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Abstract

Computational sprinting is a class of mechanisms that enables a chip to temporarily
exceed its thermal limits to enhance performance. Previous approaches model the op-
timization of computational-sprinting strategies as a mean-field game and calculate the
game’s static equilibrium strategies using dynamic programming. This approach has three
main limitations: (i) a requirement for a priori knowledge of all system parameters; (ii)
inflexibility in equilibrium strategies, necessitating recalculation for any system parameter
change; and (iii) the need for users to disclose precise characteristics of their applications
without data privacy guarantees. To address these issues, we propose PACS, a private and
adaptive mechanism that enables users to independently optimize their sprinting strategies.
Our experiments in a simulated environment demonstrate that PACS achieves adaptability,
ensures data privacy, and provides comparable performance to state-of-the-art methods.
Specifically, PACS outperforms existing approaches for certain applications while incurring
at most a 10% performance degradation for others, all without having prior knowledge of
system parameters.
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Chapter 1

Introduction

Computational sprinting involves operating a chip beyond its regular thermal constraints
for a short time period to enhance performance. The sprinting duration can be extended
by the right choice of heat sink material (i.e., phase change materials (PCMs)) [49, 55].
However, a chip in general cannot sprint uninterruptedly as the excess heat generated as
a result of a sprint must be dissipated before the chip can sprint again. Computational
sprinting was originally proposed for embedded and mobile devices [51, 50]. However, the
concept has since been extended to datacenters for accelerating intermittent, computation-
ally intensive workloads [56, 71, 18, 9, 8, 72].

The performance gains from a sprint depend primarily on the running workload [46, 45].
A CPU-intensive workload can be effectively accelerated by a sprint, while a sprint has
little effect on the performance of a memory-intensive workload [30]. Therefore, it is im-
portant to optimize the timing of the sprints for maximizing performance gains. The power
supply is crucial for data center performance. It directly impacts the ability to sustain high
computational loads and operational efficiency. Constraints on power availability poten-
tially limiting the performance of intensive workloads and the overall reliability of the data
center. For a server with a dedicated power supply, this can be achieved by locally profil-
ing the running workload and predicting its phases. However, in scenarios where multiple
servers share the same power supply, the sprinting strategy on one server could indirectly
impact sprinting decisions on others. This becomes particularly crucial in multi-tenant
datacenters, where oversubscribed power supplies are common for optimizing performance
and efficiency [6, 19]. In such power-oversubscribed datacenters, the cumulative power de-
mand for uncoordinated simultaneous sprints could exceed the maximum capacity of the
power supply, potentially causing the circuit breaker to trip [56]. Thus, the performance
of datacenter is limited by both thermal dissipation and power supply.
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In a recent work, Fan et al. [18] study sprinting strategies in scenarios where servers,
controlled by self-interested users, share the same power supply. The authors approach
the problem through a game-theoretic lens and formulate the sprinting dynamics as a
“computational sprinting game.” They then show that equilibrium strategies in this game
are characterized by simple threshold policies. Specifically, users decide to sprint only when
the expected performance gains from a sprint surpass a certain threshold. To implement
this approach, the authors propose a sprinting architecture involving individual per-user
agents and a centralized coordinator. Users profile their workload and report the profiled
data to the coordinator. The coordinator, utilizing dynamic programming, determines
static thresholds for users based on the aggregated workload profiles. Subsequently, the
coordinator sends the calculated equilibrium thresholds back to the agents, who use the
thresholds to make sprinting decisions based on predicted performance gains.

While the sprinting architecture proposed in [18] is elegant and efficient, it has three
primary limitations. Firstly, the coordinator requires prior knowledge of all system param-
eters. This prerequisite implies that the coordinator must be aware of specific details about
the system configuration beforehand. Secondly, the equilibrium strategies generated by the
architecture are rigid. In the event of any changes in system parameters, the coordinator is
compelled to recalculate new equilibrium strategies. This inflexibility hinders the system’s
ability to adapt dynamically. Lastly, users are obligated to disclose precise characteristics
of their workload without receiving any assurances regarding data privacy. This lack of
privacy guarantees might discourage users from fully sharing the details of their workloads.

To address these limitations, we propose PACS, a computational sprinting framework
that leverages tools from multi-agent reinforcement learning and differential privacy to
achieve adaptability and data privacy. Our contributions are outlined as follows.

• Introduction of PACS. In §3, we introduce our primary artifact, PACS, which is a
private and adaptive computational sprinting framework. We provide an overview of its
architecture, introducing a novel tax system designed to indirectly shape system-wide
sprinting behavior. Additionally, we present a distributed algorithm based on model-
free, multi-agent reinforcement learning to determine optimal sprinting strategies in a
differentially private manner. We then provide a proof establishing that our proposed
algorithm guarantees differential privacy.

• Methodology and benchmarks. In §4, we present three categories of benchmark ap-
plications: (a) synthetic applications based on Markov chains, (b) hybrid applications for
deep-learning inference tasks rooted in queueing systems, and (3) real-world applications
utilizing the Apache Spark framework [68].

• Performance evaluation. In §5, we evaluate our proposed framework by comparing it
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with other baseline methods across synthetic, hybrid, and real-world benchmarks. Our
experiments demonstrate PACS’s ability to adapt to changes in system dynamics, while
achieving a comparable performance to state-of-the-art methods, even outperforming
them for certain applications. Additionally, we conduct a sensitivity analysis for PACS,
illustrating the trade-off between data privacy and performance.
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Chapter 2

Background

In this section, we first provide some background on computational sprinting. We then
provide a brief discussion on the application of machine learning in systems. Finally, we
present an overview of differential privacy.

2.1 Computational Sprinting

Computational sprinting is a class of mechanisms that allows a chip multiprocessor, a logic
design architecture whereby multiple processing units (e.g., CPU cores) are integrated
onto a single monolithic integrated circuit or onto multiple dies in a single package, to
temporarily exceed its thermal limits to enhance performance. After a sprint, the excess
thermal load must be removed before the chip can sprint again. This “cooling” period is
required for the chip to prevent any thermal damage and maintain its long-term reliability.
The maximum duration of a sprint and the minimum cooling duration depend on the choice
of the heat sink material [50]. For instance, prior work has shown that the use of phase
change materials (PCMs) can lead to extended sprinting durations [49, 55]

Originally proposed for mobile computing [51, 50], computational sprinting has been
adopted for datacenter computing [56, 71, 9, 8, 72]. For datacenter servers with multicore
processors, computational sprinting could be implemented by activating all cores and/or
boosting the processor’s voltage and frequency to levels that exceed the processor’s sustain-
able thermal design power. For servers with GPU accelerators, computational sprinting
can be implemented by GPU overclocking [57, 33].
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The performance gain of an application from a sprint depends on the extent to which
the application can utilize available resources [46, 45]. If the application is in a phase that
can fully utilize resources, the sprint efficiency is high. Otherwise, a sprint increases power
consumption with marginal returns. For instance, GPU overclocking can significantly
improve the performance of DNN training and inference [61], whereas increasing frequency
of CPU has little effect on the performance of a memory-bound application [30]. As a
result, for an isolated server, maximizing sprinting efficiency requires application-specific
strategies.

The “sprinting dynamics” are complex when servers are not isolated. For instance, in
a multi-tenant environment, independently managed servers could share the same power
source. [54] mentioned that, until 2020, power capping for low-risk power oversubscription
has developed over the last 15 years into an essential enabler of data center cost reduction.
In a power-oversubscribed datacenter, the cumulative power demand for uncoordinated
simultaneous sprints could exceed the power supply capacity [56]. For such settings, Fan et
al. [18] adopt a game-theoretic approach and propose a sprinting architecture to managing
sprints based on the (computational) sprinting game.

2.1.1 Computational Sprinting Game

The sprinting game is a game model designed to capture system-wide sprinting dynamics.
The game consists of N agents, each representing a server running an application. Time is
divided into rounds. The duration of each round corresponds to the duration of a sprint.
The utility that an agent derives from a sprint at any given round depends on the phase
of the agent’s application at that round. The objective of each agent is to maximize the
long-term utility (i.e., the discounted sum of per-round utilities).

The game assigns a state to each agent. The state of an agent at any given round is one
of three statuses: active, cooling, and recovery. States change according to agents’ actions
and system’s parameters. An agent’s state is active when their server operates in the
normal power mode. An agent who is in the active state can decide to sprint by boosting
the server’s power beyond its thermal limits. Agents make this decision by comparing the
utility gained from sprinting in the current round with the potential utility if they defer
sprinting to a future round. The state of an agent who sprints at a round becomes cooling
at the next round. The duration of the cooling status is contigent upon several factors
including the chip’s thermal conductance and resistence, the choice of heat sink material
and cooling technology employed. This period represents the number of epochs an agent
remains in the cooling state to dissipate excess heat, influenced by the environmental
temperature.
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When multiple agents sprint simultaneously, the total power demand could exceed
the capacity, thus requiring backup power supply (e.g., UPS batteries), an event called
a power emergency [22, 23]. Even with the backup power supply in place, the concern
about circuit breaks still exists. It stems from the operational constrains and the potential
impact on server availability and backup power supply battery longevity. When a circuit
breaker trips due to an overload and resets, the power distribution shifts from a branch
circuit to the backup power supply. Although lead acid batteriers in backup power supply
systems can support discharge times ranging from 5 to 120 minutes, which is enough to
complete a sprint, servers cannot sprint again until the backup power supply batteries
be fully recharged. Additionally, frequent use of backup power supply batteries without
proper recharge cycles can degrade battery life. It will affect future emergency support.
Thus, managing the balance between sprinting demands and the backup power supply
capabilities is crucial to maintain datacenter reliability. After a power emergency, the
state of all agents changes to recovery. During a recovery period, the backup power supply
recharges. The duration of each recovery period is a number of epochs, which depends on
the rack’s power supply and its battery capacity. Once a recovery period is over, the state
of all agents changes to active.

Agents cannot sprint if their state is recovery or cooling; they can only sprint if their
state is active. Sprinting greedily at every opportunity is intuitively a suboptimal strategy
as it risks keeping agents in the cooling and the recovery states most of the rounds. This
underscores the necessity for agents to weigh the advantages of sprinting against potential
long-term losses when determining optimal strategies

Frequency of power emergencies depends on the collective sprinting behavior of all
agents. Therefore, to optimize their strategies, agents need to track each other’s strategies.
However, this is not scalable, as the joint strategy space increases linearly with the number
of agents. To address this issue, an effective approach is to utilize the framework of mean-
field games [34, 10]. In a mean-field game, each agent reasons about all other agents in
expectation, replacing them by an “average” agent. The solution concept in mean-field
games is called the mean-field Nash equilibrium. In a mean-field Nash equilibrium, each
agent best responds1 to the strategy of the average agent. And the strategy of the average
agent is the average of all agents’ best-response strategies.

The mean field analysis of the sprinting game corresponds to characterizing the fraction
of agents who sprint when the system is not in the recovery state. In an equilibrium, this
fraction becomes stationary and converges to a constant. At every non-recovery round,

1A best-response strategy is a strategy that maximizes an agent’s utility given a strategy of other
agents.
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some agents are active and some are in the cooling state. Out of the active agents, some
opt to sprint. In an equilibrium, the fraction of sprinting agents across rounds remains
unchanged in expectation.

The authors in [18] characterize the mean-field Nash equilibrium of the sprinting game
using Bellman equations. They demonstrate that equilibrium strategies are simple thresh-
old strategies, where agents in the active state sprint only when their expected utility from
a sprint surpasses a threshold. To determine threshold strategies, the authors propose a
sprinting architecture that features a centralized controller. Agents profile their applica-
tions and report their application’s characteristics to the controller. Given the reported
application profiles and system parameters, the controller efficiently solves the game’s Bell-
man equations using dynamic programming.

Despite its elegance and efficiency, the proposed sprinting architecture encounters three
primary limitations. Firstly, it requires the controller to possess prior knowledge of all
system parameters, including cooling attributes across servers, application profiles, and
recovery specifics. This requirement poses practical challenges, even within moderately
complex systems housing hundreds of servers. Secondly, while the statically computed
equilibrium strategies are provably optimal under unchanged system dynamics, any changes
in system parameters mandate a complete recalibration of all strategies, undermining the
system’s adaptability. Lastly, the architecture mandates comprehensive transparency from
all agents regarding their application characteristics. This involves agents profiling their
applications and transmitting these profiles to the controller. This requirement raises valid
privacy concerns, given the architecture’s lack of privacy assurances, a critical issue in
competitive multi-tenant environments.

To address the limitations of the prior work, we propose PACS, a private and adaptive
mechanism for computational sprinting. Our approach utilizes tools and techniques from
reinforcement learning and differential privacy. In the remaider of this section, we provide
background on these two areas.

2.2 Machine Learning for Systems

Machine learning (ML) techniques have been shown instrumental in intelligent decision-
making for computer systems, facilitating dynamic and adaptive optimization for tasks
such as caching, computation offloading, power transmission, and resource allocation [47,
64, 40, 24]. ML techniques have been also used in large-scale operations, helping optimize
energy consumption datacenters, enhance cooling efficiency, and reduce datacenter carbon
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footprint [36, 17, 42, 41, 13, 4]. The use of ML for systems has further promoted sustainable
datacenter operations, enabling them to respond effectively to varying energy demands and
environmental conditions [48]. Among ML algorithms, reinforcement learning is one of the
most prominent ones used for control problems.

2.2.1 Single-agent RL

In single-agent reinforcement learning (RL), an agent learns by interacting with an envi-
ronment. Model-free RL enables the agent to determine the optimal policy without prior
knowledge of system dynamics or payoff functions. In each round r, the agent observes a
state sr, takes action ar, and receives a utility ur. The state then transitions to sr+1. The
agent’s objective is to learn a policy, π that maximizes the expected long-term utility:

J(π) = Eπ

[
∞∑
r=0

γrur

]
,

where γ denotes the discount factor.

With deep reinforcement learning, the policy π is represented using a neural network.
This results in a parametrized policy, represented as πθ, where θ is the set of parameters
(e.g., network’s weights) being learned. By integrating the robust function approximation
capabilities of deep learning with the objective-centric nature of reinforcement learning,
systems can derive advanced strategies that are adaptable and resilient to changing dy-
namics.

Given parametrized policies, several approaches have been developed to optimize the
learning process. Actor-critic methods are one of such approaches [60]. These methods
often consist of two network: the actor network, which is used to select actions based
on policy, and the critic network, which is used to evaluate these actions using a “value
function”. The actor adjusts the policy parameters based on critic’s feedback, enabling a
balance between exploration and exploitation.

Single-agent RL frameworks, despite their advantages, often have limited application
in multi-agent settings [25]. Within a datacenter, servers are managed independently,
with their own set of operational requirements and constraints. Moreover, the inherent
objective of each server is to maximize its individual performance rather than the collective
efficiency of the entire datacenter. This independent and self-centered operation can lead to
suboptimal solutions when applying a single-agent paradigm. Hence, a more holistic multi-
agent framework would be better suited to manage the intricacies and interdependencies
of large-scale datacenters.

8



2.2.2 Multi-agent RL

Multi-agent RL (MARL) studies behavior of multiple learning agents interacting in a
shared environment [66]. Designing MARL methods is particularly challenging when the
system comprises a large number of agents. This complexity arises from the need to model
each agent, leading to prohibitive computational and memory costs. To address this,
a promising approach is to utilize mean-field learning [65]. Similarly to the framework
of mean-field games, mean-field learning simplifies the learning process by approximating
many-body interactions with two-body interactions, essentially between an individual agent
and the population average.

2.3 Differential Privacy

In today’s data-driven world, data privacy has emerged as one of the most pressing chal-
lenges. Differential privacy (DP) is a robust privacy-preserving technique designed to
protect individual data [15]. DP provides a strong mathematical privacy guarantee al-
lowing data to be used without revealing sensitive information about any datapoint in a
dataset. In its core, this guarantee is achieved by adding noise to the data, ensuring that
individual data points cannot be distinguished.

Definition 1 (Differential privacy [15]). Given adjacent datasets2 x and x′, a mechanism
M , refers to a mathematical function or algorithm that takes a dataset as input and pro-
duces an output, satisfies (ϵ, δ)-DP if for every subset of outputs O, it satisfies:

P[M(x) ∈ O] ≤ eϵ P[M(x′) ∈ O] + δ.

This definition ensures that the presence or absence of any individual datapoint in the
dataset does not significantly affect the outcome of a DP mechanism. The parameter ϵ
determines the desired level of privacy. Typically, smaller values indicate stronger privacy
assurances. However, they also necessitate higher levels of injected noise, potentially im-
pacting the quality of the mechanism’s output. When δ = 0, we have the standard ϵ-DP.
For δ > 0, the common interpretation of (ϵ, δ)-DP is that it approximates ϵ-DP with a
probability of (1− δ).

The property of post-processing ensures that the DP guarantee remains unaffected even
when manipulating the output of a mechanism. If M satisfies (ϵ, δ)-DP, then applying a

2Two datasets x and x′ are adjacent if they differ only in one element.
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mapping f to M(x) retains the same (ϵ, δ)-DP assurance (Proposition 2.1 in [16]). More-
over, the concept of DP can be expanded and generalized by incorporating the notion of
the Rényi divergence, defined as follows.

Definition 2 (Rényi divergence [52]). For probability distributions P and Q, the Rényi
divergence of order α > 1 is:

Dα(P∥Q) ≜
1

α− 1
log

(
Ex∼Q

[(
P (x)

Q(x)

)α])
,

where P (x) (Q(x)) is the density of P (Q) at x.

When α =∞, the Rényi divergence is defined as:

D∞(P∥Q) = sup
x∈supp Q

log

(
P (x)

Q(x)

)
.

Here, sup means “supremum”, while supp means “support”. In the context of the Rényi
divergence definition, when α =∞, the Rényi divergenceD∞(P∥Q) is defined by taking the

supremum of the expression log P (x)
Q(x)

over all x in the support of Q, denoted as supp Q. This

means we are looking for the maximum value of log P (x)
Q(x)

for all x where Q(x) is non-zero. It

is straightforward to show that a mechanismM is ϵ-DP if and only ifD∞(M(x)∥M(x′)) ≤ ϵ
for any two adjacent inputs x, x′. Here D∞ denotes the Rényi divergence of order∞, which
is the worst-case divergence where the rarest event inM(x) should not become too probable
in M(x′). M(x) and M(x′) represent the outputs of the mechanim M when applied to two
adjacent datasets x and x′, respectively. ∥ symbolizes ‘given’ in the context of divergence.
The statement as a whole asserts that for the mechanism M to be ϵ-differentially private,
the worst-case of the output distributions for any two adjacent inputs must be bounded
by ϵ. This motivates a relaxation of DP called Rényi differential privacy (RDP).

Definition 3 (Rényi differential privacy [44]). A mechanism M is (α, ϵ)-RDP with order
α > 1 if for any two adjacent datasets x and x′, it satisfies: Dα(M(x)∥M(x′)) ≤ ϵ.

In this paper, we focus on RDP due to its ability to offer a more precise analysis of
composition. Suppose that mechanisms M1 and M2 satisfy ϵ1-DP and ϵ2-DP, respectively.
Then simultaneous release of the outputs of M1 and M2 guarantees (ϵ1 + ϵ2)-DP. This
guarantee remains valid even when M2 is adaptively selected based on the output of M1.
Similar guarantee holds for the composition of two RDP mechanisms, even under adaptive,
sequential composition:
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Lemma 4 (RDP composition [44]). Let M1 be (α, ϵ1)-RDP, and let M2 be (α, ϵ2)-RDP.
Then the mechanism M1,2 defined as M1,2(x) ≜ (M1(x),M2(x)) is (α, ϵ1 + ϵ2)-RDP.

Lemma 4 mathematically expresses the intuitive concept of privacy budget. Here, (M1(x),M2(x))
represents the output of a composite mechanism, denoted M1,2(x), when it is applied to
an input dataset x. The additivity property of RDP enables straightforward tracking of
cumulative privacy loss throughout the iterative operation of a mechanism. This property
is particularly useful in monitoring privacy loss over successive steps in a mechanism’s
execution.

To guarantee RDP, in this paper, we utilize the Gaussian mechanism. To formally
define the Gaussian mechanism, we first define the sensitivity of a function as follows.

Definition 5 (Sensitivity). Let g : X 7→ R be a real-valued function. The sensitivity of g
is defined as:

∆(g) ≜ max
x,x′∈X,d(x,x′)=1

|g(x)− g(x′)|

where the max is taken over all adjacent datasets x and x′.

Given a function g, the Gaussian mechanism computes the output of the function and
perturbs it with noise drawn from a Gaussian distribution. The magnitude of the noise is
adjusted based on the sensitivity of the function.

Definition 6 (Gaussian mechanism). Suppose that g : X 7→ R is a real-valued function
with a sensitivity of ∆(g). Let N (µ, σ2) denote a normal distribution with mean µ and
standard deviation σ. For α > 1 and ϵ > 0, the Gaussian mechanism MG

g,α,ϵ is defined as:

MG
g,α,ϵ(x) ≜ g(x) +N (0, σ2)

Essentially, MG
g,α,ϵ(x) applies the function g to x and then adds noise represented by the

random variable Y , which is sampled from a Gaussian distribution with mean 0 and vari-
ance σ2, to produce the final output. This mechanism’s action can be represented as
MG

g,α,ϵ(x) = g(x) + Y .

Lemma 7 (Gaussian mechanism and RDP [44]). Let g : X 7→ R be a real-valued function
with the sensitivity of ∆(g). Then MG

g,α,ϵ is (α, ϵ)-RDP for a specific set or range of α
satisfying certain conditions..

Finally, RDP implies DP:

Lemma 8 (From RDP to DP [44]). Suppose that mechanism M is (α, ϵ)-RDP. Then M
is (ϵ+ log(1/δ)/(α− 1), δ)-DP for any 0 < δ < 1.
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Chapter 3

Mechanism

In this section, we first introduce PACS, a private and adaptive computational sprinting
framework, and describe its architecture. We then prove that PACS guarantees differential
privacy.

3.1 Assumptions

We describe the PACS architecture considering a multi-tenant datacenter environment
with N tenants and a single datacenter provider. In this work, we make the following
assumptions.

• Each tenant controls a single server.
• The datacenter provider lacks direct control over servers’ sprinting behavior, which is
solely governed by the tenants of the servers. The datacenter provider can only indirectly
influence system-wide sprinting behavior through cost measures. It is essential to note
that if the datacenter provider were to have complete control over the operation of
servers, the optimization of computational sprinting decisions would transition from a
multi-agent game-theoretic problem to a single-agent optimization problem.

• It is physically possible for the datacenter provider to monitor (i.e., smart Power Distri-
bution Units (PDU), anch Circuit Monitors (BCMs), Data Center Infrastructure Man-
agement (DCIM)) the power consumption of the tenants’ servers. And the datacenter
provider can detect whether a server sprints based on its monitored power consumption.
Therefore, the exact number of servers that sprint can be accurately tracked at any given
time.

12
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Figure 3.1: PACS architecture

• Similarly to [18], we assume that the probability that a power emergency happens is a
piecewise-linear function of the number of sprinting servers. If the number of sprinting
servers is less than Nmin, then this probability is 0. If the number of sprinting servers
is more than Nmax, then this probability is 1. And if the number of sprinting servers
is between Nmin and Nmax, then the probability increases linearly with the number of
sprinting servers.

We discuss how some of these assumptions can be relaxed at the end of this section.

3.2 PACS Architecture

Figure 3.1 shows a high-level overview of the system architecture in PACS. The datacenter
provider operates the coordinator, which monitors the power consumption of all servers
and indirectly influences the system-wide sprinting behavior through the implementation
of a tax system in a differentially private manner. Here, the tax system is a cost function
which is applied to agents to charge them based on their actions (sprint or not sprint).
Each tenant manages a server. Within each server, PACS consists of two main components:
an execution environment and an agent. The execution environment runs the tenant’s
application and executes sprinting decisions. The agent optimizes the sprinting strategy
based on the application’s state (e.g., number of outstanding tasks), the server state (i.e.,
cooling or active), and the datacenter state (i.e., the average fraction of sprinting servers
and the taxes).

Remark. While seemingly similar at first glance, there exist notable distinctions be-
tween the sprinting architecture outlined in [18] and the one in PACS. Firstly, in [18],
tenants are required to profile their applications and transmit the profiled data to the
coordinator. The coordinator then employs these reported profiles to statically derive
equilibrium strategies for the tenants. However, due to the model-free learning approach
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in PACS, there is no requirement for application profiling. Furthermore, tenants compute
their equilibrium strategies privately and locally in a dynamic and adaptable manner. Sec-
ondly, in [18], tenants are required to deploy a predictor to gauge utility from a sprint
based on application profiles and hardware counters. In contrast, in PACS, agents base
sprinting decisions on the current state of applications (for more details, refer to §3.2.2).

3.2.1 Coordinator

The coordinator monitors the number of servers that sprint. In PACS, time is divided
into rounds and every L rounds form an epoch. Similarly to [18], PACS sets the length
of each round based on the duration of a safe sprint. The duration of rounds and the
length of epochs are configurable parameters of the system. At the end of each epoch, the
coordinator calculates the average fraction of sprinting servers during the epoch.

Let nr
e denote the number of sprinting servers at round r during epoch e. Then the

average fraction of sprinters in epoch e is simply formulated as:

fe =
1

N × L

L∑
r=1

nr
e.

This is a critical statistic that serves as the mean-field parameter in PACS . This parameter
enables the agents to independently optimize their sprinting strategies while considering
the collective behavior of the entire server population.

To tenants, fe is not solely a technical parameter; it holds sensitive information about
their behavior and their application characteristics. Revealing precise details on the average
fraction of sprinting servers per epoch could expose system vulnerabilities or strategic
operations, raising significant privacy concerns. This becomes especially critical when
considering potential malicious entities seeking to exploit leaked information. To counter
this, the coordinator introduces calibrated noise to fe using the Gaussian mechanism as
follows:

f̄e = fe + v, (3.1)

where v is a random variable drawn from N (0, σ2). The value of σ is determined to ensure
a desired level of privacy guarantee (refer to §3.3 for further details). This strategy ensures
that no single sprinting decision can be inferred with high confidence from the released
data while preserving the utility of the data for system-wide decisions.

The coordinator does not have direct control over servers’ sprinting behavior. Therefore,
to indirectly shape the system-wide sprinting behavior, PACS implements a tax system
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based on agents’ sprinting decisions. This taxation entails an extra monetary cost to the
tenants. In PACS, there are two types of taxes: the group tax and the individual tax. The
group tax is proportional to the probability of triggering a power emergency. For epoch e
with an average fraction of fe sprinting servers, the group tax is calculated as:

tGe = min

(
max

(
fe ×N −Nmin

Nmax −Nmin

, 0

)
, 1

)
× TG,

where, TG is the group taxation coefficient, a configurable parameter. Moreover, to discour-
age having more than Nmax sprinters on average, PACS imposes the individual tax. Let
ne,i be the number of rounds at which agent i sprints during epoch e. Then the individual
tax imposed on agent i at epoch e with an average fraction of fe sprinting servers is:

tIe,i =

{
ne,i × TI if fe ×N ≥ Nmax,

0 otherwise,

where, TI is the individual taxation coefficient, a configurable parameter in PACS . There-
fore, the total tax imposed on agent i at epoch e is:

te,i = tGe + tIe,i. (3.2)

Using fe to calculate taxes could indirectly reveal fe to agents and violate differential
privacy. To prevent this, instead of using fe to calculate taxes, the coordinator employs
f̄e. Since DP is preserved by post-processing, revealing te,i calculated based on f̄e does not
impact the DP guarantee of PACS.

Algorithm 1 shows the pseudocode for the coordinator’s operations. At every round,
the coordinator monitors the actions of all agents. At the end of each epoch, the coordi-
nator calculates the average fraction of sprinters, alongside the taxation, and sends this
information to the agents.

The input parameters utilized by the coordinator are K, L, ϵ, δ, and α. The value of
K specifies the number of epochs for which the algorithm ensures DP guarantees (further
details in §3.3). The value of L corresponds to the length of each epoch. The remaining
parameters, namely ϵ, δ, and α, dictate the desired level of the privacy guarantee. The
value of ϵ and δ directly govern the DP assurance provided by the algorithm (refer to
Theorem 9). And the value of α manages the noise variance in accordance with the
Gaussian mechanism.

15



Algorithm 1: High-level pseudocode for the coordinator in PACS

parameters: K,L ∈ Z, ϵ, δ ∈ (0, 1), α > 1;
ϵ′ ← (1/K)(ϵ− log(1/δ)/(α− 1));
σ2 ← α/2n2ϵ′;
run coordinator():

foreach epoch e do
for round r = 1, . . . , L do

nr
e ← number of sprinting agents;

f̄e ← Equation (3.1);
te,i ← Equation (3.2) for each agent i;
send f̄e and te,i to each agent i;

F

h
(1)
1

h
(1)
2

h
(1)
256

...

mean

Input layer

H(1)

Output layer

(a) Actor network

Ss

Sa

F

h
(1)
1

h
(1)
2

h
(1)
64

...

h
(2)
1

h
(2)
2

h
(2)
64

...

value

Input layer

H(1) H(2)

Output layer

(b) Critic network

Figure 3.2: Architecture of the actor and the critic networks

3.2.2 Agents

The primary responsibility of agents is to make sprinting decisions on behalf of their
respective tenants. To make these decisions, PACS agents employ an actor-critic learning
approach. The actor maintains the sprinting strategy, while the critic estimates the value
function. In PACS, both the actor and the critic are implemented using neural networks.
For a visual representation, refer to Figure 3.2 illustrating the architecture of the actor and
critic networks in PACS.

Agents receive f̄e and te,i at each epoch from the coordinator. At each round r, the
agent queries the server to determine the server state, srSi

, which is either cooling or active.
Additionally, the agent queries the execution environment to establish the application state,
srAi

, which could, for example, be the number of outstanding tasks, request load, or input
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Algorithm 2: High-level pseudocode for agent i in PACS

parameters: L,M ∈ Z;
run agent(i):

foreach epoch e do
recieve f̄e and te,i from coordinator;
for round r = 1, . . . , L do

sri ← (srSi
, srAi

, f̄e);
ari ← policy(sri );
ur
i ← utility(ari , te,i);

add (sri , a
r
i , u

r
i ) to buffer;

if 0 ≡ r (mod M) then
update policy;
empty buffer;

size. The critic network takes the tuple (srSi
, srAi

, f̄e) as input and produces an estimate of
the state value as output.

Given that equilibrium strategies in the computational sprinting game are simple thresh-
old strategies [18], the actor network’s purpose is to learn such a threshold. As such, the
actor network takes f̄e as input and produces an output that serves as the mean of a nor-
mal distribution to estimate the optimal threshold. It is important to note that sSi

and
sAi

are not included in the input to the actor network. sSi
is not used because the actor

is only consulted when the server is in the active state, while sAi
is excluded because the

network’s output represents a threshold on sAi
. Figure 3.2 presents the architecture of the

actor and the critic networks in PACS.

Outlined in Algorithm 2 is the high-level pseudocode depicting the operations of each
agent. The input parameters include L, denoting the size of each epoch, and M , indicating
the mini-batch size. During each round, the agent follows a sequence: constructing the
system state, consulting the policy, taking an action, and receiving a utility. These (state,
action, utility) tuples are stored in a buffer, facilitating mini-batch policy updates occurring
every M rounds.
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3.3 DP Guarantee in PACS

To analyze the DP guarantee of an iterative algorithm, it is common to individually char-
acterize the DP guarantee of each iteration. The end-to-end DP guarantee of the algorithm
is then determined using the composition rule (e.g., Lemma 4). In PACS, the coordinator
is required to compute the average fraction of sprinting servers across an infinite stream
of events (i.e., sprinting actions by agents at every round) and release this statistics pe-
riodically at the end of each epoch. This entails a composition of an infinite number of
iterations. To ensure DP over an infinite composition of iterations, an infinite amount of
noise would be required, which destroys the utility of the released data. To avoid this,
PACS offers a K-epoch DP guarantee. This safeguard protects the privacy of sequences of
sprinting decisions occurring within any window of K epochs.

Using the properties the Gaussian mechanism, we now show that each epoch of Al-
gorithm 1 satisfies (α, ϵ′)-RDP. Subsequently, by employing Lemma 4 and Lemma 8, we
establish PACS as (ϵ, δ)-DP over any K epochs.

Theorem 9 (PACS is DP). Algorithm 1 provides (ϵ, δ)-DP over any K epochs.

Proof. At each epoch e, the private data of agent i is the number of times agent i sprints
during the epoch (i.e., ne,i), and the publicly released data is f̄e. Note that te,r is also
released at each epoch, but it is calculated based on f̄e. This calculation is considered as
post-processing calculation, while DP guarantees are preserved under post-processing. This
means that any computation applied to the output of a differentially private mechanism
does not weaken the privacy guarantee. The fundamental reason for this is that differential
privacy is immune to any function that does not add new sensitive information. The
calculation of f̄e is a direct application of the Gaussian mechanism with the real-valued
function:

g(ne) =
1

N × L

N∑
i=1

ne,i, where ne = (ne,1, . . . , ne,N). (3.3)

Let ne and n′
e be two adjacent inputs that are identical except in their ith element (ne,j =

n′
e,j if j ̸= i and ne,i ̸= n′

e,i). Since ne,i and n′
e,i are integer numbers from 0 to L, it is easy

to show that |g(ne)− g(n′
e)| is maximized when ne,i = 0, and n′

e,i = L (or vice versa). This
means that the sensitivity of function g is ∆(g) = 1/N . Therefore, it follows from Lemma 7
that each epoch e is (α, ϵ′)-RDP. Consequently, according to Lemma 4, the composition
of any K epochs satisfies (α, ϵ̄)-RDP, where

ϵ̄ =
K∑
k=1

ϵ′ = Kϵ′ = ϵ− log(1/δ)/(α− 1).
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Finally, it follows from Lemma 8 that Algorithm 1 provides (ϵ, δ)-DP across any K epochs.

Remarks. We make three final remarks. First, adding noise introduces a trade-off
between accuracy and privacy. Learning precise equilibrium strategies often demands ex-
tensive training epochs, implying selecting larger values for K. However, when the privacy
loss per epoch is fixed, this higher number of epochs results in an increased cumulative pri-
vacy loss, which weakens the overall privacy guarantee. Conversely, aiming for a stronger
privacy guarantee requires a reduction in the cumulative privacy loss. But, with a fixed
number of epochs, minimizing cumulative privacy loss leads to higher noise per epoch,
consequently impacting accuracy adversely.

Second, in PACS, the variance of the added noise at each epoch is quantified as:

σ2 =
Kα

2n2(ϵ− log(1/δ)/(α− 1))
. (3.4)

For a constant K, the variance of added noise at each iteration of the algorithm converges
asymptotically to zero as n grows large if we set ϵ = Θ(1/ log(n)), δ = Θ(1/n), and
α = log(1/δ)/(α− 1) = 0.5ϵ.

Third, we note that some of the assumptions made at the beginning of this section can
be relaxed. For instance, the initial assumption that each tenant controls a single server
can be modified to assume that each tenant has control over at most C servers, where C
is a constant. This adjustment directly changes the sensitivity of the function g (defined
in (3.3)) from 1/N to C/N . Consequently, additional noise needs to be introduced, as
explained in the analysis in the proof of Theorem 9. The magnitude of added noise is
inversely proportional to the value of C, meaning that lower values of C result in reduced
additional noise as the formula:

g(ne) =
1

C × L

N∑
i=1

ne,i
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Chapter 4

Experimental Methodology

In this section, we begin by presenting the three categories of applications utilized to assess
PACS: (1) synthetic applications, (2) hybrid applications, and (3) real-world applications.
Subsequently, we introduce three baseline mechanisms employed for comparison against
PACS. Finally, we discuss the fine-tuning process to optimize the parameters of PACS. The
source code for our implementation of PACS alongside other baselines and the benchmarks
is available at https://anonymous.4open.science/r/PACS-D590.

App. Pij

M1 0.5 if i = j ± 1; 0 otherwise
M2 0.4 if i = j − 1; 0.6 if i = j + 1; 0 otherwise
M3 0.6 if i = j − 1; 0.4 if i = j + 1; 0 otherwise
M4 ∝ |j − i|+ 1
M5 ∝ 1/(|j − i|+ 1)
M6 ∝ 1/(j + 1)
M7 ∝ (j + 1)2

M8 0.1

Table 4.1: Transition probabilities for synthetic applications.
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App. Model Baseline TPS Sprinting TPS

Q1 ResNet 41 86
Q2 MobileNet 44 112
Q3 SqueezeNet 25 75
Q4 AlexNet 11 32

Table 4.2: Throughput parameters for hybrid benchmarks

4.1 Synthetic Benchmarks

To evaluate PACS, we examine eight synthetic Markov applications. Each Markov appli-
cation M encompasses a finite state space SM . At each state i ∈ SM , the utility gain from
sprinting is denoted as ui. The application’s state transitions from state i to state j with
a probability represented by Pi,j. The specifics of Pi,j for various applications and states
are summarized in Table 4.1. This Markov model generalizes the utility model outlined
in [18], where Pi,j = f(j) for some probability density function f over all states.

In our experiments, each Markov application consists of 10 states. At state i, the
performance gain from sprinting is assumed to be i (ui = i). If an agent sprints, the total
utility is the corresponding performance gain minus the tax (see §3.2.1). For each tenant,
we initialize each application in a randomly selected state.

Among the eight applications, M1 to M3 follow birth-death Markov models, where
state transitions include only two types: “births,” increasing the state variable by one, and
“deaths,” decreasing the state variable by one. Conversely, the remaining applications–M4

through M8–feature a more intricate state transitioning structure, allowing transitions to
any state from the current one. In M4 and M5, transition probabilities rely on the distance
between states (direct dependence in M4 and inverse dependence in M5). In M6 and M7,
transition probabilities are contingent upon the destination (direct dependence in M6 and
inverse dependence in M7). Moreover, in M8, the current state transitions to any other
state with equal probability.

4.2 Hybrid Benchmarks

For our hybrid benchmarks, we focus on deep neural network (DNN) inference workloads.
Tenants deploy DNN inference models on servers equipped with DNN accelerators. Each
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server receives inference tasks at a fixed rate. These tasks are queued in the server while
waiting to be executed. To assess the performance gain from a sprint, we profile real-world
DNN inference tasks on the RocketChip SoC [5] equipped with a Gemmini-generated DNN
accelerator [20], using the cycle-accurate FireSim simulator [35].

4.2.1 DNN Inference Tasks

We profile DNN inference tasks from four models: ResNet [28], MobileNet [29], SqueezeNet [31],
and AlexNet [37]:

• ResNet is a DNN used for image recognition.
• MobileNet is a DNN designed for mobile and embedded devices.
• SqueezeNet is a resource-efficient DNN for image classification.
• AlexNet is a DNN for image recognition and classification. We use a pretrained version
of the network trained on more than a million images from the ImageNet database.

We measure the throughput of the inference tasks on models that are pre-trained using
ImageNet [53].

4.2.2 Testbed

We use FireSim [35] to simulate our testbed. FireSim is an FPGA-accelerated cycle-
accurate simulator for full-system hardware simulations. Our testbed comprises a Rocket
Chip SoC [5] featuring an in-order Rocket Core paired with a Gemmini-generated DNN
accelerator [20]. Each SoC is configured with 4GiB off-chip DDR3 DRAM.

The DNN accelerator is set to operate as a weight-stationary 16× 16 systolic array. In
the baseline power mode, the CPU core and the accelerator run at 1GHz. To represent
the effect of a sprint on application performance, we elevate the SoC clock frequency
to 3 GHz. This higher frequency is applied across all SoC components, including the
core, accelerator, and buses. However, the off-chip memory components (DDR3 DRAM)
maintain the baseline frequency.

DNN inference models are executed using the ONNX [1] runtime framework, specifically
ported to our simulated environment. The framework utilizes Gemmini-generated DNN
accelerators for matrix-multiplication (matmul), convolution (conv), and activation opera-
tions, with the Rocket core handling operations like serialization. Measured throughput in
terms of tasks per second (TPS) for the inference models on the baseline and power-boosted
SoC is presented in Table 4.2.
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App. Algorithm Category Dataset Data size

S1 ALS Collaborative Filtering movielens2015 [27] 891M
S2 Kmeans Clustering uscensus1990 [38] 345M
S3 Linear Regression Classification kddb2010 [59] 782M
S4 PageRank Graph Processing wdc2012 [43] 3.4G
S5 SVM Classification kdda2010 [59] 522M

Table 4.3: Spark Workloads

4.2.3 Queueing Model

Tenants receive inference tasks at a fixed arrival rate, with the number of tasks per round
following a Poisson distribution. These tasks, whether during sprinting or normal op-
eration, are presumed to have service times that fit an Exponential distribution. This
assumption is due to the Exponential distribution’s memorylessness property, meaning the
time to complete a task is independent of how long it’s been processed. This simplifies
mathematical modeling and mirrors many real-world processes where the remaining task
time doesn’t depend on the elapsed processing time. The service rate is determined by the
throughput measured from our cycle-accurate simulations. Upon arrival, inference tasks
are queued for execution. The utilities of tenants are determined based on the length of
their queues. Specifically, at each round, tenants incur a cost–reflecting a form of delay
or latency–proportional to their queue lengths. Consequently, the longer the queue, the
higher the incurred cost.

4.3 Real-world Benchmarks

For our real-world benchmarks, we focus on Apache Spark workloads [68], which are also
used in [18]. We run five machine learning (ML) applications from the Spark machine
learning library (a.k.a. MLlib): alternating least squares (ALS), K-means, linear regression
(LR), PageRank, and support vector machine (SVM). Table 4.3 summarizes the datasets used
to run each of the five ML applications.

We run the Spark workloads on an AMD Ryzen Threadripper PRO 3945WX 12-Cores
server. We use the same setting as [18] that in the baseline power mode, workloads execute
on three cores running at 2.2GHz cores, while in the sprinting mode, workloads execute
on all twelve cores running at 4.2GHz. Spark is configured to run locally using different
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number of threads by setting --master local [k], where k is 12 in the sprinting mode
and 3 in the baseline power mode.

We collect executor log files and measure the TPS for each application in both baseline
and sprinting power modes. We track TPS throughout the end-to-end execution of an
application in both modes. Each application is defined with a set of jobs, and each job
is further divided into tasks that run in parallel. While jobs are completed sequentially,
tasks can finish in any order. The total number of tasks in a job remains constant and
is independent of the available hardware resources. Consequently, TPS serves as a per-
formance metric for a fixed amount of work. Given that the execution times in sprinting
mode are shorter than the baseline power mode, we extend the traces of the sprinting mode
for comparison with baseline traces. Linear interpolation is used to extend our sprinting
traces because it provides a quick and straightforward method for estimating the missing
data points, allowing for a consistent comparison with the longer-duration baseline traces.

We calculate performance gains from sprinting as the difference in throughput between
the baseline and sprinting power modes. If an agent sprints, the total utility is equal
to the corresponding performance gain minus the tax (see §3.2.1). Agents are assigned
random starting points within the trace. Once an application reaches the end of a trace,
it recommences from the beginning and continues until completion.

4.4 System Parameters

We use the same parameters as those employed to evaluate the computational sprinting
game in [18] and described in §2.1. Specifically, a server in the cooling state remains in this
state for ∆tcooling rounds, where ∆tcooling follows a geometric distribution with parameter
pc. Here, pc represents the probability of a server in the cooling state remaining in that
state, while the probability of transitioning back to the active state is (1− pc). We set pc
to 0.5. Consequently, if agents sprint whenever their servers are active, servers spend an
average of 2/3 of the rounds in the cooling state.

4.5 Baselines

We compare PACS against three other baseline methods: dynamic programming (repre-
senting the computational sprinting game [18]), cooperative thresholds, and PACS w/o
noise:
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Parameter Value

Discount factor (γ) 0.9999
Mini-batch size (M) 5
Learning rates for M1–M8 1× 10−4, . . . , 9× 10−4

Learning rates for Q1–Q4 1× 10−3, 2× 10−3

Actor learning rates for S1–S5 1× 10−4, . . . , 4× 10−4

Critic learning rates for S1–S5 1× 10−3, 2× 10−3, 3× 10−3

Number of hidden layers for actor 1
Number of hidden layers for critic 2

Table 4.4: Learning parameters in PACS

• Dynamic programming (DyProg). The core of the dynamic programming approach
lies in the value iteration method, an iterative algorithm to solve Bellman equations [7].
At each iteration, the algorithm calculates the expected utility of sprinting versus not
sprinting, factoring in both the immediate utility and the discounted future utilities.
It then updates the policy to choose the action that maximizes utility. This process
continues until the policy stabilizes, indicating an optimal or near-optimal solution,
which is the best threshold value. This is the method proposed in [18].

• Cooperative threshold (Thr). The cooperative threshold approach involves agents
collaboratively deploying globally optimal thresholds for sprinting. These threshold val-
ues are determined through a brute-force search aimed at maximizing the total system
performance. However, these thresholds do not constitute an equilibrium, because they
do not correspond to agents’ best responses to the system dynamics. Consequently,
their enforcement relies on the datacenter’s intervention. The cooperative threshold’s
performance serves as an upper bound on the achievable performance under any static
threshold method.

• PACS w/o noise. The primary distinction between PACS and PACS w/o noise lies
in PACS’s assurance of differential privacy through the addition of noise, whereas PACS
w/o noise does not incorporate DP. In both approaches, the coordinator collects actions
from all agents and computes the fraction of sprinters and associated taxes. In PACS,
the coordinator introduces noise to the fraction of sprinters, while this step is omitted
in PACS w/o noise.
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4.6 Fine-tuning Process

Table 4.4 summarizes the learning parameters used in PACS. Since neural networks are
often sensitive to their parameters, for our experiments, we employ simple hyperparam-
eter tuning via Optuna, a library designed for precise hyperparameter selection [3]. The
objective function is aimed at maximizing the cumulative average utility, with the learning
rates of the actor and the critic as the parameters we tune.
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Chapter 5

Evaluation

In this section, we assess the performance of PACS by comparing it with other baseline
methods for synthetic, hybrid, and real-world applications. We further illustrate PACS’s
adaptability when changes occur in system dynamics. Finally, we provide a sensitivity
analysis for PACS to show the trade-off between data privacy and performance.

5.1 Performance

In this subsection, we empirically analyze the performance of PACS. Each experiment is
conducted 10 times, and we report the average performance along with its 95% confidence
level. The 95% confidence interval (CI) for the average performance is computed by the
mean and standard deviation (std) as:

CI = x̄± (t× 1√
N
×

√∑n
i=1(xi − x̄)2

n− 1
)

, where the t-score for a two-tailed test with a 95% confidence level is approximately 2.262.
To facilitate comparison, we normalize the performances of all methods by the performance
of the cooperative threshold method.
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Figure 5.1: Performance of different methods for synthetic applications.

5.1.1 Synthetic Applications

Figure 5.1 illustrates the performance of different methods for synthetic applications. The
cooperative threshold method achieves the highest performance for all applications. As
cana be seen, PACS and PACS w/o noise achieve similar average performances (less than
a 2% difference). However, the variance in performance is higher under PACS due to the
added random noise.

PACS and PACS w/o noise perform as well as dynamic programming for M1-M3.
However, dynamic programming outperforms PACS and PACS w/o noise for M4-M8 by up
to 10%. The ratio between the performance of PACS w/o noise and dynamic programming
for M4-M8 is approximately 90%, 96%, 90%, 97%, and 91%, respectively.

PACS and PACS w/o noise perform better for M1-M3 primarily because PACS is delib-
erately designed with a simple neural network architecture to minimize runtime overheads.
This simple architecture can easily represent the straightforward application dynamics of
M1-M3 (i.e., the birth-death Markov model). However, it performs suboptimally when
tasked with representing more complex application models such as those in M4-M8 (refer
to Table 4.1). Additionally, to protect data privacy, the privacy window is set to 120
epochs. This short training period may not be sufficient to train a neural network to fully
represent a complex Markov environment.
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Figure 5.2: Cost of different methods for synthetic applications.
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Figure 5.3: Queue lengths for different utilization under different methods.

5.1.2 Hybrid Applications

For hybrid applications, tenants incur costs proportional to the length of their inference
queues (refer to §4.2.3). Tenants are additionally taxed based on their cumulative power
consumption, as discussed in §3.2.1. Therefore, for hybrid applications, lower costs corre-
spond to superior performance.

Figure 5.2 shows the average cost incurred by tenants under different baselines for
hybrid applications. Here, the cost is −max(0, Lcurr + Rarr − Rdep), where Lcurr is the
current queue length, Rarr is the arrival rate and the Rdep is the departure rate which
depends on sprint or not. For these experiments, the utilization (i.e., the ratio of the
arrival rate to the departure rate) for all hybrid applications is set to about 65%. The
cooperative threshold method achieves the highest performance (lowest costs). PACS w/o
noise outperforms the dynamic programming method for Q1. Q1 has the lowest ratio
between sprinting throughput and baseline throughput compared to the other applications.
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PACS w/o noise performs nearly as well as dynamic programming for Q2 to Q4 (the
difference is less than 1%).

It is essential to highlight that dynamic programming finds the static equilibrium
thresholds, whereas PACS determines dynamic thresholds. In other words, the dynamic
programming method outputs a single threshold, while the actor network in PACS could
output different thresholds for different system states. PACS and PACS w/o noise incur
similar costs, with a difference of less than 2%, while, as expected, the variance is lower
under PACS w/o noise.

Figure 5.3 shows the average queue length of all tenants under different baselines for a
variety of utilization ratios, ranging from 38% to 83%. It is easy to see that the average
queue lengths are quite similar under different methods for different utilization ratios. This
shows that PACS achieve similar performance compared to the dynamic programming
method while providing adaptability and guaranteeing data privacy for all tenants.
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Figure 5.4: Fraction of sprinters under PACS and PACS w/o noise for hybrid applications.

Figure 5.4 shows the fraction of sprinters over time under PACS and PACS w/o noise.
As can be seen, the differences between the two curves is negligible.

5.1.3 Real-world Applications

Figure 5.5 compares the performance of different methods for real-world Spark applica-
tions. As observed previously, the cooperative threshold method achieves the highest per-
formance. PACS w/o noise outperforms dynamic programming for PageRank and kmeans

and performs nearly as well for the other applications (a difference of less than 2%). Our
results further indicate that PACS and PACS w/o noise perform comparably, with the
performance difference between them being less than 10% across all applications.
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Figure 5.5: Performances of different methods for real-world applications.
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Figure 5.6: Change in queue length when arrival rate increases by 30% at time t.

5.2 Adaptability Analysis

Next, we empirically study the adaptability of PACS when changes occur in system dy-
namics. Specifically, we use hybrid applications and modify the arrival rate and service
rate of inference tasks at some point during the execution of the applications.

5.2.1 Increase in Arrival Rate

We begin by examining the change in the inference queue length when the arrival rates
increase. Figure 5.6 compares the average queue length of tenants under PACS w/o noise,
PACS, and dynamic programming when arrival rates increase by 30% at time t. As shown,
the average queue length increases under all methods immediately following time t. PACS
and PACS w/o noise adaptively react to this change in the environment by adjusting
their optimal thresholds, achieving a lower average queue length compared to dynamic
programming. Once converged, the average queue length under PACS is less than that
under dynamic programming by 32%, 20%, 9%, and 14% for Q1-Q4, respectively.
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Figure 5.7: Change in queue length when service rate decreases by 33% at time t.
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Figure 5.8: Average cost under PACS with varying noise variances.

5.2.2 Decrease in Service Rate

We then explore the change in the average queue length when service rates decrease. Fig-
ure 5.7 shows that the average inference queue length increases at time t under all methods
when tenants’ service rates decrease to two-thirds of their original values. Similar to the
previous scenario, PACS adapts to this change and maintains a lower average queue length
compared to dynamic programming. Specifically, the average queue length under PACS is
31%, 13%, 6%, and 14% of that under dynamic programming for Q1-Q4, respectively.

5.3 Sensitivity Analysis

Beyond adaptability, we conducted a sensitivity analysis for PACS concerning the magni-
tude (i.e., variance) of the added noise, where higher variances correspond to higher privacy
guarantees. Figure 5.8 compares the performance of hybrid applications under PACS with
varying noise variances, ranging from 0.0006 to 0.05. The costs are normalized based on
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the cost with a 0.0006 variance. With a variance of 0.05, the cost is about 1.4 times higher
compared to the case with a variance of 0.005.

This comparison highlights a clear trade-off between performance and privacy: as the
magnitude of variance increases, the performance of PACS decreases and the confidence
interval widens. The increase in noise leads to high variations in the values of the fractions
of sprinters and the values of incurred taxes from one epoch to another. As the information
agents receive becomes less stable, the policies they employ become less reliable for the
environment in which they operate. In essence, this results in decision-making that is
not optimally aligned with the actual environmental conditions, leading to suboptimal
outcomes.

Remark. The results presented in this section highlight the substantial advancements
achieved by PACS in comparison to the dynamic programming method proposed in [18].
PACS exhibits significant improvements in scalability, adaptability, system stability, and
data privacy. These enhancements contribute to the robustness and confidentiality of multi-
tenant interactions, crucial aspects in real-world applications of distributed computational
sprinting.

33



Chapter 6

Related Work

6.1 Computational sprinting for datacenters.

Computational sprinting has been studied for datacenter applications running on CPUs
and GPUs. Cai et al. [8] propose a system designed to manage QoS for applications that are
sensitive to latency in data centers. This system, underpinned by a robust feedback control
mechanism, enables computational sprinting. It does this through precisely scheduling of
processor core numbers, setting their operating frequencies, and determining the duration
for high-intensity computing. This allows for the efficient handling of workloads with
bursty workloads while adhering to QoS standards and operating within thermal limits.
It is particularly adept at forecasting upcoming load intensities and then dynamically
adjusting computing resources to optimize power usage.

In [72], the authors propose a system designed to manage computational sprinting in
data center servers both effectively and with control. It is composed of two distinct power
controllers and a power load allocator. This allocator is tasked with deciding the distribu-
tion of power loads across various sources. One of the controllers focuses on managing the
server’s power, particularly adjusting the CPU cores dedicated to batch processing tasks,
aiming to enhance efficiency in computing, energy usage, and cost. The other controller,
designed for the UPS (Uninterruptible Power Supply), dynamically modulates the rate
at which the UPS’s energy storage is discharged. This adjustment is crucial for meeting
the fluctuating power requirements of interactive workloads while also maintaining power
stability and safety.

Ilager et al. [32] address the challenge of high energy consumption in GPUs, which
are increasingly utilized in modern computing paradigms like cloud computing for AI/ML
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and deep learning tasks. The research focuses on optimizing Dynamic Voltage Frequency
Scaling (DVFS), a technique used to reduce GPU power consumption. Recognizing the
complexity of establishing optimal clock frequencies—owing to the nonlinear interplay be-
tween an application’s runtime performance, energy usage, and execution time, and the
varied responses of different applications to identical clock settings—the study proposes a
novel, data-driven frequency scaling approach. This approach involves collecting perfor-
mance and energy consumption data from application profiling and then employing this
data to train predictive models. These models are designed to accurately forecast power
usage and execution time across various clock settings. The flexibility of this solution is
highlighted by its applicability to a wide range of workloads and GPU architectures. Ad-
ditionally, the study introduces a deadline-aware application scheduling algorithm, which
leverages the predictive models to minimize energy consumption while adhering to appli-
cation deadlines.

Morris et al. [45] propose an innovative approach to optimizing computational sprinting
in cloud computing environments. It is a model-driven methodology designed to effectively
choose the most suitable sprinting policies, with a focus on minimizing response times for
query executions. This approach is particularly novel as it navigates the complex interac-
tion between sprinting, queuing, and processing times, which can significantly impact the
efficiency of query execution. The authors have developed a comprehensive system that
accurately predicts the impact of various sprinting strategies on response times by offline
profiling, machine learning, and first-principles simulation. This methodology has been
rigorously tested across multiple scenarios, demonstrating its robustness and accuracy.

In this paper, we consider a dynamic method to manage computational sprinting deci-
sions while providing data privacy guarantees.

6.2 Game theory and machine learning for datacenter

management.

6.2.1 Game theory for datacenter management.

Game theory has been proven effective in datacenter resource management. [11] proposed a
novel architecture for resource management in internet hosting centers, with a specific focus
on energy efficiency for large server clusters. This architecture is adeptly designed to enable
hosting centers to automatically adapt their server resources to fluctuating loads, enhance
energy efficiency by dynamically adjusting the active server set, and respond effectively to
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power disruptions or thermal events in line with Service Level Agreements (SLAs). Central
to their system is an innovative economic approach, where services ‘bid’ for resources based
on the performance delivered, essentially linking resource allocation to service performance.
The system is engineered to continuously monitor load and strategically plan resource
distribution, using a resource allocation algorithm that adjusts resource prices to maintain a
balance between supply and demand, thereby optimizing resource utilization. Additionally,
the architecture includes a reconfigurable server switching infrastructure that efficiently
directs request traffic to designated servers. This study presents a significant leap forward
in resource management strategies for hosting centers, prioritizing energy efficiency and
service adaptability.

[21] address the complex problem of fair resource allocation within systems that encom-
pass diverse resource types and varying user demands. To effectively address this challenge,
the authors introduce an innovative concept named Dominant Resource Fairness (DRF),
which is an extension of the max-min fairness principle, adapted for environments with
multiple types of resources. The distinctiveness of DRF lies in its adherence to several
crucial and desirable properties. Firstly, it encourages resource sharing among users by
guaranteeing that no user benefits disproportionately from an equal resource partition.
Secondly, DRF is designed to be strategy-proof, preventing users from manipulating their
resource allocation by misrepresenting their actual requirements. Thirdly, the system en-
sures that it is envy-free, meaning no user would feel the need to exchange her allocation
with another, indicating a sense of equitable distribution. Lastly, the allocations under
DRF are Pareto efficient, ensuring that any improvement in a user’s allocation doesn’t
come at the cost of another’s. The practical applicability of DRF is demonstrated through
its implementation in the Mesos cluster resource manager. This study presents a significant
advancement in the field of resource allocation, offering a fair, efficient, and user-centric
approach.

[58] propose a new strategy for survivable virtual network mapping within a Cloud’s
backbone. It aims to enhance the Cloud Provider’s revenue while effectively managing
physical failures of routers and links. To navigate around the exponential complexity typ-
ically associated with network mapping, the authors introduce a novel reliable embedding
strategy known as CG-VNE, which is grounded in the coordination game framework. This
strategy involves formulating the problem as two complex coordination games. The first
game focuses on the mapping of virtual routers, considering the interdependencies of each
router’s actions on the mapping of its connected virtual links. Consequently, the second
game is initiated to embed these virtual links, with both games engaging fictitious players
who collaborate to achieve a Nash Equilibrium. This equilibrium not only exists but also
aligns with a social optimum. The ultimate goal of CG-VNE is to maximize the Cloud
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provider’s revenue by simultaneously increasing the acceptance rate of client requests and
minimizing the rate of virtual network failures or outages which are due to issues in the
underlying physical network infrastructure. This study presents a significant breakthrough
in cloud networking, offering a practical and efficient solution for enhancing network sur-
vivability and provider profitability.

[69] focuses on the strategic manipulation of resource allocation within these data cen-
ters. The authors observed that even in a company as large as Google, employees engaged
in a strategic manipulation of resource requests. Some of them inflating their needs to
minimize sharing, while others deflated their resource requests to pretend that their tasks
could easily fit within any computer. Once their tasks were loaded onto a computer, these
operations would then consume all of the machine’s available resources, leaving no room for
the tasks of their colleagues. Highlighting the seriousness of this issue, the authors point
out the significant energy consumption of data centers globally. The study sheds light on
the problem of wasted energy, especially considering that idle servers can dissipate up to
50% of the power they consume at peak capacity, a critical concern given that a typical
user’s task utilizes only 20 to 30 percent of a server’s potential.

6.2.2 Machine learning for datacenter management.

Machine learning techniques are shown to be effective tools for bolstering energy efficiency.
[26] introduce a strategy for dynamic virtual machine (VM) consolidation for reducing
energy consumption in large-scale datacenters. It combines centralized and distributed
approaches to optimize power usage. This strategy employs a distributed, multi-agent
ML technique to determine the most efficient power mode and operating frequency for
each server in real-time. Concurrently, it utilizes a centralized heuristic algorithm for the
strategic migration of VMs to the most appropriate hosts.

Due to the rapid expansion of cloud computing, [62] propose a solution to address the
pressing issue of increasing brown energy consumption and carbon emissions in cloud dat-
acenters. It aims to explore strategies for efficiently matching renewable energy generators
with datacenters from various cloud providers to reduce carbon emissions, minimize costs,
and adhere to SLOs despite the challenges of renewable energy shortage. This task is
complicated because of the competition of energy requests among datacenters, the unpre-
dictability of renewable energy generation, and the need for rapid decision-making. The
authors first evaluate several ML techniques for their long-term prediction accuracy regard-
ing the real-world data of renewable energy generation and datacenter energy demand, and
find SARIMA model has the best performance. Then, they propose a MARL strategy for
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individual datacenters to optimize their requests for renewable energy from specific gen-
erators. Moreover, they introduce a deadline-guaranteed job postponement method to
manage non-urgent tasks during periods of insufficient renewable energy supply.

[12] introduces a model-free deep RL based approach for joint optimization, designed
to improve the cooperation between IT operations and cooling mechanims. To address the
problem with high-dimensional state space and the extensive hybrid discrete-continuous
action space, the authors propose a hybrid AC-DDPG multi-agent structure. This struc-
ture is stabilized through the introduction of a scheduling baseline comparison method.
They design an asynchronous control optimization algorithm to address the disparities in
response times between IT and cooling systems.

Moreover, machine learning techniques are also shown to be effective tools for facilitat-
ing effective workload balancing. [67] propose a MARL approach to address the network
load balancing problem, which is a task characterized by its complexity and real-world
applicability challenges. They identify traditional heuristic solution as being inflexible
to changes in workload distributions and arrival rates. So, they frame the network load
balancing issue as a Decentralized Partially Observable Markov Decision Process (Dec-
POMDP) and introduce MARL as a solution. They train and test their methods on an
emulation system that simulates realistic, moderate-to-large-scale network environments.
The results highlight the superiority of the MARL in achieving effective load balancing
across different scenarios, comparing to traditional strategies.

[70] propose a MARL framework for the efficient scheduling of distributed DL jobs
across large GPU clusters. The author find that there is a challenge of server sharing
and the interference it causes among co-located DL jobs. Their approach aims to improve
resource utilization and minimizing job completion time (JCT) at the same time. To nav-
igate the complexities of job placement in such large-scale environments, the framework
incorporates hierarchical graph neural networks. These networks are designed to encode
the datacenter topology and server architecture, facilitating topology-aware job placements
that are sensitive to the nuances of the physical and network infrastructure of the data-
center. Moreover, the authors introduce a job interference model to address the limited
precise reward samples for different job placements. Unlike traditional methods that rely
on either explicit interference modeling or black-box schedulers using RL, this framework
leverages multiple schedulers to manage the workload in vast clusters containing thousands
of GPU servers.

[39] propose an approach to computation offloading in IoT edge computing networks
to address the multiple users competing for limited resources. The authors introduce a
mechanism that formulates the offloading process as a stochastic game, where each user

38



operates as learning agent. They design a MARL framework to solve this game. Within this
framework, they introduce the Independent Learners based Milti-Agent Q-Learning (IL-
based MA-Q) algorithm. This algorithm enables efficient and energy-saving computation
offloading decisions without need for extra channel estimation efforts at the centralized
gateway.

[2] propose a fully decentralized load-balacing framework to manage the distribution
of workloads across servers in dense racks for microsecond-scale workloads. The authors
design a fully decentralized load-balancing framework where servers collectively balance
the load in the system. It has been modeled as a cooperative stochastic game, and the
authors implement a decentralized algorithm based on multi-agent-learning theory to find
the Nash Equilibrium.

In this paper, we utilized a multi-agent reinforcement learning technique to design an
adaptive mechanism that can make optimal sprinting decisions without requiring any prior
information about the system dynamics.

6.3 Data Privacy for datacenters.

Data privacy is a notable problem in multi-tenant environments, such as cloud comput-
ing and datacenter networks. [63] propose a cloud-based framework designed to deploy
DNNs on mobile devices efficiently while addressing the privacy concerns asociated with
the cloud computing. It intelligently partitions DNN tasks between mobile devices and
cloud datacenters. The framework performs simple data transformations on the device
side and offloads the computationally intensive training and complex inference tasks to
the cloud. Also, it integrates a lightweight, privacy-preserving mechanism that employs
arbitrary data removement and random noise addition, offering a robust privacy gaurantee
through a comprehensive privacy budget analysis. The authors introduce a noisy training
method to enhance the resilience of the cloud-side network to perturbed data, such that
both privacy and inference performance are ensured.

[73] propose a method for optimizing process mapping in geo-distributed cloud data-
centers. It is used to address the challenge posed by non-uniform communication costs,
multi-level data privacy requirements, heterogeneous network performance, and the poten-
tial for process failures. The authors introduce an optimization problem formulation that
incorporates special privacy requirements specific to geo-distributed data centers. Their
method aims to efficiently identify optimal or near-optimal solutions for mapping parallel
processes to physical nodes, taking into account the complex constraints of these environ-
ments.
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[14] propose a differential privacy-based query model specifically designed for sustain-
able fog computing-supported datacenters. The privacy challenges in fog computing is from
device heterogeneity and the need for low-latency, secure data processing. The authors in-
troduce a way to qualify and ensure privacy preservation through rigirous mathematical
proofs to solve the privacy challenges in fog computing. The core of their approach in-
volves capturing the structural information of datacenters supported by sustainable fog
computing and mapping the datasets involved in query results to real vectors. To protect
data privacy, they implement differential privacy by injecting Laplace noise into the data.

In this paper, we implement differential privacy in PACS with Gaussian mechanism as
well. We sample noise from Gaussian distribution and add it into the fraction of sprint-
ers to avoid data leaking. For a given privacy budget, Gaussian noise can result in more
accurate query results, especially when the function/query has low sensitivity or when
a (ϵ, δ)-differential privacy level is acceptable. Additionally, the Gaussian mechanism’s
adaptability to (ϵ, δ)-differential privacy can be advantageous when a slightly relaxed pri-
vacy guarantee is acceptable for a significant gain in accuracy.
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Chapter 7

Conclusion

In this paper, we introduced PACS, a computational-sprinting framework designed to
address the limitations of existing approaches through adaptability and enhanced data
privacy, all without requiring prior knowledge of system dynamics. Within PACS, the
datacenter provider plays a critical role in monitoring tenants’ power consumption, imple-
menting a system where the cost of sprinting actions, “taxes”, is based on the cumulative
power usage of the tenants. This mechanism incentivizes tenants to utilize a multi-agent
reinforcement learning algorithm to fine-tune their sprinting strategy, taking into account
both system dynamics and the costs associated with increased power consumption during
sprinting periods.

Experimental results demonstrate that PACS achieves comparable performance to state-
of-the-art methods, outperforming them for some applications while incurring at most a
10% performance degradation for others. Interpreting these results, it’s clear that the
core of PACS’s efficiency lies in its innovative approach to managing the cost of sprinting
actions. The multi-agent reinforcement learning algorithm deployed by tenants doesn’t
merely aim to optimize power usage; it strategically navigates the cost-benefit landscape
of sprinting actions. These costs serve a similar role by applying a “charge” to the compu-
tational resources used during sprinting. This encourages a more judicious use of sprinting,
ensuring that tenants optimize their use of resources in a manner that balances immediate
computational demands with the overarching goal of minimizing the associated costs.

Furthermore, the slight performance degradation noted in some scenarios illuminates
the algorithm’s capacity to prioritize long-term efficiency and cost-effectiveness over short-
term performance peaks. This trade-off underscores the sophistication of PACS’s adaptive
strategies. It shows how dynamically the system responds to computational sprinting chal-
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lenges. Importantly, it emphasizes the need to consider the cost implications of sprinting
actions. These considerations are crucial within the broader context of system performance
and resource management.

In summary, PACS emerges as a forward-thinking framework that adeptly balances per-
formance, privacy, and the strategic management of sprinting costs. Its nuanced approach
to incorporating the costs of sprinting actions into the operational decision-making pro-
cess represents a significant advancement in the field of computational sprinting, promising
avenues for further research and application.

42



References

[1] ONNX: Open neural network exchange. https://github.com/onnx/onnx.

[2] Ali Hossein Abbasi Abyaneh, Maizi Liao, and Seyed Majid Zahedi. Malcolm: Multi-
agent learning for cooperative load management at rack scale. Proceedings of the
ACM on Measurement and Analysis of Computing Systems (SIGMETRICS), 6(3):1–
25, 2022.

[3] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD), pages 2623–2631, 2019.

[4] Lasse F Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Carbontracker:
Tracking and predicting the carbon footprint of training deep learning models. arXiv
preprint arXiv:2007.03051, 2020.
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[6] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The datacenter as
a computer: Designing warehouse-scale machines. Springer Nature, 2019.

[7] Richard Bellman. A Markovian decision process. Journal of mathematics and me-
chanics, pages 679–684, 1957.

43



[8] Haoran Cai, Qiang Cao, Feng Sheng, Yang Yang, Changsheng Xie, and Liang Xiao.
ESprint: QoS-aware management for effective computational sprinting in data centers.
In Proceedings of the 19th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pages 420–429, 2019.

[9] Haoran Cai, Xu Zhou, Qiang Cao, Hong Jiang, Feng Sheng, Xiandong Qi, Jie Yao,
Changsheng Xie, Liang Xiao, and Liang Gu. Greensprint: Effective computational
sprinting in green data centers. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 690–699, 2018.

[10] Peter E Caines, Minyi Huang, and Roland P Malhamé. Large population stochastic
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