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Abstract

Identifying and segmenting moving objects from a moving monocular camera is difficult
when there is unknown camera motion, different types of object motions and complex
scene structures. Deep learning methods achieve impressive results for generic motion
segmentation, but they require massive training data and do not generalize well to novel
scenes and objects. Conversely, recent geometric methods show promising results by fusing
different geometric models together, but they require manually corrected point trajectories
and cannot generate a coherent segmentation mask.

This work proposes an innovative zero-shot motion segmentation approach that seam-
lessly combines the strengths of deep learning and geometric methods. The proposed
method first generates object proposals for every video frame by using state-of-the-art
foundation models, and then extracts different object-specific motion cues. Finally, the
method uses multi-view spectral clustering to synergistically fuse different motion cues to-
gether to cluster objects into distinct motion groups, resulting in a coherent segmentation.
The key contributions of this work are as follows:

• Proposing the first zero-shot motion segmentation pipeline that performs dense mo-
tion segmentation on different scenes and object classes without any training.

• This work is the first to combine epipolar geometry and optical flow-based motion
models for motion segmentation. Multi-view spectral clustering is used to effectively
combine different motion models to achieve good motion segmentation results in
complex scenes.

Through extensive experimentation and comparative analysis, we validate the efficacy
of the proposed method. Despite not being trained on any data, the method is able to
achieve competitive results on real-world datasets, some of which are even better than
those of the state-of-the-art motion segmentation methods trained in a supervised manner.
This work not only contributes to the advancement of monocular motion segmentation,
but also shows that combining different geometric motion models and motion cues is very
important in analyzing the motions of objects.
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Chapter 1

Introduction

1.1 Problem Scope

This thesis is focused on developing a dense monocular motion segmentation frame-
work that works regardless of camera motion, object appearance, motion type and scene
geometry, without any training. More specifically, given a video from a monocular camera,
the goal is to create a dense segmentation mask of every object that is moving indepen-
dently. If only part of the object is moving, the entire object needs to be segmented. Since
segmenting moving objects from a static camera is a well-studied problem, the main focus
of this thesis will be on segmenting moving objects from a moving camera. That said, the
proposed method will also work with a static camera.

A closely related area of research to motion segmentation is video object segmentation
(VOS) [85]. However, it is important to distinguish between the two: The goal of VOS is
to segment only the moving objects in the foreground, while motion segmentation focuses
on segmenting any object that is moving independently, regardless of whether it is in the
foreground or not.

1.2 Motivation

Being able to identify and segment moving objects from a moving camera is crucial
for various applications such as autonomous navigation, robotics, SLAM and scene under-
standing in general. In a dynamic scene, the video camera is moving at an unknown velocity
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with respect to the environment. Such scenarios pose many challenges to motion segmen-
tation methods such as motion degeneracy and motion parallax [25]. Existing monocular
motion segmentation methods have two major limitations in dynamic environments: 1)
They either do not perform well due to geometrical limitations and noises [4, 79, 80, 82], or
2) they require end-to-end training (often fully supervised) to produce good results, which
is computation-intensive and reduces the generalizability of the method [49, 74, 59].

It is important to address these limitations in order to achieve accurate monocular
motion segmentation in diverse natural scenes with different object motions, object ap-
pearances and scene geometry, as well as to minimize the training cost. To tackle these
challenges, we draw inspiration from the recently proposed deep learning foundation mod-
els and the well-established geometry-based motion segmentation approaches. The recent
computer vision foundation models are very good at discovering, segmenting and tracking
objects in videos, but they cannot distinguish between static and moving objects. On the
other hand, a significant number of geometry-based approaches have been proposed dur-
ing the past years on motion clustering and segmentation, and recent studies have shown
impressive results by fusing different geometric models together, especially on challenging
scenes. However, such methods require manually corrected point trajectories as inputs and
cannot generate dense segmentation masks. Based on these reasons, we propose to combine
the advantages of both deep learning and geometric methods to perform motion segmenta-
tion by applying geometric model fusion on object proposals generated by computer vision
foundation models, which results in a zero-shot motion segmentation approach.

1.3 Overview

The proposed approach fuses multiple geometric models to cluster object proposals
into different motion groups. More specifically, our motion segmentation pipeline first
uses foundation models to detect, recognize and segment all common objects and the
background in the video sequence, then tracks these objects using an object tracker. For
each object in each frame, we obtain two types of motion cues – one set of object-specific
point trajectories and one set of object-specific optical flow masks. We then synergistically
fuse these two types of motion cues to cluster different objects in the proposal into different
motion groups. The key contributions of this thesis are the following:

1. Modeling multiple complex motions in challenging scenes by combining epipolar ge-
ometry and optical flow based motion models using multi-view spectral clustering.
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2. Proposing the first zero-shot motion segmentation pipeline that does not need any
training and achieve generalization on different scenes and object classes.

In the following sections, this thesis first provides a literature review on notable existing
motion segmentation methods as well as some necessary knowledge on motion segmenta-
tion. It then describes the detailed methodology for generating per-frame object proposals
and clustering them into different motion groups. Finally, it shows experimental results of
the proposed method, compares it with other state-of-the-art motion segmentation meth-
ods, provides discussion, conclusion and future research directions.
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Chapter 2

Literature Review

Monocular motion segmentation can be broadly categorized into three groups: (1)
Intensity based methods [51, 64, 55, 7, 9], (2) sparse correspondence based methods [18,
34, 33, 11, 20, 53, 40, 82, 3] and (3) deep learning based methods [74, 65, 10, 59, 16, 8, 21,
49, 52, 47].

2.1 Intensity Based Motion Segmentation

Intensity based methods are based on the brightness constancy constraint, which as-
sumes the pixels brightness stays consistent over time. Intensity based methods can be
further categorized into direct and indirect methods. Direct methods [1, 51, 27, 26, 75]
directly take a pair of images as input and combine the two processes of optimizing for the
brightness constancy constraint and estimating the motion models together. In contrast,
indirect methods [64, 78, 55, 7] rely on pixel-wise correspondences as input, and produce
a pixel-wise segmentation mask indicating different motion groups. Such pixel correspon-
dences are usually obtained from optical flow, which is based on the brightness constancy
assumption.

2.1.1 Direct Methods

Early works of direct methods [1, 51, 27] assume there is no more than one independent
moving object in the scene (including the camera) and directly compute the camera motion
parameters using a pair of of image frames, without computing optical flow. [51] develops a
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novel approach for estimating the movement of an observer relative to a planar surface us-
ing image brightness derivatives, bypassing the traditional optical flow computation. The
method analyzes spatial and temporal brightness variations of at least eight points. The
method uses nine nonlinear equations to extract the motion and surface parameters by
optimizing the least squares loss. [27] introduces methods to determine the various types
of motions of an observer in a static environment, including pure rotation, pure translation,
and complex motions with known rotation. These methods primarily focus on minimizing
the discrepancy between the observed and predicted pixel temporal brightness changes,
using first-order brightness derivatives without establishing point correspondences or esti-
mating optical flow. The research emphasizes the significance of a broad field of view for
accurate motion component recovery and the relevance of points with minimal brightness
change over time. Additionally, it addresses the challenges of large depth ranges and the
importance of effective spatial and temporal filtering of image data to avoid aliasing.

More recently, [75] proposes a method to perform motion segmentation on multiple mov-
ing objects. The authors propose a closed-form solution to perform motion segmentation
using the proposed multi-body brightness constancy constraint, a polynomial relationship
that connects pixel coordinates, image derivatives and motion models independently from
the segmentation of image data, achieving multi-label motion segmentation in both static
and dynamic scenes directly from a sequence of raw image data, without intermediate steps
like keypoint tracking or optical flow computation.

2.1.2 Indirect Methods

Comparing to direct methods, most recent works on intensity based methods use the
indirect approach [63, 64, 78, 55, 7], possibly due to the fast advance in optical flow
estimation [19, 69, 60, 32, 70, 67]. Indirect methods first computes optical flow as an
intermediate output and perform motion segmentation using the optical flow map as input.

A popular indirect motion segmentation approach is the variational method, which it-
eratively optimizes the motion parameters of different moving objects using a regularized
energy function. [63, 64] propose a variational approach to minimize an energy function
that describes the discrepancy between the reconstructed optical flow field and the ground
truth. A functional containing two terms is proposed – the first term describes the dif-
ference between the interpreted and the ground truth 3D screw motion parameters, and
the second term is a regularizer based anisotropic diffusion aiming to preserve the object
boundaries. The authors iteratively optimize a system of equations derived from this func-
tional using the half-quadratic algorithm after a random initialization. The method does
need to know the ground truth number of motions in the image sequence.
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Some approaches combine optical flow and appearance cues as input: In [55], the au-
thors use both motion and appearance cues (i.e., pixel intensity values) to perform temporal
consistent binary motion segmentation, which is able to segment objects even when they
pause their movements in some frames. The authors propose a method to perform bi-
nary motion segmentation using both motion boundaries and an object appearance model.
The method produces the binary segmentation in four steps: 1) Computing the motion
boundaries of the foreground object using the gradients of the direction and magnitude
of the optical flow; 2) compute an inside-outside map to label the pixels as foreground or
background based on it; 3) build an appearance model using two GMMs using the inside-
outside map and the labeled pixels in the current and nearby frames, and build a motion
prior based on the percentage of the superpixel inside the object and the propagation from
previous superpixels 4) Minimize the energy combining these two unary potentials and two
pairwise potentials for smoothness.

More recent approaches have achieved improved results by using probabilistic motion
models to determine if a region in the image belong to a certain moving object. In [7],

Figure 2.1: An example of indirect binary motion segmentation method proposed by [7].
The authors first solve for an optical flow angle field to estimate the background motion,
then compute the possibility of each pixel belonging to the background motion using the
Bayesian model
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the authors proposed a probabilistic motion model using the lengths and angle field of the
rotation-compensated optical flow vectors, together with sequential RANSAC to perform
binary motion segmentation. Figure 3.1 shows the framework of [7]. The authors first
solve for an optical flow angle field to estimate the background motion, then compute the
possibility of each pixel belonging to the background motion using the Bayesian model.

Removing the rotation part of the optical flow can improve the robustness of the method
in scenes with high depth variation, but will also result in additional noises in the motion
segmentation process and prolonged processing time.

In general, There are three main drawbacks to intensity based motion segmentation
methods: 1) Intensity based methods cannot handle strong depth variations from a moving
camera – if the scene contains these elements (e.g. road scenes), these methods will fail
to distinguish if a part of the image is moving independently or is just at a different
depth from its surroundings, because the motion flow vectors projected to a 2D image
from the 3D space are determined by both the depth and the screw motion of the object
[48]. 2) Typically, intensity based methods assume the brightness constancy constraint,
which states the intensity (brightness) of any pixel in an image remains constant between
consecutive frames, even though its position may change due to motion, however, this
assumption is not always satisfied. 3) Current intensity based methods mostly are mostly
focused on binary motion segmentation and do not perform well when there are multiple
moving objects. Additionally, optical flow based methods heavily rely on accurate optical
flow prediction. Most optical flow based motion segmentation methods can still suffer
heavily from noise and produce incorrect results given noisy optical flows [2].

2.2 Sparse Correspondence Based Motion Segmenta-

tion

Unlike intensity based methods or deep learning methods, sparse correspondence based
methods output clusters of predefined kepypoints corresponding to different motion groups
instead of dense segmentation masks. These methods can be further categorized into two-
frame based methods and multi-frame based methods.

2.2.1 Two-Frame Correspondence Based Methods

Two-frame based methods [71, 18, 34, 6] usually recover motion parameters by solving
an iterative energy minimization problem of finding a certain number of geometric models
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(e.g., fundamental matrices) on a set of matched feature points, to minimize an energy
function that evaluates the quality of the overall clustering of corresponding feature points.

Early works of two-frame motion segmentation typically uses generalized RANSAC
methods to optimize the geometric model fitting losses between a pair of images. For ex-
ample, [71] proposed to apply RANSAC sequentially on a set of matched keypoints between
a pair of images. This approach involves selecting a model through random sampling at
each iteration, aiming to maximize the number of inliers to a specific fundamental matrix
given a specified threshold. Once a model and its associated inliers have been identified,
these inliers are then removed from the pool of data points. This entire process is then
iteratively repeated to uncover additional models.

Other than relying on RANSAC, some more recent methods use the α-expansion al-
gorithm to minimize a more sophisticated joint loss function for better results. [18] and
[34] propose an extension of the α-expansion algorithm to simultaneously minimize a joint
loss consisting of a data cost, a smooth cost and a label cost in order to approximate a
set of different motion models in a pair of images. The motion models are proposed by
randomly sampling from the matched keypoints. The data cost is defined as the the mean
squared Sampson’s distance of keypoints with respect to fundamental matrix fitting. The
authors proposed the smooth cost and the label cost in addition to the data cost in order
to penalize overly complex motion models and to encourage spatial coherence respectively.

[6] improves upon [18] and [34] to better deal with more complex scenario where there
are many potential geometric motion models by progressively propose new potential mod-
els. More specifically. the authors use GC-RANSAC [5] with NAPSAC sampling [50] to
progressively propose new motion models one by one, and use MSAC [72] instead of the
traditional inlier counting method to evaluate the quality of each proposed model. The
authors also use or propose new criteria for proposal validation and termination in order to
make this method an any-time algorithm, which means the algorithm can be terminated
at any given time and still returns the current best solution.

Two-frame based methods are usually focused on geometric model fitting given a set of
matched keypoints from a pair of images. While geometric model fitting approaches can
be used on motion segmentation, they can also be used on other applications such as plane
detection by fitting homographies. However, a fundamental flaw of these methods is that
they are only able to fit one type of geometric model on a given pair of image. When they
are applied to motion segmentation, the only type of geometric model that can be used is
fundamental matrix. However, fundamental matrix can only capture different motions if
the motion is not confined to epipolar geometry [25], which is often not the case in reality.
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2.2.2 Multi-Frame Correspondence Based Methods

Unlike two-frame based methods, multi-frame based methods [40, 82, 3, 36, 79, 20,
61, 73, 76, 11, 53] usually establish point correspondences over multiple frames using an
optical flow based point tracking. Noisy, occluded and unwanted points are often manually
removed to produce a sparse set of completely noise-free point trajectories. The main
difference between multi-frame based methods and two-frame based methods is that multi-
frame based methods have more matched keypoints to work with – the keypoints are
obtained from a sequence of images and can be used to analyze long-term motions. Multi-
frame based methods not only use different geometric models, but also use spatio-temporal
similarities to uncover different motions, Moreover, unlike two-frame based methods which
only rely on epipolar geometry to detect different motions, multi-frame based methods are
able to combine different geometric models together and achieve better performance in
more challenging scenarios.

Subspace clustering is a popular method for multi-frame based motion segmentation
[73, 61, 76, 20]. These methods are based on the assumption that in a video with F
frames, the 2D coordinates of feature points trajectories lying on a single rigid object
belong to an affine subspace of R2F of dimension three [20]. This assumption is true when
the feature points are projected onto the 2D camera plane using an affine camera model,
where the depths of the feature points are approximated to be constant. Due to this reason,
such algorithms work well when the camera motion remains close to the camera plane, or
when the moving objects’ motions do not involve strong depth changes. However, if these
assumptions are not fulfilled to a certain extent, subspace clustering based methods will fail
to deliver satisfying results. usually use spectral clustering on affinity matrices constructed
using the results of geometric model fitting [40, 82, 3], subspace fitting [20, 61, 73, 76] or
pairwise affinities derived from spatio-temporal motion cues and appearance cues [11, 53].

Some multi-frame based methods also use spatio-temporal motion cues to determine if
different regions of the images belong to different motions [11, 53, 37, 38]. [11] and [53]
propose a pairwise trajectory motion affinity function computed using spatially regularized
pairwise trajectory motion difference. The motion difference between a pair of trajectories
is computed as the greatest squared difference between the two trajectories motion vector
(i.e. optical flow) throughout a certain number of frames. Since optical flow vectors only
account for motions on the camera plane (i.e., motions on the x and y axes only, but not
the z axis associated with the depth), in order to factor in motions on the depth axis,
the authors multiply the trajectory motion difference with the average spatial distance
between the two trajectories. The final pairwise motion affinity score is calculated as the
exponential of the normalized and regularized motion difference value. Spectral clustering
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Figure 2.2: Example Outputs of State-of-the-Art multi-frame correspondence based meth-
ods on the KT3DMoSeg dataset [82]. The left column is the groundtruth, the middle
column is the results of [36], and the right column is the results of [82]. The KT3DMoSeg
dataset is a challenging dataset due to its various degenerate motions and motion parallax
effects, but both methods are able to achieve good results by fusing multiple geometric
models.

is used to cluster all the point trajectories into segments of different motions after ob-
taining the pairwise motion affinity scores of every pair of trajectories. The authors also
propose a unique model selection technique to determine the number of motion clusters
automatically, by minimizing a spatial regularity term separately from the main motion
clustering objective. [37] and [38] improve upon [11] and [53] to provide more accurate
motion segmentation results on small moving objects. More specifically, they propose to
use minimum cost multicut to segment the point trajectories into different motion groups,
where every trajectory is considered as a vertex in the graph. The authors also propose a
new pairwise affinity function between trajectories by incorporating all three of color, spa-
tial and motion similarities. For the motion similarity score, the authors remove the spatial
distance regularizer used in [53] to avoid over-segmentation by minimum cost multicut.

Although spatio-temporal affinity based motion segmentation methods show success in
some general cases, they usually struggle to produce coherent motion segmentation results
at the object level and tend to over segment the objects. This is mainly due to two reasons:
1) the spatio-temporal motion model does not work well on non-translational motions (i.e.,
rotation or motion on the depth axis) in general due to its nature; 2) The moving object
itself may consist of different motions, for example, when a human walks, the torso and
the limbs belong to different rigid motion groups, so they tend to be over segmented.

In contrast to subspace clustering based methods or methods using spatio-temporal
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motion cues, most recent multi-frame based methods typically combine multiple different
geometric models to achieve the state-of-the-art results [82, 36, 79, 30]. [82] propose to
fuse three different geometric models (homography, fundamental matrix and affine camera
model) on consecutive frame pairs using multi-view spectral clustering to perform motion
segmentation. This method achieves state-of-the-art results on all rigid body motion seg-
mentation tasks, surpassing all previous methods, especially on challenging road scenes
where rotations and forward and backward motions are prominent. [36] improves upon
[82] by focusing on finding a consensus motion affinity matrix from all three geometric
models and also proposed a new optimization scheme to optimize the clustering process
using co-regularized spectral clustering. [79] employs a two-stage approach by first over
segmenting the trajectories points using multiple fundamental matrix fitting on selected
samples and then merging the over-segmented clusters using optical flow. [30] proposes
to improve the segmentation coherency by first using an initial grouping of the point tra-
jectories using an object segmentation mask, then using fundamental matrix fitting and
spectral clustering on to obtain the final motion segmentation. Geometric model fusion
techniques achieve the best results on rigid motion segmentation given trajectory points
in both general scenes and challenging road scenes, however, since they are mostly based
on geometric models, they may still struggle to distinguish non-rigid motions.

In conclusion, multi-frame correspondence based motion segmentation methods have
achieved impressive results under experimental settings largely thanks to fusing different
geometric models together, however, the performance of sparse correspondence based meth-
ods is still strongly determined by the accuracy of the point correspondence, since most
existing methods rely on manually corrected point correspondences and cannot handle
outliers and excessive noise. Another drawback is of point correspondence based meth-
ods in general is that they typically do not have an accurate automatic model selection
scheme to automatically infer the number of motions in the scene. Many methods require
a groundtruth number of motions as input [82, 36, 79, 30], but even for the methods that
propose custom model selection techniques do not usually perform well under practical
settings.

2.3 Deep Learning Based Methods

Deep learning based methods usually takes a pair or a sequence of input frames (some-
times also their optical flow masks) as input and directly produces a either a binary segmen-
tation mask of moving vs static objects [74, 65, 59, 21, 10], or a multi-label segmentation
mask showing different objects of different motions [16, 49, 52, 83, 15, 47].
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Many deep learning based methods adopt a fully supervised approach [74, 65, 16, 49].
These methods typically train a CNN-based encoder-decoder network to perform end-to-
end learning, which is computation-intensive. Their network architecture usually have the
following components: (1) a module to extract the motion information from consecutive
frames, (2) a module to extract appearance information from the same frames, (3) a module
to fuse the appearance and motion information, and (4) a decoder to generate the final
segmentation.These methods perform very well on scenes similar to the datasets they are
trained on, but cannot scale well to unseen environment where there are different motion
patterns or object classes. Moreover, the data collection and training process are very
time-consuming and computation intensive, which make them not an ideal method.

Aside from supervised methods, some methods use a self-supervised and unsupervised
approach. In [8], the authors extended their previous work [7] by proposing an self-
supervised approach to train a neural network to perform motion segmentation on synthetic
angle fields, given that most optical flows can be reduced to rotation-compensated angle
fields. The rotation-compensated angle field is obtained using the following steps. First,
the camera rotation is computed using the known camera intrinsic and extrinsic matrix.
Then, the rotation components are subtracted from the optical flow fields to obtain the
rotation compensated optical flow fields. Finally, each optical vector in the optical flow
field is normalized to obtain the rotation compensated angle field. In [46], the authors
proposed an unsupervised learning method to solve multi-label motion segmentation prob-
lem. The method first relies on the Expectation-Maximization (EM) algorithm to produce
motion segmentation, and then trains a motion segmentation network using these gener-
ated results to avoid running the slow EM-algorithm during the run time. However, these
two methods purely rely on optical flow for motion information and thereby inheriting the
limitations of optical flow. In order to alleviate this limitation, [15] propose to train image
segmentation and motion segmentation models together using both optical flow and raw
video frames as inputs due to the fact that motion and appearance cues are usually highly
related in practice. The unsupervised training is done in a very similar way as [46] using
the EM-algorithm.

One of the state-of-the-art deep learning based motion segmentation network is Rap-
tor [52], where the authors train a CNN model on the 3 consecutive image frames, their
optical flow maps and monocular depth maps. Using the depth map is a crucial since
it compensates for the weakness of optical flow in distinguishing motion parallax from a
moving camera. More specifically, if the scene contains significant depth variation, using
only optical flow is insufficient in distinguishing if a part of the image is moving inde-
pendently or is just at a different depth from its surroundings, because the motion flow
vectors projected to a 2D image from the 3D space are determined by both the depth and
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Figure 2.3: The network architecture of Raptor [8], one of the state-of-the-art monocular
motion segmentation network. The network takes 3 consecutive video frames as well as
their monocular depth map and optical flow field as inputs, and outputs a multi-label
motion segmentation mask indicating moving objects in different motions.

the screw motion of the object [48]. The authors also incorporate the image appearance
information in their model by pretraining a class-agnostic object segmentation module on
the COCO object segmentation dataset [43]. The rest of the training is done on synthetic
datasets only and the results translate relatively well to other datasets.

Deep learning based methods are currently the state-of-the-art methods for dense
monocular motion segmentation from a moving camera, however, they do have limita-
tions such as requiring training and some form of supervision. Moreover, many current
methods rely on optical flow as the sole input for motion information, which makes their
model inherit the drawbacks of optical.

2.4 Summary

Monocular motion segmentation is a fundamental task in computer vision. It has
evolved significantly and has branched into three distinct categories: intensity-based meth-
ods, sparse correspondence-based methods, and deep learning-based methods.

Intensity-based methods leverage the brightness constancy constraint to distinguish
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motion segments. This category is divided into direct methods, which optimize the bright-
ness constancy constraint and motion model estimation simultaneously without optical
flow, and indirect methods, which rely on pixel-wise correspondences from optical flow for
segmentation. Most recent methods use the indirect approach. Despite the advancements,
intensity-based methods struggle with scenes of high depth variation and fail to uphold
the brightness constancy in dynamic lighting conditions, limiting their applicability.

Sparse Correspondence-based methods focus on clustering predefined keypoints into dif-
ferent motion groups, with two-frame and multi-frame approaches offering solutions based
on geometric model fitting and spatio-temporal similarities. Multi-frame based approaches
have demonstrated impressive results, particularly when fusing different geometric models.
However, their performance heavily depends on the accuracy of point correspondences and
the manual removal of outliers, posing challenges in noisy or complex scenes. They also
cannot produce dense segmentation masks due to the nature of these methods. The lack
of effective automatic model selection schemes further limits their application in diverse
settings.

Deep Learning-based Methods represent the forefront of monocular motion segmenta-
tion, directly producing dense segmentation masks from image sequences. Fully supervised
approaches have shown exceptional performance on familiar scenes, yet they struggle with
generalization to new environments due to the intensive data and computational demands.
Unsupervised and self-supervised strategies offer promising results by using synthetic data
and innovative training techniques to overcome the limitations of supervised methods.
Incorporating depth information and integrating appearance cues are effective ways to
enhance model robustness.

Despite the progress, the field faces challenges like model generalizability and the need
of supervision. Future research aims to integrate the strengths of these methods and
explore new techniques for more adaptable and efficient motion segmentation methods.

14



Chapter 3

Fundamentals of Monocular Motion
Estimation

In order to identify and segment different moving objects from a moving camera, we
first need to understand how to estimate the motion of a moving object and the moving
camera from a sequence of RGB images. How to accurately estimate these motions is
a challenging problem. In this chapter, we first explain the theories behind monocular
motion estimation. We then discuss the geometric and mathematical techniques that can
be used to distinguish different moving objects from a monocular camera on a fundamental
level.

3.1 Three-Dimensional Interpretation of Optical Flow

3.1.1 Camera Projection model

Figure 3.1 shows an 3D orthogonal coordinate system with basis vectors I, J and K on
X, Y and Z axes. This coordinate system represents the 3D world coordinate system, while
π represents the image plane at a distance f from the world origin O. Axis Z represents
the depth and is perpendicular to image plane π, while axes X and Y are parallel to the
image plane. Let the origin of the image plane o be on the depth axis Z.

Let P be a random point on a random surface in the 3D world coordinate system with
3D coordinate (X, Y, Z), and let p be the 2D projection of P on the image plane π with
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Figure 3.1: Camera Projection Model [48]

its 3D coordinate being (x, y, f). Thus, we can establish the following relationship among
points P, p and O:

X − 0

x− 0
=

Y − 0

y − 0
=

Z − 0

f − 0
(3.1)

And we can represent the projected 2D coordinate of p on the image plane π as follows:

x = f
X

Z

y = f
Y

Z

(3.2)

By taking the derivatives on both sides of the projection equations above, we can obtain
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the following equations, where u and v correspond to the 2D velocities of p projected from
P on the image plane along the X and Y axes (also known as the motion flow):

u = f
Z dX

dt
−X dZ

dt

Z2
= f

ZU −XW

Z2
= f

U

Z
− x

W

Z

v = f
Z dY

dt
− Y dZ

dt

Z2
= f

ZV − YW

Z2
= f

U

Z
− y

W

Z

(3.3)

where

U =
dX

dt
, V =

dY

dt
,W =

dZ

dt
(3.4)

U, V and W represent the velocity of P in the 3D world coordinate system along the X,
Y, Z axes respectively, while u and v represent the velocity of p projected from P onto the
2D image plane. When the brightness constancy constraint is satisfied, the motion flow
vectors u and v will be equal to the optical flow at p.

If we assume the surface where P lies belongs to a rigid body, we would be able to model
its motion with the following rigid body motion model. More specifically, the velocity of
P can be decomposed into two components – translational component and the rotational
component. Let OXYZ be the Cartesian coordinate system of the 3D world. Let T =
(τ1, τ2, τ3) be the translational velocity of P relative to OXYZ and let ω = (ω1, ω2, ω3) be
the rotational velocity of P. τ1, τ2 and τ3 are the translational velocities along the X, Y, Z
axes, and ω1, ω2 and ω3 are the rotational velocities along the X, Y, Z axes respectively.
Then the velocity of P can be represented with the following equation:

dP

dt
= T + ω ×OP (3.5)

Which expands to:

U = τ1 + Zω2 − Y ω3

V = τ2 +Xω3 − Zω1

W = τ3 + Y ω1 −Xω2

(3.6)
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Substituting (2) in (6) and then substitutisng the resulting expression in (3) results in the
Longuet-Higgins and Pruzdny model equations [45]:

u = −xy

f
ω1 +

f 2 + x2

f
ω2 − yω3 +

fτ1 − xτ3
Z

v = −f 2 + y2

f
ω1 +

xy

f
ω2 + xω3 +

fτ2 − yτ3
Z

(3.7)

The Longuet-Higgins and Pruzdny model equations represent the relationship between
the 3D motion of a point on a rigid body, its relative depth and its projected optical
flow. One thing worth notice is that if a set of 3D rigid motion parameters (T , ω) and
a depth scalar Z satisfy equation (7), then (αT , ω, αZ) will also satisfy equation (7).
This ambiguity of scale makes it only possible to recover the depth of a 3D point or its
translational velocity up to a relative scale.

3.1.2 Estimating Three-Dimensional Screw Motions from Opti-
cal Flow

Equation 3.5 demonstrates the mathematical relationship between the 2D motion flow
vectors and the 3D screw motions of an object in the scene, the camera focal length and
the depth of the object. For the rest of this chapter, we assume the brightness constancy
constraint is satisfied, thus the motion flow is equal to the optical flow. For each pixel in
an image frame, we can establish two equations using its horizontal and vertical optical
components u and v. Since all pixels that belong to the same rigid object share the same
screw motion τ1, τ2, τ3, ω1, ω2, ω3 but potentially different depth values, we can see that we
need at least 6 pixels on the same rigid body and their corresponding optical flow values to
solve for the screw motion of the object, assuming the camera focal length is also unknown.
More specifically, for 6 pixels on the same rigid body, we will have 12 unknowns, which
includes 6 screw motion variables, 6 depth values, 1 focal length, and minus 1 ambiguity
of scale.

We are only interested in solving for the relative 3D screw motion variables since the
goal is to segment objects with different motions. As mentioned earlier, one rigid object
has six instantaneous screw motion parameters . For every pixel that belongs to the rigid
object, we can construct two equations as in 3.7, and this results in a large number of
equations if we consider all pixels within the object mask. The problem is that equation
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3.7 is non-linear due to the unknown pixel depth being the denominator in some of its
terms, which poses significant challenge in optimizing for its solutions. However, if we can
linearize these two equations using a known depth value, such optimization will become
fast and straightforward. If the relative depth value of every pixel is known, we will be
able to linearize equation 3.7 with respect to the screw motion parameters T and ω in the
following form:

u = a+
b

z
− cx

z
− dy + ex2 − fxy

v = g +
h

z
− cy

z
+ dx+ fy2 + cxy

(3.8)

Where a, b, c, d, e, f , and g denote unknown parameters that encapsulate arithmetic
combinations of the six screw motion parameters, and z is the known relative depth of
the pixel [28]. Each unknown parameter thus encodes a composite measure derived from
the underlying screw motion parameters, reflecting specific algebraic relationships that
represent the object’s screw motions. We choose to use the relative depth here since
estimating the relative depth values of pixels can be done accurately by the state-of-the-
art monocular depth estimation models, while estimating the true depth of pixels is still
an unsolved problem. Theoretically, either using relative pixel depth or using true pixel
depth will have the same result in distinguishing different object motions. When solving
for the object screw motion parameters, using relative pixel depth

3.2 Epipolar Geometry and Its Application in Motion

Analysis

3.2.1 Epipolar Geometry

Epipolar geometry is a branch of geometry that focuses on understanding the intrinsic
projective geometry between two different views captured by the camera [25]. It is fun-
damental in the field of computer vision and structure from motion (SfM), providing a
mathematical framework to analyze how points in a three-dimensional space are projected
onto two images from different perspectives. This framework is built upon the concepts
of epipolar lines and epipolar planes, which are critical for determining correspondences
between points in the two views. By leveraging these correspondences, it becomes possible
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to reconstruct the three-dimensional structure of the scene, analyze the ego-motion of the
camera or the motion of any moving objects in the scene.

The fundamental concept in epipolar geometry is the epipolar plane, which is defined
by the line connecting two camera centers (the baseline) and any point in space. This
plane intersects each camera’s image plane along a line, known as the epipolar line. For
any given point in one image, its corresponding point in the other image must lie along
the epipolar line. Figure 3.2 demonstrates the concept of epipolar plane and epipolar line
by showing how a 3D point is projected onto two different camera planes (a) and how a
2D point on the camera plane is back projected into 3D space and then onto the camera
plane of another camera.

Mathematically, epipolar geometry can be represented as fundamental matrix [25].
Given a set of corresponding points on two images from two different camera views, we
can establish the following equation:

x′⊺Fx = 0 (3.9)

where F is a 3 × 3 matrix called fundamental matrix and x and x′ are the 2D ho-
mogeneous coordinates of the two corresponding points. Once the fundamental matrix is
obtained between two different camera views, we will be able to also recover the translation
and rotation parameters between these two views using singular value decomposition. The
translation and rotation parameters directly show the relative position or motion between
the two camera views. Detailed proof can be found in [25].

3.2.2 Distinguishing Different Motions from Epipolar Geometry

We showed how epipolar geometry can be used to described the relationship between
a 3D point and its 3D projection from 2 different cameras. Now imagine when there is
only one camera which is moving, the same principle can be applied in this scenario if we
consider the same camera at two different timestamps as two different camera views. In this
way, we can infer the ego-motion of the camera as well as the motion of potential moving
objects in the scene using the established point correspondences and epipolar geometry.

Between two camera views, one fundamental matrix normally can be recovered for each
rigid motion if enough corresponding points can be established on the same rigid body.
The fundamental matrix F has 7 degrees of freedom [25] and can be solved if more than
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Figure 3.2: Epipolar Geometry [25]

7 pairs of corresponding points can be established on the same rigid body. Typically, a
combination of seven-point algorithm or eight-point algorithm and RANSAC [22] is used
to solve for the fundamental matrix by minimizing the algebraic error x′⊺Fx after an
overdetermined linear system of equations is established on a set of corresponding points.

Although algebraic error is the most widely adopted way to compute the fundamental
matrix due to being fast and decently accurate, it is not always accurate in measuring
how well the fundamental matrix fits the corresponding points, because it can be affected
by the absolute values of homogeneous coordinates of the corresponding points, even after
normalization. A more accurate way to evaluate how well the fundamental matrix and the
corresponding points fit each other is the Sampson distance [25]:

dSampson =
(x′TFx)2

(Fx)21 + (Fx)22 + (F Tx′)21 + (F Tx′)22

The Sampson distance is the first order approximation of geometric error, which is the
actual geometric distance between the corresponding points and the epipolar lines on the
image plane we want to minimize. However, the geometric error is hard to minimize due
to its non-linear nature, and the Sampson distance offers a closer approximation than the
algebraic error, while also being faster to compute than geometric error.

If we compute one fundamental matrix for each individual rigid object between each
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frame pair of the video, we will be able to use these fundamental matrices to represent
the motion of each individual object. For example, given a set of corresponding feature
points PA detected on an object A at frame m and the fundamental matrix FA computed
on these feature correspondences between frames m and n, we can compute the epipolar
lines of these feature points at frame n. For object A, its feature points must lie closely
to the epipolar lines on both frames m and n, because this is how its fundamental matrix
is computed. However, if we look at another object B that is moving differently from
object A, the corresponding feature points of object B between frames m and n (denoted
as PB and P ′

B) will not be matched with the fundamental matrix of object A. That is, If
we compute the mean Sampson distance using PB and P ′

B and the fundamental matrix of
object A (FA), it will most probably result in a much larger number than that of object
A, indicating the point correspondences do not lie closely to the epipolar lines on either
frame. If we see such a discrepancy, we will know that object A and B are moving differently
between frame m and n. However, this method does have limitations: First, it only uses
epipolar geometry to determine if there is relative motion between two objects. If the two
objects are both moving on the epipolar plane of the two camera views, this method will
not be able to recognize their relative motion since the mean Sampson distance of both
objects will be close to zero. Second, it assumes the motion is rigid. If both objects have
more non-rigid motions than rigid motions, both Sampson distances will be large.

3.3 Summary

In this chapter, we have discussed the fundamental theory of monocular motion seg-
mentation, as well as two basic methods of monocular motion estimation from a moving
camera. The first method uses the optical flow and the relative depth map to compute
the relative screw motion between a rigid object and the camera. The second method
uses corresponding feature points on a rigid object between two different camera views to
compute a fundamental matrix, from which we can recover the object’s translation and
rotation parameters relative to the camera.

We also discussed how such motion estimation methods can be used to perform monoc-
ular motion segmentation. The ability to estimate the motions of individual objects in
the scene is crucial for motion segmentation. When multiple objects are present in the
scene, motion estimation techniques can be used to estimate the motion of each individual
object. By analyzing each object’s motions, we can determine which objects are moving
in a similar pattern (most likely part of the background) and which objects are moving
independently.
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In the following chapter, we will discuss how we synergistically combine these tradi-
tional motion estimation methods with deep learning to achieve state-of-the-art zero-shot
monocular dense motion segmentation without needing any training.
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Chapter 4

Zero-Shot Monocular Motion
Segmentation by Object Proposal
Clustering

4.1 Methodology

This study propose a zero-shot monocular motion segmentation approach that uses both
object appearance information and a combination of epipolar geometry and optical flow
based motion models to perform in-the-wild motion segmentation without any assumptions
of the motion or the scene [29].

The proposed motion segmentation pipeline first generates an initial segmentation of
the background and all common objects in the scene using foundation models, and then
tracks these objects throughout the whole video using an object tracker. For each object
in each frame, we obtain a set of object-specific trajectory points, an optical flow mask and
a depth map. We then compute two types of motion models for each object in the scene:
one based on fundamental matrix fitting using point trajectories, and the other based on
fitting optical flow and a depth map to our proposed parametric equations. By fitting each
object’s motion models on every other object and analysing the residuals of the model
fitting, we are able to compute two pairwise affinity scores between every pair of objects
and construct two motion affinity matrices for the two types of motion models respectively.
Lastly, we fuse the two affinity matrices using co-regularized multi-view spectral clustering
to obtain the final segmentation. Figure 4.1 shows a diagram of the motion segmentation
pipeline.
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Figure 4.1: Our Motion Segmentation Pipeline. The motion segmentation method can
be summarized to three main steps: 1) given a sequence of video frames, we produce an
object proposal by automatically detecting, segmenting and tracking common objects in
the video. 2) we compute object-specific point trajectories, optical flow and monocular
depth maps for every frame. 3) we compute pairwise object motion similarity scores using
two motion models (one based on point trajectories and the other based on optical flow and
depth map), and use them to construct two motion affinity matrices. The two matrices are
fused using multi-view spectral clustering to cluster objects into different motion groups.

4.1.1 Generating Object Proposals

In order to identify all motions in a video sequence at object level, we first identify
every common object in the video and track their movements throughout the video. We
achieve this by using the recent foundational models in object recognition (Recognize
Anything Model)[86], detection (Grounding DINO model) [44] and segmentation (Segment
Anything Model) [58], and a state-of-the-art object tracker (DeAOT) [84]. We adapt
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our preprocessing pipeline from Segment and Track Anything (SAMTrack) [13], which is
an object segmentation and tracking framework based on the Grounding DINO model,
Segment Anything Model (SAM) and the DeAOT tracker. SAMTrack allows the user to
segment and track any specific objects in the video with a text prompt. To make our
system fully automatic, we avoid using the user-defined text prompt by adding RAM at
the beginning of our pipeline to automatically recognize any common objects in the video
frame. In summary, our whole preprocessing pipeline consists of the following steps: 1) Use
RAM to recognize any common objects in the first frame of the video; 2) Feed the output
of RAM as a text prompt to the Grounding DINO model to obtain object bounding boxes;
3) Feed these bounding boxes to SAM to obtain an instance segmentation mask of the first
frame. Non-max suppression was used to remove objects with an IoU score > 0.5 or with a
mask area larger than half the image size; 4) Use the DeAOT tracker to track each object’s
mask throughout the entire video. In order to account for potential new objects entering
the scene in the middle of the video, we split the video into multiple parts of l frames each
and perform steps 1) to 4) on each part separately. The number l can be video-specific,
for example, more dynamic videos with many objects entering scene in the middle of the
video will benefit from a smaller l.

4.1.2 Object-Specific Motion Cues

Once we have an object proposal for every frame of the video, we will then obtain
object-specific motion cues for every object in the object proposal. We propose to use
point trajectories, optical flow and monocular depth map automatically generated by off-
the-shelf networks as motion cues, in order to model objects’ motions in two complementary
ways.

Object-Specific Point Trajectories

A set of sparse point trajectories is generated for every object using PIPs [24]. PIPs is
a state-of-the-art point tracker which tracks individual pixels given their initial locations in
a video frame. A mixture of Shi-Tomasi [35] and K-Medoids [56] sampling method is used
to obtain the initial pixels from each object as it showed good experimental results from
previous works in similar tasks [58]. These tracked pixels can be used as object-specific
feature points to fit fundamental matrices for every object in frame pairs to describe their
motions. One limitation of PIPs is that does not handle occlusion well if the tracked video
is more than 8 frames. To overcome this issue, we check for every point if it is inside its
corresponding object’s mask area every 8 frames. If not, we remove that point and sample
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a new point inside the object’s mask. We also remove any point that is near the edge of
the frame since the tracking accuracy of PIPs drops significantly in this case.

Object-Specific Optical Flow and Depth Map

We also generate a dense optical flow mask and a monocular depth map for every frame,
from which we can extract object-specific optical flow vectors and depth maps. We use
a state-of-the-art optical flow estimator [68] to obtain optical flow, and a state-of-the-art
monocular depth estimator, DINOv2 [54], to extract the depth maps. We use monocular
depth estimation to estimate the scene depth from a single frame since our goal is to perform
motion segmentation from a moving monocular camera. DINOv2 outputs a relative depth
map, which is sufficient for our application. Our experiment shows improved results when
both optical flow and depth map are used to compute the motion model, comparing to
only optical flow. We show how a depth map can be used to improve the motion model
based solely on optical flow in the next section.

4.1.3 Motion Model Fitting

After obtaining object-specific point trajectories, optical flow vectors and depth maps,
for each frame pair, we compute two motion models of each object based on epipolar geom-
etry and optical flow respectively, to model its motion throughout the video. To compute
the epipolar geometry based motion models using point trajectories, we compute a fun-
damental matrix of each object between every f frames by solving p′TFp = 0 using the
eight-point algorithm with RANSAC [22], where p and p′ are the normalized 2D homo-
geneous coordinates of the same tracked point in the two frames. If a degenerate case is
encountered for the fundamental matrix, we do not use it.

For the optical flow based motion model, we propose a modified version of the Longuet-
Higgins and Pruzdny model equations [45], which model’s the instantaneous screw motion
of rigid objects at arbitrary depth. The original Longuet-Higgins and Pruzdny model
equations establish a relationship between the optical flow, the instantaneous screw motion
of rigid objects and the pixel depth value:

u = −xy

f
ω1 +

f 2 + x2

f
ω2 − yω3 +

fτ1 − xτ3
z

v = −f 2 + y2

f
ω1 +

xy

f
ω2 + xω3 +

fτ2 − yτ3
z

(4.1)
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where u and v are the optical flow vectors on the x and y axes, z is the pixel depth, f is the
focal length of the camera, and τ1, τ2, τ3 and ω1, ω2, ω3 are the translational and rotational
screw motions of the object. However, in practice, we often do not know the absolute pixel
depth, thus we cannot use the complete model to compute the screw motion of the object.
To deal with this issue, existing works often use a parametric motion to directly model the
object motion from optical flow. For example, [47] uses a piecewise set of the following
parametric equation with 12 parameters to direct fit the optical flow field, but their motion
model is not theoretically correct and cannot handle scenes with large depth variations.
[7, 9] uses a less complex parametric motion equation to model the rotation compensated
optical flow angle field, but it requires a known camera matrix, which is also not practical.
To have a better motion model that is both theoretically sound and does not need camera
information, we propose to linearize the Longuet-Higgins and Pruzdny equations using the
monocular depth map generated from DINOv2. With known relative pixel depths, (4.1)
can be rewritten as the following linear parametric equations, as previously mentioned in
3.1.2:

u = a+ b
1

z
− c

x

z
− dy + ex2 − fxy

v = g + h
1

z
− c

y

z
− dx+ exy + fy2

(4.2)

Although the depth map from DINOv2 is relative, it can still be used to model object
motion in this case – our goal is to cluster the objects’ motions into different motion
groups instead of computing each object’s screw motion, so we do not need to care about
the uncertainty of scale. For convenience, we still refer to this motion model as our “optical
flow motion model”, although it uses both optical flow vectors and pixel depth maps.

4.1.4 Constructing Affinity Matrices

After all fundamental matrices and optical flow motion models are computed, each
object will have a fundamental matrix between every p frames and an optical flow motion
model between every two frames. By fitting every object’s trajectory points, optical flow
vectors and depth maps to every other object’s fundamental matrix and optical flow motion
model on the same frame pair, we can obtain the residuals of every object to all other
objects’ motion models respectively. We use Sampson distance [25] as the residual for the
fundamental matrix and mean squared error for the optical flow motion model. Assuming
there are k objects in the scene, for the i-th object at the m-th frame pair, we obtain the
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following residual vectors under the fundamental matrix and optical flow motion models:

rrro
m
i = [ro

m
i,1, ro

m
i,2, ..., ro

m
i,k],

rrrf
m
i = [rf

m
i,1, rf

m
i,2, ..., rf

m
i,k]

where ro
m
i,k is the mean residual for fitting the parametric motion model of object i on

the optical flow vectors of object k between frames m and m + 1, and rf
m
i,k is the mean

Sampson error for fitting the fundamental matrix of object i on the trajectory points of
object k between framesm andm+p. We construct two affinity matrices encapsulating the
pairwise motion affinities between each pair of objects using a modified version of ordered
residual kernal (ORK) [14]. Specifically, for each object, we sort its residual vectors in
ascending order and define a threshold to select the smallest t-th residual as inliers. We
define ccci = {0,max(t − ni, 0)}K as an inlier score vector whose length is the same as the
number of objects K. ni is the rank of object k in the residual vector of object i, penalizing
different inlier distributions between objects. The pairwise motion affinity between objects
i and j can thus be computed as aaaij = ccc⊺i cccj, which denotes a weighted co-occurrence score
between two objects as inliers of all motion models. Our proposed weighted ORK is robust
to outliers and makes the affinity matrix more adaptive to different scenes by reducing the
need to set scene specific inlier thresholds.

4.1.5 Co-Regularized Multi-view Spectral Clustering

After constructing the affinity matrices, we normalize them using row normalization
[77] and adapt co-regularized multi-view spectral clustering [39] to fuse the two affinity
matrices together. With the number of motion groups in the scene given as an input,
we are able to obtain the final clustering of moving objects. Co-regularized multi-view
spectral clustering uses an regularization term to encourage consensus between different
views and is shown to perform well on fusing multiple geometric models for a consistent
representation of motion information [82].

4.2 Experiments

Our method is tested on three benchmarks: DAVIS-Moving, YTVOS-Moving and the
extended KT3DMoSeg. We first briefly introduce these datasets, then show both quantita-
tive and qualitative comparisons between our method and other state-of-the-art methods.
Lastly, we present an ablation study to compare the performance of different individual
motion models and the fused motion model.
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Method Training
DAVIS-Moving

Pu Ru Fu

MoSeg [16] Supervised 78.30 78.80 78.10

Raptor [52] Supervised
Features

75.90 79.67 75.93

RigidMask [83] 59.03 49.89 50.01

Ours
Zero-Shot

(no training)
78.27 81.58 79.40

Table 4.1: Quantitative results of our method and state-of-the-art motion segmentation
methods on the DAVIS-Moving validation dataset. The best result for each metric is in
bold and the second best result is in underscore. The quantitave results of the models
being compared are directly cited from Neoral’s work [52].

4.2.1 Datasets

DAVIS-Moving and YTVOS-Moving are both proposed by [16] as datasets for generic
instance motion detection and segmentation. DAVIS-Moving and YTVOS-Moving are sub-
sets of the DAVIS 17 dataset [57] and the YTVOS dataset [81], where all moving instances
in the video sequence are labeled and no static objects are labeled. These two recently
proposed datasets are very challenging due to their diverse object classes, occlusions and
non-rigid motions. To the author’s knowledge, the DAVIS-Moving and YTVOS-Moving
datasets are the most recent datasets solely focused on motion segmentation.

In addition to these two datasets, we also evaluate our method on an extended version of
the KT3DMoSeg dataset. The original KT3DMoSeg dataset [82] is designed to test point
trajectory based motion segmentation methods on complex road scenes. It contains man-
ually corrected point trajectories on selected moving instances in road scenes and includes
significant degenerate motions and depth variations. In order to test the performance of
our method in such environments, we extend the KT3DMoSeg dataset by adding a pixel-
level segmentation mask to every moving instance in the scene. We refer to this extended
dataset as the KT3DInsMoSeg dataset in the following sections.
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Figure 4.2: Qualitative results of different methods on DAVIS-Moving (row 1, 2), YTVOS-
Moving (row 3, 4) and the extended KT3DMoSeg (row 5, 6) datasets. MoSeg often mistak-
enly label static objects as dynamic when there is degenerate camera motion. RigidMask
fails to detect or coherently segment objects with non-rigid motions. Similarly, Raptor also
has these problems, although to a lesser extent overall. Our method, despite not being
trained on any data, performs well when facing these challenges.

4.2.2 Results

To evaluate our method, we adopt the precision (Pu), recall (Ru) and F-measure (Fu)
proposed in [16] which penalizes false positives. The F-measure combines both precision
and recall and indicates the method’s overall performance. Table 4.1, 4.2 and 4.3 show
quantitative results of our method and other state-of-the-art methods on the three bench-
marks. In selecting benchmark methods for comparison with our proposed motion segmen-
tation approach, two primary criteria were used to ensure relevance and reproducibility.
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Method Training
YTVOS-Moving

Pu Ru Fu

MoSeg [16] Supervised 74.50 66.40 66.38

Raptor [52] Supervised
Features

64.43 60.94 60.35

RigidMask [83] 29.88 17.88 18.70

Ours
Zero-Shot

(no training)
64.12 61.10 60.62

Table 4.2: Quantitative results of our method and state-of-the-art motion segmentation
methods on the YTVOS-Moving validation dataset. The best result for each metric is in
bold and the second best result is in underscore. The quantitave results of the models
being compared are directly cited from Neoral’s work [52].

Method Training
KT3DInsMoSeg

Pu Ru Fu

MoSeg [16] Supervised 63.73 78.24 66.85

Raptor [52] Supervised
Features

71.52 88.27 75.82

RigidMask [83] 65.14 83.34 70.91

Ours
Zero-Shot

(no training)
72.93 71.02 71.89

Table 4.3: Quantitative results of our method and state-of-the-art motion segmentation
methods on the proposed KT3DInsMoSeg dataset. The best result for each metric is in
bold and the second best result is in underscore.

First, priority was given to recently proposed methods with publicly available source code,
enabling straightforward implementation and verification. Second, for recently proposed
methods without publicly available source code, we only select those having been tested
on the DAVIS-Moving and YTVOS-Moving datasets, which are the datasets we use for
evaluation due to the reasons previously mentioned.
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Although we did conduct any training, our method achieves the best result on the
DAVIS-Moving dataset, surpassing even the fully-supervised method [16]. On the YTVOS-
Moving dataset, our method achieves the second best result, surpassing Raptor [52] with
a slight 0.27 % higher Fu score. On the KT3DInsMoSeg dataset, our method achieves the
second best result only after Raptor.

We also qualitatively compare our method with these methods and we show the results
in Figure 4.2. MoSeg [16] produces good results on segmenting moving objects from DAVIS-
Moving and YTVOS-Moving datasets, but it fails to identify the motions of cars and bikes
in the two bottom rows when the scene contains degenerate motions (e.g., forward or
backward camera motion), as such scenario is not part of its training dataset, whereas
our method successfully identifies the cars as being static and the bike as being in the
same motion group as the person. RigidMask [83] fails to produce coherent segmentation
of the person on the second row, and also fails to detect the motions of the parrot, the
train and the bicycle in the middle rows, whereas our method successfully detects and
segments all of them coherently. Although RigidMask [83] performs relatively well on the
KT3DInsMoSeg dataset due to most motions in the dataset being rigid, it does not produce
a segmentation mask as accurate as our method for objects with complex contours (e.g.,
person). Raptor [52] is able to detect most objects in the scene thanks to its powerful
semantic backbone, however, it still over-segments non-rigid objects such as the parrot.
Similar to other methods, It also falsely identifies the static cars on the bottom row as
being dynamic.

4.2.3 Ablation Study

We present both quantitative (Table 4.4) and qualitative (Fig. 4.3) comparisons be-
tween different individual motions models and the fused motion model for their perfor-
mances on the three benchmarks.

We find that on both DAVIS-Moving and KT3DInsMoSeg datasets, our model fusion
technique (fused) is able to significantly boost the Fu score comparing to using only a
single model (27.28% and 28.52 % respectively), while on YTVOS-Moving, the Fu score
only had a 9.79 % increase. Upon further inspection, we found that this can be attributed to
some motion labels in the YTVOS-Moving dataset actually being mostly static throughout
the video sequence. Since our method clusters moving objects purely using motion cues, it
groups these objects together with the background as expected. Additionally, the YTVOS-
Moving dataset also contains some videos with significant camera zooming, which violates
the geometric assumptions of both our motion models. Our motion model fusion technique
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Method
DAVIS-Moving YTVOS-Moving KT3DInsMoSeg

Pu Ru Fu Pu Ru Fu Pu Ru Fu

Fused 78.27 81.58 79.40 64.12 61.10 60.62 72.93 71.02 71.89

OC+Depth 71.53 75.66 73.18 63.54 58.94 56.06 48.04 61.54 49.26

OC 58.25 59.22 57.08 61.79 54.64 53.74 36.44 39.97 34.78

Trajs 65.99 75.51 68.47 54.67 52.92 50.05 42.31 73.66 45.24

Baseline 43.17 86.24 52.12 48.49 73.01 50.82 38.97 70.97 43.37

Table 4.4: Quantitative ablation study of the motion segmentation results from using dif-
ferent motion cues. Baseline results are obtained by directly using the raw object proposals
as the final motion segmentation mask. Bold numbers are the best results and the under-
scored numbers are the second best results.

is able to achieve better results than any single motion model on all three datasets, showing
its effectiveness.

We also show the performance comparison between the motion model purely based
on optical flow (OC) and the motion model based on a combination of optical flow and
relative monocular depth information (OC + Depth). For optical flow based motion model
(OC), we use the optical flow motion model of [47], which is a state-of-the-art unsupervised
motion segmentation method using only optical flow as input. Their motion model is a 12-
parameter quadratic parametric equation modified from the Longuet-Higgins and Pruzdny
model equations, by modelling the unknown depth information as parameters. Results
show that the motion model based on a combination of optical flow and depth (OC +
Depth) outperforms OC by a large margin in all three metrics on both DAVIS-Moving and
KT3DInsMoSeg. However, on YTVOS-Moving, the difference in performance between
these two motion models is not significant. This shows that the depth information is not
a key limiting factor for segmenting moving objects in this dataset. In fact, besides some
labeled objects being mostly static, the YTVOS-Moving dataset also contains significant
occlusions in many scenes and hard-to-detect objects like camouflaged animals. It is likely
that these factors outweigh the unknown depth information in preventing the method from
generating accurate motion segmentation.

Both point trajectory based (Trajs as in Table 4.4) and optical flow based (OC as
in Table 4.4) motion models perform poorly on the KT3DInsMoSeg dataset, due to sig-
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Figure 4.3: Qualitative ablation study between motion models based on different motion
cues. Pure optical flow based motion model (OC) suffers on scenes with objects at varying
depths. Combining optical flow with depth information (OC + Depth) only alleviates this
problem to some extent. Pure point trajectory based motion model (Trajs) suffers from
motions near the epipolar plane and inaccurate trajectory estimation. Motion model fusion
effectively mitigates these problem by combining the advantages of both motion models
and outperforms any single model.

nificant motion degeneracy (e.g., forward motion) and depth variations on road scenes.
Incorporating depth information in this case proves to be an effective way to reduce mo-
tion ambiguity for the optical flow based motion model, boosting its F-score from 34.78%
to 49.26%. Fusing the combined OC + Depth motion model with the point trajectory
motion model based on epipolar geometry significantly enhances the performance in this
case as well.
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4.3 Summary and Future Work

In this study, we propose the first zero-shot approach to solving the problem of instance
motion segmentation from a moving monocular camera. The proposed method combines
the advantages of both deep learning foundation models and geometric approaches, which
results in a zero-shot motion segmentation approach that performs motion model fusion on
object proposals. Performance comparisons between the fused motion model and each in-
dividual motion model demonstrate significant improvements with the fused motion model,
highlighting the effectiveness of the motion model fusion technique. Although this method
is a zero-shot method, experimental results show that it surpasses most state-of-the-art
methods and highly competitive with others. Future research will investigate in incorpo-
rating additional motion models, such as the trifocal tensor, to further enhance the motion
segmentation performance.

Two primary limitations are identified with the proposed zero-shot motion segmentation
method. First, it requires the number of distinct moving objects to be known to achieve
optimal results. This limitation stems from the usage of spectral clustering, which, akin to
many clustering methods, necessitates the input of the exact number of clusters to yield
the best performance. This is not practical, since we often do not know the number of
motions in the scene and need the model to discover such information by itself. Second,
the method suffers from slow inference speed since it needs to integrate multiple deep
learning models and perform computations across several stages. This multi-stage process
inherently prolongs the inference time, presenting a significant drawback in scenarios where
fast processing is required.

In order to address the first limitation regarding the determination of motion clusters,
a novel model selection technique specifically designed for spectral clustering-based motion
segmentation is proposed. This technique aims to autonomously determine the number of
distinct motions within a scene. The overview, implementation, and comparative analysis
of this model selection technique will be comprehensively discussed in the following chapter.
Although this advancement significantly mitigates one of the key challenges, addressing the
limitation of inference speed remains an open area for future research.
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Chapter 5

A Unified Model Selection Technique
for Motion Clustering

5.1 Motivation

Currently, motion segmentation is still a challenging problem when a moving camera
is present, due to unknown camera motion. One popular technique to solve the motion
segmentation problem in such scenario is to perform spectral clustering on motion affin-
ity matrices constructed with motion models [11, 76, 41, 53, 82, 36, 79, 30, 42]. These
methods typically take manually corrected point trajectories as input and build custom
motion affinity matrices using one or more types of motion cues such as geometric models,
spatio-temporal similarities or optical flow. Recently, spectral clustering based methods
have shown remarkable results in segmenting motions in challenging dynamic environment
containing significant motion degeneracy and complex scene structures [82, 36, 79, 42, 30],
largely thanks to its ability of synergetically fusing multiple types of motion cues together.
However, all of these methods cannot automatically infer the number of motions present in
the scene (i.e., model selection) and rely on user input for such information. [11, 76, 41, 53]
do propose model selection techniques, but those techniques are specifically suited for their
respective methods, which do not perform well in complex dynamic scenes. To address this
issue, we propose a general unified model selection technique by combining the strengths
of multiple existing criteria [31], to automate the model selection process for the current
spectral clustering based motion segmentation methods relying on either single or multiple
types of motion affinities.
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5.2 Methodology

We first briefly introduce the motion segmentation method being used as a foundation
and baseline for our model selection technique, then discuss the proposed model selection
technique in detail.

5.2.1 Motion Segmentation Pipeline

We use our previously proposed motion segmentation method [30] as the baseline. [30]
performs motion segmentation by clustering different objects into different motion groups
according to their pairwise motion similarities. More specifically, it first generates an
object proposal for every frame of the video sequence denoting all common objects present
in the scene, using a combination of off-the-shelf object recognizer, detector, segmentor
and tracker. After all the potential objects in the video are segmented and tracked, object-
specific point trajectories and optical flow mask for each labeled object in the video are
generated as motion cues. From these two types of motion cues, two robust affinity matrices
are constructed to encode the pairwise object motion affinities throughout the whole video
using epipolar geometry and the optical flow based parametric motion model. Finally, co-
regularized multi-view spectral clustering is used to fuse the two affinity matrices and obtain
the final clustering. Figure 5.1 shows a diagram of this motion segmentation pipeline. This
method achieves state-of-the-art results on the challenging KT3DMoSeg dataset by fusing
multiple motion models together using multi-view spectral clustering, similar to other
recent methods. Therefore, it is an ideal baseline to evaluate our model selection method.

5.2.2 Model Selection

We propose a general unified model selection method by combining four widely used
model selection methods, i.e., the silhouette score [62], eigengap heuristic [77], Davies-
Bouldin index [17] and Calinski-Harabasz index [12], to obtain an improved accuracy in
determining the number of motion groups in the scene. We choose to use these four
methods since they are all widely used criteria to evaluate the quality of clustering as well
as to determine the optimal number of clusters. Given a motion affinity matrix, we first
compute a confidence score for each criterion on a range of possible number of motions
that may be present in the scene, we then compute the average of all four confidence scores
corresponding for every possible number of motions, and select the one with the the highest
confidence as the number of clusters to perform spectral clustering. We briefly introduce
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Figure 5.1: Motion Segmentation Pipeline Used to Evaluation Model Selection Techniques.
Given a sequence of video frames, 1) generate an object proposal for every frame, 2)
obtain object-specific point trajectories and optical flow as two types of motion cues, 3)
construct two motion affinity matrices using pair-wise object motion affinities, 4) perform
co-regularized spectral clustering on the two motion affinity matrices to obtain the final
segmentation

these four model selection criteria and further discuss our proposed method in the following
sections.

Silhouette Score

The silhouette score measures how closely related each sample is to other samples in
the same cluster comparing samples in other clusters. A higher silhouette score indicates
higher similarity among samples within each cluster and lower similarity among samples
in different clusters, hence better clustering quality. The mean Silhouette score for the
clustering can be written as follows:

S =
1

N

N∑
i=1

b(i)− a(i)

max(a(i), b(i))
(5.1)

where N is the total number of samples, a(i) is the mean distance between sample i and
all other points in the same cluster, and b(i) is the smallest mean distance between sample
i and any other points in any other cluster, representing the separation from neighboring
clusters. Silhouette score has a range between -1 and 1.
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Eigengap Heuristic

Eigengap heuristic is a heuristic method for selecting the optimal number of clusters in
clustering methods. According to the matrix perturbation theory [66], if the eigengap of
affinity matrix’s graph Laplacian is larger, then the subspaces spanned by its corresponding
eigenvectors will be closer to being ideal. Let λi and λi+1 be two consecutive eigenvalues
of the Laplacian matrix of the affinity matrix, their eigengap is:

δi = |λi+1 − λi| (5.2)

Let N be the total number of samples in the dataset, δ1, ..., δN−1 is then the set of all
possible eigengap values, and the ideal number of clusters K can be derived as follows:

K = argmax(δi) (5.3)

The Laplacian matrix L can be computed computed as L = D−A, where A is the affinity
matrix and D is the degree matrix of the affinity matrix. More details can be found in the
work of Luxburg [77].

Davies-Bouldin Index

Davies-Bouldin index is another quantitative measure of the clustering quality with
similar intuition as the silhouette score of minimizing the within cluster distances and
maximizing the between cluster distances. The Davies-Bouldin index can be written as
the following formula:

DB =
1

N

N∑
i=1

max
i ̸=j

d(i) + d(j)

D(ci, cj)
(5.4)

where DB is the Davies-Bouldin index of the clustering, N is the number of clusters, d(i)
and d(j) are the within-cluster distances of cluster i and it’s most similar cluster j, and
D(ci, cj) is the distance between the centroids of cluster i and j. A lower DB score means
better clustering quality.

Calinski-Harabasz Index

Calinski-Harabasz Index (also known as Variance Ratio Criterion) evaluates the cluster-
ing quality by estimating the ratio between ”between cluster variance” and ”within cluster
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variance”. It can be described with the following formula:

CH(K) =

∑K
k=1 nk ·D(ck, c)/(K − 1)∑K

k=1

∑nk

i=1D(xi, ck)/(N −K)
(5.5)

where CH(K) is the Calinski-Harabasz index for cluster K, nk is the number of samples in
cluster K, D(ck, c) is the distance between the centroid of cluster K and the centroid of
all samples, and xi is a sample in cluster K. A higher CH score indicates better clustering
quality.

Combining Different Model Selection Criteria

We propose to combine the above four different model selection criteria by first com-
puting a confidence score for each criterion on the motion affinity matrix for a range of
possible number of motions that may be present in the scene, then selecting the number
with the highest average confidence score as the number of motion groups present in the
scene, and use this as the number of clusters to perform spectral clustering.

To calculate the above model selection metrics given a motion affinity matrix, we first
need to transform the affinity matrix into a ”distance matrix”, due to the fact that the
silhouette score, Davies-Bouldin index and Calinski-Harabasz index operate on distances
among samples and clusters, instead of their similarities. Since all motion affinity matrices
are normalized (i.e., having pairwise object motion affinity values between 0 and 1), we
simply compute the pairwise object motion distance as 1 − affinity. Then, we use this
distance matrix to compute the normalized confidence score corresponding to each of the
three criteria. Each normalized confidence score is valued between 0 and 1 with higher
value indicating higher confidence. For eigengap heuristic, since it is not a quantitative
measurement of the clustering quality, we compute its confidence score by checking how
close the current number of motion clusters is to the optimal number of motion clusters (the
one with the largest eigengap). Since we have a predefined range of how many motions may
be present in the scene, it is easy to compute a normalized confidence score for eigengap
heuristic in the same way as other criteria.

The above method is works for automatic model selection given a single motion affinity
matrix. In cases of multiple multiple affinity matrices, we propose to first add these
affinity matrices together, then perform row normalization [77] to obtain a normalized
fused affinity matrix. We then perform the same procedure as above to infer the optimal
number of motions using the fused affinity matrix.
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5.3 Experiments

We evaluate our model selection method on the KT3DMoSeg dataset [82]. We chose
this dataset for evaluation since it is a challenging monocular motion segmentation dataset
proposed recently, focusing on real world scenes with strong motion degeneracy and motion
parallax. The dataset contains manually corrected point trajectories obtained from an op-
tical flow tracker on 22 video sequences selected from the KITTI dataset [23]. Each video
sequence contains 2 to 5 different motion groups. Our evaluations are based on three crite-
ria: 1) The mean squared error (MSE) of each method in predicting the number of motions;
2) The percentage of video sequences each method succeeds in predicting the exact num-
ber of motions correctly; 3) The overall motion segmentation error rates of different model
selection techniques, versus that achieved by the baseline motion segmentation pipeline
given the groundtruth number of motion clusters. The overall motion segmentation error
rate is computed as the average error rate of all 22 sequences in the dataset, and the error
rate of each sequence is computed as the percentage ratio between the number of wrongly
clustered trajectories and the total number of trajectories in the sequence. This metric is
adopted from Xu’s work [82].

The motion segmentation pipeline computes two motion affinity matrices using epipolar
geometry and optical flow respectively. We evaluate our motion selection method both
individually on each of the two matrices, and on the fused affinity matrix. The fused
affinity matrix is computed by taking the element-wise mean of the two matrices.

We also compare our proposed method of combining different model selection criteria
with a consensus voting method and random guessing. The consensus voting method
chooses the most frequent optimal number of motion clusters computed by all four criteria.
If there is not a most frequent number, it chooses the smaller median value. The random
guessing method simply uses a random number between 2 and 5 (inclusive) as the number
of motions for each video sequence.

Table 5.1 shows the mean squared errors of different model selection methods on dif-
ferent motion affinity matrices. Our proposed method (Average) achieves the best overall
result in predicting the number of motions using the fused affinity matrix, followed by the
consensus voting method and the silhouette method.

Table 5.2 shows the accuracy of predicting the exact number of motions from different
model selection methods on different motion affinity matrices. Silhouette score achieves
the best result in terms of correctly predicting the exact number of motions in the scene.
Our proposed method (Average) achieves the second best result.

Table 5.3 shows the final motion segmentation error rate of the motion segmentation
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Methods Aff. F Aff. OC Fused Aff. Avg. MSE

Silhouette 1.364 1.136 1.091 1.197

Eigengap 1.318 1.455 1.636 1.470

DB 1.091 1.818 1.500 1.470

CH 1.364 1.318 1.227 1.303

Random 3.909 2.455 3.091 3.152

Voting 1.091 1.455 1.046 1.197

Average 1.091 1.364 1.091 1.182

Table 5.1: MSE of different model selection methods on different motion affinity matrices
(lower is better). Aff. F is the motion affinity matrix obtained using epipolar geometry,
Aff. OC is the motion affinity matrix obtained using optical flow, and Fused Aff. is the
fused motion affinity matrix by taking the mean of the affinity scores of these two matrices

Methods Aff. F Aff. OC Fused Aff. Avg. Acc.

Silhouette 54.55 54.55 59.09 56.06

Eigengap 45.45 59.09 40.91 48.48

DB 54.55 31.82 40.91 42.42

CH 54.55 31.82 68.18 51.52

Random 31.82 31.82 27.27 30.30

Voting 54.55 40.91 59.09 51.52

Average 54.55 45.45 63.64 54.54

Table 5.2: Prediction accuracy of different model selection methods on different motion
affinity matrices (higher is better).

pipeline using different model selection methods. The motion segmentation error rate is
computed as classification error [82] of the input point trajectories. Our proposed method
achieves the best results on two out of three types of motion affinity matrices, close to the
baseline which takes the groundtruth number of motions as input. It is worth noting that,
while the overall average error rate of the proposed averaging method (average) across all
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Methods Aff. F Aff. OC Fused Aff. Avg. Error

Silhouette 15.99 19.68 12.78 16.16

Eigengap 16.36 25.01 16.47 19.28

DB 14.70 26.16 14.11 18.32

CH 18.03 26.88 12.09 19.01

Random 27.05 26.08 21.54 24.89

Voting 15.06 24.01 12.04 17.04

Average 13.89 20.59 12.03 15.50

Baseline 9.86 13.47 5.78 9.71

Table 5.3: Overall motion segmentation error rates of different model selection methods
vs. the error rate obtained from known groundtruth number of motions (lower is better)

three distinct motion affinity matrices is lower compared to the consensus voting method,
the error rate observed with the proposed method on the fused motion affinity matrix
is very similar to that of the consensus voting method (12.03% versus 12.04%). Further
statistical analysis may be required to investigate the effectiveness of these two methods in
this specific case. The silhouette method and the consensus voting method are the second
and third best methods, indicating their strengths as well, which is consistent with the
results in Tables 5.1 and 5.2.

To further investigate the strengths and weaknesses of our method, we also analyze
the evaluation results in more detail by comparing the performance of each method on
sequences containing different numbers of motions. Out of the 22 sequences, 12 sequences
contain 2 motion groups, 4 sequences contain 3 motion groups, 5 sequence contains 4 motion
groups and 1 sequence contains 5 motion groups. We show the MSE and the overall motion
segmentation error rate of each method on sequences containing each number of motions in
table 5.4 and table 5.5 respectively. The results are evaluated using only the fused affinity
matrix since the best motion segmentation results are usually obtained by fusing both
affinity matrices together, thereby making the fused matrix more important and useful.

Our proposed method performs well when there are only 2 motion groups in the se-
quence, which accounts for around half of the dataset. For sequences containing 3 or 5
motion groups, our method also performs decently well, being above average. However, for
sequences containing 4 motion groups, our method does not perform well. In fact, most
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Methods
Number of Motions

2 3 4 5

Silhouette 0.00 1.75 3.20 1.00

Eigengap 0.33 0.75 4.0 9.00

DB 1.167 3.25 1.00 1.00

CH 0.75 1.50 2.40 0.00

Voting 0.00 1.50 3.20 1.00

Average 0.00 1.75 3.20 1.00

Avg. MSE 0.375 1.75 2.83 2.17

Table 5.4: MSE of different model selection methods on different numbers of motions. Avg.
MSEs are computed using all 6 methods. Evaluated on the fused motion affinity matrix
only.

Methods
Number of Motions

2 3 4 5

Silhouette 6.10 20.03 23.43 10.52

Eigengap 10.74 24.09 22.51 24.61

DB 10.40 20.44 18.67 10.52

CH 7.95 17.72 17.75 10.96

Voting 6.10 18.21 21.67 10.52

Average 6.10 18.16 21.67 10.52

Avg. Error 7.90 19.78 20.95 12.94

Baseline 3.31 8.23 13.75 6.04

Table 5.5: Overall error rates of different model selection methods on different numbers of
motions. Avg. Errors are computed using all 6 methods. Evaluated on the fused motion
affinity matrix only.

methods do not perform well on these sequences. This is mostly likely due to the fact
that these video sequences generally contain more challenging scenes (e.g., more motion
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degeneracy or motion parallax) for the motion segmentation algorithm, resulting in motion
affinity matrices of lower quality. As shown in table 5.5, the baseline method where the
groundtruth number of motions is given also performs worst on these sequences.

5.4 Summary and Future Work

We propose a unified model selection technique for spectral clustering based motion
segmentation methods, to automatically infer the number of motions in the scene. We
combine four existing model selection criteria by computing custom confidence scores on
a range of possible numbers of motions, and select the number with the highest average
confidence among all four criteria as the optimal number of motions. This inferred number
is then used to perform spectral clustering to obtain the final motion segmentation. Our
method is tested with a state-of-the-art sparse correspondence based motion segmentation
method we previously proposed on the challenging KT3DMoSeg dataset, and achieves
competitive results, producing an overall error rate close to the baseline which takes the
groundtruth number of motions as input.

The preliminary results have confirmed the efficacy of the proposed model selection
technique on the KT3DMoSeg dataset, when it is used in conjunction with state-of-the-art
sparse correspondence-based motion segmentation method. While the proposed method
achieves competitive results close to the baseline which uses the known ground truth num-
ber of motions, further statistical analysis is necessary in order to rigorously compare the
effectiveness of the proposed averaging technique with the consensus voting technique. The
closeness in error rates between these two methods may indicate that variations in the re-
sults could stem from random fluctuations inherent in the evaluation process. Additionally,
in order to better assess the versatility and applicability of the proposed model selection
method, it is necessary to extend the scope of evaluation. This includes a more compre-
hensive evaluation across a larger group of spectral clustering-based motion segmentation
methods, as well as on additional datasets. Regrettably, due to time constraint, an assess-
ment of the proposed model selection technique in the context of the innovative zero-shot
monocular dense motion segmentation method introduced in Chapter 4 was not feasible.
As such, we leave the of conducting more thorough evaluations as future work.
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Chapter 6

Conclusions and Future Work

This thesis presented a novel zero-shot approach to performing monocular dense motion
segmentation from a moving camera. The proposed approach synergistically combines the
advantages of both deep learning foundation models and geometric approaches, resulting
in a zero-shot motion segmentation approach that performs motion model fusion on object
proposals. This approach achieved state-of-the-art performance without the need for any
training. Although the proposed approach achieves impressive motion segmentation results
in a zero-shot manner, one primary limitation is that it needs the number of distinct moving
objects in the scene to produce optimal results. In order to mitigate this limitation, we
proposed a model selection technique that automatically determines the number of motions
for spectral clustering-based monocular motion segmentation.

Our experimental results demonstrate that the proposed motion segmentation meth-
ods outperform some state-of-the-art supervised motion segmentation methods on certain
dataset and is highly competitive with others. In particular, fusing different motion models
showed a significant performance improvement, validating the effectiveness of our motion
model fusion technique.

Looking ahead, there are several promising directions for future work. One potential
avenue is to incorporate additional motion models, such as the trifocal tensor, to further
enhance the motion segmentation performance. Additionally, exploring ways to improve
the robustness and accuracy of our methods in more challenging scenarios, such as in scenes
with multiple moving objects or under varying lighting conditions, could also be beneficial.
Lastly, model selection remains a major limitation, although primary results suggest the
effectiveness of our proposed model selection technique, more comprehensive evaluation
needs to be performed on our proposed model selection technique. While deep learning-

47



based methods do indeed rely on extensive training data and computational resources,
they may be the most effective solution to the model selection problem. In such cases, our
in-depth analysis and comparison of various motion models and the motion model fusion
techniques could provide valuable insights into the design of loss functions for training
monocular motion segmentation networks.

In conclusion, this thesis contributes to the field of monocular motion segmentation
from a moving camera by proposing novel methods that leverage both traditional geometric
approaches and modern deep learning techniques. These methods represent a significant
step forward in our ability to accurately segment motion in complex scenes using a single
moving camera. We believe that the ideas and techniques presented in this thesis will
inspire and inform future research in this important area of computer vision.
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[58] Frano Rajič, Lei Ke, Yu-Wing Tai, Chi-Keung Tang, Martin Danelljan, and Fisher
Yu. Segment Anything Meets Point Tracking, July 2023. arXiv:2307.01197 [cs].

[59] Mohamed Ramzy, Hazem Rashed, Ahmad El Sallab, and Senthil Yogamani. RST-
MODNet: Real-time Spatio-temporal Moving Object Detection for Autonomous Driv-
ing, December 2019. arXiv:1912.00438 [cs, stat] version: 1.

[60] Anurag Ranjan and Michael J. Black. Optical Flow Estimation Using a Spatial Pyra-
mid Network. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2720–2729, Honolulu, HI, July 2017. IEEE.

[61] Shankar Rao, Roberto Tron, Rene Vidal, and Yi Ma. Motion Segmentation in the
Presence of Outlying, Incomplete, or Corrupted Trajectories. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(10):1832–1845, October 2010. Confer-
ence Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65,
November 1987.

[63] Hicham Sekkati and Amar Mitiche. A variational method for the recovery of dense
3D structure from motion, 2006.

[64] Hicham Sekkati and Amar Mitiche. A variational method for the recovery of dense
3D structure from motion. Robotics and Autonomous Systems, 55(7):597–607, July
2007.

55



[65] Mennatullah Siam, Heba Mahgoub, Mohamed Zahran, Senthil Yogamani, Martin
Jagersand, and Ahmad El-Sallab. MODNet: Motion and Appearance based Mov-
ing Object Detection Network for Autonomous Driving. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pages 2859–2864, Novem-
ber 2018. ISSN: 2153-0017.

[66] G. W. Stewart and Jiguang Sun. Matrix Perturbation Theory. New York: Academic
Press, 1990.

[67] Deqing Sun, Charles Herrmann, Fitsum Reda, Michael Rubinstein, David J. Fleet,
and William T. Freeman. Disentangling Architecture and Training for Optical Flow.
In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and
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