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ABSTRACT

The World Bank’s Highway Design and Maintenance Standards model (HDM-III) is increasingly
becoming a popular economic analysis “engine” with wide applications within pavement management
systems, in particular, the network-level priority programming sector in developing countries. The
major disincentives, however, for widespread application of the model in low-income road agencies

include the excessive data needs and lack of effective guidelines on local adaptation.

The thesis addresses streamlining the application of the HDM-III model at the network-level priority
programming by reducing the model data needs. This was done by screening out the insensitive

input variables with respect to an application-specific output.

An advanced statistical experimental design based on the Latin hypercube sampling was formulated
to investigate the sensitivity of the link characterization input factors upon several HDM-III outputs
— the net present value of net benefits (NPV), the agency lifecycle costs, and the road users’ (mainly

vehicle operating costs, VOCs) life-cycle costs.

The boundaries of the input space (factor ranges) investigated in this study were determined from

field data collected in Tanzania in 1994.

The plausibility of extending the current pool of “default inputs” for task-specific applications was
examined. The inactive factors (as determined by the sensitivity study) were replaced by constant
values reflective of typical levels for the case study region. The HDM-III model predictions from
using the full set of inputs, and those obtained by using default values in place of the inactive

factors, were statistically compared.

The research findings confirm the suspected nature of factor sparsity (few active factors) of the
HDM-III model. The agency and road users’ lifecycle costs were found to be dominated by very
few input factors. More importantly, the factor sensitivity is specific to the R&M strategy employed.

Statistical comparison between the HDM-III life-cycle predictions based on default inputs and the
predictions based on the full data set found that there was no significant difference. The study
demonstrated the possibility of extending the current pool of default inputs for application-specific
model output.
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Chapter 1

INTRODUCTION

1.1 Background

According to a World Bank policy study, the state of the road networks in Sub Saharan Africa (SSA)
poses a serious crisis. The networks, which were expanded massively in the post independent boom
of the 1960s and 1970s, started crumbling in the 1980s and are presently on the verge of collapsing.
[mmediate measures are necessary to control the deterioration. The dimensions of the problem in
terms of poor network upkeep, its origin and its economic implications are further addressed in
Section 2.1.3. An even more serious problem is the lack of economic capability of SSA countries to
correct the situation. Economic adversity in the region for the last two decades is only part of the
explanation; past mistakes in investment choices played even greater role. However, a large part of

the problem is attributable to lack of institutional capacity in the SSA [Faiz 87 and 91, Bank 88].

The SSA road networks were estimated to have an aggregate length of more than one million
kilometers in 1988, of which only 11 percent was paved [Bank 88). Faiz er al. estimated that more
than 95 percent of the road system consist of low-volume roads, with an average traffic of less than
400 vehicles per day [Faiz 87]. Yet, SSA has the lowest road spatial density (about 5 km per 100 sq.
km of land) — about one half of the giobal average for developing countries. The ratio of road
kilometers per million dollars of gross national product (GNP) is the highest of all regions, at a
global average of 3.6 (excluding Nigeria) [Faiz 87]. These figures reflect the vast distances, the
dispersed settlement patterns, and the smaller economic base of SSA. The economic importance of
these poorly distributed road networks is underlined by the fact that more than 90 percent of land
commerce is dependent on roads [Faiz 91]. The main roads in the region cater for up to 80 percent
of the inter-urban traffic in the region [Faiz 87].

With the road conditions in the region as given in Table [.1, the financial implications are
staggering. Smith estimated the financing requirements to contain the road maintenance problem in
SSA under three categories [Smith 87]. The current backlog of rehabilitation for the main roads
alone was valued at approximately US $4.6 billion (at 1984 prices). Annual maintenance to check
normal deterioration was estimated at US $0.7 billion. Further, to clear the backlog in 10 years the
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minimum annual rehabilitation and maintenance financial requirements (over the next ten years) are
US $1.2 billion. It should be noted that more than 70 percent of the funds required are in foreign
exchange. More conservative estimates have been given elsewhere [Faiz 91, Riverson 90 and 91,
Mason 89, Bank 88].

TABLE 1.1 Road Conditions in Sub-Saharan Africa (1984 — 1988) [Faiz 91]

Year Pavement Type Percent of Roads
Good Fair Poor
1984 Paved 47 27 26
Unpaved 33 32 35
19388 Paved 52 25 23
Unpaved 29 32 39

To appreciate the magnitude of the problem these figures should be compared with the regional GNP
of US $85.5 billion for 1984 at an annual decline of about I percent. Measuring the road needs in
terms of other social needs of the region [Faiz 87] noted that:

“...The expenditures needed to make for past omissions of preventive maintenance in
Sub-Saharan Africa are at least 10 times as much as would be needed to provide a
continuing supply of textbooks for all elementary schools in the region until year
2000."

The cross-sectoral economic implications are overwhelming. It is a well-documented fact that the
increase in costs to the road authorities is only a fraction of the overall burden resulting from
deteriorating roads. Vehicle operating costs on properly maintained roads account for up to 90% of
the total transport costs even for medium trafficked roads. On bad roads, vehicle operating costs
(mostly in foreign exchange) can easily double, imposing a heavy burden on road users. The higher
haulage costs can drastically constrain economic activity and put brakes on economic growth,
especially in agricultural production areas. It is worth noting that without efficient transport — which
in SSA means, more than anything else, roads — there can be no supply response to support renewed
economic growth and sustainable development.



1.2 Nature of the Problem

Current practice in pavement management technology in SSA is such that assessment of maintenance
and rehabilitation needs still relies on less than optimal methodologies [Pinard 87, Mason 89, Bank
88, Faiz 89 and 91]. Implementation of rational methodologies is constrained by many factors. They
include relatively low level of material and human resources and the lack of institutional and

technical capacity to adopt existing comprehensive decision making models [Pinard 87, Faiz 91].

Effective application of tools like the World Bank’s Highway Design and Maintenance Standards
Model (HDM-III) and the British Transportation Research Laboratory’s Road Transportation
Investment Model (RTIM3) in investment appraisal requires, among other things, quality detailed
data and skilled personnel to maintain the data, prepare the data files and run the model. These
relatively high requirements have, in effect, made the models inaccessible to the low-income road
agencies of SSA. There is a real need for these road agencies (in Sub Saharan Africa and in
developing countries in general) to develop simplified analytical tools for allocating limited resources
to rehabilitation and maintenance (R&M) programs in a manner which achieves the highest economic
efficiency [Queiroz 92, Kerali 91, 92, ISOHDM 93].

It is hypothesized that road investment appraisal tools currently available (e.g., HDM-III, RTIM3,
erc.) fail to recognize the special concerns of the low income road authorities of SSA, particularly in
relation to data needs and skills to apply these tools. Summing up, the consensus of the inception
workshop for the current initiative to upgrade the model [ISOHDM 93] observe that:

“It was acknowledged that some institutions in developing countries may generally
lack the finance and personnel with skills required to effectively implement all of the
facilities in the new model. ... "In particular, there is a need for simplicity and
understandability of any model, and for cost effective data requirements. "

This thesis addresses a simplified application of the HDM-III model to network level priority
programming by reducing the model data needs. The approach is to identify factors with least impact
on the HDM-III predictions and provide surrogate values that can be used in subsequent analyses.



1.3 Basis for a Simplified Pavement Management Analysis Tool for Low
Income Road Agencies

The Highway Design and Maintenance Standards Model (HDM-III) was developed by the World
Bank to provide highway agencies, particularly in developing countries, a tool for evaluating and
analyzing maintenance and rehabilitation options; comparing policies or standards and formulating
programs; and to support decision making in road investment in general [Watanatada 87a, Bank 89].
The model estimates detailed pavement deterioration, agency costs and road users’ costs for different
design and maintenance alternatives and hence provides rational and consistent economic decision

criteria for technical planners and policy makers.

[Pinard 87] and [Queiroz 92] discuss in detail the special constraints for implementing pavement
management in developing countries as including a low level of technology and limited availability of
human and material resources. HDM-III requirements for high quality detailed data and consequently
highly trained and skilled personnel to maintain the data, prepare the data files and run the model
seem to be beyond the means of the low income road agencies of Sub-Saharan Africa. The social and
economic factors derailing road network stabilization in this region is widely published in the
literature. The most critical factors include failure to establish sustainable institutions that can
effectively and efficiently use the available resources to manage the road networks [Faiz 87 and 91,
Bank 88].

The HDM-III model cifers an excellent potential for application at the network and sub-network
level pavement management for developing countries [Queiroz 92]. However, this potential has
hardly been realized in most of the poor countries of Sub-Saharan Africa (SSA). The motivation of
the research in this thesis is based on the premise that the major factor hindering wide adoption of
the HDM-III model for network-level priority programming in SSA is its excessive data needs and

skills to use it.
1.4 Objectives and Scope of the Research

1.4.1 Research Hypothesis

The motivation of the research presented in this thesis is that low income road authorities need to
implement more rational methodologies of allocating limited resources to the upkeep of their road
networks. The limited supply of skilled personnel and financing available to these agencies limits



their ability to effectively make use of the existing investment appraisal tools like the HDM-III in the
priority analysis of rehabilitation and maintenance programs. For the same reasons, developing local
analysis tools based on technically sound algorithms is generally out of question.

The data requirement for network level application of the HDM-III model is serious concern for the
extreme low income agencies of Sub Saharan Africa. The link characterization for a paved road, for
example, requires about 41 input attributes including the critical pavement deterioration calibration
parameters. Although some of these input requirements are optional (with default values supplied
internally by the model) no guide exists in the literature identifying the most sensitive input factors

where the user could focus to arrive at reasonable estimate predictions from the model.

The key thesis hypothesis is that for a given model application and a given case study region, only a
few active input factors (relative to the total number of input factors) have significant influence upon
the relevant HDM-III model output(s). In statistical terms, the model is said to exhibit factor sparsity
with respect to a given model response. In other words, for a specific application, such as priority
analysis of rehabilitation programs, an acceptable quality of model output criteria could be achieved
by supplying relatively fewer inputs than currently demanded. The least sensitive model factors
could be fixed as constants, and re-used for similar applications within the same study region. This is

the basis for reducing the data needs for regional-specific application of the model.

1.4.2 General Goal

The general objective of the research in this thesis was to streamline the data requirements for
network level application of the HDM-III model. The ultimate goal was to develop a framework that
could be used to identify the most significant factors for specific applications and develop a set of
default inputs. It is expected that this will reduce the need for heavy outlays of human and material
resources on detailed data bases that are typically required to effectively make use of the HDM-III
model.

It was recognized that the resulting (trimmed down) model may provide less precise quantification of
the primary output parameters (compared to the full model). However, it is argued that the trade-off
of this lost precision against the prospects of wide adoption in priority analysis (albeit approximate)
in SSA outweighs the disadvantage. If the reduced predictive accuracy can be shown to have a
marginally low impact upon the technical strategies chosen, then the simplified model will offer



tremendous benefits to the regional and national road agencies in SSA. Further, even where quality
databases (and necessary skills) exist, a quick approximate analysis can be very handy for

preliminary program review prior to full scale studies.

The secondary product of the study, the sensitivity results of HDM input parameters offers several
potential applications. For example, for the road agencies in the region that are relatively more
endowed in capital resources, it may be necessary to determine which input data values merit higher

accuracy, and hence justify increased expenditure in data collection.

1.4.3 Initial Scope and Specific Objectives

The thesis hypothesis and the broad focus of the research were further translated into specific
objectives. Tasks to guide and accomplish these objectives were formulated on the basis of which an

initial scope of work was established. This initial scope is summarized in the following tasks:

N Review and consolidate the literature on calibrating and adapting the model to local
applications, in particular for network-level rehabilitation and maintenance programming.
Develop a comprehensive calibration guide for the specific application in priority analyses.

) Develop an efficient approach to conduct systematic factor sensitivity analysis (including
effects of factor interactions) on HDM input variables that influence the decision criteria for
priority analysis of rehabilitation and maintenance programs.

3) Explore the possibility of developing a simplified application of the HDM-II based on
regional-specific, application-specific default values for the less semsitive factors in the
model.

@ Test the validity of the simplified model (defaults-based predictions) by statistical comparison
of the model response against the full model.

Initially, it was intended to explore the possibility of reducing input data requirements under all the
four classes of HDM-III inputs relevant to R&M priority analysis (Figure 1.1). However, as
subsequently discussed in, only part of the initial scope was realized.
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1.5 Organization of the Thesis

The thesis is organized in a manner closely reflecting the research steps given in the preceding
subsection. Following this introduction, chapter two summarizes what the literature has to offer in
the various aspects of the study. First, the need for a different approach to priority programming in
Sub Saharan Africa is highlighted. Next, the potential of using HDM-III as an analysis engine in a
pavement management system is presented followed with the key model limitations making it
unpopular in SSA. The chapter also looks into the past efforts to simplify the application of the
HDM-II model, including the expectations of the HDM4 initiative. Finally, the chapter reviews
techniques used in sensitivity analyses and concludes by highlighting the advantages of experimental
design in the exploration of effects of factor interactions upon computer models.

In chapter three, the thesis presents a compendium of the literature on user guide to adaptation and
calibration of the HDM-III model for local application in R&M priority programming.

Chapter four presents the key aspects of formulating and developing the research methodology. The
background to the research problem and its significance is further highlighted. Initial formulation of



one-factor-at-a-time sensitivity analysis is developed. Next, the diversity of choices for relevant
criteria (or model response) for prioritizing R&M programs is discussed. Finally, the concept of
elasticity as a rational platform for comparing factor sensitivities is introduced.

Chapter five deals with design of the statistical experiment and its application to explore main factor
effects as well as effects of factor interactions of computer models.

Chapter six presents the research results, while in chapter seven the concept of regional-specific

default inputs as a model simplification strategy is examined.

The thesis concludes with a summary of research findings and recommendations in chapter eight.



Chapter 2

LITERATURE REVIEW

2.1 Approaches to Priority Programming in Low Income Agencies

2.1.1 Role of Priority Analysis in Pavement Management

Priority programming constitutes one of the most important functions of pavement management
analysis. The basic function of priority programming both at the project and network levels is to
evaluate or compare project alternatives in order to select optimal set of alternatives for
implementation. The degree to which the program is optimal is influenced by both the criteria and
the analysis technique used. Some agencies may, for example, use simple subjective ranking; some
use cost effectiveness as surrogate to an economic index, yet others use direct economic criteria, i.e.,
cost minimization or benefit maximization. [Haas 94] summarizes the various methods and gives
their advantages and disadvantages. Few agencies use complex mathematical optimization procedures
to identify true optimal solutions (cost minimization or benefit maximization) taking into

consideration effects of project location and timing.

A detailed treatment of the priority programming subject is given elsewhere [Haas 94]. There are a
few papers that review the available techniques and tools for priority programming (see, for
example, [Haas 85, Hill 91 and Liebman 8S]). Figure 2.1 shows the major steps in priority
programming. The priority analysis within the priority programming function (shaded area in Figure
2.1) is the subject of the research in this thesis. The intention is to develop a simple tool for priority
analysis for agencies with limited resources, in particular where quality data are unavailable.

The priority analysis step can be viewed as consisting of two sub-activities: economic evaluation and
optimization analysis. Economic evaluation deals with the bulk of computational procedures to
determine economic costs, (and/or benefits) and related indices for each project alternative in each
time frame in the program period. The second sub-activity, optimization analysis, uses the results of
the economic analysis to select the project list that meets the optimality criterion.
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The economic evaluation sub-task (in the context of priority analysis) is generally tedious and
computationally intensive owing to the requirement to explicitly consider the primary effects of
traffic, link characterization attributes, and pavement standards, as well as the effects of maintenance
intervention levels upon the cost streams arising through the life-cycle of a road facility [Parsley 82,
Chesher 87, Paterson 87]. This complexity is the basis or the motivation behind analysis software
tools like HDM-III (RTIM3, and other proprietary products). These models are primary analysis
engines that were intended to provide the basic function of economic evaluations either independently

or within larger pavement management processes.

The concept of applying HDM-III as an analysis engine in a network-level PMS has been
demonstrated widely; good examples are Brazil [Queiroz 92], and Queensland, Australia [Robertson
94, Howard 94]. In the Brazil application, the model was used in conjunction with the Expenditure
Budgeting Model (EBM) which uses a heuristic technique to solve a multi-year budget constraint
problem [Bank 89) providing the optimization analysis function. Figure 2.2 shows a schematic of the
role of HDM-III and EBM in a PMS analysis. From Queensland [Robertson 94] reports that:

“Analysis of road investment upkeep in recent years has focused on strategic studies at
the network level. These studies have employed HDM-III and EBM as the economic life-
cycle analysis engine within larger software suites which control multiple analysis cycles,
and data flows to and from the analysis engine.”
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2.1.2 Diversity of Economic Criteria in Priority Programming

The primary objective of a pavement management system is to achieve the most efficient (optimal)
use of available resources such as funds, materials, plant and human resources in providing a road
facility which adequately serves the users and the tax paying public {Haas 78, RTAC 77, Lyton 85].
To achieve such an objective the priority analysis has to be based on an economic criterion. Ranking
based for example, on judgment, structural adequacy indices, deflection, efc., does not arrive at an
optimal solution, and defeats the very purpose of a PMS [Haas 94].

Ranking based on some measure of economic index, the so called parameter based ranking [Haas 94]
and the optimization using such indices offer close to optimal solutions and are extensively used in
many agencies. The dilemma of what economic criterion is best for comparing alternatives in priority
analyses has been around almost from the very advent of pavement technology. At the project level,
the literature consistently recommends the use of life-cycle cost (LCC) criterion in evaluating

alternatives [Sandler 84]:

“Maximizing economic efficiency is the decision criterion implicit in a LCC analysis.
Therefore, even though other factors may also be important (and should be considered),
the project-alternative with lowest LCC would be the most economically efficient
choice.”

Life-cycle cost (LCC) analysis is defined as an economic assessment of competing alternatives,
considering all significant costs over the life of each alternative. The five major components of
pavement life-cycle costs are, capital construction costs, future maintenance costs, salvage value at
the end of analysis period, delay costs during rehabilitation and maintenance work, and users’ costs
(vehicle operating costs, travel time, accidents, discomfort due to poor condition, etc.) [Darter 85].

At the network level the choice of a criterion is not that clear. [Darter 85] for example, discourages
the use of the users’ costs in priority programming owing partly to the difficulty to estimate them,
and mainly due to the controversy still surrounding application of users’ costs. Despite some limited
efforts to develop simple techniques for users’ costs determination (using nomographs) [Lemmerman
84] and more extensive works to adapt the HDM-III user costs relationships to Canadian conditions
[Cox 87a and Bein 89, 92a and 92b], the user costs criterion has not been widely adopted in North
America. [Riley 95] observes that,
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“The total transport cost (TTC) approach departs from traditional pavement design
and management techniques. Generally the latter are based on engineering
considerations and agency costs and do not directly consider the effects of alternative
designs on VOC.”

It is noteworthy that near optimization based on a heuristic marginal cost-effectiveness method is
more popular in many agencies throughout North America [Haas 94]. This criterion has been used in
[daho, Minnesota, South Carolina, and in Alberta, Prince Edward Island and Newfoundland.

Another important user cost component that could potentially be used as a criterion in priority
analysis is the user delay costs arising at work zones. For high volume facilities, vehicle running
costs resulting from traffic interruptions during maintenance and rehabilitation activities can be very
high [Haas 94]. Yet, few priority analysis systems use this criterion directly {Hill 91 cited in Haas
94].

2.1.3 Relevancy of Life-Cycle Costs Criterion in Low Income Economies of
SSA

The current crisis facing the road network in SSA is widely reported in the literature (see for
example [Faiz 87 and 91, Smith 87, Mason 89, Bank 88]). It was estimated that of the entire network
of main roads in the region, only about 47 percent were in good condition in 1984 (Table 1.1) [Faiz
87 and 91]. Twenty-seven percent of the said network were in fair condition while over 26 percent
were in poor condition requiring immediate reconstruction or major intervention to be serviceable.
These figures refer to the paved roads category of the network. The status of the unpaved roads in
the region is not much different. Several studies have analyzed the socio-economic background to the
crisis [Faiz 87 and 91, Bank 88]. The widespread and ever worsening network deterioration in the
region is attributable, among other factors, to the lack of the necessary infrastructure of institutions
and trained personnel to administer the networks. This is further compounded by poor policy
foundations and meager financial resources [Bhandari 87, Pinard 87]. [Faiz 91] observes that:

“The genesis of the problem lies in the rapid development of the road networks, which
expanded much faster in the 1960s and 1970s than did the maintenance budgets and
the institutional capacities. ”
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[Faiz 91] further advocates that the only logical approach to alleviating the situation is deep policy
reforms based on more consistent, objective methodologies in budget allocation, planning,

programming and management of the meager resources.

In the industrialized economies, factors such as high traffic volumes, high values attached to travel
time savings, and relatively abundant capital resources have dictated high standards of road design
and maintenance. With several thousand vehicles per day, even minute savings in vehicle operating
costs and travel time can justify very large expenditures on road alignments and pavements
[Watanatada 87a]. [Haas 94] seems to suggest that in general, the total life-cycle costs for rural and
urban facilities exhibit a minimum at present serviceability index (PSI) of about 2.0 to 2.5 and 3.0,
respectively. Hence, subject to budget constraint, this should be the optimum level of serviceability.
However, this proposition, which is dependent on the assumption that at higher levels of PSI the
total life-cycle costs rise appreciably because the extra agency costs would not be offset by the
savings in vehicle operating costs (VOC), is only valid where the relative magnitudes of agency life-

cycle costs and VOCs are comparable.

Competing demands for meager resources in developing countries, much so, in Sub Saharan Africa,
dictate that the economic criterion for evaluating different designs, maintenance and rehabilitation
options be based, not only on the costs borne by highway agencies, but also on the larger costs of
vehicle ownership and operation borne by road users [Bhandari 87, Watanatada 87a). Programs for
road upkeep have to compete with other social programs like education, health, ezc. which tend to be
favored for their political appeal. A ranking criterion based on the societal costs (of providing
transportation) becomes preferable in that it gives pavement technologists the advantage of
supporting their budget requests in a more understandable language to the political /elected decision

making level.

Several other characteristics of the transportation systems in low income economies of SSA include
the general low traffic volumes (below 400 ADT) [Faiz 87, Smith 91], the low value associated with
travel time savings, the low cost of labor and the relatively high foreign exchange costs of vehicle
operation. With these characteristics in mind, the question now is whether the total life-cycle costs

criterion is meets the ultimate purpose of the pavement management analysis.

Evidence from this thesis shows that for some price regimes the ratio of the life-cycle VOCs to the

life-cycle agency costs, even for moderate traffic levels, is so high that the total life-cycle costs curve
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hardly rises with PSI. Typically, the life-cycle agency costs of rehabilitation were found to be only
about 1.0 and 2.0% of the life cycle VOCs for traffic of 2000 and 1000 ADT respectively. In such
scenarios, the total life-cycle cost is dominated by the VOCs component and hence the predicted net
present value (NPV) reflects mainly the savings in road users’ life-cycle costs. Hence the comparison
between investment strategies using the NPV becomes a process of determining an alternative
associated with maximum societal savings among the large number of technically feasible strategies.

2.2 Application of HDM-III as an Analysis Engine in Pavement
Management

2.2.1 The Role of Economic Analysis in Pavement Management

A pavement management system (PMS) is defined [RTAC 77, Haas 78 and 94] as constituting an
efficient and systematic integration of all activities that go into providing roads, so as to achieve the
best possible value for the available public resources. This is accomplished by comparing investment
alternatives at both the network and project levels, coordinating design, construction, maintenance
and evaluation activities, and making efficient use of existing methods and knowledge. The essential
requirements of a PMS include the capabilities to be updated, to consider alternative strategies, to
identify the optimum alternative, to base decisions on quantified attributes, criteria and constraints
and to use feedback information regarding the consequence of decisions. A network level PMS offers
the capability to analyze alternative funding programs making it possible to identify the programs
that will yield the greatest benefit over the selected planning horizon.

The function of comparing alternatives provides the important basis for ensuring more consistent and
optimal decisions. This function can, however, be tedious and is sometimes not feasible owing to the
requirement to explicitly consider the primary effects of traffic, pavement strength, age, pavement
surface condition and environmental factors as well as maintenance policies on the total lifecycle
costs of each viable alternative [Parsley 82, Chesher 87, Paterson 87]. HDM-III offers this
computational capability in a very comprehensive manner. The model can, therefore, provide a very
handy “plug-in” economic analysis tool in a pavement management system. The analysis can be
applied both at the project and the network level of pavement management. Figure 2.3 shows
potential application of the HDM-III model, as a life-cycle analysis engine, in network level R&M
priority programming based on cost minimization or benefits maximization.
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2.2.2 Advantages of the HDM-III Model

The Highway Design and Maintenance Standards Model is a result of a series of large scale,
international pavement research and experiments between 1970 and 1982 incorporating four
environments in developing countries, namely — Brazil, Kenya, India and the Caribbean [Watanatada
87a]. The computer program developed by this World Bank lead initiative, now in its third version,

HDM-IL, is probably the most comprehensive economic evaluation model for road investments. Its
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key sub-models of pavement deterioration and user costs were formulated in mechanistic principles

and developed from the broad empirical database of the major studies reported above.

The model has subsequently been tested in real applications in more than 40 countries such as Brazil,
Guinea-Bissau, Chile, and Indonesia where it has been used in pavement management systems and in
highway planning and economic evaluation [Kerali 91, Paterson 92, Queiroz 91 and 92, Alberto 87,
Cox 87b]. This gives the model one of its greatest advantages as an economic evaluation tool — a
sound economic methodology that can be adapted to diverse geographical and socio-economic
environments (Paterson 87]. The concept of using the HDM model as an analysis engine in full scale
working pavement management system has been demonstrated widely [Quieroz 91, Robertson 94,
Howard 94].

The key advantages of the HDM model can be summarized as:

(1) An efficient pavement life-cycle costs simulation program that can form the basis of an
economic analysis engine in a pavement management system based on a variety of cost
minimization or benefits maximization or other economic indices.

2) An adequate body of empirically established relationships among the relevant variables that
simulate the complex interrelated effects of traffic, environment, geometry, pavement
strength and, maintenance effects upon pavement deterioration. Further, the model provides
prediction of the effects of pavement condition upon vehicle operating costs — hence the basis
for quantifying the primary benefits of road improvements.

3) Generic model forms that can be calibratable at the local level and hence are transferable
from region to region.

[Cai 92] discusses other advantages of the model as including the benefit-cost analysis feature that

comprises more benefit and cost items than any other model. Further, several economic indicators —

net present value (NPV), internal rate of return (IRR) and first year benefits ratio (FYB) can be

selected for comparing the alternatives. Moreover, use of HDM-II has become a requisite for

projects financed by the World Bank.

2.2.3 Comparison of HDM-III to Other Models

Several other models or tools that are suited for investment appraisal in the road sector (potentially
applicable in low income economies) do exist. The most important among them are the Road
Transport Investment Appraisal Model (RTIM2 and RTIM3) developed by the British Transport and
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Road Research Laboratory [TRRL 86, Parsley 82, and 83, Cundill 95]. Another option is the recent
work at Waterloo [Turay 90 and 91]. The key aspects of each of these tools are subsequently
highlighted in comparison to HDM-III.

2.2.3.1 The Road Transport Investment Model (RTIM3)

The British Transport Research Laboratory (TRL) developed the Road Transport Investment Model
(RTIM) for particular use in economic appraisal in developing countries [Parsley 82 and 83, TRRL
86]. The model simulates road construction and maintenance costs and evaluates benefits (for each
investment alternative) in terms of savings in vehicle operating costs and user delay time. In this
respect, the model offers most of the features of HDM-III. The model has the advantages of being

smaller, and computationally faster.

From its experience of advising on economic appraisals in developing countries, TRL recognized the
critical need for simple and easily understood investment tools [Cundill 95]. The latest edition of
TRL model (RTIM3) was released in July 1993 to respond to that need while improving on the
limitations of the former version (RTIM2). In overall, RTIM3 uses the same equations (with minor
simplification) that were incorporated in RTIM2 [Cundill 95]. These relationships were based on
studies conducted in Kenya in the early 1970s and later in the Caribbean [Parsley 83, TRRL 86].

However, the most important limitation of RTIM3 is its narrow range of validation. In general,
RTIM3 relationships were calibrated for a narrower range of factors than HDM-III. It is reported,
for example, that the pavement deterioration sub-model incorporated in RTIM2 was based on data
for double surface dressed pavements obtained solely from the Kenyan study [TRRL 86, Parsiey 82
and 83]. Also, the vehicle operating cost relationships built into the model were based only on the
Kenyan and the Caribbean studies [TRRL 86]. Extension of these sub-models to other types of
pavement construction cannot be technically justifiable. It has been shown that vehicle operating
costs is a function of such diverse, but regional specific parameters as climatic factors, the road
geometric standards, driver skills and behavior, vehicle design and fleet composition, price regimes
and the nature of market competition, ezc. [Chesher 87]. Use of the Kenyan results to model costs in
other regions must be treated with caution. Given the limited data base used in formulating the
relationships it was not possible to include all the causal factors in the model. As a result,

transferability to other regions is highly questionable.
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2.2.3.2 The Road Network Improvement System, RONIS

{Turay 90] developed the Road Network Improvement System (RONIS) on the premise that the
existing models like HDM-III and RTIM2 were only good as tools for decision making for overall
road investments [Turay 90 and 91]. However, as shown in Figures 2.2 and 2.4, using the various
HDM-III reports the experienced user can generate status lists, year by year need sections, or use the
results in an EBM run to optimize strategies under multi-year and budget constraint situations
[Watanatada 87a). This is considered sufficient for the purpose of priority programming at the
network planning level. [Queiroz 92] demonstrated this capability by applying the HDM/EBM
models the Brazilian Federal (network-level) pavement management system. It is, therefore,
noteworthy that [Turay 90 and 91] argues that these existing models lack appropriate priority sub-
systems that could generate network status and need lists, and provide the necessary detailed
evaluations for network level priority programming. This could, however, become the case if one
goes to the next lower planning level, where detailed evaluation is a valuable process in project

realization.

While the RONIS model could provide a potential substitute for HDM-III and EBM, especially as a
result of its superior optimization sub-system, it still requires substantial improvements. For
instance, the sub-system dealing with generation of maintenance and rehabilitation alternatives for
unpaved roads would need more fine tuning before it becomes useable [Turay 90]. More
importantly, first time implementation of the RONIS model is not as easy as pulling a ready made
system from the shelf. A lot of original model-development work has to be done by the user agency.
The net resources involved may amount to several times the effort required to adapt the widely
accepted models like HDM-III and RTIM3.

2.3 HDM-III Limitations from Sub Saharan Africa Stand Point

The HDM Model does, however, have several weaknesses and limitations. Ease of use is one area
that calls for immediate improvement and is perhaps the key motivation of the current efforts to
upgrade the model [[SOHDM 93 and 94a].

An excessively large number of input variables requiring detailed and systematic network data
represents the most constraining factor that negates wide spread usage of the model in low income
countries. The limited resources of the case study region (discussed in subsection 2.1.3) transiate

into a serious disincentive of adopting the model in Sub Saharan Africa. The other important
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weakness, which also has a direct bearing upon its application to pavement management analysis, is
the limited and scattered availability of model calibration literature. Chapter 3 provides a review of
the scanty literature on the HDM-III Model re-calibration.

It is worth pointing out that the HDM-III is a fairly comprehensive model that is capable of
simulating the complex phenomenon of pavement behavior with the interacting factors of traffic
loading, environmental factors, the initial pavement design strength, the quality of the subsequent
maintenance. The intended application of the model also required it to be capable of relating the
diverse vehicle mechanics, engine speed, fuel consumption, tire and parts consumption, driver
behavior and management effects, ezc. with the quality of the traveled road. Such demand on the
model’s eventual usage implied, of necessity, the need for it to embody causal relationships that
involve all relevant factors [Paterson 87, Watanatada 87a). The inherent complexity of the HDM-III
model, including the large number of input factors — the concern in this thesis, was therefore, born

of necessity.

[Watanatada 87a] points out several important limitations of the HDM-III model. First, the VOC
equations were based on free flow conditions only; congested traffic could not be simulated. Second,
the road deterioration equations for freezing climates as well as rigid pavements were lacking. These
three limitations are the central motivation of the HDM4 study to upgrade the model. With inputs
from several international efforts from Malaysia (updating technical relationships), Sweden (cold
climate models) and Chile (modeling of rigid pavements), the most significant enhancements in
HDM4 are likely to address these immediate concerns. Finally, HDM-HI does not endogenously
model accident costs, other indirect costs or benefits of road improvements, for example, emissions,

noise pollution and other environmental impacts, efc.

2.4 Past Efforts Towards Model Reduction

2.4.1 General Overview

There have been several attempts to provide the specific strengths and functions incorporated in
HDM-III in simpler alternatives or in improved forms for HDM-III users. The most significant ones,
as far as this study is concerned, are those of [Kerali 91, Paterson 92, Quieroz 92] and the current
efforts initiated by the World Bank itself [Callao 92, Hoban 92]. While the first three articles deal
with reducing the problem of data needs in HDM-III applications, the last two papers focus more on
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user friendliness issues. The following paragraphs review the former set of efforts, while subsections
2.4.2 and 2.4.3 looks at the later attempts to develop more user-friendly tools. Finally, subsection
2.4.4 discusses the expectation of the current international initiative to upgrade the HDM-III model
[ISOHDM 93] and its implications to the pavement management technology in low-income

economies.

[Kerali 91] developed a simplified computer package based on the HDM-III Model for economic
appraisal to determine the traffic level at which it becomes economically feasible to pave gravel
roads. Depending on the level of accuracy required by the user the shell package was capable of
providing approximate or detailed results. At the simplest operation level, only a few data variables
would be required by the package to accomplish a quick analysis giving approximate results.

The interesting feature of this tool is the user interface or front-end program for input data
preparation. This front-end facility is used to prepare the data files for the HDM-III model in the
form required for the break-even analysis typical of paving decisions. The ease of use is built into
the user interface in a way that the user is required to input only a few parameters to run HDM-III.
Other inputs are provided in pre-assigned default values from which the user can select low, medium

or high ranges.

In a general sense the [Kerali 91}'s approach provides a suitable framework in which the potential of
the HDM-III model can be made more available to the novice users in developing countries. The
major limitation is the fact that the package provides only a specific use in evaluating paving

decisions (that is, to pave on not to pave).

It is also important to note that analysis provided by the simplified model is by no means region and
task specific. In other words, the results will be applicable only to the region for which the default
values reflect the typical values for the corresponding variables. The variables that are likely to be
influenced by location are for example, the link characterization data (e.g., precipitation, altitude,
subgrade, pavement standards, thickness, calibration factors, efc.). Transferability of the reduced
model to other geographic regions would only be feasible if the user interface provides for the user
to be able to re-calibrate the default values when needed. Kerali’s model does not provide such a

feature.
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[Paterson 92] developed simplified equations of pavement deterioration for asphalt concrete paved
roads based on the HDM-III. The major motivation of the study by [Paterson 92] was, however, to
improve computational speed of the predictive models in HDM-III for pavement management

applications. According to [Paterson 92]:

“Application of HDM-III to pavement management for many thousands of pavement
sections have been limited by (computing) time requirement. Thus, there is a strong
need for simpler algorithms which approximate the primary effects captured by the full
(HDM) recursive model, and permit rapid prediction of pavement roughness from
small number of primary parameters. "

The methodology described by [Paterson 92] offers a viable option in the reduction of the number of
input variables for running the HDM-III model. However, the simplified prediction models
developed are useful only for users capable of developing (computer coding, ezc.) their own analysis
“engines” or entire Pavement Management Systems. To the low-income road agencies in SSA this
capability is not available. Therefore, the only way to provide this potential methodology is to
incorporate it into ready to use (computer) packages. Modifying the HDM-III computer code is not

considered a real option from the low-income road agencies' standpoint.

[Queiroz 92] approach in reducing the data problem in the application of HDM-III was to trim down
the number of HDM runs by factorial matrix scheme. In their methodology, homogenous sections of
the network were grouped into classes, each corresponding to a cell in a factorial matrix. The
factorial matrix had four dimensions: with traffic levels, pavement deflection, area cracked and
roughness defining the link attributes. Feasible rehabilitation and maintenance options were then
defined for each cell of the matrix. Running HDM-III for the cells would then identify an optimum
maintenance and rehabilitation alternative for the group of sections in that cell. Running the EBM
model for the matrix under a given budget constraint would thus identify priority cells to be

implemented in the planning horizon.

However, the [Queiroz 92] approach still requires detailed data for each typical link representing a
cell in the factorial matrix. The methodology only reduces the effective number of HDM (and EBM)
runs needed to achieve a pavement program for the network. The suggested factorial matrix
reduction and the use of acceptability index in the analysis still assume the road agency has the
capability to collect and organize the detailed data. (Data are required for all model factors for each
cell in the factorial matrix.)
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Recently, the World Bank has initiated a number of efforts aimed at developing simpler and easy to use
sub-models based on HDM-III. Research has been under-way (starting late 1992) on such prototype
modules aa HDM Manager, RODEMAN and HDM-VOC (Callao 91 and 92, Deighton 92]. These
artempts to model simplifications are further discussed in the following subsections.

2.4.2 HDM Manager

The HDM Manager software is an attempt to provide a user-friendly shell environment for preparing the
data set and running HDM-III for specific applications. The HDM manager (designed to work with the
HDM-II) offers the following functions: (a) a quicker and easier preparation of HDM-II input files, (b)
running the HDM-III model, and (c) collecting the results in an easy to review format [Callao 92].

However, the HDM Manager in its present form has some serious limitations that reduce its usefulness in
full scale pavement management applications. First, only a few of the HDM-III features are retained; the
module is capable of evaluating only paved roads. Second, and most importantly, it is not capable of
evaluating within-project alternatives for more than one link at a time. This is probably the most critical
factor with respect to its application in a network-level pavement management. It is worth pointing out
that, typically, network level analysis involves hundreds or even thousands of road links. Other omitted
HDM-II features include the capability to handle construction options, generated traffic and exogenous

costs and benefits.

2.4.3 RODEMAN and HDM-VOC

RODEMAN is a menu-driven personal computer version of the Road Deterioration and Maintenance sub-
model of HDM-III that produces the same detailed results as HDM-III [Deighton 91, Paterson 92]. It also
includes simplified vehicle operating cost and other cost functions, which enable it to calculate the main
economic parameters, although in less detailed manner than HDM-III. The important user-friendliness
features achieved in RODEMAN are: comprehensive system-to-user communication, structured menu
system, context sensitive on-line help, and decimal numbered menu items to speed access to

functions (jump facility).

These advantages make the RODEMAN a much easier to use model. Also, the sub-model is useful
for simulating road performance and deterioration independent of the other HDM-III sub-models.
However, the technical demands of the RODEMAN (in terms of detailed data preparation and skills
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to correctly use it) are still the same as for the full HDM-II model. In addition, as discussed in
2.1.3, decision making in network-level pavement management requires not only performance
prediction, but also the cost streams associated with each project-alternative. For this reason, the
RODEMAN will have very limited applications at network-level pavement management in SSA in
the near future. It is considered, however, to have a strong potential for project-level pavement
management studies in which detailed analysis of each design alternative has to be quantified in

terms of performance and costs.

The HDM-VOC is another key HDM-III sub-model made available separately. The program predicts
the various components of vehicle operating costs (VOC) using input information on the roadway,
vehicle characteristics and unit costs [Callao 91]. The computations are based on the Brazil
relationships derived from the World Bank's Highway Design and Maintenance Standards Study.
The program computes vehicle speeds, physical quantities of consumption: fuel, parts, erc.; and
individual VOC components as well as total VOC for each vehicle type. The program seems to
incorporate all the features of the relationships in HDM-III, including the range of default variables
provided by the model. Most of the default input parameters provided are in relation to vehicle
characteristics. Out of the 65 input variables required by the model, the user would need to input
only a fraction of them to run the program unless accuracy of results demands more detailed input

information.

Again, like the sister sub-model RODEMAN, HDM-VOC is much easier to use but has only limited
advantages in the area of network-level pavement management. It can be very handy in specific
project studies like user charge assessments and research in transport economics, but it offers no real

incentives for adopting it for network level PMS applications in SSA.

2.4.4 The HDM4 Study and its Expectations

2.4.4.1 Broad Objectives and Goals of the HDM4 Initiative

The fundamental objective of the HDM4 initiative is the development of a new software tool for
highway appraisal that will ultimately supersede the HDM-III model [ISOHDM 93 and 94a, Bennett
94, Kerali 94]. The underlying motivation for the new initiative is the recognition that the existing
model (HDM-III) has several key limitations as an analysis tool for works programming in the road
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sector [ISOHDM 93 and 94a). The following trends have contributed to the renewed need to recast
the framework of HDM-III.
o There is increased demand for expansion of network capacity while on the other hand resources
for public investments are dwindling.

o Higher traffic loads are underlying the move towards stronger pavements (including concrete
pavements).

e More diverse maintenance and other treatment types have emerged since the last HDM study.

o Growing global pressure for more detailed assessment of environmental impacts of road projects.
In addition, there is a need for a harmonized system approach to road management, with adaptable
and portable software tools that are user-friendly and more oriented to graphical communication. A
strong need has been recognized for a standardized set of highway appraisal tools that will be
applicable in a wider range of environments in developing countries and in industrialized countries as
well [I[SOHDM 94b).

2.4.4.2 HDM4 Study Approach

The new initiative will not involve a major factorial study. Rather, it will mainly rely on “desk
study” to derive, extend or improve the relationships incorporated in HDM-III on the basis of recent
(completed or in progress) research findings available world wide [ISOHDM 93]. In a way, the
initiative undertakes to pool together the existing industrial strength that has evolved since the initial
HDM study. It is anticipated that from the recent literature and some specific project reports it will
be possible to extend or improve some of the HDM-III technical relationships.

The study has recognized that in addition to HDM there are a number of other highway appraisal
models such as RTIM that perform some of the tasks required in the proposed model. It is intended,
therefore, that the universal relationships for the models will be developed from a synthesis of recent

international research together with the experience gained from existing models.

The key sub-models will, however, be based on the fundamental framework and principles of HDM-

III, with enhancements in three major areas:

(N Technical content will focus on improving the existing relationships for pavement
performance and vehicle operating costs. Possible new relationships are expected for
congested traffic flow, rigid pavements, effects of new maintenance types, drainage, road
safety and environment.
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) A highly improved user-interface catering to all levels of users and for the major computer
operating systems.

3) A framework for specific applications of the models to planning and budgeting, work
programming and project design and evaluation.

2.4.4.3 Expected Deliverables from the HDM4 Study

There is strong evidence to suggest that the new model will evolve substantially from HDM-III. The
scope of the HDM4 initiative is reflected in [Bennett 94]. The study philosophy can be summarized
as finding the areas where HDM-III needs the most improvements and how can this best be achieved
with the available resources. The greatest improvements or changes are expected in two areas:
introduction of new relationships and major facelift on computing framework. These are
subsequently discussed under technical improvements and user interface respectively.

2.4.4.3.1 Expected Technical Improvement

Improvement to the technical content will be reflected by the introduction of new relationships as
well as extensions to relationships currently used in HDM-III. The objective will focus on such
concerns as the modeling VOC for traffic congestion, the incorporation of recent research on VOC,
wider range of pavement types (e.g., concrete, penetration macadam, efc.) maintenance effects,
safety implications and relationships for wide range of environments. More specifically, the

following enhancements to the technical content are expected:

o Congestion: The capability to model VOC for congested traffic flows in both rural and urban
areas.

* Rigid Pavements: New relationships for performance prediction of rigid pavements and effects of
new maintenance treatments and new pavement types derived from recently completed studies.

o Freezing Climates: Additional relationships for predicting pavement performance in a wide range
of environments, particularly for modeling freeze-thaw effects are expected.

¢ Vehicle Operating Costs: Enhancement in the existing VOC relationships to reflect the changes
in automotive technology, particularly for fuel, tire wear, parts consumption and depreciation.

o Safety, Environment and Drainage: New relationships are expected for evaluating the effects of
road improvements on accidents and safety, the impact of vehicle emissions and noise pollution
and for predicting the effects of drainage on pavement performance.



2.4.4.3.2 User Interface

Given the general recent trends in micro-computer technology towards more graphic user interface
(GUI) and menu driven software architecture, the new HDM model will most likely see a major
improvement in the user interface. More specifically, the following changes are seen as achievable

within the scope of the present initiative (ISOHDM 94a, and 94c]:
(1) Computer Platform: A user friendly front-end employing “graphical user interface” (GUI) and
menu system under Windows environment is envisaged. The resulting package will be used

primarily on personal computers, but will probably be available on other platforms at a future
date.

(2) Modular Software Architecture: An integrated modular structure is envisaged where it should be
possible to use individual modules for specific tasks independently. Further, it is likely that users
will be able to modify or replace individual modules or relationships.

(3) Interface with Other Systems: HDM4 proposes to develop an interface to enable data exchange
with external systems, such as existing pavement management systems, efc.

2.4.4.4 The HDM4 Scope Versus the Sub Saharan User Concerns

The list above represents the major enhancements that are considered achievable within the scope of
the current HDM4 initiative. It is, therefore, projected that the emphasis of the technical
improvements in the new model will mainly be in the areas of cold climate pavement performance,
congested traffic VOC relationships and rigid pavement performance equations. Most of the technical
relationships in the current HDM-III, especially those relating to pavement performance and VOC

prediction in tropical Sub Saharan Africa are likely to remain unchanged.

The research in this thesis identified the following limitations of HDM-III as being of more

immediate concern to Sub-Saharan Africa:

a) Data intensive — hence high requirements in technical and financial resources.

b) Complicated procedure for input data preparation — implying extensive experience and skills.

¢) Lack of user friendly features.

d) Complex and excessive number of outputs — not convenient for network appraisal.

e) Lack of standard guideline for calibrating to local conditions, and

f) Lack of standards criteria for assessing quality of outputs for known precision of inputs.
The subsequent paragraphs highlight some of the items and how the limited scope of HDM4 is
unlikely to address the special concerns for Sub-Saharan Africa.
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* Data intensive: First, the demand for higher reliability or precision of outputs will continue to
dictate a need for more parameters in the modeling approach. Secondly, “universal transferability,”
which seems to be a major goal in the HDM4 study [ISOHDM 93], will imply both extending the
existing and adding new relationships. The possible net effect is therefore an increase still in the total

number of input parameters required to apply HDM4.

*» Standard guidelines for calibrating to local conditions: The approach to be adopted for this need
is likely to be limited to the improved documentation on the model; again universal to all users. In
our view, such universal guidelines will still be too general. A more appropriate approach would be
to provide regional specific calibrating guidelines, since different regions will always have different

needs, concerns and backgrounds.

* Criteria for assessing quality of outputs: It would be desirable, for example, to be able to
quantify the loss in optimality associated with the chosen R&M treatments (using HDM-III outputs)
for any given level of input precision. This is not likely to be given sufficient weight in the proposed
HDM4 swdy. Initial approach to sensitivity analysis for HDM4 seems to focus on individual sub-
model outputs as objective functions, for example, initiation of cracking, progression of cracking,
change in VOCs, total VOCs, erc. The limitation of such an approach is that at the network-level
programming the interest is, for example, the factor sensitivities upon a decision criterion (NPV,
IRR, etc.).

The above concerns remain very real for road agencies planning to use the strengths of HDM-III (or
HDM4) for network-level programming. The research described in this thesis is, therefore, an

attempt to respond to these special concerns.

2.5 Conventional Approaches to Sensitivity Analysis

2.5.1 Overview of the Thesis Methodology

The motivation for this thesis is based on the hypothesis that the HDM-III model can be streamlined
by screening out the least sensitive input variables with respect to an application-specific output. It is
argued that, for any given application of the model, e.g., R&M programming, there are only a few
active input factors influencing the output(s) of interest. As long as the user can provide these active

inputs with reasonable precision, the model will yield sufficiently reliable results specific to that
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region and task. The rest of the inactive input factors, once identified, can be fixed at constant values

and re-used in similar tasks as region-specific defaults.

The methodology of the thesis is, therefore, centered at developing efficient approaches to sensitivity
analysis that can be used to screen and quantify the influence of individual HDM-III input
parameters. The next subsections look into traditional approaches to sensitivity analysis, and then
review earlier works on sensitivity analyses on HDM-III and their relevance to the present study.
More robust techniques of sensitivity analysis are presented in Chapter 5.

2.5.2 Traditional Sensitivity Analysis

Traditionally, sensitivity analysis has been used as a tool for assessing whether some input factors to
a decision making process require further careful examination so as to reduce uncertainties associated
with the decision taken [Little 74]. [Ashley 80], in an article investigating the influence of factor
errors in traffic forecasting models, points out why sensitivity by computer simulation is sometimes
inevitable. The article observes that an exact analytical solution often requires one to derive partial
derivatives of fairly complex inter-relationships, mostly of iterative nature (very common in
transportation engineering). This difficulty in theoretical approach negates its applicability to

efficient investigation of computer based models.

The approach developed in this thesis is not about risk testing per se, rather the objective is to
determine which input factors dominate the choices taken in a set of alternatives. This objective
requires investigation of both main factor effects and the influence of factor interactions. It is always
desirable, for example, in strategic planning, network priority programming, ezc. to know to what
extent the quality of the decision criterion is compromised if some input factor(s) were missing or
were known to be unreliable to some degree. Unfortunately, the literature outside advanced statistics
journals, does not provide much in the area of multi-factor sensitivity analysis of computer based
models. Yet, such models, of which HDM-III is an example in point, are becoming almost

indispensable routine tools in most engineering practice.

The traditional method of investigating factor effects in a model is to change only one factor at a
time, the so called ceteris paribus method. In search of efficiency, an alternative method was
developed. The factorial design allows all levels of a factor to be combined with all levels of other

factors in a planned fashion that enables determination of factor effects as well as their interactions.
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Factorial experiments were shown to be more efficient in that they yield more reliable estimates of
the (main) effects of the factors, and moreover, they give estimates of the interactions among factors.
The differences between ceteris paribus and factorial experiments are summarized in Table 2.1.

TABLE 2.1 Motivation for Factorial Experiments

Ceteris paribus experiments Factorial experiments
Defined: Experiments in which only one factor at time Defined: Experiments which combine all levels of one
is varied; all other factor are kept constant factor with all levels of all other factors

¢ Can be inefficient (require a large number of runs) e Efficient (minimum variance of measured effects)

¢ Not capable of detecting factor interactions Capable of detecting factor interactions

» Requires detailed knowledge of phenomenon to o Experiment size reduction is possible
enable an informed search

¢ Can be useful if the model has few factors, and the e Easy to implement and analyze
assumption of small joint-effects is valid

The critical limitation of ceteris paribus experiments is the misleading nature of the results when
factor interactions are present. Figure 2.4 illustrates this limitation. Suppose a test is conducted for a
particular variable, say x,, while all the other factors, say x, x;, ..., X, are fixed at level 1 and the
effect of x; on the response is determined. If factor interactions are present, repeating the test for x,,
but at different levels of the other factors (x;, X;, ..., X, at level 2) will yield a different value for the
effect of x, (Figure 2.4 b). In other words, the results of factor effects are influenced by the “state”
of the other input factors. Therefore, sensitivity results are meaningless without reference to the

“base case” levels of all the variables used in the investigation.

The obvious advantages of the “ceteris paribus” techniques (in particular for simple models and
where factor interactions are not important) notwithstanding, the limitations discussed above (Table
2.1) motivate a search for more robust techniques investigating factor effects of complex models.
These newer techniques are presented in Chapter S. The remainder of this chapter reviews past
works on sensitivity studies on HDM-III.
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FIGURE 2.4 Hypothesized effect of factor interactions at two experimental states

2.5.3 Past Sensitivity Studies on HDM-III Model

[Cai 92] investigated the sensitivity of gravel road upgrading decisions with respect to a set of input
factors. The ceteris paribus study was based on analyzing the net present value (NPV) as the model
response variable. In HDM-III, net benefits of road improvements are defined as savings of the total
life-cycle costs of one alternative over a do minimum alternative [Watanatada 87a). [Cai 92]'s idea
was 1o compare the benefits of a paving alternative (chip seal) against retaining a gravel road (as the
null alternative). The NPV index, representing the difference in the total transport costs between the
two alternatives was, therefore, the response parameter of interest while a number of input factors
were varied in a “one-at-a-time” fashion. Although based on prevailing unit costs and other physical
atributes in a mid-state province of China, [Cai 92)'s work demonstrated that the NPV predicted
was sensitive to only a few of the many input factors. Further, this work showed that the individual
effects of the active factors vary greatly from one factor to the other.
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A key lesson for this thesis from [Cai 92]'s work is that the assumption of factor sparsity (few active
factors) is valid for HDM-III. This would generally be the case for many large and complex
engineering models involving a large number of variables. This assumption underpins the research
hypothesis that the model is reducible (by screening out inactive factors), at least for specific

applications.

While the findings of [Cai 92] shed some light upon which variables to further focus on, in the
present study, several precautions are in order. First, the base case scenario used in [Cai 92]’s study
may not correspond with situations in other study regions. As it is later argued by [Mrawira 96a] in
a paper arising from this thesis, the absolute sensitivity of the active factors in the NPV output may
not be applicable in other scenarios. For the sensitivity factors to apply, the values selected for base
case scenario should reflect the typical values in the case study region. Furthermore, the relative
changes in input parameters simulated in the sensitivity analysis should reflect the true upper and
lower boundary limits of the variables typical for the study region. Secondly, the R&M strategy
investigated in the [Cai 92] looked only at upgrading a gravel road to a chip seal surface. While this
may constitute one of the many strategies in a typical PMS analysis in Sub Sahara Africa, the thrust
of the thesis is to expand the scope of investigation to screen active factors in a range of R&M

strategies applicable in priority programming in the case study region.

The literature contains a few more studies on sensitivity of HDM-III parameters, including those of
{Kerali 91, Queiroz 91 and Bank 88]. However, most of these studies were focused, like that of [Cai
92], on investment decisions on upgrading gravel roads. It was a motivation, therefore, for this

thesis to expand the scope of sensitivity study accomplished by Cai and others.



Chapter 3

CALIBRATION OF HDM-III MODEL TO LOCAL CONDITIONS

3.1 Introduction to the Chapter

The World Bank's Highway Design and Maintenance Standards Mode! (HDM-III) is by any measure
the most common and acceptable analysis tool for supporting decision-making in the road delivery
sector in developing countries [Riley 94]. It provides a robust methodology for life-cycle cost
evaluations of road construction, rehabilitation and maintenance alternatives, and hence sound
economic criteria for comparing investment options. However, there are no standard, comprehensive
user guidelines on how to collect the necessary data, calibrate the model for local conditions and how
to go about the important aspects of setting up the model to determine optimum strategies [Riley 94
and 95, Mrawira 96a].

[t can be concluded that the literature on calibration is not readily available to the end user, and has
so far mainly focused on improving predictive capabilities of individual deterioration equations; it

does not offer much in terms of generic guidelines to the calibration problem.

The current HDM-III documentation [Watanatada 87a, 87b, and Bank 89], for example, points out a
number of analysis questions for which the model can potentially be used. The user manuals provide
a very limited guide on the best methodology for applying the model in any of those potential areas.
Several case studies supplementing the HDM documentation [Bank 89, Callao 94a, and 94b] exist,
but none of them provide a comprehensive guide on the process of applying the model at a local

level.

This chapter draws together the experiences of model users worldwide as reported in the literature to
provide a compendium of “user guide” to the key aspect of adapting the HDM-III model for local
implementation. The focus is more specific to applications in the area of priority programming at the
network or strategic planning level.

The following two sections look into the challenge surrounding the need for model calibration and
calibration data needs, respectively. The remainder of the chapter reviews the three levels of
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calibration — adapting the performance predictions, the user costs models, and generating suitable

and cost-effective intervention strategies.

3.2 The Need for Model Re-calibration

Before applying the HDM-III model in any analysis there is a need to review whether the model will

require calibration, and if so, how to implement such a calibration.

The modeling relationships in HDM-III are categorized into two main classes:

e Prediction of pavement deterioration under the combined impacts of traffic, aging or environment
impacts and maintenance interventions.

e Prediction of road users’ costs under given pavement conditions, other road attributes, traffic
interactions, and the socio-economic factors.

[ssues underlying the need for calibration are given by [Watanatada 87c], as summarized below:
e Geographical location affects climate/weather related parameters, road design standards,
operators’ fleet management policies, driver behavior, etc.
e Effects of large changes in vehicle technology, economic circumstances over time and over space.

Calibration of the model therefore involves three main steps:

e  Adjusting the pavement performance parameters to approximate local pavement deterioration.
e Adjusting the VOC model parameters so that the prediction is close to observed users’ costs.
e Formulating rehabilitation and maintenance (R&M) strategies that reflect local practice.
All three steps may be necessary to improve the reliability of the model outputs. This chapter

reviews the calibration process under the above three levels.

One point to note is that different model applications would have different priority for calibration.
This is obvious since, for network status study for example, pavement performance prediction is the
important output criterion, while for R&M priority programming or any other economic analysis, the
NPV prediction is the focus. In the former, calibration priority is on fine-tuning performance
prediction; in the latter, the focus is reliable life-cycle costs predictions. For the investigation in this
thesis, the primary interest is on calibrating the model for priority programming at network level.

On one side of the re-calibration question, the literature argues that the HDM-III Model is quite
robust, particularly with respect to some of the model relationships. (Watanatada 87c] points out that
the HDM Study was more successful with some types of data and therefore it was possible to
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develop relationships embracing all relevant, significant variables. Example of such cases are the
speed and fuel models in the VOC equations. On the other hand, sufficient data were not acquired
from the HDM Study for the tire wear model. Consequently, the equation is considered less

transferable.

The vehicle annual utilization relationship is also highly region-specific; likewise, the vehicle
maintenance cost model is also sensitive to local conditions. Except for the exponent of the annual
cumulated kilometers of travel (in the parts model), the spare parts consumption variable and the
vehicle repair labor equations are suggested [Watanatada 87c] to be reasonably stable across borders.

In relation to adaptation of the VOC models to local conditions [Watanatada, 87c] summarizes by

three important observations:

e The mathematical forms of the models are generally adequate and need not be changed except for
special reasons (e.g., to incorporate a new policy variable).

e The vehicle attributes which appear as explanatory variables in the models should generally be
determined for the local situation.

e Some parameters are obviously more sensitive to local conditions than others.
Based on these considerations [Watanatada 87c] recommends parameters to which re-calibration can
be applied. [Watanatada 87c] argues that a decision on whether or not to re-calibrate a parameter
should be based on three key inter-acting factors — locational sensitivity, parameter impact on model

output, and the effort required to re-calibrate it.

However, the problem still remains that no attempt has been published quantifying the impact or the
sensitivity of each calibration parameter on the model output. [Mrawira 96a] presents results of a
study aimed at quantifying the sensitivity of the pavement deterioration factors upon NPV as a
ranking criterion in an R&M options analysis at the network-level. Despite the fact that the
sensitivity results of [Mrawira 96a] were based on one—factor—at—a~time approach, they remain
invaluable in shedding light on where to put emphasis in the calibration process. A more
comprehensive approach to factor sensitivity analysis is developed later in this thesis. Chapter S
presents the methodology, while the results are outlined in Chapter 7.
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3.3 Data Requirements for Calibration

The calibration-related data include primarily longitudinal-section data that relate observed attributes
over time. Historical data on, for instance, pavement performance under a known maintenance
strategy, are needed to calibrate the deterioration equations. In this regard [Howard 94] notes that
effective calibration of performance prediction requires reliable and representative historical data that
relate a known past pavement environment (the combination of structure, climate, traffic, and
maintenance activity) to pavement deterioration over a substantial period. The calibration of the user
costs relationships requires appropriate data on vehicle resource consumption covering a wide range
of road conditions, vehicle types/makes, age distributions and utilization degrees. Efforts can and
should be made in the factorial sampling to include all possible range of key factors and vehicle
characteristics representing the local traffic composition. However, it is generally very difficult, for
example, to associate a particular vehicle operation with one route or road with constant conditions

or geometric standards.

In most cases, with respect to pavement performance, it is possible to assemble a number of
reasonably reliably known as-built pavement data, but in general an adequate history of progression
of roughness or other distress parameters is not available. More often all that is available is, for
example, an estimate (based on the knowledge of the construction process) of as-built roughness, and

a measure of current roughness and cracking.

It is generally acknowledged that reliable data are a major problem, particularly in low income
economies in which the practice of modern PMS is at its very infancy. It should be emphasized that
any attempt to calibrate the model must therefore be critically evaluated against the data constraint.
The validity of the calibrated model will primarily depend on the assumptions or approximations put
forward by the consultant or researcher. It is important that the eventual model user evaluate the
relevancy and sufficiency of any such assumptions used in re-calibration. [Howard 94] concludes

that,

“... a highly controlled calibration study may not always be possible. Calibration of
performance, even though based where possible on the back calculation of observed
performance, (more often than not) relies on a judgment of the reasonableness of
predicted outcomes in the light of local experience. ”
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On the same note of the general lack of sufficient calibration data [Robertson 94] concluded that
calibration of the HDM-III relationships eventually relies on one of the three options:

(1) Adoption of some default parameters where it is considered that the default
assumption will not have a significant bearing on the analysis;

(2) Calibration from historical data, i.e., fitting the predicted performance to “snapshot”
observations of pavements of different ages; or

3) Calibration from experience - based judgment of expected performance i.e., based on
knowledge base of experienced pavement engineers.

It has been suggested, and in fact most users rely on, calibrating the HDM performance relationships
based on scatter analysis of “snapshot” or “window observations™ of pavements at various ages
instead of the much difficult to come by actual life-cycle or time series observations [Rohde 94].
Scatter analysis is based on collecting several “one-time” condition data on various “similar”
pavements at different ages and traffic loading levels. These different pavements then provide
different points on the deterioration curve for the particular design and traffic intensity. In essence,
this process implies the fundamental form of the individual predictive relationship is acceptable, and

that “scaling” rather than change of model form is sufficient.

This approach can achieve reasonable results where the as-built records as well as traffic loading
history and environment records exist. Again this assumption is important in that the use of a one-
time survey is valid to the extent that the performance from as-built condition through to the point of
the “one-time™ observation has been subject to continuously uniform factors as reflected in the given
factorial class. It also assumes that a sufficient sample that spans (and is balanced over) the age
spectrum can be obtained from the network for each pavement design class and traffic intensity

combination.

3.4 Sources of the Calibration Literature

The primary guide on calibration is the user manuals and the accompanying volumes collectively
called the Highway Design and Maintenance Standard series [Watanatada 87a, 87b and 87c, Paterson
87, and Chesher 87]. The most notable recent contribution to the HDM-III calibration literature is
found in the Proceedings of the International Workshop on HDM-4 [ISOHDM 94d]. Several other
individual studies also exist which contribute to the calibration literature in varying degrees [e.g.,
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Srsen 94, Riley 95, Kannemeyer 95, and Mrawira 96a]. This subsection identifies the most useful
pieces of the HDM-III calibration literature and highlight the key lessons learnt from each.

At page 29-34 [Watanatada 87a) discusses the general validation of the model and the model areas
requiring further research. Subsection 1.4.2 outlines the basic construction of the model, broad
strengths and weaknesses and key aspects that need be considered in adapting the model. This section
also introduces the transferability issues and applicability of the equations in diverse physical and
economic environments. The philosophy behind the model formulation and its suitability for adapting
to different locations is highlighted. The subsection also points to other parts of the HDM-III
documentation where calibration guidance is given. Chapter 13 (pp. 317-335) of [Watanatada 87c] is
referred to as the primary guide for calibrating the vehicle operating costs models, while chapter 10
(pp- 373-397) of [Paterson 87] is pointed out as the primary guide for pavement performance.

Chapter 4 (pp. 87-148) of [Watanatada 87a] describes in great detail the computational logic for
pavement performance in the model, the structure of the equations and highlights the quality of
estimation of the several model factors. This is considered an invaluable source of guidance for

understanding the model before setting out to calibrate or modify the relationships.

Subsection 4.1.8 (pp. 84) of [Watanatada 87a] mentions the role and the basic approach of using
“deterioration factors” to calibrate the pavement performance equations. On the question of factors
to be given priority in a local calibration, the subsection argues that, “It is expected that cracking,
raveling, and pothole models are the most likely to require local adaptation.” However, as it was
argued in [Mrawira 96a] the priority for re-calibration should also be based on sound factor
sensitivities relevant to the analysis criterion. The results given later in this thesis suggest a different

calibration priority.

Subsection 4.3 (pp. 109-128) in [Watanatada 87a] addresses the important role of maintenance
intervention upon paved road deterioration and outlines a procedure of formulating R&M strategies
in the context of HDM-III. The effects of maintenance interventions for unpaved roads and
considerations in defining appropriate strategies are given in subsection 4.5 (pp. 144-148) of
[Watanatada 87a). Good understanding of the concepts of intervention criteria and hierarchy of
maintenance activities, for example, is essential and crucial in formulating a proper model

application. Although [Mrawira 96a) recognized and strongly recommended careful formulation of
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R&M strategies as an important step in model calibration, most of the calibration literature does not
fully address this subject.

Chapter 5 of [Watanatada 87a] discusses the basis, formulation and the validation of the vehicle
operating costs equations in HDM-III. The considerations of choosing the set of model relationships
and vehicle types for representing local traffic compositions is given in subsection 5.1.2 of
[Watanatada 87a]. The Appendix to chapter 5 [Watanatada 87a] also provides a very useful guide in
selecting the appropriate vehicle types to model local traffic composition. More detailed specific
guidelines on how to design an investigation to calibrate the VOC relationships are given in chapter
13 of [Watanatada 87c].

[Paterson 87] is the most comprehensive guide to pavement performance modeling not only for
understanding and applying the HDM-III model but also for the general application to pavement
management. Chapter 10 of [Paterson 87] is referred to in [Watanatada 87a] as a primary guide for
calibrating the performance relationships. This important source provides an extensive summary of
the strengths underlying the performance prediction equations, the quality of the database used to
estimate the model parameters and hence reliability of the model and the areas warranting higher
priority for local re-calibration, etc. However, the guide to calibration contained therein is general

in nature and again lacking the “how™ contribution.

Chapter 13 (pp. 315-335) of [Watanatada 87c] provides a well structured guideline on calibrating the
VOC relationships to the local settings. Individual model parameters are discussed, subjective
assessment of their relative impact upon the predicted VOC, as well as the nature of data or
experiment and the effort required to calibrate it. It may be pointed out that the guidelines are more
or less general in nature. There is a need for more specific detailed case application guidelines.

Among the various papers on model calibration given in [ISOHDM 94d] the most interesting
contributions are those of [Robertson 94, Howard 94, Riley 94, Rohde 94, and Kannemeyer 94]. A

sketch of the content in each of these works is subsequently given.

In Queensland performance calibration efforts focused on the roughness and cracking models for the
most common types of pavements — surface treatment on granular base (SD/GB), and asphalt
concrete on granular base (AC/GB), and surface treatment on cement treated base (SD/CB)
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[Robertson 94]. For the cracking model, the data available was of low quality, hence experience-

based calibration was recommended.

In the Queensland study it was found that the ratio of cracking initiation factor, Kci, to the age at
which wide cracks start manifesting was influenced by the traffic level. From this observation two
recommendations were made. In calibrating the cracking model it was recommended to start with the
initiation factor, Kci before the progression factor, Kcp. Second, the cracking initiation factor should
be calibrated separately for each traffic — environment category. Table 3.1 shows the cracking
calibration factors recommended for Queensland using an experience-based calibration [Robertson
94].

TABLE 3.1 Recommended Cracking Calibration Factors for Queensland

Pavement type Cracking Cracking Wide Cracks  Cracking progression
initiation factor progression Factor inifiation age Rate (%)

AC/GB 0.40 0.55 7-10 0 - 30 in 6 years

SD/GB 0.30 0.55 7-8 0 -30 in 6 years

AC/CB 0.05 0.38 8-10 0 -33 in 4 years

Full depth AC 0.40 0.55 8§-10 0 - 30 in 6 years

Notes: Source: [Robertson 94]; AC/GB = asphalt concrete on granular base; SD/GB = chip
seal on granular base; AC/CB = asphalt concrete on cement treated base

The calibration experience from Philippines [Howard 94] goes beyond the normal interpolation of
the model relationships to predict existing pavement types. The feasibility of extending the equations
to concrete pavements and to high traffic volumes of up to 10,000 AADT was demonstrated.

[Howard 94]’s approach to extending the HDM-III performance prediction to concrete pavements
was investigated by a carefully designed calibration of the corresponding AC pavement equations.
Appropriate calibration factors were determined by trial and error for a range of cases representing
low to very high traffic loading (ESALs) and normal to poor quality concrete bases. Occurrence of
ruts and raveling was suppressed by setting Kvi = 0.0 and Krp = 10. Table 3.2 shows the range of
calibration factors recommended by [Howard 94] for modeling concrete pavements in Philippines.
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TABLE 3.2 Calibration Factors for Modeling Concrete Pavements in Philippines

Factor Symbol Recommended Range Remarks

Cracking [nitiation Kci 0.1

Cracking Progression Kcp 0.1-0.6 varies with ESALs and constr. quality
Roughness- age/environment Kge 0.2

Roughness Progression Kgp 3.6

Pothole Progression Kpp 0.13

Rutting Progression Krp 0.0 to suppress rutting

Raveling Inigation Kvi 10.0 10 suppress raveling

Source: fHoward 94]

Apart from the calibration contribution, [Howard 94] also presented an interesting experience gained
in the application of the HDM-III model as an analysis engine in a network level pavement
management. For example, to extend the HDM-III deterioration equations to AC overlaid rigid
pavements [Howard 94] modeled the before and after overlay cases as separate pavement sections,
and then combined the relevant parts of the predicted performance and cost streams as a post-
processing task (outside HDM-III) before performing the optimization analysis (using EBM).

{Riley 95] provided an example of model adaptation for a mountainous terrain, low volume road
network in Nepal. The pavement standards in Nepal are granular base with AC surfacing, mostly
penetration macadam or thin premixed asphalt. Generally, construction quality involves “hand laid”
pavements implying relatively high initial roughness levels. Use of a back calculation method of

estimation was employed since as is generally the case, historical data were not available.

Given the high roughness levels tolerated in Nepal [Riley 95] suggested an interesting measure; the
internal upper roughness limit permitted in the HDM-III source code was modified from 11.5 IRI to
20 IRI. Similarly, the rutting limit was revised to 10 mm by manipulating the HDM-II source code.

In a study to evaluate the applicability of HDM-III on South African national roads [Kannemeyer 94
and 95] demonstrated another interesting case of calibrating the model.

On the roughness model [Kannemeyer 94, and 95] recommended the approach of calibrating the
environmental-age factor (Kge) first and then calibrating the roughness progression factor (Kgp)
based on the Kge calibrated model. The environmental-age roughness factor is estimated by first
determining an estimate for the environmental index, m based on Thornthwate moisture classification

of the region. The details of this technique are given under Subsection 3.5.3. Using this technique
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(Kannemeyer 94] obtained Kge values ranging from 0.39 to 0.89 for semi-arid to humid conditions
in South Africa respectively. These values suggest that the pavements studied are about one half less
susceptible to environmental degradation compared to the default HDM-III predictions.

Table 3.3 gives a summary of other pavement performance calibration factors recommended from the
[Kannemeyer 94] study. For roughness progression, potholes and raveling equations the default
HDM-III prediction (Kgp = Kpp = Kvi = 1.0) was found adequate. It is interesting to note that the
default prediction generally over-predicted the cracking rate by more than twice. It is also noted the
significant difference in the cracking bebavior between overlays and reseals compared to original
pavement surfaces. This underscores the need for more studies on performance modeling of
rehabilitation treatments — an area which is noted in the literature as lacking sufficient empirical

data.

TABLE 3.3 Range of Calibration Factors for South African National Roads

Pavement Type Cracking Initiation, Kci Cracking progression, Kcp  Rutting progression, Krp

Original surfacings 1.0-1.5 0.1-0.3 1.5-1.8
Overlays & Reseals 0.4-0.8 0.4-0.8 1.0

Source: [Kannemeyer 94]

3.5 Calibration of Pavement Deterioration Models

3.5.1 An Overview

In HDM-III, both the initiation and the rate of pavement deterioration have an important impact on
the life cycle maintenance and rehabilitation costs as well as determining or predicting road users’
costs. To ensure that the pavement deterioration sub-models in HDM-HI predict or simulate realistic
pavement performance for a given region the model performance prediction needs to be carefully
calibrated by comparing predicted conditions with observed performance.

The calibration of the performance prediction equations in HDM-III is effected by including in the
input data a set of linear multiplier factors, referred to as deterioration factors. The set of
deterioration factors is determined so that it accounts for region-specific factors such as, material
properties, rainfall intensity, temperature, construction practices and quality, plant, erc. If it is
considered desirable to calibrate the performance models for a given distress type, then the model
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user will need to develop deterioration factors for each type of distress and for each link or set of
links.

The calculation procedure for determining the deterioration factors is simple in theory. A
deterioration factor is a simple ratio of the rate of progression (or the time to initiation) of a given
distress predicted by the uncalibrated model to that observed locally. Other approaches have used
simple trial and error method to determine the calibration factor, yet more rigorous numerical
methods have been suggested, see for example [Kannemeyer 94 and 95].

The approach to the question of the need to re-calibrate the HDM-III performance models
recommended from this study is a trade-off between the effort required to calibrate the parameter
(cost, data, and skills) against its sensitivity on the model output. To decide on parameters that merit
local re-calibration this study proposes a ranking of the parameters based on factor sensitivities with
respect to the analysis criteria. A ranking of the HDM-III pavement performance calibration factors
based on their sensitivity to the output criterion can be assembled and used to prioritize the need for

calibration.

3.5.2 Choice of Pavement Distress Modes to Re-calibrate

In HDM-III deterioration of flexible pavements is predicted separately by five distress modes,
namely, roughness, cracking, raveling, potholes and rutting. The mechanism of surface distresses is
characterized by two phases [Paterson 87, Watanatada 87a]: initiation phase and progression phase.
HDM-III uses separate equations for predicting initiation and progression phases of surface
distresses. Roughness and rutting, are referred to as ‘deformation distresses’ as they relate to
movement in the pavement structure. The mechanism of a deformation distress is single phased and

it is therefore sufficient to model it using one equation.

Consequently, there are seven deterioration factors used in calibrating the performance models in
HDM-III: Cracking initiation and progression factors (Kci, Kcp), Potholes progression factor, Kpp,
Rutting progression factor, Krp, Raveling progression factor, Kvi, and Roughness progression and
age-environment factors (Kgp, Kge).

It has been suggested that the surface distress modes of cracking, raveling and potholing are more
likely to require local adaptation [Watanatada 87a). The other two deformation distresses, rutting and

roughness are relatively less sensitive to locational attributes. However, sensitivity results indicate
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relative importance of these parameters that suggest a different priority in the need to calibrate. The
ceteris paribus study reported in [Mrawira 96a] showed that a more comprehensive set of factor
sensitivities presented later show a different priority based life-cycle cost components. Raveling and

rutting factors have the least significance upon the NPV output.

3.5.3 Specific Considerations on Calibration of Performance Prediction

3.5.3.1 Calibration of Cracking Initiation and Cracking Progression

Pavement cracking is modeled using two equations; one for predicting the time from construction
/rehabilitation when cracking initiates, and the other for predicting the rate of increase in extent and

severity once the cracks have appeared on the pavement.

The form of the equation for the time it takes a new or rehabilitated pavement to show signs of

cracking for flexible pavements is given by [Paterson 87]:

TYcra = Kci (Fc ® TY + CRT) .. (3.1
where, 7TYcra = time to start cracking in years,
Kci = calibration factor for narrow cracking initiation,
Fc = occurrence distribution factor,
CRT = cracking retardation time due to maintenance, and
TY = mean age of surfacing at initiation of cracking.

TY is given by different equations for different pavements and is a function of modified structurai
number, annual traffic loading, excess binder content, construction quality, resilient modulus of soil
cement, mean Benkelman deflection, and effective surface thickness.

Cracking (wide and narrow) models have been shown to be functions of five primary variables:

& pavement layer thickness (hence modified structural number, MSN),

o resilient modulus of cement stabilized material,

» Benkelman beam deflection,

o annual raffic loading in ESALs, and

o 2 linear calibration factor, Kci.
Four of these variables can be obtained from construction records, and from condition and pavement
evaluation surveys. The only factor requiring calibration here is the Kci parameter. For cases like in

Tanzania where sufficient data to carry out cluster analysis or time series analysis was not available a
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viable approach to estimate Kci was to draw on the engineering experience of the local practitioner.
An average estimate of the time it took a pavement of a given standard to start developing cracks was

established from field personnel.

A generic, yet simple procedure of determining a calibrating factor is to run HDM-III with the
default Kci under the level of maintenance anticipated and observe the predicted time to initiation of
cracking. This prediction is compared with the local data to decide on what extent to scale the Kci
factor. An iterative process may be needed to approach the best value. The local experience in the
Tanzanian study for example, showed that a new pavement took about S to 7 years to start cracking.
Under similar conditions HDM-III predicts cracking initiation after 9 years. The predicted time
required calibrating to Kci = 1.2 (default Kci = 1.00).

The relationship governing the annual rate of progression of cracking has three major variables:
namely, the current condition (severity and extent), the pavement age, and the progression
calibration factor, Kcp. The calibration of this equation again involves only the factor Kcp. The
default value of Kcp = 1.0 under minimal R&M strategy will predict complete surface disintegration
in 5 years after the initiation of cracks for a surface dressing (SD) on a stabilized base road. If this is
close to the observed trends in the local pavements then the range of Kcp at 1.00 to 1.20 can be kept.
Otherwise, the factor has to be adjusted to predict the performance approximating the local
pavements. Figure 3.1 shows the resuits of cracking model calibration for a typical link with an
initial traffic of 2020 ADT.
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FIGURE 3.1 Cracking calibration for a typical link from Tanzania (ADT = 2020)

3.5.3.2 Raveling Initiation and Progression Parameters

Raveling is defined as the loss of surfacing material from a pavement. It is more common in surface
dressed and gravel roads where the binder in the wearing course has lost its effectiveness. It may
also occur in AC wearing course, for example, where oxidation is excessive or where aggregate-to-

binder bond was questionable at construction. But this later type of occurrence is less significant and

was not modeled in the HDM study [Watanatada 87a).

The phenomenon has two phases that requires different equations: the time to first occurrence and
the rate of progression. HDM-III provides separate prediction equation for three types of surface,
i.e., surface treatments, slurry seals on SD or AC surfacing, and for cold-mix asphalt or cold-mix

overlays. Raveling is modeled for hot-mix asphalt concrete surfacing.

Both the initiation and progression of raveling are functions of five key variables:

Surface type,

Construction quality,
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¢ Traffic loading (total passage of all axles per lane per year),
e Retardation effects of R&M treatments,
e A user specified deterioration factor, Kvi.
Calibration of the two raveling equations involves adjusting the deterioration factor, Xvi which is

common to both equations.

The ceteris paribus sensitivity results showed that the raveling calibration factor is the least sensitive
relative to all other calibration factors upon the predicted NPV. Its effects are less than half a percent
of the roughness progression factor. Consequently the study in Tanzania recommended that it was
not worth attempting re-calibration of the raveling model. This recommendation is further validated

by the comprehensive sensitivity results reported later in this thesis.

3.5.3.3 Calibration of Initiation and Progression of Potholes

The mechanism for potholes occurrence in pavements is a complex phenomenon, interacting with
spalling, wide cracking, raveling and even roughness [Watanatada 87a, Paterson 87]. Furthermore,
potholing is centrally influenced by the type of pavement surface and base layers. While drainage
and localized damages have been known to have a significant impact on pothole initiation and

progression, they all complicate modeling of this phenomencn.

Potholes progression is modeled as a function of the base type, the modified structural number,
MSN, the current condition (in terms of wide cracks and raveling), and a calibration parameter, the
potholes progression factor, Kpp. Calibration of this equation involves adjusting the Kpp factor to

achieve close to locally observed pothole rates.

The study in Tanzania could not acquire sufficient data on development of potholes. Noting that the
relative significance of the pothole progression factor was low compared to other input variables it
was recommended to keep the model default for the Kpp factor.

3.5.3.4 Roughness Calibration Factors

Pavement roughness is one of the most sensitive variables in the HDM-III deterioration sub-model. It
is used as the primary predictor or trigger level for scheduling most maintenance and rehabilitation
treatments. It should also be noted that roughness is the primary road parameter that impacts heavily
on the VOC resource consumption equations [Watanatada 87a).
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Other studies have indicated that the ranking or choice of maintenance or rehabilitation options is
very sensitive to roughness [Cai 92, Kerali 91]. Consequently roughness must be given special
artention in calibration of the HDM-III model.

The roughness model for paved roads requires calibration of two parameters, the roughness
progression, Kgp, and the roughness - age /environment factor, Kge. The sensitivity results on the
calibration factors showed that the former must be given a higher priority; the NPV function output
being about at least four times more sensitive to the roughness progression factor than the roughness
- age factor. Ironically, the data requirements for calibrating the former are much higher than the
later. While it is relatively easy to acquire rainfall and temperature data from the local
meteorological stations, the corresponding data for roughness progression is almost non existent.

The recommended approach is to calibrate the environment-age factor, Kge first and then using the
results of predicted roughness to calibrate the roughness progression factor, Kgp. It is an obvious
logical approach since calibration of Kge aims at reflecting the effect of age and environment factors
and could therefore be estimated directly from climate data. Again here it is assumed that the model
form (with respect to effects of climate—aging) is acceptable, and that as long the climate input is
accurately determined then the model prediction is good enough. The environmental—age calibration

factor, Kge is estimated from the appropriate climate-moisture index, m using the relation:

Kge = m/0.023 ..(3.2)

The climate-moisture index, m, is defined in [Paterson 87] generally as representing an annual
average effect of all non-traffic-related environmental factors, including daily temperature changes,
seasonal and drainage-related moisture variations, subgrade movements, efc. As such, the value of m
could not be explained by micro-climatic factors (such as local rainfall). Recommended values for the
coefficient, m were estimated for various climates and given in [Paterson 87]. Estimating a value for
local use based on [Paterson 87] requires classifying the local climate into a factorial of the four
moisture-categories — arid, semiarid, sub-humid and humid-wet; and three temperature classes —

tropical, subtropical nonfreezing, and temperate freezing.

As an example, one part of southern Tanzania consists of a region situated between the highlands of
Njombe (mild temperatures, high rainfall) and the plains of Songea (warm temperatures, high
rainfall). This location would be classified as humid-wet in the moisture category, and tropical to
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subtropical on the temperature category. Therefore a logical estimate for the m constant would be
0.025 to 0.040. The corresponding Kge factor then computes to 1.0 to 1.70. Table 3.4 presents

estimated m values and the corresponding Kge factors from a study in Tanzania based on local

climate data (Mrawira 95a].

TABLE 3.4 Estimated Roughness — Age Parameter for Select Regions in Tanzania
Region Rainfall Temperature Temperature/ moisture’ Environmental Calculated
(mm/year) range (°C) classification index (estimate), m Kge
Morogoro 800 - 1400 4 -6 Tropical — Humid 0.030 1.304
[ringa 400 - 1600 4 -6 Tropical — Humid/Subhumid 0.027 1174
Mbeya 500 - 1600 over 4 -6 Subtropical — Humid/Subhumid 0.035 1.522
Ruvuma 1000 - 1200 over 4 -6 Tropical/Subtropical — Humid 0.035 1.522
Kilimanjaro 500 - 1200 4 -6 Tropical/subtropical — Subhumid 0.023 1.000
Tanga 500 - 1200 4 -6 Subtropical - Semiarid/Subhumid 0.023 1.000
Kagera 1000 - 1400 below 2 Tropical — Humid 0.030 1.304
Mwanza 700 - 1000 2 -4 Subtropical — Semiarid/Subhumid 0.023 1.000
Shinyanga 700 - 1200 2 -4 Subtropical — Semiarid/Subhumid 0.023 1.000
Lindi 800 - 1400 2-6 Tropical — Subhumid 0.030 1.304
Mtwara 800 - 1400 2 -6 Tropical — Subhumid 0.030 1.304

Source: (Mrawira 95aj

The HDM-III roughness prediction (after calibrating for environment/age factor) shows that a

medium traffic asphalt concrete road will take 6 years to deteriorate from 2500 to 4000 mm/km BI*.

Comparison to local observations suggests that the roughness rate is on the lower side. The default

value of roughness progression factor in the model was therefore calibrated to 1.2. Figure 3.2

compares roughness prediction before and after mode! calibration for a typical link.

' Approximate temperature-moisture classification according to {Paterson 87].

*BI = Bump Integrator. The TRRL fifth wheel towed (at 32 km/hr) bump integrator roughness index.
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FIGURE 3.2 Roughness calibration for a typical link from Tanzania (ADT = 2020)

3.5.3.5 Calibration of Rut Depth Relationship

The HDM-III equation for modeling rut depth is common to all pavement types. The key variables to
this equation are the annual traffic loading in ESALs, pavement strength in modified structural
number, MSN (or Benkelman beam deflection), base layer strength (in degree of compaction),
current level of cracking, annual rainfall, and a calibrating factor, Krp.

The maximum rut depth in HDM-III is fixed by default at SO0 mm. Improved prediction suitable to
local conditions may need amendments of this upper limit in the HDM source code. Again, an initial
boundary condition does exist in the model which generates initial rut depths of the order 1.5 t0 2.5
mm [Watanatada 87a). These may differ substantially from local observations in which case
adjustment may be required to enhance the prediction. However, the difficulty with this
recommendation is it requires modifying the HDM-III source code.

The second relationship for rut depth is the standard deviation (RDS) which is given by a separate
equation. This predictor of performance is also an important input to the roughness model where it

appears as a variable in the roughness equation. The important implication of this observation is that
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calibration of the rut depth model should be concerned more with the change in the standard
deviation over time and not the actual magnitude of standard deviation. A deficiency in prediction of
the actual value of the rut depth standard deviation will not have a significant effect on the economic

analysis.

Again it should be noted that an upper limit for the rut depth standard deviation, RDS is set at the
mean rut depth. Whether this agrees with the local observation or not it is another question requiring

attention in the calibration process.

The sensitivity study on calibration factors under settings applicable in Tanzania showed that the
calibration of rut depth model has a relative impact of less than 5 percent of the impact of the
roughness progression factor upon the NPV function. With this in mind, and the fact that no data
was available for the calibration process, it was recommended to retain the default value.

3.6 Calibration of User Costs relationships

3.6.1 Overview

As previously discussed, the need for calibration of the VOC relationships arises from the fact that
the statistical basis of the equations (i.e., the databases from the Brazil, Kenya, India or Caribbean
studies), may not be applicable to the local situations on account of technological change across time
and/or space, disparity in economic environments, standards and policies, etc. Further, it has been
documented that owing to the physical realities existing during the HDM Study, it was not possible
to acquire sufficient, statistically designed samples for all causal variables in the mechanistic models.

In planning a study to calibrate the VOC relationships it is important to note that, with respect to
R&M priority programming for weak pavements ({.e., structural number less than 3.5), the most

sensitive equations in the HDM-III are:
» prediction of vehicle repair costs with respect to change in road riding quality, and
e prediction of change in riding quality with a given maintenance treatment.

The parts cost equation in HDM-III is given by [Watanatada 87a, 87c] as:

c CKM * COSP.exp(CSPQI.QI) if QI < QIOSP ... (3.3)
T | CKM “(a, + a .QI) if QI > QIOSP
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where: CKM = mean age of vehicle group in cumulative vehicle km of travel since new,
k = the age exponent
COSP = constant coefficient in the equation
CSPOI = Roughness coefficient in the exponent of the equation
QIOSP = threshold roughness (in QI) at which the PC — QI equation becomes linear, and

a, = COSP .exp (CSPQI .QI0SP)(l - CSPQI . QIOSP)

a, = COSP - CSPQI .exp (CSPQI . QIOSP)

Vehicle repair labor costs constitute another important component of the VOC. The labor hours are

estimated from the parts costs by the equation {Watanatada 87a]

LH = COLH - PC*c*#P¢ .exp (CLHQI.QI) - (3.9

where LH = vehicle repair labor hours per 1000 km.
COLH = constant coefficient in the LH — PC equation
CLHPC = the exponent of parts costs in the LH — PC equation
CLHQI = the roughness coefficient in the exponential component of the LH — PC equation.

Although inconclusive, the ceteris paribus factor sensitivities results (see Chapter 6) indicate the role

of both equations (3.3) and (3.4) to be highly significant.

This is obvious from the following two reasons:

) VOC contribute a relatively large share in the total life-cycle costs for this class of roads.

) the spare parts component in the total VOC is substantial.

Hence the role of vehicle repair policies in the local economy needs to be carefully investigated to
enhance the quality of VOC predictions. Likewise, the effects of maintenance intervention upon road
condition, particularly, riding quality need to be accurately reflected in the pavement performance

sub-model prior to VOC calibration.

3.6.2 Choice of VOC Model

HDM-III provides four alternate sets of equations for modeling vehicle resource consumption,
namely, the Brazil, Kenya, Caribbean, and India relationships. Among these, the principal set of
relationships are those derived from the Brazil study. The choice of the appropriate set of VOC
relationships for local application is an important initial step in adaptation of the model to the local
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situation. Once the appropriate set of relationships have been selected, the next step is to select
vehicle types from the standard HDM vehicle types that can best represent the local waffic

composition (at the link level).

From the case study in Tanzania [Mrawira 96a] only the Brazil and Kenya set of relationships were
potential choices for simulating the traffic and vehicle characteristics in Tanzania. It was previously
argued that Kenyan relationships was the appropriate choice for Tanzania because the study was
undertaken in settings, geographically and economically, very similar to Tanzanian conditions.
However, the Kenya VOC equations are generally considered to be inadequate. As mentioned
earlier, the most important weakness is the narrow range of the predictive capability of the model
[Watanatada 87a]. The Brazil set of relationships is generally recommended for users outside the
three host countries to the alternative relationships in HDM-III. The range of model parameters (in
the Brazil relationships) allows for more responsive calibration to suit many diverse situations than

any of the alternative model forms.

3.6.3 Choice of Appropriate Vehicle Types

The Brazil equations for VOC modeling are recommended for most local application. The Brazil
VOC relationships provide 10 standard vehicle types from which the user is to select the types that
can best represent the traffic composition on the road link being studied. [Watanatada 87a]
summarizes the important characteristics of the vehicle types used for modeling VOC in the Brazil
study. It is necessary to conduct a careful comparative investigation of the vehicle characteristics

between HDM types and the typical vehicles in each class in the local traffic.

It should be noted that, since traffic composition changes from one link to the next, and even from
one year to the next, the best way to represent this variation of composition over a road network and
time is to define several traffic categories. A link can then be assigned a different category from one
year to the next as needed. In this spirit, the vehicle classification finally adopted should aim at
representing the entire spectrum of vehicles in the region to be studied as well as the projected
period of analysis (where traffic composition is expected to change over time). Traffic volumes and
growth data will then need to be tailored to match this vehicle classification. In most cases the traffic
data available locally will need to be modified to match the HDM-III vehicle types for VOC

predictions.
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The Tanzanian study observed that the most important limitation of the HDM-III VOC sub-model is
the outdated truck characteristics incorporated in the model. In the past fifteen years or so the truck
technology has changed so much that even developing economies like Tanzania have seen a
significant increase in gross vehicle weights, payloads, engine power, etc. The technological trends
have consistently moved towards increased engine power, higher gross vehicle weights, improved
engine configurations and better fuel efficiency. Further, tire technology, suspension and braking
systems have changed tremendously. These changes pose a serious challenge to the HDM-III VOC
relationships. The present VOC model is considered inadequate for simulating resource consumption
especially for vehicles in the categories of medium, heavy and articulated trucks. It is hoped that the
current efforts to update HDM-II [ISOHDM 94] will examine this deficiency.

The criterion for selecting the appropriate HDM-III vehicle types is to simulate vehicle resource
consumption that approximates the average values observed for that vehicle class in a given traffic
composition. In other words, an ideal vehicle type (selected in HDM-III) should be such that the
predicted resource consumption is equal to the average value for the vehicle class which it represents
in the traffic. The key vehicle characteristics affecting resource consumption are fuel type, engine
size, gross vehicle weight (GVW) and axle loads and configuration. Comparison between these
factors for the typical vehicle in a traffic class and the available standard HDM-III vehicles have to

be made to determine the most appropriate representation.

Seven vehicle types were recommended as suitable to characterize the traffic mix in Mwanza region
in Tanzania [(Mrawira 95a]. The average vehicle characteristics given were derived mainly from a
local guide on VOC [MoW 94a]).

The current traffic counting forms in use by most regions in Tanzania classify the traffic into eight
groups. Cars, utilities (light goods vehicles) cover the smallest units. Small buses and small trucks
classify traffic in the lower end of sizes, whereas, large buses, heavy trucks semi-trailer and full-
trailer trucks represent traffic in the high end of sizes. A small bus is defined as one with passenger

capacity less than 25, whereas, light truck is defined as one with less than 5 tons payload capacity.

The MoW traffic classification for buses and trucks has the advantage of capturing a better axle
loading representation. On the other hand the advantage of counting semi-trailer and full-trailers

separately cannot be explained in similar terms. It is however possible that such break down of the
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articulated truck class may enhance VOC predictions as resource consumption is likely to differ

significantly for semi- and full trailers. Unfortunately no research has explored this possibility.

3.6.4 Decision on Parameters to Re-calibrate

Table 3.5 lists the model input cards for the variables relating to re-calibration of the Brazil VOC
relationships. {Watanatada 87c] recommends (Table 3.6) that the final choice of candidate parameters

to re-calibrate at the local level should be based upon the key factors — locational sensitivity, impact

on model output of interest, and calibration effort required (or available). However, this

recommendation needs to be reviewed because it was mainly based on subjective assessment of the

three factors.

TABLE 3.5 VOC Calibration Related Input Variables
HDM Symbol Description of the Variable or Data Required HDM Card
Number

PAYLOAD Average payload for the typical vehicle in each class D301
HPDRIVE Used driving power per vehicle class (equiv. the SAE maximum rated power) D304
HPBRAKE Used braking power (sce HPDRIVE) D305
VDESIROPV Desired speed (no effects of width, gradients, curvature, roughness) D311
RECAP COS Tire re-treading cost (as a fraction on new tire price) D318
NRO Base number of recaps (average per vehicle class) D320
corc Constant term of the tire consumption model D321
CTCTE The tire Circumferential wear coefficient D322
COsP The constant term in Parts — Roughness equation D323
CSPQI The roughness coefficient in the exponent of the Parts ~ Roughness equation = D324
QIOSP Transition roughness at which the Parts ~ Roughness equation becomes linear D325
COLH Constant term in the Labour Hours — Parts Costs equation D326
CLHPC The exponent of Parts Costs in the Labour Hours — Parts Costs equation D327
CLHQI Roughness factor in the exponent of the Labour Hours — Parts Costs equation D328
DEPRECIATE Average depreciation rates for the typical vehicle in each class Ds01
KM DRIVEN Annual vehicle kilometres of travel (VKmT) D503
VEH LIFE Average economic life of typical model in vehicle class D504
HR DRIVEN Annual number of hours D505
HURATIO Average utilisation rato (actual time of usage to total time) D506
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The literature does not offer any quantitative guide on the locational sensitivity of model parameters,
nor their relative impact on the model output (e.g., NPV). The scope of factor sensitivity analysis for
this class of input factors was only limited to the ceteris paribus study. The results (Chapter 6)
indicate that the parameters of the parts-roughness (PC —~ Q) equation and the labor parts (LH — PC)
equation should be given highest priority in an exhaustive sensitivity study to determine their role.
Factor sensitivity is recommended as a standard procedure for all local adaptation.

TABLE 3.6 Recommended Re-calibration of the VOC Models [Watanatada 87c]

Prediction Parameter Description Symbol Locational Impact on Calibration Calibrate
Model Sensitivity Ranking Effort (yes/no)
Speed Used driving power HPDRIVE high med - high low yes
Used braking power HPBRAKE med - high low low yes
Desired speed (width > 5.5m) VDESIR high low-med med yes
Fuel Fuel efficiency factor ALPHAI  med med - high low yes
Fuel adjustment factor ALPH42 med low high no
Tire wear  Cost ratio of re-treading to new tire RECAP COS high high low yes
Base number of recaps NRO high med - high med yes
Constant term in tire wear equation COTC med - high med - high med yes
Circumference tire wear coefficiem CTCIE med - high med - high med yes
Vehicle Base number of hours driven HRD, high high med yes
utilisadon  Base utilisation AKM, high high med yes
Base elasticity of utilisation EVU, med - high high med yes
Repair Constant term in the PC —Ql eqn.  COSP high high med yes
Parts Roughness factor in the exponent  CSPQI med high high no
Age exponent in the PC ~Qleqn. £ low med high no
Repair Constant term in LH — PC eqn. COLH high high med yes
labour Exponent of PCin LH —PCeqn. CLHPC low high med no
Roughness factor in the exponent CLHO! high med high no

Symbols according to the Glossary; eqn. = equation; med. = medium.

3.7 Generating Appropriate Intervention Strategies

3.7.1 General Approach

The HDM Model requires the user to define a set of maintenance actions applicable to a road
section, that will be used to simulate the life cycle of each individual project alternative. Formulating
the maintenance standards requires a careful process involving local experience as well as a
knowledge of the HDM-III model computational logic. The local experience is important in selecting
R&M options that are practical, feasible and compatible to the local materials, environment and

technological base. The proposed R&M alternatives must be based on local practices, conditions,
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policies or standards, and the local availability of materials and plant. Again, to estimate the effects
of these maintenance options upon subsequent pavement deterioration requires local expertise.
Sufficient knowledge of the effects of the each treatment upon pavement performance is necessary in
order to achieve realistic life cycle cost analysis.

Defining an R&M strategy in HDM-III is constrained by the fact that only fixed building blocks can
be used. All strategies are defined as a combination of one or more activities from twelve pre-defined
HDM-IIT unit operations. There are eight operations for paved roads and four for unpaved roads
[Watanatada 87a, 87b]. A maintenance standard is formulated by selecting one or more of these basic
operations. Further, a trigger criterion has to be specified. The trigger defines when an operation is
to be applied or repeated. The trigger criterion can either be a fixed interval, or an intervention

based on cumulative traffic or the predicted deterioration level of one or more distress modes.

Another serious limitation of the HDM-III model is the inflexibility of defining trigger levels for
different maintenance interventions. While, for instance, pavement patching can be prescribed either
by the area per km to be patched annually, or the proportion of total damaged (or pothole) area to be
patched; preventive sealing (sand or slurry) can only be triggered by fixed time interval between
applications or initiation of cracking or raveling. On the other hand surface treatment (chip
resealing), hot mix overlays, and total re-construction can be triggered by roughness level, or by
fixed time intervals only. It was noted that while in some cases it would be desirable for purposes of
staged construction (fairly popular in developing economies) to schedule overlays by cumulative

traffic loading, the model does not provide such an option.

3.7.2 A Sample of R&M Standards Applicable in Tanzania

The following R&M standards were first formulated in a project to implement HDM-III for Mwanza
region [Mrawira 95a]. After consultation with the local engineers, a set of ten maintenance
alternatives were configured, five each for paved and unpaved roads. These were considered
representative of most scenarios from which the practicing engineers would normally choose annual
programs for their region. Given the similarity of road design and construction standards in
Tanzania, the set of R&M alternatives proposed for Mwanza can generally be applied for many cases
in the country with minor modifications. Table 3.7 summarizes the recommended maintenance

standards for Mwanza region in Tanzania.



TABLE 3.7 A Sample of R&M Strategies from the Tanzanian Study

Code Routine Potholes Patching Resealing frequency AC overlay Reconstruction
STPO included 30% - - not included
STP1 included 100 - - not included
STP2 included 100 12 mm every 6 years - not included
STP3 included 100 - 50 mm every 15 years not included
STP4 included 100 12 mm every 5 years 50 mm at 5.5 m/km IRI  not included

Routine Grading Frequency Spot Regraveling Gravel Resurfacing Reconstruction

STUO inciuded once per year - - not included
STUL included once every 180 days - - not included
STU2 included every 20,000 veh. passes - - not included
STU3 included once every 180 days 30% material loss - not included
STU4 included every 20,000 veh. passes 150 mm when ¢ < 25 mm not included

NOTES: all strategies include routine (off-carriageway) maintenance, e.g., drainage,
vegetation control, shoulder repair, road furniture, etc. AC = hot mix asphalt concrete.
Resealing consist of patching all damaged area and 12 mm hot mix surface dressing.

Note that STPO and STUO are set as the “do minimum” options against which economic comparison
of the other alternatives is based. Net benefits computed by the model are therefore savings over

these “do-minimum” alternatives.

The strategies summarized in Table 3.7 are not uncommon in the literature. A recent study in
Queensland determined optimum roughness intervention levels as a function of traffic level. The
study found that optimum roughness intervention for paved road ranges from 5.0 IRI for AADT less
than 500 to 3.0 IRI for AADT greater than 10,000 [Robertson 94]. The most favored treatments,
according to [Robertson 94] were reseals at low traffic and thin AC overlays for high traffic.

Similar maintenance strategies for paved roads were also recommended in Nepal [Riley 95]. The
work in Nepal emphasized the need to consider maintenance strategies as comprising of two
components - a long term, regular periodic intervention policy, and a series of different immediate
treatments to be applied in conjunction with the long term policy. The resulting R&M strategies were

very comparable to those in Table 3.7.

In a case study to determine cost-effective intervention policies in Mali [Bhandari 87) proposed 31
and 10 treatment alternatives for paved and unpaved roads respectively. The unpaved road strategies
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consisted of routine off-the-carriageway maintenance and various combinations of: (a) up to 30%
material loss regraveling, (b) blading at frequencies ranging from every 2000 to 8000 vehicle passes,
and (c) gravel resurfacing whenever the remaining gravel falls below 50 mm.

The paved road strategies consisted of off-the-carriageway routine maintenance and various
combinations of: (a) patching annually 50% or 100% of all potholes, (b) resealing 25%, 50%, or
75% of all damaged area, (c ) 40 mm or 80 mm AC overlay at roughness levels of 3.5, 4.2 or 5.0
m/km IRI, and (d) reconstruction whenever the roughness level exceeds 8.5 IRI.

[t should be pointed out that the blading frequencies investigated by [Bhandari 87] and those
proposed in Costa Rica [Bank 88] are on the higher side compared to typical practice in low-income
road authorities. [Bhandari 87 and Bank 88] found that for the Costa Rican conditions the optimal
blading frequencies (maximizing the NPV) ranged from once every 4000 to 7000 vehicle passes.
They further showed that this optimal grading frequencies remained fairly stable over the range of
traffic levels investigated (25 to 300 ADT). HDM-III analysis is normally applied to unpaved roads
with traffic levels ranging from 100 to 250 vehicles per day. For such facilities, the blading
frequencies of 2000 to 8000 vehicle passes proposed in [Bhandari 87 and Bank 88] would translate to
between five and over 45 bladings per year. The present practice in most low-income road

authorities is | to 3 bladings per year [Liautaud 95].

[n another recent application in Germany [Sr3en 94] adopted R&M strategies very similar to those
proposed by [Bhandari 87 and Bank 88] for paved roads. Despite the fact that the pavement design
standards investigated in Germany were much higher (SN’ ranging from 3 to 9) and the commercial
vehicle traffic was only up to 700 vehicle per day, the most cost-effective strategies recommended

were mostly 80 to 140 mm AC pavement strengthening followed by overlaying at 3.5 to 5.0 IRI.

3.7.3 Selecting Cost-effective R&M Strategies

Once an appropriate list of feasible, technically viable intervention strategies have been formulated
for the investigation at hand, the HDM-III model is run on the project data and a large series of
output reports obtained. The question then becomes how does one make use of the model output
reports to develop an optimal investment program? The current HDM-III documentation does not
provide sufficient guide on how to identify cost-effective strategies. The literature offers some
contributions to this subject, the most notable sources are [Bhandari 87, Bank 88, and Riley 94 and
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95 and Liautaud 95]. The subsequent paragraphs conclude the chapter by discussing the bare
essentials of the technique of selecting cost-effective strategies after these articles.

[dentifying the most cost-effective preservation program in a life-cycle analysis framework is
critically important, particularly under the budget constraint situations facing almost all road
authorities today. The most commonly accepted technique seems to be the use of economic efficiency
frontier based on the tradeoff between the total life-cycle costs and the agency cost of implementing
the given investment strategy [Bhandari 87, Bank 88, Riley 94 and 95 and Liautaud 95). The
underlying motive in this technique is to identify the R&M strategy, among the several viable
options (within the budget ceiling), that maximizes the return on investment. The return on
investment can be measured in a number of slightly different ways. More often, the savings in the
total transport life-cycle costs (the NPV), or the savings in the users’ life-cycle costs, or even the
relative reduction in the road roughness is used [Liautaud 95].

Figure 3.3 shows an example (hypothetical) of efficiency frontier that can be developed from life-
cycle predictions by the HDM-III model. The following discussion refers to this figure to illustrate
the technique of selecting cost-effective strategies. The acronyms STPO, STP1, STP2, erc. stand for
codes for technically feasible intervention treatments or R&M strategies.

10000
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Total life-Cycle Cost Savings (NPV) §km
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Present Value of Road Agency Expenditure (S/km)

FIGURE 3.3 Determination of optimal investment strategies by use of the efficiency frontier

One efficiency frontier is normally plotted for each category of pavements grouped by surface type
(and/or design standard), traffic level and current condition. The plotting proceed by sorting out
strategies with positive net benefit (NPV) and plotting the sorted NPV versus the per kilometer cost
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of each strategy. The efficiency frontier curve corresponds to the line connecting the points of
maximum NPV for any given level of agency expenditure. In theory, any R&M strategy that lies
below the efficiency frontier (e.g., STP6, STP7, STP8, efc.) can be substituted for by a more cost-
effective strategy with the same cost implication to the road authority.

Strategies STP3 and STP4 in Figure 3.3 represent high-cost high benefit strategies. The intervention
level denoted by STP4 is thus the most-cost effective for the road links depicted by Figure 3.3.
Strategies STP6, STP7, STP8, STP10, erc. represent inmefficient allocation of intervention
expenditure, since they can be replaced by other strategies at the same agency cost but with higher

savings in total life-cycle transport costs.

In many cases it may not be possible to implement the most-cost effective strategy (i.e., STP4) over
the total number of kilometers in the analysis category due to limitations on funding. The next lower
cost strategies lying on the efficiency frontier, STP3, and STP2 provide reasonable substitutes for
STP4 that can significantly reduce the agency expenditure with only marginal losses in the total life-
cycle costs savings. [Bank 88] demonstrated how to employ a combination of two strategies to
achieve any given expenditure level while operating on the efficiency frontier. For example, in
Figure 3.3 the inefficient strategy STP11 which carries an agency expenditure of about $850/km
would be replaced by using strategy STP1 on about one half the total number of kilometers and

strategy STP2 on the remaining kilometers in the analysis category.

Under increasing budget constraint the agency expenditure would be pushed further and further to
the left of the frontier (i.e., strategies STP2, STP1, STPO). Generally the slope of the efficiency
frontier becomes steep in this zone, implying a massive loss of total transport life-cycle savings for
even small cuts in agency expenditure. It is desirable for road authorities to establish local policy
criterion on the minimum intervention level that safeguards against premature pavement failure and
undue excessive costs of reconstruction. Such a policy criterion could be based, for example, on a
threshold maximum slope of the efficiency frontier. [Riley 95] proposed a threshold maximum slope
of 2. However, it is obvious that this cutoff efficiency frontier slope is dependent on many factors,
including the relative unit costs of maintenance operations and vehicle running costs, pavement

standards, traffic levels, ezc., and therefore it cannot be generalized.



Chapter 4

A FRAMEWORK FOR CETERIS PARIBUS INVESTIGATION AND
OTHER IMPORTANT ASPECTS OF THE RESEARCH

4.1 Chapter Overview

The ultimate goal of the research, as defined in Chapter 1 (sections 1.2 and 1.4), is to develop a
simplified model for pavement investment analysis which will provide decision making support at the
network level for road agencies with a limited level of resources. The focus is to make the results of
the major international research efforts incorporated in HDM-III more readily available to the poor
institutions of SSA. Providing more regional-specific default values than are currently incorporated
in HDM-III and are more reflective of the specific conditions in the region is considered an
important step towards adaptation and realistic integration of the model in PMS analysis in the
region. If this goal is achieved, then the simplified model would provide an indispensable and a

timely “therapy” (at least in part) to the current road maintenance crisis in SSA.

The hypothesis underlying the study, and the specific objectives for this thesis, were presented in
section 1.4. To achieve the research objective required innovative thinking, experimenting with new
techniques (some of them not conceived at the time of the proposal), and continuously revising the
approach at a number of stages during the implementation of the research. The purpose of the
present chapter is to outline the research process with a view of highlighting some of the key

elements learned in the evolution of the research methodology.

A major effort of the study was expended in search for a more efficient and robust technique for
investigating the input factor sensitivity upon key HDM-III output criteria. The key motivation was
to develop a method that could achieve three aspects: (1) capable of investigating effects of multi-
factor interactions, (2) comprehensive results independent of base case input values, and (3) capable
of exploring the full range of input space for a given model application. However, prior to the
experimental design approach used in the later stages of this research, a substantial amount of work
was already done using the “cereris paribus technique.” This Chapter looks into the lessons learned
in relation to the development of a practical approach to the “ceteris paribus technique.” The

experimental design approach is presented in chapter S.
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The Chapter is organized into six sections. Section 4.2 introduces the computational framework
underlying the HDM-III economic analysis. Section 4.3 highlights the link between the maintenance
and rehabilitation strategies and the objective function. The key considerations in developing the
ceteris paribus experiments are discussed in 4.4. Next, the thesis’ concern of how best to present
results of sensitivity analysis and how these results could be used to screen out the inactive input
factors is addressed. Finally, the Chapter concludes by looking at the role of data in this research

and the lessons from the field work.

4.2 The HDM-III Economic Analysis Framework

The primary objective of the HDM-III model is to provide a tool for making comparisons between
alternatives or strategies in road improvements (alignment, capacity, etc.), construction, maintenance
or rehabilitation. Relationships to be borne in mind in this sort of comparison are those governing
construction standards and maintenance operations in determining the quality of a road link (over its

lifetime) and the impact of this quality upon the operating costs of vehicles using that road link.

The basis of model comparison is the difference in costs between one alternative and the other. In
other words, the economic evaluation is normally an evaluation of one link-alternative relative to a
base case. The “Do minimum” (also called “Do nothing”) alternative (e.g., STPQ in subsection
4.2.1) is normally used as the base case such that any extra expenditure on the road represents an
improvement which needs to be justified economically. The subsequent paragraphs outline the model

procedure for each cost component.

4.2.1 Road Annual Costs

¢ Physical quantities are predicted by other sub-models on per link, link-alternative and per year of
analysis basis. The principal sub-model here is the road deterioration with traffic and
age/environmental factors. Vehicle operating costs comprise the other key sub-model (discussed
in subsection 4.2.2). The first type of physical quantities are road construction and maintenance

resources.

¢ The quantities are multiplied by their unit prices and the resulting cost components are classified
as either capital or recurrent costs. This classification is only relevant in case of further budget

analysis where different constraints are applied to capital and recurrent items.



e Cost difference between alternatives for any link in a given year is calculated by:

Road Capital Cost: ACAP(m—n) = CAP, — CAP, - (4.1)
Road Recyrrent Cost: AREC,,, = REC,, —REC, .. (4.2)
where,
ACAP,,,, = road capital cost difference of alternative m relative to alternative n
AREC,,,, = road recurrent cost difference of alternative m relative to alternative n
CAP, = total road capital cost for alternative m (on the given link, and year)
REC, = total road recurrent cost for alternative m (on the given link, and year)

4.2.2 Road Users’ Benefits and Costs

The principal road users’ benefits considered by the HDM-III Model are vehicle operating costs
savings and travel time savings resulting from a superior R&M alternative over a base case. Each of
these benefits are calculated on per analysis year basis and since slightly different relationships are
used for normal and generated traffic these are calculated separately for each category of traffic. The

computational logic is as follows:

e VOC savings for normal traffic for alternative m relative to alternative n for a link and year:

AVCN,., = 2 TN, (UC,; —UC,;) ... (4.3)

e VOC savings for generated traffic for alternative m relative to alternative n for a link and year:

e Vehicle travel time savings for normal traffic for alternative m relative to alternative n:

ATCN(M_,,) = ZIN] (UI',,J' - UTW) ... 4.5

e Vehicle travel time savings due to generated traffic for alternative m relative to alternative n:

ATCG g,y = 2 % (TG, + TG, )(UT,; — UT,;) ... (4.6)
where,
AVCN,,, = VOC savings due to normal traffic of alternative m relative to alternative n,
4VCG,,,, = VOC savings due to generated traffic of alternative m relative to alternative n,

ATCNp, = travel time savings due to normal traffic of alternative m relative to alternative 2,



ATCG,,, = travel time savings due to generated traffic of alternative m relative to n,

TN, = normal traffic for vehicle group j,

TG; = generated traffic for vehicle group j due to alternative i relative to the baseline,
UG; = average VOC per vehicle trip over the link for vehicle group i under alternative j,
UT; = average travel time cost per vehicle trip for vehicle group i under alternative ;.

Throughout these equations the summation, 2, is over all the vehicle groups specified by the user.

4.2.3 Exogenous Benefits and Costs

The principal costs and benefits associated with road capital and recurrent costs on one hand, and
VOC and travel time savings on the other do, in most general cases, represent the lion’s share of the
total societal costs and benefits of implementing road improvements. However, it must be recognized
that other important costs may come to play in different scenarios, in particular, costs related to road

accidents, environmental impacts e.g., noise and emissions, and other congestion related impacts.

In such instances the model user may want to include in the analysis the effect of these exogenous

costs or benefits. The model computation logic when dealing with this option is as follows:

AEXB,,,,, = EXB,, —EXC, —EXB, + EXC, . @.T)
where,
AEXB,,., = difference in net exogenous benefits of alternative m relative to alternative n;
EXB; = exogenous benefit for alternative j for the given link and given year;
EXC, = exogenous cost for alternative j for the given link and given year.

4.2.4 Economic Analysis and Comparisons

For each pair of link-alternatives to be analyzed the model calculates year by year the total cost
savings of one relative to the other, combining road capital and recurrent costs, VOC and travel time
costs, and exogenous costs differences. Thus, for any link or group-alternative k in year y, the net

cost savings are computed as:

where, ANB,,..,, =  net economic benefits of alternative m relative to alternative n in year
y for the link k.

The net present value of alternative m relative to alternative n, NPV,,,,, is computed as:



ANB - @)
NPV =3 ST
E(m=-n) y=1 (l -+ 0.0 lr)y-‘
where,
r = the annual discount rate

p = the user defined analysis period in years.
The internal economic rate of return, denoted by 7° in percent, is the discount rate at which the net

present value as defined by equation (4.9) equals zero, i.e.,

... (4.10)
i [ ANB”(..-") ] - 0
= \(1+0.01r)7

Equation (4.10) is solved for r° by evaluating the NPV at 5% intervals between -95 and +500
percent, and determining the zeros of the equation by linear interpolation of adjacent discount rates
with the NPV values of opposite signs. Depending on the nature of the net benefit streams (NBym.,,.)
solving equation 4.10 may give one solution, multiple solutions or none at all. So the IRR output
stream from a typical HDM-III run normally contains some results printed “none” and “many.” This
is probably the main reason why the NPV output is favored in HDM applications compared to the

[RR criterion.

4.3 Significance of the R&M Strategies in the Analysis

In sensitivity analysis we are seeking to investigate the factor effect of an input variable upon a
model output (the objective function). As seen in section 4.2, the HDM-III outputs are inevitably
defined in relation to two R&M strategies — a “do minimum” and an “alternate” strategy. In other
words, any sensitivity analysis results cannot be discussed independent of the “recipe” underlying
the R&M strategies used in the analysis. The chosen R&M strategies are thus very central to the

findings of the investigation.

{Mrawira 96a] describes a general approach in formulating appropriate R&M alternatives for
applying the HDM-III economic analysis. Chapter 3 (Section 3.7) gives details on factors and
constraints that need to be addressed in defining the strategies to be investigated by the HDM model.
Table 3.7 shows a sample of R&M strategies first applied in a study in Tanzania [Mrawira 95b] and
reproduced in [Mrawira 96a]. This set of R&M strategies, having been formulated in consultation
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with experienced local engineers, were considered adequate and typical for the case study region,
and therefore worth retaining for the sensitivity analysis.

The paved road R&M alternatives used throughout the sensitivity analyses are as defined earlier in
Table 3.7 and summarized as follows:

STPO: Do minimum: Annual routine off carriage way maintenance activities (drainage, vegetation,
signs, etc.) plus patching 30% of all potholes annually.

STP1: Low maintenance intervention (I): Annual routine off carriage way maintenance activities
plus patching 100% of all potholes annually.

STP2: Low maintenance intervention (2): Annual routine off carriage way maintenance activities,
patching 100% of all potholes annually plus a 12 mm surface treatient every six years.

STP3: Medium maintenance intervention: Annual routine off carriage way maintenance activities,
patching 100% of all potholes annually plus 50 mm AC overlay every fifteen years.

STP4: High maintenance intervention: Annual routine off carriage way maintenance activities,
patching 100% of all potholes annually, 12 mm surface treatment every six years and a
condition responsive overlay (50 mm hot mix AC overlay at 5.5 m/km IRI roughness level).

Note that the surface treatment, also commonly called “chip seal” or “surface dressing,” (in
strategies STP2 and STP4) was estimated, from the local practice, to achieve a structural strength,
(AASHTO layer coefficient) of 0.25 per inch. Again, the high-level maintenance intervention also
carries extra constraints of minimum and maximum overlay frequencies of not less than 8 years and
not more than 15 years interval between overlays. It was estimated that the AASHTO structural
number gain by a typical overlay would be 0.30 per inch.

4.4 Framework of the Ceteris Paribus Experiments

The primary role of sensitivity analysis in the research was to identify the inactive input factors (in
comparison the most sensitive or active ones) with respect to model output(s) commonly used in
priority programming for the particular region. The case study focused on rehabilitation and
maintenance (R&M) programming needs for the low-income road agencies of Sub-Saharan Africa.
This focus dictated four key considerations:

(1) Defining R&M strategies or alternatives that are commonly applied in the case study region,
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2) Generating a set of base case inputs that is as representative of the case study region as
possible,

3) Identifying an appropriate objective function (for the analysis) among the various HDM-III
output(s) that are commonly used as a ranking criterion in the region, and

4) Choosing an appropriate discount rate and an analysis horizon.

The considerations in choosing maintenance and rehabilitation (R&M) strategies for the sensitivity
study was discussed in section 4.3. The formulation of the ceteris paribus technique is subsequently
discussed in relation to the last three requirements befitting this role of sensitivity analysis.

4.4.1 Base Case Inputs

The ceteris paribus method of sensitivity analysis relies on investigating a model response by
changing one input parameter at a time while all the other input factors are kept at constant levels,
called the base case state. A first requirement of this approach is to decide on the base case levels (or
state) for all the input factors. Typical values for the case study region e.g., the mean, or median
values are commonly used as base case state. For this thesis, the base case values were selected
primarily as the mean values for the case study region based on field data from Tanzania [Mrawira
95a]. However, in a few instances the base case values for some input factors had to be estimated

from the author’s personal experience since the field work was not successful with these data types.

The HDM-III was set up to run on batch mode for a group of six road links each of length about 26
to 27 km. The six links represented characteristics typical of the case study region (Tanzania) again
based on the [Mrawira 95a] study. Use of the link group intended to achieve a wide range
representation in the link attributes simulated in the ceteris paribus analysis. The design/construction
standards, pavement conditions, geometric attributes, environmental factors, etc., for the six links
were chosen to provide as wide as practical coverage of the varying pavement standards in Tanzania.
The traffic levels on these links were also selected to represent the typical range and composition in
the case study region. Tables 4.1 to 4.3 show the typical range of link attributes, the traffic levels
applied to the road links and the typical vehicle characteristics used in the ceteris paribus

investigation respectively.



TABLE 4.1 Paved Road Link Characterization Data from Tanzania

Card# HDM Card Name Variable Description and Symbol Observed Range’

A202 Environment Average monthly rainfall, MMP S - 300 mm/month
Altitude, A 0-3000 m

A203 Geometry Rise plus fall, RF 0 - 120 m/km
Horizontal curvature, C 0 - 700 degree/km
Carriage-way width, W 25-2m
Super-elevation, SP 0-10%
Shoulder width, W§ 0-3m
Effective Number of lanes, ELAN 1-4

A204 Surface Surface type code 1,2,4,5, 7
Thickness of new surface layers, HSNEW 5 -300 mm
Thickness of old surface layers, HSOLD 5 - 300 mm

A205 Base/Subgrade Base type code 1,2,3%
Resilient Modulus of soil cement, CMOD 0-30GPa
Thickness of base layers (total), HBASE 5 - 1000 mm
Relative Compaction, COMP 85-100 %
Subgrade CBR, SNSG 2-50%

A206 Strength Structural number, SN 05-6

parameters Benkelman beam deflection, DEF 0.1 -5mm
A208 Deterioration Cracking Initiation, Kci 0.2-4
factors Cracking progression, Kcp 05-3

Raveling initiation, Kvi 0.2-4
Roughness-age term, Kge 0.8-2
Pothole progression, Kpp 0.2-4
Rut depth progression, Krp 02-4
Roughness progression, Kgp 0.8-2

69

3 Practical range for input variables were determined mainly from the data from the field study in Tanzania,

but also to a lesser extent, estimated based on local experience and engineering judgment [Mrawira 95].

* Surface type codes: 1 = Surface treatment (SD); 2 = asphalt concrete (AC); 4 = Reseal on surface treatment

(RSST); 5 = reseal on asphalt concrete (RSAC); 7 = asphalt overlay, or slurry seal on asphalt concrete.
* Base type codes: 1= Granular base (GB); 2 = Cement stabilized soil (CB); 3= Bitumen stabilized base.



70

TABLE 4.1 Paved Road Link Characterization Data from Tanzania (continued)
Card#  HDM Card Name Variable Description and Symbol Observed Range
A209 Condition Area of all cracks, ACRA 0-80%

Area of wide cracks, ACRW 0-60 %

Area raveled, ARAV 0-60 %

Area of potholes, APOT 0-30%

Mean rut depth, RDM 0 - 50 mm

Standard deviation of Rut depth, RDS 0 - 40 mm

Roughness, O/ 1.2 - 12 m/km IRI
A210 History Age of preventive treatment, AGEJ 0 - 30 years

Age of surfacing, AGE2 0 - 30 years

Age from last re-construction, AGE3 0 - 30 years

Cracking retardation time, CRP 0 -3 years

Raveling retardation factor, RRF 1-4

Area of previous all cracks, ACRAb 0-80%

Area of previous wide cracks, ACRWbH 0-60 %
TABLE 4.2 Paved Roads Traffic Levels Used in the Sensitivity Study
Link Code Car  Utility Bus Light Truck Medium Heavy Articulated ADT

Truck  Truck Truck

T703 25 83 32 47 21 15 27 250
T704 108 80 78 96 62 18 58 500
T705 220 190 148 182 116 34 110 1000
T706 354 258 184 322 200 32 150 1500
T707 355 451 240 424 265 60 225 2020
R301 960 1006 13 960 250 6 5 3200

Source: [Mrawira 95a]

The practical variable range was determined as the 95 percent confidence intervals for the factor

where numerical data was available. However, there were relatively few cases in which this approach

to range determination was feasible. In some cases e.g., condition data, rutting, cracking, etc., the

data was categorical (not scalar), yet in other cases, the records available were indices.

Typical types/values for categorical factors, for example, surface type, gradation of gravel, base and

sub-base materials, type of base/subgrade material (volcanic, quartz, laterite, etc.), applicable R&M



71

treatments, vehicles types in the traffic composition, etc. were selected using local experience and
engineering judgment. Others were obtained by direct measurements during the field study. Once
determined, the typical (i.e., the base case) values were kept unchanged throughout the investigation.

TABLE 4.3 Characteristics of Representative Vehicle Types in Tanzania

Vehicle Type or Class Nume

Car Utility Bus Light Medium Heavy Trailer
Truck Truck  Truck Truck

HDM-III Vehicle Type Number 2 4 5 7 8 9 10
Engine power (HP) 90 120 180 140 180 200 250
Gross vehicle weight (ton) 1.0 23 17.9 14.0 21.0 355 46
Average Payload (ton) 0.4 1.0 8 5 7 12 25
Average (class) ESAL per vehicle 0.00 0.006 2.520 1.610 3.360 6.720 11.870
Number of axles (and tires) 2@ 2@ 206 2(6) 2(6) 3(10) 6(22)
Type of fuel gas gas diesel diesel  diesel diesel  diesel
Annual Udlisadon: (VKmT) 18,000 39,000 94,000 50,000 67,000 80,000 80,000
Hours driven per year 1500 2200 2800 2600 2900 2900 2800
Estimated vehicle life in years 10 8 6 5 5 5 ]
Current Replacement cost (Tsh’ 1000) 5,000 9,654 36,406 23,000 27,500 49,000 55,000
Current tire cost (Tsh 1000) 15.0 19.5 133.7 279 79.3 141.9 1419

Notes: Source: [Mrawira 95a]. Tsh = Tanzania shilling (approximately US $1= Tsh 500 in
1994). HP = horsepower; the imperial unit of power equivalent to 745.7 watts. Ton =
metric ton, equivalent 1000 kg.

4.4.2 Choice of the Objective Function

The net present value of NPV based on total life-cycle costs savings of the strategy in question over
a “the null” alternative was retained as the model response for the ceteris paribus investigations. As
mentioned earlier, the strategy STPO representing all annual off the carriageway maintenance plus
30% patching of potholes annually was defined as the null alternative. All the results from the cereris
paribus experiments are based on the NPV criterion as defined above.

As mentioned earlier, the focus of sensitivity analysis in this study was specific to the application in
priority programming. It is therefore imperative that only those HDM outputs that are directly or
potentially used as ranking criteria in priority analyses in the case study region were investigated.

Traditionally, the internal rate of return (IRR) has been used for evaluating investment alternatives in
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profit oriented projects as well as public sector investments, whereas net present value (NPV) is
equally a common criterion for public investments. Among the several HDM-III outputs, the NPV,
calculated as the net worth of the total life-cycle savings of an altermative compared to a “do
minimum” alternative is more often preferred because (unlike IRR) the model produces an NPV
value for each alternative. In solving equation (4.10) the model may find one, many or no solutions
at all in some cases, hence the IRR values are not consistently generated for each alternative in

analysis.

For the objective function (in the sensitivity analysis) chosen above, the NPV criterion required
further refining. The HDM-II model output includes an NPV value for each link-alternative and for
each discount rate selected for the analysis. So, the dilemma was what link-alternative should be
used, and further, what discount rate would be ideal? To resolve this dilemma it was necessary to

look into the role played by these factors in priority programming.

The link-alternative in HDM-III represents a user-specified technically feasible investment option.
The function of the HDM-III analysis is to enable the user to choose, compare or rank the
alternatives so that an optimal strategy can be recommended for implementation. The strategy
recommended for a given link is influenced by many factors, e.g., the standard and performance of
the existing pavement, the traffic intensity, the performance of the treatment (the composition of the
proposed strategy), etc. So, for any given scenario, the best alternative cannot be chosen a priori. It
was, therefore, recognized that using the NPV for only one link-alternative as the objective function
for the sensitivity study would narrow the validity of the results to only that particular strategy
[Mrawira 96a}.

To circumvent the above limitation it was decided to use the sum of NPV for three best alternatives
as the objective function in the ceteris paribus studies. This means that the HDM-III model was run
to evaluate the five link-alternatives (defined in 4.2.1); the NPV results obtained for the four
strategies (STP1, STP2, STP3 and STP4 relative to STPO as the base case) were ranked and the best

three values were summed to obtain the objective function.

The use of the sum of NPV values for the three best alternatives has the advantage of cushioning or
attenuating the dependence of the NPV criterion upon the “recipe” of the R&M alternatives. In other
words, if the NPV for only one link-alternative was used then the resulting sensitivities would be

specific to the particular pair of “do nothing” and the chosen alternative. It is argued that the sum of
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the NPV values for the three best link-alternatives will provide an objective function more
representative of common strategies for the region. Since the formulation of the said maintenance
alternatives comprises a wide range, starting from very low level of maintenance efforts to very high
level of standards, it is hypothesized that the sum of the NPV values will capture a more
representative range of optimal strategies applicable in the case study region. For this reason, the
objective function adopted for the sensitivity in this research can be argued to be more general and

representative.

It should be pointed out that the above objective function will stilt be dependent upon the base values
assumed for the rest of the input factors. In other words, use of a group of links and sum of the best
three NPV values may achieve a general representation of the case study region, however, the
sensitivity results cannot be discussed without reference to the base case inputs used. It is possible
that changing, for example, the composition of the link-alternative, the link characteristics, erc.,
would change the NPV predicted for a given strategy. Unfortunately, this weakness arises from the
very nature of a ceteris paribus experiment and represents the single most important disincentive for

using this technique.

4.4.3 Choosing the Discount Rate and Analysis Period

Selection of the analysis period and the discount rate to use in the sensitivity analysis was another
area requiring careful consideration. Different maintenance treatments have different re-application
frequency, some ranging from as short as several times a year (e.g., grading of high traffic unpaved
road), to as long as once every ten or more years (e.g., overlay, or pavement reconstruction). A
short analysis period may include none or only a few of the long frequency treatments and,
therefore, misrepresent the long term effect of such treatments upon the life-cycle agency costs. An
R&M strategy consisting of such long cycle treatments (say an AC overlay every 12 years) applied to
two road links at different ages (say 5 and 15 years old) may generate very different NPV values
since the younger pavement will require two overlays before re-construction (at age 30 years) while

the older pavement will require only one overlay before reconstruction.

The sensitivity studies in this thesis, both the ceteris paribus and the experimental design

investigations, used an analysis period of 30 years, the maximum allowed in HDM-III.
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The role of discount rate in a life cycle cost analysis is to introduce the time value of a capital
resource. “A discount rate is used to reduce future expected costs or benefits to present-day terms,”
[Haas 94]. In profit oriented investments the discount rate is a reflection of the cost of borrowing
money, and it is referred to as interest rate. Sometimes we talk of the discount rate as the
opportunity cost of capital, where the investor is concerned with the “potential earning” being

forgone if the capital was invested elsewhere.

[n public investments, the discount rate is sometimes a reflection of the differential premium attached
to spending at present and spending in the future. [Mwase 88] concluded that it is generally
acceptable to base the discount rate on a combination of the social time preference rate (reflecting
society’s preference at the margin for present over future goods) and the social opportunity cost
(reflecting the rates of return, including any capital gains, that would have been obtained if the
relevant marginal aiternative had been invested in the private sector). Unfortunately, none of these is
easy to establish. In many road agencies, the rate used is more of a policy matter than a technical

justification [Haas 94, Mwase 88].

[n the sensitivity analysis, our concern is how does the discount rate impact upon the response
function being analyzed? A direct implication (upon the NPV) is that high discount rates reduce the
influence of treatments applied towards the end of the analysis period [Riley 94]. If for example, we
are evaluating two strategies, A and B, where A consists of a cost stream concentrated towards the
end of the analysis period, and B has cost stream loaded more at the beginning of the analysis
period, using a high discount rate will tend to favor A (assuming A and B have similar and uniform

benefit streams). The opposite ranking would arise if we were to use a low discount rate.

Given the diverse school of thoughts on appropriate value of discount rate, the present research
selected a value more indicative of the current practice in pavement management. [Haas 94] reports
values of between 4 and 10 percent as more common, while [Mwase 88] supports a similar range of
3.5 to 12% from a review of various studies in Tanzania. The ceteris paribus tests in this thesis
generated NPV values at 5, 10 and 20% for comparison, but most of the sensitivity results are

reported on the basis of the 10% discount rate.
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4.4.4 The Procedure

The procedure for ceteris paribus sensitivity analysis proceeded by running the HDM-III model ten
times with all the inputs factors fixed at their base values except that the factor to be investigated was
changed for each run through predetermined increments about its base value. The increments used
were, -80%, -50%, -20%, -10%, +10%, +20%, +50%, +100%, and +170% subject, of course,
to the allowed range within the model. This range covered the practical range (discussed in
Subsection 4.4.1) of most of the factors investigated at this stage. The fixed increments were
preferred (over, for example, dividing the factor range into uniform increments) because they

simplify the computation.

A group of six (6) links was used, representing typical conditions from the case study region
[Mrawira 95a]. A batch program was set up that performs multiple HDM-III runs on the same link
group. The batch program supplied for each run, similar input data, but with one input variable
changed from its base value (either upward or downwards) by the increments given above. The
HDM-III output report type 11 was found more useful for ranking alternatives on the basis of the net

present values (NPV). The output from each run was compiled into one file for subsequent analysis.

The analysis was performed by extracting the NPV values from the HDM-III type Ll report into
another file and computing the NPV elasticity for each link and discount rate separately through a

series of spreadsheets.

4.5 The Concept of Elasticity of Factor Sensitivity

[Mrawira 96a] defines the elasticity of factor sensitivity of an input factor with respect to NPV as:

ey = DNEV AINPUT .. (4.11)
NPV  INPUT e
where,
&pv = elasticity of factor sensitivity to the NPV prediction,

NPV = net present value of net benefits for a given strategy over the "do nothing” strategy,
ANPV = the change in NPV resulting when the input factor is changed by AINPUT,

NPV, = the NPV obtained with the base value of input factor, INPUT,...

INPUT = the HDM input factor being studied in the sensitivity analysis.
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The equation defines the elasticity of factor sensitivity to the NPV as the relative change in the NPV
per unit change of the input factor. The mathematical basis for this definition is given elsewhere
[Doctor 89] and is revisited in the next chapter (section 5.7). This function was recommended as a
better platform for comparing the impact of different input variables than the absolute change in NPV
[Mrawira 96a].

The advantages of the elasticity concept approach include its potential as a common platform for
comparing model factors with different factor ranges. The effect of an input factor upon a response
function (e.g., NPV) is twofold: (a) the change produced in the output by a unit change in the input,
and (b) the effect of the magnitude of factor range in practice. The elasticity concept provides a
compact form for combining both the significance of the factor upon the variability in the response
function (e.g., NPV) and the range of variability in the input factor itself. Therefore, the most
important advantage of the elasticity approach (Equation 4.11) is that by definition, it normalizes the
scaling effect of the absolute factor change used in the study. In other words, if for example, over a
given factor range Ax; of the factor x;, the factor effect upon the response is linear, then the elasticity

of sensitivity of the factor x; will be constant irrespective of the size of Ax; used.
4.6 Data Requirements and Design of the Field Study

4.6.1 Role of Data in the Research

In most research studies field data is required for direct use either to build an empirical model or to
test hypotheses in the study. In this thesis field data has neither of the above direct uses. The primary
requirements of data in this study are twofold. First is the need to provide “base case states,” that is,
the typical values for the HDM-III input variables. Alongside the mean values, which were needed in
delimiting the input space for the sensitivity analyses (and also in determining values for default
inputs), a second important need was to estimate the variability (the practical lower and upper
boundary) of all the input factors observed in the case study region.

The observed (i.e., the practical) range of input factors was important to both the cereris paribus
studies and the experimental design investigation (Chapter S). In the ceteris paribus tests it was
desired to simulate factor increments extending to the entire practical range. This objective was only
partly achieved in the implementation of the ceteris paribus tests, but fully utilized in the

experimental design investigation.
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Rationalizing the factor senmsitivities over the many different factor ranges can become a tedious
procedure. Although batch processing of the HDM-III model runs for a ceteris paribus investigation
can implemented, careful planning and effort has to be spent on coding a pre- and post-processor.
This problem (of rationalizing the scale effects of different factor ranges) was the primary motivation
for developing the concept of elasticity of factor senmsitivity (Section 4.5). By definition, the elasticity
of factor sensitivity is the percentage change in the NPV associated with one percent change in the
factor. Under linear or approximately linear factor assumption, the elasticity is independent of the
factor range used in the investigation. Figure 4.1 shows the role of different factor ranges, Ax on the
elasticity of factor sensitivity, & As the relationship approaches linear, ¢ tends to a constant —

independent of the magnitude of Ax.

A

&= (dNPV/dx)* (x/NPV)

NPV

£" = (dNPV7/dx" ) * (x/NPVy)

Factor X

FIGURE 4.1 Elasticity of factor sensitivity versus the factor increment used

The rationalizing property of the elasticity of factor sensitivity illustrated above justifies reporting
the ceteris paribus factor sensitivities using any arbitrary factor ranges as long as the response is not

highly non-linear.

Generally speaking, the data types required for this research are those data items normally used to
run HDM-III. Figure 1.1 (Chapter 1) shows the major types of data required to apply HDM-III to a
network level analysis while Table 4.4 gives more descriptive details of the model inputs.

As far as formulating rolling annual road rehabilitation and maintenance (R&M) programs is

concerned, the inputs of interest are those falling under Series A, C, D, and E. The roles of the
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other data classes are: Series B defines new pavement construction; series F for defining non-
standard inputs — exogenous benefits and costs, whereas Series G, H, I, J, and K are for control
input that define the analyses performed by the HDM-III code. Since the thesis study focused on
model reduction for the purposes of prioritizing R&M programs at the network-level, the input
variables relevant to the investigation are the four series: network characteristics (Series A),
maintenance strategies and cost factors (Series C) vehicle characteristics and unit costs (Series D) and
traffic loading data (Series E).

TABLE 4.4 The HDM-III Input Data Structure [Wartanatada 87b]

Series Series Name Purpose of the Series
A Existng Link Specify characteristics and conditions of road sections at the beginning of
Characteristics the analysis period
B Construction Options Specify optional projects for improving road sections, including quantities
and unit costs and costs of construction inputs, and characteristics of the road after
improvement
C Road Maintenance Specify alternative maintenance standards to be applied to different types of
standards and Unit costs road surfaces and associated road maintenance costs
D Vehicle fleet Describe the physical and utilization characteristics and related unit costs of
different vehicle type in the fleet

E Traffic volumes and Input traffic flow volumes and time profiles for different vehicle types
growth patterns

F Exogenous Costs or Permit the user to incorporate exogenously calculated benefits and costs
benefits other than construction, maintenance and savings in vehicle operating costs
G Link - alternatives Specify alternative sets of construction and maintenance policies for various
links, with times or conditions for intervention (or trigger levels)
H Group - alternatives Define the grouping of the link - alternatives (in series G) for economic
analysis and reporting purposes
[ Report Requests Define the reports to be processed on financial costs, maintenance
quantities and costs, traffic loads, vehicle operating costs; conditions for
selected link and group alternatives
J Comparison of Specify the link and group alternatives to be included in economic analysis/
alternatives comparison

K Run control information Specify process control of input, analysis period, direct /delimit output.
Specify VOC relations to be used; and miscellaneous information
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4.6.2 Design and Implementation of the Field Research

A combination of methods was employed in a field work conducted in Tanzania in 1994 primarily to
obtain the data used in the thesis research. Direct field observations, survey of existing records, as
well as questionnaire survey were used in the field data collection. This combination of methods was
inevitable given the fact that in most SSA countries documented systematic data are not readily
available. Most of these low-income countries do not have formal pavement management systems and

consequently very limited organized databases /information systems do exist, if any.

Appendix A provides a brief description of the case study area and outlines the key aspects of the
field research implementation. The appendix focuses on: profile of the questionnaire respondents,
darta sources and summary statistics of the data relevant to this research. The purpose of the appendix
is limited to giving a context to the study, and therefore it does not present a complete report on the
field research. Such context could become useful in assessing the transferability of the study findings
to other geographical /socio-economic contexts. Comprehensive reports on the field work are given

elsewhere, see [Mrawira 95a and 95b] upon which Appendix A is based.

Questionnaire survey (by in person interviews) was the primary method employed to supplement
documented data and direct measurements. The questionnaire form used in the field work is given in
Appendix B. The target questionnaire respondents were the regional engineers® and senior personnel
under REOs. Interviews were directed to senior engineers, in particular those directly in charge of
regional and trunk road networks. A total of 11 regional engineer offices and two independently
administered highway units were surveyed. The motivation was to capture the experience of the
senior engineers in the road authority in estimating the relevant factors that reflect past and current

practices in the case study region.

The questionnaire approach proved to be an important method in this case, particularly since
documented data was mostly unavailable, and since some data items could not be measured directly

within the scope of this study. Such data items were for example: pavement layer thickness, past

¢ The Ministry of Works, Communications and Transport is the agency responsible for the national road
network in the Tanzania. Under the national authority each of the 25 administrative regions has a regional
engineer’s office which is in charge of the planning and implementation for the road network in the region.
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maintenance policies, design and rehabilitation practices, as built material records, R&M operations’

unit costs, past pavement performance, etc.

4.6.3 Collection Protocols Specific to Data Types

Extensive effort was expended on direct measurement of road roughness for two reasons. Initial
sensitivity tests indicated that roughness was the most significant factor influencing HDM-III life-
cycle costs predictions. Since very little local experience existed (in Tanzania) on roughness
measurements, the most plausible option for the study was to conduct direct measurements. The
TRRL's in-vehicle mounted Bump Integrator was used measure roughness on a total of 2425 km of
roads, of which 1345 km are paved. Details of equipment calibration, precision control factors and

general lessons learned on low cost roughness measurements are given elsewhere [Mrawira 96b].

Appendix A provides a summary of the road roughness measurements from the field study (see
Section A.4.3.2). It is noted from Tables A3 and A4 that the weighted average link roughness was
about 4480 mm/km BI (5.7 m/km IRI). The average link roughness varied from 1340 to 4740
mm/km BI (1.9 — 6.0 m/km IRI). However, the 95% confidence range of the individual roughness
observations were much wider (780 to over 7216 mm/km BI (1.2 — 8.7 m/km IRI)).

Link characterization data was collected mainly from inventory records available at regional
engineers’ offices and two independently administered highway units. As shown in Appendix A, link
characterization data for paved roads were collected for a total of 66 links constituting a total of 2750
km. Examples of the data items under this category are: link length, geometric attributes (e.g.,
width, shoulder width, curvature, gradient, number of lanes, etc.), structural attributes (e.g., layer
thickness, material types, gradation, compaction, base layer characteristics, efc.), ecc. However, a
few data items were estimated by interviewing the local engineers. Examples are condition data,

horizontal curvature, rise plus fall, past performance, construction and R&M treatment history, ezc.

Eavironmental attributes for the links were obtained from two separate sources. Ten to 50 years
teturn period rainfall data for several meteorological stations was obtained from Directorate of
Meteorology at the Ministry of Transportation. The latest 20 year monthly mean rainfall data were
used for the study. Altitude data was estimated from the Tanzania National Atlas [GoT 76]. A better
alternate source would be the 1:50,000 local maps, but the effort was beyond the scope of this study.



Chapter 5

LATIN HYPERCUBE EXPERIMENTAL DESIGN IN SENSITIVITY
ANALYSIS OF HDM-HII INPUT FACTORS

5.1 Introduction to the Chapter

The traditional approach to sensitivity analysis was reviewed in Chapter 2 (Subsection 2.5.2);
situations in which it is favored over anmalytical approaches, limitations of the ceteris paribus
technique, and hence the motivation for factorial designs. This chapter first reviews a number of
relatively new methodologies from the field of statistics that are more efficient in the investigation of
computer models, and then it presents the application of these techniques in the study to investigate
the link characterization variables in the HDM-III model. The motivation is to highlight the
advantages of the thesis approach to the investigation of factor interaction effects upon the HDM-III
output variables of interest to rehabilitation and maintenance programming.

Section 5.2 revisits the formulation and analysis framework for traditional factorial designs that have
been extensively applied in investigations of physical experiments. The special nature of computer
experiments that negates the use of traditional factorial designs is highlighted in Section 5.3. Next, in
Section 5.4, the principles of Latin squares and Ayper - Greco’ - Latin square designs are introduced
as a background to the development of Latin hypercube designs, which are better suited to analysis
of computer codes. In Section 5.5 the properties of the designed data used in the investigation of the
link characterization variables in HDM-III are outlined. The post-experimental output data generation
procedure is briefly introduced (in Section 5.6) by outlining the functions, and the development of a
“preprocessor” code. Finally, in Section 5.7 the chapter concludes with an outline of the methods
employed in the anmalysis of the post-experimental output data. A concept of interpretation of a
special regression model form is introduced which lends well to comparing two approaches of
estimating the factor effects — the stochastic modeling after [Sacks 89a and 89b] and the regression
approach. ‘

7 Greaco and Greco are found in the literature as variant spellings for the same concept.
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5.2 General Design and Analysis of Factorial Experiments

The statistical science of experimental design, where the aim is to investigate the influence of more
than one factor was formally introduced as early as the World War I [John 71]. Much of the stimulus
to the development of modern statistical theory of experimental design came originally from
agricultural research, where for example, the objective of an experiment could be to make
comparisons between the effects of different treatments (fertilizer, pesticide, etc.), one of which is
applied to one or more plots, upon crop yield, or any other response factor. Serious interest to apply
experimental design to engineering research started in the late 1950s with various works, for

example, Box and Hunter introduced response surface design to chemical engineers [John 71].

The design of an experiment consists of the following steps {Ogawa 74]:

o Selecting the input variables (treatments) to investigate,
o Specifying the factor levels to include in each experimental run,

o Deciding on rules by which the factor levels of one variable are combined with factor levels of
other variables (to define the “conditions™ for each experimental run), and

¢ Specifying the measurements to be made on each response variable.
The mathematical experimental design is mainly concerned with step 1 through step 3.

Factorial designs constitute a special class of experimental designs where multi-factor effects are
investigated. While factorial designs have evolved to different forms, the basic approach to the
analysis of results from experimental designs have remained much the same. In general, analysis of
variance (ANOVA) is the common tool used to analyze the results of factorial experiments. The F-
test provides a mechanism for ascertaining whether or not the factor effects (and interactions) are

significant.

The F - statistic provides a measure of factor effect by a semblance of the ratio of within treatment
(or within block) variability to the variability arising from the natural noise (residuals) in the yield.

One interesting approach to the representation of the factor effects, particularly, where it is desirable
to rank/compare the significance of the different factors is the ANOVA percentage contribution. This
approach is very useful, especially in computer experiments (like here) where the error term is zero.
The ANOVA percentage contribution is defined as the relative amount of variability ascribable to the

factor in relation to the total variability in the response variable:
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SST®)
AF® = .. (58.1)
SS7ot
where, AF¥ = ANOVA relative contribution of factor k,
SST” = Sum of squares attributable to the factor &,
§STot = Total sum of squares in the response variable.

Conventional factorial designs are mainly useful in exploration of input variables measured with
random errors. As discussed subsequently, in computer experiments where the input space (for the
predictor variables) is planned a priori, the random error term is zero because computer outputs are
deterministic. Further, higher levels (beyond 2“) factorial designs are not computationally efficient
particularly where a large number of predictor variables have to be investigated (like in the case at
hand). While, the famous two-level factorial (2°) designs offer the advantage of standard analysis
algorithms, they suffer the inability to capture any non-linearity of factor effect between the low and
high levels of the input variable. Therefore, a different approach to the investigation of computer

models is desirable.

5.3 Computer vs. Physical Experiments

[n many engineering and technological applications today, complex mathematical models are been
implemented into computer codes. The codes take in a set of input values and produce the output
value(s). These output values in turn are used in decision-making or as input to other processes.
Computer models are popular in applications where large repetitive calculations are necessary. In
some scenarios the model cannot be written in closed form and/or it requires an iterative solution. In
other instances, the model form involves several complex algebraic equations with complex nesting
that are near, if not impossible, to solve analytically. Yet in other instances, the model forms are
recursive, in that outputs of one stage are fed to the next stage, and so forth in a serial fashion, so
that the output(s) at any stage, n is also a function of the stage, n. The HDM-III model (the source
code is over 22,000 FORTRAN-77 lines) has a little bit of each of the above three scenarios, and

qualifies as a good example of a fairly complex computer model.

Given the input values, the computer code produces the outputs via complex mathematical
manipulation. Investigation of such computer codes arise in many instances, for example, sensitivity
analyses, in the optimization of the measurements of inputs, or when the computer model is
expensive to run (time or otherwise) it would be desirable to build a predictor (i.e., a reduced model)

to act as a computationally less expensive surrogate for the full model, erc. In some cases, as it was
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hypothesized in this thesis, if only a few factors are important, it would be desirable to identify those
active factors (screening) and, if possible, to determine the way in which they jointly affect the

response of interest.

Computer models are distinct from physical experiments from the standpoint of statistical analysis in
that they do not involve random error. A computer model fed with the same input values will always
produce the same output. Due to lack of random error, traditional factorial designs are not very
useful. For example, replication, a key technique used in conventional factorial experimental design

to estimate experimental variance, leads to redundant information in computer experiments.

The question now arises of how such computer experiments can be carried out efficiently. Latin
hypercube designs, a special class of randomized experimental designs, were introduced by [McKay
79] specifically to address this question.

5.4 The Latin Hypercube Design

Advances in computational power of the last three decades have motivated and made possible
investigation of complex computer models used in many areas of science and technology. With the
work of [McKay 79] the study of statistics has been pre-occupied with developing methodologies to
efficiently analyze computer models. With moderate to large models (large number of input variables
or excessive CPU time), a need to identify the most active factors (screening) becomes highly
desirable. [Welch 92] reports previous approaches to screening that were mainly aimed at physical
experiments with random error. [Welch 92] cites other works [Box 86, Morris 87, Srivastava 75 and
Watson 61] which dealt with analyses to identify active factors on assumptions of factor sparsity (few

active factors) and linearity and additivity of factor effects as well as presence of a random error.

An introduction to the theoretical construct of Latin hypercube experimental design is subsequently
given. First, the Latin square designs, the Greco-Latin squares and the hyper-Greco-Latin squares
are outlined. Then the generalized case of Latin squares — the Latin hypercube design is discussed.

5.4.1 The Latin Square Designs

The Latin square is an arrangement permitting two sets of block constraints, conveniently termed
rows and columns, to be used simultaneously. By definition, a Latin square is a square of side p in

which p letters are written p times in such a way that each letter appears exactly once in each row
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and each column [John 71)]. Latin square designs are prominent in two contexts. They are often
useful in studies where it is desired to ensure two-way blocking (two-way elimination of
heterogeneity), with rows and columns representing the blocking and letters standing for the

treatments.

The other context of Latin squares is to use them as fractional factorial designs. Supposing we have
three factors each at p levels. To carry out a complete factorial would require p’ runs. If we use a
Latin square we can let the rows represent the levels of factor 4, the columns the levels of factor B,
and the letters the levels of factor C. Then we obtain a design in which each level of each factor
occurs exactly once at each level of every other factor. From such a design it is possible to estimate
the effects of all the three factors (assuming no interaction) with only p’ runs, which represent a
considerable saving. For p = S5 for example, the number of experimental runs required drop from
125 to only 25.

5.4.2 Greco - Latin and Hyper - Greco - Latin Squares

The Latin squares allow designs for three factors (by use of rows, columns and Latin letters). The
Greco — Latin square designs evolved from the Latin squares to enable designs for four or more
sources of variation. Given two Latin squares of the same degree, if one is superimposed on the
other such that all combinations of letters — taking the order in account — occurs exactly once, then
the two squares are said to be orthogonal to each other. A Greco — Latin square is obtained by
superimposing such pairs of mutually orthogonal Latin squares. A Greco — Latin can be used to
provide designs for four factors (rows, columns, Latin letters, Greek letters), each at p levels in p*
runs. Similarly, adding a third mutually orthogonal square to a Greco — Latin square gives a hyper —

Greco — Latin square.

In a Greco — Latin square the experimental units are grouped in four different ways — by rows, by
columns, by Latin letters and by an additional classification usually designated by Greek letters. The
orthogonal constraint ensures that the assignment of Greek letters is restricted such that each Greek
letter occurs exactly once in each row and column. Treatments (designated by Latin letters) are now
assigned to the experimental unit such that each treatment occurs once, and only once, in each row
and column and with each Greek letter. Table 5.1 shows an example of Greco — Latin design for
studying gasoline consumption for different types of gasoline, car makes, traffic patterns (day of

week) and driver behavior.
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The five factor Ayper — Greco — Latin square designs could be extended to any higher dimension in
the same analogy as we did the Greco — Latin square. For example, a sixth factor could be added by
superimposing a fourth orthogonal square and designating the factor levels by lower case Latin
letters. Similarly, a seventh factor can be added by superimposing another square and using Arabic

numerals to denote the levels.

TABLE 5.1 An Example of Greco — Latin Square Design [John 71]

Car Number Day of week
1 2 3 4 5
I Aa BB Cy D5 Ee
11 By Cs De Ea AB
oI Ce Da EP Ay Bd
v DB Ey Ad Be Ca
\" ES Ae Ba Cp Dy

Key: Latin letters = type of gasoline; Greek letters = driver

Analysis of Greco — Latin square (and hyper-Latin—Greco) designs is again an ANOVA problem

with added terms of source of variations (Latin letters, Greek letters, etc.).

5.4.3 The General Latin Hypercube Experimental Design

Latin hypercube sampling was first proposed by [Mckay 79] as a method to select values of input
variables for performing sensitivity analyses on complex computer codes [Doctor 89, Welch 92,
Gough 94]. The Latin hypercube design is a generalization of the hyper - Greco - Latin square
design to k£ dimensions, where k is the number of variables in the model. The method is named after
the Larin square [Kempthome 52], introduced earlier, since it is the starting basis for the hyper -
Greco - Latin square designs. Prior to [McKay 79]’s work the concept of Latin squares had been
used as an efficient method of assigning treatments to experimental units that can be categorized by
two independent schemes (e.g., columns and rows), and also as a means of stratifying populations to
increase the precision of factor effect estimates of interest [Doctor 89].

Each input variable is assumed to be a random variable with given probability density function, pdf.
The simplest notion of Latin hypercube sampling is that of stratified sampling. The stratification is
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accomplished by dividing the range of the input variable into N intervals of equal probability (1/N) as
determined by the variable’s pdf. For each input variable, one sample is drawn from each of the N
intervals. The output of the sampling can be considered an N x k matrix, D, where the columns
represent variables and the rows contain the sample values for the appropriate interval. The values
within each column are then randomly permuted, so that a row represents a random realization of the

vector, x; of the input variables.

For the sake of mathematical representation let the computer code been investigated have &k input
variables, then one set of input data (the jth set, for example) to the model can be represented by the

row vector,

X; = (xy X35 X3 .ons Xiy) --(5.2)
where, X;, X5 X; ..., X; are the individual model input variables.

As a notational convention vectors are written in bold face, lower case letters and matrices in bold
face capital case letters. The model factors, x;, X,...,x;, can be assigned different values, the range of
which is determined only by the constraints imposed by the computer model. In general, the input
components are assumed continuous variables and independent of each other with only upper and
lower limits imposed by the model. The computer model is then evaluated (run) at each of the N
input sites with the values (or levels) of the input variables equal to the components of the N row

vectors, X;, G = 1, 2, ..., N).
The corresponding model response (output) value for jth set of input variables is given by,
yi =f(x) =fxp Xp - - . Xg) ... (5.3)

The model outputs after the N runs consist of column vector(s), that can be conveniently designated
by an R x N matrix, Y, where, R is the number of output variables.

The number of possible combinations of factor levels, even for a model with few variables, is often
infinitely large. The purpose of the experimental design is therefore to spread the input sites over the
input space as efficiently as possible; the so called “space filling” requirement.

The primary use of the Latin hypercube design in our case is to select the N input sites (levels of the
input vector X;, (f = 1, ..., N) such that:

* Each input variable x; fills the entire practical range (input space) of x; as uniformly as possible.
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e The order of the individual steps of an input variable x; G = I, 2, ..., N) is completely
randomized so that for any pair of input variables x, and x,, are not correlated.

o The generated experimental data (called the design matrix D (of order N x k)) and the
corresponding response matrix Y, should enable efficient estimation of the main and interactions
effects.

The advantages of Latin hypercube sampling are that it generates random variables more efficiently
than unconstrained random sampling methods and requires fewer model runs for a given accuracy in
the estimate of the pdf of the model response variables by efficiently sampling the entire range of
each variable. [McKay 79] compared three candidate methods of selecting values of input to
computer experiments: random sampling, stratified sampling and the Latin hypercube sampling.
They showed that the Larin hypercube sampling has the advantage of a smaller variance estimate than
the stratified sampling (this in always the case but holds under some conditions). More importantly,
when the output matrix Y is dominated only by a few of the components x;, (i = 1, 2, ..., k) of x the
Latin hypercube sampling ensures that each of those components is represented in a fully stratified
manner, no matter which components turn out to be important. Geometrically, a Latin hypercube of
dimension &, can be collapsed into one of dimension p, (p < k), and still retain perfect fill over the

p- dimensions.

Following the work of {[McKay 79], Iman and Conover developed a computer code for generating
Latin hypercube samples from a given variable pdf [Iman 82]. [Gough 94] and [Schonlau 96] also
demonstrated the application of Latin hypercube design. In particular these later works dealt with
efficient computational techniques of analyzing the response matrix, Y, once the design matrix, D
has been fed through the model to generate the output. [Gough 94] perfected an approach by {Iman
82] of transforming a completely random Latin hypercube into one with better correlation properties
and further applied a maximum likelihood estimation (MLE) technique after [Sacks 89a, Sacks 89b
and Welch 92] to derive a simpler stochastic predictor which “explains™ the effects of the muiti-
dimensional inputs x;, X, ..., X On the other hand [Schonlau 96] shows how to select a simpler

predictor (non-linear parametric) from a prior non-parametric Latin hypercube design.

5.4.4 Modifying the Latin Hypercube for Factor Dependencies

The key assumptions for the Latin hypercube design is that the input variables are continuous over
the input space and capable of varying independent of each other [McKay 79, Iman 82, Doctor 89).

However, situations may arise where the input variables do not meet these assumptions, (e.g., in
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HDM-III where some input factors are constrained upon the values of other factors). [Iman 82]
developed a method for inducing pairwise dependencies among variables using rank correlation.
Dependencies among random variables are usually described by a bivariate, or pairwise correlation

coefficient, namely the Pearson product moment correlation coefficient defined by:

Cov(¥,Y) .. (5.9)
/2
poryvarcr}

p =
4

which is used a measure of the degree of dependence between the random variables Y; and Y.
However, it is appropriate only if the dependence is linear and the variates are Gaussian. [Iman 82]
observed that most dependencies, even those that are highly nonlinear, are monotone over some

range of values. The Spearman rank correlation coefficient:

Cov[R(Y), R(Y))] 55
{rar(R ())1Var(R (YJ)]}V:

p_=

which is the Pearson product moment correlation coefficient computed on the ranks R(Y) of the data,
measures the degree of monotonicity between random variables. [Iman 82] devised a method of using
the Spearman bivariate rank correlations to induce the desired marginal distributions obtained from

the original Latin hypercube design.

{Iman 82]’s method for inducing the dependencies among the variables is based on the decomposition
of the desired rank correlation matrix to generate restricted pairings of the elements of the Latin
hypercube design matrix, D. The values of the variables in D are not changed, but the values are

paired in such a way to induce the desired dependencies between the variables.

The process of modifying the design matrix, D in order to induce the desired variable dependencies
is as follows. Referring to the N x k design matrix, D, where & is number of input variables and N is
the number of intervals per variable, the original Latin hypercube design D, theoretically has rank
correlation matrix I (the identity matrix), that is, the k variables are independent. Let, C be the
desired rank correlation matrix of a linear transformation of D. The correlation matrix, C is a
necessarily positive and symmetric matrix; it can therefore be decomposed into the product of a

lower triangular matrix with its transpose,
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C=VV ... (5.6)

where, V* stands for “V transpose.” It follows that the vector, DV® should have the correlation
matrix C. The equation (5.6) above is derived after Cholesky decomposition that was developed to
provide an easy way of constructing Gaussian multivariate distribution from the vectors of
independent unit Gaussian random variables, U ~ N(0, I). Suppose that it is desired to generate
samples for a multivariate normal distribution, Z with mean g and covariance V. Then the samples

are generated from vectors p of independent unit Gaussian by,

Z=pu+UQ - (5.7

where, Q is the lower triangular Cholesky decomposition of V, i.e., V = QQ'.

From equation (5.6) the “ideal” transformed Latin hypercube design matrix having the desired
variable dependencies is DV*. Let R be the matrix of scores, {;}, resulting from the rankings of the
columns of D. [Iman 82] used van der Waarden scores for the matrix R defined by [Conover 80] as:

a; = ¢ [i/(N+1)] - (5.8)

where, ¢ is the inverse of the standard Gaussian pdf, and / is the rank of the element in the column.
Let R” be the matrix of scores after selective pairings of elements of the columns of R. The objective
is to have the Spearman rank correlation matrix, R’ close to the desired rank correlation matrix C. If
the rank correlation matrix U of every realization of R were exactly the identity I, then there would
be no problem in using the Cholesky decomposition directly. However, since R is a random matrix,
U will be approximate, but not equal to I for any realization D. Therefore, U must be pre and post
multiplied by a matrix S so that:

SUS*=C .. (5.9)
In order to find S the Cholesky decomposition, U = QQ° is performed. U must be positive and
definitive, so R must not contain identical columns. Substituting U = QQ® and equation (5.6) in
equation (5.9) the result is:

SQQ'S* = VV* .. (5.10)

from which it follows that,
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S = vVQl . (5.11)

and therefore,

R’ =RS* .. (5.12)

The columns of the “original” Latin hypercube design matrix, D are then rearranged according to
the ranking matrix R" to produce a “modified” Latin hypercube design matrix, D* which has a rank

correlation matrix close to the desired C.

5.5 Designing the Experiment for Link Characterization in HDM-III Model

So far this chapter has dealt with the theoretical constructs of experimental design, in particular, the
theory of Latin hypercube designs. This section presents the characteristics of the experimental
design matrix obtained (by applying the principal thus far introduced) for a group of forty link
characterization variables in the HDM-III model. The motivation is to discuss the statistical
properties of the design matrix used in subsequent analyses in relation to attributes likely to impact
upon the validity of the analysis of the model output(s) based on this design. In other words, the
interest is in the sufficiency of the experimental design data before they are fed into the model being
investigated. The last section of this chapter outlines the theoretical basis of the analysis technique
applied to the post-processed results.

A complete model investigation process consists of three major stages:

o Input data generation (the experimental design process per se),

®  Output generation (i.e., preprocessing or running the design data through the model), and

& Analysis of the (post-processed) response variable(s).
A greater part of this Chapter deals with the first step, i.e., the experimental design, naturally
because of its central role in relation to justifying the validity of the results of the overall
investigation. It is argued that if the experimental data can be shown to fully explore the input space
(both in factor range and combination of scenarios) for the study region, then it can be inferred with
a high degree of confidence that the results (of stage 3) are valid and justified. Subsection 5.5.1
derails the characteristics of the “original™ Latin hypercube design, emphasizing the statistical quality

of a balanced sampling at any sample size.



5.5.1 The “Original” Design Matrix

The statistics of the original design matrix for the link characterization variables can better be
understood by looking at the Latin hypercube design process for this group of variables. The range
of values for the 41 link characterization input variables was shown in Table 4.1. As pointed out in
Chapter 4 these factor ranges were determined mainly based on field data from Tanzania, the case
study country. These ranges should be kept in mind when interpreting the results since sensitivity
with respect to an input factor would tend to increase if a wider range is chosen. For the same

reason, extensive care was taken in judging the practical range where direct field data was missing.

The study set out to conduct a total of 1000 experiments for this group of variables. The number of
experiments was decided, as discussed later (Section 5.6), on the basis of several considerations
including the CPU time requirements, high dimensionality of the problem (large number of

variables) and sizes of factor ranges to be explored.

Out of the 41 total paved road link characterization variables, surface- and base-type are categorical
variables with about 12 common pairings for the case study country. Unfortunately, not all of the
surface-types can be paired independently to the base-types. To simplify the design process, the two
categorical variables were removed from the design; allowing the use of the resulting design matrix
with any chosen base-surface pair. The Latin hypercube experimental design was therefore

implemented for the remaining 39 parameters.

In a straight Latin hypercube for N model runs, each factor’s range is represented by an equally-
spaced grid of N values, thus ensuring that the range is fully explored. In theory, for the 1000 model
runs proposed above, the spacing in each variable would find by taking 1/999 of each parameter
range. However, such fine subdivision of the factor range has not been found to be advantageous,
and would only be desirable if all parameters had large factor ranges and it was suspected that the
model output was highly nonlinear. The factor ranges in our case varied from as low as 0.8 — 2.0 to
as large as 0 — 3000. A grid spacing of 1/25 of each parameter range was used, a value also used by
[Gough 94] for parameter ranges from O — 1.8 to 0.5 — 20 units. For the rainfall (MMP) factor, for
example, (range of 5§ — 300 mm/month) the design will contain values of 5.0, 16.8, 28.6, ..., 300.0
mm/month but not in that order. Altitude (4) has a range of 0 — 3000 m, and it will take values
0, 120, 240, ..., 3000 m, and similarly for the other variables in the design. In a 1000 data points,
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each of the factor levels, (e.g., 0, 120, 240, ..., 3000 for the factor 4) will occur approximately 39
times (=1000/26).

For the completely random Latin hypercube, the factor levels would be in a random order, this
ordering being statistically independent of the ordering for the other factors. The motivation is,
combining, for example, the 1000 rainfall (MMP) values with the corresponding 1000 values for
altitude (A4) hopefully fills out the two-dimensional MMP — A space, representing all combinations of
these two input variables. [Gough 94] observes that, there is no guarantee that such random ordering
will give good two- and higher dimensions properties. In particular, two input factors might be
highly correlated with each other by chance, making it difficult to distinguish their effects. [Iman 82]
describes an algorithm of improving the completely random Latin hypercube into one with better
correlation properties, a method that was later enhanced by [Gough 94].

Table 5.2 shows a small part of the modified design matrix for link characterization variables. The
spatial distribution of the Latin hypercube design is illustrated by Figures 5.1 and 5.2. Figure 5.1
shows a good “spread-out” of the design sites on two dimensional projection for the unconstrained
factors. The probability density functions (pdf) for the variables in the modified design matrix are
summarized by Table 5.3.

5§.5.2 Constraints in the Model Factors and the “Modified” Design

HDM-II code imposes several constraints on some of the paved link characterization input
parameters in such a way that the factors in these pairs (or groups) of variables cannot be varied
completely independent of each other. As mentioned earlier, the original completely random Latin
hypercube design matrix required special adjustment for these factor dependencies. The following
paragraphs introduce the factor dependencies considered in the design.

There are five groups of factors that are dependent in one way or another under the paved link

characterization input variables in HDM-III:

. Strength Parameters: the specification of pavement strength in HDM-III can be done in three
ways — Structural number (SN), Benkelman deflection (DEF) or both inputs together. The effect
of using any of those options upon the output is not known; and therefore the SN and DEF values
had to be designed as dependent on the option code.



TABLE 5.2  Part of the Modified Design Matrix

Case MMP A RF c w A o WS ELAN HSNEW HSOLD CMOD HBASE COMP SNSG SN DEF Kci  Kcep
mm/mo m m/km deg/km m % m mm mm GPa mm % % mm
1 1348 0 432 47 6.3 4 216 184 111.2 2646 21.74 3234 934 30.80 402 3,04 3,69 09
2 2764 2280 192 336 89 64 132 28 1702 2646 2646 4428 88 3080 490 500 1112 260
3 2174 1320 334 420 402 28 0.6 1.24 404 146.6 286 3234 94 1160 138 069 3544 L70
4 2292 2160 576 616 478 8 0 3188 99.4 158.4 182 9204 976 4232 358 284 1264 140
5 2528 2760 864 616 5.92 04 084 304 2764 404 1112 1642 982 968 204 206 2024 170
6 994 1680 384 616 2,5 26 204 292 2292 123 7.58 5224 91 1736 072 206 1568 210
7 1702 2640 432 196 364 36 024 1.6 64 1702 2646 846 958 1544 248 010 3848 100
8 241 2760 672 364 858 08 204 1.96 300 1584 2,86 403 982 584 270 010 2784 0.70

9 758 120 0 504 1048 48 288 244 1584 123 123 7214 85 4424 050 382 3.088 100
10 2056 120 1104 224 89 28 0 292 300 758 758 5224 886 4616 292 441 0504 100
11 994 1920 432 588 668 28 24 232 1466 2174 758 5622 988 2504 358 049 1568 1.70
12 241 1800 672 56 288 32 228 196 241 2764 758 1000 928 2504 556 284 1872 0.50
I3 1584 2280 384 616 744 10 168 304 2764 1938 168 5622 994 1352 116 226 2328 230
4 300 120 528 24 12 84 27 1 522 286 2882 2438 88 200 512 382 18712 070
15 123 1080 96 252 326 S2 252 352 123 S5 2174 2438 934 4232 512 049 065 100
16 182 1200 48 6 SS4 0 12 124 404 1938 123 602 91 776 182 480 369 100
17 1348 2040 96 364 25 2 276 352 2646 522 758 8408 958 776 468 069 0504 210
18 1348 480 72 672 706 72 27 304 404 1702 05 2836 9.6 392 600 167 0960 280
19 876 1560 1056 448 25 10 228 292 168 1702 182 801 964 3272 336 245 0504 230
20 2292 1200 336 S60 592 48 216 16 2646 404 168 1244 922 4232 402 186 2024 060
21 182 2760 336 280 592 84 012 388 2528 2646 30 1244 916 4424 402 108 1872 130
22 1938 240 672 644 1162 88 252 208 2764 876 2528 7612 916 4808 292 304 3392 190
23 1112 2880 624 S04 592 68 072 376 168 2764 2174 3632 856 S000 292 422 112 250
24 64 0 78 252 28 0 0 232 64 241 1938 1000 97 4232 248 441 2176 1.80
25 522 2520 1768 28 706 28 084 172 1702 1466 1348 4428 988 3080 600 3.82 0504 300
26 1112 240 120 196 7.82 64 228 34 S 300 21.74 448 94 2312 556 030 0808 1.10

Symbols according to the Glossary (see also Tables 4.1 and 5,3)



TABLE 5.2

Part of the Modified Design Matrix (continued)

Case ki ~ Kge Kpp Kip Kgp ACRA ACRW ARAV APOT RDM RDS QI AGE! AGE2 AGE3 CRP RRF ACRAD ACRWD
% % % % mm mm m/km IRl years years years years years % %

1 2216 1.760 3,848 0960 2,000 51.86 1659 1061 3,54 34 28 7.680 10 23 25 252 3,52 84 5N
2 0984 2000 2784 0808 1280 273 196 26,57 1431 24 0 10704 K 13 24 048 328 196 2,35
3 2328 1,712 4000 1720 1184 000 000 428 4492 46 20 1,632 7 7 30 048 196 644 33.49
4 109 1952 2632 0808 0848 3431 2470 4.82 1287 30 6 5520 18 29 30 264 400 112 0.00
5 1.880 1,184 2328 2176 1040 33,75 135 1199 067 32 4 8.544 4 27 28 264 100 252 25.20
6 1656 1856 2480 2784 1904 000 000 11.13 167 44 40 3.360 12 16 29 060 256 252 2117
7 1432 1904 1568 0200 1520 2642 21.14 4211 867 28 10 2,064 10 24 29 048 184 672 53.76
8 2776 1760 1720 1.872 0848 30.10 2528 2580 1290 44 38 4224 12 18 19 012 292 196 4.70
9 2104 1904 1568 1416 1328 59 071 383 021 18 16 10704 16 20 20 204 148 700 3360
10 1432 1424 0808 0808 1568 346 249 1297 1037 36 16 4,224 3 3 26 180 316 336 10,75
11 1320 1808 0808 0200 1040 132 100 347 521 44 12 6.384 6 8 19 036 232 364 36,40
12 1880 1952 0960 2328 089 3.02 0,00 6.23 354 16 i2 9 408 3 5 29 216 340 392 7.84
13 1320 0800 1,112 0808 1,520 3095 1981 1934 451 48 M 6.816 0 3 20 15 244 700 47.60
14 0312 0800 3848 2024 1,136 1541 9.86 2101 998 32 30 6.384 6 3 21 048 304 56 448
15 1992 1520 2632 2176 1568 10.16 163 4825 2159 28 16 2,064 0 2 4 192 124 84 4,03
16 1544 1088 1872 3240 1712 320 243 560 120 40 30 5952 2 9 19 120 148 336 9.41
i7 0424 1328 0960 4000 1808 1531 1164 608 541 38 26 8.112 6 18 19 300 100 588 5174
I8 3000 1424 0656 0656 1232 2249 720 2024 928 42 36 1.200 H 17 18 204 364 644 0.00
19 0200 1232 2176 3848 1.184 6.81 272 255 064 22 0 1,632 9 14 17 036 160 616 24,64
20 2440 1616 2936 1,568 1040 3907 3438 3206 4,07 44 24 11.568 3 22 23 1,80 160 0.0 0.00
21 1992 1472 2328 0960 1376 46.30 1.85 30.64 306 46 14 2,928 10 15 16 1,56 136 252 4.03
22 109 0848 3392 0504 0848 359 301 2287 874 30 30 10704 5 5 24 084 280 112 9.86
23 2328 1520 2784 1872 0800 502 422 502 27 26 24 8976 0 13 26 108 268 700 6160
24 0536 1808 1872 3544 1280 000 000 408 2552 40 22 5.088 13 20 25 180 160 532 1490
25 1096 1760 0808 0352 1520 3375 12,15 400 866 48 38 6.384 10 20 22 060 160 672 16.13
26 2328 1.472 2024 3.544 1856 21.87 1,75 12,30 1503 36 34 12000 7 13 21 28 100 56 291

Symbols according to the Glossary (also see Tables 4.1 and 5.3)
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2. Surface Distress Parameters: the areas of all cracks, wide cracks, raveled and potholes are
constrained at two levels. First, total surface damage is assumed to consist of only cracks,
raveling and potholes, and cannot exceed 100%, therefore the inequality,
ACRA + ARAV + APOT < 100. Second, the area of wide cracks is only a portion of area of all
cracks, thus: ACRW <ACRA.

3. Deformation Distress: the variability in rutting in HDM-III is presently assumed not to exceed
the mean value, thus the inequality: RDS <RDM, where RDM and RDS are the mean and
standard deviation values of rut depth respectively.

4. History of Pavement Treatments: in HDM-III the age of the latest surface treatment cannot
exceed the age of the last resurfacing, which in turn cannot exceed the age of the last re-
construction, hence the relation: AGEI <AGE2 <AGE3, where subscripts 1, 2 and 3 refers to

preventive treatment, re-surfacing and re-construction respectively.

5. Surface Distress History: again the before (last treatment) areas of wide cracks and all cracks
are related such that, wide cracks cannot exceed all cracks: ACRAb < ACRWb.

The design matrix was modified for the above dependencies first, by classifying the design variables
into six groups, group zero includes all the input variables that can vary completely independently
and groups one to five representing one of each of the above groups of dependent variables. The
second stage of modification was to adjust the “design sites” such that the factor values for the
variables in groups 1 to 5 meet the constraints given above. The details of the procedure was given

earlier (Subsection 5.4.4).

A major demerit of this adjustment is twofold. First, it results in a “distorted” exploration of the
input space. That is, part of the effectiveness with which the original Latin hypercube design was
filling (or distributing) the design sites over the input space is lost. Figure 5.2 shows the resulting
coverage of design sites over the 2-dimensional space for the constrained variables. Looking at
Figure 5.2 (a), the ARAV ~ QI sub-space for example, has points mostly concentrated in the lower
one-third of the ARAV range. Similarly, the design sites for ARAV — RDM, ARAV — RDS or APOT
—RDM, APOT —RDS, APOT - QI, etc., effectively explore one-half or less of the ideal sub-space.
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(a) Rise & fall, curvature, width, superelevation, shoulder width and effective number of lanes
FIGURE 5.1 Two dimensional projection of the “design sites” for the independent factors
(Symbols according to the Glossary, see also Tables 4.1 and 5.3)
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(c) Soil Cement Res. Modulus, Base layer thickness, Compaction, and Subgrade CBR.
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(a) The Pavement Condition Parameters: all cracks, wide cracks, raveling, potholes, etc.
FIGURE 5.2 Two~dimensional projection of the design sites for the dependent factors
(Symbols according to the Glossary, see also Tables 4.1 and 5.3)
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TABLE 5.3 Modified Latin Hypercube Design Data Statistics

Variable (units) Symbol Minimum Maximum Mean STDEV Skewness Median

Average monthly rainfall (mm) MMP 5.0 300.0 1525 88.5 0.0 152.5
Altitude [above mean sea level] (m) A 00 30000 15000 900.2 00 15000
Rise plus fall (m/km) RF 0.0 1200 60.0 36.0 0.0 60.0
Horizontal curvature (deg./km) C 0.0 7000 3500 210.1 00 350.0
Carriage-way width (m) w 25 120 73 29 0.0 73
Super-elevation (%) SP 0.0 10.0 50 3.0 0.0 5.0
Shoulder width (m) ws 0.0 30 1.5 0.9 0.0 ]
Effective Number of lanes ELAN 1.0 4.0 25 0.9 0.0 25
Thickness of new surface layers (mm) HSNEW 50 3000 1525 88.5 0.0 1525
Thickness of old surface layers (mm) HSOLD 50 3000 1525 88.5 0.0 1525
Resilient Modulus of soil cement (GPa) CMOD 0.5 30,0 153 8.9 0.0 15.3
Relative Compaction (%) COMP 85.0 1000 925 4.5 0.0 92.5
Subgrade CBR (%) SNSG 20 500 26.0 14.4 0.0 260
Structural number SN 0.5 6.0 33 1.7 0.0 3.3
Benkelman beam deflection (mm) DEF 0.1 5.0 26 1.5 0.0 26
Cracking initiation calibration factor Kei 02 40 2.1 1.1 0.0 21
Cracking progression calibration factor Kcp 0.5 3.0 1.8 0.8 0.0 1.8
Raveling initiation calibration factor Kvi 0.2 3.0 1.6 0.8 0.0 1.6
Roughness-age term calibration factor  Kge 0.8 20 1.4 0.4 0.0 14
Pothole progression calibration factor  Kpp 0.2 4.0 2.1 1.1 0.0 21
Rut depth progression calibration factor Krp 0.2 4.0 21 1.1 0.0 2.1
Roughness progression calibration factor Kgp 08 20 1.4 04 0.0 L4
Area of all cracks (%) ACRA 0.0 76.1 202 142 0.7 18.1
Area of wide cracks (%) ACRW 0.0 65.5 10.0 10.3 1.6 6.7
Area raveled (%) ARAV 0.0 72.7 16.1 12.9 1.2 13.0
Area of potholes (%) APOT 0.0 40.0 87 8.1 20 6.4
Mean rut depth (mm) RDM 0.0 500 336 12.4 0.6 36.0
Standard deviation of rut depth (mm)  RDS 0.0 400 164 12.1 0.5 14.0
Roughness (IRI m/km) or 12 12.0 6.6 3.2 0.0 6.6
Construction faulty code [yes /no] (1/0) CQ 0.0 1.0 05 0.5 0.0 0.5
Age of preventive treatment (years) AGE! 0.0 280 73 6.1 1.0 6.0
Age of surfacing (years) AGE2 00 300 149 6.9 0.0 15.0
Age from last re-construction (years) AGE3 4.0 300 228 5.8 0.8 240
Cracking retardation time (vears) CRP 0.0 30 L5 0.9 0.0 L5
Raveling retardation factor RRF 1.0 4.0 25 0.9 0.0 25
Area of previous all cracks (%) ACRAb 0.0 70.0 350 21.0 0.0 350

Area of previous wide cracks (%) ACRWD 0.0 700 175 16.1 1.02 12.8
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The second disadvantage of the adjustment is the inability to separate the individual factor effects
within the groups of constrained variables. In other words, the stochastic model approach applied to
the post-experimental output can only quantify the effect of the group as a unit and not the individual
factors. Fortunately, as it will be seen later, none of the group factors turned out to be very active,
and therefore no further detailed investigation of within group contributions became necessary.

Statistics of the modified Latin hypercube design are summarized by Table 5.3. The table shows that
the “unconstrained” variables in the design are symmetrical about the mean values (the mean
coincides with the median and zero skew). However, for the constrained variables, the design “sites”
are not as balanced. Notice the shift of the median values from the mean for the constrained variables
(as the pdfs changes from the original uniform distribution).

5.6 Processing the Design Data through the Model

To accomplish the investigation of factor sensitivities in this thesis three stages are involved:

(1) Input generation (the experimental design per se),
) Output generation (running/processing the design data through the model), and
3) Analyzing the model response (post-experimental output) to qualify the factor effects.

The first stage was described in Section 5.5. The present section discusses the output generation
stage. The approaches to analysis of the post- experimental output data will be introduced in Section
5.7.

After the involving task of designing and modifying the Latin hypercube design data the next stage in
the investigation was to generate the model response data. The terms “experimental design data™ or
“design matrix” are used to refer to the results of the Latin hypercube design. The terms “post-
experimental data” or “model response data” or simply, “output data” are used to refer to the output
obtained after running the HDM-III model on the “experimental design data.”

The preprocessing involved running the HDM-III model on the experimental data. For the purpose
of demonstrating the methodology in this thesis, the experimental design was limited to the link
characterization variables (Series A) for paved roads only. In other words, the design supplied input
levels for Series A only; the other model inputs (Series C, D, and E) were kept constant at their
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typical values during the preprocessing. With the excessively large number of HDM-II input
variables it was not considered feasible to implement an experimental design for all input variables at

once.

The experimental design data resulting from the “modified” Latin hypercube design matrix consisted
of 39 x 1000 order matrix. The large number of runs (1000) was decided by considering four

factors:

(1) The high dimensionality involved (large number of variables to be investigated at once).

(2) Large disparity between factor ranges (e.g., altitude: 0 — 3000m, roughness: 1.2 - 12 m/km
IRI, erc.); effective exploration of the larger factor ranges required more data points.

(3) Presence of a large number of factor dependencies requiring adjusting the Latin hypercube
design (Section 5.4.4). The distorted sampling of the input space improves with large N.

4) The computer time required to generate the model response data was not excessive. (It took
about 64 to 7 hours on a “80486/DX66™ desktop personal computer to pre-process the 1000
data points through the HDM-III model).

The HDM-III model investigated in this study is the personal (desktop) computer version based on
disk operating system (DOS) platform. This version of HDM-III was coded in the FORTRAN
programming language. The input data to the model is supplied through plain text (ASCII) disk-files.
The code is very sensitive to the specific formatting of the input data file. The pre-processing
involved four repetitive tasks (for each row of the design matrix): reading a row of the design
matrix, creating the HDM Series A input file, running HDM-III on the input data, and writing an
output file for post-experimental data analysis. This tedious task has to be repeated for all the 1000
rows of data in the design matrix. A pre-processor code was therefore developed to automate this

disk intensive process.

The pre-processor code was designed and written in the C+ + programming language. The pre-
processor flow chart is shown in Figure C.1 and the source code is given in Appendix C to the

thesis.

5.7 Analysis of Post Experimental Response Data

[nitially, the output generated from pre-processing the Latin hypercube design data (for Series A)
through HDM-III consisted of NPV values for four R&M strategies. The NPV output matrix had
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eight columns representing two NPV values (at 10 and 20% discount rates) for each of the four
strategies. The next stage of the study was to analyze the output so that the factor effects can be
estimated. The analysis was carried out using two different techniques: (a) regression approach, and
(b) a stochastic model approach. The two analysis techniques are subsequently discussed under
subsection 5.7.1 and 5.7.2 respectively.

The results from the analysis of the initial output, the NPV (presented in the next chapter) indicated
a some disparity between the regression approach results and those from the stochastic predictor.
Further, regressing the NPV output to the linear-additive model (Equation 5.17) produced a fair to
poor fit suggesting that the factor effects were highly nonlinear and/or multi-factor interactions were
dominant. On the basis of this observation it was decided to investigate the life-cycle cost
components to try and explain the behavior of the NPV output. Furthermore, the lifecycle VOCs
were found to be several orders of magnitude larger than the agency R&M life-cycle costs. This ratio
of VOCs to agency life-cycle costs from the case study ranged from 12 — 20 at 250 ADT to over
70 — 120 at 1500 ADT.

The pre-processing was, therefore, repeated, this time generating two streams of life-cycle costs —

users’ (VOC) and agency costs (R&M) for each rehabilitation and maintenance strategy.

5.71 A Regression Approach

5.7.1.1 Regression Coefficients as a Measure of Factor Sensitivity

In the early stages of the research the question was how can the sensitivity analysis be set up to
address effects of factor interactions. At mid-stage, when it was decided to use the Latin hypercube
design, the question became how could the results of the already substantial work based on the
ceteris paribus approach [Mrawira 96a] be compared to the results from the experimental design
approach. It was also desirable, at this stage, to develop a consistent, but simpler, methodology of
analyzing the response data from the experimental design as an alternative to the rather
computationally intensive stochastic approach that could only be demonstrated for a few response
variables. A solution to the dilemma was found by re-examining the interpretation of parameters in a

linear regression model. [Gunst 80] observes that,

“Assuming that a representative (output) data has been constructed for the purpose of
investigation,... the estimated (regression) coefficients in a multiple-variable prediction
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equation are said to measure the change in the estimated response that is due to
increasing one predictor variable by one unit while all other predictor variables are held
constant.”

Strictly speaking, this interpretation is not correct; it overlooks two important situations which
complicate things: multi-collinearity of factors, and the effects of scale disparity between the
predictor variables. These complications aside, the interpretation provides a basis for comparing
factor sensitivity results. By carefully dropping factors with moderate pairwise correlations in the
response data, and by “normalizing™ or “standardizing” the estimated regression coefficients of a
suitable model form an acceptable comparison platform can be achieved. As shown later, the
“normalized” regression model coefficients are in fact measures of elasticity of factor sensitivity
[Mrawira 96a] introduced in Chapter 4 (Section 4.5).

[Doctor 89] provides the mathematical basis for this interpretation and, hence, the justification for

the concept of elasticity as an appropriate platform for comparing factor sensitivity.

[n mathematical terms, the sensitivity of a response (output) variable with respect to a predictor
(input) variable (the change in the response variable due to a small change in the predictor variable)
is described by the partial derivative [Doctor 89]. If Y is a function f of n input variables, X,,..., X,,

say,

Y =fX, ... X .. (5.13)

then the partial derivative,

oY
Lk, x - (5.14)
oxX 1 n
1
is a measure of the change in Y with respect to X; at the fixed point (x;,..., x,)} in the input variable
space. Since the units and numerical scale of ¥ and the X; are often different, the partial derivatives
are usually normalized (standardized) by dividing by the value at the fixed point so that the partial

derivatives are on a more comparable basis. Therefore, the normalized sensitivity of Y with respect

to X, at the fixed point (x,,..., x, ), where the value of the response function is y is given by:
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/y Iy . x . (5.15)
ox /x I n
1 1

Note the resemblance of this expression to the definition of factor elasticity given by equation (4.12)
in Chapter 4. Also the role of the “fixed point,” (x,,..., X,) at which the derivatives are evaluated
should be noted. For a highly nonlinear function Y, the partial derivative, and the function value y
can be different for two adjacent points, (x..., x.¥ and (x..., x)% g # p. This highlights the

dependence of sensitivity results upon the base case values used.

Determining the sensitivity of the response Y to each of the inputs X,,..., X,, at the point (x,,..., X,)
requires the calculation of n partial derivatives. The standardized partial derivatives can be ranked
from the largest to smallest; the variable with the largest partial derivative has the largest effect on

the output variable.

However, these partial derivatives can be misleading as a guide to the relative importance of the
input variables {Doctor 89]. For example, two input variables may appear to be equally important
because they are correlated. More importantly, for some complex models with nonlinear behavior in
some or all the input variables, the magnitude of the factor effects may not be the same at all points
in the input variable space. That is, the value of the normalized partial derivative (expressions 5.22)
for a factor x; may not be the same at two different points, (x,,..., x,)° and (x;,..., X,)?, ¢ = p in the

input space.

The traditional ceteris paribus sensitivity analysis (Subsection 2.5.2) method is based on a numerical
estimate of the partial derivative of ¥ with respect to X; at the point (x;,...., x,) for example, as:

_A_I: _ f(xl + Arl - %, ""xn) -f(xl’xz’ ""xn) ...(5.16)
ax, ax

where all variables but X; are held fixed.

Calculating the numerical estimate of the partial derivative of Y with respect to each of the variable
X; can be time consuming if the model has very many variables and if the model form is complex.
This is one reason why the question of efficiency became a motivation to identify other techniques.
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5.7.1.2 The Regression Model Form

A simple model form was required to which the post-experimental response data would be fitted
permitting the use of the model parameters as sensitivity measures. The objective was not to find the
best prediction equation, rather to determine a rational measure of comparing the factor effect of
input variables upon the (post-experimental) response variable. With the derivative concept of
sensitivity defined earlier [Doctor 89], the model had to be linear in the parameters and retain the
same form irrespective of the degree of fit for the different response variables. The regression model

selected is of the form:

Y=ag+aX, +aX;+... +aX;+... +akX, .. (5.17)

where, X;, X, ..., X, are the input variables in the design matrix, and Y is a response variable of

interest (from the post-experimental output), e.g., agency life-cycle cost on an overlay strategy, etc.
The model form adopted has the advantage that, the partial derivative with respect to a variable X; is,

ﬁ—-ﬁ—(.a taX +,..+a X+, +aX) = a - (5-18)

a"’X 0"‘X J J
or simply the factor coefficient. Once the variable X; is found significant in the model, this allows the

use of the coefficient a; as a measure of factor effect in the response function, Y.

In keeping to our concept of elasticity of factor sensitivity [Mrawira 96a], which equals to the

normalized partial derivative for the variable X, equation (5.15) becomes:

oY £

£ = /,V X,..,x =a|—+ v (5.19)
;X / x|V " y

where, y and X; represent appropriate measures of location of the response and input variable

respectively.

In regression analysis the model coefficients, @; are generally estimated by the least squares method
where all data points are “averaged out” to determine the best estimator. It is, therefore, unrealistic

to define a suitable fixed point, (xj,...., x,) at which to base the normalizing values y and X;. For this



109

reason, variable standardization techniques common in statistics are slightly different from equation
(5.19) and are introduced later in Chapter 6.

5.7.1.3 Practical Considerations in the Regression approach

The complications to the interpretation of the regression coefficients require further expansion:

o Where covariation among predictor variables exists or some predictor variables are linearly
dependent on other predictors interpretation of regression coefficients needs to be adjusted.

o The regression model has to predominantly account for the variation in the response variable
before the regression parameters can be assigned any measure of factor effects.

& The coefficients (the fited model parameters) alone cannot measure the factor effects if the factor
ranges are not scaled similarly. The normalizing or standardizing approach is, therefore, an issue.

In other words, aside from the last point which refers to the need to normalize the results, our
interpretation of the regression parameters of equation (5.17) as measures of factor effects is
dependent on passing three critical tests. One, there is negligible covariation among the input
variables in the design matrix; two, there are no dominant joint effects of one or more factors (factor

interactions) in our computer code (HDM-III), and three the model fit is sufficiently good.

The first requirement is an experimental design problem; it is well taken care of by the “original”
Latin hypercube design. Typically, the original design generated pair-wise factor correlations of
below 0.004 (in theory zero). However, after adjusting the original design for the HDM-III variable
dependencies (see section 5.4) the resulting modified design showed moderate pair-wise correlations
as shown in Table 5.4. This problem (of possible distortion to the interpretation) was eliminated by
re-examining the correlation matrix of the design data. For each pair of factors with moderate pair-
wise correlation one of the factors was dropped from the model (equation 5.17). Model fitting was
performed by keeping only the factors with pair-wise correlation of less than 0.10.
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TABLE 5.4 Pair-wise Correlations in the Modified Latin Hypercube data

Factor ACRA ACRW ARAV RDM AGEI AGE2 AGE3 ACRAB ACRWB

ACRA 1.000

ACRW 0678 1000

ARAV 0101 -0.066 1000

APOT 0092 0076 0.111

RDM 0.021 0003 0009 1000

RDS -0.028 -0.020 -0023 0.496

AGE] 0.0l16 0023 0023 -0054 1000

AGE2 0009 -0017 0002 -0.0I3 0.609 1.000

AGE3 -0.012 -0044 -0014 0018 0367 0549 1.000

ACRAB -0.002 <0024 0008 0045 0026 -0008 <0005 1000

ACRWB -0.018 -0.039 0.010 0.027 -0.002 0.002 -0.025 0.653 1.000

Symbols according to the Glossary (see also Tables 4.1 and 5.3)

The linear-additive model (equation 5.17) is based on the initial assumption that there are negligible
effects of factor interactions. This assumption would be confirmed by the degree of fit and later by
the more rigorous stochastic predictor approach; the subject of the next section. The degree of model
fit as measured by the Pearson correlation coefficient (R?) for agency and users’ life-cycle costs
showed an excellent fit, typically R* of over 95% (Tables 5.5 and 5.6) suggesting that the role of any
interaction term in the model are very insignificant. It was later confirmed by the stochastic approach

results (reported in Chapter 6) that life-cycle costs are not sensitive to any interaction terms.

TABLE 5.5 R? for Users’ (VOCs) Life Cycle

R&M Strategy STP1 STP2 STP3 STP4

Pavement Type AC SD AC SD AC SD AC SD
Traffic (ADT)

ADT 264 0.949 0.947 0.947 0.945 0.958 0.957 0.958 0.957
ADT 500 0.954 0.953 0.950 0.950 0.959 0.958 0.959 0.958
ADT 1000 0.955 0955 0950 0.951 0.956 0.955 0.957 0.955
ADT 1500 0.957 0.957 0.951 0.952 0.955 0.954 0.956 0.954
ADT 2020 0.959 0.958 0.952 0.954 0.955 0.953 0.955 0.952

Key: SD = double surface treatment; AC = asphalt concrete
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TABLE 5.6 R?for Agency (R&M) Life Cycle Costs

R&M Strategy STP1 STP2 STP3 STP4

Pavement Type AC SD AC SD AC SD AC SD
Traffic (ADT)

ADT 264 0.046 0041 0.141 0.92 0.189 0.119 0.245 0.151
ADT 500 0.179 0.166 0.965 0.964 0.995 0.995 0.978 0.979
ADT 1000 0.192 0201 0.965 0.962 0.995 0.995 0.979 0.982
ADT 1500 0.214 0240 0965 0.962 0.995 0.995 0.980 0.982
ADT 2020 0.245 0.277 0.965 0.962 0.995 0.995 0.983 0.984

Key: SD = double surface treatment; AC = asphalt concrete

It is noted that degree of fit for agency life-cycle costs at the traffic of 264 ADT was poor. It would,
therefore, be inappropriate to rely on the regression results to quantify the factor effects for this
output. Similarly, the NPV outputs at this low traffic (of 264 ADT) gave a very poor fit to the
model. This was supported by the stochastic approach results which (see Chapter 6) showed that the
NPV was dominated by an interaction term of roughness (Qf) and the initial surface distress (areas of
cracking, raveling and potholes). The NPV for STP1 (10%) was also highly nonlinear with respect
to main factor effect of roughness. As mentioned before, the regression model was thus considered
inadequate in estimating the factor effects for the NPV output (at 264 ADT).

5.7.1.4 Criteria for Variable Significance

The model parameters of Equation (5.17) are estimated normally by use of maximum likelihood
estimate (MLE). The general form of Equation (5.17) is: Y= XP + &, and the general MLE of the
parameters is given by: B° = (X* X)?! X* Y. This solution works only if the matrix (X* X) is

nonsingular and has an inverse.

Under the assumptions that the fitted model is adequate and the error terms are Gaussian with mean
zero and variance o; mathematically written: € ~ N (0, Io?) then the estimate of variance of estimated

model parameters, B° is given by:

Var(p®) = X*X)'o? ... (5.20)
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The diagonal elements of the covariance matrix (Equation 5.20) are the variances of the individual

model parameters. That is:

Var (") = X" X);'o? - (5.21)

The standard error, SEs of the model parameter, £ is the square root of its variance. The ¢-statistic is
defined as the ratio of the estimated parameter, £ to the estimated standard error of the parameter:

B ... (5.22)

Hypothetically, at constant /4 the smaller the SE; the larger is the ¢-statistic (hence more significant is
the model), and conversely. On the other hand, at constant SEg, the larger the coefficient, £ the
larger is the r-statistic (and hence more significant) and conversely. Therefore, the r-statistic is an
adequate measure of significance of a factor in the model. It reflects both the size of factor effect (the
estimated coefficient) and the precision of estimate i.e., how well the predictor explains the

variability in the response variable.

The study performed sequential elimination of variables from the regression model; retaining
variables with at least the critical f-statistic value of |f,| = 1.96. This value (of f-statistic)
corresponds to the significance level of 0.05 (or a confidence level of 95%) that the variable

contributes to the model.

§.7.2 A Stochastic Predictor Approach

The literature on the techniques of analyzing results of deterministic computer experiments is
extensive. Details on various modeling and analysis techniques can be found, for example, in [Sacks
89a, 89b] while example applications in engineering are found in [Welch 92, Gough 94]. The outline
of the estimation method given here is largely after [Sacks 89b, Welch 92 and Doctor 89].

Let the post-experimental output data be represented by a matrix Y consisting of one or more
columns each representing a response variable vector, y = {y(x,), y(X»)..., ¥(x)}* where, X, %,..., X,
are the rows (also called “sites”) in the experimental design input matrix, D. Then the question at
the analysis stage is how to model (or predict) the output y.
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One convenient way of modeling the output is to treat the deterministic response y(x) as a realization

of a stochastic (random) process,

Yx) = 8+ Z(x) .. (5.23)

where, £ is an unknown constant (that can be replaced by a regression model in x) and Z(x) is a
stochastic process. The random process Z(x) is assumed to have mean zero and covariance between

Z(x) and Z(x') at two input sites, x and x' to depend only on their relative location x - x', thus,

Cov (Z(x), Z(x")) = &* R(x, x') ... (5.24)

where, o is the stochastic process variance and R(x, x') is a correlation function that can be

estimated from the design input data.

The rationale of this point of view, namely the representation of the deterministic response as a
random function is that it respects the deterministic nature of a computer code since realization of
stochastic process is deterministic, yet it provides a stochastic framework for assessing uncertainty.
An alternative representation, the Bayesian approach, has been suggested elsewhere [Currin 91,
Morris 93].

The correlation function R(x, x') should be derivable from the input data; for computational
convenience the function is normally chosen from a family of the so called product correlation rule.

While there are many choices, a sufficiently flexible and common correlation family used is,

P
') .- (5.25)

k
R(x,x)=[] exp(-—ﬂ _‘x -x'
=l il s J

where, 620, 0 <p; <2, and k is the number of variables in the computer code (the design matrix D
has the order N x k). The p; can be interpreted as smoothing parameters — the response surface is

smoother with respect to x; as p; increases — and the & indicate how local the estimate is [Sacks 89b).

With the assumption that the stochastic process (equation 5.23) is Gaussian, the output data vector y
can be modeled as multivariate normal with correlations given by equation (5.25). The deterministic
nature of the code is preserved by noting that from equation (5.25), R(x, x) = 1, so replicate

observations are identical.
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The stochastic model (of Equation 5.23) provides a mechanism for estimating, through the
likelihood, the factor sensitivity. To complete the solution, the maximum likelihood estimates
(MLE’s) of the unknown parameters: J in equation (5.23), o’ in (5.24) and @ = (6, 6,..., ) and
P = Py, P» ---, P ) in (5.25) have to be determined. From the assumption that the stochastic process
is Gaussian, the log-likelihood is,

I(B,a?,0,p)= —%[n lno? +In detR +(y - 18)° R~ (¥ - 18)/c*] - (5:26)

where, 1 is a vector of 1’s because the regression component has only a constant term £, and R is
the n x n matrix of correlations R(x;, x;) for the design sites (1 < i, j £ n). Given the correlation

parameters & and p, the MLE of §is the generalized least square estimator given by,

~

B =(1"R'1)"'R-y . (5.27)
and the MLE of &7 is:

~. 1 > -

6% =—(y-18)"R(y-15) - 6-28)

Substituting o° and B back in the likelihood equation (5.26) the following equation is obtained:

(B,0%,8,p)= —%[n Inoc?+1n detR] ... (5.29)

To complete the solution it is required to numerically maximize the likelihood which is a function of
only the correlation parameters from the design D and the output data. Full maximum likelihood
estimation of the parameters in equation (5.28) is extremely computationally intensive, particularly
where the dimension &k of X is as large as in our case. Hence, algorithms have been developed, for
example [Welch 92] that introduce the parameters sequentially as needed, and terminates at a
reasonable level of precision. [Welch 92] gives details of developing such algorithms and some

measures of reducing computing time.

Having determined the MLE’s, the next step is to build the stochastic model for predicting y(x). The
best linear unbiased predictor (BLUP) at a new (untried) site x is:

J = B+r (x)R(y-1p) - (5:30)
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where r(x) = {R(x,, X), R(X;, X), ..., R(x,, X)}" is the vector of correlations between the Z(.)’s at the

design points and at the new site x.

From this predictor, it is now feasible to quantify the relative effects of the inputs, assuming the
predictor is good enough, a point which will shortly be addressed. The response can be decomposed
into an average, main effects for each input factor, two-factor interactions and higher-order
interactions. The overall standardized average of y(x) over the experimental region is estimated by:

i=l

i (900 I dx,
iIi. (bl - ai)

i

0

... (5.31)

where, (a;, b)) is the range of values for the predictor variable x;, k is the number of input variables
in the design matrix, D and [1; denotes the product over all ;. The main effects of an input factor x;

(averaged over the other factors) is given by:

[P dx .. (5.32)

Jxi -
!‘ 0

m{,-a,)

The interaction effect of x; and x; is estimated as,

i (x) =

[pollas,

p(x,x) =—g——— - p(x)-p(x)+u,

H(bh -ah) -

k=i, j

... (5.33)

and similarly for higher-order interactions. Note that the effects are estimated by replacing the true
y(x) by the predictor of equation (5.30). These definitions are essentially similar to the familiar
analysis of variance for multi-way tables (each integral corresponding to a sum of squares for a

treatment, etc.).

It is normally desirable to plot the estimated effects to provide visualization of the relative magnitude
of the effects, and to indicate nonlinearities and interactions, erc. Plotting i‘z, (x) against x; for
example, gives a visual indication of the estimated main effect of factor x;.
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The question raised earlier of whether the stochastic predictor of equation (5.30) is adequate is now
revisited. [Sacks 89b] points out that properties of the MLE are not well understood, which would
suggest that the validity of the best linear unbiased predictor (BLUP) of equation (5.30) calculated by
substituting MLEs of the correlation parameters to be questionable. On the other hand experience has
shown that even crude MLEs can lead to useful predictions [Sacks 89b]. The article cites some other
works where it was shown that some cases of the BLUP exhibit consistent and asymptotically
efficient estimators even when the correlation coefficient is wrongly specified, provided the mis-

specification leads to approximate normal.

To assess the goodness of the stochastic predictor of equation (5.30) it is typical to perform a cross-
validation. The cross-validation empirical root mean square error (ERMSE") is defined as:

1 2) V2
ERMSE' = {;Z 7.0~ y(x’_)] } . (5.34)

where, §., (x) denote the BLUP estimated (equation (5.30)) based on all data sites except the
observation y(x;). To minimize the computation, the MLE’s of the correlation parameters are not re-
computed for each prediction; they are still based on the complete set. Nonetheless, the cross-

validation ERMSE has been shown to be a good measure of prediction precision.

Again for the purpose of visualization of cross-validations, two types of plots are typically used. The
plot of ¥, (x) against y(x) is called cross-validation plot. A good BLUP predictor should plot close
to a straight line. The second type of plots are the cross-validation residual plots. These are obtained
by plotting the residuals ¥, (x;) - y(x;) against x;.

As it is obviously apparent from the preceding paragraphs, computer implementation of the
numerical algorithms required to generate the design, and to carry out the maximum likelihood
estimation of the correlation parameters, followed by computing/plotting the main effects and
interactions and finally to perform the cross-validations and residuals can be quite a formidable
coding (computer programming) task. The work in this study made use of existing codes (ALEX for
the design, and GASP for the analysis of the post experimental data) thanks to Dr. William J. Welch
of the Department of Statistics and Actuarial Science, University of Waterloo.



Chapter 6

SENSITIVITY OF LIFE-CYCLE COSTS TO LINK
CHARACTERIZATION VARIABLES IN HDM-III MODEL

6.1 Introduction to the Chapter

This chapter presents the results of the factor sensitivity analysis. Given the large number of HDM-
III input factors (see Table 4.4), or more specifically, the factors which relate to maintenance and
rehabilitation priority programming (Figure 1.1), the only viable approach was to demonstrate by a
case study. The results reported here are based on a case study looking at the link characterization
input factors for paved roads. The factor effects for this group of variables were investigated by
keeping the remaining HDM-II input factors at base case values reflecting typical conditions from
the case study region. As mentioned in Chapter 4, the base case values of the HDM-III input factors
were determined from field data collected in Tanzania in 1994. The Tanzanian conditions are

generally typical and reflective of conditions in many countries in tropical Sub-Saharan Africa.

The sensitivity results are presented under two categories. The ceteris paribus results for selected
variables are first presented (Section 6.2) respecting the extensive work done at the early stages of
this research. The main thrust of the results of the investigation from the experimental design
approach is then introduced in Section 6.3. These later results are further subdivided into normalized

derivatives (from a linear additive regression model) and results from the stochastic model approach.

The sensitivity results focus on the net present value (NPV) of the total life-cycle costs for a few
typical R&M strategies. The argument for this focus derives from the thesis objective which was to
investigate efficient application of the HDM-III model to the network level R&M priority
programming. Typical model application at the network level is in economic evaluation of R&M
treatments for existing alignments. The criterion commonly used in such applications is the NPV—

comparing total life-cycle for a given R&M strategy to a “do minimum” or “do nothing” alternative.

Having said that, the behavior of the NPV predictions (from HDM-III) is not easily comprehensible
since the model deals with a large number of factors, relating and interacting at various levels in a

complex manner. In order to understand and explain some of the observed behavior of the NPV

117



118

response, a look at the key components of the NPV may be necessary. For this reason, i.e., for the
purpose of explaining the findings on the NPV, the study went further to investigate factor
sensitivities at the NPV components level. Consequently, the factor sensitivities reported throughout
this chapter come at three levels: agency component, the users’ cost component, and the NPV (total)
of the life-cycle costs.

Section 6.4 discusses the key factor sensitivity findings, explaining some of the observed behavior
and summarizing the factor sensitivity rankings. Section 6.5 concludes the chapter by addressing an
immediate possible application of the sensitivity findings in the prioritization of data collection.

6.2 Results from the Ceteris Paribus Study

The framework of the ceteris paribus study was outlined in Section 4.4; this section presents the
results from the study. The objective function used (the sum of the NPV values for the best three
strategies) must be borne in mind while interpreting these results. The ceteris paribus investigation
covered only a selected number of input factors, mostly under the link characterization class, and
only a few from the vehicle characterization class. Two most common pavements surface types were
investigated — asphalt concrete and surface treatments. The ceteris paribus results are subsequently

presented, for convenience of the discussion, in four groups.

6.2.1 The Pavement Performance Calibration Factors

The ceteris paribus results for this group of factors have been discussed elsewhere [Mrawira 96a].
Table 6.1 summarizes the results over a +20% change in the input calibration factor. As discussed
in Chapter 4 (Section 4.5), the factor ranges investigated were much larger (-80% through +170%
of the typical factor value). In most cases the practical range for the factors was +20%, but in other
cases the (-80% to +170%) interval was beyond either the factor practical range or the internal
model limit for the factor. The use of the uniform fraction +20% of the factor range for reporting
the results is logical since one of the advantages of the elasticity approach (Equation 4.11) is the
inherent standardization of scaling effect of the factor change used. This advantage of the elasticity
concept was illustrated in Section 4.6.1. It was shown that, for responses that are not highly non
linear, the elasticity of factor sensitivity is independent of the factor range used in the study.

Figure 6.1 plots the ceteris paribus results for the performance calibration factors.
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TABLE 6.1 Sensitivity of NPV to Pavement Deterioration Factors /Mrawira 96a/
Elasticity of NPV at Factor Change of

Calibration Factor Symbol -20% -10% +10% +20% Mean
Roughness Progression Kgp 3.303 3.327 3.297 3317 3311
Roughness- Age/environment Kge 0.785 0.791 0.796 0.836 0.802
Cracking Progression Kep 0.942 0.999 0.597 0.577 0.779
Pothole Progression Kpp 0.668 0.667 0.638 0.650 0.656
Rutting Progression Krp 0.164 0.190 0.201 0.219 0.194
Cracking Initiation Kci 0.059 0.044 0.067 0.051 0.055
Ravelling Initiation Kvi 0.006 -0.005 -0027 -0015 -0.013

Symbols according to the Glossary

4.0
3.0
20
1.0
0.0 :
Kgp Kge Kep Kpp Krp Kei Kvi
Factor

FIGURE 6.1 Elasticity of NPV with calibration factor change

These results show that over the range of investigation, in overall the NPV criterion is most sensitive
to the roughness calibration factors (Kgp and Kge). The results show that the next three calibration
factors: the cracking progression factor (Kcp), the pothole progression factor (Xpp), and the rutting
calibration (Krp) are comparatively of equal effect upon the NPV. Comparison of the ranking
indicated by these results with the more comprehensive approach presented later suggests that the

ceteris paribus results are only indicative, and should only be reserved for exploratory studies.
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6.2.2 [Environmental and Road Alignment Factors

[n the HDM-III model the environmental variables are represented explicitly by input on average
rainfall and altitude above mean sea level and implicitly by the m-index in the determination of the
environmental-age roughness calibration factor, Kge. The horizontal alignment attributes in the
model are the carriageway width, shoulder width, superelevation and curvature, while the vertical
alignment is characterized primarily by “rise plus fall” as a measure of gradient. The ceteris paribus
study looked into rainfall, altitude, width and rise plus fall.

Table 6.2 shows a summary of the elasticity values for the environmental and road geometric
alignment factors. Traffic factor is also shown as a scale of comparison of the effects. Figure 6.2

portrays the results on a bar chart.

TABLE 6.2  Sensitivity of NPV to Environmental and Alignment Factors

Elasticity at Factor Change of
Factor Symbel -20% -10% +10% +20% Mean
Width w -73.692 -0.582 0.375 -0.336 -18.746
Traffic ADT 5.028 5271 5.509 5.714 5.380
Rainfall MMP 0.438 1.083 -1.192 -0.629 -0.075
Rise plus Fall RF 0.028 0.028 0.025 0.027 0.027
Altitude A 0.016 0.027 0.004 0.004 0.013
Superelevation SP 0.001  -0.0004 0.003 0.004 0.002

These results seem to suggest that rainfall, rise plus fall and altitude inputs have a negligible effect
upon the NPV criterion. By comparison, the carriageway width dominates the NPV criterion with
about three times as much impact as the traffic effect. It may be noted that the width effect is
negative, implying that an increase in width results in lower NPV. This behavior is consistent with
findings reported later from the stochastic model analysis of the Latin hypercube design data where it
is shown that width dominates agency (R&M) life-cycle costs.
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FIGURE 6.2 Elasticity of NPV with respect to environmental and alignment factors

6.2.3 Vehicle Characterization Factors

The ceteris paribus experiments were also extended to investigate a few of the vehicle
characterization variables in HDM-III. The input factors of interest here were the so called
calibration factors for the vehicle operating cost relationships (normally grouped under Series D in
the HDM vocabulary). Figure 6.3 shows the sensitivity results on some vehicle characterization
factors while Figure 6.4 shows the sensitivity of the NPV to the VOC calibration factors. These later
factors refer to the Parts Costs — Roughness (PC — QI) equation parameters and the Labor Hours —
Parts Cost (LH — PC) equation parameters. Table 6.3 summarizes the resuits for the factors

investigated under vehicle characterization variables.

40
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FIGURE 6.3 Elasticity of NPV with respect to some vehicle characterization factors
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FIGURE 6.4 Elasticity of NPV with respect to VOC calibration factors

TABLE 6.3  Sensitivity of NPV to Some Vehicle Characterization Factors

Elasticity at Factor Change of
Factor Symbol 20% -10% +10% +20% Mean
Gross vehicle weight (metric tons) GVW 2919 3.025 2.815 2.495 2.814
Weibul shape parameter BETA L1I4  L757 1976 2191 1.759
Calibrated engine speed (rpm) CRPM 1.327 1.328 1.326 1.326 1.327
Unit fuel efficiency factor ALPHAI 2073 3081  -1.328 0664  0.790
Limiting desired speed (m/s) VDESIROPV  0.644 -0.640 -0.640 -0.432 -0.589
Usable driving power (HP) HPDRIVE 0772 0230 0638 -1.070 -0.176
Usable braking power (HP) HPRAKE 0.0006 0.0001 0.0009  0.0005 0.001
Payload (metric tons) PAYLOAD <0.0001 -0.0003 -0.00009 -0.00004 -0.0001
Roughness factor in Qf — PC exponent CSPQOI 17.794 17.792 17.582 17.477 17.661
Constant term in Q — PC exponent cosp 17.473 17.366 17.155 17.363  17.339
Tire wear coefficient CICIE 0.647 0.648 0.645 0.647 0.647
Constant term in tire wear equation corc 0.323 0.220 0.426 0.322 0.323
Limiting QI for linear QI — PC equation QIOSP 0.107 0.003 0.003 0.003 0.029
The PC exponent in LH - PC equation CLHPC -8.205 -7.342 -5.836 -5.295 -6.669
Constant term in the LH - PC equation COLH 2.597 2.806 2.597 2.702 2.675
QI factor in LH - PC equation exponent CLHQI 0.432 0.432 0.434 0.538 0.459

Symbols according to the Glossary; also see Table 3.5
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The results point out some interesting roles of the input factors under vehicle characterization. It is
seen that the Roughness — Parts (Qf - PC) equation parameters dominate the NPV criterion, in
particular, the Roughness coefficient and the constant term, both in the exponent of this equation.
The next most important factors according to these ceteris paribus results are the Labor Hours —
Parts Cost (LH — PC) equation parameters. Again in the exponent parameter of this equation, the
coefficient of the parts costs and the constant term are the most significant factors.

As expected, the other significant variables under the vehicle characterization group are the gross
vehicle weight (GVW), the vehicle fuel efficiency, Weibul shape parameter (respecting the role of air
resistance at high speeds) and the engine speed (rpm).

6.3 Results from the Latin Hypercube Design Investigation

6.3.1 The Post Experimental Output Data
The post experimental data investigated consisted of two pavement types (i.e., surface — base pairs):

¢  Asphalt Concrete on granular base (AC/GB), and
o Double Surface Dressing on cement stabilized soil base (SD/CB).
These surface — base pairs were selected among 13 common pairs since they represent the most

popular pavement types in the case study region (see, for example, Table A.2, Appendix A).

As discussed in Section 2.1 the principal interest in the study was to investigate NPV of the total
life-cycle “net benefits™ since it is the HDM-II output mostly used criterion in R&M priority
programming. In this subsection the sensitivity results based on the regression approach of the NPV
output from running HDM-III on the Latin hypercube design data will be discussed. The findings
suggest that the NPV criterion is highly non-linear with respect to the most sensitive input factors.
Seeking to explain this nonlinear behavior of the NPV, and in order to develop a consistent platform
for discussing the sensitivity results, the study went a step further to investigate the key cost
components of the NPV — the agency and the users’ life cycle costs.

The NPV output data investigated was generated at two stages. An exploratory data was based on
10% discount rate and an analysis period of 15 years for a low traffic volume of 265 ADT. The bulk
of the NPV data from the Latin hypercube experimental design was based on 10% discount rate but
an analysis period of 30 years. The study compared the regression approach results to the stochastic
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approach results for the traffic levels of 265, 500, 1000, 1500 and 2020 ADT. This traffic range was
chosen since typical road links in the low income economies of Sub Saharan Africa (as exemplified

by the case study country, Tanzania) carry traffic in the range of 200 to 1000 ADT.

The NPV stochastic predictor for the exploratory data (see Section 6.3.2) achieved relatively poor
predictions and showed that the main effects of the most active factors are highly non-linear. Poor fit
was also obtained for the regression approach. In an attempt to further explore the behavior of the
NPV predictions from the HDM-III model, the study tried out different conditions. Further NPV
values (and agency and users’ costs) were generated from the experimental design data at 10%
discount rate and 30 years analysis period for the traffic levels of 500, 1000, 1500 and 2020 ADT.

With respect to life-cycle costs, the output investigated was generated on the basis of 30 years
analysis period with no discounting applied. The argument for this choice is given in Subsection
4.4.3. The regression approach to factor sensitivities subsequently presented covers traffic levels of
265, 500, 1000, 1500 and 2020 ADT. However, due to the computer time constraint, the stochastic
approach was not feasible for all the response data. This latter analysis was performed on the

response data for one pavement type and for two traffic levels of 500 and 1000 ADT.

For the two pavement types the output data investigated in the regression approach employed output
from 1000 model runs — making use of all the data points in the Latin hypercube design matrix.
Agency and users’ life-cycle costs were tabulated for each of the five R&M strategies. A discussion
of the pavement treatment strategies (coded STPO, ..., STP4) was given in Sections 3.7 and 4.3.

6.3.2 Factor Sensitivities from the Regression Approach

6.3.2.1 Regression Approach Sensitivity Results: the NPV Prediction

The net present value (NPV) output data described above were regressed on the linear additive model
(i.e., assuming low factor interactions) given by Equation (5.17). As discussed earlier (Subsection
5.7.1) this model specification was chosen to permit the direct use of the estimated model parameters
(after normalizing) as measures of factor sensitivity. The question of adequacy of the model
specification does not arise here since the sole use of the model is not prediction, but rather,
“explanation.” The degree of fit would indicate the validity of the assumptions of factor additivity,
linearity and low factor interactions, and, therefore, to what extent the simple model form can be

used to explain the factor sensitivities. In other words, the regression approach would not aiways



work, particularly where the response variable is highly nonlinear, or exhibits moderate factor

interactions.

Rewriting Equation (5.17) in compact form, the additive linear regression model adopted was:

Y=a+ 2 Bx - (6.1)
where, the summation of x; ’s include all non-correlated variables from the design matrix.

Regressing the NPV output obtained from running HDM-II on the Latin hypercube design data at
ADT 265 produced a fit ranging from quite poor to an acceptable level (Table 6.4). The table shows
that the R&M strategy STP1 exhibit the poorest fit, while resealing and overlay strategies (STP3 and
STP4) are better explained by the model (R? about 0.6 to 0.8). Given the large sample size (n=1000)
and the deterministic nature of the computer experiment, this degree of lack of fit suggests that the
NPV is subject to either strong non-linearities or/and significant factor interactions. The stochastic
approach results presented later confirmed the presence of both phenomena.

TABLE 6.4 R? Values on Regressing NPV Output to the Additive Linear Model

Strategy Discount Rate Pavement Type
AC SD
STP1 10 0.220 0.192
20 0.244 0.206
STP2 10 0.495 0.469
20 0.632 0.615
STP3 10 0.632 0.632
20 0.783 0.779
STP4 10 0.663 0.666
20 0.717 0.780

Table 6.5 shows an interesting pattern of the significant variables upon the NPV criterion. The most
important observation is that the order of factor significance changes slightly with the R&M strategy
and with the discount rate. We see from the table, for example, the four most significant factors for
all the strategies are the rutting calibration factor (Krp), the pavement width (W), the roughness (Q/)
and the cracking calibration factor (Kci). Note that the discount rate has a definite role in the
sensitivities. The order of the three most significant factors for strategies STP1, STP2, and STP4 at
10, 20 and 0% discount rates respectively changes to width (W), roughness (QI) and cracking

initiation factor (Kci).
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Comparing different strategies at different discount rates the table shows, for example, width (W),
roughness (QI), cracking initiation factor (Kci) and rise plus fall (RF) remain significant in NPV
prediction for all strategies at various discount rates. On the other hand, the factor sensitivities for
the rutting calibration factor (K7rp) and the initial area of potholes (APOT) seem to be strongly
influenced by the discount rate.

TABLE 6.5 NPV Standardized Factor Coefficients Averaged Over ADT 250 — 1500

STP1 STP2 STP3 STP4 mean
Discount Rate (%)

Factor 10 20 0 20 0 10 0 10 20
Krp 0628 -0.671 -0.570 -0.555 0419 0511 0.559
" 0336  -0329 -0.353 -0.469 0452 0531 <0617 0637 0443 0.463
or 0.445 0.106 0.133 -0.410 0.208 0219 -0325 0.255 0.166 0.252
Keci 0.253 0.159 0.186  0.268 0.161 0.165 0.228 0.166 0.155 0.193
RF 0.145 0.1836 0.108 0.127 0.168 0.121 0.152 0.186 0.149
APOT -0.110 -0.120 -0.162 -0.151 0.149 0199 0.148
Kge 0200 -0.150 -0.147 -0.164 <0.107 -0.100 -0.142 0.144
SNSG 0.124 0.149 0.128 0.142 0.136
SN 0.146 0.130 0.120 0.106 0.173 0.135
Kgp 0.100 0.167 0.134
HBASE -0.137 -0.123 0.130
C -0.143  -0.124 <0.120 0.129
HSOLD 0.127 0.111 0.143 0.129 0.127
DEF -0.131  -0.112 0.122
RDS <0.122  0.135 -0.151 -0.117 -0.133  -0.132 -0.057 0.121
RVAY/ o 0.117 0.121 0.119
Kep -0.127 <0.110 0.119
HSNEW 0.063 0.152 0.108

Notes: Symbols according to the Glossary (see also Tables 4.1 and 5.3). R&M strategies as
defined in Table 3.7. Analysis period was 30 years. Data size was 150.

6.3.2.2 Regression Approach Sensitivity Results: Agency and Users’ Life-Cycle Costs

The high non-linearity and the presence of multi-factor interactions in the NPV predictions
(suggested by the poor model fit and confirmed by stochastic predictor results reported later)
motivated a search for other HDM-III outputs that could be used to explain the observed behavior of
the NPV factor sensitivities. The life-cycle costs components (of the NPV) were logically the next
level of investigation for this purpose. It is worth noting, as pointed out before, that a study of the
NPV components is only useful in explaining the behavior of the NPV factor sensitivities. Given that
most network level applications of the HDM-III model (the focus of this thesis) are in comparing
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R&M strategies for existing alignments the NPV output remains the most useful criterion for

analysis.

The life-cycle costs output generated from the Latin hypercube design data as described above was
used in regression analysis employing as before the model form of Equation (6.1).

The users’ life-cycle costs (LCC-VOC) show an excellent degree of fit for all strategies and at all
traffic levels, typically R? of over 95% (see Table 5.6). The agency life-cycle costs are also
extremely well explained by the simple model form (R* of 96% to over 99%) for all traffic levels
(except 265 ADT) and for all strategies (except the patch only strategy: STP1). At the low traffic of
265 ADT the fit is very poor for all strategies while for the “patch only” strategy (STP1) the model
fit is typically below R? of 20% for all traffic levels (Table 5.7).

These findings suggest that life-cycle costs components (agency and VOCs) for moderate traffic
levels, unlike the NPV criterion, are mainly linear and additive with respect to the sensitive input
factors. This phenomenon would be confirmed later by the results from the stochastic model

approach.

As expected, agency (R&M) and vehicle users’ (VOC) lifecycle costs were found to be sensitive to
different sets of input variables. While, for example, LCC-VOCs are consistently sensitive to altitude
(A), rise plus fall (RF), and curvature (C), these variables are not significant in LCC-R&M. On the
other hand, carriageway width (W) happens to be a very significant variable in R&M life-cycle costs
but not in LCC-VOC. Figures 6.5 and 6.6 show the “raw” significant factor coefficients in the final
regression models (at a significance level of 5 percent). These factor coefficients are “raw” in the
sense that they are not normalized and, therefore, not direct measures of factor sensitivity. The next
few paragraphs discuss the raw factor coefficients with the motivation of explaining the emerging

patterns.



50.0
40.0
300

=|@mADT 500
== |mADT 1000

=|0ADT 1500

200 -l MADT 2020
100
0.0
-10.0
-20.0
w Kei Kep Kge ACRA Q/
(a) Patch all annual potholes and reseal every 6 years strategy on AC/GB pavement
60.0
WADT 500
50.0
®ADT 1000
40-0 CADT 1500
30.0 @ADT 2020
20.0
10.0
0.0
-10.0
MMP w SN DEF Kei Kep Kge Krp Kgp ACRA RDS Q/
®) Patch all, reseal every 6 years and overlay at 5.5 mm/km IRI strategy on AC/GB
50.0 —
. WADT 500
40.0 @ADT 1000
300 QADT 1500
@ADT 2020
20.0
10.0
0.0
-10.0 = S :
MMP W SN DEF Kci Kep Kge Krp Kgp ACRA RDS Qf
(c) Patch all, reseal every 6 years and overlay at 5.5 IRI strategy on SD/CB pavement

FIGURE 6.5 Life-cycle agency (R&M) costs output: raw factor coefficients (a = 0.05)
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With respect to the “raw” factor coefficients (Figures 6.5 and 6.6), several observations seem
evident from looking at the regression approach results. Figure 6.5 (a) to (c) indicates that ranking of
the active factors changes from one strategy to the next. However, since these are still the “raw”
factor coefficients, realistic ranking of factor sensitivities is better discussed using normalized factor
coefficients (next section). What is more interesting from Figure 6.5 (a) to (c) is that change in
traffic level seems to have no effect upon the prediction of R&M (agency) life-cycle costs. The factor
coefficients remain fairly constant as the traffic level changes from 500 to 2020 ADT.

Figure 6.6 plots the “raw” factor coefficients for road users’ life-cycle costs. Notice in this case,
traffic increase causes a consistent increase on the “raw” factor coefficients for road users’ life-cycle
costs, as might be expected. The traffic level effect seems to be a constant multiplier. In Figure
6.6(c), for example, the Kgp factor coefficients at 500 and 2020 ADT are approximately 500 and
2020 respectively. As for the agency lifecycle costs, the relative magnitude of the “raw™ factor
coefficients changes slightly from strategy to strategy.

To summarize, the “raw” factor coefficients from the regression analysis of the post-experimental

data suggest the following:

» Traffic has no significant impact upon the factor effects for agency life-cycle costs
« The ranking of significant factors changes slightly from one R&M strategy to another

» The effect of traffic on the “raw” factor coefficients for road users’ life-cycle costs appears to be a
simple constant multiplier (a scaling effect which may be removed by normalizing).

6.3.2.3 Standardized Regression Coefficients

The concept of using the regression coefficients of a suitably selected model form as measures of
factor sensitivity was introduced in Subsection 5.7.1. It was argued that to eliminate the different
scaling effects of the factor ranges investigated (and units of measurement) it is necessary to

normalize or standardize the partial derivatives or the “raw” factor coefficients.

In summary there are three concerns that underlie factor standardization in this study:

e Predictor variables have different units of measurement.
e The typical range (practical variability) of each predictor variable is different from the next.
* The HDM-III outputs/predictions employ user-defined quantities (currency, units, ezc.).
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The two common methods of variable standardization in statistics are: (a) standard normal deviate,
and (b) unit length scaling. The norma!l deviate transforms the data points, x; into their standard

scores, z; given by,
i i ...{6.2)

where, z; is the standardized score of the ith value of factor x; and s; is the standard deviation of
the factor x; values in the design matrix.

The unit length scaling standardization is given by the equation,

w =Y J ... (6.3)

2
The standard normal deviate technique was used in this study since it is available in many

commercial statistical packages. Both the predictor variables and the model outputs were
standardized using the normal deviate; hence the coefficients are also called the beta weights.

Tables 6.6 and 6.7 present the standardized regression coefficients obtained for the traffic levels of
500 and 1000 ADT respectively. The standardized factor coefficients shown in the tables are now
more comparable across R&M strategies. As suspected from the “raw” factor coefficients, the
sensitivities at ADT 500 (Table 6.6) and at ADT 1000 (Table 6.7) agree very closely, suggesting
that traffic level is a simple scaling quantity in the VOC. This is indeed the case from the underlying
methodology of the HDM-III model. In particular, it is noted that, the factor sensitivities for agency
life-cycle costs (Tables 6.6 (a) and 6.7 (a)) are almost unchanged from ADT 500 and ADT 1000.

The close agreement between the factor sensitivities for road users’ life-cycle costs supports the
argument that as long as the appropriate standardization is employed, factor sensitivities based on the
regression approach could be investigated at any arbitrary traffic level. On the other hand, since
NPV criterion involves a tradeoff between the agency and the road users’ life-cycle costs, factor
sensitivities for the NPV criterion cannot be determined independent of the traffic level.

Tables 6.6 and 6.7 also show that the factor sensitivities are specific to the R&M strategy used.
While the carriageway width (W) and the rise plus fall (RF) account for over 96% of the total
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variation upon the agency and the road users’ life-cycle costs respectively for all strategies

employed, the ranking of the next seusitive factors seems to vary slightly from strategy to strategy.

TABLE 6.6

Standardized Regression Coefficients for ADT 500
(1) AGENCY LIFE-CYCLE COSTS

Strategy STP2
Factor  Asphalt Concrete Surface Dressing
on Granular Base on Soil Cement
R’: 0.965 R’: 0.963
1 0.969 0.973
Kci -0.140 -0.089
Kep 0.049 0.049
ACRA 0.026 0.049
DEF 0.026
ELAN 0018
Kge 0.013
(8) USERS’ LIFE-CYCLE COSTS
Strategy STP2
Factor Asphalt Concrete Surface Dressing
on Granular Base on Soil Cement
R*: 0.949 R°: 0.949
RF 0.965 0.965
or 0.097 0.095
C 0.060 0.060
SN -0.044 -0.042
Kge 0.034 0.034
Kci -0.038 -0.024
Krp 0.036 0.032
DEF 0.032 0.030
Kgp 0.030 0.030
Kep 0021 0.019
ELAN -0.019
A 0014 0014

Strategy STP4
Factor Asphalt Concrete Surface Dressing
on Granular Base on Soil Cement
R*:0.978 R*:0.978
W 0.981 0.982
or 0.061 0.057
Krp 0.056 0.051
Kge 0.029 0.028
Kei <0.031 -0.018
Kep 0.022 0.011
RDS 0.019 0.019
Kgp 0.015 0.019
ACRA 0015 0.017
DEF 0013 0013
MMP 0.010

Strategy STP2
Factor Asphalt Concrete Surface Dressing
on Granular Base on Soil Cement
R°: 0.958 R>: 0.957
RF 0.964 0.965
Krp 0.139 0.134
C 0.057 0.056
or 0.052 0.051
Kgp 0.037 0.038
DEF 0.034 0.035
RDS 0.035 0.033
Kge 0.030 0.029
Kei -0.031 -0.016
SN <0.025 -0.021
Kep 0.021 0.020
ELAN 0016 -0.021
ACRA 0.017 0.019
14 0.013 0.013

Symbols according to the Glossary; see also Tables 4.1 and 5.3.
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TABLE 6.7

(A) AGENCY LIFE-CYCLE COSTS

Strategy STP2

Factor Asphalt Concrete Surface Dressing
on Granular Base on Soil Cement

R’: 0.964 R: 0.962

o 0.969 0.973

Kei <0.141 -0.078

Kep 0.049 0.051

ACRA 0.026 0.046

DEF 0.040

ELAN -0.018

Kge 0.014

(B } USERS’ LIFE-CYCLE COSTS

Strategy STP2
Factor Asphalt Concrete Surface Dressing
on Granular Base on Soil Cement
R%: 0.949 R: 0.950
RF 0.966 0.968
or 0.084 0.076
C 0.060 0.061
SN -0.051 -0.046
DEF 0.031 0.033
Kgp 0.031 0.032
Krp 0.031 0.027
Kge 0.029 0.028
Kcei -0.033 0.021
Kep 0.019 0.017
ELAN -0.012 -0.015
A 0.014

Strategy STP4
Factor Asphalt Concrete Surface Dressing
on Granular Base on Soil Cement
R: 0.979 R: 0.981
w 0.983 0.986
or 0.054 0.045
Krp 0.049 0.035
Kge 0.029 0.021
Kei -0.029 -0.018
Kcp 0.024 0.010
Kgp 0.017 0.014
RDS 0.014
ACRA 0.017 0.013
DEF 0.012 0011
MMP 0.010 0.009

Strategy STP4
Factor Asphalt Concrete Surface Dressing
on Granular Base on Soil Cement
R: 0.956 R?: 0.955
RF 0.964 0.964
Krp 0.131 0.121
C 0.059 0.059
or 0.046 0.043
DEF 0.038 0.044
Kgp 0.038 0.040
RDS 0.032 0.030
SN 0.031 -0.028
Kge 0.028 0.027
Kci <0.035 0015
Kep 0.024 0.023
ACRA 0.016 0.022
ELAN 0.016 -0.021
w 0.014 0.015

Symbols according to the Glossary; see also Tables 4.1 and 5.3.
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6.3.3 Factor Sensitivities Results from the Stochastic Model Approach

6.3.3.1 Diagnosis of the Stochastic Predictor for the NPV Output

Using the method discussed in Section 5.7.2 a best linear unbiased stochastic predictor (BLUP) for a
given HDM-III output variable was estimated from the post-experimental data by maximum
likelihood method as given earlier by Equation (5.30):

J = B+ RY(y-15)
where the symbols are as defined earlier (see Section 5.7.2).
This predictor is more flexible than, say, a low-order polynomial fit, and has been found to yield
more accurate predictions in various applications [Gough 94]. Before using this predictor to estimate

the factor effects it is imperative to assess the performance of this predictor.

Figure 6.7 shows a scatter plot in which NPV values (for strategy STP1 at 10%) predicted using the
stochastic predictor are plotted against the actual HDM-III model output. A method of prediction-
accuracy assessment commonly used in statistics known as cross validation was employed. In this
method, the ith value of the response, y; is predicted using all data except y;. It is also a good practice
to look at the cross-validation residuals plotted against the input variables. Figure 6.8 shows cross
validation residual plots for NPV (for strategy STP1 at 10%) upon the first six predictor variables.
The rest of the residual plots for NPV are given in Figure D.1 in Appendix D.
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FIGURE 6.7 Cross validation predictions and residuals: NPV at 10% for STP1 (ADT 265)
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As seen in Figure 6.7, the stochastic predictor is fairly acceptable, with more reliable prediction
concentrated at the 0 to 60 range. The standardized residuals plot suggests that the predictor is less
reliable at the low end of NPV values below zero. Furthermore, the cross validation residual plots
against predictor variables (Figure 6.8 and D.1 (in Appendix D)) all suggest the stochastic predictor
to be a well behaved model. It is noted that the trends that seem to be portrayed in the residual plots
for the predictor variables AGEI, AGE2, AGE3, ACRA, ACRW, etc. are mainly a result of the
distorted pdfs of the input variables (see Figure 5.2) rather than a mis-specification of the stochastic

model.

In an attempt to further explore the non-linear behavior of the NPV the HDM-III output was
investigated at different conditions. Two more streams of NPV values were generated at the higher
traffic level of 1000 ADT. The stochastic predictors for these two NPV streams were estimated using
the first 150 data points from the modified Latin hypercube design. Figure 6.9 shows the cross-
validation predictions and residuals for the stochastic predictors of the NPV under strategies STP3
and STP4. As defined in Chapter 3 (Section 3.7.3), STP3 stands for medium R&M intervention level
consisting of patching all potholes annually and overlaying the pavement once every 15 years. STP4
represents high intervention level consisting of patching, six yearly resealing and 50 mm AC
overlaying when roughness exceeds 5.5 m/km IRI.

The performance of the stochastic predictor for NPV-STP3 is relatively better than NPV-STP4
(Figure 6.9). There seems to be a better agreement between the actual NPV values and those
predicted by the stochastic model in this case than for the Figure 6.7. It is worth pointing out that the
Figure 6.9 predictors are based on only 150 data points while the predictor of Figure 6.7 was based
on 350 data points.

In overall, the NPV stochastic predictors are acceptable but relatively poorer than those presented

later for the component life-cycle costs.
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FIGURE 6.9 Cross validation predictions and residuals: NPV at 10%, ADT 1000

6.3.3.2 Estimated Factor Effects on the NPV QOutput

Having assessed the fidelity of the statistical model, and demonstrating that the best linear unbiased
stochastic predictor (BLUP) reasonably predicts the HDM-III output, the BLUP predictor can now
be used to estimate the factor sensitivities. The computation method was discussed in detail in
Subsection 5.7.2. The basic procedure is to “integrate out over all the other inputs™ from the BLUP
predictor as shown by Equations (5.39) and (5.40).

The analysis found that the NPV output for “patch only™ strategy (STP1) is sensitive to two input
factors: the road roughness (QI), and the pavement strength parameters (DEF and SN as a group).
The main effect of roughness accounts for 24.7% of all the variability in the NPV output, while the
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strength parameters’ main effects accounts for about 11%. The factor interaction between roughness
and strength parameters dominate the NPV output with over 52% share of the variability.

To understand the behavior of the significant factors in the model output the main effects, u; (x; ) are
plotted against, x; for the predictor variables estimated to have important effects on the output.
Figure 6.10 plots the main effects of roughness on the NPV criterion. The figure shows that the
NPV output is highly nonlinear with respect to roughness input. Confining our view to only the 25%
of the variability contributed by roughness, we see the effect of O/ on NPV is very high at low levels
of roughness up to about 5.5 m/km IRI beyond which a unit change in roughness has far less impact
upon the NPV. It is interesting to note in Figure 6.10 that the roughness effect on NPV reaches a
maximum at about 9 m/km IRI beyond which a further increase in roughness seems to lower the
predicted NPV.
NPV-STP1 (Ql) :24.7%
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FIGURE 6.10 The main effects of the NPV at 10%, ADT 265 for the strategy STP1

[t should be pointed out that visualization of both the main effects of the strength parameters and the
interaction effect of strengih parameters and roughness can not be computed from the same modified
Latin hypercube design since the factor grouping (used to adjust the original design for factor
dependencies) interferes with such computation. In other words, as far as the “constrained” factors
are concerned, only the main effect for the group as a unit can be estimated. A separate design for
the group factors would be required to determine the individual contribution of each factor in the
group. In our case this applied to five groups of “constrained” factors in the Latin hypercube design
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for link characterization shown in Table 6.8. The term “constrained” is used to emphasize the fact
that the factors could not be allowed to vary completely independent of each other in the

experimental design.

TABLE 6.8 “Constrained” Factors in the Modified Latin Hypercube Design

Group Number  Group Reference Variables in the Group
1 Pavement strength parameters SN Structural number
DEF Benkelman deflection
2 Pavement distress parameters ACRA Area of all cracks (%)

ACRW Area of wide cracks (%)
ARAV Area raveled (%)
APOT Area of potholes (%)

3 Pavement deformation parameters RDM Mean rut depth (mm)
RDS Standard deviation of rut depth (mm)
4 Pavement history parameters AGEl Age of preventive treatment (years)

AGE2 Age from last resurfacing (years)
AGE3 _Age from last pavement construction

5 Previous distress parameters ACRAb Previous area of all cracks (%)
ACRWH Previous area of wide cracks (%)

From the stochastic predictors for the two NPV streams at 1000 ADT the main effects were
estimated as shown in Table 6.9. The table shows the ANOVA percentage contribution for the most
active factors. It is seen from the table that the NPV for strategy STP3 is dominated by the rutting
calibration factor, Krp (35%), the pavement strength parameters (SN, DEF) (14.5%), the
carriageway width, W (7%), and the initial distress level (ACRA, ACRW, APOT and ARAYV). These
first four ranking significant factors account for close to two thirds of the total variability in the NPV
for STP3.

The top four significant rankings in the NPV consist of the same factors for both strategies STP3 and
SPT4. However, the magnitudes of the factor effects of these top active factors differ significantly
from one strategy to the other. While the contribution of the Krp factor to the NPV is more than
twice that of the group 1 factors (SN and DEF) for the strategy STP3, the effects are almost equal for
the NPV under strategy STP4 (Table 6.9). Table 6.9 also shows that under STP4, the NPV is
relatively sensitive to Kge, altitude (4), base layer thickness (HBASE) and shoulder width (WS).
These factors are less active in the NPV under strategy STP3.



ANOVA Contribution: Active Factors in NPV (10%, ADT 1000)

TABLE 6.9

NPV-STP3

Factor ANOVA %
Krp 34.822
Group! (SN, DEF) 14.564
w 7.195
Group2 (ACRA, ACRW, APOT, ARAY) 6.448
Group3 (RDM, RDS) 5419
Group+ (AGE1, AGE2, AGE3) 4826
Group! x Group5 2.755
Groupl x Krp 2.176
RF 2127
Kep 1.928
Group! x Kge 1.477
or 1.291
Grouplx QI 1.284
Kei 1.176
Wx Kci 0.936
Kge 0.915
Groupl x Group3 0.874
Keix QI 0.583
Total 90.796

NPV-STP4

Factor ANOVA %
Group! (SN, DEF) 16.861
Krp 15979
Group2 (ACR4, ACRW, APOT, ARAV) 11.020
w 10.758
Kge 7.995
A 5440
Group3 (RDM, RDS) 4405
HBASE 3.575
A 1.739
Wx Kci 1.680
Grouplx QI 1.436
or 1.412
Groupl xKge 1.356
Kei 1.271
SNSG 1.163
Keix QI 1.097
Kcix Kge 1.031
Kgex OI 0.990
Total 89.208

Notes: A x B stands for the interaction between factors A and B. Symbols according to
the Glossary. Group factors see Table 6.8

Figure 6.11 shows the main effects of the active factors for the NPV under STP3. As mentioned
before, the main effects of the “constrained” factors could not be plotted; they require an
independent design to isolate them. It is interesting to note from Figure 6.11 that the most active
factor — the rutting calibration factor (Krp) — has a negative main effect that seems to be linear over
the range investigated. This phenomenon will be discussed further in Section 6.4. The main effect of
the carriageway width upon the NPV for strategy STP3 is also negative, but non-linear. This is
logical since the increased agency costs of R&M treatments resuiting from widening a pavement may

not be offset by the savings in VOCs arising from increased travel speeds.
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FIGURE 6.11 The main factor effects of NPV for strategy STP3 (ADT 1000)

Figure 6.12 plots the main effects of the five “unconstrained” active factors for NPV under strategy
STP4. The estimated factor effects of the NPV for strategy STP4 should be treated with caution
given the low performance of the stochastic predictor in reproducing the HDM-III predictions.

Notice the wide error margin in Figure 6.12.

An important general conclusion from analyzing the stochastic predictors for the NPV outputs is that
the factor effects are highly non-linear. The magnitude of the individual factor effects as well as their
shape seems to vary with the R&M treatment strategy used.

Comparing the factor effects at different traffic levels, it is noted that the strength parameters (SN,
DEF) remain sensitive to the NPV predictions throughout the traffic levels. However, at the low
traffic (ADT 265) the effect of the (SN, DEF) factors seems to be higher than at higher traffic. Also,
it is interesting to note that at this low traffic the interaction of the strength factors (SN, DEF) and
the roughness (Qf) dominates the NPV (52%). Such interaction is insignificant at higher traffic.

6.3.3.3 Diagnosis of the Stochastic Predictor for Life-Cycle Costs

Figure 6.13 shows the cross validation predictions plotted against the actual HDM-III model outputs
for the four response variables: agency and users’ lifecycle costs for treatment strategies STP2 and
STP4. The stochastic predictor and the actual HDM-III outputs for RM-STP2, VOC-STP2 and VOC-
STP4 agree very closely. The prediction for RM-STP4 is not as good, but is very reasonable given
the large sample size used employed (350 data points).
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Four more response variables generated at ADT 1000 were modeled using the stochastic approach.
The agency and users’ life-cycle costs under the R&M strategies STP3 and STP4 were investigated.
Due to computational effort constraint, the stochastic predictors for these latter response variables
were built on 150 data points only. The diagnosis of the performance of the stochastic models is
summarized by Figure 6.14. The figure shows plots of cross-validation predictions and residuals for
component life-cycle costs under strategies STP3 and STP4 at the traffic of 1000 ADT. From the
figure we see the stochastic models are almost perfect predictors of the HDM-III outputs.
Consequently, the main effects estimated from these predictors should be much more reliable than
those for NPV predictions. Figure D.2 in Appendix D shows cross-validation residuals plotted
against the predictor (input) variables for the VOC life-cycle costs under strategy STP4 at ADT
1000. The residuals in this case are also well behaved. Again, the trends that seem to be evident in
the residuals for the “constrained” variables is explained by the distorted plots of these variables in

the design duta (see Figure 5.2 and Section 5.5.2).

.....

RM-STPJ Prodictions
0G
Il
RM-STP) Standardizeit Residuals

40000
1
4+

-

VOC-STR) Predichions
J0000
1l
VOC.STP3 Standatdized Residuals
]
1
l
1

20?00

" 20000 30000 40000 20000 20000 <0to0
(a) Straregy STP3 voe.STPY VOC-STP1 Pradictions

FIGURE 6.14  Cross validation predictions and residuals for the life-cycle costs (ADT 1000)
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6.3.3.4 Life-Cycle Costs Sensitivity Results from the Stochastic Approach

Table 6.10 presents a summary of the factor effects upon the life-cycle costs output at ADT 500 as
estimated from the stochastic approach. Several factors were found to be important in the predicted
agency life-cycle costs. The carriageway width dominates the LCC-R&M predictions accounting for
over 94% of the variability for both R&M strategies. For strategy STP4 the pavement roughness
(QD at the first year of analysis, rutting calibration factor (Krp), the pavement construction and
treatment history (AGEI, AGE2 and AGE3) and the roughness calibration factors (Kge, Kgp) play
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important roles in agency life-cycle prediction. On the other hand, the next most active factors in
LCC-R&M for strategy STP2 are the cracking calibration factors (Kci, Kcp), and the pavement
distress levels at the first year of analysis (ACRA, ACRW, APOT, ARAV).

TABLE 6.10 ANOVA Contributions: Active Factors in Life-Cycle Costs (ADT 500)
(A) AGENCY LIFE-CYCLE COSTS

Strategy STP2 Strategy STP4

Factor ANOVA (%) Factor ANOVA (%)
w 94.33 w 96.52
Kci 3.07 (4]} 0.64
Group?2 (ACRA, ACRW, APOT, ARAV) 1.09 Krp 0.33
Wx Kci 0.49 Group4 (AGEl, AGE2, AGE3) 0.20
Kcix Kep 0.37 Wx Group4 0.17
Kcp 0.20 Krpx QI 0.15
Wx Group2 0.19 Kge 0.15
Wx Kcp 0.03 Wx Kci 0.15
HSOLD x Kci 0.02 Kci 0.10
Kci xCQ 0.02 Wx Groupl (SN, DEF) 0.09
Kci x Group2 0.02 Wx Kgp 0.08
Total 99.83 Total 98.58

(B) USERS’ LIFE-CYCLE COSTS

Strategy STP2 Strategy STP4

Factor ANOVA (%) Factor ANOVA (%)
RF 95.73 RF 95.88
o1 1.40 Krp 1.98
Groupl (SN, DEF) 0.87 Groupl (sN, DEF) 0.45
Groupl x QI 0.30 ol 0.37
C 0.25 Group3 (RDM, RDS) 0.23
Group2 (ACRA, ACRW, APOT, ARAV) 0.17 C 0.20
Kci 0.15 Kge 0.19
Kci x QI 0.09 Kci 0.06
Krp 0.09 Kcp 0.05
Kge 0.08 Groupl x Krp 0.05
RF xC 0.06 Krp xQI 0.04
Total 99.19 Total 99.50

Notes: A x B stands for the interaction between factors A and B. Symbols according to
the Glossary. Group factors see Table 6.8
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Figure 6.15 shows the behavior of the main factor effects for life-cycle costs under two maintenance
and rehabilitation strategies (STP2 and STP4). In Figure 15 (a), for example, the plot labeled RM-
STP2(W) shows the estimated effect of carriageway width on the agency life-cycle costs for strategy
STP2. The percentage assigned to each plot label is the ANOVA contribution of the factor in the
overall variability of the response. Thus, Figure 15 (a) indicates that of the total variability in agency
life-cycle costs (for strategy STP2) resulting from varying all the 39 link characterization inputs over

the ranges investigated carriageway width accounts for 94.3%.

As seen in Figure 1S (a) the carriageway width effect is uniform over the entire range of
investigation. The figure shows that the role of the rise plus fall factor (RF) in the life-cycle VOCs
increases slightly at higher magnitudes of RF. This phenomenon is consistent with the underlying

model construct; further elaboration is given in Section 6.4.



RM-STP2 (W) : 94.3%

%0

RM5IP2

. Agency life-cycle costs strategy STP2

VOGC-STP2(RF) : 95.7%

18000 20000 22000

VOC-STP2
16000

10000 12000 14

(c) Users’ life-cycle costs for strategy STP2

FIGURE 6.15  Main factor effects for life-cycle costs (ADT 500)

100

AM-STP4(W) : 96.5%

149

(23]

e

(b) Agency life-cycle costs for strategy STP4

VOC-STP4(RF) : 95.9%

(d) Users’ life-cycle costs for strategy STP4

Table 6.11 shows the factor sensitivities obtained from the analysis of the stochastic predictor for the
life-cycle component costs at ADT 1000. Part (a) of the table presents the ANOVA contributions of
the most active factors in the agency life-cycle costs under the two strategies STP3 and STP4. Part
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(b) of the table shows the corresponding factor effects for users’ life-cycle costs. The table shows
that, similar to the life-cycle costs at ADT 500, the first four significant factor rankings account for
close to 99% of the total variability in the life-cycle costs. Notice in this case the first five rankings
of active factors for VOCs consist of exactly the same factors (RF, Krp, SN, DEF, QI and C) in the
same order for both strategies STP3 and STP4. Further, unlike the case for ADT 500, the pavement
construction and treatment history (AGEI, AGE2, AGE3) rank second in the agency life-cycle costs
for ADT 1000.

TABLE 6.11 ANOVA Contributions: Active Factors in Life-Cycle Costs (ADT 1000)

A) LIFE-CYCLE AGENCY COSTS B) LIFE-CYCLE VEHICLE OPERATING COSTS
RM-STP3 RM-STP4 VOC-STP3 VOC-STP4

Factor ANOVA %  Factor ANOVA % Factor ANOVA % Factor ANOVA %
W 98.810 W 97.410 RF 95.736 RF 95.959
Group4 0.940 Group4 0485 Krp 1.378 Krp 1.327
W x Group4 0.223 WxSP 0.239  Groupl 1.114  Group! 0.720
Kvix Group4 0.008 Kge 0208 QI 0336 QI 0.493
HBASEx Group4 0.006  Wx Group4 0179 C 0220 C 0.429
Kvi 0.005  Groupl 0.1SC  GroupixKrp 0.164  Group3 0.143
W.Kvi 0.002 Kci 0.150  Group3 0.097  RFxGroup5 0.086
HBASEx Kvi 0.001 Krp 0.116  RFx Group5s 0.096 RFxGroupl 0.083
Groupl 0.001 SP 0.105 Kgp 0.083  Group2 0.073
W x Groupl 0.001 KrpxQI 0.088  RFxGroupl 0.083  Groups 0.046
HBASE 0.001 Q1 0.079 RFxKrp 0.069 RFxC 0.043
W x HBASE 0.001 WxKc 0.076 Kci 0.069

Total 99.999 Total 99.209 Total 99.445 Touwl 99.402

Notes: A x B stands for the interaction between factors A and B. Symbols according to the
Glossary. Group factors see Table 6.8. Strategies as defined in Table 3.7.

Figure 6.16 plots the main effects of the most sensitive factor for the life-cycle components for the
traffic level of 1000 ADT. Again, as for ADT 500, the figure shows that the effect of the
carriageway width upon the agency life-cycle costs is approximately linear and positive in the range
investigated. On the other hand the rise plus fall effect on the life-cycle VOCs is positive parabolic;
the RF factor effect increases slightly at higher values of RF.
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6.4 Discussion of the Results

6.4.1 Behavior of the Agency and Users’ Components of Total Life-Cycle Costs

The results presented in this chapter show that the NPV is highly non-linear with respect to sensitive
input factors. The NPV prediction is also subject to high factor interactions. Further, it was shown
that the rankings of sensitive factors changes slightly with the R&M strategy used.

The most interesting research finding with respect to the component life-cycle costs predicted by
HDM-III is that both the agency and users’ life-cycle components were shown to be dominated by
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relatively few factors, some of them not directly influenced by R&M treatments. The agency life-
cycle costs component was found to be highly sensitive to the carriageway width. More than 96% of
the total variability of the agency life-cycle costs over the input space investigated is explained by the
width factor. This makes sense since the quantity of rehabilitation work is a product of the pavement
width and the number of lane kilometers to be repaired. It follows, therefore, that unit costs of R&M
operations would have the same sensitivity to the agency life-cycle costs. What was not obvious,
before this study, is the relative weight of the sensitivity of the width (and unit costs) factor

compared to other input factors.

Below this dominant factor in agency life-cycle costs (i.e., of the remaining less than 6% variability)
the next active factors vary according to the R&M strategy. For the common R&M treatments
investigated, the agency life-cycle cost predictions are next most sensitive to the pavement
construction and treatment history (AGEl, AGE2, AGE3), roughness and surface distress levels (O,
ACRA, ACRW, APOT, ARAYV) at first year of analysis period, rutting calibration factor (Krp), the
cracking calibration factors (Kci, Kcp) and the roughness calibration factors (Kge, Kgp).

The users’ (VOC) life-cycle cost component was found to be dominated by the rise plus fall (RF)
variable. This is expected given the significant role of road gradient (RF) in heavy vehicles fuel and
tire costs (see Section 6.4.2). More than 95% of the total variability on VOC life-cycle costs is
explained by the RF factor. Similar to the pattern in agency life-cycle costs, the remaining (less than
5%) variability is explained by different factors for different R&M strategies. In this case, the pool
of active factors consist of mainly the same factors although the factor rankings were shown to vary
from one R&M strategy to the next. The most active factors (after RF) for VOCs prediction were
found to be the rutting calibration factor (Krp) the initial pavement strength (SN, DEF), the pavement
roughness (Qf) and the surface distress levels (ACRA, ACRW, APOT, ARAV) at the beginning year of
analysis and the horizontal curvature (C). The mean and standard deviation of rut depth were also

shown to be sensitive to both agency and users’ components of the NPV.

The observed factor sensitivities for asphalt concrete on granular base were found relatively

comparable to those obtained for surface dressing on soil cement pavements.

Having looked at the behavior of the key life-cycle cost components (agency and users’) the question
now is does this new understanding about the key components contribute to explaining the behavior

of the total life-cycle costs savings — the NPV?
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6.4.2 Behavior of the NPV Predictions from the HDM-III Model

The net present value (NPV) calculated by the HDM-III model was defined by Equations (4.8) and
(4.9) in Chapter 4. The NPV represents the net saving of total life-cycle costs of a given strategy
over a “do minimum” alternative. In simplified analyses where effects of generated traffic, travel
time savings and exogenous costs and benefits are not considered Equation (4.8) simplifies to:

A.NBky(m.") = AVOC@(M) "ARM@(M) «s(6.4)

where, ANB,m. = “net life-cycle cost savings™ of strategy m relative to strategy n for link k.
AVOCyms = VOC savings of alternative m relative to alternative n in year y for link k.

ARM,y»,y = agency cost difference of alternative m relative to n in year y for link k.

Notice the opposite signs for the users’ costs and agency costs components. From Equation (6.4), an
alternative associated with larger VOC savings will give a larger NPV. On the other hand, an
alternative with large agency cost will generate a smaller NPV. This explains why the factor effect of
pavement width (W) on the NPV is negative (Table 6.5, Figures 6.11 and 6.12). The high implied
agency costs associated with the construction and life-cycle maintenance of a wider road are not

offset by the reduction of VOCs resulting from the associated increase in travel speeds.

From the above definition of the NPV, one fundamental gap arises when interpreting the behavior of
the life-cycle cost components (agency and users’) for the purpose of explaining the observed
behavior of the NPV. The lifecycle cost components represent the absolute cost values for the
strategy in question, whereas, the NPV represents the life-cycle cost difference between a “do
minimum” strategy and the strategy in question. In other words, economic evaluation of R&M
programs is concerned more with cost differentials than the absolute life-cycle costs. Furthermore, in
such analyses (where nmew constructions or capacity expansions are not being considered) the
comparison “do minimum” versus the strategy in question is over the same existing alignment,

therefore the alignment attributes, e.g., rise plus fall (RF), curvature (C), efc., remain unchanged.

Bearing in mind the above definition of the NPV, and the focus in a network level analysis on cost
differentials rather than the absolute life-cycle costs, the observed behavior of factor effects on the
NPV prediction can now be explained.

The ranking of factor effects on NPV found in the study (Tables 6.5 and 6.9) appears at a first

glance to bear no relationship with the factor effects for the component agency and users’ life-cycle
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costs. However, on a closer look, the factor sensitivity findings for the component agency and users’
lifecycle costs (Tables 6.6, 6.7, 6.10 and 6.11) translate very well in explaining the observed
behavior of factor sensitivities for the NPV. For example, the rutting calibration, Krp, turns out to
be the most sensitive factor in the NPV — as expected since it is the second most active factor in
VOC:s after the rise plus fall. It is worth recalling that although the RF factor was most significant in
the VOCs predictions, the costs tradeoff between a given strategy and the “do minimum™ strategy is
over the same alignment (fixed RF), hence the reduced sensitivity in the NPV predictions.

Another example is the ranking of the strength parameters (SN, DEF) in the predicted NPV. It is
noted that these factors are highly sensitive to both the agency and users’ life-cycle costs. Notice also
how well the positions of the carriageway width (W), the initial pavement distress level (ACRA,
ACRW, APOT, ARAV), the rutting factors (RDM, RDS) and the pavement construction and treatment
history (AGEI, AGE2, AGE3) in the agency life-cycle costs translate to the rankings in the NPV.

6.4.3 Discussion of the Observed Interesting Factor Effects

The behavior of factor effects of some of the sensitive factors presented in this chapter were rather
interesting; explanation of their observed effects in the NPV predictions was not obvious. Such
factors include rutting calibration factor, Krp, (Figures 6.11 and 6.12), roughness, QI, (Figure
6.10), and roughness calibration factor, Kge, (Figure 6.12). This subsection looks further into some
of these factors and explains the observed behavior.

6.4.3.1 Variation of the Total Life-Cycle Costs NPV with the Rutting Calibration Factor

Figure 6.17 shows the effect of the rutting calibration factor (Xrp) upon the rate of rutting and the
resulting roughness progression for the typical road link used in the sensitivity study. At low Krp the
rate of progression is low (Figure 6.17 (a)), changing only about 10 mm over 10 years. The age of
the pavement at the start of analysis was 25 years; thus the initial rut depth of 35 mm. In Figure 6.17
(b) when Krp is at the high level of 3.8, the 25 years old pavement has reached a rut depth of 47 mm
and progresses quickly to the maximum rut depth of S0 mm in less than a year. The effect of these
deep ruts on roughness is seen as: (a) higher initial roughness, and (b) faster rate of progression (4.5
to 9 IRI in 10 years compared to 2.5 to 5 IRI in the same period).

Figure 6.18 shows the implication of the performance discussed above upon the VOCs and the
predicted NPV. Figure 6.18 (a) shows that the effectiveness of the high standard R&M strategies
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(STP3, STP4) in reducing VOCs is lost at higher levels of Krp (implying higher mean roughness).
VOCs for all strategies converge at Krp beyond 2 — 3. At low Krp, however, the high standard
strategies are more effective in lowering VOCs than the low standard strategies (STPO, STP1).

The above phenomenon translates into the NPV behavior shown in Figure 6.18 (b). NPV, which
here reflects only the VOC savings (agency costs were unchanged with Krp) is low at higher Krp
since, as shown earlier VOCs for STP4 and STPO, for example, are much closer at higher roughness

levels than they are at low roughness.
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6.4.3.2 The Effect of Rise Plus Fall on the NPV

The rise plus fall (RF) factor ranks only about 8* in the NPV predictions, however, it was found to
be extremely significant in the prediction of absolute users’ life-cycle costs. The behavior of this
factor with respect to the VOCs predictions (Figures 6.15 and 6.16) was rather interesting and merits
further discussion. Figure 6.19 shows the behavior of the key vehicle operation costs components
consumption with respect to the rise plus fall factor for the typical road link used in the sensitivity
study. Typically, the three resources: fuel costs, vehicle repair parts costs, and tire costs represent
55 t0 65% and 75 to 80% of the total vehicle running costs at 10 and 120 m/km rise plus fall
respectively for buses and trucks for a typical road link in the case study region. Again, typically
trucks and buses account for up to 95% of the total VOCs for a road link with a typical traffic mix.
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FIGURE 6.19 VOC key components versus rise plus fall (RF)

As shown in the figure, the rise plus fall (RF) has a general negative effect on travel speed; the effect
is particularly noticeable for buses and trucks. The reduction in travel speed translates into very
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rapid increase in both fuel and tire consumption. Notice again the effect is most detrimental to the
heavy vehicle classes. Interestingly, the parts costs seem to be unaffected by the rise plus fall factor.

6.4.3.3 Effect of the Initial Roughness Level and the Roughness Calibration on the NPV

Another interesting behavior is the significant role of the interaction between roughness and the
strength parameters “Qlx (SN, DEF)” at low traffic. The results show that the NPV for strategy
STPL at 265 ADT is dominated by the “QIx (SN, DEF)” interaction (52%). The main effects of
roughness and those of the strength parameters separately account for only 35% of the ANOVA
contribution. At ADT 1000 the interaction “Qfx (SN, DEF)” has an almost insignificant effect on the
NPV for strategies STP3 and STP4 (Table 6.9). This is a phenomenon worth investigating. Figures
6.20 through 6.22 show the role of the calibration factors on the predicted roughness, the life-cycle
costs and the NPV.
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FIGURE 6.20  Roughness progression at two levels of the calibration factors (Kgp, Kge)
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From Figure 6.20 it is noted that the roughness profile change associated with the Kgp change (0.8 -
1.2) is slightly higher but close to the change resulting from the Kge change of (0.8 - 1.4). Figure
6.21 shows the effect of the roughness profile change upon the predicted users’ life-cycle costs. It is
interesting to note that though generally the VOCs are close, in overall the Kge change is associated
with slightly higher absolute users costs than the Kpg changes for the low strategies (STPO and
STPI). Consequently, the difference between the VOCs for the higher strategies (STP4 and STP3)
and the VOCs for the null strategy, STPO are higher for Kge than Kgp over the same interval. This
behavior is reflected in the NPV changes shown in Figure 6.22. Note the interesting decrease in
NPV as Kge and Kgp increase for low strategies (STP1, STP2), whereas for the higher strategies
(STP3, STP4) an increase in either Kge or Kgp results in an increase in the NPV.
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NPV Behavioratdifferent Kgp Levels
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FIGURE 6.22 (b) Effect of the roughness calibration factors (Kgp and Kge) on NPV

6.4.4 Summary Ranking of Sensitive Input Factors

Table 6.12 shows a summary of the factor sensitivities. The factors have been ranked according to
their sensitivity to the NPV predictions. The table also provides, for comparison purpose, the factor
sensitivities to the component agency and users’ life-cycle costs. It is worth pointing out that the
NPV sensitivities (ANOVA %) were adjusted to account for factor interactions and averaged over the
two strategies (STP3, STP4) and two traffic levels. The ANOVA percentages for agency and users’
life-cycle costs are given only for comparison; they were adjusted for factor interactions but not
averaged over traffic. Notice the effect of traffic level on factor rankings for component life<cycle

Costs.

Table 6.13 compares the final rankings based on factor sensitivities to the NPV and the

corresponding rankings for the component agency and users’ life-cycle costs for the individual



162

strategies. The table highlights the important fact that the factor senmsitivities are, as expected,
dependent on the strategies being investigated.

Tables 6.12 and 6.13 show that the most significant factors in the NPV prediction are the rutting
calibration factor (Krp), the pavement strength parameters (SN, DEF), the carriageway width (W),
and the initial pavement distress level (ACRA, ACRW, APOT and ARAYV). These first four ranking
significant factors account for close to 64% of the total variability in the NPV.

The next most sensitive factors in the NPV are, the roughness—environmental calibration (Kge), the
level of rutting and its variability (RDM, RDS), the altitude (4), and the pavement construction and
treatment history (AGEI, AGE2, and AGE3). Road roughness (QI), cracking calibration factors
(Kci, Kcp) and the base layer thickness (HBASE) were also found to be active in the NPV.

TABLE 6.12 Summary of Factor Sensitivities in ANOVA% Contributions

NPV R :§Usus' Life-Cycle Costs

Factor.. .. ANOVAXYADT S00: ..

Krp ; 96.035
SN R 1.430
DEF ;

W Q 1.064
ACRA 39XNDEF 0.448
ACRW 3 0.350
ARAV. 1N

APOT SRDM 0.137
Kge RDS

RDS .

ROM )i SBOSAC 4CRA 0.059
4 4CRW

AGEI 4POT

AGE2 RAV

AGE3 J 0057
or 0.044
Kei 0.042
HBASE : - A & S Kg 0.030
TOTAL %: i 996287 | 99.975% 99.5528 99.734

* ANOVA% for NPV were adjusted for factor interactions and averaged over two strategies
and two traffic levels — ADT 500 and 1000. Symbols according to the Glossary.
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TABLE 6.13 Factor Ranking According to Sensitivity to the NPV

NPV Users’ Life-Cycle Costs

Factor ADT 500 ADT 1000

Krp Krp )
SN SN 3)
DEF DEF 3)
w (13)
ACR4 4CRA ®)
ACRW ACRW ®)
ARAV ARAV 8)
4POT APOT 8)
Kge : ge .. 7 (10)§Kge (1)
RDS . (1) RDS ©)
RDM P - (IDIRDM ©)
AGEr L @RAGEYr .. (DYAGE

AGE2 &)
AGE3 -

ol (C)]
Kei B L) ; ST b . . V¥R )
HBASE . (L} _ BN | 1 ()}

Symbols according to the Glossary.

6.4.5 Comparison of the Sensitivity Findings with the Literature

As mentioned earlier in Chapter 2 the few isolated sensitivity studies on HDM-III found in the
literature are of considerably limited scope and almost each of them is based on a different objective
function. The brief section on sensitivity analysis in [Queiroz 91], for example, reports a ceteris
paribus test of the effects of a 10% reduction in traffic level and 10% increase in R&M unit costs
upon the predicted internal rate of return (IRR). [Queiroz 91] found that 10% lower traffic and 10%
higher unit costs resulted in 4 to 8% lower IRR. These results agree with those reported by [Kerali
91). The latter work was aimed at investigating the break-even traffic at which to upgrade a gravel
road to paved standards, and was based on the NPV and IRR predictions as the analysis criteria. The
results from [Kerali 91] show that for high rainfall in mountainous areas, an increase in traffic by 10
vehicles per day yields about 0.8% increase in the IRR (of the upgrading strategy).

Interpreting the NPV sensitivities given in [Kerali 91] (Table 3 pp. 36) as elasticity of the NPV with
respect to traffic, values between 2.8 and 3.5 for discount rates of 5 and 10% respectively are
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obtained at the base traffic of 400 up to 700. These numbers compare well with ceteris paribus
results from this thesis (Table 6.2). However, it is again emphasized that it is not appropriate to
compare results that are based on the ceteris paribus investigation. It was shown earlier in this
chapter that the ceteris paribus results are not conclusive. Besides, even when the elasticity approach
is employed (to normalize /standardize the results for input /output factor ranges), consistent results
are only achieved where the assumptions of linearity and additivity of factor effects are plausible. It
was noted that for a response that is highly non-linear or subject to significant factor interactions the

standardized ceteris paribus (and the linear regression) estimation of factor sensitivities fails.

The earlier works in 1987 and 1988 by [Bhandari 87 and Bank 88] investigated, again using the
ceteris paribus technique, break-even traffic volumes at which it becomes economical to pave a
gravel road. A more interesting contribution from [Bhandari 87 and Bank 88] is that dealing with the
sensitivity of the NPV with respect to the pavement strength (SN). Based on studies carried out in
Costa Rica and Mali, the two articles present interesting details of the interaction of the traffic level
and the modified structural number (SN°) upon the predicted NPV over a large number of R&M
strategies. The behavior of the NPV with respect to the traffic level (ADT) as reported in these

earlier studies is comparable to that in [Kerali 91 and Queiroz 91].

6.5 A Factor Sensitivity-Based Framework for Prioritizing Data Collection

The findings from this research indicate that, for the typical link in the cross-section of paved roads
in the case study region (15 - 20 years old, resurfaced 6 - 15 years ago, initial strength of 3.5 - 4.0
modified structural number, and 0.5 - 1.0 million ESALs per lane per year traffic loading), the
estimation of the rutting calibration (Krp), pavement strength, pavement width, and initial level of
pavement distresses is very important in determining the precision of the predicted NPV. Other
factors that were shown to be significant in the NPV prediction include the initial rutting level and
its variability, roughness level and its calibration and pavement construction and treatment history.

One important implication of the research findings is in the area of priority of local calibration of the
pavement performance relationships in HDM-III. The sensitivity results indicate that the highest
calibration priority should be given to the rutting progression calibration factor (Krp). The next most
important calibration factors are the roughness-environmental-age factor (Kge) and the cracking
calibration factors (Kci, Kcp). According to the findings, the ravelling calibration (Kvi) and the

potholes calibration (Kpp) should be given the least priority in local re-calibration.



165

The role of roughness, and the calibration of its progression was shown to have a lesser sensitivity
than indicated in other studies. This is of course a resuit of the lower pavement standards (moderate
to high roughness levels tolerated) in the cross-section of pavements in the case study region. It was
shown (Section 6.4) that the effect of roughness on NPV is more significant for smoother pavements;
beyond 6 - 9 m/km IRI roughness has a reduced effect upon the NPV.

Another immediate application of the factor sensitivity results established in this study is in the area
of prioritizing data collection and management resources for HDM-III application. In simplistic
terms, it is obviously logical to spend the available dollars on collecting first the data items that are

most sensitive to the NPV predictions.

Strictly speaking, however, factor sensitivities are not by themselves sufficient in prioritizing data
collection resources. Factor sensitivities only provide a relative scale of comparing the “benefits™ of
collecting the individual data items. More attention should be paid to collecting/determining input
tactors with higher sensitivities. Compared to the impact of the less sensitive factors, the more

imprecise these sensitive factors are the more unreliable are the NPV predictions.

To complete the prioritization exercise it would be necessary to have the unit costs of collecting the
data items. Given the input factors data collection cost per kilometer cost-effective allocation of data
collection expenditure can be recommended using, for example, the efficiency frontier. To draw the
efficiency frontier of Figure 6.23 the benefit axis would make use of factor sensitivities as

determined in this study.
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FIGURE 6.23 Factor sensitivities based efficiency frontier for prioritizing data expenditure
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The results given in this chapter have shown that the factor sensitivity rankings are, as expected,
influenced (at least marginally) by the R&M strategies used in the investigation. Therefore, any
realistic cost-effective allocation of data collection resource should be carefully planned on an
application-specific basis. Such priority selection of factors should be based on sensitivities results
averaged over a reasonable range of feasible strategies for the application at hand.

6.6 Summary of Chapter Conclusions

The results in this Chapter show that the most significant factors in the NPV prediction are: the
rutting calibration factor (Krp), the pavement strength parameters (SN, DEF), the carriageway width
(W), and the initial pavement distress level (ACRA, ACRW, APOT and ARAV). These first four
groups of sensitive factors account for close to 64% of the total variability in the NPV.

The next most sensitive factors in the NPV are, the roughness—environmental calibration (Kge), the
level of rutting and its variability (RDM, RDS), the altitude (4), and the pavement construction and
treatment history (AGEI, AGE2, and AGE3). Road roughness (QI), cracking calibration factors
(Kci, Kcp) and the base layer thickness (HBASE) were also found to be active in the NPV.

From the chapter findings, the least active factors to the NPV predictions from the HDM-III model
are: rainfall (MMP), horizontal curvature (C), superelevation (SP), effective number of lanes
(ELANE), surface layer thickness (HSNEW, HSOLD), the base layer compaction (CMOD) and the
strength code. Others are, potholes and raveling calibration factors (Kpp, Kvi), the construction
faulty code (CQ) and the cracking and raveling retardation factors (CRT, RRF). Factors that are only
slightly active are: rise plus fall (RF), altitude (4), shoulder width (WS), subgrade strength (SNSG)
and the previous pavement distresses (ACRAb, ACRWb).

The research findings also show that the NPV predictions from the HDM-III model are highly non-
linear with respect to sensitive input factors and are also subject to significant factor interactions.

Explanation of the NPV behavior required further investigation on the component life-cycle costs.

This chapter also developed a framework for prioritizing data collection resources with respect to
HDM-III application at the network level. Once the factor sensitivities have been established, the
data items to which more attention should be paid in allocating the collection dollars is determined
on the basis of the factor sensitivities. Completion of the efficiency frontier for proper prioritization

would require data on the costs and/or cost-effectiveness of collecting each individual data item.



Chapter 7

SIMPLIFYING HDM-III APPLICATION BY DEFAULT INPUTS

7.1 Chapter Overview

As outlined in Chapter 1 of this thesis, one immediate use of the factor sensitivity findings is to
examine the viability of reducing the data requirements for the HDM-III model application in priority
programming. With the results presented in Chapter 6 it is now possible to test the principal thesis
hypothesis that, for a specific application an acceptable quality of output criteria could be achieved
by employing relatively more default inputs (hence fewer precise inputs) than currently claimed. This
chapter presents the concept of model data needs reduction by the use of surrogate default inputs and
the statistical validation of such a reduced model.

The chapter first formulates a pool of default inputs for each of the life-cycle cost criteria from the
ranking of active factors. Factors with main effects below a chosen cutoff point are classified as
inactive factors. Typical values for these inactive factors are then assigned as default input values for
subsequent mode! runs. Two streams of HDM-III outputs are generated by running the model over
150 data sites from the Latin hypercube design data that explores the input space as fully as possible.
One output stream is based on the default inputs (i.e., fixing the input values for the inactive factors
constant for all validation runs). In the other output stream, all predictor variables are allowed to
take on their precise values. Comparison of these two model output streams provides the statistical

hypothesis testing reported here.

7.2  The Concept of Reducing HDM-III Data Needs by Default Inputs

The concept of using default inputs as a suitable framework in which the potential of the HDM-III
model can be made more available to the low-income road agencies was introduced in Chapter 2. It
was argued that while other approaches sound attractive, for example developing simplified
algorithms (with fewer input variables), similar to [Paterson 92] work, their immediate benefit is
only to those road agencies capable of developing (computer coding, etc.) their own analysis
“engines” or entire pavement management systems, or in the very least, modifying the HDM-III

computer code to make use of such simpler algorithms.
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The thesis argues that with respect to most of the low-income road agencies in SSA the capability to
make use of new algorithms is not forthcoming. Further, it was observed that a suitably calibrated
HDM-III model is still good enough for simulating the road behavior in many tropical environments
where the design standards are close to the HDM study conditions. Modifying the HDM-III
computer code is not considered an important requirement in Sub-Saharan Africa, at least for now.

Given the above argument, the most appropriate approach for making the application of HDM-III
more available is to streamline the data requirements while retaining the existing computer code.
This approach has the advantage in that the existing HDM-III code can be retained as is, hence no
further investment is required on the part of an existing user. It also allows the same simplification
approach to be available to users of the forthcoming model upgrade (HDM4) since it is expected to
incorporate most of the existing HDM-III technical relationships.

7.3 The Existing Link Characterization Default inputs in HDM-III

Currently, under the paved road link characterization class of inputs, the Brazil set of HDM-III
relationships provide default inputs for a total of 14 input factors: altitude, superelevation, effective
number of lanes, subgrade compaction, cracking and raveling retardation factors, and the seven
performance calibration factors. The findings of factor sensitivities from this thesis (Chapter 6)
suggest that the number of link characterization default inputs in HDM-III can be increased from the
current 14 to more than 20 without a significant loss of quality of the predicted life-cycle costs and
NPV. The specific number of inactive factors on per output-strategy basis is subsequently discussed

in the next section.

It is also worth pointing out that the current set of default (link characterization) input factors assume
values that are, of course, reflective of the uncalibrated model for Brazil technological,
environmental, and economic conditions during the HDM study. The only exceptions are the
effective number of lanes and the superelevation. The default value for the effective number of lanes
is estimated by the model as a function of the carriageway width, whereas the superelevation is
determined as a function of the horizontal curvature. The approach demonstrated in this thesis
provides a mechanism of determining values of default input factors that are more reflective of the
local conditions. This also applies to the less significant calibration factors: the potholes progression
and the raveling calibration factors.
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7.4 A Framework for Selecting the Candidate Factors for Default Inputs

7.4.1 A General Framework

Selection of the candidate input factors which can be replaced by default values (in subsequent
analyses) for a given study region should be based on factor sensitivities of the model output
criterion of interest. Since the sensitivity results are specific to the model output and are also
dependent on the other input classes that were not investigated in this study (e.g., vehicle
characterization variables, strategy definition factors, erc.), deciding on variables to designate as
default input for a given region requires a systematic investigation procedure. Figure 7.1 presents a
viable framework for such an investigation which ensures that the results of the subsequent HDM-III
analyses remains reliable for the pavement management decision-making. The figure shows both the
investigation and the application stages for task-specific default inputs. The specific nature of the
default inputs is discussed in a later subsection; the following subsection looks at an important input

to the framework described above — the cutoff criterion.

7.4.2 Criteria for Choosing Candidate for Default Inputs

The immediate evidence suggested by the factor sensitivities reported in Chapter 6 is that the life-
cycle costs components (of the NPV) are dominated by only a few sensitive factors. Agency life-
cycle costs for the resealing strategy (STP2), for example, are dominated by the carriageway width
(W), the cracking initiation factor (Kci), and the distress parameters (ACRA, ACRW, APOT, ARAV).
For users’ life-cycle costs over 98.7% of all the variability is attributed to the rise plus fall (RF), the
cracking calibration factor (Kcp), the strength parameters (SN, DEF) and the road roughness (QJ).

Of the 39 link characterization factors, there are only about 10 active factors that explains the
variability in VOC lifecycle costs; the remaining inactive factors contribute less than 1.3%.
Similarly, for the agency life-cycle costs the top 10 factors (W, AGEI, AGE2, AGE3, Kge, Kvi,
HBASE, SN and DEF) accounts for 99% of the total variability in the prediction. The important
implication of this finding is that the large number of insensitive factors can be trimmed from the
model with practically negligible or small loss of precision in the predicted NPV.

The viability of streamlining the data requirements for applying HDM-III was examined by replacing

the inactive factors in the model by constant values. The immediate question, however, is what level
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of factor effect should be used to designate a variable as inactive? The importance of this cutoff level
criterion is that it bears a direct implication upon the prediction accuracy of the simplified modei.
Unfortunately it not possible to know exactly how much prediction accuracy will be compromised
for any given cutoff level. This is obvious from the fact that the factor effects estimated from the
stochastic approach, for example, do not account for 100% variability in the actual model outputs

(see subsection 6.3.2 and Figure 6.8).
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FIGURE 7.1 A framework for selecting candidate variables for default inputs
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7.4.3 Specific Nature of Inactive Factors

The results from the sensitivity study strongly suggest that the factor sensitivities change slightly
across treatment strategies. It was shown, for example, with respect to agency life-cycle predictions,
while pavement distress parameters are active factors under strategy STP2, they are inactive under
strategy STP4 (Tables 6.10 and 6.11). Similarly, the mean and standard deviation of rut depth are
only active in users’ costs under strategy STP4. They are inactive both in the other strategies and in
agency LCC. Again, the pavement age parameters are only active in agency LCC for strategy STP4.
However, with respect to the NPV, the overall change in factor sensitivity rankings is not that
noticeable. It is seen from Table 6.9 that the first 8 most active factors (ranks 1 to 4) for both
strategies STP3 and STP4 include the same variables (Krp, SN, DEF, W, and surface distresses).

From a general model building point of view, as more variables are dropped from a model, the more
the estimated model parameters “absorb™ the role of the dropped out variables. Therefore, the

reduced model becomes less transferable to other situations.

In the case at hand, the other input factors in HDM-III that are central to R&M priority
programming include R&M strategy definition attributes and unit costs and vehicle characterization
variables (Figure 1.1 and Table 1.1). These later factors were kept constant at their typical values for
the case study region during the course of investigation. It can only be expected that the sensitivities
determined are not independent of these other base case inputs. While the results from the cereris
paribus (Table 6.3) are still inconclusive they point out the significant effect of some of the vehicle
characterization variables. In particular, Table 6.3 shows the roughness coefficient, CSPQI, and the
constant term in the parts — roughness equation to be extremely influential on the output NPV.

This set of affairs highlights the fact that under different levels of such other significant factors the
sensitivities determined for link characterization factors are likely to change. Therefore it is

recommended that default inputs be determined on application-specific basis.

7.4.4 Proposed Default Inputs for Link Characterization Factors

Findings on factor sensitivities for link characterization variables in HDM-III have been presented in
Chapter 6. Tables 6.12 and 6.13 summarize the ranking of the most active factors identified in the
study. The ranking results were subsequently used to determine the “inactive” model input factors
that have little impact on the predicted life-cycle costs. For each type of the HDM-III outputs
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(agency, user’s and NPV lifecycle costs) a set of candidates for default inputs was selected
representing the inactive factors (those not ranked as active in Table 6.12). The values assigned as
default inputs (used as constants in subsequent model runs) reflect the typical values for the factor in

the case study region.

7.5 Testing the Validity of the “Defaults Based” Model

Once the candidate inactive factors to designate as default inputs in subsequent model applications
have been selected, the natural question is, how valid are the model predictions based on such default
inputs? Are the predictions based on the “reduced” model good enough for practical pavement
management decision-making? This section discusses the question and the sample statistics which

examine this key research question.

The validation of the “reduced” model relies on comparing results of the analysis performed using
the “reduced” model (based on default inputs for the inactive factors) to the results from the full
HDM-III model (with full range variability in all model inputs). The underlying statistical question is
to test the null hypothesis, H, against the alternative hypothesis H, where,

H,: The HDM-III life-cycle costs predictions based on default inputs are significantly
different from the predictions using the full set of input factors.

H;: The HDM-III life-cycle costs predictions based on default inputs are practically not
different from the predictions based on full set of inputs.

If there is sufficient statistical evidence, say at 5% significance level, to reject the null hypothesis,

then it will have been demonstrated that very little quality of the output criteria is lost by using

default inputs for the inactive factors; that in fact, there is no statistical evidence to doubt the

analysis based on default inputs as good enough for decision-making in pavement management.

The principal hypothesis stated above constitutes a general question to which it was desired to find a
specific solution. Since the factor sensitivities studied in this thesis are based on life-cycle cost
predictions for several R&M treatment strategies, the general hypothesis was tested at several
specific levels. The specific sub-hypotheses tested are subsequently presented.
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7.5.1 Specific Validation Hypotheses and Sample Statistics

To test the thesis principal hypothesis that the HDM-III model exhibits factor sparsity; that the model
data needs are reducible by designating the inactive model factors as default inputs, specific life-cycle
costs predictions for R&M strategies STP2 and STP4 were employed.

Apart from the principal hypothesis stated above, the study was also interested in finding out how
specific the default inputs are across traffic levels and treatment strategies.

The test problem outlined above can be re-stated as an equivalent ANOVA problem. It is desirable to
see if there is any real difference between the life-cycle cost predictions using full set of input data
and those based on default inputs. This is a comparison of means problem where the concern is to
find out whether the observed differences among the means y;, g, ..., u. are significant or whether

the differences are pure noise (compared to within sample variability).
[n an ANOVA test the hypotheses are:

He: w=p=..=m

H,: TR for any pair (j, k) of test samples

The hypotheses stated above have been listed in specific terms in Table 7.1. The three null sub-
hypotheses relevant to the theme of the thesis are subsequently summarized. Table 7.2 defines the
relevant symbols used in Table 7.1. The table lists the null hypotheses, the response variable to be
tested and the test criterion for each of the four model outputs investigated.

Referring to Table 7.1 hypothesis one looks at the primary interest of this thesis. It poses the
question, “Can reasonable model predictions be achieved by using default values in place of the
inactive factors?” Hypothesis two looks at the effect of traffic level on the default values. Traffic
level was also pointed out by the ceteris paribus results as one of the most active factors; the concern
here is whether the integrity of the model predictions based on default inputs is preserved at different
traffic levels. Hypothesis three intends to find out what happens when the default inputs developed
using factor sensitivities for a given strategy are used in a different R&M strategy.

Hypothesis 4 looks at users’ life-cycle predictions by using default inputs. Since traffic level has a
direct effect upon the VOCs, the comparison is between predictions using full data and predictions
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based on default inputs within the same traffic level category. The default inputs ideally formulated
for ADT 500, for one R&M strategy are reused to predict life-cycle costs with a different strategy
and at different traffic levels.

Part of the Latin hypercube experimental design data was used for generating the sample statistics
required for hypotheses testing. As discussed earlier (see Section 5.4.3) one of the advantages of the
Latin hypercube design is that it ensures that any portion of the design matrix is a fully stratified
sample of the input space regardless of the size of the sample and the sample location in the matrix.
For the purpose of validation testing, the first 150 data points from the modified Latin hypercube
design matrix was employed. The HDM-III model was run twice on these 150 data sites, first with
all the predictor variables allowed to take their values as supplied at each data site. The second run
employed default inputs whereby all the inactive factors (for a given output criterion) were fixed at
their mean levels for all the runs, while the active factors were allowed to vary as per the data site
values. The life-cycle predictions from the two runs provided the sample data for statistical

hypothesis testing performed here.

TABLE 7.1 The SpecificTest Hypotheses

Hypothesis Nuil Hypothesis (H,) Prediction Categories

1.1 HDM-III agency life-cycle costs predictions using default ~ #2200=Ha202=1a212=Ha222= Ha232
Has00=Ras04=Has14=HRas2¢=Haq34

1.2 inputs are comparable to predictions using full input data

2.1 HDM-IIT agency life-cycle costs predictions do not change  1,,00=p0210=Ha220=Ha230

22 gnificantly with traffic level Has00=Hat10=Has20=~Hat30

3.1 Swapping the default inputs from one strategy to another Ha200=Ha206=Ha214=Ha224=Ha234
has no significant effect on agency life-cycle costs Hae00=Has02= Raa12=Rae22=Ha432

4.1 Road Users’ life-cycle costs predicted using default inputs /1200 =Hu202=Ha204

4.2 _ _
are all equal to those predicted using full set of inputs at Hae00=Hae02=Has04

4.3 Hu210=Hu212=HRa214
4.4 the same traffic Hae10=Hae12=Paat4
4.5 Hu220=Ru222= o224
4.6 Hae20=Has22=Rag24
4.7 Hu230=Hu232= Ra234
4.8 Hae30=Hae32 =,ua434

Key: See Table 7.2 for the definition of symbols (the mean values compared)
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Description Symbol Life-cycle Type Set of Default Traffic level of
and Strategy Used  Inputs Used Prediction (ADT)
Full data predictions Ha200 LCC-R&M: STP2  Full data 500
Hasoo LCC-R&M: STP4  Full data 500
Huz00 LCC-VOC:STP2  Fulldata 500
Houe00 LCC-VOC:STP4  Fulldata 500
Same strategy (STP2) defaults,  y,,5, LCC-R&M:STP2  STP2, ADTS00 500
different traffic Ha212 LCC-R&M:STP2  STP2, ADTS00 264
Ha222 LCC-R&M:STP2  STP2, ADTS00 1000
Ha332 LCC-R&M:STP2  STP2, ADT500 1500
Same strategy (STP4 ) defaults.  pr,,,,  LCC-R&M:STP4  STP4, ADT500 500
different traffic Haels LCC-R&M:STP4  STP4, ADTS00 264
Has2¢ LCC-R&M:STP4  STP4, ADT500 1000
Uaess  LCC-REM:STP4  STP4, ADT500 1500
Different strategy defaults, Has02 LCC-R&M:STP4  STP2, ADTS00 500
different traffic Hae1z  LCC-REM:STP4  STP2, ADT500 264
Hae22 LCC-R&M: STP4  STP2, ADTS500 1000
Hae3z LCC-R&M:STP4  STP2, ADT500 1500
Different strategy defaults, Hazo6 LCC-R&M: STP2  STP4, ADT500 500
different traffic Haale LCC-R&M:STP2  STP4, ADTS00 264
Ha224 LCC-R&M:STP2  STP4, ADT500 1000
M3 LCC-R&M:STP2  STP4, ADT500 1500
Same strategy (STP2 ) defaults, .0, LCC-VOC: STP2 STP2, ADT500 500
different traffic Hu212 LCC-VOC: STP2 STP2, ADT500 264
Hu222 LCC-VOC: STP2 STP2, ADT500 1000
U232 LCC-VOC: STP2 STP2, ADT500 1500
Same strategy (STP2) defaults. #:404 LCC-VOC:STP4  STP4, ADT500 500
different traffic Husre LCC-VOC: STP4 STP4, ADTS00 264
Huaze LCC-VOC:STP4  STP4, ADT500 1000
Hoe3e LCC-VOC: STP4 STP4, ADT500 1500
Different strategy defaults, Hueo2 LCC-VOC: STP4 STP2, ADT500 500
different traffic Huer2 LCC-VOC:STP4  STP2, ADTS00 264
Hue22 LCC-VOC:STP4  STP2, ADT500 1000
Hyes2 LCC-VOC: STP4 STP2, ADT500 1500
Different strategy defaults, Huzos  LCC-VOC:STP2  STP4, ADT500 500
different traffic Huzte LCC-VOC: STP2 STP4, ADT500 264
Huz2e LCC-VOC: STP2 STP4, ADT500 1000
Huse LCC-VOC: STP2 STP4, ADT500 1500
Key: LCC-R&M = agency life-cycle costs, LCC-VOC = users’ life-cycle costs
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7.5.2 Statistical Assumptions for the t-test (or ANOVA)

In paired responses situations statistical comparison is normally investigated using the simple two
sample z-test. The investigation would, for example, perform comparison of pairs of streams HDM-
IlI life-cycle predictions, one using a full set of inputs, and the other based on default inputs for the
inactive factors for a specific output. The one way analysis of variance (ANOVA) is the equivalent

t-test for more than two samples.
The key statistical assumptions under which the z-test (and the ANOVA) can be applied are:

(1) The two (k for ANOVA) samples or populations are approximately normally distributed.
Q) The samples all have the same variance (homogeneity of variance).
3) The samples are independent of one another.

The r-test (and ANOVA) is known to be robust with respect to moderate violations of these
assumptions. However, the test(s) cannot be applied where the assumptions are highly violated. In
other words, the conclusions reached using the z-test may be misleading if the assumptions for its

application are highly violated.

An examination of the HDM-III life-cycle costs predictions indicated that agency costs for the same
strategy have approximately the same variance irrespective of the set of the default input or full data
used and is also independent of the traffic level used. For the users’ (VOC) lifecycle costs, the
variance seems to be approximately equal for all strategies at any given traffic level. As long as the
VOC life-cycles are compared for the same traffic level, the assumption of equal variance does not
seem to be questionable, whereas for agency life-cycle costs, the assumption seems to be met even
when traffic level is disregarded as long as the comparison is done for the same R&M treatment

strategy.

7.5.3 Normality of the HDM-III Life-Cycle Cost Predictions

Stem and leaf and box plots are commonly used to show the distributional characteristics of a data
set. Both locational and spread aspects of data as well as skewness are best viewed using these
statistical tools. Such visual display provides a first indication of the normality or non-normality of
the data.
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Another common tool for testing normality is the normal probability plot. By plotting the sorted
observations against their cumulative expected standard score a straight line plot indicates the data is
normal. The more the plot deviate from a straight line, the more non-normal the data is.

Figure 7.2 presents stem and leaf, boxplots and normal probability plots for selected response
variables among the large number of HDM-III life-cycle predictions discussed in Chapter 7.

Both the steam and leaf and normal probability plots show that the assumption of normality is more
than moderately violated for the HDM-III life-cycle costs predictions. The predictions are generally

enormously skewed and the tails are much heavier than the Gaussian distribution.

A formal statistic commonly used for testing the assumption of normality is the Shapiro-Wilk [Cody
91]. The Univariate procedure in SAS™ produced the Shapiro-Wilk statistic values typically in the
range of 0.93 to 0.94. The corresponding p-values testing the null hypothesis that the life-cycle
predictions are normally distributed were typically less than 0.0001. That is, there is a strong
evidence that the HDM-III life-cycle predictions are not Gaussian.

Several attempts were made to transform the life-cycle predictions into approximately normal. None
of the common transformations provided any measurable improvement around the dilemma of the
normal assumption. It was therefore, concluded that the hypothesis testing based on ANOVA
technique are questionable unless we can validate them using other robust testing techniques.

8 SAS is a registered trademark of SAS Institute Inc., Cary, North Carolina.
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7.5.4 Non-parametric Tests Comparing “Default-Based” and Full Data HDM-
III Life-Cycle Predictions

Non-parametric tests refer to a class of methods of statistical inference that do not require us to know
the form of the probability distribution of the sample data. Methods such as based on signs of
differences or ranks of measurements efc., do not depend or rely on the precise shape of the

distribution, or the explicit parameters of such a distribution.

Kruskal-Wallis test is the equivalent non-parametric of one way ANOVA for comparing three or
more samples. Below we present the schematic plots of the test treatments and then carry out the
formal Kruskal-Wallis test for each of the test hypotheses. But before that, we re-state the hypotheses

given in Chapter 7 in a more convenient form for this test, and define the relevant symbols.

7.5.4.1 Schematic Plots

Figure 7.3 shows schematic plot (for hypothesis 1.1) comparing the HDM-III predictions for R&M
strategies STP2 and STP4. The plots show rather strongly that the life-cycle predictions from default
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7.5.4.2 Kruskal-Wallis Test

The Kruskal-Wallis test statistic is based on comparing the average rank of the observations in the
i-th sample with respect to the grand or overall average rank of all the observations. The sum of all
the ranks is equal to N(N+1)/2 where N is the total count of all the observations in the s treatments
to be compared. Therefore, the grand average of all ranks is given by,

. (R”+-..+Rln.)+...+(R“+...+Rb") ) N +1 D

N 2
where, R; stands for the rank of i-th observation in the j-th sample or treatment.

The Kruskal-Wallis statistic is a measure of the overall closeness of the R; to the grand average rank,
R_ It is based on the weighted sum of the squared differences {R; - % (N+1)}°. Thus, the statistic is
defined as:
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12 ¢ ( _N“)z (1.2)
K= yawvspz"\R -3

where, R; is the i-th treatment average rank.

K is zero when the R; are all equal, and is large when there are substantial differences among the
wreamments. The null hypothesis is rejected for large values of K, corresponding to a given
significance level. The critical values corresponding to the upper tail significant levels (a) are
approximated by the Chi-square distribution with the degrees of freedom, d.f. = s - 1. For example,
if 3, 4, and S treatments are to be compared each of which has 150 observations, the approximate
critical values, K, at an a level of 0.05 are: 6.0, 7.8, and 9.6 respectively (Table I and J, [Lehmann
750).

The Kruskal-Wallis test results for the hypotheses defined in Table 7.1 are summarized in Table 7.3.
The SAS® NPARIWAY procedure was used. The table shows the sample statistics are all consistent
with the null hypotheses given in Table 7.1. There is no evidence to reject the null hypotheses. The
small magnitudes of the Chi-Square values indicates how close the default-based cost predictions are
to the full data predictions.

TABLE 7.3  Kruskal-Wallis Test Resulits

Hypothesis d.f. Chi-Square (x*,,) Upper Tail Decision value: y’,
Number Approximation Chi-Square  (Reject H, if %, >0
1.1 4 0.0695 0.9994 9.6

1.2 4 0.0797 0.9992 9.6

2.1 3 0.2232 0.9738 7.8

22 3 0.1463 0.9857 7.8

3.1 4 0.1636 0.9968 9.6

3.2 4 0.1999 0.9953 9.6

4.1 2 0.7918 0.6731 6.0

42 2 0.1199 0.9414 6.0

43 2 0.1625 0.9219 6.0

4.4 2 0.0566 0.9721 6.0

45 2 0.1398 0.9325 6.0

4.6 2 0.1367 0.9339 6.0

4.7 2 0.1314 0.9364 6.0

4.8 2 0.1117 0.9457 6.0
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Since the null hypotheses 1.1, 2.1, and 3.1 (1.2, 2.2, and 3.2) states the equality of the default-based
life-cycle cost predictions to the same full data predictions at 500 ADT, we conclude that for the
same R&M strategy either set defaults inputs produce sufficiently accurate agency life-cycle
predictions for all the traffic levels investigated. That is, we could in fact test the null hypothesis:

H,: Ha200= Ba202 = Ba212 = Fa222 = Pla232 = Ba210= R a220 = Pa230 = Pa204 = K214 = Ba226= Baz3s --(71.3)
against the alternative,
H,: B * e for any pair (j, k) of full data/default-input-based predictions.

The analysis of variance procedure in SAS® produced the ANOVA table (Table 7.4) for the R&M
strategy STP4 predictions for a similar null hypothesis to Equation (7.3). The F statistic obtained
shows that, in fact, the between groups variation is much smaller than the within-group variation in
life-cycle cost predictions. The average predictions are therefore fairly close for all the different set

of default and full input data.

TABLE 7.4 ANOVA Table for the Agency LCC: Strategy STP4

Source DE Sum of Squares =~ Mean Square F Value pvalue
Model 11 28611.028 2601.003 0.05 1.000
Error 1768 94260701.385 53314.876

Corrected Total 1779 94289312.413

7.5.4.3 Simple Scatter Plots

The schematic plots as well as the Kruskal-Wallis tests focus at testing the overall distribution of the
stream of values, i.e., they compare the typical or mean measures of the distributions. Scatter plots,
on the other hand, provide a simple yet powerful technique of visualizing the closeness (or lack of it)

of the individual values in a pair of responses.

Figure 7.4 shows the scatter plots for a selected pair of default-based and full-data-based streams of
agency and users’ life<cycle predictions. Figure 7.4 (a) shows the agency life-cycle costs based on
default inputs are extremely close to those based on full-data at all traffic levels and strategies
investigated. Part (b) of the figure shows that the users’ life cycle cost predictions are also very close
for both strategies and at all the traffic levels investigated.
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7.6 Default-Based NPV Predictions

The comparisons presented so far have deait with the component agency and users’ life-cycle costs.
The NPV predictions based on default inputs for the inactive factors determined in Chapter 6 (see
Section 6.6) were investigated. The default-based predictions were generated by using typical values
for the least active factors determined in Chapter 6. A total of 22 factors was assigned default values.
The least active factors to the NPV predictions which were assigned default values for the
comparison presented here are: rainfall (MMP), horizontal curvature (C), superelevation (SP),
effective number of lanes (ELANE), surface layer thickness (HSNEW, HSOLD), compaction of the
base layer (CMOD), and the strength code. Others are, the potholes and raveling calibration factors
(Kpp, Kvi), the construction faulty code (CQ), and the cracking and raveling retardation factors
(CRT, RRF). Also, default values were used for the slightly active factors — the rise plus fall (RF),
the altitude (A), the shoulder width (WS) and the subgrade strength (SNSG).

Figure 7.5 shows the scatter plots comparing individual NPV predictions (default-based versus full
data based) at each of the 150 data points. The figure shows that the individual default-based NPV
predictions are reasonably close to the predictions based on full data.

7.7 Chapter Conclusion

The statistical tests presented in this chapter show that default-based model reduction is viable. The
results from the Kruskal-Wallis tests (Table 7.3), the schematic plots (Figure 7.3) and the scatter
plots (Figure 7.4), all demonstrate that the default-based life-cycle cost predictions are very close to
full data-based predictions.

The results from the hypothesis testing, the schematic plots and scatter plots, have effectively
demonstrated that life-cycle costs predictions remain fairly accurate once the active factors are
accurately specified. The inactive factors can be assigned default values with practically negligible
compromise to the quality of predictions.

NPV predictions based on default inputs also reproduce fairly well the predictions based on full data.



191

——m 8 R 2
it
S 2 ®
8 3 o F 3
£ - B B B
D m M m M Q M OA
> - .
: E B I
o 8
g -4 i :
z Z 2E %z
] g
. ]
}
$ ,
T ¥R ° 8 ¥ SR2°8 R ?
AdN paseg-qnesaq AdN _.encn.._..u..wn_ . AdN paseg-inejag AdN p3seg-inejaq
& 8 ]
g 8 -
g8 28 28 -
W o h: "8
g g g
g8 CY gk ~E
m g 8 g
- °d | nd g
o d ° M ,Mr - M M
8 8
. F ¥
S8RTFR°RY
AdN poseg-iinejag AdN paseg-inegag AdN paseg-inegaq AdN paseg-inejaq

FIGURE 7.5 (a) Defaults-based versus full data NPV predictions at ADT 500




192

Default-Based NPV

Defauli-Based NPV
E8 858888

Full Data NPV: ADT 1000

-20 -10 0 10 20 30

Z >

z =
- -
, 3 g

2 2

3 s

2 =

e ]

60 40 20 0 20 40 60 80 100 120 30 20 .10 o 10
Full Data NPV: ADT 1000 02 ol Ny Am'zgno

z >
-z s

- |
| 3 ¥
i ni g
| 3 3
P &
, @ ]

i
|

i
l

> -

[N

| & &

- =
| 3 1
] [
i n 3
P2 2
' 3
| a =
; B : -
t -os
: -100 0 100 200 300 400 500 600 <100 0 100 200 300 400 500 600
i Full Data NPV: ADT 1000 Full Data NPV: ADT 1000

FIGURE 7.5 (b) Defaults-based versus full data NPV predictions at ADT 1000



Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

The purpose of this chapter is to highlight some of the principal findings of this research, point out
some implications with respect to HDM-III application in priority programming, and suggest areas
requiring further research on the subject matter. The objective of this research was to explore the
possibility of streamlining the HDM-IH model for application as an analysis engine in pavement
management. Comprehensive approaches to factor sensitivity analysis were developed and applied to
determine the effect and behavior of input factors upon the common criteria used in priority

programming based on the HDM-III model life-cycle predictions.

8.1 Conclusions

The priority analysis function in the context of a network level pavement management system
provides the mechanism by which economic criteria are applied to evaluate and compare project
alternatives to identify a set of optional choices for implementation. Among the several analysis tools

available to low income road agencies, the HDM-III model is the most widely recommended choice.

Data deficiency was recognized as the most serious constraint in low-income road agencies, and
probably one of the major disincentives of widespread application of the HDM-HI model. Other
constraints pointed out as potentially discouraging routine uses of the model at the network level are
the lack of a comprehensive guide for end-users’ with respect to, low, medium and high priority
input factors, and the lack of practical guidelines on region or application-specific calibration.

A review of the practice in network level priority programming indicated that there are diverse
schools of thought as to what criterion should be used for ranking or selecting project alternatives.
Criteria based on life<cycle costs (for example, the internal rate of return (IRR), the net present value
(NPV), erc.) have been widely used in developing countries where it is more desirable to compare
alternatives on the basis of total societal costs. The findings in this thesis show that, among the
various HDM-III predictions, the NPV index is the most suited for ranking and prioritizing
maintenance and rehabilitation programs. Compared to the IRR, the NPV is consistently predicted

for all link-alternatives in the analysis problem. This is of particular practical advantage when the
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model is applied in the context of larger suites of pavement management analysis. Control of the

flow of information in the shared environments becomes easier.

The Latin hypercube experimental design [McKay 79] was shown to provide a sound methodology
for efficiently exploring factor sensitivities over the entire desired input space. In particular, this
design is favored for its ability to uniformly and completely explore each factor’s (practical) range in

a multi-dimensional problem without a prior assumption of factors’ role.

Out of the various possible methods of analyzing the post-experimental data in a Latin hypercube
model investigation, the use of regression approach in conjunction with the stochastic predictor
approach proposed by [Sacks 89a] was shown to be a justifiable and practical choice. The analysis
presented in Chapter 6 shows that the standardized coefficients of a suitably selected linear-additive
model can provide initial estimate of life-cycle factor sensitivities. However, a more reliable factor
sensitivity ranking must be corroborated by an estimation technique in which factor interactions can
be identified. The stochastic mode! provided a useful tool for this purpose. The maximum likelihood
procedure for estimating the stochastic model parameters is computationally intensive. As a result,

only a small number of response variables could be studied by this method.

The most interesting findings of this research are the factor seasitivities of the HDM-III predictions
with respect to the link characterization inputs. The most significant factors in the NPV prediction
were found to be: the rutting calibration factor (Krp), the pavement strength parameters (SN, DEF),
the carriageway width (W), and the initial pavement distress level (ACRA, ACRW, APOT and ARAV).
These first four ranking significant factors account for close to 64% of the total variability in the
NPV.

The next most sensitive factors in the NPV are, the roughness—environmental calibration (Kge), the
level of rutting and its variability (RDM, RDS), the altitude (4), and the pavement construction and
treatment history (AGEI, AGE2, and AGE3). Road roughness (QI), cracking calibration factors
(Kci, Kcp) and the base layer thickness (HBASE) were also found to be active in the NPV.

The research findings show that the NPV predictions from the HDM-III model are highly non-linear
with respect to sensitive input factors and are also subject to significant factor interactions.
Explanation of the behavior of the NPV required further investigation on the component agency and

users’ life-cycle costs.
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The component agency and users’ life-cycle costs were shown to be dominated by different factors.
Interestingly, some of the most active factors for both are those not directly influenced by R&M
treatments. The agency life-cycle costs component was found to be highly sensitive to the
carriageway width. More than 96% of the total variability in the input space investigated is explained
by the width factor.

The next active factors below the dominant width (W) factor in the agency lifecycle costs were
found to vary according to the R&M strategy. For resealing and similar R&M treatments, the next
most sensitive factors to the agency life-cycle cost are the cracking calibration factor and the initial
pavement distress level. For overlaying strategies, the next active factors are the pavement roughness
level, the rutting calibration factor, the pavement construction and treatment age and the roughness-
calibration factor (Kge). The observed factor sensitivities for asphalt concrete on granular base were
found to be relatively comparable to those obtained for surface dressing on soil cement pavements.

The users” (VOCs) life-cycle cost component was shown to be dominated by the rise plus fall (RF)
variable. Again, more than 95% of the total variability on VOC life-cycle costs is explained by the
RF factor. Similar to the pattern in agency life-cycle costs, the remaining (less than 5%) variability is
explained by different factors for different R&M strategies. The ranking of active factors was shown
to vary from one R&M strategy to the next.

One important implication of the sensitivity findings is in the area of re-calibration priority of the
HDM-III pavement performance relationships. The sensitivity results (Chapter 6) indicate that, for
the class of pavements investigated, the rutting calibration factor (Krp) and the cracking calibration
factor (Kci, Kcp) call for the highest calibration priority. The next most sensitive calibration factors
are: the roughness-environmental-age factor (Kge) and roughness progression (Kgp). According to
the findings, the ravelling calibration (Kvi) and the pothole progression (Kpp) should be given the

least priority in re-calibration.

In Chapter 7 the research investigated the viability of expanding the scope of default inputs in the
current HDM-III model. It was demonstrated that, given the factor spatsity exhibited by the
component agency and users’ lifecycle costs, the data requirements can, in fact, be streamlined
without significant compromise in the quality of life-cycle cost predictions. The investigation
demonstrated that for practical network applications the present pool of default inputs under link
characterization factors can be at increased from the current 14 to about 20-22.
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The least active factors to the (HDM-III) NPV predictions are: rainfall (MMP), horizontal curvature
(O), superelevation (SP), effective number of lanes (ELANE), surface layer thickness (HSNEW,
HSOLD), compaction of the base layer (CMOD) and the strength code. Others are, the pothole and
raveling calibration factors (Kpp, Kvi), the construction faulty code (CQ), and the cracking raveling
and retardation factors (CRT, RRF). The following factors were shown to be only slightly active: rise
plus fall (RF), altitude (4), shoulder width (WS), subgrade strength (SNSG) and the previous
pavement distresses (ACRAb, ACRWbD).

8.2 Recommendations

In the thesis research, an exhaustive investigation of input factor sensitivities of the HDM-III model
using the Latin hypercube experimental design was demonstrated. Given the promising results

achieved in this study, the following areas are recommended for further research:

1. The investigation presented looked only at two types of pavement (surfacing-base pairs). Future

research work should look at other common pavement types.

~J

The scope of the research in this thesis focused only on a few most common R&M strategies:
patching, resealing and overlay. The intervention criteria reflected the low standards typical in
Tanzania (and other low-income Sub-Saharan African countries). Further work is recommended

to study other strategies at higher policy standards.

3. Since a substantial proportion of the road networks in low income countries consists of unpaved
roads, it would worthwhile to extend the investigation to this class of roads. A starting point
would be the link characterization factors and typical R&M treatment strategies for unpaved

roads.

4. Further investigation could also be carried out to include other factors relevant to R&M priority
analysis. The vehicle characterization factors would be of particular interest. Although
inconclusive, the ceteris paribus results presented in Chapter 6 suggest that some of the factors
in this class are potentially very sensitive to the life-cycle predictions.
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5. The research in this thesis investigated the application of HDM-II for the low-income road
agencies of Sub-Saharan Africa (SSA). The demonstration was based on a case study from a
typical country in SSA. The prevailing vehicle technology, fiscal or macro-economic factors,
input prices and policy standards, all have a bearing on the results presented. It should be
particularly noted that in Tanzania, wage rates are relatively low in relation to vehicle inputs and
prices. Also, road design standards are generally low (modified structural number of 3.5 to 4.5).
Furthermore, intervention levels tend to fair conditions tolerating higher average roughness
(mean IRI = 5.5 m/km). Further research is needed to investigate higher pavement design

standards and intervention policies.

6. Section 6.5 developed a framework for prioritizing data collection resources with respect to
network level application of the HDM-III model. Once the factor sensitivities have been
established, then the data items to which more attention should be paid in allocating the
collection dollars are determined on the basis of the factor sensitivities. An important
prerequisite for this framework for prioritizing data collection resources is costs and/or cost-
effectiveness of collecting such data. The literature is lacking on this relevant area of costs and
benefits of collecting data for pavement management. This is an area that warrants a future

study.

7. The methodology of this research should benefit the upcoming upgrade of the HDM-III model.
Since the HDM4 [ISOHDM 94] is expected to include several enhancements and additions or
improvements of the technical relationships in HDM-III, further research is recommended to
investigate factor sensitivities in the upcoming HDM4 model. Such a study could provide
extremely useful contribution, for example, in a comprehensive user guide on low and high input
data priorities, approaches to local calibration, and on region-specific applications of the new
model.
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A.1.0 Background

The purpose of this appendix is to give a brief profile of the case study region. The role of data in
this research, and the basics of the design and implementation of the data collection work were
discussed in Chapter 4 (see Section 4.6). Given that the transferability of the sensitivity findings in
the study are critically influenced by the base case factors employed, it was considered worthwhile to

provide the context in which the study was conducted.

Most of the material summarized in this appendix are based on a report [Mrawira 95a] submitted to
the Ministry of Works, Communication and Transport (MWCT) of the United Republic of Tanzania
as final product from the field research. Only the bare skeleton is given here; detail discussion would

be found in the cited report.

A.2.0 Executive Summary

The Ministry of Works, Communication and Transport, (MWCT) of the United Republic of
Tanzania, through financial arrangements from the USAID Agricultural Transport Assistance Project
(ATAP), retained the services of Mr. M. D. M. Mrawira, a consultant engineer with the National
Construction Council and currently a Ph.D. scholar at the University of Waterloo, Canada, as an

independent researcher to conduct a study towards calibrating HDM-III to Tanzanian conditions.

The primary objective of the study was twofold. First, to develop and compile a database of input
data required for application of the World Bank’s Highway Design and Maintenance Standards
Model (HDM-III) in priority programming for the trunk and regional road networks in Tanzania.
Second, the study was expected to provide a standard guide to the problem of calibrating the HDM-
Il model to suit local conditions in Tanzania.

A major part of this report discusses the data collection exercise, and highlights the study
achievements and shortcomings with respect to the original scope. The study succeeded in compiling
a substantial amount of the input data required for HDM-III application to network-level works
programming. The collected data are presented in the appendices (bound separately) to the report.
The complete volume of the study database was submitted on floppy diskettes (two 3.5” HD) to the
Ministry of Works (MWCT) in both dBASE-IV and Microsoft Assess file format.
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It must be cautioned that the study success rate in terms of data actually acquired was not one
hundred percent of the target scope; some gaps still exist in the study database. In particular, data
relating to rates of road deterioration, and rates of resource consumption (in vehicle operating costs
estimation) for different makes of vehicles was hard to come by. Such data required historical
records taken periodically for the same subjects over time. Almost all REO’s do not maintain any
such records. The MWCT has yet to identify the need for such data, and therefore, no effort has
ever been committed to acquire such systematic data in Tanzania. The report [Mrawira 95a] points

out areas in the study database that need further improvements.

Roughness data is also a major deficiency in most REOs. The report recommended a road roughness
evaluation protocol based on the TRRL vehicie-mounted Bump Integrator (BI) calibrated by a
MERLIN as an appropriate methodology in Tanzanian settings. To improve the quality of roughness
results, the report recommends a number of precautions and techniques of calibrating the Bump

[ntegrator.

Other areas recommended for improvements are the condition survey protocols. The current MWCT
guidelines on condition survey, based on OECD approach, are inadequate. The rating determined by
this approach is an arbitrary index that does not bear a direct functional relationship with the extent
of road surface distresses. Condition survey data of this form have limited usefulness as a source of
HDM-III input data. The traffic data also are deficient in quality and consistency; there is a need for
updating and improving the current traffic counting protocols. Axle load surveys should be
introduced as a standard part of traffic counting. Also, more counting stations should be introduced
so that any given road link has at one or two traffic counting stations.

A.3.0 Country Profile

A.3.1 Location and Demographics of the Study Area

Tanzania is located in Eastern Africa, bordering the Indian Ocean between Kenya and Mozambique.
It also borders Uganda to the north, Rwanda, Burundi and Zaire to the west. Zambia and Malawi
complete the borders on the South-West. Figure A.1 shows territorial boundaries of the country; the

insert on the map shows the location of Tanzania on the African continent.
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Tanzania has a large territory (slightly smaller than France and Spain combined). Its total area of
945,090 square km (land area 886,040 sq. km) is slightly larger than twice the size of California.
The population was estimated at 28 million (in 1994) with demographic density concentrated on its
geographic periphery. The population growth rate over the last 20 years has been about 2.6 to 3.2%.

The climate varies from tropical along the coast to temperate in the North-East and South-West
highlands. The terrain consists of coastal low plains at 0 to 250 m above sea level, an expansive
central plateau ranging from 300 m to 800 m above sea level and highlands in the North-East and
South-West rising from the Plateau to a series of mountain ranges well above 1500 - 2000 m. Mount
Kilimanjaro, the highest peak in Africa at about 5895 m (19 340 ft) above sea level marks the terrain

in the north.

Land use statistics estimate the arable land as only 5% of the total land. Permanent cropping is
exercised over a meager 1% of the land. Irrigated farming was estimated (1989) as totaling only
1,530 sq. km. Other land use are: meadows and pastures 40%, forest and woodland 47%, and others
7%.

A.3.2 Macro Economic Context

Tanzania is one of the poorest countries in the world. The economy is heavily dependent on
agriculture which accounts for about 60% of GDP, provides 85% of exports and employs 90% of
the work force. Industry accounts for 8% of GDP and is mainly limited to processing agricultural
products (sugar, beer, cigarettes, sisal twine) and light consumer goods. The economic recovery
program announced in mid-1986 has generated notable increases in agricultural production and
financial support for the program by bilateral donors. Growth in 199193 featured a pickup in
industrial production and a substantial increase in output of minerals led by gold.

National domestic product (GDP) — purchasing power equivalent — was estimated in 1993 at $16.7
billion. From these World Bank’s estimates the national product per capita for 1993 was about $600.
National product real growth rate for the same year was estimated at 3.2%. The industrial
production growth rate in 1990 was 9.3%. Mining also plays a strong role in the industrial produce,
the dominant being diamond and gold mining. Other industries are: oil refinery, shoes, cement,
textiles, wood products and fertilizer.
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Most of the agricultural output is produced by small farmers scattered in small rural communities,
while the major markets and processing centers for crops, as well as the distribution points for
agricultural inputs and fuel, are concentrated in urban centers located at considerable distances from

each other and from major coastal sea ports.

A.3.3 The Transportation System

Because of this spatial distribution of human settlements and of production, transportation and
communication assume an extraordinarily important role in Tanzania’s economic development. In
addition to its role of integrating domestic markets, Tanzania’s transport system provides an outlet to
the sea for the land locked countries of Malawi, Zambia, Burundi, Zaire and Uganda. In recent

years, after coffee, the transport sector was the second largest earner of foreign exchange.

Sector Summary

The Tanzanian transportation system consists of:

e A road network totaling about 88,000 km.

e Two railway systems — the Tanzania Zambia Railway (TAZARA) which links Dar Es Salaam
with Zambia and the Tanzania Railway Corporation (TRC) which serves the central and northern
regions and provides transit to Zaire, Rwanda, Burundi and Uganda.

o Four ocean ports of Dar Es Salaam, Zanzibar, Tanga and Mtwara, and two inland ports of
Mwanza and Kigoma. Inland waterways account for cargo and passenger movements in Lake
Tanganyika, Lake Victoria and Lake Nyasa.

e A civil aviation sub-sector consisting of Air Tanzania Corporation, several small airlines, two
international airports and more than 60 smaller domestic airports and air strips. Twelve airports
have permanent surface runways; only 4 of these have runways over 1250m long.

o A fleet of road vehicles of more than 100 000, and
e A 982 km pipeline (crude oil) from Dar Es Salaam to Ndola, Zambia.

The Road Network

The road network is by far the most dominant mode of transport accounting for more than 60% of
the total internal traffic flows. The network consists of about 3 800 km of paved trunk roads, 6 500
km of gravel trunk roads, 17 750 km of regional roads and an estimated 30 000 km of district and
feeder roads, mostly improved and unimproved gravel roads. In addition, there are about 30 000 km
of unclassified roads which are managed by parastatals, national parks and village councils.
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By mid the 1980°s the road network had become severely deteriorated as a result of inadequate
maintenance over several years. It was estimated that only 15% of the trunk and 10% of the rural
roads were in good condition at the start of the Integrated Roads Project (IRP-I) in 1990. As a result
of the World Bank funded IRP-I project the proportion of trunk and rural roads in good condition
has increased by at least 100 and 50% respectively at the start of this field work (1994).

Vehicles and Trucking Capacity

There is limited available data on the size of and characteristics of the vehicle population in the
country. However, the best available estimates suggest a total fleet size of more than 100 000, of
which, 47% are private cars and pickups, 40% commercial vehicles, 7% buses and taxis and the rest
special purpose vehicles. In terms of ownership, the private sector dominates the markets for both
freight and passenger services. The are no regulatory barriers to market entry and markets have been
decontrolled. However, for intra-regional traffic, tariffs are still being established thorough a process
of negotiation between operators and the Regional Transport Coordinating Committees. Similarly in
Dar Es Salaam, bus tariffs are negotiated between the Ministry of Works, Communication and
Transport (MWCT) and private and public operators. Inter-urban and intra-urban (apart from Dar Es

Salaam) passenger transportation is provided entirely by the private sector at market rates.

A.4.0 The Field Work Design and Context

A.4.1 Scope of the Study

The scope of this study was to compile all the basic input data required to apply HDM-II in
maintenance and rehabilitation programs formulation. Two categories of data were envisaged. The
first category was the type of data required for calibration of the pavement deterioration and vehicle
resource consumption relationships in HDM-III. The intention was to construct time series sampling
records from existing data that could be used to model pavement performance and VOC trends. The
second category constitutes the bulk of HDM-III input data proper. This category was dealt with
using a questionnaire survey intended to capture cross-sectional data of the regional road networks.

The study area covered the trunk and regional roads of eleven administrative regions. The study
regions were Morogoro, Iringa, Mbeya and Ruvuma along the TANZAM and Southern Corridors (see
Figure A.1). Others are Tanga and Kilimanjaro on the North Eastern, and Shinyanga, Mwanza and
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Kagera on Central and Lake circuit. And finally, Lindi and Mtwara along the Southern Coastal
corridor. The shaded area in Figure A.1 shows the geographical distribution of the study regions.

The selection was not entirely arbitrary. Most of these regions fall in the so called “core rural
regions™ (under IRP-I); and incidentally all had some Technical Assistance activities going on. It was
considered that this sample will be manageable and yet wide enough to include all the important

geographical, geological and climate as well as economical variations prevailing in Tanzania.

The data compiled constitute very detailed information ranging from road link characterization
attributes (e.g., alignment, environmental factors, current pavement condition, efc.), to maintenance
standards and policies, traffic volumes and growth patterns, and vehicle fleet characteristics and
vehicle operating costs (VOC) data. Appendix B (Study Questionnaire) illustrates the level of detail

desired on each individual data item.

Road roughness data was attached a special interest in this study. The justification was that
roughness values used in most studies, consultants’ reports and in regional action plans have
historically been either purely subjective estimates or measured using an inappropriate approach. An
example at hand is the recent study on TANZAM Highway Feasibility and Pavement Management
{DCIL 92], where the consultant used HDM-III to provide economic evaluation of R & M needs. A
vehicle-mounted bump integrator was used to measure road roughness on the said project; however,

it is considered that the calibration of this roughness equipment was not properly performed.

A.4.2 Respondents’ Profile

A total of 13 questionnaires were completed, one each for the 11 study administrative regions, and
two for the two independently managed highway units (TANZAM and Songea — Makambaku
Highways). A total of 45 respondents were consulted in person (by the researcher) to complete the
13 questionnaires. Table Al shows a profile and distribution of the respondents. As seen in the table,
the number of respondents ranged from 2 to 7 for the regional questionnaires and 2 and 1 for the
TANZAM and Songea — Makambaku highway units respectively. The engineering experience of the

respondents varied from 3 to more than 10 years, most of whom were graduate engineers.



TABLE A.1: Profile of the Questionnaire Respondents
Region / Question Name and Designation of Respondent Number of Experience/

Corridor -naire # Respondents Education

Morogoro 01 Farisi (Asst. PLE), Gumbi (Asst. RRE), 4 3 - 10 years, Adv.
Myovelwa (ME) Diploma, B.Sc.

Iringa 02 A. Andreski (TA -REO), Shaun Kennedy (TA), § 5 - 10 years, B.Sc.,
Mtigumwe (Asst. RRE), Byabato (RE) M.Sc.

Mbeya 03 Mlaponi (PLE), Kitali (ME), Kisaini (Asst. 7 3 - 10 years, B.Sc.
RRE), Kalitwa, (Asst. PLE), Kissanga (RRE),
Massaba (TRE), Kipande (RRE)

Ruvuma 04 Mac Mbwira (PLE), Chambo (RRE), S. 3 5 - 10 years, B.Sc.,
Mwasindila (RRE) M.Sc.

Songea - 0s S. N. Jackson (Unit TRE), C. B. Ayo (Ass. 2 3 t0 5 years, M.Sc.

Makambako TRE)

Kilimanjaro 06 O. C. Machange (Asst. TRE), Laizer (TRE), 4 5 to 10 years, B.Sc.
Harrison (TA to REQ), Mkuzu, Asst. RRE) M.Sc.

Tanga 7 Lyakurwa (TRE), Isige (PLE), Beda (RRE), 4 3 to S years, B.Sc.
Lyimo (RRM)

Shinyanga 08 Mhauka (PLE), G. A. Urio (RRE), E. S. 3 5 - 10 years, B.Sc.
Makundi (TRE)

TANZAM 09 Kabaka (TRE- Morogoro) 1 5 - 10 years, B.Sc.

Highway

Mwanza 10 Damus P. M. Nakei (PLE), Ronald Lwakatare 3 3 -5, 10+ years,
(Asst. RRE), D. Whatley (TA-REQ) B.Sc. M. Sc.

Kagera 11 Kyaruzi (Asst. RRE), ~ (TRE) 2 3 - 5 years, B.Sc.

Mtwara 12 Kyomo (TRE), H. Swalehe (Asst. RRE), 4 3 - 5 years, Adv.
Nkine (ME), Masele (PLE) Diploma, B.Sc.

Lindi I3 Kulaya (Asst. TRE), J. M. Byemerwa (RRE), 3 3 - § years, B.Sc.
Chekachene (TRE)

Key: ME = Materials Engineer. PLE = Planning Engineer. RE = Regional Engineer.
RRE = Rural Roads Engineer. TRE = Trunk Road Engineer. Asst. = Assistant.
TA-REO = Technical Assistance to the Regional Engineer’s office.

A.4.3 Statistics of the Key Data

Link characterization data compiled in the study covered a total of 66 paved road links constituting a
total of 2750 km of roads. Table A2 shows a summary distribution of the paved road characterization
data. Out of the 66 total links, 48 links (1671 km) were roads under REOs’ jurisdictions and 18 links
(1083 km) were under the two independent highway units. The table also shows that the principal
pavement types in the study regions are surface dressing (61%) and asphalt concrete (39%).



A.4.3.1 Profile of the Link Characterization Data

TABLE A.2 Paved Link Summarized by Region

Region / Corridor Number Total Mean (weighted) Mean (weighted) Surface Type
of Links Length (km) Width (m) Shoulder (m) %SD %AC

Kagera 1 33 6.5 1.5 100

Kilimanjaro 12 306 6.0 1.0 100

Lindi 3 90 6.5 0.5 100

Mbeya 8 106 6.7 1.3 4 96

Morogoro 2 262 6.7 1.5 100

Mtwara 2 112 6.5 1.0 100

Mwanza 8 164 6.0 1.3 98 2

Ruvuma 1 20 6.5 1.5 100

Shinyanga 3 197 6.5 1.4 100

Songea - Makambaku 3 295 6.5 1.2 100

Tanga 8 381 6.0 0.9 50 50

TAaNZAM Highway 15 788 6.8 1.5 100

Total or Average 66 2754 6.46 1.28 60.7 393

Key: TANZaM = Tanzania — Zambia Highway, SD = surface dressing, AC = asphalt concrete.

TABLE A.3 Unpaved Links Summarized by Region

Region Number Total Length Mean (weighted) Mean (weighted)
of Links (km) Width (m) Gravel Layer (mm)
Iringa 33 1352 49 55
Kagera 19 1226 54 25
Kilimanjaro 21 490 49 130
Lindi 14 982 5.6 100
Mbeya 43 1332 5.3 110
Morogoro 39 1071 5.2 120
Mtwara 22 1106 4.6 140
Mwanza 60 1300 4.7 50
Ruvuma 35 1571 4.5 65
Shinyanga 22 790 6.4 40
Tanga 26 966 5.1 80

Total or Average 334 12186 5.1 80




A.4.3.2 Summary of the Roughness Data

Roughness data was measured on a sample basis from all the eleven study regions. As shown in
Table A3 a total of 2488 km of roads were measured at an overall sampling rate of 82%. The table
summarizes the distribution of the roughness measurements over the study region. It also shows the
weighed average link roughness values for the study regions. Table A4 shows the mean, the standard
deviation and the 95% confidence interval of the roughness observations on the paved road links.

TABLE A.3 Roughness Measurements Distribution Over the Study Area

Link Paved Total Length Sampling Mean Roughness
Length (km) (km) Rate (BI mm/km)
Kagera 0.0 90.50 89% 6449.74
Kilimanjaro 177.2 238.20 69% 3574.72
Lindi 634 288.60 68% 6364.59
Mbeya 250 308.40 100% 7532.30
Mtwara 100.5 277.50 66% 5292.42
Mwanza 95.0 237.00 64% 5124.13
Shinyanga 136.5 173.50 59% 5124.13
Tanga 325 96.00 100% 5160.47
Tanzam Highway (Dar - Iyayi) 7145 714.50 100% 2131.75
Total (or Weighted Mean) 1344.6 2424.2 82% 4483.94

TABLE A.4 Summary of Paved Links Roughness Data

Link Roughness (BI mm/km) Range (95% Confidence)
Mean STD. DEV. Lower Upper

Isaka - Bukombe - Lusahunga Road (1/4) 35977 368.3 28759 4319.5
[saka - Bukombe - Lusahunga Road (2/4) 2582.4 207.5 21758 2989.1
[saka - Bukombe - Lusahunga Road (3/4) 3506.5 473.5 2578.5 4434.6
Isaka - Bukombe - Lusahunga Road (4/4) 4306.2 628.1 3075.1 55373
KMT (Arusha Rd. jctn.) - Machame Road 4456.0 1113.6 22733 6638.8
Masasi - Naganga (Lindi brd) (1 of 2) 2757.1 7139 1357.8 4156.4
Masasi - Naganga (Lindi brd) (2 of 2) 2640.7 360.5 1934.1 33474
Mingoyo - Masasi Road (1 of 2) 2647.2 394.0 1875.0 3419.5
Mingoyo - Masasi Road (2 of 2) 2902.4 817.7 1299.7 4505.2
Mkomazi - Same - Himo Jetn (1 of 2) 3907.6 763.2 24116 5403.5
Mkomazi - Same - Himo Jctn (2 of 2) 2376.5 423.1 15473 3205.7
Mtwara - Lindi Road (1/2) 4738.7 1263.9 2261.4 7216.0

Mtwara - Lindi Road (2/2) 34570 997.0 1502.9 5411.2
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TABLE A.4 Summary of Paved Links Roughness Data (continued)

Link Roughness (BI mm/km) Range (95% Confidence)
Mean STD.DEV. Lower Upper

Musoma - Mwanza (1/2) 34449 3309 2796.4 4093.4
Tanga - Segera - Chalinze Rd (1 of 2) : 13414 742.5 775.0 2796.6
Tanga - Segera - Chalinze Rd (2 of 2) 15779 212.5 1161.5 1994.4
Tanzam Highway (Dar Es Salaam to Iringa) 1855.5 1629.0 780.0 5048.3
Tanzam Highway ([ringa to Iyayi) 2786.5 1119.2 915.1 4980.1
Tanzam Highway (Uyole to Mbeya) 2052.9 210.6 1640.3 2465.6
Tanzam Highway (Tunduma to Mbeya) 1752.9 165.2 1429.1 2076.7
Uyole to Ibanda (Malawi Road) 17529 165.2 14291 2076.7
Minimum Link mean value 13414 165.2 775.0

Maximum Link mean value 4738.7 1629.0 7216.0

A.4.3.3 Summary of Vehicle Operation Cost Survey

The vehicle data was collected from eight regions (see Table AS5) and consisted of a total of 44
records ranging from 3 to 13 vehicle class types per region surveyed. Table AS also shows that data
collected ranged from 2 to 14 per vehicle class. Tables A6 and A7 present summaries of the key
vehicle operating data by vehicle model and by MWCT vehicle classification respectively.

TABLE A.S Distribution of VOC Data Respondents

Number of Respondents per Vehicle Class
Region Car Pickup L.Bus S.Truck L.Truck Semi Trailer Full Trailer Total

Morogoro 2 1 1 2 1 7
[ringa 1 1 I 2 7 1 13
Mbeya 2 1 3
Ruvuma 3 1 4
Shinyanga 1 3 4
Mwanza 4 3 7
Kagera 1 3
Mtwara 2 1 3
Total 3 8§ 2 § 14 7 ] 4

Key: L = large; S= Small = less than 25 passengers(bus)/ less than 5 tons (truck)
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TABLE A.6 Summary of the Vehicle Operating Costs Data (continued)

Vehicle Model Payload No. of Axles Tires vKmT Rates of Consumption Source Firm
Euel Lubricants Yires
Nissan CKB 31 10 2 8 48,000 0.550 0.0002 Miwara RETC
Nissan CKB 31 10 2 ) 0.470 0.0049 0.0001 KAURU (Ruvu
NISSAN CKB 3 10 2 6 0.500 0.0109 0.0003 MBEYA RETC
NISSAN CKB3 10 2 ] 108,000 IRINGA RETC
Nissan OKB31 10 2 6 46,000 0.500 0.0013 0.0002 Moretco
Peogeot 404 2 4 225,000 Msuya garage/
Peogeot 504 2 4 Mindu Tours (Ir
Peogeot 504 2 225,000 Msuya garage/
SCANIA 93 40 6 22 40,000 M/S S, T. ABRI
SCANIA 113E 42 6 22 60,000 0.600 0.0058 0.0055 M/S F. M. ABR
SCANIA 143 50 6 22 40,000 M/SS. T. ABRI
SCANIA FO3H " 2 6 150,000 MW/S COMFOR
Scania HR83 F 2 8 208,000 | Hood Bus Serv
Toyota LUC HJ7 2 4 70,000 0.127 0.0001 SHIRECU
VOLVO 50 5 18 50,800 0.0018 M/S S. T. ABRI
VOLVO N12,V 50 6 22 60,000 0.700 0.0082 0.0055 M/S F. M, ABR

Mean value 20 " 78,065 0.485 0.0073 0.0010
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TABLE A.7 Vehicle Operating Costs Data Summarized by Vehicle Type

MoW VehType Payload Num of Asles  Ann Hrs Driven  Fuel Rate Engine Size  Lubricants rate SourceCompany
0
9 IRINGA RETCO
15 3 MBEYA RETCO
12 3
1
2 2,400 , 1,680 Msuya garage/ Mara T
2 2,400 1,680 Msuya garage/ Mara T
2 1,91 Mindu Tours (Iringa0
2 2,400 1,777
2
2 2,000 2,000 Msuya garage/ Mara T
2 0.127 3,980 SHIRECU
2 2,000 0.127 2,99 '
4
2 2,770 9,000 Hood Bus Services Ltd.
11 2 2,250 9,800 M/S COMFORT LTD

11 2 2,510 9,400

(XS

1
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TABLE A.7 Vehicle Operating Costs Data Summarized by Vehicle Type (continued)

MoW VehType Payload Numof Axles  Ann Hrs Driven  Fuel Rate Engine Size  Lubricants rate SourceCompany
50 5 1,300 00018 M/SS, T, ABRI
50 6 0.700 00082 M/SF.M, ABRI
50 6 M/S S, T, ABRI
“ 6 1,350 0.567 9,000 0.0053
8
15 5 16,000 IRINGA RETCO
15 6 0.900 16,031 0.0206 MBEYA RETCO
30 3 0.700 14,886 Miwara RETCO
30 5 0.900 14,886 00023  Moretco
30 6 0.470 16,031 00124  KAURU (Ruvuma Retc
24 5 0,742 15,567 0.0118
Grand Means: - )
20 3 2,074 0.485 8,637 0.0073

v
)
2}
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QUESTIONNAIRE FOR UPDATING TRUNK (& REGIONAL)
ROAD INVENTORY DATA FOR PLANNING REQUIREMENTS

Region or Office:
Persons Interviewed:
Interviewer:

Date:

INTRODUCTION;

Thank you for agreeing to be one of our valuable respondents to this questionnaire survey to establish road
maintenance and inventory data.

This research is being undertaken jointly between the Ministy of Communication and Works, National
Construction Council (NCC) and the University of Waterloo in Canada. Although it is primarily part of a PhD
thesis research by Mr Mrawira, it is also a response to one of Ministry's immediate research needs, particularly
under the current Management Action Group (MAG) objectives. The purpose of the study based on this
questionnaire is to compile updated road network characteristics and inventory data required for planning and
programming maintenance and rehabilitation investments. The target roads are the trunk and regional networks.

The primary objective of the overall research is to calibrate a simplified methodology based on the World Bank's
HDM-III model for the specific application in maintenance options analysis in Sub-Saharan Africa. The research
will, in essence, attempt to develop sets of default input parameters for the HDM mode! that can evenmally be
used to speed up the process of input files preparation for maintenance and rehabilitation needs analysis. It is
anticipated that such an approach will make the HDM model more easily adaptable in day to day planning,
programming and budgeting applications for Regional Engineers as well as Ministerial needs, and therefore offer a
valuable improvement in pavement management technology in, not only Sub-Saharan Africa but in all low-income
countries.

Given the above research goal, the use of the data collected in this effort is considered very central w0 both the
success of the research itself and the validity of the simplified model for your region. We therefore request you to
provide the information asked in this questionnaire as carefully and as accurate as possible. In case you are not able
to provide an answer based on records to any given question, please provide an estimate and mark it as personal
estimate.

qpl



S DEFINITION

1. A linkis defined as a road length with the unjform traffic throughout its entire length; whereas a section of a
link has uniform road geometry, pavement type, climate and condition.

1.1 Paved Roads Link Characteristics: For the main trunk/ regional roads, provide the following
information for each individual road Link; attach more sheets if necessary.

Road Link (give origin and destination for each)

Information 0:

Traffic volume (AADT)

Road Length (km)

Average rainfall (mm/yr)

Rise pius fall (est.)

Horizontal curvature (est.)

Carriageway width'(m)

Shoulder width (m)

Surface type'

Thickness of surface layer* (mm)

Thickness of old susf. layer’ (mm)

Thickness of base layer(s)* (mm)

Subgrade CBR (or strength est.)

Structural number, SN

Benkelman deflection (link ave) (mm)

Year of last Deflection measurement

Area cracked (%)

Area ravelled (%)

Area pothole (%) _

Mean rut depth (mm)

Likely error in rut depth (%)

Year last constr or overlay

Year last resealed

Roughness (or riding quality est.)’

Roughness Unit

' Surface treatment, hot rolled asphals, etc.

*  Ifthe road has been resurfaced, please give the most recent layer thickness.
3 This represents a situation where the original surface have been resurfaced or overlaid.

*  Inasituation where a base layer plus another (sub-base) layer of lower quality material may have been used.
% If actual number is available, like International Roughness Index (IR)) it can be used: otherwise a subjective estimate of very

good, good, fair, poor or very poor can be used.



12 Unpaved Roads Link Characteristics: For trunk or regional roads netwurk, please provide the following
information for each individual road link; attach more sheets if necessary.

Road Lisk (Origin and Destination)

Information 0:
’ D

Traffic volume (AADT)

Road Length (km)

Average rainfall (mm/yr)

Rise plus fall (est.)

Horizontal cusvature (est.)

Carriageway width (m)

Shoulder width (m)

Gravel type (volcanic/Nateritic)

Gravel thickness (mm)

Initial roughness®

Roughness Unit

Material properties of syrface gravel:
Pctc. passing at sieves: 2.0 mm
0.425 mm
0.07S mm

Plasticity index

Material properties of base gravel:
Perc. passing at sieves: 2.0 mm
- 0.425 mm

0.07S mm

Plasticity index

Minimum and maximum roughness’

Mechanical compaction (Y or N)

Year last constr. or regravelled

Year last reshaped (decp grading)

Subgrade CBR (or strength est.)

& see footmote S under question 1.1.

7 The roughness and range of roughness of the surface is function of for example material properties, give the possible range of
values for the material.

ap3



1.3 The following questions relate to your answers to 1.1 and 1.2 above. Please mark [with x] the most
appropriate response:
1.3.1 How was the horizontal curvature for each link obtained?
[A) personal estimate or guess
[B] from design drawings or construction records
[C] other (please specify)

1.3.2 How were the pavement layer thicknesses estimated?
[A] personal estimate or guess
[B] from design drawings or construction records
[C] core drilling, dynamic sounding, or other non-destructive method.

1.3.3 Does your agency conduct regular visual inspection to estimate pavement condition (cracking,
ravelling, damaged area, pot-holing, etc.) O Yes O No

If yes to 1.3.3 then, answer sub-questions 1.3.3.1 to 1.3.3.4; otherwise skip.

1.3.3.1 Which paved road pavement distresses are normally evaluated. Mark [x] all applicable.
[A] cracking [B] ravelling [C] potholes [D] rutdepth [E] arca damaged.

1.3.3.2 Which unpaved road distresses are normally evaluated? Mark [x] all applicable.
[A] gravel loss [B] corrugations . [C] dusting
[D] rutting [E] general damage [F] potholes
[G] comfortable speed  [H] other (specify) .

1.3.3.3 How frequent are the road inspections? Mark [x] the most appropriate.
[A] never [B] for rehabilitation design only
[C] once biannually or less  [D] once annually or more.

1.3.4 How often does your agency conduct pavement strength evaluation (e.g., deflection)?
[A] pever [B] for overlay or other rehabilitation design only
[C] once biannually or less [D] once annually or more.

1.3.5 Does your agency conduct pavement riding quality or roughness
evaluation? 0 Yes O No

If yes to 1.3.6 then answer sub-questions 1.3.5.1 and 1.3.5.2, otherwise skip.

1.3.5.1 State the equipment used for roughness measurement:

1.3.5.2 What is the frequency of roughness measurements:
[A] never (B] for overlay /other rehabilitation design
[C] once biannually or less  [D] once annually or more.
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Part2 MAINTENANCE STANDARDS, POLICIES AND UNIT COSTS
2.1 Please provide the most recent unit costs of individual road maintenance operations or tasks (based on, for
example, contract bids or force-account rates). Attach more pages'if necessary.

Unit Cost of the Maintenance Operatioa by
Maintesance Operation or Work | Applicable | Application | Unitof |Economic®| Financial®| Foreign
Type Surface Criterion | Measure Exchange
Cold/hot mix patching Tsh/sq. m.
Slurry seal, reseal? Tsh/sq. m.
Single surface dressing (8..12mm) Tsh/sq. m.
Double surface dressing (20..30mm) Tsh/sq. m.
Hot mix asphalt overlay 25mm Tsh/sq. m.
Hot mix asphalt overlay 40mm Tsh/sq. m.
Hot mix asphait overlay 50mm Tsh/sq. m.
Routine maintenance (incl. signs, Tsh/kmfyr.
vegetation, drainage, roadside, cic.)
Light grading gravel rd ((2.5 m*/m) . Tshkm
Heavy grading gravel rd ()2.5 m’/m) Tsh/km
Regravelling 50mm Tsh/km
Regravelling 7Smm Tsh/km
Regraveling 100mm Tsh/km
Spot regravelling Tshe/m®
Light grading earth roads Tsh/km
Heavy grading earth roads Tsh/km
Other (specify)

2.2 A mainenancestandard is defined as a set of operations with definite intervals or other criteria to determine
when to carry them out. What are the most common criteria in your agency?
[A] fixed time interval [B] deterioration level [C] weighted by traffic
[D] cumulative axle load ESAL  [E] other (specify)

2.3 What is the total number of kilometres of road (by class or surface type) under your jurisdiction?
[A]Pavedtrunkroads = [B] Unpaved trunk roads
[C] Paved regional roads [D] Unpaved regional roads

2.3.1 What is the minimum annual level of road maintenance funds requirements for your region?

Economic costs represent the value of goods or services when the wider social sacrifices or opportunities foregone (o deliver
the goods or services are considered.

As opposed 1o economic costs financial costs reflect the actual money paid in return for goods or services, whether taxes, duties
are applicable or not.

/1157
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[A] 50% or less {B] 60 w0 80% [C]SO%ormote

2.3.3 Does your agency keep any cost records for completed and or ongoing maintenance and rehabilitation
works? OYes 0O No

2.4 Doesyomofﬁeemmmnmmumnmdan,a:ﬂwhmleopuamgmdmbase(uummmw-m°
OYes 0O No
Part3 TRAFFIC VOLUME AND GROWTH CHARACTERISTICS

3.1 For each road link provide the most recent wraffic data in terms of annual average daily traffic (AADT)
classified into the following vehicle types (attach extra sheet if necessary):

Road Link Average Daily Traffic for vehicle type:

Origin Destination Pickup| Bus | Bus ]Trucks| Trucks | Semi Full
L/R | <25p|>25p ] <5t >St | Trailer | Trailer

3.2 What is the likely traffic growth wends in your region for the next 20 years? In the table below give growth
projections indicating the periods with different growth rates.

Traffic Growts Rates (in %) for vehicle type:

Traffic Growth Period Car { Pickup | Bus | Bus | Truck | Truck | Semi Full
LR | <28 | >25p <St >S5t | Trailer| Trailer

Growth Period 1 (0 - § years)
Growth Period 2 S - 10 years)
Growth Period 3 (10 - LS years)
Growth Period 4 (15 - 20 years)

3.3.1 How often does your agency conduct traffic surveys?
O never O for rehabilitation or new road design only
O once biannually or less [ once annually or more



4.1

3.3.2 What is the common method of traffic survey?
[A] 12-hours 7-days spot counts
[B] 12-hours 3-days spot counts
[C] 16-hours 7-days spot counts
[D] 16-hours 3-days spot counts
[E] Other methods (please specify)

3.3.3 Does your traffic data include observation of seasonal variation? OYes ONo
3.3.4 Areaxle loadings data collected as part of your traffic surveys? OYes ONo
3.3.5 What will you estimate as the accuracy of the traffic (AADT) data?

D 10% orlesserror O 10-20% error 0 20 - 40% error O 40% or more etror
3.3.6 How accurate would you put the traffic growth rates at?

030%orlesserror [130-60% eror 0 60% or more error

For each of the main corridors or road classes in your region give your estimaie of the average
characteristics of a typical vehicle in each class below.

Firm / organisation
Applicable road classes or cotridors

This section would ideally be addressed to respondents from local transporting companies, e.g., taxi operators, ‘daladala’
owners, trucking firms, eltc. If however, the Regional Engineers Office cannot advice the interviewer of reputed transport firms
in the region, then it is requested to provide estimated response to this section.

ap7



Vehicle Characteristic

Vehicle Type or Class

>25p

Trucks
<5t

Trucks
>S¢

Maximum engipe power (metric HP)

Gross vehicle weight (tonnes)

Number of axles (or tires)

each vehicle class

Average Axle or (axie-group loads for

Financial Unit Costs:

Cost per new vehicle

Cost per new tire

Vehicle repair labour cost per hour

Driver & crew salary per hour

Anmual overhead/standing cost

Interest rate on new vehicles

Gasoline price per litre

Diesel price per litre

Lubricants cost per litre

Cargo delay charges per veh-hour

Annual kilometres driven per veh

Estimated vehicle life in years

Hours driven per year

Number of passengers per vehicle

Economic Unit costs:

Cost per new vehicle

Cost per new tire

Vehicle repair labour cost per hr

Driver & crew salary per hour

Annual overhead/standing cost

Interest rate on new vehicles

Gasoline price per litre -

Diesel price per litre

Lubricants cost per litre

Cargo delay charges per veh-hour

Annual kilometres driven per veh

Estimated vehicle life in years

Hours driven per year

Number of passengers per vehicle

Constant kilometres driven per year
Constant hours of use per year

~
(19 ]



APPENDIX C

The Pre-processor Flow Chart and Source Code (C+ +)
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FIGURE C.1

[ Extract NPV/LCC values for each stmtegy_]

[Write NPV/LCC summary file|

The pre-processor (for computing the design data through HDM-III) flow chart



235

The Pre-processor C+ + Source Code

/* REVISED April 19, 1996. By Donath Mrawira */
/* This Program is a Preprocessor for Series A, HDM-III Model input file */

/* The program reads from a file "SOURCE.DAT" an array of 39 values */

/* Arranged in 7 columns times 6 rows where the first value is used as a label */

/* The program writes out the formatted file "PAVEOA.TXT" and then calls the */

/* Model by a batch call "runhdm.bat < run.txt". Both RUNHDM.BAT and RUN.TXT */
/* Have to be in same directory. Also, the other 6 HDM-III input files (listed */

/* in run PAVEOR.TXT file) must be present. */

/* The program next reads the HDM-III output file "REPORT.OUT */

/* First it extracts Undiscounted Economic Cost Totals Under "Cap+Rec", Existing */

/* VOCs" and "Total Econ. Costs”. The values are written to file: "CONDITN.DAT */

/* Then it extract NPV values to another file: OUTPUT.DAT. */

/* Note that if the files CONDITN.DAT and OUTPUT.DAT exit they will be appended. */
/* For each new run of an experimental batch, the user has to move or rename */

/* the files SOURCE.DAT, CONDITN.DAT and OQUTPUT.DAT */

/* This version assumes (base, surface) combination: (1, 2), i.e. */

/* Asphalt Cement (AC) on Granular base */

JRERRRRRRRkRkkkk ek kR R ERE Fdekkkikk REEEXXEXXEREREXFXFEEREERRKEEXERREREXE ¥ ]

#include <stdio:h>+
#include <math.h>:
#include <string:F>
#include <stdlib.h>=.
#include <conio:h>=;
#include <p!0¢0§S.lijZ

void cost_sum(int case_num);
void extract(int case_num);
void main()
{
FILE *fp_data; /* pointer for the Series A source data */
FILE *fp_format; /* pointer for the formatted Series A data */
char input_str{1000]; /* pointer for reading one line of input */
char temp_input(300];
float xf[39];  /* an array variable for breaking down the line string into ind. values */
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char temp_str[20];
int count,loopvar; /* counter variable */
int num_lines=0;

fp_data=fopen("source.dat","r");
if (fp_data==NULL)
{
printf("Error. Cannot open the input data file\n");
printf("Exiting\n");
abort();
}
while ((fgets(input_str,500,fp_data))! =NULL)
{
/* Get a string of data */
/* And the next six lines as well, because one set of data is in a 7 lines */
for (loopvar=1;loopvar <7;loopvar+ +)
{
fgets(temp_input,300,fp_data);
strcat(input_str,temp_input);
}
/* Now break the data down into individual floating point numbers */
strepy(temp_str, strtok(input_str,” \n"™));
/* throw the first item out. It is a line identifier */

for (count=0;count <39;count+ +)
{
strcpy(temp_str,strtok(NULL," ™));
xf[count] =atof(temp_str);
}
/* Now write the data to file */
fp_format=fopen("paveQa.txt","w");
if (fp_format==NULL)
{
fclose(fp_data);
printf("Error cannot open the output file for writing the formatted data\n");
printf("Exiting\n");
abort();

}
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fprintf (fp_format, "LINK T703Nyanguge - Magu 1 A10l \n");
fprintf (fp_format, "SECTION 1 26.0 A102 \n");
fprintf (fp_format, " SECTION DATA P ALL A201 \n");

/* now lets write in HDM format the read variables into the file "pavela.oa” */
fprintf (fp_format, " ENVIRONMENT %6.4f %6.1f A202 \n",xf[0]/1000.,xf1]);
fprintf (fp_format, " GEOMETRY %6.1f %6.1£%6.3%6.2{%6.4f%6.4f A203

\n" xf[2],xf[3],xf[4],xf[5],xf[6],xf[7]);
fprintf (fp_format, " SURFACE PAVD 2 1 1%6.1£%6.1f A204 \n" xf[8],xf[9]);
forintf (fp_format, * BASE/SUBGRADE 1%6.2f 1%6.1£%6. 1£%6.1f A205

\n",xf{10],xf]1 1],xf{12],xf{13]);

/* select strength code: and insert corresponding values of SN or DEF */
if (xf[14] == 1)
{
fprintf (fp_format, " STRENGTH PARAMETERS | %6.4f %6.2f A206\n", xf{15],
xf{16]);
}
else
{
if (xf[14] == 2)
{
fprintf (fp_format, " STRENGTH PARAMETERS 2 %6.4f A206\n", xf[15]);

}

else

{
fprintf (fp_format, " STRENGTH PARAMETERS 3 %6.2f A206\n",xf[16]);

H
} 7* end if for strength code */

fprintf (fp_format, " DETERIORATION FACTORS %6.3f%6.3f%6.3£%6.3t%6.3f %6.3f
%6.3f A208\n" xf]17],xf]18],xf]19}],xf]20]),xf121],xf[22],xf[23]);

fprintf  (fp_format, " CONDITION %6.1£%6.1£%6.1£%6.1£%6.1%6.2(%6.3%i
A209\n",xf[24],xf[25],xf[26], xf[27],xf[28],x{129},xf[30], (int)xf[31]);

fprintf (fp_format, " HISTORY %6i%6i%6i%6.2£%6.2f%6.1f%5.1f A210\n", (int)xf[32],
(int)xf[33], (int)xf[34], xf[35],xf[36], xf[37], xf]38]);

fprintf (fp_format, "END LINK A211 \n");



fprintf (fp_format, "END SERIES A212 \n");
fclose(fp_format);

/* Now call the HDM-III program by DOS Command. Note that the batch file */
/* RUNHDM.BAT must be in the same directory as this code. The batch file is also */

/* Where “RUN.TXT" is another text file with filename for */
/* run control; and PATH = directory of HDM executable files. */

if (system("runhdm”™)==-1)
{

printf("cannot run hdm\n");

printf("Exiting\n");

exit(0);

}

/* Now call the codes which extracts the data from the results file */
printf("Number of runs so far: %i\n", + +num_lines);
cost_sum(num_lines);
extract(num_lines);

} 7* end while loop */

fclose(fp_data);

fclose(fp_format);

exit(0);
return;

} 7* end main */

/* The following code extracts the undiscounted Cost Summary for "Report.out” file */
void cost_sum (int case_num)

{

FILE *fp,*fp3;

char inp_str[150};

float trf[501;

char tmp_str[20];

int count=0;

int found;

int linkid =0;

fp =fopen("report.out”,"r");
fp3 =fopen("conditn.dat","a+");
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/* modified to supply the run control file by adding the line "C:\PATH\HDMI.EXE <RUN.TXT"; */



if (fp==NULL)
{
printf("Error! Cannot Open Results File!!\n");
abort();
}
if (fgets(inp_str,500,fp)==NULL)
{
fprintf(fp3, "Case #%i NA NA NA NA NA NA NA NA", case_num);
fprintf(fp3,” NA NA NA NA NA NA NA NA NA NA NA NA\n");
fclose(fp3);
fclose(fp);
return;

}
for (linkid =0;linkid < 5;linkid + +)

{
found =0;
while (found ==0)
{
fgets(inp_str, 120,fp);
strcpy(tmp_str,strtok(inp_str,” \n"));
if (strcmp(tmp_str, "ECONOMIC:")==0) found=1;
}
for (count=0;count < 8;count + +)
{

strcpy(tmp_str,strtok(NULL,™ ™));
trf{count] = atof(tmp_str);
}
fprintf(fp3," %9.3f %9.3f %9.3f",trf[0] +trf] 1],trf[2],trf[ 7]);
}
fprintf(fp3,"\n");
fclose(fp3);
fclose(fp);
return;
}/* end extract Cost Summary Routine */

/* The following code extract NPV values from the HDM report file: “REPORT.RPT” */

void extract (int case_num)

{



int count=0;

int num_so_far=0;
FILE *fp,*fp2;

int found =0;

char input_str{300];
char temp_str(20];

tp =fopen("report.out”,"r");
/* the HDM-III Output (report #11) must be in file named REPORT.OUT */
tp2 =fopen("output.dat”,"a+");
/* NPV values will be stored in a file named OUTPUT.DAT */
if (fp==NULL)
{
printf("Error!! Cannot open results file\n");
printf("Exiting\n");
exit(1);
H
if (fgets(input_str,500,fp)==NULL)
{
fprintf(fp2,"Case #%i NA NA NA NA NA NA NA NA", case_num);
fprintf(fp2,” NA NA NA NA NA NA NA NA NA NA NA NA\n");
fclose(fp2);
fclose(fp);
return;
}
/*Now throw out all the irrelevant lines in the file */
found =0;
while (found = =0)
{
fgets(input_str,500,1p);
strcpy(temp_str,strtok(input_str, " "));
if (strcmp(temp_str,"T703") = =0) /* The code expects the link code used to be T703 */
found=1;
}
/* Now get the NPV values. There should be 20 of them */
/* throw out the next line. */
fgets(input_str,500,p);
while ((fgets (input_str,500,fp))! =NULL)



{
strcpy (temp_str,strtok (input_str,” "));
for (count=1;count < 14;count+ +)

strcpy (temp_str,strtok(NULL," ")); /* get the 14th item, net pres val */

if (strcmp (temp_str, "\0")! =0)

{

fprintf (fp2,"%7.2f ", atof (temp_str));

num_so_far++;

}

if (num_so_far==4)

{

found =0;

num_so_far=0;

while ((found ==0)&& ((fgets (input_str, 500, fp))!=NULL))
{

strcpy (temp_str,strtok (input_str,” "));

if (strcmp (temp_str,"T703") = =0)

found=1;
}
}
Fgets (input_str,500,fp); /*throw out every 2nd line */
}
fprintf (fp2,"\n");
fclose (fp);
fclose (fp2);

} 7* End extract NPV values Routine */

241



APPENDIX D

Diagnosis of the Stochastic Predictor: Cross Validation Residual Plots

Figure D.1 The predicted NPV (ADT 264) versus the predictor variables
(See Section 6.3.2.1 and Figure 6.8)
Figure D.2 The predicted LCC-VOC (ADT 1000) versus the predictor variables

(See Section 6.3.2.3)

Key: NPV = net present value of the total life cycle costs savings of the R&M
strategy STP1 over STPO; pavement type: asphalt concrete (AC) on
granular base; traffic: 264 ADT; discount rate = 10% per year.

LCC-VOC = users’ (VOC) life-cycle costs for the R&M strategy STP4; pavement
type: asphalt concrete (AC) on granular base; traffic: 1000 ADT
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GLOSSARY
AC Asphalt concrete; hot rolled asphalt mix pavement wearing course.
AC/GB Asphalt concrete on granular base pavement.
ADT (AADT) Average Daily Traffic (Annual Average Daily Traffic).
ASCII American Standard Code for Information Interchange; 256 character set also called plain text
BI Bump Integrator, the TRRL’s fifth wheel Towed Bump Integrator Index of Roughness.
BLUP Best linear unbiased estimator (predictor).
CPU Central processing unit.
CBR California Bearing Ratio.
DOS Disk operating system.
EBM Expenditure Budgeting Model [Watanatada 87b].
ESAL Equivalent Standard Axle load. The 8.2 ton (18 000 Ib), dual wheel axle load equivalent.
HDM-VOC The HDM-HI Vehicle Operating Cost Model; a limited version of HDM-III model.
HDM4 The forthcoming upgrade of HDM-III [ISOHDM 93].
HDM-III The Highway Design and Maintenance Standards Model [Watanatada 87a].
HDM-PC The micro-computer (DOS) version of the HDM-III model [Bank 89].
IRI International Roughness Index; unit of road roughness.
IRR Internal rate of return.
[SOHDM International Study on Highway Development and Management tools [ISOCHDM 93].
LCC Life-cycle costs; LCC-VOC: users’ life-cycle costs; LCC-R&M: agency life-cycie costs.
MoW Ministry of Transportation, Communication and Works, Tanzania.
MLE Maximum likelihood estimator (estimation).
NPV Net present value (worth).
pdf probability density function.
PMS pavement management system.
R&M rehabilitation and maintenance; road preservation activities.
RODEMAN Road Deterioration and Maintenance Effects Model. A limited version of HDM-III model.
RONIS Road Network Improvement System [Turay 90, 91].
RTIM3 (RTIM2) Road Transport Investment Model; version 3 (2) [TRRL 86, Cundill 95].
SD Surface (double) dressing, also called surface (double, triple) treatment.
SD/CB Surface dressing on cement stabilized base pavement.
SD/GB Surface dressing on granular base pavement.
SSA Sub-Saharan Africa. The Africa region south of the Sahara excluding the South Africa.

STPO (... STP4)  Codes for paved road R&M treatment strategies, also called maintenance alternatives.
vOoC Vehicle Operating Costs.



Link Characterization Variables

A
ACRA
ACRAb
ACRW
ACRWbH
AGEI
AGE2
AGE3
APOT
ARAV

CMOD
COMP
cQ
CRP
DEF
ELAN
HSNEW
HSOLD
Kci
Kcp
Kge
Kgp
Kpp
Krp
Kvi
MMP
oI
RDM
RDS

SN
SNSG

Altitude [above mean sea level] (m).
Area of all cracks (%).

Area of previous all cracks (%).

Area of wide cracks (%).

Area of previous wide cracks (%).

Age of preventive treatment (years).
Age of surfacing (years).

Age from last re-construction (years).
Area of potholes (%).

Area raveled (%).

Horizontal curvature (degrees/km).
Resilient modulus of soil cement (GPa).
Relative compaction (%).

Construction faulty code [yes /no].
Cracking retardation time (years).
Benkelman beam deflection (mm).
Effective number of lanes.

Thickness of new surface layers (mm).
Thickness of old surface layers (mm).
Cracking initiation calibration factor (dimensionless).
Cracking progression calibration factor.
Roughness-age term calibration factor.
Roughness progression calibration factor.
Pothole progression calibration factor.
Rut depth progression calibration factor.
Raveling initiation calibration factor.
Average monthly rainfall (mm).

Roughness (IRI m/km, other units: Bl mm/km and QI km™).

Mean rut depth (mm).

Standard deviation of rut depth (mm).

Rise plus fall (m/km).

Raveling retardation factor.

Structural number.

Subgrade strength in CBR (%) [ =California bearing ratio].
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SP Superelevation (%).
w Carriageway width (m).
ws Shoulder width (m).
Vehicle characterization variables
AKM, vehicle base annual utilisation.
ALPHAI Unit fuel efficiency factor.
BETA Weibul shape parameter.
COLH Constant term in the LH - PC equation.
CosP Constant term: in the exponent of the QI - PC equation.
corc Constant term in the tire wear equation.
CLHPC The PC exponent in the LH - PC equation.
CLHQI QI factor in the exponent of the LH - PC equation.
CRPM Calibrated engine speed (rpm).
CSPQOI Roughness coefficient in the exponent of the Qf - PC equation.
CTCTE Tire wear coefficient.
EVU, Base elasticity of vehicle annual utilisation.
GVW Gross vehicle weight (metric tons).
HPDRIVE Usable driving power (metric horse power, HP).
HRD, Base number of hours driven per year.
HPRAKE Usable braking power (HP).
PAYLOAD Payload (metric tons).
QIOSP Limiting O/ at which the Qf - PC equation becomes linear.
VDESIROPV Limiting desired speed for paved road (m/s).
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