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Abstract 

The mid-rise building with vertical combination of framing systems consists of a structural system in 

which the seismic-force-resisting-system (SFRS) of the upper structure is commonly a lightweight 

structural system such as cold-formed steel (CFS) frame or wood frame, while the SFRS associated 

with the lower one adopts a traditional structural system, such as reinforced concrete (RC) or 

structural steel frame. In current practice, the presence of: (a) vertical irregularities on mass and 

stiffness, and (b) damping difference between lower and upper structures creates challenges for the 

seismic design of such buildings. Presented in this thesis is research with aiming to solve the 

challenges arising from the foregoing two aspects in relatively simple and practical ways. 

Because of the mass irregularity in the vertical direction, the stiffness arrangement for the lower 

and upper structures in the combined framing system is quite different from that of the “regular” 

building. A simplified approach is proposed for the determination of storey-stiffness arrangements of 

such buildings based on the pre-determined mass distribution and specified storey drift limit. In 

addition, by considering both the mass and stiffness irregularities, two manually-based simplified 

methods, i.e., modified equivalent lateral force procedure (ELF) and two-stage analysis procedures, 

are proposed to evaluate seismic loads of the combined framing systems. The simplified approaches 

to determine the required storey-stiffness arrangements and compute seismic loads are developed 

based on the USA standard American Society of Civil Engineers 7 (ASCE 7) (ASCE, 2010) at first. 

Then, by considering the difference in seismic design provisions between ASCE 7 and the Canadian 

code National Building Code of Canada 2010 (NBCC 2010) (NBCC, 2010), several modifications are 

made on the simplified approaches based on ASCE 7 for their Canadian application. 

In the proposed approach to evaluate the storey-stiffness arrangements, the effects of the interaction 

between the lower and upper structures in terms of mass and stiffness on the seismic load are 

investigated. The feasible stiffness arrangements can be obtained based on the required relationship 

between the stiffness of the lower structure and that of the upper one determined by the proposed 

approach. Two examples are presented to demonstrate the efficiency of the proposed approach. The 

result obtained from the proposed approach is justified by the code-specified modal response 

spectrum analysis. The two examples demonstrate that the relative seismic weight between the lower 

and upper structures has a significant influence on the required stiffnesses of the lower and upper 

structures. In general, when the number of the storey and total seismic weight associated with the 

lower structure are much greater than those of the upper one, the required stiffness of the upper 

structure will be greatly affected by the interaction between lower and upper structures in terms of 
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mass and stiffness. On the other hand, if the number of the storey and total seismic weight associated 

with the lower structure are much smaller than those of the upper one, such interaction has less effect 

on the required stiffness of the upper structure. In such case, the required stiffness of the upper 

structure is based primarily on the characteristics of the upper structure.  

The modified ELF procedure is applied to the combined framing systems in which there is only 

one-storey upper structure. Both the applicable requirements and seismic load distributions associated 

with the modified ELF procedure are proposed. If the storey-stiffness ratio between lower and upper 

structures is less than a specific value designated as rkb1, the lower structure is dominated primarily by 

the first mode and the traditional ELF procedure can be used to approximate the seismic load of the 

lower structure. However, the seismic load of the one-storey upper structure may still be 

underestimated as the behaviour of the upper structure may be dominated by higher vibration modes 

of the entire structure. Consequently, the shear force of the one-storey upper structure cannot be 

estimated based on the traditional ELF procedure. Equations for evaluating the shear force of the one-

storey upper structure are presented in the modified ELF procedure. 

The two-stage analysis procedure prescribed in ASCE 7 (ASCE, 2006; 2010) ignores the 

interaction between lower and upper structures in terms of mass and stiffness and permits the lower 

and upper structure to be analyzed by the conventional ELF procedure, separately. New applicable 

requirements and seismic load distributions associated with the two-stage analysis procedures are 

proposed. The proposed procedure is compared with that prescribed in ASCE 7. It is found the 

stiffness requirement of ASCE 7 two-stage analysis procedure may be inappropriate, which may 

result in the underestimation of the base shear force of the upper structure in certain cases. 

Furthermore, the shear force for the top storey of the upper structure may also be considerably 

underestimated by the ASCE 7 two-stage analysis procedure. Therefore, an additional top shear force 

is to be applied to the top of upper structure. Equations to compute the additional top shear force are 

also provided. The accuracy of the proposed two-stage analysis procedure, either the one based on 

both ASCE 7 or the one based on NBCC 2010, is greatly improved compared to that prescribed in 

ASCE 7 (ASCE, 2006; 2010). 

Finally, damping difference between lower and upper structures in the combined framing system is 

investigated. By assuming the combined framing systems are classically damped, i.e., the damping 

matrix of the combined framing systems is orthogonal to the un-damped mode shape, an analytical 

method to approximate the equivalent modal damping ratio for the case where lower and upper 

structures have different damping ratios is proposed. However, as the combined framing system in 

fact is non-classically damped, if the lower and upper structures have different damping ratios, the 
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proposed approximation of the equivalent modal damping ratio may lead to significant errors on 

seismic load in certain cases. Therefore, errors on seismic loads resulted from the classical damping 

approximation, which determine whether the proposed equivalent modal damping ratio is acceptable 

or not, are investigated. It is found large errors of seismic response associated with the proposed 

equivalent modal damping ratio usually occur when the dominating modes of the structures have 

closely spaced natural frequencies. However, for most combined framing systems in practice, the 

dominating modes have well separated natural frequencies and the proposed equivalent modal 

damping ratio is applicable to evaluate the seismic response of the combined framing systems. In 

addition, a new index of damping non-proportionality is suggested in this study to quantify the extent 

of non-proportional damping.  
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Chapter 1  Introduction 

1.1 Background 

The mid-rise building with vertical combination of framing systems consists of a structural system in 

which the seismic-force-resisting-system (SFRS) of the upper structure is commonly a lightweight 

structural system such as cold-formed steel (CFS) frame or wood frame while the SFRS associated 

with the lower one adopts a traditional structural system, such as reinforced concrete (RC) or 

structural steel frame. In current practice, the combined framing systems are typically adopted in new 

residential or mixed residential-commercial buildings where the lower structure requires 

accommodating open spaces with heavier loads such as retail stores or parking garages, as shown in 

Figure 1.1 (a). Such combined framing systems are also used in the case of adding additional storeys 

on the top of existing buildings, as shown in Figure 1.1 (b). Existing buildings and their foundations 

designed based on load combinations without additional levels may not possess adequate axial and 

seismic capacity when additional storeys are constructed with traditional heavy construction materials. 

Therefore, additional levels often consist of lightweight materials, such as CFS or wood, to reduce the 

structural weight and expedite construction progress. 

Considering different SFRSs are adopted for lower and upper structures, the seismic design of mid-

rise buildings with vertical combination of framing systems are quite different from that of regular 

ones. Engineers in North America will face following challenges when designing such combined 

framing systems: 

    

     (a)  three-storey steel parking garage with                 (b) five-storey CFS residential units built on   

nine-storey CFS residential units                               an existing two-storey retail building 

Figure 1.1: Application of buildings with vertical combination of framing systems 

 (courtesy of Worthington Construction Group) 



 

2 

  

(1) Due to the difference of structural forms and intended occupancies between lower and upper 

structures, the storey-masses of lower and upper structures are different. In accordance with current 

standards ASCE 7 (ASCE, 2010) and NBCC 2010 (NBCC, 2010), the combined framing systems 

may be designated as having vertical irregularity on mass. In order to satisfy the seismic design 

requirement, the vertical irregularities on mass may then result in the stiffness arrangement of such 

buildings to be quite different from that of regular ones. In seismic design of mid-rise building 

structures with vertical combination of framing systems, storey-masses of lower and upper structures 

can be approximately evaluated once the structural forms and intended occupancies are determined. 

After that, however, a trial-and-error procedure, as shown in Figure 1.2, has to be carried out to obtain 

feasible storey-stiffness distributions for both lower and upper structures. By following this dynamic-

analysis-based trial-and-error procedure, Liu et al. (2008) designed a seven-storey building, with the 

lower one-storey structure being the structural steel moment frame (SMF) and the upper six-storey 

one being the wood frame. In order to find out the feasible stiffness distributions for both lower and 

upper structures, multiple designs were tried, which leads this design procedure to be quite tedious. 

Consequently, it is of great necessity to develop a simplified approach for the engineering practice to 

replace this lengthy dynamic-analysis-based trial-and-error design procedure to obtain the feasible 

stiffness distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Trial-and-error design procedure 
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(2) Owing to the mass irregularity, the designed structure is usually designated as having stiffness 

irregularity (ASCE, 2010; NBCC, 2010) as well. With both mass and stiffness irregularities, the 

dynamic properities of such combined framing structures are quite different from those of “regular” 

ones. Xiong et al. (2008) carried out full scale shake table tests to investigate the influence of the 

stiffness irregularity on the seismic behavior of buildings with lower and upper structures being 

reinforced concrete and wood frames, respectively. It was concluded that the seismic response of such 

combined framing systems may be influenced by higher vibration modes other than the first mode. 

Therefore, the traditional equivalent lateral force (ELF) procedure specified in ASCE 7 (ASCE, 2010) 

and NBCC 2010 (NBCC, 2010), which is applied to analyze “regular” structures, may be no longer 

generally applicable. Note the ELF procedure is called the equivalent static force (ESF) procedure in 

NBCC 2010 (NBCC, 2010). The terminology “ELF” is adopted in this thesis to maintain consistency. 

Although the traditional ELF procedure may not be applicable for the combined framing systems 

because of the mass and stiffness irregularities in the vertical direction, there is one unique type of the 

combined framing system that the ELF procedure may still be applicable with appropriate 

modification of the procedure. Such unique combined framing system is commonly used in so-called 

“appendage-style” building, in which there is only one-storey upper structure and the upper structure 

can be treated as an “appendage” to the lower one. If the upper “appendage” does not have a 

significant effect on the lower structure, the lower structure can be considered as an independent 

“regular” building and the ELF procedure is still applicable to estimate its seismic load. However, the 

challenge arises as to for such “appendage-style” building, what is the applicable requirement of the 

ELF procedure? Meanwhile, if the seismic load of the lower structure can be approximated by the 

ELF procedure, how to approximate the seismic load of the upper “appendage”?   

In addition to the ELF procedure, the two-stage analysis procedure is another simplified method 

prescribed in ASCE 7 (ASCE, 2006; 2010) to approximate the seismic load of the combined framing 

system. The two-stage analsyis procedure allows lower and upper structures be analyzed by the ELF 

procedure separately if: (a) the stiffness of the lower structure is at least 10 times the stiffness of the 

upper structure, and (b) the period of the entire structure is not greater than 1.1 times the period of the 

upper structure considered as a separate structure fixed at the base (ASCE, 2006). Structural 

engineers have performed the two-stage analysis procedure for the combined framing system since its 

introduction to the 1988 Uniform Building Code (ICBO, 1988).  However, the application of the two-

stage analysis procedure primarily limits to the building in which the storey number of the lower 

structure is one or two (Allen, Chung, Tran & Zepeda, 2013). For the case where the storey number 

of the lower structure is greater than two, the two-stage analysis procedure is rarely applied. In fact, 
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recent research suggested that the two-stage analysis procedure prescribed in ASCE 7 (ASCE, 2006) 

may underestimate the seismic load of the upper structure for certain cases (Xu & Yuan, 2015).  

Note the two-stage analysis procedure is only provided in the USA standard ASCE 7 (ASCE, 2006, 

2010). The Canadian code NBCC 2010 (NBCC, 2010) does not specify any simplified method 

similar to the two-stage analysis procedure to analyze the building with vertical combination of 

framing systems. In accordance with NBCC 2010, the combined framing systems should be analyzed 

and designed by dynamic analysis.  

With the advance in computer capacity and speed and the availability of dynamic analysis 

procedure in commercially available softwares, it is believed that the elastic dynamic analysis, 

especially the elastic modal response spectrum analysis (Chopra, 2007), is the most viable means 

currently to deal with the combined framing systems with mass and stiffness irregularity. 

Nevertheless, simplified approaches to evaluate seismic loads are still of importance for practical 

applications. The approaches provide basic dynamic properties of the combined framing systems to 

help structural engineers have a better understanding on the behavior of such system in resisting 

seismic loading. Meanwhile, results from the simplified approaches can also serve as a benchmark to 

check whether the results obtained from the software are reasonable or not. As the possible two 

simplified analysis methods for the combined framing system, however, the ELF and two-stage 

analysis procedures in fact cannot be directly applied to the combined framing system because of the 

previously discussed challenges. To facilitate the application of the these two simplified seismic 

loading methods, it is necessary to: (a) modify the traditional ELF procedure such that the modified  

procedure can be applied to the “appendage-style” buildings which satisfy the applicable requirement 

proposed in this study; (b) develop new applicable requirements and seismic load distribution 

methods for the two-stage analysis procedure based on ASCE 7 (ASCE, 2010); and (c) propose a 

two-stage analysis procedure similar to that was developed based on ASCE 7 but to be complied with 

NBCC 2010 (NBCC, 2010). 

(3) Considering lower and upper structures use different materials and SFRSs in the combined 

framing systems, damping ratios of lower and upper structures may be different. Consequently, the 

damping matrix of the entire building generally does not satisfy the Caughey-O’Kelly condition 

(1965). The entire structure is non-classically damped and has complex eigenproperties. Strictly 

speaking, the seismic response of the non-classically damped systems cannot be obtained from the 

conventional modal analysis that is based on the classical damping assumption and un-damped 

eigenproperty. Researchers have developed various modal combination rules, based on damped 

(Sinha & Igusa, 1995) or un-damped eigenproperty (Falsone & Muscolino, 1999; 2004), to compute 
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the seismic demand of the non-classically damped system. However, these methods are quite 

complicated and are rarely applied in practical analysis. Meanwhile, the current design standards 

ASCE 7 (ASCE, 2010) and NBCC 2010 (NBCC, 2010) do not provide provisions on how to 

determine the damping ratio in modal response spectrum analysis if lower and upper structures have 

different damping ratios. In practice, engineers tend to use the conventional modal response spectrum 

analysis together with a conservative damping ratio, which adopts the smaller one of the damping 

values associated with lower and upper structures, to design the building. Nevertheless, this approach 

may lead too conservative results. A more reasonable method to approximate the equivalent damping 

ratio is needed. 

1.2 Research objective 

Presented in this thesis is research regarding to solving the foregoing three design challenges 

discussed in the previous section. The objectives of this research are: 

 Propose a simplified approach to evaluate feasible stiffness distributions for the lower and 

upper structures based on the pre-determined mass distribution and code-specified storey drift 

limit. 

 Overcome the difficulties of applying ELF and two-stage analysis procedures to the combined 

framing systems by: (a) proposing applicable requirements of the ELF procedure to be applied 

to the “appendage-style” building and suggesting a method to approximate the seismic load of 

the upper “appendage”; and (b) developing new applicable requirements and seismic load 

distribution methods for the two-stage analysis procedure. 

 Develop a simplified approach to approximate the equivalent damping ratio by accounting for 

the damping difference between lower and upper structures. 

The proposed simplified approach to evaluate the feasible stiffness distributions of the lower and 

upper structures and the proposed simplified approach to compute the seismic loads of the combined 

framing systems are affected by the design standards. As certain difference in seismic design 

provisions exists between the US standard ASCE 7 (ASCE, 2010) and the Canadian code NBCC 

2010 (NBCC, 2010), simplified approaches that can be used together with each standard are 

developed, respectively. The difference in seismic design provisions between the US standard and the 

Canadian code, which has certain effect on the proposed simplified approaches, is also discussed in 

this thesis.  
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1.3 Applicability of the study 

1.3.1 Assumptions 

For the reason of simplicity and engineering practice, following assumptions are made in this thesis: 

(1) The idealized stick model, as shown in Figure 1.3 (a), is adopted as the analytical model of the 

combined framing systems.  

(2) Code specified modal response spectrum analysis with CQC (complete quadratic combination) 

rule to evaluate the combination of peak modal responses, as prescribed in ASCE 7 (ASCE, 2010) 

and NBCC 2010 (NBCC, 2010), is adopted to assess the seismic responses of the building. Damping 

irregularity is not considered in Chapters 3 ~ 5 but will be accounted for in Chapter 6. The damping 

ratio for each vibration mode is taken as 5% in Chapters 3 ~ 5, which is the value adopted in both 

ASCE 7 (ASCE, 2010) and NBCC 2010 (NBCC, 2010) to obtain the default spectrum. 

                                                                

                  (a) analytical model              (b) first mode shape for combined framing systems with  

                                                        stiffer lower structure 

Figure 1.3: Analytical model of the mid-rise building with vertical combination of framing systems 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: ASCE 7-10 design spectrum (ASCE, 2010) 
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1.3.2 Scope 

Buildings with vertical combination of framing systems investigated in this study are limited to the 

following: 

(1) The total number of storeys of the building is not greater than ten, i.e.,(NL+NU)≤10, where NL 

and NU represent numbers of storeys of lower and upper structures, respectively; the storey-masses 

and lateral storey-stiffnesses of the lower and upper structures, designated as (mL and mU) and (kL and 

kU), respectively, are uniformly distributed, as shown in Figure 1.3 (a). 

(2) Single storey-periods of the lower and upper structures, denoted as TsingL and TsingU, are both 

limited to the range between 0.2TS and 1.1TS, where TS is the period at which the horizontal and 

descending curves of the ASCE 7 design spectrum intersects, as shown in Figure 1.4. As prescribed in 

ASCE 7 (ASCE, 2010), the period of a regular structure T should not exceed the product of the upper 

limit coefficient CU and the calculated empirical period Ta, where Ta=Ct(hn)
x
. Given that (a) the storey 

height hn of the structure is generally less than 3.3 m, (b) for the most flexible structures, Ct=0.0724 

and x=0.8, (c) the maximum CU for high risk seismic zones is 1.4, and (d) the minimum TS can be 

assumed to be 0.24 second (USGS, 2014), it is obtained that the maximum TsingL or  

TsingU=1.4×0.0724×3.3
0.8

=0.263 s<1.1×0.24 s=1.1TS, which indicates both TsingL and TsingU are not 

greater than 1.1TS. 

The NBCC 2010 (NBCC, 2010) has similar prescriptions on the period of a regular structure T. 

However, the value of the upper limit coefficient CU and the equation to calculate the empirical period 

Ta are different. The NBCC considers the steel moment frame as the most flexible structure. The 

corresponding equation to compute the empirical period of the frame Ta is Ta=Ct(hn)
x
, where Ct=0.085 

and x=0.75, and the associated upper limit coefficient CU=1.5. Therefore, it is obtained that based on 

the NBCC 2010, the maximum TsingL or TsingU=1.5×0.075×3.3
0.75

=0.31 s. 

(3) Storey-mass ratio rm and storey-stiffness ratio rk of the lower and upper structures are limited to 

1≤rm≤3 and max(1, rkU1)≤rk≤20, respectively, where rm=mL/mU and rk=kL/kU, and rkU1, called as the 

minimum storey-stiffness ratio, is calculated as follows: 
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   (1.1) 

where 𝜔̅1𝐿 (𝜔̅1𝑈) is the normalized first mode natural frequency of an NL(NU)-storey structure. For an 

N-storey structure with constant storey-mass and storey-stiffness being m and k, respectively, if the 

first mode natural frequency is ω1, then  𝜔̅1 = 𝜔1(𝑚/𝑘)
0.5. Numerical values of  𝜔̅1 for one- to ten-

storey of such structures are listed in Table 1.1. 
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Table 1.1: Normalized first mode natural frequency of uniform structures 

number of storey N 1 2 3 4 5 6 7 8 9 10 

𝜔̅1 1 0.618 0.445 0.347 0.285 0.241 0.209 0.185 0.165 0.150 

 

The solution for the minimum storey-stiffness ratio rkU1 is derived based on the assumption that the 

maximum storey-drift ratio of the complete building occurs at the first storey of the upper structure. 

This assumption is established based on the fact that the application of a stiff lower and a relative soft 

upper structure is a typical combination, such as the one with reinforced concrete frames as the lower 

structure and CFS or wood frames as the upper one. Meanwhile, since soft and weak lower structures 

are detrimental in seismic events (Tena-Colunga, 2004), it is required that the lower structure be 

stiffer than the upper one. By limiting NL, NU, rm, TsingU/TS and TsingL/TS to the ranges specified 

previously, it is found the first mode shape should satisfy the relationship φL1≤0.88NL/(NL+NU) to 

ensure the maximum storey-drift ratio occurs at the first storey of the upper structure, as shown in 

Figure 1.3 (b). Then, as discussed in Appendix C.1, by setting φL1=0.88NL/(NL+NU), the solution for 

the minimum storey-stiffness ratio rkU1 is obtained as shown in Eq.(1.1).   

1.4 Thesis organization 

The thesis is organized into seven chapters as follows: 

 Chapter 2 presents a review on the seismic behavior of structures with mass, stiffness, strength 

or damping irregularity in the vertical direction. 

 Chapter 3 proposes a simplified approach on how to evaluate feasible stiffness distribution in 

accordance with the pre-determined mass distribution for the combined framing systems. The 

approach is established based on ASCE 7 (ASCE 7, 2010). The obtained feasible stiffness 

distribution accounts for the interactions between lower and upper structures in terms of mass 

and stiffness and ensures that the storey drift requirement can be satisfied.    

 Chapter 4 focuses on the critical issues associated with the two simplified seismic analysis 

methods, i.e., modified ELF and two-stage analysis procedures, to be applied to the combined 

framing systems. Both the applicable requirements and seismic load distributions associated 

with the two procedures are developed based on ASCE 7 (ASCE 7, 2010). Meanwhile, the 

proposed two-stage analysis procedure developed in this study is also compared with the two-

stage analysis procedure prescribed in ASCE 7 (ASCE, 2006; 2010).  

 Chapter 5 extends the simplified approaches proposed in Chapters 3 and 4, which are 

established based on ASCE 7 (ASCE, 2010), to be complied with NBCC 2010 (NBCC, 2010). 
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Differences in seismic design provisions between the NBCC 2010 and the ASCE 7, which 

result in that the approaches have to be developed as country specific, are investigated and 

discussed. 

 Chapter 6 presents an analytical method to approximate the equivalent modal damping ratio by 

assuming that buildings with vertical combination of framing systems are classically damped. 

However, as the combined framing system in fact is a non-classically damped system, errors 

resulted from the classical damping approximation are also quantitatively analyzed. It is found 

the classical damping approximation is reasonable for most practical buildings with vertical 

combination of framing systems. 

 Chapter 7  presents the conclusions drawn from the study. Recommendations for the future 

research concerning buildings with vertical combination of framing systems are outlined. 
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Chapter 2  Literature survey 

2.1 Introduction 

Presented in this chapter are previous researches on the seismic behavior of buildings with vertical 

combination of framing systems. Moreover, considering the similarities on the stiffness, mass and 

strength distributions between buildings with vertical combination of framing systems and buildings 

with setbacks, previous researches on the seismic behavior of setback structures are also reviewed. 

2.2 Buildings with vertical combination of framing systems 

There are limited researches on the seismic behavior of the building with vertical combination of 

framing systems. These researches primarily focus on two issues: (a) mass, stiffness and strength 

irregularities induced by different intended occupancies and SFRSs between lower and upper 

structures; and (b) damping irregularity induced by the different damping ratios associated with the 

lower and upper structures. 

2.2.1 Vertical irregularities on mass, stiffness and strength 

The influence of the stiffness irregularity on the seismic response of the combined framing system 

was investigated by Xiong et.al (2008) through full scale shaking table tests. The tested buildings 

consisted of a one-storey reinforced concrete lower structure and a two-storey wood frame upper 

structure. It was concluded that as the increase of storey-stiffness ratio between the lower and upper 

structures, the seismic response of the lower reinforced concrete structure would be influenced by the 

second vibration mode, and the seismic response of the upper structure would decrease. The author 

also pointed out that hold-downs at the corners and around openings at the interface of the upper and 

lower structures should be carefully designed to prevent the separation of wall studs and sill plates. 

Based on the experimental results, elastic numerical analysis for the combined framing system was 

subsequently conducted. The numerical results suggested using the elastic modal response spectrum 

analysis and the linear time history analysis to evaluate the elastic shear forces of the combined 

framing system. 

Owing to the mass irregularity in the vertical direction, the stiffness design of the combined 

framing system is quite different from that of regular ones. Liu (2008) proposed a performance based 

seismic design (PBSD) procedure, which was based on multiple nonlinear time history analyses, for a 

seven-storey combined framing system. The lower one storey and the upper six storeys of the tested 

building were constructed by the steel moment frame (SMF) and the wood frame, respectively. The 

general idea of the proposed PBSD procedure is that with the preliminary design of the wood upper 
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structure being known, the effective stiffness of the SMF can be determined based on the desired 

performance, which was assumed to be correlated with the storey drift.  

As the lower and upper structures adopt different SFRSs, the ductility ratio μ and ductility-related 

force modification factor Rd for the lower and upper structures may be different. The current code  

NBCC  (NRCC, 2010) suggests using the lowest Rd factor of the two SFRSs for the entire structure 

design. However, the study conducted by Chen et.al (2013) showed that the use of a Rd value higher 

than the lowest Rd factor of the two SFRSs may be justifiable. Equations to estimate the ductility ratio 

μ and ductility-related force modification factor Rd for the combined framing system, which were 

constructed of wood portal frames and wood shear walls in the vertical direction, were also proposed 

by Chen et.al (2013). 

2.2.2 Damping irregularity  

When the lower and upper structures adopt different materials, the damping ratios of lower and upper 

structures may be different, and the damping matrix of the entire building generally does not satisfy 

the Caughey-O’Kelly condition (Caughey and O’Kelly, 1965). The entire structure is non-classically 

damped, or called as non-proportional damped in some references. The elastic dynamic response of 

non-classically damped system normally should be analyzed by complex modal superposition method 

in terms of complex eigenproperties (Perotti, 1994). Similar to the CQC modal combination rules for 

the classically damped system (Chopra, 2007), modal combination rules associated with the complex 

modal analysis were also proposed (Sinha & Igusa, 1995).  However, the complex eigenvalue 

problem involves complex algebra and the size of the complex eigenvalue problem is twice the size 

of that for classically damped one.  In order to avoid the complex eigenvalue analysis, Falsone et.al 

(Falsone & Muscolino, 1999; 2004) suggested using the classical modal property together with a 

proposed correlation coefficient, which accounts for the non-classical damping effect, to calculate the 

structural response. By assuming the earthquake ground motion is a white noise process, an analytical 

solution for the correlation coefficient was obtained. However, the new proposed correlation 

coefficient is quite different from that of a classically damped system. The calculation of the 

correlation coefficient involves evaluating the inversion of a matrix, the size of which is n times of 

that of the damping matrix, where n is the number of the degree of freedom of the entire system. 

Therefore, it can be seen procedures to evaluate the structural response by both complex modal 

superposition method (Sinha & Igusa, 1995) and the method proposed by Falsone et.al (1999; 2004) 

are quite complicated and time consuming. The both are not practically accepted in current 

engineering process. 
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Due to the complexity of the complex modal analysis, a decoupling procedure, which neglects the 

off-diagonal terms of the modal damping matrix, was suggested to approximate the elastic dynamic 

response. By adopting the decoupling procedure and simplifying the multi-degree-of-freedom model 

to an equivalent two-degree-of-freedom model, Huang et.al (1996) presented an analytical solution to 

evaluate the equivalent modal damping ratio of a composite TV tower in which the lower and upper 

parts were constructed by RC and steel mast, respectively.  Although the decoupling procedure is 

quite convenient for practical application, its main drawback is that it may induce uncertain error. 

Such errors have been investigated by other researchers (Hasselman, 1976; Warburton & Soni, 1977; 

Bhaskar, 1994; Morzfeld, Ajavakom & Ma, 2009). It is generally believed that errors due to the 

decoupling approximation should be negligible if the modal damping matrix is diagonally dominant. 

Errors are expected to decrease as the modal damping matrix becomes more diagonally dominant. 

However, it is shown in recent research (Morzfeld , Ajavakom & Ma, 2009) that errors due to the 

decoupling approximation can increase monotonically at any specified rate while the modal damping 

matrix becomes more diagonally dominant. Any error-criterion based solely upon the diagonal 

dominance of the modal damping matrix would not be accurate. In fact, the decoupling error is 

dependent both on the modal damping matrix and on the excitation frequency. This is the reason why 

small off-diagonal elements in the modal damping matrix are not sufficient to ensure small 

decoupling errors. To account for the effect of the excitation frequency, Hasselman (1976)  and 

Warburton et.al (1977) adopted the frequency-domain approach to establish criteria for determining 

whether a non-classically damped system may be regarded as practically decoupled. It was concluded 

that for greatly separated frequencies and small damping, the error due to the decoupling 

approximation in each mode is small. However, Hasselman (1976)  and Warburton et.al (1997) only 

provided qualified indices, which have certain relationship with the possible error of the decoupling 

method. The error was not analytically quantified. 

Owing to the possible error and its lack of analytical quantification associated with the decoupling 

procedure, some researchers suggested the classical modal properties should be used together with the 

equivalent modal damping ratios to reduce the error. Papageorgiou and Gantes (2010) suggested the 

equivalent modal damping ratios be evaluated by complex eigenvalue analysis (Perotti, 1994). They 

also suggested using an equivalent uniform damping ratio for buildings with vertical combination of 

concrete and structural steel frames (Papageorgiou & Gantes, 2011). The equivalent uniform damping 

ratio was obtained by an error minimization procedure through the nonlinear time history analysis 

between the non-classically damped structure and the equivalent classically damped structure. 

However, both the equivalent modal damping ratio and the equivalent uniform damping ratio were 

calculated based on the equivalent two-degree-of-freedom model. The authors pointed out the 
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transition from actual multi-degree-freedom model to the equivalent two-degree-of-freedom model 

might not yield satisfactory accuracy in some irregular and complex structural configurations. The 

authors also addressed that more research was needed to assess the effect of structural irregularity in 

terms of mass and stiffness distributions. It is recommended in the commercial software Midas Gen 

(MIDAS/Gen Program, 2000) that the equivalent modal damping ratio be computed as the sum of the 

damping ratio of each component weighted by the modal strain energy ratio of each component to 

that of total system (Raggett, 1975). However, no evidence signifies that the composite damping rule 

method leads to more accurate results than that of the decoupling procedure.  

2.3 Setback structures 

Comparing to that of the building with vertical combination of framing system, a large number of 

researches have been carried out to investigate the seismic behavior of setback structures as such type 

of structures are commonly seen in practice. 

Many researchers investigated the influences of mass and stiffness irregularities on the elastic 

seismic behavior of setback structures. Similar to the combined framing system, setback structures 

usually exhibit a sudden reduction in storey-mass, storey-stiffness and in some cases in storey 

strength as well. In a setback structure with a single setback, the lower structure below the setback is 

usually called the “base”, while the upper structure above the setback is called the “tower” (Al-Ali, 

1998). Penzien and Chopra (1965) investigated the seismic behavior of buildings with light-weight 

appendages or towers, and it was concluded that the tower response was found to be greatly 

accentuated when the natural period of the tower was close to one of the mode periods of the base. 

Humar (1977) concluded the contribution of higher vibration modes to the base shear force was not 

negligible when the tower was very slender. In addition, storey drifts and shear coefficients at the 

level of setback and in the upper storeys of the tower for the setback structure show a pronounced 

increase compared to those for regular ones. Tso et.al (1994) also found for setback structures, the 

influence of higher vibration modes on the base shear force was significant. The foregoing researches 

have demonstrated that higher vibration modes have a significant contribution to the elastic seismic 

responses of setback structures, such as storey shear forces and storey drifts, and the seismic demands 

of setback structures cannot be assessed by the ELF procedure.  

However, other researches demonstrated that the ELF procedure can be adopted for the seismic 

design of setback structures. In order to determine whether dynamic analysis was really needed for 

setback structures, as stipulated by major seismic codes such as NBCC 2005 (NRCC, 2005), 

Tremblay and Poncet (2005) evaluated the influence of the mass irregularity on the seismic behavior 
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of setback structures. They concluded that even with strong mass irregularity (200% and 300% 

storey-mass ratios with setbacks at 25, 50 and 75% of the building height, respectively), setback 

structures designed with the ELF procedure did not result in significant negative effects on the 

seismic responses. In addition, adopting a code-specified modal response spectrum analysis in design 

does not significantly improve the seismic performance, as the peak store drifts obtained from the 

nonlinear time history analysis are similar regardless of which design procedure was used.  

Experimental studies were also conducted to investigate whether dynamic analysis was needed for 

the seismic design of setback structures. Wood (1985; 1992) carried out shaking table tests for two 

small-scale (approximately one-fifteenth scale) reinforced concrete setback structures.  One (tower 

structure) has a seven-storey tower on a two-storey base, and another one (stepped structure) has an 

unsymmetrical arrangement of a three-storey tower, a three-storey middle section, and a three-storey 

base. The study concluded that the maximum storey shear force could be well represented by the ELF 

distribution. Moreover, it was observed that the setback frames were not more susceptible to damage 

or more susceptible to higher mode effects than the frames with uniform profiles. Shahrooz and 

Moehle (1990) carried out shaking table tests for a six-storey, two-bay by two-bay reinforced 

concrete moment resisting-frame structure with a 50% setback at the mid-height. The test results 

demonstrated the dynamic behavior of setback structures were similar to those of regular ones. 

However, modest concentrations of inelastic behavior were observed in some of the tower members. 

This concentration was not a manifestation of the dynamics of the configuration, but was explicable 

in static terms. Moreover, both the conventional modal response spectrum analysis and the ELF 

procedure were inadequate to prevent this configuration-caused nonlinear damage concentration. It is 

noted that the results from Shahrooz and Moehle (1990) contradict those from Wood (1985;1992). 

Because of the poor seismic performance of setback structures which has been observed during 

past earthquakes (Shahrooz & Moehle, 1990), many researchers investigated the seismic capacity of 

setback buildings which were designed by applicable seismic design standards. Two irregular  

fourteen-storey reinforced concrete moment resisting frame buildings, with one or two-bay frames in 

the short direction of plan dimension, were studied by Tena-Colunga (2004). In this case, the setback 

structures were designed by the model response spectrum analysis procedure. Then, nonlinear time 

history analyses were conducted for these structures. The nonlinear time history results demonstrated 

that setback structures with only one-bay frame in the short direction was extremely vulnerable in 

terms of seismic capacity, while the seismic capacity of the two-bay frame setback structure was 

much improved. Therefore, the author suggested that seismic design standards should penalize 

buildings with a single-bay frame in the short direction of plan dimension. The influence of setbacks 
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on the seismic performance of reinforced concrete buildings was evaluated by Athanassiadou (2008) 

as well. The buildings were designed in accordance with the provisions of the Eurocode 8 (CEN, 

2004) for the high and medium ductility class. The nonlinear time history results indicated the seismic 

performance of all irregular frames appear to be equally satisfactory, not inferior to (and in some 

cases superior than) that of the regular ones, even for ground motions twice as strong as the design 

earthquake. These researches indicated if it is designed appropriately, the seismic capacity of the 

setback structure is equally satisfactory with that of the regular one.  

2.4 Comments on previous researches 

At first, previous researches on both the combined framing system and setback structure primarily 

focused on whether dynamic analysis is needed to design such structures. To date, almost no research 

focused on simplified seismic design for such type of irregular structures has been performed. For 

example, when determining the stiffness arrangements of lower and upper structures based on the pre-

determined mass distribution, the proposed methods were based on nonlinear time history analyses 

(Liu, van de Lindt & Pryor, 2008), as shown in Figure 1.2. No simplified method to determine such 

feasible stiffness arrangement was proposed previously. 

Secondly, although a lot of researches were conducted for setback structures, there were conflicting 

conclusions. Some researchers argued that the ELF procedure could not be adopted for the seismic 

design of setback structures while others held opposite opinions. The potential reason for conflicting 

conclusions is that almost all conclusions were obtained by case study, and the results are only 

applicable to the structure with the particular configuration. Therefore, results obtained from different 

structural configurations contradict each other. From a general aspect, the ELF procedure cannot 

always ensure a safe design and dynamic analysis should be conducted for setback structures. 

However, it may still be applicable if the combined framing system satisfies certain requirements. For 

example, if the combined framing system is dominated by the first mode and the first mode shape is 

almost linearly distributed along the height, the ELF procedure may still be applicable. Therefore, it is 

of great necessity to propose applicable requirements of the ELF procedure for its application to the 

combined framing system. On the other hand, the two-stage analysis procedure has been proposed in 

building codes of United States for almost forty years (SEAOC, 1973; ATC, 1978). Nevertheless, the 

applicable requirements and seismic load distribution methods associated with the two-stage analysis 

procedure have never been systematically evaluated by any research. Its accuracy is questionable. 

Consequently, the applicable requirements and seismic load distribution methods associated with the 

two-stage analysis need to be systematically investigated. In order to avoid conflicting conclusions 
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and make the conclusions be general, the structural model should accommodate various practical 

structural configurations as discussed in section 1.3.2. 

Finally, the damping issue associated with the combined framing system is not satisfactorily solved. 

The proposed various modal combination rules, based on classical  (Sinha & Igusa, 1995) or complex 

eigenproperty (Falsone & Muscolino, 1999; 2004), to compute the seismic demand of non-classically 

damped system, are very complicated. Previous researchers only provided qualified indices 

(Hasselman, 1976; Warburton & Soni, 1977), which have certain relationship with the possible error 

of the decoupling procedure, to demonstrate the error associated with the decoupling procedure. 

Errors induced by the decoupling procedure have never been analytically quantified. Furthermore, 

these indices were proposed based on frequency domain analysis rather than analysis under the 

earthquake ground motion. In addition to the decoupling procedure, the composite damping rule 

method (Raggett, 1975) is another popular method to estimate the equivalent modal damping ratio.  

However, no evidence can signify that the composite damping rule method leads to more accurate 

results than the decoupling procedure. Another significant topic associated with the combined 

framing system is  how to construct the damping matrix of the entire structure. Nevertheless, almost 

no discussion on this issue has been conducted previously. Consequently, it is of great necessity to 

propose an effective and simplified method to solve for these damping issues associated with the 

combined framing system. 

It is also worth noting that researches conducted by Shahrooz (1990) and Tena-Colunga (2004) 

demonstrated that code-specified modal response spectrum analysis, which estimates the seismic 

response based on the modal response spectrum analysis together with the adoption of the seismic 

performance factors, cannot always ensure a safe design when structural members are in the inelastic 

range. Nevertheless, research by Tena-Colunga (2004) also demonstrated that if appropriate 

conceptual design is conducted, the code-specified modal response spectrum analysis is still 

applicable for such setback structures. For example, if one-bay frame in the short direction of plan 

dimension is prohibited, using modal response spectrum analysis to design setback structures can still 

lead to satisfactory seismic performance. Therefore, in this study, it is assumed that the conceptual 

design is appropriately conducted, and the code-specified modal response spectrum analysis can 

always ensure a safe design. 
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Chapter 3  A simplified approach to evaluate stiffness distributions 

for lower and upper structures 

3.1 Introduction 

A simplified approach for evaluating feasible lateral stiffness distributions of lower and upper 

structures based on the pre-determined mass distribution, developed in accordance with ASCE 7 

(ASCE 7, 2010), is presented in this chapter. At first, a set of applicable design equations are 

introduced to evaluate the feasible storey-stiffness distributions for both lower and upper structures 

while the derivation of these equations is discussed in Appendices A ~ D. A proposed design 

procedure is then presented. Finally, the proposed approach was applied to two design examples to 

illustrate the accuracy and efficiency of the proposed approach. 

3.2 Formulation of design equation I: design criterion 

The simplified seismic design approach is developed to ensure that the specified storey-drift limit to 

be satisfied. The storey-drift-ratio limits specified in ASCE 7 (ASCE, 2010) for the lower and upper 

structures are identical. Meanwhile, as discussed in section 1.3, the largest storey-drift-ratio occurs at 

the first storey of the upper structure. Therefore, if the storey drift associated with the first storey of 

the upper structure satisfies the specified limit, other storey drifts of the upper structures should be 

within the specified limit. 

The storey drift associated with the first storey of the upper structure, ΔU, can be evaluated as    

 Ub d
U

U

V C

k R
    (3.1) 

where VUb is the elastic base shear force of the upper structure, kU is the storey-stiffness of the upper 

structure, as shown in Figure 3.1 (a), and R and Cd are the seismic response modification coefficient 

and the deflection amplification coefficient, respectively. For the case where the lower and upper 

structures have different R values, the seismic design coefficients (R, Cd) associated with the system 

that has the lower of the two R values is suggested to be used in Eq.(3.1). As the shear force VUb is 

affected by the interaction between lower and upper structures in terms of mass and stiffness, the 

following factor is proposed to quantify such interaction: 
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 (a) MDOF model                                                              (b) 2DOF model 

Figure 3.1: Model simplification 

where mU and NU are the storey-mass and storey number of the upper structure, respectively, TU is the 

vibration period of the upper structure when the base fixed to the ground, and Sa(TU) is the design 

spectral acceleration associated with the period TU. Since the factor αU accounts for the shear-force-

amplification effect contributed by the lower structure to the upper one, it is called as shear-force-

amplification factor of the upper structure.  Based on Eq. (3.2), the elastic base shear force VUb can be 

calculated as follows: 

  Ub U U U a UV m N S T   (3.3) 

By substituting VUb in Eq.(3.1) with Eq.(3.3), and assuming the drift ΔU is within the specified limit, 

the governing equation of the simplified design is 

 lim

( )

U U
U

d U U a U

kR

C m N S T



   (3.4) 

where ΔUlim is the code specified storey-drift limit for the upper structure (ASCE, 2010). The factor αU 

on the left hand side of Eq.(3.4) is related to the storey-mass and storey-mass stiffness distributions of 

both lower and upper structures. In seismic design of mid-rise buildings with vertical combination of 

framing systems, storey-stiffnesses of the upper and lower structures, kU and kL, should conform to 

certain relationship to ensure Eq.(3.4) is satisfied. In order to solve for Eq.(3.4) and obtain such 

required relationship, an analytical study is firstly conducted in section 3.3 to develop empirical 

equations of evaluating the factor αU. Then, based on the proposed empirical equations of evaluating 

the factor αU, Eq.(3.4) is solved and corresponding design equations are provided in section 3.4. 

3.3 Formulation of design equation II: analytical study on factor αU 

Illustrated in Figure 3.2 is the process about how an analytical study is carried out to obtain empirical 

equations for evaluating the factor αU. At first, a simplified two-degree-of-freedom (2DOF) model is  
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Figure 3.2: Flowchart illustrating the process to investigate the factor αU 

proposed to estimate the seismic behavior of the multi-degree-of-freedom (MDOF) model with mass 

and stiffness irregularities as shown in Figure 3.1. For any building having an NL-storey lower 

structure and an NU-storey upper structure, with storey-masses and lateral storey-stiffnesses of the 

lower and upper structures being (mL and mU) and (kL and kU), respectively, the overall masses and 

stiffnesses for the upper and lower structures of the simplified 2DOF model are approximated as 

follows: 

 
U U UM m N   (3.5 a) 

  
2

1 /U U U U UK k m M     (3.5 b) 

L L LM m N                                                                                               (3.5 c) 

 
2

1 /L L L L LK k m M                                                                           (3.5 d) 

where 𝜔̅1𝐿  (𝜔̅1𝑈) is the normalized first mode natural frequency of an NL(NU)-storey structure as 

listed in Table 1.1. Then, the analytical study on the factor αU is carried out based on the simplified 

2DOF model. As the model simplification to convert the MDOF to a simplified 2DOF model is an 

empirical process, analytical results of αU obtained from the simplified 2DOF model are calibrated by 

that of the MDOF model. Finally, empirical equations to evaluate the factor αU are proposed in 

section 3.3.3. Error analysis is also carried out to assess the practicability of the proposed equations. 

Analyze αU by 2DOF model  

(Section 3.3.1) 

Calibrate αU with the MDOF model 

 (Section 3.3.2) 

Propose equations to evaluate αU 

 (Section 3.3.3) 

Analyze error of proposed equations   

(Section 3.3.4) 

Convert the MDOF to 2DOF model  
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3.3.1 Analytical results based on simplified 2DOF model 

With modal response spectrum analysis, the equation to evaluate the shear-force-amplification factor 

αU based on the simplified 2DOF model is presented in Eq. (A.16) of Appendix A. As discussed in 

Appendix A, the factor αU evaluated based on the simplified 2DOF model is associated with the 

overall mass ratio Rm, overall stiffness ratio Rk and period ratio TU/TS, where TS is the period at which 

the horizontal and descending curves of the design spectrum intersects, as shown in Figure 1.4, and 

Rm, Rk and TU are defined as 

 m LL
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U U
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Effects of overall stiffness ratio Rk 

For given values of overall mass ratio Rm and period ratio TU/TS, the variations of the factor αU with 

respect to the ratio Rk , i.e., αU-Rk curve, are shown in Figures 3.3 (a) ~ (c). As discussed in Appendix 

B.1, the effects of Rk on the factor αU can be summarized as follows:  

 (1) When the lower structure is extremely flexible compared to the upper one (Rk→0), the factor 

αU→0, which indicates there is no seismic load applied to the upper structure and in such case the 

lower structure acts similar to a damper as illustrated in Figure 3.4 (a). 

(2) When the lower structure is much stiffer than the upper one, the factor αU →1. For this case, the 

lower structure has no influence on the upper one, and the upper structure behaves as it is fixed to the 

ground base as shown in Figure 3.4 (b). In such case, the two-stage analysis procedure prescribed in 

ASCE 7 (ASCE, 2010) is applicable to analyze the combined framing system. 

For a given overall mass ratio Rm, let RkU2stg, the smallest value of the overall stiffness ratio that 

results in αU=1, be the two-stage stiffness ratio of the upper structure. As discussed in Appendix C.2, 

RkU2stg can be evaluated as 

 2
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(3) As the ratio Rk increases from zero to RkU2stg, the factor αU either monotonically increases from 

zero to unity; or initially increases from zero to a maximum value and then decreases to unity, as 

shown in Figures 3.3 (a) ~ (c). 
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(b) Rm=1.5 
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Figure 3.3: Variation of the shear-force-amplification factor of the upper structure  
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(a) extremely flexible lower structure (Rk →0)     (b) extremely stiff lower structure (Rk ≥RkU2stg) 

Figure 3.4: Physical interpretation of extremely flexible and stiff lower structure 
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Figure 3.5: Effect of period ratio TU/TS on the factor αU  

Effects of overall mass ratio Rm 

The effects of the overall mass ratio Rm on the factor αU is discussed in Appendix B.2. As shown in 

Figures 3.3 (a) ~ (c), the maximum αU on each αU-Rk curve increases as the increase of the ratio Rm. 

The maximum αU is close to unity when Rm is small (Figure 3.3 a). However, when the mass of the 

lower structure is relatively heavy, i.e. Rm is large, as illustrated in Figure 3.3 (c), the maximum αU on 

the αU-Rk curve is far greater than unity.   

Effects of period ratio TU/TS 

The effects of the period ratio TU/TS on the factor αU is discussed in Appendix B.3 and the following 

are observed: 

 (1) The ratio TU/TS has no influence on the factor αU when (TU/TS)≤(TU/T1) or (TU/TS) ≥1, while the 

factor αU decreases as the increase of the ratio TU/TS if (TU/T1)<(TU/TS)<1, where T1 is the first-mode 

period of the simplified 2DOF model. For example, for the case where Rm=0.5 and Rk=0.6, the 

calculated period ratio TU/T1 based on Eqs.(A.7) and (A.8) of Appendix A is 0.56. As shown in Figure 

3.5, the factor αU keeps as a constant when (TU/TS)≤0.56 or (TU/TS) ≥1; while the factor αU gradually 

decreases as the ratio TU/TS increases from 0.56 to unity. 
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(2) As to each αU-Rk curve, the overall stiffness ratio Rk at which the factor αU reaches the 

maximum value generally increases as the increase of the ratio TU/TS when (TU/TS)≤1, as shown in 

Figures 3.3 (a) ~ (c). Let RkU2 and RkU3 be the overall stiffness ratios at which the factor αU reaches the 

maximum value for TU/TS=0.2 and TU/Ts≥1, respectively. As discussed in Appendix C.5, ratios RkU2 

and RkU3 can be determined as follows: 
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From Eqs. (3.10) ~(3.11), it can be seen for the case where Rm≥2, RkU2 and RkU3 are located close to 

each other, as shown in Figure 3.3 (c). Meanwhile, based on TU/TL=(Rk /Rm)
0.5

, where TL is the period 

of the lower structure, it is obtained that the factor αU reaches the maximum value when TU ≈TL if 

Rm≥2. Such amplification effect of the lower structure on the upper one is similar to the resonance 

observed in the response of a single-degree-of-freedom (SDOF) system to harmonic excitations 

(Chopra, 2007). 

However, for the case where Rm<2, values of RkU2 and RkU3 may be of great difference due to the 

influence of TU/TS. Especially when Rm≤0.71, the ratio RkU3 is equal to the overall two-stage stiffness 

ratio RkU2stg, which indicates the factor αU will monotonically increase to unity as the increase of the 

ratio Rk for the case when TU /TS≥1, as shown in Figure 3.3 (a). Despite of the difference between the 

value of RkU2 and the value of RkU3 for the case where Rm<2, there is not a significant change for the 

value of factor αU on each αU-Rk curve if the ratio Rk lies between RkU2 and RkU3, as shown in Figures 

3.3 (a) and (b). 

3.3.2 Analytical results calibration with the MDOF model 

With NL, NU, rm, rk, TsingU/TS and TsingL/TS being limited to ranges specified in section 1.3.2, the factor 

αU evaluated based on the MDOF model (Eq.(D.1) in Appendix D.1) is compared with that evaluated 

based on the simplified 2DOF model (Eq.(A.16) in Appendix A). As discussed in Appendix D.1, the 

error associated with the simplified 2DOF model is primarily affected by the storey-stiffness ratio rk. 

Let rkU2, rkU3 and rkU2stg be critical storey-stiffness ratios of the MDOF model, which are calculated 

from ratios RkU2, RkU3 and RkU2stg of the simplified 2DOF model through Eq.(3.7), respectively. Errors 

associated with the simplified 2DOF model are in the range -43.58% ~22.41%, 0% ~22.41% and         

-8.27% ~20.24% for cases where rk<rkU1, rkU2≤rk≤rkU3 and rk>rkU3, respectively. With the negative and 
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positive error signifying the simplified 2DOF model underestimating and overestimating the factor αU, 

respectively, it is concluded:  

(1) When rk<rkU2, as the simplified 2DOF model may greatly underestimate the factor αU, the factor 

αU should be estimated from the MDOF model rather than the simplified 2DOF model because of the 

significance of the error. 

(2) When rkU2≤rk≤rkU3, the factor αU can be estimated from the simplified 2DOF model. 

(3) When rk>rkU3, the error of the simplified 2DOF model is acceptable; however, for the case 

where the simplified 2DOF model may underestimate the factor αU, minor modifications should be 

introduced to avoid such underestimation. 

3.3.3 Proposed equations to evaluate the shear-force-amplification factor αU  

The general concept of using proposed equations, Eqs.(3.12) ~(3.23), to evaluate the shear-force- 

amplification factor αU is to convert the MDOF model with mass and stiffness irregularity into a 

simplified 2DOF model. With the determination of Rm, Rk and TU/TS, the factor αU can be determined 

by following empirical equations: 
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In Eqs. (3.12) ~ (3.14), RkU2 and RkU2stg are computed based on Eqs.(3.10) and (3.11), respectively; and 

RkU1 is the overall stiffness ratio corresponding to the minimum storey-stiffness ratio rkU1 prescribed in 

section 1.3.2. By substituting rk in Eq.(3.7) with rkU1 that is expressed by Eq.(1.1), RkU1 is then 

expressed by Eq.(3.22).  Meanwhile, RkU3 in Eqs.(3.12) ~ (3.14) are evaluated based on Eq.(3.23). 
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The effects of Rm, Rk and TU/Ts on the factor αU, which are discussed in section 3.3.1, are all 

accounted for in the proposed equations for evaluating the factor αU, i.e., Eqs.(3.12) ~ (3.23). 

Furthermore, for the case where the simplified 2DOF model may underestimate the shear-force-

amplification factor αU, as discussed  in section 3.3.2, minor modifications are made. 

Effects of overall stiffness ratio Rk 

Based on Figures 3.3 (a) ~ (c), proposed αU-Rk curves are summarized as shown in Figures 3.6 (a) ~ 

(c). For each αU-Rk curve, it is divided into four regions. As shown in Eq.(3.12), for regions 1 

(RkU1≤Rk<RkU2) and 3 (RkU3<Rk<RkU2stg), the αU-Rk relationship is fitted by a power function, while for 
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regions 2 (RkU2≤Rk≤RkU3) and 4 (Rk≥RkU2stg), constant values of αUmax and αU2stg are proposed, 

respectively. For simplicity, the value of αUmax is set to be the maximum value of αU when Rk is 

located in region 2 (RkU2≤Rk≤RkU3). 

 

 

 

 

 

 

 

(a) RkU1<RkU2 

 

 

 

 

 

 

 

(b) RkU1≥ RkU2, αUmax>αU2stg 

 

 

 

 

 

 

 

(c) RkU1≥ RkU2, αUmax≤αU2stg 

Figure 3.6: Proposed αU-Rk relationship 
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Note for the case where the calculated RkU1 in Eq.(3.22) is smaller than RkU2 of Eq.(3.10), αU is set 

to be αU1 when Rk=RkU1, as shown in Figure 3.6 (a). However, if RkU1≥RkU2, as shown in Figures 3.6 (b) 

~ (c), αU should be computed in accordance with the magnitude of RkU1 through Eqs.(3.12) (b) ~ (d) 

when Rk=RkU1. 

Effects of period ratio TU/TS 

Considering the influence of TU/TS on the factor αU being discussed in section 3.3.1, values of αU1 and 

αUmax are evaluated by Eqs.(3.15) and (3.17), respectively. When TU/TS≤TU/T1 or TU/TS ≥1, αU1 is 

correspondingly set to be a constant αU11 and αU12, and αUmax is set to be a constant αUmax1 and αUmax2, 

respectively. When TU/T1<TU/TS<1, a power function is introduced to approximate the relationship 

between αU1(αUmax) and TU/TS.  

Note in Eqs.(3.15) and (3.17), values of TU/T1 are calculated through Eq.(A.8) by setting Rk=RkU1 

and Rk=RkU2, respectively, and it is then obtained that TU/T1=[(NU+0.12NL)/(NU+NL)]
0.5

 and 

0.769(Rm)
0.059

, respectively. 

Effects of overall mass ratio Rm 

Values of αU11, αU12, αUmax1 and αUmax2 are only associated with Rm. Values of αUmax1 and αUmax2 are 

evaluated based on the simplified 2DOF model by using Eq.(A.16) of Appendix A. By setting 

TU/TS=1 and TU/TS=0.769(Rm)
0.059

, the maximum value of αU for RkU2≤Rk≤RkU3 is set to be αUmax1 and 

αUmax2, respectively. Then, by curve fitting, empirical equations to calculate αUmax1 and αUmax2 are 

provided in Eqs. (3.19) and (3.20), respectively, as shown in Figure 3.7 (a). 

For the case where rkU1<rkU2 in the MDOF model, which corresponds to RkU1<RkU2 in the simplified 

2DOF model, the simplified 2DOF model may greatly underestimate the factor αU if rk<rkU2, as 

discussed in section 3.3.2. Therefore, values of αU11 and αU12 in Eq.(3.15) cannot be estimated from 

the simplified 2DOF model. For possible upper and lower storey combinations that would result in 

RkU1<RkU2, values of αU11 and αU12 are calculated based on the elastic modal response spectrum 

analysis of the MDOF model by setting TU/TS=1 and TU/TS=[(NU+0.12NL)/(NU+NL)]
0.5

, respectively. 

The calculated results are provided in Table 3.1. Since Table 3.1 only lists for cases rm=1, 2 and 3, for 

other rm values, values of αU11 and αU12 can be linearly interpolated by the magnitude of rm. 
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Figure 3.7: Numerical values for critical shear-force-amplification factors  

Theoretically, the value of αU2stg shown in Eq.(3.12 d) should be unity as discussed in section 3.3.1. 

However, a 10% increase is proposed for the reason of being conservative, i.e., αU2stg=1.1. Moreover, 

as the simplified 2DOF model ignores the interaction of higher vibration modes between lower and 

upper structures, the simplified 2DOF model may underestimate the factor αU when Rk>RkU3 as 

discussed in Appendix D.1. Consequently, the value of αU2stg, which corresponds to the value of αU 

when Rk>RkU2stg, may be underestimated by the simplified 2DOF model. For cases where the 

simplified 2DOF model may underestimate the factor αU, value of αU2stg may need to be increased. For 

mid-rise buildings satisfying the limitation stated in section 1.3.2, numerical analyses indicate when  

1.4<Rm<4.1, the value of αU2stg should be increased in accordance with Eq.(3.21), as shown in Figure 

3.7 (b). 
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Table 3.1: Values of αU11 and αU12 for case where RkU1<RkU2 

NL NU 
rm=1 rm=2 rm=3 

αU11 αU12 αU11 αU12 αU11 αU12 

1 1 0.986 1.258 1.162 1.435 1.281 1.572 

2 1 0.990 1.468 1.179 1.681 1.296 1.818 

3 1 0.979 1.550 1.165 1.757 1.267 1.874 

4 1 0.985 1.609 1.163 1.801 1.253 1.899 

5 1 0.993 1.652 1.165 1.826 1.248 1.910 

6 1 1.007 1.686 1.175 1.846 1.252 1.921 

7 1 0.929 1.556 1.077 1.692 1.145 1.754 

8 1 0.942 1.575 1.086 1.703 1.154 1.761 

9 1 0.956 1.593 1.100 1.716 1.168 1.771 

2 2 0.905 1.237 1.086 1.412 1.222 1.555 

3 2 0.893 1.314 1.088 1.516 1.221 1.663 

4 2 0.944 1.452 1.150 1.674 1.283 1.823 

5 2 0.943 1.500 1.147 1.720 1.269 1.856 

6 2 0.948 1.541 1.148 1.754 1.260 1.877 

7 2 0.954 1.574 1.148 1.778 1.250 1.888 

8 2 0.959 1.600 1.145 1.793 1.239 1.892 

3 3 0.872 1.223 1.051 1.391 1.190 1.532 

4 3 0.869 1.278 1.064 1.470 1.200 1.617 

5 3 0.921 1.400 1.127 1.615 1.267 1.769 

6 3 0.925 1.441 1.131 1.661 1.267 1.809 

7 3 0.927 1.476 1.134 1.696 1.262 1.836 

3 4 0.918 1.231 1.066 1.373 1.204 1.502 

4 4 0.905 1.285 1.092 1.459 1.240 1.605 

5 4 0.903 1.331 1.106 1.525 1.250 1.678 

6 4 0.907 1.370 1.114 1.577 1.256 1.732 

4 5 0.901 1.223 1.054 1.383 1.197 1.515 

5 5 0.892 1.193 1.077 1.385 1.225 1.548 

 

Finally, note when Rm≤0.71, RkU3 = RkU2stg based on Eq.(3.11); however, the proposed αUmax 

evaluated by Eqs.(3.17) ~ (3.20) is not always equal to αU2stg evaluated by Eq.(3.21), as shown in 

Figure 3.7 (b). This may result in a discontinuity of the proposed αU-Rk curve. To avoid such 

discontinuity, RkU3 is reduced for the case where Rm≤0.8 to ensure the corresponding RkU3<RkU2stg, as 

shown in Eq. (3.23 a). In fact, for the case where the value of Rk, which corresponds to the maximum 

αU in the αU-Rk curve of the simplified 2DOF model, is greater than that of the proposed RkU3 

calculated by Eq. (3.23 a), the following is observed: (a) the factor αU will monotonically increase 

from zero to unity on the αU-Rk curve, as shown in Figure 3.3 (a); and (b) on the other hand, αUmax is 
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smaller than αU2stg in the proposed αU-Rk curve for such cases as shown in Figure 3.6 (c). Therefore, 

by comparing Figure 3.3 (a) to Figure 3.6 (c), it is clear that the proposed reduction on RkU3  warrants 

the proposed method to be conservative. 

The case αUmax≤αU2stg usually occurs when Rm<1. For the possible upper and lower storey 

combinations that may result in RkU1<RkU2, the calculated Rm is usually greater than unity, and the 

calculated αUmax is therefore greater than αU2stg as shown in Figure 3.6 (a). 

3.3.4 Error analysis  

Results obtained from the proposed approach are compared with those from the elastic response 

spectrum analysis procedure of the MDOF model with CQC rule to combine the peak modal 

responses (Chopra, 2007). The maximum and minimum errors for the buildings with an NL-storey 

lower structure and an NU-storey upper structure, as shown in Table 3.2 and Table 3.3 are obtained 

based on all the possible combinations of rm, rk, TsingU/TS and TsingL/TS. The positive and negative error 

in the table represents the proposed approach overestimates and underestimates the amplification 

factor αU, respectively. From Table 3.2 and Table 3.3, it can be seen the errors associated with the 

proposed method for the factor αU are in the range of -0.9% to 35.8%. The error of 35.8% is 

comparable with that of the conventional ELF procedure (ASCE, 2010) which is applied for “regular” 

structures. Take a ten-storey building as example. Assume: (a) the storey-mass of the lower four-

storey structure mL is approximately 1.3 times that of the upper six-storey one mU (mL =1.3mU), and 

the storey-stiffness of the lower structure kL is 1.2 times that of the upper one kU (kL =1.2kU); (b) 

kU=1366.04mU/s
2
, which then results in the period of the ten-storey structure is 1.09 second, a quite 

reasonable period for a practical ten-storey structure; and (c) the building is located in Los Angeles, 

California with type B soil condition, which results in the design spectrum being SDS=1.632g and 

SD1=0.572g. In accordance with the standard ASCE 7 (ASCE, 2010), this building can be considered 

as a “regular” structure and the ELF procedure can be used to evaluate the seismic load. It is found 

the shear force of the fifth-storey evaluated based on the ELF procedure prescribed in ASCE 7 and 

the modal response spectrum analysis is 47.48 mU and 36.47 mU, respectively.  In this case, the ELF 

procedure overestimates the shear force by about 30%. 
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Table 3.2: Maximum errors of the proposed method on factor αU (ASCE 7 spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 13.8% 15.7% 20.9% 23.7% 24.8% 25.6% 26.0% 26.2% 26.2% 

2 18.8% 25.2% 21.9% 22.0% 24.6% 27.0% 28.5% 28.9% N/A 

3 21.2% 25.3% 30.6% 27.9% 25.9% 24.9% 25.8% N/A N/A 

4 23.1% 25.2% 29.8% 33.5% 32.1% 29.0% N/A N/A N/A 

5 24.1% 25.2% 28.7% 32.5% 35.8% N/A N/A N/A N/A 

6 23.6% 25.7% 27.9% 31.3% N/A N/A N/A N/A N/A 

7 15.3% 23.0% 26.1% N/A N/A N/A N/A N/A N/A 

8 15.0% 19.6% N/A N/A N/A N/A N/A N/A N/A 

9 15.0% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed method is not applicable for the combination of the lower and upper structures. 

 

Table 3.3: Minimum errors of the proposed method on factor αU (ASCE 7 spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.9% 1.9% 3.0% 5.9% 11.1% 12.4% 13.2% 13.8% 14.1% 

2 3.6% 3.7% 3.4% 0.0% 2.0% 5.4% 6.3% 7.7% N/A 

3 1.9% 3.4% 3.6% 1.8% 0.9% -0.1% 1.1% N/A N/A 

4 0.9% 7.4% 3.7% 1.2% 0.6% 1.4% N/A N/A N/A 

5 1.0% 6.9% 6.6% 3.4% 1.0% N/A N/A N/A N/A 

6 1.5% 5.4% 9.1% 3.7% N/A N/A N/A N/A N/A 

7 0.4% 7.0% 9.0% N/A N/A N/A N/A N/A N/A 

8 1.4% 7.7% N/A N/A N/A N/A N/A N/A N/A 

9 1.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed method is not applicable for the combination of the lower and upper structures. 

 

The error associated with the proposed approach is primarily resulted from two aspects: (a) the 

conversion of a MDOF model to a simplified 2DOF model; and (b) the approximations adopted in 

Eqs.(3.12) ~(3.23). Generally, the positive error is associated with the overestimation of αUmax, which 

is primarily induced by model conversion; whereas the error induced by approximation of αUmax in 

Eqs.(3.17) ~ (3.20) will not exceed 17.2% for any cases. Take the building with NL=5, NU=5, 

TsingU/TS=0.3, rm=1 and rk=2 as example. The error of αUmax associated with model conversion is 

20.1%, while the error results from the approximation of αUmax is only 13.1%. Consequently, the re-

sulted maximum error of the proposed approach for this case is 35.8%, as shown in Table 3.3. 

3.4 Formulation of design equation III: stiffness evaluation 

In order to solve for Eq.(3.4) and obtain the required stiffnesses of the upper and lower structures, 

firstly express the spectral acceleration Sa(TU) corresponding to the period of the upper structure TU  

as follows:  
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where SD1 and SDS  are design spectral accelerations when T=1.0 second and T=TS, respectively, as 

shown in Figure 1.4. Note in accordance with scope of this study presented in section 1.3.2, the 

period of the upper structure TU in (3.24) is not less than the transition period 0.2TS .Secondly, 

substitute TU evaluated based on Eq.(3.8) into Eqs. (3.15), (3.17) and (3.24). Then, substitute Rk, αU1, 

αUmax, and αU2stg evaluated respectively based on Eqs.(3.7), (3.15), (3.17) and (3.21) into Eq.(3.12). 

Finally, by substituting αU and the spectrum acceleration Sa(TU) evaluated respectively based on 

Eqs.(3.12) and (3.24) into Eq.(3.4) and based on the definition of the storey-stiffness ratio rk 

(rk=kL/kU), it is obtained that the stiffness kU of Eq.(3.4) should satisfy the following requirement: 

 
minU Uk k   (3.25) 

If 

 
maxU Uk k   (3.26) 

there is no specific requirement on kL as long as the value of kL satisfies Eqs.(3.40) and (3.41) 

discussed later on in this section to ensure the assumptions stated in section 1.3.2 are satisfied. 

However, if kU is limited between kUmin and kUmax (kUmin<kU <kUmax), the kL should satisfy the following 

requirement: 

 (1) RkU1<RkU2 (Figure 3.6 a)  
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 (2) RkU1≥ RkU2, αUmax>αU2stg (Figure 3.6 b) 
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 (3) RkU1≥ RkU2, αUmax≤αU2stg (Figure 3.6 c) 
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In Eqs.(3.25) ~ (3.29),  
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In Eqs. (3.31) and (3.32), 
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where 
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Note when Rk=RkU1, the factor αU is set to be αU1 only for the case where RkU1<RkU2, as discussed in 

section 3.3.3. Therefore, only for the case where RkU1<RkU2, values of kαU1 and kUS3 are required to be 

calculated by Eqs.(3.33) and (3.38), respectively. If RkU1≥RkU2, values of kαU1 and kUS3 are not required 
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to be calculated, and the critical storey-stiffnesses kUmax and kUmin are computed only based on kαUmax 

and kαU2stg, as shown in Eqs.(3.31) and (3.32). Considering single storey-periods, TsingU and TsingL, are 

both limited to the range between 0.2Ts and 1.1Ts and max(1, rkU1)≤rk≤20, as discussed in section 

1.3.2, kU and kL should also satisfy following requirements: 

    
2 2
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  1max , 20kU U U L Ur k k k k    (3.41) 

3.5 Design procedure 

Prior to provide procedures to evaluate feasible storey-stiffnesses kU and kL such that the specified 

limit on the storey-drift is satisfied, it is worthy to discuss how to determine design accelerations 

Sa(TU) in Eq.(3.4). According to FEMA P695 (FEMA, 2009), the average value of collapse 

probability for buildings designed based on ASCE 7 (ASCE, 2010) is 10% under the maximum 

considered earthquake. This indicates the non-existence (NE) probability of the storey drift greater 

than the storey-drift limit ΔUlim is 90%. However, the design acceleration specified in ASCE 7 

represents the median demand (50%) for the specified hazard level. In order to design for a target NE 

probability of storey drift greater than the median, which is 90%, the design acceleration must be 

scaled up to reflect an increase of NE probability. The design acceleration adjusted for NE probability 

is  

 a NE aS C S   (3.42) 

where Sa (median) is the code specified acceleration value and the scale factor CNE is assumed to be 

log-normal distributed with a median value of 1.0 and a logarithmic standard deviation, βR, which 

accounts for the uncertainty of the ground motions as well as the uncertainty associated with the 

design procedure. According to the investigation of Pang et.al (2011), it is reasonable to let βR be 0.75. 

Therefore, the corresponding scale factor is CNE=exp[Φ
-1

(0.9)×0.75+ln(1)]=2.61. 

With the method to adjust the design spectral acceleration, the procedure on how to evaluate 

feasible storey-stiffnesses kU and kL can be carried out as follows:  

Step 1: Evaluate the effective seismic weight distribution (mL and mU); calculate the storey-mass 

ratio rm (rm=mL /mU) and the overall mass ratio Rm based on Eq. (3.6). 

Step 2: Determine critical overall stiffness ratios RkU1, RkU2, RkU3 and RkU2stg according to Eqs.(3.22), 

(3.10), (3.23) and (3.9), respectively. 
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Step 3: Obtain the values of αU11 and αU12 from Table 3.1 and the exponent x3 in accordance with 

Eq. (3.16) if RkU1<RkU2; then, calculate values of αUmax1, αUmax2 and the exponent x4 in accordance 

with Eqs .(3.19), (3.20) and (3.18), respectively; and calculate αU2stg from Eq.(3.21).  

Step 4: Calculate the critical storey-stiffness kαU1 by Eq.(3.33) if RkU1<RkU2; compute the critical 

storey-stiffnesses kαUmax and kαU2stg  from Eqs. (3.34) and (3.35), respectively; and determine the 

critical storey-stiffnesses kUmax and kUmin based on Eqs. (3.31) and (3.32), respectively. Note if 

RkU1≥RkU2, kUmax and kUmin are determined only based on kαUmax and kαU2stg, as shown in Eqs. (3.31) 

and (3.32); therefore, kαU1, and αU11 and αU12 that are used to compute kαU1 based on Eq.(3.33), are 

not required to be calculated.  

Step 5: Select the feasible storey-stiffness of upper structure kU based on the value of kUmin 

computed in step 4. Note that the value of kU also needs to satisfy Eq. (3.39). 

Step 6: With the value of kU selected in step 5, calculate the period of the upper structures TU from 

Eq.(3.8); then, compute values of αU1 and αUmax based on Eqs. (3.15) and (3.17), respectively; 

finally, the corresponding value of storey-stiffness of lower structure kL can be selected to satisfy 

Eqs. (3.26) ~ (3.29) and as well as Eqs. (3.40) and (3.41). Note that αU1, which is the value of αU 

when Rk=RkU1, is only required to be calculated if RkU1<RkU2. If RkU1≥RkU2, the value of αU when 

Rk=RkU1 should be computed in accordance with the magnitude of RkU1 through Eqs. (3.12) (b) ~ (d). 

Once the feasible storey-stiffnesses kU and kL are obtained, the initial layout of the SFRSs of the 

lower and upper structures can be determined based on the selected storey-stiffness distribution. Then, 

with such initial lateral design, other seismic response parameters, such as seismic loads and 

overturning moment can be further evaluated. The final SFRSs’ design should satisfy both the 

requirements on storey-drift limit and seismic load, and as well as the overturning moment. 

3.6 Examples 

Discussions on the determination of storey-stiffness distributions of two hypothetical mid-rise 

buildings with vertical combination of framing systems are presented in the following to illustrate the 

proposed design approach. The buildings are assumed to be located in Los Angeles, California. 

3.6.1 Example 3-1 

It is a nine-storey building with a vertical combination of framing system. The SFRSs of the upper 

three-storey and lower six-storey are cold-formed steel (CFS) framing with shear walls sheathed with 

oriented strand board (OSB) panels and special RC moment frame, respectively. The floor layout of 

the lower six-storey is shown in Figure 3.8. The storey-height and specified dead load of the lower  
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6.1m 6.1m 6.1m

6.1m

6.1m

6.1 m

 

Figure 3.8: Floor plan of the lower RC structure 

and upper structures are (3.3m and 3.06m) and (2.87 kPa and 6.550 kPa), respectively. The soil 

condition for the building is assumed as Class B and the building risk category is category II. 

Assume compressive strength and elastic stiffness of the concrete are fc=30MPa and  

Ec=3.0×10
4
MPa, respectively. The column size is 600mm×600mm, and the lateral storey-stiffness of 

the lower structure per column with beam-to-column moment connection kLperC can be calculated as 

per FEMA 356 (FEMA, 2000), which specifies the flexural stiffness (EI)stf should be 0.5 times of the 

actual component flexural stiffness if the axial load ratio is not greater than 0.3. Therefore, the storey-

stiffness of the lower structures per column is kLperC=5.41×10
4
kN/m. In addition, assume the upper 

structure adopts CFS shear wall sheathed with double-sided 11mm OSB panel and CFS wall studs are 

adequately designed. The initial stiffness of such CFS shear wall can be approximately set as 3836 

kN/m per meter (Branston, 2004). 

The permissible storey drift of the CFS shear wall system is 0.02hn, and therefore, 

ΔUlim=0.02×3.06×1000=61.2mm. According to Table 12.2-1 of ASCE 7 (ASCE, 2010), the response 

modification factor R=6.5 and the deflection amplification factors Cd=4 for the CFS framed shear 

walls sheathed with wood structural panels, and R=8 and Cd=5.5 for the special RC moment frames. 

Therefore, in accordance with section 12.2.3.1 of ASCE 7 (ASCE, 2010), R=6.5 and Cd=4 are applied 

for the entire building. The site spectrum SS =2.447 g and S1 =0.858 g and the long transition period 

TLong=8 s, which result in the design spectrum being SDS=1.632 g and SD1=0.572 g and the factored 

design response spectrum being 𝑆𝐷̅𝑆 = 2.61 × 1.632 = 4.26 g  and 𝑆𝐷̅1 = 2.61 × 0.572 = 1.49 g. 

By following steps 1 ~ 5 described in section 3.5, it is firstly calculated: 

mU=2.87×6.1
2
×9/10=96,113 kg, mL=6.550×6.1

2
×9/10=219,352 kg, rm=2.28, Rm=4.56, 

kUmax=2.43×10
5
kN/m, and kUmin=1.14×10

5 
kN/m. The initial feasible kU is limited between 

1.14×10
5
kN/m and 7.72×10

5
 kN/m. Then, based on step 6, it is finally determined storey-stiffness kU 
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is limited between 1.31×10
5
 kN/m and 3.99×10

5
 kN/m. For each given value of kU limited in this 

range, the requirement on the lateral stiffness kL can be evaluated accordingly. By representing the 

obtained feasible storey-stiffnesses kU and kL in terms of required CFS shear wall length and number 

of columns in the RC moment frame, respectively, the domain of feasible SFRS designs of lower and 

upper structures are illustrated in the shaded area of Figure 3.9 (a). Note the stiffness combinations of 

the lower and upper structures shown in the shaded area of Figure 3.9 (a) requires TsingL≥0.2TS，

TsingL≥0.2TS and rk≤20 as discussed in section 1.3.2, where TsingL and TsingU are single storey-periods of 

lower and upper structures, respectively. Additionally, based on the floor layout of the building as 

shown in Figure 3.8, the number of columns in the RC moment frame and the CFS shear wall length 

in this example are limited to 16 and 73.2 m, respectively. The ranges of stiffness combinations of the 

lower and upper structure for the combined framing systems investigated in this example are shown 

in Figure 3.9 (b). For initial design, any combination of the shear wall length and the number of 

columns of the RC moment frame from the shaded area of Figure 3.9 (b) is a feasible design. 

However, to better illustrate how the interaction between the lower and upper structures affect the 

required stiffness distributions, the limitations TsingL≥0.2TS, TsingU≥0.2TS and rk≤20 are eliminated and 

results are shown in Figure 3.9 (c). Note the required stiffness distributions of the lower and upper 

structures are affected by the shape of the proposed αU-Rk curve. Based on the relative magnitudes of 

RkU1 and RkU2, and the relative magnitudes of αUmax and αU2stg, there are three possible shapes for αU-RK 

curve, as shown in Figures 3.6 (a) ~ (c). The calculated critical shear-force-amplification factors and 

overall stiffness ratios for this example are shown in Table 3.4 and Table 3.5. From these tables, it is 

seen that αUmax>αU2stg and RkU1<RkU2. Therefore, the αU-Rk relationship for this example conforms to 

that of Figure 3.6 (a). 

The shaded areas 1 ~ 4 in Figure 3.9 (c) correspond to areas 1~ 4 in Figure 3.6 (a), respectively. 

From Figure 3.9 (c), it is seen the minimum required CFS shear wall length should not be less than 

29.6 m. When the CFS shear wall length is not less than 29.6 m, the feasible stiffness distributions of 

the lower and upper structures have the following characteristics: 

(1) When the CFS shear wall length ranges from 29.6 m to 33.47 m, the upper structure is relatively 

flexible. To ensure that the storey-drift limit of the upper structure is satisfied, the shear-force-

amplification factor αU should be limited to a certain small value otherwise the storey-drift limit may 

be violated, as shown in Eq.(3.4). From Figure 3.6 (a), it is seen that to limit the factor αU to a certain 

small value, the overall stiffness ratio between the lower and upper structure Rk should be located in 

any area of 1, 3 or 4 rather than 2. However, it is found that if the CFS shear wall length is within the  
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                                                        (c) all possible stiffness combinations 

Figure 3.9: Feasible SFRS designs of lower and upper structures of Example 3-1 

Table 3.4: Critical shear-force-amplification factors for Examples 3-1 and 3-2 

 
αU1 αUmax 

αU2stg 

 
αU11 αU12 αUmax1 αUmax2 

Example 3-1 1.169 1.702 1.672 2.009 1.100 

Example 3-2 N/A N/A 1.029 1.220 1.100 

Note: N/A denotes αU11 and αU12 do not exist since RkU1≥ RkU2. 

 

Table 3.5: Critical stiffness ratios for Examples 3-1 and 3-2 

 

critical overall stiffness ratios critical storey-stiffness ratios 

RkU1 RkU2 RkU3 RkU2stg rkU1 rkU2 rkU3 rkU2stg 

Example 3-1 2.59  5.56  7.56  47.79  4.41 9.47 12.88 81.41 

Example 3-2 4.14  1.76  5.14  5.88  1.89 0.80 2.35 2.69 
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range of 29.6 m to 33.47 m, the value of Rk selected from area 1 of Figure 3.6 (a) results in a large 

factor αU and the storey-drift limit being violated. Therefore, only the value of Rk selected from either 

area 3 or 4 of Figure 3.6 (a) is permitted. To ensure Rk be located in area 3 or 4 of Figure 3.6 (a), the 

lower structure must be much stiffer than that of the upper one. Consequently, if the CFS shear wall 

length ranges from 29.6 m to 33.47 m, the required number of the columns in the RC moment frame 

becomes considerably large, as shown in Figure 3.9 (c). 

In fact, the minimum required CFS shear wall length 29.6 m is derived by setting the three-storey 

CFS frame fix at the base. Therefore, when the CFS shear wall length is 29.6 m, the lower structure 

must be stiff enough so that the lower structure has no effect on the upper one. This is the case that 

the required number of columns in the RC moment frame is located in area 4 of Figure 3.9 (c), the 

area that the two-stage analysis procedure is applicable.  

(2) If the selected CFS shear wall length ranges from 33.47 m to 63.62 m, the shear-force-

amplification factor αU should also be limited to a certain small value so that the storey-drift limit is 

not violated. Nevertheless, different from the case that the CFS shear wall length ranges between 29.6 

m to 33.47 m, the value of Rk selected from area 1 of Figure 3.6 (a) is also permitted. Only the value 

of Rk selected from area 2 of Figure 3.6 (a) is not permitted. Therefore, the selection of the required 

number of columns in the RC moment frame becomes quite tricky. To exclude the value of Rk be 

located in area 2 of Figure 3.6 (a), the required number of columns has to be either greater or less than 

certain values depending on the selected length of CFS shear wall length. For example, if the CFS 

shear wall length is 43.60 m, the required number of columns in the RC moment frame is greater than 

100.49 or lies in the range between 13.63 and 18.17, as shown in Figure 3.9 (c). The number of 

columns cannot be between 18.17 and 100.49. This is because if the number of columns in the RC 

moment frame lies between 18.17 and 100.49, the overall stiffness ratio between the lower and upper 

structures are closer to area 2 of Figure 3.6 (a) where the factor αU reaches the maximum value. With 

the maximum factor αU, the governing design equation, i.e., (3.4), is not satisfied and the storey-drift 

limit is violated. 

(3) When the CFS steel shear wall length is greater than 63.62 m, the upper structure is stiff enough 

so that the storey-drift limit can always be satisfied regardless of the magnitudes of the shear-force-

amplification factor αU. Even if the overall stiffness ratio Rk is located in area 2 of Figure 3.6 (a) and 

the factor αU reaches the maximum value, the governing design equation, i.e., Eq.(3.4), is satisfied 

due to the large storey-stiffness of the upper structure. Therefore, the storey-drift limit can always be 

satisfied. There is no specific requirement on the required number of columns in the RC moment 

frame as long as the storey-stiffness of the lower structure kL is not less than rkU1kU, i.e., kL≥rkU1kU. As 
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discussed in section 1.3.2, the requirement kL≥rkU1kU is to ensure that the maximum storey-drift occurs 

at the upper structure. In Figures 3.9 (a) ~ (c), the lower bound of area 1 represents that kL=rkU1kU. 

Based on Figure 3.9 (c), it is seen that for the combined framing system, there are many theoretical 

feasible stiffness combinations, which ensure the storey-drift limit to be satisfied. However, many of 

the feasible stiffness combinations may not be applicable for design practice. In this example, a 

stiffness combination that the CFS shear wall length is 29.6 m and the required number of columns in 

the RC moment frame is 172.8 is a theoretically feasible solution. However, to construct such a stiff 

lower structure is neither economical nor practically feasible as the maximum number in the RC 

concrete frame in this example is limited to 16, as shown in the floor plan view of Figure 3.8. With 

consideration of the structural layout of the building, the number of feasible and practical stiffness 

combinations of lower and upper structures is limited. In this example, the region of the feasible and 

practical stiffness combinations is that shown in Figure 3.9 (b). 

By comparing Figure 3.9 (b) to 3.9 (c), it is seen all feasible and practical stiffness combinations 

are located in area 1 for this example. As shown in Figure 3.6 (a), when the overall stiffness ratio Rk is 

located in area 1, the factor αU increases as the overall stiffness ratio Rk increases. Therefore, to limit 

the factor αU, there is an upper limit associated with the stiffness of the lower structure as shown in 

Figure 3.9 (b). For example, if the CFS shear wall length is first selected as 37.0 m, the maximum 

required number of columns in the RC moment frame is theoretically 12.9. However, for being 

conservative, one may select all 16 columns in the floor plan to have a moment connection; but it 

results in that the storey-drift limit being violated. Therefore, by increasing the stiffness of the lower 

structure with the intention of reducing the mass and stiffness interactions between the lower and 

upper structure and limiting the maximum storey drift of the upper structure, it may not always yield 

to an effective and feasible design. 

3.6.2 Example 3-2 

The floor layout, storey-height, specified dead load, column size in the RC moment frame and CFS 

framing for the lower RC and upper CFS structures of the building in this example are all the same as 

those of Example 3-1, except that this is an eight-storey building. The SFRS of the lower two-storey 

structure is the special RC moment frame while that that of the upper six-storey is CFS framing with 

shear walls sheathed with oriented strand board (OSB) panels.  

The storey-masses of the lower and upper structures in this building are identical to those of the 

previous example. Then, by following steps 1 ~ 6 described in section 3.5, the domain of feasible 
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    (a) considering TsingL≥0.2TS , TsingU≥0.2TS and rk≤20                           (b) considering floor layout  
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     (c) all possible stiffness combinations 

Figure 3.10: Feasible SFRS designs of lower and upper structures of Example 3-2 

SFRS designs of lower and upper structures are illustrated in the shaded area in of Figure 3.10 (a).  

Similar to that of the previous example, the stiffness combinations of lower and upper structures 

shown in the shaded area of Figure 3.10 (a) have to satisfy TsingL≥0.2TS, TsingU≥0.2TS and rk≤20. Based 

on the floor plan layout, the maximum number of columns in the RC moment frame cannot be greater 

than 16 and the CFS shear wall length cannot be greater than 73.2 m (Figure 3.8). The feasible and 

practical stiffness combinations of lower and upper structures for this example are shown in Figure 

3.10 (b).  

Similar to that in Figure 3.9 (c), the limitations TsingL≥0.2TS, TsingU≥0.2TS and rk≤20 are eliminated 

in Figure 3.10 (c). Based on Table 3.4 and Table 3.5, it is seen that RkU1>RkU2 but the relative 

magnitude of αUmax and αU2stg is not certain. If αUmax=αUmax1, αUmax<αU2stg; however, if αUmax=αUmax2, 

αUmax>αU2stg. Therefore, depending on the relative magnitude ofαUmax and αU2stg, the αU-Rk relationship 

may conform to that shown in Figure 3.6 (b), but it may also conform to that shown in Figure 3.6 (c).  
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The shaded areas 2 to 4 in Figure 3.9 (c) are respectively corresponding to the areas of 2 to 4 in 

Figure 3.6 (b) or (c). From Figure 3.9 (c), it is seen that the minimum required CFS shear wall length 

is 30.45 m. When the CFS shear wall length is not less than 30.45 m, the feasible stiffness 

combinations of the lower and upper structures have the following characteristics: 

(1) When the CFS shear wall length ranges from 30.45 m to 34.78 m, the upper structure is 

relatively flexible. The shear-force-amplification factor αU should be limited to a certain small value. 

In addition, the period of the upper structure TU is greater than the transition period TS of the ASCE 7 

spectrum if the CFS shear wall length lies between 30.45 m to 34.78 m. Based on Eq.(3.17), the 

critical shear-force-amplification factor αUmax=αUmax1; and therefore, the αU-Rk relationship conforms 

to that shown in Figure 3.6 (c) since αUmax1<αU2stg, as shown in Table 3.4 and Table 3.5. From the 

proposed αU-Rk curve shown in Figure 3.6 (c), the factor αU associated with areas 2 and 3 is less than 

that of area 4 for the combined framing systems. Consequently, to limit the factor αU, the overall 

stiffness ratio between lower and upper structures Rk should be selected from either area 2 or 3, but 

not 4. To ensure that the overall stiffness ratio Rk is located in either area 2 or 3, depending on the 

selected CFS shear length, the number of columns should be less than a certain value, as shown in 

Figure 3.9 (c). For example, if the CFS shear wall length is 32.27 m, the required number of columns 

in the RC moment frame should lie between 4.32 and 5.69. The maximum number 5.69 is to ensure 

the ratio Rk be located in areas 2 and 3 so that the storey-drift limit will not be violated; while the 

minimum number 4.32 is to ensure that the storey-stiffness of the lower structure kL is not less than 

rkU1kU, i.e., kL≥rkU1kU, as discussed in section 1.3.2. The lower bound of area 2 in Figure 3.9 (a) ~ (c) 

represents that kL=rkU1kU. 

(2) If the CFS shear wall length is greater than 34.78 m, the upper structure is stiff enough and the 

storey-drift limit can always be satisfied regardless of the magnitude of the factor αU. Therefore, there 

is no requirement on the required number of columns in the RC moment frame as long as the storey-

stiffness of the lower structure kL is not less than rkU1kU, i.e., kL≥rkU1kU.  

3.6.3 Design validation 

Elastic-analysis-based modal response spectrum analysis (Chopra, 2007) is carried out for the 

buildings investigated in Examples 3-1 and 3-2 as MDOF models, as shown in Figure 1.3, with the 

corresponding effective storey-masses and storey-stiffness evaluated previously. For all combinations 

of the CFS shear wall length and the number of columns in the RC moment frame shown in the 

shaded areas of Figure 3.9 (a) and 3.10 (a), the storey drifts of the first storey of CFS shear walls 

calculated from the elastic-analysis-based modal response spectrum analyses are less than 1.8% of the 

storey height for both buildings. Since the specified storey-drift limit for both buildings is 2% of the 
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storey height, all combinations the CFS shear wall length and the number of columns in the RC 

moment frame obtained from the proposed procedure are conservative. 

3.6.4 Design comparison 

The feasible and practical stiffness combinations of the lower and upper structures shown in Figure 

3.9 (b) of Example 3-1 is compared with those shown in Figure 3.10 (b) of Example 3-2. From Figure 

3.9 (b), it is seen that majority of the feasible and practical stiffness combinations of the lower and 

upper structures of Example 3-2 will result in that the overall stiffness ratio Rk to be located in area 4 

of Figure 3.6 (b) or (c). The area 4 signifies that the two-stage analysis procedure is applicable. As 

previously discussed in section 3.3, if the overall stiffness ratio Rk is located in area 4, the lower 

structure has no effect on the upper one, and the upper structure can be considered as an independent 

building fixed to ground. Therefore, there is almost no interaction between the lower and upper 

structures in terms of mass and stiffness. The drift limit of the upper 6-storey CFS frame of Example 

3-2 can be satisfied by considering the stiffness of CFS shear wall alone. However, all the feasible 

and practical stiffness combinations of Example 3-1 have yielded that the overall stiffness ratio 

between the lower and upper structures Rk to be located in area 1 of Figure 3.6 (a), as shown in Figure 

3.9 (b). As previous discussed in section 3.3.1 and 3.3.3, if the overall stiffness ratio is located in the 

area 1 of Figure 3.6 (a), the interactions between lower and upper structure in terms of mass and 

stiffness should be accounted for in the design and analysis. Therefore, the feasible stiffness 

combinations of the lower and upper structures of Example 3-1 are greatly affected by the interactions 

between lower and upper structures in terms of mass and stiffness. 

The difference of the stiffness combination characteristics between the two examples is primarily 

resulted from the difference of the mass associated with the lower structures between the two 

buildings. Considering the numbers of storey of the lower structure are 6 and 2 for the buildings in 

Examples 3-1 and 3-2, respectively, the resulted overall mass ratio between the lower and upper 

structures, Rm, of the building in Example 3-1 is 4.56, which is much greater than that of Example 3-2, 

i.e., 0.76, as shown in Table 3.6. Recall that the effect of the overall mas ratio Rm on the shear-force-

amplification factor αU discussed in section 3.3.1. A larger value of the overall mass ratio Rm would 

result in a more significant amplification of the shear force for the upper structure. Therefore, the 

calculated critical shear-force-amplification factors of Example 3-1 are much greater than those of 

Example 3-2, as shown in Table 3.4. In addition, with a larger value of the overall mass ratio, the 

critical storey-stiffness ratios of the upper structure of Example 3-1 are also much greater than those 

of Example 3-2, especially for the storey-stiffness ratio of the upper structure associated with the two- 
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Table 3.6: Design comparison between Examples 3-1 and 3-2 

 
lower structure upper  structure Rm 

CFS shear wall 

length (m) 

number of columns in 

RC moment frame 

Example 3-1 6-storey RC frame 3-storey CFS frame 4.56 33.47 ~ 51.17 10.47 ~16.0 

Example 3-2 2-storey RC frame 6-storey CFS frame 0.76 30.45 ~ 73.20 4.10 ~ 16.0 

 

stage analysis procedure rkU2stg. The storey-stiffness ratio of the upper structure associated with the 

two-stage analysis procedure rkU2stg for Example 3-1 is significantly greater than that of Example 3-2 

with the values of rkU2stg for Example 3-1 and Example 3-2 respectively being 81.41 and 2.69, as 

shown Table 3.5. With larger values of shear-force-amplification factors and critical storey-stiffness 

ratios, the interactions between the lower and upper structures in terms of mass and stiffness 

associated with Example 3-1 have a more significant effect on the stiffness combinations compared to 

that of Example 3-2. 

Intuitively, people may think that the minimum required CFS shear wall length for the 3-storey 

CFS frame in Example 3-1 should be less than that for the 6-storey CFS frame in Example 3-2. 

However, due to the large shear-force-amplification effect associated with Example 3-1, the 

minimum required CFS shear wall length for the 3-storey CFS structure in Example 3-1 is greater 

than that for the 6-storey CFS structure in Example 3-2, with each of them respectively being 33.47 m 

and 30.45m, as shown in Table 3.6. Nevertheless, the maximum feasible and practical CFS shear wall 

length of Example 3-1, i.e., 51.71 m, is less than that of Example 3-2, i.e., 73.2 m, as shown in Table 

3.6. The maximum CFS shear wall lengths for both examples are limited by the structure layout, as 

shown Figure 3.8. The maximum CFS shear wall length 6.1m × 3 ×4 = 73.2 m of Example 3.2 is 

limited by the total available wall length, while the maximum CFS shear wall length 51.71 m for 

Example 3-2 is limited by the total number of columns in the RC frame. To ensure that the maximum 

storey-drift occur at the upper structure, the storey-stiffness ratio should not be less than the 

calculated rkU1, as discussed in section 1.3.2. The value of rkU1 for Example 3-1, i.e., 4.41, is greater 

than that of Example 3-2, i.e., 1.89, as shown in Figure 3.5. As to Example 3-1, if the CFS shear wall 

length is greater than 51.71 m, to ensure the storey-stiffness of the lower structure kL be not less than 

rkU1kU, the required number of columns in the RC moment frame becomes greater than 16. Therefore, 

the maximum CFS shear wall length for Example 3-1 is limited to 51.71 m rather than 73.2m. As to 

Example 3-2, since value of the minimum storey-stiffness ratio rku1 is relatively small, the required 

number of column can be less than 16 even if the CFS shear wall length is 73.2m, as shown in Figure 

3.9 (b). 
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From the previous discussion, it is seen since the number of the storey and total seismic weight of 

the lower structure is greater than those of the upper structure in Example 3-1, the required stiffness 

of the upper structure is greatly affected by the interactions between lower and upper structures in 

terms of mass and stiffness. However, as to Example 3-2, since the number of the storey and total 

seismic weight of the lower structure is less than those of the upper structure, such interactions have 

less effect on the required stiffness of the upper structure. The required lateral stiffness of the upper 

structure can be determined without considering the influence of the lower structure.  

3.7 Conclusion 

Presented in this chapter is a simplified seismic design approach for the determination of storey-

stiffness distribution of mid-rise buildings with vertical combination of framing systems based on the 

specified storey drift limit. Unlike the two-stage analysis procedure prescribed in ASCE 7, the effects 

of the interaction between the lower and upper structures in terms of mass and stiffness on the seismic 

load are considered. In order to quantify effects of such interaction on the base shear force of the 

upper structure, which is the key issue that governs the determination of the storey-stiffness 

distribution, the shear-force-amplification factor αU is proposed to account for the effect of shear 

force amplification contributed by the lower structure to the upper one. The following conclusions are 

obtained: 

(1) The overall stiffness ratio Rk between the lower and upper structures has a significant influence 

on the factor αU: (a) when the lower structure is much stiffener than the upper one, αU≈1, which 

indicates the lower structure has no influence on the upper one, and the upper structure behaves as it 

is fixed to the ground base; however, (b) when periods of the lower and upper structures are close to 

each other, e.g., TU≈TL, a large amount of the mass from the lower structure will contribute to the 

shear force associated with the upper structure and the factor αU will reach the maximum value, which 

is usually greater than unity; and (c) when TU  is far more less than TL, the lower structure may act 

similar to a damper to dissipate the energy generated by earthquakes, which results in αU<1. 

 (2) Applicable equations to evaluate the shear-force-amplification factor αU are proposed. And 

errors of the proposed equations are limited to the range between -0.9% and 35.8%, which is 

comparable with conventional ELF procedure for regular structures. 

(3) The relative seismic weight between the lower and upper structures has a significant influence 

on the design of the lower and upper structures. In general, when the number of the storey and total 

seismic weight associated with the lower structure is much greater than those of the upper one, the 

required stiffness of the upper structure will be greatly affected by the interaction between lower and 



 

46 

  

upper structures in terms of mass and stiffness. On the other hand, if the number of the storey and 

total seismic weight associated with the lower structure are less than that of the upper structure, such 

interaction has less effect on the required stiffness of the upper structure. In such case, the required 

lateral stiffness of the upper structure is primarily based on the characteristics of the upper structure. 

 (4) The proposed simplified seismic design approach generally yields a conservative design, which 

has been demonstrated in the two illustrated examples. 
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Chapter 4  Simplified methods for evaluating seismic loading of 

mid-rise buildings with vertical combination of framing systems 

4.1 Introduction 

Two simplified methods for evaluating seismic loading of mid-rise buildings with vertical 

combination of framing systems, i.e., modified ELF and two-stage analysis procedures, are 

investigated in this chapter. Applicable requirements and seismic load distributions associated with 

the two simplified methods are proposed, respectively, based on the USA standard ASCE 7 (ASCE 7, 

2010). Meanwhile, the proposed two-stage analysis procedure is also compared with the existing two-

stage analysis procedure prescribed in ASCE 7 (ASCE, 2006; 2010). Finally, three design examples 

are presented to illustrate the efficiency of the two simplified methods. 

4.2 Modified ELF procedure 

4.2.1 Background of modified ELF procedure 

The modified ELF procedure presented herein is applicable to the “appendage-style” building, in 

which the upper structure only has one storey. To modify or extend the conventional ELF procedure 

to be applicable to the “appendage-style” building, modal analyses based on the simplified 2DOF 

model are carried out. As to the “appendage-style” building, when the lower structure is relatively 

soft compared to the upper one, the effective mass distribution of the 2DOF model is shown in 

Figures 4.1 (b) and (c). From the figure, it is observed that: (a) the lower structure is dominated by the 

first mode; and (b) the upper “appendage” may be dominated by the second mode in addition to the 

first mode. However, as the seismic weight of the upper “appendage” is much less than that of the 

lower one, the second mode does not have a significant effect on the seismic load of the lower 

structure. Therefore, the lower structure can be treated as an independent “regular” building with the 

base fixed to the ground, and the conventional ELF procedure can be directly adopted to evaluate the 

seismic load of the lower structure. The base shear force of the lower structure VLb can be evaluated as 

follows: 

    1Lb L U aV M M S T    (4.1) 

Based on the simplified 2DOF model, the first mode period T1 in Eq.(4.1) can be approximated by 

Eq.(A.5) of Appendix A. 
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        (a) mass distribution of 2DOF model              (b) first mode                                  (c) second mode  

Figure 4.1: Effective mass distribution of simplified 2DOF model when ELF procedure is applicable 

to “appendage-style” building 

4.2.2 Applicable requirement 

As shown in Figure 4.1, to ensure the ELF procedure is applicable for the “appendage-style” building, 

it is required that the effective mass of the lower structure is primarily concentrated in the first mode. 

For a given overall mass ratio Rm, let Rkb1 be the overall stiffness ratio at which the effective mass of 

the entire building associated with the first mode in the simplified 2DOF model is 90% of the total 

mass. As discussed in Appendix C.6, if the overall stiffness ratio Rk is less than Rkb1, the effective 

mass of entire building associated with the first mode in the simplified 2DOF model will be greater 

than 90% of the total mass and therefore, the modified ELF procedure can be adopted to approximate 

the seismic load. The critical overall stiffness ratio Rkb1 is computed as follows: 

 1
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Then, based on Eq.(3.7), the critical storey-stiffness ratio associated with the modified ELF procedure 

to be applicable for the “appendage-style” building, rkb1, can be computed as follows: 

 

2

1
1 1

1

U U
kb kb

L L

N
r R

N





  
   

  
  (4.3) 

where 𝜔̅1𝐿 (𝜔̅1𝑈) is the normalized first mode natural frequency of an NL(NU)-storey structure as 

listed in Table 1.1. For practical “appendage-style” combined framing systems stated in section 1.3.2, 

values of rkb1 obtained in accordance with Eq. (4.3) are listed in Table 4.1. As long as the storey-

stiffness ratio rk is not greater than the value of rkb1 listed in Table 4.1, the modified ELF procedure 

presented in the section 4.2.4 is applicable for evaluating the seismic load of the “appendage-style” 

building. From the table, it is seen as the increase of the number of storeys associated with the lower 

structure, the value of rkb1 increases. As the number of storeys of the lower structure increases, the  
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Table 4.1: Values of rkb1 and errors associated with modified ELF procedure (ASCE 7) 

NL NU 

rkb1 error of shear force 

rm=1 rm=2 rm=3 
lower structure upper structure 

maximum minimum maximum minimum 

2 1 2.45 4.16 5.87 23.9% 11.8% 18.8% 4.8% 

3 1 4.26 7.54 10.82 28.2% 12.6% 19.7% 2.0% 

4 1 6.59 11.98 17.37 31.7% 13.2% 19.6% 0.9% 

5 1 9.46 17.48 25.51 33.7% 13.7% 19.2% 1.0% 

6 1 12.84 24.03 35.21 35.3% 14.0% 20.7% 1.5% 

7 1 16.76 31.63 46.49 35.0% 14.2% 14.0% 0.4% 

8 1 21.22 40.32 59.41 34.3% 14.5% 15.0% 1.4% 

9 1 26.18 50.00 73.81 30.9% 14.8% 15.0% 1.9% 

upper one-storey structure will act more like an “appendage”, and its effect on the lower structure will 

be less significant. Therefore, the applicable requirement of the modified ELF procedure in terms of  

rkb1 are less stringent as the number of storeys of the lower structure increases. In fact, when the 

number of storeys of the lower structure is eight or nine, as shown in Table 4.1, the value of rkb1 is 

greater than the assumed maximum storey-stiffness ratio 20. Therefore, the modified ELF procedure 

is always applicable to the “appendage-style” building if the number of storeys of the lower structure 

is not less than eight. Note listed in Table 4.1 are only values of rkb1 for cases where rm=1, 2 or 3. For 

other rm values, values of rkb1 can be linearly interpolated by the magnitude of rm. 

4.2.3 Seismic load distribution 

4.2.3.1. Lower structure 

By using the conventional ELF procedure, the lateral seismic force along the entire height of the 

building is distributed through the method prescribed in ASCE 7 (ASCE, 2010), as shown in Figure 

4.2. The lateral seismic force associated with the ith-storey Fi is calculated as 
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where mi is the mass associated with the ith-storey, hi is the height from the ground to the ith-storey, 

and κ is an exponent related to the structural period (ASCE, 2010), which is calculated as  
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(a)  κ=1                                                                    (b) κ=2   

Figure 4.2: Lateral seismic force distribution associated with ELF procedure (ASCE, 2010) 

The traditional “regular” building is primarily dominated by the first mode and the first mode shape is 

almost linearly distributed along the height. However, a few storeys near the top of the “regular” 

building may still be affected by higher vibration modes other than the first mode, and such effect 

becomes more significant as the period of the “regular” building elongates. To account for such 

higher vibration modes effects on the upper few storeys, the exponent κ is introduced in the ELF 

procedure. As shown in Figure 4.2 (b), when κ=2, the distributed lateral seismic forces associated 

with the top storey increases considerably. In this way, the effect of higher vibration modes on the 

seismic load of the few storeys near the top is accounted for. 

With the calculated lateral seismic force, the shear force of the lower structure can be equivalently 

computed based on the lateral seismic force distribution as follows: 
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

    (4.6) 

Note VLi is the ith-storey of the lower structure, while Fi represents the lateral seismic force associated 

with the ith-storey of the entire building. 

4.2.3.2. Upper Appendage 

As presented in section 4.2.1, when the storey-stiffness ratio rk is less than the value of rkb1 listed in 

Table 4.1, the seismic response of the upper “appendage” may be greatly affected by higher vibration 

modes other than the first mode. Consequently, the seismic load of the upper “appendage” cannot be 

estimated from the conventional ELF procedure as discussed in section 4.2.3.1. It is suggested that the 

base shear force of the upper “appendage” be calculated based on the shear-force-amplification-factor 

αU proposed in Chapter 3 as follows: 

 ( )Ub U U a UV m S T   (4.7) 

where the factor αU is determined by Eq.(3.12) and the period TU is determined based on Eq.(3.8).  
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4.2.4 Modified ELF procedure 

By adopting the modified ELF procedure, the seismic load of the “appendage-style” building can be 

evaluated as follows: 

Step 1: Evaluate the effective seismic weight and stiffness distributions, (mL and mU) and (kL and 

kU), respectively; and calculate rm (rm=mL/mU) and rk (rk=kL /kU). 

Step 2: Determine the value of rkb1 in accordance with Table 4.1. 

Step 3: Check if the storey-stiffness ratio rk is less than or equal to the value of rkb1. If rk≤rkb1, go to 

step 4; otherwise, the modified ELF procedure is not applicable. 

Step 4: Calculate the base shear force of the lower structure VLb in accordance with Eq.(4.1); then, 

evaluate the lateral seismic force and shear force for each storey of the lower structure based on 

Eqs.(4.4) and (4.6), respectively; finally, determine the shear force of the upper “appendage”, VUb, by 

Eq.(4.7). 

4.2.5 Error analysis 

Results obtained from the modified ELF procedure are compared with those from the elastic modal 

response spectrum analysis of the MDOF model with CQC rule to combine the peak modal responses 

(Chopra, 2007). The maximum and minimum errors for each storey combination, as shown in Table 

4.1, are obtained based on all the possible combinations of rm, rk, TsingU/Ts and TsingL/Ts as stated in 

section 1.3.2. The positive and negative errors represent that the modified ELF procedure 

overestimates and underestimates the shear force, respectively. From Table 4.1, it is seen errors 

induced from the modified ELF procedure for the lower and upper structures are in the range 

11.8%~35.3% and 0.4%~20.7%, respectively. The error of shear force for the lower structure is in 

general larger than that for the upper structure. However, the maximum error for the lower structure, 

i.e., 35.3%, is comparable with that of the conventional ELF procedure (ASCE, 2010) for “regular” 

structures, as discussed in section 3.3.4. Therefore, the modified ELF procedure can be adopted to 

analyze the “appendage-style” combined framing system. 

4.3 Proposed two-stage analysis procedure 

4.3.1 Background of proposed two-stage analysis procedure 

The basic principle associated with the two-stage analysis procedure is that seismic forces of lower 

and upper structures can be computed by the ELF procedure separately (ASCE, 2006; 2010). This 

principle can be revealed by carrying out modal analysis for the simplified 2DOF model. When the  
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    (a) mass distribution of 2DOF model           (b) first mode (T1≈TU)               (c) second mode (T2≈TL) 

Figure 4.3: Effective mass distribution of simplified 2DOF model with extremely  

stiff lower structure  

lower structure is much stiffer than the upper one, the effective mass distribution of the 2DOF model 

is shown in Figure 4.3. From the figure, it is observed that: (a) the upper structure is dominated by the 

first mode, with the period of the first mode of the building being equivalent to that of the upper 

structure TU, and (b) the lower structure is dominated by the second mode, with the period of the 

second mode of the building being equivalent to that of the lower structure TL, as shown in Figures 

4.3 (b) and (c). Therefore, based on the modal response spectrum analysis (Chopra, 2007), lateral 

seismic forces of the lower and upper structures, designated as FU and FL, respectively, can be 

calculated as 

  U U a UF M S T   (4.8) 

  L L a LF M S T   (4.9) 

From Eqs.(4.8) and (4.9), it is seen the two-stage analysis procedure ignores the possible mass and 

stiffness interaction between lower and upper structures. The lateral seismic forces associated with 

the lower and upper structures can be calculated separately as the structures are directly fixed to the 

ground base. 

4.3.2 Applicable requirement 

To ensure the proposed two-stage analysis procedure is applicable to evaluate the seismic loading of 

the combined framing system, Eqs.(4.8) and (4.9) should be satisfied simultaneously. For a given 

overall mass ratio Rm, let Rk2stg, the smallest value of overall stiffness ratio that ensures Eqs.(4.8) and  

(4.9) be satisfied simultaneously, be the overall  two-stage stiffness ratio. As discussed in Appendix 

C.3, Rk2stg can be calculated as 
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Table 4.2: Values of rk2stg and errors associated with proposed two-stage analysis procedure 

NL NU 

rk2stg error of shear force 

rm=1 rm =2 rm =3 
upper structure lower structure 

maximum minimum maximum maximum 

1 1 10.71 19.56 30.59 11.6% -0.4% 5.1% -2.0% 

1 2 7.55 8.18 10.73 24.5% 2.0% 26.5% 1.5% 

2 2 10.71 19.56 30.59 20.3% 3.5% 36.3% 10.9% 

3 2 18.06 39.33 60.60 13.5% 6.4% 40.5% 22.5% 

1 3 5.71 6.04 6.36 32.8% 1.3% 35.6% 11.9% 

2 3 7.90 9.49 15.21 28.4% -0.3% 51.6% 13.2% 

3 3 10.71 19.56 30.59 27.4% -0.4% 59.2% 18.4% 

4 3 15.03 33.14 51.24 21.9% 2.4% 63.0% 22.4% 

1 4 4.57 4.77 4.97 35.9% 1.0% 44.5% 7.3% 

2 4 6.25 6.76 8.87 30.5% -0.5% 64.9% 14.1% 

3 4 8.36 11.41 18.12 30.2% -0.2% 74.0% 17.1% 

4 4 10.71 19.56 30.59 29.0% -0.5% 78.8% 19.7% 

5 4 13.45 29.87 46.29 19.8% -0.1% 81.0% 22.0% 

1 5 3.81 3.94 4.07 35.9% -0.1% 50.7% 8.2% 

2 5 5.16 5.50 5.85 32.1% -0.3% 67.3% 13.6% 

3 5 6.85 7.52 11.83 31.8% -0.4% 74.7% 17.0% 

4 5 8.71 12.71 20.12 32.0% -0.8% 81.1% 17.4% 

5 5 10.71 19.56 30.59 24.9% -0.1% 82.6% 19.2% 

1 6 3.26 3.35 3.45 36.7% -0.2% 56.5% 8.4% 

2 6 4.39 4.64 4.89 33.0% -0.9% 72.5% 14.8% 

3 6 5.81 6.29 8.24 36.9% -0.8% 81.1% 16.4% 

4 6 7.35 8.82 14.14 35.0% -0.5% 87.0% 17.7% 

1 7 2.85 2.92 2.99 36.7% 0.1% 57.4% 8.5% 

2 7 3.82 4.01 4.20 34.4% -0.5% 75.4% 15.4% 

3 7 5.03 5.40 6.02 37.3% -0.4% 83.5% 16.5% 

1 8 2.53 2.58 2.64 37.9% 1.1% 58.7% 8.7% 

2 8 3.38 3.53 3.67 34.8% 0.1% 76.5% 15.6% 

1 9 2.27 2.32 2.36 38.0% -0.8% 60.6% 8.7% 

 

Note Rk2stg in Eq.(4.10) is different from the RkU2stg presented in Eq.(3.9). RkU2stg is the smallest value 

of overall stiffness ratio that only ensures Eq.(4.8) be satisfied, while Rk2stg is the smallest overall 

stiffness ratio that satisfies Eqs.(4.8) and (4.9), simultaneously. Then, based on Eq.(3.7), the critical 

storey-stiffness ratio associated with the proposed two-stage analysis procedure, rk2stg, for the 

combined framing systems can be computed as follows: 
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As to the combined framing systems which satisfy the requirements stated in section 1.3.2, possible 

storey combinations of lower and upper structures that may be analyzed by the proposed two-stage 

analysis procedure and the corresponding threshold values of rk2stg are listed in Table 4.2. As long as 

the storey-stiffness ratio rk is not less than the value of rk2stg listed in Table 4.2, the proposed two-

stage analysis procedure is applicable for evaluating the seismic load of the combined framing system. 

From the table, it is seen the proposed two-stage analysis procedure is usually applied to the 

combined framing system in which the number of the storey of the lower structure is less than that of 

the upper one. For example, for the case where NL=1 and NU =9, as shown in Table 4.2, the 

corresponding threshold value of rk2stg is quite small regardless magnitudes of storey-mass ratio rm; 

consequently, for most cases, the  proposed two-stage analysis procedure is applicable for such storey 

combination. In fact, for the case where the number of the storey of the lower structure is 

considerably less than that of the upper one, the lower structure can be treated as a “podium” to the 

upper one, and the upper structure usually behaves as it is fixed to the ground base directly. 

4.3.3 Seismic load distribution 

4.3.3.1. Upper structure 

The seismic load of the upper structure can be calculated as it is fixed to the ground base directly. The 

base shear force of the upper structure VUb is computed as 

 
2 ( )Ub U stg U U a UV m N S T   (4.12) 

where the factor αU2stg is calculated in accordance with Eq.(3.21). Then, the lateral seismic force at the 

ith-storey of the upper structure, FUi, is linearly distributed along the height as shown in Figure 4.4 (b). 

FUi can be calculated as follows: 

  

1

U

U Ui
Ui Ub tN

U Uj

j

m h
F V F

m h


 


  (4.13) 

where hUi is the height measured from the base of the upper structure to the ith-level of the upper 

structure, and Ft is the proposed additional top shear force, which will be discussed later in section 4.4. 

The shear force of the upper structure associated with any level i, VUi, can be equivalently computed 

from Figure 4.4 (b) as follows: 

  
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V F F
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(a) entire building                              (b) upper structure                           (c) lower structure                 

Figure 4.4: Lateral seismic force distribution of proposed two-stage analysis procedure 

4.3.3.2. Lower structure 

The seismic  load of the lower structure is also determined as it is fixed to the ground base. The lateral 

seismic force at any level of the lower structure, FLi, is also linearly distributed along the height, as 

shown in Figure 4.4 (c). FLi is computed as follows: 

 

1
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Li L L a LN
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i

m h
F m N S T

m h
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
  (4.15) 

where hLi  is the height from the base of the lower structure to the ith-level of the lower structure. The 

shear force of the lower structure associated with any level i, VLi, are equivalently computed from the 

lateral seismic force distribution shown in Figure 4.4 (c) and then combined with VUb as follows: 
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   (4.16) 

4.3.4 Proposed two-stage analysis procedure 

By adopting the proposed two-stage analysis procedure, the seismic load of the combined framing 

system can be calculated as follows: 

Step 1: Evaluate the effective seismic weight and stiffness distributions, (mL and mU) and (kL and 

kU), respectively; and calculate rm (rm=mL/mU) and rk (rk=kL /kU). 

Step 2: Determine the value of rk2stg based on Eq.(4.11). 

Step 3: Check if the storey-stiffness ratio rk is not less than the value of rk2stg. If rk≥rk2stg, go to step 

4; otherwise, the proposed two-stage analysis procedure is not applicable. 
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Step 4: Calculate the base shear force of the upper structure VUb by Eq.(4.12); and, evaluate the 

proposed additional top shear force Ft in accordance with Eq.(4.17) in section 4.4; then, compute the 

lateral seismic force and shear force for each storey of the upper structure based on Eqs.(4.13) and 

(4.14), respectively; and finally, evaluate the lateral seismic force and shear forces for each storey of 

the lower structure based on Eqs.(4.15) and (4.16), respectively. 

4.3.5 Error analysis 

Similar to that of the modified ELF procedure, results obtained from the proposed two-stage analysis 

procedure are also compared with those from the elastic modal response spectrum analysis of the 

MDOF model with CQC rule to combine the peak modal responses (Chopra, 2007). The maximum 

and minimum errors for each storey combination are shown in Table 4.2. Again, the positive and 

negative errors represent that the proposed two-stage analysis procedure overestimates and 

underestimates the shear force, respectively. From Table 4.2, it is seen errors of the shear force 

induced by the proposed two-stage analysis procedure for the upper structure are in the range between 

-0.9% ~ 38.0%, which is comparable to that of the conventional ELF procedure (ASCE, 2010) for 

“regular” structures, as discussed in section 3.3.4.  

The proposed two-stage analysis procedure may overestimate the shear force of the lower structure 

considerably, as shown in Table 4.2. However, compared to the two-stage analysis procedure 

prescribed in ASCE 7 (ASCE, 2006), which will be discussed later in section 4.5.2.1, the accuracy of 

the proposed procedure in this study is greatly improved. Since a weak or flexible lower structure is 

prohibited in practice, conservative design on the lower structure may be acceptable. Considering the 

amount of the work associated with the design of a combined framing system with a MDOF model, 

despite that it is conservative, the proposed two-stage analysis procedure is adopted to evaluate the 

seismic load of the lower structure as long as the applicable requirement of the two-stage analysis 

procedure is satisfied. 

4.4 Top storey loading 

The applicable requirement of the proposed two-stage analysis procedure, which is expressed in terms 

of the threshold value of rk2stg, is derived based on the simplified 2DOF model, as discussed in 

sections 4.3.1 and 4.3.2. Since dynamic properties of the simplified 2DOF model are obtained based 

on first vibrations modes of the lower and upper structures, as shown in Eqs. (3.5 a) ~ (3.5 d), the 

simplified 2DOF model only accounts for the interaction of the first modes of the lower and upper 

structures. Therefore, satisfying the applicable requirement of the two-stage analysis procedure only 

ensures that the interaction of the first modes of the lower and upper structures is not significant so 
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that it can be ignored. However, in the MDOF model, the interaction of other vibration modes 

between the lower and upper structures, especially the interaction of the first mode of the lower 

structure and other higher vibration modes of the upper structure, may not be ignored. The effect of 

such interaction on the base shear force of the upper structure has been accounted for in the proposed 

two-stage amplification factor αU2stg shown in Eq.(3.21). Nevertheless, as discussed in Appendix 

D.2.1, the amplification effect of such interaction on the shear force associated with the top storey of 

the upper structure is far more significant than that on the base shear force of the upper structure. 

Such phenomenon also occurs in “regular” buildings. The seismic response of the top storey 

associated with the “regular” building is more likely to be affected by higher vibration modes. In 

order to account for the “extra” amplification effects on the top storey of the upper structure, an 

additional shear force, Ft, as shown in Figure 4.4 (b), is applied to the top storey. Similar to the 

additional top shear force for the “regular” building prescribed in the NBCC 2010 (NBCC, 2010), the 

additional top shear force associated with the proposed two-stage analysis procedure for the combined 

framing system is calculated as follows: 

 
t UbF V   (4.17) 

where VUb is the base shear force of the upper structure calculated by Eq.(4.12), and the parameter γ is 

evaluated as  

 
reg intr      (4.18) 

In Eq.(4.18), γreg represents the additional top shear force that should be applied to the upper structure 

if it is fixed to the ground base directly; and γintr represents the additional top shear force that is 

induced by the interaction of the first mode of the lower structure and other higher vibration modes of 

the upper structure. 

4.4.1 Determination of γreg 

To account for the effect of higher vibration modes on the shear force of the top storey, the national 

building code NBCC 2010 (NBCC, 2010) specifies equations on how to calculate the additional top 

shear force in the “regular” building. By transferring the additional top shear force prescribed in 

NBCC in terms of the parameter γreg, γreg-NBCC is calculated as follows: 
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From Eq.(4.19), it is seen the NBCC considers γreg,NBCC as a function of the first mode period T1. In 

fact, the standard ASCE 7 (ASCE, 2010) also considers the effect of higher vibration modes on the 
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shear force of the top storey in the “regular” building as a function of T1, as shown in Eq.(4.5). 

Although Eqs.(4.5) and (4.19) have been respectively adopted by ASCE 7 and NBCC for “regular” 

structures for a long time, the both equations may not be as accurate as one thought. This is because 

the both equations only account for the first mode period. The effect of higher vibration modes on the 

shear force of the top storey in “regular” building is not only related to the first mode period T1, but 

also dependent on the predominant period of the earthquake ground motion in the field. In accordance 

with the standard ASCE 7 (ASCE, 2010), the predominant period of the earthquake ground motion 

can be represented by the period TS in the response spectrum curve as shown in Figure 1.4. Therefore, 

for an N-storey “regular” structure, an accurate estimation of γreg should include both T1 and TS. 

For an N-storey “regular” structure with the storey-mass being m, the parameter γreg can be 

evaluated as follows based on the MDOF modal response spectrum analysis (Chopra, 2007): 
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 (4.20) 

where hN is the height from the ground base to the top storey; ρij is the correlation coefficient between 

the ith- and jth-modes; and 𝑀𝑁𝑖
∗  is the effective modal mass of the top storey associated with the ith-

mode. From Eq.(4.20), it is seen for an N-storey “regular” structure, all parameters on the right hand 

side of Eq.(4.20) are constants except the spectrum ratio Sa(Ti)/ Sa(T1).  From the response spectrum 

curve shown in Figure 1.4, the spectrum ratio Sa(Ti) Sa(T1) is not only related with the period ratio 

Ti/T1, but also related with the  period ratio T1/TS. However, the period ratio Ti/T1 can be considered as 

a constant for an N-storey “regular” structure. Therefore, the only parameter that affects the value of 

γreg is the ratio T1/TS. For an NU-storey upper structure with the base fixed to the ground, as shown in 

Figure 4.4 (b), the first mode period T1 can be represented by its single storey-period TsingU. 

Consequently, the value of γreg for the NU-storey upper structure is related to the period ratio TsingU/TS. 

Such, both the effect of T1 and TS on γreg has been accounted for. Note the consideration of the first 

mode period of the upper structure T1 is represented by the single storey-period of the upper structure 

TsingU. 

Numerical values of γreg are provided in Table 4.3. For values of TsingU/TS that are not listed in the 

table, the corresponding γreg can be linearly interpolated by the magnitude of TsingU/TS.  

 

 



 

59 

  

Table 4.3: Values of γreg for “regular” upper structures 

NU  
   TsingU 0.2TS 0.3TS 0.4TS 0.5TS 0.6TS 0.7TS 0.8TS 0.9TS 1.0TS 1.1TS 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 

6 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.04 

7 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.05 0.05 

8 0.00 0.00 0.00 0.00 0.02 0.03 0.04 0.05 0.05 0.06 

9 0.00 0.00 0.00 0.02 0.03 0.04 0.05 0.05 0.06 0.06 

 

4.4.2 Determination of γintr 

For a combined framing system with an NL-storey lower and NU-storey upper structure, the value of 

γintr is computed as follows: 

 
intr intr1     (4.21) 

The parameter ηintr ranges between zero and unity. With ηintr=1, it represents that the interaction of the 

first mode of the lower structure and higher vibration modes of the upper structure does not induce an 

additional top shear force. The smaller the value of ηintr, the larger the additional top shear force.  

In order to investigate how the value of ηintr is affected by the interaction of the first mode of the 

lower structure and higher vibration modes of the upper structure, errors of the seismic load 

associated with the top storey by setting γintr=0, i.e., ηintr=1, are discussed in Appendix D.2.1. From the 

discussion it is seen the error of the seismic load for the top storey with γintr=0 is generally affected by 

the period ratio TU/TS and the period ratio between lower and upper structures TU/TL. Considering the 

influence of ratios TU/TS and TU/TL, the value of ηintr is proposed to be estimated as follows in this 

study: 
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where numerical values of (TU/TS)CRT are listed in Table 4.4; and the exponent x5 and the minimum 

value of η, ηmin, are computed as follows: 
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where Rk2stg is calculated based on Eq.(4.10), and exponents x6 and x7 are calculated as 
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In Eqs. (4.24) ~ (4.26), values of (TU/TL)CRT1, (TU/TL)CRT2 and (TU/TL)CRT3 are shown in Table 4.4, and 

values of ηmin1 and ηmin2 for possible storey combinations of the lower and upper structures that the 

two-stage analysis procedure may be applicable for are shown in Table 4.5. 

Effects of TU/TS 

The relationship between the period ratio TU/TS and the parameter ηintr presented in Eq.(4.22) is 

established in accordance with the effect of TU/TS on the error of the top shear force evaluated by 

setting γintr=0, as shown in Figure D.2 (g) of Appendix D.2.1. Based on the definition of the ηintr 

shown in Eq.(4.21), it is seen the positive error in Figure D.2 (g) represents no additional top shear 

force will be resulted from the interaction of higher vibration modes and ηintr=1. On the other hand, 

the negative error means an additional top shear force will be induced by the interaction of higher 

vibration modes and ηintr<1. Furthermore, as the magnitude of the negative error increases, value of 

the parameter ηintr decreases. From Figure D.2 (g), it is seen: 

(1) When the period ratio of the upper structure TU/TS is less than a certain value, i.e., (TU/TS)CRT in 

Eq.(4.22), the error of the top shear force is positive; therefore, no addition top shear force will be 

induced by the interaction of higher vibration modes and ηintr=1.  

(2) Then, as the increase of TU/TS, the effect of the interaction between the first mode of the lower 

structure and other higher vibration modes of the upper structures on the top storey shear force  
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Table 4.4: Empirical values of (TU/TL)CRT1, (TU/TL)CRT2, (TU/TL)CRT3 and (TU/TS) CRT 

 

Table 4.5: Values ηmin1 and ηmin2 for proposed two-stage analysis procedure 

NL NU 
rm=1 rm=2 rm =3 

ηmin1 ηmin2 ηmin1 ηmin2 ηmin1 ηmin2 

1 1 1.00  1.00  1.00  1.00  1.00  1.00  

1 2 1.00  1.00  1.00  1.00  1.00  1.00  

2 2 1.00  1.00  1.00  1.00  1.00  1.00  

3 2 1.00  1.00  1.00  1.00  1.00  1.00  

1 3 1.00  1.00  0.91  0.91 0.70  0.7 

2 3 0.95 0.95 0.57  0.57 0.55  0.55 

3 3 0.68  0.68  0.49  0.49 N/A N/A 

4 3 0.60  0.6 0.46  0.46 N/A N/A 

1 4 1.00  1.00  0.86  0.86  0.74  0.74  

2 4 0.90  0.90  0.68  0.68  0.55  0.55  

3 4 0.78  0.78 0.56  0.56 0.55  0.55 

4 4 0.72  0.72 0.42  0.42 N/A N/A 

5 4 0.68  0.65 0.51  0.51 N/A N/A 

1 5 1.00  1.00  0.89  0.89  0.79 0.79 

2 5 0.91  0.91  0.70  0.70  0.63  0.63  

3 5 0.83  0.83  0.63  0.61  0.53  0.53  

4 5 0.77  0.75  0.55  0.55  0.47  0.47  

5 5 0.68  0.68  0.49  0.49  N/A N/A 

1 6 1.00  1.00  0.90  0.90  0.83  0.83  

2 6 0.93  0.93  0.81  0.78  0.70  0.69  

3 6 0.88  0.86  0.73  0.68  0.52  0.52  

4 6 0.84  0.78  0.60  0.59  0.50  0.50  

1 7 1.00  1.00  0.92  0.92  0.87  0.85  

2 7 0.95  0.95  0.84  0.80  0.74  0.72  

3 7 0.88  0.87  0.77  0.74  0.62  0.58  

1 8 1.00  1.00  0.92  0.92  0.86  0.86  

2 8 0.95  0.95  0.82  0.82  0.73  0.73  

1 9 1.00  1.00  0.94  0.94  0.89  0.89  

Note: N/A indicates the proposed two-stage analysis procedure is not applicable. 

NU (TU/TL)CRT1 (TU/TL)CRT2 (TU/TL)CRT3 (TU/TS)CRT 

3 2.34 3.18 4.71 1.00 

4 3.06 4.25 7.44 1.00 

5 3.74 4.61 9.3 1.05 

6 4.44 5.87 10.92 1.24 

7 4.6 6.4 10.7 1.43 

8 4.83 6.64 12.97 1.63 

9 4.86 7.82 13.08 1.82 
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becomes more and more significant. The error turns to be negative and the magnitude of the negative 

error gradually increases. Therefore, the value of ηintr decreases exponentially as shown in Eq.(4.22). 

(3) Finally, when the period ratio TU/TS is equal to the period ratio between the lower and upper 

structures, i.e, TU/TS=TU/TL, the magnitude of negative error reaches to the minimum value and 

remains as invariant as the further increase of TU/TS. Therefore, when TU/TS=TU/TL, the value of ηintr 

reaches to the minimum value, i.e., ηmin in Eq.(4.22), and after that, the value of ηintr remains as 

invariant the as the further increase of TU/TS. 

The value of critical period ratio (TU/TS)CRT shown in Eq. (4.22) is investigated by the numerical 

study. It is found (TU/TS)CRT is primarily affected by the number of the storey of the upper structure NU, 

as shown in Table 4.4. 

Effects of TU/TL 

The relationship between the period ratio TU/TL and the value of ηmin presented in Eq.(4.24) is 

constructed based on the effect of TU/TL on the error of top shear force by setting γintr=0, as shown in 

Figure D.2 (h) of Appendix D.2.1. From Figure D.2 (h), it is seen: 

(1) As the initial increase of TU/TL, the magnitude of negative error gradually increases;  therefore, 

values of ηmin firstly decreases exponentially, as shown in Eq.(4.24).  

(2) As the further increase of TU/TL, the negative error of the top storey shear force remains as the 

constant being minimum value; therefore, the value of ηmin remains the constant minimum value ηmin2, 

as shown in Eq.(4.24). 

(3) As the continuing increase of TU/TL, the interaction between the first mode of the lower 

structure and higher vibration modes of the upper structure becomes less significant, and the 

magnitude of the negative error gradually decreases; consequently, the value of ηmin gradually 

increases from ηmin2 to unity as shown in Eq.(4.24). 

(4) Finally, the effect of the interaction between the lower and upper structures vanishes. The 

assumption γintr=0 can well approximate the shear force of the upper structure. Therefore, ηmin remains 

as unity as shown in Eq.(4.24).  

In fact, the value of TU/TL determines which mode of the upper structure should be interacted with 

the first mode of the lower structure. For example, for the case where NL=2, NU=8 and rm=3 as 

discussed in Appendix D.2.1, the first mode period of the lower structure is close to the fourth mode 

period of the upper structure if TU/TL =6.11, and the interaction is primarily associated with the first 

mode of the lower structure and the fourth mode of the upper structure. Therefore, critical period 
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ratios between the lower and upper structures in Eq.(4.24), i.e., (TU/TL)CRT1, (TU/TL)CRT2 and 

(TU/TL)CRT3, are primarily influenced by the number of the storey of the upper structures, as shown in 

Table 4.4. From Table 4.4, it is seen as the number of the storey of the upper structures increases, 

critical period ratios (TU/TL)CRT1, (TU/TL)CRT2 and (TU/TL)CRT3 increase. When the number of the storey 

of the upper structure increases, the number of its vibration modes increases correspondingly. In 

general, higher vibration modes have shorter periods if the first mode period of the upper structure, 

i.e., TU, remains as a constant. When the first mode of the lower structure is interacted with these 

higher vibration modes of the upper structure, the first mode period of the lower structures, i.e., TL, is 

approximately equivalent to the period associated with these higher vibration modes of the upper 

structure. Therefore, as the number of the storey of the upper structure increases, critical period ratios 

(TU/TL)CRT1, (TU/TL)CRT2 and (TU/TL)CRT3 increase due to the decrease of periods associated with higher 

vibration mode of the upper structure. 

For each storey combination of the lower and upper structures that the proposed two-stage analysis 

procedure is applicable, the two critical values of ηmin, i.e., ηmin1 and ηmin2 in Eq.(4.24), are obtained in 

accordance with numerical study and are listed in Table 4.5. Since Table 4.5 only lists ηmin1 and ηmin2 

for cases rm=1, 2 and 3, for other cases of rm, values of ηmin1 and ηmin2 can be linearly interpolated by 

the magnitude of rm. 

4.5 Evaluation of two-stage analysis procedure prescribed in ASCE 7 

4.5.1 Evaluation of applicable requirement 

As discussed Appendix C.4, the overall two-stage stiffness ratio associated with ASCE 7 (ASCE, 

2006), Rk2stg-ASCE , is calculated as  

  2 max 0.826 4.76,  10k stg mR R    (4.27) 

By comparing Eqs.(4.10) to (4.27) , it can be seen considerable difference exists on the applicable 

requirements of the two-stage analysis procedure between the prescribed one in ASCE 7 and the 

proposed in this study. When the overall mass ratio Rm is greater than 1.23, as shown in Figure 4.5, 

the proposed overall two-stage stiffness ratio Rk2stg is considerably greater than that prescribed in 

ASCE 7 (ASCE, 2006). For the design located in the shaded area of Figure 4.5, this study concludes 

that the two-stage analysis procedure is not applicable but ASCE 7 permits the use of the two-stage 

analysis procedure to analyze buildings with combined framing systems. 
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Figure 4.5: Comparison of overall two-stage stiffness ratios between ASCE 7 (ASCE, 2006)  

and proposed approach 

Based on Eq.(3.7), the critical storey-stiffness ratio associated with the two-stage analysis 

procedure prescribed in ASCE 7, rk2stg-ASCE, for the combined framing systems can be computed as 

follows: 

 

2

1
2 2
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U U
k stg ASCE k stg ASCE

L L
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


 

  
   

  
  (4.28) 

As to possible storey combinations of the lower and upper structures that may be analyzed by the 

proposed two-stage analysis procedure, values of rk2stg and rk2stg-ASCE are compared in Table 4.6. It can 

be seen for the possible storey combination of the lower and upper structures that may result in the 

overall mass ratio Rm >1.23, considerable difference exists between the values of rk2stg-ASCE  and rk2stg. 

For example, when NL=4, NU=3, and rm=3, based on the proposed method, rk2stg=51.24; however, 

based on ASCE 7(ASCE, 2006), rk2stg-ASCE =12.31. Nevertheless, for the traditional “podium” building, 

in which the number of storey of the lower structure is considerably less than that of the upper one, 

there is not much difference between values of rk2stg-ASCE  and rk2stg. For example, when NL=1 and NU=6, 

values of rk2stg-ASCE  and rk2stg are almost the same, as shown in Table 4.6. 

4.5.2 Evaluation of seismic load distribution 

4.5.2.1. Base shear force of lower structure 

Recall Eq.(4.16). It is seen the peak base shear forces of the lower structure associated with the first 

and second modes are combined by the SRSS (square-root-of-sum-of-square) rule. However, as 

prescribed in ASCE 7 (ASCE, 2006; 2010), the peak base shear forces of the lower structure 

associated with the first and second modes are combined by the absolute sum (ABSSUM) rule as 

follows: 

    7Lb ASCE U a U L a LV M S T M S T     (4.29) 
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Table 4.6: Comparison of two-stage storey-stiffness ratio between proposed approach and ASCE 7 

NL NU 

rm=1 rm =2 rm =3 

proposed 

rk2stg 

ASCE 7 

rk2stg-ASCE 

proposed 

rk2stg 

ASCE 7 

rk2stg-ASCE 

proposed 

rk2stg 

ASCE 7 

rk2stg-ASCE 

1 1 10.71 10.00 19.56 10.00 30.59 10.00 

1 2 7.55 7.64 8.18 7.64 10.73 7.64 

2 2 10.71 10.00 19.56 10.00 30.59 10.00 

3 2 18.06 12.86 39.33 12.86 60.60 12.86 

1 3 5.71 5.94 6.04 5.94 6.36 5.94 

2 3 7.90 7.78 9.49 7.78 15.21 7.78 

3 3 10.71 10.00 19.56 10.00 30.59 10.00 

4 3 15.03 12.31 33.14 12.31 51.24 12.31 

1 4 4.57 4.82 4.77 4.82 4.97 4.82 

2 4 6.25 6.32 6.76 6.32 8.87 6.32 

3 4 8.36 8.12 11.41 8.12 18.12 8.12 

4 4 10.71 10.00 19.56 10.00 30.59 10.00 

5 4 13.45 11.91 29.87 11.91 46.29 11.91 

1 5 3.81 4.05 3.94 4.05 4.07 4.05 

2 5 5.16 5.30 5.50 5.30 5.85 5.30 

3 5 6.85 6.82 7.52 6.82 11.83 6.82 

4 5 8.71 8.39 12.71 8.39 20.12 8.39 

5 5 10.71 10.00 19.56 10.00 30.59 10.00 

1 6 3.26 3.49 3.35 3.49 3.45 3.49 

2 6 4.39 4.57 4.64 4.57 4.89 4.57 

3 6 5.81 5.87 6.29 5.87 8.24 5.87 

4 6 7.35 7.23 8.82 7.23 14.14 7.23 

1 7 2.85 3.06 2.92 3.06 2.99 3.06 

2 7 3.82 4.01 4.01 4.01 4.20 4.01 

3 7 5.03 5.15 5.40 5.15 6.02 5.15 

1 8 2.53 2.72 2.58 2.72 2.64 2.72 

2 8 3.38 3.57 3.53 3.57 3.67 3.57 

1 9 2.27 2.46 2.32 2.46 2.36 2.46 

 

The ABSSUM modal combination rule is not popular in structural design, and often leads to much 

larger results than the accurate ones (Chopra, 2007). In fact, as discussed in Appendix D.2.2, since the 

proposed two-stage analysis procedure does not account for the interaction of higher vibration modes 

between the lower and upper structures on the shear force of the lower structure, Eq.(4.16) may 

greatly overestimate the seismic load of the lower structure. The two-stage analysis procedure 

prescribed in ASCE 7 (ASCE, 2006; 2010) also does not account for the effect of such interaction on 

the shear force of the lower structure. In addition, ASCE 7 selects the ABSSUM rule to combine the 

peak modal response. Therefore, the two-stage analysis procedure prescribed in ASCE 7 often leads 
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to overly conservative base shear force of the lower structure. Compared to the two-stage analysis 

procedure prescribed in ASCE 7 (ASCE, 2006), the accuracy of the proposed procedure on the base 

shear force of the lower structure is improved, as shown in Figures D.3 (a) ~ (d) in Appendix D.2.2. 

4.5.2.2. Base shear force of upper structure 

As shown in Figure 4.5, for the shadow area where Rm≥1.23: (a) the two-stage analysis procedure is 

applicable and αU=1 in accordance with ASCE 7 (ASCE, 2006); but (b) based on this study, the factor 

αU can be greater than unity, as shown in Figures 3.6 (a) ~ (b). Therefore, the two-stage analysis 

procedure prescribed in ASCE 7 may underestimate the factor αU and consequently the base shear 

force of the upper structure VUb for cases Rm≥1.23. 

For each combination of Rm and Rk shown in the shadow area of Figure 4.5, elastic model response 

spectrum analysis with CQC rule of combining the peak modal responses (Chopra, 2007) is carried 

out for the 2DOF model to calculate the factor αU and further investigate the possible error associated 

with ASCE 7 (ASCE, 2006). By limiting the period TU to the range between 0.2TS and TS, the possible 

maximum and minimum errors of the factor αU for each combination of Rm and Rk, are shown in 

Figure 4.6. Note that the negative error represents that the two-stage analysis procedure of ASCE 7 

underestimates the factor αU. It can be seen the two-stage analysis procedure prescribed in ASCE 7 

always leads to a smaller value of the factor αU. The underestimation can be as large as 70.1%. The 

magnitudes of the errors are greatly affected by ratios Rm and Rk. When the ratio Rk gradually 

increases from the proposed RkU3 to Rk2stg, the magnitude of the error gradually decreases. Meanwhile, 

the magnitude of the error also gradually increases as Rm increases. 

The underestimation of the base shear for the upper structure associated with ASCE 7 (ASCE, 2006) 

is primarily induced by the over-relaxed stiffness requirement of the two-stage analysis procedure for 

the case Rm≥1.23. In ASCE 7-10 (ASCE, 2010), the second applicable requirement for the two-stage 

analysis procedure in ASCE 7-05 (ASCE, 2006) is revised from “the period of the entire structure 

shall not be greater than 1.1 times the period of the upper portion considered as a separate structure 

fixed at the base” to “the period of the entire structure shall not be greater than 1.1 times the period 

of the upper portion considered as a separate structure supported at the transition from the upper to 

the lower portion”. However, as “transition boundary condition” is implicitly prescribed, it creates a 

difficulty to its application. 
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Figure 4.6: Possible maximum and minimum errors of factor αU associated with two-stage analysis 

procedure in ASCE 7 (ASCE, 2006) 

4.5.2.3. Seismic load distribution 

The ASCE 7 (ASCE, 2006; 2010) assumes seismic loads the upper and lower structure can be 

calculated by the ELF procedure, separately. However, as discussed in sections 4.3.3.1 and 4.4, due to 

the interaction of the first mode of the lower structure and other higher vibration modes of the upper 

structure, the ELF procedure prescribed in ASCE 7 may underestimate the seismic load of the top 

storey. The proposed two-stage analysis approach of this study applies an additional top shear force to 

limit the underestimation within an acceptable range. Meanwhile, due to the overly conservative 

estimation for the base shear force of the lower structure as discussed in section 4.5.2.1, shear force 

for other stories in the lower structure may be greatly overestimated by ASCE 7 as well, which will 

be demonstrated by examples presented in section4.6.2. 

4.6 Examples 

4.6.1 Example 4-1 

It is a seven-storey building with the combined framing systems located in Los Angeles, California. 

The SFRSs of the upper one-storey and lower six-storey are the cold-formed steel (CFS) framing with 

shear walls sheathed with oriented strand board (OSB) panels and the special RC moment frame, 

respectively. The floor layout, storey-height, specified dead load, column size and frame 

configuration for the lower RC and upper CFS structures in this example are all the same with those 

discussed in section 3.6.1. All columns shown in Figure 3.8 are selected as the columns in the RC 

moment frame and the corresponding CFS shear wall length is 14.42 m. With the lateral stiffness for 

each column in the RC moment frame being 5.41×10
4
kN/m, the lateral storey-stiffness of the lower 

structure is kL=5.41×10
4
×16=8.66×10

5
kN/m. Meanwhile, the lateral storey-stiffness of the upper 

structure is kU=3836×14.4=5.52×10
4
kN/m, with 3836 being the lateral stiffness per meter of the CFS 
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shear frame (Branston, 2004). The mass and stiffness of the combined framing systems are 

summarized in Table 4.7. 

Based on the modified ELF procedure stated in section 4.2.4, it is first calculated that 

rm=mL/mU=219352/96113=2.28 and rk=kL/kU=86.6/5.52=15.67. Then, from Table 4.1, it is seen that 

the critical storey-stiffness ratio associated with the modified ELF procedure, rkb1=27.16. As the 

storey-stiffness ratio rk is less than rkb1, the proposed equations corresponding to the modified ELF 

procedure are applicable to compute the shear force. The shear forces of the combined framing 

system calculated by the modified ELF procedure are shown in Figure 4.7. Also shown in this figure 

are results evaluated from the ELF procedure prescribed ASCE 7 (ASCE, 2010). In addition, the 

accurate result shown in the figure is calculated from the elastic modal response spectrum analysis 

(Chopra, 2007). From the figure, it is seen the modified ELF procedure provides a good 

approximation for the shear forces of both the lower structure and upper “appendage”. The ELF 

procedure prescribed ASCE 7 (ASCE, 2010) yields a good estimation for the shear force of the lower 

structure, but the shear force of the upper “appendage” is underestimated by 6%. 

Table 4.7: Structural properties of Example 4-1 

 

storey  

number 

storey-mass 

(kg) 
SFRS 

storey-stiffness 

(kN/m) 

lower structure 6 219,352 
RC moment frame, 16 columns  

in moment frame 
8.66×10

5
 

upper structure 1 96,113 
CFS shear wall, with shear  

wall length being 14.4 m 
5.52×10

4
 

 

0.0 5.0x10
3

1.0x10
4

1.5x10
4

2.0x10
4

1

2

3

4

5

6

7

-10% 0% 10% 20% 30%

1

2

3

4

5

6

7

 

 

st
o
re

y
 n

u
m

b
e
r 

o
f 

th
e
 s

tr
u
c
tu

re

shear force (kN)

 modied ELF

ELF in ASCE 7

 accurate

 

 

st
o
re

y
 n

u
m

b
e
r 

o
f 

th
e
 s

tr
u
c
tu

re

error of shear force

 modified ELF
 ELF in ASCE 7

 

Figure 4.7: Results comparison of Example 4-1 
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4.6.2 Example 4-2 

The building investigated in section 3.6.2, which is located in Los Angeles, California, is selected an 

example to illustrate how the proposed two-stage analysis procedure is applied to estimate the shear 

force of the combined framing system. In accordance with the obtained feasible lateral designs for the 

lower RC and upper CFS structures shown in Figure 3.9 (b), all columns shown in Figure 3.8 are 

selected as the columns in the RC moment frame and the corresponding CFS shear wall length is 43.2 

m. The mass and stiffness properties of the combined framing systems are summarized in Table 4.8. 

Table 4.8: Structural properties of Example 4-2 

 

storey 

number 

storey-mass 

(kg) 
SFRS 

storey-stiffness 

(kN/m) 

lower structure 2 219,352 
RC moment frame, 16 columns 

 in moment frame 
8.66×10

5
 

upper structure 6 96,113 
CFS shear wall, with shear  

wall length being 43.2 m 
1.66×10

5
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(a) Los Angeles, California 
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(b) Washington D.C. 

Figure 4.8: Results comparison of Example 4-2 
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Based on the proposed two-stage analysis procedure stated in section 4.3.4, it is first calculated that 

rm=mL/mU=219352/96113=2.28 and rk=kL/kU=8.66/1.66=5.22. Then, from Table 4.2, it is seen that 

that the critical storey-stiffness ratio associated with the proposed two-stage analysis procedure, 

rk2stg=4.71. As the storey-stiffness ratio rk is greater than rk2stg, the equations corresponding to the 

proposed two-stage analysis procedure can be adopted to compute the shear force of the combined 

framing system. Finally, based on step 4 of the proposed analysis procedure presented in section 4.3.4, 

the additional top shear force is obtained as Ft=0.1VUb. Shear forces for each level of the combined 

framing system calculated by the proposed two-stage analysis methods are shown in Figure 4.8 (a). 

Also shown in the figure are the shear force calculated by the two-stage analysis procedure prescribed 

in ASCE 7 (ASCE, 2006). From the figure, it is seen the proposed two-stage analysis procedure 

provides good approximations for the shear forces of the both lower and upper structures. At the 

meantime, the procedure associated with ASCE 7 estimates the shear force of the upper structure well, 

but it is overly conservative for the lower structure. As shown in Figure 4.8 (a), the base shear force 

of the lower structure estimated from the procedure associated with ASCE 7 is almost twice as much 

as that of the accurate result. One reason for such overestimation is that the ASCE 7 procedure adopts 

the ABSSUM rule to combine the peak modal responses, as discussed in section 4.5.2.1. Another 

reason for the overestimation is that the interaction of higher vibration modes between lower and 

upper structures, as discussed Appendix D.2.2, is not accounted for. 

Now assume this building is located in Washington D.C. rather than Los Angeles. The site 

spectrum of Washington D.C. are SS =0.278 g and S1 =0.072 g and the long transition period TLong=6 s, 

which results in the corresponding design spectrum being SDS=0.185 g and SD1=0.048 g. Compared to 

that of California, the earthquake magnitude of Washington D.C. is much less. Therefore, the building 

that is designed for California should satisfy the storey drift requirement if it is in Washington D.C.. 

Based on the proposed two-stage analysis procedure, it is found the additional top shear force 

Ft=0.16VUb. The shear force for each storey of the combined framing system calculated by the both 

proposed two-stage analysis procedure and the two-stage analysis procedure prescribed in ASCE 7 

(ASCE, 2006) are shown in Figure 4.8 (b). From Figure 4.8 (b), it is seen the shear force of the upper 

structure evaluated by the proposed two-stage analysis procedure is a good approximation to the 

accurate one. However, the procedure prescribed in ASCE 7 underestimates the shear force of the top 

storey by almost 20%. The main reason for such underestimation is that the procedure prescribed in 

ASCE 7 does not account for the amplification effect associated with the interaction between the first 

mode of the lower structure and higher vibration modes of the upper structures on the shear force of 

the top storey. The transition period TS, as shown in Figure 1.4, for Washington D.C., i.e.,0.26 s, is 

much less than that for Los Angeles, i.e.,0.35s. With the same framing system, the period ratio TU/TS 
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of the building located in Washington D.C. is much larger than that in Los Angeles. As discussed in 

section 4.4.2, the amplification effect contributed by the interaction between the first mode of the 

lower structure and higher vibration modes of the upper structure on the top storey shear force 

becomes more significant as the increase of the period ratio TU/TS. As the procedure prescribed in 

ASCE 7 does not account for such amplification effect, it underestimates the top storey shear force, 

which is not acceptable in practice. 

4.6.3 Example 4-3 

The building discussed in section 3.6.1 is selected to be further investigated. However, the lateral 

stiffness distributions for both the lower and upper structure are not selected from the feasible ones 

shown in Figure 3.9 (b). The mass and stiffness properties of the combined framing systems in this 

example are summarized in Table 4.9.  

Based on Eq.(4.28), it is calculated that the critical storey-stiffness ratio prescribed in ASCE 7 is 

rk2stg-ASCE=17.2. The storey-stiffness ratio of the combined framing system is rk=kL/kU=86.6/4.60=18.8, 

which is greater than 17.2. Therefore, ASCE 7 permits the two-stage analysis procedure to be applied 

to evaluate the seismic load of the upper structure, and the corresponding results are shown in Figure 

4.9. From the figure, it is seen ASCE 7 underestimates shear forces of all storeys of the upper 

structure, of which the maximum error occurs at the base of the upper structure, being 18%. The 

primary reason for such underestimation is that ASCE 7 overly relaxes the stiffness requirement of 

the two-stage analysis procedure for the case Rm≥1.23, as discussed in section 4.5.2.1. In fact, in 

accordance with the two-stage analysis procedure proposed in this study, rk2stg=81.41 based on 

Eq.(4.11) , which is much greater than the requirement set by ASCE 7, i.e., rk2stg-ASCE= 17.2. 

Table 4.9: Structural properties of Example 4-3 

 

storey 

number 

storey-mass 

(kg) 
SFRS 

storey-stiffness 

(kN/m) 

lower structure 6 219,352 
RC moment frame, 16 columns  

in moment frame 
8.66×10

5
 

upper structure 3 96,113 
CFS shear wall, with shear  

wall length being 12 m 
4.60×10

4
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Figure 4.9: Results comparison of Example 4-3 

4.7 Conclusion 

Presented in this chapter are two simplified methods, i.e., modified ELF and two-stage analysis 

procedures, for evaluating seismic loading of the mid-rise building with vertical combination of 

framing systems. Applicable stiffness requirements and procedures of evaluating seismic load 

distributions associated with the two simplified methods are proposed. In addition, the proposed two-

stage analysis procedure is also compared with the two-stage analysis procedure prescribed in ASCE 

7 (ASCE, 2006; 2010). The following conclusions are obtained from this study: 

(1) For the “appendage-style” building in which there is only one-storey upper structure, it is found 

if the storey-stiffness ratio between lower and upper structures is less than the proposed rkb1 value, the 

one-storey upper structure almost has no effect on the effective mass distribution of the lower 

structure. The lower structure is dominated by the first mode and the modified ELF procedure is 

applicable to approximate the seismic load of the upper structure. Errors of shear forces of the 

combined framing system associated with modified ELF procedure is in the range between 1.0% and 

35.3%, which is comparable to the error of the conventional ELF procedure that is applicable for 

“regular” buildings. 

(2) New applicable requirements and seismic load distributions of the two-stage analysis 

procedures are proposed. It is found that even when the applicable requirement of the proposed two-

stage analysis procedure is satisfied, the shear force of the top storey of the upper structure, which is 

calculated by setting the upper structure fixed to the ground base, may still  be underestimated. In 

order to eliminate such underestimation, an additional top shear force is proposed to be applied to the 

top of upper structure. Equations to compute the additional top shear force are provided. 
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 (4) The two-stage analysis procedure and applicable requirements prescribed in ASCE 7 (ASCE, 

2006; 2010) are also evaluated. The investigation indicates the stiffness requirement of the ASCE 

two-stage analysis procedure may be overly-relaxed, and therefore, the procedure may underestimate 

the seismic load in certain cases. 

(3) Errors of shear forces of the upper structure associated with the proposed two-stage analysis 

procedure are in the range between -0.9% and 38.0%, which is comparable to the that associated with 

the conventional ELF procedure that is applicable for “regular” buildings in current practice. 

Although the shear forces of the lower structure may be overestimated by the proposed two-stage 

analysis procedure, compared to the overestimation associated with the two-stage analysis procedure 

prescribed in in ASCE 7 (ASCE, 2006; 2010), the accuracy of the proposed two-stage analysis 

procedure is greatly improved. 
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Chapter 5  Canadian simplified approaches to evaluate stiffness 

distributions and seismic loads  

5.1 Introduction 

The foregoing simplified approaches presented in Chapters 3 and 4 are derived based on the USA 

standard ASCE 7 (ASCE, 2010) and they are not applicable in Canada. Presented in this chapter is the 

development of simplified approaches similar to the approaches in Chapter 3 and 4 based on the 

NBCC 2010 (NBCC, 2010). At first, differences in seismic design provisions between the NBCC 

2010 and the ASCE 7 that need to be addressed in the development of the simplified approaches are 

investigated. Then, based on the identified differences between the two standards, several 

modifications are made on the simplified approaches proposed in Chapters 3 and 4 such that the 

modified approaches are complied with the NBCC 2010. Finally, four design examples are presented 

to illustrate the efficiency of the Canadian simplified approaches. Since the proposed simplified 

approaches for evaluating the required stiffness distributions involves the nonlinear structural 

behavior of the combined framing systems, nonlinear time history analyses are also carried to 

investigate the nonlinear structural behavior of the combined framing systems. 

5.2 Comparison between Canadian code and USA standard 

The simplified approaches proposed in Chapters 3 and 4 are related highly to the corresponding 

seismic design provisions in following two aspects: (a) the seismic performance factors, and (b) the 

design response spectrum. In order to modify the simplified approaches for the Canadian application, 

the differences in the foregoing two aspects between the NBCC 2010 (NBCC, 2010) and the ASCE 7 

(ASCE, 2010) are discussed in the following. 

5.2.1 Seismic performance factors 

The primary seismic performance factors prescribed in ASCE 7 (ASCE, 2010) include the response 

modification factor R, the overstrength factor Ω0, and the deflection amplification factor Cd. The 

interpretation of the performance factors is illustrated in Figure 5.1. As shown in the figure, let Ve 

represent the shear force that is calculated based on the elastic modal response spectrum analysis with 

use of response spectra that are representative of the anticipated earthquake ground motions. Since the 

structural system can dissipate certain earthquake energy through the inelastic deformation, the design 

shear force V can be significantly reduced from the elastic shear force Ve by dividing the response 

modification factor R. In general, the system with high level of ductility has a larger value of R 

(Chopra, 2007). Then, the elastic deformation calculated under the reduced design shear force V, 
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Figure 5.1: Illustration of seismic performance factors (FEMA, 2009) 

i.e., Δe/R, should be amplified by a deflection amplification factor Cd to calculate the anticipated 

nonlinear deformation Δ, as shown in Figure 5.1. This is the typical elastic-analysis-based modal 

response spectrum analysis that is adopted in current practice. The nonlinear seismic response of the 

structural system is estimated by elastic analysis together with the adoption of seismic performance 

factors rather than a nonlinear time history analysis. 

The first difference between the two standards is related to the response modification factor R. The 

seismic response modification factor R essentially accounts for two aspects: the ductility-related force 

modification factor Rd and the overstrength factor Ω0, with R=RdΩ0 (FEMA, 2009). Note the 

overstrength factor Ω0 is termed as the overstrength-related force modification R0 in the NBCC 2010 

(NBCC, 2010). The factor Rd reflects the capability of a structure to dissipate energy through reversed 

cyclic inelastic behavior, while the factor R0 (or Ω0) accounts for reserve and redundant strength of 

the structure, as shown in Figure 5.1. The ASCE 7 (ASCE, 2010) directly specifies the value of R for 

each commonly used SFRS. However, starting from 2005, the NBCC (NBCC, 2005) attempts to 

quantify the relative contribution of the overstrength (R0) and the inelastic behavior (Rd) to the 

permissible reduction in design strength (FEMA, 2004; Mitchell, et al., 2010). Therefore, for the 

commonly used SFRSs, values of Rd and R0 are provided separately by the NBCC 2010 (NBCC, 

2010).  

Another difference between the two standards is that the NBCC 2010 assumes that the deflection 

amplification factor Cd is equal to the response modification R, i.e.,Cd=R=RdR0. Such assumption is 

based on the Newmark’s “equal displacement rule” (Cuesta, Mark, & Fajfar, 2003), which assumes 

that the inelastic displacement is approximately equivalent to the elastic displacement. However, in 

Cd 

Rd 

Ω0(R0) 

R 
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Vmax 
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Δe Δe/R Δ 
deformation Δ 
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ASCE 7 (ASCE, 2010), the value of Cd  for the commonly applied SFRS is provided separately, and 

the provided value of Cd  is usually not equal to the response modification factor R, i.e., Cd ≠R. 

5.2.2 Design response spectrum 

The NBCC 2010 (NBCC, 2010) and ASCE 7 (ASCE, 2010) adopt different approaches to construct 

the design response spectrum. The ASCE 7 design spectrum is established based on the spectral shape 

proposed by Newmark and Hall (FEMA, 1997). It consists of primarily three segments: constant 

acceleration, constant velocity and constant displacement. As shown in Figure 1.4, the response 

acceleration associated with the constant acceleration segment is equal to a constant acceleration SDS; 

and the response accelerations associated with the constant velocity and displacement segments are 

proportional to the reciprocal of the building period (1/T) and 1/T
2
, respectively. Besides the three 

segments, in the very short period range in which T<T0, the response acceleration increases rapidly 

from the effective peak ground acceleration for infinite stiff structures to the constant response 

acceleration SDS (FEMA, 1997; FEMA, 2009). By adopting the Newmark and Hall spectral shape, the 

design spectrum of ASCE 7 (ASCE, 2010) can be uniquely constructed by providing the following 

three parameters: the design response spectral accelerations at short period (SDS) and one second 

period (SD1), and the long-period transition period (Tlong), as shown in Figure 1.4. The design response 

accelerations SDS and SD1 are computed from the mapped values of SS and S1, respectively. Mapped 

values of SS and S1 provided in ASCE 7 are determined based on both the probabilistic seismic hazard 

analysis (PSHA) and fragility analysis to ensure that the collapse probability of the building is 1% in 

50 years (FEMA 2009; Luco et.al, 2007). 

However, the NBCC 2010 (NBCC, 2010) does not adopt the Newmark and Hall spectrum. It is 

believed that if the design spectrum is constructed based on a predetermined spectral shape, such as 

Newmark and Hall design spectral shape, the resulting spectrum does not have a uniform of 

probability of exceedance at all periods (Adams & Atkinson, 2003). Therefore, the spectral 

acceleration at each period in the NBCC 2010 is directly calculated by the PSHA to ensure the 

spectrum have a uniform probability of exceedance at different periods, which is 2% in 50 years. 

Such spectrum is called as “uniform hazard spectrum (UHS)”. As the spectral ordinates at difference 

periods are determined directly at each geographical location with the specified probability of 

exceedance, the differences in spectral shape across the country are reflected. The Canadian UHS 

spectrum provides more site-specific descriptions of the earthquake spectrum and ensures a uniform 

hazard level at all periods (NBCC, 2010). 

The NBCC 2010 uses spectral values of 0.2, 0.5, 1.0 and 2.0 seconds, denoted as Sa (0.2), Sa(0.5), 

etc. to establish the design spectrum. It is deemed that these four spectral values are sufficient to  
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(a) design spectra for Vancouver, Montreal and Halifax 

 

 

 

 

 

 

 

 

(b) design spectra normalized with respect to Sa(0.2) 

Figure 5.2: NBCC 2010 design spectrum (NBCC, 2010) 

construct the spectrum that closely matches the shape of UHS (Adams & Atkinson, 2003). With the 

four spectral values, the design spectral accelerations Sa(T) are determined as shown in Figure 5.2 (a): 

(a) Sa(T)=Sa(0.2) for T≤0.2 second; (b) Sa(T)=Sa(2.0)/2 for T≥4.0 second; and (c) using linear 

interpolation to determine Sa(T) for the intermediate values of T. 

By comparing the ASCE 7 design spectrum shown in Figure 1.4 to the Canadian spectrum shown 

in Figure 5.2 (a), it is seen that the primary differences of the design spectrum between the two 

standards are as follows: 
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(1) Although both the NBCC 2010 and ASCE 7 spectra have a constant acceleration segment, the 

period range associated with the constant acceleration is different. In the ASCE 7, the constant 

acceleration range starts from T0 and ends with TS, with T0=0.2 TS, as shown in Figure 1.4. For each 

location across USA, the transition period TS is provided and the value of the transition period TS is 

greatly dependent on the building site location. For example, the transition period TS in Washington 

D.C. is 0.26 second but in Los Angeles it is 0.35 second (USGS, 2014). However, in the NBCC 2010, 

the constant acceleration starts from T=0 second and ends with T=0.2 second regardless of the 

location of the building, as shown in Figure 5.2 (a).  

(2) Right after the constant acceleration segment, as shown in Figure 1.4, the ASCE 7 design 

spectrum starts a constant velocity segment, in which the spectral acceleration is proportional to the 

reciprocal of the period 1/T. However, the NBCC 2010 adopts a more site-specific spectral shape 

rather than the “reciprocal of the period” spectral shape. The shape of the Canadian spectrum is 

dependent on the relative values of spectral accelerations at periods 0.2, 0.5, 1.0 and 2.0 seconds. 

With different relative spectral accelerations at periods 0.2, 0.5, 1.0 and 2.0 seconds, the spectral 

shape may be quite different for different cities in Canada. Take cities of Vancouver, Montreal and 

Halifax as example. For better comparison, normalize the response spectrum accelerations with 

respect to the peak response spectrum acceleration Sa (0.2). As shown in Figure 5.2 (b), the spectral 

shapes of Vancouver, Montreal and Halifax are quite different from each other. This further indicates 

the Canadian spectrum is more site-specific and the differences in spectral shapes across the country 

are reflected directly.  

(3) On the right of the constant velocity segment, as shown in Figure 1.4, the ASCE 7 design 

spectrum starts a constant displacement segment. Meanwhile, on the left of the constant acceleration 

segment, the response acceleration increases rapidly from the effective peak ground acceleration for 

infinite stiff structures to the constant response acceleration SDS. However, the buildings’ periods 

investigated in this study is not less than T0, as specified in section 1.3.2. In addition, from the 

provided ASCE 7 seismic map, the long-period transition period Tlong for most cities are greater than 

4.0 second. Therefore, the buildings’ periods are usually not located in these two segments. The 

differences of the design spectra between the two standards in these two ranges (T 0.2 s and T 4.0 s) 

are not significant and will not be accounted for in the following discussion.  

5.3 Stiffness evaluations of lower and upper structures based on NBCC 2010 

A simplified approach for evaluating the feasible lateral stiffness distributions of lower and upper 

structures based on the NBCC 2010 spectrum and the pre-determined mass distribution is presented 

in this section. To distinguish the approach based on ASCE 7 (ASCE, 2010) presented in Chapter 3, 
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the approach presented in this section is referred as the Canadian approach. The Canadian approach is 

obtained by modifying the USA approach with the consideration of differences between the two 

standards discussed in section 5.2. 

5.3.1 Formulation of design equation: design criterion 

Recall Eq.(3.4), which is the governing design equation established based on the ASCE 7 (ASCE, 

2010) to obtain the feasible stiffness distributions of the lower and upper structures. As discussed in 

section 5.2.1, by substituting both R and Cd in Eq. (3.4) with RdR0, the governing design equation for 

evaluating the lateral stiffnesses of the lower and upper structures for the Canadian application is as 

follows: 

 lim

( )

U U
U

U U a U

k

m N S T



   (5.1) 

Compared to Eq. (3.4), Eq. (5.1) is not related to the seismic performance factors Rd, R0 or Cd. This is 

resulted primarily from the fact that the NBCC 2010 adopts the Newmark’s “equal displacement rule” 

to determine the relationship between RdR0 and Cd. Newmark’s “equal displacement rule” states that 

the anticipated inelastic displacement is approximately equivalent to the elastic displacement 

calculated under the design ground motions. Therefore, seismic performance factors related to the 

inelastic behavior of the structure, i.e., Rd, R0 or Cd, are eliminated in Eq.(5.1). 

5.3.2 Formulation of design equation II: analytical study on factor αU 

The proposed equations to evaluate the shear-force-amplification factor of the upper structure αU 

based on the ASCE 7 design spectrum were discussed in detail in section 3.3.3. Considering the 

NBCC 2010 (NBCC, 2010) and ASCE 7 (ASCE, 2010) adopt different design spectra as discussed in 

section 5.2.2, several modifications are made on the equations proposed in section 3.3.3 to ensure 

they are compatible with the NBCC 2010 spectrum. 

Values of αU1 and αUmax 

As discussed in Appendix B.3, the shear-force-amplification factor of the upper structure αU is 

affected by the spectral acceleration ratio Sa(T1)/Sa(TU), where T1 and TU are the first mode periods of 

the simplified 2DOF model and the upper structure, respectively. In the proposed approach, the effect 

of the spectral acceleration ratio Sa(T1)/Sa(TU) on the factor αU is resulted from its influence on the 

values of αU1 and αUmax, as demonstrated in Eqs. (3.15) and (3.17). In the case that the ASCE 7 design 

spectrum is adopted, the spectral acceleration ratio Sa(T1)/Sa(TU) can be determined by the period ratio 

TU/TS, as shown in Eq. (A.19) of Appendix A. Therefore, the effect of the spectral acceleration ratio 
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Sa(T1)/Sa(TU) on values of αU1 and αUmax are both represented by the effect of the period ratio TU/TS 

when the ASCE 7 design spectrum is adopted, as shown in Eqs. (3.15) and (3.17).  

To provide equations to evaluate values of αU1 and αUmax based on the NBCC 2010 spectrum, a 

relationship between the value of αU1 (αUmax) and the spectral acceleration ratio Sa(T1)/Sa(TU) needs to 

be investigated at first. By setting T1=[(NU+NL)/(NU+0.12NL)]
0.5

TU and T1=1.30(Rm)
-0.059

TU in 

Eqs.(3.15) and (3.17), respectively, and then by substituting Eq. (A.19) of Appendix A into Eqs. (3.15) 

and (3.17), respectively, the relationship between the value of αU1 (αUmax) and the spectral acceleration 

ratio Sa(T1)/Sa(TU) can be obtained as follows: 
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      (5.3) 

As shown in Eqs. (5.2) and (5.3), values of αU1 and αUmax proposed based on the ASCE 7 design 

spectrum only consider the cases that the spectral acceleration Sa(T1)/Sa(TU) lies between the value of 

the ratio TU/T1 and unity, where T1=[(NU+NL)/(NU+0.12NL)]
0.5

TU and T1=1.30(Rm)
-0.059

TU in Eqs. (5.2) 

and (5.3), respectively. However, the spectral acceleration ratio Sa(T1)/Sa(TU) evaluated based on the 

NBCC 2010 site-specific spectrum is much different from that based on the ASCE 7 design spectrum. 

Take cities of Vancouver, Montreal and Halifax as examples, and let the period ratio T1/TU=1.5. From 

Figure 5.3, it is found for given values of T1/TU, the spectral acceleration ratio Sa(T1)/Sa(TU) evaluated 

based on the ASCE 7 design spectrum lies between the value of the ratio TU/T1 (0.67 for this case)  
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Figure 5.3: Comparison of spectral acceleration ratio Sa(T1)/Sa(TU) by using different design spectra 

(T1/TU=1.5) 

and unity. For the reason of comparison, set the transition period TS to be 0.2 second to ensure the 

ASCE 7 and NBCC 2010 spectra have the same constant acceleration segment, as shown in Figures 

1.4 and 5.2 (a). Nevertheless, when the NBCC 2010 spectrum is adopted, the value of spectral 

acceleration ratio Sa(T1)/Sa(TU) is dependent not only on the period of the upper structure TU but also 

on the shape of the site-specific spectrum. Since shapes of the spectra associated with different cities 

are different, the spectral ratios Sa(T1)/Sa(TU) for different cities are consequently different. The ratio 

Sa(T1)/Sa(TU) may be much smaller than TU/T1 (0.67 for this case). For example, when adopting the 

spectrum of Halifax, the ratio Sa(T1)/Sa(TU) can be as low as 0.41 when the period TU=1.33 second, as 

shown in Figure 5.3. 

The difference of the spectrum acceleration ratio Sa(T1)/Sa(TU) between the two standards is 

resulted primarily from the difference between the constant velocity range in the ASCE 7 design 

spectrum and the linear interpolation range in the NBCC 2010 spectrum. In the ASCE 7 design 

spectrum, the spectral acceleration ratio Sa(T1)/Sa(TU) reaches the minimum value when both periods 

T1 and TU are located in the constant velocity range, as shown in Figure 1.4. Since the spectral 

acceleration is proportional to the reciprocal of the period in the constant velocity range, the 

minimum spectral acceleration ratio Sa(T1)/Sa(TU) is equal to the reciprocal of T1/TU, i.e., 

Sa(T1)/Sa(TU)=TU/T1, as shown in Figure 5.3. However, the spectral acceleration of the NBCC 2010 

spectrum is linearly interpolated by the value of the period rather than proportional to the reciprocal 

of the period when the period is greater than 0.2 second, as shown in Figure 5.2 (a). Therefore, the 

fluctuation of the spectral acceleration ratio Sa(T1)/Sa(TU) with the period TU can be significant, and 

the magnitude of ratio Sa(T1)/Sa(TU) may even be less than that of TU/T1, as shown in Figure 5.3. 
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Since the spectral acceleration ratio Sa(T1)/Sa(TU) evaluated based on the NBCC 2010 spectrum can 

be less than the ratio TU/T1, Eqs. (5.2) and (5.3) may not be applicable since the ratio Sa(T1)/Sa(TU) in 

these two equations is limited between TU/T1 and unity. In this study, the power functions used in 

Eqs.(5.2) and (5.3) are still used for the cases where the magnitude of the Sa(T1)/Sa(TU) is less than the 

value of period ratio TU/T1. The validity of using the power function for such cases can be 

demonstrated by the following example. Take the combined framing systems with NL=5, NU=3 and 

rm=2, which results in the simplified 2DOF model having the overall mass ratio Rm=3.3 and the 

minimum overall stiffness ratio RkU1=2.32 based on Eqs. (3.6) and (3.22), respectively. In accordance 

with Eq. (A.8) of Appendix A, it is calculated that the period ratio T1/TU=1.5 for the simplified 2DOF 

model with Rm=3.3 and Rk=RkU1=2.32. By adopting the spectrum of Halifax shown in Figure 5.2 (a) 

and assigning different values for the period TU, the calculated spectral ratio Sa(T1)/Sa(TU) can be as 

low as 0.41, which is considerably less than the value of TU/T1 (0.67 for this case) , as shown in 

Figure 5.3. Meanwhile, the shear-force-amplification factor of the upper structure αU associated with 

this 2DOF model can be derived from the elastic modal response spectrum analysis (Chopra, 2007). 

Shown in Figure 5.4 are the relationships between the calculated spectral ratio Sa(T1)/Sa(TU) and the 

factor αU evaluated based on the elastic modal response spectrum analysis (marked as “MRS” in 

Figure 5.4) and Eq. (5.2). Values of αU11 and αU12 and the exponent x3 of the power function in Eq.(5.2) 

are determined from the values of factors αU1 at Sa(T1)/Sa(TU)=TU/T1=0.67 and Sa(T1)/Sa(TU)=1. As 

shown in Figure 5.4, although the power function in Eq. (5.2) is derived based on 

TU/T1≤Sa(T1)/Sa(TU)≤1, the power function is applicable for the case where Sa(T1)/Sa(TU)<TU/T1. The 

fact that the power function in Eq.(5.2) or (5.3) is applicable for the case where Sa(T1)/Sa(TU) )<TU/T1 

is further justified in section 5.3.5, in which errors of the shear-force-amplification factor of the upper 

structure αU obtained from the proposed method with use of Eqs. (5.2) and (5.3) are discussed. 
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Figure 5.4: Effect of spectral acceleration ratio Sa(T1)/Sa(TU) on the factor αU (T1/TU=1.5) 
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With the justification of that the power functions in Eq. (5.2) or (5.3) can be applied for the case 

where the spectral acceleration Sa(T1)/Sa(TU)<TU/T1, set T1=[(NU+NL)/(NU+0.12NL)]
0.5

TU and 

T1=1.30(Rm)
-0.059

TU in Eqs. (5.2) and (5.3), respectively. Then, considering that Sa(T1)/Sa(TU)=1 when 

the period T1 is not greater than 0.2 second, Eqs. (5.2) and (5.3) can be rewritten as Eqs. (5.4) and 

(5.5), respectively: 

 

3

12

1

12

0.12
                      if 0.2 s

( ) 0.12

                                                                     if 0.2 s
0.12

x

U L
a U

U L U L
U U

a U U L

U

U L
U U

U L

N N
S T

N N N N
T

S T N N

N N
T

N N









  
  

   
 

 
 
 


















  (5.4) 

 

 
 

 

40.059

0.059

max 2

max

0.059

max 2

1.30
                     if 1.30 0.2 s

( )

                                                                 if 1.30 0.2 s

x

a m U

U m U

a UU

U m U

S R T
R T

S T

R T













   
   

 
   

 
 

 (5.5) 

Eqs. (5.4) and (5.5) calculate αU1 and αUmax based on the NBCC 2010 spectrum. The expressions of 

αU12 and the exponent x3 of the power function in Eq. (5.4) are the same as those based on the ASCE 7. 

In addition, minor modifications are made for evaluating αUmax1 and αUmax2, which further determines 

the exponent x4 of the power function by Eq. (3.18). Recall that in the proposed approach based on 

the ASCE 7 design spectrum, equations to calculate αUmax1 and αUmax2 are Eqs.(3.19) and (3.20) of 

section 3.3.3, respectively. However, Eqs. (3.19) and (3.20) are not applicable if the NBCC 2010 

design spectrum if adopted. In such case, values of αUmax1 and αUmax2 to be used in Eq. (5.5) can be 

obtained from Table 5.1 rather than from Eqs. (3.19) and (3.20). The values of αUmax1 and αUmax2 listed 

in Table 5.1 are calculated based on the elastic modal response spectrum analysis of the MDOF 

model. 

In the proposed approach based on the ASCE 7 design spectrum, Eqs. (3.19) and (3.20) are 

empirically obtained based on the elastic modal response spectrum analysis of the simplified 2DOF 

model. As discussed in section 3.3.4 and Appendix D.1, the simplified 2DOF model yields to an 

overestimation of values of αUmax, which subsequently results in an overestimation, i.e., positive error, 

on the factor αU. Such positive error may be acceptable because it is conservative when the ASCE 7 

design spectrum is adopted. However, if the NBCC site-specific spectrum is used, the overestimation 

on αUmax associated with the simplified 2DOF model can be substantial, as discussed in Appendix E.1. 
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Table 5.1: Values of αUmax1 and αUmax2 for NBCC 2010 design spectrum 

NL NU 
rm=1 rm =2 rm =3 

αUmax1 αUmax2 αUmax1 αUmax2 αUmax1 αUmax2 

1 1 1.070 1.270 1.240 1.479 1.410 1.688 

1 2 1.015 1.135 1.070 1.270 1.155 1.375 

1 3 1.010 1.100 1.040 1.193 1.080 1.270 

1 4 1.008 1.100 1.015 1.135 1.060 1.230 

1 5 1.006 1.100 1.012 1.100 1.018 1.170 

1 6 1.005 1.100 1.010 1.100 1.015 1.135 

1 7 1.004 1.100 1.009 1.100 1.013 1.110 

1 8 1.004 1.100 1.008 1.100 1.011 1.100 

1 9 1.003 1.100 1.007 1.100 1.010 1.100 

2 1 1.240 1.479 1.580 1.897 1.870 2.180 

2 2 1.070 1.270 1.240 1.479 1.410 1.688 

2 3 1.020 1.193 1.127 1.340 1.240 1.479 

2 4 1.015 1.135 1.070 1.270 1.155 1.375 

2 5 1.012 1.100 1.036 1.228 1.104 1.312 

2 6 1.010 1.100 1.020 1.193 1.070 1.270 

2 7 1.009 1.100 1.017 1.140 1.046 1.160 

2 8 0.900 1.000 1.015 1.080 1.028 1.130 

3 1 1.410 1.688 1.870 2.180 2.215 2.503 

3 2 1.155 1.375 1.410 1.688 1.665 2.002 

3 3 1.020 1.180 1.240 1.479 1.410 1.688 

3 4 0.990 1.127 1.155 1.375 1.283 1.531 

3 5 0.965 1.080 1.050 1.198 1.123 1.291 

3 6 1.015 1.135 1.070 1.270 1.155 1.375 

3 7 0.900 1.030 1.046 1.180 1.119 1.330 

4 1 1.580 1.897 2.110 2.400 2.470 2.780 

4 2 1.240 1.479 1.580 1.897 1.870 2.180 

4 3 1.050 1.280 1.353 1.618 1.580 1.897 

4 4 1.010 1.240 1.151 1.350 1.410 1.688 

4 5 0.990 1.240 1.142 1.395 1.232 1.520 

4 6 0.940 1.100 1.043 1.230 1.141 1.479 

5 1 1.735 2.063 2.310 2.600 2.635 3.013 

5 2 1.325 1.584 1.735 2.063 2.054 2.347 

5 3 1.082 1.274 1.467 1.758 1.735 2.063 

5 4 1.040 1.285 1.224 1.436 1.538 1.845 

5 5 1.000 1.220 1.198 1.479 1.293 1.550 

6 1 1.870 2.180 2.470 2.780 2.764 3.200 

6 2 1.410 1.688 1.870 2.180 2.215 2.503 

6 3 1.102 1.320 1.580 1.897 1.870 2.180 

Note: Values of αUmax1 and αUmax2 not listed can be obtained from linear interpolation by the magnitude of rm. 
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Table 5.1: Values of αUmax1 and αUmax2 for NBCC 2010 design spectrum (continued) 
 

NL NU 
rm=1 rm =2 rm =3 

αUmax1 αUmax2 αUmax1 αUmax2 αUmax1 αUmax2 

6 4 1.050 1.260 1.295 1.540 1.665 2.002 

7 1 1.995 2.293 2.590 2.940 2.905 3.343 

7 2 1.495 1.793 1.995 2.293 2.354 2.647 

7 3 1.152 1.365 1.688 2.022 1.995 2.293 

8 1 2.110 2.400 2.670 3.080 3.046 3.443 

8 2 1.580 1.897 2.110 2.400 2.470 2.780 

9 1 2.215 2.503 2.764 3.200 3.187 3.544 

Note: Values of αUmax1 and αUmax2 not listed can be obtained from linear interpolation by the magnitude of rm. 

 

From Tables E.1 ~ E.6 in Appendix E.1 and Table D.1 in Appendix D.1, it is seen the errors induced 

by the simplified 2DOF model are related to the shape of the design spectrum. For example, when 

NL=4 and NU=6, the overestimation of αUmax associated with the simplified 2DOF model can be as 

large as 35.0% if the spectrum of Halifax shown in Figure 5.2 (a) is selected; however, the 

overestimation is 21.6% if the ASCE 7 design spectrum shown in Figure 1.4 is adopted. Therefore, it 

is recommended values of αUmax1 and αUmax2 in Eq. (5.5) be obtained from the MDOF model rather 

than the simplified 2DOF model. It is noted that if the ASCE 7 design spectrum is adopted, values of 

αUmax1 and αUmax2 provided in Table 5.1 can result in a more accurate value of αU as well. 

Consequently, as an alternative of Eqs. (3.19) and (3.20), Table 5.1 can be used to determine αUmax1 

and αUmax2 in (3.17) and it will result in a more accurate value of αU compared to Eqs. (3.19) and 

(3.20). 

Considering that the NBCC 2010 specifies various spectral shapes for different cities in Canada, it 

would be cumbersome and impractical to compute αUmax1 and αUmax2 for all possible different spectral 

shapes. In fact, values of αUmax1 and αUmax2 shown in Table 5.1 are calculated based on the ASCE 7 

design spectrum. By setting TU/TS=1 and TU/TS=0.769(Rm)
0.059

, the maximum values of αU for 

rkU2≤rk≤rkU3 computed based on the elastic modal response spectrum analysis of the MDOF model, 

are set to be αUmax1 and αUmax2, respectively, as shown in Table 5.1. The effects of the different 

spectral shapes on values of αUmax are accounted for in Eq. (5.5). 

Note that not all the values of αUmax1 and αUmax2 listed in Table 5.1 are obtained directly from the 

elastic modal response spectrum of the MODF model. Adjustments have made on the results from the 

elastic modal response spectrum analysis of the MDOF model to ensure errors of the factor αU are 

within an acceptable limit, which is discussed in section 5.3.5. 
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Overall two-stage stiffness ratio of the upper structure RkU2stg 

When the NBCC 2010 site-specific spectrum is to be used, modifications are needed on the overall 

two-stage stiffness ratio of the upper structure RkU2stg. In such case, the ratio RkU2stg can be determined 

by the following equation rather than Eq. (3.9): 

 2

0.907 9.78            1.213

11.029 2.5             1.213

m m

kU stg

m m

R R
R

R R

 
 

 
  (5.6) 

Compared to Eq. (3.9), the value of the ratio RkU2stg determined by Eq.(5.6) is increased for the case of 

which  the overall mass ratio Rm is less than 1.213. Such increase is resulted from the modification of 

the determination of the ratio RkU2stg. Ideally, the ratio RkU2stg should be determined based on the 

requirement that the first mode period of the simplified 2DOF model T1 is equivalent to the period of 

the upper structure TU, i.e., T1 =TU. Considering the fact that the period ratio T1/TU is always greater 

than unity, as discussed in Appendix B.1.3, the ratio RkU2stg of Eq. (3.9) is determined based on the 

requirement that the period ratio T1/TU≤1.1, as discussed in Appendix C.2. The requirement T1/TU≤1.1 

is the approximation to the requirement T1 =TU and it is appropriate if the ASCE 7 design spectrum is 

adopted. This is due to the fact the requirement T1/TU≤1.1 results in the spectral acceleration ratio 

Sa(T1)/Sa(TU) lies in the range between 0.91 and unity if the ASCE 7 design spectrum is adopted, 

which is quite close to unity. However, when the NBCC 2010 site-specific spectrum is adopted, the 

resulted ratio Sa(T1)/Sa(TU) may not be close to unity. For example, by setting TU=1.818 second and 

T1/TU=1.1, it is calculated that Sa(T1)=0.027 g and Sa(TU)=0.0376 g if the spectrum of Halifax is 

adopted, which then results in the spectrum ratio Sa(T1)/Sa(TU) be as low as 0.719. Therefore, to 

account for such great variation of the spectrum acceleration Sa(T1)/Sa(TU), the requirement on the 

period ratio T1/TU needs to be more stringent if the NBCC 2010 spectrum is adopted. As discussed in 

detail Appendix E.2, it is selected that T1/TU≤1.05 to be the condition to be satisfied to determine the 

overall two-stage stiffness ratio of the upper structure RkU2stg. Consequently, the equation to determine 

the RkU2stg that is compatible with the NBCC 2010 spectrum is presented in Eq. (5.6). 

5.3.3 Formulation of design equation III: stiffness evaluation 

In accordance with the NBCC 2010 spectrum shown in Figure 5.2 (a), the spectral acceleration is 

evaluated as follows: 
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  (5.7) 

where Sa(0.2), Sa(0.5), Sa(1.0) and Sa(2.0) denote the spectral values of 0.2, 0.5, 1.0 and 2.0 seconds, 

respectively. Having the spectral values shown in Eqs. (5.1), (5.4) and (5.5) evaluated from Eq.(5.7) 

and following the same procedure discussed in section 3.4, it is anticipated that the analytical 

solutions corresponding to the critical storey-stiffnesses of the upper structure kαU1, kαUmax and kαU2stg 

can be derived from Eq. (5.1). If the ASCE 7 design spectrum is adopted and the spectral values are 

evaluated from (3.24), the analytical solutions of kαU1, kαUmax and kαU2stg can be derived from the 

governing design equation (Eq.(3.4)), as presented in Eqs. (3.33) ~ (3.35), respectively. However, 

because the NBCC 2010 specifies a linear relationship between the spectral acceleration Sa(T) and the 

period T as shown in Eq.(5.7), the analytical solutions of kαU1, kαUmax and kαU2stg cannot be obtained 

directly from the governing design equation, i.e., Eq. (5.1). The reason of that is discussed in 

Appendix E.3. 

To facilitate that the analytical solution of kαU1, kαUmax and kαU2stg can be derived from Eq.(5.1), the 

spectral acceleration Sa(T) needs to be expressed by either a power or an exponential function of the 

period T. If the power function is adopted to approximate the linear segments of the NBCC 2010 

spectrum, the spectral acceleration Sa(T) is expressed as 
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where 𝑇𝑆
′, Ai and τi are curve fitting parameters. For the case that the exponential function is adopted, 

the corresponding spectral acceleration Sa(T) is then expressed as 
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where exp(.) represents the exponential function, and 𝑇𝑆
′ , Ai and τi are curve fitting parameters. 

Considering that the maximum single storey-period of the upper structure TsingU is 0.31 second and the 

maximum number of storey of the upper structure NU=9, as stated in section 1.3.2, the resulted 

maximum period of the upper structure TU=0.31/0.165=1.88 second. In addition, since the maximum 

period ratio T1/TU is less than 2.0 as discussed in Appendix E.3.1, the corresponding maximum period 

T1 is less than 3.76 second (1.88×2=3.76). Therefore, the spectrum approximation is needed for the 

case that the period is less than 4.0 second, as shown in Eqs. (5.8) and (5.9). 

With adopting either the power or exponential function to approximate the NBCC 2010 spectrum, 

analytical solutions corresponding to the critical storey-stiffnesses kαU1, kαUmax and kαU2stg can be 

derived. If the power function shown in Eq. (5.8) is adopted, the solutions are presented in Eqs.(E.8) 

~ (E.10) of Appendix E.3.1. For the case that the exponential function shown in Eq. (5.9) is adopted, 

the corresponding solutions are shown in Eqs. (E.15) ~ (E.17) of Appendix E.3.2. However, errors 

associated with the values of the spectrum will be resulted from the approximation of the NBCC 2010 

spectrum with either the power or exponential function, which will consequently result in errors on 

the critical storey-stiffnesses kαU1, kαUmax and kαU2stg. To ensure the errors of the critical storey-

stiffnesses are within an acceptable limit, it is critical to select an appropriate approximate function 

and curve fitting technique to simulate the linear segments of the NBCC 2010 spectrum in the 

specified region. For the power and exponential functions shown in Eqs. (5.8) and (5.9), respectively, 

two different techniques were provided in this study to determine the curving fitting parameters 𝑇𝑆
′, Ai 

and τi, which are discussed in Appendix E.4. Therefore, as shown in Table E.9 of Appendix E.4, a 

total of four types of curve fitting schemes are available. As to which curve fitting scheme to be 

selected, engineers can make the decision based on the acceptable limit of the errors of the critical 

storey-stiffnesses associated with each scheme. Errors of the critical storey-stiffnesses associated with 

each curve fitting scheme are discussed in section 5.3.5. 

Finally, considering that the single storey-periods TsingU and TsingL are not greater than 0.31 second 

as discussed in section 1.3.2, the corresponding kU and kL should satisfy following requirements: 

 
241.62U Uk m   (5.10) 
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241.62L Uk m   (5.11) 

5.3.4 Design procedure 

Similar to that discussed in section 3.5, the spectral acceleration specified in the NBCC 2010 (NBCC, 

2010) should also be scaled up by the factor CNE, as shown in Eq. (3.42), to satisfy the 90% NE 

probability. The scaled up factor CNE is still taken as 2.61. With such adjusted spectral acceleration 

and considering the modifications that have been made in sections 5.3.1 ~ 5.3.3, the procedure to 

evaluate feasible storey-stiffnesses kU and kL based on the NBCC 2010 can be carried out as follows: 

Step 1: Evaluate the effective seismic weight distribution (mL and mU); calculate the storey-mass 

ratio rm (rm=mL /mU) and the overall mass ratio Rm as per Eq.(3.6). 

Step 2: Determine critical overall stiffness ratios RkU1, RkU2, RkU3 and RkU2stg according to Eqs.(3.22), 

(3.10), (3.23) and (5.6), respectively. 

Step 3: Compute values of αU11 and αU12 based on Table 3.1 and the exponent x3 in accordance with 

Eq. (3.16) if RkU1<RkU2; calculate values of αUmax1 and αUmax2 in accordance with Table 5.1 and 

evaluate the exponent x4 in accordance with Eq. (3.18); and evaluate the value of αU2stg by Eq.(3.21). 

Step 4: Select either the power or exponential function to approximate the NBCC 2010 spectrum; if 

the power function is selected, calculate the critical storey-stiffnesses kαU1, kαUmax and kαU2stg based 

on Eqs. (E.8) ~ (E.10), respectively, or if the exponential function is selected, calculate kαU1, kαUmax 

and kαU2stg  as per Eqs. (E.15) ~ (E.17), respectively. Then, evaluate the critical storey-stiffnesses 

kUmax and kUmin based on Eqs. (3.31) and (3.32), respectively. Note that if RkU1≥RkU2, kUmax and kUmin 

are determined only based on kαUmax and kαU2stg, as shown in Eqs. (3.31) and (3.32); therefore, kαU1, 

and αU11 and αU12 that are used to compute kαU1 based on Eq. (E.8) or (E.15) are not required to be 

calculated.  

Step 5: Select the feasible storey-stiffness of upper structure kU based on the value of kUmin 

computed in step 4. Note that the value of kU also needs to satisfy Eq. (5.10) . 

Step 6: With the value of kU selected in step 5, calculate the period of the upper structures TU from 

Eq.(3.8); then, compute values of αU1 and αUmax based on Eqs. (5.4) and (5.5), respectively; finally, 

the corresponding value of the storey-stiffness of the lower structure kL can be selected to satisfy 

Eqs. (3.26) ~ (3.29) and as well as Eqs. (5.11) and (3.41). Note that αU1, which is the value of αU 

when Rk=RkU1, is required to be calculated only if RkU1<RkU2. If RkU1≥RkU2, the value of αU when 

Rk=RkU1 should be computed in accordance with the magnitude of RkU1 through Eqs. (3.12) (b) ~ (d). 

In addition, when computing values of αU1 and αUmax, the spectral values in Eqs. (5.4) and (5.5) are 
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suggested directly be determined from the NBCC 2010 spectrum rather than the one approximated 

by either the power or exponential function for the reason of accuracy.  

5.3.5 Error analysis 

Errors associated with the proposed procedure to evaluate the storey-stiffnesses of the lower and 

upper structures for the Canadian application are resulted from the following two aspects: (a) the 

proposed equations of evaluating the factor αU; and (b) the approximation of the NBCC 2010  

spectrum with either the power or exponential function. In general, the design procedure provided in 

section 5.3.4 can be categorized into two phases. Phase I includes Step 1 to Step 5 in which the 

feasible range of the storey-stiffness of the upper structure kU is determined. A critical step in Phase I 

is to determine the critical storey-stiffnesses kαU1, kαUmax and kαU2stg from either Eqs. (E.8) ~ (E.10) or 

Eqs. (E.15) ~ (E.17) depending on whether the power or exponential function is selected to 

approximate the NBCC 2010 spectrum. By observing Eq. (5.1), which is the governing equation from 

which Eqs. (E.8) ~ (E.10) or Eqs. (E.15) ~ (E.17) are obtained, it is found that errors of the critical 

storey-stiffnesses can be characterized by the error associated with the product of the factor αU and 

the spectrum value Sa(TU), i.e., αUSa(TU). Therefore, the error associated with αUSa(TU) is the primary 

concern of Phase I as it is influenced by both errors of computing the shear-force-amplification factor 

αU and approximation of NBCC 2010 spectrum. 

Phase II of the design procedure, stated as Step 6 in section 5.3.4, is to determine the required 

storey-stiffness of the lower structure kL based on the given storey-stiffness of the upper structure kU. 

With the given storey-stiffness of the upper structure kU, the period of the upper structure TU can be 

uniquely determined, and the spectrum values in Eqs.(5.4) and (5.5) can be obtained directly from the 

NBCC 2010 spectrum, i.e., by Eq.(5.7), without approximation. Thus, errors associated with Phase II 

are induced only by the procedure of computing the factor αU.  

Error associated with the procedure of computing shear-force-amplification factor αU 

The results of shear-force-amplification factor αU computed by the Eq. (3.12) with use of the 

modifications discussed in section 5.3.2 are compared to that obtained from the elastic modal 

response spectrum analysis of the MDOF model with CQC rule of combining the peak modal 

responses (Chopra, 2007). By considering all possible combinations of rm, rk, TsingU and TsingL that are 

presented in section 1.3.2, the maximum and minimum errors of the shear-force-amplification factor 

obtained from Eq. (3.12) are listed in Table 5.2 and Table 5.3, respectively. The positive and negative 

errors signify that the proposed approach overestimates and underestimates the shear-force-

amplification factor αU, respectively. From Table 5.2 and Table 5.3, it is seen errors associated with 
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the proposed approach of computing the factor αU based on the NBCC 2010 spectrum are in the range 

of -2.8% to 33.5%, which are comparable to errors of the proposed approach based on the ASCE 7 

spectrum as discussed in section 3.3.4.  

It is found that errors of proposed approach of computing the factor αU are related not only to 

values of design parameters rm, rk, TsingU and TsingL, but also to the design spectral shape. Since the 

ASCE 7 (ASCE, 2010) adopts the Newmark spectrum, the effect of the spectral shape is characterized 

by the ratio TsingU/TS, as discussed in section 3.3.4. However, considering the NBCC 2010 (NBCC, 

2010) specifies different spectral shapes for different cities in Canada, as shown in Figure 5.2 (b), the 

errors of the factor αU computed by the proposed approach may be different for different cities. The 

spectral shapes of Vancouver, Montreal and Halifax, which are representative seismic cities in 

Canada, are selected to check the error of the factor αU computed by the proposed approach. The  

Table 5.2: Maximum errors of the proposed method on factor αU (NBCC 2010 spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 13.7% 15.7% 20.7% 23.6% 24.4% 25.7% 28.2% 27.9% 28.3% 

2 17.0% 30.4% 24.0% 27.3% 26.7% 29.4% 31.8% 28.5% N/A 

3 18.9% 29.6% 27.8% 28.4% 28.7% 32.9% 25.7% N/A N/A 

4 19.5% 27.4% 25.2% 31.6% 34.1% 24.6% N/A N/A N/A 

5 20.6% 25.5% 26.1% 29.7% 33.5% N/A N/A N/A N/A 

6 19.7% 24.4% 25.7% 28.4% N/A N/A N/A N/A N/A 

7 10.9% 23.8% 27.2% N/A N/A N/A N/A N/A N/A 

8 10.2% 23.7% N/A N/A N/A N/A N/A N/A N/A 

9 10.5% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table 5.3: Minimum errors of the proposed method on factor αU (NBCC 2010 spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.4% 2.7% 5.7% 6.6% 5.6% 11.4% 9.6% 11.8% 13.1% 

2 6.7% 2.1% 4.6% 3.6% 2.0% 3.2% 3.3% 4.9% N/A 

3 5.7% 2.6% 0.5% 0.7% 0.1% 4.0% -2.8% N/A N/A 

4 5.4% 8.6% 2.5% 2.2% -1.6% -0.9% N/A N/A N/A 

5 5.5% 8.8% 0.0% 3.6% -1.5% N/A N/A N/A N/A 

6 5.6% 7.7% 0.0% 1.6% N/A N/A N/A N/A N/A 

7 -1.0% 7.9% 0.0% N/A N/A N/A N/A N/A N/A 

8 -1.0% 7.5% N/A N/A N/A N/A N/A N/A N/A 

9 -0.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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maximum and minimum errors listed in Table 5.2 and Table 5.3 are determined based on the three 

representative seismic cities. The errors of the factor αU for each of these three cities are also provided 

in Tables E.10 ~ E.15 in Appendix E.5. 

Finally note the maximum single-storey periods TsingU and TsingL for the storey combinations of 

lower and upper structures listed in Table 5.2 and Table 5.3 are limited to be not greater than 0.22 

second, which is less than the 0.31 second that is specified by the NBCC 2010 (NBCC, 2010), as 

discussed in section 1.3.2. The maximum single-storey periods TsingU and TsingL are extended to be 

0.31 second for storey combinations listed in Tables E.10~ E.15 in Appendix E.5. As demonstrated in 

those tables, a relative large magnitude of negative error may occur for certain storey combinations. 

For example, when NL=4 and NU=5, rm=3, and TsingU=0.3 second, the negative error associated with 

the factor αU obtained from the proposed approach can be as low as -5.8% if the spectrum of Montreal 

is selected, as shown in Table E.13. However, such flexible structures are rare in practices. For most 

structures, the single-storey periods TsingU and TsingL are not likely be greater than 0.22 second. In 

accordance with ASCE 7 (ASCE, 2010), TsingU and TsingL for most structures are not greater than 1.1TS, 

as discussed in section 1.3.2. By comparing the ASCE 7 and NBCC 2010 spectra shown in Figure 1.4 

and Figure 5.2, respectively, it is found the corresponding TS of the NBCC 2010 spectrum can be set 

as 0.2 second, i.e. TS=0.2 s. Consequently, it is reasonable to derive that TsingU and TsingL for most 

structure are not likely be greater than 0.22 second based on the NBCC 2010 spectrum, where 

0.22=1.1TS=1.1×0.2. As long as that TsingU and TsingL are not less than 0.22 second, the corresponding 

errors associated with the proposed approach based on the NBCC 2010 spectrum are considered as 

acceptable, as shown in Table 5.2 and Table 5.3. 

Error associated with αUSa(TU) 

Computed values of product αUSa(TU) based on proposed approach are compared to corresponding 

accurate values. When computing the values of the factor αU and the resulted product αUSa(TU) based 

on the proposed approach, the spectrum value Sa(TU) is determined based on the approximation of 

NBCC 2010 spectrum. On the other hand, for the so-called accurate value of αUSa(TU), the spectral 

value Sa(TU) is determined from the NBCC 2010 spectrum rather than the approximation, and the 

factor αU is computed based on the modal response spectrum analysis of the MDOF model with the 

CQC rule of combining the peak modal responses (Chopra, 2007). Apparently, errors of αUSa(TU) 

evaluated based on the proposed approach is affected by the approximation of the NBCC 2010 

spectrum. As to all approximations listed in Table E.9 of Appendix E.4, the maximum and minimum 

errors of the estimated αUSa(TU) for the three Canadian representative seismic cities, i.e., Vancouver, 

Montreal and Halifax, are listed in Tables E.16 ~ E.39 of Appendix E.6. The pros and cons for each 
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approximation are also discussed in Appendix E.6. From such discussion, it is suggested that 

approximation “EXP-2” listed in Table E.9 provides the most reasonable values of αUSa(TU) from a 

general aspect. 

As to the approximation “EXP-2”, the possible maximum and minimum errors of the evalauted 

αUSa(TU) are listed in Table 5.4 and Table 5.5. For the three Canadian representative seismic cities, 

the maximum and minimum errors listed in these tables are obtained by considering all possible 

combinations of rm, rk, TsingU and TsingL as presented in section 1.3.2. It is found that errors associated 

with the approximation “EXP-2” listed in Table E.9 are in the range of -1.0% and 36.5%, which is 

comparable to errors of the factor αU obtained from the proposed approach. Note that the range of -1.0% 

and 36.5% are obtained based on that the maximum single-storey periods TsingU and TsingL are not 

greater than 0.22 second. Considering that 0.31 second is the limit for the maximum single-storey 

period specified in the NBCC 2010 (NBCC, 2010), errors associated with the single periods to be 

0.22  to 0.31 second are listed in Tables E.16 ~ E.39 of Appendix E.6.  

Table 5.4: Maximum errors of the estimated αUSa(TU)  (NBCC 2010 spectrum, EXP-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 16.5% 18.1% 28.0% 28.6% 32.2% 33.1% 35.5% 34.8% 36.5% 

2 18.9% 34.0% 28.7% 30.7% 31.3% 31.9% 34.2% 33.7% N/A 

3 20.8% 32.8% 31.0% 30.7% 31.8% 35.1% 32.8% N/A N/A 

4 21.8% 30.2% 28.6% 34.9% 37.3% 29.5% N/A N/A N/A 

5 23.5% 28.2% 28.7% 32.8% 36.0% N/A N/A N/A N/A 

6 23.2% 27.5% 28.3% 29.7% N/A N/A N/A N/A N/A 

7 13.4% 26.2% 30.3% N/A N/A N/A N/A N/A N/A 

8 13.7% 27.3% N/A N/A N/A N/A N/A N/A N/A 

9 14.8% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

Table 5.5: Minimum errors of the estimated αUSa(TU)  (NBCC 2010 spectrum, EXP-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.4% 3.2% 7.8% 8.1% 7.4% 12.5% 16.0% 15.5% 14.3% 

2 6.9% 2.1% 4.6% 6.1% 6.2% 6.9% 8.4% 7.1% N/A 

3 6.7% 3.4% 0.5% 0.7% 0.1% 5.0% 0.5% N/A N/A 

4 6.0% 9.2% 3.5% 2.2% 3.1% 0.7% 0.0% N/A N/A 

5 5.9% 9.0% 0.0% 3.6% 2.5% N/A N/A N/A N/A 

6 5.8% 8.9% 0.0% 1.6% N/A N/A N/A N/A N/A 

7 -1.0% 8.8% 0.0% N/A N/A N/A N/A N/A N/A 

8 -1.0% 8.7% N/A N/A N/A N/A N/A N/A N/A 

9 -0.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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5.4 Seismic loading based on NBCC 2010 

5.4.1 Modified ELF procedure 

The applicable requirement of the modified ELF procedure to be applied in “appendage-style” 

building based on NBCC 2010 is the same as that based on ASCE 7 discussed in Chapter 4. However, 

as the seismic load distribution of the ELF procedure based on NBCC 2010 is different from that 

based on ASCE 7, a modified ELF procedure for seismic loading of the appendage-style building 

based on NBCC 2010 is provided in the following.  

Seismic load distribution of lower structure 

When adopting the ELF procedure to evaluate seismic load of “regular” structures, the NBCC 2010 

(NBCC, 2010) specifies a higher mode factor to account for the possible effect of the higher mode on 

the base shear force obtained from the first mode of vibration. The applicable requirement of the 

modified ELF procedure in below is proposed based on that the effective mass of the entire building 

associated with the first mode is not less than 90% of the total mass. Therefore, the higher mode ef-

fect on the base shear force is not significant, and the higher mode factor specified in the NBCC 2010 

is no need to be accounted for when evaluating the base shear force of the lower structure VLb. Thus, 

the base shear force of the lower structure can be calculated based on Eq. (4.1). 

Different from that of ASCE 7 (ASCE, 2010), the lateral seismic force distribution along the height 

of the building specified in the NBCC 2010 (NBCC, 2010), i.e., the lateral seismic force associated 

with the ith-storey Fi, is calculated as 
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where Ft, ELF is the specified top storey loading, which is calculated as follows: 
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  (5.13) 

where T1 is still the first mode period of the entire building, which is approximated by Eq.(A.5) of 

Appendix A. 

By comparing Eq. (4.4) to Eq. (5.12), it is seen that ASCE 7 adopts the exponent κ to account for 

the higher mode effect on the top storey shear force, while NBCC 2010 specifies a top storey loading 

Ft,ELF to account for such effect. 
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Seismic load distribution of upper appendage 

The base shear force of the upper “appendage” can be calculated by Eq. (4.7). However, when 

Eq.(3.12) was employed to determine the factor αU, modifications discussed in section 5.3.2 should be 

considered. The modifications include: (1) values of αU1 and αUmax should be calculated through 

Eqs.(5.4) and (5.5), respectively; (2) values of αUmax1 and αUmax2, which are used to determine the 

exponent x4 in Eq. (5.5) from Eq. (3.18), should be obtained from Table 5.1; and (3) the overall two-

stage storey stiffness ratio of the upper structure is to be calculated by Eq. (5.6). 

5.4.2 Proposed two-stage analysis procedure 

The applicable requirement and seismic load distribution of the proposed two-stage analysis 

procedure based on the NBCC 2010 are the same as those developed based on ASCE 7 and presented 

in section 4.3 except the empirical equations to determine the top storey loading Ft based on the 

NBCC 2010 are different. As shown in Eqs. (4.17) and (4.18), the top storey loading is computed 

based on the proposed parameters γreg and γintr. Therefore, modifications based on the NBCC 2010 can 

be directly made on parameters γreg and γintr. 

Determination of γreg 

Recall Eq. (4.20), which is the equation to determine the value of γreg for “regular” structures based on 

the modal response spectrum analysis. Since ASCE 7 adopts the Newmark design spectrum, the 

spectral ratio Sa(Ti)/Sa(T1) can be determined by TsingU/TS for an N-storey regular structure. However, 

the spectral shape specified by NBCC 2010 varies for different locations, as shown in Figure 5.2 (b). 

The spectral ratio Sa(Ti)/Sa(T1) cannot be calculated in the way similar to that of ASCE 7. It is 

suggested that the γreg be directly computed based on modal response spectrum analysis. Since the 

“regular” structure usually has well separated natural frequencies, the CQC combination rule in 

Eq.(4.20) can be replaced by the SRSS combination rule. By adopting such simplification, the γreg for 

an NU-storey “regular” structure can be determined as follows: 
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  (5.14) 

where MNi and Ti are the normalized effective modal mass of the top storey and the period associated 

with the ith-mode, respectively. Numerical values of MNi for an NU-storey “regular” structure are 

provided in Table 5.6. The period Ti is calculated as follows: 
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where 𝜔̅𝑖 is the normalized natural frequency associated with the ith-mode for an NU-storey “regular” 

structure. Numerical values of 𝜔̅𝑖 are listed in Table 5.7. 

Determination of γintr 

Recall Eq. (4.21), which is the equation to determine the value of γintr through the proposed ηintr. As 

discussed in Appendix D.2.1, the proposed ηintr is related to the spectral ratio Sa(TL)/Sa(TU), where TL 

and TU are first mode periods of the lower and upper structures, respectively. If Newmark spectrum is 

adopted as that did in ASCE 7, the spectral ratio Sa(TL)/Sa(TU) can be determined by ratios TL/TU and 

TU/TS. Therefore, the effect of the spectral ratio Sa(TL)/Sa(TU) on the proposed ηintr is represented by 

Table 5.6: Normalized effective modal masses of top storey for uniform structures 

NU  
   mode number 1 2 3 4 5 6 7 8 9 

2 1.171 -0.171 N/A N/A N/A N/A N/A N/A N/A 

3 1.220 -0.280 0.060 N/A N/A N/A N/A N/A N/A 

4 1.241 -0.333 0.120 -0.028 N/A N/A N/A N/A N/A 

5 1.25 -0.36 0.16 -0.06 0.02 N/A N/A N/A N/A 

6 1.258 -0.379 0.183 -0.090 0.038 -0.009 N/A N/A N/A 

7 1.262 -0.390 0.200 -0.110 0.057 -0.024 0.006 N/A N/A 

8 1.264 -0.398 0.211 -0.124 0.072 -0.038 0.016 -0.004 N/A 

9 1.266 -0.403 0.220 -0.135 0.084 -0.050 0.027 -0.012 0.003 

 

Table 5.7: Normalized natural frequencies of uniform structures 

NU  
   mode number 1 2 3 4 5 6 7 8 9 

2 0.618 1.618 N/A N/A N/A N/A N/A N/A N/A 

3 0.445 1.247 1.802 N/A N/A N/A N/A N/A N/A 

4 0.347 1.000 1.532 1.879 N/A N/A N/A N/A N/A 

5 0.285 0.831 1.310 1.683 1.919 N/A N/A N/A N/A 

6 0.241 0.709 1.136 1.497 1.771 1.942 N/A N/A N/A 

7 0.209 0.618 1.000 1.338 1.618 1.827 1.956 N/A N/A 

8 0.185 0.547 0.891 1.205 1.478 1.700 1.865 1.966 N/A 

9 0.149 0.445 0.731 1.000 1.247 1.466 1.652 1.802 1.911 
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the effect of TU/TS if ASCE 7 design spectrum is adopted, as shown in Eq. (4.22). However, as NBCC 

2010 specifies different spectral shapes, a relationship between the value of ηintr and the spectral ratio 

Sa(TL)/Sa(TU) is directly established. By combining Eqs. (4.22) and (D.2), it is obtained that 
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  (5.16) 

The spectral ratio Sa(TL)/Sa(TU) in Eq. (5.16), which is calculated based on ASCE 7 design spectrum, 

is limited between unity and the ratio TU/TL. However, similar to the spectral ratio Sa(T1)/Sa(TU) in 

Eqs.(5.2) and (5.3), the spectral ratio Sa(TL)/Sa(TU) may be greater than the ratio TU/TL if NBCC 2010 

spectrum is adopted. Therefore, Eq. (5.16) may not be applicable since the ratio Sa(TL)/Sa(TU) in this 

equation is limited between unity than TU/TL. In this study, the power function used in Eq. (5.16) is 

still used for the cases where the magnitude of the ratio Sa(TL)/Sa(TU) is greater than the ratio TU/TL. 

The validity of using the power function for such cases can be demonstrated by the following exam-

ple. Take the combined framing systems with NL=3, NU=7, rm=2 and rk=10, which results in the peri-

od ratio between the lower and upper structures TU/TL=4.76. In accordance with Table 4.2, the critical 

storey-stiffness ratio associated with the two-stage analysis procedure for this building rk2stg=5.40. 

Since rk>rk2stg, the two-stage analysis procedure consequently can be used to analyze the building. By 

adopting the spectrum of Montreal shown in Figure 5.2 (a) and assigning different values for the peri-

od of the upper structure TU, the spectral ratio Sa(TL)/Sa(TU) can be evaluated. In addition, the value of 

ηintr, which is related to the top storey loading associated with the interaction of the first mode of the 

lower structure and other higher vibration modes of the upper structure, can be calculated based on 

the elastic modal response spectrum analysis of the MDOF model. Shown in Figure 5.5 are the rela-

tionships between the calculated spectral ratio Sa(TL)/Sa(TU) and values of ηintr evaluated based on the 

elastic modal response spectrum analysis (marked as “MRS” in Figure 5.5) and Eq.(5.16). Values of 

ηmin and the exponent x5 of the power function in Eq. (5.16) are determined from the values of ηintr at 

Sa(TL)/Sa(TU)=TU/TL=4.76 and Sa(TL)/Sa(TU)=(TU/TS)CRT=1.43. As shown in Figure 5.5, although the 

power function in Eq. (5.16) is derived based on (TU/TS)CRT≤Sa(TL)/Sa(TU)≤TU/TL, the power function 

is applicable for the case where Sa(TL)/Sa(TU)>TU/TL. The fact that the power function in Eq. (5.16) is 

applicable for the case where Sa(TL)/Sa(TU)>TU/TL is further justified in section 5.4.3, in which errors 

of the shear force distribution obtained from the proposed two-stage analysis procedure with use of 

Eq. (5.16) are discussed. 
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Figure 5.5: Effect of spectral acceleration ratio Sa(TL)/Sa(TU) on the proposed ηintr 

(NL=3, NU=7, rm=2 and rk=10) 

With the justification of that the power function in Eq. (5.16) can be applicable if the spectral ratio 

Sa(TL)/Sa(TU) is greater than the ratio TU/TL, the value of ηintr can be determined as follows: 

 

 

 
5intr

min

( )
1                                          /

( )

( ) / ( ) ( )
     /

/ ( )

a L
U S CRT

a U

x

a L a U a L
U S CRT

U L a U

S T
T T

S T

S T S T S T
T T

T T S T









 

 
 

 

  (5.17) 

5.4.3 Error analysis 

Shear forces for each storey of the combined framing systems obtained from the modified ELF and 

proposed two-stage analysis procedures based on the NBCC 2010 are compared with those from the 

elastic modal response spectrum analysis of the MDOF model with CQC rule to combine the peak 

modal responses (Chopra, 2007). The maximum and minimum errors associated with the modified 

ELF and proposed two-stage analysis procedures, as shown in Table 5.8 and Table 5.9, respectively, 

are obtained based on all the possible combinations of rm, rk, TsingU and TsingL as stated in section 1.3.2. 

All the three representative seismic cities in Canada, i.e., Vancouver, Montreal and Halifax, are also 

considered in the error analysis. The maximum and minimum errors for each of the three cities are 

also listed in Tables E.40 ~E.45 in Appendices E.7 and E.8. 

From Table 5.8, it is seen errors induced by the modified ELF procedure for the lower and upper 

structures are in the range 10.8% ~ 39.0% and -1.0% ~ 20.5%, respectively. Such errors are 

comparable to those of the modified ELF procedure based on ASCE 7, as discussed in section 4.2.5. 

In addition, errors of the shear forces for the upper and lower structures induced by the proposed two-

stage analysis procedure based on NBCC 2010, as shown in Table 5.9, are also comparable to those 

associated with the proposed procedure of ASCE 7, as discussed in section 4.3.5.  
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Table 5.8: Errors associated with modified ELF procedure (NBCC 2010 spectrum) 

NL NU 
lower structure upper structure 

maximum minimum maximum minimum 

2 1 23.6% 11.2% 18.7% 6.4% 

3 1 28.1% 12.4% 20.0% 4.7% 

4 1 31.7% 13.0% 19.9% 4.1% 

5 1 33.7% 13.4% 19.4% 4.1% 

6 1 35.3% 13.7% 20.5% 5.4% 

7 1 36.4% 10.8% 14.9% -1.0% 

8 1 35.6% 11.7% 14.9% -1.0% 

9 1 39.0% 11.4% 12.4% -0.9% 

 

Table 5.9: Errors associated with proposed two-stage procedure (NBCC 2010 spectrum) 

NL NU 
upper structure lower structure 

maximum minimum maximum maximum 

1 3 27.7% 8.1% 35.2% 13.6% 

2 3 28.3% 5.0% 50.3% 13.2% 

3 3 29.0% 5.0% 55.6% 11.4% 

4 3 25.0% 5.9% 58.4% 10.5% 

1 4 34.9% 10.3% 38.9% 13.3% 

2 4 33.9% 3.6% 53.4% 14.7% 

3 4 31.8% 4.9% 62.0% 12.5% 

4 4 35.4% 4.9% 65.8% 10.6% 

5 4 26.1% 6.5% 67.8% 9.4% 

1 5 37.6% 6.0% 43.5% 13.8% 

2 5 36.9% 4.1% 57.3% 16.6% 

3 5 34.4% 3.7% 63.8% 14.5% 

4 5 36.3% 4.5% 68.9% 12.6% 

5 5 36.6% 3.9% 71.6% 11.2% 

1 6 37.4% 5.0% 50.5% 13.7% 

2 6 36.7% 1.0% 65.6% 20.6% 

3 6 39.6% -0.4% 72.5% 18.9% 

4 6 38.1% -0.9% 78.0% 17.0% 

1 7 37.9% 3.5% 51.9% 18.3% 

2 7 37.5% -3.3% 66.9% 22.0% 

3 7 36.5% -4.7% 74.5% 20.8% 

1 8 38.4% 4.1% 52.5% 15.8% 

2 8 40.0% -0.3% 68.7% 23.2% 

1 9 38.1% 2.4% 55.0% 19.8% 
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The errors shown in Table 5.9 do not account for the case that Ft=0 and the case that the single 

storey period either TsingU or TsingL lies between 0.22 and 0.31 seconds. The errors associated with 

these two cases are accounted for in errors listed in Tables E.43 ~ E.45 of Appendix E.8 and it is 

found that the shear force of the upper structure may be overestimated considerably for certain storey 

combinations. From the investigation, there are eight storey combinations that may result in the 

maximum errors being greater than 40.0% and they are (NL=1, NU=6), (NL=2, NU=6), (NL=1, NU=7), 

(NL=2, NU=7), (NL=3, NU=7), (NL=1, NU=8), (NL=2, NU=8), and (NL=1, NU=9). For the eight storey 

combinations, such a large overestimation of shear forces occurs at the top storey of the upper 

structure when Ft shown in Figure 4.4 (b) is zero. Usually, Ft =0 when the single storey period of the 

upper structure, i.e., TsingU, is considerably small which signifies a very stiff upper structure as 

discussed in Appendix D.2.1. Therefore, it is concluded that shear forces for the top storey of the 

upper structure may be overestimated when the single storey period TsingU is small. For example, for 

buildings with NL=1, NU=9 and rm=1, the maximum overestimation of the shear force is 46.6%, as 

shown in Table E.43, which occurs when TsingU=0.03 second and TsingL=0.007 second. However, such 

stiff lower and upper structures are rarely used in practices. For the eight storey combinations, if the 

values of TsingU are not small, i.e. Ft≠0, then errors associated with the shear forces of the upper 

structures are acceptable as shown in Table 5.9. 

The shear forces of the upper structure may be underestimated by more than 5.0% if the single 

storey period either TsingU or TsingL lies between 0.22 and 0.31 seconds. For example, when NL=4 and 

NU=6, the underestimation of the shear force can be as large as 6.4% if TsingU lies between 0.22 and 

0.31 seconds, as shown in Table E.44. However, such flexible structures are rare in practices. For 

most structures in practice, the single-storey period TsingU and TsingL are less than 0.22 second. From 

this aspect, the underestimation of the shear forces for the upper structure associated with the 

proposed two-stage analysis is likely not exceed 5%, as that shown in Table 5.9. 

5.5 Examples 

The two buildings investigated in sections 3.6.1 and 3.6.2 are selected to illustrate the proposed 

approach for evaluating the required storey-stiffnesses of the lower and upper structures based on the 

NBCC 2010 (NBCC, 2010). In addition, the two examples investigated in sections 4.6.1 and 4.6.2 are 

selected to illustrate the modified ELF and the proposed two-stage analysis procedures based on 

NBCC 2010. The only difference is that the buildings in Examples 5-1, 5-2, 5-3 and 5-4 are located in 

Vancouver rather than in California. Based on the site classification of the NBCC 2010, the soil 

condition for the site is assumed as Class C. The building importance category is set as “Normal”. 
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In accordance with NBCC 2010 (NBCC, 2010), the permissible storey drift is limited to 0.025hn 

for buildings with “Normal Importance Category”, where hn is the storey height. However, as the 

permissible storey drift specified in Examples 3-1 and 3-2 is 0.02hn, the permissible storey drift for 

buildings in Examples 5-1 and 5-2 is also taken as 0.02hn for the reason of comparison. 

5.5.1 Example 5-1 

The storey and floor layouts, storey masses and lateral stiffness of the nine-storey building are taken 

as the same as those shown in Example 3-1 and the permissible storey drift of the CFS shear wall is 

also 61.2 mm. In accordance with the NBCC 2010 (NBCC, 2010), the spectral values of Vancouver 

at periods of 0.2, 0.5, 1.0 and 2.0 seconds are respectively Sa(0.2)=0.94 g, Sa(0.5)=0.64 g, Sa 

(1.0)=0.33 g and Sa(2.0)=0.17 g, and the corresponding factored design spectral values are 

 𝑆𝑎̅(0.2) = 2.61 × 0.94 = 2.45 g , 𝑆𝑎̅(0.5) = 2.61 × 0.64 = 1.67g, 𝑆𝑎̅(1.0) = 2.61 × 0.33 = 0.86 g 

and 𝑆𝑎̅(2.0) = 2.61 × 0.17 = 0.44 g.  

By following Steps 1 ~ 4 described in section 5.3.4, it is obtained that kαU1=1.21×10
5
 kN/m, 

kαUmax=1.79×10
5
 kN/m and kαU2stg=9.14×10

4
 kN/m, which then results in kUmax=1.79×10

5
 kN/m and 

kUmin=9.14×10
4
 kN/m. When computing the critical storey-stiffnesses kαU1, kαUmax and kαU2stg, the 

approximation“EXP-2”, as shown in Table E.9 of Appendix E.4, is selected to simulate the factored 

spectrum of Vancouver spectrum. The curve fitting parameters associated with Eq.(5.9) for the 

factored spectrum of Vancouver are listed in Table 5.10. Based on Step 5, it is obtained that the 

feasible storey-stiffness of the upper structure kU should not be less than 9.14×10
4
 kN/m, and 

corresponding requirement on the lateral stiffness of the lower structure kL can then be computed in 

accordance with Step 6. By converting the obtained feasible storey-stiffnesses kU and kL in terms of 

the required length of CFS shear wall and number of columns in the RC moment frame, respectively, 

the domain of feasible SFRS designs of lower and upper structures can be obtained. Additionally, the 

number of columns in the RC moment frame and the CFS shear wall length in this example are 

limited to 16 and 73.2 m, respectively (Figure 3.8). The ranges of stiffness combinations of the lower 

and upper structure for the combined framing systems investigated in this example are shown in 

Figure 5.6 (a). 

Elastic-analysis-based modal response spectrum analysis (Chopra, 2007) is carried out for the 

building as a MDOF model, as shown in Figure 1.3 (a), with the corresponding effective storey-

masses and storey-stiffnesses evaluated previously. For all combinations of the CFS shear wall length 

and the number of columns in the RC moment frame shown in the shaded areas of Figure 5.6 (a), 

storey drifts of the first storey of CFS shear walls calculated from the elastic-analysis-based modal  
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Table 5.10: Curve fitting parameters of approximation “EXP-2” for factored spectrum of Vancouver 

parameter A1 (g) τ1 A2 (g) τ2 A3 (g) τ3 A4 (g) τ4 𝑇𝑆
′ 

value 3.211 -1.266 3.095 -1.192 1.949 -0.729 0.840 -0.309 0.213 
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Figure 5.6: Feasible SFRS designs of lower and upper structures of Examples 5-1 and 5-2 

response spectrum analyses are less than 1.8% of the storey height. The maximum storey drifts for the 

derived feasible designs of this example is the same as that of Example 3-1, as discussed in section 

3.6.3. Since the specified storey-drift limit for the building is 2% of the storey height, all 

combinations the CFS shear wall length and the number of columns in the RC moment frame 

obtained from the proposed procedure are conservative. 

5.5.2 Example 5-2 

The eight-storey building investigated herein are identical to that in Example 3-2 excepted the 

location is in Vancouver. With the factored design spectral values being the same as that shown in 

Example 5-1, by following Steps 1~6 of section 5.3.4, the domain of feasible SFRS designs of lower 

and upper structures can be obtained and is illustrated as the shaded area in Figure 5.6 (b). The curve 

fitting parameters of Scheme “EXP-2” are listed in Table 5.10. Note that the factored spectrm of 

Vancouver is still fitted by the fitting “EXP-2” and the obtained curve fitting parameters are listed in 

Table 5.10. 

Elastic-analysis-based modal response spectrum analysis (Chopra, 2007) is carried out for the 

building as a MDOF model, as shown in Figure 1.3 (a), with the values of corresponding effective 

storey-masses and storey-stiffnesses being evaluated previously. For all combinations of the CFS 

shear wall length and the number of columns in the RC moment frame shown in the shaded areas of 

Figure 5.6 (b), storey drifts of the first storey of CFS shear walls calculated from the elastic-analysis-
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based modal response spectrum analyses are less than 1.9% of the storey height. The maximum storey 

drifts for the derived feasible designs of this example is almost equal to that of Example 3-2, which is 

1.8% as discussed in section 3.6.3. Therefore, the required stiffnesses for the upper and lower 

structures obtained from the proposed procedure are conservative. 

5.5.3 Example 5-3 

The storey and floor layouts, storey masses and lateral stiffness of the nine-storey building are taken 

as the same as those shown in Example 4-1. As discussed in section 4.6.1, the modified ELF 

procedure can be used to distribute the lateral load and then estimate the resulted shear force of the 

combined framing systems. Shear forces of the combined framing system calculated by the modified 

ELF procedure are shown in Figure 5.7. Also shown in this figure are results evaluated from the ELF 

procedure prescribed NBCC 2010 (NBCC, 2010). The accurate results shown in the figure are 

calculated based on the elastic modal response spectrum analysis (Chopra, 2007). As shown in the 

figure, the modified ELF procedure provides a good approximation for the shear forces of both the 

lower structure and upper “appendage”. The ELF procedure prescribed in NBCC 2010 (NBCC, 2010) 

yields a good estimation for the shear force of the lower structure only and the shear force of the 

upper “appendage” is underestimated by 6.1%. 

5.5.4 Example 5-4 

The eight-storey building investigated in Example 4-2 are re-examined by the proposed two-stage 

analysis based on NBCC 2010. As discussed in section 4.6.2, the proposed two-stage analysis 

procedure can be used to estimate the shear forces of the combined framing systems. The calculated 

additional top storey loading based the proposed two-stage analysis is obtained as Ft=0.07VUb. Shear 

forces for each storey of the combined framing system calculated by the proposed two-stage analysis 

methods are shown in Figure 5.8. The accurate results shown in the figure are also calculated based 

on the elastic modal response spectrum analysis (Chopra, 2007). From the figure, it is seen the 

proposed two-stage analysis procedure based on NBCC 2010 provides good approximations for the 

shear forces of both the lower and upper structures. 
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Figure 5.7: Results comparison of Example 5-3 
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Figure 5.8: Results comparison of Example 5-4 

5.6 Nonlinear time history analysis discussion 

The evaluation of feasible lateral storey-stiffness for the lower and upper structures based on the pre-

determined mass distribution and specified storey drift needs to consider the nonlinear structural 

behavior of the combined framing systems. In the proposed approach, the nonlinear seismic response 

of the structural system is approximated by the linear elastic analysis together with the adoption of 

seismic performance factors, i.e., elastic-analysis-based modal response spectrum analysis, rather than 

nonlinear time history analysis. The structural nonlinear seismic responses approximated by the 

elastic-analysis-based modal response spectrum analysis in previous examples need to be compared 

to that of the nonlinear time history analyses. 

The feasible stiffness combinations obtained from the proposed approach in terms of the length of 

CFS shear wall and the number of columns in the RC moment frame for the two buildings in 

Examples 5-1 and 5-2 are shown in Figures 5.6 (a) and (b), respectively. From the figures, as shown 

in Table 5.11, two different SFRS designs of lower and upper structure are selected for each building. 

to be investigated with nonlinear time history analysis. The earthquake ground motions and the  
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Table 5.11: Selected buildings for nonlinear time history analyses 

building ID Examples  CFS shear wall length (m) No. of columns in RC moment frame 

1 Example 5-1 39.04 16 

2 Example 5-1 51.24 16 

3 Example 5-2 34.16 6 

4 Example 5-2 51.24 10 

 

hysteretic models of the CFS shear wall and the RC moment frame are presented in sections 5.6.1 and 

5.6.2, respectively. The results of the nonlinear time history analyses are discussed in sections 5.6.3 

and 5.6.4. 

5.6.1 Ground motion record set: selection and scaling 

FEMA P695 (FEMA, 2009) provides twenty-two “Far-Field” earthquake records to evaluate the 

collapse probability of the buildings. With each earthquake record including two horizontal 

components, in total of forty-four lateral grounds motions (twenty-two pairs) are provided. In 

thisstudy, twenty-one pairs out of the twenty-two pairs of the “Far-Field” ground motions are selected, 

as shown in Table 5.12. All the ground motions for the earthquake records listed in Table 5.12 are 

downloaded from the NGA-West2 ground motion database (PEER, 2015). The unselected pair out of 

the twenty-two pairs that are provided in Table A4-C of FEMA P695 (FEMA, 2009) is the earthquake 

record with the record sequence number (RSN) being 829. It was unselected since the earthquake 

record with RSN being 829 was not found in the NGA-West2 database. 

The procedure of scaling of earthquake records consists of the processes of normalization and 

scaling in according to FEMA P695 (FEMA, 2009). The normalization process is carried out with 

respect to the peak ground velocity (PGV) as follows: 

    median ( ) /i i i
NM PGV PGV   (5.18) 

where NMi is the normalization factor of both horizontal components of the ith-record, (PGV)i is the 

PGV of the ith-record, and median[(PGV)i] is the median of (PGV)i values of the twenty-one records.  

The normalization factor of each earthquake record for the selected twenty-one records is listed in 

Table 5.12. Once the normalization factors are obtained from Eq (5.18) , the two horizontal 

components of the ith-record can then be normalized as follows: 

 1, 1,i i iNTH NM TH   (5.19 a) 

2, 2,i i iNTH NM TH                                                                              (5.19 b) 
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Table 5.12: Summary of earthquake records and corresponding normalization factors for the selected 

earthquake record set (PEER, 2015) 

ID No. RSN 
Earthquake normalization  

factor (NM) magnitude year Name PGA
1
(g) PGV

1
 (cm/s) 

1 953 6.7 1994 Northridge 0.47 62.90 0.64  

2 960 6.7 1994 Northridge 0.44 42.72 0.94  

3 1602 7.1 1999 Duzce, Turkey 0.77 60.70 0.66  

4 1787 7.1 1999 Hector Mine 0.30 34.15 1.17  

5 169 6.5 1979 Imperial 0.29 29.48 1.36  

6 174 6.5 1979 Imperial 0.37 40.08 1.00  

7 1111 6.9 1995 Kobe, Japan 0.47 42.32 0.95  

8 1116 6.9 1995 Kobe, Japan 0.23 26.14 1.53  

9 1158 7.5 1999 Kocaeli, Turkey 0.34 57.23 0.70  

10 1148 7.5 1999 Kocaeli, Turkey 0.17 23.65 1.69  

11 900 7.3 1992 Landers 0.19 38.52 1.04  

12 848 7.3 1992 Landers 0.34 34.63 1.16  

13 752 6.9 1989 Loma 0.47 33.57 1.19  

14 767 6.9 1989 Loma 0.45 40.61 0.99  

15 1633 7.4 1990 Manjil, Iran 0.51 46.52 0.86  

16 721 6.5 1987 Superstition 0.30 44.82 0.89  

17 725 6.5 1987 Superstition 0.37 34.57 1.16  

18 1244 7.6 1999 Chi-Chi 0.37 84.25 0.48  

19 1485 7.6 1999 Chi-Chi 0.49 48.19 0.83  

20 68 6.6 1971 San 0.21 19.16 2.09  

21 125 6.5 1976 Friuli 0.34 26.41 1.52  

Note: 1. PGA (peak ground acceleration) and PGV (peak ground velocity) listed in the table are the geometric 

mean of the two horizontal components. 

where TH1,i  and TH2,i are the horizontal components 1 and 2 of the record i, respectively. The 

normalization process eliminates the unwarranted variability between records due to the inherent 

differences in the event magnitude, distance to source, source type and site conditions but preserves 

the inherent aleatory (i.e., record-to-record variability) necessary for accurately predicting the 

collapse probability. 

Following the process of normalization, the normalized ground motions are to be scaled to the 

code-specified design response spectrum. The unscaled response spectra for all the normalized 

earthquake records listed in Table 5.12 are calculated and the corresponding median is shown in 

Figure 5.9. The median spectrum is then scaled to match the spectrum of Vancouver at the periods of 

the dominating modes of the building until an acceptable match between the median and design  
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Figure 5.9: Response spectra for the forty-two normalized ground motions and their median spectrum 
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Figure 5.10: Matching the median and design spectra at periods of the dominating modes of the building  

response spectrum is observed. Since the lateral displacements of the selected four buildings are dom-

inated by the first mode of vibration, the median spectrum is scaled to the match the spectrum of 

Vancouver at the first mode period of the building. The comparison between the spectrum of Van-
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couver and the scaled median spectrum for the selected four buildings listed in Table 5.15 are shown 

in Figure 5.10. The corresponding scaled factors (SF) are also shown in the figure. 

5.6.2 Modelling CFS and RC framing 

The OpenSees software (OpenSees, 2014) is utilized to analyze the nonlinear behaviour of the 

combined framing systems. The building with combined framing systems is idealized as a stick model 

as shown in Figure 1.3 (a). By adopting this idealized stick model, the nonlinear behavior of each 

floor is simulated by an 1-D truss element subjected to axial deformation and loading. The floor mass 

is attached to the end of the truss element, as shown in Figure 5.11. In addition, the earthquake 

ground motions are applied in the axial direction of the truss element. Since the P-Δ effect and the 

gravity load are not considered in the stick model, the finite element model shown in Figure 5.11 can 

be used to represent the seismic behavior of the stick model shown in Figure 1.3 (a). By setting the 

axial stiffness of each truss element be equal to the lateral storey-stiffness of the corresponding floor, 

the calculated lateral deformation of each floor in the stick model shown in Figure 1.3 (a) is 

numerically equal to the calculated axial deformation of each truss element in the finite element 

model shown in Figure 5.11. 

The Rayleigh damping is adopted to characterize the damping properties of the combined framing 

systems. By selecting two vibration modes and assigning the specified damping ratio, i.e., 5% in this 

study, to the two vibration modes, the mass and stiffness proportional coefficients of the Rayleigh 

damping can be determined. The two vibration modes should be carefully chosen to ensure that all the 

modes contributing significantly to the response have the damping ratio being 5%. For all the four 

buildings listed in Table 5.11, the selected two vibration modes that are used to determine the mass 

and stiffness proportional coefficients are the first and third vibration modes. 

In addition to the damping model, it is of great significance to select appropriate hysteretic models 

for the truss elements that are used to represent the CFS shear wall and the special RC moment frame, 

respectively, to capture the nonlinear behavior combined framing systems. The primary hysteretic 

characteristics of the CFS shear wall include pinching, strength deterioration, and unloading and 

reloading stiffness deteriorations. To capture these features, the Pinching4 material is utilized to 

simulate the nonlinear behavior of the wood-sheathed CFS shear wall, as recommend by Shamim 

(2012). In addition, as suggested by Haselton et.al (2008), the modified Ibarra-Medina-Krawinkler 

deterioration model with peak-oriented hysteretic response (Ibarra et.al, 2005) is selected to capture 

the nonlinear hysteretic behavior of the special RC moment frame.  
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Figure 5.11: Finite element model of mid-rise building with vertical combination of framing systems 

5.6.2.1 Hysteretic model of CFS frame 

The Pinching4 material was originally proposed by Lowes et.al (2003) to characterize the pinching 

behavior of the reinforced concrete beam-column joints subjected to cyclic loading. Shamim (2012) 

employed the Pinching4 material for the hysteretic behavior of the CFS framing with wood-sheathed 

shear walls. The total of 38 parameters that are required to identify the Pinching4 material are as 

shown in Figure 5.12. The backbone curve is decided by the parameters (Pd1, Pf1), (Pd2, Pf2), (Pd3, 

Pf3), (Pd4, Pf4), (Nd1, Nf1), (Nd2, Nf2), (Nd3, Nf3) and (Nd4, Nf4), where Pdi and Ndi are the positive 

and negative deformations, respectively, and Pfi and Nfi are the corresponding shear forces. The 

parameters (rDisP, rForceP) and (rDisN, rForceN) signify the starting point of the reloading curve, 

and the parameters uForceP and uForceN determine the force at the ending point of the unloading 

curve, as shown in Figure 5.12. In addition, (gK1, gK2, gK3, gK4, gKLim), (gF1, gF2, gF3, gF4, gFLim) 

and (gD1, gD2, gD3, gD4, gDLim) are introduced to account for the deterioration associated with 

unloading stiffness (unloading stiffness degradation), strength achieved at the previously unachieved 

deformation demands (envelope strength degradation), and strength developed in the vicinity of the 

maximum and minimum deformation demands (reloading strength degradation), respectively. With 

these parameters, the damage indices are calculated as follows: 
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Figure 5.12: Definition of Pinching4 material 

In Eqs.(5.20) ~ (5.24), δki, δdi and δfi are the current values of the stiffness, reloading strength and 

strength damage indices, respectively. (gK1, gK2, gK3, gK4), (gD1, gD2, gD3, gD4) and (gF1, gF2, gF3, 

gF4) are the parameters that control the cyclic degradation of unloading stiffness, reloading strength 

and strength, respectively; and gKLim, gDLim, and gFLim are limited values associated with the 

damage indices δki, δdi and δfi, respectively. Ei is the hysteretic energy; Emonotonic is the energy required 

to achieve the deformation that defines the failure; and gE is used to define the maximum energy 

dissipation capacity under cyclic loading. defmax and defmin are the positive and negative deformations 

that define the failure, respectively; and (dmax)i and (dmin)i are the maximum and minimum historic 

deformation demands, respectively. Then, once the damage indices being calculated, the following 

equations are used to determine the deteriorations associated with the unloading stiffness, reloading 

strength and envelope strength: 

 0 (1 )i ik k k    (5.25) 

 max 1 max( ) ( ) (1 )i i id d d     (5.26) 

 max max 0( ) ( ) (1 )i if f f    (5.27) 

where ki , (dmax)i+1 and (fmax)i are the current unloading stiffness, deformation that defines the end of 

the reloading cycle, and envelop maximum strength, respectively, and k0, (dmax)i and (fmax)0 are the 

initial unloading stiffness, maximum historic deformation demand and initial envelope maximum 

strength, respectively. 
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The Pinching4 material was calibrated with the test results of the CFS shear wall under the cyclic 

or earthquake loading. Since the hysteretic response of the tested walls is almost symmetric (Shamim, 

2012), the same backbone curve was used for both the positive and negative response excursions in 

the study. Therefore, it is obtained that Pdi=Ndi=di, Pfi=Nfi=fi, rForceP=rForceN=rForce, 

rDispP=rDispN=rDisp, and uForceP= uForceN=uForce. Values of fi and di  are directly calibrated 

from the backbone curve of the cyclic test results. The CFS shear walls used in Examples 5-1 and 5-2 

are sheathed with double-sided 11mm OSB panel. The spacing of the screw that connects the stud and 

the OSB sheathing is 100 mm for the chord stud and 300 mm for the intermediate stud. The dimen-

sions of the C-shape stud are 92.1×41.3×12.7×1.12 mm and the stud spacing is 600 mm. In accord-

ance with the cyclic test results carried out at McGill University (Branston, 2004; Chen, 2004; & 

Boudreault, 2005), values of fi and di that are calibrated from the test results are listed in Table 5.13. It 

is noted that values of fi provided in Table 5.13 are the unit shear capacity per meter of CFS shear 

walls. The shear capacity of the CFS framing at each floor of the upper structure is based on the total 

length of the CFS shear wall. It is also noted that the negative tangent stiffness is not considered in 

the finite element model. The stiffness from the point (d3, f3) to (d4, f4) is set to be zero rather than the 

tested negative value from the test, as shown in Figure 5.13. 

Table 5.13: Suggested model parameters for the OSB-sheathed CFS shear wall  

parameter 
d (mm) f (kN/m) 

d1 d2 d3 d4 f1 f2 f3 f4 

value 3.552 16.640 30.829 50.968 13.627 30.162 34.068 34.068 

parameter gK1 gK2 gK 3 gK 4 gD1 gD2 gD3 gD4 

value 0.2 0.2 1.5 1.5 0.2 0.2 1.5 1.5 

parameter gKLim gDLim gFLim gE rForce uForce rDisp 
 

value 0.5 0.5 0 3.58 0.18 -0.1 0.4 
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Figure 5.13: Adopted backbone curve of the CFS shear walls 
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Besides fi and di, other hysteretic degradation parameters for the OSB-sheathed CFS shear wall are 

also shown in Table 5.12. The hysteretic degradation parameters listed in Table 5.12 were originally 

calibrated from the test results of the CSP- (Canadian softwood plywood) and DFP- (Dogulas fir 

plywood) sheathed CFS shear walls by Shamim (2012). The calibrated results from Shamim show 

regardless of the CSP- or DFP-sheathed CFS shear walls, the hysteretic degradation parameters are 

almost the same. Considering the similarity of the mechanical behavior between the OSB-sheathed 

and CSP- or DFP-sheathed CFS shear walls, hysteretic degradation parameters suggested by Shamim 

(2012) are directly adopted in this study to characterize the hysteretic behavior of the OSB-sheathed 

CFS shear walls, as shown in Table 5.12. 

5.6.2.2 Hysteretic model of RC frame 

Shown in Figure 5.14 is the backbone curve of the modified Ibarra-Medina-Krawinkler model 

(Ibarra et.al, 2005) which consists of three portions: the elastic branch, the strain hardening branch 

and the post-peak strain softening branch. As to the hysteretic behavior, the modified Ibarra-Medina-

Krawinkler model captures the deterioration by the following four modes: (a) strength deterioration of 

the inelastic strain hardening branch, (b) strength deterioration of the post-peak strain softening 

branch, (c) accelerated reloading stiffness deterioration, and (d) unloading stiffness deterioration. For 

each one of these four modes, an energy index (λ) and an exponent term (c) are adopted to describe 

how the rate of hysteretic deterioration changes with the accumulation of damage (Ibarra et.al, 2005). 

Therefore, four pairs of (λ, c) are required to completely identify the deteriorations of all the four 

modes. However, similar to the RC frame model recommend by FEMA P695 (FEMA, 2009), the 

accelerated reloading and unloading stiffness deteriorations are neglected in this study. Furthermore,  

 

 

 

 

 

 

 

 

Figure 5.14: Backbone curves of the modified Ibarra-Medina-Krawinkler model (Ibarra et.al, 2005) 
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Table 5.14: Suggested model parameters for the RC column of the moment frame  

ke (kN/m) Vy (kN) δp (m) δpc (m) αs λ c 

5.41×10
4
 316.02 0.1445 0.1650 0.0053 87.93 1.0 

 

the deterioration rate λ is set to be equal for the strain hardening branch and the post-peak strain 

softening branch. Only one pair of (λ, c) is needed to describe the cyclic deterioration rule. 

Consequently, seven parameters required to construct the modified Ibarra-Medina-Krawinkler model 

are: ke, Vy, αs, δp, δpc, λ and c, where ke, Vy, αs, δp and δpc are used to define the backbone curve as 

shown in Figure 5.14, and (λ, c) are used to determine the hysteretic deterioration of both the strain 

hardening and post-peak strain softening branches. 

The seven parameters of the modified Ibarra-Medina-Krawinkler model associated with the RC 

columns had been carefully calibrated with 255 experimental tests of the RC columns (Haselton et.al, 

2007), and the corresponding empirical equations were developed to establish relationships between 

the design parameters and the modelling parameters. The process of evaluating the seven modelling 

parameters from the empirical equations is discussed in Appendix E.9 and the resulted modal 

parameters are listed in Table 5.14. Note that values of ke and Vy provided in Table 5.14 are the initial 

stiffness and yield shear force for a single column of the moment frame, respectively. The initial 

stiffness of each storey is obtained by multiplying the number of the columns of the storey to the 

value of ke listed in Table 5.14. Similarly, the yield shear force of each storey is equal to the product 

of the number of the columns and the value of Vy listed in Table 5.14. 

5.6.3 Results of nonlinear time history analysis 

Presented in Figures 5.15 (a) ~ (d) are the maximum displacements and storey-drift ratios obtained 

from the nonlinear time history analysis of the four selected buildings listed in Table 5.11 subject to 

the forty-two ground motions. The median values of the maximum displacements and storey-drift 

ratios under the forty-two ground motions are also shown in the figures. As clearly demonstrated in 

the figures, the maximum storey-drift ratios obtained from the nonlinear time history analysis are 

always located at the first storey of the upper structure, which is consistent with the assumption made 

in section 1.3.2. Recall the discussion in section 1.3.2. To ensure that the maximum storey-drift ratio 

to be located at the first storey of the upper structure, it is required the storey-stiffness ratio rk to be 

not less than the minimum storey-stiffness ratio rkU1, i.e., rk≥rkU1. Note that such requirement is 

derived based on the elastic modal response spectrum analysis, in which the nonlinear behavior is not 

considered. The results obtained from the nonlinear time history analyses ratify the assumption:  if the 
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first storey drift of the upper structure satisfies the specified limit, the drifts of the rest storey of the 

combined framing systems should be within the specified limit. 

In accordance with FEMA P695 (FEMA, 2009), the collapse probability of the designed buildings 

should not be greater than 10% under the designed earthquake ground motions. The permissible 

storey-drift ratio for buildings in Examples 5-1 and 5-2 is 2.0%. Therefore, to ensure the collapse 

probability be not greater than 10%, the maximum storey-drift ratio associated with the first storey of 

the upper structure corresponding to the 90% non-exceedance (NE) probability should not be greater 

than 2.0%. Considering the selected forty-two earthquake ground motions, the non-exceedance 

probability distribution of the maximum storey-drift ratio for the selected four buildings is shown in 

Figures 5.16 (a) ~ (d). As demonstrated in Figures 5.16 (a) and (c), the nonlinear maximum storey-

drift ratios corresponding to the 90% NE probability associated with building 1 and building 3 are 2.6% 

and 2.3%, respectively. The permissible storey-drift ratio, i.e., 2.0%, is violated for these two 

buildings. However, as discussed in sections 5.5.1 and 5.5.2, if the elastic-analysis-based modal 

response spectrum analysis is adopted to verify all the designs shown in shaded areas of Figures 5.6 

(a) and (b), the maximum storey-drift ratios for buildings in Example 5-1 and 5-2 are less than 1.8% 

and 1.9%, respectively. The results from the elastic-analysis-based modal response spectrum analysis 

are not consistent with the results from the nonlinear time history analyses.  
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(a) building 1 
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(b) building 2 
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(c) building 3 

Figure 5.15: Maximum displacement and storey-drift ratio of the four selected buildings under 

nonlinear time history analyses  
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(d) building 4 

Figure 5.15: Maximum displacement and storey-drift ratio of the four selected buildings under 

nonlinear time history analyses (continued) 
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Figure 5.16: Non-exceedance probability distribution of the maximum storey-drift ratio for the 

selected four buildings 
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Table 5.15: Comparison of maximum storey-drift ratios associated with  

the first storey of the upper structure 

building ID 

elastic-analysis-based MRS
1 

linear time history nonlinear linear history 

median 
90

th
 percentile 

median 90
th

 percentile median 90
th

 percentile 
CNE=2.61 CNE=1.67 

1 0.6% 1.7% 1.1% 0.6% 1.2% 1.4% 2.6% 

2 0.5% 1.2% 0.8% 0.5% 0.8% 1.0% 1.9% 

3 0.7% 1.8% 1.1% 0.6% 1.1% 0.8% 2.3% 

4 0.5% 1.4% 0.9% 0.5% 1.0% 0.7% 1.3% 

Note: 1. MRS=model response spectrum  

To investigate the inconsistency between the results obtained from the elastic-analysis-based modal 

response spectrum analysis and nonlinear time history analysis, a comparison is made on the 

maximum storey-drift ratios at the first storey of the upper structure associated with elastic-analysis-

based modal response spectrum analysis, linear time history and nonlinear time history analyses. The 

comparison is presented in Table 5.15. Note that the elastic-analysis-based modal response spectrum 

analysis is different from the elastic model response analysis. The elastic model response analysis 

considers the linear behavior of the system only. The elastic-analysis-based modal response spectrum 

analysis evalauted the maximum storey-drift ratio for the first storey of the upper structure based on 

Eq. (3.1). The shear force VUb in Eq.(3.1) is calculated by the elastic modal response spectrum 

analysis, and Cd=R=RdR0 based on NBCC 2010 (NBCC, 2010). The median value is computed based 

the design response spectrum and the 90
th
 percentile value is computed based on the factored design 

response spectrum, as shown in Eq. (3.42). In addition, the median and 90
th
 percentile values for the 

linear and nonlinear time history analyses are determined from the maximum storey-drift distribution 

curves shown in Figures 5.16 (a) ~ (d). As demonstrated in Table 5.15, the following are observed: 

(1) The median values of the maximum storey-drift ratios for the first storey of the upper structure 

computed from the elastic-analysis-based modal response spectrum analysis are very close to that 

computed from the linear time history analysis. Nevertheless, the 90
th
 percentile value computed from 

the elastic-analysis-based modal response spectrum analysis by setting CNE=2.61 is greater than that 

computed from the linear time history analysis. The scale factor CNE determines the magnitude of the 

factored design response spectrum, as shown in Eq. (3.42). By considering the uncertainty of the 

ground motion as well as the uncertainty associated with the design procedure, the logarithmic 

standard deviation βR is set as 0.75 and the corresponding CNE is set as 2.61, as discussed in section 

3.5. However, the linear time history analysis carried out herein only accounts for the uncertainty 

associated with ground motion but the uncertainty associated with the design procedure is not 

involved. If only the uncertainty associated with the ground motion is considered, the logarithmic 
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standard deviation βR is 0.4 (Pang et.al, 2011), and the scale factor CNE=exp[Φ
-1

(0.9)×0.4+ln(1)]=1.67. 

As shown in Table 5.15, the calculated 90
th
 percentile value agrees well with that of the linear time 

history analyses if CNE=1.67. Consequently, it is concluded that the results from elastic-analysis-based 

modal response spectrum can well represent the linear behavior of the combined framing systems. 

(2) Compared to the results obtained from the linear analyses, the maximum storey-drift ratios at 

the first storey of the upper structure, both the median and the 90
th
 percentile values, increase 

considerably but the results associated with the lower structure decrease if the nonlinear structural 

behavior is considered, as demonstrated in Table 5.15 and Figures 5.17 (a) ~ (d). This is a result of 

the fact that under the earthquake loading, the first storey of the upper structure reaches the maximum 

strength at first, as shown in Figures 5.18 (a) and (b). The storey drift corresponds to the maximum 

shear force of the OSB-sheathed shear wall is 30.83 mm, which can be seen from Table 5.13 and 

Figure 5.13. When the building 1 is subjected to the Northridge earthquake ground motion, the first 

time that the storey drift for the first storey of the upper structure is greater than 30.83 mm is marked 

by point “A” in Figures 5.18 (a) and (b). Once the upper structure reaches its maximum strength, the 

stiffness turns to be zero based on the hysteretic model of CFS shear wall, as shown in Figure 5.13. 

With a large storey drift located at the first storey of the upper structure the earthquake energy 

dissipation then is primarily concentrated at the first storey of the upper structure which deviates the 

lower structure from experiencing large deformations. Therefore, the maximum storey-drift ratio 

associated with the lower structure of building 1 decreases if the nonlinear structural behavior is 

accounted for, as shown in Figure 5.17 (a).  

In addition, the maximum lateral displacement of each storey obtained from the nonlinear analyses 

decreases as the result of decrease of the maximum storey-drift ratio associated with the lower 

structure. An interesting point observed from of the results of the nonlinear analysis is that although 

the maximum storey-drift ratio at the first storey of the upper structure increases considerably, the 

lateral displacements of other storeys of the upper structures decrease as shown in Figures 5.17 (a) ~ 

(d). This is due to the decrease of the maximum storey-drift ratio in the lower structure. With the 

concentrated deformation at the first storey of the upper structure, the maximum storey-drift ratio and 

lateral displacement of the lower structures decreases. The, the decrease of the maximum lateral 

displacement in the lower structure consequently results in the decrease of the lateral displacement of 

the upper structure. 
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(a) building 1 
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(b) building 2 
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(c) building 3 

Figure 5.17: Comparison of linear and nonlinear time history results 
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(d) building 4 

Figure 5.17: Comparison of linear and nonlinear time history results (continued) 
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Figure 5.18: Seismic response of building 1 under one ground motion of the Northridge earthquake 

 

Upon the foregoing discussion, it is seen the inconsistency between the elastic-analysis-based 

modal response spectrum analysis and the nonlinear time history analysis is not resulted from the 

proposed approaches to evaluate the shear-force-amplification factor αU. The primary reason of the 

inconsistency is associated with use the Newmark’s “equal displacement rule” to compute the 

inelastic displacement, which may not be appropriate. By adopting the Newmark’s “equal 

displacement rule”, the inelastic maximum storey-drift ratio calculated from Eq.(3.1), i.e., elastic-

analysis-based modal response spectrum analysis, is equal to the elastic maximum storey-drift ratio.  
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However, the nonlinear maximum storey-drift ratio at the first storey of the upper structure in fact 

is greater than the elastic result, as shown in Figures 5.17 (a) ~ (d). In other words, the maximum 

storey-drift ratio may be underestimated by conducting the linear analysis such as that for buildings 1 

and 3 listed in Table 5.15. To ensure that the elastic-analysis-based modal response spectrum analysis 

can well represent the nonlinear behavior of the combined framing systems, a more appropriate value 

of Cd should be selected in Eq. (3.1). However, to investigate how to determine the appropriate value 

of the Cd for a SFRS is complex and out of the scope of this study. In this study, a few suggestions on 

the determination values of Cd are discussed in the following section. The issue of selection Cd is 

going to be carried out in the future study. 

5.6.4 Discussion on Cd factor 

In fact, the Newmark’s “equal displacement rule” is only valid for the buildings with long period 

(Chopra, 2007). For  buildings in practice, the “equal energy rule” may be more appropriate. The 

initial values of the ductility-related force modification factor Rd for the CFS shear walls specified in 

NBCC 2010 are determined by the Newmark’s “equal energy rule” (Balh & Rogers, 2011). By 

adopting the “equal energy rule”, the deflection amplification factor Cd has the following relationship 

with the response modification factor R: 

 
2 1

2
d

R
C


   (5.28) 

where R=RdR0 based on NBCC 2010. Then, by substituting Cd , as shown in Eq. (5.28), and R=RdR0 

into Eq.(3.1), the following equation can be derived: 

 
 
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0
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dUb
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U d

R RV

k R R


    (5.29) 

Based on Eq. (5.29), it is seen that the maximum storey-drift ratio is closely related with the seismic 

response modification factor R (RdR0). The larger the value of the factor R(RdR0), the greater 

magnitude of storey-drift ratio ΔU. Therefore, appropriate values of R (RdR0) should be selected for the 

CFS shear wall systems. For the four selected buildings shown in Table 5.15, the elastic base shear 

force for the first storey of the upper structure can be evaluated by the elastic modal response 

spectrum analysis (Chopra, 2007). On the other hand, the yield shear force of the OSB-sheathed CFS 

shear wall can be evaluated based on the experimental results shown in Table 5.13. The yield shear 

force Vy for the double-sided OSB-sheathed CFS shear walls is 30.16 kN per meter. Then, the 

response modification factor R can be determined by the definition as follows: 
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Table 5.16: Comparison of adjusted elastic-analysis-based modal response spectrum analysis 

 and nonlinear time history analysis 

building ID 
R  

(RdR0) 
Cd 

Eq.(5.29) nonlinear time history 

median 90
th

 percentile median 90
th

 percentile 

1 2.49 3.59 0.9% 2.4% 1.4% 2.6% 

2 1.85 2.22 0.6% 1.5% 1.0% 1.9% 

3 2.61 3.91 1.0% 2.6% 0.8% 2.3% 

4 2.08 2.67 0.7% 1.8% 0.7% 1.3% 

 

 0
Ub

d

y

V
R R R

V
   (5.30) 

The calculated values of RdR0 for the selected four buildings are listed in Table 5.16. With the values 

of RdR0 computed, the nonlinear maximum storey-drift ratio for the first storey of the CFS frames can 

then be estimated by Eq. (5.29). By comping Table 5.16 to Table 5.15, it is seen that the resulted 

maximum storey-drift ratio with the 90% NE probability computed by the elastic-analysis-based 

modal response spectrum analysis with the adoption of Eq.(5.29) has better accuracy than that 

obtained based on the “equal displacement rule”. Therefore, it is recommended that the value of 

deflection amplification Cd be determined by (5.28) rather than Cd=RdR0. However, such 

recommendation needs to be further investigated in the future study. 

In addition to the selection of Cd, it is also noted that the proposed approach considers the 

requirement on the lateral stiffness of the design only while the requirement on the lateral strength has 

not been accounted for. However, the lateral strength of the structure may also significantly influence 

the nonlinear structural behaviour. According to the current code requirement (ASCE, 2010; NBCC, 

2010), the yield shear force of the SFRS should not be less than the calculated elastic shear force 

divided by the code -specified R (RdR0) value. Therefore, for all the feasible lateral designs yielded 

from the proposed approach of this study, such strength requirement needs to be further checked. 

Only those lateral designs that satisfy both the stiffness requirement and the strength requirement can 

be used in the buildings with combined framing systems.  

5.7 Conclusions 

Presented in this chapter is the development of simplified approaches for evaluating feasible stiffness 

distributions and seismic loads of the mid-rise buildings with vertical combination of framing systems 

for the Canadian application. The Canadian approaches are developed by modifying the USA 

approaches that are presented in Chapters 3 and 4 with the consideration of the differences between 

the ASCE 7 (ASCE, 2010) and the NBCC 2010 (NBCC, 2010). In addition, since the proposed 
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simplified approaches for evaluating the required stiffness distributions of lower and upper structures 

involves the nonlinear structural behavior of the combined framing systems, nonlinear time history 

analysis are also carried to verify the stiffness obtained from the proposed simplified approaches. The 

following conclusions are obtained from this study: 

(1) The proposed simplified approaches are highly related to the seismic performance factors and 

the design response spectrum specified in the seismic design provisions. Because of the differences 

between the ASCE 7 and NBCC 2010 in the foregoing two aspects, the proposed simplified 

approaches are country specific. 

(2) The ASCE 7 (ASCE, 2010) directly specifies the value of the seismic response modification 

factor (R) for each commonly used SFRS, while NBCC 2010 (NBCC, 2010) attempts to quantify the 

relative contribution of the overstrength (R0) and the inelastic behavior (Rd). Furthermore, NBCC 

2010 assumes that the deflection amplification factor Cd is equal to the response modification factor R, 

i.e., Cd=R=RdR0, but in ASCE 7 (ASCE, 2010), the provided value of Cd is usually not equal to the 

response modification factor R, i.e., Cd ≠R. 

(3) The NBCC 2010 and ASCE 7 adopt different approaches to construct the design response 

spectrum. The ASCE 7 design spectrum is established based on the spectral shape proposed by 

Newmark and Hall (FEMA, 1997). However, the NBCC 2010 (NBCC, 2010) selects the uniform 

hazard spectrum (UHS) rather than the Newmark and Hall spectrum. The Canadian UHS spectrum 

provides more site-specific descriptions of the earthquake spectrum and the shape of the UHS spectra 

for different cities in Canada are different.  

(4) The accuracy of the modified ELF and proposed two-stage analysis procedures for seismic load 

estimation developed based on NBCC 2010 is comparable to the similar procedures developed in 

Chapters 3 and 4 based on ASCE 7. 

(5) The stiffness distributions of the lower and upper structures obtained from the proposed 

simplified approach based on NBCC 2010 are verified by the code-specified elastic-analysis-based 

modal response spectrum, which calculates the seismic response by the elastic modal response 

spectrum analysis together with the adoption of seismic performance factors. The results of code-

specified elastic-analysis-based modal response spectrum show that the proposed simplified approach 

for evaluating required stiffness distributions of lower and upper structures based on NBCC 2010 

yields a conservative design.  

(6) Results from the nonlinear time history analysis confirmed that the maximum storey-drift ratio 

was located at the first storey of the upper structure, which is the key assumption in the development 
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of proposed simplified approaches. However, it is found that the elastic-analysis-based modal 

response spectrum analysis based on NBCC 2010 with the assumption that the deflection 

amplification factor is equal to the response modification factor (Cd=R=RdR0) could not provide 

satisfactory estimation on the nonlinear storey-drift ratio at the first storey of the upper structure. A 

future study on the determination of appropriate value of the deflection amplification factor Cd is 

recommended. 
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Chapter 6  Analytical approximation of equivalent modal damping 

ratio for buildings with vertical combination of framing systems  

6.1 Introduction 

This chapter presents an analytical method to approximate the equivalent modal damping ratio for 

buildings with vertical combination of framing systems. The conventional modal analysis for a 

classically damped system is briefly reviewed first. By assuming that the structures have classical 

damping, equations to approximate equivalent modal damping ratios are then derived. However, as 

the combined framing system in fact is a non-classically damped system, such approximation may 

induce significant error in certain cases. Therefore, errors resulted from the classical damping 

approximation are quantitatively analyzed. Finally, the proposed equivalent modal damping ratio 

together with the error quantification is validated by two examples.  The examples demonstrate that 

the proposed approximation of equivalent modal damping ratios is applicable for most of mid-rise 

buildings with vertical combination of framing systems in current practice. 

6.2 Conventional modal analysis of classically damped system 

The equation of motion for a MDOF model, as shown in Figure 3.1 (a), under an earthquake ground 

motion is (Chopra, 2007) 

 
gx   Mx Cx Kx Mτ   (6.1) 

where M, C, K are mass, damping and stiffness matrices of the entire combined framing system, 

respectively; x, 𝐱̇ and 𝐱̈ are the displacement, velocity and acceleration vector, respectively; 𝑥̈𝑔 is the 

earthquake ground motion acceleration; and τ is the influence vector. The un-damped eigenvalues and 

eigenvectors associated with Eq.(6.1) can be solved for by the following equation: 

 
2Kφ MφΩ   (6.2) 

where the matrix φ is the un-damped mode shape normalized with respect to the mass matrix M, and  

Ω
2

 is a diagonal matrix as follows: 
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1

2

2 2

2

0 0

0 0

0 0 0 N







 
 
 
 
 
  

Ω   (6.3) 

In Eq.(6.3), ωi is the natural frequency associated with the ith-mode. Having the mode shape, the 

displacement vector x can be expressed as  
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1

N

i i

i

q


 x φq φ   (6.4) 

where q is the modal coordinate vector with 𝐪 = [𝑞1 𝑞2     ⋯ 𝑞𝑁]𝑇. By substituting the vector x in 

Eq.(6.1) with Eq.(6.4), and then pre-multiplying both sides of Eq.(6.1) by φ
T
, the following equation 

is obtained:  

 ' 2

gx   q Ξq Ω q Γ   (6.5) 

where  

  1 2

TT

N    Γ φ Mτ   (6.6) 
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 
 
    

Ξ φ Cφ   (6.7) 

Let 

 diag( )i q D   (6.8) 

where the operation diag(Гi) represents that the matrix is a diagonal one with the diagonal term being 

Гi . The substitution of the vector q, as represented in Eq.(6.8), into Eq.(6.5) leads to  

 2

gx   D ΞD Ω D τ   (6.9) 

where  
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Ξ Ξ   (6.10) 

For the classically damped system, the un-damped mode shape is orthogonal with respect to the 

damping matrix C, i.e., the off-diagonal terms of the modal damping matrix Ξ are zero. Therefore, 

Eq.(6.9) can be decoupled into N following independent equations 

 22i i i i i i gD D D x        (6.11) 

where 
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ii
i

i





   (6.12) 
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It is seen that Eq.(6.11) can be considered as the equation of motion for a single-degree-of-freedom 

(SDOF) system having the natural frequency ωi and the damping ratio ζi. The displacement vector x 

can be determined by solving N independent equations as shown in Eq.(6.11), rather than by solving 

the N coupled equations as shown in  Eq. (6.1). Such conventional modal analysis is widely used in 

current practice for regular buildings.   

6.3 Approximation of equivalent modal damping ratio 

6.3.1 Damping model of combined framing system 

The damping matrix of the combined framing systems C is assembled from the corresponding 

damping matrices of the lower and upper structures as follows: 

 
L U C C C   (6.13) 

where CL and CU represent the damping matrices associated with the lower and upper structures, 

respectively. In this study, the damping matrix of the lower structure CL is constructed by the 

superposition of modal damping matrices (Chopra, 2007) via one of the following:  

(1) stiffness proportional damping  

 
 

3
1

2
TN

i i
L L L

i i




 
  
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
φ φ

C K K   (6.14 a) 

(2) mass proportional damping 

  
1

2
N

T

L L i i i L

i

 


 
  

 
C M φ φ M   (6.14 b) 

 (3) mass-stiffness proportional damping 

 
 

 3
1 1

2 2
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Ti i
L L L L i i i L

i ii

a b  
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   
    

   
 
φ φ

C K K M φ φ M   (6.14 c) 

where ςL is the damping ratio of the lower structure. K and M are stiffness and mass matrices of the 

entire building and ωi is the un-damped natural frequency associated with the ith-mode as shown in 

Eq.(6.3); KL and ML are stiffness and mass matrices which assume that both the storey-mass and 

lateral storey-stiffness of the upper structure are zero. Coefficients a and b are mass- and stiffness-

proportional coefficients of the lower structure, respectively, with a+b=1. 

The method to establish the damping matrix of the upper structure CU is similar to that of the lower 

structure CL. By replacing ζL, KL and ML with ζU, KU and MU, respectively, CL is constructed as 

follows: 
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(1) stiffness proportional damping  
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C K K   (6.15 a) 

(2) mass proportional damping 
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 (3) mass-stiffness proportional damping 
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Theoretically, the mass- and stiffness-proportional coefficients (a and b) associated with the lower 

structure can be different from those associated with the upper structure. In this study, it is assumed 

that values of a and b of the lower structure are the same as those of the upper one. 

6.3.2 Approximation of equivalent modal damping ratio 

Assume that the structure is classically damped. At first, substitute the damping matrices CL and CU in 

Eq.(6.13) with Eqs.(6.14 a) ~ （6.14 c）and Eqs. (6.15 a) ~ （6.15 c）in pairs, respectively. Then, 

substitute the damping matrix C in Eq. (6.7) with Eq.(6.13). Finally, with the substitution of Eq. (6.7) 

into Eqs. (6.10) and (6.12), the corresponding equivalent modal damping ratio associated with the ith-

mode, ςeqi, can be calculated as follows: 

(1) stiffness proportional damping 
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U i U i L i L i
eqi
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


φ K φ φ K φ
  (6.16 a) 

 (2) mass proportional damping  

 T T

eqi U i U i L i L i   φ M φ φ M φ   (6.16 b) 

(3) mass-stiffness proportional damping 

 
 2

T T
T TU i U i L i L i

eqi U i U i L i L i

i

a b
 

  



  

φ K φ φ K φ
φ M φ φ M φ            (6.16 c) 

It can be seen the equivalent modal damping ratios shown in Eqs. (6.16 a) ~ (6.16 c) are dependent on 

how the damping matrix is constructed. To calculate the equivalent modal damping ratio, firstly 

reasonable damping matrices for the lower and upper structures should be selected from Eqs. (6.14 a) 
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~ （6.14 c）and (6.15 a) ~ （6.15 c）, respectively. Note Eq. (6.16 a) is the same as the composite 

damping rule method (Raggett, 1975), which is currently integrated into the commercial software 

Midas/Gen (MIDAS/Gen Program, 2000). Therefore, it can be concluded that the composite damping 

rule method was obtained based on the classical damping approximation with the assumption that the 

damping matrix is proportional to the stiffenss. 

6.4 Error estimation of the approximation 

The proposed equivalent modal damping ratios presented in section 6.3 are obtained based on the 

assumption that the buildings with vertical combination of framing system are classically damped. 

However, by: (1) taking Eqs. (6.14 a) ~ （6.14 c）and (6.15 a) ~ （6.15 c）in pairs into Eq.(6.13), 

respectively, (2) substituting Eq. (6.13) into (6.7) , and (3) further substituting Eq. (6.7) into Eq.(6.10), 

the off-diagonal terms of the corresponding modal damping matrices are obtained as follows: 

(1) stiffness proportional damping 
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T

i L j j

ij L U

i i

 



  



φ K φ
                                                                         (6.17 a) 

(2) mass proportional damping  
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 (3) mass-stiffness proportional damping 
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φ K φ
φ M φ                               (6.17 c) 

As demonstrated in Eqs. (6.17 a) ~ (6.17 c), if the damping ratio of the lower structure is not equal to 

that of the upper one, i.e., ςL≠ςU, the off-diagonal term Ξij will not be zero. In this case, the structure 

is non-classically damped. Therefore, using the proposed equivalent modal damping ratio  to evaluate 

the seismic response may result in errors, since the proposed equivalent modal damping ratio is based 

on the assumption of classical damping. In order to determine whether the proposed equivalent modal 

damping ratio is acceptable for design practice, the error induced by the classical damping assumption 

needs to be investigated. 

6.4.1 Theory of error estimation 

Recall the modal analysis discussed in section 6.2. Based on Eqs.(6.4) and (6.8), the response for any 

quantity of interest r can be can be calculated as follows(Chopra, 2007): 
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where l
T
 is the transform vector between the response quantity r and the displacement vector x, and Di 

is the response of following equation: 
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Note Eq. (6.19), which is different from Eq.(6.11), contains off-diagonal terms of the modal damping 

matrix 𝚵. Then, based on Eq.(6.18), the mean square for the quantity r can be computed as  

         2
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     l φ l φ   (6.20) 

where E(.) represents the expected value. In addition, the correlation coefficient 𝜌𝑖𝑗  is defined as 

follows: 
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Assume: (1) the earthquake ground motion is a white noise process with a constant power spectral 

density being S0; and (2) the earthquake ground motion has a constant peak factor p, which is defined 

as 
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where Dmax,i represents the maximum displacement response of Di associated with Eq.(6.19). Finally, 

in accordance with Eqs. (6.20) ~ (6.22), the maximum value of the response quantity r can be 

calculated as  
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  (6.23) 

where rmax,i is the maximum response of r associated with the ith-mode calculated as follows: 

 max, max,

T

i i i ir D l φ   (6.24) 

Eq. (6.23) represents the typical modal response spectrum analysis that adopts the CQC combination 

rule to combine the peak modal responses based on the un-damped modal properties. If the building 

structure is classically damped, the modal damping matrix Ξ is a diagonal one. The seismic response 
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of Di can be determined from the SDOF system with the natural frequency ωi and the damping ratio ςi, 

as shown in Eq. (6.11). The maximum displacement response Dmax,i can be directly determined from 

the code-specified response acceleration spectrum  (ASCE, 2010) as follows 

 max, 2

( , )a i i
i

i

S
D

 


   (6.25) 

where Sa(ωi, ςi) is the code-specified response acceleration (Figure 1.4). In addition, if the buildings 

are classically damped, the correlation coefficient ρij in (6.23) can be theoretically solved based on 

Eq.(6.21), as presented in Eq. (F.41) in Appendix F.2.  

However, when the building structures are non-classically damped, the modal damping matrix is 

not a diagonal one. The maximum response of Di, as shown in Eq.(6.19), is related not only to the 

natural frequency ωi and the diagonal damping ratio ςi (Ξ𝑖𝑖), but also to the off-diagonal term of the 

modal damping matrix Ξ𝑖𝑗. Therefore, the maximum displacement response Dmax,i cannot be directly 

determined by Eq.(6.25). As well, the analytical solution of the correlation coefficient ρij for the non-

classically damped system also cannot be determined based on Eq.(F.41) in Appendix F. The 

correlation coefficient ρij for the non-classically damped system can be solved for only by a numerical 

approach based on Eq.(6.21) (Falsone & Muscolino, 1999). 

6.4.2 Formula to estimate modal errors 

The proposed equivalent modal damping ratio is obtained by neglecting the off-diagonal terms of the 

modal damping matrix Ξ; consequently, Eq.(6.19) becomes  

 2

0 0 02i eqi i i i i gD D D x        (6.26) 

In order to distinguish the accurate and approximate response, the subscript “0” denotes the 

approximate response. Therefore, In Eq.(6.26), D0i represents the approximation of Di. Let δi be the 

error of the maximum response associated with the ith-mode, the relationship between the accurate 

and approximate response is 

  max, 0max, (1 )i i ir r    (6.27) 

From Eqs. (6.22) and (6.24), δi can be evaluated as 

 1 1i i     (6.28) 

where εi is defined as 

     2 2

0, 1i i iE D E D     (6.29) 

As discussed in Appendix F.1, the estimation of εi can be approximated as 
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where ρij is the correlation coefficient between the ith- and jth-modes for the classically damped 

system, as presented in Eq.(F.41) in Appendix F.2. From Eqs. (6.28) and (6.30), it can be seen that the 

error is related not only to the conventional non-proportional damping index 
Ξ𝑖𝑗

√Ξ𝑖𝑖Ξ𝑗𝑗
 (Falsone & 

Muscolino, 1999), but also to the correlation coefficient ρij. Since the correlation coefficient ρij may 

become significant if the natural frequencies of two different modes are close to each other, as 

discussed in Appendix F.2, large values of εi  and δi  may occur if the jth-mode natural frequency is 

close to the ith-mode natural frequency.  

6.4.3 Error of seismic response 

Based on the CQC modal combination rule shown in Eq.(6.23), it is noted that the error of the final 

seismic response rmax is dominated primarily by vibration modes that contributes significantly to the 

seismic quantity r. For modes that do not dominate the seismic response, the modal error has almost 

no effect on the structure response. Therefore, to limit the error of the seismic quantity r to be within 

an acceptable range, it is required that only the modal errors associated with the dominating modes of 

the structure are within a certain range. Use δr to define the error of rmax induced by the proposed 

equivalent modal damping ratio as follows: 

 
max 0max (1 )rr r    (6.31) 

From Eq.(6.23), it is seen the maximum seismic response rmax is related not only to the modal seismic 

response rmax,i , but also to the correlation between the ith- and jth-modes, i.e., ρijrmax,irmax,j. In general, 

the correlation coefficient ρij is limited to the range between zero and unity and for most cases ρij≈0, 

as discussed in Appendix F.2. Therefore, although the correlation term ρijrmax,irmax,j has certain 

influence on the error of the seismic response r, such influence can be neglected when estimating the 

error of the seismic quantity r. Accordingly, the CQC combination rule shown in Eq.(6.23) is reduced 

to the following SRSS combination rule when estimating the error δr: 
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Based on Eqs. (6.27) and (6.31) ~ (6.32), it can be concluded that  

  
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where δr,min and δr,max represent the minimum and maximum error of the seismic quantity r associated 

with the proposed equivalent modal damping ratio, respectively, and the subscript i refers to the 

dominating modes of the structure. It is noted that the dominating modes for different seismic 

quantities r are different. For example, the base shear force of a regular building is dominated 

primarily by the first mode, but the shear force of the top storey may be dominated also by higher 

vibration modes other than the first mode. Nevertheless, all the seismic response qualities r are 

calculated in accordance with 𝛗𝑖Γ𝑖 as shown in Eq. (6.24). Therefore, the dominating modes can be 

determined based on the quantities 𝛗𝑖Γ𝑖. In accordance with the modal expansion theory (Chopra, 

2007),  
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1
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ij i

i


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   (6.34) 

where the subscripts i and j represent the ith-mode and jth-DOF, respectively. The ith-vibration mode 

that has a significant φ𝑖𝑗Γ𝑖 value is the dominating mode of the jth-DOF. 

6.5 Examples  

The suggested equivalent modal damping ratios are applied to the two hypothetical buildings 

discussed in sections 3.6. 

6.5.1 Example 6-1 

The building is the same as that discussed in section 3.6.1. The damping ratios of the lower RC and 

upper CFS frames, ςL and ςU, are set as 5% and 2%, respectively. In accordance with the obtained 

feasible lateral designs for the lower RC and upper CFS structures shown in Figure 3.9 (b), all 

columns shown in Figure 3.8 are selected as the columns in the RC moment frame and the 

corresponding CFS shear wall length is 43.2 m. The basic mass, stiffness and damping properties of 

the combined framing systems are summarized in Table 6.1. 

Equivalent modal damping ratio 

With the effective storey-masses and storey-stiffnesses presented in Table 6.1, the conventional 

modal response spectrum analysis (Chopra, 2007) is carried out for the nine-storey building by 

adopting the MDOF model as shown in Figure 3.1 (a). The calculated natural frequencies of the nine-

storey combined framing system are listed in Table 6.2. Assume both the lower and upper structures 

have stiffness proportional damping. The proposed equivalent modal damping ratio associated with 

the ith-mode can be calculated based on Eq.(6.16 a). As indicated in Table 6.3, the equivalent modal 

damping ratios associated with the eighth- and ninth-modes are equal to the damping ratio of the 
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lower structure ςL. This can be explained by the un-damped mode shapes of the eighth- and ninth-

modes. As shown in Figure 6.1, the three-storey upper structure keeps almost still and the vibration 

occurs primarily at the lower structure for the eighth- and ninth-modes. Therefore, the earthquake 

energy is dissipated primarily by the lower structure. The equivalent damping ratios associated with 

the eighth- and ninth-modes are equal to the damping ratio of the lower structure ςL. For other 

vibration modes, both the lower and upper structures deform and the earthquake energy is dissipated 

by both of them. Consequently, based on Eq. (6.16 a), the modal damping ratios lie between ςL and ςU. 

If most of the earthquake energy is dissipated by the lower structure, the damping ratio is close to that 

of the lower one ςL, such as the first-, third-, fifth- and seventh-modes. Otherwise, the damping ratio is 

close to that of the upper one ςU, such as the second-, fourth- and sixth-modes. 

Table 6.1: Structural properties of Example 6-1 

 

storey 

number 

storey-mass 

(kg) 
SFRSs 

storey-stiffness 

(kN/m) 

damping 

ratio 

lower structure 6 96,113 
RC moment frame, 16 

columns in moment frame 
8.66×10

5
 0.05 

upper structure 3 219,352 
CFS shear wall, with the 

wall length being 43.2 m 
1.66×10

5
 0.02 

 

Table 6.2: Natural frequencies of Example 6-1 

mode number 1 2 3 4 5 6 7 8 9 

natural frequency (Hz) 11.68  22.54  43.94  54.06  71.62  76.49  94.95  111.66  122.18  

period (s) 0.54  0.28  0.14  0.12  0.09  0.08  0.07  0.06  0.05  

 

Table 6.3: Approximated equivalent modal damping ratio and modal error of Example 6-1 

            mode number 1 2 3 4 5 6 7 8 9 

equivalent damping ratio ςeqi 0.044  0.029  0.043  0.027  0.041  0.028  0.049  0.050  0.050  

modal error δi 0.1% 0.4% 0.8% 3.4% 6.0% 17.4% 0.3% 0.2% 0.1% 
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Figure 6.1: Eighth and ninth mode shapes of Example 6-1 

Table 6.4: Correlation coefficients ρij of Example 6-1 

ith-mode 
 jth-mode 

 1 2 3 4 5 6 7 8 9 

1 1.000 0.010 0.003 0.001 0.001 0.001 0.001 0.001 0.001 

2 0.010 1.000 0.011 0.003 0.003 0.002 0.002 0.002 0.001 

3 0.003 0.011 1.000 0.096 0.027 0.014 0.013 0.008 0.007 

4 0.001 0.003 0.096 1.000 0.054 0.024 0.017 0.010 0.008 

5 0.001 0.003 0.027 0.054 1.000 0.508 0.091 0.039 0.027 

6 0.001 0.002 0.014 0.024 0.508 1.000 0.111 0.040 0.026 

7 0.001 0.002 0.013 0.017 0.091 0.111 1.000 0.270 0.132 

8 0.001 0.002 0.008 0.010 0.039 0.040 0.270 1.000 0.550 

9 0.001 0.001 0.007 0.008 0.027 0.026 0.132 0.550 1.000 

 

Table 6.5: Conventional non-classical modal damping index 
𝚵𝒊𝒋

√𝚵𝒊𝒊𝚵𝒋𝒋
 of Example 6-1 

ith-mode 
         jth-mode

 1 2 3 4 5 6 7 8 9 

1 0.00 0.19 -0.04 -0.02 0.01 0.01 -0.01 0.00 0.00 

2 0.54 0.00 0.17 0.02 -0.05 -0.02 0.03 -0.01 0.00 

3 -0.13 0.21 0.00 0.15 -0.01 -0.02 0.01 0.00 0.00 

4 -0.23 0.09 0.57 0.00 0.22 0.06 -0.08 0.03 -0.01 

5 0.11 -0.14 -0.02 0.14 0.00 0.22 -0.01 0.00 0.00 

6 0.20 -0.16 -0.15 0.11 0.60 0.00 0.12 -0.03 0.01 

7 -0.10 0.11 0.03 -0.07 -0.02 0.06 0.00 0.01 0.00 

8 0.09 -0.10 -0.02 0.06 0.01 -0.04 0.01 0.00 0.00 

9 -0.09 0.10 0.02 -0.06 0.00 0.04 -0.01 0.00 0.00 

 

 

 



 

136 

  

Table 6.6: Values of φijΓi of Example 6-1 

jth-DOF 
 ith-mode 

 1 2 3 4 5 6 7 8 9 
dominating 

modes 

1 0.19 0.13 0.20 0.07 0.14 0.06 0.13 0.06 0.02 1, 2, 3, 5, 7 

2 0.38 0.24 0.31 0.09 0.10 0.03 -0.04 -0.07 -0.03 1, 2, 3 

3 0.55 0.32 0.26 0.04 -0.07 -0.04 -0.12 0.02 0.04 1,2,3 

4 0.71 0.36 0.09 -0.04 -0.15 -0.05 0.07 0.05 -0.03 1,2 

5 0.84 0.35 -0.13 -0.08 -0.03 0.01 0.10 -0.08 0.03 1, 2, 3 

6 0.94 0.30 -0.28 -0.07 0.13 0.06 -0.10 0.04 -0.01 1, 2, 3 

7 1.29 -0.17 -0.37 0.27 0.11 -0.16 0.03 -0.01 0.00 1, 2, 3, 4 

8 1.55 -0.59 -0.04 0.15 -0.23 0.17 -0.01 0.00 0.00 1, 2, 4, 5 

9 1.68 -0.84 0.33 -0.22 0.12 -0.07 0.00 0.00 0.00 1, 2, 3, 4 

 

Modal error estimation 

The modal error δi associated with the proposed equivalent modal damping ratio is estimated by 

Eq.(6.27), as shown in Table 6.3. Note that from the definition of the modal error δi as presented in 

Eq. (6.27), positive value signifies that the proposed equivalent modal damping ratio overestimates 

the response while negative value denotes that the proposed equivalent damping ratio underestimates 

the response. Table 6.3 shows that the modal error has following features: 

(1) A large magnitude of δi occurs when natural frequencies of two vibration modes are close to 

each other. For example, the natural frequency of the fifth-mode is close to that of the sixth-mode, as 

shown in Table 6.2. Based on Eq. (F.41) in Appendix F.2, the correlation coefficient between these 

two modes, i.e., ρ65, has a significant value, i.e., 0.508, as shown in Table 6.4. In addition, based on 

Eq.(6.17 a), the off-diagonal term Ξ65 also has a significant value and so does the conventional non-

proportional modal damping index 
Ξ65

√Ξ66Ξ55
, i.e., 0.60, as shown in Table 6.5. Therefore, based on Eqs. 

(6.27) ~ (6.30), ε6 has a significant value and so does the modal error δ6, i.e., 17.4%, as demonstrated 

in Table 6.3. 

The conventional non-proportional modal damping index 
Ξ𝑖𝑗

√Ξ𝑖𝑖Ξ𝑗𝑗
 is widely used to characterize the 

extent of the non-proportional damping. However, by comparing Table 6.3 and Table 6.5, it is seen 

that the conventional non-proportional damping index 
Ξ65

√Ξ55Ξ66
 (Falsone & Muscolino, 1999) cannot 

accurately represent the extent of the non-proportional damping in certain cases. For example, the 

conventional non-proportional damping index between the second- and first-modes 
Ξ21

√Ξ11Ξ22
 is 0.54, 
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which is quite close to that between the sixth and fifth-modes 
Ξ65

√Ξ55Ξ66
, i.e., 0.6, as shown in Table 6.5. 

The modal error of the second mode δ2 should be comparable to that of the sixth mode δ6 if the 

conventional non-proportional damping index can accurately represent the extent of the non-

proportional damping. However, the modal error of the second mode δ2 , i.e., 0.4%, in fact is much 

smaller than that of the sixth mode δ6, i.e., 17.4%, as shown in Table 6.3. This is a result of the fact 

that the extent of the non-proportional damping is related not only to the conventional non-

proportional modal damping index, but also to the correlation coefficient. Since the un-damped first 

and second modes have well separated natural frequencies, as shown in Table 6.2, the correlation 

coefficient ρ12 is negligible, being 0.010 as shown in Table 6.4. Therefore, the error of the second 

mode δ2 is negligible due to the smaller value of ρ12, as shown in Table 6.3. Accordingly, 𝜌𝑖𝑗
Ξ𝑖𝑗

√Ξ𝑖𝑖Ξ𝑗𝑗
  is 

a better index to characterize the extent of the non-proportional damping compared to the 

conventional non-proportional damping index 
Ξ𝑖𝑗

√Ξ𝑖𝑖Ξ𝑗𝑗
, and should be used as the index of the non-

proportional damping. 

(2) By using the proposed equivalent modal damping ratio, the modal seismic response is always 

overestimated for this example, as shown in Table 6.3. This is a primary result of the fact that the 

damping ratio of the lower structure is larger than that of the upper one. Usually, the large magnitude 

of modal error δi occurs when two modes have close natural frequencies. For the case where the 

natural frequencies of two modes are close to each other and ςL>ςU, the off-diagonal terms Ξij are 

positive and εi is therefore negative, based on Eqs. (6.17 a) and (6.30), respectively. Furthermore, the 

modal error δi is positive based on Eq. (6.28), which indicates the proposed equivalent modal 

damping ratio will result in an overestimated seismic response associated with the ith-mode. On the 

other hand, if the damping ratio of the lower structure is less than that of the upper one, i.e., ςL<ςU, the 

proposed equivalent modal damping ratio will lead to an underestimation of the seismic response 

associated with the ith-mode. 

Error of seismic response 

The calculated values φ𝑖𝑗Γ𝑖 for the nine-story combined framing system are presnted in Table 6.6. 

Also shown in the table are the dominating modes for each degree-of-freedom (DOF). For example, 

from Table 6.6, it is seen the dominating modes for the 1
st
-DOF are first, second, third, fifth and 

seventh modes. By considering all the DOFs in the MDOF model, it can be seen the entire builing is 

domianted by the first to fifth and seventh modes, as shown in Table 6.6. The error of the seismic 

response is related only to these dominating modes. Then, by substituting the modal errors δi 
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associated with these dominating modes that are shown in Table 6.3 into Eqs.(6.33 a) ~ (6.33 b), it is 

obtained that the error for all the seismic response quantities induced by the proposed equivalent 

modal damping ratios are limited to the range between 0.1% and 6%. The seismic response 

approximated from the proposed equivaelnt modal damping ratio is almost the same as that of the 

accurate one. Althought the modal error associated with the sixth mode is 17.4% as shown in Table 

6.3, such error has almost no effect on the seismic response, since the sixth mode is not the 

dominating mode of the structure. 

As indicated in the foregoing discussion, a large modal error δi occurs when natural frequencies of 

two vibration modes are close to each other. On the other hand, the error of seismic response 

associated with the proposed equivalent modal damping ratio is influenced primarily by the 

dominating modes that make a significant contribution to the seismic response. Therefore, it is 

concluded that the large error of seismic response induced by the proposed equivalent modal damping 

ratio usually occurs when the dominating modes of the structures have closely spaced natural 

frequencies. As for this example, since the dominating modes of the structures, i.e., first- to fifth- and 

seventh modes, have well separated natural frequencies, as shown in Table 6.2, the error of the 

seismic response associated with the proposed equivalent modal damping ratio is acceptable. The 

proposed equivalent modal damping ratio can be used for this nine-storey building with combined 

framing systems. 

Method validation 

In order to verify the conclusion made in the previous discussions that the proposed equivalent modal 

damping ratio is acceptable, the lateral seismic force and shear force of the nine-storey building 

calculated by the proposed method are compared with the accurate results, as shown in Figure 6.2. 

The accurate results shown in the figures are computed in accordance with the conventional modal 

response spectrum analysis based on Eqs.(6.23) ~ (6.25). However, the correlation coefficients ρij and 

damping ratio ςi associated with the accurate results are different from those of the classically damped 

structures. The correlation coefficient ρij and damping ratio ςi prospsed by Falsone and Muscolino 

(1999), which are speicfically for the non-classically damped structure, are adopted in this study to 

compute the accurate response. As seen in Figures 6.2 (a) ~ (b), the errors of the lateral seismic force 

and shear force that are evaluated by the proposed equivalent modal damping ratio are limited to the 

range  -0.3% ~ 0.8% and -0.3% ~ 0.1%, respectively. These errors are basically located in the 

previous estimated error range, i.e., 0.1% ~6%. Although the error -0.3% is not located in the 

previously estimated error range, such a violation is basically acceptable. Consequently, it is  
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Figure 6.2: Results comparison of Example 6-1 

 

concluded that both the proposed equivalent modal damping ratio and the error estimation method are 

acceptable. 

The lateral seismic force and shear force calculated by assuming the modal damping ratios of the 

combined framing systems are equal to that of the lower structure (5%) and that of the upper structure 

(2%), respectively, are also shown in Figures 6.2 (a) ~ (b). It can be seen that using the 2% damping 

ratio overestimates the seismic response while using the 5% damping ratio underestimates the seismic 

response. The proposed equivalent modal damping ratio provides more accurate results. 

6.5.2 Example 6-2 

The eight-storey building investigated in this example is the same as the one discussed in section 

3.6.2. The damping ratios of the lower RC and upper CFS frames, ςL and ςU, are still set as 5% and 

2%, respectively. In accordance with the obtained feasible lateral designs for the lower RC and upper 

CFS structures shown in Figure 3.10 (b), all columns shown in Figure 3.8 are selected as the columns 

in the moment frame and the CFS shear wall length is still 43.2 m. The selected designs of the 
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stiffnesses for both the lower and upper structures are the same as those of the building investigated in 

section 4.6.2. The basic mass, stiffness and damping properties of the combined framing systems are 

summarized in Table 6.7. 

Still assume both the lower and upper structures have stiffness proportional damping. The 

calculated equivalent modal damping ratios ςeqi together with the modal errors δi are presented in 

Table 6.8. Meanwhile, Table 6.9 shows that the eight-storey combined framing system is dominated 

by the first- to fifth- and eight-modes. Therefore, in accordance with the proposed Eqs. (6.33 a) and 

(6.33b), the error of all seismic quantities is limited to the range between  0.0% to 1.7%. Using the 

proposed equivalent modal damping ratio to estimate the seismic response of the eight-storey 

combined framing system is acceptable. 

The lateral seismic force and shear force of the eighth-storey building calculated by the proposed 

equivalent modal damping ratio are compared with the accurate results, as shown in Figure 6.3. As 

indicated in Figures 6.3 (a) ~ (b), the errors of the lateral seismic force and shear force that are 

evaluated by the proposed equivalent modal damping ratio are limited to the range  -0.4% ~ 1.3% and 

-0.4% ~ 0.3%, respectively. These errors are basically located in the previous estimated error range, 

i.e., 0.0% ~1.7%. Although the error -0.4% is not located in the previously estimated error range, such 

a violation is basically acceptable. Therefore, the previously estimated error range, i.e., 0.0% ~ 1.7%, 

is acceptable. The proposed equivalent modal damping ratio and the proposed error estimation 

method are both acceptable. 

Table 6.7: Structural properties of Example 6-2 

 

storey 

number 

storey-mass 

(kg) 
SFRSs 

storey-stiffness 

(kN/m) 
damping ratio 

Lower structure 2 96,113 
RC moment frame, 16 

columns in moment frame 
8.66×10

5
 0.05 

Upper structure 6 219,352 
CFS shear wall, with the 

wall length being 43.2 m 
1.66×10

5
 0.02 

 

Table 6.8: Approximated equivalent modal damping ratio and modal error of Example 6-2 

                 mode number 1 2 3 4 5 6 7 8 

equivalent damping ratio 0.024 0.026 0.034 0.026 0.021 0.020 0.020 0.049 

modal error δi 0.0% 0.6% 0.9% 1.7% 1.1% 1.2% 2.0% 0.1% 
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Table 6.9: Values of φijΓi of Example 6-2 

jth-DOF 
 ith-mode 

 1 2 3 4 5 6 7 8 
dominating 

modes 

1 0.06  0.13  0.35  0.16  0.04  0.01  0.00  0.25  2, 3, 4, 8 

2 0.12  0.24  0.55  0.22  0.03  0.01  0.00  -0.17  1, 2, 3, 4, 8 

3 0.42  0.56  0.44  -0.22  -0.15  -0.06  -0.02  0.04  1, 2, 3, 4, 5 

4 0.69  0.64  -0.09  -0.34  0.01  0.07  0.03  -0.01  1, 2, 3, 4 

5 0.93  0.45  -0.53  0.05  0.15  -0.01  -0.03  0.00  1, 2, 3, 5 

6 1.12  0.06  -0.47  0.36  -0.06  -0.05  0.03  0.00  1, 3, 4 

7 1.26  -0.35  0.03  0.14  -0.13  0.07  -0.02  0.00  1, 2, 4, 5 

8 1.33  -0.61  0.50  -0.29  0.10  -0.03  0.01  0.00  1, 2, 3, 4 
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Figure 6.3: Results comparison of Example 6-2 

Based on Table 6.7, it is calculated that the storey-mass ratio rm and the storey-stiffness ratio rk are 

2.28 and 5.22 for this eight-storey building, respectively. Then, in accordance with Table 4.2, the 

two-stage analysis procedure can be used to approximate the seismic load. The seismic loads of the 

upper and lower structures can be calculated independently by the ELF procedure. Since the damping 
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ratio of the upper structure is 2%, the accurate lateral seismic force and shear force for the upper 

structure are closer to those evaluated by assuming the damping ratio is 2%, as shown in Figures 6.3 

(a) and (b). However, for the lower structure, the obtained accurate lateral force is not always close to 

that calculated by assuming the damping ratio is 5%. In fact, as shown in Figure 6.3 (a), the lateral 

seismic force for the first storey of the lower structure is closer to the result that is evaluated by 

assuming the damping ratio is 2% rather than 5%. Therefore, once the applicable requirement of the 

two-stage analysis procedure is satisfied, the seismic load of the upper structure can be evaluated by 

the ELF procedure by setting the damping ratio equal to the damping ratio of the upper structure. 

However, when using the ELF procedure to compute the seismic load of the lower structure, to be 

conservative, it is suggested that the damping ratio be equal to the smaller one of the damping ratio 

values associated with lower and upper structures. 

6.6 Conclusion  

This chapter has presented an analytical method to approximate the equivalent modal damping ratio 

for buildings with vertical combination of framing systems. In addition, a simplified method to 

quantity the error of the seismic response induced by the proposed equivalent modal damping ratio 

was also proposed. Two examples were investigated to demonstrate the validity and efficiency of the 

proposed method. These results lead to the following conclusions: 

 (1) If the damping ratios of the lower and upper structures are not equal, i.e., ςL≠ςU, the combined 

framing system is non-classically damped. Therefore, the seismic response of the combined framing 

system theoretically cannot be computed by the conventional modal response spectrum analysis. 

 (2) The conventional non-proportional modal damping index  
Ξ𝑖𝑗

√Ξ𝑖𝑖Ξ𝑗𝑗
  could not accurately 

represent the extent of the non-proportional damping. It is suggested that 𝜌𝑖𝑗
Ξ𝑖𝑗

√Ξ𝑖𝑖Ξ𝑗𝑗
 be used as the 

index of the non-proportional damping, where ρij is the correlation coefficient between the ith- and 

jth- vibraton mode, and Ξ is the modal damping matrix. 

(3) A large error of the seismic response induced by the proposed equivalent modal damping ratio 

usually occurs when the dominating modes of the structures have closely spaced natural frequencies. 

The proposed equivalent modal damping ratio will overestimate the structural modal response if the 

damping ratio of the lower structure is greater than that of the upper one, and vice versa. However, for 

most practical combined framing systems, the dominating modes have well separated natural 

frequencies. The proposed equivalent modal damping ratio can be adopted to evaluate the seismic 

responses. 
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Chapter 7  Conclusions and recommendations 

7.1 Summary and conclusions 

The mid-rise buildings with vertical combination of framing systems are characterised by different 

SFRSs for the lower and upper structures. Challenges for the seismic design of such buildings 

primarily arise from: (a) vertical irregularities on mass and stiffness associated with different intended 

occupancies and SFRSs between lower and upper structures; and (b) damping irregularity induced by 

the different damping ratios associated with different construction materials and framing systems of 

the lower and upper structures. Presented in this thesis is research with aiming to solve for the 

challenges arising from the foregoing two aspects in relatively simple and practical ways. 

7.1.1 Vertical irregularities on mass, stiffness and strength 

Due to the mass irregularity in the vertical direction, the required stiffness arrangement for the lower 

and upper structures in the combined framing system based on the specified storey drift limit may be 

quite different from that in “regular” buildings. In this study, a simplified seismic design approach is 

proposed for the determination of the required storey-stiffness arrangement of such buildings based 

on the pre-determined mass distribution and specified storey drift limit. In addition, by considering 

both the mass and stiffness irregularities, two simplified seismic loading methods to evaluate the 

seismic loads of the mid-rise building with vertical combination of framing systems, i.e., modified 

ELF and two-stage analysis procedures, are proposed. The proposed simplified approaches to 

evaluate the feasible stiffness distributions and seismic loads are affected by the design standards. 

Since certain difference in seismic design provisions exists between the US standard ASCE 7 (ASCE, 

2010) and the Canadian code NBCC 2010 (NBCC, 2010), simplified approaches that can be used 

together with each standard are developed, respectively. The difference in seismic design provisions 

between the US standard and the Canadian code, which has certain effect on the proposed simplified 

approaches, is also discussed in this thesis. Main contributions from this research include: 

(1) The effects of the interaction between the lower and upper structures in terms of mass and 

stiffness on the seismic load are investigated. In order to quantify effects of such interaction on the 

base shear force of the upper structure, a shear-force-amplification factor αU is proposed to account 

for the effect of the shear force amplification contributed by the lower structure to the upper one. It is 

found: (a) when the lower structure is much stiffener than the upper one, αU≈1, which indicates the 

lower structure has no influence on the upper one, and the upper structure behaves as it is fixed to the 

ground base; however, (b) when periods of the lower and upper structures are close to each other, e.g., 

TU≈TL, a large amount of the mass of the lower structure will contribute to the shear force associated 
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with the upper structure and the factor αU is usually greater than the unity; and (c) when TU  is far 

more less than TL, the lower structure may act similar to a damper to dissipate the energy generated 

by earthquakes, which results in αU<1. Applicable equations to evaluate the shear-force-amplification 

factor αU are proposed based on ASCE 7 and NBCC 2010, respectively. Errors of the proposed 

equations based on ASCE 7 are limited to the range between -0.9% and 35.8%, which is comparable 

with the conventional ELF procedure that is applicable for “regular” structures in current design 

practice. Errors of proposed equations based on NBCC 2010 are comparable to those based on ASCE 

7.  

(2) The relative seismic weight between the lower and upper structures has a significant influence 

on the determination of required lateral stiffnesses of the lower and upper structures. In general, when 

the number of the storey and total seismic weight associated with the lower structure are much greater 

than that of the upper structure, the required stiffness of the upper structure will be significantly 

influenced by the interaction between lower and upper structures in terms of mass and stiffness. On 

the other hand, if the number of the storey and total seismic weight associated with the lower 

structure are less than that of the upper structure, such interaction has less effect on the required 

stiffness of the upper structure. In such case, the determination of the lateral stiffness of the upper 

structure is primarily based on the characteristics of the upper structure. 

(3) When there is only one-storey upper structure in the combined framing system, if the storey-

stiffness ratio between lower and upper structures rk is less than the proposed rkb1, the one-storey 

upper structure almost has no effect on the effective mass distribution of the lower structure. The 

behaviour of the lower structure is dominated by the first mode and the modified ELF procedure is 

applicable to approximate the seismic load of the lower structure. However, the upper one-storey 

structure may still be dominated higher vibration modes of the combined framing system. It is 

suggested that the shear force of the one-storey upper structure be calculated by the proposed shear-

force-amplification factor αU. 

(4) When the lower structure is much stiffer than the upper one, the interaction between lower and 

upper structures in terms of mass and stiffness can be ignored, and the lower and upper structure can 

be analyzed by the ELF procedure separately. This is the two-stage analysis procedure prescribed in 

ASCE 7 (ASCE, 2006; 2010). In this study, new applicable requirements and seismic load 

distributions of the two-stage analysis procedures are proposed based on ASCE 7. It is found the 

stiffness requirement of ASCE two-stage analysis procedure may be over-relaxed. Consequently, the 

procedure may underestimate the seismic load of the upper structure in certain cases. Furthermore, it 

is found even when the applicable requirement of the proposed two-stage analysis procedure is 
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satisfied, the shear force of the top storey of the upper structure, which is calculated by the 

assumption that the upper structure is fixed to the ground base, may still be underestimated. Thus, an 

additional top shear force is proposed to be applied to the top of the upper structure. Equations to 

compute the additional top shear force are provided based on ASCE 7. In general, the accuracy of the 

proposed two-stage analysis procedure is greatly improved compared to that prescribed in ASCE 7 

(ASCE, 2006; 2010). 

The Canadian code NBCC 2010 (NBCC, 2010) does not specify any simplified method similar to 

the two-stage analysis procedure to analyze the building with vertical combination of framing systems. 

By considering the difference in seismic design provisions between the ASCE 7 and the NBCC 2010, 

several modifications are made on the ASCE 7 two-stage analysis procedure for its Canadian 

application. The accuracy of the proposed two-stage analysis procedure based on NBCC 2010 is 

comparable to that based on ASCE 7. 

(5) The proposed simplified approach for evaluating the required stiffness distributions of lower 

and upper structures involves the nonlinear behavior of the combined framing systems. Therefore, 

nonlinear time history analyses are also carried to verify the stiffness designs. Results from the 

nonlinear time history analysis show that the maximum storey-drift ratio occurs at the first storey of 

the upper structure, which is the same as the results of the linear analysis. However, the elastic-

analysis-based modal response spectrum analysis based on NBCC 2010 cannot well estimate the 

nonlinear storey-drift ratio for the first storey of the upper structure. A more appropriate value of the 

deflection amplification factor Cd is required. 

7.1.2 Damping irregularity 

An analytical method is proposed to approximate the equivalent modal damping ratio for the case 

where lower and upper structures have different damping ratios. The proposed equivalent modal 

damping ratio can be used directly in the conventional modal analysis. Meanwhile, a simplified 

method to quantity the error of the seismic response induced by the proposed equivalent modal 

damping ratio is also proposed. Main contributions from this investigation include: 

(1) Different from the mass and stiffness matrices, the damping matrix for structures in practice 

cannot be directly assembled from the damping properties of the structural members (Chopra, 2007). 

Different methods to construct the damping matrix of the combined framing system based on the 

damping ratios of lower and upper structures are proposed in this study. In accordance with the 

established damping matrix,  it is found when the damping ratios of the lower and upper structures are 

not equal, i.e., ςL≠ςU, the combined framing system is non-classically damped. Therefore, the 
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conventional modal analysis is theoretically not applicable to compute the seismic response of the 

system. 

(2) The conventional non-proportional modal damping index  
Ξ𝑖𝑗

√Ξ𝑖𝑖Ξ𝑗𝑗
 could not well represent the 

extent of non-proportional damping. It is suggested using  𝜌𝑖𝑗
Ξ𝑖𝑗

√Ξ𝑖𝑖Ξ𝑗𝑗
 as the index of non-proportional 

damping, where ρij is the correlation coefficient between the ith- and jth- vibraton mode, and Ξ is the 

modal damping matrix. 

(3) It is found that a considerable error of seismic response associated with the proposed equivalent 

modal damping ratios may occur when the dominating modes of the structures have closely spaced 

natural frequencies. In such case, the proposed equivalent modal damping ratios will overestimate the 

structural modal response if the damping ratio of the lower structure is greater than that of the upper 

one, and vice versa. However, for most combined framing systems in practice, the dominating modes 

have well separated natural frequencies, the proposed equivalent modal damping ratios can be 

adopted to evaluate the seismic response. 

7.2 Recommendations for future research 

Concerning to the mid-rise buildings with vertical combination of framing systems, it is 

recommended that following future research be carried out: 

 Investigate how to determine the seismic response modification coefficient R of the combined 

framing system if lower and upper structures have different R values. The seismic response 

modification coefficient R is introduced in current standards to account for the earthquake energy 

that will be dissipated by the non-linear behavior of the structure. In accordance with article 

12.2.3.1 of ASCE 7 (ASCE, 2010), the modification coefficient R for the vertical combined 

building can be determined as follows: (a) if the upper structure has a larger value of R, the lower 

and upper structures should be designed using their own value of R; (b) if the upper structure has 

a smaller value R, the smaller value of R should be used for the both upper and lower structures. 

However, this code-approved R is largely based on engineering judgement and is somewhat 

arbitrarily assigned (FEMA, 2009).  The code approved method to determine the R value needs 

further verification. Nevertheless, the method prescribed in FEMA P695 (FEMA, 2009) to 

justify whether the R value is acceptable or not is only applicable for “regular” structures, the 

seismic behavior of which is primarily dominated by the first mode. For the structures with 

vertical combined framing systems, especially for the structures that are influenced by the higher 

vibration modes other than the first mode, there is no method currently available to justify how 
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to determine the appropriate R value. A method on how to justify the appropriate values of R for 

the structures with combined framing system needs to be investigated or developed. 

 A structure is often considered to be “regular” if it has uniform structural properties or a uniform 

variation in structural properties (ASCE, 2010; NBCC, 2010). As to the “regular” lower and 

upper structures investigated in this study, the storey-masses and lateral storey-stiffness of the 

lower and upper structures are assumed to be uniformly distributed. However, in practice, the 

lower and upper structures are more likely to have a uniform variation in structural properties 

rather than uniform structural properties. Therefore, it is necessary to investigate how the results 

obtained in this study will be affected if the lower and upper structures have a uniform variation 

in mass and stiffness distributions rather than uniform mass and stiffness distributions. 

 The total number of storey for the combined framing system is limited to ten in this study. 

However, the applicability of the proposed methods on buildings with the combined framing 

system having more than ten storeys is not investigated. It is desirable to extend the current 

research into the buildings with more stories such as the building shown Figure 1.1.  

 The effects of damping irregularity and the effects of mass and stiffness irregularities on the 

seismic behavior of the combined framing system are investigated separately in this study. 

However, these irregularities usually coexist in the mid-rise building with vertical combination 

of framing system. The effects of coupled mass-stiffness-damping irregularity on the seismic 

behavior needs to be further explored. 

 Two simplified methods for evaluating the seismic load of the combined framing system, i.e., 

modified ELF and two-stage analysis procedures, are investigated in this study. The modified 

ELF procedure is applicable for the combined framing system which has only one-storey upper 

structure. The proposed two-stage analysis procedure is applied to the combined framing system 

when the lower structure is much stiffer than the upper one. However, in practice the mid-rise 

buildings with vertical combination of framing systems cannot always satisfy the applicable 

requirements associated with these two simplified methods. When these two simplified methods 

are not applicable, the combined framing system can be analyzed only by dynamic analysis 

(Chopra, 2007). Therefore, it is necessary to develop a simplified method to evaluate the seismic 

load of the mid-rise buildings with vertical combination of framing systems when the modified 

ELF and two-stage analysis procedures are not applicable. 

 Since the NBCC 2010 (NBCC, 2010) adopts the piecewise linear function to describe the 

relationship between the period and the spectral acceleration, the proposed equations to evaluate 

the required stiffnesses of the lower and upper structure are quite complicated. A future study on 
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simplifying the proposed complicated equations so that they can be widely accepted in practices 

is recommended. 

 Results from the nonlinear time history analysis show that the deflection amplification factor Cd 

specified in NBCC 2010 (NBCC, 2010) cannot provide satisfactory approximation on the 

nonlinear deformation of the combined framing systems. A future study on the determination of 

appropriate value of the deflection amplification factor Cd  is recommended. 
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Appendix A   Modal response spectrum analysis to evaluate αU 

The eigenvalue equation (Chopra, 2007) for the simplified 2DOF model shown in Figure 3.1 (b) is as 

follows: 

  2KΦ MΦ  (A.1) 

where ω is the natural frequency, Ф is the  mode shape, and K and  M  are the stiffness and mass 

matrices of the 2DOF model, respectively, with  
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   (A.3) 

By substituting  K and  M evaluated respectively based on Eqs.(A.2)  and (A.3) into Eq.(A.1),  it is 

obtained that  

      
22 2 0L U U U U UK K M K M K       (A.4) 

By solving for Eq.(A.4), the natural frequencies (ω1 and ω2) and modal periods (T1 and T2) of the 

2DOF model, as shown in Figure A.1, can be obtained. The modal periods are calculated as follows: 
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where Rm and Rk are overall mass and stiffness ratios of the simplified 2DOF model as defined in 

Eqs.(3.6) and (3.7), respectively. Then, based on Eqs.(A.5) and (A.6), the associated two mode shapes, 

as shown in Figure A.1, can be obtained as follows: 
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                     (a)  2DOF model                      (b) first mode (T1)                     (c) second mode (T2)    

Figure A.1: Natural modes of vibration for simplified 2DOF model 
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In accordance with the modal expansion theory, the effective modal masses of the upper structure 

associated with the first and second modes can be evaluated based on the mode shapes as follows: 
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With the evaluated periods T1 and T2, and effective modal masses 𝑀𝑈1
∗  and 𝑀𝑈2

∗  , the elastic shear 

force VUb of the 2DOF model shown in  Figure 3.1 (b) can be calculated through the modal response 

spectrum analysis (Chopra, 2007) as follows: 
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where Sa(T1) and Sa(T2) are design spectral response accelerations associated with the first and second 

modes, and   is the correlation coefficient between the first and second modes (Chopra, 2007) , 

which is evaluated as  

  
 

   

2 3/2

2 22 2

8 1

1 4 1

  


   




  
 (A.14) 

In Eq.(A.14), ζ is the damping ratio of the structure which is assumed 5% for the simplified 2DOF 

model, and β is the period ratio between the first and second modes defined as β=T2/T1. In accordance 

with Eqs.(A.5) and (A.6), the period ratio β  is expressed as 
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Finally, by substituting VUb in Eq.(3.2) with that of Eq.(A.13), it is obtained that the factor αU for the 

simplified 2DOF model can be computed as 
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where MUj is the normalized effective modal mass of the jth-mode of the upper structure defined as 
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As analyzed subsequently in Appendix B, T1/TU>1 and 0<T2/TU<1. Therefore, in accordance with the 

design spectrum shown in Figure 1.4, spectrum ratios Sa(T1)/Sa(TU) and Sa(T2)/Sa(TU) can be further 

expressed as 
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From Eqs.(A.7), (A.9), (A.17) , (A.18),  (A.14) and (A.15), it is seen the magnitudes of MU1, MU2 and 

ρ are determined by the overall mass ratio Rm and overall stiffness ratio Rk. Meanwhile, based on Eqs. 

(A.7) ~ (A.10) and Eqs.(A.19) and (A.20), it is seen spectrum ratios Sa(T1)/ Sa(TU) and Sa(T2)/Sa(TU) 

are not only related with Rm and Rk, but also related with the period ratio TU/TS, where TS is the period 

at which the horizontal and descending curve of the response spectrum intersects, as shown in Figure 

1.4. Consequently, in accordance with Eq.(A.16), the shear-force-amplification-factor αU is related 

with the overall mass ratio Rm, overall stiffness ratio Rk and the period ratio TU/TS. 
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Note as discussed in Appendix B.1.4, the maximum correlation coefficient   in Eq.(A.16) is 0.22. 

The effects of Rm, Rk and TU/TS on the factor αU is primarily resulted from their incfluences on MU1, 

MU2, Sa(T1)/ Sa(TU) and Sa(T2)/Sa(TU). Therefore, when qualitatively analyzing how the factor αU is 

affected by ratios Rm, Rk and TU/TS, the correlation term in Eq.(A.16) may be neglected for the reason 

of simplicity. The CQC rule in Eq.(A.16) can be reduced to the SRSS (square-root-of-sum-of-squares) 

rule as follows: 
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 (A.21) 

However, for the evaluating of the factor αU, Eq.(A.16) is adopted. 
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Appendix B   Analytical study on factor αU 

B.1 Effects of overall stiffness ratio Rk on αU 

As shown in Eq.(A.21), in order to find out how the factor αU is influenced by the stiffness ratio Rk, 

an analysis is first carried out on how Rk affects MU1, MU2, Sa(T1)/ Sa(TU) and Sa(T2)/Sa(TU).  

B.1.1 Effects of overall stiffness ratio Rk on L1 

According to Eq. (A.7), the derivative of the first mode shape of the lower structure L1 with respect 

to the stiffness ratio Rk is 
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Therefore, for a given overall mass ratio Rm, L1 decreases as the increase of overall stiffness ratio Rk. 

L1 gradually decreases from unity to zero as Rk increases from zero to infinity.  

B.1.2 Effects of overall stiffness ratio Rk on MU1 and MU2 

Based on Eq.(A.17) , the derivative of the first mode normalized effective modal mass of the upper 

structure, MU1, with respect to stiffness ratio L1 is  
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Based on Eqs.(B.2), (B.1) and (A.7), it is observed that, as shown in Figure B.1 (a), as the increase of 

the stiffness ratio Rk, MU1 first increases from unity to its maximum value at Rk =Rm+1. Then, as 

further increase of Rk, MU1 gradually decreases to unity. When Rk=Rm+1, the maximum value of MU1 

is 
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 (B.3) 

Meanwhile, based on (A.18), MU2 is always negative and the variation for the magnitude of MU2 is the 

same as that of MU1, as shown in Fig.B.1 (a). 

B.1.3 Effects of overall stiffness ratio Rk on spectrum ratios Sa(T1)/ Sa(TU) and 

Sa(T2)/Sa(TU) 

Based on Eqs. (A.8), (A.10), (B.1), (A.19) and (A.20), it is concluded that for a given overall mass 

ratio Rm, as the increase of the overall stiffness ratio Rk : (1) the period ratio T1/TU gradually decreases 
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from infinity to unity, and the period ratio T2/TU gradually decreases from [Rm/(Rm+1)]
0.5

 to zero, as 

shown in Figure B.1 (b); (2) the spectrum ratio Sa(T1)/Sa(TU) gradually increases from zero to unity, as 

shown Figure B.1 (c); and (3) the effect of Rk on spectrum ratio Sa(T2)/Sa(TU) is greatly affected by the 

magnitude of the period ratio TU/TS, as shown in Figure B.1 (d). For example, when TU/TS=0.2, the 

spectrum ratio Sa(T2)/Sa(TU) gradually decreases as the ratio Rk increases; however, when TU/TS =4, 

the spectrum ratio Sa(T2)/Sa(TU) gradually increases as the ratio Rk increases.  

B.1.4 Effects of overall stiffness ratio Rk on T2/T1 and ρ 

From Eq.(A.15), it is obtained that the derivative of (T2/T1)
2
 with respect to L1 is  
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Based on Eqs.(B.4), (B.1) and (A.15) and Figure B.1 (e), it is observed that as the increase of the 

stiffness ratio Rk, the period ratio T2/T1 first increases from zero to its maximum value at Rk =Rm+1, 

and then as Rk further increases, the ratio T2/T1 gradually decreases to zero. When Rk=Rm+1, the 

maximum value of T2/T1 is:  
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For the mid-rise buildings which are within the limitation presented in section 1.3.2, the maximum 

overall mass ratio Rm occurs when rm=3, NL=9 and NU=1. The minimum ratio Rm occurs when rm=1, 

NL=1 and NU=9. Therefore, based on Eq.(3.6), it is obtained that the ratio Rm is limited to the range 

between 0.11 and 27. Then, by letting Rm=27 in Eq.(B.5), the calculated maximum T2/T1 is 0.826. 

Finally, by setting β in Eq. (A.14) be 0.826, it is obtained that the corresponding maximum 

correlation coefficient   is 0.22.  

B.1.5 Effects of overall stiffness ratio Rk on factor αU 

Through Eq.(A.21) and Figures B.1 (a) ~ (d), it is obtained that: 

(1) When Rk→0, MU1→1 and MU2→0 as shown in Figure B.1 (a) and (T1/TU) →∞ as shown in 

Figure B.1 (b). Consequently, based on Eq.(A.21), it is concluded that αU →0. 
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                            (d) Sa(T2)/Sa(TU)                                                     (e) T2/T1  

Figure B.1: Variation of dynamic parameters with respect to ratios Rm and Rk 

(2) When Rk→∞, MU1→1 and MU2→0 as shown in Figure B.1 (a) and (T1/TU)→1 as shown in 

Figure B.1 (b). Consequently, based on Eq.(A.21), it is concluded that αU →1 
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(3) By comparing Figures B.1 (a) ~ (d) and Figures 3.3 (a) ~ (c), it is found the variation of 

amplification factor αU with respect to the overall stiffness ratio Rk is primarily affected by MU1, MU2 

and Sa(T1)/Sa(TU), while the spectrum ratio Sa(T2)/Sa(TU) has the least influence on the factor αU. The 

initial increase of factor αU is associated with the increases of |MU1|, |MU2| and the spectrum ratio 

Sa(T1)/Sa(TU), and the later decrease of the factor αU is resulted from the decrease of |MU1| and |MU2| 

after αU reaches the maximum value. 

B.2 Effects of overall mass ratio Rm on factor αU 

From Figure B.1 (a), it is observed that MU1 is always greater than or equal to unity regardless of 

values of Rm and Rk, which indicates the first mode effective modal mass of the upper structure is 

greater than or equal to the total mass of the upper structure. The increasing portion is due to the 

dynamic interaction between lower and upper structures. Furthermore, for each given value of Rm , as 

shown in Figure B.1 (a): (a) the maximum value of MU1 increases as the increase of ratio Rm, and (b) 

based on MU2=1-MU1, the maximum magnitude of MU2 also increases as the increase of ratio Rm. 

Consequently, in accordance with Eq.(A.21), the maximum αU for given values of Rm and TU /TS 

increases as the increase of the ratio Rm.  

B.3 Effects of period ratio TU/Ts on factor αU 

Based on Eqs.(A.21), (A.19) and (A.20), it is found the influence of TU/TS on the amplification factor 

αU is resulted from its effect on spectrum ratios Sa(T1)/Sa(TU) and Sa(T2)/Sa(TU). However, by 

comparing Figures B.1 (c) ~ (d) to Figures 3.3 (a) ~ (c), it is found although the ratio TU/TS has a 

considerable influence on the spectrum ratio Sa(T2)/Sa(TU), but such influence has resulted in little 

effect on the value of the factor αU . The influence of TU/TS on the factor αU is primarily resulted from 

its effect on Sa(T1)/Sa(TU): 

(1) As shown in Eq.(A.19) and Figures B.1 (b) ~ ( c), when (TU/TS)≤(TU/T1) or (TU/TS) ≥1, the ratio 

TU/TS has no influence on the spectrum ratio Sa(T1)/Sa(TU), whereas the spectrum ratio Sa(T1)/Sa(TU) 

decreases as the increase of TU /TS when (TU/T1)<(TU/TS)<1. Then, based on Eq.(A.21), it can be seen 

that the effect of the ratio TU/TS on factor αU is the same as the effect of the ratio TU/TS on the 

spectrum ratio Sa(T1)/Sa(TU). 

 (2) As shown in Figure B.1 (c), for given values of Rm and TU/TS, the overall stiffness ratio Rk at 

which the spectrum ratio Sa(T1)/Sa(TU) reaches unity increases as the increase of the ratio TU/TS if 

TU/TS≤1. Therefore, in accordance with Eq.(A.21), for given values of Rm, the overall stiffness ratio at 

which the factor αU reaches the maximum value also generally increases as the increase of the ratio 

TU/Ts when (TU/Ts)≤1.  



 

162 

  

Appendix C   Determination of critical stiffness ratios  

C.1 Minimum overall stiffness ratio RkU1 

The minimum overall stiffness ratio RkU1 can be solved by setting  

  1
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Based on Eq.(A.7), φL1 can be expressed as 
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By combing Eqs.(C.1) and (C.2), RkU1 can be solved for, and the obtained expression for RkU1 is 

shown in Eq.(3.22). Then, based on Eq.(3.7), the corresponding rkU1 can be obtained, as shown in 

Eq.(1.1) in Chapter 1. 

C.2 Overall two-stage stiffness ratio of the upper structure RkU2stg 

Based on Eq.(A.21) and Figures B.1 (a) ~ (b), it is reasonable to assume αU=1 if the following two 

requirements are satisfied simultaneously: 
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In accordance with Eq.(A.17), the theoretical solution for MU1≤1.1 is: 
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where q1 and q2 are expressed as 
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Meanwhile, based on Eq.(A.8), the theoretical solution for T1/TU ≤1.1 is 

  0.826 4.76k mR R   (C.7) 
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By combining Eqs. (C.4) and (C.7), RkU2stg is finally determined as presented in Eq.(3.9), where 

RkU2stg=11.029Rm-2.5 (Rm>0.71) is obtained by curve fitting of Eq.(C.4), as shown in  Figure.C.1 (a)  

with logarithmic scale on both horizontal and vertical axes.  

C.3 Overall two-stage stiffness ratio Rk2stg 

In accordance with the modal expansion theory (Chopra, 2007), the effective modal masses of the 

lower structure associated with the first and second modes, designated as 𝑀𝐿1
∗  and 𝑀𝐿2

∗ , respectively, 

can be evaluated based on the mode shapes shown in Figures A.1 (b) and (c) as follows : 
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  * *

2 1L L LM M M   (C.9) 

Similar to that of the upper structure, define normalized effective modal mass of the jth-mode of the 

lower structure MLj as 

  
2

1 1
1 2

1 1

m L L
L

m L

R
M

R

 







 (C.10) 

  
2 11L LM M   (C.11) 

C.3.1 Effects of Rk on ML1 and ML2 

Based on Eq.(C.10), the derivative of the first mode normalized effective modal mass of the lower 

structure, ML1, with respect to φL1 is  
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 (C.12) 

By examing on Eqs.(C.12), (C.10), (B.1) and (A.7), it is observed that, as shown in Figure C.2 (a), 

ML1 gradually decreases from unity to zero as the stiffness ratio Rk increases from zero to infinity. On 

the other hand, based on Eq.(C.11), ML2 gradually increases from zero to unity as the stiffness ratio Rk 

increases from zero to infinity. It is also observed from Figure C.2 (a), ML1=ML2=0.5 if Rk=Rm+1. 

C.3.2 Effects of Rk on T1/TL and T2/TL 

Based on Eqs.(A.5) and (A.6), the following relationship among the periods can be derived: 

  
1 2 U LTT T T  (C.13) 

Therefore, variations of T1/TL and T2/TL with respect to Rk are just opposite to variations of T2/TU and 

T1/TU with respect to Rk, respectively.  
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                           (a) RkU2stg                                                                     (b) Rk2stg 
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                           (c) RkU2 and RkU3                                                         (d) Rkb1 

Figure C.1: Determination of critical stiffness ratios 
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Figure C.2: Variation of normalized effective mass distribution with respect to Rm and Rk 
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C.3.3 Overall two-stage stiffness ratio Rk2stg 

Based on Figures C.2 (a) and B.1(b) and Eq.(C.13), it is reasonable to assume that Eq.(4.9) is satisfied 

if the following two requirements are satisfied simultaneously: 

  
1

1

0.1

/ 1.1

L

U

M

T T





 (C.14) 

The solution of ML1≤0.1 can be obtained numerically as follows: 

  
1.637 9.07              3.5

1.332 10.14            3.5

k m m

k m m

R R R

R R R
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  
 (C.15) 

By combining Eqs.(C.15), (C.7) and (3.9), Rk2stg is finally determined as presented in Eq.(4.10), as 

shown in Figure C.1(b). 

C.4 Overall two-stage stiffness ratio Rk2stg-ASCE prescribed in ASCE 7 

The two applicable requirements associated with the two-stage analysis procedure of ASCE 7 (ASCE, 

2006) are: (a) the stiffness of the lower structure is at least 10 times the stiffness of the upper structure; 

and (b) the period of the entire structure is not greater than 1.1 times the period of the upper structure 

considered as a separate structure fixed at the base. These two applicable requirements can be 

expressed as 
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T T
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 (C.16) 

By combining Eqs.(C.16) and (C.7), Rk2stg-ASCE can be finally expressed by Eq.(4.27). 

C.5 RkU2 and RkU3 

Parametric studies are carried out to determine the appropriate values of RkU2 and RkU3. When 

TU/TS=0.2, Sa(T1)/Sa(TU) is always unity when Rk≥Rm+1 as shown in Figure B.1 (c). Therefore, in 

accordance with Eq.(A.21), RkU2 is set to be equal to Rm+1, as shown in Figure C.1 (c).  

However, as presented in Eq.(3.11) and Figure C.1 (c),  the value of RkU3 is highly dependent on the 

overall mass ratio Rm: (a) when the overall stiffness ratio Rm is less than 0.71, the shear-force-

amplification factor of the upper structure always increases as the increase of the overall stiffness 

ratio Rk if TU/TS≥1, which results in that RkU3 is identical to RkU2stg; (b) when Rm is greater than 2, 

period ratio TU/TS has little influence on the factor αU, and RkU2 and RkU3 are located close to each 

other; by curving fitting, RkU3 can be fitted as RkU3=Rm+3; and (c) when the overall mass ratio Rm is in 

the range 0.71<Rm<2, RkU3 gradually decreases as the increase of overall mass ratio Rm and RkU3 can 

be approximated as RkU3=-0.26Rm+5.52. 
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C.6 Rkb1  

The effective masses of the entire building associated with the first and second modes, designated as 

𝑀𝑏1
∗  and 𝑀𝑏2

∗ ,  are defined as 

  * * *

1 1 1b L UM M M   (C.17) 

  * * *

2 2 2b L UM M M   (C.18) 

Similar to that of the upper structure, define the normalized effective modal mass of the jth-mode of 

the entire building Mbj as 
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 (C.19) 

  
2 11b bM M   (C.20) 

C.6.1 Effects of Rk on Mb1 and Mb2 

Based on Eq.(C.19), the derivative of the normalized effective modal mass of the first mode of the 

entire building, Mb1, with respect to φL1 is  
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 (C.21) 

In accordance with Eqs.(C.21), (C.19), (B.1) and (A.7), it is observed that, as shown in Figure C.2.(b), 

as the stiffness ratio Rk increases from zero to infinity, Mb1 gradually decreases from unity to the 

following minimum value: 
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 (C.22) 

On the other hand, based on Eq.(C.20), it is obtained that, as shown in Figure C.2.(b),  as the stiffness 

ratio Rk increases from zero to infinity, Mb2 gradually increases from zero to the following maximum 

value: 
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 (C.23) 

C.6.2 Rkb1 

The applicable requirement of the modified ELF procedure presented in section 4.2.2 is that the 

effective mass of the entire building associated with the first mode is not less than 90% of the total 

mass, i.e., Mb1≥0.9. In accordance with Eqs.(C.19) and (A.7) , the theoretical solution for Mb1≥0.9 is  
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(C.24) 

Based on Eq.(C.24), the calculated Rkb1 is shown in Figure C.1 (d).  As to the practical “appendage-

style” buildings, the overall mass ratio Rm is usually greater than unity. For simplicity, the calculated 

Rkb1 is fitted by Eq. (4.2) by curve fitting when Rm≥1. 
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Appendix D   Validation of simplified 2DOF model 

In order to investigate how the interaction of lower and upper structures in terms of mass and stiffness 

affects the seismic response of the combined framing system, a simplified 2DOF model, as shown in 

Figure 3.1 (b), is proposed to approximate the seismic response of the MDOF model. However, such 

simplification is an empirical process. The accuracy of such simplification needs to be validated. 

D.1 Errors of amplification factor αU  

The amplification factor αU based on MDOF modal response spectrum analysis with CQC rule to 

combined the peak modal response (Chopra, 2007) can be computed as 

  
 
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 
 1 1

N N
Uj a jUi a i

U ij

i j a U a U

M S TM S T

S T S T
 

 

  (D.1) 

where N is the number of the storey of the combined framing system; Ti and MUi, are periods and 

normalized effective modal mass of the upper structure associated with the ith-mode, respectively; 

and ij is the correlation coefficient between the ith- and jth-modes. Modal parameters Ti, MUi and ij 

can be obtained in a similar way as that of the simplified 2DOF model, as discussed in Appendix A. 

However, as to the MDOF model, the eigenvalue analysis can be carried out only with the numerical 

analysis and no analytical expression concerning the modal parameters are available.  To illustrate the 

error of the factor αU associated with the simplified 2DOF model, buildings with NL=8, NU=2 and 

rm=3 are selected as examples for the purpose of demonstration. For the reason of better illustration, 

the storey-stiffness ratio rk in Figure D.1 is set to be between 0.1 and 500, which exceeds the 

limitation specified in section 1.3.2. 

By comparing Figures.D.1 (c) and (d), it can be seen the error of factor αU is primarily induced by 

the error of MUi associated with the simplified 2DOF: 

(1) When rk<rkU2, the negative error of αU is primarily induced by the smaller MU1 associated with 

the simplified 2DOF model. The smaller MU1 associated with the simplified 2DOF model is inherited 

from the empirical model simplification process. Possible improvement on MU1 may require to model 

the multi-storey building in a simplified model more than 2DOF.  

(2) When rk>rkU3, the negative error of αU is primarily associated with the fact that only the 

interaction of the first modes of the lower and upper structures is considered in the simplified 2DOF 

model. However, in the MDOF model, the interaction of vibration modes other than the first ones 

between the lower and upper structures, especially the interaction of the first mode of the lower 

structure and the second mode of the upper structure, may not be ignored. 
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             (a) comparison of factor αU                                  (b) error of simplified 2DOF model  
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             (c) MUi in the MDOF model                                 (d) MUi in simplified 2DOF model 

Figure D.1: Comparison of factor αU between MDOF and simplified 2DOF models 

 (NL=8, NU=2 and rm=3) 

When 191≤rk≤458, the calculated ratio between the first period of the lower structure and the 

second period of the upper structure ranges between 0.71 and 1.10, which is close to unity. As 

discussed in section 3.3.1, when periods of the lower and upper structures are close to each other, the 

shear-force-amplification effect of the lower structure on the upper one can be significant. 

Consequently, as the result of the interaction of the first mode of the lower structure and the second 

mode of the upper structure, there are local maxima of normalized modal masses of the upper 

structure MU2 and MU3 when 191≤rk≤458, as shown in Figure.D.1 (c). Although the magnitudes of 

MU2 and MU3 are much less than that of MU1, if the storey-period of the upper structure TsingU is 

relatively large, say TsingU/Ts=1.1, it will result in large spectrum ratio Sa(T2)/Sa(T1), say 

Sa(T2)/Sa(T1)=1.81. Therefore, the contribution of MU2 and MU3 cannot be neglected. In such case, the 

simplified 2DOF model leads to smaller αU, with the maximum negative error being -9.1%, as shown 

in Figures.D.1 (a) and (b). However, when the period of the upper structure is short, for example, 

TsingU/Ts=0.2, Sa(T2)/Sa(T1) is small, say Sa(T2)/Sa(T1)=(0.79~0.81); as the result, the contribution of 
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MU2 and MU3 can be ignored and the factor αU evaluated from the simplified 2DOF model is larger 

than that from the MDOF model. 

(3) When rkU2≤rk≤rkU3, the dominating modes of the MDOF model, which are first and second 

vibration modes, can be well represented by the simplified 2DOF model, as shown in Figures.D.1 (c) 

~ (d).  

Errors of the factor αU induced by the simplified 2DOF model for the case where rkU2≤rk≤rkU3  are 

further justified. By considering all possible combinations of rm, TsingU/TS and TsingL/TS as stated in 

section 1.3.2 and letting rkU2≤rk≤rkU3, the maximum and minimum errors induced by the simplified 

2DOF model for the building with an NL-storey lower structure and an NU-storey upper structure are 

listed in Tables D.1 and D.2. It is seen errors of the factor αU associated with the simplified 2DOF 

model for the case where rkU2≤rk≤rkU3 are acceptable. 

Table D.1: Maximum errors of factor αU induced by the simplified 2DOF model when rkU2≤rk≤rkU3 

(ASCE 7 spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 0.0% 6.1% 9.1% N/A N/A N/A N/A N/A N/A 

2 8.0% 12.4% 14.3% 15.3% 16.1% 15.4% 13.3% N/A N/A 

3 10.1% 15.0% 17.7% 18.8% 19.0% 19.4% 19.2% N/A N/A 

4 11.0% 15.9% 19.0% 20.7% 21.5% 21.6% N/A N/A N/A 

5 11.3% 16.3% 19.5% 21.5% 22.4% N/A N/A N/A N/A 

6 N/A 16.4% 19.8% 22.0% N/A N/A N/A N/A N/A 

7 N/A 16.4% 19.9% N/A N/A N/A N/A N/A N/A 

8 N/A 16.3% N/A N/A N/A N/A N/A N/A N/A 

9 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the storey combination of the lower and upper structures, or the storey-stiffness ratio rk  that  
lies between rkU2 and rkU3 for that storey combination,  is out of the scope of this study. 

 

Table D.2: Minimum errors of factor αU induced by the simplified 2DOF model when rkU2≤rk≤rkU3 

(ASCE 7 spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 0.0% 2.0% 3.7% N/A N/A N/A N/A N/A N/A 

2 0.7% 2.8% 3.6% 5.3% 6.0% 6.7% 9.9% N/A N/A 

3 1.7% 3.8% 4.1% 5.7% 6.0% 7.4% 11.0% N/A N/A 

4 2.6% 5.3% 6.6% 11.8% 7.0% 11.6% N/A N/A N/A 

5 4.3% 6.6% 12.9% 14.3% 13.1% N/A N/A N/A N/A 

6 N/A 10.8% 12.9% 14.2% N/A N/A N/A N/A N/A 

7 N/A 11.7% 12.8% N/A N/A N/A N/A N/A N/A 

8 N/A 13.0% N/A N/A N/A N/A N/A N/A N/A 

9 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the storey combination of the lower and upper structures, or the storey-stiffness ratio rk that  
lies between rkU2 and rkU3 for that storey combination , is out of the scope of this study. 
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D.2 Errors of shear force associated with the proposed two-stage analysis procedure 

D.2.1 Upper structure 

Seismic loads of the upper structure that are calculated by the proposed two-stage analysis procedure 

with the assumption that γintr=0 are compared with the accurate results. In this study, seismic loads 

calculated by the modal response spectrum analysis (Chopra, 2007) based on the MODF model 

shown in Figure 3.1 (a) are considered as the accurate results. In order to illustrate such comparison, 

take buildings with NL=2, NU=8 and rm=3 as example. The storey-mass of the upper structure is 

mU=1000 kg. The site spectrum are SS=2.447 g, S1=0.858 g, and the long transition period TLong=8 

second. The selected storey-stiffness ratio rk for this building ranges between 3.67 and 60, where 3.67 

is the two-stage storey-stiffness ratio of the selected combined framing system, as shown in Table 4.2. 

Note for the reason of better illustration, the range of the selected storey-stiffness ratios exceeds the 

limitation specified in section 1.3.2. The comparison is shown in Figures D.2 (a) ~ (d). 

The results marked by “γintr=0” in Figures D.2 (a) ~ (d) are calculated by the proposed two-stage 

analysis procedure with the assumption that γintr=0. Negative and positive errors shown in the figure 

signify the proposed two-stage analysis procedure with the assumption that γintr=0 underestimates and 

overestimates the seismic load, respectively. From Figures D.2 (a) ~ (d), it is seen although the base 

shear force of the upper structure can be well approximated by setting γintr=0, the shear force of the 

top storey of the upper structure may be considerably underestimated. For example, when 

TsingU/TS=1.1 and rk=10, as shown in Figure D.2 (d), the proposed two-stage analysis procedure with 

the assumption that γintr=0 underestimates the shear force of the top storey by 40.0%. In fact, from 

Figures D.2 (a) ~ (d), it is observed that all the largest negative error occurs at the top storey of the 

upper structure. Therefore, the error of seismic load associated with the top storey of the upper 

structure needs to be further investigated.  

From Figures D.2 (a) ~ (d), it is seen the underestimation of seismic load associated with top storey 

is significantly affected by the storey-stiffness ratio rk and the single storey-period of the upper 

structure TsingU/TS: 
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(a) comparison of shear force (TsingU/TS=0.3) 
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(b) comparison of shear force (TsingU/TS=0.5) 
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(c) comparison of shear force (TsingU/TS=0.7) 

Figure D.2: Errors of shear force for upper structure associated with proposed two-stage 

analysis procedure with the assumption γintr=0 (NL=2, NU=8 and rm=3)  
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(d) comparison of shear force (TsingU/TS=1.1) 
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 (e) normalized effective mass of top storey             (f) normalized effective mass of top storey  

in combined framing MDOF model                   in separate upper structure MDOF model 
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(g) effects of TU/TS on the error                                  (h) effects of TU/TL on the error  

of top storey shear force                                             of top storey shear force        

Figure D.2: Errors of shear force for upper structure associated with proposed two-stage 

analysis procedure with the assumption γintr=0 (NL=2, NU=8 and rm=3) (continued) 

 

(1) When the storey-stiffness ratio rk=3.67, the calculated period ratio between the lower and upper 

structures, TU/TL, is 3.70. Meanwhile, concerning the eight-storey upper structure, its second and third 

mode periods are 2.97 and 4.83 times the period of the first mode, respectively. Therefore, for the 

case rk=3.67, the first mode period of the lower structure lies between the second and third mode 
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periods of the upper structure. Owing to the interaction of these vibration modes, the normalized 

effective masses of the top storey associated with the second to fourth modes of the combined 

framing system, as shown in Figure D.2 (e), are much larger than those calculated by setting the 

upper structure as a separate fixed-base MDOF model, as shown in Figure D.2 (f). Although 

magnitudes of the normalized effective masses associated with those modes are still less than that of 

the first mode, if the storey-period of the upper structure TsingU is relatively large, say TsingU/Ts=1.1, it 

will result in large spectrum ratios, say Sa(T2)/Sa(T1)=2.87, Sa(T3)/Sa(T1)=4.19, and Sa(T4)/Sa(T1)=5.46. 

Therefore, the contribution of these modes cannot be neglected. In such case, the assumption γintr=0 

leads to an underestimation of the shear force of the top storey by 25.3%, as shown in Figure D.2 (d). 

However, when the period of the upper structure is short, for example, TsingU/Ts=0.3, corresponding 

spectrum ratios are relatively small, say Sa(T2)/Sa(T1)=Sa(T3)/Sa(T1)=Sa(T4)/Sa(T1)=1.73. For this case, 

the assumption γintr=0 can well approximate the shear force for the top storey of the upper structure 

with the error of shear force being 5.5%, as shown in Figure D.2 (a). 

(2) As the increase of the storey-stiffness ratio rk, the magnitude of the negative error associated 

with the assumption γintr=0 may further increase. For example, when rk=10, the first mode period of 

the lower structure is close to the fourth mode period of the upper structure. Therefore, the interaction 

of the first mode of the lower structure and the fourth mode of the upper structure becomes significant. 

The normalized effective masses of the top storey associated with the fourth and fifth modes have the 

local maximum values, as shown in Figure D.2 (e). Meanwhile, the corresponding spectrum ratios 

can be quite large when TsingU/Ts=1.1, say Sa(T4)/Sa(T1)=Sa(T5)/Sa(T1)=6.10. Therefore, due to the 

increase of the spectrum ratios, the magnitude of the negative error of the top shear force associated 

with the assumption γintr=0 will further increase. In this case, the assumption γintr=0 results in an 

underestimation of the shear force of the top storey by 40.0%, as shown in Figure D.2 (d). However, 

when TsingU/Ts=0.3, the assumption γintr=0 can still well approximate the shear force for the top storey 

of the upper structure, with the error of top storey shear force being 7.9%, as shown in Figure D.2 (a). 

(3) As the further increase of rk, the magnitude of negative error associated with the top storey  

gradually decreases. For example, the error is only -11.5% when rk=26 and TsingU/Ts=1.1. For the case 

where rk=26, the first mode period of the lower structure is close to the eighth mode period of the 

upper structure. The interaction of these two vibration modes results in that the normalized effective 

mass of the top storey associated with the eighth mode has a local maximum value, as shown in 

Figure D.2 (e). However, compared to the normalized effective mass of the first mode, the local 

maximum normalized effective mass associated with the eighth mode is so small that it has little 

influence on the seismic load. Therefore, the interaction of the first mode of the lower structure and 
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eighth mode of the upper structure does not introduce a significant negative error for the seismic load 

of the top storey. 

(4) Finally, when rk further increases as it is not less than 44, the first mode period of the lower 

structure is much greater than the eighth mode period of the upper structure. The lower structure has 

no effect on the upper one. The upper structure now can be truly treated it is fixed to the ground base. 

The assumption γintr=0 can well approximate the shear force of the top storey regardless values of the 

TsingU/TS, as shown in Figures D.2 (a) ~ (d). 

Upon the foregoing discussions, it is seen the underestimation of the shear force associated with  

the top storey is primarily resulted from the  fact that the assumption γintr=0 ignores the interaction of 

the first mode of the lower structure and other higher vibration modes of the upper structure. This is 

also the primary reason for the underestimation of the amplification factor αU associated with the 

simplified 2DOF model when rk>rkU3, as discussed in Appendix D.1. The only difference is that the 

amplification associated with these interactions is far more significant on the shear force of the top 

storey than on the base shear force of the upper structure. Therefore, an additional top shear force 

should be added to account for the “extra” amplification effect contributed by the interaction of the 

first mode of the lower structure and other higher vibration modes of the upper structure on the shear 

force of the top storey. The value of γintr shown in Eq.(4.18) cannot be zero in certain cases. 

The foregoing discussions also show that the error of the shear force for the top storey associated 

with the assumption γintr=0 is primarily affected by the period ratio of the upper structure TU/TS and 

period ratio between lower and upper structures TU/TL.  

Effects of TU/TS 

The effect of TU/TS on the error of the shear force of the top storey associated with the assumption 

γintr=0 is illustrated in Figure D.2 (g). From the figure, it is seen the error is positive when the period 

ratio of the upper structure TU/TS is small. Then, as the increase of TU/TS, the effect of the “ith-

interacted vibration modes” becomes more significant due to the increase the spectrum ratio 

Sa(Ti)/Sa(T1); therefore, the error turns to be negative and the magnitude of the negative error 

gradually increases. Finally, when the period ratio TU/TS is approximately equal to the period ratio 

between the lower and upper structures, i.e, TU/TS=TU/TL, the negative error reaches the minimum 

value and remains invariant as the further increase of TU/TS. For example, when rk=3.67, which results 

in TU/TL=3.70, the error is positive if TU/TS≤1.63; then as TU/TS increases from 1.63 to 3.70, the error 

decreases from 0% to -27%; and finally, the error remains the minimum value -27% when the period 

ratio TU/TS increases from 3.70 to 5.96, as shown in Figure D.2 (g). 
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The effect of the TU/TS on the error of the top shear force is primarily resulted from its effect on the 

spectrum ratio between the “ith-interacted vibration modes” and the first mode, i.e., Sa(Ti)/Sa(T1). The 

spectrum ratio Sa(Ti)/Sa(T1) is not only related with the period ratio Ti/T1, but also related with T1/TS, 

as shown in the response spectrum curve shown in Figure 1.4. Meanwhile, when the proposed two-

stage analysis procedure is applicable for the combined framing system, it is seen T1≈TU as shown in 

Figure 4.3 (b). Furthermore, upon the foregoing discussion, it is seen the period of the “ith-interacted 

vibration mode” is approximately equivalent to the period of the lower structure TL. Therefore, the 

spectrum ratio between the “ith-interacted vibration modes” and the first mode, i.e., Sa(Ti)/Sa(T1), can 

be approximately evaluated by TL/TU and TU/TS as follows : 
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S T S T
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


   
 

 (D.2) 

Based on Eq.(D.2), it is seen when (TU/TS) ≥(TU/TL), the ratio TU/TS has no influence on the spectrum 

ratio Sa(Ti)/Sa(T1). Therefore, when TU/TS≥(TU/TL), the error of the top storey shear force associated 

with the assumption γintr=0 remains as the constant being the minimum value. 

Effects of TU/TL 

As shown in Figure D.2 (h), with a given period ratio of the upper structure TU/TS, the magnitude of 

the negative error firstly increases and then decreases as the increase of the period ratio TU/TL. When 

the first mode period of the lower structure is greater than the period of the highest mode the upper 

structure, the interaction between the lower and upper structures in terms of mass and stiffness can be 

completely ignored and the negative error of the top storey shear force completely vanishes. For 

example, when rk=44, which results in TU/TL=12.83, the first mode period of the lower structure is 

greater than the eighth mode period of the upper structure, and the proposed two-stage analysis 

procedure with the assumption γintr=0 can well approximate the shear force, as shown in Figures D.2 

(a) ~ (d).  

D.2.2 Lower structure 

The seismic load of the lower structure evaluated by the proposed two-stage analysis procedure may 

be much greater than that calculated from the MDOF model. To illustrate how the error occurs, take 

buildings with NL=4, NU=6 and rm=1.2 as example. The storey-mass of the upper structure and the site 

spectrum of the combined framing system are identical to those of the combined framing system 

discussed in Appendix D.2.1. The selected storey-stiffness ratio rk for the building ranges between 

7.50 and 80, with 7.50, which is calculated based on Eq.(4.11), being the two-stage storey-stiffness 
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ratio of the selected combined framing system. Note for the reason of better illustration, the range of 

the selected storey-stiffness ratio rk exceeds the limitation specified in section 1.3.2. The comparison 

is shown in Figures D.3 (a) ~ (d). 

The results marked by “proposed” in Figures D.3 (a) ~ (d) are calculated by the proposed two-stage 

analysis procedure, and the results marked by “ASCE 7” are calculated by the two-stage analysis 

procedure prescribed in ASCE 7 (ASCE, 2006). Negative and positive errors shown in the figures 

signify the two-stage analysis procedure underestimates and overestimates the seismic load, 

respectively. From Figures D.3 (a) ~ (d), it is seen the proposed two-stage analysis procedure may 

considerably overestimate the shear forces of the lower structure. However, compared to the 

overestimation of shear forces of the lower structure associated with the two-stage analysis procedure 

prescribed in ASCE 7 (ASCE, 2006), the accuracy of the proposed two-stage analysis procedure is 

greatly improved. For example, when TsingU/TS=1.1 and rk=12, the proposed two-stage analysis 

procedure overestimates the shear force for the second storey of the lower structure by  87.1%, while 

such overestimation associated with ASCE 7 is 133.4%, as shown in Figure D.3 (b). The primary 

reason for the improved accuracy associated with the proposed two-stage analysis procedure is 

discussed in section 4.5.2.1.  The proposed two-stage analysis procedure adopts the SRSS rule to 

combine the peak modal responses while the two-stage analysis procedure in ASCE 7 (ASCE, 2006) 

selected the ABSSUM rule to combine the peak modal response. Usually, using the ABSSUM rule to 

combine the peak modal response will lead to much larger results (Chopra, 2007). 

As to the proposed two-stage analysis procedure, the primary reason for the overestimation of the 

shear forces of the lower structure is similar to that for the underestimation of the top storey shear 

force of the upper structure discussed in Appendix D.2.1. The proposed two-stage analysis procedure 

is established based on the simplified 2DOF model and does not account for the interaction of the first 

mode of the lower structure and higher vibration modes of the upper structure. To illustrate how such 

interaction affects the error of shear forces of the lower structure associated with the proposed two-

stage analysis procedure, the base shear force of the lower structure, i.e., the shear force for the first 

storey of the lower structure, is selected as the example to be further investigated. 
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(a) comparison of shear force (rk=7.5) 
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(b) comparison of shear force (rk=12) 
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(c) comparison of shear force (rk=21) 

Figure D.3: Errors of shear force for lower structure associated with two-stage 

                analysis procedure (NL=4, NU=6 ,rm=1.2 and TsingU/TS=1.1) 
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(d) comparison of shear force (rk=80) 
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(e) normalized effective mass of entire building      (f) normalized effective mass of entire building 

in combined framing MDOF model                               in simplified 2DOF model      

Figure D.3: Errors of shear force for lower structure associated with two-stage 

                analysis procedure (NL=4, NU=6 ,rm=1.2 and TsingU/TS=1.1) (continued) 

 

From Figures D.3 (a) ~ (d), it is seen when TsingU/TS=1.1, the error of the base shear forces of the 

lower structure is greatly dependent on the storey-stiffness ratio rk. The following is observed: 

(1) When the storey-stiffness ratio rk=7.50, the normalized first mode effective modal mass of 

entire building for both the MDOF model and the simplified 2DOF model are close to each other, i.e., 

0.59 vs. 0.64, as shown in Figures D.3 (e) and (f), respectively. Note since the proposed two-stage 

analysis procedure is established based on the simplified 2DOF model, the normalized effective 

modal mass distribution associated with the simplified 2DOF model represents the normalized 

effective modal distribution associated with the proposed two-stage analysis procedure. On the other 

hand, the calculated period ratio between lower and upper structures, TU/TL, is 3.60. Concerning the 

six-storey upper structure, its second and third mode periods are 2.94 and 4.71 times its first mode 

period, respectively. Therefore, for the case where rk=7.50, the first mode period of the lower 
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structure lies between the second and third mode periods of the upper structure. Owing to the 

interaction of these vibration modes, the rest of the normalized effective modal mass of the entire 

building other than that of the first mode, i.e., 0.41 in the MDOF model, is primarily distributed in the 

second and third vibration modes, as shown in Figure D.3 (e). However, in the simplified 2DOF 

model, the remaining normalized effective modal mass of the entire building other than that of the 

first mode, i.e., 0.36, is “lumped” in the second mode, as shown in Figure D.3 (f). Since the 

normalized effective modal mass of the entire building for each mode in both the MDOF and 2DOF 

modes lies between zero and unity, according to the CQC rule, the simplified 2DOF model will lead 

to larger base shear force of the lower structure, with the error being 60.6% as shown in Figure D.3 

(a). 

(2) As the increase of the storey-stiffness ratio rk, the normalized effective modal mass of the entire 

building associated with the first mode in the MDOF model does not change a lot. However, the 

remaining normalized effective modal mass of the entire building other than that of the first mode 

changes. The normalized effective modal mass of the entire building associated with the second mode 

decreases while that associated with the fourth mode increases, as shown in Figure D.3 (e).  For 

example, when rk=12, TU/TL= 4.55. The first mode period of the lower structure is more close to the 

third mode period of the upper structure, the interaction of the first mode of the lower structure and 

the third mode of the upper structure is more significant. Such interaction results in that the 

normalized effective modal masses of the entire building associated with the fourth mode increases 

while that associated with the second mode decreases. In general, the remaining normalized effective 

modal mass of the entire building other than that of the first mode is distributed in three modes: the 

second to fourth modes in the MDOF model, as shown in Figure D.3 (e). Therefore, the “lumped” 

mass effect associated with the second mode of the simplified 2DOF model becomes more significant. 

The error of the base shear force of the lower structure associated with the proposed two-stage 

analysis procedure increases,  with the error being 83.7%  if rk=12 as shown in Figure D.3 (b). 

(3) As the further increase of rk, the error of the base shear force of the lower structure associated 

with the proposed two-stage analysis procedure gradually decreases. For example, the error is 67.3% 

when rk=21, as shown in Figure D.3 (c). For the case where rk=21, TU/TL= 6.02. The first mode period 

of the lower structure is close to the fourth mode period of the upper structure, and the interaction 

occurs between the first mode of the lower structure and fourth mode of the upper structure. Such 

interaction then results in that the remaining normalized effective modal masses of the entire building 

other than that of the first mode is primarily distributed in two vibration modes of the MDOF model, 
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i.e., fourth and fifth modes, as shown in Figure D.3 (e). The “lumped” mass effect associated with the 

second mode of the simplified 2DOF model slightly decreases.  

(4) With the continuing increase of rk, the error of the base shear force of the lower structure 

associated with the proposed two-stage analysis procedure continues decreasing. Finally, the base 

shear force of the lower structure in the MDOF model is only dominated by two modes: the first and 

seventh modes. For example at rk=80, the first period of the lower structure is approximately 1.45 

times the last (sixth) period of the upper structure, the interaction of the first mode of the lower 

structure and other higher vibration modes of the upper structure can be ignored. The base shear force 

of the lower structure in the MDOF model is dominated by the first and (NU+1) modes, with the 

corresponding normalized effective modal masses of the entire building being 0.49 and 0.36, 

respectively, as shown in Figure D.3 (e). On the other hand, the normalized effective modal masses of 

the entire building in the simplified 2DOF model for the first and second modes are 0.56 and 0.44, 

respectively, as shown in Figure D.3 (f). It is seen the simplified 2DOF model can represent the 

MDOF structure well when =80. Therefore, as shown in Figure D.3 (d), the error of the base shear 

force of the lower structure associated with the proposed two-stage analysis procedure turns to be 

acceptable for this case. 

   Upon the foregoing discussions, it is seen one significant reason for the underestimation of the base 

shear force of the lower structure associated with the proposed two-stage analysis procedure is that 

the normalized effective modal mass of the entire building for each mode lies between zero and unity, 

as shown in Figure D.3 (e). In addition, the interaction of the higher vibration modes distributes the 

normalized effective modal masses of the entire building into several “interacted vibration modes”. 

The simplified 2DOF model associated with the proposed two-stage analysis procedure ignores such 

interaction and lumps the normalized effective modal masses of the entire building in two or three 

“interacted vibration modes” of the MDOF model in one mode, i.e., the second mode of the 

simplified 2DOF model. Therefore, based on the CQC combination rule, the proposed two-stage 

analysis procedure leads to very conservative results for the shear forces of the lower structure. 

However, as to the upper structure, since the normalized effective modal masses associated with the 

first mode is greater than unity, as shown in both Figures D.1 (c) ~ (d) and Figures D.2 (e ) ~ (f), such 

interaction will lead to larger shear force of the upper structure. 

The two-stage analysis procedure prescribed in ASCE 7 (ASCE, 2006; 2010) also does not account 

for the effect of the interaction of the first mode of the lower structure and higher vibration modes of 

the upper structure. In addition, ASCE 7 selects the ABSSUM rule to combine the peak modal 

response. Therefore, the two-stage analysis procedure prescribed in ASCE 7 often leads to overly 
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conservative results associated with the shear forces of the lower structures, as shown in Figures D.3 

(a) ~ (d). 
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Appendix E   Development of Canadian simplified approaches 

E.1 Error of the simplified 2DOF model  

With the adoption of the NBCC 2010 spectrum, the factor αU evaluated by the simplified 2DOF 

model (Eq.(A.16)) is compared with that evaluated based on the MDOF model (Eq.(D.1)).  By 

limiting the storey-stiffness ratio rk be in the range between rkU2 and rkU3, the maximum and minimum 

errors of the factor αU induced by the simplified 2DOF model for the three representative seismic 

cities, i.e., Vancouver, Montreal and Halifax, are listed in Tables E.1 to E.6. The positive and 

negative errors in the tables represent the simplified 2DOF model overestimate and underestimate the 

factor αU, respectively. 

Table E.1: Maximum errors of factor αU induced by the simplified 2DOF model when rkU2≤rk≤rkU3 

(Vancouver spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 0.0% 4.8% 6.4% N/A N/A N/A N/A N/A N/A 

2 4.9% 9.7% 15.2% 16.9% 16.0% 16.3% 15.1% N/A N/A 

3 6.4% 12.1% 22.8% 22.6% 22.6% 21.5% 21.2% N/A N/A 

4 7.1% 12.9% 25.3% 26.6% 26.7% 26.2% N/A N/A N/A 

5 7.4% 13.1% 25.3% 27.6% 27.3% N/A N/A N/A N/A 

6 N/A 13.2% 24.6% 28.4% N/A N/A N/A N/A N/A 

7 N/A 13.4% 23.8% N/A N/A N/A N/A N/A N/A 

8 N/A 13.5% N/A N/A N/A N/A N/A N/A N/A 

9 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the storey combination of the lower and upper structures, or the storey-stiffness ratio rk that  
lies between rkU2 and rkU3 for that storey combination , is out of the scope of this study. 

 

Table E.2: Minimum errors of factor αU induced by the simplified 2DOF model when rkU2≤rk≤rkU3 

(Vancouver spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 0.0% 2.2% 4.0% N/A N/A N/A N/A N/A N/A 

2 0.7% 2.8% 3.6% 4.4% 5.4% 6.5% 7.5% N/A N/A 

3 1.7% 3.6% 4.1% 4.3% 4.7% 5.1% 5.7% N/A N/A 

4 2.6% 4.7% 5.0% 4.8% 4.8% 5.0% N/A N/A N/A 

5 3.2% 5.3% 5.8% 5.5% 5.2% N/A N/A N/A N/A 

6 N/A 5.8% 6.4% 6.2% N/A N/A N/A N/A N/A 

7 N/A 6.3% 7.0% N/A N/A N/A N/A N/A N/A 

8 N/A 6.7% N/A N/A N/A N/A N/A N/A N/A 

9 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the storey combination of the lower and upper structures, or the storey-stiffness ratio rk that  
lies between rkU2 and rkU3 for that storey combination , is out of the scope of this study. 
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Table E.3: Maximum errors of factor αU induced by the simplified 2DOF model when rkU2≤rk≤rkU3 

(Montreal spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 0.0% 6.5% 8.1% N/A N/A N/A N/A N/A N/A 

2 7.7% 16.2% 18.8% 21.4% 19.7% 20.0% 17.6% N/A N/A 

3 9.3% 20.0% 27.8% 28.1% 28.3% 26.3% 30.2% N/A N/A 

4 9.8% 20.5% 29.7% 31.9% 33.3% 32.6% N/A N/A N/A 

5 9.8% 20.1% 28.8% 33.0% 31.9% N/A N/A N/A N/A 

6 N/A 19.8% 27.4% 33.1% N/A N/A N/A N/A N/A 

7 N/A 20.1% 25.9% N/A N/A N/A N/A N/A N/A 

8 N/A 19.7% N/A N/A N/A N/A N/A N/A N/A 

9 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the storey combination of the lower and upper structures, or the storey-stiffness ratio rk that  
lies between rkU2 and rkU3 for that storey combination , is out of the scope of this study. 

 

Table E.4: Minimum errors of factor αU induced by the simplified 2DOF model when rkU2≤rk≤rkU3 

(Montreal spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 0.0% 1.9% 3.7% N/A N/A N/A N/A N/A N/A 

2 0.7% 2.8% 3.6% 4.4% 5.4% 6.5% 7.5% N/A N/A 

3 1.7% 3.6% 4.1% 4.3% 4.7% 5.1% 5.7% N/A N/A 

4 2.6% 4.7% 5.0% 4.8% 4.8% 5.0% N/A N/A N/A 

5 3.2% 5.3% 5.8% 5.5% 5.2% N/A N/A N/A N/A 

6 N/A 5.8% 6.4% 6.2% N/A N/A N/A N/A N/A 

7 N/A 6.3% 7.0% N/A N/A N/A N/A N/A N/A 

8 N/A 6.7% N/A N/A N/A N/A N/A N/A N/A 

9 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the storey combination of the lower and upper structures, or the storey-stiffness ratio rk that  
lies between rkU2 and rkU3 for that storey combination , is out of the scope of this study. 

 

Table E.5: Maximum errors of factor αU induced by DOF model when rkU2≤rk≤rkU3 

(Halifax spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 0.0% 5.0% 6.5% N/A N/A N/A N/A N/A N/A 

2 5.2% 9.7% 13.5% 15.0% 14.6% 16.0% 16.7% N/A N/A 

3 6.7% 12.4% 19.8% 19.5% 20.0% 25.1% 32.4% N/A N/A 

4 7.4% 13.2% 21.8% 22.9% 26.6% 35.0% N/A N/A N/A 

5 7.7% 13.6% 22.0% 24.0% 30.2% N/A N/A N/A N/A 

6 N/A 13.9% 21.6% 24.6% N/A N/A N/A N/A N/A 

7 N/A 14.2% 21.0% N/A N/A N/A N/A N/A N/A 

8 N/A 14.2% N/A N/A N/A N/A N/A N/A N/A 

9 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the storey combination of the lower and upper structures, or the storey-stiffness ratio rk that  
lies between rkU2 and rkU3 for that storey combination , is out of the scope of this study. 
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Table E.6: Minimum errors of factor αU induced by the simplified 2DOF model when rkU2≤rk≤rkU3 

(Halifax spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 0.0% 2.2% 4.2% N/A N/A N/A N/A N/A N/A 

2 0.7% 2.8% 3.6% 4.4% 5.4% 6.5% 7.5% N/A N/A 

3 1.7% 3.6% 4.1% 4.3% 4.7% 5.1% 5.7% N/A N/A 

4 2.6% 4.7% 5.0% 4.8% 4.8% 5.0% N/A N/A N/A 

5 3.2% 5.3% 5.8% 5.5% 5.2% N/A N/A N/A N/A 

6 N/A 5.8% 6.4% 6.2% N/A N/A N/A N/A N/A 

7 N/A 6.3% 7.0% N/A N/A N/A N/A N/A N/A 

8 N/A 6.7% N/A N/A N/A N/A N/A N/A N/A 

9 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the storey combination of the lower and upper structures, or the storey-stiffness ratio rk that  
lies between rkU2 and rkU3 for that storey combination , is out of the scope of this study. 

E.2 Determination of RkU2stg 

As the NBCC 2010 specifies different spectral shapes for different cities in Canada, the limits of the 

period ratio T1/TU that ensure the spectral ratio Sa(T1)/Sa(TU) be close to unity are different for 

different cities. Take cities of Vancouver, Montreal and Halifax as example. To ensure that the 

spectral ratio Sa(T1)/Sa(TU) is not less than 0.91, it is required that T1/TU is not greater than 1.063 if the 

Vancouver spectrum is selected; however, if the Montreal and Halifax spectra are selected, it is 

required that T1/TU is not greater than 1.026, as shown in Figures E.1 (a) ~ (b). 

While the period requirement T1/TU≤1.1, which is the requirement used in the ASCE 7 spectrum, is 

over-relaxed for the Montreal and Halifax spectra, the period requirement T1/TU≤1.026 is too stringent 

for the Vancouver spectrum. The question arises as what is the appropriate threshold value for the 

period ratio T1/TU when determining the ratio RkU2stg based on the NBCC 2010 spectra. The selection 

in this study is based on the spectral shapes of Vancouver, Montreal and Halifax. As a compromise, 

the value 1.05 is selected as the threshold limit for the period ratio T1/TU that is used to determine the 

ratio RkU2stg. As shown in Figure E.1 (c), when T1/TU=1.05, the minimum spectral ratio Sa(T1)/Sa(TU) is 

0.83, and for most ranges of periods TU, the ratio Sa(T1)/Sa(TU) is greater than 0.90. Therefore, the 

compromise value 1.05 is appropriate. Such selection can be further justified by the acceptable error 

of the proposed factor αU discussed in section 5.3.5. 

Then, similar to Eq.(C.3) of Appendix C.2, the overall two-stage stiffness ratio of the upper 

structure RkU2stg can be determined based on the following two requirements: 
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(a) T1/TU=1.063                             (b) T1/TU =1.026                            (c) T1/TU =1.05 

Figure E.1: Effect of spectral shape on spectral acceleration ratio Sa(T1)/Sa(TU)  

Based on Eq.(A.8), the theoretical solution for T1/TU ≤1.05 is 

 0.907 9.78k mR R    (E.2) 

By combining Eqs. (C.4) and (E.2), RkU2stg is finally determined as presented in Eq.(5.6), where 

RkU2stg=11.029Rm-2.5 (Rm>0.71) is still obtained by curve fitting of Eq.(C.4), as shown in  Figure.C.1 

(a) with logarithmic scale on both horizontal and vertical axes.  

E.3 Analytical solution of critical storey-stiffensses 

Take the critical storey-stiffness kαUmax as example to illustrate why solutions of the critical storey-

stiffensses cannot be analytically derived from Eq.(5.1) if the spectral acceleration is expressed by 

Eq.(5.7). In accordance with Eq. (3.8), express the storey-stiffness of the upper structure kU in terms 

of the period TU as follows: 
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The critical storey-stiffness kαUmax corresponds to the minimum required storey-stiffness of the upper 

structure when the storey-stiffness ratio rk lies between rkU2 and rkU3. The condition rkU2≤rk≤rkU3 in 

terms of the MDOF model corresponds to the condition RkU2≤Rk≤RkU3 in terms of the simplified 

2DOF model. Therefore, based on Eq. (3.12), it is obtained that the factor αU in the governing design 

equation, i.e. Eq. (5.1), is equal to αUmax since RkU2≤Rk≤RkU3. By assuming T1=1.30(Rm)
-

0.059
TU≥0.2second, the substitution of kU and αUmax in Eq. (5.1) with Eqs. (E.3) and (5.5), respectively, 

leads to 
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If the spectral acceleration Sa(T) is expressed by Eq. (5.7), it is obvious that the period TU that 

corresponds to kαUmax cannot be analytical derived from Eq. (E.4). To ensure that the period TU and 

the corresponding kαUmax be analytically solved, the spectral value Sa(T) should be either a power or an 

exponential function of the period T. 

E.3.1 Power function 

If each linear segment of the NBCC 2010 spectrum is approximated by a power function as shown in 

Eq. (5.8), the spectral ratio Sa(T1)/Sa(TU) can be evaluated as follows: 
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When determining the spectral ratio Sa(T1)/Sa(TU) based on Eq. (5.8), it is assumed that periods TU and 

T1 in Eq. (E.5) are located either in the same linear segment or in the adjacent linear segments of the 

NBCC 2010 spectrum. For example, if the period TU lies between 0.5 and 1.0(TU/T1) second, the 

period T1 is in the range between 0.5 and 1.0 second; therefore, periods TU and T1 are in the same 

linear segment and the spectral ratio is as shown in Eq. (E.5 e). If TU lies between 1.0(TU/T1) and 1.0 

second, the period T1 is in the range between 1.0 and 2.0 second; therefore, periods TU and T1 are in 

the adjacent linear segments and the spectral ratio is as shown in Eq. (E.5 f). It is impossible that the 

period TU is in the range between 0.5 and 1.0 second, and the period T1 is in the range between 2.0 

and 4.0 second. Considering that T1=[(NU+NL)/(NU+0.12NL)]
0.5

TU and T1=1.30(Rm)
-0.059

TU in Eqs. (5.4) 

and (5.5), respectively, the assumption that TU and T1 are either in the same linear segment or in the 

adjacent linear segments can be justified as follows: 
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Table E.7: Maximum period ratio T1/TU 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 1.34  1.19  1.13  1.10  1.08  1.07  1.06  1.05  1.05  

2 1.56  1.34  1.24  1.19  1.16  1.13  1.11  1.10  N/A 

3 1.71  1.46  1.34  1.27  1.22  1.19  1.17  N/A N/A 

4 1.84  1.56  1.42  1.34  1.28  1.24  N/A N/A N/A 

5 1.94  1.64  1.49  1.40  1.34  N/A N/A N/A N/A 

6 2.02  1.71  1.56  1.46  N/A N/A N/A N/A N/A 

7 2.09  1.78  1.61  N/A N/A N/A N/A N/A N/A 

8 2.14  1.84  N/A N/A N/A N/A N/A N/A N/A 

9 2.19  N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

(1) The period ratio T1/TU by setting T1=[(NU+NL)/(NU+0.12NL)]
0.5

TU for each storey combination of 

the lower and upper structures is shown in Table E.7. From the table, it is see that for most 

storeycombinations, the maximum period ratio T1/TU is not greater than 2.0. Compared to the 

characteristics of the NBCC 2010 spectrum shown in Figure 5.2 (a), it is obvious that periods TU and 

T1 either locate in the same linear segment or in the adjacent linear segments. The possible storey 

combinations that may result in the calculated period ratio being greater than 2.0 are NL=6, 7, 8, or 9 

and NU=1, with the maximum value being 2.19. However, since the maximum period TU is not greater 

than 0.31 second if NU=1, as discussed in section 1.3.2, the maximum period T1=0.3×2.19=0.66 

second, which is less than the 1.0 second of Figure 5.2 (a). Periods TU and T1 still locate in the 

adjacent linear segments.  

(2) On the other hand, the maximum period ratio T1/TU by setting T1=1.30(Rm)
-0.059

TU  occurs when 

Rm reaches the minimum value. Considering the scope of the investigated building stated in section 

1.3.2, the minimum Rm=0.11 which occurs when NL=1, NU=9 and rm=1. Consequently, the maximum 

period ratio T1/TU by setting T1=1.30(Rm)
-0.059

TU is T1/TU=1.30×(0.11)
-0.059

=1.48, which is less than 2.0. 

Periods TU and T1 still locate in the same linear segment or adjacent linear segments of the NBCC 

2010 spectrum. 

By comparing Eq. (5.8) to Eq. (5.7), it is found the difference in the flat portion exists between the 

approximated spectrum and the NBCC 2010 spectrum. The flat portion of the NBCC 2010 spectrum 

starts with T=0 second and ends with T=0.2 second, as shown in Figure 5.2 (a). However, the ending 

point for the flat portion of the approximated spectrum is dependent on the curve fitting parameter 𝑇𝑆
′, 

as shown in Figures E.2 (a) ~ (b). Such difference between the approximated and the NBCC 2010 

spectra results in the difference in the condition for Sa(T1)/Sa(TU)=1. By using the NBCC 2010 

spectrum, the condition for Sa(T1)/Sa(TU)=1 is T1≤0.2 second, but by using the approximated spectrum, 
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the condition turns to be T1≤𝑇𝑆
′. Considering such difference, Eqs. (5.4) and (5.5) turn to be the 

following two equations, respectively, if the approximated spectrum is adopted: 
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Then, by: (1) using Eq. (5.8) to express Sa(TU) and Eq. (E.5) to express Sa(T1)/Sa(TU), (2) using 

Eq.(E.6) to express αU1 and Eq. (E.7) to express αUmax, and (3) following the same procedure 

discussed in section 3.4, analytical solutions for the critical storey-stiffnesses kαU, kαUmax and kαU2stg 

can be derived from Eq. (5.1) as follows: 
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E.3.2 Exponential function 

If each linear segment of the NBCC 2010 spectrum is approximated by the exponential function as 

shown in Eq. (5.9), the spectral ratio Sa(T1)/Sa(TU) can be evaluated as follows: 
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Periods TU and T1 in Eq. (E.14) are assumed to be located either in the same linear segment or in the 

adjacent linear segments of the spectrum. By: (1) using Eq. (5.9) to express Sa (TU) and Eq. (E.14) to 

express Sa(T1)/Sa(TU), (2) using Eq. (E.6) to express αU1 and Eq. (E.7) to express αUmax, and (3) 

following the same procedure discussed in section 3.4, analytical solutions for the critical storey-

stiffnesses kαU, kαUmax and kαU2stg are obtained as follows: 
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where kU01, kU02 and kU03 are computed based on Eqs. (E.11) ~ (E.13), respectively, and the parameter 

yi, where i=1,2….,  is the numerical solution of the following equation: 

 2exp( )i i iy y b   (E.18) 

Use bαU1,i, bαUmax,i and bαU2stg,i to denote the bi of Eq. (E.18) that is applied to solve the yi in Eqs. (E.15), 

(E.16) and (E.17), respectively. They are calculated as follows: 
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Once bi in calculated based on Eq. (E.18), the numerical solution of yi can be solved by iteration. As 

to typical values of bi that will be encountered in the combined framing system, the numerical 

solution of yi is provided in Table E.8 for convenience. For other values of bi not listed in the table, 

the value of yi can be determined through the linear interpolation by the magnitude of bi. 
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Table E.8: Numerical solution of the yi 

yi bi yi bi 

-0.100 0.009 -1.100 0.403 

-0.200 0.033 -1.200 0.434 

-0.300 0.067 -1.300 0.461 

-0.400 0.107 -1.400 0.483 

-0.500 0.152 -1.500 0.502 

-0.600 0.198 -1.600 0.517 

-0.700 0.243 -1.700 0.528 

-0.800 0.288 -1.800 0.536 

-0.900 0.329 -1.900 0.540 

-1.000 0.368 -2.000 0.541 

 

E.4 Suggested spectrum approximation techniques 

Two different techniques are proposed to determine curve approximation parameters of the power and 

exponential functions, as shown in Figures E.2 (a) ~ (b). For the sake of convenience, each 

approximation is designated as a combination of the approximation function and the approximation 

technique, as shown in Table E.9. For example, the designation “EXP-1” represents the exponential 

function is selected to fit the NBCC 2010 spectrum and the curving fitting parameters of the 

exponential function are determined by the approximation technique 1. Equations to compute the 

curve fitting parameters for each approximation, which are discussed in the following Appendices 

E.4.1 and E.4.2, are also summarized in the table. In addition, the pros and cons for each 

approximation is discussed in Appendix E.6. 

E.4.1 Power function 

PWR-1 

As shown in Figure E.2 (a), the first approximation technique determines values of Ai and τi based on 

the spectral values at the starting and ending points of each linear segment. In accordance with this 

approximation technique: 

Table E.9: Designation rules of spectrum approximation schemes 

Designation approximation function approximation technique curve fitting equations 

PWR-1 power function 

(Eq.(5.8)) 

1 Eqs.(E.22) ~ (E.24) 

PWR-2 2 Eqs. (E.25) ~ (E.27) 

EXP-1 exponential function 

(Eq. (5.9)) 
1 Eqs. (E.28) ~ (E.30) 

EXP-2 2 Eqs. (E.31) ~ (E.33) 
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(a) approximation technique 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) approximation technique 2 

Figure E.2: Illustration of approximation techniques 
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PWR-2 

As shown in Figure E.2 (b), parameters A1 and τ1 for the first linear segment are determined by the 

slope and spectral value at the midpoint, where the period TU=0.35 second. For other linear segments, 

values of Ai and τi  are determined by spectral values at the starting point and midpoint of each linear 

segment. Values of τi and Ai are computed as follows: 
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In addition, the value of 𝑇𝑆
′  is determined by the intersection between the flat portion and the 

approximated first linear segment, as shown in Figure E.2 (b). Value of 𝑇𝑆
′ are calculated as follows: 
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E.4.2 Exponential function 

EXP-1 

The two approximation techniques shown in Figures E.2 (a) and (b) are also applied to determine 

values of 𝑇𝑆
′, Ai and τi in Eq. (5.9). If the first approximation technique shown in Figure E.2 (a) is 

adopted, values of 𝑇𝑆
′, Ai and τi are calculated as follows: 

 ' 0.2 sST    (E.28) 

 

 

 

 

ln (0.2) / (0.5)
                                     1  

0.2 0.5

ln (0.5) / (1.0)
                                     2  

0.5 1.0

ln (1.0) / (2.0)
                                     3 

1.0 2.0

a a

a a

i

a a

S S
i

S S
i

S S
i














 

 

ln (2.0) / (4.0)
                                    4  

2.0 4.0

a aS S
i













 

  (E.29) 

 

(0.2)exp( 0.2 )                                         1  

(0.5)exp( 0.5 )                                         2  

(1.0)exp( 1.0 )                                         3  

(2.

a i

a i

i

a i

a

S i

S i
A

S i

S







 

 


 

0)exp( 2.0 )                                         4  i i






  

  (E.30) 

EXP-2 

If the second approximation technique shown in Figure E.2 (b) is applied, values of τi, Ai and 𝑇𝑆
′ in 

Eq.(5.9) are evaluated as follows: 
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E.5 Error of proposed factor αU 

By considering all possible combinations of rm, rk, TsingU and TsingL that are presented in section 1.3.2, 

the maximum and minimum errors of the proposed factor αU  for the three representative seismic 

cities, i.e., Vancouver, Montreal and Halifax, are listed in Tables E.10 ~ E.15. 

Table E.10: Maximum errors of the proposed factor αU  (Vancouver spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 13.7% 15.7% 18.6% 22.5% 24.4% 25.7% 27.2% 26.9% 27.5% 

2 16.9% 18.4% 22.7% 28.0% 27.5% 27.4% 29.9% 27.6% N/A 

3 18.1% 23.4% 30.7% 28.3% 25.5% 29.1% 25.7% N/A N/A 

4 18.8% 22.4% 26.8% 32.3% 31.9% 23.9% N/A N/A N/A 

5 20.6% 24.0% 26.1% 29.8% 31.5% N/A N/A N/A N/A 

6 18.4% 23.4% 25.6% 28.4% N/A N/A N/A N/A N/A 

7 10.8% 21.4% 27.2% N/A N/A N/A N/A N/A N/A 

8 11.7% 23.6% N/A N/A N/A N/A N/A N/A N/A 

9 11.4% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.11: Minimum errors of the proposed factor αU  (Vancouver spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.4% 3.2% 5.3% 6.0% 9.0% 11.9% 14.5% 16.8% 17.8% 

2 6.9% 2.1% 4.6% 6.2% 4.0% 7.3% 7.5% 7.9% N/A 

3 6.7% 3.4% 0.5% 0.7% -3.5% 3.0% -3.1% N/A N/A 

4 6.5% 9.2% 0.0% 0.0% 4.1% -3.3% N/A N/A N/A 

5 6.9% 8.7% 0.0% 3.6% 2.5% N/A N/A N/A N/A 

6 7.1% 7.8% 0.0% 1.6% N/A N/A N/A N/A N/A 

7 -1.0% 7.1% N/A N/A N/A N/A N/A N/A N/A 

8 -1.0% 6.5% N/A N/A N/A N/A N/A N/A N/A 

9 -0.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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Table E.12: Maximum errors of the proposed factor αU  (Montreal spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 13.7% 17.9% 20.7% 23.6% 24.4% 25.6% 28.2% 27.9% 28.3% 

2 18.6% 30.4% 24.2% 31.3% 30.7% 29.4% 31.8% 28.5% N/A 

3 20.0% 29.6% 34.9% 29.0% 31.5% 32.9% 25.6% N/A N/A 

4 19.9% 27.4% 29.4% 37.3% 35.3% 25.5% N/A N/A N/A 

5 20.6% 25.5% 26.1% 31.7% 35.2% N/A N/A N/A N/A 

6 20.5% 24.4% 25.7% 28.4% N/A N/A N/A N/A N/A 

7 14.9% 23.8% 27.2% N/A N/A N/A N/A N/A N/A 

8 14.9% 23.7% N/A N/A N/A N/A N/A N/A N/A 

9 15.6% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.13: Minimum errors of the proposed factor αU  (Montreal spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.4% 0.7% 1.4% 1.3% 3.3% 7.2% 9.6% 8.3% 3.0% 

2 5.8% 1.5% 3.1% 2.4% -2.6% 0.6% 0.5% 1.7% N/A 

3 4.6% 2.6% 0.5% -0.8% -4.6% -4.6% -3.1% N/A N/A 

4 3.8% 4.9% -1.3% 0.0% -5.8% -4.3% N/A N/A N/A 

5 4.1% 3.7% 0.0% 0.3% -5.1% N/A N/A N/A N/A 

6 5.4% 2.9% 0.0% 1.4% N/A N/A N/A N/A N/A 

7 -1.0% 2.2% N/A N/A N/A N/A N/A N/A N/A 

8 -1.0% 1.6% N/A N/A N/A N/A N/A N/A N/A 

9 -0.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.14: Maximum errors of the proposed factor αU  (Halifax spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 13.7% 15.7% 18.7% 21.4% 23.4% 24.8% 26.0% 26.8% 27.5% 

2 16.9% 19.4% 20.3% 23.6% 23.0% 24.6% 25.3% 28.9% N/A 

3 18.1% 23.4% 25.6% 25.2% 21.3% 29.1% 24.6% N/A N/A 

4 18.8% 22.4% 24.2% 27.1% 29.6% 31.9% N/A N/A N/A 

5 20.6% 24.0% 26.1% 25.8% 33.6% N/A N/A N/A N/A 

6 19.1% 23.4% 25.6% 28.4% N/A N/A N/A N/A N/A 

7 12.1% 21.4% 27.2% N/A N/A N/A N/A N/A N/A 

8 12.8% 23.6% N/A N/A N/A N/A N/A N/A N/A 

9 12.4% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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Table E.15: Minimum errors of the proposed factor αU  (Halifax spectrum) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.4% 3.2% 6.6% 7.8% 8.1% 11.7% 15.4% 16.7% 12.6% 

2 6.9% 2.1% 4.6% 6.2% 6.3% 3.8% 3.9% 5.5% N/A 

3 6.6% 3.4% 0.5% 0.7% -3.5% 5.3% -3.1% N/A N/A 

4 6.2% 9.2% 0.0% 0.0% 4.7% -3.3% N/A N/A N/A 

5 6.7% 8.4% 0.0% 3.6% 2.5% N/A N/A N/A N/A 

6 6.9% 7.7% 0.0% 1.6% N/A N/A N/A N/A N/A 

7 -1.0% 7.1% 0.0% N/A N/A N/A N/A N/A N/A 

8 -1.0% 6.7% N/A N/A N/A N/A N/A N/A N/A 

9 -0.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

E.6 Error of αUSa(TU) 

By considering all possible combinations of rm, rk, TsingU and TsingL that are presented in section 1.3.2, 

the maximum and minimum errors of the estimated αUSa(TU)  for each approximation listed in Table 

E.9 and the three representative seismic cities are listed in Tables E.16 ~ E.39. 

Table E.16: Maximum errors of the estimated αUSa(TU)  (Vancouver spectrum, PWR-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 13.7% 15.7% 18.1% 18.9% 22.2% 23.5% 23.2% 22.9% 25.1% 

2 16.9% 17.6% 17.5% 18.1% 20.4% 21.6% 22.0% 21.9% N/A 

3 18.1% 23.4% 20.1% 19.2% 19.5% 19.5% 19.9% N/A N/A 

4 18.8% 22.4% 22.1% 21.7% 22.9% 21.0% N/A N/A N/A 

5 19.1% 20.7% 24.4% 21.3% 20.8% N/A N/A N/A N/A 

6 17.3% 19.0% 21.4% 22.6% N/A N/A N/A N/A N/A 

7 9.3% 17.7% 21.6% N/A N/A N/A N/A N/A N/A 

8 7.0% 19.3% N/A N/A N/A N/A N/A N/A N/A 

9 7.7% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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Table E.17: Minimum errors of the estimated αUSa(TU)  (Vancouver spectrum, PWR-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -4.8% -1.8% -3.0% -1.1% -0.7% 1.1% 2.7% 4.7% 6.3% 

2 2.0% -3.4% -3.8% -3.4% -0.8% -1.7% -1.6% -1.2% N/A 

3 1.6% -2.2% -4.4% -3.1% -3.6% -5.4% -5.7% N/A N/A 

4 0.5% 2.0% -4.0% -3.3% -2.1% -7.0% N/A N/A N/A 

5 1.2% 1.6% -4.6% -2.5% -4.2% N/A N/A N/A N/A 

6 1.6% 1.6% -6.2% -4.1% N/A N/A N/A N/A N/A 

7 -3.7% 1.5% -5.9% N/A N/A N/A N/A N/A N/A 

8 -3.8% 1.4% N/A N/A N/A N/A N/A N/A N/A 

9 -3.5% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.18: Maximum errors of the estimated αUSa(TU)  (Montreal spectrum, PWR-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 13.7% 15.7% 17.7% 18.4% 21.4% 22.2% 23.3% 18.6% 24.7% 

2 16.9% 19.0% 17.5% 17.1% 19.4% 20.1% 22.1% 17.4% N/A 

3 18.1% 23.4% 20.5% 19.5% 16.8% 19.1% 20.1% N/A N/A 

4 18.8% 22.4% 19.8% 21.3% 22.7% 16.7% N/A N/A N/A 

5 18.1% 20.9% 22.5% 20.7% 20.9% N/A N/A N/A N/A 

6 16.9% 16.0% 21.0% 18.8% N/A N/A N/A N/A N/A 

7 7.4% 14.0% 15.3% N/A N/A N/A N/A N/A N/A 

8 4.5% 14.5% N/A N/A N/A N/A N/A N/A N/A 

9 5.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.19: Minimum errors of the estimated αUSa(TU)  (Montreal spectrum, PWR-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -10.9% -8.6% -9.1% -6.7% -9.4% -11.8% -11.8% -12.2% -11.2% 

2 -7.9% -8.3% -10.0% -10.6% -12.1% -17.4% -17.2% -17.4% N/A 

3 -7.9% -8.7% -9.9% -8.9% -12.7% -18.8% -21.9% N/A N/A 

4 -7.9% -4.9% -9.7% -9.2% -16.9% -22.0% N/A N/A N/A 

5 -6.5% -5.2% -9.4% -9.8% -16.5% N/A N/A N/A N/A 

6 -5.7% -5.2% -11.6% -11.3% N/A N/A N/A N/A N/A 

7 -10.5% -5.1% -11.5% N/A N/A N/A N/A N/A N/A 

8 -10.9% -5.1% N/A N/A N/A N/A N/A N/A N/A 

9 -10.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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Table E.20: Maximum errors of the estimated αUSa(TU)  (Halifax spectrum, PWR-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 13.7% 15.7% 18.1% 19.1% 22.2% 23.3% 23.1% 23.1% 25.0% 

2 16.9% 17.6% 17.5% 17.4% 20.3% 21.3% 22.0% 22.1% N/A 

3 18.1% 23.4% 19.8% 19.1% 19.1% 19.1% 19.9% 0.0% N/A 

4 18.8% 22.4% 21.8% 19.9% 21.4% 20.4% N/A N/A N/A 

5 18.9% 20.7% 24.2% 21.2% 19.8% N/A N/A N/A N/A 

6 17.2% 18.7% 21.3% 21.7% N/A N/A N/A N/A N/A 

7 9.1% 17.2% 20.7% N/A N/A N/A N/A N/A N/A 

8 6.9% 18.7% N/A N/A N/A N/A N/A N/A N/A 

9 7.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.21: Minimum errors of the estimated αUSa(TU)  (Halifax spectrum, PWR-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -5.5% -2.5% -0.7% 1.2% -7.0% -10.4% -10.1% -8.2% -7.6% 

2 0.9% -2.7% -2.5% -2.0% -10.6% -16.7% -13.9% -13.1% N/A 

3 0.9% -1.4% -2.4% -1.3% -10.9% -14.7% -16.2% N/A N/A 

4 -0.1% 3.1% -2.1% -3.8% -15.6% -21.9% 0.0% N/A N/A 

5 1.0% 2.7% -2.7% -5.7% -14.9% N/A N/A N/A N/A 

6 1.6% 2.7% -4.4% -6.9% 0.0% N/A N/A N/A N/A 

7 -3.2% 2.6% -4.2% N/A N/A N/A N/A N/A N/A 

8 -3.3% 2.6% N/A N/A N/A N/A N/A N/A N/A 

9 -3.0% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.22: Maximum errors of the estimated αUSa(TU)  (Vancouver spectrum, PWR-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 16.5% 20.0% 24.6% 30.3% 39.8% 41.1% 41.8% 42.4% 43.2% 

2 20.2% 20.7% 28.2% 34.3% 38.6% 39.7% 40.1% 41.3% N/A 

3 21.9% 26.9% 35.4% 36.3% 35.2% 37.0% 38.4% N/A N/A 

4 22.7% 26.1% 32.3% 38.2% 40.3% 34.5% N/A N/A N/A 

5 25.1% 27.8% 29.4% 35.9% 37.4% N/A N/A N/A N/A 

6 22.6% 25.4% 28.4% 33.6% N/A N/A N/A N/A N/A 

7 13.8% 27.8% 28.7% N/A N/A N/A N/A N/A N/A 

8 13.8% 27.5% N/A N/A N/A N/A N/A N/A N/A 

9 14.5% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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Table E.23: Minimum errors of the estimated αUSa(TU)  (Vancouver spectrum, PWR-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.4% 3.2% 7.8% 10.2% 10.9% 14.0% 14.9% 17.5% 18.9% 

2 6.9% 3.1% 6.2% 7.0% 9.7% 10.3% 9.6% 9.5% N/A 

3 7.8% 3.4% 0.5% 4.9% 0.9% 7.3% 4.2% N/A N/A 

4 7.0% 9.2% 4.6% 6.4% 9.8% 3.9% N/A N/A N/A 

5 7.3% 9.5% 5.9% 7.3% 7.3% N/A N/A N/A N/A 

6 7.4% 10.5% 4.0% 6.7% N/A N/A N/A N/A N/A 

7 0.7% 10.6% 4.3% N/A N/A N/A N/A N/A N/A 

8 2.4% 10.7% N/A N/A N/A N/A N/A N/A N/A 

9 2.6% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.24: Maximum errors of the estimated αUSa(TU)  (Montreal spectrum, PWR-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 20.3% 30.3% 35.1% 34.5% 39.4% 40.2% 41.6% 37.6% 43.2% 

2 27.8% 37.0% 32.2% 36.5% 37.1% 37.9% 40.2% 36.2% N/A 

3 26.7% 35.6% 39.4% 38.3% 35.2% 38.0% 38.0% N/A N/A 

4 27.5% 32.8% 32.6% 40.4% 42.2% 34.7% N/A N/A N/A 

5 29.0% 30.8% 30.7% 36.6% 40.0% N/A N/A N/A N/A 

6 28.4% 30.7% 31.5% 33.6% N/A N/A N/A N/A N/A 

7 19.6% 31.0% 32.4% N/A N/A N/A N/A N/A N/A 

8 20.7% 31.6% N/A N/A N/A N/A N/A N/A N/A 

9 22.1% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.25: Minimum errors of the estimated αUSa(TU)  (Montreal spectrum, PWR-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.4% 3.2% 5.0% 7.9% 8.1% 8.7% 10.5% 11.7% 12.7% 

2 6.4% 3.5% 3.9% 3.3% 6.9% 3.8% 3.8% 5.5% N/A 

3 6.4% 3.4% 0.5% 5.2% 0.9% -1.0% -2.2% N/A N/A 

4 6.3% 9.2% 4.3% 5.0% 2.5% -1.2% N/A N/A N/A 

5 6.5% 9.3% 4.6% 6.3% 2.4% N/A N/A N/A N/A 

6 6.3% 9.4% 2.2% 5.1% N/A N/A N/A N/A N/A 

7 1.6% 9.4% 2.2% N/A N/A N/A N/A N/A N/A 

8 2.9% 9.4% N/A N/A N/A N/A N/A N/A N/A 

9 2.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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Table E.26: Maximum errors of the estimated αUSa(TU)  (Halifax spectrum, PWR-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 17.1% 20.9% 25.6% 26.9% 34.2% 35.7% 36.0% 36.8% 55.3% 

2 20.5% 22.2% 24.2% 27.0% 33.1% 34.5% 34.6% 38.2% N/A 

3 22.2% 27.2% 28.8% 31.6% 30.3% 33.6% 41.0% N/A N/A 

4 23.3% 26.5% 26.5% 32.0% 34.0% 36.7% N/A N/A N/A 

5 25.5% 28.1% 27.9% 29.9% 33.3% N/A N/A N/A N/A 

6 23.1% 25.8% 28.0% 31.3% N/A N/A N/A N/A N/A 

7 14.1% 24.8% 28.5% N/A N/A N/A N/A N/A N/A 

8 14.9% 26.2% N/A N/A N/A N/A N/A N/A N/A 

9 15.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.27: Minimum errors of the estimated αUSa(TU)  (Halifax spectrum, PWR-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.4% 3.2% 7.8% 10.6% 10.9% 11.5% 12.9% 17.5% 19.1% 

2 6.9% 3.1% 5.9% 6.7% 9.1% 7.7% 9.8% 6.6% N/A 

3 7.8% 3.4% 0.5% 5.2% 0.9% 5.9% 2.6% N/A N/A 

4 7.1% 9.2% 4.7% 6.8% 5.1% 2.9% N/A N/A N/A 

5 7.2% 9.5% 6.0% 7.6% 5.0% N/A N/A N/A N/A 

6 7.2% 10.5% 4.1% 7.2% N/A N/A N/A N/A N/A 

7 0.8% 10.6% 4.2% N/A N/A N/A N/A N/A N/A 

8 2.8% 10.9% N/A N/A N/A N/A N/A N/A N/A 

9 2.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.28: Maximum errors of the estimated αUSa(TU)  (Vancouver spectrum, EXP-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 13.7% 15.7% 18.4% 20.1% 22.7% 23.6% 24.6% 24.0% 25.9% 

2 16.9% 17.6% 18.0% 23.0% 22.0% 24.0% 24.4% 23.0% N/A 

3 18.1% 23.4% 25.2% 22.7% 19.9% 24.0% 21.6% N/A N/A 

4 18.8% 22.4% 23.5% 26.3% 26.7% 21.1% 0.0% N/A N/A 

5 20.3% 22.9% 25.6% 24.2% 25.1% N/A N/A N/A N/A 

6 18.2% 21.3% 23.5% 25.5% N/A N/A N/A N/A N/A 

7 10.4% 19.3% 23.2% N/A N/A N/A N/A N/A N/A 

8 9.5% 20.6% N/A N/A N/A N/A N/A N/A N/A 

9 9.7% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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Table E.29: Minimum errors of the estimated αUSa(TU)  (Vancouver spectrum, EXP-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.6% 2.6% 1.0% 2.8% 3.8% 6.1% 8.2% 10.5% 12.5% 

2 6.1% 2.3% 1.7% 2.2% 2.6% 3.3% 3.3% 3.6% N/A 

3 5.3% 2.8% 0.0% 1.4% 0.6% -0.4% -1.3% N/A N/A 

4 4.7% 6.3% 0.4% 0.8% 1.5% -2.5% N/A N/A N/A 

5 5.6% 5.4% 0.3% 1.9% 0.8% N/A N/A N/A N/A 

6 6.2% 4.9% -1.1% 0.8% N/A N/A N/A N/A N/A 

7 0.0% 4.5% -0.8% N/A N/A N/A N/A N/A N/A 

8 0.4% 4.1% N/A N/A N/A N/A N/A N/A N/A 

9 0.6% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.30: Maximum errors of the estimated αUSa(TU)  (Montreal spectrum, EXP-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 13.7% 15.7% 18.3% 19.3% 22.2% 22.4% 25.4% 21.5% 26.3% 

2 16.9% 24.7% 19.4% 23.4% 21.9% 23.8% 24.2% 22.1% N/A 

3 18.1% 23.6% 26.7% 24.5% 22.0% 24.6% 22.2% N/A N/A 

4 18.8% 22.4% 22.4% 26.8% 27.3% 20.0% N/A N/A N/A 

5 19.5% 20.9% 24.8% 23.5% 26.1% N/A N/A N/A N/A 

6 18.6% 20.0% 22.7% 20.9% N/A N/A N/A N/A N/A 

7 9.5% 17.4% 19.7% N/A N/A N/A N/A N/A N/A 

8 10.0% 17.6% N/A N/A N/A N/A N/A N/A N/A 

9 10.1% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.31: Minimum errors of the estimated αUSa(TU)  (Montreal spectrum, EXP-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -4.0% -1.9% -4.6% -2.9% -4.1% -4.5% -3.9% -5.5% -5.1% 

2 -0.5% -2.7% -3.8% -4.6% -5.7% -10.8% -9.8% -11.2% N/A 

3 -0.5% -2.9% -4.5% -2.7% -8.0% -11.9% -14.5% N/A N/A 

4 -1.0% -0.1% -4.7% -4.8% -9.8% -15.2% N/A N/A N/A 

5 0.3% -0.9% -4.0% -3.4% -9.7% N/A N/A N/A N/A 

6 1.2% -1.1% -5.8% -4.3% N/A N/A N/A N/A N/A 

7 -4.2% -1.4% -5.7% N/A N/A N/A N/A N/A N/A 

8 -4.4% -1.6% N/A N/A N/A N/A N/A N/A N/A 

9 -4.2% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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Table E.32: Maximum errors of the estimated αUSa(TU)  (Halifax spectrum, EXP-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 13.7% 15.7% 18.4% 20.1% 22.6% 23.5% 24.4% 24.1% 26.0% 

2 16.9% 17.6% 17.5% 18.8% 20.7% 21.4% 23.3% 23.1% N/A 

3 18.1% 23.4% 21.7% 22.0% 19.6% 21.3% 21.3% N/A N/A 

4 18.8% 22.4% 23.4% 23.8% 24.6% 20.6% N/A N/A N/A 

5 20.2% 22.7% 25.5% 22.1% 23.5% N/A N/A N/A N/A 

6 18.3% 21.1% 23.1% 25.0% N/A N/A N/A N/A N/A 

7 10.3% 19.1% 22.5% N/A N/A N/A N/A N/A N/A 

8 10.5% 20.3% N/A N/A N/A N/A N/A N/A N/A 

9 10.6% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.33: Minimum errors of the estimated αUSa(TU)  (Halifax spectrum, EXP-1) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.9% 2.3% 3.5% 5.0% -1.2% -2.5% -1.8% -0.2% 0.5% 

2 5.5% 2.1% 2.3% 2.9% -3.5% -9.6% -7.3% -5.8% N/A 

3 4.9% 3.0% 0.5% 2.7% -4.3% -7.3% -8.8% N/A N/A 

4 4.4% 6.8% 2.2% 2.5% -7.9% -14.6% N/A N/A N/A 

5 5.4% 6.0% 1.6% 2.5% -7.4% N/A N/A N/A N/A 

6 6.1% 5.6% 0.0% 1.1% 0.0% N/A N/A N/A N/A 

7 0.0% 5.2% 0.2% N/A N/A N/A N/A N/A N/A 

8 0.4% 5.0% N/A N/A N/A N/A N/A N/A N/A 

9 0.6% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.34: Maximum errors of the estimated αUSa(TU)  (Vancouver spectrum, EXP-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 14.1% 16.5% 20.9% 26.4% 31.9% 32.6% 35.1% 34.8% 35.9% 

2 17.7% 19.2% 25.7% 31.8% 30.8% 31.6% 33.5% 33.7% N/A 

3 19.3% 23.8% 33.2% 31.8% 28.3% 33.0% 31.9% N/A N/A 

4 20.2% 23.5% 29.2% 34.6% 36.0% 28.9% N/A N/A N/A 

5 22.3% 25.0% 27.7% 33.0% 35.2% N/A N/A N/A N/A 

6 19.8% 24.7% 26.99% 29.2% N/A N/A N/A N/A N/A 

7 11.6% 24.2% 28.9% N/A N/A N/A N/A N/A N/A 

8 12.0% 24.7% N/A N/A N/A N/A N/A N/A N/A 

9 12.1% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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Table E.35: Minimum errors of the estimated αUSa(TU)  (Vancouver spectrum, EXP-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.4% 3.2% 7.5% 9.9% 11.2% 14.5% 15.3% 16.9% 17.7% 

2 6.9% 2.1% 4.6% 6.2% 7.5% 9.1% 8.0% 8.1% N/A 

3 7.0% 3.4% 0.5% 0.7% -3.5% 6.6% -3.1% N/A N/A 

4 6.8% 9.2% 0.0% 0.0% 6.8% -3.3% N/A N/A N/A 

5 7.0% 9.0% 0.0% 3.6% 2.5% N/A N/A N/A N/A 

6 7.2% 8.9% 0.0% 1.6% N/A N/A N/A N/A N/A 

7 -1.0% 8.7% 0.0% N/A N/A N/A N/A N/A N/A 

8 -1.0% 8.6% N/A N/A N/A N/A N/A N/A N/A 

9 -0.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.36: Maximum errors of the estimated αUSa(TU)  (Montreal spectrum, EXP-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 16.5% 24.1% 28.0% 28.6% 32.2% 33.1% 35.5% 31.5% 36.5% 

2 23.6% 34.0% 28.7% 33.7% 32.2% 31.9% 34.2% 31.3% N/A 

3 23.3% 32.8% 36.8% 31.3% 33.6% 35.1% 32.8% N/A N/A 

4 23.1% 30.2% 30.9% 39.1% 38.3% 29.5% N/A N/A N/A 

5 24.3% 28.2% 28.7% 33.3% 37.7% N/A N/A N/A N/A 

6 23.9% 27.5% 28.3% 29.7% N/A N/A N/A N/A N/A 

7 16.8% 26.2% 30.3% N/A N/A N/A N/A N/A N/A 

8 17.7% 27.3% N/A N/A N/A N/A N/A N/A N/A 

9 17.7% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.37: Minimum errors of the estimated αUSa(TU)  (Montreal spectrum, EXP-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.4% 3.2% 3.0% 4.8% 7.1% 9.0% 10.5% 10.9% 12.1% 

2 6.2% 2.1% 3.9% 3.0% 2.7% 2.6% 3.8% 4.2% N/A 

3 6.1% 3.4% 0.5% 0.7% -3.5% -1.6% -3.1% N/A N/A 

4 5.6% 8.0% 0.0% 0.0% -0.9% -3.3% N/A N/A N/A 

5 5.9% 7.2% 0.0% 3.6% -0.8% N/A N/A N/A N/A 

6 5.8% 6.9% 0.0% 1.6% N/A N/A N/A N/A N/A 

7 -1.0% 6.6% 0.0% N/A N/A N/A N/A N/A N/A 

8 -1.0% 6.3% N/A N/A N/A N/A N/A N/A N/A 

9 -0.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 
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Table E.38: Maximum errors of the estimated αUSa(TU)  (Halifax spectrum, EXP-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 14.4% 17.1% 21.5% 23.6% 27.9% 28.8% 30.7% 30.7% 44.4% 

2 17.9% 20.5% 22.1% 25.3% 26.9% 27.7% 29.3% 36.8% N/A 

3 19.4% 24.0% 27.1% 28.0% 24.1% 32.1% 36.0% N/A N/A 

4 20.5% 23.7% 25.9% 28.4% 30.4% 34.8% N/A N/A N/A 

5 22.5% 25.2% 27.9% 27.6% 34.4% N/A N/A N/A N/A 

6 20.0% 25.0% 27.1% 29.3% N/A N/A N/A N/A N/A 

7 12.6% 22.9% 29.2% N/A N/A N/A N/A N/A N/A 

8 13.4% 25.0% N/A N/A N/A N/A N/A N/A N/A 

9 13.4% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

Table E.39: Minimum errors of the estimated αUSa(TU)  (Halifax spectrum, EXP-2) 

NL
         NU 1 2 3 4 5 6 7 8 9 

1 -0.4% 3.2% 7.8% 10.2% 10.6% 12.7% 16.2% 18.9% 19.8% 

2 6.9% 2.1% 4.6% 6.2% 7.5% 6.4% 9.1% 8.1% N/A 

3 6.9% 3.4% 0.5% 0.7% -3.5% 6.1% -3.1% N/A N/A 

4 6.7% 9.2% 0.0% 0.0% 5.4% -3.3% N/A N/A N/A 

5 6.8% 9.0% 0.0% 3.6% 2.5% N/A N/A N/A N/A 

6 7.0% 8.9% 0.0% 1.6% N/A N/A N/A N/A N/A 

7 -1.0% 8.8% N/A N/A N/A N/A N/A N/A N/A 

8 -1.0% 8.7% N/A N/A N/A N/A N/A N/A N/A 

9 -0.9% N/A N/A N/A N/A N/A N/A N/A N/A 

Note: N/A denotes the proposed approach is not applicable for the combination of the lower and upper 

structures. 

 

As shown in Tables E.16 ~ E.39, not all approximations of the spectrum listed in Table E.9 have 

acceptable errors for all possible storey combinations of lower and upper structures. Errors of the 

estimated αUSa(TU) for each one of the four approximations listed in Table E.9 have the following 

characteristics: 

(1)The primary disadvantage for the first approximation technique is that the it may greatly 

underestimate the value of αUSa(TU) for certain storey combinations. For example, when NL=4, NU=6 

and the Montreal spectrum is used, the maximum underestimation of αUSa(TU) can be as large as 22.0% 

and 15.2% if the power and exponential functions are selected to approximate the spectrum, 

respectively, as shown in Tables E.19 and E.31. On the other hand, the primary disadvantage for the 

second approximation technique is that it may greatly overestimate the value of αUSa(TU) for certain 

storey combinations of lower and upper structures. For example, when NL=1, NU=9 and the Halifax 
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spectrum is used, the maximum overestimation of αUSa(TU) can be as large as 55.3% and 44.4% if the 

power and exponential functions are selected to approximate the spectrum, respectively, as shown in 

Tables E.26 and E.38. 

Such disadvantages associated with the first and second approximation techniques are resulted 

from the inherent characteristics of the power and exponential functions. With the positive value for 

Ai and negative value for τi, the power or exponential function is a convex function. If such convex 

function matches the spectrum values at the beginning and ending points of each linear segment, i.e., 

the first approximation technique, the spectral values at intermediate periods will be underestimated, 

as shown in Figure E.2 (a). On the other hand, if such convex function matches the spectral value at 

the midpoint of each linear segment, i.e., the second approximation technique, although the spectrum 

values at all periods will not be underestimated, the spectrum values at the starting and ending points 

may be greatly overestimated, as shown in Figure E.2 (b). Therefore, the value of αUSa(TU) may be 

greatly underestimated if the first approximation technique is adopted due to the underestimation of 

the spectrum value Sa(TU), and the value of αUSa(TU) and may be greatly overestimated if the second 

approximation technique is adopted due to the overestimation of the spectrum value Sa(TU). 

(2) From a general aspect, the exponential function is a better approximation of the spectrum than 

the power function. If the first approximation technique is adopted to approximate the spectrum, the 

magnitude of underestimation associated with the power function is larger than that of the exponential 

function. For example, when NL=4, NU=6 and using the first approximation technique to approximate 

the Montreal spectrum, the underestimation of αUSa(TU) associated with the power function is 22.0% 

while that associated with the exponential function is 15.2%, as shown in Tables E.19 and E.31, 

respectively. On the other hand, if the second approximation technique is adopted to approximate the 

spectrum, the magnitude of overestimation associated with the power function is also larger than that 

of the exponential function. For example, when NL=1, NU=9 and the second approximation technique 

is adopted to fit the Halifax spectrum, the maximum overestimation of αUSa(TU) associated with the 

power function is 55.3% while that associated with the exponential function is 44.4%, as shown in 

Tables E.26 and E.38.  

(3) Considering all possible combinations of lower and upper structures, the “EXP-2” 

approximation, which adopts the exponential function and the second approximation technique to 

obtain the curve approximation parameters as listed in Table E.9, provides the most reasonable values 

of αUSa(TU) from a general aspect. However, the “EXP-2” approximation does not always provide the 

best estimated αUSa(TU) for all storey combinations of lower and upper structures. For example, when 
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NL=6 and NU=3, as shown in Tables E. 22 ~ E. 27, the “PWR-2” approximation also provides 

reasonable estimation of αUSa(TU).  

E.7 Error of modified ELF procedure based on NBCC 2010 

Table E.40: Errors associated with modified ELF procedure (Vancouver spectrum) 

NL NU 
lower structure upper structure 

maximum minimum maximum minimum 

2 1 23.6% 12.8% 15.2% 7.7% 

3 1 28.1% 13.7% 16.0% 6.7% 

4 1 31.7% 14.5% 16.2% 6.6% 

5 1 33.7% 15.0% 16.6% 6.9% 

6 1 35.3% 15.5% 18.1% 7.1% 

7 1 36.4% 15.9% 10.8% -1.0% 

8 1 35.6% 16.3% 11.7% -1.0% 

9 1 39.0% 16.8% 11.4% -0.9% 

 

Table E.41: Errors associated with modified ELF procedure (Montreal spectrum) 

NL NU 
lower structure upper structure 

maximum minimum maximum minimum 

2 1 23.6% 11.2% 18.7% 6.4% 

3 1 28.1% 12.4% 20.0% 4.7% 

4 1 31.7% 13.0% 19.9% 4.1% 

5 1 33.7% 13.4% 19.4% 4.1% 

6 1 35.3% 13.7% 20.5% 5.4% 

7 1 36.4% 13.9% 14.9% -1.0% 

8 1 35.6% 14.2% 14.9% -1.0% 

9 1 31.8% 14.3% 11.4% -0.9% 

 

Table E.42: Errors associated with modified ELF procedure (Halifax spectrum) 

NL NU 
lower structure upper structure 

maximum minimum maximum minimum 

2 1 23.6% 12.7% 15.7% 7.6% 

3 1 28.1% 13.6% 16.6% 6.6% 

4 1 31.7% 14.4% 16.8% 6.5% 

5 1 33.7% 14.9% 17.1% 6.7% 

6 1 35.3% 15.4% 19.1% 6.9% 

7 1 36.4% 15.8% 12.1% -1.0% 

8 1 35.6% 16.2% 12.8% -1.0% 

9 1 38.8% 16.7% 12.4% -0.9% 
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E.8 Error of proposed two-stage analysis procedure based on NBCC 2010 

Table E.43: Errors associated with proposed two-stage procedure (Vancouver spectrum) 

NL NU 
upper structure lower structure 

maximum minimum maximum maximum 

1 1 9.7% -0.4% 8.6% 3.0% 

1 2 22.7% 3.2% 21.1% 0.1% 

2 2 18.9% 2.1% 29.8% 1.7% 

3 2 14.5% 4.4% 31.6% 4.2% 

1 3 31.0% 7.8% 33.1% 12.2% 

2 3 28.5% 4.6% 47.4% 11.0% 

3 3 26.8% 4.3% 52.5% 9.0% 

4 3 21.9% 4.2% 54.5% 8.1% 

1 4 36.0% 12.0% 40.3% 13.7% 

2 4 34.1% 6.2% 51.6% 12.4% 

3 4 30.7% 5.9% 58.8% 10.0% 

4 4 35.4% 5.8% 62.4% 8.0% 

5 4 24.7% 5.7% 64.4% 6.9% 

1 5 39.6% 8.0% 41.8% 13.8% 

2 5 38.1% 4.0% 53.4% 13.2% 

3 5 35.0% 3.3% 60.9% 10.6% 

4 5 36.3% 4.1% 64.7% 8.9% 

5 5 36.6% 3.2% 66.6% 7.6% 

1 6 42.0% 7.5% 42.7% 14.4% 

2 6 40.6% 5.1% 55.3% 13.7% 

3 6 39.6% 3.0% 62.7% 11.0% 

4 6 37.9% 4.1% 66.8% 9.2% 

1 7 43.9% 5.1% 44.3% 14.8% 

2 7 42.7% 5.2% 57.4% 14.1% 

3 7 40.4% -0.5% 64.6% 11.4% 

1 8 45.4% 7.3% 45.9% 14.8% 

2 8 44.4% 6.6% 59.8% 14.5% 

1 9 46.6% 7.1% 48.3% 14.6% 
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Table E.44: Errors associated with proposed two-stage procedure (Montreal spectrum) 

NL NU 
upper structure lower structure 

maximum minimum maximum maximum 

1 1 10.4% -0.4% 8.6% 3.0% 

1 2 23.1% -3.6% 21.1% 0.1% 

2 2 19.6% -2.8% 29.8% 1.7% 

3 2 15.3% -0.2% 31.6% 4.2% 

1 3 31.2% 3.3% 33.1% 12.2% 

2 3 28.8% 1.9% 47.4% 11.0% 

3 3 29.0% 1.9% 52.5% 9.0% 

4 3 25.0% 4.2% 54.5% 8.1% 

1 4 36.0% 0.8% 40.3% 13.7% 

2 4 34.2% -0.8% 51.6% 12.4% 

3 4 31.8% -1.4% 58.8% 10.0% 

4 4 34.9% -1.6% 62.4% 8.0% 

5 4 26.1% -1.4% 64.4% 6.9% 

1 5 39.7% -1.6% 41.8% 13.8% 

2 5 38.3% -5.0% 53.4% 13.2% 

3 5 35.3% -6.3% 60.9% 10.6% 

4 5 35.7% -5.4% 64.7% 8.9% 

5 5 35.7% -5.7% 66.6% 7.6% 

1 6 42.0% 0.1% 42.7% 14.4% 

2 6 40.6% -4.9% 55.3% 13.7% 

3 6 37.9% -6.0% 62.7% 11.0% 

4 6 35.3% -6.4% 66.8% 9.2% 

1 7 43.9% -0.5% 44.3% 14.8% 

2 7 42.7% -3.3% 57.4% 14.1% 

3 7 40.4% -4.7% 64.6% 11.4% 

1 8 45.4% -0.4% 45.9% 14.8% 

2 8 44.4% -4.1% 59.8% 14.5% 

1 9 46.6% 0.3% 48.3% 14.6% 
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Table E.45: Errors associated with proposed two-stage procedure (Halifax spectrum) 

NL NU 
upper structure lower structure 

maximum minimum maximum maximum 

1 1 9.8% -0.4% 8.7% 3.0% 

1 2 22.7% 3.2% 22.1% 0.1% 

2 2 19.0% 2.1% 31.0% 1.7% 

3 2 14.6% 4.4% 33.0% 4.2% 

1 3 31.0% 7.8% 33.4% 12.2% 

2 3 28.5% 4.6% 47.6% 11.0% 

3 3 26.2% 4.3% 52.9% 9.0% 

4 3 21.5% 4.2% 54.6% 8.1% 

1 4 36.0% 12.0% 39.6% 13.7% 

2 4 34.1% 6.2% 51.0% 12.4% 

3 4 30.7% 5.9% 57.8% 10.0% 

4 4 35.0% 5.8% 61.1% 8.0% 

5 4 24.3% 5.7% 62.8% 6.9% 

1 5 39.6% 11.0% 41.4% 14.0% 

2 5 38.1% 6.3% 53.2% 13.2% 

3 5 35.1% 5.7% 60.6% 10.6% 

4 5 36.1% 6.7% 64.4% 8.9% 

5 5 36.5% 5.6% 66.3% 7.6% 

1 6 42.0% 8.3% 43.9% 14.5% 

2 6 40.6% 7.5% 56.6% 13.7% 

3 6 39.6% 5.3% 63.9% 11.0% 

4 6 38.1% 6.6% 68.0% 9.2% 

1 7 43.9% 4.9% 47.3% 14.5% 

2 7 42.7% 5.1% 60.8% 14.1% 

3 7 40.4% 2.6% 67.8% 11.4% 

1 8 45.4% 6.6% 51.4% 13.9% 

2 8 44.4% 4.5% 66.2% 14.5% 

1 9 46.6% 7.8% 57.2% 12.5% 

 

E.9. Modal parameters of RC column 

E.9.1 Elastic stiffness 

As suggested by FEMA 356 (FEMA, 2000), the flexural stiffness (EI)stf of the RC column should be 

0.5 times of the actual component flexural stiffness if the axial load ratio is not greater than 0.3. With 
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the rigid floor assumption, the initial stiffness of the RC column in the moment frame can be 

calculated as 

 
 

3 3

0.5
12 12

stf c g

e

n n

EI E I
k

h h
    (E.34) 

where Ec is the elastic modulus of the concrete, hn is the storey height, and Ig is the moment inertia of 

the gross section. The elastic stiffness of the concrete adopted in Examples 5-1 and 5-2 is 

E=3.0×10
4
MPa. The column size is 600mm×600mm. By substituting Ec=3.0×10

4
 MPa, hn=3.3 m and 

the 600mm×600mm column section into Eq. (E.34), the initial stiffness can be calculated. The 

calculated initial stiffness is listed in Table 5.14. 

E.9.2 Yield shear force 

In accordance with FEMA P695 (FEMA, 2009), the yield flexural strength of the RC column (My) 

can be approximated as 0.97 times that calculated by the equations proposed by Panagiotakos and 

Fradis (2001), i.e., My,Fradis. The yield moment My,Fradis is computed as follows: 

 
2 ' ' ' '

,

3
0.5 1 1 1 1
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M Ed d d d
E

bd d d d d
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            

                    
            

 (E.35) 

where Es is the elastic modulus of the reinforcement; b is the width of the compression zone; d is the 

effective depth of the cross section; 𝑑′  is the distance from the center of the compression 

reinforcement to the extreme compression fiber; ρt and ρc are the tension and compression 

reinforcement ratio, respectively; ρv is the ratio of the total web area of the longitudinal reinforcement 

between tension and compression steel to the product of b and d (bd); ϕy is the yield curvature; and κy 

is the normalized compression zone depth at yield. The yield curvature ϕy and the normalized 

compression zone depth at yield κy are computed as follows: 

 
 1

y

y

s y

f

E d




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 (E.36) 

 2 2 2y n A nB nA      (E.37) 

where 
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 Table E.46: Design parameters of the RC column in the moment frame 

design parameter Es (MPa) fy (MPa) fy,sh (MPa) ρt ρc ρv 

value 2.00×10
5
 235 235 0.009 0.009 0.0 

design parameter ρsh ν αsl sn s/d VP/Vn 

value 0.0121 0.06 1.0 7.5 0.14 0.88 

 

/s cn E E                                                                            (E.40) 

where N is the axial load. The axial load in this study is approximated as follows: 

g cN A f                                                                                                  (E.41) 

where ν is the axial load ratio and Ag is the gross area of the column section. 

As discussed in section 3.6.1, the column size is 600mm×600mm. By setting 𝑑′ = 25 mm, it is 

obtained that 𝑑 = 600 − 𝑑′ = 575 mm . Then, by referring to the configuration of the eight-sotrey 

RC column in the moment frame that is listed in Table E-2 of FEMA P695 (FEMA, 2009), the design 

parameters Es, fy, ρt, ρc, ρv and ν are listed in Table E.46. With the values of these parameters, the 

yield moment My,Fradis can be calculated through Eqs. (E.35) ~ (E.41). The calculated My,Fradis is 

537.6kN.m. The yield moment My =0.97My,Fradis=521.4 kN.m. 

With the rigid floor assumption, the inflection point is set at the mid-height of the column. The 

yield shear force Vy is computed as 

 
2 y

y

n

M
V

h
   (E.42) 

Based on Eq. (E.42), the yield shear force can be evaluated. The calculated value of Vy is listed in 

Table 5.14. 

E.9.3 Other parameters 

In accordance with the empirical equations provided in Appendix E of FEMA P695 (FEMA, 2009), it 

is suggested that c=1.0 is acceptable for columns failing in flexure and flexure-shear mode. In 

addition, δp, δpc and λ are computed as follows: 

      
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     (E.43) 

   1.020.76 0.031 (0.02 40 ) 0.10
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where αsl is the indicator variable (0 or 1) to signify the possibility of the longitudinal rebar slip past 

the column end, with αsl=1 if slip is possible; ρsh is the area ratio of the transverse reinforcement; sn is 

the rebar buckling coefficient; ρ is the ratio of total area of the longitudinal reinforcement and ρ=ρt+ρc; 

s is the spacing of the transverse reinforcement; VP is the shear demand at the point of flexure 

yielding; Vn is the shear capacity; and ρsh,eff is the effective ratio of the transverse reinforcement 

evaluated as follows: 

 
,

,

y sh

sh eff sh

c

f

f
    (E.46) 

where fy,sh is the yield stress of the transverse reinforcement. Still, by referring to the configuration of 

the eight-storey RC column in the moment frame that is listed in Table E-2 of FEMA P695 (FEMA, 

2009), values of the design parameters αsl, ρsh, sn, s/d, VP/Vn and fy,sh are listed in Table E.46. With 

these values, δp, δpc and λ can be further calculated based on Eqs. (E.43) , (E.44) and (E.45), 

respectively. The calculated values of δp, δpc and λ are listed in Table 5.14. 

In addition, a constant value 1.13 is suggested for Vc/Vy , i.e., Vc/Vy=1.13. Therefore, based on 

Figure 5.14, the parameter αs can be computed as follows: 

 
0.13 y

s

e p

V

k



   (E.47) 

The calculated value of αs is listed in Table 5.14. 
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Appendix F   Estimation of εi  

F.1 Estimation of εi 

Recall Eq.(6.9): 

  
2

gx   D ΞD Ω D τ  (F.1) 

where 𝐃 = [𝐷1 𝐷2    ⋯ 𝐷𝑁]
𝑇.  Let 

  
T

T T T   Z D D  (F.2) 

Substitution of Eq.(F.2) into Eq.(F.1) leads to 

  gx Z AZ υ  (F.3) 

where 

  
2

N N N N  
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Ω Ξ
 (F.4) 

  1N 
  
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0
υ

τ
 (F.5) 

In Eqs.(F.4) and (F.5), 0N×N and IN×N represent the zero and identity matrices with the order of (N×N). 

The subscript a0×b0 indicates the zero or identity matrix has “a0” rows and  “b0” columns. Assume 

the earthquake ground motion is a white noise with a constant power spectrum density being S0. The 

stationary covariance of Z
[2]

 can be written as follows (Falsone & Muscolino, 1999): 

  
[2] 1 [2]

0 22E S     Z A υ  (F.6) 

where the operation “-1” represents the inverse of a matrix; the exponent in square brackets, i.e.,[2], 

indicates the power made by the Kronecker block product, that is 

  
[2]

 
 


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D D
Z Z Z
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 (F.7) 

and the matrix A2 is given by 

  2 2 2 2 2N N N N      A A I I A A A  (F.8) 

In Eqs.(F.7) and (F.8), symbols ⊗ and ⊙ represent the Kronecker product and Kronecker block 

product, respectively. Detail introduction on the Kronecker algebra is discussed in the following 

Appendix F.3. 

Split the modal damping matrix Ξ into two that only contain diagonal terms and off-diagonal terms, 

respectively, that is  
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  d f Ξ Ξ Ξ  (F.9) 

where  
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With the substitution of Eq.(F.9) into Eq.(F.4) and then the substitution of (F.4) into Eq. (F.8), it is 

obtained that  

  2 2, 2,d f A A A  (F.12) 

where  
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In Eqs.(F.13) and (F.14),  

  
2

N N N N

d

d

  
  

 

0 I
A

Ω Ξ
 (F.15) 

  
N N N N

f

N N f

 



 
  

 

0 0
A

0 Ξ
 (F.16) 

Substitute Eq.(F.12) into (F.6). It is derived that 
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where D0 represents the displacement vector for the classically-damped system, in which the off-

diagonal terms of the modal damping matrix  Ξ are zero, as shown in Eq.(6.26); and  
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2, 2,4 4 d fN N
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Assume the matrix B has the following format: 
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Substitute Eq.(F.19) into Eq.(F.17). Then, it is derived that 
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where t1=i+N(j-1) and t2= u+N(v-1). Re-organize Eq.(F.20) as follows: 
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From Eq.(F.21), it is seen the parameter εij represents the error of E[DiDj] introduced by ignoring the 

off-diagonal terms of the modal damping matrix Ξ. For the classically-damped system, the expected 

value 𝐸[𝐷0,𝑖𝐷0,𝑗] , 𝐸[𝐷0,𝑖𝐷̇0,𝑗]  , 𝐸[𝐷̇0,𝑖𝐷0,𝑗]  and 𝐸[𝐷̇0,𝑖𝐷̇0,𝑗]  can be theoretically solved for, as 

discussed in Appendix F.2.  Based on Eqs.(F.38) and (F.39) in Appendix F.2, the following 

relationship can be obtained: 
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where ρ1,uv and ρuv are correlation coefficients associated with the u-th and v-th modes and are 

presented in Eq.(F.40) . Meanwhile, by using the first order Taylor Series to expand matrix B in Eq. 

(F.18), it is obtained that 

  2 2
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2, 2,4 4 d fN N




 B I A A  (F.24) 

The inverse of matrix A2,d is presented in Eqs.(F.33) and (F.34) of Appendix F.2. With the 

substitution of Eqs.(F.14) and (F.33) into Eq.(F.24), it is derived that  
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where  diagonal matrices  𝐛̂0, 𝐜̂0, 𝐝̂0 are presented in Eq. (F.34).  Substitute Eqs.(F.23) and (F.25) 

into Eq.(F.22). It is derived that 
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where t=i+N(j-1). For the case where i=j, based on Eq. (F.34), it is obtained that 

  0, 0, 0,2 3

1 1
,    

2 4
tt tt tt

i i i

b c d
  

 
    (F.27) 

where t=i+N(i-1). With the substitution of Eqs.(F.27) and (F.37) into Eq.(F.26), the following can be 

derived: 
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Based on Eqs.(F.41) in Appendix F.2, it is obtained that  
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where βiu is the ratio of natural frequency between the ith- and uth-modes, as defined in Eq.(F.42) of 

Appendix F.2. Note both correlation coefficients ρiu and ρ1,iu only become significant when βiu=1, as 

shown in Figure E.1 of Appendix F.2. However, in practice for a combined framing system, when βiu 

is close to unity, the mode shape of the ith-mode will be very similar to that of the uth-mode, i.e., 

φi≈φu In such case,  𝜍𝑖 ≈ 𝜍𝑢 based on Eqs.(6.16 a)~ (5.16 c).Therefore, when βiu is close to unity, it is 

concluded that  
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Therefore, the modal error εii in Eq.(F.28) can be further simplified as 

  ,

1

N
f iu

ii ui

u ii uu

 



 

 
  (F.31) 

Note the modal error εii is denoted as εi for simplicity in Chapter 5. 

F.2 Classically-damped structure 

When the structure is classically damped, i.e., the off-diagonal terms of the modal damping matrix Ξ 

are zero, Eq.(F.17) becomes as 
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Based on Eq.(F.13), the inverse matrix of A2,d can be solved for as follows: 
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where 𝐚̂0 = 𝐈𝑁2×𝑁2, and all other submatrices are diagonal. The diagonal terms of  𝐛̂0, 𝐜̂0, 𝐝̂0, 𝐡̂0, 𝐫̂0 

and 𝐰̂0  are calculated as follows (Falsone & Muscolino, 2004): 
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where t=i+(n-1)j, and 
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   2 2 2 2 21 4 4  ,   ij i j j i j i j ij i ij j ji                  (F.36) 

With the substitution of Eqs.(F.33) and (F.34) into Eq.(F.32), it is obtained that 
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Meanwhile, from Eq.(F.37) it is obtained that 
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By substituting of Eqs.(F.34)  and (F.39) into Eq.(F.38), it is obtained that 
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With the substitution of Eq.(F.36) into Eq.(F.40), it is obtained that 
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(F.41) 

where 

  /ij i j     (F.42) 
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Figure F.1:  Variation of correlation coefficients with natural frequency ratio βij (ςi = ςj =0.05)  

As shown in Figure F.1, both correlation coefficients ρij and ρ1,ij only become significant near to βij =1 

and  the magnitudes of the both coefficients diminish rapidly as the two natural frequencies move 

farther apart. However, the magnitude of ρij is far greater than that of ρ1,ij. The maximum value for ρij 

is unity while the maximum magnitude for ρ1,ij is only 0.12, as shown in Figure F.1. 

F.3 Kronecker algebra 

Give two matrices P and Q. Suppose the matrix P is as follows: 
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The Kronecker product  𝐏⊗𝐐 is as calculated as follows (Falsone & Muscolino, 1999): 
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Therefore, if P and Q are of order (m×n) and (r×s), respectively, the Kronecker product  𝐏⊗𝐐 is of 

order (mr×ns). 

Now, if P and Q are matrices built by submatrices as follows: 
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Beyond the classical Kronecker product as introduced in Eq.(F.44), the block Kronecker product 

𝐏⊙𝐐 is calculated is follows: 
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