
Algorithms for Drinfeld Modules

by

Yossef Musleh

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2024

© Yossef Musleh 2024

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner: Pierre-Jean Spaenlehauer

Research scientist, Team CARAMBA

Inria Nancy – Grand Est

Supervisor(s): Éric Schost

Professor, Cheriton School of Computer Science

University of Waterloo

Internal Members: Mark Giesbrecht

Professor, Cheriton School of Computer Science

University of Waterloo

Arne Storjohann

Associate Professor, Cheriton School of Computer Science

University of Waterloo

Internal-External Member: Wentang Kuo

Professor, Department of Pure Mathematics

University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement

of Contributions included in the thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

Parts of the results presented in chapter 6 and 7 were originally published in [56] and

[57], and are primarily my own work. The software presented in Appendix A was joint

work with David Ayotte, Xavier Caruso, and Antoine Lèudiere and a demo was published

in [4].

iv

Abstract

Drinfeld modules play an important role in number theory over function fields, analo-

gizing that of elliptic curves for the number field setting. The broad success in translating

results over from number fields to function fields has motivated the study of Drinfeld mod-

ules, particularly in light of the enormous theoretical and practical weight of their elliptic

curve counterparts. More recently, this has taken a more computational focus, with the

potential for applications to polynomial factorization over finite fields. The main focus of

this work will be to study the computation of the characteristic polynomial of the Frobe-

nius endomorphism of a Drinfeld module. This problem has its roots in point counting

problems over elliptic curves.

This thesis introduces several new algorithms for computing the characteristic poly-

nomial of the Frobenius endomorphism. In particular, we give three new algorithms for

computing the characteristic polynomial for Drinfeld modules of any rank, as well as two

modifications to existing algorithms for the rank two case only. We also prove their correct-

ness and analyze their bit complexity. In addition, we analyze algorithms for computing

basis representations for the space of morphisms between Drinfeld modules derived from

pre-existing approaches described in the literature.

v

Acknowledgements

I would like to thank the following individuals and groups for their contributions either

directly to my academic work or to improving my quality of life. The order is somewhat

chronological, and does not necessarily reflect the magnitude of their contribution. Some

direct contributions to the thesis will be explicitly noted.

• My family; Mom, Dad, Omar, and Homoudy.

• My aunts, uncles, and cousins.

• My friends from Glenforest S.S.

• All the friends I’ve made at the University of Waterloo, particularly those I met

through the Pure Math Club, UW HvZ, and the Avalon club.

• Éric, whose supervision made this thesis possible.

• Nora for sending me amusing content from the internet.

• The “Drinfeld crew” of David, Xavier, and Antoine for discussions and work on the

implementation of Drinfeld modules.

• The members of the thesis committee for reviewing and approving this work.

vi

Dedication

This thesis is dedicated to everyone who helped me get here.

vii

Table of Contents

Examining Committee Membership ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Acknowledgements vi

Dedication vii

List of Tables xii

1 Introduction 1

2 Background 7

2.1 Elementary Mathematical Notation and Definitions 7

2.2 Elementary Algorithmics . 8

2.2.1 Multiplication of Polynomials and Matrices 9

2.2.2 Characteristic Polynomials . 9

viii

2.2.3 Representations of Finite Field Elements 10

2.2.4 Companion Matrices . 10

2.3 Modular Composition . 11

2.3.1 Computing Frobenius Images . 12

2.3.2 Normal Bases . 13

2.4 Skew Polynomials . 13

2.4.1 Multiplication . 15

2.4.2 Euclidean Division . 18

2.4.3 Minimal Subspace Polynomial & Multipoint Evaluation 19

2.5 Valuations, Places, and Limits . 22

2.5.1 The p-adic Numbers . 23

2.5.2 Inverse Limits for Rings and Modules 24

3 Elliptic Curves 26

3.1 Definitions . 26

3.2 Point Counting . 29

3.3 Schoof’s Algorithm . 30

3.4 Kedlaya’s Algorithm . 32

3.4.1 Monsky-Washnitzer Cohomology 32

3.4.2 Lifting the Frobenius . 33

4 Drinfeld Modules 36

4.1 Definitions . 36

4.1.1 Background . 36

4.1.2 Drinfeld Modules . 38

ix

4.1.3 Morphisms and Characteristic Polynomials 39

4.2 Elementary Algorithms on Drinfeld Modules 42

4.2.1 Computing Images and Inversions of the Drinfeld Map 42

4.2.2 Computing Field Actions . 45

4.3 The j-Invariant . 45

4.4 Computing the Characteristic Polynomial 46

4.4.1 The Direct Approach . 47

4.4.2 An Algorithm for the Prime Field Case 48

4.4.3 A Schoof-like Approach when r = 2 49

4.4.4 Using Hankel Systems . 51

4.4.5 Narayanan’s Algorithm . 53

4.4.6 Recent Work for Computing Norms of Isogenies and Characteristic

Polynomials of Endomorphisms . 54

5 Cohomology of Drinfeld Modules 55

5.1 Derivations and De Rham Cohomology . 55

5.2 Crystalline Cohomology . 57

5.3 Endomorphisms and Characteristic Polynomials 58

6 Algorithms for Computing the Characteristic Polynomials of Endomor-

phisms of Drinfeld Modules 62

6.1 Schoof-Like Algorithms . 62

6.1.1 The Rank 2 Case . 62

6.1.2 The Schoof-like Algorithm in any Rank 66

6.2 A Modification of Narayanan’s Algorithm 73

x

6.3 Using Hankel Systems . 75

6.4 Computing Characteristic Polynomials using Crystalline Cohomology . . . 81

6.4.1 A Divide-and-conquer Approach 83

6.4.2 Methods using a Recurrence . 84

6.4.3 A Baby-step Giant-step Algorithm to Compute the Characteristic

Polynomial of the Frobenius Endomorphism 86

6.4.4 Timings . 89

7 Additional Algorithms 91

7.1 An Algorithm for Multi-point Evaluation of Skew Polynomials 91

7.2 Minimal Subspace Polynomial . 93

7.3 Computing Endomorphism Rings of Drinfeld Modules 94

References 99

APPENDICES 107

A Software 108

A.0.1 Constructing Drinfeld modules . 108

A.0.2 Invariants . 109

A.0.3 Morphisms . 111

xi

List of Tables

4.1 The “dictionary” between the number field and function field cases 37

6.1 Run Times for m = 10 q = 25 in seconds 89

xii

Chapter 1

Introduction

Since their initial introduction by Drinfeld [22], his eponymous modules, originally referred

to as elliptic modules, have become important number theoretic tools. Originally motivated

by efforts to prove special cases of the Langlands conjectures for global function fields,

Drinfeld modules are now understood as just one component of a vast dictionary between

the number field and function field setting. Spanning modular forms, L-functions, higher

dimensional ablian varieties, and more, there has been considerable success in porting

constructions and results over to the Drinfeld setting.

More recently, considerable amount of effort has gone in a computational direction, with

much of it mirroring the existing machinery for elliptic curves. Some of the early work in

this direction included Gekeler’s work on the distribution of Frobenius traces of Drinfeld

modules [34] who was motivated by potential parallels with the Sato-Tate conjecture for

elliptic curves. The theory of zeta functions and their relation to counting rational points is

a classical result that has motivated the design of algorithms for computing the number of

points on an elliptic curve over a finite field. This is done by computing the characteristic

polynomial of the Frobenius endomorphism of the curve, and has motivated a number of

algorithms to carry out this operation; with the most famous being Schoof’s algorithm

for elliptic curves and its extensions. This provided one of the main entry points for my

investigation into algorithms for computing the characteristic polynomial of the Frobenius

endomorphism. Since then, the algorithmic study of Drinfeld modules has grown to include

1

isogenies and isogeny graphs [13, 74], endomorphism rings [51, 29], and characteristic

polynomials [34, 29, 59, 56]. Moreover, there have been attempts to translate cryptographic

constructions paralleling the machinery over elliptic curves to the Drinfeld module setting.

While some readers may be more familiar with the general construction of Drinfeld

modules, we will largely restrict our consideration to Drinfeld modules over A = Fq[x] for
a finite field Fq of cardinality q. We will exclusively work over finite Drinfeld modules;

that is, fix a finite extension L of Fq with n = [L : Fq] and a choice of characteristic

map γ : A → L. The map γ necessarily has a non-trivial kernel generated by a monic

irreducible p ∈ A referred to as the characteristic or A-characteristic. Now let τ be a

non-commutative indeterminate such that, for elements a ∈ L, τa = aqτ , and let L{τ}
denote the ring of polynomials in τ with coefficients in L. Then a Drinfeld module of rank

r can be realized concretely as an Fq algebra homomorphism ϕ : A → L{τ} such that

ϕ(x) =
∑r

i=1∆iτ
i+ γ(x) with ∆r ̸= 0. Morphisms between Drinfeld modules with domain

and codomain ϕ, ψ respectively can be realized concretely as elements u ∈ L{τ} such that

uϕx = ψxu. To each endomorphism of a Drinfeld module, one can associate a characteristic

polynomial and minimal polynomial, denoted CharPoly(u) and MinPoly(u), arising from

its induced action on the so-called Tate module, the details of which are discussed in more

detail in chapter 4.

When stating our complexity results, we will let ω < 2.372 denote the exponent of

matrix multiplication; thats is, a real number such that two square matrices of size d

over a ring can be multiplied in O(dω) ring operations. Similarly, let ω2 < 3.2516 denote

the exponent of d × d by d × d2 matrix multiplication, and λ the exponent of taking the

characteristic polynomial of a matrix. These objects are discussed in more detail in sections

2.2.1 and 2.2.2. We will also let SM(d, n, q) denote the complexity of multiplying two skew

polynomials in L{τ} of degree at most d; further details on the complexiy of this operation

are discussed in section 2.4.

The main goal of this thesis is to present new algorithms for computing the character-

istic polynomial of endomorphisms of a finite Drinfeld module, particularly the Frobenius

endomorphism corresponding to the skew polynomial τn which is sometimes referred to as

the characteristic polynomial of a Drinfeld module. Chapter 2 will cover the prerequisite

algorithmic theory concerning skew polynomials on which our main algorithms will depend,

2

and in particular will establish much of the basic complexity concepts and notation that

we will use in our analysis of algorithms. Chapter 3 will review some of the basic theory

of elliptic curves, and describe the computation of the characteristic polynomial in this

setting. Chapter 4 will provide the required background theory on Drinfeld modules and

will include an analysis of previous algorithms for computing the characteristic polynomial

of endomorphisms of a Drinfeld module. Chapter 5 will introduce the notion of crystalline

cohomology of Drinfeld modules.

Chapter 6 will introduce several new results; in particular we will present several new

approaches to compute the characteristic polynomial of the Frobenius endomorphism in

any rank, as well as modifications to existing algorithms for the rank 2 case. The following

theorem extends the previous “Schoof-like” algorithm which was originally presented in

the “large base-field” case only in [55].

Theorem (6.1.1). There exists a deterministic algorithm to compute the characteristic

polynomial of the Frobenius endomorphism of a rank 2 Drinfeld module ϕ with a bit com-

plexity of (n2 log q + n log2 q)1+o(1).

This extends the approach of [55, Thm. 15], which previously required q > n
2
. In addition,

we will present a modification of a pre-existing algorithm given in [59] which required that

the minimal polynomial of ϕx as a linear operator on L/Fq have degree n.

Theorem (6.2.1). Let ϕx be a rank 2 Drinfeld module over (L, γ). There is a Monte Carlo

algorithm to compute the characteristic polynomial of the Frobenius endomorphism of ϕ if

degMinPoly(ϕx) = n with a bit complexity of (n1.885 log q + n log2 q)1+o(1).

We will present generalizations of two algorithms, previously only applicable to the rank

two case only, to Drinfeld modules of arbitrary rank. The first result is a generalization of

the “Schoof-like” algorithm seen in [55].

Theorem (6.1.2). Let ϕ be a rank r Drinfeld module over L such that CharPoly(τn) =

MinPoly(τn). There exists an algorithm such that if gcd(n, r) = 1 or gcd(n, r − 1) = 1,

and q > N , then the algorithm computes the characteristic polynomial of the Frobenius

endomorphism of ϕ if the following conditions hold.

3

1. ϕx lies outside of a hypersurface in Fn(r+1)
q defined by a polynomial f of degree at most

(n− 1)(r − 1).

2. A randomly chosen vector E = (e1, . . . , en) ∈ FNq lies outside of a hypersurface in FNq
of degree at most n2r + n2

2
.

3. A randomly chosen projection ℓ : L → Fq lies outside of a hypersurface in Fnq of

degree at most n(r − 1).

Moreover, this algorithm runs with a bit complexity of (rω2/2+1n2 log q + n log2 q)1+o(1).

This improves the complexity of the characteristic polynomial to quadratic order in the

degree of the field extension n = [L : Fq], which was previously cubic using either the

“direct approach” or that of [29]. The second result generalizes an algorithm based on

structured linear systems again seen in [55].

Theorem (6.3.1). Let ϕ be a Drinfeld module of rank r over L. There exists a Monte

Carlo algorithm to compute the characteristic polynomial of the Frobenius endomorphism

when gcd(n, r) = 1 with a bit complexity of (n3r log q)1+o(1) and which returns the correct

result with probability at least
(
1− n2r2

q

)
.

The final major result on this topic is a series of deterministic algorithms for computing

the characteristic polynomial of any endomorphism of a Drinfeld module of any rank based

on the cohomological constructions due to Anglès and Gekeler [2]. These algorithms will

then be specialized to the case of the Frobenius endomorphism, as well as the “prime field

case” where Fp = L. The results are summarized in the following theorem.

Theorem (6.4.1). Let ϕ be a Drinfeld Fq[x]-module over (L, γ), and let u be any endomor-

phism of ϕ of τ -degree d. Then there are deterministic algorithms to compute CharPoly(u)

with the following complexities

1.
(min(dr2,(d+r)rω−1)

m
(d+m)n log q + rλn(d+m)/m log q + n log2 q

)1+o(1)
2. (rSM(d+ r, n, q) + rλn(d+m)/m log q + n log2 q)1+o(1) which is either

4

• (r(d+ r)ω2/2n log q + rλn(d+m)/m log q + n log2 q)1+o(1) if d < n

• or (r(d+ r)nω−1 log q + rλn(d+m)/m log q + n log2 q)1+o(1) otherwise

3. ((rλ/m+ rω/
√
m)n2 log q + n log2 q)1+o(1) if u = τn

4. (rωn1.5 log q + n log2 q)1+o(1) if u = τn and L = Fp.

In the case of the Frobenius endomorphism, these algorithms again improve on the

previously known optimal complexities for the characteristic polynomial computation, but

have the key advantages of being deterministic, being generally applicable in any rank, and

achieving a complexity on the order of n1.5 when r is fixed in the prime field case. This last

point is notable, as previously an algorithm achieving this bound was only available for the

rank 2 case [34, §3.4]. Moreover, when r is fixed their worst case complexities are O(n2)

which is a significant improvement over both the direct approach and the algorithm of [29].

For general endomorphisms, when n and r are fixed, algorithm 2 achieves a complexity of

d log d in the degree of the endomorphism.

Chapter 7 will cover some additional results. We present a new algorithm for multi-

point evaluation of skew polynomials; this result is contained in the following theorem.

Theorem (7.1.1). Given a skew polynomial s ∈ L{τ} of degree d and t evaluation points

a1, . . . , at ∈ L, there exists an algorithm for computing the evaluations s(a1), . . . , s(at) in

time

• (dtω−2n log q)1+o(1) if t ≤
√
d.

• (d(ω−1)/2tn log q)1+o(1) otherwise.

In addition we will discuss the complexity of the algorithm of Wesolowski [74] for

computing a basis of morphisms Hom(ϕ, ψ)d of Drinfeld modules ϕ, ψ of degree at most d,

as well as extensions of the algorithm for computing a basis of the free module of morphisms

over the coefficient rings Fq[τn] and Fq[x]. The main contribution here is a complete bit

complexity analysis of the following algorithms for computing basis representations of the

module of morphisms of Drinfeld modules ϕ, ψ over various coefficient rings.

5

Theorem (7.3.1). There is an algorithm for computing a basis of

• Hom(ϕ, ψ)d over Fq using (dωnω log q + dn3r log q + n log2 q)1+o(1) bit operations.

• Hom(ϕ, ψ) over Fq[τn] using (n4r log q + n log2 q)1+o(1) bit operations.

• Hom(ϕ, ψ) over Fq[x] using (nωrω+1 log q + n3r3 log q + n log2 q)1+o(1) bit operations.

Appendix A will also contain a brief overview of an implementation of Drinfeld modules

introduced in [54] which is now part of the SageMath implementation of Drinfeld modules.

This will include an overview of some of the key features available in the current public

distribution of SageMath, as well as some features still under development.

6

Chapter 2

Background

2.1 Elementary Mathematical Notation and Defini-

tions

We will assume that the reader is familiar with basic algebraic structures, particularly

groups, rings, and fields. We will fix here some of the most common mathematical notation

used throughout this work. We will use R to denote an arbitrary commutative ring. Let

R[x] denote the set of polynomials with coefficients lying in R, and let R[x]d denote the

set of polynomials of degree at most d. Furthermore, let Ms×d(R) and Md(R) denote the

sets of s× d and d× d matrices respectively with coefficients in R. If ι : R → R is a ring

endomorphism, this induces endomorphisms on R[x], Ms×d(R) given by coefficient-wise

action of ι. Given an element f ∈ R[x] or f ∈ Ms×d(R) we will denote the action of ι in

this way by f ι.

In this work, Fq will denote a finite field of size q a prime power, and L will be used to

denote a field extension of Fq of order n = [L : Fq]. We write L/Fq to denote the Fq-vector
space structure on L.

We will let End(R), Hom(R,R′), Aut(R) denote the set of ring homomorphisms, endo-

morphisms, and automorphisms respectively, with identical notation when R is understood

as a field. When R is an algebra over Fq, we will write EndFq(R) for the Fq-endomorphisms

7

which fix Fq, with similar notation HomFq(R,R
′), AutFq(R) for homomorphisms and au-

tomorphisms. If σ ∈ Aut(R), then the order of σ, denoted ord(σ) is the smallest positive

integer g such that σg = id.

Recall that L is a vector space of dimension n over Fq, and any s ∈ L induces an

Fq-linear operator on L given by multiplication with s. The norm and trace of s, denoted

NL/Fq(s) and TrL/Fq(s), are the determinant and trace of this linear operator respectively.

2.2 Elementary Algorithmics

As the primary goal of this thesis is to construct and analyze algorithms, we will define

the complexity model used to state the runtimes of operations. We will make use of the

standard asymptotic notation conventions, including O(f), Õ(f), and f 1+o(1) throughout

this work, which we shall define here.

Definition 2.2.1. Let f : R+ → R+, g : R+ → R+ be positive real valued functions. We

say that

• f ∈ O(g) if there exists constants C, x0 > 0 such that f(x) ≤ Cg(x) for all x > x0.

• f ∈ Õ(g) if there exists a k > 0 such that f ∈ O(g logk g).

• f ∈ g1+o(1) if there exists a function h : R+ → R+ such that limx→∞ h(x) = 0 and

f ∈ O(g1+h).

The two complexity models we will consider for this work are:

1. the algebraic model for rings and fields, in which the elementary operations of addi-

tion, multiplication, and division can be done at unit cost [11]

2. using a bit complexity model, which counts bit operations using a standard random

access machine [61].

8

The algebraic operation model is the norm for most research in symbolic and algebraic

computation, and we will make use of it at certain points. However, this work will primarily

aim to give the runtimes of core algorithms in the bit complexity model. The reason for

this, as will be discussed shortly, is the Kedlaya-Umans algorithm for modular composition,

which is impossible to account for in the algebraic model and which plays an important

role in the complexity of operations on skew polynomials. Using the bit complexity model,

we will assume that the elementary field operations in Fq can be performed in Õ(log q) or

(log q)1+o(1) bit operations [30]. Consequently, algorithms with an algebraic cost of O(t)

operations in Fq can be assigned a bit complexity of Õ(t log q) or (t log q)1+o(1).

2.2.1 Multiplication of Polynomials and Matrices

For rings which admit an FFT-like algorithm, we may take the complexity of multiplying

two polynomials in R[x] of degree at most d to be O(d log d) algebraic operations. For

arbitrary rings, this can be done in O(d log d log log d) [12]. In particular, we will let

Mul(n, q) denote the complexity of multiplying two finite field elements in a degree n

extension of Fq; based on the preceding statement, we may set Mul(n, q) = (n log q)1+o(1).

We will let ω ∈ R denote a real number such that two elements of Md(R) can be

multiplied in O(dω) algebraic operations. As of the writing of this work, the smallest

bound given in the literature is ω ≈ 2.372 [23]. We will similarly let ω2 denote the exponent

such that an element of Md(R) can be multiplied by an element of Md×d2(R) in O(dω2)

R-operations. A known bound is ω2 < 3.2516 [28] and in general ω2 ≤ ω + 1. For general

multiplication of matrices of size (d, t)× (t, u), we can divide the factors into square blocks

of size min(d, t, u) while padding as necessary. Using naive rectangular multiplication on

the block decomposition yields an algorithm with a cost of O(dtumin(d, t, u)ω−3) field

operations.

2.2.2 Characteristic Polynomials

We will let λ denote the exponent such that the complexity of computing the characteristic

polynomial of a d× d matrix with coefficients in R is O(dλ) ring operations. When R is a

9

field, the characteristic polynomial of any matrix can be computed at a cost of Õ(dω) [11].

For more general rings, we will rely on the algorithm of Kaltofen and Villard [47] with a

complexity corresponding to λ ≈ 2.7.

2.2.3 Representations of Finite Field Elements

A salient detail of algorithms over finite fields is the choice of representation of field ele-

ments. For a field extension Fq ⊂ L with [L : Fq] = n, which we may denote Fq n L,
this is typically done by first fixing a representation of Fq and representing elements of

L as polynomials in Fq[x]/(ℓ(x)) for some choice of irreducible ℓ(x) ∈ Fq[x] of degree n.
The technicalities of this choice become clearer when one works over a tower of fields

Fq m Fp
n/m L with [L : Fq] = n, [Fp,Fq] = m and Fp = Fq[x]/(p(x)) for an irreducible

p(x) ∈ Fq[x]. Then L may be represented in either univariate form as L = Fq[t]/(ℓ(t)) with
ℓ(t) ∈ Fq[t] or bivariate form L = Fq[x, t]/(p(x), g(x, t)). The univariate representation is

the default for most algorithms, and when necessary we may convert between the bivariate

and univariate representations at the cost of a single modular composition; an algorithm

which is discussed in section §2.3.

2.2.4 Companion Matrices

Given a sequence (xi)i≥0 defined by a length d recurrence with a = (a0, . . . , ad−1) such that

xj =
∑d−1

i=0 aixj−d+i for j ≥ d, we define the d× d companion matrix Ca to be


ad−1 ad−2 . . . a1 a0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

Then we have that:

10


xj+1

xj
...

xj−d

 = Ca


xj

xj−1

...

xj−d+1


If we have a monic a ∈ R[x]d with a =

∑d
i=0 aix

i, the companion matrix of the polyno-

mial has the form:

Ca =


−ad−1

ad
−ad−2

ad
. . . −a1

ad
−a0
ad

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

2.3 Modular Composition

After multiplication and Euclidean division, perhaps the most natural problem to consider

is that of modular composition

Operation 1. Let R be a ring, and let f, g, h ∈ R[x] be polynomials of degree at most d

with h monic. The modular composition operation computes the polynomial

f(g) mod h

For nearly 30 years, the best known algorithm for modular composition was based on

the algorithm of Brent and Kung [10] who gave an algebraic complexity of O(d(ω+1)/2).

This was later improved slightly by Huang and Pan in [41] to O(dω2).

This question was addressed once more in Kedlaya and Umans’ paper [50], in which they

gave algorithms for key operations including finding normal bases, polynomial factorization

over finite fields, and modular composition, based on a novel and quasi-optimal algorithm

for multivariate multipoint evaluation. The algorithm may be required to change the

11

ring over which algebraic operations are performed, therefore making it impossible to give

a complete accounting of the computational cost using an algebraic complexity model.

Consequently, the runtimes for the algorithms are given purely in terms of bit complexity.

Moreover, the algorithm has proven difficult to realize in the form of an efficient practical

implementation, which will have implications for the timings of our implementations.

For the duration of this thesis, we will take the runtime of modular composition to be

(d log q)1+o(1) for polynomials over a finite field Fq, based on a refinement of the Kedlaya-

Umans algorithm [40].

2.3.1 Computing Frobenius Images

Given a field F of characteristic p, the Frobenius operator σq : F→ F of order q = pk sends

a to aq. This operation acts linearly on fields of characteristic p, and if Fq ⊂ F then σq is

an Fq-vector space isomorphism. For a fixed choice of Frobenius operator σq, for any a ∈ F
let a[i] = σiq(a) = aq

i
. For m ∈ Md×d′(F) m[i] denotes entry-wise application of σiq, and

for f ∈ F[x], f [i] denotes coefficient-wise application. In [32], von zur Gathen and Shoup

gave an explicit approach reducing the computation of Frobenius maps on finite fields to

modular composition via the so-called polynomial representation of the Frobenius.

Consider the representation of F presented as the set of modular polynomials Fq[x]/h(x)
with h(x) irreducible of degree n. The Frobenius element is xq mod h(x), and given any

other element f(x) mod h(x), we observe that f(xq) = f(x)q mod h(x). Therefore, it

suffices to compute xq mod h(x) once and then perform a single modular composition to

compute the q-order Frobenius of any element of F. Moreover, the qi-order Frobenius

element xq
i
mod h can be obtained in a similar manner by successive modular composi-

tions of xq
i−1

mod h(x) with xq mod h(x). Thus, after accounting for an initial cost of

(n log(q)2)1+o(1) bit operations to compute xq mod h(x), all further q-order Frobenius pow-

ers can be computed at the cost of modular composition. Therefore qi-order Frobenius

powers can be reduced to modular composition after a pre-computation step with total bit

complexity (n log(q)2 + n2 log q)1+o(1).

12

2.3.2 Normal Bases

Recalling L/Fq a field extension of order n, and let σ : L → L be the q-order Frobenius

endomorphism on L σ(a) = aq.

Definition 2.3.1. A basis for L over Fq is said to be normal if it has the form {b, σ(b), . . . ,
σn−1(b)} for some b ∈ L.

Operation 2. Given a degree n extension L/Fq and σ is the q-order Frobenius, find a

normal basis.

We denote the complexity of computing a normal basis for σ of L/Fq by NB(n, q, σ);

we drop the dependence on σ when σ(·) = ·q. von zur Gathen and Giesbrecht [31] gave

a Las Vegas algorithm for computing normal bases with expected O(Mul(n2, q)(log n)2 +

Mul(n, q) log q) Fq-operations. Kaltofen and Shoup in [46] gave the first subquadratic

algorithm for normal basis construction and conversion to and from power bases. This

approach utilised a baby-step/giant-step method based on their improved algorithms au-

tomorphism projections. For a normal basis with respect to the Frobenius automorphism,

and leveraging the Kedlaya-Umans algorithm for modular composition, the bit complexity

of constructing and manipulating normal bases is bounded by

NB(n, q) = nω2/2 log1+o(1) q + n1+o(1) log2+o(1) q

2.4 Skew Polynomials

As much of the mathematical theory of Drinfeld modules can be described quite concretely

in terms of skew polynomials in the Frobenius operator, many algorithms of interest on

Drinfeld modules rely on fundamental algorithms on skew polynomials. To that end, it

will be necessary to describe and analyze the complexity of the key operations we will be

calling upon in this work. Let σ : R → R be a ring endomorphism. A σ-derivation is a

map δ : R→ R such that, for all a, b ∈ R

13

• δ(a+ b) = δ(a) + δ(b)

• δ(ab) = σ(a)δ(b) + δ(a)b.

We can now define the ring of skew polynomials.

Definition 2.4.1. Given a ring R, an endomorphism σ : R → R and a σ-derivation

δ : R→ R, let τ be an indeterminate such that τa = σ(a)τ + δ(a) for all a ∈ R. We then

define the ring of Ore or skew polynomials to be the set

R{τ ;σ, δ} =
{ d∑

i=0

aiτ
i|ai ∈ R, d ∈ Z+

}

When δ = 0, we will write R{τ ;σ} instead of R{τ ;σ, 0}. When the choice of σ, δ is

clear from context, we will suppress them from the notation and write the ring of skew

polynomials as R{τ}. Furthermore, there is a canonical identification ξ : R{τ} → End(R)

given by

∑
i

aiτ
i 7→

∑
i

aiσ
i ∈ End(R),

where σ0 = id. Then ξ can be seen as an Fq-algebra homomorphism where ordinary

multiplication of skew polynomials in R{τ} corresponds to composition of operators in

EndFq(R). For a ∈ L we will simply write ρ(a) to mean ξ(ρ)(a).

We will denote the cost of computing of a single application of σ to any element by SK(..)

in the relevant parameters, which for our finite field setting will be n, q. The complexities

for skew polynomial operations in this chapter will be given in terms of SK(n, q) to keep

the analysis general. However, for all algorithms concerning Drinfeld modules, including

chapter 4 and onwards, σ will be the q-order Frobenius endomorphism σ(x) = xq, in which

case SK(n, q) = (n log q)1+o(1).

For an element S ∈ R{τ} whose leading coefficient is invertible in R, we let degS denote

its degree in τ , and R{τ}d = {S ∈ R{τ} | degS ≤ d}. Given T, S ∈ R{τ}, we shall define

14

the right quotient T/S and right remainder T mod S, to be the unique values Q,U ∈ R{τ}
respectively such that T = QS + U with degU < degS. For fixed S ∈ R{τ} the right

quotient R{τ}/S is a left R{τ}-module in the usual manner. It will also be convenient to

view elements of R{τ}/S as an R-module, and in our typical setting of R = Fq or R = L
we have a natural vector space structure of dimension d. For any s ∈ L{τ}, we will use ŝ

to denote the corresponding representation as a column vector of size d.

For the remainder of this work, we will work exclusively with L{τ}. We will set σ to

be the q-order Frobenius operator σq(a) = aq and set δ = 0. In this setting, we have a

further interpretation of skew polynomials as the so called linearized polynomials, under

the identification ∑
i

aiτ
i 7→

∑
i

aix
qi ∈ Fq[x].

2.4.1 Multiplication

Operation 3. Let a =
∑s

i=0 aiτ
i, b =

∑s
i=0 biτ

i ∈ L{τ}. The skew multiplication operation

a · b returns the skew polynomial
∑

0≤i,j≤s aiσ
i(bj)τ

i+j =
∑2s

d=0

∑min(d,s)
i=0 aiσ

i(bd−i)τ
d.

We will denote the complexity of skew multiplication of skew degree d polynomials over

a field extension L/Fq such that [L : Fq] = n by SM(d, n, q). We will now proceed to state

and analyze two algorithms, due to Puchinger & Wachter-Zeh and Caruso & Le Borgne to

give upper estimates on SM(d, n, q).

The Puchinger & Wachter-Zeh Algorithm

We begin with an analysis of the algorithm given in [64, Th.7]. The algorithm and proof

of correctness are as given in the text; the full proof is given here as part of a refinement

of the complexity estimates.

Theorem 2.4.2. Two skew polynomials a, b ∈ L{τ} can be multiplied with a bit complexity

of dω2/2Mul(n, q) + d3/2SK(n, q) = (dω2/2n log q)1+o(1).

15

Proof. Write our inputs as

a =
s∑
i=0

aiτ
i

b =
s∑
i=0

biτ
i.

Let d∗ = ⌈
√
d+ 1⌉. We can split a into a sum of d∗ terms of the form a(i) =∑d∗−1

j=0 aid∗+jτ
id∗+j such that a =

∑d∗−1
i=0 a(i). This in turn splits the product c into d∗

terms c =
∑d∗−1

i=0 c(i) with c(i) = a(i)b. We can multiply through the expression for c(i):

c(i) =
d∗−1∑
j=0

aid∗+jτ
id∗+j

(d∑
k=0

bkτ
k

)

=
d+d∗−1∑
k=0

(k∑
j=0

aid∗+jσ
id∗+j(bk−j)τ

id∗+k

)

=
d+d∗−1∑
k=0

c
(i)
k τ

id∗+k

We now define matrices A,B,C such that:

Ai,j = σ−id∗(aid∗+j)

Bi,k = σi(bk−i)

Ci,k = σ−id∗(c
(i)
k)

Where 0 ≤ i, j ≤ d∗−1, 0 ≤ k ≤ d+d∗−1. Observe that C = A ·B; the coefficients c
(i)
k

can be recovered through O(d3/2) applications of automorphisms and c can be recovered

by summing the c
(i)
k .

Assuming the automorphism σ admits a pre-computation step similar to the polynomial

representation, at the cost of a single application, representations of σ±id∗ , σj for i <

d∗, j < d + d∗ can be computed in O(dSK(n, q)). Taking advantage of fast rectangular

16

matrix multiplication, we can compute the matrix product in O(dω2/2M(n, q)). Applying

automorphisms to compute the entries of A,B, as well as to recover the terms c
(i)
k from C

costs a total of O(d3/2SK(n, q)). Finally, it takes at most O(d3/2) additions in L to compute

the sum
∑d∗−1

i=0 c(i).

When d < n, the algorithm of Puchinger & Wachter-Zeh has better bit complexity than

the Caruso & Le Borgne algorithm, which is discussed next.

The Caruso & Le Borgne Algorithm

In [14], the authors gave two main algorithms for multiplying skew polynomials. The first

of which is a Monte Carlo for the “large degree case” when the degree d is larger then the

order of the automorphism g = ord(σ). The second is a deterministic algorithm when the

sum of the degrees is less than g. While the latter is certainly of theoretical interest, for our

purposes no such relation will be known so we will proceed exclusively with a discussion

of the former. As the algorithm is quite technical, we will proceed with an outline of the

procedure and a statement of its complexity.

Recall that L is an extension of Fq of order n, and for this setting we let σ have order

g. Fix an extension K of Fq of order m and let L′ = L⊗K K. The algorithm proceeds by

computing the product a · b mod Zi(τ
g) for t irreducible polynomials Z1, . . . , Zt ∈ Fq[T],

and reconstructs the product in L{τ} via a Chinese remainder theorem to compute a ·
b mod Z1 · · ·Zt(τ g). The Zi are constructed as minimal polynomials of elements λi ∈ K
such that λi = NL′/K(λi) for λi ∈ L′. For a choice of extension K with ℓ = [K : Fq]

such that 8d
ℓg

(
2d
ℓg

+ 1
)
≤ ℓqℓ, then ℓ ∈ O(log d + log g) and for any choice of {λi}

⌊ 2d
ℓg

⌋
i=1 , the

probability that one can reconstruct the product in L{τ} via the CRT is at least 1
2
[14,

Lemma 2.10, Theorem 2.11]. Multiplication in L{τ}/Zi(τ g) is reduced to multiplication

in L′{τ}/(τ g − λi) via the isomorphism 1 ⊗ id : L → K ⊗ L acting coefficient-wise and

sending τ g 7→ a.

Multiplication modulo τ g − a can be lifted to multiplication modulo τ g − 1 via an

isomorphism sending a(τ) 7→ a(λτ). To complete the picture, and give an algorithm for

modular multiplication in L{τ}/(τ g − 1), we first require the following proposition.

17

Proposition 1. [14, Prop. 1.6] Let T be a commutative variable, and fix a normal basis

b0, . . . , bn−1 for L/Fq and let b =
∑n−1

i=0 biT
i. Further let a =

∑n−1
i=0 aiτ

i ∈ L{τ} and set

a(T) =
∑n−1

i=0 aiT
i, ci = a(bi) and c(T) =

∑
ciT

i. Then

c(T) = a(T)b(T) mod T n − 1

The above proposition reduces computing the action of a on a normal basis to commu-

tative polynomial multiplication with the inputs reduced modulo T n − 1. Given any two

a, a′ ∈ L[T]/(T n − 1), the product aa′ can be computed as follows:

1. Compute c(T) = a(T)b(T), c′(T) = a′(T)b(T).

2. Extract from c, c′ the matrices M,M ′ respectively for the action of a, a′ on L/Fq
where the domain uses the normal basis and the co-domain uses the standard basis.

3. Compute MBM ′ where B is the change of basis matrix from the standard basis to

the normal basis. This gives the action of the product aa′ on L/Fq.

4. Given the product MBM ′ compute the corresponding ĉ(T) such that ĉb−1(T) =

a(T)a′(T) and extract the coefficients of aa′

After performing O(d/tg) modular multiplications in L{τ}/(Zi(τ g)), the cost of recov-
ery via the CRT is O(dg) field operations in Fq. Via the reductions described above, each

multiplication modulo Zi(τ
g) reduces to a single instance of multiplication in L{τ}/(τ g−1).

This reduction, as well as the multiplication itself, costs O(gω) Fq-operations. When d > g,

the complexity of the entire procedure can be bounded by O(dgω−1(log d + log g)) Fq-
operations; in the context of the Frobenius endomorphism this gives a bit complexity of

SM(d, n, q) = dnω−1(log d+ log n) log q. Moreover, there is a one-time cost of constructing

a normal basis for L over Fq, adding nω2/2 log1+o(1) q + n1+o(1) log2+o(1) q.

2.4.2 Euclidean Division

As alluded to in section §2.4, the ring L{τ} is a right (and left) Euclidean domain and

therefore admits a non-commutative analog of the Euclidean algorithm [60].

18

Operation 4 (Right Euclidean Division). Given skew-polynomials a, b, compute skew-

polynomials ω, ρ such that degτ (ρ) < degτ (b) and a = ωb + ρ. In this case we write

RD(a, b) = (ω, ρ).

Elementary division problems concerning skew polynomials were first studied in [60],

with the first thorough algorithmic treatment, including the first non-trivial factorization

scheme for skew polynomials, given in [35]. In [14] an algorithm for right Euclidean divi-

sion of a degree d1 skew polynomial a by a degree d2 skew polynomial b with complexity

in O(SM(d1, n, q) log d1). The procedure is based on a classical algorithm for Euclidean

division on commutative polynomials seen in [30].

Theorem 2.4.3. The right Euclidean quotient and remainder RD(a, b) of two skew poly-

nomials a, b of degree at most d can be computed using O(SM(d, n, q) log d) bit operations

[64].

We sketch the procedure here. Define the pseudo-inversion operator of order δ on

L{τ}δ:

Tδ

(δ∑
i=0

aiτ
i

)
=

δ∑
i=0

aδ−iτ
−i (2.1)

For a skew polynomial ρ =
∑d

j=0 ρjτ
j, let ρ(i) =

∑d
j=0 σ

i(ρj)τ
j. It is fairly straight-

forward to check that Tδ is linear and satisfies the relation Td1+d2(ab) = Td1(a)Td2(b
(δ1)).

Let ω =
∑∞

i=0 ωiτ
i be such that ωTd2(b

d1−d2) = 1. From the preceding product for-

mula, we have that Td1(a) = Td1−d2(ω)Td2(b) + Td1(ρ). Let ω[d1−d2] =
∑d1−d2−1

i=0 ωiτ
i; and

observe that Td1(a)ω
[d1−d2]b − Td1(a) must have degree at least d1 − d2, implying that

Td1−d2(ρ) = Td1(a)ω
[d1−d2]b − Td1(a). We can compute ω[d1−d2] using Newton iteration in

O(log d1) steps, each of which has cost at most O(SM(d1, n, q)).

2.4.3 Minimal Subspace Polynomial & Multipoint Evaluation

Recall that we have a canonical identification ξ : L{τ} → EndFq(L). The kernel of a skew

polynomial ρ is the set:

19

ker(ρ) = {a ∈ L | ρ(a) = 0}.

Observe that ker(ρ) is an Fq-linear subspace of L/Fq and dimker(ρ) ≤ min(deg ρ, n),

with the latter fact following from the observation that if ρ =
∑d

i=0 aiτ
i, then a ∈ ker(ρ)

if and only if it is a root of the linearized polynomial
∑d

i=0 aix
qi . Let V ⊂ L be a linear

subspace of dimension m ≤ n over Fq. The minimal subspace polynomial MSP(V) is the

monic skew-polynomial of lowest degree whose kernel contains V . The MSP of a linear

subspace is unique and has degree d if V has dimension d. Consequently, a monic degree

d skew-polynomial is equal to MSP(V) for some subspace V if and only if it has a set of d

linearly independent roots.

Problem 2.4.4 (Minimal Subspace Polynomial). Given a linear subspace V ⊂ L/Fq with a

basis v1, . . . , vd ∈ L, determine its minimal subspace polynomial, MSP(V) = MSP({v1, . . . , vd}).

Given a set of s elements v1, . . . , vs and a skew polynomial ρ we may wish to simultane-

ously compute the evaluations ρ(v1), . . . , ρ(vs). This leads us to the multipoint evaluation

problem.

Problem 2.4.5 (Multipoint Evaluation). Given a set of s points v1, . . . , vs and ρ ∈ L{τ},
compute the set MPE(ρ; v1, . . . , vs) = {ρ(v1), . . . , ρ(vs)}.

In the case of Multipoint evaluation, it suffices to compute the evaluation on a maximal

linearly independent subset of v1, . . . , vs. Two mutually recursive algorithms were proposed

in [64] to solve both problems. For details on these, see algorithms 1 and 2.

A detailed complexity analysis for these mutually recursive algorithms was given in [64].

We will let MSP∗(d) denote the complexity of computing the minimal subspace polynomial

on a space of dimension d, and MPE∗(d, s) the complexity of computing the multipoint

evaluation of a degree d skew polynomial on s points. Then the cost of both algorithms

can be expressed in terms of the following recurrences:

MSP∗(d) = 2MSP∗(d/2) +MPE∗(d/2, d/2) + SM(d/2, n, q)

MPE∗(d, s) = 2MSP∗(s/2) + 2MPE∗(d/2, s/2) + SM(s, n, q) log s.

20

Algorithm 1 Minimal Subspace Polynomial [64]

Input A basis {v1, . . . , vd} for V ⊂ L
Output A monic skew-polynomial ρ ∈ L{τ}d of degree d such that ρ(vi) = 0 for each

1 ≤ i ≤ d.

1: if d = 1 then

2: ρ← 1 if v1 = 0

3: ρ← τ − vq−1
i otherwise

4: else

5: a← MSP(v1, . . . vd/2)

6: {v′d/2+1, . . . , v
′
d} ← MPE(a; vd/2+1, . . . , vd)

7: b← MSP(v′d/2+1, . . . , v
′
d)

8: ρ← ba

9:end if

Algorithm 2 Multipoint Evaluation [64]

Input A skew polynomial ρ ∈ L{τ} of degree d, and a set of linearly independent

evaluation points {v1, . . . , vs} ⊂ Fqn .
Output The set {ρ(v1), . . . , ρ(vs)} ⊂ Fqn

1: if degτ (ρ) = 1 then

2: Return{ρ(v1), . . . , ρ(vs)}
3: else

4: a← MSP(v1, . . . vs/2)

5: b← MSP(vs/2+1, . . . vs)

6: (ωa, ρa)← RD(ρ, a)

7: (ωb, ρb)← RD(ρ, b)

8: {ρ(v1), . . . , ρ(vs/2)} ← MPE(ρa; v1, . . . vs/2))

9: {ρ(vs/2+1), . . . , ρ(vs)} ← MPE(ρb; vs/2+1, . . . vs))

10:end if

21

By memoizing the output of MSP at line 5, the call to MSP at line 4 of algorithm 2

can be avoided, and the recursive expression for MPE becomes

MPE∗(d, s) = MSP∗(s/2) + 2MPE∗(d/2, s/2) + SM(s, n, q) log s.

Let d = max(s, d); both expressions are simultaneously bounded by a complexity class

C(d, n, q) satisfying the recurrence

C(d, n, q) = 3C(d/2, n, q) +O(SM(d, n, q) log d)

By assuming the complexity of the Puchinger-Wachter-Zeh algorithm SM(d, n, q) =

O(dω2/2Mul(n, q)+d3/2SK(n, q)) and using the master theorem we can obtain a complexity

of

C(d, n, q) = Õ(SM(d, n, q) + dlog2(3)n log q)

= Õ(dmax(log2(3),ω2/2)Mul(n, q) log d+ dlog2(3)SK(n, q) log d)

≈ Õ(dmax(log2(3),ω2/2)n log q)

bit operations. We will discuss an alternate approach to both the multipoint evaluation

and minimal subspace polynomial problems in section §7.1.

2.5 Valuations, Places, and Limits

Valuations, valued fields, and places play an important role in algebraic number theory,

the definition of Drinfeld modules, and their cohomology theories.

Definition 2.5.1. Given a field F and an abelian group G equipped with a total ordering

<, a valuation on F is a map v : F→ G ∪ {∞} satisfying:

• v(a) =∞ if and only if a = 0

• v(ab) = v(a) + v(b)

22

• v(a+ b) ≥ min(v(a), v(b))

Furthermore, let g∗ be an order-reversing group homomorphism g∗ : G → (R\{0},×)
with the extension g∗(∞) = 0. Then the valuation v induces a norm ∥ · ∥v on F given by

∥a∥v = g∗(v(a)). We then define Fv to be the completion of F with respect to ∥ · ∥v. Two
valuations v1, v2 are said to be equivalent if there is an order preserving automorphism

g : G → G such that v1(a) = g(v2(a)). In this case, the norms induced by v1 and v2 are

equivalent and Fv1 ∼= Fv2 .

Definition 2.5.2. A place of a field F is an equivalence class of valuations.

In the next section, we will discuss a classical example of valuations and their corre-

sponding places.

2.5.1 The p-adic Numbers

The most famous class of examples of valuations are the so-called p-adic valuations vp :

Q→ Z ∪ {∞} on Q. These are defined for a fixed prime p as follows:

• vp(0) =∞

• vp(x) = max(n : pn|x) for all x ∈ Z

• If x = a
b
for a, b ∈ Z, then vp(x) = vp(a)− vp(b)

Let |·|p denote the norm induced by vp under the mapping g∗(z) = p−z for all z ∈ Z,
and let Qp denote the completion of Q with respect to |·|p. We may then construct p-adic

integers Zp in a number of equivalent ways.

Definition 2.5.3. The set Zp of p-adic integers may be defined in any of the following

ways:

1. {x ∈ Qp | |x|p ≤ 1}

23

2. the completion of Z with respect to |·|p

3. the set of formal power series
∞∑
i=0

aip
i

with entries ai ∈ {0, 1, . . . , p− 1}.

Definition 3 will be of particular interest to us later when generalizing p-adic con-

structions to general rings. A given p-adic integer is more typically written in its p-adic

expansion as . . . a2a1a0. There is a canonical inclusion Z ↪→ Zp, given by, for any integer

ℓ ∈ Z, the sequence satisfying,
∑i−1

j=0 ajp
j ≡ ℓ mod pi for all i ≥ 1.

Let q = pn, fix an irreducible h ∈ Fp[x], and set ĥ to be a lift of h to Zp. The object

Qq = Qp[x]/(ĥ(x)), is unique up to isomorphism regardless of the choice of lifting. When

Fq is given as Fq = Fp[x]/(h(x)), we can then define a lifting Fp[x]/(h(x))→ Qp[x]/(ĥ(x))

by the usual mapping of coefficients {0, . . . , p− 1} into Zp.

A similar construction can be carried out for polynomial rings F[x1, . . . , xk]. Namely,

choose a prime ideal I, define vI(x) = max(n : x ∈ In), and extend vI to F(x1, . . . , xk) in
the usual manner. If p > 0 is the characteristic of the field F, then we can obtain a norm as

before by letting ∥x∥I = p−vI(x), and each choice of prime ideal I defines a distinct place.

For multivariate polynomial rings there are additional places, defined by the valuation

v∞(x) = deg(x) where deg may denote either the degree in a fixed variable xi or the total

degree.

2.5.2 Inverse Limits for Rings and Modules

The concept of limits in category theory provide a vast generalization of many constructs

used throughout algebra, including disjoints unions, cartesian products, direct sums, etc.

For our purposes, we will make use of a heavily simplified definition of a particular type of

limit, known as an inverse limit.

Definition 2.5.4. Let {Hi}i∈N be an inverse system; that is, a family of rings such that

for each i ≤ j we have ring homomorphisms fi,j : Hj → Hi such that

24

• fi,i is the identity map on Hi for all i

• for all i ≤ j ≤ k, fi,j ◦ fj,k = fi,k : Hk → Hi.

The we define the inverse limit of {Hi}i∈N to be the ring

lim←−
i

Hi =

{
(hj)j∈N ∈

∏
i∈N

Hi | fi,j(hj) = hi∀i ≤ j

}

That is, lim←−Hi is the set of sequences (hj)j∈N such that hj ∈ Hj and fi,j(hj) = hi for

any pair i ≤ j; this is a ring with the usual operations defined entrywise. The inverse limit

also requires the existence of projection maps πi : H → Hi which are ring homomorphisms

such that πi = fi,jπj for all i ≤ j; under the construction given in definition 2.5.4, the

co-ordinate functions πi((hj)j∈N) = hi satisfy these requirements.

We will take care to note that the inverse limit construction can be carried out for

more general algebraic objects and categories, though we will require it only for rings and

modules. For inline typesetting we may omit the index of the inverse limit. This construc-

tion also gives another way of constructing the p-adic integers, namely as the inverse limit

Zp = lim←−Z/(pi). Moreover, this approach can be easily generalized to arbitrary rings.

Definition 2.5.5. Let R be a ring, and let I be a prime ideal of R. The I-adic comple-

tion of R with respect to I is the ring

RI = lim←−
k

R/Ik

The elements of RI can be viewed as convergent series in the I-adic norm ∥ · ∥I . Now
suppose we are given a module H over a ring R, and let I be any prime ideal of R. We can

define the quotient modules Hi = H/I iH which is also a module over R/I i, and we have

maps fi,j : Hj → Hi when i ≤ j obtained by reducing elements of Hj to their equivalence

classes modulo I iH. We can then define the inverse limit of the modules H = lim←−Hi in

an identical manner to the construction for rings in definition 2.5.4, with the additional

remark that H is a module over RI where the ring action can be taken co-ordinate wise.

More explicitly, if (ri)i∈N ∈ RI and (hi)i∈N then (ri)i∈N ∗ (hi)i∈N = (ri ∗ hi)i∈N.

25

Chapter 3

Elliptic Curves

3.1 Definitions

The primary goal of this section will be to review some of the classical theory of Elliptic

curves, and in particular the approaches used for computing the characteristic polynomial

of the Frobenius endomorphism. As Drinfeld modules are often viewed as part of the

“function field” analogy with classical number fields, with rank 2 Drinfeld modules being

a direct parallel to elliptic curves, this section is intended to motivate the approaches used

later on in the text by describing their inspiration from the elliptic curve setting. For those

interested in further readings on elliptic curves, we recommend [71], [69], and [70].

We will recall some basic concepts from algebraic geometry, which can be reviewed

in most standard references on the topic such as [38]. We begin by supposing F is an

algebraically closed field, an affine variety over Fk is a subset V ⊂ Fk whose elements are

the zeros of all members of an ideal S ⊂ F[x1, . . . , xk]. We will define projective k-space

Pk(F) to be the set whose elements are the 1-dimensional subspaces of Fk+1. More explicitly,

we can view Pk(F) as the set of equivalence classes in Fk+1 under the equivalence relation

s ∼ s′ if there exists λ ∈ F such that s = λs′. A polynomial in F[x1, . . . , xk] is homogeneous

if all its monomial terms have the same total degree. A projective variety is a subset

V ⊂ Pk(F) whose elements are the zeros of all members of an ideal S ⊂ F[x1, . . . , xk+1]

26

generated by homogeneous polynomials. Note that we can canonically embed homogeneous

elements of F[x1, . . . , xk+1] into F[x1, . . . , xk] via the evaluation map xk+1 = 1; this allows us

to explicitly describe projective varieties as subsets of k dimensional spaces vanishing at the

members of an ideal generated by ordinary k-variate polynomials. A function f : V → V ′

is regular if it can be expressed component-wise as polynomial functions. A variety V

is abelian if it has a commutative group structure on its points that is “given by regular

maps”. That is:

• there is a regular map + : V × V → V satisfying the usual axioms of a group

operation, such that a+ b = b+ a for all a, b ∈ V

• there is an element id ∈ V such that a+ id = a for all a ∈ V

• there is a regular map − : V → V such that a+ (−a) = id for all a ∈ V .

The map + is sometimes referred to as the group law on the variety.

We will typically choose to work with F = Fq and consider the restrictions of curves

to sub-fields as necessary. In the algebraically closed setting, Hilbert’s Nullstellensatz tells

us that affine varieties V ⊂ Fk correspond to radical ideals V (I) of F[x1, . . . , xk] and that

this correspondence is bijective. Then the regular functions from V to F are the elements

of F[x1, . . . , xk]/V (I). A similar correspondence concerning homogeneous ideals exists for

projective varieties.

Definition 3.1.1. Let F be an algebraically closed field whose characteristic is different

from 2 or 3. An elliptic curve E over F, denoted E/F, is a smooth abelian projective

variety over P2(F) whose elements are the zeros of a Weierstrass equation

y2 = x3 + ax+ b

for fixed a, b ∈ F with 4a3 + 27b2 ̸= 0.

While a more general definition of elliptic curves does exist, in particular for the “small”

characteristic case, this definition will be sufficient for the purposes of this work. For a

subfield F′ ⊂ F, we will set E/F′ ⊂ E/F to be the set of points invariant under the natural

27

action of Gal(F/F′) on P2(F). As an abelian variety, any elliptic curve has a group law

defined on it; addition of points can be defined explicitly as follows: the projective point

at infinity acts as the identity of the group. Otherwise, we have the doubling and addition

formulae. Set

dc(x, y) =
3x2 + a

2y

Then for any (x, y) ∈ E, the double of any point can be written as

2(x, y) = (dc(x, y)
2 − 2x, 3dc(x, y)x− dc(x, y)3 − y)

Otherwise, for x1 ̸= x2, set

ac = ac(x1, y1, x2, y2) =
y2 − y1
x2 − x1

Addition of two distinct points in E can then be computed as follows:

(x1, y1) + (x2, y2) = (a2c − x1 − x2, ac(2x1 − a2c + x2)− y1)

We will fix O ∈ E to be the identity element for the group operation on E/F. For a

positive integer t, we let t ∗ P =

t times︷ ︸︸ ︷
P + P + . . .+ P , and we define −P ∈ E to be the point

such that P + (−P) = O. We then define the t-torsion of an elliptic curve E to be the set

E[t] = {P ∈ E | t ∗ P = O}.

Let Hom(E1, E2) denote the set of group morphisms from E1/F→ E2/F that are also

regular maps. We will use the term endomorphism to refer to elements of Hom(E,E).

Let F be an algebraically closed field with positive characteristic p and suppose E/F is

an elliptic curve defined over F whose Weierstrass equation has coefficients contained in

Fq ⊂ F with q = pe. The Frobenius morphism on E is the map F : E → E ′ given by

28

F : E → E ′

(x, y) 7→ (xp, yp)

If E/F has Weierstrass equation y2 = x3+ ax+ b, then E ′/F is defined by the equation

y2 = x3 + apx + bp. When a, b ∈ Fq, entry-wise exponentiation by q defines the (q-order)

Frobenius endomorphism Fq = F e on E; the fixed points of this endomorphism are exactly

the points contained in E/Fq. The endomorphism Fq satisfies a degree two polynomial

with integer coefficients x2− c1x+ c2 ∈ Z[x] known as the characteristic polynomial of the

Frobenius. That is: F 2
q (P) − c1 ∗ Fq(P) + c2 ∗ P = O for all P ∈ E/F. The Frobenius

endomorphism, along with its characteristic polynomial, plays an important role in point

counting problems on algebraic varieties owing to conjectures and results originating in the

work of Hasse and Weil [67] [19], and is a special case of a more general connection between

zeta functions on varieties and schemes and point counting problems. In the next section,

we will give a brief overview of these particular point counting problems in the setting of

elliptic curves and make explicit the role played by the Frobenius endomorphism.

3.2 Point Counting

Given an elliptic curve E/F we will let Eq denote the set of points on the curve whose

coordinates lie entirely in Fq.

Operation 5. Given an elliptic curve E/F and a positive power of the field characteristic

q = pe, compute |Eq|.

Now we will assume that E/F is defined by a Weierstrass equation whose coefficients are

all contained inside a finite field Fq. The role that the q-order Frobenius endomorphism

plays in computing the number of points in Eq, as well as bounds for the amount of

computational work required to compute |Eq|, are consequences of theorems due to Hasse

and Weil [69, Thm. 1.1].

29

Theorem 3.2.1 (Hasse). Let q = pe. Let E/F be an elliptic curve over an algebraically

closed field F of characteristic p whose Weierstrass equation has coefficients contained in

Fq. Then
|q + 1− |Eq|| ≤ 2

√
q

A powerful consequence of the general Weil conjectures gives an explicit connection

between the characteristic polynomial of Fq and |Eq|.

Theorem 3.2.2 (Weil’s theorem for elliptic curves). Let E/F be an elliptic curve be as

defined in theorem 3.2.1. Set h = q + 1 − |Eq| and let Fq be the q-order Frobenius acting

on E/F. Then Fq satisfies the equation

F 2
q − hFq + q = 0. (3.1)

3.3 Schoof’s Algorithm

Schoof [65] gave the first polynomial time algorithm, in log q, for computing |E| by finding

|E| mod pi for distinct primes pi such that
∏

i pi > 4
√
q. In particular, we know that for

(x, y) ∈ E[p], p ∗ (x, y) = 0 and so we have t ∗ (x, y) = (t mod p) ∗ (x, y), which allows us

to reduce the characteristic polynomial modulo p to obtain

(xq
2

, yq
2

) + (q mod p)(x, y) = (h mod p)(xq, yq)

To compute the characteristic polynomial of F on E[p], Schoof introduced the so-

called division polynomials, which allow one to efficiently encode entire torsion subgroups

via polynomials ψp(x, y) whose zero sets on E are exactly E[p]. Concretely, the division

polynomials are polynomials in Z[x, y, a, b] corresponding to elliptic curves with Weierstrass

equation y2 = x3 − ax+ b, and can be constructed recursively as follows:

30

ψ0 = 0

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6ax2 + 12bx− a2

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3)
...

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1

ψ2m =
ψm
2y

(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1)

Lemma 3.3.1. [65] The points (x, y) ∈ E satisfying ψp(x, y) = 0 are exactly E[p].

This leads us to the original version of Schoof’s algorithm:

• Fix primes p1, . . . , pt such that for all i, pi ∤ q and
∏t

i=1 pi > 4
√
q,

• Solve for hi satisfying:

(xq
2

, yq
2

) + (q mod pi)(x, y) = hi(x
q, yq).

• Return the unique h such that h mod pi = hi for all i.

The original version of Schoof’s algorithm, using modern computational techniques, had

a runtime of Õ(log5 q) bit operations. Later improvements due Elkies and Atkins replace

the division polynomials with modular polynomials Φp(X, Y) whose roots correspond to

pairs of so-called p-isogenous curves. Their improvements leveraged information about the

splitting behaviour of the characteristic polynomial by alternately chosing primes pi based

on the splitting behaviour of the characteristic polynomial modulo pi. These improvements

gave a runtime of Õ(log4 q) bit operations.

31

3.4 Kedlaya’s Algorithm

While polynomial in log q, Schoof’s algorithm still faces some notable drawbacks, including

the still fairly large exponent in the complexity in log q, as well as exponential complexity

in the genus of the curve when the algorithm is generalized to hyperelliptic curves. For

a fixed prime p such that q = pe, later algorithms, notably Satoh’s and Kedlaya’s, had

improved complexity in terms of e at the cost of no longer being polynomial in log p.

Kedlaya’s algorithm [49] for computing characteristic polynomials of hyperelliptic curves

uses a variant of crystalline cohomology, that of Monsky-Washnitzer, and for fixed p has

a complexity of O(g4+o(1)e3+o(1)) [25]. The core idea of Kedlaya’s algorithm is to compute

the matrix of the lifting of the Frobenius endomorphism to a particular subspace of the

Monsky-Washnitzer cohomology, whose coefficients, lying in Zq, can be computed to a

finite precision. We will now introduce the machinery required to make this description

more precise.

We will note that this next section is quite heavy technically and the machinery de-

scribed here is not required for the main results. This section is included mainly to provide

a background description of the inspiration for the crystalline algorithm for computing the

characteristic polynomial of the Frobenius endomorphism of a Drinfeld module described

later in this work. The reader may therefore feel free to skip this section without impacting

their understanding of the rest of the content of this work.

3.4.1 Monsky-Washnitzer Cohomology

For readers interested in exploring crystalline or the more general setup of p-adic coho-

mology, we recommend [6]. We will give an explicit algebraic description of the crys-

talline cohomology on an elliptic curve by way of its construction via the “algebraic de

Rham” cohomology. We recall our initial setting of an elliptic curve E/Fq with equation

y2 = f(x) = x3 + ax+ b. First, we observe that the Frobenius automorphism on Fq can be

lifted to a Frobenius automorphism on Zq. We can lift to a curve Ê/Qq using a choice of

lift f̂ = x3 + âx+ b̂ ∈ Zq[x]. The ring of regular functions on E0 = E − {(x, y) | y = 0} is
given by

32

A0 = Fq[x, y, y−1]/(y2 − f(x))

The crystalline cohomology is typically defined in terms of the de Rham complex as-

sociated to a canonical lifting of A to regular functions on the lift Ê0/Qq. In the case

of Monsky-Washnitzer cohomology, we instead consider the so-called overconvergent func-

tions:

A†
0 =

{∑
i∈Z

(a0,i + a1,ix+ a2,ix
2)yi | lim inf

|j|→∞
|aj,i|p/|j| > 0

}
The standard derivation on A0 can be obtained by setting

2ydy = (3x2 + a)dx

The first de Rham complex of the Monsky-Washnitzer cohomology is therefore given as

H1
MW (E) = ker d/dA†

0 = A†
0

dx

2y
/dA†

0

The map ι : E → E given by

ι(x, y) = (x,−y)

induces an endomorphism on A0 sending y 7→ −y, and similarly on H1
MW (E). This map

splits H1
MW (E) into a direct sum of eigenspaces H1

MW (E) = H1
MW (E)+ ⊕H1

MW (E)− cor-

responding to the eigenvalues ±1 of ι. We then have the following lemma:

Lemma 3.4.1. The set B =
{
dx
y
, xdx

y

}
is a basis for H1

MW (E)−.

3.4.2 Lifting the Frobenius

Working with basis B, we will be able to explicitly compute the action of the Frobenius on

H1
MW (E)−.

33

Lemma 3.4.2. There exists a lifting of the Frobenius endomorphism F on E to F † : A†
0 →

A†
0 satisfying the following relations:

• F †(x) = xp

• F †(y)2 = x3p + âpxp + b̂p

• F †(y)F †(y−1) = 1.

Then F † lifts to a map F on H1
MW (E)− whose action on the elements of the basis B is

given by:

F
(
dx

y

)
=

∞∑
k=0

(
−1/2
k

)
pk+1F

†(f̂)− f̂p

p
xp−1y−2kp−pdx

F
(
xdx

y

)
=

∞∑
k=0

(
−1/2
k

)
pk+1F

†(f̂)− f̂p

p
x2p−1y−2kp−pdx

We can re-express F(dx
y
) as :

F
(
dx

y

)
=

∞∑
k=0

pk+1ck(x)
dx

y
(3.2)

where ck(x) ∈ Qq(x) such that pk0ck(x) ∈ Zq(x) when k0 > logp(2k + 1) + 1 [25].

This expression can be rewritten in terms of the basis elements of B using the reduction

algorithm of [25]. We then have the following theorem, which allows us to justify this entire

computation.

Theorem 3.4.3. [25, Thm. 5.3.2] The characteristic polynomial of F e on E is equal to

the characteristic polynomial of F e on H1
MW (E)−. That is, it has the form

X2 − ĥX + q̂

Moreover, recalling that |h| ≤ 4
√
q, we have that |ĥ|p ≤ n

2
logp 4.

34

The goal then is to explicitly compute the the matrix of F e via the lifting of F , and
extract the characteristic polynomial of this matrix. If M(F) is the matrix for F on

H1
MW (E)−, then a matrix for F e is given by

M(F e) =M(F)M(F)σ · · ·M(F)σe−1

,

where we recall thatM(F)σ denotes entry-wise application of σ when σ is an operator.

The algorithm can be summed up as follows:

1. Fix a lift Ê/Qq of E/Fq. Set precision π ≥ n
2
logp 4.

2. Compute the action of F on the basis B by computing the coefficient polynomials

ck(x) up to k satisfying k − logp(2k + 1)− 1 > π.

3. Using the reduction algorithm, extract the coefficients of the matrix M(F) with

respect to B.

4. Compute the matrix for F e as
e−1∏
i=0

M(F)σi

. Compute its characteristic polynomial

and return the result.

The dominant computational step is item 4, which has a complexity of e3+o(1) bit

operations. For more general curves of genus g, the analogous algorithm has a runtime

using g4+o(1)e3+o(1) bit operations.

35

Chapter 4

Drinfeld Modules

Drinfeld modules were first introduced by Vladimir Drinf’eld [22] as part of his proof of

the Langlands conjecture for GL2 over global function fields. Since then, Drinfeld modules

and their generalizations have been recognized as important tools in the theory of function

fields, playing a role analogous to that of elliptic curves. In line with this philosophy, a

significant amount of theory, paralleling that of the number field case, has therefore been

developed for Drinfeld modules. This has included questions of computational significance,

given the important role that elliptic curves play in cryptography [42] [54], [74] and integer

factorization [59]. The focus of this section will be to introduce the main definitions

surrounding Drinfeld modules and associated objects, and cover some of the background

theory relevant to understanding the characteristic polynomial computation.

4.1 Definitions

4.1.1 Background

We now introduce the main definitions and constructions, which can be found in the survey

of Drinfeld modules of Deligne and Husemöller in [20]. Fix a smooth projective curve C

defined over Fq, and let A denote the ring of functions on C which are regular outside of a

36

fixed place. The standard example of such a setting, and the one that we will focus on for

the purpose of explicitly describing our algorithms, takes C = P1 ⊂ P2 and at the place

v∞ = deg, in which case A = Fq[x]. Let K = Frac(A) denote the fraction field of A; which

in our standard case will be Fq(x).

Now let L be a field extension of Fq, and in our finite setting we will always let n = [L :

Fq]. Fix an Fq-homomorphism γ : A→ L; ker γ is then generated by an irreducible p ∈ A
of degree m. We let Fp = A/(p) and Fp is isomorphic to a sub-field of L. If Fp

∼= L, that

is n = m, we will refer to this as the prime-field case. We therefore have a tower of fields

Fq m Fp
n/m L

We may refer to γ as the characteristic map, and p as the A-characteristic. To under-

stand the definitions, it may be helpful to keep in mind the analogies with elliptic curves,

and to that end we have the following table illustrating the role that each object plays and

the corresponding object for number fields.

Object Definition Number field analogue

A Regular functions on C Z
Fp The “prime field” Zp
K Fraction field of A Q
K∞ The completion ofK with

respect to the fixed place

R

C∞ The completion of the al-

gebraic closure K∞

C

Table 4.1: The “dictionary” between the number field and function field cases

The latter two objects, C∞ and K∞ play a role in the construction of Drinfeld modules

as A-lattices of C∞ in much the same way that elliptic curves can be constructed as

2-dimensional Z-lattices in the complex plane. This construction, however, will not be

explicitly used in this work.

37

Example 4.1.1. We will let q = 5, n = 4. We can concretely represent L = F54 =

F5[y]/(y
4 + 4y2 + 4y + 2). We let γ(x) = y mod y4 + 4y2 + 4y + 2, in which case p =

x4 + 4x2 + 4x+ 2 and we find ourselves in the prime field case with Fp
∼= L.

We could instead take γ(x) = y3 + y2 + y + 3 mod y4 + 4y2 + 4y + 2, in which case

p = x2 + 4x+ 2 and we have m = 2 and Fp
∼= F52

Recall that L{τ} is the ring of skew-polynomials subject to the commutation rule

τℓ = ℓqτ for all ℓ ∈ L. It will be helpful to note that we can canonically associate to each

element of L{τ} an operator acting on L as follows:(∑
i aiτ

i

)
(ℓ) =

∑
i aiℓ

qi .

4.1.2 Drinfeld Modules

Definition 4.1.2. A Drinfeld A-module ϕ over (L, γ) is an Fq-algebra homomorphism

ϕ : A→ L{τ} such that for all a ∈ A there exists na ∈ L{τ}τ such that

ϕ(a) = na + γ(a)

A standard convention in the literature is to use γa, ϕa in place of γ(a), ϕ(a) respectively,

and we will follow this convention here. In the case where C = P1, the Drinfeld module is

determined by ϕx and the rank of the Drinfeld module is degτ ϕx. Throughout this work,

for computational purposes, we will primarily be concerned with Drinfeld Fq[x]-modules.

We will often specify a rank r Drinfeld Fq[x]-module by ∆r, . . . ,∆1 ∈ L denoting the

coefficients of ϕx; that is:

ϕx =
∑r

i=1∆iτ
i + γx.

Example 4.1.3. Consider the context of example 4.1.1 with Fq = F5, L = F5[y]/(y
4 +

4y2 + 4y + 2), and γ(x) = y. We then define a rank-2 Drinfeld Fq[x]-module by setting

ϕx = yτ 2 + 2τ + y

38

Recall that in the case of elliptic curves, we have a Z-action on the points p of the curve

by adding p to itself t ∈ Z times. Analogously, a Drinfeld module ϕ induces an A-action

on L given by, for all ℓ ∈ L:

a ∗ ℓ = ϕa(ℓ)

The above construction allows us to define the torsion of a Drinfeld module.

Definition 4.1.4. For a ∈ A, the a-torsion of a Drinfeld ϕ[a] is the set:

ϕ[a] = {ℓ ∈ L | a ∗ ℓ = 0}

If a ̸= p. then ϕ[a] is a free module over A/(a) of rank r [37]. Now letting l be an

irreducible element of A different from p, and we will let Al be the l-adic completions of

A. We may now construct the so-called Tate module as an inverse limit using the torsion

data at each power li.

Definition 4.1.5. Let ϕ be a rank r Drinfeld module. Let l be a prime element of A

different from p. The l-adic Tate module of ϕ, Tl(ϕ) to be the Al-module

Tl(ϕ) =
lim←−
i
ϕ[li].

We will note that several authors instead take Tl(ϕ) = Hom(Kl,
lim←−n ϕ[ln]) where Kl is

the l-adic completion of K, and that these constructions are the same up to isomorphism

[37]. Since each ϕ[li] is free of rank r over A/(li), Tl(ϕ) is a free module over Al of rank r

[20]. This construction strongly parallels the classical construction of the Tate module for

abelian varieties.

4.1.3 Morphisms and Characteristic Polynomials

Definition 4.1.6. Let L′ be an extension of L. An L′-morphism of Drinfeld modules

u : ϕ→ ψ is a u ∈ L′{τ} such that uϕa = ψau for all a ∈ A.

39

We will typically consider L-morphisms, and the unqualified term morphism will refer

to this case. The motivation for this definition can be more clearly understood in terms

of the induced A-module on L, as the definition is equivalent to the requirement that the

following diagram commutes.

L L

L L

ϕa

u u

ψa

We will use Hom(ϕ, ψ) to denote the set of morphisms from ϕ to ψ and End(ϕ) =

Hom(ϕ, ϕ). End(ϕ) is the centralizer for ϕ(A), and in particular of ϕx, in L{τ}. A non-

zero element of Hom(ϕ, ψ) is referred to as an isogeny and two Drinfeld modules ϕ, ψ

are isogenous if there is a non-zero member of Hom(ϕ, ψ). An isomorphism of Drinfeld

modules is a u ∈ Hom(ϕ, ψ)
⋂

L. Recalling [L : Fq] = n, End(ϕ) contains the so-called

Frobenius endomorphism, τn.

Since elements of End(ϕ) commute with ϕ(A), each u ∈ End(ϕ) induces a linear map

t(u)a : ϕ[a] → ϕ[a] for any a ∈ A whose action is given by t(u)a(ℓ) = u(ℓ) for ℓ ∈ ϕ[a].

This can therefore be lifted to a linear map t(u) ∈ End(Tl(ϕ)).

Definition 4.1.7. The characteristic polynomial CharPoly(u) of u ∈ End(ϕ) is the

characteristic polynomial of t(u) ∈ End(Tl(ϕ)).

The minimal polynomial of u is defined in an analogous manner. Since Tl(ϕ) is free of

rank r over Al, CharPoly(u) has degree r, and its coefficients lie in the canonical inclusion

of A in Al [33, Cor. 3.4]. Moreover, the coefficients of the characteristic polynomial do

not depend on the choice of l [33, Cor. 3.4], and when the Drinfeld module map is applied

to the coefficients of CharPoly(u), it annihilates u as a skew-polynomial [34]. To put this

more concretely, the characteristic polynomial has the form

CharPoly(u) = Xr + ar−1X
r−1 + . . .+ aiX

i + . . .+ a1X + a0

40

with each ai ∈ A such that

ur + ϕar−1u
r−1 + . . .+ ϕaiu

i + . . .+ ϕa1u+ ϕa0 = 0. (4.1)

For Drinfeld Fq[x]-modules, the coefficients satisfy a degree bound

deg(ai) ≤ d(r−i)
r

which can be viewed as an analogue of the Hasse bound of theorem 3.2.1. The minimal

polynomial MinPoly(u) =
∑r1

i=0 bix
i ∈ A[x] of u is also the polynomial of minimal degree

r1 such that

ur1 + ϕbr1−1u
r1−1 + . . .+ ϕbiu

i + . . .+ ϕb1u+ ϕb0 = 0.

Moreover, we have the following lemma.

Lemma 4.1.8. [2, 58] Let u ∈ End(ϕ). Then

(MinPoly(u))r2 = CharPoly(u)

with r2 such that r2| nm .

This divisibility requirement immediately leads to the following corollary.

Corollary 4.1.9. If n = m or gcd(n/m, r) = 1, then MinPoly(u) = CharPoly(u) for all

u ∈ End(ϕ).

Example 4.1.10. Consider the context of example 4.1.3 with Fq = F5, L = F5[y]/(y
4 +

4y2 + 4y + 2), γ(x) = y, and a rank-2 Drinfeld Fq[x]-module given by

ϕx = yτ 2 + 2τ + y

41

Its characteristic polynomial is

X2 + (2x2 + 3x+ 1)X + 3x4 + 2x2 + 2x+ 1

We can verify that

τ 2n + ϕ2x2+3x+1τ
n + ϕ3x4+2x2+2x+1 = 0

For the remainder of this work, the characteristic polynomial of a Drinfeld module

refers to the characteristic polynomial of the Frobenius endomorphism τn. Two Drinfeld

modules are isogenous if and only if their characteristic polynomials coincide [2]. In the

case of Drinfeld modules over Fq[x], the term a0 is known as the Frobenius norm, and can

be computed directly via the following formula:

a0 = (−1)r+n(r+1)NFp/Fq(∆r)
−1p

n
m . (4.2)

4.2 Elementary Algorithms on Drinfeld Modules

In this section, we will focus on the basic algorithms associated with Drinfeld modules over

Fq[x].

4.2.1 Computing Images and Inversions of the Drinfeld Map

Perhaps the first algorithmic question to come to mind with regards to Drinfeld modules is

the complexity of computing the skew polynomial ϕa given a polynomial a =
∑d

i=0 aix
i ∈

Fq[x]. For the inversion operation, we are given a skew polynomial s ∈ L{τ} with deg s =

rd, and wish to either return a such that s = ϕa or determine that s /∈ ϕ(Fq[x]).

Proposition 4.2.1. Let ϕ be a Drinfeld Fq[x]-module of rank r and a ∈ Fq[x] be a poly-

nomial of degree d. There exist deterministic algorithms to compute ϕa ∈ L{τ} with costs

42

• (d2nr log2 q)1+o(1) bit operations

• O(SM(rd, n, q)) bit operations if SM is super-linear in the degree parameter.

Conversely, given a skew polynomial s of degree rd there exists an algorithm to com-

pute a ∈ Fq[x] such that s = ϕa or determines that s /∈ ϕ(Fq[x]) with a bit cost of

(d2nr log2 q)1+o(1).

The first approach computes powers ϕxi for i ≤ d = deg a, from which we can recon-

struct ϕa =
∑d

i=0 aiϕxi at a bit cost of (d2nr log q)1+o(1). To compute the required skew

polynomials, observe that since

ϕxi+1 = ϕxϕxi =

(r∑
i=1

∆iτ
i + γ(x)

)
ϕxi

the coefficients fi,j therefore satisfy the recurrence:

fi+1,j = γ(x)fi,j +
r∑

k=1

∆if
qk

i,j−k (4.3)

With the usual pre-processing step for computing polynomial representations of Frobenius

powers, this recurrence allows the computation of ϕx2 , . . . , ϕxd in (d2nr log2 q)1+o(1) bit

operations.

We also present an alternative algorithm for computing ϕa based on a classic divide-and-

conquer approach [30]. First, observe that a key bottleneck of the previous method was the

insistence on computing ϕx2 , . . . , ϕxd . If we instead wish to compute ϕxd for a single choice

of d, we can use a repeated squaring procedure based on skew-polynomial multiplication

costing SM(rd, n, q). Write a = a0 + x⌊d/2⌋a1, with deg a0, deg a1 ≤ ⌊d/2⌋ + 1. The cost

of computing ϕa then reduces to the cost of computing ϕa0 , ϕa1 , and ϕx⌊d/2⌋ as well as

computing the product ϕx⌊d/2⌋ϕa1 . The latter two operations cost SM(rd, n, q); from this

we can conclude that the complexity Im(d) of computing the image of a degree d element

of Fq[x] satisfies the following recurrence:

43

Im(d) = 2Im(d/2) +O(SM(rd, n, q)).

Since SM is super-linear in the degree parameter, the cost of computing ϕa is at most

O(SM(rd, n, q)), which completes the complexity analysis of computing ϕa.

Now turning to the question of inversion, this problem can be reduced to solving a

linear system over L which we will construct below. First, let:

a =
d∑
i=0

aix
i

s =
rd∑
j=0

sjτ
j

ϕa =
d∑
i=0

ai

ri∑
j=0

fi,jτ
j =

rd∑
j=0

 d∑
i=⌊j/r⌋

aifi,j

 τ j.

This gives rd+1 equations, with coefficients fi,j ∈ L, in d+1 unknowns. By extracting

equations corresponding to every rth coefficient of s, we obtain the upper-triangular system


f0,0 f1,0 . . . fd,0

0 f1,r . . . fd,r
...

...
. . .

...

0 0 . . . fd,rd



a0

a1
...

ad

 =


s0

sr
...

srd

 .
The diagonal entries fi,ri of this system are the leading coefficients of ϕxi , which are

powers of ∆r, and therefore non-zero. This implies that the system has a unique solution,

which we may solve for using at most O(d2) operations in L. A valid solution a to the

inversion problem exists if and only if the values ai ∈ Fq for all 1 ≤ i ≤ d. Including the

cost of computing the required entries fi,j gives a total bit complexity of (d2nr log2 q)1+o(1).

44

4.2.2 Computing Field Actions

We recall that each ϕa acts as a field endomorphism on L, and more generally any field

extension contained in L. For a ∈ Fq[x] of degree d and for α ∈ L, our goal is to determine

ϕa(α). The direct approach leverages the algorithms of §4.2.1 to compute the skew poly-

nomial ϕa. Using modular composition, we can compute σi(α) for i ≤ dr at a total bit cost

of (drn log q)1+o(1), leaving the dominant cost coming from the computation of ϕa which

can be done at a cost of either (d2nr log2 q)1+o(1), if we wish to recover the intermediate

powers of ϕx, or SM(rd, n, q)) otherwise. If we wish to compute the evaluation at a set

{α1, . . . , αs} instead, we can use the multipoint evaluation algorithms of §2.4.3 or §7.1.
This leaves us with the following corollary.

Corollary 4.2.2. Let ϕ be a Drinfeld Fq[x]-module of rank r, a ∈ Fq[x], and let {α1, . . . , αs} ⊂
L. There exists an algorithm to compute {ϕa(α1), . . . , ϕa(αs)} with a bit complexity of

Õ(SM(max(s, d), n, q) + max(s, d)log2(3)n log q + T ∗) where T ∗ = SM(rd, n, q)) or T ∗ =

(d2nr log2 q)1+o(1).

For a fixed linear form ℓ ∈ L∗, ℓ : L → Fq, we can invoke the transposition principle

[30] to conclude that computing the linear mapping ℓ(ϕa) given by ℓ(ϕa)(α) = ℓ(ϕa(α))

can be done at the same asymptotic cost as computing the field action ϕa(α).

4.3 The j-Invariant

The classical j-invariant for elliptic curves is notable for classifying isomorphism classes of

curves. We will now state the notion of j-invariant for Drinfeld modules:

Definition 4.3.1. [63, Def 2.1] Let ϕ be a Drinfeld module with ϕx =
∑r

i=0∆iτ
i. Let

h ≤ r − 1 and k1, . . . , kh be integers with 1 ≤ k1 < . . . < kh ≤ r − 1 and let δ1, . . . , δh be

integers and δr > 0 a positive integer satisfying

h∑
i=1

δi(q
ki − 1) = δr(q

r − 1). (4.4)

45

Then the Jδ1,...,δhk1,...,kh
j-invariant is defined as:

Jδ1,...,δhk1,...,kh
(ϕ) =

∆δ1
k1
· · ·∆δh

kh

∆δr
r

.

A Jδ1,...,δhk1,...,kh
j-invariant is basic if, in addition to the previous requirements, it satisfies:

• δi ≤ qr−1
qgcd(i,r)−1

• gcd(δ1, . . . , δh, δr) = 1

For Drinfeld modules of rank 2, there is a single j-invariant given by Jq+1
1 =

∆q+1
1

∆2
which

is also basic. The basic j-invariants classify Drinfeld modules up to isomorphism, in a

direct analogy of the classical j-invariant of elliptic curves.

Proposition 4.3.2. [63, Thm 2.2] Let ϕ, ψ be rank r Drinfeld A-modules over (L, γ). Then
ϕ and ψ are L-isomorphic if and only if Jδ1,...,δhk1,...,kh

(ϕ) = Jδ1,...,δhk1,...,kh
(ψ), for all basic j-invariants

Jδ1,...,δhk1,...,kh
.

Finding all possible basic j-invariants for Drinfeld modules over L requires the determi-

nation of all integer solutions of equation (4.4) satisfying the size constraints δi ≤ qr−1
qgcd(i,r)−1

.

Algorithms to find such solutions based on finding integral points on polyhedra exist, but

are exponential in the number parameters h ≤ r. As we will see later, computing the space

of morphisms between two Drinfeld modules can be done by computing the kernel of a

linear system. This allows us to determine whether two Drinfeld modules are isomorphic

in polynomial time, making the j-invariant approach obsolete in practice.

4.4 Computing the Characteristic Polynomial

The question of computing the characteristic polynomial, particularly in the rank 2 case

and particularly of the Frobenius endomorphism, has seen some prior study in the literature

[34] [29] [56] [15]. We will cover the most significant approaches preceding our work in the

next sections, and the complexity results are summarized in the following theorem.

46

Theorem 4.4.1. Let ϕ be a Drinfeld module. There exists deterministic algorithms to

compute the characteristic polynomial of the Frobenius endomorphism τn with complexities

1.1 (nω+1rω log q + n3r log2 q)1+o(1) when r = 2 or CharPoly(τn) = MinPoly(τn)

1.2 (n3r log2 q)1+o(1) in the prime field case L− Fp.

Furthermore, there exist Monte Carlo randomized algorithms to compute the characteristic

polynomial when r = 2 with complexities

2.1 (n2 log q log n)1+o(1) when q > n
2

2.2 (n2 log2 q)1+o(1)

4.4.1 The Direct Approach

We may exploit the fact that an endomorphism is annihilated by its characteristic polyno-

mial to construct a linear system as done by Gekeler in [34]. This algorithm is applicable

if r = 2 or if CharPoly(τn) = MinPoly(τn). Define

ai =

n(r−i)/r∑
j=0

ai,jx
j

ϕxj =

rj∑
k=0

fj,kτ
k

Then we have

τnr +
r−1∑
i=1

n(r−i)
r∑
j=0

n(r−i)∑
k=0

ai,jfj,kτ
k+ni + ϕa0 = 0 (4.5)

After computing the coefficients of ϕxj up to j ≤ n(r−1)
r

, equating coefficients of each

term τ i from the left hand side of equation (4.5) to 0, we obtain a system with nr equations

47

with
∑r−1

i=1
ni
r
= n(r−1)

2
unknowns. The coefficients fj,k are extracted from the computation

ϕx2 , . . . , ϕxk using the algorithm of proposition 4.2.1 in (k2nr log2 q)1+o(1) bit operations.

Computing all coefficients of the linear system takes (n3r log2 q)1+o(1) bit operations, and

solving it costs (nω+1rω log q)1+o(1).

For the preceding algorithm to return a solution, we require that there is a unique

solution to the system extracted from equation (4.5); that is, there is a unique monic

polynomial of degree r that annihilates τn with constant coefficient a0. When r = 2, either

MinPoly(τn) = CharPoly(τn) or MinPoly(τn) = x−√a0 and CharPoly(τn) = (x−√a0)2.
Since any solution of (4.5) must have MinPoly(τn) as a factor, we conclude CharPoly(τn)

is the unique solution to equation (4.5) with constant term a0.

When r > 2, the system has a unique solution if and only if CharPoly(τn) = MinPoly(τn).

Recalling that CharPoly(τn) = MinPoly(τn)r2 for some exponent r2, if r2 > 1 and r > 2

then deg CharPoly(τn) − degMinPoly(τn) = r3 > 1. In this case, we can multiply

MinPoly(τn) by any monic polynomial of degree r3, whose constant term can be suitably

chosen to satisfy the constraints of equation (4.5), to obtain an annihilating polynomial of

τn. This completes the analysis of item 1.1 of theorem 4.4.1.

4.4.2 An Algorithm for the Prime Field Case

When L = Fp, a simpler algorithm for computing the characteristic polynomial due to

Garai and Papikian [29] can be used.

Define

gk =
r∑
i=k

ϕaiτ
ni and gk =

k−1∑
i=0

ϕaiτ
ni.

Then we must have that the lowest degree term of gk is γ(ak)τ
nk. Since gk+gk = 0, the

coefficient of τnk in gk is −γ(ak). This permits the computation of all the γak as follows:

• Compute a0 using equation (4.2), which has the form a0 = (−1)r+n(r+1)NL/Fq(∆r)
−1p.

48

• Pre-compute ϕx,ϕn(r−1)/r.

• For each 1 ≤ k < r, compute gk as above and set −γak equal to the coefficient of τnk.

Since each coefficient ak satisfies deg ak ≤ n, we can recover the original polynomial in

Fq[x] from its image under γ. This algorithm has a cost of (n3r log2 q)1+o(1) arising from

the computation of the terms ϕx,ϕn(r−1)/r. This completes the analysis of item 1.2 of

theorem 4.4.1.

4.4.3 A Schoof-like Approach when r = 2

Here we will present an algorithm that originally appeared in my MMath thesis in [55].

For this exposition we will assume that q > n
2
and r = 2. Choose e0, . . . , en/2 ∈ Fq and

reduce the equation τ 2n − ϕa1τn + ϕa0 = 0 modulo ϕx−ei to obtain

τ 2n mod ϕx−ei − a1(ei)τn mod ϕx−ei + a0(ei) = 0 (4.6)

By computing τn mod ϕx−ei , we obtain a1(ei), and doing this for all n
2
+ 1 evaluation

points ei and interpolating allows us to recover a1. We proceed to compute τn mod ϕx−ei
as follows: let

τ j = νj + µjτ mod ϕx − ei

Then we have

τ j+1 = νqj τ + µ2
jτ

2 = νqj τ + µqj
(
− γx − ei

∆2

− ∆1

∆2

τ
)

from which we obtain the recurrence relations νj+1 = −γx−ei
∆2

µqj and µj+1 = νqj − ∆1

∆2
µqj .

Now setting α = −γx−ei
∆2

, β = −∆1

∆2
, we define

T =

[
0 α

1 β

]
.

49

The desired coefficients νn, µn are then given by the matrix product

[
νn

µn

]
= TT [1] . . . T [n−1]

[
1

0

]
Recall that a[i] = aq

i
for a ∈ L. For matrices T , we will let T [i] denote entrywise

exponentiation by qi. Now defining Pj = TT [1] . . . T [j], we have a relation

P2j+1 = PjP
[j+1]
j . (4.7)

After the usual pre-processing step for computing Frobenius powers, this recurrence

allows us to compute the desired coefficients νn, µn at a cost of (n log q log n)1+o(1). Once

these have been determined, we can substitute the coefficients into equation (4.6), where

we have

a1(ei)(νn + µnτ) = (νn + µnτ)
2 + a0(ei) mod ϕx − ei. (4.8)

We can expand this to obtain

a1(ei)(νn+µnτ) =

(
νnµn+ν

q
nµn−

∆1

∆2

µnµ
q
n

)
τ+ν2n−

γx − ei
∆2

µ2
n+a0(ei) mod ϕx−ei. (4.9)

From the preceding equations, we can conclude that, if µn ̸= 0, then we can determine the

evaluation of the trace at ei without pre-computing the norm using the expression:

a1(ei) = νn + νqn −
∆1

∆2

µqn.

Otherwise, we obtain

a1(ei) = νn +
a0(ei)

νn
− (γx − ei)µ2

n

∆2νn
.

The dominant step in this computation is therefore calculation of νn, µn for each of at

least n
2
values of ei, which has an overall bit cost contribution of (n2 log q log n)1+o(1), giving

the complexity required for item 2.1 of Theorem 4.4.1.

50

4.4.4 Using Hankel Systems

Here we will present another algorithm for rank 2 Drinfeld modules ϕ given in [55]; a Monte

Carlo randomized approach inspired by ideas due to Shoup [68] as well as Wiedemann’s

algorithm for solving linear systems [75]. The aim of this approach is to construct a

structured Hankel system that can be solved for the coefficients of a1.

Definition 4.4.2. A t× t matrix is Hankel if it is of the form


a1 a2 a3 . . . at

a2 a3 a4 . . . at+1

a3 a4 a5 . . . at+2

...
...

...
. . .

...

at at+1 at+2 . . . a2t−1


We can solve linear systems defined by Hankel matrices over a field at a cost of

O(Mul(n, q) log(n)) field operations [9]. The following lemma, due to Kaltofen and Pan,

will play a crucial role in determining when Hankel systems have a unique solution.

Lemma 4.4.3. [45, Lemma 1] Consider a linear sequence {ℓi}∞i=0 over a field F, and let d

denote the degree of the sequence’s minimal polynomial. For any t > 0 let Tt be a matrix

of the form:


ℓ0 ℓ1 . . . ℓt−1

ℓ1 ℓ2 . . . ℓt
...

...
. . .

...

ℓt−1 ℓt . . . ℓ2t−2


Then detTd ̸= 0 and for any m > d, detTm = 0.

Lemma 4.4.4. Let Γ ∈ Fq[x] denote the minimal polynomial of ϕx acting on L and let κ

be its degree. Then κ ≥ n
2
.

51

Proof. Substituting ϕx = ∆2τ
2 +∆1τ + γx into Γ, for some coefficients s0, . . . , s2κ ∈ L, we

obtain an expression

Γ(ϕx) = s0 + s1τ + . . .+ s2κτ
2κ = 0

Now recall the canonical identification τ 7→ σ with linear operators σ(s) = sq introduced

in section §2.4. Appealing to Artin’s independence of characters, we have that the set

{σi}0≤i<n satisfy no non-trivial L-linear relation. Therefore if κ < n
2
, we must have that all

coefficients si = 0. However we also have that s2κ must be a power of ∆2 obtained as the

coefficient of (∆2τ
2)κ, and therefore s2κ = ∆

(1−q2κ)/(1−q)
2 ̸= 0, giving a contradiction.

We now construct a linear system as follows: choose a random projection ℓ : L → Fq,
and a random element α ∈ L. Write

a1 =

⌊n/2⌋∑
i=0

cix
i

and set r = α+ϕa0(α). It then follows from the definition of the characteristic polynomial

that, for any j > 0, we have

⌊n/2⌋∑
i=0

ciℓ(ϕxi+j(α)) = ℓ(ϕxj(r)). (4.10)

Then we have a linearly generated sequence (ℓ(ϕix(α)))i≥0 ⊂ Fq, from which we construct

a Hankel system as seen in lemma (4.4.3) to solve for the coefficients ci. Examining the

lemma once again, we observe that if n is even and if κ = n
2
, the dimension ⌊n

2
⌋+1 system

required to solve for all coefficients is singular. To overcome this, we can pre-compute cn/2

using a formula due to Jung [43]

cn/2 = TrFq2/Fq(NL/Fq2
(∆2)

−1).

By replacing r with r̃ = α + ϕa0(α)− cn/2ϕ⌊n
2
⌋(α) the system arising from equation (4.10)

becomes

52

 ℓ(α) . . . ℓ(ϕ
x⌊

n
2 ⌋−1(α))

...
...

ℓ(ϕ
x⌊

n
2 ⌋−1(α)) . . . ℓ(ϕ

x2⌊
n
2 ⌋−1(α))


 c0

...

c⌊n
2
⌋−1

 =

 ℓ(r̃)
...

ℓ(ϕ
x⌊

n
2 ⌋−1(r̃))

 (4.11)

Letting Γℓ,α denote the minimal polynomial of the sequence (ℓ(ϕix(α)))i≥0. Combining

lemma (4.4.3) with lemma (4.4.4), in the case where Γℓ,α = Γ the linear system of (4.11)

has a unique solution since deg Γℓ,α ≥ n
2
. Using a result of Wiedemann [75] as well as the

DeMillo-Lipton-Zippel-Schwartz lemma (which will be discussed in more detail later), we

have that Γℓ,α = Γ with probability at least max(1/(12max(1, logq ν)), 1−2n/q) [45]. Con-

sequently, the algorithm successfully returns the Frobenius trace with probability bounded

by the same value. The entire algorithm then proceeds as follows:

1. Choose ℓ, α, and determine Γℓ,α using the Berlekamp-Massey algorithm. If deg Γℓ,α ≥
n
2
, proceed to step 2.

2. Compute ℓ(ϕxi(α)) for 0 ≤ i ≤ 2⌊n
2
⌋ − 1 and ℓ(ϕxi(r̃)) for 0 ≤ i ≤ ⌊n

2
⌋ − 1.

3. Construct and solve the linear system as given by equation (4.11).

Determining Γℓ,α costs at most (n2 log q)1+o(1) bit operations. Computing the entries

ℓ(ϕxi(α)), ℓ(ϕxi(r̃)) can be done through repeated applications of the operator ϕx, costing

a total of (n2 log2 q)1+o(1) bit operations. The Hankel system can be solved for a cost of

(n2 log q)1+o(1) bit operations, leaving an overall bit complexity of (n2 log2 q)1+o(1).

4.4.5 Narayanan’s Algorithm

For rank 2 Drinfeld modules where the minimal polynomial of ϕx over Fq has degree n,

Narayanan [59] gave a Monte Carlo algorithm. Recall that ϕx ∈ L{τ} can be interpreted

as a linear operator on L/Fq.

Lemma 4.4.5. [33] The characteristic polynomial of ϕx as a linear operator on L/Fq is

1− a1 + a0.

53

By choosing a random projection ℓ : L → Fq, and a random element α ∈ L, we again

obtain a sequence (ℓ(ϕix(α)))i≥0 ⊂ Fq. As mentioned previously, the minimal polynomial

of this sequence can be determined via the Berlekamp-Massey algorithm. Moreover, with

probability at least max(1/(12max(1, logq ν)), 1− 2n/q), we have that Γℓ,α coincides with

the minimal polynomial of ϕx, from which we can deduce the Frobenius trace.

The main computational step lies in determining 2n terms of the sequence (ℓ(ϕix(α)))i≥0

to which we may apply the Berlekamp-Massey algorithm to compute Γℓ,α. To do this,

Narayanan invokes the automorphism projection algorithm of Kaltofen and Shoup [46]

to obtain a complexity with order at most n(ω+1)/2. This, however, requires that ϕx is an

automorphism on L which will not hold in general. Whether this algorithm can be adapted

in a way that maintains sub-quadratic complexity overall is an open question.

4.4.6 Recent Work for Computing Norms of Isogenies and Char-

acteristic Polynomials of Endomorphisms

Recent work designing algorithms for computing characteristic polynomials of endomor-

phisms of Drinfeld modules of arbitrary rank, as well as norms for more general morphisms,

was done in [15]. These results were developed contemporaneously with the writing of this

thesis, so while we will not discuss them in detail readers are encouraged to review the

paper for further background on the subject.

54

Chapter 5

Cohomology of Drinfeld Modules

5.1 Derivations and De Rham Cohomology

The construction of the de Rham and crystalline cohomology modules appears to be due

to Gekeler, but the sources are not easily accessible. For this reason, we will follow and

cite the exposition due to Anglès in [2]. We begin by letting N = L{τ}τ , and ϕ be a rank

r Drinfeld module over L.

Definition 5.1.1. A derivation on ϕ is an L-linear map η : A → N such that for all

a ∈ A

ηab = γaηb + ηaϕb

We will denote the space of all derivations D(ϕ,L). Observing that any derivation is

determined entirely by its value ηx at x, the mapping η 7→ ηx gives an L-linear bijection
from D(ϕ,L) onto N . This will allow us to view the cohomology spaces as rings of skew

polynomials; however the derivational construction is useful to keep in mind for the parallels

with the usual construction of the de Rham cohomology for manifolds.

Let AL = L⊗Fq A; in the particular case where A = Fq[x], we have AL ∼= L[x]. We may

define an AL-action on D(ϕ,L) given by, for any ℓ ∈ L, a, b ∈ A, η ∈ D(ϕ,L):

55

((ℓ⊗ a) ∗ η)b = ℓηbϕa

This action turns D(ϕ,L) into a left AL-module. A similar action defined by ((ℓ⊗a)∗n) =
ℓsϕa for all a ∈ A, s ∈ N turns N into an AL-module, and the evaluation map η 7→ ηx

gives an isomorphism D(ϕ,L)→ N as AL-modules. We are therefore free to view D(ϕ,L)
as essentially the skew polynomial subring N equipped with the previously described AL-

action.

This construction is also closely related, in fact almost entirely identical, to the so-called

Anderson motive of a Drinfeld module [1]. The Anderson motiveM(ϕ) can be constructed

by turning L{τ} into an AL module under the AL-action (c ⊗ a)(u) = cuϕa for c ∈ L,
a ∈ A, u ∈ L{τ}. It follows that M(ϕ) ∼= N ∼= D(ϕ,L), and we are free to work with

each construction and obtain similar results. However, to highlight the parallels with the

classical case we will proceed with the crystalline cohomology constructions of Gekeler and

Anglès. In particular, we have the following lemma:

Lemma 5.1.2. [2, Lemma 2.3] D(ϕ,L) is a projective module over AL of rank r.

In the case where A = Fq[x], D(ϕ,L) is projective over the coefficient ring L[x] and

therefore free. The L[x] action on D(ϕ,L) in this case can be explicitly written out as, for

a =
∑

i aix
i ∈ L[x], s ∈ N :

(∑
i

aix
i

)
∗ s =

∑
i

aisϕxi .

For the remainder of this work, we will omit the ∗ operator indicating scalar multiplication

by L[x].

Definition 5.1.3. A derivation is strictly inner if it is of the form

ηa = γan− nϕa

for some n ∈ N .

56

Denote the set of strictly inner derivations by Dsi(ϕ,L). It is straightforward to verify

that Dsi(ϕ,L) is an AL-submodule of D(ϕ,L). We now have sufficient background to

formally define the de Rham cohomology.

Definition 5.1.4. [2, Def. 2.1] The de Rham cohomology H∗
dR(ϕ, L) of a Drinfeld

module ϕ is the AL-module quotient

H∗
dR(ϕ, L) = D(ϕ,L)/Dsi(ϕ,L)

In the case A = Fq[x], we have a simpler description of Dsi(ϕ,L) as Dsi(ϕ,L) = (x −
γx)D(ϕ,L).

5.2 Crystalline Cohomology

Let A = Fq[x]. Now define a map ξ : L[x] → L given by a ⊗ ℓ 7→ γ(a)ℓ. Then let

I = ker ξ = (x − γx) and observe that I is an ideal lying above p in AL. Now set

Wk = L[x]/Ik and define W (L) to be the I-adic completion of L[x], given by the inverse

limit W (L) = lim←−
k
Wk.

We have W (L) ∼= L[[x − γx]] and each element of Fq[x] naturally embeds into W (L)
via a map ι : Fq[x]→ W (L) giving the I-adic expansion. Moreover, W (L) comes equipped

with projections πk : W (L) → Wk. We let ιk = ι ◦ πk, and since Ik lies above pk, there

exists a homomorphism χk : Wk → Fq[x]/pk such that ιk ◦ χk gives the quotient modulo

pk. We can represent the situation with the following commutative diagram.

W (L)

Fq[x] Wk

Fq[x]/(p(x)k)

πk

θk:f(x)7→f(z) mod p(z)k

ιk

ι

χk

57

We will now show how to compute the maps χk effectively. We begin with a represen-

tation L = Fq[t]/(ℓ(t)), and writeWk as the bi-variate quotient ringWk = Fq[t, z]/(ℓ(t), (z−
γx)

k). We can convert elements of L to their bi-variate representation L = Fq[x, t]/(p(x), g(x, t))
using modular composition to give an isomorphism

Wk = Fq[t, z]/(ℓ(t), (z − γx)k)→ Fq[x, t, z]/(p(x), g(x, t), (z − x)k)

In [39, §4.5], the authors gave a so-called tangling algorithm for explicitly computing

an isomorphism Fq[x, z]/(p(x), (z−x)k)→ Fq[x]/(p(x)k) in (km log q)1+o(1) bit operations.

This isomorphism can be applied coefficient-wise to powers of t to obtain an isomorphism

Fq[x, t, z]/(p(x), g(x, t), (z − x)k)→ Fq[x, t]/(p(x)k, Gk(x, t))

With Gk a polynomial of t-degree n
m

chosen such that Wk
∼= Fq[x, t]/(p(x)k, Gk(x, t)).

Definition 5.2.1. [2, Def 2.5] The Crystalline Cohomology of a Drinfeld module ϕ is

the W (L)-module

H∗
crys(ϕ,L) = W (L)⊗L[x] D(ϕ,L)

The precision-k cohomology H∗
k(ϕ,L) is the Wk-module:

H∗
k(ϕ,L) = D(ϕ,L)/IkD(ϕ,L) ≃ H∗

crys(ϕ,L)/IkH∗
crys(ϕ,L).

It follows from lemma (5.1.2) that H∗
crys(ϕ,L) is a free module of rank r overW (L), and

eachH∗
k(ϕ,L) is free overWk of the same rank. In particular,H∗

dR(ϕ, L)
∼= D(ϕ,L)/I D(ϕ,L)

and is a dimension r vector space over AL/I ∼= L. Each cohomology space has a canonical

basis corresponding to the derivations ηx = τ i for 1 ≤ i ≤ r [2].

5.3 Endomorphisms and Characteristic Polynomials

Given an endomorphism u ∈ End(ϕ), we obtain a corresponding module endomorphism

û ∈ End(H∗
crys(ϕ,L)) given by, for all a ∈ A, η ∈ H∗

crys(ϕ,L):

58

û(η)a = ηau.

Since H∗
crys(ϕ,L) is free of rank r, we may represent each endomorphism û as an r × r

matrix with entries in W (L), and set CharPoly(û) to be the formal characteristic polyno-

mial of this matrix. We can obtain a related endomorphism ũ acting on M(ϕ) given by

ũ(s) = su for s ∈M(ϕ) (recall thatM(ϕ) is the space of skew polynomials with a particular

AL action). The following theorem of Anglès relates CharPoly(û) to CharPoly(u).

Theorem 5.3.1. [2, Thm. 3.2] For u ∈ End(ϕ) and let û ∈ End(H∗
crys(ϕ,L)) be its induced

endomorphism. Then we have that

CharPoly(û) = CharPoly(u).

Similar results for M(ϕ) were shown in [15, Thm. 2.8], and in particular we also have

CharPoly(ũ) = CharPoly(u) which we will reproduce the proof from [15] below.

Proof. Fix a ∈ Fq[x], and letM(ϕ)a =M(ϕ)/aM(ϕ). Observe that ϕ[a] is a free module of

rank r over Fq[x]/(a), which implies that as an Fq-vector space we have dimϕ[a] = r deg(a).

Similarly, M(ϕ)a is a free module over L[x]/(a) of rank r, and dimLM(ϕ)a = r deg(a). We

turn ϕ[a] into a vector space over L by an extension by scalars, that is, set ϕ[a] = L⊗Fq ϕ[a]

and M(ϕ)a = L ⊗L M(ϕ)a. Both are finite dimensional vector spaces over L and since

dimFq ϕ[a] = dimLD(ϕ, a), we have dimL ϕ[a] = dimLM(ϕ)a.

Let ũa denote the module endomorphism induced onM(ϕ)a by ũ. Our first goal will be

to show that CharPoly(t(u)a) = CharPoly(ũ∗a) where ũ
∗
a is the dual morphism of ũa acting

on M(ϕ)∗a = Hom(M(ϕ)a,L).

Let θ : ϕ[a]→M(ϕ)∗a given by

θ : ϕ[a]→ D(ϕ.a)∗

c⊗ z 7→ (b⊗ s 7→ bcs(z))

with b, c ∈ L, z ∈ ϕ[a], and s ∈ L{τ}.

59

Lemma 5.3.2. The map θ : ϕ[a]→M(ϕ)∗a defined above is an isomorphism.

Proof. It suffices to show it is injective. Suppose we have an element ℓ ∈ ϕ[a] such that

θ(ℓ) = 0. Let z1, . . . , zd ∈ ϕ[a] be linearly independent, such that we can write ℓ =∑d
i=1 ci⊗zi for ci ∈ L\0. Among the non-zero choices for ℓ, there exists at least one choice

such that the integer d is minimal and suppose ℓ is chosen such that this is the case. This

further implies that the zi are Fq-linearly independent, since if say zd =
∑d−1

i=1 tizi then we

also have ℓ =
∑d−1

i=1 (ci + ti)⊗ zi. The requirement θ(ℓ) = 0 implies that for all s ∈M(ϕ)a

we have
d∑
i=1

cis(zi) = 0. (5.1)

In particular, to show ℓ ∈ ker θ it suffices to show that equation (5.1) holds when s = τ j

for all j > 0. Therefore, for any j ∈ N we must have

d∑
i=1

ciz
qj

i = 0

So we must also have:

d∑
i=1

cqi z
qj+1

i = 0 and
d∑
i=1

cq−1
d ciz

qj+1

i = 0

We therefore obtain:

d−1∑
i=1

(cqi − c
q−1
d ci)z

qj+1

i = 0 (5.2)

If cqi − c
q−1
d ci = 0, then (ci/cd)

q−1 = 1 which implies ci/cd ∈ Fq. If this where the case,

then
∑d

i=1(ci/cd)zi = 0, which contradicts linear independence of the zi over Fq. It follows
that equation (5.2) is a non-trivial sum; but we can also conclude from equation (5.2) that∑d−1

i=1 (c
q
i − c

q−1
d ci)⊗ zqi ∈ ker θ, which contradicts the minimality of d.

60

Now recall that for an endomorphism u of ϕ, the corresponding map on ϕ[a] induces a

map on ϕ[a] by setting t(u)a(c⊗z) = c⊗u(z). Similarly, recall that u induces an action ũa

on M(ϕ)a given by right multiplication by u. The corresponding dual map ũ∗a on M(ϕ)∗a
therefore acts on elements of the form θ(c⊗ z) as:

û∗(θ(c⊗ z)) = b⊗ s 7→ bcs(u(z)) = θ(c⊗ u(z))

Observe that ũ∗a and t(u)a are similar under θ, and we can conclude their characteristic

polynomials coincide. Since characteristic polynomials are invariant under extensions by

scalars and taking dual maps, we conclude that CharPoly(t(u)a) = CharPoly(ũa) for all

choices of a. With respect to a fixed set of elements simultaneously forming a basis for

M(ϕ) and M(ϕ)a, the matrix obtained from ũa is simply the matrix for ũ with respect to

the basis with coefficients reduced modulo a. From this, we can conclude CharPoly(ũ) =

CharPoly(u) as desired.

61

Chapter 6

Algorithms for Computing the

Characteristic Polynomials of

Endomorphisms of Drinfeld Modules

In this chapter, we will present new algorithms, as well as extensions of previous algo-

rithms. We will primarily focus on the computation of the characteristic polynomial of

the Frobenius endomorphism τn. Moreover, the algorithms presented here will focus on

improving asymptotic complexity in the parameter n = [L : Fq]. This is due to one of the

original motivations for studying the computation of the characteristic polynomial in the

rank 2 case: it is a subroutine in algorithms for polynomial factorization over finite fields

[59], for which its complexity in n is a bottleneck.

6.1 Schoof-Like Algorithms

6.1.1 The Rank 2 Case

One major assumption of the algorithm of §4.4.3 was that the base field Fq contained

enough elements, at least n
2
+1, to allow us to interpolate a1 from its evaluation at elements

62

of Fq. We will now extend this algorithm to remove the requirement q ≥ n
2
+1. This result

is based on work published in [56].

Theorem 6.1.1. There exists a deterministic algorithm to compute the characteristic poly-

nomial of the Frobenius endomorphism of a rank 2 Drinfeld module ϕ with a bit complexity

of (n2 log q + n log2 q)1+o(1).

Proof. After computing a0 explicitly using equation (4.2), we need only compute a poly-

nomial a1 ∈ Fq[x] with deg a1 ≤ n
2
such that

τ 2n − ϕa1τn + ϕa0 = 0

For any E ∈ Fq[x] with degE < d for some choice of d, we reduce equation right-modulo

ϕE to obtain

τnϕa1 mod E mod ϕE = τ 2n + ϕa0 mod E mod ϕE. (6.1)

Now consider the Fq-linear mapping T : L{τ}2d → L{τ}2d given by S 7→ τS mod ϕE

for any S ∈ L{τ}2d. Write

ϕE =
2d∑
i=0

siτ
i

τ i mod ϕE =
2d−1∑
j=0

µi,jτ
j

ϕxi =
2i∑
j=0

fi,jτ
j.

Now expand the action of T on τ i:

τ i+1 =
2d−1∑
j=0

µqi,jτ
j+1 =

2d−1∑
j=1

µqi,j−1τ
j +

2d−1∑
j=0

− sj
s2d

µqi,2d−1τ
j.

63

Recall that for a (skew) polynomial, the (transposed) companion matrix CϕE is given

by

CϕE =


− s2d−1

s2d
− s2d−2

s2d
. . . − s1

s2d
− s0
s2d

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


Let C = CTϕE . Let ŝ denotes the standard d dimensional L-vector representing s ∈

L{τ}/ϕE. In particular, we have:

τ̂ i =

µi,2d−1

...

µi,0


then the action of T (ŝ) is given by

T ŝ = C(ŝ)[1].

We can invert this action to obtain the inverse operator

T−1ŝ =

(
C−1τ̂ i

)[−1]

.

Using the same procedure based on equation (4.7), we can explicitly compute T n(ŝ) and

T−n(ŝ) at a cost of (dωn log q)1+o(1) using the following relations

T nŝ = CC[1] . . .C[n−2]C[n−1]ŝ

T−nŝ = C[−1]C[−2] . . .C[1−n]Cŝ.

64

Having computed a0 using equation (4.2), we can compute ϕE and ϕa0 mod E at a bit cost

of (d2n log2 q)1+o(1) using the algorithm of proposition 4.2.1. Let a1 mod E =
∑d−1

i=0 αix
i,

and expand equation (6.1) to obtain:

τn
∑
i<d

j≤2(d−1)

αifi,jτ
j = τ 2n + ϕa0 mod E (6.2)

Which we can rewrite as a system over L of the form


f0,0 f1,0 . . . fd,0

0 f1,2 . . . fd,2
...

...
. . .

...

0 0 . . . fd−1,2(d−1)


 α0

...

αd−1

 = T n


0
...

0

1

+ T−n(ϕ̂a0 mod E) (6.3)

Note that on the left hand side, we have the same matrix that is obtained when at-

tempting to compute inverse images of the Drinfeld map as seen in section §4.2.1. This

system can be solved, uniquely, at a bit cost of (d2n log q)1+o(1). We have an overall cost

of (dωn log q)1+o(1) from computing a1 mod E.

To reconstruct a1, we need to compute a1 mod Ei for sufficiently many distinct irre-

ducible polynomials {E1, E2, . . . , Ew} ⊂ Fq[x] such that degEi ≤ d and deg
∏w

i=1Ei >
n
2
.

Here we will recall a classical result telling us that the product of all irreducible of degree

dividing d is xq
d − x seen in, for example, [32, Fact 3.3]. This implies it suffices to select

the Ei from polynomials of degree at most d = ⌈logq(n + 1)⌉ of which there are at most

qd+1 ≤ q2 logq(n) = n2. Testing each such polynomial for irreducibility has a cost polynomial

in d ∈ O(log(n)) as well as log q using the algorithms of [32, Thm. 7.5], incurring an overall

cost of (n2 log q)1+o(1) to generate the Ei.

Computing a1 mod Ei for O(n/ log n) choices of Ei yields a total cost of (n2 log q)1+o(1).

Reconstructing a1 from the polynomials a1 mod Ei for all i costs O(n2 log q) bit opera-

tions. Adding in the usual cost of n log2 q for pre-computing polynomial representations of

Frobenius powers, we obtain the complexity of theorem 6.1.1.

65

6.1.2 The Schoof-like Algorithm in any Rank

In this section, we will present a generalization of the algorithm seen in section (4.4.3) to

arbitrary rank, but keep the requirement of a large base field Fq, requiring that q ≫ nr.

As before let Fq be a field of order q and L a degree n extension of Fq. Let ϕ be an Fq[x]-
Drinfeld module over L of rank r. Note that Drinfeld modules of rank r are parametrized

over Lr+1 via the correspondence (∆0, . . . ,∆r) 7→ (ϕx = ∆rτ
r + . . .+∆1τ +∆0). We will

note that in this case that the characteristic map γ is determined by ∆0 and will not be

fixed. We can expand this to a parametrization over Fn(r+1)
q by introducing parameters

αi,j such that ∆i =
∑

j αi,jλj for a basis {λj}nj=1 of L/Fq.

As in the rank-two case, the goal will be to evaluate CharPoly(τn) at τn and reduce

right modulo ϕx−e for at least N = ⌊n(r−1)
r
⌋ + 1 choices of e ∈ Fq. The solution of this

system yields the evaluations {ai(e)}r−1
i=1 , from which we can interpolate to recover the

entire characteristic polynomial. Our algorithm will therefore require that we randomly

choose a set of evaluation points E = (e1, . . . , eN) ∈ FNq . It will turn out to be the case

that for not all choices of ϕx and evaluation points e, that the resulting system reduced

modulo ϕx−e can be solved uniquely to guarantee the correct result is returned.

We also note that the algorithm will only return a correct result if CharPoly(τn) =

MinPoly(τn); if this is not the case, the linear system we obtain can not be solved uniquely,

which is a failure mode that is already detected by the algorithm.

Theorem 6.1.2. Let ϕ be a rank r Drinfeld module over L such that CharPoly(τn) =

MinPoly(τn). There exists an algorithm such that if gcd(n, r) = 1 or gcd(n, r − 1) = 1,

and q > 2nr, then the algorithm computes the characteristic polynomial of the Frobenius

endomorphism of ϕ if the following conditions hold.

1. ϕx lies outside of a hypersurface in Fn(r+1)
q defined by a polynomial f of degree at most

(n− 1)(r − 1).

2. A randomly chosen vector E = (e1, . . . , en) ∈ FNq lies outside of a hypersurface in FNq
of degree at most n2r + n2

2
.

66

3. A randomly chosen projection ℓ : L → Fq lies outside of a hypersurface in Fnq of

degree at most n(r − 1).

Moreover, this algorithm runs with a bit complexity of (rω2/2+1n2 log q + n log2 q)1+o(1).

We will devote the rest of this section to the proof of the preceding theorem. As usual,

we will fix a Drinfeld module ϕ defined by ϕx = ∆rτ
r+ . . .+∆1τ +∆0. As with the rank 2

case, we will begin by reducing equation (4.1) modulo a skew polynomial of the form ϕx−e

for e ∈ Fq.

τnr + ar−1(e)τ
n(r−1) + . . .+ a1(e)τ

n + a0(e) = 0 mod ϕx−e. (6.4)

By solving equation (6.4) for the values {ai(e)}r−1
i=0 , for at least n distinct choices of e, we

can interpolate to recover the coefficients of the characteristic polynomial. As an aside, we

observe that this method will only be viable for Drinfeld modules ϕ where CharPoly(τn) =

MinPoly(τn). As done previously, for a fixed ψ ∈ L{τ} we will let ŝ denote the (degψ)-

dimensional coefficient vector of s mod ψ with entries in L for all s ∈ L{τ}; the ψ will

usually be specified in context so we will omit this dependency. Moreover, let

R(ψ) =
[
τ̂n(r−1) . . . τ̂n 1̂

]
∈Mr×r(L).

Let Re = R(ϕx−e). Equation (6.4) therefore leads to a linear system that can be written

in the following form:

Re


ar−1(e)

...

a1(e)

a0(e)

 = τ̂nr. (6.5)

Equation (6.5) can be solved if and only if rank(Re) ≥ r i.e. when the set {τ̂nj}0≤j<r is
linearly independent. While this won’t hold in general, we intend to show that the number

of choices of Drinfeld module ϕ and evaluation point ei for which this fails is small when

67

q ≫ nr. To do this, we can make use of a classical result in probabilistic polynomial

identity testing, the DeMillo-Lipton-Schwartz-Zippel lemma, which we will introduce here,

for a more precise probability analysis.

Lemma 6.1.3. [66, DeMillo-Lipton-Schwartz-Zippel lemma] Let F be a field and S ⊂ F.
Let f ̸= 0 be a multivariate polynomial f(x1, . . . , xt) ∈ Fq[x1, . . . , xt] of total degree d > 0.

For c1, . . . , ct ∈ S chosen uniformly at random from S we have that Pr[f(c1, . . . , ct) = 0] ≤
d
|S| .

Rather than provide the probability analysis explicitly, we will show that our algorithm

succeeds when ϕ, as well as the chosen evaluations points e1, . . . , eN and projection ℓ, exist

outside of hypersurfaces whose degrees are determined by polynomials in n, r. The first

step in the proof of theorem 6.1.2 will be to establish the existence of a polynomial f acting

on a parametrization of skew polynomials ψ ∈ L{τ} such that if rank(R(ψ)) < r then

f(ψ) = 0.

We will suppose that the set {τ̂nj mod ψ}j≤r satisfies an L-relation. Then there exist

βi ∈ L and P ∈ L{τ} such that:

r∑
i=1

βiτ
ni = Pψ. (6.6)

Write:

ψ =
r∑
i=0

ψiτ
i

P =

(n−1)r∑
i=n

Piτ
i.

Now, recasting equation (6.6) as a linear system, set:

68

B̃(ψ) =



ψq
(n−1)r

r 0 0 0 0 . . . 0 . . . 0

ψq
(n−1)r

r−1 ψq
(n−1)r−1
r 0 0 0 . . . 0 . . . 0

ψq
(n−1)r

r−2 ψq
(n−1)r−1

r−1 ψq
(n−1)r−2

r 0 0 . . . 0 . . . 0
...

...
...

...
...

. . .
...

. . .
...

ψq
(n−1)r

0 ψq
(n−1)r−1

1 . . . ψq
(n−1)r−r

r 0 . . . 0 . . . 0

0 ψq
(n−1)r−1

0 ψq
(n−1)r−2

1 . . . ψq
(n−1)r−r−1

r . . . 0 . . . 0
...

...
...

. . .
...

. . .
...

. . .
...

0 0 0 . . . 0 . . . 0 . . . ψq
n

0


(6.7)

B̃(ψ) is an (nr − n + 1) × (n − 1)(r − 1) matrix where B̃(ψ)i,j = ψq
(n−1)r−j

r+j−i for 0 ≤ j ≤ i

and i ≤ r + j. This gives the system

B̃(ψ)

P(n−1)r

...

Pn

 =



βr

0
...

0

βi

0
...

0

β1


(6.8)

Removing the rows of B̃(ψ) corresponding to the positions of β1, . . . , βr, which correspond

to indices {ni}r−1
i=0 (our matrices are 0-indexed), we obtain a matrix B(ψ) such that

B(ψ)

P(n−1)r

...

Pn

 =

0...
0

 (6.9)

Then a non-zero P satisfying equation (6.6) exists only if detB(ψ) = 0. Fix a basis

{λ1, . . . , λn} for L/Fq; each ψi can be parametrized by variables αi,j, e ∈ Fq for 1 ≤

69

i ≤ n and 0 ≤ j ≤ r such that ψi =
∑n

j=1 αi,jλj for i ̸= 0 and ψ0 =
∑n

j=1 αi,jλj − e

(we can view this setup as effectively parametrizing pairs (ϕx, e) corresponding to skew

polynomials ϕx−e). Noting that ψq
k

i =
∑n

j=1 αi,jλ
qk

j , we have that all entries of B(ψ) are

degree-1 polynomials in the variables αi,j taking values in Fq. Then f(ψ, e) = detB(ψ) ∈
Fq[{αi,j}1≤j≤n0≤i≤r , e] with total degree at most (n−1)(r−1). Suppose the partial evaluation of

f(ϕx, e) at ϕ, corresponding to a fixed choice of the αi,j, does not yield the zero polynomial

in e. If f is not the zero polynomial, this happens outside of a hypersurface containing

choices of ϕx ⊂ Fn(r+1)
q defined by the simultaneous vanishing of the coefficients of f(ϕx, e)

in the variables αi,j, each of which have degree at most (n−1)(r−1). We recall this is part

1 of the hypotheses of Theorem 6.1.2. Under this assumption, the choices of evaluation set

E = (e1, . . . , eN) ⊂ FNq such that we can not solve equation (6.5) for all ei are defined by

the vanishing of the following polynomial:

N∏
i=1

f(ϕx, ei)
∏
i<j

(ei − ej).

Noting this polynomial has degree at most n2r + n2

2
, we have now established that the

algorithm will succeed outside of choices of ϕx and E satisfying the hypotheses of Theorem

6.1.2.

To improve the complexity of the algorithm, we will attempt to leverage the fact that

the solutions to our linear system a0(e), . . . , ar−1(e) lie entirely in Fq. Select a random pro-

jection ℓ : L→ Fq, and apply this projection entrywise to Re to obtain Rℓ
e. By representing

elements of L as univariate polynomials L = Fq[x]/(f) we can set ℓ = (1, ℓ1, . . . , ℓn−1) ∈ Fnq
such that for α =

∑n−1
i=0 αix

i ∈ L we have ℓ
(∑n−1

i=0 αix
i
)
= α0 +

∑n−1
i=1 ℓiαi. Each entry of

Rℓ
e is then a degree-1 polynomial in the projection parameters ℓ1, . . . , ℓn−1, and so detRℓ

e

is a degree r polynomial in the variables {ℓi}. Observe that if detRe ̸= 0 then detRℓ
e

can’t be identically the zero polynomial since we can set ℓi = xi ∈ L, under which we have

detRe = detRℓ
e ̸= 0. Given a choice of E satisfying hypothesis 2, the projected systems

Rℓ
ei
can be solved as long as our choice of ℓ avoids the hypersurface defined by the following

polynomial:

70

N∏
i=1

detRℓ
ei
.

which has degree Nr = n(r − 1).

It now remains to determine choices of parameters n and r such that f = detB(ψ) is

not identically the zero polynomial. This can be done by showing the existence of at least

one skew polynomial Ψ such that detB(Ψ) ̸= 0.

Lemma 6.1.4. Let detB(ψ) be defined as above. If gcd(n, r) = 1, there exists a skew-

polynomial Ψ such that detB(Ψ) ̸= 0.

Proof. Let Ψ = τ r + 1. B̃(Ψ) has the form

B̃(Ψ) =



1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
...

...
...

. . .
...

. . .
...

1 0 . . . 0 1 0 . . . 0 . . . 0

0 1 0 . . . 0 1 . . . 0 . . . 0
...

...
...

. . .
...

. . .
...

. . .
...

0 0 0 . . . 0 . . . 0 . . . 1


Let bi denote the i

th row of B̃(Ψ), and note that the rightmost 1 is contained in column

i, and the second 1 if it occurs, appears at index i− r. Since any column contains exactly

2 non-zero entries, any non-trivial linear dependence relation between rows containing bi

must therefore contain both bi+r and bi−r when possible. From this it follows that, if there

exists a non-trivial linear relation containing a row bi, with i mod r = d, then there must

exist a non-trivial linear dependence relation of the form

∑
0≤i<nr−n+1
i mod r=d

cibi = 0 (6.10)

71

with all ci ̸= 0. Recall that the procedure for constructing B(ψ) from B̃(ψ) involved

removing rows at indices {ni}r−1
i=0 . It follows from the hypothesis gcd(n, r) = 1 that for

each residue class d least one index with i0 mod r = d does not appear as a row of B(ψ)

so no relation of the form in equation (6.10) can be constructed from the rows of B(ψ),

which implies it has full rank and thus proving the claim.

Lemma 6.1.5. Let B(ψ) be defined as above. If gcd(n, r − 1) = 1, there exists a skew-

polynomial Ψ such that detB(Ψ) ̸= 0.

Proof. We repeat the argument of lemma 6.1.4 with Ψ = τ r+τ with residues taken modulo

r − 1. One minor observation is that B̃(Ψ) contains a single zero-row at index n(r − 1),

which does not appear in B(Ψ).

Now recall that once Re is known to have full rank, and the system of equation (6.5) can

be solved for the coefficients of the characteristic polynomial. We can now summarize the

algorithm of theorem 6.1.2.

1. Compute τnk mod ϕx−ej for ⌊ r−1
r
n⌋+ 1 distinct ej ∈ Fq and 1 ≤ k ≤ r.

2. Construct the matrices Rej . For each ei choose a random projection ℓj : L→ Fq and
apply it to the entries of Rej to obtain R

ℓj
ej and solve the system

Rℓj
ej


ar−1(e)

...

a1(e)

a0(e)

 = τ̂nr (6.11)

over Fq to obtain a1(ei), . . . , ar−1(ej). Repeat for n choices of ej over Fq.

3. Interpolate {ai(ej)}nj=1 for each aj and return Xr +
∑r−1

i=0 aiX
i.

Step 3 incurs a cost of (rn log q)1+o(1) owing to the interpolation of r polynomials of

degree at most n. The cost of constructing Rei is largely derived from computing skew

polynomials τnk mod ϕx−ei . This computation can be done for each 1 ≤ k ≤ r and

72

1 ≤ j ≤ n through repeated skew polynomial multiplication and division, at a total cost of

(rnSM(r, n, q))1+o(1). Computing Rℓ
ei

from Rei costs r
2n log q bit operations, and solving

the linear system of equation (6.11) for an individual ei costs at most rω log q, with a total

contribution of (rωn log q)1+o(1) coming from step 2. The overall computational cost of

the entire algorithm is dominated by the term (rnSM(r, n, q) + rωn log q)1+o(1). Using the

Puchinger and Wachter-Zeh algorithm for skew polynomial multiplication, which is the

preferred approach when r < n, yields a complexity of (rω2/2+1n2 log q + rωn log q)1+o(1) as

desired.

This completes the proof of theorem 6.1.2. The key feature of this algorithm is its

quadratic complexity in n, and the removal of the restriction on the rank of the Drinfeld

module. However, it is constrained primarily by the requirement of a large base field

relative to nr.

6.2 A Modification of Narayanan’s Algorithm

We present a modification to the algorithm of Narayanan described in §4.4.5 based on

Coppersmith’s block Wiedemann algorithm, which was also published in [56].

Theorem 6.2.1. The ϕx be a rank 2 Drinfeld module over (L, γ). There is a Monte Carlo

algorithm to compute the characteristic polynomial of the Frobenius endomorphism of ϕ if

degMinPoly(ϕx) = n with a bit complexity of (n1.885 log q + n log2 q)1+o(1).

Proof. Consider ϕx as a linear operator ϕx : L → L. Recall the assumption that Γ =

MinPoly(ϕx) = CharPoly(ϕx) and that Narayanan’s algorithm proceeds by selecting a

random projection ℓ : L → Fq and element a ∈ L and seeks to compute the minimal

polynomial of the sequence si = ℓ(ϕix(α)).

Fix a parameter d ∈ O(nb) which we will later determine, and select d projections

ℓ1, . . . , ℓd mapping L → Fq, and elements α1, . . . , αd ∈ L. We obtain a sequence of d × d
matrices (Rk)k>0 with each (i, j)th entry Rk,i,j = ℓi(ϕ

k
x(αj)). This sequence has a matrix

generating function of the form Q−1P for matrices Q,P ∈ Md×d(Fq[x]). From [47, Thm

2.12], we have that detQ divides the characteristic polynomial of ϕx, which by assumption

73

is Γ. Moreover, with probability at least max(1/(12max(1, logq ν)), 1 − 2n/q) [45] we

have that the minimal polynomial of (R1,1,k)k≥0 coincides with Γ. Finally, since detQ

annihilates (R1,1,k)k≥0, detQ divides the minimal polynomial of that sequence, which will

again, for generic choices of ℓ1 and α1, be equal to Γ. In this case we can conclude that

detQ = Γ = CharPoly(ϕx).

We can compute Q using the PM basis algorithm of [36] which requires us to compute

Rk for k at most 2n/d. To compute the required matrices Rk, we will use a method

adapted from algorithm “AP” of [46]. For some constant c which will also be determined,

set H = ⌊(n
2d
)c⌋, H ′ = ⌈ n

2Hd
⌉, and compute ϕHx at a cost of SM(H,n, q). For each 1 ≤ d,

pre-compute the linear operators ∗ℓui = ℓi ◦ϕux for u < H; using the transposition argument

of §4.2.2, this can be done at a bit complexity of (Hdn log q)1+o(1). Note that each ∗ℓui is

represented as an n-dimensional row vector with coefficients in Fq.

Next, we compute αj,v = ϕHvx (αj) for v < H ′ and j ≤ d; this can be done using the

multi-point evaluation algorithm seen in theorem 7.1.1 at a cost of (Hdω−2n log q)1+o(1)

for each v < H ′, costing a total of (dω−3n2 log q)1+o(1) bit operations. Our final goal is

to compute αu,i,j,v = ∗ℓui (αj,v) = ℓi(ϕ
u+Kv
x (αj)) ∈ Fq for 0 ≤ u < H, 0 ≤ v < H ′ and

1 ≤ i, j ≤ d. This can be done by computing the following (Hd, n) × (n,H ′d) matrix

product with coefficients in Fq:


∗ℓ01
...

∗ℓH−1
d

[
α1,0 . . . αd,H′−1

]
.

This costs (H3−ωdnω−1 log q)1+o(1) = (d1−c(3−ω)nω−1+c(3−ω) log q)1+o(1). Having com-

puted the required matrices Rk, we can recover Q as stated before at a bit cost of

(dω−1n log q)1+o(1). The determinant ofQ can then be computed at a cost of (dω−1n log q)1+o(1)

[52], from which we determine CharPoly(ϕx). A result due to Gekeler tells is that a1 =

1 − CharPoly(ϕx) + a0 [33]. After computing a0 using formula (4.2), we can recover the

entire characteristic polynomial at a total cost of

(nb(ω−2)+(1−b)c+1 log q + nb(ω−3)+2 log q + nb(1−c(3−ω))+ω−1+c(3−ω) log q)1+o(1)

74

for a choice of parameters b, c. Accounting for a cost of n log2 q for pre-computing poly-

nomial representations of Frobenius maps and by setting b = 0.183, c = 0.642, ω = 2.372

and we obtain the required complexity.

6.3 Using Hankel Systems

We generalize the approach of the algorithm in §4.4.4.

Theorem 6.3.1. Let ϕ be a Drinfeld module of rank r over (L, γ). There exists a Monte

Carlo algorithm to compute the characteristic polynomial of the Frobenius endomorphism

when gcd(n, r) = 1 with a bit complexity of (n3r log q)1+o(1) and which returns the correct

result with probability at least
(
1− n2r2

q

)
.

Recall that the characteristic polynomial of the Frobenius endomorphism has the form∑r
i=0 aiX

i with each ai ∈ Fq[x]. Using the fact that τn satisfies its characteristic polyno-

mial, we have:

r−1∑
i=1

ϕaiτ
ni = τnr − ϕa0 . (6.12)

Writing the coefficients of the characteristic polynomial in the form

ai =

⌊n(r−i)
r

⌋∑
j=0

ai,jx
j ∈ Fq[x]

We can rearrange equation (6.12) as

⌊n(r−1)
r

⌋∑
j=0

r(1− j
n
)∑

i=1

ai,jϕ
j
xτ

in = τnr − ϕa0 (6.13)

Let M be an extension of L of degree r, so that [M : Fq] = nr. Let α ∈ M be such

that {αqi}nr−1
i=0 is a normal basis for M/Fq; for convenience let αi = αq

i
. Recall the we

75

could view L{τ} as a ring of linear operators acting on L/Fq; we can naturally extend

these operators to act on M/Fq. For a positive integer u we can define Hankel matrices

Hu ∈ Mr×⌊r(1−u/n)⌋(L{τ}) with coefficients in L{τ} corresponding to terms in equation

(6.13) with j = u with additional rows corresponding to multiplication by τn an additional

r − 1 times:

Hu =


ϕuxτ

n ϕuxτ
2n . . . ϕuxτ

⌊r(1−u/n)⌋n

ϕuxτ
2n ϕuxτ

3n . . . ϕuxτ
(1+⌊r(1−u/n)⌋)n

...
...

. . .
...

ϕuxτ
rn ϕuxτ

(r+1)n . . . ϕuxτ
(r+⌊r(1−u/n)⌋)n

 .
With vectors G ∈Mr×1(L{τ}) corresponding to the right-hand side:

G =


τnr − ϕa0

τn(r+1) − ϕa0τn
...

τn(2r−1) − ϕa0τn(r−1)

 .
We can then construct a block Hankel system of the form Hk as follows:

H =

⌊(n+ 1
2
)(r−1)⌋ columns︷ ︸︸ ︷H0 H1 . . . H⌊n(r−1)/r⌋

...
...

. . .
...

H0 H1 . . . H⌊n(r−1)/r⌋


n blocks

G =

G...
G


n blocks

Let α ∈M be a normal element for M/Fq, let αi = αq
i
, and define:

Hu(α) =


ϕuxτ

n(α) ϕuxτ
2n(α) . . . ϕuxτ

n(r−1−⌊(ur/n)⌋)(α)

ϕuxτ
2n(α) ϕuxτ

3n(α) . . . ϕuxτ
(1+r−1−⌊(ur/n)⌋)n(α)

...
...

. . .
...

ϕuxτ
rn(α) ϕuxτ

(r+1)n(α) . . . ϕuxτ
(2r−1−⌊(ur/n)⌋)n(α)


76

G(α) =


τnr(α)− ϕa0(α)

τn(r+1)(α)− ϕa0τn(α)
...

τn(2r−1)(α)− ϕa0τn(r−1)(α)


Then for α0, αr . . . , α(n−1)r ∈M we can define:

H(α) =

 H0(α0) H1(α0) . . . H⌊n(r−1)/r⌋(α0)
...

...
. . .

...

H0(α(n−1)r) H1(α(n−1)r) . . . H⌊n(r−1)/r⌋(α(n−1)r)



G =

 G(α0)
...

G(α(n−1)r)


Finally yielding the following linear system:

H(α)



a1,0

a2,0
...

a1,1

a2,1
...

a1,⌊n(r−1)/r⌋


= G(α). (6.14)

The rows of H have entries consisting of evaluations of operators of the form ϕuτni for

0 ≤ u ≤ ⌊ r−1
r
n⌋ and 1 ≤ i ≤ r, with each row being evaluated at a distinct element of

the normal basis generated by α. Our aim now will be to determine the conditions under

which the matrix H(α) is invertible, allowing us to solve equation (6.14) uniquely for the

coefficients of the characteristic polynomial. For that, we will first define what we mean

by linear independence of field homomorphisms.

77

Definition 6.3.2. Let E,F be fields and let σ1, . . . , σm be field homomorphisms σi : E →
F . We say that σ1, . . . , σm are linearly independent if for any θ1, . . . , θm ∈ F we have that

if

θ1σ1(α) + . . .+ θmσm(α) = 0

for all α ∈ F then we must have θ1 = . . . = θm = 0.

That is, σ1, . . . , σm ∈ Hom(E,F) are linearly independent if they are linearly independent

in the usual sense when Hom(E,F) is viewed as an F -vector space in the natural way. We

can now state and prove the following lemma.

Lemma 6.3.3. Let E,F be a finite fields extensions of a common field K, and fix a

basis α1, . . . , αm for E over K. Let σ1, . . . , σℓ be linearly independent field homomorphisms

E → F fixing K. Then the following matrix has a trivial right kernel:

S =

σ1(α1) . . . σℓ(α1)
...

...

σ1(αm) . . . σℓ(αm)

 ∈Mm×ℓ(F).

Proof. Suppose S has non-trivial kernel. Then there exist λ1, . . . , λℓ ∈ F not all 0 such

that

σ1(α1) . . . σℓ(α1)
...

...

σ1(αm) . . . σℓ(αm)


λ1...
λm

 =

0...
0

 .
Then for any row-wise re-scaling with θ1, . . . , θm ∈ K we must also have

 θ1σ1(α1) . . . θ1σm(α1)
...

...

θmσ1(αm) . . . θmσm(αm)


λ1...
λm

 =

0...
0

 .
We multiply out the left-hand side and sum the resulting entries in each row to obtain

78

m∑
i=1

m∑
j=1

θiλjσj(αi) =
m∑
j=1

λjσj

(m∑
i=1

θiαi

)
= 0.

We observe that the above relation holds for any θ1, . . . , θm, implying that
∑m

j=1 λjσj

is the zero morphism. Since we assumed not all the λi are 0, this violates the linear

independence of σ1, . . . , σm. We conclude S has trivial kernel.

We can directly apply lemma 6.3.3 to conclude that if the set of linear operators

{ϕuxτ in}
1≤i≤r
0≤u<⌊ r−1

r
n⌋ on M are linearly independent, the linear system of equation 6.14 has

a unique solution which must necessarily be the coefficients of the characteristic polyno-

mial. The next phase is to establish M-linear independence of the Fq-linear operators

ϕuxτ
vn : M → M. This can be done when gcd(n, r) = 1 by appealing to Artin’s famed

independence of characters, which we will now state.

Lemma 6.3.4 (Artin’s Independence of Characters for Fields). Let E, F be fields and

let σ1, . . . , σm be distinct field homomorphisms from E to F . Then σ1, . . . , σm are linearly

independent.

Artin’s independence of characters in fact holds in far greater generality, when E is

replaced by a monoid and the maps σi are instead monoid homomorphisms σi : E → F×

where F× denotes the multiplicative group of the field F . Lemma 6.3.4 implies that to

show a set of field homomorphisms are linearly independent, it suffices to show that they

are distinct.

Lemma 6.3.5. Let gcd(n, r) = 1. The operators {ϕuxτ in}
1≤i≤r
0≤u<⌊ r−1

r
n⌋ mapping M→ M are

linearly independent.

Proof. We will show the statement for the set S = {ϕuxτ in}
0≤i≤r−1

0≤u<⌊ r−1
r
n⌋, from which the

stated lemma follows. First, we show that no two elements of {ϕuxτ in}
0≤i≤r−1

0≤u<⌊ r−1
r
n⌋ have the

same τ -degree reduced modulo rn. Suppose to the contrary that this were the case; that

is:

ur + in mod nr = (deg ϕuxτ
in) mod nr = (deg ϕvxτ

jn) mod nr = vr + jn mod nr.

79

It then follows that

ur + in mod n = ur mod n = vr + jn mod n = vr mod n

By the assumption gcd(n, r) = 1, we can divide by r mod n and conclude u = v. So we

must have:

(i− j)n = 0 mod nr

Since |i − j| < r, we can conclude that i = j, from which our claim follows. If necessary,

we can perform Euclidean division of ϕuxτ
in by τnr to obtain a skew polynomial of degree

at most nr − 1 while preserving the action on M. Following this reduction, each element

of ϕuxτ
in ∈ S is equivalent to an operator whose degree is ur+ in mod nr, and we conclude

that each element of S has a distinct reduced degree.

To complete the proof, suppose there is a linear dependence relation among the elements

of S, say: ∑
u,i

βu,iϕ
u
xτ

in = 0

Then amongst the parameters u, i such that βu,i ̸= 0 there is an element with the unique

highest degree mod nr, say d0 < nr. This implies that τ d0 as an operator can be written

as a linear combination of lower order terms. However, the linear operators id, τ, . . . , τnr−1

are distinct on M and therefore linearly independent by Artin’s lemma, leading to a con-

tradiction.

Using the combination of lemma 6.3.3 and lemma 6.3.5, we conclude that the matrix

H(α) is invertible when gcd(n, r) = 1. We can describe the entire algorithm as follows:

1. Fix a degree r extension M of L and compute a normal basis {αj}j<2nr.

2. Compute ϕux(αj) for j < n, u < n.

3. Compute ϕuxτ
in(αj) for i < r, j < n, u < n. This can be done by applying τ in to

ϕux(αj) since the operators commute.

80

4. ConstructH(α), G(α) as defined in equation (6.14). Apply a random linear projection

ℓ : M → Fq entrywise to both H(α) and G(α), and solve the resulting system over

Fq.

Pre-computing a normal basis for M/Fq has a cost of ((nr)ω2/2 log q + (nr log2 q))1+o(1).

Step 2 incurs a cost of (n3r log q)1+o(1) as a result of performing O(n2) applications of ϕx

to elements of M, with each application costing (rn log q)1+o(1) bit operations.

The resulting linear system is made up of Hankel blocks of uneven size, with ⌊n(r−1)/r⌋
blocks spanning the columns of H and n blocks spanning the rows. The blocks in the

ith column have r rows and r − 1 − ⌊ ir
n
⌋ columns, with total dimension of H system

being at most nr × nr. Such “Hankel-like” systems were studied in [16, Prop. 7], and

the authors gave a Monte Carlo algorithm to solve such a linear system costing O((r +

n)ω−1Mul(max(n, r)) log2(max(n, r)) operations in M, and which succeeds with probability

at least 1
2
. By applying a randomly selected projection ℓ : M → Fq By first selecting a

random projection ℓ : L → Fq and applying it to the coefficients of H and G to generate

a new system Hℓ,Gℓ with coefficients in Fq. Using a similar analysis to the one seen in

§6.1.2, if cH is invertible, then with probability at least 1 − r2n2

q
, we have that Hℓ is also

invertible. The cost of applying the projections entrywise is n2r2 log q bit operations. The

overall bit complexity of solving this Hankel-like system over Fq is then (nωr log q)1+o(1)

using the algorithm of [16, Prop. 7].

The overall complexity of the algorithm is therefore (n3r log q)1+o(1) owing to the cost

of step 2. We observe that the requirement to compute the values ℓ(ϕuxτ
in(αj)) for i < r,

j < n, u < n bears a resemblance to Narayanan’s approach in §4.4.5, and it seems likely

that the techniques of §6.2 can be adapted to this setting.

6.4 Computing Characteristic Polynomials using Crys-

talline Cohomology

Here we will present approaches to computing the characteristic polynomial of any endo-

morphism of a Drinfeld module ϕ based on the crystalline cohomology. These algorithms

81

were first described in [57]. Recall that by theorem (5.3.1), the characteristic polynomi-

als CharPoly(û) = CharPoly(u)ι, where û is the endomorphism induced on H∗
crys(ϕ,L) by

u ∈ End(ϕ); for the remainder of this section we will conflate û with the corresponding

skew polynomial u. Since H∗
crys(ϕ,L) is free of rank r over W (L), we may attempt to

compute a matrix for the action of û on H∗
crys(ϕ,L) up to precision k sufficient to recover

the coefficients of CharPoly(u). Our objective for the rest of this section is to prove the

correctness and complexity results of theorem 6.4.1.

This includes two distinct approaches for computing the characteristic polynomial of

arbitrary endomorphisms, along with a specialization of the approach using the recurrence

method for the special case where u is the Frobenius endomorphism. These algorithms can

be viewed as a Drinfeld analog of Kedlaya’s algorithm discussed in §3.4.

Theorem 6.4.1. Let ϕ be a rank r Drinfeld Fq[x]-module over (L, γ), and let u be any

endomorphism of ϕ of degree d. Then there are deterministic algorithms to compute

CharPoly(u) with the following complexities

1.
(min(dr2,(d+r)rω−1)

m
(d+m)n log q + rλn(d+m)/m log q + n log2 q

)1+o(1)
2. (rSM(d+ r, n, q) + rλn(d+m)/m log q + n log2 q)1+o(1) which is either

• (r(d+ r)ω2/2n log q + rλn(d+m)/m log q + n log2 q)1+o(1) if d < n

• or (r(d+ r)nω−1 log q + rλn(d+m)/m log q + n log2 q)1+o(1) otherwise

3. ((rλ/m+ rω/
√
m)n2 log q + n log2 q)1+o(1) if u = τn

4. (rωn1.5 log q + n log2 q)1+o(1) if u = τn and L = Fp.

For Drinfeld Fq[x]-modules, recall W (L) ∼= L[[z − γx]]. Moreover, H∗
crys(ϕ,L) ∼= L{τ}τ

under the identification η 7→ ηx, with the W (L)-action given by x ∗ s = sϕx for s ∈ L{τ}τ .
Therefore, for the remainder of this section we will state our algorithms concretely with

elements from L{τ}τ . In this case, we have a standard W (L)-basis consisting of skew

polynomials b = {τ, . . . , τ r}, and a skew polynomial u corresponding to an endomorphism

of ϕ of degree d. For any skew polynomial s ∈ L{τ}τ , if s = µ1τ
1 + . . . + µrτ

r with

82

µi ∈ W (L), then let µ(s) denote its coefficient vector with respect to the standard basis,

that is

µ(s) =

µ1

...

µr

 ,
and let µ(i) = µ(τ i).

Our procedure for computing CharPoly(u) will resort to computing a matrix repre-

sentation m(u) of the action of û on H∗
crys(ϕ,L) with respect to b with coefficients in Wk

for k > d
m
. Concretely, we compute the matrix m(u) =

[
µ(τu) . . . µ(τ ru)

]
with (i, j)th

entries µi,j truncated to precision k. We may then apply χk : Wk → Fq[x]/pk to the

coefficients of CharPoly(m(u)) to recover the coefficients of CharPoly(u).

6.4.1 A Divide-and-conquer Approach

In this section, we will construct and analyze algorithm 2 of theorem 6.4.1. Namely, that

there is a deterministic algorithm to compute the characteristic polynomial of a degree d

endomorphism u with bit complexity (rSM(d+r, n, q)+rλn(d+m)/m log q+n log2 q)1+o(1).

If we are given a factorization of the form

τ ju =
K∑
ℓ=0

(fℓ,1τ
1 + . . .+ fℓ,rτ

r)ϕjx

with fℓ,i ∈ L then we may recover the coefficients µi,j using

µi,j =
K∑
ℓ=0

fℓ,jx
ℓ (6.15)

We have that K ≤ ⌊d
r
⌋. By performing skew-polynomial Euclidean division of τ ju by

ϕ
⌊K/2⌋
x , we obtain a decomposition

τ ju = gϕ⌊K/2⌋
x + h

83

To which we may recursively apply our decomposition algorithm until deg g, deg h ≤
r. Using fast exponentiation, we can compute ϕix for O(log d) values i for a cost of

O(SM(d, n, q)), and perform Euclidean division of degree at most d+r for O(SM(d+r, n, q))

cost.

Using the Puchinger and Wachter-Zeh, the complexity of the algorithm becomes (r(d+

r)ω2/2n log q + rλn(d + m)/m log q + n log2 q)1+o(1), and is the preferred approach when

d ∈ O(n). Instead, using the Caruso and Le Borgne algorithm, we obtain a complexity of

(r(d+ r)nω−1 log q + rλn(d+m)/m log q + n log2 q)1+o(1), which is better for large d.

6.4.2 Methods using a Recurrence

The following lemma will be useful in allowing us to compute the action of endomorphisms

on L{τ}τ :

Lemma 6.4.2. Let ϕ be a rank r Drinfeld Fq[x]-module defined by ϕx =
∑r

i=0 ∆iτ
i. For

any t ≥ 1, the following relation holds in the W (L)-module L{τ}τ :

r∑
i=0

∆
[t]
i τ

t+i = z ∗ τ t. (6.16)

Proof. The result follows from applying the definition module action of L[z] on L{τ}τ to

z ∗ τ t.

z ∗ τ t = τ tϕx = τ t
r∑
i=0

∆iτ
i

=
r∑
i=0

∆
[t]
i τ

t+i.

For 0 ≤ i < r, set Λi = −∆i

∆r
. For any t > 0, we define a matrix A ∈Mr(L[z]) to be:

84

A =


Λr−1 Λr−2 . . . Λ1 Λ0 +

z
∆r

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 (6.17)

and set At ∈Mr(L[z]) to be

At = A[t] =



Λ
[t]
r−1 Λ

[t]
r−2 . . . Λ

[t]
1 Λ

[t]
0 + z

∆
[t]
r

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


. (6.18)

Recalling that the operator ·[t] indicates Frobenius σtq applied coefficient-wise for poly-

nomials, and entry-wise for matrices. For any skew polynomial s ∈ L{τ}τ , let µ(s) denote
its coefficient vector with respect to the standard basis and let µ(s)j denote the coefficient

of τ j ∈ b. If we let µ(i) = µ(τ i), then:


µ(t+r)

µ(t+r−1)

...

µ(t+1)

 = At


µ(t+r−1)

µ(t+r−2)

...

µ(t)

 . (6.19)

By reducing the entries modulo gk = (z − γx)k, we obtain the coefficients for the basis

expansion in Wk. For general endomorphisms u, we can compute m(u) with coefficients

truncated to precision k as follows: write u =
∑d

t=0 utτ
t ∈ End(H∗

crys(ϕ,L)) of degree d

over Wk. For each 1 ≤ i ≤ r, we have

τ iu = u
[i]
0 τ

i + · · ·+ u
[i]
d τ

d+i.

85

Our goal is to compute the matrix:

m(u) =
[
µ(τu) µ(τ 2u) . . . µ(τ ru)

]
It suffices to first compute basis expansions to obtain µ(j) for j ≤ d + r using equation

(6.19), and then compute vectors µ(τ iu) using µ(τ iu)j =
∑d

t=0 utµ
(i+t)
j .

Preparing the coefficients A1, . . . ,Ad costs O(dr) field operations and applications of

the Frobenius, contributing a bit cost of (drn log q)1+o(1). Each application of the recurrence

from (6.16) incurs a bit cost of (kr2n log q)1+o(1) from scaling operations by coefficients of

the form Λ
[t]
i as well as a cost of (dkrn log q)1+o(1) from scaling and modular reduction from

the linear term Λ
[t]
0 + z

∆
[t]
r

.

Recovering the coefficients of µ(τ iu) modulo gk takes O(dkr) operations in L. In the

case where we are interested in computing the characteristic polynomial, it is sufficient

that k > d
m

to allow for the recovery of the coefficients inside of Fq[x]/pk after applying

χk. In this case, the complexity for using the recurrence to compute µ(j) becomes

((d+ r)(d+m)rn/m log q)1+o(1)

and for recovering the coefficients of the matrix, we have a cost of

(d(d+m)r2n/m log q)1+o(1).

At this stage, we have our matrix m(u) ∈ Mr(Wk); computing the characteristic poly-

nomial of m(u) costs rλkn log q. We also incur a cost of n log2 q to pre-compute polynomial

representations of all Frobenius operators {σq, . . . , σn−1
q } for use in modular composition.

Summing these costs gives us the complexity of algorithm 1 of theorem 6.4.1.

6.4.3 A Baby-step Giant-step Algorithm to Compute the Char-

acteristic Polynomial of the Frobenius Endomorphism

We will now describe an algorithm for computing the characteristic polynomial of the

Frobenius endomorphism τn based on the recurrence of lemma (6.16), which is the basis

86

of algorithms 3 and 4 of theorem 6.4.1. Building on the approach of the previous section,

when the endomorphism in question is the Frobenius, we are only interested in computing

the vectors µ(n+1), . . . , µ(n+r), which we can write as


µ(n+r)

µ(n+r−1)

...

µ(n+1)

 = An . . .A1 = A, (6.20)

Since we only need the final product, we can compute it using a baby-step giant-step

approach inspired by a technique in [21]. Write n∗ = ⌈
√
nk⌉ ∈ O(n/

√
m), and let n be

written as n = n∗n1 + n0 with 0 ≤ n0 < n∗, so that n1 ≤
√
n/k. Now let:

C0 = A[n0] . . .A[1]

and

C = A[n∗+n0] · · · A[n0+1].

Then we have:

A∗ = C[(n1−1)n∗] · · · C[n∗]CC0.

To obtain the desired complexity, we will seek to work with matrices with coefficients

reduced modulo gk, and in particular we want to compute

A∗ mod gk = (C[(n1−1)n∗] mod gk) · · · (C[n
∗] mod gk)(C mod gk)(C0 mod gk).

To do this, we will need the following lemma

Lemma 6.4.3. For f, g in L[x] and t ≥ 0,

f [t] mod g = (f mod g[−t])[t]

87

Proof. Let R ∈ L[x] such that degR < deg g and f = Qg[−t] +R for some Q ∈ L[x]. Then
f [t] = Q[t]g +R[t] while degR[t] < deg g, from which we can conclude the lemma.

Using lemma 6.4.3, we can compute C[in∗] mod gk = (C mod g
[−in∗]
k)[in

∗] for 0 ≤ i < n1.

Computing matrices A[1], . . . ,A[n∗+n0] costs O(nr/
√
m) field operations and applications of

the Frobenius, contributing a total bit cost of (rn2rm−1/2 log q)1+o(1). Computing C and C0
can be done with cost (rωn2/

√
m log q)1+o(1) using classical techniques [30]. Each entry in

C has degrees of order O(n/
√
m); computing C[in∗] mod gk takes O(r2n/

√
m) applications

of the Frobenius and O(r2) polynomial euclidean divisions of degree at most O(n/
√
m).

These tasks together cost a total of (r2n2/
√
m log q)1+o(1) bit operations. The final step to-

wards computing A∗ involved taking the matrix product (C[(n1−1)n∗] mod gk) · · · (C[n
∗] mod

gk)(C mod gk)(C0 mod gk). This takes (r
ωn2/
√
m log q)1+o(1) bit operations.

Having computed A∗, the remainder of the algorithm consists of computing its charac-

teristic polynomial, and applying the map χk to its coefficients. When k = 1, Wk
∼= L and

in the computation of the characteristic polynomial can be done in O(rω) L-operations.
For other values of k, computing the characteristic polynomial takes O(rλ) operations

in Wk, with λ the coefficient defined in section 2.2.2. This contributes a bit cost of

(rλkn log q)1+o(1). Summing the costs gives the complexities of algorithm 3 and 4 of theorem

6.4.1.

88

Algorithm 3 Characteristic Polynomial of the Frobenius

Input A Drinfeld Fq[x]-module ϕx =
∑r

i=0∆iτ
i

Output A degree r polynomial in Fq[x][Z]

1: n∗, n1, n0 ← ⌈
√
nk⌉, ⌊n/n∗⌋, n mod n∗.

2: A as in (6.17)

3: C ← A[n∗+n0] . . .A[n0+1].

4: C0 ← A[n0] . . .A[1] mod g

5: C[in∗] ← (C mod g[−in
∗])[in

∗] for 0 ≤ i < n1.

6: A∗ ←
(n1−1∏

i=0

C̄[in∗]

)
C̄0

7: āi ← coefficient of Zi in det(A∗ − ZI)
8: return ai = χk(āi) for 0 ≤ i < r

6.4.4 Timings

The algorithm of section 6.4.3 has been implemented and merged into the SageMath

[72] open source software system as part of the implementation of Drinfeld modules. A

MAGMA [7] implementation of the same algorithm is available at https://github.com/

ymusleh/drinfeld-magma and was used to generate the timings below

n = 100 n = 150 n = 200 n = 300 n = 400 n = 500 n = 600

r = 5 0.400 2.260 42.190 86.830 269.760 635.170 1099.110

r = 9 0.790 4.210 78.860 157.100 481.090 1129.670

r = 12 1.170 6.080 104.630 220.430 658.950 1531.580

r = 18 2.300 11.360 170.790 366.690 1074.840 2451.530

r = 23 3.820 17.580 240.100 525.670 1518.370

Table 6.1: Run Times for m = 10 q = 25 in seconds

We will note that the results here differ from the theoretical predictions of the perfor-

89

https://github.com/ymusleh/drinfeld-magma
https://github.com/ymusleh/drinfeld-magma

mance of the algorithm. The main reason for this discrepancy is the apparent lack of an

implementation of Kedlaya-Umans modular composition, which impacts the cost of com-

puting Frobenius powers. We will also note that for computing images under the map χk,

we used a simpler technique based on Gröbner bases rather than the tangling algorithm

described here.

90

Chapter 7

Additional Algorithms

We will give an analysis of several algorithms connected to skew polynomials and Drinfeld

modules. In particular, we will analyze a new approach for both multi-point evaluation

and minimal subspace polynomial combining the mutually recursive approach of Puchinger

and Wachter-Zeh with a Horner-type scheme. This algorithm is used in the complexity

analysis of theorem 6.2.1.

Finally, we will describe the algorithm of Wesolowski given in [74] for computing an

explicit basis over Fq of the space of morphisms Hom(ϕ, ψ)d of degree at most d between

arbitrary pairs of Drinfeld modules ϕ, ψ. Moreover, we will describe an extension to this

approach, which yields algorithms to compute a basis for Hom(ϕ, ψ) as a free module over

both Fq[τn] and Fq[x], as well as provide a complexity analysis for all algorithms discussed.

7.1 An Algorithm for Multi-point Evaluation of Skew

Polynomials

Let EndVF (U) denote the set of F-vector space endomorphisms on an F-vector space U .

We consider a tower of finite fields Fq ⊂ L such that [L : Fq] = n. If σ is an Fq-linear
operator on the n-dimensional vector space L, then we have a mapping, the evaluation

map eval : L{τ ;σ} → EndVFq
(L) determined by, for all a ∈ L:

91

eval
(∑

i

siτ
i
)
(a) =

∑
i

siσ
i(a) (7.1)

To simplify notation, we will let s(a) = eval(s)(a). Recall that given t evaluation points

a1, . . . , at and a degree d skew polynomial s =
∑d

i=0 siτ
i ∈ the multi-point evaluation

problem asks to compute s(a1), . . . , s(at). We now present an algorithm to compute the

multi-point evaluation of s at a1, . . . , at which originally appeared in [56].

Theorem 7.1.1. Given a skew polynomial s ∈ L{τ} of degree d and t evaluation points

a1, . . . , at ∈ L, there exists an algorithm for computing the evaluations s(a1), . . . , s(at) in

time

• (dtω−2n log q)1+o(1) if t ≤
√
d.

• (d(ω−1)/2tn log q)1+o(1) otherwise.

Proof. Without loss of generality assume d+1 is a perfect square and set δ =
√
d+ 1. For

S1, . . . , Sδ−1 ∈ L{τ}, write:

s = S0 + τ δS1 + . . .+ τ δ(δ−1)Sδ−1

where degSi < δ and Si =
∑δ

j=0 si,jτ
j. Next, compute ai,j = σi(aj). Furthermore, we

have that:

 s0,0 · · · s0,δ−1

...
. . .

...

sδ−1,0 · · · sδ−1,δ−1


 a0,1 a0,2 · · · a0,t

...
...

. . .
...

aδ−1,1 aδ−1,2 · · · αs−1,t

 =

 S0(a1) · · · S0(at)
...

. . .
...

Sδ−1(a1) · · · Sδ−1(at)

 (7.2)

Finally, we can compute the evaluations S(aj) using a Horner scheme S(aj) = S0(aj)+

τ δ(S1(aj) + τ δ(S2(aj) + . . .)).

The dominant cost of this procedure is computing the δ × δ and δ × t matrix product

of equation (7.2) which costs O(dtω−2) L-operations if t ≤
√
d+ 1, and d(ω−1)/2t otherwise.

The complexity claims follow.

92

We observe that in the “small t” case with t ≤
√
d, the complexity of the algorithm

is (dω/2n log q)1+o(1). This compares favourably with the Puchinger and Wachter-Zeh ap-

proach discussed in section §2.4.3, which has a complexity of (dmax(log2(3),ω2/2)n log q)1+o(1)

in the same setting.

Algorithm 4 Multipoint Evaluation [56]

Input A skew polynomial s ∈ L{τ} of degree d, and a set of linearly independent

evaluation points {a1, . . . , at} ⊂ L.
Output The set {s(a1), . . . , s(at)} ⊂ L

1: Compute si = si,0 + si,1τ + . . .+ si,δ−1τ
δ such that s = s0 + τ δs1 + . . .+ τ δ(δ−1)sδ−1

2: Compute ai,j = σi(aj) for each 0 ≤ i ≤ δ − 1 and 1 ≤ j ≤ t

3: Compute the δ × δ and δ × t matrix product: s0,0 . . . s0,δ−1

...
...

sδ−1,0 . . . sδ−1,δ−1


 a0,0 . . . a0,t

...
...

aδ−1,0 . . . aδ−1,t

 =

 s0(a1) . . . s0(at)
...

...

sδ−1(a1) . . . sδ−1(at)


4: For 1 ≤ j ≤ t compute s(aj) = s0(aj)+ τ δ(s1(aj)+ τ δ(s2(aj)+ . . . via Horner’s scheme

7.2 Minimal Subspace Polynomial

Given t ≤ n elements a1, . . . , at ∈ L linearly independent over Fq, recall that the minimal

subspace polynomial problem asks to compute the skew polynomial s of minimal degree

such that s(ai) = 0 for each i ≤ t. The mutually recursive algorithms of [64] allow us to

convert any algorithm for either multi-point evaluation of minimal subspace polynomial

into an algorithm for the other. In particular, we recall that the recurrence for minimal

subspace has the form

MSP(d) = 2MSP(d/2) +MPE(d/2, d/2) + SM(d/2, n, q).

Corollary 7.2.1. Let v1, . . . , vd ∈ L. There is an algorithm to computeMSP({v1, . . . , vd}) ∈
L{τ} with a bit complexity of (d(ω+1)/2n log q)1+o(1).

93

Proof. The complexity result of theorem 7.1.1 give a recurrence of the form

MSP(d) = 2MSP(d/2) + (d(ω+1)/2n log q)1+o(1) + SM(d/2, n, q),

yielding an overall bit complexity of MSP(d) = (d(ω+1)/2n log q)1+o(1).

7.3 Computing Endomorphism Rings of Drinfeld Mod-

ules

In the classical setting, the structure of the endomorphism ring of elliptic curves plays an

important role in several areas, including class field theory via the correspondence between

CM elliptic curves and orders in imaginary quadratic number fields. Isogenies also play

an important role in point counting algorithms and in classical cryptography, including

possible post-quantum schemes, over elliptic curves, making their explicit computation is

an important mechanism. Important results in this direction include Vélu’s formula for

computing, given a base elliptic curve E and a subgroup G, computes an elliptic curve E ′

and isogeny t : E → E ′ whose kernel is exactly G [73]. A related problem is the explicit

isogeny problem which, given j-invariants j, j′, determines if elliptic curves belonging to

the corresponding isomorphism class are isogenous of degree d, and if so, computes curves

E, E ′ and an isogeny t : R → E ′. This is a very well studied problem for elliptic curves,

and several algorithms have been proposed including in [27, 17, 53, 18].

The structure of the set of morphisms between Drinfeld modules, including the special

case of the endomorphism ring and the explicit computation of bases, has been studied in

several recent papers, including [51, 29]. In [74], an algorithm for explicitly computing an

isogeny between fixed Drinfeld modules was given. Here, we will give a complexity analysis

of several algorithms that largely follow the methodology of the approaches discussed in

[51, 74]; the main contribution here is the complexity analysis, and in the case of the

basis for Hom(ϕ, ψ) over Fq[x], the use of the recurrence method to compute explicit basis

expansions.

94

Recall that Hom(ϕ, ψ) = {u ∈ L{τ} | uϕx = ψxu}. In particular, for all ϕ, ψ:

• Hom(ϕ, ψ)d is a vector space over Fq of dimension at most dn.

• Hom(ϕ, ψ) is a free module over Fq[τn] of dimension at most n2.

• Hom(ϕ, ψ) is a free module over Fq[x], where x ∗ u = uϕx = ψxu, of dimension at

most r2 [33], and as we shall see, also of dimension at most nr.

A more natural way to view the problem is to consider the set L{τ} as a module over

the corresponding coefficient rings Fq, Fq[τn], and Fq[x]. In each case, Hom(ϕ, ψ) is a linear

subspace of L{τ} given by the kernel of the linear operator u 7→ uϕx − ψxu. To compute

a basis for Hom(ϕ, ψ), it therefore suffices to compute an explicit matrix for the action

of this operator with respect to a canonical basis for L{τ} over each coefficient ring, and

compute its kernel. The results of this section are summarized in the following theorem.

Theorem 7.3.1. There is an algorithm for computing a basis of

1. Hom(ϕ, ψ)d over Fq using (dωnω log q + dn2r log q + n log2 q)1+o(1) bit operations.

2. Hom(ϕ, ψ) over Fq[τn] using (n2ωr log q + n log2 q)1+o(1) bit operations.

3. Hom(ϕ, ψ) over Fq[x] using (n3r3 log q + n log2 q)1+o(1) bit operations.

Proof. A polynomial time algorithm for computing an Fq-basis for Hom(ϕ, ψ)d using the

approach described above was first given in [74]. We will describe this algorithm below,

and analyze its complexity.

Fix a basis {fj}n−1
j=0 for L/Fq. Set ϕx =

∑r
i=0 ∆iτ

i, ψx =
∑r

i=0 Λiτ
i, and u =

n∑
j=1

d∑
k=0

uj,kfjτ
i,

with uj,k ∈ Fq. Then u ∈ Hom(ϕ, ψ)d = {u ∈ Hom(ϕ, ψ) | degτ (u) ≤ d} if and only if it

satisfies the following relation:

r∑
i=0

n−1∑
j=0

d∑
k=0

∆
[k]
i fjuj,kτ

i+k =
r∑
i=0

n∑
j=1

d∑
k=0

Λiuj,kf
[i]
j τ

i+k. (7.3)

95

We can compute all products Λif
[i]
j , ∆

[k]
i fj for a total bit cost of (dn2r log q)1+o(1).

Rewriting each entry in terms of the Fq-basis for L

Λif
[i]
j =

n−1∑
θ=0

λi,j,θfθ

∆
[k]
i fj =

n−1∑
θ=0

δi,j,k,θfθ

allows us to define a linear system over Fq coming from

r∑
i=0

n−1∑
j=0

d∑
k=0

n−1∑
θ=0

δi,j,k,θuj,kfθτ
i+k =

r∑
i=0

n∑
j=1

d∑
k=0

n−1∑
θ=0

λi,j,θuj,kfθτ
i+k. (7.4)

We therefore obtains a linear equation in the Fq variables uj,k from extracting the

coefficients of each fjτ
i for 0 ≤ j < n and 0 ≤ i ≤ d + r, allowing us to construct a (d +

r)n× (d+1)n linear system over Fq whose kernel is exactly Hom(ϕ, ψ)d. Constructing the

system from equation (7.4) costs O(dn2r) operations in Fq as well as O(r+n) applications
of the Frobenius. Pre-computing the Frobenius takes the usual (n log2 q)1+o(1) bit cost; with

the overall bit cost to construct and solve the system being (dωnω log q + dn2r log q)1+o(1),

we obtain the complexity stated in item 1 of theorem 7.3.1.

One can repeat a similar procedure for bases of Hom(ϕ, ψ) over Fq[τn] and Fq[x], and
indeed such a computation was discussed in [51]. In the former case, {fjτ k}0≤k<n1≤j≤n is an

Fq-basis for L{τ} with coefficients in Fq[τn]; so we can write u =
n∑
j=1

n−1∑
k=0

αj,kfjτ
k with

αi,j ∈ Fq[τn]. Then Hom(ϕ, ψ) consists of such u satisfying the relation

r∑
i=0

n−1∑
j=0

n−1∑
k=0

∆
[k]
i fjαj,kτ

i+k =
r∑
i=0

n−1∑
j=0

n−1∑
k=0

Λiαj,kf
[i]
j τ

i+k (7.5)

As seen previously, we can compute a basis decomposition of all Λif
[i]
j and ∆

[k]
i fj at a bit

cost of (rn3 log q)1+o(1). Then equation 7.6 becomes:

96

r∑
i=0

n−1∑
j=0

n−1∑
k=0

n−1∑
θ=0

δi,j,k,θαj,kτ
i+k =

r∑
i=0

n−1∑
j=0

n−1∑
k=0

n−1∑
θ=0

λi,j,θαj,kτ
i+k (7.6)

By rewriting the above expression in terms of the basis elements fjτ
k for j < n and k < n

with coefficients ρi,j,k,ℓ ∈ Fq[τn], we obtain:

n−1∑
i=0

n−1∑
j=0

n−1∑
k=0

n−1∑
ℓ=0

ρi,j,k,ℓαk,ℓfjτ
i = 0

Then the coefficients αk,ℓ of u can be solved for by constructing an n2 × n2 linear system

over Fq[τn], whose coefficients have degree at most ⌊ r
n
⌋+ 1, of the form

 ρ0,0,0,0 . . . ρ0,0,n−1,n−1

...
. . .

...

ρn−1,n−1,0,0 . . . ρn−1,n−1,n−1,n−1


 α0,0

...

αn−1,n−1

 = 0

We may then take advantage of pre-existing algorithms for computing a minimal

nullspace basis for the system with a complexity of O(n2ω−1r) field operations in Fq [76],
adding a cost of (n2ωr log q) in our bit complexity model. Constructing the system costs at

most (n3r log q)1+o(1) bit operations, and adding in the usual pre-computation for Frobenius

maps gives the stated complexity in item 2 of theorem 7.3.1.

We can repeat the core idea of this algorithm once again for a basis over Fq[x], though
some more care must be taken to address technical details. More explicitly, we view L{τ}
as an Fq[x]-module with the action x∗u = uϕx, and note that u is not required to lie inside

Hom(ϕ, ψ). Write u =
∑r−1

i=0

∑n−1
j=0 ui,jfjτ

i with ui,j ∈ Fq[x]. Then if u ∈ Hom(ϕ, ψ) we

must have

uϕx = x ∗ u =
r−1∑
i=0

n−1∑
j=0

xui,jfjτ
i = ψxu =

r−1∑
i=0

n−1∑
j=0

r∑
k=0

Λkf
[k]
j ui,jτ

i+k (7.7)

Constructing the linear system as we did previously can be done by computing coeffi-

cients ρt,i,j ∈ Fq[x] such that

97

τ t =
r−1∑
w=0

n−1∑
z=0

ρt,w,zfzτ
w

for r ≤ t < 2r. Recalling the definition of the Fq[x]-action on L{τ} xτ i = τ iϕx, we can

re-arrange the expression to obtain the following recurrence, for any i ≥ 0

τ r+i =
r−1∑
k=0

(
− ∆k

∆r

)[i]

τ k+i + xτ i. (7.8)

This can be evaluated at most r − 1 times to allow the extraction of the required

coefficients ρt,i,j. Note that deg ρt,i,j ≤ 1. Each such evaluation requires O(r) applications

of the Frobenius, and O(r2) operations in L. This gives an overall bit complexity of

(r3n log q)1+o(1) for computing all required ρt,i,j. Then equation (7.7) yields:

r−1∑
i=0

n−1∑
j=0

xui,jfjτ
i =

r−1∑
i=0

n−1∑
j=0

r∑
k=0

r−1∑
w=0

n−1∑
z=0

Λkf
[k]
j ui,jρi+k,w,zfzτ

w (7.9)

In this case, it suffices to compute the decomposition of Λkf
[k]
j =

∑n−1
θ=0 λk,j,θfθ for k ≤ r,

j ≤ n for a total bit cost of (n2r log q)1+o(1). Using the above equation, we can determine

the coefficients of the basis elements fzτ
w in terms of the indeterminates uij, which allows

the extraction of an nr × nr linear system, with entries in Fq[x]1, in the usual manner.

This system can then be solved over Fq[x] with a bit complexity of (nωrω log q)1+o(1).

Generating the system from (7.9) costs (r3n3 log q)1+o(1), which gives an overall cost of

(r3n3 log q+n log2 q)1+o(1). This completes the analysis of the algorithms of theorem 7.3.1.

98

References

[1] G. W. Anderson. T-Motives. Duke Mathematical Journal, 53(2):457–502, June 1986.

[2] B. Anglès. On some characteristic polynomials attached to finite Drinfeld modules.

manuscripta mathematica, 93:369–379, 1997.

[3] A. O. L. Atkin. The number of points on an elliptic curve modulo a prime (II).

Available at http://listserv.nodak.edu/archives/nmbrthry.html, 1992.

[4] D. Ayotte, X. Caruso, A. Leudière, and J. Musleh. Drinfeld Modules in SageMath.

ACM Commun. Comput. Algebra, 57(2):65–71, aug 2023.

[5] E. Bach, J. Driscoll, and J. Shallit. Factor Refinement. J. Algorithms, 15(2):199–222,

September 1993.

[6] P. Berthelot. Cohomologie Cristalline des Schémas de Caractéristique P) 0. Lecture

notes in mathematics. Springer, 1974.

[7] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user

language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and

number theory (London, 1993).

[8] A. Bostan, F. Morain, B. Salvy, and É. Schost. Fast algorithms for computing isogenies

between elliptic curves. Math. Comput., 77:1755–1778, 2006.

[9] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of Toeplitz systems of

equations and computation of Padé approximants. Journal of Algorithms, 1(3):259–

295, 1980.

99

http://listserv.nodak.edu/archives/nmbrthry.html

[10] R. P. Brent and H. T. Kung. Fast Algorithms for Manipulating Formal Power Series.

J. ACM, 25(4):581–595, 1978.

[11] P. Bürgisser, T. Lickteig, M. Clausen, and A. Shokrollahi. Algebraic Complexity The-

ory. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg,

1996.

[12] D. G. Cantor and E. L. Kaltofen. On fast multiplication of polynomials over arbitrary

algebras. Acta Informatica, 28:693–701, 1991.

[13] P. Caranay, M. Greenberg, and R. Scheidler. Computing modular polynomials and

isogenies of rank two Drinfeld modules over finite fields. 75 Years of Mathematics of

Computation, 2020.

[14] X. Caruso and J. Le Borgne. Fast multiplication for skew polynomials. In ISSAC’17,

pages 77–84. ACM, 2017.

[15] X. Caruso and A. Leudière. Algorithms for computing norms and characteristic poly-

nomials on general Drinfeld modules, 2023.

[16] M. F. I. Chowdhury, C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. Faster

Algorithms for Multivariate Interpolation With Multiplicities and Simultaneous Poly-

nomial Approximations. IEEE Transactions on Information Theory, 61(5):2370–2387,

2015.

[17] J.-M. Couveignes. Computing l-isogenies using the p-torsion. In Henri Cohen, editor,

Algorithmic Number Theory, pages 59–65, Berlin, Heidelberg, 1996. Springer Berlin

Heidelberg.

[18] L. De Feo, C. Hugounenq, J. Plût, and É. Schost. Explicit isogenies in quadratic time

in any characteristic. LMS Journal of Computation and Mathematics, 19(A):267–282,

2016.

[19] P. Deligne. La conjecture de Weil : I. Publications Mathématiques de l’IHÉS, 43:273–

307, 1974.

100

[20] P. Deligne and D. Husemoller. Survey of Drinfel’d modules. In Current trends in

arithmetical algebraic geometry (Arcata, Calif., 1985), volume 67 of Contemp. Math.,

pages 25–91. Amer. Math. Soc., Providence, RI, 1987.

[21] J. Doliskani, A. K. Narayanan, and É. Schost. Drinfeld modules with complex mul-

tiplication, Hasse invariants and factoring polynomials over finite fields. Journal of

Symbolic Computation, 105:199–213, 2021. MICA 2016.

[22] V. G. Drinfel’d. Elliptic modules. Matematicheskii Sbornik, 94(23):561–593, 1974.

[23] R. Duan, H. Wu, and R. Zhou. Faster Matrix Multiplication via Asymmetric Hashing.

In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS),

pages 2129–2138, Los Alamitos, CA, USA, nov 2023. IEEE Computer Society.

[24] D. S. Dummit and R. M. Foote. Abstract Algebra. Wiley, 2003.

[25] B. Edixhoven. Point counting after Kedlaya. EIDMA-Stieltjes Graduate course. 01

2003.

[26] N. Elkies. Explicit isogenies. Draft, 1992.

[27] N. Elkies. Elliptic and modular curves over finite fields and related computational

issues. 1997.

[28] F. Le Gall and F. Urrutia. Improved rectangular matrix multiplication using powers of

the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA ’18, page 1029–1046, USA, 2018.

Society for Industrial and Applied Mathematics.

[29] S. Garai and M. Papikian. Endomorphism rings of reductions of Drinfeld modules.

Journal of Number Theory, 212:18–39, 2020.

[30] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University

Press, New York, NY, USA, 3 edition, 2013.

[31] J. von zur Gathen and M. Giesbrecht. Constructing Normal Bases in Finite Fields.

J. Symb. Comput., 10:547–570, 1990.

101

[32] J. von zur Gathen and V. Shoup. Computing Frobenius Maps and Factoring Poly-

nomials. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory

of Computing, STOC ’92, page 97–105, New York, NY, USA, 1992. Association for

Computing Machinery.

[33] E.-U. Gekeler. On finite Drinfeld modules. Journal of Algebra, 141(1):187–203, 1991.

[34] E.-U. Gekeler. Frobenius Distributions of Drinfeld Modules over Finite Fields. Trans-

actions of the American Mathematical Society, 360(4):1695–1721, 2008.

[35] M. Giesbrecht. Factoring in Skew-polynomial Rings over Finite Fields. J. Symb.

Comput., 26(4):463 – 486, 1998.

[36] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix

computations. In ISSAC’03, pages 135–142. ACM, 2003.

[37] D. Goss. Basic Structures of Function Field Arithmetic. Ergebnisse der Mathematik

und Ihrer Grenzgebiete Series. Springer Berlin Heidelberg, 1997.

[38] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1977.

[39] J. van der Hoeven and G. Lecerf. Composition Modulo Powers of Polynomials. In

Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic

Computation, ISSAC ’17, page 445–452, New York, NY, USA, 2017. Association for

Computing Machinery.

[40] J. van der Hoeven and G. Lecerf. Fast multivariate multi-point evaluation revisited.

Journal of Complexity, 56:101405, 2020.

[41] X. Huang and V. Y. Pan. Fast Rectangular Matrix Multiplication and Applications.

Journal of Complexity, 14(2):257–299, 1998.

[42] A. Joux and A. K. Narayanan. Drinfeld modules may not be for isogeny based cryptog-

raphy. Cryptology ePrint Archive, Paper 2019/1329, 2019. https://eprint.iacr.

org/2019/1329.

102

https://eprint.iacr.org/2019/1329
https://eprint.iacr.org/2019/1329

[43] F. Jung. Charakteristische Polynome von Drinfeld-Moduln, 2000. Diplomarbeit, U.

Saarbrücken.

[44] E. Kaltofen. Asymptotically Fast Solution of Toeplitz-like Singular Linear Systems.

pages 297–304, 01 1994.

[45] E. Kaltofen and V. Pan. Processor Efficient Parallel Solution of Linear Systems over

an Abstract Field. In Proceedings of the Third Annual ACM Symposium on Parallel

Algorithms and Architectures, SPAA ’91, page 180–191, New York, NY, USA, 1991.

Association for Computing Machinery.

[46] E. Kaltofen and V. Shoup. Subquadratic-Time Factoring of Polynomials over Finite

Fields. Mathematics of Computation, 67(223):1179–1197, 1998.

[47] E. Kaltofen and G. Villard. On the complexity of computing determinants. Compu-

tational Complexity, 13(3-4):91–130, 2004.

[48] M. Kaminski, D.G. Kirkpatrick, and N.H. Bshouty. Addition requirements for matrix

and transposed matrix products. J. Algorithms, 9(3):354–364, 1988.

[49] K. Kedlaya. Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Co-

homology. J. Ramanujan Math. Soc., 16, 06 2001.

[50] K. S. Kedlaya and C. Umans. Fast Polynomial Factorization and Modular Composi-

tion. SIAM Journal on Computing, 40(6):1767–1802, 2011.

[51] N. Kuhn and R. Pink. Finding endomorphisms of Drinfeld modules. Journal of

Number Theory, 232:118–154, 2022. Special Issue: David Goss Memorial Issue.

[52] G. Labahn, V. Neiger, and W. Zhou. Fast, deterministic computation of the Hermite

normal form and determinant of a polynomial matrix. Journal of Complexity, 42:44–

71, 2017.

[53] R. Lercier and T. Sirvent. On Elkies subgroups of ℓ-torsion points in elliptic curves

defined over a finite field. Journal de Théorie des Nombres de Bordeaux, 20(3):783–

797, 2008.

103

[54] A. Leudière and P.-J. Spaenlehauer. Computing a group action from the class field

theory of imaginary hyperelliptic function fields. Journal of Symbolic Computation,

125:102311, 2024.

[55] Y. Musleh. Fast Algorithms for Finding the Characteristic Polynomial of a Rank-2

Drinfeld Module. Master’s thesis, 2018.

[56] Y. Musleh and É. Schost. Computing the Characteristic Polynomial of a Finite Rank

Two Drinfeld Module. In Proceedings of the 2019 on International Symposium on

Symbolic and Algebraic Computation, ISSAC ’19, page 307–314, New York, NY, USA,

2019. Association for Computing Machinery.

[57] Y. Musleh and É. Schost. Computing the Characteristic Polynomial of Endomor-

phisms of a finite Drinfeld Module using Crystalline Cohomology. In Proceedings of

the 2023 International Symposium on Symbolic and Algebraic Computation, ISSAC

’23, page 461–469, New York, NY, USA, 2023. Association for Computing Machinery.

[58] S. N. N. Assong. Explicit Description Of Isogeny And Isomorphism Classes Of Drinfeld

Modules Of Higher Rank Over Finite Fields. PhD thesis, Kassel, Universität Kassel,

Fachbereich Mathematik und Naturwissenschaften, Institut für Mathematik, 2020.

[59] A. K. Narayanan. Polynomial factorization over finite fields by computing Euler-

Poincaré characteristics of Drinfeld modules. Finite Fields Appl., 54:335–365, 2018.

[60] O. Ore. Theory of Non-Commutative Polynomials. Annals of Mathematics, 34(3):480–

508, 1933.

[61] C. H. Papadimitriou. Computational Complexity. Theoretical computer science.

Addison-Wesley, 1994.

[62] M. Papikian. Drinfeld Modules. Graduate Texts in Mathematics. Springer Interna-

tional Publishing, 2023.

[63] I. Y. Potemine. Minimal Terminal Q-Factorial Models of Drinfeld Coarse Moduli

Schemes. Mathematical Physics, Analysis and Geometry, 1(2):171–191, Jun 1998.

104

[64] S. Puchinger and A. Wachter-Zeh. Fast operations on linearized polynomials and their

applications in coding theory. J. Symb. Comput., 2017.

[65] R. Schoof. Elliptic Curves Over Finite Fields and the Computation of Square Roots

mod p. Mathematics of Computation, 44(170):483–494, 1985.

[66] J. T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities.

J. ACM, 27(4):701–717, oct 1980.

[67] J.-P. Serre. Valeurs propres des endomorphismes de Frobenius. Séminaire Bourbaki,

16:190–204, 1973-1974.

[68] V. Shoup. Fast construction of irreducible polynomials over finite fields. J. Symb.

Comput., 17(5):371–391, 1994.

[69] J. H. Silverman. The Arithmetic of Elliptic Curves. Applications of Mathematics.

Springer New York, 1986.

[70] J. H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Graduate

Texts in Mathematics. Springer New York, 1994.

[71] J. H. Silverman and J. T. Tate. Rational Points on Elliptic Curves. Undergraduate

Texts in Mathematics. Springer New York, 1994.

[72] The Sage Developers. SageMath, the Sage Mathematics Software System (Version

10.1.0), 2023. https://www.sagemath.org.

[73] J. Vélu. Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie des Sci-

ences, Série I, 273:238–241, juillet 1971.

[74] B. Wesolowski. Computing isogenies between finite Drinfeld modules. Cryptology

ePrint Archive, Paper 2022/438, 2022. https://eprint.iacr.org/2022/438.

[75] D. H. Wiedemann. Solving Sparse Linear Equations over Finite Fields. IEEE Trans.

Inf. Theor., 32(1):54–62, 1986.

105

https://eprint.iacr.org/2022/438

[76] W. Zhou, G. Labahn, and A. Storjohann. Computing Minimal Nullspace Bases. In

Proceedings of the 37th International Symposium on Symbolic and Algebraic Computa-

tion, ISSAC ’12, page 366–373, New York, NY, USA, 2012. Association for Computing

Machinery.

106

APPENDICES

107

Appendix A

Software

A SageMath implementation was prepared and first presented in [4], and was developed

in collaboration with David Ayotte, Xavier Caruso, and Antoine Leudière. The software

provides basic features for constructing and computing with Drinfeld module objects. All

methods and functionality except for Fq basis and basis have been merged into the

standard SageMath distribution. We will review some of the basic functionality here.

A.0.1 Constructing Drinfeld modules

We can instantiate a Drinfeld module of rank r over a base field Fq and finite extension n

by specifying the coefficients of ϕx in L using the DrinfeldModule constructor.

The constructor accepts two parameters: the regular function ring A and a list of

coefficients [∆0, . . . ,∆r] over a ring L and returns a Drinfeld module ϕ : A → L{τ} such
that ϕx =

∑r
i=0 ∆iτ

i. Currently, only Drinfeld modules where A = Fq[x] for a a finite field

108

Fq are implemented. We can access basic parameters of the Drinfeld module, such as it’s

rank and characteristic p, which are inferred from the coefficients of ϕx. We can also access

the basic algebraic objects such as A,L, and L{τ}.

We can also access the underlying Drinfeld map ϕ : A → L{τ}. The skew polynomial

ϕx can be accessed directly through the gen method. General images ϕa can be accessed

through the operator syntax as seen below. ϕ−1(s) can also be computed using the invert

method.

A.0.2 Invariants

In the case of rank 2 Drinfeld module, we can compute its j-invariant using the j-invariant

method.

109

For higher rank Drinfeld modules, we can recover all of its basic j-invariants and their

corresponding parameters using the basic j invariants method.

Recalling the context of definition 4.3.1, the parameters are returned in the format

((k1, . . . , kh), (δ1, . . . , δh, δr)) : J
δ1,...,δh
k1,...,kh

(ϕ)

We can compute the characteristic polynomial of the Frobenius endomorphism using

the frobenius charpoly method. We may pass an optional algorithm parameter to this

method to specify the procedure used.

It is also possible to use this method with Drinfeld modules of rank larger than 2.

110

A.0.3 Morphisms

We can also instantiate the set of homomorphisms between Drinfeld modules ϕ, ψ or en-

domorphisms on ϕ using SageMath’s built-in Hom and End constructors.

Currently, it is possible to compute an explicit basis for the space of morphisms over

Fq of degree at most d using the Fq basis method, or over Fq[τn] using the basis method.

These methods are currently awaiting review for inclusion into SageMath.

Recall the action of Fq[x] on Hom(ϕ, ψ) given by a ∗ u = uϕa for a ∈ Fq[x] and u ∈
Hom(ϕ, ψ). This action can be applied using the multiplication operator in SageMath.

111

The characteristic polynomial of an endomorphism can be computed using the charpoly

method.

112

	Examining Committee Membership
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Tables
	Introduction
	Background
	Elementary Mathematical Notation and Definitions
	Elementary Algorithmics
	Multiplication of Polynomials and Matrices
	Characteristic Polynomials
	Representations of Finite Field Elements
	Companion Matrices

	Modular Composition
	Computing Frobenius Images
	Normal Bases

	Skew Polynomials
	Multiplication
	Euclidean Division
	Minimal Subspace Polynomial & Multipoint Evaluation

	Valuations, Places, and Limits
	The p-adic Numbers
	Inverse Limits for Rings and Modules

	Elliptic Curves
	Definitions
	Point Counting
	Schoof's Algorithm
	Kedlaya's Algorithm
	Monsky-Washnitzer Cohomology
	Lifting the Frobenius

	Drinfeld Modules
	Definitions
	Background
	Drinfeld Modules
	Morphisms and Characteristic Polynomials

	Elementary Algorithms on Drinfeld Modules
	Computing Images and Inversions of the Drinfeld Map
	Computing Field Actions

	The j-Invariant
	Computing the Characteristic Polynomial
	The Direct Approach
	An Algorithm for the Prime Field Case
	A Schoof-like Approach when r=2
	Using Hankel Systems
	Narayanan's Algorithm
	Recent Work for Computing Norms of Isogenies and Characteristic Polynomials of Endomorphisms

	Cohomology of Drinfeld Modules
	Derivations and De Rham Cohomology
	Crystalline Cohomology
	Endomorphisms and Characteristic Polynomials

	Algorithms for Computing the Characteristic Polynomials of Endomorphisms of Drinfeld Modules
	Schoof-Like Algorithms
	The Rank 2 Case
	The Schoof-like Algorithm in any Rank

	A Modification of Narayanan's Algorithm
	Using Hankel Systems
	Computing Characteristic Polynomials using Crystalline Cohomology
	A Divide-and-conquer Approach
	Methods using a Recurrence
	A Baby-step Giant-step Algorithm to Compute the Characteristic Polynomial of the Frobenius Endomorphism
	Timings

	Additional Algorithms
	An Algorithm for Multi-point Evaluation of Skew Polynomials
	Minimal Subspace Polynomial
	Computing Endomorphism Rings of Drinfeld Modules

	References
	APPENDICES
	Software
	Constructing Drinfeld modules
	Invariants
	Morphisms

