about the relative positions of the projections of
the objects is presumably relevant, and it is expected that it would reduce the amount of
information that the feature-map layers would have to infer.

In Section 2.3, a brief summary of graph networks was given, along with the mention
that attributes, given by the function f i, are defined for the vertices, a subset (see below)
of the edges, and the entire graph. In the particular implementation herein proposed, these
attributes in a graph G are as follows:

• For an edge e, if Bm
∩ (e) is defined according to (3.10), f ivec(e) is a feature vector (not

a 2D spatial feature map) which is the bounding box coordinates or an embedding of
these coordinates of Bm

∩ (e), and f imap(e) is a feature map which is defined for each
point that is present within the bounding box Bm

∩ (e). If Bm
∩ (e) is not defined, then e

has no attributes.

• Similarly, for a vertex v, f ivec(v) is a feature vector for the embeddings of the bounding
box coordinates of B(v), and f imap(v) is a feature map which is defined at each point
within B(v).

Prior to describing the attribute-update mechanism, some notation will be introduced.
For any feature vector or feature map x⃗ being processed by the ith GN block, let Li,jx⃗
denote [

Mi,j β⃗i,j

][x⃗
1

]
,

where Mi,j is some matrix of trainable parameters and β⃗i,j is some vector of trainable
parameters, both proper to the ith GN block (here, Mi,j does not refer to some element at
indices (i, j) in M). The variable j here is simply an indexing variable to make distinctions

31

between each matrix or each vector of the ith GN block. For any feature vector x⃗, let bni,j x⃗
denote a (trainable) batch-normalization operation on x⃗, proper to the ith GN block. The
notation bni,j Li,jx⃗ should be read as bni,j

(
Li,jx⃗

)
. Let σ be the ReLU activation function.

A “crop” function was used in the update mechanism of the edge and vertex feature maps;
this function is intended to be the same as or very similar to the cropping mechanism used
in [76]. For clarity, the “crop” function used in the model proposed herein is defined below,
with (3.11) and (3.12). Since cropping operations are done along spatial dimensions but
fully-connected layers operate on finite-dimensional vectors, it may be useful to introduce
the notation “cont” (with an inverse, “dcr”), where for any discrete-domain feature map
x⃗map, the notation cont x⃗map refers to a continuous-domain vector field corresponding to
x⃗map. Using this notation, for some feature map x⃗map, some vertex v, and some edge e,

crop
(
x⃗map, B(v), B(e)

)
= dcr(f) , (3.11)

where f : z⃗ 7→

{
0⃗ if z⃗ is not within B(v)(
cont x⃗map

)
(z⃗) otherwise

, (3.12)

defined for any z⃗ that is within B(e).

Edge, vertex, and global attributes of the graph G are updated as follows:

• For the attributes of an edge e = (va, vb), the update function ϕe (introduced in
Section 2.3) of a GN block can be, in this specific implementation, described by giving
separate expressions for f i+1

vec (e) and f i+1
map(e). The ϕe of the first GN block simply

consists of a fully-connected layer for f1vec(e) and a convolutional layer for f1map(e):

f2vec(e) = bn1,1 σ
(
L1,1 f

1
vec(e)

)
f2map(e) = bn1,4 σ

(
Lconv
1,4 f1map(e)

)
,

where Lconv
1,4 applies a convolution operation (which can be described in matrix form).

For subsequent GN blocks, except the final one, the ϕe of the ith GN block is as

32

ϕe

ϕg

ϕv

ρe→g
ρe→v

ρv→g

{
f i(e)

}
e

{
f i+1(e)

}
e

f i(G) f i+1(G)

{
f i(v)

}
v

{
f i+1(v)

}
v

(a) Full GN block [56].

ϕg

{
f i(e)

}
e

f i(G) f i+1(G)

{
f i(v)

}
v

{
f i+1(v)

}
v

ϕe

ϕv

ρe→v

{
f i+1(e)

}
e

(b) Proposed GN block.

Figure 3.5: The proposed GN block, compared to the full GN
block [56], is missing a ρe→g function and a ρv→g function. This
figure is based on and adapted from Figure 4 of [56].

follows:

f i+1
vec (e) = bni,2 Li,2

(
bni,1 σ

(
Li,1c⃗vec

))
c⃗vec := cat

(
f ivec(e), f

i
vec(va), f

i
vec(vb)

)
f i+1
map(e) = bni,5 σ

(
Lconv
i,4 c⃗map + extend

(
Li,3 f

i
map(G)

)
+ extend

(
Li,5 f

i
vec(e)

))

c⃗map := cat

(
f imap(e), crop

(
f imap(va), B(va), B(e)

)
− crop

(
f imap(vb), B(vb), B(e)

))
,

where Lconv
i,4 applies a convolution operation, where “extend(□)” denotes a feature

map with value □ at each point of the map, and where “cat” denotes concatenation of
feature maps along the array axis that indexes the channels of the feature map. The
final GN block simply flattens the feature map of each edge and applies a series of
fully-connected layers (with a non-linear activation function and batch normalization)
to obtain per-edge classification predictions.

• For the attributes of a vertex v, let Nv be a subset of the edges that are adjacent and
directed to v, defined as

Nv =
{
(vk, v)

∣∣∣ (vk, v) ∈ Es
→ ∧

(
Bm

∩ (vk, v) is defined according to (3.10)
)}

.

33

Thus, for a vertex v, the update function ϕv (introduced in Section 2.3) can be
described in this specific implementation with expressions for f i+1

vec (v) and f i+1
map(v).

For the first GN block, ϕv simply applies a fully-connected layer on f i+1
vec (v) and a

convolutional layer on f i+1
map(v):

f2map(v) = bn1,7 σ
(
Lconv
1,7 f1map(v)

)
f2vec(v) = bn1,8 σ

(
L1,8 f

1
vec(v)

)
,

where Lconv
1,7 applies a convolution operation. For subsequent GN blocks, except the

final one (where no further processing is performed for the edges), the ϕv of the ith

GN block is as follows:

f i+1
map(v) = bni,7 σ

(
Lconv
i,7 c⃗map + extend

(
Li,6 f

i
map(G)

))
c⃗map := cat

(
f imap(v), a⃗map

)
a⃗map :=

∑
ek∈Nv

1

|Nv|
crop

(
f i+1
map(ek), B(ek), B(v)

)

f i+1
vec (v) = bni,8 σ

(
Li,8 f

i
vec(v)

)
,

where Lconv
i,7 applies a convolution operation. Note that this expression for a⃗map

corresponds to the local edge-aggregation function ρe→v (mentioned in Section 2.3), as
it aggregates some features from incident edges (pointing toward v), and it is defined
for any positive number (or zero) of such incident edges, for a given v (it is 0⃗ if there
are no incident edges).

• The global attributes of the entire graph G are only updated once, at the beginning of
the graph-network module. This is because the global attributes are updated without
using the attributes of the vertices and edges (see Figure 3.5), so processing the global
features through, say, Ng different GN blocks, each applying a separate fully connected
layer, is equivalent to simply applying these Ng fully connected layers at once at
the beginning, in the first GN block. The global update function ϕg (introduced in
Section 2.3), for this particular implementation, is described below:

f2map(G) = bn1,11 σ

(
Lconv
1,11 bn1,10 σ

(
Lconv
1,10 bn1,9 σ

(
Lconv
1,9 f1map(G)

)))
,

34

where Lconv
1,9 , Lconv

1,10 , and Lconv
1,11 each apply a convolution operation.

Figure 3.6 and Figure 3.7 illustrate a simplified overview of the main edge-update
and vertex-update mechanisms. Note that ρe→g and ρv→g (mentioned in Section 2.3) are
purposely missing and undefined, as the essential representation and processing was intended
to be at the level of vertex and edge attributes (since the model was designed to predict
classes of edges); thus, it was presumed that updating the global attributes using attributes
of individual vertices and edges would not be significantly advantageous.


...
...
...


f ivec(va)

f imap(va)


...
...
...


f ivec(vb)

f imap(vb)


...
...
...


f ivec(e)

f imap(e)

va

vb

e


...
...
...


f ivec(va)

f imap(va)


...
...
...


f ivec(vb)

f imap(vb)


...
...
...


f ivec(e)

f imap(e)

va

vb

e

f imap(G)f imap(G)

CROP &
DIFF

SUMCAT f i+1
map(e)

CAT


...
...
...


f i+1
vec (e)

FCs

Conv

FC

FC

Figure 3.6: Overview of the main edge-update mechanism for an
edge e between vertices va and vb. In each of the two panels of the
figure, the edge e and the vertices va and vb are illustrated on the
left. The left panel of the figure illustrates the update mechanism
which outputs f i+1

vec (e). The right panel illustrates the mechanism for
f i+1
map(e).

35


...
...
...


f ivec(e1)

f imap(e1)


...
...
...


f ivec(e2)

f imap(e2)


...
...
...


f ivec(v)

f imap(v)v

e1

e2


...
...
...


f ivec(e1)

f imap(e1)


...
...
...


f ivec(e2)

f imap(e2)


...
...
...


f ivec(v)

f imap(v)v

e1

e2

f imap(G)f imap(G)

CROP &
MEAN

SUMCAT f i+1
map(v)


...
...
...

FC

Conv

FC

f i+1
vec (v)

Figure 3.7: Overview of the main vertex-update mechanism for a
vertex v with two incident edges e1 and e2. In each of the two panels
of the figure, e1, e2, and v are illustrated on the left. The left panel
of the figure illustrates the update mechanism which outputs f i+1

vec (v).
The right panel illustrates the mechanism for f i+1

map(v).

36

3.5 Performance Metrics

This section will focus on describing and justifying the precise metric used to evaluate the
proposed model. In a cluttered scene, it is often the case that |E→ \ Es

→| ≫ |Es
→|; i.e.,

that for any two given objects (va, vb) in a scene, it is much more likely that c2,→(va, vb) =
“not obstructing” than c2,→(va, vb) = “obstructing”. As such, without knowledge of the
ratio |E→ \Es

→|/|Es
→|, which is an indicator the degree of class imbalance, keeping track of

the recall and precision of the model is more meaningful and insightful than simply the
accuracy of the model. To compute the precision and recall, the positive class is considered
to be “obstructing”, while “not obstructing” is considered to be the negative class. I.e., an
instance is positive if and only if it is in Es

→, which is either that of the ground-truth graph
or that of the predicted graph (depending on context). At a first glance, this description
of positive and negative classes may appear sufficient to computing precision and recall;
however, some complications may arise when using predicted bounding boxes. Some recall
and precision metrics were mentioned in the works [76–81]; however, it is unclear to the
author how, in those aforementioned works, the recall and precision metrics were calculated
for the (presumably numerous) cases in which the detector underestimated or overestimated
of number of objects in the scene. Thus, these cases of underestimation and overestimation
in the number of vertices are discussed below, and a precise computation method for recall
and precision are described below.

Some complications arise when the number of predicted bounding boxes outputted by
the detector DV is not equal to the number of ground-truth bounding boxes; i.e., when the
number |V̂ | of vertices in the predicted graph Ĝs

→ differs from the number |V | of vertices in
the ground-truth graph Gs

→. In such a situation, after the assignment problem between
V̂ and V has been resolved, if |V̂ | > |V |, there will be |V̂ | − |V | vertices in V̂ which have
not been assigned to a vertex in V ; otherwise, if |V̂ | < |V |, then there will be |V | − |V̂ |
vertices in V which have not been assigned to a vertex in V̂ . Described in terms of the
edges, resolving the assignment problem between the vertices implicitly gives an assignment
between the edges Ê→ of the predicted graph and the edges E→ of the ground-truth graph.
Once this assignment problem is resolved, there are four cases of interest, each described in
an order that roughly follows the illustrations in Figure 3.8:

(A) For any edge ê = (v̂a, v̂b) ∈ Ês
→, either ê has been assigned to an edge e ∈ Es

→,
which corresponds to a true positive, or it has not been assigned to an edge e, which
corresponds to a false positive. A false positive can be obtained in only four ways:

(Type 1) v̂a and v̂b have each been assigned to some ground-truth vertices va and vb,
but ê /∈ Ês

→ as a result of the classification performed by CE,→.

37

(Type 2) v̂b has been assigned to some ground-truth vertex vb, but v̂a has not been
assigned to some ground-truth vertex. Thus, a false-positive must have
occurred, regardless of the ground-truth classes given by c2,→.

(Type 3) v̂a has been assigned to some ground-truth vertex va, but v̂b has not been
assigned to some ground-truth vertex. Similarly to (Type 2), this must
mean that a false-positive has occurred.

(Type 4) Neither v̂a nor v̂b have been assigned to some ground-truth vertices, and
thus a false-positive must have occurred.

(B) For any edge e = (va, vb) ∈ Es
→, either e has been assigned to a predicted edge ê ∈ Ês

→,
which corresponds to a true positive, or it has not been assigned to an edge e, which
corresponds to a false negative. A false negative can be obtained in only four ways,
which are analogous to the four ways of obtaining a false positive described in (A).

(C) For any edge e = (va, vb) ∈ E→ \ Es
→ (this is a ground-truth edge for which the

ground-truth class is negative), either e has been assigned to a predicted edge ê ∈ Ês
→,

which corresponds to a false positive case already addressed above, or e has been
assigned to a predicted edge ê ∈ Ê→ \ Ês

→, which corresponds to a Type 1 true
negative, or it has been neither assigned to an ê ∈ Ês

→ nor to an ê ∈ Ê→ \ Ês
→, in

which case this still corresponds to a true negative (types 2–4), since the model is not
claiming that va is obstructing vb (because there is no v̂a assigned to va or there is no
v̂b assigned to vb), and there is also no such obstruction according to the ground-truth
graph.

(D) For any edge ê = (v̂a, v̂b) ∈ Ê→ \ Ês
→, either ê has been assigned to a ground-truth

edge e ∈ Es
→, which corresponds to a false negative case already addressed above,

or ê has not been assigned to such an edge, which corresponds to a true negative
(types 5–7). Note that these types of true negatives (types 5–7) are deemed to be less
relevant than true negatives of types 1–4 because they essentially result from a vertex
detector that “detects” vertices that are not actually present and an edge-classification
model that does not claim than these extra vertices are obstructed by or obstructing
any other object. Ultimately, these types of true negatives are not providing any
information about the scene, and so a model which generates more true negatives of
types 5–7 should not be considered to have better performance than a model giving
no true negatives of types 5–7.

38

Considering all of these types of edge-prediction cases, the following precision and recall
formulas are proposed, based on the normal definition of precision and recall:

precision =
TP

TP+FP1+FP2+FP3+FP4

recall =
TP

TP+FN1+FN2+FN3+FN4
,

where TP is the number of true positives, FPk is the number of false positives of type k,
and FNk is the number of true negatives of type k. Then, the usual formula for the F1
score can be used:

F1 =
2

(recall)−1 + (precision)−1 .

39

Ground-Truth Vertex Prediction of Vertex

Ground-Truth Positive Edge Prediction of Positive Edge

True Positive

False Positive

Type 1

Type 2

Type 3

Type 4

False Negative

Type 1

Type 2

Type 3

Type 4

True Negative

Type 1

Type 2

Type 3

Type 4

Less relevant

Type 5

Type 6

Type 7

Figure 3.8: Types of edge detection errors between a ground-truth
and a predicted graph. Two concentric circles (one dashed and one
solid) together illustrate that a predicted vertex has been assigned
to a ground-truth vertex. A single circle without a corresponding
concentric circle indicates that it is not assigned to another vertex.

40

3.6 Results

In order to evaluate the effect of the proposed model architecture changes in Section 3.4, the
baseline model architecture described in Section 3.3 and the proposed model architecture
were compared using the performance metrics specified in Section 3.5 by training and
evaluating on the MetaGraspNetV2 [4] dataset, using its synthetic RGB images (without
depth) as inputs.

In addition, the VMRD dataset version “V2” [82] was also used for separate training
and evaluation; this dataset was selected because has been used by other groups in related
works [76, 77, 79–81] (the VMRD dataset version used may vary between these works).
The “V2” version of this dataset contains 4 683 colour images [77, 82].

Based on Figure 3.9, on the MetaGraspNetV2 dataset, the proposed model architecture
(labelled “GNN”) outperformed the baseline model in terms of the F1 score on the validation
dataset partition, and the model appeared to consistently outperformed the baseline model
for 105 training iterations. Similarly, for the VMRD dataset, the results in Figure 3.10
indicate that the proposed model architecture provides at least a modest improvement over
the baseline model.

One might note the very large gap between the “Training” F1 scores and the “Validation
(Pred. BBoxes)” F1 scores of the models in both Figure 3.9 and Figure 3.10; this large gap
is explained partly by the use of predicted bounding boxes at validation time in contrast
to the use of ground-truth bounding boxes as training time. The performance when the
ground-truth bounding boxes were used for validation is shown by the “Validation (G.T.
BBoxes)” curves.

In order to further investigate the extent to which any of the architecture features
proposed in Section 3.4 positively or negatively the F1 score, a detailed ablation study is
recommended. In particular, each of the 23 combinations of inclusion or exclusion of the
main architecture changes could be tested: (i) the use of Bm

∩ instead of B∪, (ii) the use of
bounding-box coordinate embeddings in the vertex and node attributes, and (iii) message
passing between vertices or edges in the graph, with the implementation of ρe→v for locally
aggregating edges and the use of the “crop” and “cat” functions in the implementation of
ϕe for combining feature maps, as described in Section 3.4.

Finally, another recommendation for a continuation of this work would be to compare the
performance of the baseline model and the proposed model for each of the three categories
of difficulties outlined in Section 3.2. A shortcoming of the results presented in Figure 3.9
and Figure 3.10 is that the MetaGraspNetV2 dataset and the version of the VMRD dataset
used seemed to be missing some or all 2-cycles in the ground-truth labels. In the case of

41

103 104 105

Number of iterations

0.0
0.2
0.4

0.6

0.8

1.0

F1
 sc

or
e

sc
al

e:
 e

xp
(3

 y
)

Model
GNN
Baseline Using Union
Type
Training
Validation (G.T. BBoxes)
Validation (Pred. BBoxes)

Figure 3.9: Results for three training runs with synthetic RGB images
of the MetaGraspNetV2 [4] dataset. The “Validation (Pred. BBoxes)”
curves indicate the true validation performance, while the “Validation
(G.T. BBoxes)” curves show performance when the ground-truth
bounding boxes are used by the relationship-prediction modules. A
non-linear vertical scale was used to emphasize differences at higher
F1 scores. The shaded area shows the range (between minimum and
maximum) of performance across the three runs, for a given number
of iterations.

the MetaGraspNetV2 dataset, this is simply due to the method by which the dataset was
labelled, whereas in the case of the VMRD dataset, it could be presumed that the absence
of 2-cycles in the ground-truth labels might have simply been a design choice that was
made upon the creation of the VMRD dataset. In any case, the presence of 2-cycles is a
real issue which can arise, and it should not be ignored merely due to its absence in some
dataset labels. As such, a recommendation is to amend the labels of the MetaGraspNetV2
dataset in order to represent, in the ground-truth labels, all the 2-cycles that were actually
present in each image.

42

103 104 105

Number of iterations

0.0
0.2
0.4

0.6

0.8

1.0

F1
 sc

or
e

sc
al

e:
 e

xp
(3

 y
)

Model
GNN
Baseline Using Union
Type
Training
Validation (G.T. BBoxes)
Validation (Pred. BBoxes)

Figure 3.10: Results for two training runs with the VMRD dataset.
(With 18 or fewer images removed due to apparent issues with the
ground-truth labels.) A non-linear vertical scale was used, just as
in Figure 3.9. As in Figure 3.9, the shaded area shows the range of
performance across the two runs.

This current chapter focused on classifying relationships between objects in a scene,
or more generally, the task of predicting a directed graph representing the relationships
(relative placements) of objects in a scene, for the purpose of the bin picking problem in
potentially cluttered scenes. Next, in Chapter 4, a problem which also relates to making
inferences about object relations from images will be treated: the problem of estimating
distances between two vehicles, given some wide-angle RGB videos of road traffic, for the
purpose of detecting close-call events.

43

Chapter 4

Predicting Distances Between Vehicles

4.1 Problem Formulation

The scene being monitored by a camera is a part of the world being observed. Consider
this world W to be a smooth four-dimensional manifold with boundary, in a space with
coordinate system (̂ı, ȷ̂, k̂, t̂), with the first three base vectors corresponding to spatial
dimension, and t̂ corresponding to the temporal dimension. Gravitation is present, and
it has a corresponding vector g⃗ which points in the direction of gravity (“downward”).
The camera observing the scene is defined to be infinitesimally small and located at 0⃗
and pointing in direction ı̂, which is not orthogonal to g⃗; thus, ı̂ · g⃗ > 0 (in addition,
the horizontal direction of the camera is to be interpreted to be along ȷ̂). Under these
restrictions, the position and orientation of the camera is fixed throughout time. The world
is composed of connected components, classified into three categories:

1. The ground on which the agents travel: roads and sidewalks.

2. Autonomous agents: vehicles, cyclists, and pedestrians.

3. Other structures which may obstruct the agents from the point of view of the camera:
e.g., buildings, trees, traffic lights and signs, etc.

A description of each of these categories of components is provided below.

44

The ground is considered to be a 2D plane embedded in a 3D space E3: it is the plane
{x⃗ | g⃗ · x⃗ = 0}. Note that since we are dealing with videos rather than still images, it is
logical to also consider the passage of time; thus, it is possible to extend this definition to a
plane embedded in a space with 4-dimensions (of the form (̂ı, ȷ̂, k̂, t⃗)), and the definition of
the ground stays the same (since the ground is assumed to be fixed in time).

The autonomous agents are connected components which correspond to either a
vehicle, cyclist, or pedestrian. They are deemed to each have a shape that is variable
with time, and which can differ between agents. Furthermore, each agent can travel in
the scene, which is distinct from a change in shape. Each agent can thus be defined as
a four-dimensional manifold a embedded in a four-dimensional space R4: three spatial
dimensions and one temporal dimension. The shape of an agent a at a particular time ti
is ati := {[x1, x2, x3, x4]

T ∈ a | x4 = ti}. In order to define the concept of travelling, it is
important to define the position of an agent; as such, let the position of agent a at time ti
be defined as simply the centroid of ati in space: let p(a, ti) denote the centroid of ati .

The other structures can be defined, just like the autonomous agents, except that
they have the special property that their shapes are constant with respect to time.

Of all the points in this world W , only a subset is visible to the camera. A point x⃗ ∈ R4

is visible to the camera if and only if x⃗ · ı̂ > 0 ∧ ∄k ∈ R>0 (k < 1 ∧ kx⃗ ∈ W) (this
theoretical camera is at 0⃗ and has a field of view of 180 degrees). Note that this formulation
does not allow for semi-transparent or translucent material. To this set of visible points
Pv ⊂ R4 can be associated a function f : Pv → R3 which gives the RGB value f(x⃗) of a
point x⃗ which is visible the camera. The camera, however, only associates three dimensions
to each measured pixel (two spatial and one temporal dimension), and thus this signal f
is not directly given by the camera; instead, a derived signal on the projection P ′

v of Pv

onto the camera’s sensor is available: f : P ′
v → R3. This has some important consequences

which will be discussed in Section 4.3.

The problem to be addressed in this chapter is to estimate, from f , the distance between
any given pair of detected agents (a1, a2) for a given time ti: ∥p(a2, ti)−p(a1, ti)∥. Section 4.2
will give a short overview of the CARLA simulator [83], and Section 4.5 will present an
architecture to estimate distances between vehicles in images outputted by this CARLA
simulator, given some bounding box information.

45

Figure 4.1: Image from a CARLA [83] simulation of traffic at an
intersection, with a wide field of view. The resulting images are
reasonably realistic. The agents in the scene are able to travel
autonomously in the scene, and their movements and positions can
be controlled in the simulation.

46

4.2 Dataset Creation with the CARLA Simulator

In order to train and evaluate a model to perform such a distance-estimation task, the
CARLA [83] simulator was used. This publicly-available simulator is a fork of Unreal
Engine 4∗, and it was originally targeted towards autonomous-driving applications, but
fortunately, there is much overlap between the autonomous-driving research field and the
problem at hand in this chapter. Many of the features made available in CARLA are
relevant to problem addressed here. There are some striking benefits to using a simulated
environment; these include

• the ability to get perfect or near-perfect ground-truth information such as segmentation
masks, bounding boxes, positions of agents, classes of agents;

• a high degree of control over the behaviours of the agents in the scene;

• the option to set a number of simulation parameters such as weather conditions, the
position of the sun in the sky, the position of the camera, the number of pedestrians,
cyclist, and vehicles; and

• the ability to generate data relatively quickly, consistently, and in large quantities
(depending on computation power and efficiency).

However the CARLA simulator does have some limitations, which include

• lack of realism in some physical interactions between objects;

• less diversity, or randomness that is not representative of the real-world random
distribution in the behaviour of real agents;

• limited choice in the types of camera lenses or projections available; and

• lack of some weather conditions (which are relatively difficult to simulate), such
as heavy rain, thunderstorms, and notably snowfall and snow accumulation on the
ground.

In order to generate simulate video footage, a (virtual) camera with a 150-degree field
of view was placed in the scene such that it was above street lights and pointing downward,
at an angle of 45 degrees. Figures 4.1 is an example of a wide-angle image generated using
the CARLA simulator.

∗Unreal Engine 4 is part of a popular series of gaming engines generally under the name Unreal Engine;
it is capable of generating realistic renderings of 3D scenes.

47

4.3 Signal Acquired by a Wide-Angle Camera

The process of projecting any point x⃗ = [xi, xj, xk, xt]
T ∈ R4 onto a fixed camera sensor is

completely independent of its time component xt. As such, when analyzing the effect of
projecting a set of points in R4 onto a camera sensor, the temporal dimension of each of
these points can be ignored, and thus the analysis can be carried out in the smaller space
that is R3, and conclusions derived from it can then also be applied to R4. Therefore, in
this current section, the temporal dimension of the signal acquired by the camera will be
ignored for discussing the effects of performing a projection in space from Pv to P ′

v.

The objective is to make an inference on sets of 3D points—the agents. More specifically,
this inference is to be made on the function f := R2 → R3 (an RGB image) which is derived
from f . The image is a projection onto a 2D manifold, which implies that there is a loss of
information. However, the metric that we are interested in (distance in 3D) is defined based
on (spatial) 3D coordinates; thus, the model would have the task—at least implicitly—to
estimate the lost dimension. In addition to this, the nature of the projection introduces
some distortion in the image (compared to an orthographic projection); see Figure 4.2 and
Figure 4.3. By embedding some prior knowledge about the geometry of the projection into
the model (in the form of an inductive bias), it can be expected that the model would
outperform a model in which information about the projection properties is not embedded.

To analyze the signal that is acquired, it might be helpful to start from the point of
view of the flat sensor. For an RGB image, the signal acquired by a flat sensor is a function
f := R2 → R3 which, for a given pixel location (x, y), outputs the RGB value f(x, y). Now,
there is emphasis on f(x, y) corresponding to the RGB value of a specified pixel location
rather than the location of the original scattering source.

Assuming that the lens of the camera is equivalent to a pinhole (which has an infinitely
large depth of field), then under the ray model of light, the location at which any given ray
of light entering the lens hits the sensor is solely dependent on the (angular) orientation
of this ray. If the distance between the sensor and the lens is known, then the mapping
between ray orientations and pixel locations can be determined. Let this mapping be
denoted l : Θ× Φ → R2, where Θ :=

]−π
2
, π
2

[
∗ and Φ :=]0, π[, such that a ray of light with

orientation (θ, ϕ) hits the sensor at the location l(θ, ϕ).
∗The notation]□1,□2[refers to the open interval from the lower □1 to the upper bound □2:

∀□1 ∀□2

(
]□1,□2[= {□ | □1 < □ ∧ □ < □2}

)
. Similarly,]□1,□2] = {□ | □1 < □ ≤ □2}, and

[□1,□2[= {□ | □1 ≤ □ < □2}. Some authors use parentheses to denote an open interval: (□1,□2); but
this could be confused for the pair (□1,□2).

48

(a) Near-orthographic projection (narrow field
of view).

(b) Left-hand-side
crop.

(c) Right-hand-side
crop.

(d) Top-region crop.

Figure 4.2: An orthographic projection of 3D objects on a 2D plane
is equivariant to translation of the object in 3D. (a): Illustration of
a near-orthographic projection. (b), (c), & (d): The shapes of the
vehicles appear the same, regardless of whether they are at the edges
or at the centre.

Thus, the signal f is a signal on R2 and the signal f ◦ l is a signal on Θ×Φ. The signal
f ◦ l can be interpreted as a spherical image, as its domain is a set of angular coordinates.
Now, considering the complications that could arise from dealing with a signal on a sphere,
why would f ◦ l be used over f? Since the objective is to make some conclusions about the
world outside of the camera and the lens, it is logical to consider using f ◦ l rather than f .
By only using f directly, the design of a model would fail to incorporate the (completely
known) cause of the image distortion, and the model would be left with the challenge of
learning l, a function which is not relevant to making bounding box regression or class
prediction. Let projP : R3 → R3 be the function that performs a perspective (rectilinear)
projection of a 3D point onto a plane P := {x⃗ | x⃗ · ı̂ = D}, with D being the constant
distance between the camera and the sensor represented by P . Let dP be the distance

49

(a) Rectilinear projection (wide field of view).

(b) Left-hand-side
crop.

(c) Right-hand-side
crop.

(d) Crop near centre.

Figure 4.3: A rectilinear projection (with a large field of view) is not
equivariant to translation of objects. The 2D projection of objects
near the edge of the field of view is different than the projection of
the same objects near, for example, the centre of the field of view.

between the projections of two given 3D points (on plane P):

dP : R3 × R3 → R

(x⃗, y⃗) 7→ ∥projP (x⃗)− projP (y⃗)∥2 .

Since we want to estimate the distance between two points, it would be ideal if dP were
invariant to changes in position of the camera (or positions of pairs of vehicles relative
to the camera)—i.e., transformations in the special Euclidean group, SE(3)—because it
would mean that the model would only need to learn to measure distances on the projected
image directly (up to some scalar). Unfortunately, a perspective projection does not
preserve dP (x⃗, y⃗) for any two points (x⃗, y⃗) under all transformations (R, τ⃗) ∈ SE(3). Only
certain transformations in SE(3) preserve dP (x⃗, y⃗): for a perspective projection, this is
two one-dimensional manifolds corresponding to the set of rotations about ı̂, whereas for
a spherical projection, this is a three-dimensional manifold corresponding to SO(3). This

50

means that there are two fewer dimensions of non-invariance to learn in the case of a
spherical projection compared to a perspective projection.

Let the group SE(3) act on the set R3, with the group action being defined as

SE(3)× R3 → R3

(
(R, τ⃗), x⃗

)
7→ Rx⃗+ τ⃗ ,

and which, ∀g ∈ SE(3) ∀x⃗ ∈ R3, is denoted by g · x⃗. The operator notation “·” is also used
for the operator of the group SE(3), but what “·” denotes in each case should be clear from
the nature of each of its two arguments.

Proposition 4.1. A transformation g ∈ SE(3) preserves distances after performing a
perspective projection onto plane P if and only if it is a rotation about {aı̂ | a ∈ R} (with
no translation) or it is a rotation about an axis orthogonal to ı̂, with angle ∥n⃗∥ = π (with
no translation); i.e., the set of transformations that preserve distances,

Tinv :=
{
g ∈ SE(3) | ∀(x⃗, y⃗) ∈ R3 × R3

(
dP (x⃗, y⃗) = dP (g · x⃗, g · y⃗)

)}
,

is equal to {
(R, 0⃗) ∈ SE(3) | ∀x⃗ ∈ R3

(
x⃗ · ı̂ = ∥x⃗∥ =⇒ Rx⃗ = ±x⃗

)}
.

Proposition 4.1 is meant to emphasize that there is only one rotation dimension (for
each of the two one-dimensional manifolds), in the six-dimensional manifold SE(3), along
which projected distance is invariant. This proposition will be proven below, starting on
page 55, after introducing and proving some other (intermediate) propositions. Although a
series of propositions and proofs are presented in the current chapter in order to support
an argument and motivation for the use of spherical convolutions, these propositions and
proofs are not intended to be a main result of this thesis work, and the author acknowledges
that it is extremely likely that equivalent or stronger propositions may already have been
published and proven. Some examples of related works include [84, 85].

Proposition 4.2. For any rotation R (with rotation vector n⃗ and rotation angle ∥n⃗∥)
satisfying the condition

0 < ∥n⃗∥ < π ∧ n⃗ · ı̂ = 0 , (4.1)

51

and for any pair of distinct points (⃗b, c⃗) satisfying the condition

∥⃗b∥ = ∥c⃗∥ ∧ ∀x⃗ ∈
{⃗
b, c⃗
} (

x⃗ · n⃗ = 0 ∧ x⃗ · (̂ı× n⃗) > 0 ∧ x⃗ · ı̂ > 0
)

(4.2)

(see Figure 4.4), the following is true:

Rb⃗ · (̂ı× n⃗) > 0 ∧ Rc⃗ · (̂ı× n⃗) > 0 =⇒ dP (Rb⃗,Rc⃗) < dP (⃗b, c⃗) .

Proof of Proposition 4.2. Consider any two distinct points b⃗ and c⃗ satisfying condition (4.2)
and with b⃗ · (̂ı× n⃗) > c⃗ · (̂ı× n⃗), as illustrated in Figure 4.4, and their respective projections
b⃗P = [bPı̂ bPȷ̂ bP

k̂
]
T and c⃗P = [cPı̂ cPȷ̂ cP

k̂
]
T onto plane P (which is at a distance D from the

origin 0⃗). Let

∆ : ε 7→ D

tan(ε)
, (4.3)

then

bPı̂ = ∆(ε1) (4.4)

cPı̂ = ∆(ε1 + ε2) (4.5)

dP (⃗b, c⃗) = bPı̂ − cPı̂ = ∆(ε1)−∆(ε1 + ε2) . (4.6)

Applying R on b⃗ and c⃗ is equivalent to increasing ε1. As ε1 gets closer to π
2
− ε2, the scalar

dP (⃗b, c⃗) becomes smaller, since ∆′ (first derivative of ∆) is negative over]0, π/2[and ∆′′ is
positive over this same interval. ■

Proposition 4.3. For any rotation R satisfying condition (4.1), there exists a triplet of
distinct points (⃗a, b⃗, c⃗) for which

dP

(
a⃗, b⃗
)
= dP

(
Rb⃗,Rc⃗

)
> dP

(⃗
b, c⃗
)
= dP

(
Ra⃗,Rb⃗

)
. (4.7)

Proof of Proposition 4.3. The objective here is to identify three points which are on a circle
centred at 0⃗, and which satisfy (4.7). Consider any rotation R satisfying condition (4.1),
and let θ := ∥n⃗∥, where n⃗ is the rotation vector of R. It will be shown that for any such R,

52

ı̂× n⃗

ı̂

ε1

ε2

0⃗

b⃗

b⃗P

c⃗

c⃗P
P

D

direction of
rotation R

Figure 4.4: Illustration for Proposition 4.2.

there exists values ε1 and ε2 satisfying all of the following conditions simultaneously:

0 < ε2 < ε1 (4.8)

ε1 + θ + ε2 < π (4.9)

π

2
< θ + ε1 − ε2 (4.10)

ε1 + ε2 <
π

2
. (4.11)

(Notice, by inspecting Figure 4.5, that when (4.8), (4.9), (4.10), and (4.11) are satisfied,
a⃗, b⃗, and c⃗ are guaranteed to be in the top right quadrant of the figure, a⃗′, b⃗′, and c⃗′

are guaranteed to be in the top left quadrant of the figure, and it is guaranteed that
a⃗ · (̂ı× n⃗) > b⃗ · (̂ı× n⃗) > c⃗ · (̂ı× n⃗).) Assume that

ε1 =
π − θ

2
∧ ε2 ∈]0, u2[, (4.12)

53

ı̂× n⃗

ı̂

ε1

ε2 ε2

0⃗

b⃗
c⃗

a⃗

a⃗′
b⃗′

c⃗′

ε2 ε2

θ

Figure 4.5: Illustration for Proposition 4.3.

where

u2 := min

(
ε1, ε1 + θ − π

2

)
.

Any such (ε1, ε2) satisfies (4.8), since 0 < ε2 < u2 ≤ ε1. Condition (4.9) is also satisfied
since 

ε1 =
π − θ

2

ε2 < min

(
ε1, ε1 + θ − π

2

) =⇒ ε1 + ε2 < 2ε1 = π − θ

=⇒ ε1 + θ + ε2 < π .

Condition (4.10) is satisfied, as

ε2 < min

(
ε1, ε1 + θ − π

2

)
≤ θ + ε1 −

π

2
.

54

Finally, condition (4.11) is also satisfied:

ε2 < u2 ≤ ε1 =
π − θ

2
=⇒ ε1 + ε2 <

π − θ

2
+ min

(
π − θ

2
,
θ

2

)
= min

(
π − θ,

π

2

)
≤ π

2
.

Note that the interval for ε2 in (4.12) is non-empty for 0 < θ < π, since 0 < ε1 and, for
ε1 = (π − θ)/2,

ε1 + θ − π

2
=

θ

2
> 0 .

Therefore, ∃ε1 ∃ε2 ((4.8) ∧ (4.9) ∧ (4.10) ∧ (4.11)).

For such a pair (ε1, ε2), consider points a⃗, b⃗, and c⃗ illustrated in Figure 4.5. Based on
Proposition 4.2,

dP (⃗a, b⃗) > dP (⃗b, c⃗) (4.13)

(consider a rotation Rε2 with rotation vector ε2n⃗/∥n⃗∥) and

dP (a⃗′, b⃗′) < dP (b⃗′, c⃗′) (4.14)

(consider the rotation R−1
ε2

). Notice that there is reflection symmetry about the plane{
x⃗ | x⃗ · (̂ı× n⃗) = 0

}
between a⃗ and a⃗′, between b⃗ and b⃗′, and between c⃗ and c⃗′ (since

ε1 + θ/2 = π/2); thus,

dP (b⃗′, c⃗′) = dP (⃗a, b⃗) ∧ dP (⃗b, c⃗) = dP (a⃗′, b⃗′) .

Since a⃗′ = Ra⃗, b⃗′ = Rb⃗, and c⃗′ = Rc⃗, Proposition 4.3 is true.

■

Proof of Proposition 4.1. First, note that any transformation (R, τ⃗) ∈ SE(3) can be de-
composed. In particular, consider the rotation component Rı̂ ∈ Rı̂ (where Rı̂ is the set of
rotations with rotation axis parallel to ı̂) and consider the translation component τ⃗ı̂ such
that τ⃗ı̂ × ı̂ = 0⃗. Let Rr := RR−1

ı̂ and τ⃗r := τ⃗ − τ⃗ı̂ correspond to the remaining rotation and

55

remaining translation respectively. Thus, any (R, τ⃗) can be decomposed as follows:

(R, τ⃗) = (RrRı̂, τ⃗r + τ⃗ı̂) = (I, τ⃗r + τ⃗ı̂) · (RrRı̂, 0⃗) = (I, τ⃗r) · (I, τ⃗ı̂) · (Rr, 0⃗) · (Rı̂, 0⃗) (4.15)

C4 :=
{
(I, τ⃗r) | τ⃗r · ı̂ = 0

}
C3 :=

{
(I, τ⃗ı̂) | τ⃗ı̂ · ı̂ = ∥τ⃗ı̂∥

}
C2 :=

{
(Rr, 0⃗) | ∀x⃗ ∈ R3 (x⃗ · ı̂ = 0 =⇒ Rrx⃗ = x⃗)

}
C1 :=

{
(Rı̂, 0⃗) | ∀x⃗ ∈ R3

(
x⃗ · ı̂ = ∥x⃗∥ =⇒ Rı̂x⃗ = x⃗

)}
C4,3,2,1 := C4 × C3 × C2 × C1

∀(R, τ⃗) ∈ SE(3) ∃(c4, c3, c2, c1) ∈ C4,3,2,1
(
(R, τ⃗) = c4 · c3 · c2 · c1

)
. (4.16)

Second, note that any (Rı̂, 0⃗) ∈ C1 does not change the distance after projection,
since ∀x⃗ ∈ R3 (projP (Rı̂x⃗) = Rı̂ projP (x⃗)) and transformations from SE(3) do not change
distances in 3D, thus ∀x⃗ ∈ R3 ∀y⃗ ∈ R3∥∥projP (Rı̂y⃗)− projP (Rı̂x⃗)

∥∥
2
=
∥∥Rı̂ projP (y⃗)−Rı̂ projP (x⃗)

∥∥
2
=
∥∥projP (y⃗)− projP (x⃗)

∥∥
2
.

(4.17)

Therefore,

∀(x⃗, y⃗) ∈ R3 × R3
(
dP (Rı̂x⃗, Rı̂y⃗) = dP (x⃗, y⃗)

)
. (4.18)

This shows that component c1 (of (4.16)) does not change distances between any two
projected points:

∀c1 ∈ C1 ∀(x⃗, y⃗)
(
dP (c1 · x⃗, c1 · y⃗) = dP (x⃗, y⃗)

)
. (4.19)

For the terms c2 and c3 of (4.16): let n⃗2 be the rotation vector of Rr (of c2). Based on
Proposition 4.3, a c2 with 0 < ∥n⃗2∥ < π does change the distance between at least two
points; more specifically, for a triplet of distinct points (⃗a, b⃗, c⃗) satisfying (4.7), 0 < ∥n⃗2∥ < π
implies that

dP

(
c2 · b⃗, c2 · c⃗

)
> dP

(⃗
b, c⃗
)

(4.20)

dP

(
c2 · a⃗, c2 · b⃗

)
< dP

(
a⃗, b⃗
)
. (4.21)

56

Thus, such a c2 increases the projected distance between b⃗ and c⃗, and it decreases the
projected distance between a⃗ and b⃗. If ∥n⃗2∥ = π, then the projected distances are unchanged,
since ∀x⃗1 ∈ R3 ∀x⃗2 ∈ R3, the points Rrx⃗1 and Rrx⃗2 will have the same projections as Rı̂,πx⃗1

and Rı̂,πx⃗1 respectively, where Rı̂,π is a rotation of π around ı̂ (note that Rrx⃗1, Rı̂,πx⃗1, and
0⃗ are aligned, and Rrx⃗2, Rı̂,πx⃗2, and 0⃗ are aligned).

Note that for c3, based on (4.3) and (4.6), if τ⃗ı̂ · ı̂ > 0, then c3 decreases both projected
distances (this corresponds to a decrease in D in (4.3)), and if τ⃗ı̂ · ı̂ < 0, then c3 increases
both projected distances. In either case, (4.20) or (4.21) (or both) will still be true after
applying any c3 ∈ C3:τ⃗ı̂ · ı̂ ≥ 0

(4.21)
=⇒ dP

(
c3 · c2 · a⃗, c3 · c2 · b⃗

)
≤ dP

(
c2 · a⃗, c2 · b⃗

)
< dP

(
a⃗, b⃗
)

τ⃗ı̂ · ı̂ ≤ 0

(4.20)
=⇒ dP

(
c3 · c2 · b⃗, c3 · c2 · c⃗

)
≥ dP

(
c2 · b⃗, c2 · c⃗

)
> dP

(⃗
b, c⃗
)
.

Therefore, for a triplet of distinct points (⃗a, b⃗, c⃗) satisfying (4.7), there is no c3 · c2 that
simultaneously preserves the projected distances of (⃗a, b⃗) and (⃗b, c⃗), except when (i) c3 is
the identity element, e, of SE(3), and (ii) c2 = e or the angle of rotation of c2 is π.

For the term c4 of (4.16): Note that for any pair of distinct points (x⃗, y⃗) in {x⃗ | 0 ̸=
|x⃗ · ı̂| = ∥x⃗∥}, the projected distance is affected by c4 but unaffected by c3, c2, and c1.

Therefore, for any transformation (R, τ⃗) = c4 · c3 · c2 · c1 in SE(3) that preserves distances
after projection,

• c4 = e because any two distinct points on {x⃗ | 0 ̸= |x⃗ · ı̂| = ∥x⃗∥} have their projected
distances unaffected by c3 · c2 · c1 but have their projected distances affected by c4
(on its own) when c4 ̸= e and therefore must have their projected distances affected
by c4 · c3 · c2 · c1 when c4 ̸= e;

• c1 does not affect projected distance, so there is no restriction on c1 (other than being
in C1); and

• c3 · c2 must not, on its own, affect projected distances, which is the case if and only if

1. c3 = e and

2. c2 = e or the angle of rotation of c2 is π.

57

In summary, for any transformation c ∈ SE(3) decomposed as c4 · c3 · c2 · c1, and where n⃗2

denotes the rotation vector of c2,

dP (x, y) = dP (c · x, c · y) =⇒ (c2 = e ∨ ∥n⃗2∥ = π) ∧ c3 = e ∧ c4 = e .

The converse of this statement is also true since any c1 ∈ C1 does not affect projected
distance; thus, Proposition 4.1 is true. ■

This current section has focused on analyzing the nature of the signal acquired by a
wide-angle camera, and it was concluded that for a rectilinear projection, there is only one
rotational degree of freedom along which projected distances are invariant (more precisely,
along two one-dimensional manifolds, one of which is irrelevant in practice), and in contrast,
for a spherical projection there are two rotational degrees of freedom along which projected
distances are invariant. This is an important consideration, as the distance-prediction model
should be invariant to any type of rotation in 3D, and thus, if the signal is interpreted by
the model as being spherical rather than the result of a rectilinear projection onto a plane,
then invariance to an additional rotational degree of freedom would already be embedded
in the model, before any training even begins. Next, in Section 4.4, experimental results to
investigate the potential gain in performance from the use of spherical convolutions will be
presented.

4.4 Spherical Convolutional Layers

In order to experimentally study any improvement in performance that is achievable using
spherical convolutions instead of planar convolutions, one could define an estimation task
to be performed on images acquired by a pinhole camera and compare model performance
with spherical convolutions to model performance with regular planar convolutions, i.e.,
when the model treats the signal as spherical or when it treats the signal as planar. Since
the problem of this current chapter focuses on distance estimation, it would be appropriate
to compare models which estimate distances. For a simple and well-controlled evaluation, a
dataset for such a task should have a well-defined “distance” to estimate for each image it
contains. To this end, a synthetic dataset was created in which each image was a binary
mask of a two-dimensional disk of random curved diameter (in the range of [π/8, π/2[) on
a sphere. (Here, “disk” actually refers to a spherical cap, and “diameter” refers to the arc
length on the sphere; i.e., a disk of diameter d centred at ı̂ on the unit sphere is the set
{x⃗ | ∠(̂ı, x⃗) < d}, where ∠(⃗a, b⃗) denotes the angle between a⃗ and b⃗ in radians.) Although
disks on the sphere could be drawn at any angle, the possible positions of the centres of the

58

disks on the sphere were limited to be within ±45◦ in latitude and ±72◦ in longitude in
order limit distortions to levels closer to what would be expected with a typical wide-angle
camera. In order to store and process the image in a discrete fashion, the sphere was
pixelated according to the Driscoll and Healy grid [69, 74] such that each image was 32
by 32 pixels. As illustrated in Figure 4.6, when projected onto a plane according to the
Driscoll and Healy grid, these disks appear distorted, especially at the top and bottom
edges of the frame.

To evaluate the ability of a detection model in estimating distances, the task was defined
to be the estimation, for each image, of the (curved) diameter of the disk on the sphere. By
processing these images on the sphere, it would be expected that these distances would be
learned more readily, as they should be invariant to the position of the disks, while on the
plane, these distances could be different for two disks of the same diameter but at different
locations.

The architecture used is illustrated in Figure 4.7; this architecture was based on the
RPN described in Faster-RCNN [42], but it includes some modifications. Two RPN versions
were implemented, both of which were using bounding circles rather than bounding boxes,
as representations and coordinates of circles on the sphere are simpler to process. The key
difference between these two models was the use of spherical convolutional layers in one
model and planar convolutional layers in the other model: the layers which differed between
these models are labelled in red in Figure 4.7. Note that the planar convolutions were
directly preformed on the planar representation of the Driscoll and Healy grid, which is
not the rectilinear projection described in Section 4.3 (and thus not the result of a pinhole
camera); however, in the planar representation of the Driscoll and Healy grid, disks are still
distorted, so conclusions about differences in performance using planar convolutions versus
spherical convolutions could still be used to support arguments in favour of or against
spherical convolutions.

Figure 4.8 summarizes the results obtained for each model across multiple runs. With
the percentage of absolute error in the vertical axis and the amount of training time in
the horizontal axis, a model with higher performance (in terms of training time to reach a
given error threshold) would have training curves that are closer to the bottom-left corner
of the plot.

Since substantial variability can be present between runs of a same model due to
randomness, simply studying the average curve might not be as insightful as studying the
Pareto front of the model over several runs. In order to mitigate the effects of randomness
in the initialization of the weights of the model as well as the generated images, the 20th

percentile of error for each epoch was plotted. For each model, different numbers of total

59

150 100 50 0 50 100 150
Longitude

75

50

25

0

25

50

75

La
tit

ud
e

150 100 50 0 50 100 150
Longitude

75

50

25

0

25

50

75

La
tit

ud
e

150 100 50 0 50 100 150
Longitude

75

50

25

0

25

50

75

La
tit

ud
e

150 100 50 0 50 100 150
Longitude

75

50

25

0

25

50

75

La
tit

ud
e

Figure 4.6: Examples of generated images for training and evaluation:
Circles centers within ±45◦ in latitude and ±72◦ in longitude.

trainable parameters were tested by changing the number of channels in the convolutional
layers, which was parameterized through a channel hyperparameter. See Table 4.1 for the
correspondence between this channel hyperparameter and the total number of trainable
parameters in each model.

Upon observing Figure 4.8, one can note that, for the tested resolution, the spherical
version of the RPN generally outperformed the planar RPN model, in spite of the spherical
model being more computationally demanding per epoch (the planar RPN plot corresponds
to three times as many iterations per run than the spherical RPN plot). For example, for
only 10 seconds of training, the 20th percentile of error was at about 7% for the best channel
hyperparameter in the case of the spherical RPN, while for the same amount of training
time, the 20th percentile of error was at more than 10% for the planar RPN.

To conclude this section, substantial improvements in distance estimation accuracy were
observed for the task of estimating curved diameters of disks on a sphere (spherical caps)
for images of 32 by 32 pixels when using spherical convolutional layers instead of planar
convolutional layers. Section 4.5 will introduce a proposed module architecture to estimate
distances between vehicles given images and bounding boxes outputted by CARLA.

60

Input Image

(Spherical) Convolutions

Fully-Connected Layer(s)*

Logits

Fully-Connected Layer(s)*

Horizontal, Vertical,
and Radius Differences

Anchor Centres
and Sizes

Classification
Regression

Figure 4.7: RPN Architecture used. The two RPN model versions
compared mainly differed at the layers labelled in red. In one version,
the convolutions were planar; in the other, the convolutions were
spherical. *For each anchor position; implemented as convolution layers with
kernel sizes of 1.

Table 4.1: Mapping between channel hyperparameter and trainable-
parameter count; a higher channel hyperparameter value corresponds
to more trainable parameters. A channel hyperparameter of 3 for
the spherical model produces about the same number of trainable
parameters as a channel hyperparameter of 11 for the planar model.

Number of trainable parameters

Channel hyperparam. Spherical model Planar model

1 17 833 5 417
2 19 567 5 864
3 21 685 6 409
5 32 095 9 122
7 45 577 12 619
9 62 131 16 900
11 81 757 21 965
13 104 455 27 814

61

100 101 102

Training Time (s)

101

102

Er
ro

r i
n

%

Channel Param.
1
2
3
5
7
9
11
13

Planar - 20th percentile of error for each epoch; channel parameter: [1, 2, 3, 5, 7, 9, 11, 13]

(a) Planar RPN: 20th percentile of error for each
epoch.

100 101 102

Training Time (s)

101

102

Er
ro

r i
n

%

Channel Param.
1
2
3
5
7
9
11
13

Spherical - 20th percentile of error for each epoch; channel parameter: [1, 2, 3, 5, 7, 9, 11, 13]

(b) Spherical RPN: 20th percentile of error for
each epoch.

Figure 4.8: Planar vs. spherical RPN. The spherical RPN archi-
tecture is generally able to achieve lower absolute error in curved
diameter estimation for a fixed amount of training time.

62

4.5 Distance Estimation from Bounding Boxes and Im-
ages

In an effort to develop a deep-learning model to estimate distances between vehicles
appearing in a CARLA image, a module Dd (without a detector) was developed to predict
3D positions and distance between two detected vehicles, given access to bounding-box
information and the original image; this was assuming that reasonably accurate bounding
boxes could eventually be produced by a state-of-the-art detector. For a pair of vehicles
(vA, vB), the distance-estimation module’s inputs were as follows: the RGB image, the
bounding-box coordinates B(vA) ∈ B ⊂ R4 of vA, and the bounding-box coordinates
B(vB) ∈ B ⊂ R4 of vB. The outputs of the module Dd are the estimated 3D position of vA
(i.e., p̂(vA)), the estimated 3D position of vB (i.e., p̂(vB)), and the estimate, d̂(vA, vB), of
the distance d(vA, vB) := ∥p(vB)− p(vA)∥ between the two vehicles. The architecture of Dd

is summarized in Figure 4.9.

Dd : M×B × B → R3 × R3 × R

The main questions that were investigated experimentally with this model architecture
were the following:

1. How much precision in distance estimation can be obtained from only using bounding
boxes as inputs, and how much gain in precision can be attributed to the use of the
pixel information enclosed by the bounding boxes?

2. How sensitive would such a model be to error or noise in the bounding-box coordinates,
and to what extent would sensitivity to noise be dependent on the use or omission of
pixel information for inference?

In order to train and evaluate the model, only vehicles no more than 30 metres away
from the camera were considered to be detected, and their ground-truth 2D bounding
boxes were derived from CARLA. The CARLA simulator provides access to oriented 3D
bounding boxes for vehicles: for any vehicle va, this is eight points B3D(va) = (⃗b1, b⃗2, . . . , b⃗8)
in 3D defining a hexahedron within which all of va is contained. From this, non-oriented 2D
four-vertex bounding boxes (described in the 2D coordinate system (ȷ̂, k̂)) of given vehicles
were computed. As these 2D four-vertex bounding boxes are non-oriented and their edges
are each either parallel to ȷ̂ or k̂, they can each be described by simply two vectors, each in

63

Using Bounding Boxes and Image Features
Current Architecture

Bounding
Box A

(4 scalars)

Bounding
Box B

(4 scalars)

RGB Image

Cropping Image
Crop A

Image
Crop BCropping

Some ResNet
Convolution

Layers
(Backbone; Pre-

trained)

Some ResNet
Convolution

Layers
(Backbone; Pre-

trained)

Conv.
Layers

Fully-Connected
Layers

Fully-Connected
Layers

Fully-Connected
Layers

Fully-Connected
Layers

Fully-Connected Layers
to Estimate 3D Position

of A

Fully-Connected Layers
to Estimate 3D Position

of B

Fully-
Connected
Layers to
Estimate
DistanceConv.

Layers

(Shared weights) trained separately
with large batch size

Concatenate + Fully-
Connected Layer(s)

Concatenate + Fully-
Connected Layer(s)

Concatenate + Fully-
Connected Layer(s)

Figure 4.9: Architecture of Dd. The two branches illustrated (each for
one of the two vehicles) are in fact the same branch (in code) and share
the same trainable parameters. Pre-trained ResNet convolutions were
used, while the fully-connected layers identified in green were trained
separately by omitting the RGB image data, which allowed for larger
batch sizes to be easily used.

2D: b⃗tr at the top-right corner in the (ȷ̂, k̂) 2D coordinate system, and b⃗bl at the bottom-left
corner:

b⃗bl =

 min
(
ȷ̂ · projP (⃗b1), ȷ̂ · projP (⃗b2), . . . , ȷ̂ · projP (⃗b8)

)
min

(
k̂ · projP (⃗b1), k̂ · projP (⃗b2), . . . , k̂ · projP (⃗b8)

)


b⃗tr =

 max
(
ȷ̂ · projP (⃗b1), ȷ̂ · projP (⃗b2), . . . , ȷ̂ · projP (⃗b8)

)
max

(
k̂ · projP (⃗b1), k̂ · projP (⃗b2), . . . , k̂ · projP (⃗b8)

)


B2D(va) =
(⃗
bbl, b⃗tr

)
.

Note that this method of constructing the 2D non-oriented bounding boxes is not perfect
and will typically generate 2D bounding boxes which are too large (but not too small)—as an

64

comparable example, imagine a unit sphere bounded by the octahedron {x⃗ ∈ R3 | ∥x⃗∥1 =√
3}; by applying a method similar to the one above (but using an orthogonal projection),

the 2D non-oriented bounding box would be btr = [−
√
3
√
3]

T
, bbl = [

√
3 −

√
3]

T
instead

of a square with edges of lengths 1.

As these bounding boxes were, at inference time, meant to be the simulated output of a
detector, a hyperparameter to adjust the amount of noise in the bounding box coordinates
was introduced:

Bnoisy
2D (va) =

(⃗
bbl + knoise × ε⃗uniform, b⃗tr + knoise × ε⃗uniform

)
ε⃗uniform ∼ U

(⃗
bbl − b⃗tr, b⃗tr − b⃗bl

)
,

where knoise is a hyperparameter that can be adjusted, and where x⃗ ∼ U(x⃗l, x⃗u) indicates
that the ith coordinate of x⃗ follows a uniform distribution in [x⃗l,i, x⃗u,i[(interval bounded
by the ith coordinate of x⃗l and the ith coordinate of x⃗u).

For a given pair of agents (va, vb) in image m, the image was cropped for each of the
two bounding boxes, generating crop(m,B2D(va)) and crop(m,B2D(va)). The croping of m
at a bounding box is the process of keeping only the pixel information that is contained
within this bounding box (with some rescaling and interpolation, as applicable).

The model Dd consists of sub-modules Dbbox, Dpixels, and Dhead, which each respectively
correspond to a module for processing bounding boxes, a module for processing cropped
images, and a module for the final outputs. For two vehicles (va, vb) in image m,

Dcombined : (m,B) 7→
(

Dbbox(B), Dpixels
(
crop(m,B)

))
Dd

(
m,B2D(va), B2D(vb)

)
= Dhead

(
Dcombined

(
m,B2D(va)

)
,Dcombined

(
m,B2D(vb)

))
.

Figure 4.9 illustrates the connections between Dbbox, Dpixels, and Dhead. Although one
branch per vehicle is illustrated in that figure, they are in fact one same module and have
the same parameters; i.e., at any point during training there is only one set of trainable
parameters for Dbbox and only one set of trainable parameters for Dpixels.

To quantify the performance gain offered by the use of pixel information in Dd, a variant
of this model was also evaluated: Dno-pixel

d . The implementation of this modified model

65

amounted to defining it as follows:

Dno-pixel
combined : (m,B) 7→

(
Dbbox(B), 0⃗

)
Dno-pixel

d

(
m,B2D(va), B2D(vb)

)
= Dhead

(
Dno-pixel

combined

(
m,B2D(va)

)
,Dno-pixel

combined

(
m,B2D(vb)

))
.

Both Dd and Dno-pixel
d were trained with knoise = 0.2. Figure 4.10 and Figure 4.11

illustrate the performance of each model Dd and Dno-pixel
d during training, with the eval-

uation performance also being measured with knoise = 0.2. These results indicate that
Dd outperformed Dno-pixel

d in absolute validation performance and that the use of pixel
information was valuable in decreasing the distance estimation error.

In order to investigate the sensitivity of these models (trained with knoise = 0.2), the
models were tested at values of knoise ranging from 0 to 0.4, with increments of 0.05.
Figure 4.12 illustrates the performance of the trained Dd and Dno-pixel

d as a function of
the noise introduced at evaluation time. From this figure, it can be deduced that both
models are relatively robust to small-to-moderate noise, with the trained Dd consistently
outperforming Dno-pixel

d .

To conclude this section, a model Dd that estimates the distance between two vehicles
(given their bounding boxes and the image in which they appear) was evaluated and
compared to Dno-pixel

d , which omitted pixel information. Both of these models were trained
on bounding boxes with the noise parameter knoise set to 0.2. Using Dd, distances between
two vehicles in a CARLA wide-angle image can be estimated within an average error of
roughly one metre when knoise = 0.2. The use of pixel information appeared to provide a
significant but not substantial improvement in estimation accuracy, and it appeared to offer
a slight increase in robustness to noise. This architecture exploration and these results are
only experimental and have some notable limitations:

• As previously mentioned, the derived 2D four-vertex bounding boxes were not ideal
and were typically too large. One could envision using other information from CARLA
in order to obtain more precise 2D bounding boxes.

• To estimate distances between vehicles, the ground-truth positions or centres of the
vehicles were defined (in the computer program) to be the average of the 3D eight-
vertex bounding boxes. However, it would be possible in CARLA to better estimate
the closest distance between any two given vehicles and train Dd to estimate this
distance instead, which would be expected to be more representative of whether a close

66

Table 4.2: Best epoch (with total) and corresponding mean absolute
validation error, for multiple training runs, with knoise = 0.2. This
shows that architecture Dd has consistently outperformed Dno-pixel

d .
(The difference in number of runs between the architectures is due
to the difference in training time.)

Dno-pixel
d Dd

Epochs Epochs

Run Index Error (metres) Best Total Error (metres) Best Total

1 1.176 120 212 0.960 107 131
2 1.182 116 150 0.944 114 135
3 1.146 115 150 0.873 121 140
4 1.149 117 150
5 1.171 117 150
6 1.191 120 150

call has occured—indeed, two long trucks might nearly collide (bumper to bumper)
without their centre-to-centre distance ever being below a few metres, whereas such a
distance between the centres of two small motorcycles would be less indicative of a
close call.

• Planar CNN layers were used for Dd. Section 4.3 raised arguments toward the use of
spherical convolutions for rectilinear projections, but planar convolutions were used
for Dd, as they are substantially less computationally demanding and they are simpler
to use (especially considering the prevalence and maturity of existing implementations
such as Conv2D of the PyTorch library [87]).

• The model Dd processes frames without taking into consideration the temporal
relationships and ordering of the frames. This is a disadvantage because for any given
frame, the frames preceding it and following it in time would be expected to contain
some prior information that could be useful in better estimating the distance between
two vehicles. As an example, consider a case in which prediction is performed on
image at time ti, but in which one of the two vehicles is obstructed; if this vehicle is
less obstructed in either the frame at ti−1 or the frame at ti+1, then knowing that the
speed and acceleration of a vehicle is limited, there would be some prior information
from these neighbouring frames that could be used to better estimate distance at ti.

67

100 101 102

Epochs

100

101

M
et

er
s

0.000

0.002

0.004

0.006

0.008

0.010

Le
ar

ni
ng

 R
at

e

A position error (smoothed)
AB distance error (smoothed)
B position error (smoothed)

lr (smoothed)

Epochs

M
et

re
s

L
ea

rn
in

g
ra

te

(a) Without using pixel information.

100 101 102

Epochs

100

101

M
et

er
s

0.000

0.002

0.004

0.006

0.008

0.010

Le
ar

ni
ng

 R
at

e

A position error (smoothed)
AB distance error (smoothed)
B position error (smoothed)

lr (smoothed)

Epochs

M
et

re
s

L
ea

rn
in

g
ra

te

(b) Using pixel information.

Figure 4.10: Training performance for one training run per architecture. L2

norm (blue) between predicted and ground-truth position for vehicle A, same
for vehicle B (green), and absolute error between predicted and ground-
truth distance between A and B (orange). The learning rate (red) varied
with number of epochs according to a cosine annealing scheduler with warm
restarts [86]. A rolling average was applied before plotting.

68

100 101 102

Epochs

100

101

M
et

er
s

A position error (smoothed)
AB distance error (smoothed)
B position error (smoothed)

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

Epochs

M
et

re
s

(a) Without using pixel information.

100 101 102

Epochs

100

101

M
et

er
s

A position error (smoothed)
AB distance error (smoothed)
B position error (smoothed)

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

Epochs

M
et

re
s

(b) Using pixel information.

Figure 4.11: Same as Figure 4.10, but for performance on validation data
instead of training data (and without showing learning-rate curves).

69

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Noise hyperparameter

0.8

1.0

1.2

1.4

1.6

Ab
so

lu
te

 d
ist

an
ce

 e
st

im
at

io
n

er
ro

r (
va

lid
at

io
n)

 [m
et

re
s]

BBox and maps
BBox only

Figure 4.12: Validation performance as a function of knoise (at valida-
tion time, ranging from 0 to 0.4) of models trained with knoise = 0.2.
In blue (“BBox and maps”): results across three trained instances of
Dd. In orange (“BBox only”): results across six trained instances of
Dno-pixel

d . The shaded area shows the range (between minimum and
maximum) of performance across multiple trained model instances
for a same architecture, for a given knoise value. For both architec-
tures, the estimation error increased with more noise, at similar rates.
The Dno-pixel

d architecture consistently performed more poorly than
Dd.

70

Chapter 5

Conclusion

Two main problems were presented in this thesis: one which relates to the bin-picking
problem, more specifically in the case of highly cluttered scenes, and one which relates to
identifying close calls by estimating distances between vehicles, given some wide-angle RGB
footage of road traffic.

In Chapter 3, the problem of estimating the relative placements of objects in clutter
was formulated. Argumentation toward the use of directed simple graphs to represent the
relations between objects in any given scene was put forward, and difficulties that may
arise in realistic bin-picking datasets were discussed. A graph-network model architecture
was proposed and implemented, and a baseline model which was based on an architecture
presented in [76] was used for comparison. This graph-network model and this baseline model
were both tested and compared using the synthetic part of the MetaGraspNetV2 [4] dataset
and on the Visual Manipulation Relationship Dataset (VMRD) [76, 77, 82]. In addition, for
this particular object-relationship problem, some rigorous definitions for precision and recall
were both given, which account for the possibility of missed (undetected) objects on the part
of the object detector, or of erroneous detection of nonexistent objects (resulting in extra
bounding boxes). Based on the results obtained with the MetaGraspNetV2 and the VMRD
datasets, it was observed that the proposed graph-based model architecture outperformed
the baseline architecture in terms of F1 score (when using the given definitions for precision
and recall).

As mentioned in Section 3.6, one of the potential future directions for this work would
be to perform a careful ablation study of the proposed graph-network model, where each of
the proposed architecture features would be ablated to measure the impact that it has on
the overall performance of the model. Such an ablation study could be combined with a

71

study of the performance of the model for images specifically selected to contain each of the
dataset challenges described in Section 3.2. This would provide insight into whether each of
the proposed changes is indeed effective (or not) at addressing the difficulty for which it was
designed. Another direction for future work would be an analysis of model performance in
terms of prediction time. Indeed, as the problem described concerns real-time bin-picking
applications, there would typically be an incentive to use a model that is able to reason
about the scene, make decisions, and grasp objects more quickly. Computational complexity
of prediction (and training) time could be analyzed both theoretically and empirically, as a
function of the number of objects in the scene, and compared to architectures proposed by
other researchers.

Chapter 4 formulated and analyzed the problem of estimating the distance between
two given vehicles appearing in a wide-angle RGB video of traffic at any given intersection.
This compound problem, which implicitly involves both detection and regression tasks for
any given pair of detected vehicles, was separated into two parts: one focusing on planar
and spherical convolutions (Section 4.3 and Section 4.4) and one focusing on estimating
the distance between two vehicles, given an image and predetermined bounding boxes
(Section 4.5).

Section 4.3 presented a fundamental disadvantage with the use of regular planar convo-
lutions on wide-angle images, especially for estimating distances between objects in 3D,
and it instead argued toward the use of spherical convolutions. Some experimental results
to support this argument were presented in Section 4.4, with the use of two versions of a
region proposal network: one which used planar convolutions and one which used spherical
convolutions to detect and estimate the diameter of a spherical cap appearing in an image.

Section 4.5 presented some work that focused on a module which is intended to be
used downstream of a vehicle detector. In addition to simplifying the experimental process,
assuming that the bounding boxes are already detected has the added benefit of allowing
for more control over the amount of error in the bounding boxes given to the distance-
estimation model; this also allows for a controlled evaluation of the robustness of the
model as a function of bounding box error. To quantify the amount of distance-estimation
accuracy which can be obtained by this module from bounding-box coordinates alone (i.e.,
without the use of pixel information), a simple ablation study was conducted in which the
distance-estimation module was modified to ignore pixel information in the image. When
using pixel information, the module consistently performed better than when it ignored the
pixel information.

As potential long-term directions for any continuations of this project, one might consider
other accident-risk metrics to estimate. Ultimately, the objective is to provide an insightful

72

and actionable indicator of the risk of accident at any given intersection or road segment.
For this, a more sophisticated metric, other than distance, could be considered. One such
metric might be an indicator of the likelihood that an accident would have occurred at
time ti when only considering images for times t < ti (indeed, estimating the likelihood
that an accident would have occurred with a model that has access to the future frames
which show whether an accident has truly occurred does not seem logical). Furthermore,
there might be more value in estimating some high-level metrics that are not limited to
making conclusions about particular pairs of vehicles, but which rather focus on indicating
the causes or common locations of close calls within an intersection of high risk; such
metrics would presumably be much more insightful and actionable from the perspective of
a municipality which wishes to make concrete improvements to dangerous intersections.

73

References

[1] A. L. W. Koh, J. Park, and P. Fieguth, “Challenges in detection of rare close-call
events from vehicle-traffic videos”, 8th Annual Conference on Vision and Imaging
Systems (CVIS 2022), 2022.

[2] A. L. W. Koh, J. Park, and P. Fieguth, Challenges in detection of rare close-call events
from vehicle-traffic videos, 8th Annual Conference on Vision and Imaging Systems
(CVIS 2022), 2022, (poster session).

[3] M. Gilles, Y. Chen, T. R. Winter, E. Z. Zeng, and A. Wong, MetaGraspNet: A large-
scale benchmark dataset for scene-aware ambidextrous bin picking via physics-based
metaverse synthesis, 2022. arXiv: 2208.03963 [cs.CV].

[4] M. Gilles et al., “MetaGraspNetV2: All-in-one dataset enabling fast and reliable
robotic bin picking via object relationship reasoning and dexterous grasping”, IEEE
Transactions on Automation Science and Engineering, pp. 1–19, 2023. doi: 10.1109/
TASE.2023.3328964.

[5] J. Schmidhuber, “Deep learning in neural networks: An overview”, Neural Networks,
vol. 61, pp. 85–117, 2015, issn: 0893-6080. doi: 10.1016/j.neunet.2014.09.003.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0893608014002135.

[6] L. Deng, “Artificial intelligence in the rising wave of deep learning: The historical
path and future outlook [perspectives]”, IEEE Signal Processing Magazine, vol. 35,
no. 1, pp. 180–177, 2018. doi: 10.1109/MSP.2017.2762725.

[7] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning
for computer vision: A brief review”, Computational Intelligence and Neuroscience,
vol. 2018, 2018. doi: 10.1155/2018/7068349.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation”, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2014.

74

https://arxiv.org/abs/2208.03963
https://doi.org/10.1109/TASE.2023.3328964
https://doi.org/10.1109/TASE.2023.3328964
https://doi.org/10.1016/j.neunet.2014.09.003
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://doi.org/10.1109/MSP.2017.2762725
https://doi.org/10.1155/2018/7068349

[9] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet: Keypoint triplets
for object detection”, in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), Oct. 2019.

[10] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-
to-end object detection with transformers”, in Computer Vision – ECCV 2020, A.
Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds., Cham: Springer International
Publishing, 2020, pp. 213–229, isbn: 978-3-030-58452-8.

[11] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey”,
in Proceedings of the IEEE, vol. 111, 2023. doi: 10.1109/JPROC.2023.3238524.

[12] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. Hauptmann, “A comprehensive
survey of scene graphs: Generation and application”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 45, no. 1, pp. 1–26, 2023. doi: 10.1109/
TPAMI.2021.3137605.

[13] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation by iterative
message passing”, in 30TH IEEE CONFERENCE ON COMPUTER VISION AND
PATTERN RECOGNITION (CVPR 2017), ser. IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 3097–3106, isbn: 978-1-5386-0457-1. doi:
10.1109/CVPR.2017.330.

[14] Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang, “Scene graph generation from ob-
jects, phrases and region captions”, in 2017 IEEE INTERNATIONAL CONFERENCE
ON COMPUTER VISION (ICCV), 2017, pp. 1270–1279, isbn: 978-1-5386-1032-9.
doi: 10.1109/ICCV.2017.142.

[15] D. Buchholz, Bin-Picking, New Approaches for a Classical Problem. Springer, 2016,
isbn: 978-3-319-26498-1. doi: 10.1007/978-3-319-26500-1.

[16] A. Cordeiro, L. F. Rocha, C. Costa, P. Costa, and M. F. Silva, “Bin picking approaches
based on deep learning techniques: A state-of-the-art survey”, in 2022 IEEE Interna-
tional Conference on Autonomous Robot Systems and Competitions (ICARSC), 2022,
pp. 110–117. doi: 10.1109/ICARSC55462.2022.9784795.

[17] M. Alonso, A. Izaguirre, and M. Graña, “Current research trends in robot grasping
and bin picking”, in International Joint Conference SOCO’18-CISIS’18-ICEUTE’18,
M. Graña et al., Eds., Cham: Springer International Publishing, 2019, pp. 367–376,
isbn: 978-3-319-94120-2.

[18] M. Nieuwenhuisen et al., “Mobile bin picking with an anthropomorphic service robot”,
in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 2327–
2334. doi: 10.1109/ICRA.2013.6630892.

75

https://doi.org/10.1109/JPROC.2023.3238524
https://doi.org/10.1109/TPAMI.2021.3137605
https://doi.org/10.1109/TPAMI.2021.3137605
https://doi.org/10.1109/CVPR.2017.330
https://doi.org/10.1109/ICCV.2017.142
https://doi.org/10.1007/978-3-319-26500-1
https://doi.org/10.1109/ICARSC55462.2022.9784795
https://doi.org/10.1109/ICRA.2013.6630892

[19] K. Rahardja and A. Kosaka, “Vision-based bin-picking: Recognition and localization
of multiple complex objects using simple visual cues”, in Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems. IROS ’96, vol. 3, 1996,
pp. 1448–1457. doi: 10.1109/IROS.1996.569005.

[20] Government of Canada, Canadian motor vehicle traffic collision statistics, 2023. [On-
line]. Available: https://tc.canada.ca/en/road-transportation/statistics-
data/canadian-motor-vehicle-traffic-collision-statistics-2021.

[21] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, “A survey on learning-based
robotic grasping”, Current Robotics Reports, 2020. doi: 10.1007/s43154-020-00021-
6.

[22] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel objects using
vision”, The International Journal of Robotics Research, Feb. 2008. doi: 10.1177/
0278364907087172.

[23] K. Ikeuchi, B. K.P. Horn, S. Nagata, T. Callahan, and O. Feingold, Picking up an
object from a pile of objects, 1983.

[24] B. Sauvet, F. Lévesque, S. Park, P. Cardou, and C. Gosselin, “Model-based grasping
of unknown objects from a random pile”, Robotics, vol. 8, no. 79, 2019. doi: 10.3390/
robotics8030079.

[25] D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell, and A. Stentz, “Perceiving, learn-
ing, and exploiting object affordances for autonomous pile manipulation”, Autonomous
Robots, 2014. doi: 10.1007/s10514-014-9407-y.

[26] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection”,
The International Journal of Robotics Research, vol. 37, no. 4-5, pp. 421–436, 2018.
doi: 10.1177/0278364917710318.

[27] L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects from a pile”,
2012 IEEE International Conference on Robotics and Automation, 2012. doi: 10.
1109/ICRA.2012.6224575..

[28] D. Katz, M. Kazemi, J. A. Bagnell, and A. Stentz, “Clearing a pile of unknown objects
using interactive perception”, in 2013 IEEE International Conference on Robotics
and Automation, 2013, pp. 154–161. doi: 10.1109/ICRA.2013.6630570.

[29] T. Hermans, J. M. Rehg, and A. Bobick, “Guided pushing for object singulation”, in
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012,
pp. 4783–4790. doi: 10.1109/IROS.2012.6385903.

76

https://doi.org/10.1109/IROS.1996.569005
https://tc.canada.ca/en/road-transportation/statistics-data/canadian-motor-vehicle-traffic-collision-statistics-2021
https://tc.canada.ca/en/road-transportation/statistics-data/canadian-motor-vehicle-traffic-collision-statistics-2021
https://doi.org/10.1007/s43154-020-00021-6
https://doi.org/10.1007/s43154-020-00021-6
https://doi.org/10.1177/0278364907087172
https://doi.org/10.1177/0278364907087172
https://doi.org/10.3390/robotics8030079
https://doi.org/10.3390/robotics8030079
https://doi.org/10.1007/s10514-014-9407-y
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1109/ICRA.2012.6224575.
https://doi.org/10.1109/ICRA.2012.6224575.
https://doi.org/10.1109/ICRA.2013.6630570
https://doi.org/10.1109/IROS.2012.6385903

[30] M. Fujita et al., “What are the important technologies for bin picking? technology
analysis of robots in competitions based on a set of performance metrics”, Advanced
Robotics, vol. 34, no. 7-8, pp. 560–574, 2020. doi: 10.1080/01691864.2019.1698463.

[31] C. Martinez, R. Boca, B. Zhang, H. Chen, and S. Nidamarthi, “Automated bin
picking system for randomly located industrial parts”, in 2015 IEEE International
Conference on Technologies for Practical Robot Applications (TePRA), 2015, pp. 1–6.
doi: 10.1109/TePRA.2015.7219656.

[32] N. Correll et al., “Analysis and observations from the first amazon picking challenge”,
IEEE Transactions on Automation Science and Engineering, vol. 15, no. 1, pp. 172–
188, 2018. doi: 10.1109/TASE.2016.2600527.

[33] Y. Xiao et al., “A review of object detection based on deep learning”, Multimedia
Tools and Applications, 2020. doi: 10.1007/s11042-020-08976-6.

[34] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object detection with deep learning:
A review”, IEEE Transactions on Neural Networks and Learning Systems, vol. 30,
no. 11, pp. 3212–3232, 2019. doi: 10.1109/TNNLS.2018.2876865.

[35] T. Cohen and M. Welling, “Group equivariant convolutional networks”, in Proceedings
of The 33rd International Conference on Machine Learning, M. F. Balcan and K. Q.
Weinberger, Eds., ser. Proceedings of Machine Learning Research, vol. 48, New
York, New York, USA: PMLR, Jun. 2016, pp. 2990–2999. [Online]. Available: https:
//proceedings.mlr.press/v48/cohenc16.html.

[36] H. B. Enderton, Elements of Set Theory. Academic Press, Inc., 1977, isbn: 0-12-
238440-7.

[37] T.-Y. Lin et al., “Microsoft COCO: Common objects in context”, in EECV, 2014.
doi: 10.1007/978-3-319-10602-1_48.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks”, in Advances in Neural Information Processing Systems,
F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, Eds., vol. 25, Curran
Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/
paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b- Paper.
pdf.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks”, Communications of the ACM, vol. 60, no. 6, pp. 84–
90, May 2017, issn: 0001-0782. doi: 10.1145/3065386. [Online]. Available: https:
//doi.org/10.1145/3065386.

77

https://doi.org/10.1080/01691864.2019.1698463
https://doi.org/10.1109/TePRA.2015.7219656
https://doi.org/10.1109/TASE.2016.2600527
https://doi.org/10.1007/s11042-020-08976-6
https://doi.org/10.1109/TNNLS.2018.2876865
https://proceedings.mlr.press/v48/cohenc16.html
https://proceedings.mlr.press/v48/cohenc16.html
https://doi.org/10.1007/978-3-319-10602-1_48
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386

[40] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection”, Computing Research Repository, vol. abs/1506.02640, 2015.
arXiv: 1506.02640. [Online]. Available: http://arxiv.org/abs/1506.02640.

[41] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection”, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2016.

[42] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Toward real-time object
detection with region proposal networks”, Computing Research Repository, Jan. 2016.
doi: 10.48550/arXiv.1506.01497.

[43] M. Carranza-García, J. Torres-Mateo, P. Lara-Benítez, and J. García-Gutiérrez, “On
the performance of one-stage and two-stage object detectors in autonomous vehicles
using camera data”, Remote Sensing, 2020. doi: 10.3390/rs13010089.

[44] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders,
“Selective search for object recognition”, International Journal of Computer Vision,
2013. doi: 10.1007/s11263-013-0620-5.

[45] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik, “Multiscale
combinatorial grouping”, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2014.

[46] T. Kong, A. Yao, Y. Chen, and F. Sun, “HyperNet: Towards accurate region proposal
generation and joint object detection”, in Conference on Computer Vision and Pattern
Recognition, 2016.

[47] J. Wang, K. Chen, S. Yang, C. C. Loy, and D. Lin, “Region proposal by guided
anchoring”, in Conference on Computer Vision and Pattern Recognition, 2019.

[48] R. Girshick, “Fast R-CNN”, in Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Dec. 2015.

[49] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection”, in Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Oct. 2017.

[50] W. Liu et al., “SSD: Single shot multibox detector”, in Computer Vision – ECCV
2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., Springer International
Publishing, 2016, pp. 21–37, isbn: 978-3-319-46448-0.

[51] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger”, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul.
2017.

78

1506.02640
http://arxiv.org/abs/1506.02640
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.3390/rs13010089
https://doi.org/10.1007/s11263-013-0620-5

[52] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement”, Computing
Research Repository, Apr. 2018. doi: 10.48550/arXiv.1804.02767.

[53] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal speed and
accuracy of object detection”, Computing Research Repository, Apr. 2020. doi: 10.
48550/arXiv.2004.10934.

[54] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors”, in IEEE Conference on
Computer Vision and Pattern Recognition, Jun. 2023.

[55] H. Law and J. Deng, “CornerNet: Detecting objects as paired keypoints”, in Proceedings
of the European Conference on Computer Vision (ECCV), Sep. 2018.

[56] P. W. Battaglia et al., Relational inductive biases, deep learning, and graph networks,
2018. arXiv: 1806.01261 (cs.LG).

[57] P. de Haan, T. Cohen, and M. Welling, “Natural graph networks”, in Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 3636–3646.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2020/
file/2517756c5a9be6ac007fe9bb7fb92611-Paper.pdf.

[58] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia,
“Learning to simulate complex physics with graph networks”, in Proceedings of the
37th International Conference on Machine Learning, H. Daumé III and A. Singh,
Eds., ser. Proceedings of Machine Learning Research, vol. 119, PMLR, 2020, pp. 8459–
8468. [Online]. Available: https : / / proceedings . mlr . press / v119 / sanchez -
gonzalez20a.html.

[59] R. Mercado et al., “Graph networks for molecular design”, Machine Learning: Science
and Technology, vol. 2, no. 2, Mar. 2021. doi: 10.1088/2632-2153/abcf91. [Online].
Available: https://dx.doi.org/10.1088/2632-2153/abcf91.

[60] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains”,
in 2005 IEEE International Joint Conference on Neural Networks, vol. 2, 2005, pp. 729–
734. doi: 10.1109/IJCNN.2005.1555942.

[61] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “Computa-
tional capabilities of graph neural networks”, IEEE Transactions on Neural Networks,
vol. 20, no. 1, pp. 81–102, 2009. doi: 10.1109/TNN.2008.2005141.

79

https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
1806.01261
https://proceedings.neurips.cc/paper_files/paper/2020/file/2517756c5a9be6ac007fe9bb7fb92611-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2517756c5a9be6ac007fe9bb7fb92611-Paper.pdf
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
https://doi.org/10.1088/2632-2153/abcf91
https://dx.doi.org/10.1088/2632-2153/abcf91
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/TNN.2008.2005141

[62] J. Zhou et al., “Graph neural networks: A review of methods and applications”, AI
Open, vol. 1, pp. 57–81, 2020, issn: 2666-6510. doi: 10.1016/j.aiopen.2021.01.001.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2666651021000012.

[63] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?”
In International Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=ryGs6iA5Km.

[64] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model”, IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–
80, 2009. doi: 10.1109/TNN.2008.2005605.

[65] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting”, in International Conference on Learning
Representations, 2018. [Online]. Available: https://openreview.net/forum?id=
SJiHXGWAZ.

[66] Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic graph convolutional recurrent
neural network: A deep learning framework for network-scale traffic learning and
forecasting”, IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 11,
pp. 4883–4894, 2020. doi: 10.1109/TITS.2019.2950416.

[67] D. Raposo, A. Santoro, D.G.T. Barrett, R. Pascanu, T. Lillicrap, and P. Battaglia,
“Discovering objects and their relations from entangled scene representations”, in ICLR
2017, 2017. [Online]. Available: https://openreview.net/pdf?id=rkrjrvmKl.

[68] A. Santoro et al., “A simple neural network module for relational reasoning”, in
Advances in Neural Information Processing Systems, I. Guyon et al., Eds., vol. 30,
Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.
cc/paper_files/paper/2017/file/e6acf4b0f69f6f6e60e9a815938aa1ff-Paper.
pdf.

[69] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, Spherical CNNs, 2018. arXiv:
1801.10130 [cs.LG].

[70] J. Gu et al., “Recent advances in convolutional neural networks”, Pattern Recognition,
vol. 77, pp. 354–377, 2018, issn: 0031-3203. doi: https://doi.org/10.1016/
j.patcog.2017.10.013. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0031320317304120.

[71] G. J. Awcock and R. Thomas, Applied Image Processing. MACMILLAN PRESS LTD,
1995, isbn: 978-0-333-58242-8. doi: 10.1007/978-1-349-13049-8.

80

https://doi.org/10.1016/j.aiopen.2021.01.001
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1109/TNN.2008.2005605
https://openreview.net/forum?id=SJiHXGWAZ
https://openreview.net/forum?id=SJiHXGWAZ
https://doi.org/10.1109/TITS.2019.2950416
https://openreview.net/pdf?id=rkrjrvmKl
https://proceedings.neurips.cc/paper_files/paper/2017/file/e6acf4b0f69f6f6e60e9a815938aa1ff-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/e6acf4b0f69f6f6e60e9a815938aa1ff-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/e6acf4b0f69f6f6e60e9a815938aa1ff-Paper.pdf
https://arxiv.org/abs/1801.10130
https://doi.org/https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/https://doi.org/10.1016/j.patcog.2017.10.013
https://www.sciencedirect.com/science/article/pii/S0031320317304120
https://www.sciencedirect.com/science/article/pii/S0031320317304120
https://doi.org/10.1007/978-1-349-13049-8

[72] R. Kondor and S. Trivedi, “On the generalization of equivariance and convolution in
neural networks to the action of compact groups”, in Proceedings of the 35th Interna-
tional Conference on Machine Learning, J. Dy and A. Krause, Eds., ser. Proceedings
of Machine Learning Research, vol. 80, PMLR, Jul. 2018, pp. 2747–2755. [Online].
Available: https://proceedings.mlr.press/v80/kondor18a.html.

[73] A. Baker, Matrix Groups, An Introduction to Lie Group Theory. Springer-Verlag
London Limited, 2002, isbn: 978-1-85233-470-3.

[74] J. R. Driscoll and D. M. Healy, Jr., “Computing fourier transforms and convolutions on
the 2-sphere”, Advances in Applied Mathematics, vol. 15, no. 2, pp. 202–250, 1994, issn:
0196-8858. doi: https://doi.org/10.1006/aama.1994.1008. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0196885884710086.

[75] D.L. Johnson, Symmetries. Springer-Verlag London Limited, 2001, isbn: 978-1-85233-
270-9. doi: 10.1007/978-1-4471-0243-4.

[76] H. Zhang, X. Lan, X. Zhou, Z. Tian, Y. Zhang, and N. Zheng, “Visual manipulation
relationship network for autonomous robotics”, 2018 IEEE-RAS 18th International
Conference on Humanoid Robots (Humanoids), 2018. doi: 10.1109/HUMANOIDS.2018.
8625071.

[77] H. Zhang, X. Lan, X. Zhou, Z. Tian, Y. Zhang, and N. Zheng, “Visual manipulation re-
lationship recognition in object-stacking scenes”, Pattern Recognition Letters, vol. 140,
pp. 34–42, 2020, issn: 0167-8655. doi: https://doi.org/10.1016/j.patrec.2020.
09.014. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167865520303445.

[78] Z. Wu, J. Tang, X. Chen, C. Ma, X. Lan, and N. Zheng, Prioritized planning for
target-oriented manipulation via hierarchical stacking relationship prediction, 2023.
arXiv: 2303.07828 [cs.RO].

[79] M. Dong, Y. Bai, S. Wei, and X. Yu, A single multi-task deep neural network with a
multi-scale feature aggregation mechanism for manipulation relationship reasoning in
robotic grasping, 2023. arXiv: 2305.13591 [cs.RO].

[80] G. Zuo, J. Tong, H. Liu, W. Chen, and J. Li, “Graph-based visual manipulation
relationship reasoning network for robotic grasping”, Frontiers in Neurorobotics,
vol. 15, 2021, issn: 1662-5218. doi: 10.3389/fnbot.2021.719731. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnbot.2021.719731.

81

https://proceedings.mlr.press/v80/kondor18a.html
https://doi.org/https://doi.org/10.1006/aama.1994.1008
https://www.sciencedirect.com/science/article/pii/S0196885884710086
https://doi.org/10.1007/978-1-4471-0243-4
https://doi.org/10.1109/HUMANOIDS.2018.8625071
https://doi.org/10.1109/HUMANOIDS.2018.8625071
https://doi.org/https://doi.org/10.1016/j.patrec.2020.09.014
https://doi.org/https://doi.org/10.1016/j.patrec.2020.09.014
https://www.sciencedirect.com/science/article/pii/S0167865520303445
https://www.sciencedirect.com/science/article/pii/S0167865520303445
https://arxiv.org/abs/2303.07828
https://arxiv.org/abs/2305.13591
https://doi.org/10.3389/fnbot.2021.719731
https://www.frontiersin.org/articles/10.3389/fnbot.2021.719731

[81] M. Ding, Y. Liu, C. Yang, and X. Lan, “Visual manipulation relationship detection
based on gated graph neural network for robotic grasping”, in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 1404–
1410. doi: 10.1109/IROS47612.2022.9981077.

[82] https://gr.xjtu.edu.cn/zh/web/zeuslan/dataset, accessed on 2023-11-06.

[83] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open
urban driving simulator”, in Proceedings of the 1st Annual Conference on Robot
Learning, 2017, pp. 1–16.

[84] P. Gros and L. Quan, “Projective invariants for vision”, Laboratoire d’Informatique
Fondamentale et d’Intelligence Artificielle, Institut National Polytechnique de Greno-
ble, 46, avenue Félix Viallet 38031 Grenoble, France, Technical Report, Dec. 1992,
pp. 1–46. [Online]. Available: https://inria.hal.science/inria-00590013.

[85] L. J. V. Gool, T. Moons, E. Pauwels, and J. Wagemans, “Invariance from the
euclidean geometer’s perspective”, Perception, vol. 23, no. 5, pp. 547–561, 1994. doi:
10.1068/p230547.

[86] I. Loshchilov and F. Hutter, SGDR: Stochastic gradient descent with warm restarts,
2017. arXiv: 1608.03983 [cs.LG].

[87] PyTorch, https://pytorch.org, accessed on 2023-10-27.

82

https://doi.org/10.1109/IROS47612.2022.9981077
https://gr.xjtu.edu.cn/zh/web/zeuslan/dataset
https://inria.hal.science/inria-00590013
https://doi.org/10.1068/p230547
https://arxiv.org/abs/1608.03983
https://pytorch.org

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivations and Problem Descriptions
	Bin Picking in Clutter
	Detecting Close Calls in Road Traffic

	Contributions

	Background
	The Bin Picking Problem
	Object Detection Using Deep Learning
	Two-Stage Approaches
	One-Stage Approaches

	Graph Networks
	Spherical Convolutional Neural Networks

	Bin Picking for Cluttered Scenes
	Problem Formulation
	Dataset Challenges
	Cycle Problem
	Occluded-Boundary Problem
	Small-Overlap Problem

	Baseline Model
	Proposed Model
	Performance Metrics
	Results

	Predicting Distances Between Vehicles
	Problem Formulation
	Dataset Creation with the CARLA Simulator
	Signal Acquired by a Wide-Angle Camera
	Spherical Convolutional Layers
	Distance Estimation from Bounding Boxes and Images

	Conclusion
	References

