
An Optimizing Pulse Sequence Compiler
for NMR QIP

by

Carlos A. Pérez Delgado

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2003

c©Carlos A. Pérez Delgado 2003

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Quantum information processing is a multi-disciplinary science involving physics,

mathematics, computer science, and even quantum chemistry. It is centred around

the idea of manipulating physical systems at the quantum level, either for simulation

of physical systems, or numerical computation. Although it has been known for

almost a decade that a quantum computer would enable the solution of problems

deemed infeasible classically, constructing one has been beyond today’s capabilities.

In this work we explore one proposed implementation of a quantum computer:

Nuclear Magnetic Resonance (NMR) spectroscopy. We also develop a numerical

software tool, a pulse sequence compiler, for use in the implementation of quantum

computer programs on an NMR quantum computer. Our pulse sequence compiler

takes as input the specifications of the molecule used as a quantum register, the

desired quantum gate, and experimental data on the actual effects of RF pulses

on a sample of the molecule, and outputs an optimum set of pre and post ‘virtual’

gates that minimize the error induced.

iii

Acknowledgements

I am extremely grateful to both my supervisor in mathematics, Michele Mosca,

and co-supervisor in physics, Raymond Laflamme, for their incredible support and

(uncountably) infinite patience.

I wish to thank the University of Waterloo for the economic support that made

my Master’s studies —and this thesis— possible.

I also wish to thank those who have made my stay at Waterloo most pleasant:

Claudie, Theo, Marcela, Amandine, Eduardo and Bere, Francisco, Paquito, Alma,

Arturo, Enrique, and the whole CAWAMA gang.

Last but not least, I wish to give my deepest thanks to the first, and very best,

teachers I have ever had: my parents.

iv

Contents

1 Introduction 4

2 Preliminaries 10

2.1 Computability Theory . 11

2.1.1 Families of Acyclic Circuits 12

2.2 Brief Overview of Quantum Mechanics 19

2.2.1 The Stern-Gerlach Experiment 20

2.2.2 A Quantum world . 25

2.3 Qubits . 32

2.4 Quantum Circuits . 36

2.5 Quantum Computational Complexity 37

3 NMR QIP 42

3.1 NMR Spectroscopy . 42

3.1.1 Mixed Quantum States . 46

3.2 Computing with NMR . 50

3.2.1 Implementing Qubits . 51

v

3.2.2 Implementing Gates . 52

3.2.3 Measurement . 56

3.2.4 State Preparation . 64

3.2.5 Pseudo-pure States . 65

4 Pulse Compiler 70

4.1 Product operator formalism . 73

4.2 Pulse Compilation . 75

4.3 Pulse Compiler Algorithm . 77

4.4 Pulse Compiler Code . 86

5 Conclusions and Further Work 91

Bibliography 94

vi

List of Figures

2.1 Parity Circuit . 14

2.2 The Stern-Gerlach Experiment . 21

2.3 Expected and Actual Outcomes . 22

2.4 The Bloch Sphere . 28

3.1 Labelled trans-crotonic acid . 43

3.2 An NMR Spectrometer . 45

3.3 Chemical shift Hamiltonian Fourier analysis 59

3.4 Full Hamiltonian Fourier analysis 61

4.1 Hard vs. Soft Pulses . 71

4.2 Top-level Pulse compiler flow-chart 82

4.3 Pulse processing flow-chart . 83

4.4 Simulation of RF Pulse sequence flow-chart 84

4.5 Bird’s Eye view of the Pulse Compiler 87

vii

Preface

We set out to solve a very specific optimization problem given in the implementation

of quantum algorithms on an NMR quantum computer.

Given a desired quantum gate, described by a unitary complex-valued matrix

U , and the actual gate that the NMR spectrometer performs U ′, we wish to find pre

and post processing ‘virtual’ gates Epre and Epost (that must have a very specific

form as discussed in chapter 4) that can applied before and after the spectrometer’s

gate, so as to minimize:

D(U,EpostU
′Epre)

where D is the Manhattan or city-block distance metric, defined by:

D(A, B) =
∑
i,j

|Ai,j − Bi,j|.

Unfortunately, the problem is actually harder: the matrix U is not actually

given, rather it must be calculated. In order to calculate U it is necessary to

simulate the quantum evolution of the different nuclei in the molecule used as a

quantum register when it is submitted to the radio frequency pulses that constitute

the quantum gates.

There are several hurdles to be overcome, in order to do this. First of all, the

state space of the register molecule grows exponentially in the number of distin-

guishable spins. This is of course, one of the reasons why quantum computation is

desirable: simulating quantum systems on a classical computer is hard. We describe

1

2

a method to do this simulation, in a decently efficient matter, taking advantage of

the specifics of NMR spectroscopy.

The problem described is hard as it is, but there is more. Although the math-

ematics to describe the evolution of a quantum system with a time-independent

Hamiltonian have been studied since almost the beginning of the last century,

time-dependent Hamiltonians are harder to work with. The overall Hamiltonian

is, in our case, heavily time-dependent since it depends on the various RF pulses,

that vary with time.

In order to cope with this it is necessary to break up the time evolution into

discrete intervals, find the step-wise Hamiltonians of each, and then conjugate them

all to achieve overall evolution.

In short, in order to possibly achieve the task at hand, the total evolution of the

whole system is split into the step-wise evolutions of the sub-components: Divide

et vinci.

Although, at first, this may seem as a daunting task, with the right tools it

is actually achievable. Unfortunately such tools are found in such distinct areas

as optimization, linear algebra, computer science, quantum physics, and molecular

chemistry.

In this work we guide the reader, in the briefest possible way, through all the

basic principles that allowed us to understand, and finally give solution, to the

problem posed.

We begin with an introduction to QIP. We then continue to introduce the basic

notions used in QIP, starting with the basic notions of the disciplines on which

3

it is founded: computability theory, and quantum physics. Chapter two can be

used independently as a decent introduction to QIP for anyone with a standard

mathematical background.

In chapter three we give a comprehensive introduction to NMR QIP. This chap-

ter relies on the information of chapter two, but can be used independently as

introduction to NMR for people with an understanding of (theoretical) QIP.

Finally, in chapter five we discuss our own —humble— contribution to the disci-

pline: a pulse sequence compiler for NMR QIP. The discussion in this chapter relies

heavily on the notation, and information, introduced in the preceding chapters.

Chapter 1

Introduction

Quantum Information Processing (QIP for short) is a relatively new discipline with

profound and exciting implications. It brings together, and closes the gaps between,

some of the most important scientific disciplines developed in the twentieth century,

which had mostly, until now, advanced independently.

On one side there is information theory. Originally developed by Claude Shan-

non [CT91] for the study of communication complexity, it has grown to encompass

many other areas. Shannon’s is the defacto definition of entropy as ‘lack of infor-

mation’. As its name implies, information theory attempts to categorically study

what information ‘is’, and how to quantify it.

However, it is interesting to note, that information theory, by itself, was unable

to answer questions it, itself, had posed. For example, the entropy of an object is

left undefined. Shannon’s entropy applies only to a set, or ensemble, of objects. In-

formation theory would need the hand of another discipline that had been evolving

in parallel, in order to attack the deeper questions in its realm.

4

CHAPTER 1. INTRODUCTION 5

Fortunately, another discipline was also being developed at the time: (theoret-

ical) computer science. Born originally as a discipline of mathematics, from the

minds of mathematicians, computability theory is the answer to Hilbert’s tenth

problem (his famous Entscheidungsproblem). Based on the idea of finite compu-

tation, Church, Turing[Tur37], Post [Pos44], among others gave one of the last

century’s most important results (one that complemented Kurt Gödel’s earlier one

[G3̈1]): “not all functions can be calculated”.

Obviously, computability theory needs information theory. Computation is, af-

ter all, the “processing of information”. It was quite surprising, however, to see

how computation theory was able to complement and extend information theory.

By using the Alan Turing’s model of computation, the so-called Turing Machine,

Kolmogorov, Gregory Chaitin, among others were able to give a definition of en-

tropy that applied to individual objects. In the process of doing so, also giving (at

last after several hundreds of years of conundrum) a reasonable, formal definition

of the word random (see [LV97]).

Kolmogorov Complexity, also known as algorithmic complexity theory, has pro-

found implications in all areas of science, showing just how powerful the Turing

Machine is, as a model for computation.

As powerful as it may be, we must ask: is the Turing machine really a valid

model for computation? To understand this question we must first realize that

Turing’s model of computation, as well as Church’s and Post’s and all others of

that era, were purely mathematical models.

However, computation cannot be done in the vacuum. Computation is a physical

CHAPTER 1. INTRODUCTION 6

process, subject to the laws of physics. Two questions then arise. First, does the

Turing machine (or any other model of computation we might be interested in)

obey the laws of physics? And second, if it does, does it fully take advantage of

them?

In answering these two questions it makes sense to use the best, most up to

date, and successful theory of physics at our disposal: quantum theory.

Although quantum theory is regarded as “modern physics” it predates both

information theory, and computation theory. It began with the works of Max

Planck and Albert Einstein attempting to explain the nineteenth century’s physics

most important conundrums, such as the photo-electric effect, black-body radiation,

and the so-called ultraviolet catastrophe.

It led to Schrödinger’s, Heisenberg’s and Dirac’s formulations of quantum me-

chanics, and later to quantum field theory developed by Feynman, Schwinger and

others.

Modern quantum physics is, without a doubt, man’s most amazing achievement.

It studies the very nature of matter, and energy. It explains why atoms don’t

collapse, and how particles can be waves, and waves be particles.

As to computation and physics, the idea that computation is a physical process

is usually first attributed to Landauer. The first truly quantum mechanical model

of computation is due to David Deutsch [Deu85]. He was one of the first to develop

a quantum-mechanical model of computation: a model based on Turing’s Machine,

but extended using capabilities allowed by the laws of quantum mechanics. Other

early proposals are attributed to Feynman [Fey82], who noted that classical simu-

CHAPTER 1. INTRODUCTION 7

lation of quantum mechanical systems is inefficient, and Benioff [Ben80a] who gave

a first aproximation to what would later be called the Quantum Turing Machine.

It wasn’t until 1994, though, that it was realized by Peter Shor [Sho97] that a

quantum computer could be used to solve two very important problems that are

deemed infeasible classically: factoring, and the discrete logarithm problem.

The difficulty of solving these problems classically led to the standardization

and proliferation of cryptographic protocols based on these problems. RSA, Diffie-

Hellman, even the much touted Elliptic Curve cryptosystem all depend on the

difficulty of these problems (see [MOV96] or [Sti95] for a comprehensive discussion

of modern day cryptography). Shor’s result implies that anyone with access to

a quantum computer could easily compromise today’s e-commerce infrastructure.

This simple fact has led to an exponential growth in research activity in the area

of QIP during the last eight years.

There are, however, deeper more important questions in all the realms of knowl-

edge that we hope QIP will help answer. The quantum Turing machine is might

not be the ultimate model of computation: like the Turing machine, it is still mak-

ing unproven assumptions about Nature. The most important one, it posits the

fact that a quantum system used for computation must have a discrete spectra.

However, as far as we know, systems with continuous spectra (might) do exist (i.e.

a free moving particle). Whether or not this last statement is really true, or it is

itself a wrong assumption is a question being attacked by the discipline of quantum

gravity.

How much is a quantum state |φ〉, or ρ, really a description of the state, and

CHAPTER 1. INTRODUCTION 8

how much is it dependent on our relationship with the state? QIP, tries to answer

these questions by characterizing information of quantum systems.

Decoherence, and, in general, the transition from quantum to classical is best

explained as an irreversible loss of information. Again, this is the realm of QIP.

Many other examples abound. However, it should be clear by now that QIP has

an immense applicability to the areas of physics, mathematics, and computation;

perhaps even more.

In order to pursue these avenues of thought it is necessary to perform experi-

mentation on a quantum computer. The abilities of this quantum computer may

even be humble. As opposed to the industry and government agencies that are

mostly interested in quantum computers with several thousand qubits (QUantum

BITs), researchers in QIP need only a few qubits in order to experimentally test im-

portant foundational theoretical results. For example Deutsch’s algorithm requires

only two qubits to test.

For these purposes, todays implementation of quantum computers using NMR

(Nuclear Magnetic Resonance) are amply sufficient. At Waterloo a 7 qubit quantum

computer using trans-Crotonic Acid is currently being used.

Controlling a quantum computer is complicated business. Classical computers

are used to design and implement the quantum algorithms on the NMR spectrom-

eter. Classical computers are then used to read and interpret the results. The

software involved must be efficient, and correct.

Here we present a module used in the implementation segment of a quantum

algorithm. We introduce a general purpose optimizing pulse sequence compiler for

CHAPTER 1. INTRODUCTION 9

use in liquid state NMR.

This compiler takes as input the desired algorithm (broken up into ‘gates’), and

outputs the actual RF-pulses (the physical control mechanism in NMR) to be used.

It does this in such a way as to minimize introduced errors during gate operations.

In other words, it optimizes the efficiency of the gates involved.

In the following two chapters we introduce the necessary nomenclature necessary

to understand and appreciate this work. Chapter two gives a general perspective of

QIP, introducing notions of computer science and physics relevant to the discussion.

Chapter three gives an introduction to QIP using NMR. Finally, in chapter four we

give a complete discussion of our pulse-sequence compiler.

The compiler source, together with manuals, and diagrams can also be down-

loaded at http://www.math.uwaterloo.ca/∼caperezd/research/pulse compiler.

Chapter 2

Preliminaries

In this chapter we will present mathematical preliminaries that are absolutely fun-

damental in order to discuss NMR QIP, and the pulse sequence compiler presented

here.

QIP is a highly multi-disciplinary area. As such it is often the case that people

studying in the area come from very distinct backgrounds.

Hence, we deem necessary to give a —very quick— introduction to several of

the areas that comprise QIP. Some basic background that is needed later on, but is

not presented (i.e. it is expected from the reader) is some advanced linear algebra,

and basic Fourier analysis.

We begin in the next section with the theory of computation. In section 2.2 we

will introduce the basic notions of quantum mechanics, and finally in section 2.3 we

introduce quantum computation. This chapter serves not only as an introduction

to these areas, but also to introduce notation, and ideas that will be necessary in

the discussion to follow.

10

CHAPTER 2. PRELIMINARIES 11

Another important goal of this chapter is to bridge the gap between “physicist’s

parlance” and the more mathematical perspective.

We leave the specifics of NMR QIP for the next chapter.

2.1 Computability Theory

The main concern of the discipline of computer science is to answer the question:

what can, and what can’t, in principle, be calculated/solved/computed?

It is of unrecognized importance to stress the phrase ‘in principle’. Computer

science concerns itself with what can be done, and cannot, by any methods, be it

machine, man, or an as yet unimagined source of computing power, ever.

It is this fact that makes a computer science such a fundamental mathematical

discipline. It tells us which mathematical functions are actually solvable, and which

aren’t. Computability theory traces its origins to the works of Alonso Church, Emil

Post, and Alan Turing. Perhaps it is correct to go back even further to Kurt Gödel.

The study of algorithms is even older, dating back to the ancient Greeks.

Computer theoretic answers to the question “what can be computed?” begin

with mathematical models of computation. Several such models exist: self-calling

functions with base cases: recursive functions; abstract functions that can be ap-

plied to each other: λ-calculus; and perhaps the most commonly used today: a finite

state machine with an (infinite length) input tape, known as the Turing machine.

In our main discourse we will opt to use a more recent model called the circuit

model. This is a very intuitive model, and has the distinct advantage for us that it

is easy to carry into the quantum world of computation. Unfortunately it is not a

CHAPTER 2. PRELIMINARIES 12

complete model of computation, as we shall see below. For our purposes it suffices

to know that there do exist complete models of computation (those stated above).

2.1.1 Families of Acyclic Circuits

Simply put an algorithm is a succinct method for performing a certain function.

Every algorithm represents a function. On the other hand, perhaps the most im-

portant result of computability theory is that not all functions have algorithms

associated with them. In other words, there is simply now way to evaluate such

functions. Hence, they are called uncomputable.

Of those functions that are computable, not all can be computed with a rea-

sonable amount of resources such as time (duration of the algorithm), and space

(amount of workspace e.g. memory in a computer).

Formalizing what exactly ‘reasonable amount of resources’ exactly means is the

focus of computational complexity theory1. In order to do that we must introduce

formal notions of what is meant by algorithm, input, and output.

For simplicity we restrict ourselves to binary inputs and outputs. Hence, the

alphabet of our algorithms will be always the set Σ = {0, 1}. A string with this

alphabet is the concatenation of zero or more symbols 0 or 1. The set of all such

strings is denoted by Σ∗. A subset of Σ∗ is called simply a language.

It is important to note that any function that maps integers to integers, or any

finite-precision field onto another finite-precision one can be represented as simply

a function over the set of binary strings f : {0, 1}∗ −→ {0, 1}∗.
1In this work, whenever we mention complexity theory, we are referring to computational com-

plexity theory.

CHAPTER 2. PRELIMINARIES 13

An algorithm for a function f is a method that will, given the input string

representing x in binary will give the binary string for f(x) in return.

In complexity theory it is often more convenient to talk about decision problems,

instead of functions.

The decision problem of a language (a subset of all binary strings) L ⊆ Σ∗, is

to, given an input x, decide whether or not x belongs to the language x ∈ Lor

not. For example, if the language consists of all (binary strings representing) prime

numbers, the decision problem is to, given (the binary string representation of) an

integer, tell whether or not it is prime.

A formal way to characterize algorithms, both for functions and decision prob-

lems, is circuits.

Informally, a mathematical circuit is much like a physical one. Every input

symbol is seen as a bit of information travelling through the network. Input goes in

at the left end. It then passes through a series of gates, each of which acts only on

one or two bits. The gates somehow manipulate the information, and the correct

answers comes out at the right end. See figure 2.1.1 for an example.

A formal definition follows.

Definition 1 (Acyclic Circuit). An acyclic circuit is a directed, acyclic graph

G = (V, E), where each vertex is of the following form:

Inputs Have in-degree zero. We label inputs as x1, x2, . . ., or as one of two con-

stants 0 or 1.

Gates can be one of the following: not-gates (¬) with in-degree 1, or-gates (∨)

with in-degree 2, and-gates (∧) with in-degree 2.

CHAPTER 2. PRELIMINARIES 14

ÿ

ÿ

Ÿx
1

x
2

⁄
Ÿ

Figure 2.1: Parity Circuit

The vertexes with out-degree zero are called the outputs of the circuit.

It might seem that we lose generality since, we do not allow arbitrary bit oper-

ations, instead allowing only three operations. No generality is lost, however, since

the set (¬,∨,∧) is a universal set of gates. In other words, any Boolean function

can be written in terms of the previous set of gates. Another universal set of gates

is the NAND gate by itself (the NOR gate by itself is also universal).

A circuit can calculate functions of its inputs. For example the circuit in figure

2.1.1 calculates the parity of its two inputs. Also, circuits can be seen to decide

languages, by taking output zero to mean reject, and different from zero to mean

accept. For example the same circuit recognizes the language x1x2 : x1 	= x2.

Instead of allowing arbitrary input, we could posit that only the string of all

zeroes is allowed as leftmost input. The ‘real’ input is then created by applying a

NOT gate to all those bits whose value we wish initialized to one. Both definitions

are equivalent. We will prefer the second one, since it carries over better to the

quantum realm.

A limitation of circuits is that they can only work on inputs of up to a certain

size (two bits, in the previous examples).

CHAPTER 2. PRELIMINARIES 15

To get over this hurdle we define the family of acyclic circuits. In brief, a family

of circuits is a set of circuits that all solve the same problem, but for different sizes

of input. For example, we could have a family of circuits that squares its input.

There is then a circuit in the family for inputs of one bit, another inputs of two

bits, another inputs of three bits, and so on.

Definition 2 (Uniform Family of acyclic circuits). A uniform family of acyclic

circuits C = (C0, C1, C2, . . .), is such that there exists a recursive procedure (a TM)

that given n will output Cn in polynomial time2. Furthermore each Ci has exactly

i inputs.

Notice in the definition that we require circuits to be constructed using a re-

cursive procedure. We need another model of computation to build the circuit.

This makes the circuit model incomplete, as it cannot, by itself, define computable

functions.

We can define complexity classes solely in terms of circuits3.

Definition 3 (P). A language L is in P if and only if there exists a family of

uniform acyclic circuits such that the size of the circuit is bounded above by a fixed

polynomial P evaluated in n. That is |Cn| ≤ P (n), and the circuit Cn decides

whether a string of size n is in L. Formally, for any string x such that |x| = n, we

have that Cn(x) = 1 if and only if x ∈ L
2It could be argued that it is more appropriate to require logarithmic space in the size of the

input; however, for our purposes it is sufficient to expect polynomial time.
3This is one of the places where we take an unorthodox approach. Complexity classes are

usually defined in terms of Turing Machines. However, both definitions (in the classical setting)
can be shown to be equivalent.

CHAPTER 2. PRELIMINARIES 16

Definition 4 (EXP). A language L is in EXP if and only if there exists a family

of uniform acyclic circuits such that the size of the circuit is bounded above by 2P (n),

where P is a fixed polynomial P . That is |Cn| ≤ 2P (n), and the circuit Cn decides

whether a string of size n is in L.

We usually consider problems that are known to have polynomial size circuits

to be tractable, while those that are only known to have exponential size circuits

to be intractable; even though both kinds of problems are definitely decidable.

In order to define further complexity classes it is necessary to introduce the

concept of a random or non-deterministic gate, also known as a coin-flip.

Definition 5 (Non-deterministic Gates). A non-deterministic gate c is a gate

with no inputs (in-degree zero). A circuit with non-deterministic gates is called a

non-deterministic circuit. The set of non-deterministic gates {c0, c1, . . .} used in a

circuit C is called the non-deterministic base of C, denoted by $(C). The size of

the non-deterministic base of a circuit, |$(C)| is the level of non-determinism of

C, and we denote it by nC, or simply n when there is no ambiguity. A valuating

function appropriate to a circuit C is a complete function f : $(C) → {0, 1}.

The output of a non-deterministic circuit depends not only on its inputs but

also on the valuating function, hence it is not (entirely) correct to say y = C(x),

for a non-deterministic circuit, but rather we should say y = C(x, f), where f is a

valuating function appropriate for C.

Very powerful complexity classes can be defined in terms of non-determinism.

Definition 6 (NP). A language L is in NP if and only if there exists a family of

uniform non-deterministic acyclic circuits such that the size of the circuit is bounded

CHAPTER 2. PRELIMINARIES 17

above by a fixed polynomial P evaluated in n. That is |Cn| ≤ P (n). Furthermore,

for each x such that |x| = n, the circuit Cn decides whether x is in L in the following

sense: if x 	∈ L then Cn(x, f) = 0 for all valuating functions f appropriate for C.

If x ∈ L then Cn(x, f) = 1, for at least one valuating function f appropriate for C.

The reader can easily see that NP does not characterize any reasonable model

of computation. This is because in order to carry out the calculations of the afore-

mentioned type of circuits it is necessary to check all possible valuating functions

appropriate for the circuit in question. The number of valuating functions N appro-

priate for a circuit C is directly related to its degree of non-determinism, succinctly:

N = 2n (where n is the level of non-determinism of C). A simple result follows:

Theorem 1. P ⊆ NP ⊆ EXP.

The first inclusion comes from the fact that deterministic circuits are simply a

special case of non-deterministic ones (with level of non-determinism zero). The

second comes from the fact that we can easily simulate a non-deterministic circuit

of size p and non-determinism n with a deterministic circuit of size 2np.

The importance of NP comes from the fact that it characterizes a set of prob-

lems very well.

A well-known problem is SATISFIABILITY : given a Boolean formula in

conjunctive normal form (that is of the form
∧n

i=1(
∨m(j)

j=1 vij) where each vij is either

a variable or a negated variable) decide whether there exists a Boolean assignment

of each variable that makes the formula true.

By our definition of NP, it is easy to see that SATISFIABILITY ∈ NP. Also,

it is not too difficult to see that any algorithm that solves SATISFIABILITY

CHAPTER 2. PRELIMINARIES 18

would also solve any other problem in NP. We say that SATISFIABILITY

is NP-Complete. This result, proved originally in the Turing-Machine model of

computation, is of profound importance, and is known as Cook’s Theorem. In the

circuit-model it is almost a direct consequence of the definition.

Two more important classes follows:

Definition 7 (PP). A language L is in PP if and only if there exists a uni-

form family of non-deterministic acyclic circuits such that the size of the circuit

is bounded above by a fixed polynomial P evaluated in n. That is |Cn| ≤ P (n).

Furthermore, for each x such that |x| = n, the circuit Cn decides whether x is in

L in the following sense: x ∈ L if and only if Cn(x, f) = 1 for more than half

the valuating functions f appropriate for C. We say that the circuit decides L by

simple majority.

Definition 8 (BPP). A language L is in BPP if and only if there exists a family of

uniform non-deterministic acyclic circuits such that the size of the circuit is bounded

above by a fixed polynomial P evaluated in n. That is |Cn| ≤ P (n). Furthermore,

for each x such that |x| = n, the circuit Cn decides whether x is in L in the following

sense: if x ∈ L then Cn(x, f) = 1 for at least two thirds of all valuating functions

f appropriate for C. If x 	∈ L then Cn(x, f) = 0, for at least two thirds of all

valuating functions f appropriate for C. We say that the circuit decides L by clear

majority.

The importance of the previous class follows.

In an actual implementation of a circuit we could substitute all non-deterministic

gates with a random source, one that outputs either a 1 or a 0 with equal probability.

CHAPTER 2. PRELIMINARIES 19

By running the circuit several times with the same input x we can figure whether

x ∈ L with increasingly good probability.

Using basic probability it is not too hard to show that if the probability of

success of the algorithm is polynomially-bounded away from 1/2 (that is, for input

x, the probability of success is at least 1/2+ 1
poly(|x|)) —as is the case for algorithms

for problems in BPP— then by repeating the algorithm a polynomial (in the size

of the input) number of times the probability of success can be made exponentially

close to 1. On the other hand, if the probability of success of the original algorithm

is allowed to be exponentially close to 1/2 then an exponential number of trials is

necessary to bring the total probability of success up close to 1. This result is due to

Chernoff, and is known as the Chernoff bound. It is the reason why BPP captures

our notion of the set of problems efficiently solvable by random algorithms, rather

than PP.

This concludes our discussion of classical complexity theory. Much remains to

be said, but this will have to do. Now we turn our attention to the quantum realm.

2.2 Brief Overview of Quantum Mechanics

Here we will give a very brief introduction to some of the key concepts of quantum

mechanics. We will begin with a physical experiment that shows the principles that

allow us to use quantum systems for efficient computation.

CHAPTER 2. PRELIMINARIES 20

2.2.1 The Stern-Gerlach Experiment

We now describe a classic experiment in quantum mechanics. This experiment is

very much referred to in textbooks on quantum mechanics as it serves to illustrate

the most fundamental concepts of quantum mechanics.

The next discussion takes the same approach given in [Sak94] and [NC00].

The Stern-Gerlach experiment was proposed be Stern in 1921 and implemented

by himself and W. Gerlach in 1922.

Though the original was carried about using silver atoms, the same experiment

can be done using hydrogen [NC00] and the discussion thus is simpler.

Recall that a hydrogen atom consists of a single proton and an electron ‘orbiting’

around it. Both the proton and the electron have an electric charge (positive and

negative respectively).

There are two magnetic fields associated with an atom in general. First the

movement of the electron around the proton creates a magnetic field. This field

is completely described classically as one created by the movement of one charge

around another. However, in the case of the hydrogen atom, this movement is

completely symmetric (the orbital path describes a sphere around the proton), and

thus this field cancels itself out, and has a value of 0.

There is, however, another magnetic field called magnetic dipole moment. This

field is described, in quantum mechanics, as created by the intrinsic movement of

the electron, called spin.

The magnetic dipole moment µ of the atom is a three dimensional vector that

is directly proportional to the electron spin S. Say we want to measure the z-

CHAPTER 2. PRELIMINARIES 21

Figure 2.2: The Stern-Gerlach Experiment

component of µ (and thus measure the z-component of the spin Sz).

Then we can submit the atom(s) to a magnetic field which creates a force on

this direction. Much like two equal polarity magnets repel and different polarity

magnets attract, an atom with a positive z-component of µ will feel an upward

force while an atom with a negative value will feel a downward force.

The schematic view of this experiment is shown in figure 2.2.1. We call this

apparatus SGz since it is meant to measure the z-component of µ and thus of the

spin S.

Hydrogen atoms are heated up in an oven, from where they escape. We interpose

a collimating slit (an aperture that allows only a stream in one direction) in order to

CHAPTER 2. PRELIMINARIES 22

Figure 2.3: Expected and Actual Outcomes

guarantee a nice parallel stream of atoms. Then the hydrogen atoms are subjected

to the magnetic field.

It is interesting to see what happens when the atoms pass through the mag-

netic field: any atoms with a positive µz value would have their trajectory slightly

tilted upward, while those with negative µz value would have their trajectory tilted

downward, in both cases the tilt is proportional to the magnitude of µz. Since the

atoms leaving the oven do so in a very random fashion, we expect their electron

spins to be fairly random. Thus, in accordance to probabilistic laws, we expect to

have atoms distributed randomly in the z direction like in figure 2.2.1 a.

However, what is actually obtained is more like figure 2.2.1 b. How can we

CHAPTER 2. PRELIMINARIES 23

explain this? It is impossible to do so with classical probability theory. Rather we

must accept the quantum mechanical concept that electron spin is not continuous

in value, rather it is discrete or quantized, in this case it admits only two possible

values: z-spin up Sz+, and z-spin down Sz−.

Let us make now a more interesting experiment. Suppose we were to setup the

Stern-Gerlach apparatus in a way as to block all atoms with spin down. What if

we were to subject the remaining particles to another —exactly the same— Stern-

Gerlach apparatus, namely another magnetic field. Since we eliminated all particles

with spin down coming out of the first apparatus we would expect to see all particles

coming out of the second apparatus with spin up only. In this case actual results

reflect the expected outcome.

Now what happens if we tilt the second Stern-Gerlach apparatus 90 degrees, so

instead of measuring µz we measure µx? Since initially all particles have random

µ and the first Stern-Gerlach apparatus measures only the z-component and —

supposedly— leaves the x-component unaltered, we would expect to have exactly

half the atoms to have Sx+ and half to have Sx−. Again the actual outcomes of

the experiment reflect expected outcomes, and there are no surprises.

Now let us suppose we block all atoms with Sx− from the second apparatus, and

submit the remaining atoms to a third Stern-Gerlach apparatus, this time again

in the z-direction. Recall that we block all atoms having Sz− coming out of the

first apparatus, and all atoms having Sx− coming out of the second, so we expect

all atoms to have only Sx+ and Sz+ values, and thus our third Stern-Gerlach

apparatus should detect only positive Sz values.

CHAPTER 2. PRELIMINARIES 24

However, again Nature is not quite predictable. The real outcome of the exper-

iment is to have only half the atoms with Sz+ and the rest with Sz−. Classically,

there seems to be no reasonable explanation.

Quantum mechanics explains this with the uncertainty principle. In this case it

states simply that we cannot know both the x-component and the z-component (or

y-component etc.) of a given atom at the same time. Notice that from the moment

the atoms leave the first apparatus and up to the moment they enter the second

we know their Sz value. Once they enter the second apparatus and we measure the

Sx value the Sz value is irrevocably lost.

The pairs of values {Sz+, Sz−} and {Sx+, Sx−} are called conjugate bases. The

reason is that a quantum system (a hydrogen atom here) with Sz+ or Sz− value

can be deterministically measured if this is done with respect to the basis Sz+,

Sz− (with SGz apparatus for example) but will behave completely randomly if

measured with respect to the basis Sx+, Sx− taking any of the two values with one

half probability. The converse is also true.

This is the fundamental concept behind quantum cryptography4.

We now discuss a more mathematical explanation of the Stern-Gerlach experi-

ment.

4In quantum cryptography conjugate basis of photon polarization, as opposed to nuclear
spin, is used [BB84, BBG+90, MBG93]. For a comprehensive bibliography of quantum
cryptography see [Bra93]. Claude Crépeau keeps a an updated version of this paper at:
http://www.cs.mcgill.ca/∼crepeau/CRYPTO/Biblio-QC.html

CHAPTER 2. PRELIMINARIES 25

2.2.2 A Quantum world

In the Schrödinger picture of quantum mechanics, every quantum system, like nu-

clear spin, is represented by a state vector, or ket, that evolves in time. An arbitrary

state is denoted by |ψ〉 (pronounced ‘ket psi’).

Possible states include |Sz+〉, |Sz−〉, and |Sx+〉.
A (projective) measurement is represented by the conjugate transpose of a ket,

called bra. An arbitrary measurement is denoted as 〈ψ| (pronounced ‘bra psi’). A

projective measurement is, for example, when we setup the Stern-Gerlach experi-

ment to allow only atoms with Sz+ magnetization to pass through.

In this example, the projective measurement is 〈Sz + |. The absolute value

squared of the product of a bra 〈φ|with a ket |ψ〉 gives the probability of measuring

φ given that the system is in state |ψ〉.

P (m(γ) = φ | γ = ψ) = |〈ψ|φ〉|2 (2.1)

where m(γ) is the outcome of measuring system γ, and 〈ψ|φ〉 is an abbreviation

for 〈φ||ψ〉.
From equation 2.1 and the experimental observation we have that

|〈Sz + |Sz+〉|2 = 1

and,

|〈Sz + |Sz−〉|2 = 0.

CHAPTER 2. PRELIMINARIES 26

Since the probabilities of measuring the outcome Sz+ is 1 given that the system

is state Sz+ and 0 if the system is in state Sz−. We conclude that {|Sz+〉, |Sz−〉}
forms an orthonormal basis of the spin state-space. Therefore, we must be able to

write any other spin state as a linear combination of these two states.

From experimental observation we also obtain that:

|〈Sz + |Sx+〉|2 = |〈Sz − |Sx+〉|2 =
1

2
(2.2)

|〈Sz + |Sx−〉|2 = |〈Sz − |Sx−〉|2 =
1

2
. (2.3)

From equations 2.2 and 2.3 we deduce a possible way to write |Sx+〉 and |Sx−〉,
in terms of |Sz+〉 and |Sz−〉:

|Sx+〉 =
1√
2
|Sz+〉 +

1√
2
|Sz−〉

|Sx−〉 =
1√
2
|Sz+〉 − 1√

2
|Sz−〉.

As for the states Sy+ and Sy−, we know that:

CHAPTER 2. PRELIMINARIES 27

|〈Sz + |Sy+〉|2 = |〈Sz − |Sy+〉|2 =
1

2

|〈Sz + |Sy−〉|2 = |〈Sz − |Sy−〉|2 =
1

2

|〈Sx + |Sy+〉|2 = |〈Sx − |Sy+〉|2 =
1

2

|〈Sx + |Sy−〉|2 = |〈Sx − |Sy−〉|2 =
1

2

from which we conclude that the only way to write the states |Sy+〉 and |Sy−〉
in terms of |Sz+〉 and |Sz−〉 is

|Sy+〉 =
1√
2
|Sz+〉 + i

1√
2
|Sz−〉

|Sy−〉 =
1√
2
|Sz+〉 − i

1√
2
|Sz−〉.

We fully described the observed states of the previous section. However, these

are not the only possible quantum states of a simple 1/2 spin system. Fixing a

particular basis, say {|Sz+〉, |Sz−〉} any unit-length linear combination

|ψ〉 = α|Sz+〉 + β|Sz−〉 (2.4)

such that α, β ∈ C, |α|2 + |β|2 = 1 is a possible quantum state. Unit length is

necessary to guarantee that all probabilities add up to one.

It is easy to show that if |γ| = 1 then |ψ〉 and γ|ψ〉 represent the same state.

Hence, by convention α is taken to be real-valued.

CHAPTER 2. PRELIMINARIES 28

z

y

x

θ

φ

Figure 2.4: The Bloch Sphere

It is important to note that while global phase is not measurable, relative phase

is. That is the state |Sz+〉 + |Sz−〉 is different from |Sz+〉 − |Sz−〉; the first state

is equivalent to |Sx+〉, and the second to |Sx−〉, which are orthogonal states.

A convenient way of visualizing the state |ψ〉 of equation 2.4 is the Bloch sphere.

Let |ψ〉 = cos θ
2
|Sz+〉+ e−iφ θ

2
|Sz−〉. Then |ψ〉 is represented in the Bloch sphere

(see figure 2.2.2) as the unit vector (sin θ cos φ, sin θ sin φ, cos θ).

Say we measure the z-magnetization of the same (prepared) state |ψ〉. Whenever

we measure positive z-magnetization we note down +1, and we use −1 to refer to

negative magnetization. The expected value of such a measurement would then be:

|〈Sz+||ψ〉|2 − |〈Sz−||ψ〉|2. (2.5)

A more compact way to express equation 2.5 is to use observables.

CHAPTER 2. PRELIMINARIES 29

The z-magnetization is said to be an ‘observable’ of the spin. So are the x and

y magnetizations.

Observables are represented by Hermitian matrices. The x, y and z magnetiza-

tion observables are represented by the Pauli matrices σx, σy and σz respectively:

σx = |Sx+〉〈Sx + | − |Sx−〉〈Sx − |

σy = |Sy+〉〈Sy + | − |Sy−〉〈Sy − |

σz = |Sz+〉〈Sz + | − |Sz−〉〈Sz − |.

The expected value of an observable σ when measuring the state |ψ〉 is given

by5:

〈σ〉 = 〈ψ|σ|ψ〉. (2.6)

Equation 2.6 can easily be derived from equation 2.5.

Any closed quantum system evolves in time. Its evolution is given by a unitary

matrix, called the time-evolution operator U . Hence, if |ψ(0)〉 is the initial state

of the system the system at time t is given by |ψ(t)〉 = U(t)|ψ(0)〉. The operator

U is related to the total energy function, or Hamiltonian, of the system by the

Schrödinger equation:

5In figure 2.2.1, in equation 2.6, and in the rest of this chapter we have omitted a factor of
�/2.

CHAPTER 2. PRELIMINARIES 30

i�
d

dt
U = UH (2.7)

which has solution:

U = e−i 1
�

H . (2.8)

The exponential of a matrix is easily defined using the series expansion

eA =
∞∑
i=0

An

n!
.

We will not concern ourselves with solving the Schrödinger equation. It suffices

to know that evolution of a system is given by a unitary matrix, that depends solely

on the Hamiltonian of the system. Also, in what follows we will set the physical

constant � to 1, in other words, we set � as our unit (everything is then measured

in multiples of �). Thus, from henceforward we shall omit � from our calculations.

Examples of unitary matrices are the Pauli matrices. Seen as an operator the

Pauli matrix σx has the effect of mapping the state |Sz+〉 to the state |Sz−〉 and

vice versa:

CHAPTER 2. PRELIMINARIES 31

σx|Sz+〉 = (|Sx+〉〈Sx + | − |Sx−〉〈Sx − |)|Sz+〉

= |Sx+〉〈Sx + ||Sz+〉 − |Sx−〉〈Sx − ||Sz+〉

= |Sx+〉 1√
2
− |Sx−〉 1√

2

=
1√
2
|Sx+〉 − 1√

2
|Sx−〉

= |Sz−〉.

Finally, if two quantum systems (for example two quantum spins) are composed

to form single larger system, the state space of the composite system is the tensor

product of the two subsystems. The tensor of two state |ψ〉 and |φ〉, formally

denoted by |ψ〉 ⊗ |φ〉 is usually abbreviated as |ψ〉|φ〉 or even |ψφ〉.
Likewise, operators acting on two spins are tensor products of single spin opera-

tors. For example σx⊗σy, and σx⊗1l are both two spin operators. However, notice

that the second operator acts on the first spin, leaving the second one untouched.

For notational convenience we refer to such operator as σ
(1)
x , that is the Pauli oper-

ator x acting on the first spin. Likewise, σ
(2)
z is the Pauli operator z acting on the

second spin, formally it is 1l ⊗ σz.

Quantum mechanics is a huge and growing area of physical science. For a

more in depth look, see for example [Sak94]. An encyclopedic approach is given in

[Mes99], and an introduction in the context of QIP is given in [NC00].

We next turn to QIP proper.

CHAPTER 2. PRELIMINARIES 32

2.3 Qubits

In computation, as well as information theory the basic unit of information is the

bit6. The bit has two possible values: zero (0), and one (1).

In QIP the basic unit of information is the qubit. Like the spin-1/2, it is a two

dimensional complex-valued scalar vector of unit length. It is the generalization of

the simple bit to the quantum realm. A quantum bit can also have the values |0〉
and |1〉, but can also have as value any superposition of these two basis states.

A qubit can be represented physically in many ways, one such way is precisely

through a spin system, as is done in NMR QIP.

A special basis is fixed for the qubit, called the computational basis: {|0〉, |1〉},
representing the logical zero and one. In a spin system we usually map the logical

|0〉 and |1〉 to the physical |Sz+〉 and |Sz+〉 respectively.

All rules of measurements, evolution, and system composition apply equally

well to qubits. A system of n qubits rest in a 2n dimension vector space whose

basis states are |00 . . . 00〉, |00 . . . 01〉, |00 . . . 10〉, . . . , |11 . . . 10〉, |11 . . . 11〉; or more

compactly {|i〉}i∈0..2n−1.

Hence any n qubit register can be written as unit-length linear combination:

∑
i∈I

αi|ai〉

such that

6In information theory the gnat is also sometimes used, but the bit is, by far, more common.

CHAPTER 2. PRELIMINARIES 33

∑
i∈I

|αi|2 = 1.

Whereas in traditional quantum mechanics we are interested in the natural

evolution of a quantum system, in QIP, we induce a special evolution, designed to

carry out a a computation.

In such view, unitary operators acting on one or more qubits are referred to

as quantum gates. Examples of quantum gates are the, already seen, Pauli matri-

ces. The Pauli matrix σx is also called the NOT gate, as it has the effect (seen

in the previous section) of negating the values of the computational basis. The

identity matrix 1l is also a quantum gate, corresponding to the nop (no operation)

of traditional computing.

Another very important gate is the Hadamard (H) operator:

H|0〉 = 1/
√

2|0〉 + 1/
√

2|1〉

H|1〉 = 1/
√

2|0〉 − 1/
√

2|1〉.

Other important operators, acting on one qubit are the exponentials of opera-

tors. If σ is a Hermitian idempotent matrix7 then e−iθσ, is a unitary matrix equal

to cos θ1l− i sin θσ. It corresponds to a rotation of 2θ along the axis σ in the Bloch

sphere picture. For example, e−iπ/4σz corresponds to a rotation of π/2 along the

7All Pauli matrices are idempotent. Also, it is not hard to prove that any unit-length linear
combination of the Pauli matrices σ = ασx + βσy + γσz with |α|2 + |β|2 + |γ|2 = 1 is also
idempotent.

CHAPTER 2. PRELIMINARIES 34

z-axis.

An important fact useful in understanding NMR QIP is that any quantum

single-qubit operation can be seen as a rotation, in the Bloch sphere picture, of

an angle θ along an arbitrary axis �n = (nx, ny, nz). Such a rotation is written as

e−iθ(nxσx+nyσy+nzσz).

We shall see in chapter 4 that even operations of the type e−iθσz⊗σz , where the

exponent includes the tensor of two or more matrices can be seen as a rotation in

a generalization of the Bloch sphere called product operator space.

An important two-qubit operator is the c-not. It is given as follows:

CNOT |00〉 = |00〉

CNOT |01〉 = |01〉

CNOT |10〉 = |11〉

CNOT |11〉 = |10〉.

Classically, we can think of the c-not as flipping the second register if and only

if the first register is set to 1. In the quantum case, it is subtler. We shall see in

the next section, how this, and other, subtleties allow us to do fast computations.

The CNOT gate, in conjunction with arbitrary rotations of single qubits com-

poses a complete set of quantum gates. A complete set of quantum gates is one that,

given any arbitrary Hamiltonian H, H can be simulated with arbitrary precision,

using only quantum gates in the set.

CHAPTER 2. PRELIMINARIES 35

The proof of the fact the CNOT and single qubit gates form a complete set of

gates can be found in [NC00].

We see then quantum computation as inducing a set of quantum gates performed

on a system, that is initially in a well defined state (see below), and performing a

measurement at the end.

For example, if the set of gates (unitary transformations) that we are to perform

are U1, U2, . . . , Un then what we are doing is performing the operation:

|ψ0〉 −→ UnUn−1 . . . U1|ψ0〉

By setting U = U1U2 . . . Un we see that U is the evolution operator of the

whole system. Now we can also turn around and see computation from a different

perspective:

Given a Hamiltonian, break up its evolution operator U = e−i�H into a set of

achievable quantum gates U1, U2, . . . , Un, and perform them on an appropriately

initialized system.

This view is the one normally taken when one is interested in simulating quan-

tum systems. However, it is interesting to see that both views apply equally well

to both simulation and computation. In a deep and meaningful way, we conclude

that experimentation and computation are one and the same.

We now introduce a formalism that is very useful in designing, and presenting,

quantum algorithms.

CHAPTER 2. PRELIMINARIES 36

2.4 Quantum Circuits

David Deutsch [Deu85] was the first to formalize the idea of a Quantum Computer.

He used the Turing Machine formalism, and extended it to encompass quantum

states. In short, the tape of a Quantum Turing machine, consists of an infinite

discrete number of two-state quantum systems, or qubits. The head of the QTM is

also a finite-dimensional quantum system.

Computational complexity of quantum Turing machines was analyzed in depth

in [BV97]. We will, however, limit ourselves to the quantum circuit model. For

the most part these two computational models are equivalent (see [Yao93]), though

there are some perks.

The inputs to a quantum circuit are assumed to be |0〉. Hence a quantum

circuit with n qubits begins in the state |0n〉. The ‘input’ string is created by

applying unitary transformations to the qubits. In section 2.1.1 we stated that for

classical networks it is equivalent to simply allow any arbitrary input to circuit.

In the quantum case we wish to be more careful. We wish to guarantee that all

values carried along the network are computable. If we were to allow arbitrary

inputs to the quantum circuit, then in principle a qubit could be input in the state

|0〉 + e−iΩ|1〉 where Ω is an uncomputable number.

Furthermore we restrict gates to be unitary operators acting on only one or two

qubits, where all entries in the matrix representation of the operator are computable.

We shall call such operators computable.

Definition 9 (Quantum Acyclic Circuit). A quantum acyclic circuit is a di-

rected, acyclic graph G = (V, E), where each is vertex is of the following form:

CHAPTER 2. PRELIMINARIES 37

Inputs Have in-degree zero. We label inputs as |x1〉, |x2〉, These vertexes have

out-degree one.

Gates Can be of two types: Arbitrary, computable one-qubit gates, or CNOT. One

qubit gates have in-degree and out-degree one. CNOT gates have in-degree

and out-degree two.

Previously we stated that Nielsen and Chuang [NC00] showed that CNOT and

arbitrary single qubit gates are universal in the sense that an arbitrary gate U can

be expressed exactly as a product of these gates.

Now if U is a computable unitary n × n matrix, the same proof shows that it

can be decomposed into a product of computable single qubit gates, and CNOT.

Hence our definition correctly captures quantum computation.

One possible flaw of the above definition is that it uses an infinite set of gates.

We can restrict ourselves to circuits that only use a finite set of gates, if we are

willing to simulate any unitary transformation approximately only [NC00].

Notice also that in contrast to the classical case, every gate is required to have

exactly the same out-degree as its in-degree, in other words FANOUT is not al-

lowed. This is because, in general, it is impossible to copy a quantum state.

A simple, yet powerful, example of a quantum circuit is given in inset 2.4.1.

2.5 Quantum Computational Complexity

Among the quantum complexity classes developed so far, three are essential to our

discussion. We shall now go over them, and the most important results pertaining

CHAPTER 2. PRELIMINARIES 38

Deutsch’s Problem is defined as follows: Let f : {0, 1} → {0, 1} be any function
that maps a single bit to a single bit. Find out, using the minimum number of
queries, whether f is constant, that is f(0) = f(1), or f is balanced, in other words
f(0) 	= f(1) [Deu85]. Note that this is equivalent to calculating f(0) ⊕ f(1).

It is easy to see that classically, even with a probabilistic algorithm, it is im-
possible to decide Deutsch’s problem with any advantage with less than two queries.

However, the quantum circuit below, due to Cleve, Ekert, Macchiavello and Mosca
[CEMM97], gives the correct answer with just one query (the gate U is such that
U |x〉|y〉 = |x〉|y ⊕ f(x)〉):

0

0

H

H H

H

X

U
(a) (b) (c) (d) (e)

.

Before we analyze the algorithm lets note that U |x〉|y〉 = |x〉|y ⊕ f(x)〉, hence:

U |x〉(|0〉 − |1〉) = |x〉(|0 ⊕ f(x)〉 − |1 ⊕ f(x)〉 =

|x〉(−1)f(x)(|0〉 − |1〉) = (−1)f(x)|x〉(|0〉 − |1〉).

Now, we analyze the evolution of the quantum register through the quantum circuit
above:

(a) = |0〉|0〉
(b) = |0〉|1〉
(c) = (|0〉 + |1〉)(|0〉 − |1〉)
(d) = ((−1)f(0)|0〉 + (−1)f(1)|1〉)(|0〉 − |1〉)

= (−1)f(0)(|0〉 + (−1)f(0)⊕f(1)|1〉)(|0〉 − |1〉)
= (|0〉 + (−1)f(0)⊕f(1)|1〉)(|0〉 − |1〉)

(e) = |f(0) ⊕ f(1)〉|1〉

Hence, the circuit outputs the correct answer in the first qubit.

Inset 2.4.1: Deutsch’s Problem

CHAPTER 2. PRELIMINARIES 39

to them. We will introduce one further class when we discuss NMR QIP.

Definition 10. EQP is the set of languages for which there exists a polynomial

size quantum circuit that decides L deterministically, i.e. it outputs the correct

answer with probability 1 [BV97].

Theorem 2. P ⊆ EQP .

The inclusion is not that obvious. It was proved by Bennett that all non-

reversible operations can implemented using only reversible ones. Hence, unitary

operators (which, by nature must be reversible) can simulate any type of compu-

tation, reversible or not, and the previous result is valid. Furthermore, it must be

stated that although there is no conclusive proof, there exists good evidence that

the inclusion is strict [BV97].

Definition 11. ZQP is the set of languages for which there exists a polynomial

size quantum circuit that either accepts, rejects or fails. If it accepts, then the

input is guaranteed to be in the language, likewise, if it rejects then it is guaranteed

not to be. Furthermore the probability that the circuit fails for any given input is

polynomially bounded away from 1.

Note that in this definition a quantum computer is not required to give an an-

swer, however if it does give an answer it is guaranteed to be the correct one (hence

the name which stands for zero error quantum polynomial time). An example of

an algorithm of this type is Deutsch’s original solution to his problem [Deu85].

Definition 12. BQP is the set of languages for which there exists a polynomial

size quantum circuit that gives the correct answer with probability 2
3
.

CHAPTER 2. PRELIMINARIES 40

Similar to the results above we have the following one:

Theorem 3. BPP ⊆ BQP.

As in the classical setting, we regard BQP as the set of languages that can

efficiently be decided on a quantum computer. The next result follows directly from

the definitions:

Theorem 4. EQP ⊆ ZQP ⊆ BQP.

Not much is known about the relationship between classical and quantum com-

putational complexity classes. One important result however is the following one

taken from [Cle99]:

Theorem 5. For any n-qubit quantum circuit with m gates there is a classical

probabilistic circuit that ‘simulates’ it with accuracy ε that uses O(2nm3log2(1/ε))

gates.

An important consequence is the following:

Corollary 1. BQP ⊆ EXP.

Actually BQP is in a smaller class called P �P . For the definition of such a class

see [Pap94].

A very important problem, both in science and industry is FACTORING.

In short, the problem is given an n-bit composite number, find a prime factor.

FACTORING is considered a —classically— difficult problem, since it is not

known to be in P or even BPP. However, one of the most famous results in quantum

computing is the following:

CHAPTER 2. PRELIMINARIES 41

Theorem 6. FACTORING ∈ BQP.

This last result is from [Sho97]. He gives in fact a circuit of size O(n2). A dif-

ferent analysis of the algorithm is given in [CEMM97], [Mos99] and [NC00]. Another

very important problem related to FACTORING is DISCRETE LOGARITHM .

This is also shown to be in BQP.

Chapter 3

NMR QIP

3.1 NMR Spectroscopy

Nuclear Magnetic Resonance (NMR) spectroscopy was discovered in 1945 [Fre98].

Since then it has matured and become one of the most important techniques in

diverse areas, from biology and medicine, to chemistry and physics. NMR is used

today to investigate the structure of a molecule in a liquid state and for solid state

structure analysis.

NMR spectroscopy uses the intrinsic magnetic moment, or spin, of the nuclei

in the molecule. A (large) sample of the molecule is dissolved in a liquid and then

set in a strong magnetic field. This causes the nuclei to precess (except those

nuclei that happen to be aligned with the external force), causing a magnetic field.

Although the magnetic field of a single nucleus is far too weak to be registered with

present day technology, by using a very large sample (in the order of 1019), (an

approximation to) the overall magnetization —referred to as bulk magnetization—

42

CHAPTER 3. NMR QIP 43

C2

C1

C3

C4H1

H2

M

Figure 3.1: Labelled trans-crotonic acid

can be recorded over time.

Different types of nuclei precess at very different frequencies. The frequency of

precession of each nucleus is usually called its Larmor frequency after the British

physicist Joseph Larmor (1857-1942).

Commonly used nuclei in NMR include hydrogen, carbon-13, fluorine-19, phosphorus-

31 and nitrogen-15.

Just as any two nearby magnetic fields interact so do nearby nuclei. These

interaction also influence the precession frequency of each nucleus.

In common NMR spectroscopy this difference in precession frequency is used to

investigate the structure of the molecule. In QIP the knowledge of the structure

of the molecule is used to distinguish the contribution to overall magnetic field by

each of the different nuclei of the same type.

For QIP each nucleus is used as a different qubit. Since it is necessary to

CHAPTER 3. NMR QIP 44

be able to distinguish each qubit separately, molecules are chosen that are highly

asymmetrical. This is to ensure that the bulk magnetization of each nucleus is

distinguishable from other nucleus of the same type (we see later on that this is

one of the hurdles on the road toward scalable QIP with NMR).

In experiments currently done at the University of Waterloo, as well as other

places (MIT, LANL), the molecule of choice is trans-crotonic acid (CH3-CH=CH-

COOH). Figure 3.1 shows a representation of the molecule. The nuclei used for

QIP are the four carbons, the two hydrogen nuclei adjacent to the double bond,

and the spin-1/2 component of the methyl group.

In implementing a quantum algorithm on a NMR spectrometer the final mea-

surement is obtained using coils attuned to the different Larmor frequencies of each

type of nucleus to measure the overall phase and magnitude of the magnetization.

Post processing is done to obtain actual values for the different nuclei of the same

type.

In order to implement gates, radio-frequency, or RF, pulses attuned to the

precessing frequency of each nucleus are used. To prepare the initial state, these

same RF pulses, together with a gradient magnetic fields are used.

In figure 3.2 a schematic picture of a spectrometer is shown. The sample is

introduced into the central core, inside the probe. The probe (shown in the insert)

contains the coils used both for the RF-pulses and the magnetic fields gradients.

The probe is surrounded by a superconducting magnet. The whole machinery is

controlled by a regular UNIX machine.

In the next sections the details of computation with NMR are more fully ex-

CHAPTER 3. NMR QIP 45

Probe and
sample

Super
conducting
magnet

Vents

Fill ports

Liquid
nitrogen

Liquid helium

RF source
 and signal
processing

~ 50

Gradie

Front view
gradient
and RFs

Back view
gradient

only

Back view
hydrogen
RF only

Carbo

Hydrogen

Figure 3.2: An NMR Spectrometer

CHAPTER 3. NMR QIP 46

plained.

3.1.1 Mixed Quantum States

Before continuing it is necessary to take a moment to study a different formalism

to represent quantum states and evolution than the one introduced in chapter 1.

This is the density matrix formalism.

In an NMR sample, the number of molecules is enormous (around 1020). The

RF-pulses, and the final measurements act on a specific nucleus of the whole en-

semble of molecules in the sample. For example, an RF-pulse attuned to one of the

protons in the register-molecule will act on that same proton, of all the molecules

in the sample.

However, not every molecule will have that proton in the same state. Some

molecules, say 30% may have the proton in the state |ψ〉 while the other 70%

might have it in the state |φ〉. We can refer to this mixture as the ensemble

{(0.3, |ψ〉), (0.7, |φ〉)}.
A NOT (X) gate applied to the proton would then change the ensemble to the

mixture {(0.3, X|ψ〉), (0.7, X|φ〉)}. A measurement in the computational basis of

the whole ensemble will have an expected value, 〈z〉 = 0.3〈ψ|σz|ψ〉 + 0.7〈φ|σz|φ〉.
This method of handling mixed states is cumbersome, especially when referring

to highly mixed states. Also, due to the nature of quantum measurement, it over-

specifies quantum systems.

Instead of referring to parts of an ensemble directly it is possible assign to the

whole ensemble the mixed quantum state ρ = 0.3|ψ〉〈ψ| + 0.7|φ〉〈φ|. In this case ρ

CHAPTER 3. NMR QIP 47

is called the density matrix of the ensemble. It is related to the probability density

function in classical statistics, in the sense that it gives a statistical prediction of

measurements on an ensemble of quantum systems.

Density matrices are also a convenient representation of quantum system where

decoherence is involved. Decoherence, in short, is the randomization of quantum

state due to unwanted interaction with other systems.

The evolution of a density matrix under a unitary transformation is given by

the formula:

ρ
U−→ UρU †. (3.1)

The trace of an operator U is defined to be

Tr(U) =
∑

i

〈bi|U |bi〉

where {|bi〉} is taken to be any orthonormal basis (it can be easily shown that

the trace is invariant under change of basis). In terms of matrices the trace is

simply the sum of the diagonal elements.

The definition of trace has the following easy to prove consequences:

Tr(AB) = Tr(BA)

Tr(A + B) = Tr(A) + Tr(B)

Tr(zA) = zTr(A)

CHAPTER 3. NMR QIP 48

for any two matrices A and B, and scalar z.

The expected outcome of an observable 〈σ〉 is given by the following equation

〈A〉 = Tr(ρσ) (3.2)

We can derive equation 3.2 from the law of total probabilities P (a) =
∑

i P (a|xi)P (xi),

in the following way.

Let

ρ =
∑

i

pi|bi〉〈bi|

then using the law of total probabilities we have that

〈σ〉 =
∑

i

pi〈bi|σ|bi〉

=
∑

i

pi〈bi|σ1l|bi〉

=
∑

i

pi〈bi|σ
∑

j

|bj〉〈bj||bi〉

=
∑
i,j

pi〈bi|σ|bj〉〈bj||bi〉

=
∑
i,j

〈bj||bi〉pi〈bi|σ|bj〉

=
∑

j

〈bj|
∑

i

pi|bi〉〈bi|σ|bj〉

CHAPTER 3. NMR QIP 49

=
∑

j

〈bj|ρσ|bj〉

= Tr(ρσ)

where we have used the fact that for any orthonormal basis {|bj〉}, 1l =
∑

j |bj〉〈bj|.
An important fact to note is that the density matrix completely describes the

statistics of a state. For example, an equal mixture of states |Sz+〉 and |Sz−〉
and equal mixture of states |Sx+〉 and |Sx−〉 have exactly the same measurement

statistics. From measurements alone, we would not be able to distinguish both

mixtures.

Notice that they have the very same density matrix. Hence the density ma-

trix is a better way to represent mixtures: it has all the information necessary to

characterize a mixed quantum state, and no more.

A state represented by a density matrix ρ is usually referred to as a mixed

quantum state, as opposed to a pure quantum state given by a state vector |ψ〉.
However, a density matrix can represent pure states. For example ρ = |ψ〉〈ψ| and

the vector |ψ〉 represent the same state.

Finally, a density operator also has a representation in the Bloch sphere. The

state ρ corresponds to the point (Tr(ρσx), T r(ρσy), T r(ρσz)). Although pure states

lie always on the sphere’s surface a mixed state can lie anywhere inside the sphere.

The point (0, 0, 0) is the completely mixed or random state. It corresponds to the

density matrix ρ = 1l.

Recall that in quantum computing we wish to measure in the computational

basis. Assuming the usual correspondence, logical |0〉 and |1〉 are represented by

CHAPTER 3. NMR QIP 50

the physical spins |z ↑〉 and |z ↓〉 respectively, the probability p of measuring a 1

on qubit n satisfies the equation 1 − 2p = Tr(ρσ
(n)
z), therefore

p =
1 − Tr(ρσ

(n)
z)

2
.

Although we introduced the density operator in the setting of mixtures, it must

me noted the density operators are used to refer to the state of a single quan-

tum system, where —through decoherence for instance— there has been loss of

information, and a complete description of the state is lacking.

For a more complete description of the density matrix formalism see for example

[NC00]. We now turn back to NMR QIP.

3.2 Computing with NMR

DiVincenzo gives five requirements that a system should obey in order for it to be

suitable for general purpose, scalable, quantum computation:

1. A scalable physical system with a mapping of qubits onto this system

2. A method for initializing the state of the system to an a priori known state,

usually corresponding to |0〉⊗n under the above mapping.

3. A large decoherence-time to gate-time ratio,

4. Sufficient control of the system via time-dependent Hamiltonians in order

to effectively implement a universal set of gates on the system’s qubits, and

finally

CHAPTER 3. NMR QIP 51

5. A measurement operation on the system’s qubits.

The requirement for state initialization seems to imply that the ability of a

system to exhibit pure quantum states is necessary for quantum computation, a

requirement that is not fulfilled by NMR spectroscopy. We shall see, however, in

section 3.2.5, that it is possible to do computation with a weaker supposition, the

ability to create so-called pseudo-pure states.

We shall now discuss in detail how to provide four of DiVincenzo’s five require-

ments for QIP, starting with qubit implementation. Fault tolerant QIP will be the

focus of the next chapter.

3.2.1 Implementing Qubits

The spin of each nucleus in the register molecule represents a single qubit. Recall

that the nuclear-magnetic spin of a particle is a vector (ray) in real-space. Typically,

a qubit to spin mapping associates the logical state |0〉 with the spin state |sz+〉,
and similarly |0〉 with |sz−〉.

One problem remains however. The strong fixed magnetic field of the spectrom-

eter induces the evolution |ψt〉 = eiωσzt/2|ψ0〉. Therefore, each qubit is constantly

changing its value, precessing around the z-axis at the so-called Larmor frequency;

this is a handicap if these qubits are to be used for computation.

A simple solution is to carry the computations in a frame of reference that

rotates at the same frequency as the qubit in question. This frame of reference is

aptly named the ‘rotating frame’, or sometimes the ‘logical’ frame.

Since each nucleus has a different Larmor frequency, the rotating frame for each

CHAPTER 3. NMR QIP 52

nucleus is different.

The ‘logical’ frame and the ‘standard’ frame for each qubit are related by the

equations:

zl = zs

xl = xs + ωt

yl = ys + ωt

where xl, yl and zl are the Bloch sphere coordinates in the logical basis, and

xs, ys and zs are the coordinates in the standard frame.

Care must be taken, hence, to effectively carry out gates in the correct ‘logi-

cal’ frame, and to correctly translate measurements results, since from the spin’s

perspective the laboratory and all its equipment is rotating.

3.2.2 Implementing Gates

In chapter two we mentioned that arbitrary one qubit gates are required in order to

achieve a universal set of gates. However, in order to achieve an arbitrary rotation

θ along an arbitrary axis �n = (nx, ny, nz), it is sufficient to be able to achieve π/2

along the x-axis along with arbitrary rotations along the z-axis. Inset 3.2.1 shows

how to achieve this.

Now, a rotation of φ along the z-axis is easily achieved by simply updating the

value of the rotating frame. No actual physical operation is needed, and thus, as a

CHAPTER 3. NMR QIP 53

A rotation along the direction �n = (nx, ny, nz) by an angle θ can be achieved by
the following combination of the rotations:

e−i α
2

Zei π
4

Xei β
2
Ze−i π

4
Xe−i θ

2
Zei π

4
Xe−i β

2
Ze−i π

4
Xe−i α

2
Z

where

α = tan−1 ny

nx

β = tan−1 nx

nz

.

To prove that such sequence indeed achieves the desired rotation it is sufficient to
expand, and then simplify the expression.
Intuitively it is easy to see, however, how the sequence works. The first three
rotations serve to align the z-axis with the vector �n = (nx, ny, nz), the fifth rotation
achieves the desired operation by rotating along the z-axis (which points along �n),
and the last four rotations return the z-axis to its proper alignment.

Inset 3.2.1: Achieving arbitrary rotations

basic computational operation, it is considered to take zero time.

To achieve a rotation along the x-axis it is necessary to ‘tilt’ the spin by means of

an electromagnetic pulse. However, a constant electromagnetic pulse (as observed

from the laboratory) would seem to rotate as seen from the spin’s logical frame.

The electromagnetic pulses emitted by the spectrometer are relatively weak

compared to the constant external field. Hence, the rotation along the z-axis is

much faster than the rotation along the x-axis induced by the pulse. The effects of

the pulse would mostly cancel out.

This is because as the nucleus precesses along the z-axis the electromagnetic

pulse changes from pushing in the x+, to pushing in y+, the x−, the y−, and

again the x+ direction and so forth.

The solution is to emit the electromagnetic pulse at the same frequency as the

CHAPTER 3. NMR QIP 54

Larmor frequency of the nucleus in question. This way, the pulse looks constant

from the nucleus rotating frame perspective. This sort of pulse is called a resonant

pulse. Since the Larmor frequency of the nuclei in question are normally in the

hundreds of MHz, the pulses used are in the radio frequency. Hence the name:

RF-pulses.

Since different kinds of nuclei have very different Larmor frequencies, a pulse

that is resonant with a carbon nucleus will seem to be rotating highly from the

perspective of a hydrogen nucleus rotating frame. Hence, for this latter nucleus the

effects of the pulse will cancel out almost completely.

Although different types of nuclei have very different Larmor frequencies, similar

nuclei do not. Hence, an RF pulse designed to implement a rotation of one carbon

nucleus, will likely affect the other carbon nuclei in the molecule. This is called

‘crosstalk’ and is one of the most important causes of errors in NMR QIP.

The solution to such a problem is one of the main focuses of this work, and will

be more amply discussed in the next chapter.

Two-Qubit Gates

The effects of each nuclei magnetic dipole moment make nearby nuclei interact, not

unlike nearby magnets do [LKC+02].

If the interaction between two nuclei is not very strong, then the evolution

on the two spins under it can be described by the Hamiltonian H = 2JπZ1Z2 +

φZ1 + θZ2 where φ and θ depend on the Larmor frequencies of the first and second

spin respectively. Since this Hamiltonian is invariant under rotation along the z-

axis we can study the evolution under the rotating frame of each nucleus. The

CHAPTER 3. NMR QIP 55

Here is a pulse sequence that implements the C-NOT gate.

Z
Z

90

Y
−90

Y
90

90
Z

Z
−90

A very simple analysis comes from studying the gate on inputs |0〉|ψ〉, |1〉|ψ〉. By
linearity, the analysis then extends to arbitrary inputs.

On input |0〉|ψ〉 the σz on the second qubit cancels out with the the effect of the
j-coupling: the j-coupling rotates the second qubit 90 degrees along the z-axis, and
the σz gate rotates it back. The σy gates then cancel out.

On input |1〉|ψ〉 the j-coupling and the σz add up, to create a 180 degree rotation
of the second qubit along the z-axis. The σy gates transform this into a 180 x
rotation since σx = σyσzσy.

The σz on the first qubit is to ensure the correct phase of the first qubit.

Inset 3.2.2: Implementing the C-NOT Gate

Hamiltonian then becomes H = 2JπZ1Z2. Hence the evolution can be seen as

|ψt〉 = e−i2tJπZ1Z2|ψ0〉.
Intuitively, if the first spin is in the state |0〉, then the second spin rotates

clockwise, if the first spin is in the state |1〉, then the second spin rotates counter -

clockwise. By linearity of the quantum evolution this behaviour extends to any

arbitrary state.

As we have already seen, the C-NOT together with arbitrary one-qubit gates

is universal. In the last section we showed how to implement arbitrary one-qubit

CHAPTER 3. NMR QIP 56

gates in NMR. An NMR pulse sequence to implement the C-NOT gate is given in

inset 3.2.2.

The problem with the j-coupling is that it cannot be ‘turned on and off’ at

will. It is a constant physical effect. There is a method, however, that corrects for

the unwanted j-coupling evolution. It is called ‘refocusing’ and is fully discussed in

inset 3.2.3.

3.2.3 Measurement

As mentioned earlier, the precession of the nuclei around the z-axis creates a mag-

netic field in the x-y plane. A coil, electronically tuned in to the frequency of this

precession is able to measure the overall magnetic field created by a very large

number of precessing nuclei.

Since the different type of nuclei precess at very different frequencies, different

coils tuned in to different frequencies are used to measure the amplitude and phase

of the magnetic field induced over time.

Each coil then measures the magnetic field induced by all the nuclei of the same

type. To actually obtain a value for each nucleus, some processing is needed.

For example, in the case of crotonic acid it is possible to attune a coil to the

frequency of the protons (about 500 MHz, in an 11 Tesla field). We set up a reference

frame in which the first proton is stationary. The second proton then rotates at a

frequency of —about— 600Hz, since this is the difference of the Larmor frequencies

of the two protons.

The Hamiltonian

CHAPTER 3. NMR QIP 57

The idea behind the ‘refocusing’ technique is to reverse the evolution of the second
qubit due to the j-coupling for half the total time. By flipping the z value (NOT
gate) of the first qubit at exactly the midpoint of the evolution, the first qubit will
eventually return to its original value. A second gate at the end of the evolution
ensures that both qubits have the values they started of with (see the picture below).
Refocusing must occur in between all gates that involve either of the two qubits.

x −x

180 180

0 1 2

time/ms

1

2

Mathematically, we have that the evolution of the second qubit due to its j-coupling
to the first one is given by e−it/2Jσz for the first half of the evolution, before the
refocusing gate. After the refocusing gate the evolution is given by eit/2Jσz . The
second operator cancels out with the first one. This is assuming that the first
qubit begin in the state |0〉. If it begin in the state |1〉 just reverse the order of
the operators, again they cancel out. By linearity the same will happen for any
superposition of the first qubit.
It must be noted that in the mathematical analysis we have assumed the refocusing
gate to be instantaneous. This is, of course, not achievable. In a real world imple-
mentation the gate would take some time t, during which the evolution of second
qubit is not so easy to define, and could —in principle— be a source of errors.
A larger consideration is the fact that j-coupling (potentially) exists between each
pair of nuclei. Fixing one pair could —in theory— break another.
The question arises then whether refocusing can be done in an efficient way, on the
number of qubits. Jones and Knill prove that it is indeed possible, and show how,
in [JK99].

Inset 3.2.3: Refocusing

Hcs = π600Hz σ(2)
z

is called the ‘chemical-shift ’ Hamiltonian.

CHAPTER 3. NMR QIP 58

Now, following [LKC+02], since the coils are rotating around the qubits, as seen

from the rotating frame, it is possible to measure both the magnetization in the x

and y directions (actually in any direction in the x-y plane):

Mx(t) = tr(ρ(t)(σ(1)
x + σ(2)

x))

My(t) = tr(ρ(t)(σ(1)
y + σ(2)

y)).

and then combine them, using σ+ = σx + iσy, to form a representation of the

plane magnetization as a complex number:

M(t) = Mx(t) + My(t)

= tr(ρ(t)(σ
(1)
+ + σ

(2)
+))

and obtain a picture of the evolution of the two spin system over time.

Now, using the facts that under the chemical shift Hamiltonian

ρ(t) = e−iπ600Hz σ
(2)
z tρ(0)eiπ600Hz σ

(2)
z t

the first spin remains invariant, we may write

CHAPTER 3. NMR QIP 59

0 500
0

20

40

60

80

100

Figure 3.3: Chemical shift Hamiltonian Fourier analysis

M(t) = tr(ρ(t)(σ
(1)
+ + σ

(2)
+))

= tr(ρ(0)σ
(1)
+) + tr(e−iπ600Hz σ

(2)
z tρ(0)eiπ600Hz σ

(2)
z tσ

(2)
+)

= tr(ρ(0)σ
(1)
+) + tr(ρ(0)eiπ600Hz σ

(2)
z tσ

(2)
+ e−iπ600Hz σ

(2)
z t)

= tr(ρ(0)σ
(1)
+) + tr(ρ(0)ei2π600Hz σ

(2)
z tσ

(2)
+).

Recall that a Fourier transform maps from the time-domain to the frequency

domain. By taking the measurement of the x-y magnetization over time, and

Fourier transforming it we should get two peaks, one at 0Hz (reference frame) for

the first spin, and one at 600Hz representing the magnetization of the second spin,

see figure 3.3.

We have conveniently disregarded the j-coupling between the two protons. The

CHAPTER 3. NMR QIP 60

coupling Hamiltonian is given by:

Hj = π15Hz σ(1)
z σ(2)

z

hence the full Hamiltonian is

H = π600Hz σ(2)
z + π15Hz σ(1)

z σ(2)
z .

To analyze the spectrum of the full Hamiltonian we introduce the operators

[LKC+02]:

σ↑ =
1l + σz

2
=




1 0

0 0




σ↓ =
1l − σz

2
=




0 0

0 1


 .

Notice that both operators σ↑ and σ↓ are invariant under the full Hamiltonian,

and that σ↑ + σ↓ = 1l. Hence we have:

CHAPTER 3. NMR QIP 61

0 500
0

20

40

60

80

100

Figure 3.4: Full Hamiltonian Fourier analysis

M(t) = tr(ρ(t)(σ
(1)
+ + σ

(2)
+))

= tr(ρ(t)σ
(1)
+) + tr(ρ(t)σ

(2)
+))

= tr(ρ(t)σ
(1)
+ 1l(2)) + tr(ρ(t)1l(1)σ

(2)
+))

= tr(ρ(t)σ
(1)
+ (σ

(1)
↑ + σ

(1)
↓)) + tr(ρ(t)(σ

(2)
↑ + σ

(2)
↓)σ

(2)
+))

= tr(e−Htρ(0)eHtσ
(1)
+ (σ

(1)
↑ + σ

(1)
↓)) + tr(e−Htρ(0)eHt(σ

(2)
↑ + σ

(2)
↓)σ

(2)
+))

= tr(e−Htρ(0)eHtσ
(1)
+ σ

(1)
↑) + tr(e−Htρ(0)eHtσ+σ

(1)
↓)

+ tr(e−Htρ(0)eHtσ
(2)
↑ σ

(2)
+) + tr(e−Htρ(0)eHtσ

(2)
↓ σ

(2)
+)

= ei2π15Hz tr(ρ(0)σ
(1)
+ σ

(1)
↑) + e−i2π15Hz tr(ρ(0)σ+σ

(1)
↓)

+ ei2π600Hz +15Hz tr(ρ(0)σ
(2)
↑ σ

(2)
+) + ei2π600Hz −15Hz tr(ρ(0)σ

(2)
↓ σ

(2)
+).

From the last equation we can see that the two peaks from figure 3.3 split into

CHAPTER 3. NMR QIP 62

two (see figure 3.4). The first peak group having two peaks, one each for the σ+σ↑

and σ+σ↓ states, and the second two peaks corresponding to σ↑σ+ and σ↓σ+.

With n nuclei the spectral signal of each nucleus splits into 2n−1 peaks. For

example, the 2n−1 peaks of the first nucleus’ group represent the states σ+σ↑σ↑ . . . σ↑,

σ+σ↑σ↑ . . . σ↓, . . . σ+σ↑σ↓ . . . σ↓, σ+σ↓σ↓ . . . σ↓ (assuming all peaks can be resolved

in the spectrometer).

Recall, that in QIP the computational basis is precisely the states σ↑σ↑ . . . σ↑,

σ↑σ↑ . . . σ↓, . . . σ↑σ↓ . . . σ↓, σ↓σ↓ . . . σ↓.

Hence, it is possible to measure the n−1 bits 2 to n in the computational basis,

by analyzing the first nucleus’ peak group. This fact will be used later on in section

3.2.4.

The true ‘full’ Hamiltonian of the two spin system, however, is not really just

the sum of the chemical shift Hamiltonian and the j-coupling Hamiltonian. There

is also the (non-unitary) evolution due to decoherence. This last evolution has the

effect of exponentially decreasing the observable magnetization over time. Since

the normal decay times for molecules used in QIP are in the range of 0.4 to 2s,

the measurement process consists of sampling the magnetic field at several discrete

intervals within that time frame.

Recapitulating, the coil is not able to measure the state of a single spin, rather

it measures the collective, or ‘bulk’ magnetization of a very big number of nuclei

(somewhere in the order of 1019). As such this measurement is, in some ways,

much more powerful than normal projective measurements. Whereas a projective

measurement on a qubit gives only a single bit of information (zero or one) in NMR

CHAPTER 3. NMR QIP 63

spectroscopy the measurement gives a ‘good approximation’ to an actual expected

value x̄φ = 〈φ|X|φ〉 for each measured qubit |φ〉. In seeming paradox this type

of measurement is called ‘weak measurement’. This is because the measurement

apparatus is not strong enough to cause a significant collapse of the measured qubits

(of the whole ensemble) to one of its eigenstates.

What a ‘good approximation’ actually means is of great computational impor-

tance. Whereas a quantum computer model that give a polynomial size approxi-

mation (in the size of the input) to the expected value of the output is provenly

equivalent to a quantum computer model that gives only simple projective mea-

surement outputs (see [KL98]), a model computer that can give an exponentially

close approximation (or better) is not. This later model can easily be shown to be

much more powerful (at least in the black box model).

As we saw in chapter 1 this seems to hold in the classical realm. BPP , the

class of problems that can be solved in polynomial time by an algorithm that

gives the expected value up to polynomial precision, is believed to be much smaller

than PP , the equivalent class that has algorithms that give exponentially good

approximations.

It seems that the approximation to the expected value of the output of any

arbitrary quantum algorithm should be exponentially good. This in light of the

fact that the number of actual trials is around 1019, whereas —so far— the number

of qubits does not exceed 10.

If this were so, NMR could be used to solve (small instances of) problems in

PP , which are deemed intractable, without even taking advantage of quantum

CHAPTER 3. NMR QIP 64

superposition.

However, the approximation is not as good as would be expected. One of the

reasons, is as stated before, the accuracy at which the spectrometer is able to read

the plane magnetization of the sample. Another reason is —at least at present—

the way the initial state is prepared.

Without dwelling too much on the subject we should further note that even

if these hurdles were to be overcome, using NMR spectrography in this fashion

would be no different from classical massive parallelism. There is no real gain,

only a tradeoff between space and time. Much like molecular computation (see for

example [Adl94]), the exponential growth of the problems in PP eventually catch

up with the sample size, and surpass it.

3.2.4 State Preparation

The molecules dissolved in the NMR sample are in constant flux. The state of

each nucleus of each molecule are all in very different states. As the observable

magnetization depends on the overall magnetic moment induced by all the nuclei

precessing at the same frequency, it is necessary to represent the ‘overall’ state of

sample as a mixed state ρ.

However, normally in QIP, especially quantum algorithms, the state of the sys-

tem at all times is expected to be in a pure state; furthermore, the initial state of

the quantum register is generally expected to be |0〉.
It seems that what is needed is to somehow pre-process the sample to force it

into the state |0〉. Although methods for doing so have been proposed, none of

CHAPTER 3. NMR QIP 65

them seem to be implementable with current technology.

This could lead us to —wrongly— assume that that quantum computation is

not possible in the setting of NMR. This is not the case.

Although truly pure states are difficult to achieve in the context of NMR, it

is possible to do computation using a different type of approach; the so-called

‘pseudo-pure’ states.

3.2.5 Pseudo-pure States

Normally in quantum algorithms we induce a time-dependent Hamiltonian on the

system, which we assume to start off in the state |0〉⊗n, and perform a projective

measurement in the computational basis at the end of the calculation.

There is another way to view this. If the time-dependent evolution of the system

(i.e, the complete series of quantum gates) is represented by the unitary matrix U

then we can solve our problem by obtaining the value of 〈z〉 = 〈0|U †σzU |0〉. If the

value of z̄ is greater than zero, than the most likely outcome would be one. For

problems in EQP we would expect the above value 〈z〉 to be either a one (measured

outcome is zero with probability one) or minus one (the algorithm outputs one, with

probability one).

In the mixed state formalism the above procedure translates into having the

initial state ρ = |0〉〈0| and performing the measurement z̄ = Tr(σzU |0〉〈0|U †).

As stated earlier, the measurement apparatus allows us to obtain an actual

approximation to the value 〈z〉 to be obtained.

An important observation is that if the density matrix is the identity then no

CHAPTER 3. NMR QIP 66

magnetization is observable. This is because for any projective measurement A

performed on the identity, the mean value 〈A〉 is 〈A〉 = Tr(IA) = Tr(A) = 0

(since all our observables have trace zero).

Now, suppose the state of the sample is mostly, but not completely in the state

I. A density matrix γ is said to have deviation ρ if it is of the form γ = (1−ε)1l+ερ

In this case γ is said to be a deviation density matrix for ρ.

The mean value of the observable A on the state γ depends only on its deviation

ρ, since

〈Aγ〉 = Tr(γA)

= Tr(((1 − ε)1l + ερ)A)

= Tr(((1 − ε)1l)A) + Tr(ερA)

= εTr(ρA).

Another important property of the completely random state 1l is that it remains

random under any unitary transformations U , since 1l → U1lU † = UU † = 1l.

A deviation density matrix γ, with deviation ρ, will become a deviation matrix

for UρU † under the unitary operator U , since:

CHAPTER 3. NMR QIP 67

γ → UγU †

= U((1 − ε)1l + ερ)U †

= (1 − ε)U1lU † + εUρU †

= (1 − ε)1l + εUρU †.

In short, a deviation matrix for the state ρ behaves (almost) just like the actual

state ρ for all purposes of QIP. If ρ is a pure state |ψ〉〈ψ| then the deviation density

matrix γ = (1 − ε)1l + ε|ψ〉〈ψ| is called a ‘pseudo-pure’ state, since it acts, for all

practical purposes, like the pure state |ψ〉.
Now, the solution seems clear. Although forcing the NMR solution into the

totally pure state |0〉⊗n is virtually impossible, creating a pseudo-pure state with

deviation |0〉〈0|⊗n is at the reach of current technology.

However, in practice, the pseudo-pure state usually strived for is the one with

deviation σx ⊗ |0〉〈0|⊗n, where we have added one extra qubit. This can be seen

as the standard initial state |0 . . . 0〉 on n qubits, by simply disregarding the first

qubit.

Recall that in section 3.2.3 we saw that by measuring the magnetization of the

first qubit it is possible to obtain the state of the n remaining qubits. This is what

is done in current experiments [LKC+02].

The problem with such a method is that it does not scale. Recall again our

discussion in section 3.2.3. Say the total polarization of the first qubit (the one we

CHAPTER 3. NMR QIP 68

measure) is K. If there are two distinguishable states of the remaining qubits then

there are two peaks for the first qubit, one for each state, but each peak is roughly

half the magnitude of the original. If there are four distinguishable states, then

each peak is roughly one fourth the size of the original. Hence we have that for a

pseudo-pure state with n qubits, the observable magnetization is decreased by 1
2n .

Hence it is impossible to have too many qubits before the observable magnetization

is indistinguishable from noise.

Other methods have been proposed. For example, Schulman and Vazirani give

one such proposal in [SV99]. Unfortunately, such method, though scalable in theory,

is not yet implementable in practise.

Another possibility is to dispense with pure states altogether, and use a different

model of computation based (almost) entirely on mixed states. One such proposal

is DQ1, introduced by E. Knill and R. Laflamme [KL98].

DQ1 is, at first sight, similar to BQP. The same rules of state evolution, and

final measurement apply. However, in DQ1, as opposed to BQP, only one qubit is

allowed to begin in a pure state |0〉, all other qubits begin in the completely mixed

state 1l.

Though DQ1 is shown to be more powerful than BPP (in the black box model),

it seems to be less powerful than BQP .

It seems then, that efficient state initialization is one of today’s most important

obstacles for scalable NMR QIP. However, state initialization is not the most fun-

damental obstacle for NMR QIP scalability. Even with perfect gates, perfect pure

state initialization, and perfect measurement apparatus, there are still obstacles to

CHAPTER 3. NMR QIP 69

be overcome if a scalable NMR quantum computer is to be built.

One such obstacle is that, opposed to other quantum computer proposals that

use spatial separation as a means to differentiate qubits, NMR relies on frequency

separation. There are just so many distinguishable frequencies that can be used.

However, as we stated in the beginning of this work, NMR QIP is today the

most advanced implementation of a quantum computer, and it can be used today

as a tool to study QIP.

Chapter 4

Pulse Compiler

As was discussed in the last chapter, creating a gate out of a sequence of radio

frequency pulses is complicated and error prone.

For example if one wishes to implement a ninety degree rotation of the first qubit

about the x-axis then, in principle one could apply a RF pulse in resonance with

the target qubit. For example if the pulse induces the Hamiltonian ωxσx/2, then

the pulse must be applied for time t where t = π/2ωx, so that e−iωxσxt/2 = −iσx

(the global phase is ignored).

Such pulses are called hard pulses. The problem with such an approach is that

crosstalk, that is the unwanted effect of the RF pulse on other pulses is very big.

To see why this is so, consider a pulse that is very strong, for a short period of time.

If we see the same pulse in the frequency domain (by taking its Fourier transform),

and plot its strength, then we see that it effects all nuclei of the same type about

evenly (see figure 4).

An alternative is to use so-called ‘soft ’ pulses, also called ‘shaped ’ pulses. The

70

CHAPTER 4. PULSE COMPILER 71

Time Domain

Frequency

Domain

Time Domain

Frequency

Domain

The picture on the left shows a hard pulse, which is on for one discrete time step.
Note that in the frequency domain the pulse is constant, and hence affects all nuclei
(of the same type) equally. The picture on the right shows a soft, Gaussian envelope
type, pulse. Note that the pulse is a Gaussian centred about the desired frequency.

Figure 4.1: Hard vs. Soft Pulses

idea is to modulate the pulse strength over time such as to minimize the effect on

other spins, or crosstalk. Perhaps the best shape to use is the so-called ‘Gaussian

Envelope’ defined by

S(t) = e−a(t−t0)2 (4.1)

where t0 is the centre of the pulse envelope. The reason for this is the general

theorem of Fourier transforms: if the n first derivatives of S(t) are all continuous,

then its Fourier transform decreases inversely as the nth power of frequency in the

tails [Fre98], hence the Fourier transform of the pulse ends up being a Gaussian

too, centred about the desire frequency, see figure 4.

CHAPTER 4. PULSE COMPILER 72

Even with such a technique it is difficult, if not impossible, to eliminate crosstalk

absolutely.

Many techniques have been developed in order to cope with errors during quan-

tum computation.

NMR, however, has a very specific scenario when it comes to gates. Recall,

that whereas rotations in the x-y plane are prone to error, z-axis rotations, and two

qubit zz-axis rotations are, in a way, ‘perfect’ and ‘free’, since no actual quantum

operation is involved.

In the case of single qubit σz gates just an update of the classical (as opposed

to quantum) values of the rotating frame is necessary. Such an operation can be

done classically in a much more robust way. As for two qubit σz ⊗ σz gates, all

that is necessary is a time delay. The inherent j-coupling will perform the desired

operation without outside intervention.

Hence, in NMR QIP we can, in principle, freely introduce z, and zz rotations

wherever we see fit, in order to minimize induced errors.

Such method is the central idea of this work, and the topic of this chapter.

Before proceeding it is important to stress that this is not quantum error correction.

Rather it is error prevention.

In order to fully understand the inner workings of the pulse sequence compiler

discussed in this chapter it is important to understand the product operator for-

malism. This is discussed in the next section.

Following that we give an in depth look of the pulse sequence compiler.

CHAPTER 4. PULSE COMPILER 73

4.1 Product operator formalism

We have already seen one method of describing general transformations of quantum

systems: as a unitary, complex-scalar, matrix σ.

For single qubit systems we have also seen that it is possible to describe trans-

formations as a rotation angle θ and a direction axis �n = (nx, ny, nz).

The former representation, while a general description that applies to any

Hilbert space (even infinite dimensional), has the flaw that it is not at all intu-

itive: it is difficult to obtain a mental picture of the actual transformation from

just looking at the representing matrix σ.

The latter has the distinct advantage of clearly showing the outcome of perform-

ing the given transformation, in a visual form as seen in the Bloch sphere picture of

a single qubit system. However, the fact that it only works for single qubit systems

is somewhat of a disadvantage.

Fortunately, since 1983 a generalization of the Bloch sphere to many qubit

systems has been known. It was first described by Sørensen et. al. in [rEL+83].

Here, we give a short description of the formalism.

Recall, how the Pauli matrices σi, σx, σy, σz form a basis for the four-dimensional

vector space M(2,2). The group of all operators acting on one qubit, is a subset of

such space, hence all one qubit operators can be written as a unit-length linear

combination of the Pauli operators.

By writing the operator as a linear combination we obtain the Bloch sphere

picture of the operator in question.

It is possible to define a similar basis for operators acting on an arbitrary number

CHAPTER 4. PULSE COMPILER 74

of 1/2-spin’s. For an n 1/2-spin system there are 4n basis elements bi, and each

element is defined as:

bi = 2q−1

q∏
k=1

σk
v . (4.2)

Each basis element is called a ‘product operator ’ [rEL+83].

For example for a one qubit system the product operators are:

q = 0 :
1

2
1l,

q = 1 : σx, σy, σz.

Hence, for a one 1/2 spin system the product operator formalism reduces (roughly)

to the Bloch sphere picture of a transformation: that of a rotation in three-space.

Each operator corresponds to a specific rotation along an axis.

For a two qubit system the product operators are:

q = 0 :
1

2
1l,

q = 1 : σ(1)
x , σ(1)

y , σ(1)
z , σ(2)

x , σ(2)
y , σ(2)

z ,

q = 2 : 2σ(1)
x σ(2)

x , 2σ(1)
x σ(2)

y , 2σ(1)
x σ(2)

z ,

2σ(1)
y σ(2)

x , 2σ(1)
y σ(2)

y , 2σ(1)
y σ(2)

z ,

2σ(1)
z σ(2)

x , 2σ(1)
z σ(2)

y , 2σ(1)
z σ(2)

z .

CHAPTER 4. PULSE COMPILER 75

As in the one qubit case, the single spin operators (q = 1) correspond to rota-

tions of individual spins, about a specific axis in the Bloch sphere of the individual

spin (the three dimensional subspace of the whole two-qubit space). Two spin op-

erators can also be seen as rotations, but now along an axis in the bigger space.

Hence, the operator 2σ
(1)
z σ

(2)
z corresponds to a rotation along the ‘zz axis’, and

clearly corresponds to a two-spin J-coupling.

By representing transformations in this basis, it is easier, both for human and

computer observers, to quickly obtain rotational effects of unitary matrices.

4.2 Pulse Compilation

The requirements of pulse compilation is, roughly, the following.

First, single gates/pulses are performed experimentally on the target solution

on which a quantum algorithm is to be performed. From this data, the error of

individual gates is obtained.

This information, along with the information pertaining to the molecule used

as the quantum register, and pulse sequences to be used in the algorithm is fed into

the pulse compiler.

For example, let the input be the desired pulse effect e−iUideal and the actual

pulse effect obtained experimentally is e−iUactual .

The compiler must output a series of single qubit gates

e−iθ
(1)
preσ

(1)
z , e−iθ

(1)
postσ

(1)
z , e−iθ

(2)
preσ

(2)
z , e−iθ

(2)
postσ

(2)
z , . . . , e−iθ

(n)
preσ

(n)
z , e−iθ

(n)
postσ

(n)
z ,

CHAPTER 4. PULSE COMPILER 76

and a series of two qubit gates,

e−iθ
(1,2)
pre σ

(1)
z σ

(1,2)
z , e−iθ

(1,2)
post σ

(1)
z σ

(2)
z , e−iθ

(1,3)
pre σ

(1)
z σ

(3)
z , e−iθ

(1,3)
post σ

(1)
z σ

(3)
z , . . . ,

e−iθ
(n−1,n)
pre σ

(n)−(1)
z σ

(n)
z , e−iθ

(n−1,n)
post σ

(n−1)
z σ

(n)
z

where n is the number of nuclei in the register molecule. So that

R =
n∏

i=1

e−iθ
(i)
postσ

(i)
z

n−1∏
i=1

n∏
j=i

e−iθ
(i,j)
postσ

(i)
z σ

(j)
z e−iUactual

n−1∏
i=1

n∏
j=i

e−iθ
(i,j)
pre σ

(i)
z σ

(j)
z

n∏
i=1

e−iθ
(i)
preσ

(i)
z

best approximates e−iUideal . Formally, we minimize

D(R, e−iUideal)

where D(A, B) is defined to be the Manhattan metric, also known as the ‘city

block’ distance metric, for matrices, that is:

D(A, B) =
∑
i.j

|Ai,j − Bi.j|

This formula was chosen because it is a well-defined, and well-behaved distance

metric, and it is computational efficient to compute.

Note that, since all σz and σzσz commute, the order of the pre and post gates

do not matter.

For composite pulses, where the gate consists of several pulses one after the

CHAPTER 4. PULSE COMPILER 77

other, the compiler finds a set of σz and σzσz gates to put in between each pulse.

For example, if the pulse effect sequence is e−iU1 , e−iU2 , . . . , e−iUn , then the compiler

finds sequence of operators E0, E1, . . . , En, where each Ei is of the form

n∏
i=1

e−iθ(i)σ
(i)
z

n−1∏
i=1

n∏
j=i

e−iθ(i,j)σ
(i)
z σ

(j)
z

so that the pulse sequence

Ene
−iUnEn−1e

−iUn−1 . . . e−iU2E1e
−iU1E0

best approximates the desired evolution, in the same formal meaning as above.

In the next section we discuss how this is actually done.

4.3 Pulse Compiler Algorithm

There is a lot of information to process in order to compose a complete pulse

sequence. Three input files must be parsed. First, there is the nuclear data file. This

contains all the information pertinent to the molecule used as the quantum register.

It gives the different type of nuclei (hydrogen, carbon, etc.) in the molecule, and a

reference precession frequency for each type. It lists each nuclei, its type, and its

Larmor frequency, given with respect to the reference frequency for its type. It also

gives the j-coupling constants for each pair of nuclei. Inset 4.3.1 shows an excerpt

of the nuclei file for Crotonic Acid.

From this file we can read that the reference frequency for the Hydrogen atoms

is 500.13×106 Hertz. The Larmor frequency of the first Hydrogen atom is −2370.80

CHAPTER 4. PULSE COMPILER 78

Nuclear types

500.13e6 H

125.757739e6 C

Nuclei: <frequency><tab><name><tab><type>

-781.06 RH H

230.43 M H

-2370.80 H1 H

-1774.47 H2 H

-6204.60 RC C

-1914.06 C1 C

-18115.10 C2 C

-15157.41 C3 C

-21148.90 C4 C

Reference frequencies:

refFreq H M;H1;H2

refFreq C C1;C2;C3;C4

offsetFreq H 0

Couplings: <frequency><tab><name><tab><name>

7.72 H1 H2

0.00 H1 RC

1.98 H1 C1

77.97 H1 C2

-0.91 H1 C3

3.25 H1 C4

3.45 M H1

-0.88 M H2

.

.

.

End data.

Inset 4.3.1: Example nuclei file

relative the previous frequency, and its j-coupling constant with the second Hydro-

gen is 7.72.

Then there is the pulse shape information. This gives the information about

CHAPTER 4. PULSE COMPILER 79

Shape name<tab>

number of points<tab>

t/(t for angle at max power) for the intended use.<tab>

calibration angle.<tab>

spectral width

###

isech180 128 2.4150418205742e+00 0.500000 2.360000

xsech180 128 5.0406945915562e+00 0.500000 4.520000

isech270 128 2.2150050633202e+00 0.750000 3.100000

isech90 128 2.2618000209690e+00 0.250000 2.250000

ssquare4 4 1.0000000000000e+00 0.250000 10.000000

ssquare8 8 1.0000000000000e+00 0.250000 10.000000

rfsel32p 972 2.4300000000000e+02 0.250000 1.000000

rfsel32n 972 2.4300000000000e+02 0.250000 1.000000

rfsel64p 1932 4.8300000000000e+02 0.250000 1.000000

rfsel64n 1932 4.8300000000000e+02 0.250000 1.000000

rfsel100p 3012 7.5300000000000e+02 0.250000 1.000000

rfsel100n 3012 7.5300000000000e+02 0.250000 1.000000

Inset 4.3.2: Example Shape Definition file

the shapes of each pulse. Inset 4.3.2 gives a detailed file. The name of the shape,

and the number of points are two very important items. The name of the pulse

is the same name of a binary file where the actual pulse is defined. For example,

there is a file, called isech180, that contains 128 pairs of numbers, representing the

phase and the power of the pulse at each of the 180 time-steps.

Finally, there is the gate information itself. Each gate consists of a sequence of

pulses defined in the shape file. An example file is given in inset 4.3.3. For basic

pulses, the shape of the pulse is given. For example, a 90 degree rotation around

the x-axis of the first hydrogen atom (pulse H1 90) has the shape defined in isech90.

For composite and parallel pulse sequences, the names of the individual pulses

are given. For example, the composite pulse Hhc 180 consists of five individual

CHAPTER 4. PULSE COMPILER 80

.

.

.

basic M_90 soft isech90 .25 M .25 M M_90 1 M R

basic H1_90 soft isech90 .25 H1 .25 H H2_90 1 H1 R

basic H2_90 soft isech90 .25 H2 .25 H H2_90 1 H2 R

basic C1_90 soft isech90 .25 C1 .25 C1 C1_90 2 C1 R

basic Hh_180 hard ssquare8 .5 M;H .5;.5;.5 vals.hard90H*2 Mh_180 1

M;H R

basic RHh_180 hard ssquare8 .5 RH .5 vals.hard90H*2 Mh_180 1 RH

M;H;C

.

.

.

composite Hhc_180 5 M;H1;H2 .5;.5;.5 0;0;0 R

Hh_180 vals.minPrePulse vals.minPostPulse 1/12 0

Hh_180 vals.minPrePulse vals.minPostPulse 0.0000 0

Hh_180 vals.minPrePulse vals.minPostPulse 0.2500 0

Hh_180 vals.minPrePulse vals.minPostPulse 0.0000 0

Hh_180 vals.minPrePulse vals.minPostPulse 1/12 0

composite RHhc_180 5 RH .5 0;0;0 M;H;C

RHh_180 vals.minPrePulse vals.minPostPulse 1/12~RH 0

RHh_180 vals.minPrePulse vals.minPostPulse 0.0000~RH 0

RHh_180 vals.minPrePulse vals.minPostPulse 0.2500~RH 0

RHh_180 vals.minPrePulse vals.minPostPulse 0.0000~RH 0

RHh_180 vals.minPrePulse vals.minPostPulse 1/12~RH 0

Inset 4.3.3: Example Pulse Definition file

pulses, each of type Hh 180.

All of these files must be read in and parsed before any real computation can

be done. After this is done each pulse that is to be processed (the list of pulses

can be passed to the program as an inline argument) is computed in turn. Basic

pulses, or hard pulses, can be processed immediately. Parallel pulses, where several

RF-pulses act on different spins at the same time, cannot be processed until the

CHAPTER 4. PULSE COMPILER 81

individual pulse constituents have been analyzed. Likewise for composite pulses.

The top level algorithm is given as a flow-chart in figure 4.2.

The procedure to actually process each pulse is as follows. Since the Hilbert

space of the whole molecule is in general, very big (a density matrix of the system

uses 22n complex numbers, where n is the number of nuclei in the register), it

is generally impossible to actually simulate the effects of the pulse on the whole

molecule in one go.

Instead, what is done is to first calculate the independent evolution of each

nuclei separately due to the RF-pulse, and calculate the desired pre and post σz

gates.

Then, for each pair of nuclei the evolution is calculated, taking into account the

j-coupling between the nuclei. An optimal pre and post σzσz gate is then calculated.

It is possible to do this processing in steps due to the fact that operators acting

on different qubits always commute.

The pulse processing algorithm is depicted in figure 4.3.

This algorithm uses two procedures yet to be defined. The first one, is the actual

simulation of the pulse sequence on the desired spin. The procedure to do this is

outlined in figure 4.4. The idea of the algorithm is as follows. First, instead of

attempting to find the evolution operator for the full time-dependent Hamiltonian,

the evolution is discretized. That is, the time lapse of the pulse sequence is split

into small discrete intervals, such that the Hamiltonian of the system at each of the

intervals is constant. The time evolution operator for each constant Hamiltonian

is found, and applied in turn. The final state is then output.

CHAPTER 4. PULSE COMPILER 82

Start

shape

information

file

pulse

definitions file

 nuclear data

file

Read in

nuclear

data

Read in

shape

information

Read in

pulse

definitions

arguments:

todo list of

pulses to

compile

All pulses

done?

Is pulse

parallel?

Is pulse

composite?

Process pulse

Process

component

pulses

Finish

yes

no

no

no

pulse =

first_pulse

pulse =

next_pulse

yes

Figure 4.2: Top-level Pulse compiler flow-chart

CHAPTER 4. PULSE COMPILER 83

Start

obtain desired

evolution for

nucleus n

obtain actual

evolution for

nucleus n

find optimum zi,

and zf for nucleus

n

n = 1

n <= number

of nuclei?

n = 1

k = n + 1

n = n + 1

obtain desired

evolution for

nuclei n,k

obtain actual

evolution for

nuclei n,k

find optimum zzi,

and zzf for nuclei

n,k

k <= number

of nuclei?

n <= number

of nuclei?

k = k + 1n = n + 1

Finish

yesyes

no

no

no

yes

Figure 4.3: Pulse processing flow-chart

CHAPTER 4. PULSE COMPILER 84

Start

Calculate

chemical shift

Hamiltonian

Calculate j-

coupling

Hamiltonian

t = 0

Calculate RF

Hamiltonian for

time t

Calculate

evolution operator

U(t) for time t

U = U(t)U

U = 1

t = t_final? increment t

Stop

no

yes

Figure 4.4: Simulation of RF Pulse sequence flow-chart

CHAPTER 4. PULSE COMPILER 85

Now, since the evolution due to the chemical shift and j-couplings is constant

throughout the pulse sequence, the chemical shift, and j-coupling Hamiltonian is

calculated first. Then for each interval the evolution due to the active RF pulses is

calculated. Then the evolution operator is calculated from the complete Hamilto-

nian. The final state of the system is then slowly constructed from these time-step

operators.

Now that the actual evolution has been calculated it is necessary to compare it

with the desired evolution, and find the initial and final z and zz rotations we are

looking for.

The desired evolution is always given, since it is part of the gate definition,

so only the comparison remains to be done. This is where the product operator

formalism becomes invaluable.

Both the actual evolution operator, and the desired evolution operator are trans-

formed to coordinates with respect to the product operator basis. This can easily

be done by taking the trace of the product of the evolution operator in question

and the basis elements.

In this basis, the optimization process we wish to achieve is reduced to a simple

projection. In order to analyze why this is true, let us first analyze the case of a

single qubit.

In this case the only operation that we allowed to do is a rotation along the

σz axis. Therefore, in order to find the desired rotation, what we do is project

both the ideal and the actual pulses to the σz axis (recall that we are working in

product-operator basis), the difference of these two projections, is the operator that

CHAPTER 4. PULSE COMPILER 86

will bring Uactual closest to Uideal.

Now, from the product operator representation of a unitary matrix it is relatively

easy to obtain the representation as a rotation on the x-y plane conjugated with

z-rotations. That is an operator of the form e−iθzσze−i cos φσx+sin φσye−iθzσz .

Let Uideal = e−iθziσze−i cos φσx+sin φσye−iθziσz , and

Uactual = e−iθzaσze−i cos φσx+sin φσye−iθzaσz , then the sought after value z is θzi
− θza .

In the case for pairs of qubits, we repeat the same analysis —and algorithm—

except that now we allow ourselves to move in the σz − σz ⊗ σz plane. Therefore

we project onto this plane, repeat the same process outlined above.

4.4 Pulse Compiler Code

There are currently two versions of the pulse compiler in active development. A

Matlab version which is based on Emanuel Knill’s original code for Crotonic acid,

and a prototype C/C++ version that only implements some parts of the program.

Since the merits of a native C version are not yet clear we shall discuss only the

Matlab version here. It should be noted that Matlab counts with a ‘compiler’ that

translates Matlab code to C; it is yet to be thoroughly tested though.

There are more than thirty program files in the Matlab version of the pulse com-

piler; the main program files being mkPulse, readNuclei, readShapes, readPulseDefs,

sysOpx, and effOpSx.

See figure 4.5 for a complete ‘birds-eye’ picture of the code structure.

The main program file is mkPulse. Its arguments are: the list of pulses to be

processed, and (a possibly empty) list of nuclei to ignore during the processing (this

CHAPTER 4. PULSE COMPILER 87

Start

mkPulse

readNuclei

readShapes

readPulseDefs

shapeToTxt

sysOpx

mkPulse_wp

split

readDrxShape

crotDist peak

ekron

errOp1 UToEffOp effOp

sopToPop

makeSStruct

ekrons

dec2opseq

effOpToQ

qrotm

errOp2 sunwrap

effOpSx

effOpSx_ini effOpSx_upd effOp_upd

Figure 4.5: Bird’s Eye view of the Pulse Compiler

CHAPTER 4. PULSE COMPILER 88

is, nuclei that won’t be taken into account when calculating errors.). It proceeds

as follows (some miscellaneous steps are omitted for clarity).

First it calls readNuclei to read in the nuclear data file. This file defines

the basic information of the molecule to be used as the quantum register, such as

nucleus types, Larmor frequencies of each nucleus etc.

It then calls readShapes. This program file reads in the definition of the shapes

of all soft pulses.

The module mkPulse then calls readPulseDefs to read in the pulse sequence

definitions. These are the pulses that are to be processed. Which ones out of this

list are actually processed is determined by the arguments to mkPulse.

After all data has been read in mkPulse creates a to-do list of pulses to be

processed. Initially this list is set to be the list passed in as argument. However, if

any pulse sequence in the to-do list depends on a second pulse sequence (say, a 180

pulse might be composed of two 90 pulses) then the latter pulse sequence is added

to the list. This is done repeatedly until all dependencies are resolved.

Next, each pulse sequence in the to-do list is processed in order.

Each pulse sequence is categorized as either basic, composite, or parallel.

Some preprocessing of the pulse varies depending on the type of pulse. However,

regardless of the type, the main step is invoking sysOpx on the pulse. The module

sysOpx takes as input the pulse sequence, and the ‘ideal’ rotation it is trying to

achieve. It returns a set of pre and post z rotations that best close the gap between

the true and ideal operation, and the minimized error.

The program module sysOpx operates as follows. For each nuclear spin it cal-

CHAPTER 4. PULSE COMPILER 89

culates the best pre and post z rotations, and the total error. It does so by first

calling effOpSx to simulate the actual pulse and determine its effects on the nucleus

in question. It then calls errOp1 to calculate the best initial and final z rotations,

and the error incurred.

Then for each pair of nuclei sysOpx obtains a best initial and final zz rotation,

again by simulating the pulse sequence and examining the effects on the two nuclei

in question using effOpSx, and then comparing this with the ‘ideal’ rotation using,

this time errOp2.

The module effOpSx runs in the following way: First, it determines the chemical

shift Hamiltonian, and j-coupling Hamiltonian from nuclear information. Then it

uses the pulse sequence information to calculate the RF Hamiltonian, that is, the

evolution of the spin-states under the influence of the RF-pulses.

It then combines the effects to create the overall Hamiltonian of the system.

Finally, it simulates the evolution the system by evolving the system by discrete

intervals.

Finally, errOp1 operates by first transforming both the ideal rotation and the

actual pulse sequence rotation to the form e−iθtZe−i cos αX+sinαY e−iθiZ . That is, a

rotation along the z-axis, followed by a rotation on the x-y plane, followed by a

second rotation on the z-axis (it is easy to prove that this is always possible). The

wanted initial z rotation is then the difference of the initial z rotation θi of the

ideal pulse, and that of the actual pulse sequence. Similarly for the wanted final z

rotation.

This concludes the overview of the pulse compiler. For the complete documented

CHAPTER 4. PULSE COMPILER 90

source, as well as user, and install guides, please visit

http://www.math.uwaterloo.ca/∼caperezd/research/pulse compiler.

Chapter 5

Conclusions and Further Work

Without a doubt, the most important, pressing, and interesting question that re-

mains in the air is whether or not NMR spectroscopy is a scalable quantum com-

puter architecture.

In short, the answer is ‘we don’t know’. We have addressed some of the hurdles

towards a scalable implementation, and how to overcome some of them. There are,

however, several others we have not even begun to contemplate.

Although Divincenzo’s criteria is a good starting point for addressing an imple-

mentation of a quantum computer, there exist several more questions that must be

addressed.

Daniel Gottesman looks further into the necessary requirements for scalable,

fault-tolerant QIP in [Got02].

Gottesman’s extended criteria, along with DiVincenzo’s original criteria is given

in inset 5.0.1.

Does a quantum computer based on NMR spectroscopy fullfill the extended

91

CHAPTER 5. CONCLUSIONS AND FURTHER WORK 92

1. A scalable physical system with a mapping of qubits onto this system

2. A method for initializing the state of the system to an a priori known state,
usually corresponding to |0〉⊗n under the above mapping.

3. A big decoherence time to gate time ratio,

4. Sufficient control of the system via time-dependent Hamiltonians in order to
effectively implement a universal set of gates on the system’s qubits,

5. A measurement operation on the system’s qubits,

6. The ability to interconvert stationary and flying qubits1,

7. The ability to faithfully transmit flying qubits between specified locations.

8. Low gate error rates,

9. Ability to perform operations in parallel,

10. A way of remaining in, or returning to, the computational Hilbert space,

11. A source of fresh initialized qubits during the computation,

12. Benign error scaling: error rates that do not increase as the computer gets
larger, and no large-scale correlated errors.

Inset 5.0.1: DiVincenzo-Gottesman Criteria for Fault Tolerant QIP

DiVincenzo-Gottesman criteria?

So far, we know how to implement qubits, achieve a universal set of gates, and

measure in the computational basis.

In NMR there are simply no obvious ‘flying qubits’. All interactions are local,

based on the —very limited— j-coupling. Previously we had seen this weak in-

teraction as a plus, since it meant that we only had to deal with a few coupled

spins when refocusing. Now, however, we can see it is a disadvantage, since it does

not allow for far away qubits to interact efficiently. In trans-Crotonic Acid (recall

CHAPTER 5. CONCLUSIONS AND FURTHER WORK 93

figure 3.1 on page 43) for example, in order to implement a gate between Hydrogen

1 and Carbon 4, the Hydrogen qubit must first be swapped with Carbons 2 and 3,

and must be swapped back afterwards. This is not, an efficient procedure: elemen-

tary operations take O(n) time where n is the number of qubits in the quantum

computer, instead of the O(1) time normally associated with elementary operations.

The operations that can be done in parallel, seem to be quite limited. For

example, it is trivial to perform the same operation on all Hydrogen nuclei (recall

that a simple hard pulse would suffice), or perform distinct gates on one Hydrogen

and one Carbon (since they are attuned to different coils), but performing distinct

operations on two Carbons seems more challenging.

In the same fashion, while there exist several methods of initializing qubits in

NMR, a method for doing so in the middle of a computation, does not seem so

clear.

Fortunately, errors do seem to scale reasonably.

While there do exist methods that address the problems posed above, there does

not exist, at the present moment (and as far the author knows) any method that

addresses all the problems simultaneously.

In conclusion, the most pressing question to be investigated in the future is:

“Do NMR quantum computers scale?”

Bibliography

[ADH97] Leonard M. Adleman, Jonathan Demarrais, and Ming-Deh A. Huang.

Quantum computability. SIAM J. Comput., 26(5):1524–1540, 1997.

[Adl94] Leonard M. Adleman. Molecular computation of solutions to combina-

torial problems. Science, 266:1021–1024, 11, 1994.

[BB84] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Pub-

lic key distribution and coin tossing. In International Conference on

Computers, Systems and Signal Processing, 1984.

[BB92] André Berthiaume and Gilles Brassard. The quantum challenge to

structural complexity theory. In Proceedings of the Seventh Annual

Structure in Complexity Theory Conference (Boston, MA, 1992), pages

132–137, Los Alamitos, CA, 1992. IEEE Comput. Soc. Press.

[BBG+90] Charles H. Bennett, François Bessette, Gilles Grassard, Louis Salvail,

and John Smolin. Experimental quantum cryptography. In EURO-

CRYPT, 1990.

[Ben80a] P. Benioff. The computer as a physical system: A microscopic quantum

94

BIBLIOGRAPHY 95

mechanical hamiltonian model of computers as represented by turing

machines. Journal of Statistical Physics, 22:563–591, 1980.

[Ben80b] P. Benioff. The computer as a physical system: A microscopic quantum

mechanical hamiltonian model of computers as represented by turing

machines. Journal of Statistical Physics, 1980.

[Ben81] P. Benioff. Quantum mechanical Hamiltonian models of discrete pro-

cesses. Journal of Mathematical Physics, 22:495–507, 1981.

[Ben82] P. Benioff. Quantum mechanical Hamiltonian models of Turing ma-

chines that dissipate no energy. Physical Review Letters, 48:1581–1585,

1982.

[BEZ00] Dirk Bouwmeester, Artur Ekert, and Anton Zeilinger. The Physics of

Quantum Information. Springer-Verlag, 2000.

[Bra93] Gilles Brassard. A bibliography of quantum cryptography. Journal of

Modern Optics, 1993.

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory.

SIAM J. Comput., 26(5):1411–1473, 1997.

[CEH+98] Richard Cleve, Artur Ekert, Leah Henderson, Chiara Macchiavello, and

Michele Mosca. On quantum algorithms. Complexity 4, 33, 1998.

[CEMM97] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algo-

rithms revisited. 1997.

BIBLIOGRAPHY 96

[Cle99] Richard Cleve. An introduction to quantum complexity theory. 1999.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information The-

ory. Wiley Interscience, 1991.

[Dav58] Martin Davis. Computability and Unsolvability. McGraw-Hill, 1958.

[Deu85] D. Deutsch. Quantum theory, the Church-Turing principle and

the universal quantum computer. Proc. Roy. Soc. London Ser. A,

400(1818):97–117, 1985.

[Deu89] David Deutsch. Quantum computational networks. Proceedings of the

Royal Society of London A, 1989.

[Fey82] Richard Feynman. Simulating physics with computers. International

Journal of Theoretical Physics, 21:467–488, 1982.

[Fre98] Ray Freeman. Spin Choreography. Oxford University Press, 1998.

[G3̈1] Kurt Gödel. Über formal unentscheidbare sätze der Principia Math-

ematica und verwandter Systeme I. Monatshefte für Mathematik und

Physik, 38:173–198, 1931.

[Got02] Daniel Gottesman. Beyond the DiVincenzo criteria: Requirements

and desiderata for fault-tolerance. In Joint IPAM/MSRI Workshop

on Quantum Computing, 2002.

[Hir01] Mika Hirvensalo. Quantum Computing. Springer-Verlag, 2001.

BIBLIOGRAPHY 97

[JK99] J. A. Jones and E. Knill. Efficient refocussing of one spin and two

spin interactions for nmr quantum computation. Journal of Magnetic

Resonance, 141:322–325, 1999.

[KL98] Emanuel Knill and Raymond Laflamme. On the power of one bit of

quantum information. Physical Review Letters, 81(25), 1998.

[LKC+02] Raymond Laflamme, Emanuel Knill, David Cory, E. Fortunato,

T. Havel, C. Miquel, R. Martinez, C. Negreverne, G. Ortiz, M. Pravia,

Y. Sharf, S. Sinha, R. Somma, and L. Viola. Introduction to NMR

quantum information processing. xxx.lanl.gov, 2002.

[LV97] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity

and Its Applications. Springer-Verlag, 1997.

[MBG93] A. Muller, J. Breguet, and N. Gisin. Experimental demonstration of

quantum cryptography using polarized photons in optical fibre over

more than one km. Europhysics Letters, 23(6), August 1993.

[Mes99] Albert Messiah. Quantum Mechanics. Dover, 1999.

[Mol01] Richard A. Mollin. An Introduction to Cryptography. Chapman and

Hall, 2001.

[Mos99] Michele Mosca. Quantum Computer Algorithms. PhD thesis, University

of Oxford, 1999.

[MOV96] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone.

Handbook of Applied Cryptography. CRC Press, 1996.

BIBLIOGRAPHY 98

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and

Quantum Information. Cambridge University Press, 2000.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison Wes-

ley Longman, 1994.

[Pos44] Emil L. Post. Recursively enumerable sets of positive integers and their

decision problems. Bulletin Of The American Mathematical Society,

50(5):284–316, 1944.

[rEL+83] O. W. Sørensen, G. W. Eich, M. H. Lefitt, G. Bodenhausen, and R. R.

Ernst. Product operator formalism for the description of NMR pulse

experiments. Progress in ekert Spectroscopy, 16(2):163–192, 1983.

[Sak94] J. J. Sakurai. Modern Quantum Mecanics. Addison-Wesley, 1994.

[Sho97] Peter Shor. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM Journal on Com-

puting, 26(5), 1997.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM Jour-

nal on Computing, 26(5), 1997.

[Sti95] Douglas R. Stinson. Cryptography: Theory and Practice. CRC Press,

1995.

[SV99] Leonard J. Schulman and Umesh V. Vazirani. Molecular scale heat

engines and scalable quantum computation. In Proceedings of the 31’st

Annual ACM Symposium on Theory of Computation, 1999.

BIBLIOGRAPHY 99

[Tur37] A. M. Turing. On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Soci-

ety, 42(2):230–265, 1937.

[Yao93] A. C. Yao. Quantum circuit complexity. In Prodeedings of the 34th

Annual IEEE Symposium on Foundations of Computer Science, 1993.

[Zal98] Christof Zalka. Simulating quantum systems on a quantum computer.

Proceedings of the Royal Society of London A, 454(1969), 1998.

