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Abstract 

Construction management is inextricably linked to the awareness and control of 3D geometry. Progress 

tracking, quality assurance/quality control, and the location, movement, and assembly of materials are all 

critical processes that rely on the ability to monitor 3D geometry. Therefore, advanced capabilities in site 

metrology and computer vision will be the foundation for the next generation of assessment tools that 

empower project leaders, planners, and workers. 

3D imaging devices enable the capture of the existing geometric conditions of a construction site or a 

fabricated mechanical or structural assembly objectively, accurately, quickly, and with greater detail and 

continuity than any manual measurement methods. Within the construction literature, these devices have 

been applied in systems that compare as-built scans to 3D CAD design files in order to inspect the 

geometrical compliance of a fabricated assembly to contractually stipulated dtolerances.  However, before 

comparisons of this type can be made, the particular object of interest needs to be isolated from 

background objects and clutter captured by the indiscriminate 3D imaging device. Thus far, object of 

interest extraction from cluttered construction data has remained a manual process.  

This thesis explores the process of automated information extraction in order to improve the availability 

of information about 3D geometries on construction projects and improve the execution of component 

inspection, and progress tracking. Specifically, the scope of the research is limited to automatically 

recognizing and isolating pipe spools from their cluttered point cloud scans. Two approaches are 

developed and evaluated. 

The contributions of the work are as follows: (1) A number of challenges involved in applying RANdom 

SAmple Consensus (RANSAC) to pipe spool recognition are identified. (2) An effective spatial search 

and pipe spool extraction algorithm based on local data level curvature estimation, density-based 

clustering, and bag-of-features matching is presented. The algorithm is validated on two case studies and 
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is shown to successfully extract pipe spools from cluttered point clouds and successfully differentiate 

between the specific pipe spool of interest and other similar pipe spools in the same search space. Finally, 

(3) the accuracy of curvature estimation using data collected by low-cost range-cameras is tested and the 

viability of use of low-cost range-cameras for object search, localization, and extraction is critically 

assessed.  
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1.0 Introduction 

The manufacturing sector in North America saw a massive shift from small scale enterprise to 

oligopolistic capitalism during the nineteenth and twentieth centuries. In 1800, a typical manufacturing 

operation consisted of a master artisan working alongside a few handicraft workers in the artisan’s home. 

By 1880, economic growth and technological innovation created a system where manufacturers were 

likely to be owners or managers, supervising a workforce of hundreds or thousands of machine operators, 

all working in a multistory brick or stone factory powered by water or steam. With the increasing size and 

complexity of the industrial firm, the mechanization of production, and the subdivision of activities, ad 

hoc methods of scheduling, coordinating, and motivating the workforce were no longer sufficient. 

Diligent managers had to invent new management systems to assure adequate control of their production 

processes (Nelson 1975). 

Brian Price (1987) wrote his doctoral thesis on Frank Gilbreth. In the beginning of the 1900s, Gilbreth 

was the owner of a building construction company in Boston that had a reputation for building things 

exceptionally fast. Gilbreth and his wife Lillian were influential social and human engineers at the 

forefront of a movement called scientific management. Their major contribution was the development of 

motion study. It involved systematic analysis and dissection of work processes resulting in faster work, 

not by forcing employees to work harder, but by eliminating unnecessary motions and creating improved 

work methods. Motion study was first applied to brick laying, typically reducing the number of motions 

from eighteen to four and a half exactly. This was achieved, in part, by placing the bricks and mortar on a 

raised platform on the scaffold so as to eliminate the motion of stooping, for example. The methods of 

analysis in motion study became more sophisticated over time and as technology developed. Within the 

Gilbreth’s technical arsenal was the cinematographic cyclegraph method. A miniature electric light is 

mounted to a worker’s hand as they execute a typical work process.  Using time exposure photography, 

the movement of the light creates a bright line on a single time-exposed photograph, as can be seen in 
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Figure 1-1. This visualization, with its twists and turns, would reveal inefficient movement.  The work 

process is modified until the shortest, smoothest lines are achieved.  

 

 

 
 

Figure 1-1: Cyclegraph of 2 cycles on drill press showing 

‘HABIT’ positioning after transporting. Note the ‘hesitation’ 

before ‘grasping’ by Frank Bunker Gilbreth (1868-1924), 

retrieved 

from https://www.flickr.com/photos/kheelcenter/5279841396/ 

used under Creative Commons Attribution 2.0 Generic License 

https://creativecommons.org/licenses/by/2.0/ 

 

  

Figure 1-2: Tallest Structure in Greater Boston in 

1901 - Field system by Frank Bunker Gilbreth 

(1868-1924), 

 retrieved from https://www.flickr.com/photos... 

…/internetarchivebookimages/14580092249/  

used under Creative Commons Attribution 2.0 

Generic License https://creativecommons.org... 

/licenses/by/2.0/    

Using motion studied construction methods and scientific management procedures, Frank Gilbreth’s 

building company achieved some notable successes. For example, his company began the stonework for 

Prescott Hall in Cambridge, Massachusetts on March 27, 1896, completed the first floor on April 8, the 

second and third floor each in five days, and had the roof on by April 29. In 1901-02 Gilbreth constructed 

a power station and 255 feet tall chimney for the Cambridge Electric Light Company (Figure 1-2). The 

chimney was the tallest structure in the Boston area at the time, was begun on May 29, 1901, and 

completed on October 17 despite a total of nearly a month of work halts to let the mortar dry. In 1902, the 
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contract for Lowell Laboratory for the Massachusetts Institute of Technology was signed June 28, work 

began July 1 and ended September 17, six weeks before the contract deadline. Finally, the cost of 

constructing a storehouse for the Plimpton Press in July 1911 had been lowered so much the Press 

decided to enlarge its size by forty percent and to give Gilbreth the contracts for two more storehouses. 

Gilbreth estimated that owners who applied even a fraction of his system could reduce costs by 10-20%. 

Motion study was one of many powerful predecessor tools to modern lean management. The lean 

management paradigm is mainly attributed to the driving force of one production engineer at Toyota, 

Taiichi Ohno (Charron et al. 2015). Lean management focuses on the reduction of waste. The seven basic 

types of waste Ohno identified are: defects, overproduction, waiting, transporting, movement, 

inappropriate processing, and inventory. Shigeo Shingo worked with Ohno and was a student of 

Gilbreth’s work. In Charron et al. an anecdote of Dr. Shingo provides insight into the lean management 

perspective, 

“The group stopped at a press that was forming metal. Dr. Shingo pulled out a stopwatch 

and watched the operation through one cycle. He asked the question: ‘What is the 

percent of value added to non-value added?’ One engineer said 100%-the worker was 

continuously working. Another said that it was 50%, and a third said 30%. Dr. Shingo 

looked at his watch, laughed, and said, ‘Only 14% of the time is value added.’ Dr. 

Shingo explained his calculation, stating that only when the press is forming the metal is 

real value added.” (Charron et al. 2015) p. 49 

A century ago, a paradigm shift took place in industrial production. Companies and facilities were 

growing in size and complexity at unprecedented rates, adopting mechanization, and subdividing skills 

and activities. These changes necessitated the creation of new management methods like motions study 

and lean management. Today, with advances in technology, building plants are more complex than ever, 

and the use of modularization and prefabrication is becoming more prevalent within industrial 
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construction (Chandler 2013). These changes too, will require advances in management techniques; 

advances that will heavily rely on computers and sensors.  

1.1 Problem statement 

Among the many challenges of construction management are the awareness and control of 3D 

geometries. Progress tracking, quality assurance/quality control, and the location, movement, and 

assembly of materials are all critical processes that rely on 3D spatial data. The National Research 

Council instructs that improving the efficiency of these processes through effective interfacing of people, 

processes, materials, and information is one of the central opportunities for breakthrough improvement in 

construction (NRC 2009). Fiatech states in its construction and information management vision statement 

that sensor networks and communication technologies that provide seamless access to data, information, 

and knowledge needed for optimal decision making will be the key enabling tools in the management of 

project interfaces (Fiatech 2015). Integrating and automating the information flow regarding 3D 

geometries on dynamic and cluttered construction sites will require advanced capabilities in site 

metrology and 3D imaging, construction object detection and localization, data exchange, and design data 

to as-built comparison. These capabilities will be the foundation for the next generation of assessment 

tools that empower project leaders, planners, and workers. 

3D imaging systems are a class of these sensor technologies growing in popularity. 3D imaging in the 

construction industry is often referred to as laser scanning and it has been profoundly affecting project 

surveying since the 1990s (Phair 2007). In addition to laser scanners, range-cameras are also a popular 3D 

imaging solution. Range-cameras use techniques such as structured light or time-of-flight to generate 

range images, which are 2D arrays (images) of depth values. 3D imaging devices enable the capture of 

existing physical geometric conditions objectively, accurately, quickly, and with greater detail and 

continuity than any manual methods. Current applications of laser scanners by construction firms include 

schedule and progress tracking (Turkan et al. 2012), creating complex as-built construction documents 

and 3D models (Patraucean et al. 2015), path planning, crane setup and clearance evaluation, quality 
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assurance, retrofitting, controlling deformations, floor grading, steel column verticality, and base plate 

and tie point locations (FARO 2016; Jacobs 2006; Phair 2007). 

Within the construction literature, laser scanning is being used as a source of data for advanced 

dimensional compliance control (Nahangi and Haas 2014). These new automated systems have proven 

potential for effectively and reliably detecting defects during complex fabrication and construction 

processes Figure 1-3. These tools compare as-built scans of fabricated assemblies with their 3D CAD 

design files. This comparison either confirms the assembly was fabricated correctly or identifies 

discrepancies.  

 

Figure 1-3: Example fabrication and assembly monitoring tool. The fabrication/assembly process is completed in eight 

steps as shown. The top row of each step is the fabricated state and the bottom row is the feedback provided by the 

dimensional compliance control system 

Despite 3D imaging’s ability to provide massive amounts of spatial data, its potential is limited because 

extracting usable information from the collected data remains primarily a manual process. Before 

comparisons for dimensional compliance control can be made between as-built scans and 3D CAD design 

files, the particular object of interest needs to be isolated from the rest of the scan Figure 1-4. Manually 

extracting information from the raw 3D images in order to run analysis is painstaking, requires many 

Compliance monitoring toolboxInput Output

1 2 3 4

5 6 7 8
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person-hours and specialized personnel training, and is therefore not well suited for real-time or rapid 

decision making on a large scale. Automating the search and extraction of objects of interest from spatial 

data is the fundamental enabler for further developments in automated spatial analysis and information 

flow. Search and extraction involves many technical challenges that stem from the variability of spatial 

data and other operational realities such as local density, surface roughness, curvature, clutter, occlusion 

(Figure 1-4), missing/erroneous data, as well as range-sensor noise and inaccuracy. This thesis is an 

exploration of industrial pipe spool recognition and extraction from cluttered point clouds.  Specifically, 

two questions are posed:  

(1) What process can be used to automatically locate and extract pipe spools from cluttered point 

clouds? 

(2) How does the accuracy of a 3D imaging device affect its ability to provide data from which 

objects can be successfully recognized? 

These questions directly lead to the research objectives outlined in Section 2.5. 

 

Figure 1-4: Extracting points associated with structural frame module from cluttered 3D image of industrial fabrication 

facility for as-built object of interest to design file comparison 

(b) comparison of as-built object of 

interest and design
(a) cluttered points cloud 
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1.2 Thesis organization 

This Thesis is divided into six sections. 

Section 1 summarily explained the observable trends seen in management science over the past century 

and provided a brief problem statement and justification for the investigations conducted in this thesis.  

Section 2 provides a comprehensive background on the current state of pipe spool fabrication. Topics of 

fabrication process and fabrication tolerance describe the current operational environment and frame the 

emerging automated dimensional control systems. Section 2.5 dictates the objectives, scope, and approach 

of the research within this thesis.  

Section 3 is a literature review covering the current state-of-the-art in 3D imaging in construction, 

automated visual inspection, and industrial object recognition.   

Sections 4.1 to 4.4 investigate two versions of a RANdom SAmple Consensus (RANSAC)-based pipe 

spool recognition framework that ultimately fail to provide reliable results. Sections 4.5 and 4.6 present 

and successfully validate a novel pipe spool recognition method that is based on local data level curvature 

estimation, clustering, and bag-of-features matching.  

Section 5 presents an accuracy study for three 3D imaging devices that investigates the efficacy of using 

low-cost range-camera generated data for industrial object recognition.  

Finally, Section 6 summarizes the findings of the research. Benefits and limitations of the proposed 

recognition frameworks are discussed, and potential avenues for further research are recommended. 
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2.0 Background 

The Canadian construction industry contributes 120 billion dollars (2015) to the national gross domestic 

product, constituting 7.3% of the total. This is similar in magnitude to the health care and finance 

industries, at 111 billion and 114 billion dollars respectively (Statistics Canada 2016). The construction 

industry can be broken down into four industry segments (Halpin and Senior 2011): (1) heavy 

engineering construction, (2) residential construction, (3) building construction and (4) industrial 

construction. The term “industrial construction” is used to describe a wide range of facilities for basic 

industries, such as petroleum refineries, petrochemical plants, nuclear power plants (Figure 2-1), steel 

mills, and heavy manufacturing plants. Piping is the principle cost in these plants. The equally sizable 

mining, quarrying, and oil and gas extraction industry is the construction industry’s second largest client, 

after the housing industry, ranked by capital expenditures for construction (Statistics Canada 2014).  

 

Figure 2-1: Nuclear reactor training mock-up with reactor face, fuel channels, and upper and lower feeders visible 
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2.1 Pipe spool fabrication 

Pipe spool fabrication (Figure 2-2) falls under the category of industrial construction processes, and 

involves the creation of piping networks intended to carry water, steam, fluids, gases, chemicals, and fuel 

as part of heating, cooling, lubricating, and process piping systems. The prefabricated components of a 

piping system are called pipe spools. On a given project, pipe spool fabrication typically demands the 

largest percentage of direct labour (CII chartered Research Team 327 2015) and is commonly viewed as 

one of the more complex operations in project execution.  

 

Figure 2-2: Large diameter pipe spool fabrication in piping fabrication facility, Cambridge, Ontario 

The following sections are a summary and synthesis of information about the pipe spool fabrication 

process gathered from personal communications with Ricky Huynh, Cory Wilson, Andrew Giralt, Shaun 

Kauk, Chris Mullins, and Tom Elliot (personal communication, June 18, 2014 and November 18, 2014) 

during multiple visits to a pipe spool fabrication facility in southern Ontario, conversations with Ray 

Lemieux (personal communication, September 25, 2014) at a local pipe fitting union, and from reference 

material (Antaki 2005; Lucas and Welding Institute 1991; Nayyar 2000; ASME B31.1-2014 2014; 

Thielsch 1965).  The presented process should not be interpreted as universal for all pipe spool fabrication 

as variations are possible.  
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Fabrication refers to the series of cutting, bending, forming, fitting, and welding of individual pipe 

components to each other and their subsequent treatment and examination to form a unit (pipe spool or 

piping assembly). This process may take place in a commercial pipe fabrication shop or an on-site 

fabrication shop, where subsets of the piping system are fabricated into subassemblies or modules. When 

built in commercial pipe fabrication shops away from their final installation site, this is known as off-site 

fabrication or prefabrication. These off-site fabrication shops typically offer a greater degree of control 

over fabrication quality and productivity than on-site fabrication. A summary of the process in BPMN 

notation can be found in Figure 2-3. Pipe diameters processed by these facilities range from between 2 

inches to in excess of 48 inches. Commercial pipe fabrication shops often perform piping, as well as other 

architectural and structural metal work all within the same facility.    

2.1.1 Pipe spool design and isometric drawings 

Pipe spools vary by material, shape, configuration, type of joints, and many other properties. These are 

determined by the unique functions and loads of the intended application. Current industry practice is for 

the designer to prepare plans and sections or isometric drawings of the required piping system. These 

isometric sketches used by the craft workers are also often referred to as spool sheets, “Iso’s”, or shop 

drawings (Figure 2-4). An isometric drawing is the representation of an object in equal length projection 

showing length, width, and height axes. The axes in a true isometric drawing are 120° apart.  

When complete, these drawings and auxiliary documents specify the: (1) routing and subdivision of the 

system into subassemblies, (2) number of field welds, (3) all necessary fabrication dimensions, (4) 

identification requirements, (5) code, classification, and inspection requirements, and (6) all special 

forming, welding, heat treatment, non-destructive examination (NDE), and cleaning requirements. How a 

system is divided into subassemblies depends on available materials, shipping limitations, heat treatment 

and welding clearance limitations, and occasionally scheduling directives. Minimizing field welds to 

simplify on-site installation work is often a priority, but must be balanced against added transportation 

and rigging costs. Once the designs are completed, they are sent to the fabricator along with the required  
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Figure 2-3: Typical pipe spool fabrication process
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Figure 2-4: spool sheet and material list of a spool in a hot water heating system. From Drawing Interpretation and Plan 

Reading (pg. 46), by International Pipe Trades Joint Training Committee, Inc. 2000, Washington, D.C. 

materials, such as pipes, flanges, fittings, and valves. Once all the material required for an isometric is 

available, that isometric is released to the shop for fabrication. 

Drafting and input documentation for pipe spool fabrication is usually limited to two dimensional 

isometrics. The availability of 3D models on projects is still rare, but increasing. Anecdotally, when a 3D 

model exists, it is provided by the owner approximately 80% of the time, and made in house by the 

fabricator approximately 20% of the time.  

2.1.2 Cutting, bevelling, and bending pipe segments 

Typically, materials are supplied by the owner/client, sometimes the material comes precut, and 

sometimes it comes in bulk and needs to be cut in house. Cutting the raw piping material can be 

performed using mechanical methods such as saws, abrasive discs, lathes, and pipe-cutting machines; or 

thermal methods such as oxyfuel gas cutting or electric arc cutting. Cold mechanical cutting is the 

preferred method as it leads to cleaner connections and less thermal distortion during welding. After the 

pipes are cut, the cutting operators bevel the end surface of the pipes to make room for weld filler material 

if required. Bevels can be prepared using either the mechanical or thermal cutting methods. The V bevel 
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is used in the vast majority of piping applications. Pipes are bent using a variety of methods using 

bending tables or bending machines with and without the application of heat.  

2.1.3 Fitting  

Then pipes are moved to fitting stations to be joined together by a steamfitter/pipefitter. First, a visual 

layout is produced, such as chalk lines and templates, that establishes the base line for locating and 

positioning the components and terminal dimensions of the subassembly. All weld surfaces are cleaned of 

rust, scale, grease, paint, and other foreign substances, which might contaminate the weld. Once cleaned, 

each weld joint is carefully aligned within required tolerances using alignment fixtures, spacers or jigs. 

Poor alignment usually results in a poor weld. Then the joint is tack welded (i.e., temporarily connected) 

to maintain the alignment. Once the pipes and other components of the spool, such as reducers, valves, 

and flanges, are fit, overhead cranes are used to move the assemblies to the welding station. Assemblies 

may move between fitting and welding stations several times as components are successively added to the 

assembly. 

2.1.4 Welding  

Welding (i.e., permanently fusing components to each other) constitutes the majority of work involved in 

the fabrication of modern piping systems. Currently the most commonly used welding processes for 

fabrication of piping are shielded metal arc welding (SMAW), submerged arc welding (SAW), gas 

shielded arc welding, gas tungsten arc welding (GTAW), Gas metal arc welding (GMAW), and flux core 

arc welding (FCAW). Other welding processes exist – e.g., robotic welding or friction stir welding (FSW) 

– however, they are used much less frequently in pipe spool fabrication.  Welding is primarily performed 

via two methods: roll welding and position welding. In roll welding, the welder fixes one end of the pipe 

into a pipe turner or lays the pipe on a set of rollers and rotates the assemblies while welding them. The 

fitter or the welder does not change his or her position to perform the operation. The best efficiency in all 

shop welding processes is attained when the pipe axis is horizontal and the piece is rotated. Position 

welding is used when the pipes cannot be rotated by a turner or when components are not round in shape. 
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It requires the welder to maneuver around the object and weld in suboptimal positions. Position welding 

is a difficult procedure, and takes longer to perform than roll welding. Minimizing the number of position 

welds is one of the goals of pipe spool fabrication sequencing.  

2.1.5 Miscellaneous post-weld processes 

Based on the drawing requirements, after welding pipe, assemblies may be hydro-tested or undergo other 

processes such as stress relief heat treatment, surface treatment, surface finishing (sandblasting), cleaning, 

and painting.  

2.1.6 Progress tracking 

Production is tracked using Diameter Inches (DI), a metric based on the length of welding performed, 

scaled by size and thickness of pipe. When a spool is complete, the associated drawing is placed in a 

completed spool collection bin and the shop floor supervisor scans the barcode on the drawings and DIs 

are calculated and tracked automatically. Input labour hours and costs are recorded and correlated with 

the DI data to calculate and track productivity. Spool packages are tracked using a bar code system. Each 

drawing has a barcode and each drawing remains in physical proximity to the assembly during 

fabrication. The bar code provides a simple way to digitally track all projects. Information is tracked 

about the pipe spools on standard forms, and is organized within submission bins as seen in Figure 2-5. 

Forms and written procedures assure better control of fabrication processes. 

 

Figure 2-5: Pipe fabrication form submission and tracking bins 
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In order to control the flow of pipe spools through the fabrication process, it is typical for shops to use 

visual identifiers such as coloured ribbons (Figure 2-6), to identify the current state of the pipe assembly 

and any required special considerations. Example states include: spool on hold because of engineering on 

non-compliance report (NCR) issues, requires post-weld heat treatment (PWHT), requires ultrasonic 

testing (UT), requires radiographic testing (RT), requires magnetic particle testing (MT) or dye 

penetration testing (PT), or requires positive material identification (PMI). 

 

Figure 2-6: Fabrication shop - ribbon identification chart 
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2.2 Fabrication tolerance 

When a spool has been assembled, it goes through a series of verification activates. These can be 

generally categorized as inspection, non-destructive examination (NDE), and QA/QC. Inspection refers to 

the verification activities performed by stakeholders other than the fabricator, this being either the owner 

or a hired overseer. All other activities are usually performed by the fabricator. Inspection protocols are 

outlined in various industry codes and standards such as the ASME B31 Piping Code. Inspections may 

take the form of detailed visual examinations, witnessing of actual operations such as bending, welding, 

heat treatment, or NDEs, review or records, or a combination. The extent of inspection usually relies on 

the degree of confidence the inspector has in the fabricator.  

Examination refers to the verification work performed by the fabricator, with the majority of inspection 

being NDE. Common NDEs are: 

 Visual (alignment of surfaces, dimensions, surface conditions, weld profiles, markings, and 

evidence of leaks) (Antaki 2005) 

 Radiographic testing (RT) (demonstrate integrity of welding) 

 Ultrasonic testing (UT) (detect defects in welds and materials as well as determine material 

thickness) 

 Liquid or dye penetration testing (PT) (surface examination) 

 Magnetic particle testing (MT) (surface examination) 

 Positive material identification (PMI) (ensure correct material usage)  

The majority of verification activities are performed by the fabricator before the assembly is shipped. 

Once the assembly is received on-site by the customer, the assembly is assumed to be in a compliant state, 

so only minor visual checks for gross errors are performed. 
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2.2.1 Dimensional control 

During fabrication, all materials and components are assumed to have specific dimensions and the 

locations of elements are dimensioned on the isometric drawings to a theoretically exact position relative 

to one or more datum points. In reality, these fabricated dimensions and locations vary somewhat. The 

contractually acceptable amount of variance is the tolerance for that specific measure. Tolerance 

specifications assure installation of a system within a reasonable degree of accuracy.  

For specifying tolerances, designers and QC specialists typically use standardized dimensional tolerance 

guidelines (Figure 2-7) such as the systems published by American Society of Mechanical Engineers 

(ASME) or the International Organization for Standardization (ISO). For any contract, the designer must 

clearly state: (1) the tolerances allowed, (2) the standards used, (3) how compliance will be verified, and 

(4) what the result of noncompliance will be.  

Currently, the predominant processes for monitoring the critical dimensions outlined in these standards 

involve manual assessment by certified QC personnel using direct contact measurement devices such as 

metal measuring tapes, calipers, custom gauges, squares, and straight edges. No measurement process is 

exact, and this uncertainty needs to be taken into account when verifying compliance with any allowable 

tolerance. Measurement uncertainty is simply a quantified doubt about the result of a measurement. 

Uncertainties and errors in measurement can come from many sources, such as the measuring device, the 

component being measured, the skill of the craftworker or inspector performing the measurement, the 

measurement process, and the environment. For example, when taking a simple distance measurement 

with a measuring tape, a number of things can go wrong: (1) the tape could be mismarked or the end hook 

could be out of position, (2) the tape sags during the measurement, (3) the tape may not be perfectly 

aligned with the desired axis of measurement, (4) the craft worker measuring might have poor eyesight, or 

be making the reading in dim lighting conditions, or (5) the craft worker may round, adopting a “close 

enough” attitude. 
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Figure 2-7: Application of pipe fabrication tolerances from Pipe Fabrication Institute Standard ES-3 

“A” = ±1/8” FOR PIPE 
SIZE UP TO 10” 
INCLUSIVE 
“A”= ±3/18” FOR PIPE 
SIZE OVER 10” 
NOTE: “A” TOLERANCES 
ARE NOT CUMULATIVE 
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In addition to measurement uncertainty, dimensional control problems also originate from existing poor 

design document creation practices.  These include: 

 Chain dimensioning establishes ambiguity and the potential for accumulated measurement error - 

e.g., dimensioning a spool’s multiple nozzles centre to centre instead of to a single base point. 

 Problems can arise when copying values from guidelines or standards while neglecting to 

communicate if they are maximum or minimum values of an allowable range. 

 Less important dimensions may have a plus-or-minus sign as a suffix to indicate that the 

dimension can vary, but the amount of the allowable variation is not clear. 

 Errors can result from using units that the fabricator does not typically operate with. 

Adhering to tolerance specifications can take on an additional layer of complexity when practical cost-

benefit concerns are integrated into the decision making. For example, under a strict interpretation of the 

contract, a contractor would be required to demolish an entire section of a concrete structure because it 

exceeded the specified tolerances by a quarter inch, but this could seriously delay construction progress, 

lead to litigation, make for a negative and adversarial work environment, and increase costs 

unnecessarily. For most large projects, the final tolerance inspection is performed by the regulatory 

agencies.  

For a more in-depth discussion of tolerances in pipe spool fabrication and construction in general, see 

(Antaki 2005; Ballast 2007; International Bureau of Weights and Measures 1993; ISO 4463-1:1989 2012; 

ASME B31.1-2014  2014; Thielsch 1965). 

2.2.2 Non-compliance with contractually stipulated tolerances 

Occasionally, some work will be performed that upon examination will be found to be out of tolerance. 

This is an instance of non-compliance with the contract. Mistakes and defects during fabrication of pipe 

spools are caused by suboptimal examination practices; designers carelessly preparing specifications;  
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Table 2-1: Example of contractual non-compliance categories from industry 

Non-Compliance Categories Description 

1 Weld defect 
Flaws whose aggregate size, shape, orientation, location, or properties do 

not meet specified acceptance criteria 

2 Dimensional defect 
A dimensional discrepancy greater than the acceptable tolerances stated by 

the applicable code or contract 

3 Drawing error An error or omission on drawings used for production 

4 Pressure test failure 
The failure of a pressure test either hydro or pneumatic. Mechanical failures 

of equipment are not considered cause for an NCR but rather a retest 

5 Fitting error 

A dimensional or orientation discrepancy greater than the acceptable 

tolerances stated by the applicable code or contract discovered after the 

fitting process 

6 Material defect (vendor error) 
A defect in parent material which exceeds allowable tolerances and 

specifications of the applicable code 

7 
Missing MTR/Documentation 

(vendor error) 

Required documentation and/or material test reports not available during 

receiving 

8 Customer error Customer error resulting in a non-compliance 

9 Wrong material/consumable 
Either material or consumables used in the process not as per the required 

specification or Welding Procedure 

10 Wrong WPS used 
Weld Procedure Specification used on production is not on the Approved 

Procedure List for the parent material welded 

11 Damage part – general Damage to production parts 

12 PWHT error 
An error either through documentation or during the Heat Treating process 

which is not acceptable per the applicable code 

13 
Machining error (by 

fabricator) 

Machining completed by fabricator which falls outside that allowed by the 

applicable code or specification 

14 Supplier/subcontractor error 

Defect or error incurred by supplier or subcontractor which impacts 

compliancy of product to the applicable code and/or purchase order 

requirements.  

15 
Material not to specification 

(vendor error) 

Material received either through purchasing or free issue does not meet the 

specification required  

16 Painting defect Defect in coating system which is not compliant to applicable code 

17 Process non compliance 
A violation of procedures or processes as stated in Traveler, inspection and 

Test Plan or QCPs 

18 Contamination 
Material has been contaminated either through contact or improper 

packaging and requires rework 

19 Identification traceability error 
Identification or traceability of components has come into question and 

cannot be positively linked to its accompanying documents 

20 Regulatory non compliance  

21 MTR incorrect (vendor error) 
Material Test Report is not in compliance either through error or omission 

with code stipulated 

22 
Customer supplied material 

NCR 

Material issued by customer has Material Test Reports that are not in 

compliance either through error or omission with code stipulated 

23 Damaged part – flange face Flange face does not meet the requirements per the applicable code 

24 Damaged part – ball valve Ball valve does not meet the requirements per the applicable code 

25 Welder not qualified 
Welding personnel not qualified in accordance to the requirements per 

applicable standards 

26 PO incorrect Purchase Order supplied by fabricator does not meet the requisition 

27 Material substitution One material will be substituted by another 

28 Miscellaneous All other issues not covered in the above defect categories.  
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misplaced cost consciousness by the owner; and a fabricators eagerness to expand into performing work 

for which they lack the necessary experience in welding, metallurgy, quality control, or inspection.  A list 

of non-compliance categories and their descriptions can be found in Table 2-1. 

Dimensional non-compliance or defects are primarily caused by pipe fitter error or by the thermal 

expansion and contraction of metals during welding. The degree of distortion depends on the metal or 

alloy, its size, shape, thickness, the tacking and alignment, the welding process, procedure, and sequence, 

the care taken by the welder, and the positioning of the welded components in the design.  Regardless of 

whether the defect originates from fitting or welding, dimensional examination usually does not occur 

until after welding, i.e., after the components have been permanently joined. Remediation of this type of 

non-compliance is expensive; more-so if the dimensional defect goes undetected until final installation 

on-site. 

Client-side defect detection occurs when the contractor is installing pipe spools or modules in their final 

location and the interfaces or connection points of the assembly do not align with adjoining assemblies. 

Short of gross error, this misalignment can be characterized by 3 axes of translation (Figure 2-8) (i.e., 

centreline offset and face-to-face offset), and 2 axes of rotation (Figure 2-9) (i.e., flange out of parallel). 

Piping Code ASME B31.3 Paragraph 335.1.1 “Alignment” stipulates that a certain degree of 

misalignment can be remedied by cold-pulling or torquing the adjoining spools to bring them into 

alignment for joint assembly. This operation introduces a detrimental strain into the system, and so an 

engineer should determine whether the misalignment falls within a tolerance that is a function of: the 

inherent flexibility in the system, the length of pipe that lies in the direction perpendicular to the direction 

of a single degree of misalignment, and the other fit-up conditions in the balance of the system. 
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Figure 2-8: Adjoining spools’ closure point translational interface misalignment. From ASME B31.3 Process Pipe Guide, 

Revision 2, p.125 

 

Figure 2-9: Adjoining spools' closure point rotational interface misalignment. From ASME B31.3 Process Pipe Guide, 

Revision 2, p.126 

 

If the pipe closure point exceeds allowable alignment/cold-pull tolerance then the spool needs to be 

reworked. Depending on the nature of the fix, the component is either sent back to the fabricator with the 

instructions of the engineers or fixed on-site if the cost or liability is not prohibitive. This work can 

involve cutting, refitting, and rewelding, which must be followed with additional examination and 

inspection. Schedule delays may also result as industrial components are rarely interchangeable, and any 

delay in delivery and installation of such a unique component might hold back progress on-site. 
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Off-site facilities offer a greater degree of control to pipe spool fabrication as compared to on-site 

fabrication due to the more systematic and rigorous feedback control loops in place within these facilities. 

The biggest drawback is that occasionally after the spools are fabricated to a fixed size and shipped to 

site, they do not fit to previously constructed adjoining assemblies. This may be a result of poor 

workmanship, but more commonly attributable to misinterpreted isometrics or faulty dimensions on an 

isometric.  

2.2.3 Rework 

In the construction literature, rework is the wasteful effort involved in redoing work that has not yet 

yielded a product adequately conforming to contractual requirements (Hwang et al. 2009; Love and Li 

2000). Rework directly and significantly contributes to cost and schedule overruns on construction 

projects (Hegazy et al. 2011; Love 2002). Specifically, research published by the Construction Industry 

Institute (CII) states that rework costs between 2% and 20% of a typical project’s contract amount 

(Construction Industry Institute (CII) Research Team 252 2011). Using data from 178 construction 

projects, (Hwang et al. 2009) assessed the impact of rework from a contractor’s perspective and 

concluded that it most greatly influenced cost increases on heavy industrial projects. It has been argued 

that the cause of rework on such projects is attributable to poor construction techniques and poor 

construction management policies (O'Connor and Tucker 1986). On a mining expansion megaproject in 

Alberta, it was discovered that errors and omissions in prefabrication and poor workmanship of 

prefabricated materials was a significant source of rework (Dissanayake et al. 2003). Systematic quality 

assessment of construction components during their lifecycle is important to reduce rework on projects 

(Love and Li 2000) and particular attention must be given to processes within prefabrication facilities to 

ensure they are meeting project requirements and mitigating field rework. Any automated quality 

assessment tools used for this purpose would need to have the capability of identifying errors and 

omissions in a timely and accurate manner, while using the most up-to-date design files, as many rework 

situations occur because field changes are not communicated to the fabricator effectively. 
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The method most widely employed to correct misalignment in vessel and piping components is the 

alternate heating and cooling of areas adjacent to the welds. Upon heating, the affected material expands 

with a corresponding reduction in yield strength, resulting in plastic flow if the heated area is restrained 

by the surrounding material. When the heated area cools, it shrinks, resulting in a permanent deformation. 

By repeating this procedure a number of times, the misalignment can be gradually corrected.  

Rework is a substantial source of waste on construction projects, and systems for minimizing or 

eliminating it should be adopted. One such system is lean management.  

2.3 Lean management 

In the early 1950s, a Toyota Motor Corporation engineer named Taiichi Ohno created a systematized 

approach to think about process inefficiency and waste (Charron et al. 2015). His work developed into the 

Toyota Production System, which along with its derivative philosophies embodied in modern lean 

management, take scientific management to its natural conclusion. Rather than focusing on reducing time 

using time study, or reducing motion using motion study, lean management aims to reduce all forms of 

waste in productive systems. Lean management concepts have been applied to pipe spool fabrication 

(Wang et al. 2009), and the consequent modifications to shop layout can be seen in Figure 2-10 and 

Figure 2-11. The work cell layout reduces the transportation of pipe spools between fitting and welding 

stations, thus reducing motion waste. Waste is generally composed of unnecessary activities that do not 

add value to a product during its creation. “Waste can be broken down into eight forms: overproduction, 

excess inventory, defects, extra processing, waiting, inefficient motion, unnecessary transportation, and 

underutilized workers. Waste reveals inherent weaknesses in the current process in terms of capabilities 

and reliability.” (Charron et al. 2015) 

Rework in construction is an agglomeration of waste types, primarily resolving defects and any extra 

processing and transportation involved in doing so, and the inefficient motion that is the yet unquantified 

non-value add readjustment of pipes during normal fabrication processes. There is a need for new process 
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control methods that reduce rework. The flow of information in the system is critical, and new methods of 

providing feedback to front line workers need to be developed in order to ensure that production remains 

in a continuous flow state, eliminating rework and ensuring actions are all value-adding. 

 

Figure 2-10: traditional pipe spool fabrication shop layout (Wang et al. 2009) 

 

Figure 2-11: lean pipe spool fabrication shop layout (Wang et al. 2009) 

Cutter

Cutter
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2.4 Control systems theory applied to fabrication 

Feedback has been described by Norbert Wiener as “the property of being able to adjust future conduct by 

past performance.” A feedback control system maintains a prescribed relationship of one system variable 

to another by comparing functions of these variables and using the difference as a means of control (De 

Silva 2009). Consider picking up and dropping a ball into a box. Here, the feedback control system 

involves the eyes capturing images of the motion of the hand through space, its relative position to the 

ball, and the performance of the grasping operation. These images are encoded and set to the brain for 

processing. The brain, knowing the intent of the motion can now compare what is expected (reference 

model) and what is actually happening (measured output based on visual sensor information) and control 

the movements of the muscles of the arm and hand in a way the difference between the reference and the 

output is always kept minimum. This is an example of a feedback control system. The difference between 

the reference and the data collected is called the error. 

Figure 2-12 presents a standard error feedback control system configuration. The plant or the controlled 

system is the system that is controlled. The feedback element is typically a sensor that feeds the plant 

output back to be used by the controller. 

 

Figure 2-12: standard error feedback control system configuration 

As construction fabrication operations become more complex, the biological feedback system outlined in 

the previous paragraphs becomes inadequate. In order to build lean companies, and reduce waste and 

I/P O/PController
(a signal or information 

processing device)

Plant
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+
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rework, managers need to augment their eyes, gut feel, and manual note taking with sensor networks that 

automatically collect data about the plant and processes within. Manual data collection is untimely and 

subjective, and automated systems overcome these limitations. Although automated data collection 

systems are underutilized in construction fabrication, they are deployed extensively in manufacturing to 

track machine operation. A modern data collection system is composed of a data logger / transaction 

manager, a database, a report generator, and a factory viewer real-time interface (Wintriss Controls Group 

2013). These programs typically operate together on a single server. The web browser acts as the front 

end to the system. The data logger is a program that gathers the raw production data, organizes it, and 

uploads it to the database. This raw data typically includes machine statuses: running, idle, unplanned 

downtime (with error codes entered manually by operator from a dropdown menu), planned downtime, 

changeover, offline. The database is then accessed by the web browser to display information in a format 

that is useful. The data collection system interfaces with the manufacturing plant’s enterprise resource 

planning and manufacturing execution systems software to dynamically update schedules, calculate 

efficiencies to help reorganize production and allocate resources. Plant walk-throughs also benefit from 

the available display of real-time production data to focus the attention of management.  

The tracking of machine statuses in manufacturing is much simpler then tracking the activity of craft 

workers in construction. The motion study methods of Frank Gilbreth focused solely on motion efficiency 

and required extensive manual processing, but were widely applicable to many types of work. The focus 

of this research and thesis will be to study how 3D imaging devices could provide useful information 

concerning as-built geometry in pipe spool fabrication environments.  

2.5 Objective, scope, and approach of research 

As the use of modularization and prefabrication becomes more prevalent within industrial construction, 

the scope of modularization will expand to include a greater diversity of systems and account for a larger 

portion of constructed facilities (Chandler 2013). As a result, the effective execution of prefabrication will 

play an increasingly central role in total cost and schedule management on construction projects.  
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Prefabrication errors and omissions are considered a significant source of rework (Dissanayake et al. 

2003), and so have been the focus of many quality control tool development projects (Akinci et al. 2006; 

Bosché 2010; Kim et al. 2015).  

Currently, dimensional compliance control is performed using direct contact measurement devices that 

are effective at evaluating whether basic assemblies are compliant with design specifications, but their 

effectiveness deteriorates as the assembly’s geometrical complexity increases. Manual measurement is 

subjective, time-consuming, costly, and discontinuous. There is a need for automated and systematic 

dimensional compliance control tools that offer objective, fast, and continuous data collection for reliable 

quality control on industrial construction projects. 

3D imaging systems are a class of sensor technologies well suited to provide data for these new 

dimensional compliance control tools. Current construction research applications of laser scanners are as 

diverse as schedule and progress tracking (Turkan et al. 2012) and automated compliance control 

(Nahangi and Haas 2014). However, extracting usable information from the collected data remains 

primarily a manual process. This is because the data capture is indiscriminate, and includes unwanted 

background objects and clutter in addition to the objects of interest. Automating the search and extraction 

of objects of interest from spatial data is the fundamental enabler for further developments in automated 

spatial analysis and information flow.  

For the purpose of this work, the scope of the research is limited to pipe spools because of their 

significance to industrial construction.  The objectives of the research follow directly from the problem 

statement presented in Section 1.1. The objectives are:  

(1) Develop a process that can be used to automatically locate and extract pipe spools from cluttered 

point clouds  

(2) Explore the potential of using low-cost range cameras for monitoring industrial pipe spool 

fabrication 
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Achieving these objectives will bring automated visual inspection of pipe spool fabrication closer to 

industrial implementation. An automated pipe spool recognition process will complete and fully automate 

the visual inspection workflow described in Sections 1.1 and 3.2 and the successful application of low-

cost range-cameras to industrial inspection will decrease the required initial capital expenditures for 

fabricators in purchasing system equipment. 

After performing an extensive literature review, two separate pipe spool recognition frameworks are 

developed and evaluated. RANdom SAmple Consensus (RANSAC) is a conceptually simple 

methodology that has achieved success in finding basic shape primitives in cluttered point sets (Section 

3.3.4). In Sections 4.1 to 4.4, an attempt is made to extend and apply the RANSAC framework to locating 

pipe spools in cluttered point clouds. Then, in Sections 4.5 and 4.6, a novel method based on local data 

level curvature estimation, clustering, and bag-of-features matching is developed and validated. The 

techniques applied in the novel method were selected because pipe spools have unique curvature 

characteristics as compared to the majority of surrounding clutter. Finally, in Section 5.0, a study is 

conducted to explore the efficacy of using laser scanner, as well as low-cost range-camera generated data 

for industrial object recognition.  
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3.0 Literature review 

Creating a dimensional compliance control system for pipe spool fabrication will require many of the 

components found in traditional manufacturing control systems. In feedback control, the controlled object 

has to be monitored and its response measured (e.g., using sensors) for feedback into a controller. The 

controller then compares the sensed signal with the designed or planned behaviour as specified externally, 

and uses the error between the two to generate corrective control signals (De Silva 2009).   

For pipe spool fabrication, the externally specified design or planned state is detailed in the project’s 

schedule, design drawings, specifications, and other contract files. A sensor or sensing system needs to be 

chosen that is capable of monitoring the project’s state such that a meaningful comparison can be 

performed with the expected state as outlined in the contract. Once a sensing system is chosen, a way of 

extracting meaningful information from the raw data is needed. Ultimately, the calculated error between 

the sensed state and the planned state should initiate a control sequence that mitigates or eliminates the 

error.  

The following literature review will begin with a study of 3D imaging systems and their application in the 

construction industry. Then, the current state of automated visual inspection is explored, and a gap in the 

technical execution of these processes is identified. Finally, a collection of concepts is outlined that will 

be combined and used in this thesis for developing a method of automated information extraction from 

sensed spatial data. 

3.1 3D imaging in construction 

Light detection and ranging (LiDAR) is an increasingly important technology from 3D computer vision 

used for metrology in the architecture, engineering, and construction (AEC) industry (Patraucean et al. 

2015). LiDAR in the construction industry is often referred to as laser scanning and it enables the 

description of geometric conditions objectively, accurately, quickly, and with greater detail and continuity 
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than any manual methods. Current applications of laser scanners by construction firms include schedule 

and progress tracking (Turkan et al. 2012), creating complex as-built construction documents and 3D 

models (Patraucean et al. 2015), path planning, crane setup and clearance evaluation, quality assurance, 

retrofitting, controlling deformations, floor grading, steel column verticality assessment, and base plate 

and tie point location identification (FARO 2016; Jacobs 2006; Phair 2007) (Figure 3-1). 

 

Figure 3-1: Survey and layout during construction using a laser tracker 

3D imaging systems capture existing spatial conditions of a physical environment and generate digital 

representations such as point clouds or range images of their surroundings. Early iterations of range 

measurement devices were slow, provided only limited 3D information, and typically required substantial 

post-processing to provide useful information to the user. The recent emergence of non-contact active 

emission optical systems has substantially improved 3D data collection processes. Although these 

systems don’t strictly conform to the traditional and basic definition of a sensor, they are referred to as 

range-sensors or sensors extensively in the literature. The imaging systems used in construction generally 

rely one of three technologies for inferring distance. Pulse time-of-flight systems use the time it takes for 
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a laser pulse emitted by the device to travel from its transmitter to an observed object and then back to the 

receiver to calculate distance (Amann et al. 2001; Blais 2004). These devices can be used to measure up 

to several hundred meters with minimal degradation in accuracy. Phase-based systems calculate distance 

from the phase shift between the laser emitted by the device and the photoelectric current caused by the 

received laser (Amann et al. 2001). These devices are limited to collecting data at shorter distances (less 

than 100 m) but can achieve higher point density and faster data acquisition times (up to 976,000 data 

points per second (FARO 2015). Structured light systems implement a triangulation technology based on 

intersecting light rays in 3D space. They are similar to passive stereo camera systems, except one of the 

cameras is replaced by a projection device, either a single pulse or multiple emitters. The light emitted by 

the projector(s) uses a spatial or temporal coding strategy to derive correspondence between pixels in the 

camera and range values to objects in the scene (Drouin and Beraldin 2012). The captured data is stored 

in a 2D matrix of range values called a range-image, and commercially available low-cost optical range-

cameras are capable of collecting these images at up to 30 frames per second (Microsoft 2015). Blais 

(2004) published a comprehensive review of range sensor development occurring between 1984 and 

2004. A more recent survey of 3D reconstruction methods can be found in Gomes et al. (2014).      

Despite the incredible capabilities of LiDAR laser scanners, they remain expensive and are not suitable 

for real-time applications due to their high data collection latency. For this reason, range-cameras, which 

are comparatively fast and cost-effective, although substantially less accurate, must be tested for purpose 

alongside laser scanners (Han et al. 2008). Microsoft’s first range sensing Kinect sensor was released in 

November 2010, followed by the release of Kinect v2 in 2013. The Kinect sensors are among the least 

expensive 3D imaging devices available in their product class. Kinect was designed as a human-computer 

game interface, but the sensor’s ability to capture 3D data has attracted the attention of researchers in 3D 

modelling and reconstruction. Kinect v2’s capabilities represent a major improvement over Kinect v1. A 

comparison of the two sensors can be found in Table 3-1.  

 



33 
 

Table 3-1: Technical specification comparison for   v1 and Kinect v2 (Gonzalez-Jorge et al. 2015) 

Technical 

Specification 
Kinect v1 Kinect v2 

core depth sensor 

technology 

infrared (IR) structured light for 

triangulation 

IR indirect time-of-flight illuminator 

depth resolution 320 × 240 (≈ 75,00 points) 30 fps 512 × 424 (≈ 200,00 points) 30 fps 

field of view 57° horizontal × 43° vertical 70° horizontal × 60° vertical 

measurement range 40 cm – 6 m 50 cm – 4 m 

 

Results from a Kinect v1 sensor accuracy study concluded that: (1) Random error of depth measurements 

increases quadratically with increasing distance from the sensor and reaches 4 cm at the maximum 

sensing distance of 5 m. (2) The depth resolution decreases quadratically with increasing distance from 

the sensor. The point spacing in the depth direction (along the optical axis of the sensor) is as large as 7 

cm at the maximum range of 5 m as can be seen in Khoshelham and Elberink (2012). Gonzalez-Jorge et 

al. (2015) concluded that although the precision of both the Kinect v1 and Kinect v2 decreased with 

increased scanning distance, the effect was less appreciable in the Kinect v2.   

The low accuracy of the Kinect sensors remains prohibitive to practical application and laser scanners 

remain the technology of choice for dimensional compliance control. Section 5 presents a study that 

investigates the efficacy of using the Kinect sensors in industrial object recognition applications. In the 

next section, a review of automated visual inspection methods is presented, which covers a subset of the 

many emerging applications of these 3D imaging systems.  

3.2 Automated visual inspection 

Adhering to tolerance specifications during pipe spool fabrication requires rigorous inspection of work 

throughout the process. Laser scanners are well-suited for the inspection of assemblies for geometrical 

defects, which are a particular class of non-compliance. In the following sections, examples of 

geometrical defects encountered during pipe spool fabrication and operation are first provided. Then, the 

literature on automated visual inspection in construction is reviewed.  
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3.2.1 Geometrical defects in pipe spool fabrication 

Geometrical defects are all unintended geometrical deviations of a pipe spool from the design intent. 

These generally, fall into two categories: (1) gross errors and (2) dimensional out-of-tolerance. Gross 

errors are mistakes during fabrication characterized by a misinterpretation of the design isometrics by the 

craft worker (Figure 3-2b). Dimensional out-of-tolerance refers to deviations during fabrication or 

distortions during handling or operation where a particular geometry or dimension in the design is not 

being adhered to (Figure 3-2c). In addition to these main classes of geometrical defects, Table 3-2 lists 

additional defects commonly observed in pipe spool fabrication, handling, and operation that have the 

potential to be monitored using laser scanning. 

 

Figure 3-2: Two classes of geometrical defects in pipe spools, (b) gross errors and (c) dimensional out-of-tolerance 

Table 3-2: Defects with the potential to be monitored by laser scanner (Antaki 2005; Thielsch 1965) 

Defect Cause 

gouges and dents 
improper processing and storage; improper handling by cranes, chain falls, or other 

equipment 

excessive ovality improper cold bending 

weld-defects improper component fit-up; misalignment or spacing issues 

thermal distortion 
normal expansion and contraction of materials due to the thermal input from the 

welding process 

creep damage 
continuous increase in strain (deformation) of components under constant operating 

load at high temperatures  

 

(a) 3D CAD design file (b) gross error
(b) dimensional out-of-

tolerance
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3.2.2 Automated visual inspection in construction  

The function of QA/QC personnel is to perform lifecycle inspections to mitigate rework situations. 

Inspection is the process of determining if a product deviates from a given set of tolerance specifications. 

The predominant processes for monitoring the critical dimensions of an assembly involve a temporary 

production stoppage and manual direct contact measurement devices such as measuring tapes, calipers, 

custom gauges, squares, and straight edges. These processes can help fabricators evaluate whether basic 

assemblies are compliant with design specifications, but their effectiveness deteriorates as the assembly’s 

geometrical complexity increases.  

Automated inspection is desirable because manual inspection by humans is time-consuming, and can be 

excessively subjective, unreliable, and boring for humans to perform. Also, many industrial assemblies 

are not easily accessible for manual inspection. In addition to providing accurate dimensional evaluations, 

automated inspection processes would also automatically log defect rates, which would be an invaluable 

management tool. The use of CAD models in automated inspection started in the mid-1990s (Newman 

and Jain 1995a; Newman and Jain 1995b) and the natural utility of range data, which explicitly represents 

geometrical surface information critical for dimensional compliance control, also became evident. More 

recently, a methodology for using 3D imaging for quality control on dynamic construction projects was 

presented by Akinci et al. (2006). It focused on detecting defects early in the construction phase to 

eliminate costly rework downstream. The contribution of the work was the development of a formal 

method for comparing as-planned 3D design information (CAD model) with periodic imaging of critical 

construction components. 

Building on this methodology, Nahangi et al. (2015) and  Nahangi and Haas (2014) presented an 

automated approach for monitoring and assessing fabricated pipe spools and structural systems using 

automated scan-to-BIM registration. The method reliably detects the presence of dimensional non-

compliance and has consistently quantified deviations with less than 10% error in experimental studies. 

The method requires two 3D imaging input files: (1) a point cloud of the as-built assembly generated 
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using a 3D reconstruction technique such as LiDAR and (2) the tolerance specifications as represented by 

a 3D CAD design file.  The files are input into an algorithm with the following three stages: 

1. Preprocessing: involves converting the input 3D imaging files into a standard point cloud format and 

object of interest isolation from the as-built cluttered point cloud.  

2. Registration: begins by importing the two input point clouds into a common 3D space. Since the input 

files do not share a common origin, they need to be aligned through a combination of course 

registration using principal component analysis and fine registration using iterative closest point (Besl 

and McKay 1992; Bosché 2012)  

3. Dimensional non-compliance detection and quantification: analyzes the deviations between the 

superimposed files using a 3D cube local neighbourhood-based metric and outputs discrepancies.  

Researchers have similarly created automated methods for monitoring and performing automated 3D 

image-to-BIM comparison of MEP systems (Bosché et al. 2014; Bosché et al. 2015), and general building 

and structural systems (Bosché and Haas 2008; Bosché et al. 2009; Bosché 2010; Golparvar-Fard et al. 

2011; Nahangi et al. 2015; Tang et al. 2011; Turkan et al. 2012). Using 3D imaging for dimensional 

compliance assessment of construction components has proven potential to mitigate costly repair and 

rework while tracking progress. 

Bosché et al. (2009) and Bosché (2010) developed an innovative method of inferring the presence of 

model objects in laser scans. Their approach compared as-built scans to simulated scans generated 

through a ray casting projection process (from the perspective of the scanner) performed using the 3D 

CAD model. The as-built scan and the synthetic scan are compared and a threshold is used for rejecting 

matching point pairs that are too far apart. Thus, the algorithm only recognizes and retains points in the 

as-built scan that coincide with the 3D CAD model objects. However, the process is limited by the initial 

coarse registration of the scan and model coordinates, which was performed manually. Turkan et al. 

(2012) employed Bosche’s algorithm to recognize built objects in scan data. The recognized objects were 
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compared to the objects in a 4D as-planned model - a fusion of 3D CAD and schedule information - to 

track progress on construction sites. Golparvar-Fard et al. (2011) developed a machine-learning-based 

method for tracking construction progress using unordered photo collections. The photos are used to 

generate a 3D as-built model using scale-invariant feature transform (SIFT) (Lowe 2004) feature 

matching and then converted into a voxel representation (Section 3.4.1). The voxel’s are traversed and 

labeled for occupancy and visibility using a combination of SIFT point detection and voxel reprojection 

back on all images that observe it to determine consistency among images. Pixel colour inconsistency 

indicates that the images are not observing the same object in the specified pixels and therefore no object 

is within the specific voxel. Occupancy and visibility information of voxels is then used to compare as-

built data to the as-planned model. The process is similarly limited to Bosché’s in that the initial model to 

as-built registration is done manually, but once the registration is complete, the locations of the voxel 

objects can be implicitly compared to the as-planned model objects because they share their coordinate 

space.  

3D image-to-BIM comparison requires the superposition of the BIM onto the object of interest within the 

3D image, i.e., registration of the object centred coordinate systems. However, unwanted clutter in the 3D 

image makes automated registration a challenge. Within the construction literature, this initial registration 

step has, predominantly, remained a manual process and must be resolved before the enormous amount of 

geometric data that 3D imaging makes available can be fully utilized. Visual inspection is typically 

concerned with a particular object in the scan data, but methods of geometrical analysis of these objects of 

interest fall short of full automation because of the absence of a reliable object recognition method. Only 

by fully automating these systems will they become unobtrusive enough for fabricators to adopt them. 

Once adopted, they will continuously collect data that can be mined for operational insights that will 

improve fabrication efficiency and mitigate rework. 
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3.3 Automated recognition of objects in three dimensional data 

The problem of automatically extracting desired as-built data from cluttered scenes is closely related to 

3D object recognition in the computer vision literature. 3D object recognition is the process of detecting 

the presence of an object in a captured image with similar characteristics to a reference image or model 

and mapping the 3D coordinates of the reference to the 3D coordinates (or world coordinates) of the 

detected object in 3D space (Brown 1992; Hoiem and Savarese 2011). Object recognition systems were 

used in the 1980s by automobile manufacturers for guiding welding robots and by electronics and 

microelectronics companies for assembly of small components and usually had very specific and limited 

applications (Horn 1989). Examples of early detection techniques include ellipse fitting to sparse range 

data for coarsely locating tubes on a flat table (Grimson et al. 1993) and using a black glove and black 

background to isolate and digitize non-black objects (Rusinkiewicz et al. 2002). Bin-picking robots are an 

example of more recent technology utilizing 3D object recognition (Scape technologies 2008). The 

systems use numerical descriptors of intrinsic and extrinsic 3D object features to guide a robotic arm 

through its grasping task (Balslev and Eriksen 2010). The key to this technology is the use of local 

features, which are used to identify points with distinct characteristics. The same local features are 

detected for both the desired object reference model as well as for the as-built scan. Points collected off of 

the target object in the scene will yield feature points similar to those computed for the reference model. 

This point matching is used to determine the pose of the object in the scene. For a comprehensive survey 

of existing surface-feature-based 3D object recognition methods see Guo et al. (2014). The following 

sections outline concepts important for the development of the object recognition algorithms presented in 

Section 4. 

3.3.1 Feature space 

Finding a 3D object in a cluttered scene requires that object-centred coordinate systems be generated and 

aligned. This process requires recognition of object and non-object components, which is difficult if the 

position of the object is unknown and not entered manually. Given the complexity of 3D data, concepts 
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from human visual perception as well as information theory and data compression have been adapted to 

make object recognition tasks possible. In 1954, Newcomb and Attneave  explored the role of abstraction 

in visual perception. They stated that any sort of physical invariance (smoothness, coherence, correlation) 

whatsoever constitutes a source of redundancy for an organism capable of abstracting the invariance and 

utilizing it appropriately. Redundancy provides no additional information and is therefore an opportunity 

for simplification. Computing data compression schemes have exploited this opportunity to improve the 

efficiency of data storage and data transfer. These methods compress data by removing redundancy from 

the original data in the source file (Salomon 2007). The resulting file is an abstraction of the original that 

maintains the information of the original but is substantially more manageable. The equivalent concept in 

object recognition is the abstraction of 3D data into feature or descriptor space.  

3.3.2 Shape descriptors  

The tools used for this abstraction process in the context of recognizing objects in cluttered scenes, must 

demonstrate (Iyer et al. 2005; Körtgen et al. 2003; Tangelder and Veltkamp 2008; Yang et al. 2008; 

Zhang and Lu 2004): (1) discrimination between objects of dissimilar geometry, (2) insusceptibility to 

noisy data, (3) invariance under transformation and rotation, (4) conciseness and ease of indexing, and (5) 

the ability to perform partial matching, i.e., describe parts of a point set (object of interest) independently 

of the rest of the point set in order to enable recognition of those specific parts.  

There are two general descriptor types, global and local. Global descriptors abstract a 3D point set by 

considering the point set in its entirety. An example of a global descriptor is shape distribution (Osada et 

al. 2002), which is simply the probability distribution function of distance between randomly selected 

point pairs that reside in the 3D point set. Global descriptors work well for global-to-global matching, i.e., 

matching point sets representing single complete objects, but fail on the fifth requirement of performing 

partial matching. Therefore, global descriptors cannot abstract a cluttered scene in a way that allows a 

query object to be matched with the corresponding points in the scene, because the description of these 

points is contaminated by their connection with the rest of the scene. On the other hand, local descriptors 
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abstract a 3D point set by considering the point set in subsets or regions. A popular subset type is the 

nearest neighbourhood, which is a collection of points in a spherical volume in 3D Euclidean space 

surrounding a query point. Determining the optimal nearest neighbourhood size to use for applying the 

shape descriptor is a critical problem in obtaining useful results from the abstraction process (Weinmann 

et al. 2015). Local descriptors allow for partial matching, and therefore, are ideal for object recognition in 

cluttered scenes. 

For a detailed review of the state-of-the-art in shape descriptors see (Guo et al. 2014; Heider et al. 2012; 

Kazmi et al. 2013; Li et al. 2014; Li and Ben Hamza 2014; Tang and Godil 2012; Tangelder and 

Veltkamp 2008).  

3.3.3 Bag-of-features 

The bag-of-features (BoF) concept is largely inspired by the bag-of-words (BoW) (Blei et al. 2003) 

concept, which has been used in search engine text retrieval methods for quite some time. For illustrative 

purposes, the first ten entries in the BoW for Section 3.3.3 can be seen in Table 3-3. BoW aggregates 

word occurrences into a histogram called a “bag” and can be used to determine the similarity of text files. 

BoF is a generalization of this process that aggregates features into a finite, low dimensional, histogram 

that can then be used to determine similarity between objects.  It was first adapted to image recognition in 

the seminal paper (Sivic and Zisserman 2003) and later applied to 3D non-rigid shape retrieval (Bronstein 

et al. 2011; Fehr et al. 2009; Li and Godil 2009) where it demonstrated impressive levels of performance. 

The object recognition process presented in Section 4.5 will utilize the BoF comparison framework.  

Table 3-3: First 10 entries in bag-of-words for Section 3.3.3 

feature frequency of occurrence 
the 9 

of 8 

in 7 

a 5 

and 5 

bag 5 

for 5 

to 5 

al 4 

BoF 4 
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3.3.4 RANSAC 

The RANdom SAmple Consensus (RANSAC) algorithm proposed by Fischler and Bolles (Fischler and 

Bolles 1981) is an iterative method used to find predefined models in noisy point data (Figure 3-3). The 

RANSAC algorithm assumes the input data is comprised of inliers (model of interest) and outliers (noise 

or unwanted points). Inliers are consistent with the predefined model, while outliers are distributed with a 

pattern that does not align with the model (MathWorks 2016). It begins by randomly drawing minimal 

point sets from the point data and constructing corresponding shape primitives. A minimal set is the 

smallest number of points required to uniquely define a predefined geometric primitive. For example, the 

minimal point set of a plane is a single point and a surface normal vector (Figure 3-4a). Or the minimal 

point set defining a cylinder is two points each with their respective normal vectors (Figure 3-4b). Each 

one of these minimal point sets uniquely defines the position and orientation of a shape primitive. 

 

Figure 3-3: Basic RANSAC process for locating a line in a cluttered point set 
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Figure 3-4: Minimal point sets for: (a) a plane and (b) a cylinder 

These minimal sets are then evaluated by counting the number of points in the input data that are within 

some threshold distance of the shape primitive defined by the minimal point set. The shape primitive is 

considered detected by a minimal point set if the point set’s score is above a threshold value. RANSAC is 

conceptually simple and very general and methods of managing the considerable computational demand 

of the RANSAC framework have been explored (Schnabel et al. 2007). The object recognition process 

presented in Section 4.1 will implement the RANSAC framework. 

3.4 Object recognition in construction  

The following section outlines a number of proposed industrial object recognition methods from point 

cloud data, with special attention given to pipe and pipe spool recognition methods. 

3.4.1 Voxel methods 

Voxel representations are widely used across many fields of computer-based modeling and graphic 

simulation. By dividing a 3D object, in point cloud form or otherwise, into an array of discrete voxels, 

subsequent computation can be simplified. Gilsinn et al. (2005) localized steel beams placed on a flat 

ground plane by characterizing voxels by their height above ground and adjacency. Voxels meeting 

(a) (b)
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specifications were included in a bounding box, which was then compared in size to the designed 

bounding box generated from a CAD model of the steel beam. Teizer et al. (2007) developed a more 

robust voxel-based algorithm, which used agglomerative hierarchical clustering on occupied voxels and 

compared the volume of clusters to reference objects. Erdõs et al. (2015) used voxelization and graph 

theory to segment and categorize piping objects in large-scale industrial point clouds, but were unable to 

categorize pipe junctions, T-sections or elbows. None of these studies validated their methods using point 

clouds with substantial amounts of clutter.  

3.4.2 Circle fitting for pipe detection 

Many researchers have reduced the problem of pipe detection to two dimensions by slicing a point cloud 

at pre-set intervals and searching these planes for circles. The method only works if the selected planes 

are perpendicular to the directions of the pipe runs. Ahmed et al. (2013) and Ahmed et al. (2014) assumed 

the pipe runs are orthogonal and align with the major axes of the building. Then for each plane, used the 

Hough transform to detect and “vote” on pipe locations. Liu et al. (2013) and Qiu et al. (2014) detected 

the primary pipe run directions using a Gaussian sphere and performed circle fitting on planes 

perpendicular to these directions using randomized Hough transform and RANSAC respectively. The 

method for determining the projection planes only works if great circles can be detected on the Gaussian 

sphere (where a great circle is the largest circle that can be drawn on the surface of any given sphere, and 

in the case of Gaussian spheres, is the result of projecting a cylinder’s normal vectors onto a Gaussian 

sphere) which requires that the majority of objects within the scan be pipes running in a few set 

directions.  

3.4.3 Training-based method 

An innovative training-based method was presented by Pang and Neumann (2013) that used a local 3D 

Haar-like feature and an Adaboost training procedure for 3D object recognition. The initial detector 

produced a large number of false positive detections because the negative set used for training contained 

samples very different from the target object. However, the false positive detections were then used as a 
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new negative set to retrain the detector in a process called boosting. The detector finally achieved 

precision of detection ranging from 40% to 100% for engineering objects, having the most difficulty with 

shape categories that have a very generic shape, which were easily confused with similar structures.  

3.4.4 Spin-image matching 

A local shape descriptor similar in nature to the one presented in this thesis is called the spin-image 

(Akinci et al. 2006; Johnson and Hebert 1999). Spin-images are a data level shape descriptor and are 

assigned to points by revolving a square patch about the point’s normal vector and recording the 

configuration in which the surrounding points intersect the bins of the revolving square. Once spin-

images are generated for points in the scanned scene and for points in the reference model, a correlation 

comparison of the spin-image shape descriptors is performed and high correlations indicate local surface 

correspondence and potential target object locations. Spin-images have been used for object recognition 

based on Kinect-like depth images (As'ari et al. 2014) and object recognition in terrestrial laser scan data 

(Date et al. 2012; Gordon et al. 2003). Spin-image-based object recognition has a high computational cost 

associated with the massive amount of image comparison involved. Potential target object locations are 

determined by comparing all spin-images of the model data with all spin-images of the scene data.  

3.4.5 Curvature-based shape description 

Measures of curvature play an important role in many shape analysis algorithms (Chua and Jarvis 1997; 

Gal and Cohen-Or 2006; Gatzke et al. 2005; Koenderink and van Doorn 1992; Salazar et al. 2010). 

Curvature-based descriptors have interfaced successfully with the efficient BoF abstraction framework 

(Li et al. 2014) and have demonstrated superior performance in object recognition when compared with 

other popular shape descriptors (Heider et al. 2012; Nagase et al. 2013). Curvature description has the 

added benefit of being spatially meaningful and therefore easily interpretable and understandable by the 

human user. In the real Euclidean space, curvature is defined as the rate of change of slope as a function 

of arc-length (Rosenfeld and Johnston 1973). Dealing with digital point sets, it is not immediately clear 

how to define a discrete analog of curvature. Researchers have tried to estimate various curvature values 



45 
 

such as Gaussian, mean, and principal curvatures of point data by generating polygon models or by fitting 

parametric surfaces. Son et al. (2014) used nonuniform rational B-spline (NURBS) patch fitting (Piegl 

and Tiller 1997) on local nearest neighbourhoods to calculate maximum local curvatures as part of their 

method for segmenting 3D points corresponding to as-built pipelines in industrial laser scans. Collecting 

data using a Leica ScanStation C10, the framework achieved 100% precision and 100% recall for pipe 

identification, as well as a normalized mean radius classification error range of 2.74% to 3.68% for pipes 

of radius ranging from 76.2 mm to 304.8 mm. As impressive as the results are, the method’s validation 

was limited to uncluttered datasets, and the choice to use parametric surface fitting as opposed to data 

level description negatively impacted computational efficiency.   

Seibert et al. (2010) proposed a simple and efficient data level approach using conformal geometric 

algebra, which provides access to local curvature information within dense point sets without costly 

surface fitting or preprocessing. The directional curvatures at any point 𝑝 on a smooth surface 𝑀 describe 

all smooth curves on 𝑀 containing 𝑝. The curvature estimation is reduced to the task of fitting a circle to 

each of a small discrete set of these directional curves. The minimum and maximum directional 

curvatures computed are called principal curvatures with corresponding orthogonal principal directions 

(Carmo 1976). This method was used by Dimitrov and Golparvar-Fard (2015) in a new region growing 

method for robust context-free segmentation of unordered point clouds, which capably segmented seven 

challenging point clouds of mechanical, electrical, and plumbing (MEP) systems. The object recognition 

process presented in Section 4.5 will make use of this curvature descriptor.  

3.5 Data clustering 

Data clustering is a central tool in the data mining and machine learning literature. The basic premise of 

clustering is to partition a set of data points into groups, which are as similar as possible. There are many 

clustering methods in the literature (Aggarwal and Reddy 2014) generally categorized into partitioning 

methods, hierarchical methods (Reddy and Vinzamuri 2013), and density-based methods (Ester et al. 

1996; Ester 2013). These techniques have been applied to mining LiDAR data (Ghosh and Lohani 2013) 
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and if applied to object recognition could potentially identify points representing the object of interest and 

partition away points, which are classified as clutter.  

Density-based clustering is uniquely suited for this purpose because it is capable of detecting arbitrarily 

shaped clusters using the density of points as a guiding feature. Density-based spatial clustering of 

applications with noise (DBSCAN) (Ester et al. 1996; Ester 2013) is a popular method of density-based 

clustering and is applied to the object recognition framework presented in Section 4.5.  

3.6 Plane removal 

The search space in many industrial scans is largely comprised of massive planar objects (i.e., walls, 

floor, and ceiling). For cases where these planes are not the focus of the analysis, they clutter the search 

space and substantially slow the recognition of the object of interest. Therefore, quick removal of these 

planes before the object recognition process begins is desirable. 

3.6.1 RANSAC 

Basic RANSAC (Fischler and Bolles 1981) is comprised of two repeating steps: (1) minimal set selection 

and (2) minimal set evaluation. The minimal set for plane removal is a single point along with its normal 

vector, as this provides a complete description for a plane. RANSAC randomly samples minimal sets 

from the scan data, fits a plane using their description, and counts the number of points in the scan that are 

consistent with the fitted plane. After a given number of trials, a plane is considered to be recognized at 

the locations defined by the minimal set that achieved a score higher than a predefined threshold. 

Although basic RANSAC is conceptually simple, a direct application to plane recognition is 

computationally intensive. Methods for speeding up the RANSAC framework have been explored 

(Schnabel et al. 2007).  

3.6.2 Hough transform 

The general Hough transform (Ballard 1981) can be used to recognize planes within noisy data. It is 

comprised of three steps, (1) repeated transform mapping, (2) application of a “voting” rule, and (3) 
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finding the shape parameters within the accumulated array of votes. Use of the 3D Hough transform for 

extraction of planar faces from point clouds has been investigated (Vosselman and Dijkman 2001). A 

randomized Hough transform is a variant of the 3D Hough transform that has proven to be especially 

effective for plane detection in point clouds (Borrmann et al. 2011; Xu et al. 1990). 

3.6.3 Gaussian mapping 

An elegant solution for identifying major planes within point cloud data includes mapping normal vectors 

to a Gaussian sphere (Liu and Xiong 2008; Wang et al. 2013). Each cluster on the Gaussian sphere 

represents a direction that is perpendicular to major sets of parallel planes. This technique for plane 

removal will be used to simplify the object recognition process in Section 4.5, because it is anticipated 

based on the literature to have the most combined potential for speed and efficacy.  
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4.0 Pipe spool recognition in cluttered point clouds 

As stated in Section 1.1, the justification for the work presented in Sections 4.0 is that automating the 

process of extracting pipe spools of interest from point clouds (Figure 4-1) will be the fundamental 

enabler for further developments in automated industrial inspection systems.  

 

 

Figure 4-1: Extracting points associated with structural frame module from cluttered 3D image of industrial fabrication 

facility 

The intent of the proposed methodologies is to automatically isolate the points in a cluttered laser scan 

that represent some specified pipe spool of interest. This isolation will allow for further analysis and 

inspection of the pipe spool’s geometrical state. Figure 4-2 presents a basic conceptual illustration of the 

proposed methodology for isolating a pipe spool of interest from a cluttered laser scan. 

The following section is broken into two parts: Sections 4.1 to 4.4 present and evaluate two RANSAC-

based pipe spool recognition frameworks, and Sections 4.5 and 4.6 present and evaluate a novel pipe 

spool recognition method based on local data level curvature estimation, clustering, and bag-of-features 

matching.  

Cluttered Point CloudObject of Interest
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Figure 4-2: The conceptual framework for pipe spool isolation; (a) Laser-scanned point cloud is acquired, contains both 

the pipe spool of interest and surrounding noise and clutter; (b) A pipe spool of interest is specified using a 3D CAD 

design file; (c) The pipe spool is located in the cluttered laser scan; (d) The points representing the pipe spool are isolated 

from the cluttered laser scan. 

4.1 RANSAC-based pipe spool recognition methodology 

RANdom SAmple Consensus (RANSAC) (Fischler and Bolles 1981) is a general approach for primitive 

shape detection in cluttered point clouds. In general, it works by randomly selecting a set of points from a 

reference file describing the object of interest, selecting the same number of points from the cluttered 

laser scan, using a descriptor to check if the two sets are similar, and then recording a score for the set of 

points. Once a pre-set number of trials have been performed, the set of points with the highest score is 

chosen as the location for the object of interest. A summary of the method is presented in Figure 4-3. 

Each step of the method is discussed in detail in the following sections. 

 

Figure 4-3: Proposed RANSAC-based pipe spool recognition framework 

 
(a) (b) (c) (d) 

3D CAD design file cluttered laser scan

preprocessing
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minimal point set selection

descriptor calculation
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4.1.1 Preprocessing 

The recognition framework requires two input files (Figure 4-4): (1) the 3D CAD design file for the pipe 

spool of interest and (2) the cluttered point cloud scan, 𝑃𝑠𝑐𝑎𝑛, from which the as-built pipe spool of 

interest will be extracted.  

 

Figure 4-4: Search and extraction algorithm input files (a) 3D CAD design file for the object of interest and (b) the raw 

point cloud scan from which the as-built object of interest will be extracted 

Typically, the 3D CAD design file will be obtained in a solid model format that needs to be converted 

into a point cloud format. First, the 3D CAD design file is exported as an “.STL” file. The vertices within 

the STL file form a sparse point cloud. The density of the point cloud is increased through a process of 

triangular mesh surface subdivision (Figure 4-5) (Cignoni et al. 2014). The result is a point cloud, 

𝑃𝑑𝑒𝑠𝑖𝑔𝑛, representing the 3D CAD design file. 

4.1.2 Normal vector calculation 

The descriptor used in the RANSAC methodology will rely on local point surface normal vectors (Figure 

4-6). A normal vector is calculated for each point in both input point clouds, 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 and 𝑃𝑠𝑐𝑎𝑛. The 

calculation of these normal vectors is performed in two steps: (1) find nearest neighbours for each  

 

(a) 3D CAD design file (b) cluttered point cloud scan
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point and (2) estimate the normal vector by performing plane Principal Component Analysis (PCA) 

(Smith 2002) on the set of nearest neighbours for each point.   

 

Figure 4-5: Midpoint subdivision of surfaces, used to increase the density of the input .STL design file 

 

 

Figure 4-6: Local surface normal vector for point in point cloud 
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4.1.2.1 Finding nearest neighbours  

The nearest neighbours for each point are located using the k-nearest neighbour (KNN) algorithm (Cover 

and Hart 1967; Jain et al. 2000) with k=10 and is supported by a KD-Tree space-partitioning data 

structure (Bentley 1975; Friedman et al. 1977). The point and its nearest neighbours are then stored in an 

array for reference during surface normal vector estimation.  

4.1.2.2 Surface normal vector estimation 

A comparison of surface normal estimation methods for range sensing applications was carried out by 

Klasing et al. (2009) and concluded that as long as a KD-Tree data structure is maintained and updated, 

the plane Principal Component Analysis (PCA) (Smith 2002) is the universal method of choice because 

of its superior performance in terms of both quality and speed. Performing PCA on the 10 nearest 

neighbours, the resulting eigenvector with the smallest corresponding eigenvalue is the estimated normal 

vector 𝑛⃗ 𝑝 of the selected point.   

4.1.3 RANSAC 

Once normal vectors for the points in each point cloud have been calculated, the RANSAC method is 

used to find hypothesis locations of the pipe spool in the cluttered laser scan. RANSAC is performed in a 

series of four steps: (1) minimal point set selection, (2) descriptor calculation, (3) descriptor comparison, 

and (4) minimal point set scoring. A summary of the RANSAC-based algorithm is shown in Figure 4-7.  

4.1.3.1 Minimal point set selection, description, and comparison  

The first step in executing RANSAC for pipe spool recognition is to select minimal point sets from both 

𝑃𝑑𝑒𝑠𝑖𝑔𝑛 and 𝑃𝑠𝑐𝑎𝑛. The minimal point set in RANSAC, is the smallest number of points that can be used 

to apply a transformation to 𝑃𝑑𝑒𝑠𝑖𝑔𝑛. A unique transformation requires at least three reference points, so 

the minimal point set will be a set of three points. These three points, along with a point set descriptor 

uniquely define a position of 𝑃𝑑𝑒𝑠𝑖𝑔𝑛. So, three random points {𝑓𝑝𝑐
1 , 𝑓𝑝𝑐

2 , 𝑓𝑝𝑐
3 } ∈  𝑃𝑝𝑐 are selected from each 

point cloud, with the superscripts denoting the three individual points. Each member is a vector such that, 
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𝑓𝑖 = 〈𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3, 𝑛𝑖1, 𝑛𝑖2, 𝑛𝑖3〉, in which 𝑝𝑖’s are the point coordinates and 𝑛𝑖’s are the normal vector 

components in a 3D global coordinate space. 

 

Figure 4-7: Summary of the RANSAC-based matching algorithm 

The point set descriptor (Figure 4-8) is comprised of two components: (1) the area of the triangle created 

by the three points, and (2) the volume of the parallelepiped formed by the three normal vectors.  

 

Figure 4-8: Point set descriptors, (A) the area of the triangle created by the three points and (V) the volume of the 

parallelepiped formed by the three normal vectors 
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For the selected subset {𝑓𝑝𝑐
1 , 𝑓𝑝𝑐

2 , 𝑓𝑝𝑐
3 } the area parameter is calculated as follows: 

𝐴 =
1

2
|(𝑥1 − 𝑥2) × (𝑥1 − 𝑥3)| Eq.  4-1 

where, 𝑥𝑖’s are the vectors that connect the three points (𝑓𝑝𝑐
1 , 𝑓𝑝𝑐

2 , 𝑓𝑝𝑐
3 ), and 𝐴 is the area of the triangle 

made by the three selected points (𝑓𝑝𝑐
1 , 𝑓𝑝𝑐

2 , 𝑓𝑝𝑐
3 ). The volume of the parallelepiped made (𝑉) by the three 

normal vectors, is calculated as follows: 

𝑉 = 𝑛1 ⃗⃗ ⃗⃗  ⃗ ∙ (𝑛2⃗⃗⃗⃗ × 𝑛3⃗⃗⃗⃗ ) Eq.  4-2 

The area and volume parameters for the original dataset 𝑃𝑝𝑐 are denoted by 𝐴𝑝𝑐 and 𝑉𝑝𝑐, respectively. In 

special cases, the volume equals zero when the three normal vectors are belonging to a plane (coplanar); 

and the volume equals 1 when the normal vectors are orthogonal in Cartesian coordinate space (i.e.,, 

𝑛𝑖. 𝑛𝑗 = 0).  In other words, the volume is between 0 and 1 (0 ≤ 𝑉 ≤ 1). 

Having selected and described two minimal point sets using the area and volume descriptor, the two 

minimal point sets are compared using Eq.  4-3 and Eq.  4-4.  

|𝐴𝑠𝑐𝑎𝑛−𝐴𝑑𝑒𝑠𝑖𝑔𝑛| ≤ 𝐴𝑡ℎ Eq.  4-3 

|𝑉𝑠𝑐𝑎𝑛−𝑉𝑑𝑒𝑠𝑖𝑔𝑛| ≤ 𝑉𝑡ℎ Eq.  4-4 

where, 𝐴𝑡ℎ and 𝑉𝑡ℎ are the area and volume thresholds, respectively. 

The algorithm continues to select, describe and compare random minimal point sets until both the area 

and volume thresholds are met for a pair of point sets. Once the comparison criteria are met, a hypothesis 

transformation is generated.  

4.1.3.2 Minimal point set scoring 

A rigid transformation is composed of a rotational component 𝑅⃗ , and a translational component 𝑇⃗ . The 

transformation is thus denoted as 𝑔 = (𝑅⃗ , 𝑇⃗ ). For finding the required transformation to match 
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(𝑓𝑑𝑒𝑠𝑖𝑔𝑛
1 , 𝑓𝑑𝑒𝑠𝑖𝑔𝑛

2 , 𝑓𝑑𝑒𝑠𝑖𝑔𝑛
3 ) to (𝑓𝑠𝑐𝑎𝑛

1 , 𝑓𝑠𝑐𝑎𝑛
2 , 𝑓𝑠𝑐𝑎𝑛

3 ), single value decomposition (SVD) of the covariance 

matrix is used (CII chartered Research Team 327 2015; Nahangi et al. 2014).  

Once the transformation is calculated, 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 is transformed  by 𝑔 = (𝑅⃗ , 𝑇⃗ ) and the resulting matrix is 

set as the new hypothesis location: 

𝑃𝑑𝑒𝑠𝑖𝑔𝑛
′ ≔ 𝑔(𝑅⃗ , 𝑇⃗ ) × 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 Eq.  4-5 

  

The final step of the RANSAC process is to check the score of the resulting hypothesis by counting the 

number of transformed model points which lie within some threshold distance of points within the scene 

(Figure 4-9). For that purpose, a Euclidean distance threshold (inlier threshold) is set. The points that are 

closer than the threshold are counted as inliers.  

 

Figure 4-9: Transformation of design file to cluttered point cloud based on minimal point set match 
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design file minimal 
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The entire process, from minimal point set selection to scoring is repeated until a predefined number of 

hypotheses have been scored. Once this predefined number of trails has been met, the hypothesis location 

with the highest score is chosen as the location of the object of interest. 

4.2 Basic RANSAC pipe spool recognition algorithm evaluation 

4.2.1 Test setup 

The algorithm was tested on a real laser scanned point cloud of a single pipe spool in a university 

laboratory (Figure 4-4b). The scan data, 𝑃𝑠𝑐𝑎𝑛, was collected using a FARO laser scanner (Table 4-1).  

Table 4-1: Technical specifications of FARO LS 880 HE scanner 

Measurement Range Accuracy 

Distance 0.6-40 m 0.6 mm (@ maximum resolution) 

Field of View Horizontal: 360° Vertical: 320° Horizontal: 0.009° Vertical: 0.00076° 

 

The preprocessing of 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 was performed in Meshlab (Cignoni et al. 2014), using the “subdivision 

surfaces: midpoint” function. The input files were scaled such that the resulting point set units were 

centimeters. The algorithm was implemented and programmed in MATLAB 2015 using standard 

functions and toolboxes whenever possible. A sensitivity analysis was performed by varying the 

comparison thresholds, using 𝐴𝑡ℎ = {1, 2, 4, 8, 16, 32, 64} and 𝑉𝑡ℎ = {0.01, 0.02, 0.04, 0.08, 0.16} with 

units in centimeters. The inlier threshold used for scoring was 5cm.  

For instances when the point set comparison thresholds 𝐴𝑡ℎ and 𝑉𝑡ℎ were low, a timeout threshold needed 

to be set because the algorithm would require excessive amount of time to find point sets that are similar 

enough to proceed to hypothesis scoring. Thus, if the algorithm compared 500,000 different point sets 

with none meeting the comparison thresholds, the execution would cancel.  

The algorithm was set to generate 1000 hypotheses meeting the comparison thresholds before selecting 

the hypothesis with the highest score. 
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4.2.2 Results and discussion 

The basic RANSAC algorithm implementation failed to reliably locate the pipe spool of interest in the 

cluttered point cloud scan. The results of the sensitivity analysis can be found in Table 4-2. The execution 

time (benchmarked on a 3.7 GHz 12 core processor with 32 GB RAM) ranged from 15 to 85 minutes 

depending on the comparison thresholds. Higher thresholds allowed for faster algorithm execution. In the 

instances when there was no hypothesis generated, (i.e., naN in the table), the timeout threshold was 

triggered.  

The size of 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 was 3619, thus the hypothesis score indicating a correct pipe spool recognition was 

expected to be approximately 3619. None of the parameter combinations achieved this score. The highest 

scores were achieved with 𝐴𝑡ℎ = {4,8} and 𝑉𝑡ℎ = {0.04, 0.08}. When 𝐴𝑡ℎ and 𝑉𝑡ℎ where large, the 

algorithm achieved lower scores because the hypothesis transformations were excessively random and 

less discriminative. 

Table 4-2: Basic RANSAC implementation descriptor thresholds sensitivity analysis, best hypothesis scores after 1000 

trials 

    𝐴𝑡ℎ (cm
2
) 

    0.5 1 2 4 8 16 32 64 

𝑉𝑡ℎ 
(unit

3
) 

0.005 naN naN naN naN naN 1103 845 636 

0.01 naN 620 naN 92 908 1042 692 824 

0.02 naN naN 623 279 712 854 905 624 

0.04 naN 184 531 1319 1232 826 730 872 

0.08 134 256 812 1027 1269 1012 791 608 

0.16 367 410 606 853 798 871 766 923 

 

Figure 4-10 presents two example hypothesis locations of 𝑃𝑑𝑒𝑠𝑖𝑔𝑛. Figure 4-10a is the transformation 

resulting from the algorithm run using 𝐴𝑡ℎ = 8 and 𝑉𝑡ℎ = 0.04. The high score of 1232 was achieved 

because one of the pipe branches in 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 aligned perfectly with a beam in the structural frame in 𝑃𝑠𝑐𝑎𝑛. 

Although a high score was achieved, the hypothesis location was incorrect. Figure 4-10b was the best 
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result achieved in terms of hypothesis location accuracy, but as can be seen, the alignment was still 

extremely poor. 

 

Figure 4-10: example transformations (i.e., pipe spool hypothesis locations) applied to 𝑷𝒅𝒆𝒔𝒊𝒈𝒏 by the basic RANSAC 

algorithm 

Although the basic RANSAC approach has the advantage of being conceptually simple, its direct 

application to the 3D pipe spool recognition problem is computationally very expensive. The probability 

of selecting the 3 points in the scan that correspond perfectly with the three points selected from the 3D 

CAD design file is 

𝑃(𝑖𝑑𝑒𝑎𝑙_𝑡𝑟𝑖𝑎𝑙) =
3!

(𝑛−2)×(𝑛−1)×𝑛
=

3!

(2262321−2)×(2262321−1)×2262321
= 5.1819 × 10−19  

Where, 𝑛 = 𝑠𝑖𝑧𝑒(𝑃𝑠𝑐𝑎𝑛) = 2,262,321 𝑝𝑜𝑖𝑛𝑡𝑠 

Although, a correct hypothesis selection might be achievable, the computation time would be prohibitive 

to practical implementation. A second version of the RANSAC recognition algorithm is proposed in the 

following section, and attempts to reduce 𝑛 and improve the probability of selecting a set of matching 

points. 

(a) example of hypothesis with high score (b) best hypothesis achieved
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4.3 RANSAC-based pipe spool recognition methodology with curvature-based 

down sampling 

The basic form of RANSAC is very computationally expensive because of the incredibly large number of 

possible minimal set selections. An efficient form of RANSAC was presented in (Schnabel et al. 2007) 

for primitive shape detection. Their method was used to detect planes, spheres, cylinders, cones and tori. 

The benefit of this efficient form, is the reduction of the number of possible minimal point sets by 

limiting selection using a distance criteria. The work demonstrated that the basic RANSAC framework 

can be improved by reducing the search space represented by 𝑃𝑠𝑐𝑎𝑛. Randomly downsampling the input 

point clouds, does not work, as it does not improve the probability of selecting matching point sets.  

Discriminative down sampling retains the points of a select few areas in 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 and downsamples 𝑃𝑠𝑐𝑎𝑛 

such that the same areas on the pipe spool of interest are also retained.  In this section, a curvature 

characterization algorithm is utilized to discriminatively down sample a point cloud such that only points 

with a particular curvature description are input into the RANSAC process. The premise is, if for 

example, only the pipe elbow joints are retained in 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 and 𝑃𝑠𝑐𝑎𝑛, then the probability of selecting two 

corresponding minimal point sets will improve substantially. 

4.3.1 Curvature characterization 

In order to discriminatively down sample both point clouds a curvature-based shape descriptor is used to 

characterize and then filter the points within each input file. As seen in Figure 4-11, the proposed 

curvature characterization algorithm has two primary steps: (1) normal vector extraction and (2) local 

curvature calculation. Each step is explained in the following sections. The MATLAB code can be found 

in Appendix F.  
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Figure 4-11: Flowchart for curvature characterization 

4.3.2 Normal vector estimation 

First, using 𝑝𝑖 ∈ 𝑝 as the centre, a nearest neighbourhood subset 𝑁𝑁𝑝𝑖
⊆ 𝑃  is isolated (Section 3.3.2) 

from 𝑃. The nearest neighbourhood selection is supported by a KD-Tree space-partitioning data structure 

(Bentley 1975; Friedman et al. 1977). Such structures are widely used for indexing in search engines 

(Philbin et al. 2007). The 𝑁𝑁𝑝𝑖
 comprises all points in 𝑃 within radius 𝑟 of 𝑝𝑖. 

The surface normal vector of local surface point subsets has been the unanimous choice of reference to 

compute surface descriptors. A comparison of surface normal estimation methods for range sensing 

applications was carried out by (Klasing et al. 2009) and concluded that as long as a KD-Tree data 

structure is maintained and updated, the plane Principal Component Analysis (PCA) (Smith 2002) is the 

universal method of choice because of its superior performance in terms of both quality and speed. 

Performing PCA on 𝑁𝑁𝑝𝑖
, the resulting eigenvector with the smallest corresponding eigenvalue is the 

estimated normal vector 𝑛⃗ 𝑝𝑖
 of 𝑁𝑁𝑝𝑖

.  This procedure for normal vector extraction is illustrated in Figure 

4-12. 
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4.3.3 Local curvature estimation 

In order to find the principal curvatures, eight planes Φ𝑗 = {Φ1, Φ2…Φ8} passing through 𝑝𝑖 and rotating 

uniformly at π/8 radians, 𝜃 = {
𝜋

8
,
2𝜋

8
, … ,

7𝜋

8
},  around the surface normal 𝑛⃗ 𝑝𝑖

 are generated (Figure 4-13). 

The normal 𝑛⃗ Φ1 to the first plane Φ1 is set as the eigenvector with the largest eigenvalue calculated 

during the plane PCA of 𝑁𝑁𝑝𝑖
 above. Smaller rotation intervals provide more accurate principal curvature 

characterization, however, if two planes in the set Φ𝑗 are parallel with the first and second principal 

components of the 𝑁𝑁𝑝𝑖
, the improvement in accuracy is minimal. 

 

Figure 4-12: Normal vector extraction procedure: (a) A random point 𝒑 is first selected, (b) a neighbourhood region is 

then isolated 𝑵𝑵𝒑 ⊂ 𝑷 and (c) the normal vector 𝒏⃗⃗ 𝒑 is estimated using plane PCA 

 

Figure 4-13: The planes are rotated about the normal vector 𝒏⃗⃗ 𝒑 to find the principal curvature. 

i
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For each of the planes Φ𝑗, the distance 𝑑 between every point in 𝑛𝑛𝑖 ∈ 𝑁𝑁𝑝𝑖  and its corresponding 

projection 𝑛𝑛𝑖 → 𝑛𝑛𝑖
′ ∈ Φ𝑗 on the plane is calculated (Figure 4-14). 𝑛𝑛𝑖𝑛𝑛𝑖

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∥ 𝑛⃗ Φ, therefore the equations 

providing the coordinate elements of 𝑛𝑛𝑖
′ are as follows: 

{

𝑥𝑖
′ = 𝑥𝑖 + 𝑑 × 𝑛⃗ xΦ

𝑦𝑖
′ = 𝑦𝑖 + 𝑑 × 𝑛⃗ yΦ

𝑧𝑖
′ = 𝑧𝑖 + 𝑑 × 𝑛⃗ zΦ

 Eq.  4-6 

The scalar equation of the plane Φ𝑖 is: 

𝑛⃗ xΦ(𝑥 − 𝑥𝑖
′) + 𝑛⃗ yΦ(𝑦 − 𝑦𝑖

′) + 𝑛⃗ zΦ(𝑧 − 𝑧𝑖
′) = 0 Eq.  4-7 

Eliminating the unknown 𝑛𝑛𝑖
′ coordinate elements by substituting Eq. 4-6 into Eq. 4-7 yields: 

𝑑 = |
𝑛⃗ xΦ(𝑥𝑖 − 𝑥) + 𝑛⃗ yΦ(𝑦𝑖 − 𝑦) + 𝑛⃗ zΦ(𝑧𝑖 − 𝑧)

𝑛⃗ xΦ
2
+ 𝑛⃗ yΦ

2
+ 𝑛⃗ zΦ

2 | 
Eq.  4-8 

 

Points 𝑛𝑛𝑖 ∈ 𝑁𝑁𝑝 that have (𝑑 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) to the plane Φ𝑗 are selected for circle fitting, 

𝑛𝑛𝑖(𝑐𝑖𝑟𝑐𝑙𝑒 𝑓𝑖𝑡𝑡𝑖𝑛𝑔) ⊆ 𝑛𝑛𝑖. Back-substituting 𝑑 into Eq. 4-6, 𝑛𝑛𝑖
′(𝑐𝑖𝑟𝑐𝑙𝑒 𝑓𝑖𝑡𝑡𝑖𝑛𝑔) are calculated.  

 

Figure 4-14: Projecting a point on a plane 𝚽𝒊. Point 𝒑 is the original selected point and 𝒏⃗⃗ 𝒑 is the calculated normal vector 

to 𝒑. Point 𝒑𝒊 is a point in 𝑵𝑵𝒑 distance 𝒅 from the plane . Point 𝒑𝒊
′ is the projection of point 𝒑𝒊 onto the plane 𝚽𝒊. 

𝑛𝑛𝑖
′(𝑐𝑖𝑟𝑐𝑙𝑒 𝑓𝑖𝑡𝑡𝑖𝑛𝑔) must now be transformed to the XY plane to reduce the dimensionality of the data to 

allow for circle fitting. This alignment procedure is in the form of a rotation matrix that maps 𝑛⃗ xΦ  onto 
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the global 𝑧 𝑎𝑥𝑖𝑠. Circle fitting is performed by the hyper-accurate algebraic fit method (Al-Sharadqah 

and Chernov 2009). Circle fitting provides a circle radius (Figure 4-15), which is converted to a 

directional curvature value for the local surface.  

 

Figure 4-15: Circle fitting, (a) 𝚽𝒊 circle fitting results providing the smallest radius circle i.e., k1 highest curvature value, 

and (b) 𝚽𝒊 circle fitting results providing the largest radius circle i.e., k2 lowest curvature value 

The maximum curvature value from the set of eight calculated is identified as the principal curvature 𝑘1, 

and the perpendicular plane is the corresponding principal curvature 𝑘2. Finally, ε𝑘1 and ε𝑘2 are 

computed and stored as the mean fit error from the circles in the two principal planes. The procedure is 

repeated until the desired sample size has been characterized.   

4.4 RANSAC pipe spool recognition algorithm with curvature-based down 

sampling evaluation 

4.4.1 Test setup 

As for the basic RANSAC framework, the algorithm with the added curvature-based down sampling step 

was tested on a real laser scanned point cloud of a single pipe spool in a university laboratory (Figure 

4-4b). The scan data, 𝑃𝑠𝑐𝑎𝑛, was collected using a FARO laser scanner (Table 4-1).  

The preprocessing of 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 was performed as before and the algorithm was implemented and 

programmed in MATLAB 2015 using standard functions and toolboxes whenever possible. The curvature 
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characterization algorithm was used to describe 5000 points from 𝑃𝑠𝑐𝑎𝑛 and 1000 points from 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 

(Figure 4-16). The curvature values calculated were used to identify points falling on pipe elbow joints. 

Since 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
1

𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒
, therefore 𝑘1 =

1

𝑟𝑎𝑑𝑖𝑢𝑠𝑜𝑓 𝑝𝑖𝑝𝑒
 and 𝑘2 =

1

𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑏𝑒𝑛𝑑
. Therefore the 

points within a threshold value of 𝑘1 = 1/6 and 𝑘2 = 1/10.5 were retained from the original point 

clouds to be used for selecting minimal point sets for the RANSAC algorithm.  

 

Figure 4-16: Curvature-based discriminative down sampling for RANSAC recognition- points with curvatures similar to 

elbow-joints isolated 

A sensitivity analysis was performed by varying the comparison thresholds, using 

𝐴𝑡ℎ = {1, 2, 4, 8, 16, 32, 64} and 𝑉𝑡ℎ = {0.01, 0.02, 0.04, 0.08, 0.16}. The inlier threshold used for 

scoring was 5cm.  

(a) input files with 

particular curvature 

highlighted

(b) points with particular 

curvatures isolated
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For instances when the point set comparison thresholds 𝐴𝑡ℎ and 𝑉𝑡ℎ were low, a timeout threshold needed 

to be set because the algorithm struggles to find point sets that are similar enough to proceed to 

hypothesis scoring. Thus, if the algorithm compared 500,000 different point sets with none meeting the 

comparison thresholds, the execution would cancel.  

The algorithm was set to generate 100 hypotheses meeting the comparison thresholds before selecting the 

hypothesis with the highest score. 

4.4.2 Results and discussion 

Even after the curvature-based down sampling, the RANSAC algorithm implementation failed to reliably 

locate the pipe spool of interest in the cluttered point cloud scan. The results of the sensitivity analysis can 

be found in Table 4-3. The instances when there was no hypothesis generated, (i.e., naN in the table), the 

timeout threshold was triggered.  

The size of 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 was 3619, thus the hypothesis score indicating a correct pipe spool recognition was 

expected to be approximately 3619. None of the parameter combinations achieved this score. 

Table 4-3: Basic RANSAC implementation descriptor thresholds sensitivity analysis, best hypothesis scores after 1000 

trials 

    𝐴𝑡ℎ (cm
2
) 

    0.5 1 2 4 8 16 32 64 

𝑉𝑡ℎ 
(unit

3
) 

0.005 naN naN 437 902 1231 1248 992 702 

0.01 naN naN 834 317 922 1051 764 977 

0.02 832 436 641 1236 1874 926 939 743 

0.04 naN 892 633 1420 1231 972 857 981 

0.08 255 323 870 1080 1396 1016 878 694 

0.16 420 554 729 950 1026 1065 858 1041 

 

Figure 4-17 presents two example hypothesis locations of 𝑃𝑑𝑒𝑠𝑖𝑔𝑛. Figure 4-17a demonstrates a typical 

erroneous hypothesis, a performance quality similar to the basic RANSAC. Figure 4-17b is the best 

hypothesis achieved (𝐴𝑡ℎ = 8 and 𝑉𝑡ℎ = 0.02) executing either RANSAC framework, and is the only 
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instance the recognition was performed successfully.  Repeating the execution with the same comparison 

thresholds failed to repeat the recognition.  

Although the theoretical probability of selecting the 3 points in the scan that correspond perfectly with the 

three points selected from the 3D CAD design file is better within the curvature down sampled search 

space, the probability still is not favorable.  

𝑃(𝑖𝑑𝑒𝑎𝑙_𝑡𝑟𝑖𝑎𝑙) =
3!

(𝑛−2)×(𝑛−1)×𝑛
=

3!

(356−2)×(356−1)×356
= 1.3411 × 10−7  

Where, 𝑛 = 𝑠𝑖𝑧𝑒(𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑃𝑠𝑐𝑎𝑛) = 356 𝑝𝑜𝑖𝑛𝑡𝑠 

 

Figure 4-17: Example transformations (i.e., pipe spool hypothesis locations) applied to 𝑷𝒅𝒆𝒔𝒊𝒈𝒏 by the RANSAC algorithm 

aided by curvature-based down sampling 

The RANSAC performs well in the literature on primitive shapes such as planes, spheres, cylinders, cones 

and tori, but evidently fails to achieve reliable recognition for pipe spools. A more effective data structure 

and strategy for comparing minimal point sets is required. Additionally, requiring a user to manually enter 

a specific curvature type (i.e., elbow joint curvature specification) is a difficult and subjective step that 

needs to be eliminated. 

The following section, introduces a novel pipe spool recognition method based on local data level 

curvature estimation, clustering, and bag-of-features matching. The validation of the novel method 

demonstrates its effectiveness at extracting pipe spools from cluttered point clouds. 

(a) example of hypothesis with high score (b) best hypothesis achieved
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4.5 Pipe spool recognition using a curvature-based shape descriptor 

In the following sections, a recognition method for locating and extracting pipe spools from cluttered 

point clouds is presented. No prior assumptions are made about pipe spool size, configuration, or position 

within the point cloud scan (𝑃𝑠𝑐𝑎𝑛). The expected amount and type of clutter in 𝑃𝑠𝑐𝑎𝑛 is what would 

reasonably be expected in a pipe spool fabrication facility (e.g., the building structure, tables, humans, 

machinery, other pipe spools, etc.). The recognition framework requires two input files (Figure 4-18): (1) 

the 3D CAD design file for the pipe spool of interest, and (2) 𝑃𝑠𝑐𝑎𝑛 from which the as-built pipe spool of 

interest will be extracted. No other input by the user is required.  The entire process is performed in seven 

steps: 

1- Preprocessing of input files 

2- Major planes are removed from 𝑃𝑠𝑐𝑎𝑛 (e.g., walls, floor, ceiling, etc.)  

3- The points in 𝑃𝑠𝑐𝑎𝑛 are filtered using a curvature-based shape descriptor; accepted points form a 

hypothesis space 

4- Points in the hypothesis space are clustered into hypothesis objects 

5- Using BoF, each hypothesis object is compared to the 3D CAD design file 

6- The 3D CAD design file is registered to the hypothesis object most similar to the 3D CAD design 

file 

7- The pipe spool of interest (𝑝𝑜𝑏𝑗) is extracted from 𝑃𝑠𝑐𝑎𝑛. 

The main MATLAB function used to execute pipe spool recognition and extraction can be found in 

Appendix B. 

4.5.1 Preprocessing 

First, the 3D CAD design file is exported as an STL file. The vertices within the STL file form a sparse 

point cloud. The density of the point cloud is increased through a process of triangular mesh surface 

subdivision. Then, both 𝑃𝑠𝑐𝑎𝑛  and 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 are subsampled using Poisson-disc subsampling in order to  
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Figure 4-18: Search and extraction algorithm input files (a) 3D CAD design file for the object of interest and (b) the raw 

point cloud scan from which the as-built object of interest will be extracted 

reduce the size of the files, while achieving a more uniform point density. A Poisson-disc radius (𝑝𝑑𝑟) of 

5mm was used, 𝑝𝑑𝑟 = 5𝑚𝑚. Additionally, the Poisson-disc subsampling ensures that 𝑃𝑠𝑐𝑎𝑛  and 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 

have the same density, which means that the pipe spool of interest in 𝑃𝑠𝑐𝑎𝑛 will have approximately the 

same amount of points as 𝑃𝑑𝑒𝑠𝑖𝑔𝑛. This will be important for hypothesis space clustering (Section 4.5.4). 

4.5.2 Plane removal 

A substantial portion of the search space in 𝑃𝑠𝑐𝑎𝑛 will be planes, e.g., walls, floor, ceiling, etc. These 

planar objects are obviously not the pipe spool to be located, so removing them from the scan reduces the 

search space. The plane removal process (Figure 4-19) used for this work applied Gaussian mapping (Liu 

et al. 2013; Qiu et al. 2014; Wang et al. 2013). First, surface normal vectors are calculated for points in 

𝑃𝑠𝑐𝑎𝑛 and mapped to normal vector space (Gaussian sphere). Then by using DBSCAN, dense collections 

of points on the Gaussian sphere that represent points on major parallel planes can be identified and 

isolated. However, any plane removal process capable of extracting major planes can be used. The 

MATLAB code used to execute plane removal can be found in Appendix A. 

(a) 3D CAD design file (b) cluttered point cloud scan
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4.5.3 Curvature-based filtering 

A characterization algorithm is now used to describe the curvatures of two sets of random point samples 

𝑝𝑠𝑐𝑎𝑛 ⊆ 𝑃𝑠𝑐𝑎𝑛 and  𝑝𝑑𝑒𝑠𝑖𝑔𝑛 ⊆ 𝑃𝑑𝑒𝑠𝑖𝑔𝑛. The curvatures of 𝑝𝑠𝑐𝑎𝑛 are then filtered based on their similarity 

to the curvatures of 𝑝𝑑𝑒𝑠𝑖𝑔𝑛. The accepted points produce a hypothesis space. 

 

Figure 4-19: Plane removal using Gaussian sphere. (a) Surface normal vectors are calculated for 𝑷𝒔𝒄𝒂𝒏 and mapped to 

normal vector space. The space (Gaussian sphere) is clustered using DBSCAN. The major clusters represent parallel 

major planes in the original point cloud. (b) Major planes are removed from the raw scan. 

4.5.3.1 Curvature characterization 

The curvature characterization process applied here is identical to the characterization algorithm 

presented in Section 4.3. The MATLAB code used for execution can be found in Appendix F.  

4.5.3.2 Nearest neighbourhood size for curvature characterization 

For analysing cylindrical objects, the amount of data available for 𝑘1 circle fitting reaches a maximum 

when 𝑟 = 2 × 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠  (Figure 4-20). Using 𝑟 > 2 × 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 is undesirable for a 

number of reasons: (1) No noticeable improvement in estimating 𝑘1 as compared to 𝑟 ≈ 2 ×

𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 , (2) the probability of including clutter or adjoining pipe fittings or valves that will 

contaminate the local surface curvature characterization increases as 𝑟 increases. Conversely, 𝑟 also needs 

to be large enough not to be affected by local sensor specific noise levels.  

(a) Gaussian sphere (b) point cloud scan with planes removed
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Figure 4-20: k1 cross-section with nearest neighbour size for a point on a pipe 

For running curvature characterization of 𝑝𝑠𝑐𝑎𝑛 and 𝑝𝑑𝑒𝑠𝑖𝑔𝑛, there are two possible strategies for 

managing 𝑟. With a variable 𝑟 implementation, 𝑝𝑖 is characterized using a series of growing 𝑟 values until 

𝑘1𝑖 becomes stable and is set as the 𝑘1𝑖 for 𝑝𝑖 (Figure 4-21). This method minimizes the probability of 

including clutter points in surface curvature estimation while mitigating the impact of sensor noise. 

However, performing multiple curvature characterizations for each sample point in 𝑝𝑠𝑐𝑎𝑛 and 𝑝𝑑𝑒𝑠𝑖𝑔𝑛 is 

computationally expensive.  

 

Figure 4-21: Nearest neighbourhood size's effect on estimated pipe radius for four pipes. Each pipe’s radius estimation 

reaches stability and terminates when nearest neighbourhood size equals pipe diameter. The characteristics of the laser 

scanner used are provided in Table 4-1. 

The second possible strategy sets a constant 𝑟 value for characterization of 𝑝𝑠𝑐𝑎𝑛 and 𝑝𝑑𝑒𝑠𝑖𝑔𝑛. For this 

thesis, this was the strategy of choice because reducing execution time of the algorithm was a priority. 𝑟 is 

set by performing curvature characterization on a small subset (approx. 10 points) of  𝑝𝑑𝑒𝑠𝑖𝑔𝑛 using the 

variable 𝑟 implementation, 𝑟 = {1 × 𝑝𝑑𝑟, 2 × 𝑝𝑑𝑟, 3 × 𝑝𝑑𝑟, 𝑒𝑡𝑐}. This provides a quick estimate of the 

pipe

r = 2 × pipe radius

r < 2 × pipe radius
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pipe radii critical for the extraction methodology. For characterizing laser scans of pipe radii between 2.4 

cm and 9.1 cm, empirical results (Figure 4-21) suggest the relationship: 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑟 =
𝑝𝑖𝑝𝑒 𝑟𝑎𝑑𝑖𝑢𝑠

2
+

1. Therefore, the optimal constant  𝑟 can be set using the median pipe radii calculated. The MATLAB 

code used to determine nearest neighbourhood size can be found in Appendix E. 

4.5.3.3 Hypothesis space generation 

Once principal curvatures 𝑘1 and 𝑘2 for 𝑝𝑠𝑐𝑎𝑛 and  𝑝𝑑𝑒𝑠𝑖𝑔𝑛 have been calculated (Figure 4-22), 𝑝𝑠𝑐𝑎𝑛 is 

filtered based on the similarity of its curvatures to 𝑝𝑑𝑒𝑠𝑖𝑔𝑛 and the quality of the circle fit ε𝑘1 that 

estimated those curvatures. Similarity of curvature is determined based on the mean three nearest 

neighbour Euclidean distance in curvature space (Figure 4-22) from points in 𝑝𝑑𝑒𝑠𝑖𝑔𝑛 to points in  𝑝𝑠𝑐𝑎𝑛. 

This parameter is denoted by 𝑑𝑚𝑒𝑎𝑛. Points in  𝑝𝑠𝑐𝑎𝑛 with 𝑑𝑚𝑒𝑎𝑛 < 𝜃𝑠𝑖𝑚 (Figure 4-23) and ε𝑘1 < 𝜃𝑒𝑟𝑟𝑜𝑟  

 (Figure 4-24) create the hypothesis space (Appendix G). 𝜃𝑠𝑖𝑚 (similarity threshold) and 𝜃𝑒𝑟𝑟𝑜𝑟 (error 

threshold) together represent the strength of the filter, which will be affected by the level of noise in 𝑃𝑠𝑐𝑎𝑛 

and are therefore 3D imaging device specific. 

  

(a) (b) 
Figure 4-22: Scatter plots of characterized principal curvatures, (a) plot for the 3D CAD design file sample 𝒑𝒅𝒆𝒔𝒊𝒈𝒏 and, 

(b) plot for the cluttered point cloud scan sample 𝒑𝒔𝒄𝒂𝒏  

4.5.4 Hypothesis space clustering 

The points in the hypothesis space are now clustered into a set of discrete hypothesis (Figure 4-25) 

objects using DBSCAN (Ester et al. 1996). The parameters of DBSCAN, 𝐸𝑝𝑠ℎ𝑦𝑝 and  
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Figure 4-23: Point filtering (a) area in scatter plot where 𝒅𝒎𝒆𝒂𝒏 < 𝜽𝒔𝒊𝒎 and (b) corresponding points in xyz space with 

𝒅𝒎𝒆𝒂𝒏 < 𝜽𝒔𝒊𝒎 coloured by curvature characterization circle fit quality (darker points have lower circle fit error). 

 

Figure 4-24: Point filtering using the error threshold (𝛆𝒌𝟏 < 𝜽𝒆𝒓𝒓𝒐𝒓). 

𝑀𝑖𝑛𝑃𝑡𝑠ℎ𝑦𝑝 are set by simulating 𝐻𝑦𝑝 1, the cluster in hypothesis space representing our pipe spool of 

interest.  The simulated 𝐻𝑦𝑝 1 is denoted by 𝐻𝑦𝑝∗ 1. We estimate the number of points in 𝐻𝑦𝑝 1 as 

follows: 

𝑠𝑖𝑧𝑒(𝑝𝑠𝑐𝑎𝑛) ×
𝑠𝑖𝑧𝑒(𝑃𝑑𝑒𝑠𝑖𝑔𝑛)

𝑠𝑖𝑧𝑒(𝑃𝑠𝑐𝑎𝑛)
× 𝐹𝐴𝑅 ≈ 𝑠𝑖𝑧𝑒( 𝐻𝑦𝑝 1) Eq.  4-9 

𝑠𝑖𝑧𝑒(𝑝𝑠𝑐𝑎𝑛) ×
𝑠𝑖𝑧𝑒(𝑃𝑑𝑒𝑠𝑖𝑔𝑛)

𝑠𝑖𝑧𝑒(𝑃𝑠𝑐𝑎𝑛)
≈ 𝑠𝑖𝑧𝑒(𝑝𝑜𝑏𝑗)   

Eq.  4-10 

where, 𝑝𝑜𝑏𝑗 is the set of points in 𝑝𝑠𝑐𝑎𝑛 that is the pipe spool of interest, and 𝐹𝐴𝑅 is the filter’s 

acceptance rate, which is the approximate percentage of points from 𝑝𝑜𝑏𝑗 that will be accepted by the 

θsim = 0.04 θsim = 0.013 θsim = 0.0055

(a)

(b)

θsim = 0.013        θerror = 0.6 θsim = 0.013        θerror = 0.4
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filter thresholds. The filter’s acceptance rate is 3D imaging device specific. The procedure used to 

calculate 𝐹𝐴𝑅 for the case study in Section 4.6.2 can be found in Appendices C and D. 

The 𝐻𝑦𝑝∗ 1 ⊆ 𝑃𝑑𝑒𝑠𝑖𝑔𝑛, is processed with DBSCAN with 𝑀𝑖𝑛𝑃𝑡𝑠 = 1 while incrementally growing 𝐸𝑝𝑠 

until DBSCAN produces a single cluster. The minimum 𝐸𝑝𝑠 that allows DBSCAN to yield a single 

cluster from 𝐻𝑦𝑝∗ 1, is set as 𝐸𝑝𝑠ℎ𝑦𝑝.  Using 𝐸𝑝𝑠ℎ𝑦𝑝, 𝑀𝑖𝑛𝑃𝑡𝑠ℎ𝑦𝑝 is set by calculating the mean number 

of points within radius 𝐸𝑝𝑠ℎ𝑦𝑝 of points in 𝐻𝑦𝑝∗ 1. 𝐸𝑝𝑠ℎ𝑦𝑝 and 𝑀𝑖𝑛𝑃𝑡𝑠ℎ𝑦𝑝 are then used to cluster the 

hypothesis space. The MATLAB code used to determine  𝐸𝑝𝑠ℎ𝑦𝑝 and 𝑀𝑖𝑛𝑃𝑡𝑠ℎ𝑦𝑝 can be found in 

Appendix H. The MATLAB code used to cluster the hypothesis space can be found in Appendix I. The 

resulting set of clusters comprise the set of discrete hypothesis objects (Figure 4-25) that will be 

compared to 𝑝𝑑𝑒𝑠𝑖𝑔𝑛. 

 

Figure 4-25: Set of discrete hypothesis objects clustered from hypothesis space 

4.5.5 BoF comparison and final extraction 

The set of discrete hypothesis objects provided by DBSCAN are now each compared to the design file 

(Appendix J). The curvature descriptions (𝑘1 and 𝑘2) associated with the points in each cluster are binned 

into bivariate histograms (Figure 4-26). These histograms are the BoF for each hypothesis and describe 

the frequency by which each type of curvature occurs in each cluster. Each cluster’s histogram is 

compared to the BoF formed from 𝑝𝑑𝑒𝑠𝑖𝑔𝑛, and the cluster with the smallest difference, i.e., greatest 

similarity, is selected as the location of the as-built object of interest. The bin size used to the create the 

histograms is proportional to the size of  𝑝𝑜𝑏𝑗. 

Hypothesis 1Hypothesis 3 Hypothesis 2
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Figure 4-26: BoF for all hypothesis objects along with the BoF for the sample of the 3D CAD design file 

Nearest neighbours of the selected cluster provide a rough extraction. A global-to-global registration 

using principal component alignment and iterative closest point (ICP) (Besl and McKay 1992; Nahangi 

and Haas 2014) (Appendix K) is performed using 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 and the newly extracted rough as-built object of 

interest. This process registers 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 with the coordinate system of the 𝑃𝑠𝑐𝑎𝑛 (Figure 4-27a). Finally, 

retrieving points from 𝑃𝑠𝑐𝑎𝑛 that are within threshold distance of points in the registered 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 results in 

the final as-built object of interest extraction (Figure 4-27b).  

 

Figure 4-27: Registration and extraction, (a) the 3D CAD design file registered to the pipe spool of interest in the point 

cloud scan and (b) the extracted pipe spool of interest 

4.6 Pipe spool recognition using a curvature-based shape descriptor validation 

The algorithm was tested on two different point clouds. The first point cloud (Figure 4-28) is a collection 

of 11 synthetic pipe spools (Figure 4-29) introduced into a real laser scanned fabrication facility with a 

total of 7 million points before plane removal. The second is a real laser scanned point cloud of a pipe 

Hypothesis 1 BoF Hypothesis 2 BoF Hypothesis 3 BoFpdesign BoF

(a) input files registered (b) extracted as-built pipe spool of interest
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spool in a university laboratory (Figure 4-18) with a total of 1.1 million points before plane removal. For 

every experiment, the size of 𝑝𝑑𝑒𝑠𝑖𝑔𝑛 was set to 1000.  

 

Figure 4-28: Collection of synthetic pipe spools in point cloud scan of fabrication facility with planes removed 

4.6.1 Synthetic pipe spool location and extraction 

4.6.1.1 Test setup 

In order to test the methodology’s ability to differentiate between similar pipe spools in a point cloud 

during extraction, 11 synthetic pipe spools are each extracted in turn from a scan of a fabrication facility 

(Figure 4-28). 𝑠𝑖𝑧𝑒(𝑝𝑠𝑐𝑎𝑛) is varied to illustrate the improvement in the method’s ability to differentiate 

between similar hypotheses as the number of points characterized in the scan increases. For each 

extraction, the size of 𝑝𝑠𝑐𝑎𝑛 is set by using Eq.4-10 with  𝑠𝑖𝑧𝑒(𝑝𝑜𝑏𝑗) = {50, 100, 200, 400, 800}. 

Therefore, approximately 𝑠𝑖𝑧𝑒(𝑝𝑜𝑏𝑗) points are sampled off of the pipe spool of interest in the point cloud 

scan. Curvature filter parameters were set at, 𝜃𝑒𝑟𝑟𝑜𝑟 = 0.4 and 𝜃𝑠𝑖𝑚 = 0.0025, but were not critical to 

separate the pipe spools from the background as the accuracy of curvature characterization for spool 

points was artificially high. 
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Figure 4-29: Collection of 3D CAD design files for synthetic pipe spools and their corresponding pipe spool identification 

numbers 

Pipe Spools 3, 6, 7, and 8 (Figure 4-29) were specifically included in the analysis to illustrate the 

extraction situations with which the algorithm would struggle. Pipe Spools 3 and 8 are small simple 

components that exist as subsets within other spools, e.g., Pipe Spools 2 and 9 containing straight sections 

which may be mistaken for pipe spool 3. Pipe Spools 6 and 7 will be a challenge because they are only 

differentiable by their absolute orientation in space, but are identical in their curvature descriptions.  

4.6.1.2 Results and discussion 

The results for the series of synthetic pipe spool extraction tests can be found in Table 4-4. Correct 

extraction was defined as the search query 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 being accurately registered to the corresponding pipe 

spool in 𝑃𝑠𝑐𝑎𝑛. Incorrect registrations are defined as the search query 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 being incorrectly registered 

to a pipe spool in 𝑃𝑠𝑐𝑎𝑛 not corresponding to the search query. For instances of incorrect registration, the 

erroneous pipe spool match with the highest share of extraction attempts was reported next to each search 

query.   
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As 𝑠𝑖𝑧𝑒(𝑝𝑜𝑏𝑗)  increased, the algorithms ability to differentiate between pipe spools increased 

accordingly. Without the four difficult case pipe spools mentioned, the average successful extraction rates 

were 60% 69% and 90% for 𝑠𝑖𝑧𝑒(𝑝𝑜𝑏𝑗) = {50, 200, 800}, respectively. For incorrect registrations, each 

search query tended to incorrectly match to a small set of incorrect hypotheses. As the object of interest 

sample increased, the incorrect registration cases for each search query tended to be comprised of a single 

“most similar” alternative hypothesis.  There were no instances in which the search query 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 was 

mistakenly registered to clutter that was not a pipe spool. For actual industrial applications the observed 

BoF comparison accuracy is adequate because incorrect registration will not necessarily equate to a failed 

extraction. After registration to the false match occurs, a simple registration quality of fit test would 

reveal an incorrect match, and the algorithm could attempt registration to the hypothesis cluster with the 

second highest similarity, and so forth until an acceptable registration quality of fit identifies the correct 

spool. 

Table 4-4: Result of varying object of interest sample size on extraction performance for synthetic 

dataset 

* Search queries designed to confuse algorithm, based on similarity to other pipe spools (see Figure 

4-29). 
+
 Average excludes search query spool IDs marked with *. 

𝑠𝑖𝑧𝑒(𝑝𝑜𝑏𝑗) = 50 𝑠𝑖𝑧𝑒(𝑝𝑜𝑏𝑗) = 200 𝑠𝑖𝑧𝑒(𝑝𝑜𝑏𝑗) = 800 

Correct Extraction 
Incorrect 

Registration 
Correct Extraction 

Incorrect 

Registration 
Correct Extraction 

Incorrect 

Registration 

Search 

Query 

Spool ID 

 % of 

Attempts 

To 

Spool 

ID 

 % of 

Attempts 

Search 

Query 

Spool ID 

 % of 

Attempts 

To 

Spool 

ID 

 % of 

Attempts 

Search 

Query 

Spool ID 

 % of 

Attempts 

To 

Spool 

ID 

 % of 

Attempts 

1 100% - - 1 100% - - 9 100% - - 

2 90% 4 10% 2 100% - - 11 100% - - 

11 70% 5 30% 11 90% 5 10% 1 100% - - 

5 60% 10 30% 7* 80% 6 80% 2 100% - - 

6* 50% 7 50% 5 80% 10 10% 4 90% 2 10% 

8* 50% 10 30% 4 50% 2 50% 5 90% 10 10% 

4 40% 2 50% 8* 50% 5 50% 8* 80% 5 20% 

7* 40% 6 60% 6* 40% 7 60% 6* 50% 7 50% 

10 40% 5 30% 9 30% 11 40% 10 50% 5 50% 

9 20% 11 50% 10 30% 5 40% 7* 40% 6 60% 

3* 0% 10 50% 3* 0% 9 70% 3* 0% 9 50% 

Average 51%     Average 59%     Average 73%     

Average+ 60%     Average+ 69%     Average+ 90%     
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4.6.2 Real pipe spool location and extraction 

4.6.2.1 Test setup 

The algorithm was also tested on a real laser scanned point cloud of a single pipe spool in a university 

laboratory (Figure 4-18). The scan data was collected using a FARO laser scanner (Table 4-1). A 

sensitivity study of the parameters (1) 𝐹𝐴𝑅 and (2) size of 𝑝𝑜𝑏𝑗 was conducted to test how the methods 

ability to extract pipe spool objects is effected by the sample size characterized from 𝑃𝑠𝑐𝑎𝑛 as well as the 

percentage of points accepted or rejected by the curvature filter. 𝐹𝐴𝑅 was varied from 10% to 90% at 

10% increments. Size of 𝑝𝑜𝑏𝑗 was varied from 25 to 1600 quadratically.  

𝐹𝐴𝑅 is dictated by the 𝜃𝑠𝑖𝑚 and 𝜃𝑒𝑟𝑟𝑜𝑟 chosen. The noisier the data, the lower the corresponding 

acceptance rate for each threshold pair. This relationship is 3D imaging device specific. For the laser 

scanner used to conduct the experiment, the optimum pair of thresholds was determined for each 

acceptance rate empirically using a separate sensitivity analysis (Appendix C and D). This relationship is 

illustrated in Figure 4-30.  

 

Figure 4-30: optimal combinations of 𝜽𝒆𝒓𝒓𝒐𝒓 and 𝜽𝒔𝒊𝒎 and associated filter's acceptance rates; determined empirically 

through sensitivity study; for FARO LS 880 HE scanner 
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4.6.2.2 Results and discussion 

The results for the real laser scanned pipe spool extraction tests can be found in Table 4-5. A large 

component of the execution time is comprised of curvature characterization and rises linearly with size of 

𝑝𝑜𝑏𝑗. Ultimate extraction accuracy was highest when the size of 𝑝𝑜𝑏𝑗 was high and the hypothesis space 

𝐹𝐴𝑅 was low. The large amount of points sampled allowed the filter to reject a greater amount of points 

whilst maintaining a dense enough hypothesis space for successful clustering and registration. Extraction 

was poor when the size of 𝑝𝑜𝑏𝑗 was low and the 𝐹𝐴𝑅 was low because the hypothesis space was too 

sparse for successful clustering and subsequent registration. When the 𝐹𝐴𝑅 was high the extraction was 

poor because, like the original scan, the clutter in the hypothesis space did not allow for location of the 

search query. Extraction success rates varied from 0% to 100%. 

Table 4-5: Sensitivity analysis for pipe spool extraction, parameters varied: Hypothesis space FAR and object of interest 

sample  

 𝐹𝐴𝑅 
Execution 

Time 

(min) 

𝑠𝑖𝑧𝑒(𝑝𝑜𝑏𝑗)  

  10% 20% 30% 40% 50% 60% 70% 80% 90% 

25 0% 0% 0% 10% 50% 50% 20% 30% 10% 1.1 

50 0% 30% 80% 60% 60% 60% 40% 40% 30% 1.3 

100 20% 40% 60% 70% 70% 40% 50% 30% 20% 1.9 

200 20% 90% 70% 60% 70% 60% 30% 40% 60% 2.9 

400 70% 50% 90% 60% 60% 80% 60% 50% 20% 5.0 

800 80% 100% 80% 90% 70% 70% 70% 70% 40% 9.2 

1600 100% 100% 100% 100% 90% 80% 60% 70% 60% 17.6 

 

4.7 Discussion of recognition methodology’s interface with subsequent analysis 

procedures 

The pipe spool recognition methodology presented in this section completes the automated visual 

inspection workflow described in Sections 1.1 and 3.2 (Figure 4-31). However, the intricacies of the 

transition from recognition to geometrical analysis need to be further studied. For the final extraction 

process described in Section 4.5.5 and discussed for case studies in Sections 4.6.1.2 and 4.6.2.2, the 

assumption is that the as-built pipe spool being extracted was fabricated within tolerance and does not  
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Figure 4-31: The automated workflow from pipe spool visual inspection 

deviate geometrically from the design file. However, the extraction process would be more complicated if 

it did deviate geometrically from the design file.  Specifically, the process of registering the design file to 

the object of interest and the subsequent point extraction might be compromised as these two steps rely on 

congruence between the global configurations of the design file and object of interest. Besides this, the 

methodology is not entirely undermined by geometrical defects so long as the BoF for the as-built pipe 

spool remains largely unaffected. If the BoF of the as-built pipe spool remains similar to the BoF of the 

design file despite geometrical defects, the as-built pipe spool will still be detected as a hypothesis cluster 

(Section 4.5.5).   Expansions need to be made to the presented methodology to further understand and 

accommodate situations involving geometrical defects of varying degrees.  

Once the points representing the as-built pipe spool of interest have been identified, those points are 

copied to a separate file and enables the execution of the geometrical analyses presented in Section 3.2.2.  

3D CAD design file

cluttered laser scan 

containing as-built pipe spool

recognition and extraction 

of the as-built pipe spool  

from the cluttered 

point cloud

geometrical analysis of 

the as-built pipe spool 

data collection automated data processing
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5.0 Curvature identification using low-cost range-cameras 

The search and extraction algorithm presented in Section 4.5 relies on accurate curvature characterization 

of the point cloud data. The application of low-cost range-cameras to object recognition is desirable as it 

would minimize the cost of purchasing equipment. However, low-cost range-cameras have limited 

accuracy. Results from a Kinect sensor accuracy study concluded that: (1) Random error of depth 

measurements increases quadratically with increasing distance from the sensor and reaches 4 cm at the 

maximum sensing distance of 5 meters. (2) The depth resolution decreases quadratically with increasing 

distance from the sensor. The point spacing in the depth direction (along the optical axis of the sensor) is 

as large as 7 cm at the maximum range of 5 m as can be seen in (Khoshelham and Elberink 2012). Point 

density of the collected scans are also adversely affected by distance. Considering the density of the 

resulting point cloud to be the number of points per unit area, the point density on the XY plane is 

inversely proportional to the squared distance from the imaging device (Khoshelham and Elberink 2012). 

Therefore, an object being detected by the device will be represented by fewer and fewer points as it 

moves away from the sensor.  

Accuracy of curvature characterization is related to the accuracy of the 3D imaging device used, the 

amount of surface noise in the data, the distance of the object of interest from the sensor, the size of the 

object of interest, and the size of the nearest neighbourhood parameter in the curvature characterization 

algorithm described in Section 4.3. An experiment was set up to measure the effects of these variables on 

the execution of the algorithms and to explore the viability of using low-cost range-cameras for accurate 

object recognition and extraction. Optimal nearest neighbourhood sizes, the associated accuracy of 

curvature characterization, and finally, the accuracy of object recognition were all determined for 3D 

imaging sensors collecting data of pipe-objects at different distances. 
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5.1 Experimental setup 

Data acquisition was performed using Kinect for Windows v1, Kinect for Windows v2 (discussed in 

Section 3.1), and a FARO LS 840 HE laser scanner. Technical properties and features of the Kinect 

range-cameras used in this study are summarized in Table 3-1. Range and accuracy specifications for the 

FARO laser scanner used in this study are summarized in Table 4-1.  

The object extraction algorithm requires that the curvatures of the objects in the cluttered scene be 

characterized accurately enough so that differentiation and the appropriate extraction can be performed. 

To test the algorithm’s ability to differentiate between similar curvatures and the objects they represent, 

four PVC pipes of various raddii were used as objects of interest (Table 5-1).  The first 3D imaging 

device was positioned at one end of a hallway. As seen in Figure 5-1, single perspective images were 

taken of the 4 pipes starting at a distance from the imaging device of 0.5 m and at each 0.25 m interval to 

a maximum distance of 3.75 m. The process was repeated for each of the other two 3D imaging devices. 

A total of 42 images were generated.  

 

Figure 5-1: Experimental setup plan view 
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Table 5-1: Properties of the pipes used for the experiments 

Descriptor Pipe 1 Pipe 2 Pipe 3 Pipe 4 

Index used for results analysis P1 P2 P3 P4 

Actual radius (cm) 2.41 4.43 6.09 8.775 

Length (cm) 40 40 40 40 

 

5.2 Optimal nearest neighbourhood specification analysis 

When running the object extraction algorithm, the user must know what nearest neighbourhood size to 

specify. The known user inputs are the type of imaging device being used and the curvatures of the search 

query. In order to explore the relationship between nearest neighbourhood size and the accuracy of the 

associated output, the images collected are manually segmented, and each individual pipe point cloud is 

analyzed using a series of nearest neighbourhood sizes. The accuracy of the curvature characterization is 

studied.  

Each of the four pipes was extracted by manually segmenting the collected images resulting in 168 

individual pipe point clouds. The curvature characterization algorithm was run on each of the extracted 

point clouds using 10 nearest neighbourhood sizes (1-10 cm) generating 1680 curvature histograms. The 

result is a histogram of k1 curvatures. Figure 5-2 shows sample curvature histograms for the 6.09 cm 

radius pipe at 1.5 m from the sensor. 

The curvature histograms for the entire range of distances are combined into summary charts for each 

device, pipe radius and nearest neighbourhood size combination. Figure 5-3 shows the 5 cm nearest 

neighbourhood size curvature characterization results for the 6.09 cm radius pipe data collected by the 

Kinect 2 at 0.5-3.75 m from the sensor. 

Understanding that each individual pipe point cloud represents a single curvature type that would be 

entered as part of a search query in the object extraction algorithm, the histogram must be abstracted to an 

actual pipe radius (3D CAD model curvature) and curvature acceptance threshold (Figure 5-4). The 

curvature acceptance threshold must be as small as possible to discriminate against clutter in the scene  
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Figure 5-2: Individual pipe point clouds for P3 at 1.5 meters from sensor and generated curvature histograms and 

distribution box plot 

 

Figure 5-3: Curvature characterization for P3 with nearest neighbourhood size 5 cm, Kinect 2 data source 
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Figure 5-4: Curvature Acceptance Threshold specification for Kinect 1 curvature histogram for 6.09 cm radius pipe at 1.5 

meters 

that has curvatures similar to those in the search query. For each of the 1680 curvature histograms, the 

actual pipe radius and curvature acceptance threshold specifications resulting in a 50% point acceptance 

rate are calculated. The curvature acceptance threshold summary charts are presented in Figure 5-5. Each 

boxplot represents a 3D imaging device/pipe radius/nearest neighbourhood size combination and is 

comprised of 14 curvature acceptance threshold values (one for each distance 0.5-3.75 m). Using the 

curvature acceptance thresholds, the optimal nearest neighbourhood size is determined for each 3D 

imaging device and pipe radius combination. 

The optimal nearest neighbourhood sizes for each 3D imaging device / pipe radius combination were 

determined by selecting the nearest neighbourhood size that yielded the lowest maximum curvature 

acceptance threshold. The optimal nearest neighbourhood sizes for the laser scanner were, however, 

chosen differently because (1) the improvement in accuracy after nearest neighbourhood size 4 cm was 

minimal and (2) processing time is quicker for smaller nearest neighbourhoods (see Table 5-2). The 

optimal nearest neighbourhood sizes are shown in Table 5-2. The resulting curvature characterizations 

obtained from implementing the optimal nearest neighbourhood sizes are summarized in Figure 5-6. 

Using the median as the discrete curvature estimate, the average error of characterization was 18% for 

Kinect 1, 10% for Kinect 2, and 2% for the laser scanner. The associated curvature acceptance threshold – 
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indicator of curvature estimate spread and inverse discriminative ability - was ± 2 cm for Kinect 1, ± 1.1 

cm for Kinect 2, and ± 0.25 cm for the laser scanner. 

 

Figure 5-5: Curvature acceptance threshold for 50% point acceptance rate summary charts for nearest neighbourhood 

sizes 1-10 cm, for Kinect 1, Kinect 2, and laser scanner and pipes with radius 2.41 cm (P1), 4.43 cm (P2), 6.09 cm (P3), and 

8.775 cm (P4) 
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Table 5-2: Optimal nearest neighbourhood size for extracting pipe with radius 2.41 cm (P1), 4.43cm (P2), 6.09 cm (P3), 

and 8.775 cm (P4) using various sensors 

3D imaging device P1 P2 P3 P4 

Kinect 1 2 cm 3 cm 3 cm 7 cm 

Kinect 2 3 cm 4 cm 10 cm 9 cm 

Laser Scanner 4 cm 4 cm 4 cm 4 cm 

 

Figure 5-6: Curvature characterization using optimal nearest neighbourhood sizes, for Kinect 1, Kinect 2, and laser 

scanner for pipes with radius 2.41 cm (P1), 4.43 cm (P2), 6.09 cm (P3), and 8.775 cm (P4) 
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5.3 3D imaging device pipe extraction results 

The object extraction algorithm was executed on the original images collected by the 3D imaging devices. 

Using the optimal nearest neighbourhood sizes and their associated curvature acceptance thresholds, the 

algorithm’s ability to differentiate between pipes and extract the desired search query were determined. 

For each 3D imaging device/search query combination, the algorithm would extract a single object from 

the cluttered scene. The results are presented in Table 5-3, where the percentages represent the proportion 

of images (distance from sensor 0.5-3.75 m) for each 3D imaging device that yielded each type of 

extracted object with the specified search query.  

Table 5-3: Pipe extraction statistics, percentages represent the proportion of images (distance from sensor 0.5-3.75 m) for 

each 3D imaging device that yielded each type of extracted object with specified search query. 

Search Query 2.41 cm Pipe (P1) 4.43 cm Pipe (P2) 6.09 cm Pipe (P3) 8.775 cm Pipe (P4) 

Extracted Object P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 

Kinect 1 21% 29% 14% 36% 0% 43% 36% 21% 0% 0% 50% 50% 0% 0% 7% 93% 

Kinect 2 79% 21% 0% 0% 0% 71% 29% 0% 0% 0% 100% 0% 0% 0% 0% 100% 

Laser Scanner 100% 0% 0% 0% 0% 100% 0% 0% 0% 0% 100% 0% 0% 0% 0% 100% 

 

The laser scanner achieved perfect discriminative ability for extracting the specified pipes from the 

captured images, extracting the search query pipe correctly in 100% of the executions. The Kinect v2 

outperformed the Kinect v1, in that when queried, the two larger pipes were extracted correctly 100% of 

the time, while the smaller of the two pipes were extracted correctly 75% of the time on average. The 

Kinect v1 performed poorly, with an average correct extraction rate of only 52%. The extraction process, 

when providing an erroneous object extraction, consistently demonstrated a bias towards pipes of larger 

radius and larger surface area. 

Although the range-cameras did not demonstrate sufficiently reliable object-of-interest discrimination for 

industrial applications, the apparent trend in the 3D imaging device’s ability to differentiate between 

similar curvatures suggests that future iterations of Kinect devices could achieve comparable capabilities 

to the laser scanner and would be suitable for input to the automated object extraction framework.  
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6.0 Summary, conclusions, and recommendations  

6.1 Thesis summary 

The application of emerging sensor and communication technologies to industrial pipe spool fabrication 

has proven potential for providing a greater degree of production control. 3D imaging devices, 

particularly laser scanners, are being used to monitor 3D geometries and check dimensional compliance 

during fabrication. However, many of these monitoring tools are limited because they require the object 

of interest being monitored to be manually isolated from the rest of the background data and clutter 

captured by the indiscriminate laser scanner. Automated information extraction processes that exploit the 

massive databases created by emerging sensor networks and communication technologies have the 

potential to substantially improve the availability of information about 3D geometries on construction 

projects and in turn, improve the execution of components inspection, and progress tracking. In this 

thesis, the problem of automatically recognizing and isolating pipe spools from their cluttered point cloud 

scans is studied. Two approaches were developed and evaluated. 

6.1.1 RANSAC 

RANSAC has proven to effectively recognize simple shape primitives in cluttered point cloud data within 

the computer vision literature. One of the recognition frameworks in this thesis attempted to generalize 

the method to recognize pipe spools. Although the basic RANSAC approach has the advantage of being 

conceptually simple, its direct application to the 3D pipe spool recognition problem is shown to be 

prohibitively expensive computationally. For the problem of locating a pipe spool in a point cloud of 

approximately two million points, the sheer volume of random hypothesis locations tested during the 

recognition process made it impossible to find the correct location of pipe spools of interest.  

In an attempt to decrease the number of possible minimal point set matches, a method for discriminately 

down sampling the point cloud using curvature was presented. The curvature characterization and 
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filtering was able to successfully sample points from a few key areas in the scan, but a subsequent 

RANSAC execution failed to provide reliable results.  

6.1.2 Recognition using a curvature-based shape descriptor 

A novel method for extracting pipe spools from cluttered point clouds using local data level curvature 

estimation, density-based clustering, and bag-of-features matching was developed. The methodology was 

validated on two test point clouds, demonstrating both an ability to successfully extract pipe spools from 

point clouds and to differentiate between similar pipe spools in the same point cloud. Successful 

extraction rates achieved range from 90%-100%.  

6.1.3 Curvature identification using low-cost range-cameras 

Three 3D imaging devices were used to capture point clouds of pipe objects at distances ranging from 0.5 

to 3.75 m. The radii of the pipe objects were characterized and the accuracies of the devices were 

evaluated. Although the range-cameras did not demonstrate sufficiently reliable curvature discrimination 

for industrial applications, the apparent trend in the device’s ability to differentiate between similar 

curvatures suggests that future iterations of Kinect devices could achieve much better accuracy and would 

be suitable for input to the automated object extraction framework.  

6.2 Research contributions and conclusions 

The contributions of the work are as follows: (1) A number of challenges involved in applying RANSAC 

to pipe spool recognition are identified. (2) An effective spatial search and pipe spool extraction algorithm 

based on local data level curvature estimation, density-based clustering, and bag-of-features matching is 

presented. (3) The accuracy of curvature estimation using data collected by low-cost range-cameras and 

the viability of use of low-cost range-cameras for object search, localization, and extraction are tested.  

Following from these contributions are three conclusions: 
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(1) One-to-one comparison of minimal point sets for RANSAC applied to finding pipe spools in 

cluttered point clouds is an inadequate comparison strategy 

(2) Curvature can be the basis for a local shape descriptor that can successfully differentiate between 

a pipe spool object and surrounding clutter in a typical industrial fabrication facility scene 

(3) The success of object recognition by the curvature-based recognition algorithm is dependent on 

the accuracy of the 3D imaging device used to collect the data 

6.3 Limitations 

6.3.1 Recognition using a curvature-based shape descriptor 

Many of the parameters in the curvature-based recognition algorithm are 3D imaging device specific. 

Currently a recalibration of these parameters is necessary for each new scanner used. The complexity and 

specificity of the algorithm is prohibitive to generalization for recognition of other non-pipe spool 

industrial assemblies. The method is only suitable for pipe spool recognition. Spools comprised mostly of 

flanges, valves and instrumentation were not tested; it is expected the algorithm would not perform as 

well on this subclass of spools. 

Only two case studies were used to validate the algorithm. Case studies did not include situations of 

substantial occlusion.   

6.4 Future work 

Recommended future work includes, test alternative point sets and descriptor types for the RANSAC 

framework and explore alternative data structures such as hash tables to facilitate the comparison of 

minimal point sets. 

In applying the curvature-based recognition algorithm, for implementations not prioritizing speed, 

studying the improvement in performance of a variable 𝑁𝑁𝑝 size characterization is another 

recommended area for future research. The 3D imaging device specific parameters in the algorithm 
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change as the level of noise in the data changes. In order to understand these parameters in more detail, a 

metric for quantifying the noise that affects them needs to be determined. If an effective metric is found, a 

method for automating the determination of these 3D imaging device specific parameters should be 

created. The curvature characterization algorithm is well suited for parallel computing and therefore 

future iterations of the code should leverage parallel graphical processing unit (GPU) processing to reduce 

computation time. Finally, the performance of the proposed method should be compared in future 

research with a library of other popular shape descriptor methods such as object recognition based on 

spin-images (Johnson and Hebert 1999). 
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Appendix A 

MATLAB code: Major plane removal from laser scans of industrial facilities 

function [Scan_PlanesRemoved] = RemovePlanes( Scan ) 

%function [Scan_PlanesRemoved] = RemovePlanes(Scan) removes the major planes from within Scan, 

%        

%       coded with the intention of removing floors, cieling and walls from within 

%       a fabrication facility 

%       

%       input: 

%       Scan = input point cloud (units in cm) 

% 

%       Major plane removal is performed in two clustering steps: 

%       (1) Guassian sphere is clustered to identify sets of parallel 

%       planes 

%       (2) Sets of parallel planes are spatially segemented to isolate 

%       individual planes 

% 

Scan_pt=pointCloud(Scan); 

ScanNormals=pcnormals(Scan_pt,12); %estimate surface normals for each point in the point cloud 

ClusteringSpace=[Scan_pt.Location,ScanNormals]; 

ClusteringSpace_reduced=datasample(ClusteringSpace,20000); %sample 20,000 points from point cloud 

for Gaussian sphere clustering operation 

%(1) Guassian sphere is clustered to identify sets of parallel planes 

[Class,trash]=dbscan(ClusteringSpace_reduced(:,4:6),1000,0.02); %1000 is the minimum number of 

points representing a set of parallel planes and 0.02 is 2 times the SquareRoot(surface area of a 

sphereical cap of the Gaussian sphere created by a 10 degree normal vector deviation divided by 

1000) 

ClassList=unique(Class); 

% ---- align principal axes of the scan with the xyz axes  

for i=2:length(ClassList); 

    R=[1,0,0;0,1,0;0,0,1]; 

    if dot(mean(ClusteringSpace_reduced(Class==ClassList(i),4:6)),[0,0,1])<0.2 
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angle=atan2(norm(cross(mean(ClusteringSpace_reduced(Class==ClassList(i),4:6)),[1,0,0])),dot(mean(

ClusteringSpace_reduced(Class==ClassList(i),4:6)),[1,0,0])); 

    R=vrrotvec2mat([0;0;1;angle]); 

    break 

    end 

end 

% ---- 

ClusteringSpace_reduced(:,1:3)=ClusteringSpace_reduced(:,1:3)*R; 

Scan_pt=pointCloud(Scan_pt.Location*R); 

DirectionVector=zeros(length(ClassList)-1,3); 

for i=2:length(ClassList); 

    DirectionVector(i-1,:)=mean(ClusteringSpace_reduced(Class==ClassList(i),4:6))*R; %calculate 

the mean normal vector direction for each cluster of the Gaussian sphere 

    ParallelPlanes=ClusteringSpace_reduced(Class==ClassList(i),1:3); 

    %(2) Sets of parallel planes are spatially segemented to isolate individual planes 

    [Class_sub,trash]=dbscan(ParallelPlanes,100,100); %planes are represented by at least 100 

points, and are spatially seperated by at least 100cm 

    ClassList_sub=unique(Class_sub); 

    % --- remove each plane from the scan 

    for e=2:length(ClassList_sub); 

        roi=[min(ParallelPlanes(Class_sub==ClassList_sub(e),1:3))'-

20,max(ParallelPlanes(Class_sub==ClassList_sub(e),1:3))'+20]; %region of interest 

        sampleIndices=findPointsInROI(Scan_pt,roi); 

        sub=select(Scan_pt,sampleIndices); 

        left=select(Scan_pt,setdiff(1:length(Scan_pt.Location),sampleIndices)); 

        range(sampleIndices) 

        [trash1,trash2,outlierIndices]=pcfitplane(sub,2.5,DirectionVector(i-1,:),10); %Plane 

removal parameters: 2.5 cm maximum spatial deviation of points on a plane, and maximum 10 degree 

normal vector deviation 

        sub=select(sub,outlierIndices); 

        Scan_PlanesRemoved=pointCloud([left.Location;sub.Location]); 

    end 

    % ---  

end 

end 
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Appendix B 

MATLAB code: Pipe spool recognition and extraction main function 

function [ ExtractedObject, transformation ] = ExtractSpool( Design_File, Scan, Scan_Sample_Size, 

acceptanceRate) 

%function ExtractSpool is a pipe spool recognition method used for locating 

%and extracting pipe spools from cluttered point clouds.  

% 

%   input: 

%   Design_File = 3D CAD design file point cloud of pipe spool of interest 

%   Scan        = cluttered point cloud scan that includes the pipe spool  

%                 of interest 

%   Scan_Sample_Size = number of points from Scan that will go through  

%                      curvature characterization and be used to find the  

%                      pipe spool of interest 

%   acceptanceRate   = number of points off the object of interest in Scan 

%                      to be accepted through the curvature-based filter. 

%                      (used to set filter thresholds) 

% 

%The extraction process is performed in five steps: 

%   (1) The points in Scan are filtered using a curvature-based shape 

%       descriptor 

%   (2) Points in the hypothesis space are clustered into hypothesis 

%       objects 

%   (3) Using BoF, each hypothesis object is compared to the 3D CAD design 

%       file 

%   (4) The 3D CAD design file is registered to the hypothesis object most 

%       similar to the 3D CAD design file 

%   (5) The pipe spool of interest is extracted from Scan 

% 

%   *all units in the code are in centimeters 

  

%access filter thresholds (parameters are sensor specific and accessed from 
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%empirically determined optimal values) 

[SimilarityThreshold,ErrorThreshold]=accessThresholds(acceptanceRate); 

  

pdr=0.5; %pdr is the Poisson-disc Sampling Radius used to sample the search space (UNITS) 

Design_File_Sample_Size=1000; %Specify the # of points to analyze in the Design_File 

  

%Generate a KD Tree for Design_File such that Nearest Neighbours can 

%be found more efficiently  

OCKDT_Design_File=KDTreeSearcher(Design_File); 

scale=DetermineScale(Design_File,OCKDT_Design_File); %Determine reasonable scale value to use for 

curvature characterization 

  

%analyze the Design_File for curvature (K1 and K2 principal curvatures) at 

%"Design_File_Sample_Size" number of local surface patches 

Design_File_Curvature_Signature=CurvSearch(Design_File,OCKDT_Design_File,pdr,Design_File_Sample_S

ize,scale); 

  

%Convert the Design_File_Curvature_Signature into a polygon that is used to 

  

%Generate a KD Tree for the search space such that Nearest Neighbours can 

%be found more efficiently  

OCKDT_Scan=KDTreeSearcher(Scan); 

  

%analyze the Scan for curvature (K1 and K2 principal curvatures) at 

%"Scan_Sample_Size" number of local surface patches 

Scan_Curvature_Probe=CurvSearch(Scan,OCKDT_Scan,pdr,Scan_Sample_Size,scale); 

  

%Classify and filter the analyzed points using 3NN and distance threshold 

%"SimilarityThreshold" 

Object_Hypothesis_Map1=DesiredCurvNN(Scan_Curvature_Probe,Design_File_Curvature_Signature,Similar

ityThreshold); 

%Classify and filter the analyzed points using circle fit error and error threshold 

%"ErrorThreshold" 

Object_Hypothesis_Map=Object_Hypothesis_Map1(Object_Hypothesis_Map1(:,6)<ErrorThreshold,:); %this 

is where you filter using error 
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%Cluster the Object_Hypothesis_Map and generate a number of discrete 

%hypotheses for the object of interest 

[DBSCAN_NumPts,DBSCAN_eps]=determineClustParam(Design_File,length(Scan),Scan_Sample_Size,acceptan

ceRate);  

Hypotheses=GenerateHypotheses(Object_Hypothesis_Map,DBSCAN_NumPts,DBSCAN_eps); 

HypothesesNN=cell(length(Hypotheses),3); 

HypothesesMatch=cell(length(Hypotheses),5); 

  

%Calculate the similarity between each hypothesis object and 

%Design_File by comparing frequencies in each BoF 

%AND extract NN for each cluster in order to have hypothesis with greater 

%point density for viewing 

for i=1:length(Hypotheses) 

    

[HypothesesMatch{i,1},HypothesesMatch{i,2}]=ComparePlots(Design_File_Curvature_Signature,Hypothes

es{i}); 

    HypothesesNN{i,1}=rangesearch(OCKDT_Scan,Hypotheses{i}(:,1:3),2*scale);  

    HypothesesNN{i,2}=cell2mat(HypothesesNN{i,1}'); 

    HypothesesNN{i,3}=unique(HypothesesNN{i,2}','rows'); 

    HypothesesMatch{i,3}=Scan(HypothesesNN{i,3},:); 

    HypothesesMatch{i,4}=Hypotheses{i}(:,1:3); 

    HypothesesMatch{i,5}=Hypotheses{i}(:,4:5); 

end 

  

%Sort the hypotheses in descending order of similarity to the Design_File 

%and plot the top 5 if there are at least 5 hypotheses, if not then plot 

%all 

[trash,HypothesesMatchReorderedIndex]=sort([HypothesesMatch{:,1}],'descend'); 

HypothesesMatch=HypothesesMatch(HypothesesMatchReorderedIndex,:); 

Hypotheses=Hypotheses(HypothesesMatchReorderedIndex,:); 

size(HypothesesMatch{1,3},1) 

if size(HypothesesMatch,1)<5 

    for e=1:size(HypothesesMatch,1) 

        figureTitle=sprintf('Similarity = %d size = 

%d',HypothesesMatch{e,1},length(HypothesesMatch{e,4})); 

        figure 
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        showPointCloud(HypothesesMatch{e,3}) 

        title(figureTitle)  

    end 

else 

    for e=1:5 

        figureTitle=sprintf('Similarity = %d size = 

%d',HypothesesMatch{e,1},length(HypothesesMatch{e,4})); 

        figure 

        showPointCloud(HypothesesMatch{e,3}) 

        title(figureTitle)  

    end 

end 

% The section below is for registering the Design_File to the cluttered 

% point cloud once a rough extraction of points has been obtained. 

RoughExtract=HypothesesMatch{1,3}; 

%downsample to improve registration speed 

PC1=datasample(Design_File,2000); 

PC2=datasample(RoughExtract,2000); 

%register 

[Design_File_Fine_Transformed,transformation]=autoReg(PC1,PC2,Design_File); 

  

ExtractedObjectIDX1=rangesearch(OCKDT_Scan,Design_File_Fine_Transformed(:,1:3),2*scale); 

ExtractedObjectIDX=cell2mat(ExtractedObjectIDX1'); 

ExtractedObjectIDX=unique(ExtractedObjectIDX','rows'); 

ExtractedObject=Scan(ExtractedObjectIDX,:); 

end 
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Appendix C 

MATLAB code: Retrieve SimilarityThreshold and ErrorThreshold given acceptanceRate as per 

Appendix D 

function [ SimilarityThreshold,ErrorThreshold ] = accessThresholds( acceptanceRate ) 

%function accessThresholds returns two filter thresholds for input 

%acceptanceRate. Values derived empiracally for FARO LS 880 HE laser 

%scanner 

%    

%   input: 

%   [acceptanceRate] = the curvature filter's acceptance rate, the 

%   approximate percentage of points from object of interest that will be 

%   accepted by the filter's threshold. 

% 

thresholds=[0.1,0.006,0.275; 

 0.2,0.008,0.375; 

 0.3,0.016,0.375; 

 0.4,0.026,0.4; 

 0.5,0.041,0.45; 

 0.6,0.058,0.525; 

 0.7,0.056,0.725; 

 0.8,0.066,0.825; 

 0.9,0.076,0.1.025]; 

  

SimilarityThreshold=interp1(thresholds(:,1),thresholds(:,2),acceptanceRate); 

ErrorThreshold=interp1(thresholds(:,1),thresholds(:,3),acceptanceRate); 

  

end 
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Appendix D 

Sensitivity analysis determining optimal thresholds for each filter acceptance rate 

The filter acceptance rate (𝐹𝐴𝑅) (i.e., the approximate percentage of points from 𝑝𝑜𝑏𝑗 that will be 

accepted by the filter) is dictated by the 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝜃𝑠𝑖𝑚) and 𝐸𝑟𝑟𝑜𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝜃𝑒𝑟𝑟𝑜𝑟).  

This relationship is sensor specific, as the noisier the data, the lower the corresponding acceptance rate for 

each specific threshold pair. A sensitivity analysis was conducted to determine the optimal filter 

thresholds for a FARO LS 880 HE scanner.  The filtering processes was performed on a typical point 

cloud (Figure D-1) created by the scanner. The parameter 𝜃𝑠𝑖𝑚 was varied from 0.0005 to 0.098 and 

parameter  𝜃𝑒𝑟𝑟𝑜𝑟 was varied from 0.075 to 1.05. For each parameter pair, two results were obtained, (1) 

the percentage of all points accepted by the filter, i.e., all points constituting the hypothesis space, that lie 

on the pipe spool of interest: 

𝑚𝑒𝑡𝑟𝑖𝑐 1 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑠𝑝𝑎𝑐𝑒 𝑜𝑛 𝑝𝑖𝑝𝑒 𝑠𝑝𝑜𝑜𝑙 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡

𝑠𝑖𝑧𝑒(ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑠𝑝𝑎𝑐𝑒)
 

and (2) the filter acceptance rate (FAR) (the approximate percentage of points from 𝑝𝑜𝑏𝑗 that will be 

accepted by the filter). Both these measures were obtained by manually segmenting the pipe spool of 

interest from the rest of the hypothesis space. The resulting sensitivity analysis tables can be found in 

Figure D-2 and Figure D-3.  

 

Figure D-6-1: (a) typical point cloud created using a FARO LS 880 HE scanner processed through curvature filter to 

create (b) hypothesis space 

(a) input scan
(a) hypothesis space achieved using 

and 
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Figure D-6-2: sensitivity analysis change in metric 1 as 𝜽𝒔𝒊𝒎 and  𝜽𝒆𝒓𝒓𝒐𝒓 are varied
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Figure D-3: sensitivity analysis change in FAR as 𝜽𝒔𝒊𝒎 and  𝜽𝒆𝒓𝒓𝒐𝒓 are varied 
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Using the two sensitivity analysis matrices in Figures D-2 and Figure D-3, we run the MATLAB code, 

 

function [ OptimalBins ] = findOptimalThresholds( ss1, ss2 ) 

%function findOptimalThresholds finds the SimilarityThreshold and the Error 

%Threshold pair that yields the highest fraction of: 

% 

%     points on pipe spool of interest accepted through filter   

%                           divided by 

%           total points accepted into the hypothesis space  

% 

%                                    for every corresponding FAR, or filter 

%                                    acceptance rate. 

% 

%   input: 

%   [ss1] = sensitivity study results showing how the number of points on  

%           pipe spool of interest accepted through filter are affected by  

%           filter thresholds. 

%   [ss2] = sensitivity study results showing how the filter acceptance   

%           rate is affected by filter thresholds. 

%           

  

OptimalBins=zeros(9,3); 

for i=1:9 

    maxSS1=max(ss1(ss2>(i/10-0.01)&ss2<(i/10+0.01)));  

    [rows,cols]=find(ss1== maxSS1&ss2>(i/10-0.01)&ss2<(i/10+0.01)); 

    OptimalBins(i,2)=rows(1,1); 

    OptimalBins(i,3)=cols(1,1); 

    OptimalBins(i,1)=ss2(OptimalBins(i,2),OptimalBins(i,3)); 

end 

  

end 

 

Which finds the parameters 𝜃𝑠𝑖𝑚 and  𝜃𝑒𝑟𝑟𝑜𝑟 for FAR = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} that 

maximize metric 1. The resulting graph of optimal parameters can be found in Figure D-4. 
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Figure D-4: optimal parameters 𝜽𝒔𝒊𝒎 and  𝜽𝒆𝒓𝒓𝒐𝒓 for each FAR interval 
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Appendix E 

MATLAB code: Determine nearest neighbourhood radius for curvature analysis 

function [ scale ] = DetermineScale( Design_File, OCKDT_Design_File ) 

% 

% function [ scale ] = DetermineScale( Design_File, OCKDT_Design_File ) 

% sets a reasonable scale value for nearest neighbourhood analysis of laser 

% scanned data of pipe spools 

% 

%   input: 

%   Design_File = 3D CAD design file point cloud of pipe spool (unit cm) 

%   OCKDT_Design_File = KD-tree data structure for Design_File 

%  

pdr=0.5; %pdr is the Poisson-disc Sampling Radius used to sample the search space (UNITS) 

Design_File_Sample_Size=10; %Specify the # of points to analyze in the Design_File 

OCKDT_Design_File=KDTreeSearcher(Design_File); 

scale=3*pdr; %smallest possible scale 

Diameter=999; %initialize diamter 

while scale<Diameter; 

    

Design_File_Curvature_Signature=CurvSearch(Design_File,OCKDT_Design_File,pdr,Design_File_Sample_S

ize,scale); 

    Diameter=2/median(Design_File_Curvature_Signature(:,4)); 

    scale=scale+pdr; %increase scale until median pipe diameter is reached 

end 

scale=Diameter/4+1; %set scale based on laser scan empirically derived lower bound estimate 

end 
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Appendix F 

MATLAB code: Curvature characterization algorithm 

function [down]=CurvSearch(origCloud,OCKDT,pdr,sampleSize,scale) 

%CurvSearch is a function that analyzes local surface patches existing in a point 

%cloud [origCloud] and outputs the principal curvatures of each local surface patch. 

% 

%   input: 

%   [origCloud]  = is the original Point Cloud matrix 

%   [OCKDT]      = is the KD tree data structure for the input [origCloud] 

%   [pdr]        = is the poisson-disc radius used to downsample the input 

%                  [origCloud] 

%   [sampleSize] = is the desired output point cloud size eg. 100 points or the 

%                  number of local surface patches to be analysed 

%   [scale]      = size of nearest neighbourhood defining the size of the local 

%                  surface patches 

% 

%The curvature characterization algorithm is a repeating 3 step process 

%   (1) nearest neighbourhood identificaiton and normal vector estimation 

%   (2) curvature characterization 

%       (a) project points within threshold distance of plane onto the 

%           plane 

%       (b) fit circle to the project points 

%       (c) rotate plane 

%   (3) identify highest and lowest curvatures as principal curvatures 

% 

down=zeros(sampleSize,7);  

rot=8; %how many planes are used to find principal curvature values/directions 

i=0; 

while i<sampleSize 

    k1=0; 

    k2=0; 

    sample=datasample(origCloud,1,'replace',false); %randomly chooses a single point from the 

point cloud 
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    %(1) nearest neighbourhood identificaiton and normal vector estimation 

    neN=rangesearch(OCKDT,sample,scale); %find points in origCloud within radius 'scale' of 

sample 

    neN=cell2mat(neN); 

    neN=origCloud(neN,:); 

    if size(neN,1)<3 

        continue; %if the nearest neighbourhood has less than 3 points, select new sample 

    end 

    normal=pca(neN); %find the principal componenets of the nearest neighbourhood 

    %normal(:,3) = should be the ambiguous direction normal vector for sample 

    if size(normal,2)<3 

        normal(:,3)=[0;0;1]; 

    end 

    n=normal(:,3)'; 

    planeN=normal(:,2)'; %set as normal vector for first plane 

    curvature=zeros(2,rot); 

    %uniformly rotate plane about normal vector, project points onto plane 

    %and fit a circle 

    %(2) curvature characterization 

    for e=1:rot 

        %(a) project points within threshold distance of plane onto the 

        %    plane 

        P(1)=-planeN(1)/planeN(3); 

        P(2)=-planeN(2)/planeN(3); 

        P(3)=planeN(1)*sample(1)/planeN(3)+planeN(2)*sample(2)/planeN(3)+sample(3); 

        d=(neN(:,3)-P(1).*neN(:,1)-P(2)*neN(:,2)-P(3))./(P(1).*planeN(1)+ P(2).*planeN(2)-

planeN(3)); 

        curveSet=[neN(:,1)+planeN(1)*d,neN(:,2)+planeN(2)*d,neN(:,3)+planeN(3)*d]; 

        %find index for points within threshold distance pdr*1.5 of plane 

        dc=abs(d)<pdr*1.5; 

        curveSet=curveSet(dc,:); %set of points in neN which are pdr*1.5 from the current plane, 

projected onto the plane 

        %rotate the plane of points so that they exist in 2D 

        v=cross(planeN,[0,0,1]); 

        s=norm(v); 

        c=dot(planeN,[0,0,1]); 
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        vx=[0,-v(3),v(2);v(3),0,-v(1);-v(2),v(1),0]; 

        R=eye(3)+vx+vx^2*((1-c)/s^2); 

        RcurveSet=R*curveSet'; 

        RcurveSet=RcurveSet'; 

        RcurveSet=RcurveSet(:,1:2); 

        rcsLength=size(RcurveSet); 

        if rcsLength(:,1)<3 

            curvature(e)=0; 

            continue 

        end 

        %fit a circle to the data 

        %(b) fit circle to the project points 

        %Al-Sharadqah, A., & Chernov, N. (2009). Error analysis for circle fitting algorithms. 

Electronic Journal of Statistics, 3, 886-911. 

        %http://people.cas.uab.edu/~mosya/cl/MATLABcircle.html 

        CPar=HyperSVD(RcurveSet); 

        %Store circle fit error information 

        Error=abs(sqrt((RcurveSet(:,1)-CPar(1)).^2+(RcurveSet(:,2)-CPar(2)).^2)-CPar(3)); 

        curvature(2,e)=rms(Error); 

        %extract curvature information from fitted circle 

        curvature(1,e)=1/CPar(3); 

        %(c) rotate plane 

        %rotate plane http://www.mathworks.com/matlabcentral/fileexchange/34426-rotate-vector-s--

about-axis 

        crosskv(1) = n(2)*planeN(3) - n(3)*planeN(2); 

        crosskv(2) = n(3)*planeN(1) - n(1)*planeN(3);  

        crosskv(3) = n(1)*planeN(2) - n(2)*planeN(1); 

        planeN = cos(pi()/rot)*planeN + (crosskv)*sin(pi()/rot)+ n*(dot(n,planeN))*(1 - 

cos(pi()/rot)); 

    end 

    %(3) identify highest and lowest curvatures as principal curvatures 

    %extract principal curvatures 

    [k1,in]=max(curvature(1,:)); 

    if in<=rot/2 

        k2=curvature(1,in+rot/2); 

        k2error=curvature(2,in+rot/2); 
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    else 

        k2=curvature(1,in-rot/2); 

        k2error=curvature(2,in-rot/2); 

    end 

    %store principal curvatures and associated circle fit errors 

    i=i+1; 

    down(i,4)=k1; 

    down(i,5)=k2; 

    down(i,6)=curvature(2,in); 

    down(i,7)=k2error; 

    down(i,1:3)=sample;    

end   
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Appendix G 

MATLAB code: Curvature-based similarity filter 

function [ hypothesis ] = DesiredCurvNN( sample,Design_File_Curvature_Signature, tt) 

%DesiredCurv classifies and filters points in [sample] based on the curvature 

%similarity threshold. Points with mean 3NN distance below threshold are outputed 

% 

%   input: 

%   [sample] = is the sample of the point cloud for which curvatures have 

%              been calculated 

%   [Design_File_Curvature_Signature] = is the dataset that the sample will 

%                                       be compared to using 3NN  

%   [tt] = is the 3NN distance similarity threshold 

% 

threshold=1000/length(Design_File_Curvature_Signature)*tt; 

[IDX,D]=knnsearch(Design_File_Curvature_Signature(:,4:5),sample(:,4:5),'K',3); 

hypothesis=sample(mean(D,2)<threshold,:); %returns a n x 5 matrix, first three columns xyz and 

4th and 5th columns are principal curvatures 

end 
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Appendix H 

MATLAB code: DBSCAN clustering parameter determination 

function [ Set_pts_final, Set_eps_final ] = determineClustParam( 

Design_File,ScanSize,Scan_Sample_Size, filterRate) 

%function [determineClustParam] determines a set of DBSCAN parameters that 

%are likely to produce a good hypothesis cluster in the hypothesis space 

% 

%   input: 

%   [Design_File] = 3D CAD design file point cloud of pipe spool of interest 

%   [ScanSize] = number of points in cluttered input point cloud scan 

%   [Scan_Sample_Size] = number of points sampled from cluttered input 

%                        point cloud scan for which curvature  

%                        characterization will take place 

%   [filterRate] = predicted number of points on object of interest that 

%                  will be accepted by the filter 

% 

% The DBSCAN parameters are set by simulating the correct hypothesis object 

% in the hypothesis space using [Design_File]. This can be done because the 

% poisson-disc sampling preprocessing step ensures that the density of both 

% the input point cloud and the cluttered input point cloud scan are 

% approximately the same. 

  

CADSize=length(Design_File); 

percObj=CADSize/ScanSize; %fraction of cluttered input point cloud scan that is the pipe spool of 

interest 

sampleObj=Scan_Sample_Size*percObj; %number of points that will be sampled from the pipe spool of 

interest in the scan 

objClust=sampleObj*filterRate; %number of points that will comprise the correct hypothesis object 

in hypothesis space 

Set_eps_collect=zeros(5,1); 

for i=1:5 

    Clust1=datasample(Design_File,floor(objClust)); 

    eps=5; 

    a=0; 
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    mEps=0; 

    %find Eps such that clustering the simulated hypothesis yields a single 

    %cluster. Continue until at least two instances of Eps yield a single 

    %cluster. 

    while a<2 

        eps=eps+3; 

        [cl,ty]=dbscan(Clust1,1,eps); %minPts is set to 1  

        if length(unique(cl))==1 

            a=a+1; 

            mEps=mEps+eps; 

        end 

    end 

    mEps=mEps/2; 

    Set_eps=mEps*1.2+10; %1.2 and 10 account for small occlusions and non-uniform point density 

in the real laser scanned hypothesis space 

    Set_eps_collect(i)=Set_eps; 

    Set_pts_collect=zeros(10,1); 

    %calculate minPts that is associated with the Eps calculated above 

    %this is done by randomly sampling 10 different points from 

    %[Design_File] and calculating the local point density in those regions 

    %and selecting the median 

    for p=1:10 

        point=datasample(Clust1,1); 

        idx=rangesearch(Clust1,point,Set_eps_collect(i)); 

        NN=cell2mat(idx); 

        NN=Clust1(NN,:); 

        Set_pts_collect(p,1)=length(NN); 

    end 

    Set_pts(i)=median(Set_pts_collect);    

end 

Set_pts_final=median(Set_pts); 

Set_eps_final=median(Set_eps_collect); 

end 
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Appendix I 

MATLAB code: Hypothesis space clustering 

function [ hypotheses ] = GenerateHypotheses( acceptedPoints,pts,eps ) 

%GenerateHypotheses clusters the search space comprised of points that were 

%classified as having curvatures similar to the design file.  

% 

%   input: 

%   [acceptedPoints] =  the points from the search space that have met the 

%                       curvature similarity and circle fit criteria 

%   [pts]            =  MinPts  

%   [eps]            =  Eps 

% minPts and eps as per -  Ester, M., Kriegel, H. P., Sander, J., & Xu, X.  

%(1996, August). A density-based algorithm for discovering clusters in  

%large spatial databases with noise. In Kdd (Vol. 96, No. 34, pp. 226-231). 

  

[Class,Type]=dbscan(acceptedPoints(:,1:3),pts,eps); %cluster based on density 

NumClusters=length(unique(Class))-1 % determines the number of clusters found (-1 to take out the 

outlier class) 

hypotheses=cell(NumClusters,1); 

for i=1:NumClusters 

    %output all clusters as hpothesis objects 

    hypotheses{i}=acceptedPoints(Class==i,:); 

end 

end 
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Appendix J 

MATLAB code: BoF-based matching 

function [ Similarity,DiffM ] = ComparePlots( Plot1,Plot2 ) 

%function ComparePlots provides a metric of similarity for two scatter plots by 

%generating a bof i.e., a bivariate histogram and comparing bin frequencies 

%    

%       input: 

%       [Plot1] = is the first scatter plot 

%       [Plot2] = is the second scatter plot 

% 

  

%%  

%ensures the two scatter plots are converted to histograms with identical bins and boundaries 

min1x=min(Plot1(:,4)); 

max1x=max(Plot1(:,4)); 

min1y=min(Plot1(:,5)); 

max1y=max(Plot1(:,5)); 

min2x=min(Plot2(:,4)); 

max2x=max(Plot2(:,4)); 

min2y=min(Plot2(:,5)); 

max2y=max(Plot2(:,5)); 

  

Plot1(length(Plot1)+1,4:5)=[min2x,min2y]; 

Plot1(length(Plot1)+1,4:5)=[max2x,max2y]; 

Plot2(length(Plot2)+1,4:5)=[min1x,min1y]; 

Plot2(length(Plot2)+1,4:5)=[max1x,max1y]; 

  

%% 

%convert plots to histograms and normalize 

  

X1=[Plot1(:,4),Plot1(:,5)]; 

X2=[Plot2(:,4),Plot2(:,5)]; 

N1=hist3(X1,[20,40]); 

N2=hist3(X2,[20,40]); 
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N1=N1/length(Plot1); 

N2=N2/length(Plot2); 

  

%% 

%calculate the difference between the numbers in each of the histogram's 

%bins 

  

DiffM=abs(N1-N2); 

Similarity=floor((1/sum(DiffM(:)))*100); 

  

end 
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Appendix K 

MATLAB code: Register 3D CAD design file to pipe spool of interest in cluttered scan 

function 

[PCmoving_Registered,tformfinal]=autoReg(PCmoving_downsampled,PCfixed_downsampled,PCmoving_origin

al) 

%function autoReg is used to register (i.e., superimpose) Point 

%Cloud PCmoving_downsampled to Point Cloud PCfixed_downsampled 

% 

%   input: 

%   [PCmoving_downsampled] = downsampled point cloud that will move during 

%                            registration 

%   [PCfixed_downsampled]  = downsampled point cloud that will be fixed in  

%                            place during registration 

%   [PCmoving_original]    = Original point cloud that will be registered 

%                            to the fixed point cloud 

% 

  

%Move PCmoving such that the centroid of the two point clouds are the same 

[PCmoving_downsampled_Normalized,PCfixed_downsampled_Normalized,Centroid] = 

alignCentroids(PCmoving_downsampled,PCfixed_downsampled); 

  

%aligns the principal components of the two input point clouds ambiguously,  

%and outputs both the resulting movedPointCloud and the rotation cell array  

%that defines the 4 possible associated configurations. 

[PCmoving_downsampled_Course_Transformed,R]=transpca(PCmoving_downsampled_Normalized,PCfixed_down

sampled_Normalized);  

minerror=10^5; %initialize fit error with high number 

PointCloudfixed=pointCloud(PCfixed_downsampled_Normalized); 

  

% try each of the 4 possible principal component alignments and select the 

% option with the lowest RMSE  

for i=1:4 

    PointCloudmoving=pointCloud(PCmoving_downsampled_Course_Transformed*R{i+2}); 

    PCmovingCourse=PCmoving_downsampled_Course_Transformed*R{i+2}; 
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    [tform, PointCloudMovingReg, 

rmse]=pcregrigid(PointCloudmoving,PointCloudfixed,'Extrapolate',true);   %ICP performs on each 

combination 

    PCmovingFine=PCmovingCourse*tform.T(1:3,1:3); 

    if rmse<minerror 

        minerror=rmse; 

        tform.T(1:3,1:3)=R{1}*R{2}*R{i+2}*tform.T(1:3,1:3); 

        tform.T(4,1:3)=tform.T(4,1:3)+Centroid; 

        tformfinal=tform.T; %store transformation 

        PCmoving_original_mean=mean(PCmoving_original); 

        %register original point cloud using calculated transform 

        PCmoving_original_normalized(:,1)=PCmoving_original(:,1)-PCmoving_original_mean(:,1); 

        PCmoving_original_normalized(:,2)=PCmoving_original(:,2)-PCmoving_original_mean(:,2); 

        PCmoving_original_normalized(:,3)=PCmoving_original(:,3)-PCmoving_original_mean(:,3); 

        PCmoving_Registered=PCmoving_original_normalized*tform.T(1:3,1:3); 

        PCmoving_Registered(:,1)=PCmoving_Registered(:,1)+tform.T(4,1); 

        PCmoving_Registered(:,2)=PCmoving_Registered(:,2)+tform.T(4,2); 

        PCmoving_Registered(:,3)=PCmoving_Registered(:,3)+tform.T(4,3); 

    end 

end 

 

function [ PCmoving_Course,PCfixed_Course, PCfixed_Centroid ] = alignCentroids( PCmoving, 

PCfixed) 

%Moves PCmoving such that the centroid of the two point clouds are the same 

PCmoving_Centroid=mean(PCmoving); 

PCfixed_Centroid=mean(PCfixed); 

  

PCmoving_Course(:,1)=PCmoving(:,1)-PCmoving_Centroid(1); 

PCmoving_Course(:,2)=PCmoving(:,2)-PCmoving_Centroid(2); 

PCmoving_Course(:,3)=PCmoving(:,3)-PCmoving_Centroid(3); 

  

PCfixed_Course(:,1)=PCfixed(:,1)-PCfixed_Centroid(1); 

PCfixed_Course(:,2)=PCfixed(:,2)-PCfixed_Centroid(2); 

PCfixed_Course(:,3)=PCfixed(:,3)-PCfixed_Centroid(3); 

End 
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function [ PCmoving_Rotation2,R ] = transpca( PCmoving_Normalized,PCfixed_Normalized ) 

%transpca( PCmoving_Course_Translation,PCfixed ) aligns the principal 

%components of the two input point clouds ambiguously, and outputs both the resulting 

%movedPointCloud and the rotation cell array that defines the 4 possible 

%associated configurations. 

  

PCmovingPC=pca(PCmoving_Normalized); 

PCfixedPC=pca(PCfixed_Normalized); 

  

R=cell(4); 

R{1}=vrrotvec2mat(vrrotvec(PCfixedPC(:,1),PCmovingPC(:,1))); 

PCmoving_Rotation1=PCmoving_Normalized*R{1};  

  

PCmovingPC2=pca(PCmoving_Rotation1); 

  

R{2}=vrrotvec2mat(vrrotvec(PCfixedPC(:,2),PCmovingPC2(:,2))); 

PCmoving_Rotation2=PCmoving_Rotation1*R{2}; 

  

  

R{3}=[1,0,0;0,1,0;0,0,1]; 

R{4}=vrrotvec2mat([PCfixedPC(:,1);pi]); 

R{5}=vrrotvec2mat([PCfixedPC(:,2);pi]); 

R{6}=vrrotvec2mat([PCfixedPC(:,3);pi]); 

  

end 
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