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Abstract 

Despite motor symptoms being the hallmark of Parkinson’s disease (PD), cognitive decline has 

been shown to affect a large proportion of individuals with PD throughout the course of disease 

progression. Deficits in cognition have been associated with exacerbated motor dysfunction (i.e. 

gait), difficulties performing activities of daily living, and decreased quality of life among 

individuals with PD. The pattern of cognitive decline in PD is heterogeneous and not limited to 

disruptions in the basal ganglia-thalamo-cortical loops or dopamine depletion. Consequently, the 

treatment of these deficits is a major challenge. Since the capability of pharmacological therapies 

to treat cognitive deficits is limited, the combination of pharmacological and non-

pharmacological strategies is encouraged. Among non-pharmacological strategies, physical 

exercise has shown some potential as a complementary strategy for the treatment of cognitive 

decline in PD. The general aim of this thesis was to investigate the effects of physical exercise on 

cognition in individuals with PD. The primary goal of Study 1 was to establish the thesis 

theoretical and methodological frameworks. Specifically, Study 1aimed to investigate the 

influence of PD on three cognitive processes (i.e. energization, task-setting, and monitoring) 

mediated by distinct frontal lobes areas that are anatomically connected to the basal ganglia. 

Three reaction time tasks were used to achieve this aim. Results from Study 1 showed that 

individuals with PD have selective deficits in monitoring. Importantly, these deficits were not 

alleviated by dopaminergic medication, confirming the need for complementary therapies to treat 

cognition in PD. Hence, Study 2 and Study 3 examined the acute (15- and 40-min post a single 

exercise session) and chronic (12-week exercise program) effects of aerobic exercise on 

energization, task-setting, and monitoring. Findings from these studies showed neither acute nor 

chronic effects of exercise on these cognitive processes. In order to address critical gaps in the 
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literature, Study 3 also compared the effects of aerobic and goal-based exercises to a non-

exercise control group on five different cognitive domains (attention/working memory, executive 

functions, memory, language and visuospatial processing) in cognitively normal and impaired 

individuals with PD. Results showed that only aerobic exercise improved executive functions in 

cognitively normal and impaired individuals with PD. In addition, Study 3 revealed that 

cognitively impaired individuals in the non-exercise control group showed worsening in 

cognition at post-test. Finally, Study 4 evaluated the effects of aerobic and goal-based exercises 

on cognition and gait, and examined whether changes in cognition could predict changes in gait 

after exercise. Findings from this study showed that aerobic and goal-based exercises improved 

cognition and dual-task gait in cognitively impaired individuals with PD. However, exercise-

induced changes in cognition were associated with changes in gait only after aerobic exercise. In 

conclusion, this thesis showed that cognitive processes regionally organized within the frontal 

lobes did not improve after acute or chronic exercise stimulation in PD. However, aerobic 

exercise was shown to improve executive functions in both cognitively normal and impaired 

individuals with PD. Worsening in cognitive function found in the non-exercise control group 

over 12 weeks suggests that exercise may prevent cognitive decline in PD. Changes in cognition 

were positively associated with changes in gait in PD after aerobic exercise. Therefore, this 

thesis demonstrates that aerobic exercise may be a powerful complementary treatment of 

cognitive deficits in PD.  
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Chapter 1 

 

General Introduction 

 

1.1 Parkinson’s disease 

Parkinson’s disease (PD) is a neurological disease characterized by the degeneration of 

dopaminergic neurons in the substantia nigra pars compact (SNc) of the basal ganglia. 

Considered one of the most common neurodegenerative disorders, its incidence is approximately 

16-19 cases per 100,000 individuals (Twelves et al., 2003), increasing for every decade of life 

beyond the 60
th

 decade, and affecting men more than women (Van Den Eeden et al., 2003). 

Since disease biomarkers are yet to be identified, the diagnosis of PD is clinical and based on 

four cardinal symptoms: resting tremor, rigidity, bradykinesia (slowness and decreased 

movement amplitude), and postural instability. In addition, asymmetric manifestation of 

symptoms and responsiveness to dopaminergic therapy allow differentiating PD from other 

parkinsonian syndromes (Hughes et al., 1992). Although the cause of PD is unknown 

(idiopathic), post-mortem studies have shown that neural degeneration results primarily from 

accumulation of the protein alpha-synuclein inside the neurons (i.e. Lewy bodies and Lewy 

neurites). A current pathological model of PD progression suggests that this accumulation of 

alpha-synuclein starts in neurons in the brain stem (pre-symptomatic stages), then progresses to 

neurons in the midbrain including the SNc (onset of motor symptoms), and finally reaches 

cortical neurons (dementia) (Braak et al., 2003a, Braak et al., 2003b). The progression of alpha-

synuclein pathology through these anatomical regions has been associated with the manifestation 
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and progression of both motor and non-motor symptoms of PD. While the treatment of PD is 

primarily focused on motor symptoms, non-motor symptoms are often undiagnosed and 

undertreated despite their high prevalence in individuals with PD.   

Among non-motor symptoms, deficits in cognitive function have been reported as one of 

the main contributors to a decreased quality of life by individuals with PD (Barone et al., 2009). 

Deficits in cognitive function are observed in early (mild impairment) as well as late (dementia) 

stages of PD progression. A recent longitudinal study involving newly diagnosed and drug naïve 

individuals with PD found that, at diagnosis, 42.6% of individuals presented with mild cognitive 

impairment (Domellof et al., 2015). Following a 5-year follow up period, it was demonstrated 

that 30% of individuals with normal cognition at baseline had transitioned to mild cognitive 

impairment, while 51% of those with mild cognitive impairment at diagnosis had converted to 

PD dementia. With a longer follow up period, Williams-Gray et al. (2013) showed that by the 

10-year mark from diagnosis 46% of individuals with PD had developed dementia in their 

cohort. Thus, given the high prevalence of cognitive decline in individuals with PD, the 

treatment of these deficits should be an important component of the management of PD.  

 

1.2 Deficits in cognitive function in PD  

Previous research has demonstrated that deficits in cognitive function in PD are 

heterogeneous and not limited to dopaminergic dysfunction (Dubois et al., 1990, Bohnen et al., 

2006, Kehagia et al., 2010). The heterogeneity of cognitive deficits in PD has been investigated 

in post-mortem studies linking the progression of alpha-synuclein pathology and the 

manifestation of cognitive symptoms. These studies support the existence of three disease 

phenotypes in which the manifestation of cognitive impairment differs in time course and may be 
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linked to different patterns of cortical neuropathology in addition to dopaminergic damage in the 

basal ganglia (Halliday and McCann, 2010). Besides dopaminergic depletion, PD has been 

shown to affect noradrenergic, serotonergic, and cholinergic functions (Kehagia et al., 2010). For 

example, cholinergic dysfunction was found to be more severe in demented PD patients than 

those with Alzheimer’s disease (Bohnen et al., 2003). With respect to performance on 

neuropsychological tests, research has shown that cognitive decline in PD is mainly 

characterized by deficits in executive functions, visuospatial processing, and memory (Aarsland 

et al., 2010). While deficits in visuospatial processing and memory have been identified as strong 

predictors of PD dementia (Williams-Gray et al., 2009, Domellof et al., 2015), deficits in 

executive functions are very common among individuals with PD (Taylor et al., 1986, Owen et 

al., 1992, Aarsland et al., 2010, Sollinger et al., 2010, Kudlicka et al., 2011). Therefore, deficits 

in executive functions received greater focus in the current thesis.  

1.2.1 Executive functions deficits in PD 

Impairments in executive functions such as working memory, set-shifting, planning, and 

inhibition are well documented in PD (Taylor et al., 1986, Kudlicka et al., 2011, Dirnberger and 

Jahanshahi, 2013).  Executive functions are defined as ‘‘those capacities that enable a person to 

engage successfully in independent, purposive, self-serving behavior’’ (Lezak et al., 2004). 

Executive functions have also been referred to as the ability to plan, initiate and monitor goal-

directed behaviour (McKinlay et al., 2010) required when novel plans of action are formulated 

and conducted (Owen, 2004). Since deficits in executive functions tests are often observed 

following frontal lobe damage, the terms “executive dysfunction” and “frontal lobe dysfunction” 

are commonly associated. Although previous research has shown that cognitive deficits observed 

in individuals with PD are similar to those found in individuals with frontal lobe lesions (Owen 
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et al., 1992, Owen et al., 1993, Owen, 2004), these deficits have been attributed to the disruption 

of basal ganglia-thalamo-cortical circuitries involving frontal lobe areas rather than impaired 

frontal functioning per se.  

Neuroanatomical studies have shown that the basal ganglia are structurally and 

functionally connected (via thalamus) with frontal areas of the brain that are known to participate 

in the processing of executive functions (e.g. dorsolateral prefrontal cortex and anterior cingulate 

cortex) (Alexander et al., 1986, Middleton and Strick, 2000b, a). The disruption of these called 

fronto-striatal circuitries was demonstrated by Owen et al. (1998) based on a decrease in activity 

in the basal ganglia (specifically the globus pallidus internus) when individuals with PD 

performed a planning task, in contrast to greater activation in healthy individuals. The authors 

concluded that decreased levels of dopamine disrupt the outflow of information from the basal 

ganglia to frontal areas. Furthermore, Lewis et al. (2003) showed that, during a working memory 

task, activation in the basal ganglia (specifically the caudate nucleus) as well as frontal areas 

were decreased in cognitively impaired individuals with PD.  

However, it is important to note that the association between “executive dysfunction” and 

impaired frontal lobe functioning has been a topic of debate (Stuss, 2011). One aspect of this 

debate relates to the lack of a formal definition of executive functions and the use of 

neuropsychological tests to its assessment. Studies have suggested that neuropsychological tests 

used to measure executive functions are complex in nature and may lack construct validity 

(Jurado and Rosselli, 2007). Testa et al. (2012), for example, demonstrated that correlations 

between executive functions test variables are weak, suggesting some independence between 

executive functions skills and the multifactorial nature of neuropsychological measures. 

Therefore, identifying the “sources” of impairment in executive functions tasks is a challenge 
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that restricts the ability to define the underlying mechanisms of cognitive deficits. Furthermore, 

Stuss and Alexander (2007) argued that the activation of a certain area during neuroimaging 

paradigms does not imply a critical role of the area to the processing of a defined function. 

Alternatively, it was suggested that the evaluation of individuals with focal lesions in the frontal 

lobes would allow determining the role of specific frontal lobe areas in cognitive function.  

Following a series of studies, these authors demonstrated that distinct areas of the frontal lobes 

are involved in specific cognitive processes that operate in simple as well as complex tasks, and 

across different cognitive domains (e.g. executive functions, memory, and language) (Stuss et al., 

2002, Stuss et al., 2005, Alexander et al., 2007). These processes were defined as the abilities:  

[1] to initiate or sustain any response (i.e. energization), [2] to set a stimulus-response 

relationship (i.e. task-setting), and [3] to monitor performance over time for quality control and 

adjustment of behaviour (i.e. monitoring). Interestingly, the frontal areas found to be critical to 

the identified processes (superior medial, left lateral, and right lateral, respectively) are known to 

be anatomically and functionally connected to the basal ganglia (Stuss, 2011).  Therefore, 

investigating the contributions of the basal ganglia to cognitive processes mediated by specific 

frontal lobe areas may allow a better description of the neural networks underlying these 

processes. It might also allow a better understanding of the relationship between these processes 

and patterns of cognitive impairment found in individuals with PD. Finally, whether these 

cognitive processes are modulated by the dopaminergic system also warrants further research.  

 

1.3 Cognition and motor dysfunction in PD 

Given that cognitive deficits may be observed throughout the course of the disease 

progression, it is evident that motor and cognitive dysfunction may co-exist in PD. Importantly, 
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associations between cognitive and motor impairments suggest that deficits in cognition may 

exacerbate motor dysfunction in individuals with PD. Previous research has demonstrated that 

individuals with PD with cognitive impairment have worse postural instability and gait 

dysfunction (PIGD) than those without cognitive impairment (Sollinger et al., 2010). In addition, 

it has been shown that individuals with predominant PIGD symptoms have a faster rate of 

decline in both cognitive and motor function than those with predominant tremor symptoms 

(Burn et al., 2006). This selective association between cognitive impairment and PIGD subtype 

suggests that the progression of cognitive and mobility deficits may share similar underlying 

mechanisms. This notion has been supported by findings that cholinergic dysfunction is 

associated with cognitive deficits (Bohnen et al., 2006) as well as with increased number of falls 

(Bohnen et al., 2009) in individuals with PD.  

More specifically, studies have shown that deficits in attention and executive functions 

are associated with impaired gait in individuals with PD, especially during dual-task walking 

(Rochester et al., 2004, Yogev et al., 2005, Lord et al., 2010). In contrast to research in older 

adults with mild cognitive impairment (Montero-Odasso et al., 2014), performance in memory 

tests were not associated with changes in gait in PD. These findings suggest that specific (rather 

than general) cognitive functions are associated with gait disturbances in PD. Poor performance 

on tests assessing executive functions has been associated with a reduction in speed and 

increased step-to-step variability when individuals with PD perform dual-task walking (Yogev et 

al., 2005). According to Yogev and colleagues (2005), the unique relationship between executive 

functions and step-to-step variability suggests that gait rhythmicity and variability may become 

attention-demanding in PD. In other words, these associations may reflect the reliance of 

individuals with PD on cognitive resources to control gait due to decreased automaticity (Iansek 
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et al., 2013). Hence, the treatment of cognitive deficits may not only have implications for 

cognition per se but also influence gait dysfunction in PD, since cognitive decline may decrease 

the ability to compensate for the lack of gait automaticity in PD. However, to date there have 

been no studies examining whether improvements in cognition can contribute to better gait 

control in PD.  

 

1.4 Treatment of cognitive deficits in PD 

The relevance of cognitive deficits to the lives of people with PD has been demonstrated 

by a recent study where the need for research investigating the effectiveness of treatments for PD 

mild cognitive impairment and PD dementia was ranked among the top 10 research priorities 

from the perspectives of individuals with PD, carers and healthcare professionals (Deane et al., 

2014). However, due to its multifactorial underlying mechanism, the treatment of cognitive 

impairment in PD is an enormous challenge. 

According to Emre et al. (2014), there is currently no standard or proven pharmacological 

treatment for mild cognitive impairment in PD. The gold standard treatment for PD motor 

symptoms (levodopa) has been shown to selectively influence tasks sensitive to frontal lobe 

functioning (Gotham et al., 1988). For example, levodopa was found to improve performance on 

a task assessing attentional flexibility (switching between two tasks) and to impair performance 

on a task assessing reversal learning (task contingences are reversed after learning) (Cools et al., 

2001a). Therefore, it is proposed that while the levels of dopaminergic medication used to treat 

motor symptoms may be beneficial to cognitive tasks involving the dorsolateral prefrontal cortex 

(attentional flexibility), it may overload ventrolateral prefrontal areas (reversal learning) and lead 

to worsening in performance (Cools et al., 2001a). In contrast to PD mild cognitive impairment, 
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the treatment of cognitive deficits in PD dementia has specific guidelines which include the 

administration of acetylcholinesterase inhibitors. However, the increased number of drugs to 

treat motor, cognitive, and psychiatric problems in these individuals may result in severe side 

effects and decreased quality of life. Thus, it has been proposed that the management of 

cognitive decline in PD needs to be anchored into the combination of both pharmacological and 

non-pharmacological treatment strategies in mild and severe stages (Emre et al., 2014).  

Although evidence supporting the efficacy of non-pharmacological strategies to treat 

cognitive decline in PD is limited, these strategies may play a role in preventing or delaying the 

development of deficits in cognitively intact patients as well the conversion of PD mild cognitive 

impairment to PD dementia. Regarding the few studies available, a recent review suggested that 

these investigations lack sufficient sample sizes, description of randomization methods, blinding 

assessment, appropriate control groups, clearly defined cognitive outcomes, assessment of long 

term effects, and translation into everyday function (Hindle et al., 2013). Therefore, it is 

imperative that non-pharmacological trials follow strict scientific methods in order to be 

considered alongside pharmacological interventions for the treatment of cognitive deficits in PD.  

1.4.1 Physical exercise as a complementary non-pharmacological strategy 

Among non-pharmacological strategies, studies investigating the effects of physical 

exercise on cognition have shown positive results in people with PD. Although the underlying 

mechanisms of how exercise improves cognition are not fully understood, it has been suggested 

that exercise may increase the levels of neurotrophic factors (e.g. brain-derived neurotrophic 

factors and insulin-like growth factor-1) that are important for neuronal growth and survival, 

synaptic efficacy, and neural plasticity (Cotman and Berchtold, 2002). Given that PD is a 

progressive neurodegenerative disorder, it has been proposed that increased levels of 
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neurotrophic factors as a result of exercise may influence the progression of PD by preventing 

neurons from dying as well as strengthening the activity of remaining neurons (Ahlskog, 2011).   

In healthy older adults, exercise has been shown to improve performance in multiple 

cognitive domains (Colcombe and Kramer, 2003), decrease risk of dementia (Hamer and Chida, 

2009), increase brain volume specifically in the hippocampus (Erickson et al., 2011) and pre-

frontal areas (Colcombe et al., 2006), and increase task-related  brain activation (Colcombe et al., 

2004). Although there is a growing body of evidence showing that different types of exercise 

and/or the combination of exercise modalities may have positive effects on cognition, the 

majority of large randomized controlled trials in healthy individuals have used aerobic training 

as the treatment strategy (Colcombe et al., 2004, Colcombe et al., 2006, Erickson et al., 2011). 

The fascinating outcomes from these studies support the notion that improvements are driven by 

neurophysiological changes (i.e. plasticity) which are independent of training specificity (in 

contrast to cognitive training) and may contribute to long lasting effects.    

To date, there is a small number of exercise controlled trials targeting cognitive decline in 

PD, despite the consensus in the literature that this area of research has vast potential (Ahlskog, 

2011, Petzinger et al., 2013). While only one study investigated the acute effects of exercise 

specifically on executive functions (Ridgel et al., 2011), studies have primarily evaluated the 

chronic effects of exercise on cognition in PD. Of these few studies, positive results using 

different exercise strategies have begun to be established (Tanaka et al., 2009, Cruise et al., 

2011, McKee and Hackney, 2013, Uc et al., 2014). In line with previous research in healthy 

older adults (Colcombe and Kramer, 2003), improvements in cognition were found primarily in 

the executive functions domain (Tanaka et al., 2009, Cruise et al., 2011, Ridgel et al., 2011, Uc 

et al., 2014). In addition, improvements in spatial cognition were found in one study (McKee and 



10 
 

Hackney, 2013). Therefore, these studies have demonstrated that the use of exercise as a 

complementary strategy to treat cognition in PD has great potential. However, there were several 

limitations in previous investigations that prevent establishing exercise as a treatment for 

cognitive decline in PD.   

Firstly, even though improvements in cognition have been attributed to improvements in 

aerobic capacity, only two studies to date (Uc et al., 2014; Duchesne et al., 2015) have 

stringently evaluated the effects of aerobic exercise alone (i.e. not confounded by other 

components). However, even these studies did not compare their effects to other exercise 

modalities or a PD control group. A current review by Petzinger et al. (2013) suggested that 

aerobic as well as goal-based exercise (i.e. focused on increasing the quality of movement) may 

act upon motor and cognitive pathways that are affected by PD promoting neural plasticity. 

Since previous exercise programs (e.g. multimodal and adapted Tango) involved both goal-based 

and aerobic components, it remains unknown which component was critical to the improvements 

in cognitive function found in these studies. Secondly, the majority of studies have failed to 

define a theoretical framework that rationalized their selected executive functions measures. This 

has largely hampered the ability to interpret and compare previous findings (Kudlicka et al., 

2011, Hindle et al., 2013). Thirdly, studies have left out other cognitive domains such as 

language, memory, and visuospatial processing which are strongly associated with increased risk 

of PD dementia. This is imperative to progress the understanding of whether exercise can 

influence cognitive functions other than executive functions and whether exercise can delay or 

even prevent the onset of PD dementia. Finally, most studies have excluded individuals with 

cognitive impairment, which has limited the ability to differentiate the effects of exercise on PD 
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with and without cognitive decline. In sum, future research must address these limitations in 

order to effectively progress exercise as a complementary therapy for cognitive decline in PD.  

1.5 Research problem  

 It has been established that cognitive impairment affects a large proportion of individuals 

with PD throughout the course of disease progression. The pattern of cognitive decline in these 

individuals is heterogeneous and not limited to disruptions in the fronto-striatal loops or 

dopamine depletion. In fact, impairments in cognitive functions mediated by posterior brain 

areas were found to be strong predictors of dementia in PD. Moreover, given the associations 

between poor cognitive function and gait disturbances, it is likely that cognitive deficits 

contribute to motor dysfunction in PD. However, the treatment of these deficits is a major 

challenge. Since the capability of pharmacological therapies to treat cognitive deficits is limited, 

the combination of pharmacological and non-pharmacological strategies is encouraged. Among 

non-pharmacological strategies, physical exercise has shown some potential as a complementary 

strategy for the treatment of cognitive decline in PD. Nonetheless, there are several research gaps 

that require further investigation. From a theoretical point of view, previous investigations have 

lacked a theoretical framework with respect to the definition of executive functions and the 

rationale for executive functions measures. From a treatment point of view, the acute effects of 

exercise on cognition are practically unknown and it remains unclear which exercise modality is 

critical to chronic effects on cognition found in individuals with PD. It is even less clear what the 

effects of exercise on cognition are in individuals with normal compared to those with impaired 

cognitive function. Lastly, it is unknown if changes in cognitive function may influence motor 

dysfunction in individuals with PD, especially gait.  
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1.5.1 Specific aims and hypotheses  

Study 1 (Chapter 2): Since theoretical and methodological aspects regarding executive functions 

deficits in PD limit current understanding of how this disease affects cognition, the first study of 

this thesis aimed to investigate whether cognitive processes argued to be regionally organized 

within the frontal lobes are affected by PD and whether these processes are modulated by 

dopamine. Given the anatomical links between the basal ganglia and the frontal areas found to be 

critical to each cognitive process, it was hypothesized that individuals with PD would show 

impairments in all processes while in the OFF medication state compared to healthy individuals. 

Dopaminergic medication was expected to improve cognitive processes in PD.  

Study 2 (Chapter 3): Considering the scarce literature regarding the acute effects of exercise on 

cognition in PD, the second study of this thesis aimed to define the effects of a single bout of 

aerobic exercise on cognitive processes mediated by the frontal lobes. Based on findings in 

healthy young and older adults showing greater frontal activity (assessed using fNIRS) and 

improvements in behavioural outcomes after a single bout of exercise, it was hypothesized that 

individuals with PD would show improvement in the target cognitive processes following 

exercise. 

Study 3 (Chapter 4): The third study aimed to evaluate the chronic effects of exercise on 

cognitive processes mediated by the frontal lobes as well as on tests assessing five different 

cognitive domains (i.e. attention/working memory, executive functions, memory, language, and 

visuospatial processing). More specifically, this study compared the effects of aerobic and goal-

based training in order to disentangle which exercise component is critical to improvements in 

cognitive function in PD. Finally, this study investigated the effects of exercise on individuals 

with and without cognitive impairments. It was hypothesized that aerobic exercise would be 
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more beneficial to cognitive function than goal-based training. It was also expected that exercise 

would improve all cognitive processes mediated by the frontal lobes and multiple cognitive 

domains; however, a greater improvement was predicted in the executive functions domain. 

Lastly, it was postulated that both PD patients with and without cognitive impairment would 

benefit from exercise.  

Study 4 (Chapter 5): The forth study aimed to examine whether exercise-induced improvements 

in cognitive function could lead to better gait control in people with PD. It was hypothesized 

that, if cognitive impairment exacerbates gait dysfunction in individuals with PD, then 

improvements in cognition as a result of exercise should alleviate gait deficits in these 

individuals. 
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Abstract 

The aim of the present study was to evaluate whether 1) the associated basal ganglia 

degeneration in Parkinson’s disease (PD) affects specific cognitive processes mediated by 

distinct frontal areas, namely the abilities to initiate and sustain a response (energization), to set a 

stimulus-response relationship (task-setting), and to monitor performance over time for quality 

control and adjustment of behaviour (monitoring); 2) these processes are modulated by 

dopamine; 3) PD clinical features would be associated with deficits in these cognitive processes. 

Twenty-one PD and 21 age-matched healthy participants completed three reaction time (RT) 

tasks which progressively increased in complexity (Simple RT, Easy Choice RT, Complex 

Choice RT). Individuals with PD were assessed in two separate sessions while in their OFF and 

ON medication state (counterbalanced order). Results showed that only deficits in monitoring 

were identified in individuals with PD while in the OFF medication state, as supported by an 

abnormal foreperiod effect in the Easy Choice RT task (trend p=0.07) and increased total number 

of errors (p=0.036) in the Complex Choice RT task. When individuals with PD were in the ON 

medication state, an increase in RT variability was found in the Easy Choice RT (p=0.033). 

These findings suggest that monitoring is selectively affected by PD. Moreover, rather than 

alleviating deficits in monitoring, dopaminergic medication had detrimental effects on cognition 

in PD.  

Keywords: Parkinson’s disease, basal ganglia, frontal lobes, dopamine, cognition  
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2.1 Introduction 

 Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by the 

loss of dopaminergic neurons in the substantia nigra pars compact of the basal ganglia. Despite 

motor symptoms being the hallmark of PD, studies have demonstrated that deficits in cognition 

are highly prevalent among people with PD (Domellof, Ekman, Forsgren, & Elgh, 2015; 

Williams-Gray, Foltynie, Brayne, Robbins, & Barker, 2007; Williams-Gray et al., 2013). More 

specifically, individuals with PD commonly show deficits in tasks that strongly rely on frontal 

lobe functioning (Aarsland et al., 2010; Bouquet, Bonnaud, & Gil, 2003; Dujardin, Degreef, 

Rogelet, Defebvre, & Destee, 1999; Dujardin et al., 2013; Owen et al., 1992), such as those 

assessing executive functions (Dirnberger & Jahanshahi, 2013; Kudlicka, Clare, & Hindle, 2011; 

Taylor, Saint-Cyr, & Lang, 1986). Deficits in executive functions tests are suggested to result 

primarily from frontal lobe dysfunction, but it is important to recognize that a disruption to the 

circuitries between the frontal lobes (e.g. dorsolateral prefrontal cortex) and basal ganglia 

(especially the caudate nucleus) might account for these deficits in PD (Lewis, Dove, Robbins, 

Barker, & Owen, 2003; Owen, Doyon, Dagher, Sadikot, & Evans, 1998). Hence, it is important 

to understand the interactions between the frontal lobes and basal ganglia, since there is potential 

to identify appropriate treatments for executive functions deficits in PD.  

Nonetheless, the use of executive functions tests to evaluate the relationship between the 

basal ganglia and specific frontal lobe areas is problematic. Executive functions tests are 

complex in nature and may require reliance on multiple brain areas for successful performance. 

In addition, given that a formal definition of executive functions has yet to be established, 

researchers have argued that neuropsychological tests used to assess executive functions may 

lack construct validity (whether a test measures a specific construct) (Jurado & Rosselli, 2007). 
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Therefore, the use of assessment methods with greater specificity to clarify brain-behaviour 

correlates underlying executive functions deficits in PD is critical.  

Previous research has shown that outcomes from different executive functions tests are 

weakly correlated with each other, suggesting a level of independence between different 

executive skills (e.g. working memory, set-shifting, planning, and inhibition) as well as a 

multifactorial nature of executive functions tests (Testa, Bennett, & Ponsford, 2012). While 

independence between executive skills suggests that deficits in executive functions can be 

selective rather than general (affecting certain skills but not others), the multifactorial nature of 

executive functions tests suggests that various executive and non-executive components of a task 

may contribute to successful performance. For example, a classic test in which individuals with 

PD show impaired performance is the Wisconsin Card Sorting Test (WCST). Although the 

WCST was originally designed to evaluate abstract reasoning and the ability to shift cognitive 

strategies, it has been suggested that successful performance in this test requires strategic 

planning, organized searching, utilizing feedback to shift cognitive sets, directing behaviour 

toward achieving a goal, and modulating impulsive responses (Heaton, Chelune, Talley, Kay, & 

Curtiss, 1993). Thus, due to the numerous components involved in this task, it is difficult to 

determine what specific deficits contribute to impaired performance of those with PD as well as 

to demonstrate specific links between brain function and behaviour. In order to overcome some 

the of the controversy surrounding the concept and assessment of executive functions and 

advance current knowledge on how fronto-striatal deficits contribute to cognitive decline in PD, 

one alternative is to examine cognitive processes found to be mediated by distinct frontal lobe 

areas which are anatomically and functionally connected to the basal ganglia.  
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In a series of studies that investigated the functions of the frontal lobes based on 

individuals with well-defined frontal lesions, it was consistently demonstrated that at least three 

cognitive processes are regionally organized within frontal areas (Alexander, Stuss, Picton, 

Shallice, & Gillingham, 2007; Picton, Stuss, Shallice, Alexander, & Gillingham, 2006; Stuss et 

al., 2005; Stuss, Binns, Murphy, & Alexander, 2002). These cognitive processes were mainly 

attentional and found to operate in simple (e.g. Simple reaction time (RT)) as well as complex 

tasks (e.g. WCST), and across different cognitive domains such as executive functions, memory, 

and language. The first cognitive process was defined as the ability to initiate or sustain any 

response (i.e. energization), which was significantly impaired in individuals with lesions in the 

superior medial areas of the frontal lobes, including the anterior cingulate cortex. Deficits in this 

process were mainly characterized by slowness in response (i.e. increased RT) that was even 

greater in complex tasks compared to simple tasks (i.e. Simple versus Choice RT). The second 

process was defined as the ability to set a stimulus-response relationship (i.e. task-setting), in 

which individuals with lesions in the left lateral areas of the frontal lobes, including the left 

ventrolateral and dorsolateral pre-frontal cortices, were consistently impaired. Task-setting 

deficits were characterized by increased number of false positive errors when participants had to 

selectively respond to target and non-target stimuli and increased number of errors in the initial 

stages of a task (i.e. when individuals were still establishing the stimulus-response relationship). 

The third process was described as the ability to monitor performance over time for quality 

control and adjustment of behaviour (i.e. monitoring). The monitoring process was shown to be 

impaired in individuals with lesions in the right lateral areas of the frontal lobes, including the 

right ventrolateral and dorsolateral prefrontal cortices. Deficits in this process were associated 

with impaired ability to anticipate stimulus occurrence (i.e. abnormal foreperiod effect), poor 
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timing control during a finger tapping task (increased variability), and increased errors of all 

types (i.e. false positive, false negative, and omissions).  Although the frontal areas found to be 

critical to each cognitive process are known to be linked to the basal ganglia, it remains unknown 

whether individuals with PD show deficits in energization, task-setting, and monitoring.  

The aims of the present study were to investigate whether 1) the cognitive processes of 

energization, task-setting, and monitoring are impaired in individuals with PD; 2) dopaminergic 

therapy influences these processes; and 3) a relationship exists between the severity of PD 

symptoms and these processes. Since it was hypothesized that all of the aforementioned 

processes would be affected by basal ganglia networks, it was expected that individuals with PD 

would show deficits in all processes and that these impairments would be alleviated by 

dopaminergic medication. It was also hypothesized that individuals with PD with greater disease 

severity would show greater impairment in the cognitive processes compared to those with 

milder severity. Finally, since asymmetric basal ganglia degeneration is a characteristic of PD, it 

was hypothesized that severity of motor symptoms in each side of body would be associated with 

hemisphere specific cognitive processes (left hemisphere: task-setting; right hemisphere: 

monitoring).  

 

2.2 Methods 

The present study was approved by the University of Waterloo and Wilfrid Laurier 

University research ethics boards. Informed consent was obtained from all individuals prior to 

participation.  
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2.2.1 Participants 

Twenty-one non-demented individuals with PD (15 male/6 female) and 21 age-matched 

healthy control participants (HC) (9 male/12 female) were recruited from the Movement 

Disorders Research and Rehabilitation Centre database at Wilfrid Laurier University (Waterloo, 

Canada). All participants were fluent in English. Clinical assessment involved the evaluation of 

participants’ cognitive status (Montreal Cognitive Assessment - MoCA), depression signs 

(Geriatric Depression Scale - GDS), and handedness (15-item Waterloo Handedness 

Questionnaire). Motor symptoms severity of PD participants was evaluated using the motor 

subsection of the Unified Parkinson’s disease Rating Scale (UPDRS-III) (Fahn & Elton, 1987) 

by a movement disorders specialist. The OFF state assessment was performed after a minimum 

of 12 hours withdrawal of dopaminergic medication, whereas the ON state assessment was 

performed when patients were optimally medicated (approximately one hour after medication 

intake - see Table 2 Supplementary Material). The OFF and ON procedures occurred in two 

separate days that were at least one week apart. The medication state in which participants were 

in the first and second experiment sessions was counterbalanced between participants. None of 

the participants had undergone surgical procedure to alleviate PD symptoms (e.g., deep brain 

stimulation). Exclusion criteria included uncorrected vision or colour blindness, and history of 

neurological conditions other than PD. Participants’ demographic and clinical information is 

shown on Table 1.  
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Table 1 Participants’ demographic and clinical information (Study 1) 

Group Age (years) Sex Hand. Educ.  MoCA GDS UPDRS-OFF UPDRS-ON UPDRS-R UPDRS-L 

HC n=21 70 (8.18) 9M/12F 20R/1L 16.47 (4.77) 27.85 (1.49) 4.33 (3.67) - - - - 

PD n=21 67.09 (10.41) 15M/6F 20R/1L 15.52 (2.74) 26.66 Ɨ (2.33) 5.85 (5.44) 30.05 (10.89) 21.67* (9.49) 9.07 (3.55) 12.87*  (4.8) 

Legend: Hand. – Handedness; Educ. – Years of education; MoCA – Montreal Cognitive Assessment; GDS – Geriatric Depression 

Scale; UPDRS – Unified Parkinson’s disease Rating Scale; UPDRS-R – sum of UPDRS scores for upper and lower limbs in the right 

side of the body; UPDRS-L – sum of UPDRS scores for upper and lower limbs in the left side of the body; Ɨ p=0.055; * p<0.001 
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2.2.2 Apparatus and Experimental Procedures  

Cognitive processes assessment 

Three tasks from the Feature Integration Test (Stuss et al., 2002) were used in this study: 

Simple RT, Easy Choice RT, and Complex Choice RT. In the Simple RT task, participants had 

to make a single button response to every occurrence of a single stimulus. In the Easy and 

Complex Choice RT tasks participants were asked to press one button with their index finger in 

response to a target stimulus pre-defined by one (shape, Easy RT) or three (shape, colour, line 

filling, Complex RT) features and a second button response with their middle finger to all other 

non-target stimuli. Increases in task demand (i.e., the number of features to be identified and 

integrated) would require the mental operations of the previous task and the addition of other 

processes. For all tasks, the stimulus was randomly presented at interstimulus intervals varying 

between 3 s and 7 s (there were equal numbers of each interstimulus interval). The stimulus 

stayed on the screen for 2 seconds or until a response was made; participants were instructed to 

respond as quickly as possible. In Simple RT, the stimulus was a square that was presented 50 

times after 3 practice trials. For Easy Choice RT, the target was defined by a simple shape (one 

of a square, cross or triangle) and occurred on 25% of 102 trials preceded by 10 practice trials 

(the non-targets were the remaining shapes). For Complex Choice RT, the target was defined by 

a combination of one of the four shapes, one of four colours (red, yellow, blue, or green) and one 

of four line fillings (horizontal, vertical, or forward or backward slanting) on 25% of 102 trials, 

preceded by 10 practice trials. The non-targets in the Complex RT task could either share zero, 

one, or two features with the target stimulus. The stimuli were dark grey or coloured on a black 

background on a computer monitor, with a screen measuring 47.5cm (width) x 30cm (height). 

The monitor refresh rate was set at 75 Hz. Participants were positioned approximately 55cm 
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from the monitor. Each task was programed using MEL2 (Psychology Software Tools, Inc.), and 

responses were made on a Serial Response Box (Psychology Software Tools, Inc.) with five 

buttons (numbered 1-5 from left to right) aligned horizontally. 

Executive functions assessment 

 Executive functions were assessed using the Wisconsin Card Sorting Test (WCST). 

Following the procedures described by Stuss and Alexander (2007), the WCST was administered 

three times which differed in the amount of information given to participants. First, participants 

were assessed using the standard procedures for the WCST (Milner, 1963). Sixty-four additional 

cards were administered twice more in succession with differing instructions. In the second 

round (64A), participants were informed about the sorting criteria (colour, shape, and number), 

while in the third round (64B), participants were told that the first sorting criterion was colour 

and that the criterion would switch after ten consecutive correct responses. While overall 

performance on the WCST was assessed in the standard test format (percentage of correct 

responses, number of categories completed, and number of set loss errors), the influence of 

cognitive processes on performance in the WCST was evaluated comparing the number of set 

loss errors in the standard and the 64B form of test administration. Set loss error was defined as 

an error following at least three consecutive correct responses, one of which being an 

unambiguous correct response to demonstrate that the participant experienced the correct sorting 

criterion. Set loss errors in the standard test format may be attributed to trial and error strategy 

used by the participant while establishing the sorting criteria and might be related to task-setting 

process. Conversely, set loss errors in the 64B format may be attributed to impaired monitoring 

process, since in this format participants were explicitly told what were the criteria, which 

criteria was the first one, and when criteria were switched (Stuss et al., 2000). 
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2.2.3 Outcome measures and Statistical Analysis 

The main dependent variables in the current study were RT and errors. For all tests, the 

first two trials and trials faster than 150ms were excluded from the analysis. In addition, slow 

trials were eliminated if they were 4 standard deviation slower than the group average RT, 

leading to an exclusion of less than 2% of the trials (Stuss et al., 2005; Stuss et al., 2002). RT 

analysis was composed by overall RT, RT variability (coefficient of variation= standard 

deviation/mean *100), RT by stimulus type (i.e. target and non-targets), and RT for short (3 and 

4 seconds) and long (6 and 7 s) inter-stimulus intervals. Total number of errors was calculated 

for all choice RT tasks. Error analysis also involved the comparison of different types of error, 

naming false positives (calling a non-target as a target) and false negatives (calling a target as 

non-target), and omissions (no response).  

Independent t-tests were used to test differences between the PD OFF and HC for RT and 

RT coefficient of variation. For Easy and Complex Choice RT, Repeated Measures ANOVAs 

were used to compare RT between groups for each stimulus type. While in Easy Choice RT there 

were two stimulus types (target or non-target), in Complex Choice RT there were four stimulus 

types depending on the number of features shared with the target (0, 1, 2, or 3; where 3 is the 

actual target). In addition, Repeated Measures ANOVAs were used to test differences in RT 

between groups for short and long inter-stimulus intervals in the Simple RT and Easy Choice RT 

tasks. Repeated Measures ANOVAs were used to tests differences in accuracy between groups 

across error types (FP vs FN vs O) in both choice RT tasks.  

Pairwise t-tests were used to compare RT and RT coefficient of variation between PD 

participants in the OFF and ON states. Repeated Measures ANOVAs were used to test 

differences in RT between medication states for each stimulus type and for short and long inter-
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stimulus intervals. Repeated Measures ANOVAs were also used to compare error measures 

between medication states. Since one participant with PD did not take any medication, 20 

individuals with PD who completed both OFF and ON assessments were used when comparing 

the effect of dopaminergic treatment in the outcome measures.  

 The independent measures used to evaluate the relationship between RT and error 

measures with clinical features of PD were the total motor UPDRS score and the sum of the 

UPDRS scores from each side of the body including upper and lower limbs (UPDRS-Right and 

UPDRS-Left). One-tailed Pearson correlations were used to test the relationship between 

dependent (RT and error) and independent (total UPDRS, UPDRS-Right, and UPDRS-Left) 

measures. For this analysis, only PD participants’ outcome measures in the OFF state were used 

as a representation of the parkinsonian brain functioning without the interference of the 

dopaminergic treatment.  

 Independent t-tests were used to compare percentage of correct responses, number of 

categories completed, and number of set loss errors of individuals with PD and HC in the 

standard format of the WCST. In addition, Repeated Measures ANOVA was used to compare set 

loss errors in the standard and 64B formats of the WCST.   

 Tukey post-hoc was used to examine significant differences and alpha level was kept at 

p<0.05. All statistical analyses were performed on SPSS
®
 version 22 software. 

 

2.3 Results 
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2.3.1 Demographics and clinical information 

 PD and HC participants were matched for age, handedness (WHQ), years of education, 

and depressive state (GDS). With respect to participants’ general cognitive status (MoCA), group 

differences approached significance (p=0.055), with individuals with PD having lower scores 

than HC. It is important to note that general cognitive status of individuals with PD was assessed 

while in the OFF medication, and this may have contributed to lower scores in the MoCA. 

Nonetheless, mean score of PD participants was still above the cut-off score for this test.  

Motor severity scores (UPDRS-III) were significantly lower (i.e. improvement) when 

individuals with PD were in the ON medication state (p<0.001). Lastly, participants showed 

greater disease severity in the left- compared to the right-side of the body (inferring more severe 

right basal ganglia degeneration) (p<0.001).   

2.3.2 PD OFF vs HC: Contributions of the basal ganglia to cognitive processes  

Reaction time  

Overall RT was different between PD OFF and HC (F(1,40)=6.19; p=0.017; 
2

p =0.13) in 

the Simple RT task, showing that the PD OFF group had slower RT than the HC group. For the 

choice RT tasks, no differences in RT were found between PD OFF and HC participants in both 

Easy and Complex choice tasks. The variability in RT was not different between PD OFF and 

HC in any task. Figure 1 shows participants’ mean RT across tasks.  
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Figure 1 Differences in mean RT between individuals with PD in the OFF state and HC were 

only observed in the Simple RT task. 

 

When RT was analyzed separately for each stimulus type, a main effect of stimulus type 

in the Easy Choice RT task (F(1,40)=13.15; p=0.001; 
2

p =0.24) showed that both  PD OFF and 

HC had similarly slower responses for the target stimuli compared to non-targets. In the 

Complex Choice RT task, a main effect of stimulus type (F(3,120)=51.04; p=0.000; 
2

p =0.56) 

showed both PD OFF and HC groups responded slower when the stimulus was the actual target  

(p<0.001) or a non-target sharing two common features with the target (p<0.001) compared to 

non-targets with none or one feature in common with the target.  

 The influence of the inter-stimulus interval length on participants’ RT was examined 

comparing RT for short and long inter-stimulus intervals. In the Simple RT task, a main effect of 

inter-stimulus interval showed that both PD OFF and HC demonstrated a normal foreperiod 
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effect (F(1,40)=59.01; p=0.000; 
2

p =0.59) which is a decrease in RT when inter-stimulus interval 

was longer compared to shorter. In the Easy Choice RT task, a main effect of inter-stimulus 

interval (F(1,40)=13.18; p=0.001; 
2

p =0.24) showed that PD OFF and HC decreased RT when 

inter-stimulus interval was longer compared to shorter; however, a group by inter-stimulus 

interval interaction approached significance (F(1,40)= 3.30; p=0.07;  
2

p =0.076). The 

examination of this result in Figure 2 reveals that while HC had a normal foreperiod effect, PD 

OFF participants showed no discrepancy in RT between short and long inter-stimulus intervals 

(i.e. abnormal foreperiod effect). 

 

 

Figure 2 HC showed a normal foreperiod effect (decrease in RT as inter-stimulus interval 

increased), while PD participants in the OFF state did not show the same effect in the Easy 

Choice RT task. 
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 A main effect of group (F(1,40)=4.62 p=0.038 
2

p =0.10) showed that PD OFF  had a 

greater number of errors of all kinds compared to HC in the Complex Choice RT task (Figure 3). 

No main effect of error type or interaction between error type and group were found for the 

Complex Choice RT task. For the Easy Choice RT no main effect of group or interaction 

between group and error type were found. 

 

 

Figure 3 Individuals with PD in the OFF state had greater number of errors than HC in the 

Complex Choice RT task. 
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were younger (M=60.6 years) than those with worse executive functions (M=73.0 years) and HC 

(M=70.0 years), age was included as a covariate in all analyses. A main effect of group in the 

Simple RT task (F(2,38)=5.18; p=0.010) showed that PD patients with worse executive functions 

had slower overall RT than HC (p<0.05). In addition, an interaction between group and RT by 

inter-stimulus interval (F(2,38)=3.21; p=0.05) revealed that only PD patients with worse 

executive functions had an abnormal foreperiod effect (no difference in RT for short and long 

inter-stimulus intervals). Finally, a main effect of group in the Complex Choice RT task 

(F(2,38)=3.71; p=0.034) showed that PD patients with worse executive functions had greater 

total number of errors than HC participants (p<0.05). Thus, results from this subgroup analyses 

demonstrated that deficits in cognitive processes were more pronouced in PD patients with worse 

executive functions, while no differences were found between PD patients with better executive 

functions and HC.    

2.3.3 PD OFF vs PD ON: Does dopamine modulate cognitive processes mediated by the frontal 

lobes? 

Although dopaminergic medication did not significantly change overall RT in Simple as 

well as choice tasks (Easy Choice RT and Complex Choice RT), differences in RT variability 

within the PD group while OFF and ON medication states were found  in the Easy Choice RT 

task (F(1,19)=5.30; p=0.033; 
2

p =0.21). This result showed that after taking their regular dose of 

dopaminergic medication individuals with PD became more variable in their responses. There 

was no effect of dopaminergic medication on RT for stimulus type or length of inter-stimulus 

interval.  
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For the error measures, there were no main effects of medication state or interactions 

between medication state and error type for both choice RT tasks.  

2.3.4 Relationship between cognitive processes and the severity of PD symptoms 

 Correlation analyses showed that PD OFF overall RT in the Simple RT task was 

positively correlated with motor disease severity (r=0.42; p=0.03), where slower RT was 

associated with greater motor disease severity. In addition, PD OFF RT variability in the Simple 

RT task was positively correlated with motor disease severity (r=0.38; p=0.045), showing that 

greater variability was associated with greater motor disease severity. Neither associations 

between disease severity scores and RT in the choice tasks nor associations between unilateral 

symptom severity and hemisphere-specific outcome measures were found.   

2.3.5 Executive Functions Assessment (WCST) 

 There were no differences between groups in the standard format of the WCST (128 

cards). The comparison of set-loss errors between groups in the standard and 64B conditions 

revealed a main effect of task (F(1,39)=11.41 p=0.002 
2

p =0.22) , where both PD and HC 

participants had fewer set loss errors in the 64B condition compared to the standard condition. 

This result demonstrated that both groups decreased set-loss errors after receiving greater amount 

of information about the test structure (64B).  

 

2.4 Discussion 

The aims of the present study were to investigate whether [1] energization, task-setting, 

and monitoring were impaired in individuals with PD, [2] these processes were modulated by the 
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dopaminergic system, and [3] associations between cognitive processes and the severity of PD 

symptoms exist. Results showed that individuals with PD were impaired specifically in 

monitoring (abnormal foreperiod effect and increased number of errors of all kinds), but not 

energization (slower RT only in the Simple task) or task-setting. Contrary to the original 

hypothesis that dopamine would alleviate deficits in these processes, individuals with PD had 

worse performance as shown by an increase in RT variability after dopaminergic medication 

intake (ON state) compared to OFF state. Finally, overall RT and RT variability were associated 

with motor disease severity scores (UPDRS-III) only in the Simple RT task. 

2.4.1 Contributions of the basal ganglia to cognitive processes  

 Although it was expected that all cognitive processes would be impaired in individuals 

with PD, results showed that individuals with PD in the OFF state had worse performance than 

HC participants only in the outcome measures representing the ability to monitor performance 

over time for quality control (i.e. monitoring). This was shown by an abnormal foreperiod effect 

and increased number of errors of all kinds. A normal foreperiod effect is characterized by a 

decrease in RT as a function of increase in time preceding stimulus occurrence (i.e. inter-

stimulus interval). Previous research in animal models of PD has showed that striatal dopamine 

depletion can abolish this effect (Brown & Robbins, 1991), thus suggesting that the 

dopaminergic system mediates the ability to use temporal information to predict or anticipate 

stimulus onset. Interestingly, Jurkowski, Stepp, and Hackley (2005) attributed impaired 

foreperiod effect in PD to a disrupted time keeping mechanism specifically during voluntary 

tasks. Nonetheless, Picton et al. (2006) argued that while the basal ganglia has a critical role in 

time keeping, right lateral frontal areas (especially the dorsolateral prefrontal cortex) are 

responsible for monitoring the passage of time. Therefore, findings from this study may suggest 
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that monitoring deficits found in individuals with PD could result from an impaired network 

processing time information involving (but not limited to) the basal ganglia and  right lateral pre-

frontal areas. The involvement of right lateral frontal areas in the deficits observed in PD OFF is 

supported by the greater number of errors of all kinds in the Complex Choice RT task compared 

to HC, since previous research found that lesions in right frontal areas led to increased number of 

errors of all kinds in the same task (Stuss et al., 2002). This behaviour was attributed to an 

inability of individuals with right frontal lesions to note the error and adjust behaviour to avoid 

errors in consecutive trials. Finally, the notion of these deficits being associated with impaired 

networks in right hemisphere is further supported by the fact that individuals with PD in the 

current study had more severe symptoms in the left side of the body, inferring greater right basal 

ganglia degeneration.  

With respect to group differences in overall RT, findings from this study were limited to 

the Simple RT task. This was in contrast with the study’s hypothesis that basal ganglia 

degeneration could disrupt circuitries between these structures and superior medial frontal areas 

(including the anterior cingulate cortex) that mediate energization. Similarly to patients with 

superior medial frontal lesions, it was expected that PD OFF would show slower reaction time 

than healthy participants across tasks and especially in tasks with greater cognitive processing 

demands (i.e. Easy and Complex RT). Since individuals with PD in the OFF state were slower 

than HC participants in the Simple task but not in the choice tasks, this slowness could be 

attributed to sensorimotor rather than cognitive deficits in PD. This suggestion was further 

supported by a correlation between RT and UPDRS-III scores only in the Simple task, where 

individuals with more severe motor impairments had slower Simple RT. This result coincides 

with Evarts, Teravainen, and Calne (1981) who showed differences between individuals with PD 
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and healthy controls during simple RT but not during choice RT. Most importantly, these authors 

demonstrated that speed of movement and speed of response initiation may be independently 

impaired in individuals with PD, with the first being more “profoundly and consistently affected” 

(page 183). The authors concluded that choice RT did not seem to be distinctly impaired in 

individuals with PD, but also acknowledged that task choice could have influenced their results. 

Previous research has showed that deficits in RT may be task dependent in PD. For example, 

greater deficits in choice RT were found in individuals with PD in tasks involving attentional 

flexibility compared to other choice RT tasks (Dujardin et al., 2013). Taken together, results 

from previous investigations and the current study do not support the notion of slowness of 

response being due to impaired energization process in PD.  

2.4.2 Does dopamine modulate cognitive processes mediated by the frontal lobes? 

Interestingly, the only effect of dopaminergic medication found in the current study was 

an increase in RT variability in the Easy Choice RT task. Since increased RT variability is 

argued to reflect inconsistency in attention regulation (Stuss, Murphy, Binns, & Alexander, 

2003), this finding suggests that dopaminergic medication had a detrimental effect on cognitive 

function of individuals with PD. Previous research has suggested that dopamine levels used to 

alleviate motor symptoms may overload areas within the pre-frontal cortex that still have normal 

levels of dopamine (Cools, Barker, Sahakian, & Robbins, 2001; Gotham, Brown, & Marsden, 

1988). For example, Gotham and colleagues (1988) showed that individuals with PD had worse 

performance on a conditional learning task (i.e. participants had to learn associations between 

different visual stimuli) while in the ON medication state compared to OFF. Moreover, Owen 

(2004) suggested that dopamine levels that positively affect cognitive functions processed in the 

dorsolateral areas may overload ventrolateral areas in the prefrontal cortex. Thus, it is likely that 
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dopaminergic treatment used to decrease motor symptoms in this sample may have overloaded 

some pre-frontal areas and resulted in greater inconsistency in attentional control.  

Although it was hypothesized that dopaminergic medication would positively influence 

performance of PD participants in all RT tasks, neither RT nor accuracy were different between 

medication states. Jahanshahi, Brown, and Marsden (1992) have showed that dopaminergic 

medication did not affect Simple or Choice RT in individuals with PD, but it positively 

influenced movement time. Given that in the current study movement demands were minimal, it 

is possible that this may have influenced the ability to detect effects of dopaminergic medication 

in RT outcomes. Furthermore, since no differences in choice RT were found between PD OFF 

and HC, it could be that RT performance of PD participants was at ceiling and therefore not 

affected by medication intake. On the other hand, dopaminergic medication did not change 

response accuracy despite PD participants being less accurate in the Complex Choice RT task. 

Riekkinen, Kejonen, Jakala, Soininen, and Riekkinen (1998) found that while dopaminergic 

medication significantly improved reaction and movement time of individuals with PD in Simple 

and Choice RT tasks, accuracy measures seemed to be sensitive to dysfunctions of the 

noradrenergic system. Thus, although beyond the scope of the present study, it is important to 

acknowledge  that dopaminergic dysfunction is not the sole mechanism of cognitive impairment 

in PD (Kehagia, Barker, & Robbins, 2010) and that other neurotransmitters such as 

noradrenaline and acetylcholine (Bohnen et al., 2006; Dubois, Pilon, Lhermitte, & Agid, 1990; 

Riekkinen et al., 1998) also contribute to frontal-like deficits observed in individuals with PD. 

2.4.3 Relationship between cognitive processes and PD clinical features  

Associations between the severity of PD symptoms and cognitive outcome measures 

were not found in the choice RT tasks, where cognitive demand was higher compared to the 
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Simple task. These findings corroborate previous research showing lack of correlation between 

cognitive outcomes and motor disease severity (Bouquet et al., 2003). This might suggest that 

slowness and variability in performing simple movements are not related to cognitive 

dysfunction in PD.  

2.4.4 Cognitive processes and executive functions in PD 

Results from the WCST did not reveal differences in executive functions as reflected in 

this test between PD and HC participants. In addition, it was found that PD and HC participants 

were similarly influenced by provision of extra information about test structure, leading to a 

decrease in set-loss errors from standard to 64B conditions. The lack of group differences in 

executive functions was unexpected, and it shows that PD participants in this study had relatively 

preserved cognitive function as measured by this standard neuropsychological test. Most 

importantly, the expected difference in set loss errors between PD and HC in the 64B condition 

as a result of monitoring deficits was not identified. It is relevant to note that deficits in 

monitoring found in this study were modest, therefore they may not have been severe enough to 

influence performance in a multifaceted test such as the WCST. Moreover, these results indicate 

that the assessment of cognitive processes may be sensitive to even sudden changes in cognition 

in individuals with PD.  

Limitations of this study include a small sample size considering the well-known intra- 

and inter-individual variability found in PD. Future studies with larger samples would be able to 

explore the spectrum of cognitive deficits found among individuals with PD. Moreover, it should 

be noted that the HC group did not underwent testing procedures at two time points in the same 

manner as PD participants did (ON and OFF sessions). However, we attempt to control for 
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practicing effects by counterbalancing the order of medication state in the first session across PD 

participants. Lastly, it is acknowledged that different theories exist regarding the role of frontal 

areas in cognitive processing, thus results and interpretations from this study are focused on the 

investigation of one of these proposed models.   

 In conclusion, this study shows that PD selectively affected monitoring. In addition, it 

shows that monitoring deficits did not improve with dopaminergic medication. Conversely, 

dopaminergic medication had detrimental effects (i.e. increased variability) on cognitive 

processing of individuals with PD. Finally, deficits in cognitive processes were not associated 

with disease severity, demonstrating that the progression of cognitive and motor severity in PD 

may have different underlying mechanisms and trajectories.  
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Supplementary Material – Chapter 2 

 

Table 2 PD participants’ individual severity scores in the OFF and ON medication states, withdrawal time and time of medication 

intake, levodopa equivalent dose (LED), and medication type 

Case Age Sex UPDRS OFF UPDRS ON Time OFF (min) Time ON (min) LED Medication 

1 80 M 49 40 900 100 500 Levodopa/Carbidopa 

2 83 M 40 31 750 260 900 Levodopa/Carbidopa 

3 57 M 34 31 750 345 750 Levodopa/Carbidopa 

4 54 F 10 6 870 150 375 Levodopa/Carbidopa 

5 60 M 40 32 690 345 775 Levodopa/Carbidopa; Rasagiline 

6 62 M 43 26 945; 765 60 642.5 Levodopa/Carbidopa; Ropinirole 

7 61 F 30 29 930 60 375 Levodopa/Carbidopa 

8 79 M 38 27 765 150 850 Levodopa/Carbidopa; Rasagiline 

9 87 M 16 11 915 105 1000 Levodopa/Carbidopa 

10 71 M 27 drug naïve - - - - 

11 65 M 18 15 900 180 375 Levodopa/Carbidopa 

12 71 F 41 36 1640 30 160 Ropinirole; Amantadine 

13 58 M 22 15 540 150 850 Levodopa/Carbidopa; Rasagiline 

14 69 M 36 21 de novo 170 475 Levodopa/Carbidopa; Rasagiline 

15 65 F 27 21 920 110 1296.75 Levodopa/Carbidopa/Entacapone 
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16 80 M 26 16 975 135 1000 Levodopa/Carbidopa 

17 53 F 21 14 795 170 500 Levodopa/Carbidopa 

18 77 M 26 14 1080 180 500 Levodopa/Benserazide 

19 64 M 37 25 1260 100 1045 Pramipexole; Levodopa/Carbidopa; Rasagiline 

20 56 M 15 10 1080 195 562.5 Levodopa/Carbidopa 

21 57 F 37 17 600 45 1250 Levodopa/Carbidopa 

Legend: Time OFF – number of minutes since the last dose of medication; Time ON – number of minutes after medication intake 
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Table 3 Mean and standard deviation of overall RT and RT variability (coefficient of variation) for Simple, Easy Choice, and 

Complex Choice RT tasks 

Group SRT ECRT CCRT SRT CV ECRT CV CCRT CV 

HC (n=21) 287.47 (28.39) 573.09 (50.49) 667.43 (68.72) 19.16 (6.28) 20.59 (3.19) 22.69 (3.76) 

PD OFF (n=21) 320.16 (53.09) 592.33 (100.58) 691.09 (135.31) 18.26 (4.96) 20.03 (3.13) 23.96 (3.25) 

PD ON (n=20) 308.16 (36.61) 588.28 (106.28) 683.76 (120.80) 20.02 (5.01) 22.21 (3.33) 22.90 (4.52) 

Legend: SRT – Simple Reaction Time; ECRT – Easy Choice Reaction Time; CCRT – Complex Choice Reaction Time; CV – 

Coefficient of Variation 
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Table 4 Mean and standard deviation of RT by stimulus type for Easy and Complex Choice RT tasks 

Group 

ECRT CCRT 

Target Non-target F0 F1 F2 Target 

HC (n=21) 586.70 (59.60) 568.72 (52.14) 601.31 (67.29) 618.32 (68.60) 716.05 (77.25) 701.05 (96.23) 

PD OFF (n=21) 618.11 (112.77) 583.81 (99.913) 626.04 (144.91) 645.09 (129.90) 722.86 (134.20) 741.61 (168.77) 

PD ON (n=20) 620.41 (138.14) 579.01 (100.48) 590.27 (110.60) 635.37 (117.18) 714.74 (127.20) 762.70 (167.91) 

Legend: ECRT – Easy Choice RT; CCRT – Complex Choice Reaction Time; F0 – non-target stimulus sharing 0 features with the 

target stimulus; F1 - non-target stimulus sharing 1 feature with the target stimulus; F2 - non-target stimulus sharing 2 features with the 

target stimulus 
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Table 5 Mean and standard deviation of RT for short and long inter-stimulus intervals in Simple and Easy Choice RT tasks 

Group 

SRT ECRT 

Short ISI Long ISI Short ISI Long ISI 

HC (n=21) 302.68 (27.30) 271.81 (33.14) 586.10 (48.09) 560.27 (57.55) 

PD OFF (n=21) 334.15 (52.36) 305.65 (56.81) 596.71 (102.08) 588.11 (101.40) 

PD ON (n=20) 321.91 (43.66) 294.78 (35.82) 599.70 (112.46) 577.29 (105.48) 

Legend: SRT – Simple Reaction Time; ECRT – Easy Choice Reaction Time; ISI – inter-stimulus intervals 
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Abstract 

Deficits in executive functions are highly prevalent in individuals with Parkinson’s disease (PD). 

Yet, these deficits are not fully alleviated by current pharmacological treatments to PD 

symptoms. Thus, the effects of non-pharmacological therapies on executive functions have been 

of great interest in PD. Among these non-pharmacological strategies, physical exercise has 

shown benefits to executive functions in PD. While most studies have focused on the chronic 

effects of exercise, evidence of the acute effects of exercise on executive functions is limited in 

PD. The aim of the current study was to investigate the effects of an acute bout of exercise on 

cognitive processes underlying executive functions in PD. Twenty individuals with PD were 

assessed in both a Control and an Exercise conditions that occurred on two separate days and in 

counterbalanced order across participants. In each condition, individuals started performing a 

simple and a choice reaction time tasks. Subsequently, participants were asked to sit on a cycle 

ergometer (Control) or cycle (Exercise) for twenty minutes. Participants were asked to repeat 

both simple and choice reaction time tasks immediately after the Control and Exercise conditions 

twice: once after 15- and again after 40-minute rest periods. There were no interactions between 

time of assessment and experimental conditions in the current study. These findings suggest that 

individuals with PD may not respond behaviourally to a single bout of acute exercise.  

Keywords: Parkinson’s disease, acute exercise, aerobic exercise, cognition 
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3.1 Introduction 

 While Parkinson’s disease (PD) is known as a movement disorder, studies have shown 

that many individuals with PD experience cognitive deficits, especially in executive functions 

(Aarsland et al., 2010; Cools, Barker, Sahakian, & Robbins, 2001b; Dirnberger & Jahanshahi, 

2013; Kudlicka, Clare, & Hindle, 2011; Taylor, Saint-Cyr, & Lang, 1986). Importantly, deficits 

in executive functions are linked to difficulties performing activities of daily living (e.g. driving) 

(Crizzle, Classen, & Uc, 2012), exacerbated motor dysfunction (e.g. gait) (Amboni, Barone, & 

Hausdorff, 2013; Rochester et al., 2004; Yogev et al., 2005), and decreased quality of life among 

individuals with PD (Barone et al., 2009). Although impaired performance in executive functions 

tests are often observed following frontal lobe lesions, deficits found in individuals with PD have 

been attributed to the disruption of basal ganglia-thalamo-cortical circuitries that loop through 

frontal lobe areas, rather than impaired frontal lobe functioning per se (Owen, Doyon, Dagher, 

Sadikot, & Evans, 1998). However, research has shown that executive outcomes are variable in 

their response to the dopaminergic treatment for nigrostriatal-related PD symptoms (Cools, 

Barker, Sahakian, & Robbins, 2001a; Gotham, Brown, & Marsden, 1988; Kehagia, Barker, & 

Robbins, 2010; Owen, 2004). Therefore, complementary therapies to treat these deficits have 

been investigated in PD.  

 Among non-pharmacological therapies, there is increasing evidence of the benefits of 

physical exercise to executive functions in PD (Cruise et al., 2011; Murray, Sacheli, Eng, & 

Stoessl, 2014;  Tanaka et al., 2009; Uc et al., 2014). While this growing body of literature is 

primarily focused on the chronic effects of exercise, studies investigating the acute effects of 

exercise on cognition are almost non-existent in PD. The first and only study that evaluated the 

effects of a single bout of exercise on cognition in PD (Ridgel, Kim, Fickes, Muller, & Alberts, 
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2011) showed significant improvements in executive functions after 30 minutes of passive 

cycling on a motorized cycle ergometer. This was demonstrated with a reduction in the total time 

to complete part-B of the Trail Making Test, and specifically by a reduction in the time spent on 

each target (number or letter) prior to a shift. Yet, an important limitation of this study was the 

lack of a control condition in which participants did not undergo the experimental manipulation 

(passive cycling).Thus, it remains unclear whether positive results were due to passive cycling or 

practice effects associated with repeating the task for a second time. In addition, it is important to 

note that the mechanisms underlying the effects of passive exercise on cognition are not well 

understood. In contrast, studies investigating the mechanisms underlying acute effects of 

exercise on cognition in healthy individuals have mostly used active exercise. However, the 

acute effects of active exercise on cognition have yet to be investigated in PD. 

In neurological healthy young and older adults, behavioural effects following an acute 

bout of (active) exercise have been observed through decreases in reaction time (RT), especially 

in tasks requiring greater executive control (Hyodo et al., 2012; Kamijo et al., 2009; McMorris & 

Hale, 2012; Tsai et al., 2014; Yanagisawa et al., 2010). Importantly,  improvements in 

behavioural response have been explained by studies using electrophysiological measures (i.e. 

P300 latency and amplitude) suggesting that an acute bout of aerobic exercise can increase 

cognitive processing speed as well as improve allocation of cognitive resources (Hillman, Snook, 

& Jerome, 2003; Kamijo et al., 2009; Tsai et al., 2014). In addition, neuroimaging studies have 

demonstrated that improvements in behavioural responses were associated with greater 

activation of prefrontal areas in young and older adults (Hyodo et al., 2012; Yanagisawa et al., 

2010).  Thus, it has been argued that an acute bout of exercise may selectively influence 

executive functions as a result of increased frontal lobe activation. In this context, it could be 
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hypothesized that exercise may improve drive from frontal areas into fronto-striatal loops and 

potentially improve cognitive processing in individuals with PD.  

Perhaps the most critical aspect to be overlooked in previous investigations is that a clear 

rationale for the choice of assessment tasks is rarely provided. While it may seem reasonable to 

suggest that the sensitivity of executive functions tasks to acute effects of exercise is a complete 

justification, one may find a wide variety of executive functions tests to choose from and 

selecting the appropriate test to answer specific research questions may be a challenge. Further, 

because a formal definition of executive functions has yet to be established, researchers have 

argued that tests assessing executive functions may lack construct validity (whether a test 

actually measures a specific construct) (Jurado & Rosselli, 2007). In addition, it has been found 

that outcomes from different executive functions tests are poorly correlated, suggesting that 

deficits in executive functions may be specific rather than general (Testa, Bennett, & Ponsford, 

2012). Lastly, the multifactorial nature of executive functions tests may require the recruitment 

of several brain areas for successful performance, making it difficult to reveal specific brain-

behaviour relationships (Stuss, 2011). Thus, in order to better understand the acute effects of 

exercise on cognition, the provision of clear rationale for tests selection is a fundamental aspect 

to be considered.  

In the present study the choice of testing procedures was based on lesion studies with 

frontal lobe patients, which demonstrated that at least three cognitive processes underlying 

performance in executive functions tests are regionally organized within the frontal lobes. These 

processes were defined as the abilities [i] to initiate and sustain a response (energization), [ii] to 

set a stimulus-response relationship (task-setting), and [iii] to monitor performance over time for 

quality control and adjustment of behaviour (monitoring) (Alexander, Stuss, Picton, Shallice, & 
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Gillingham, 2007; Stuss & Alexander, 2007; Stuss, Binns, Murphy, & Alexander, 2002). 

Deficits in these processes were found to underlie impaired performance in classic 

neuropsychological tests assessing executive functions such as phonemic verbal fluency, Stroop 

test, and the Wisconsin Card Sorting Test (Stuss & Alexander, 2007).  Most importantly, the 

frontal lobe areas found to be critical to each cognitive process (superior medial, left lateral, and 

right lateral, respectively) are known to anatomically and functionally linked to the basal ganglia 

(Alexander, DeLong, & Strick, 1986; Middleton & Strick, 2000a, 2000b). In fact, findings from 

this thesis demonstrated that individuals with PD have deficits in monitoring, supporting the 

notion that the basal ganglia may be involved in operating at least some of these cognitive 

processes (see Chapter 2).  Therefore, in order to assess the acute effects of exercise on 

energization, task-setting, and monitoring the current study used two RT tasks which were the 

same as those used in previous research with frontal lobe (Stuss et al., 2002) and PD patients  

while assessing the role of frontal and basal ganglia structures in these processes (see Chapter 2). 

By investigating the effects of an acute bout of exercise on cognitive processes regionally 

organized within the frontal lobes, this study could provide greater understanding of the selective 

effects of exercise on cognitive function of individuals with PD.   

Thus, the aim of the present study was to investigate the effects of a single bout of active 

aerobic exercise on cognitive processes underlying executive functions in PD. The acute effects 

of exercise on energization were assessed through the outcome measure overall RT. Since 

energization deficits are characterized by slowness in RT, positive effects of exercise on 

energization would be characterized by faster RT. The acute effects of exercise on task-setting 

were assessed through the outcome measures RT by stimulus type (target vs non-target) and 

number of false positive errors. Since deficits in task-setting are characterized by an inability to 



49 
 

establish the criteria defining a target stimulus in order to promptly and accurately select the 

correct response, then improvements in task-setting would be characterized by faster RT for 

target stimulus and decrease in false positive errors. The acute effects of exercise on monitoring 

were assessed through the outcome measures RT by inter-stimulus interval and total number of 

errors. Given that monitoring deficits lead to inability to anticipate/predict time of stimulus onset 

and to note an error for appropriate adjustment of behaviour, then positive effects of exercise on 

monitoring would be characterized by faster RT for long inter-stimulus intervals compared to 

short as well as decrease in the total number of errors. 

 

3.2 Methods 

The present study was approved by the University of Waterloo and the Wilfrid Laurier 

University research ethics boards. Informed consent was obtained from all individuals prior to 

participation.  

3.2.1 Participants 

Participants included 20 male and female adults with confirmed diagnosis of PD, taking 

appropriate medication, and with medical clearance to exercise. Participants were recruited from 

the database of the Movement Disorders Research and Rehabilitation Centre (MDRC) at Wilfrid 

Laurier University (Waterloo, Canada). The follow exclusion criteria were employed: history of 

neurological diseases other than PD, unstable medical condition, uncontrolled diabetes mellitus, 

uncontrolled hypertension (BP>140/90), history of heart disease, resting heart rate >100, history 

of stroke, history of chronic obstructive pulmonary disease, or uncorrected visual impairments 

(including colour blindness). Participants’ demographic and clinical information are displayed in 

Table 6.  
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Table 6 Participants’ demographic and clinical information (Study 2) 

Participants Age (years) Sex Hand. Educ. MoCA GDS UPDRS III 

PD (n=20) 66.55 (10.11) 13M/7F 19R/1L 16.05 (3.61) 27.1 (2.46) 7.35 (5.33) 16.35 (5.89) 

Legend: Hand. – Handedness; Educ. – Years of education; MoCA – Montreal Cognitive 

Assessment; GDS – Geriatric Depression Scale; UPDRS III– Unified Parkinson’s disease Rating 

Scale motor subsection 

 

Participants completed three assessment sessions, in three separate days, and while in 

their ON medication state. The first session consisted of baseline evaluation of participants’ 

clinical and physical conditions, while the second and third sessions consisted of the 

experimental conditions when participants’ cognitive function was assessed before and after an 

acute bout of Exercise or a Control condition (Figure 4). The second and third sessions were a 

week apart and scheduled at the same time. Participants performed Control and Exercise 

conditions in a counterbalanced order and served as their own controls (cross-over design).   
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Figure 4 Assessment flow chart (Study 2) 

Day 1 – Baseline Assessment 

Disease Severity (UPDRS III) 

Questionnaires (anxiety & depression, handedness) 

General Cognitive Status (MoCA) 

Graded Exercise Test 

Acute Exercise  

Simple and Choice RT 

20 minutes cycling exercise 

Simple and Choice RT 

Days 2 and 3 – Experimental conditions 
(counterbalanced order) 

Control 

Simple and Choice RT 

20 minutes sitting on cycle ergometer 

Simple and Choice RT 

t
1
: 15 min delay 

Simple and Choice RT Simple and Choice RT 

t
2
: 40 min delay 

t
1
: 15 min delay 

t
2
: 40 min delay 
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3.2.2 Apparatus and Experimental Procedures  

 

Baseline evaluation 

  Upon arrival, participants were asked to fill out two questionnaires. The first  (Geriatric 

Depression Scale) provided information about participants’ depression and anxiety signs and the 

second  (15-item Waterloo Handedness Questionnaire) evaluated participants’ hand preference. 

Subsequently, the severity of PD motor symptoms was assessed by a certified movement 

disorders specialist using the motor subsection of the Unified Parkinson’s disease Rating Scale 

(UPDRS III) (Fahn & Elton, 1987). Participants’ general cognitive status was assessed using the 

Montreal Cognitive Assessment (MoCA). Finally, participants’ aerobic fitness level was 

assessed through a submaximal graded exercise test on a cycle ergometer.  

In order to assess participants’ fitness levels and define individual parameters for exercise 

prescription, a submaximal graded exercise test was completed. In this test, participants started 

with a 2 minute warm up with no load on the cycle ergometer. Participants began the graded 

exercise test cycling with a workload of 30 watts at 50 rotations per minute. Then, the workload 

was increased every minute (15 watts/per increment unit) until participants achieved testing 

termination criteria. The protocol was terminated if two of the following criteria were achieved: 

participant’s heart rate reached 70% of the age-predicted maximal heart, respiratory exchange 

ratio (RER) was greater than 1.1, participant rate of perceived exertion (RPE) was greater than 

16, or participant asked to stop. The equation to predict maximal heart rate was [208-(0.7* age)] 

(Tanaka, Monahan, & Seals, 2001) and [164-(0.7*age)] for individuals on β-blockers (Brawner, 

Ehrman, Schairer, Cao, & Keteyian, 2004). Gas exchange (levels of oxygen (O2) and carbon 

dioxide (CO2)) was recorded breath-by-breath using an Ergocard Cardiopulmonary Stress Test 

Metabolic Cart (Roxon medi-tech ltd. St-Leonard, Quebec, Canada). Heart rate was recorded at 
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rest, continuously during, and after the test using a Polar HR monitor (Lachine, Quebec, 

Canada). After the test, HR was monitored until it returned to values close to baseline. Blood 

pressure (BP) was measured using an OMRON® 7 series blood pressure monitor at rest (sitting 

and standing) and after the completion of the test. VO2 values at test termination were recorded 

and used as a reference of participants’ fitness levels. The influence of participants’ baseline 

fitness levels on cognitive outcomes was examined as a confounding factor, since research has 

demonstrated that individuals with higher fitness levels have more efficient cognitive control 

than those with lower fitness levels (Colcombe et al., 2004).   

Exercise condition  

 Immediately following the pre-tests of simple and choice RT, participants exercised on a 

recumbent cycle ergometer (700 Excite + Recline, Technogym USA©, Seattle, Washington) for 

20 minutes at a set intensity of 50% heart rate reserve (HRR). Intensity prescription was defined 

based on the Karvonen method which was expressed in the equation Target HR = ([(HRmax - 

HRrest)* 0.5)]+HRrest) (ACSM, 2000). Heart rate, workload, and rate of perceived exertion 

recordings from baseline graded exercise test were used in order to lead participants to the 

desired exercise intensity. Subsequently, participants rested on a comfortable chair for 15 

minutes. After the resting period, participants were invited to repeat the simple and choice RT 

tasks (t1). This procedure was also repeated 40 minutes after exercise completion (t2). Exercise 

duration and intensity as well as time of post assessment were chosen based on a meta-analysis 

(Chang, Labban, Gapin, & Etnier, 2012), where the largest effects of acute aerobic exercise on 

cognition were found after 20 minutes-long sessions of moderate intensity exercise (45% - 55% 

HRR; rate of perceived exertion 12-13) and following a post-assessment delay between 11 and 

20 minutes. Post-testing assessment at 40 minutes was used to examine whether fatigue played a 
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role on behavioural response at the first post-test time point (15 minutes), since participants 

would then have had longer time to recover from exercise.  

Control condition  

 In the Control condition participants started with the simple and choice RT tasks and after 

the completion of these tests they were invited to sit on the same cycle ergometer in which the 

Exercise condition was performed for 20 minutes in the company of a trained volunteer. Later, 

participants sat on a comfortable chair for 15 minutes which corresponded to the resting period 

during the exercise session. Participants repeated both simple and choice RT tasks 15 minutes 

(t1) and 40 minutes (t2) after the completion of the Control condition. 

3.2.3 Outcome measures 

Reaction Time 

Simple and Complex Choice RT tasks from the Feature Integration Test (Stuss et al., 

2002) were used to assess the effects of exercise on energization, task-setting, and monitoring. 

Detailed information regarding experimental setup, testing procedures, and data processing can 

be found in Chapter 2 of this thesis. 

The stimulus in these tasks was one of the four shapes: square, circle, triangle, or cross. 

The shapes were dark grey or coloured on a black background. For both tasks, stimuli were 

randomly presented at interstimulus intervals varying between 3 s and 7 s. Each stimulus stayed 

on the screen for 2 seconds or until a response was made. Each task was programed using MEL2 

(Psychology Software Tools, Inc.), and responses were made on a Serial Response Box 

(Psychology Software Tools, Inc.) with five buttons (numbered 1-5 from left to right) aligned 

horizontally.  
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In the Simple RT task, the stimulus was a grey square presented 50 times after 5 practice 

trials. Participants were instructed to press button number 1 in the serial response box as fast as 

possible whenever they saw the square. In the Complex Choice RT task, all shapes (square, 

circle, triangle, and cross) were presented in random order 102 times (one shape at a time), 

preceded by 10 practice trials. Each shape was coloured (red, blue, green, or yellow) and filled 

with a different pattern of internal lines (vertical, horizontal, diagonals to the right, or diagonals 

to the left). Thus, each stimulus varied in a combination of shape, colour and internal line 

orientation. A pre-determined target stimulus was defined by a specific combination of these 

three features (shape, colour, internal lines), while the other combinations were non-targets. The 

target stimulus occurred randomly on 25% of the trials. Participants were asked to respond to the 

target stimulus by pressing button number 1 with their right index finger, while they were asked 

to respond to non-target stimuli by pressing button 2 with their right middle finger on the serial 

response box. Four stimulus types existed in the Complex Choice RT task depending on the 

number of features shared with the target (0, 1, 2, or 3; where 3 was the actual target). 

3.2.4 Statistical analysis  

The dependent variables in the current study were RT and errors. RT analysis was 

composed of overall RT, RT variability (coefficient of variation), RT by stimulus type (i.e. target 

vs non-targets), and RT for short and long inter-stimulus intervals (ISI). Total number of errors 

was calculated for the Complex Choice RT task. Error analysis also involved the comparison of 

different types of error, namely false positives (calling a non-target as a target) and false 

negatives (calling a target as non-target). Repeated measures analysis of variance (RM ANOVA) 

was used to test differences in RT and RT coefficient of variation before and after the acute bout 

of Exercise and the Control conditions (2 conditions (exercise and control) x 2 times (pre and 
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post)). RM ANOVA was used to test differences in RT between experimental conditions for 

short and long ISI exclusively for Simple RT (2 conditions (exercise and control) x 2 time (pre 

and post) x ISI (short and long). RT at short ISI was calculated based on the mean RT for 3 and 4 

seconds ISIs, while RT at long ISI was calculated based on the mean RT for 6 and 7 seconds 

ISIs. In addition, RM ANOVA was used to compare RT between conditions for stimulus type (2 

conditions (exercise and control) x 2 time (pre and post) x stimulus type (F0, F1, F2, target)) 

exclusively for Complex Choice RT. RM ANOVA was used to compare the total number of 

errors and error type for Complex Choice RT (2 conditions (exercise vs control) x 2 time (pre vs 

post) x 2 error types (false positive vs false negative)). Tukey post-hoc was used to examine 

significant differences and alpha level was kept at p<0.05. Given that only 14 out 20 participants 

in the current study completed post-testing at the 40 minutes time point, these data is presented 

as complementary analysis including a third level into the time of assessment factor of each RM 

ANOVA. Finally, since previous research has demonstrated that level of fitness may influence 

one’s response to a single bout of aerobic exercise (Tsai et al., 2014), Pearson correlations were 

used to test whether changes in RT and accuracy were associated with participants’ VO2 value at 

test termination.  

 

3.3 Results  

3.3.1 Reaction time 

 The pre and post (t1) comparison of overall RT in each experimental condition revealed 

no differences in Simple RT following the Exercise or the Control session (Figure 5 - left). In the 

secondary analysis that included two post-testing time points, a main effect of assessment time 



57 
 

(F(2,26)=4.58; p=0.019; 
2

p =0.26) was identified. For this main effect, Tukey post-hoc showed 

that participants had slower RT at t2 (40 min delay) compared to pre-test in both Exercise and 

Control  conditions (p=0.015). For Complex Choice RT, a main effect of assessment time 

(F(1,19)=7.64; p=0.012; 
2

p =0.28) showed that participants had faster RT at t1 compared to pre-

test regardless of experimental condition (Figure 5 - right). The secondary analysis including two 

post-testing time points also revealed a main effect of assessment time (F(2,26)=3.79; p=0.035; 

2

p =0.22), where participants showed faster RT only at t1 compared to pre-test (p=0.02). There 

were no significant difference in RT between t1 and t2.  

 

 

Figure 5 Participants showed no change in Simple RT (SRT) following both experimental 

conditions (left). Conversely, they showed faster RT in the Complex Choice RT task (CCRT) 

after both Exercise and Control conditions (right). 

 

RT variability did not change from pre to post (t1) in all experimental conditions for 

Simple RT and Complex Choice RT. Secondary analysis with two post-testing time points also 

showed no differences in RT variability after 15 minutes (t1) or 40 minutes (t2) delays.  
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 The analysis of RT for short and long ISI aimed to demonstrate whether exercise could 

improve the ability of participants to predict stimulus occurrence. This is characterized by a 

decrease in RT for long compared to short ISI. Following the same procedures as previous 

research, this analysis was run for the Simple RT but not Complex Choice RT (Stuss et al., 

2002). A main effect of ISI demonstrated that, overall, participants showed the expected 

reduction in RT for longer ISI compared to shorter (F(1,19)=96.86; p<0.0000; 
2

p =0.83). An 

interaction between assessment time and ISI neared significance (F(1,19)= 4.13; p=0.056; 
2

p

=0.17), showing that at post-test (t1) participants had slower RT during short ISI compared to 

performance at pre (p=0.006) (Figure 6). No pre and post differences were found in RT for long 

ISI. Importantly, these findings occurred across experimental conditions, revealing no specific 

effect of exercise in participants’ ability to predict stimulus occurrence. Secondary analysis with 

two post-testing points also revealed a main effect of ISI (F(1,13)=64.30; p<0.0000; 
2

p =0.83), 

where participants showed faster RT for longer compared to shorter ISIs. No significant 

interactions were found in this secondary analysis.  
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Figure 6 Participants showed faster RT for long ISI compared to short ISI regardless of 

experimental condition. In addition, participants had slower RT for short ISI at post compared to 

pre-test in both conditions. 

  

Finally, RT was analyzed with respect to stimulus type for the Complex Choice RT task. 

A main effect of number of features was found (F(3,57)=96.67 p<0.0000; 
2

p =0.83), showing 

that across experimental conditions participants had faster RT for stimulus sharing none or one 

feature with the target compared to stimulus sharing two features with target or the target itself 

(p<0.0001) (Figure 7). There was no selective effect of exercise on response to target and non-

target stimuli or any effect of assessment time. Secondary analysis with two post-testing time 

points also showed only a main effect features on RT (F(3,39)=66.41; p<0.0000; 
2

p =0.83), once 

again demonstrating that participants had faster RT for stimuli sharing none or one feature with 

target compared to stimulus sharing two features with target or the target itself (p<0.0001). 
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Figure 7 Participants responded faster to non-target stimuli sharing none or one feature with the 

target compared to stimuli sharing two features or the target itself, regardless of experimental 

condition or assessment time point. 

 

3.3.2 Accuracy 

 An interaction between experimental condition and assessment time approached 

significance (F(1,19)=4.23; p=0.053; 
2

p =0.18) for the error measures (Figure 8). Although post-

hoc test did not reveal any statistical difference, mean values suggested that participants were 

slightly less accurate following the Exercise condition.  
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Figure 8 Participants were slightly less accurate following an acute bout of aerobic exercise. 

 

For the secondary analysis with two post-testing time points, an interaction between 

experimental condition and assessment time (F(2,26)=3.27; p=0.053; 
2

p =0.20) approached 

significance. This interaction showed that in the Exercise condition, participants made less errors 

after post-test t2 (40-min) compared to t1 (15-min) (p=0.01). However, there was no difference in 

accuracy between pre-test and post-test t2.  

3.3.3 Association between cognitive outcomes and fitness level 

 There were no associations between RT or accuracy and VO2 values at test termination.  

 

3.4 Discussion 

 The aim of this study was to investigate the effects of a single bout of active aerobic 

exercise on energization, task-setting, and monitoring cognitive processes in PD. Although it was 
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expected that participants would show faster RT following an acute bout of exercise, results did 

not support this hypothesis. Participants also showed slightly worse accuracy 15 min after a 

single bout of exercise. Although accuracy improved from the first (15 min) to the second (40 

min) post-test time points, accuracy levels at 40 min were not different than those at pre-test.   

 In the current study the effects of a single bout of exercise on cognitive function of 

individuals with PD was examined using RT tasks with varying complexity levels. These tasks 

have been previously used to evaluate the effects of localized frontal lobe lesions on three 

cognitive processes underlying executive functions. Most importantly, the frontal areas found to 

critical to each cognitive process are known to be anatomically and functionally linked to the 

basal ganglia through the basal ganglia-thalamo-cortical loops (Alexander et al., 2007; Stuss & 

Alexander, 2007; Stuss et al., 2002). Given that previous studies with healthy young and older 

adults have found that a single bout of exercise leads to improvements in  RT outcomes (i.e. 

faster RT) which were associated with increased brain activity in frontal brain areas (Kamijo et 

al., 2009; Yanagisawa et al., 2010), it was predicted that individuals with PD would show 

improvements in performance (i.e. faster RT) in the tasks used in the current study after a single 

bout of exercise. Contrary to this hypothesis, there were no selective effects of exercise on 

performance. While no changes in RT were found in the Simple RT task, faster RT was observed 

for the Complex Choice RT task in both experimental conditions. This latter result suggests that 

rather than a selective effect of exercise on cognition, participants were likely showing practice 

effects. A secondary analysis with fourteen participants examined the influence of recovery time 

on all behavioural outcomes and showed similar results. These findings may have important 

implications to the interpretation of results from Ridgel et al. (2011), given that their study 

design lacked a Control condition and limited their ability to account for practice effects. The 
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Control condition in the current study allowed us to demonstrate that improvements in 

performance did result from practice effects, and therefore suggests that practice effects could 

also have influenced findings from Ridgel et al. (2011). Although these results were not 

predicted, the absence of changes in behavioural measures following an acute bout of exercise 

has been previously reported in healthy individuals using different tasks (Kamijo et al., 2004). 

Thus, one could suggest that task choice may have influenced the outcomes in the present study.  

  The tasks used in the current study were carefully selected based on lesion studies that 

repeatedly showed the effects of localized frontal lobe lesions to each cognitive process. A recent 

meta-analysis has showed that the effects of an acute bout of exercise on cognition are small, but 

that this effect may increase depending on task complexity (Chang et al., 2012). Thus, in the 

current study we had two tasks that were similar in structure, but that varied in complexity.  Two 

tasks that are commonly used in previous investigations are modified versions of the Flanker 

Task and the Stroop Test (Barella, Etnier, & Chang, 2010; Kamijo et al., 2009; Yanagisawa et 

al., 2010). A commonality between these tasks is their large reliance on inhibitory control for 

successful performance. This component was also present in the Complex Choice RT task used 

in the current study, since participants had to pay attention to three stimulus characteristics in 

order to correctly respond to target and non-target stimuli. Therefore, it is unlikely that the lack 

of RT changes in the current study were simply a result of task choice. It is very important to 

note that the effects of exercise on behavioural measures (null in this case) may not fully reflect 

the effects of exercise at neurophysiological level. Previous studies have reported changes in 

neurophysiological measures underlying cognition which were not detected in behavioural 

measures (Kamijo et al., 2009; Kamijo et al., 2004). Therefore, future studies should examine the 
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effects of an acute bout of exercise on neurophysiological measures in order to confirm whether 

or not individuals with PD are responsive to the effects of a single bout of exercise.  

 Alternatively, one could argue that individuals with PD were actually not responsive to a 

single bout of exercise. Interestingly, previous studies have suggested that the effects of a single 

bout of exercise on cognition may result from changes in circulating catecholamine (including 

dopamine) and arousal levels (Chang, Etnier, & Barella, 2009). With respect to the latter, studies 

have showed that the effects of exercise intensity on cognitive function follow an inverted-U 

pattern, suggesting that moderate exercise intensity leads to optimal arousal levels, which in turn 

leads to improvements in brain function and behaviour (Kamijo et al., 2009; Kamijo et al., 2004). 

Changes in arousal are argued to be mediated by serotonergic, noradrenergic, and cholinergic 

activity (Gratwicke, Jahanshahi, & Foltynie, 2015). While the depletion of dopaminergic activity 

is a hallmark of PD, there is growing evidence that serotonergic, noradrenergic and cholinergic 

activity are also decreased in those with PD (Bohnen et al., 2006; Bohnen et al., 2003; Kehagia 

et al., 2010; Muller & Bohnen, 2013; Rochester et al., 2012). Thus, it could be argued that, from 

a neurotransmitter point of view, individuals with PD could have limited resources to acutely 

respond to the stress caused by exercise on brain activity. On the other hand, given that 

improvements in cognition have been found in individuals with PD in chronic exercise studies, it 

is possible that chronic exposure to exercise stimulation could lead to improvements in 

neurotransmitter activity. These improvements in neurotransmitter activity could result from 

increased activity of dopamine receptors (Fisher et al., 2013) and neuroplastic effects driven by 

increased levels of neurotrophic factors (Frazzitta et al., 2014; Marusiak et al., 2015).  Although 

highly speculative, this interpretation may help design future studies to investigate the acute 
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effects of exercise on individuals with PD and potentially explain the underlying mechanisms of 

improvements found in chronic exercise studies in this population.  

 Limitations of this study include a sample of participants with mild disease severity and 

who had relatively normal cognitive function. Therefore, the results of this study cannot be 

generalized to all individuals with PD. 

In conclusion, the current study showed that an acute bout of exercise did not influence 

cognitive processes underlying executive functions in individuals with PD at the behavioural 

level. Future research should examine the effects of an acute bout of exercise on 

neurophysiological measures in order to confirm whether individuals with PD are responsive or 

not the immediate effects of exercise on cognition. In addition, future studies using 

neuroimaging techniques should examine whether an acute bout of exercise can influence 

activation in the frontal lobes as well as basal ganglia areas in individuals with PD. Finally, in 

order to define the underlying mechanisms of the presence or absence of response to exercise 

stimulation, the assessment of neurotransmitter activity is a promising direction.  
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Supplementary Material – Chapter 3 

 

Table 7 RT Mean and standard deviation during Simple RT task in each experimental condition 

 RT RT CV RT by ISI 

 
Pre Post Pre Post 

Pre Post 

 Short ISI Long ISI Short ISI Long ISI 

Exercise 
309.99 
(43.83) 

315.22 
(55.99) 

19.33 
(5.79) 

20.16 
(4.99) 

321.88 
(46.38) 

297.75 
(43.32) 

333.01 
(61.23) 

296.87 
(52.59) 

         

Control 
299.78 
(47.15) 

314.49 
(52.35) 

18.02 
(4.17) 

19.25 
(4.24) 

315.11 
(49.05) 

284.05 
(45.60) 

332.03 
(56.52) 

296.61 
(50.79) 

Legend: RT – Reaction Time; CV – Coefficient of Variation; ISI – Inter-stimulus Intervals 
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Table 8 Mean and standard deviation during Complex Choice RT task in each experimental condition 

 RT RT CV RT by Stimulus type 

 
Pre Post Pre Post 

Pre Post 

 F0 F1 F2 target F0 F1 F2 target 

Exercise 
634.39 
(71.52) 

624.10 
(74.37) 

21.11 
(2.81) 

21.89 
(4.39) 

565.66 
(64.48) 

586.00 
(70.25) 

669.75 
(70.04) 

685.14 
(101.71) 

560.02 
(77.13) 

580.52 
(72.23) 

647.90 
(67.73) 

682.88 
(107.58) 

             

Control 
641.69 
(76.90) 

614.16 
(81.32) 

22.48 
(3.93) 

21.15 
(3.13) 

582.39 
(88.47) 

597.34 
(75.77) 

670.92 
(77.91) 

692.25 
(100.68) 

547.04 
(75.69) 

569.58 
(76.86) 

648.33 
(82.89) 

659.88 
(119.32) 

Legend: RT – Reaction Time; CV – Coefficient of Variation; F0 – non-target stimulus sharing 0 features with the target stimulus; F1 - 

non-target stimulus sharing 1 feature with the target stimulus; F2 - non-target stimulus sharing 2 features with the target stimulus. 
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Abstract 

Physical exercise has been shown to improve cognitive function in individuals with Parkinson’s 

disease (PD). However, little is known about how difference exercise modalities influence 

cognition in PD. Research has suggested that aerobic and goal-based exercise may have positive 

effects on cognition of those with PD. Yet, the isolated effects of these exercise modalities have 

never been compared in PD. In addition, the focus of previous investigations on examining the 

effects of exercise mainly on executive functions and the exclusion of PD patients with cognitive 

impairment in these studies may limit defining exercise as a treatment for cognitive decline in 

PD. The aim of the present study was to compare the effects of aerobic and goal-based exercise 

on three cognitive processes and five different cognitive domains in cognitively normal and 

impaired individuals with PD. Seventy-six individuals with PD were randomly allocated into 

three groups: aerobic exercise, goal-based exercise, and control. Participants in the exercise 

groups attended 1-hour sessions 3x/week for 12 weeks, while those in the Control group carried 

on with their regular activities. Changes in cognitive processes were assessed using reaction time 

(RT) tasks, whereas changes cognitive domains were assessed using paper-based 

neuropsychological tests. Participants showed improvement in inhibitory control with the aerobic 

intervention (p=0.039), irrespective of cognitive status. Conversely, participants with cognitive 

impairment in the Control group showed slower RT (p=0.003), slower processing speed 

(p=0.016), and worse set-shifting ability (p=0.0018) at post test. To conclude, this is the first 

study to show that aerobic exercise is more efficient than goal-based exercise for the treatment of 

cognitive deficits in PD with and without cognitive impairment.  

Keywords: Parkinson’s disease, exercise, cognition, dementia 
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4.1 Introduction 

 Although motor symptoms are the hallmark of Parkinson’s disease (PD), deficits in 

cognition have been found to be one of the main (non-motor) contributors to decreased quality of 

life among individuals with PD (Barone et al., 2009). According to Aarsland et al. (2010), 

approximately 26% of non-demented PD patients have some form of mild cognitive decline, 

with deficits primarily in the attention, executive functions, visuospatial, and memory domains. 

Moreover, findings from a longitudinal study demonstrated that 46% of individuals with PD 

developed dementia by the 10 year-mark from diagnosis (Williams-Gray et al., 2013). Hence, in 

order to improve quality of life of those living with PD, treatment strategies should not be 

focused on alleviating motor symptoms alone, but should also aim to improve cognitive function.  

The treatment of cognitive deficits in PD is an enormous challenge, since the underlying 

mechanisms of these deficits are complex and not limited to the disruption of the dopaminergic 

system (Bohnen et al., 2006; Dubois, Pilon, Lhermitte, & Agid, 1990; Kehagia, Barker, & 

Robbins, 2010; Williams-Gray et al., 2009). To date, no standard pharmacological treatment has 

been established for mild cognitive impairment in PD (Emre, Ford, Bilgic, & Uc, 2014), and the 

gold standard treatment for PD motor symptoms (levodopa) has been shown to have variable 

effects on cognition (improvement, no change, or worsening) (Cools, Barker, Sahakian, & 

Robbins, 2001; Gotham, Brown, & Marsden, 1988). While guidelines exist for the treatment of 

dementia in PD, the increased number of drugs to treat motor, cognitive, and psychiatric 

problems may lead to severe side effects (Emre et al., 2014). Thus, since current 

pharmacological therapies are limited in their ability to alleviate cognitive deficits in PD, the 

combination of pharmacological and non-pharmacological therapies has been encouraged. 
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Among non-pharmacological strategies, current research suggests that physical exercise may be 

a promising approach in the treatment of cognitive decline in PD.   

Studies investigating the effects of exercise on cognition in PD have revealed positive 

effects in case series (Nocera, Altmann, Sapienza, Okun, & Hass, 2010; Tabak, Aquije, & Fisher, 

2013)  as well as larger samples of PD patients (Cruise et al., 2011; David et al., 2015; Duchesne 

et al., 2015; McKee & Hackney, 2013; Ridgel, Kim, Fickes, Muller, & Alberts, 2011; Tanaka et 

al., 2009; Uc et al., 2014). A pioneering study by Tanaka and colleagues (2009) showed that a 

24-week long multimodal exercise program improved executive functions in individuals with PD 

compared to a non-exercise control group. Cruise and colleagues (2011) further investigated the 

effects of exercise on cognition in PD with a 12-week multimodal program employing a larger 

cognitive assessment battery. It was found that exercise selectively improved executive 

functions, whereas no changes were observed in memory. Selective effects of exercise on 

executive functions were also supported by two studies investigating the effects of aerobic 

exercise on cognition in PD (Duchesne et al., 2015; Uc et al., 2014). Finally, improvements in 

cognitive domains other than executive functions (i.e. spatial cognition) were demonstrated by 

McKee and Hackney (2013) after a 12-week program of adapted Tango dancing. Taken together, 

these findings demonstrate the potential of exercise in the treatment of cognitive decline in PD. 

However, as recently noted  in a literature review (Murray, Sacheli, Eng, & Stoessl, 2014), there 

are critical aspects in previous investigations that need to be addressed in order to improve the 

current knowledge of how exercise influences cognition in PD.  

The first limitation to be considered is the use of multimodal exercise protocols to 

examine the effects of exercise on cognition. Although previous investigations have attributed 

positive changes in cognition to improvements in aerobic capacity, only two studies to date 
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(Duchesne et al., 2015; Uc et al., 2014) have stringently evaluated the effects of aerobic exercise 

alone (i.e. not confounded by other components) in PD. However, even these studies did not 

compare their effects to other exercise modalities or a control group composed by individuals 

with PD. A current review by Petzinger et al. (2013) suggested that aerobic as well as goal-based 

exercise (i.e. focused on increasing the quality of movement) may act upon motor and cognitive 

pathways that are affected in PD, thus promoting neural plasticity. Since previous exercise 

programs (e.g. multimodal and adapted Tango) involved both aerobic and goal-based 

components, it remains unknown which one was critical to the improvements in cognitive 

function found in these studies. In order to address this gap, the effects of aerobic and goal-based 

exercise were directly compared in the present study.  

Another important aspect to be addressed is the absence of a clear rationale for the 

selection of outcome measures used in previous investigations to evaluate the effects of exercise 

on cognition. The choice of executive functions tests is often based on their sensitivity to the 

effects of exercise, as well as their potential to infer the effects of exercise on frontal lobe 

functioning. Yet, exercise studies have demonstrated that selective components of executive 

functions improve after exercise rather than an overall improvement in executive functions. For 

example, Duchesne et al. (2015) assessed the effects of exercise in two different components of 

executive functions (i.e. inhibition and flexibility) and found that only one of them (i.e. 

inhibition) improved post-exercise. Although it remains unknown why selective effects of 

exercise on executive functions occur, research has suggested that differences in these outcomes 

may result from unique underlying cognitive processes employed by each component of 

executive functions (Testa, Bennett, & Ponsford, 2012). Thus, it could be hypothesized that the 
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assessment of distinct cognitive processes could contribute to further understanding the effects of 

exercise on cognition in PD.  

In the present study, three cognitive processes that underlie the performance of executive 

functions (Stuss & Alexander, 2007) were evaluated through RT tests. These cognitive processes 

were defined as the abilities to initiate and sustain a response (energization), set a stimulus-

response relationship (task-setting), and monitor performance over time for adjustment of 

behaviour (monitoring) (Stuss, 2006; Stuss et al., 2005; Stuss, Binns, Murphy, & Alexander, 

2002). Importantly, the frontal lobe areas found to be critical to each of these processes are 

known to be anatomically and functionally linked to the basal ganglia (Alexander, DeLong, & 

Strick, 1986; Middleton & Strick, 2000), and selective deficits in these processes have been 

observed in individuals with PD (see Chapter 2). Hence, the assessment of energization, task-

setting and monitoring may help clarify the effects of exercise on executive functions in PD, as 

well as provide insight into the brain networks involved in these changes.  

It is also important to note that the focus of previous investigations on assessing 

executive functions in isolation is a limitation in determining the potential of exercise as a 

therapy to prevent and/or treat cognitive decline in PD. Research has shown that despite  deficits 

in executive functions being highly prevalent in PD, deficits in other cognitive domains such as 

memory, language, and visuospatial processing are stronger predictors of dementia in PD than 

deficits in executive functions (Williams-Gray et al., 2009). Thus, in order to determine whether 

exercise maybe useful to prevent or postpone the onset of dementia in PD, a broader range of 

cognitive domains should be assessed before and after exercise. In the current study, the effects 

of exercise were examined in five different cognitive domains: attention/working memory, 

executive functions, memory, language, and visuospatial processing.   
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Finally, it remains unknown whether exercise differentially affects those with and 

without cognitive impairment, since previous studies excluded individuals with PD who had 

cognitive impairment. Investigating the effects of exercise in these subgroups of individuals with 

PD may be critical to determine whether exercise can be used as a complementary therapy in 

more advanced stages of cognitive decline.  

In this context, the current study aimed to compare the effects of aerobic and goal-based 

exercise on three cognitive processes mediated by the frontal lobes and five different cognitive 

domains in cognitively normal and impaired individuals with PD. It was hypothesized that if the 

aerobic capacity is critical to cognitive improvement (as found in previous studies), aerobic 

exercise will be more beneficial than goal-based exercise to enhance cognitive function in 

individuals with PD. Finally, given that aerobic exercise has been shown to improve cognition of 

older adults with and without cognitive decline (Baker et al., 2010; Heyn, Abreu, & Ottenbacher, 

2004), it was hypothesized that both cognitively normal and impaired individuals with PD would 

benefit from aerobic exercise.  

 

4.2 Method 

The present study was approved by the University of Waterloo and the Wilfrid Laurier 

University research ethics boards. Informed consent was obtained from all individuals prior to 

participation.  

4.2.1 Participants 

Participants included 76 people with confirmed diagnosis of idiopathic PD by a 

neurologist who were recruited from the Movement Disorders Research and Rehabilitation 
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Centre (MDRC) database at Wilfrid Laurier University over a 10 month period (Figure 9). In 

order to enrol in the MDRC database, participants had voluntary contacted the MDRC staff or 

have been encouraged to participate in research activities at the centre by their clinician. In their 

first visit participants specify in which type of research studies they would like to participate and 

whether they are able to commit to single appointments and/or studies with longer duration. 

Exclusion criteria were defined as follows: history of neurological diseases other than PD, 

unstable medical condition, uncontrolled diabetes mellitus, uncontrolled hypertension 

(BP>140/90), history of heart disease, resting heart rate >100, history of stroke, history of 

chronic obstructive pulmonary disease, or uncorrected visual impairments (including colour 

blindness).  Following a careful screening for eligibility, participants were randomly assigned 

into three groups: aerobic exercise, goal-based exercise, and control group. Participants were 

classified into cognitively normal  and cognitively impaired  based on the Level 1 guidelines 

from the Movement Disorders Task Force for PD mild cognitive impairment (Litvan et al., 2012) 

and PD dementia (Dubois et al., 2007). All participants (but four drug naïve) were assessed while 

in their ON medication state. 
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Figure 9 Flow of participants throughout the study (Study 3) 
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4.2.2 Apparatus and Experimental Procedures  

The assessment phase was completed in two separate sessions. The first consisted of the 

assessment of participants’ clinical and functional conditions and the second involved the 

assessment of participants’ cognitive function. These sessions took place on two separate days 

within two weeks. Alternate forms of neuropsychological tests were used at post-exercise testing 

if available. Except for the assessment of aerobic capacity and RT tasks, participants were 

assessed at baseline and at the end of the study by trained evaluators blinded to the treatment 

arm, but not to pre-post training status.   

Demographic and Clinical information 

After reading and signing the informed consent form, participants filled out two 

questionnaires. The first (Geriatric Depression Scale) provided information about participants’ 

depression and anxiety signs, and the second (15-item Waterloo Handedness Questionnaire) 

evaluated participants’ hand preference. Following the completion of the questionnaires, PD 

participants had the severity of their motor symptoms assessed by a movement disorders 

specialist using the Unified Parkinson’s disease Rating Scale (UPDRS) (Fahn & Elton, 1987), 

and had their general cognitive status assessed by a trained evaluator using the Montreal 

Cognitive Assessment (MoCA). Participants’ demographic and clinical information is displayed 

on Table 9.  
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Table 9 Demographic and clinical information of 58 participants who completed the study (Study 3) 

 Aerobic (n=22) Goal-based (n=21) Control (n=15) P value 

Demographic information     

Age (years) 70.63 (9.27) 69.76 (8.34) 67.60 (8.34) 0.57 

Sex (M/F) 18/3 12/9 11/4 - 

Handedness (R/L) 21/1 17/4 14/1 - 

Education (years) 14.45(3.26)
a
 14.28 (3.28)

b
 16.66 (2.41) 0.052 

Clinical information     

GDS 6.22 (5.83) 10.09 (7.94) 5.60 (5.26) 0.7 

MoCA 25.22 (4.53) 24.57 (3.99) 25.80 (5.00) 0.71 

UPDRS III 25.38 (8.07) 27.64 (9.72) 21.76 (9.20) 0.16 

Disease duration (years) 5.95(5.12) 6.09 (4.18) 5.60 (5.69) 0.95 

LED 710.63 (425.70) 482.91 (342.67) 759.70 (560.19) 0.12 

 

Legend: GDS – Geriatric Depression Scale; MoCA – Montreal Cognitive Assessment; UPDRS III – Unified Parkinson’s disease Rating Scale 

motor subsection; Disease duration – years since diagnosis; LED – Levodopa Equivalent Dose; a = Aerobic different than Control (p=0.036); b 

= Goal-based different than Control (p=0.025)
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Exercise interventions 

Participants were randomly assigned into three groups: aerobic exercise, goal-based 

exercise, and control group. Those in the exercise groups attended three 1-hour sessions per 

week for 12 weeks, while participants in the control group were instructed to continue with their 

regular activities (no restrictions were made regarding the types of activities).  

For the aerobic training, recumbent cycle ergometers (700 Excite + Recline, Technogym 

USA©, Seattle, Washington) were used in order to provide safety and stability during training. 

The exercise class started with 5 minutes warm up followed by 30-40 minutes of aerobic training 

and 2 min cool down. Participants initially cycled for 30 minutes and increased duration weekly, 

with all participants cycling for 40 minutes by week 4. Exercise intensity levels started at 40-

50% heart rate reserve (HHR) and increased to 60-70% HRR by week 4. Intensity prescription 

was defined based on the Karvonen method which is expressed in the equation Target HR = 

([(HRmax - HRrest)* (% exercise intensity)]+HRrest) (ACSM, 2000).  It is important to note 

that these parameters were used as guidance and that participants were instructed to give their 

best effort without feeling unsafe.  

For the goal-based training, participants performed a standardized exercise protocol (PD 

SAFEX™ - without eyes closed condition) that involved walking exercises coordinating upper 

and lower limbs on a simultaneous or alternating manner, non-progressive muscle-toning 

exercises using resistance bands and the persons’ own body weight, and whole body stretching 

exercises. A new sequence of exercises was introduced every week in order to increase the level 

of difficulty progressively. 

Participants were excluded from analysis if exercise adherence was less than 80% (29/36 

classes) or if 3 classes were missed in a row. 
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Exercise sessions were led by Kinesiology graduate students (not blinded to study 

purpose) and participants were assisted by trained volunteers. 

4.2.3 Outcome measures 

Cognitive processes 

In order to assess the effects of exercise on energization, task-setting, and monitoring , 

participants performed three reaction time (RT) tasks from the Feature Integration Test (FIT) 

(Stuss et al., 2002). These tasks were composed of a Simple RT, an Easy Choice RT, and a 

Complex Choice RT task. The stimulus in these tasks was one of four shapes: square, circle, 

triangle, or cross. The shapes were dark grey or coloured (red, yellow, green or blue) on a black 

background. For all tasks, the stimulus was presented at interstimulus intervals varying between 

3 s and 7 s. The stimulus stayed on the screen for 2 seconds or until a response was made. In the 

Simple RT, the stimulus was a square that was presented 50 times after 5 practice trials. For Easy 

and Complex Choice RT tasks, a total of 102 trials were performed, preceded by 10 practice 

trials each. In the Easy Choice RT task, shapes were presented one at a time in random order, but 

one of them was initially defined as target and the others, consequently, were non-targets. In the 

Complex Choice RT task, shapes were also presented one at a time in random order, but each 

stimulus varied in a combination of shape, colour, and internal line orientation, with the target 

being defined by a specific combination of these three features. Participants were asked to 

respond to target stimuli by pressing button 1 with their right index finger and to non-target 

stimuli by pressing button 2 with their right middle finger on a Serial Response Box (Psychology 

Software Tools, Inc.) with five buttons (numbered 1-5 from left to right) aligned horizontally.  
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  Chronic effects of exercise on energization were assessed through the outcome measure 

overall RT. Since energization deficits are characterized by slowness in RT, then it was expected 

that exercise would lead to faster RT. The effects of exercise on task-setting were assessed 

through the outcome measures RT by stimulus type (target vs non-target) and number of false 

positive errors. Since deficits in task-setting are characterized by an inability to establish the 

criteria defining a target stimulus, then it was expected that exercise would lead to faster RT for 

the target stimulus and decrease in false positive errors. Lastly, the effects of exercise on 

monitoring were assessed through the outcome measures RT by inter-stimulus interval and total 

number of errors. Given that monitoring deficits are characterized by the inability to 

anticipate/predict time of stimulus onset and to note an error for appropriate adjustment of 

behaviour, then it was expected that exercise would lead to improvements in time expectancy 

(faster RT for long interstimulus interval compared to short) as well as decrease in the total 

number of errors. 

Cognitive domains 

 Participants were assessed in five cognitive domains (attention/working memory, 

executive function, memory, language, and visuospatial function) using paper-based 

neuropsychological tests. Two tests representing each cognitive domain were chosen according 

to the guidelines of the Movement Disorders Task Force to evaluate PD mild cognitive 

impairment (Litvan et al., 2012). Attention and working memory were assessed using the Digit 

Span (forward and backwards) and the Corsi Block test, executive functions were assessed using 

the Trail Making Test (parts A and B) and the Stroop test (word, colour, and colour-word 

conditions), memory was assessed using the Short-form of the California Verbal Learning Test 

and the Rey-Osterrieth (Rey-O) Complex Figure Test (immediate recall, and delayed recall), 
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language was assessed using two verbal fluency tasks (phonemic and semantic) and the Short-

form of the Boston Naming Test, and visuospatial processing was evaluated using the copy of 

the Intersecting Pentagons from the Wechsler Memory Scale and the Benton Line Orientation 

Test. 

 Aerobic capacity 

Oxygen uptake was measured during a submaximal graded exercise test on a 

cycle ergometer. Participants started with a 2 minute warm up with 30 watts workload on the 

cycle ergometer. Then, work rate was increased by 15 watts every 1 minute until approximately 

10 minutes. Gas exchange was recorded throughout the protocol. For the gas exchange 

measurements, levels of oxygen (O2) and carbon dioxide (CO2) were assessed breath-by-breath 

using an Ergocard Cardiopulmonary Stress Test Metabolic Cart (Roxon medi-tech ltd. St-

Leonard, Quebec, Canada). Heart rate was recorded at rest, continuously during graded exercise 

test, and after graded exercise test using a Polar HR monitor (Lachine, Quebec, Canada). After 

the test, HR was monitored until it returned to values close to baseline. Blood pressure (BP) was 

assessed at rest (sitting and standing), and after the completion of the test until BP returned to 

values close to baseline. BP measures were taken using an OMRON® 7 series blood pressure 

monitor. The protocol terminated if two of the following criteria were achieved: participant’s 

heart rate reaches 70% of the age-predicted maximal heart, respiratory exchange ratio (RER) was 

greater than 1.1, participant rate of perceived exertion (RPE) was greater than 16, or participant 

asked to stop. The equation to predict maximal heart rate was [208-(0.7* age)] ( Tanaka, 

Monahan, & Seals, 2001) and [164-(0.7*age)] for individuals on β-blockers (Brawner, Ehrman, 

Schairer, Cao, & Keteyian, 2004). Outcome measures for aerobic capacity included Stage and 

VO2 at test termination.  
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4.2.4 Statistical Analysis  

One-way analysis of variance (ANOVA) was used to compare demographic and clinical 

features across groups at baseline. Although it was recommended at the beginning of the study 

that all PD medication was kept the same throughout the course of the study, 4 participants in the 

aerobic group (+66, +120, +160, and - 100 LED change), 4 in the Goal-based group (+33, +200, 

-400, and -204.25 LED change), and 6 in the Control group (+82.5, +150, +200,+ 240, and +330, 

-150 LED change) felt the need to do so. Given that the majority of cognitive outcomes in the 

current study respond poorly to dopaminergic treatment (Kehagia et al., 2010), these participants 

were kept in the final analysis. However, in order to control for any influence changes in 

medication could have on the outcomes from the current study, change in LED was included as a 

covariate in the final analysis. Thus, analysis of covariance (ANCOVA) was used to assess the 

effects of exercise (pre vs post) across groups (Aerobic vs Goal-based vs Control) while 

controlling for participants’ cognitive status at baseline (normal vs impaired) and changes in 

LED from pre to post-test. Fisher LSD post-hoc was used to examine significant differences and 

alpha level was kept at p<0.05. 

Statistical analyses were performed on SPSS
®
 version 22 software. 

  

4.3 Results  

4.3.1 Groups’ demographic and clinical information at baseline 

 Groups were matched for age, general cognitive status (MoCA), depression signs (GDS), 

motor disease severity (UPDRS-III), and disease duration (years since diagnosis), and were 
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taking similar doses of PD medication (LED). However, group differences were found for years 

of education (F(2,55)=3.10; p=0.052; 
2

p =0.10), where participants in the Control group had 

more years of education than those in the Aerobic (p=0.036) and Goal-based (p=0.025) groups. 

 Results regarding group differences at baseline for all outcome measures are available in 

the Supplementary Material section of this chapter. 

 The following sections are focused on describing interactions between time of 

assessment, group, and/or cognitive status.   

4.3.2 Cognitive processes  

Reaction time 

 The assessment of RT pre and post intervention showed no significant differences 

between groups in the Simple RT task (Figures 10A and 10B). Conversely, an interaction 

between time of assessment, group, and cognitive status for Easy Choice RT task (F(2,51)=3.47; 

p=0.038; 
2

p =0.11) revealed that participants with cognitive impairment in the Control group 

were slower at post-test (p=0.003) (Figure 10D). In addition, an interaction between time of 

assessment and cognitive status was found for the Complex Choice RT task (F(1,51)=4.43; 

p=0.04; 
2

p =0.08), showing that participants with cognitive impairment from all groups were 

slower at post-test (p=0.028)  (Figure 10F). 
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Figure 10 Participants with cognitive impairment (CI) in the Control group showed slowing in 

RT at post-test in the Easy Choice RT (ECRT) task (D). Participants with cognitive impairment 

had slower RT at post-test in the Complex Choice RT (CCRT) (F). 

 

There were no interactions for RT variability, RT by stimulus type or RT by inter-

stimulus interval. 
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  An interaction between time of assessment, group, and cognitive status was found for the 

Complex Choice RT task (F(2,51)=3.84; p=0.027; 
2

p =0.13), showing that only PD patients with 

cognitive impairment in the Aerobic group were more accurate at post-test compared to pre-test 

(p=0.006) (Figure 11 – right).  

 

 

Figure 11 Only participants in the Aerobic group with cognitive impairment (CI) were more 

accurate at post-test in the Complex Choice RT task (right). 

 

4.3.3 Cognitive domains 

The effects of exercise on the executive functions domain were observed for both Stroop 

and TMT tasks. In the Stroop Test, an interaction between group and time of assessment 

approached significance for the Colour Word condition (F(2,51)=3.04; p=0.056; 
2

p =0.10). This 

interaction showed that the Aerobic group named more correct colour/word items at post-test 

(p=0.039), while performance did not change for the Goal-based and Control groups (Figure 12).  

No differences between groups were found for the Word and Colour conditions following the 

intervention.  
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Figure 12 Regardless of cognitive status, participants in the Aerobic group showed improvement 

in response inhibition (Stroop test) at post-test. 

 

 

Three individuals in the Aerobic group, 3 in the Goal-based group, and 1 in the Control 

group were not capable of completing the TMT. With respect to the remaining participants, an 

interaction between time of assessment, group and cognitive status was marginally significant for 

the TMT A (F(2,44)=3.02; p=0.058; ƞ2
=0.12). This interaction showed that participants with 

cognitive impairment in the Control group were significantly slower at post-test (p=0.016) 

(Figure 13B). A similar interaction between time of assessment, group, and cognitive status was 

found for TMT part B (F(2,44)=3.19; p=0.05; ƞ2
=0.12), where participants with cognitive 

impairment in the Control group were significantly slower at post-test (p=0.0018) (Figure 13D). 

Finally, the interaction between time of assessment, group, and cognitive status was marginally 

significant for TMT B-A (F(2,44)=2.73; p=0.076; ƞ2
=0.11), once again showing a worsening in 

performance for CI participants in the Control group at post-test (p=0.003).   
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Figure 13 Participants with cognitive impairment (CI) in the Control group were significantly 

slower at post-test compared to pre-test for both TMT A and TMT B. 
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 In the memory domain, an interaction between time of assessment and cognitive status 

(F(1,51)=7.22; p=0.009; 
2

p =0.12) for the CVLT short recall revealed that participants with 

normal cognition from all groups recalled more words at post-test (p=0.045), while participants 

with cognitive impairment did not change. There were no differences between groups for the 

long recall of the CVLT or any condition of the Rey-O complex figure task from pre to post 

assessments. 

 Finally, in the visuospatial domain, an interaction between time of assessment and 

cognitive status was found for the Pentagons task (F(1,51)=10.85; p=0.001; 
2

p =0.17), showing 

that participants with cognitive impairment from all groups had worse performance at post-test 

(p=0.0002).  A second interaction between time of assessment, group, and cognitive status was 

marginally significant for the Pentagons’ task (F(2.51)=2.72; p=0.07; 
2

p =0.09), suggesting that 

specifically participants from the Control and Goal-based groups had worse performance at post-

test (Figure 14 - right).  

 

 

Figure 14  Participants with cognitive impairment (CI) from both Goal-based and Control 

groups had lower scores in the Pentagons task, while those in the Aerobic group remained at 

similar levels 
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 There were no differences between groups in the language domain after exercise 

interventions.  

4.3.4 Aerobic capacity 

 Twenty participants in the Aerobic group (out of 22), 18 participants in the Goal-based 

group (out of 21), and 14 participants in the Control group (out of 15) completed the graded 

exercise test at pre and post-test. Reasons for not completing the test included declining to take 

the test (Aerobic n=2, Goal-based n=2, Control n=1) and technical difficulties (Goal-based n=1).   

 In order to confirm whether the test termination criteria was comparable across groups at 

pre and post-testing, HR, RER, and RPE at test termination were examined. When comparing 

HR, RER, and RPE between groups at pre and post, no main effect of time of assessment, time 

of assessment by group interaction, or time of assessment by group by cognitive status 

interaction was found. These results confirmed that the same criteria to terminate the graded 

exercise test were used during pre and post-test across groups.  

An interaction between time of assessment and group (F(2,45)=6.32; p=0.003; 
2

p =0.21) 

showed that, although all groups completed more stages at post-test (main effect of time of 

assessment F(1,45)=21.39; p<0.0001; 
2

p =0.32), participants in the Aerobic group were the only 

ones that completed significantly more stages at post-test (p<0.0001). It is important to note that 

each stage of the graded exercise test was one minute long and composed by a 15 watts workload 

increment. Thus, these results showed that at post-test participants in the Aerobic group were 

able to sustain exercise for longer duration and with greater workload than the other two groups 

until termination criteria was achieved.  
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The analysis of VO2 at test termination showed a main effect of time of assessment 

(F(1,45)=5.39; p=0.024; 
2

p =0.10), where participants from all groups had higher VO2 at test 

termination at post-test (p=0.017). No interaction between time of assessment and group or 

interaction between time of assessment, group, and cognitive status were found for this outcome 

measure. 

4.3.5 Severity of PD motor symptoms 

 With respect to the severity of Parkinsonian motor symptoms, an interaction between 

group and time of assessment (F(2,51)=4.79; p=0.012; 
2

p =0.15) showed that both Aerobic 

(p=0.0003) and Goal-based (p=0.0008) groups improved  severity scores at post-test, irrespective 

of cognitive status (Aerobic pre: M=26.51; Aerobic post: M=21.10; Goal-base pre: 27.77; Goal-

based post: M=22.38). No difference in severity scores were found for the Control group 

(Control pre: M=21.93; Control post: M=22.72). 

 

4.4 Discussion 

The aims of the present study were to compare the effects of aerobic and goal-based 

exercise on three cognitive processes and five cognitive domains in cognitively normal and 

impaired individuals with PD. Neither aerobic nor goal-based interventions improved the 

processes of energization, task-setting, and monitoring as seen with the  RT tasks, however 

aerobic exercise was found to improve executive functions (i.e. response inhibition) in both 

cognitively normal and impaired individuals with PD. 
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In line with previous studies in PD (Duchesne et al., 2015; Uc et al., 2014), aerobic 

exercise led to improvements in executive functions. In the current study, improvements in 

executive functions were demonstrated by an increase in the number of items correctly named in 

the colour-word condition of the Stroop test after aerobic exercise. Importantly, the present study 

contributes with two new pieces of evidence. This is the first study to disentangle the effects of 

exercise modality on cognitive functions in PD, showing that aerobic exercise was more 

effective than goal-based exercise on improving executive functions in individuals with PD. 

Therefore, the aerobic component of exercise in previous multimodal studies may have played a 

critical role in changes in cognition. In addition, this is the first study to demonstrate that 

cognitively normal and impaired individuals with PD can benefit similarly from aerobic exercise. 

Recent research has shown that moderate to high intensity exercise (primarily aerobic) can lead 

to increases in serum BDNF levels (Frazzitta et al., 2014; Marusiak et al., 2015), increases in 

dopamine transporter D2 expression (Fisher et al., 2013) and changes in cortical excitability 

(Fisher et al., 2008) in individuals with PD. Although these studies were not focused on the 

effects of exercise in cognition, they provide insight into the potential underlying mechanisms of 

improvements in executive functions found in the current study. 

  With respect to the effects of exercise on energization, task-setting, and monitoring, 

there was no strong evidence to suggest that exercise could improve these processes. However, 

results showed that cognitively impaired participants from the Control group were significantly 

slower at post-test in the Easy Choice RT test. A similar slowing in RT for this group was 

observed in the Simple RT and Complex Choice RT tasks, but these results did not reach 

statistical difference. The slowness in RT found in the Control group may represent the 

progression of cognitive deficits over the 12-week period. Importantly, these results may suggest 
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that exercise could have prevented worsening in cognitive function of participants with cognitive 

impairment in both Aerobic and Goal-based exercise groups. Although a decrease in the total 

number of errors was found for participants with cognitive impairment from the Aerobic group 

in the complex choice RT task, these results should be interpreted with caution since these 

participants also showed slower RT at post-test in this task. Hence, improvements in accuracy 

observed in individuals with cognitive impairment from the Aerobic group may have represented 

a change in strategy (traded speed for accuracy) at post-test rather than true improvements in 

accuracy.  

  In relation to the cognitive domains that have been linked to increased risk of dementia 

in PD, main effects of time of assessment for memory, language and visuospatial processing did 

not reveal any specific effects of exercise. Changes in cognitive domains other than executive 

functions have been found in older adults with normal cognition (Erickson et al., 2011) and 

individuals with mild cognitive impairment (Baker et al., 2010; Suzuki et al., 2013), but these 

studies were significantly longer than the present study (12 and 6 months, respectively). 

Nonetheless, it was found that participants with cognitive impairment in the Control and Goal-

based groups had worse performance in a task assessing visuospatial function (Intersecting 

Pentagons) at post-test, while performance in this task did not change for those in the Aerobic 

group. This result may suggest that, even though Aerobic exercise did not improve visuospatial 

functions, it might have attenuated their deterioration. This is a very important result given that 

performance in the copy of the intersected pentagons was identified as a strong predictor of PD 

dementia in a large longitudinal study (Williams-Gray et al., 2009; Williams-Gray et al., 2013).  

Although it remains unclear whether exercise has a protective effect for neurodegenerative 

processes, studies have demonstrated that exercise may decrease brain atrophy (Colcombe et al., 
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2006; Erickson et al., 2011; Suzuki et al., 2013) and decrease future risk of mild cognitive 

impairment (Geda et al., 2010) and dementia (Hamer & Chida, 2009) in older adults. Therefore, 

studies need to further evaluate the effects of exercise on cognitive function and brain health 

(e.g. brain volume and neurotransmitters activity) in individuals with PD. This should be 

addressed through the use of longitudinal randomized controlled trials, in order to clarify 

whether exercise can prevent or even delay the progression of cognitive decline in PD.  

Limitations of the current study were the lack of a follow up period and sample size. 

Although a follow up would bring important information regarding the long lasting effects of 

exercise, the choice of neuropsychological tests with alternate versions would be essential to 

avoid practice effects due to repetition of tests. In relation to sample size, a larger sample would 

be especially important considering the variability in performance of participants with cognitive 

impairment. However, to date, this study has a sample size larger than the majority of studies 

available in the literature for PD.  

In conclusion, the present study showed that the aerobic component of exercise is critical 

to improvements in executive functions in PD. In line with previous investigations, aerobic 

exercise improved specifically inhibitory control. This selective effect of aerobic exercise could 

not be attributed to changes in energization, task-setting, or monitoring, since no changes were 

found in these processes from pre to post-test. Importantly, positive effects of exercise on 

executive functions were found in PD patients with and without cognitive impairment, showing 

that aerobic exercise may be used as adjunct therapy in PD across different cognitive status. 

Finally, participants with cognitive decline who did not receive specific exercise intervention 

(Control group) showed deterioration in performance over the course of the study while 
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comparable PD patients in the exercise groups did not.  These findings suggest that exercise may 

postpone cognitive decline in PD.  
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Supplementary Material – Chapter 4 

Table 10 Groups’ performance at baseline on RT tasks  

 Aerobic (n=22) Goal-based (n=21) Control (n=15) p value 

Reaction Time (ms)     

SRT 320.06 (62.53) 322.80 (47.91) 315.19 (56.50) 0.92 

ECRT 619.25 (122.62) 601.68 (100.34) 590.35 (127.81) 0.74 

CCRT 696.22 (117.29) 715.39 (139.77) 696.10 (166.08) 0.88 

Reaction Time Variability (CV)     

SRT CV 19.72 (5.6) 18.46 (4.28) 18.03 (5.29) 0.56 

ECRT CV 21.12 (3.17) 22.48 (4.23) 20.01 (3.89) 0.15 

CCRT CV 23.63 (4.40) 26.90 (5.15)
b
 22.53 (3.92) 0.013 

Reaction Time by ISI (ms)     

SRT short ISI 329.80 (58.86) 337.46 (49.23) 331.17 (62.79) 0.89 

SRT long ISI 309.60 (68.68) 307.71 (48.40) 298.76 (52.77) 0.84 

ECRT short ISI 624.07 (121.83) 619.23 (123.15) 598.19 (144.98) 0.82 

ECRT long ISI 613.50 (123.55) 586.78 (92.94) 583.52 (112.96) 0.64 
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Reaction time by Stimulus type(ms)     

ECRT target 647.09 (131.54) 618.78 (97.43) 601.38 (97.37) 0.46 

ECRT non-target 607.90 (123.64) 597.06 (105.81) 581.03 (129.83) 0.79 

CCRT target 750.38 (150.57) 786.10 (172.07) 753.52 (257.41) 0.80 

CCRT non-target 0 common feature 605.57 (115.35) 630.91 (148.35) 630.36 (175.46) 0.82 

CCRT non-target 1 common feature 658.70 (144.38) 659.06 (151.54) 647.45 (167.96) 0.96 

CCRT non-target 2 common feature 722.21 (97.23) 757.52 (140.22) 741.39 (152.41) 0.67 

Accuracy (absolute value)     

ECRT total error 4.18 (7.72) 7.09 (13.99) 6.73 (14.15) 0.69 

ECRT false positive error 1.72 (4.18) 4.61 (13.04) 3.13 (8.07) 0.59 

ECRT false negative error 2.45 (3.72) 2.47 (2.80) 3.60 (6.35) 0.67 

CCRT total error 8.81 (14.57) 4.47 (6.85) 4.73 (7.69) 0.34 

CCRT false positive error 5.36 (12.68) 2.14 (3.32) 1.46 (2.87) 0.28 

CCRT false negative error 3.45 (6.56) 2.33 (4.10) 3.26 (5.04) 0.77 

Legend: SRT – Simple Reaction Time ; ECRT – Easy Choice Reaction Time; CCRT – Complex Choice Reaction Time; CV – 

Coefficient of Variation; ISI – inter-stimulus interval; b = Goal-based different than Control (p<0.05) 
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Table 11 Groups’ performance at baseline on neuropsychological tests 

 Aerobic (n=22) Goal-based (n=21) Control (n=15) p value 

Working Memory/Attention     

Digit Span forward (points) 10.04 (2.47) 10.28 (1.95) 10.73 (2.31) 0.66 

Digit Span backwards (points) 6.22 (2.34) 5.66 (1.85) 6.86 (2.23) 0.26 

Digit Span Total (points) 16.27 (4.48) 15.95 (3.00) 17.6 (3.83) 0.42 

Corsi Block Test (level) 4.40 (1.33) 4.38 (0.86) 4.26 (1.22) 0.93 

Executive Function     

Trail Making Test part A (s) 40.42 (14.64) 46.72 (24.62) 43.71 (34.11) 0.74 

Trail Making Test part B (s) 93.52 (48.89) 135.33 (72.81) 88.78 (70.51) 0.07 

Trail Making Test B-A (s) 53.10 (40.28) 88.61 (63.87)
b
 45.07 (41.03) 0.03 

Stroop Test Word condition (number of words) 80.13 (21.69) 80.95 (18.40) 82.06 (19.82) 0.95 

Stroop Test Colour condition (number of words) 55.68 (17.50) 57.00 (12.04) 55.06 (16.31) 0.92 

Stroop Test Colour-Word condition (number of words) 29.13 (13.55) 29.52 (8.73) 33.40 (11.51) 0.49 

Memory     

CVLT short recall (number of words) 6.09 (2.22) 6.19 (1.47) 6.60 (1.95) 0.71 

CVLT long recall (number of words) 5.22 (2.79) 5.76 (1.97) 6.46 (2.19) 0.30 
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CVLT cued recall (number of words) 5.72 (2.37) 6.14 (1.74) 6.86 (1.99) 0.26 

CVLT recognition (number of words) 8.40 (1.14) 8.19 (1.03) 8.46 (0.83) 0.68 

CVLT forced recall (number of words) 9.00 (0.00) 8.95 (0.21) 8.93 (0.25) 0.52 

Rey-O short recall (points) 17.68 (8.53) 14.71 (6.20) 20.33 (6.52) 0.11 

Rey-O long recall (points) 18.02 (8.56) 14.35 (5.72) 19.53 (5.86) 0.07 

Language     

Phonemic fluency (number of correct words) 11.00 (3.05)
a
 11.19 (4.81)

b
 14.46 (4.45) 0.02 

Semantic fluency (number of correct words) 18.04 (4.89) 19.25 (6.85) 19.78 (6.80) 0.68 

Boston Naming Test (number of items correctly named) 13.63 (1.70) 13.28 (1.95) 14.53 (0.91) 0.08 

Visuospatial processing     

Copy of the Intersected Pentagons (points) 9.13 (1.78) 9.09 (1.70) 9.26 (1.09) 0.94 

Benton Line Orientation (number of correct judgments) 52.71 (8.29) 48.15 (11.41) 53.2 (4.57) 0.16 

Legend: CVLT - California Verbal Learning Test (short form); a = Aerobic different than Control; b = Goal-based different than 

Control (p<0.05) 
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Abstract 

Associations between deficits in cognition and gait have been demonstrated in Parkinson’s 

disease (PD), suggesting that individuals with PD may rely on cognition to consciously control 

gait. Physical exercise has been shown to improve both cognition and gait in PD. However, it 

remains unknown how different modes of exercise may influence cognition and gait as well as 

whether improvements in cognition can lead to improvements in gait in PD.  This study aimed to 

compare the effects of aerobic and goal-based exercise on cognition and gait in PD patients with 

and without cognitive impairment. In addition, this study investigated whether exercise-induced 

changes in cognition could predict changes in gait in PD. Thirty-five PD participants were 

randomized into an Aerobic (n=18) or a Goal-based (n=17) exercise group and attended 1-hour 

sessions 3x/week for 12 weeks. Cognitive assessment included three reaction time (RT) and 

three executive functions tests (Digit Span, Stroop test, and Trail Making Test). Gait was 

assessed in single and dual-task conditions.  Results showed that aerobic and goal-based exercise 

improved cognition of individuals with PD, irrespective of cognitive status. Specifically, aerobic 

exercise improved accuracy in choice RT (p=0.06) and performance in the Stroop test (p=0.032), 

while goal-based exercise improved performance in the Digit Span (p=0.06). Positive effects of 

exercise on gait were found only for PD patients with cognitive impairment and exclusively in 

the dual-task condition. Specifically, aerobic exercise decreased step time variability (p=0.002), 

whereas goal-based exercise decreased step time (p=0.05) during dual-task at post-test. Changes 

in cognition predicted changes in gait only for the Aerobic group. In conclusion, aerobic and 

goal-based affected different aspects of cognition and gait in PD. Interestingly, improvements in 

cognition predicted improvements in gait only after aerobic exercise.  

Keywords: Parkinson’s disease, exercise, cognition, executive functions, gait 
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5.1 Introduction 

  Deficits in cognition exist in Parkinson’s disease (PD) and have been associated with 

impaired gait during single and dual-task walking (Lord et al., 2014; Rochester et al., 2004; 

Yogev et al., 2005). This relationship has been suggested to reflect an increased reliance on 

cognition to control gait in PD as a result of decreased gait automaticity (Baker, Rochester, & 

Nieuwboer, 2007; Iansek, Danoudis, & Bradfield, 2013; Rochester et al., 2007). Although 

correlational evidence does not imply causality, research has shown that activity in brain areas 

important for cognitive processing (e.g. dorsolateral pre-frontal cortex) is greater  in individuals 

with PD compared to age-matched controls when performing automatic movements (Wu & 

Hallett, 2005). These findings suggest that individuals with PD rely on activity of brain areas 

involved in cognition to compensate for basal ganglia dysfunction when performing automatic 

movements. Hence, it has been proposed that cognitive decline may limit the ability of 

individuals with PD to compensate for gait disturbances.  

Deficits in attention and executive functions have been consistently linked to reduced gait 

speed and increased step-to-step variability in individuals with PD, especially during dual-task 

walking (Lord, Rochester, Hetherington, Allcock, & Burn, 2010; Smulders et al., 2013; Yogev et 

al., 2005). Since the frontal lobes play an important role in the processing of attention and 

executive functions, these associations stem from the involvement of frontal lobe functioning in 

gait control in PD.  In order to understand specific contributions of frontal areas to gait control in 

PD, one alternative could be to evaluate the relationship between gait and behavioural outcomes 

of cognitive processes in which distinct frontal lobe areas are critical (Stuss, 2011; Stuss & 

Alexander, 2007; Stuss et al., 2005; Stuss, Binns, Murphy, & Alexander, 2002). Previous 

research in individuals with focal frontal lobe lesions has repeatedly demonstrated that at least 
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three cognitive processes seem to be regionally organized within the frontal lobes (Alexander, 

Stuss, Picton, Shallice, & Gillingham, 2007; Stuss & Alexander, 2007; Stuss et al., 2005; Stuss et 

al., 2002). These cognitive processes were defined as the abilities [1] to initiate or sustain a 

response (energization), [2] to set a stimulus-response relationship (task-setting), and [3] to 

monitor performance over time for quality control and adjustment of behaviour (monitoring). 

Most importantly, the frontal areas found to be critical to each cognitive process (superior 

medial, left lateral, and right lateral, respectively) are known to be anatomically and functionally 

linked to the basal ganglia (Alexander, DeLong, & Strick, 1986; Middleton & Strick, 2000a, 

2000b), and selective deficits in these processes have been previously found in individuals with 

PD (see Chapter 2). Thus, investigating whether a relationship exists between cognitive 

processes regionally organized within the frontal lobes and gait behaviour could help define the 

contributions of specific frontal areas to gait in PD. Moreover, if individuals with PD rely on 

frontal lobe functioning to compensate for gait impairments, one might expect that therapies 

targeting the improvement of frontal lobe functioning could benefit gait control of those with 

PD.  

The treatment of cognitive decline in PD is a challenge due to its multifactorial 

underlying mechanisms (Kehagia, Barker, & Robbins, 2010). Currently, there is no standard 

pharmacological treatment for cognitive deficits in PD, and dopaminergic medication may only 

partially improves cognitive function (Cools, Barker, Sahakian, & Robbins, 2001; Gotham, 

Brown, & Marsden, 1988). As a complementary strategy, physical exercise has been shown to 

provide benefits to executive functions in PD (Cruise et al., 2011; Duchesne et al., 2015; Tanaka 

et al., 2009; Uc et al., 2014). Interestingly, a recent review suggested that both aerobic and goal-

based exercise may improve cognitive and motor function in PD (Petzinger et al., 2013). 
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However, the effects of aerobic and goal based exercise on cognition and gait have never been 

concurrently assessed in individuals with PD. Furthermore, it remains unknown whether 

cognitive changes as a result of exercise may be associated with better gait control in PD.  

 The present study aimed to compare the effects of aerobic and goal-based exercise on 

three cognitive processes mediated by the frontal lobes (energization, task-setting, and 

monitoring), executive functions, and gait in individuals with PD. In addition, this study aimed to 

evaluate whether exercise-induced changes in cognition are associated with changes in gait in 

PD. The effects of exercise on cognition and gait were examined in PD patients with and without 

cognitive impairment. This was important because PD patients with cognitive impairment also 

have poor gait control (Amboni et al., 2012). Thus, investigating the effects of exercise on PD 

patients with different cognitive status could reveal the potential of exercise to treat cognitive 

and gait deficits in mild as well as advanced stages of impairment. Based on findings from the 

current thesis (see Chapter 4), it was hypothesized that aerobic exercise would be more 

beneficial than goal-based exercise to enhance cognition in PD. Although evidence exists that 

both aerobic and goal-based exercise may improve gait in PD (Sage & Almeida, 2009), it was 

expected that goal-based exercise would improve gait during single-task walking due to its 

specificity to enhance gait control (e.g. walking with longer steps, challenging dynamic balance, 

training inter-limb coordination). Yet, considering the link between cognition and gait in PD, it 

was hypothesized that aerobic exercise would improve gait during dual-task (i.e. more 

cognitively demanding than single-task) and that changes in cognition would be associated with 

changes in gait as a result of aerobic exercise.  
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5.2 Methods 

The present study was approved by the University of Waterloo and the Wilfrid Laurier 

University research ethics boards. Informed consent was obtained from all individuals prior to 

participation.  

5.2.1 Participants 

Thirty-five participants with confirmed diagnosis of idiopathic PD were recruited from 

the Movement Disorders Research and Rehabilitation Centre database at Wilfrid Laurier 

University (Waterloo, Canada) over a 10 month period. Participants were randomly allocated 

into an Aerobic or a Goal-based exercise group (Figure 15). Exclusion criteria were defined as 

[1] history of neurological diseases other than PD, [2] unstable medical condition, [3] 

uncontrolled diabetes mellitus, [4] uncontrolled hypertension (BP>140/90), [5] history of heart 

disease, [6] resting heart rate >100, [7] history of stroke, [8] history chronic obstructive 

pulmonary disease, or [9] uncorrected visual impairments (including colour blindness). In 

addition, participants were excluded from the analysis if they had any changes in medication 

during the study period, if exercise adherence was less than 80% (29/36 classes), or if 3 classes 

were missed in a row. Participants were classified as cognitively normal and cognitively 

impaired based on the Level 1 guidelines from the Movement Disorders Task Force for PD mild 

cognitive impairment (Litvan et al., 2012) and PD dementia (Dubois et al., 2007). All 

participants (but two drug naïve), were assessed while in their ON medication state. Prior to 

participation, all individuals were required to obtain approval for participation in exercise from a 

physician (PARmed-X form). Participants in the current study were the same as those in Chapter 

4 and data collection for both studies occurred simultaneously.  
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Figure 15 Flow of participants throughout the study (Study 4) 

Assessed for eligibility (n=311) 

Excluded (n=33) 

. History of cardiac disease other than treated blood 

pressure condition (n=15) 

. Uncorrected visual problems (n=14) 

. Severe dementia/unable to follow instructions (n=4) 

Randomized (n=225) 

Allocation (n=57) 

Aerobic (n=29) Goal-based (n=28) 

Discontinued (n=11) 

. 1 caring for family member 

. 1 DBS surgery 

. 2 sore knee from exercise 

. 1 other illness 

. 1 misdiagnosed 

. 1 poor attendance 

. 4 changes in medication 

Analysis  

Analyzed (n=18) 

11 normal cognition 

7 cognitive impairment 

Discontinued (n=11) 

. 2 other illnesses 

. 1 injury from a fall at 

home 

. 1 misdiagnosed  

. 3 poor attendance 

. 4 changes in medication 

 

 

No interest on exercise studies (n=53) 

Analyzed (n=17) 

10 normal cognition 

7 cognitive impairment 
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5.2.2 Apparatus and Experimental Procedures  

 Except for two computerized tasks (reaction time and aerobic capacity), participants were 

assessed at baseline and at the end of the study by trained evaluators blinded to the treatment 

arm. The use of research personnel blinded to study’s purposes and treatment arm contributed to 

decrease bias in the assessment of executive functions and gait.   

 Demographics and clinical information 

Participants had the severity of their motor symptoms assessed by a movement disorders 

specialist using the motor subsection of the UPDRS (UPDRS III) (Fahn & Elton, 1987), and had 

their general cognitive status assessed by a trained evaluator using the Montreal Cognitive 

Assessment (MoCA). Participants’ demographic and clinical information is displayed in Table 

12. 
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Table 12 Participants demographic and clinical information (Study 4) 

 Aerobic (n=18) Goal-based (n=17) 

Demographic information   

Age (years) 72.11 (8.79) 68.05 (7.93) 

Sex (M/F) 14/4 9/8 

Handedness (R/L) 17/1 13/4 

Education (years) 13.94 (2.89) 13.70 (2.86) 

Clinical information   

GDS 6.72 (6.08) 9.76 (7.70) 

MoCA 24.72 (4.86) 24.88 (3.93) 

UPDRS III 25.36 (8.79) 29.44 (9.72) 

Disease duration (years) 6.33 (5.41) 5.88 (3.99) 

LED 695.22 (463.07) 442.52 (331.08)* 

 

Legend: GDS – Geriatric Depression Scale; MoCA – Montreal Cognitive Assessment; UPDRS III – Unified Parkinson’s disease 

Rating Scale; LED – Levodopa Equivalent Dose; * p=0.034 
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Exercise interventions 

Participants in both groups attended three 1-hour sessions per week for 12 weeks. In the 

aerobic exercise sessions, recumbent cycle ergometers (700 Excite + Recline, Technogym 

USA©, Seattle, Washington) were used in order to provide safety and stability during training. 

The exercise class started with 5 minutes warm up (no load) followed by 30-40 minutes of 

aerobic training and 2 min cool down (no load). Participants initially cycled for 30 minutes and 

increased duration weekly, with all participants cycling for 40 minutes by week 4. Exercise 

intensity levels started at 40-50% heart rate reserve (HHR) and increased to 60-70% HHR by 

week 4. Intensity prescription was defined based on the Karvonen method which is expressed in 

the equation Target HR = ([(HRmax - HRrest)* (% exercise intensity)]+HRrest) (ACSM, 2000). 

Heart rate, workload, and rate of perceived exertion recordings from a baseline graded exercise 

test were used in order to lead participants to the desired exercise intensity. For the goal-based 

training, participants performed a standardized exercise protocol (PD SAFEX™ - without eyes 

closed condition) that involved walking exercises coordinating upper and lower limbs on a 

simultaneous or alternating manner, non-progressive muscle-toning exercises using resistance 

bands and the persons’ own body weight, and whole body stretching exercises. A new sequence 

of exercises was introduced every week in order to increase the level of difficulty progressively. 

5.2.3 Outcome measures 

Reaction time 
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In order to assess the three cognitive processes argued to be regionally organized within 

the frontal lobes, participants performed reaction time (RT) tasks from the Feature Integration 

Test (FIT) (Stuss et al., 2002). These tasks were composed of a Simple RT, an Easy Choice RT, 

and a Complex Choice RT tasks. The stimulus in these tasks was one of the four shapes: square, 

circle, triangle, or cross. The shapes were dark grey or coloured on a black background. For all 

tasks, stimuli were randomly presented at inter-stimulus intervals varying between 3 s and 7 s. 

Each stimulus stayed on the screen for 2 seconds or until a response was made. Each task was 

programed using MEL2 (Psychology Software Tools, Inc.), and responses were made on a Serial 

Response Box (Psychology Software Tools, Inc.) with five buttons (numbered 1-5 from left to 

right) aligned horizontally. In the SRT, the stimulus was a grey square presented 50 times after 5 

practice trials. Participants were instructed to press button number 1 in the serial response box as 

fast as possible whenever they saw the square. For both Easy and Complex Choice RT tasks, 

stimuli were presented 102 times in random order following 10 practice trials. In these tasks, one 

stimulus was pre-established as the target stimulus while all other stimuli were non-targets. 

Participants were asked to respond to the target stimulus by pressing button number 1 with their 

right index finger, while they were asked to respond to non-target stimuli by pressing button 2 

with their right middle finger on the serial response box. In the easy choice RT task, all stimuli 

were grey and shape was the only characteristic distinguishing the target from non-target stimuli.  

In the Complex Choice RT tasks, each shape was coloured (red, blue, green, or yellow) and 

contained a pattern of internal lines (vertical, horizontal, or diagonals). Thus, each stimulus 

varied in a combination of shape, colour, and internal line orientation, with the target being 

defined by a specific combination of these three features while the other combinations were non-

targets.  
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Outcome measures included overall RT, RT coefficient of variation (RT CV), RT for 

target and non-target stimuli, RT for short and long inter-stimulus interval, total error, and error 

type (false positive, false negative, and omissions). Based on previous research involving 

individuals with focal frontal lobe lesions, deficits in the ability to initiate and sustain a response 

were characterized by slow RT that was present in simple RT task and more pronounced in both 

choice RT tasks. Deficits in the ability to set a stimulus-response relationship were characterized 

by an increase in number of false positive errors when participants had to selectively respond to 

target and non-target stimuli and slowness in RT when responding to target stimuli. Finally, 

deficits in the ability to monitor performance over time for quality control were characterized by 

the lack of differences in RT for short and long inter-stimulus intervals (particularly a decrease in 

RT for long inter-stimulus intervals), and an increase in errors of all kinds. Therefore, if Aerobic 

and/or Goal-based exercise have beneficial effects on these cognitive processes, then 

improvements in outcomes measures reflecting each cognitive process were expected. 

Executive functions 

 Executive functions were evaluated using three neuropsychological tests aiming to assess 

inhibitory control (Stroop test), working memory (Digit Span), and set-shifting (Trail Making 

Test) (Lezak, Howieson, & Loring, 2004). In the Stroop Test, three conditions were completed. 

In the first condition (“word”), participants were asked to read aloud the words RED, GREEN, 

and BLUE printed in black ink. In the second condition (“colour”), participants were asked to 

name the colour of the ink in which four Xs were printed. In the third condition (“colour-word”), 

participants were asked to name the colour of the ink in which the words “RED”, “GREEN”, and 

“BLUE” were printed, ignoring the word itself. For each of these three conditions, participants 

had 45 seconds to read/name appropriately as many items as possible (100 items total). The total 
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number of items correctly read/named in each condition was recorded. In the Digit Span Test, 

participants were verbally administered a sequence of numbers and asked to repeat the same 

numbers in two conditions: forward and backward orders. As participants progressed in the test 

(i.e. correctly recalled a sequence of numbers), the length of the number strings increased. Each 

condition had multiple levels, each containing two trials where the length of the sequence was 

the same. To move onto the next level, the subject was required to accurately recall at least one 

of the two strings of numbers. The test was concluded once the subject was unable to complete 

both trials within a level. The number of points for each forward and backward conditions were 

used to assess participants’ working memory. The Trail Making Test (TMT) was composed of 

two parts. In Part A, participants were instructed to connect numbered circles in ascending order 

from 1 to 25. Part A was used to assess an individual’s cognitive processing speed. In Part B, the 

circles contained both numbers and letters. This time, participants were asked to connect them in 

numerical and alphabetical order, alternating between numbers and letters. Part B was used to 

assess participants’ set-shifting ability. In both conditions, participants were instructed to keep 

their pencil on the page at all times, and to do this task as quickly as possible. Participants were 

scored based on the time to complete each part. Moreover, the subtraction of time spent to 

complete part B from part A (B-A) generated a score that accounted for movement speed, 

therefore allowing a more direct assessment of set-shifting.  

Gait 

Participants were asked to perform 6 walking trials in the conditions as follows: single 

task (self-paced walking) and dual task (walking while performing a secondary task). The 

secondary task consisted of counting the number of times a participant heard two pre-established 

digits (e.g. 3 and 4) spoken in an audio track (Pieruccini-Faria, Jones, & Almeida, 2014). The 
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numbers on the audio track ranged from 1 to 9 and the auditory inter-stimulus intervals varied 

from 100ms to 1000ms. During the walking task participants were instructed to continue 

counting even if they had completed the walking. In addition, they were asked to equally 

prioritize gait and digit counting tasks. In order to assess one’s ability to perform the secondary 

task, participants were asked to count how many times they heard the assigned digits while 

sitting (3 randomized trials). Performance in the secondary task was assessed using the sum of 

absolute errors (absolute error = correct response – actual response) from both pre-assigned 

digits within a trial. Following this procedure, participants performed 3 single and 3 dual-task 

trials in randomized order. Walking trials were collected on a Zeno Walkway System 

(ProtoKinetics, Havertown, PA, USA). Step length, step time, step width and their respective 

coefficient of variation (CV), as well as percentage of time spent in double support and gait 

speed were calculated using the ProtoKinetics Movement Analysis Software (PKMAS) version 

507c7c. 

5.2.4 Statistical analysis 

Independent t-tests were used to compare demographic and clinical features across 

groups. Two-way Repeated Measures analyses of variance (ANOVA) were run to examine the 

effects of exercise on all outcome measures. In these analyses, between factors were always 

Group (aerobic vs goal-based) and Cognitive Status (normal vs impaired), while within factors 

varied depending on the outcome measure. In the analyses of RT outcomes, two-way Repeated 

Measures ANOVAs were used to examine the effects of exercise on overall RT and RT 

variability [Group (aerobic vs goal-based) X Cognitive Status (normal vs impaired) X Time (pre 

vs post)]. For Easy RT and Complex Choice RT, two-way Repeated Measures ANOVAs were 

used to compare the effects of exercise on RT by stimulus type [Group (aerobic vs goal-based) X 
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Cognitive Status (normal vs impaired) X Time (pre vs post) X Stimulus (target vs non-target)]. 

While in Easy Choice RT there were two stimulus types (target or non-target), in Complex 

Choice RT there were four stimulus types (0, 1, 2, or 3; where 3 is the actual target). In addition, 

two-way Repeated Measures ANOVAs were used to assess the effects of exercise on RT for 

short and long inter-stimulus intervals (ISI) [Group (aerobic vs goal-based) X Cognitive Status 

(normal vs impaired) X Time (pre vs post) X ISI (short vs long)] in the Simple RT and Easy 

Choice RT tasks. For the analyses of accuracy measures, two-way Repeated Measures ANOVAs 

were used to examine the effects of exercise on total number of errors [Group (aerobic vs goal-

based) X Cognitive Status (normal vs impaired) X Time (pre vs post)] and error types [Group 

(aerobic vs goal-based) X Cognitive Status (normal vs impaired) X Time (pre vs post) X Type 

(FP vs FN)] in both choice RT tasks. Two-way Repeated Measures ANOVAs were used to test 

the effects of aerobic and goal-based exercise on executive functions [Group (Aerobic vs Goal-

based) X Cognitive Status (normal vs impaired) X Time (pre vs post)]. Two-way Repeated 

Measures ANOVAs were used to compare the effects of exercise on gait during single and dual 

task and across trials [Group (aerobic vs goal-based) X Cognitive Status (normal vs impaired) X 

Task (single vs dual) X Trials (T1 vs T2 vs T3) X Time (pre vs post)]. Two-way Repeated 

Measures ANOVA were also used to compare performance on the secondary task between 

groups and cognitive status in each condition at pre and post exercise [Group (aerobic vs goal-

based) X Cognitive Status (normal vs impaired) X Condition (sitting vs walking) X Time (pre vs 

post)]. Tukey’s HSD post-hoc was used to examine significant differences and alpha level was 

kept at p<0.05.  

In order to determine whether exercise-induced changes in cognition could predict 

changes in gait, Stepwise Multiple Linear Regression analyses were implemented exclusively for 
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outcome measures that changed from pre to post-test. Cognitive and gait change scores (∆) 

which were calculated by subtracting post scores from pre scores.  

Statistical analyses were performed on SPSS
®
 version 22 software and significant 

differences were kept at an alpha level of 0.05. 

  

5.3 Results  

5.3.1 Groups’ demographic and clinical information at baseline 

 Groups were matched for age, years of education, general cognitive status (MoCA), 

depression signs (GDS), motor disease severity (UPDRS-III), and disease duration (years since 

diagnosis). However, participants in the Aerobic group were taking significantly more 

medication (i.e. greater LED) than those in the Goal-based group (F(1,31)=4.91; p=0.034; 
2

p

=0.13).   

The following results focused on main effects and interactions involving assessment time 

that revealed the effects of exercise on cognition and gait. 

5.3.2 The effects of exercise on cognition 

Cognitive processes: Reaction time and accuracy  

 There were no differences in overall RT and RT variability from pre to post-test for 

Simple RT, Easy Choice RT, or Complex Choice RT tasks. In addition, no effects were found 

from pre to post-test on RT for short and long inter-stimulus intervals.  
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 When RT was analyzed by stimulus type, an interaction between assessment time, 

stimulus type, and group was found for the Easy Choice RT task (F(1,31)=4.40; p=0.044; 
2

p

=0.12). This interaction showed that participants in the Goal-based group were slower to respond 

to the target stimulus at post compared to pre-test (p=0.029). Although participants in the 

Aerobic group responded faster to the target stimulus at post-test, this was not statistically 

significant (Figure 16 - left). There were no interactions between group, stimulus type, and 

assessment time for the complex choice RT task.  

 

 

Figure 16 Participants in the Goal-based group showed slower response to the target stimulus at 

post compared to pre-test in Easy Choice RT task (p=0.029). 

 

Accuracy results showed a trend for a main effect of assessment time in the Easy Choice 

RT task (F(1,31)=3.44; p=0.07; 
2

p =0.10), suggesting that both groups decreased the overall 

number of errors in the this task at post-test. For the Complex Choice RT task, an interaction 

between assessment time and group neared significance (F(1,31)=3.79; p=0.06; 
2

p =0.10), 
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suggesting that the total number of errors was smaller for the Aerobic group at post-test 

compared to pre-test (Figure 17). No changes were observed for the Goal-based group from pre 

to post-test. No differences were found for error type.  

 

 

Figure 17 An interaction between assessment time and group neared significance (p=0.06) and 

suggested that participants in the Aerobic group were more accurate in Complex Choice RT task 

at post compared to pre-test. 

 

5.3.3 Executive functions 

 An interaction between assessment time and group approached significance for the 

backwards condition of the Digit Span (F(1,31)=3.78; p=0.06; 2

p =0.10) (Figure 18). This 

interaction suggested that participants in the Goal-based group increased the number of correct 

sequences recalled at post-test, while those in the Aerobic group maintained the number of 

correct sequences recalled in backwards order from pre to post-test.  
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Figure 18 An interaction between group and assessment time neared significance (p=0.06) for 

the Digit Span backwards condition, suggesting that participants in the Goal-based group 

correctly recalled more number sequences in backwards order at post compared to pre-test. 

 

 In the Stroop test, no changes were found for the Word or Colour conditions from pre to 

post-test. Conversely, an interaction between assessment time and group was found for the 

Colour-Word condition (F(1,31)=4.99; p=0.032; 
2

p =0.13).  Although post-hoc analysis did not 

reveal any significant differences, this interaction suggested that participants in the Aerobic 

group increased the number of correctly named items at post-test, while those in the Goal-based 

group decreased the number of correctly named items (Figure 19).   
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Figure 19 Group by assessment time interaction (p=0.032) suggested that participants in the 

Aerobic group correctly named more items in the Stroop Colour-Word condition at post 

compared to pre-test. 

 

For the TMT task, a main effect of assessment time (F(1,25)=6.18; p=0.019; 
2

p =0.19) 

showed that, irrespective of exercise modality, participants were faster to complete the TMT A at 

post compared to pre-test. No differences were identified from pre to post-test for the TMT B. 

There was also no difference from pre to post-test for the B-A score.  

5.3.4 The effects of exercise on gait  

 Main effects of Task showed that participants walked with shorter (step length: 

F(1,31)=125.29; p<0.0001; 
2

p =0.80) and more variable steps (step length variability: 

F(1,31)=21.74; p<0.0001; 
2

p =0.41; step time variability (F(1,31)=12.98; p=0.001; 
2

p =0.29), 

wider step width ( F(1,31)=22.93; p<0.0001; 
2

p =0.42), longer step time and time spent in 

double support (step time F(1,31)=22.52; p<0.0001; 
2

p =0.42; double support F(1,31)=89.96; 

p<0.0001; 
2

p =0.74), and slower velocity (velocity: F(1,31)=118.77 p<0.0001; 
2

p =0.79) during 
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dual-task compared to single-task walking. These findings confirmed that the dual-task 

manipulation used in the current study appropriately interfered with gait control in individuals 

with PD.  Interactions between task and trial for step length (F(2,62)=5.33; p=0.007; 
2

p =0.14), 

step time (F(2,62)=5.69; p=0.005; 
2

p =0.15), step time variability (F(2,62)=3.36; p=0.04; 
2

p

=0.09), double support (F(2,62)=3.94; p=0.02; 
2

p =0.11), and gait velocity (F(2,62)=6.22; 

p=0.003; 
2

p =0.16) demonstrated that the changes in gait were greater in the first trial during 

dual-task compared to single-task walking (p<0.05). 

  A main effect of time was found for step width (F(1,31)=4.90;p=0.034; 
2

p =0.13), 

showing that participants took wider steps at post compared to pre-test. An interaction between 

assessment time and walking task (F(1,31)=10.91; p=0.002; 
2

p =0.26) demonstrated that all 

participants took wider steps at post-test specifically during dual-task walking (p<0.001), while 

step width did not change from pre to post during single-task. In addition, an interaction between 

assessment time, walking task, and cognitive status for step width (F(1,31)=4.63; p=0.039; 
2

p

=0.13) revealed that primarily participants with cognitive impairment significantly increased step 

width during dual-task at post-test (p<0.001).  

 An interaction between assessment time and walking task was found for step time 

(F(1,31)=7.91; p=0.008; 
2

p =0.20), where participants from both groups decreased step time at 

post-test exclusively during dual-task walking (p=0.001). More specifically, an interaction 

between assessment time, task, and group (F(1, 31)=4.12; p=0.05; 
2

p =0.11), showed that mainly 

the Goal-based group decreased step time during dual-task at post-test (p<0.001), while no 

changes were observed for the Aerobic group (Figure 20).  
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Figure 20 Step time was shorter for the Goal-based group at post compared to pre-test only 

during dual-task walking. 

 

A five-way interaction between assessment time, task, trial, group and cognitive status 

was found for step time variability (F(2,62)=6.66; p=0.002; 
2

p =0.17). This interaction showed 

that individuals with cognitive impairment from the Aerobic group had reduced step time 

variability at post compared to pre-test in the first trial of the dual-task condition (p=0.008) 

(Figure 21).   
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Figure 21 First trial effect for step time variability showed that individuals with cognitive 

impairment from the Aerobic group walked with smaller variability during dual-task at post 

compared to pre-test 

 

 An interaction between assessment time, walking task, trial, and cognitive status was 

found for the percentage of time spent in double support (F(2,62)=5.48; p=0.006; 
2

p =0.15).  

Post-hoc analysis showed that individuals with cognitive impairment from both groups decreased 

the time spent in double support from pre to post-test in the first trial of the dual-task condition 

(p=0.053).  
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In relation to performance of the secondary (digit monitoring) task at baseline, an 

interaction between group and condition (i.e. sitting vs walking) (F(1,31)=5.79 p=0.022; 
2

p

=0.15) was found. However, post-hoc analysis did not reveal any significant differences. The 

visual inspection of mean values suggested that the Goal-based group had fewer errors than the 

Aerobic group when performing the task while seated at pre-test (Aerobic=3.25 and Goal-

based=2.04). On the other hand, groups performed the secondary task similarly while walking at 

pre-test (Aerobic=2.89 and Goal-based=2.89). When assessing the effects of exercise on the 

secondary task, a main effect of assessment time showed that participants from both groups were 

less accurate when performing the secondary task at post compared to pre-test (F(1,31)=6.55 

p=0.015; 
2

p =0.17), irrespective of being seated or walking. No significant interaction between 

assessment time and condition was found. Moreover, there were no significant interactions 

between assessment time, condition, and group.  

5.3.5 Relationship between changes in cognition and gait 

 Regression analysis showed that changes in step width during single (R
2
=0.28) and dual-

task (R
2
=0.24) walking were predicted by changes in choice RT (easy choice RT - target 

stimulus) for the Aerobic group. These associations demonstrated that wider step width during 

single and dual-task walking was associated with faster choice RT. No changes in gait were 

associated with changes in cognition for the Goal-based group.  
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5.4 Discussion 

The present study aimed to compare the effects of aerobic and goal-based exercise on 

cognition and gait in PD patients with or without cognitive impairment. In addition, it aimed to 

examine whether exercise-induced changes in cognition could predict changes in gait. Results 

showed that PD patients with and without cognitive impairments had similar improvements in 

cognitive outcomes after exercise. Specifically, aerobic exercise improved participants’ 

monitoring (i.e. greater accuracy in RT tasks) and response inhibition (i.e. better performance in 

the Stroop test), whereas goal-based exercise improved participants’ working memory (i.e. better 

performance in the Digit Span backwards). Improvements in gait after exercise were found 

primarily in individuals with cognitive impairment and exclusively for dual-task walking. 

Selective effects of exercise modality on gait were shown for step time (goal-based) and step 

time variability (aerobic) during dual-task. Finally, exercise-induced changes in cognition (i.e. 

faster choice RT) predicted changes in gait (wider step width) but only for the Aerobic group.  

5.4.1 Effects of Aerobic and Goal-based exercise on cognition  

One of the most relevant findings of the current study was to that cognitively normal and 

impaired individuals with PD benefit similarly from exercise. Given that people with PD rely 

heavily on cognition to control movement, improvements in cognition found in the current study 

may contribute to improvements in individuals’ functionality, independence, and quality of life. 

A common finding across exercise modalities was the improvement in processing speed (Trail’s 

A) at post-test. Improvement in processing speed may indicate a general effect of exercise on 

lower order cognitive functioning, given that the Trail’s A is a fairly simple test. However, since 
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improvements were found for both exercise groups, it is important to consider that practice 

effects may have played a role in this finding.  

Most importantly, results showed that the effects of exercise on cognition were selective. 

Aerobic exercise improved participants’ monitoring and response inhibition. These results are in 

line with previous investigations showing that improvements in cardiorespiratory fitness led to   

improvements in monitoring (Themanson & Hillman, 2006) and response inhibition (Colcombe 

et al., 2004) in healthy individuals. In addition, these findings corroborate improvements in 

response inhibition after aerobic exercise in individuals with PD (Duchesne et al., 2015; Uc et 

al., 2014). According to Stuss and colleagues (Stuss & Alexander, 2007; Stuss et al., 2002), 

monitoring is critically mediated by right lateral areas of the pre-frontal cortex (PFC) such as 

dorsolateral and ventrolateral pre frontal cortices. Interestingly, in the current thesis it was found 

that individuals with PD in the OFF dopaminergic state (i.e. overnight medication withdraw) 

showed impairments in monitoring, suggesting that the basal ganglia may also be involved in 

mediating this cognitive process (see Chapter 2). With respect to inhibitory control, studies have 

suggested that this component of executive functions is mediated by inferior lateral frontal areas 

as well as the subthalamic nucleus in the basal ganglia (Aron, 2007; Obeso et al., 2014). Thus, 

findings from the current study suggest that exercise may improve functioning of circuitries 

between the basal ganglia and frontal lobe areas. It is important to note that neither monitoring 

(see Chapter 2) nor inhibition deficits (Obeso, Wilkinson, & Jahanshahi, 2011) are alleviated by 

dopaminergic medication. Therefore, this study shows that exercise may help treating cognitive 

processes/functions that cannot be treated with dopaminergic medication.  

On the other hand, goal-based exercise had a selective effect on working memory. 

Working memory is argued to be strongly mediated by the dorsolateral pre frontal cortex and the 
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caudate nucleus of the basal ganglia (Lewis, Dove, Robbins, Barker, & Owen, 2003), and it is 

highly sensitive to dopaminergic activity (Lewis, Slabosz, Robbins, Barker, & Owen, 2005). 

Therefore, in contrast to cognitive functions that changed with aerobic exercise, changes in 

cognition after goal-based exercise could be linked to changes within the dopaminergic system. 

This suggestion is in line with previous research showing that goal-based exercise can 

significantly reduce disease severity in individuals with PD (McKee & Hackney, 2013; Sage & 

Almeida, 2009), since the scale that assesses disease severity in PD (UPDRS) is highly sensitive 

to dopaminergic medication. However, it is important to consider that during goal-based training 

participants had to remember instructions for executing complex and multi-part movement 

sequences, which could have demanded constant use of working memory. Thus, improvements 

in working memory found after goal-based exercise could have resulted from training specificity. 

In contrast, the repetitive nature of aerobic training may not have posed similar demands on 

specific cognitive functions.  

5.4.2 Effects of Aerobic and Goal-based exercise on gait  

 After establishing the effects of exercise on cognition, the next step was to verify the 

effect of each exercise modality on gait. It was expected that goal-based exercise would improve 

gait during single-task because walking exercises were a component of its training sessions 

(specificity). However, given the link between gait and cognition, it was hypothesized that 

aerobic exercise would influence gait indirectly as a result of improvements in cognition, 

especially during dual-task performance. Results showed that both goal-based and aerobic 

exercise improved gait at post-test. Interestingly, changes in gait behaviour were found 

exclusively for the dual-task condition and the effects of exercise were observed primarily in 

individuals with cognitive impairment. These results support the notion of a strong link between 
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cognition and gait in PD, given that the dual-task walking is argued to be more cognitively 

demanding than single-task walking (Holtzer et al., 2015). Interestingly, participants with 

cognitive impairment showed improvements in gait parameters that are very sensitive to dual-

task interference (step width, double support, and step time variability) (Amboni, Barone, & 

Hausdorff, 2013; Amboni et al., 2012; Pieruccini-Faria et al., 2014; Rochester, Galna, Lord, & 

Burn, 2014; Rochester et al., 2004; Springer et al., 2006; Yogev et al., 2005). However, this 

study showed general (step width and double support) as well as selective (step time and step 

time variability) effects of exercise on gait.  

Time spent in double support and step width are argued to be important parameters to 

gait stability. Previous research has shown that the ratio between single and double support times 

is shorter in PD patients with mild cognitive impairment, meaning that these individuals have a 

longer double support time relative to single support (Amboni et al., 2012). Thus, the reduction 

in double support found for individuals with cognitive impairment at post-test in the dual-task 

condition suggested an improvement in gait stability, irrespective of exercise modality. However, 

given the intricate relationship between gait parameters, it is important to reflect why two 

parameters linked to gait stability would change in opposition (i.e. decrease in double support 

and increase in step width). One possible explanation could be that at post-test individuals 

implemented a different strategy than at pre-test by trading time spent in double support for a 

wider base of support in order to control stability. However, using this logic in reverse order, 

thinking that a longer double support with a narrow base of support would not give individuals 

better stability (e.g. tandem position), this trading strategy may not seem like a reasonable 

argument. An alternative explanation could be that instead of changes in stability, the decrease in 
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double support found in this study may represent a different role of double support time on gait 

control during dual-task such as an improvement in planning of steps. 

Increased  step width has been argued to be an important gait adaptation in situations 

when stability is challenged, such as during dual-task walking (Rochester et al., 2014). Rochester 

et al. (2014) showed that while healthy older adults walked with wider step width during dual-

task, individuals with PD did not change step width from single to dual-task walking. Therefore, 

changes in step width after exercise interventions (aerobic and goal-based) in the current study 

may suggest that exercise improved the ability of individuals with PD to adapt gait stability 

when threatened by dual-task situations. Remarkably, better performance in choice RT predicted 

increases in step width exclusively in the Aerobic group, suggesting that changes in cognition as 

a result of aerobic exercise may have contributed to improved ability of individuals with PD to 

adapt gait under situations that threaten gait stability.  

 Furthermore, it was found that aerobic and goal-based exercises had selective effects on 

gait at post-test in the dual-task condition. While goal-based exercise decreased step time, 

aerobic exercise decreased step time variability. Explaining the effects of goal-based exercise on 

step time is a challenge, given that step time is not commonly found to be sensitive to dual-task 

interference and given its interdependence with other gait parameters. For example, one would 

expect that changes in step time might have resulted from smaller and/or faster steps. However, 

no changes were found in step length or gait velocity at post-test during dual-task. When 

considering gait characteristics in domains rather than individually, Lord et al. (2013) showed 

that step time belonged to the so called “rhythmic” domain of gait. Hence, one possible 

explanation for this finding is that goal-based exercise decreased the effects of dual-task 

interference on gait rhythmicity, especially for individuals with cognitive impairment. 
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Differently, step time variability has been repeatedly demonstrated as a gait parameter sensitive 

to dual-task interference and it has been argued to reflect conscious/voluntary control of gait. 

Moreover, increased step time variability has been linked to increased risk of falls in older adults 

and individuals with PD (Springer et al., 2006; Yogev et al., 2005). Thus, the decrease in step 

time variability during dual-task performance as a result of aerobic exercise may suggest that 

aerobic exercise improved the ability of individuals PD to manage both gait and the cognitive 

secondary task.  

Studies have shown that step time variability is not influenced by dopaminergic 

medication in individuals with PD (Blin, Ferrandez, Pailhous, & Serratrice, 1991; Lord, Baker, 

Nieuwboer, Burn, & Rochester, 2011). In fact, research involving individuals with early stages 

of Alzheimer’s disease has demonstrated that the administration of cholinergic medication 

decreased step time variability in this population (Montero-Odasso et al., 2015; Montero-Odasso, 

Wells, & Borrie, 2009). Taken together, these results suggest that possibly a common non-

dopaminergic mechanism underlies changes in cognition and gait following aerobic exercise. 

However, this hypothesis has yet to be tested with objective measures of neurotransmitter 

activity.   

Finally, an important point to consider is why changes in gait were predominantly seen in 

individuals with cognitive impairment. One possible explanation is that at baseline individuals 

with cognitive impairment not only had worse gait but they also had depleted cognitive resources 

to voluntarily control gait. It has been suggested that treatment strategies aimed at enhancing 

cognitive function may lead to a decrease in the cognitive cost of dual-task walking (Montero-

Odasso et al., 2015; Verghese, Mahoney, Ambrose, Wang, & Holtzer, 2010).  Thus, it could be 

proposed that by enhancing cognition, cognitively impaired individuals with PD had more 
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cognitive resources available to voluntarily control gait during dual-task performance while for 

those with normal cognition these resources were always available.  

In conclusion, this study showed that aerobic and goal-based exercises have selective 

effects on cognition and gait in individuals with PD. Most importantly, exercise-induced changes 

in cognition predicted changes in gait only after aerobic exercise. To the best of our knowledge, 

this is the first study to demonstrate that PD patients with and without cognitive impairment can 

improve cognitive outcomes after exercise, but primarily those with cognitive decline showed 

improvements in dual-task walking. These results support the notion that cognitive remediation 

through exercise can lead to improvements in gait in PD.  
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Chapter 6 

General Discussion 

 

 The overall aim of the current thesis was to understand the effects of physical exercise on 

cognition in individuals with Parkinson’s disease (PD). In order to achieve this aim, Study 1 

introduced and tested a theoretical framework for methodological procedures and outcome 

measures that would be carried across the remaining studies in this thesis. This  framework was 

based on the model proposed by Stuss (2011) which postulates  that distinct cognitive processes 

(i.e. energization, task-setting, and monitoring) are regionally organized within specific frontal 

lobe areas. The frontal lobe areas argued  to be critical to each of these processes (superior 

medial, left lateral, and right lateral) are  known to be anatomically and functionally connected to 

the basal ganglia (Alexander, DeLong, & Strick, 1986; Middleton & Strick, 2000a, 2000b). 

However, it was unclear whether the basal ganglia participate in the network controlling these 

processes. Thus, Study 1 investigated whether energization, task-setting, and monitoring were 

affected by PD and whether these processes were modulated by the dopaminergic system. It was 

hypothesized that, if the basal ganglia were involved in the networks controlling energization, 

task-setting and monitoring , then individuals with PD would show impairments in all processes. 

Moreover, if the networks controlling these processes were modulated by the dopaminergic 

system, then it was expected that dopaminergic medication would alleviate deficits in these 

cognitive processes by re-establishing activity in fronto-striatal circuitries.  
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The subsequent studies then examined the potential of physical exercise to improve the 

processing of energization, task-setting, and monitoring in individuals with PD.   More 

specifically, the acute (Study 2) and chronic (Study 3) effects of aerobic exercise on these 

processes were examined. Based on previous research in healthy individuals, showing that 

aerobic exercise can increase activity in frontal brain areas (Hyodo et al., 2012) and enhance 

performance on tasks mediated by the frontal lobes (Yanagisawa et al., 2010), it was 

hypothesized that individuals with PD would show positive acute and chronic effects of exercise 

on behavioural outcomes (reaction time (RT) and accuracy) representing energization, task-

setting, and monitoring. This hypothesis was based on the assumption that enhanced frontal lobe 

activity as a result of exercise could positively influence cognitive processing through fronto-

striatal loops in PD. 

  Furthermore, Study 3 aimed to address three major gaps regarding the chronic effects of 

exercise on cognition in individuals with PD:  [1] to directly compare the effects of two exercise 

modalities on cognition (Aerobic vs Goal-based), [2] to assess the effects of exercise on five 

different cognitive domains, and [3] to investigate the effects of exercise on cognitively normal 

and impaired individuals with PD. Firstly, it was predicted that, if the aerobic basis of previous 

multimodal exercise studies was a critical component to improvements in cognition found in 

these studies, then aerobic exercise would be more beneficial to cognition of individuals with PD 

than goal-based exercise. Secondly, since aerobic exercise has been shown to increase activity in 

frontal brain areas and improve performance in tasks sensitive to frontal lobe functioning, it was 

hypothesized that chronic aerobic exercise would improve executive functions to a greater extent 

than other cognitive domains. Thirdly, given that aerobic exercise has been found to improve 

cognition of older adults with and without cognitive decline (Baker et al., 2010; Heyn, Abreu, & 
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Ottenbacher, 2004), it was expected that PD patients with cognitive impairment would benefit 

from exercise similarly to those with normal cognition.  Finally, Study 4 examined whether 

exercise-induced changes in cognition would influence gait control in individuals with PD. Since 

it has been proposed that individuals with PD rely on cognition to control gait due to decreased 

automaticity, it was hypothesized that cognitive remediation through exercise would lead to 

improvements in gait in PD. Within this final chapter, results from all of the studies will be 

reviewed to address each of these goals and will be discussed with reference to the theoretical 

framework proposed for the thesis. 

6.1 Contributions of the thesis 

6.1.1 Defining the thesis theoretical and methodological framework 

It was known from the conceptual stages that deficits in executive functions were a major 

aspect of this thesis. Firstly, because deficits in executive functions are highly prevalent among 

individuals with PD from early to late stages of disease progression (Aarsland et al., 2010; 

Dirnberger & Jahanshahi, 2013; Kudlicka, Clare, & Hindle, 2011; Owen et al., 1992; Taylor, 

Saint-Cyr, & Lang, 1986). Secondly, because previous research in healthy older adults 

(Colcombe & Kramer, 2003; Colcombe et al., 2006; Colcombe et al., 2004) and individuals with 

PD (Cruise et al., 2011; David et al., 2015; Tanaka et al., 2009; Uc et al., 2014) has demonstrated 

that exercise primarily influences  executive functions. Yet, studies have demonstrated that 

selective components of executive functions improve after exercise rather than an overall 

improvement in executive functions. For example, Duchesne et al. (2015) assessed the effects of 

exercise in two different components of executive functions (i.e. inhibition and flexibility) and 

found that only one of them (i.e. inhibition) improved post-exercise. Although it remains 
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unknown why selective effects of exercise on executive functions occur, research has suggested 

that differences in these outcomes may result from distinct underlying cognitive processes 

employed by each component of executive functions (Testa, Bennett, & Ponsford, 2012). Thus, it 

could be hypothesized that the assessment of specific cognitive processes could contribute to 

further understanding the effects of exercise on executive functions in PD. 

In order to better understand selective effects of exercise on executive functions in 

individuals with PD, in the current thesis three distinct cognitive processes (i.e. energization, 

task-setting, and monitoring) argued to be regionally organized within the frontal lobes and 

participate in the processing of executive functions were examined  based on the model proposed 

by Stuss (2011). Among the strengths of this model there were the empirical evidence from 

studies involving individuals with localized frontal lobe lesions, the knowledge that the basal 

ganglia are anatomically and functionally linked to the frontal lobe areas found to be critically 

involved in each cognitive process, and the use of a structured assessment battery that was 

proved to be sensitive to selective deficits. Furthermore, as proposed by the author, an important 

advantage of a model built upon lesion studies is that it allows demonstrating the critical role of a 

brain area to a cognitive process, in a way that if the area is “shut down” by a lesion then distinct 

deficits will emerge (Stuss, 2006). This is in contrast to functional imaging studies that are 

limited in their ability to define how critical a brain area is to a cognitive process solely based on 

the activation of this area during a task. Therefore, the model proposed by Stuss (2011a) would 

also facilitate the interpretation of brain-behaviour relationships in the current thesis. For 

example, if exercise selectively influenced energization outcomes, then it could be inferred that it 

affected superior medial areas of the frontal lobes including the anterior cingulate cortex. In 

contrast, if exercise selectively influenced task-setting or monitoring, then it could be inferred 
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that it affected left or right (respectively) lateral areas of the frontal lobes including the 

dorsolateral pre-frontal cortex in each hemisphere. Importantly, since the basal ganglia are 

known to be linked to the frontal lobe areas critical to each cognitive process and that the basal 

ganglia is the primary area affected in PD, one could argue that improvements in these processes 

in PD would represent the impact of exercise on a network involving frontal and basal ganglia 

areas.  

6.1.2 PD selectively affects cognitive processes mediated by the frontal lobes 

Study 1 investigated whether energization, task-setting, and monitoring were affected by 

PD and whether these processes were modulated by the dopaminergic system. In order to assess 

whether the basal ganglia contribute to the networks mediating energization, task-setting and 

monitoring, individuals with PD were assessed while in the OFF state of dopaminergic 

medication using the same tasks and procedures used by Stuss and colleagues (Stuss & 

Alexander, 2007; Stuss, Binns, Murphy, & Alexander, 2002). Findings from Study 1 revealed 

that individuals with PD had selective deficits in monitoring, demonstrating the contribution of 

fronto-striatal circuitries to the operation of this process. Deficits in monitoring were 

characterized by an abnormal foreperiod effect and greater number of errors of all kinds in 

individuals with PD compared to healthy age-matched controls. These findings demonstrated 

that individuals with PD were unable to monitor timing in order to predict/anticipate when 

stimuli would occur as well as to adjust behaviour following errors in order to maintain good 

accuracy levels.  

Since the frontal lobe areas involved in energization, task-setting, and monitoring are 

known to be connected to the basal ganglia, the hypothesis of Study 1 was that individuals with 
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PD would show deficits in behavioural outcomes representing all three processes. Contrary to 

this hypothesis, deficits in energization and task-setting were not confirmed in this study. 

Deficits in energization are characterized by an overall slowness in response that becomes 

exacerbated as task complexity increases. Although individuals with PD had slower RT in the 

Simple RT task, this behaviour was not exacerbated during the more complex RT tasks. One 

possible explanation for the selective findings of Study 1 might be that, the degeneration of basal 

ganglia striatal areas  in PD is argued to progress from dorsal portions linked to sensorimotor 

processing (putamen) and later moves on to the ventral  portions linked to cognitive (caudate) 

and limbic processing (nucleus accumbens) (Kish, Shannak, & Hornykiewicz, 1988). According 

to the organization of basal ganglia loops proposed by Alexander et al. (1986), ventral areas of 

the basal ganglia (i.e. nucleus accumbens) are connected to the anterior cingulate cortex, which 

is a critical area for the processing of energization. Thus, it could be that energization was not 

affected in individuals with PD in Study 1 since ventral areas of the striatum are only affected in 

advanced stages of disease progression. Similarly, ventral areas of the striatum (i.e. caudate 

nucleus) are connected to the dorsolateral pre-frontal cortex, which is a critical area for the 

processing of task-setting.  Although the areas involved in task-setting and monitoring are the 

same (i.e. dorsolateral and ventrolateral prefrontal cortices), these processes were shown to be 

lateralized to the left and right hemispheres (respectively) according to Stuss and colleagues 

(Stuss, 2006, 2011a; Stuss & Alexander, 2007; Stuss et al., 2002). Since the majority of 

participants in Study 1 had more severe symptoms in the left side of the body, it was inferred that 

basal ganglia degeneration was greater in the right hemisphere which is in line with findings of 

deficits in monitoring but not in task-setting. An attempt to test the hypothesis of whether disease 

progression would be associated with deficits in energization, task-setting and monitoring was 
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made by running correlation analyses between the outcomes of cognitive tests (RT and accuracy) 

and the severity of motor symptoms (UPDRS-III total score and scores for each side of the body) 

in the OFF medication state. However, these correlations only revealed associations with 

sensorimotor domain (Simple RT and UPDRS OFF). Although the lack of correlation between 

cognitive outcomes and the severity of motor symptoms was not expected, this finding is in line 

with previous research (Dujardin et al., 2013). One way of interpreting these results is 

recognizing that the progression of motor and cognitive deficits in PD may be independent.  

The second aim of Study 1 was to determine whether energization, task-setting, and 

monitoring were modulated by the dopaminergic system. Thus, individuals with PD were 

compared while in the OFF and ON state of dopaminergic medication. Results showed no 

improvements in behavioural outcomes (RT or accuracy) when individuals with PD were in ON 

compared to OFF medication state. Conversely, participants showed greater RT variability in the 

ON compared to OFF state. Research suggests that increased intra-individual variability may 

reflect deficits in attention regulation (Stuss, Murphy, Binns, & Alexander, 2003). Hence, the 

increased RT variability found in PD ON compared to PD OFF indicates that dopaminergic 

medication had detrimental effects on the cognitive control of individuals with PD. Detrimental 

effects of dopamine on cognition have been previously reported in individuals with PD (Cools, 

Barker, Sahakian, & Robbins, 2001; Gotham, Brown, & Marsden, 1988). According to these 

studies, it is possible that dopamine levels necessary to normalize motor function in PD may 

overload some pre-frontal areas (particularly the ventrolateral PFC) that operate with sufficient 

dopamine levels. Therefore, dopaminergic medication did not enhance the operation of 

monitoring. Instead, dopamine had detrimental effects on cognition (attentional control) in 
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individuals with PD. These findings support the notion that adjunct therapeutic strategies are 

necessary to treat cognitive deficits in PD.    

6.1.3 Aerobic exercise does not enhance energization, task-setting, and monitoring in individuals 

with PD 

  Research in healthy young and older adults has consistently demonstrated that physical 

exercise (with most studies focused on aerobic exercise) can increase activity in frontal brain 

areas and enhance performance on tasks sensitive to frontal lobe functioning such as those 

involving executive functions. Interestingly, these effects have been  found immediately after a 

single bout of aerobic exercise (immediate effect of exercise stimulation) as well as a result of 

chronic aerobic exercise programs (cumulative effect of exercise stimulation). Therefore, one 

could suggest that if acute and chronic aerobic exercise can “boost” frontal lobe functioning, 

these effects could have a positive impact on cognitive processes mediated by the frontal lobes. 

In the current thesis the acute (Study 2) and chronic (Study 3) effects of moderate intensity 

aerobic exercise were assessed on energization, task-setting, and monitoring. Based on the 

evidence that even healthy young adults with normal cognitive functioning may show positive 

exercise-induced changes in cognition, improvements in all cognitive processes (regardless of 

impairment) were expected.  

 Contrary to the hypotheses of Study 2, there were no positive effects of an acute bout of 

exercise on energization, task-setting, or monitoring in individuals with PD. Results from this 

study can be interpreted in one of two ways: [1] there could have been cognitive and 

neurophysiological changes that our tasks were unable to capture, or [2] that individuals with PD 

do not respond to an acute bout of aerobic exercise.  
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In regards to the first explanation, previous investigations in healthy older adults have 

found that neurophysiological changes (e.g. latency of P300 event-related potential) may occur 

irrespective of changes in behavioural outcomes (Kamijo et al., 2009), suggesting that 

neurophysiological measures may be more sensitive to acute effects of exercise than behavioural 

measures. Although neurophysiological changes could have occurred in Study 2, this hypothesis  

cannot be confirmed with the methodology implemented in this thesis. Given that several studies 

in the literature (Hillman, Snook, & Jerome, 2003; Hyodo et al., 2012; Kamijo et al., 2004; 

Yanagisawa et al., 2010) were able to capture changes in behaviour following an acute bout of 

exercise, one could suggest that methodological procedures might have influenced the outcomes 

of Study 2 .  

In Study 2, participants exercised at intensity levels comparable to previous 

investigations (Hyodo et al., 2012; Kamijo et al., 2009) and were assessed within a time window 

suggested to be optimal to evaluate behavioural effects of an acute bout of exercise according to 

a recent meta-analysis (Chang, Labban, Gapin, & Etnier, 2012). Moreover, the cross-over design 

of this study allowed the comparison of the same individuals under each experimental condition, 

which may have decreased the inter-individual variability therefore facilitating the occurrence of 

statistical differences between experimental conditions. Finally, the order of experimental 

conditions was counterbalanced between participants in order to control for practice effects. 

Taken together, the design of Study 2 decreased the likelihood of null results being associated 

with exercise intensity, inter-individual variability, and practice effects.  

The only remaining point that could have influenced the results was the sensitivity of the 

tasks to the acute effects of exercise on cognition. One common characteristic among studies that 

found differences in behavioural outcomes was the use of tasks that strongly rely on inhibitory 
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control such as the Flanker and Stroop test. During the pilot stages of Study 1, performance in a 

task similar to Stroop (Suppress from the ROBBIA battery data not reported) was compared 

between individuals with PD and age-matched controls; however, no significant differences were 

found between groups or PD medication states. Thus, in order to optimize assessment time and 

focus on tasks in which deficits were identified, the Supress task was not carried forward in the 

thesis. Importantly, the Complex Choice RT task used in Study 2 imposes high demands on 

inhibitory control (similarly to Stroop). Therefore, the lack of changes in behavioural outcomes 

in PD patients after a single bout of exercise may not be simply explained by task selection. 

Conversely, it might be that individuals with PD did not respond to a single bout of exercise. 

Previous studies have suggested that not all individuals respond similarly to exercise. 

Individual characteristics such as fitness level (Tsai et al., 2014) and gender (Baker et al., 2010) 

can influence ones’ response to exercise. Yet, there were no differences in performance between 

male and female participants or associations between participants’ cognitive outcomes and 

fitness level in Study 2. Therefore, an alternative explanation to the null findings of Study 2 was 

outlined based on how the pathophysiology of PD could influence the proposed mechanisms 

underlying the acute effects of exercise on cognition. More specifically, how impaired 

neurotransmitter activity as result of PD could influence the ability of individuals with PD to 

acutely respond to single bout of exercise.  

Current theories about the acute effects of exercise on cognition argue that responses to 

exercise may be modulated by changes in catecholamine concentration and/or changes in arousal 

levels. While there is limited evidence confirming the catecholamine hypothesis in humans, 

studies have consistently showed that acute responses to exercise stimulation follows an 

inverted-U shape pattern in which moderate intensity exercise leads to optimal levels of arousal 
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which consequently facilitate cognitive processing (Chang, Etnier, & Barella, 2009; Kamijo et 

al., 2009; Kamijo et al., 2004). Arousal levels are suggested to be mediated by serotonergic and 

noradrenergic activity in the brain stem and modulated by cholinergic activity in cortical regions 

(Gratwicke, Jahanshahi, & Foltynie, 2015). Importantly, in addition to low dopamine levels, 

individuals with PD also show deficits in cholinergic (Bohnen et al., 2006; Bohnen et al., 2003), 

serotonergic (Politis & Niccolini, 2015), and noradrenergic (Riekkinen, Kejonen, Jakala, 

Soininen, & Riekkinen, 1998) activity. Therefore, it is possible that low levels of 

neurotransmitter activity may limit the acute response to exercise in individuals with PD. 

 Nonetheless, given that changes in cognition in individuals with PD have been found 

after chronic exercise studies, it might be that chronic exercise stimulation could promote 

neurotransmitter activity through neuroplastic mechanisms. This hypothesis has been supported 

by research with animal models of PD as presented in a recent literature review showing that 

chronic exercise enhances neurotransmitter activity (Petzinger et al., 2015). In this context, Study 

3 aimed to test whether chronic exercise stimulation would influence energization, task-setting, 

and monitoring. 

In Study 3, the effects of aerobic and goal-based exercises on energization, task-setting, 

and monitoring were compared. This comparison was deemed necessary because previous 

studies investigating the effects of exercise on cognition in PD used multimodal exercise 

protocols combining goal-based and aerobic exercise. However, the isolated contributions of 

each exercise modality to cognition in PD remained unclear, since these exercise modalities had 

never been directly compared. Goal-based exercise is composed of activities that focus on 

learning and mastering motor skills, which have been suggested to improve motor and cognitive 

function in individuals with PD through experience dependent plasticity (Petzinger et al., 2013; 
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Petzinger et al., 2015). Although the mechanisms underlying cognitive changes following each 

exercise modality are unclear in humans, studies using animal models of PD suggest the 

involvement of differential mechanisms. For example, it has been demonstrated that rats engaged 

in goal-based exercise showed increase in synaptic parameters (i.e. dendritic spine density) 

without an increase in density of capillaries in motor regions of the brain. This result was counter 

to that found for rats which practiced unskilled/repetitive aerobic exercise, which increased the 

density of capillaries without an increase in synaptic parameters (Black, Isaacs, Anderson, 

Alcantara, & Greenough, 1990; Petzinger et al., 2015). These findings suggest that while both 

aerobic and goal-based exercise might improve cognition in PD, the mechanisms underlying 

exercise-induced changes in cognition for exercise modality likely differ.  

Results from Study 3 demonstrated that neither aerobic nor goal-based exercise 

significantly improved energization, task-setting, or monitoring (i.e. no improvements on RT or 

accuracy) from pre to post-exercise. However, it was found that cognitively impaired individuals 

in the Control group had slower choice RT at post-test. The slower RT of cognitively impaired 

participants in the Control group but not those in the exercise groups suggests that exercise may 

have protected and/or delayed the decline in speed. While it remains unclear whether exercise 

has protective effects against neurodegenerative processes in humans, studies have showed that it 

may decrease brain atrophy (S. J. Colcombe et al., 2006; Erickson et al., 2011; Suzuki et al., 

2013) and prospectively decrease the risk of mild cognitive impairment (Geda et al., 2010) and 

dementia (Hamer & Chida, 2009). Therefore, in comparison to the slowing observed in the 

Control group, the finding that cognitively impaired participants in both exercise groups did not 

change from pre to post-test could be interpreted as a positive effect of exercise on cognition. 

Accuracy results revealed that only cognitively impaired participants in the Aerobic group were 
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more accurate in the complex choice RT task at post-test. The improvement in response accuracy 

in cognitively impaired participants in the Aerobic group is challenging to interpret for two 

reasons: first, because their baseline error was greater than the other two groups; and second, 

because these participants were approximately 100ms slower while performing this task at post-

test. Thus, it might be that participants in the Aerobic group traded speed for accuracy in the 

complex choice RT task at post-test. Previous research has suggested that speed-accuracy trade-

off often observed in older adults and individuals with PD may represent a “very reasonable and 

sensible course to adopt” in order to maximize their overall achievement in a task (Evarts, 

Teravainen, & Calne, 1981). However, it is difficult to conclude whether these results represent 

positive or negative effects of aerobic exercise on cognition, given that they seem to be based on 

a change in strategy.  

Taken together, results from this thesis with regard to exercise show that neither acute 

nor chronic exercise enhanced energization, task-setting, or monitoring in individuals with PD. 

However, evidence that slowing in choice RT over a 12-week period was observed primarily in 

cognitively impaired individuals from the Control group suggests that exercise may have the 

potential to protect or delay the decline in cognitive functions. Nonetheless, it is important to 

acknowledge three factors that could have influenced findings of Study 2 and Study 3 and which 

should be considered in future research.  

The first factor is that in both studies participants with PD were assessed while in the ON 

medication state. Study 1 showed that deficits in monitoring were only observed in the OFF 

medication state. Yet, the choice of assessing the effects of exercise in the ON medication state 

was made in order to increase ecological validity in the studies’ results, since PD patients 

perform daily living activities in the ON state the majority of the time. Another reason why 
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participants were assessed in the ON medication state was that it would be extremely challenging 

to complete Study 2 while in the OFF medication state, since participants had to pedal relatively 

fast in order to keep intensity levels. Further, it would be difficult for participants to perform the 

long assessment sessions of Study 3 while in the OFF medication state. Nonetheless, if one 

wants to know the isolated effects of exercise on cognition without the confounding of 

pharmacological therapy, then the assessment of individuals with PD in the OFF state would be 

valuable.  

The second factor is that the duration of Study 3 may have played a role on the lack of 

changes in RT. Although the duration of Study 3 was based on previous studies in PD showing 

positive results of exercise on cognition, the majority of trials investigating the effects of 

exercise on cognition in healthy older adults are 6 to 12 months long. Thus, it is possible that if 

participants had exercised longer some of the expected changes would likely have been 

observed.  

The third factor was the large variability in response to exercise observed in both Study 2 

and Study 3. Although these studies had considerably more participants than previous 

investigations, the sample was not large enough to further explore individual characteristics such 

as gender, symptom subtype, and symptom laterality. 

 

6.1.4 The effects of aerobic and goal-based exercise on different cognitive domains in 

individuals with PD 

 Although it is important to address the executive functions deficits in therapeutic 

research, recent studies provide evidence that cognitive domains such as memory, language and 
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visuospatial function are better predictors of dementia in individuals with PD (Williams-Gray et 

al., 2009; Williams-Gray et al., 2013) than executive functions. Importantly, while deficits in 

executive functions may partially respond to dopaminergic treatment, deficits in memory, 

language and visuospatial processing do not respond to dopaminergic treatment. Thus, it is 

critical that research investigating the effects of adjunct therapies (such as exercise) on multiple 

cognitive domains continues to develop, in order to determine the potential of these therapies to 

prevent or post-pone the progression of cognitive decline in PD.  

 To the best of my knowledge, only two studies have attempted to assess the chronic 

effects of exercise on multiple cognitive domains in PD. The first assessed the effects of a 12-

week program combining aerobic and strength training in comparison to a control non-exercise 

group (Cruise et al., 2011), while the second consisted of a 24-week long aerobic exercise 

program (no control comparison). In both cases, it was found that exercise improved executive 

functions exclusively. This is in contrast to previous research in healthy older adults that showed 

improvements in memory after a 24-week aerobic exercise program (Erickson et al., 2011). 

Thus, considering the limited number of studies that investigate this question and the 

inconsistency of results in the literature, more research in this field was necessary.  

 In Study 3, participants in both aerobic and goal-based exercise showed improvement in 

processing speed (TMT A). In addition, cognitively impaired individuals from the Control group 

were slower at post compared to pre-test.  With respect to set-shifting (TMT B), there were no 

changes from pre to post-test for both exercise groups. However, cognitively impaired 

individuals from the Control group showed slower performance at post-test (similarly to the 

slowing in RT found in this group). Furthermore, it was found that only PD patients in the 

Aerobic group improved inhibitory control (Stroop test) from pre to post-test. These results 
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collectively suggest that aerobic exercise was more effective than goal-based exercise at 

improving cognition in PD, specifically in executive functions. On the other hand, neither 

aerobic nor goal-based exercises were able to enhance performance on memory, language, or 

visuospatial function.   

Findings that aerobic exercise can improve inhibitory control in individuals with PD are 

in line with results from previous investigations (Duchesne et al., 2015; Uc et al., 2014). Yet, the 

present study is the first to show that aerobic exercise was more effective at improving cognition 

than goal-based exercise, suggesting that the aerobic basis of previous multimodal studies may 

have been the critical component to the observed improvements in cognition. Inhibition is 

considered a component of executive functions  and its neural network is hosted in inferior 

lateral areas of the frontal lobes, pre-supplementary motor area, and the subthalamic nucleus of 

the basal ganglia (Aron, 2007). Thus, the fact that inhibition may be mediated by frontal areas 

that are different than  the ones underlying energization, task-setting and monitoring (superior 

medial, left lateral and right lateral frontal areas, respectively) may help to explain why no 

significant differences were found in Study 2 and Study 3 for the outcomes linked to each 

cognitive process. Importantly, these findings support the notion of a non-unitary structure of 

executive functions, where specific components of executive functions are differently influenced 

by brain disorders such as PD as well as by therapy strategies such as exercise. Moreover, it is 

still puzzling to think why exercise would selectively affect certain brain areas or specific brain 

functions. Considering some of the proposed underlying mechanisms by which exercise may 

influence cognition such as increases in blood flow, catecholamine concentration, levels of 

neurotrophic factors, and neurotransmitter activity, it remains unclear why exercise has selective 

rather than general effects on brain function and cognition.  
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Deficits in inhibitory control are commonly observed in individuals with PD (Jahanshahi, 

Obeso, Baunez, Alegre, & Krack, 2015). Moreover, deficits in inhibition are not responsive to 

dopaminergic treatment (Obeso, Wilkinson, & Jahanshahi, 2011) , but they are responsive to 

deep brain stimulation in the subthalamic nucleus (Obeso et al., 2014). Thus, findings from the 

current thesis suggest that improvements in cognition as a result of aerobic exercise may be 

mediated by changes in non-dopaminergic circuitries, potentially involving the subthalamic 

nucleus. However, evaluating the effects of exercise on the neural circuitry involved in inhibitory 

control will be necessary in order to confirm this hypothesis.  

  One of the most unique findings of Study 3 was that cognitively normal and impaired 

individuals with PD benefited similarly from aerobic exercise. Combined with the observed 

worsening in the Control group, findings from this research suggest that exercise may post-pone 

the incidence of cognitive decline and potentially slow down its progression.   

  Finally, neither aerobic nor goal-based exercises alone were able to improve cognitive 

domains that are linked to increased risk of dementia in PD. These findings are in contrast with 

previous research in healthy older adults showing that exercise can enhance memory function 

(Erickson et al., 2011; Nagamatsu et al., 2013). However, it is important to note that the majority 

of exercise trials involving healthy older adults are significantly longer (e.g. 24 weeks) than the 

12-week period chosen for Study 3. Moreover, research in healthy older adults often have a 

proportional number of male and female participants or greater number of female individuals, 

whereas Study 3 had predominantly male participants. This could have influenced the results 

from Study 3, since previous research has demonstrated that female participants had greater 

exercise-induced improvements in cognition compared to male participants (Baker et al., 2010). 

Nonetheless, it was found that cognitively impaired individuals from the Aerobic group 
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maintained performance levels in the Pentagons task from pre to post-test, while those in the 

goal-based group were worse at post-test. This finding could suggest that aerobic exercise may 

prevent or post-pone the decline in visuospatial functions which is one the best predictors of 

dementia in PD.  Therefore, future studies should investigate the effects of exercise on memory, 

language, and visuospatial function in trials with longer durations and in samples with similar 

numbers of male and female participants.  

 

 6.1.5 Exercise-induced improvement in cognition leads to better gait control in PD 

 The relationship between deficits in cognition (especially attention and executive 

functions) and gait has been consistently demonstrated in individuals with PD. According to 

previous investigations (Lord, Rochester, Hetherington, Allcock, & Burn, 2010; Yogev et al., 

2005), these associations suggest that a decrease in gait automaticity as a result of basal ganglia 

degeneration lead individuals with PD to rely on cognition to control gait. Thus, it has been 

proposed that cognitive decline could limit the capacity of individuals with PD to compensate for 

decreased gait automaticity. Hence, one could propose that therapeutic strategies aiming to 

improve cognitive function might improve gait control in individuals with PD, especially under 

circumstances with high cognitive demands such as dual-task walking.  Therefore, Study 4 

aimed to investigate the impact of aerobic and goal-based exercise on cognition and gait in 

cognitively normal and impaired individuals with PD.  

 Results of Study 4 showed that exercise similarly improved cognition in cognitively 

normal and impaired individuals with PD. However, only individuals with impaired cognition 

showed improvements in gait after exercise. Importantly, changes in gait parameters in 
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cognitively impaired individuals were found exclusively in the dual task condition at post-test. 

Overall, effects of exercise were observed for cognitive processing speed as well as gait 

parameters linked to gait stability (step width and double support). Specific effects of aerobic 

exercise on cognition were characterized by an improvement in response inhibition and better 

accuracy in RT tasks, while goal-based exercise improved working memory. In relation to gait, 

aerobic exercise selectively decreased step time variability, while goal-based exercise decreased 

step time at post-test. Most importantly, associations between changes in cognition and in gait 

were found only for the aerobic group.  

 The most important finding of Study 4 was that only cognitively impaired individuals 

showed improvements in dual-task walking, despite improvement in cognition being similar for 

those with normal and impaired cognition. These findings support the existence of a strong 

relationship between cognition and gait in PD and that cognitive remediation through exercise 

can improve mobility of individuals with PD, especially under circumstances with high cognitive 

demands (i.e. dual-task walking). Interestingly, associations between changes in cognition and 

gait were found exclusively for the aerobic group.  

Results from the current thesis and previous investigations have suggested that aerobic 

training maybe a powerful therapy strategy to treat cognitive deficits in older adults (Colcombe 

et al., 2006; Colcombe et al., 2004; Erickson et al., 2011). In order to investigate the influence of 

aerobic exercise on cognition and gait, participants in this thesis were trained on a cycle 

ergometer in order to avoid training specificity (e.g. walking training) to influence the results and 

interpretations. Thus, results from Study 4 suggest that potentially a common mechanism 

resulting from an increase in aerobic function promoted changes in cognition and gait in 

individuals with PD. 
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 Studies have showed that cognitive inhibition and step time variability are not responsive 

to dopaminergic treatment (Blin, Ferrandez, Pailhous, & Serratrice, 1991; Lord, Baker, 

Nieuwboer, Burn, & Rochester, 2011; Obeso et al., 2011). Therefore, it might be that the effects 

of aerobic exercise on cognition and gait were mediated by non-dopaminergic circuitries. 

Previous research with individuals at early stages of Alzheimer’s disease showed that cholinergic 

medication decreased step time variability during single task walking (Montero-Odasso et al., 

2015; Montero-Odasso, Wells, Borrie, & Speechley, 2009) and gait velocity during dual-task 

walking. Moreover, cholinergic deficits have been associated with impaired cognitive function, 

gait slowness, and falls in individuals with PD (Bohnen et al., 2006; Bohnen et al., 2009; Dubois, 

Pilon, Lhermitte, & Agid, 1990). Thus, one could hypothesize that changes in cholinergic 

activity could have played a role in the observed changes in cognition and gait after aerobic 

exercise. Yet, to my knowledge, the effects of exercise on cholinergic activity in humans have 

never been investigated. Therefore, future studies should investigate whether aerobic exercise 

can influence cholinergic activity in PD and whether improvements in cholinergic activity can be 

translated into cognitive and gait improvements in PD.  

6.2 Limitations 

Limitations of the current thesis include the lack of objective measures of brain activity 

pre and post-exercise interventions. Although in the current thesis theoretical and methodological 

framework were based on well designed and controlled lesion studies, the objective evaluation of 

brain activity could have been more sensitive to the effects of exercise on cognition than some of 

the behavioural measures used in this thesis. A second important limitation is the lack of a 

washout period in which the long lasting effects of exercise on cognition could have been 

assessed. Time constrains and potential practice effects of repeating the assessment battery for 
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the third time were the main reasons why the washout period did not occur in the present thesis. 

Another limitation involves the blinding procedures of the chronic exercise trial. The ideal 

blinding procedure would have all assessments performed by blinded personnel, the exercise 

sessions being led by blinded instructors, and participants being blinded to the therapeutic effects 

of each exercise modality. Even though the number of participants in the current thesis is one of 

the largest available, it is reasonable to suggest that a larger sample size would help to decrease 

variability and potentially bring some of the trending results to statistically significant findings. 

A larger sample size would also allow to explore important aspects such as if cognitive processes 

that are hemisphere-specific were differently affected in individuals with PD with predominant 

right and left side affected. In addition, knowing that individuals with posture and gait 

impairments usually show greater cognitive impairments than tremor dominant patients, it would 

be interesting to investigate whether exercise influences cognition and gait differently in these 

two subgroups of patients. Lastly, the current study was 3 months in duration in contrast to most 

trials that investigate the effects of exercise on cognition which are 6 months long, meaning that 

results could have been more pronounced if the trial was longer. 

6.3 Concluding remarks and clinical implication 

 Taken together findings from the current thesis demonstrated that individuals with PD 

show selective deficits in cognitive processes mediated by the frontal lobes, specifically in 

monitoring. These deficits were evident when individuals with PD were in the OFF state of 

dopaminergic medication, thus supporting the notion that the basal ganglia integrate the 

networks that mediate these cognitive processes (Stuss, 2011). Dopaminergic medication did not 

alleviate deficits in these cognitive processes. There were also no improvements in these 

cognitive processes after an acute bout of aerobic exercise or chronic aerobic and goal-based 
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training programs. With respect to cognitive domains, results showed that aerobic exercise was 

more beneficial to cognition than goal-based exercise, by improving not only processing speed 

but also participants’ response inhibition. Therefore, these findings help to clarify that 

improvement in cognition after multimodal exercise programs were likely influenced by their 

aerobic basis. Furthermore, aerobic training was found to improve cognition of individuals with 

normal and impaired cognition, which leads to the conclusion that exercise may be an effective 

adjunct strategy to help individuals with PD to maintain good cognitive function. These effects 

were observed primarily within the executive functions domain, while no changes in cognitive 

domains linked to the incidence of dementia in PD (memory, language, and visuospatial 

function) were found in this thesis. Importantly, participants in a control group who did not 

receive any special exercise treatment but only carried on with their regular activities showed 

significant worsening over 12 weeks.  Thus, even if exercise did not improve all cognitive 

domains, it may have helped to prevent cognitive decline. Aerobic exercise was found to 

improve cognition and dual-task gait of cognitively impaired individuals with PD, and exercise-

induced changes in cognition and gait were associated. Thus, findings confirm the hypothesis 

that cognitive remediation may result in improved gait control of individuals with PD.  

 Findings from this thesis have important clinical implications, since cognitive deficits 

cannot be fully alleviated by current pharmacological treatments for PD symptoms. Specifically, 

this thesis shows that moderate intensity aerobic exercise should be recommended to PD patients 

regardless of their cognitive status (normal or impaired). Since the majority of individuals with 

PD had deficits in gait and balance, the use of recumbent cycle ergometers was shown to be a 

safe and effective way of aerobic training in this population. Most importantly, the use of cycle 
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ergometers did not prevent participants in this thesis to show improvements in mobility due to 

reduced training specificity.  
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