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Abstract

Digital Rights Management (DRM) involves retaining control over digital information,

even after it has been made public. Preventing illegal file sharing on the Internet, which is

a topic that has recently received a large amount of media attention, is just one instance

where DRM is needed.

In this thesis, we attempt to create formal definitions for DRM. Currently, there is a

lack of such formal definitions, which is one reason why DRM schemes have achieved little

success. We will also examine two DRM schemes that can be cracked easily: Microsoft

DRM 2.0, and the Content Scrambling System. We then discuss the reasons why DRM

schemes have been unsuccessful so far, and why a good DRM scheme must incorporate

secure hardware, secure software, and an efficient legal system. We also briefly discuss

several issues related to DRM, such as privacy.

Code Obfuscation involves hiding a program’s implementation details from an adver-

sary. One application of code obfuscation involves hiding cryptographic keys in encryption

and decryption programs for a cryptosystem. Code obfuscation is directly applicable to

DRM schemes, where the adversary has access to a program that contains secret informa-

tion. For example, a music player may contain a secret key that it uses to decrypt content.

The secret key must be hidden from the adversary, since otherwise, he/she could use the

key to write his/her own decryption program, and distribute it to circumvent the DRM

scheme.

We discuss the proof from [2] that shows that code obfuscation is impossible in general.

This, however, does not mean that code obfuscation cannot be achieved in specific cases.

We will examine an obfuscated version of the Data Encryption Standard, and discuss the

circumstances under which it is insecure. We also examine a toy example of a block cipher

called Simple Block Cipher (SBC), and apply obfuscation techniques to SBC to hide the

secret key, and then attempt to obtain the secret key.
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Digital Rights Management
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Chapter 1

Introduction

Informally, Digital Rights Management (DRM) involves retaining control over digital infor-

mation after it has been made public. It can restrict several aspects of file access, such as

the number of times a person is allowed to access the file, the amount of information that

the person is allowed to obtain from the file, and the operations that a person is allowed

to perform on the file (such as altering, copying, and printing). DRM is not restricted to

files, however, and restrictions can also be applied to other types of data, such as streaming

content. Its applications include protection of intellectual property, and access control for

sensitive data.

Currently, a provably secure DRM scheme does not exist, and most DRM schemes in ex-

istence have been cracked. A major obstacle in the development of a secure DRM scheme,

is a lack of formal definitions and requirements. Clearly, we cannot design a secure DRM

scheme unless we have formal definitions for what DRM is, and what it means for a DRM

scheme to be secure. We attempt to address the problem of a lack of definitions in this

thesis. This problem is being examined in detail by those working on Open Digital Rights

Language (ODRL), a language for formally describing digital rights [26]. ODRL will pro-

vide a formal and precise way of describing digital rights, whereas we will take a broader

look at the problem. Another problem is that it can be proven that a code obfuscator

cannot exist [2]. Code obfuscation is the topic of the second part of this report, and seems

to be a requirement for any software-only DRM solution.

Protection of intellectual property has always been a concern, and there has never been
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a perfect solution. In the digital world, the problem has become much more widespread,

since one can copy data effortlessly and quickly. With the popularity of the Internet and

the ease of file sharing, information can be distributed around the world extremely quickly.

This, coupled with the difficulty of tracking distributors of the illegal content, has resulted

in illegal file sharing becoming commonplace. That is why DRM has become such a topic

of interest in recent years.

Currently, access control for sensitive data is usually accomplished with tools such as

firewalls and encryption schemes that prevent unauthorized people from gaining access to

the data. However, these tools do not protect against other threats such as an authorized

person providing the data to an unauthorized person. This is a real threat for corporations

with employees who may have a conflict of interest, or for the military, who cannot afford

to have any of its secrets revealed to the enemy. DRM can be a great asset in this case.

DRM is a relatively new concept, but it is gaining popularity quickly because of its

importance. Record companies would like to release music in digital formats because of the

cost and convenience benefits that it offers, but this makes it easy for users to make exact

copies of the music, and distribute them for free all across the world. Similarly, software

companies would like to ensure that only those users who have paid for their software

can use it. The military would like to ensure that if any of their files containing sensitive

or confidential information are accidentally or intentionally released to an unauthorized

person, then he/she cannot obtain the information contained in the files. All of these are

examples of situations where DRM is needed.

We can see analogues of DRM in the physical world. For example, if we wanted some-

body to only be able to read a particular book once (and not be able to do anything else

useful with the book, such as copy it), we could lock him/her in a room containing just

the book, and then watch him/her using a video camera to ensure that he/she does not

read it more than once, or tear out pages from the book and carry them out to copy later,

or alter the contents of the book. We could then allow the person to leave the room. This

would be difficult to perform, but would be secure for most purposes. However, there are

many reasons why it is much more difficult (or impossible) to do this when the book is in a

digital format, and is being read on a general-purpose computer. One reason is that when

the book is being read on a general-purpose computer, it is in memory at some point. The
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reader could simply perform a memory dump, and obtain the contents of the book. Even

if the memory contents are encrypted, the information must be decrypted at some point

before it can be displayed. In this case, the user can get a copy of the book by deter-

mining when and where the information is being decrypted, and then recording it at that

point. It is not difficult to see that the main problem is that the user has complete control

over the hardware and the execution environment. There are ongoing (separate) efforts by

Microsoft [24] and the Trusted Computing Platform Alliance [28] to develop a secure op-

erating system and tamper-resistant hardware that would enable software manufacturers

to restrict the users’ control over the hardware and execution environment.

The music recording industry has been aggressively pursuing a secure CD copy protec-

tion scheme for several years. There have been many attempts at creating a secure DRM

scheme for music CDs, but none of these attempts have been successful so far. A major

problem in designing DRM schemes for audio CDs is that backward compatibility needs

to be retained. Consumers cannot be expected to purchase a new CD player every time

a new DRM scheme is implemented on a CD. The backward compatibility requirement

severely limits what DRM scheme designers can do. There has been consumer backlash

against CD copy protection schemes that cause CDs to not be playable on computers, and

on some CD players [30]. There are extreme cases where copy protection schemes inflict

damage by causing any computer attempting to read a protected CD to crash [21]. The

reasoning behind such schemes is that if the user cannot read the CD on a computer, then

he/she cannot copy it using the computer. Schemes such as these, that can potentially

cause damage, even if the CD is being used legitimately, are clearly not acceptable.

In other cases, there are no backwards compatibility issues, and somewhat secure DRM

schemes have been designed and implemented. For example, in some video game consoles,

a copied game CD is not playable, unless the user solders a microchip somewhere inside the

console [17]. This keeps most people from using copied CDs, since they do not want to risk

damaging the console and losing the manufacturer’s warranty by attempting to solder in

a microchip. In addition, distributors of hardware designed to circumvent DRM schemes

can be tracked down and prosecuted fairly easily. They can be found by tracking payments

for the illegal hardware, whether they are made online, or using the postal service. Strict

laws and severe punishments can effectively deter people from distributing such hardware.
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The DRM schemes that we will examine and analyze in this thesis are based on cryp-

tographic techniques. The main idea of such schemes is to encrypt the information to

be protected, and then provide the decryption key only to users that are authorized to

view the information. The key is somehow hidden from the users such that they cannot

distribute it to others.

Although the type of DRM schemes described above are the only ones that we will

examine, there are also other types that are used in practice. There are some that scramble

data such that only special hardware provided by the content provider can descramble it.

Such schemes are widely used for broadcasting television signals. In the case of TV signal

descramblers, pirated hardware can usually be remotely detected, and in some cases, can

even be destroyed [27]. Similarly, scrambling data or the table of contents, is commonly

used to protect audio CDs [18].

Currently, most DRM schemes focus on providing information to those who have paid

for it, and completely hiding it from others. They also usually prevent the users who

have paid for it from making any copies of the information. However, some schemes let

unpaying users view a small part of the information. For example, one particular DRM

scheme lets unpaying users listen to the first 30 seconds of songs [4]. However, as mentioned

earlier, DRM schemes can have many different types of restrictions. These could include

restrictions on the amount of information that a user can access, what the user can do with

the information, what applications can access the information, how many times a user can

access the information, etc.

We will develop a DRM model in the next chapter. In the context of video and audio,

we need to be especially careful about designing a DRM model. Obviously, we cannot

prevent a person from using a camcorder to record a movie, or a tape recorder to record

a song. Our DRM model must be restricted to how the protected file is handled until it

reaches any output device.

The first part of this thesis is organized as follows. Chapter 2 contains DRM definitions.

Chapter 3 analyzes Microsoft DRM 2.0, and presents a crack for it. Chapter 4 analyzes

the Content Scrambling System, and discusses how it can be cracked. Chapter 5 discusses

various possible DRM solutions, and how they need to be combined in order to implement

good DRM schemes. Finally, Chapter 6 examines issues related to DRM, such as privacy
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and fair-use laws.
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Chapter 2

Definitions

In this chapter, we will define DRM, describe attack models for DRM, discuss adversarial

goals for attacks on DRM schemes, and discuss what it means for a DRM scheme to be

secure. Currently, there do not exist any formal definitions for DRM, and the ones given

in this chapter are not complete by any means. They are created mainly for the purpose of

this thesis, but cover most, if not all informal DRM definitions and current DRM schemes.

2.1 Digital Rights Management

A DRM scheme consists of the following:

B is a finite set of possible plaintexts

U is the (finite) set of clients/users

C is a (finite) set of contracts

E and D are algorithms

Contracts

For each client u ∈ U and plaintext b ∈ B, there is a contract cu,b ∈ C, which is a triple

(Su,b, Tu,b, Au,b) where
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Su,b is the (possibly empty) subset of bits of b that u is allowed to access

Au,b is a list of operations that u is allowed to perform on Su,b

Tu,b is a list of the number of times that u is allowed to perform each

of the operations in Au,b on Su,b

Algorithms

• E is an algorithm that takes as input b ∈ B, P ⊂ U , and Q ⊂ C (where Q contains

cu,b for all u ∈ P ), and outputs a sequence of bits, Z, called the encoded-text. That

is, Z = E(b, P, Q). We will refer to E as the encoding algorithm.

• D is an algorithm that takes as input a sequence of bits Z, u ∈ P ⊂ U and cu,b ∈
Q ⊂ C (where b is the plaintext corresponding to the encoded-text Z), and enables

u to perform one of the operations in Au,b on Su,b if u hasn’t already performed the

operation the maximum number of times allowed by Tu,b. If a user u 6∈ P attempts

to run D on Z, he/she cannot get access to any information in Z unconditionally.

We will refer to D as the decoding algorithm.

Informally, the encoding algorithm creates a sequence of bits for a set of users, P , such

that the information that the bits represent can only be accessed by users in P , using the

decoding algorithm, and such that the restrictions in the set of contracts, Q, are enforced.

We use subsets P and Q of U and C, because the length of the encoded-text could depend

on the number of users and contracts. Since each encoded-text probably will not need to

be accessed by the entire set of users, we could potentially obtain a much more efficient

scheme by using appropriate subsets of U and C for each encoded-text, instead of using U
and C themselves.

We have purposely omitted any references to keys that are usually present in definitions

of cryptographic systems. This is because not all DRM schemes are based on cryptography,

and there are several schemes that do not use keys.

Of course, for our definitions to make sense, we must have security conditions that

make it impossible (or infeasible) for a user to determine any bits of b ∈ B, since otherwise,

all of the above is meaningless. The user could simply determine b, and use it any way

he/she wants. It should also be impossible to add, delete or modify contracts. We will

examine security conditions later. For now, we will consider a toy example of a DRM
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scheme (without the algorithms).

Example

B = {01011}
U = {Alice, Bob}
C = {cAlice,01011 = (01xxx, (view, print), (unlimited, 2)),

cBob,01011 = (01011, (view, copy, print), (unlimited, 1, 2))}

In the above example, Alice is only allowed to perform two operations. She is allowed

to view the information “01” an unlimited number of times, and is allowed to print it

twice. The actual bits “01” are of course hidden from Alice, and she can only view them

in specific applications, and can print the information that they represent. Bob is allowed

to copy the information once, in addition to being allowed to perform all operations that

Alice can perform.

2.2 Attack Models

As in traditional cryptography, there are several attack models for DRM. We will discuss

these below:

• Encoded-text only attack : This attack model is analogous to the ciphertext-only

attack in traditional cryptography. In this model, the adversary only has access to

some strings of encoded-text.

• Known plaintext attack : As in traditional cryptography, the adversary has access to

some strings of plaintext, and corresponding encoded-texts in this attack model.

• Chosen plaintext attack : As in traditional cryptography, the adversary can choose

some plaintext strings, and construct corresponding encoded-text strings in this at-

tack model.

• Chosen encoded-text attack : This attack model is analogous to the chosen ciphertext

attack in traditional cryptography. In this attack model, the adversary can choose

some encoded-text strings, and construct the corresponding plaintext strings.
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• Side-channel attack: In this attack model, the adversary does not attack the DRM

scheme, but instead, attacks its actual implementation. This is the most important

attack model for DRM, since the adversary typically has complete control over the

execution environment that extracts information from the encoded-text. He/she can

perform fault analysis, timing analysis, etc. to crack a DRM scheme’s implementa-

tion.

2.3 Adversarial Goals

Using one of the attack models discussed in the previous section, an adversary, u, might

try to achieve one or more of several goals. These goals are given below:

• Obtain some information represented by bits in b that are not in Su,b.

• Do operations on Su,b that are not allowed by Au,b.

• Use the information in Su,b more than the number of times allowed by Tu,b.

• Determine k bits of b with probability significantly greater than 1/2k.

• Gain ability to do one or more of the above for any given encoded-text.

2.4 Security

In this section, we will discuss conditions on DRM schemes that will ensure their security.

Informally, we will call a DRM scheme secure if it binds B,U and C such that the rules in

C are enforced. More formally, we have the following:

• A DRM scheme is perfectly secure if:

Given any P ′ ⊂ U , and Z = E(b, P, Q) where b ∈ B, P ⊂ U and Q ⊂ C, the set of

users P ′ cannot determine any k bits in b, with probability > 1/2k (which can be

obtained by randomly guessing the bits), and no u ∈ P ′ can violate the restrictions

in its contract.
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• A DRM scheme is N-secure if:

Given a security parameter N , any P ′ ⊂ U where |P ′| ≤ N , Z = E(b, P, Q) where

b ∈ B, P ⊂ U and Q ⊂ C, the set of users P ′ cannot determine any k bits in b

with probability > 1/2k +O(1/2N), and no u ∈ P ′ can violate any restrictions in its

contract, except with probability < O(1/2N).

In general, perfect security is probably impossible to achieve, and we should strive to

obtain N -secure DRM schemes. If we have a N -secure DRM scheme, we can increase

security as required, by adjusting the security parameter.

The above definitions are similar to many other cryptographic definitions, and they

seem to cover most, if not all existing DRM schemes. Of course, the definitions are rel-

atively informal and are not meant to be complete. Complete definitions will probably

require several years of research.

Now that we have DRM related definitions, we can examine some DRM schemes, dis-

cuss their implementations, and analyze their strengths and weaknesses. In the next two

chapters, we will examine Microsoft DRM 2.0, as applied to WMA files, and the Content

Scrambling System used to encode information on Digital Versatile Discs (DVDs), in detail.
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Chapter 3

Case Study 1:

Microsoft DRM 2.0

3.1 Introduction

Microsoft DRM 2.0 was cracked soon after its release by a programmer using the pseudonym

“Beale Screamer.” We will examine the scheme as applied to audio (WMA) files in detail,

and see that even though the scheme is very clever, and was designed carefully, there is

a major flaw in the implementation that enables an adversary to remove any restrictions

imposed by the DRM scheme. This case study illustrates that DRM schemes are much

more difficult to design than traditional cryptographic protocols that are designed for

secure communication over an insecure channel. Most of the information in this chapter is

obtained from [14].

Microsoft DRM 2.0 incorporates many cryptographic techniques to protect information.

The main idea is to encrypt the information to be protected with a “content key,” and

send the content key only to clients who have paid for the information. Before the key is

transmitted to a client, it is encrypted using another key that is specific to the client. The

scheme relies on keeping all (client-specific) private keys secret from their owners. Note

that this is very different from a traditional encryption scheme where the owner of a private

key always has access to it. Of course, the difference here is that no clients can be trusted.

Microsoft DRM 2.0 uses several cryptographic algorithms, which are listed below, along
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with reasons for their use:

• An Elliptic Curve Cryptosystem (ECC) is used as a public-key cryptosystem. The

main reason for using ECC instead of a more standardized cryptosystem such as

RSA, is performance. RSA requires 1024-bit keys for sufficient security, whereas

ECC only requires 160-bit keys for the same level of security. That is one reason

why ECC operations are much faster than RSA operations. This is very important

for some portable devices, where the processors are relatively slow, and the memory

sizes are quite small.

• DES is a block cipher used to hide keys in the encoded-text. We will discuss the

process later in this chapter

• The stream cipher, RC4, is used to encrypt the plaintexts, as the first step in pro-

tecting them. RC4 is used instead of a block cipher for performance reasons. Stream

ciphers tend to be more efficient than block ciphers.

• The hash function, SHA-1, is used to generate some keys. The process used to

generate the keys is described later in this chapter.

• A proprietary cipher, which is referred to as MultiSwap by Beale Screamer, is used

to generate Message Authentication Codes.

Detailed information about how all of the above algorithms are used, is given later in

this chapter. An implementation detail, which is important mainly if one wants to im-

plement a crack, or analyze actual client-server communication, is that all communication

is performed using a modified Base64 encoding. First, the standard Base64 encoding is

applied. Base64 is used to simplify communications, so that printable characters can be

transferred, rather than raw binary data. After the encoding is applied, in some places, Mi-

crosoft’s algorithm substitutes ‘*’ for ‘/’, and ‘!’ for ‘+’, and at other places, it substitutes

‘@’ for ‘/’ and ‘%’ for ’ !’.
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3.2 MultiSwap

Microsoft’s proprietary block cipher, MultiSwap, uses two main operations: 32-bit multi-

plications, and swaps of the two halves of 32-bit words. MultiSwap is a very weak cipher,

and it can be broken using a chosen-plaintext attack with running time 214, or a known-

plaintext attack with running time 225 [3]. Thus, it is not safe to use for hiding information.

The weakness of the cipher could possibly be used to crack Microsoft DRM 2.0, but the

attack discovered by Beale Screamer is more practical, and so, there has not been much

interest in finding a crack that exploits the weaknesses of MultiSwap.

A MultiSwap key consists of twelve 32-bit words, k[0], k[1], ..., k[11]. In Microsoft’s

implementation, the least significant bits of k[0], k[1], ..., k[11] are all set to 1, even though

only 10 of them actually need to be set to 1 for the cipher to work properly. A 64-bit

initialization vector, IV , is also used in the cipher. Let the state be denoted by s[0], s[1].

The state is initialized to IV .

We first define a function f such that

f(a) = swap(swap(swap(swap(swap(a ∗ k[0]) ∗ k[1]) ∗ k[2]) ∗ k[3]) ∗ k[4]) + k[5] where a

is a 32-bit word, swap swaps the two 16-bit halves of a 32-bit word, ‘∗’ is multiplication

modulo 232, and ‘+’ is addition modulo 232.

Now, to encrypt a 64-bit plaintext p, we do the following:

1. x = first 32 bits of p.

2. s[0] = first 32 bits of IV .

3. s[1] = second 32 bits of IV .

4. s[1] = s[1] + f(x + s[0]) where + is addition modulo 232.

5. s[0] = f(x + s[0]).

6. x = second 32 bits of p.

7. s[1] = s[1] + f(x + s[0]) where instead of keys k[0], . . . , k[5], we use the keys

k[6], . . . , k[11] in f .
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8. s[0] = f(x + s[0]) where instead of keys k[0], . . . , k[5], we use the keys k[6], . . . , k[11]

in f .

9. Output s[0], s[1].

The first half of the algorithm is illustrated in figure 3.1.

Figure 3.1: First half of MultiSwap encryption

The result can be decrypted because all keys are odd, and hence, they have multiplica-

tive inverses modulo 232. We can easily see that f−1(c) = swap(swap(swap(swap(swap(c−
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k[5])∗k−1[4])∗k−1[3])∗k−1[2])∗k−1[1])∗k−1[0] where k−1[x] for x = 1, 2, ..., 5 is the inverse

of k[x] modulo 232. Hence, we can decrypt y using the following steps:

1. s[0] = first 32 bits of y.

2. s[1] = second 32 bits of y.

3. s[1] = s[1]− s[0].

4. s[0] = f−1(s[0]) where instead of keys k[0], . . . , k[5], we use the keys k[6], . . . , k[11] in

f−1.

5. x[1] = s[0]− s[1] + b where b = second 32 bits of IV .

6. s[0] = s[1]− b.

7. s[0] = f−1(s[0]).

8. x[0] = s[0]− a where a = first 32 bits of IV .

9. Output x[0], x[1].

MultiSwap is never used for actual encryption, but instead, is used to create a MAC.

Assuming that the length of the message that we want to generate the MAC for, is a

multiple of 64 bits, we set IV = 0, and then encrypt the entire message, where each

ciphertext block is used as the IV for encrypting the next block. The output for the last

block of the message is the MAC for the message. We will discuss how the MAC is used,

later in this chapter.

3.3 Elliptic Curve Cryptography

For Elliptic Curve Cryptography (ECC), Microsoft uses the ElGamal encryption scheme,

and a curve over Zp where p is the 160-bit prime given below. The curve is defined by

y2 = x3 + ax + b, where a and b are coefficients given below. All numbers below are given

in hexadecimal.
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p 89abcdef012345672718281831415926141424f7

a 37a5abccd277bce87632ff3d4780c009ebe41497

b 0dd8dabf725e2f3228e85f1ad78fdedf9328239e

x 8723947fd6a3a1e53510c07dba38daf0109fa120

y 445744911075522d8c3c5856d4ed7acda379936f

Order of curve 89abcdef012345672716b26eec14904428c2a675

(x′, y′) is a point on the elliptic curve, and is a generator for all points on the elliptic

curve. The above constants are fixed, and are used by all parties in the Microsoft DRM

2.0 scheme.

The server’s public and private ECC keys are included in the server software by default.

The server’s public ECC key is also included in client software. The client generates its

own public/private key pair (and stores it in an obfuscated form) when the client software

is initialized on a computer. The process, during which a server gets a client’s public key

is discussed later, in section 3.7.

3.4 Keys

Each file protected by Microsoft DRM 2.0 is encrypted with a content key. The scheme can

be cracked by determining the content key, and we will discuss that process later in this

chapter. The content key is not used directly in an encryption scheme, but is processed for

several uses. First, we use SHA-1 to produce a 20-byte hash of the content key. The first 12

bytes of the hash are used as an RC4 key (KR), and the second 8 bytes are used as a DES

key (KD). KR is used to encrypt a 64-byte string of all zeroes. The least significant bit of

each of the first 12 words of the output is then set, and the resulting 12 words (48 bytes)

are used as a MultiSwap key (k[0], k[1], ..., k[11]). The next 8 bytes are used as a DES

encryption in-whitening mask (IWM), and the last 8 bytes are used as a DES encryption

out-whitening mask (OWM).
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3.5 Encoding

The plaintext cannot be encrypted as a single stream, because we want the information

to be randomly accessible. We cannot use the same RC4 key to encrypt each packet

either, since that compromises security. To ensure that the above problems do not occur,

Microsoft uses the following scheme to encrypt packets. Note that the size of each packet

depends on the streaming server’s configuration, and on the content size.

1. Given packet P , P ′ is P with size rounded down to a multiple of 8 bytes.

2. M ′ = MultiSwapMACk[0],k[1],...,k[11](P
′).

3. Swap the two 32-bit halves of M ′ to obtain M .

4. R = RC4EncryptM(P ). R′ = R with size rounded down to a multiple of 8 bytes.

5. D = DESEncryptKD
(M ⊕ IWM)⊕OWM .

6. Overwrite the 8-byte block of R corresponding to the last 8-byte block of R′, with

D, to obtain the packet, E, or encoded-text.

3.6 Decoding

Decoding involves basically the same steps as encoding, except that they are performed

in the reverse order. However, there is a complication due to the fact that a part of the

encrypted packet was overwritten with other information during the encoding process. The

following steps are taken to decode a packet E, of encoded-text.

1. Given encoded packet E, let E ′ be E with size rounded down to a multiple of 8 bytes.

2. Let D be the last 8-byte block of E ′.

3. M = DESDecryptKD
(D ⊕OWM)⊕ IWM .

4. Q = RC4DecryptM(E). Q is the correct plaintext, except for the last full 8-byte

block.
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5. Swap the two halves of M to obtain M ′.

6. Run MultiSwapMACk[0],k[1],...,k[11] on Q up to the last full 8-byte block. This is the

next-to-last state (s[0], s[1]) seen by MultiSwapMAC when it computed the MAC

during encryption. We know that M ′ is the final output of MultiSwapMAC. So, we

can run the MultiSwap decryption algorithm on M ′ with IV = (s[0], s[1]) to obtain

the original 8-byte block. Replace the last full 8-byte block of Q with this data to

obtain the original plaintext packet, P .

3.7 Obtaining a License

The process of obtaining a license is described in this section. A license is simply a contract

that allows the user owning it to obtain all information in the protected file, an unlimited

number of times using Microsoft’s software (Windows Media Player for WMA files). The

absence of a license for a protected file on a client’s computer implies that the client is not

allowed to view any part of the file. A protected WMA file contains a DRMV2 object in

its header. This object contains an XML object 6 bytes into the data part of the object.

The XML object contains a KID element that identifies the content key for the file. If a

license with this KID exists locally, it is used to decode the file. Otherwise, a license request

is sent to the license server. This request contains a random challenge, and is 168 bytes in

length. It is encoded using Microsoft’s modified Base64 encoding. The first 80 bytes are

two elliptic curve points, which contain an ECC-encrypted random RC4 session key, KRR.

It is encrypted using the server’s public key, which is stored on each client’s computer by

default (since the public/private ECC key pair for all servers is the same). The remaining

88 bytes contain the “Client ID” encrypted using KRR and RC4. After some client-server

interaction, the server sends the license, encrypted with KRR, back to the client. Finally,

the client decrypts the license, and stores it locally.

3.8 Crack

In this section, we will examine a side-channel attack where the adversary attempts to

obtain the complete plaintext corresponding to a given encoded-text. The adversary must
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have a contract that allows him/her to access the information in the encoded-text. We will

see that Microsoft DRM 2.0 is completely insecure in this attack context.

3.8.1 Determining Public/Private Keys

On clients’ computers, secret keys are stored in linked lists that contain 32 bits per node.

The linked list is interspersed with the code in the library. Since the files are shuffled in a

random way for each client, the keys are very difficult to extract from the files themselves.

Instead, we can load the library, which maintains an object state containing the keys, and

then read the keys directly from the object. This is possible because the offset of the keys

within the object is known. This is the basis of the crack that we discuss. Using a client’s

public/private keys, we can extract the content key from the client’s license.

3.8.2 Determining the Content Key

To obtain the content key, a client first needs to determine its public/private ECC key

pairs, and obtain a copy of the license. Once the content key is determined, the client can

use the decryption algorithm to remove all protection from the WMA file.

Licenses are stored in a file named drmv2.lic. Each license entry in the file is an

XML object containing the element ENABLINGBITS, which in turn contains subelements

ALGORITHM, PUBKEY, VALUE, and SIGNATURE. PUBKEY must match one of the client’s public

keys. VALUE is the content key encrypted using PUBKEY, and can be decrypted using the

corresponding private key.

Note that even though all clients who have a license for a particular file have the same

content key, the licenses are not transferrable, because each license has a different value

for ENABLINGBITS.

The file drmv2.lic can be accessed through Microsoft’s IStorage and IStream interfaces.

The top-level file has a lower level IStorage object for each KID, which can contain a set

of licenses for each KID. To guarantee valid IStorage names, the KID is first processed to

change all ‘/’ characters to ‘@’, and all ‘!’ characters to ‘%’. The names of the IStream

objects containing the licenses are the same as the LID (License ID) elements stored in

the licenses. It is currently not known how LID’s can be generated from the content, and
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so, we cannot directly open the required LID stream. Instead, we can enumerate through

all available streams for the KID, testing each one to see if it contains a PUBKEY element

that we know. If it does contain a PUBKEY element that we know, we guess that it is the

license for the content. Then, we run PUBKEY and VALUE through a Base64 decoder, and

finally, decrypt the content key, which is encrypted using the private key corresponding to

PUBKEY.

3.9 Discussion

The complexity and features of the Microsoft DRM 2.0 make it evident that a lot of work

was invested in the creation of the scheme. Microsoft managed to create a DRM scheme

in which each packet of data could be encrypted with a different key, and the key could

be hidden inside the packet itself, without increasing its size. This has the advantage that

protected files can have the same format as unprotected files. In spite of the amount of

thought put into the design, a fairly simple attack manages to crack the scheme.

The attack outlined in this chapter illustrates one of the major problems in creating

secure DRM schemes. In traditional cryptographic protocols, there is at least one trusted

party that attempts to communicate with a possibly untrusted party. In designing DRM

protocols, a complication is that no clients can be trusted. Any client could act as an

adversary, and attempt to crack the scheme.

There are several security problems in Microsoft DRM 2.0 that need to be addressed.

Some or most may have been fixed in later versions of Microsoft DRM. Due to the fact that

details of DRM scheme implementations are usually not provided by manufacturers, veri-

fying the security of newer versions of Microsoft DRM is difficult. Hiding implementation

details, i.e. security by obscurity, is generally considered a bad practice in cryptographic

contexts. But, the lack of proper DRM definitions and security proofs for DRM schemes

makes security by obscurity necessary. Once implementation details are made public, most

DRM schemes available today can be cracked. Hence, it is difficult to determine how secure

newer versions of Microsoft DRM are.

As for Microsoft DRM 2.0, the scheme’s major flaw is a failure to properly obfuscate

keys. As we will see in the second part of this thesis, obfuscation is actually impossible
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in general. Even if Microsoft manages to make the scheme secure, it will not comprise

a complete DRM solution on its own. Information pathways to monitors, speakers, and

other output devices need to be secured as well. Whether Microsoft’s Palladium, or another

trusted computing platform manages to do this still remains to be seen.
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Chapter 4

Case Study 2:

Content Scrambling System

4.1 Introduction

Content Scrambling System (CSS) is used to protect Digital Versatile Discs (DVDs) against

unauthorized copying. CSS takes a different approach to copy protection, compared to

Microsoft DRM 2.0. Like Microsoft DRM 2.0, it also encrypts the content to protect it,

but the main keys are fixed, and are hidden in hardware. Legal agreements are used to

ensure that hardware manufacturers who are given access to the keys do not distribute

them to others. However, the CSS scheme is very weak, and even if the keys can be hidden

securely, the scheme can be cracked easily. Most of the information in this chapter is

obtained from [15] and [11].

Each DVD contains an area containing encrypted content, and a hidden area. The

contents of the hidden area cannot be read, except by an authenticated device. The hidden

area contains a table of encrypted disk keys, a disk key hash, a title key, and a region code.

The region code is not important for our discussion, and we will not discuss it.

Each DVD player contains some player keys, a region code, and an authentication key

that is used for authentication with the host (computer, processor connected to the DVD

drive, etc.). The host also stores the authentication key in its DVD playing software.
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4.2 Overview of Decoding Process

Decoding the contents of a DVD requires several steps. These are listed below:

1. The host and DVD player use a challenge-response protocol for authentication, and

for establishing a bus key (session key).

2. The DVD player finds the disk key using the player keys it possesses.

3. The DVD player uses the disk key to decrypt the title key.

4. The title key and disk key are sent to the host by the player. The bus key is used to

encrypt the title and disk keys in transit.

5. The DVD player sends a sector to the host.

6. The host uses the sector key (described in the next section) to decrypt the sector.

4.3 Keys

An authentication key is used for the authentication between the DVD player and the host.

During authentication, a bus key (session key) is negotiated. It is used to encrypt keys

before sending them over the unprotected bus.

Each DVD player contains a small set of player keys, which is a subset of the entire

set of player keys. There are a total of 409 player keys, PK1, PK2, ..., PK409. This way,

if a manufacturer releases its subset of player keys to the public, the manufacturer can be

tracked down (as not all manufacturers have the same subset of player keys).

Each DVD has a disk key, DK. The disk key is stored in a data block that contains

the following:

Hash of DK (DK encrypted with DK) H = EA(DK,DK)

DK encrypted with PK1 DK1 = EA(DK,PK1)

DK encrypted with PK2 DK2 = EA(DK,PK2)
...

DK encrypted with PK409 DK409 = EA(DK,PK409)
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Here, EA is the disk key encryption algorithm, which has the decryption inverse DA.

Similarly, we will also use EB, the content encryption algorithm, which has the decryption

inverse DB. We will describe these algorithms later.

Suppose that the player contains PK52. It uses it to try to decrypt the disk key, i.e.

DK = DA(DK52, PK52). Then, the player verifies the disk key using the following check:

DK = DA(H, DK). If the check fails, the player tries another player key. There are several

reasons why the check might fail for a particular player key. An error might have occurred

on the disc during the manufacturing process, so that one or more of the encrypted disk

keys may not have been recorded properly. A scratch on the disk might cause one of the

encrypted disk keys to be improperly read. There might also be an error in the DVD player

while it attempts to read the disk. There are many other reasons why the check might fail.

To decrypt the contents of the DVD, another key is required. This key is the title key,

TK, and is found using the disk key. ETK = EB(TK, DK) is what is stored on the DVD,

and the player decrypts it as following: TK = DB(ETK,DK).

Each sector of the data files is optionally encrypted using a sector key that is the

exclusive-OR of TK and bytes 80-84 of the unencrypted first 128 bytes of the 2048 byte

sector. Encryption is done using the CSS stream cipher, which is described later in this

chapter.

4.4 Mutual Authentication

The DVD player performs mutual authentication with the host before sending any data to

the host over the bus. During this process, it negotiates a bus key (session key) to prevent

an adversary from reading plaintext from the bus. The authentication protocol proceeds

as follows:

1. Host requests an Authentication Grant ID (AGID) from the DVD Player.

2. DVD Player sends the AGID back to the Host.

3. Host generates a challenge consisting of an arbitrary stream of bytes, and sends it to

the DVD Player.
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4. The DVD Player encrypts the challenge using the authentication key, and sends it

to the host.

5. The host decrypts the encrypted challenge sent by the DVD Player, and ensures that

it is the same as the challenge sent earlier.

6. The DVD Player is now authenticated.

7. The DVD Player generates a challenge consisting of an arbitrary stream of bytes,

and sends it to the host.

8. The host encrypts the challenge using the authentication key, and sends it to the

DVD Player.

9. The DVD Player decrypts the encrypted challenge sent by the host, and ensures that

it is the same as the challenge sent earlier.

10. The host is now authenticated.

11. The host and the DVD Player add the two decrypted challenges, and encrypt them

using the authentication key. The result is the bus key.

This authentication protocol is quite weak, since it relies on a secret key, which is

probably stored in the firmware inside DVD players. The encryption and decryption of

keys is similar to encryption and decryption of data (described below), except that an

S-Box permutation is applied before the encryption, and after the decryption. A different

S-Box is used for each type of key.

4.5 Encoding

Encoding and Decoding algorithms in CSS use Linear Feedback Shift Registers (LFSRs).

LFSRs are commonly used by cryptographic protocols to generate pseudo-random bits.
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4.5.1 Linear Feedback Shift Registers

An LFSR is a shift register that, when clocked, advances the input signal through the

register from one bit to the next most significant bit, and shifts a feedback bit into the

least significant bit. If the initial value of an LFSR is 0, it will produce an output of

all 0’s. This is referred to as null cycling. LFSRs are usually combined using addition,

multiplexors or logic gates to generate less predictable bit streams.

Some terms regarding LFSRs that we will need, are given in italics below. An LFSR is

seeded with an initial value. With each clock tick, tapped bits are evaluated by a feedback

function. The output of the feedback function is shifted into the register at the input. The

output of the register is the bit that is shifted out. A generic LFSR is given in figure 4.1.

Figure 4.1: Generic LFSR

4.5.2 Encoding Algorithm

The CSS encoding algorithm uses two LFSRs. The first one is a 17-bit LFSR, and the

second one is a 25-bit LFSR. We will refer to these LFSRs as LFSR-17 and LFSR-25

respectively. LFSR-17 is seeded with the first two bytes of the 5-byte key. The least

significant bit is then set to 1, in order to prevent null cycling. Similarly, LFSR-25 is

seeded with the last three bytes of the 5-byte key. The three least significant bits are then

shifted up one position, and the fourth least significant bit is set to 1, in order to prevent

null cycling. LFSR-17 has 2 taps (bits 1 and 15), and its feedback function is exclusive-OR.

LFSR-25 has 4 taps (bits 1, 4, 5 and 15), and its feedback function is exclusive-OR. In both

LFSRs, the value of the feedback function is used as the output, and the typical output

bit is discarded.
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The output from the two LFSRs is combined using 8-bit addition. After each LFSR

outputs 8 bits, the outputs may be bitwise inverted before being added to form an output

byte. The carry-out from this addition is used as the carry-in for the addition for the next

output byte.

CSS has four different output modes. Depending on the mode, the output of one or

both of the LFSRs may be inverted bitwise before addition. The modes and the inverter

settings are given below:

Mode LFSR-17 LFSR-25

Authentication Invert

Session Key

Title Key Invert

Data Invert Invert

To encode a sector (plaintext), each LFSR is first seeded with the sector key as described

earlier. After the LFSRs are seeded, the output forms a pseudo-random bit stream. The

exclusive-OR of the bit stream with the plaintext, is the encoded-text. The plaintext bytes

may have an S-Box permutation applied before the exclusive-OR operation. The algorithm

described above, is EB.

4.6 Decoding

Decoding involves the same steps as encoding, except that the optional S-Box transfor-

mation must be reversed. First, the same pseudo-random bit stream generated during

encryption, is created. Then, it is XORed with the encoded-text. Finally, the S-Box

permutation is reversed, to obtain the plaintext. The resulting algorithm is DB.

4.6.1 Key Decryption

Before the information on a DVD can be decoded, some keys must be decrypted. In

addition to the usual encoding, CSS performs a two-step mangling operation for keys,

including the title key and the bus key. This process is shown in figure 4.2, where each
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column represents one byte of the key. The resulting algorithm is EA. If we reverse the

key mangling step along with applying DB, we obtain the algorithm DA.

Figure 4.2: CSS Key Mangling

This process can be easily reversed if we have a known plaintext-ciphertext pair. We try

all possibilities for k5, and work backwards to find k4, k3, k2, and k1, where k1, k2, k3, k4,

and k5 are the 5 bytes of the key.

4.7 Crack

CSS has several weaknesses that lead to attacks of varying complexities. An obvious

weakness in the CSS cipher is that we can simply try all possible 240 disk keys to determine

the disk key for a DVD. This is possible because we can guess a disk key K, and then

determine whether EA(K, K) equals the hash of the disk key stored on the DVD. If so,

then there is a very high probability of K being the disk key. This is an encoded-text only

attack, where the adversary can obtain the complete plaintext corresponding to the given

encoded-text.
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There is a more efficient attack that attempts to reverse the disk key hash, EA(DK,DK),

and has time complexity 225. Even faster attacks have been studied, but they are not prac-

tical. The 225 attack can recover a disk key from the hash alone, in a matter of seconds.

The attack is complex, and does not readily illustrate any obvious weaknesses in the cipher.

Hence, it is not discussed here. The attack is presented in [15], and is also an encoded-text

only attack, where the adversary can obtain the complete plaintext.

4.8 Discussion

CSS is clearly a very weak DRM scheme. This is not necessarily due to poor design, but

due to US government export regulations. When CSS was designed, the US government

had severe restrictions on exports of products containing cryptographic schemes. The Data

Encryption Scheme (DES) was similarly weakened after it was designed. Its key size was

restricted by the US government before it was made an official standard [12]. Even though

regulations effectively restricted the sizes of the CSS keys, the scheme is still not as secure

as it could have been. This is because a 225 attack can be used to find a 40-bit disk key,

which is much faster than an exhaustive search.

The Motion Picture Association of America (MPAA) attempts to gain security by

obscurity. It does this by using the legal system to ensure that player keys are not made

public. The MPAA is trying to stop the distribution of software called DeCSS that decodes

the contents of DVDs, and let users save the plaintexts to disk. The decoded versions can

be freely copied and/or distributed. The practice of using the legal system instead of good

design to obtain security, is clearly not effective. Even though player keys are not widely

available, DeCSS can be downloaded from numerous web sites, and be used to circumvent

the CSS DRM scheme.

Even though CSS has been cracked, and export restrictions in USA have been eased

somewhat, it will probably continue to be used for years to come. Like audio CD man-

ufacturers, DVD manufacturers must retain backward compatibility. DVDs have already

become an internationally accepted standard, and switching to a new DRM scheme for

DVDs would require consumers to purchase new hardware. This illustrates a disadvantage

of hardware-based DRM schemes, i.e. limited potential for modifications. Advantages and
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disadvantages of hardware-based DRM schemes are discussed in the next chapter.
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Chapter 5

Addressing DRM Requirements

Now that we have examined two different DRM schemes in detail, we will discuss various

approaches to obtaining an effective DRM solution. Technological approaches include

hardware and software solutions. Sometimes, the legal system is also used in conjunction

with hardware and software solutions to enforce contracts. We will examine each of these

approaches, and then discuss why they must be combined to obtain an effective DRM

solution.

5.1 Hardware

Hardware-based DRM schemes usually consist of some (possibly tamper-resistant) hard-

ware that only allows a specified set of operations to be performed. An example of this

is the hardware component of Microsoft’s Palladium operating system, which contains se-

curely stored cryptographic keys, and only allows a few operations such as encryption and

decryption, to be performed. The keys are never revealed to anybody, including the owner

of the hardware [23]. Another example of a hardware-based DRM scheme is a currently

available product that allows protected software to run only if a hardware “key” is present

[22]. The “key” is simply a device attached to a serial, parallel, SCSI, or USB port on a

computer. This scheme relies on the assumption that the hardware cannot be duplicated.

As we saw in the previous chapter, CSS is also largely a hardware-based scheme. There

are many other DRM schemes that are hardware-based, or have a hardware component.
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DRM schemes based on hardware have several advantages. The hardware can be man-

ufactured in such a way that it cannot be duplicated easily. If information can also be

stored “securely” in hardware, we can be reasonably certain that the hardware component

of the DRM scheme cannot be cracked. DRM schemes can use such hardware to store

keys and other secret information, to ensure that nobody can gain access to them. An-

other advantage of hardware-based DRM schemes is that they are generally faster than

software-based DRM schemes. This is because hardware can generally be optimized more,

because it is designed specially for the required tasks.

Hardware-based DRM schemes have several drawbacks, however. The main disadvan-

tage is that they are relatively expensive compared to software-based schemes. They also

cannot be modified or updated easily. For example, if a particular key length is no longer

considered secure, it would be very difficult, if not impossible, to modify existing hardware

designed to store smaller keys to accommodate the new key sizes. Similarly, if a weakness

is found in the hardware component of a DRM scheme, it cannot simply be “patched.”

Each new hardware release carries a significant cost with it.

5.2 Software

Software-based DRM schemes tend to be more flexible than hardware-based DRM schemes,

but are usually less secure on current computing platforms. An example of a software-

based DRM scheme is Microsoft DRM 2.0, which we examined in detail in Chapter 3.

Microsoft’s Palladium operating system has a large software component as well, which

creates “secure execution environments,” where no applications (including the operating

system) can obtain any information about protected applications, except for trivial details

such as their size [23]. Keys and other secret information can be hidden in software if a

secure execution environment is provided.

Software-based DRM solutions have many advantages. They are flexible and easily

modifiable. If a weakness is found in the software component of a DRM scheme, a patch to

remedy the problem can usually be created and distributed easily. Parameters such as key

sizes can be changed easily, in accordance with security standards. Software-based DRM

solutions are relatively cheap to create, modify and distribute.
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Software-based solutions do have several drawbacks. They tend to be slower and less

secure than hardware-based solutions. This is because general-purpose computers currently

allow running applications to monitor and interfere with other applications. Techniques

such as fault injection have successfully been used to crack some DRM schemes. We will

see an example of a fault-injection technique in Chapter 9. Due to the current state

of operating systems, anybody can write device drivers that perform operations such as

redirect the (plaintext) output meant for a set of speakers, to a file on the hard disk.

Another possible weakness in software-based DRM schemes is that one could distribute

all relevant software along with the protected information, such that an unauthorized user

could access the protected information by impersonating the authorized user. In Microsoft

DRM 2.0, this would involve distributing a license for the protected file, and the adversary’s

public/private keys along with the protected file.

5.3 Legal System

Legal approaches to DRM are very ineffective on their own. However, there are cases

where manufacturers have tried to use the legal system to enforce contracts. One example

is the Content Scrambling System, which is technologically a very weak DRM scheme.

Legal agreements are used to retain control over player keys [19]. CSS descramblers are

currently facing legal scrutiny to determine whether their distribution should be allowed

to protect freedom of speech, or if it should be disallowed to protect copyrights [13]. Also,

the Recording Industry Association of America (RIAA) has been actively searching for,

and prosecuting individuals distributing music files illegally [25].

Severe punishments, and an efficient legal system are good deterrents for preventing

illegal content distribution. They may also help deter people from attempting to crack

DRM schemes. For example, the Digital Millennium Copyright Act (DMCA) introduced

in the USA in 1998, created civil and criminal penalties for the creation or distribution

of DRM circumvention tools [20]. This has caused some people who discovered cracks for

DRM schemes to be prosecuted. Clearly, punishments for offenders can be effective in

preventing contract violations, as long as they are accompanied by technologically sound

DRM schemes.
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The legal system is not an adequate DRM solution by itself, since laws have never

been completely effective at preventing any type of crime. Another difficulty is that many

users may not even know that they are illegally distributing content using their computers.

Many file-sharing programs automatically allow distribution of downloaded files. A user

may illegally download some files, but their distribution may be unintentional. Proving a

user’s intent to distribute files may be difficult in a lot of cases. Another difficulty with

using the legal system is that offenders can be located in countries that do not have laws

such as the DMCA. A good DRM solution needs to consider the problem globally, and not

restrict its focus to a small number of countries.

5.4 Solution

We have briefly examined the advantages and disadvantages of hardware-based, software-

based, and legal system-based DRM solutions. It is clear from examining the disadvantages

of each that none of the three is an effective DRM solution by itself. An effective DRM

solution must use all three components, as we will see below.

Due to the result on the impossibility of code obfuscation presented in the second part

of this thesis, it may be impossible to hide secret information such as keys, in software.

We can hide such information securely in tamper-resistant hardware, however. Also, we

need hardware components to create an effective DRM scheme, since we need to secure the

information pathways to output devices. For example, we need to protect audio signals

until they are actually output from the speakers, and we need to protect video signals until

they are actually displayed on the monitor.

Clearly, a software-only solution cannot accomplish all goals of content protection. We

do need a software component in an effective DRM scheme, however. This is because

hardware is expensive, and usually cannot be upgraded easily. Chances are that no DRM

scheme’s implementation would be perfect, and that updates would be necessary to ensure

continued security. Updating hardware is much more difficult than updating software, and

users cannot be expected to purchase new devices whenever a security flaw is discovered

in the old devices. A software component is also usually required to provide an interface

for users on computing platforms.
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Even if a DRM scheme is fairly secure technologically, it can probably never be perfect,

and so, we need a good legal system to ensure that individuals do not attempt to circumvent

the DRM scheme and distribute the content. Punishments should be severe enough to

discourage people from illegally distributing content. Currently, the Digital Millennium

Copyright Act in the USA is fairly effective at achieving its goals, but it has many unwanted

side-effects, which we will examine in the next chapter.
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Chapter 6

Other DRM-Related Issues

There are several issues related to DRM that we have not yet discussed. We will examine

some of the more important ones in this chapter.

6.1 Open Source Software

Open-source software is software to which no one holds exclusive rights, and for which the

source code is available to the public. For example, Linux is an open-source operating

system. Open-source software has many advantages over other software [8]. Firstly, un-

limited improvements of the software are possible, and these improvements can be made

by anybody in the world. Secondly, modifying code to run on new hardware is easy. Con-

versely, if a piece of software is not open-source, and the manufacturer shuts down, or

chooses not to support new hardware, there is no easy way of making the software run on

the new hardware. Thirdly, the public availability of source code allows programmers from

around the world to find and repair bugs. There are many more advantages of open-source

software, but the reasons given above illustrate why open-source software is valuable.

DRM schemes and laws endanger the development of open-source software, since open-

source software developers usually rely on reverse-engineering to write programs that can

interact with hardware [20]. Reverse-engineering of DRM schemes is illegal under the

DMCA, which means that open-source versions of existing closed-source DRM scheme

implementations cannot be created. An example of the adverse affects of DRM schemes
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and laws was the lack of legal DVD-playing software for Linux for several years. Even now,

most DVD players for Linux are illegal, and the only one currently considered legal is not

an open-source product [7]. The resulting lack of competition on the Linux platform is not

desirable from the point of view of consumers.

6.2 Fair Use Rights

“Fair use” rights limit an author’s exclusive rights under copyright law to encourage citizens

to fully and openly exchange and build upon information to increase the public’s knowledge

[9]. Fair use refers to an individual’s right to use copyrighted materials in a reasonable

manner without the consent of the copyright owner. The reason for fair use rights is

the belief that not all copying of copyrighted content should be banned. For example,

using copyrighted material for the purposes of criticism, comment, parody, news reporting,

teaching, scholarship, research, or personal use, are generally considered legal.

One aspect of current DRM schemes that is undesirable, is a lack of recognition of fair

use rights. In the past, it was easy for people to exercise their fair use rights, but today,

some DRM schemes prevent users from copying information for any purpose. For example,

some audio CDs cannot be copied (until somebody discovers a crack for the copy protection

scheme), and therefore, a user cannot exercise his/her fair use rights. It seems unlikely that

fair use rights can ever be completely recognized by DRM schemes, since it is difficult for

a computer to determine the intentions of a person who is copying protected information.

Fair use rights probably need to be redefined in accordance with the limitations of DRM

schemes, and business models need to be changed to conform to the new definitions. For

example, if consumers are not allowed to make copies of a CD for personal use, they should

pay a discounted price for it. The business model in this case would change from consumers

purchasing one CD and making copies of it for personal use, to them purchasing several

original copies of the CD at a much smaller price for each one. Otherwise, consumers

would receive less value, which could provide more fuel for anti-DRM campaigns.

38



6.3 Competition

A competitive market has many advantages for consumers. Firstly, competition generally

leads to lower prices, since many companies competing for a market share leads to the

companies offering their products at cheaper prices to attract consumers. Secondly, com-

panies have more incentives to improve their products, and offer better value to consumers.

Thirdly, competition prevents companies from controlling consumers by forcing them to

purchase their products, upgrade regularly, etc.

Secure DRM schemes would have a very serious adverse side-effect. By definition, a

DRM scheme restricts the operations that can be performed on protected information, and

the applications that can be used to performed those operations. Unfortunately, software

manufacturers could use such power to prevent files saved by their software from being

opened in software created by their competitors [1]. If the DRM scheme used is secure,

reverse-engineering of the file format would be impossible or impractical. This could be

used by manufacturers of popular software to dissuade users from converting to their

competitors’ software, since most users would want to be able to use file formats that are

the most popular. This would create monopolies, and switching to different software would

become virtually impossible.

6.4 Privacy

Simply put, privacy is the right of people to be left alone. Many individuals may not want

their activities to be monitored, and they have a right to disallow any type of monitoring,

as long as they are not engaged in illegal activities. Privacy is an important fundamental

right, and unreasonable threats to privacy are generally met with overall dissatisfaction

from the public. Privacy is possibly the most popular DRM-related issue.

Revisiting the example in the introduction (Chapter 1), where we monitor a user using

a video camera, we can see that it can be considered an invasion of privacy. The problem

is very real in the digital world. A lot of DRM schemes need to monitor users in order

to enforce contracts. For example, consider a user who has paid to watch a movie twice

online. The server providing the movie must somehow bind personal information about
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the user with the number of times the user has watched the movie. This may not seem like

a significant problem, but consider that if the movie contains some inappropriate content,

and information about a particular user watching the movie is accidentally or intentionally

released to an unauthorized party, the consequences could be serious. In many instances,

there is a tradeoff between security and privacy [6]. This problem is analogous to new anti-

terrorism laws in some countries. The government’s will to monitor individuals conflicts

with the citizens’ right to privacy. Similarly, the interests of manufacturers of protected

information conflict with the consumers’ right to privacy.

6.5 Development Cost

An issue related to DRM that is not usually considered is the cost of developing DRM

schemes. Once again, we consider audio CDs. Record companies spend millions of dollars

to develop copy protection schemes. So far, the trend has been that the schemes get cracked

soon after their release, rendering them useless. Therefore, the record companies cannot

recover the costs of developing DRM schemes from higher CD sales, and the only way to

recover them is by increasing the price of the CDs. Unfortunately, this is exactly what has

been done in the past, and the consumers have to pay for the development costs of useless

DRM schemes. This is an important issue, since DRM scheme development costs must be

paid by somebody, and it is usually not clear who should be responsible for the cost.

6.6 Laws

Laws that are designed to protect DRM schemes and copyrights can have serious side-

effects. For example, the Digital Millennium Copyright Act (DMCA) in the USA was

designed to stop people from cracking DRM schemes. However, it has been used to stifle

legitimate activities. Lawsuits against magazines and threats against researchers are some

examples of how it is being used to stifle free speech and scientific research [29]. Other

side-effects of the DMCA include some of the problems discussed earlier in this chapter,

such as threats against privacy, fair use rights, and open-source software.

Problems such as the above also cost the government a lot of money, since a lot of
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unintended lawsuits can result from laws designed for protecting copyrights. Laws such

as the DMCA can have many unintended consequences, because it is difficult to find a

balance between protecting copyrights, and protecting consumers’ rights.
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Part II

Code Obfuscation
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Chapter 7

Introduction

Informally, an obfuscator O is a compiler that takes a program P as input, and produces

a new program O(P ) that has the same functionality as P , yet is “unintelligible” in some

sense. The interpretation of the “unintelligibility” condition that we adopt is that we can

efficiently compute with oracle access to P , anything that we can efficiently compute using

O(P ) [2]. If obfuscators did exist, they would have many applications, including the one

that we are most interested in: software protection.

We saw in the first part of this thesis that an adversary has far greater power when

attacking DRM schemes, than when attacking traditional cryptographic protocols. This is

because the adversary has full control over the execution environment. This more powerful

attack model is sometimes called a “white-box” attack model, as opposed to the traditional

“black-box” attack model. Since the white-box attack model allows the adversary to view

the inner workings of an application, we need to conceal the inner workings such that the

adversary cannot gain access to secret information, such as keys. This is exactly what

obfuscation attempts to accomplish. It tries to transform a “white-box” application into a

“black-box” application, where having the executable code does not reveal anything useful

about the inner workings of the application.

Obfuscation has DRM-related applications other than concealing secret information

such as keys, as well. Obfuscators can also be used to watermark software. A software

manufacturer can slightly modify their product’s behaviour for each client. The programs

can then be obfuscated so that the watermark is difficult to remove [2]. This could help
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track illegal distributors of software, and would be very helpful in DRM schemes where

users may be able to distribute entire applications along with pirated content, to circumvent

the DRM schemes. An efficient legal system, along with the ability to track down offenders,

would act as an excellent deterrent against illegal content distribution.

Code obfuscation also has many other cryptographic applications, but they are not

relevant to DRM, and we will not discuss them in this thesis. See [2] for these applications.

In Chapter 8, we will present a theoretical proof that an efficient obfuscator cannot

exist. It can be shown that even in weaker models than the one that we will examine,

an obfuscator cannot exist. The weaker models include ones where the obfuscators are

not necessarily computable in polynomial time, where the obfuscators only approximately

preserve the functionality of P , and where the model of computation in P is restricted.

Most of these results can be proven for Turing Machines, where the input can be of arbitrary

length, and for circuits, where the input is of fixed length. We will only examine the

simplest result, since most of the results use the same intuitive idea, but with significant

technical differences.

Even if a general obfuscator does not exist, it may still be possible to obfuscate specific

programs in some meaningful way. In Chapter 9, we will see an example of how this can

be done, by examining a white-box DES implementation. We will also examine a crack for

the obfuscated DES implementation, and discuss the situations where it may be a practical

attack.
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Chapter 8

Impossibility of Code Obfuscation

We will show in this chapter that a Turing Machine obfuscator does not exist. Impossibility

proofs for circuit obfuscators, approximate obfuscators, etc., are not given here. First, we

will present some definitions and notations that we will need, and then we will present

the impossibility proof. Most information in this chapter is obtained from [2]. Other

impossibility proofs are also contained in [2].

8.1 Definitions and Notations

8.1.1 Notation

We will use the following notations throughout this chapter:

• TM will denote Turing machine.

• PPTTM will denote probabilistic polynomial-time Turing machine.

• AM (x) will denote the output of algorithm A on input x, with oracle access to M .

• A (x; r) will denote the output of A on input x and random tape r, if A is a proba-

bilistic TM .

• A (x) will denote the distribution of A (x; r) created by choosing r uniformly.
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• µ : R+ → R+ will denote a negligible function, i.e. a function that grows slower

than the inverse of any polynomial. So, for any positive polynomial p (·), there exists

N ∈ R+, such that µ (n) < 1/p (n) for any n > N .

An algorithm A’s oracle queries are of the form M (x, 1t), where

M
(
x, 1t

)
=

y M (x) halts with output y after at most t steps

⊥ otherwise

If M is a TM , then the function 〈M〉 : {0, 1}∗ × 1∗ → {0, 1}∗ is given by:

〈M〉
(
x, 1t

)
=

y M (x) halts with output y after at most t steps

⊥ otherwise

8.1.2 Adversarial Goals

We informally defined obfuscators in Chapter 7 by stating that anything that an adversary

can compute from an obfuscation O(P ) of a program P , he/she can also compute given just

oracle access to P . We now need to define what it means for an adversary to successfully

compute something. There are several models that can be applied (see [2]), but we will

adopt the weakest requirement. This weakest requirement is to consider the adversary as

trying to evaluate a {0,1}-valued function of the original program P , and require that it is

possible, given just oracle access to P , to succeed with roughly the same probability as the

adversary does when given O (P ). Clearly, if we cannot satisfy the weakest requirement,

we cannot satisfy any stronger requirements either.

8.1.3 TM Obfuscator

A probabilistic algorithm O is a TM obfuscator if the following three conditions hold [2]:

• Functionality: For every TM M , the string O(M) describes a TM that computes

the same function as M .

• Polynomial Slowdown: The description length and running time of O(M) are at most

polynomially larger than that of M . That is, there is a polynomial p, such that for
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every TM M , |O (M)| ≤ p (|M |), and if M halts within t steps on some input x,

then O(M) halts within p(t) steps on x.

• “Virtual Black Box” Property: For any PPTTM A, there is a PPTTM S and a

negligible function α, such that for all TMs M ,∣∣Pr [A (O (M)) = 1]− Pr
[
S〈M〉 (1|M |) = 1

]∣∣ ≤ α (|M |).

We say that O is efficient if it runs in polynomial time.

8.2 Impossibility Result

We defined obfuscators such that they possess the “virtual black box” property when a

single program is obfuscated, but the definition does not say anything about what happens

when the adversary can inspect more than one obfuscated program. We will extend the

previous definition to the case of obfuscating two programs, and then prove that a 2-TM

obfuscator cannot exist.

8.2.1 2-TM Obfuscator

First, we need to define a 2-TM obfuscator. A 2-TM obfuscator is defined in the same

way as a TM obfuscator, except that the “virtual black box” property is strengthened as

follows [2]:

• “Virtual Black Box” Property: For any PPTTM A, there is a PPTTM S and a

negligible function α such that for all TMs M, N ,∣∣Pr [A (O (M) ,O (N)) = 1]− Pr
[
S〈M〉,〈N〉 (1|M |+|N |) = 1

]∣∣ ≤ α (min{|M | , |N |}).

Theorem 1 A 2-TM Obfuscator does not exist.

Proof: Suppose that there exists a 2-TM obfuscator O. The main idea of this proof (and

other impossibility proofs in [2]) is that we can run a program on another program, but

we cannot run an oracle on another oracle.

We need a function that cannot be exactly learned using a few oracle queries, since

otherwise, we can obtain a complete description of the function in a small amount of time
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with only oracle access to it. In this case, there is virtually no difference between having

access to the function’s description, and having oracle access to the function.

We define the following function, that cannot be exactly learned using a few oracle

queries:

Cα,β (x) =

β if x = α

0k otherwise

We assume that Cα,β (x) runs in 10 · |x| steps, where the constant 10 is arbitrary.

Now, we define Dα,β as follows:

Dα,β (C) =

1, if C (α) = β

0, otherwise.

As defined above, Dα,β is uncomputable, since it does not limit the running time of C (α).

To fix this problem, we choose a polynomial poly (·), and use a modified version of Dα,β

that only considers the execution of C (α) for poly (k) steps, and outputs 0 if C (α) does

not halt in that many steps.

Finally, we define Zk as follows:

Zk (x) = 0k for all x ∈ {0, 1}k

We consider an adversary A, that when given two TMs as input, simply runs the second

TM on the first one. That is, A (C, D) = D (C). By definition, for all α, β ∈ {0, 1}k,

Pr [A (O (Cα,β) ,O (Dα,β)) = 1] = 1

Pr [A (O (Zk) ,O (Dα,β)) = 1] = 0

So,

|Pr [A (O (Cα,β) ,O (Dα,β)) = 1]− Pr [A (O (Zk) ,O (Dα,β)) = 1]| = 1

Note that A is uncomputable, like Dα,β was. We fix this in the same way that we fixed Dα,β,

and restrict the running time of D (C) to poly (k) steps, for a fixed polynomial poly (·). A

outputs 0 if D does not halt in that many steps.
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Now, any algorithm S that runs in polynomial-time, and has oracle access to Cα,β

and Dα,β has exponentially small probability (for a random α, β) of querying either oracle

where its value is nonzero. So, for all PPTTM S,∣∣Pr
[
SCα,β ,Dα,β

(
1k

)
= 1

]
− Pr

[
SZk,Dα,β

(
1k

)
= 1

]∣∣ ≤ 2−Ω(k)

This contradicts the fact that O is a 2-TM obfuscator, since∣∣Pr [A (O (Cα,β) ,O (Dα,β)) = 1]− Pr
[
SCα,β ,Dα,β

(
1k

)
= 1

]∣∣ 6≤ α (min{|Cα,β| , |Dα,β|})

and/or∣∣Pr [A (O (Zk) ,O (Dα,β)) = 1]− Pr
[
SZk,Dα,β

(
1k

)
= 1

]∣∣ 6≤ α (min{|Zk| , |Dα,β|})

for any negligible function α.

Note that we restricted the running times of A and Dα,β. We need to ensure that

the above equations and inequalities still hold. Executing A (O (Cα,β) ,O (Dα,β)) leads to

executing

O (Dα,β) (O (Cα,β)). By definition, this has the same functionality as executing

Dα,β (O (Cα,β)), which involves executing O (Cα,β). O (Cα,β) has the same functionality as

Cα,β. By the polynomial slowdown property of obfuscators, O (Cα,β) runs in poly (10 · k) =

poly (k) steps, which means that Dα,β (O (Cα,β)) need only run for poly(k) steps. Again, ap-

plying the polynomial slowdown property, O (Dα,β) (O (Cα,β)) takes poly(k) steps, which

finally implies that A need only run for poly (k) steps. The same reasoning holds for

A (O (Zk) ,O (Dα,β)). Note that all polynomials involved are fixed, once we fix the poly-

nomial p (·) of the polynomial slowdown property in the definition.

Therefore, a 2-TM obfuscator does not exist.

8.2.2 1-TM Obfuscator

Now, we will extend the 2-TM obfuscator impossibility result to the original case. We do

this by combining the two programs constructed above into one. For functions or TMs,

f0, f1 : X → Y , we define f0#f1 : {0, 1}×X → Y by (f0#f1) (b, x) = fb (x). Conversely, if

we are given a TM C : {0, 1}×X → Y , we can decompose C by setting Cb(x) = C(b, x).
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Theorem 2 A TM obfuscator does not exist.

Proof: Suppose that there exists a TM obfuscator O. Define the following functions:

Fα,β = Cα,β#Dα,β

Gα,β = Zk#Dα,β

Consider an adversary A that when given a TM f0#f1, decomposes it into f0 and f1.

If the adversary is given Fα,β, it decomposes it into Cα,β, and Dα,β. If it is given Gα,β, it

decomposes it into Zk and Dα,β. After the decomposition step, the adversary continues

exactly as in the proof of Theorem 1. As in the proof of Theorem 1, we have

|Pr [A (O (Fα,β)) = 1]− Pr [A (O (Gα,β)) = 1]| = 1∣∣Pr
[
SFα,β

(
1k

)
= 1

]
− Pr

[
SGα,β

(
1k

)
= 1

]∣∣ ≤ 2−Ω(k)

Hence, as in the proof of Theorem 1,∣∣Pr [A (O (Fα,β)) = 1]− Pr
[
SFα,β

(
1k

)
= 1

]∣∣ 6≤ α (|Fα,β|)

and/or, ∣∣Pr [A (O (Gα,β)) = 1]− Pr
[
SGα,β

(
1k

)
= 1

]∣∣ 6≤ α (|Gα,β|)

for any PPTTM S, and any negligible function α (·).
This contradicts the definition of a TM obfuscator. Hence, a TM obfuscator does not

exist.

8.3 Discussion

The above impossibility result may make obfuscation seem hopeless, but in reality, it does

not have much practical significance. We will see in the next chapter that we can achieve

obfuscation in a meaningful way. Even though an “obfuscator” does not exist, we can still

obfuscate specific programs by examining the operations that they perform, and finding

ways of hiding each one of the operations individually. However, we will also see that

the obfuscation scheme described in the next chapter is useful only in certain models.
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Specifically, if the adversary gains access to both the encryption and decryption programs

for the obfuscated version of DES, then he/she may be able to find the key quickly. This

attack can be prevented, and we will discuss how this can be done, in Chapter 9.
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Chapter 9

Case Study:

Obfuscated DES

In this chapter, we will examine a white-box implementation of DES, where the secret key

is hidden inside the implementation such that it cannot be retrieved easily. Clearly, any

black-box attack against DES will still apply in this case, but we will examine whether

we can obtain the same level of security that we can obtain in the black-box model of

computation.

9.1 DES

In this section, we will present the traditional DES algorithm, without any obfuscation

techniques applied to it. It will help us understand the obfuscation process better. Most

information in this section is obtained from [16].

DES is a special type of iterated cipher known as a Feistel cipher. In a Feistel cipher,

each state ur is divided into two halves of equal length, Lr and Rr. The round function g

has the form g (Lr−1, Rr−1, Kr) = (Lr, Rr) where

Lr = Rr−1

Rr = Lr−1 ⊕ f
(
Rr−1, Kr

)
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DES is a 16-round Feistel cipher having block length 64. It encrypts a plaintext x of

length 64 using a 56-bit key, K, obtaining a ciphertext of length 64. Prior to the 16 rounds

of encryption, there is a fixed initial permutation λ that is applied to the plaintext. We

denote λ (x) = L0R0. After the 16 rounds of encryption, the inverse permutation λ−1 is

applied. The application of λ and λ−1 have no cryptographic significance, and are often

ignored during DES security discussions.

Each Lr and Rr has length 32 bits. The function

f : {0, 1}32 × {0, 1}48 → {0, 1}32

takes as input a 32-bit string (Rr−1) and a 48-bit round key (Kr). The key schedule,

s (K) = (K1, K2, . . . , K16), consists of 48-bit round keys that are derived from the 56-bit

key, K. Each Kr is a permuted selection of bits from K.

The f function consists of an S-Box substitution (described later), after a (fixed) per-

mutation, denoted P . Suppose we denote the first argument of f by A, and the second

argument by J . Then, in order to compute f (A, J), the following steps are executed.

1. A is “expanded” to a bitstring of length 48 using a fixed expansion function, E.

E (A) consists of the 32 bits from A, permuted in a certain way, with 16 of the bits

appearing twice.

2. Compute E (A)⊕ J and write the result as the concatenation of eight 6-bit strings,

B = B1B2B3B4B5B6B7B8.

3. The next step uses eight S-Boxes, denoted S1, . . . , S8. Each S-Box

Si : {0, 1}6 → {0, 1}4

maps six bits to four bits, and is traditionally depicted as a 4×16 array whose entries

are from the integers 0, . . . , 15. Given a bitstring of length six, say Bj = b1b2b3b4b5b6,

we compute Sj (Bj) as follows. The two bits b1b6 determine the binary representation

of a row r of Sj (where 0 ≤ r ≤ 3), and the four bits b2b3b4b5 determine the binary

representation of a column c of Sj (where 0 ≤ c ≤ 15). Then, Sj (Bj) is defined to

be the entry Sj (r, c), written in binary as a bitstring of length four. In this fashion,

we compute Cj = Sj (Bj), 1 ≤ j ≤ 8.
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4. The bitstring C = C1C2C3C4C5C6C7C8 of length 32 is permuted using the permuta-

tion P . The resulting bitstring P (C) is defined to be f (A, J).

Figure 9.1: One round of DES encryption

One round of DES encryption is shown in Figure 9.1, and the DES f function is shown

in Figure 9.2.

Clearly, the DES S-Boxes are not permutations, because the number of possible inputs

is 64, and the number of possible outputs is 16. However, it can be verified that each row

of each of the eight S-Boxes is a permutation of the integers 0, . . . , 15.

9.2 Obfuscated DES

The main goal of the obfuscated DES implementation that we will discuss, is to make key

extraction difficult. There are currently no security proofs for it, but there are no known

practical attacks against the implementation, either. Obfuscated DES is a lot bulkier and

slower than the DES discussed in the previous section. This seems to be a disadvantage of

all white-box solutions, since they must protect against many more threats, compared to

black-box solutions. We will not discuss efficiency of the obfuscated DES implementation

in this thesis. Most information in this section is obtained from [5].
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Figure 9.2: DES f function

9.2.1 Definitions and Notations

The main concept that we need, is the encoding of a transformation, since it is used

extensively in our DES implementation. S-Box lookups, the entire DES, and several other

operations are all considered to be transformations. Some definitions that we will need are

given below:

Encoding: Let X : {0, 1}m → {0, 1}n be a function. Let F : {0, 1}m → {0, 1}m and

G : {0, 1}n → {0, 1}n be bijections. We call X ′ = G ◦ X ◦ F−1 an encoded version of X.

F is the input encoding, and G is the output encoding. For any function X, the encoded

version of X is denoted by X ′.

Concatenated Encoding: The concatenation of encoding functions F1‖F2‖ . . . ‖Fk

(where each Fi is an encoding function) is the bijection F such that for any n-bit vector b =

(b1, b2, . . . , bn), F (b) = F1 (b1, . . . , bn1) ‖F2 (bn1+1, . . . , bn1+n2) ‖ . . . ‖Fk

(
bn1+...+nk−1+1, . . . , bn

)
.

Clearly, F−1 = F−1
1 ‖F−1

2 ‖ . . . ‖F−1
k .

Networked Encoding: The networked encoding for computing Y ◦X is an encoding

of the form Y ′ ◦X ′ = (H ◦ Y ◦G−1) ◦ (G ◦X ◦ F−1) = H ◦ (Y ◦X) ◦ F−1
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n
mF denotes F , emphasizing its input and output sizes. Here, F : {0, 1}m → {0, 1}n.

k
kI is the identity function on k bits. An entropy transference function is a function n

mE

where if m ≤ n, then no bits of information are lost, and if m > n, then at most n −m

bits of information are lost.

〈v1, v2, v3, . . . , vk〉 is a k-dimensional vector with components vi. x‖y is the concatena-

tion of vectors x and y. vi is the ith component of the vector v. vi...j is the subvector of v

containing components i through j of v. kv denotes explicitly that v has k elements. An

entropy vector, ke is any vector with k elements.

AT (an affine transformation) denotes a linear function F , which can be defined for all

me by n
mF (me) =n

m Mme +n d, or F (e) = Me + d, where M is a constant matrix and d is

a constant displacement vector. We will only consider ATs over GF(2). Note that if A and

B are ATs, then so are A‖B and A ◦B (where defined).

9.2.2 Producing Encoded Implementations

Our goal is to obtain a DES implementation consisting entirely of S-Boxes, all of which

implement non-linear transformations. We need to discuss several techniques before we

can obtain such an implementation.

We will apply encodings to all DES operations, including expansions, S-Box lookups,

permutations, and XOR operations. For XOR operations and S-Box lookups, simply

encoding the operation along with its input and output provides sufficient security [5]. For

permutations and expansions, we express them as matrix transformations, and apply anti-

sparseness treatments, and then apply non-linear encodings to them, in order to effectively

hide information.

We will use the following techniques to achieve our goal:

Partial Evaluation: When we know part of the input to a function at implementation

time, we can pre-evaluate all expressions involving only constants and the known part of

the input. In DES, we replace standard S-Boxes with key-specific S-Boxes. See section

9.4.2 for a concrete example.

Mixing Bijection: A mixing bijection is a bijective AT that attempts to maximize the

dependency of each output bit on all input bits. Permutations and Expansions have very
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sparse matrices in DES. In order to hide information better, we represent an operation F

by J ◦K, where K is a mixing bijection, and J = F ◦K−1. See section 9.4.2 for a concrete

example.

I/O-Blocked Encoding: We cannot represent arbitrary n
mF (where m is large) using

arbitrary bijective encodings as F ′ = G ◦ F ◦ H−1 using an S-Box representation, since

that would require n2m bits of memory. So, we need to devise a different approach to

encoding functions with large input widths. We divide the input into j blocks of a bits

each, and the output into k blocks of b bits each, such that m = ja, and n = kb. Let m
mJ

and n
nK be two mixing bijections. Choose arbitrary encoding bijections for each block of

input and output: a
aH1, . . . ,

a
a Hj, and b

bG1, . . . ,
b
b Gk. Define HF = (H1‖ . . . ‖Hj) ◦ J , and

GF = (G1‖ . . . Gk) ◦K. Then, we encode F as F ′ = GF ◦ F ◦H−1
F . We can represent ATs

with large input sizes using networks of S-Boxes, as we will see later. Then, if F receives

its input from an AT X, and sends its output to an AT Y , we simply use J ◦X and Y ◦K−1

in the implementation instead. In this way, we can ignore J and K during the encoding

process. During encoding, we only need to deal with H1, . . . , Hj and G1, . . . , Gk, which

can easily be handled using S-Boxes.

Combined Function Encoding: Two functions J and K that are evaluated together

can be encoded as G ◦ (J‖K) ◦ F−1. This makes it harder for an attacker to separate and

determine the components J and K.

By-Pass Encoding: We usually want extra entropy in the input and output of func-

tions, so that it is difficult for an adversary to identify the transform. For example, we

could encode n
mF as n+b

m+aF
′ = G ◦

(
F‖ b

aE
)
◦ H−1, where a ≥ b. b

aE is called the by-pass

component of F ′.

Split-Path Encoding: A function n
mF can be encoded as n+k

m Q (me) = F (me) ‖ k
mG (me)

for some function G. If F is lossy, Q may lose less information, and be more locally secure.

9.2.3 Notes about S-Boxes and Local Security

When a function F is bijective, the S-Box for F ′ is locally secure, since it is impossible to

extract any useful information from the S-Box. This is because any bijective F could have

F ′ as its encoding. For example, consider the scenario below:
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Let F be the following 2-bit bijection:

00→ 10

01→ 00

10→ 01

11→ 11

Let G be the following 2-bit bijection:

00→ 01

01→ 00

10→ 11

11→ 10

Let H be the following 2-bit bijection:

00→ 10

01→ 11

10→ 01

11→ 00

Now, F ′ = G ◦ F ◦H−1 is the following function:

00→ 10

01→ 00

10→ 11

11→ 01

But, if we select any other bijective F , there exist G and H that give the same result.

For example, if F is defined as:

00→ 01

01→ 11

10→ 10

11→ 00
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Then, if we define G as:

00→ 11

01→ 10

10→ 01

11→ 00

And, if we define H as:

00→ 00

01→ 01

10→ 11

11→ 10

Then, F ′ = G ◦ F ◦H−1 is:

00→ 10

01→ 00

10→ 11

11→ 01

which is the same as the previous F ′. Similarly, given any other F , we can find G and H

that give the same F ′. This means that local attacks against such S-Boxes are impossible.

When F is not bijective, however, attacks such as the statistical bucketing attack are

possible.

9.2.4 Wide-Input Encoded Affine Transformations

Even though we cannot represent arbitrary wide-input functions using S-Boxes due to large

memory requirements, we can construct networks of S-Boxes to implement ATs with wide

inputs. For an AT, we partition its matrix and vectors into blocks, and use well-known

formulas for matrix operations using those blocks. We use smaller S-Boxes to encode

functions defined by the blocks, and combine the result into a network. For more details

on this, see [5].

59



9.2.5 White-Box DES Implementation Example

We will now construct an embedded, fixed-key DES implementation. The original con-

struction will have some weaknesses that we will address later. In Section 9.4, we will see

a concrete toy example that demonstrates some of the obfuscation techniques.

Figure 9.3: Original and Modified DES

Replacing DES S-Boxes: As we saw in section 9.1, each DES S-Box is an instance

of 4
6E. We start with the DES structure in Figure 9.3 (a), and work towards obtaining

the implementation in Figure 9.3 (b). Each round is replaced by 12 T -Boxes. Between

rounds, the left and right sides are combined into a single 96-bit representation. We use
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a single transform rM2 to compute the P-Box (DES Permutation), XOR, side flip, and

E-Box (DES Expansion). We also use M1 for the initial expansion of input, and M3 for

the final shrinking of the output. See section 9.4.2 for a concrete example.

Eliminating Explicit Key by Partial Evaluation: We merge the round key into

the S-Boxes to obtain key-dependent S-Boxes. We produce S-Boxes denoted by r
KSi, where

K is the DES key, r is the round number, and i is the corresponding S-Box number. This

permits us to remove the XOR of inputs with the round key. For a concrete example, see

section 9.4.2.

Preparing modified S-Boxes for Local Security: As discussed earlier, we would

like to have bijective S-Boxes to obtain local security. We use split-path encoding to achieve

this, and let r
KTi (8e) = r

KSi (8e1...6) ‖R (8e) where R (8e) = 〈8e1, 8e6, 8e7, 8e8〉. The first

six bits of the input of r
KTi will be the 6-bit input to the DES S-Box i in round r. We then

add two extra input bits. The first 4 bits of the output of r
KTi is the output of Si in round

r. The last 4 bits of the output contain the first and last input bit to the corresponding

S-Box, followed by the two extra input bits. Note that each T -Box is a bijection, since

each “row” of the DES S-Boxes is a permutation [16], and the row number and the extra

input bits are simply copied to the output.

Providing 64 bits of By-Pass Capacity: Each rM2 requires both the left and right

sides of the previous round, which means that it needs 64 bits of by-pass (from the previous

round). Each r
KTi carries eight bits to the next rM2: 4 bits of S-Box output, 2 bits from

the right side of the previous round, and 2 bits that we choose to be from the left side of

the previous round. Therefore, eight T -Boxes will carry 16 bits of the left side, and 16 bits

of the right side to the next round. We need 32 more bits of by-pass capacity. So, we add

four more T -Boxes for each round, denoted by r
KT9, . . . ,

r
KT12. Each is a bijective AT. This

increases the by-pass capacity to 64 bits, as required.

Connecting and Encoding the T -Boxes to Implement DES: The DES imple-

mentation immediately prior to de-linearization and encoding is shown in Figure 9.3 (b).

The figure will look the same after de-linearization and encoding, but each AT will be re-

placed by a network of S-Boxes, and then, all S-Boxes will have a non-linear encoding

applied to them.

Transfer Functions: Due to the transforms involved, the matrices M1, M3, and M2’s
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are very sparse. We use the method proposed in section 9.2.2 to handle this situation.

That is, we use a mixing bijection to remove the sparseness from the matrices. See section

9.4.2 for a concrete example. We will now look at what M1, M3, and the M2’s contain.

M1 contains:

• initial DES permutation: λ

• DES expansion

• delivery of bits to first six inputs of each of 1
KT1, . . . ,

1
KT8

• delivery of 16 left side data path bits to be passed through the by-pass provided by

inputs 7 and 8 of 1
KT1, . . . ,

1
KT8.

• delivery of 32 bits to by-pass provided at randomly chosen positions in 1
KT9, . . . ,

1
KT12

Each M2 contains:

• P-Box transform

• XOR of left-side data with the P-Box output

• extraction of right-side of previous round

• DES expansion

• by-pass, as in M1

M3 contains:

• P-Box transform

• XOR of left-side data with the P-Box output

• swapping the left and right sides of the data

• inverse of the initial DES permutation: λ−1
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Recommended Variants

We described the naked variant of white-box DES above. The recommended variant applies

input and output encodings to the entire DES operation. That is, we replace M1 by M1◦M0,

and M3 by M4 ◦M3, where M0 and M4 are mixing bijections. This prevents any attacks

similar to the one presented in the next section. M1 ◦M0 and M4 ◦M3 are implemented

as single ATs using networks of de-linearized S-Boxes.

There is debate regarding whether this recommended variant is still an implementation

of DES. Valid arguments exist for both sides, but we will just note that the recommended

variant is very useful for DRM applications. The DRM application could encode its in-

terface to DES in the way described above. This is something that would naturally be

done for DRM applications anyway, since plaintext should not be in memory at any point

during execution. Otherwise, a simple memory dump would allow the adversary to obtain

the plaintext, and bypass the DRM scheme.

9.3 Crack

In this section, we will present an attack on the obfuscated DES described in the previous

section. The attack only works on the naked variant of the scheme, and requires that both

the encryption and decryption programs be available. This attack is not very practical

from the point of view of cracking a DRM application using the obfuscated DES, since an

adversary is not likely to possess a copy of the encryption program. Also, if an application

implements the scheme properly, the attack does not work. Despite the limitations of the

attack, it is interesting to examine from the point of view of code obfuscation, since it

shows that obtaining security is very difficult in white-box attack models, and that the

nature of attacks can be quite unpredictable.

9.3.1 Notation

We will examine a crack for the naked variant of obfuscated DES in the next section. In

this section, we will discuss the notation that we will use in the next section.

P is the DES expansion permutation, and Pi(x) = P (x)6i...(6i+6). πK
n is the DES
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transformation in round n using key K, such that the encryption of plaintext M is

E (M) =
[
λ−1 ◦ πK

16 ◦ πK
15 ◦ . . . ◦ πK

1 ◦ λ
]
(M). The information (Lr, Rr) immediately af-

ter round r of the obfuscated cipher is encoded using the non-linear transformation σr. In

our explanations, we will remove λ from computations, since it does not play any role in

the attack, and can be easily inverted.

9.3.2 Algorithm

Note that this algorithm is a modified version of the algorithm presented in [10]. The

version presented in [10] seems to have several errors, which have been corrected here.

1. Initialization
Set L16 ← 0, R16 ← 0

Compute σ15 (L15, R15) = EK
15

(
DK (L16, R16)

)
Result L15 = fK

16 (0) , R15 = 0

Derive Ω = σ15 (L15, R15) = σ15

(
fK

16 (0) , 0
)

2. Reconstruct ∆ (x)

For j ← 0 to 23

Set m(j)← 0

For i← 0 to 31

Set L16 ← 2i, R16 ← 0

Compute σ15 (L15, R15) = EK
15

(
DK (L16, R16)

)
Set ∆ (L16)← σ15 (L15, R15)⊕ Ω

For j ← 0 to 23

If
(
∆ (L16)4j...(4j+4) 6= 0

)
Set b [j] [m (j)]← i

Set m (j)← m (j) + 1
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For j ← 0 to 23

For l← 0 to 2m(j) − 1

Set e← 0

For k ← 0 to m (j)

If (((l >> k) &1) = 1)

Set e← e + 2b[j][k]

Set L16 ← e,R16 ← 0

Compute σ15 (L15, R15) = EK
15

(
DK (L16, R16)

)
Set ∆ (L16)← σ15 (L15, R15)⊕ Ω

3. Reset L15 to fK
16 (0)

For i← 0 to 31

Set L16 ← 0, R16 ← 2i

Compute σ15 (L15, R15) = EK
15

(
DK (L16, R16)

)
Result L15 = fK

16 (2i) , R15 = 2i

Derive w ← σ15 (L15, R15)⊕ Ω = σ15

(
fK

16 (2i) , 2i
)
⊕ σ15 (0, 0)

For x in ∆−1

For j ← 0 to 23

If
(
∆ (x)4j...(4j+4) = w4j...(4j+4)

)
w′

4j...(4j+4) ← Ω4j...(4j+4)

Else

w′
4j...(4j+4) ← (w ⊕ Ω)4j...(4j+4)

Compute (L′
16, R

′
16) = (M ′

3 ◦ 16
K T ′) (w)

Result L′
16 ≈ fK

16 (2i)⊕ fK
16 (0) , R′

16 ≈ 2i

65



4. Differential Cryptanalysis to Extract Key for Round Function

Notation: ls = P−1 (L′
16)4(s−1)...(4(s−1)+4) , rs = E (R′

16)6(s−1)...(6(s−1)+6)

For s← 1 to 8

ds ← 0

For s = 1 to 8

For i← 0 to 31

Compute cs [i] : Ss (cs [i])⊕ Ss (rs [i]⊕ cs [i]) = ls [i]

Compute ds [cs [i]] = ds [cs [i]] + 1

Set c′s ← cs [maxm
i=1 ds [i]]

5. Reconstruct the Original Key

K16 ← c′1|c′2|c′3|c′4|c′5|c′6|c′7|c′8

Compute s−1 (K16) to retrieve 48 bits of the original key

Perform brute-force search on the remaining 8 bits of the key

In Step 1 of the algorithm, we set L16 and R16 to 0. Note that we can only do this in

the naked variant of obfuscated DES. We then compute Ω = σn−1

(
fK

16 (0) , 0
)
.

In Step 2 of the algorithm, we map bits in L16 to the 24 4-bit bijections used in σ16. We

do this by setting R16 to 0, and setting L16 to 2i for i = 1, 2, . . . , 32. The attacker builds

a table of ∆ (c) = σ15 (c, 0)⊕ σ15 (0, 0) for c = 1, 2, 4, 8, . . . , 232. Now, using the table, the

attacker can reconstruct the left-hand side of the input to round 16 in the scenario where

the right-hand side of the output is 0. Furthermore, different bits of the left-hand side L15

can correspond to the same T -Box, and in this case, the encoding depends on two bits from

L15. Determining the original value L15 ⊕ fK
16 (0) given the intermediate representation is

just a table lookup.

In Step 3 of the algorithm, we inject faults into the input to round 16, and observe the

output. The attacker does not know how the right hand side gets encoded in σ15. In order

to get around this problem, the attacker feeds a value x into R15 that is different from 0,

and then resets Ln−1 to 0. Finally, L16 contains fK
16 (x)⊕ fK

16 (0).

In step 4 of the algorithm, the attacker extracts the key for round 16 using differen-

tial cryptanalysis. To see how step 4 works, note that R16 = R15, L15 = fK
n (0), and

L16 = fK
n (R15) ⊕ fK

n (0). Also, note that fK
n (0) = P ((S1‖ . . . ‖S8) (K)), and fK

n (R15) =

P ((S1‖ . . . ‖S8) (E (R15)⊕K)). So, L16 = P ((S1‖ . . . ‖S8) (K))⊕P ((S1‖ . . . ‖S8) (E (R15)⊕K)).
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That is, L16 = P ((S1‖ . . . ‖S8) (K)⊕ (S1‖ . . . ‖S8) (E (R15)⊕K)), and hence, P−1 (L16) =

(S1‖ . . . ‖S8) (K)⊕ (S1‖ . . . ‖S8) (E (R15)⊕K).

In step 5 of the algorithm, the attacker performs a 28 brute search for the remaining

bits of the DES key.

9.4 Example: Obfuscating Simple Block Cipher and

Applying Crack

In this section, we will examine a toy example of a block cipher, obfuscate it using the

techniques presented earlier, and then demonstrate the crack in the previous section on

it. We will call the cipher Simple Block Cipher (SBC). Obviously, SBC is very simple and

insecure, and should never actually be used for encrypting sensitive information.

9.4.1 Description of SBC

SBC has two rounds that are similar to DES rounds. SBC plaintexts and ciphertexts are

8 bits long. The key length is 8 bits, and the round keys are 6 bits long. The encryption

algorithm is depicted in Figure 9.4. The components of the algorithm are described below.

The Expansion operation is a function E : {0, 1}4 → {0, 1}6 such that E(b0b1b2b3) =

b0b1b0b2b3b2. If K = k0k1k2k3k4k5k6k7, then K1 = k0k1k2k4k5k6 and K2 = k1k2k3k5k6k7 are

the round keys.
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The SBC S-Box S1 is the same as the DES S-Box S1:

Input Output Input Output Input Output Input Output

000000 1110 000001 0000 100000 0100 100001 1111

000010 0100 000011 1111 100010 0001 100011 1100

000100 1101 000101 0111 100100 1110 100101 1000

000110 0001 000111 0100 100110 1000 100111 0010

001000 0010 001001 1110 101000 1101 101001 0100

001010 1111 001011 0010 101010 0110 101011 1001

001100 1011 001101 1101 101100 0010 101101 0001

001110 1000 001111 0001 101110 1011 101111 0111

010000 0011 010001 1010 110000 1111 110001 0101

010010 1010 010011 0110 110010 1100 110011 1011

010100 0110 010101 1100 110100 1001 110101 0011

010110 1100 010111 1011 110110 0111 110111 1110

011000 0101 011001 1001 111000 0011 111001 1010

011010 1001 011011 0101 111010 1010 111011 0000

011100 0000 011101 0011 111100 0101 111101 0110

011110 0111 011111 1000 111110 0000 111111 1101

Finally, the P-Box permutation is a function P : {0, 1}4 → {0, 1}4 defined by P (b0b1b2b3) =

b2b0b3b1.

9.4.2 Obfuscating SBC

In this section, we will obfuscate SBC using the techniques presented earlier in this chapter.

Replacing SBC S-Box

The SBC S-Box is an instance of 4
6E. In each round of the obfuscated DES, the S-Box

will be replaced by a T -Box. Between rounds, the left and right sides will be combined

into a single 12-bit representation, and we will use a single transform to compute the P -

Box, XOR, side flip, and E-Box. We will first choose an 8-bit key for our example. We

arbitrarily choose K =10010110.
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Figure 9.4: Simple Block Cipher Encryption

Eliminating Explicit Key by Partial Evaluation We will first merge our chosen

key, and the S-Boxes into new S-Boxes that are dependent on the key and round. Hence,

we produce two S-Boxes, identified as r
KS1, where r

KS1 [i] = S1 [i]⊕Kr:
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For the first round, we obtain 1
KS1:

Input Output Input Output Input Output Input Output

000000 1100 000001 0001 100000 1111 100001 0100

000010 1111 000011 0100 100010 0000 100011 1110

000100 0010 000101 1000 100100 0100 100101 0001

000110 1000 000111 1110 100110 0111 100111 1101

001000 1001 001001 0110 101000 0010 101001 1111

001010 0100 001011 1101 101010 1110 101011 0010

001100 0111 001101 1011 101100 0001 101101 1000

001110 0001 001111 0010 101110 1101 101111 1011

010000 1011 010001 1100 110000 0110 110001 1010

010010 0101 010011 1111 110010 1010 110011 0011

010100 1110 010101 0111 110100 1011 110101 1100

010110 0011 010111 1001 110110 1100 110111 0110

011000 0000 011001 1010 111000 0101 111001 1001

011010 1010 011011 0011 111010 1001 111011 0101

011100 1101 011101 0000 111100 1000 111101 0111

011110 0110 011111 0101 111110 0011 111111 0000
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For the second round, we obtain 2
KS1:

Input Output Input Output Input Output Input Output

000000 1000 000001 0001 100000 1011 100001 0111

000010 1011 000011 1101 100010 0010 100011 0001

000100 1111 000101 0010 100100 0110 100101 1001

000110 0010 000111 1110 100110 1101 100111 0100

001000 0001 001001 0100 101000 1000 101001 0010

001010 1101 001011 0111 101010 1110 101011 1000

001100 0100 001101 1111 101100 0001 101101 1100

001110 1110 001111 0000 101110 0100 101111 1111

010000 0111 010001 1000 110000 0000 110001 1101

010010 0000 010011 0011 110010 0101 110011 0110

010100 1001 010101 0101 110100 1010 110101 0000

010110 0101 010111 1001 110110 0011 110111 1010

011000 1100 011001 1011 111000 0111 111001 1110

011010 0110 011011 1100 111010 1001 111011 0011

011100 1010 011101 0110 111100 1100 111101 1011

011110 0011 011111 1010 111110 1111 111111 0101
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Now, we modify the key-specific S-Boxes to obtain local security. We do this by ap-

pending the first and last input bits to the end of the output. We call the modified S-Boxes,

T -Boxes. The T -Boxes are:

For the first round, we obtain 1
KT1:

Input Output Input Output Input Output Input Output

000000 110000 000001 000101 100000 111110 100001 010011

000010 111100 000011 010001 100010 000010 100011 111011

000100 001000 000101 100001 100100 010010 100101 000111

000110 100000 000111 111001 100110 011110 100111 110111

001000 100100 001001 011001 101000 001010 101001 111111

001010 010000 001011 110101 101010 111010 101011 001011

001100 011100 001101 101101 101100 000110 101101 100011

001110 000100 001111 001001 101110 110110 101111 101111

010000 101100 010001 110001 110000 011010 110001 101011

010010 010100 010011 111101 110010 101010 110011 001111

010100 111000 010101 011101 110100 101110 110101 110011

010110 001100 010111 100101 110110 110010 110111 011011

011000 000000 011001 101001 111000 010110 111001 100111

011010 101000 011011 001101 111010 100110 111011 010111

011100 110100 011101 000001 111100 100010 111101 011111

011110 011000 011111 010101 111110 001110 111111 000011
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For the second round, we obtain 2
KT1:

Input Output Input Output Input Output Input Output

000000 100000 000001 000101 100000 101110 100001 011111

000010 101100 000011 110101 100010 001010 100011 000111

000100 111100 000101 001001 100100 011010 100101 100111

000110 001000 000111 111001 100110 110110 100111 010011

001000 000100 001001 010001 101000 100010 101001 001011

001010 110100 001011 011101 101010 111010 101011 100011

001100 010000 001101 111101 101100 000110 101101 110011

001110 111000 001111 000001 101110 010010 101111 111111

010000 011100 010001 100001 110000 000010 110001 110111

010010 000000 010011 001101 110010 010110 110011 011011

010100 100100 010101 010101 110100 101010 110101 000011

010110 010100 010111 100101 110110 001110 110111 101011

011000 110000 011001 101101 111000 011110 111001 111011

011010 011000 011011 110001 111010 100110 111011 001111

011100 101000 011101 011001 111100 110010 111101 101111

011110 001100 011111 101001 111110 111110 111111 010111
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Now, we need to add another T -Box in every round, so that we can provide the required

total 8 bits of by-pass capacity. Hence, we obtain the following T -Box for 1
KT2 and 2

KT2:

Input Output Input Output Input Output Input Output

000000 000000 000001 000001 100000 100000 100001 100001

000010 000010 000011 000011 100010 100010 100011 100011

000100 000100 000101 000101 100100 100100 100101 100101

000110 000110 000111 000111 100110 100110 100111 100111

001000 001000 001001 001001 101000 101000 101001 101001

001010 001010 001011 001011 101010 101010 101011 101011

001100 001100 001101 001101 101100 101100 101101 101101

001110 001110 001111 001111 101110 101110 101111 101111

010000 010000 010001 010001 110000 110000 110001 110001

010010 010010 010011 010011 110010 110010 110011 110011

010100 010100 010101 010101 110100 110100 110101 110101

010110 010110 010111 010111 110110 110110 110111 110111

011000 011000 011001 011001 111000 111000 111001 111001

011010 011010 011011 011011 111010 111010 111011 111011

011100 011100 011101 011101 111100 111100 111101 111101

011110 011110 011111 011111 111110 111110 111111 111111

So, if Li = l0l1l2l3, and Ri = r0r1r2r3, then r0 and r2 are already carried to the next

round in i
KT1. For the remaining bits, i

KT2(l0l1l2l3r1r3) = l0l1l2l3r1r3. We will switch the

order of the T -Boxes in both rounds. In general, the T -Boxes can be arranged in any order

in any of the rounds.
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We now need to find the matrices for M1, M2 and M3. M1 performs the E expansion,

and then reorganizes the bits to deliver them to the T -Boxes. Note that

E =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


The following matrix, F , reorganizes the bits to deliver them to the T -Boxes.

F =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


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So, the matrix corresponding to the operation M1 is:

M1 = FE =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


Now, the matrix corresponding to the permutation P (on the 12-bit intermediate repre-

sentation) is:

P =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1


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The XOR operation with the left side is:

X =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1


Now, we set the left side equal to the right side from the previous round using the following

matrix:

S =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0

0 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1


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Now, we need to apply the E expansion.

E =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0


Finally, we distribute bits to the correct T -Boxes using F :

F =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 0

1 0

0 1


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Therefore, the complete transformation M2 is:

M2 = FESXP =



0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0


Finally, we have to determine M3, which consists of first applying P , then X, and then,

S. Then, we shrink the output to its 8-bit form, and swap the two halves. The matrix for

shrinking the output is:

H =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0


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The matrix for the final swap is:

W =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0


So, the matrix M3 is:

M3 = WHSXP =



1 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0


Hence, the complete transformation is: M1, followed by the two T -Boxes for the first

round, followed by M2, followed by the two T -Boxes for the second round, followed by

M3. Now, we need to apply a non-linear encoding to each of the transformations to make

key extraction difficult. We will use a very insecure approach for doing this, but it will be

sufficient for our purposes. We will use the following encoding g for both the input and
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the output:

000 → 011

001 → 001

010 → 100

011 → 000

100 → 111

101 → 110

110 → 010

111 → 101

We will apply the encoding to the two 3-bit halves of each T -Box. We will apply anti-

sparseness treatments to M2 and M3 only. We will use the following matrices to encode

M2 and M3:

Z =



1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

0 0 1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 1 1 0 1

1 1 0 1 1 1 0 0 1 0 1 0

0 0 1 1 0 1 0 0 1 0 1 1

1 1 1 1 1 1 0 0 0 0 0 0


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Z−1 =



0 0 1 0 1 1 1 0 1 0 0 0

1 1 0 0 0 1 1 1 0 0 0 1

0 0 1 1 0 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 1 1 1 1 0 1 1 1

1 0 0 0 1 1 1 0 1 1 0 1

0 1 0 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0

1 0 0 1 0 1 1 1 0 1 1 0

0 0 1 1 1 0 1 1 0 0 0 1

0 1 1 1 1 1 0 0 0 0 1 1


Hence, we get the following encoded matrices:

M ′
2 = M2Z

−1 =



0 0 1 1 1 0 1 1 0 0 0 1

1 0 1 0 0 0 0 1 0 0 0 0

0 1 1 1 1 1 0 0 0 0 1 1

0 1 0 0 1 1 1 1 0 1 1 1

0 1 0 0 1 0 0 1 1 1 0 0

0 1 1 0 1 1 0 0 0 0 1 1

0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 1 1 1 0 0

0 0 1 0 0 0 0 1 0 0 0 0

1 0 1 0 0 0 1 1 1 0 1 0

0 1 1 0 1 1 0 0 0 0 1 1

1 0 1 0 0 0 1 1 1 0 1 0


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M ′
3 = M3Z

−1 =



0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 1 1 1 0 0

1 0 1 0 0 0 1 1 1 0 1 0

0 1 1 0 1 1 0 0 0 0 1 1

0 0 1 1 1 0 1 1 0 0 0 1

1 0 1 0 0 0 0 1 0 0 0 0

0 1 1 1 1 1 0 0 0 0 1 1

0 1 0 0 1 1 1 1 0 1 1 1


We then apply g to the three-bit halves of the T -Box outputs, g−1 to the T -Box inputs, and

apply g and g−1 wherever necessary to match the input/output encodings of the T -Boxes.

If we let 1T = 1
KT2‖ 1

KT1, and 2T = 2
KT2‖ 2

KT1, and gc = g‖g‖g‖g, then the complete

transformation is:(
M ′

3 ◦ g−1
c

) (
g−1

c ◦ Z ◦ g−1
c

) (
gc ◦ 2T ◦ g−1

c

) (
gc ◦M ′

2 ◦ g−1
c

) (
g−1

c ◦ Z ◦ g−1
c

) (
gc ◦ 1T ◦ g−1

c

)
(gc ◦M1)

Here, the transformations inside a set of parentheses are implemented as one set of S-Boxes.

9.4.3 Cracking Obfuscated SBC

In this section, we will apply the crack described earlier in this chapter, on SBC.

1. Initialization

Ω = 100011011011

2. Reconstruct ∆ (x)

∆ (0001) = 100111011011⊕ 100011011011 = 000100000000

b[1][0] = 0

∆ (0010) = 000011011011⊕ 100011011011 = 100000000000

b[0][0] = 1

∆ (0100) = 011011011011⊕ 100011011011 = 111000000000

b[0][1] = 2

∆ (1000) = 010011011011⊕ 100011011011 = 110000000000

b[0][2] = 3
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∆ (0110) = 001011011011⊕ 100011011011 = 101000000000

∆ (1010) = 101011011011⊕ 100011011011 = 001000000000

∆ (1100) = 111011011011⊕ 100011011011 = 011000000000

∆ (1110) = 110011011011⊕ 100011011011 = 010000000000

3. Reset Ln−1 to fk
n (0)

Rn = 0001

w ← 101001011100⊕ 100011011011 = 001010000111

w′ ← 100001011100

L′
n = 1010, R′

n = 0001

Rn = 0010

w ← 111011011110⊕ 100011011011 = 011000000101

w ← 100011011110

L′
n = 1100, R′

n = 0010

Rn = 0100

w ← 110010100011⊕ 100011011011 = 010001111000

w ← 100010100011

L′
n = 1110, R′

n = 0100

Rn = 1000

w ← 100011110011⊕ 100011011011 = 000000101000

w ← 100011110011

L′
n = 0000, R′

n = 1000

4. Differential Cryptanalysis to extract key for round 2

c1 [0] = 001110

c1 [1] = 001110

c1 [2] = 001100

c1 [3] = 001110

c′1 = 001110

5. Reconstruct the original key

The original key is x001y110.

Brute force search to find remaining two bits results in x = 1 and y = 0.
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Hence, the key is 10010110.

9.5 Discussion

In this chapter, we described an obfuscated version of DES in detail, and presented a

crack for it. The recommended variant of the obfuscated DES seems very useful for DRM

applications. If we consider the naked variant, we can see that it is not desirable for DRM

applications. This is because the naked variant causes plaintext to be in memory after

decryption, which would cause a major weakness in a DRM scheme. In a DRM scheme, we

always want the content to be somehow encoded in memory, so that the adversary cannot

simply obtain the plaintext by performing a memory dump. Also, in a DRM scheme, the

adversary is very unlikely to possess the encryption program. We can usually safely assume

that the adversary does not have such power. So, we can probably use the recommended

variant safely in a DRM application.

This chapter shows that despite the fact that an obfuscator does not exist, we can still

obtain obfuscation in meaningful ways in practice. Just because there is no generic way

of obfuscating all programs, does not mean that we cannot obfuscate specific programs in

different ways. Such obfuscation may not be perfect, and some attacks against it may be

possible, but the lack of practical attacks against the above obfuscation scheme makes the

topic of code obfuscation seem promising.
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Part III

Conclusion
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This thesis provided a broad overview of DRM, and examined code obfuscation in some

detail. In the first part of the thesis, we started by providing an informal introduction to

DRM in Chapter 1. We then attempted to define DRM formally. The definitions given in

Chapter 2 are not complete by any means, but due to the current lack of formal definitions,

we need a start. In Chapter 3, we examined Microsoft DRM 2.0 in detail, and discussed its

implementation, and a crack for it. We saw how one simple weakness in a DRM scheme can

lead to a very efficient crack. In Chapter 4, we examined the Content Scrambling System

in detail, and saw how it is technologically a very weak DRM scheme. We also saw how

the legal system can be incorporated into a DRM scheme. In Chapter 5, we discussed how

none of software, hardware, or the legal system can provide an adequate DRM solution,

and how each must be present as a component of a good DRM scheme. In Chapter 6,

we examined several issues related to DRM, such as privacy and side-effects of the legal

system.

In the second part of the thesis, we examined code obfuscation in some detail. In

Chapter 7, we provided an informal introduction to code obfuscation. In Chapter 8, we

presented a theoretical proof that a Turing Machine obfuscator cannot exist. We noted

that this does not imply that we cannot obfuscate specific programs in some meaningful

way. In Chapter 9, we examined an obfuscated version of DES in detail, and presented

a crack for it. We noted that the crack is not applicable if the obfuscation is applied

properly, and is probably impossible to execute on DRM schemes (since the crack requires

the encryption program).

We attempted to provide an overview of major DRM-related issues, but our overview

is certainly not complete. It would be virtually impossible to cover all DRM-related issues

in one paper, since it is such a broad topic. We did examine a lot of important DRM-

related material, however. An example of a topic that we did not cover, is watermarking.

Watermarks employ software and the legal system, and can be useful in preventing contract

violations by helping to identify illegal distributors of content. We also did not examine

implementation details, such as building secure hardware in this thesis.

We did not discuss one possible solution to the problem of illegal music sharing on the

Internet (a very popular DRM topic), that is currently being experimented with. This

solution attempts to discourage illegal copying of music by changing the business model
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for selling music. It provides high quality unprotected music files for a relatively low price.

Consumers are then faced with the choice of downloading music illegally, which might

require sorting through files of poor quality, or downloading it legally for a small fee, and

ensuring a quick download of a high quality file. Whether most consumers would be willing

to pay a small fee for such a service remains to be seen. If this type of business model is

successful, DRM may lose some of its importance, since it will not be needed to protect

some types of intellectual property.

DRM is a fairly new topic, and there has not been a lot of research done on it. Research

in many fields needs to be done before we can design a good DRM solution. We need to

examine formal definitions, business models, legal issues, privacy issues, and much more

before we can successfully design effective DRM schemes. This thesis attempts to provide

an overview of these topics.

Code obfuscation is a topic of interest in DRM, since it would be very desirable to

have the ability to securely hide keys and other secret information in software. This is

because software tends to be more flexible than hardware, and if security flaws are ever

found in a DRM scheme, the software component can be updated easily. We know that

an obfuscator cannot exist, but we need to determine what levels of obfuscation can be

achieved in practical situations. For example, the obfuscated DES scheme presented in

chapter 9 seems to be sufficient for use in a DRM scheme, because there are no known

efficient cracks for it that would be applicable for cracking DRM schemes. In this case, a

meaningful level of obfuscation can be achieved because the program to be obfuscated can

be represented as a series of encoded lookup tables.

A lot of further research in the fields of DRM and code obfuscation is required, before

we can understand these topics well.
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