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Statement of Contributions

I am the sole author of chapters 1, 2 and 7. Chapter 3 contains some material from “To-
wards quantum-resistant cryptosystems from supersingular elliptic curve isogenies” by L.
De Feo, D. Jao, and J. Plût. Chapters 4, 5, and 6 contains material from “Key compression
for isogeny-based cryptography” by R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and
C. Leonardi, to appear in AsiaPKC 2016. I am the sole author of all parts of that paper
that appear in this thesis.
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Abstract

We present a method for key compression in quantum-resistant isogeny-based cryptosys-
tems, which reduces storage and transmission costs of per-party public information by a
factor of two, with no effect on the security level of the scheme. We achieve this reduc-
tion by compressing both the representation of an elliptic curve, and torsion points on
said curve. Compression of the elliptic curve is achieved by associating each j-invariant
to a canonical choice of elliptic curve, and the torsion points will be represented as linear
combinations with respect to a canonical choice of basis for this subgroup. This method of
compressing public information can be applied to numerous isogeny-based protocols, such
as key exchange, zero-knowledge identification, and public-key encryption. The details
of utilizing compression for each of these cryptosystems is explained. We provide imple-
mentation results showing the computational cost of key compression and decompression
at various security levels. Our results show that isogeny-based cryptosystems achieve the
smallest possible key sizes among all existing families of post-quantum cryptosystems at
practical security levels.
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Chapter 1

Introduction

Traditional elliptic curve cryptography is based on the intractability of the elliptic curve
discrete logarithm problem. These systems are not safe to use in a post-quantum setting,
since on a quantum computer Shor’s algorithm [32] can compute solutions to the discrete
logarithm problem in any group (including elliptic curve groups) in polynomial time.

Couveignes [11] and Stolbunov [37] independently discovered an encryption scheme
from the theory of elliptic curves that does not rely on the discrete logarithm problem. In-
stead, their cryptosystems rely on the computational difficulty of finding isogenies between
ordinary elliptic curves. Soon after it was shown that one could determine the private keys
of this system in subexponential time with a quantum attack [7]. Recent work of De Feo,
Jao, and Plût [14] proposes to use isogenies between supersingular elliptic curves as the
basis for quantum-safe elliptic curve cryptosystems. Unlike with discrete logarithms, there
is no known polynomial time algorithm to compute isogenies between elliptic curves in the
general case, even on a quantum computer [2, 7]. Implementation results [15] have shown
that isogeny-based cryptosystems exhibit practical performance characteristics at standard
security levels. Isogeny-based cryptography, though not yet considered mainstream, thus
represents a promising candidate for post-quantum security.

We provide an explicit method for reducing the transmission cost and per-party public
information in isogeny-based cryptosystems. The proposed compression of public informa-
tion in this work is modeled for the existing key exchange and public-key cryptosystems
of [14]. The reduction takes advantage of algebraic properties of elliptic curves, while only
incurring the computational costs of compression and decompression once per key. The
algorithm compresses keys to half their original size, with no effect on security.

Chapter 2 is an introduction to elliptic curves, including the different coordinate systems
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one can use, the morphisms of elliptic curves, torsion subgroups, the difference between
ordinary and supersingular elliptic curves, and the required material from the theory of
Hilbert class fields. This chapter also includes algorithms for computing and evaluating
isogenies, and constructing supersingular elliptic curves. The history and current standing
of isogeny-based cryptography (both ordinary and supersingular) is given in Chapter 3.
Chapter 4 contains the steps for compression of public keys, as well as an explanation of all
computational requirements for this procedure. Chapter 5 modifies the standard isogeny-
based key-exchange, zero-knowledge identification, and public-key encryption protocols to
include compression and decompression. A presentation of the time complexity, empirical
cost measurements for our implementation, and a comparison of our compressed key sizes
with those of other major families of post-quantum cryptographic primitives is given in
Chapter 6. Lastly, Chapter 7 covers the applications of the results and possible future
improvements or changes.
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Chapter 2

Introduction to Elliptic Curves

This opening chapter serves as an introduction to the theory of elliptic curves and the
multitude of maps between them. A goal of this thesis is to be self-contained, and so all
required background material will be presented. The materials in sections 2.1 and 2.2 of
this chapter are collected primarily from the texts [9], [10], [17], and [33].

2.1 Coordinates and the Group Law

The central objects of isogeny-based cryptography, and the work of this thesis, are elliptic
curves. The definition we will begin with is of an elliptic curve in projective coordinates.

Definition 2.1.1. An elliptic curve E over a field K, denoted E/K, is given by the
non-singular projective curve of the form

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (2.1)

for a1, a2, a3, a4, a6 ∈ K, along with a base point O = O(E) = [0, 1, 0] which is referred to
as the point at infinity.

From the coefficients of an elliptic curve in (2.1), we can define the b-invariants and the
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c-invariants of a curve to simplify later algebra:

b2 = a21 + 4a4,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6.

Throughout this work we will be using the Weierstraß equations for an elliptic curve
over K instead of projective coordinates. The long Weierstraß form can be obtained
from (2.1) by the change of coordinates x = X/Z and y = Y/Z:

Definition 2.1.2. An elliptic curve E over a field K is given by the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.2)

where the coefficients a1, a2, a3, a4, a6 ∈ K are such that for each point P = (x1, y1) with
coordinates in K̄ satisfying (2.2), the partial derivatives at P (2y1 + a1x1 + a3 and 3x21 +
2a2x1 + a4 − a1y1) do not vanish simultaneously.

The last condition in (2.1.2) is equivalent to the non-singular condition of (2.1.1). This
change of coordinates requires that Z 6= 0. Indeed, a point (x, y) in Weierstraß coordinates
is equivalent to (x, y, 1) in projective coordinates for all points on the curve other than O,
which is exactly when Z = 0. When the characteristic of the field K is not 2 we can apply
a change of coordinates to eliminate the xy and y terms:

E : y2 = 4x3 + b2x
2 + 2b4 + b6. (2.3)

Further, if char(K) 6= 3, then we can apply one last substitution to obtain the short
Weierstraß form:

E : y2 = x3 − 27c4x− 54c6. (2.4)

A useful invariant of elliptic curves is their discriminant. The cubic polynomial has
only simple roots over K̄ if and only if the discriminant is non-zero. Therefore, checking
the non-singularity condition (or checking that an equation does in fact define an elliptic
curve) can be done by computing the discriminant from the coefficients.

Definition 2.1.3. Let E be a curve as defined in (2.1), and the b-invariants be as above.
The discriminant of the curve E is

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

where b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.
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Additionally, if E is an elliptic curve in short Weierstraß form (2.4), E : y2 = x3+ax+b,
then we can compute the discriminant as follows:

∆(E) = −16(4a3 + 27b2).

Hence, an equation in short Weierstraß form defines an elliptic curve if and only if

4a3 + 27b2 6= 0.

There is a well known geometrically constructed law that provides elliptic curves with
a natural group structure. A solution (x, y) ∈ K × K to the defining equation of E is
called a K-rational point of E. The set of all K-rational points, along with the point at
infinity, form an Abelian group denoted E(K). The group law can be expressed by rational
polynomials with coefficients in K, and it enables us to add and subtract points, as well
as multiply a K-rational point by an integer efficiently using the standard double-and-add
technique.

2.1.1 Torsion Subgroups

Definition 2.1.4. Let E be an elliptic curve over the field K, and let P ∈ E(K̄). For any
m ∈ Z define the map [m] : E(K̄)→ E(K̄), [m]P = P + . . .+P, to be the multiplication-
by-m map.

Example 1. The map [1] is the identity map. The map [0] is defined so that [0]P = O for
all P ∈ E(K̄).

The multiplication map is defined for negative integers in the following way: [−m]P =
[m](−P ), where −P is the group inverse of P .

Definition 2.1.5. For any m ∈ Z, and elliptic curve E(K), the subgroup

E[m] := {P ∈ E(K̄) : [m]P =∞}

is called the m-torsion subgroup of E(K̄). An element P ∈ E[m] is called an m-torsion
point. We will denote E[m] ∩ E(K̄) by E(K̄)[m].

This subgroup can be viewed as the kernel of [m]. That is, points in E[m] all have
order dividing m.
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Theorem 2.1.1. [41, Theorem 3.2] Let E be an elliptic curve defined over K. If char(K)
is 0 or coprime to m, then

E[m] ∼= Z/mZ⊕ Z/mZ.

The case where the characteristic of K is some prime p and m = pr is covered in Section
2.2.3.

2.2 Maps Between Curves

In this section we will focus on the algebraic relationships between elliptic curves.

2.2.1 Morphisms

The material in this section is well known, but two quality sources are [17], and [36]. We
start with the most elementary maps.

Definition 2.2.1. Let E and E ′ be two elliptic curves defined over K. A morphism
φ : E(K̄) → E ′(K̄) over K is a polynomial mapping with coefficients from K. If the
curves are in projective coordinates we can write

φ(X : Y : Z) = (φ0(X, Y, Z) : φ1(X, Y, Z) : φ2(X, Y, Z)),

where φ0, φ1, φ2 are homogeneous polynomials of equal degree satisfying the defining equa-
tion of E ′. Alternatively, in Weierstraß coordinates, a morphism φ is a rational map

φ(x, y) =

(
φ0(x, y, 1)

φ2(x, y, 1)
,
φ1(x, y, 1)

φ2(x, y, 1)

)
.

A morphism defined over field K is commonly referred to as a K-rational morphism.
Each morphism has an integer degree which will be defined later (2.2.11), but for now note
that a degree m morphism from E to E ′ typically implies the kernel of the morphism has
cardinality m. That is, the morphism is m-to-1 from E(K̄) to E ′(K̄).

One family of morphisms are the translation morphisms. For each point P ∈ E, we
can define

τP : E → E, τP (Q) = Q+ P.

These are morphisms because the elliptic curve group law is defined by polynomials.
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Definition 2.2.2. A homomorphism φ is a morphism of elliptic curves such that

φ(P +Q) = φ(P ) + φ(Q),

for all P,Q ∈ E(K). That is, φ respects the group structure of the curve.

Proposition 2.2.1. Every morphism from E → E ′ that maps O(E) to O(E ′) is a homo-
morphism.

A translation morphism τP is not a homomorphism unless P = O, in which case it is
the trivial homomorphism between E and itself.

Definition 2.2.3. An endomorphism of an elliptic curve E is a homomorphism from
E to itself. The set of all endomorphisms is denoted End(E).

The set End(E) is a ring due to the group structure of E. Here we note that for every
m ∈ Z, the multiplication-by-m map is an endomorphism, and the degree of [m] is m2.
Therefore, for an elliptic curve E defined over a finite field End(E) will always contain a
subring isomorphic to Z. One of the most important morphisms in the study of elliptic
curves over finite fields is the Frobenius endomorphism.

Example 2. Let E/Fpn be an elliptic curve. Define the pn-th Frobenius endomorphism
πE : E(Fpn)→ E(Fpn) by (x, y) 7→ (xp

n
, yp

n
). The degree of πE is pn.

It can be shown that if K is finite, then πE is not equal to [m] for any integer m. This
implies that End(E/K) will always contain a strict subring isomorphic to Z when K is
finite.

Definition 2.2.4. A K-isomorphism between elliptic curves is a group isomorphism de-
fined over K̄. In other words, an elliptic curve isomorphism is a K-morphism of degree
1.

A useful property of elliptic curves in Weierstraß form is that all isomorphisms between
them have been classified.

Proposition 2.2.2. [33, III.1] Elliptic curves E/K : y2 = x3 + ax + b and E ′/K : y2 =
x3 + a′x+ b′ are isomorphic over K̄ if and only if there exists µ ∈ K̄∗ such that

a′ = µ2a,

b′ = µ3b.

If so, the isomorphism E → E ′ is given by (x, y) 7→ (µx, µ
3
2y).
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A special case of Proposition 2.2.2 is when µ is a quadratic non-residue in K. In this
case the essential element µ

3
2 is undefined in K, and so the isomorphism is defined over

K(
√
µ) instead.

Definition 2.2.5. Let E/K : y2 = x3 + ax + b be an elliptic curve and char(K) 6= 2.
Then for any quadratic non-residue µ ∈ K\{O} we define the elliptic curve E(µ) : y2 =
x3 + µ2ax+ µ3b to be the quadratic twist of E by µ.

One can verify by this definition that the twist of an elliptic curve will give a non-
singular equation.

We can now define the isomorphism class of elliptic curves defined over a given field.
Further, there exists a unique quantity for each such class that we can use as a label.

Definition 2.2.6. For an elliptic curve E : y2 = x3 + ax+ b defined over a field K, define

j(E) =
c34
∆

= 1728
c34

c34 − c26
= 1728

4a3

4a3 + 27b2
∈ K

to be the j-invariant of E.

It is simple to check, using Proposition 2.2.2 that this quantity is invariant for a K-
isomorphism class of elliptic curves. The converse is true as well, in the case of algebraically
closed fields.

Theorem 2.2.1. [33, III.1.4] Two elliptic curves are isomorphic over K̄ if and only if
they have the same j-invariant.

During compression, we will be sending a j-invariant which represents an isomorphism
class of elliptic curves. However, in order to send a point from the elliptic curve, or to
implement Vélu’s formula for constructing an isogeny, we will need an explicit elliptic
curve equation. Thankfully, the construction of an elliptic curve for a given j-invariant is
known:

Theorem 2.2.2. [33, III.1.4] Given some j ∈ K, the following formulas determine an
elliptic curve defined over K whose j-invariant is equal to j:

(1) If j = 0, then E : y2 + y = x3,

(2) If j = 1728, then E : y2 = x3 + x,

(3) Otherwise, E : y2 + xy = x3 − 36
j−1728x− 1

j−1728 .
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Observe that neither (1) nor (3) yield equations in short Weierstraß form, but since for
our applications p 6= 2, 3 we can rewrite these curves in the form y2 = x3 − 27c4x − 54c6
using the c-invariants c4 and c6.

It is worth noting that for finite fields K, there exist twisted elliptic curves other than
quadratic twists (2.2.5). When j(E) = 0, one can twist by a cubic character µ and the
twisted curve is of the form y2 = x3 + µb. When j(E) = 1728 quartic twists are possible
and of the form y2 = x3 + µax [33, Prop 5.4]. In these cases, the isomorphism will be
defined over the appropriate cubic or quartic extension of K.

2.2.2 Isogenies

Definition 2.2.7. Let K be a field and E/K, E ′/K be two elliptic curves. If F is an
extension of K (possibly K̄ or K itself), define an isogeny over F between E and E ′ to
be a morphism

φ : E(K̄)→ E ′(K̄)

mapping O(E) to O(E ′), with coefficients from F . Two elliptic curves are defined to be
isogenous if and only if there is a non-trivial isogeny between them, that is, φ(E) 6=
{O(E ′)}.

Theorem 2.2.1 immediately shows that every isogeny is necessarily a homomorphism
between E and E ′.

Example 3. An isomorphism that preserves the point at infinity is an isogeny. Such
isogenies are called pointed isomorphisms.

Since pointed isomorphisms are isogenies between isomorphic curves, we can use them
to define the notion of an isomorphism of isogenies.

Definition 2.2.8. Isogenies φ1 : E → E ′ and φ2 : E → E ′′ are said to be isomorphic
isogenies if there exists a pointed isomorphism ψ : E ′ → E ′′ such that φ2 = ψ ◦ φ1.

Definition 2.2.9. The kernel of an isogeny φ is

ker(φ) := {P |P ∈ E(K̄) and φ(P ) = O}.

Recall, the form of an isogeny (2.2.1) between elliptic curves in Weierstraß form:

φ(x, y) =

(
φ0(x, y, 1)

φ2(x, y, 1)
,
φ1(x, y, 1)

φ2(x, y, 1)

)
9



such that φ fixes the identity. From this it is clear that the kernel of φ will be exactly the
set of zeros of φ2.

Definition 2.2.10. The coordinate ring of an elliptic curve E over field K is

K[E] := K[x, y]/〈y2 + a1xy + a3y − x3 − a2x2 − a4x− a6〉.

The function field of E over K is the field of fractions of K[E], denoted K(E).

An early observation is that all morphisms between elliptic curves are either constant
or surjective. We use this result to construct an injective homomorphism of function fields
from each isogeny. Let φ : E → E ′ be an isogeny, and define φ∗ : K̄(E ′) → K̄(E) such
that φ∗(f) = f ◦ φ.

Definition 2.2.11. The degree of a morphism φ : E → E ′ between elliptic curves is

deg(φ) := [K̄(E) : φ∗(K̄(E ′))],

the degree of the function field extension induced by φ. A degree ` isogeny is often referred
to as an `-isogeny.

Proposition 2.2.3. [33, III.6] Let φ : E1 → E2 be an isogeny. There exists a unique
isogeny φ̂ : E2 → E1 such that deg(φ) = deg(φ̂), and the composition of these two isogenies
is the multiplication-by-deg(φ) map. That is, φ ◦ φ̂ = φ̂ ◦ φ = [deg(φ)]. This map is defined
as the dual isogeny of φ.

In isogeny-based cryptography, we are interested in separable isogenies over finite fields.

Definition 2.2.12. Let φ : E/K → E ′/K be an isogeny between elliptic curves. If K̄(E)
is a separable (inseparable, purely inseparable, resp.) field extension of φ∗(K̄(E ′)), then we
say φ is separable (inseparable, purely inseparable, resp.).

Theorem 2.2.3. A K-isogeny φ is separable if and only if char(K) - deg(φ).

The following result shows where our early “definition” of degree came from:

Proposition 2.2.4. [33, II.2.6] Let φ be a separable isogeny. Then, deg(φ) = |ker(φ)|.

For elliptic curves defined over a finite field, Tate has shown that being isogenous is
equivalent to having the same cardinality.
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Theorem 2.2.4. [39] (Tate’s Isogeny Theorem) Let E and E ′ be elliptic curves defined
over some finite field Fpn. Then E and E ′ are isogenous over Fpn if and only if

|E(Fpn)| = |E ′(Fpn)|.

This leads to the main isogeny theorem that we will need.

Theorem 2.2.5. [17, 9.6.19] Let E be an elliptic curve over K. Let G ⊂ E(K̄) be a finite
subgroup that is defined over K (i.e., σ(P ) ∈ G for all P ∈ G and σ ∈ Gal(K̄/K)). Then
there is a unique elliptic curve (up to isomorphism over K̄) E ′ over K, and a unique
isogeny (up to isomorphism over K̄) φ : E → E ′ over K such that ker(φ) = G.

The standard way of computing E ′, φ, or φ(P ) for some P ∈ E(K̄) is to use Vélu’s
formulas [21], which involves calculating a summation over all the elements of that subgroup
G = ker(φ) (see Section 2.3.1). The security of isogeny-based cryptography depends on the
cardinality of these kernels, so the subgroup G must be large which makes Vélu’s formulas
impractical. However, as we will see in Section 3.2 the cardinality of G will be chosen to
have small characteristic (2 or 3) and so we can apply Vélu’s formulas to compute isogenies
efficiently in such cases, as explained and optimized in [14].

2.2.3 Supersingularity

Let E/K be an elliptic curve defined over a field of characteristic p. A group of interest
is that of the p-torsion points, E[p]. In fact, the structure of p-torsion points directly
determines the endomorphism ring of E/K.

Definition 2.2.13. Let K be a Q-algebra that is finitely generated over Q (K can be non-
Abelian). An order R of K is a subring of K that is finitely generated as a Z-module and
satisfies R⊗Z Q = K.

Theorem 2.2.6. [33, V.3.1] Let K be a field of prime characteristic p, and let E/K be an
elliptic curve. For each integer r ≥ 1 let

φr : E → E(pr)

be the pr-th Frobenius map.

The following are equivalent:

(i) E[pr] = {O} for all r ≥ 1.
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(ii) The map [p] : E → E is purely inseparable and j(E) ∈ Fp2.

(iii) End(E) is an order in a quaternion algebra.

If the equivalent conditions do not hold, then

E[pr] = Z/prZ, for all r ≥ 1,

and End(E) is an order in an imaginary quadratic field extension of Q.

If the above conditions hold, then we say the curve E is supersingular, otherwise we
say E is ordinary. The term supersingular is unrelated to the notion of singular curves,
and instead refers to how elliptic curves with these endomorphism rings are uncommon.
Part (ii) of Theorem 2.2.6 states that all supersingular elliptic curves are always defined
over Fp2 , and this will be useful in the cryptanalysis of supersingular isogeny cryptography
(Section 3.2.1).

A direct consequence of Theorem 2.2.6.(i) is that isogenies preserve the type of elliptic
curve and so we can discuss supersingular elliptic curve isogenies and ordinary elliptic curve
isogenies.

Theorem 2.2.7. Let φ : E1 → E2 be an isogeny. E1 is supersingular if and only if E2 is
supersingular. E1 is ordinary if and only if E2 is ordinary.

Our compression algorithm applies to the cryptosystems described in [14], which use
supersingular elliptic curve and their isogenies.

2.2.4 Hilbert Class Field Theory

The following section requires knowledge of Hilbert class fields and their general theory,
and so a brief introduction is provided here (the sources of this subsection are [8] and [33]).

Let L be a number field. The set of algebraic integers in L form a ring, denoted OL,
called the ring of integers of L.

Theorem 2.2.8. [8,Theorem 4.4.2] The ring OL is a free Z-module of rank [L : Q].

Definition 2.2.14. An integral ideal is a Z-submodule a ⊂ OL such that for every
α ∈ OL and a ∈ a we have αa ∈ a.

Definition 2.2.15. A fractional ideal a ⊂ L is a non-zero submodule of L such that
there exists a non-zero integer α with αa an integral ideal of OL.
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We would like to have a group structure for fractional ideals. The full ring of integers
OL will serve as the identity. We define the product of fractional ideals a, b as:

ab := {
∑

ij|i ∈ a, j ∈ b}.

Note this operation is Abelian. We make use of the following theorem to define inverses:

Theorem 2.2.9. [8,Theorem 4.6.14] If a is a fractional ideal of OL and if we set

a−1 := {α ∈ L|αa ⊂ OL},

then aa−1 = a−1a = OL.

Lastly, we say that two fractional ideals are equivalent if they differ by a non-zero
element of L. Now we can define the class group ofOL to be the finite group of equivalence
classes of fractional ideals with the above operation. We denote this group by CL(OL) and
define the class number as h(OL) := |CL(OL)|.

Since integral ideals ofOL are modules of maximal rank [8, Theorem 4.6.3], the quotient
OL/a is a finite ring. In the case where this quotient ring is a field we say that a is a prime
ideal of OL.

Definition 2.2.16. Let p be a prime number and p a prime ideal of OL. Then p is said
to be a prime ideal above p if p ∩ Z = pZ.

Theorem 2.2.10. [8,Theorem 4.8.3] Let p be a prime number. There exist positive integers
ei such that

pOL =
∏
i

peii ,

where the pi are all the prime ideals above p.

Definition 2.2.17. Depending on the structure of the product in Theorem 2.2.8 we give the

prime number p different names. If pOL = p, then p is said to be inert. If pOL =
n∏
i=1

pi,

where n = [L : Q] and all the pi’s are different, then p said to split completely. If ei ≥ 2
for some i, then p is ramified.

We end this section with another look at the Frobenius endomorphism. For elliptic
curves defined over Q, the m-torsion points have coordinates in Q̄. Each element of the
Galois group Gal(Q̄/Q) fixes the m-torsion points of E, ∀m ∈ Z. By Theorem 2.1.1, since

13



char(Q) = 0, we know that E(Q)[m] ∼= Z/mZ×Z/mZ and so the group of homomorphisms
from E[m] to itself is GL2(Z/mZ). We define the map

RE,m : Gal(Q̄,Q)→ GL2(Z/mZ)

as the mod m representation attached to E. While the particular matrix associated
with RE,m(σ) depends on the choice of basis for E[m], the determinant and trace are
invariants.

Let p be prime and p be a prime ideal above p. There are Frobenius elements σp ∈
Gal(Q̄,Q) defined by the property that

σp(α) ≡ αp mod p

for all α ∈ Q̄. Evaluating RE,m at σp gives a matrix in GL2(Z/mZ), and its trace is defined
to be the trace of the Frobenius endomorphism t. Any ambiguity from the choice of m is
extinguished by the following:

Theorem 2.2.11. For all m ≥ 1, Trace(RE,m(σp)) ≡ t mod m.

2.3 Isogeny Computations

This section examines a few algorithms that are commonly used within isogeny-based
cryptography.

2.3.1 Vélu’s Formula

In 1971, Jacques Vélu provided explicit formulas to compute isogenies in time proportional
to half the cardinality of its kernel [21]. Later work [14] optimized this result for the case
when the cardinality of the kernel is a power of a small prime number. Below are the
formulas and algorithms for these computations.

Using the notation in Vélu’s paper: let E : y2 = x3+Ax+B be an elliptic curve defined
over an algebraically closed field, let F be a finite subgroup of E, and let f : E → E ′ be
the isogeny with kernel F .
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For a point P = (xP , yP ) on E, define the following quantities:

gxP = 3x2P + A,

gyP = −2yP ,

vP = 2gxP ,

uP = (gyP )2.

In order to distinguish points in F from their inverse we define F2 to be the non-trivial
points of order 2 in F , and we define R to be a subset of (F\{O})\F2 such that

R ∩ (−R) = ∅ and (F\{O})\F2 = R ∪ (−R).

Setting S = F2 ∪R, we can define

f(x, y) =

(
x+

∑
P∈S

vP
x− xP

− uP
(x− xP )2

, y −
∑
P∈S

uP
2y

(x− xP )3
+ vP

y − yP − gxPgyP
(x− xP )2

)
,

for points (x, y) /∈ F , and f(x, y) = O when (x, y) ∈ F . Further, the equation for the
image curve is given by

E ′ : y2 = x3 +

(
A− 5

∑
P∈S

vP

)
x+

(
B − 7

∑
P∈S

uP + xPvP

)
.

From these formulas it is plain to see that this computation is inefficient for crypto-
graphically secure kernel sizes. Suppose that |ker(f)| = pn for prime p and n ≥ 1. De
Feo and Jao [14] show how we can compute f in O(np) instead of the runtime O(pn) from
Vélu’s formula.

Let Q1 be a point in F with order p (see 4.1.2 for one possible method). Applying
Vélu’s formula to the subgroup 〈Q1〉 of E will give an isogeny

f1 : E → E/〈Q1〉.

Then the image of F under f1 will have size pn−1. If we then find a point Q2 in f1(F ) ⊂
E/〈Q1〉 with order p, we can perform this procedure for a second time to determine

f2 : E/〈Q1〉 → (E/〈Q1〉)/〈Q2〉,

and codomain. Iterating this n times gives n isogenies, f1, f2, . . . , fn whose composition
is the desired isogeny f with kernel F . The codomain of f is the elliptic curve E ′ =
(. . . ((E/〈Q1〉)/〈Q2〉) . . . )/〈Qn〉.
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2.3.2 Bröker’s Algorithm

For the purposes of isogeny-based cryptography, we need to be able to efficiently find a
supersingular elliptic curve over Fpn with trace t of the pn-Frobenius endomorphism, for
a given pn and t. In 2000, Reinier Bröker solved this computational problem [4] and this
section is based on that work. The existence of such a curve is guaranteed by the following
result of Waterhouse:

Theorem 2.3.1. [42, 4.1] There exists a supersingular elliptic curve E over Fpn with trace
t of the pn-Frobenius endomorphism πE if and only if one of the following holds:

(a) if n is even and one of the following is true:

(i) t = ±2
√
pn,

(ii) t = ±√pn and p 6≡ 1 mod 3,

(iii) t = 0 and p 6≡ 1 mod 4;

(b) if n is odd and one of the following is true:

(i) t = 0,

(ii) t = ±√2pn and p = 2,

(iii) t = ±√3pn and p = 3.

The cases which are relevant in the context of supersingular isogeny-based cryptography
are when t = 0. The first step to construct a supersingular curve over Fp as a reduction of
a curve in characteristic 0 using the following result of Deuring.

Theorem 2.3.2. [24, 13.12] Let E be an elliptic curve defined over a number field L whose
endomorphism ring is the maximal order OK in an imaginary quadratic field K. Let p be
a prime ideal of L, let p be a prime number such that p - ∆(E) and p is above p. Then
E/(L/〈p〉) is supersingular if and only if p does not split in K.

From the theory of complex multiplication we have that the j-invariant of E generates
the Hilbert class field of K, H, when adjoined to K. That is,

H = K[x]/〈PK〉,

where PK is the minimal polynomial of j(E) over Q. The polynomial PK can be explicitly
computed [5] and its degree is equal to the Hilbert class number hK . As j(E) ∈ Fp2 ,
[33, V.3.1] the polynomial PK splits over Fp2 . The lemma due to Bröker gives a sufficient
condition for PK ∈ Fp[x] to have a root in Fp.
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Lemma 2.3.1. [4, 2.3] Let K be an imaginary quadratic field with odd class number hK.
Then, K = Q(i), or K = Q(

√
−2), or K = Q(

√−q) with q prime and congruent to 3
modulo 4.

Combining these results, Bröker gives an algorithm for constructing a supersingular
elliptic curve over Fp.

Algorithm 1. Input: a prime number p. Output: a supersingular elliptic curve over Fp.

1. If p = 2, return y2 + y = x3.

2. If p ≡ 3 mod 4, return y2 = x3 − x.

3. Let q ≡ 3 mod 4 be the smallest prime with −q a non-quadratic residue mod p.

4. Compute PK ∈ Z[x] for K = Q(
√−q).

5. Compute a root j ∈ Fp of PK ∈ Fp[x].

6. If q = 3, return y2 = x3 − 1. Otherwise, set a← 27j
4(1728−j) ∈ Fp and return

y2 = x3 + ax− a.

Let q = pn be a prime power and let t be a trace of the Frobenius endomorphism
of the form described in 2.3.1. From Algorithm 1, we compute a supersingular elliptic
curve E over Fp. Let E ′/Fq be E defined over Fq, and let t′ be the trace of the Frobenius
endomorphism of E ′(Fq).

Lemma 2.3.2. [4, 3.1] If n is odd, then t′ = 0. If n ≡ 0 mod 4, then t′ = 2
√
q. Otherwise,

n ≡ 2 mod 4, and t′ = −2
√
q.

If p 6≡ 1 mod 4, then a twist by a primitive fourth root of unity i ∈ Fq will give curves
with Frobenius trace ±2

√
q and 0. If p 6≡ 1 mod 3, then a twist by a primitive sixth root

of unity ζ6 ∈ Fq will give curves with Frobenius trace ±2
√
q, and ±√q. If p ≡ 1 mod 12,

then a twist by −1 suffices. By Theorem 2.3.1 we know that these are the only three cases.
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Chapter 3

Isogeny-Based Cryptography

This chapter will cover the two types of isogeny-based cryptography, the computational
problems their security depend on, and their susceptibility to known attacks. Recall the
definitions for ordinary and supersingular curves in Section 2.2.3 are based on the p-torsion
points of the curve when defined over a finite field of characteristic p.

3.1 Ordinary Elliptic Curve Cryptography

The first public-key cryptosystems based on the intractability of constructing an isogeny
between two known elliptic curves is due to Couveignes [11] and Stolbunov [37] indepen-
dently, using ordinary curves. Couveignes introduced the notion of a Hard Homogeneous
Space (HHS) to generalize the discrete logarithm problem and showed how it can be used
for key exchange and authentication schemes.

Definition 3.1.1. Let G be a finite, Abelian group. Then a homogeneous space H for
G is a set that is acted on by G such that |H| = |G| and the action is simply transitive (for
all h0, h1 ∈ H there exists a unique g ∈ G such that g · h0 = h1). For h1, h2 ∈ H denote
the unique element g ∈ G with g · h1 = h2 by δ(h1, h2).

This definition alone is not enough to produce a cryptographic scheme. As in the
setting of the discrete logarithm problem over a finite field, we require that the basic group
operations are efficiently computable while the inverse of the action is not.

Definition 3.1.2. [11] Let H be a homogeneous space for G, and suppose the elements of
G and H are represented by strings (not necessarily uniquely).
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Suppose the following computations are efficient:

(i) the group operation of G,

(ii) inverting an element of G,

(iii) testing membership in G and H,

(iv) testing equality in G and in H,

(iv) finding a random element in G with uniform probability,

(v) computing g · h for all g ∈ G and h ∈ H.

Further suppose these two problems are computationally difficult:

(vi) given h1, h2 ∈ H compute δ(h1, h2),

(vii) given h1, h2, h3 ∈ H compute the unique h4 ∈ H with δ(h1, h2) = δ(h3, h4).

Then we say H is a hard homogeneous space.

This basic setup allows us to create cryptosystems based on the action of isogenies
on ordinary elliptic curves defined over finite fields. Let E be an ordinary elliptic curve
over Fpn . Recall from 2.2.3 that O := End(E) is an order in an imaginary quadratic field

extension over Q, say K = Q(
√

∆(E)) = O ⊗Z Q. If we assume that the discriminant
∆(E) is square-free, then O is the maximal order, OK , in K. From the theory of complex
multiplication [34, II.1.5], the ideal class group of OK induces a simply transitive action
on the set of elliptic curves isogenous to E.

Definition 3.1.3. [34,Chapter 2 - Section 1] Define ELL(O) to be the quotient space
{E/C with O ∼= End(E)}/{isomorphism over C}.

By Theorem 2.2.1, we can associate each element of ELL(O) with a j value. Couveignes
and Stolbunov independently determined that if we set

G = CL(OK) = ideal class group of OK , and H = ELL(OK),

then there is an action

∗ : CL(OK)× ELL(OK)→ ELL(OK)

that satisfies the conditions of the hard homogeneous space definition. Some of the neces-
sary material to confirm this is true has been given in 2.2.1, 2.2.2, and 2.2.4, however [34,
Chapter 2 - Section 1] is the recommended source for details (specifically Proposition 1.2).
To test equality of elements in H, and [25] is an early source for computing the action
required in condition (v) of 3.1.2 while [3] details a more efficient computation.

Figure 3.1 details the ordinary isogeny key exchange protocol. Here CL(OK), ELL(OK),
and x ∈ ELL(OK) are all public systems parameters.
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Alice Bob

Input: − Input: −
a←$ CL(OK) b←$ CL(OK)

mA ← a ∗ x mB ← b ∗ x
mA

mB

kA ← a ∗mB kB ← b ∗mA

Output: kA Output: kB

1

Figure 3.1: Ordinary isogeny-based key exchange

3.1.1 Security and the Ordinary Isogeny Graph

As one would expect, the underlying computational problems of this ordinary elliptic curve
isogeny scheme are conditions (vi) and (vii) of 3.1.2.

Problem 1. Let E1/Fpn and E2/Fpn be ordinary elliptic curves with |E1(Fpn)| = |E2(Fpn)|.
Compute an Fpn-isogeny φ : E1 → E2.

Problem 2. Let E1/Fpn , E2/Fpn and E3/Fpn be ordinary elliptic curves with |E1(Fpn)| =
|E2(Fpn)| = |E3(Fpn)|. Let [α] ∈ CL(OK) be such that [α] ∗ E1 = E2. Compute the unique
(up to Fpn-isomorphism) elliptic curve E4 = [α] ∗ E3.

The fastest known classical algorithm solving the ordinary isogeny problem 1 is proba-
bilistic with a worst-case and average-case of O((pn)1/4+o(1) log2(pn) log(log(pn))) [19]. This
result is an improvement of [18] and is achieved by taking a pseudorandom walk of the
isogeny-graph and using the easily computable small degree isogenies more often than
larger degree isogenies.

With a quantum computer, the most efficient algorithm [7] for the same problem has

a subexponential running time of Lq(
1
2
,
√
3
2

) under the Generalized Riemann Hypothesis,
where

LN(α, c) := exp[(c+ o(1))(lnN)α(ln lnN)1−α].

20



The authors propose reducing the problem to an instance of the Abelian hidden shift
problem, and then using Kuperberg’s quantum algorithm [23] which applies here because
the reduction will be an injective hidden shift problem [7, 4.1].

3.2 Supersingular Elliptic Curve Cryptography

In 2011, De Feo, Jao and Plût [14] proposed a cryptosystem from supersingular elliptic
curve isogenies. The central difference in the supersingular setting is that the endomor-
phism ring of the curve is non-Abelian (see Theorem 2.2.6, (iii)). The authors overcome
this difficulty by having the participating members of the key-exchange send additional
information about the isogeny; the image of four points on the curve. The compression
techniques presented in 4.2 will reduce this additional information by a factor of two.

Setup: Let p be a fixed prime number of the form p = `eAA `
eB
B f ± 1, where `A and `B

are distinct primes, and f is some small prime. The typical choices are `A = 2 and `B = 3,
and so p will be assumed to be of this form. Let E/Fp2 be a supersingular elliptic curve
with E[2eA ] and E[3eB ] defined over Fp2 . Let PA, QA, PB, QB ∈ E(Fp2) be four points such
that 〈PA, QA〉 = E[2eA ] and 〈PB, QB〉 = E[3eB ] (by 2.1.1 each of these torsion subgroups
require two points to generate).

Alice chooses two random elements mA, nA ∈ Z/2eAZ, not both even, and computes
the point R2 := [mA]PA + [nA]QA and the isogeny

φA : E → EA

such that ker(φA) = 〈R2〉. Additionally, Alice computes the images of the E[3eB ] gener-
ators; φA(PB), φA(QB) ∈ EA(Fp2). Similarly, Bob computes a random linear combination
R3 (chosen so that not both mB and nB are divisible by 3) of PB and QB, the isogeny

φB : E → EB

with kernel 〈R3〉, and the points φB(PA), φB(QA) ∈ EB(Fp2). Alice and Bob’s secret keys
are the numbers mA, nA and mB, nB, respectively.

Using an unsecured channel, Alice sends (EA, φA(PB), φA(QB)) to Bob, and Bob sends
(EB, φB(PA), φB(QA)) to Alice. The shared secret elliptic curve can now be computed by
both parties. Alice computes the point S2 := [mA]φB(PA) + [nA]φB(QA) ∈ EB(Fp2) and
the isogeny from EB with kernel generated by S2,

φ′A : EB → EBA.
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Alice Bob

mA, nA ←$Z2eA mB , nB ←$Z3eB

R2 ← [mA]PA + [nA]QA R3 ← [mB ]PB + [nB ]QB

φA : E → E/〈R2〉 φB : E → E/〈R3〉
φA(PB), φA(QB) φB(PA), φB(QA)

EA, φA(PB), φA(QB)

EB , φB(PA), φB(QA)

S2 ← [mA]φB(PA) + [nAφB(QA) S3 ← [mB ]φA(PB) + [nB ]φA(QB)

φ′
A : E/〈R3〉 → (E/〈R3〉)/〈S2〉 φ′

B : E/〈R2〉 → (E/〈R2〉)/〈S′
3〉

jA ← j((E/〈R3〉)/〈S2〉) jB ← j((E/〈R2〉)/〈S3〉)

1

Figure 3.2: Supersingular isogeny-based key exchange protocol

Similarly, Bob computes S3 := [mB]φA(PB) + [nB]φA(QB) ∈ EA(Fp2) and

φ′B : EA → EAB

such that ker(φ′B) = 〈S3〉. The two curves EAB and EBA are isomorphic over Fp2 , in
particular they have equal j-invariants, and so the shared secret key is j(EAB) = j(EBA).

Figure 3.2 details the supersingular isogeny key exchange protocol. Here E,PA, QA, PB,
and QB are all public systems parameters.

3.2.1 Security and the Supersingular Isogeny Graph

Listed below are the security assumptions under which the security of supersingular isogeny-
based cryptosystems can be proven. The corresponding security proofs can be found in [14].
Figure 3.3 helps understand why these are the underlying security assumptions.

Problem 3 (SSI). Let φA : E → EA be an isogeny whose kernel is 〈[mA]PA + [nA]QA〉,
where mA and nA are randomly chosen from Z/`eAA Z and are not both divisible by `A.
Given EA and the values φA(PB), φA(QB), the Supersingular Isogeny problem is to find a
generator RA of 〈[mA]PA + [nA]QA〉.
Problem 4 (SSCDH). Let φA : E → EA be an isogeny whose kernel is 〈[mA]PA +
[nA]QA〉, and let φB : E → EB be an isogeny whose kernel is 〈[mB]PB + [nB]QB〉, where
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1

Figure 3.3: Supersingular key-exchange diagram

mA, nA (respectively mB, nB) are randomly chosen from Z/`eAA Z (respectively Z/`eBB Z) and
are not both divisible by `A (respectively `B). Given the curves EA, EB and the points
φA(PB), φA(QB), φB(PA), φB(QA), the Supersingular Computational Diffie-Hellman prob-
lem is to find the j-invariant of E/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉.

Problem 5 (SSDDH). Given a tuple sampled with probability 1/2 from one of the following
two distributions:

— (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EAB), where EA, EB, φA(PB), φA(QB), φB(PA),
φB(QA), EAB are as in the SSCDH problem and EAB ∼= E/〈[mA]PA + [nA]QA, [mB]PB +
[nB]QB〉,

— (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EC), where EA, EB, φA(PB), φA(QB), φB(PA),
φB(QA) are as in the SSCDH problem, m′A, n

′
A (respectively m′B, n

′
B) are randomly chosen

from Z/`eAA Z (respectively Z/`eBB Z) and are not both divisible by `A (respectively `B), and
EC ∼= E/〈[m′A]PA + [n′A]QA, [m

′
B]PB + [n′B]QB〉.

the Supersingular Decision Diffie-Hellman problem is to determine from which distri-
bution the tuple is sampled.

For any field K with char(K) = p > 0 and non-empty set of prime L with p /∈ L, define
the supersingular isogeny graph X(K,L) where each vertex is a K-isomorphism class of
elliptic curves defined over K (vertices have an associated, unique j-invariant), and the
edges are equivalence classes of degree ` isogenies defined over K for ` ∈ L, connecting
isogenous curves. Given a path on X(K,L) connecting say j1 and j2, an explicit starting
curve with j-invariant j1 must be chosen before the isogeny can be computed (see the
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canonical elliptic curve associated to each j in Section 2.2.2). Once this is done, the
isogeny can be computed by composing each isogeny (edge) in the path [6].

If E1 and E2 are such that j(E1) = j1 and j(E2) = j2, then the isogeny computed in
this way may have codomain elliptic curve isomorphic to E2 in which case the composition
of isogeny and isomorphism will give the correct isogeny. This differs from the ordinary
isogeny graph where two elliptic curves in the same equivalence class (vertex) may be
quadratic twists of each other.

By Theorem 2.2.6.(ii) every supersingular curve has j-invariant in Fp2 , so setting K =
Fp2 gives the full supersingular isogeny graph of L-isogenies. The authors of [12] instead set
K = Fp and look at this restricted graph; below is their main result. First, let h(θ) denote

the Hilbert class number of Q(
√
θ), and (a

b
) denote the Legendre symbol for quadratic

residues.

Theorem 3.2.1. Let p > 3 be prime.

(a) If p ≡ 1 (mod 4), then there are h(−4p) Fp-isomorphism classes of supersingular
elliptic curves over Fp, all with the endomorphism ring Z[

√−p]. From each vertex there
is exactly one outgoing Fp-rational 2-isogeny, and two outgoing `-isogenies for every prime
` > 2, ` ∈ L such that (−p

`
) = 1.

(b) If p ≡ 3 (mod 4), then there are two cases. In both cases each vertex has two
`-isogenies for every prime ` > 2, ` ∈ L such that (−p

`
) = 1. Additionally, in both cases

there are two “levels” to the graph referred to as the “surface” and the “floor” of the graph.
The endomorphism ring of every vertex on the surface is isomorphic to the order Z[1+

√
−p

2
],

while the endomorphism ring of every vertex on the floor is isomorphic to the order Z[
√−p].

(i) If p ≡ 7 (mod 8), then each level has h(−p) vertices. The surface and the floor
are connected 1 : 1 with 2-isogenies, and on the surface there are also two 2-isogenies from
each vertex to other vertices on the surface.

(ii) If p ≡ 3 (mod 8), then there are h(−p) vertices on the surface and 3h(−p)
vertices on the floor. The surface and the floor are connected 1 : 3 with 2-isogenies.

A consequence of this theorem is an algorithm to solve the supersingular isogeny prob-
lem over Fp with a classical running time of O(p1/4) (assuming the Generalized Riemann
Hypothesis), and the full supersingular isogeny problem over F̄p in O(p1/2). Given two ver-
tices of the graph (j-invariants) representing E and say EA, take isogenies to the surface if
necessary and then perform a random walk using isogenies of degree 2eA/2 from each vertex
until a collision, j′, is found. Choose an elliptic curve E ′ with j(E ′) = j′. The isogeny
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from E to EA will be the composition of each isogeny in the walk from E to E ′ and the
dual of each isogeny in the walk from E ′ to EA.

Another consequence of this result is a quantum algorithm for the full supersingular
isogeny problem (that is, over the base field Fp2 instead of Fp) [2]. The first step is: given
two supersingular elliptic curves over Fp2 , use Grover’s algorithm to find isogenous elliptic
curves defined over Fp. This computation has a quantum runtime of O(p1/4). Then, using
3.2.1 and the algorithm of [12], the isogeny between these to elliptic curves defined over Fp
can be computed classically in O(p1/4). This gives a path in the supersingular isogeny graph
and so the composition of each directed isogeny (dual isogenies give opposite directions) in
the path will give the correct output (up to isomorphism) with a total quantum runtime
of O(p1/4).

Formally, the problem of finding a collision in a graph can be formulated in the following
way:

Problem 6 (Claw Problem). Given function f : A → C, g : B → C with |A| = |B|, find
a pair (a, b) ∈ A×B such that f(a) = g(b).

A solution to this complexity problem using quantum computers was shown to be
optimal in the black-box model [38], with runtime O( 3

√
|A||B|). We can apply this to

the supersingular isogeny graph. The degree of the isogeny between E and Alice’s elliptic
curve EA is 2eA , so let A be the set of all isogenies of degree 2eA/2 from E and let B
be the set of all isogenies of degree 2eA/2 from EA. Here C will be the set of all elliptic
curves E ′ defined over Fp2 with |E(Fp2)| = |E ′(Fp2)| (see 2.2.4). The sets A and B have
equal cardinality and so the algorithm [38] applies. Hence, there is a quantum attack in

O(
3
√

2eA/22eA/2) = O(2eA/3) = O(p1/6) against supersingular isogeny schemes.
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Chapter 4

Public-Key Compression

This chapter contains results from “Key compression for isogeny-based cryptosystems” by
R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi, to appear in AsiaPKC
2016. In this chapter we cover the necessary material for compression of public information
and the actual compression techniques.

4.1 Computational Aspects

There are two pieces of information to be compressed; the elliptic curve that each partic-
ipant computes, and the auxiliary points on the curve that will be used to determine the
shared elliptic curve.

Once Alice computes her public elliptic curve EA : y2 = x3 + ax + b in short Weier-
straß form, the naive way to inform Bob of her curve is to send the two defining coefficients,
a and b. But since Bob only needs to know the isomorphism class of EA, there are other
ways to convey this information.

The standard way of sending Alice’s auxiliary points, φA(PB), φA(QB), is to send the
x-coordinate of each point as this will determine the point up to a sign of the y-coordinate,
and this does not interfere with later steps because 〈P 〉 = 〈−P 〉 If instead Alice can
represent each point in terms of a basis for the Z-module EA[3eB ], then she is able to
reduce the amount of bits needed to store each point.

This section covers the computational techniques and algorithms that are required to
compress the elliptic curve and the auxiliary points.
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4.1.1 Weil Pairing

For any Abelian ring R, a pairing is an R-bilinear map. Pairings have many uses in
elliptic curve cryptography such as the Boneh-Franklin identity-based encryption scheme
and the Menezes-Okamoto-Vanstone reduction. We will be utilizing the Weil pairing in
the following subsection to speed up the elliptic curve discrete logarithm computation.

Definition 4.1.1. For m ∈ N and E[m] = {P ∈ E(Fpn) : mP = O(E)}, the Weil pairing
is a map e : E[m]× E[m]→ Fpn, satisfying bilinearity and non-degeneracy:

e(P1 + P2, Q) = e(P1, Q)e(P2, Q)

e(P,Q1 +Q2) = e(P,Q1)e(P,Q2)

∀P ∈ E[m]\{O},∃Q ∈ E[m] such that e(P,Q) 6= 1.

Miller’s algorithm [26] provides an efficient way to compute the Weil pairing. From the
definition we see that

∀P ∈ E[m], e(P, P ) = O and ∀a ∈ N, e(aP,Q) = e(P,Q)a = e(P, aQ). (4.1)

4.1.2 Torsion Basis

For the upcoming compression, we will need a deterministic way of computing a basis for
the torsion subgroups E[2eA ] and E[3eB ] for a supersingular elliptic curve E over Fp2 with
p = 2eA3eBf ± 1. This can be accomplished with the following procedure.

Fix a hash function H : Z → EA (not required to be a cryptographic hash function).
Set the counter i = 0 and compute the point P = [2eAf ]H(i) and determine if its order is
3eB by checking if [3eB−1]P 6= O. If P does not have the correct order (this occurs when
3 | order(H(i))), then increase the counter by 1 and compute a new P . If p does have
order 3eB , then set this point to B1. Increase the counter by 1 and continue the process
by computing Q = [2eAf ]H(i). As before, check if [3eB−1]Q 6= O to ensure Q has the
correct order, increasing the counter and repeating if necessary. Finally, check that Q is
independent from B1. One way to do this is to check that their Weil pairing is not 1. If
Q is independent from B1, then set B2 = Q and return the basis {B1, B2} for EA[3eB ].
If both Alice and Bob follow this procedure they will have computed the same basis for
E[3eB ].
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4.1.3 Two-Dimensional Elliptic Curve Discrete Logarithms

We consider the following generalization of the discrete logarithm problem on elliptic
curves: Let E be a supersingular elliptic curve defined over the finite field Fp2 , for some
prime number p, and N ∈ Z with N |p + 1. Given two points {A,B} generating the
N -torsion subgroup E[N ], and an element C ∈ E[N ], the two-dimensional elliptic curve
discrete logarithm problem is to determine m,n ∈ Z/NZ such that C = [m]A + [n]B.
Below are two practical algorithms for solving in our context.

If we denote the largest prime dividing |S| by pmax, then there is a variation of the
Pohlig-Hellman algorithm [40] that solves this problem with time complexityO(

√
pmax log p).

In the case of the isogeny-based cryptosystem [14] |S| is 3-smooth, and so this algorithm
is practical.

Algorithm 2. Pohlig-Hellman for the two-dimensional ECDLP

Input: Points P,Q which generate E[`e], and R ∈ E[`e].

Output: m,n ∈ Z/`eZ such that [m]P + [n]Q = R.

A,B ← [];

for i from 1 to e do

for (x, y) in Z/`Z do

if [`e−i]R−
i−1∑
j=1

[`e−1+j−i]R == [`i−1]([x]P + [y]Q) then

A[i]← x;

B[i]← y;

end if

end for

end for

return (m,n) = (
e∑
i=1

A[i]`i−1,
e∑
i=1

B[i]`i−1).

Another approach to this problem is to use the Weil pairing. Observe,

e(P,R) = e(P, [m]P + [n]Q) = e(P, P )me(P,Q)n = e(P,Q)n
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by applying 4.1, and

e(Q,R) = e(Q, [m]P + [n]Q) = e(Q,P )me(Q,Q)n = e(Q,P )m.

By computing the pairings e(P,R), e(P,Q), e(Q,R) and e(Q,P ) (which is simply e(P,Q)−1),
the two-dimensional elliptic curve discrete logarithm problem can be reduced to two sepa-
rate instances of the discrete logarithm problem in the group of N -roots of unity.

In languages with a fast implementation of the Weil pairing (e.g. Magma) the pairing
solution is the more efficient of the two mentioned options.

4.1.4 Montgomery Form and Change of Coordinates

Definition 4.1.2. An elliptic curve over a field K in Montgomery form is a non-singular
curve given by

E : By2 = x3 + Ax2 + x,

for A,B ∈ K.

The Montgomery form of an elliptic curve was first discovered in 1987 [28] as a way to
speed up elliptic curve arithmetic. Elliptic curves in Montgomery form also protect against
timing attacks [22], which are a threat when attackers are able to accurately measure the
time taken to compute private-key operations. While the timing of these operations may
still be determined, they cannot be used to reveal any information about the private-key
when the elliptic curve is in Montgomery form [29].

A side-channel attack performed during the computation of [mA]PA + [nA]QA in the
supersingular isogeny scheme could reveal Alice’s private key. For this reason, the isogeny-
based cryptosystems proposed [14] use the Montgomery form of the curve. As the compres-
sion techniques are presented in short Weierstraß form, below are the conversions between
the two forms.

Montgomery to Weierstraß [14]: Let E : By2 = x3 + Ax2 + x. Setting x̄ = x/B
and ȳ = y/B gives the long Weierstraß equation

ȳ2 = x̄3 +
A

B
x̄2 +

1

B2
x̄.

To rewrite the long Weierstraß equation in short Weierstraß form, one sets x̃ = x̄+ A
3B

and
ỹ = ȳ. This gives

ỹ2 = x̃3 +
3− A2

3B2
x̃+

2A3 − 9A

27B3
.
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Substitution of the two steps gives the transformation x̃ = 3x+A
3B

and ỹ = y
B

.

Weierstraß to Montgomery [14]: Let E : y2 = x3 + ax + b, and suppose E has a
K-rational point P4 of order 4. Let P2 = (xp, yp) := [2]P4 and note that [2]P2 = O, or
P2 = −P2. As −P2 = (xp,−yp) it follows that yp = −yp and so yp = 0. From this, we
observe that y2p = 0 and so x3p + axp + b must also equal 0. Now if we set x̄ = x− xp and
ȳ = y, then the defining equation of E becomes:

ȳ2 = x̄3 + (3xp)x̄
2 + (3x2p + a)x̄+ (x3p + axp + b) = x̄3 + (3xp)x̄

2 + (3x2p + a)x̄.

We have mapped from short Weierstraß form to long Weierstraß form. Finally, we
notice that the new x-coordinate of P4 has become x(P4) − xp; call this β−1. Setting
x̃ = x̄β, ỹ = ȳβ and multiplying by β3 changes the equation of E to the Montgomery form:

βỹ2 = x̃3 + aβx̃2 + x̃.

Therefore, the changes of coordinates required is x̃ = β(x − xp) = x−xp
x(P4)−xp and ỹ = βy =

y
x(P4)−xp .

4.2 Compression and Decompression

This section will outline the general techniques that will be used for compression/decompression
in each of the isogeny-based cryptosystems. Recall Alice’s public-key in the supersingu-
lar cryptosystem of [14] is (α, β, φA(PB), φA(QB)) with corresponding secret-key (mA, nA),
when her elliptic curve is defined by EA : y2 = x3 + αx+ β. We will compress each of the
two components of the public-key individually: the elliptic curve and the auxiliary torsion
points.

4.2.1 Compression

Suppose Alice sends j(EA) instead of α and β. From 2.2.5 we know that the j-invariant of
EA determines the curve up to isomorphism. Replacing α and β by j(EA) we will reduce
the bit-size by half, but only convey an isomorphism class of elliptic curves. By 2.2.2, there
is a canonical elliptic curve associated with each j-invariant; define Ej to be the elliptic
curve associated with j(EA). When Bob receives j(EA) he can compute Ej.

Before compressing the auxiliary points Alice must first map them to Ej, as this will
be the elliptic curve Bob computes. To do this, Alice must compute j(EA), Ej, the
isomorphism ψA : EA → Ej, and the image of her points in ψA.
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Now that compression of the curve is accomplished we note that both ψA(φA(PB)) and
ψA(φA(QB)) have order 3eB (both morphisms preserve order), meaning they are elements
of the subgroup Ej[3

eB ]. If Alice and Bob could compute the same basis {B1, B2} for
Ej[3

eB ] then they could use integers in Z/3eBZ to represent φA(PB) and φA(QB) as linear
combinations of B1 and B2:

φA(PB) = α1B1 + β1B2, and φA(QB) = α2B1 + β2B2.

These steps are summarized in the following procedure to compress Alice’s public key.

Input: (α, β, φA(P3), φA(Q3))

1. Let EA : y2 = x3 + αx+ β

2. Compute j = j(EA) with 2.2.6.

3. Compute the canonical curve Ej associated to j with 2.2.2.

4. Compute the isomorphism ψA : EA → Ej.

5. Compute R1 = ψA(φA(PB)) and R2 = ψA(φA(QB)).

6. Compute the basis {B1, B2} for Ej[3
eB ] with 4.1.2.

7. Compute α1, β1, α2, β2 ∈ Z/3eBZ with 2 such that

R1 = α1B1 + β1B2, R2 = α2B1 + β2B2.

Output: (j, α1, β1, α2, β2).

4.2.2 Decompression

The procedure for decompression uses the same techniques as compression, but does not
need to solve the discrete log problem.

Input: (j, α1, β1, α2, β2)

1. Compute the canonical curve Ej associated to j with 2.2.2.

2. Compute the basis {B1, B2} for Ej[3
eB ] with 4.1.2.

3. Compute R1 = α1B1 + β1B2, and R2 = α2B1 + β2B2.

Output: (Ej, R1, R2)
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Chapter 5

Isogeny-Based Cryptosystems Using
Compression

This chapter contains results from “Key compression for isogeny-based cryptosystems”
by R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi, to appear in Asi-
aPKC 2016. In this section, we explain how to apply the compression techniques (Section
4.2) within the framework of three public-key isogeny-based cryptosystems: key exchange,
public-key encryption, and zero-knowledge proof of identity.

5.1 Key-Exchange

Setup: Fix Fp2 as the field of definition, where p is a prime number of the form 2eA3eB ·f±1,
where f is chosen so that p is prime. Use Bröker’s algorithm to efficiently compute a
supersingular curve, E : y2 = x3 + a4x+ a6, defined over Fp2 , having cardinality (p∓ 1)2 =
(2eA3eB · f)2. Fix a non-square element d ∈ Fp2 . Lastly, fix a basis PA, QA which generates
E[2eA ], and a basis PB, QB which generates E[3eB ].

Compression of public information: Alice chooses two random elements mA, nA ∈R
Z/2eAZ not both divisible by 2. Using Vélu’s formulas, she computes EA, φA(PB), and
φA(QB) where ker(φA) = 〈[mA]PA+[nA]QA〉. Normally, Alice would just send EA, φA(PB),
and φA(QB) to Bob, but we now add key compression. Alice computes the canonical curve
EjA from j(EA), along with

E∗jA : y2 = x3 − 27c1(EjA)x− 54c2(EjA)
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to put EjA in short Weierstraß form. If EA is not isomorphic to E∗jA over Fp2 , then she sets
TA = 1 and computes the twist

E∗A : y2 = x3 + d2a4(E
∗
jA

)x+ d3a6(E
∗
jA

)

of E∗jA . Otherwise she sets E∗A to E∗jA , and TA to 0.

Next, Alice computes the isomorphism ψA : EA → E∗A and canonical basis {R1, R2}
for E∗A[3eB ]. Finally, she solves the 2-dimensional discrete log problem to determine
α1, β1, α2, β2 ∈ Z/3eBZ such that

α1R1 + β1R2 = ψA(φA(PB)), and α2R1 + β2R2 = ψA(φA(QB)).

Alice’s compressed public information is the tuple (j(EA), α1, β1, α2, β2, TA), and her
private key is still (mA, nA). She exchanges this information with Bob, who in turn sends
Alice his public information (j(EB), γ1, κ1, γ2, κ2, TB), where

• {S1, S2} is the canonical basis for E∗B[2eA ],

• γ1S1 + κ1S2 = ψB(φB(PA)),

• γ2S1 + κ2S2 = ψB(φB(QA)),

• ker(φB) = 〈[mB]PB + [nB]QB〉,
• ψB : EB → E∗B,

and TB is 1 if a twist is required, and 0 otherwise.

Decompression and computing a shared secret key: Alice determines E∗B by com-
puting the canonical curve associated with j(EB), putting it in short Weierstraß form,
and computing a quadratic twist depending on the bit from Bob. After computing the
canonical basis {S1, S2} for E∗B[2eA ], Alice uses γ1, κ1, γ2, κ2 to compute ψB(φB(PA)) and
ψB(φB(QA)). Using Vélu’s formulas once more, Alice computes the isogeny

φ′A : E∗B → EAB,

with ker(φ′A) = 〈[mA]ψB(φB(PA)) + [nA]ψB(φB(QA))〉. After Bob determines the curve

EBA = E∗A/〈[mB]ψA(φA(PB)) + [nB]ψA(φA(QB))〉
by performing his analogous decompression, both Alice and he possess the shared secret
key j(EAB) = j(EBA) ∈ Fp2 .

A comparison of Figure 3.3 with Figure 5.1 illustrates how the additional steps of
compression change the underlying scheme.
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Figure 5.1: Supersingular key exchange diagram with compression

5.2 Encryption

Setup: In addition to the setup from the key-exchange system above, this cryptosystem
also requires a family of hash functions, H = {Hk : k ∈ K}, from Fp2 to the message space
{0, 1}w, indexed by a finite set K.

Compressed key generation: Choose two random elements mA, nA ∈R Z/2eAZ not both
divisible by 2, and a random k ∈R K. As in Section 5.1, compute and publish the tuple
(j(EA), α1, β1, α2, β2, TA) as the public key, and store the private key tuple (mA, nA, k).

Decompression: Given a public key (j(EA), α1, β1, α2, β2, TA, k) it is described above
(5.1) how to decompress to the tuple (E∗A, ψA(φA(PB)), ψA(φA(QB)), k).

Encryption: Given the decompressed public key (E∗A, ψA(φA(PB)), ψA(φA(QB)), k), and
message m ∈ {0, 1}w, the sender chooses mB, nB ∈R Z/3eBZ not both divisible by 3.
Next, as in Section 5.1, the sender computes EB, φB(PA), φB(QA), E∗B, TB, ψB, {S1, S2}, the
coefficients γ1, κ1, γ2, κ2 ∈ Z/2eAZ such that γ1S1+κ1S2 = ψB(φB(PA)), and γ2S1+κ2S2 =
ψB(φB(QA)), and φ′B : E∗A → EBA, with ker(φ′B) = 〈[mB]ψA(φA(PB)) + [nB]ψA(φA(QB))〉.
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Finally, the sender sets
c = Hk(j(EBA))⊕m.

The ciphertext is the tuple (c, j(EB), γ1, κ1, γ2, κ2, TB).

Decryption: Given a ciphertext (c, j(EB), γ1, κ1, γ2, κ2, TB) and private key (mA, nA, k),
compute the curve E∗B from j(EB) and TB, the points ψB(φB(PA)) and ψB(φB(QA)) from
γ1, κ1, γ2, κ2, and the isogeny φ′A : E∗B → EAB, with ker(φ′A) = 〈[mA]ψB(φB(PA)) +
[nA]ψB(φB(QA))〉. The plaintext is

m = c⊕Hk(j(EAB))

5.3 Zero-Knowledge Proof of Identity

Here we outline how to use the compression technique to reduce the amount of information
sent in each round of an isogeny-based zero-knowledge proof of identity. Let p be a prime
number of the form 2eA3eB · f ± 1. Throughout this subsection let E∗ denote the canonical
curve associated to the j-invariant of the isomorphism class of E.

Secret parameters: A supersingular curve E defined over Fp2 , a primitive 2eA-torsion
point S defining an isogeny φ : E → E/〈S〉, and an isomorphism φ0 : E/〈S〉 → (E/〈S〉)∗.

Public parameters: The elliptic curves E and E/〈S〉, generators P,Q for E[2eA ], and
the points φ0(φ(P )), φ0(φ(Q)).

Identification: Repeat m times:

1. Peggy picks R ∈ E[3eB ] and, using Vélu’s formulas, computes the elliptic curves

E/〈R〉, (E/〈R〉)∗, E/〈S,R〉,

and the isogenies

ψ : E → E/〈R〉, φ′ : (E/〈S〉)∗ → E/〈S,R〉, ψ′ : (E/〈R〉)∗ → E/〈S,R〉.

She also computes the isomorphism

ψ0 : E/〈R〉 → (E/〈R〉)∗.
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2. Peggy sends j(E/〈R〉) and j(E/〈S,R〉) to Victor.

3. Victor randomly selects a bit b and sends it to Peggy.

4. If b = 0, then Peggy computes the canonical bases {B1, B2} for E[3eB ] and {B′1, B′2}
for (E/〈S〉)∗[3eB ]. Peggy then sends α1, β1, α2, β2 ∈ Z/3eBZ to Victor, where α1B1 +
β1B2 = R, and α2B

′
1 + β2B

′
2 = φ0(φ(R)).

5. If b = 1, then Peggy computes the canonical basis {B′′1 , B′′2} for (E/〈R〉)∗[2eA ]. Peggy
then sends α3, β3 ∈ Z/2eAZ to Victor, such that

α3B
′′
1 + β3B

′′
2 = ψ0(ψ(S)).
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Chapter 6

Complexity

This chapter contains results from “Key compression for isogeny-based cryptosystems” by
R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi, to appear in AsiaPKC
2016. The compression and decompression operations require no private key material, and
indeed the operations can be unilaterally performed by any party or any observer. Accord-
ingly, the operations cannot have any effect whatsoever on the security of the underlying
scheme.

6.1 Space Requirements

For supersingular isogeny-based encryption to achieve a k-bit security level against a quan-
tum adversary, p needs to be approximately 6k-bits (3.2.1). For example, for 128-bit secu-
rity, take p ≈ 26·128 = 2768. Hence, each of 2eA and 3eB need to have 3k bits. Alice’s public
key is j(EA) ∈ Fp2 (12k bits) and the four elements of Z/3eBZ (3k bits for each), giving a
total of 24k bits for the k-bit level of security. Our compressed keys require 4 log p+ 1 bits
to store (the extra bit is to convey if a twist was used or not).

In Table 6.1 we present a comparison between the size of our compressed keys and the
minimum key size required for the 128-bit and 256-bit security levels from other major
families of post-quantum encryption primitives: Lattice-based and Code-based.

The key sizes in Table 6.1 for lattice and code-based schemes are based on classical
attackers only, because these schemes are often useful even in a classical setting, so the
published security analysis are classical. Quantum attacks may be slightly faster: for
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Table 6.1: Public key sizes in bits
Security level

Scheme 128-bit 256-bit
NTRU [20] 4 939 11 957
Ring-LWE [35] 7 498 15 690
McEliece (Goppa)[1] 1 991 880 9 276 241
McEliece (QC-MDPC) [27] 9 857 32 771
Isogenies 3 073 6 145

instance [16] demonstrates a 2112 quantum attack against the “128-bit” NTRU parame-
ters. By contrast, isogeny-based cryptosystems are motivated mainly by post-quantum
applications, so the security analysis and key sizes for isogeny-based cryptosystems as-
sume quantum attackers by default. Against classical attacks, key sizes for isogeny-based
cryptosystems can be further reduced by 33%.

6.2 Computational Requirements

It is computationally easy to compute j-invariants, canonical curves from j-invariants,
quadratic twists, scalar multiples of points on elliptic curves, isomorphisms between ellip-
tic curves, sums of points on elliptic curves, and to put elliptic curves in Weierstraß form.
These costs are relatively negligible compared to the costs of computing a basis and per-
forming discrete logarithms, so we ignore them.

The basis computation is done probabilistically. For a random point P , the point
[2eAf ]P has order 2eA with probability 1/eA. Hence, the expected number of point multi-
plications required is O(eA). Since the primes 2 and 3 will always be much smaller than
their exponents eA, eB, we have that

√
2 � eA. Then to solve two discrete logarithms in

Fp2 one can use Pohlig-Hellman twice, each with O(e2A) elliptic curve point multiplications
[30]. To compress her information, Alice must perform both of the above steps. After she
has exchanged information with Bob, she performs another basis computation, with cost
O(eA) (using

√
2 � eA again), to decompress. This gives a total theoretical runtime of

O(e2A).

We implemented the compression and decompression routines in Magma Computa-
tional Algebra System and C (by Brian Koziel) in order to benchmark these operations
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p = 2eA3eBf ± 1 22583161186− 1 234132183− 1 238632422− 1 25143323353− 1
Classical security (bits) 128 168 192 256
Quantum security (bits) 85 112 128 168
Alice Compression (sec) 0.238 0.873 1.988 3.318
Bob Compression (sec) 0.248 0.641 1.403 2.404
Alice Decompression (sec) 0.130 0.270 0.530 1.020
Bob Decompression (sec) 0.100 0.300 0.650 1.100

Table 6.2: Runtimes of our implementation for compression in Magma

p = 2eA3eBf ± 1 22583161186− 1 238632422− 1 25143323353− 1
Classical security (bits) 128 192 256
Quantum security (bits) 85 128 168
Alice Compression (sec) 0.453 1.518 3.697
Bob Compression (sec) 0.576 1.930 4.639
Alice Decompression (sec) 0.062 0.149 0.264
Bob Decompression (sec) 0.056 0.128 0.247

Table 6.3: Runtimes of our implementation for compression in C

and obtain an upper bound on their computational cost. Tables 6.2 and 6.3 gives the empir-
ically measured runtimes of our compression and decompression implementations for four
different choices of parameters. Magma computations were performed on the University of
Waterloo’s Biglinux server pool which consists of a 2.3 GHz SGI Altix XE H2106-G7 and a
2.3 GHz Dell PowerEdge R815. C computations were performed on an i7-4790k processor
at 4.0 GHz.

Weil pairings have been implemented in Magma, and so the two-dimensional ECDLP
computation is much faster than in C. For this reason, compression is more efficient in
Magma. However, C was more efficient in all other aspects, and since decompression does
not require a discrete log computation, the C implementation of decompression runs in less
time.

We remark that, assuming cheap storage and expensive bandwidth, the logical strat-
egy is to store both compressed and uncompressed copies of the key, and transmit only
compressed copies. In this scenario, the computational costs of compression and decom-
pression are incurred only once per key; for compression, once per key for the lifetime of
the key, and for decompression, once per key per recipient. Unlike space-saving strate-
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gies with NTRU and LWE, public key compression imposes no per-message encryption
or decryption overhead. NTRU and LWE also have a nonzero probability of decryption
failure (they are based on adding error vectors into the ciphertext, and occasionally the
error overcomes the intended signal), which causes a tradeoff between security, efficiency,
and error-rate, and represents a limiting factor in reducing key size for these two schemes,
whereas isogeny-based encryption schemes have no possibility of mathematical error.
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Chapter 7

Applications and Future Work

The most relevant application today for reduced key sizes is when there is an upper bound
in the protocol on the amount of bits allowed to be sent at a time. Popular systems Tor and
Bitcoin have this restriction in place, and in systems like SSH and TLS it is also usually
preferable to send as little data as possible.

Tor is currently the most widely deployed software for anonymous communication,
which it achieves by directing internet traffic through thousands of relays. Each cell of
data in Tor’s onion rooting network must be less than 514 bytes [13], and public keys are
transmitted within blocks of this size. Compared to isogeny-based cryptography, no other
known quantum-resistant cryptosystem can function well under this restriction (recently,
[31] showed how to incorporate NTRUEncrypt into the NTor protocol, but only after
increasing the cell size).

Both SSH and SSL currently provide confidentiality or privacy using public-key en-
cryption schemes which are not secure against quantum attacks. Isogeny-based public-key
encryption using our compression method is extremely space efficient, providing a strong
candidate for quantum-resistant deployment of these protocols.

Currently, the most time consuming step is solving the two-dimensional discrete log-
arithm problem, and so any developments for this computation will directly affect the
runtime of compression. There are also opportunities in the compression steps for assem-
bly optimizations and other performance enhancements.

The compression itself may also be subject to further optimization in the form of
larger reductions. We have recommended the use of the j-invariant for compression of
the elliptic curve, however there are other options. One such way is to fix a coefficient of
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EA : y2 = x3 + ax+ b, say a = −3, determine which elliptic curve in the isomorphism class
j(EA) satisfies this property, and send the corresponding b coefficient. However, for a fixed
j, there exists an elliptic curve in this class with a = −3 if and only if 1− 1728

j
is a quadratic

residue in Fp2
(

in which case the other coefficient is b = 2
√

1− 1728
j

)
. To overcome this,

define a global parameter β ∈ Fp2 to be a quadratic non-residue, but a cubic residue. The
product β(1 − 1728

j
) will be a quadratic-residue, and so Alice only needs to send the b

coefficient 2
√
β(1− 1728

j
) and an additional bit to alert Bob that she used β. Bob can now

compute the elliptic curve E ′A : y2 = x3 − 3β1/3x + 2
√
β(1− 1728

j(EA)
), which is isomorphic

to EA. For this to work, a specific cube root of β must also be publicly determined. This
alternate method required the same amount of space as sending the j-invariant, slightly
increases the amount of computation Alice must perform, and decreases the amount of
computation Bob must do to determine the short Weierstraß equation of Alice’s public
elliptic curve.
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