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Abstract

The integrated space-time finite volume method for predicting time-dependent fluid
flow problems is developed. By enforcing discrete conservation over space-time con-
trol volumes which fill the space-time domain, this method satisfies global conser-
vation in space-time. Unlike traditional finite volume methods, there is no need
to incorporate the Leibnitz Rule or the geometrical conservation law into the dis-
cretization. The method is validated using a variety of two-dimensional problems
featuring both prescribed and free boundary motion. Advances in other aspects
of cell-centered finite volume discretization — most notably in the modelling of
diffusion terms and free surface flows — are also described.
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Nomenclature

Latin Letters

a coefficient in discrete conservation equation

b right-hand side of discrete conservation equation

d pressure coefficient in steady continuity equation

f pressure coefficient in unsteady continuity equation

g, gi gravitational vector

h free surface elevation

Fe advective flux

Fd diffusive flux

FP pressure force

Fv viscous force

J mass flow

K adjustable parameter used in limiter calculation

L distance from interior vertex to moving boundary

L average edge length on mesh

l length of a free surface edge

m mass

m, m; vector used for anisotropic diffusion term

i, n; unit normal to face

B, D true pressure, modified pressure

q, ¢ diffusive flux vector

r residual

T, T position vector,

Tc vector from midpoint of adjacent cell centroids to face centroid
area

S volumetric generation rate of a conserved scalar

8 displacement of free surface vertex

§, 8; vector joining spatial cell centroids;

vector from cell centroid to face centroid



Nomenclature xiii

T period

t time

(3 unit tangent vector

u, u; spatial velocity vector

w weighting factor

T; space coordinate (tensor notation)
T,y space coordinates

Greek Letters

a scaling factor in diffusion discretization
ﬁmin: ﬁmax
parameters used to determine minimum and maximum allowable distances
diffusion coefficient
ij space-time metric tensor
the set of neighbours of a cell
relaxation parameter for diffusion discretization
dynamic viscosity
the set of free faces which touch a free vertex
limiter
conserved scalar
density
stress
the set of free vertices which touch a free face
volume
relaxation parameter for gradient calculation

XY

EO0OR|IAIDS VR >3

Subscripts

bnd boundary value

f face centroid value
n normal component
PQ cells adjacent to face

ref reference
t time coordinate:
tangential component
up upstream cell value
fs free surface
nb neighbour
Superscripts
O average of adjacent cell values
' space-time quantity

dimensionless
old or lagged value

o



Chapter 1

Introduction

1.1 Motivation

In the past few decades, the ability to predict complex flows of industrial signifi-
cance using computational fluid dynamics (CFD) has advanced tremendously. CFD
has become an indispensable tool in many diverse fields, including aerodynamics,
turbomachinery, combustion, and others.

The basic idea of CFD is to replace the differential equations which describe
fluid flow with algebraic equations which can be solved by computers. One of the
most popular techniques for doing so is provided by the finite volume method.
According to this method, the solution domain is filled with a mesh, which is used
to define storage locations for each variable. Finite control volumes are constructed
around each storage location, and the governing equations integrated over each
control volume. The volume integrals are converte? £o surface integrals by means
of Gauss’ divergence theorem, and the surface integrals are approximated in terms of
variables defined at the adjacent storage locations. By this process, the differential
equations are replaced by algebraic equations: one for each conservation equation
for each control volume.

The finite volume method is strictly conservative in the sense that global con-
servation is satisfied by the discrete equations. This follows provided the discrete
transport through each internal face has the same magnitude but opposite sign for
the two control volumes which touch the face. Consequently, if the algebraic equa-
tions for the two control volumes are added together, the terms arising from the
surface integral for the face they share must cancel.

For time-dependent problems, the finite volume principle has traditionally been
used to discretize the spatial dimensions only. Time has been discretized using a
finite difference procedure, such as the Euler or Runge-Kutta methods. If the mesh
undergoes motion these methods require the use of the Leibnitz Rule to account for
mesh motion. Global conservation is satisfied provided the geometrical conservation
law (GCL) [15,67, 75] is satisfied. If, however, the mesh topology changes with time
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(for instance by vertex insertion or removal), these methods are not conservative.

The motivation for the current work is the observation that conservation princi-
ples apply to both space and time. Consequently, it makes sense to extend the finite
volume principle also to the time dimension. The assertion that “if indeed finite
elements have advantages in space, they should also have advantages in space-time”
[35] is equally true of finite volumes. We call the resulting technique the integrated
space-time (IST) finite volume method. With this method, the space-time solution
domain is filled with a space-time mesh, which is used to construct space-time con-
trol volumes. The governing equations are integrated over each space-time control
volume, and the volume integrals are converted to surface integrals using Gauss’
divergence theorem. The IST finite volume method is conservative in space-time
provided the discrete transport through each internal space-time face has the same
magnitude but opposite sign for the two control volumes which touch the face.
Consequently, there is no need to consider the Leibnitz Rule or the GCL.

Potential application of the IST finite volume method occurs wherever conser-
vation in time is important. In many cases, existing finite volume discretizations,
in particular those with fixed grids or with moving grids which satisfy the geomet-
rical conservation law, already satisfy this property. However, extension of these
methods to flows where remeshing is required is problematic. One may identify
two classes of problems where this may occur: moving boundary problems where
the boundary motion is severe, and time-accurate mesh adaptation requiring the
insertion and removal of points.

In this thesis, only moving boundary problems are considered. One particularly
interesting type of moving boundary problem involves free surface flow, in which
the boundary motion itself is an outcome of the solution.

1.2 Objectives

The primary objective of the thesis is to demonstrate that the IST concept does
lead to a viable algorithm for moving boundary problems. This will be performed
by considering several smaller objectives:

1. The work is built around the extension of the finite volume method to space-
time. The first objective is to develop and test a robust, second-order accurate
finite volume method for steady-flow problems on unstructured meshes. The
unstructured capability is deemed important because the types of unsteady
motions to be considered are quite general.

2. Just as spatial finite volume methods require a spatial mesh to fill the spatial
domain, so also the IST finite volume method requires a space-time mesh to
fill the space-time domain. A second objective of this work is the development
of a space-time meshing strategy for moving boundary problems.

3. Another objective is to develop a robust, second-order accurate IST finite vol-
ume solver for unsteady problems involving prescribed boundary motion.

4. The final objective is to apply the IST method to free surface flow.

In order to demonstrate the method most effectively, our attention will be restricted
to the incompressible flow of constant-property fluids in one and two spatial dimen-
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sions. This is done for convenience only. In developing the method, we have at-
tempted to formulate the method in such a way that its extension to more complex
flows is relatively straightforward. The only exception is the space-time meshing
algorithm, which as it stands would require significant effort to extend to three
dimensions.

1.3 Outline

The thesis is divided into seven chapters, of which this is the first. The second
chapter will discuss the differential equations describing fluid flow together wiih
a review of the relevant literature. In the third chapter, a two-dimensional finite
volume solver for steady flows will be developed and validated.

The IST finite volume method for unsteady flows is presented in Chapters 4-6.
Chapter 4 describes the space-time meshing algorithm, Chapter 5 the development
and validation of the solver, and Chapter 6 the extension to free-surface flow.

Some conclusions and recommendations for further study are given in the final
chapter.



Chapter 2

Background

In order to place the IST finite volume method into context, it is important to de-
velop a sense of existing methodologies. This chapter will provide a framework for
doing so. First, the physics of fluid flow, as described by the Navier-Stokes equa-
tions and a simpler companion equation, will be reviewed. Traditional approaches
to discretizing these equations will then be summarized, and existing space-time
methods will be introduced. Following that, some issues related to mesh motion
will be discussed, and the chapter will conclude with a discussion of the physics and
modelling of free surface flow.

2.1 Mathematical Basis

Fluid dynamics is described by a coupled set of equations representing conservation
of mass, momentum, and energy. Historically, the equations representing conser-
vation of momentum together with the assumption of a linear stress-strain rate
relationship was labelled the Navier-Stokes equations; however, in some circles this
label has also come to include the continuity and energy equations. This conven-
tion is followed here. Only the simplified case of incompressible flow with constant
property fields is considered, which renders the energy equation redundant. Lam-
inar flow is also assumed. Then, using Cartesian tensor notation, the continuity
equation is

aui
6:1:;

=0, (2.1)

and the momentum equation is

Blpus) , Blowsu) __ 05
at 8a:,~ Oz

+pgi + =2 (2.2)
7
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where u; is the velocity in the z;-direction, ¢ is time, p is the fluid density, 7 is
the pressure, and g; is the gravitational acceleration vector. The deviatoric stress
tensor 7y; is obtained from the following constitutive relationship:

_ 3u; 8u,~
e (8:1:,- * az,-) : (2‘3)

where p is the dynamic viscosity.

For many flows, the pressure gradient term of the momentum equation nearly
balances the gravitational force term, and in the hydrostatic limit they balance
exactly. For this reason the terms are typically combined by defining a modified
pressure p from

dp p

- 6::,— - 61:{

+ pg:, (2 '4)

in which case the momentum equation becomes

Blpus) | Blpusu) __Bp bz
ot 6:::,- - oz; a:l:j ’

(25)

The relationship between p and p may be obtained by noting that pg;, being irro-
tational, may be written as the gradient of a potential energy function U

9z; = —pg:- (2'6)

Solving for U yields
U= —pgir; +C, (2.7)

r; being the position vector. Using Eqs. (2.6) and (2.7), Eq. (2.4) may be written
as

op _ _9b  O(pgiry)

6:1:,- 6:::.- a:!:i (2-8)

By integrating this equation and choosing p = § = 0 at a reference location r; cef,
we obtain

P =P — pgi(ri — Tiref), (2.9)

which identifies the modified pressure as being the deviation of the true pressure
from the hydrostatic pressure.

When developing discretization methods, it is useful to consider a simplified
conservation equation which retains some of the mechanisms found in general fluid
dynamics. This scalar conservation equation describes the conservation of a generic
scalar ¢ in the presence of a known flow field:

Hpd) | O(puid)  dg: _ ¢
ot T 6z Tom (210
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where S is the volumetric generation rate of ¢. The diffusive flux vector g is
obtained from the following constitutive relationship:

9¢

B:c.— !

gi=-T (2.11)

where I is the diffusion coefficient.

Although the scalar conservation equation is incomplete for general fluid dy-
namics problems, it does describe many important physical processes. In particular,
it expresses the time rate of change of ¢ to be a result of imbalances in the advective
and diffusive fluxes and volumetric sources. The equation is mathematically rich
— in the general case, it is parabolic, but at steady state, it is elliptic, and in the
absence of diffusion, it is hyperbolic.

2.2 Discretization Techniques

Two numerical frameworks — the finite element and finite volume methods —
have found wide use in solving scalar transport and fluid flow probiems in complex
geometries. Other techniques which have been developed for restricted classes of
flows and geometries will be considered only where appropriate.

Both the finite volume and finite element methods involve discretizing the
governing differential equations; that is, replacing them with discrete analogues
which can be solved using digital computers. The finite element method was first
developed for the analysis of solid mechanics, whereas the finite volume method was
first applied to fluid mechanics. Since then, both methods have been extended to
other classes of problems, but they often retain their historical terminologies.

In the finite element method, the domain is covered with a computational mesh
consisting of nodes and elements. The solution within each element is described by
local shape functions, and the global solution field is obtained by piecing together
the local element solutions. The discrete equations are obtained by integrating
the governing equations over the domain with respect to a test function. Different
choices for the test function yield different discretizations: the most common choice,
called Galerkin’s method, is to use the shape functions.

In the finite volume method, the domain is covered with a computational mesh
consisting of vertices and cells, which correspond to the nodes and elements of the
finite element method. The cells are used to construct control volumes, over which
the governing equations are integrated. In cell-centered methods, the volumes are
the cells themselves, whereas in vertex-centered methods (also called cell-vertex [9],
element-based finite volume [55], and control volume finite-element [7,61] methods),
the control volume is constructed from a dual mesh. Within each volume or element,
a solution profile is assumed and used to obtain discrete approximations for the
fluxes between adjacent volumes.

In certain cases, the finite element and vertex-based finite volume methodolo-
gies lead to similar or even identical discrete equations [9]. Thus the finite volume
method sometimes has an equivalent finite element interpretation and vice versa.
For these cases, the advantages of one method (such as conservation or ease of
mathematical analysis) are shared by the other.
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In this review, a finite volume perspective is adopted except in those cases
where other methods do not have a corresponding finite volume interpretation. The
discretization of the scalar conservation equation will be discussed first, followed by
the Navier-Stokes equations.

2.3 The Scalar Conservation Equation

In the finite volume method, the scalar transport equation is integrated over each
control volume {2 to obtain

aW) o + / Aeuid) 4q + / 94 4o = / $dq. (2.12)

Q Oz; Oz;

The advection and diffusion terms may be converted to surface integrals using
Gauss’ divergence theorem,

Jv;

(9:!:, —dl = / v;n; dS, (2-13)

where S is the boundary of Q and =n; is its outward-directed normal. Eq. (2.12)
then simplifies to

8(;:5) dst + / puiniddS + / gin;dS = f $dQ. (2.14)
Q

Further simplification can be achieved by using the Leibnitz Rule, which accounts
for control volume motion. In particular, if S moves with velocity w;, the Leibnitz
Rule for any volumetric quantity f is

d _ [ of -
2 /9 Fdo = [ﬂ S+ fs fwjn; dS. (215)

Substitution of this equation into Eq. (2.14) yields the final integral form of the
scalar conservation equation:

d

g | ewia= / pd(w; — us)ng dS — / gin: dS + / $do.  (2.16)

Possibilities for the discretization of the various terms are now considered.

2.3.1 Advective Flux

The advective flux is typically discretized independently of the diffusive flux, such
that it is treated in the same way as if the conservation equation were hyperbolic.
Mathematical and numerical issues related to hyperbolic conservation laws are dis-
cussed by LeVeque [37]. An important point is that the advective flux is closely
related to the transient term through the characteristic equations. In particular,
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signals are propagated along the characteristics from the upstream direction, lead-
ing to a class of upwind differencing schemes. An effective way of doing so was
found by Godunov [27]. He assumed a piecewise constant solution for each time
step, and then exactly solved the resulting local Riemann problems at the control
volume interfaces to yield the solution at the next time step.

The main source of inaccuracy in Godunov’s method is the assumption of a
piecewise constant solution, which leads to significant numerical diffusion. By as-
suming a piecewise linear solution, van Leer [69] obtained a second order scheme
known as MUSCEL. Like all higher-order advection discretizations, MUSCL requires
that special measures be taken in order to avoid spurious overshoots and under-
shoots at extrema. This can be done by using a flux or slope limiter, which reduces
the scheme to first order at extrema. Sweby [64] later showed that van Leer’s limiter
is a special case of a class of high-resolution oscillation-free schemes known as total
variation diminishing (TVD) methods [32].

Godunov’s method and TVD concepts were derived for one-dimensional con-
servation equations. For many years, they were applied in a one-dimensional fashion
to multi-dimensional problems. Barth and Jesperson [10] took a major step forward
by developing a multi-dimensional linear reconstruction algorithm and flux limiter
which can be applied to unstructured meshes. The reconstruction algorithm relies
on the computation of cell gradients using an appropriate form of the Green-Gauss
theorem [10} or a least-squares procedure [8]. Alternative limiters have also been
developed [2, 71, 76].

Another approach to discretizing the advective flux is to allow the computa-
tional mesh to move with the flow, leading to a Lagrangian formulation. Lagrangian
methods have the advantage that the advective flux calculation is free of numerical
diffusion; however, remeshing and projection steps may be required to avoid mesh
distortion. The arbitrary Lagrangian-Eulerian (ALE) method [33] avoids excessive
distortion by allowing the mesh to move with an arbitrary velocity.

2.3.2 Diffusive Flux

The diffusive term has an elliptical character; that is, it has no preferential direction
of influence. It is therefore appropriate to use a centered discretization for it. In the
finite element method, Galerkin’s method is used almost exclusively, and vertex-
centered finite volume methods often yield the same discretization as Galerkin’s
method [9,42,62]. Cell-centered methods also use a centered discretization; but,
because they do not use shape functions, they require gradient information from
adjacent cells [20,41), vertices [23], or auxiliary cells [3,48].

An important consideration in diffusive flux calculations is the maximum prin-
ciple. If a pure diffusion problem is considered, it may be shown analytically that
the maximum value of ¢ must lie on the boundary. A discrete solution should sat-
isfy an analogous discrete maximum principle; but, as discussed in Chapter 3, this
is not always achievable.
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2.3.3 Source Terms

When volumetric terms are integrated over the volume, the mass matrix appears.
For cell-centered methods, the mass matrix is diagonal. For vertex-centered meth-
ods, the mass-matrix has off-diagonal entries, but is often replaced with an diagonal
approximation through a process called mass lumping [72].

2.3.4 Transient Term

After discretizing the advective flux, diffusive flux, and source terms, an ordinary
differential equation in time results. The discretization of this operator gives rise
to the same mass matrix as in the source term [72]. If the mass matrix is diagonal,
the solution may be explicitly evolved in time using a forward Euler approximation.
Stability restrictions restrict the time step size for explicit methods based on the
Courant-Friedrichs-Levy (CFL) number and the diffusion number. These restric-
tions imply that many iterations may be required to achieve steady-state solutions,
but the solution may be accelerated using multigrid algorithms [72].

The solution may also be evolved in time using implicit methods, such as the
backward Euler approximation. These methods involve the solution of a system of
equations at each time step. As a result, they require more computational effort
than explicit schemes, but also have much better stability characteristics.

Both the forward and backward Euler methods are first-order accurate in time.
Methods such as Runge-Kutta schemes may be used to achieve higher-order accu-
racy.

2.4 The Navier-Stokes Equations

As with the scalar equation, the finite volume discretization of the Navier-Stokes
equations starts by integrating them over each control volume, again using the
divergence theorem and the Leibnitz Rule to simplify the volume integrals. The
integral form of the continuity equation thus becomes

% [ pae= [ ot~ umss, (217)
dt Jaq s

and the momentum equation becomes
d
a—t' o pu; dQ) = < pu,-(wi - uj)nj ds — spn; ds + < Tjilj ds. (2.18)

When discretizing the Navier-Stokes equations, the viscous, transient, and
source terms are typically handled in the same manner as their scalar counter-
parts, without significant complications. The manner in which the remaining terms
(advection and pressure) are discretized depends on the nature of the flow.

For compressible flow, the first-order terms form a hyperbolic set and are dis-
cretized together with the energy equation using characteristic-based upwinding
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methods. These methods include flux vector splitting [5,63,70], flux difference
splitting [60], and fluctuation splitting [14].

For incompressible flow, the equations have a mixed hyperbolic/elliptic char-
acter, and the standard compressible methods are inappropriate. One approach is
to restore the hyperbolic character of the equations by adding a time derivative of
pressure to the continuity equations; this approach is called the artificial compress-
ibility method [13]. It may be interpreted as preconditioning the equations to scale
to the advective velocity rather than the acoustic velocity [73].

Other techniques for incompressible flow start by acknowledging its special
character up front. The elliptic character can be traced to the action of pressure,
for which a Poisson-type equation may be derived [20]. For this reason, pressure
must have a centered discretization. Unfortunately, when this is done, a decoupled
“checkerboard” solution may develop [50]. For many years the pressure checker-
board problem was overcome using staggered grids [31, 50]. More recently, the need
to solve flow on nonorthogonal meshes in arbitrary geometries has driven the devel-
opment of colocated methods, the most common of which is due to Rhie and Chow
[59], and developed further by others [39, 53]. These colocated methods suppress the
pressure decoupling mode by introducing a fourth-order pressure-smoothing term
in the continuity equation, so that the interpolated cell-face velocity is sensitive
to the local pressure gradient. This operation may be interpreted as numerically
distinguishing between two velocities: that which advects conserved quantities and
that which is itself advected.

An alternative approach, called the continuity constraint method (CCM) has
recently been proposed by Williams and Baker [74]. They do not attempt to remove
the decoupling, but do prevent it from contaminating the solution by calculating a
smooth pressure field from the pressure Poisson equation.

Various strategies exist for solving the equation set. Most incompressible
solvers are implicit, because the time-step restriction of explicit methods is pro-
hibitively small. Implicit solvers can be either coupled or segregated. Coupled
solvers, such as coupled algebraic multigrid [58], are ideal for rapid convergence.
Segregated solvers, on the other hand, require less memory to store the coefficient
matrix; the most common algorithms are SIMPLE [50] and its variants, which guess
values for the velocity and pressure fields and then iteratively solve the momentum
and pressure equations to correct the guesses.

2.5 Space-Time Discretizations

The discretization techniques discussed above use one type of discretization for the
spatial terms and another for the time derivative. Streamline diffusion (SD) finite
element methods are unique in coupling the discretization of space and time. These
methods subdivide the space-time domain into slabs, each of which is composed
of space-time elements. The elements can be oriented according to an arbitrary
velocity, leading to a relationship with the ALE method [33]. If the space-time
elements are aligned along the characteristics of the associated hyperbolic prob-
lem, the SD method is referred to as a characteristic streamline diffusion (CSD)
method [29, 30]. SD methods are typically coupled with the discontinuous Galerkin
method in order to retain a time-marching algorithm. They also modify the stan-
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dard Galerkin discretization by adding stabilizing terms which vanish as the exact
solution is reached [11, 35]. Like ALE methods, SD methods may require remeshing
steps to avoid highly distorted meshes. The remeshing may be made conservative
by using simplex space-time elements [24].

A new space-time discretization, called the space-time conservation element
method, has recently been proposed by Chang [12]. In this method, the space-
time domain is divided into conservation elements, over which flux balances are
enforced; and solution elements, which separate the conservation elements. The
solution is assumed to vary smoothly within the solution elements, leading to simple
expressions for the fluxes between the conservation elements. Both the unknowns
and their spatial derivatives are treated as independent variables.

2.6 Moving Meshes

There are several motivations for being able to solve flows on time-dependent
meshes. For instance, there are many cases in which the domain boundary moves
according to some prescribed, free, or compliant condition. In other cases, a tran-
sient solution-adaptive solver may be desired, requiring vertex insertion, movement,
or deletion. In this section, some of the issues and possibilities related to discretiza-
tions for moving meshes are explored. This includes some geometrical constraints
which must be satisfied and a review of methods for free-surface flows.

Conservative discretizations on moving grids must satisfy a geometrical con-
straint known as the geometrical conservation law (GCL) [67]. It may be derived
from the Leibnitz Rule (Eq. (2.15)) by choosing f = 1:

i dQ=/w,-n,—a'S. (2.19)
dt Jq s

An interpretation of this equation is that the change in the domain volume during
a time interval must equal the volumetric changes along the domain boundaries. If
face velocities which violate the GCL are used, spurious mass sources and conver-
gence difficulties may be experienced [15, 75].

2.7 Free Surface Flows

A special class of problems involving moving meshes involves free-surface flow, in
which the boundary location is not known a priori but must rather be determined
as part of the solution procedure. A common class of free surface flow involves
liquid-vapour interfaces with no heat or mass transfer between the phases.
Methods for free surface flows may be grouped into two categories. Interface-
tracking methods treat the surface as a true discontinuity, and can therefore ap-
ply appropriate boundary conditions at the interface. Interface-capturing methods
treat the two phases together without explicitly considering the interface; as a con-
sequence, the computed interface is smeared. There is, however, some ambiguity in
this classification. For instance, the original volume-of-fluid [34] method treats the
interface as a true discontinuity and is therefore be classified as an interface-tracking
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method [21,68]. However, the same method can bypass the interface reconstruction
step, in which case it can be classified as interface-capturing [46].

In this review only interface-tracking methods are considered. Two types of
boundary conditions must be considered: the kinematic condition and the dynamic
conditions.

2.7.1 Kinematic Condition

The free surface is a material surface. It is this kinematic condition which permits
the interface location to be tracked. One interpretation of the condition is that no
mass may flow through the surface:

UiN; = Ui N, (2:20)

where u; ¢ is the surface velocity. Alternatively, a particle which lies on the surface
must remain attached to it:

Dh  Oh oh
iy Teal-™y +u5:;, (2.21)
where u and v are the components of the velocity vector and h = h(z,y,t) is the
surface elevation. Both of these forms of the kinematic condition are commonly used
in free surface calculations. Although they are mathematically equivalent (provided
the surface elevation is single-valued), they may lead to different numerical results.

There have been several approaches to enforcing the kinematic condition. The
earliest were the fixed-mesh Eulerian methods, where a sharp interface is recon-
structed using information obtained by solving additional equations which satisfy
Eq. (2.21) in a domain encompassing the interface. The two most common methods
of this type are the marker-and-cell (MAC) method [31], where massless particles
in the fluid phase are tracked; and the volume-of-fluid (VOF) method [34], where a
transport equation for liquid volume fraction is solved. A strength of these methods
is their applicability to flows involving large surface motions, such as breaking waves
[43].

Another approach is obtained using a Lagrangian formulation, where the kine-
matic condition is satisfied simply by having the mesh points move with their local
velocity. A related class of methods is obtained using the space-time finite element
concept, which has been applied to free surface low by Hansbo [30] and Tezduyar
et al. [65]. The drawback of these methods is the nonconservative projection step
which may be required to maintain mesh quality.

A third approach to tracking the interface is offered by adaptive-Eulerian
schemes, where the mesh conforms to the free surface and the interior mesh responds
to the boundary motion without requiring remeshing. Some of these methods de-
termine the interface location by explicitly integrating Eq. (2.21) using velocities
at the free surface {4, 19,44]. This form of the kinematic condition, however, may
not guarantee overall mass conservation [49]. Other adaptive-Eulerian methods
[45, 55, 66] enforce the conservative form of the kinematic condition, Eq. (2.20), by
forcing the mass flow rate through the free surface to zero. Some methods enforce
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the kinematic condition together with the continuity equation, so that the continu-
ity equation for cells next to the boundary yields the free surface position [55,66].
In other studies, the kinematic condition and continuity equation are solved in a
segregated manner [45]. Adaptive-Eulerian methods must also devise ways to have
the interior mesh points respond to the free surface motion. A common approach
is to have them slide along predefined spines [36].

2.7.2 Dynamic Conditions

The dynamic conditions arise from the condition of force equilibrium at the inter-
face. If the liquid and vapour phases are denoted by the superscripts / and g, the
dynamic conditions may be expressed as [38]

@ - 7° +or)n; = (15 — ¥)n; — g—; (2.22)

where o is the surface tension coefficient, n; points toward the vapour phase, and &
is the mean surface curvature (positive if the surface is concave in the direction of
n:). The ideal free surface is obtained if the density differences between the liquid
and vapour are large, in which case the only effect of the gas phase is to exert
a pressure on the surface. Further simplification results if capillary effects arising
from the surface tension and normal stresses at the interface can be neglected, in
which case the dynamic conditions simplify to

P=7DPss (2.23)

for the normal direction and slip conditions for the tangential directions.



Chapter 3

Discretization for Steady Flows

In this chapter the computation of steady two-dimensional incompressible flow is
described. Several interconnected tasks must be addressed: mesh generation, con-
trol volume definition, equation discretization, and linear equation solution. Each
of these components will be considered in turn. In addition, some test cases which
verify and validate the method will be presented.

3.1 Mesh Generation

Mesh generation involves filling the spatial domain with nonoverlapping cells. The
cell boundaries are called faces, even though geometrically they are edges, to em-
phasize the role that they play in transferring discrete fluxes into and out of control
volumes.

There are two types of meshes. Structured meshes arose first, since they are
described by simple data structures. In the past decade, however, unstructured
mesh technologies have become common, because of their convenience for complex
geometries. In anticipation of extending our method to complex boundary motion,
we have considered unstructured meshes to be important. Triangular meshes are
generated using a publicly-available package called Easymesh [47], which uses an
incremental insertion algorithm together with Laplacian smoothing. It writes data
files containing several useful data structures, but its speed degrades significantly
when the mesh has more than about 10,000 vertices.

3.2 Choice of Control Volumes

After generating the mesh, the control volumes must be constructed. In Chapter 2,
two common approaches for doing so were described: cell-centered methaods, where
the volumes are the cells themselves; and vertex-centered (or cell-vertex) methods,
where the volumes are associated with vertices. Each method has advantages and

14
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disadvantages. In this section, the methods are compared based on accuracy/cost
ratio, monctonicity, special requirements, and personal preference.

An ideal discretization method should have a high accuracy/cost ratio, where
cost involves both CPU time and storage. Comprehensive comparisons of this ratio
between cell-centered and vertex-centered methods are not available, but there is
some indication that on tetrahedral meshes, cell-centered methods have both a
higher cost and a higher accuracy [72].

Monotonicity is also an important consideration: if the physical process being
modelled possesses a maximum principle, then so should the discrete solution. This
consideration favours cell-centered methods in some cases but vertex-centered meth-
ods in other cases. When solving a pure diffusion problem on a rectangular mesh,
vertex-centered methods are guaranteed to be monotone only if the aspect ratio is
close to unity, whereas cell-centered methods are always monotone. With triangular
meshes, on the other hand, cell-centered methods possess no known discrete maxi-
mum principle, while vertex-centered methods are monotone provided the mesh is
Delaunay [9]. This analysis does not extend easily to three-dimensional tetrahedral
meshes, where monotonicity is more difficult to attain with vertex-centered meth-
ods. Additional issues arise when the mass matrix appears, for off-diagonals in the
mass matrix may introduce nonphysical extrema. Cell-centered methods have a
diagonal mass matrix by default, whereas its diagonalization with vertex-centered
methods requires the mass-lumping approximation.

In some cases, special factors which must be considered may affect the choice.
For example, material discontinuities are more easily handled by cell-centered meth-
ods, in which the discontinuity lies along control volume boundaries, than with
vertex-centered methods, in which the discontinuity lies internal to control volumes.
Space-time discretizations pose a similar complication for vertex-centered methods,
as discussed in Chapter 5. On the other hand, it will be seen in Chapter 6 that
free-surface flow modelling presents additional difficulties for cell-centered methods.

The final issue involved in the choice has to do with personal preference. For
some, cell-centered methods are the most intuitive translation of the finite volume
principle into a numerical algorithm. Others prefer vertex-centered methods be-
cause their mathematical properties are more easily analyzed [22]. It is perhaps not
surprising, then, that cell-centered methods are particularly popular in the engineer-
ing community, while vertex-based methods are more common in the mathematics
community.

In the present work, a cell-centered approach is chosen. The choice is based
on convenience, for the space-time extension more easily allows for a time-marching
algorithm.

3.3 The Scalar Conservation Equation

Having chosen the control volumes, we now seek to form discrete conservation equa-
tions for each. The discretization procedure will be described for the scalar conser-
vation equation in this section and for the Navier-Stokes equations in the next.
The complete integral form of the scalar conservation equation was given earlier
in Eq. (2.16). Here some simplifications are made by considering only steady source-
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free transport. The simplified equation is

f pouin; dS + / gin; dS =0, (3.1)
s s

or, in vector notation,

/p¢u-ﬁdS+/q-ﬁdS=0- 3.2)
s s

The discretization process begins by applying the midpoint rule, wherein the surface
integrals are approximated at the face midpoints surrounding each control volume.
The resulting discrete control volume equations have the form

> (Ff +Ff) =0, (3.3)
f

where F¢@ and Fg respectively represent the numerical advective and diffusive trans-
port through each face. Typical faces, together with some associated geometrical
entities, are illustrated in Figure 3.1. Important vectors shown on the diagram in-
clude n; (or i), the unit outward-directed normal; s; (or §), the unit vector joining
cell centroids; and r; (or r), the vector joining a cell centroid to the face midpoint.

(2) An internal face (b) A boundary face

Figure 3.1: Typical control volume faces and geometrical nomenclature.

At internal faces, conservative numerical fluxes are required; that is, they must
have equal magnitude and opposite sign for the two cells adjacent to the face. At
boundary faces, appropriate boundary conditions must be applied. Expressions for
the numerical fluxes in terms of the cell centroid values of ¢ will be given below.
First, however, an algorithm for calculating cell gradients of ¢, which are used in
the flux approximations, will be presented.
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3.3.1 Cell Gradient Vectors

The numerical flux approximations require estimates for cell gradient vectors V.
There are two common techniques for evaluating the cell gradients: a Green-Gauss
theorem [10] and a least-squares approach [8]. We choose the least-squares approach
for two reasons. First, it is exact for linear profiles, whereas some effort is needed
to make the Green-Gauss method linearly exact. Second, it extends more naturally
to space-time, which is useful for the IST algorithm.

To understand the least-squares algorithm, consider a particular cell P and its
set of immediate neighbours 7p, as illustrated in Figure 3.2. (if P is adjacent to a
boundary, the boundary face must also be considered a neighbour.) The change in
centroid values between neighbour j and P is given by ¢; — ¢p, j € np. If the cell
gradient V¢|p is exact, then this difference is also

¢; —¢p = Vé|p - (rj —rp), (3-4)
where rj — rp is the vector frem cell P to cell j But unless the solution is linear,

the cell gradient cannot be exact, for cell P has more neighbours than the gradient
vector has components. The least-squares gradient is that which minimizes

> wi[Vélp-(x; —rp) — (65 — 0p)°,

ji€np

where wj is a weighting factor. We choose w; = 1/ [r; — rp|®, which tends to favour
each neighbour in the stencil equally.

9%

Figure 3.2: Least-squares stencil used in calculating cell gradient vectors.
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The solution to this least-squares problem requires solution of the following
matrix equation:

L wWiAT; Az 3 wiAz; ij] ¢=’) = (Z w8z 8 ) (3.5)
L wiAz;Ay; Y wiAy;Ay;| \éy L wAy;A;)

where

Az =z; —zp,
Ay; =y;j —yp,
A¢; = ¢; — ép,

and ¢, and ¢, are the components of V¢|p.

When cell gradients appear in the discrete fluxes, they are lagged, which in some
cases may hamper convergence. It has been found empirically that convergence may
be significantly improved by underrelaxing the gradient calculations as follows:

Vélp =w V3|5 + (1 —w) Vo|3°. (3.6)

This form of underrelaxation is more effective than underrelaxing the entire solution
field, for it hones in on the actual cause of convergence difficulties. Typically w =
0.8.

3.3.2 Advection Term
The advective transport is given by
F¢ = Jro, (3.7)
where
Je = pu-iSe (3.8)
is the mass flow through the face. An upwind-biased discretization is used for ¢:
b = bup + BV -1, (39)

® = 0 assumes a piecewise constant solution and yields a first-order upwind method.
¢ = 1 assumes a piecewise linear solution, and applies a second-order correction
using the upwind cell gradient. Like any second-order advection discretization, this
may lead to spuricus overshoots and undershoots, which can be reduced or elimi-
nated by limiting & near extrema. The limiter of Barth and Jesperson [10] was the
first one developed for unstructured meshes. It is based on the principle that, when
a cell gradient is used to reconstruct ¢ at the face midpoints, the reconstructed val-
ues must be bounded by the values at the cell and its neighbours. Unfortunately,
this limiter has a slope discontinuity, which may produce convergence difficulties.
Venkatakrishnan [71] has proposed a modification which improves convergence at
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the expense of strict monotonicity. The modified limiter has an adjustable param-
eter K which controls the magnitude of the allowable overshoots and undershoots.
Both limiters have been tested in the current work.

The advective flow must also be evaluated at boundary faces. At wall bound-
aries, where there is no flow through the face, Jr = 0. At inflow boundaries, ¢¢ must
be specified, and at outflow boundaries, ¢s is obtained using the same expression
as at internal faces.

In setting up the matrix equation for the advective flux, the first-order upwind
term is made active, while the second-order correction is lagged by putting it into
the right-hand side of the matrix equation.

In order to validate the advection scheme and illustrate some of its properties,
consider the advection of ¢ in a square geometry. The mesh is shown in Figure 3.3.
The rotational velocity field is defined by u = yi—zj. A square-wave profile for ¢ is
specified along the inflow boundary, which is placed along a cut-line to the left of the
origin. This square-wave profile should be maintained over the course of a rotation.
Four solutions are shown in Figure 3.4. As expected, the first-order upwind is very
diffusive, while the pure second-order method introduces new extrema near the
discontinuities. Two solutions with Venkatakrishnan’s limiter are also provided:
with K = 1, the overshoots and undershoots are very small, while with K = 5 they
are more significant. Convergence could not be achieved with Barth and Jesperson’s
limiter.

XX

Figure 3.3: Mesh used for circular advection test case.
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(a) Piecewise constant scheme (b) Piecewise linear scheme

(c) Limited scheme, K =1 (d) Limited scheme, K =5

Figure 3.4: Solutions to the circular advection test case.
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The trade-off between convergence and accuracy with Venkatakrishnan’s lim-
iter is evident in Table 3.1, where the number of iterations required to reduce all
normalized residuals below 10~ is listed together with the magnitude of the largest
overshoot or undershoot. In all cases the gradient underrelaxation factor is 0.7 and
the linear equations are solved directly. (The iteration count remains the same for
all cases other than the piecewise constant solution when the iterative solver of
Raw [58] is used instead.) Interestingly, moderate choices for K actually give better
convergence behaviour than the pure piecewise linear scheme.

Table 3.1: Convergence and accuracy behaviour for circular advection test case.

Advection scheme | Iterations required | Overshoot/undershoot magnitude |
Piecewise constant 1 0%

Piecewise linear 34 15%

Limited, K = 0.5 58 0.9%

Limited, K =1 29 1.8%

Limited, K = 2 26 2.9%

Limited, K =5 29 5.5%

Limited, X = 10 31 9.9%

3.3.3 Diffusion Term
The diffusive transport is given by
F¢=q-a5, (3.10)
or, by combining with the constitutive relationship q = —I'V¢,
F¢=-TV¢-aS;. (3.11)

In this work, a new discretization for this term has been developed. It features
several advantages: it is linearly exact, collapses to classical stencils on orthogonal
meshes, extends to higher dimensions without modification, and can be extended
to anisotropic continua such as space-time. The discretization proceeds by decom-
posing F¢ as follows:

Fe¢=-T(V¢-(c8) +V-(a—as)) S, (3.12)
where
(nd) = 20 0P
V¢-(asS) =« x5 (3-13)

V¢ is the average of the adjacent cell gradients, and o is a scaling factor. We
demand that @ = 1 on orthogonal meshes in order for the method to collapse to
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classical stencils. Methods deveioped for structured grids amount to a = 1/1i - §
[41]. Others [20] suggest

Fg=-T'(V¢-3+Vé-(a—38) S, (3.14)

which is equivalent to a = 1. The optimal choice is « = ii - §, because it shifts the
projection of i —3 onto § into the first term, as illustrated in Figure 3.5. As a result,
V¢ is used only for the nonorthogonal contribution to F¢. This choice also extends
unambiguously to anisotropic diffusion problems, as described in Chapter 5. The
only known disadvantage of this diffusion discretization, which is shared by all other
cell-centered methods, is the lack of a discrete maximum principle.

Figure 3.5: Motivation for choosing o = 1i - § for the diffusion discretization.

At boundary faces, the expression for F{f remains the same as at internal faces,
but requires one-sided approximations for some of the terms. In particular, § is the
vector from the cell centroid to the boundary face midpoint,

V6 - (as) = a%, (3.15)

and V¢ is the gradient at the cell adjacent to the boundary. @und is specified at
inflow boundaries and Dirichlet walls and is extrapolated to outflow boundaries. At
flux-specified wall faces, F¢ is specified and may be used to calculate ¢pnq.

The orthogonal term of this discretization is made active, while the nonorthog-
onal term involving the cell gradients is lagged. On highly skewed meshes, the
lagged term may become large, hamper convergence, or even cause divergence. By
augmenting the active coefficient by an amount proportional to the nonorthogonal-
ity of the face, we may reduce the possibility of this occurence. In particular, the
active coefficient is replaced by

I‘aSg:}E_.gg(a l—a).

As  As \*T
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A is arbitrary, having a typical value of 0.8. This form of underrelaxation is surgical,
affecting the coefficients only in potentially problematic regions. A corresponding
term must be added to the right-hand side of the matrix equation so that the con-
verged solution is unaffected by A. It has been found that this type of stabilization,
together with gradient underrelaxation, provides an effective means of achieving
convergence on a wide range of problems.

As an example of the robustness of this diffusion discretization, consider the
diffusion of ¢ in a box of length and width L, as shown in Figure 3.6. Along the
side and top boundaries, ¢ = 0, and along the bottom, ¢ = sin(xz/L). The mesh
quality is very poor; the smallest angle is below 10°. However, with underrelaxation
factors w = 0.5 and A = 0.5, an accurate solution has been achieved, as shown
in Figure 3.6(b). 58 iterations were required to reduce the maximum normalized
residual below 105.

NN\

(a) Mesh (b) Sotution contours

Figure 3.6: Diffusion test case.

Other tests have confirmed this diffusion discretization to be linearly exact and
second-order for both triangular and quadrilateral meshes.

3.3.4 Solution Methodology

After calculating the fluxes through each face, and scattering the fluxes to the
adjacent cells, there results one algebraic equation for each control volume. The
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equation for a control volume P has the form

apdp + Z @nbPab = bp, (3.16)

where the coefficients ap and anp arise from the active terms and the right-hand
side bp has contributions from lagged terms and boundary conditions.

As a final step before solving the equations, the coefficients are modified in
order to ensure the mass flows used in the advective fluxes are mass-conserving.
This is important in problems where the velocity field is not yet converged, and
is achieved by subtracting the discrete continuity equation multiplied by ¢p from
Eq. (3.16). This modification has no effect on the converged solution, but does
enhance iterative robustness [50, 54].

As the algebraic equations for neighbouring cells are linked, the new solution
field {¢} is defined by a system of equations of the form

fA]{¢} = {6} (3.17)

The coefficients which have been made active guarantee that the coefficient matrix
[4] is diagonally dominant, which ensures efficient convergence by iterative solvers.

The system of equations is actually solved in delta (or update) mode by calcu-
lating a residual field {r} for the old solution field {¢°}:

{r} = {o} - [Al{¢°}. (3.18)
Then, defining
{69} = {6} - {4°}, (3.19)
Eq. (3.17) may be written as
[Al{66} = {r}. (3.20)

This system of equations is solved iteratively using an algebraic multigrid solver
[58]. The multigrid algorithm uses adaptive coarsening rules, based on the relative
coefficient strengths, so that the errors in all directions are reduced effectively.

After solving the system of equations for {8§¢}, the new solution field is updated
using Eq. (3.19). The boundary values are also updated. Then new cell gradients
are calculated, and new fluxes assembled, leading to a new system of algebraic
equations. This process is repeated until the maximum normalized residual falls
below a predefined tolerance. The residual for a cell P is normalized by the central
coefficient ap and the maximum difference in solution field:

TP

aP(¢ma.x - ¢min) '

A solution field calculated in this manner is stored at the cell centroids. For
visualization in a post-processor, however, it is more convenient to obtain values at
the mesh vertices. This is accomplished using a second-order reconstruction from
the surrounding cell values.

(3.21)

fp=
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3.4 The Navier-Stokes Equations

In this section, the discretization method developed for the scalar conservation
equation will be extended to the Navier-Stokes equations. The equations were
presented in integral form in Egs. (2.17) and (2.18). Under the assumption of
steady flow, they simplify to

/ puing dsS = 0., (3.22)
S

representing conservation of mass, and
/pujnjui dS + / pn;dS —/ T5in;dS =0, (3.23)
S S S

representing conservation of the i*" component of momentum. By approximating
each surface integral at the face midpoints, the discrete form of the equations results:

> Je=0, (3.24)
£

and

D (FE+ FE + F) =0, (3.25)
£

where Jg, o Ff":' ;» and FP’; respectively represent the mass flow, advective momen-
tum transport, pressure force, and viscous force at each face.

In the sections below, the numerical approximations used for the advection
term, viscous term, pressure term, and mass flows will be presented.

3.4.1 Advection Term

The advective transport of the i** momentum component through a face is given
by

Ft%i = Jf‘ll.f,i. (3.26)

The quantity u¢; is the advected velocity, distinct from the advecting velocity
which appears in the mass flow J;. The discretization used for u¢; is the same
as that used for the advective transport of a scalar (Eq. (3.9)). Unlike the scalar
case, however, there does not appear to be any motivation for using a nonlinear
limiter. The difference may be traced to the mathematical nature of the equations.
The scalar equation may be hyperbolic, and therefore permit discontinuities in the
solution field. These discontinuities are responsible for triggerring wiggles, and
the role of the limiter is to dampen the wiggles by increasing numerical diffusion
near the discontinuities. The incompressible Navier-Stokes equations, on the other
hand, have an elliptic character. The solutions are therefore smooth, affording no
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opportunities for discontinuity-induced wiggles to arise. Wiggles may still occur,
but they are caused by the pressure-velocity coupling rather than the advection
term. Empirical studies have also shown the limiter to have little or no effect on
the solution. For these reasons, unless otherwise stated, the Navier-Stokes solutions
shown in this thesis do not use a nonlinear limiter.

Another feature of the advection term in momentum which is absent in the
scalar case is its nonlinearity. In particular, velocity appears both in u¢; and in Jg.
The discretization for Jr will be presented shortly. Fg; is linearized using Picard
iteration [20], where J; is based on values from the previous iteration.

3.4.2 Viscous Terms

The viscous force at a face is given by

;=

Ou; ou;
(o + 3o s 5e (3:27)
7 )

The first term in this expression is identical to F¢ in the scalar conservation equa-
tion, and is approximated using the same new cell-centered discretization. The
second term is lagged using known cell gradients.

At boundary faces, the viscous term treatment becomes more complex, for
several boundary types require Fy; to be expressed using a local tangential-normal
coordinate system:

Fg; = Fgy® + FRg™. (3.28)

Let the subscripts n and ¢ represent the normal and tangential directions. Then
the tangential force is

Fft:ng = —Tnet; St (3.29)
_ Our Ouy, )
=—i 5z + azt) t: Sk, (3.30)

where 7,; is the shear stress and ¢; are the components of the unit tangent vector
to the boundary face. The normal force is

_ Bu, Oun
= (G + g ) msi, (3.32)

where 7, is the normal viscous stress.
The tangential force is discretized in a similar manner as at interior faces. The
first term is

to _ _ Utbnd —ULP T (a _ ~a
i Se=—pu (a_—_As + Vu, - (& as)) . (3.33)
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The second term vanishes at wall boundaries and is calculated using cell gradients
at other boundaries. Because the tangential force is calculated using tangential
velocities, rather than Cartesian velocities, it is lagged. In order to prevent con-
vergence from stalling near the boundary, the following approximation is used to
generate active coefficients:

Ui,bnd — Ui, P
Fian8 o o bibnd — Ui

e s (3.34)

with an equivalent amount added to the right-hand side of the matrix equation so
that the correct result is obtained at convergence.
The normal force is discretized in a similar manner. The first term is

aun _ Un,bnd —Un,P A —=— PP
—#a_mn“Sf =—u (a s + Vu, - (A as)) (3.35)

and the second term is treated using cell gradients. The following approximation is
used to generate coefficients:

Fpomm o -2a3&‘2;£|n.-|sf. (3.36)

At inflow boundaries, both components of velocity are known and both the nor-
mal and tangential forces are calculated. At outflow boundaries, both components
of velocity are extrapolated, the tangential force is important, and the normal force
is neglected in order to enhance convergence. This approximation is not serious
because the resulting error is immediately advected out of the domain. At all walls,
the normal velocity is zero. At no-slip walls, the normal force vanishes, the tan-
gential velocity is specified, and the tangential force is calculated using Eq. (3.30).
At symmetry and slip walls, the tangential force is zero, the tangential velocity is
calculated from Eq. (3.30), and the normal force is calculated using Eq. (3.32).

3.4.3 Pressure Term
The pressure force at a face is
ng = pfn‘-Sg. (337)

Since pressure has no preferential direction of action in incompressible flow, pr is
most appropriately approximated by a centered discretization:

1 _
=3 (pp +p@) + Vp -, (3.38)

where r is the vector from the midpoint between centroids P and Q to the face
midpoint, and Vp is the average of the adjacent cell pressure gradients. The terms
involving cell pressures are made active. The pressure gradient term is lagged. It has
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apparently not been used before, but is required to make the discretization linearly
exact. It converges more quickly than an alternative linearly-exact discretization,

1
pe="5 (pp+ Vp-tlp+po + Y xlg) - (3.39)

At outflow boundaries, pr is specified. At inflows, no-slip walls, and slip walls,
pr is extrapolated as follows:

pe=pp+ Vp-r|p. (3.40)
At symmetry boundaries, the normal derivative of pressure is set to zero:
Op _ Pond—PP - (s -
— =a—— -(a— =0. 3.41
3n =% A +Vp-(i—a8)=0 (3.41)

3.4.4 Mass Flows
The mass flow through a face is
Je = pug,nSt, (3.42)

where u¢n, = ug - i is the advecting velocity. It is important to discretize the
advecting velocity in a special manner in order to avoid pressure-decoupling [50].
Standard colocated approaches follow the lead of Rhie and Chow [59] in introducing
a pressure gradient dependence into ug,,. In effect, this modification introduces a
pressure dissipation term into the continuity equation. The particular form used
here is similar to the expression derived for a cell-vertex method in [1]:

where %t , is obtained in the same way as pr in momentum,
_ 1 —
Uf,n = 5 (uP.ﬂ + uQ‘u) + Vug, -re, (3.44)

and Vp is the average of the adjacent cell pressure gradients. The pressure dissipa-
tion coefficient at a face is

~_1(9% Qg

where 2 is the cell volume and a is the average central coefficient for the discrete
momentum equations. The term involving (po — pp)/As and the term involving
the average of the cell velocities are made active and all other terms are lagged.

This discretization is similar to existing methods [20,41]. The new features in
this discretization are the correction to ug, in Eq. (3.44) to make it linearly exact
and the choice of & = 4 - § in the pressure dissipation term.
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The mass flows must also be discretized appropriately at boundary faces. At
outflow boundaries, pressure is specified and a one-sided expression is used to eval-
uate ug n:

U o = Tg p + ady (pﬂA—;pP - V—p'§) i (3.46)

At other boundaries, J; is known from other boundary condition information, but
Eq. (3.46) is useful in calculating the pressure at certain boundary faces. Numerical
experiments have shown that this type of pressure extrapolation to the boundary
is very useful in calculating cell pressure gradients, especially on triangular meshes
where the least-squares stencil could otherwise be singular.

As with the scalar conservation equation, good convergence behaviour has been
achieved through underrelaxing the gradient calculation and augmenting the coef-
ficients based on the mesh nonorthogonality rather than by time marching. If time
marching is used, however, it is important to modify the expression for ug,n So that
its value at steady state does not depend on the time step At {1,39]. This is done
by defining

=P
c= 1 (3.47)
and
__ df
fi= T (3.48)
Then the advecting velocity is calculated from
Uf,n = Us,n + aft (?—QA_—SPI: -Vp -§) —cfi(ug, — ¢ ), (3.49)

where the superscript o denotes values from the previous iteration.

3.4.5 Solution Methodology

The solution methodology for the Navier-Stokes equations is similar to that de-
scribed for the scalar conservation equation. The major difference is that at each
control volume, there are three algebraic equations: one for continuity and two for
momentum. Thus at each control volume there is a system of equations having the
form

lalp{®}r + > _[alan{®as} = {b}r. (3.50)
where the point coefficient matrix [a] has the form

Gpp Gpu  Gpv
[a] = |aup Guu Guv (3.51)
Qup CQuu CGuv
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and the point solution vector {®} has the form

2
(8} = (u) i (3.52)

In these equations p, u, and v represent pressure, u-velocity, and v-velocity, respec-
tively. Non-zeros may exist for all coefficients except a,, and ayy.

The resulting matrix equation for the entire solution field has a block structure.
The same algebraic multigrid soiver used for the scalar system [58] is used for solving
this system. After solving the system of equations and updating the cell pressures
and velocities, the boundary face values and mass flows are updated. Then new
cell gradients are calculated and a new system of equations is assembled. This
process is repeated until the maximum normalized residuai for all variables, defined
in the same manner as for the scalar conservation equation, falls below a predefined
tolerance.

3.5 Validation

The discretization procedure described in this chapter has been tested for consis-
tency and coding errors using some very simple test cases. These test cases are not
described here. Instead, three validation tests for which benchmark solutions are
available are presented: shear-driven flow in a square cavity, shear-driven flow in a
skewed cavity, and flow over a backward-facing step.

3.5.1 Shear-Driven Square Cavity Flow

A standard benchmark solution which occurs in the literature is the shear-driven
cavity. Consider a square cavity of dimension L, as illustrated in Figure 3.7(a). The
cavity lid moves to the right with a velocity U, driving a large vortex in the cavity
and possibly some smaller ones in the corners. Benchmark solutions for a variety
of Reynolds numbers have been published by Ghia et al. [26]. We have considered
an intermediate Reynolds number of 1000.

The problem has been solved using two meshes. The coarse mesh, shown in
Figure 3.7(b), has 2688 cells. The fine mesh has 10,440 cells. In both cases all
normalized residuals have been driven below 10~3, which required 27 iterations for
the coarse mesh and 20 iterations for the fine mesh.

The computed solutions may be compared with the benchmark solution by
comparing velocity profiles along the two dashed lines shown in Figure 3.7(a). The
normalized u-velocity is plotted along the vertical line in Figure 3.8 and the nor-
malized v-velocity is plotted along the horizontal line in Figure 3.9. The velocities
are normalized by U and the positions by L. The data points for the computed
solutions are obtained from cells whose centroid lies within a threshold distance
from the line. The coarse and fine mesh solutions are nearly the same, showing that
the solution is essentially mesh-independent, and feature excellent agreement with
the benchmark solution.
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Figure 3.7: Shear-driven square cavity test case.
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Figure 3.8: Normalized u-velocity along a vertical line through the centre of the
cavity for the shear-driven square cavity test case.
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Figure 3.9: Normalized v-velocity along a horizontal line through the centre of
the cavity for the shear-driven square cavity test case.

3.5.2 Shear-Driven Skewed Cavity Flow

Solutions have also been obtained to a skewed shear-driven cavity problem. The
problem definition is identical to the square cavity flow except that the cavity is
skewed to the right by 60°. Benchmark solutions to this case have been published
by DemirdZi¢ et al. [17]. Mathur and Murthy [41] performed a similar study also
using an unstructured finite-volume solver. We have obtained solutions using both
triangular and quadrilateral meshes, of which the coarsest are shown in Figure 3.10.
Four quadrilateral meshes were used, having sizes of 19x19, 39x39, 79x79, and
159% 159, which respectively required 42, 59, 46, and 36 iterations to reduce all
normalized residuals below 10~5. Four triangular meshes were also used, having 384,
1512, 6020, and 23,700 cells, which correspond roughly to the quadrilateral meshes
and which respectively required 33, 48, 42, and 37 iterations to reach convergence.

The normalized velocities for the solutions are plotted along a skewed vertical
line through the centre of the cavity in Figure 3.11 and along a hoii.ontal line
through the centre of the cavity in Figure 3.12.

3.5.3 Flow over a Backward-Facing Step

The final test case involves laminar flow over a backward-facing step. The geometry,
shown in Figure 3.13, is identical to that given in the benchmark paper by Gartling
[25]. The domain length is L = 30, the step height is b = 0.5, and the origin is placed
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(a) Quadrilateral mesh (19x19 cells). (b) Triangular mesh (384 cells).

Figure 3.10: Coarse meshes used for shear-driven skewed cavity test case.

at the top of the step. Fully developed flow is assumed at the inflow boundary:
u(y) = 24y(0.5 — y), (3.53)

which gives an average inflow velocity of @ = 1. As in the benchmark paper, a
Reynolds number of Re = pu(2b)/u = 800 is used. Although this flow is not
experimentally realizable (three-dimensional effects appear at about Re = 400 [6]),
it is still a popular test case because of its difficulty [28]. The difficulty stems from
the separation zones along the lower and upper walls. The two primary zones are
indicated on the figure: the flow behind the step reattaches at z = L;, while the
first bubble on the upper surface detaches at 2 = L,; and reattaches at £ = L.
The solution throughout the domain is sensitive to the positions of the bubbles,
leading to slow convergence and a strong sensitivity to discretization error.

This problem has been solved on coarse, medium, and fine triangular meshes,
respectively having 2241 cells, 8947 cells, and 37,513 cells. These meshes have
nonuniform densities, with one grading factor for 0 < z < 10 and another for
10 < £ < 30. The gradings are such that the cells at z = 10 are 1.5 times larger
than at £ = 0 and the cells at z = 30 are four times larger than at £ = 0. The
problem has also been solved on coarse, medium, and fine quadrilateral meshes,
having 1600, 6400, and 15,600 cells. The quadrilateral meshes have uniform spacings
in the y-- direction. In the z—direction, 75% of the nodes are distributed uniformly
in the region 0 < £ < 15 and the remainder are distributed nonuniformly in the
remainder. The cell aspect ratio in the upstream portion of the duct is five. In all
cases, convergence was relatively slow — typically 100-150 iterations were required
to reduce the normalized residuals below 1075.

The calculated detachment and reattachment points are tabulated in Table 3.2,
together with the benchmark values. They are determined as the points where
the wall shear stress changes sign. The results indicate that a mesh-independent
result has not yet been reached with the finest meshes, but the solutions feature
the correct trend toward the benchmark solution. The results also suggest that
the quadrilateral meshes give somewhat better results than the triangular meshes.
This appears to be related to the aspect ratios of the quadrilateral cells: for a given
mesh size, they resolved the flow features in the transverse direction better than
the triangular cells.



3 Discretization for Steady Flows

159x159 —
79x79 —

39x39

19x19 —
.

08 |-

04 |

02 F

04 0.8 08 1

08

06

04 |-

02 -

(b) Triangular meshes.

Figure 3.11: Normalized u-velocity along a skewed vertical line through the
centre of the cavity for the shear-driven skewed cavity test case.
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(b) Triangular meshes.

Figure 3.12: Normalized v-velocity along a horizontal line through the centre of
the cavity for the shear-driven skewed cavity test case.
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Figure 3.13: Geometry of backward step test case, with 6 =1 and L = 30.

Table 3.2: Separation points for the backward step test case.

[‘Mesh T L | Lui | Lz
Coarse triangular (2241 cells) 3.85 | 250 | 6.75
Medium triangular (8947 cells) || 5.64 | 4.45 | 9.98
Fine triangular (37,513 cells) 6.00 | 4.76 | 10.40

Coarse quad (80 x 20 cells) 5.30 | 4.10 | 10.10
Medium quad (160 x 40 cells) || 5.86 | 4.62 | 10.42
Fine quad (320 x 80 cells) 6.01 | 4.78 | 10.46

[ Benchmark [610 ] 4.85 [ 10.48




Chapter 4

Unsteady Flows I: Space-Time
Mesh Generation

4.1 Introduction

In the previous chapter a finite volume methodology for solving steady-state con-
servation equations was presented. By extending this methodology to the time
dimension, the next two chapters will develop the IST finite volume method for un-
steady flows. This chapter is devoted to space-time meshing for moving boundary
problems, and the next to the IST discretization procedure.

Just as conventional discretization methods fill the spatial domain with a spatial
mesh, so also space-time methods fill the space-time domain with a space-time mesh.
Thus the dimension of the mesh is increased by one: for two-dimensional problems,
the mesh has two spatial dimensions plus a time dimension.

Space-time methods usually split the space-time domain into time slabs, in
order to decouple the solution at a particular time from those at later times. There
have been various approaches to meshing individual time slabs. In many of them,
the space-time elements follow the flow, leading to a Lagrangian method [29, 30].
These methods typically require periodic global remeshes and solution projections in
order to avoid mesh distortion and tangling. Another approach has been to tessellate
every time slab with simplex space-time elements [24], which seems expensive for
higher-dimensional problems.

The space-time meshing algorithm presented here avoids global remeshing en-
tirely, instead using only local mesh modifications near the moving boundaries. The
algorithm will first be outlined for one-dimensional problems, followed by a more
involved explanation for two-dimensional problems.

37
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4.2 One-dimensional problems

This section describes the space-time meshing algorithm for one-dimensional moving
boundary problems. The space-time domain is first subdivided into time slabs, as
shown in Figure 4.1, and each time slab is filled with nonoverlapping cells. The time
slabs are bounded by time planes t™ and t**1. Each time plane is covered with a
spatial mesh, which forms a boundary for the space-time cells above and below the
time plane.

/ 0\
- \
5 :
A IERE RNV
) ]

I

Figure 4.1: Division of space-time domain into time slabs.

In principle, the mesh within a time slab may be quite general. For simplicity,
all cells are required to span the distance between times t* and t**1. The cells are
two-dimensional and bounded by two different types of faces: time faces, which lie
on a time plane, and space-time faces, which span the distance between time planes.

When tessellating a time slab, the existing spatial mesh on the lower time plane
t” is used to simultaneously generate the spatial mesh on t"*! and the space-time
mesh between the time planes. For the first time slab, the spatial mesh at time ¢°
must be given. In one dimension, this initial mesh consists simply of a predefined
number of vertices evenly spaced over the length of the spatial domain, as well as
the time faces of length L which which join the vertices.

The time slab meshing algorithm uses a four step-process, as illustrated in
Figure 4.2. In step (a), the lower spatial mesh is extruded in time to generate
a space-time face from each vertex and a quadrilateral cell from each time face.
In step {b), the boundary vertices on the new time plane are moved to their new
prescribed locations. This step may produce time faces which are too long, too
short, or even tangled. Step (c) therefore modifies the mesh topology next to the
boundary by adding or removing vertices. A vertex is added next to the boundary
if the time face length is too long,

L > BmaxL, (4.1)
and removed if it is too short,

L< ﬂminfv (4'2)
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Adding a vertex generates a triangular cell having a vertex on the lower time plane
and an edge on the upper time plane (right side of figure). Removing a vertex
generates a triangular cell having an edge on the lower time plane and a vertex on
the upper time plane (left side). Bmax and Bunin are defined parameters. Finally, in
step (d) the vertex locations on the new time plane are smoothed.

IR EENEE
“ATTITIIT/
‘ C ALY

L-x CATTTTTTVY

Figure 4.2: Generating a mesh for a time slab: (a) extrude in time; (b} move
boundaries; (¢) add/remove vertices; (d) smooth.

The algorithm as described places a restriction on the allowable time step: no
more than one vertex may be added or removed next to a boundary in a time step.
However, for one-dimensional problems, it is not hard to modify the algorithm to
allow additional vertices to be added or removed. An example of a space-time mesh
generated with this algorithm is shown in Figure 4.3, where a domain has its left
boundary fixed at z = 0 and its right boundary varies according to z = .5sin(nt).
The space-time mesh is shown for 0 < £ < 3 using time steps of At = 0.1 and ten
cells on the initial time plane.

4.3 Two-dimensional problems

4.3.1 Overview

Space-time meshing for two-dimensional problems follows the same general ap-
proach as with one dimension, but the steps are more involved. As in the one-
dimensional case, time slabs are used, with space-time cells spanning the distance
between the time planes. Generating the space-time mesh requires tracking two
types of topologies: the two-dimensional spatial mesh on each time plane and the
space-time mesh which joins the time planes. A good space-time mesh requires
having quality meshes for both of these. The initial spatial mesh for the t° time
plane is generated by EasyMesh [47]. For simplicity, only triangular time faces are
considered.

The first step in the meshing algorithm involves extruding the spatial mesh
which lies on the lower time plane. Edges generate quadrilateral space-time faces
and time faces generate triangular prisms. Next, vertices which lie on moving
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Figure 4.3: Space-time mesh for a one-dimensional problem having a fixed left
boundary and oscillating right boundary.

boundaries are moved to their new locations. Third, modifications are made to
the mesh topology near the boundary to maintain mesh quality. This step is the
most involved, and is discussed in further detail below. Finally, one or two layers
of vertices next to the boundary are smoothed.

Modifying the mesh topology introduces new types of space-time faces and cells.
The faces have one of three possible shapes, shown in Figure 4.4. The unmodified
topology is a quadrilateral, having an edge on both the lower and upper time planes.
Two triangular topologies may also be encountered. The face types are labelled
according to how they appear on the lower and upper time planes; e.g., a VERT-
EDGE face has a vertex on the lower time plane and an edge on the upper.

The cells have one of six possible topologies, shown in Figure 4.5. The unmod-
ified topology is a triangular prism, having a triangular time face on both the lower
and upper time planes. Two pyramid shapes, having a triangular time face on one
time plane and an edge on the other, may also be encountered. Three tetrahedra
are also possible: two have a triangular time face on one time plane and a vertex
on the other, and the third has an edge on both time planes.

Topology changes near the moving boundary are grouped into three categories:
adding and removing vertices adjacent to the moving boundary, adding and remov-
ing vertices on the boundary itself, and diagonal swapping. Permitting all of these
on any given time slab leads to a host of interactions between the different opera-
tions which have to be explicitly considered. The number of interactions is reduced
by permitting only one category on a particular time slab. Each type of modification
is now considered.
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Figure 4.4: Space-time face topologies for two-dimensional problems.

(a) TRI-TRI (b) EDGE-TRI (c) TRI-EDGE

VERT-TRI (e) TRI-VERT (f) EDGE-EDGE

Figure 4.5: Cell topologies for two-dimensional problems.
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4.3.2 Adding and Removing Vertices Adjacent to the Bound-
ary

Deciding where to add and remove vertices adjacent to the moving boundary in two
dimensions follows the criteria for one-dimensional problems. Define L to be the
average edge length on the initial time plane, and L to be the distance of a vertex
to a moving boundary. A vertex must be added if the distance is too long,

and removed if it is too short,
L < BminL. (4.4)

In order to maintain mesh quality when these operations are carried out, it is
essential that the spatial mesh on the new time plane retain its original structure.
Figure 4.6 distinguishes between two types of vertices on a time plane. The face
vertex is connected to the boundary by a face, whereas the edge vertex is connected
by a single edge. Removing these vertices results in different topological changes,
as does adding new vertices when they are too far from the boundary.

L2 B

(a) Face vertex (b) Edge vertex

Figure 4.6: Types of vertices which may be connected to a moving boundary.
The mesh lies on a time plane and the boundary is indicated by the hash marks.

Adding a vertex

When a vertex is added, the topologies of both the spatial mesh on the new time
plane and the space-time mesh are modified. The change to the new time plane is
relatively straightforward, as illustrated in Figure 4.7. The resulting topology of the
time slab, shown in Figure 4.8, is more complex. When adding an edge vertex, the
topological changes can be separated into a left and a right section, each consisting
of a TRI-VERT cell and two EDGE-TRI cells. When adding a face vertex, the same
two sections appear, but now sandwich a central piece consisting of a2 TRI-VERT
cell and an EDGE-TRI cell.
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(a) Adding a face vertex

s =

(b) Adding an edge vertex

Figure 4.7: Topological changes to time plane when a vertex is added.
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(a) Adding a face vertex (b) Adding an edge vertex

Figure 4.8: Topological changes to time slab when a vertex is added. The dotted
lines illustrate how the pieces glue together.
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These operations have assumed that only a single vertex is added in isolation.
When adjacent vertices are added, the interaction between them must also be con-
sidered. For example, Figure 4.9 illustrates vertices added to adjacent time faces.
The new time plane features a quadrilateral face which must be triangulated. The
resulting mesh has a squarish appearance. The space-time mesh for this operation
has been split into six sections. The left and right sections of Figure 4.8 reappear,
and the central section reappears twice. In the very center, two additional pieces
appear, which arise from the interaction between the two vertices. The centre-
left piece is composed of a TRI-VERT and an EDGE-TRI cell (which also form
two-thirds of the right section of Figure 4.8(a)). The centre-right piece has an
EDGE-EDGE cell sandwiched by two VERT-TRI cells.

=z

(a) Changes to time plane. The shaded quadrilateral illustrates how the mesh takes
on a squarish look.

(b} Structure of time slab

Figure 4.9: Topological changes when two vertices are added.
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Removing a vertex

Removing a vertex is roughly the reverse procedure of adding a vertex. The topo-
logical changes to the time plane are shown in Figure 4.10. The operation consists
of removing all edges on the time plane which touch the vertex and retriangulating
the resulting polygon. The examples shown are unambiguous, but in other cases,
where the vertex to be removed has more neighbours, the retriangulation must be
done in such a way that the mesh quality does not deteriorate.

=3 7z

(a) Remaving a face vertex

= =3 =

(b) Removing an edge vertex

Figure 4.10: Topological changes to time plane when a vertex is removed.

The topological effects of removing a vertex are illustrated in Figure 4.11. The
space-time cells are inverted versions of those which appear when a vertex is added
(Figure 4.8). For every time face which shares the vertex on the old time plane,
a TRI-EDGE cell appears which causes the time face to collapse into the edge
opposite the vertex. In addition, for each new time face which appears on the
new time plane, a VERT-TRI cell appears. When the vertex being removed has
more neighbours than the examples shown here, the central section becomes more
complex. Removing adjacent vertices is also more involved than removing a single
vertex; however, the situation is quite similar to adding adjacent vertices.

4.3.3 Adding and Removing Vertices on the Boundary

Adding and removing vertices on the moving boundary itself is also based on dis-
tances. If a boundary edge is too long a vertex is added at its midpoint. If the
boundary edges adjacent to a vertex are too short, the vertex is removed. The
resulting topological changes to the time plane and time slab are one-sided relatives
of the corresponding changes when edge vertices are added or removed adjacent to
the boundary (half of Figures 4.8(b) and 4.11(b)).
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(2) Removing a face vertex (b) Removing an edge vertex

Figure 4.11: Topological changes to time slab when a vertex is removed.

4.3.4 Diagonal swapping

In some cases diagonal swapping is also required to maintain mesh quality. This
process is illustrated in Figure 4.12. The space-time cell, having two time faces
on each of the lower and upper time planes, is more complex than the primitive
shapes presented in Figure 4.5. The cell could be decomposed into tetrahedra if
only a single swap is performed. If two adjacent diagonals are swapped, however, a
decomposition is impossible. For this reason, the cell is kept as a composite.

4.3.5 Geometry Calculations

The cell-centered flow solver requires the calculation of several geometrical entities.
Areas and centroids are required for time faces; areas, centroids, and normal vectors
for space-time faces; and volumes and centroids for cells.

The faces and cells through most of the time slab are extruded from the lower
time plane, and their geometries are easily calculated. Only near moving bound-
aries, where vertices have been added, removed, or moved, are more extensive cal-
culations required. These calculations are explained below.

The geometries of time, EDGE-VERT, and VERT-EDGE faces are straightfor-
ward, as they are triangular. The geometries of EDGE-EDGE faces are calculated
by introducing an auxiliary point as the average of the four bounding vertices. The
auxiliary point is used to decompose the face into four triangles, whose areas are
summed to obtain the face area and whose centroids are weighted by area and
averaged to obtain the face centroid.
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(a) Changes to time plane

(b) Structure of space-time

cell

Figure 4.12: Swapping a diagonal.
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A similar process is used for the cell calculations. The geometries of VERT-
TRI, TRI-VERT, and EDGE-EDGE cells are easily calculated, as they are tetrahe-
dra. For the remaining cell types, an auxiliary point is used to decompose the cell
into tetrahedra (14 for TRI-TRI cells and 8 for EDGE-TRI and TRI-EDGE cells).
Cell volumes are obtained by summing the tetrahedral volumes, and cell centroids
are obtained from the volume-weighted average of the tetrahedral centroids.

It should be noted that, although a Green-Gauss theorem could be used to
calculate cell volumes, it is still necessary to decompose the cell into tetrahedra
for the centroid calculation. This is because the Green-Gauss surface integral for
the centroid position has quadratic terms, which cannot be solved exactly using a
single-point quadrature.

4.3.6 Test Cases

To illustrate how the algorithm works in practice, consider a square cavity having a
dimension L. The right boundary of the square moves back and forth in a sinusoidal
manner. The amplitude of the oscillation is 0.75L and the period of oscillation is
T. The initial geometry is meshed using 670 triangles and 80 time slabs are used
per period. Figure 4.13 shows the resulting mesh on time planes 0 < ¢ < 1.125T in
intervals of 0.1257". The results clearly show that good mesh quality is maintained
throughout the oscillation.

Other cases involving more complex boundary motion will be presented later
in the thesis.

4.3.7 Discussion

The results for this test case and others indicate that the method works well on a
variety of problems. There are some limitations, however. First, unlike the one-
dimensional case, there is a CFL-type restriction (based on the boundary vertex
speed) on the time slab thickness. This is due to the excessive complexity which
would be required to allow multiple layers of vertices to be added or removed in a
time slab. A further limitation is the assumption of an isotropic spatial mesh on
the time planes; if necessary, it should be possible to extend the algorithm to other
cases as well. In addition to these limitations, the algorithm is relatively complex
to code: many special cases, particularly near corners, must be considered.

Despite these limitations, the method has some significant advantages. The
main advantage is its computational efficiency. By using a four-step procedure of
extruding the mesh on the old time plane, moving the boundary vertices, adding
and removing vertices near the boundary, and smoothing on the new time plane,
mesh quality is maintained while avoiding global remeshes.
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Figure 4.13: Spatial mesh for cavity test case on time planes 0 <t < 1.125T in
intervals of 0.1257. The sequence runs by column.



Chapter 5

Unsteady Flows II: The Integrated
Space-Time Finite Volume Method

In this chapter, the IST discretization will be described. It will begin by rewriting
the governing equations in a form which unifies the terms involving space and time.
Next, the space-time control volumes will be chosen. The discretization procedures
for the unsteady scalar conservation equation and the Navier-Stokes equations will
then be described, and the chapter will conclude with a validation test case.

5.1 Mathematical Formulation

5.1.1 Differential Forms

Underlying the IST concept is the premise that, just as conservation principles
apply to both space and time, so should the discrete finite volume principle. In
order to translate this premise into a numerical algorithm, it is helpful to rewrite
the governing equations in a form which unifies space and time. This will be done
first for the scalar equation, presented earlier as Eq. (2.10):

0(pd) , 9puid) L Oq _ 4
ot T om Tom o 51

The IST formulation requires the use of space-time vectors, which are distin-
guished from purely spatial vectors by a prime. As space-time vectors have an
increased span, the subscript ¢ is defined to be one more than the number of spatial
dimensions. Thus the time coordinate is z}.

By defining a “time velocity” u; = 1, the transient and advection terms of

50
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Eq. (5.1) are combined as follows:

d(pg) + Apuip) _ O(puid)
at dz; ~ ozt

(52)

We must also ensure that the other terms maintain the special nature of time. For
instance, diffusion occurs in space but not in time. The anisotropy of the space-time
continuum is reflected by the definition of a space-time metric tensor 7;;:

; _{1 ifi=jand 4,7 <t (5.3)

i = 0 otherwise.

For instance, if there are two spatial dimensions, then 7{-]- expands to

1 00
7% =0 1 0}. (5.4)
0 00

Then Eq. (5.1) may be rewritten as

Apuip)  9¢; _ ¢
o2, + oz =3, (5.5)
where
;1 0
g = —7-7"'F§z:?’_' (5-6)

In the same manner, the continuity equation (Eq. (2.1)) may be written in IST
form as

—i =, (5.7)

and the momentum equation (Eq. (2.5)) as

= .8
oz’; Ki ox’; + oz}’ (5.8)
where
Gul, By
Tie = Tei Vi B (E:’{_ + 3—5,;) . (5.9)

In the momentum equation, the free index i varies over the spatial dimensions. It
is fascinating to observe, however, that if the time component is considered, the
continuity equation is recovered. It is therefore possible to express the mass and
momentum System as a single “space-time momentum equation”. For our purposes,
however, there does not seem to be any advantage in doing so, and the continuity
and momentum equations will be considered separately.
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5.1.2 Integral Forms

When applying the finite volume principle to steady problems, the differential equa-
tions are integrated over a control volume (2. In the same manner, the IST finite
volume principle requires the integration of the differential equations over a space-
time control volume . Doing so for the scalar equation, Eq. (5.5), gives

a(p’u'(ﬁ) ’ aq: ’ a 7
/;r bollaq + [ SRaw= | Saw. (5.10)

Using Gauss’ divergence theorem, the volume integrals are converted to surface
integrals:

/ pulnié dS' + / dintds' = [ Sa, (5.11)
s’

where S’ is the space-time surface bounding ' and n} is the outward-directed
space-time normal to S’.

The only volume integral in this equation arises from the volumetric source
term. All other terms, including the transient term now combined with the advec-
tion term, involve surface integrals. This occurs because all corresponding terms in
Eq. (5.5) are in divergence form, illustrating that conservation principles apply both
to space and time dimensions. So an interpretation of Eq. (5.11) is: the net outflow
of ¢ from (¥ is balanced by internal generation. In contrast, the conventional form
(Eq. (2.14)) is interpreted as: the rate of change of ¢ in 2 is balanced by the net
inflow rate through the surface and the internal generation rate. This conceptual
simplification also yields algorithmic simplifications, for the Leibnitz rule and GCL
do not need to be considered. New complexity is introduced, however, from the
time dimension of the control volume.

Another advantage of the IST formulation follows from the combination of
transient and advection terms. As a result, the same discretization may be used for
both. This will be demonstrated later.

Following the same procedure, the integral form of the continuity equation is

/ puin;dS' =0 (5.12)
SI
and of the momentum equation is

/ pulinl; S’ — / ¥ pmf; dS' — / 74! dS' = 0. (5.13)
(] s’

5.2 Choice of Control Volumes

In Section 3.2, different issues affecting the choice of control volumes for steady
flows were discussed. With IST, the same choice between cell-centered and vertex-
centered methods is faced. One additional issue must also be addressed: the need
for a time-marching algorithm. Time-marching is possible provided there are time
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planes across which the solution field is discontinuous. This is ensured if time slabs
are used together with a cell-centered method, so long as the fluxes through time
faces are discretized using “upwind” (from the previous time slab) information.
Vertex-centered methods, on the other hand, explicitly require the solution to be
made discontinuous using the discontinuous Galerkin method [35]. A cell-centered
method is chosen in this study.

5.3 The Scalar Conservation Equation

In this section, the IST algorithm for the scalar conservation equation is described.
The integral form of the equation was given earlier as Eq. (5.11). Dropping the
source term, we obtain

/ puinipds’ +/ gin;dS' =0, (5.14)
s’ s
or, in vector notation,
/ pou’ -i'dS + [ q-id'dS=0. (5.15)
s s

The surface integrals are approximated using the midpoint rule. The resulting
discrete form of the equation for each control volume is

> (Fe+Fg) =0, (5.16)
f

where, as in the steady algorithm, F and F;” respectively represent the numerical
advective and diffusive transport through each face. Transient effects are included
in the advection term. Typical faces which bound space-time control volumes for
one spatial dimension are illustrated in Fligure 5.1. Important vectors shown on the
diagram are n} (or @'), st (or §'), and r} (or r'), which are space-time extensions of
the vectors shown in Figure 3.1 for the steady algorithm.

Before deriving expressions for the numerical fluxes in terms of the cell cen-
troid values of ¢, the method for calculating space-time cell gradients of ¢ will be
presented.

5.3.1 Cell Gradient Vectors

A procedure for calculating cell gradient vectors for steady problems was described
in Section 3.3.1. In space-time, the gradient vector also includes a time component
and is therefore denoted by V'¢. The extension of the least-squares method to
space-time is straightforward. Consider all space-time neighbours of cell P, as
illustrated for one spatial dimension in Figure 5.2(a). Note that the space-time
neighbours from the next time stab cannot be included, for they are not yet known;
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(a) An internal space-time face (b) A boundary space-time face

L

¥

P

—

{c) A time face

Figure 5.1: Typical control volume faces in space-time.
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this leads to a one-sided stencil in time. The components of the gradient vector are
determined from the matrix equation

Zw,-Az,—Az,— ij'Asztj ¢z _ ZWijjA¢j (5 17)
Z'WjA.‘CjAtj Ew]'AtjAtj o) Z’lUjAtjA¢j . )

For some degenerate space-time cells, such as the triangular cell shown in Fig-
ure 5.2(b), this matrix may be poorly conditioned and the stencil must be modified
to include cells from the previous time slab.

(a) o| S|
X (b) Y
x [ ] [ ]

Figure 5.2: Least-squares stencil used in calculating cell gradient vectors.

For two spatial dimensions, the cell gradient vector includes three components,
and is calculated from the following matrix equation:

Zw,—A:z:,-ij ijAy,-ij Z IUjijAtj v E ijyjA¢j
Y wiAziAt; Y wjAy;At; Y wiAti At bt > wjltiAg;
(5.18)

L wiAz;Az; 3 wiAziAy; Zw:'A%‘Atj] ( z) (E ijszcﬁj)

The stencil for cells which are degenerate on the lower time plane (i.e., VERT-TRI,
EDGE-TRI, and EDGE-EDGE cells) must be modified to include cells from the
previous time slab. The gradient vectors are underrelaxed in the same manner as
described in Section 3.3.1.

For the steady solver, the weighting factors were chosen to be the squared
inverse of the distance between the cell centroids. For one case having a significantly
nonuniform mesh (Section 6.3.4), this proved to be unstable. Consequently, the
inverse distance, which favours more distant neighbours, has been used for all test
cases.
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5.3.2 Advection Term

The advective transport through a face is

F§ = Jeos, (5.19)
where
Je=pu' -0'Se (5.20)

is the mass transport through the face. Jr has distinctly different interpretations at
space-time and time faces. At space-time faces, it represents the quantity of mass
which crosses the face during the time slab, whereas at time faces it represents the
quantity of mass at that time level. At both faces, ¢¢ is obtained from the same
upwind-biased approximation:

¢f = ¢up + QV'q& - l‘llup . (5.21)

It is interesting to note that choosing & = 0 on orthogonal space-time gives a dis-
cretization equivalent to the backward Euler approximation for the transient term.
Similarly, “downwinding” in time would be equivalent to the forward Euler ap-
proximation, and & = 1 is similar to a three-level second-order backward-difference
scheme. The current framework, however, is capable of maintaining second-order
accuracy also on general space-time meshes.

The value of ¢; must be specified at all inflows into the space-time domain.
This includes not only traditional inflow boundaries but also the initial time plane
t%, where u’ - i/ = —1. The values of ¢¢ specified at these time faces are precisely
the same as initial conditions specified in traditional methods.

Nonlinear expressions for & may also be used. For instance, the limiter of
Barth and Jesperson [10] may be extended to space-time by requiring that all ¢
around a cell be bounded by the space-time neighbours of the cell. The space-time
neighbours from the next time slab must be excluded, however, for they are not yet
known. As a result, accuracy is reduced to first order not only near extrema but
also wherever temporal gradients are large compared with spatial gradients.

As a test case illustrating aspects of this advection scheme, consider the one-
dimensional advection of a scalar in a spatial domain 0 < z < 2for 0 < ¢ < 1.
Figure 5.3 illustrates the space-time domain. The velocity is two units to the right,
and the initial and boundary conditions are ¢(z,0) = 0 and #(0,) = 1. The
problem is solved on an orthogonal mesh having 20 cells in the z-direction and 10
cells in the t-direction. Solutions obtained using several discretizations are shown in
Figure 5.4. The exact solution, which is to maintain the discontinuity between the
initial and boundary condition along the characteristic line (aligned with the space-
time velocity vector) is also included. The solutions obtained by solving all slabs
simultaneously, such that all space-time neighbours are included in the gradient and
limiter calculations, are also shown.

Most of the solutions bahave as expected. The piecewise constant scheme (b)
is very diffusive. When all slabs are solved together, the piecewise linear scheme (e)
generates overshoots and undershoots, which are eliminated by the limiter (f). Two
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Figure 5.3: Space-time geometry for advection test case.

noteworthy features arise from the use of time slabs. First, the piecewise limiter
scheme (c) has a larger overshoot than when the slabs are solved together, but no
undershoot. This arises from the gradient stencil which, being one-sided in time,
skews the discontinuity to one side. Second, the limited scheme (d) is more diffusive
when time slabs are used; this results from the absence of neighbours from the next
time slab in the limiter calculation.

5.3.3 Diffusion Term

The diffusive transport is
Ff=q -85, (5.22)
where q’ is a vector having components

0¢
g =Lz (5.23)
i 7 8z

Unlike the diffusion term considered in Section 3.3.3, this expression involves an
anisotropic medium. However, the discretization developed in that section may be
extended to anisotropic situations in an unambiguous manner by recognizing that
the diffusive flux is driven by the component of the gradient vector in the direction
of the spatial component of @i’. By defining a vector m’ having components

mi = yjn;, (5.24)
the diffusive transport becomes
Ff=-I'V'¢-m'S;. (5.25)

This expression has the same form as Eq. (3.11). It may be decomposed into
orthogonal and nonorthogonal contributions as follows:

F¢ = -T (V'¢- (&) + V7§ - (m' — a5")) S, (5.26)
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(b) Piecewise constant scheme

(a) Exact solution

(d) Limited scheme

(c) Piecewise linear scheme

(f) Limited scheme, slabs solved to-

gether

(e) Piecewise linear scheme, slabs

solved together

Figure 5.4: Space-time solutions for advection test case.
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where

t o faly $Q —dp
V¢ - (a8") VN (5.27)
and V’¢ is the average of the adjacent cell gradients. In the anisotropic case,
the natural choice for the scaling factor a is @ = m’ - §’. But at some highly
nonorthogonal space-time faces, this choice may produce negative «, leading to
convergence difficulties. Instead we choose

a = Max(m'-§',0). (5.28)

This diffusion discretization is valid not only for space-time, but also for general
anisotropic diffusivities. Because of the special nature of y}; in space-time, however,
F¢ is zero at time faces.

The behaviour of this discretization has been studied by considering transient
diffusion in a one-dimensional rod having unit length and translating with a velocity
of 1.5. Dirichlet boundary conditions of zero are applied to the ends, and the initial
condition is sin(wz). The analytical solution features an exponential decay of this
initial condition with time. The problem is solved in the range 0 < £ < 0.5. A typical
space-time mesh and solution, together with the results of a mesh refinement study,
are provided in Figure 5.5. With a piecewise linear scheme for the advection term,
the method is second order. With the limiter, the absence of neighbours in the next
time level reduces the overall accuracy to first order, although it is still better than
the piecewise constant scheme.

5.3.4 Solution Methodology

The procedure for iterating towards a converged solution within a time slab is
identical to that outlined for steady flow in Section 3.3.4. After converging the
solution for a time slab, the solution is reconstructed at the vertices on the upper
time plane for post-processing. Then the space-time mesh for the next time slab
is constructed and a new solution obtained. This process repeats until a specified
stopping time is reached.

5.4 The Navier-Stokes Equations

The integral form of the continuity and momentum equations using IST notation
were given as Eqgs. (5.12) and (5.13). After approximating the fluxes at the faces,
the discrete form of the equations are

> Je=0 (5.29)
f

for the continuity equation and

D (Ff+ FE+FE) =0 (5.30)
f
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(c) Mesh refinement results, with error being RMS
error and n being the number of space-time cells.

Figure 5.5: Transient diffusion in a translating rod.
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for the momentum equation. J;, F¢;, F¥;, and Fy; respectively represent the mass
flow, advective momentum transport, pressure force, and viscous force at each face.
They are related to the corresponding terms for the steady case discussed in Sec-
tion 3.4, but also include the transient effects. In the following sections, the dis-
cretizations developed for steady flow will be extended to space-time.

5.4.1 Advection Term

The advective transport of momentum through a face is
Fg: = Jrug;. (5.31)

The prime is left off us,; to emphasize that only the spatial components of momen-
tum are relevant. The same upwind-biased discretization described for the scalar
equation is used for ug;. As with the steady Navier-Stokes equations, a nonlinear
limiter is not used. Instead, by choosing ¢ = 1, second-order accuracy is achieved
everywhere. Picard iteration is used to linearize the advection term.

5.4.2 Viscous Terms

The viscous force at a face is given by

. Bul
Fgi = —te; (g—:‘,; + azi) n}Se, (5.32)
where the prime has again been left off the variables involving the index i. The first
term is discretized in the same manner as the diffusive flux for the scalar equation,
and the second term is lagged using known cell gradient vectors. Fy’; is identically
zero at time faces.

At boundary faces, F; must be decomposed into normal and tangential com-
ponents. This process is similar to that described for the steady equations, but
additional care is required to ensure that only the spatial normal and tangential
vectors are considered.

5.4.3 Pressure Term
The pressure force at a face is
F?, = 7jpen;St. (5.33)
At interior space-time faces, a linearly-exact centered discretization is used for pg,
7 =5 (o +1) + Vp-xe, (534

and boundary space-time faces are treated in a similar manner as in steady flow.
At time faces, FF; = 0.
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5.4.4 Mass Flows

The mass flow through a face is given by

Je = pug 5S¢, (5.35)
where ug , is the space-time velocity component perpendicular to the face:

up , =up - @' (5.36)

Now, defining us to be the spatial components of the space-time velocity vector, n
and n{ to be the spatial and time components of the space-time normal vector, and
using the identity u, = 1, we obtain

uf, = Up -0+, (5.37)

’
= Uf,n + N

The first term represents the spatial contribution to the mass flow; i.e., the mass
which exits (or enters) the control volume due to fluid flow. The second term
represents the temporal contribution; i.e., the mass left behind (or swallowed) as
the face moves with time.

At time faces, the spatial contribution vanishes, so

Je = pSe- (5.38)

At space-time faces, the spatial contribution may be discretized in a similar manner
as with steady flow:

Ut =Tgn + aft (p_az—s'ﬂ -V'p- §') —cfi(ul, - T,), (5.39)
where
- P
c= 12, (5.40)
_d
ff - 1 — Cdf ) (5.41)
and
179, @
a=-3(52+32). (5.42)
ap ag

The superscript o denotes values from the previous time slab. In cases where there
is no unique space-time face from the previous time slab which corresponds to the
face, an average value is used.
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5.4.5 Solution Methodology

The procedure for iterating towards a converged solution within a time slab is
identical to that outlined for steady flow in Section 3.4.5. The time step loop which
advances the solution through time is the same as for the unsteady scalar equation.

5.5 Validation

This section describes a test case involving prescribed boundary motion. Consider
a channel featuring a moving indentation in one wall. Experimental studies of this
type of flow have been carried out by Pedley and Stephanoff [51], and numerical
studies have been performed using a vorticity-stream function approach [56] and a
finite volume method {16]. The geometry is shown in Figure 5.6. The oscillation
period is T and the normalized time is t* = ¢/T. The height of the indentation at
a particular time is defined by

h = .19(1 — cos(2#t*)) (5.43)

and the curved portion of the lower wall is described by

_ [0.5h(1 — tanh(4.14(z — 5.25))) if 4b<z < 6.5b, (5.44)
" 10.5h(1 + tanh(4.14(z + 5.25))) if —6.5b <z < —4b. ’
s 0 NN
—— s ; —
/ Y ;
'/ 7 ® x Y, )
3.35b | 6.5b | 11.5b

Figure 5.6: Geometry of moving indentation test case, with b = 1.

As with the previous numerical studies, only the first cycle of the flow is solved.
Fully developed conditions are assumed at the inflow and at ¢ = 0. Solutions have
been obtained on a coarse mesh (having 6622 triangles on the initial time plane
and 50 time slabs) and a fine mesh (having 25,896 triangles and 100 slabs). The
coarse mesh required 10-25 (but usually 12-20) iterations to reduce all normalized
residuals below 10~ on every time slab. The fine mesh required 9-27 iterations.

The spatial meshes on various time planes around the downstream end of the
indentation for the coarse run are given in Figure 5.7. The qualitative nature of the
solution may be inferred from the u-velocity contours given in Figure 5.8. As the
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indentation moves into the channel, several downstream separation regions appear
along the lower and upper walls. Then, as the indentation recedes, these regions
are pushed downstream and break up.
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Figure 5.7: Mesh in the downstream vicinity of the indentation for the moving
indentation test case on time planes ¢* = 0.1,0.2,...,1.0. The sequence runs by
column.

More quantitative information can be obtained by plotting the nondimensional
shear stress along the channel walls at various time levels. The profiles along the
upper wall are given in Figure 5.9 and along the lower wall in Figure 5.10. Both
coarse and fine mesh results are provided. The profiles are not entirely the same,
indicating that a fully mesh-independent solution has not yet been obtained. How-
ever, they feature the same trends and are consistent with the results provided by
DemirdZi¢ and Peri¢ [16].

A noteworthy feature of the shear stress plots is the presence of small high-
frequency kinks along a few of the curves for the lower wall. These kinks appear on
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Figure 5.8: Contours of u-velocity for moving indentation test case on time
planes t* =0.1,0.2,...,1.0.



5 Unsteady Flows II: The Integrated Space-Time Finite Volume Method

66

Shear strass on upper wall
0.1 T T T T —T
: =02 —
=04 —
=06 —
8 B
=10 =-——
0.05 - 4
o P
g
& N
s
&
0.05 | 4
0.1 F L
0_15 L . 1 L L
-10 5 (1] 5 10 15
X
(a) Coarse mesh
Shear stress on upper wall
0.1 T T T
0.05 |-

Shear stress
L.‘.

20.05 |- W i
01 | 4
.0-15 ] . L L 1

-10 5 0 5 10 15

(b) Fine mesh

Figure 5.9: Shear stress profiles along the upper channel wall for the moving
indentation test case.
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Figure 5.10: Shear stress profiles along the lower channel wall for the moving
indentation test case.
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space-time faces which are adjacent to special space-time cell types, such as EDGE-
TRI or TRI-EDGE cells. The kinks are much larger when a first-order advection
scheme is used, indicating that they are discretization-induced. They are apparently
a consequence of the time offset between the centroids of the boundary face and
adjacent cell.



Chapter 6

Free Surface Flows

In the previous chapter, an IST algorithm for unsteady flows was developed and
applied to problems having prescribed boundary motion. In this chapter a different
class of moving boundary problems is considered: free surfaces flow. The condi-
tions which hold at free surfaces — the kinematic and dynamic conditions — were
presented in Chapter 2. By assuming an ideal free surface, the dynamic conditions
reduce to a slip condition in the tangential direction and an imposed pressure in
the normal direction:

D = Prs- (6.1)

Eq. (6.1) may also be expressed using the modified pressure p rather than the true
pressure p:

P="7Ps— Pgi(ri - ri,ref)- (62)

These conditions are not difficult to apply and are not considered further.
The greater difficulty lies with the kinematic condition, which is used to deter-
mine the interface position. It may be expressed as

u-n=ug-n (6.3)

Chapter 2 discussed several approaches to applying this condition. This study
adopts an adaptive Eulerian scheme. The conservation equations and the kinematic
condition are solved in a segregated manner, since enforcing them simultaneously
is an advantage primarily for steady flows where large time steps are useful. The
algorithm used to link the two equations is as follows:

1. Solve the continuity and momentum equations, treating the free surface as a
pressure boundary.

2. Calculate the mass flows through the free surface faces.

69



6 Free Surface Flows

70

3. Update the free surface position to drive these mass flows to zero.
4. Repeat steps (1)-(3) until convergence.

Clearly, steps (2) and (3) are the crucial steps which determine the free surface
position. Conventional finite volume methods find the mass flow rate through a
free surface face as

g = p(u —ug) - 2S¢ (6.4)

and then drive it to zero by adjusting the cell volume adjacent to the face:

aQ 1.
_(E = —;mfs. (6-5)

With the IST finite volume method, a space-time formulation of the kinematic
condition must be satisfied. This condition is stated simply as: no mass crosses the
space-time faces which lie on the free boundary. Thus step (2) requires finding the
mass crossing the space-time faces,

Jes = pua’ -0’ S, (6.6)
and step (3) involves adjusting the vertex positions on the upper time plane so that
st =0. (6'7)

How this is performed is described in the following sections, first for one-dimensional
flows and then for two-dimensional flows. Various example problems will also be
given.

6.1 One-Dimensional Flows

The implementation of the kinematic condition for one-dimensional flows is straight-
forward. Consider the space-time boundary face shown in Figure 6.1. After solving
the continuity and momentum equations, a mass Jg is found to pass through the
space-time boundary face. To satisfy the kinematic condition, a new boundary ver-
tex location zg must be found which gives Ji; = 0. From the definition of Jg, this
occurs when

pu -n' Sg =0, (6.8)
or, expanding the dot product,
p(n't + uzn:l:)sf = 01 (6'9)

where u_ is the advecting velocity at the free surface face. But the components of
the normal vector are
n:Se = —(zes — 2 ) (6.10)
nS¢ = At. (6.11)
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Solving for z¢s gives

T = Tp L +u-At. (6.12)
o
st xfs
H ar Jgs ar k=0
L x n-/ n-1
*ts Xfs

Figure 6.1: Application of kinematic condition for one-dimensional problems.
Left: before; right: after.

An equivalent result may be obtained using a residual formulation. Although
the equation to be solved is Eq. (6.9), at a particular iteration there remains a
residual r (r = Jg):

p(ng +uenz)Se=r, (6.13)

where nf is the existing time-component of the normal vector. Subtracting Eq. (6.13)
from (6.9) gives

p(ne —nd)Se = —r. (6.14)
But n:S¢ = — (75 — z2 ') and n?S¢ = —(zg — z2~!). Solving for zg gives
o . T
T = TH + > (6.15)

For one-dimensional problems, either Eq. (6.12) or (6.15) may be used to update
the free vertex position. In higher dimensions, however, the equations to be solved
are nonlinear and the residual form is more useful.

6.2 Two-Dimensional Flows

Application of the kinematic condition for one-dimensional flows is straightforward
because there is one free space-time face for each free vertex. Consequently, there
is one equation which may be used to find every free vertex position. Unfortu-
nately, the same is not true in higher dimensions. For example, consider the two-
dimensional case shown in Figure 6.2, illustrating a hypothetical mesh on a time
plane near a free boundary. Depending on whether the corner vertices are free
or fixed, there may be three, four, or five free vertices along the free surface. But,
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assuming that all the space-time faces are quadrilateral, there are always four space-
time faces. This illustrates that there is in general a mismatch between the number
of equations (the kinematic conditions for the space-time faces) and the number of
unknowns (the free vertex positions). The presence of triangular space-time faces
may also change the balance.

Figure 6.2: Two-dimensional free surface.

This issue has been noted in the literature, although not in the context of a
space-time method. One work-around is to stagger the control volumes below the
free surface, such that there is an exact correspondence between the number of
vertices and control volumes [66]; however, the resulting algorithm complexity is
significant. Another approach is to introduce new degrees of freedom in the form of
control points on each face [45]. The kinematic conditions are used to find the con-
trol point positions, and the vertex positions are obtained by interpolating between
the control point positions. The disadvantage of this method is the conceptual
inconsistency in the mesh representation.

This study adopts 2 new approach, wherein the kinematic condition is not
satisfied for each face independently, but rather for an appropriate union of faces
surrounding each free vertex. Define §; to be the set of free faces which touch a free
vertex. Then, instead of enforcing Jr = 0 for all free faces, the condition

> Jjwsi =0 (6.16)
J€&

is enforced for all free vertices. The weighting factor w;; determines the fraction
of the mass flow through face j which is apportioned to vertex i. It is chosen as
wj; = 1/n, n being the number of free vertices which touch the face. In most cases,
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this choice leads to wj; = 1/2, but at some fixed boundaries and for some triangular
space-time faces it gives wj; = 1.

A direction of motion must also be chosen for each vertex. This study chooses
the average normal of the free edges incident to the vertex.

Using this methodology, a matrix equation for the vertex displacements may
be constructed. For each vertex i, the mass flow through the portion of the free
surface associated with the vertex is defined as

F; = Z Jjwji. (6.17)
j€&

F; should be zero for all free vertices, but at a particular iteration there is a residual
mass flow F; = r;. By defining Asy to be the displacement of vertex k& which
will drive these residuals to zero, Newton's method may be used to obtain the
displacements as follows:

OF;
ask

Ask = —Tj. (6.18)

The Jacobian matrix, 9F;/8sg, is tridiagonal.

On its own, this algorithm is not stable. In particular, the case of there being
fewer free faces than vertices results in a singular mairix, which leads to uncon-
strained wiggles in the free surface. Problems also exist when there are enough free
faces. An analysis of the dominant effects on the matrix indicates that a typical
row has the form

—%I(Asi—l +2A8; + Asipy) = —ry, (6.19)

where [ is the length of the edges on the free surface. All coefficients have the
same sign. This is physically reasonable, for shifting a vertex i in its perpendicular
direction will decrease the mass flow exiting the faces associated with both itself
and its neighbour vertices. However, the resulting solution is prone to wiggles. So
this algorithm is susceptible to two types of wiggles: unconstrained wiggles when
there are too few faces and constrained wiggles when there are enough faces.

Such wiggles — whatever their origin — are eliminated using a new procedure
called mass redistribution along the free surface. Consider the wiggly free surface
shown in Figure 6.3(a). The wiggle will be damped if the mass flow Fp for vertex P
is decreased by an amount J” and the mass flow F for vertex Q is increased by the
same amount. In essence, mass is redistributed between vertices across free surface
faces. If JJ; represents the redistributed mass to vertex i across face j, the mass
flow through the portion of the free surface associated with vertex 7 is redefined as

Fy =) (Jyws + J5)- (6.20)
JE&:

It remains to find an expression for the redistributed mass J5;- From Fig-
ure 6.3(b), it is clear that a wiggle leads to a difference between the local edge

tangent vector t and the mean edge tangent vector i (The mean edge tangent is
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JI'

Jr
Q

(2) Free surface wiggle

Q

(b) Calculating the redistributed mass

Figure 6.3: A mechanism for damping free surface wiggles.

determined as the average of the vertex tangents which touch the edge, where each
vertex tangent is itself the average of the edge tangents which it touches.) The wig-
gle will be eliminated when the mass associated with the area of the cross-hatched
triangle is redistributed from vertex P to vertex Q. If A ig the triangle area, then

JT=pA

2 =
~ p£8-(f x t). (6.21)

Then Jip = —J" and Jj, = J". This redistribution is not performed along faces
which touch walls, where it may destroy physically reasonable curvature.

All terms in the definition of the mass flows F; associated with the free vertices
(Eq. (6.20)) are now defined. Applying the condition that F; = 0 for all free vertices
leads to a tridiagonal Jacobian matrix, which is constructed numerically by column
and solved using a tridiagonal matrix algorithm.

It is valuable to consider the conservation properties of this algorithm. Define
¥; to be the set of free vertices which touch face j. Although the algorithm does
not satisfy the kinematic condition for all faces independently, it does satisfy it both
globally and in the neighbourhood of each vertex provided that, for every face,

Z wy; = 1 (6.22)

i€y
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and

> Jn=0. (6.23)

i€y;

This may be proven by summing the mass flows through all free surface faces:

Z#=Z{(Z%) EDD Jz} (6.24)
J j i€Y; i€y

=3 (wjsd; +JR) (6.25)

Jj i€y;

But if a vertex i is in 9;, it must also be true that those faces j are also in &;. The
summation may therefore be shifted from being over all free faces to being over all
free vertices:

ZJ =3 > (wisdj + J5) (6.26)

i jeg;

=Y"0, (6.27)

because that is the equation being enforced for each vertex. Consequently the
kinematic condition is satisfied both in the neighbourhood of each free vertex and
for the free surface as a whole.

6.3 Validation

6.3.1 Motion of a One-dimensional Slug

As an example of the performance of this method for one-dimensional flows, consider
a slug of fluid of unit length and density. Oscillating pressures imposed on the left
and right boundaries force the slug to move, as illustrated in Figure 6.4. The
boundary pressures are 4sin(4¢) on the left side and 3sin(3t) on the right side. A
mesh consisting of 10 spatial cells at £ = 0 and a time step of 0.1 is used to solve
the problem in the range 0 < ¢ < 2.5. The space-time meshes for three advection
schemes are shown in Figure 6.4. The accuracy can be assessed by comparing the
boundary of the space-time mesh with the analytical boundary positions, also shown
on the plots. Even on this coarse mesh, the solutions are quite accurate.

6.3.2 Rotating Slice of Fluid

The next test case serves to verify the free surface algorithm for two-dimensional
flows. A slice of fluid, having a length ! and initial height hg, rotates about the
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Figure 6.4: One-dimensional free boundary test case. The dashed line indicates
the analytical boundary position.



6 Free Surface Flows

77

z—axis with angular velocity w, as illustrated in Figure 6.5(a). At steady-state, the
free-surface profile established by the fluid is

h(zx) (wl)?
Re-g {133} (6.28)

From this expression a dimensionless spin rate may be identified as (w!)2/6gho.

This flow is modelled by including a volumetric source term pw?z in the
u—momentum equation. It is solved on a domain having ho = [ using an ini-
tial mesh of 247 cells, as shown in Figure 6.5(b). The viscosity is chosen so as to
obtain the steady-state profile relatively quickly without overshoots. Solutions were
obtained for dimensional spin rates of 1/6 and 1/2. The resulting final meshes are
also included in the figure, together with the analytical free surface profiles. The
analytical and computed solutions are nearly indistinguishable.

6.3.3 Breaking Dam

The next test case involves the collapse of a two-dimensional column of fluid. Ex-
periments of this nature using several configurations were performed some time ago
by Martin and Moyce [40]. It is also a common numerical test case [30, 34,49, 57].
The case having an initial aspect ratio hg/wge = 2, where hg is the initial column
height and wp is the initial width, is considered. As viscous effects are negligible,
the flow is modelled as inviscid. A dimensionless time is defined as

. 29
t* = _ .
/ o (6.29)

and a dimensionless front position as

e W
w* = — (6.30)

The problem is solved in the time range 0 < t* < 5 using a coarse mesh
(having initially 130 cells and At* = 0.05) and a fine mesh (having 500 cells and
At* = 0.025).

The spatial mesh for the fine grid results is shown for various time levels in
Figure 6.6. The figure clearly demonstrates the capacity of the method to handle
large changes in the free surface while maintaining mesh quality. The only anomaly
is in the second frame (t* = 0.5), where there is a small kink in the corner resulting
from the mass redistribution near the corner. The kink does not affect the results
elsewhere in the domain, and other results of the same test case reported in the
literature reveal similar anomalies.

To compare the numerical results with the experiments, a plot of front position
w* against time is given in Figure 6.7. It is important to point out that the exper-
imental results have undergone a time shift of A¢* = 0.3 in order to compensate
for uncertainties in the time origin. This shift is consistent with what is performed
(although not acknowledged) in other numerical studies in the literature. With this
shift, there is excellent agreement between the experimental and computed results.
The plot also shows that the solution is nearly mesh-independent.
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Figure 6.7: Comparison between calculated and experimental results for the
breaking dam test case. The plot shows the evolution of the dimensionless front
posttion w” with dimensionless time ¢*.

6.3.4 Overturning Wave

A final test case illustrates the capability of this free surface algorithm on a chal-
lenging flow — an overturning wave. The wave is generated in a water channel
by a piston wavemaker, as described by Dommermuth et al. [18]. The piston
has a time-varying frequency, amplitude, and phase carefully chosen to generate
a plunging breaker some distance downstream. These authors performed both an
experimental study and numerical calculations using a nonlinear panel method.

The wave channel geometry is illustrated in Figure 6.8. The dimensions are
normalized by the undisturbed water height, so that the height is 1 m and the length
20 m. Inviscid flow is assumed, and the density and gravitational constant are set
to unity. These conditions are consistent with those in the numerical calculations of
Dommermuth et al. [18]. The piston velocity is expressed in terms of its amplitude,
frequency, and phase, which are in turn defined by Fourier series. The dominant
frequencies are in the range of 1-2 rad/s.

The initial spatial mesh used has 23,170 triangles, whose size vary with position.
For z < 10, where the primary process is wave propagation, the spacing along the
top decreases from 0.04 at z = 0 to 0.03 at z = 10; along the bottom the spacing is
0.05. For 11 < z < 12.2, where the wave crests and overturns, a more dense spacing
of 0.01 is used near the surface. For z > 12.2, which is downstream of the region of
interest, the spacing increases smoothly to 0.2 at z = 20.

For the overturning portion of the wave, even the spacing of 0.01 is not ade-
quate, for the thickness of breaking wave may be as small as 0.03. Good resolution
is particularly important near regions of high curvature at the plunger nose. If the
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Figure 6.8: Wave channel geometry used in overturning wave test case.

resolution is inadequate, small kinks may appear in the free surface, particularly
when there are irregular space-time cells arising from the addition of a vertex. An
example of this behaviour is shown in Figure 6.9. Although the kinks vanish in the
next time slab, when the space-time cells are of better quality, they clearly indicate
an inadequate spatial resolution of the nose. A reasonable resolution for the over-
turning phase is obtained by reducing the spacing in the range 11.5 < z < 12.2 for
t > 50.5 according to 0.01/ f, where

t—~50.5
f=1l+453 %05 (6.31)
This modification forces the spacing to decrease by a factor of five at £ = 51.8, when
collision occurs. These spacing functions lead to a mesh which is considerably finer
at the end of the computations than at the beginning: the final mesh, after 3200
time slabs, has 62,586 triangles.

An adaptive time step is used, such that no vertex may move more than a
specified fraction of its local spacing. The fraction is 15% if the vertex is moving
into the domain and 18% if the vertex is moving outward. The difference occurs
because the space-time meshing algorithm is capable of handling larger time steps
if the domain expands than if it contracts. With this adaptive procedure, the time
step is about 0.00035 at the end of the computations. The initial time step is
set to 0.1, which is approximately one-fortieth of the piston period. Typically 3-5
iterations were required each time step to reduce all residuals below 10~3.

Several enhancements to the space-time meshing algorithm described in Chap-
ter 4 were required for this test case. First, the algorithm has been extended to
nonuniform mesh spacings by basing the decision to modify the topology on local,
rather than global, length scales. A second change is the smoothing of two layers
of interior vertices rather than only one. Third, the topological modifications have
been improved to ensure good quality mesh near regions where concave or con-
vex surfaces (during wave cresting and overturning) undergo perpendicular motion.
This step requires insertion and removal of interior vertices based on tangential
criteria in addition to the perpendicular criteria outlined in Chapter 4. Finally, to
avoid complexities near the corner of the piston and the free surface, vertices are
not added or removed due to the piston motion. Instead, the z—positions of the
vertices between the piston and £ = 1 are calculated by smoothing.

Two solver difficulties have also been encountered. The first is related to the
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Figure 6.9: A kink near the nose of the overturning wave arising from inadequate
resolution and irregular space-time cells.

weighting factors in the least-squares gradient computation. Originally the weights
were the square of the inverse distance between the points used in the gradient
stencil; however, this proved to be unstable near £ = 12 where the mesh has a highly
nonuniform spacing. By changing the weights to inverse distances, the instabilities
vanished. The final run used a mesh with a smaller nonuniformity and was stable
with the original weights. Nevertheless, the modified weights were used to generate
the results reported here. All previous test cases were also re-executed with the
modification to ensure that the change does not have adverse consequences.

The second solver difficulty is related to the behaviour of the pressure calcu-
lation for the very small time steps experienced toward the end of the simulation.
According to Eq. (5.39), the pressure dissipation coefficient is

de

fr= Tt (6.32)
At

For small At, f; tends toward At/p, in which case it may become very small. As a
result, small changes in normal velocities (generated by vertex smoothing) induce
large pressure spikes, which in turn contaminate the solution. As a work-around,
the coefficient was changed to

ff = pdy ° (6-33)

wherer =1 for t < 50.5, 10 for 50.5 < t < 51, and 100 for ¢ > 51. This maodification
recognizes that the expression for fr is somewhat arbitrary.

The experimental and numerical results provided by Dommermuth et al. [18]
include surface elevations at various locations along the wave channel. The ele-
vations at the same locations using the current results are plotted in Figure 6.10.
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The agreement with the experiments and computations of Dommermuth et al. is
excellent, the biggest difference that the second-last wave passing through z = 9.17
has a lower amplitude in the current results. It is not clear which amplitude is more
consistent with the experiments.

Outlines of the predicted surface profile during the overturning stage are plotted
for various times in Figure 6.11. The final frame (¢ = 51.81) illustrates that the
method does not handle the collision phase: a limitation in implementation but not
in concept.

Figure 6.12 shows a close-up of the mesh at ¢ = 51.80, just before collision. The
shape differs somewhat from the more vertical plunge predicted by Dommermuth
et al.. Consequently, they have a shorter time (by about 0.2 seconds) to collision.
From a qualitative perspective, the current results appear more consistent with real
waves [52].
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Figure 6.10: Free surface elevations against time at various locations in the wave
channel for the overturning wave test case.
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X

Figure 6.11: Outlines of the overturning wave at times ¢ = 50.70, 51.05, 51.24,
51.40, 51.54, 51.65, 51.76.
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Figure 6.12: Close-up of the overturning wave at ¢ = 51.75.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

This research has developed a finite volume methodology for steady flow, unsteady
flow, and free surface flow. The new attributes for steady flow are summarized
below.

e The diffusion discretization is second-order and linearly-exact. This is achieved
by decomposing the diffusive flux into orthogonal and nonorthogonal compo-
nents. Linearity-preserving gradients are used for the nonorthgonal component.
By making the decomposition optimal, the discretization extends unambigu-
ously to anisotropic media.

¢ A second-order correction to the approximation for face pressures and advecting
velocities ensures that these terms are linearly exact.

o Extrapolating pressure to wall boundaries based on consistency with the dis-
cretization of advecting velocity is useful for triangular meshes where the least-
squares matrix for the cell pressure gradient would otherwise be singular.

e Good convergence behaviour is achieved by targetting cell gradients and those
regions where the mesh is nonorthogonal for underrelaxation.

The attributes for unsteady flow are given below.

o The IST framework enforces discrete conservation in both space and time,
even when vertices are added and removed. There is no need to consider the
geometrical conservation law or the Leibnitz Rule.

o The discretizations of space and time are unified. Second-order accuracy in
time is thereby reached in the same manner as in space. If limiters are used
to enforce boundedness with time slabs, however, accuracy may be reduced to
first-order.
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o The space-time meshing strategy for one- and two-dimensional moving bound-
ary problems is based on making local mesh modifications near the boundary.

The attributes for free surface flow are described below.

e The kinematic condition is applied to vertices rather than faces. As a result,
it is enforced not for each face independently, but rather for a subset of faces
in the neighbourhood of each vertex. The mass redistribution mechanism for
damping wiggles is an essential part of the method.

o The method applies to flows experiencing severe boundary motion, such as
overturning waves.

7.2 Recommendations

Although this work represents a significant advance in the modelling of moving
boundary problems, more work remains to be done to extend it to new types of
problems. Some possibilities are given below.

e The space-time meshing algorithm has been adequate for the flows considered
in this thesis. However, it does have some disadvantages: it is relatively cum-
bersome to code, it is not clear how to extend it to three-dimensional problems,
and it is not clear how to extend it to time-accurate adaptive meshing. Further
work must be done in generalizing the algorithm or in developing another mesh
generation framework.

o The basic concepts of the free surface flow algorithm appear to hold for three-
dimensional flows, with or without IST. Demonstrating that this is the case
would be a valuable accomplishment. Incorporating surface tension in the
algorithm would also be useful.

e The use of IST to achieve a conservative time-accurate solution-adaptive mesh-
ing algorithm would be useful.
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