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Abstract

The use of unmanned systems is becoming widespread in commercial and military sectors.
The ability of these systems to take on dull, dirty, and dangerous tasks which were formerly
done by humans is encouraging their rapid adoption. In particular, a subset of these
undesirable tasks are uniquely suited for small unmanned aerial vehicles such as quadrotor
helicopters. Examples of such tasks include surveillance, mapping, and search and rescue.

Many of these potential tasks require quadrotors to be deployed in environments where
a degree of position estimation is required and traditional GPS–based positioning tech-
nologies are not applicable. Likewise, since unmanned systems in these environments are
often intended to serve the purpose of scouts or first–responders, no maps or reference
beacons will be available. Additionally, there is no guarantee of clear features within the
environment which an onboard sensor suite (typically made up of a monocular camera and
inertial sensors) will be able to track to maintain an estimate of vehicle position. Up to
90% of the features detected in the environment may produce motion estimates which are
inconsistent with the true vehicle motion. Thus, new methods are needed to compensate
for these environmental deficiencies and measurement inconsistencies.

In this work, a RANSAC–based outlier rejection technique is combined with an Ex-
tended Kalman Filter (EKF) to generate estimates of vehicle position in a 2–D plane. A
low complexity feature selection technique is used in place of more modern techniques in
order to further reduce processor load. The overall algorithm was faster than the tradi-
tional approach by a factor of 4. Outlier rejection allows the abundance of low quality,
poorly tracked image features to be filtered appropriately, while the EKF allows a motion
model of the quadrotor to be incorporated into the position estimate.

The algorithm is tested in real–time on a quadrotor vehicle in an indoor environment
with no clear features and found to be able to successfully estimate position of the vehicle
to within 40 cm, superior to those produced when no outlier rejection technique was used.
It is also found that the choice of simple feature selection approaches is valid, as complex
feature selection approaches which may take over 10 times as long to run still result in
outliers being present.

When the algorithm is used for vehicle control, periodic synchronization to ground truth
data was required due to nearly 1 second of latency present in the closed–loop system.
However, the system as a whole is a valid proof of concept for the use of low quality images
for quadrotor position control. The overall results from the work suggest that it is possible
for unmanned systems to use visual data to estimate state even in operational environments
which are poorly suited for visual estimation techniques. The filter algorithm described in
this work can be seen as a useful tool for expanding the operational capabilities of small
aerial vehicles.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Application

The small size, high maneuverability, and disposable nature of unmanned aerial vehicles
(UAVs) makes them uniquely suited for a variety of applications. They have demonstrated
the ability to lift objects [1], maneuver through tight spaces [2], and serve as remote
surveillance platforms [3]. Other proposed uses of UAVs include inspection of buildings
and bridges, transmission tower surveying, autonomous tracking of moving ground and sea
targets, and serving as wireless network infrastructure. These latter proposed uses have
not yet been rigourously demonstrated in the field.

This work focuses on “quadrotor” UAVs such as those shown in Figure 1.1 . Unlike small
fixed–wing UAVs such as the commercially available Cropcam [4], quadrotors are capable
of hovering in place, even in situations with unexpected wind gusts. And, unlike small
unmanned helicopters like the Camcopter [5], they have no need for complex mechanical
systems (i.e. the swashplate assembly), requiring only four propellers directly coupled to
motors [6]. Due the small size of quadrotors and their ability to hover in place, there are
many potential indoor and outdoor environments for which they are ideal. For instance,
quadrotors are good platforms to employ for urban search and rescue, nuclear reactor
inspection, and indoor mapping and surveying. The combination of platform capabilities
and mechanical simplicity makes quadrotors uniquely suited to a wide range of inspection
tasks. Of particular relevance to this work is the growing number of commercially available
quadrotors which are meant for deployment by government and private industry [7, 8, 9].
Uses of these commercial quadrotors range from property assessment [7] to crime scene
mapping [8].
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However, effective control of quadrotors requires a reliable method of estimating ve-
hicle position. Without such an estimation method, the low mass and undamped nature
of quadrotor platforms means that they will be susceptible to position drift caused by
external disturbances or slight variations in vehicle orientation. The presence of position
drift means that even static obstacles can pose a risk to the vehicle. Though the vehicle is
easily capable of correcting for this drift, a suitable strategy to do so cannot be developed
without knowledge of the nature of the drift. Once this knowledge is available, a controller
can be developed to accurately control position using PID control [6], potential fields [10],
or other common control techniques. Currently, sensors such as inertial measurement units
(IMUs) are able to measure key state variables such as acceleration and vehicle rotation
rate directly. Unfortunately, position control requires knowledge of the full state; includ-
ing position and translational velocity. The Global Positioning System (GPS) is capable
of providing position measurements in open outdoor environments, but its performance
degrades when the vehicle is near or under large obstacles, or is operating indoors.

Figure 1.1: Aeryon Scout [8]

If position measurements are unavailable, small UAVs lose the ability to hold position
and reject disturbance forces, rendering quadrotors unusable in cluttered environments due
to the potential of collision. At present, all available commercial solutions are either fully
remote–controlled (requiring a human to be within line–of–sight of the vehicle) or rely on
GPS receivers. Furthermore, the bulk of the research which has been done in this area
either uses preinstalled infrastructure that provides GPS–like sensor information, relies on
the presence of unique or known features in the environment, or uses a known map of the
surroundings.

Using a computer vision approach for position estimation will greatly enhance the
safety and usability of the vehicle, by enabling operation in GPS-denied environments or
supplementing GPS position and velocity information with additional measurements.
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1.1.2 State Estimation

Aerial vehicles typically have their state defined by the following 12–DoF vector:

X =
[
x y z ẋ ẏ ż φ θ ψ φ̇ θ̇ ψ̇

]T
(1.1)

where x, y, z and their derivatives represent vehicle position and translational velocity,
and φ, θ, ψ and their respective derivatives represent vehicle orientation and rotational
rates. It should be noted that position and velocity can be expressed in a variety of ways,
with the most popular being latitude–longitude–height (LLH), also known as ‘geodetic’
coordinates, North–East–Down (NED), and Earth–Centred, Earth–Fixed (ECEF) [11].
Likewise, vehicle orientation is typically represented as a set of Euler angles, usually of the
3-2-1 type [12].

The state vector X can be augmented by other information, such as temperature, gyro
bias, motor speeds, and wind states, if these effects can be estimated given the sensor con-
figuration, and are expected to contribute significantly to the modeling of the platform [13].
In this work, most of these additional states are abstracted away by the onboard systems
of the testbed. For instance, temperature and gyro bias are incorporated into the onboard
vehicle orientation estimation routine, while a responsive orientation controller subsumes
the motor speeds. Wind states are not incorporated in this work, since indoor operation
results in winds which vary heavily both spatially and temporally and thus cannot be easily
modeled.

A typical approach used in position estimation of a quadrotor operating outdoors is
to use an Extended Kalman Filter [14] to fuse noisy direct measurements of the vehicle’s
position (provided by GPS) with a motion model taking IMU data as control inputs. This
has the benefit of always using globally–referenced position measurements. The use of
globally–referenced measurements removes the possibility of the estimation error integrat-
ing over time. In comparison, using vision as a replacement for GPS requires that the
features used as position references in each image frame are likewise globally–referenced.
For each feature to be referenced in such a manner, the camera must be operating in a
structured environment where the location of each feature is known, and each feature can
be uniquely identified.

In general, this is not the case. The alternative is for visual estimators to integrate rel-
ative displacements between images over time to form an estimate of global position. Even
in this situation, there is the challenge of determining correspondence between features in
two separate images. Though it is not as difficult as identifying each point in the image
uniquely over all time, the “correspondence problem” poses several challenges. Numerous
attempts have been made to address the correspondence problem [15, 16, 17, 18]. The
main focus of this work is to identify instances where incorrect correspondence of features
has occurred, and to eliminate these instances as invalid measurements.
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Position and orientation estimation of the vehicle can also be coupled with the global
estimation of the state of the surrounding environment; a challenge referred to as the Simul-
taneous Localization and Mapping (SLAM) problem [19]. SLAM is a significant research
area on its own, with many different ways of representing the relationship between the
vehicle’s state and that of the environment it is operating within. Vision-based SLAM also
requires the correspondence problem to be solved and can therefore be seen as an expanded
version of the position estimation problem addressed in this work. The same difficulties in
feature correspondence arise for visual SLAM in environments with low quality features,
and the position estimation algorithm presented in Chapter 3 can easily be adapted to the
full SLAM problem as well.

1.1.3 Objective

The primary objective of this research is to develop a full state estimation technique which
is applicable in GPS–denied environments which have not been preconditioned for robot
operation. It will be assumed that the only sensors available for this investigation are
those which are included on the Aeryon Scout quadrotor micro-UAV [8]. Specifically, this
work will focus on using the onboard camera in combination with visual state estimation
techniques. The information available from the rest of the vehicle sensor suite will augment
the camera data. The vehicle sensor suite includes an IMU for inertial measurements
and a sonar sensor for altitude measurements. Using the existing vehicle sensor suite
frees up the remaining payload for other application specific uses. In addition, limiting
the available equipment to that already available in the vehicle payload is desirable from
an industrial perspective, as it reduces the work needed for the commercialization and
technology transfer of the research.

One of the key themes throughout this work is the “featureless” or low–contrast nature
of the environment. Unlike much of the prior work, the environment is not assumed to
have features which are easily tracked or uniquely identified by common computer vision
approaches.

Due to the many challenges that result from requiring robust operation in featureless
environments, a series of assumptions have been made.

Assumption 1.1. The ground is reasonably flat and level, with only minor deviations in
the ground’s surface.

Though this condition may not be valid for every operational environment, it is a
reasonable assumption for indoor environments and benign outdoor environments. This
assumption removes an additional potential source of estimation error.
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Assumption 1.2. The ground plane being observed is assumed to be static with respect to
a global reference frame.

Since quadrotors are not typically deployed near people for safety and regulatory rea-
sons, it is reasonable to assume that there will be no one moving in the ground plane.
Additionally, unless it consists of grass or water, the ground itself will not contain motion.

Assumption 1.3. The camera is kept level with the ground at all times.

This assumption simplifies the resulting mathematics for determining feature position in
3D, but can be easily generalized to a camera with known orientation. Since Assumption
1.1 establishes that the ground itself is reasonably level, providing a camera with the
ability to compensate for roll and pitch of its mount with respect to gravity will result in
the camera remaining level with respect to the ground. There are many gimbal mounts
available in the market which are capable of performing roll and pitch compensation with
negligible lag.

Assumption 1.4. The height of the camera from the ground is assumed to be fully known.

There are common methods of sensing height from a flat surface (which the vehicle is
operating over, as per Assumption 1.1), including SONAR and laser rangefinders. As well,
if such a surface is out of range of active sensors, passive pressure sensors are commonly
used in the field to establish a vertical displacement away from a reference height.

Assumption 1.5. All of the pixels in the image correspond to points on the ground.

This assumption is valid due to the low heights at which the vehicle is currently flown,
and allows features found within each image plane to be mapped directly to locations in
the corresponding 3–D global frame. When this assumption is relaxed, the algorithm will
also need to incorporate SLAM techniques and operate using 3–D features, or will need to
segment the image to determine which points within it are part of the ground.

Assumption 1.6. High performance computer hardware is not available, and the system
is meant to run in real time.

This limitation on available hardware mirrors the computational resources found on
the current and next–generation vehicle platforms. Such restrictions are common to aerial
vehicles due to power supply and payload limits. For example, quadrotor UAVs typically
have under 25 minutes of flight time with no payload and no additional power draw. The
addition of multicore or otherwise higher–performance computer hardware will be evaluated
in future work after bottlenecks in the existing system have been identified.
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1.2 Related Work

There are many available sensors which can be used for vehicle state estimation. Inertial
measurement units are typically able to provide estimates of vehicle acceleration and ro-
tation with acceptable levels of accuracy. Integrating acceleration information to estimate
position results in poor performance over time. Currently, the first and foremost method
of position estimation in field robotics is the now–ubiquitious GPS system. With real–time
kinematic (RTK) corrections, reliable absolute positioning can reach centimetre–level ac-
curacy [20]. However, this kind of accuracy not only requires clear view of the sky, but
an offboard fixed reference to correct for the ±15 m expected variations in positioning
information due to atmospheric effects [11]. Even using technology such as space-based
augmentation services (SBAS) will not attain RTK–level precision. Expected accuracy in
this case is ±1.5 m. Any estimation technique which is designed to supplant GPS should
at a minimum be able to attain an SBAS level of accuracy, as this technology is the current
standard for field–deployed quadrotors.

Active sensing technology has also taken leaps forward. Light detection and ranging
(LIDAR) sensors have been seeing more exposure and their ability to map an environment
reliably at high accuracies and frequencies is beneficial [21]. Despite these advances, LIDAR
hardware still requires high mass and relatively high power drain, which has limited its use
to within the research community. In a similar way, the Microsoft Kinect sensor has also
seen broad adoption among researchers and hobbyists [22]. However, it has the limitation
that it only works inside, as the IR structured light grid it uses to resolve depth in images
is overcome by infrared interference from the sun even on cloudy days.

With the drastic increase of UAV payload capacity and processor power, onboard vision
processing is becoming an option for quadrotor state estimation. The standard for indoor
control of such vehicles is to use beacons or features with known appearance in known
locations in conjunction with a camera system. If such features are set up as targets
which the vehicle’s camera can observe, they must be placed in the environment ahead of
time, and their locations and characteristics communicated to the vehicle [23, 24]. This is
known as position–based visual servoing (PBVS) and can commonly be found on industrial
manipulators. Unfortunately, the vehicle is limited to operating in regions where it can
observe the predefined targets.

Another option is the placement of trackable markers on the vehicle which can be ob-
served by one or more external cameras [6, 25, 26]. High–quality external local positioning
systems such as OptiTrack [27] and VICON [25] are an excellent embodiment of this. The
frequency and accuracy of the state estimates they provide allow impressive control tech-
niques to be demonstrated [2, 28]. Overall, local positioning systems are popular hardware
for performing controls research, as the required image processing hardware can be located
offboard. It too requires modification to the environment as cameras need to be installed
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ahead of time. Like the PBVS approach, the vehicle’s operation is limited to areas which
are within view of the cameras. Overall, both local positioning systems and PBVS ap-
proaches require modification to the surroundings, something which is unacceptable if the
UAV is to be deployed in an uncontrolled and unknown environment.

The majority of these prior methods use simple techniques for tracking distinct features.
For example, OptiTrack and VICON systems use IR–reflective features, IR lights, and
appropriate filters to eliminate the majority of non–markers from the images, resulting in
de–facto feature identification. Others use optical flow techniques such as that proposed by
Lucas and Kanade [29] to track features between frames. Feature tracking is a significant
improvement from a processing time standpoint on earlier “block–matching” techniques
which would attempt to determine flow on a pixel–by–pixel basis. When these techniques
are used, corner–like features are typically used to allow the direction of their motion to
be clearly resolved [15]. It has also been proven that corner–like features are well–suited
to the Lucas and Kanade optical flow algorithm [16].

Some approaches have been proposed which do not require modifications to the envi-
ronment, usually because they are designed to detect unknown features in the environment.
One general strategy in this area is known as “structure from motion” (SfM) [30]. Here,
the environment is assumed to be static and the vehicle motion is assumed to be approxi-
mately known between image frames, providing an epipolar constraint [31]. The strategy
combines these inter–frame estimates with features matched between frames to map the
environment in 3–D. For example, Call uses a structure from motion approach to attempt
to estimate the 3-D position of image features with respect to the vehicle in real time [32].
Merrell used a similar approach to detect and avoid obstacles [33]. If a static environment
is assumed, this last method could be modified to estimate motion instead. However, SfM
requires significant onboard processing power.

In general, structure from motion approaches requires widely separated views to pro-
duce the required image disparity [34], and such disparity also requires robust feature
selection processes. That is, they assume that the correspondence issue first introduced in
Section 1.1.2 is a solved problem. Additionally, the views SfM approaches require result
in poor performance from tracking corner–like features, since these features are not robust
to rotations or changes in relative distance. Though feature selectors such as ”speeded
up robust features” (SURF) [17] and ”scale invariant feature transforms” (SIFT) [18] exist
which can produce features which can be matched well between images, they require signif-
icant processing power for the generation of such features. As well, much of the work which
uses complex feature selectors simply assumes that the environment is cluttered enough
to produce these types of features consistently. This work does not make this assumption.
A study of the suitability of various feature selectors for tracking features in uncluttered
environments can be found in Section 5.1.
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Image-based visual servoing (IBVS) techniques are also used for visual state estimation.
In an IBVS approach, there is no clear transformation at any point between a point on
the image and physical location(s) in the world. As they cannot relate image features to
points in the global frame, they cannot be used for mapping applications. This family of
algorithms is primarily used for control purposes, where error signals are defined based
only on information within the image. Controllers have been designed to regulate features
such as the position of first moments of a target within the image [23], the magnitude of
the optical flow field [35], or the position of a set of linear features within the image [36].
Because of the lack of a common reference frame, a pure IBVS technique cannot improve
estimates by incorporating inertial sensing or external correction data. Inertial sensing
data in particular is readily available on small UAVs from additional onboard sensors. Due
to this, IBVS controllers cannot incorporate real–world information and restrictions such
as maximum velocities, maximum accelerations, or limitations on a vehicle’s position.

Finally, there are approaches which integrate other sensors with the camera data to pro-
duce state estimates in the global frame. Kendoul’s approach uses three nested Kalman
filters to estimate UAV motion with a camera and inertial sensors, allowing it to use images
to correct position estimates based on inertial data. However, the proposed nested Kalman
filter approach assumes small interframe motion and well–tracked features [37]. The as-
sumption of well–tracked features is particularly sensitive, as there are many environments
which will not produce such features.

A recent commercial development has successfully combined inertial data with an IBVS
approach to achieve reliable position control. The Parrot AR-Drone (Figure 1.2) uses a
forward–facing, a downward–facing camera, and an estimate of inter–frame yaw to estimate
vehicle translation and rotation in an X–Y plane. [38]. It comes closest to a solution that
addresses the main concerns identified with existing methods. The AR-Drone can handle
unstructured environments, requires no external infrastructure, uses low–cost and low–
mass cameras, does not require GPS technology, and does not seem to require high–quality
images. However, it makes several key assumptions which are acceptable to Parrot due to
its market positioning as a ’toy,’ but which may not be acceptable for the inspection tasks
described in Section 1.1.1. Namely:

• The image viewed in the forward plane has a suitable quantity of distinct features to
track.

• When sections of the image contain more features than others, it is acceptable to
override operator inputs and direct the cameras towards such sections to increase the
number of features in the image.

• Objects in view of the camera are in a common plane at a significant distance from
the vehicle.
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Figure 1.2: Parrot AR–Drone [39]

In general, a downside of tracking features with unknown characteristics is the degree
to which outliers or otherwise invalid data can corrupt the measurements. Attempting to
visually estimate state in noisy conditions is quite challenging as demonstrated by pre-
vious experiments [40], since the nature of the visual estimation problem uses features
matched across multiple images as measurements. Additionally, a key assumption of the
commonly used Kalman filter is that the noise present in its inputs is Gaussian [14]. Even
if simpler approaches such as basic averaging are used, the presence of large outliers in the
measurements can add significant error to the results.

Due to this negative effect of outliers on estimation algorithms, a recent area of research
centres on the filtering of visual measurement data for outliers before providing the data
to a state estimator. This filtering can be used to mitigate the effect of errors in feature
correspondence. A well known method for removing outliers from datasets is the Random
Sample Consensus (RANSAC) algorithm originally developed by Fischler and Bolles [41].
By applying RANSAC, it is possible to remove outliers from visual measurement data
before the data is incorporated into a state estimator.

Vedaldi laid the groundwork for the integration of RANSAC into traditional state esti-
mation techniques in 2005 by merging RANSAC–based outlier rejection with an Extended
Kalman filter [42], and it has been applied to a variety of practical applications since. The
approach was developed to work in real–time and it assumes that features remain tracked
throughout the image sequence. This assumption implicitly requires that high quality fea-
tures exist, since low quality features are not consistently detectable. Kitt used a similar
approach with both SIFT features and Harris corners for determining pose offsets between
stereo images [43] except without fully integrating the Kalman update equations into the
RANSAC iterations. Kitt noted specifically that Harris corners were beneficial from an
efficiency standpoint. Scaramuzza applied the same general concept of merging RANSAC
and a Kalman filter to localizing a full–sized Smart Car [44] with monocular camera data
and appropriate motion constraints.
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Most recently, Civera et al. explored the applicability of Vedaldi’s work to reducing
the dimensions required to perform visual 6–DoF pose estimation [34], where they used
a similar method with additional constraints to estimate the state of a differential-drive
ground vehicle. Feature correspondence over all time was found not to be required, as long
as each frame shared a number of features in common with previous and following frames
to avoid integrating estimation error over time. As well, their work was only a partial
implementation, as they avoided the correspondence problem by manually matching points
between images.

In several of cases [34, 45], an “Active Matching” strategy is used to prefilter the visual
data by removing data points which are obvious outliers before they are considered by
RANSAC as potential data. This strategy reduces the likelihood of wasting processor
cycles on incorrect RANSAC models [46]. Active matching is a simple refinement to
existing work, but should be noted due to its potential to easily improve the quality of
estimates without requiring too much more computational effort.

In general, the area of visual state estimation is well studied, although many of the
existing algorithms perform poorly in the face of improperly corresponded features. The
existing methods are therefore not robust to operation in environments with low quality
images. Indoor applications frequently result in the need to operate reliably with low
quality images. A clear need exists for a visual state estimation approach which can use
such images while being resilient to errors in feature correspondence.

1.3 Research Approach and Contribution

The goal of the research is to develop a method for estimating the position of a quadrotor
UAV operating indoors using only its onboard sensing hardware, using the assumptions
which are detailed in Section 1.1.3. The work focuses on the need to find reliable feature
correspondences even when the images being used are of poor quality. Specifically, it
addresses the significant amount of outlier data which is present in low–quality images
and works towards mitigating the negative effect of outliers on position estimates. The
algorithm which was developed combines RANSAC outlier rejection techniques and an
Extended Kalman Filter (EKF) in the filtering of poor quality images, resulting in an
estimator which is both faster and more robust than one which relies on a Extended
Kalman Filter alone.

Overall, this work demonstrates the feasibility of a new algorithm which can use very
poor quality, nearly ’featureless’ images to assist in vehicle state estimation and control.
This is an improvement from existing visual estimation techniques which assume that input
images contain a multitude of easily trackable, high–quality features. This research is an
experimental work which is focused on the challenges posed by real–world hardware. The
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results of this work opens doors to the use of quadrotor UAVs in GPS–denied environments
which have not been preconditioned by the deployment of markers. Additionally, the tests
also demonstrate the feasibility of using camera–based navigation and mapping techniques
in environments containing poorly trackable features.

The main results which will be presented in this thesis are:

• A position estimation algorithm which combines RANSAC and an EKF to allow for
the use of low–quality images as the main source of measurements.

• Experimental validation that modern, computationally expensive feature selection
approaches provide little gain over simpler and faster approaches when applied in
low–quality environments.

• Verification that the characteristics of typical image noise requires outlier rejection
techniques in addition to traditional averaging and Kalman filtering.

• Test results showing that reasonable position estimation is possible even when over
50% of image features are outliers.

• Validation that using outlier rejection in conjunction with a Kalman filter requires
less overall computation than solely applying a Kalman filter.

• Flight test results from offline and online implementations of the position estimation
algorithm.

• Flight test results from using the position estimation algorithm as the input into the
control system of a quadrotor UAV.

Further background theory will be provided in Chapter 2, and the final algorithm pro-
duced by this work will be detailed in Chapter 3. The experimental test setup is described
in Chapter 4. Results from a variety of experimental tests and configurations can be found
in Chapter 5. Finally, Chapter 6 contains concluding remarks and recommendations.
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Chapter 2

Background and Theory

2.1 Coordinate Frames

In the problem being examined, there are four key coordinate frames present. The first
frame to be considered is a global frame, OG, fixed to the environment around the vehicle.
In most cases, the Earth–fixed reference frame is used here, with the x-axis pointing due
North and the y-axis pointing due East.

The second frame used is a body–fixed frame, OB, which is tied to the quadrotor. The
x-axis in this case points “forward” and the y-axis points to the “right” of the vehicle.
These two frames are related as shown in Figure 2.1, with (xG, yG, zG) defining the global
frames’ axes and the Euler angles (φ, θ, ψ) defining the corresponding rotation.

Next, a camera frame, OC , associated with a camera is mounted in a downward facing
manner on a two–axis gimbal at the center of the quadrotor. The gimbal’s axes correspond
to the roll and pitch axes of the vehicle, allowing the onboard controller to adjust the
gimbal to compensate mechanically for vehicle roll and pitch, reducing image skew and
disturbance. Assuming that the roll and pitch compensation is ideal, the relationship
between the body–fixed frame and the camera is shown in Figure 2.2(a), and likewise for
OG and OC in Figure 2.2(b). The global frames’ axes are denoted as in Figure 2.1, while
body and camera frames are denoted by (xB, yB, zB) and (xC , yC , zC), respectively. The
angle β in Figure 2.2 refers to a fixed angle that may exist between the camera frame and
the vehicle frame due to an angular offset about zB.

The final frame required is the image frame, which is a 2–D plane assumed to be
coplanar and with a fixed offset and scale from the camera frame. The x and y axes in
both the image and camera frames remain parallel with the image plane being translated by
(cx, cy) such that the origin of the camera frame is at the centre of the image (Figure 2.3).
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Figure 2.1: Relating the quadrotor body–fixed frame to the global frame

A pinhole camera model is used to relate points anywhere in the camera frame to points
lying on the xy (‘image’) plane of the image frame [47]. Specifically, given a point PI ∈ R2

in the image plane I, there are multiple possible corresponding points in OC . Equation
(2.1) expresses this ambiguity. It incorporates the above mentioned (cx, cy) offsets with
image scaling represented by focal lengths (fx, fy).P u

I

P v
I

1

 =

fx 0 cx
0 fy cy
0 0 1

P x
C/P

z
C

P y
C/P

z
C

1

 (2.1)

The surjection between points in the camera frame and points on the image plane can be
resolved by providing additional information. Figure 2.4(a) depicts the overall relationship
between a point in OG and the same point in OC , showing this ambiguity. We will assume
that the height h of the vehicle is given by the onboard height estimator and all of the
features lie on the xy plane (z = 0). Due to these assumptions, the scale ambiguity can be
resolved and a unique relationship between PI and PC found (Figure 2.4(b)).

Given the above, the relationship between a point PG ∈ R3 in OG and a point, PC ∈ R3,
in OC is defined as follows in Equation (2.2).
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(a) Body–fixed (b) Global frame

Figure 2.2: Relating body–fixed and global frames to the camera frame

Figure 2.3: Relating the camera frame to the image frame


P x
G

P y
G

P z
G

1

 =


sin(β − ψ) − cos(β − ψ) 0 y
− cos(β − ψ) − sin(β − ψ) 0 x

0 0 −1 z
0 0 0 1



P x
C

P y
C

P z
C

1

 (2.2)

The offset of the vehicle from the origin of OG is denoted by x, y, and z. The vehicle yaw
is indicated by ψ, and a fixed angular offset between the camera frame and the body–fixed
frame, β, is as depicted in Figure 2.2.

Due to Assumptions 1.1, 1.4, and 1.5 (all pixels observed correspond to points on the
ground (P z

G = 0), the ground itself is flat, and the height h is reliably provided by the
onboard height estimator), all of the information necessary to resolve the scale ambiguity
is available. This allows a point, PI , to be related to the global frame as follows in Equation
(2.3).
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(a) Projection of point with scale am-
biguity

(b) Scale ambiguity resolved by setting
ZG = 0

Figure 2.4: Coordinate frames

[
P x
G

P y
G

]
=


x+

z cos(β + ψ)(cy − P v
I )

fx
+
z sin(β + ψ)(cx − P u

I )

fy

y +
z cos(β + ψ)(cx − P u

I )

fy
− z sin(β + ψ)(cy − P v

I )

fx

 (2.3)

2.2 Optical Flow

Optical flow is a very common approach for estimating motion within image sequences. It
measures the relative motion of brightness patterns in a sequence of images, and ideally
represents relative motion between a camera and objects in the camera’s field of view.
Given two images and a point in the first image, optical flow involves examining a window
around the point and attempts to find a matching window in the second image. The
displacement between the windows is treated as the “flow” of the point [48]. It is an
iterative algorithm which makes the following assumptions:

Assumption 2.1. The overall image intensity varies uniformly over time, resulting in
pixels which have a constant intensity with respect to their neighbours.

Assumption 2.2. The points being tracked do not move far between consecutive images.

Assumption 2.3. There are unchanging surface markings viewable in both images, or
matching patterns of image intensities exist.

Assumption 2.4. The displacement of a point’s neighbours (i.e. those within a window
surrounding the point) are assumed to be constant.
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The general approach is as follows:

1. Select a point, pi, in the first image to track and a corresponding window surrounding
pi.

2. Assume that pi shifts between images by a displacement, d = (u, v), to produce a
new point, pj = pi + d, in the second image.

3. Assume that the brightness (i.e. intensity) of pj is given by Equation (2.4), which
can be linearized using Taylor expansion (Equation (2.5)). Applying Assumption
2.1, this can be expressed by Equation (2.6), where It is the overall change in image
intensity over time.

I(pi, t− 1) = I(pi + d, t) (2.4)

I(pi, t− 1) ≈ I(pt, t) + Ix · u+ Iy · v (2.5)

∇I · (u, v) + It = 0 (2.6)

4. Since Equation (2.6) has two unknowns for one equation, use Assumption 2.4 to
generate more equations. If the window used is wxw pixels in size, there are now w2

equations for 2 unknowns.

5. Solve Equation (2.6) for (u, v) using least–squares.

6. Compare window around pi and pj. If the error is below a threshold ε or a maximum
amount of iterations has been reached, exit. Otherwise, repeat the minimization
step, initializing d with the current value.

7. Once the computations have been terminated, the optical flow is the difference be-
tween the points (d).

Though it is feasible to run this algorithm on every pixel in a given image, using a
sparse set of features is much less computationally intensive than attempting to compute
the motion of each pixel [29]. In addition, the algorithm can use simple feature selectors
such as Shi & Tomasi [16] and FAST [49, 50]. This is advantageous due to the reduced
processor load of these feature selectors when compared to the computational requirements
of more complex feature selectors (Section 1.2).

The pyramidal approach implemented in the OpenCV framework is also effective at
reducing the processor load of optical flow [51]. It enhances the existing process by first
computing an “image pyramid” for both images. An image pyramid is a series of n images,
each with half the resolution of the last (Figure 2.5). The optical flow routine is run on each
pair of images at a given resolution, feeding the results of the current computation into
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Figure 2.5: A 3–level image pyramid

the next run as an initial condition. Using this approach, the system is able to converge
to a solution much more quickly and is also more tolerant of local minima.

Once a series of flow vectors between two images have been determined, it is possible
to determine the overall motion of the camera which has occurred between those images.
Given additional information used to resolve the scale of features in the image, it is also
possible to convert this information to real–world units. A downside does exist; a standard
optical flow approach does not easily lend itself towards tracking points over more than
two frames. This is caused by the use of a relatively simple feature selection process,
where no attempts are made to make features invariant to scale or rotation. Without these
properties, features will eventually get ‘lost’ when their original description fails to match
their current description. This may prove to be an impediment if each point needs to be
tracked over time.

In the case of low–contrast images, it is very likely that one or more resulting vectors
is an “outlier” vector. These vectors are those for which accurate correspondence has not
been found. Due to the gradient descent present in optical flow, such vectors will still
degrade until they find another area somewhere in the image which appears representative
of the area around the starting feature. They will thus indicate incorrect correspondence
between areas in the two source images. This occurs with regularity with low–contrast
images, no matter what the feature selection process is, something which is explored in
Section 5.1. Despite the above noted downside, there has been work showing that a Shi &
Tomasi selector can still find feature correspondences between images [46].

Shown below in Figure 2.6 are two examples of optical flow algorithms as run on
sample data acquired from the quadrotor’s onboard camera. Figure 2.6(a) is based on
data acquired from test flights over a checkerboard pattern, and Figure 2.6(b) is taken
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from tests run in a less feature–rich environment. 250 and 400 features were acquired,
respectively. The presence of “outlier” vectors is visible in both images.

(a) Optical flow produced by vehicle motion over
checkerboard target

(b) Optical flow produced by vehicle motion
in test environment

Figure 2.6: Optical flow in test images

2.3 Camera Position Estimation

Given a number of optical flow vectors between images and an initial estimate of how the
camera is positioned with respect to a global frame, the displacement of the camera over
time can be calculated. In any two frames, I1 and I2, each tracked feature moves in the

image plane by a certain vector
−→
VI . Since the environment is static, this motion is in fact

caused by vehicle motion between the two frames. As well, due to Assumption 1.5,
−→
VI has

a corresponding vector,
−→
V , which lies on the ground plane.

Equations (2.1) and (2.3) can be rearranged to form a function T : R6 → R2 which
relates the position of any point PG in the world frame to a pixel, PI , in the image given
a vehicle position [x, y, z]T and yaw ψ with respect to the origin of the global frame. It is
important to note in the following equations that a shift along one vector in the image in
fact corresponds to the motion of the vehicle in the opposite direction.[

P u
I

P v
I

]
= T (P x

G, P
y
G, x, y, z, ψ) (2.7)
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Assuming every point in the image corresponds to a point on the ground, (P z
G = 0), T

is defined by

T =

cx − fy(sin(β+ψ)(Px
G−x)+cos(β+ψ)(P y

G−y)

h

cy −
fx(cos(β+ψ)(Px

G−x)−sin(β+ψ)(P y
G−y)

h

 (2.8)

If the vehicle’s relative motion between two frames, W = [dx, dy, dz, dψ]T , is known,
the flow at any point, PI , can be determined by first applying Equation (2.3) to determine
the corresponding location, (P x

G, P
y
G), in the global frame. Then, the Jacobian of T with

respect to (x, y, z, ψ) (represented as ∇T and defined in Equation (2.9)) is evaluated at
the current vehicle position estimate, [x, y, z, ψ]T . The vector [x, y, z, ψ]T , is a subset of
the elements of the state vector, X. The resulting ∇T can be used to determine how that
particular point will move given vehicle motion, W , taking place over a time duration, ∆t.
In Equation (2.9), β + ψ is defined as θ, cos(x) as c(x), and sin(x) as s(x) for brevity.

5 T =

−fyc(θ)

z
−fys(θ)

z

fy((Px
G−x)s(θ)−(P y

G−y)c(θ))

z
−fy((Px

G−x)c(θ)+(P y
G−y)s(θ))

z2

−fxs(θ)
z

fxc(θ)
z

−fx((Px
G−x)c(θ)+(P y

G−y)s(θ))

z
−fx((Px

G−x)s(θ)−(P y
G−y)c(θ))

z2

 (2.9)

Equations (2.3) and (2.9) combine to equal the expected new location point, (u, v), on
the image plane, given its corresponding position in the global frame, PG, vehicle motion,
W , vehicle state, X, time duration between frames ∆t, and initial pixel location, PI . This
is shown below in Equation (2.10).

[
u
v

]
=


x+

z cos(β + ψ)(cy − P v
I )

fx
+
z sin(β + ψ)(cx − P u

I )

fy

y +
z cos(β + ψ)(cx − P u

I )

fy
− z sin(β + ψ)(cy − P v

I )

fx

−∇TW∆t (2.10)

The location of a point, (u, v), at time k can also be expressed in terms of the location
of (u, v) at time k − 1 using Equation (2.11). The Jacobian, ∇T , is defined by Equation
(2.9), where the vehicle position estimate at time k − 1 is used for linearization.[

u
v

]
k

=

[
u
v

]
k−1

−∇TW∆t (2.11)

The relative motion, (du, dv), of a location between time k−1 and time k is then given
by Equation (2.12).
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[
du
dv

]
= −∇TW∆t (2.12)

The challenge is now to estimate the relative motion, W , given a set, F = {f1, . . . , fn}
of n features f1, f2, ...fn (fi ∈ R2,∀i ∈ {0, 1, . . . n}) and their corresponding motion vectors
ḟ1, ...ḟn (ḟi ∈ R2,∀i ∈ {0, 1, . . . n}). Since dz is assumed to be known, ∇T can be expressed
as ∇T = [∇P ∇Q], where ∇P is the Jacobian with respect to the unknowns dx, dy, dψ,
and ∇Q is the Jacobian with respect to the known dz.

∇P =

−
fyc(θ)

z
−fys(θ)

z

fy((P
x
G − x)s(θ)− (P y

G − y)c(θ))
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−fx((P
x
G − x)c(θ) + (P y

G − y)s(θ))

z

 (2.13)

∇Q =

−
fy((P

x
G − x)c(θ) + (P y

G − y)s(θ))

z2

−fx((P
x
G − x)s(θ)− (P y

G − y)c(θ))

z2

 (2.14)

A single optical flow vector can thus be related to PG and W . Dividing the change in
pixel location, (du, dv), between two consecutive frames by ∆t produces a motion vector,
ḟ , with components, (ḟu, ḟ v). Using ḟ in conjunction with Equations (2.13) and (2.14)
results in Equation (2.15).

−∇P |(Px
G,P

y
G)

dxdy
dψ

 =

[
ḟu + dz∆t∇Q1|(Px

G,P
y
G)

ḟ v + dz∆t∇Q2|(Px
G,P

y
G)

]
(2.15)

By combining the entire set of features and their motion vectors into a linear system
(Equation (2.16)), it is possible to solve via least–squares for [dx, dy, dψ]T . This vector is
then added to the vehicle position estimate, [x, y, z, ψ]T . As each flow vector is in R2 and
the vector [dx, dy, dψ]T is in R3, the minimum number of flow vectors required for such a
solution is 2. However, due to the potential for errors, it is beneficial to have more than
this number of vectors contribute to the least–squares calculation.

20



−


5P |

(Px
G

,P
y
G

)1

5P |
(Px

G
,P

y
G

)2

...
5P |

(Px
G

,P
y
G

)n


dxdy
dψ

 =



˙fu1 +dz∆t5Q1|(Px
G

,P
y
G

)1

˙fv1 +dz∆t5Q2|(Px
G

,P
y
G

)1

˙fu2 +dz∆t5Q1|(Px
G

,P
y
G

)2

˙fv2 +dz∆t5Q2|(Px
G

,P
y
G

)2

...
˙fun+dz∆t5Q1|(Px

G
,P

y
G

)n

˙fvn+dz∆t5Q2|(Px
G

,P
y
G

)n


(2.16)

Unfortunately, if image features are not consistently matched through multiple frames,
this approach can allow estimation error to increase in an unbounded fashion over time.
As well, if errors in feature correspondence are allowed to remain, outliers in the data will
produce drastic changes in W if they exist in sufficient quantity.

The challenge then lies in choosing a set of vectors which are representative of the
vehicle motion, given the presence of outlier vectors as shown in Figure 2.6 and the O(n3)
nature of least–squares calculations [52].

2.4 RANSAC

Random sample consensus (RANSAC) is a technique developed for removing outliers from
datasets while simultaneously fitting the data to a model of known structure [41]. It uses
a set of data, Fall, and repeatedly chooses subsets, Fi ⊂ Fall. Each subset, Fi, contains m
data points, where m is the minimum size required to estimate parameters M of a given
model which describes Fall. Then, every other member, f ∈ Fall\Fi, is evaluated to see how
well the member fits with the model. If the member fits well, it is added to a consensus set,
Fc ⊆ Fall. After the completion of n iterations of the above, the largest consensus set, Bc,
is chosen for further refinement. The model is re–estimated by using only the features in Bc

which agree with the model which originally generated Bc. Optionally, another iteration
over Fall can be done to re–include features removed by the latest model re–estimation
before a final model re–estimation is performed.

An outlier ratio, ε, is defined as the ratio between the number of outliers and the number
of total data points in Fall, and p is defined as the desired probability of testing at least
one outlier–free hypothesis. The outlier ratio is not known in advance, but is a property
of each set, Fall. It has been suggested that an appropriate value, n, for the number of
iterations is given by Equation (2.17) [34]. In Equation (2.17), the value of n increases
with p due to the greater number of tests required to reject all outliers, and with m due to
the increasing solution space of the model. Likewise, increases in ε also cause n to increase,
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since a larger number of outliers will by necessity require more iterations before a model
is generated from outlier–free data.

n =
log(1− p)

log(1− (1− ε)m)
(2.17)

As an example, the RANSAC algorithm is applied to the estimation of parameters,
(a, b), which define a line, y = ax+ b. Data is selected from the set, Fall, shown in Figure
2.7(a). Figure 2.7(b) shows models being created (indicated by grey solid lines) from
subsets Fi (indicated by large blue dots). Using the above straight–line case, each other
member of Fall can be evaluated based on the shortest distance, d, between it and the line
defined by y = ax+ b (indicated by grey dashed lines in Figure 2.7(b)). The consensus set,
Bc, is then selected. Members of Bc which do not agree with the new model are rejected
(indicated by large red dots), and the model re–estimated (Figure 2.7(c)). Finally, points
removed from Bc may be re–included into Bc and the model re–estimated a final time
(Figure 2.7(d), re–included feature indicated by a large green dot).

Figure 2.7: Using RANSAC to fit a straight line
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To increase the robustness of the estimate, criteria such as absolute minimum size or
minimum variance can be placed on Bc and checks performed before the re–estimation
process. These checks can allow appropriate actions such as marking the entire dataset as
invalid — to be taken when poor data is provided.

RANSAC can be further improved by combining it with the Kalman filter to allow its
outlier–rejection properties to compensate for the Kalman filter’s assumption of normally–
distributed data [42]. In addition, the incorporation of a motion model which reduces the
value of m allows the amount of iterations of the RANSAC procedure to be decreased [34].
Generally, this process can be applied to optical flow data by treating the magnitude and
origin of each flow vector as a data point in R4 (with possible outliers) and modeling the
motion of the image frame based on a subset of this flow data.

2.5 Kalman Filter

A Kalman filter is a state estimation algorithm which incorporates measurements received
over time with a state transition model to optimally estimate a state vector. It assumes
that noise is present, but assumes the noise is Gaussian. This optimal estimate minimizes
the mean squared error between the state and the estimate. It is a recursive estimator;
only the current state vector, the state transition model, and the current measurement are
required to compute the next state vector. Typically, it is split into a “prediction” and a
“correction” step. The former step represents the application of the state transition model
to the state vector to generate a new estimate, and the latter step an adjustment in this
estimate which combines a measurement vector with a measurement model describing how
the measurement model relates to the state vector. In vehicle state estimation, the effect of
the state transition model (known as the “motion model” in this application) will depend
on the current vehicle control inputs. For example, the change in state over time for a car
with no throttle applied will be different than the change of state over time for a car with
its throttle applied at maximum.

For the 2–D position estimation of a quadrotor, there are a variety of ways which state
estimation systems can incorporate knowledge about the vehicle’s kinematics and dynam-
ics. The simplest by far is a constant velocity model, which tends to serve as the default
in studies where no additional information about vehicle motion is known [34] [43] [53].
Given a state vector, XP = [x, y, ẋ, ẏ]T , XP ∈ R4, and a quadrotor vehicle, the constant
velocity model can be expressed as follows in the global frame, where ∆t is the period of the
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estimator, and [wx, wy]
T represents noise in the model caused by unknown accelerations.

x
y
ẋ
ẏ


k

=


x+ ẋ∆t
y + ẏ∆t

ẋ
ẏ


k−1

+


0
0

wx∆t
wy∆t


k

(2.18)

Civera et al. argues that the more information used from onboard sensors, the bet-
ter [34]. If it can be assumed that accurate vehicle orientation is available at all times
and that wind resistance is negligible, a orientation–based model such as that provided in
Equation (2.19) can be used to augment the state estimate. Acceleration due to gravity is
represented by g, and (φ, θ, ψ) are vehicle Euler angles with respect to the global frame.

x
y
ẋ
ẏ


k

=


x+ ẋ∆t
y + ẏ∆t

ẋ
ẏ


k−1

+


0
0

g(tan(θ) cos(ψ)− tan(φ) sin(ψ)) + wx
g(tan(θ) sin(ψ) + tan(φ) cos(ψ)) + wy


k

∆t (2.19)

Finally, the orientation of the vehicle can be further combined with onboard accelerom-
eter data to improve the acceleration estimate, producing the dynamic model expressed
by Equation (2.20). Values read from accelerometers along each axis, (ax, ay), is assumed
to be already rotated into a frame which is level to the ground based on the orientation
estimate. These accelerometer values represent drag and disturbance forces resisting the
acceleration due to gravity on which the orientation estimate is based.


x
y
ẋ
ẏ


k

=


x+ ẋ∆t
y + ẏ∆t

ẋ
ẏ


k−1

+


0
0

(g tan(θ)− ax) cos(ψ)− (g tan(φ)− ay) sin(ψ) + wx
(g tan(θ)− ax) sin(ψ) + (g tan(φ)− ay) cos(ψ) + wy


k

∆t (2.20)

In both the kinematic and dynamic vehicle models, incorrect estimates of orientation
or acceleration may be present due to noise or sensor bias. If this is the case, the motion
estimate may likewise experience variance or offset [13].

The motion estimates produced by any of these preceding vehicle models are then
combined with a measurement model. This work uses optical flow vectors as measurements
and a measurement model based on Equation (2.10) from Section 2.3. The current state
estimate is used to predict the magnitude and direction of optical flow vectors in arbitrary
locations on the image plane, which are then used to correct the motion estimates.
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Using the traditional definition of a Kalman filter [14]:

X̂P
−
k = AkX̂k−1 +Bkuk

Σ−k = AkΣk−1A
T
k +Rk

Kk = Σ−k C
T
t (CkΣ

−
k C

T
k +Qk)

−1 (2.21)

X̂P k = X̂P
−
k +Kk(yk − CkX̂−k )

Σk = (I −KkCk)Σ
−
k

The first two equations encompass the prediction step and the last three the correction
step. In this work, the measurement vector yk is of size 2n, representing a stacked set of n
optical flow vectors [fu1 , f

v
1 , ...f

u
n , f

v
n ]T , with each pair having a corresponding feature located

at (P u
I1, P

v
I2). Covariance matrices, Rk and Qk, are also defined, where the former matrix

is the covariance of the motion model and the latter is the covariance of the measurement
vector. The vector yk is related to the state vector, XP , by defining Ck = 5T∆t, where
5T is the state–independent Jacobian as defined in Equation (2.9).

2.6 Control Overview

A quadrotor is controlled by varying the thrust in each of its four propellers. As shown
in Figure 2.8, two of its propellers spin clockwise, and two counter–clockwise. If propeller
#1 is producing a different amount of thrust then #3, the vehicle will pitch. Likewise, if
propeller #2 is producing a different amount of thrust then #4, the vehicle will roll. If the
combined thrust of propellers #1 and #3 is different then that of #2 and #4, the vehicle
will yaw. Finally, overall climb rate is govered by the sum total of all propeller thrusts.

Figure 2.8: Quadrotor layout

Quadrotors are often controlled using cascaded control loops as shown in Figure 2.9,
detailed extensively in [6].
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The innermost loop is a very high–speed loop which controls individual propeller thrusts
by varying motor voltage and can be modeled as a unity transfer function. The dynamics
associated with the closed loop plant can be ignored in the model for vehicle position
and orientation when vehicle state estimation and trajectory planning is being executed.
Next, an orientation controller uses estimates of vehicle orientation and rotation rates to
ensure that the vehicle is able to attain an arbitrary orientation within expected bounds.
Finally, the outermost position controller takes a desired high–level trajectory or path and
uses a model of the vehicle to generate corresponding roll, pitch, and yaw setpoints which
will result in the vehicle successfully following the high–level input. In the case of the
orientation and position controllers, development is done by linearizing the plant about 0◦

pitch and roll (φ and θ).

Figure 2.9: Nested control loops

This architecture is feasible due to the relative speeds of each control loop. Brushless
motor control loops are able to control motors at frequencies upwards of 10 KHz, limited
by the dynamics of the propeller and the electrical capabilities of the motor driver. These
control loops use a technique where they energize coils within the motor at a rate propor-
tional to the desired output speed and use a measurement of the output shaft position to
guide which coil should be energized next.

Likewise, orientation controllers operate at the rate they receive orientation data from
the IMU, which is typically between 50 and 200 Hz. The most important property of this
particular controller is its ability to regulate both the vehicle’s roll and pitch to 0◦ when
necessary, keeping it in the air in the face of wind gusts and other disturbances. One
example of a typical orientation controller is a set of PID-DD controllers which are coupled
together to control output. In this case, the vehicle’s dynamics are decoupled into four
independent plants (Pφ, Pθ, Pψ, Pt, governing roll, pitch, yaw rate, and climb rate, respec-
tively). Then, an individual PID–DD controller is applied on each plant, producing the
corresponding outputs uφ, uθ, uψ, ut. The outputs are superimposed as shown in Equation
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(2.22) to provide four motor outputs, u1 . . . u4, one for each propeller.
u1

u2

u3

u4

 =


uθ − uψ + ut
−uφ + uψ + ut
−uθ − uψ + ut
uφ + uψ + ut

 (2.22)

Finally, position controllers operating at 10 to 20 Hz are capable of tracking trajectories
in 2–D and maintaining a hover despite disturbances. Simple PID or lead–lag controllers
can be adequate for these purposes. They typically produce as control outputs desired
accelerations in the global frame, (ax, ay). These accelerations can then be rotated into
corresponding accelerations in the vehicle frame, (avx, a

v
y), by Equation (2.23), where ψ is

the current vehicle heading in the global frame.[
avx
avy

]
=

[
ax cos(ψ) + ay sin(ψ)
ax sin(ψ)− ay cos(ψ)

]
(2.23)

These accelerations can then be translated into a desired orientation, (φ, θ), by applying
Equation (2.24), the inverse of the vehicle kinematics described in Equation (2.19), where
g denotes the magnitude of acceleration due to gravity.[

φ
θ

]
=

[
tan−1(ay/g)
− tan−1(ax/g)

]
(2.24)

In the scenario of tracking a trajectory in 2–D without specified orientation or height, the
other two inputs to the orientation controller, (ψ, climb rate), can be set arbitrarily.

Of these three control loops, there is only one which requires a position estimate as
input is the outermost loop; the position controller. The information required for the
other two loops can be sensed, regardless of the availability of a position estimate. The
motor control loop only requires motor shaft position, and the vehicle orientation can be
sensed entirely by an onboard IMU. Very little correction to these two measurements would
be provided by incorporating position data. This further justifies a cascaded approach and
enables the use of vision, as processing frames at 10-20 Hz is feasible.
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Chapter 3

Position Estimation

3.1 Motivation

It has already been shown in Section 2.2 that only two optical flow vectors are necessary to
estimate the relative motion of an aerial vehicle in an xy plane when height information is
available. Existing algorithms presume that high quality features will be available in every
image, but this is often not the case. The following situations often arise and lead to low
quality images that can cause significant difficulties for state estimation:

• Operating in an environment which lacks patterns on surfaces reduces the total num-
ber of available image features.

• The lack of distinctiveness between existing features adds additional difficulty in
determining specific feature correspondences between images.

• The low level of ambient light leads to an increase in image noise and a decrease in
the reliability of optical flow calculations.

An example of the impact of reduced image and feature quality is shown in Figure 3.1.
400 features are selected as source points for optical flow. Quite a few vectors could be
considered outliers, with their error going far beyond what would be expected with mere
image noise. If 50% of the available vectors are outliers and only two vectors are being
used to determine how the vehicle has moved, there is a significant chance that one of
the two optical flow vectors used for the solution is an outlier. Even if Equation (2.16) is
used and a least–squares solution is found, these outliers will greatly distort the result. In
addition, the O(n3) nature of least-squares calculations suggests using all available features
may be too costly to compute in real time, and the non-Gaussian form of the measurement
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Figure 3.1: Optical flow produced by vehicle motion

noise ensures that even as n → ∞, the least-squares solution may not approach the true
solution.

This work proposes a solution based on RANSAC (introduced in Section 2.4). Specifi-
cally, it begins with the general framework developed by Vedaldi in [42] where a RANSAC–
based approach is combined with a Kalman Filter, and continues with the objective of
developing an algorithm which is applicable for the estimation of the planar displacement
of a quadrotor UAV.

3.2 Algorithm Definition

The main inputs to the position estimation algorithm are monocular camera frames, and
direct measurements of height and height rate. RANSAC is used to condition a set of
noisy optical flow vectors to generate a filtered measurement set which is then used in
an EKF–based position estimator. Providing an EKF with robustness to outliers in its
measurement data is a primary benefit of this work. A secondary benefit is the lack in
significant computational load when comparing the algorithm to a standard EKF.

The algorithm developed in this work follows the standard Kalman filter structure of
predictions and corrections, and embeds the RANSAC method in the correction step. At
each time step, the prior state estimate is propagated using a state transition model for
the vehicle, and both altitude measurements and camera frames are captured for use in
the measurement update.

Let Z be defined as Z = [x, y, z, ψ, ẋ, ẏ, ż, ψ]T ), a subset of the elements of X defined
in Section 1.1.2. This vector will be used as the state vector for the Kalman filter in place
of X̂P as defined in Section 2.5. At timestep k, the prediction step of the Kalman filter
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applies a motion model to create Ẑ−k based on Ẑk−1. If this is the first execution of the

algorithm, Ẑk−1 is initialized to a known vehicle position. This initialization occurs only
once per iteration of the estimator, outside the outlier rejection loop.

After the application of the motion model, the available features, Fall, are prefiltered
based on Ẑ−k . Prefiltering to remove obvious outliers is known to be effective in improving
accuracy [45, 46]. In this estimation algorithm, the features were prefiltered based on
comparing flow vector length with the prior velocity estimate. Since sudden changes in
direction are feasible, angles of flow vectors were not used as prefilter criteria.

Then, r features are randomly selected and a measurement model based on Equation
(2.10) from Section 2.3 is built from these features based on their locations in the image
plane and the height of the vehicle. The resulting measurement model is then used to
formulate a Kalman gain Kk, which is applied along with Ẑ−k and r flow vectors to generate

a corrected estimate Ẑtmp. At this point, the rest of the flow vectors f which were accepted

by the prefilter are compared to those generated by Ẑtmp and the measurement model. If
the error is less than a set threshold, f is added as per the standard RANSAC formulation
to the consensus set Fc. This continues for n iterations.

The final Ẑk is selected as the estimate corresponding to the iteration in which Fc
has the largest number of elements. A minimum size for the consensus set is enforced,
reducing the likelihood that an estimate based on an excessively noisy image is admitted.
If no consensus set is larger than this minimum size, a zero motion vector is assumed. This
assumption is due to the observation that a great deal of images where no consensus could
be found resulted from a stationary camera. Once the iterations are complete, Ẑk is set
to the estimate found which is supported by the most features, and the covariance Σk is
updated by the Kalman filter update equations as shown in Equation (2.21).

The combination of RANSAC and the EKF is done in the Kalman gain update step.
The above approach runs the EKF during each RANSAC run, with the processor time
remaining similar because the RANSAC model calulation is replaced in a nearly one–to–
one way with a Kalman gain update of the same size. From here, speeding up execution
further can be done by reducing the number of iterations, n, of the process. The suggested
number of iterations to be used is given by Equation (2.17) in Section 2.4, and has been
reprinted below.

n =
log(1− p)

log(1− (1− e)m)
(3.1)

Since there are three variables being estimated (x, y, ψ) by the algorithm and each
feature is in R2, m = 2.
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Finally, Equation (2.21) inverts a matrix to compute the Kalman gain, Kk. This can be
mathematically sensitive with certain matrix libraries [54]. This particular part has been
restructured to an Ax = b form and solved for x, where x = KT

k .

(HkΣ
−
kH

T
k +Rk)

TKT
k = HT

k (Σ−k )T (3.2)

A summary of the algorithm is presented below in Algorithm 1. The motion model is
defined as f(Ẑk−1, uk), where the control input, uk, is either a zero vector, the orientation
vector of the vehicle, or the combined set of the orientation vector and the acceleration
vector. These models are represented by Equations (2.18), (2.19), and (2.20), respec-
tively. The function prefilter flow(Fall, Ẑ

−
k ) uses the current estimate of vehicle velocity

from estimate, Ẑ−k , to reject elements of Fall which are obvious outliers. Likewise, se-
lect m features(Ffilt,m), randomly selects m features from Ffilt. In this case, m = 2.

During each iteration, a measurement model, Ck is created by measurement model(Ẑ−k ),
which uses Equation (2.10) to determine the magnitude and direction of optical flow vec-
tors originating at each feature in Fi given a current state estimate, Ẑ−k . The covariance
of the motion model is represented by Rk and that of the measurement model by Qk. As

well, an error function, e(f,
−→
V ), is defined. This function returns the difference between a

provided feature, f , and a predicted flow vector,
−→
V . If this difference is less than an error

threshold, εf , f will be added to the consensus set, Fc. Finally, the consensus set which
is selected after n iterations must not only be the largest, but must also be larger than a
minimum size, Ω, for the results to be considered valid.

Since RANSAC is O(n(2r)3) (where n is the number of iterations and r is the number
of optical flow vectors used to create Fc in each iteration), and an EKF is O(s3) (where s
is the size of the measurement vector), one might expect that the resulting combined al-
gorithm is the sum of both computational loads. In fact, the matrix inversion that makes
RANSAC O(n(2r)3) can be combined with the O(s3) Kalman gain update. When the
RANSAC inversion and the Kalman gain update are combined by replacing the model
fitting process with the Kalman measurement update, a matrix inverse of the same com-
plexity is required. The measurement vector is of size s = 2r within each iteration, making
the overall computational cost over all of the iterations O(n(2r)3), equivalent to the cost
of RANSAC alone.

There is a final O(s3) Kalman gain update which occurs on the consensus set after the
RANSAC portion has been completed, but the outlier rejection that RANSAC performs
results in the set of measurements used to recalculate the Kalman gain (the largest con-
sensus set, Bc), being much smaller than the total set of optical flow vectors Fall. The
size difference between Bc and Fall which results when features are rejected is significant
because of the resulting Kalman gain update being cubic in a smaller number.
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The primary justification for combining RANSAC and Kalman filters was the com-
plementary strengths of each approach. RANSAC is designed to be tolerant of outliers
in a data set, but has no ability to take into account the covariances of the motion and
measurement estimates. Likewise, Kalman filters are capable of fusing data from a variety
of sources, but are not robust to non–Gaussian noise. The combination of both approaches
provides a Kalman filter with outlier–free data and removes the need for RANSAC to take
motion and measurement covariances into account.

Algorithm 1 Incorporation of Kalman Filter into RANSAC

Require: n > 0,m > 0, Ẑk−1,Σk−1, size(Fall)> 1
i⇐ 0
Bc ⇐ ∅
Ẑ−k ⇐ f(Ẑk−1, uk)

Σ−k ⇐ ∇f(Ẑk−1, uk)Σk−1(∇f(Ẑk−1, uk))
T +Rk

while i < n do
Ffilt ⇐ prefilter flow(Fall, Ẑ

−
k )

Fc ⇐ select m features(Ffilt,m)

Ck ⇐ measurement model(Ẑ−k )
Kk ⇐ Σ−k C

T
t (CkΣ

−
k C

T
k +Qk)

−1

Ẑtmp ⇐ Ẑ−k +Kk(Fc − CkẐ−k )
for all f ∈ Fall, f ∈ Fall \ Fi do
−→
V ⇐ measurement model(Ẑtmp)Ẑtmp

if e(f,
−→
V ) < εf then

Fc ⇐ Fc ∪ f
end if

end for
if size(Fc) > Ω and size(Fc) > size(Bc) then
Ẑk ⇐ Ẑtmp
Bc ⇐ Fc

end if
i⇐ i+ 1

end while
Ck ⇐ measurement model(Ẑk−1)
Kk ⇐ Σ−k C

T
t (CkΣ

−
k C

T
k +Qk)

−1

Ẑk ⇐ Ẑ−k +Kk(Bc − CkẐ−k )
Σk ⇐ (I −KkCk)Σ

−
k

return Ẑk,Σk, Bc
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Chapter 4

Experimental Platform

Experiments and data collection were carried out in a variety of different environments
using an Aeryon Scout quadrotor as the vehicle. Initially, sample images and video were
captured using only an onboard camera. As the system was refined, additional capabilities
were added to provide benchmarking and additional sensor inputs. As well, the initial
MATLAB–based software was refined over time into a C++ program which is capable of
interfacing with the platform and running the entire estimation & control algorithm online.

4.1 Aerial Vehicle

The test platform used for this study is an Aeryon Scout quadrotor UAV as shown in Figure
1.1. It has been designed for both indoor and outdoor use, and is capable of maintaining
platform stability even when it is exposed to severe wind gusts. An onboard embedded
computer has access to sensor data and the ability to communicate wirelessly to a base
station. The platform has an operational duration of 20 minutes at a factory weight of 1
kg. It is capable of sustained speeds of up to 14 m/s, and is commonly used for police,
military, security, and environmental monitoring purposes.

The system has a set of sensors which are primarily used for stability control. A sonar
ranger and pressure sensor are used for determining height above ground and climb rate,
and a 6–DoF IMU equipped with 3 rate gyros, 3 accelerometers, and 3 magnetometers is
used to observe inertial motion, vehicle orientation, and vehicle heading. Also onboard is
a DGPS-capable GPS system for outdoor operation.

Additionally, the quadrotor is capable of being equipped with a variety of camera
systems, including thermal imagers and colour cameras. A 2 MP fixed–focus colour camera
with built–in tilt–compensation is mounted to the WAVELab platform. Custom code has
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been written to interface with the Aeryon camera libraries and produce timestamped JPEG
files for offline analysis, allowing for camera data to be easily associated with the inertial
sensors.

Section 2.6 explains generally how quadrotors control their position. Of the control
requirements explained in Section 2.6, the Aeryon hardware is responsible for both motor
and orientation control (the two innermost loops in Figure 2.9). A position controller
originally developed by Peiyi Chen of the WAVELab was implemented as part of the test
environment [55]. It is a lead–lag controller which uses as input position error computed by
comparing a reference position against the position estimate, and produces desired vehicle
acceleration, (ax, ay), in the global frame. Equation (2.23) is used to translate these global
accelerations into a corresponding pair, (avx, a

v
y), in the vehicle frame. Then, Equation

(2.24) is used to generate roll and pitch setpoints, (φ, θ), necessary for position control.

4.1.1 AHRS Sensors

The Scout has a custom onboard IMU which feeds into a series of estimators responsible
for determining orientation, acceleration, altitude, and climb rate.

A series of benchmarks were done to validate these estimators. Figure 4.1 is a com-
parison of the roll and pitch estimates as provided by the onboard orientation estimator
with ground truth orientation data. In this particular example, the variance of the roll
error is 6 deg2, while the variance of the pitch error is 0.4 deg2. Filter lag appears to be
negligible. Using the orientation–based motion model laid out in Section 2.6, a standard
deviation of

√
6 corresponds to an acceleration error of ±0.41m/s2, centred about 0. From

this information, it seems that errors which could be introduced by the onboard estimator
are not significant.

Figure 4.2 is a similar comparison, showing the onboard height estimate as compared
to the OptiTrack ground truth. In general, the onboard estimator is accurate to within 5
cm with a variance of 1 cm2. The height estimate does not incorporate the pressure sensor
at all due to the low height of the vehicle.

4.1.2 Onboard Camera

The onboard camera is a 2 MP camera capable of taking 5 MP snapshots (Figure 4.3).
Video is typically streamed over an MPEG4 connection. For experimental purposes, this
was replaced with a stream of 320x240 raw greyscaled images. This allows individual images
to be timestamped and also avoids the addition of compression artifacts to the images.
Images are able to be reliably transmitted at 8 fps, though some variance occasionally
occurs. It has been hypothesized that this variability is due to occasional network syncing.
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Figure 4.1: Orientation estimator comparison
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Figure 4.2: Height estimator comparison

The camera is mounted on a 2–axis gimbal which is tied directly to the vehicle’s ori-
entation estimator, allowing the system to compensate in near–real–time for vehicle pitch
and roll. It is also rotated about the vehicle z axis by an angle β = 45◦ with respect to the
vehicle body frame to reduce the occlusion of the image by the vehicle’s legs. This angle
has a significant effect on the algorithm described in Chapter 3, since it factors significantly
into all of the formulae found in Sections 2.1 and 2.3 which relate locations in the camera
frame to locations in the global frame.
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Figure 4.3: Onboard camera [8]

4.1.3 Communications

There are three ways through which the Scout can be controlled:

1. Microhard long–range modem

2. Onboard Wi–Fi

3. R/C remote

The first case is for field deployments where long–range use is required. The WAVELab
platform is not so equipped at the moment. The onboard Wi–Fi provides a similar access
method as the first option, though much higher bandwidth (54 Mbps vs. 1.2 Mbps).
Either of these preceding methods allow for real–time command & control of the platform,
including SSH and SCP access for debugging and log retrieval. Additional (non–Aeryon)
ports can also be used for additional communications which is not provided by the Aeryon
API (i.e. image transmission). Finally, control via a 6–channel R/C remote is an option.
In all cases, this remote can be used as a safety kill switch. A software flag can also be
set to place the system in a fully–manual mode where the R/C remote controls the vehicle
orientation, yaw rate, and climb rate directly.

4.2 Local Positioning System

4.2.1 Network Topology

The experimental setup relies on two offboard computers participating in the same wireless
network as the aerial platform as shown in Figure 4.4. The LPS Computer is responsible for
receiving and interpreting ground truth data from an off-the-shelf local positioning system
and providing it over a TCP/IP socket to the Estimation Computer. The Estimation
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Computer displays and stores this data, and also provides a timestamped version to the
Scout for onboard logging.

Figure 4.4: Network Diagram

The Scout itself provides a series of raw, timestamped, greyscale 320x240 images via
a similar TCP/IP socket to the Estimation Computer. In addition, its full estimate of
platform orientation and filtered height is provided via Aeryon’s “APC” interface. The
entirety of this information is processed by the Estimation Computer to produce state
estimates as well as suitable roll/pitch/yaw/thrust control inputs for the Scout. In addition,
the Estimation Computer also timestamps and echoes the ground truth data to the Scout
in a format it can understand and log.

Ground truth is provided by a NaturalPoint OptiTrack local positioning system con-
nected to the LPS Computer [27]. The OptiTrack system uses six near-IR cameras as
shown in Figure 4.5 and passive reflectors to track the motion of rigid bodies within its
capture volume. Along with its use as a reliable position reference, it has been useful for
characterizing the performance of the UAV’s on-board orientation estimator. Characteri-
zations of the orientation estimates using this hardware were presented earlier in Section
4.1.1. The output from the local positioning system is the location of the origin of the
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body–fixed frame, OB, in terms of the global frame, OG, with frames as defined in Section
2.1. Since the origin of OB can be set arbitrarily on any point of the vehicle, it has been
placed coincident to the origin of the camera frame, OC . Though there remains a rotation
between OB and OC , locating the two points at the same location removes the potential
for an offset between the two points due to vehicle pitch and roll. If they were not located
at the same location, a change in orientation of the vehicle would cause the two points to
develop an offset with respect to each other in the global xy plane, adding error to the
ground truth comparison.

Figure 4.5: OptiTrack camera [27]

4.2.2 Common Software Architecture

The software which runs on the Estimation Computer uses a common architecture devel-
oped by the WAVELab in late 2009. At this point in time, ROS [56] was not yet prevalent
among the research community and most other options for the development of estimation
algorithms were not developed with aerial vehicles in mind [57, 58]. The goal in the de-
velopment was to abstract away the concepts of message passing and thread control from
current and future lab members. Additionally, it was meant to encapsulate the Aeryon
control API as much as possible.

In general, it uses a multithreaded Publish/Subscribe model [59]. There are three
common structures in the architecture: Messages, Publisher and WaveThread. Messages
are designed to be passed between threads, and are to be extended by users to contain
whatever additional data is required. They also contain a small set of functions designed
to allow other functions to check their types and provide identifiers which map to specific
types, a feature lacking in C++ at the moment. Publisher is designed to do work with these
Messages. A Publisher singleton is a threadsafe way of passing messages between threads
via a subscription–based model very similar to the approach taken by Player/Stage or ROS.
Finally, WaveThread is a base class which abstracts away key functions in the pthreads
library, including thread creation, waiting on events, sleeping, and thread destruction.
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Each WaveThread also provides a common message callback which the Publisher class
knows how to deliver messages to.

To test the state estimation algorithm described in Chapter 3, the following threads
are used:

• LPS Thread: This thread establishes communication with the LPS running on the
LPS Computer and receives incoming ground truth information for reference and
control purposes.

• Estimator Thread: The estimator thread contains and runs the position estimation
algorithm.

• Control Thread: This module contains a position control loop which can regulate
the vehicle to a stable hover or guide it through a trajectory. It can use both LPS
data and position estimation data as sensor input.

• Scout Interface Thread: The Scout interface thread receives height and orienta-
tion data from Scout, provides LPS data and control inputs, and issues takeoff and
landing commands to the Scout.

• Image Thread: This module receives timestamped images from Scout or reads in
prerecorded images.

• Keyboard Thread: The keyboard thread allows operator to engage or disengage
position control and swap the source of the position estimate used for vehicle control
between the state estimation algorithm under test and ground truth information.

A depiction of the communciation between these threads is shown in Figure 4.6. The
external libraries the software depends on are:

• OpenCV: Optical flow and image display [51]

• pthreads: C/C++ threading

• libapc: Aeryon Scout control interface
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Figure 4.6: Estimation Computer Software Architecture
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Chapter 5

Experimental Results

Multiple types of experiments were performed to validate each part of the proposed algo-
rithm. First, Section 5.1 examines the validity of using simple feature selection methods
instead of more complex ones for optical flow, as well as the reasoning for using RANSAC.
Next, Section 5.2 explores the various factors which affect processing time, including the
significant effect of the wireless network. Section 5.3 shows the results of implementing the
algorithm on the vehicle platform. Finally, Section 5.4 examines the outcome of using the
algorithm for online vehicle position control.

5.1 Feature Selection

Three feature selection methods have been compared, primarily based on their ability
to produce features which can be tracked well between low quality image frames. The
methods chosen are a naive equal grid spacing, Shi & Tomasi [16], and SURF [17], in order
of computational complexity. An ideal feature selection method is one which produces
trackable features without requiring significant processing time. Since this algorithm is
designed for use as an estimate source for vehicle position control, feature selection methods
which would prevent the algorithm from running online due to speed concerns should not
be used.

Shown below in Figure 5.1 are the results of using each feature selector in combination
with pyramidal optical flow on an image containing a high-contrast black & white checker-
board target. In each case, only the most trackable 150 features have been displayed, where
the definition of “trackability” is dependent on the selection algorithm. The exception is
the evenly spaced features, where 150 points have been distributed equally on a square
grid.
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(a) Optical flow from evenly spaced features (b) Optical flow from Shi & Tomasi features

(c) Optical flow from SURF features

Figure 5.1: Feature selection & optical flow from a high-contrast image

Judging by the number of outliers in the vector field (circled in white), SURF produces
the best results with 4 outliers. Shi & Tomasi follows with 9 outliers, and using an evenly
spaced grid results in 38 outliers. The arrows superimposed on the image represent the
point in the following frame which the feature corresponds to. The SURF features are
nearly all consistent in defining the vector field. This is also true for the majority of
the Shi & Tomasi-based features. Finally, the evenly spaced features produce the least
consistent field. Ideally, there will be no outliers at all, and each flow vector will correlate
with the motion of the vehicle.

As a high-contrast environment cannot be assumed, tests were also performed using
videos captured of surfaces which are largely devoid of features (cardboard, tile, clean
concrete, etc). A sample of the results are shown in Figure 5.2. Here, every approach has
a significant number of features which cannot be tracked well.
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(a) Optical flow from evenly spaced features (b) Optical flow from Shi & Tomasi features

(c) Optical flow from SURF features

Figure 5.2: Feature selection & optical flow from a low-contrast image

Selector CPU Time (s)
Equal Spacing 0.003
Shi & Tomasi 0.373
SURF 5.399

Table 5.1: Processing load comparison between feature selectors

Though SURF clearly produces better results when presented with high-contrast images
as input, it performs at a similar level to the others when it does not have easily trackable
features. Numerous points for which correspondence errors result in poor flow vectors are
still produced. However, using the MATLAB profiler and the images from Figure 5.1, its
computational load was found to be higher than Shi & Tomasi by an order of magnitude.
As algorithm runtime is independent of the number of image features, computational load
will not change measurably between images.
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Since the algorithm must be able to determine optical flow from low contrast images
which do not have well-defined characteristics, there is a point at which the computational
expense of complex feature selection algorithms does not provide any benefit. Therefore,
given the computational cost of SURF, it is reasonable to use Shi & Tomasi instead. Shi &
Tomasi is much faster, but can still take advantage of high-contrast features in images when
they are present. Once the flow calculations are complete, a similarity measure is evaluated
at each tracked point to determine if the result of the flow calculation is valid [16]. In order
to simplify calculations, an assumption is made that each feature is only being altered by
translation as opposed to undergoing a more complex affine transformation. This measure
is not always effective, as the low-contrast nature of the images means that even evaluating
similarity over a broad window can result in false positives, where a pixel in the image may
be incorrectly classified as being “similar” to the point being tracked.

Figures 5.3(a) and 5.3(b) are more examples of the results of using optical flow with a
Shi & Tomasi selector over different floor types (concrete and tile, respectively). Despite
the poor quality, these figures have an underlying trend due to camera motion. Figure
5.3(a) contains flow vectors which would result from the camera moving towards the top
left corner of the image, and vectors like those in Figure 5.3(b) result from counterclockwise
camera motion centred around the top right corner of the image. As is expected, there
are still many vectors which do not accurately represent the motion of the corresponding
point in the global frame.

(a) Optical flow over a concrete floor (b) Optical flow over a tile floor

Figure 5.3: Unfiltered optical flow vectors

A primary justification for using an outlier rejection strategy before applying a Kalman
filter is the fact that Kalman filters are ill–suited to non–Gaussian noise [14]. The charac-
teristics of image noise were examined to validate the use of an outlier rejection process.
Figures 5.4 through 5.6 show error histograms based on the set of total vectors in each
corresponding source image frame. The source of the ground truth for each image is the
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model after RANSAC has been applied. Each figure shows that both vector angle errors
(a) and vector length errors (b) are non–Gaussian overall. This is most clearly shown
in the various graphs of the angle errors. The distribution of the vectors ranges from a
near perfect correspondence to the model to completely distributed around [−π, π]. This
information would suggest that there are numerous outliers based on angle errors alone.
As well, the rightmost graph (c) in each figure is an expansion of the centre bins of the
vector length error histogram, showing a distribution which has a Gaussian bell shape.
The number of outliers in terms of vector angles, and the appearance of a central Gaussian
distribution with additional outliers in the distribution of the vector length errors validates
the use of outlier rejection in the state estimator. Figures 5.4 through 5.6 all have angle
and length outliers present.
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Figure 5.4: Image noise characteristics – Example # 1
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Figure 5.5: Image noise characteristics – Example # 2
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Figure 5.6: Image noise characteristics – Example # 3

The number of iterations to be used in each run of RANSAC also has an impact on the
runtime and robustness of the algorithm. As described earlier, Equation (2.17) suggests a
number of iterations, n, based partially on the outlier ratio, e. An attempt was made to set
the environment’s outlier ratio based on past data to allow the system to run faster when
better quality features are present. It was found that the outlier ratio varied rapidly and
unpredictably from e < 0.1 to e > 0.9 (Figure 5.7). The corresponding number of suggested
iterations varies from n < 10 to n > 500. Given the rapid changes in outlier ratio, applying
a strategy where the number of iterations used at the present moment adapts over time to
past outlier ratios is potentially detrimental. For example, if the past outlier ratios would
suggest that a small number of iterations are required and the current (unknown) outlier
ratio has changed rapidly upwards, RANSAC may fail to explore a sufficient number of
initial models. The resulting strategy was to fix the outlier ratio to 0.7 (n ≈ 60), as Figure
5.7 suggests that this value is greater than is required for the majority of situations.

5.2 Processing and Communications

Communications:

If the position estimate is to be used as an input into a controller, the lag and update
frequency of the system are important to study. There are three separate subsystems which
impact these particular characteristics the most, denoted by thick dotted lines in Figure
5.8.

These subsystems’ effects are as follows:

• Camera library: Due to a lack of low–level access to the camera hardware, the
onboard streaming code must wait for a full frame to be captured before transmitting.
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Figure 5.7: Outlier ratio over time

Figure 5.8: Key control and estimation subsystems

With the camera providing 320x240 images at a reported rate of approximately 17
fps, this adds a worst–case 60 ms in latency before the onboard streaming code is
provided with a new frame to transmit.

• Image Network Hardware: Images were transmitted uncompressed over a Wi-
Fi network to prevent more noise from being introduced into already low–contrast
images. Assuming a 40 Mbps average bandwidth and 320x240 8-bit greyscale images,
this allows for 65 frames to be transmitted per second, or 32 frames per second from
the vehicle to the router and 32 frames per second from the router to the control
PC. As well, the streaming library uses lossless TCP/IP for transmission, adding an
unknown amount of latency due to network retransmission.
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• Estimator: The upper bound on the frequency at which the estimator can produce
new state outputs is merely the inverse of the wall–clock time required to complete
one estimation run, as it is last in the critical path of the three systems detailed
here. Various processing time results at different settings are presented later on in
this section.

Overall, it was observed that the system as a whole was able to reliably capture and
transmit images between 7 and 8 FPS, with occasional unexpected dips lower which are
believed to be caused by network interruptions (denoted by the dashed line in Figure
5.9(a)).
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Figure 5.9: Image capture rate

For this image capture characterization, a dedicated network was used and the estimator
was turned off. Thus, it appears that this bound is due to the camera library itself, and
it appears to be caused by the choice of TCP/IP as the approach for transmitting images.
UDP was implemented to attempt to mitigate this issue, but caused a severe reliability
decrease. If the camera library is only able to capture images at between 7 and 8 fps and
it is receiving input at 17 fps, there is approximately 75 ms in latency being added by
the camera library in processing and transmission. This contributes directly to the total
lag in the system, ensuring that there will always be at least 60 + 75 = 135 ms in delay
between the capture of a new image and the output of a new correction based on this image.
Compared to the delay in transmitting images to the Control PC, the latency inherent in
sending control commands from the controller on the Control PC to the onboard controller
(Figure 5.8) is negligible.
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Method Mean Feature Set Size Mean Est. Time (s) Est. Time Variance (s2)
Kalman only 78 207 20.78 ∗ 103

Kalman only 196 1773 5.73 ∗ 106

RANSAC 72 196 736
RANSAC 159 408 21.78 ∗ 103

Table 5.2: Comparison against a Kalman filter only approach

Processing:

A significant benefit of the proposed algorithm lies in the reduced processor load of
the state estimation algorithm when compared to an algorithm which does not filter the
features for outliers. Though RANSAC sees estimation time increase with the number of
features (Figure 5.10), the proposed algorithm ends up requiring as much as four times
less overall time to generate an estimate. This is made more significant as the number
of features (and thus the number of outlier features) increases, since they are filtered out
before the time–consuming final update step which operates on every feature available to
it. In comparison, least–squares will always operate on every available feature. Table 5.2
shows the effect on processor time which results from using the RANSAC–based approach
in place of solving the entire feature set with a Kalman filter update. With a larger number
of features, the RANSAC–based approach is over four times faster. In fact, the Kalman
only approach often missed entire images when it was presented with a large number of
features, due to increased processing time. With a smaller number of features, the two
approaches are equivalent in speed. There are slight differences in the size of feature sets
used in each comparison (78 vs. 72, 196 vs. 159) because the longer estimation time of
solving the Kalman gain with the full feature set meant that it was not able to successfully
process all of the images. Two rows are provided in Table 5.2 to illustrate the relative
increase in time between methods as the mean feature set size increases.

It should be noted that there are worst–case limitations to the processor load reduction
the proposed algorithm can produce. Specifically, if the image has a large number of
features with similar optical flow vectors, the runtime of the algorithm will be worse than
the approach where only a Kalman filter is used. Figure 5.10 shows a general trend towards
an increase in required estimation time as the number of features in the image (including
potential outliers) increases. This is due to RANSAC selecting a consensus set which is
very large (with a size near or equal to the size of the full set of features) from a large initial
data set and then re–estimating the model from this set. If such a consensus set is selected,
the runtime will be worse. This situation is addressed by providing an adaptive feature
threshold for the feature selection algorithm. If too many features are detected, the feature
selection algorithm becomes more stringent in its selection. Likewise, the selection process
will become more forgiving if too few features have been detected. Though the selection
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process does not remove the possibility of the size of the consensus set occasionally being
near to or equal to the size of the full set of features, using an adaptive threshold reduces
the likelihood that the size of the full set of features will be too large to process.
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Figure 5.10: Number of flow vectors in image vs. estimation time

5.3 Estimation

The following experiments were done to validate the proposed algorithm in offline and
online trials. The baseline used is a Kalman–filter based approach which does not use
outlier rejection on the flow vectors (Figure 5.11). Even with a motion model in place,
error rapidly increases. Figure 5.12 depicts the results of a number of variations of the
state estimator based on common data from a single indoor test flight.

In all cases, 60 iterations of RANSAC were used for each correction step, and the local
positioning system provided the vehicle’s absolute heading. The primary difference between
each state estimator is the motion model used. In the first case, a constant–velocity motion
model as described in Equation (2.18) was implemented. Next, a kinematic orientation
model like that laid out in Equation (2.19) was used. Finally, a dynamic model as given
by Equation (2.20) was studied.
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Figure 5.11: Kalman filter without outlier rejection

The results of these tests are presented in Figure 5.12. Figure 5.12(a) plots x–axis
position estimates over time, along with ground truth data for reference. Likewise, Figure
5.12(b) does the same for the y–axis. The data used was the same data which was used to
create Figure 5.11.
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Figure 5.12: Comparison of position estimates on a per–axis basis, using various motion
models

It is clear from Figure 5.12 that the worst result is produced by the Kalman filter
without outlier rejection. The constant velocity model improves on this result significantly,
showing the same overall trend in motion as the ground truth, but lagging significantly
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and accumulating error as time progresses. The orientation motion model and the dynamic
motion model both track well ground truth over time, though there are occasional offsets
in scale, and a phase shift due to latency. The best results are gained by using the dynamic
motion model, likely because of the better prediction of the vehicle motion which results
from the incorporation of additional sensor data.

Figure 5.13(a) compares the output of the dynamic estimator against ground truth in
an xy plane, using the same test run used in Figures 5.11 and 5.12. A corresponding plot
of the magnitude of estimation error in metres with respect to time is shown in Figure
5.13(b).
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Figure 5.13: Dynamic motion model

The dynamic motion model has an worst-case total error in the above tests of 0.45
metres. In comparison, there is an error of 2.75 metres at the end of the baseline run. This
latter error in the baseline also appears to have an increasing trend. Overall, the results
are superior to those produced without the use of outlier rejection (Figure 5.11).

The need for an external positioning system as a reference for vehicle heading has also
been examined. Figure 5.14 shows a comparison of results when the local positioning
system provides vehicle heading continuously versus when the LPS simply initializes the
heading estimate and allows the estimator to maintain the estimate over time.

Heading drift over time soon results in significant estimate drift, shown by the estimated
path diverging down and to the left in Figure 5.14(b). This is to be expected, as a single
slight angular error early on in estimation can result in a much more significant vehicle
position error than the corresponding slight position error. The dashed circle in Figure
5.14(b) is the first example of this; the estimate continues towards the lower right, while the
vehicle has begun moving more horizontally. This is further demonstrated by the two path
sections surrounded by black circles. Though they are similar in shape, they have been
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offset much more in Figure 5.14(b) than in Figure 5.14(a) due to accumulated angular error.
From a practical standpoint, there are still workarounds to this deficiency when this system
is to be operationally deployed. For instance, compasses can still provide a measurement
of absolute heading in GPS–denied environments as long as magnetic interference is kept
to a minimum.
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Figure 5.14: Comparison of vehicle heading sources

The concern raised in Section 5.2 regarding the potential for lag is critical. The degree
of the estimation lag has been experimentally determined by examining the Y position
from the test shown in Figure 5.15(a). Plotting both estimated and ground truth positions
over time shows an offset of around 900 ms between the maximum observed and maximum
estimated motion along the Y axis. This has the potential to cause instability when using
the estimate as the input to the vehicle’s position controller.

5.4 Integrated Controls

In the final set of tests, the onboard position controller takes position estimates directly
from the algorithm described in this work. Figure 5.16 shows a comparison of the xy path
of similar hover tests; one using the local positioning system for positioning and one using
the visual state estimator.
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(b) Vehicle Y position over time

Figure 5.15: Estimation lag
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(b) Hover test – Visual Estimation

Figure 5.16: Vehicle control with visual state estimator

It is clearly apparent that the visual state estimation system is not yet suitable for
controlling quadrotor UAVs in tight spaces. Though the system was able to hold position
for 3-5 second durations, safety systems were needed to resync the state estimate on multi-
ple occasions (sync locations shown by black circles) to compensate for system instability.
These safety systems were added due to the restricted space available for test flights. With-
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out safety systems, earlier experiments showed that the vehicle would be at risk of collision
with the surroundings. It is hypothesized that the primary source of this behaviour is
the estimation lag described in Section 5.2 and shown in Figure 5.15(b), with a secondary
source being the general error in the position estimate. The local positioning system was
reporting only 2 ms in image processing latency. Even with the slight additional lag due
to the transmission and reception of this data, the degree of latency is still roughly two
orders of magnitude less than that resulting from the use of the visual state estimator.

If the space available for test flights was larger, it would be possible to reduce the gains
of the controller further to make it less sensitive to these errors. However, with nearly 1
second of lag in the system, a flight test area measuring approximately 2 x 3 metres, and the
presence of unpredictable disturbances which require constant correction, this controller
relaxation was not believed to be safe for the vehicle or its surroundings. The most effective
way to improve the ability of this system to control the vehicle is likely to be by reducing
system lag, which remains an area of future work.
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Chapter 6

Conclusion and Recommendations

Quadrotor UAVs are well–suited for a wide variety of environments such as surveillance,
mapping, search and rescue, infrastructure inspection, and disaster recovery. Many of the
scenarios being proposed at the present time involve their operation in indoor or otherwise
GPS–limited areas. Similarly, the unknown nature of these environments precludes the
a priori installation of fixed infrastructure or reference points. Thus, new methods are
necessary to avoid dependence on such technology or preconditioning.

Vision based methods are attractive, due to their low cost, low weight, and existing
presence in vehicle sensor suites. Unfortunately, many of these environments are not ideal
from a computer vision perspective; they may not have easily distinguishable features or
may be dimly lit.

This thesis presents work which is intended to enable the use of onboard cameras for
real–time estimation and control of quadrotors in such environments, without the need
for extensive onboard processing or additional sensors. A position estimation algorithm
has been developed, using a random–sample consensus approach in conjunction with an
Extended Kalman Filter to improve the ability of the EKF to handle noisy input data,
making it possible to reliably estimate vehicle motion using low quality images.. Past
methods either add infrastructure or structure to the environment, or avoid the problem
of noisy input data entirely. Other approaches assume predictable vehicle motion, or incur
a great deal of additional computational requirements. The combination of RANSAC and
the EKF was done in a way which decreased the time required to generate each estimate
by a factor of 4.

A large number of simple features are used from each image with poor results being
rejected by RANSAC, in contrast to the traditional approach of using a small number
of features which are expensive to compute. Using simple features allows for the feature
selection to take place over 10 times faster. Test infrastructure has been developed which
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allows for online implementation of the algorithm on a commercial quadrotor UAV (the
Aeryon Scout) using an off–the–shelf camera payload. The resulting algorithm has been
integrated with a position controller, enabling its use as an estimation source for 2–D path
following.

The algorithm is tested on physical hardware and found to be successfully able to
estimate position of the vehicle to within 40 cm during indoor GPS–denied flights over
featureless ground. The tests began with the validation of a number of assumptions about
the problem. Initial results include confirmation that the noise in optical flow vectors is
non–Gaussian, observations of outlier ratios changing rapidly over time, and verification
that complex feature selection approaches do not provide significant added robustness.
Then, a number of off– and online tests are performed to validate the algorithm, beginning
from a baseline estimation which solely relies on an EKF for position estimation. Different
vehicle models are used in the prediction step of the EKF to determine a suitable motion
model. The algorithm is able to make the Kalman filter robust to outliers in optical flow,
significantly improving on the baseline results. These results demonstrate the feasibility
of using low–quality features for position estimation. The resulting position estimation
algorithm is then deployed to serve as the source for a position controller for the same
quadrotor.

Though the work has not been entirely successful in meeting the objective of fully
controlled flight due to a control latency of nearly 1 second, avenues are apparent for
future improvement.

First, it is clear that image capture frequency and latency is a major issue. To that end,
it seems reasonable that this code is run fully onboard, when a computational platform is
available which accommodates such development. At the moment, it is not recommended
to deploy complex programs on the current processing hardware, due to its lightweight
processor. It is recommended that additional processing power is added to allow for this
deployment. Such an effort will also remove the current bottlenecks and delays the wireless
network places on image transmission, allowing for a reduction in overall system latency, an
increase in camera frame rate (leading to improved controls performance), and an increase
in image resolution. If low–mass parallel processing hardware becomes available, it may
also be feasible to investigate the reduction of RANSAC runtime by partitioning out the
iterations to multiple cores.

Second, the assumption which constrains the camera to point directly downwards (As-
sumption 1.3) should be relaxed by generalizing the equations laid out in Section 2.1 and
used in Section 2.3 to include roll and pitch information. This will allow the camera to
point more towards the horizon, allowing for the acquisition of more information about its
immediate surroundings.
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Third, the use of RANSAC in combination with motion segmentation should be consid-
ered to allow for the construction of multiple models simultaneously. This capability would
allow the system to be robust to the appearance of objects or walls in what has previously
been assumed to be a strictly flat plane. This approach may also provide obstacle detection
capabilities by considering models which do not describe horizontal planes as obstacles.

Fourth, investigation of other camera options may be beneficial. Though it is believed
that processing the image onboard will provide drastic improvements in performance from
the current setup through the reduction in latency and the combined increase in frame rate
and resolution, additional improvements are possible. For instance, using a camera with
a global shutter will mitigate image blur, while higher quality sensors will reduce image
noise. As well, since no colour data is used in this work, using a greyscale camera will
remove the processing required to convert the Bayer pixels to greyscale.

Finally, more rigourous experiments should be conducted in low–light conditions. Specif-
ically, the use of near–IR cameras should be considered. Developing a system which can
work with these cameras would be advantageous for commercial developers, as it would
allow them to offer this technology on near–IR police and surveillance models of the vehicle.

With these modifications and extensions, it is highly probable that small aerial vehicles
equipped with nothing but a camera, an IMU, and sufficient onboard processing will be
able to successfully navigate in most environments, including those which are currently
unsuitable due to the lack of identifiable features. This will allow vehicles to be deployed
in a plethora of new flight regions, including in areas currently restricted by a lack of GPS
reception. Ideally, these deployments will improve safety, comfort, and general quality
of life for a wide range of people who are currently performing tasks which are unsafe,
unenjoyable or unhealthy.
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