
Simulated Overloading using Generic Functions in Scheme

by

Anthony M. Cox

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 1997

cAnthony M. Cox 1997

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying

or by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

ii

The University of Waterloo requires the signatures of all persons using or photocopying

this thesis. Please sign below, and give address and date.

iii

Abstract

This thesis investigates extending the dynamically-typed, functional programming lan-

guage Scheme, with simulated overloading in order to permit the binding of multiple,

distributed de�nitions to function names. Overloading facilitates the use of an incremen-

tal style of programming in which functions can be de�ned with a base behaviour and then

extended with additional behaviour as it becomes necessary to support new data types.

A technique is demonstrated that allows existing functions to be extended, without mod-

i�cation, therefore improving code reuse.

Using the primitives provided by Scheme, it is possible to write functions that perform

like the generic routines (functions) of the programming language EL1. These functions

use the type of their arguments to determine, at run-time, the computation to perform. It

is shown that by gathering the de�nitions for an overloaded function and building a generic

routine, the language appears to provide overloading. A language extension that adds the

syntax necessary to instruct the system to gather the distributed set of de�nitions for an

overloaded function and incrementally build an equivalently applicable generic function is

described.

A simple type inference algorithm, necessary to support the construction of generic

functions, is presented and detailed. Type inference is required to determine the domain of

an overloaded function in order to generate the code needed to perform run-time overload

resolution. Some limitations and possible extensions of the algorithm are discussed.

iv

Acknowledgements

Inevitably, during the process of acknowledging all the support and assistance given to the

writer of a thesis, somebody is forgotten. Therefore, rather than mention speci�c names,

I just want to thank everyone who contributed in some way to either this thesis or my

attainment of the associated degree.

Special thanks must be given to Maryanne who has been on this journey with me for

the past 5 years. Her love and support are a big part of the reason that these have been

the best years of my life.

This research has been supported in part by the Natural Sciences and Engineering

Research Council of Canada, the Information Technology Research Centre of Ontario and

the University of Waterloo. This support is gratefully acknowledged.

v

Contents

1 Introduction 1

1.1 Goal . 1

1.2 Background . 3

1.3 Terminology . 6

2 Related Work 7

2.1 Overloading . 7

2.2 Related Concepts . 9

2.3 Type Inference and Overloading . 11

2.4 Type Inference in Scheme . 14

2.5 Summary . 17

3 DEFINE++: The Language 19

3.1 Overview . 19

3.2 Overloading, Restrictions and Resolution 19

3.3 Explicit Domain Description . 20

3.4 Domain Inference . 21

3.5 Changes to Existing Scheme . 24

3.6 Limitations and Complexities . 25

3.7 New Functions . 26

vi

4 Design and Implementation 27

4.1 Design Goals . 27

4.2 General Description . 28

4.3 Types in Scheme . 31

4.3.1 Sources of Type Information . 31

4.3.2 A Type System . 32

4.4 Generation of Dispatch Code . 33

4.5 Scoping and Dependency . 35

5 Simple Type Inference in Scheme 39

5.1 Overview . 39

5.2 A Simple Type Inference Algorithm . 40

5.2.1 Preprocessing . 41

5.2.2 Constraint Generation . 43

5.2.3 Constraint Solution . 52

5.2.4 Termination Properties of the Algorithm 55

5.3 Discussion of the Algorithm . 56

5.4 Recursion . 58

6 Motivation and Application 61

6.1 Motivation . 61

6.2 An Example . 63

6.3 Overriding from Overloading . 64

6.4 The SmallScheme Library . 66

6.5 Objects . 68

6.6 The Collection Class . 70

vii

7 Conclusion 75

7.1 Implementation Alternatives . 75

7.2 Future Work . 76

7.3 Summary . 78

Bibliography 79

viii

List of Figures

1.1.1 Parametric Polymorphism in Scheme . 2

1.2.1 Ambiguity Resulting from Overloaded Constants 3

1.2.2 Sum Coded as a Generic Function . 4

1.2.3 Sum Coded Using Overloading . 5

2.1.1 Type Classes in Haskell . 8

2.2.1 Overloaded Methods in Java . 10

2.2.2 Pattern Matching in ML . 10

2.3.1 Example of Type Class Transformation . 12

3.4.1 Two Identically Typed Versions of Plus 23

4.2.1 System Generated Code for Sum . 29

4.2.2 Format of a Composite De�nition . 30

4.3.1 De�nition of Types . 32

4.4.1 De�nition of dispatch . 34

4.4.2 Overloading Based on a Functional Parameter 34

4.4.3 Order of Sub-de�nitions in a Composite De�nition 36

4.5.1 Changing a Value Through Re-De�nition 37

4.5.2 Illustration of a Type Dependency . 37

5.2.1 The Function Length . 40

ix

5.2.2 Grammar for A-normalized Intermediate Form 42

5.2.3 A-normalization Algorithm . 44

5.2.4 Results of Preprocessing Length . 45

5.2.5 Recovery of Information from Type Artifacts 45

5.2.6 Relationships Between Variables and Types 46

5.2.7 An Example of Constraint Generation . 48

5.2.8 Notation Used in Figure 5.2.9 . 49

5.2.9 Constraint Generation . 50

5.2.10 Constraints Generated for Length . 52

5.2.11 De�nition of Type Intersection . 53

5.2.12 Constraint Solution Algorithm . 54

5.2.13 Constraint Solutions for Length . 55

5.3.1 Inaccurate Type Generation . 57

5.3.2 An Example of Type Inference . 57

6.3.1 Simulating Overriding . 65

6.4.1 SmallScheme Class Hierarchy . 67

x

Chapter 1

Introduction

1.1 Goal

In order to increase the utility of a programming language, it is bene�cial to improve

its ability to abstract over both data and algorithms. Polymorphism is one mechanism

language designers have used to achieve this goal. Cardelli and Wegner [12] have identi-

�ed four distinct forms of polymorphism: parametric, inclusion (subtyping), overloading

(incremental) and coercion. Each of these forms imparts di�erent abstraction capabilities

to a language.

Polymorphism exists only in languages with \a clear notion of both type and value"

[12] since, by de�nition, a polymorphic language is one where \a value or variable (sym-

bols) may have more than one type". Polymorphism, then, is a property of a language's

type system,` and as a result, although an e�ective abstraction mechanism, is not always

available in a programming language. The functional language Scheme, being dynami-

cally typed, does not provide classical polymorphism since it lacks the necessary static

type system. Scheme uses run-time type checking to ensure that the arguments passed to

built-in, primitive functions match the domains of the primitives. Consequently, functions

can be applied successfully to any arguments that do not cause a run-time type test to

fail, irrespective of the types of the arguments.

Although Scheme is not considered to be parametrically polymorphic, it is possible

to write functions that behave as though they were by avoiding the use of any primitives

imposing restrictions on the functions parameters. Figure 1.1.1 provides examples of

1

;; Trivial parametric polymorphism

(define identity (lambda (x) x))

;; Polymorphic stack implementation

(define push (lambda (item stack) (cons item stack)))

(define top (lambda (stack) (car stack)))

(define pop (lambda (stack) (cdr stack)))

Figure 1.1.1: Parametric Polymorphism in Scheme

several such Scheme functions. Scheme exhibits a form of natural polymorphism since all

functions have domains that are as general as possible within the limits of any run-time

restrictions.

The natural polymorphism of Scheme has also been used to provide inclusion poly-

morphism. The current popularity of object oriented programming has generated several

implementations of subtyping as extensions to the language [1] with the most success-

ful and best known of these being the Meroon Object System [39]. For the most part,

overloading and coercion appear to have been ignored as mechanisms useful for extend-

ing Scheme's expressiveness. This thesis concentrates on the former and has the goal of

extending Scheme by using properties of the dynamic type system in order to provide the

functionality of overloading.

The existence of heterogeneous lists, in which functions must perform di�erently on

each element when mapped over the list, illustrates one useful application of overloading

in Scheme. Using overloading, the function being mapped can adaptively select the ap-

propriate behaviour needed for each di�erent list element, as it is encountered, by using

the type of the element.

Overloading can also be seen as an e�ective tool for improving code reuse. By writing

functions that rely on overloaded operators to manipulate speci�c data types, these func-

tions can be reused with new data types when the data type provides its own de�nition

for the operator. Additional examples are presented in chapter 6, to give further evidence

of the bene�ts provided by adding overloading to Scheme.

2

;; Overload "x"

(define x 1)

(define x "one")

;; Overload an output function

(define show (lambda (y) (if (string? y) (display y))))

(define show (lambda (y) (if (number? y) (display y))))

;; What should be displayed, 1 or "one"?

(show x)

Figure 1.2.1: Ambiguity Resulting from Overloaded Constants

1.2 Background

The following de�nition is based on those given by Cardelli and Wegner [12] and Aho,

Sethi and Ullman [2]:

Overloading

Overloading, also known as incremental polymorphism, is the allowing of mul-

tiple functional values to be bound to a symbol. The meaning, or binding

to be used, for any particular instance of the symbol is determined from the

symbol's context.

The process of selecting a binding based on the context (the location where a symbol

occurs) is referred to as overload resolution. This process is static, if it is possible to

determine from a compile time analysis the binding to use, or dynamic, if resolution is not

determinable from analysis and must be delayed until run-time values are available.

The restriction to functional values is perhaps an arbitrary one. Cardelli and Wegner

impose it since they class value sharing, where a symbol has multiple non-functional

values, as a form of parametric polymorphism. This thesis only considers the overloading

of functions for a di�erent reason.

If an overloaded function were to be applied to an overloaded value, a potentially

complex set of rules to successfully resolve the meanings of both the value and the function

3

(define sum

(lambda (x y)

(cond ((and (number? x) (number? y)) (+ x y))

((and (string? x) (string? y)) (string-append x y))

(else (error "unknown input types for sum")))))

Figure 1.2.2: Sum Coded as a Generic Function

would be required. For example, in cases where possible ambiguity arises due to the use

of an overloaded function and an overloaded value, should the function or the value be

resolved �rst? In either case, the disambiguating rule rests on an arbitrary choice made

by the language designer. The programming language Ada [50], allows the overloading of

literals1 and in doing so provides an example of the rule set needed to perform unambiguous

resolution.

Since there is already an established trend in the literature to limit overloading to

functions, it was decided to follow this trend to simplify the overload resolution rules,

and to limit the e�ects resulting from decisions made to ensure consistent resolution.

Figure 1.2.1 illustrates one instance of a situation requiring an arbitrary resolution rule

when this restriction is removed. Wadler and Blott [52] also observe this phenomenon

and comment that in a strongly typed language, additional type information, beyond

that which can be inferred, may be required to resolve ambiguity caused by unrestricted

overloading of constants.

Intuitively, an overloaded function can be perceived as one with several di�erent pos-

sible behaviours, where the type of the arguments are used to determine which behaviour

to utilize. Activity closely matching this intuitive view already occurs in Scheme, and

is illustrated in �gure 1.2.2. The programming language EL1 [54] provides a construct

known as a generic routine that acts like this version of sum. From this example, it can

be seen that Scheme's dynamic type system permits the language to provide the generic

construct of EL1.

While a generic function2 does not satisfy the de�nition of overloading, since the

function name is only given a single binding, it does provide the same behaviour. When

examined in the context of its call-site, a generic function becomes indistinguishable from

1A literal is a member of an enumerated type.
2A routine in EL1 is equivalent to a function in Scheme.

4

(define sum (lambda (x y) (error "unknown input types for sum")))

(define++ sum (lambda (x y) (string-append x y)))

(define++ sum (lambda (x y) (+ x y)))

Figure 1.2.3: Sum Coded Using Overloading

an overloaded one. For both generic and overloaded functions, the context surrounding an

instance of a function call infers the behaviour the function provides. When the function

itself is examined, it becomes evident that the types of the arguments bound to the

parameters (x and y) determine the appropriate behaviour. From a programming stance,

the signi�cant di�erence between a generic function and an overloaded one is that the

de�nition for the overloaded function may be decomposed and distributed throughout a

program, while the de�nition for the generic function must occur in a single location. This

characteristic advantageously allows overloading to be used to incrementally extend the

domain of an existing function.

The function sum can be seen coded using overloading3 in �gure 1.2.3. Examining

this function reveals how this can be referred to as incremental polymorphism. A basic

de�nition is given for sum, which is then extended in an incremental fashion. Comparing

the generic and the overloaded version of sum it can be seen that the generic function

gathers the de�nitions of the overloaded version and merges them together using the cond

construct. From a di�erent perspective then, overloading is a facility that allows the

branches of a conditional to be distributed throughout a program.

To achieve the goal of the thesis, the language is extended with the addition of a set

of macros that build the code of �gure 1.2.2 when given the code from �gure 1.2.3. These

macros gather the individual de�nitions for an overloaded function and build a generic

version of the function. The generic version can be used identically to the overloaded

version making the construction transparent to users of the language. By using macros, the

extension can be added to any version of Scheme regardless of the versions implementation

details.

3The keyword define++ will be described in chapter 3. It can be treated as identical to define in this

example.

5

1.3 Terminology

Up to now, the word type has been used rather loosely, relying upon an intuitive meaning

of the word. To be more precise, a type is a set of values. For identi�cation, these sets are

commonly identi�ed with a name such as boolean. Thus, though boolean is referred to as

a type, the reference is actually to the set of values, {#t, #f}, the type name represents.

A type may be in�nite, such as the set named number, representing all numeric values in

Scheme, or it may be �nite, as is the case with the previously enumerated type boolean.

In this thesis, type names are presented in a typewriter font and traditional set notation

is used to describe and manipulate the sets represented by type names.

Referring again to the overloaded de�nition of sum given �gure 1.2.3, each (component)

de�nition is referred to as a sub-de�nition and the de�nition of sum, which is built from

these component de�nitions, as a composite de�nition.

In Scheme, a predicate is traditionally a function returning a boolean value [14]. The

term should not be confused with the idea of a type predicate introduced by Wadler and

Blott [52]. Type predicates are implicit constraints on type variables imposed by the

use of overloaded operators. It should be noted that the boolean symbol for true (#t)

returned by a predicate is distinct from the more general concept of truth in Scheme. Any

value, except the boolean symbol for false (#f), is considered as being true. Functions like

member, which do not always return a boolean value, are therefore usable as predicates

since the values they return satisfy the de�nition for truth.

6

Chapter 2

Related Work

2.1 Overloading

Two kinds of overloading exist within programming languages: built-in and user-de�ned.

Built-in overloading refers to overloaded functions provided by the language speci�cation,

such as the overloading of the operator + for both real and integer types. In user-de�ned

overloading the user is given the ability to select which symbols are overloaded and to

provide the various de�nitions for these symbols. Some languages, such as Ada [50] and

C++ [49], provide both varieties, while others, such as FORTRAN 771 [6] and Pascal [31],

provide only built-in overloading. It should not be inferred that all languages support

some form of overloading since some, for instance BLISS [58], provide no overloading of

any form. In general, built-in overloading adds limited expressiveness to a language and

so, for the remainder of this thesis, only user-de�ned overloading is considered.

Since the concept of polymorphism is closely tied to that of type, overloading tradi-

tionally occurs in strongly typed languages where it has the characteristic of being stati-

cally resolvable at compile time. Three strongly typed programming languages providing

overloading, C++, Ada, and Haskell [30], are examined before considering other related

concepts.

In C++, overloading is limited to functions. A function can only be overloaded if each

de�nition has a unique type which di�ers in more than the return type. Most, but not

all, operators can also be overloaded. A complex set of rules is used to determine if two

1FORTRAN 90 provides both built-in and user-de�ned overloading.

7

:: Declare a type class named Math

class Math a where

(==), (+)

:: Make Int an instance of Math

instance Math Int where

(==) = eqInt

(+) = addInt

:: Make Float an instance of Math

instance Math Float where

(==) = eqFloat

(+) = addFloat

:: Use class to add implicit parameter inference

double :: Num a => a -> a

double x = x + x

Figure 2.1.1: Type Classes in Haskell

types di�er. For example, the types const T and volatile T are indistinguishable for

some type T while const T&2 and volatile T& are distinguishable. Overload resolution

is performed statically during compilation and is based upon the \best match" for the

actual arguments. Much of the complexity of choosing a match results from the automatic

conversions (coercions) which C++ inherited from C.

In Ada, it is permissible to overload literals, operators and functions, but not variables

or constants. The return type of a function may be used in overload resolution making

overloading in Ada less restrictive than in C++. To perform resolution, the type, mode3

and name information from the arguments must identify exactly one possible function to

apply.

Haskell di�ers from the previous two languages by being functional instead of impera-

tive in nature. Overloading is provided through type classes, which group types that share

2& as a su�x makes a type a reference or alias in C++.
3Function parameters have modes in, out and in out to specify whether they are readable or writable.

8

common functions. Any function in a type class becomes overloaded if more than one type

is declared as an instance of that type class. In the example of �gure 2.1.1 a class Math is

declared that describes types providing the operators == and +. The types Int and Float

are then declared as instances of Math overloading == and +.4 Type classes can inherit

from other type classes, where a subclass extends its superclass by providing additional

functions, and can be considered analogous to the classes of object oriented programming

but di�erent in that there is no notion of an internal mutable state. Wadler and Blott [52]

have demonstrated that type classes are a type safe extension of the Hindley-Milner type

discipline implemented by Haskell.

2.2 Related Concepts

Since Scheme is a dynamically typed language, it is incapable of providing overloading

as modeled by the previous three languages. The dynamic nature of the type system

prevents overload resolution from being consistently performed statically. It is therefore

bene�cial to examine other concepts bearing a strong relation to overloading, particularly

those with a dynamically resolved component.

Overriding, introduced as part of object oriented programming, is comparable to over-

loading and occurs when a subclass re-implements a method provided by one of its su-

perclasses. Rouaix [43] documents the similarity between overloading and overriding that

can be found when overloading is resolved at run-time (dynamically) instead of statically.

The di�erence between statically resolved overloading and dynamically resolved overrid-

ing can be seen in Java [24], where a two phase resolution procedure is used for method

invocations.

Java, a descendant of C++, di�ers by not providing a simple mechanism to express

function abstraction. The object oriented character of the language requires all functions

to be implemented as class methods thus intertwining overloading and overriding. To

perform overload resolution the arguments passed to a method are used at compile time

to create a call-site type signature, which is then used at run-time, to invoke the appro-

priate method using \dynamic method lookup". Figure 2.2.1 provides an example of an

overloaded and overridden method in Java. In the class RealPoint, the method move

is overloaded to have parameters of either type float or type int, while overriding the

implementation of its superclass, Point.

4eqInt, addInt, eqFloat and addFloat are primitive operations in Haskell.

9

class Point {

int x = 0, y = 0;

void move (int dx, int dy) {

x += dx; y += dy;

}

} /* end class Point */

class RealPoint extends Point {

float x = 0.0f, y = 0.0f;

void move(int dx, int dy) {

x += (float) dx; y += (float) dy;

}

void move (float dx, float dy) {

x += dx; y += dy;

}

} /* end class RealPoint */

Figure 2.2.1: Overloaded Methods in Java

exception Join

fun join (a, b) = a andalso b

| join (a:int, b:int) = a + b

| join (a::[], b::[]) = (a ^ b)::[]

| join (_,_) = raise Join

Figure 2.2.2: Pattern Matching in ML

10

Pattern matching, as it is found in Standard ML [38], is another technique akin to

overloading. With pattern matching, the structure of the argument types is used to

perform the selection of the appropriate behavior to provide. In the case of Standard ML,

this selection occurs dynamically during execution. Examining a simple ML function in

�gure 2.2.2, it can be seen that each pattern is treated like a separate de�nition for the

function join. The patterns given describe the following argument types:

1. Two boolean types.

2. Two integer types. (The parameter declarations are needed to resolve the built-in

overloading on the operator +.)

3. Two single element lists of strings.

4. Any other types not speci�ed above.

Pattern matching di�ers from overloading by requiring that all function de�nitions with

the same name be sequentially located instead of distributed. Pattern matching has been

implemented as an extension to Scheme by Wright and Duba [57].

The programming language EL1 [54] provides a facility called a generic routine that

also uses the run-time type of the arguments to select the code to apply to the argu-

ments. This technique is used in other, more recent languages, such as with the TYPECASE

construct in Modula 3 [11]. Generic routines, like pattern matching, do not provide the

incrementality available from overloading. As was demonstrated, dynamically typed lan-

guages like Scheme and Lisp, can e�ectively provide generic routines using conditional

expressions and their built-in primitive functions. This capability is exploited and generic

routines used to simulate overloading in Scheme.

2.3 Type Inference and Overloading

From a theoretical perspective, there has been a signi�cant amount of research done on

type systems supporting overloading. However, since Scheme does not require a user to

provide any form of type declaration, a type system implemented to support overloading

must also allow the inference of any needed types.

In modern functional languages, the most inuential research on type inference is

the development of the algorithm W [17], which statically determines types according

11

data MathD a = MathDict (a -> a -> bool) (a -> a -> a)

eql (MathDict e a) = e

add (MathDict e a) = a

mathDInt :: MathD Int

mathDInt = MathDict eqInt addInt

mathDFloat :: MathD Float

mathDFloat = MathDict eqFloat addFloat

double :: NumD a -> a -> a

double dict x = (add dict) x x

Figure 2.3.1: Example of Type Class Transformation

to the Hindley-Milner type discipline [29, 37]. The original algorithm was only designed

to handle parametric polymorphism and did not consider any other varieties. Several

languages, most notably SML and Haskell, have been designed around this type system.

Wadler and Blott [52], as part of the implementation of Haskell, added overloading to

W using type classes.5 Their technique is expressed as a compile time transformation that

converts a program with overloading into an equivalent program without overloading,

which is typable under W. This approach allows type classes to be added to existing

languages through the addition of a preprocessor.

When type classes are used, the functions that are members of the type class are

translated into record �eld selectors. Instances of the class can then have their member

functions bundled together into a record referred to as a method dictionary. Any function

using an overloaded function is given an extra parameter to allow the appropriate dictio-

nary to be passed in. This technique has an e�ect similar to universally quantifying the

member functions and then restricting the possible instantiations of the quanti�er to the

set of method dictionaries. An example of this transformation can be seen in �gure 2.3.1

where the code of �gure 2.1.1 has been converted.

In the example, a new data type MathD, with the type constructor MathDict, is de�ned.

5Type classes were previously described in section 2.1.

12

All types, which are instances of the class Math, then use this constructor to build a

dictionary (e.g., mathDFloat and mathDInt). Functions, such as double, that use the

members of the type class, are modi�ed to allow the appropriate dictionary to be passed

in as a parameter. A function that is a member of the type class can therefore be replaced

with the application of a \selector" to the dictionary. This substitution can be seen in

double where the function + is replaced with the �rst member of the dictionary, selected

using add.

Wadler and Blott's system, while e�ectively used in Haskell, is not decidable. Although

it is possible to assign a type to an expression involving overloading, it is impossible to

determine if the type is valid. More particularly, though well-typed programs can be typed

under W, the Wadler and Blott algorithm also allows a type to be inferred for ill-typed

ones. Smith [47] gives an example using the expression true + true for which a type

can be inferred, even though + is unde�ned for booleans. Earlier work by Smith [46]

demonstrated that type-checking an expression with unrestricted overload instantiation,

as is the type class approach, is reducible to the Post Correspondence Problem and is thus

undecidable.

In parallel with the work by Wadler and Blott, Stefan Kaes [33] developed a similar

extension to W. His parametric overloading is also a form of restricted universal quan-

ti�cation based on parameter passing. Kaes's system does not use a mechanism such as

type classes to group types that share the same overloaded functions but it imposes the

restriction that the type scheme of an overloaded function have at most one type variable.

Duggan, Cormack and Ophel [20] characterize the type system of Wadler and Blott as a

generalization of Kaes's system.

Volpano and Smith [48], restrict the system of Wadler and Blott in order to create

a decidable type system. Their initial restriction is to disallow mutual recursion among

overloaded functions. This restriction is proven to be insu�cient to remove undecidability.

Building on this, they add additional restrictions until a decidable type system is achieved.

The key restriction imposed is that for a type variable, in the type of an overloaded func-

tion, all possible instantiations of the variable have a unique outermost type constructor.

Duggan et al. [20] provide a good summary of the Volpano and Smith restrictions.

Geo�rey Smith [47] later investigated the addition of both overloading and subtyping

to the Hindley-Milner type system. His result is an extension to type theory that permits

overloading while preserving the inference of principal types by extending the type system

with constrained universal quanti�cation. Principal types are a useful characteristic of

13

the algorithm W and are de�ned as a \best" type that captures all possible types for a

program. Constrained universal quanti�cation associates a set of constraints with each

universal quanti�er such that quanti�ed variables are only allowed to take instantiations

satisfying the constraint set. Previous research on extensions to W ignored the principal

type property.

Recent work by Duggan, Cormack and Ophel [19, 20] on kinded types, provides an-

other approach to extending W with parametric overloading. By relaxing some of the

restrictions imposed by Volpano and Smith with respect to overloaded recursive functions

and adding some to non-recursive functions they improve the expressibility of the system

while maintaining decidability. To reduce the overall limitations of the theory, the type

system is extended with kinds (sets of types). This system maintains the requirement of

discriminativity where all instantiations of a type variable in an overload template have a

unique outermost type constructor.

Type dependent parameter inference proposed by Cormack and Wright [15] provides a

system combining type inference and overload resolution but is not based on the Hindley-

Milner approach. Speci�cally, this approach di�ers in requiring that function abstractions

(lambda expressions) be explicitly typed. This approach recognizes the dependence that

functions have on the overloaded operators used in their implementation. By parameter-

izing these functions over the overloaded operators they can be made more general. It is

then easy to use these general functions by implicitly inferring the instantiations needed

for the parameters.

2.4 Type Inference in Scheme

After examining overloading with respect to type inference, the next issue is the perfor-

mance of type inference in a dynamically typed language such as Scheme, which is not

an easy task since function parameters may now be instantiated with any value that does

not cause a run-time test to fail. This generalization has the e�ect of generating types

(sets of values) containing large numbers of unrelated values. These sets are commonly

represented as the union of existing types like number and string.

Ma and Kessler [36] classify type inference approaches as either functional or imper-

ative. The functional approach refers to algorithms based on the previously mentioned

Hindley-Milner type discipline for functional languages. The imperative approach is geared

14

towards assignment-based imperative style languages. Jones and Muchnick [32] developed

the original algorithm used in imperative languages, but their algorithm has been super-

seded by a generalization of it by Kaplan and Ullman [34]. The imperative approach

has been used in type inferencers for functional languages and so both approaches are

examined here.

Current research supports soft-typing, which is the optimization of a program by using

type information to remove unneeded run-time checks. During soft-typing, conservative

approximations for types are permissible and only cause (potentially) unnecessary type

checks to be left in a program. Various algorithms have been presented based on tree-

grammars [53], abstract interpretation [3, 45, 51], extensions of algorithms for statically-

typed languages [35, 55] and constraint satisfaction [27, 21]. Some of these approaches are

examined.

The work of Olin Shivers [45] uses a transformation to continuation passing style (CPS)

to create a version of a Scheme program with explicit control and data ow. He then

creates a non-standard abstract semantics to build sets of values for each computational

quantity6 identi�ed by CPS conversion. However, complexities in the control and data

ows prevent the abstract semantics from building accurate sets. To solve this problem,

he adds an additional \reow" semantics, which is comparable to a separate analysis of

each control ow path. The approach taken in this thesis bears some similarities to this

work, but di�ers by following control ow, as opposed to data ow, to identify types.

Recent work by Flanagan and Felleisen [21] on set-based analysis for Scheme has also

had some inuence on this thesis. Their approach, based on Nevin Heintze's set-based

analysis of ML [26], generates constraints and applies them interactively. Like Shivers,

their algorithm uses a simpli�ed intermediate form, namely A-normal form [22]. The

system is designed to type complete programs and only returns the type associated with

the result obtained by evaluating the program.

The SoftScheme system by Andrew Wright [56, 55] is based on the work of Cartwright

and Fagan [13], which extends the Hindley-Milner system to a dynamically typed language.

In e�ect, SoftScheme does the opposite of the overloading extension developed here. Using

the similarity between the generic nature of Scheme functions and overloading, SoftScheme

uses an encoding technique designed by R�emy [40] to reduce run-time overloading to

parametric polymorphism. Circular, instead of traditional, uni�cation [42] is used to

6Shivers de�nes a computational quantity as anything that can be considered as having a type.

15

properly unify recursive type expressions. The type system of SoftScheme provides both

recursive types and disjoint union types.

Alex Aiken and Brian Murphy [3] advocate an abstract interpretation based on the

operational semantics of their algorithm for the language FL [8]. Using regular trees, they

generate sets of type expressions to describe types in the language. Aiken considers the

approach limited in value since it takes exponential time and abandons it to consider more

e�cient approaches.

In his later work, Aiken [4, 5] switches to a constraint approach for type inference. His

key di�culty is in �nding solutions to the sets of constraints. In general, it can be shown

that unless restrictions exist, the sets may be unsolvable. In cases when constraints can

be solved, it is di�cult to do so e�ciently. Wright comments on Aiken's work in [56],

considering it a \strong type system", although he believes it is at times less precise for

simple functions and its complexity makes it slower than SoftScheme. The type system

has two interesting components: constraint types and conditional types. Constraint types

are constraints upon the instantiation of type variables in types reported as part of a

result type. For example, there are no recursive types since a list can be expressed by the

type: � � cons(�,�) [null and � � cons(�,�) [null where � � � indicates that the

type � is constrained by the type �. As opposed to merging the types for each branch of

an if expression, as is done in other approaches, conditional-types push the conditional

into the actual type value. Conditional types were �rst introduced by Reynolds [41]. One

issue concerning their system is its rejection of some sound (type error-free) programs

by the algorithm as a side-e�ect of the restrictions needed to guarantee solvability of the

constraint sets.

Fritz Henglein [27, 28] has studied type inference in dynamically-typed languages for a

di�erent purpose. He develops a technique for merging statically and dynamically typed

languages. Type inference is used to identify sites where coercions are required to ensure

run-time type safety. Like Aiken, Henglein also uses a constraint satisfaction approach.

The successful translation of Scheme into ML has been performed by relying on a library of

ML functions to perform run-time type checking. Henglein does not attempt to accurately

type all Scheme since his concern is in locating potential type errors of Scheme programs

under the ML type system. Using a conservative approach to type inference, unresolvable

values are coerced into the type \dynamic", which is then tested at any run-time use-site

to see if it contains a usable value.

A common technique used to represent programs is as a parse tree, with operations

16

as nodes and values as leaves. A nodes \context" is the portion of the tree immediately

above it. Thus, when moving down the tree, before a node or leaf is encountered, the

context can be used to determine an expected type. For example, with an addition node,

each branch under the node can be expected to have a type of number. Upward movement

in the tree allows functions to be assigned types using the types of the operands. As an

alternative to the algorithm W, Kaplan and Ullman [34] iteratively traverse a parse tree

in both directions until they achieve stable types for every node and leaf.

The Nimble type inferencer for Common Lisp-84 [9] is based on the Kaplan-Ullman

method of �xed point iteration. It is di�cult to �nd documentation on the Nimble in-

ferencer since the source code is the property of the Nimble Computer Corporation. The

Nimble inferencer does not attempt to type functions, only variables and constants, since

its goal is to expose optimization opportunities related to storage management. During

type inference, both upper and lower bounds are kept for each object, allowing iteration

to be halted when either the bounds meet or di�er by some predetermined amount.

Similar to Nimble, the TICL (Type Inference for Common Lisp) [36] type inferencer

also uses �xed-point iteration. TICL is a preprocessor for Common Lisp programs, which

adds type declarations to o�er compilers better opportunities for optimizing storage man-

agement. Ma and Kessler appear to have developed TICL in parallel with Baker's de-

velopment of Nimble since neither author references the other, while the two resulting

inferencers are similar in operation.

2.5 Summary

The approach to overloading used in this thesis types function abstractions incrementally

as they are de�ned. Since the speci�cation for Scheme permits the de�nition of functions

with unbound symbols, the type inference algorithm used must be able to cope with these

\open" systems. This characteristic, resulting from the syntax, permits mutually recursive

functions to be de�ned independently. With many of the approaches to type inference that

were examined, it was unclear as to how to adapt them to deal with an open system.

Considering the multitude of approaches to type inference in dynamically typed lan-

guages, it is not evident which is best suited for use in this application. The Hindley-

Milner type discipline has successfully been extended to handle overloading and has been

used in a dynamically typed language, but these two objectives have not been achieved

simultaneously.

17

The other approaches to dynamic type inference o�ered no obvious solutions and each

demonstrated limitations. As a result, ideas were borrowed from many of these systems

and a simple control-ow oriented type inference algorithm based on Kaplan-Ullman �xed

point iteration was designed speci�cally for this application.

18

Chapter 3

DEFINE++: The Language

3.1 Overview

This chapter serves as a reference manual and as an introduction to the define++ language

extension for Scheme developed as part of this thesis. The choice of the name is meant

to convey the idea of overloading through incremental de�nitions by combining the well

known C++ increment operator `++', with the Scheme keyword define used to indicate

a top-level de�nition. There are actually two components to define++ | the syntactic

extensions to Scheme needed to provide overloading, and the SmallScheme library that is

described in chapter 6.

3.2 Overloading, Restrictions and Resolution

A function is overloaded if, at the top or global level, it has several di�erent de�nitions.1

For each call of an overloaded function, the run-time types of the arguments are used to

select the sub-de�nition to apply. Overloading is restricted to top-level functions only, but

existing primitive operations, such as + or display, may be overloaded without limitation.

In order to determine which sub-de�nition to apply for a particular function call, the

types associated with the arguments for the call are examined to see if they satisfy the

domain of one of the sub-de�nitions. In Scheme it is impossible to determine the exact

1Section 1.3 de�nes the term sub-de�nition to describe the component de�nitions of an overloaded

function.

19

types of a function's arguments until the arguments are supplied during execution. For

this reason, selection of the appropriate function sub-de�nition to use must be deferred

until run-time. To perform this selection (overload resolution) define++ provides two

mechanisms for describing the domain of each sub-de�nition. The �rst allows the pro-

grammer to explicitly describe the domain using any arbitrary Scheme expression, while

in the second the system attempts to infer the domain from a simple abstract analysis of

the function body.

Overload resolution is easy when the domain of only one sub-de�nition satis�es the

types of the arguments. However, if more than one sub-de�nition is applicable a \disam-

biguating rule" must be applied. Sub-de�nitions are ordered with respect to the sequence

they were entered into the system. In the event that more than one sub-de�nition applies

the most recently entered is used. Should no sub-de�nition apply, the �rst de�nition en-

tered (least recent) is applied, regardless of its domain. This least recent sub-de�nition

is consequently referred to as the default de�nition. Should the domain of the default

de�nition not match the types of the arguments a run-time error occurs.

The choice of a disambiguating rule for overload resolution was motivated by the desire

to have overloading used in an incremental fashion. Later de�nitions extend the domain

of a function, or in some cases alter the function's behaviour for a subset of its existing

domain. Therefore, the rule allows programmers to establish the most general behavior

for a function �rst, then re�ne or extend it as desired.

3.3 Explicit Domain Description

The �rst technique available for describing a functions domain is to have the programmer

explicitly describe it using an arbitrary Scheme expression, which is accomplished with

a lambda++ de�nition. This technique is the more powerful of the two presented since

it allows for very sophisticated domains to be described. It is also the only technique a

programmer needs to learn in order to begin using overloading.

Syntax: (lambda++ formals domain body)

Description: formals and body are like their counterparts in lambda while the additional

component domain is an arbitrary Scheme expression that is used as a predicate and

applied to the run-time arguments of the function abstraction. If the lambda++ expression

20

is not bound to a top-level (global) symbol or is bound to a unique, new symbol (the

symbol is not overloaded), domain is ignored and the expression is treated as a regular

lambda expression. If the expression is bound as the second or subsequent de�nition of a

top-level symbol, domain is used to determine if body is evaluated. The domain expression

of each sub-de�nition is evaluated, from most recently de�ned to least recently de�ned,

until one evaluates to true. If domain yields any value other than #f, body is evaluated

and no further domain expressions are evaluated. Any side-e�ects occurring from the

evaluation of domain, even if it evaluates to #f, are applied. The domain expression of

the default sub-de�nition is never evaluated.

Example:

(define F (lambda (x y) (list x y)))

(define F (lambda++ (x y) (member x y) y))

In this example, F is overloaded and is applicable to either domains of lists containing a

speci�ed member, as seen in the second (most recent) sub-de�nition, or to domains of any

two arbitrary values. The lack of restrictions implied by the �rst (default) sub-de�nition

allows the second sub-de�nition to provide an alternative result for a sub-set of the overall

function domain. The function F can be considered, after overloading, to be equivalent to

the following:

(define F (lambda (x y)

(cond ((member x y) y)

(else (list x y)))))

From another perspective, lambda++ can be considered as an indirect approach to

pattern matching. The domain clause of the abstraction can be any Scheme expression

returning a boolean value and describing the desired form of the parameters. This is little

more than using the existing syntax of Scheme to describe a pattern instead of extending

the syntax, as was done by Wright and Duba [57].

3.4 Domain Inference

An alternative to having the programmer supply the domain to use for each sub-de�nition,

of an overloaded function, is to have the system attempt to infer the sub-de�nitions do-

21

main. Overloading using this method only occurs when requested through the use of the

define++ syntax.

Syntax: (define++ name expr)

Description: define++ acts like define when it is used to bind non-functional expres-

sions, such as constants, or when it is used to bind the �rst (default) function sub-de�nition

to a name. When it is used to bind the second and subsequent function sub-de�nitions to

a name, the domain of the sub-de�nition is inferred2 and then used to generate \dispatch

code". This dispatch code acts in exactly the same manner as the programmer supplied

domain expression of the lambda++ syntax. The dispatch code of each sub-de�nition is

evaluated, from the most recent until the least recent sub-de�nition, until it evaluates to

a true value at which time the appropriate function body is evaluated. If no true result

has been obtained prior to checking the default sub-de�nition, the body of the default

de�nition is used regardless of its domain and even if it results in a run-time error. The

alternative short-hand syntax for de�nitions:

(define++ (name formals) body)

which expands to:

(define++ name (lambda formals body))

is also supported.

In many instances, as can be seen in example 3.4.1, it is not possible to accurately

infer the domain of a function using only its body. From the two de�nitions of + given,

it is impossible to infer that the �rst de�nition applies when x and y are three element

lists with the tag cart as the �rst element and the second de�nition applies when cart is

replaced by the tag polar. To overcome this problem assertions have been added to the

language using the assert keyword described below.

Syntax: (assert bool-expr expr)

Description: This expression evaluates expr and returns the result of this evaluation.

The bool-expr is not evaluated and is used solely during the domain inference process, so

no side-e�ects resulting from the evaluation of bool-expr can occur. It is asserted that

bool-expr evaluates to true allowing the programmer to use standard Scheme code to add

type information. The expr clause does not have an implied begin.

2This inference is performed using the algorithm described in chapter 5

22

;; Constructors for User-Defined types

(define make-polar (lambda (x y) (list 'polar x y)))

(define make-cartesian (lambda (x y) (list 'cart x y)))

;; Cartesian Sum

(define + (lambda (x y)

(list (first x)

(+ (second x) (second y))

(+ (third x) (third y))))

;; Polar Sum

(define + (lambda (x y)

(list (first x)

(sqrt (+ (square (second x)) (square (second y))))

(sqrt (+ (square (third x)) (square (third y))))))

Figure 3.4.1: Two Identically Typed Versions of Plus

The new keyword assert is required to indicate that the actual sub-de�nition should

not include the bool-expr since it is used only to aid type inference. In many instances,

assertions are little more than having the programmer specify (indirectly) the predicates to

use for dispatch, and consequently, assertions can be viewed as a weak form of lambda++.

The di�erence between the two is that lambda++ allows the description of any input

domain while assert is limited to describing domains representable by the type system.

Example:

(define++ F (lambda (x) (assert (= x 0) "zero")))

In this example, the function F ignores its argument and returns the constant (string)

value of "zero". However, the assertion, that the parameter (x) is equal to the value

0, causes to type (-> 0 "zero") to be inferred for F instead of the more accurate type

(-> any "zero"). The use of an assertion permitted type information, not inferable from

the body of the function abstraction, to be \discovered".

No attempt is made to check the consistency of the assertion, putting the responsibil-

ity on the programmer to provide valid assertions. Should an inconsistent or erroneous

23

assertion be made, the system may either generate an incorrect type or may be unable

to generate any type. The dispatch code generated for an untypable expression always

evaluates to true, e�ectively serving to remove any previously entered sub-de�nitions and

turning the untyped expression into a new default sub-de�nition.

3.5 Changes to Existing Scheme

De�nitions are still accomplished using the define special form, however its behaviour

has been slightly altered. As well as performing the binding of a value to a symbol, define

infers and stores the type of the symbol. Type inference is performed when the symbol is

not being overloaded in order to improve the types inferred for overloaded symbols. When

a globally bound symbol is used in an overloaded function, its value can be looked up and

used to provide additional type information during type inference for the function. Should

some error occur that prevents a type from being generated for the value, a type of void

is assigned. There is no e�ect on the de�nition process when this occurs.

The original binding of the special form define is preserved using the syntax defun.

In the event of system failure, it is possible to rebind define to its original value to allow

the system to be reset. It is also possible to bind symbols using defun but in doing so, no

type is maintained by the language extension. For this reason, the use of defun should be

avoided.

No other changes have been made to the base language. Existing Scheme programs

continue to execute without change, unless, by coincidence there is a top-level binding to

the name of one of define++ 's internally used functions. To prevent this, programmers

should avoid using symbols with the pre�x `dpp:'. All internally used functions of the

extension are pre�xed in this manner.

As part of the overloading process a \name-mangling" is done on previous function

names that become overloaded. For any function F, the names F:1 ... F:n are also

bound where n is the number of sub-de�nitions of F. This is not done if F has only one

sub-de�nition (i.e., is not overloaded). In order to prevent the meaning of a program

from changing, programmers should be aware of this name-mangling to avoid accidentally

rebinding one of the renamed sub-de�nitions.

24

3.6 Limitations and Complexities

Limitations inherent in the current type system often prevent the desired dispatch code

from being generated. These limitations can be summarized as:

1. Basic types (number, string, boolean etc.) can only be inferred for parameters if

the parameter is used in some context requiring the use of a speci�c basic type.

2. All parameters which are functions (i.e., have a type of (-> ...)) are considered to

have the same type.

3. cons types must have an inferable basic type in one of the �elds to be di�erentiable.

4. Lists can not be inferred and are treated as either a cons type or null depending

on use.

5. All uninferable parameters are given the special type any to which any actual argu-

ment may be bound.

For example, it may be necessary to overload a binary function of two parameters, x and y,

such that new behaviour occurs when x and y are equal length lists and have the same last

element. Since the type system provides no facility for representing a recursive type such

as a list, there is no possibility of inferring \patterns" such as this even using assertions.

In other words, the system can not infer types that result in the generation of the dispatch

code:

(and (list? x) (list? y)

(= (length x) (length y))

(equal? (last x) (last y)))

To circumvent this problem, the programmer must provide the actual dispatch code using

the previously described lambda++ syntax.

When a lambda++ is used within a define++, the inference process is used and the

explicit domain description of the lambda++ is treated as an assertion. This can be sum-

marized by considering:

(define++ name (lambda++ formals domain expr))

to be equivalent to:

(define++ name (lambda formals (assert domain expr)))

25

3.7 New Functions

Two new functions have been added to the language. The �rst, type, allows the system to

generate dispatch code and is available to the user in order to aid in the task of program

development.

Syntax: (dpp:type expr)

Return Value: An expression representing the type of expr

Description: Using the type recovery algorithm described in chapter 5, expr is typed and

a type, as described in �gure 4.3.1, is returned. In the event the expression is untypable,

the type void is returned.

After typing, the extension stores the types of all symbols bound in the top-level scope in

a type environment. It is possible to access this environment to determine the type of a

symbol using the function type-of.

Syntax: (type-of symbol)

Return Value: An expression representing the type bound to symbol or unbound if the

symbol is not bound in the top-level scope.

Description: The type returned matches the de�nition of types in �gure 4.3.1.

26

Chapter 4

Design and Implementation

4.1 Design Goals

Before describing the design and operation of the language extension, it is bene�cial to

present the design criteria in order to provide the rationale for many of the decisions made.

There were two goals used to guide language design with the �rst motivating the second.

1. Existing Scheme programs must execute without change.

2. Minimal new syntax.

To be classed as an extension to Scheme, the package must add new capabilities while

maintaining the existing syntax and semantics. Thus, existing programs must execute in

the extended language in exactly the same way as they would in the original language.

This goal was met except for programs containing functions whose names, by coincidence,

match the keywords of the new syntax. This motivates the next design goal; minimization

of new syntax to mitigate naming conicts.

To preserve existing semantics, it was necessary to limit the amount of syntax intro-

duced. This criteria was met since only three constructs | lambda++, define++ and

assert | were added to the language. It is also hoped that by minimizing the amount

of new syntax the language would be easy to learn and use.

Other less formal design goals existed, but it is hard to concretely express ideas such

as \ease of use" and \expressiveness". Ideally, it is desirable to have very simple and easy

27

to use constructs capable of expressing very complex ideas. It is hoped that users will �nd

that define++ satis�es this ideal, which can only be measured as feedback is obtained

from the use of the package.

4.2 General Description

The addition of overloading to the language changes the actions that must take place

at binding time. When a symbol is uniquely (initially) de�ned, no special handling is

required, and as a result, Scheme can bind the function to the symbol in the normal man-

ner. De�nition, though it can be considered as unchanged in this case, has been slightly

altered so that it types each expression and stores these types in a type environment.

When a function is speci�ed as overloaded, on the second and all subsequent de�nitions,

the binding construct must replace the current de�nition with a merged form of it and

the new sub-de�nition. This extension is done by determining the appropriate Scheme

predicate functions (e.g., number?, string?, list? etc.) to be applied to the arguments

in order to make the run-time selection of the appropriate sub-de�nition. The run-time

determination of the code to execute is known as dynamic dispatch. Every run-time call

of an overloaded function results in dispatch occurring, to perform overload resolution, for

the function.

Figure 4.2.1 shows the exact code generated by the macro define++ when sum is

de�ned using overloading, as was seen in �gure 1.2.3. More generally, the construction of

a composite de�nition can be characterized according to the format in �gure 4.2.2. Note,

it is shown later how to generate the dispatch code referenced in this �gure.

It should be noted that the original sub-de�nitions are not incorporated into the com-

posite de�nition. Should the composite de�nition need to be rebuilt, it is impossible

to retrieve each sub-de�nition's expr component because Scheme does not provide any

method of accessing the original \code" component of a closure. By maintaining each

sub-de�nition as a separate closure it becomes an easy matter to regenerate the composite

de�nition, during incremental extension, since no code needs to be retrieved. Extension,

due to overloading, involves adding a new branch to the beginning of the cond expression

every time a new sub-de�nition is added. The name for each sub-de�nition is produced by

su�xing the name of the composite de�nition with a colon and an integer representing the

order of its de�nition, beginning with one. Renaming can be seen illustrated in �gure 4.2.1

where the sub-de�nitions for the function sum are de�ned as sum:1, sum:2 and sum:3.

28

(define sum:1

(lambda (x y) (error "unknown input types for sum")))

(define sum:2

(lambda (x y) (string-append x y)))

(define sum:3

(lambda (x y) (+ x y)))

(define sum

(lambda (var1 var2)

(cond ((and (number? var1) (number? var2))

(sum:3 var1 var2))

((and (string? var1) (string? var2))

(sum:2 var1 var2))

(else

(sum:1 var1 var2)))))

Figure 4.2.1: System Generated Code for Sum

Knowing how to generate a composite de�nition leads to the most complex issue and

the majority of the implementation: the determination of the appropriate dispatch code

for each sub-de�nition. When the user provides the dispatch code using the keyword

lambda++ this issue is trivial; however, when the define++ mechanism is used it becomes

far more di�cult because of the need to determine the sub-de�nitions domain.

When the define++ form is used, some kind of abstract analysis of each sub-de�nition

is needed to determine the types for which correct execution is possible. More precisely,

what is needed is a function which, given a syntactically and semantically correct Scheme

expression, returns a type expression accurately describing the expression. The term

\syntactically and semantically correct" describes Scheme expressions that execute with-

out generating run-time errors. The type expression returned must be in a form suitable

for generating dispatch code using the predicate functions available in Scheme. Such a

type system is described later in this chapter. The analysis of a (type) declaration-free

program in order to assign types to the functions and variables is traditionally known as

type inference.

29

For some overloaded function:

F1 = (lambda (x1 ... xm) expr1)

F2 = (lambda (x1 ... xm) expr2)

. . .

Fn = (lambda (x1 ... xm) exprn)

where m � 0, n � 2

The composite de�nition is:

Fcomp = (lambda (x1 ... xm)

(cond (�n F:n)

(�n�1 F:n-1)

. . .

(else F:1)))

where �i represents the dispatch code for expr i, 2 � i � n

and F:j is bound to Fj , 1 � j � n

Figure 4.2.2: Format of a Composite De�nition

30

4.3 Types in Scheme

4.3.1 Sources of Type Information

Before describing any possible type systems, it is advantageous to examine the sources of

type information, or type artifacts, available in Scheme.

1. Applications of primitive operations.

Example: (+ x y)

The above application of + indicates that x and y are both of type number. It should

be noted that primitives provide information about both parameters and return

values. The type of a primitive is obtained by looking up the name of the function

in a type environment maintained by define++ .

2. Conditional expressions (alteration of control ow).

Syntactic forms such as: if, cond, case, and, or

Example: (if (number? x) (/ x y) (f x))

There are four pieces of type information in the above example. The �rst two are

that the \guard" clause (number? x) returns a true result in the \then" clause and

a false result in the \else" clause. The other two are the knowledge that x is of type

number when the guard is true and is of some type distinct to number otherwise.

3. Assertions.

Example: (assert (number? x) (/ x y))

The assert expression indicates that, in the expression (/ x y), the variable x has

a type that is a subset of the domain of number?.

As previously mentioned, assertions are a syntactic addition of define++ used to add

extra (declarative) information for the purpose of improving type inference. Although

necessary when using inference based dispatch code generation, it is desirable to limit the

need for assertions. The requirement to handle implementation details such as this takes

away time that programmers should be using on high-level (algorithmic) issues. As well,

adding assertions negates one of the signi�cant advantages of Scheme, with respect to ease

of use, over a language such as C, where the user is forced to manually declare types. For

these reasons, it is important that the type inference algorithmmake the best possible use

of any existing type artifacts and only require assertions when available type information

is insu�cient.

31

Empty Type: void

Universal Type: any

True Type: true

Unknown Type: unspecified

Primitive Types: number, string, char, boolean, vector, symbol

Constant Types:

c 2 number [... [symbol [fnullg

Constructed Types:

(cons type1 type2)

(or type1 . . . typen)

where typei is distinct from typej if i 6= j

(-> type1 . . . typem typem+1) where m � 0

Figure 4.3.1: De�nition of Types

4.3.2 A Type System

Scheme does not have a static type system. As mentioned in section 1.1, it does have a

theoretical type system de�ned in the (partial) formal semantics included in [14], but this

is only used to assist in the presentation of a denotational semantics for the core language

and selected primitive operations. Thus, using these semantics as a basis and considering

the predicates available to perform dispatch, the type system shown in �gure 4.3.1 has

been designed.

The type void occurs as the result of a Scheme expression that generates a run-time

error, while the type unspecified is returned when a function has no return type, such

as the input-output primitives (e.g., display, newline, read, etc.) of Scheme. The

universal type any is the set of all types except for the type void. To satisfy the formal

language speci�cation [14], there are two types for \true". Since all values, except the

symbol #f (false), satisfy the de�nition of truth in Scheme, the type true represents the

set any - {#f}. The symbol for true #t, which is a member of the type boolean, is a

part of, but does not represent, the previously mentioned type true.

It is signi�cant that the type system described here does not express any recursive

types, such as lists. This is a deliberate omission discussed more fully in section 5.4.

32

4.4 Generation of Dispatch Code

When types have been inferred, using the procedure described in the next chapter, they

are used to generate the appropriate dispatch code for function sub-de�nitions.

Since only functions are overloaded, all sub-de�nitions have the form:

Fi = (lambda (x1 ...xn) < expr >i)

which have a type of:

(-> < type >1 . . .< type >n < type >return)

Thus, dispatch code for Fi is of the form:

(and dispatch[x1, < type >1] . . . dispatch[xn, < type >n])

where the de�nition of the meta-function dispatch is found in �gure 4.4.1.

Note that, as indicated, the dispatch code for a sub-de�nition is generated di�erently

from that for any parameters to the sub-de�nition that have a function type. This rule

prevents a user from overloading a function based on the type of a parameter that is itself

a function, as is seen in �gure 4.4.2. The lack of existing Scheme predicates, other than

procedure?, to identify functions prevents the generation of any useful dispatch code.

In example of �gure 4.4.2, the parameter f is a function in both sub-de�nitions and so

dispatch code of the form (procedure? f) is generated for f. Dispatch can not occur

based on the type of x since it is a number in both sub-de�nitions. Thus, the lack of

existing Scheme predicates results in the generation of identical dispatch code for the two

de�nitions, motivating the above rule.

The actual dispatch code generated by the macros may di�er slightly from that de-

scribed in �gure 4.4.1 because of the occurrence of some optimizations such as replacing

(and (equal? x '()) #t) with (null? x). The optimization which occurs is very sim-

plistic in nature and is limited to improving the code generated for a single sub-de�nition.

No attempt is made to improve the overall e�ciency of the composite de�nition by opti-

mizing the complete dispatch code.

The meta-function dispatch previously described generates the dispatch code for one

sub-de�nition, however it does not indicate how the dispatch code for each sub-de�nition

33

dispatch:[name, type]) scheme-expr

dispatch[x, void] ::= unde�ned

dispatch[x, any] ::= #t

dispatch[x, p] ::= (p? x)

dispatch[x, c] ::= (equal? x c)

dispatch[x, (cons �1 �2)]

::= (and (pair? x) dispatch[(car x), �1] dispatch[(cdr x), �2])

dispatch[x, (or �1 ... �n)]

::= (or dispatch[x, �1] . . . dispatch[x, �n])

dispatch[x, (-> �1 ... �m �m+1)] ::= (procedure? x)

where � = type

x = variable

p 2 fnumber, string, char, vector, boolean, symbolg

c 2 fp j p 2 primitive typesg [fnullg

Figure 4.4.1: De�nition of dispatch

;; This definition has type: (-> (-> string any) number any)

(define apply-f (lambda (f x) (f (number->string x)))

;; This definition has type: (-> (-> number any) number any)

(define++ apply-f (lambda (f x) (f (+ x 1))))

Figure 4.4.2: Overloading Based on a Functional Parameter

34

is ordered in the composite de�nition. Recall the disambiguating rule presented in section

3.2: in the event that more than one sub-de�nition applies, the most recently de�ned is

used. Using this rule, the following convention can be adopted:

The order of the sub-de�nitions in the composite de�nition inversely matches

the order of their de�nition.

That is, the most recently de�ned sub-de�nition is �rst, the next most recent is second and

so on. With this approach, the default behaviour for the function comes from the oldest

sub-de�nition, which is correct according to the speci�cation given in chapter 3. Fig-

ure 4.4.3 illustrates the construction of a composite de�nition from three sub-de�nitions.

In the cond construct of the composite de�nition, the inverse order of the sub-de�nitions

is easily seen.

Validity

A sub-de�nition is valid if, for the arguments provided by the call-site, the

dispatch code for the sub-de�nition evaluates to true. For non-overloaded

functions, a de�nition is always valid.

As the de�ned ordering indicates, the most recently encountered sub-de�nition for

which the dispatch code evaluates to true is used. This ordering rule maintains and

extends the existing semantics of Scheme. Currently, a symbol is rebound if a second

(or subsequent) de�nition occurs for an already bound symbol. In the extension, this

behaviour is maintained if the most recent de�nition is valid for the call-site (in current

Scheme this must be the case or a run-time error occurs). However, if it is not valid,

all other sub-de�nitions are considered until either a valid sub-de�nition is found, or all

sub-de�nitions are examined and none are found to be valid forcing the default de�nition

to be used regardless of its domain.

4.5 Scoping and Dependency

Scheme is a statically (lexically) scoped language, which means a function call is evaluated

using the environment the function is de�ned in. However, the primitive define is imper-

ative in nature, and changes the value stored in a memory location without changing any

bindings to that location, as is illustrated in the Scheme program of �gure 4.5.1.

35

For the sub-de�nitions evaluated in the order given:

;; Definition 1 (renamed to enumerate:1)

(define enumerate

(lambda (x) (error "unknown input type for enumerate")))

;; Definition 2 (renamed to enumerate:2)

(define++ enumerate (lambda (x) (assert (number? x) x)))

;; Definition 3 (renamed to enumerate:3)

(define enumerate

(lambda++ (x)

(list? x)

(if (null? x) 0 (+ 1 (enumerate (cdr x))))))

The following composite de�nition is generated:

(define enumerate

(lambda (var1)

(cond ((list? var1) (enumerate:3 var1))

((number? var1) (enumerate:2 var1))

(else (enumerate:1 var1)))))

Figure 4.4.3: Order of Sub-de�nitions in a Composite De�nition

36

;; Define some things in global scope.

(define x 1)

(define show-x (lambda () (display x)))

;; The following returns the value 1.

(show-x)

;; Change the value of x.

(define x 2)

;; The following returns the value 2 stored in x

;; and NOT the 1 stored in x when show-x was defined

(show-x)

Figure 4.5.1: Changing a Value Through Re-De�nition

;; Define a pair of functions.

(define sum (lambda (x y) (+ x y)))

(define double (lambda (x) (sum x x)))

;; Overload sum. Type of double changes!

(define sum (lambda (x y) (string-append x y)))

Figure 4.5.2: Illustration of a Type Dependency

In the function show-x, the reference to x in display is bound to the location named

x in the global scope. The second de�nition of x changes the value stored in the memory

location, but does not a�ect the actual binding of the symbol x to that location. Therefore,

the second call to show-x uses the binding to the location established at its de�nition time,

even though the value of the location has changed. This behaviour can have signi�cant

e�ects in the presence of overloading, as the short program of �gure 4.5.2 demonstrates.

As the example illustrates, overloading can change the type signature of previously

de�ned functions. This will be referred to as a type dependency. In the example, the type

of the function double is dependent upon the type of the function sum. Changing the type

of sum changes the type of double, which may then change the type of other functions

37

dependent upon double.

In order to maintain an accurate type for each functions, it is necessary to store a

dependency list for every function de�ned. At the time of a functions de�nition, it is added

to the dependency list of all the functions it calls. Whenever a function is overloaded and

the overloading causes the type of the function to change, all functions in its dependency

list must be re-typed. Any changes in the type of a function results in the subsequent

re-typing of all the functions on its dependency list, until no more re-typing is necessary.

When a function, f, calls a function, g, which directly or indirectly calls f, a recursive

cycle is formed. To ensure this does not lead to an in�nite cycle in the re-typing algo-

rithm, the name of the function being overloaded is stored and re-typing stops when that

function is encountered. This approach can lead to overly general types for the members

of a recursive cycle, however, when functions are typed independently, precise types are

impossible to achieve.

38

Chapter 5

Simple Type Inference in Scheme

5.1 Overview

In order to automate the generation of dispatch code, the use of available type informa-

tion to determine types (as previously described in �gure 4.3.1) for each sub-de�nition is

investigated. This investigation results in the design and construction of a control-ow

based type inference algorithm for Scheme.

It is important to note that perfect type inference is unnecessary. The extension works

if overly general types are returned for a sub-de�nition (or component thereof). Should

the inference algorithm return a type of any, the new sub-de�nition overrides any existing

sub-de�nitions and reproduces the existing behaviour of Scheme. Overly general types

simply limit the e�ectiveness of overloading and do not cause erroneous or unpredictable

behaviour.

As an example, if a sub-de�nition of type (-> number number boolean) is inferred

to have the type (-> any any boolean), dispatch code of (and #t #t) is generated.

This dispatch code causes define++ to mimic the existing semantics of Scheme, since it

always evaluates to true causing the associated sub-de�nition to be used. The constant

selection of a sub-de�nition is e�ectively the same as rebinding the symbol to the sub-

de�nition. This behaviour is not considered \incorrect" but does link the e�ectiveness of

the define++ syntax to the accuracy of the type inferencer.

As a result of the above limitation, it is vital that the extension report its activities so

that the user can predict which sub-de�nition is used for a particular function instantiation.

39

(define length

(lambda (l)

(if (null? l)

0

(+ 1 (length (cdr l))))))

Figure 5.2.1: The Function Length

The reporting of the type used also permits the programmer to e�ect improved inference

by strategically adding additional declarative information using assert.

A simple type inference algorithm, as is provided in the implementation, is described,

followed by a discussion of the limitations and possible extensions of the algorithm. Par-

ticular attention is paid to the subject of recursive types, which are not handled by the

simple algorithm.

5.2 A Simple Type Inference Algorithm

The algorithm described is not complete in that it does not generate any form of recursive

type or consider the \non-functional" aspects of Scheme, such as assignment. What is

presented is intented to provide e�ective overloading while simultaneously o�ering an

easily extended framework for the future implementation of additional features.

The inference algorithm can be broken down into three sequential stages: preprocess-

ing, constraint generation and constraint solution. To clarify and illustrate the operation

of the algorithm, the composite results of applying each stage sequentially to the function

given in �gure 5.2.1 are given. The example is a simple, one-parameter function, which

calculates the length of a null terminated list and returns the result as an integer. Al-

though the algorithm does not generate recursive types, a recursive function is furnished,

as an example, to demonstrate the algorithms handling of recursion.

The use, to create dispatch code, of the algorithm results in its application to solitary

Scheme expressions, since the top level function type is called on the expression component

of a define construct.1 Overloaded functions are therefore typed incrementally since type

is applied to each sub-de�nition as it is de�ned.

1The syntax for a top level de�nition is: (define variable expression).

40

5.2.1 Preprocessing

In order to simplify the actual type inference process, the source code undergoes the

following transformations in the preprocessing stage:

� All variables are renamed with unique names.

� Syntax is simpli�ed and standardized.

� The expression is A-normalized.

(This is a transformation very similar to conversion to continuation passing style.)

The activities of this stage simplify the implementation of the second and third stages

of the algorithm by reducing source programs to a normalized subset of Scheme.

During renaming, all variables are replaced with new, unique names. The renaming

process adheres to all of Scheme's scoping rules and thus generates di�erent names for

identically named variables within di�erent scopes. This removes the need to identify

variables with respect to scoping restrictions in future stages. New variable names are

integer values prepended with the character $.

Simultaneously, during renaming, all of the source code is standardized to replace com-

plex syntactic constructs with simpler ones and to transform constructs with alternative

forms of syntax into a common form. The following standardizations are performed:

1. Replacement of let* and let with equivalent letrec constructs.

2. Conversion of alternative syntax for de�nitions into a standard format with explicit

lambda's.

3. Replacement of and and or with appropriate and equivalent constructs using if and

letrec.

4. Replacement of cond and case with equivalent if expressions.

5. Insertion of any missing else clauses for if, cond and case expressions. The func-

tion (void) returning an unspeci�ed value is used for any missing clauses.

6. The insertion of begin in all situations where it is implied, such as in lambda ex-

pressions, cond cases and letrec bodies.

41

EXPR ::= VAR

j (let (VAR CONST) EXPR)

j (let (VAR (if VAR EXPR true EXPR false)) EXPR)

j (let (VAR (lambda (EXPR 1 . . . EXPR n) EXPR body)) EXPR)

j (let (VAR (FUN EXPR 1 . . . EXPR n)) EXPR)

FUN ::= VAR j primitive procedure

CONST ::= constant

VAR ::= variable

Figure 5.2.2: Grammar for A-normalized Intermediate Form

7. Replacement of do with a locally de�ned recursive function using letrec.

8. Replacement of all quoted lists with explicitly constructed lists using cons.

9. Decomposition of cadr and similar functions into their car and cdr components.

The �nal action during preprocessing is to transform the standardized representation

into A-normal form using A-normalization [22]. This transformation is very similar to

conversion to continuation passing style (CPS) [7], and recently Sabry andWadler [44] have

shown CPS conversion and A-normalization generate results that are Galois reections2 of

each other. A-normalization conveniently names all intermediate values in computations in

addition to further simplifying the source code by reducing it to the form represented by the

grammar in �gure 5.2.2. The advantage gained from the extra work of this transformation

is that it becomes far easier to solve constraint sets when there are no missing constraints

inferred by anonymous intermediate values. It is notable that the transformation generates

an intermediate representation of a Scheme program and not executable Scheme code. In

particular, the semantics of let in the intermediate are not those of let in Scheme, but

are instead those of letrec.

Both CPS conversion and A-normalization have been used as part of type inference

algorithms implemented for Scheme; CPS by Shivers [45] and A-normalization by Flanagan

2Galois theory is beyond the scope of this thesis and so is not detailled here. Readers are urged to refer

to [44] for a more detailed analysis of the relationship between CPS conversion and A-normalization.

42

and Felleisen [21]. The latter was chosen because the added overhead of continuations is

not required by the type inference algorithm being described.

The normalization code is the same as that in Appendix 1 of [22], apart from the

extension for the begin3 construct and the naming of constants. The implementation uses

continuations in a technique pioneered by Danvy and Filinski [18], however, �gure 5.2.3

reproduces this algorithm in terms of a direct transformation. Preprocessing the length

function yields the code given in �gure 5.2.4. For readability, the machine generated unique

variable names ($1, $2, . . .) have been replaced by ones considerably more descriptive in

nature.

5.2.2 Constraint Generation

Description of Constraints

The next stage of the algorithm generates a set of equality constraints for each control

ow path. Before describing the process of generating these constraints, the nature of a

constraint is examined and a de�nition given.

Although the term \constraints" is used, the term \equality" is also suitable. A con-

straint, which is always associated with a variable, serves two roles. The �rst is as a bound

on the set representing the type of the variable. The second is to describe equivalences

between the type of the associated variable and the type, or component thereof, of some

other variable. Both these roles are now illustrated using examples.

Since all computational quantities are named by A-normalization, all type artifacts

are associated with variables. The type information available from a particular artifact

represents the type of a variable at some point during execution. However, the type

information may be more general and indicate a larger set of values than the variable

could actually have.

Figure 5.2.5 describes a preprocessed version of a function which adds 1 to its argument.

For the variable $3 occurring in the application of +, given by (+ $2 $3), it is possible

to infer that $3 has type number. The let binding to the constant 1 actually indicates

that the type of $3 is in fact the value 1 and so the type number can be seen as overly

general and represents a larger set of values than the variable is ever assigned. As this

3begin is a sequencing construct used primarily to obtain side-e�ects.

43

A-normalize[expr] = A[expr, �, �]

where A[expr, name, body]) normalized-expr is de�ned:

A[v, name, body] ::= v

A[c, name, body] ::= (let (name c) body)

A[(E E1 . . . En), name, body]

::= A[E, �, A[(� E1 . . . En), name, body]] where E 6= f

A[(f v1 . . . vm E E1 . . . En), name, body]

::= A[E, �, A[(f v1 . . . vm � E1 . . . En), name, body]] where E 6= v

A[(f v1 . . . vm), name, body] ::= (let (name (f v1 . . . vn)) body)

A[(if Eg Et Ef), name, body]

::= A[Eg, �, A[(if � Et Ef), name, body]] where Eg 6= v

A[(if v Et Ef), name, body]

::= (let (name (if v A[Et, �1, �1] A[Ef , �2, �2])) body)

A[(lambda (v1 . . . vn) E), name, body]

::= (let (name (lambda (v1 . . . vn) A[E, �, �])) body)

A[(letrec ((v E1)) E2), name, body]

::= A[E1, v, A[E2, name, body]] where E1 6= c or v

A[(letrec ((v vc)) E), name, body]

::= (let (v vc) A[E, name, body]) where vc = v or c

A[(begin v1 . . . vm E E1 . . . En), name, body]

::= A[E, �, A[(begin v1 . . . vm � E1 . . . En), name, body]] where E 6= v

A[(begin v1 . . . vn), name, body] ::= (let (name vn) body)

where E = expression

� = a new (unique) variable

v = variable or primitive operation

c = constant

f = symbol bound to a function

Figure 5.2.3: A-normalization Algorithm

44

(let (length (lambda (x)

(let (bool (null? x))

(let (if-expr (if bool

(let (zero 0) zero)

(let (cdr-x (cdr x))

(let (result (length cdr-x))

(let (one 1)

(let (sum (+ one result))

sum))))))

if-expr))))

length)

Identi�cation of new variables introduced by A-normalization:

bool = result of null?

if-expr = result of if

zero = constant value 0

cdr-x = cdr �eld of x

result = result of recursive call to length

one = constant value 1

sum = sum of 1 and result of recursive call

Figure 5.2.4: Results of Preprocessing Length

(let ($1 (lambda ($2)

(let ($3 1)

(let ($4 (+ $2 $3)) $4)))) $1)

Figure 5.2.5: Recovery of Information from Type Artifacts

45

(let (head (lambda (x)

(let ($1 (car x)) $1)))

head)

Figure 5.2.6: Relationships Between Variables and Types

simple example demonstrates, constraints represent local upper bounds on the type of the

associated variable. Recall that this was the �rst role that constraints �lled. To explain

the second role of constraints (type equivalences) the following de�nition is required.

Enhanced Type

A type is an enhanced type if it can be described using the type system de�ned

in �gure 4.3.1 enhanced with the addition of program variables.

For example, (cons $2 any) is an enhanced type representing a pair having the type

found for the variable $2 (after constraint solution) in its �rst �eld and the universal type

any in its second �eld.

When type constructors such as cons and lambda or destructors such as car and cdr

are used in programs, additional information is recovered indicating type relationships

between variables. Constraints instrument the transfer of type knowledge both into and

out of constructed types by linking the variables associated with the constructed type and

with its component types. The type constructors of the type system are used to describe

the movement of type information into a constructed type while the general purpose type

destructor (fieldOf var n) describes the movement of type information out of the nth

�eld of the type of var.

Figure 5.2.6 contains a simple Scheme function that returns the \head" (�rst element)

of a list formed using cons types. The variable $1 was added by preprocessing to explicitly

name the functions return value. In the �gure, it is possible to see that the type of the

return value $1 is the same as the type of the car �eld of the parameter x. This is evident

from the binding of the car of x to $1 in the let expression. To represent this relationship

$1 is constrained by (fieldOf x 1) and x by (cons $1 any).

There are three di�erent forms that constraints can take. The �rst moves type in-

formation between variables that, at some point during program execution, have equal

46

bounds on their types. The second serves the role of a type destructor and moves infor-

mation out of constructed types into its components. The last acts as a type constructor

and moves information into a constructed type from its components.

1. (= variable)

This indicates that all constraints upon variable also apply to the variable being

constrained. It does not indicate any constraints upon variable.

2. (fieldOf variable N)

This indicates that variable is a constructed type and that the variable associated

with the constraint is constrained by the Nth �eld of that type. These constraints

serve as type destructors.

3. enhanced types

When a type constructor is used, an enhanced type is suitable for constraining the

variable to which the type constructor is bound. Enhanced types can be seen as

indicating both a bound upon a variables value and a transfer of type information

to and from the variables named by the component types.

Figure 5.2.7 illustrates the constraints generated for a simple Scheme function, which

takes no arguments and returns the constant 3. The constraint set generated is organized

as an environment with entries of the form:

variable: constraints

For the variables, $1 to $5, the constraints generated indicate the following:

� $1 is a function of no arguments with a return value that is constrained by the type

of $5.

� $2 is the constant value 3.

� $3 is the constant value 6.

� $3 is a cons type with its car �eld constrained by the type of $2 and its cdr �eld

constrained by the type of $3.

� $5 is constrained by the type of the �rst �eld of $4.

47

Given the Scheme expression:

(lambda () (car (cons 3 4)))

Preprocessing generates:

(let ($1 (lambda ()

(let ($2 3)

(let ($3 6)

(let ($4 (cons $2 $3))

(let ($5 (car $4)) $5)))))) $1)

Which generates constraints:

$1: (-> $5) $4: (cons $2 $3)

$2: 3 $5: (fieldOf $4 1)

$3: 6

Figure 5.2.7: An Example of Constraint Generation

To summarize, constraints can be used to describe local bounds on the set of values

(type) a variable can represent at run-time, as well as describing locations where type

information is obtained during constraint solution.

Generation of Constraints

One of the unique aspects of the type inference algorithm is its generation of a type for each

control ow path. Instead of trying to merge the type information from both branches of

an if expression, the function containing the expression is typed twice, once considering

the guard expression evaluates to true, and once considering it returns #f, assuming the

value of the guard is not statically determinable.

Generating constraints is not a complex procedure. Since expressions in the intermedi-

ate form are tree-like in nature, it is a simple matter of traversing the tree, in a depth-�rst

manner, generating a constraint set for each branch of the tree. Any side-e�ects from

imperative style assignment functions are ignored.

Before presenting the meta-function used to describe the constraint generation proce-

dure the context in which it is used must be clear. Since constraints are generated for

48

Let = a constraint

v = a variable

c = a constant

E = a constraint environment of the form f(v1, 1) . . . (vm, m)g where m � 0

E(n) = a set of n constraint environments fE1 . . . Eng where n � 0

De�ne finalvar as:

finalvar[(let (v expr 0) expr)] ::= finalvar[expr]

finalvar[v] ::= v

Figure 5.2.8: Notation Used in Figure 5.2.9

each control ow path, one of the parameters is a set of constraint sets. Initially this set

contains a single empty constraint set. When a branch in the control ow is reached, such

as an if expression, each constraint set is duplicated and specialized for a speci�c branch

of the conditional expression. Constraint generation then continues down each branch, us-

ing a di�erent copy of the constraint set in each branch. After each branch is constrained

the resulting \sets of constraint sets" are unioned together. The other parameter is the

expression, in the intermediate form, to be constrained.

Figure 5.2.8 presents the notation used in �gure 5.2.9 to provide the formal de�nition

of the constraint generation function:

C[expr, fE1 . . . Eng]) fE1 . . . Emg; m,n � 0

This function describes the constraints generated for each expression in the intermedi-

ate form where C is initially applied with one empty constraint set to the complete A-

normalized intermediate representation of the function being constrained.

Resolution of overloaded functions during inference is treated as though each potential

instance of the function were a separate control ow path. This traversal can be readily

seen by comparing the rule for constraining an overloaded application (rule 7d) with the

one for an if expression (rule 8). Both rules extend the set of constraint environments

by causing duplication of each existing set and then specializing, through the addition of

di�erent constraints, each copy of the set.

For example, assuming that the function + is overloaded for both the type number and

49

(1) C[v, E(n)]

(a) If v is locally bound

::= E(n)

(b) If v is bound at the top level to �

::= fEi [f(v, �)g j Ei 2 E(n)g

(2) C[(let (v c) expr), E(n)] ::= C[expr, fEi [f(v, c)g j Ei 2 E(n)g]

(3) C[(let (v (lambda (v1 ... vn) expr body)) expr), E(n)]

::= C[expr, fEi [f(v, (lambda v1 . . . vn finalvar[expr body]))g j Ei 2 E(n)g]

(4) C[(let (v (cons v1 v2)) expr), E(n)]

::= C[expr, fEi [f(v, (cons v1 v2))g j Ei 2 E(n)g]

(5) C[(let (v (car v1)) expr), E(n)]

::= C[expr, fEi [f(v, (fieldOf v1 1)), (v1, (cons v any))g j Ei 2 E(n)g]

(6) C[(let (v (cdr v1)) expr), E(n)]

::= C[expr, fEi [f(v, (fieldOf v1 2)), (v1, (cons any v))g j Ei 2 E(n)g]

(7) C[(let (v (f v1 ... vn)) expr), E(n)]

(a) If f is not bound, or f is currently being de�ned:

::= C[expr, E(n)]

(b) If f is locally bound to vf and vf is untyped:

::= C[expr, fEi [f(v1, (fieldOf vf 1)) . . . (vn, (fieldOf vf n)),

(v, (fieldOf vf n+1))g j Ei 2 E(n)g]

(c) If f is bound with type (-> �1 . . . �n):

::= C[expr, fEi [f(v1 tau1) . . . (vn taun)g j Ei 2 E(n)g]

(d) If f is bound with type (or (-> �1 . . . �n) . . . (-> �m+1 . . . �m+n)):

::= C[expr, fEi [f(v1, tau1) . . . (vn, taun)g j Ei 2 E(n)g [. . . [

fEi [f(v1, taum+1) . . . (vn, taum+n)g j Ei 2 E(n)g]

(e) If f is a member of fequal? eql? eq? =g:

::= C[expr, fEi [f(v1, (= v2)), (v2, (= v1)), (v, true)g j Ei 2 E(n)g [

f(v, #f)g j Ei 2 E(n)g

(8) C[(let (v (if vguard expr true exprfalse)) expr), E(n)]

::= C[expr, C[expr true fEi [f(vguard, true), (v, finalvar[exprtrue])g j Ei 2 E(n)g] [

C[exprfalse fEi [f(vguard, #f), (v, finalvar[exprfalse])g j Ei 2 E(n)g]]

Figure 5.2.9: Constraint Generation

50

the type string, where the sub-de�nitions are named +number and +string respectively, the

application of the type inference algorithm on the function

(define plus (lambda (x y) (+ x y)))

returns two types. The �rst type, (-> number number number) is generated using the

assumption that the function + is instantiated with the sub-de�nition +number and the

second type, (-> string string string), with the sub-de�nition +string .

As part of constraint generation, the name of any function currently being de�ned is

kept in a list. The system also maintains a type environment with the names and types

of all top level and primitive functions. Variables not in a position that indicates they are

bound to a function are assigned a type of any unless they are bound in the environment

in which case their type is the value they are bound to. Variables used as a function are

assigned a type according to the following rules:

1. If the name is in the list of functions currently being de�ned, it is considered recursive

and is given a type of (-> any ... any) with the appropriate arity.

2. If the name is bound using a let4 construct, it is considered local and assigned a

type of (-> any ... any) with the appropriate arity.

3. If the name is bound in the type environment, its type is the value bound to it in

the environment. If the name is bound but not to a function, the entire expression

being typed is given a value of void.

4. If none of the previous cases hold, the name is an unbound symbol and is given a

type of (-> any ... any) with the appropriate arity.

Examining the constraint sets of the function length, found in �gure 5.2.10, one can

see that there are two constraint sets generated, one for each branch of the if statement

that length contains. The constraining type any, associated with many of the variables, is

a default constraint supplied by the system when no other constraints are discovered. At

this point, it is possible to see that the �rst constraint set describes the \base case" of the

function, terminating the recursion and having a type of (-> null 0). The second set is

more complex but is identi�able as describing the recursive case with a \generalized" type

4A let in the intermediate form is equivalent to a letrec in Scheme.

51

Constraint Set 1 ((null? x)) #t indicating the \then" branch)

length: (-> x if-expr) if-expr: (= zero) result: any

x: null zero: 0 one: any

bool: #t cdr-x: any sum: any

Constraint Set 2 ((null? x)) #f indicating the \else" branch)

length: (-> x if-expr) if-expr: (= sum) result: (= if-expr), number

x: (cons any cdr-x) zero: any one: 1, number

bool: #f cdr-x: any sum: number

Figure 5.2.10: Constraints Generated for Length

of (-> (cons any any) number). The generality of this type is a product of constraint

generation not identifying the equivalence, implied by recursion, of the variables cdr-x

and x.

This algorithmmay potentially generate a number of constraint sets that is exponential

to the number of control ow paths. To prevent this from occuring, a partial solution of

the constraint sets is done during constraint generation to identify and discard constraint

sets that indicate unreachable control ow paths. For example, when the guard of an if

expression is the constant #t, no duplication of the constraint set occurs. This duplication

is prevented since the intersection of the guards assumed value (#t) and its required value

(#f), in the else clause, results in the value void, therefore indicating an unreachable

control ow path. Experience has revealed that this implementation technique is e�ective

in limiting the number of constraint sets generated.

5.2.3 Constraint Solution

Once all constraints have been generated, the �nal stage is to solve each set of constraints

using an intersection based approach. Intersection can be used due to the simplistic

nature of the constraints generated. Each constraint represents a local maximum on the

set representing the type of a quantity, and the quantity must satisfy all constraints upon

it, therefore the �nal value (type) of any variable can be determined by intersecting the

types inferred by the constraints.

As part of the constraint solution phase, all the type constraints upon a variable must

52

intersect[�1, �2]) �

intersect[any, �] ::= �

intersect[� , any] ::= �

intersect[true, �] ::= � if � 6= #f

intersect[� , true] ::= � if � 6= #f

intersect[� , c] ::= c if c 2 �

intersect[c, �] ::= c if c 2 �

intersect[�1, �2] ::= �1 if �1 = �2

intersect[(cons �1 �2) (cons �3 �4)]

::= (cons intersect[�1, �3] intersect[�2, �4])

intersect[(-> �1 . . . �n) (-> �n+1 . . . �n+m)]

::= (-> intersect[�1, �n+1] . . . intersect[�n, �n+m]) where n = m

intersect[�1, �2] ::= void when no other case applies

Figure 5.2.11: De�nition of Type Intersection

be intersected, which is done using the algorithm given in �gure 5.2.11. It is important

to note that this algorithm does not have a rule for the type constructor or. The or

constructor is only used after type inference is complete to combine the type for each

control ow path. Branches in control-ow can only occur in a function abstraction since

Scheme does not provide any other mechanism to bind unevaluated code to a symbol;

thus, all or types indicate overloaded functions. Examining C reveals that these types

are removed by the algorithm and are never entered into the constraint environment.

Therefore, intersection of or types is not needed since they never occur.

Constraints upon variables represent sets of values assigned to the variable at di�erent

points throughout the program. Since a variable's value is �xed for a function invocation,

barring the occurrence of an assignment such as set! which will be ignored, the variable

53

Let the initial solution S1 be: f(v1, any) . . . (vj , any)g

The notation: v, w describes variables

N is an integer

Si(v) refers to the value of v in Si

Si(v)[N] refers to the Nth component of Si(v)

quantifyi[] = with all v replaced with Si(v)

loop f

for each (v,) in C

case of (= w): Si+1(v) Si(v) \ Si(w)

(fieldOf w N): Si+1(v) Si(v) \ Si(w)[N]

default: Si+1(v) Si(v) \ quantifyi[]

i i + 1

g until Si�1 = Si

Figure 5.2.12: Constraint Solution Algorithm

must be a member of all the constraining sets simultaneously. Therefore, the sets can be

intersected to �nd the smallest possible set of values and the most accurate type for the

variable.

For any set of constraints, C = f(v1, 1), (v2, 2) . . . (vn, n)g, over j variables where 1

� j � n, the solution to the constraint set is described using the algorithm in �gure 5.2.12.

Since the transference of type information among variables is also accomplished with

constraints, it is insu�cient to simply intersect the constraints upon each variable. Thus,

the algorithm in �gure 5.2.12 must also account for this transference. The quantify

function handles extended types by replacing variables with their current value, while the

other constraints are handled by the �rst two cases of the case structure. In general, each

constraint is handled by taking the component of the type being described and intersecting

it with the current value of the variable being solved.

An iterative approach is taken to solving the constraint set. If constraints are con-

sidered nodes, and identical variables are connected by arcs, a constraint set can be seen

as a graph. Since a change in any one point in the graph can have an a�ect on other

points more than one arc away and each iteration of the solution algorithm transfers a

54

Solution to Constraint Set 1: ((null? x)) #t = \then" branch)

length: (-> null 0) if-expr: 0 result: any

x: null zero: 0 one: any

bool: #t cdr-x: any sum: any

Solution to Constraint Set 2: ((null? x)) #f = \else" branch)

length: (-> (cons any any) number) cdr-x: any

x: (cons any any) result: number

bool: #f one: 1

if-expr: number sum: number

zero: any

Figure 5.2.13: Constraint Solutions for Length

change over one arc, an iterative approach is required to ensure changes eventually spread

throughout the entire graph. The procedure terminates when the value of all the nodes

of the graph stabilize.

Applying this procedure to the constraints generated for the function length, the

solution in �gure 5.2.13 is obtained. This �gure presents the �nal type inferred for each

variable on each control ow path. As suggested by the constraints generated, the �nal

type of the function is:

(or (-> null 0) (-> (cons any any) number))

5.2.4 Termination Properties of the Algorithm

In the preprocessing stage, the syntax tree of the function, whose type is to be inferred,

is traversed twice, once for renaming and standardization and once for A-normalization.

Since the traversal treats function names (in applications) as leaves of the syntax tree, no

recursion can occur to prevent termination. This same argument holds for the constraint

generation phase, but this time it is the intermediate representation which is traversed.

It is only slightly more di�cult to reason that termination occurs during solution of

the constraint sets. The solution algorithm halts when all the type values for variables

become constant. In the worst case, every single constraint could be applied to every

55

possible variable before this occurs. The absence of any recursive constraints prevents

in�nite length types from being generated by repeated application of the intersection

algorithm. Thus, for a constraint set of m variables and n total constraints, a solution is

always be reached after mn intersections, and the algorithm always terminates.

5.3 Discussion of the Algorithm

This is a conservative algorithm. All variables are initially assigned the type of any,

which is subsequently restricted by the constraints. Should insu�cient information exist

to restrict the type to its precise value, a more general type is inferred. This relaxation

does not create incorrect types, only overly general ones.

One restriction of this type inference algorithm is that it does not identify the internal

structure of a list by unwinding the recursion. This restriction is deliberate since lists in

Scheme may be heterogeneous. Thus, if an overloaded function is mapped over a list, a

di�erent sub-de�nition may be used for each element of the list. Dispatch, necessary to

select the appropriate sub-de�nition for each element, makes knowledge of the internal

structure of a list unimportant in this case.

Although functional in nature, Scheme also has imperative features. In particular,

primitive functions whose names end with `!', such as set!, are imperative in nature

since they perform assignment. As part of the initial implementation, functions with side-

e�ects were disregarded with respect to type inference. It remains as later research to

investigate the integration of non-functional operators into this algorithm.

When constraints are generated for an if expression, knowledge about the type that a

variable cannot have is present since it is known that the guard component of a conditional

failed (i.e., evaluated to #f) in the else clause. This information is lost since no exclusion

constraints, such as (not null), are used to identify constraints that describe the types a

variable cannot be a member of. Overly general types occur, when some Scheme programs

are analyzed, as a result of losing this information. In the example given in �gure 5.3.1,

the second branch of the cond expression is never evaluated since the condition of y being

null needed to satisfy the and clause causes the execution of the �rst branch of the cond

expression. Therefore, the type of (-> null null null) associated with the unreachable

code adds the unreachable value null to the range.

The next example, �gure 5.3.2, demonstrates the results of the type inference algorithm

56

(define merge (lambda (x y)

(cond ((null? y) (cons x y)) ;; case a

((and (null? x) (null? y)) '()) ;; case b

(else (merge (car x) ;; case c

(merge (cdr x) y))))))

Has types:

1. (-> any null (cons any null))

2. (-> null null null)

3. (-> (cons any any) any (cons any any))

Figure 5.3.1: Inaccurate Type Generation

(define num-member? (lambda (ls)

(cond ((null? ls) #f) ;; case a

((number? (car ls)) ls) ;; case b

(else (num-member? (cdr ls)))))) ;; case c

Has types:

1. (-> null #f)

2. (-> (cons number any) (cons number any))

3. (-> (cons any any) any)

Figure 5.3.2: An Example of Type Inference

57

on a slightly more complex example. Due to the considerable quantity of data generated

by the intermediate steps, they are not reproduced here. It should be noted that type 3

covers type 2, and so the latter is not reported as part of the type for num-member?.

Rather than merging all the type information for each control ow path as is done in

conventional typing, the type system attempts to express the generic nature of Scheme

functions. This simpli�es the addition of overloading since it becomes a matter of adding

new types to the set of existing types for a function. Multiple types for a function are

represented using disjoint union and are presented using the keyword or. This approach

was inspired by Kind and Friedrich's work on EuLisp [35].

The A-normalization algorithm described and implemented is not a complete imple-

mentation of the theory described by Flanagan et al. [22]. However, neither is the imple-

mentation included in the same paper and reproduced here. The di�erence between the

full theory and the implemented version is the replacement of the rule for if expressions

with:

A[(if v Et Ef), name, body]

::= (let (� (if v A[Et, name, body] A[Ef , name, body])) �)

Both transformation rules produce similar results apart from changing the ordering of

some of the let expressions. This ordering has no e�ect on the generation of constraints

and so is not signi�cant with regard to this type inference algorithm.

5.4 Recursion

The algorithm, as described, makes no attempt to detect and report recursive types, and

can therefore, be described as a single step of Kaplan-Ullman �xed-point iteration [34].

Types are di�erentiated using the outermost type constructor only, implying that lists and

pairs (which are both constructed using cons) are indistinguishable.

Since the type system does not have any recursive types, the types generated by

recursive functions can only be represented by in�nite sets such as f(cons any any),

(cons any (cons any any)), . . . g. The set contains a series described by an in�nite

combination of some type constructors. Multiple steps of �xed-point iteration would not

converge on a solution in the case of recursive data types as each expansion of the recursive

type would extend the set by adding a value with one more layer of type constructors.

Instead of resorting to some ad-hoc approach, which prevents in�nite types from being

58

generated, overloading was added to the language based on the previously described type

system and inference algorithm.

The in�nite types, which this system generates when modi�ed to add the constraints

inferred by recursion, occur because the type system lacks contractiveness [16]. Con-

tractiveness can be described as a �xed upper bound (top) for all types when types are

described using lattice terminology. This problem is intuitively understandable by consid-

ering the in�nite type:

(cons any (cons any (cons any ...)))

which can occur during constraint solution and preventing a stable value from being

achieved. To add contractiveness to the type system, there needs to be some �xed length

type that this in�nite type contracts to.

I initially believed that e�ective dispatch could be performed using only the outermost

type constructor. After some experimentation, this was found not to be the case. The

problem is not the inference algorithm however, but rather lies in the expressiveness of

the type system. For example, it is impossible to express a function requiring two equal

length lists as parameters. This inadequacy lead to addition of the lambda++ syntax to

allow the user to specify the dispatch code for a sub-de�nition.

One could improve the type inference algorithm by extending it to allow some arbitrary

number of iterations of the inference process, and thus, establish a �xed-length for a type

expression; but, this still does not fully resolve the problem. Fixed length types simply

capture a longer fragment of an in�nite type. This solution is accomplished by adding

a new rule to the constraint generation algorithm, which, in cases of recursive function

calls, adds the known type values of the domain and range of the function as constraints

upon the arguments and return value at the call site. During constraint solution, when

the size of the resulting types is examined and found to have reached some predetermined

size, the algorithm is halted and the best approximation found for the type is returned.

Adding a mechanism to express recursion to the type system is eventually necessary

in order to accurately express recursive types, though it then becomes di�cult to use

these recursive types to generate dispatch code. The only provided predicate identifying

any recursive type is list?; this predicate identi�es any null terminated series of cons

types where each successive cons is in the second (cdr) �eld of the previous cons. Other

patterns of recursion, such as binary search trees, are only determinable by writing Scheme

functions which completely traverse the data structure while checking to ensure that it

satis�es the necessary restrictions implied by the recursive pattern.

59

Currently under investigation is the addition of two new constraint types: (domainOf

function position) and (rangeOf function). These new constraints would be used to

extend the type system and allow it to express the type of a function in terms of its

inputs. For example, the function length would have a types of: (-> null 0) and

(-> (cons any domain[1]) number). The type domain[1] indicates that the second

�eld of the cons type can be instantiated by any allowable value for the �rst parameter

of the function. Domain and range types can also be used as type variables. The function

equal? can be given a (partial) type of (-> any domain[1] #t) to describe the equiv-

alence of the second parameter to the �rst when the function returns a true value. This

equivalence is normally expressed with a type variable that must be instantiated in both

positions with the same type. It is likely that di�erent syntax will be needed to be make

explicit these two di�erent uses of domain.

60

Chapter 6

Motivation and Application

6.1 Motivation

In [56], the following four criteria are advocated as necessary for a programming language

to support the cause of programming-in-the-large:

Separate Authority Various program components and abstract data types are main-

tained by separate authorities, with the authority for one component unable to

modify any other component.

Generality Abstractions (particularly functions) should be allowed to have as large a

domain as possible to improve their incidence of reuse.

Generalizability Abstractions should permit their domains to be broadened without

this having an e�ect on their behaviour over the existing domain.

Incrementality Similar to generalizability, it should be possible to increase the domain

of an abstraction in an incremental manner.

Overloading is an e�ective tool that, when added to a programming language, improves

the language's ability to satisfy these criteria.

In Scheme, since there are no modularization facilities, it is di�cult to satisfy the

notion of separate authority. However, overloading does assist by allowing techniques

to be used that promote the idea of separate authorities. For example, a programmer

61

can design an abstract data type and, using overloading, can extend existing functions

maintained elsewhere so that their domain is increased to include the new data type.

In doing this, the existing behaviour of the function is not altered with respect to the

authority that controls it. This capability also supports a better separation of authority

by allowing each abstract data type to be responsible for only a subdomain of operators

and functions common to many data types. As well, it permits data types to have all

their functions grouped together in a single �le, establishing the idea of a self-contained

abstraction under separate authority.

Generality occurs as a natural result of the dynamic type system. Functions can always

be applied to any values that do not cause a run-time test to fail, and thus, have their

generality restricted only to prevent errors from occuring. This property is inherent to

Scheme and is una�ected by the addition of overloading to the language.

Overloading improves both the generalizability and incrementality of Scheme. Existing

functions can be incrementally extended to apply to larger domains, thus generalizing their

behaviour, with no e�ect on current behaviour. However, generalization is not guaranteed

to occur since it is possible for an overload de�nition to rede�ne the behaviour of the

function for a subset of its existing domain. Overloading, while improving generalizability,

can therefore be detrimental to it if used inappropriately.

Programming-in-the-large is not the only application of Scheme that is improved.

Rapid prototyping now becomes simpler and easier. Functions can be de�ned such that

they only handle an initial subset of their domain needed to implement a basic prototype.

These functions can then be incrementally extended as the prototype becomes enhanced

to demonstrate more advanced features. The initial subset is far easier to program and

debug since it is smaller and less complex. Extending it is easy using overloading and does

not require the reimplementation of existing code.

Code reuse is also improved. Any function can be made more general by overloading

the functions it uses internally. The function does not need to be parameterized over its

internally used functions and so does not need any rewriting. For example, by extending

the equal? function, the member function can be used with new data types without any

changes being made to it. The existing function member is now usable in new situations

and yet remain unchanged over its existing domain.

62

6.2 An Example

Consider that in some existing library there is the sorting function:

(define sort (lambda (list-to-sort)

(if (null? list-to-sort) '()

(...

(if (< (car list-to-sort) (car result-list))

...)

...)))

Elsewhere, in a �le containing the abstract data type point:

(define point? (lambda (item)

(and (list? item) (= 3 (length item)) (eq? 'pt (car item))))

(define < (lambda++ (x y)

(and (point? x) (point? y))

(< (sqrt (+ (square (second x))

(square (third x))))

(sqrt (+ (square (second y))

(square (third y)))))))

(define display (lambda++ (p) (point? p)

(display (second p))

(display ",")

(display (third p))))

Using overloading, the ordering test `<' has been extended to apply to the new data

type. Thus, the existing sort function in the basic library can be used without requiring

any modi�cations. Reuse could also have been accomplished by parameterizing sort

over the ordering test, but only by modifying the original function, or writing a new

function with a di�erent name. Programmers are also relieved of the burden of managing

a variety of functions with similar names that accomplish the same thing. Finally, and

most importantly, additional parameterizing generates functions with long and di�cult to

63

manage parameter lists. The e�ciency of the system may be severely a�ected by the need

to pass such large numbers of closures around.

The function display demonstrates the extension of an existing primitive function

to account for the new data type. Again, as was the case with sort, this behaviour is

attainable in standard Scheme as the following code indicates.

(define old-display display)

(define display

(if (point? p)

(begin (display (second p))

(display ",")

(display (third p1)))

(old-display p)))

However, the above technique forces the programmer to keep track of all the names

for display every time it is rede�ned. The overloading support provided essentially does

this for the programmer and decreases the chance of errors while reducing the workload.

6.3 Overriding from Overloading

Overloading, when implemented using generic functions, such that resolution occurs at

run-time, is a suitable tool for simulating the overriding of a virtual function as occurs in

object oriented programming.

When implementing objects in this simulation, each class is treated as an abstract

data type, where all instances of the class are tagged with a list containing the name of

the class and all its supertypes. The list is ordered so that the object's class comes �rst,

followed by its parent class and so on until the �nal element in the list is the name Object,

which is the superclass of every class. Functions in the abstract data type ful�ll the role

that methods do for objects. Overloaded functions can be written that examine this list

and select the function de�nition matching the earliest occuring name in the list. This

procedure is e�ectively the same as the run-time dispatch occurring in dynamically typed,

objected oriented languages, such as Smalltalk [23].

64

;; ** Class Document **

;; Constructor

(define make-document

(lambda (id-number) (list '(DOCUMENT) id-number)))

;; Predicate

(define document?

(lambda (doc) (member 'DOCUMENT (first doc))))

;; Identify a document

(define identify

(lambda (doc) (assert (document? doc) (second document))))

;; Order documents, based on id-number

(define precede?

(lambda (doc1 doc2)

(assert (and (document? doc1) (document? doc2))

(< (second doc1) (second doc2)))))

;; ** Class Cheque (SubType of Document) **

;; Constructor

(define make-cheque

(lambda (id-number date amount)

(list '(CHEQUE DOCUMENT) id-number date amount)))

;; Predicate

(define cheque? (lambda (chq) (member 'CHEQUE (first chq))))

;; Order cheques, based on date

(define precede?

(lambda (chq1 chq2)

(assert (and (cheque? chq1) (cheque? chq2))

(< (third chq1) (third chq2)))))

Figure 6.3.1: Simulating Overriding

65

The function precede? in �gure 6.3.1 is overloaded to apply to both objects of class

document and of class cheque. If an object is a subtype of document, the de�nition for

the subtype (class cheque) is used, since it occurs before that for the supertype. If no

de�nition exists for the subtype, as is the case with the function identify, the de�nition

for the supertype applies, which is as it would be in an object oriented language like

Smalltalk. This works e�ectively because the subtypes are de�ned after their supertypes,

which is a necessary restriction in all object oriented languages.

6.4 The SmallScheme Library

In order to test the extension and to demonstrate the utility gained from the addition of

overloading to Scheme, a signi�cant portion of the standard Smalltalk 80 library [23] was

implemented using define++ . This implementation demonstrates that in a dynamically

typed language, overloading and overriding are di�erent names for the same fundamental

concept of using run-time information to determine the computation to perform. However,

overloading is a more general mechanism since it allows a function to be de�ned for any set

of data types without imposing a subtype relationship among the data types as overriding

does.

Due to the size and complexity of the library, several classes and their associated sub-

classes were omitted from this implementation. The process class was not implemented

since Scheme is not a concurrent language and does not provide the programmer with

process control features.1 The Smalltalk graphics and user interface classes were also

omitted. First, as a result of their complexity, it was deemed that implementing these

classes would be beyond the scope of this thesis. Secondly, the SmallScheme library is

intended to be hardware and platform independent, a criteria not achievable for graphic

and interface functions. Other classes such as String and Number were omitted since it

was not bene�cial to use objects to simulate the basic types of Scheme.

The hierarchy diagram of �gure 6.4.1 details the classes provided by the SmallScheme

library. Apart from the member functions of each class, there are some functions, of a

general nature and not part of any class, used by the implementation of the member

functions. A few of these functions are:

1It is documented [25] that they can be implemented (though somewhat ine�ciently) using

continuations.

66

Object

Magnitude

Association
Date
Time

Collection

Bag
Set
SequencableCollection

OrderedCollection
IndexedCollection

Array
Interval

Point

Rectangle

Figure 6.4.1: SmallScheme Class Hierarchy

67

� last which returns the last element of a list.

� butlast to remove the last element of a list.

� foldl to fold a function over a list from the left.

� remove to remove the �rst occurrence of an item from a list.

� filter to remove elements from a list based on a predicate.

� apply-and which \ands" the elements of a list.

The function remove is interesting in that, as well as operating on lists, it is also used

to remove objects from instances of the class Collection, which is accomplished using

overloading. The initial de�nition of remove is:

(define remove (lambda (x xs)

(cond ((not (list? xs))

(error "list needed for arg2 of remove"))

((null? xs)

(error "item not in list"))

((equal? (car xs) x) (cdr xs))

(else (cons (car xs) (remove x (cdr xs)))))))

Although it will be overloaded later, remove can be written as a conventional Scheme

function. There is no requirement to use overloading to provide the initial behaviour for

the function.

6.5 Objects

All \objects" in the SmallScheme library are members of class Object. In a functional

language it is inconvenient to properly consider objects as structures to which messages

are passed. Instead, the library implements objects in a functional manner, as a data

structure which is passed into and returned by functions. Using this model, \methods"

are the functions objects are passed to. While this is not a perfect implementation of the

object-oriented paradigm, it is su�cient to demonstrate that the utility of overriding can

be achieved using overloading.

68

All objects are lists, with the �rst element of each object being a \parentage tag" (p-

tag). For example, a p-tag of the form (set collection object) indicates an instance

of the class Set that is a subclass of Collection, which is in turn a subclass of Object.

Any new �elds added to the object by a subclass are appended to the end of the object.

In keeping with the model provided by Smalltalk, only single inheritance is considered

and implemented.

All objects, being subclasses of Object, can be passed to the following method func-

tions:

� (class object)

What is the class of object? Returns a symbol of lower case characters identifying

the class of object. This symbol is the �rst element of the p-tag.

� (class? class object)

Is object an instance of class? Returns either #t or #f depending on whether class

is the �rst element of the p-tag.

� (superclass? class object)

Is object a member of class or one of its subclasses? Returns the class of object if

true or #f otherwise.

� (subclass? class object)

Is object a member of class or one of its superclasses? Returns the class of object if

true or #f otherwise.

� (equal? object1 object2)

Is object1 equal to object2? Returns either #t or #f.

� (new class)

Return a new, uninitialized version of class.

� (initialize initializers object)

Initialize object using initializers where initializers is a list of values appropriate for

the class or a superclass of object. If the values are not appropriate, an error is

returned.

Overloading is used by all other classes, since they are subclasses of Object, to perform

any necessary specializations of these functions. For example, the function equal? is

implemented in Object as:

69

(define equal? (lambda++ (x y)

(and (subclass? 'object x)

(subclass? 'object y))

#f))

(define equal? (lambda++ (x y)

(and (class? 'object x)

(class? 'object y))

#t))

To establish the default de�nition for object equality, the �rst de�nition, which is only

used when the second or later de�nitions are not applicable, �nds any two objects of the

SmallScheme library to be unequal. This de�nition is immediately overridden so that any

two objects that are both instances of class Object, which has no member variables, are

found as equal.

The function equal? is overloaded for the class Point as:

(define equal? (lambda++ (x y)

(and (class? 'point x) (class? 'point y))

(and (equal? (x-coord x) (x-coord y))

(equal? (y-coord x) (y-coord y)))))

Any two points are equal if they are both points and they have the same x and y co-

ordinates. Should one object be a Point, and the other an instance of some other class,

then the �rst de�nition of equal?, which satis�es this condition, is the default condition

established by Object.

6.6 The Collection Class

To better illustrate the implementation of the SmallScheme library, the Collection class

is more closely examined. As do all other classes, Collection must provide any necessary

overrides for member functions of Object. However, Collection is an abstract class,

which is never intended to be instantiated. Its purpose is to provide a class to group

the various subclasses of collection, namely: Bag, Set and SequenceableCollection. As

such, Collection leaves the overriding of Objects member functions to these subclasses.

70

The class does however establish some default behaviour for the member functions of its

subclasses using the following de�nitions:

(define empty? (lambda (x) #t))

(define member? (lambda (object collection) #f))

(define add (lambda (object collection)

(error "can not add to class collection")))

(define remove (lambda++ (object collection)

(class? 'collection collection)

(error "can not remove from class collection")))

(define ssl:first (lambda (collection)

(error "no objects in abstract class collection")))

The member ssl:first2 is not part of the standard Smalltalk-80 library. It is a Small-

Scheme addition which, when overridden, provides a method for retrieving an arbitrary ele-

ment from a collection. This function allows the class to implement addAll and removeAll

in a manner that negates the need for them to be overridden. The functions addAll and

removeAll for all collections are:

(define addAll (lambda (c1 c2)

(if (empty? c1)

c2

(let ((item (ssl:first c1)))

(addAll (remove item c1) (add item c2))))))

(define removeAll (lambda (c1 c2)

(if (empty? c1)

c2

(let ((item (ssl:first c1)))

(removeAll (remove item c1) (remove item c2))))))

2ssl is an abbreviation for SmallScheme Library.

71

The class Set describes collections of unique elements that are unordered and have no

external \keys". A bag is similar to a set, except that multiple occurrences of its elements

is possible. These two subclasses of Collection are now partially detailed and compared.

Both classes provide unique overrides for some of the member functions of class Object.

The �rst function needed is new to generate new instances of each class. The overrides

are:

(define++ new (lambda (class)

(if (eq? class 'set)

'((set collection object) ()))))

(define++ new (lambda (class)

(if (eq? class 'bag)

'((set collection object) ()))))

Before other members can be de�ned, each class needs to have an internal (private)

structure imposed upon it. Both classes are implemented with lists, with the only di�er-

ence being the allowance of multiple copies of the same element in the list used with Bag.

Therefore, the basic functions de�ned in Collection are overridden as follows:

(define empty? (lambda++ (collection)

(or (class? 'bag collection)

(class? 'set collection)

(class? 'sequencableCollection collection)

(null? (cadr collection))))

(define member? (lambda++ (item collection)

(or (class? 'bag collection)

(class? 'set collection))

(if (member item (cadr collection)) #t #f)))

(define add (lambda++ (item bag)

(class? 'bag bag)

(list (car bag) (cons item (cadr bag)))))

72

(define add (lambda++ (item set)

(class? 'set set)

(if (member? item set)

set

(list (car set) (cons item (cadr set)))))

(define remove (lambda++ (item collection)

(or (class? 'bag collection)

(class? 'set collection))

(if (member? item collection)

(list (car collection)

(remove item (cadr collection)))

(error "object not in bag"))))

(define ssl:first (lambda++ (collection)

(or (class? 'bag collection)

(class? 'set collection))

(caadr collection)))

Some of the functions, such as member?, are implemented identically for more than one

class, and so use the same override. This capability is easily accomplished by specifying,

using lambda++, that the overload applies to both domains.

The two subclasses must also provide any necessary overrides for the member functions

of class Object. For example, equality must be determinable between instances of set:

(define equal? (lambda++ (s1 s2)

(and (class? 'set s1) (class? 'set s2))

(and (= (length (cadr s1)) (length (cadr s2)))

(apply-and

(map (lambda (x) (member x s2)) s1)))))

To be equal, sets must be of the same length and have the same elements. Equality for

class Bag is slightly more complex since there must also be the same number of occurrences

of each element in each bag. Thus equality can be implemented using the member function

occurrences:

73

(define occurrences (lambda (item bag)

(cond ((not (class? 'bag bag))

(error "occurrences not defined for class"))

((empty? bag) 0)

(else (apply +

(map (lambda (x)

(if (equal? item x) 1 0)) (cadr bag)))))))

(define equal? (lambda++ (b1 b2)

(and (class? 'bag b1) (class? 'bag b2))

(apply-and

(map = (map (lambda (x)

(occurrences x b1)) b2)

(map (lambda (x)

(occurrences x b2)) b2)))))

This concludes the analysis of the class Collection and its subclasses Bag and Set.

It has illustrated the techniques used by the SmallScheme library to simulate overriding

of virtual functions as it occurs in object oriented programming.

74

Chapter 7

Conclusion

7.1 Implementation Alternatives

As an alternative to implementing overloading using dynamic dispatch, it is possible to

adopt a strategy whereby each sub-de�nition is tried until one executes without causing

a run-time error. This alternative has the advantage of avoiding the limitations imposed

by the primitives used for dispatch. Scheme, by using strict evaluation, prevents this

approach from being adopted since the execution of a sub-de�nition may result in non-

termination. Additionally, side-e�ects caused by the non-functional components of the

language are not easily reversible adding complication to the approach. Also, when there

are many sub-de�nitions with disjoint types to consider, this strategy becomes ine�cient.

A more simplistic implementation of overloading can be obtained through the omission

of the define++ and assert syntax, which has the advantage of avoiding the need for any

form of type inference. This approach was not adopted since it was the intention of the

author to investigate the e�ectiveness of inference based dispatch generation.

The preprocessing stage of the inference algorithm generates a simpli�ed intermediate

representation of a Scheme program, not executable Scheme code. It would not be di�cult

to convert this intermediate form to Scheme since only two changes are needed. First, an

extra set of parentheses must be inserted around the binding clause of let expressions and

second, all occurrences of let need to be replaced with letrec. These changes would be

useful if any form of optimization was to be performed on the intermediate representation.

Many existing type inference algorithms were not appropriate for use in this incremen-

75

tal approach to overloading, since functions are typed as they are de�ned, and therefore

have unde�ned variable references. An alternate approach, where de�nitions are collected

until a closed system is obtained, would permit the application of one of these existing

algorithms.

7.2 Future Work

While successful in the adding of overloading to Scheme, this thesis has not fully investi-

gated the issue. The work done so far has brought to light several interesting issues for

future examination. Many decisions that were made during implementation, in order to

simplify development, improve clarity or increase exibility, are no longer valid and only

reduce overall e�ciency. Thus, not only should the work of this thesis be advanced, it

should also be re-examined and improved with regard to e�ciency issues.

The current implementation limits the user by only allowing the overloading of top-

level functions, de�ned using the special form define. One open issue is the addition

of localized overloading provided by the localized binding of sub-de�nitions in a letrec.

Some initial work in this area, limited only by available time, indicates that the current

constraint based approach is suitable for the addition of local overloading.

The strategy of having the most recent sub-de�nition occur �rst in the composite

de�nition forces programmers to provide the default behaviour in the �rst sub-de�nition.

During development of the SmallScheme library, it became apparent that, although not

necessary, it would be useful to provide a mechanism for allowing one to select the location

where the dispatch code for a sub-de�nition is placed in the composite de�nition. This

capability would entail some new syntax, such as define-default which adds the new

sub-de�nition to the end of the composite de�nition as opposed to the beginning. After

additional experience with the system, it should become clear if this is needed.

As part of the generation of dispatch code, some simple optimizations are performed;

however there is opportunity for more work in this area. The heuristics used to optimize

pattern matching in ML appear to be potentially usable and should be explored for their

applicability in this situation. If these heuristics are inappropriate, new heuristics should

be developed to reduce the overhead of dispatch and permit faster execution times. Opti-

mization is best done heuristically, as opposed to algorithmically, since it has been shown

that complete optimization of pattern matching is an NP complete problem [10].

76

Future versions of Scheme, with overloading built into the implementation, may wish

to provide additional primitives to perform more accurate dispatch. The main need is for

a primitive of the form: (of-type? type object) which returns a value of #t if object has a

type of type. This predicate is primarily needed to allow overloading based on the type of

a functional argument, but, by being very general in nature, allows very simple dispatch

code to be written.

Static overload resolution is another area that needs to be investigated. As part of the

implementation, sub-de�nitions were renamed and maintained as individual functions, as

opposed to their code being inserted into the composite de�nition, so that static overload

resolution would be possible. If it can be determined, at de�nition time, that an overloaded

function always resolves to call the same sub-de�nition, then the renamed sub-de�nition

should be inserted in place of the overloaded function. As would be the case with the

optimization of dispatch code, static overload resolution should lead to improvements in

execution time.

The system is also limited by the e�ectiveness of the type inference algorithm. The

algorithm, as it is currently implemented, does not account for the side-e�ects caused

by imperative style assignment functions in Scheme, such as set!. The function call--

with-current-continuation is another Scheme function which that is traditionally prob-

lematic for type inference. To provide better types, it would be desirable to improve the

inference algorithm to account for the e�ects of these functions. It may also be worthwhile

to replace the existing inference algorithmwith one of the others mentioned in section 2.4.

The adaptation of Gordon Vreugdenhil's framework for on-line partial evaluation [51]

was considered as an alternative type inference mechanism. From personal communication

it was determined that the approach was feasible and would have overcome many of the

limitations of the simple algorithm implemented. Time constraints eventually ruled out

this approach leaving it as an area for future investigation.

Since the current speci�cation for Scheme [14] considers macros as an implementation

option and only details them in an appendix, every language implementation provides

its own version of macros. As a result, the extension described in this thesis has only

been implemented for the SCM (Version 4E1) dialect of Scheme. There were two signif-

icant reasons for this choice. First and foremost, SCM has been ported to almost every

commonly used architecture, where it executes in a very small memory space. Secondly,

SCM provides macros which are identical to those used in Common Lisp and are well

documented and easy to use. Once the previously mentioned issues in this section are

77

examined, it would be bene�cial to have this extension rewritten using the macro syntax

of some of the other major Scheme implementations.

As of the writing of this thesis, selected members of the Scheme community are meeting

to determine the future shape of the language. It is anticipated that results of these

meetings will be published as the Revised5 Report on the Algorithmic Language Scheme.

Personal communication with Matthias Felleisen, who has been participating in these

meetings, has indicated that the resulting report will introduce standards for the syntax

and semantics of macros in Scheme. When this occurs, a major revision of the extension

should be performed and the extension recoded using the new macro syntax.

7.3 Summary

This thesis has described a simple extension to Scheme that improves the language's capa-

bility for code reuse with only a minimal amount of new syntax. The extension attempts

to preserve the existing semantics of Scheme so that, for the most part, existing code runs

without change. The use of macros to provide the new features allows overloading to be

easily added to any implementation of Scheme.

The most signi�cant bene�t imparted is an improved ability to de�ne abstract data

types that reuse existing Scheme code. While the advantages provided by the extension

can be simulated in standard Scheme, doing so is very cumbersome to the programmer.

The end result is an increased ability to modularize programs and to express incremental

abstract data types.

Although it is possible to generate dispatch code based on inferred types, it is di�cult

to do so e�ciently and accurately. When a simple type system is used where only the

outermost type constructor is inferred, types can be inferred quickly but at the cost of

e�ective dispatch. To generate better dispatch code requires a rich type system, which

in turn complicates the inference of types. The simple inference algorithm implemented

here has been revealed to lack the richness necessary for e�ective overloading based solely

upon inferred types.

In summary, by allowing the programmer to provide any necessary dispatch code, it

is possible to extend Scheme with a relatively transparent implementation of overloading.

Collecting a distributed set of sub-de�nitions and then merging them into a generic style

function is an e�ective and simple method of accomplishing this task.

78

Bibliography

[1] Adams, N., and Rees, J. Object-oriented programming in Scheme. In Proceed-

ings of the Conference on Lisp and Functional Programming (1988), Association for

Computing Machinery, pp. 277{288.

[2] Aho, A., Sethi, R., and Ullman, J. Compilers, Principles, Techniques, and

Tools. Addison-Wesley, Reading, Massachusetts, 1986.

[3] Aiken, A., and Murphy, B. Static type inference in a dynamically typed language.

In Proceedings of the Eighteenth ACM Symposium on Principles of Programming

Languages (January 1991), Association for Computing Machinery, pp. 279{290.

[4] Aiken, A., and Wimmers, E. Type inclusion constraints and type inference. In

Proceedings of the Conference on Functional Programming and Computer Architecture

(1993), Association for Computing Machinery, pp. 31{41.

[5] Aiken, A., Wimmers, E., and Lakshman, T. Soft typing with conditional types.

In Proceedings of the Twenty-�rst ACM Symposium on Principles of Programming

Languages (January 1994), Association for Computing Machinery, pp. 163{173.

[6] American National Standards Institute. FORTRAN Programming Language

Standard, 1978. Standard X3.9-1978 (FORTRAN 77).

[7] Appel, A., and Jim, T. Continuation-passing, closure-passing style. In Proceedings

of the Sixteenth ACM Symposium on Principles of Programming Languages (January

1989), Association for Computing Machinery, pp. 293{302.

[8] Backus, J., et al. FL language manual, parts 1 and 2. Tech. Rep. RJ 7100,

International Business Machines, 1989.

79

[9] Baker, H. The Nimble type inferencer for Common Lisp-84. Unpublished report,

December 1991.

[10] Baudinet, M., and MacQueen, D. Tree pattern matching for ML. (Extended

Abstract) Unpublished, December 1985.

[11] Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow, B., and

Nelson, G. Modula-3 report. Tech. Rep. 31, DEC Systems Research Center, Palo

Alto, CA, 1988.

[12] Cardelli, L., and Wegner, P. On understanding types, data abstraction, and

polymorphism. Computing Surveys 17, 4 (1985), 471{522.

[13] Cartwright, R., and Fagan, M. Soft typing. In Proceedings of the Confer-

ence on Programming Language Design and Implementation (1991), Association for

Computing Machinery, pp. 278{292.

[14] Clinger, W., Rees, J., et al. Revised4 report on the algorithmic language Scheme.

ACM SIGPLAN Lisp Pointers IV (July-September 1991).

[15] Cormack, G., and Wright, A. Type-dependent parameter inference. In Proceed-

ings of the Conference on Programming Language Design and Implementation (June

1990), Association for Computing Machinery, pp. 127{136.

[16] Courcelle, B. Fundamental properties of in�nite trees. Theoretical Computer

Science 25 (1983), 95{169.

[17] Damas, L. M. M. Type Assignment in Programming Languages. PhD thesis, Uni-

versity of Edinburgh, 1985.

[18] Danvy, O., and Filinski, A. Representing control: A study of the CPS transfor-

mation. Tech. Rep. CIS-91-2, Department of Computing and Information Sciences,

Kansas State University, 1991.

[19] Duggan, D., Cormack, G., and Ophel, J. Incremental overloading for software

reuse (draft). Unpublished, 1992.

[20] Duggan, D., Cormack, G., and Ophel, J. Kinded type inference for parametric

overloading. Acta Informatica 33 (1996), 21{68.

80

[21] Flanagan, C., and Felleisen, M. Set-based analysis for full Scheme and its use in

soft-typing. Tech. Rep. TR95-253, Department of Computer Science, Rice University,

October 1995.

[22] Flanagan, C., Sabry, A., Duba, B., and Felleisen, M. The essence of compil-

ing with continuations. In Proceedings of the Conference on Programming Language

Design and Implementation (1993), Association for Computing Machinery, pp. 237{

247.

[23] Goldberg, A., and Robson, D. SMALLTALK-80: The Language. Addison-

Wesley, Reading, Massachusetts, 1989.

[24] Gosling, B., Joy, B., and Steele, G. The JavaTM Language Speci�cation.

Addison-Wesley, Reading, Massachusetts, 1996.

[25] Haynes, C., Friedman, D., and Wand, M. Continuations and coroutines. In

Proceedings of the ACM Symposium on Lisp and Functional Programming (1984),

Association for Computing Machinery, pp. 293{298.

[26] Heintze, N. Set based analysis of ML programs. Tech. Rep. CMU-CS-93-193, School

of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, July 1993.

[27] Henglein, F. Dynamic typing. In Proceedings of the European Symposium on

Programming (1992), vol. 582 of Lecture Notes in Computer Science, Springer Verlag,

pp. 233{253.

[28] Henglein, F., and Rehof, J. Safe polymorphic type inference for a dynamically

typed language: Translating Scheme to ML. In Proceedings of the Conference on

Functional Programming and Computer Architecture (1995), Association for Com-

puting Machinery, pp. 192{203.

[29] Hindley, J. R. The principal type-scheme of an object in combinatory logic. Trans-

actions of the American Mathematical Society 146 (December 1969), 29{60.

[30] Hudak, P., Jones, S. P., Wadler, P., et al. Report on the programming

language Haskell, a non-strict purely functional language. ACM SIGPLAN Notices

27, 5 (May 1992).

[31] Jensen, K., and Wirth, N. Pascal: User Manual and Report, second ed. Springer-

Verlag, New York, 1974.

81

[32] Jones, M., and Muchnick, S. Binding time optimization in programming lan-

guages. In Proceedings of the Third ACM Symposium on Principles of Programming

Languages (January 1976), Association for Computing Machinery, pp. 77{94.

[33] Kaes, S. Parametric overloading in polymorphic programming languages. In Second

European Symposium on Programming (March 1988), H. Ganzinger, Ed., vol. 300 of

Lecture Notes in Computer Science, Springer-Verlag, pp. 131{144.

[34] Kaplan, M., and Ullman, J. A scheme for the automatic type inference of variable

types. Communications of the ACM 27, 1 (1980), 128{145.

[35] Kind, A., and Friedrich, H. A practical approach to type inference for EuLisp.

Lisp and Symbolic Computation 6, 1/2 (August 1993), 159{175.

[36] Ma, K.-L., and Kessler, R. TICL { a type inference system for common lisp.

Software { Practice and Experience 20, 6 (June 1990), 593{623.

[37] Milner, R. A theory of type polymorphism in programming. Journal of Computer

and System Sciences 17 (1978), 348{375.

[38] Milner, R., Tofte, M., and Harper, R. The De�nition of Standard ML. MIT

Press, Cambridge, MA, 1989.

[39] Queinnec, C. Meroon: A small, e�cient and enhanced object system. Tech. Rep.

LIX.RR.92.14, INRIA-Ecole Polytechnique, 1992.

[40] R�emy, D. Typechecking records and variants in a natural extension of ML. In Pro-

ceedings of the Sixteenth ACM Symposium on Principles of Programming Languages

(January 1989), Association for Computing Machinery, pp. 77{87.

[41] Reynolds, J. Automatic computation of data set de�nitions. Information Processing

68 (1969), 456{461.

[42] Robinson, J. A machine-oriented logic based on the resolution principle. Journal

of the Association for Computing Machinery 12, 1 (January 1965), 23{41.

[43] Rouaix, F. Safe run-time overloading. In Proceedings of the Seventeenth ACM

Symposium on Principles of Programming Languages (January 1990), Association

for Computing Machinery, pp. 355{366.

82

[44] Sabry, A., and Wadler, P. A reection on call-by-value. In Proceedings of the

International Conference on Functional Programming (1996), Association for Com-

puting Machinery, pp. 13{24.

[45] Shivers, O. Data-ow analysis and type recovery in Scheme. In Topics in Advanced

Language Implementation, P. Lee, Ed. MIT Press, 1991, ch. 3, pp. 47{88.

[46] Smith, G. Polymorphic Type Inference for Languages with Overloading and Subtyp-

ing. PhD thesis, Cornell University, Ithaca, NY, August 1991.

[47] Smith, G. Principal type schemes for functional programs with overloading and

subtyping. Science of Computer Programming 23 (1994), 197{226.

[48] Smith, G., and Volpano, D. On the complexity of ML typability with overloading.

In Proceedings of the Fifth ACM Functional Programming Languages and Computer

Architecture Conference (August 1991), J. Hughs, Ed., vol. 523 of Lecture Notes in

Computer Science, Association for ComputingMachinery, Springer-Verlag, pp. 15{28.

[49] Stroustrup, B. The C++ Programming Language, second ed. Addison-Wesley,

Reading, Massachusetts, 1991.

[50] United States Department of Defense. The Programming Language Ada: Ref-

erence Manual, ansi/mil-std-1815a-1983 ed., February 1983.

[51] Vreugdenhil, G. A Framework for On-line Partial Evaluation. PhD thesis, Uni-

versity of Waterloo, 1996.

[52] Wadler, P., and Blott, S. How to make ad-hoc polymorphism less ad-hoc. In

Proceedings of the Sixteenth ACM Symposium on Principles of Programming Lan-

guages (January 1989), Association for Computing Machinery, pp. 60{76.

[53] Wang, E., and Hilfinger, P. Analysis of recursive types in Lisp-like languages.

In Proceedings of the Conference on Lisp and Functional Programming (1992), Asso-

ciation for Computing Machinery, pp. 216{225.

[54] Wegbreit, B. The treatment of data types in EL1. Communications of the ACM

17, 5 (1974), 251{264.

[55] Wright, A. Practical Soft-typing for Scheme. PhD thesis, Rice University, 1994.

83

[56] Wright, A., and Cartwright, R. A practical soft type system for Scheme. In

Proceedings of the Conference on Lisp and Symbolic Computation (1994), Association

for Computing Machinery, pp. 250{262.

[57] Wright, A., and Duba, B. Pattern Matching for Scheme, Version 1.12, May

1995. Available at World Wide Web URL ftp://cs.rice.edu/public/wright as

match.ps.Z.

[58] Wulf, W. A., Russell, D. B., and Habermann, A. N. BLISS: A language

for systems programming. Communications of the ACM 14, 12 (December 1971),

780{790.

84

