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Abstract

We have developed a tool that can create a Java code generator for a behavioural

modelling notation given only a description of the notation’s semantics as a set of

parameters. This description is based on template semantics, which has previously

been used to describe a wide variety of notations. As a result, we have a technique

for generating Java code for models written in any notation describable in template

semantics. Since template semantics allows for models containing nondeterminism,

we introduce mechanisms for eliminating this nondeterminism when generating

code. We describe Java implementations of several template-semantics composi-

tion operators that have no natural Java representations and give some techniques

for optimizing the generated code without sacrificing correctness. The efficiency

of our generated code is comparable to that of commercial notation-specific code

generators.
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Chapter 1

Introduction

This thesis investigates parameterized code generation from models written in

model-based notations. We have developed a semantics-based code-generator gen-

erator (CGG) that can create a Java code generator for a modelling notation given

a template-semantics description of the notation’s semantics. This chapter intro-

duces some of the motivations behind this approach and describes the structure of

the thesis.

1.1 Motivation

Model-driven development’s (MDDs) methodology is to express all important as-

pects of a system’s business and application logic using appropriate domain-specific

models[26]. This provides separation between platform-independent models (PIMs)

and their associated platform-specific models (PSMs). A PIM is a model normally

written in a domain-specific language (DSL) for specifying the system, and a PSM

is generally a source-code artifact. This separation has many advantages. First,

PIMs express the system’s specification and design in a much more intuitive fash-

ion. Second, a PIM can be automatically translated to a PSM. This translation

helps in the generation of correct source code and allows the system to be ported

to other languages and platforms with ease. Third, formal-verification techniques,

1



CHAPTER 1. INTRODUCTION 2

such as model checking[7], are better suited to PIMs due to their higher level of

abstraction. The key to all these benefits is the existence of translators or code

generators to transform a PIM into an equivalent PSM for a given platform. With-

out such translators, the separation of PIMs and PSMs becomes cumbersome. To

allow PIMs to be written in DSLs, we need a technique to build code generators for

a given DSL easily. Otherwise, MDD technology will be limited to a few standard

modelling notations whose semantics may, or may not, be appropriate for modelling

a given system.

In this thesis, the PIMs we are specifically interested in are those written in

model-based requirements notations. Model-based notations are used to spec-

ify a system’s reactive behaviour. Examples include such notations as statecharts[12],

STATEMATE[13], RSML[20] and SDL88[1]. These notations allow the user to build

a model of a system, often in the form of a state machine, that describes the allow-

able execution steps of the system. They support concurrency and synchronization

through the use of composition operators that describe how multiple state machines

take steps concurrently.

Our goal is to allow a PIM to be written in any model-based notation de-

scribable in template semantics, and to be able to generate a representative Java

program for that PIM. Template semantics[24, 23] structures the operational se-

mantics of a family of notations as a set of predefined templates that are instanti-

ated with user-provided parameter values. Thus, template semantics allows a user

to specify the semantics of a modelling notation by providing values for a set of

template parameters. The template captures the common aspects of family mem-

bers and the parameter values capture the unique aspects. Template semantics

has been used to describe a wide variety of notations including SDL88[1], SCR[15],

LOTOS[19], CSP[16], and several statecharts[12] variants. Given a model and a

template-semantics description of its notation, we will demonstrate how to generate

Java code whose behaviour matches the specified semantics of the model.

We take a generative approach[8] to Java code generation based on product-

family development. Generative programming’s goal is to create generators that

take as input a feature specification in a domain-specific language and that output
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2. Generate

1. Compile

Java

Generator
Java Code

(XML)
Model

Definitions
Parameter

CGG 
C Code

C Compiler 

Figure 1.1: Code Generation Process

the family member described in the specification. We want to apply the generative

approach to building Java code generators for model-based notations from their

template-semantics descriptions. The product-family, in this case, is the family of

Java code generators for model-based notations. The domain-specific language for

describing family members is template semantics. A template-semantics description

of a notation essentially indicates which features a code generator for that notation

must posses. This approach allows us to quickly produce a Java code generator for

a given PIM by giving our generative tool a description of the semantics (features)

of the PIM’s notation.

The generative approach to creating Java code from a model has two stages

(Figure 1.1). The first stage is the generative stage described above. In this stage

a notation-specific code generator is compiled for the model’s notation. The user

specifies the semantics (features) of his modelling notation by providing a file with

several C preprocessor #define directives, one for each template-semantics parame-

ter. The code-generator generator (CGG) is a C program that has been annotated

with preprocessor directives that indicate the parts of the source program that are

specific to each supported template-parameter value. This code structure enables

conditional compilation to compile only the parts of the code that are required to

generate Java for a notation’s specified features. Compiling the CGG source code,

along with the template-parameter definition file, produces a code generator for the
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user-specified modelling notation.

The second stage is to execute the produced code generator on a model written

in the user’s modelling notation and have it generate Java. That is, this step trans-

forms a PIM into a representative PSM for the Java platform. Our code generators

expect an XML representation of the model as input. This XML format is used by

all existing tools which make use of template semantics. The generator’s transla-

tion algorithm produces an abstract-syntax tree in C representing the structure of

the model. This syntax tree is traversed to fill several intermediate data structures

that are used to increase the efficiency of code generation. These data structures

store the results of frequently used computations on the syntax tree (i.e., a list of

all nodes at the leaves of the tree, a list of all ancestors of a given node, etc). The

tree is traversed in pre-order a final time to produce Java code corresponding to

each node in the tree.

This two stage approach separates the logic for processing the template para-

meters from the logic for generating Java for a model. Thus, a user can build a

code generator for a given notation once, and then use that generator over and over

without having to reprocess the parameter values each time. We project that this

will be the typical usage of the tool.

1.2 Main Contributions

This thesis demonstrates how to generate Java code from models written in a

template-semantics-supported modelling notation. The main contributions of this

thesis are

• Supporting composition operators with no natural Java representa-

tion: Java’s only built-in support for concurrency interleaves the execution

of multiple threads. We show how to encode in Java all of template seman-

tics’ composition operators, including some that require concurrent machines

to synchronize at certain points during their execution by taking steps in

parallel.
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• Techniques for eliminating nondeterminism: Template semantics al-

lows for notations that can specify nondeterministic models. For example,

a notation that allows a model to have more than one enabled transition

at some point during the model’s execution. Leaving this nondeterminism

unresolved in the modelling phase is natural, but it needs to be eliminated

when translating to source code. Java’s model of computation is inherently

deterministic, and it is costly to simulate nondeterminism (e.g., using random

number generators).

• Techniques for optimizing the generated Java: We show how to gener-

ate efficient Java code without sacrificing correctness.

1.3 Evaluation

We evaluate our code-generator generator (CGG) with respect to the following

characteristics of the generated Java code

• Correctness: The generated Java code should match the model from which

it was created. That is, if the code and model are in equivalent states at a

given observable point in a deterministic execution, then their respective next

observable points in the execution must be equivalent states. The definition

of an observable point in an execution is part of template semantics and is

described in Section 2.1. We don’t present a formal proof of this correctness

criteria. This criteria is what we are aiming to validate when testing and

inspecting the generated Java code.

• Efficiency: We compare the efficiency of our generated Java with the Java

created by commercial notation-specific code generators. This comparison

allows us to assess the cost of supporting configurable semantics (the cost of

generality) as compared to notation-specific code generators that may include

notation-specific optimizations not possible in our code generators.

We evaluate correctness by testing and inspecting the Java generated from a test

suite of models containing different combinations of composition operators. We

also test the code created by code generators built using different combinations of
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template-parameter values. To demonstrate the functionality of the CGG on a real

world system, we show the results of a case study based on an aircraft ground-traffic

control system. The model built for this study uses several of the more complex

composition operators. We evaluate efficiency by comparing the execution speed of

the generated Java of our CGG-created code generators to the execution speed of

the generated Java of four commercial tools that support specific notations.

1.4 Goals

We also have the following goals, which are difficult to evaluate objectively:

• Extendibility of the CGG: The CGG source should be structured to allow

the easy addition of new template-parameter values. By easily, we mean that

the required changes to support a new value for a given parameter should be

localized, such as being limited to a single procedure in the CGG source code.

The CGG should also allow new composition operators to be implemented.

• Readability of the generated Java: The structure of the generated Java

code should closely match the modular structure of the model. We want the

human modeller to be able to locate the modules of the generated code that

correspond to modules of the model and to be able to modify the generated

code (i.e., by adding extra code that executes on a transition, or extra code

to sense the environment for input).

1.5 Thesis Organization

Chapter 2 introduces template semantics and some basics on Java threading that

are required to understand the explanations of our Java translation. Chapter 3

describes the translation from models written in a template-semantics-supported

notation to Java code. The focus of this chapter is on how a step in the model’s

execution (i.e., the firing of one or more transitions) is realized in Java. Chapter 4
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looks at how to refine the algorithms given in Chapter 3, which mimic a model’s

nondeterminism, to resolve the nondeterminism and generate deterministic code

(i.e., no random choices). We then carry out some validation in Chapter 5 by

introducing the ground-traffic control case study and by using some benchmark

models to compare the efficiency of our generated code to the code that is generated

by commercial notation-specific tools.



Chapter 2

Background

In this section, we describe the details of template semantics, including its model

of computation, template parameters, and composition operators. We also give a

brief overview of the concurrency primitives built into Java.

2.1 Template Semantics

Template semantics allows one to precisely describe the semantics of a model-based

notation. Template semantics provides a set of pre-defined templates that captures

the common aspects of the family of model-based notations. A user specifies a

particular notation by filling in the template parameters with appropriate values.

The basic unit of syntax for a template-semantics-supported notation is a noncon-

current extended state machine called a hierarchical transition system (HTS).

Concurrency is introduced through composition operators, which define how

groups of HTSs execute together (in parallel, interleaved etc.). Template semantics

has previously been used to describe the semantics of notations such as SCR[15],

LOTOS[19], CSP[16], and several statecharts[12] variants. An informal description

of template semantics follows; for a more complete description, see[24, 23].

8



CHAPTER 2. BACKGROUND 9

2.1.1 Syntax of an HTS

An HTS contains states, transitions, events, and typed variables but no concur-

rency. A transition in this system has the form:

Source

State

Destination

State

name: trigger, [guard], ^gen, /action, #priority

Where trigger is a list of possible triggering events, guard is a boolean guard

condition over the HTS’s variables, gen is an event to generate, action is an

action to execute on the HTS’s variables (a transition can have multiple ĝen

and /action’s), and priority is the priority value attached to this transition.

Trigger, guard and, priority are used to determine if the transition is en-

abled, and gen and action are side effects that occur when the transition exe-

cutes. HTSs support a state hierarchy through super states and default sub-states.

A super state is a state containing one or more sub-states. A default sub-state is

the sub-state that is entered by default whenever its super-state is entered. An

HTS also has a set of initial states, and optionally, a set of final states. Figure 5.3

in Chapter 5 shows an example HTS for an airport ground-traffic controller.

2.1.2 Semantics of an HTS

An HTS’s execution is formalized as a sequence of snapshots. A snapshot is an

10-tuple (CS, IE, O, AV, Q, CSa, IEa, AV a,Qa, Ia) that records the current states

(CS), internal events (IE), output events (O), variable values (AV), and queue con-

tents (Q) of the HTS. CSa, IEa, AVa, Qa, and Ia are auxiliary elements used

to store additional information about states, internal events, outputs, variables,

queues, and external events, respectively. Internal events are those generated by

executing transitions while external events are those sensed from the environment.

The Q and Qa snapshot elements are new to this thesis and are not in the original

template semantics definition. An execution is represented by a sequence of snap-

shots s0, s1, s2... starting at an initial snapshot reflecting initial states and variable

values. An allowable step in the execution moves the HTS between consecutive

snapshots (from si to si+1). There are two different types of steps. A micro-step
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is a single transition’s execution in an HTS. A macro-step is one or more micro-

steps executed in succession in response to events sensed from the environment.

The length of a macro-step is specified by a template parameter. The only time an

HTS senses the environment for input is at the start of a macro-step. Thus, the

macro-step parameter determines how often the model will sense the environment.

2.1.3 Template Parameters

The template parameters can be broken down into four categories: enabled-trans,

apply, reset, and miscellaneous.

1. enabled-trans: These parameters determine how the snapshot elements

are used to check if a transition is enabled. The enabling parameters are

en cond(ss,τ), en events(ss,τ), and en states(ss,τ), where ss is the current

snapshot and τ is the transition whose enabledness we are testing. These

parameters are relations that determine if a transition is enabled based on

its guard condition, triggering events, and source state respectively. Example

values for each parameter include

• en cond : Check if the variable values in the AV snapshot element satisfy

τ ’s guard condition.

• en events : Check if τ ’s triggering events are in the internal events (IE)

snapshot element.

• en states : Check if τ ’s source state is in the current states (CS) snapshot

element.

2. apply: These parameters are relations that determine how the snapshot

elements should be updated as a result of a transition’s execution. Ten

next XX(ss, τ , XX’) parameters (one for each snapshot element) encode the

behaviour of apply, where XX is the snapshot element (CS,IE,...) that is up-

dated, ss is the current snapshot, and τ is the transition that was chosen to

execute. Example values for some of the parameters include



CHAPTER 2. BACKGROUND 11

• next CS : Remove τ ’s source state from CS and add its destination state.

• next IE : Overwrite IE with τ ’s generated events removing all previously

generated events.

• next AV : Update the variable values in AV with the assignments in τ ’s

actions.

3. reset: These parameters are functions that determine how to reset the snap-

shot elements at the beginning of a macro-step. Reset cleans up left-over in-

formation from the previous macro-step’s execution and incorporates events

sensed from the environment into the snapshot. Reset is encoded by ten re-

set XX(ss,I) parameters (one for each snapshot element), where XX is the

snapshot element being reset, ss is the current snapshot, and I are events

sensed from the environment. Example values for some of the parameters

include

• reset CS : Make no change to CS.

• reset IE : Remove all events accumulated in IE in the previous macro-

step by setting IE to empty.

• reset Ia: Add to Ia all external events sensed from the environment.

4. miscellaneous: The pri, macro semantics, and resolve parameters are used

to specify the priority scheme, macro-step semantics type, and how to resolve

shared-variable conflicts, respectively.

• The pri parameter specifies a priority scheme over all transitions in the

model. Example priority schemes include explicit priority (the user ex-

plicitly provides a priority for each transition) and priority schemes based

on the depth of a transition’s source state in the state hierarchy.

• The macro semantics parameter can specify either simple or stable se-

mantics. Under simple semantics, a macro-step is at most a single micro-

step in length. Thus, the environment is sensed and the snapshot is reset
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(using the reset parameters) after every transition. Under stable seman-

tics, a macro-step is a series of micro-steps ending in a stable snapshot

(one in which no transition is enabled).

• The resolve parameter is used to resolve conflicts that occur when shared

variables are assigned different values simultaneously. This parameter in-

dicates how to choose which single value a shared variable will take on.

For example, the resolve parameter could specify that the model nonde-

terministically choose one of the values a shared variable was assigned

to be the value for the variable.

By providing values for these parameters, a user can precisely define a notation’s se-

mantics. The user can choose amongst 3-5 implemented values for each parameter.

The only exception is the resolve parameter, which currently has a single imple-

mented value: nondeterministic resolution. Appendix A gives a complete listing of

the implemented parameter values.

2.1.4 Template Semantics for SmartState

In this section we provide a complete template semantics description of SmartState[4],

a commercial statecharts variant. This example demonstrates the type of informa-

tion that a user needs to provide to describe a notation in template semantics. We

developed this template semantics description to be used in Section 5.3, to generate

a code generator for SmartState. The other notations referred to in this thesis will

not be accompanied by a complete template-semantics description.

SmartState supports both internal and external events. External events are

active only in the first micro-step of a macro-step, but internal events persist until

they trigger a transition or until the end of the macro-step in which they were gener-

ated. SmartState only allows internal events to be generated by the first transition

of a macro-step. All transitions must have at least one triggering event. Below

is the template-semantics description for SmartState along with an explanation of

each parameter value.
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• reset Ia(ss,I) : I.gen

At the start of a macro-step, Ia is set to the external events sensed from

the environment (I.gen). This will overwrite any previously sensed external

events.

• reset IE(ss,τ) : Ø

At the start of a macro-step, all previously generated internal events are

discarded. This ensures that internal events can trigger transitions only in

the same macro-step in which they are generated.

• next Ia(ss,τ ,Ia’) : Ia’=Ø

When a transition executes, all previously sensed external events are thrown

out. This allows only one external-event-triggered transition to execute per

macro-step.

• next IE(ss,τ ,IE’):(ss.Ia 6= Ø ⇒ IE’=gen(τ)) ∧ (ss.Ia = Ø ⇒ IE’=ss.IE\trig(τ))

The first transition to fire at the start of a macro-step fires in response to en-

vironmental input. This parameter value states that if τ is the first transition

to fire in the macro-step (i.e., Ia contains the external event that triggers τ ,

so ss.Ia is not empty), then IE is set to the internal events generated by τ . If

τ is not the first transition to execute in the macro-step (which means that Ia

must be empty), then τ ’s triggering event is removed from IE and any events

τ generates are ignored. Thus, this parameter value asserts that only transi-

tions that are triggered on external events can generate internal events, and

that each of these internal events will trigger only one subsequent transition

in the macro-step.

• en events(ss,τ) : trig(τ) ⊆ ss.IE ∪ ss.Ia

In SmartState, every transition must have a triggering event. This event can

be internal or external. To be enabled, transition τ ’s triggering events must

be in either IE or Ia. IE contains internal events generated in this macro-step

and Ia contains external events sensed at the start of this macro-step.

• reset CS(ss,I) : ss.CS

At the start of a macro-step, the current states (CS) are not changed.
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• next CS(ss,τ ,CS’) : CS’=entered(dest(τ))

When transition τ executes, all states currently in CS are over-written with

the destination state of τ (dest(τ)) and all of dest(τ)’s default sub-states and

ancestor super-states (preserving the state hierarchy).

• en states(ss,τ) : src(τ) ⊆ ss.CS

To be enabled, transition τ ’s source state (scr(τ)) must be in CS.

• reset AV(ss,I) : ss.AV

At the start of a macro-step the variable values (AV) are not changed.

• next AV(ss,τ ,AV’) : AV’=assign(ss.AV, eval(ss.AV, incr(asn(τ))))

When transition τ executes, variable values in AV are updated incrementally

according to the assignments in the actions of transition τ (asn(τ)). Incre-

mental update means that if τ ’s actions include multiple variable assignments,

each is evaluated and executed in order. Thus, an earlier assignment can ef-

fect the value of later assignments (e.g., at the end of x:=1; y:=x;, both x

and y have a value of one) and if there are multiple assignments to the same

variable the later assignments overwrite the earlier assignments (e.g., at the

end of x:=1; y:=2; x:=y;, x and y have the value of 2).

• en cond(ss,τ) : ss.AV |= cond(τ)

For transition τ to be enabled, the current variable values in the model must

satisfy the guard condition of τ .

• macro semantics : stable

The model senses the environment at the start of a macro-step and then does

not sense again until no more transitions are enabled (the model is stable).

2.1.5 Composition Operators

Composition operators define how groups of HTSs should execute concurrently. In

template semantics, all composition operators are binary. An operator’s operands

are either HTSs or other composed HTSs. Each operator defines how its operands

take a collective micro-step. The seven composition operators that we refer to in

this thesis are:
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• Interleaving: If both operands are enabled, then one or the other can execute

in a micro-step, but never both. If only one operand is enabled, then it

executes.

• Parallel: If both operands are enabled, they both execute in parallel in the

same micro-step. If only one operand is enabled, then it executes.

• Environmental Synchronization: Each environmental synchronization opera-

tor has a designated set of synchronization events associated with it. Both

of the operator’s operands execute in parallel if they are both enabled on the

same synchronization event; otherwise, the operands interleave the execution

of transitions that are not triggered by synchronization events.

• Rendezvous Synchronization: Each Rendezvous synchronization operator has

a designated set of synchronization events associated with it. If one operand

generates a synchronization event and the other operand is triggered by this

same event, then both operands execute in parallel. Otherwise, the operands

interleave the execution of transitions that are not triggered by synchroniza-

tion events.

• Interrupt: Only one of the two operands has control and can execute. Control

is transferred from one operand to the other via a set of interrupt transitions

whose source is in one operand and whose destination is in the other. This

operator is template semantics’ means of modelling transitions between con-

current regions, as seen in many statecharts[12] variants.

• Sequence: One operand executes until finished, and then the other operand

executes until finished.

• Choice: When the model starts, one of the two operands is nondeterministi-

cally chosen to have control. This operand has control and is the only operand

that can execute transitions throughout the lifetime of the model.
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2.2 Java

Java[10] is a general-purpose object-oriented programming language designed by

Sun Microsystems. Java contains native support for concurrency and synchroniza-

tion using threads, monitors, and locks. Java threads are fundamentally interleaved.

The scheduler chooses a non-blocked (not blocked in a monitor and not blocked at

a lock) thread to execute. This thread executes in isolation until blocked or until

the scheduler orders it to stop executing.

A monitor is a synchronization construct containing mutex methods and condi-

tion queues. In Java, each monitor has a single condition queue and a single mutex

lock. The mutex lock ensures that only a single thread can access the monitor at a

time and the condition queue is used to store threads (in a queue) that are waiting

for some condition to become true before accessing the monitor.

For a thread to access a monitor by calling one the monitor’s mutex methods, it

must first implicitly acquire the monitor’s mutex lock. The mutex lock is implicitly

released when the thread exits the monitor (when it finishes executing the mutex

method). This implicit locking ensures that only a single thread, the thread that

holds the mutex lock, can ever be inside the monitor at any point in time.

The monitor’s condition queue is used to synchronize threads from within the

monitor. Two possible operations are defined on a condition queue: wait() and

signal(). A thread that calls wait() inside one of the monitor’s mutex methods

blocks and enqueues itself onto the back of the monitor’s condition queue. A thread

enqueued on a condition queue sleeps and will not execute until it is removed from

the condition queue. Calling wait() also causes the thread to release the monitor’s

mutex lock, allowing another thread to enter the monitor. The thread waiting at

the front of the condition queue wakes up when another thread calls signal() from

within the monitor. A signalled thread needs to re-acquire the mutex lock before

it continues execution at the same point where it previously called wait().

Thus, a Java monitor forces threads to be in one of three possible states: blocked

waiting to acquire the mutex lock (because some other thread is executing inside the

monitor and is holding the lock), blocked on a condition queue waiting for another
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thread to signal it, or executing within the monitor holding the mutex lock.



Chapter 3

Parameterized Code Generation

In this chapter, we describe the architecture of the Java application that is generated

by our CGG-created code generators. The process of generating Java has two

major parts. The first is generation of Java for the composition operators used

in the model. The second is generation of Java for each HTS in the model, as

directed by the template parameters. The modeller can choose values for each

template parameter from a list of implemented values (the list of parameter values

supported by the CGG is shown in Appendix A).

3.1 Scheduling and Execution

A number of high-level decisions need to be made regarding how elements of a

model will be represented in Java. Template semantics allows for notations con-

taining hierarchies of concurrent entities (HTSs) and synchronization constructs

(composition operators). Java has built-in support for concurrency using threads

and built-in support for synchronization using monitors.

We initially investigated a multi-threaded approach that mapped each HTS to

its own thread in Java and each composition operator to a monitor, as seen in

Figure 3.1. The monitors formed a binary tree structure in Java that mirrored

the tree of composition operators in the model. A monitor synchronized its child

18
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threads (using its condition queue) by following the semantics of the composition

operator it represented. This multi-threaded design has all the usual benefits of

threading. It allows for better resource sharing and prevents blocking operations

(i.e., blocking for input on a socket or standard input), from blocking the execution

of the entire system. The main disadvantage of threading is the greatly increased

complexity required to manage the synchronization among threads. Under the

threads and monitor mapping, we would end up synchronizing a lot of threads (i.e.,

forcing many threads to block on condition queues) during every micro-step in the

model. A micro-step is generally too small of a unit of work to make up for the

cost of this synchronization. The source of this synchronization problem is the set

of composition operators that require concurrent machines to take steps in parallel:

parallel, environmental synchronization, and rendezvous operators. Java has no

notion of executing multiple instructions at the same time. Parallel execution is

simulated by forcing the system to block all threads on condition queues except

those that are to execute the parallel transitions. The parallel transitions then

execute in isolation, in some interleaved order, and update the system with the

combined result of their execution when finished. When the parallel execution

is finished, all previously blocked threads (i.e., those threads not involved in the

parallel execution) are signalled and removed from condition queues allowing them
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to potentially execute in the next micro-step. As a result, the multi-threaded design

breaks one of the most fundamental rules of using concurrency. Namely, that the

work each thread is assigned should be largely independent of the work assigned to

other threads, and that synchronizing of threads should be kept to a minimum.

In multi-threaded programs, the default situation is one in which all threads

execute concurrently and independently and only synchronize to collaborate with

each other once in a while. But the nature of template-semantics’ micro-steps is

that the composition operators decide which HTSs (and sometimes which enabled

transitions) are allowed to execute in a particular micro-step. To simulate these

semantics, the default situation in our multi-threaded generated code is that a

program’s threads do not execute; rather in every micro-step, a chosen few threads

will be selected for execution. And the only way to realize this centralized decision

is to force all threads to block in every step, and then release the chosen few. The

result is little real concurrency per step. This problem lead us to abandon the

multi-threaded approach.

The key to an improved mapping is to notice that the Java scheduler chooses

a thread for execution based on some internal scheduling algorithm that is com-

pletely independent of whether the HTS executing in that thread is enabled and

can execute. As was stated above, the potential for parallel transition execution

forces us to synchronize threads on every step of the system. Thus, we need our own

template-semantics-aware scheduler that wakes up only the HTSs that are actually

enabled. If multiple HTSs are to execute together, then our scheduler will schedule

them to execute, ignoring all other HTSs. This is the opposite of what occurs if we

use the Java scheduler in the multi-threaded mapping. In that mapping, all HTSs

would be running and we would have to stop the threads that are not part of the

parallel execution.

Under the single-threaded mapping, HTSs and composition operators both map

to Java classes, as shown in Figure 3.2. They are organized into a composition tree

that mirrors the model’s compositional hierarchy. Our own scheduler determines

which transitions are enabled and schedules HTSs for execution based on this knowl-

edge. There is only a single Java thread in the system. The complexity of dealing
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with synchronizing threads has been removed. It is this mapping that the rest of

this chapter describes in detail.

Figure 3.2 seems to indicate that an explicit scheduler component will control

the execution of the model. While this is true in an abstract sense, the scheduler

itself is actually built into each of the composition-operator and HTS classes. Each

micro-step in the model has two stages to its execution in the Java code. The

first stage is an enabledness check over the entire composition tree. Information

about enabledness flows up the composition tree from the HTSs at the leaves to

the root component. The type of information that flows up the tree varies based

on the types of operators present in the tree. At the very least, this information

will include a boolean enabled flag indicating the existence of an enabled transition

in an HTS, and will sometimes include the events which trigger these transitions.

This information flow occurs through parameters modified by each operator’s en-

abled check() method, as shown in Figure 3.3. The root calls this method on both

its children, who subsequently call it on their children, performing a post-order

traversal of the composition tree. When the method call returns to the root com-

ponent, the root will have global knowledge about which HTSs are prepared to

execute and the types of transitions they are prepared to execute. Moreover, each

component or HTS will have cached its enabledness information locally, in case it

is scheduled for execution in the future.

The second stage of a micro-step is the execution stage, as shown in Figure

3.4. Once the root has collected its children’s enabledness information, it will make

an execution decision. An execution decision involves directing one or both child

components to execute and providing them constraints on the types of transitions

they are allowed to execute. Example execution decisions include instructing com-

ponents to synchronize on a sync event, instructing a particular enabled interrupt

transition to execute, or allowing a component to make its own unconstrained ex-

ecution decision. As execution decisions flow down through the composition tree,

each node makes local execution decisions that satisfy the constraints imposed by

its ancestors’ decisions. Execution decisions flow down the tree in this manner until

they reach the HTSs at the leaves. It is at this point that the chosen transitions
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are executed. The two stages of a micro-step’s execution in Java are similar to the

two stage approach used by Express[21], a tool that generates SMV[22] code given

a model and template semantics description of the model’s notation.

Recall that template semantics supports the notion of HTSs taking steps in par-

allel. Java has no notion of executing two instructions at the same time; everything

is fundamentally interleaved. In the following sections, whenever we refer to HTSs

taking steps in parallel (i.e., both HTSs execute a transition in the same micro-

step) we mean that the HTSs will simulate parallel execution. This simulation is

carried out by having the HTSs execute in isolation in some interleaved order and

then updating their snapshots when the step is finished with the combined effects

of executing all of the parallel transitions. The only complication is updating the

values of variables that are shared by multiple HTSs. The details of how shared

variables are handled are deferred until Section 3.4.2.

3.2 Architecture of the Generated Code

The object diagram in Figure 3.5 shows the architecture of the Java code that would

be generated for the example system shown in Figure 3.6. The backbone of the gen-

erated code consists of a binary tree of objects representing composition operators

(root and C1) with HTS objects (M1, M2, M3) at the leaves. Each template-
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Figure 3.5: Generated Java Object Diagram
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semantics snapshot element also maps to a class. Global snapshot elements such as

AV, AVa, Q, and, Qa are represented by classes Vars, AuxAV, Queues, and, AuxQ,

respectively; they each have one instance (AV, AVa, Q, Qa) that is shared by the

entire system. This is in contrast to local snapshot elements IE, IEa, O, Ia, CS, and

CSa, which each have an instance that is stored locally at each HTS object. These

snapshot-element classes implement a specific data type (set, queue, set of queues,

etc.) whose operations match the operations specified in the respective reset XX

and next XX parameters. There are also repository classes (PointersToXX) for

each of the local snapshot-element classes. These classes are needed by the root of

the composition tree to reset the snapshot elements at the start of a macro-step.

The individual snapshot-element objects the root needs to reset are stored at the

leaves of the tree in the HTS objects. The root uses the PointersToXX classes to

quickly access these local snapshot-element objects. These classes store reference

pointers to all local snapshot-element objects of a given type (these relationships

are not shown in Figure 3.5). For example, the PointersToIEa class stores a refer-

ence to each local AuxIE object (M1 IEa, M2 IEa, M3 IEa) in the system. These

references facilitate the efficient execution of the reset XX parameters by the root,

as will be described in Section 3.7.

The System class is responsible for constructing the composition tree on start up

and for establishing references to the shared global-snapshot elements. The System

class also contains the advance() method, which executes a single micro-step. The

generated code includes a default main() method that calls advance() in a for-ever

loop.

The EnvSensor class is used to sense the environment for input. It updates

the event-related snapshot elements (Q, Qa, IE, IEa or Ia) with environmental

input, as directed by template-parameter values. Environmental input is sensed

on standard input by default. The default generated code prompts for input on

standard input at the beginning of every macro-step. The prompt provides a list

of all environmental events in the model and the user chooses which of these events

will be generated. We also wanted to ensure it would be possible to add code

for sensing the environment from other sources (i.e., a GUI, or on sockets). For
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this reason the EnvSensor class is generated separately so that all environmental

sensing can occur in a single module. To add code for sensing the environment,

all the user has to do is provide an implementation of the senseEnv() method in

the EnvSensor class, which returns a set of events that have been sensed. This

method will be called at the appropriate time by the generated code as per the

notation’s template-semantics description. Alternatively, the System class includes

a method generateEvent(string name), which generates an event that will be sensed

from the environment at the start of the next macro-step. This allows events to be

generated from the environment asynchronously with the execution of the generated

code. The generated events are buffered during a macro-step and will be sensed at

the start of the next macro-step.

Output events are stored in the O snapshot element, which is represented by

the Outputs object stored in each HTS object. Output events can be accessed by

manipulating the PointersToO object, which stores references to each local Outputs

object, or by calling the checkOutputEvent(string event) method of the System

class. The checkOutputEvent() method will check if the event is in any of the

Outputs objects for the user.

3.3 Scheduling and Execution Example

To make things more concrete, consider Figure 3.6, which depicts the composition

tree of an example model. This model has a homogeneous composition tree in

which all composition operators in the model are of the same type. The model

consists of three interleaved HTSs (M1, M2, M3). Because the machines are inter-

leaved, only a single transition per micro-step will ever be executed, even if multiple

machines have transitions that are ready to execute in that step. The rest of this

section describes the scheduling and execution of transitions in this example model.

As was stated above, the first phase in executing a micro-step is to do an

enabledness check over the model’s composition tree. The parameters of the en-

abled check() method encode the enabledness information that will flow up the
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Figure 3.6: Interleaving Example

tree. In the case of our example model, which is composed entirely of interleaving

composition, the only parameter is an enabled flag. This flag indicates whether

the operator’s subtree has an enabled transition. Each operator stores both of

its children’s enabled flags in member variables for use during the execution stage.

This is the purpose of the member variables (left/right)Enabled in the composition-

operator classes (Root Interleaving and C1 Interleaving) shown in Figure 3.6.

The pseudocode in Figure 3.7 shows the enabled check() method used by inter-

leaving operators. In Phase 1, the component recursively calls enabled check() on

its left and right children and stores its children’s enabled flags in member variables

(leftEnabled, rightEnabled). In Phase 2, the operator passes its own enabledness

information on to its parent by setting the enabled parameter (line 6). In the case

of interleaving, the enabled parameter is set to the disjunction of the children’s

enabled flags: if either child has an enabled transition then the operator is itself

enabled. For example, assume HTSs M1 and M2 have enabled transitions but HTS

M3 is stable. During enabledness checking, component C1 would have set both

leftEnabled and rightEnabled to true, as both of its children are enabled HTSs. C1

would then tell the root that it is enabled, causing the root to set its leftEnabled

member variable to true. Since the root’s right component is the stable HTS M3,

the root’s rightEnabled variable would be set to false.
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{Member Variables}
VAR bool leftEnabled, rightEnabled

1: enabled check(bool enabled)
2: {Phase 1: find the enabledness information for our left and right children}
3: left.enabled check(leftEnabled)
4: right.enabled check(rightEnabled)

5: {Phase 2: pass pertinent enabledness information to our parent}
6: enabled = leftEnabled ∨ rightEnabled

1: execute()
2: if leftEnabled ∧ rightEnabled then
3: compToExecute = randomly choose left or right child
4: compToExecute.execute()
5: else if leftEnabled then
6: left.execute()
7: else if rightEnabled then
8: right.execute()
9: end if

Figure 3.7: Interleaving Composition Scheduling

An HTS reacts to enabled check() calls in an entirely different fashion. It does

an enabledness check over its transitions and sets the enabled flag if it finds an

enabled transition. This is described in detail in Section 3.4.1.

The pseudocode at the bottom of Figure 3.7 shows the execute() method used

by interleaving operators. If both child components are enabled, the operator ran-

domly chooses one to execute (lines 2-4). Otherwise, on lines 5-9, if only one child

component is enabled, the operator instructs it to execute. For example, assume

again that HTSs M1 and M2 have enabled transitions but that machine M3 is sta-

ble. At the end of the enabledness phase, the root’s leftEnabled variable would be

set to true and its rightEnabled variable would be set to false. Thus, during the

execution phase, the root’s execute() method would call its left component C1’s

execute() method (line 6). C1 has both its leftEnabled and rightEnabled variables

set to true, so its execute() method would randomly choose one of its two children

(M1 or M2) to execute (lines 3 and 4).

In contrast to the operator’s execute() method, the HTS execute() method

actually executes an enabled transition, according to the apply (i.e., next XX )
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template parameters. This is described in detail in Section 3.4.1.

In this simple example, it would appear as if the general architecture of enabled-

ness information flowing up the tree and execution decisions flowing down is overly

complex and inefficient. When we look at models where the composition tree is not

homogeneous, it will become clear why this methodology is required. We will also

introduce some optimizations to the general architecture in Section 3.8 that help

improve efficiency if a model uses homogeneous hierarchies of certain composition

operators.

3.4 Mapping Homogeneous Compositional Hier-

archies to Java

We have shown above how a simple composition operator (interleaving) maps to

Java when the composition tree contains only operators of a single type (i.e., the

composition tree is homogeneous). We now look at how the rest of the compo-

sition operators map to Java under the assumption of a homogeneous hierarchy.

This assumption is made purely to simplify the explanations of scheduling and

execution. The code generator itself makes no distinction between models with

heterogeneous vs. homogeneous composition hierarchies. The changes to the algo-

rithms for homogeneous hierarchies, so that they support heterogeneous hierarchies,

will be described in Section 3.5.

In the following discussion, our pseudocode aims to match exactly the semantics

of the template-semantics’ composition operators. This is significant, because these

operators often involve nondeterministic choices. Because Java’s model of compu-

tation is inherently deterministic, we simulate these choices using a random-number

generator, in an attempt to simulate the operator’s nondeterminism. This type of

pseudo-nondeterministic source code is not useful for a deployable implementation,

but it can be useful when simulating the model, in that simulation results may

help the modeller decide how to resolve the nondeterminism. Our CGG tool has an

option to create code generators that generate pseudo-nondeterministic code (using
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random-number generators) or to create code generators that generate determin-

istic code. The following sections describe the pseudo-nondeterministic Java code.

Chapter 4 describes the mechanisms we employ to remove this nondeterminism

from the generated Java.

The first part of this section describes the basic HTS enabled check() and exe-

cute() pseudocode for a model containing no composition operators (i.e., the model

is a single HTS). Then, for each composition operator, we describe the operator’s

own enabled check() and execute() methods as well as describe the changes to the

basic HTS enabled check() and execute() pseudocode that are needed to support

the new operator.

3.4.1 Single HTS

The simplest homogeneous composition tree is the one containing no composition

operators. The tree consists of a single HTS. In these models, enabled check() finds

and stores all enabled transitions, and execute() selects one of them to execute. We

will show how to modify the basic HTS enabled check() and execute() methods to

accommodate the composition operators as we introduce each composition operator

class in the following sections.

Each HTS in a model is translated into its own Java class. Each HTS class can

be broken down into four major segments:

• constant enumerated-type declarations

• template-semantics-snapshot and member-variable declarations

• enabled check() method declaration

• execute() method declaration

The constant enumerated-type declarations capture static structural informa-

tion about the HTS, such as the sets of states and transitions. Java 1.4 has no

native support for enumerated types, but they can be simulated by a series of In-

teger constants. The HTS class has one such unique constant for every transition

and state in the HTS.
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VAR Vars AV
VAR AuxAV AVa
VAR Queues Q
VAR AuxQ Qa
VAR Events IE
VAR AuxIE IEa
VAR AuxI Ia
VAR States CS
VAR AuxCS CSa

Figure 3.8: Snapshot Element Declarations

The template-semantics-snapshot elements are declared in each HTS class as

shown in Figure 3.8. Member variables are declared only for those snapshot ele-

ments whose associated template-semantics parameter value is not set to n/a. The

snapshot elements for AV, AVa, Q, and Qa are shared among the HTSs in the

model; as such, they are translated into global objects which are shared amongst

all HTS objects in the generated code. Each HTS stores a reference to each global

element in a member variable named after the element. The rest of the snapshot

elements are local to each HTS and are translated into member variables storing

local objects. In the remainder of this section we describe how these variables are

manipulated by various HTS methods. You can ignore the class types of the snap-

shot elements. They implement an appropriate data type (set, queue, set of queues,

etc.) as specified by the next XX and reset XX parameters for each element XX.

In a composition hierarchy containing no composition operators, an HTS’s en-

abled check() method (Figure 3.9) simply finds, and stores in the member-variable

enabled transitions, the set of highest-priority enabled transitions. A transition’s

enabledness depends on the three enabling template parameters (en state, en cond,

and en events), which check if the transition’s source state, guard condition, and,

triggering events, respectively, hold in the current snapshot (line 6). Finding the

set of highest-priority enabled transitions is done by checking each transition, in

descending order of priority (line 4), and if a transition is found to be enabled

(lines 6-10), then the checking loop will exit as soon as a transition with lower

priority is encountered (line 12). This is a simple optimization that eliminates the
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{Member Variables}
VAR set enabled transitions

1: enabled check(bool enabled)
2: max pri seen=-1
3: {find the the set of priority-enabled transitions}
4: for each transition τ in descending order of priority do
5: if pri(τ)>=max pri seen then
6: if en state(τ) ∧ en cond(τ) ∧ en events(τ) then
7: max pri seen = pri(τ)
8: enabled=true
9: enabled transitions.add(τ)

10: end if
11: else
12: break {lower priority transition encountered, stop the checking loop}
13: end if
14: end for

Figure 3.9: Basic HTS Enabledness Check

need to check all transitions in the HTS. When a high-priority enabled transition

is found, the enabled parameter is set to true (line 8), to notify the HTS’s par-

ent of the enabled transition, and the transition is stored in the member-variable

enabled transitions (line 9) for use during the execute() method.

In a composition hierarchy containing a single HTS, the execute() method (Fig-

ure 3.10) picks one of the highest-priority enabled transitions stored in the en-

abled transitions member variable (which was stored during enabled check()) (line

3). The chosen transition is executed according to the Java implementations of

the ten next XX template parameters (lines 5-13). The XX NEXT() procedures

in the pseudocode represent inline code substitutions of the Java implementations

of the next XX template parameters (i.e., the generated code does not contain

these procedures, instead next XX’s Java implementation is substituted wherever

XX NEXT is used in the pseudocode). The Java implementation of each next XX

parameter value manipulates the data structure used to implement the parameter’s

corresponding snapshot element. Each parameter value has a straightforward Java

implementation. For example, the IE member variable could be implemented as

a set of events, and the Java implementation of next IE could remove the transi-

tion’s triggering events from IE and add the transition’s generated events to IE. In
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{Member Variables}
VAR list enabled transitions

1: execute()
2: { Phase 1: Select an enabled transition to execute}
3: exe trans = pick a random transition from enabled transitions

4: { Phase 2: Execute the selected transition}
5: CS NEXT(exe trans)
6: CSa NEXT(exe trans)
7: AV NEXT(exe trans)
8: AVa NEXT(exe trans)
9: Q NEXT(exe trans)

10: Qa NEXT(exe trans)
11: IE NEXT(exe trans)
12: IEa NEXT(exe trans)
13: Ia NEXT(exe trans)
14: O NEXT(exe trans)

Figure 3.10: Basic HTS Execution

another semantics, the implementation could clear the IE set.

3.4.2 Parallel

A homogeneous hierarchy of parallel operators has the simplest mapping to Java.

Parallel composition is much like interleaving. It differs only in the case where both

child components are enabled. Parallel composition allows both child components

to execute transitions in the same micro-step, whereas interleaving chooses one of

the two child components to execute. Thus, the algorithms for enabledness and

execution are very similar to those seen in Section 3.3. In fact, the pseudocode for

parallel composition’s enabled check() is identical to that for interleaving compo-

sition. Parallel composition’s execute() method (Figure 3.11) allows both left and

right child components to execute if they are both enabled (lines 2-6).

This pseudocode shows how we simulate parallel execution in Java (lines 3-6).

Parallel execution is simulated by executing the two children one after the other,

the left child first, followed by the right child. Since the only information shared

amongst HTSs are variable values, this ordering will be equivalent to executing the

children in parallel, as long as we ensure that the variable assignments made by
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1: execute()
2: if leftEnabled ∧ rightEnabled then
3: begin parallel simulation
4: left.execute()
5: right.execute()
6: end parallel simulation (resolve shared vars)
7: else if leftEnabled then
8: left.execute()
9: else if rightEnabled then

10: right.execute()
11: end if

Figure 3.11: Parallel Composition Execution

the left child are not visible to the right child until after the right child finishes its

execution. This is done by caching, for each shared variable, the old variable value

and each parallel transition’s new value (if it assigns the variable a new value).

At the end of the micro-step, all HTSs must agree on one of the cached values

to be the new value for each shared variable. The template-semantics parameter

resolve indicates how to choose which value a shared variable will take on after

parallel assignments are made to it (line 6). This is an expensive process and can

be disabled if a model’s parallel transitions do not reference shared variables (this

can be automatically detected).

No changes to the basic HTS enabled check() and execute() algorithms given

in Section 3.4.1 are needed to support parallel operators. The operators in the

following sections will require changing these algorithms.

3.4.3 Interrupt

Interrupt composition allows only one of its child components to execute, until

an interrupt transition transfers control to the other child, after which only the

other child can execute until an interrupt transition transfers control back to the

first child. Thus, interrupt only checks one of its children for enabledness. Each

interrupt operator in the model has a distinguished set of interrupt transitions

associated with it, called ourInterrupts, which it uses to transfer control between

its child components.
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An interrupt-composition operator must do extra work when one of these inter-

rupt transitions executes. As a result, the operator needs to know when an interrupt

transition is enabled. The operator also needs to know the priority value of its chil-

dren’s highest-priority enabled transition. The operator uses this priority value to

determine whether an interrupt transition has highest priority and should execute

instead. These two extra pieces of enabledness information flow up the composi-

tion tree in two new parameters (interrupts and max pri) to the enabled check()

method.

Interrupt is the only composition operator that uses the model’s priority scheme.

In any micro-step, an interrupt operator will execute the highest-priority enabled

transition in its subtree (interrupt or noninterrupt). The other operators use the

priority scheme only at the HTS level, for finding the highest-priority enabled tran-

sitions. At the level of composition, the other operators use nondeterminism to

choose which transition(s) or child to execute if more than one is enabled. The rea-

son for this distinction is that interrupt composition doesn’t represent a traditional

form of concurrency. It instead combines two components by explicitly defining

how control will pass between them via interrupt transitions. Thus, the component

rooted at an interrupt operator can be thought of as one heavy-weight HTS having

a single priority scheme.

Although interrupt transitions are associated with an interrupt operator, via the

set ourInterrupts, the snapshot elements needed to check an interrupt transition’s

enabledness or to execute an interrupt transition are stored in its source states’

HTS. Thus, the enabledness checking and execution of an interrupt transition is

performed by its source states’ HTS. That is, we determine which HTS is associated

with each interrupt-transition’s source state, and we add the interrupt transition

to the HTS’s check for enabled transitions; and the HTS is also responsible for

executing the interrupt transition if it is, later, ordered to do so by its parent. Even

interrupt transitions whose source states are composition operators are handled in

this fashion. If an interrupt transition’s source state is a composition operator, then

the enabledness checking for the transition is performed by all HTSs that descend

from the source composition operator, and the interrupt transition’s execution is
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{Member Variables}
VAR set enabled transitions

1: enabled check(set interrupts,int max pri,bool enabled)
2: max pri seen=-1
3: {find the the set of priority-enabled transitions}
4: for each transition τ in descending order of priority do
5: if pri(τ)>=max pri seen then
6: if en state(τ) ∧ en cond(τ) ∧ en events(τ) then
7: max pri seen = pri(τ)
8: if τ is an interrupt transition then
9: interrupts.add(τ)

10: else
11: enabled=true
12: max pri=pri(τ)
13: enabled transitions.add(τ)
14: end if
15: end if
16: else
17: break {lower priority transition encountered, stop the checking loop}
18: end if
19: end for

Figure 3.12: HTS Enabledness Check Under Interrupt

performed by one of the descendant HTSs.

HTS enabled check() Supporting Interrupt

An HTS that has an ancestor interrupt operator responds differently to an

enabled check() call compared to an HTS whose ancestors are all interleaving or

parallel operators. The enabled check() method with support for interrupt opera-

tors (Figure 3.12) still sets the enabled parameter, but now it also needs to set the

two new parameters (interrupts, and max pri). Any enabled interrupt transition

that the HTS finds is added to the interrupts parameter (line 9). The max pri

parameter is set to the highest-priority enabled noninterrupt transition (line 12).

The enabled parameter is set to true only if a noninterrupt transition is enabled

(line 11), and the enabled transitions member variable only stores enabled nonin-

terrupt transitions (line 13). This is because interrupt transitions are scheduled

for execution by interrupt operators. Thus, the only transitions an HTS can au-
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{Member Variables}
VAR bool leftEnabled, rightEnabled
VAR set leftInterrupts, rightInterrupts
VAR integer leftMaxPri, rightMaxPri
VAR {left,right} hasControl

1: enabled check(set interrupts,int max pri,bool enabled)
2: if hasControl==left then
3: {Phase 1: find the enabledness information for the active child}
4: left.enabled check(leftInterrupts,leftMaxPri,leftEnabled)

5: {Phase 2: pass pertinent enabledness information to our parent}
6: interr enabled = leftInterrupts ∩ ourInterrupts6= Ø
7: noninterr enabled = leftEnabled
8: enabled = interr enabled ∨ noninterr enabled
9: maxInterrPri = maxPri(leftInterrupts ∩ ourInterrupts)

10: max pri=max(leftMaxPri, maxInterrPri )
11: interrupts = leftInterrupts
12: else
13: {Symmetric case when the right component is active}
14: end if
15:

Figure 3.13: Interrupt Composition Enabledness Check

tonomously choose to execute, when allowed to choose the executing transition, are

noninterrupt transitions.

Interrupt’s enabled check()

As with the other composition operators, an interrupt operator needs to store in

member variables the enabledness information of its left and right children. Thus,

an interrupt-operator class has add four new member variables: leftInterrupts,

rightInterrupts, leftMaxPri, and rightMaxPri. The algorithm for interrupt’s en-

abled check() is shown in Figure 3.13. The variable hasControl stores which child

component is active and can execute transitions. The pseudocode for the left child

being active is shown on lines 2-11. The pseudocode for the right child being ac-

tive is symmetric. In Phase 1, the interrupt operator asks the active child for its

enabledness information by recursively calling its enabled check() method. Just as

with interleaving and parallel, Phase 2 communicates the operator’s own enabled-

ness information to its parent by setting the parameters. On line 11, the interrupts
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parameter is set to contain all of the enabled interrupt transitions detected by

the active child, including those associated with other operators. The operator’s

own enabledness is communicated to its parent via the enabled parameter (line

8). An interrupt operator is enabled when one of its own interrupt transitions is

enabled (interrupt case) or when the active child is enabled (noninterrupt case).

The noninterrupt case (line 7) occurs when the active child’s enabled flag is set

in Phase 1. The interrupt case (line 6) occurs when an interrupt transition in the

operator’s set ourInterrupts is enabled in the active child. The enabled parameter

is set to the disjunction of these two cases. An interrupt operator must set the

max pri parameter to the priority value of the highest-priority enabled transition

in its composition subtree. The highest-priority transition is either one of the op-

erator’s interrupt transitions or it is the highest-priority enabled transition in the

active child. Line 9 finds the highest-priority enabled interrupt transition using the

function maxPri(); maxPri() takes a set of transitions and returns the priority value

of the highest-priority transition in this set. Line 10, then, determines the priority

value of the subtree’s highest-priority enabled transition by comparing the oper-

ator’s highest-priority interrupt transition with the active child’s highest-priority

enabled transition, and passes the result to the operator’s parent (by setting the

max pri parameter). When enabled check() finishes execution, the interrupt oper-

ator has enough information to make an execution decision.

Interrupt’s execute()

An interrupt operator’s execute() method, assuming that a model only uses

interrupt composition, is shown in Figure 3.14. The execute() method contains a

parameter, interr trans, that represents a scheduling constraint imposed on this op-

erator by an ancestor operator. The constraint is an order to execute the interrupt

transition indicated by the interr trans parameter. Thus, there are three cases to

an interrupt-composition operator’s execute() method:

• Case 1: Execute an interrupt transition imposed by an ancestor interrupt

operator, as dictated by the interr trans parameter

• Case 2: Execute one of the operator’s own enabled interrupt transitions
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{Member Variables}
VAR bool leftEnabled, rightEnabled
VAR set leftInterrupts, rightInterrupts
VAR integer leftMaxPri, rightMaxPri
VAR {left,right} hasControl

1: execute(transition interr trans)
2: {Case 1: execute an interrupt ordered by an ancestor }
3: if interr trans is not null then
4: if hasControl==left then
5: left.execute(interr trans)
6: else
7: right.execute(interr trans)
8: end if
9: else

10: {Case 2, 3: make a local execution decision}
11: if hasControl==left then
12: if maxPri(leftInterrupts ∩ ourInterrupts) == leftMaxPri then
13: choice = randomly choose interr or non-interr
14: else if maxPri(leftInterrupts ∩ ourInterrupts) > leftMaxPri then
15: choice = interr
16: else
17: choice = non-interr
18: end if

19: if choice==interr then
20: trans = choose the highest priority transition in leftInterrupts ∩ ourInterrupts
21: left.execute(trans)
22: hasControl = right
23: clear left components CS snapshot
24: else
25: left.execute(null)
26: end if
27: else
28: {Symmetric case for the right side having control}
29: end if
30: end if

Figure 3.14: Interrupt Composition Execution
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• Case 3: Execute an enabled transition in the active child (which is not one

of the operator’s own interrupt transitions).

The first case occurs if the interr trans parameter is set, indicating that an ancestor

operator has decided to schedule the specified interrupt transition for execution.

The operator follows its ancestor’s directive and tells the active child to execute the

transition in interr trans by passing it as a parameter to the active child’s execute()

method (lines 5 and 7). Cases 2 and 3 occur if interr trans is null, indicating that the

operator can make its own execution decisions. The choice of whether to execute

case 2 or case 3 is based on which enabled transition in the operator’s subtree

has the highest priority. If one of the operator’s enabled interrupt transitions has

highest priority, then the operator executes case 2, otherwise it executes case 3 (lines

12-18). This decision, based on transition priority, is why the priority value of the

highest-priority enabled transition is passed up the tree during enabled check(). If

the highest-priority interrupt transition has equal priority to the highest-priority

transition in the active child, then the operator randomly chooses which type of

transition to execute (lines 12, 13). Executing an interrupt transition in case 2

involves switching hasControl to the other child component (line 22) and clearing

the currently executing component’s current states (CS) snapshot element (line 23).

The operator must also set the interrupt parameter when calling execute() on the

active child, to force the child to execute the chosen interrupt transition (line 21).

Case 3 is carried out by calling execute() with a null parameter (line 25), imposing

no constraints on the active child’s execution. Case 3 allows the active child to

make its own execution decision.

HTS execute() Supporting Interrupt

To support interrupt operators, the HTS execute() method is modified to process

the interr trans parameter. This parameter indicates that an ancestor interrupt op-

erator has decided to schedule the interrupt transition in interr trans for execution.

An outline of the changes to the HTS execute() method that are required to process

this parameter are shown in Figure 3.15. An HTS reacts to the interr trans con-

straint by executing the interrupt transition in interr trans (line 4). If interr trans



CHAPTER 3. PARAMETERIZED CODE GENERATION 40

{Member Variables}
VAR list enabled transitions

1: execute(transition interr trans)
2: { Phase 1: Select an enabled transition to execute}
3: if interr trans is not null then
4: exe trans = interr trans
5: else
6: exe trans = pick a random transition from enabled transitions { a high-priority enabled

transition}
7: end if

8: { Phase 2: Execute the selected transition}
9: ...

Figure 3.15: HTS Execution Under Interrupt

is null, the HTS executes a randomly selected enabled high-priority noninterrupt

transition (line 6), just as it did in the basic HTS execute() pseudocode.

Interrupt is the first composition operator to use the notion of scheduling con-

straints in the execute() method. Interrupt’s scheduling constraint is the most

straightforward: it is an order to execute a specific transition. When a parent

imposes this constraint on a child, the child component has no room to make any

decisions. Some of the other operators impose more general constraints that allow

the child operator some flexibility in making decisions about which transitions to

execute. However, the general framework for execute() is still the same: the opera-

tor responds to all ancestor’s constraints and imposes those plus its own constraints

on its descendants.

3.4.4 Sequence and Choice

The code generated for both sequence and choice operators is very similar to that

generated for interrupt. However, these operators do not have interrupt transitions,

so there is no need for the extra enabledness information and parameters that

interrupt composition required.

In choice composition, a random decision is made at the start of execution

about which child component will be active, and this decision persists throughout
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the execution. Thus, the enabled check() and execute() methods only refer to the

chosen component.

In sequence composition, the first child component executes to completion and

then the second child component executes to completion. This is equivalent to the

operator executing a single interrupt transition from the final state of the first child

component to the initial state of the second child component. Thus, a finished flag

must be added to a sequence operator’s enabledness information. In an HTS, this

flag is set to true if the HTS reaches a final state. In a sequence-composition opera-

tor, this flag is set to true if both of its child components have set their finished flags.

A sequence operator’s enabled check() and execute() methods are interested only

in the active component (just as in interrupt composition) and they monitor the

active child’s finished flag. When the initially-active-child component’s finished flag

is set, the execute() method switches control to the other child component. When

the second child’s finished flag is set, the sequence operator itself indicates that

it has finished execution. Both of these operator’s execute() and enabled check()

methods are based on straight-forward modifications to interrupt’s execute() and

enabled check() methods. We don’t show the pseudocode for choice or sequence

operators.

3.4.5 Environmental Synchronization

Environmental synchronization (sync) introduces the idea of sync events. Each

environmental sync class has a set of designated sync events, called syncEvents. If

both the left and right child components have enabled transitions that are triggered

by the same event in syncEvents, then these transitions can execute in parallel.

Otherwise, the operator interleaves transitions that are not triggered by a sync

event. To implement these semantics, the enabled check() method needs a new

parameter, env events, which passes up the composition tree the set of sync events

that trigger enabled transitions.

HTS enabled check() Supporting Environmental Synchronization
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{Member Variables}
VAR set enabled transitions
VAR map env trans

1: enabled check(set env events,bool enabled)
2: max pri seen=-1
3: {find the the set of priority-enabled transitions}
4: for each transition τ in descending order of priority do
5: if pri(τ)>=max pri seen then
6: if en state(τ) ∧ en cond(τ) ∧ en events(τ) then
7: max pri seen = pri(τ)
8: if τ is triggered by an env sync event e then
9: env events.add(e)

10: env trans.put(e,τ) {put τ in the map under key e}
11: else
12: enabled=true
13: max pri=pri(τ)
14: enabled transitions.add(τ)
15: end if
16: end if
17: else
18: break {lower priority transition encountered, stop the checking loop}
19: end if
20: end for

Figure 3.16: HTS Enabledness Check Under Environmental Sync

The HTS enabled check() method needed to support environmental-synchronization

operators is shown in Figure 3.16. The method has a new parameter, env events,

which passes up the composition tree the sync events which trigger enabled transi-

tions. The enabled check() method searches for and stores enabled transitions that

are triggered on sync events (lines 8-10) in a new member variable, env trans. When

an enabled transition is triggered by a sync event, that sync event is added to the

env event parameter (line 9) and the enabled transition is placed in the env trans

map, keyed on the sync event which triggered it (line 10). The HTS stores these

sync transitions, so that during the execution phase, if an ancestor constrains the

HTS to execute an enabled transition triggered on a particular sync event, the

HTS can quickly retrieve a list of such transitions by indexing into the env trans

map with the specified sync event. The enabled transitions member variable now

contains only enabled transitions that are not triggered on a sync event (line 14).
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{Member Variables}
VAR bool leftEnabled, rightEnabled
VAR set leftEnv Events, rightEnv Events

1: enabled check(set env Events,bool enabled)
2: {Phase 1: find the enabledness information for our left and right children}
3: left.enabled check(leftEnv Events,leftEnabled)
4: right.enabled check(rightEnv Events,rightEnabled)

5: {Phase 2: pass pertinent enabledness information to our parent}
6: unsync = leftEnabled ∨ rightEnabled
7: sync = (leftEnv Events ∩ rightEnv Events ∩ syncEvents) 6= Ø
8: enabled = un-sync ∨ sync
9: env Events = ( leftEnv Events ∩ rightEnv Events ∩ syncEvents) ∪

leftEnv Events/syncEvents ∪ rightEnv Events/syncEvents

Figure 3.17: Environmental Sync Composition Enabledness Check

Environmental Synchronization’s enabled check()

In the same manner as the other operators, an environmental sync operator stores

its children’s enabledness information in member variables. We add two mem-

ber variables (left/right)Env Events to record the sync events that trigger enabled

transitions in the left and right child, respectively.

The enabled check() algorithm for an environmental-synchronization operator,

assuming that a model only uses environmental-synchronization composition, is

shown in Figure 3.17. Similar to the enabled check() methods for the other op-

erators, Phase 1 of an environmental-synchronization operator’s enabled check()

method recursively calls its children’s enabled check() methods. Phase 2 differs in

that an environmental-sync operator is enabled if (1) either of its children has an

enabled transition not triggered by one of the operator’s sync events (the unsync

case), or if (2) both children have one or more transitions that are triggered by the

same event in syncEvents (the sync case). The unsync case is encoded on line 6

as the disjunction of the children’s enabled flags. The sync case is encoded on line

7; it checks if there exists a sync event in the set syncEvents that the right and

left children are both enabled on. The operator’s enabledness is the disjunction of

these two cases. The env Events parameter is set so that ancestor operators are

aware of which sync events trigger transitions in the environmental-sync operator’s
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subtree (line 9). Env Events is set to all sync events passed up from the operator’s

children that the operator is willing to execute transitions triggered on (if ordered

to by an ancestor operator during execute()). These events include any event not in

syncEvents that was passed up from the operator’s child components (the operator

can interleave transitions triggered on these events) or any event in syncEvents that

enables transitions in both children (the operator can execute a synchronization on

these events). Events in syncEvents that enabled transitions in only one child are

not added to env Events. This is because the operator does not allow only one

child to execute transitions triggered by one of its sync events (it must synchronize

both children on a sync event).

Environmental Synchronization’s execute()

The execute() method for environmental sync is shown in Figure 3.18. It is

made up of three cases:

1. Execute a synchronization imposed by an ancestor component (ancestral con-

straint case)

2. Execute a synchronization on one of the operator’s sync events (local sync

case)

3. Let a child component execute transition(s) not triggered by one of the oper-

ator’s sync events (unsync case)

Consider the model show in Figure 3.19 whose composition tree contains two envi-

ronmental sync operators env1 and env2, where env1 is the parent of env2. Env1

synchronizes on events a1 and a2, and env2 synchronizes on events a1 and a3. This

model can exhibit each of the three cases above within env2’s execute() method.

The first case occurs when env1 chooses one of its sync events and calls env2’s exe-

cute() method setting the env event parameter to the chosen event. This parameter

constrains env2 to consider only transitions triggered by the event in env event.

There are four sub-cases of case 1 (lines 3-17) that show the different ways that

env2 can react to this constraint. In the first sub-case (lines 4-8), the imposed

synchronization happens to involve one of the operator’s own sync events, and the
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{Member Variables}
VAR bool leftEnabled, rightEnabled
VAR set leftEnv Events, rightEnv Events

1: execute(event env event)
2: {Case 1: execute a synchronization imposed by an ancestor }
3: if env event is not null then
4: if env event∈leftEnv Events ∧ env event∈rightEnv Events ∧ env event∈syncEvents then
5: begin parallel execution simulation
6: left.execute(env event)
7: right.execute(env event)
8: end parallel execution simulation
9: else if env event∈leftEnv Events ∧ env event∈rightEnv Events ∧ env event/∈syncEvents

then
10: compToExecute = choose one of the left or right components to execute
11: compToExecute.execute(env event)
12: else if env event ∈leftEnv Events ∧ env event/∈syncEvents then
13: left.execute(env event)
14: else if env event ∈rightEnv Events ∧ env event/∈syncEvents then
15: right.execute(env event)
16: end if
17: else
18: {Case 2, 3: make a local execution decisions}
19: sync set = leftEnv Events ∩ rightEnv Events ∩ syncEvents
20: if sync set 6= Ø ∧ (leftEnabled ∨ rightEnabled) then
21: choice = randomly choose one of sync or unsync
22: else if sync set 6= Ø then
23: choice = sync
24: else if leftEnabled ∨ rightEnabled then
25: choice = unsync
26: end if
27: if choice==sync then
28: events = choose an event in sync set
29: begin parallel execution simulation
30: left.execute(event)
31: right.execute(event)
32: end parallel execution simulation
33: else if choice==unsync then
34: if leftEnabled ∧ rightEnabled then
35: compToExecute = randomly choose left or right child
36: compToExecute.execute(null)
37: else if leftEnabled then
38: left.execute(null)
39: else if rightEnabled then
40: right.execute(null)
41: end if
42: end if
43: end if

Figure 3.18: Environmental Sync Composition Execution
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M1: HTS M2: HTS

M3: HTS

env1: 
Environmental Sync

{a1,a2}

env2: 
Environmental Sync

{a1,a3}

Figure 3.19: Environmental Synchronization Example

operator’s left and right components are both ready to react to this event; thus, in

this subcase, the operator can satisfy the ancestral constraint by instructing both

of its child components to execute in parallel transitions triggered on env event

(lines 6 and 7). This sub-case would occur if env1 ordered a synchronization on

a1, which is also a sync event for env2. Env2 reacts to this sync command by

constraining both its children to execute in parallel on a1 (instructing its children

to also synchronize on a1). The manner in which sync operators pass up enabled-

ness information ensures that it will never be the case that env1 orders a sync on

a1 when only one of env2’s children are prepared to execute on a1, (i.e., during

enabled check(), env2 will not pass a1 up to env1, unless both env2’s children have

enabled transitions triggered on a1). In the remaining three sub-cases of case 1, the

event in env event is not a designated sync event for this operator. These sub-cases

would occur if env1 ordered a synchronization on a2, which is not in env2’s sync

set ({a1,a3}). As such, these three sub-cases are unsync cases relative to env2, so

only one of its child components can execute and react to a2.

Case 2 (lines 27-32) is the local sync case and would occur if env1 decided not to

synchronize on one of its sync events and allowed env2 to execute unconstrained. If

both env2’s child components have enabled transitions that are triggered by one of

env2’s sync events, then env2 can choose to synchronize on this event and instruct
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{Member Variables}
VAR list enabled transitions
VAR map env trans

1: execute(event env event)
2: { Phase 1: Select an enabled transition to execute}
3: if env event is not null then
4: exe trans = pick a random transition from env trans.get(env event)
5: else
6: exe trans = pick a random transition from enabled transitions
7: end if

8: { Phase 2: Execute the selected transition}
9: ...

Figure 3.20: HTS Execution Under Environmental Synchronization

both of its child components to execute transitions triggered by this event. Env2

instructs its children to synchronize by passing the chosen sync event as a parameter

to each child’s execute() method on lines 30 and 31.

Case 3 (lines 34-41) is the un-sync case, in which env2 is not constrained by

env1 and it decides not to synchronize and allows one of its two child components

to execute unconstrained (the children’s execution is interleaved). Unconstrained

execution is encoded by passing null as the parameter to the chosen child’s execute()

method (lines 36,38,40). If both sync and un-sync executions are enabled, the

operator randomly chooses which case is executed (Line 19,20).

HTS execute() Supporting Environmental Synchronization

To support environmental-synchronization operators, the HTS execute() method

is modified to process the new parameter, env event, representing the constraint

to execute a transition triggered on env event (Figure 3.20). If the env event pa-

rameter is set, then the HTS will retrieve from the env trans map the list of en-

abled transitions that are triggered on env event and randomly pick one of them

to execute (line 4). If the env event parameter is not set, then the HTS will ex-

ecute an enabled transition not triggered on a sync event (a transition stored in

enabled transitions) (line 6).
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3.4.6 Rendezvous Synchronization

Rendezvous composition looks very similar to environmental synchronization. In

rendezvous, the synchronization event, also called the rendezvous event, is gener-

ated and reacted to in the same micro-step. Thus, we need to introduce the notion

of a sending component that generates the sync event, and a receiving compo-

nent that, in the same micro-step, reacts to the sync event’s generation. Template

semantics makes the assumption that a transition triggered on a rendezvous-sync

event has only that sync event as a triggering event (i.e., only one triggering event).

HTS enabled check() Supporting Rendezvous Synchronization

The HTS enabled check() method needed to support rendezvous operators, is

shown in Figure 3.21. The method has two new parameters: gen events, which

stores rendezvous sync events that are generated by enabled transitions, and trig events,

which store rendezvous sync events whose generation would cause some transition

to become enabled. The HTS contains two member-variable maps: rend GenTrans,

which maps sync events to a list of enabled transitions that generate that event,

and rend TrigTrans, which maps sync events to a list of transitions that would

be enabled if that event were to be generated. The gen event parameter and

rend GenTrans map are used in the same manner as the env event parameter and

env trans map are used to support environmental sync. If an enabled transition

generates a sync event e, then e is added to the gen events parameter, and the

transition, keyed on e, is added to the rend GenTrans map (lines 8-10).

The trig events parameter and the rend TrigTrans member variable are set in

a unique fashion (lines 22-27). The trig events parameter stores sync events whose

generation would cause a transition in the HTS to become enabled. These ren-

dezvous events trigger transitions that are not actually enabled, but would become

enabled if that sync event were generated. Thus, the enabledness check on line

23, which checks transitions that could execute in a rendezvous synchronization,

doesn’t check the en event condition because it’s up the rendezvous operator (not

the HTS) to match this transition up with another transition that generates the
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{Member Variables}
VAR set enabled transitions
VAR map rend GenTrans, rend TrigTrans

1: enabled check(set gen events,set trig events,bool enabled)
2: max pri seen=-1
3: {find the the set of priority-enabled transitions}
4: for each transition τ in descending order of priority do
5: if pri(τ)>=max pri seen then
6: if en state(τ) ∧ en cond(τ) ∧ en events(τ) then
7: max pri seen = pri(τ)
8: if τ generates a rend sync event e then
9: gen events.add(e)

10: rend GenTrans.put(e,τ)
11: else
12: enabled=true
13: max pri=pri(τ)
14: enabled transitions.add(τ)
15: end if
16: end if
17: else
18: break {lower priority transition encountered, stop the checking loop}
19: end if
20: end for
21: {check if we can react to rendezvous-sync events being generated in other HTSs}
22: for each transition τ triggered by a rendezvous event do
23: if en state(τ) ∧ en cond(τ) ∧ pri(τ)>=max pri seen then
24: trig events.add(e)
25: rend TrigTrans.put(e,τ)
26: end if
27: end for

Figure 3.21: HTS Enabledness Check Under Rendezvous

proper sync event. By definition, the enabling event will not be present in the

snapshot elements; it is present only if the rendezvous operator chooses to execute

the rendezvous in this micro-step. These potentially enabled rendezvous transitions

are stored in the rend TrigTrans map, keyed on the sync event that triggers the

transition. The HTS uses the two member-variable maps to execute its part of a

rendezvous synchronization, if instructed to do so by an ancestor operator.
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{Auxiliary Variables}
VAR bool leftEnabled, rightEnabled
VAR set leftGen Events, rightGen Events
VAR set leftTrig Events, rightTrig Events

1: enabled check(set gen events,set trig events,bool enabled)
2: {Phase 1: find the enabledness info for our children}
3: left.enabled check(leftGen events,rightGen events,leftEnabled)
4: right.enabled check(rightGen events,rightTrig events,rightEnabled)

5: {Phase 2: pass pertinent enabledness info to our parent}
6: gen events = leftGen events ∪ rightGen events
7: trig events = leftTrig events ∪ rightTrig events

8: {Determine our enabledness}
9: leftSenderEnabled = leftGen Events ∩ rightTrig Events ∩ syncEvents 6= Ø

10: rightSenderEnabled = leftTrig Events ∩ rightGen Events ∩ syncEvents 6= Ø
11: sync = leftSenderEnabled ∨ rightSenderEnabled
12: unsync = leftEnabled ∨ rightEnabled
13: enabled = sync ∨ unsync

Figure 3.22: Rendezvous Composition Enabledness Check

Rendezvous’ enabled check()

Rendezvous operators require four new member variables. LeftGen Events and

rightGen Events store the sync events that are generated by enabled transitions

in the left and right components. Thus, these events identify available rendezvous

senders. Member variables leftTrig Events and rightTrig Events store sync events

that trigger transitions that would be enabled if that sync event were generated in

the opposite component. Thus, these events identify available rendezvous receivers.

A rendezvous operator’s enabled check() method, assuming that the model con-

tains only rendezvous operators, is shown in Figure 3.22. This method manipulates

the member variables in the usual way: the left and right children are asked for

their enabledness information, and the operator passes their combined results up

to its parent operator (lines 3-7). The major difference between rendezvous sync

and environmental sync is how the operator determines if it is enabled in the sync

case. Rendezvous-sync requires that a sender of a sync event be enabled in one

child component and that a receiver prepared, to receive the same event, be en-

abled in the other child component. Thus, a rendezvous sync case is enabled only
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if one of the operator’s sync events could be generated by one child component and

can be received and reacted to in the other child component. This case is checked

by testing if the intersection of (right/left)Gen Events, (left/right)Trig Events and

syncEvents is not empty (lines 9-11).

Rendezvous’ execute()

A rendezvous operator’s execute() method is shown in Figure 3.23. It contains the

same three cases as environmental sync’s execute() method. In the first case (lines

2-20), the operator responds to ancestral constraints. The execute method has two

parameters (triggerEvent and generateEvent), as two types of constraints that can

be passed down from ancestor rendezvous operators. An ancestor can direct the

operator to execute a transition that generates the event in generateEvent or to

execute a transition that is triggered by the event in triggerEvent; it will never ask

the operator to do both. When an ancestor imposes a rendezvous, it will ask the

operator to perform only half of the rendezvous (the other half to be performed by

the ancestor’s other child). Only one of the operator’s children ever reacts to an

ancestral constraint, as rendezvous dictates that only one sender and one receiver

can be involved in a rendezvous. In either case, the operator reacts to a constraint

by passing the constraint on to the appropriate child component. Lines 3-10 choose

the child component to execute a transition triggered on triggerEvent (i.e., if both

child components are enabled on triggerEvent, then the operator randomly chooses

one child to execute), and lines 12-19 choose the child component to execute a

transition that generates generateEvent.

The second case in rendezvous’ execution is when the operator receives no an-

cestral constraints and it chooses to rendezvous on one of its own sync events

(lines 30-47). On line 31, the component chooses an event that it is prepared to

rendezvous on (an event that has an enabled receiver in one component and an en-

abled sender in the other component). To execute a rendezvous on the chosen event,

the operator sets the generateEvent parameter of the sender’s execute() method,

thereby instructing the sending child to execute a transition that generates the

chosen event. The operator also sets the triggerEvent parameter of the receiver’s
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VAR bool leftEnabled, rightEnabled
VAR set leftGen Events, rightGen Events
VAR set leftTrig Events, rightTrig Events

1: execute(event triggerEvent,event generateEvent)
2: if triggerEvent is not null {Case 1: Respond to ancestral constraints} then
3: if triggerEvent ∈ leftTrig Events ∧ triggerEvent ∈ rightTrig Events then
4: compToExecute = randomly choose left or right child
5: compToExecute.execute(triggerEvent,null)
6: else if triggerEvent ∈ leftTrig Events then
7: left.execute(triggerEvent,null)
8: else if triggerEvnet ∈ rightTrig Events then
9: right.execute(triggerEvent,null)

10: end if
11: else if generateEvent is not null then
12: if generateEvent ∈ leftGen Events ∧ generateEvent ∈ rightGen Events then
13: compToExecute = randomly choose left or right child
14: compToExecute.execute(null,generateEvent)
15: else if generateEvent ∈ leftGen Events then
16: left.execute(null,generateEvent)
17: else if generateEvent ∈ rightGen Events then
18: right.execute(null,generateEvent)
19: end if
20: else
21: {Cases 2,3: unconstrained execution}
22: sync set = ( leftGen Events ∩ rightTrig Events ∩ syncEvents ) ∪

( rightGen Events ∩ leftTrig Events ∩ syncEvents )
23: if sync set 6= Ø ∧ (leftEnabled ∨ rightEnabled) then
24: choice = randomly choose one of sync or unsync
25: else if sync set 6= Ø then
26: choice = sync
27: else if leftEnabled ∨ rightEnabled then
28: choice = unsync
29: end if
30: if choice == sync {Case 2: Local rendezvous synchronization} then
31: syncEvent = randomly choose an event from sync set
32: if (syncEvent ∈ leftGen Events ∧ syncEvent ∈ rightTrig Events) ∧

(syncEvent ∈ rightGen Events ∧ syncEvent ∈ leftTrig Events) then
33: sender = randomly choose left or right
34: else if syncEvent ∈ leftGen Events ∧ syncEvent ∈ rightTrig Events then
35: sender = left
36: else
37: sender = right
38: end if
39: if sender==left then
40: {Right ordered to be triggered by syncEvent, Left ordered to generate syncEvent}
41: begin parallel execution simulation
42: left.execute(null,syncEvent)
43: right.execute(syncEvent,null)
44: end parallel execution simulation
45: else if sender==right then
46: {Omitted: Right to generate syncEvent, Left to be triggered by syncEvent}
47: end if
48: else if choice == unsync then
49: {Case 3: Interleaving - Unchanged from env sync interleaving case}
50: end if
51: end if

Figure 3.23: Rendezvous Composition Execution
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{Member Variables}
VAR list enabled transitions
VAR map rend GenTrans, rend TrigTrans

1: execute(event triggerEvent,event generateEvent)
2: { Phase 1: Select an enabled transition to execute}
3: if triggerEvent is not null then
4: exe trans = pick a random transition from rend TrigTrans.get(triggerEvent)
5: else if generateEvent is not null then
6: exe trans = pick a random transition from rend GenTrans.get(generateEvent)
7: else
8: exe trans = pick a random transition from enabled transitions
9: end if

10: { Phase 2: Execute the selected transition}
11: ...

Figure 3.24: HTS Execution Under Rendezvous

execute() method, thereby instructing the receiving child to execute a transition

triggered on the chosen event. Lines 40-44 show how this is accomplished if the left

component is the sender of the rendezvous event and line 46 indicates the symmet-

ric case in which the right component is the sender of the rendezvous event (the

pseudocode for this case has been omitted). The unsync case (case 3) is unchanged

from environmental synchronization’s unsync case.

HTS execute() Supporting Rendezvous Synchronization

To support rendezvous operators, the HTS execute() method needs to process

the two new parameters, triggerEvent and generateEvent, in the same manner

that environmental sync’s new parameter (env event) was handled. This process-

ing is shown in Figure 3.24. If the triggerEvent parameter is set, then the HTS

retrieves from the rend TrigTrans map the list of transitions that are triggered on

triggerEvent and will randomly pick one of them to execute (line 4). If the gen-

erateEvent parameter is set, the HTS retrieves from the rend GenTrans map the

transitions that generate the event in generateEvent and randomly picks one of

them to execute (line 6). If neither parameter is set, the HTS executes an enabled

transition that is neither triggered by a sync event nor generates a sync event (i.e.,

a transition stored in enabled transitions), as shown on line 8.
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We have shown how each composition operator can be mapped to Java under

the assumption that the composition tree contains only operators of that type. We

will now look at how we modify the algorithms to support models that use more

than one type of composition.

3.5 Mapping Heterogeneous Compositional Hi-

erarchies to Java

The overall scheduling methodology, in which enabledness information flows up

the tree and execution decisions flow down the tree, is unchanged in models that

have heterogeneous composition hierarchies, containing more then one type

of composition operator. In this section, we discuss how the algorithms for each

operator’s enabled check() and execute() methods must change to accommodate

heterogeneous composition hierarchies. We discuss the changes needed in the most

general case, in which an operator has at least one ancestor composition operator

of every type. Thus, the operator’s enabled check() method needs a parameter to

pass up the composition tree enabledness information that every type of operator

requires, and the operator’s execute() method needs a parameter for every possible

execution constraint another type of operator could impose. In practice, our code

generator generates operator classes that have only those parameters that an an-

cestral composition operator requires. For example, if in the model’s composition

hierarchy a particular operator does not have an interrupt operator as an ancestor,

then its enabled check() method will not have a parameter for reporting the list of

enabled-interrupt transitions and its execute() method will not have a parameter

for the interrupt constraint.

3.5.1 Heterogeneous Enabledness Checking

In interleaving composition (Figure 3.6), the only information that is passed up the

hierarchy is a boolean flag indicating that the component has a transition it would
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like to execute. There are four composition operators that require extra enabledness

information, beyond a simple enabled flag, to flow up the composition hierarchy.

Interrupt composition needs to know the set of enabled interrupt transitions and

it also needs to know the priority value of the highest-priority enabled transition.

Environmental synchronization needs to know the set of sync events that trigger

enabled transitions. Rendezvous needs two extra pieces of information: the set of

sync events that are generated by enabled transitions and the set of sync events

whose generation would cause some transition to become enabled. Sequence needs

to know if a child has finished execution. Thus, in the most general case, in which

all of the composition operators need to be supported, every node in the hierarchy

must pass along and store the following information:

• A flag indicating a highest-priority enabled transition in the component.

• The priority value of the highest-priority enabled transition in the component.

• The set of highest-priority enabled interrupt transitions in the component.

• The set of environmental-sync events that trigger some highest-priority en-

abled transition in the component.

• The set of rendezvous-sync events whose generation would cause some highest-

priority transition to become enabled.

• The set of rendezvous-sync events that are generated by some highest-priority

enabled transition in the component.

• A flag indicating that the component has finished execution.

Thus, in general, there are a total of seven enabledness parameters that each com-

position operator could be responsible for collecting from its child components and

passing on to its parent component.

Because a composition operator needs to store the enabledness information for

both its left and right components, each operator needs two variables (left and right)

for each of enabled check()’s seven parameters. A 15th variable, hasControl, keeps

track of which child component has control of the execution, for those composition

operators (interrupt, sequence, choice) that coordinate sequential execution of their

child components. Thus, in general, each node in the composition tree will need a
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{Member Variables}
VAR boolean leftFinal, rightFinal
VAR boolean leftEnabled, rightEnabled
VAR integer leftMaxPri, rightMaxPri
VAR set leftRend TEvents, rightRend TEvents {T for Triggering events}
VAR set leftRend GEvents, rightRend GEvents {G for Generated events}
VAR set leftEnv Events, rightEnv Events
VAR set leftInterr, rightInterr
VAR {left, right} hasControl

1: enabled check(set rend TEvents,set rend GEvents,set env Events,set interr trans,boolean
enabled,integer maxPri,bool final state)

2: {Phase 1: find the enabledness information for our left and right children}
3: left.enabled check(leftRend TEvents,leftRend GEvents,leftEnv Events,leftInterr,leftEnabled,leftMaxPri,

leftFinal)
4: right.enabled check(rightRend TEvents,rightRend GEvents,rightEnv Events,rightInterr,rightEnabled,

rightMaxPri,rightFinal)

5: {Phase 2: pass pertinent enabledness information to our parent}
6: enabled = OPERATOR SPECIFIC
7: maxPri = OPERATOR SPECIFIC
8: final state = leftFinal ∧ rightFinal
9: rend TEvents = leftRend TEvents ∪ rightRend TEvents

10: rend GEvents = leftRend GEvents ∪ rightRend GEvents
11: env Events = leftEnv Events ∪ rightEnv Events
12: interr trans = leftInterr ∪ rightInterr

Figure 3.25: Heterogeneous Enabledness Outline

maximum of 15 member variables, as shown at the top of Figure 3.25. An operator

can leave out any variable if there is no ancestral operator that requires it to store

this information.

An outline of enabledness checking in the most general case is shown in Figure

3.25. Just as in the homogeneous case, the operator stores its children’s enabledness

information in member variables in Phase 1 and uses this information to determine

its own enabledness in Phase 2. The operator must store and pass on to its parent

all seven pieces of enabledness information listed above. The only operator-specific

part of the enabledness check is on lines 6 and 7. Each operator sets the enabled

and maxPri parameters differently. The previous operator-specific sections describe

how each operator sets the enabled parameter. The maxPri parameter is set to the

priority value of the highest-priority enabled transition in the component’s subtree.
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We have shown how interrupt operators compute maxPri (Figure 3.13). For the

other operators, the computation of maxPri is closely related to the computation

of enabled. For example, interleaving composition sets enabled to the disjunction

of leftEnabled and rightEnabled, and would therefore set maxPri to the maximum

of leftMaxPri and rightMaxPri. It is straightforward to determine how the other

operators would calculate maxPri by looking at how they calculate enabled.

Note that Figure 3.25 outlines a heterogeneous enabled check() in which both

of the operator’s children are checked for enabled transitions. Because in interrupt,

sequence, and choice composition, only one of the child components is ever active

at a time, these composition operators check only the active component in Phase

1 and deal with only the active child’s enabledness information in Phase 2.

3.5.2 Heterogeneous Execution

The execute() pseudocode for homogeneous composition hierarchies considered only

the constraints that ancestral operators of the same type could impose on a given

operator. The most general execution algorithm must handle all possible constraints

that an ancestor of any type could impose on an operator, as outlined in Figure 3.26.

There are four possible types of constraints, as represented by the four parameters

to the execute() method. These parameters encode the following constraints:

• execute only enabled transitions that are triggered by env Event

• execute a single enabled transition that generates rend GEvent

• execute a single enabled transition that is triggered by rend TEvent

• execute the interrupt transition in interrupt

An operator will receive at most one of the first three constraints at any time.

The interrupt constraint can be set at anytime (i.e., it is possible to constrain an

operator to execute an interrupt transition that is triggered on a particular sync

event).

A constraint is a restriction on the types of decisions that the composition oper-

ator can make when determining whether the left or right child should execute. For
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1: execute(event env Event,event rend GEvent,event rend TEvent,transition interrupt)
2: {Case 1: schedule child components to execute based on constraints in the parameters }
3: if interrupt is non null then
4: OPERATOR SPECIFIC
5: else if env Event is non null then
6: OPERATOR SPECIFIC
7: else if rend GEvent is non null then
8: OPERATOR SPECIFIC
9: else if rend TEvent is non null then

10: OPERATOR SPECIFIC
11: else
12: {Case 2: if no constraints, schedule based on the operators semantics}
13: OPERATOR SPECIFIC
14: end if

Figure 3.26: Heterogeneous Execution Outline

example, if env Event is set, then the operator will select for execution only child

component(s) that have some transition triggered by that event. How the operator

decides which child component(s) to execute depends on the type of composition

operator it is. For example, parallel composition would execute both left and right

child components if they were both enabled on env Event, whereas interleaving

composition would execute one of the two children enabled on env event. If no

scheduling constraints are set, the operator is free to schedule and place constraints

on its child components based on its own semantics, considering all of the enabled-

ness information that was passed up from its children. This is case 2 of the generic

execute() algorithm and it corresponds to cases 2 and 3 of the operator-specific

execute() algorithms given in Section 3.4. The order in which the constraints are

checked is significant. The interrupt constraint must be checked first as it is a more

specific constraint than the other three: an interrupt constraint specifies exactly

which single (interrupt) transition must be executed. The other three constraints

(env Event, rend GEvent, rend TEvent) can be checked in any order as only one

of them can ever be set in a given micro-step (i.e., it is impossible to execute

a rendezvous synchronization and an environmental synchronization in the same

micro-step because rendezvous composition dictates that only one sending transi-

tion and one receiving transition can participate in a rendezvous synchronization).
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Execution Priority in Heterogeneous Hierarchies

By allowing each unconstrained composition operator to randomly choose between

executing its own transitions or allowing its child component(s) to execute un-

constrained (cases 2 and 3 of most operator’s execute() method), we ensure that

the position of an operator in the composition tree has no effect on its execution

priority. That is, even though an operator higher in the composition tree has its

execute() method called first and thus has an earlier chance to make an execution

decision, this higher operator could randomly decide to defer execution and allow

a descendant operator to execute unconstrained. For example, a higher-level en-

vironmental sync operator can randomly decide not to synchronize and to allow

one its children to execute unconstrained (allowing it to make its own execution

decisions).

Chapter 4 introduces some techniques for eliminating nondeterminism that re-

sult in operators higher in the composition tree having higher execution priority.

The only exception to this rule are interrupt operators, which use the transition

priority scheme to determine whether a higher-level operator will defer execution

to a lower-level operator. The reason for this distinction is that interrupt composi-

tion doesn’t represent a traditional form of concurrency. Instead, it combines two

components by explicitly defining how control passes between them via interrupt

transitions. Thus, the component rooted at an interrupt operator can be thought

of as one heavy-weight HTS sharing a single priority scheme.

3.6 Mapping Hierarchical Transition Systems to

Java

This section shows the full HTS enabled check() and execute() pseudocode that

would be needed if an HTS had operators of every type as ancestors in a model’s

composition hierarchy. It combines the pseudocode modifications given for each

composition operator above into one complete pseudocode description.
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3.6.1 HTS Enabledness Checking

Figure 3.27 shows the full HTS enabled check() pseudocode that supports all com-

position operators. The first phase of the algorithm (lines 8-31) involves finding the

set of highest-priority enabled transitions. When an enabled transition is found,

the relevant enabledness information for that transition is communicated to the

operator’s parent.

This communication is carried out by setting the appropriate parameter values,

depending on the characteristics of the enabled transition. There are four pieces of

information about an enabled transition that our parent may be interested in:

• Any rendezvous-sync events that the transition generates (rend GEvents pa-

rameter)

• Any environmental-sync events that the transition is triggered on (evn Events

parameter)

• Whether the transition is an interrupt transition (interr trans parameter)

• Whether the transition is a noninterrupt, nonrendezvous, nonenvironmental

synchronization transition (enabled parameter)

An HTS also stores the enabled transition in one of its four member variables, based

on the characteristics of the enabled transition, for later use during the execute()

method.

Phase 2 is only required if this HTS has an ancestor that is a rendezvous oper-

ator. A rendezvous operator needs to know if a transition would become enabled if

a particular rendezvous event were to be generated by another HTS in the current

micro-step. If any such transitions are found, the HTS communicates the sync

event it is triggered on to the HTS’s parent (line 35). The HTS also stores the

transition in the member variable rend TTrans (Line 36) for potential use, later, in

the execute() method.

3.6.2 HTS Execution
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{Member Variables}
VAR set enabled transitions
VAR map env trans, rend GTrans, rend TTrans

1: enabled check(set rend TEvents,set rend GEvents,set evn Events,set interr trans,bool en-
abled,bool final state)

2: max pri seen=-1
3: if CS contains a final state then
4: final state=true
5: return
6: end if

7: {Phase 1: find the enabledness information for the set of enabled transitions}
8: for each transition τ in descending order of priority do
9: if pri(τ)>=max pri seen then

10: if en state(τ) ∧ en cond(τ) ∧ en events(τ) then
11: max pri seen = pri(τ)
12: if τ generates a rendezvous event e then
13: rend GEvents.add(e)
14: rend GTrans.put(e,τ)
15: end if
16: if τ is an interrupt transition then
17: interr trans.add(τ)
18: end if
19: if τ is triggered by a environmental sync event e then
20: env Events.add(e)
21: env Trans.put(e,τ)
22: end if
23: if τ is a non-interrupt,non-env-sync and non-rendezvous transition then
24: enabled=true
25: enabled transitions.add(τ)
26: end if
27: end if
28: else
29: break {lower priority transition encountered, stop the checking loop}
30: end if
31: end for

32: {Phase 2: check if we can react to rendezvous-sync events being generated in other HTSes}
33: for each transition τ triggered by a rendezvous event do
34: if en state(τ) ∧ en cond(τ) ∧ pri(τ)>=max pri seen then
35: rend TEvents.add(e)
36: rend TTrans.put(e,τ)
37: end if
38: end for

Figure 3.27: Full HTS Enabledness Check
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{Member Variables}
VAR list enabled transitions
VAR map env trans, rend GTrans, rend TTrans

1: execute(event env Event,event rend GEvent,event rend TEvent,transition interrupt)
2: { Phase 1: Select a transition to execute based on scheduling information in the parameters}
3: if interrupt is non null then
4: exe trans = interrupt
5: else if rend GEvent is non null then
6: exe trans = pick a random transition from rend GTrans.get(rend GEvent)
7: else if rend TEvent is non null then
8: exe trans = pick a random transition from rend TTrans.get(rend TEvent)
9: else if env Event is non null then

10: exe trans = pick a random transition from env Trans.get(env Event)
11: else
12: exe trans = pick a random transition from enabled transitions
13: end if

14: { Phase 2: Execute the selected transition}
15: CS NEXT(exe trans)
16: CSa NEXT(exe trans)
17: AV NEXT(exe trans)
18: AVa NEXT(exe trans)
19: Q NEXT(exe trans)
20: Qa NEXT(exe trans)
21: IE NEXT(exe trans)
22: IEa NEXT(exe trans)
23: Ia NEXT(exe trans)
24: if exe trans is an interrupt transition then
25: executeInterrupt(exe trans)
26: end if

Figure 3.28: Full HTS Execution
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The pseudocode shown in Figure 3.28 shows the HTS execution algorithm with

support for all composition operators. In Phase 1, the HTS chooses one transition

to execute from its member variables, based on the constraints imposed in the para-

meters. The order in which the constraints (parameters) are checked is significant.

Only one of the first three parameters will ever be set, but the interrupt parameter

can be set at any time. The interrupt parameter overrides any other parameter, as

it imposes a more specific constraint (the actual transition to execute) than the first

three parameters. For example, if the env Event and interrupt parameters are both

set, then this indicates that an interrupt transition triggered on env Event has been

set by an ancestor interrupt operator. Thus, the HTS should execute the interrupt

transition and ignore the env Event constraint (it is implicitly satisfied). Once a

transition has been chosen from the proper member variable, the second phase of

the algorithm executes the transition following the template-semantics apply (i.e.,

next XX) parameter values.

3.7 The Root of the Composition Tree

The root of the composition tree has an extra task that other nodes in the tree

do not have. The root has the job of resetting the snapshot elements at the start

of a new macro-step, as described by the user-provided macro semantics and ten

reset XX template-semantics parameters. The root component doesn’t have an

enabled check() method; it instead contains a run() method. This method per-

forms a single micro-step in a model’s Java implementation. The method’s form

depends on whether the notation is using simple or stable macro-step semantics.

An outline of the run method for simple semantics is shown in Figure 3.29. Since it

follows simple semantics, the root resets the snapshot elements before every call to

execute() (i.e., before every micro-step). The operator-specific enabledness check

on line 12 is identical to the heterogeneous enabledness check outline presented

in Figure 3.25. This enabledness check involves calling enabled check() on one or

both of the root’s children to store their enabledness information in member vari-

ables. This stored information is used during execute() (line 13). The root calls
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1: run()
2: RESET IE
3: RESET IEa
4: RESET CS
5: RESET CSa
6: RESET AV
7: RESET AVa
8: RESET Q
9: RESET Qa

10: RESET Ia
11: RESET O
12: OPERATOR SPECIFIC ENABLED CHECK
13: execute(null,null,null,null)

14: if leftFinal ∧ rightFinal then
15: exit the system
16: end if

Figure 3.29: Simple Run Method

1: run()
2: OPERATOR SPECIFIC ENABLED CHECK
3: if ¬enabled then
4: RESET IE
5: RESET IEa
6: RESET CS
7: RESET CSa
8: RESET AV
9: RESET AVa

10: RESET Q
11: RESET Qa
12: RESET Ia
13: RESET O
14: else
15: execute(null,null,null,null)
16: end if

17: if leftFinal ∧ rightFinal then
18: exit the system
19: end if

Figure 3.30: Stable Run Method

its own execute() method with all null parameters, so that execute() can make

an unconstrained execution decision. The RESET XX() procedures (lines 2-11)

in the pseudocode represent inline code substitutions of the Java implementations

of the reset XX template parameters (i.e., the generated code does not contain

these procedures, instead reset XX’s Java implementation is substituted wherever

RESET XX is used in the pseudocode). The version of run() for stable semantics

(Figure 3.30) is modified slightly to only reset the snapshot elements when the

model has no transition to execute (the model is stable). The model is stable if the

root operator’s enabledness check (line 2) failed to find anything to execute (i.e.,

enabled was set to false by the root’s enabledness check).

3.8 Optimizations

We have implemented several optimizations to the scheduling methodology de-

scribed above. The three biggest optimizations are flattening the composition tree,

carrying out static computations, and removing nondeterminism. We describe the

first two optimizations in the following sections. Chapter 4 investigates removing

nondeterminism.
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Figure 3.31: Binary Operators
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Figure 3.32: General Operators

3.8.1 Flattening the Composition Tree

Up until this point, a model’s composition hierarchy has been a binary tree of com-

position operators. Some composition operators are associative, which means that

they don’t need a binary hierarchy to identify which operations should be performed

first. In such cases, we can flatten the hierarchy by allowing associative operators

to have an arbitrary number of children, thereby forming a general tree. The opera-

tors we flatten are interleaving, parallel, choice, and sequence. Environmental-sync

operators could also be flattened if the operators all have the same set of sync

events, although this is currently not implemented.

An example hierarchy is shown in Figure 3.31. To flatten this hierarchy, we

remove all operators of an associative type, whose parent is an operator of the

same type. Removing an operator involves promoting the operator’s children by

making them children of the operator’s parent and then removing the operator

itself from the hierarchy. For example, in Figure 3.31, operator C3 and its parent

C2 are both interleaving operators. Thus, C3 is removed from the hierarchy and

its children (M2 and M3) are promoted making them children of C2. Operator

C2 and its parent C1 are also both interleaving operators, so C2 is removed from

the hierarchy and its children are promoted, making them children of C1. This

brings us to the final flattened hierarchy shown in Figure 3.32. To accommodate



CHAPTER 3. PARAMETERIZED CODE GENERATION 66

general composition trees, the enabled check() and execute() methods of associative

operators are modified to work on a set of child components instead of a left and

right child. Each operator class contains a set of children and a set of enabled

flags, one for each child. The enabled check() method asks all children for their

enabledness information and uses this information to compute the operator’s own

enabledness, which it passes to its parent. An associative operator’s execute()

method then chooses which children amongst the set of enabled children to execute.

For example, with parallel composition, all enabled children are allowed to execute

in the same micro-step, where as interleaving composition chooses one enabled

child to execute. The shallower a model’s composition hierarchy is, the faster

the generated code for that model will execute. The savings comes from fewer

recursive calls and less caching of enabledness information, in that the generated

code for the flattened model caches no information for the removed operators. If

the root-composition operator is an associative operator, then we can also make

some optimizations to the run() method. These optimizations are implementation

details; the actual algorithms remain unchanged.

3.8.2 Static Computations

In the Java implementations of the execute() and enabled check() methods, as

much information as possible is computed statically by the code generator. For

example, in the presented pseudocode, the synchronization operators calculate set

intersections and unions with the set syncEvents and check if the resulting set

is empty (see Figures 3.18 and 3.22). The code generator knows statically the

sync events in syncEvents; instead of calculating the intersections and unions and

checking for set emptiness, it generates if-then-else statements that look for a single

sync event in the target set. For example, to check

EventsSet1 ∩ EventSet2 ∩ syncEvents 6= Ø

the generator outputs a long listing of if-then-else statements containing one if

statement for each event in syncEvents, checking if that event is in both EventSet1

and EventSet2. As soon as one sync event is found to be contained in both sets, the
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if-then-else statement completes (and returns success). The generated code ends

up being longer, but it executes much faster.

As a second example, template semantics has the notion of a state hierarchy.

This state hierarchy is static in the model and is completely flattened for enabled-

ness checking and execution. The current states (CS) snapshot element is always

just a set of states; we don’t care if those states are related via the state hierarchy.

The state hierarchy is encoded as part of the transition-execution code for the CS

snapshot element (representing the next CS template parameter). The code gener-

ator statically calculates which states in the state hierarchy are entered and exited

when a transition executes, as oppose to generating code that does this calculation

at runtime. The result is more efficient generated code for transition execution.

As a third example, finding the set of highest-priority enabled transitions in the

HTS enabled check() method (Figure 3.27) also takes advantage of statically avail-

able information about transition priorities. Instead of finding the set of enabled

transitions and then determining which transitions in this set have highest priority,

the code generator orders the transitions so that their enabledness is checked by

the generated code in descending order of priority; once a transition is found to be

enabled, all transitions of lower priority are not checked. Thus, the code generator

does all the work of dealing with the priority scheme by sorting the transitions

based on their priorities at code-generation time.



Chapter 4

Elimination of Nondeterminism

Template semantics can describe notations that can be used to build nondeter-

ministic models. This presents a problem when generating source code. Outside of

multi-threading, Java semantics is inherently deterministic. In the previous chapter,

we described the sense in which our code generators generate a Java representation

of a model that preserves the model’s nondeterminism. This approach is useful for

directly simulating the model, but not for producing a deployable implementation.

This chapter identifies all possible sources of nondeterminism in a model, and es-

tablishes mechanisms for eliminating them, so that our code generators can produce

more efficient deterministic Java implementations. Moreover, we want to give the

modeller as much control as possible over how the nondeterminism is resolved. In

cases where resolving the nondeterminism would involve asking the modeller for too

much information, we propose a global rule for resolving the nondeterminism. The

CGG allows the modeller to choose between two different types of code generator.

The first type will generate code that preserves the nondeterminism in the model.

The second type uses the techniques described in this chapter to generate code that

eliminates all nondeterminism in the model.

We are concerned with two categories of nondeterminism. The first category is

HTS-level nondeterminism. This is nondeterminism in the next-state relation for

an HTS (i.e., HTSs having more then one transition enabled in the same micro-

68
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step). In the pseudocode for translating HTSs to Java, presented in section 3.6,

a lot of extra complexity was introduced to simulate an HTS’s nondeterminism

in the generated code. In the deterministic version of the model, we want each

HTS to have at most one enabled transition per micro-step. The second category

of nondeterminism is at the composition level. We look at the nondeterminism

that a composition operator introduces even if both of its children are themselves

deterministic. These are points in the operator’s execute() method where the oper-

ator has a choice regarding which execution decision of multiple possible execution

decisions to make.

4.1 Nondeterminism Elimination at the HTS Level

The only source of nondeterminism at the HTS level comes from simultaneously

enabled transitions. In template semantics, two transitions can be simultaneously

enabled if their source states, triggering events, and guard conditions can be sat-

isfied in the same snapshot, where “satisfied” is specified by template parameters

en cond, en events, and en states.

We have developed a static check that will warn the modeller when two of an

HTS’s transitions can be simultaneously enabled, so that the modeller can decide

how to resolve that nondeterminism in the model. If two equal-priority transitions

exit the same source state and have jointly satisfiable guard conditions, then the

two transitions could both be simultaneously enabled. Thus, the checking algorithm

performs a pairwise satisfiability check on the guard conditions of all equal-priority

transitions that originate from the same source state. The checking algorithm that

we use is shown in Figure 4.1. Because template semantics has the notion of a state

hierarchy, Phase 1 of the algorithm finds the set of transitions exiting a given basic

state (a state having no sub-states) or exiting any of the basic state’s ancestor super

states (lines 4-7). Phase 2 finds all pairs of equal-priority transitions, from the set

found in Phase 1, whose guards can be simultaneously satisfied (line 9). The imple-

mentation of the algorithm makes use of the Stanford Validity Checker[5] to solve

the satisfiability sub-problem (line 9). This check does not involve the transition’s
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1: for each basic state s do
2: add all transitions leaving s to transList
3: s = s.outer {s.outer is the super state which contains s}

{Phase 1: find all transitions which exit s or any of its ancestor states}
4: while s is not the topmost state in the state hierarchy do
5: add all transitions exiting s to transList
6: s = s.outer
7: end while

{Phase 2: pairwise mutually enabled check}
8: for each t1 and t2 in transList with pri(t1)=pri(t2) do
9: if en cond(t1) ∧ en cond(t2) is satisfiable then

10: t1 and t2 can be mutually enabled
11: end if
12: end for
13: end for

Figure 4.1: HTS Level Nondeterminism Detection

triggering events, because if multiple enabling events can be active in the model at

the same time, then transitions triggered by different events can be enabled simul-

taneously. The algorithm is complete but not sound. A full reachability analysis

would be required to check for sure if two transitions can be simultaneously en-

abled. This type of reachability analysis is far too expensive to be feasible. Thus,

false-positives are possible when using this algorithm. The idea is to point out

to the modeller pairs of transitions that are potential sources of nondeterminism.

The modeller can choose to ignore the warnings if the reported pair of transitions

will never be simultaneously enabled (i.e., the pair represents a false-positive), or

if the modeller does not care how the nondeterminism resulting from the pair of

transitions is resolved.

Once a pair of transitions has been detected as a source of nondeterminism,

the modeller can use explicit transition-priority to identify which transition should

execute if both are enabled. If the modeller doesn’t care how HTS-level nonde-

terminism is resolved in a model’s implementation, then the detection algorithm

can be disabled. If the modeller doesn’t prioritize transitions that can be simulta-

neously enabled, or if the model’s priority scheme doesn’t specify a total ordering
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amongst transitions, then the code generator uses the order in which the transitions

are listed in the model’s XML representation to prioritize transitions.

By forcing a total ordering amongst transitions that can be simultaneously

enabled, we ensure that only one transition per HTS will be enabled in a micro-

step. This knowledge allows us to redesign the algorithms for HTS-level enabledness

checking and execution. The goal of this redesign is to make the algorithms as

efficient as possible. These modified algorithms are shown in the following sections.

4.1.1 Deterministic HTS Enabledness Checking

In this section, we assume that there exists a total ordering amongst transitions that

can be enabled in the same micro-step, such that at most one transition per HTS

will be enabled in a micro-step. The redesigned enabledness checking pseudocode

is shown in Figure 4.2. The redesigned HTS class has only two member vari-

ables (enabled transitions and rend TTrans) compared to the four member vari-

ables used in the pseudo-nondeterministic HTS enabled check() (Figure 3.27). The

enabled transition variable stores the one enabled transition (line 9). Since at most

one transition is ever enabled in a micro-step, the HTS doesn’t need different mem-

ber variables to separate synchronization related transitions from nonsynchroniza-

tion transition, as was done in the pseudo-nondeterministic HTS enabled check().

As for the other member variable (rend TTrans), recall that if an HTS has an an-

cestor rendezvous-composition operator, then it stores the transitions that would

be enabled if the proper sync event were to be generated. These transitions are

not actually enabled unless a rendezvous synchronization on the proper sync event

occurs. Thus, an HTS stores these transitions separately, just as in the nondeter-

ministic case. This is the purpose of the map rend TTrans at the top of Figure 4.2.

The simplified enabled check() method is shown in Figure 4.2. The first phase of

the algorithm finds the one highest-priority enabled transition and communicates,

via enabled check()’s parameters, the same four pieces of enabledness information

about this transition as the HTS did in the nondeterministic pseudocode. The sec-
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{Member Variables}
VAR transition enabled transition
VAR map rend TTrans

1: enabled check(set rend TEvents,set rend GEvents,set env Events,set interr trans,bool en-
abled,bool final state)

2: if CS contains a final state then
3: final state=true
4: return
5: end if

6: {Phase 1: Search for the one enabled transition}
7: for each transition τ in descending order of priority do
8: if en state(τ) ∧ en cond(τ) ∧ en events(τ) then
9: enabled transition=τ

10: if τ generates a rendezvous event e then
11: rend GEvents.add(e)
12: end if
13: if τ is an interrupt transition then
14: interr trans.add(τ)
15: end if
16: if τ is triggered by a environmental sync event e then
17: env Events.add(e)
18: end if
19: if τ is a non-interrupt,non-env-sync and non-rendezvous transition then
20: enabled=true
21: end if
22: break {Stop the checking loop, we found the one enabled transition}
23: end if
24: end for

25: {Phase 2: check if we can react to rendezvous-sync events being generated in other HTSes}
26: for each transition τ triggered by a rendezvous event do
27: if en state(τ) ∧ en cond(τ) ∧ pri(τ)>=max pri seen then
28: rend TEvents.add(e)
29: rend TTrans.put(e,τ)
30: end if
31: end for

Figure 4.2: Deterministic HTS Enabledness Check

ond phase is identical to the second phase of the pseudo-nondeterministic algorithm:

the HTS checks if any rendezvous-event-triggered transitions are prepared to take

part in a rendezvous. These transitions are not actually enabled unless a rendezvous

occurs and wouldn’t be found by the enabledness check in Phase 1. This deter-

ministic enabled check() method is more efficient than the pseudo-nondeterministic
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{Member Variables}
VAR transition enabled transition
VAR map rend TTrans

1: execute(event rend TEvent)
2: { Phase 1: Select a transition to execute based on scheduling information in the parameters}
3: if rend TEvent is non null then
4: exe trans = rend TTrans.get(rend TEvent)
5: else
6: exe trans = enabled transition
7: end if

{ Phase 2: Execute the selected transition }
8: CS NEXT(exe trans)
9: CSa NEXT(exe trans)

10: AV NEXT(exe trans)
11: AVa NEXT(exe trans)
12: Q NEXT(exe trans)
13: Qa NEXT(exe trans)
14: IE NEXT(exe trans)
15: IEa NEXT(exe trans)
16: Ia NEXT(exe trans)

Figure 4.3: Deterministic HTS Execution

enabled check() method. The biggest savings come in Phase 1; the HTS only iden-

tifies the one highest-priority enabled transition, compared to the nondeterministic

case, where there may exist a set of high-priority enabled transitions.

4.1.2 Deterministic HTS Execution

If at most one transition per HTS is enabled in a micro-step, then the HTS exe-

cute() method can be redesigned to use fewer parameters. The pseudo-nondeterministic

HTS execute() method (Figure 3.28) had to process four possible ancestral con-

straints. It also randomly selected an enabled transition to execute if more than

one enabled transition satisfied the constraints. In the deterministic version of the

algorithm (Figure 4.3), the only ancestral constraint that concerns an HTS is a

directive to execute a transition that is triggered by the rendezvous event in the

rend TEvent parameter. In all other cases, the enabled transition that the HTS

should execute is stored in the enabled transition member variable; it doesn’t mat-
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ter if this transition is an interrupt transition or is triggered by a environmental

synchronization event. Thus, the other ancestral constraints used in the pseudo-

nondeterministic HTS execute() method play no role in the deterministic algorithm,

and hence are removed. The HTS either executes a rendezvous or executes its single

enabled transition. This is a much more elegant and efficient execution mechanism.

4.2 Nondeterminism Elimination at the Compo-

sition Level

Each composition operator, other than parallel and sequence, introduces some new

source(s) of nondeterminism. We will show briefly how each of these sources of

nondeterminism is resolved in the generated Java. Parallel composition is not

mentioned in the following discussion because it forces its left and right child com-

ponents to execute in parallel if they are both enabled. Thus, parallel composition

is deterministic as long as each of its left and right children are deterministic. Se-

quence composition simply executes each child component in sequence, and the

order in which the children are executed is specified in the model, making sequence

composition deterministic as well.

4.2.1 Interleaving

Interleaving composition introduces a single source of nondeterminism. When both

left and right child components are enabled, an interleaving operator nondeterminis-

tically picks one of the two components to execute. To resolve this nondeterminism,

the generated code for interleaving composition uses round-robin scheduling to de-

cide which child component executes if both are enabled in a particular micro-step.

This decision results in both children of an interleaving operator taking turns ex-

ecuting whenever both are enabled (i.e., if the left child executed last time both

children were enabled, then the right child will execute the next time both children

are enabled). Round-round scheduling gives us a notion of fairness without having
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any measurable effect on the efficiency of execution.

4.2.2 Synchronization

Environmental and rendezvous synchronization introduce a number of sources of

nondeterminism. In the unsynchronized case in both operators, if both the left

and right children are enabled on transitions not related to the operator’s sync

events, then the operator behaves as an interleaving operator, nondeterministically

selecting a child to execute. This nondeterminism is resolved using round-robin

scheduling, in the same fashion as was done for interleaving composition.

A second source of nondeterminism occurs in the synchronized case, if the oper-

ator can synchronize on multiple sync events. In the nondeterministic psuedocode

(Figures 3.18 and 3.23), the operator randomly chooses which of these events to

sync on, and then directs its child components to execute transitions triggered on

the chosen event. We use an event-priority scheme to resolve this nondeterminism

when generating a deterministic Java implementation. This priority scheme must

provide a total ordering on the model’s sync events. This single priority scheme

is used for all synchronization operators in the model. A synchronization operator

will choose to synchronize on a higher-priority sync event over synchronizing on a

lower-priority sync event. Ideally, the modeller specifies a priority scheme among

synchronization events. If no such ordering on events is specified by the modeller,

then the order in which the events are listed in the XML representation of the

model will be used to prioritize events when generating deterministic code.

The last source of nondeterminism in synchronization operators occurs when

the operator chooses between synchronizing on some event or allowing a child com-

ponent to execute some transitions unrelated to the operator’s sync events. In

the pseudo-nondeterministic pseudocode, the operator randomly chooses whether

to execute the synchronization or to allow one of its enabled child components to

execute unsync transition(s) (i.e., transitions that are not triggered on a sync event,

and that do not generate a sync event). When generating deterministic code, we re-

solve this nondeterminism by changing the operator’s execute() method to give the
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sync case higher priority than the unsync case. Thus, whenever a synchronization

is possible, a sync operator’s execute() method will execute that synchronization

over any other transitions enabled in its children. This simplifies environmental

sync’s and rendezvous’ execute() method. A side effect of this decision is that

synchronization operators that appear higher in the composition tree have priority

over synchronization operators that appear lower in the tree: because the flow of

execution decisions starts at the root operator of the tree, higher-level synchro-

nization operators will make execution decisions before lower-level synchronization

operators. In the pseudo-nondeterministic code, the composition hierarchy does

not impose a priority ordering on composition operators because the higher-level

operator randomly chooses whether or not to synchronize its child components or

to allow one of its children to execute unconstrained (allowing it to make its own

execution decisions).

Rendezvous composition introduces one additional source of nondeterminism:

if both children could be both a sender and a receiver of the same sync event in the

same micro-step, then the operator nondeterministically chooses which child will

be the sender and which child will be the receiver. We resolve this nondeterminism

in the same manner as interleaving composition, by using round-robin scheduling

to alternate, in different micro-steps, which child will send/receive the rendezvous-

synchronization event, when both children could do either.

4.2.3 Interrupt

Interrupt composition introduces two sources of nondeterminism. The first source

of nondeterminism is when the operator has more than one highest-priority en-

abled interrupt transition. To eliminate this nondeterminism, the modeller needs

to define total orderings over each interrupt operator’s interrupt transitions (i.e., a

total ordering amongst the transitions in each operator’s ourInterrupts set). This

ordering ensures that there will be only one highest-priority interrupt transition

for any interrupt operator in any micro-step. If the modeller doesn’t provide such

a priority scheme, the order in which the interrupt transitions are declared in the



CHAPTER 4. ELIMINATION OF NONDETERMINISM 77

XML representation of the model will be used to prioritize the transitions when

generating code.

The second source of nondeterminism occurs when one of the operator’s in-

terrupt transitions is enabled at the same time as the active child component is

enabled. This case occurs only if the highest-priority enabled interrupt transi-

tion has the same priority as the highest-priority enabled transition in the active

child. We resolve this conflict by giving the operator’s enabled interrupt transition

precedence over equal-priority enabled transitions in the active child. This decision

ensures that interrupt operators that appear higher in the composition tree have

priority over operators that appear lower in the tree, if the operator’s respective

highest-priority enabled transitions have equal priority.

4.2.4 Choice

The choice operator nondeterministically chooses one child component and there-

after executes only that child component. There are two possibilities for how to

resolve this nondeterminism. The code generator itself, at code-generation time,

could ask the modeller which child component the operator should execute. In this

case, the modeller’s chosen component executes in every run of the system. Alter-

natively, the code generator could generate code that asks the user at execution

time which component should execute in this run of the system.

4.2.5 Summary

The above measures give the modeller some control over how different sources of

nondeterminism are resolved. Priority schemes give the modeller a lot of power in

this regard. For some sources of nondeterminism, it would be too much work for

the modeller to specify, in all cases, how the nondeterminism should be removed

(i.e., asking the modeller to choose which child component of an interleaving oper-

ator should execute whenever both children are enabled in the same micro-step).
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In these cases, we have prescribed a default mechanism for resolving the nonde-

terminism, which the modeller can override using explicit priorities. The result is

composition operators with simpler and more natural source-code representations,

which improves the efficiency of the generated code.



Chapter 5

Validation

We have described a tool for supporting configurable model-driven development,

in which we automatically generate software implementations from models of soft-

ware systems written in model-based notations. In this chapter, we investigate the

correctness of our code generation (i.e., does the implementation reflect the same

behaviours as the user’s model) and the efficiency of our generated code.

5.1 Correctness

To demonstrate that our code generators generate code that matches the behaviour

of the model from which it was created, we designed a test suite of models to white-

box test the code-generator generator. Different models test different template-

semantics parameters and different composition operators. We used the micro-

step-level correctness criteria described in Section 1.3 to test the code generated

from each test model: if the model and source-code are in equivalent states at the

start of a micro-step, then they must be in equivalent states at the end of a micro-

step. How a micro-step is actually carried out will never be equivalent in the model

and the source-code because there is to no support for parallel execution in Java.

A test in the test suite consists of

• A model

79
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• A template-semantics parameter definition file that defines the model’s nota-

tion

• A sequence of environmental inputs to be used when executing the model’s

generated code

• The generated code’s expected output

The expected output for a test is given as a sequence of snapshots, one per micro-

step, that reflect the execution steps a correct Java implementation should take as it

executes given the sequence of input events. As such, the model’s execution serves

as a test oracle for evaluating the execution steps of the generated code, when fed

the same input events. The CGG has an optional flag that, when set, builds code

generators that generate Java that outputs this snapshot information after every

micro-step’s execution. To run a test, the CGG and the test’s template-parameter

definition file are used to compile a code generator for the test’s notation, the test’s

model is given as input to this generator to produce a matching Java implementation

of the model, and then the generated Java is executed using the inputs provided in

the test. If the output of this execution matches the test’s expected output, then

the test is deemed successful.

The test suite contains tests for both deterministic and pseudo-nondeterministic

code generation. A test’s template-semantics parameter definition file specifies

the type of code generation to use in that test. To test pseudo-nondeterministic

code generation, the test suite uses deterministic models (i.e., the model has no

nondeterminism, so the code never executes a random choice ). Using deterministic

models to test pseudo-nondeterministic code generation ensures that a test has a

single expected output. We also inspected manually the pseudo-nondeterministic

generated code for nondeterministic models, over many executions of the generated

code, to ensure the output always matched one of the set of expected outputs of

the model.

The test suite contains two categories of models. The first category is designed

to test our scheduling and execution methodology via models whose composition

hierarchies have different combinations of composition operators. For example,

• Models that consist of one HTS (to test HTS-level execute() and enabled check())
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• Models that consist of one composition operator (to test every case of each

operator’s execute() method)

• Models that contain all interesting hierarchies using two composition opera-

tors (to show that each operator can respond to any constraint that another

operator may impose on it)

• Several models with deeper hierarchies and interesting combinations of com-

position operators (i.e., a hierarchy containing multiple interrupt, environ-

ment sync, and rendezvous sync operators)

The second category of models in the test-suite are those designed to test the

template-parameter values. These models exercise each implemented parameter

value by using it to define at least one test’s notation. This category of models also

ensures that all snapshot element implementations (i.e., the IE snapshot element

can be implemented as a set or as a queue) are tested.

5.2 Ground Traffic-Control Case Study

To demonstrate the functionality of the CGG, we define a notation, specify a model

in this notation, and generate Java code for this model. The model is based on a

ground traffic-control system case study that was developed by Bultan and Yavuc-

Kahveci to demonstrate their code-generation technique[33]. The reasons for choos-

ing this case study are two fold. First, it represents a safety-critical system. 20%

of commercial airline accidents involving hull loss occur during take-off, taxing,

or parking, and 46% of accidents occur during landing[2]. These accidents are

associated with airport ground-traffic control. Second, the model of the ground

traffic-control system is simple, yet makes use of several of the more complex syn-

chronization operators.

This study models the airport shown in Figure 5.1. It contains two runways,

R1 and R2, as well as three taxiways C1, C2, and C3. Airplanes can arrive or

depart on either runway. Arriving airplanes landing on runway R1 must taxi using

one of taxiways C1-C3 to reach a hanger. The system must satisfy the following

properties.
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R1

R2

C1 C2 C3

Figure 5.1: Airport Case Study

• Only one airplane can use a runway at a time.

• Only one airplane can use a taxiway at a time.

• An airplane can use runway R1 (R2) only if no airplane is using R2 (R1)

• Planes wanting to land have priority over planes wanting to take off.

• An airplane taxiing on one of C1-C3 can only cross runway R2 if no plane is

currently using it.

• An airplane can start using R2 for take-off or landing only if none of taxiways

C1-C3 is currently in use.

5.2.1 The Notation

To build our model, we used a notation similar to Statemate’s statecharts[13]. The

semantics for states and variables are the same as Statemate’s semantics. The cur-

rent variable values (AV) are used to evaluate guard conditions, and only transitions

whose source states are elements in the set of current states (CS) are enabled in a

micro-step. The main difference between our notation and Statemate’s notation is

how each deals with events. The template-semantics description of our notation is

shown in Table 5.1. In our modelling notation, a generated event, whether it is an
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Parameter Value
next CS(ss,τ ,CS’) CS’=entered(dest(τ))
reset CS(ss,I) ss.CS
en states(ss,τ) src(τ) ⊆ ss.CS
next AV(ss,τ ,AV’) AV’=assign(ss.AV, eval(ss.AV, incr(asn(τ))))

(τ ’s actions are evaluated incrementally)
reset AV(ss,I) ss.AV
en cond(ss,τ) ss.AV |= cond(τ)

(variables values in AV must satisfy τ ’s guard)
next IE(ss,τ ,IE’) IE’=ss.IE\trig(τ) ∪ gen(τ)

(remove τ ’s trigger, add τ ’s generated events)
reset IE(ss,I) ss.IE
next Ia(ss,τ ,Ia’) Ia’=ss.Ia\trig(τ) (remove τ ’s trigger)
reset Ia(ss,I) ss.Ia ∪ I.gen (add events sensed from the enviornment)
en events(ss,τ) trig(τ) ⊆ ss.Ia ∪ ss.IE
macro semantics Stable
pri Explicit priority

Table 5.1: Airport Case Study Notation Semantics

internal or external event, remains active in the model, even in a subsequent macro-

step, until a transition is triggered by that event. The IE parameters describe this

semantics for internal events, and the Ia parameters describe this semantics for

external events. Intuitively, this means that an event is considered handled when

a transition reacts to it. The notation uses stable semantics; a model senses the

environment only when it has no enabled transitions.

5.2.2 The Model

Our model of the ground traffic-control system describes only the logic for control-

ling the aircraft; it doesn’t model the behaviours of the aircrafts themselves. The

aircraft are considered part of the model’s environment. An aircraft can make a

request to takeoff, land, or taxi. These requests are represented by events reqtake-

off, reqland, and reqtaxi. The model responds to a request to land or takeoff by

specifying which runway the plane is to use, one of R1 or R2. The model responds
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Figure 5.2: Composition Hierarchy
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to a request to taxi by specifying which taxiway the plane has permission to use.

These responses are represented by events landonRX, takeoffonRX, and enterTWX

for runway or taxiway X. There is only one other request that a plane can possibly

make: when taxiing towards the hanger, a plane that needs to cross runway R2

must ask, and be granted, permission before crossing. To request a crossing of R2,

an aircraft uses event reqcrossR2. The controller replies with event crossR2 when

runway R2 is clear for crossing. The boolean flags busyRX and busyTWX indicate

if runway X or taxiway X is currently in use. Using these input and output events,

we can encode the reactive behaviour of the airport ground-traffic controller.

The controller machine is shown in Figure 5.3. This machine responds to request

events from the environment and gives orders to the runway and taxiway machines.

The runwayR1 and taxiwayC1 machines are shown in Figures 5.4 and 5.5 (the other

runway and taxiway machines are similar). Each of these machines keeps track of

the current state of its respective runway or taxiway. The composition hierarchy

of the model is shown in Figure 5.2. The rendezvous synchronization between the

aircraft controller and the rest of the model ensures that the other components

react to the controller’s commands in the same micro-step that the commands are

issued. For example, when the controller machine generates the event landonR1, the

runway machine for R1, in the same micro-step, responds by setting local variables

that indicate that the runway is now busy. This synchronization keeps the runway

state machines in tight synchronization with the controller as it directs the aircraft.

The model uses environmental synchronization to keep the runways and taxiways in

sync with each other, especially when an airplane is in the intersection of a taxiway

and a runway. This occurs when a plane taxis across runway R2.

We generated the code for this model and tested and inspected it to ensure the

code adhered to the specification. Some of the generated code for this model is

shown in Appendix B. To test the generated code, we used a set of environmental

inputs designed to show that the properties of the ground-traffic control system

listed in Section 5.2 hold in the generated code. Ideally, in the future, we would

like to explore how source-code model-checking techniques, such as those supported

by Java PathFinder[14], could be used to more rigorously prove that the generated
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Figure 5.6: PingPongx1 System

code matches the model.

5.3 Efficiency

In this section, we compare the code-generation capabilities of our code generators,

created by the CGG, with four commercial code generators that have been devel-

oped for specific notations. This comparison is based on a set of four benchmark

systems, which can be modelled in each of the commercial tools’ modelling nota-

tions. The ground traffic-control system case study, as modelled in Section 5.2,

is not one of the benchmark models because it uses synchronization operators not

supported by any of the commercial tools.

The first of the benchmark models is a simple model, called PingPongx1, with

a shallow composition hierarchy. It is shown in Figure 5.6. This model is provided

as an example model with the Rational Rose Realtime[18] tool suite. The model

has two concurrent machines that carry out a simple request-reply protocol. The

pinging machine sends a ping to the ponging machine. The ponging machine sends a

pong to the pinger upon receiving the ping. This request-reply protocol is repeated a
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set number of times before the model terminates. The type of composition operator

used in the model is either interleaving or parallel, whichever is supported by the

commercial tool we are building the model in. The second and third benchmark

models, PingPongx2 and PingPongx8, were created by composing together two

and eight copies of PingPongx1, to form larger models. The type of composition

used to form these larger models depends on the type of composition supported by

the commercial tool we are building the model in (either parallel or interleaving

composition). These two models test the efficiency of the generated code when the

input model has a larger number of HTSs. As a fourth comparison, we constructed

a model that contains more complicated state machines. The fourth benchmark

model is based on a simple distributed mutual-exclusion algorithm: two requestor

machines ask a controller for permission to access a critical section. A requestor

waits until the controller has granted it permission before accessing the critical

section. The requestor notifies the controller when it is finished using the critical

section. The controller ensures that only one requestor ever has access to the critical

section at any point in time. The critical section we use in this model is simple: a

requestor simply increments an integer value before leaving.

We used these four models to compare our CGG-generated code generators

against the code generators of four commercial tools. We specified each of the four

benchmark models in each of the tools’ notations, giving us four versions of each

of the four models described above. We also built template-semantics versions of

each of the 16 models described above (4 systems modelled in 4 commercial tools),

to be used as input to our code generators. Descriptions of the four commercial

tools are given in the following sections.

5.3.1 Rational Rose Realtime

Rational Rose Realtime (RoseRT)[18], developed by IBM, follows the semantics

of OMG-UML[28]. RoseRT allows the modeller to specify how many threads will

be present in the generated code and to assign a model’s components to specific

threads. Each thread has a global input queue on which all messages to any com-
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ponent that executes within the thread are enqueued. For the sake of comparing

RoseRT generated code with our generated code, we set RoseRT to generate single-

threaded code (since our code generators generate single-threaded code). Thus, our

RoseRT models have a single queue for the model via which the model receives

sensed input from the environment and through which all inter-component commu-

nication (via internal events) occurs. RoseRT also introduces the notion of directed

communication between components on ports (i.e., a transition can output an event

e on port p, or can be triggered by an input event on port p). In OMG-UML, ports

between components are connected by communication channels. Thus, on the sur-

face, it appears as if each of these ports would map to its own event queue in the

model’s Java implementation. It turns out that ports are merely part of the syntax,

and that any event put on any port ends up on the global queue. All transitions

in RoseRT, other than those leaving special choice states, must have a triggering

event. We defer the discussion of choice states until after the semantics description.

The only composition operator supported by RoseRT is interleaving.

Our template-semantics versions of the RoseRT models simulate ports using

event names. We create a new event name for each object/port/event combination.

Then, if a transition in object A generates an event e and puts it on port p, a

preprocessor determines p’s destination object and port (e.g., port q of object B)

and puts event B.q.e on the global queue. A transition in object B that is triggered

by event e on port q is modified to be triggered by event B.q.e on the global queue.

The key template parameters for describing RoseRT’s semantics, including the

event-related parameters, are shown below. In this description, the global queue

for the system is located in the Q snapshot element (Q.q).

• macro semantics : simple

The environment is sensed after every micro-step in the model.

• en events(ss,τ) : trig(τ)==head(ss.Q.q)

For a transition to be enabled, its triggering event must be at the head of the

global queue.

• next Q(ss,τ ,Q’) : Q’.q=ss.Q.q_gen(τ)
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Any events that an executing transition generates are appended to the back

of the global queue.

• reset Q(ss,I) :tail(ss.Q.q)_I.gen

At the start of a macro-step, the head of the global queue is removed and any

newly sensed events from the environment are added to back of the queue.

Recall that all transitions in RoseRT, other than those leaving choice states,

must have a triggering event. At the end of a macro-step, one of two things will

be true about the event at the front of the queue. The event either triggered

a transition at some point in the macro-step or the event didn’t trigger any

transitions. If the event triggered a transition, then the front of the queue

should be popped as this event has been reacted to. If the event didn’t trigger

any transitions, the front of the queue should be popped to allow the model

to make forward progress (otherwise, the model would be deadlocked). Thus,

during reset, the front of the global queue is always popped.

RoseRT supports choice states that are not directly captured by our template-

semantics description of RoseRT. A choice state is an intermediate state in a com-

pound transition (see Figure 5.7). A transition entering a choice state is a regular

transition triggered by an event and possibly having a guard condition and actions.

A transition exiting a choice state cannot have a triggering event; it has only a guard

condition and possibly some actions. The guard conditions of all transitions exiting

a given choice state must be mutually exclusive and complete, so that exactly one

of these exiting transitions will always be enabled (i.e., there is no nondeterminism

and it is impossible for the execution to be deadlocked in a choice state). The

model doesn’t sense new events from the environment while in a choice state.

We could simulate choice states by setting the macro semantics parameter to

stable semantics, to represent the compound transition as a sequence of micro-steps

and to keep from starting a new macro-step (i.e., sensing the environment) in the

middle of the compound transition. This decision, however, would result in highly

inefficient generated code (see Table 5.4).

Instead, we use simple macro-step semantics in our template-semantics descrip-

tion of RoseRT and handle choice states as part of a syntactic translation that
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removes choice states from the model. To remove a choice state, we replace each

compound transition (i.e., each pair of transitions in which one transition enters the

choice state and the second transition exits the choice state) with a single transition

whose

• source state is the source state of the transition entering the choice state

• destination state is the destination state of the transition exiting the choice

state

• triggering events are the same as the triggering events of the transition en-

tering the choice state

• guard condition is the conjunction of the guard condition from the transition

entering the choice state and an updated version of the guard condition from

the transition exiting the choice state, (how to update the guard is described

in the following paragraph)

• generated events are the union of the events generated by both transitions
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• variable assignments are the sequential composition of the variable assign-

ments from the transition entering the choice state appended with the up-

dated variable assignments from the transition exiting the choice state, (how

to update the variable assignments is described in the following paragraph)

Because the expressions (in guard conditions and variable assignments) in tran-

sitions that exit a choice state are evaluated with respect to current variable values,

which might have been modified by the transition that entered the choice state, we

use updated versions of these expressions when creating new transitions. The up-

dated versions substitute any reference to a variable that appears in an expression

in the exiting transition and that was assigned a value in the entering transition

with the expression it was assigned in the entering transition.

Figure 5.7 shows an example model containing a choice state, and Figure 5.8

shows the equivalent model after the choice state has been removed, and its com-

pound transitions have been replaced with new transitions with merged labels. The

modified model includes two new transitions, t4 and t5, which are the combinations

of transitions t1, t2 and t1, t3, respectively, from the original model. To create the

merged transition t4, which is the combination of transitions t1 and t2, we up-

date t2’s guard condition (x<5) by replacing x with x+1 to reflect the assignment

x:=x+1 made by transition t1. This substitution simulates the evaluation of t2’s

guard after t1’s variable assignment. This same substitution (x with x+1) is made

when creating merged transition t5’s guard. This type of model preprocessing al-

lows us to simulate choice states and compound transitions without changing the

semantics of the model.

5.3.2 Rhapsody

Rhapsody, developed by I-Logix[17], also follows UML-OMG semantics. We use

the same template-semantics description we used for RoseRT to capture its se-

mantics. The biggest difference between Rhapsody and RoseRT is that Rhapsody

supports both interleaving and parallel composition. Thus, we created two versions

of each benchmark model in Rhapsody, one that uses interleaving composition and
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one that uses parallel composition. For each model created in Rhapsody, we cre-

ated an equivalent template-semantics model that matched the Rhapsody model’s

semantics, to act as input to our code generators.

5.3.3 BetterState

BetterState[32] is a statecharts[12] variant with a simple semantics. It has no

support for internal events, and external events persistent for only a single micro-

step of the model’s execution before being thrown away. BetterState uses simple

semantics, sensing the environment for input at the end of every micro-step. The

only composition operator supported by BetterState is parallel composition.

A partial template-semantics description simulating BetterState’s semantics is

shown below. The state- and variable-related parameters are unchanged from those

of RoseRT.

• macro semantics : simple

The environment is sensed at the beginning of every micro-step of the model.

• en events(ss,τ) : trig(τ) ⊆ ss.Ia

A transition is triggered only by external events in Ia.

• next Ia(ss,τ ,Ia’) : Ia’=Ø

When a transition executes, all previously sensed external events are thrown

away.

• reset Ia(ss,I) : I.gen

At the start of a macro-step, Ia is set to the events sensed from the environ-

ment

5.3.4 SmartState

SmartState[4] is another statecharts variant whose semantics are shown in Table

5.2. We previously described SmartState’s semantics in detail in Section 2.1.4.

To briefly review, SmartState has support for both internal and external events.
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next IE(ss,τ ,IE’) ss.Ia 6= Ø ⇒ IE’=gen(τ) ∧
ss.Ia = Ø ⇒ IE’=ss.IE\trig(τ)

reset IE(ss,τ) Ø
next Ia(ss,τ ,Ia’) Ia’=Ø
reset Ia(ss,I) I.gen
en events(ss,τ) trig(τ) ⊆ ss.IE ∪ ss.Ia
macro semantics stable

Table 5.2: SmartState Semantics

Model Rose RT Optimizied Deterministic Deterministic Nondeterministic
(seconds) (seconds) (seconds) (seconds)

JVM startup 1.1 0.50 0.50 0.50
PingPongx1 4.1 4.4 (x1.07) 9 13
PingPongx2 5.8 8.3 (x1.43) 17 28
PingPongx8 42.5 55 (x1.29) 172 358
MutualEx 12 14.5 (x1.21) 30 40

Table 5.3: RoseRT Results (seconds)

External events are sensed at the start of a macro-step and remain active until

they trigger a transition or until the end of the macro-step, whichever comes first.

Internal events can be generated only by the first transition that an HTS executes

at the start of a macro-step. This initial transition will always be triggered by an

external event. An internal event may trigger at most one transition in the same

macro-step in which it was generated. The only composition operator is parallel

composition.

5.3.5 Results

The execution times of the commercial tools’ generated code, compared to the

execution times of our generated code for the benchmark models, are shown in

Tables 5.3, 5.5, and 5.6. The measurements are given in seconds and were taken

on a Sun Ultra-AXi2 running SunOS 5.8.

Table 5.3 shows the execution times for RoseRT’s generated code compared to

the execution times of three different implementations created by different modes of
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code generation possible with the CGG. The first mode is optimized-deterministic

code generation. This mode uses the techniques described in Chapter 4 to eliminate

nondeterminism in the model and also has some optimization flags set to disable

support for dealing with shared-variable conflicts (since RoseRT doesn’t support

shared variables). The second mode, regular-deterministic generation shown in the

fourth column, includes support for dealing with shared variable conflicts, even

though this support is not needed for RoseRT models. The third mode, nondeter-

ministic generation shown in the rightmost column, uses the pseudo-nondeterministic

mapping that faithfully preserves a model’s nondeterminism.

A baseline test (JVM startup) was performed to measure the time it takes the

Java virtual machine (JVM) to startup when running code generated by the tools.

This was done by creating code for an empty model (i.e., a model with a single

state, which is both a start state and a final state). RoseRT’s generated code takes

more than twice as long to start up, probably because it forces the JVM to load

extra library classes for threading support. The execution times given for the other

benchmark models include the time taken for the JVM to start up. The overall

results are not surprising. Our optimized deterministic code is twice as fast as our

unoptimized code, and over four times as fast as our pseudo-nondeterministic code.

RoseRT’s code runs faster than our generated code on all of the benchmark models.

Our optimized-deterministic generated code is not too far behind, taking on average

1.25 times as long as RoseRT’s code to execute. As expected, on deeper hierarchies

(PingPongx2 and PingPongx8), our code generation becomes less efficient, even

with the flattening optimizations. This is because RoseRT’s generated code doesn’t

conduct a global enabledness check in every micro-step like our generated code does;

it instead conducts an enabledness check based on the event at the head of the global

queue.

We mentioned above that to fully match RoseRT’s semantics, the template-

semantics description would need to use stable macro-step semantics to capture

choice states. We described above how we simulate RoseRT’s choice states by

collapsing compound transitions and by employing simple macro-step semantics.

RoseRT’s code generator performs a comparable optimization: if a transition enters
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Model Rose RT Optimized Deterministic Gen-Stable
(seconds) (seconds)

JVM startup 1.1 0.50
PingPongx1 4.1 7.5 (x1.83)
PingPongx2 5.8 21.5 (x3.70)
PingPongx8 42.5 360 (x8.47)
MutualEx 12 23.9 (x1.99)

Table 5.4: Stable Semantics for RoseRT (seconds)

a choice state, the generated code immediately determines which of the choice

state’s outgoing transitions to execute next, instead of checking the entire model

for a transition to execute next.

If we model choice states as compound transitions (i.e., a sequence of micro-

steps) and we use stable-semantics for our macro-step execution semantics (to avoid

sensing the environment while in the middle of a compound transition), then the

generated code is correct, but highly inefficient, as shown in Table 5.4. This ta-

ble shows the performance of our optimized-deterministic code generated using a

template-semantics description that is similar to the one given for RoseRT’s se-

mantics in Section 5.3.1, except that the macro-step semantics is switched to stable

semantics. This generated code, takes, on average, four times as long as RoseRT’s

generated code to execute. The reason for this drop in efficiency is that every

macro-step contains an extra micro-step, in which the model does nothing but an

enabledness check to detect that it is stable (i.e., no transitions are enabled). When

we used simple semantics, the generated code always sensed the environment after

every micro-step, thereby avoiding the extra enabled check.

Table 5.5 shows the results of two studies that compare our generated code

against Rhapsody’s generated code. Columns two and three compare Rhapsody’s

generated code against our generated code (Gen-para), when all benchmark mod-

els are built using only parallel composition; and columns four and five compare

Rhapsody’s generated code and our generated code (Gen-intrl) when the bench-

mark models are built using only interleaving composition. In both cases, our

code generators generate optimized-deterministic code for the benchmark models.
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Model Rhapsody Parallel Gen-para Rhapsody Interleaving Gen-intrl
(seconds) (seconds) (seconds) (seconds)

JVM startup 0.70 0.50 0.70 0.50
PingPongx1 5.7 5.6 (x0.98) 6.3 4.4 (x0.70)
PingPongx2 12.2 14.6 (x1.20) 10.8 8.3 (x0.77)
PingPongx8 85 240 (x2.82) 37.5 55 (x1.46)
MutualEx 16 18 (x1.13) 14.4 14.5 (x1.00)

Table 5.5: Rhapsody Results (seconds)

Model SmartState Gen-SS BetterState Gen-BS
(seconds) (seconds) (seconds) (seconds)

JVM startup 0.50 0.50 0.50 0.50
PingPongx1 7.7 6.0 (x0.78) 0.80 3.0 (x3.75)
PingPongx2 17.7 17.5 (x0.99) 1.2 6.0 (x5)
PingPongx8 300 335 (x1.12) xx xx
MutualEx xx xx xx xx

Table 5.6: SmartState and BetterState Comparisons (seconds)

In both comparisons, our generated code is faster or of comparable speed on the

smaller models (PingPongx1, PingPongx2) and performs worse on the larger mod-

els (PingPongx8, MutualEx). As another observation, our generated code is more

competitive on models that use interleaving composition as opposed to models that

use parallel composition. On models with deep hierarchies of parallel operators,

our generated code performs three times slower than Rhapsody’s generated code.

On average, our CGG-created generators produce code that runs 0.99 times as fast

as Rhapsody’s generated code when applied to benchmark models that use inter-

leaving composition, and 1.67 times as fast as Rhapsody’s generated code when

applied to benchmark models that use parallel composition.

Table 5.6 shows the results of the comparison studies between our generated

code and that of SmartState’s and BetterState’s code generators. The missing

times (“xx”s) in the table are due to limitations in the trial versions of SmartState

and BetterState that we were using (i.e., they limit the size of the models you

can generate code from). Our generated code for SmartState’s semantics (Gen-SS)
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runs faster than that produced by SmartState’s code generator on the shallower

models, and runs only slightly slower than SmartState’s generated code for the

deeper models. This is due to SmartState’s lack of optimizations. SmartState’s code

generator doesn’t flatten either the state hierarchy or the compositional hierarchy

like our generator does. BetterState, on the other hand, has a very simple semantics

that allows for a highly optimized code generator. Our code generator created for

BetterState’s semantics (Gen-BS) produces code that runs much faster than the

code generated by other CGG-created code generators, but still several orders of

magnitude slower than BetterState’s generated code.

Overall, the cost of the parameterized approach varies significantly with the se-

mantics of the notation, the composition operators used, and the size of a model’s

composition hierarchy. On smaller hierarchies, our generated code is competitive

with the code generated by the commercial tools, but on larger hierarchies our gen-

erated code falls off the pace. Larger hierarchies are costlier due to the cost of our

global enabledness check. We have begun investigating the possibility of caching en-

abledness information between micro-steps as a potential solution to this problem.

Our generated code also performs better on models that use interleaving composi-

tion as opposed to models that use parallel composition, due to interleaving’s more

natural match with Java semantics. In most of the benchmark models, our gener-

ated code is well within twice the runtime of the code generated by notation-specific

commercial tools.

5.4 Extensibility

One of our goals was to structure the CGG in such a way that it could be extended

to support new parameter values. The extendibility of the CGG hinges on the

distribution of preprocessor directives in the CGG source code. These directives

tell the compiler which parts of the CGG source are specific to particular parameter

values.

Each apply (i.e., next XX parameter), reset (i.e. reset XX parameter), and

enabling parameter has preprocessor directives in two locations in the CGG code.
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The first location is in a procedure, in the CGG source, named after the parameter;

this procedure converts each value for that parameter to Java code (the procedure

includes one preprocessor directive per parameter value). The second location is in

a procedure in the CGG code named after the snapshot element the parameter is

manipulating; this procedure creates the abstract data type (e.g., set, list, queue)

that stores the contents of the associated snapshot element. When extending the

CGG to support a new template-semantics parameter value, the modeller needs

to ensure that the code generator supports the abstract data type that the new

parameter value uses to store its associated snapshot element.

For example, to add a new parameter value for the next IE parameter, in which

IE is modelled as a set of events, the NextIE() procedure in the CGG source needs

to be extended with a new preprocessor directive to generate Java for the new

parameter value, and the printIE() procedure may need to be modified to output

Java for a set abstract data type, if the CGG does not already support a set data

type with the operations that the new parameter needs.

The macro semantics, pri, and resolve parameters are each implemented in a

single location in the CGG source code; this location needs to be extended to handle

a new parameter value (i.e., one new preprocessor directive).

It is more difficult to extend the CGG to support a new composition operator.

One needs to write the code to generate Java for the new operator’s execute() and

enabled check() methods. This involves specifying how the operator will react if

the various execution constraints that other operators can impose are imposed on

this operator. If the new operator can impose new types of constraints, as a result

of its execution decisions, then all of the other operators’ execute() methods will

have to be modified to process these constraints.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have described a tool for parameterized code generation from template seman-

tics. Our tool creates a Java code generator for a model-based notation from the

notation’s template-semantics description. We have demonstrated that models us-

ing several different composition operators can be translated to Java code. We have

also shown several techniques to optimize the generated code, by flattening the state

and composition hierarchies and by using statically computed information. We have

described how to deal with nondeterminism in a model when generating code. We

compared our generated code to that of commercial tools to get a sense of the cost

of supporting parameterized code generation. On average, our generated code was

well within twice the runtime of code generated by commercial notation-specific

code generators. We also demonstrated how a model’s generated implementation

has the same execution semantics as the model.

6.2 Limitations

Extending the CGG requires manually editing the CGG source code. It is time

consuming to extend the CGG to support a new composition operator. Adding

99
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support for a new parameter value, while much easier than adding a new composi-

tion operator, still requires making changes to the CGG code. It should be possible

to automate much of the work needed to add a new parameter value to the CGG,

to make this task quicker and easier.

Our generated code does not run as quickly as the code generated by notation-

specific code generators. This is because the optimizations included in our code

generators are limited to those optimizations that can be performed on all notations

in the family of notations supported by template semantics. If the efficiency of the

generated code is the modeller’s primary concern, then notation-specific tools may

be more appropriate.

We made an argument for the correctness of the generated code by testing and

inspecting the code generated from a test suite of models. We did not show a formal

correctness proof demonstrating that a model matches its generated code. Thus,

we are limited to making informal claims about the correctness of the generated

code.

6.3 Related Work

Many of the individual tools used in the benchmark comparison support some

limited parameterization in their code generators. None of them support full para-

meterization of the modelling notation’s semantics as we do. Their parameters are

concerned with features of the generated code. RoseRT and Rhapsody both have

options to choose the language (C/C++/Java) of the generated code or whether the

code will be single-threaded or multi-threaded. SmartState has options that effect

the structure of the generated code (generate for efficiency vs re-use). BetterState

supports choices among priority mechanisms and some simple notational semantics

options. For example, it allows the user to choose whether the state-exit code for a

transition’s source or the state-entry code for a transition’s destination is executed

first when a transition fires. These parameters allow the modeller control over the

notation and code generation process, but our tool gives the modeller much more

power in this regard.
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There is some related work investigating the translation of a specific modelling

notation (mostly a statecharts variant) to code in a given programming language.

For example, SCOPE[31], built by Andrzej Wasowski based on the results in his

PhD thesis, generates optimized C code for embedded systems from a statechart

description of the embedded system. This type of code generation is unique in that

the generated code is designed to run on a platform with tight memory constraints

(i.e., 8-16 kilobytes of memory). SCADE[30], developed by Esterel technologies,

is another commercial tool used extensively in the aviation industry that supports

both C and Ada code generation for embedded systems. SCADE’s notation is based

on LUSTRE[11] ,which was developed for modelling reactive systems.

Statecharts code generation techniques that are not aimed at embedded systems

have more flexibility in how they structure the generated code. Perhaps the most

well known structure is the state design pattern[9, 3]. This technique maps the state

and composition hierarchies in the model into an inheritance hierarchy in an object-

oriented language (i.e., a state in the model maps to a class that is a subclass of the

state’s superstate’s class, and a child of a composition operator maps to a class that

is a subclass of the child’s parent operator’s class). Each transition in the model

maps to a virtual function declared in the root class of the inheritance hierarchy

and overridden by the class representing the transition’s source state. Calling the

function associated with a given transition on a state object executes the transition.

SmartState takes this approach. This is an elegant way of encoding the state and

composition hierarchies in an object-oriented language. This technique results in

more readable code, but due to the codes object-oriented design and reliance on

virtual functions, it has high memory usage. Quantum programming[29] is a less

object-oriented approach using pointers to functions. The idea is to remove the cost

of virtual function calls from the state design pattern. An even less object-oriented

approach is to make heavy use of nested switch statements. Our code generators as

well as both Rhapsody’s and Rational Rose’s code generators take this approach.

The generated code is less readable, but uses less memory and executes faster.

Another interesting approach used by Bond and Goguen at AT&T was to design

a statecharts variant whose semantics is well suited to the generation of efficient
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code. The result is the notation ECLIPSEcharts[6] and a Java code generator for

ECLIPSEcharts. This notation avoids features of other statecharts variants, such

as nondeterminism, that are difficult to represent in Java. ECLIPSEcharts is used

to specify telephony features whose generated coded is deployed commercially by

AT&T.

Model-Driven Architecture (MDA)[26], developed by the Object Management

Group (OMG), is a set of standards related to code generation. MDA states that

systems should be specified by platform-independent models (PIMs) written in a

modelling notation described in OMG’s Meta-Object-Facility (MOF)[25]. MDA

translators are built to translate a PIM into an equivalent platform-specific model

(PSM) for a given platform. MDA doesn’t describe how to build these translators;

it is more concerned with building an argument for their usefulness.

Meta-modelling technology, such as OMG’s MOF, offers a form of parameter-

ized code generation. Template semantics is essentially a meta-modelling notation

for describing model-based notations. Given a template semantics description (a

meta-model) of a notation we can produce a code generator for that notation. MOF

is more general then template semantics in that it’s not restricted to model-based

notations. It has the ability to describe any modelling notation. The ability to

take a MOF model of a notation and automatically create a code generator for this

notation is limited. OMG talks of automated translations to interface definitions

languages (IDLs) but not fully executable source. OMG is also developing a new

standard called Query/View/Transformation (QVT) for defining transformations

among notations and languages described in MOF [27]. QVT is a developing stan-

dard and it’s not clear how much work it will be to define a transformation in

QVT from a given notation to a source language and whether it will be possible to

automatically create a code generator from the QVT description.

6.4 Future Work

It may be useful to support translations to other languages besides Java. A trans-

lation to C++ would require minimal syntactic changes to the generated code, due
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to the similarities between C++ and Java syntax. The generated code does not use

any advanced object-oriented techniques that couldn’t be simulated by non-object-

oriented languages. Thus, translations to languages such as C are also possible with

minimal effort.

We would like to add support for automating the addition of new template-

parameter values. If we scoped the language that the parameter values are written

in, to a notation such as set theory, we could explore having the CGG create a code

generator directly from these set-theory descriptions. As long as the input language

for parameter values is scoped appropriately, the work required to implement this

change would be at the implementation level. The CGG would need to parse the

parameter-value expressions and translate them into equivalent Java code. With

the current CGG, the modeller can only select from a pre-defined list of values for

each parameter, and adding a new parameter value to this list is non-trivial.

We would also like to add support for multi-threaded-code generation. Cur-

rently, the generated code is entirely single threaded. For the reasons discussed in

Section 3.1, mapping each HTS to its own thread is far too expensive. However,

we would like to allow the modeller some flexibility to assign HTSs to threads. We

would need to introduce restrictions on which HTSs are allowed to execute in sep-

arate threads. For example, all descendant HTSs of a synchronization or parallel

operator would need to execute in the same thread, to prevent the costly overhead

in synchronizing threads, as described in Section 3.1. The modeller would only be

allowed to assign HTSs to different threads if they have no common ancestor opera-

tor that is a synchronization or parallel operator. If these restrictions are followed,

then the scheduling methodology could be maintained within each thread and we

would avoid excessive synchronization among the threads.

There is a lot of room to optimize the generated code while still maintaining

the same scheduling methodology. Specifically, the enabled check() method cur-

rently does a full enabledness check of the entire composition tree even if only a

single variable has changed value since the last enabledness check was performed.

In this case, all that really needs to be checked are the HTSs and transitions whose

enabledness could have potentially changed as a result of that single variable chang-
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ing value. Thus, the generated code could cache enabledness information between

micro-steps instead of starting from scratch each time. This change would require

a data-flow analysis to determine relationships amongst variables, events, and the

transitions that use them as guards and triggers. Such an optimization would help

our generated code to perform as well on deeper hierarchies as code generated by

commercial tools, by avoiding unnecessary enabledness checking.

We would like to investigate optimizations that are possible due to relation-

ships amongst template-parameter values. Currently, our code generators are op-

timized according to individual parameter values (i.e., we generate optimized code

for a given parameter value independently of the values of the other template pa-

rameters). There may also be optimizations that are possible due to particular

combinations of template-parameter values. For example, if en events states that a

transition’s triggering event must be in the Ia or IE snapshot element for it to be en-

abled, and if none of the next IE, reset IE, next Ia, and reset Ia parameters empty

their respective snapshot elements, then the generated code needs only one set of

current events and this set is manipulated by the generated code for the next IE,

reset IE, next Ia, and reset Ia parameters. Currently, our code generator always

uses separate sets of events for the Ia and IE snapshot elements when generating

code for the next XX and reset XX parameters since this ensures that the code for

these parameters will work for any value of the other template parameters. Finding

other relationships between parameter values would allow for other optimizations.



Appendix A

Template Parameter Values

This appendix lists the implemented values for each template-semantics parameter.

A.1 Enabling Parameters

• en cond

– The variable values in AV must satisfy the transition’s guard condition

– The variable values in AVa must satisfy the transition’s guard condition

• en event

– The transition must have a triggering event in IEa

– The transition must have a triggering event in Ia or IE

– The transition must have a triggering event in Ia or IEa

– The transition must have a triggering event at the head of the queue in
IE (i.e., one queue per HTS in the IE snapshot element)

– The transition must have a triggering event at the head of the global
queue in Q (i.e., one queue per model)

– The transition must have a triggering event at the head of proper queue
in Q (i.e., Q contains a set of named queues)

• en state

– The transition’s source state must be in CSa

105
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– The transition’s source state must be in CS

– True, for any transition (i.e., this notation doesn’t make use of states)

A.2 Apply Parameters

• next CS

– The CS snapshot element is set to the transition’s destination state along
with any default substates, or ancestor superstates of that destination
state (preserving the state hierarchy).

– The CS snapshot element is set to the transitions destination state.

• next CSa

– Empty CSa

– Leave CSa unchanged

• next AV

– The variable values in AV are updated with the transition’s actions (i.e.,
execute the actions). If a variable is assigned a value in more then one
action, only the last such assignment takes effect.

– If a variable is assigned a value in more then one action, the actions
are executed in the order they are given in the transition. Thus, later
assignments to a variable are evaluated with respect to, and potentially
overwrite, earlier assignments to the same variable.

• next AVa

– AVa snapshot element is unchanged

• next Q

– Remove the head of the queue in Q and enqueue the events the transition
generates

– Remove the head of the proper named queue in Q and enqueue the events
the transition generates onto the proper named queue (i.e., Q is a set
of names queues, and transitions explicitly state which queue and event
they are triggered on, and which queue an event is to be generated on)
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• next Qa

– Empty Qa

– Leave Qa unchanged

• next IE

– The IE snapshot element is set to the events generated by the transition

– The events generated by the transition are added to the IE snapshot
element

– The transition’s triggering event is removed from IE, and the events it
generates are added to IE

– Dequeue the queue in IE, and enqueue the events the transition generates
to the queue

• next IEa

– Add the transitions triggering events to IEa

– Add the events generated by the transition to IEa if Ia is empty

– Set IEa to empty

• next Ia

– Make no change to Ia

– Add the events generated by the transition to Ia

– Remove the transition’s triggering event(s) from Ia

– Set Ia to empty

A.3 Reset Parameters

• reset CS

– Make no change to CS

• reset CSa

– The CSa snapshot element is set to the contain all the states in the CS
snapshot element
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– Empty CSa

• reset Q

– Enqueue the events sensed from the environment onto the back of the
global queue in Q

– Dequeue the global queue in Q and enqueue the events sensed from the
environment onto the back of the global queue

– Enqueue the events sensed from the environment onto the proper queue
in Q (i.e., we sense (queue, event) pairs from the environment)

• reset Qa

– Set Qa to the head of a random queue in Q

– Set Qa to the head of the global queue in Q

– Set Qa to empty

• reset IE

– Make no change to IE

– Set IE to empty

– Enqueue events sensed from the environment onto the queue in IE

• reset IEa

– Set IEa to the head of a random queue in Q

– Set IEa to the head of the global queue in Q

– Set IEa to empty

• reset AV

– Make no change to AV

– Update the variables in AV with values sensed from the environment

• reset AV

– Set the variable values in AVa to be same as those in AV

– Update the variables in AVa with values sensed from the environment

• reset Ia
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– Set Ia to the events sensed from the environment

– Add the events sensed from the environment to those already in Ia

– set Ia to empty

A.4 Miscellaneous Parameters

• macro semantics

– Simple semantics: A macro-step is at most a single micro-step in length
(execute the reset parameters after every micro-step)

– Stable semantics: A macro-step is a series of micro-steps ending in a
stable snapshot (one in which no transition is enabled)

• pri

– Explicit priority: Transitions have explicit priority values associated with
them

– Highest ranked source: Transitions whose source states are deeper in the
state hierarchy have higher priority

– Lowest ranked source: Transitions whose source states are higher in the
state hierarchy have higher priority

• resolve

– nondeterministically choose which value a shared variable will take on
after being assigned multiple values in parallel
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Ground Traffic Control Generated
Java

This appendix contains some of the generated code for the ground -traffic control
system introduced in Section 5.2. We show the code for the rendezvous operator
(Appendix B.3), environmental synchronization operator (Appendix B.6) and one
of the interleaving operators (Appendix B.4). We also show the generated code
for the controller HTS (Appendix B.2), the Variable (AV) snapshot element class
(Appendix B.5), and the system class which creates the composition tree (Appendix
B.1).

B.1 GeneratedSystem.java

class GeneratedSystem
{
public static void main(String[] args)
{
//create the required global snapshot elements
Procs PD = new Procs();
Vars AV = new Vars();
GlobalCS GCS = new GlobalCS();
GlobalIa GIa = new GlobalIa();
EnvSensor ES = new EnvSensor(AV,GIa);

//build the composition tree and established references to global snapshot elements
microRendSync rend rend;
HTS controller system controller system = new HTS controller system(PD,AV,GCS,GIa);
HTS runway1 system runway1 system = new HTS runway1 system(PD,AV,GCS,GIa);
HTS runway2 system runway2 system = new HTS runway2 system(PD,AV,GCS,GIa);
microIntl intrl3 intrl3 = new microIntl intrl3(AV ,runway1 system,runway2 system);
intrl3.storeSubComponentIEs(runway1 system.IE,runway2 system.IE);

110
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HTS taxiway1 system taxiway1 system = new HTS taxiway1 system(PD,AV,GCS,GIa);
HTS taxiway2 system taxiway2 system = new HTS taxiway2 system(PD,AV,GCS,GIa);
HTS taxiway3 system taxiway3 system = new HTS taxiway3 system(PD,AV,GCS,GIa);
microIntl intrl2 intrl2 = new microIntl intrl2(AV,taxiway1 system,taxiway2 system

,taxiway3 system);
intrl2.storeSubComponentIEs(taxiway1 system.IE,taxiway2 system.IE,taxiway3 system.IE);

microEnvSync env env = new microEnvSync env(AV,Gintrl3 ,intrl2);
env.storeSubComponentIEs(runway1 system.IE,runway2 system.IE,taxiway1 system.IE,

taxiway2 system.IE,taxiway3 system.IE);

rend = new microRendSync rend(AV,GCS,GIa,ES,controller system,env);
rend.storeSubComponentIEs(controller system.IE,runway1 system.IE,runway2 system.IE,

taxiway1 system.IE,taxiway2 system.IE,taxiway3 system.IE);
ES.storeSubComponentIEs(controller system.IE,runway1 system.IE,runway2 system.IE,

taxiway1 system.IE,taxiway2 system.IE,taxiway3 system.IE);

//start the execution loop
ES.senseEnv();
for(;;)
{

rend.run();
}

}
}

B.2 HTS controller system.java

import java.util.HashSet;
import java.util.HashMap;
import java.util.Vector;

class HTS controller system
{

//snapshot elements
private Vars AV;
public Events IE;
private AuxI Ia;
private Procs PD;
private Vector CS;

//enabledness info storing members
private HashMap rend TTrans;
private Integer enabled transition;
private double max pri;

//constants
public static final Integer state controller = new Integer(0);
public static final Integer state controlleridle = new Integer(1);
public static final Integer state landingonrw1 = new Integer(2);
public static final Integer state taxingon1 = new Integer(3);
private static final Integer trans ct1 = new Integer(0);
private static final Integer trans ct4 = new Integer(1);
private static final Integer trans ct2 = new Integer(2);
private static final Integer trans ct13 = new Integer(3);
private static final Integer trans ct7 = new Integer(4);
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private static final Integer trans ct5 = new Integer(5);
private static final Integer trans ct6 = new Integer(6);
private static final Integer trans ct14 = new Integer(7);
private static final Integer trans ct8 = new Integer(8);
private static final Integer trans ct10 = new Integer(9);
private static final Integer trans null = new Integer(−1);

public HTS controller system(Procs pd,Vars av,GlobalCS gcs,GlobalIa gia)
{

AV = av;
PD = pd;
IE = new Events();
Ia = new AuxI();
CS = new Vector();
gcs.CS controller system=CS;
gia.Ia controller system=Ia;
Ia = ia;
rend TTrans = new HashMap();
CS.add(state controller);
CS.add(state controlleridle);

}

public void setState(Integer state)
{

CS.add(state);
}
public void reset()
{

enabled transition=trans null;
rend TTrans.clear();

}
public void initCS()
{

CS.add(state controller);
CS.add(state controlleridle);

}
public void resetCS()
{

CS.clear();
}

public void execute(Integer rend TEvent,HashSet outputs)
{

//choose a transition to execute
Integer trans = new Integer(0);
if(rend TEvent != null)
{//execute a transition which is triggered by rendezvous event rend TEvent

trans = (Integer)rend TTrans.get(rend TEvent);
}
else
{

trans = enabled transition;
}

//execute the chosen transition (Next XX parameters encoding)
switch(trans.intValue())
{

case 0: {
CS.remove(state controlleridle);
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CS.add(state landingonrw1);
IE.genEvent(IE.eventlandon1);
outputs.add(IE.eventlandon1);
IE.eatEvent(IE.eventreqland);
Ia.eatEvent(IE.eventreqland);
break;

}
case 1: {

CS.remove(state landingonrw1);
CS.add(state taxingon1);
IE.genEvent(IE.evententertw1);
outputs.add(IE.evententertw1);
IE.eatEvent(IE.eventreqtaxi);
Ia.eatEvent(IE.eventreqtaxi);
break;

}
case 2: {

CS.remove(state controlleridle);
CS.add(state controlleridle);
IE.genEvent(IE.eventtakeoffon2);
outputs.add(IE.eventtakeoffon2);
IE.eatEvent(IE.eventreqtakeoff);
Ia.eatEvent(IE.eventreqtakeoff);
break;

}
case 3: {

CS.remove(state controlleridle);
CS.add(state controlleridle);
IE.genEvent(IE.eventlandon2);
outputs.add(IE.eventlandon2);
IE.eatEvent(IE.eventreqland);
Ia.eatEvent(IE.eventreqland);
break;

}
case 4: {

CS.remove(state taxingon1);
CS.add(state controlleridle);
IE.genEvent(IE.eventcrossrw1);
outputs.add(IE.eventcrossrw1);
IE.eatEvent(IE.eventreqcrossrw1);
Ia.eatEvent(IE.eventreqcrossrw1);
break;

}
case 5: {

CS.remove(state landingonrw1);
CS.add(state taxingon1);
IE.genEvent(IE.evententertw2);
outputs.add(IE.evententertw2);
IE.eatEvent(IE.eventreqtaxi);
Ia.eatEvent(IE.eventreqtaxi);
break;

}
case 6: {

CS.remove(state landingonrw1);
CS.add(state taxingon1);
IE.genEvent(IE.evententertw3);
outputs.add(IE.evententertw3);
IE.eatEvent(IE.eventreqtaxi);
Ia.eatEvent(IE.eventreqtaxi);
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break;
}
case 7: {

CS.remove(state controlleridle);
CS.add(state controlleridle);
IE.genEvent(IE.eventtakeoffon1);
outputs.add(IE.eventtakeoffon1);
IE.eatEvent(IE.eventreqtakeoff);
Ia.eatEvent(IE.eventreqtakeoff);
break;

}
case 8: {

CS.remove(state taxingon1);
CS.add(state taxingon1);
IE.genEvent(IE.eventlandon2);
outputs.add(IE.eventlandon2);
IE.eatEvent(IE.eventreqland);
Ia.eatEvent(IE.eventreqland);
break;

}
case 9: {

CS.remove(state taxingon1);
CS.add(state taxingon1);
IE.genEvent(IE.eventtakeoffon2);
outputs.add(IE.eventtakeoffon2);
IE.eatEvent(IE.eventreqtakeoff);
Ia.eatEvent(IE.eventreqtakeoff);
break;

}
}

}

public void enabled check(HashMap rend TEvents,HashMap rend GEvents,Doub other,
Bool final state)

{
reset();
max pri = −1;
//find the single highest priority enabled transition
for(int k = 0;k<CS.size();k++)
{

switch(((Integer)CS.elementAt(k)).intValue())
{

case 0:{
break;

}
case 1:{

if((Ia.checkEvent(IE.eventreqland) | | IE.checkEvent(IE.eventreqland))
&& (!AV.getbusyrw1()&&!AV.getbusyrw2())&& max pri <= 4.0)

{
enabled transition = trans ct1;
max pri = 4.0;

}
else if((Ia.checkEvent(IE.eventreqland) | | IE.checkEvent(IE.eventreqland))

&& (!AV.getbusyrw1()&&!AV.getbusyrw2()&&!AV.getbusyrw2()&&!AV.getbusytw1()
&& !AV.getbusytw2()&&!AV.getbusytw3())&& max pri <= 3.0)

{
enabled transition = trans ct13;
max pri = 3.0;

}
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else if((Ia.checkEvent(IE.eventreqtakeoff) | | IE.checkEvent(IE.eventreqtakeoff)) &&
(!AV.getbusyrw1()&&!AV.getbusyrw2())&& max pri <= 2.0)

{
enabled transition = trans ct14;
max pri = 2.0;

}
else if((Ia.checkEvent(IE.eventreqtakeoff) | | IE.checkEvent(IE.eventreqtakeoff)) &&

(!AV.getbusyrw1()&&!AV.getbusyrw2()&&!AV.getbusytw1()&&!AV.getbusytw2()&&
!AV.getbusytw3())&& max pri <= 1.0)

{
enabled transition = trans ct2;
max pri = 1.0;

}
break;

}
case 2:{

if((Ia.checkEvent(IE.eventreqtaxi) | | IE.checkEvent(IE.eventreqtaxi)) &&
(!AV.getbusytw3())&& max pri <= 0.0)

{
enabled transition = trans ct6;
max pri = 0.0;

}
else if((Ia.checkEvent(IE.eventreqtaxi) | | IE.checkEvent(IE.eventreqtaxi)) &&

(!AV.getbusytw2())&& max pri <= 0.0)
{

enabled transition = trans ct5;
max pri = 0.0;

}
else if((Ia.checkEvent(IE.eventreqtaxi) | | IE.checkEvent(IE.eventreqtaxi)) &&

(!AV.getbusytw1())&& max pri <= 0.0)
{

enabled transition = trans ct4;
max pri = 0.0;

}
break;

}
case 3:{

if((Ia.checkEvent(IE.eventreqcrossrw1) | | IE.checkEvent(IE.eventreqcrossrw1)) &&
(!AV.getbusyrw1())&& max pri <= 3.0)

{
enabled transition = trans ct7;
max pri = 3.0;

}
else if((Ia.checkEvent(IE.eventreqland) | | IE.checkEvent(IE.eventreqland)) &&

(!AV.getbusyrw1()&& !AV.getbusyrw2())&& max pri <= 2.0)
{

enabled transition = trans ct8;
max pri = 2.0;

}
else if((Ia.checkEvent(IE.eventreqtakeoff) | | IE.checkEvent(IE.eventreqtakeoff)) &&

(!AV.getbusyrw1()&& !AV.getbusyrw2())&& max pri <= 1.0)
{

enabled transition = trans ct10;
max pri = 1.0;

}
break;

}
}

}
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//communicate the enabledness information for the single
//enabled transition (if there is one)
switch(enabled transition.intValue())
{

case 0:{
rend GEvents.put(IE.eventlandon1,new Doub(4.0));
break;

}
case 1:{

other.value = 0.0;
break;

}
case 2:{

rend GEvents.put(IE.eventtakeoffon2,new Doub(1.0));
break;

}
case 3:{

rend GEvents.put(IE.eventlandon2,new Doub(3.0));
break;

}
case 4:{

rend GEvents.put(IE.eventcrossrw1,new Doub(3.0));
break;

}
case 5:{

other.value = 0.0;
break;

}
case 6:{

other.value = 0.0;
break;

}
case 7:{

rend GEvents.put(IE.eventtakeoffon1,new Doub(2.0));
break;

}
case 8:{

rend GEvents.put(IE.eventlandon2,new Doub(2.0));
break;

}
case 9:{

rend GEvents.put(IE.eventtakeoffon2,new Doub(1.0));
break;

}
}

}
}

B.3 microRendSync rend.java

import java.util.Vector;
import java.util.HashSet;
import java.util.HashMap;

class microRendSync rend
{



APPENDIX B. GROUND TRAFFIC CONTROL GENERATED JAVA 117

//child components
private microEnvSync env right;
private HTS controller system left;

//this is the root component − it stores the global snapshot elements
private Vars AV;
private Events IE;
private GlobalIa GIa;
private GlobalCS GCS;
private EnvSensor ES;

//member variables for storing enabledness info
private HashSet outputs = new HashSet();
private HashSet tempOutputs = new HashSet();
private double other left,other right;
private HashMap leftRend TEvents,leftRend GEvents,rightRend TEvents,rightRend GEvents;
private HashMap rightEnv Events,leftEnv Events;
private HashSet leftInterr,rightInterr;
private boolean left goes = true;
private Doub o left,o right;
private Bool f left,f right;

public Events IEcontroller system;
public Events IErunway1 system;
public Events IErunway2 system;
public Events IEtaxiway1 system;
public Events IEtaxiway2 system;
public Events IEtaxiway3 system;

public microRendSync rend(Vars av,GlobalCS gcs,GlobalIa gia,EnvSensor es,
HTS controller system l, microEnvSync env r)

{
leftRend GEvents = new HashMap();
leftRend TEvents= new HashMap();
rightRend GEvents = new HashMap();
rightRend TEvents= new HashMap();
rightEnv Events = new HashMap();
leftEnv Events = new HashMap();
leftInterr = new HashSet();
rightInterr = new HashSet();
other right = −1;
other left = −1;
o right = new Doub(−1);
o left = new Doub(−1);
f right = new Bool(false);
f left = new Bool(false);
AV = av;
IE= new Events();
GCS = gcs;
GIa = gia;
ES = es;
left = l;
right = r;

}

public void initCS()
{
left.initCS();
right.initCS();
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}

public void storeSubComponentIEs(Events iecontroller system,Events ierunway1 system,Events
ierunway2 system,Events ietaxiway1 system,Events
ietaxiway2 system,Events ietaxiway3 system)

{
IEcontroller system = iecontroller system;
IErunway1 system = ierunway1 system;
IErunway2 system = ierunway2 system;
IEtaxiway1 system = ietaxiway1 system;
IEtaxiway2 system = ietaxiway2 system;
IEtaxiway3 system = ietaxiway3 system;

}
public void communicate(HashSet outputs,boolean which)
{
if(which)
{
IEcontroller system.genEvents(outputs);

}
else
{
IErunway1 system.genEvents(outputs);
IErunway2 system.genEvents(outputs);
IEtaxiway1 system.genEvents(outputs);
IEtaxiway2 system.genEvents(outputs);
IEtaxiway3 system.genEvents(outputs);

}
}

//execute a single micro−step
public void run()
{
left.enabled check(leftRend TEvents,leftRend GEvents,o left,f left);
right.enabled check(rightRend TEvents,rightRend GEvents,o right,f right);
if(f left.value && f right.value)
{
System.out.println("All HTSes have reached final states − exiting"); System.exit(1);

}
other left = o left.doubleValue();
other right = o right.doubleValue();

//Round Robin scheduling (left goes indicates if the left component should
//execute if both components are enabled)
if(other left>=0 && other right>=0 && left goes)
{
other right = −1;
left goes = false;

}
else if(other left>=0 && other right>=0 && !left goes)
{
other left = −1;
left goes = true;

}

if(!execute(null,null,null,null,outputs))
{
//Reset
ES.senseEnv();

}
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}

public boolean execute(Integer env Event,Integer rend GEvent,Integer rend TEvent,
Integer interrupt,HashSet outputs)

{
//Execute unconstrained (this is the root component, it has no
//ancestors to impose constraints)

boolean executed = false;
//check if an rendezvous is ready to be executed (check in descending order
//of event priority)
if( (leftRend GEvents.size() > 0 && rightRend TEvents.size() > 0) | |

(leftRend TEvents.size() > 0 && rightRend GEvents.size() > 0) )
{
if(leftRend GEvents.containsKey(IE.eventlandon1) &&

rightRend TEvents.containsKey(IE.eventlandon1))
{
executed = true;
left.execute(null,IE.eventlandon1,null,null,outputs);
right.execute(null,null,IE.eventlandon1,null,tempOutputs);
communicate(outputs,false);
communicate(tempOutputs,true);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(rightRend GEvents.containsKey(IE.eventlandon1) &&

leftRend TEvents.containsKey(IE.eventlandon1) )
{
executed = true;
right.execute(null,IE.eventlandon1,null,null,outputs);
left.execute(null,null,IE.eventlandon1,null,tempOutputs);
communicate(outputs,true);
communicate(tempOutputs,false);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(leftRend GEvents.containsKey(IE.eventlandon2) &&

rightRend TEvents.containsKey(IE.eventlandon2) )
{
executed = true;
left.execute(null,IE.eventlandon2,null,null,outputs);
right.execute(null,null,IE.eventlandon2,null,tempOutputs);
communicate(outputs,false);
communicate(tempOutputs,true);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(rightRend GEvents.containsKey(IE.eventlandon2) &&

leftRend TEvents.containsKey(IE.eventlandon2) )
{
executed = true;
right.execute(null,IE.eventlandon2,null,null,outputs);
left.execute(null,null,IE.eventlandon2,null,tempOutputs);
communicate(outputs,true);
communicate(tempOutputs,false);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(leftRend GEvents.containsKey(IE.eventtakeoffon1) &&
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rightRend TEvents.containsKey(IE.eventtakeoffon1) )
{
executed = true;
left.execute(null,IE.eventtakeoffon1,null,null,outputs);
right.execute(null,null,IE.eventtakeoffon1,null,tempOutputs);
communicate(outputs,false);
communicate(tempOutputs,true);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(rightRend GEvents.containsKey(IE.eventtakeoffon1) &&

leftRend TEvents.containsKey(IE.eventtakeoffon1) )
{
executed = true;
right.execute(null,IE.eventtakeoffon1,null,null,outputs);
left.execute(null,null,IE.eventtakeoffon1,null,tempOutputs);
communicate(outputs,true);
communicate(tempOutputs,false);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(leftRend GEvents.containsKey(IE.eventtakeoffon2) &&

rightRend TEvents.containsKey(IE.eventtakeoffon2) )
{
executed = true;
left.execute(null,IE.eventtakeoffon2,null,null,outputs);
right.execute(null,null,IE.eventtakeoffon2,null,tempOutputs);
communicate(outputs,false);
communicate(tempOutputs,true);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(rightRend GEvents.containsKey(IE.eventtakeoffon2) &&

leftRend TEvents.containsKey(IE.eventtakeoffon2) )
{
executed = true;
right.execute(null,IE.eventtakeoffon2,null,null,outputs);
left.execute(null,null,IE.eventtakeoffon2,null,tempOutputs);
communicate(outputs,true);
communicate(tempOutputs,false);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(leftRend GEvents.containsKey(IE.eventcrossrw1) &&

rightRend TEvents.containsKey(IE.eventcrossrw1) )
{
executed = true;
left.execute(null,IE.eventcrossrw1,null,null,outputs);
right.execute(null,null,IE.eventcrossrw1,null,tempOutputs);
communicate(outputs,false);
communicate(tempOutputs,true);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(rightRend GEvents.containsKey(IE.eventcrossrw1) &&

leftRend TEvents.containsKey(IE.eventcrossrw1) )
{
executed = true;
right.execute(null,IE.eventcrossrw1,null,null,outputs);
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left.execute(null,null,IE.eventcrossrw1,null,tempOutputs);
communicate(outputs,true);
communicate(tempOutputs,false);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
} //if no sync to execute, check if one of the children are prepared to execute
else if(other left>=0)
{
executed = true;
left.execute(null,null,null,null,outputs);
communicate(outputs,false);

}
else if(other right>=0)
{
executed = true;
right.execute(null,null,null,null,outputs);
communicate(outputs,true);

}
reset();
return executed;

}

private void reset()
{
o right.value=−1;
o left.value=−1;
leftRend TEvents.clear();
leftRend GEvents.clear();
rightRend TEvents.clear();
rightRend GEvents.clear();

}
}

B.4 microIntl intrl2.java

import java.util.Vector;
import java.util.HashSet;
import java.util.HashMap;

class microIntl intrl2
{
//This operators set of children (the operator has been flattened)
private HTS taxiway1 system child1;
private HTS taxiway2 system child2;
private HTS taxiway3 system child3;

//member variables for storing children’s enabledness information
private Vars AV;
public Events IE;
private HashSet tempOutputs = new HashSet();
private Doub o child1;
private Doub o child2;
private Doub o child3;
private HashMap child1Rend TEvents,child1Rend GEvents;
private HashMap child2Rend TEvents,child2Rend GEvents;
private HashMap child3Rend TEvents,child3Rend GEvents;
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private HashMap child1Env Events;
private HashMap child2Env Events;
private HashMap child3Env Events;
private int round robin = 1;
private Bool f child1;
private Bool f child2;
private Bool f child3;
public Events IEtaxiway1 system;
public Events IEtaxiway2 system;
public Events IEtaxiway3 system;
private HashSet outputs1 = new HashSet();
private HashSet outputs2 = new HashSet();
private HashSet outputs3 = new HashSet();

public microIntl intrl2(Vars av,HTS taxiway1 system c1,HTS taxiway2 system c2,
HTS taxiway3 system c3)

{
child1Rend GEvents = new HashMap();
child1Rend TEvents = new HashMap();
child2Rend GEvents = new HashMap();
child2Rend TEvents = new HashMap();
child3Rend GEvents = new HashMap();
child3Rend TEvents = new HashMap();
child1Env Events = new HashMap();
child2Env Events = new HashMap();
child3Env Events = new HashMap();
o child1 = new Doub(−1);
o child2 = new Doub(−1);
o child3 = new Doub(−1);
f child1 = new Bool(false);
f child2 = new Bool(false);
f child3 = new Bool(false);
AV = av;
IE= new Events();
child1 = c1;
child2 = c2;
child3 = c3;

}
public void storeSubComponentIEs(Events ietaxiway1 system,Events ietaxiway2 system,

Events ietaxiway3 system)
{
IEtaxiway1 system = ietaxiway1 system;
IEtaxiway2 system = ietaxiway2 system;
IEtaxiway3 system = ietaxiway3 system;

}

public void communicate(HashSet outputs,int which)
{
if(which != 1)
{
IEtaxiway1 system.genEvents(outputs);

}
if(which != 2)
{
IEtaxiway2 system.genEvents(outputs);

}
if(which != 3)
{
IEtaxiway3 system.genEvents(outputs);
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}
}
public void initCS()
{
child1.initCS();
child2.initCS();
child3.initCS();

}

public void enabled check(HashMap e Events,HashMap rend TEvents,HashMap rend GEvents,Doub other,
Bool final state)

{
//find children’s enabledness
reset();
child1.enabled check(child1Env Events,child1Rend TEvents,child1Rend GEvents,o child1,f child1);
child2.enabled check(child2Env Events,child2Rend TEvents,child2Rend GEvents,o child2,f child2);
child3.enabled check(child3Env Events,child3Rend TEvents,child3Rend GEvents,o child3,f child3);
//priority value of the highest priority enabled transition
if(o child1.value>=0)
{
other.value = o child1.value;

}
if(o child2.value>other.value)
{
other.value = o child2.value;

}
if(o child3.value>other.value)
{
other.value = o child3.value;

}
if(f child1.value&& f child2.value&& f child3.value)
{
System.out.println("All HTSes have reached final states − exiting"); System.exit(1);

}
//pass enabledness info in the children onto the parent
rend TEvents.putAll(child1Rend TEvents);
rend GEvents.putAll(child1Rend GEvents);
rend TEvents.putAll(child2Rend TEvents);
rend GEvents.putAll(child2Rend GEvents);
rend TEvents.putAll(child3Rend TEvents);
rend GEvents.putAll(child3Rend GEvents);
e Events.putAll(child1Env Events);
e Events.putAll(child2Env Events);
e Events.putAll(child3Env Events);

}

public boolean execute(Integer env Event,Integer rend GEvent,Integer rend TEvent,
Integer interrupt,HashSet outputs)

{
boolean executed = false;
//process ancestral constraints
if(env Event != null)
{
if(child1Env Events.containsKey(env Event))
{
child1.execute(env Event,null,null,null,outputs);
communicate(outputs,1);
executed = true;

}
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else if(child2Env Events.containsKey(env Event))
{
child2.execute(env Event,null,null,null,outputs);
communicate(outputs,2);
executed = true;

}
else if(child3Env Events.containsKey(env Event))
{
child3.execute(env Event,null,null,null,outputs);
communicate(outputs,3);
executed = true;

}
}
else if(rend GEvent != null)
{
if(child1Rend GEvents.containsKey(rend GEvent))
{
child1.execute(null,rend GEvent,null,null,outputs);
communicate(outputs,1);
executed = true;

}
else if(child2Rend GEvents.containsKey(rend GEvent))
{
child2.execute(null,rend GEvent,null,null,outputs);
communicate(outputs,2);
executed = true;

}
else if(child3Rend GEvents.containsKey(rend GEvent))
{
child3.execute(null,rend GEvent,null,null,outputs);
communicate(outputs,3);
executed = true;

}
}
else if(rend TEvent != null)
{
if(child1Rend TEvents.containsKey(rend TEvent))
{
child1.execute(null,null,rend TEvent,null,outputs);
communicate(outputs,1);
executed = true;

}
else if(child2Rend TEvents.containsKey(rend TEvent))
{
child2.execute(null,null,rend TEvent,null,outputs);
communicate(outputs,2);
executed = true;

}
else if(child3Rend TEvents.containsKey(rend TEvent))
{
child3.execute(null,null,rend TEvent,null,outputs);
communicate(outputs,3);
executed = true;

}
}
else // round robin scheduling amongst enabled children
{
//quick round robin implementation (no data−structure usage)
int loop = 0;
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for(;;)
{
switch(round robin)
{
case 1: {

if(1 >= round robin && o child1.value>=0)
{
child1.execute(null,null,null,null,outputs);
communicate(outputs,1);
loop = 2;
executed=true;
round robin=2;
break;

}
}
case 2: {

if(2 >= round robin && o child2.value>=0)
{
child2.execute(null,null,null,null,outputs);
communicate(outputs,2);
loop = 2;
executed=true;
round robin=3;
break;

}
}
case 3: {

if(3 >= round robin && o child3.value>=0)
{
child3.execute(null,null,null,null,outputs);
communicate(outputs,3);
loop = 2;
executed=true;
round robin=1;
break;

}
}
default:{

if(loop==1){loop++; break;}
loop++;
round robin = 1;

}
} if(loop==2){break;}

}
}
reset();
return executed;

}
private void reset()
{
o child1.value=−1;
o child2.value=−1;
o child3.value=−1;
child1Rend TEvents.clear();
child1Rend GEvents.clear();
child2Rend TEvents.clear();
child2Rend GEvents.clear();
child3Rend TEvents.clear();
child3Rend GEvents.clear();
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child1Env Events.clear();
child2Env Events.clear();
child3Env Events.clear();

}
}

B.5 Vars.java

import java.util.HashMap;
import java.util.Iterator;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

class Vars
{
//used to resolve conflicts amongst shared variables
private boolean parallel;
private HashMap paraValues;

//the variables declared in the system
public boolean busyrw1 = false;
public boolean busyrw2 = false;
public boolean busytw1 = false;
public boolean busytw2 = false;
public boolean busytw3 = false;

public Vars()
{
paraValues = new HashMap();
parallel = false;

}

//This set parallel execution mode
//in parallel execution mode, all assignments to variables are stored
//in the paraValues hashmap, when parallel mode ends we select one
//of the potential values to be the value for each shared variable
public void setParallelMode(boolean val)
{
parallel = val;
if(!val) //resolve shared vars (nondet resolve)
{
Pair p;
p = (Pair)paraValues.get(new String("busyrw1"));
if(p != null)
{busyrw1 = ((Boolean)p.first).booleanValue();}
p = (Pair)paraValues.get(new String("busyrw2"));
if(p != null)
{busyrw2 = ((Boolean)p.first).booleanValue();}
p = (Pair)paraValues.get(new String("busytw1"));
if(p != null)
{busytw1 = ((Boolean)p.first).booleanValue();}
p = (Pair)paraValues.get(new String("busytw2"));
if(p != null)
{busytw2 = ((Boolean)p.first).booleanValue();}
p = (Pair)paraValues.get(new String("busytw3"));
if(p != null)
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{busytw3 = ((Boolean)p.first).booleanValue();}
paraValues.clear();

}
}

//assignments made within a transitions actions need to be visible to other
//actions associated with that transition, but not to other transitions executing
//in simulated parallel with this transition
public void endTrans()
{
for(Iterator iter = paraValues.values().iterator();iter.hasNext();)
{
((Pair)iter.next()).second = Boolean.FALSE;

}
}

public void setbusyrw1(boolean val)
{
if(!parallel)
{
busyrw1= val;

}
else //if in parallel mode, store the this potential value for future use
{
paraValues.put( new String("busyrw1"), new Pair(new Boolean(val),Boolean.TRUE));

}
}

public boolean getbusyrw1()
{
if(!parallel)
{
return busyrw1;

}
else
{
Pair val = (Pair) paraValues.get(new String("busyrw1"));
if(val != null && val.second == Boolean.TRUE)
{
return ((Boolean)val.first).booleanValue();

}
else
{
return busyrw1;

}
}

}
\\get and set methods for the rest of the variables not shown
.......

}

B.6 microEnvSync.java

import java.util.Vector;
import java.util.HashSet;
import java.util.HashMap;
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class microEnvSync env
{
private microIntl intrl2 right;
private microIntl intrl3 left;

private Vars AV;
private Events IE;
private HashSet tempOutputs = new HashSet();
private double other left,other right;
private HashMap leftRend TEvents,leftRend GEvents,rightRend TEvents,rightRend GEvents;
private HashMap rightEnv Events,leftEnv Events;
private HashSet leftInterr,rightInterr;
private boolean left goes = true;
private Doub o left,o right;
private Bool f left,f right;

public Events IErunway1 system;
public Events IErunway2 system;
public Events IEtaxiway1 system;
public Events IEtaxiway2 system;
public Events IEtaxiway3 system;
public microEnvSync env(Vars av,microIntl intrl3 l,microIntl intrl2 r)
{
leftRend GEvents = new HashMap();
leftRend TEvents= new HashMap();
rightRend GEvents = new HashMap();
rightRend TEvents= new HashMap();
rightEnv Events = new HashMap();
leftEnv Events = new HashMap();
leftInterr = new HashSet();
rightInterr = new HashSet();
other right = −1;
other left = −1;
o right = new Doub(−1);
o left = new Doub(−1);
f right = new Bool(false);
f left = new Bool(false);
AV = av;
IE= new Events();
left = l;
right = r;

}
public void storeSubComponentIEs(Events ierunway1 system,Events ierunway2 system,

Events ietaxiway1 system,Events ietaxiway2 system,Events ietaxiway3 system)
{
IErunway1 system = ierunway1 system;
IErunway2 system = ierunway2 system;
IEtaxiway1 system = ietaxiway1 system;
IEtaxiway2 system = ietaxiway2 system;
IEtaxiway3 system = ietaxiway3 system;

}
public void communicate(HashSet outputs,boolean which)
{
if(which)
{
IErunway1 system.genEvents(outputs);
IErunway2 system.genEvents(outputs);

}
else
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{
IEtaxiway1 system.genEvents(outputs);
IEtaxiway2 system.genEvents(outputs);
IEtaxiway3 system.genEvents(outputs);

}
}

public void initCS()
{
left.initCS();
right.initCS();

}

public void enabled check(HashMap rend TEvents,HashMap rend GEvents,Doub other,Bool final state)
{
reset();
left.enabled check(leftEnv Events,leftRend TEvents,leftRend GEvents,o left,f left);
right.enabled check(rightEnv Events,rightRend TEvents,rightRend GEvents,o right,f right);
final state.value = f left.value && f right.value;
other left = o left.doubleValue();
other right = o right.doubleValue();

//round robin scheduling
if(other left>=0 && other right>=0 && left goes)
{
other right = −1;
left goes = false;

}
else if(other left>=0 && other right>=0 && !left goes)
{
other left = −1;
left goes = true;

}

other.value = other left >= other right?other left:other right;
rend TEvents.putAll(leftRend TEvents);
rend TEvents.putAll(rightRend TEvents);
rend GEvents.putAll(leftRend GEvents);
rend GEvents.putAll(rightRend GEvents);
if(other.value<0)
{
if(leftEnv Events.containsKey(IE.evententertw1) &&

rightEnv Events.containsKey(IE.evententertw1))
{
double v1 = ( (Doub)leftEnv Events.get(IE.evententertw1) ).doubleValue();
double v2 = ( (Doub)rightEnv Events.get(IE.evententertw1) ).doubleValue();
other.value = v1>v2?v1:v2;

}
else if(leftEnv Events.containsKey(IE.evententertw2) &&

rightEnv Events.containsKey(IE.evententertw2))
{
double v1 = ( (Doub)leftEnv Events.get(IE.evententertw2) ).doubleValue();
double v2 = ( (Doub)rightEnv Events.get(IE.evententertw2) ).doubleValue();
other.value = v1>v2?v1:v2;

}
else if(leftEnv Events.containsKey(IE.evententertw3) &&

rightEnv Events.containsKey(IE.evententertw3))
{
double v1 = ( (Doub)leftEnv Events.get(IE.evententertw3) ).doubleValue();
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double v2 = ( (Doub)rightEnv Events.get(IE.evententertw3) ).doubleValue();
other.value = v1>v2?v1:v2;

}
}

}

public boolean execute(Integer env Event,Integer rend GEvent,Integer rend TEvent,
Integer interrupt,HashSet outputs)

{
boolean executed = false;
if (rend GEvent != null)
{
if(rightRend GEvents.containsKey(rend GEvent))
{
right.execute(null,rend GEvent,null,null,outputs);
communicate(outputs,true);
executed = true;

}
else if(leftRend GEvents.containsKey(rend GEvent))

{
left.execute(null,rend GEvent,null,null,outputs);
communicate(outputs,false);
executed = true;

}
}
else if(rend TEvent != null)
{
if(rightRend TEvents.containsKey(rend TEvent))
{
right.execute(null,null,rend TEvent,null,outputs);
communicate(outputs,true);
executed = true;

}
else if(leftRend TEvents.containsKey(rend TEvent))
{
left.execute(null,null,rend TEvent,null,outputs);
communicate(outputs,false);
executed = true;

}
}
else
{
if(leftEnv Events.containsKey(IE.evententertw1) &&

rightEnv Events.containsKey(IE.evententertw1))
{
executed = true;
left.execute(IE.evententertw1,null,null,null,outputs);
right.execute(IE.evententertw1,null,null,null,tempOutputs);
communicate(outputs,false);
communicate(tempOutputs,true);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(leftEnv Events.containsKey(IE.evententertw2) &&

rightEnv Events.containsKey(IE.evententertw2))
{
executed = true;
left.execute(IE.evententertw2,null,null,null,outputs);
right.execute(IE.evententertw2,null,null,null,tempOutputs);
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communicate(outputs,false);
communicate(tempOutputs,true);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(leftEnv Events.containsKey(IE.evententertw3) &&

rightEnv Events.containsKey(IE.evententertw3))
{
executed = true;
left.execute(IE.evententertw3,null,null,null,outputs);
right.execute(IE.evententertw3,null,null,null,tempOutputs);
communicate(outputs,false);
communicate(tempOutputs,true);
outputs.addAll(tempOutputs);
tempOutputs.clear();

}
else if(other left>=0)
{
executed = true;
left.execute(null,null,null,null,outputs);
communicate(outputs,false);

}
else if(other right>=0)
{
executed = true;
right.execute(null,null,null,null,outputs);
communicate(outputs,true);

}
}
reset();
return executed;

}
private void reset()
{
o right.value=−1;
o left.value=−1;
leftRend TEvents.clear();
leftRend GEvents.clear();
rightRend TEvents.clear();
rightRend GEvents.clear();
rightEnv Events.clear();
leftEnv Events.clear();

}
}
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