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Abstract

The gravitational aether theory is a modification of General Relativity that decouples
vacuum energy from gravity, and thus can potentially address the cosmological constant
problem. The classical theory is distinguishable from General Relativity only in the pres-
ence of relativistic pressure (or vorticity). Since the interior of neutron stars has high
pressure and as their mass and radius can be measured observationally, they are the per-
fect laboratory for testing the validity of the aether theory. In this thesis, we first solve
the hydrostatic equations of stellar structure for the gravitational aether theory and find
the predicted mass-radius relation of nonrotating neutron stars using two different real-
istic proposals for the equation of state of nuclear matter. We find that the maximum
neutron-star mass predicted by the aether theory is 12%-16% less than the maximum mass
predicted by General Relativity assuming these two equations of state. We then study
the dynamics of a neutron star in the aether theory and establish that a Cauchy problem
can be defined. We derive the dynamical equations, and through analyzing them, we find
two modes, one of which is well-posed (expansion of matter in the aether frame) and the
other is not well-posed (collapse of matter in the aether frame). Starting from a hydro-
static neutron star configuration that we perturb by adding extrinsic curvature (and radial
velocity), we numerically evolve the Einstein field equations for the aether theory in the
well-posed mode and find that it evolves towards the not well-posed regime. This feature
may pose a serious challenge to our initial value formulation of the aether theory. Whether
an alternative formulation can handle the collapsing neutron stars is a question of utmost
importance for the viability of the aether theory.

It has been clear for some time now that super-critical surface magnetic fields, exceeding
4 x 10'3 G, exist on a subset of neutron stars. These magnetars may harbor interior fields
many orders of magnitude larger, potentially reaching equipartition values. However, the
impact of these strong fields on stellar structure has been largely ignored, potentially
complicating attempts to infer the high density nuclear equation of state. In this thesis,
we assess the effect of these strong magnetic fields on the mass-radius relationship of
neutron stars. We employ an effective field theory model for the nuclear equation of state
that includes the impact of hyperons, anomalous magnetic moments, and the physics of
the crust. We consider two magnetic field geometries, bounding the likely magnitude
of the impact of magnetic fields: a statistically isotropic, tangled field and a force-free
configuration. In both cases even equipartition fields have at most a 30% impact on the
maximum mass. However, the direction of the effect of the magnetic field depends on the
geometry employed - force-free fields leading to reductions in the maximum neutron star
mass and radius while tangled fields increase both - challenging the common intuition in
the literature on the impact of magnetic fields.
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Chapter 1

Introduction

Among observable astrophysical objects in our universe, neutron stars are some of the most
extreme and exotic. A culmination of the most abstract theoretical ideas developed since
the 20th century contributes to their understanding. Rare are examples, where quantum
mechanics and nuclear forces come hand in hand with general relativity, to directly affect
and explain the macroscopic properties of an observable astrophysical object. Due to this,
neutron stars are often regarded as phenomenological laboratories for testing the validity
of theoretical models in extreme conditions, which can not be easily tested in laboratories
on Earth. Not surprisingly, the observational data from neutron stars is not enough to fully
constrain all theoretical models. Nevertheless, studying neutron stars is a very effective
way of quantifying our unknowns about these theories. Most of this thesis is concerned
with this goal, more specifically with studying the features of a modification of general
relativity, called “the gravitational aether theory” in the context of neutron stars.

It is crucial to note that neutron stars are not just testing grounds for theories of
extreme matter and gravity. Understanding these fascinating objects is a worthy goal
on its own, as they are believed to be one of the common end states of a massive main
sequence star’s life. In other words, neutron stars are thought to be born when massive
(but not too massive) stars die. There is believed to be of order of 10® neutron stars in our
galaxy (most of which are undetectable on Earth due to their weak electromagnetic signals).
Those neutron stars that are in binaries or that are rotating and send strong enough signals
(pulsars) can be observed. Currently, there are about 2000 observed neutron stars in the
Milky Way and the Magellanic clouds. Out of these stars, a small fraction, have been
known to harbor strong magnetic fields, thus being dubbed “magnetars”. Part of this
thesis, treats questions regarding how these strong magnetic fields affect the microscopic
and macroscopic properties of magnetars.



In this chapter, we start by introducing neutron stars from a theoretical point of view
(Section 1.1). We present an overview of neutron star observations in Section 1.2. As
studying neutron stars in the context of the gravitational aether theory is one of the
main themes of this thesis, we will present reasons to go beyond general relativity and the
phenomenology of the aether theory in Section 1.3. We review some of the recent literature
on neutron stars in modified theories of gravity in Section 1.4. Finally, Section 1.5 will
introduce the problem of incorporating strong magnetic fields in the study of neutron stars.

1.1 On Theories of Neutron Stars and The Maximum
Mass

Neutron stars belong to a category of astrophysical objects called “compact objects”. As
the name indicates, compact objects are characterized by their high average densities. In
the case of a neutron star, a mass up to about 2 My (solar masses) can be concentrated
in a radius of ~ 10 km’s.

Compactness (a large amount of mass in a small radius) implies that the escape velocity
(or surface potential) of the object is a significant fraction of the speed of light. This ratio
is illustrated in Table 1.1 for the sun, white dwarfs, neutron stars and black holes (

, 1983).

H Object Mass Radius  Surface Potential (GM/Rc?) H
Sun M@ R@ 1076
White Dwarf < 14M, ~ 1072R, 1074
Neutron Star ~1—3M, ~ 107°R, 1071
Black Hole  Arbitrary = 2GM/c? 1

Table 1.1: Comparison of surface potentials for different astrophysical objects.

It is when the escape velocity (vese = /2GM/R) becomes a significant fraction of the
speed of light that the effects of General Relativity can no more be ignored. As we see in
Table 1.1, although General Relativity has small effects in the structure of the sun or white
dwarfs, its effects become non-negligible in neutron stars (and of course in black holes, as
they are fundamentally General Relativistic objects).

The gravity from the large amount of mass in compact objects cannot be supported
against, only by thermal pressure (as is the case in ordinary stars). Neutron stars are

2



supported largely by the pressure of degenerate neutrons!, while white dwarfs are supported
by the pressure of degenerate electrons. In addition to quantum degeneracy pressure, the
strong and weak nuclear forces also contribute to supporting neutron stars against gravity.

To summarize what was said above, two physical inputs are critical to the structure of
neutron stars:

1- The microscopic model, describing the quantum degeneracy pressure, strong and
weak nuclear forces. All this information can be encoded in a nuclear equation of state
(EOS) giving the pressure p inside the neutron star as a function of the energy density p.

2- The macroscopic model, describing gravity (e.g. General Relativity).

One of the important consequences of incorporating General Relativity in the study of
neutron stars is the prediction of an upper limit to their masses. The details of the nuclear
physics below densities of ~ 10 gr/cm?® which affect the crust of the neutron star have
a small effect on this maximum mass. It is in higher nuclear densities that the physics of
the nucleon-nucleon interactions and the possible exotic components at the core of neutron
stars (e.g. hyperons, Bose condensate of pions or kaons, deconfined quark matter) can
affect the maximum mass. In order to theoretically predict an absolute value for the
maximum mass of neutron stars based on fundamental principles, without knowledge of
the correct nuclear physics at the core of the star, ( ) assumed the
most extreme nuclear equation of state that gives the maximum mass compatible only with
three conditions:

1- General Relativistic hydrostatic equilibrium.
2- Sub-luminal speed of sound (dp/dp < 1 in units where the speed of light ¢ = 1).
3- Pressure being a monotonically non-decreasing function of density (dp/dp > 0).

They found that based on these principles, the most extreme equations of state predict
a maximum mass of at most ~ 3Mg.

Assuming General Relativity, it is the stiffness of the nuclear equation of state that
controls the maximum mass value. The introduction of non-nucleonic degrees of free-
dom generally softens the equation of state and reduces the maximum mass (

, ). As will be the focus of this thesis, modifying General Relativity, or the
existence of strong magnetic fields also affect the value of the maximum mass of neutron
stars.

Most of the interior of neutron stars is made of neutrons and they are effectively giant nuclei (with
~ 10°7 baryons).



This upper limit on the mass of neutron stars gives us a powerful means of testing
the validity of theoretical models via the observation of very massive neutron stars. The
detection of a neutron star with a mass above the maximum mass, would refute one or
many of the theoretical assumptions at the basis of the maximum mass calculation (e.g.
the theory of gravity or the nuclear physics). However, it is important to note that often,
degeneracy exists in the outcomes of various assumptions. For example, a theory of gravity
that predicts a maximum mass below the mass of a detected neutron star, can be saved
assuming a stiffer nuclear equation of state, which would increase the maximum mass value.
To go beyond this degenerary in the hope of more definite evaluations of the validity of
models, one would require additional observables such as the radius of the neutron star.
Going beyond hydrostatic equilibrium and studying other scenarios involving neutron stars
such as their dynamical evolution may be another path worth considering.

As the mass measurements of neutron stars are of major importance in testing theo-
retical models, the next section will be a brief overview of these observations.

1.2 Observations of Massive Neutron Stars

Rotating neutron stars with strong magnetic fields (where the axis of rotation is not aligned
with the magnetic dipole moment) can be observed as pulsars. The electro-magnetic
pulses (originating from accelerated particles at the poles of the magnetic field) arrive
at Earth with regular time intervals each time the magnetic moment is aligned with the
direction of the Earth. Figure 1.1 shows a schematic representation of a pulsar. Due to
the rotational stability of pulsars, one can measure with high precision the various effects
that may alter the arriving times of these pulses. These kinds of measurements are called
“pulsar timing”. One of the effects that may alter the arriving times of the pulses is
the General Relativistic Shapiro delay in binary pulsars. The Shapiro delay is caused by
the fact the light pulses originating from the pulsar are slowed due to the gravitational
potential of the binary companion as predicted by General Relativity. This effect was
measured by ( ) for the PSR J1614-2230 binary pulsar (consisting of
a neutron star orbiting around a white dwarf). They fit a “timing model” to the pulse
profiles that takes into account various effects such as pulsar rotation, the spin-down of the
pulsar due to loss of energy in electro-magnetic waves, astrometric terms, binary orbital
parameters and General Relativistic effects such as the Shapiro delay. They perform a y?
fit of the model to the data. The comparison of the timing residual measurements and
the model prediction is shown in Figure 1.2. Based on their best-fit model, the authors
calculate the mass of the white dwarf (which is responsible for the gravitational potential



Rotation Axis

Magnetic
Field Line

Meutron star

Radiation
Beam

Figure 1.1: Schematic representation of a pulsar.

causing the Shapiro delay of the pulses coming from the pulsar). The white dwarf mass
is 0.500 4 0.006 M. The model shows the binary system to be very edge-on, with an
inclination of 89.17° + 0.02°. Based on Keplerian orbital physics, the model then predicts
a mass of 1.97 + 0.04 Mg, for the neutron star. This is a relatively high mass measured
with very good precision, partly due to the orbit being very edge-on. As mentioned in the
previous section, high mass measurements for neutron stars have the potential to refute
theoretical models going into the mass-radius calculation. Figure 1.3 shows this mass
measurement compared to maximum masses predicted by various nuclear equations of state
assuming General Relativity (each “mass-radius relationship” is the result of calculating
the mass M for which a non-rotating neutron star of a given radius R will be able to sustain
hydrostatic equilibrium). Assuming General Relativity, ( ) argue that
any EOS that gives a mass-radius relationship that does not intersect the J1614-2230 band
is ruled out by their measurement. In particular, the authors suggest that most EOS
curves involving exotic matter, such as kaon condensates or hyperons, that tend to predict
maximum neutron star masses well below 2.0 M, are therefore ruled out.?

Another interesting mass measurement was performed for the pulsar PSR B1957+20

2See ( ) for the implications of this mass measurement for the conditions under which a
transition to quark matter in neutron-stars can occur.
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Figure 1.2: From Demorest et al. (2010). The top panel shows the Shapiro delay if it is not
included in the timing model but with all other model parameters fixed at their best-fit
values. The solid line shows the Shapiro delay coming from the timing model, and the red
points are timing measurements from the observational data. The orbital pictures show a
top-down view of the binary system at orbital phases 0.25, 0.5, and 0.75 with the red dot
being the pulsar and the blue dot being the white dwarf. The middle panel is the time
residual best fits coming from a timing model taking into account orbital parameters but
no General Relativistic effects. The bottom panel shows the post-fit residuals for the fully
relativistic timing model (including Shapiro delay).
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Figure 1.3: From Demorest et al. (2010). The mass-radius relationship of non-rotating
neutron stars based on General Relativity and various nuclear equations of state. The
horizontal bands show the observational constraint from the PSR J1614-2230 mass mea-
surement of 1.97 + 0.04 M, and similar measurements for two other millisecond pulsars
(Jacoby et al., 2005; Freire et al,, 2011), and the range of observed masses for double
neutron star binaries (Lattimer & Prakash; 2007).



by ( ). This pulsar is in a “black widow” binary system. Black-
widow systems consist of a millisecond pulsar (a pulsar with a milli-second spin period)
accompanied by a low-mass, few 0.01 My white dwarf companion, which is bloated and
strongly irradiated by the pulsar. The strong irradiation leads to outflows strong enough
to eclipse the pulsar signal for significant fractions of the orbit. The heating caused by
the irradiation on the side of the companion facing the pulsar produces strong orbital
brightness variations. By studying these variations and using spectral information, the
authors constrained the inclinations of the orbit, the radial velocities and derived a mass
of M = 2.40+£0.12 M, for the pulsar. However, this measurement happens to be dependent
on the theoretical models of the light curves, and making more conservative assumptions
in these models, the authors get a mass M > 1.66 My. Another black widow pulsar (PSR

J1311-3430) mass measurement was made by ( ). This time, all the light
curve models give masses M > 2.1 M.
More recently, ( ) measured the mass of the pulsar PSR J0348-+0432,

by first calculating the mass of its white dwarf companion based on observational con-
straints (spectroscopy) combined with a theoretical finite-temperature mass-radius relation
for low-mass white-dwarfs. They found a high mass of 2.01 + 0.04 M, for the pulsar.

These high-mass measurements, can effectively constrain nuclear physics and the equa-
tions of state, assuming General Relativity. However, as we will see in the next section,
there are reasons why considering alternative theories to General Relativity is important.
Changing General Relativity may change the mass-radius relationship of neutron stars.
Therefore, it is worth asking how these mass measurements can constrain or test the mod-
ifications of General Relativity.

1.3 Beyond General Relativity

The theory of General Relativity is one of the prime examples of a successful theoretical
model, primarily motivated by fundamental principles, and consistent with observational
data. Albert Einstein, prior to being concerned with experiments testing his theory, was
motivated by the goal of constructing an elegant physical model incorporating the principle
of equivalence and special relativity. Since, the theory has passed all precision tests, most
of them being probes of “weak-field gravity” at intermediate scales between 1ym and 10*'m
and therefore at intermediate energy scales ( , ). Deviations from General
Relativity in this regime can be quantified and constrained using the parameterized post-
Newtonian (PPN) formalism (WWill, ).



Among the reasons why it is worth thinking about alternative theories of gravity, one
could point to three challenges facing General Relativity:

1 - Quantum Gravity: At energy scales where the Einstein-Hilbert action for General
Relativity becomes of the order of the quantum of action A, in other words, the Planck
scale Mpy, = +/he/Gy ~ 1.22 x 10¥ GeV/c?, the classical theory of gravitation fails
to be predictive (e. g. singularities in cosmology and in black holes). Naive attempts at
quantizing the theory of gravity have failed, due to renormalizations issues. The fact that
the Planck energy scale is not currently accessible for high-energy experiments, makes it
impossible to directly test the validity of models of quantum gravity. However, conceptual
progress in these fields has had a valuable impact on mathematics and other fields of

physics such as condensed matter ( , ; , ; , ).
For two approaches to quantizing gravity, namely string theory and loop quantum gravity,
see ( ); ( ) and for a philosophical overview see

(2015).

2 - The Cosmic Acceleration: Evidence from type Ia supernovae point to the fact
that the expansion of the Universe is accelerating ( , ; ,
; , ). There have been a few approaches to explain this acceler-
ation. One has been to introduce an exotic component dubbed “dark energy” among the
constituents of our Universe. An example of such an energy source is a minimally coupled
scalar field in Quintessence models ( , : , :

, ). Scalar-Tensor theories are also worth mentioning in the context of dark
energy theories ( , ). The other approach has been to modify General
Relativity in order to obtain the desired cosmological acceleration. One way to do so is
with a cosmological constant. The most widely accepted cosmological model today is the
AC'DM model which assumes a cosmological constant A in the Einstein equations and also
assumes that the matter content of the Universe is dominated by cold dark matter (a form
of matter with negligible temperature and only interacting with gravity). It is important
to note that the addition of such a cosmological constant with very small value, introduces
fine-tuning issues which are referred to as the new cosmological constant problem and con-
stitute one of the unsolved puzzles of the ACDM model. A few other examples of popular
modifications of General Relativity include: Adding to the Einstein-Hilbert Lagrangian a
function of the Ricci scalar f(R) ( , : , : ,

)3, theories coming from writing the most general Lagrangian which leads to second

31t is worth mentioning that the f(R) theories can be written as Scalar-Tensor theories in the Einstein
frame, blurring the line between dark energy and modified gravity models.



order field equations - first written down by ( ), generalized Horndeski (G?)
theories ( , ), Galileon theories ( , ) and finally the
massive gravity paradigm, where the graviton is modified and as if gravity is massive then
it will be weaker at large scales, one can obtain the late-time cosmic acceleration ( ,

). The best astrophysical laboratories to test strong-field gravity are black holes and
neutron stars whether isolated or in binary systems. As an example of using neutron stars
to test the validity of f(R) theories see ( ) and for a review of the current
bounds on some of the modified gravity models mentioned above from binary pulsar and
cosmological observations, and the potential of future gravitational wave measurements see

(2015).

3 - The Gravitational Effects of The Vacuum Energy: One of the lessons of
quantum field theory is that there is an energy associated with the vacuum as the vacuum
can be viewed as an infinite collection of harmonic oscillators.* The sum of an infinite
number of ground-state energies will be obviously infinite. However, what is observable in
quantum field theory is the difference in the energies. Therefore, this first type of infinity
can be ignored. Other divergences then occur in quantum field theory that are regularized.
The fact that quantum field theory’s predictions are confirmed by accelerator experiments
with high accuracy means that the results of these regularizations are correct.

The effects of ignoring the first type of infinity, however, return when one includes
gravity in the calculations. One is tempted to use the usual regularization methods to deal
with this infinity, and in fact these regularizations provide a finite answer to the vacuum
energy. Unfortunately, this value is many orders of magnitude (~ 60) discrepant with the
value that can be tolerated by cosmological equations in order for structures to appear in
the Universe and ultimately in order for us to be around and ask these questions. The
stress energy tensor of a field in vacuum is

<O|T/w|0> = PvacYuv; (1.1)

which can be seen from the fact that the only invariant tensor in flat space-time is the
metric 17, therefore the vacuum energy should be proportional to 7,, and the equivalent
of this in curved space-time is Eq. (1.1). Energy momentum conservation requires that pyac
must be a constant. As can be seen, the vacuum energy can be effectively absorbed into

4For experimental detections of the Casimir effect as a proof of the exsitence of vacuum energy, see

( ); ( ); ( ). However, it is worth noting that
it has been claimed that Casimir effects can be formulated and Casimir forces can be computed without
reference to zero point energies ( , ). This challenges the notion that the Casimir effect provides

decisive evidence that the zero point energies of quantum fields are “real”.
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the cosmological constant. Therefore, this inconsistency between quantum field theory and
General Relativity is referred to as the old cosmological constant problem and remains one
of the most fundamental puzzles of modern physics.

The problem can be a sign of the failure of renormalization techniques, in which case
the solution lies in new approaches in quantum field theory. However, it might also be a
sign we do not understand the gravitational effects of the vacuum fluctuations in which case
the solution lies in a modification of General Relativity. For a review of the problem and
various approaches see ( ); ( ); ( ); ( ).
The modification of General Relativity considered in this thesis (the gravitational aether
theory) adresses the old cosmological constant problem. Therefore, we will introduce it in
more detail in the following section.

1.3.1 The Gravitational Aether Theory

Modifying General Relativity in order for the vacuum not to gravitate is one of the main
pathways to solving the old cosmological constant problem. Omne such modification was

suggested by ( ). He modifies the Einstein equation in the following way
_ 1
(87G) ' Gwlgw) = T — 19 + s (1.2)

where G = 4G /3 and Gy is the usual Newton’s gravitational constant. By subtracting
the trace of the energy momentum tensor on the right-hand side, the Einstein equation
becomes insensitive to the vacuum energy density, pyac, where T, = pyacgu + excitations.’
As energy and momentum are conserved, the divergence of 7},, vanishes. By definition the
divergence of G, also vanishes through the Bianchi identities. Therefore, if one wants to
subtract the trace of the energy momentum tensor, one needs to add a suitable term to
it so that the divergence of the right-hand side of Eq. (1.2) vanishes. It was suggested by

( ) that this term can be the energy momentum tensor of a perfect fluid 7,
which is dubbed “gravitational aether”. With this term, Eq. (1.2) takes the form:

1
(850) " Gonlgn) = T = 1700+ To (13)

5This is in a sense similar to unimodular gravity where the metric determinant g is not dynamical,
which means the action only has to be stationary with respect to variations in the metric that keep the
determinant fixed, yielding a field equation looking like Eq. (1.2). At the end of the day, unimodular
gravity is equivalent to General Relativity with a cosmological constant that has nothing to do with any
terms in the action or vacuum fluctuations, arising, instead, as a mere integration constant ( ,

).
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,Ew = P(uuuu + g;U/)7 (14)

where P and U, are the pressure and four-velocity of the gravitational aether. For the
right hand side of Eq. (1.3) to be divergenceless, one requires

, 1
T = 1T (15)
It is argued by ( ) that the pressure and four-velocity of the gravitational

aether are dynamically fixed in terms of 7),, via Eq. (1.5).

With the metric being blind to vacuum energy, the gravitational aether theory solves
the old cosmological constant problem. It is interesting to point to three features of the
aether theory:

1 - No action principle: The theory modifies the coupling of gravity to matter at the
level of the Einstein field equations and not at the level of the action. The theory can be
viewed as a low-energy effective approximation to an underlying quantum gravity action
which we do not know yet, the same way the Navier-Stokes equation in fluid mechanics,
which gives an effective coarse-grained description of the phase space density of particles,
lacks an action, while an action principle can be written for individual particles.

2 - Lorentz violation: As for consistency reasons with cosmological constraints, the
aether fluid has been chosen by ( ) to be incompressible (zero energy density),
its speed of sound is infinite. This breaks Lorentz invariance and introduces a preferred
frame for the theory, which is the frame of the aether.

3 - No free parameters in aether: A good feature of the aether theory is that
through the coupling of aether and matter given by Eq. (1.5), the aether is dynamically
fixed and does not have any free parameters. This increases the predictive power of the
theory and makes it harder to save the theory by fixing free parameters (as is the case in
many other theories of gravity).

1.3.2 The Phenomenology of the Aether Theory

( ) studied static black hole solutions in the gravitational
aether. They found that the pressure of aether goes to infinity at the horizon and as they
found the Ricci scalar to be proportional to the pressure of aether, they establish that
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any static event horizon in the gravitational aether theory coincides with a real metric
singularity. As in this scenario, quantum gravity effects become important at the horizon
(at the singularity), the authors postulate that aether couples the spacetime metric close
to the black hole horizon, to the metric at infinity, leading to an accelerating cosmological
solution, far from the horizon. This connection between the formation of stellar black holes
and the acceleration of the expansion of the universe can potentially relate the solutions of
the old and new cosmological constant problems, through Planck-suppressed corrections
in black hole physics.

It was shown by ( ) that the deviations of the aether theory from
General Relativity can only be significant in situations with relativistic pressure, or (po-
tentially) relativistic vorticity. They showed that for a perfect fluid with linear equation
of state (p o p), the solutions to the gravitational aether theory are identical to those of
General Relativity only with a renormalized gravitational constant. As the gravitational
coupling is not a constant in the aether, the authors found that in the case of homoge-
neous FLRW cosmology, radiation energy gravitates more strongly than non-relativistic
matter. The aether theory implies that gravity should be 33% stronger in the cosmological
radiation era than the predictions of General Relativity.

As the increase of the gravitational constant at around the 7 = O(1) MeV epoch
induces an earlier freezeout of the neutron to proton ratio because of a speed-up effect of the
increased cosmic expansion, the abundance of He increases sensitively, and the abundance
of deuterium (D) increases mildly while the abundance of "Be decreases. Comparing the
theoretical prediction with the observational light element abundances, the authors found
that every light element abundance agrees with the gravitational aether theory within
20. They found notably that 7Li fits the data better in the gravitational aether than
in the standard big bang nucleosynthesis (which over-predicts “Li abundance by 4-50 as
calculated by ( )). The main discrepancy found was with deuterium
abundance observed in quasar absorption lines.

( ) also examined the implications for precision tests of gravity
using the PPN (parametrized post-Newtonian) formalism (\Will, ), and showed that the
only PPN parameter that deviates from its General Relativistic value is (4, the anomalous
coupling to pressure (=1/3 for the aether and 0 for General Relativity), that has never been
tested experimentally. Finally, they argued that current tests of Earth’s gravito-magnetic
effect mildly prefer a co-rotation of aether with matter, although they are consistent with
an irrotational aether at 20 level.

More recently, ( ) have analyzed cosmological observations probing
the gravity of relativistic pressure in the radiation era (Planck, WMAP and BICEP2) and
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found that the best fit for anomalous pressure coupling is about half-way between General
Relativity and gravitational acther and excludes both theories at around the 3o level, while
including higher resolution CMB observations (“highL.”) or baryonic acoustic oscillations
pushes the best fit closer to General Relativity, excluding the gravitational aether theory
at the 4-50 level.

1.4 Neutron Stars and Modified Gravity

As was shown in the previous section, the gravitational aether theory is an alternative to
General Relativity which makes phenomenological predictions that can be tested obser-
vationally. A theory is good only if it can make definite predictions that are consistent
with current and future observational results. In astrophysical situations where gravity due
to vorticity or pressure is negligible, the effects of the aether theory are indistinguishable
from General Relativity ( , ; , ). The aether theory can
be tested only in high pressures and strong gravitational forces. The interior of neutron
stars satisfies these conditions. In addition pulsars can be observed and studied empiri-
cally, enabling observational tests of theoretical models. Most of this thesis (Chapters 2
and 3) is concerned with the study of neutron stars in the aether theory. In Chapter 2,
we will look at the hydrostatic equilibrium configurations of non-rotating neutron stars in
the aether theory. In Chapter 3, we will take on a more ambitious goal of studying the
dynamics of a neutron star in the aether theory. This will require using methods from
numerical relativity. In recent years, there has been a surge in studies of neutron stars in
modified gravity. In the remainder of this section, we will do a short literature review of
some of these studies.

( ) studied the hydrostatic structure of non-rotating neutron stars in
the context of the Einstein-Aether theory (a Lorentz-violating theory in which a dynamical
unit time-like vector field is coupled to gravity) and found that it is fairly close to that in
General Relativity, with quantitative differences. Depending on the equation of state, the
maximum masses range from about 6-15% smaller than in General Relativity.

( ) solved the equations of hydrostatic equilibrium for a spherically sym-
metric, static distribution of a perfect fluid in Bekenstein’s Tensor-Vector-Scalar (TeVeS)
theory ( , ). Imposing a specific polytropic equation of state allowed them

to analyze the differences in neutron star structure between those appearing in General
Relativity and those in TeVeS and put constraints on a coupling parameter in their model.

(2008); (2009); (2010);
(2010); (2012); (2013); (2013);
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(2013); (2014); ( )i (2015);

( ) have all studied neutron stars in f(R) models. Neutron star solutions are not
easy to calculate in these models because of several potentially dangerous issues, including
singularities and multivaluedness in the scalar potential and a diverging effective mass
for the field. The numerical challenges involved in these calculations may also serve as a
motivation to develop more efficient integration methods ( , ). Many of these
studies also aim to constrain the f(R) model parameters in order for static neutron star
solutions compatible with observations to exist. ( ); ( );

( ) have studied neutron stars in the context of scalar-tensor
and Gauss-Bonnet gravity.

The studies mentioned so far are all constrained to hydrostatic situations. Few are
numerical studies of modified gravity in dynamical situations, such as the dynamics of one
neutron star or the dynamics of neutron star mergers. The latter was studied by

( ) for Scalar-Tensor theories. The authors consider neutron star binaries and
focus on strong-field and highly dynamical effects during the late inspiral until the merger.
They show that for a class of Scalar-Tensor theories, neutron star binaries can present
strong-field effects that are qualitatively different from General Relativity that may be
detectable in gravitational wave experiments such as LIGO. For a recent review of probes
of strong field gravity through numerical simulations see ( ).

1.5 Strongly Magnetized Neutron Stars

Observations and theoretical studies of soft gamma-ray repeaters and X-ray pulsars point
to the existence of neutron stars with very high surface magnetic fields (B > 10 G), com-
prising the so-called magnetars ( ; , ;

, , : , ). These surface magnetic fields are inferred through
the observed slowing of the stellar rotation, presumed to be a result of the emission of
energy and angular momentum via large-scale magnetic fields at the light cylinder, the
point beyond which they are unable to continue to rigidly rotate with the star. This is
expected to spin the star down on a timescale ~ P/P o< B~2P* where P is the spin
period. Thus, magnetars are universally observed to have long periods, roughly 1 s, and
thus correspondingly large light cylinders cP/(27) ~ 5 x 10* km. As a result, the implied
surface fields necessarily rely on a significant extrapolation, and typically assume a dipolar
magnetospheric magnetic field geometry, necessarily producing a lower limit on the surface
field strength, which is itself likely to be a lower limit on the interior field strengths.

As a recent example, ( ) monitored the temporal and spectral evo-

15



lution of a pulsar, originally discovered by the NuSTAR X-ray Observatory, and from the
spin-down measurement, inferred a dipole magnetic field strength B = 3 x 10** G. Mag-
netars can also be observed in the radio band. Follow-up observations of the pulsar PSR
J1622-4950, discovered by ( ) in a survey of radio pulsars with the Parkes
64 m telescope, show that the pulsar has the highest inferred surface magnetic field of the
known radio pulsars (B ~ 3 x 10'* G), making it the first magnetar discovered via its radio
emission. A catalog of 26 currently known magnetars was presented recently by

(2014).
The existence of extremely strong magnetic fields observed in magnetars can be ex-

plained by a number of processes. Neutron stars with strong magnetic dipole fields
B ~ 10 - 10% G, can form when conditions for efficient helical dynamo action are met

during the first few seconds after gravitational collapse ( , ). In
addition to differential rotation, convection may play a significant role in amplifying the
magnetic field ( , ). However, the nonlinear saturation of these,

which determines the maximum internal magnetic field strength attainable, remains highly
uncertain.

Simulations of neutron star mergers that follow the evolution of the interior magnetic
fields indicate that the field strengths can be amplified to values of at least 2.0 x 10'® G

( , ) and 10'® G ( : : ,
: , ) within the first millisecond, long before the time it takes for
the neutron star remnant to collapse into a black hole. The subsequent differential

rotation of the neutron star remnant will cause the field to increase further. In addition
to merger simulations, simulations of the magneto-rotational instability in proto-neutron
stars indicate magnetic field strength amplifications to values well in excess of 10 G

( , ; , ; , ). In many simulations,
equipartition with the turbulent motion, and in at least one case equipartition with the
thermal energy density ( , ), is reached. In a handful, equipartition

with the rest mass energy density is implied ( ; , ,
where in the latter toroidal field strengths as high as 10'® G are predlcted)

Nevertheless, it is important to note that numerical simulations of magnetic field growth
in dynamical nuclear-density material are complicated by the extreme physical conditions
present. To date no single simulation resolves all of the relevant physical scales, and
often simulations focus on a subset of the relevant instabilities, evidenced by the variety of
approaches taken. In no numerical study has the evolution of the magnetic field converged,
with higher resolution simulations producing larger magnetic field strengths (e.g.,

, : , ). Thus, the present simulations can only provide
lower limits on the strength of proto-neutron star magnetic fields.
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A natural upper limit to proto-neutron star magnetic field strengths is given by equipar-
tition with the gas pressure (corresponding to B = 10'6-10'® G), where the mechanisms
responsible for the amplification of the field have certainly saturated ( ,

). That such high fields are possible is circumstantially supported by the general rel-
ativistic magneto-hydro-dynamic (GRMHD) black hole accretion flow simulations of thick
disks, which are sufficiently resolved to reach a steady-state field and typically find Maxwell
stresses that are of order the rest mass density, implying equipartition fields ( ,

: , 2002).

It is far from clear that the MHD prescription is sufficient in the highly dynamical,
highly magnetized proto-neutron star. In addition to the large uncertainties surrounding
the equation of state, non-ideal MHD effects and vacuum polarization remain largely ig-
nored during the initial field generation. As a result, it is unlikely that the upper limit on
the interior neutron star magnetic field strength will be convincingly settled by theoretical
arguments alone. That is, ultimately, the maximum attainable field strength is a question
that needs to be addressed empirically, e.g. through measurements of the mass and radius
of magnetars.

Therefore, one is tempted to ask how strong field strengths affect the structure of these
stars. This is particularly important as the equilibrium mass and radius of neutron stars
vary based on the nuclear and gravitational physics assumed (for example, see

( , ) for the effects of various nuclear equations of state on the structure of
neutron stars, and see ( ) ( );
( ) for effects of modifying general relativity). As a result, observational measurements

of these masses and radii have the potential to constrain theoretical models. In particular,
observing neutron stars with very high masses is useful, as each set of models (nuclear
equation of state and gravitational model) predicts a maximum mass beyond which no
neutron stars would exist. For example, the detection of a 1.97 £ 0.04 Mg pulsar by
( ), or the measurement of a 2.01 £0.04 My, pulsar by
( ) have been used to significantly constrain the viable nuclear equations of state, as
well as potential modifications of general relativity ( , ). Therefore,
before reaching definite conclusions, it is crucial to include all the necessary physics, and

in the case of magnetars, investigate how strong magnetic fields affect their mass-radius
(M-R) distribution.

The presence of a strong magnetic field in a neutron star can potentially affect the mass
and radius in two ways:

1. Locally, a magnetic field affects the nuclear equation of state (EOS) thus indirectly
affecting the equilibrium configurations of the star.
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2. The magnetic field can affect the structure of the neutron star globally by contributing
to the hydrostatic support against gravity via its stress, and the structure of its
spacetime via its energy (in other words, through the contribution of the Maxwell
energy-momentum tensor to the Einstein equations).

( : ) studied the effects of a strong magnetic field on the nuclear
EOS. As part of this thesis is an extension of their studies, we will describe this magnetized
nuclear EOS in more detail in Chapter 4. The EOS expresses nuclear pressure in terms of
the local magnetic field strength and nuclear density. Therefore, some assumption about
the structure of the magnetic field is necessary. ( ) studied static neutron
stars with poloidal magnetic fields and a simple class of electric current distributions con-
sistent with the requirement of stationarity. Considering the global effect of the magnetic
field stress in the Einstein equations, and assuming a set of nuclear EOS, mainly the one
calculated by ( , ), they found that the magnetic field increases no-
ticeably the maximum mass. In a recent study, ( ) have considered
neutron stars with strong magnetic fields (where the field strength is a simple parametric
function of baryon density only) in the framework of f(R) gravity. Using a nuclear EOS
similar to the one calculated by ( , ), and assuming the global
effect of the magnetic field pressure, they found that the strong magnetic field can increase
considerably the maximal mass of the star. They also find that for large fields, the M-R
relation differs considerably from that of general relativity only for stars with masses close
to the maximal one. In another recent study, ( ) assume a chaotic
magnetic field model introducing a variable magnetic field, which depends on the energy
density rather than on the baryonic density, and based on this calculate the mass radius
relationship for neutron stars.

It is important to stress that in the studies of ( ),

( ) and ( ), the magnetic field is able to provide hydrostatic
support in the global sense mentioned above where the magnetic field contributes directly
in pressure in the Einstein equations [for example, Pz = B?/8 in the case of

( ) and Pg = B?/247 in the case of ( )]. Although the
local effects of the magnetic field on the EOS should be considered in calculating the M-R
relations, it is not certain whether the magnetic field can provide global hydrostatic support
for the star. Using the principle of conservation of total helicity,

( ) developed a variational principle for computing the structure of the magnetic field
inside a conducting sphere surrounded by an insulating vacuum. They show that, for a fixed
total helicity, the minimum energy state corresponds to a force-free configuration, which
is generically anisotropic. If magnetic field lines rearrange to a force-free configuration in
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neutron stars, then by definition, they cannot hydrostatically support the star, and thus
their impact is limited to local effects on EOS.

In Chapter 4, we will study the effect of these various assumptions (in particular, the
force-free model of , ) on the M-R distribution of neutron stars.
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Chapter 2

Hydrostatic Neutron Stars in the
Gravitational Aether Theory

Two sets of models define the structure of neutron stars. First models describing grav-
ity that is the binding force of the star, and second models describing the elementary
constituents at the core of neutron stars and their repulsive forces that work against grav-
ity and prevent the neutron star from collapsing and forming a black hole. Apart from
quantum degeneracy pressure, strong nuclear interactions are the main sources of pres-
sure inside neutron stars. Various nuclear models give different pressure-density relations
(equations of state) for the interior of neutron stars. Much of the uncertainty in the study
of neutron stars is due to the lack of knowledge of the correct EOS. Having the EOS and
using a description of gravity we can find the mass-radius relation of neutron stars in static
equilibrium. In other words, for each neutron star of a given radius, we can find the mass
for which the repulsive and attractive forces cancel and ensure the hydrostatic equilibrium
of the star. This mass-radius relation has a maximum mass M., beyond which no neu-
tron star would exist and only black holes could have higher masses ( ,
). Therefore observations of high-mass neutron stars have the potential to constrain
some equations of state and rule out others. As mentioned in the Introduction, such an
observation was made recently ( , ). A millisecond pulsar was observed
and its mass (1.97 + 0.04 M) was calculated using the Shapiro delay of the pulsar light
due to its companion, a half solar-mass white dwarf. The high mass of this pulsar pro-
vides a lower limit on the maximum mass of neutron stars and rules out a number of
proposed equations of state ( , ). Another observation was reported by
( ). The authors presented evidence that the black widow pulsar, PSR
B19574-20, has a high mass. Their best fit pulsar mass was ~ 2.40 + 0.12 M. A number
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of assumptions in the theoretical modelling of the pulsar contributed to the uncertainty in
this number. Considering different constraints, the authors inferred a lower limit to the
pulsar mass of M > 1.66 M. Future observations of neutron stars will put additional
constraints on the EOS.

In this chapter, we calculate the mass-radius relation predicted by the gravitational
aether theory for two well-known equations of state. The first EOS (hereafter denoted
FPS) was calculated by ( ) and improved by
( ). This equation of state is based on variational calculations over a wide density range
using a realistic nuclear hamiltonian that contains two- and three-nucleon interactions, and
fits the nucleon-nucleon scattering, as well as nuclear matter data. The Skyrme model is
used in the FPS equation of state. In this model, the effective interaction has the spatial
character of a two-body delta function plus derivatives. The second EOS was calculated
by ( ) (hereafter denoted AP3). Some improvements of this
calculation compared to FPS are the use of Greens function Monte Carlo (GFMC) methods
in the variational theory and including two-pion exchange three-nucleon interaction and
isospin symmetry breaking terms in the hamiltonian. ( ) show that the
complete mass-radius relation of neutron stars can be reproduced to high accuracy for all
proposed equations of state, when the pressure of the neutron star is specified at three
fiducial densities beyond the nuclear saturation density of p,s ~ 2.7 x 10 g cm 3.1 As
they have calculated these values of pressure for the FPS and AP3 equations of state, we
will use their method to reproduce these two equations of state for densities higher than pg
which is a parameter to be adjusted for each EOS. For densities below pg (the outer layers
of the neutron star) we will use the SLy (Skyrme Lyon) equation of state calculated by

( ). This EOS is based on the effective nuclear interaction SLy of
the Skyrme type, which is useful in describing the properties of very neutron rich matter.

The structure of this chapter is as follows: In Section 2.1, we derive the equations of
stellar structure for the gravitational aether theory and relate the mass predicted by the
theory to the observable mass of neutron stars. In Section 2.2, we solve the equations
of stellar structure for a simplistic polytropic equation of state and explain the numerical
method used. In Section 2.3, we solve the equations for the realistic FPS and AP3 equations
of state, find the mass-radius relation of neutron stars predicted by the gravitational aether
theory and compare it to the prediction of General Relativity. An equivalent description
of the problem in terms of a modified EOS will be described in Section 2.4. Section 2.5
will include a discussion and the summary of our results.

'For an earlier decomposition of the EOS in three polytropes with fixed density interfaces see

(2009).
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2.1 The Aether Equations of Stellar Structure

As we assume a spherically symmetric static star, the metric will take the form

0 r? 0 ’

0 0 r%sin®f

with the line element being ds* = g, dz"dz”. With this metric and since the problem is
static and isotropic the energy momentum tensor will be

—€e(r) 0 0 0
T 0 p(r) O 0
v 0 0 p(r) O ’
0 0 0 p(r)

where €(r) and p(r) are the energy density and pressure at radius r of the star. The
modified Einstein equation has the form

87GN) " Guvlguw] = T, (2.1)
where Tuv is given by
~ 1
THV = (4/3) [Z_LLV - ZngNV + P(“p,uu + guy)] . (22)

T = 3p(r) — €(r) is the trace of the energy momentum tensor and P and U, are the
pressure and four-velocity of the gravitational aether. Having T,ﬁ‘ = ¢g"T, By, Where we
have the Einstein summation over index (3, and imposing spherical static conditions on the
aether we will get

—&r) 0 0 0
PR (0 B (R
v 0o 0 p(r) o |’
0 0 0 @)

where
é(r) = e(r)+p(r),

plr) = (1/3) [ e(r) +p(r) | + (4/3) P(r).
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As Eq. (2.1) is similar to the Einstein equation only with different energy density é(r)
and pressure p(r) given by Eq. (2.3), the equations of stellar structure will be the same
as in General Relativity only with these updated quantities (€ and p). Using the Ricci
tensor components and writing the different spherical components of the modified Einstein
equation (2.1) we will have ( ) )

B B /A B A .
Frr = QB_4B<A * B> — 4= TiGn(E-p)A (24)
r A B 1 - .
R99:—1+—2A(——A _'__B) +Z:—47TGN(€_])>T27 (2'5>
B B /A B B’ - 5

where the prime superscript denotes the derivative with respect to radius. We have omitted
the R4 equation as it is identical to Rgg because of the spherical symmetry. Rewriting
these equations using Eq. (2.3) we get

B” B /A B A’ 8
55 At ) ras g on(err-2P)A 27)
T Al B/ 1 . 87T 2
—1+ﬂ(—z+§>+Z—_?GN(€+]7_2,P)T7 (28)
B// B/ A/ B/ B/
B BA BN B 9P)B. 2.
2A+4A<A+B) — 8tGy (e +p+2P) (2.9)

Given our metric, the equation of hydrostatic equilibrium for p and € is ( ,
) B’ 2p'
— =— . (2.10)
B €E+p
In addition to this, the same equation holds for our updated € and p. This equation is not
independent from the modified Einstein equations and can be derived from them

B/ 2~/ / / 4 /
B__ W _ GEHp)/A+P (2.11)
B E+p e+p+P

Given the suitable boundary conditions, Equations (2.7), (2.8), (2.10) and (2.11) along
with an equation of state giving €(p) (the energy density of the star as a function of its
pressure) are enough to find our unknowns: A(r), B(r), p(r), €(r) and P(r). In practice,
this needs to be done numerically.
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According to ( ), the pressure in the vacuum does not
vanish and is comparable to the pressure associated with dark energy. This pressure will
be negligible for the calculations of neutron star structure. Therefore we can assume that
pressure and energy density both vanish outside the neutron star and the metric becomes
the familiar Schwarzschild metric for which at r > R

B(r)y=A"1r)=1- QGN—M(R), (2.12)

r

where R is the radius of the neutron star and M is the observed mass of the star given by
the aether theory

R
M(R) = / E(r)r2drdo. (2.13)
0
Using Eq. (2.3) this gives

R
M(R) = /0 [e(r) + p(r)]r*drde. (2.14)

The purpose of this work is to find the M — R relation for neutron stars assuming different
equations of state.

2.2 Numerical Solutions for a Polytropic Equation of
State

We start by solving the equations of stellar structure for a simple EOS. The polyropic
equation of state is a power-law relation between pressure and matter density

p=Kp". (2.15)
The energy density is given as a function of matter density by
e(p) = pc® + p/p p(pp’/)de” (2.16)
0
where the second term is negligible for non-relativistic matter. For neutron stars this term

needs to be taken into account. If we use Eq. (2.15) to perform the integration in the
second term we will get

Kp"

r—1

e(p) = pc® + (2.17)
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-0.02 -

Figure 2.1: The p(r) — r relation of a neutron star of radius R = 1.175 with a polytropic
equation of state p = Kp' where I' = 9/5 for General Relativity (solid) and the aether
theory (dashed). The pressure of the aether P(r) which is negative is shown as well
(dashed-dotted). The units have been chosen so that Gy =1, ¢ =1 and K = 1.
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If we choose our units so that ¢ = 1 and Gy = 1 (these will fix our time and mass units
given a length unit), the energy density as a function of pressure will be

op) = ()7 + 5 (2.18)

The differential equations (2.7), (2.8), (2.10) and (2.11) along with Eq. (2.18) need to
be solved numerically. The boundary conditions are the values of A(R), B(R), p(R), €(R)
and P(R) (R is the radius of the neutron star). We set the values of pressure, energy
density and aether pressure equal to zero at R

0
p(R) = 0, (2.19)
0

The reason why we set the pressure of the aether equal to zero at the boundary of
the star is that if the pressure of the aether in the vacuum is very small at infinity it will
remain small up to the boundary of the star. This can be understood by writing Eq. (2.11)
in the vacuum

B/ 73/
= —_9l_ 2.2
o (220)
which gives
po__ Po (2.21)

V1—=2GM/r

If P — 0, then P — 0 at the boundary of the star. It is straight-forward to generalize
this argument to dynamical situations, i.e. aether pressure vanishes in vacuum everywhere
if it vanishes at large distances. Therefore, the aether does not affect the binary mass
measurements, enabling us to compare our results with the current observations.

The values of A(R) and B(R) are given by

(2.22)

As we do not have the value of M(R) and finding it is the purpose of this integration,
we will use a shooting method in which for a given radius R we solve the differential
equations with different values of M(R) starting from R/2 to smaller values. For each
value of M(R) solving the equations gives the energy density and pressure as a function
of radius. Using Eq. (2.14) we can find the integrated mass M. The value of M(R) for
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which M(R) = M is the correct mass of the neutron star of radius R. For this value the
functions A(r), B(r), p(r), €(r) and P(r) are well-behaved and correspond to the solutions
of equations (2.7), (2.8), (2.10), (2.11) and (2.18). For instance, the pressure p(r) given by
General Relativity and the aether theory is shown in Figure 2.1 for a neutron star of fixed
radius. The integration method used is a fourth-order Runge-Kutta. Figure 2.2 shows
the M(R) - R relation for neutron stars with a polytropic equation of state p = Kp' with
I' = 9/5 for General Relativity and the aether theory in units for which Gy =1, ¢ = 1
and K = 1. We have chosen I' = 9/5 as it is consistent with the constraints found by

( ) and used by ( ) to study the structure of neutron
stars in f(R) gravity theories with perturbative constraints. We see that the aether theory
gives a smaller mass for a neutron star of a given radius. This was expected as gravity
is stronger in the gravitational aether theory in the relativistic regime, reflected in the
G = 4G /3 relation. Therefore a neutron star of a given radius needs less mass to sustain
its hydrostatic equilibrium compared to General Relativity.

To understand the behaviour of M(R) in large radii (the Newtonian limit) we can look
at the equation of hydrostatic equilibrium in this limit

p(r)g(r) = — -, (2.23)

where ¢ is the gravitational force and p(r) ~ €(r) in the Newtonian limit (as we have set
c=1). As p= Kp" the above equation takes the form

M dp
—p— = (T —1)p ==, 2.24
7’2 ( )P dT’ ( )
We can write this as o
- —gdr= (' — 1)p" 2dp. (2.25)

In large radii we can treat M as constant and integrate both sides to get the following
approximation

M M r
7 (5 (2.26)
which gives
M o REBI=4/=2), (2.27)

As T' = 9/5 here we will have M oc R™7, which is the behaviour seen in large radii in
Figure 2.2.
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Figure 2.2: The M(R) - R relation of a neutron star with a polytropic equation of state
p = Kp'' where I' = 9/5 for General Relativity (solid) and the aether theory (dashed).
The units have been chosen so that Gy =1, c =1 and K = 1. We see that the maximum
observed mass predicted by the aether theory is less than the maximum mass predicted by
General Relativity. We also see that in the Newtonian limit (large R) M(R) oc R™".
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2.3 Numerical Solutions for Realistic Equations of State

For densities below a fiducial density pg of the order of the nuclear saturation density
Pns ~ 2.7 x 10 g/cm?; the equation of state is well described by the SLy EOS (

, ). For densities higher than py, it is shown by ( ) that it is
sufficient to specify the pressure of the neutron star at three fiducial densities p; = 1.85pys,
p2 = 2p1 and p3 = 2py in order to reconstruct the mass-radius relations based on the AP3
and FPS equations of state. Figure 2.3 shows the SLy equation of state in p < py as
well as the parametrized AP3 and FPS equations of state in p > pg using the polytropic
parameters found by Ozel and Psaltis and listed in Table 2.1 (from , ).

If we use the smoothed version of these two equations of state (to avoid discontinuities
in the derivative of pressure as the aether theory is sensitive to these derivatives) to numer-
ically solve the stellar structure equations in the same way we did for a polytropic EOS in
Section 2.2, we find the M(R) - R relations shown in Figure 2.4. General Relativity predicts
a maximum neutron star mass M., ~ 1.81 Mg for the FPS EOS and M., ~ 2.37 Mg
for the AP3 EOS. Therefore the difference in the two parametrized equations of state (as
seen by looking at the difference of the solid and dotted curves in Figure 2.3) results in a
24% difference in the maximum neutron star mass predicted by General Relativity. The
aether theory gives a smaller maximum mass as expected from Section 2.2. The aether

theory predicts M. ~ 1.58 My for the FPS EOS and M,,.x ~ 2.00 M, for the AP3 EOS.

If the FPS equation of state is refuted on the basis of the 1.97 4+ 0.04 M, neutron star
observed by ( ) and if we assume the validity of the AP3 equation of
state, then both the aether theory and General Relativity agree with this observational
measurement. For this EOS the maximum mass predicted by the Aether theory is 16%
less than the maximum mass predicted by General Relativity. However, for the AP3 EOS
the aether prediction is inconsistent with the ( ) measured mass,
although this mass measurement is uncertain due to assumptions made in the theoretical
model used in calculating the neutron star mass. As other EOS candidates exist (see

, ), more measurements of the mass and radius of neutron stars
are needed to put further constraints on the existing equations of state, and allow us to

EOS logpy logP; logP, logPhs
FPS 14.30 34.283 35.142 35.925
AP3 1430 34.392 35.464 36.452

Table 2.1: Polyropic parameters for the FPS and AP3 equations of state calculated by

(2009).
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Figure 2.3: p — p (grey) and p — ¢/c* (black) relations: For matter densities p < py =
10*3g/cm? we use the SLy EOS ( , ). For p > pg, the solid curves
show the p—p (grey) and p —¢/c? (black) relations based on the minimal representation of
the AP3 equation of state using the polytropic parameters of ( ). The
dotted curves are the same relations for the FPS equation of state. The equations have
been smoothed to avoid discontinuities in the derivative of pressure as the aether theory is

sensitive to these derivatives.
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Figure 2.4: The M(R) - R relation of neutron stars given by General Relativity (solid)
and the aether theory (dashed) based on the parametrized AP3 (black) and FPS (grey)
equations of state. The two observed pulsar masses of Demorest ot al. (2010) and van
Kerkwijk et al. (2011) are shown in orange and green respectively.
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make definite comparisons between the gravitational aether theory and General Relativity.

As was mentioned in Section 1.3.2, the value of (4 for the aether theory is 1/3 in contrast
with General Relativity ({4 = 0). Therefore, assuming the AP3 equation of state, the
maximum neutron star masses given by the aether theory and General Relativity in Figure
2.4 can be translated into constraints on the value of (4. Using a linear interpolation, we
find that ¢4 < 0.43 (0.19) at 95% confidence from the ( ) (

, ) mass measurements.

2.4 The Aether Equation of State

An equivalent description of the problem is suggested by Eq. (2.3). This equation gives
the updated energy density and pressure for which (with the new gravitational constant)
the aether theory’s Einstein equation (2.1) looks like the Einstein equation of General
Relativity. Therefore we can describe the aether theory’s prediction of the structure of the
neutron star as equivalent to the one of General Relativity only with an updated equation
of state given by p(€). To find this updated equation of state we equate the right-hand
sides of equations (2.10) and (2.11) to get

2 2y
e+p  E+p

/

(2.28)

If we use Eq. (2.3) to write € as a function of € and p and if we replace the derivatives
with respect to radius with derivatives with respect to € we get

dp €

d_]e) e —iji(pze)25 — /=0 (2:29)
where f(e) = dp(e)/de. Both f(e) and p(e) are given by the equation of state we are
using. If we solve the differential Eq. (2.29) for the FPS and AP3 equations of state
numerically we get p as a function of €. Using Eq. (2.3) we can find p as a function of €.
These are the dashed curves shown in Figure 2.5. The figure compares the AP3 and FPS
parametric equations of state (p—e€) and the modified equations of state (p—€) given by the
gravitational aether theory based on the same equations of state. The effects of the aether
theory become distinguishable beyond the nuclear saturation density (the region shown in
Figure 2.5). As in high densities, the aether theory gives a lower pressure gradient than
the one given by the equation of state, the stability of the neutron star will be obtained
for a lower mass compared to the prediction of General Relativity for a neutron star of the
same radius. This is why the aether mass-radius relation falls below the general relativistic
mass-radius relation for neutron stars.
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Figure 2.5: The AP3 (solid black) and FPS (solid red) parametric equations of state
p — €/c? and the modified effective equations of state p — €/c? given by the gravitational
aether theory based on the same equations of state (dashed black for AP3 and dashed red
for FPS). The blue line corresponds to p = €.
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2.5 Conclusions and Future Prospects

The gravitational aether theory provides a possible solution to the cosmological constant
problem. The structure of neutron stars is related to their nuclear properties (the equation
of state) as well as the theory describing gravity. Therefore, the aether theory can be
tested in the light of mass-radius measurements of these stars. In this chapter, we solved
the aether theory’s equations of stellar structure for two equations of state of nuclear
matter (AP3 and FPS) and found the mass-radius relation of neutron stars based on these
two EOS, and compared this with the mass-radius relation given by General Relativity.
The FPS equation of state gave mass-radius relations that both for General Relativity
and the aether theory, were incompatible with the 1.97 4+ 0.04 M neutron star observed
by ( ). The mass-radius relations given by the aether theory and
General Relativity on the basis of the AP3 equation of state were both compatible with
this observation. We saw that for this equation of state the aether predicts a maximum
mass that is 16% less than the maximum mass predicted by General Relativity. We also
found the modified equation of state of neutron stars given by the aether theory and based
on that explained why the mass-radius relation given by the aether theory falls below the
one given by General Relativity. It is important to note that there are other equations
of state such as the one calculated by ( )? that do also agree with the
( ) measured pulsar mass.

In addition, including the effect of hyperons and quarks in the equation of state (e.g.,
) ) ) ) ) ) ) )

, ; , ) can have a similar effect
to the aether in lowering the maximum mass of neutron stars. For example, it is shown
by ( ) that a hybrid (nuclear+quark matter) star can have a mass-radius
relationship very similar to that predicted for a star made of purely nucleonic matter.
The authors obtain hybrid stars as heavy as 2 My for reasonable values of their model
parameters. Due to these uncertainties in the equation of state we can not make definite
comparisons between the aether theory and General Relativity at the moment.

To be able to test the aether theory more robustly, we need further constraints on the
neutron star equations of state. In addition to constraints coming from the mass measure-
ments of neutron stars (such as , ), we also need further constraints
from radius measurements that are considerably harder to get. The radius of a neutron
star can be measured in various ways such as the thermal observations of the surface of the
neutron star, pulse profiles or redshift measurements ( , ). We also

2And others mentioned by ( ).
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know that mergers of compact objects such as pairs of neutron stars or neutron star-black
hole pairs emit gravitational waves. These waves can be detected using current detectors
if the emitter is close enough. Gravitational waves allow us to simultaneously measure
masses and radii of these compact objects and could constrain the neutron star maximum
mass and thus its equation of state ( , ). They can also constrain
the equation of state directly. ( ) have studied the accuracy with which one
can use gravitational wave observations of double neutron star inspirals to measure param-
eters of the neutron-star equation of state using numerical simulations. They concluded
that gravitational wave observations could put a direct constraint on the EOS pressure at
a rest mass density p = 5 x 10 g cm™3 of ép ~ 10%? dyn em~2 at an effective distance
D¢ = 100 Mpc (also see , ). At this density, the difference of pressure
between the aether EOS and the AP3 EOS is Ap = 7.6 x 1032 dyn ecm~2. This means that
the aether theory’s modified equation of state can be tested using gravitational waves,
unless its predicted pressure value at the density mentioned above, is equal to the pressure
predicted by another equation of state. This degeneracy will fade if further progress is
made in constraining the equation of state of nuclear matter in densities above the nuclear
saturation density. Another promising way to break this degeneracy is to study the dy-
namics of a collapsing neutron star which could distinguish the effects of modifying gravity
from modifying the equation of state.

Future observations ranging from the electromagnetic emissions of pulsars to the gravi-
tational wave emissions of neutron stars in compact systems will allow us to learn not only
about the nuclear constituents at the core of neutron stars but also about the nature of
gravitation and fundamental questions such as the cosmological constant problem.
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Chapter 3

Neutron Star Dynamics in the
Gravitational Aether Theory

3.1 Theory

3.1.1 Preliminaries

We are interested in the dynamics of a neutron star in the gravitational aether theory. As
was mentioned in the Introduction, this theory was suggested by ( ) to adress
the comsological constant problem. In this theory, the Einstein equation is modified in the
following way so that the vacuum does not gravitate

1

(87Tg)_1G;u/[g,uV] = T;w - ZTg/w + .y (31)

where G = 4G /3 and Gy is the usual Newton’s gravitational constant. By subtracting
the trace of the energy momentum tensor on the right-hand side, the Einstein equation
becomes insensitive to the vacuum energy density, pyac, where T}, = pyacg + excitations.
As energy and momentum are conserved, the divergence of T}, vanishes. By definition the
divergence of G, also vanishes through the Bianchi identities. Therefore, if we want to
subtract the trace of the energy momentum tensor, we need to add a suitable term to it
so that the divergence of the right-hand side of Eq. (3.1) vanishes. It was suggested by

( ) that this term can be the energy momentum tensor of a perfect fluid 7,,,,
which is dubbed “gravitational aecther”. With this term, Eq. (3.1) takes the form

1
(87Tg)_1GW[9W] =T — ZTQW + Tow (3.2)
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,Ew = P(uuuu + g;w)7 (33)

where P and U, are the pressure and four-velocity of the gravitational aether. For the
right hand side of Eq. (3.5) to be divergenceless, we require

. 1
771 HY = ZT# (34)
( ) shows that the pressure and four-velocity of the gravitational aether are
dynamically fixed in terms of T),, via Eq. (3.4). ( ) have studied

the hydrostatic structure of a neutron star in the gravitational aether theory. The results
of this work were discussed in Chapter 2.

Generalized Aether

For the sake of comparison, we would like to generalize the aether theory, so that it could
be viewed as continuously diverging from General Relativity through a parameter A in the
following way

(8Wg)_lGuV = Tuu = Tuu - /\Tguu + 771V7 (35)
where G
_ N
G=- (3.6)

and \ goes from 0 where the theory is equivalent to General Relativity, to 1/4 (where the
vacuum energy is decoupled from gravity). The equation for the conservation of aether
(3.4) now becomes

7:111;1/ =A Tﬂ' (37)

We will later see that this equation implies that the pressure of aether (and thus its
energy momentum tensor) vanish as expected in the general relativistic limit A = 0. In
this chapter, all equations are kept general using the parameter \. However, wherever
numerical results are shown, the value of A has been set to 1/4 for which the aether theory
solves the old cosmological constant problem. Having equations in general form, one could
in principle calculate results for values of 0 < A < 1/4, which would allow a smooth
transition towards General Relativity. This is left for future work.

Gauge Choice

As the aether is an incompressible fluid (its speed of sound is infinite due to its vanishing
energy density), the theory breaks Lorentz invariance and introduces a preferred frame
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of reference. This is the frame of the aether. This restricts our gauge freedom to the
choice of the shift vector while the lapse function is determined by the frame of aether.
This considerably complicates our problem, as gauge freedom is very useful in numerical
relativity in order to obtain numerically well-behaved equations.

We choose the shift vector E to be zero. The metric in spherical symmetry can be written
as

—a? 0 0 0

_ 0 a® 0 0

G = 0 0 r2? 0
0 0 0 7r%%sin?(9)

In the frame of reference of the gravitational aecther we have
Ne = Uy = (—,0,0,0). (3.8)

where n, is the unit vector normal to the hypersurfaces. As we will see later, the lapse
function « will be determined by this choice of frame through the conservation equation
for aether (3.7).

The four-velocity of the matter in spherical symmetry will be

Uq = (Ut, U, OJ O)? (39>
a Uy Uy
As we need u,u® = —1, we will have

up = —a/1+u2/a? = —aW, (3.11)

where W is the Lorentz factor defined as

W =+/1+u2/a? (3.12)

Equation of State of Matter

The energy-momentum tensors for matter is

T = (p + p)(uyu,) + pgpw, (3.13)

where p is the total energy density of matter given in terms of the rest-mass density by

p=(1+e)po, (3.14)
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where € is the specific internal energy density. For many purposes, it is useful to employ a
simple “T-law” equation of state (EOS) of the form

p=Kpb, (3.15)

where we set K = 1, which alongside the Newton gravitational constant Gy = 1 and the
speed of light ¢ = 1 will fully determine the units for our problem. For this EOS we also
have

p = (T —1)pge. (3.16)
The energy density is given as a function of matter density by
PO / /
p(po)dp
p(po) = po + PO/ ;/2 %, (3.17)
0 0

where the second term is negligible for non-relativistic matter. For neutron stars this term
needs to be taken into account. If we use Eq. (3.15) to perform the integration in the
second term we will get

Po

= ) 3.18

plpo) = po+ 57— (3.18)
The energy density as a function of pressure will be
1 p

= _— 3.19

pp) =pT + 5 (3.19)

To model a stiff nuclear EOS in a neutron star, one can adopt a moderately high value of
['in a “T-law” EOS, e.g., I" & 2. For this problem we will choose I' = 9/5.

Hydrodynamical Matter Equations

As the energy-momentum of the matter is conserved
TP 5 =0, (3.20)

the hydrodynamical equations of the matter are the standard continuity and Euler equa-
tions which are then reformulated in a conserved form for stable numerical evolution. This
conserved form is well-known and thus will not be derived and only mentioned in Section
3.1.3. However, as the aether pressure and four-velocity (in other words the lapse function,
as we are in the frame of aether) are determined through the dynamics of matter (Eq. 3.7),
it is necessary to find the time evolution of the energy density and velocity of matter via
solving the Euler and continuity equations.
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Looking at the energy momentum conservation of matter in the direction of the flow of
matter (contracting with u,), we will have

UT 5 = —pou® — (p+p) u’ g = 0. (3.21)
This gives us the continuity equation for matter
pat® + (p+p) u’s = 0. (3.22)

The divergence of the four-velocity can be written as a function of the metric determinant

u’ g = ﬁ<¢fg u?) 3, (3.23)

where \/—g = aar?b?sin?(#). Rewriting Eq. (3.22) based on (3.23) and expanding, we will
have

p+Dp 272 . 2 t p+p
b s (d) Sn?(0) [aar b” sin”(0) u} +

ut + pu” + —
Pt P o aar?b? sin?(6)

[ar®v? sin®(0) '] . =0.

(3.24)
As u' = W/a, we will have
pu’ +p "+ __PrP__ Lerar®v? sin®(0) K} PP [aar®v? sin®(0) u'] = 0.
’ ’ aar?b? sin?() ot aar?h? sin?(0) T
(3.25)

Taking the time derivative in the third term and leaving the rest untouched

W 2W b 14 +
CL,t+ ,t+_,t) pTp

t r
pa +ppt” + (p +p)( aa abd a aar?h?

(cvar®v® u’") =0 (3.26)

Based on the definition of W (Eq. 3.12)

ow ow
VVJ = a_urur’t + %a,t, (327)
which simplifies to
2
W, = st (3.23)

Wa? Wa?
As will be mentioned in Section 3.1.2, we know from the evolution equations for the induced
metric that a

t

2 — KT .2
. aK], (3.29)
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= = —aK}, (3.30)

where K" and K} are components of the extrinsic curvature in spherical symmetry. Using
equations (3.28), (3.29) and (3.30) to simplify Eq. (3.26), we get

Kru,? wu, u, +
pat+p "+ (p+p) (—WK] —2WK{+—" ) PP

(aar?s®u") =0. (3.31)

Wa?  Waa?’  aar?b?
We can write the above equation as
A pyt + B ur,t + C - 0, (332)
where
%%
A = u=—, (3.33)
Q@
p+p) U
B = —— 3.34
Waa? ' (3.34)
Kju\  p+p
_ T r (4 r 2T 212 7
C = p,u +(p+p)(—WK] —2WKj + W2 )+ I (car?v® u >m' (3.35)

Now if we contract the energy-momentum conservation equation normal to u,, we get the
Euler equation for the matter

(0 +uuy) T 5 =0 = (p+p) u® 5 u’ +pgu’ u*+p* = 0. (3.36)

Writing the r component of this equation in spherical symmetry and noting that p" =
g p, = p,/a*, we have

Pr_y, (3.37)

(p+p) (v v +u"y u") +pulu” +p,(u)? + =

Writing the covariant derivatives in terms of the connections

P

(p+p) [(uﬁﬂtrguwrgur) u'+(u” 4+ T ut 4T, ") u} +p e’ +p,(u") 5 =0, (3.38)
where
T &aﬂ‘
Te = —2 (3.39)
= Lo oK, (3.40)
a
a
r.o= = 3.41
rr . (3.41)



As u" = u,/a*, we have

., Ury  2Upay  Upy 22U,
u t = 5 3 = B + —2 (342)
a a a a

If the pressure is given by an equation of state p(p), we have

_ Op
bt = app’t’
op
o= £, 3.43
D, 25" (3.43)

Based on (3.42) and (3.43), we can simplify Eq. (3.38) as

Lpi+Qu.,+8=0, (3.44)
where
0
L= g (3.45)
dp
ut
2u, WK
§ = +p) [ - S+ D) + 20w+ T () | 4 pe () + 2@47)

Based on equations (3.32) and (3.44), we can solve for p, and u, ,

. BS-CQ
LC — AS
U,«,t = m (349)

We can seperate the o dependences in A, B, C, Q, £ and S as follows

= Ay/a, (3.50)
= By/a,

Qo/Oéa

= Lo/a,

= Co+Co,

Sa + So,

Hhahiom >
I
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where

Ay = W, (3.51)
(p+p) ur
B, = X~/ "7
‘ Wa2
+p) W
Q = (CRSORLE ];) :
a
op u,
Lo = £ T
0 dp a?’
PtD, 29 4 r - 0 KIUTQ
Co = TS (ar®b® u") .+ pru” + (p+p)(— WK —2WK] + T ),
2u, WK” .
So = (p+p) [uT — 2KWul + T, (u")* + ' u” |+ po(ur)? + %,

[0
Ca = Ti:
(p+p)u” —

_ . e aa, W2 W2a,
Sa = (ptp) Ty (W) =(ptp)— 5 =(+tp) 5
where for writing Sy we have used the fact that I'}, == a;/a = —aK]. Now if we rewrite

(3.48) in terms of (3.50), we get

0y = (Bo/)(So + Sa) = (Qo/)(Co + Ca)
! (Ao Qo/a?) — (LoBy/a?) ’
oy = (BoSo — QoCo) + (BoSa — QoCa) o
’ Ao Qo — LoBy

Now we show that ByS, — Q¢C, =0

(3.52)

W2 a, (p+pW

+ r rQr
BySoy — QoCo = (p+ p)u (p+p) ——— (p+p)u % (3.53)

a?W a? « a?

o o (U WP W'
= —(p+p) (a4W ) (3.54)

_ %(pﬂg)?(% %):o. (3.55)

Therefore p, can be written as

BoSo — QoCo
— =0 =" a=0Q 3.56
Pt Ao Qo — LBy “ 0% ( )
where B.S 0.C
O = 2090 =0%0 3.57
° T AQy — LoBy (3:57)
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The Aether Pressure

As we saw in Eq. (3.7)
Ty = A",

(3.58)

As T,p is given by Eq. (3.13), the left side of (3.58) contracted with U, can be written as

UT 5 =—-P U,

where the divergence of the four-velocity of the aether can be written as

1
U’y = —_g(v—g U’ s.

AsU, = (—,0,0,0) and /=g = aar’V?
1 Q¢ bt
U 5= —(—= +2--) = - K/ — 2K},
;B8 Oé( a + b> r %

Therefore Eq. (3.59) simplifies to
U T 5 =P (K] +2K5),

The right side of (3.58) contracted with U, can be written as

0
ANUT=AUT ' = -\ g" T,=X(3ps —py) = )\04(38—29 —1)ps.
P
Equations (3.58), (3.62) and (3.63) result in
r 0 ap
P (K] +2Kp) = (35— —1)p,.
Ip
Therefore 5
p
Ry 1
Kr+2Kf) o
As p, is given by (3.56) we have
)
P _ 38—i —1 QO o
Kr+2K) o
dp 1
= A B=-1) ————.
0 ( p ) KT + 2K}
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(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)



_ dp Qo
P = % 1) 2

(3.67)

where K = K + 2K} is the trace of the extrinsic curvature. As we see in Eq. (3.67), P
is given as an “algebraic” function of the spatial parameters of the hypersurface and does
not depend explicitly on the lapse function a. In other words we do not have an evolution
equation for P and its evaluated value can be used to calculate the lapse function.

The Lapse Function

Finally we can contract Eq. (3.58) perpendicular to U,

(6% +UUN)T 5 = NS +UUN T, (3.68)

In the radial direction, we have

(67;\ + WUA)TW;B

TTB;,B

(PUU +Pg")

PUU +PU U s +PU U 5+P, g7

PUu w;t+7:;”
PU (%+F§tw+l‘;u’)+7:§
1 oo, 1 P,
E( a? EH a?
PP,
«

Eq. (3.69) simplifies to

, P

[ In(aP)] - AP — L

A (8 + UUy) T

AT

A grr T:r

A" (Bpr—pir)

A

2 (Bpr —pr)

- (Bpr —pr)

A

- (Bpr — i)

)‘(Sp,r - p,r)' (369)

(3.70)

Eq. (3.70) will give us « on each hypersurface given the pressure of aether and other spatial

parameters.
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3.1.2 141 ADM Equations

Constraint Equations

As we saw in Eq. (3.5)

where G = G /(1 — A\) and

Ty =T — N9 + T
The three-density is

@ p = nengT® = 2T = p(W? = \) + p(W? 43X — 1).

The three-current is

S, = —(gra + npng)ngT”
(p+p) u W,

We also have

(i i 8 @ _ g
St = (0 +n'na) (0] —|—n6n]~)TB =T
And the trace S = S! will be

2
S:(p+p)%+3p—3)\(3p—p)+373.

We can write the Hamiltonian constraint as

167G ®p = R+ 4KTK{ + 2K!°

where the three dimensional Ricci scalar in spherical symmetry is

-2
R = e [ —2ra,b(rb, +b) +a [r2bﬂn2 + 2rb(3b, + Tb,mn) + 62] — a3] )

The momentum constraint in spherical symmetry is

(r?b?)

—4nG S = Ky, + 5o

(K§ — K7)
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Evolution equations

The evolution equations for the metric components @ and b and K" and K} in spherical
symmetry are as follows

a; = —aak] (3.81)
by = —abKj (3.82)
T — 1 A 2 (rb)ﬂ" r 3) T
K., = a( " ),r+oz[ arb[ . ], + KK] +47G(S — Pp) SWQST} (3.83)
0 o 1 arb 2 @ )
T e E el (b)), + a | KKG + 4G (s — @) — 87GSf|. (3.84)

Finally we derive an equation for the evolution of K (the trace of the extrinsic curvature)
as follows:

K; = K], +2Kj, (3.85)
1 200, 2b, a,
i e | R (3.86)
11, 2b, a,
- -5 [v a+a, [ - ;]] +aX, (3.87)

where V2 = v, + 2c,/r in spherical symmetry and using the Hamiltonian constraint
(3.78), X simplifies to

X =K+ 2K0 +47G(S + @ p). (3.88)
Therefore the time evolution of K is given by
L o2 2by ay r2 02 (3)
Ko=-— [v ata,[58 - 7}] +a [Kr oK 4 47G(S + @) (3.89)

3.1.3 Formulation in Standard Form

After having mapped our quantities on hypersurfaces in the 1+1 ADM formalism described
in the previous section, we need to decide which quantities we are evolving in time and
which quantities we are obtaining by solving spatial differential equations on the hypersur-
faces in each time step. In other words we should build a state vector that will be evolved
in time with a set of auxiliary parameters determined at each time step.

The degrees of freedom of the matter fluid are the pressure p and the radial component of
the velocity u,. The matter and energy densities (p and pg) are obtained as functions of the
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pressure p for a polytropic EOS via Equations (3.15) and (3.19). The pressure and velocity
can be used to construct two flux conservative variables that can be evolved numerically
in time as we will see in Section 3.1.3.

The geometric degrees of freedom are the three metric components «, a and b and the two
extrinsic curvature components K" and K§. The spatial metric components a and b as well
as the trace of the extrinsic curvature K can be evolved in time using equations in Section
3.1.2. Having K, we can find its components (K7 and Kj) via solving the momentum
constraint (3.80). The degree of freedom of the aether is the value of its pressure P which
can be algebraically calculated through Eq. (3.67). Finally, the lapse function will be given
by solving Eq. (3.70) on each hypersurface.

The reason we choose to evolve the trace of the extrinsic curvature K alongside solving the
momentum constraint, instead of solving for the Hamiltonian and momentum constraints
to find the extrinsic curvature, is the fact that near hydrostatic equilibrium (the initial
condition of our problem which will be discussed in Section 3.2), the extrinsic curvature
and velocity are small. Therefore, while the momentum constraint is of first order in w,
and K, the Hamiltonian constraint (3.78) is of second order in K and therefore devoid of
information about the extrinsic curvature near hydrostatic equilibrium.

In Section 3.1.3, we will construct our state vector to be integrated in time, and in Sec-
tion 3.1.3, we will collect the equations that constrain our auxiliary parameters on each
hypersurface.

The State Vector and Time Integrals

The time evolution is given by the following flux-conservative equation where the fluid
sector is given by the Valencia formulation ( , ) which can be found in
“Numerical Relativity, Solving Einstein’s Equations on the Computer” by

(2010):

OV + 0,.F = M| (3.90)
where the State Vector V is defined as
s, 2 ot
7 o 71/2 Tt _ 71/2 WPO
V= K = K , (3.91)
a a
b b
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the Fluz Vector F' is given by
a2 T
o? 71/2 Ttr _ 71/2 Wp()UT
F' = 0 , (3.92)
0
0

and the Source Vector M is

a2 Taﬁg fr

T, — F 5T )

M= -4 [V a+a [2’; “7]} + a[K;:? - 2K32 +47G(S + (3)p)] . (3.93)
—aakK]
—ang

/2 (

where v = a?b*r*sin?(0) is the determinant of the three-dimensional metric. We also have
the following equalities

114
T, = (p+p)—ur, (3.94)
w2  p
tt
™ = (P‘HU)?—@, (3.95)
" 2w2a2
7= (e (3.96)
W2
tr r
™ = (P+P)§U ; (3.97)
T W2 r p
™ = (ptp) 5 )2+ ot (3.98)
. p
T = T%sin*(0) = ot (3.99)
S, = Y (p+p)Wau,, (3.100)
= Y2 (p+p)W? —p] = Wpe,  (3.101)

7':
a2 (T, — (4)F25Ta6a)

v

v
= Y2 (—aa, T — 2r°bb, T%)

Y20 (PKIT™ + 220 KT, (3.102)
where W = \/HTW is the Lorentz factor and v" = u"/u' is the fluid 3-velocity with

respect to a coordinate observer. It simplifies to

o= %u (3.103)
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Constraints on Auxiliary Parameters

The constraints on our auxiliary parameters can be written as

O.(H) = g(H,N) (3.104)

where the Auxiliary Parameter Vector H is given by
H = , (3.105)

and

T

gH.N) = , (3.106)
)‘(Sp,r - p,r) - P,T] /P

where N = (p, u,) is the Primitive State Vector for the matter fluid and

—4rGS, — (1)) (2r%2)| (K] — K7)

167G ®)p — R — 2K

Ko 3.107
T 4K90 ’ ( )
K = KI+2K}, (3.108)
2[ —2rba, (rb, +b) + a[r?b%. + 2rb(rb, .+ 3b,) + b*] — ag}
R = — — : . (3.109)
r2a3b?
Gp = nengT®® = T = p(W? = \) + p(W? 43X — 1), (3.110)
Sr = _(gTa+nrna)nBTa6
(p+p) u W, (3.111)
ap QO
= A= -1) =2 3.112
P ( 9p ) (3.112)
BOSO - QOCO
Q = =2 =09 3.113
" T AQy — LoB (3113)
Ay = W, (3.114)
(p+p) ur
B — 3.115
0 Wa2 ( )
W
0, — %, (3.116)
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ap u,

_ op ur 11
Lo W 9p @ (3.117)
+ r r r KZ:U’T2
Co = p’ymp(,yl/z W)t e+ (p+p) (= WK = 2WK + —52), (3.118)
2 TWK: T r r r r r r r
So = (p+0p) u—2 — 2K, Wu" + %(u Y+, u ] +p(u")? + %.(3.119)

3.1.4 Boundary Conditions

In this section, we describe the boundary conditions we impose on our system. Our bound-
ary conditions are of two types: the symmetry boundary at the origin » = 0 and the outer
boundary at the maximum radius, r = R4,

Spherical Symmetry

We first discuss symmetry boundary conditions. This is not a “physical” boundary, since
it does not correspond to the edge of our physical domain. Indeed, it corresponds to the
centre of our domain. However, mathematically, the radial coordinate r € [0, Ryq.] for
some R,,.; and we must impose boundary conditions at r = 0.

To impose a symmetry boundary condition, we demand that we must be able to ana-
lytically continue every function f(r) to f(—r) for » > 0 in a way that corresponds to the
physics we would like to capture.

How we should analytically continue a function depends on the physical quantity it
represents. Scalar quantities (in the formal sense) must be the same for positive and
negative r and thus they must be even about r. For consistency, gradients of scalar
quantities, must therefore be odd in r.

Functions that represent fluxes of a conserved quantity must be odd with respect to
r. We can understand this in two ways. First, a flow of particles in the +z direction is
traveling away from the origin at positive r but traveling towards the origin for negative
r. Second, the origin defines a spherical shell of zero area and radius, so any flux through
the origin (quantities that correspond to gradients) must vanish.

We can carry our intuition about scalars and fluxes to other quantities as well. The
metric quantities @ and b; the extrinsic curvature quantities K7 and KJ; the lapse a; the
hydrodynamic density p, pressure p, and energy density 7; and the pressure of the aether,
P, are all “scalar-like” and should be even in r. On the other hand, the radial velocity
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of matter u, and the conserved momentum S'T are “gradient-like” and should be odd in r.
Therefore, we demand the following conditions on our quantities, both evolved (3.90) and
solved for elliptically (3.104):

a,| =b, =KD, =KD, = =P, = 0, (3.120)
r=0 r=0 r=0 r=0 r=0 r=0
ol =D. =7 = 0, (3.121)
r=0 r=0 r=0
and u,| =S, = 0. (3.122)
r=0 r=0

Asymptotic Boundary Conditions

In addition to the non-physical symmetry boundary at the origin, we have a boundary at
a maximum radius r = R,,,. This represents the edge of our domain of interest, but not
the edge of the universe. Therefore, our outer boundary conditions should represent that
the universe continues further away, but is uninteresting.

We encode this “boring” property several ways, depending on the physical quantity in
question. For example, for metric quantities like lapse o and space-like terms a and b,
we can impose asymptotic flatness ( , ). The idea here is that, far from the
origin, the metric should look roughly like the Schwarzschild metric

-1
ds? = — (1 — g) dt? + (1 — g) dr? 4+ r* [d6® + sin®*(0)d¢?] , (3.123)

where C'is an unknown constant. In this case, we can read the lapse at the outer boundary
7 = Ryae off from the Schwarzschild line element (3.123):

C
a —1- . (3.124)
r=Rmaz Rmax
To eliminate ¢, we differentiate Eq. (3.124) and relate «, to «, which gives ( ,
): X
a,=-—-o" (3.125)
r

If need be, one can proceed similarly for other metric quantities.
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Another type of boundary condition is the so-called “radiative” boundary condition
( , ). Here the idea is that, far from the origin, all propagating degrees of
freedom should behave as outgoing spherical waves. In spherical symmetry, this is

=0, (3.126)

r=Rmax

(ru) ¢ + (ru)

r=Rmax

for an arbitrary wave-like variable u ( , ). This boundary condition is
extremely good in spherical symmetry. However, with less symmetry, outgoing modes are
only approximately spherical waves. And in this case, energy can be reflected back into
the domain from the outer boundary.

A Final Note On Boundary Conditions

We conclude this section by noting that, if the outer boundary is sufficiently far from the
domain of interest, it doesn’t much matter what boundary condition we choose. Even a
simple Dirichlet boundary condition (zero time derivatives of our variables), if well chosen,
will suffice. The reason for this is, of course, because any pathologies at the outer boundary
will take a long time to propagate to the domain of interest, hopefully longer than the
relevant dynamical time scale.

Therefore, we will first report on results without outer boundary conditions and then
implement the simplest one that works for our purposes.

3.2 Initial Data

Setting our initial data starts with asking what our hydrodynamical degrees of freedom
are. As mentioned previously, the matter fluid has two degrees of freedom, the pressure p
and the radial velocity wu,. The aether pressure P is then dynamically fixed as a function
of these matter variables (with a proper choice of the initial condition for the trace of the
extrinsic curvature K, which as we will see will determine the initial velcity u,.). We choose
the initial pressure profile of the star to correspond to one of a neutron star in hydrostatic
equilibrium which mass resides near the maximum mass in the mass-radius relationship of
neutron stars'. This is done because a neutron star which mass is close to the maximum

IEvery point on such a mass-radius relationship corresponds to a neutron star with a specific value of
central pressure p(,—gy and in our current units, setting p,—gy = 0.012 will give us a neutron star which
mass is slightly lower than the maximum mass allowed and which radius is slightly higher than the radius
of the neutron star with the maximum mass.
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mass in the mass-radius relationship is more prone to instabilities, and therefore, a small
perturbation will cause its dynamical evolution away from hydrostatic equilibrium. Such
a hydrostatic profile was calculated by ( ) for the aether theory.
There, a shooting method was employed, and the profile was calculated by numerically
integrating the Einstein equations from the outside-in. For the purposes of this work, the
radial derivatives need to be of very high accuracy at the center of the star, and as a
shooting method from the outside-in, results in errors at the center of the star, we find a
new way of calculating hydrostatic profiles by integrating from the inside-out. This scheme
which comprises a derivation of the “Tolman-Oppenheimer-Volkoff (TOV) equation(s)” for
the aether theory will be explained in Section 3.2.1.

In order to give the star an initial velocity w, and have it evolve in time, we choose an
initial radially constant trace of the extrinsic curvature K and based on that calculate the
corresponding velocity profile of the star to linear order. This calculation will be presented
in Section 3.2.3.

3.2.1 TOV Equations for the Aether Theory

We start by defining two parameters based on the metric components
A= g, =d, (3.127)

B=—gy=a’ (3.128)

We set the metric variable b = 1 on the initial hypersurface as it can be absorbed into the
definition of the radius r. Therefore the metric can be written as

~B(r) 0 0 0
0 A(r) 0 0

Juv = 0 0 7’2 0 (3129)
0 0 0 r’sin*(0)
The generalized Einstein equation for the aether can be written as
G = 87T, (3.130)

where Gy = 1 in our units. The gravitational constant of the theory G = 1/(1 — A) is
absorbed into the the effective energy-momentum tensor 7},, which is given by

. 1
T = 7= | Tw = A9 + PUU, + gW)]. (3.131)
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Based on this effective energy momentum tensor, we can define an effective energy density
and pressure for the aether theory as

—-p 0 0 0
~ 0 p 0O
wo_
=0 050 | (3.132)
0 00 p
where
3\
5 3.133
po= pti—p (3.133)
. 1 -3\ A 1
p = 1_)\p+1_>\p+m77. (3.134)

As the static aether theory is equivalent to general relativity with an effective energy density
and pressure given by Egs. (3.133) and (3.134), the angular component of the Riemann
tensor Rgy in the static Einstein equation, like general relativity, is given by ( ,

):

r, A B 1
Rog=—1+—(——2+ =)+ — = —An(p — p)r’ 3.135
and the conditions of energy momentum conservation for matter and for the effective energy
momentum tensor (required by Bianchi identity) give ( , ):
B, 2D,
™, =0 — o = _—Pr (3.136)
B p+Dp
T B T 2 13 T
™ =0 = - =—-——". 3.137
In spherical symmetry, A is given in terms of the mass m enclosed inside radius r as
2
A=(1- ) (3.138)
r

and m is related to the effective energy density as

nﬂr):uATﬁOﬂZHWﬂdﬂ. (3.139)

Therefore we have 9 +9
—2m,r + 2m, (3.140)



Using the fact that m, = 47p r? we have

Using the above equality in Eq. (3.135) we get

B,
B

2m 2m
A, =—(1—-")2(-871p =), 141
- ( r) (87TP7‘+T2) (3.141)
1 24 A,
(RGG—Z‘I—DT-FA
_ -1
am(p— p) riot 4 2] 20 2:”/0
2m 2m
—(1 -3 (8715 -
L==2)" (<8mpr+5)
2m. N B m  2m N
(1= ==)"(=BrpT +8npr+ —5 — —5 L8P T)
2m
2 (1 - 4np = 142
(1—=7)" Umpr+3) (3.142)

Equations (3.136), (3.137) and (3.142) combined will give the two TOV equations for the

aether theory:

Dy 2m .

- =1-— dtp r+ —
L= 2 e+ 0
Dr 2m., _

=2 g+ )
m(r) = / p(r'") dxr'dr’

0

(3.143)
(3.144)

(3.145)

Equations (3.143), (3.144) and (3.145) can be integrated numerically from the inside-out,
starting at the center of the star (r = 0), given proper boundary conditions and assuming
an EOS that would relate the energy density of matter to its pressure, in other words the
function p(p) given by Eq. (3.19). About boundary conditions, we assume a value for the
central pressure, for example p(—g) = 0.012 (which in our units, corresponds to a neutron
star which mass lies near the maximum mass allowed) and we also know that

r=0

= 0,

= 0,

(3.146)

(3.147)
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Figure 3.1: Pressure profiles of matter and aether for a neutron star in hydrostatic equi-
librium with p,—g) = 0.012.

Dor = 0. (3.148)
r=0

The one remaining unknown boundary condition is the value of p,—¢) (in other words the
central value of the aether pressure P(,—g) corresponding to the value of p;—g). In order
to find this, we first attempted using a shooting method, trying different values of p(,—o);
for each value integrating the equations numerically and choosing the value for which the

radii where p and p tend to zero coincide. In other words the value of p(—g) for which
r =r

p—0

— Ruys, (3.149)

p—0

where Ryg is the radius of the neutron star. We find that the density profile calculated
using this value of p(,—¢) is not accurate and satisfies the Hamiltonian constraint (Eq. 3.78
with zero extrinsic curvature terms) only up to a few percent. The reason for this can
be seen in Figure 3.1. As seen in the logarithmic figure, changing the central value of
the aether pressure slightly does not affect the value of the radius at which that pressure
tends to zero to a great extent, as it falls very sharply around that radius. Therefore, the
shooting method’s condition (3.149) does not do a good job at determining the precise
value of p(,—g).

This incited us to use a different method for calculating the value of pi—g). This
method is based on a result found originally in a previous work ( ,
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), which established that the structure of a neutron star in aether theory, is equivalent
to the structure found in general relativity with an effective equation of state, which can
give us p(p) and thus determine p(—o), based on the value of the central pressure of matter
P(r—=0)- Combining equations (3.136) and (3.137) we get

B P (3.150)
p+p p+p
d dp
P _ 9 (3.151)
p+p p+p
I (O RS BLOR e ¥ B Al = Sk o S el (3.152)
dp p(p) +p p(p) +p pr+ s +p

where the last line uses Eqgs. (3.133) (the effective energy density of acther) and (3.19) (the
EOS of matter). Eq. (3.152) can be integrated numerically to find p(p) using the boundary
condition

D = 0. (3.153)
p=0
The numerical methods used for dealing with differential equations like Eq. (3.152) where
dp 0
e BN e (3.154)
dp 30 0

will be described in Section 3.4. Having the function p(p) will allow us to find the correct
Pr=0) and integrating the TOV Egs. (3.143) and (3.144) along with (3.145) will give us
pressure profiles p(r) and p(r) for the neutron star that satisfy the Hamiltonian constraint
with a much higher accuracy?. The numerical method used for integrating the TOV
equations will also be explained in Section 3.4.

3.2.2 Adding an Atmosphere to the Star

The equations described in Section 3.1.3 break down in vacuum. In particular, if p and p
vanish, we can not evolve the conserved variables S, and 7. Worse, in vacuum P vanishes,
making the lapse o undefined. To handle this, we add an artificial atmosphere of small
density to the exterior of the star ( , ). Ideally the atmosphere is small enough
that it induces a negligible error in the physical result but it still allows us to evolve our
system outside the star.

2Close to numerical precision values for resolution of 1000 radial grid points.
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Figure 3.2: Pressure profile of matter on initial hypersurface obtained integrating the
TOV Egs. (3.143) and (3.144) (blue curve) and the TOV Egs. (3.155) and (3.156) with

atmosphere (green curve).

The way we add the atmosphere is by exponentially truncating our radial pressure
derivatives in the TOV Egs. (3.143) and (3.144) in the following way:

Dy = —(p +p)(1 - QTm)—l (477']3 T+ %) X Erunc(r)v (3155)
Br = (D)1= 227 (4P + B) X Frrunelr), (3.156)
where Fjune is given by
1 1
Frrune(r) = 5 + 5 tanh | Syrune|(Rns)* — 77|, (3.157)

where Si.une controls the slope of the exponential truncation and Ryg is the radius of
the neutron star (found through solving the original TOV equations without atmosphere).
The reason we have the squares of radius in the above expression is the fact we need our
pressure profiles to remain even with a zero radial derivative at the center of the star. The
results of integrating Eqs. (3.155) and (3.156) assuming Syune = 1.5 are shown in Figures
3.2 and 3.3.

It is expected that such an exponential truncation will cause a violation of the Hamilto-
nian constraint as the Einstein equations are no longer satisfied. However if this truncation

29



10t

- IOg(|PaF1IIer'|)
— log(pnmfter)
107
o 107
>
(9]
[%2]
g
* 10"
10° |
10 . . . . . . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

r

Figure 3.3: Pressure profiles of matter and aether on initial hypersurface obtained inte-
grating the TOV Egs. (3.155) and (3.156) with atmosphere.

takes effect near the radius of the star (in other words at very low values of energy density
and pressure), the resulting violation of the Hamiltonian constraint will be small®.

As the system evolves, special care must be taken to ensure that the atmosphere remains
well-behaved. The density and pressure of the system must remain positive and the velocity
of the atmosphere must remain small.

3.2.3 Initial Extrinsic Curvature and Velocity

As mentioned in Section 3.1.1, the aether pressure is given by
Q0
P=XB=—-1) —,
( dp ) K
where 2y = p;/a. One immediate consequence of this equation is that in the limit of
hydrostatic equilibrium (our initial condition)
Qo 0
_ _> —_
K 0

(3.158)

— 7>h,ydrostatic; (3 159)

t—0

3The Hamiltonian constraint is satisfied up to 10~¢ with a resolution of 200 radial grid points and up
to 1079 for 1000 grid points.
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where Phydrostatic 15 the pressure of the aether found by solving the TOV Egs. (3.143)
and (3.144). We would like to start with a small radially constant trace of the extrinsic
curvature K on the initial hypersurface so that the above limit is still satisfied. This will
result in a correspondingly small value for €2y which will in turn give the initial velocity
profile for the star. The reason we start by assuming K and then find u, is that we
would like K not to cross zero in the star as that may cause complications in solving our
equations. One problem arising from K crossing zero is the % limit in calculating P which
will make things complicated numerically. A more fundamental complication is related to
the sign of K. As we will demonstrate in the next section, the sign of K is of fundamental
importance in determining the nature of the differential equations at the center of the star,
and only one sign is allowed for physical stability, therefore K crossing zero might have
pathological consequences for our system of equations. Therefore starting with

K| =K, (3.160)

t=0
where |Ky| = constant > 0, Eq. (3.158) gives

KyP

Qp= 0"
T ABE 1)

(3.161)

where P = Phydrostatic; P = Phydrostatic ald p is related to p through the polytropic EOS. In
order to find u, from €2y, we linearize €}y and only keep terms of first order in u, and K.
As mentioned previously, €2y is given by

BySo — QoCo
Qy=—7"—"—. 3.162
" AQo — LBy (3162)
To linear order in u, and K we have
Uy
Bo = (p+p) 5 (3.163)
Ay = 1, (3.164)
p+p
Q, = 22 (3.165)
op u,
— 1
Ly 9p a2’ (3.166)
+p T T
Co = %(’YWU )+ pru” = (p+ p)Ko, (3.167)
Pr
Sy = 2 (3.168)
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Therefore €2y simplifies to

1
Qo= (pr —pr) v+ (p+p) [Ko - m(v” 2u”),r]. (3.169)

If we define the variable Z = v/2u” and combine Eqs. (3.161) and (3.195), we get the
following differential equation for Z:

z, = D= Prog o gy [1 - — P } (3.170)
ptp AB5E—1D(p+p)
Solving the above differential equation with the boundary condition®
zl =o, (3.171)
r=0

will give us the initial velocity profile of the star u, corresponding to the choice of Kj.
The results of this calculation for different values of Ky are shown in Figure 3.4. As can
be seen in the Figure, u, o r near the center of the star. As expected, the atmosphere
has a higher velocity compared to the inside of the star as it does not satisfy the static
Einstein equations. In order to see which sign and order of magnitude of K is suitable for
our initial conditions, it is time to look at the nature of our dynamical equations at the
center of the star.

3.2.4 The Nature of Equations at the Center

Before studying the evolution numerically, it is suitable to investigate analytically the
nature of our equations at the center of the star. Near the center, at r = €, where € is a
small number, the order of magnitude of the radial derivatives of the fluid’s pressure and
energy are

pr = Ole), (3.172)
P, = Ofe). (3.173)

Near hydrostatic equilibrium, if we choose a trace of the extrinsic curvature of order

K = 0(¢), (3.174)

4As the radial velocity needs to be zero at the center of the star in spherical symmetry.
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Figure 3.4: Velocity profiles u, found by integrating Eq. (3.170) assuming different values
of K().

and as near the center we have u, = rH, where H is a constant, then Eq. (3.170) gives

3H~KP— app , (3.175)
AB3 — D +p)
which demonstrates what we already saw in Figure (3.4) that
H=0(K)=0(€). (3.176)

In deriving Eq. (3.175) from (3.170), and also from now on in our calculation, we neglect
terms like p,u” = O(e x €) — 0. We also assumed that near the center of the star and
close to hydrostatic equilibrium a ~ 1.

Combining Egs. (3.67) and (3.70) gives the following differential equation relating the
lapse function and the extrinsic curvature:

K,
(Qa), = Qoz?’ + (Bp, — pr)Ka (3.177)

63



where

dp
Q = — —1)Q
0 BoSo — Q0Co
0 = T~ 5
Ao Qo — LoBy
Ay = W,
~ (p+p)u,
Bo = Wa?
+p) W
QO = (p a];) )
op u,
Ly = 8_p pos
p+p
Co = ~172
2u, W KT
S = (p+tp)|———

(3.178)

(3.179)
(3.180)
(3.181)

(3.182)

(3.183)

T, 2

K u,
(V2 ), + pou” + (p+p) (- WKL — 2WEK§ + ;‘V ), (3.184)

a?

—2K;Wu" + &(urf +u”, ur] +p.(u")? + %. (3.185)
a

In Eq. (3.177), we can neglect the second term as it is of order O(e x €') and have

Qoa), K,
(Qo} = 7’, (3.186)
, (3.187)

where C' is an integration constant. In the limits where p, ~ p, ~ O(e) and u,/r = H ~
K ~ O(¢€), and neglecting second order terms in € and ¢’ and terms of order € X €, we get

Ao
By
O

Lo

Co
So

Therefore (2 becomes

= P

1, (3.188)
(p+p)Hr, (3.189)
p+p, (3.190)
g—iHr, (3.191)
(p+p)(3H — K), (3.192)
(3.193)

) Q= (3@ —1) Bodo = GoCo (3.194)

dp Ao Qo — LBy
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= 32 _1)(p+p)(K —3H). (3.195)

Combining Egs. (3.187) and (3.195), and evaluating K we get

9 _ 07
K= 3[8{(339 Do +pla (3.196)
3% —Dlp+p)a—-C

As we saw in Eq. (3.89), the time derivative of K is given as a function of the lapse function
as
K;,=-Va+.. (3.197)

Taking the time derivative of Eq. (3.196), and only keeping terms with time derivatives of
the lapse function, and using Eq. (3.197), we get

3CH (332 —1)(p+p)

(32— 1)(p+p)a— C

5 ap +.. = Via +.. (3.198)

Near the center of the star where the first radial derivatives of the lapse function are small,
the above equation has the structure of a “diffusion equation” and is not a wave equation.
This is a fundamental property of the aether equations near the center of the star and near
hydrostatic equilibirum. Diffusion equations like wa; = V2a are well-posed when w > 0
and not well-posed when w < 0. Therefore, the sign of the coefficient of a; in Eq. (3.198)
is of fundamental importance for the stability of the problem. The sign is determined by
Qo H

CH(3§—7; —1) = N H (32—7; —1) = (32—]; —1)*(p+p)(K — 3H) Vs (3.199)
and as H = u, /r and K have opposite signs as seen in Figure 3.4, and as o > 0, ultimately
the above expression will be positive only when K — 3H < 0, which as K and H have
opposite signs is equivalent to the conditions

(3.200)
(3.201)

To summarize, the lesson learned from this analytical approximation, is that the aether
theory can be evolved in a well-posed way only when matter is “expanding” in the frame
of aether and the problem of collapse of matter in the frame of aether is not be well-posed.
This theoretical expectation was confirmed by our numerical evolution preliminary results
as will be discussed in the following section.

and
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3.3 Time Evolution

This section comprises work which is still in progress. In Section 3.3.1, the time evolution
algorithm (the order in which we solve equations described in Section 3.1.3) will be de-
scribed. We will briefly report on the preliminary results we found from the time evolution
in Section 3.3.2. Much work has yet to be done in obtaining further results, testing and
analyzing them.

3.3.1 Evolution Algorithm

The steps to take in order to evolve the system of equations formulated in standard form
(described in Section 3.1.3) are as follows:

1.

Obtain initial matter pressure p;—g), aether pressure Pi_gy and mass m—g) from
integrating the TOV equations (3.143), (3.144) and (3.145).

. Use the mass m;—¢) to obtain initial radial metric component a(—¢) = \/Grr = (1—

2m(t:0)/r)*1/2 and set by—g) = 1.

. Assume an initial value for the trace of the extrinsic curvature K—¢y = Ky, which

will be radially constant on the initial hypersurface.

Use the values of Ku—q), pr=0), Pr=0), ap=0) and by—gy to find the initial velocity
profile u,;_g) through integrating Eq. (3.170).

. Having the initial Primitive State Vector Ny—o) = [P(=0), trt=0)], @=0), be=0) and

K10y, build the State Vector Vii—oy = [S;@=0), Tt=0), K(i=0), =0y, b=0)] through
the algebraic equations given in Section 3.1.3. The matter EOS equations given in
Section 3.1.1 need to be used to relate the pressure, energy density and rest-mass
density of matter.

. Input the initial conditions into the State Vector V(s = V—o) to be evolved.

Define function K that takes the State Vector Vi) = [ST(t), Tw), Kuy, aw), b and
gives

’C[V(“] - [p“)’ iy, Kl Ko Poys o | (3.202)
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where the matter pressure and velocity are found from S, and 7 through the algebraic
relations given in Section 3.1.3. The radial and angular extrinsic curvature compo-
nents are found through solving the momentum constraint (3.80). The pressure of
aether P is found through the algebraic Eq. (3.67). Finally, the lapse function « is
found through integrating Eq. (3.70). Calculating the extrinsic curvature components
and the lapse function forms our Awziliary Parameter Vector H (3.105).

8. Having V) and K[V(t)], calculate the Fluz and Source Vectors (F') and M)
using equations given in Section 3.1.3.

9. Define a function f that numerically integrates the State Vector as
f [V(t% F ), M(t)] = Vst (3.203)

using 0V + 0,F" = M (3.90).
10. Input the evolved vector Vs into the State Vector Vi) = Viiis1) to be evolved.

11. Repeat steps 7, 8, 9 and 10.

3.3.2 Preliminary Results

The dynamical time of our problem 1/y/Gp (where p is the average mass density of the
star) is of order unity. Our numerical results confirm our theoretical expectations about
the role of initial conditions in the well-posedness of the equations (the analytic limit of our
equations at the center of the star near hydrostatic equilibrium presented in Section 3.2.4).
We do indeed find that for contracting matter initial conditions (H < 0 and Ky > 0),
the numerical results show an instability appearing at the center of the star in time scales
t > 1075. For expanding matter initial conditions (H > 0 and K, < 0), the equations are
hyperbolic at the center of the star. As can be seen in Figures 3.7 to 3.6, evolving the
system to times ¢ ~ 1073 exposes a problem with our outer boundary. The root of this
problem is that we have not yet imposed an outer boundary condition on our system and
have only fixed boundary conditions at the center of the star based on spherical symmetry
as mentioned in Section 3.1.4. At the outer boundary, there will be in-going modes of
propagation and out-going ones. The in-going modes will insert energy into the system
and by violating energy conservation, tiny numerical errors will grow exponentially. We
need to impose a boundary condition so that our problem is well-posed, thus damping the
exponential growth of these modes. We choose the simplest outer boundary conditions,
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evolution of the trace of extrinsic curvature K.

namely Dirichlet conditions, where we set the time derivatives of our variables to zero
at the outer boundary. This obviously violates the Einstein equations, however, as the
boundary is far away, the effects will not have time to propagate inward in our running
times.

3.3.3 Final Results

Having set our outer boundary conditions, we can now evolve our variables to longer time-
scales. Figures 3.8 to 3.16 show the time evolution of our variables up to time scales
t > 0.05 with the initial trace of the extrinsic curvature set to Ky = —0.01.

As can be seen in Figure 3.8, the trace of the extrinsic curvature reaches zero near the
radius of the star. This prevents us from running our code for longer times, for a number
of reasons: First and foremost, K crossing zero and becoming positive takes us to the not
well-posed regime discussed in Section 3.2.4, and second, the aether pressure given by Eq.
(3.67) can not be numerically calculated any more when its numerator and denominator
both tend to zero.

While the second problem is purely numerical, the first problem can not be necessarily
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Figure 3.16: Evolution of the lapse function a.

over-come by using numerical techniques and may be a fundamental problem with the
theory. We can summarize the problem in the following way: We found that a collapse
of matter in the frame of the aether is not well-posed. We also find that starting with
expanding conditions, our variables evolve towards a collapse in certain regions of the grid,
which is not well-posed.

3.3.4 Convergence Test

A necessary test for the evaluating the validity of our results is a convergence test. We
perform this test for one of our most important variables, the trace of the extrinsic cur-
vature. If the grid spacing is given by h, the numerical value of the trace of the extrinsic
curvature K} can be expressed in terms of the true value K as

Ky =K +hE, +h*Ey + h*Es + ... (3.204)
The leading term in the above expansion is given by the order of the numerical method as
K, — K ~ hPE, (3.205)
where p is the order parameter. We can therefore write
h 1
Ky — Ky = [(Z)p—h”}E:Eh”[(Z)p—l}, (3.206)
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Figure 3.17: The convergence of the trace of extrinsic curvature.

h h 1 1
Kijg = Kppa = | (=G |E=Eh[ (=G ] (3.207)
As a result
Kija— Ky, (1) -1

lo =lo 4 = 048 for p=1 3.208
g (Kh/4 — Ko : [(i)p - (%)”] b (3:208)

0.70 for p=2

= 095 for p=3

= 1.23 for p=4

We ran our code with three resolutions of 100, 200 and 400 grid points (where the number
of grid points scales inversely with the grid spacing h). Figure 3.17 shows the convergence
results for the trace of the extrinsic curvature near the time 0.03 (the K subscripts are
now number of grid points). We see that we are obtaining fourth-order convergence inside
the star with the exception of the center. The convergence order drops in the atmosphere,
which is expected, due to our unphysical outer boundary conditions. The fact we are not
seeing convergence at the center of the star is due to our derivative operator’s inability to
calculate divergences accurately at the center in spherical symmetry. This results in an
inaccurate Laplacian (e.g. in Eq. 3.89). This problem will be discussed in more detail in
Section 3.5.1.
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3.3.5 The Hamiltonian Constraint

One of the equations we are not directly solving in our time evolution scheme is the
Hamiltonian constraint (3.78) given by

167G ®p = R+ 4K K) + 2KJ’. (3.209)

It should stay valid during the course of evolution and therefore serves as a useful verifica-
tion method for our numerical scheme. We define the dimensionless parameter H as

_ 167G ®p— R — 4RI Kf - 2K
= 167G ©p '

This dimensionless number gives us a fractional measure of the violation of the Hamiltonian
constraint at each radius of the grid. At each time step of the evolution, we define a volume

averaged quantity H as
H= /’H 47T7’2d7“//471'7’2d7“. (3.211)

Figure 3.18 shows the time evolution of H for three resolutions. We see that the results
converge as we go to higher resolution. We also see that we start with an average Hamil-
tonian constraint violation of less than 0.1955% and the violation decreases as time goes.
The initial violation is to be expected, as we are assuming hydrostatic initial pressure and
density profiles for the neutron star (in other words profiles satisfying 167G ®)p = R) but
also assuming an initial extrinsic curvature (K, = —0.01). The violation is mainly caused
by these extrinsic curvature terms in the Hamiltonian constraint. One may argue that
a 0.1955% initial violation is small, comforted by the fact its value decreases with time
during the evolution of the system.

H

(3.210)

3.4 Numerical Methods

In this section we consider the problem of solving numerically the equations described
so far. We describe general problems that we must consider when solving our problem
numerically and how we handle these issues.

3.4.1 Choosing a Derivative Method

The equations described in Section 3.1.3 are, of course, differential equations. We solve
them by discretizing each derivative operator in some way and replacing it by a finite-
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dimensional linear operator. We would like to distinguish between space-like derivatives,
which are derivatives with respect to the radius r for example, and time-like derivatives,
which describe evolution in time. For now, we will describe only the space-like deriva-
tives. Our approach for the time-like derivatives will be described in Section 3.4.4. To
approximate space-like derivatives, we approximate space as a grid of discrete points, each
separated by a distance Ar. At each grid point, we approximate our function as a piecewise
p'"-order polynomial which interpolates smoothly between the p/2 adjacent grid points.
The derivative of a polynomial is known and we therefore attain an approximation of the
derivative of our quantity of interest. This technique is called finite differences.’

Omne important consideration is that, through equations (3.70) and (3.67), the lapse «
depends on the aether pressure P, which depends on the derivative of the matter velocity
u,. And through Eq. (3.89), the Laplacian of the lapse appears in our evolution equations.
Therefore, tmplicitly, our system of equations depends on the third derivative of the matter
velocity u,. We found that this implicit dependence required us to use high-order approx-
imations of our derivative operators, such the error in the derivative operator is of order

5There are, of course, other techniques than finite differences. And there are many subtleties to finite
differences approximations. Our current technique is relatively naive. We discuss the possible advantages
of using more sophisticated techniques in Section 3.5.
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O(Ar*), where Ar is the distance between two discrete grid points. Otherwise we found
that this implicit repeated differentiation introduced errors of order O(1) in our solutions.
We therefore chose a fourth-order finite-differences scheme to represent derivatives in all
of our quantities ( ) ).

3.4.2 Approximating Derivatives in Spherical Symmetry

A typical finite differences scheme approximates the computational domain by evenly
spaced discrete points separated by a distance Ar. For example, the domain r € [0, R,q.]
might be approximated as

ri=1i(Ar), i=0,1,2,.... N

such that ry = R,,... However, we would like our approximate derivative to respect the
symmetry boundary conditions described in Section 3.1.4. To effect this, we use so-called
“ghost points.” Formally our computational domain is only on the domain r € [0, R4z,
and therefore our discrete grid points exist only for » > 0. However, we add additional
grid points at r < 0 and analytically continue all functions to negative r in such a way that
satisfies whether they should be even or odd in r. Our derivative operator then correctly
uses the correct symmetry (or antisymmetry) to differentiate our functions at or near the

origin ( , ). With these additional symmetry conditions a grid
r € [0, Rpnaz] would be approximated as
ri =i(Ar), i ==2,—1,0,..,N s.t. *y = Rz (3.212)

for reasons that will become clear, we call this our unstaggered grid.

An additional difficulty in spherical symmetry is that many quantities (in particular,
the primitive hydrodynamic variables) are define as

_g(t,r)

f(t7 T) - rp
where p > 0 is some power and f and g are functions such that g/r? has a well defined
limit as » — 0. This is not a problem analytically, but we must decide how to calculate f

at r = 0 given g(t,r). One strategy is to use L’hopital’s rule so that

1o
= o (t,r) .

Y

f(t,r=0)

Another strategy is to use the symmetry properties of the function. We can analytically
continue f(|r]) to f(—|r|), which is well defined, and approximate f(r = 0) by the poly-
nomial that interpolates to f(r) near the origin, i.e., for 0 < |r| < € for some € > 0. Both
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of these approaches induce an error at the origin which, depends on the accuracy of the
derivative operator or the polynomial interpolant.

origin regular points origin  regular points
1 N 4 N
OO0 060 OO0 e -0
N D R —
ghost Ar ghost % Ar
points points
(a) The unstaggered grid. (b) The staggered grid.

Figure 3.19: Our unstaggered and staggered grids. Both grids approximate our continuous
variable r as a discrete set of points, separated by Ar. However, the unstaggered grid
includes the origin while the staggered grid does not. This Figure was made by Jonah
Miller.

We can also avoid this regularization problem entirely by removing the origin from
the computational grid. In this case, we don’t approximate r € [0, R]. We approximate
r € (, R]. To keep the distance between all grid points the same, we stagger our grid about
the origin ( , ). We therefore approximate the domain r € (0, R]

as
re=i(Ar), = 5 1.
2" 272
Figure 3.19 schematically compares the staggered and unstaggered grids. The staggered
grid allows us to avoid regularizing quantities, and therefore additional errors, at the origin.
However it makes analyzing our numerical solutions for different Ar more difficult, since the
grid points r; don’t line up with each other. Our current implementation uses a staggered

grid.

N s.t. 1y = Rinaa. (3.213)

3.4.3 Integrating in Space

When solving for the initial data and when solving for the auxiliary variables 3.105, we
often solve ODE systems of the form

dy  Az,))
e (3.214)
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such that A(zg,Y) = B(zo,)) = 0 for some x = xy. If A/B has a well defined limit as
x — xp, then there is no problem analytically. However, if we wish to solve Eq. (3.214) in
the neighborhood of xj, we need to regularize somehow.

A generic solution is to solve the related equation

d
B )™ = A(z,Y) (3.215)
dz
for Y. To solve (3.215), we use the so-called direct method ( : ). In this

approach, we put = on a grid and approximate our derivative as described and in Section
3.4.2. This transforms the differential Eq. into a linear system of equations—one for each
grid point—which we solve using a standard root-finding method such as the Newton-
Raphson method ( : ). We note that the solution to Eq. (3.215) may be
highly non-unique at x = xy. However, because our discrete approximation of the derivative
operator is non-local, the solution at x = x¢+Ax depends on the solution at x = xg and the
discrete version of the equation becomes unique. Importantly, if x is a radial coordinate,
this technique respects the spherical symmetry conditions at the origin.

3.4.4 Integrating in Time

To evolve our system in time, we use the method of lines ( ). By putting
our system on a grid and approximating our space operator, we transform our partial
differential equation into a coupled system of ordinary differential equations for the state
vector (3.91) at each grid point r;. We solve this system using a standard numerical
integrator such as an explicit (or implicit) Runge-Kutta method ( ). Note
that each time we calculate the right-hand side of Eq. (3.90), we must also calculate
the quantities (3.105). We currently use the explicit fourth-order adaptive Runge-Kutta
method developed by ( ).

3.5 Future Numerical Improvements

The results so far presented in this chapter are products of on-going work. Here we describe
the potential improvements we would like to see in our numerical approach.
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3.5.1 Summation By Parts in Spherical Symmetry

Consider the first-order hyperbolic system of equations,
Y = M'9,), (3.216)

where each M is a matrix and ) is a large collection of functions of both space and time
which we are interested in evolving. One powerful way to prove that system (3.216) is well-
posed is to find an energy norm. Roughly, an energy norm is a non-negative functional
that depends in a non-trivial way on every component of ). If one can find such an energy
norm and show that it is non-increasing, then the energy® is bounded from above and
below and the system 3.216 is symmetric hyperbolic and thus well-posed ( ).
If a suitable energy norm can be found, the proof that it is non-decreasing usually relies

heavily on integration by parts,
b
/ udv = uv
a

where u and v are arbitrary functions, which plays a key role in translating information
encoded in Eq. (3.216) into information about the time evolution of the energy norm.

b
- / vdu, (3.217)
ab a

The discrete analog of well-posedness is stability. If a continuum equation is ill-posed,
it holds little predictive power. Similarly, if the discrete approximation of a continuum
equation is unstable, there is little hope of solving it numerically. One way to show that
the discrete approximation of a symmetric hyperbolic system is well-posed is show that the
discrete approximation of the corresponding energy norm is non-decreasing. And a key tool
in proving that the discrete energy is non-decreasing is the discrete analog of integration
by parts, summation by parts (SBP):

N
Z w; [UZ(DU)Z —I— (Du)zv,] = UNUN — UpTg, (3218)
=0

where u; = u(r;) and v; = v(r;) are the discrete approximations of u and v, D is a discrete
approximation of a derivative operator, and w; is a weight matrix such that the sum  , w; f;
is an approximation of the integral [ f(r)dr ( , ). Therefore, to ensure stability,
it is highly desirable that any discrete derivative operator satisfy summation by parts.

6The energy norm does not have to correspond to a physical energy. It just has to be a non-negative
functional.
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As described in Section 3.4.1, we use a standard fourth order finite differences operator.
In Cartesian coordinates, this operator satisfies summation by parts in the bulk and only
requires modification at the boundaries of the domain. Unfortunately, in spherical coordi-
nates, this is not the case. This means that special care must be taken to ensure stability of
our system. In particular, the Laplacian operator in spherical coordinates requires special
care and must be regularized analytically in some way. Unfortunately, as of the writing
of this chapter, we have not found a way to regularize the Laplacian of the lapse « as it
appears in Eq. (3.89). This means our solutions may diverge in finite time.

Recently, in the context of the wave equation in spherical coordinates,
( ) derived a modified fourth-order finite differences approximation of the Laplacian
operator that satisfies summation by parts in spherical symmetry. We would like to modify
our scheme to utilize this operator, which we hope will provide improved stability and
robustness.

3.5.2 High-Resolution Shock Capturing

The relativistic Euler equations are prone to shocks, discontinuities in the velocity, density,
or pressure. These shocks, naturally, present numerical difficulties. High-order finite differ-
ences approximations of shocks tend to exhibit instabilities and numerical ringing (

, ). This can be cured by artificial dissipation—special linear operators which
pull energy out of the system without disturbing the continuum limit—but at the price of
accuracy. The shock smoothes out and spatial resolution near the shock is lost.

We would like to have the capacity to capture shocks: partly because one may develop,
and partly because the surface of a star is very much like a shock and tracking the surface
with high resolution is essentially shock capturing.

The typical solution is to use first and second-order high-resolution shock-capturing
schemes. These methods reduce the evolution of a system to a series of Riemann problems
( , ), which are toy models for a hydrodynamical shock with an exact analytic
solution. Unfortunately, because our system implicitly depends on third-order derivatives
in space, low-order methods are not an option. This is why we are using a fourth-order
finite differences scheme, as described in 3.4.1.

There are, however, high-order methods capable of capturing shocks. Perhaps the
most straightforward technique is to use the high-order weighted essentially non-oscillatory
(WENO) finite differences methods developed by ( ) based on the work of

( ) and others. These derivative operators respect conservation laws
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in such a way that shocks are accurately represented without excess artificial dissipation.”

Another approach is to change, on a fundamental level, the approximation we make
of our function and the system it should solve. Spectral methods approximate a function
u as a linear combination of known, globally defined basis functions, in which case the
derivative of w is analytically know. Spectral methods can attain so-called evanescent
accuracy where the numerical error in a solution decays exponentially as a function of the
number of modes used ( , ). This has obvious advantages in a
case where low-order derivatives are highly undesirable.

Unfortunately, spectral methods are also notoriously bad at handling discontinuous
solutions, including shocks. Indeed, spectral representation of a function with a shock will
suffer O(1) errors. This is because, at their heart, spectral methods rely on a Fourier series
expansion, and a Fourier series develops O(1) errors in the presence of a discontinuity.
This is the well-known Gibbs phenomenon ( , ).

However, in a series of papers ( ) developed a technique for removing
the O(1) errors in post-processing, after a simulation has been run. Combined with other
techniques such as the spectral viscosity developed by ( ) and spectral edge
detection developed by ( ), this opens the door to spectral simulations
of shocks with evanescent accuracy.

These techniques are an active area of research and not yet robust. In particular,
the post-processing requires foreknowledge of the position of the shock, which is difficult
to attain in more than one dimension ( , ). For the moment, however,
our problem is a one-dimensional problem. This makes it an ideal application for these
powerful techniques. We note that spectral methods offer us significant flexibility in terms
of representing our system. We can choose spectral basis functions that respect spherical
symmetry and, if we like, extend all the way to r = oco. Therefore, if we need additional
accuracy, spectral methods are extremely appealing.

3.5.3 Implicit Time Stepping

As derived Section 3.2.4, the character of the evolution Eq. (3.89) for the extrinsic cur-
vature K is not necessarily hyperbolic. In particular, at the origin and near hydrostatic
equilibrium, the equation is indeed parabolic, i.e., like the heat equation

Uy = KU gy

"For a review, see the article by ( ).
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As described in Section 3.4.4, we use an explicit Runge-Kutta integrator to integrate in
time. Unfortunately, because information propagates infinitely fast through a parabolic
system, the stability of an explicit integration parabolic system depends very strongly on
the discrete time steps one takes as one advances in time; the time steps must be much
smaller than for a hyperbolic system. This make computation time extremely long.

One remedy to this is to integrate in time implicitly ( ). Consider the
simple ordinary differential equation

d
—y = f(t,y). 3.219
v =1ty (3.219)
We can discretize the derivative on the left-hand-side of Eq. (3.219) by taking Newton’s
definition and simply failing to take a limit:®

dy _ y(t+ A — y(1)

dt At

so that Eq. (3.219) becomes

y(t + At) —y(t)
At
To step forward in ¢, we simply solve Eq. (3.220) for y(t + At). However, there is an

ambiguity in Eq. (3.220): at what time do we evaluate the right-hand-side, f(t,y). We
have two choices. We could solve the equation

! (3.221)

= f(t,y). (3.220)

or we could solve the equation

y(t+ At) — y(t)
At

Both choices are equally valid because they have the same limit as At — 0. Solving Eq.
(3.221) leads to a ezplicit scheme, while solving Eq. (3.222) leads to a implicit scheme. The
two schemes described here are first-order. However higher-order, more accurate schemes
can be constructed ( : ).

= F(t+ At y(t + At)). (3.222)

Implicit schemes are more robust in the sense that they are often stable (as described
in Section 3.5.1) no matter how large At is.® However, implicit schemes also often involve

8There are more sophisticated ways to take a derivative. We use this method simply as a clear example.
9Note that this does not mean they are accurate no matter the size of At! The accuracy of an implicit
scheme depends on At and on the order of the method, just like an explicit scheme.
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solving a large system of linear equations and they can therefore be computationally costly.
Therefore, the choice between using an implicit and explicit scheme for time integration is a
balance between stability and computational cost. If a system is purely hyperbolic, explicit
schemes are usually better. However, we know that our system is not purely hyperbolic.
We may therefore gain the ability to take substantially larger time steps and evolve our
system in much less walltime by using an implicit scheme.

3.6 Conclusions and Future Prospects

In this chapter, we have studied the dynamics of a neutron star in the gravitational aether
theory. As the theory violates Lorentz invariance, it introduces a preferred frame. This
preferred frame which is the frame of the aether is a logical choice of a coordinate system.
Going in the frame of aether, along with setting the shift vector to zero, gives the lapse
function based on the aether conservation equations and fully determines the gauge. We
formulated our equations in standard form suitable for numerical evolution. The hydrody-
namical equations were put in a flux-conservative form ensuring numerical stability. We
work in spherical symmetry ensuring that even functions have zero radial derivatives at
the origin and odd functions have zero values at the origin. As outer boundary conditions,
we chose Dirichlet conditions, setting the time derivative of our variables to zero at the
outer boundary. Due to adding an atmoshere to the star, the outer boundary is sufficiently
far so that the effects of unphysical conditions at this boundary do not propagate inside
in our running times. We chose an equilibrium configuration of a neutron star as our
initial condition, perturbing it by adding a small extrinsic curvature (and thus by adding
radial velocity). In finding our hydrostatic configuration, we improved the method used
in Chapter 2, by deriving the Tolman-Oppenheimer-Volkoff equations for the aether the-
ory. By analyzing the nature of our equations near hydrostatic equilibrium, we found a
diffusion-type equation that is well-posed when matter is expanding in the frame of the
aether and not well-posed when matter is collapsing. This finding constrained the choice
of initial conditions to the expanding mode.

Using the numerical methods described in Section 3.4, we evolved our system of equa-
tions based on the evolution algorithm described in Section 3.3.1 up to a time t ~ 0.052
in units where Gy = 1, ¢ = 1 and the polytropic EOS factor K = 1. Near this time, the
trace of the extrinsic curvature crosses zero. We can not presently evolve past this point.
The reasons for this may be numerical or more fundamentally rooted in the physics of
the theory. Numerically, when the trace of the extrinsic curvature goes to zero, the time
derivative of the energy density (or the value of ) also goes to zero, and therefore it
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becomes challenging to calculate the value of the pressure of aether given by Eq. (3.67) as
it goes to 0/0. This is a numerical issue, as there is a well-defined limit to this ratio.

A more fundamental issue however is that starting in the well-posed (expanding matter
in the frame of aether) mode, we seem to be evolving towards the not well-posed regime
(collapse).

To evaluate the validity of our numerical results, we performed a convergence test and
found that inside the star (with the exception of the origin), we are achieving fourth-
order convergence. The problem at the origin is related to our derivative operator’s not
giving a good apporximation of the divergence (and thus of the Laplacian) at the origin.
This, as mentioned in Section 3.5.1 can be resolved, taking into account the recent results of

( ) that derived a modified fourth-order finite differences approximation
of the Laplacian operator that satisfies summation by parts in spherical symmetry. We
also calculated the volume averaged fractional measure of the violation of the Hamiltonian
constraint, and saw the constraint is violated at most by 0.2% and the violation decreases
with time.

In addition to improvements in our numerical methods mentioned in Section 3.5, an
immediate next step for this work would be to compare these results, with the results
from General Relativity. To do this, we can for example, calculate a frame-independent
scalar variable such as the redshift at the surface of the star, both in General Relativity
and in the aether theory. In Section 3.1.1, we mentioned that the aether theory can be
generalized, replacing the 1/4 factor in the Einstein field equations with a more general A
parameter. Taking A to zero would smoothly move the theory towards General Relativity.
The numerical results reported in this chapter were for A\ = 1/4 for which the aether theory
solves the old comsological constant problem. One could calculate a range of results for
different values of A and verify that the results tend towards General Relativity in the
A — 0 limit. A possible numerical complication is that in the A — 0 limit, our current
gauge conditions become ill defined as we are in the frame of aether, and aether’s pressure
vanishes in this limit. Therefore, as one moves towards A — 0 the gauge freedom increases
and needs to be taken into consideration.

One of the main outcomes of this work has been to find that the regime of collapse
of matter in the aether frame is not well-posed. A similar feature of the aether had been
previously found in the context of perturbation theory for FRW cosmology by

( ). Our results confirm that earlier finding on numerical grounds. However, the
main achievement in this work, has been to establish that a Cauchy problem can be defined
for the aether theory, and the aether equations can be evolved numerically in the expanding
mode up to a time when one enters the collapse mode. Evolving towards the not well-posed
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regime (collapse), would pose a serious challenge to our initial value formulation of the
aether theory. Of course, whether an alternative formulation can handle the collapsing
neutron stars is a question of utmost importance for the viability of the aether theory.
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Chapter 4

The Mass and Radii of Strongly
Magnetized Neutron Stars

The purpose of this chapter is to study the effect of various assumptions about the nature
and configuration of the magnetic field (in particular, the force-free model of
, ) on the M-R distribution of neutron stars. For the effects of the magnetic
field on the nuclear EOS, we base our work on the calculations of ( ,
) which will be briefly described in Section 4.1. In Section 4.2 we will motivate the
particular magnetic field profile we consider, based on a simplified model of neutron star
formation and magnetic field amplification that results in a local magnetic field strength
fixed to a fraction of the equipartition value. By varying the fraction of equipartition we
are able to study the effect of different field strengths on the M-R distribution. In Section
4.3 we will calculate the M-R relation of neutron stars, assuming different strengths of
a statistically isotropic magnetic field, based on different models for the nuclear EOS. In
Section 4.4 we will study the structure of neutron stars with a force-free magnetic field
profile (which is anisotropic). Finally, we will conclude in Section 4.5.

4.1 Magnetized Nuclear Equation of State

In this work, we employ the EOS calculated by ( ), which includes
the effects of very strong magnetic fields in multicomponent, interacting matter. This is
obtained via a field-theoretical approach in which the baryons (neutrons, n, and protons, p)
interact via the exchange of o-w-p mesons. They consider two classes of models that differ
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Figure 4.1: EOS - pressure (P) versus number density of baryons (n;) for different values
of the magnetic field strength (B) assuming no anomalous magnetic moments. Strong
magnetic fields soften the EOS because of Landau quantization.
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Figure 4.2: Same as Fig. 4.1, but now including the effect of anomalous magnetic moments.
The magnetic field stiffens the EOS due to the polarization of the anomalous moments until
complete spin polarization occurs (B > 10'® G). From that point on, the effect of Landau
quantization takes over and softens the EOS.
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in their high densities behavior. In these models, the effects of the anomalous magnetic
moments of the nucleons are introduced via a covariant coupling of the baryons to the
electromagnetic field tensor, presumed to be the result of of an appropriate high-energy
theory. The magnetic fields affect the EOS in two ways. In strong fields (B > 1014 G),
the orbital motion of the charged particles is quantized (Landau quantization), resulting
in a reduction in the electron chemical potential and a substantial increase in the proton
fraction. This produces a softening of the EOS. However, if the anomalous moments
are considered, the authors find that for very strong fields (B > 10'® G), complete spin
polarization of the neutrons occurs. This produces an overall stiffening of the EOS that
overwhelms the softening induced by Landau quantization. These effects are illustrated in
Figures 4.1 and 4.2.

( ) have also studied the effects of hyperons on the magnetic EOS.
Their EOS with hyperons, in the absence of a magnetic field is equivalent to the GM3 EOS
calculated by ( ) where hyperons are introduced as free
baryons, interacting only through weak interaction so that the system maintains nuclear
statistical equilibrium. Typically, the introduction of the additional degrees of freedom
associated with the new baryon species produces a net softening of the equation of state.

Since the pressure is now generally a function of both the matter density and magnetic
field strength, explicit construction of a neutron star requires some knowledge about the
magnetic field profile.

4.2 A Tangled Magnetic Field

The primary processes responsible for the amplification of the magnetic field are believed
to be dynamos driven by differential rotation and convection ( );

( ). These necessarily produce a tangled magnetic field inside
the neutron star. Since for simplicity we assume spherical symmetry throughout this work,
we must model the dependence of the strength of this tangled magnetic field on radius.
We do this approximately by making a handful of simplifying assumptions regarding the
outcome of the dynamo process.

As we discussed in the Introduction, various studies suggest that the dynamos naturally
saturate at locally equipartition magnetic field strengths during the initial formation of a
proto-magnetar (e.g., , : , ). That is, we expect the
energy density in the magnetic field, eg, to be proportional to that in the gas, €,:

€p X €g. (4.1)
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Since P, ~ ¢,/3 at this time, this immediately implies

B?
~_ _p 4.2
b 8w 97 (42)

where [ is the standard proportionality factor relating the gas and magnetic pressures.

As the proto-magnetar cools, 8 will be approximately conserved. During the cooling
process the star will maintain hydrostatic equilibrium and hence for each spherical shell
within the star p oM

g

el (4.3)
where 7 is the shell radius, M is the enclosed mass, p is the matter density, and G is
Newton’s constant. Assuming that the magnetic field has grown sufficiently strong to
suppress any further convection, M will remain constant and the proto-magnetar will
contract homologously. Thus p will grow roughly proportional to ~3 during the subsequent
proto-magnetar evolution, and thus P, oc r~*. Similarly, the flux conservation implies B
will grow oc 72, and thus B?/81 o< r~* as well. Therefore, we expect 3 to remain fixed
during the proto-magnetar’s formation following the quenching of the dynamos.

This relation naturally provides a profile for the magnetic field which is proportional
to the pressure of matter; given a global value of 5 we may identify a unique pressure at
each density. Examples of the EOS found by imposing Eq. (4.2) on the results of

( ) assuming anomalous magnetic moments are shown in Figure 4.3.

In addition to the modification of the nuclear equation of state, the strong interior
magnetic fields may produce magnetic stresses directly. However, the nature of these
stresses depend on the local geometry of the field as well as its strength. Assuming that the
outcome of the dynamo processes is a small-scale, tangled field that is weakly uncorrelated
with the generating currents, the resulting stresses may be completely described by a
magnetic pressure, which after assuming statistical isotropy is given by

1 B2
Pg = 3 B (4.4)
The factor of 1/3 arises from the impact of magnetic tension; that it must be present is
immediately evident from the fact that the electromagnetic stress-energy tensor is traceless.
In Eq. (4.2), 8 = 1/3 (giving the EOS lying between the cyan and blue curves in Figure 4.3),
corresponds to a neutron star with equal pressure of magnetic field and matter. Smaller
values of (3, for which the pressure of the magnetic field will be larger than the one of

matter, are not generically expected in turbulent MHD dynamos, as magnetic energy is
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Figure 4.3: EOS - pressure (P) versus number density of baryons (n;) for different values
of the magnetic field strength (B) assuming the existence of magnetic anomalous moments.
The solid lines are the EOS found by imposing the equipartition condition (Eq. 4.2) using
different values of . Smaller values of 8 are associated with higher values of magnetic
field strength.
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converted back into thermal energy through magnetic reconnection. As we see in Figure
4.3, complete spin polarization of neutrons (due to their anomalous magnetic moments)
occurs at § = 0.001. Therefore, it is expected that at values of 5 equal to, or larger than
1/3, the anomalous magnetic moments will not have a considerable effect on the nuclear
EOS and consequently in the M-R relations. We will see this explicitly in the next section.

We note in passing that the assumptions made above regarding the correlation between
the generating currents and the magnetic field need not be typically satisfied. An extreme
alternative are the force-free configurations described in ( ), with
a corresponding impact on the nature of the magnetic stresses. However, we will postpone
a detailed discussion of this until Section 4.4.

Before describing our M-R calculation, it is worth mentioning that the magnetized EOS
of ( : ) describes the nuclear matter inside the neutron star. For
the crust, i.e., densities below the nuclear saturation density (baryon rest-mass density of
pns ~ 2.7 x 10" g ecm?), we use the SLy (Skyrme Lyon) EOS calculated by

( ), which is based on the effective nuclear interaction SLy of the Skyrme type,
which is useful in describing the properties of very neutron rich matter.

4.3 M-R relations with an isotropic magnetic field

As choosing a magnetic field configuration given by Eq. (4.2), allows us to calculate a
unique magnetized EOS (as seen in Figure 4.3), we can now proceed to calculating M-
R relations for neutron stars. As we are assuming spherical symmetry and isotropy, the
Einstein equations in hydrostatic equilibrium, simplify to the Tolman-Oppenheimer-Volkoff
(TOV) equation:

| A | - RCE

where c is the speed of light, and € and P are the total energy density and pressure:
€ = €4+ €p, (4.6)
P =P, + Pg,
where €, and P, (the energy density and pressure of the gas), are related by imposing Eq.
(4.2) (with a fixed choice of ), on the various magnetized nuclear EOS models of

( , ) (as shown in Figure 4.3 for one particular nuclear EOS). Where stated
we include the physics of the crust, by using the SLy EOS of ( )
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below nuclear saturation density. The energy density of the magnetic field is given by
¢ = B?/8m, where again B is fixed by the choice of 3. The pressure of the magnetic
field is given by Eq. 4.4 (statistically isotropic force-inducing magnetic field). The mass
enclosed inside radius R is is related to local energy density by

M(R) :/0 e(r) dmrridr. (4.8)

We integrate Eq. (4.5) numerically, starting from the centre of the star and assuming
different values of central pressure P,(r = 0). Figure 4.4 shows the M-R relations resulting
from this integration in the absence of hyperons and crust physics. Increasing the magnetic
field strength (decreasing ) in the absence of hyperons has only a small effect on the
neutron star maximum mass. However, larger magnetic field strengths are associated with
larger neutron star radii.

Figure 4.5 shows the M-R relations in the presence of hyperons, again ignoring the crust
physics. In the presence of strong magnetic fields, all of the hyperons are susceptible to spin
polarization. As we discussed in Section 4.1, spin polarization counteracts the effects of
Landau quantization, by stiffening the EOS. Although assuming the existence of hyperons
gives a smaller maximum mass in the absence of a magnetic field (8 — oo in Figure 4.5),
increasing the magnetic field strength (decreasing ), now increases the maximum mass.
Assuming equal pressures of magnetic field and matter (5 = 1/3), we get a maximum mass
which is 26% larger than the one with no magnetic field (f — 00).

Figure 4.6 shows similar results, now incorporating the physics of the crust by using the
SLy EOS calculated by ( ) at densities below nuclear saturation
density. In this case, the M-R relation found by assuming zero magnetic field strength
(6 — 00), is similar to the well-known GM3 EOS calculated by
( ). A similar increase in neutron star maximum mass with magnetic field strength is
seen here.!

We are also interested in the effects of the anomalous magnetic moments of nucleons
on the M-R relations. Figure 4.7 shows these results for the magnetized nuclear EOS with
hyperons and crust physics included. As we see, the effect of including the anomalous
magnetic moments is small. We expected this from applying the condition given by Eq.
(4.2) on the magnetic EOS of ( , ) with anomalous moments. As
can be seen in Figure 4.3, complete spin polarization of the anomalous moments (which

IFor another recent study of the effects of strong magnetic fields on the population of hyperon stars,
see ( ).
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Figure 4.4: The M-R relation for the magnetized EOS ( : ) with no

crust physics included. Here, the magnetic field provides hydrostatic support for the star
by entering globally in the Einstein equations as Pg = (1/3)(B?/87). The calculation has
been done for different values of § in Eq. (4.2). Smaller values of /5 are associated with
higher values of magnetic field strength in the neutron star. § = 1/3 corresponds to a
neutron star with equal pressure of magnetic field and matter.
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Figure 4.5: Same as Figure 4.4, but now including the effect of hyperons.
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Figure 4.6: Same as Figure 4.5, but now also including the crust physics via the SLy EOS
( , ). The black curve, corresponding to negligible magnetic field
strength, is equivalent to the GM3 EOS ( , ).
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Figure 4.7: The M-R relation for the magnetized EOS with hyperons ( ,

) and the crust physics included via the SLy EOS ( : ). The solid
curves have been calculated assuming no anomalous magnetic moments and the dashed
curves have been calculated assuming the existence of anomalous moments.
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is where we would expect their effects to be considerable) occurs at values of 5 ~ 0.001,
in other words when the pressure of the magnetic field is 1000 times larger than pressure
of matter, which are not expected to arise in dynamos, as discussed above. Therefore the
strongest magnetic field strength we considered was one for which the magnetic pressure
equals the pressure of matter (f = 1/3). The effect of including magnetic anomalous
moments under this magnetic field strength is a 2% change in the neutron star maximum
mass as seen in Figure 4.7.

Finally, to better illustrate the effect of the magnetic field strength on the maximum
mass and radius of neutron stars, Figures 4.8 and 4.9 show the maximum mass and in-
flection point in radius (where the second derivative of mass versus radius changes sign)
as a function of 1/, for the mass radius relationship shown in Figure 4.6. We specify the
radius by the inflection point in the M-R relation, where mass is nearly independent of
radius, giving a characteristic value across a wide range of neutron star masses. We see
that these relative changes are well fit by

AM, AR;
28~ 0.1 B_l, and —Rmf

~ (.06 5709 4.9
Mmax Rinf 6 ’ ( )

for an isotropic tangled magnetic field distribution.

4.4 M-R relations with a force-free magnetic field

Despite the production of small-scale, turbulent fields by the dynamos initially, the final
magnetic field configuration remains unclear. After the dynamos quench and before the
formation of a crust that can balance shear stresses the neutron star will reconfigure the
magnetic field geometry via bulk fluid motions on a timescale measured in Alfvén crossing
times, resulting in a linked, nearly force-free geometry dictated by the initial magnetic

helicity ( , , ). This is a natural consequence of helicity
conservation during reconnection, corresponding to the minimum energy state at fixed
magnetic helicity ( , ), which is fully defined by

VxB=aB, (4.10)

from which it is clear that j x B = 0 where j is the current density, i.e., the Lorentz
force vanishes. In the above, « is a constant set by the boundary conditions at the stellar
surface, setting a scale length for the resulting magnetic geometries.
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Figure 4.8: Change in maximum mass of neutron stars as a function of 1/5 (see Eq. (4.2)
for definition of ) for the mass-radius relation shown in Figure 4.6.
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Figure 4.9: Change in radius of the deflection point in the M-R curve of neutron stars as
a function of 1/8 (see Eq. (4.2) for definition of ) for the mass-radius relation shown in
Figure 4.6.
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This gives axisymmetric and anisotropic configurations for the magnetic field. This
configuration in the interior of the star, in terms of the vector spherical harmonics Y;, ¥,
and @, is:

B— Zz: {— {l(l : Udljl(m)} Y, — {%E)rrdljl(ar)} U, +adyji(ar)®,) | (4.11)

where [ is the spherical harmonic degree, j; is the spherical Bessel function, and d; is a
constant giving the strength of each harmonic mode.

To assess the consequence of the force-free condition on the hydrostatic equilibrium
of the star, we can start by looking at the Newtonian Euler equation and impose static
conditions:

pj—z =-VFP,—pVo+jxB=-VF,—pVP =0, (4.12)
where p is the density and @ is the Newtonian potential given by the Possion equation:
V20 = 47Gp. (4.13)
Therefore, we have:
VP, = —pVo, (4.14)

which is the Newtonian equation for hydrostatic equilibrium with no effect of the magnetic
field in it. This means that in Newtonian mechanics, the force-free condition implies that
the magnetic field will play no global role in supporting the star, even though it might
still change the nuclear equation of state via the effects mentioned above (e.g., Landau
quantization, spin polarization, etc.).

In general relativity, the force-free condition can be written in its covariant form:
G F" =0 — FFV L F =0, (4.15)

where F),, is the electromagnetic tensor. The electromagnetic stress-energy tensor is given
by

1
AnTpyt = FFF,q — ZagpaﬁFaﬁ. (4.16)
The full stress-energy tensor is given by:
T = TgaSHV -+ TEMMV, (417)

from which the Euler equation is obtained by V, T* = 0. The contribution from Tgy/""
is generally, after some manipulation and application of Maxwell’s equations,

1
V. Ten = 'V, F = j,F* =0, (4.18)
e
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therefore as in the Newtonian limit the direct impact of the electromagnetic forces vanish,
ie., V,TH =V, Ty " = 0.

Gravity is now described by the Einstein equation:
G" = 8rG(Tyas" + Ten™). (4.19)

Unlike the Newtonian case, now the electromagnetic field can contribute by sourcing grav-
ity. In practice, it is necessary to solve for the full magnetic field configuration and metric
simultaneously. However, we might imagine that since gravity is a long-range force and the
structure of the initially highly turbulent electromagnetic field should exhibit mostly small-
scale structure that we may spatially average the electromagnetic configuration. That is
to solve:

G" =8 G (Tyas + (Tpa™")), (4.20)

where (...) is a local spatial average, i.e., an average over scales large in comparison to the
scale of the electromagnetic field fluctuations and small in comparison to the gravitational
scales. The stress energy tensor for this average field is

P(T)
T MU\ B
(Tpar"") PO :
pY
where
€g = <BQ>/87T,
Py = (B%/$t —(B"B,)/4r,
PY = (B? /8 — (B’By)/4x,
PY) = (B /81— (B?B,)/4n.

The anisotropy of this average configuration may be quantified via an anisotropy parameter,

P+ PPl )

A (B2) /8

(4.21)

An anisotropy parameter A = —1 corresponds to a purely tangential magnetic field con-
figuration ((B") = 0) and A = 2 corresponds to a purely radial field ((B") = (B)). An
isotropic average field will have A = 0.
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Figure 4.10: Anisotropy parameter for the average force-free configuration for the [ = 1
spherical harmonic degree. Units of radius are set so that a = 1 in Eq. (4.11).
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Figure 4.11: Anisotropy parameter for the average force-free configuration for the [ = 10
spherical harmonic degree. Units of radius are set so that « = 1 in Eq. (4.11).
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Figures 4.10 and 4.11 show the anisotropy parameter calculated for the average force-
free magnetic field configuration given by Eq. (4.11) for two spherical harmonic degrees of
[ =1 and [ = 10. At the centre of the star, there is a region with an isotropic average
field (A = 0) for [ = 1 and as we go to higher spherical harmonic degrees A — 0.5 at the
centre as can be seen in Figure 4.11. As we see in both Figures 4.10 and 4.11, A drops to
-1 towards the outside of the star. This matches our expectation of field lines closing and
the magnetic field becoming tangential in the outside. In the calculations below, we will
refer to the radius of the isotropic core with A = 0 as R, (having chosen the anisotropy
parameter of the first harmonic degree, as the magnetic field strength is dominated by the
first harmonic degree at the centre).

To calculate the mass-radius relationship of the star, we will assume spherical symmetry
and continue using an equipartition magnetic field (Eq. (4.2)). In order to write the
hydrostatic equilibrium equations coming from general relativity for the force-free model,
we use Eq. (4.18) (in other words the fact that the Euler equation is simply given by the
energy momentum conservation of the gas). As an approximation, we will solve the Einstein
equation given by Eq. (4.20). It is worth clarifying that solving Eq. (4.20) alongside the
energy momentum conservation of the gas (V,T,,:" = 0), would formally require

V. (Tem"") =0, (4.22)
while by using the force-free condition Eq. (4.18) we are only assuming that
Y, Tpa = 0. (4.23)

As we will show in the Appendix, solving Eq. (4.22) alongside with the Euler equation
for the gas, would uniquely determine the anisotropy parameter. As spherical symmetry
only allows isotropy (A = 0) at the centre of the star, solving Eq. (4.22) will result in
A — 0 throughout most of the star. This will change the final mass-radius relationship
results we obtain from using the anisotropy parameter coming directly from the force-free
configuration (satisfying Eq. (4.23)) at most by 9%. This anisotropy parameter based
on the results shown in Figure 4.10 will have a core with A = 0 of size R, and in our
approximation, A will drop to —1 at R,.

In dimensions where G = 1 and ¢ = 1, the Euler equation coming from V, T,/ = 0

is given by
dP,
S+ Py (424)
where ¢ is
M +4r (Py+ PY) o

r2(1 —2M/r)

g= (4.25)
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The enclosed mass is still given by Eq. (4.8), which still includes the magnetic contribution
to the energy density.

Based on the definition of A and the assumption of spherical symmetry (BYBy) =

B?B,), from which
(B?Bg
o 1—2A
Py = o (B%)/sm. (4.26)

Using this and the equipartition assumption the total radial pressure becomes

1-2A
3p

requiring only the specification of P, and A. The pressure and energy density of the gas
are related through the nuclear equation of state which is itself affected by the magnetic
field. The resulting mass-radius relationships from this numerical integration are shown in
Figure 4.12. The solid curves correspond to the force-free mass-radius calculation based on
the magnetized EOS with hyperons ( ) ) and the crust physics included
via the SLy EOS ( : ). This calculation has been done for two
different values of 8. The range in each curve is due to assuming a range in R, (radius
of the isotropic core with A = 0) from 0 to 3 km. The previously found mass-radius
relationships based on an isotropic magnetic field are also plotted for comparison (dashed
curves).

P,+ Py =1+ ) P,, (4.27)

In stark contrast to the case of tangled, isotropic magnetic fields, a force-free config-
uration produces a substantial decrease in the maximum neutron star mass. This is not
surprising — force-free magnetic field geometries contribute to the energy density, and there-
fore gravity, but not to the supporting pressure. This conclusion is only weakly dependent
on the details of the force-free configuration under consideration, showing little sensitivity
to the size of our assumed isotropic core, R,. However, even for large values of j3, e.g.,
B = 1, the magnitude of the effect is constrained to 20%, similar in size if not direction to
that associated with the isotropic tangled geometry.

The dependence on magnetic field strength of the size of the effects on mass and radius
are illustrated in Figures 4.13 and 4.14. Note that unlike Figures 4.8 and 4.9, the change
in mass and radii are now negative. As before, the change in mass and radii are well fit
by power laws over at least an order of magnitude in 3, for maximum mass and inflection

point radius

AM, ARy
I~ —0.13 7% and 2~ .03 g7 4.28
Mmax 5 ’ a Rinf /8 7 ( )

assuming a force-free tangled magnetic field distribution.

107



o | — — - Isotropic |

Force—free i

B _

M (M)

10 15 20 25
R (km)

Figure 4.12: The M-R relations for the magnetized EOS with hyperons ( ,

) and the crust physics included via the SLy EOS ( : ). The
dashed curves are for an isotropic magnetic field and the the solid curves correspond to
the force-free model. Results are shown for two values of 5. The range in the force-free
(solid) curves is due to assuming a range in R, (radius of the isotropic core with A = 0)
from 0 to 3 km.
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mass is decreasing) of neutron stars as a function of 1/ (see Eq. (4.2) for definition of )
for the force-free mass-radius relations shown in Figure 4.12.
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4.5 Conclusions

In this chapter, we have demonstrated that the assumed geometry of interior neutron star
magnetic fields is at least as important as the field strengths themselves when assessing the
impact on masses and radii, capable of qualitatively modifying their effect. Highly tangled,
isotropic magnetic configurations do result in an increase in the maximum mass, typical of
results often found in the literature (e.g., see , ). However, force-free
configurations, motivated by dynamical studies of magnetic field evolution in proto-neutron
stars, produce a decrease in the maximum neutron star mass. For both configurations of
the equipartition strength fields, the magnitude of the impact on the maximum mass is
limited to 30%. The impact of anomalous magnetic moments for equipartition magnetic
field strengths at best modify the maximum mass by 2%, suggesting that they are sub-
dominant to the global magnetic field geometry.

This immediately challenges the assertion that magnetic fields provide a means to rec-
oncile the recent observations of very massive neutron stars with unmagnetized equations
of state whose maximum mass is otherwise precluded. In the absence of some credible
mechanism for producing super-equipartition magnetic fields, the maximum deviation in
the maximum mass of order 20%-30% means that at best these can impact only marginal
cases. For example, this is unable to bring the GM3 EOS we employed into consistency
with the existing 2 M, mass measurements. We expect this to be generic for models of
neutron star formation in which the interior magnetic fields are produced by turbulent
processes, providing an optimistic upper limit on the mass-limit enhancement achievable
via the introduction of electromagnetic support. Of course, the existence of well-motivated
magnetic field configurations in which the maximum neutron star mass actually decreases
(i.e., force-free configurations) calls into question the value of invoking magnetic support
altogether in order to increase maximum neutron star masses.

We note that the observed anomalous braking indices for the spin-down of pulsars
can be interpreted as evidence for sub-surface toroidal magnetic fields of 104 — 10'° G,
substantially stronger than the observed dipole fields, which are slowly diffusing out of the
crust due to transport processes (e.g., see , , and references
therein). Even if taken at face value, it is unclear if these fields can reach the viral level
of ~ 10'® G in the core. However, as we have argued above, this is anticipated by simple
astrophysical dynamo processes during the formation of the neutron star, followed by
subsequent cooling in (quasi-)hydrostatic equilibrium.

An interesting possibility is that, depending on their initial conditions, different neutron
stars might have dynamos of varying efficiency during their formation process. Therefore,
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future observations of Mass-Radius relationship of neutron stars may exhibit an intrinsic
scatter due to variations in internal magnetic field. An even more exciting possibility is
finding a surface measure of this internal magnetic field (e.g., through modelling the braking
indices), which could then correlate with (and thus effectively reduce) this scatter, following
our simple scalings (Figs. 4.8-4.9,4.13-4.14). In particular, the sign of the correlation will
be indicative of the (force-free v.s. isotropic) field configuration.

In typical MHD turbulence, and in lieu of an active dynamo, one expects the mag-
netic field to relax to a force-free configuration within an Alfvén crossing time, through
subsequent reconnections that conserve helicity ( , ;

, ). Therefore, one may expect the force-free configuration to be preferred.
However, if the interior of neutron stars transitions into type Il superconductor, as hypoth-
esized in the literature (e.g., see , , and references therein), then it can
support a frustrated network of flux tubes, which do not reconnect ( , ). Such
a configuration can support tangled (statistically) isotropic magnetic fields.

Finally, one may further speculate that reconnection is not completely halted, but is
only significantly slowed (e.g., due to the presence of a mixture of type I and II super-
conducting phases in the interior). Therefore, the field configuration will slowly transition
from isotropic to force-free, leading to a reduction in the maximum mass. Via this mech-
anism a subset of isolated neutron stars, those with masses between those that can be
supported by force-free and tangled magnetic field configurations, could undergo a delayed
collapse, surviving for a time scale set by the evolution of the internal magnetic geometry.
Such an event may present an attractive alternate candidate for energetic, short-time scale
phenomena, e.g., short gamma-ray bursts and the recently detected fast radio bursts.
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Chapter 5
Epilogue

Most of this thesis was focused on how to use neutron stars as phenomenological labo-
ratories for testing the validity of a modification of General Relativity, called “the grav-
itational aether theory”. The theory was suggested by ( ) as a solution to
the old cosmological constant problem. As the theory makes predictions different from
General Relativity in the presence of relativistic pressure (for previous phenomenological
analysis of the aether theory for black holes and cosmology see ,

: , : , ), neutron stars will have a different
hydrostatic structure and dynamical evolution in the aether theory. We calculated the
mass-radius relationship of hydrostatic (non-rotating) neutron stars in the aether theory,
assuming two equations of state of nuclear matter. For one of these equations of state,
the mass-radius relationships given by General Relativity and the aether theory were both
compatible with the ( ) binary pulsar mass measurement, with the
aether theory predicting a maximum mass 16% lower than the one given by General Rel-
ativity. It is interesting to compare this result with a similar calculation performed for
the Einstein-Aether theory (another Lorentz-violating theory in which a dynamical unit
time-like vector field is coupled to gravity) by ( ), that showed maximum
masses 6-15% smaller than in General Relativity.

While the aether theory makes different predictions compared to General Relativity
for static neutron stars, the degeneracy due to various nuclear equations of state, prevents
us from making definitive claims about the validity of the aether theory. To break this
degeneracy, we need either more progress in constraining the equation of state of matter
beyond nuclear saturation density, or we need more observable constraints such as the
ones from neutron star radius measurements or potentially from future gravitational wave
measurements. Another interesting path to learning about distinct features of the aether,
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is the study of the theory in dynamical situations, namely the time evolution of a neutron
star.

This was the next step in our studies. We first succeeded at defining a Cauchy problem
and obtaining a system of dynamical equations for the aether theory. Then, we studied
the dynamics of a neutron star in the gravitational aether, starting with near hydrostatic
initial configurations (with small radial velocities). We found that our equations had
a well-posed (expanding) mode and a not well-posed (collapsing) mode, which confirmed
similar results found by ( ) in the context of cosmological perturbation
theory for the aether theory. The results of numerically integrating our equations in the
well-posed (expanding) mode, show that the system evolves toward the not well-posed
(collapsing) mode. These results pose a challenge to our attempt to formulate an initial
value problem for the aether theory. Whether alternative formulations are feasible remains
an open question of vital importance for the viability of the theory.

The last chapter of this thesis was concerned with the effects of the assumed geometry of
interior neutron star magnetic fields on the masses and radii of neutron stars. Most studies
in the literature are focused on the effects of the field strengths, and the question of the
field configurations often is ignored. We showed that highly tangled, isotropic magnetic
configurations result in an increase in the maximum mass, typical of results often found in
the literature (e.g., see , ), while force-free configurations, motivated
by dynamical studies of magnetic field evolution in proto-neutron stars, produce a decrease
in the maximum neutron star mass (changes up to 30% for both configurations). This
challenges the commonly held belief that magnetic fields can save some nuclear equations
of state by increasing their predicted maximum masses for neutron stars and making them
compatible with recent mass measurements.

To summarize the premise of this thesis, in addition to illustrating the richness of the
physical phenomena involved in neutron stars (an interplay of all the fundamental forces:
electro-magnetism, strong and weak nuclear forces and gravitation), we showed how the
study of neutron stars can shed light, not only on nuclear physics, but also on the nature
of gravitation. It can do so, either by acting as a means of testing gravitational physics
against observational data (e.g. comparing mass-radius relationships to measured masses),
or by providing a theoretical framework (e.g. dynamical evolution of a neutron star) for
the study of certain features of the gravitational models. By shedding light on the nature
of gravity in extreme conditions, the study of neutron stars can play an important role
in the quest for solutions to fundamental challenges of physics such as the cosmological
constant problem.
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Appendices

A  Self-consistent anisotropy

As mentioned in Section 4.4, solving the average Einstein equation (4.20):
G* = 8rG (Tyas™ + (Ter™)), (5.1)
along with the energy momentum conservation of the gas:
VT =0, (5.2)

requires:

V. (Ten") = 0. (5.3)
This equation results in the anisotropic TOV equation for the average magnetic field:
2 A (B?) /87

dP(T) ,
o= ~(en +Pg)) g+ —— (5.4)

where ¢ is given by Eq. (4.25). As Pg) is given by Eq. (4.26), and assuming Eq. (4.2), we
will have:

d[P,1—2A7 [P, P, 1-2A 2AP,

J[E( 3 | - [E+F< 3 | o+ Br (5:5)
1—2A dP, 2P,dA A—2  2AP
—9 2972 _ 9p, g 5.6
35 dr 30 dr 38 97 T (5:6)
and substituting for dP,/dr from Eq. (4.24), and solving for dA/dr, we get:
dA (3 1. ¢, 3A

prial b _§)Fg 9= (5.7)
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which simplifies to:

"3 1, €
3 e I Y 3
A _/o [2 + (A 2) g rodr. (5.8)

g

The suitable boundary condition for A is determined by the fact that in the anisotropic
TOV equation for the magnetic field (5.4), the second term on the right side is well defined
only if A — 0 when r — 0. Eq. (5.8) solved along with the TOV equation for the gas,
uniquely determines A(r). As we see in Figure 5.1, A remains very close to zero (isotropic
field) and more than —1 until the edge of the star where it drops to lower values. This
behaviour of A makes at most a 9% change (in case of 5 = 1/3 and smaller changes
for larger values of f) to the mass radius relationships previously found as can be seen
in Figure 5.2. It is important to note that values of A < —1 are unphysical, implying
imaginary magnetic field strengths. This raises some concern regarding the self-consistent
solution near the stellar surface; for the case shown in Figure 5.1, roughly 20% of the mass is
located in this unphysical regime, implying that the mass estimates from the self-consistent
solutions are marginal over-estimates.
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Figure 5.1: A(r) for a neutron star of radius R = 10 km with g = 1/3. A remains very
close to zero (isotropic field) and more than —1 until the edge of the star where it drops

to lower values.
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Figure 5.2: Solid curves are the force-free mass-radius relationships already shown in Figure
4.12. The dashed curves are the results found for the self-consistent anisotropy calculation
presented in the Appendix.

118



References

Afshordi, N. 2008, arXiv:0807.2639 11, 12, 14, 36, 37, 113

Aharony, O., Gubser, S. S., Maldacena, J., Ooguri, H., & Oz, Y. 2000, Phys. Rep., 323,
183 9

Akmal, A., & Pandharipande, V. R. 1997, Phys. Rev. C, 56, 2261 21
Alavirad, H., & Weller, J. M. 2013, Phys. Rev. D, 88, 124034 17

Alcubierre, M. 2008, Introduction to 3+1 Numerical Relativity (Oxford University Press)
52, 53, 81

Alcubierre, M., & Gonzéalez, J. A. 2005, Computer physics communications, 167, 76 78, 79
Alford, M., Braby, M., Paris, M., & Reddy, S. 2005, ApJ, 629, 969 34

Anderson, M., Hirschmann, E. W., Lehner, L., et al. 2008, Physical Review Letters, 100,
191101 16

Antoniadis, J., Freire, P. C. C., Wex, N., et al. 2013, Science, 340, 448 8, 17
Ashtekar, A., & Lewandowski, J. 2004, Classical and Quantum Gravity, 21, 53 9

Aslanbeigi, S., Robbers, G., Foster, B. Z., Kohri, K., & Afshordi, N. 2011, Phys. Rev. D,
84, 103522 13, 14, 86, 113, 114

Astashenok, A. V., Capozziello, S., & Odintsov, S. D. 2013, J. Cosmology Astropart. Phys.,
12, 40 14

—. 2014a, ArXiv e-prints, arXiv:1405.6663 18, 111, 114
—. 2014b, Phys. Rev. D, 89, 103509 15

119



Babichev, E., & Langlois, D. 2010, Phys. Rev. D, 81, 124051 14
Balberg, S., & Gal, A. 1997, Nuclear Physics A, 625, 435 34
Barausse, E., Palenzuela, C., Ponce, M., & Lehner, L. 2013, Phys. Rev. D, 87, 081506 15

Baumgarte, T. W., & Shapiro, S. L. 2010, Numerical Relativity: Solving Einstein’s Equa-
tions on the Computer 48

Bekenstein, J. D. 2004, Phys. Rev. D, 70, 083509 14

Berti, E., Barausse, E., Cardoso, V., et al. 2015, ArXiv e-prints, arXiv:1501.07274 8, 10,
15

Boisseau, B., Esposito-Farese, G., Polarski, D., & Starobinsky, A. A. 2000, Physical Review
Letters, 85, 2236 9

Braithwaite, J., & Spruit, H. C. 2004, Nature, 431, 819 100

—. 2006, A&A, 450, 1097 100, 112

Brandt, E. H. 1995, Reports on Progress in Physics, 58, 1465 112

Broderick, A., Prakash, M., & Lattimer, J. M. 2000, ApJ, 537, 351 18, 88, 92, 94, 95, 96
Broderick, A. E., & Narayan, R. 2008, MNRAS, 383, 943 18, 19, 88, 94, 100, 112

Broderick, A. E., Prakash, M., & Lattimer, J. M. 2002, Physics Letters B, 531, 167 18, 88,
91, 94, 95, 99, 107, 108

Caldwell, R. R., Dave, R., & Steinhardt, P. J. 1998, Physical Review Letters, 80, 1582 9

Capozziello, S., De Laurentis, M., Farinelli, R., & Odintsov, S. D. 2015, ArXiv e-prints,
arXiv:1509.04163 15

Capozziello, S., Harko, T., Koivisto, T. S., Lobo, F. S. N., & Olmo, G. J. 2013, J. Cosmol-
ogy Astropart. Phys., 4, 11 9

Cardall, C. Y., Prakash, M., & Lattimer, J. M. 2001, ApJ, 554, 322 18
Carroll, S. M. 2001, Living Reviews in Relativity, 4, 1 11

Carroll, S. M., Duvvuri, V., Trodden, M., & Turner, M. S. 2004, Phys. Rev. D, 70, 043528
9

120



Cheoun, M.-K., Deliduman, C., Giingor, C., et al. 2013, J. Cosmology Astropart. Phys.,
10, 21 14

Chevalier, R. A. 2005, ApJ, 619, 839

Choptuik, M. W., Lehner, L., & Pretorius, F. 2015, ArXiv e-prints, arXiv:1502.06853 15
Chow, N., & Khoury, J. 2009, Phys. Rev. D, 80, 024037 10

Cisterna, A., Delsate, T., & Rinaldi, M. 2015, Phys. Rev. D, 92, 044050 15

Cooney, A., Dedeo, S., & Psaltis, D. 2010, Phys. Rev. D, 82, 064033 10, 14, 27

Cyburt, R. H., Fields, B. D., & Olive, K. A. 2008, J. Cosmology Astropart. Phys., 11, 12
13

de Rham, C. 2014, Living Reviews in Relativity, 17, 7 10

Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T.
2010, Nature, 467, 1081 xii, 4, 5, 6, 7, 17, 20, 29, 31, 32, 34, 113

DeWitt, B. S. 1967, Phys. Rev., 160, 1113

Dormand, J. R., & Prince, P. J. 1980, Journal of computational and applied mathematics,
6, 19 80

Douchin, F., & Haensel, P. 2001, A&A, 380, 151 21, 29, 30, 94, 95, 98, 99, 107, 108
Duncan, R. C., & Thompson, C. 1992, ApJ, 392, 1.9 15, 16, 91

Dunkley, J., Hlozek, R., Sievers, J., et al. 2011, ApJ, 739, 52

Eling, C., Jacobson, T., & Miller, M. C. 2007, Phys. Rev. D, 76, 042003 14, 113
Etienne, Z. B., Liu, Y. T., Paschalidis, V., & Shapiro, S. L. 2012, Phys. Rev. D, 85, 064029
Ferreira, P. G., & Joyce, M. 1997, Physical Review Letters, 79, 4740 9

Fialkovsky, I. V., Marachevsky, V. N., & Vassilevich, D. V. 2011, Phys. Rev. B, 84, 035446
10

Freire, P. C. C., Bassa, C. G., Wex, N., et al. 2011, MNRAS, 412, 2763 7

Friedman, B., & Pandharipande, V. R. 1981, Nuclear Physics A, 361, 502 21

121



Ganguly, A., Gannouji, R., Goswami, R., & Ray, S. 2014, Phys. Rev. D, 89, 064019 15
Garnavich, P. M., Jha, S., Challis, P., et al. 1998, ApJ, 509, 74 9

Gelb, A., & Tadmor, E. 1999, Applied and computational harmonic analysis, 7, 101 83
Glendenning, N. K. 1985, ApJ, 293, 470 34

Glendenning, N. K., & Moszkowski, S. A. 1991, Physical Review Letters, 67, 2414 91, 95,
98

Glendenning, N. K., & Schaffner-Bielich, J. 1999, Phys. Rev. C, 60, 025803 34

Gleyzes, J., Langlois, D., Piazza, F., & Vernizzi, F. 2015, J. Cosmology Astropart. Phys.,
2,18 10

Gomes, R. O., Dexheimer, V., & Vasconcellos, C. A. Z. 2014, ArXiv e-prints,
arXiv:1407.0271 95

Gotthelf, E. V., Mori, K., Halpern, J. P., et al. 2013, The Astronomer’s Telegram, 5046, 1
15

Gottlieb, D., Shu, C.-W., Solomonoff, A., & Vandeven, H. 1992, Journal of Computational
and Applied Mathematics, 43, 81 83

Gourgouliatos, K. N., & Cumming, A. 2015, MNRAS, 446, 1121 111
Grandclément, P., & Novak, J. 2009, Living Rev. Relativity, 12 83
Guilet, J., & Miiller, E. 2015, MNRAS, 450, 2153 16

Gundlach, C., Martin-Garcia, J. M., & Garfinkle, D. 2013, Classical and Quantum Gravity,
30, 145003 82, 86

Harko, T., Koivisto, T. S., Lobo, F. S. N., & Olmo, G. J. 2012, Phys. Rev. D, 85, 084016
9

Harten, A.; & Osher, S. 1987, STAM Journal on Numerical Analysis, 24, 279 82
Haskell, B., Pizzochero, P. M., & Seveso, S. 2013, ApJ, 764, L.25 112
Horndeski, G. W. 1974, International Journal of Theoretical Physics, 10, 363 10
Igumenshchev, I. V., & Narayan, R. 2002, ApJ, 566, 137 17

122



Israeli, M., & Orszag, S. A. 1981, Journal of Computational Physics, 41, 115 53
Jacoby, B. A., Hotan, A., Bailes, M., Ord, S., & Kulkarni, S. R. 2005, ApJ, 629, L113 7
Jaffe, R. L. 2005, Phys. Rev. D, 72, 021301 10

Kamiab, F., & Afshordi, N. 2011, Phys. Rev. D, 84, 063011 17, 37, 54, 57

Kamiab, F., Broderick, A. E., & Afshordi, N. 2015, arXiv:1503.03898

Kobayashi, T., & Maeda, K.-1. 2008, Phys. Rev. D, 78, 064019 14

Lahteenmaki, P., Paraoanu, G. S., Hassel, J., & Hakonen, P. J. 2013, Proceedings of the
National Academy of Science, 110, 4234 10

Lasky, P. D., Sotani, H., & Giannios, D. 2008, Phys. Rev. D, 78, 104019 14

Lattimer, J. M., & Prakash, M. 2001, ApJ, 550, 426 17, 29, 34

—. 2007, Phys. Rep., 442, 109 3, 7, 17, 20, 34, 35

Levin, L., Bailes, M., Bates, S., et al. 2010, ApJ, 721, L33 16

Liu, X.-D., Osher, S., & Chan, T. 1994, Journal of computational physics, 115, 200 82
Lopes, L. L., & Menezes, D. P. 2014, ArXiv e-prints, arXiv:1411.7209 18

Lorenz, C. P., Ravenhall, D. G., & Pethick, C. J. 1993, Physical Review Letters, 70, 379
21

Maldacena, J. 1999, International Journal of Theoretical Physics, 38, 1113 9
Marti, J. M., Ibanez, J. M., & Miralles, J. A. 1991, Phys. Rev. D, 43, 3794 48
Martin, J. 2012, Comptes Rendus Physique, 13, 566 11

Masada, Y., Takiwaki, T., & Kotake, K. 2015, ApJ, 798, L.22 16

Melatos, A. 1999, ApJ, 519, L77 15

Momeni, D., Gholizade, H., Raza, M., & Myrzakulov, R. 2015, International Journal of
Modern Physics A, 30, 50093 15

Momeni, D., & Myrzakulov, R. 2015, International Journal of Geometric Methods in Mod-
ern Physics, 12, 50014 15

123



Miiller, H., & Serot, B. D. 1996, Nuclear Physics A, 606, 508 34

Narimani, A., Afshordi, N., & Scott, D. 2014, J. Cosmology Astropart. Phys., 8, 49 13,
113

Naso, L., Rezzolla, L., Bonanno, A., & Paterno, L. 2008, A&A, 479, 167 16, 91

Neilsen, D., Liebling, S. L., Anderson, M., et al. 2014, Phys. Rev. D, 89, 104029
Nobbenhuis, S. 2006, Foundations of Physics, 36, 613 11

Obergaulinger, M., Aloy, M. A., & Miiller, E. 2010, A&A, 515, A30 16

Obergaulinger, M., Cerda-Duran, P., Miller, E., & Aloy, M. A. 2009, A&A, 498, 241 16
Obergaulinger, M., Janka, H.-T., & Aloy, M. A. 2014, MNRAS, 445, 3169

Olausen, S. A., & Kaspi, V. M. 2014, ApJS, 212, 6 16

Orellana, M., Garcia, F., Teppa Pannia, F. A., & Romero, G. E. 2013, General Relativity
and Gravitation, 45, 771 14

Ozel, F., & Psaltis, D. 2009, Phys. Rev. D, 80, 103003 xi, 21, 27, 29, 30
Ozel, F., Psaltis, D., Ransom, S., Demorest, P., & Alford, M. 2010, ApJ, 724, L199 5, 20
Paczynski, B. 1992, Acta Astron., 42, 145 15

Pandharipande, V. R., & Smith, R. A. 1975, in Bulletin of the American Astronomical
Society, Vol. 7, Bulletin of the American Astronomical Society, 240 34

Pani, P., Berti, E., Cardoso, V., & Read, J. 2011a, Phys. Rev. D, 84, 104035 15
—. 2011b, Phys. Rev. D, 84, 104035 17
Pannarale, F., Rezzolla, L., Ohme, F., & Read, J. S. 2011, Phys. Rev. D, 84, 104017 35

Parfrey, K., Beloborodov, A. M., & Hui, L. 2012, Monthly Notices of the Royal Astronom-
ical Society, 423, 1416 83

Penna, R. F., Sadowski, A., Kulkarni, A. K., & Narayan, R. 2013, MNRAS, 428, 2255 17
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565 9

124



Prakash, M., Cooke, J. R., & Lattimer, J. M. 1995, Phys. Rev. D, 52, 661 34

Prescod-Weinstein, C., Afshordi, N., & Balogh, M. L. 2009, Phys. Rev. D, 80, 043513 12,
24, 113

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1989, Numerical
recipes in C. The art of scientific computing (Cambridge University Press) 78, 80, 82,
84

Price, D. J., & Rosswog, S. 2006, Science, 312, 719 16, 17, 91

Ratra, B., & Peebles, P. J. E. 1988, Phys. Rev. D, 37, 3406 9

Read, J. S., Markakis, C., Shibata, M., et al. 2009, Phys. Rev. D, 79, 124033 21, 35
Rees, M. J., & Gunn, J. E. 1974, MNRAS, 167, 1

Rhoades, C. E., & Ruffini, R. 1974, Physical Review Letters, 32, 324 3

Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009 9

Romani, R. W., Filippenko, A. V., Silverman, J. M., et al. 2012, ApJ, 760, L36 8
Santos, E. 2012, Ap&SS, 341, 411 14

Sawai, H., Yamada, S., & Suzuki, H. 2013, ApJ, 770, L19 16

Schwarz, J. H., & Seiberg, N. 1999, Reviews of Modern Physics Supplement, 71, 112
Seljak, U., Slosar, A., & McDonald, P. 2006, J. Cosmology Astropart. Phys., 10, 14

Shapiro, S. L., & Teukolsky, S. A. 1983, Black holes, white dwarfs, and neutron stars: The
physics of compact objects 2

Shu, C.-W. 2003, International Journal of Computational Fluid Dynamics, 17, 107 83
Strand, B. 1994, Journal of Computational Physics, 110, 47 81

Tadmor, E. 1989, SIAM Journal on Numerical Analysis, 26, 30 83

—. 1990, Computer Methods in Applied Mechanics and Engineering, 80, 197 83
Thompson, C., & Duncan, R. C. 1993, ApJ, 408, 194 16, 91

125



—. 1995, MNRAS, 275, 255 15
—. 1996, ApJ, 473, 322 15

Toro, E. F. 2009, Riemann solvers and numerical methods for fluid dynamics: a practical
introduction (Springer Science & Business Media) 58, 82

Upadhye, A., & Hu, W. 2009, Phys. Rev. D, 80, 064002 14
van Kerkwijk, M. H., Breton, R. P., & Kulkarni, S. R. 2011, ApJ, 728, 95 8, 20, 29, 31, 32

Weinberg, S. 1972, Gravitation and Cosmology: Principles and Applications of the General
Theory of Relativity 23, 55

—. 1989, Reviews of Modern Physics, 61, 1 11

Weinstein, S., & Rickles, D. 2015, in The Stanford Encyclopedia of Philosophy, summer
2015 edn., ed. E. N. Zalta 9

Will, C. M. 2006, Living Reviews in Relativity, 9, 3 13

—. 2014, Living Reviews in Relativity, 17, 4 8

Wilson, C. M., Johansson, G., Pourkabirian, A., et al. 2011, Nature, 479, 376 10
Witten, E. 1998, Advances in Theoretical and Mathematical Physics, 2, 253 9
—. 2001, ArXiv High Energy Physics - Theory e-prints, hep-th/0106109 9

Zrake, J., & MacFadyen, A. 1. 2013, ApJ, 769, L.29 16

126



	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	On Theories of Neutron Stars and The Maximum Mass
	Observations of Massive Neutron Stars
	Beyond General Relativity
	The Gravitational Aether Theory
	The Phenomenology of the Aether Theory

	Neutron Stars and Modified Gravity
	Strongly Magnetized Neutron Stars

	Hydrostatic Neutron Stars in the Gravitational Aether Theory
	The Aether Equations of Stellar Structure
	Numerical Solutions for a Polytropic Equation of State
	Numerical Solutions for Realistic Equations of State
	The Aether Equation of State
	Conclusions and Future Prospects

	Neutron Star Dynamics in the Gravitational Aether Theory
	Theory
	Preliminaries
	1+1 ADM Equations
	Formulation in Standard Form
	Boundary Conditions

	Initial Data
	TOV Equations for the Aether Theory
	Adding an Atmosphere to the Star
	Initial Extrinsic Curvature and Velocity
	The Nature of Equations at the Center

	Time Evolution
	Evolution Algorithm
	Preliminary Results
	Final Results
	Convergence Test
	The Hamiltonian Constraint

	Numerical Methods
	Choosing a Derivative Method
	Approximating Derivatives in Spherical Symmetry
	Integrating in Space
	Integrating in Time

	Future Numerical Improvements
	Summation By Parts in Spherical Symmetry
	High-Resolution Shock Capturing
	Implicit Time Stepping

	Conclusions and Future Prospects

	The Mass and Radii of Strongly Magnetized Neutron Stars
	Magnetized Nuclear Equation of State
	A Tangled Magnetic Field
	M-R relations with an isotropic magnetic field
	M-R relations with a force-free magnetic field
	Conclusions

	Epilogue
	Appendices
	Self-consistent anisotropy

	References

