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Abstract

In the context of complex networks, we often encounter systems in which the con-
stituent entities randomly interact with each other as they evolve with time. Such random
interactions can be described by Markov processes, constructed on suitable state spaces.
For many practical systems (e.g. server farms, cloud data centers, social networks), the
Markov processes, describing the time-evolution of their constituent entities, become an-
alytically intractable as a result of the complex interdependence among the interacting
entities. However, if the ‘strength’ of these interactions converges to a constant as the size
of the system is increased, then in the large system limit the underlying Markov process
converges to a deterministic process, known as the mean field limit of the corresponding
system. Thus, the mean field limit provides a deterministic approximation of the randomly
evolving system. Such approximations are accurate for large system sizes.

Most prior works on mean field techniques have analyzed systems in which the con-
stituent entities are identical or homogeneous. In this dissertation, we use mean field
techniques to analyze large complex systems composed of heterogeneous entities.

First, we consider a class of large multi-server systems, that arise in the context of web-
server farms and cloud data centers. In such systems, servers with heterogeneous capacities
work in parallel to process incoming jobs or requests. We study schemes to assign the
incoming jobs to the servers with the goal of achieving optimal performance in terms of
certain metrics of interest while requiring the state information of only a small number
of servers in the system. To this end, we consider randomized dynamic job assignment
schemes which sample a small random subset of servers at every job arrival instant and
assign the incoming job to one of the sampled servers based on their instantaneous states.
We show that for heterogeneous systems, naive sampling of the servers may result in an
‘unstable’ system. We propose schemes which maintain stability by suitably sampling
the servers. The performances of these schemes are studied via the corresponding mean
field limits, that are shown to exist. The existence and uniqueness of an asymptotically
stable equilibrium point of the mean field is established in every case. Furthermore, it is
shown that, in the large system limit, the servers become independent of each other and
the stationary distribution of occupancy of each server can be obtained from the unique
equilibrium point of the mean field. The stationary tail distribution of server occupancies
is shown to have a fast decay rate which suggests significantly improved performance for
the appropriate metrics relevant to the application. Numerical studies are presented which
show that the proposed randomized dynamic schemes significantly outperform randomized
static schemes where job assignments are made independently of the server states. In
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certain scenarios, the randomized dynamic schemes are observed to be nearly optimal in
terms of their performances.

Next, using mean field techniques, we study a different class of models that arise in the
context of social networks. More specifically, we study the impact of social interactions
on the dynamics of opinion formation in a social network consisting of a large number
of interacting social agents. The agents are assumed to be mobile and hence do not
have any fixed set of neighbors. Opinion of each agent is treated as a binary random
variable, taking values in the set {0,1}. This represents scenarios, where the agents have
to choose from two available options. The interactions between the agents are modeled
using 1) the ‘voter’ rule and 2) the ‘majority’ based rule. Under each rule, we consider
two scenarios, (1) where the agents are biased towards a specific opinion and (2) where the
agents have different propensities to change their past opinions. For each of these scenarios,
we characterize the equilibrium distribution of opinions in the network and the convergence
rate to the equilibrium by analyzing the corresponding mean field limit. Our results show
that the presence of biased agents can significantly reduce the rate of convergence to
the equilibrium. It is also observed that, under the dynamics of the majority rule, the
presence of ‘stubborn’ agents (those who do not update their opinions) may result in a
metastable network, where the opinion distribution of the non-stubborn agents fluctuates
among multiple stable configurations.
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Chapter 1

Introduction

A network can be viewed as a collection of interacting entities. The interactions are
governed either by a central entity or by a distributed algorithm /protocol running at each
constituent entity. Examples of centrally controlled networks include web server farms and
cloud data centers. In such systems, the servers interact via a central job dispatcher that
assigns incoming jobs to the servers by comparing their loads. In contrast, decentralized
network control can be observed in wireless local area networks (WLAN’s), wireless sensor
networks, and social networks, where each node runs a distributed algorithm that causes
the nodes to interact with each other.

In many systems, the interactions among the constituent entities/nodes are random
and can be captured through a Markov process that describes the time evolution of the
network in its entirety. Characterization of the network’s behavior requires analysis of this
underlying Markov process. For many systems, an exact analysis of the underlying Markov
process becomes intractable due to the complex interdependence among the interacting
entities of the system. However, if the ‘strength’ of the interaction between an individual
entity and the rest of the system is ‘weak’, then the underlying Markov process converges
asymptotically to a deterministic process as the number of entities in the system grows to
infinity. This limiting deterministic process is known as the mean field limit or simply the
mean field of the system and provides a simpler way to characterize the system’s behavior
when the number of entities is large. In this dissertation, we analyze large systems of
‘weakly” interacting entities through their corresponding mean field limits. In particular,
we focus on heterogeneous systems in which the statistical properties of the constituent
entities are different from each other.

First, we consider a model of multi-server systems (such as shown in Figure 1.1) arising
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Figure 1.1: Server farm model consisting of N = 3 parallel servers. Each job is assigned
to the server having the smallest number of unfinished jobs.

in the context of large web server farms and cloud data centers. In such systems, a large
number of servers work in parallel to process incoming job requests. Upon arrival, each job
request is dispatched by a central job dispatcher to a server for processing. The objective is
to assign the incoming jobs to the servers in such a way that certain performance metrics are
optimized. Job assignment schemes, which compare the states of some randomly sampled
servers at the arrival instant of each job in order to assign the job, effectively cause the
servers in the system to interact with each other. We analyze such schemes by analyzing
the resulting interactions among the servers using mean field techniques.

Next, we focus on systems (such as shown in Figure 1.2) in which the interactions among
the constituent entities occur without any central co-ordination. In particular, we study
random interactions between agents in a social network and the effect of such interactions
on the diffusion of opinions in the network. The interactions are defined by simple rules in
which randomly sampled agents interact with each other to exchange information about
their opinions. The global opinion structure that emerges as a result of such interactions
is studied using mean field techniques.

The time evolution of both the systems discussed above can be described by suitably
constructed Markov processes. Exact characterizations of these processes are extremely
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Figure 1.2: Opinion dynamics under the ‘majority rule’: Different colors represent different
opinions. Agent A samples agents B and C' at an update instant. It then changes its opinion
according to the ‘majority rule’.

difficult for finite system sizes. However, it is observed that the ‘strength’ of the interaction
between an individual entity and the rest of the system, as measured by the conditional
drift of the individual entity given the entire state of the system, is ‘weak’ in the sense that
it converges to a constant as the number of entities in the system increases. As a result,
the underlying Markov processes for these systems, converge in the large system limit to
their corresponding mean field limits, that are given by solutions of ordinary differential
equations.

Mean field limit of a system serves as a good approximation of the system behavior
when the number of entities in the system is large. For example, the steady state behavior
of the finite system can be shown to concentrate near the equilibrium points (points in the
state space where the time derivative is zero) of the mean field as the number of entities
in the system increases. Furthermore, in the large system limit the individual entities of
the system become independent of each other. This property is known as the asymptotic
independence property that enables analysis of the limiting system through the fixed points
of certain continuous maps.

Typically, mean field analysis, is carried out for homogeneous systems whose constituent
entities are identical. But for heterogeneous systems - the focus of this dissertation - the
analysis becomes more challenging due to the lack of closed form analytical expressions for
the equilibrium points of the corresponding mean field limits. Moreover, for such systems,



the standard assumptions underlying mean field analysis, such as exchangeability of states
among the constituent entities, do not hold. To study these systems, we therefore extend
the standard results of mean field theory from the homogeneous case to the heterogeneous
case.

1.1 Motivation

Mean field approximations often provide useful insights into the behavior of large systems
of ‘weakly’ interacting entities when an exact analysis of the finite system is intractable.
In this dissertation, we use such approximations in two different contexts: (1) to study the
performance of randomized job assignment schemes for large web server farms and cloud
data centers; (2) to study opinion dynamics in large social networks. Our motivation to
analyze these systems stems from their widespread use in practice and the lack of analytical
results for the scenarios where the constituent entities are heterogeneous in nature.

1.1.1 Randomized job assignment in heterogeneous multi-server
systems

Dynamic content web services (e.g., web search, e-commerce) and cloud computing appli-
cations (e.g., Amazon EC2, Microsoft Azure) have seen a rapid growth in the recent years
due to their ability to provide scalable and cost effective computing solutions. The preva-
lence of such applications has triggered the development of large scale web server farms and
data centers which can accommodate thousands of servers to meet the increasing demands
of user requests. A central problem in such systems is to decide which server an incoming
request should be assigned to in order to obtain optimum performance in terms of certain
metrics of interest.

In web server farms, the incoming jobs have elastic resource requirements and are
processed at the servers in a round-robin fashion with small granularity. This can be well
approximated by the processor sharing service discipline [1] where the processing speed of
a server is equally shared among the jobs in progress. In this scenario, the objective is
to minimize the mean response time of jobs in the system. On the other hand, for cloud
data centers providing Infrastructure-as-a-Service (IaaS), the incoming jobs have specific
resource requirements and hence must be processed at servers where the required resource
is available. Therefore, in this case, the objective is to minimize the probability with which
jobs are denied access to requested resource or are blocked.



Ideally, a job assignment scheme, which compares the states of all servers in the system
to assign every new arrival, should achieve the best performance. However, in large multi-
server systems obtaining state information of all the servers at each arrival instant incurs
high communication overhead between the servers and the job dispatcher. In such scenar-
ios, the use of randomized dynamic schemes which sample only a small random subset of
servers at each arrival instant and assign the arrival based on the states of the sampled
servers, can drastically reduce the communication overhead. Such schemes are known to
perform significantly better than randomized static schemes in which the incoming jobs
are randomly assigned to the servers without the comparing the server states.

The existing literature on randomized dynamic job assignment schemes [2, 3, 4] assumes
that the servers in the system are identical in terms of their capacities. In reality, however,
there are servers of varied capacities in web server farms and cloud data centers. In such
cases, uniform sampling of servers may not result in the same gains as in the homogeneous
case. In this dissertation, our objective is to study randomized dynamic schemes when
the servers have heterogeneous capacities. Through our analysis, we conclude that by
appropriate sampling of the servers, gains similar to that in the homogeneous case can
be obtained even in the heterogeneous case. Our observations are mentioned briefly in
Section 1.2 and are discussed in detail in the subsequent chapters of this dissertation.

1.1.2 Opinion dynamics in large social networks with ‘biased’
and ‘stubborn’ agents

We are at present in an era where social networks are shaping the opinions of large groups
of individuals. Understanding how individual opinions are affected by social interactions
and what global opinion structure emerges from such interactions are important in order
to make predictions in economics and politics. One of the key challenges in this area is to
model social interactions in a way that can lead to meaningful predictions.

Various models have been proposed and analyzed in the literature in this context. One
of the models extensively studied is the voter model or the wvoter rule [5, 6, 7], where
an agent contacts a randomly sampled neighbor at an instant when it decides to update
its opinion. The updating agent then copies the opinion of the sampled neighbor. This
simple model captures the tendency of individuals to mimic their neighbors and explains
why societies often converge to a consensus, where all the agents adopt the same opinion.
Another common model for social interaction is defined by the majority rule [8, 9], where
an updating agent samples multiple neighbors and adopts the opinion of the majority of the
sampled neighbors. This rule is based on the tendency of individuals to conform with the



majority opinion. Under this rule, a fully connected network of agents reaches consensus
at a rate faster than that under the voter rule.

In most prior works on voter models and majority rule models, it is implicitly assumed
that the agents are ‘unbiased’ in the sense that they do not have any preference for any
of the available choices. It is also assumed that the agents are homogeneous in terms of
their propensities to change their past opinions. However, in reality, the agents are often
‘biased’ towards some specific opinion and/or have different propensities to change their
past opinions (i.e., some agents may be more ‘stubborn’ than others). In such cases, the
extension of the existing results is not direct.

In the second part of the dissertation, we address this issue. In particular, we analyze
the dynamics of opinion formation under the voter rule and the majority rule assuming
two scenarios which represent the cases (1) where the agents are ‘biased’” towards a specific
opinion and (2) where the agents have different propensities to change opinions. We assume
that each agent in the network has two available choices represented by the numbers {0}
and {1}. Using mean field techniques, we study the equilibrium distribution of opinions
in the network as a function of initial opinions of the agents and the number of agents in
the network. We also investigate the time required for the network to reach an equilibrium
state under the scenarios discussed above.

1.2 Contributions and Outline

This dissertation is organized into two parts. In the first part, we study randomized dy-
namic job assignment schemes for large, heterogeneous multi-server systems. We start
in Chapter 2, with an investigation of randomized schemes to assign arriving requests to
servers in a system of parallel processor sharing servers with heterogeneous capacities. The
servers are assumed to be grouped into different types according to their capacities. The
objective is to reduce the mean response time of jobs while requiring the state information
of a small number of servers at each job arrival instant. This is achieved by using job
assignment schemes which sample a small random subset of servers at every job arrival
instant and assign the incoming job to the sampled server with the least number of unfin-
ished jobs. We observe that for heterogeneous systems, the method of sampling the servers
plays a key role in determining the performance of such schemes. More specifically, we
make the following contributions

e [t is shown that uniformly sampling servers from the entire system may drive the



system into instability! even for arrival rates below the aggregate service rate of the
system.

e To recover stability, we propose a hybrid scheme which combines biased sampling
across different server types with uniform sampling within the same server type. It is
shown that, under the hybrid scheme, the system is stable for all arrival rates below
the aggregate service rate of the system, i.e, the hybrid scheme achieves the mazimal
stability region. However, it is observed that the scheme requires the knowledge of
the system parameters to achieve the maximal stability region and is therefore not
robust to system failures.

e A type-based scheme is proposed where a small number of servers are sampled from
each server type at every job arrival instant. The incoming job is then assigned to
the sampled server having the least number of unfinished jobs. It is shown that this
type-based scheme achieves the maximal stability region for all system parameters
and hence is more robust to system failures than the hybrid scheme.

e The performance of the type-based scheme is characterized in the large system limit
using mean field techniques. In particular, it is established that the equilibrium point
of the mean field is unique and globally attractive. The stationary occupancy distri-
bution of the servers in the finite system is shown to concentrate on this equilibrium
point in the large system limit.

e [t is shown that, in the limiting system, any finite set of servers behave independently
of each other. This is formally known as the asymptotic independence property or
propagation of chaos property. To prove this property in the heterogeneous case,
we extend the classical notion of exchangeable random variables to a more general
notion of intra-type exchangeable random variables.

In Chapter 3, randomized dynamic job assignment schemes are studied for a system
of parallel heterogeneous servers each of which holds a finite amount of a resource. The
incoming jobs are assumed to have specific resource requirements. Therefore a job can be
served at a server only if the required resource is available at the server. In this case, the
objective is to design a job assignment scheme that reduces the average blocking probability
of jobs while requiring the state information of only a small number of servers at each job
arrival instant. To this end, we make the following contributions:

Instability refers to the situation where the mean number of unfinished jobs in the system becomes
unbouned.



e We propose a scheme in which an arriving job is assigned to the server having the
maximum available resource among a set of randomly sampled servers in the system.

e The performance of the proposed scheme is characterized using mean field techniques.
It is shown that the mean field has a unique, asymptotically stable equilibrium point
which characterizes the stationary occupancy distribution of the servers in the lim-
iting system.

e Asymptotic independence among the servers is established.

e The tail occupancy distribution of each server in the limiting system is shown to have
a fast decay rate which suggests improved performance in terms of reducing blocking.

e Numerical experiments are conducted to show that the proposed scheme results in
near minimal average blocking probability under heavy load conditions.

In the second part of the dissertation (Chapter 4), we consider opinion dynamics models
for large social networks of interacting agents. The agents are assumed to be mobile and
hence do not have any fixed set of neighbors. The opinion of each agent is assumed to
be a binary variable taking values in the set {0,1}. Each agent is assumed to update its
opinion at random instants by interacting with some randomly sampled neighbors. We
consider opinion dynamics under the voter rule and the majority rule. Under each rule,
we consider two different scenarios. In the first scenario, the agents are assumed to be
‘biased’” towards a specific opinion. The second scenario assumes that different agents have
different propensities to change their opinions. The following are the key observations:

e For the voter model with ‘biased’ agents we observe that the network reaches a
consensus state in a time that is logarithmic in the network size. We also show that
the probability with which consensus is achieved on the preferred opinion increases
rapidly to 1 as the network size increases.

e For the voter model with agents having different propensities to change opinions, we
derive a closed form expression for the probability with which the network reaches
consensus on a particular opinion. We also derive an approximation of the mean time
to reach consensus.

e In the case of the majority rule model with ‘biased’ agents, we show that the network
converges to a consensus state on the preferred opinion only when the initial fraction
of agents having the preferred opinion is more than a certain threshold. The threshold
is computed using the mean field limit.



e Finally, for the majority rule model in the presence of ‘stubborn’ agents (agents who
do not update their opinions), we observe that the network may exhibit metastability
where it fluctuates between multiple stable configurations, spending long intervals in
each configuration.

The dissertation is concluded in Chapter 5, where we summarize our work and present
some future extensions.

1.3 Mean field techniques: A brief overview

Let us consider a system consisting of N identical interacting particles each of which has
a finite state space S§. Assume that the time evolution of the entire system of particles

can be described by a pure jump Markov process z™ () = (2™ ()),i € 8), where for

eachi € S, xSN) (t) denotes the fraction of particles in state i at time ¢ > 0. The process
N )() is called the empirical measure process whose state space is the set of probability
measures P(S) defined on S. We assume that the process z(¥)(-) has a unique stationary

distribution for each N.

Consider an instant ¢+ > 0 when the system is in state (™ (t) = € = (&,i € S). Let
1 j(§) denote the rate at which each of the N¢; particles in the state ¢ € S transits to the
state j € S\ {i}. The system’s state changes from £ to { +¢e;/N —e;/N (where e;, denotes
the ™ unit vector) when one such transition occurs. Therefore, the total rate at which
the process ™ () transits from the state ¢ to the state £ + e;/N — ¢;/N is N&ri;(€).
Clearly, the jump sizes of the process zV)(-) is O(1/N), whereas the rates at which the
jumps occur is O(N).

Convergence to the mean field: Kurtz showed, in [10], that due to the above scaling,
the process ™) (-) converges to a deterministic process z(-) as N — oco. More specifically,
if the initial state (V) (0) converges in distribution (weak convergence) to a constant v as
N — oo and if r;; : P(S) — R is Lipschitz continuous for all 7,j € S, then the process
+™)(.) converges in distribution (hence in probability) to a deterministic process z(-) as
N — o0, where z(+) is the unique solution of the following system of ordinary differential
equations



In the above, R(-) = [r;;(+)];jes denotes the rate matrix of the process 2™ (-). The process
x(-) is called the mean field limit of the system. Thus, the above result shows that the
path of the stochastic process ™) (-) tends to concentrate on the path of the deterministic
process z(-) as N — oo. The process x(-) can therefore be used as an approximation of
the process V) (-) for large values of N.

Convergence of the stationary distribution: An equilibrium point 7 € P(S) of
the process z(-) is a point which satisfies 7R(7) = 0. An equilibrium point 7 is called
a globally attractive if x(t) — m as t — oo for all 2(0) € P(S). It can be shown that if
the process z(-) has a unique, globally attractive equilibrium point 7, then the stationary
distribution of the process x()(-) (which exists and is unique by assumption) converges
in to 6, as N — oo, where d, denotes the Dirac measure concentrated at the equilibrium
point . Hence, for large N, the steady state of the process (™) (-) can be approximated
by .

Asymptotic independence: Now we focus on the individual particles in the sys-
tem. Let X\ (t) € S denote the state of the n™ particle at time t. Let XM(¢) =
(XM, xN@), ., xW(t)). We call XM (1) exchangeable if the distribution of X ™ (¢)
remains invariant under the permutation of indices 1 < n < N of the individual particles.
We note that since the particles in the system are identical and the system is Markovian,
the exchangeability of X)(0) implies the exchangeability of XV (t) for all ¢ > 0. It
has been shown in [11] that if X)(0) in exchangeable and #(¥)(0) converges weakly to a
deterministic limit as N — oo, then for any finite set of tagged particles nq,no, ..., ng

N N N k
Law(X ™M (00), X )(oo),...,XT(Lk)(oo))—>7T® as N — o0 (1.3)

ni ) n2
where 7 is the unique, globally attractive equilibrium point of the mean field z(-) and
X IEN) (00) denotes the steady state of the £*® particle in the system. Thus, the above result
implies that any finite set of particles become independent as N — oo and the station-
ary distribution of each individual particle in the limiting system is given by the unique
equilibrium point of the mean field. This property is formally known as the asymptotic
independence property or the propagation of chaos property.

The results discussed above are the key components of mean field analysis. They show
how the behavior of a system of weakly interacting particles can be approximated by a
deterministic process as the number of particles in the system becomes large. The results
also imply that the steady state of the system can be approximated by the equilibrium
points of the mean field when the number of particles in the system is large. Such approx-
imations are especially is useful when an exact computation of the stationary distribution
of the finite system is intractable. The technique was first introduced in physics [12] to
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study the evolution of molecules of a dilute gas. The convergence of a sequence of Markov
processes to a deterministic process, given by the solution of a system of ordinary differ-
ential equations, was formally studied in [10]. The mean field approach soon became a
popular methodology in the area of communication networks. In [13], it was used to study
the stationary distribution of a closed queuing system in the asymptotic limit as both the
number of customers and the number of servers grow to infinity. In [14], it was used to
study dynamic alternate routing in large circuit switched networks. In [15], mean sojourn
time of jobs was computed in a large network of interacting queues using mean field ap-
proximations. More recently, mean field techniques have been used in a variety of contexts
such as HTTP flows [16], bandwidth sharing between streaming and file transfers [17],
randomized job assignment techniques [2].

We note that the results discussed in this section and in the references mentioned above
crucially rely on the fact that the particles in the system are identical and therefore per-
muting their states does not change their joint distribution. However, in this dissertation
our emphasis is on systems in which the constituent particles are of different types. In such
cases, permutation of states may affect their joint distribution. This makes the analysis
of such systems more complex. We need more general results from the theory of weak
convergence of Markov processes to analyze such systems. These results are discussed in
Appendix C.

11



Part 1

Randomized Job Assignment in
Heterogeneous Multi-Server Systems
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Chapter 2

Randomized Job Assignment in
Heterogeneous Processor Sharing
Systems

In this chapter, we consider the problem of job assignment in a system consisting of a large
number of parallel processor sharing servers, categorized into different types according to
their capacities. Our objective is to design a job assignment scheme which reduces the
mean response time jobs in the system while requiring the state information of only a
small subset of servers at each job arrival instant. To this end, we investigate the stability
and performance of randomized dynamic job assignment schemes in which a small random
subset of servers is sampled at every job arrival instant and the incoming job is assigned
to one of the sampled servers based on the states of the sampled servers. We show that
in the heterogeneous case, the method of sampling the servers plays an important role in
determining the performance of such schemes.

2.1 Introduction

The prevalence of dynamic content web services such as online search, social networking, e-
commerce has triggered the growth of large scale web server farms which can accommodate
thousands of front-end servers to meet the increasing demand of user requests. Since such
systems provide web services that are highly delay sensitive, a small increase in the average
response time of jobs may cause a significant loss of revenue and users [18]. Hence, one
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of the key design issues in such systems is to decide which server an incoming job will
be assigned to in order to obtain minimum average response time of jobs. The problem
becomes more challenging due to the large size of web server farms which makes the use
traditional job assignment schemes inefficient.

Traditionally, in small web server farms, a hardware job dispatcher such as F5 Appli-
cation Delivery Controller [19, 20] is used to dispatch incoming jobs to the servers. It uses
the Join-the-Shortest-Queue (JSQ) scheme that assigns each new arrival to the server hav-
ing the least number of unfinished jobs in the system. Implementing this scheme requires
the knowledge of the states of all the servers in the system at each arrival instant of a
new job. This is possible either by probing all the servers at each arrival instant of a new
job or by continuously monitoring all the servers in the system at all times. For a large
web server farm, where thousands of servers run in parallel to process the incoming jobs,
probing all the servers at each job arrival instant introduces a significant delay (due to the
large communication overhead between the job dispatcher and the servers) in the routing
of the incoming jobs. Continuous monitoring also is not desirable as it is wasteful in terms
of energy (since turning off servers of low utilization will require frequent reconfiguration
of the job dispatcher). Therefore, for large web server farms, a job assignment scheme,
which requires the state information of only a small number of servers at each job arrival
instant and yet yields low average response time of jobs, is more desirable.

In randomized static schemes, arrivals are assigned to the servers with fixed probabil-
ities, independently of the server states. Thus, randomized static schemes do not require
the state information of any server in the system. However, the mean response time of jobs
can be further reduced significantly by using randomized dynamic schemes, where a small
subset of servers is randomly sampled at every job arrival instant and the incoming job
is assigned to one of the sampled servers by comparing the states of the sampled servers.
Such randomized dynamic schemes, therefore, significantly reduce the mean response time
of jobs without increasing the communication overhead between the job dispatcher and the
servers significantly.

The the power-of-d scheme or the SQ(d) scheme is an example of randomized dynamic
schemes. In the SQ(d) scheme, every arrival is assigned to the server having the least
number of unfinished jobs among d > 2 servers, sampled uniformly at random from the
entire system at the arrival instant of the job. It was shown in [2, 3, 21] that for a system of
identical first-come-first-serve (FCFS) servers, the SQ(d) scheme results in an exponential
reduction in the mean response time of jobs as compared to the randomized static scheme.

However, the above results do not apply to systems consisting of heterogeneous servers,
which are more realistic models of web server farms . In heterogeneous systems, a uniformly
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sampled set of d servers may not contain servers of all types (or capacities). Hence,
for such systems, uniform sampling may not yield the same gains as for homogeneous
systems. Therefore, an approach based on biased sampling of servers has to be adopted
for heterogeneous systems which we explore in this chapter.

2.1.1 Related literature

The study of job assignment schemes for multi-server systems has a long history that dates
back to the 1960’s. The JSQ scheme was first analyzed in [22, 23] for a system of two
parallel FCF'S servers assuming Poisson arrivals and exponential service time distribution.
The stationary distribution of queue length at each server was found. Optimality of the
JSQ scheme, in terms of response time of jobs, was considered in [24, 25]. It was shown
that, under FCF'S service discipline and service time distributions having decreasing hazard
rates', JSQ maximizes the number of jobs that depart from the system in a given amount
of time.

The study of the JSQ scheme was limited to the FCFS service discipline for a long
time until recently Gupta et al [26] analyzed the scheme for the processor sharing service
discipline, which closely approximates the round robin scheduling of jobs actually employed
in web servers [1]. An approximate analysis of the JSQ scheme was presented, assuming a
finite number of servers in the system and general job length distributions. It was shown
that the JSQ scheme is nearly optimal in terms of minimizing the mean delay in such
systems. It was also observed that under the JSQ scheme the stationary distribution of
server occupancies is nearly insensitive to the type of job length distribution so long as the
mean of the distribution remains unchanged.

The concept of randomized dynamic schemes evolved from the seminal work by Azar
et. al [27] in which the SQ(d) scheme was first proposed in the context of the “balls-and-
bins” model. In the balls-and-bins model, n balls are to be sequentially placed in n bins as
evenly as possible. The optimal scheme is to check the load on all bins at every step and
place the next ball to the least loaded bin (with ties broken arbitrarily). Clearly, this is
inefficient when n is large. However, if each ball is placed in the least loaded of d randomly
sampled bins (with ties broken uniformly at random), then it was shown that (with high
probability) the maximum load in a bin (after completion) is (1 + o(1))Inn/Inlnn for

'For a service distribution, having cumulative distribution function (CDF) F(-), the hazard rate h(-)
is given by h(t) = f(t)/(1 — F(t)), where f(-) denotes the probability density function (PDF) of the
distribution.
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d=1,and Inlnn/Ind+ O(1) for d > 2. Thus, an exponential reduction in the maximum
load can be obtained by increasing the number of samples from d =1 to d = 2.

Motivated by the above observation, a dynamic version of the problem was analyzed
in [2, 3]. Tt was assumed that jobs having exponentially distributed job lengths arrive at a
bank of N identical FCFS queues according to a Poisson process with rate NA. The system
was studied in the limit as N — oo using mean field techniques. For the SQ(d) scheme
with d > 2, [2] showed, using the theory of operator semigroups, that the equilibrium tail
distribution queue sizes decay super-exponentially in the large system limit. Mitzenmacher
in [3, 21] derived the same result using an extension of Kurtz’s theorem [28]. Chaoticity on
path space or asymptotic independence of the queue length processes was established in [29]
using empirical measures on the path space. Results of [2] were generalized to the case of
open Jackson networks in [30].

The case, where queues have different service rates, was considered in [31]. It was
shown that, under the SQ(d) scheme, the system is not stable for all arrival rates below the
aggregate service rate of the system. The stability region, however, was not characterized
explicitly. To recover the stability region, a variant of the SQ(d) scheme based on memory
was proposed. In this scheme, after an arrival has been assigned, the least loaded of d
sampled servers for that arrival is kept in the memory and is used as one of the d potential
destination servers for the next arrival. It was shown that this memory based scheme can
support all arrival rates below the aggregate service rate of the system. However, our
results show that the memory based scheme do not perform well in comparison to the
schemes proposed in this chapter.

Recently, in [32], the SQ(d) scheme was analyzed under more general service disciplines
and service time distributions. It was shown that in the case of FCFS discipline and
power-law service time distribution, the equilibrium tail distribution of queue sizes decay
super-exponentially, exponentially, or just polynomially, depending on the power-law ex-
ponent and the number of choices, d. The stability of more general randomized shortest
queue based schemes for non-idling service disciplines was analyzed in [33], which derived
a sufficient condition under which such networks are stable. Asymptotic independence of
servers in equilibrium was conjectured under any local service disciplines and general ser-
vice time distributions in [34]. The conjecture was proved only for FCFS service discipline
and service time distributions having decreasing hazard rate (DHR) functions.

The tradeoff between sampling cost of servers and the expected sojourn time seen by a
customer under the SQ(d) scheme was studied in [35] for FCFS queues. A game theoretic
framework was proposed. It was shown that for arrival rates within the stability region
of the network, a symmetric Nash equilibrium for identical customers exists in which each
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customer chooses a fixed number of queues to sample.

2.1.2 Contributions

Analysis of randomized dynamic job assignment schemes has been mostly restricted to the
homogeneous case, where the servers have identical capacities. However, in reality, a web
server farm contains servers of varied capacities for which the above results do not apply.
In this chapter, our focus will be on analyzing the performance of randomized dynamic job
assignment schemes for heterogeneous processor sharing systems.

We first characterize the stability and performance of the SQ(d) scheme under the
heterogeneous scenario. In particular, we show that the stability region (the set of arrival
rates for which the underlying Markov process is positive recurrent) for the heterogeneous
system operating under the SQ(d) scheme is a subset of the maximal stability region,
defined as the set of arrival rates below the aggregate capacity of the system.

To recover the loss in the stability region, we then propose a hybrid scheme which
combines probabilistic routing across different server types with the SQ(d) routing within
servers of the same type. We show that the proposed hybrid scheme achieves the maximal
stability region but only with the knowledge of the system parameters. We also obtain
the optimal routing probabilities for which the mean response time of jobs in the system
is minimized under this scheme.

Next, we propose a type-based scheme in which a small subset of servers is sampled
from every server type at each job arrival instant. This ensures that servers of all types
are present in the sampled set of potential destination servers for each arrival. The job
is then assigned to one of the sampled servers based on their instantaneous loads. We
show that, unlike the hybrid scheme discussed above, this scheme achieves the maximal
stability region even without the knowledge of the system parameters. We characterize the
performance of this scheme in the large system limit using mean field techniques.

Finally, we study the performance of the above schemes numerically. The proposed
schemes are found to outperform other existing randomized schemes. Specifically, the hy-
brid scheme and the type-based scheme are observed to result in the lowest mean response
times of jobs among all the randomized schemes considered. Another important observa-
tion, made through the numerical studies, is the fact that in the limiting system, the mean
response time of jobs does not depend on the type of job length distribution so long as the
mean of the distribution remains unchanged. We refer to this property as the asymptotic
insensitivity of the system.
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2.1.3 Organization

The rest of the chapter is organized as follows. In Section 2.2, we introduce the system
model, the job assignments schemes considered throughout the chapter, and the notations
used to analyze them. In Section 2.3 we review some of the existing results in detail.
In Sections 2.4, 2.5, and 2.6 we present the detailed analysis of the randomized dynamic
schemes in the heterogeneous scenario. In section 2.7, we report the results of our numerical
studies. Finally, the chapter is concluded in Section 2.8.

2.2 System Model

We consider a system consisting of N parallel processor sharing (PS) servers with hetero-
geneous service rates or capacities. The capacity, C, of a server is defined as the time-rate
at which it processes a single job assigned to it. If ¢(¢) jobs are present at a server of
capacity C' at time t, then the rate at which each job is processed at time t is given by
C'/q(t). We assume that the servers are divided into M (<< N) different types according to
their capacities. Let J = {1,2,..., M} denote the index set of server types. The capacity
of each server of type j € J is denoted by C;. Let C = {C, (s, ...,Cy} denote the set of
all server capacities. We assume, without loss of generality, that the server capacities are
ordered in the following way

For each j € J, the proportion of servers with capacity C; is assumed to be fixed and is
denoted by 7; (0 <~; <1). Clearly, Zj\il v; = 1.

Jobs are assumed to arrive at the system according to a Poisson process with rate N .
Each job brings a random amount of work, independent and exponentially distributed
with a finite mean 1/u. The inter-arrival times and the job lengths are assumed to be
independent of each other. Upon arrival, a job is assigned to one of the N servers where
the job stays till the completion of its service after which it leaves the system. We consider
the following randomized schemes to assign the incoming jobs to the servers.

2.2.1 Scheme 1: The randomized static scheme

As a baseline, we consider a scheme that assigns the incoming jobs to the servers with
fixed probabilities, independent of the current states of the servers. Upon arrival of a job
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a server type j € J is first chosen with probability p;. The job is then assigned to any one
of the N+, servers of the chosen type with equal probability?. The probabilities p;, j € J,
then must satisfy jeqbi = L. Clearly, in this scheme, no communication is required
between the job dispatcher and the servers as the job assignments are made independently
of the states of the servers.

2.2.2 Scheme 2: The power-of-d or SQ(d) scheme

In this scheme, a subset of d > 2 servers is sampled uniformly at random with replacement®
from the set of N servers at each arrival instant. These d sampled servers are the called the
potential destination servers for the incoming arrival. The incoming job is assigned to the
server having the least number of unfinished jobs among the d potential destination servers.
In case of a tie within sampled servers of the same type, the tie is broken by choosing any
one of the tied servers uniformly at random. In case of a tie between sampled servers of
different types, the tie is broken by choosing the server having the highest capacity. We
shall refer to the server selected after tie breaking as the actual destination server for the
incoming arrival.

2.2.3 Scheme 3: The hybrid SQ(d) scheme

In this scheme, upon arrival of a new job, a server type j € J is chosen with probability p;,
where the probabilities p;, 7 € J, satisfy Zjej p; = 1. The job dispatcher then samples
d servers uniformly at random (with replacement) from selected server type. Finally, the
incoming job is assigned to the server having the least number of unfinished jobs among
the d sampled servers. Ties are broken uniformly at random. Hence, this scheme combines
probabilistic routing across different server types with the SQ(d) routing within servers of
the same type.

2.2.4 Scheme 4: The type-based scheme

In this scheme, upon arrival of a job, d; servers of type j are sampled uniformly at random
(with replacement) for all 7 € J. The job is then assigned to the server having the least

2Note that servers of the same type are chosen with the same probability since, by symmetry, choosing
servers of the same type with different probabilities cannot yield lower mean response time of jobs.
3We have seen that sampling with or without replacement yield the same results in the limit as N — oo
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Figure 2.1: The type-based scheme: System consisting of N parallel processor sharing (PS)
servers, categorized into M types. There are ;N servers of type j, each of which has a
capacity or rate C;. Arrivals occur according to a Poisson process with rate NA. For each
arrival, the job dispatcher samples d; servers of type j and routes the arrival to the least
loaded of the sampled servers.

instantaneous occupancy among the > e ; sampled servers. Ties among servers of the
same type are broken uniformly at random and ties across server types are broken by
selecting the server type having the highest capacity. We note that, in this scheme, servers
of each type are present in the sampled set of potential destination servers. This is unlike
the SQ(d) scheme, where all server types may not be present in the sampled set of servers
for an arrival. A schematic diagram describing this scheme is given in Figure 2.1.

2.2.5 Additional notations

Throughout the analysis we shall use Z, Z, N, R to denote the set of all integers, the set of
non-negative integers, the set of positive integers, and the set of real numbers, respectively.
We define the following sequence spaces

U={(gnn€7Z,): go=1,gn > gny1 >0forallneZ,}. (2.2)

U;N) ={(gnn€Zy) €U : Nvyjg, € NforallneZ,.},j€J (2.3)

U={(gn€L)eU:> g, < oo} (2.4)
n>0
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We shall mainly be using the product spaces UM, U = HjejL{](N), and UM in our
analysis. An element u = (u,j,n € Z1,j € J) is said to belong to UM UN) or UM if, for
each j € J, the sequenceﬁ(un,j, n € Z, ) belongs to U, U;N), or U, respectively. We define
a metric w on the space UM as follows

Un,j — Un,j

, for all u,v e U™. (2.5)
n+1

w(u, v) = sup sup
JET nEZ4

The space UM is compact (and hence complete and separable) under the metric w (proof
given in Appendix A).

By 6, we will denote the Dirac measure concentrated at point x. Weak convergence
(convergence in distribution) of a sequence of probability measures (v,), (sequence of
random variables (X,,),) to a probability measure v (random variable X') is denoted by
v, = v (X, = X). For the formal definition of weak convergence the reader is referred to
Appendix C. For a measure space (H,H, py) and a puy-integrable function f : H — R |
we define duality brackets as (f, py) = [ fdun.

2.3 A brief review of previous results

In this section, we briefly review the existing results for the randomized static scheme in
the heterogeneous case and the SQ(d) scheme in the homogeneous case.

2.3.1 The randomized static scheme

We now restate the results of [36] in terms of the notations defined in Section 2.2. In the
randomized static scheme, a job is assigned to a server with a fixed probability, independent
of the instantaneous states of the servers in the system. Hence, under this scheme, the
system reduces to a set of independent M /M /1 processor sharing servers working in parallel.

Stability analysis: We first consider the stability of the system operating under the
randomized static scheme. The stability region is defined to be the set of arrival rates
for which the mean sojourn time of jobs in the system is bounded. Equivalently, it is
set of arrival rates for which the underlying Markov process describing the time evolution
of the system is positive recurrent. Proposition 1 of [36] states that there always exist
probabilities p;, j € J, for which the system is stable under the randomized static scheme
if and only if the following condition holds:
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AGA:{O§A<MZ%~CJ}. (2.6)
JjeJ

Hence, the stability region of the system operating under the randomized static scheme is
given by the set A. We refer to the set A as the maximal stability region of the system

because for A > > e 7;C; the system is unstable under any job assignment scheme
(see [33]).

It was also shown in [36] that a choice of the routing probabilities for which the system
operating under the randomized static scheme is stable for all A € A is given by

p; = %G
’ Ziej IVZCZ

The optimal routing probabilities: The above choice of the routing probabilities is
not optimal in terms of minimizing the mean sojourn time of jobs under the randomized
static scheme. The routing probabilities p}, j € J, for which the mean sojourn time of jobs
in the system is minimized under the randomized static scheme were found in Theorem 1
of [36] by solving a convex optimization problem. The optimal routing probabilities were
found to depend on the arrival rate \. In particular, it was found that, depending on the
arrival rate of jobs, all server types may not be used in the optimal randomized static
scheme. The only server types used in the optimal static scheme was found to be Jop =
{5, 7°+1,...,M} C J, where j* is given by

forall j € J (2.7)

M
. : 1 > ViV i
jf=infsj€J: < = : (2.8)
{ V Cj Zi:j 7iCi — %
Furthermore, the optimal loads p* = (pi, p5, ..., p3,;) were found to be
B szszj* ’Yka—% P
= I=Veasr e 11 Tom (2.9)
0, otherwise.

The optimal routing probability pj, is related to the optimal load p; as p; = pj)\/ v, 11C}
for each j € J.

Applying Little’s law, the mean sojourn time of jobs in the system under the optimal
static scheme can be obtained as
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M
Tstatlc _ l Z (210)
A = 1 — pj

Remark 1. Specializing the above results to the homogeneous case with M =1, C} = C,
and 71 = 1, we have T = {1} and p* = pj = A\/uC. Hence, the mean sojourn time of
jobs in the homogeneous system is given by

Troms(A) = (uC A) = %i::( )n (2.11)

2.3.2 The SQ(d) scheme in the homogeneous case

An exact analysis of the SQ(d) scheme for any finite value of N is extremely difficult since
under the SQ(d) scheme the servers in the system are dependent on each other. However,
in the large N limit, the SQ(d) scheme was analyzed using mean field techniques in [3, 2].
We now recall their results. To state these results, we assume M = 1, C; = C, and
v1 = 1, which corresponds to the homogeneous system with N identical servers having
capacity C. Hence, in this case, the maximal stability region can be obtained from (2.6)

as A ={0 < X< uC}.

For the homogeneous system of size IV, operating under the SQ(d) scheme, let N ( )
denote the fraction of servers with at least n unfinished jobs at time t. Clearly, x™(.) =

(x%N)(-), n € Z,) defines a Markov process.

Stability analysis: Using simple coupling arguments, it was shown in [2, 3] that the
process xV)(-), defined above, is positive recurrent if A\ € A. Hence, the SQ(d) scheme
achieves the maximal stability region for homogeneous systems.

Mean field analysis: Analyzing the Markov process x™)(-) is intractable for finite
N due to the dependence among servers in the SQ(d) scheme. However, using mean
field analysis it was shown in [2, 3] that if xX™)(0) = uy as N — oo for some constant
uy € U, then xM () = x(-) = {2,(-),n € Z,}* where the process x(-) is a deterministic
process lying in the space I and is given by the unique solution of the following system of
differential equations.

4In this case = denotes the weak convergence of the process x(™)(-) to the process x(-) as N — co.
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x(0) = o, (2.12)
i 0, (2.13)
i (t) = A (a1 (1) — 25(8)) = uC (2 (t) = T0a (t)) ;2> 1. (2.14)

Thus, the above result shows that as N — oo the process x™)(-) tends to concentrate on
the path of the deterministic process x(-). The process x(-) is called the mean field limit
of the system.

An equilibrium point of the mean field is a point P in the state space of the process
x(+) such that %x(t) = 0 if x(¢) = P. It is easy to see that the process x(-), as defined
above, has a unique equilibrium point P = (P,,n € Z, ) in the space U given by

d"—1

P, = (/%C) o (2.15)

It was shown in [2] that for A € A, ngN)(oo) = P, as N — 0o, where x%N)(oo) denotes the
equilibrium fraction of servers in the system having at least n unfinished jobs. Thus, the
above result shows that the steady state x(™)(c0) of the process x¥)(-) tends to concentrate
near the equilibrium point P of the mean field as N — oo.

Using the above results, the mean response time of jobs in the limiting system can be
computed as follows. Since x%N)(oo) = P, and 0 < x%N)(oo) < 1 is bounded, we have
lim o0 ]E[x%N)(oo)] = P,. Now, for a given system of size IV, the expected number of jobs
in the system at equilibrium is NE[Y 7, 2V (c0)] = N > E[z™" (c0)] (which is finite

if A € A due to stability). Therefore, by Little’s law, the mean sojourn time of jobs in the
finite system of size N for A\ € A is given by

N E [V(00)] S E [28(00)]
NX B A

Taking the limit of the above equation as N — oo, we obtain the mean sojourn time of
jobs in the limiting system to be

T]S\gﬂomo ()‘) -

(2.16)

. 1 — L=/ XA\ 7T
Thﬁio(A)ZXZPn:XZ<M—C) . (2.17)
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Comparing the above expression with the expression of mean sojourn time in (2.11) it is
easy to see that for any d > 2, there is a significant reduction in the mean sojourn time of
jobs in the SQ(d) scheme as compared to the that in the randomized static scheme for the
homogeneous case. The reduction is due to the fact that P, decays super-exponentially
with the increase in n for d > 2.

2.4 Analysis of the SQ(d) scheme in the heteroge-
neous case

We now generalize the results of [2, 3] to the heterogeneous case. To state our main results,
we first introduce the following notations.

For the model described in Section 2.2, let x,(fz) (t), k€ Z,,j € J,t >0 denote the

fraction of type j servers having at least k unfinished jobs at time ¢ in the finite system
of size N. Define x(V)(.) = (x,(;\; (\),k € Zy,j € J) to be the process describing the time
evolution of the system. Clearly, under the assumptions of Poisson arrivals and exponential
job length distribution, the process xV)(-) is Markov.

Let N* denote the smallest positive integer (> 2) such that v;N* is a positive integer
for all j € J. Now, let Ag, £ € N, denote the stability region of the system operating
under the SQ(d) scheme when N = kN*. In other words, when there are N = kN* servers
in the system, the process x")(-) is positive recurrent if A € Ay

We also define the set A, as follows

(ZT:1 7j0j>
(Z;nﬂ Vj) '

From the above expression and (2.6), it is easy to see (by putting m = M) that A, C A.

A =20< A<y min
1<m<M

(2.18)

Main Results: Our main results are the following:

1. For Ay, k € N, as defined above, and A as given in (2.6), we have A D Ay DAy D .. ..
Furthermore, Ao C NP2 Ag.

2. If xM(0) = ug € UM as N — oo, then xV)(.) = x(-) as N — oo, where the process
x(+) = (z3;(-),k € Zy,j € J), lying in the space UM, is given by the unique solution
of the following system of differential equations:
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x(0) = uy, (2.19)
x(t) = h(x(t)). (2.20)

The mapping h : UM — (R%+)M is given by

hoj(x) =0, for j € J, (2.21)
A J M d j—1 M d
hn,j(x) = - [(Z ViTn-1,i + Z %ffm) - <Z Vi%n—1, + Z’%$m>
i =1 i=j+1 i=1 i=j
— pCj (Tnj — Tngry), forn>1,j€ 7. (2.22)

3. If A € A, then there exists a unique solution, P, of h(P) = 0 in the space U.
The point P € UM is called the equilibrium point of the process x(-) described
by (2.19)-(2.20). Moreover, for all uy € UM we have

lim x(t,ug) = P, (2.23)

t—o00

where x(-,ug) denotes the process x(-) started at x(0) = uy.

4. If A € Ay, then xM)(c0) = P as N — oo, where xV)(00) = lim,_,o, xV)(t), denotes
the random variable representing the equilibrium state of the finite system of size N.

Remark 2. The first result implies that for any finite /V, the stability region of the system
operating under the SQ(d) scheme is a subset of the maximal stability region A given
by (2.6). Thus, in the heterogeneous case, the stability region under the SQ(d) scheme is
smaller than that under the randomized static scheme. The reason behind the reduction
of the stability region can be intuitively explained as follows.

In the SQ(d) scheme servers are sampled uniformly at random at each arrival instant.
Hence, the servers with higher capacities are chosen with the same probability as the
servers with lower capacities. In this respect, the randomized static scheme provides more
flexibility by allowing to choose servers of different capacities with different probabilities.

Remark 3. The second result implies that if the initial state of the finite system concen-
trates on some point ugy € UM then as N — oo, the process x(V) (_) concentrates on the
path of the deterministic process x(-) taking values in the space U*. The process x()
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is called the mean field limit of the heterogeneous system under the SQ(d) scheme. The
condition x")(0) = uy € UM is satisfied, for example, if the system is initially empty or if
for each k € Z, and j € J the fraction of servers of type j with at least k£ unfinished jobs
in the initial system, denoted by x,(gj\][) (0), is a constant independent of N. The weak con-
vergence of the process xV)(-) to the deterministic process x(-) also implies the following

convergences:

e For each t > 0, x™V)(¢) = x(t) as N — oc.

e Foreacht>0,j€ J,and k € Z,, :c,(f\][)(t) = 1y;(t) as N — 0.

o Foreacht >0, j € 7, and k € Zy, E[z")(£)] — Elzy;(t)] as N — oc.

Remark 4. The third result implies that if A € A, then there exists a unique equilibrium
point P of the process x(-) in the space UM . It further states that starting from any initial
state ug € UM, the process x(-) reaches its unique equilibrium point P € UM as t — ooc.
An equilibrium point P with the above property is referred to as a globally asymptotically
stable equilibrium point.

Remark 5. Since A, C Ay, for all k, we have that the process xV )() is positive recurrent
for all A € A,. Equivalently, there exists a unique equilibrium distribution of the process
x(N(.) for every N if A € A,.. Thus, for A € A, the steady state x™V)(c0) = (x,g)(oo), ke
Zy,j € J) is finite and is distributed according to the unique stationary distribution of
the process x™)(-). The last result then implies that for each k € Z, and j € J, the
equilibrium fraction of type j servers having at least k& unfinished jobs in the system of size
N, converges to Py, j as N — oo. Thus, the quantity P ; can be treated as the equilibrium
fraction of type j servers having at least k£ unfinished jobs in the limiting system. Since P
satisfies h(P) = 0, we have from (2.21) and (2.22) that P ; = 1 for all j € J and

d

\ j M j—1 M d
Py j—Pryo; = (Z Vil + Z %PkJrl,i) <Z ViPri + Z%PkJrl,i) )
i=1 i=1 i=j

HCy; i=j+1

(2.24)

for all K € Z4 and j € J. The quantities P ;, k > 0, j € J, can be computed by solving
the recursive relation given above. These quantities can then be used to compute the mean
sojourn time of jobs in the limiting system by using Little’s law. Following similar steps
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as outlined for the homogeneous case, it is easy to see that the mean sojourn time of jobs
in the limiting heterogeneous system is given by

M 00

—s 1

T0) = £ 3% Y P (2.25)
j=1 k=1

We now provide the detailed proof of the first result. The proofs of the other results
are similar to those of the corresponding results for the type based scheme, discussed in
Section 2.6. We, therefore, do not repeat them here.

Theorem 2.4.1. For Ay, k € N, as defined above, and A as given in (2.6), we have

ADA DA D ... (2.26)

Furthermore, Aow € M2 Ay C Ao, where Ao denotes the closure of Aoy and is given by

_ . <Z;n:1 ’chj>
T 1<m<M (Z}n:l ’yj>d

Proof. Suppose that all the N = kN* servers in the system are indexed by the set Sy =
{1,2,...,N}. Under this indexing, we denote the capacity of the n'" server in the system
by C(ny, where n € Sy and C,,) € C. For each job, we define a selection set to be the subset
of d servers sampled at its arrival instant. We denote by p4 the probability with which
the subset A C Sy is chosen as the selection set for an arrival. Note that the probabilities
pa, A C Sy, define the randomized job assignment scheme used. In particular, under
the SQ(d) scheme, the probability pa is non-zero only for subsets A C Sy which contain
exactly d servers and for each such subset A C Sy, the probability pa is given by

(2.27)

L
T

(2.28)

Now we apply condition (1.2) of Corollary 1.1 of [33] to find the stability region of the
system under consideration.® According to this condition, the system under consideration
is stable if the arrival rate A satisfies

5 We note that the additional conditions (1.11) and (1.12) of [33]. are automatically satisfied since the
interarrival times are exponentially distributed.
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oM () = max o™ (B, \) < 1, (2.29)

BCSn

where

oM(B,X) = <u > C(n)> NAD pa, (2.30)

neB ACB

Clearly, for the SQ(d) scheme, o™¥)(B, )\) is non-zero only when the subset B is composed
of at least d servers. From such a set B a subset A C B of size d can be chosen in (lg |)
different ways. Hence, combining (2.28), (2.29), and (2.30) we have

(N)(\) — (V)
0 () pes B .0 (B, A), (2.31)
and
N (IB)(|1B| = 1)...(|B| —d+1)
N(B.\) = <1 2.32
Q b b
(B,A) w(NYN =1)...(N—d+1) > es BiC (2.32)

where for each j € J, B; denotes the number of servers of type j in the set B, and
|B| = >_,cs Bj > d denotes the cardinality of the set B. Thus, to obtain o™ (X), we have
to maximize o™ (B, \) over all subsets B C Sy having size at least d. This maximization
can be done in two steps. The first step is to maximize oY) (B, \) for given size | B| of the
set B by appropriately choosing B; for all j € J. The second step is to maximize the the
maximum obtained from the first step over all possible values of | B|.

Step 1: Clearly, for a fixed size |B| satisfying N 37", 7; < [B| < N Z;’Sl 7j, the term
(1BN(B| =1)...(IB| =d+1)/>,c; BjCj, appearing in (2.32), is maximized if B; = Nv;
for 1 <j<m, Bpny1=|Bl =N 7" v, and B; =0 for j > m + 1.° In other words, for
any given size |B|, the quantity o¥)(B,\) is maximized by filling up the set B starting
with lowest capacity servers (with capacity C;) and gradually moving to servers having
higher capacities. The process is continued until the set B is completely filled with |B]
servers.

Step 2: Now we shall vary |B| from d to N. We first note that the function B;(B; —
1)...(By —d+ 1)/(B1Cy) is is increasing in B;. Hence, in the range d < |B| < N7y,

6We have implicitly assumed, without loss of generality, that N (minjes ;) > d, i.e., there are at least
d servers of each type. If this is not true, then we can always choose a larger N.
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the quantity o™)(B, )\) is maximized at |B| = B, = Nv;. For Ny, < |B| < Ny + N7,
in order to maximize o™)(B,)\) we must have B, = N+, and By = |B| — Nv;. Now
to have (N’Yl + BQ)(N’}/l + B2 - 1) . (N’Yl + Bg —d + 1>/<N’}/1C1 + BQCQ) S (N’}/l +
BQ + ].)(N’}/l + BQ) Ce (N’}/l + B2 — d—|— 2)/(N’)/101 + (BQ + 1)02) we must have N’YI(OQ -
dCy) < (Bs 4+ 1)Cy(d — 1). Hence, as B, is increased from 0 to N+s, the expression
(Nv14+ By)(Ny1+ By —1)...(Ny1+ By —d+1)/(Ny,.Cy + B2Cy) increases monotonically
if Nv;(Cy —dCy) < Cy(d — 1); decreases monotonically if Ny, (Cy — dCy) > NvoCso(d — 1);
first decreases and then increases if Nv;(Cy — dCy) > Cy(d — 1) and Ny (Cy — dC) <
N~5Cy(d — 1). Therefore, in the range d < |B| < N(71 + 72), the maximum of o) (B, \)
is obtained either at |B | N~ or at |B| = N(71 + 72). Proceeding in this way we find
that the maximum of o) (B, \) is obtained over d < |B| < N at one of the values of |B]

in the set {N%,N(% +92)s e N Y- ,N}. Hence,

(N) _
e (A) = max

A (NZ;‘nd V) (N 27:1 v—1)... (NZ?; v —(d—1))
Yegile (NN =1)...(N = (d—1))
(2.33)

Since (Naw — k)/(IN — k) is an increasing function in N for v < 1, we have from (2.33)
that o™)()\) increases with N. This implies that A; D Ay D ... holds.

We also note that % < « for a < 1. Hence, we have from (2.33)

(M) < § j for all N 2.34
Q max ’7 or a. . .
( ) 1<m<M {y, ZJ 1 7] J } ( )

The above implies that A, C Ay, for all £. Now since A1 DAy D ..., wehave Aoy € N Ag.

Now let us assume A € N, A;. This implies that o™)(\) < 1 for all N. Hence,
limy oo 0V(N) < 1. But from (2.33) we have

A m
lim o™(\) = max { ———n )% 2.35
N—oo ( ) 1<m<M /’I/ijl 'VjCj (; J) ( )
Hence, we must have A\ € A,. This proves N Ay C As. O

The following result follows from the proof of the above theorem.

30



Proposition 2.4.1. If for every m € J we have (Z;’:ll Vi) Cm —d(3 20 1,C5) <0, then
the SQ(d) scheme attains the maximal stability region A for heterogeneous systems. In
particular, if d > [%M—‘ then SQ(d) scheme attains the mazximal stability region A for

heterogeneous systems.

Proof. Let us assume that for each m € J the condition (Z;"_ll v;)Cm, d(zzn ,C5) <0
holds. From the proof of Theorem 2.4.1 we know that in the range N > 7" Yy, < |B| <
NZ] L 7; the quantlty o™ (B, )\) is maximized by choosing B; = N, for 1 < j <m — 1,

= |B| — Z] . v, and B; = 0 for j > m. Now the term (|B|)(]B| —-1)...(|B] -

d +1)/(N Z;":ll 7,C; + BmCy,), appearing in the expression of o) (B, )\), increases with
increase in B,, if

(NZ]1’YJ+B )(NZJ1’VJ+B —-1).. (NZjl/yj—i_B —d+1)
NZTll’}/]C“—B C
<NZJ YA Ba+ DN Y+ Ba) (N Y 4 B — A+ 2)
NZJlVJC' + (B +1)Cy

. (2.36)

which is equivalent to the condition (N 37" " 9,)Crm dN(ZJ L 9C5) < (B + 1)(d —
1)C,,. But the above condition is true for all B,,,; > 0 since by assumption we have
(ZT:_ll Vi)Cm — d(3_7C ' 7,C;) < 0. Hence, in the range N "5 < |B| < NY v
the quantity o®¥)(B,)) is monotonically non-decreasing. Since, this true for all m € 7,

we conclude that the maximum of o) (B, \) in the entire range d < |B| < N is attained
at |B| = N. Hence, from (2.33) we have

o™M(\) = max

{ A (NZ?LHJ)(NZTZWJ'—1)---(NZ§”=1%'—(05—1))}

1<m<M | py it v, C (N)(N—=1)...(N—=(d—1))
A
- NZ;‘nﬂ%‘Ca

The above implies Ay, = A for all k£ and thus proves the first statement of the proposition.
The second statement follows easily from the first since, for d > C);/C1, the condition
(ZT:_ll V3)Cm — d(3 252 17,C5) <0 is satisfied for all m € 7. O
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Remark 6. The above proposition shows that by increasing the number of choices d, the
stability region under the SQ(d) scheme can be made equal to the maximal stability region.
In particular, if d is chosen such that d > [C)y,/C4], then the maximal stability region can
be recovered.

2.5 Analysis of the hybrid SQ(d) scheme

We saw that under the SQ(d) scheme, the stability region of the heterogeneous system is
(in general) smaller than the maximum achievable stability region. In this section, we show
that with the hybrid SQ(d) scheme it is possible to recover the maximal stability region A.

In the hybrid SQ(d) scheme, a server type j € J is chosen for a new arrival with a
probability p,; independent of all other server types. Hence, for each j € J, the aggre-
gate arrival process to the set of N+, servers of type j is Poisson with rate p; NA and is
independent of the arrival processes to other server types. Thus, under this scheme, the
system can be viewed as a collection of M independent homogeneous subsystems, working
in parallel. The j™ subsystem has N+, identical servers of capacity Cj; the arrival rate
at this subsystem is NAp;; and the arriving jobs are assigned to servers in this subsystem
according to the SQ(d) scheme. From the results discussed in Section 2.3.2, we know that
the j™ subsystem is stable if p; = p;NA/uN~,;C = pjA\/v;uC; < 1. Hence, the entire
system is stable if p; <1 forall j € J.

Define p'= (p;,j € J) to be the vector of routing probabilities or the routing vector.
We call a routing vector p’ stable for a given A, if the system is stable under the hybrid
SQ(d) scheme with p" as the routing vector and A as the arrival rate. We first find the
necessary and sufficient condition (on \) that guarantees the existence of a stable routing
vector.

Proposition 2.5.1. There exists a stable routing vector p = (pj,j € J) for a given X if
and only if A € A.

Proof. Let us assume that A € A holds. We choose the routing probabilities as

7iCi

pi=—=——~,lorieJ (2.37)
Zjej 7 C;
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For the above choice of p;, we have

DiA
pi =
Vit Ci
G A
> jeq 105 %inCi
B A
M Z jed Vi Oj
Since the above holds for all i € 7, the system is stable for the above choice of rout-

ing probabilities. Hence, the condition A € A is sufficient for the existence of routing
probabilities for which the system is stable.

< 1since A € A

We now show that A € A is also a necessary condition for existence of a stable routing
vector. Let us assume that the system is stable, i.e., p; < 1 for all j € J but A ¢ A, i.e.,
A (1 Z;‘il 7;C;) > 1. We show that this leads to contradiction. From the condition above,

we have \/(u Zj\il p;v;Cj) > 1 since p; < 1. We know that the routing probability p; is
related to p; as follows:

_ piYibC;

i 2.38
p A (2.38)

Hence, we have

S pi=nY in;Ci <1, (2.39)

i€J ieJ
which contradicts the fact that ) .. ,p; = 1 Hence, the condition A € A is necessary for
existence of a stable routing vector. O

Remark 7. We have thus shown that for all arrival rates A\ € A it is possible to find a
stable routing vector. In particular, from the above proof it is clear that if the routing
probabilities are chosen as

Y:C;
Zjej PVJ'C]'
then the system is stable under the hybrid SQ(d) scheme for all A € A. We note that the

above choice of the routing probabilities requires the knowledge of the system parameters
(e.g., the knowledge of v;,C;, j € J). In general, the routing probabilities for which the

Di = for all i € 7, (2.40)
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system operating under the hybrid SQ(d) scheme is stable are functions of the system
parameters.

Henceforth we shall assume that A € A holds. Therefore, the existence of a stable
routing vector p'is guaranteed. We now compute the routing vector p* = (pj,j € J) or
equivalently the load vector p* = (pj,j € J) that minimizes the mean sojourn time of jobs
in the limiting system under the hybrid SQ(d) scheme for a given value of A € A.

From the discussion in Section 2.3.2, we know that for a given routing vector p’ =
(pj,7 € J), the mean sojourn time of jobs in the j™ subsystem (in the limit as N — oo
is given by

) o an—1
7o) = I = 2.41
J (ﬁ) pj)\ — p] ’ ( )

where §= (p;,j € J) and p; = p;A/pvy;C;. Hence, the overall mean sojourn time of jobs
in the system is given by

~ L 1 © a1
() = S p T = 5 2w o (242

jeg JjeT n=1

We now formulate the mean sojourn time minimization problem in terms of the loads p;,
j € J, as follows:

. 1 =\ drel
Minimize i\ Z o7 Z P;

p

JjET n=1
subject to 0 < p; <1, forall je€J (2.43)
A
> G ==
JjeJ H

Note that the equality constraint in (2.43) ensures that the routing probabilities sum to
unity. To characterize the solution of the convex problem defined in (2.43), we proceed
along lines similar to Theorem 1 of [36]. Let Jopx € J denote the index set of server types
being used in the optimal scheme.

Proposition 2.5.2. Let ® : R, — [0,1) be the inverse of the monotone mapping @~ :
k_
0,1) = Ry defined as 1 (p) = Y3, (d* — 1)p'7 J(d = 1) < T2 2p"! < o0 for
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0 < p < 1. Further, for each j € J, let ¥; : Ry — Ry denote the inverse of the monotone
mapping \Ilj_1 Ry — R, defined as \Ifj_l(@) = uzi]\ij 7:Ci;®(0C;). The indez set of server
types used in the hybrid SQ(d) scheme is then given by Jope = {7*, 7+ 1,..., M}, where
J* is given by

j*:inf{jej —<\I!()\)} (2.44)
&
Moreover, the optimal traffic intensities p;, for i € J satisfy
SV, (NCy), ified,
p:< — ( J ( ) ) Zf’l \.7.pt (245)
0, otherwise.

o) ak_ M
;5775 :Z%sz +ZV]O p]
7=1 k=1 7=1

al A
+ ZCj (pj—1)+6 (Z 7iCipj — ;) , (2.46)
j=1 Jj=1

where V' = (v1,v9,..., V) > 0, 5: (C1,Coy - Cu) > 0, and # € R. Since problem (2.43) is
strictly convex and a feasible solution exits (due to condition A € A), by Slater’s condition

[[37], Section 5.2.3|, strong duality is satisfied. Let p* and (17*,5*,0*) denote the primal

and dual optimal solutions, respectively. Since the duality gap is zero, we have by applying
KKT conditions

0<p-<T
M

ZVJ Jp]

e*eR >0,*>0
upj:OCj(pj— 1)=0VjeJ (2.47)

dk —1 d * * * .
V; . (pj) —0"C—v +(G=0VjeJ. (2.48)
k=1
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Since the objective function tends to infinity as p; — 1, for any j € J, we must have
7% < T which implies (* = 0 from (2.47). Since 7* > 0, we have from (2.48)

9*<i§:dk_1(*)% VjieJ (2.49)
=0 Led—1 / '

k=1

Further, by eliminating v from (2.48) we obtain

Zd_l(pj) T —0°Cy | p; =0 (2.50)
k=1
Thus, if for a given j € J, we have * > Cij, then (2.49) implies for that j we must have

p; > 0. Therefore, from (2.50) and from the definition of the map ® we have p; = ®(6*C})
for such a j. If, on the other hand, §* < CL] for some j € J, then p; = 0. This is so because

d¥—a
0 < c% implies 6* < c% o1 d;__ll (p;k) =1 if p5 > 0. But this contradicts (2.50). Hence,

we must have

' (2.51)
0, otherwise.

P; = !

To find 0%, we use the equality constraint in (2.43). If the server types belonging to the
set {j*,7* 4+ 1,..., M} are used in the optimal SQ(d) scheme, then

- A
PBRAGTICHCHESS (2.52)
—~ [
3=J
Hence by definition of the map ¥},
0" =W, (A), (2.53)
where j* is defined as in (2.44). O

Remark 8. We note that the optimal routing probabilities are functions of the arrival
rate A. Hence, computing them requires the knowledge of the arrival rate of jobs, which is
difficult to estimate. However, as discussed in Remark 7 the knowledge of only the system
parameters is required to compute the routing probabilities which stabilize the system for
all A € A. Such a choice of the routing probabilities is, however, not optimal in terms of
minimizing the mean sojourn time of jobs in the system.
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2.6 Analysis of the type-based scheme

In the previous section, we saw that the hybrid SQ(d) scheme achieves the maximal stability
region only when the proportions v;, j € J are known. Hence, if a large number servers of
a certain type fail or need to be shut down (due to low utilization), then a reconfiguration
of the job dispatcher is required. In this section, we show that the type-based scheme
achieves the stability region without requiring the knowledge of the proportions v;, j € J.
Therefore, the type-based scheme is more robust to server failures than the hybrid SQ(d)
scheme. We also characterize the performance of the type-based scheme in the large system
limit using mean field analysis.

As in the SQ(d) scheme, we denote by xé{\;)(t), keZ,,je J,t>0the fraction of type
7 servers having at least k£ unfinished jobs at time ¢ in the finite system of size N and define
the process xM(.) = (xg)(),k € Z.,j € J). Clearly, the process xV)(-) takes values
in the space U™N). Moreover, under the assumptions of Poisson arrivals and exponential
job length distribution, the process x¥)(-) is Markov. We first find the set of arrival rates
for which the process xV)(-) is positive recurrent. This set is the stability region of the
system working under the type-based scheme.

Theorem 2.6.1. The system under consideration is stable under the type-based scheme if
A €EA.

Proof. We proceed along lines similar to the proof of Theorem 2.4.1. We first index the
N servers in the system by the set Sy = {1,2,..., N}. The capacity of the n'® server is
denoted by C(,, where C,,y € C and n € Sy. For each job, we define a selection set to
be the subset of e d; servers sampled at its arrival. We denote by p4 the probability
that the subset A C Sy is chosen as the selection set for an arrival. Under the type-based
scheme, the probability p4 is non-zero only for subsets A which contain d; servers of type
j for all 7 € J and for each such a subset A, the probability p4 is given by

1
o N
Hjej ( djj)
Applying condition (1.2) of Corollary 1.1 of [33], we have that the system under consider-
ation is stable if the arrival rate A satisfies

PaA = (254)

(V) (\) — (V)
0N = max ¢(B,A) <1, (2.55)

where
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Q(N)(37 A) = <,u Z C(n)) NA Z PA- (2.56)

neB ACB

Clearly, for the type based scheme, the o) (B, \) is non-zero only when the subset B is
composed of at least d; servers of type j for all j € J. Let B; (> d;) denote the number of
type j servers in B. Hence, a set A having exactly d; servers of type j for all 7 € J can be
chosen from the set B in [, ; (5;) different ways. Hence, using (2.54), (2.55), and (2.56)

we have

(V) (\) — (V)
VA = P SV - (B, A), (2.57)
and
B.
NA 1 ()
(N) — j
0V (B,A) = — N (2.58)
. . s () L
It is easy to verify that that the function —<———=Z+ is increasing with respect to B; for
> jeq BiCi J

each j € J. Hence, o™)(B, \) is maximized when we set B; = Nv; for all j € J. Thus,
we have

N 1 A
(N) — _
oMy = 22 - (2.59)
2 NZjej 7;C} ,UZjej 75C;
This implies that the system under consideration is stable if A € A. m

Remark 9. Thus, Theorem 2.6.1 shows that the system under consideration is stable for
all NV under the type-based scheme if A € A. We note that above proof does not depend the
choices of d;, j € J. Hence, even with d; = 1 for all j € J the type-based scheme achieves
the maximal stability region. Furthermore, the scheme does not require knowledge of the
proportions v;, j € J, to achieve the maximal stability region.

Remark 10. An alternative proof of stability via a coupling argument is as follows: Con-
sider a modified scheme in which, upon arrival of each job, one server is chosen from each

type uniformly at random (i.e., d; = 1 for all j € J). The job is then routed to the sampled

7505

server of type j with probability s for each j € J. A coupling argument, similar

e J Vi
to the one discussed in the proof of Theorem 3 of [30], shows that the system operating
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under the modified scheme always has higher number of unfinished jobs than that operat-
ing under the type-based scheme. It is easy to check that the system operating under the
modified scheme is stable for A € A. Hence, the system operating under the type-based
scheme also must be stable under for A € A.

We now analyze the evolution of the process x")(-) in the limit as N — oo using mean
field techniques. The generator Ay of the process xV)(-) acting on continuous functions
o - UM — R is given by Ayp(u) = Y vzn” (M= V) (0(v) = p(u)), where r(u— v)
denotes the transition rate from state u € U™) to state v € U™, In the following lemma,
we provide the expression for the generator Ay.

Lemma 2.6.1. Let u € U™N) be any state of the process xN)(-) and let e(n, j) = (epi, k €
Zy,i € J) be the unit vector with e, ; = 1 and ey; = 0 for (k,i) # (n,7). Under the
type-based scheme, the generator Ay of the Markov process X(N)(-) acting on continuous
functions ¢ : UM — R is given by

j—1 M
Al = NAST S (1) = ()] TT (nn)® TT ()
jed n>1 i=1 i=j+1

Lo ) o)

N 30 Y 25C s = ) [ (0= S ) - otw)] - 200

JET n>1

Proof. We first consider an arrival joining a server of type 7 having exactly n—1 unfinished
jobs, when the state of the system is u. This corresponds to a transition from the state
u to the state u + e(”j We note that a job joins a server of type j with exactly n — 1

occupancy if the followmg conditions are satisfied:

e Among the d; sampled servers of type j, at least one has exactly n — 1 jobs and the

rest of them have at least n jobs. This occurs with probability ((un_lvj)dj — ()Y ) :

e For each ¢ < j, all the d; sampled servers of type i have at least n — 1 jobs. This
occurs with probability Hf;ll (un_lyi)di.

e For each 7 > j , all the d; servers of type ¢ have at least n jobs. This occurs with
probability [ i1 (i)™
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Since the arrival rate of jobs is N\, the rate of the above transition is given by

T (u —u-+ e%?) = NA [(Un—l,j)dj - (Un,j)dj} ﬁ (un—l,i)di ﬁ (un,i)di (2.61)

i=1 i=j+1

Further, the rate at which jobs depart from a server of type j having exactly n jobs is
/,LOjN’}/j (un,j - un+17j). Hence,

e(n,J
(o= ) 0 s = ) 2.62)
Vi
The expression (2.60) now follows directly from the definition of A . O

The next theorem shows that the process xV)(.) weakly converges to a deterministic
process x(+) as N — oo.

Theorem 2.6.2. If xV(0) = uy € UM as N — oo, then the process xNV)(\) = x(-) =
(21, (:), k € Zy,5 € J), where the process X(-) is a deterministic process taking values in
the space UM and is given by the unique solution of the following system of differential
equations

x(0) = uy, (2.63)
(t) = 1(x(t)), (2.64)
where the mapping 1 : UM — (RZ+)M 1S given by
loj(x) =0, forjeJ, (2.65)
\ j—1 M
1) = = (1) = oxg)® ) [T e T G)® (2.66)
J i=1 i=j+1

— puCj (T — Tpy1y), fork>1,5€ J.

The process x(-), defined in the theorem above, is referred to as the mean field limit of
the heterogeneous system under the type-based scheme. Before proving the above theorem
we first show that the process x(-) defined by (2.63)-(2.64) is indeed unique in the space
u.
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Proposition 2.6.1. If uy € UM, then the system defined by (2.63)-(2.64) has a unique
solution x(-) taking values in the space UM.

Proof. Define 0(x) = [min(x, 1)],, where [z]; = max {0, z} and let us consider the following
modification of (2.63)-(2.64):

where the mapping 1 : (RZ+)M — (RZ+)M is given by

loj(x) =0, for j € 7, (2.69)

ls) = 2 [0 (@m0 ) — 0 w)”] T (@) (2.70)

J =1

M
x T (0 @ea)™ = uC; 10 (w5) =0 (h11,)],, fork>1,j€J.
i=j+1

Clearly, the right hand sides of (2.66) and (2.70) are equal if x € UM. Therefore, the two
systems must have identical solutions in M. Also if uy € U™, then any solution of the
modified system remains within &/*. This is because of the facts that if T j(t) = Tpgr,4(2)
for some j, n, t, then I, ;(x(t)) > 0 and [,y (u(t)) < 0; and if z, ;(t) = 0 for some j, n,
t, then lAm (x(t)) > 0. Hence, to prove the uniqueness of solution of (2.63)-(2.64), we need
to show that the modified system (2.67)-(2.68) has a unique solution in (RZ+)™. We now
extend the metric w defined in (2.5) to the space (RZ+)M.

Using (2.5) and the facts that |z, —yy| < |z —y| for any z,y € R, |a10]" — axby'| <
lay — as| + m|by — by| for any aj,as,by,by € [0,1], and |0(x) — O(y)| < |z —y| for any
x,y € R we obtain

w(i(x),0) < K1, (2.71)

w(i(x), i(Y)) < K2W(X7 Y)7 (272)

where x,y € (R*)M K; and K, are constants defined as K; = — 2]7]' + p(max;es C;)
and Ky = 4M )\% + 3pu(max;<j<pr C;). The existence and uniqueness of solution
of (2.67)-(2.68) now follows from inequalities (2.71) and (2.72) by using Picard’s iteration
technique since (RZ+)M is complete under w. O

41



To prove Theorem 2.6.2, we will also require the following result, which shows that
the mean field process x(-) is smooth with respect to the initial conditions. We denote by
x(t,u) the value taken by the process x(-) at time ¢ > 0 when it starts at x(0) = u.

Lemma 2.6.2. For each j,j';i € J, n,n',k € Z,, and t > 0, the partial derivatives

Ox(t,u)  9%x(t,u) 9%x(t,u) . M .
= === and T T ezist foru € U™ and satisfy

OUp. i > Oup
¥ ¥

“oun, | = PP 2.73
‘ O, < exp(Bit) ( )
and 0%zy,i(t,u)| | 2api(t, w) B
Tt a zri(tu ,
7 ’ < 22(exp(2B1t) — exp(Bit 2.74
aun’jz ) aun,jaun’,j’ =B (exp( 1 ) exp( 1 )), ( )
2
where By = % + 24 (maxje 7 C;), and By = 21&?&%2)

Proof. Fix j, n, u and define x'(t) = 0x(t,u)/0u,, ;. If this partial derivative exists, then
x'(t) must satisfy 2/o,;(t) = 0, 2'4,;(0) = &, ;0k,n, Where §; ; denotes the Kronecker’s delta.
Further, by differentiating (2.66) with respect to u,; we obtain (we omit the argument ¢
to simplify notations)

de'v;  di\ _ _ = il
= S8 ()™ @ ens = ()™ @) T] een)™ TT ()™
;i s=1 s=i+1
i—1 i—1 M
i\ . ,
30— (@)™ = (o)) [T @aor)®™ TT (o)™
=1 [iTE=11 s=1 s=i+1
M i—1 M
d;\ A A
2 (@)™ = @)™) TT @)™ TT )™
=g ViTkI s=1 s=it1

— ,qu (ZL’,]w‘ — I/k-f—l,i) . (275)

Conversely, if x'(t) is a solution of the system above, then it must be the required partial
derivative. Using Lemma 3.1 of [30] (a generalized version of the Gronwall’s lemma) with
a = By, by = 0, and ¢ = 1 and the fact that |z, < 1 for all ki it is easily seen that

8mk,i(t,u)

o, exists and is bounded as given by (2.73).

Similarly, by differentiating (2.75) again with respect to w, ; and w, ;, we obtain the

. . 62$k’i(t,u) 82xk,i(t,u)
systems of equations satisfied by . and Dt s

, respectively. Lemma 3.1 of [30]
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can be applied again to these systems to show that the second order partial derivatives
also exist and are bounded as given by (2.74). O

We now prove Theorem 2.6.2 below.

Proof of Theorem 2.6.2 : Let Z be the set of continuous functions ¢ : Y™ — R and let

D be the set of those ¢ € = for which the derivatives 8“0(“_), 8; 2( ) and # exist for
Un, j ; n,j n!,j

all n,n' € Z, and 7, j" € J and are uniformly bounded by some constant B < co. Using
the metric w on UM and the sup norm on = we find that D is dense in 2. For ¢ € D we
have

N~ ((,0 (u + e(”’j )) - <p(u)> = &O(“’) (2.76)

N; Oy,
o (- 22 - ) - 2500 -

Thus using (2.60) we have

v =+ 552 o = 0] T T o (2222)

jegn>1 ) i=1 i=j+1
dp(u

h S Gl —unens) (P2 7
JET n>1 e

The right hand side of (2.78) can be rewritten as

j—1 M
ZZ ( [ Up— 1] 4 un] J} H Up— 11 H (un,i)di - #O] (un,j - un+17j)>
=1

jeg n>1 i=j+1
X (8¢<u)), (2.79)

8uw~

which coincides with

olx(t W)l co (2.50)
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where x(t,u) is the solution of (2.63)-(2.64) with x(0) = u.

We know that the semigroups of operators (T(t),¢ > 0) and (Tx(t),t > 0) correspond-
ing to the processes x(-) and xV)(-) are given by

T(t)p(u) = p(x(t, u)), (2.81)
T (t)o(u) = E[p(x™(1))[x™)(0) = ul. (2.82)

The generators corresponding to the semigroups T and Ty are A and Ay, respectively,
where

d
Ap(u) = —o(x(t,u))li=o, (2.83)
and Ay is given by (2.60). Hence, from (2.78),(2.79)(2.80) we have

lim AMp = Ap (2.84)

N—oo

for all p € D.

Define Dy C D as the set of those functions in D which depend only on finitely many
components u, ;. By definition of the metric w on UM, Dy is dense in D and hence
in Z. Also, it follows from Lemma 2.6.2 that T(t)py € D for ¢ € Dy and t > 0.
Therefore, by Proposition C.2.1 we have that D is the core of A. We also observe that
the semigroups (Tx(t),t > 0) and (T(t),t > 0) are, by definition, strongly continuous,
contraction semigroups on =. These facts together with (2.84) and Theorem C.2.3 imply
that Ty (t)p — T(t)p for all p € =Z and all ¢ > 0.

Now we notice that T is a Feller semigroup on =. This is because i) T(¢)1 = 1, where 1
is the indicator function on ™, ii) by Lemma 2.6.2, x(¢,u) is continuous with respect to
initial condition u. Hence, applying Theorem C.2.2 we conclude that if x¥(0) = uy € U™,
then x™V)(-) = x(-). O

Now we characterize the properties of the equilibrium points of the mean field x(-). We
recall that a point P = (P, k € Zy,j € J) € UM is called the equilibrium point of the

mean field x(-) if it satisfies 1(P) = 0, i.e., x(¢,P) = P for all ¢ > 0. Hence, from (2.66)
we have that for all k € Z, and j € J

7j—1 M
Piy1j = Pryag =4 <(Pk:,j)dj - (Pk:—i—l,j)dj) ITFED™ T (Prra), (2.85)
i=1 i=j+1
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where A = chj for each j € J. Note that by definition we have F,; =1 for all j € J.

In the next proposition, we show that for a fixed j € J the components Py ;, k € Z,
decrease with k super-exponentially, in the sense of the following definition.

Definition 2.6.1. A real sequence {z,} 15 said to decrease super-exponentially if and

TZEZ+
only if there ewist positive constants L, w < 1, @ > 1, and k such that z, < kw®" for all
n > L.

Clearly, if a sequence {zn}nEZ+ decays super-exponentially, then it is summable, i.e.,
D 7 < 00.

Proposition 2.6.2. Let P be an equilibrium point of the mean field x(-). Assume that for
each j € J, Py; 1 0 as k — oo. Then the following equations must hold

Py d
DO valnll | (GRS (2.86)
jeJ JjeT
Further, for each j € J, the sequence {Py;, k € Zy} decreases super exponentially. In
particular, under the assumption of the proposition, { Py ;. k € Z. } is a summable sequence.

Proof. For a fix j adding (2.85) for all £ > [ and using the fact limy_,, P;; = 0 we obtain

i M 7—1 M
Py = A H (Py)™ H (Pes1)™ — H (Pr)™ H (Prsr )" (2.87)
k>l Li=1 i=j+1 i=1 i=j

Now, multiplying both sides of the above equation by f and adding the resulting equation

over all j € J (and using limj_, P;; = 0) we obtain (2.86). From (2.86) we obtain
A\ d N

s < [Ty (Peg)® < (B) s where P = maxijon Py and d = 3, d;. Thus, we

X L\ d—1
have Py11; < 6P, where § = (Pk> maxi<;j<m(A;). Since by hypothesis, for each j,

P, ; — 0 as k — oo, one can choose k sufficiently large such that ¢ < 1. Hence, we have

(maxy<j<ar Prt1,j) < 5P, Similarly we have, (maxi<j<a Pitnj) < 5%]5;@. This proves
that the sequence { P ;,k € Z. } decreases doubly exponentially for each j. O

The following theorem guarantees the existence of an equilibrium point P of the process

x(+).
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Theorem 2.6.3. If A € A, then there exists an equilibrium point P € UM of the process

x(+).
Proof. The proof is given in Appendix B. m

The next theorem shows that P is unique and globally asymptotically stable.
Theorem 2.6.4. If A € A, then

lim x(¢,u) =P e UM for allu € U, (2.88)

t—o00

Furthermore, P is the only equilibrium point of x(+) in the space UM.

To prove Theorem 2.6.4, we first state the following lemma. We will write u < u’ to
mean that u, ; <, ; holds for all n € Z; and j € J.

Lemma 2.6.3. If u < u' holds, for u,u’ € UM, then x(t,u) < x(t,0’) holds for all t > 0.

Proof. We observe from (2.66) that for each k € Z, and j € J, I, ;(x) is a non-decreasing
in x,; for all (n,i) # (k,j). In other words, dxy ;(t)/dt is quasi-monotone for each k € Z,
and j € J. Therefore, the statement of the lemma follows from [[38], p. 70-74]. O

We define 2,;(t,u) = >4, 2x;(t,u) and 2,(t,u) = > 7 V20,5(t, ) for each n > 1
and j € J. Further, z, ;(u) = >, -, up; and z,(u) = > .7 7vjzn,;(u) for each n > 1 and
jeJ.

Lemma 2.6.4. If u € UM, then x(t,u) € UM for all t > 0 and

dt

denllow) _ (H (wn15(t )Y = 3 ‘“—tu)> foralln>1.  (2.89)

j=1 =1 J

In particular,

dt A,

M:)\<1_
J

TL\h W <t’“>> (2.90)

1

Proof. The result directly follows from (2.66) by first summing the right hand side of (2.66)
over all k£ > n and then over all j € J. O
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Using the above results we now prove Theorem 2.6.4 as follows.

Proof of Theorem 2.6.4: Clearly, Lemma 2.6.3 implies the following

x(t, min(u, P)) < x(t,u) < x(t, max(u, P)) (2.91)

Hence, to prove (2.88), it is sufficient to show that the convergence holds for u > P and
for u < P.

We first need to check that for each such u, the quantity z;(¢,u) (and hence also
zp(t,u) for n > 1) is bounded uniformly in ¢. If u < P, then by Lemma 2.6.3 we have
x(t,u) < x(t,P) =P for all £ > 0. Hence, z (t,u) < z(P).

On the other hand, if u > P, then by Lemma 2.6.3, we have x(t,u) > x(t,P) = P.
Hence,

M M
Z T t, u) Py

j=1 A

Thus, from (2.90) we have dzl( W < (. This implies that 0 < z;(£,u) < z(u) for all £ > 0.

Since the derivative of :L‘n,j( ) is bounded for all j € J, the convergence x(t,u) — P
will follow from

/ (xn,j(tau) - Pn,j) dt < o, ] € j,n > 1 (293)
0

in the case u > P, and from

/ (Pnj — @p(tu))dt <oo, j€T,n>1 (2.94)
0

in the case u < P. Both the bounds can be shown similarly. We discuss the proof of (2.93).
To prove (2.93) it is sufficient to show that

/ Z (2, (t, 1) P"’J)dt < 00, (2.95)
0 j=1 AJ

for all n > 1. We show this using induction starting with n = 1. Using (2.90), we have
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1
= $(aw =z w).

Since the right hand side is bounded by a constant for all 7, the integral on the left hand

side must converge as 7 — o0.

Now assume that (2.93) holds for all n < L — 1. We have from (2.89) and (2.86)

j=1 J j=1
M
_ ! (xL](t7u)_PL])
=\ /0 Z iy dt
7j=1
s/ M p M
L,j d;
+/\/0 (ij - H(xL,Lj(t,u)) ) dt
7=1 7j=1
" (@t w) = Pry)
o Lj\Y — 4 Lj
=\ /0 Z iy dt
7j=1
s /M M
=y (H (@t =] <PL1,j>df> i
0 \j=1 j=1

By the induction hypothesis, the last integral on the right hand side converges as 7 — oo.
The left hand side also is uniformly bounded. Hence, the first integral on the left hand
side also must converge as required. O]

Remark 11. A distribution @ € P(UM) is called an invariant distribution of the map
u — x(t,u) if for all continuous (and hence bounded) functions ¢ : UM — R and all ¢ > 0
we have
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/gp(x(t, u))dm(u) = /gp(u)dﬂ'(u). (2.96)

Hence, by definition dp, the Dirac measure concentrated at the equilibrium point P, is an
invariant distribution for the map u — x(¢,u). Conversely, suppose that 7r is an invariant
distribution of the map u — x(t,u) with 7w (™) = 1. Let u be chosen according to 7.
Theorem 2.6.4 implies that x(t,u) — P as t — oo for all u € U™. This implies that for all
continuous (hence bounded)functions ¢ : UM — R and all u € UM, p(x(t,u)) = ©(P) as
t — 0o. By dominated convergence theorem this implies that lim; o [ ¢(x(t,u))dm(u) =
J(limy o0 p(x(t,u)))dm(u) = ¢(P). But since 7 is assumed to be an invariant map of
u — x(t,u) we also have

lim [ p(x(t,u))dmw(u) = /(p(u)dﬂ'(u) (2.97)

t—o00

Thus, we have [ @(u)dmw(u) = o(P) for all continuous maps ¢. This implies © = dp.
Hence, a probability measure w € P(UM) with w(UM) = 1 is an invariant measure of the
map u — x(¢,u) if and only if # = 0p.

We now show that, if A € A, the stationary distribution of the process x¥)(.) (which
exists and is unique due to stability) converges weakly to the Dirac measure concentrated
at the unique equilibrium point of the mean field. Let 7y € P(U™M) denote the stationary
distribution of the process x¥)(-). Furthermore, let x™)(00) = limy_,o, x™¥)(¢) denote the
equilibrium state of the finite system distributed according to 7.

Theorem 2.6.5. If A € A, then wy = dp or equivalently xV) (<) = P.

Proof. We recall that the space UM is compact under the metric w. Hence, the sequence of
probability measures (my), € P(UM) is tight (See definition C.1.3). Thus Theorem C.1.2,
implies that (7y), is relatively compact and thus has limit points. In order to prove the
theorem, we now need to show that all limit points coincide with Jp.

Suppose that a subsequence (7y, ), of the sequence (7x )y converges to the limiting
distribution 7r. Further, for each k let the process xV¥)(.), start with initial distribution
7y, and let the mean field process x(-) start with distribution . By the convergence of
the operator semigroups established in Theorem 2.6.2 and Theorem C.2.2, it follows that
x(Ne) () = x(t) for all t > 0. Since, my, is the stationary distribution of the process
x(Ve)(.), the distribution of x(V%)(¢) is 7y, for all ¢ > 0. Hence, wy, = 7 and xVe)(¢) =
x(t) together imply that the distribution of x(¢) must be 7r for all ¢ > 0. This implies
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N — oo

(N)
X t x(t
( ) Theorem 2.6.2 ( )
~f
= ©
= -
t— 00| 2t =
a0 —
B
x(N)(oo) Theorem 2.6.5 p

N — oo

Figure 2.2: Commutativity of limits

that 7r is an invariant distribution of the map u — x(¢,u). If we can show that 7 satisfies
w(UM) = 1, then by Remark 11 we can conclude w = §p which proves the theorem. To
prove that 7 is concentrated on UM it is sufficient to show that E, [2@1 un,j] < oo for

all j € J. The coupling described in Remark 10 implies that E, [2@1 uw-] < ﬁ,
where p = m < 1. Hence, E, [2@1 un,j] = limy 00 Eny [2@1 “n,j] < ﬁ. This
completes the proof. O

We have therefore established that the interchange of limits indicated in Figure 2.2
holds.

2.6.1 Propagation of chaos

So far we have considered the convergence of the process x™)(-) which describes the evo-
lution of the entire system. In this subsection, we focus on a given finite set of servers in
the system. We show that as the system size grows the servers in the set become mutually
independent. Such independence is shown to hold at any finite time and at the equilib-
rium, provided that the initial server occupancies satisfy certain assumptions. We also
find the stationary distribution of occupancy of each server in the large system limit using
the independence property. It is shown that the stationary distribution is given by the
unique equilibrium point P of the mean field x(-). The independence property considered
is known as the propagation of chaos [29, 11] or asymptotic independence property [34, 32]
in the literature.

To formally state the results, we first introduce the following notations.
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o Let q,(;\;) (t) and q,(g{\]{)(oo), for k € {1,2,...,Nv;} and j € J, denote the occupancy of

the k" server of type j at time ¢ > 0 and at equilibrium, respectively.

o For j € Jand n € Z,, let a’:g) (t) = M) (t) — xﬂ)l’j(t) denote the fraction of type

n.J
j servers having occupancy exactly n at time ¢ > 0. Define the process V() =

(:E,(f\;)(), ne’Zy,je j). For each j, the vector >‘<§-N) (t) = (:EnN]) (t),n € Z+>, there-
fore, denotes the empirical distribution of occupancies of type j servers in the finite
system. By }_cg.N) (00) we shall denote the empirical distribution of occupancies of type

j servers at equilibrium.

e Let the process X(-) = (Z,,(:),j € T,n € Z;) be defined as 7, ;(t) = x,;(t) —
Tpy1,(t), for t > 0. We define z, ;(c0) = P,; — P11, where P is the unique
equilibrium point of the process x(-). For ¢ € [0, 00], we denote by X;(t) the distri-
bution on Z, given by X;(t) = (%, ;(t),n € Z,).

Next, we define the following notion of exchangeable random variables.

Definition 2.6.2. Let (q,(c],\;),l <k < Nv;,1 <5< M) denote a collection of N random

variables classified into M different types, where the index j represents the type. The
collection is called intra-type exchangeable if the joint law of the collection is invariant under
permutation of indices of random variables belonging to the same type. Thus, the collection

<q,(€{§), 1<kE<N7y,1<;5< M) is intra-type exchangeable if for each i € {1,2,..., M}

and permutation o; of the numbers {1,2,..., Nv;}, we have
N . N N N N
Law (ql(@,j)a 1<k< N7j7 1<;< M) = Law (qz(ri()l),i’ q((yi(%),ia ce q((,i(zv%)7ﬁ qi(w‘)a

1 <k< Ny, je j\{z}) (2.98)

Theorem 2.6.6. For the model considered in this paper if (q,(i\;) (0),1<k<Ny;,1<j<

M) is intra-class exchangeable and if ™ (0) = u € UM as N — oo, then the following
holds

(1) For each j € J, 1 <k < Nv;, and t € [0, 00|, q,(cf\j{)(t) = U;(t) as N — oo, where
U;(t) is a random variable with distribution X;(t).
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7 ) %) -~ 1 = 3 -~ -~ PECECIEY -~ -~ .
(ii) Fiz positive integers 1 < r; < N7y, 1 < ry < Ny 1 < ry < Ny Then for
each t € [0, 00],

(ng{g),lgkgrj,lgng) = {Up;(1),1 <k <r;1<j <M},

as N — oo, where Uy ;(t), 1 <k <r;,1 <j <M, are independent random variables
with Uy ;(t) having distribution X;(t) for all 1 < k <r;.

Proof. Note that the first part of Theorem 2.6.6 is a special case of the second part.
Hence, it is sufficient to prove the second part. For simplicity of notations, we shall prove
the second part for the M = 2 case. The proof readily extends to any M > 2.

Since under the type based scheme all the servers of the same type are statistically

identical, the collection (qg)( ),1 <k < Nv;,1 <j <2)is intra-type exchangeable at

time ¢ € [0, 00| provided that the collection (q,i])(()), 1 <k < Nv,1 <j<M)isalso
intra-type exchangeable. *

Now, given that x™)(0) = uy € UM as N — oo we know from Theorem 2.6.2 and
Theorem 2.6.5 that X" (¢) = %(t) as N — oo for all t € [0, 00]. Henceforth, we will omit
the variables ¢ in our calculations since they hold for all ¢t € [0, 00]. To prove the second
part of the theorem for M = 2 it is sufficient to show that:

- H<¢k,i1> H(f/%,)_(g) as N — oo (2.99)
k=1 k=1

E[] ¢ <q1(€]\1f)> JJE2 (%i?)
k=1 k=1

for all bounded mappings ¢ : Z, — R, and ¢y : Z, — R,. We have

T2

Hsbk (qm)H@D (qm)] 1;[ D X1) k];[l Ui, R)
Hm (qkl)Hw ()] - ﬁ<¢k,>-<§“>ﬁ<wk,f<ém>]|

k=1 k=1
r1 r1 T2

H<¢k7>—<§N>>H<wk,>—<§N>>] — [L¢en =) T ] (0 %2

k=1 k=1 k=1

E (2.100)

+

"We note that the collection (q,(cj\;)(oo), 1 <k < Nvj;,1 <j < M)is intra-type exchangeable since the
stationary distribution can be symmetrized by using appropriate scaling factor.
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where >_c§-N) = (xpj,n € Z;) is the random probability measure on Z, induced by the

process X¥)(-). We note that the second term on the right hand side of the above inequality
vanishes as N — oo because of the following facts: x( ) = Xjas N = ooforj=12;%
and X, are deterministic; xg-N) is a bounded random vector for each 57 = 1,2. Now, due
to intra-type exchangeability the permutation of states between servers belonging to the

same class does not affect the joint distribution. Hence, we have

H Pr ( ) H¢k < >] - (N’Yl)rll(N’YQ)rg .

El > 1:[ (g(k )Hwk(q,)2> (2.101)

GGP(Tl,N’yl)
O'IEP(TQ,N’)/Q)

where (N)y = N(N —1)...(N —k+1), and P(r,n) denotes the set of all permutations of

(N)

the numbers {1,2,...,n} taken r at a time. Also, by definition of X;"’ we have

ﬁ<¢ka ") ﬁ(@/)k:, ?_CéN)>]
s S 0) ([l S ()] e

Hence, the first term on the right hand side of (2.100) can be bounded as follows

- E

e | Lo (o) TT v ()

TTioe =) [Tt >—<§N>>] '

k=1 k=1

1 _ 1 ritre
<(N%)n(N72)r2 (N%)”(NW)”)B

() (N2 — (N (V) D

(Ny1) (Noyg)r
(N’yl)h (N"YQ)??
(N'yl)’”l(Nyg)“) —0as N = o

< (N,yl)rl (NVQ)M

< QBT1+7’2 (1 _
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where B is a constant such that ||¢x|lec < B for k = 1,2,...,7 and |[¢x||ec < B for
k=1,2,...,ry. This completes the proof. O

Thus, the above proposition shows that in the limiting system server occupancies be-
come independent of each other. It also shows that the stationary occupancy distribution of
any given type j server in the limiting system is X;(00) = { P, ; — Pnt1,4,n € Z; }. Hence,
in the limiting system the stationary tail distribution of occupancy of a type j € J server
in the limiting system is given by { Py ;, k € Z,}. Using the independence of servers in the
limiting system we conclude the following proposition.

Proposition 2.6.3. In equilibrium, the arrival process of jobs at any given server in the
limiting system is a state dependent Poisson process. Further, the arrival rate of jobs at a
server of type j € J when it has occupancy k in the equilibrium s given by

j—1 M
A (Pe)™ — (Proyry)® 3 di
Mj = ——2 J (Pr.s) Pri1i)™. 2.103
J ’Vj Pk,j Pk+1,] E ’L:lJ_J[rl( +1 ) ( )

Proof. Consider a tagged type j server in the system and the arrivals that have the tagged
server as one of its possible destinations. These arrivals constitute the potential arrival
process at the tagged server. The probability that the tagged server is selected as a potential

N'yjfl)

d;—1

. . . . ds;
destination server for a new arrival is (]%—73) =

= ¥ Thus, due to Poisson thinning, the
d; J

J
dj\

potential arrival process to the tagged server is a Poisson process with rate ]\?—; XN = .
J J

Next, we consider the arrivals that actually join the tagged server. These arrivals
constitute the actual arrival process at the server. For finite NV, this process is not Poisson
since a potential arrival to the tagged server actually joins the server depending on the
number of jobs present at the other possible destination servers. However, as N — oo, due
to the asymptotic independence property shown in Theorem 2.6.6 the occupancies of the
sampled servers become independent of each other. As a result, in equilibrium the actual
arrival process converges to a state dependent Poisson process as N — oc.

Consider the potential arrivals that occur to the tagged server when its occupancy is
k. This arrival actually joins the tagged server with probability #1 when x other servers
among the d; servers of type j have occupancy k, all the d; servers of type ¢ < j have at
least occupancy k, and all the d; servers of type ¢ > j have at least occupancy k+ 1. Thus,
the total arrival rate A ; can be computed as
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A 1 (dj—1 N P
Akj = o ; P ( . ) (Prj = Pet14)" (Prsy)
7j—1 M
< [TPea)™ T] (Perra)™. (2.104)
i=1 i=j+1
which simplifies to (2.103). O

Thus, the above proposition shows that at equilibrium the arrival rate at a given server
in the limiting system is a state dependent Poisson process whose rates depend on the
stationary tail probabilities Py ;, k € Z, and j € J through (2.103).

The stationary tail probabilities can, in turn, be expressed as functions of the arrival
rates. Indeed, in equilibrium the global balance equations (which hold under state depen-
dent Poisson arrivals due to Theorems 3.10 and 3.14 of [39]) yield

(Prj = Per1j) Ay = (Pet1j — Prsog)pCy, for j € Tk € Zy. (2.105)

We note that the above equation reduces to (2.85) if we replace the arrival rates A, ; by
the RHS of (2.103) The equilibrium point P is, therefore, the unique fixed point of the
mapping O : UM — UM defined as O(P) = F(G(P)), where G(-) denotes the mapping
from UM to the space of possible arrival rates (defined by (2.103)) and F(-) denotes the
mapping from the space of possible arrival rates to the space UM (defined by (2.105)).
Thus, the equilibrium point P can be computed using the fixed point iterations (i.e., by
repeatedly applying the mapping ©(-) to some arbitrary point Q € U™.)

Remark 12. All the results discussed above have been obtained assuming exponential
job length distributions. If the independence of servers shown in Theorem 2.6.6 holds
for all job length distributions, then Proposition 2.6.3 continues to hold irrespective of
the job length distribution. This implies that (2.105) holds. Since the servers in the
system are processor sharing servers and (2.105) represents detailed balance, Theorem 1
of [40] implies that that the stationary distribution of each server in the limiting system
is insensitive to job length distributions. Hence, under the assumption of asymptotic
independence of servers for general job length distributions, the stationary distribution of
server occupancies in the limiting system becomes insensitive to the job length distribution
type and only depends on its mean. We refer to this as the asymptotic insensitivity property.
The proof of asymptotic insensitivity requires proving asymptotic independence for general
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job length distributions, which remains as an open problem. Asymptotic independence was
conjectured in [34] for homogeneous systems with any local service disciple (where the rate
at which jobs are processed depends only on the current jobs that are being processed) and
general job length distributions. Our numerical results, presented in Section 2.7, supporting
asymptotic insensitivity, suggest that such asymptotic independence should also hold for
heterogeneous systems considered in this chapter.

Remark 13. As in the case of the SQ(d) scheme with heterogeneous servers, it is easily
seen (by applying Little’s law) that the mean response time of jobs for the type based
scheme in the heterogeneous case can be expressed as a function of the stationary tail
probabilities P ;, k € Z,, j € J and is given by

M 00
— 1
TN =52 %> Phs (2.106)
j=1 k=1

Thus, the mean response time of jobs can be computed by first computing the stationary
point P from equations (2.103) and (2.105) (using the fixed point method discussed above)
and then using (2.106).

2.7 Numerical Results

In this section, we first investigate the accuracy of the mean field analysis of the type-based
scheme in predicting the performance of the scheme for large but finite systems. We then
numerically compare the mean response time of jobs under the different job assignment
schemes discussed in this chapter. Finally, numerical evidence to support asymptotic
insensitivity is also provided. All simulation results, presented in this section, are obtained
by averaging 10,000 independent runs.

To investigate the accuracy of the mean field analysis of the type-based scheme, we
compare the mean response time of jobs computed from (2.106) with that obtained by
simulating the finite system for different values of N and d, where d; = d for all j € J. We
choose the following parameter setting: M =2, v, =% =05, u=1,C, =2/3, Cy, = 4/3.
For the above parameter setting the maximal stability region of the system is given by
A={N:0<X<1}. We choose A = 0.8, which lies in the stability region. The results
are shown in Table 2.1. As expected, the difference between the asymptotic results and
the corresponding simulation results decreases with the increase in N. We also observe
that for the same value of N, increasing d, increases the percentage of error between the
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simulation results and the results obtained from the mean field limit. This is because for
finite NV increasing d increases the correlation between the servers. This acts in opposition
to the independence of servers in the limiting system. From the results it is clear that
the mean field analysis quite accurately captures the behavior of finite systems under the
type-based scheme.

Table 2.1: Accuracy of the mean field analysis of the type-based scheme
d Asymptotic N =20 N =50 N =100 N =200
2 1.3687 1.4695  1.3960  1.3720 1.3689
4 1.0960 1.2319  1.1492  1.1211 1.1055
6 1.0123 1.1595  1.0699  1.0396 1.0281
8 0.9732 1.1216  1.0328  1.0007 0.9847
10 0.9539 1.1064  1.0083  0.9788 0.9646

We now compare the mean response time of jobs under the different schemes discussed
in this chapter. We take the following parameter values: M = 2, v = v = 0.5, p = 1,
C1 =2/3, Cy =4/3, d =2, N = 200. For these parameter values we have A, = A =
{A:0 < X< 1}. Hence, in this setting, the SQ(d) scheme achieves the maximal stability
region. We note that this is in accordance with Proposition 2.4.1 since the condition
d > [Cy/C] is satisfied in this case. In Figure 2.3, we plot the mean sojourn time of jobs in
the system as a function of A for the different schemes discussed in this chapter. The routing
probabilities for the randomized static scheme and the hybrid SQ(2) scheme are chosen to
be the optimal routing probabilities (obtained using (2.9) and (2.45), respectively). We
have also plotted the mean sojourn time of jobs under the memory based scheme proposed
in [31], in which the least loaded server among the d servers, sampled for an arriving job,
is kept in the memory and used as a potential destination server for the next arriving
job. From Figure 2.3, we observe that the mean sojourn time of jobs is highest under
the randomized static scheme and lowest under the type-based scheme. The performance
of the hybrid SQ(2) scheme is seen to be close that of the type-based scheme. Thus, we
conclude that the proposed schemes significantly outperform other existing randomized
schemes.

We now consider a second set of parameter values given by M = 2, v = v, = 0.5,
pw=1 C =1/3, Cy =5/3, d =2, N = 200. For the above parameter values we have
Ao ={A:0<A<2/3} CA={):0<)X<1}. Hence, in this case, the stability region
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Figure 2.3: Mean sojourn time jobs as a function of A for different schemes. Parameters:
M =2 C,=2/3,Cy=4/3, and 7, =y, = 0.5.

of the system under the SQ(d) scheme is smaller than the maximal stability region. In
Figure 2.4, we plot the mean sojourn time of jobs in the system as a function of A for
the different schemes considered in this chapter. As in the previous case, the routing
probabilities for the randomized static scheme and the hybrid SQ(2) scheme are chosen to
be the optimal routing probabilities. We observe that in this case, the mean sojourn time
of jobs under the randomized static scheme is lower than that under the SQ(2) scheme.
This is expected since in this case the stability region of the system under the randomized
static scheme is larger than that under the SQ(2) scheme. We observe that the hybrid
SQ(2) scheme and the type-based scheme significantly outperform the randomized static
scheme even in this case.

In Figures 2.3 and 2.4, the routing probabilities for the randomized static scheme and
the hybrid SQ(2) scheme were chosen to be the optimal routing probabilities. Computing
the optimal routing probabilities requires the knowledge of the the arrival rate A\, which is

difficult to estimate. However, if we choose p; = % for all « € J, then according to
JjeT 11~

Remark 7 the system, operating under the hybrid SQ(d) scheme, is stable for any A € A.
The same result also holds for the randomized static scheme. With the above choice of
routing probabilities, in Figure 2.5 we now compare the mean sojourn time of jobs in the
system under the randomized static scheme, the hybrid SQ(2) scheme and the type-based
scheme. The parameters are chosen to be M =2, C; = 1/5, Cy = 9/5, v = v, = 0.5. We
observe that even in this case the performance of the type-based scheme is very close to
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Figure 2.4: Mean sojourn time jobs as a function of A for different schemes. Parameters:
M = 2, Cl = 1/3, 02 = 5/3, and Y1 = Y2 = 0.5.

that of the hybrid SQ(2) scheme.

We now numerically investigate the behavior of the type based scheme under different
job length distributions. In Table 2.2, mean sojourn time of jobs under the type-based
scheme is shown as a function of A, for the following distributions.

1. Constant. We consider the job length distribution having the cumulative distribution
given by F(x) =0 for 0 <x < 1, and F(x) = 1, otherwise.

2. Power law: We consider the job length distribution having cumulative distribution
function given by F(z) =1 — 1/42? for > 1 and F(x) = 0, otherwise.

For both distributions we have u = 1. We choose the following parameter values M = 2,
Cy =4/3, Cy =2/3, N =100, y3 = 2 = %, and d; = dy = 2. We observe that there is
no significant change in the mean sojourn time of jobs when the job length distribution
type is changed. The results, therefore, numerically supports the asymptotic insensitivity

property as discussed in Remark 12.
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Figure 2.5: Mean sojourn time jobs as a function of A for different schemes. Parameters:
M =2 C,=1/5 Cy =9/5 7 = v = 0.5, N = 200. The routing probabilities for the
randomized static scheme and the hybrid SQ(2) scheme are not optimal.

2.8 Conclusion

In this chapter, we investigated the stability and performance of randomized dynamic job
assignment schemes for heterogeneous processor sharing systems. We showed that uniform
sampling of servers from the entire system may result in the reduction of the stability
region of the system. A hybrid scheme in which biased sampling of different server types is
combined with uniform sampling of servers within the same type was shown to achieve the
maximal stability region but only with the knowledge of the system parameters. A type-
based scheme in which servers of each type are sampled at each arrival instant of a new job
was also considered. We saw that the type-based scheme achieves the maximal stability
region without requiring the knowledge of the system parameters. The performance of the
type-based scheme was characterized using mean field techniques. Numerical results were
presented to show that the hybrid scheme and the type-based scheme have significantly
lower mean response time of jobs than randomized static schemes. We also observed that
under the proposed schemes the system is insensitive to the type of job length distribution
in the large system limit. Some of our preliminary results on the stability of the SQ(d)
scheme in the heterogeneous scenario and on the analysis of the hybrid SQ(d) scheme were
presented in [41, 42, 43]. The detailed analysis of the type-based scheme appeared in [44].
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Table 2.2: Asymptotic insensitivity of the type-based scheme

Mean sojourn time Constant Power Law

(Mean Field) (Simulation) (Simulation)

0.2 0.8076 0.8106 0.8098
0.3 0.8609 0.8642 0.8640
0.5 0.9809 0.9852 0.9840
0.7 1.1696 1.1759 1.1757
0.8 1.3687 1.3741 1.3740
0.9 1.7531 1.7641 1.7645
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Chapter 3

Randomized Job Assignment in
Heterogeneous Loss Systems

In this chapter, we consider randomized job assignment schemes for a system of parallel
servers each having a finite amount of a resource. The incoming jobs are assumed to have
specific resource requirements. Therefore, only a finite number of jobs can be processed
simultaneously at each server. This is unlike the model in Chapter 2, where the incoming
jobs had elastic resource requirements and therefore could be served by processor sharing
servers. A job is accepted for processing at a given server only if the server has enough
resource to process the job. Otherwise, the job is discarded or blocked. We consider
randomized schemes to assign jobs to the servers with the aim of reducing the average
blocking probability of jobs in the system. In particular, we consider a scheme that assigns
an incoming job to the server having the maximum vacancy or maximum amount of unused
resource among d servers, sampled uniformly at random. We show that the above scheme
significantly reduces the average blocking probability of jobs as compared to randomized
static schemes in which the incoming jobs are assigned to the servers independently of the
states of the servers.

3.1 Introduction

Consider jobs with specific requirements of a resource, arriving at a multi-server system
consisting of N parallel servers. Each server holds a finite amount of the required resource
and therefore can process only a finite number of jobs simultaneously. We consider a het-
erogeneous system where different servers hold different amounts of the resource. Upon
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arrival, a job is routed/assigned to a server, where the job is either accepted or blocked
depending on the availability of the resource requested by the job. If accepted, the pro-
cessing of the job begins immediately at the server. Our aim is to design job assignment
schemes that reduce the average blocking probability of the jobs while requiring the state
information of a small number of servers at each job arrival instant.

Models, such as the one described above, arise frequently in the context of cloud com-
puting systems that provide Infrastructure-as-a-service (IaaS) [45, 46]. A cloud service
provider sells computing resources to its users in terms of virtual machines (VM’s), that
are computing instances consisting of various resources such as CPU, memory, storage etc.
To meet different user demands the cloud operator allows its users to choose from various
classes of VM’s (e.g. large, small etc.), differing in the amounts of resources they hold. We
model situations [47], where the VM’s differ only in one bottleneck resource (e.g. memory).
In such situations, different classes of VM’s correspond to different amounts of the same
resource.

Each user, depending on its requirement, requests a VM of a specific class. The VM
request is then assigned to a physical machine (PM) or server where the request is either
accepted or blocked depending on the availability of the requested resource. If accepted,
the user holds the VM for the duration of its service after which it is released. To maintain a
certain quality of service, the cloud service provider aims at reducing the average blocking
probability of users which measures the fraction of time a user is denied access to its
required resource.

The average blocking probability of jobs in the system can be reduced by suitably
assigning the incoming jobs to the servers. Ideally, a job assignment scheme, which com-
pares the states of all the servers at every arrival instant of a new job, has the potential
to minimize the average blocking probability of the jobs. However, for large systems, such
a scheme will involve high communication overhead between the job dispatcher and the
servers. To reduce the overhead, we propose a randomized dynamic scheme in which only
d (<« N) servers are randomly sampled at each arrival instant and the arriving request
is assigned to the server having the maximum available resource (vacancy) among the
d sampled servers. We show that the above scheme results in a significant reduction in
the average blocking probability of jobs as compared to randomized static job assignment
schemes, where job assignments are made independently of the server states. Our results
also show that at ‘high’ loads the the performance of the proposed scheme is nearly optimal
in terms of reducing the average blocking probability of jobs.
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3.1.1 Related literature

The dynamic routing scheme considered in this chapter is a loss model analog of the SQ(d)
scheme considered in Chapter 2. A detailed discussion on the literature treating the SQ(d)
scheme for first-come-first-serve servers is given in Section 2.1.1 of Chapter 2. Here we
only discuss the works relevant to loss networks.

Turner [4, 48] studied the SQ(d) scheme for a system of Erlang servers having infinite
capacities in the large system limit. It was shown that in the large system limit, the system
behavior can be characterized by a mean field limit, which satisfies a system of differential
equations. The resulting tail distribution of server occupancies was shown to have a fast
rate of decay even for small values of d. However, the existence and uniqueness of the
equilibrium point of the mean field were not shown explicitly.

Our work is closest to a recent work by Xie et al. [49], which analyzed an Erlang
loss system with identical (homogeneous) servers under the SQ(d) policy using mean field
techniques. In [49], the existence, uniqueness, and (global) asymptotic stability of the
equilibrium point of the mean field were established for the homogeneous (servers) case
with single class of customers. For the homogeneous (servers) case with multiple class of
customers, the paper derived a recursive relationship among the tail probabilities of the
number of occupied resource units for the limiting system. In this chapter, we generalize
their results to the scenario where the servers have heterogeneous capacities. For this
scenario, we establish independence of the servers in the limiting system through the milder
requirement of intra-type exchangeability since the stronger requirement of exchangeability
among all types of servers does not hold in the heterogeneous scenario. Such asymptotic
independence of servers in the large system limit, also known as the propagation of chaos
property, was studied earlier in the context of alternative routing by Graham and Méléard
[50, 51] where the independence among servers was established on the path space of the
processes of interest.

Mean field techniques have also been used in [52, 53] to study dynamic alternate routing
policies for a fully connected, circuit switched network. The policies were analyzed in the
limit as the number of links in the system increases to infinity. A simpler version of the
problem, for a network without spatial features, was considered in [54]. A lattice caricature
of the alternate routing problem was analyzed in [14]. In all the above works, it was found
that, for certain ranges of the system parameters, multiple stable equilibrium points of the
mean field exist. Hence, in such cases the finite system exhibits metastability, where the
system fluctuates among multiple stable configurations. Metastability was also observed in
[55] for an open network of loss servers where jobs of different classes move from one server
to the other until they complete their service at all servers. However, for the system under

64



consideration in this chapter, the mean field is shown to have a unique, asymptotically
stable equilibrium point for all parameter settings.

3.1.2 Contributions

In this chapter, we consider the loss model analog of the SQ(d) scheme, where each incoming
job is assigned to the server having the maximum vacancy among a set of d servers, sampled
uniformly at random from the entire system. A job is discarded or blocked if none of the
d servers, sampled at its arrival instant, has the required resource to process the job. We
refer to this scheme as the MV(d) scheme, keeping in mind its similarity with the SQ(d)
scheme discussed in the previous chapter.

The performance of the MV(d) scheme is analyzed for a system with heterogeneous
servers and multiple job classes using mean field techniques. The mean field limit is
shown to have a unique and asymptotically stable equilibrium point which characterizes the
stationary distribution of the states of the servers in the limiting system. Using the concept
of intra-type exchangeable random variables, introduced in Section 2.6.1 of Chapter 2, it
is shown that any finite set of servers in the limiting system become independent.

Using the asymptotic independence of servers, a one dimensional recursive relationship
between the stationary tail probabilities of server occupancies is obtained. This allows
computation of the average blocking probability of jobs without having to compute the
stationary distribution of the states of the servers. Using the recursive relationship, the rate
of decay of stationary tail distribution of server occupancies is characterized. Numerical
results are presented to show that the MV(d) scheme significantly reduces the average
blocking probability of jobs as compared to the randomized static job assignment schemes.
Furthermore, at ‘high’ loads the scheme is shown to be nearly optimal in terms reducing
the average blocking probability of jobs.

3.1.3 Organization

The rest of the chapter is organized as follows. In Section 3.2, we introduce the detailed
system model and the proposed job assignment scheme. In Section 3.3, we state our main
results and discuss their implications. Section 3.4 presents the detailed proofs of the main
results. Numerical results are provided in Section 3.5 to compare the proposed scheme
with other existing schemes. Finally, the chapter is concluded in Section 3.6.
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3.2 System model

We consider a system consisting of N parallel servers, where jobs or VM requests arrive
and request necessary resource for processing. The servers are categorized into M different
types based on the amounts of resource they hold or their capacities. Let J = {1,2,..., M}
be the index set of server types. A server of type j € J is assumed to hold C; units of the
resource. Without loss of generality, we assume that the capacities are ordered as follows:

CL<Cy<...<Chy (3.1)

Furthermore, the fraction of type-j servers in the system is assumed to be fixed and is
denoted by ~; € [0,1] for all j € J. Clearly, we have Z]Ai1 v; = 1.

Jobs or VM requests are categorized into L classes depending on their resource re-
quirements. Class [ € £ = {1,2,...,L} VM requests require 4; > 0 units of resource
from any given server in the system and are assumed to arrive at the system accord-
ing to a Poisson process with rate NJ); independent of the other classes. We denote by
A = (A1, Ay, ..., Ap) the L-dimensional vector of resource requirements. We say that a
server is in state n = (ny,ne,...,ny) when, for each [ € L, there are n; jobs of class [ in
progress at the server. Clearly, the set of admissible states for a type j € J server is given
by §; = {E €Zt:n-A< C’j}, where Z, denotes the set of all non-negative integers and

n-A= ZZL: 1 A We define the set of blocking states Bj(»l) for class [ € L jobs at a server
of type j € J as the set of states in S; for which the vacancy or the number of unused
resource units is less than A;, i.e., B](-l) = {ﬂ € ZJLr O —A<n-A< Cj}. Upon arrival,
a job is routed to one of the N servers according to the following routing scheme:

The MV (d) scheme: Upon arrival of each VM request, d > 2 potential destination
servers are sampled uniformly at random from the set of N servers. The actual destina-
tion server for the arriving request is then chosen to be the server having the maximum
vacancy or the maximum units of unused resource among the sampled servers. Ties among
(sampled) servers of the same type are broken uniformly at random and ties across server
types are broken by selecting the server type with the highest index (highest capacity). For
example, if there are two type-j servers and one type ¢ < j server having the maximum
vacancy among the sampled set of d servers, then any one of the two type j servers is
chosen to be the destination server with probability 1/2.

The destination server accepts the job assigned to it only if the resource requested by the
arriving job is available at the server. If accepted, processing of the job begins immediately.
Otherwise, if the server is in a blocking state for the arriving request, then the request is
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discarded or blocked and lost. Clearly, a class-l VM request is blocked only when all the d
potential destination servers have vacancies less than A;. The service times of the accepted
job requests are assumed to be independent and exponentially distributed random variables
with mean 1. The service times of jobs are assumed to be also independent of the inter-
arrival times of the jobs. The resource held by a request is released immediately upon the
completion of its service.

3.3 Main results

In this section, we state the main results of this chapter and discuss their consequences.
Our results are asymptotic in the sense that they are derived in the limit as the system
size N — oo keeping the proportions v;, j € J, fixed. Such results are especially useful
in the context of cloud computing systems since they typically run tens of thousands of
servers having varied capacities. We assume that C; and A; are non-negative integers for
each j € J and [ € L.

Main results: For the model described in Section 3.2, let Pk(fj) denote the stationary
probability that a server of type j € J has at least k units of occupied resource. Then
P,g) converges to Py ; as N — oo, where P ; is the solution of the following recursive
relationship:

. d
AN (< .
k(Pej— Peprg) = Y % (Z ViPe-arCCri + Y ViPem At Ci—Cyra
=1 i=1 i=j+1
j—1 M d
- (Z YiPr-a+ci-cyi + Z%‘Pk—AlJrci—cjﬂ,i) , (3.2)
i=1 i=j

where 1 <k < Cj, Py =1for k <0, and Pg;11; = 0 for all j € J. Furthermore, in the
limit as N — oo the servers become mutually independent.

Remark 14. Using the independence of servers stated above and the probabilities P ;

found by solving (3.2) the blocking probability Péf())cking of class-l requests in the limiting
system can be computed as follows: A class-I request is blocked at a server with capacity
C; if the number of units of available resource is less than A;. The stationary probability

that a server of type j has less than A; units of available resource is Fg; 4,41, The

67



probability with which a type-j server is sampled at the arrival instant of a job v; (due
to uniform sampling). Thus the total probability that a randomly sampled server is in a
blocking state for class-l requests is > | jer ViPo;— a1 Since the servers in the limiting

system are mutually independent, the probability that a class-/ arrival is blocked is given
d

by Pg}mking = <Zje 7%iFe - Az+1,j> . Hence, the one-dimensional recursive relation (3.2)
allows one to compute the average blocking probability of jobs in the limiting system using
the stationary probabilities of the total number of occupied resource units. The stationary
probabilities of the total number of occupied resource units at a server are much simpler
to compute than the stationary probabilities of the server states since the state of each
server lies in a multi-dimensional state space.

A lower bound on the average blocking probability: Under an arbitrary job
assignment policy, the average blocking probability of jobs can be lower bounded as follows.
For an arbitrary job assignment scheme, let the average blocking probability of class-/

requests be denoted by Péf())cking. Hence, by Little’s law, the average number of class-/

requests in the system is given by (1 — Péfc))cking

class-l requests that a server of type j can process be Bj(l) = maXpes, (7). Then the average

)JNX;. Now let the maximum number of

number of class-I requests in the entire system is upper bounded by N > e ”ijj(-l). We
therefore have

<]' - Péf())cking)N)\l S NZW]BJ(Z)v (33)
JjeJ

from which we obtain the following lower bound on Péfc))ckmg.

B ()

. B: A

Blocking = (1 - —ZMA?J ! ) = (1 - —;r;t) : (3.4)
+ +

where Aglr)it =D e fijj(.l) and (w); = max(0,w). We note that the above lower bound is
(@

tight only for A, > A, which represents the heavy load scenario. In Section 3.5, we will
compare the blocking probability of jobs under the MV(d) scheme with the lower bound
derived above to show the efficacy of the MV (d) scheme.

Rate of decay of the stationary tail probabilities: If we specialize (3.2) to the
case where only a single class of jobs (L = 1) requiring one unit of resource (A = 1) arrive
at the system, then we obtain
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. d
A (L =

Prj — Pry1y = & [(Z ViPerrci-cpi + Y %Pmcicj,i)
J

i=1 i=j+1

j—1 M d
- (Z Yilrh-1+ci—cyi + Z%Pwroicj,i) , (3-5)

i=1 i=j

where the arrival rate of the jobs is NA. Using (3.5) we can explicitly characterize the
rate of decay of the probabilities P ;, k € {0,1,...,C;}, which denote stationary tail
probabilities of the number of jobs in progress at a type j server in the limiting system.
This is done in the following proposition whose proof is similar to the proof of Theorem 2
of [49] for the homogeneous loss model.

Proposition 3.3.1. Let {Pk,O <k< CM} be defined as follows: P, =1 for 0 < k < kqy
and

Adk*koil
P, =

(I + k= ko) (LA + k= ko — 1)d . ([A] + )&

for ko +1 <k < Cy, where kg = |\] + Cy — C4, and |y| denotes the greatest integer not
exceeding y. Then for the single class case, with each job requiring one unit of resource,
we have

(3.6)

M
Z’yijJer,CMJ S Pk fO?” 0 S k S CM (37)

Jj=1

In particular, the average blocking probability of jobs is upper bounded as

d
Pbcz’giking = <Z fyjpcjvj> < PgM (38)

VSN

Proof. From (3.5) we obtain
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D (k+ 14 Cj— Cur) 1% (Prsi+cy—Carg — Praarcy—Cars)
jer

M d M d
= A (Z ’Yjpk—i-Cj—CM,j> - (Z 7jpk+1+Cj—CA1,j> ) (3'9>

Jj=1 J=1

where 0 < k < Cj — 1 and (w); = max(0,w). From (3.9) the following can be shown to
hold for 0 < k < (' — 1 using backward induction starting at &k = Cy; — 1.

M M d
D (k+1+4Cj— Cu) 17 Prrrscy—carg < A (Z %Pkwj—cM,j) : (3.10)
j=1 j=1

From (3.10) it is clear that for Cy — C; < k < Cyy — 1 we have

M \ M d
P _ < P ; 3.11
(Z Vi k+1+C; C'MJ) ~ k4 (Cl — CM) +1 (; Vi k+C; CMJ) ) ( )

j=1
Now, for 0 < k < ko, P, = 1 > (ij‘ilyijJer_cﬂl’j) holds trivially. Assume that

<Zj\i1 Vj Pk+cj—CM,j) < P, holds for some k > ky. Using induction, we will now show that
the inequality must hold for k + 1. Since ky > C)j; — C1, we have from (3.10) that

M N M d
(Z /Vjpk’+1+0j—CM,j> < k+ (C,—Cy) +1 (Z %P’f'f'oj—CMJ)

j=1 Jj=1
A
<
- ]{+(01—CM)+1
The last equality follows from the definition of {Pk,O <k< CM}. This completes the
proof. n

Bl = P,

The above proposition shows that for d > 2 the quantity Z;\il Vi Prvc;—cyp,j, Which
denotes the probability that a randomly sampled server can hold at most C); —k additional
jobs, decreases with the increase in £ at a rate much faster than that for d = 1. This shows
the efficacy of assigning each incoming job by comparing the states a small number (> 1)
of servers in the system at the arrival instant of the job.
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3.4 Mean field analysis

In this section we provide detailed proofs of the main results given in Section 3.3 using
mean field analysis. We first introduce the notation and mathematical framework required
for the analysis.

Notations: The unit vector in Z# with one in the r position is denoted by e, and by
e we denote the L-dimensional vector of all ones, i.e., e = (1,1,...,1). Furthermore, for
each 7 € J we denote the space of probability distributions on §; by V;, i.e.,

Vi =1 (0n),es, 9> 0forallne S, ga=1,. (3.12)

QGSJ'

We note that the space V; of probability measures on the finite space S; is convex and
compact under any norm. The set of empirical probability distributions on §; when the

system size is N is denoted by V}N), ie.,

VIV = {(gn)ses, € Vit N1ign € Z4 | (3.13)

We will mainly be interested in the spaces V = [, V; and V) = [Iics V™ which are
the Cartesian products of the spaces V; and V;N), respectively, over j € J. A point in the
space V (or VM) is denoted by u = (u,j,n € S;,j € J) with the understanding that for

each j € J the collection (u, ;,n € S;) belongs to V; (V;N)). We observe that the space V
is compact since for each j € J the space V; is compact.

Analysis: For eacht > 0and n € §j, let x(ﬂ]\;) (t) denote the fraction of type-j servers in

state n at time ¢. We define the process xV)(.) = (a:g)(), n €S8, jeJ). Clearly, x™M(.)
is a Markov process with state space VIV i.e., for cach j € J and t > 0 the collection
(mff\;) (t),n € ;) is the empirical distribution of states of type-j servers at time ¢. The
geﬁerator Gy of the Markov process x( )() acting on functions ¢ : V&) — R is given
by Gnp(u) =3, 7 (u— V) (p(v) — ¢(u)), where r (u — v) denotes the transition rate
from the state u € V) to the state v.€ V). In the following lemma, we characterize

the generator Gy .

Lemma 3.4.1. Let u € V) be any state of the process x™V)(-) and e(n, j) = (eki)pes, icr
be the unit vector with e,; = 1 and ex; = 0 if (k,i) # (n,j). The generator Gy of the
Markov process X(N)(-) acting on functions ¢ : V) — R is given by
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n—el,j, ) . ) _e(ﬂ_ghj) e(ﬂ’j)
Gro() =N > > [)\l w) e (SO (u Ny Ny )

En—e
jeJ neS; leL &, J,J,u

—go(u)) g (i (e ST D) )] s, (310

where I denotes the indicator function and forn € §; and 1,5 € J we have

E(Q7i7j> U) =% Z Up! i (315)
n’'es;:
n'-A=n-A+C;—C;
G(Eaiaj7 11) =% Z Up! i (316)
n’'eS;
n"A>n-A+C;—Cj
GE(n,i,j,u) = G(n,i,j,u) + E(n, i, j,u). (3.17)

and

_ (Z_:GE(ﬂ,i,j,u)+ZG(@,i,j,u)) . (3.18)

Proof. We first consider the transition of the system from the state u € V&) at ¢t~ to
the state u — e(’éwe]“] ) 4 e ’]_ ) at ¢, where n € S;. This transition occurs when an arrival
of class | € L at time ¢ JOlIlS a type-j server which was in state n — e, at time ¢~ (just
before the arrival). Let k of the d servers, sampled at the arrival instant, be of type j
with state n’ satisfying n’ - A = (n — ¢;) - A. For the transition to occur, we must have
k > 1 and one among the k servers must be in state n —¢;. Since there are Nyju, ., ; and
N x E(n — ¢, 7, j,u) servers of type j in states n — e, ans n/, respectively, the probability
of the above mentioned event is given by (’1“) Vitn—e, ;B (n— ¢, j, j,u). In this case, since
there are k servers with equal vacancy, the arrival joins a server with state n — e; with
probability 1/k. The other d — k sampled servers must satisfy one of the following two
conditions:
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e If the sampled server is of type i < 7, then its state n’ must satisfy C; —n' - A <
Ci—(n—¢g)-Aor,n-A>(n—e¢) A+ C;—C;. The number of type i servers in a
state satisfying the above relation is N x GE(n—e¢,, i, j,u). Since servers are sampled

uniformly at random, the probability with which one of these servers is sampled is
GE(E_Qlai7j7 11).

e If the sampled server is of type i > j, then its state n’ must satisfy C; —n' - A <
Ci—(n—¢)-Aor,n-A>(n—g¢g) A+ C; —C;. Using the similar argument as
before, the probability with which such a server is sampled is G(n — ¢, 1, 7, u).

Thus the total probability with which the incoming arrival joins a server of type j in state

n—cis Sy () bttn e B Hn-e,50) (X2 GE@ i, jow) + X, Glni o)

which simplifies to ;(ﬂ_ﬂ

VjUn—e,j- Since the arrival rate of class-l jobs is N\, the rate

(n—ep,j.3,u) A '
of transition from the state u to the state u — e(@]\f?’] ) ¢ e](\,ﬂ’J_ ) is given by
Vi Vi
e(n—e,j)  en,j) F(n—¢,j,u)
u—u-— + =N\ - Uy 7 3.19
T( N~ N~ "Eln—epj,ju) e (3.19)

Next, we consider the transition from the state u € V) to the state u+ e(@N_—f”) — e(NLVJ),

J J
where n € §;. This transition occurs when a job of class [ € £ leaves a type j € J server in
state n. The number of type-j servers in state n when the system is in state u is Nvy;uy ;.

From each of these servers, the rate at which class-l jobs depart is n;. Hence, the rate of

transition from the state u to the state u + e(%\?g?’j) — e](vﬂ’]:) is given by
i Vi
e(n—e¢,Jj) dmﬁ)
rlu—u+ - = Ny i1 (3.20)
( N7 N7 T
The expression (3.14) now follows directly from the definition of G . O

Using the generator Gy, we now show that that as N — oo, the sequence of processes
(xM)(-)) y converges to a deterministic process.

Theorem 3.4.1. If x™(0) = ug € V as N — oo, then xV(-) = x(-) as N — oo, where
the process x(+), taking values in the space V is given by the unique solution of the following
system of differential equations
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x(0) = uy, (3.21
x(t) = h(x(t)) (3.22
The mapping h above is given by
F(TL — el>j> X)
hn j = A —— n—e;j nj | In—ees;
,7](X) ZGZL [ lE(ﬂ _ Qlajaj, X) .'L'i €15 nlx?,] n ,lGSJ
F(n, j,x)
- [/\lmxn,j — (i + Dnse, | Intees;, (3.23)

where I denotes indicator function and E(n,i,j,u), F(n,j,u) are as defined in Lemma
9.4.1.

Proof. The first step is to show that there exists a unique process x(-) satisfying (3.21)-
(3.22) and taking values in the space V. To see this, we first note that for all x € V and
j € J, wehave 3 g hyj(x) = 0. This ensures that if 3 s ©,,;(0) =1 for all j € J,
then -, cs @n;(t) = 1forall j € J and all t > 0. Furthermore, we note from (3.23) that if
for some j € J, n € S;, t > 0 we have z,, ;(t) = 0, then h,, j(x(¢)) > 0. Thus, any solution
of (3.21)-(3.22) starting from uy € V always remains in the space V. To show that there
exists a unique solution to (3.21)-(3.22), it is sufficient to show that the mapping h on V is
Lipschitz continuous, i.e., there exists K > 0 such that ||h(u) —h(v)|| < K|ju — v||, where
|| denotes the Li-norm defined as [[u—v|[ = >2;c 7 > es, [tn; — vl for all u,v € V.
But this is clearly satisfied with K = 2B 4 2Ad + 8A\S(d — 1), where S = 3./ |S;| and
B = max,s; (Zle r nl). Hence, for each initial point uy € V there exists a unique process
x(+,up) satisfying (3.21)-(3.22) with x(0) = uy.

The next step is to show that the partial derivatives 2w 82x(t’_‘2‘) and Xt
Oup,j 7 Oup 2

Oun,j0UL o exist

and are bounded for u € V. This can shown using the same line of arguments as in the
proof of Lemma 2.6.2 of Chapter 2. We therefore do not repeat them here.

Finally, the statement of the theorem follows by noting that Gyp(u) = Le(x(t,u)) =0
as N — oo uniformly in u for all ¢ : ¥V — R such that ¢ has bounded partial derivatives
of first and second orders with respect to each component of its argument. O

The process x(-), defined in the theorem above, is referred to as the mean field limit of
the system. To emphasize the dependence of x(+) on its initial value, we denote the process
x(+) started at x(0) = ug by x(-, up).
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We now characterize the properties of the equilibrium points © = (7, j,n € S;,7 € J)
of the process x(-) satisfying x(¢,7w) = = for all ¢ > 0. Clearly, for any such equilibrium
point 7 we must have h,, ;(7) =0 for all n € S; and j € J. Hence, from (3.23) we obtain

( el?]? ) :|
>\l 7rn—e g — Ty, j [n—e €S;

n b
—Z[ PG ) o Ve | Lyreses,s (3.24)
—~ | E(nj.j,m)

forn € §; and 7 € J. In the next theorem, we show that there exists an equilibrium point
7 of the mean field x(-) in the space V.

Theorem 3.4.2. There exists a equilibrium point 7 of the system (3.21)-(3.22) in the
space V.

Proof. Consider a point x € V. For each j € J, 1 € £ and n € §;, define

F(n,j,x)
E(n,j,j,x)

Next, we define the quantities y,, j(x), j € J, n € S; as the solution to the following system
of linear equations

AWx) =N > 0. (3.25)

l
> A 0 s (%) = g (0)] Lo,

lel

= Z [/\(Q X)Yn;(x) — (0 + 1)yﬂ+§lyj(x)} Iniees;, forj€ Jandn € S; (3.26)
leL

and Z@esj Yn,j(x) = 1 for each j € J. Clearly, the solution y(x) = (yn;(x),n € S;,7 € J)
to the above set of linear equations satisfies

A o () Ynme i () n-eres, = muyng(x) for all n € Sj,j € T (3.27)

The above equations (which imply that y, j(x) has the same sign for each n € S; and
j € J) together with >°, s yn;(x) = 1 imply that y(x) € V for all x € V. Furthermore,
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the map x — y(x), as defined above, is continuous on the space V. Since V is convex
and compact, Brouwer’s fixed point theorem guarantees the existence of a fixed point of
the map x — y(x). From (3.26), it is clear that any fixed point 7 of the map x — y(x)
satisfies (3.24) and hence is an equilibrium point of the mean field x(-). This proves the
existence of an equilibrium point 7 in V of the mean field x(-). O

Remark 15. We note that for each x € V, the mapping x — y(x) satisfies (3.27). Hence,
the fixed point 7 of the above map satisfies

)\(l)

e, (T)Tn—e,jln—ecs; = umn; for alln € S;,5 € J. (3.28)
We will later show that the above equations correspond to the detailed balance equations

for the servers in the large N limit.

We now focus on the single class case (L = 1) and show that the equilibrium point
in this case is unique and globally asymptotically stable, i.e., for any x(0) € V we have
lim; ,, x(t) = 7, where 7 denotes the equilibrium point of the mean field.

Theorem 3.4.3. For the single class case (L = 1), the mean field x(-) has a unique globally
asymptotically stable equilibrium point w € V.

Proof. We note that the uniqueness of the equilibrium point follows (by the uniqueness of
limit) if one can show that any equilibrium point 7 is globally asymptotically stable. We
now proceed to show the global asymptotic stability of any equilibrium of the mean field
x(-) for the single class case.

For the single class case, we assume without loss of generality that all incoming jobs re-
quire one unit of resource and they arrive according to a Poisson process with rate N\ | i.e.,

A; =1and A\ = A Hence, §; ={0,1,...,C;}, V; = {(gn)negj D gn >0, Znesj Jn = 1},

V= Hjej V;. In this case, the mean field x(-) = (z,,;(:),n € S;,j € J) € V satisfies the
following system of differential equations (from (3.21)-(3.22))

with h is defined as
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A . A :
hn,j(X) = V_F(n - 1797X) - ”ffn,j} flgngcj— |:?F<nvjax) - (n + 1)9Un+1,j ]ogngcj—l-
j j
(3.31)
The mean field can be equivalently expressed in terms of the tail sums 7y, ;(¢) = ZSJ: w Tni(t),

keS;, jeJ. Wedefine X(t) = (Zy(t),k € S;,j € J). Hence, from (3.30) and (3.31) we
have

x(t) = h(x(t)), (3.33)

where the mapping h = (fzk,j, keS; je j) is given by izo,j(fc) =0 for all j € J and for
1<k<C,

- )\ .7 M d
hij(X) = 'y_ [(Z ViTk-14C—Cyi T Z %iHci—cj,i)
J i=1

i=j+1

j—1 M d
- (Z ViFko11C—Cyi + ) %fk+ci—cj,i> — k (Trj — Trery) (3.34)
i=1 i=j

We say that a < @' if 4, ; < ﬁgw- for all K € S; and j € J. We first prove the following
monotonicity property of the mean field with respect to the initial condition.

Lemma 3.4.2. If 0y < 0y then X(t,09) < x(t,ag) for allt > 0.

Proof. Clearly, the right hand side of (3.34) is non-decreasing in z,, ;(t) for all (n, ) # (k, j).
Hence, (3.34) defines a quasi-monotone system of differential equations. The proof of the
lemma now follows directly from pages 70-74 of [38]. O

We now define z(t,0) = > .77 chi1 Ty ;(t,0p). Clearly, z(t,1y) denotes the mean
number of customers in the limiting system at time ¢ when the initial state is @ip. From (3.34)
we obtain
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~ d
dZ(il’tuO) B (Z %'fcj,j@?ﬁo)) — 2(t, 8o). (3.35)

VIENA

Let 7 be an equilibrium point of the process X(-). From (3.35) we have

d c
AlL- (Z%ﬁcj,j> =2(t,m) =D WY Ty (3.36)
iJ k=1

VIS4

Now, from Lemma 3.4.2 we have

X(t, min(y, 7)) < X(t, 1) < X(t, max(y, 7)), (3.37)

where the maximum and the minimum are taken component-wise. Hence, to establish
lim; o, X(¢t,09) = 7 for all @y, it is sufficient to show that the convergence holds for
1y > 7 and for uy < .

To show X(t,0y) — 7 for 6y > 7 it is sufficient to show that

/ (jn,j(ty fl()) — 7}”73‘) dt < oo, for all je 7,1 <n < Cj. (338)
0

Similarly for ©y < 7r the convergence x(t,1g) — 7 will follow if we can show that

/ (ﬁ'n,j — i’n,j(t, ﬁo)) dt <oo, forall j € 7,1 <n< Cj (339)
0

We discuss the proof for uy > 7. The proof for uy < 7 follows similarly.

For iy > 7 we have from Lemma 3.4.2 that x(¢,1) > 7 for all £ > 0. Hence, to
prove (3.38) it is sufficient to show that f;* (z(t, Uo) =D jes Vi ijzl 7~Tw’)> dt < co. We
have
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C.
T - ~ . Tdz(t,u
/ 2t T0) = D% D Fony dt:‘/ %dt
0

Jje€J  n=1 0
T d d
_/ )\ (Z ’Yjﬁ-Cj,j> — (Z ’}/jfi’c].’j(t,flo)) dt
0 jeg jeg
(2(0,19) — 2(7,19)) < 2(0,10y)

IN

where the first equality follows from (3.35) and (3.36); the second inequality follows since
X(t,09) > 7; the third inequality follows since z(7,109) > 0 for all 7 > 0. Hence, the
integral on the left hand side is uniformly bounded by a constant (independent of 7) for
all 7 > 0. This implies that the integral must converge as 7 — oco. This completes the
proof. ]

We now consider uniqueness and stability of the equilibrium point for the multi-class
case, where the monotonicity property, similar to the one established in Lemma 3.4.2,
does not hold [56]. In this case, it is difficult to show the global asymptotic stability
of the equilibrium point due to the lack of the monotonicity property. However, in the
following theorem we show that a unique equilibrium point 7w € V of the mean field x(-)
exists and it is asymptotically stable, i.e., there exists ¢ > 0 such that for any ug € V
satisfying |jug — 7|2 < €, we have x(t,ug) — @ as t — oo. This implies that if the
initial condition for the process x¥)(-) is chosen sufficiently close to the equilibrium point,
then the corresponding mean field limit converges asymptotically to its unique equilibrium
point.

Theorem 3.4.4. For the multi-class case (L > 1) there exists a unique equilibrium point
7 €V of the mean field x(-). Furthermore, the equilibrium point 7 is asymptotically stable.

Proof sketch: To prove the theorem, we first express the mean field in terms of the tail
sums Ty j = Znesj:n.A%_A Tpn;, k € §; assuming without loss of generality that the vector
A is such that for any two states n,n’ € S; we have n.A # n/.A '. We note that Zo;(t) = 1

for all j € J,t > 0. Therefore, expressed in terms of the tail sums, the mean field is given
by

Tn case this does not hold, we can order the states of the servers of each type in the increasing order of
their resource requirements. States having the same resource requirement can be ordered arbitrarily. The
tail sums can then be defined according to the ordering of the states.
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%(0) = i, (3.40)
T (1) = hi 3 (X(1)), (3.41)

where X = (Zj5,k € §\0,j € J) and hyj = 3,5 aspabny for k € S\, j € T. We

define the mapping h = (ﬁm, k€ S5;\0,j € J). The next (second step) is to verify that the
mapping h, when seen as a mapping from R2iea!Si1=M to itself, is proper, i.e., ||h(X)|2 —
0o if ||X[s — oo. Finally, the third step is to verify that the Jacobian matrix J(X) of h
evaluated at X is negative definite (and hence non-singular) for all & € R>icsISiI=M  The
third step shows that the mapping h locally homeomorphic at every point in R2jer|Sil=M
[[57], Theorem 3.1.5, Page 113]. According to the Hadamard’s global inverse function
theorem [[57], Theorem 5.1.4 (i), Page 221], the second and the third step will then together
imply that the mapping h is globally homeomorphic on RZi7!S1=M j o the inverse exists
and is continuous at every point on RXss!%1=M = Thig implies in particular that h='(0)
is unique proving the uniqueness of the equilibrium point of the mean field. The negative
definiteness of the Jacobian matrix, as established in the third step, will imply that the
mean field X(¢,10y) converges asymptotically to its unique equilibrium point 7 for all ug
sufficiently close to the equilibrium point 7.

The steps described above can be shown for any L > 1 (multiple classes) and M > 1
(heterogeneous servers). However, for notational convenience, we show the steps for a
particular example which is representative of the general case. The proof for the general
case is identical to the proof discussed below with necessary alterations in the notations.

We choose a system with parameters: L = 2, M = 2, d = 2 C} = 3, Cy = 4,
Ay =2, Ay = 3. For the above parameter setting we have S§; = {(0,0),(1,0),(0,1)} and
Sy = {(0,0),(1,0),(0,1),(2,0)}. In this case the mean field can be expressed in terms of
the vector of tail sums X = (Z(1,0),1, Z(0,1),1, £(1,0),2: £(0,1),2: £(2,0),2) as follows (we omit ¢ for
convenience)
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T0,0)1 = 1, (3.42)

dz YR P
Sfm = ha0a(x) = : N 2191(X) — L(1,0),1 (3.43)
1
dx B A ~ )
(C(i)z,fl),l = h(O,l)J(X) = ,y—fﬁl(x) — x(o,l),l (344)
T2 =1, (3.45)
dz DY P C i
;1%0),2 — h(LO),Z(X) — 1 % 2192()() — ZE’(L(])’Q —+ l’(270)72 (346)
dx B A B A _ ~ .
((;)2;1),2 = h(0,1)72(x) = ,7—2'192()() + ’7—1793()() — 2(0,1),2 — T(2,0),2 (347)
2 2
dx ~ A _ i
G = hana(X) = TH05(%) — 2602 (3.48)
¢ Y2

where

19 (~) = ('}/1 + 72j(1 0),2 )2 ('7157(1,0),1 + ’}/252'(1’0),2)2, (349)
Ua(X) =1 — (71 + Y2Z(1,0),2) (3.50)
U5(X) = (T + 12E102)” — (MZa01 + V2Zo,1)2)" (3.51)

Hence, each component of the mapping h = (h(170)71,h(071)71,h(l,o)’g,h(o,l)’g,h(Z,o)vg) is a
polynomial on R®. It is easy to see from the expressions of the polynomials that if any
subset of components of the vector X approaches to oo, then at least one of the components
of h approaches to oo or —oo. Therefore, h is proper on RS to itself. Finally, the Jacobian
matrix J (Z) of the map h computed at any point # € R is given by

i —2(A1+A2) (711,01 - 7
o 2(A14+A 1-
F128(1,0).2) 1 0 (i+22)72(1=31.0),1) 0 0
—2X2(1&(1,0),1+72%(1,0),2) —1 2)\2’)/2(1 — 53(170)71) 0
j(i) = 0 0 —2(AM+ X)) (1 +7Ta0e2) — 1 0 1
5 5 —2X2(1+728(1,0),2)+ =221 (71Z(1,0),1

2am (l'(l,()),2 $(071),2) 221 (Mm% (1,0),1 1728 (1,0),2) +;>2\5c((1,0~)72)_1 1

T —_ 7 ~ ~ —2Aa1(Mne,0,1
_2>\1’71 (I(LU)Q $(071)72) 0 2)\1(71$(1’0),1+’72x(170)’2) +’Y2l~?(o,1),2) 2_

A Routh-Hurwitz test [58] of the characteristic polynomial of the matrix J (X <) shows that all
the eigenvalues of the matrix have strictly negative real parts. Therefore, J(X) is negative
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0.4 T T

Initial condition 1
Initial condition 2
Initial condition 3 [|

Squared Euclidean distance to the equilibrium point

Figure 3.1: Squared Euclidean distance between the mean field and its equilibrium point
as a function of time for random initial states. Parameters: M =2, L = 2, 73 = v = 0.5,
01:3, 02:4, A1:2, A2:3, )\1:20, )\2:40

definite (hence non-singular) everywhere in R®. Thus, we conclude that the system has a
unique equilibrium point 7v and it is asymptotically stable. O]

Remark 16. Although we have only established local asymptotic stability of the equilib-
rium point 7 for the multi-class case, our numerical results suggest that 7 is globally
asymptotically stable, i.e., the convergence X(t) — 7 holds for all X(0) in the space
of tail sums. As an example, in Figure 3.1 we plot the squared Euclidean distance
between the vector X = (Z(1,0)1,T(0,1),1,L(1,0,2> Z(0,1),2, Z(2,0),2) and the equilibrium point
T = (T(1,0),15 T(0,1),1> T(1,0),2> T(0,1),2, T(2,0),2) as a function of time for different initial condi-
tions. The parameters are chosenas M =2, L. =2,C; =3,Cy =4, A1 =2, A—-2=3,7 =
vo = 0.5, A1 = 20, Ay = 40. We observe that for all initial conditions the squared Euclidean
distance converges to 0 as t — co.

The global asymptotic stability for the mean field corresponding to the multi-class case
is also suggested by the Markus-Yamabe conjecture [59] which states that if a continuously
differentiable map h on R"™ has a unique equilibrium point and its Jacobian matrix is
negative definite at each point in R™ then the equilibrium point is globally asymptotically
stable. Although this conjecture has been proven only for n = 2 and is in general not true
for n > 2, the exceptions are few and pathological.

We note that for each N the process xV)(-) is positive recurrent and hence has a unique
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(N)

(
(N)(

o0) denote the steady state of the process xV(-). In the
o0) concentrates near 7w as N — 0.

stationary distribution. Let x
next theorem, we show that x

Theorem 3.4.5. We have xV)(c0) = 7 as N — oo.

Proof. The proof is essentially the same as that of Theorem 2.6.5 of Chapter 2. We
first note that the space V is compact. Hence, the sequence of probability measures
(Law (x™(00)))n on V is tight. According to Theorem C.1.2 this implies that the se-
quence (Law (X(N )(oo))) v has limit points. We now show that all the limit points coincide
with d,. Due to Theorem 3.4.1, any limit point of the sequence (Law (X(N)(OO)))N must
be invariant distribution of the map ug — x(¢,ug). Since by Theorem 3.4.2 there exists a
unique invariant distribution d, of the map uy — x(¢,up) in V (see Remark 11), we con-
clude that every limit point of (Law (X(N )(oo))) n must coincide with o, or equivalently
x(M(00) = m as N — co. This completes the proof. O]

3.4.1 Propagation of chaos

So far we have considered the convergence of the process x™)(-) that describes the evolution
of the empirical distribution of the server states. We now focus on servers in a given finite
set of tagged servers. We show that as the system size grows the tagged servers become
independent of each other, provided that the initial state of the overall system satisfies the
intra-type exchangeability criterion as defined in 2.6.2. As discussed earlier, this property
is formally known as the asymptotic independence property or the propagation of chaos
property. We show that the stationary distribution of state of each server in the limiting
system is determined by the unique stationary point 7 of the the process x(-). To formally
state our results we introduce the following notations.

e The state of the k' server of type j at a finite time ¢ > 0 and at equilibrium are respec-
tively denoted by the random variables q,(ﬁ) (t) and qg)(oo), for k € {1,2,..., Nv;},
je J.

e For each j € J and t > 0, we denote by z;(t), the distribution on S; given by
zj(t) = (z,,(t),n € S;), where x(-) is the mean field process satisfying (3.21)-(3.22).
Furthermore, we define z;(c0) = (7,5, n € ;).

Theorem 3.4.6. For the model considered in Section 3.2, let (qg)(O), 1 <k<Ny;,1<

§ < M) be intra-type exchangeable in the sense of Definition 2.6.2 and let xN)(0) = uy € V
as N — oo. Then the following holds
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1. For each j € J,1 <k < N~;, and t € [0, 0], q,i],\;)(t) = U;(t) as N — oo, where

U;(t) is a random variable with distribution x;(t).

2. Fix positive integers 1 < r;y < Nvyi,1 < ryg < Nyo, ..., 1 < ry < Ny Then, for
each t € [0, oo,

<q,(jj)(t),1 <k<r,1<j< M) = (Urj(1),1 <k <r;,1<j< M), (3.52)

as N — oo, where Uy j(t), 1 <k <r;,1 <j <M, are independent random variables
with Uy ;(t) having distribution x;(t) for all 1 <k <r;.

Proof. With the observation that, under the MV (d) scheme, servers of the same type are
statistically indistinguishable the proof is identical to that of Theorem 2.6.6. O

The above theorem shows that the servers in the limiting system are independent of
each other and the stationary probability that a server of type j € J is in state n € §; is
given by m, ;. The following proposition shows (using the independence of the servers in
the limiting system) that in equilibrium the arrivals of class | € £ at any given server of
type 7 € J in the limiting system form a state dependent Poisson process whose rates are
given by A, (), n € S;, where A, ;(x) for x € V is as defined in (3.25).

Proposition 3.4.1. In equilibrium, the arrival process of jobs at any given server in the
limiting system is a state dependent Poisson process. Furthermore, the equilibrium arrival
rate of class-l jobs at a server of type j € J, when it is in state n € S;, is given by

F(n,j,m)

) _
Ans(™) = NEa S )

27]

(3.53)

where n € S; is such that n +¢ € S; and F(n,j,m), E(n,j,j,7) are as defined in
Lemma 3.4.1.

Proof. We consider a tagged server of type j and the class-l arrivals that have the tagged
server as one of their potential destinations. These arrivals constitute the potential arrival
process at the tagged server. The probability that the tagged server is sampled at the
(1)
()

process of class-l jobs to the tagged server is a Poisson process with rate % X N\ = d\.

arrival instant of a job is = ]%. Thus, due to Poisson thinning, the potential arrival
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Now we consider the arrivals that actually join the tagged server. These arrivals consti-
tute the actual arrival process at the server. For finite N, this process is not Poisson since
a potential arrival at the tagged server actually joins the tagged server depending on the
states of the other possible destination servers. However, as N — oo, due to the asymp-
totic independence property established in Theorem 3.4.6, the sampled servers become
independent of each other. As a result, in equilibrium, the actual arrival process converges
to a state dependent Poisson process as N — oo. Now the arrival rates of this Poisson
process can be obtained using arguments similar to those in the proof of Proposition 2.6.3.
We see that the arrival rates are given by (3.53). O

From Remark 15, we already know that the equilibrium point 7 satisfies

NG

n—e;,J

() Tn—e, jIn-c,es;, = mimp; forn € Sy and I € L. (3.54)

Now, since (by Proposition 3.4.1) )\(ﬁl)_ghj(ﬂ') is the equilibrium arrival rate of class-l jobs

at a server of type j in state n —¢; € §;, the above equations can be interpreted as the
detailed balance equations that equate the transition rates between the states n — ¢, and
n € §; for each n,n —¢, € S;, 7 € J, 1 € L. Using the detailed balance equations, we
now find a recursive relationship among the stationary tail probabilities of the number of
occupied resource units as in [60, 61] at each server in the limiting system. This allows
efficient computation of the blocking probabilities for each class of jobs.

Proposition 3.4.2. Let Py, for 1 <k < C; and j € J, denote the stationary probability
that a server in the limiting system has at least k units of occupied resource, i.e., Py ; =

Z@isﬁk Tnj. Then Py ; satisfies (3.2) for 0 < k < C; — 1, where Py; =1 for k <0, and

Po,11;=0 forallje J.

Proof. For j € J,0 <k < Cj, we define the set Dy, ; as follows:

Thus, Dy ; denotes the set of states in S; for which the total number of occupied resource
units at a type j server is exactly k. We note that for all n € Dy ; such that n — ¢, € §j,
we have G(n — ¢,4,7, ™) = ViPra+0-c;+1 and E(n — ¢,4,7,7) = %i(Pr_a,rc-cji —
Pr_a+0i-c;41,)- Thus, for all n € Dy ; such that n — ¢, € S; we have using (3.53) that
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- " d
o _ Al
)\ﬂ_gl’j B Y (Pr—a,j — Pr—a,.5) (Z e Z %PkAﬁCiCﬁl’i)

i=1 i=j+1

j—1 M d
- Z%Pkaﬁc +Z%Pk A4C; C+1z> . (3.56)

i=j

Now multiplying (3.54) by A; and summing over all n € Dy ; and all [ € £ we have

Z Z A )\n e, Tn—erjIn—eces; Z Z A, forn €8 andl € L (3.57)

lel TLE'Dk] leL QGDkJ‘

Now, the LHS of the above equation can be simplified as follows:

E : § : Al n— el]’]rn €] n ¢ €S; E :Al n—e;,j E : Wﬂ_glyj[ﬂ_glesj

leL neDy, N lel neDy j

d
— ZAZ ‘ Al [(Z%Pk AHCi—Cyi T Z Vi Pr—a,+c; C—I—lz)

% (Be-ag — Peag) S

Jj—1 d
(Z%Pk A+Ci c],z—i-Z%Pk A+C; C+lz> (Pi—a,j — Pi—ay1,)

=1 =jJ

' d
A & .
=1

ez Vi i=j+1
j—1 M d
— E ViPk—Al+ci—Cj,¢+§ ViPk—a,+ci—0j 115
i—1 i—j

The second equality follows since 3, cp, ~ Tn—c, jln-ees; = (Pi-a,5 — Pe-a41,5)- Similarly,
the RHS can be simplified as 7

Yo mAm = Y > mA= Y muik =k (Poj— Peywy)-

el ﬁEDkJ‘ ﬂGDk’j leL QED]C’J’

This completes the proof. O
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Remark 17. All the results, discussed so far in this section, have been obtained assuming
that the service time distribution of the incoming jobs is exponential. The same results can
be shown to hold for any service time distribution if asymptotic independence of the servers
is assumed to hold for general service time distributions. The asymptotic independence
property was conjectured to hold for homogeneous systems with local service disciplines
and general service time distributions in [34]. The proof of this remains as an open problem.

Under the assumption of asymptotic independence of servers for general service time
distributions, the statement of Proposition 3.4.1 continues to hold, i.e., the equilibrium
arrival process at each server in the limiting system is a state dependent Poisson process
whose rates are given by (3.53). This implies that the detailed balance equations given
by (3.54) also hold for general service time distributions. Since the servers in the system are
loss servers, the detailed balance condition implies that that the stationary distribution of
each server in the limiting system is insensitive to service time distributions (see Theorem
1 of [40]). We refer to this property as the asymptotic insensitivity of the system. Thus,
asymptotic insensitivity of the system holds under the hypothesis of asymptotic indepen-
dence of the servers, the proof of which remains as an open problem. In the next section,
we provide numerical evidences to support insensitivity.

3.5 Numerical Results

In this section, we first present simulation results that indicate the accuracy of the mean
field analysis of the MV(d) scheme in predicting the performance of the scheme for large
but finite systems. To show the efficacy of the MV (d) scheme, we then compare the average
blocking probability of jobs under the MV (d) scheme with that under the randomized static
schemes. We also compare the average blocking probability of jobs under the MV(d) scheme
with the lower bound given in (3.4) to show that the MV(d) scheme is nearly optimal in
terms of reducing the average blocking probability of jobs. Finally, we provide results that
support insensitivity of the MV (d) scheme in the large system limit. All simulation results
presented in this section are the averages of 10,000 independent runs.

To investigate the accuracy of the asymptotic analysis of the MV (d) scheme, we compare
the average blocking probability obtained from the mean field analysis to that obtained
by simulating the system for finite values of N. We set the following parameter values:
L = ]_, A1 = ]., M = 2, Y1 = Ve = 05, Cl = 20, CQ = 25, )\1 = 30, i.e., we consider
the single class case where every job requires one unit of resource from each server. In
this case, the blocking probability can be obtained using (3.5). The results are shown
in Table 3.1. We observe that the difference between the asymptotic results and the
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Figure 3.2: Efficacy of the MV(d) scheme

corresponding simulation results decreases with the increase in N. Furthermore, for the
same value of IV, increasing d increases percentage of deviation between the analytical and
simulation results. This is expected since for finite /V increasing d increases the correlation
between the server states which acts in opposition to the independence of servers in the
limiting system. From our observations we conclude that the mean field analysis quite
accurately captures the behavior of the finite system operating under the MV (d) scheme.

Table 3.1: Accuracy of the mean field analysis of the MV(d) scheme
N=20 N=50 N=100 N =200

d  Asymptotic

2 0.2751 0.2761  0.2757  0.2753 0.2751
4 0.2616 0.26561  0.2618  0.2616 0.2616
6 0.2576 0.2593  0.2588  0.2580 0.2577
8 0.2557 0.2584  0.2578  0.2569 0.2562
10 0.2545 0.2574  0.2565  0.2559 0.2549

In Figure 3.2, we compare average blocking probability of jobs under the MV (d) scheme
with that under the randomized static scheme in which an incoming job is assigned to a
server of type j with probability p; independent of the states of the servers. We set p; =
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v;Cj/ Zf‘il 7;C; since in this case p; is proportional to both v; and C;.> The parameters
are chosen tobe L =1, M =2, N = 100, v; = 72 = 0.5, C; = 30, and Cy = 60. For this
parameter setting, the critical load (see (3.4)) is given by )xgi)t = 1C1 + 7Cy = 45. In
Figure 3.2(a), we plot the average blocking probability of jobs as a function of A\; for the
MV (d) scheme and the randomized static scheme. We have also plotted the lower bound
obtained from (3.4). We observe that the average blocking probability of jobs under the
MV (d) scheme is significantly lower than that under the randomized static scheme. We also
observe that with the increase in d the average blocking probability reduces. Furthermore,
the average blocking probability for d = 4 is seen to be quite close the lower bound for
A1 > )\Si)t. Hence, we conclude that the the MV(d) scheme is nearly optimal in terms of
reducing the average blocking for probability even for small d.

In Figure 3.2(b), we plot the ratio of the average blocking probability under the MV (d)
scheme to that under the randomized static scheme as a function of A;. The y-axis is drawn
in the log scale. Tt is clear that the average blocking probability under the MV(d) scheme
is orders-of-magnitude lower than that under the randomized static scheme. This shows
the advantage of comparing the states of a small number of randomly sampled servers to

assign each incoming request over randomly assigning the job requests to the servers.

So far we have investigated single class systems. We now numerically study a multi-
class system with the following parameters: N = 200, L = 2, \; = 0.2)\, Ay = 0.8\, =
10,C5 = 20,71 = v = 0.5, A; =5, Ay = 2, where A = A\ + )\, denotes the total normalized
(by the number of servers) arrival rate of jobs, all classed combined. In Table 3.2, we
compare the average blocking probability of each class of jobs under the MV(2) scheme
with that under the randomized static scheme. As in the single class case, we observe that
the the average blocking probabilities under the MV(2) scheme are significantly smaller
than that under the randomized static scheme.

We now numerically verify the asymptotic insensitivity of the system under the MV (d)
scheme as was indicated in Remark 17. To do so, we compare the average blocking proba-
bility of jobs under the MV(d) scheme for different service time distributions. We set the
following parameter values: L =1, M =2, d =2, N =100, v, = v = 0.5, C} = 20, and
C5 = 25. In Table 2.2, average blocking probability is shown for different values of A\ and
for the following distributions.

1. Constant: We consider job length distribution having the cumulative distribution
given by F(x) =0 for 0 <x < 1, and F(x) = 1, otherwise.

2The probabilities p;, j € J, can be optimally chosen to minimize the average blocking probability.
However, such optimal choice requires the knowledge of the arrival rate A, which is difficult to estimate.
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Table 3.2: Average blocking probability of jobs in the multi-class case

\ MV (2) Scheme | Randomized Static Scheme
Class 1 | Class 2 || Class 1 Class 2
2.0 || 0.0077 | 0.0002 | 0.0969 0.0245
3.0 || 0.0740 | 0.0029 | 0.2047 0.0592
5.0 || 0.3968 | 0.0386 | 0.4349 0.1589
10.0 || 0.6054 | 0.2747 || 0.7728 0.3787
15.0 || 0.7515 | 0.4547 | 0.8967 0.5148

2. Power law: We consider job length distribution having cumulative distribution func-
tion given by F(x) =1 —1/42? for > 5 and F(z) = 0, otherwise.

Note that for each of the above distributions the mean service time is 1. We see from
Table 3.3 that the change in the average blocking probability is insignificant when the
service time distribution is changed keeping the same mean. This supports the fact that
under the MV(d) scheme the system becomes insensitive to service time distributions as
N — o0.

Table 3.3: Asymptotic insensitivity of the MV (d) scheme

Constant Power Law

(Simulation) (Simulation)

20 0.0087 0.0086
25 0.1467 0.1470
30 0.2758 0.2747
35 0.3733 0.3737
40 0.4490 0.4485
45 0.5085 0.5085
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3.6 Conclusion

In this chapter, we characterized the performance of randomized dynamic job assignment
schemes in reducing the average blocking probability of jobs arriving at a multi-class het-
erogeneous Erlang loss system. In particular, we considered the MV(d) scheme, where
each incoming job request is assigned to the server having the maximum amount of unused
resource among a set of d servers, sampled uniformly at random from the entire system.
The system operating under the MV(d) scheme was analyzed in the large system limit.
It was shown that in the large system limit the evolution of the empirical distribution of
states of the servers can be described by a mean field limit. We established the existence of
a unique equilibrium point of the mean field and showed that it characterizes the station-
ary occupancy distribution of the servers. We also established independence of the servers
in the limiting system. Numerical studies revealed that the average blocking probability
of jobs in the system under the MV(d) scheme is significantly lower than that under the
randomized static scheme, where jobs are assigned to the servers independently of server
states. The MV(d) scheme was further shown to be nearly optimal in terms of reducing
the average blocking probability of jobs. Numerical evidence supporting asymptotic insen-
sitivity of the system under the MV(d) scheme was also provided. The results presented
in this chapter also appeared in [62, 63].

91



Part 11

Opinion Dynamics in Large Social
Networks
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Chapter 4

Binary Opinion dynamics with
Biased and Stubborn Agents

In this chapter, we investigate the impact of random interactions between agents in a social
network on the diffusion of opinions in the network. The agents are assumed to be mobile
and hence do not have any fixed set of neighbors. We consider the case where the opinion
of each agent is a binary variable taking values in the set {0, 1}. This represents scenarios
where every agent in the network has to choose from two available options. Each agent
updates its opinion at random instants and interacts with other agents while performing the
update. We consider two rules of interaction differing in the number individuals contacted
during the update: (1) the voter rule in which a single agent is contacted during an update;
(2) the magority rule, in which multiple agents are contacted during an update. Under each
rule, we consider two different scenarios: (1) where the agents are ‘biased’ towards one of
the opinions, (2) where different agents have different propensities to change their opinions.
For each scenario, we characterize the equilibrium state of the network as a function of the
initial opinions of the agents and the number of agents in the network. We also characterize
the time to reach the equilibrium state as a function of the aforementioned factors.

4.1 Introduction

With the widespread use of online social networking, opinions of individuals are constantly
being shaped by social interactions. Understanding how individual opinions are affected
by social interactions and what global opinion structure emerges from such interactions are
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important in many contexts such as economics, politics and psychology. The dynamics of
opinion formation in a network is also important in the context of viral marketing and can
provide useful guidelines for targeted message delivery to users in a network. Consequently,
modeling social interactions both analytically and through empirical studies has gained vast
attention in different fields of study.

Mathematical models of social interaction treat opinion of each individual in a social
network as a variable taking values in either a discrete or a continuous subset of the
Euclidean space. Although this may seem too reductive to capture the complexity of
choices made by real individuals, in everyday situations, individuals in a network are often
faced with only a limited number of choices (often as few as two) concerning a specific
issue, e.g., pro-/anti-government, Windows/Linux, Democrat/Republican, etc. Thus, a
vast body of literature treats opinions of individuals as binary variables taking values in
the set {0, 1}.

The interactions between agents in a social network are generally modeled using simple
rules that capture the essential features of individuals in a society such as their tendency
to mimic their neighbors or to conform with the majority opinion in local neighborhoods.
One of the models, extensively analyzed in the literature, is the wvoter model [5, 6, 7]
or the voter rule, where an agent randomly samples one of its neighbors at an instant
when it decides to update its opinion. The updating agent then adopts the opinion of
the sampled neighbor. This simple rule captures the tendency of an individual to mimic
other individuals in the society. Because of its simplicity the rule has been analyzed under
a variety of network topologies [64] that assume connectedness of the underlying graph.!
It is known that, under the voter rule, any connected network converges to a consensus,
where all individuals adopt the same opinion. It is of interest to determine the probability
with which consensus is reached on a specific opinion and the time it takes for the network
to converge to the consensus state.

Another rule studied in this context is the majority rule model [9, 65, 66]. In it, instead
of sampling a single individual, an updating agent consults multiple individuals while
performing the update and adopts the choice of the majority of the sampled neighbors.
This rule captures the tendency of the individuals to conform with the majority opinion
in their local neighborhoods. In a fully connected network, the majority rule also leads to
a consensus among agents. However, the rate at which consensus is reached is faster than
that under the voter rule.

In all the prior works on the voter models and the majority rule models, it is assumed

IConnectedness implies that every individual is connected to every other individual either directly or
via immediate neighbors.

94



that an agent’s decision to update its opinion does not depend on the current opinion of
the agent. It is also assumed that all agents in the network have the same propensity to
change their opinions. However, in a real scenario an agent may be ‘biased’ towards a
specific opinion in the sense that if it holds its ‘preferred’ opinion, then the probability
with which it updates its opinion is small. We may also encounter situations where some
of the agents update their choices less frequently than others (irrespective of their current
opinions). In this chapter, we focus on these two scenarios.

4.1.1 Related literature

There is a rich and growing literature that studies diffusion of technologies and opinions in
large social networks. Early studies on this topic [67] considered models for growth of new
products in a society. Such models are similar to the susceptible-infected-susceptible (SIS)
and susceptible-infected-removed (SIR) models which describe the spread of epidemics or
infections in networks [68, 69]. In both the SIS and SIR models, diffusion occurs through
infected agents, infecting their susceptible neighbors. The process of recovery from the
infected state to the susceptible state, however, is assumed to be independent of the number
of susceptible agents in the neighborhood. This is different from the models considered in
this chapter, where all transitions depend on the configuration of the local neighborhood
of the agents.

An interesting line of research evolved in the 1990’s where opinion dynamics was treated
in the Bayesian setting [70, 71, 72, 73, 74, 75]. In this setting, individuals observe the
actions of other individuals in the society and update their beliefs about an underlying
state variable. This process is referred to as social learning. The primary question of
interest in these models is whether social learning leads to a society where individuals
adopt the technologies that produce higher payoffs for them. Although, in this chapter,
we are interested in similar questions, our models are different from the models of social
learning since we do not assume that the updating agents can observe the opinions of all
the other agents in the network.

Another line of research considers opinion dynamics models in the non-Bayesian setting.
The voter models and the majority rule models fall under this category. Such models were
first studied by DeGroot [76] where the agents were assumed to update their opinions
(assumed to be continuous variables within a certain range) synchronously by averaging
the opinions of their neighbors. This is equivalent to the synchronous average consensus
algorithms considered in [77] and thus can be analyzed using similar techniques. The ‘voter
model” with binary opinions was first studied independently in [5] and [6]. It was assumed
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that an agent simply copies the opinion of a randomly sampled neighbor at an instant of
update. Due to its simplicity, the voter model soon became popular and was analyzed
under a variety of network topologies, e.g., finite integer lattices in different dimensions
[7, 78], heterogeneous graphs [79], Erdos-Renyi random graphs and random geometric
graphs [64] etc. In [80, 81], the voter model was studied under the presence of stubborn
individuals who do not update their opinions. In such a scenario, the network cannot
reach a consensus because of the presence of stubborn agents having both opinions. Using
coalescing random walk techniques the average opinion in the network and the variance of
opinions were computed at steady state.

The majority rule model was first introduced in [8], where it was assumed that, at
every iteration, groups of random sizes are formed by the agents. Within each group, the
majority opinion is adopted by all the agents. Under this rule, it was shown that consensus
is achieved on a particular opinion with high probability only if the initial fraction of agents
having that opinion is more than a certain critical value. Furthermore, the time to reach
consensus was shown to scale as logarithm of the network size (number of agents). Similar
models with fixed (odd) group size were considered in [9, 65]. It was shown that for finite
dimensional integer lattices the consensus time grows as a power law in the number of
agents in the network.

A deterministic version of the majority rule model, where an agent, instead of randomly
sampling some of its neighbors, adopts the majority opinion among all its neighbors, is
considered in [82, 83, 84, 85]. In such models, given the graph structure of the network,
the opinions of the agents at any time is a deterministic function of the initial opinions
of the agents. The interest there is to find out the the initial distribution of opinions for
which the network converges to some specific absorbing state. In social networks, where
the neighborhood of each agent is large, such majority rule dynamics involves complex
computation by each updating agent at each update instant. Our interest in this chapter
is on scenarios where the agents are mobile and do not have any fixed neighborhoods. We
therefore consider a randomized version of the majority rule.

4.1.2 Contributions

In this chapter, we study binary opinion dynamics under the voter model and the majority
rule model. Under each model, we consider two different scenarios. In the first scenario, the
agents are assumed to be ‘biased’ towards a specific opinion. More specifically, the agents
having one of the two opinions (the ‘preferred’ opinion) are assumed to update their choices
less frequently than agents having the other opinion. In the second scenario, different agents
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are assumed to have different propensities to change their opinions, irrespective of their
current opinions.

For the voter model with biased agents, we derive a closed form expression of the
probability with which consensus is reached on the ‘preferred’ opinion. It is observed that
this probability rapidly increases to 1 as the number of agents in the network grows. This
is unlike the case with unbiased agents, where the probability to reach consensus on a
particular opinion remains constant for all network sizes. Using mean field techniques, we
derive an estimate of the average time taken for the network to reach consensus. It is
observed that the mean consensus time grows as logarithm of the network size. This is in
contrast to the case with unbiased agents, where the mean consensus time grows linearly
with the number of agents.

Next we analyze the voter model under a scenario where the agents are categorized
into two groups. Agents belonging to the first group are assumed to update their opinions
with a lesser (but non-zero) probability than the agents belonging to the second group.
Closed form expression of the probability with which the network reaches consensus on a
particular opinion is derived. It is observed that this probability does not depend on the
number of agents in the network. Furthermore, an approximate expression of the mean
consensus time is derived for large network sizes. It is found that the mean consensus time
grows linearly with the network size.

For the majority rule model with biased agents, we derive a closed form expression for
the probability with which consensus is achieved on the preferred opinion. It is observed
that, unlike the voter model, consensus is achieved on the preferred opinion (with high
probability) only if the initial fraction of agents having that opinion is above a certain
threshold. This threshold is determined from the mean field analysis of the model. An
estimate of the mean consensus time is also found from the mean field model. It suggests
that the mean consensus time grows as logarithm of the number of agents in the network.

Finally, we consider the majority rule model when there are ‘stubborn’ agents in the
network. The stubborn agents are assumed to have fixed opinions at all times. Therefore,
in this case consensus can never be reached. We analyze the equilibrium distribution of
opinions among the non-stubborn agents using mean field techniques. Depending on the
system parameters, the mean field is shown to have either multiple stable equilibrium
points or a unique stable equilibrium point within the range of interest. As the system
size grows, the equilibrium distribution of opinions among non-stubborn agents is shown
to converge to a mixture of Dirac measures concentrated on the equilibrium points of the
mean field. This suggests a metastable behavior of the system where the system moves back
and forth between stable configurations, spending long intervals in each configuration. The
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conditions for metastability are obtained in terms of the system parameters.

4.1.3 Organization

The rest of the chapter is organized as follows. In Section 4.2, we introduce the voter
model. In Subsections 4.2.1 and 4.2.2, we analyze the voter model with ‘biased’ agents
and ‘stubborn’ agents, respectively. Section 4.3 introduces the majority rule model. In
Subsections 4.3.1 and 4.3.2, we analyze the majority rule model with ‘biased” and ‘stubborn’
agents, respectively. Finally, the chapter is concluded in Section 4.4.

4.2 The voter models

Let us consider a network consisting of N social agents, where each agent can communicate
with every other agent. This represents a scenario where the agents are mobile and therefore
do not have fixed sets of neighbors. Opinion of each agent is assumed to be a binary variable
taking values in the set {0, 1}. Initially, every agent adopts one of the two opinions. The
agents then consider updating their opinions at points of independent unit rate Poisson
processes associated with themselves. At a point of the Poisson process associated with
itself, an agent either updates its opinion or retains its past opinion. In case the agent
decides to update its opinion, it samples an agent uniformly at random (with replacement)
from the network? and adopts the opinion of the sampled agent. The agent sampled by the
updating agent can be seen as the neighbor of the updating agent at the update instant.

Below we consider two different scenarios: (1) where the agents are ‘biased towards a
specific opinion, and (2) where the agents have different propensities to change their past
opinions.

4.2.1 The voter model with biased agents

We first consider the case where the agents are ‘biased’ towards one of the two opinions.
Without loss of generality, we assume that all agents in the network prefer opinion {1} to
opinion {0}. This is modeled as follows: Each agent with opinion i € {0,1} updates its
opinion at a point of the unit rate Poisson process associated with itself with probability
¢; and retains its opinion with probability p; = 1 — ¢;. This is equivalent to an agent with

2In the large N limit sampling with or without replacement does not make any difference.
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opinion ¢ updating its opinion at all points of a Poisson process with rate ¢;. In case the
agent decides to update its opinion, the update occurs following the voter rule discussed
in the beginning of this section. We assume ¢q > ¢; (p1 > po) to imply that the agents
having opinion {0} update their opinions more frequently than the agents having opinion
{1}. In the above sense, the agents are biased towards opinion {1}.

Clearly, in this case, the network gets absorbed (in a finite time) in a state where all
the agents adopt the same opinion. This is referred to as the consensus state. Our interest
is to find out the probability with which consensus is achieved on the preferred opinion
{1}. This is known as the exit probability of the network. We also intend to characterize
the mean time to reach the consensus state.

The case q; = g9 = 1 is referred to as the voter model with unbiased agents, which
has been analyzed in [5, 6]. It is known that for unbiased agents the probability with
which consensus is reached on a particular opinion is simply equal to the initial fraction
a of agents having that opinion and the expected time to reach consensus for large N is
approximately given by Nh(«), where h(a) = —[aln(a) + (1 — «)In(1 — «)]. We now
proceed to characterize these quantities for the voter model with biased agents.

Let X™)(¢) denote the number of agents with opinion {1} at time ¢t > 0. Clearly,
XWM)(.) is a Markov process on state space {0, 1,..., N}, with possible jumps at the points
of a rate N Poisson process. This rate N process is referred to as the global clock. All
states, except the states 0 and N, form an open communicating class; the states 0 and N
are the absorbing states. Therefore, with probability 1, the process gets absorbed in one
of the absorbing states in a finite time. Our interest is to find the probability with which
the process XV)(.) gets absorbed in state N.

Proposition 4.2.1. The probability Ex(n) with which the process XN)(-) gets absorbed
in state N starting with state n € {1,2..., N} is given by

B 1—rm

En(n) 1_ N

(4.1)

where r = q1/q0 < 1 and Ex(0) = 0.

Proof. Given that the process XV (.) is in state k at one point of the global clock, it
transits to state k + 1 at the next point of the global clock only if one of the agents having
opinion {0} updates its opinion to opinion {1}. The probability with which any one of the
N — k agents having opinion {0} decides to update its opinion is given by go X (N —k)/N.
The probability with which the updating agent samples an agent with opinion {1} is given
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by k/N. Hence, the total probability with which the process X)(.) transits to from the
state k to the state k + 1 is given by

LU 42)

Similarly, the probability of transition from the state k to the state k — 1 is given by

plk—k+1)=

M (4.3)

Therefore, the probability with which no transition occurs between two consecutive points
of the global clock is

plk—k—-1)=

plk—=k)=1—-pk—k+1)—pk—Fk—-1). (4.4)

We now use these transition probabilities to derive the expression of the exit probability
En(n) as follows. Since X™)(.) is Markov, Ey(n) must satisfy the following recursive
relationship

Exy(n) =pn - n+1)Ex(n+1)+p(n - n—1)Ey(n—1)+ p(n — n)Ex(n). (4.5)

Using (4.2), (4.3), and (4.4) it is easy to see that (4.5) simplifies to

Ex(n+1)—Ex(n)=r(Ex(n+1) — Ex(n)), (4.6)
where r = ¢;/qo. This homogeneous, linear recursive relationship can be solved easily using
boundary conditions Ex(0) = 0 and Ex(N) = 1. The solution is given by (4.1).3 O

In terms of the initial fraction & = n/N of agents having opinion {1}, (4.1) can be
rewritten as

1 — pNe
Eve)=1—1x"

where Ey(a) denotes the probability with the process X(V)(.) is absorbed in state N
starting with « fraction of agents having opinion {1}.

(4.7)

3For qo = q1, we have Ex(n) = n/N, which coincides with the known results.
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Clearly, for gy > q1, we have r < 1. Hence, from (4.7) it is clear that as N increases
the exit probability rapidly increases to 1 for all a. This is in contrast to the case with
unbiased agents (g9 = ¢ = 1) where the exit probability remains constant at « for all
values of N.

We now characterize the mean time Ty () to reach the consensus state starting from «
fraction of agents having opinion {1}. To do so, we consider the empirical measure process
M) () = XN)(.)/N. The process 2V (-) jumps from the state x to the state 2 +1/N when
one of the N(1 — z) agents having opinion {0} updates (with probability qo) its opinion
by interacting with an agent with opinion {1}. Since the agents update their opinions at
points of independent unit rate Poisson processes, the rate at which one of the N(1 — x)
agents having opinion {0} decides to update its opinion is N(1 — x)go. The probability
with which the updating agent interacts with an agent with opinion {1} is x. Hence, the
total rate of transition from z to x + 1/N is given by

r(x —x+1/N) =qNz(l —z). (4.8)

Similarly, the rate of transition from x to x — 1/N is given by

r(x —-x—1/N)=qNz(l —x). (4.9)

From the above transition rates it can be easily seen that the generator of the process
M) () converges uniformly as N — oo to the generator of the process z(-) which satisfies
the following differential equation

(t) = (g0 — qu)(t)(1 — x(t)). (4.10)
Thus, if 2™ (0) = 2(0) as N — oo, then by Theorem C.2.2 and Theorem C.2.3, 2™ (.) =
x(-) as N — oo. In other words, z(+) is the mean field limit of the system.

Since qo > ¢1 and x(t) € [0,1] for all ¢t > 0, we have from (4.10) that &(¢t) > 0 for
all t > 0. Hence, z(t) — 1 as t — oo. The mean consensus time Ty () for large N can
therefore be approximated by the time taken by the process x(t) to reach the state 1 —1/N
(which corresponds to the situation where all the agents except one agent have opinion
{1}) starting with z(0) = a. Solving (4.10) we have

@A —a)\ _
In <(1 = :L‘(t))(l/) = (qo — q1)t. (4.11)

Now using the limits discussed above, the mean consensus time T (a) can be found as
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Figure 4.1: Exit probability under the voter model with biased agents

Tw(@) = —— I(N—1)— —In ( a ) =0 <;1H(N - 1)) (4.12)
qo — ¢ Go—¢ \l-a 90 — ¢

Clearly, the mean consensus time scales as O(In V). This is in contrast to the voter model

with unbiased agents where the mean consensus time is known to increase linearly with the

network size N. Thus, in the case with biased agents, the network reaches the consensus

state exponentially faster than that in the case with unbiased agents.

Numerical Results: We now numerically study the exit probability Ex(a) and the
mean consensus time Ty («) as functions of the network size N and the initial fraction «
of agents having opinion {1}.

In Figure 4.1(a), we plot the exit probability for both biased (gy > ¢;) and unbiased
(go = q1 = 1) cases as functions of the number of agents N for a = 0.2. For the biased case,
we have chosen ¢y = 1,¢; = 0.5. We observe that in the biased case the exit probability
rapidly increases to 1 with the increase N. This is in contrast to the unbiased case, where
the exit probability remains constant at « for all N.

In Figure 4.1(b), we plot the exit probability Ey(«) as a function of « for both biased
and unbiased cases. We observe that, in the biased case, the exit probability increases to
1 at a faster rate than that in the unbiased case. We also observe that, in the unbiased
case, exit probability grows linearly with «a, independent of N.
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Figure 4.2: Mean consensus time under the voter model with biased agents

In Figure 4.2(a), we plot the mean consensus time Ty(a) for both the biased and
unbiased cases as functions of N for a = 0.4. We observe that, in the biased case, the
consensus state is reached in a time exponentially smaller than that in the unbiased case.
This is because the bias of the agents towards one of the opinions drives the system to
consensus much faster.

In Figure 4.2(b), we plot the mean consensus time as a function of « for both biased
an unbiased cases. The network size is kept fixed at N = 100. We observe that for the
unbiased case, the consensus time increases for a € (0,0.5) and decreases for a € (0.5,1).
In contrast, for the biased case, the consensus time steadily decreases with the increase in
«. This is expected since, in the unbiased case, consensus is achieved faster on a particular
opinion if the initial number agents having that opinion is more than the initial number
of agents having the other opinion. On the other hand, in the biased case, consensus is
achieved with high probability on the preferred opinion and therefore increasing the initial
fraction of agents having the preferred opinion always decreases the mean consensus time.

4.2.2 The voter model with stubborn agents
We now consider the case where different agents have different propensities to change their

opinions. This is modeled as follows: Each agent in the network is assumed to belong to
one of the two disjoint sets S and R. We denote by vs and 7z = 1 — g the fractions of
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agents belonging to the sets S and R, respectively. Each agent belonging to the set S (R)
updates its opinion with probability ¢s (gr) at a point of the unit rate Poisson process
associated with itself and retains its opinion with probability ps = 1 — q¢s (pr = 1 — qr)-
The updates occur according to the voter rule, discussed in the beginning of this section.
The probabilities qg and qr determine the degrees of ‘stubbornness’ of agents belonging to
the sets S and R, respectively. We set gs < gr to imply that the agents belonging to the
set & update their opinions less frequently than the agents belonging to the set R.

We note that, unlike the voter model with biased agents, in this model, the probability
with which an agent updates its opinion does not depend on the current opinion of the agent
and is determined by the set (S or R) the agent belongs to. We also point out the difference
between the model discussed above and the models considered in [81, 80]. In [81, 80], it was
assumed that the ‘stubborn’ agents do not change their opinions at any time. This implies
that a consensus can never be achieved in such cases due to the presence of ‘stubborn’
agents having both opinions at all times. However, in our model, agents belonging to
both the sets S and R are assumed to have non-zero update probabilities (i.e, ¢g, qr # 0).
Hence, in our model, consensus is always reached in a finite time (with probability 1).
Below we characterize the exit probability and mean time to reach consensus for the model
under consideration.

The evolution of the network can be described by a two dimensional Markov process
XMy = (XéN)(~),X1(%N)(-)), where XéN) (t) and ng) (t) denote the numbers of agents
with opinion {1} in sets S and R, respectively, at time ¢. Let (m,n) be the state of the
process at some instant. The process transits to state (m + 1,n) when one of the Nyg —m
agents with opinion {0} in the set S updates its opinion by interacting with an agent with
opinion {1}. The rate at which any one of the Nvs — m agents having opinion {0} in set
S decides to update its opinion is (Nvys —m)qs. The probability with which the updating
agent samples an agent with opinion {1} from the entire network is (m + n)/N. Hence,
the total rate of this transition is given by

(Nvs —m)(m +n)
N
Similarly, the rates of other possible transitions are given by

r((m,n) = (m+1,n)) = s (4.13)
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(Nyr = n)(m +n)

r((m,n) — (m,n+1)) = I qr (4.14)
r((m,n) = (m—1,n)) = m(N _Nm - ds (4.15)
r((m,n) — (myn —1)) = n(V _Nm_”)qR (4.16)

Proposition 4.2.2. Let Ey(ag, ar) denote the probability with which the network with N
agents reaches a consensus state with all agents having opinion {1} starting with as (resp.
ag) fraction of agents of the set S (resp. R) having opinion {1}. Then

En(as, an) = Arys®s T 4sYrROR (4.17)
qrYs + 4sVr

Proof. Let F; = o(X™)(s),0 < s < t) denote the history of the process X™)(-) upto time

t > 0. Consider the process X éN)(~) /qs + ng)() /qr. The conditional drift of the process
from time ¢ to time ¢ 4 h is given by

g | XN XU k) X XU m]
ds qr qs .
1 1
B ((q_s> r{(mym) = (m+1,n)) + (q_R> r((m,n) = (m,n +1))
L 1
_ (q_s) r((m,n) = (m—1,n)) — (q—R) r((m,n) = (m,n — 1))) h+ o(h)
= o(h)

The third equality follows from the second since the coefficient of h vanishes using (4.13),
(4.14), (4.15), and (4.16). Thus, the process XéN)(-)/qS + XI(%N)(-)/qR is an JF; martingale.
Let T denote the random time the process X ™)(.) hits the consensus state. Clearly, T is
an JF; stopping time. Hence, using optional sampling theorem we have

XMy xWr XMy xW™o N N
g|Xs D X D) _g|Xs O Xa O _ Nsas  Nyran ) g
ds qr 4s 4r ds qr




The left hand side of the above equation can be written as

N N
XMy x3(T)
gs dr

E

N N
:(ﬂ+ﬁ

s . ) En(ag,ar)+0x (1 — Ex(as,ag)) (4.19)

Hence we obtain

Nysas + Nyrar

En(ag, ar) = q]\s,ﬁ N_jf: (4.20)
as 4R
which simplifies to (4.17). O

Remark 18. From (4.17) we see that the exit probability does not depend on the number
of agents N and is a function of the initial fractions ag, ag; the probabilities gg, gg which
determine the stubbornness of the agents; and the proportions vg,vg which define the
sizes of the sets S and R, respectively. We also observe that for ag = ag = a, the exit
probability is given by Ex(«, ) = «, which is independent of ¢gg and gg.

The mean time Ty(ag, ag) to reach consensus starting with ag (resp. ag) fraction of
agents of the set S (resp. R) having opinion {1} can be computed using the first step
analysis of the empirical measure process zN)(.) = (XéN)(-)/NVS,XI(%N)(-)/NVR). The
process (M) (-) changes its state only at points of a rate N Poisson point process, referred
to as the global clock. The probability p((x,y) — (x + 1/N~vg,y)) with which the process
transits from the state (x,y) at one point of the global clock to the state (z + 1/N~vs,y)
at the next point of the global clock is given by

p <(l’, y) — <w + Nivs y)) = vs(1 — 2)(vs + YrY)gs- (4.21)

Similarly, the probabilities for the other possible transitions are given by
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( (x y+ —)) = vr(1 —y)(vs7 + YrY)qR (4.22)
p ((:v,y) — (fr - NL%@/)) = 7s52(1 — Y52 — YrRY)Gs (4.23)
GG )

) = vsy(1 — vsx — YrY)qr (4.24)

p((z,y) = (z,v)) =1—p((l’7y) - (Z‘*‘NL%,’?J)) —p((x,y) - (x’yJFNLWR))
)

(@ (o= 5=0) ) o (@)= (s 55 ) (1.25)

Since the process z(V)(-) is Markov and the average gap between two points of the global
clock is 1/N, we have the following recursive relation

Now using (4.21), (4.22), (4.23), (4.24) and the Taylor series expansion of T (-, -) of second
order around the point (x,y) we have that for large N

T (, + 1)z + -2 - 0T (z,
sy — ) éﬂ; y)  as((s + Vo + vy — 22(3s + vry)) 07T (2, y)

2N~s Ox?
oT (x, +(yr+ 1)y —2 + 0*T (z,
s (z — ) éﬂ; y)  ar(ysz + (yr 23\??% y(vs® +vrY)) 8562 v_ 4 (4.27)
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Figure 4.3: Consensus time as a function of the network size N. Parameters: gqg = 0.3,
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with boundary condition T (0,0) = Tx(1,1) = 0. An approximate solution of the above
partial differential equation is given as by

Tn(z,y) = N ('ﬁ + E) h ( ISRy RIS y) , (4.28)
ds 4r Ysqr + YrR4s Ysqr + YRrR4s

where h(z) = —(zInz+(1—2)In(1—z)). The approximation is obtained by noting that the
above solution is exact for the cases y¢ = 1,7z = 0 and yg = 0,7 = 1. Moreover, putting
the solution in (4.27) we see that the terms containing first order partial derivatives vanish

and the terms containing the second order partial derivatives simplify approximately to
—1.

Numerical results: To numerically investigate how consensus time varies with the
system size N, in Figure 4.3 we plot the mean consensus time of 1000 independent runs of
a network with the following parameters: qs = 0.3, gg = 1, ag = ag = 0.8, y¢ = yg = 0.5.
We observe that the mean consensus time grows linearly with N. In the figure, we have also
plotted the mean consensus time obtained using (4.28). We observe a close match between
the simulation result and the approximate result which suggests that the approximation
provided in (4.28) is accurate.

Next, we investigate how the consensus time varies with gg the probability with which
the stubborn agents update their opinions. To do so, we plot the mean consensus time
as function of gg for a system with the following parameters: qr = 1, ag = ar = 0.8,
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vs = 0.1 =1— g, N =100. We see that the mean consensus time decreases with the
increase in gg. This is also suggested by the approximation (4.28).

4.3 The majority rule models

In this section, we consider models where an agent, instead of interacting with a single
agent, interacts with multiple agents at an update instant. As before, we assume that the
agents in the network consider updating their opinions at points of independent, unit rate
Poisson point processes. At a point of the Poisson process associated with itself, an agent
either retains its opinion or updates it. If the agent decides to update its opinion, then
it interacts with 2K (K > 1) agents sampled uniformly at random (with replacement)
from the network and adopts the opinion held by the majority of the 2K + 1 agents which
includes the 2K sampled agents and the updating agent itself.

As in the case of voter models, the decision of an agent to update its opinion is assumed
to depend either i) on the current opinion held by the agent or ii) on the propensity of the
agent to change opinions. Below we consider these two scenarios separately. To simplify
analysis, we focus on the K = 1 case, where each agent interacts with two agents at its
update instant. The case K > 1 is studied separately in Subsection 4.3.3.

We note that in the majority rule model discussed above, only one agent updates its
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state, at each time step, by interacting with a group of randomly sampled neighbors. This
is different from the previous models studied in the literature [9, 65, 8], where all members
of a group of interacting agents were assumed to update their opinions simultaneously.

4.3.1 The majority rule model with biased agents

As in Section 4.2.1, we first consider the case where the agents are ‘biased’ towards one
of the two opinions. More specifically, we assume that an agent with opinion i € {0, 1}
updates its opinion with probability ¢; at a point of the unit rate Poisson process associated
with itself. The agent retains its opinion with probability p; = 1 — ¢;. In case the agent
decides to update its opinion, the update occurs according to the majority rule discussed
in the beginning of this section. We assume ¢g > ¢; to imply that agents with opinion
{0} update their opinions more frequently than agents with opinion {1}. In the above
sense, the agents are biased towards opinion {1}. The case ¢; = ¢y = 1 corresponds to the
majority rule model with unbiased agents.

Let X™)(¢) denote the number of agents with opinion {1} at time ¢t > 0. Clearly,
XW)(.) is a Markov process on state space {0, 1,..., N}, with possible jumps at the points
of a rate N Poisson process. We refer to the above rate N Poisson process as the global
clock of the system. All states, except the states 0 and N, form a an open communicating
class, and the states 0 and N are the absorbing states. Therefore, with probability 1, the
process gets absorbed in one of the absorbing states in a finite time.

Proposition 4.3.1. The probability Ex(n) with which the process X™)(-) gets absorbed
in state N starting from state n € {1,2,..., N} is given by

En(n) = W nz_l (Nk_ 1) r*, (4.29)

k=0
where r = q1/q0 < 1 and Ex(0) = 0.

Proof. Given that the process XV)(.) is in state n at a point of the global clock, the
probability with which it transits to the state n + 1 at the next point of the global clock
is denoted by p(n — n + 1). This transition occurs when an agent with opinion {0}
updates its opinion to opinion {1} by interacting with two agents having opinion {1}. The
probability with which one among N — n agents having opinion {0} decides to update its
opinion at a point of the global clock is go(N — n)/N. The probability with which the

110



updating agent samples two agents with opinion {1} is (n/N)2. Hence, total probability
of this transition is given by

pln = n+1) = (1 - %) (%)2 % (4.30)

Similarly, the probabilities of other possible transitions are given by

pln—->n—1)= <1 — %)2 <%) ¢ (4.31)
p(n—=n)=1—pn—>n+1)—pn—n). (4.32)

Since X™)(.) is Markov, the exit probability Ey(n) must satisfy the following recursive
relationship:

Ex(n)=pn—=n+1)Ex(n+1)+pn—>n—1)Ex(n—1)+pn—n)Ex(n) (4.33)
Using (4.30), (4.31), and (4.32) the above relationship can be simplified to

Sy () - Ex(n - 1) (4.34)

Putting Dy(n) = Exy(n+1) — Ex(n) we find that (4.34) reduces to a first order recursion
in Dy(n) whose general solution is given by

Dt = (v ay) <Z_> (4:39)

To compute the constant B we use the boundary conditions En(0) = 0 and Ex(N) = 1,
which imply that ij;ol Dy (n) = 1. Hence, the constant B is given by

Ex(n+1)— Enx(n) =

(N —1)!

R S A 4.36
(1+r)N-1 (4.36)
where r = ¢;/qo. Thus, we have
-1 n—

4.37
Z 1+erzk|N k;—l) (4.37)

k=0 k=0
which simplifies to (4.29). O
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We now proceed to characterize the mean consensus time of the network by analyzing
the mean field limit of the empirical measure process (M (-) = XM (.)/N. It is easy to
see that the rates of transition of the process z(-) from the state x to the states x +1/N
are given by

r(x — 2+ 1/N) = N(1 - z)xq (4.38)
r(x —z—1/N) = Nx(l —1)%q. (4.39)

From the above transition rates, it easily follows that as N — oo the generator of 2V)(.)
converges uniformly to the generator of the process () satisfying the following differential
equation:

i(t) = 2*(t)(1 — 2(t))q0 — 2()(1 — 2(t))*q1 = (90 + @)= (t)(1 — (1)) (2(t) — Kg) , (4.40)

where k; = ¢1/(qo + ¢1). Therefore, Theorem C.2.2 and Theorem C.2.3 imply that, under
the condition ™) (0) = a, ™)(-) = z(-) holds with 2(0) = . In other words, the process
xM)(.) weakly converges to the deterministic process z(-) as N — oo.

From (4.40), it follows that the process z(-) has three equilibrium points at 0, 1, and
kg, Tespectively. We now characterize the stability of these equilibrium points in the sense
of the following definition:

Definition 4.3.1. An equilibrium point x. € |0, 1] of the process x(+) is called stable if there
exists a non-empty set S C [0, 1] containing x. but S # {x.} such that for all x(0) € S we
have x(t) — z. as t — 0o. If no such sets exist, then x. is called an unstable equilibrium
point. The equilibrium point x. is said to be globally stable if for all x(0) € [0, 1] we have
x(t) = x. ast — oo.

If for some t > 0 we have 1 > x(t) > k,, then (4.40) implies ©(¢) > 0. Hence, for
z(0) € (kq, 1] we have x(t) — 1 as t — oo . Similarly, for 2(0) € [0, x,) we have z(t) — 0
as t — oo. Therefore, 0,1 are the stable equilibrium points of the process z(-), and &, is
an unstable equilibrium point.

If *™(0) = a = K, + € (e > 0), then, for large N, with high probability the process
M) (.) reaches the state 1 in a finite time. This is because for large N the path of the

process (V) () is close to that of 2(-) with high probability (by the mean field convergence
result) and we have already shown that for x(0) = a > k,, x(t) — 1 as t — oco. Therefore,
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the mean consensus time for large N and o = k4 + € can be approximated as the time
taken by the process () to reach the state 1 —1/N from the state a = x, +¢e. We denote
the approximate mean consensus time by Ty (k, + €). Now, solving (4.40) with the above
limits we obtain

_ 1 1 1 1
Ty (K, +€) = In(N(1—-%x,)—1)— —In(N—-1) — ———— Ine
N( q ) q0+q1 Hq<1_'%q) ( ( q) ) Kq ( ) qu(l_/{q)

1
+—1In(ky +€) +
Kq — hq

In(1—r,—¢€)| (4.41)

Similarly, for a = kg — ¢, T () can be approximated as the time taken by the process
x(+) to reach the state 1/N from state a. Again by solving (4.40) with the above limits we
have

_ 1 1 1 1
Tn(k, —€) = In(Nxg, — 1) — In(N —1) — ———— Ine¢
N( q ) % + ¢ qu<1 _ ’fq) ( q ) ( ) fiq(l _ qu)

In(l —k,+¢€)| (4.42)

1 — Ky

+i In(k, —€) + !

Kq 1 — Ky

From the above expressions, it is clear that the mean consensus time scales as O(In N).

We also observe that (4.41) can be obtained from (4.42) by replacing , with 1 — k,. This

symmetry is intuitive since interchanging ¢y and ¢; interchanges the statistical behaviors
of agents having opinion {1} and agents having opinion {0}.

Numerical Results: In Figure 4.5(a), we plot the exit probability as a function of the
total number N of agents in the network. The parameters are chosen to be gy = 1, g1 = 0.6.
We observe that for a > K, the exit probability increases to 1 with the increase in N and
for o < Ky, the exit probability decreases to zero with the increase in /N. This implies that
consensus is achieved on the preferred opinion (opinion {1}) with high probability only if
the initial fraction of agents having the preferred opinion is more than the threshold given
by k4. This is unlike the voter model with biased agents where the consensus is achieved
on the preferred opinion always with a higher probability.

In Figure 4.5(b), we plot the exit probability as a function of the initial fraction « of
agents having opinion {1} for the same parameter setting. In this case, we observe a sharp
increase in the exit probability in the range o € (0.2,0.6) which contains the unstable
equilibrium equilibrium point x, = 0.375. This sharp change is due to the fact that for
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a € (kg, 1] (resp. a € [0, #,)) the process XNV)(.) converges with high probability to the
consensus state where all agents have opinion {1} (resp. opinion {0}).

In Figure 4.6(a), we plot the mean consensus time as a function of N. Both simula-
tion results and approximations obtained from (4.41) are plotted. We see that the mean
consensus time slowly increases with increase in NV, which is suggested by the In(/N) terms
appearing in (4.41) and (4.42).

In Figure 4.6(b), we plot the mean consensus time as a function of the initial fraction of
agents having opinion {1}. From the plot it is clear that the consensus time is maximum
when the initial fraction of agents with opinion {1} is near the unstable equilibrium point
kq. This is because o = k, represents the critical point below which the process M) ()
converges to the state 0 with high probability and above which it reaches the state 1 with
high probability.

4.3.2 The majority rule with stubborn agents

We now consider the scenario where there are agents in the network who never update their
opinions. We call these agents as the stubborn agents. The other agents, referred to as
the non-stubborn agents, are assumed to update their opinions at all points of the Poisson
processes associated with themselves. The updates occur according to the majority rule
discussed in the beginning of this section. We denote by ~;, ¢ € {0,1}, the fraction of
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agents in network who are stubborn and have opinion ¢ at all times. Thus, (1 — vy — )
is fraction of non-stubborn agents in the network.

The presence of stubborn agents prevents the network from reaching a consensus state.
This is because at all times there are at least N+, stubborn agents having opinion {0} and
N~y stubborn agents having opinion {1}. Furthermore, since each non-stubborn agent may
interact with some stubborn agents at every update instant, it is always possible for the
non-stubborn agent to change its opinion. Below we characterize the equilibrium fraction
of non-stubborn agents having opinion {1} in the network for large N.

Let 2™(t) denote the fraction of non-stubborn agents having opinion {1} at time
t > 0. Clearly, 2(V)(.) is a Markov process with possible jumps at the points of a rate
N(1 — ~9 — 1) Poisson process. The process zV)(-) jumps from the state z to the state
x4+ 1/N(1 — 79 — 71) when one of the non-stubborn agents having opinion {0} becomes
active (which happens with rate N(1—+y—~1)(1—z)) and samples two agents with opinion
{1}. The probability of sampling an agent having opinion {1} from the entire network is
(1 =~ — )z + 7. Hence, the total rate at which the process transits from state x to the
state x + 1/N(1 — v9 — 1) is given by

1
N =9 —m)
Similarly, the rate of the other possible transition is given by

T (m—>x+ ) :N(l—’VO—’Yl)(l_x)[(l—70—71)$+71]2 (4.43)
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r ($ — T — N1 io — %)) =N -y —7)z[(1 =y —y)1—z)+7]°> (4.44)

It is easy to see from the above transition rates that the generator of the process z™)(.)
converges uniformly to the generator of the process x(-) which satisfies the following dif-
ferential equation

i(t) = (1= z()[(1 =70 —y)z(t) + 1’ = 2()[(1 =90 —n)(1 = 2(t)) +%w]*.  (4.45)

Hence, by applying Theorem C.2.2 and Theorem C.2.3, we have that if 2(")(0) = « as
N — oo, then ™) (-) = z(-) as N — oo with 2(0) = . In other words, the process z(-) is
the mean field limit of the sequence of processes (z™(-))y. We now study the equilibrium

distribution 7y of the process (V) (-) for large N via the equilibrium points of the mean
field z(-).

From (4.45) we see that @(t) is a cubic polynomial in z(¢). Hence, the process z(-) can
have at most three equilibrium points in [0, 1]. We first characterize the stability of these
equilibrium points according to Definition 4.3.1.

Proposition 4.3.2. The process x(-) defined by (4.45) has at least one equilibrium point
in (0,1). Furthermore, the number of stable equilibrium points of x(-) in (0,1) is either
two or one. If there exists only one equilibrium point of z(-) in (0,1), then the equilibrium
point must be globally stable (attractive).

Proof. Define

flz) =1 =2)[(1 =y —y)z+mn]* —z[(1 = — )1 —2) + %) (4.46)

)
Clearly, f(0) = 72 > 0 and f(1) = —2 < 0. Hence, there exists at least one root of
f(z) =01in (0,1). This proves the existence of an equilibrium point of z(-) in (0, 1).

Since f(z) is a cubic polynomial and f(0)f(1) < 0, either all three roots of f(x) = 0 lie
in (0, 1) or exactly one root of f(x) =0 lies in (0, 1). Let the three (possibly complex and
non-distinct) roots of f(x) = 0 be denoted by 1,79, 13, respectively. By expanding (4.46)
we see that the coefficient of the cubic term is —2(1 —~9—~1)?. Hence, f(z) can be written
as
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f(x) = =21 — 40 — )%z — 7)) (2 — 79) (2 — 73) (4.47)

We first consider the case when 0 < 71,79, 73 < 1 and not all of them are equal.* Let
us suppose, without loss of generality, that the roots are arranged in the increasing order,
e, 0<r; <rg<rg<lor0<r <ry<r3< 1 From (4.47) and (4.45), it is clear
that, if z(¢t) > ro and x(t) > rs, then @(¢) < 0. Similarly, if z(t) > r, and z(¢t) < r3, then
&(t) > 0 . Hence, if 2(0) > ry then z(t) — r3 as t — oo. Using similar arguments we have
that for z(0) < rq, x(t) — 71 as t — oco. Hence, r,r3 are the stable equilibrium points of
x(+). This proves that there exist at most two stable equilibrium points of the mean field

Now suppose that there exists only one equilibrium point of z(:) in (0,1). This is
possible either i) if there exists exactly one real root of f(z) = 0 in (0,1), or ii) if all
the roots of f(x) = 0 are equal and lie in (0,1).° Let r; be a root of f(z) = 0 in
(0,1). Now by expanding f(z) from (4.47), we see that the product of the roots must be
v2/2(1 — 49 — v1)? > 0. This implies that the other roots, 7o and r3, must satisfy one of
the following conditions:

® 1y 13 > 1.

o 19,73 < 0.

e 79,73 are complex conjugates.

o Iy =13 ="y,
In all the above cases, we have that (x — ro)(z — r3) > 0 for all x € [0, 1] with equality if
and only if © = r; = ro = r3. Hence, from (4.47) and (4.45), it is easy to see that (t) > 0

when 0 < z(t) < r; and @(¢) < 0 when 1 > z(t) > ry. This implies that xz(t) — r; for all
z(0) € [0,1]. In other words, r; is globally stable. O

In the next proposition, we provide the conditions on 7y and ~; for which there exist
multiple stable equilibrium points of the mean field z(-).

Proposition 4.3.3. There exist two distinct stable equilibrium points of the mean field
x(-) in (0,1) if and only if

4To see that that such a situation is possible, consider the parameter setting 7o = v; = 0.2. In this
case, the three roots of f(x) =0 are = 0.127322, 2 = 0.5 and x = 0.872678.
5To see that this is possible consider the case where v = 0.2, 1 = 0.3.
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1. D(vo,m) = (0 —m)*+3(1 =2y —2m) >0

2. 0< 21,29 <1, where

(3= —571) +vD(v,m)

e 6(1 =0 — ) .
(B =1—51) = vVD(w,m)
zp = REv— : (4.49)

3. f(z1)f(22) <0, where f(z) = (1=2)[(1=y0—y)z+n]*—2[(1=70—7)(1—2)+70]*.

If any one of the above conditions is not satisfied then x(-) has a unique, globally stable
equilibrium point in (0, 1).

Proof. From Proposition 4.3.2, we have seen that z(-) has two stable equilibrium points
in (0,1) if and only if f(z) = 0 has three real roots in (0,1) among which at least two
are distinct. This happens if and only if f'(z) = 0 has two distinct real roots zi, 2o in the
interval (0,1) and f(z1)f(22) < 0. Since f'(z) is a quadratic polynomial in x, the above
conditions are satisfied if and only if

1. The discriminant of f’(z) = 0 is positive. This corresponds to the first condition of
the proposition.

2. The two roots z1, 2o of f’(x) = 0 must lie in (0,1). This corresponds to the second
condition of the proposition.

3. f(z1)f(22) <0. This is the third condition of the proposition.

Clearly, if any one of the above conditions is not satisfied, then z(-) has a unique
equilibrium point in (0,1). According to Proposition 4.3.2 this equilibrium point must be
globally stable. O]

In the above propositions, we have established that depending on the values of 7y and
v, there may exist of multiple stable equilibrium points of the mean field z(-). However,
for every finite N, the process 2™ (-) has a unique stationary distribution 7y (since it is
irreducible on a finite state space). In the next result, we establish that any limit point of
the sequence of stationary probability distributions (7y)y is a convex combination of the
Dirac measures concentrated on the equilibrium points of the mean field z(-) in [0, 1].
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Theorem 4.3.1. Any limit point of the sequence of probability measures (myx)y is a convex
combination of the Dirac measures concentrated on the equilibrium points of x(-) in [0, 1].
In particular, if there exists a unique equilibrium point r of x(-) in [0,1] then 7y = 6,
where 9, denotes the Dirac measure concentrated at the point r.

Proof. We first note that since the sequence of probability measures (7y)y is defined on
the compact space [0, 1], it must be tight. Hence, Prokhorov’s theorem implies that (7y )y
is relatively compact. Let m be any limit point of the sequence (my)y. Then by the mean
field convergence result we know that = must be an invariant distribution of the maps
a— x(t,a) forall t >0, i.e.,

/go(x(t,a))dﬂ(a) = /gp(a)dﬂ(a), (4.50)

for all t > 0, and all continuous (and hence bounded) functions ¢ : [0,1] — R. In the
above, z(t, ) denotes the process x(-) started at z(0) = a. Now, (4.50) implies

[ eteidr@) = 1w [ ¢latt,)in(a) (451
= /90 (tliglo x(t, oz)) drm () (4.52)

The second equality follows from the first by the Dominated convergence theorem and the
continuity of ¢. Now, let 1,79, and r3 denote the three equilibrium points of the mean
field z(-). Hence, by Proposition 4.3.2 we have that for each o € [0, 1], p(limy_,00 2(¢, ) =
@(r1)In, (@) + p(ra)ln,, (@) + o(rs)ly,, (o), where for i = 1,2,3, N,, € [0, 1] denotes the
set for which if 2(0) € N,, then z(t) — r; as t — oo, and I denotes the indicator function.
Hence, by (4.52) we have that for all continuous functions ¢ : [0,1] — R

/ p(@)dn(a) = @(r)m(Nn) + @(r2)m(Nsy) + (ra)m(Nyy) (4.53)

This proves that = must be of the form 7 = ¢10,, + 20, + 30,5, where ¢1, ¢2, c3 € [0,1] are
such that ¢; + ¢ + ¢3 = 1. This completes the proof. O

Thus, according to the above theorem, if there exists a unique equilibrium point of the

process z(+) in [0,1], then the sequence of stationary distributions (7my)y concentrates on
that equilibrium point as N — oo. In other words, for large IV, the fraction of non-stubborn
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agents having opinion {1} (at equilibrium) will approximately be equal to the unique
equilibrium point of the mean field. We now numerically study the unique equilibrium
point as a function of the fractions vy and ~;. In Figure 4.7, we plot the equilibrium point of
x(+) as a function of the fraction 7, of agents having opinion {1} who are stubborn keeping
the fraction 7y of stubborn agents having opinion {0} fixed. We choose the parameter
values so that there exists a unique equilibrium point of z(-) in [0,1] (such parameter
settings can be obtained using the conditions of Proposition 4.3.3). We see that as v; is
increased in the range (0,1 — 79 — €) (¢ > 0), the equilibrium point shifts closer to unity.
This is expected since increasing the fraction of stubborn agents with opinion {1} increases
the probability with which a non-stubborn agents samples an agent with opinion {1} at
an update instant.

If there exist multiple equilibrium points of the process z(-) then the convergence
zM)(.) = () implies that at steady state the process (¥)(-) spends intervals near the
region corresponding to one of the stable equilibrium points of z(-). Then due to some
rare events, it reaches, via the unstable equilibrium point, to a region corresponding to the
other stable equilibrium point of z(-). This fluctuation repeats giving the process z™)(.)
a unique stationary distribution.

The behavior discussed above is formally known as metastability. Although systems
showing such metastable behavior are rare in practice, there are examples of such systems
in the context of loss networks. See for example [55]. To demonstrate metastability, we
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simulate a network with NV = 100 agents and vy = ; = 0.2. For the above parameters, the
mean field z(-) has two stable equilibrium points at 0.127322 and 0.872678. In Figure 4.8,
we show the sample path of the process ™) (-). We see that at steady state the process
switches back and forth between regions corresponding to the stable equilibrium points of
x(+). This provides numerical evidence of the metastable behavior of the finite system.

4.3.3 Sampling more than two neighbors

In this section, we study the scenarios described in Subsections 4.3.1 and 4.3.2 for K > 1.
In this case, the analysis is similar to those discussed above but involves more algebraic
computations. For example, it can be easily verified that for general K, the mean field
limit z(-) of the majority rule model with biased agents satisfies the following differential
equation

i(t) = ) a(t)(1 - (1))

1=K+1

(QK ) () (1 — ()™ g0 — (1 — 2(6) () ~qu]

(4.54)

?

This implies that for any K > 1, two stable equilibrium points of the mean field are
located at 0,1. The value of the unstable equilibrium however depends on the value of K.
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7.5

6.5

Mean consensus time

55

Figure 4.9: Majority rule with biased agents: Mean consensus time as a function of K.
Parameters: ¢ =1,¢q1 = 0.6,a = 0.5, N = 50

It turns out that increasing K (keeping qo, ¢; unchanged) shifts the unstable equilibrium
point towards one.

We first numerically study the majority rule model with biased agents for K > 1. It is
expected that with the increase in K mean time to reach consensus will decrease. This is
because for larger values of K the probability with which the majority opinion of a selected
group of 2K + 1 agents is the same as the majority opinion of whole network is higher.
Therefore, when the state of the system is above (or below) the unstable equilibrium point
of the mean field, the network experiences a stronger ‘pull’ towards the majority resulting
in a smaller mean consensus time. In Figure 4.9 we plot the mean consensus time as a
function of K for g9 = 1,1 = 0.6, = 0.5, N = 50. As expected we observe that the
mean consensus time decreases with the increase in K. However, since the dynamics of
the majority rule follows that of a diffusion process, the asymptotic order (In V) of the
consensus time remains unchanged.

Next, we study the majority rule model with stubborn agents for K > 1. We consider
the case 73 > 79. In this case, with the increase in K, the probability with which the
majority opinion in a group of 2K + 1 agents is {1}, increases. Therefore, increase in K
should result in a shift of the equilibrium fraction of non-stubborn agents with opinion
{1} closer to unity. In Figure 4.10 we plot the equilibrium fraction of non-stubborn agents
having opinion {1} as a function K for 79 = 0.2,7; = 0.4, N = 50. As expected we observe
that the equilibrium fraction of agents with opinion {1} increases to unity as K increases.
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Figure 4.10: Majority rule with stubborn agents: Mean consensus time as a function of K.
Parameters: 79 = 0.2,71 = 0.4,a = 0.5, N = 50

4.4 Conclusion

In this chapter, we analyzed models of opinion dynamics based on the voter rule and the
majority rule. Under each rule, we considered scenarios i) where the agents are biased
towards a specific opinion and ii) where the agents have different propensities to change
their past opinions. We observed that for the voter model, the presence of biased agents,
reduces the mean consensus time exponentially in comparison to the voter model with
unbiased agents. For the majority rule model with biased agents, we saw that the network
reaches the consensus state with all agents adopting the preferred opinion only if the
initial fraction of agents having the preferred opinion is more than a certain threshold
value. The threshold was computed in the large system limit using the mean field analysis.
For the voter model with agents having different propensities to change their opinions, we
obtained a closed form expression for the probability with which consensus is reached on
a specific opinion. It was observed that this probability does not depend on the number
of agents in the network. Finally, we have seen that for the majority rule model with
stubborn agents the network exhibits metastability, where it fluctuates between multiple
stable configuration, spending long intervals in each configuration.
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Chapter 5

Conclusion

In this dissertation, we analyzed large systems of weakly interacting heterogeneous entities
using mean field techniques. We focused on two instances of such systems arising in two
different contexts. First, we focused on heterogeneous multi-server systems which serve
as models of large web server farms and cloud data centers. Job assignment schemes, in
which the incoming job requests are assigned to the servers by comparing the states of
some randomly sampled servers at each job arrival instant, were analyzed. In the second
part of the dissertation, we considered the effect of random interactions between agents in
a social network on the diffusion of opinions in the network.

In the first part, both processor sharing systems and loss systems were studied. In
Chapter 2, we considered randomized dynamic job assignment schemes for a system of
parallel processor sharing servers having different capacities. It was shown that uniform
sampling of the servers at each job arrival instant may lead to a reduction in the stability
region of the system. A hybrid scheme, that combines biased sampling of different server
types with uniform sampling of servers within the same type, was shown to achieve the
maximal stability region with the knowledge of the system parameters. To avoid requiring
the knowledge of the system parameters, a type-based scheme was proposed and shown to
achieve the maximal stability region under all values of the system parameters. The per-
formance of the type-based scheme was analyzed using mean field techniques. Numerical
studies were conducted to show that the hybrid scheme and the type based scheme sig-
nificantly outperform randomized static schemes where job assignment decisions are made
independently of the server states.

In Chapter 3, randomized dynamic job assignment schemes were studied with the aim
of reducing the average blocking probability of jobs arriving at a system of parallel loss
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servers. A job assignment scheme, where every arriving job is assigned to the server with
the maximum available resource among a set of randomly sampled servers, was shown to
have near optimal performance in terms of reducing the average blocking probability of jobs
in the system. The performance of the scheme was analyzed using mean field techniques.
A recursive formula to efficiently compute the average blocking probability of jobs was
obtained for the multi-class case.

In Chapter 4, diffusion of binary opinions in a large social network was studied under
the voter model and the majority rule model. Two scenarios were considered. In the first
scenario, the agents were assumed to be biased towards a specific opinion. In this scenario,
the voter model was shown to converge to a consensus state in a time that is logarithmic in
the total number of agents. For the majority rule model with biased agents it was shown
that all the agents eventually adopt the ‘preferred’ opinion with high probability only if the
initial fraction of agents having the preferred opinion is above a certain threshold. A second
scenario in which different agents have different propensities to change their opinions was
also analyzed under the voter model and the majority rule model. For the voter model,
the exit probability was found to be independent of the network size. For the majority rule
model, we observed that the presence of stubborn agents results in a metastable behavior
of the system under certain parameter settings.

5.1 Future Extensions

Following the results presented in this dissertation, there are several interesting avenues of
future research. Some of the them are discussed below.

We have noted in Chapter 2 and Chapter 3 that in the large system limit the systems
of processor sharing servers and loss servers operating under the randomized dynamic job
assignment schemes become asymptotically insensitive to job length distributions. This is
due to the following facts: i) In the limiting system the servers become independent of each
other; ii) Each server has a symmetric service discipline (either processor sharing or loss
servers). We have established asymptotic independence of servers only for the exponential
job length distribution. Proving asymptotic independence for more general job length
distributions remains as an open problem. The proof will require construction of Markov
processes on continuous state spaces and analyzing their corresponding mean field limits.

In the model considered in Chapter 3, we assumed that each incoming job is assigned
to the server having the maximum vacancy among a randomly sampled set of d servers. An
interesting variation of the scheme would be a scheme where an incoming job is assigned
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to the server (among the set of sampled servers) whose vacancy ‘matches’ the ‘best’ with
the resource requirement of the job. This will ensure that a job with a ‘small’ resource
requirement will not occupy a server with a much ‘larger’ vacancy where a future potential
arrival having a larger resource requirement can be assigned. Such a criterion of server
selection, based on ‘best fit’, is expected to yield lower blocking probability of jobs than
the scheme considered in Chapter 3. However, a more precise definition of the scheme is
required and a detailed analysis need to be carried out to verify this.

We assumed in Chapter 3 that the resource requirements of the incoming jobs are one-
dimensional in the sense that different classes of jobs require different units of the same
resource. A model where resource requirements are multi-dimensional would be a more
accurate model for cloud computing systems, where each incoming job requires specific
amounts of different resources (e.g. memory, CPU, storage).

In the majority rule model considered in Chapter 4, we assumed that each agent samples
a fixed number of agents in the network at every update instant. A generalization of this
model would one in which the agents sample random number of agents with a fixed mean.
In such a scenario, it would be interesting to study how the mean consensus time depends
on the distribution of the number of agents sampled during an update instant.

Another scenario would be one in which the agents have fixed neighborhoods at all
times. In this case, analyzing the voter model and the majority rule model assuming the
presence of biased and stubborn agents is much more challenging. Mean field techniques
cannot be applied in such a scenario. A generalization of coalescing random walk techniques
may provide bounds on the mean consensus time in such cases.
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Appendix A

Proof of compactness of UM

We prove that the space UM, defined as the M fold product of the space

U={(g,n€Zy):go=1,gp > gni1 > 0forallneZ,}, (A.1)

is compact under the metric w, defined as

Uk,j — Uk,j

oM
el b for all u,v e U™, (A.2)

w(u,v) = sup sup
1<j<M keZ,

It is sufficient to show that the space U (defined in (A.1)) is compact under the metric @
defined as

e (k)
w(u,v) = ]iseuzp+ k——i—l‘ : (A.3)

where u = (u(k),k € Z,),v = (v(k),k € Z,) € U.

In order to prove the compactness of I/ under the metric &, we prove that any sequence
(tn)n C U has a sub-sequence (uy,, )m C (U ), convergent to a limit u € I under the metric
w. We first note that for each k € Z ., the sequence (u,(k)), is a bounded sequence in [0, 1]
and therefore has a convergent sub-sequence. Hence, by the process of diagonalization, we
can find a sub-sequence (uy,, )m of (uy), such that for each k € Z,, u,, (k) — u(k) as
m — oo for some u(k) € [0,1]. Clearly, v = (u(k),k € Z,) € U. We now show that
O(Up,,,u) — 0 as m — oo.
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Since for each k € Z, we have u,, (k) — u(k) as m — oo, we can choose m sufficiently
i (W—uB) | 1 for 0 < k < . For k > [, we have M)—“(k)‘<L

large such that ‘

k+1 I+1 k+1 I+1
since |uy,, (k) —u(k)] <1 and k > [. Thus, we have that for sufficiently large m
3 u(k) —v(k) 1
iy W) = : A4
Pt ) = S0 | S T (A4)

Since the above holds for any [ € N, the required convergence follows.
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Appendix B

Proof of Theorem 2.6.3

We provide a proof for M = 2. The proof can be generalized to any M > 2.

The main idea is to construct sequences {Py ;,k € Z,} for 7 = 1,2 such that they
satisfy the following three properties

P.1 Equation (2.85) for j =1, 2.
P.2 P07]:12P]g7]20f0rallkEZ+,j:172

P3 P,; - 0ask — ooforj=1,2.

The first property ensures that the constructed P = {Fy ;. k € Z,j € {1,2}} satisfies
1(P) = 0. The second property (in conjunction with the first property) implies that P ; >
Piy1;>0forallk € Zy, j =1,2. Hence, P € U?. Finally, according to Proposition 2.6.2
the third property (along with the first two properties) guarantees that P must lie in the
space U?. Hence the proof is complete if we can construct a P satisfying all the three
properties.

We now construct the sequences {P1(«),l € Z;} and {P2(«),l € Z, } as functions of
the real variable « as follows:
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Poi(a) =1 (B.1)
Poa(a) =1. (B.2)
Pri(a) = a. (B.3)
Pra(a) = A, (1 - A%) (B.4)
Piiaa(@) = Firra(e) = At (Pa(@)™ = (P (a))") (B.5)
X (Pry1a(a)®,1>0
Piiza(@) = Firia(e) = 8 ((Pra(@)® = (Praa(a))®) (B.6)
X (Pa)™ 120

Combining the above relations we obtain

2 2

> A T (e ot 20 ®.7)

Note that the sequences {P,;(«),l € Z,} and {P»(«),l € Z,} are constructed such that
they satisfy property (P.1). Hence, the the proof will be complete if for some « the
properties (P.2) and (P.3) are satisfied. We first proceed to find the range of o for which
the sequences {P (), € Z;} and {Ps(«),l € Z;} are both positive sequences of real
numbers in [0, 1]. This will ensure that (P.2) is satisfied.

J=1

We first observe from (B.3) that to have 1 > P;i(«) > 0 we must choose « in the
range [0,1]. Also, from (B.4) we observe that to have 1 > P s(a) > 0 we must choose
a € [A(1 —1/Ay),A;]. Combining the above two ranges we have the following effective
range of o for which 1 > Py ;(«a), Po1(a) >0

o€ [max (o, N (1 _ Ai)) ‘min(1, Al)] | (B.8)

We note that the above range is always non-empty due to the stability condition A € A
which implies that 1/A; +1/Ay > 1.

The above range can be further refined as follows. From (B.4), (B.6), and (B.3) we
see that at & = 0, P11(0) = 0, P12(0) = Ay > 0, Py = A;’2+1 > 0 for all I > 2.
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Hence, at o = 0, P,5(0) > 0 for all { > 0. From the same relations we also observe that
Py (A1 (1 — ﬁ)) =1> 0 for all [ > 0. Combining the two we have that for all [ > 0

(03, )

Now, putting [ = 0, « = A in (B.6) we observe that Py (A;) < 0. Hence, from (B.9) it fol-
lows that there exists at least one root of P »() in the range [max (O, Aq (1 — A%)) , Al} .
Let r9 2 denote the minimum of these roots. Then in the range

o {max (0, Ay (1 - A%)) min (1, 72.) ] | (B.10)

we have 1 > Py j(a) > 0,1 > Pyo(a) > Pas(a) > 0. Repeating the same argument again
for P3’2(Oé> we find that 1 Z PLl(Oé) Z 0 and 1 Z Pl’g(Oé) Z PQ,Q(O[) Z P3’2<Oé) 2 0 in the
range

ae [max (O,Al <1 - A%)) ,min (1,735) 1 , (B.11)

where 732 denotes the minimum root of Ps () in the range defined in (B.10).

We now refine the left limit of the above range as follows. From (B.5) we have P, ;(0) =
—AlAgQ < 0. Also, from definition of 735 we know that Ps4(r32) = 0. Now, by putting
a=r39 and [ =1 in (B.6) we obtain

P2,2(7“3,2) =y [(P1,2(T3,2))d2 - (P2,2(7“3,2))d2 (7“3,2)d1
<A, (P1,2(7“3,2))d2 (7‘3,2)d1 (since Pya(rsz2) >0)
Again, by putting | = 2 and a = r35 in (B.7) and using the above we obtain P, ;(r32) > 0.

Therefore, there exists at least one root of Pp(«) in the interval (0,732 ]. Denote the
maximum of all such roots to be ry;. Hence, in the range

a € [max (T’Q}l,Al (1 — Ai)) ,min (1,7r35) ] : (B.12)
2

we have 1 Z PLl(Oé) Z PQJ(OC) Z 0 along with 1 Z PLQ(O[) Z PQ,Q(O[) 2 P3’2<Oé) 2 0. Again
from (B.5) we observe that Ps;(ry;) < 0. Further, putting [ = 3 and a = r3 in (B.7)
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we obtain Pj;(rs2) > 0. Thus, there must be at least one root of Ps;(«) in the range
(721,732 ]. Let r3; denote the maximum root in the interval. Hence, in the interval

a € [max (T’g}l,Al (1 — Ai)) ,min (1,r35) ] : (B.13)
2

we have 1 Z PLl(oz) Z PQJ(OC) Z P3,1(Oé) Z 0 along with 1 Z PLQ(Oé) Z PQ’Q(O[) Z P3’2<Oé) Z
0. Similarly, from (B.5) we have Py 1(rs;) < 0 and from (B.6) we have Py ;(r32) > 0. Thus,
there must be at least one root of Py;(«) in the range (31,732 ]. Denote the maximum
of all such roots by r4;. Hence, in the interval

a € [max (T4’1,A1 (1 - Ai)) ,min (1,7r35) ] : (B.14)
2

we have 1 2 PLl(()é) Z PQJ(O[) Z P371(Oé) 2 P4’1(Oé> Z 0 and 1 Z Pl’g(Oé) Z P2’2<Oé) Z
Pg}g(O[) Z 0.

Using the same line of arguments as above, the following inductive hypothesis can be
proved: If P171(Of) Z PgJ(Of) Ce Z P4+3k71(0_/) Z O and PLQ(Q/) Z PQQ(OZ) Ce 2 P3+3k71(01) Z
0 for some k > 0 and

1
o€ {max (T4+3k’1, Al (1 - A_>) ,min (1,T3+3k,2) :| s <B15)
2
then Pl,l(a> Z P2,1 (a) e Z P4+3(]€+1)’1(Oé> Z O and PLQ(OC) Z PQQ(O() e Z P3+3(k+1)71<@) Z

0 hold in the range

1 :
(ORS {max (7“4+3(k+1),17A1 (1 - A_)) , 11T (17T3+3(k+1),2) } ) (B.16)
2

and the interval in (B.16) is included in the interval in (B.15).

The of compact intervals

1
{max <7‘4+3k71, Al (1 — A_)) ,Il'liIl (17T3+3k,2) :| ,I{Z Z O (Bl?)
2

eventually become strict subsets of the interval [0, 1]. This can be justified as follows. We
note that P1(1) =1 for all [ € Z,. Hence, from (B.4) we have P 5(1) = Ay <1 — A%) and

from (B.6) we have
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Priza(1) = Phaa(l) = Ao (R2()® = (Phaa()®) foriz0  (B1S)

Notice that the stability condition A € A can be equivalently expressed as

1 1
A_l + A—2 > 1, (Blg)
which implies that P; 5(1) < 1. We claim that there exists some [ > 1 such that P,»(1) < 0.
Let us assume this is not true. Therefore, P 5(1) > 0 for all [ > 0. By (B.18), this implies
that {F,2(1),l > 0} is a non-increasing sequence of numbers in [0, 1). Hence by monotone
convergence theorem lim;_, ., P, (1) exists. Let this limit be denoted by §, where 0 < 5 < 1.
Thus, adding (B.18) for { > 0 and using lim;_,, P 2(1) = /5 we obtain

1 _ﬁ  ds
(1-5)=n+1-0

>5<1—Ai>+1—ﬁdz.

1

Hence, <1 — A% > 11__ﬁ;2 > 1. This is a contradiction since A; > 0. Hence, there

exists [ > 1 such that P o(1) < 0. This implies that for some k£ > 0, r3p432 < 1.
Similarly, by observing that P, o (A1 (1 — ﬁ)) = 1for all l > 0, it can be shown that there
exists [ > 1 such that B, (Al (1 — ﬁ)) < 0. This implies there exists £ > 0 for which
T4+3k1 > Al(l — 1/A2)

Further, the intersection of all such compact intervals must be non-empty due to the
Cantor’s intersection theorem. Hence, we have shown that there exists o € (0,1) such
that the sequences {P1(«),l € Z;} and {P,2(a),l € Z,} are both positive non-increasing
sequences of real numbers in [0, 1].

We now show that the above sequences satisfy property (P.3). Let lim; o P1(c) =
& > 0 and lim; o Po(a) = & > 0, where a € (0, 1) is chosen such that both sequences
become positive and non-increasing. Now, taking limit of (B.7) as [ — oo we have

2 2
&

~=Ile" (5.20)

J=1 J=1

Now using the stability criterion and the fact that 0 < &;,& < 1 we have
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! + ! >1

A Ay

52 62 d

22 L 22 > >
:>A1+A2_£2_§2

with equality holding if and only if & = 0. Further, we have

1 & &2 &2 d
825 82 82 e
AT SN T, 2R

Hence, by multiplying both sides with & we have

SERSES ) | edo

with equality if and only if £ = & = 0. Again, since & < 1 we have

G & & | L& d> ~ cdied
- 22 > 2 2222 > 2 > 1¢a2

Hence, we have shown

S S di ¢d
== 22 > d1ed B.21
™ + A, = §1'&s ( )

with equality holding if and only if & = & = 0. Hence, for (B.20) to hold we must have
& = & = 0. This proves (P.3) and thus completes the proof.
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Appendix C

Mathematical Preliminaries

In the appendix, we review some of the key concepts and results related to weak conver-
gence of probability measures and Markov processes. The results discussed here are used
throughout this dissertation. For a more detailed discussion on the topics covered in this
section the reader is referred to Chapters 1, 3, and 4 of [28].

Throughout we shall use (F,r) to denote a metric space; B(FE) to denote the o-algebra
of Borel subsets of E; P(FE) to denote the set of (Borel) probability measures on (E, B(E));
C(E) to denote the space of real valued bounded continuous functions defined on E with
the norm |||l = sup,cp|f ()| for f € C(E).

C.1 Weak convergence of probability measures

We begin by defining weak convergence of a sequence of probability measures in P(E).

Definition C.1.1. A sequence of probability measures {P,,n > 1} € P(E) is said to
converge weakly to P € P(E) (written as P, = P) if for all f € C(E)

lim [ fdP, = / FdP. (C.1)

n—0o0

Next, we define a metric dy on P(F) with respect to which weak convergence of
probability measures can be studied.
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Definition C.1.2. For P,Q € P(FE), the Prohorov metric dy (P, Q) is defined as

dw(P,Q)=inf{e>0: P(F)<Q(F) +¢€ forall F €C}, (C.2)

where C is the collection of closed subsets of E and for each F € C we denote by F€ the
set F* ={z € E:infycpd(z,y) < €}.

It can be shown that dy is indeed a metric on P(E) (Lemma 1.1 of Chapter 3 of [28]).
The following theorem establishes that a sequence of Borel probability measures on a
separable metric space weakly converges to a limit if and only if it converges to the limit
in the Prohorov’s metric.

Theorem C.1.1 (28], p. 108, Theorem 3.1). Let {F,,n > 1} be a sequence in P(E) and
let Pe P(E). If (E,r) is separable then P, = P if and only if lim,—codw (P,, P) = 0.

In many cases, a direct proof of weak convergence of a sequence {P,,n > 1} € P(F) to
a limiting probability measure P € P(FE) becomes difficult. However, if it is known that
{P,,n > 1} is relatively compact (i.e., the closure of {P,,n > 1} in P(FE) is compact), then
to establish P, = P one just has to show that all convergent subsequences of {P,,n > 1}
converge to the same limit P. The following theorem, due to Prohorov, provides a neces-
sary and sufficient condition for a sequence of Borel probability measures to be relatively
compact. Before stating the theorem we define the following notion of tightness of Borel
probability measures.

Definition C.1.3. A Borel probability measure P € P(E) is said to be tight if for every
e > 0 there exists a compact set K C E such that P(K) > 1 —¢€. A family of Borel
probability measures M C P(FE) is said to be tight if for every e > 0 there exists a compact
set K C E such that infpep P(K) > 1 — .

The following theorem establishes the equivalence between relative compactness and
tightness of a set of Borel probability measures defined on a complete and separable metric
space.

Theorem C.1.2 ([28], p. 104, Theorem 2.2). Let (E,r) be complete and separable and let
M C P(E). Then the following statements are equivalent

(i) M is tight.
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(ii) For each € > 0, there exists a compact set K C E such that

: N .
Plg/fv[P(K)_l €, (C.3)

where K€ is as defined in Definition C.1.2.

(iii) M is relatively compact.

The above theorem implies that a sequence of Borel probability measures on a complete
and separable metric space is relatively compact if and only if it is tight. Note that if
(E,r) is a compact metric space (hence complete and separable) then by definition every
sequence of Borel probability measures is tight (to see this put K = E in Definition C.1.3).
Therefore, Prohorov’s theorem implies that every sequence of Borel probability measures
on a compact metric space is relatively compact. We shall use this fact frequently in this
dissertation.

C.2 Convergence of Markov processes and operator
semigroups

In this subsection, we first discuss the notion of weak convergence of a sequence of stochastic
processes defined on the probability space (€2, F,P) and taking values in the metric space
(E,r). We then specialize to the case of Markov processes and discuss the techniques which
can be employed to establish weak convergence of a sequence of Markov processes.

Since in most of our applications we will be dealing with stochastic processes having
right continuous sample paths, we first study the space Dg[0, 00) of E-valued right contin-
uous functions having left limits (RCLL) defined on [0, 00). We define the following metric
on Dg[0, 00).

Definition C.2.1. Let A be the collection of strictly increasing Lipshitz continuous func-
tions \ defined on [0,00) with A(0) =0 and lim;_,o, A\(t) = co0. For A € A define

log (M) ‘ . (C.4)

Y(A) = sup

0<s<t

Then for each x,y € Dg[0,00), A € A, and u € [0,00) let

t—s
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d(xz,y, \,u) =supr(z(t Au),y(A(t) Au)) AL, (C.5)

t>0

and define the metric

d(z,y) = inf {V(A) v /0 h e“d(:c,y,)\,u)du} . (C.6)

It can be shown that (Dg[0,00),d) defines a metric space. The topology induced by
the metric d on Dg[0,00) is called the Skorohod topology. Let B (Dgl0,00)) denote the o-
algebra of Borel subsets of Dg|[0,00) and P (Dg|0, 00)) denote the set of (Borel) probability
measures defined on (Dg|0, 00), B (Dg[0,00))).

A stochastic process X, defined on the probability space (€2, F,P) and having sample
paths in Dg|0,00), is a measurable mapping X :  — Dg[0,00). Hence, the distribution
P of the process X is given by P(I') = P(X € T') for all I' € B(Dg[0,00)). A sequence of
processes {X,,,n > 1} having sample paths in Dg[0, 00) is said to converge to the process
X, also having sample paths in Dg[0,00) (written as X,, = X), if P, = P, where for
each n > 1, P, denotes the distribution of X,, and P denotes the distribution of X. The
sequence of processes {X,,n > 1} is called relatively compact if {P,,n > 1} is relatively
compact. A sufficient condition for weak convergence of stochastic processes with sample
paths in Dg[0, 00) is given in the following theorem.

Theorem C.2.1 ([28], p. 131, Theorem 7.8). Let E be separable and X, n = 1,2,...,
and X be processes with sample paths in Dg[0,00). If {X,,n > 1} is relatively compact
and there ezists a dense set D C [0,00) such that

for every finite set {t,...,tx} C D, then X, = X.

So far, we have discussed some key results on the weak convergence of a sequence of
stochastic processes having right continuous sample paths in a separable metric space. We
now specialize on Markov processes and discuss the tools to establish weak convergence
of Markov processes having values in a compact metric space. We first define transition
function for a Markov processes.

Definition C.2.2. A function P(t,z,T") defined on [0,00) X E x B(E) is said to be a time
homogeneous transition function if the following conditions are satisfied
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1. For each (t,x) € [0,00) x S, we have P(t,x,-) € P(E), i.e., P(t,x, ) is a Borel
probability measure on E.

2. For each x € E, we have P(0,x,-) = d,(-), where d, is the Dirac measure centered
around x.

3. Foreacht,s >0, x € E, and " € B(E), we have
P(t+s,z,T') = /P(s,y, D)P(t,z,dy). (C.8)

A stochastic process X with state space E is said to be a time homogeneous Markov
process with transition function P(¢,z,I") if for all s, > 0 and bounded real valued Borel
measurable function f on E the following holds

E[f(X(t+s)lo(X(u),0 Su<t)] = /f(y)P(S,X(t),dy) (C.9)

With a time-homogeneous Markov process one can associate a group of operators satisfying
the semigroup property. The precise definition is given below

Definition C.2.3. Let X be a Markov process with transition function P(t,z,T). Define
an indezed family T = {T'(t),t > 0} of bounded linear operators on C(E) as

@) f(x) = /f(y)P(t,ar,dy), (C.10)

for each f € C(E). The family T = {T(t),t > 0} is said to be the semigroup of operators
corresponding to the Markov process X since it satisfies the semigroup property, i.e., T'(s+
t) =T(s) oT(t), where o denotes composition of operators.

Clearly, T(0) = I where I denotes the identity operator on C(E). The semigroup of
operators T' = {T'(t),t > 0} is called a contraction semigroup if [|T(¢) f|l < || f]l for all
t > 0and f € C(E). Note that the semigroup T = {T'(t),t > 0} corresponding to the
Markov process X is by definition a contraction semigroup. We also note that if f € C(F)
is such that f > 0 then by definition T'(¢)f > 0 for all ¢ > 0. This property is called
the positivity of the semigroup 7. The semigroup 7" = {T'(t),t > 0} corresponding to the
Markov process X is called Feller if

1. limyo T(t)f = f for all f € C(E). (Strong continuity)
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2. T(t)1 =1for all t > 0, where 1(z) =1 for all x € E.

3. For each t > 0 and f € C(E), we have T(t)f € C(E).

We now state a key result which provides a sufficient condition for sequence of Markov
processes to converge to a limiting Markov process in terms of their corresponding operator
semigroups. We shall be using this result repeatedly in this dissertation.

Theorem C.2.2 ([28], p. 172, Theorem 2.11). Let (E,r) be a compact metric space and X
be a Markov process having sample paths in Dgl0,00) with initial distribution v € P(E).
Let T = {T(t),t > 0} denote the semigroup of operators corresponding to the process X.
Assume that T is Feller. For each n > 1, let X,, be a Markov process with operator
semigroup T,, = {T,(t),t > 0} and having sample paths in Dg,[0,00), where E, C E.
Suppose that the following holds

lim sup |T,,(¢)f(z) —T(t)f(z)] =0, (C.11)

n—00 xGEn

for each f € C(E) and t > 0, i.e., Tof — Tf for each f € C(E). If {X,(0),n>1}
converges in distribution to v € P(E), then X,, = X.

Hence, the above theorem states that a sequence of Markov processes converge to a
limiting Markov process if the corresponding operator semigroups and the initial distribu-
tions converge. An effective way of establishing convergence of operator semigroups is by
showing convergence of their corresponding generators which are defined below.

Definition C.2.4. The (infinitesimal) generator of a semigroup T = {T(t),t > 0} is a
linear operator A on C(E) defined as

Af = lim%, (C.12)

t10

for all f € C(E) such that the above limit exists. The space on which the A is defined
is called the domain D(A) of A. A subspace D of D(A) is said to be the core of A if the
closure of the restriction of A to D is equal to A.

The core of the generator A of semigroup 7" = {7T'(t),t > 0} can be identified using the
following proposition.
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Proposition C.2.1 (28], p. 17, Proposition 3.3). Let A be the generator of a strongly
continuous contraction semigroup {T(t),t > 0} on C(E). Let Dy and D be dense subspaces
of C(E) with Dy C D C D(A), where D(A) is the domain of A. If T(t) : Dy — D for all
t >0, then D is the core of A.

Finally, we provide the necessary and sufficient condition for convergence of a sequence
of operator semigroups in terms of their corresponding generators.

Theorem C.2.3 ([28], p. 28, Theorem 6.1). Forn € N, let T,, and T' be strongly continuous
contraction semigroups on C(E) with generators A, and A, respectively. Let D C D(A) C
C(E) be the core of A. Then the following statements are equivalent
(i) For each f € C(E), T,(t)f — T(t)f for all t > 0, uniformly on bounded intervals.
(ii) For each f € C(E), T,(t)f — T(t)f for allt > 0.
(iii) For each f € D, A,f — Af.
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