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Abstract

The problem of map enumeration is one that has been studied intensely for the past
half century. Early work on this subject included the works of Tutte for various types of
rooted planar maps (e.g. [9, 36, 37]) and the works of Brown [7, &] for non-planar maps.
Furthermore, the works of Bender, Canfield, and Richmond [2, 3] as well as Bender and
Gao [1] give asymptotic results for the enumeration of various types of maps.

This subject also attracted the attention of physicists when they independently discov-
ered that map enumeration can be applied to quantum field theory. The results of 't Hooft
[35] established the connection between matrix integration and map enumeration, which
allowed algebraic techniques to be used. Other examples of this application can be found
in the papers of ITtzykson and Zuber [5, 10, 20].

One result of particular significance is the Harer-Zagier formula [19], which gives the
genus series for maps with one vertex. This result has been proved many times in the
literature, a selection of which includes the proofs of Goulden and Nica [17], Itzykson and
Zuber [21], Jackson [23], Kerov [21], Kontsevich [25], Lass [27], Penner [29], and Zagier
[12]. An extension of this result to locally orientable maps on one vertex can be found in

Goulden and Jackson [10], while another extension to two vertex maps can be found in
Goulden and Slofstra [18].

In this thesis, we will extend the combinatorial techniques used in the papers of Goulden
and Nica [17] and Goulden and Slofstra [15], so that they can be applied to maps with
an arbitrary number of vertices, when the graph being embedded is a tree with loops and
multiple edges. This involves defining a new set of combinatorial objects that extends
the ones used in Goulden and Slofstra, and develop new techniques for handling these
objects. Furthermore, we will simplify some of the techniques and results in the existing
literature. Finally, we seek to relate the techniques used in this thesis to techniques in other
map enumeration problems, and briefly discuss the potential of applying our techniques to
those problems.
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Chapter 1

Introduction and Background

1.1 Thesis Outline

The study of maps, or graphs embedded on surfaces, is as old as graph theory itself. The
early results on maps are mainly topological, such as the classic formula by Euler that
relates the number of vertices, edges, and faces of a map with the genus of the surface
in which it is embedded. However, much work on the combinatorial aspect of maps has
been done in the past half century, with the enumeration of maps. Various types of rooted
planar maps have been enumerated by Tutte, e.g. [9, 30, 37], and several types of non-
planar maps were enumerated by Brown [7, &]. A survey of the enumeration of maps of
arbitrary genus can be found in the census paper by Walsh and Lehman [10]. Furthermore,
there has been much research done on the asymptotics of map enumeration, such as the
papers by Bender, Canfield, and Richmond [2, 3], or Bender and Gao [!]. The result of
Edmonds [13] allowed maps to be encoded combinatorially as permutations, using objects
called combinatorial maps. This allows for the use of various algebraic and combinatorial
techniques.

The popularity of this subject grew when physicists independently discovered that map
enumeration can be applied to quantum field theory. Some examples of such application
can be found in the papers of Itzykson and Zuber [5, 10, 20], and more recently Zograf [13]
and Eynard [11]. In particular, 't Hooft [35] established the connection between matrix
integration and map enumeration.

One result derived from the matrix integration technique is the Harer-Zagier formula
[19], which gives the genus series for maps with one vertex. The result has been proved



many times in the literature, using various algebraic and combinatorial techniques. A
selection of the proofs can be found in Goulden and Nica [17], Itzykson and Zuber [21],
Jackson [23], Kerov [24], Kontsevich [25], Lass [27], Penner [29], and Zagier [12]. An
extension of this result to locally orientable maps on one vertex can be found in Goulden
and Jackson [16]. The particular proof we are interested in is the combinatorial proof by
Goulden and Nica, as their proof was extended to two vertex maps in the paper of Goulden
and Slofstra [18]. This thesis will generalize Goulden and Slofstra combinatorial approach
to maps with an arbitrary number of vertices, as well as provide simplifications to both
the approach and objects used.

This thesis is organized as follows.

In Chapter 1, we discuss the basic background and notation used in this thesis. We
start by introducing the notation necessary to cover the other sections. Next, we introduce
generalized hypergeometric series, which are important functions in combinatorics as they
can be used to express most summations. We will present the tools for manipulating and
simplifying these series, and show how they can be used to simplify algebraic expressions
involving sums. Then, we introduce the symmetric group and the notation we will use for
describing permutations. Finally, we introduce maps, first as a topological object, then as
a combinatorial object. We will show how the two objects are related to each other, and
how the combinatorial map can be represented using the symmetric group. This allows
us to present the main focus of this thesis, as a problem about enumerating combinatorial
maps by genus.

In Chapter 2, we discuss the background and historical context surrounding map enu-
meration. We start by formally defining the problem introduced in Chapter 1 using the
notation of the symmetric group, then give some elementary results. Next, we introduce
the paired function, which is also called the N-coloured map in some parts of the liter-
ature. The paired function is a combinatorial object that is used in both the algebraic
and combinatorial approaches to map enumeration, and counting these objects is sufficient
for giving the generating series for our problem. Then, we discuss one of the algebraic
techniques used in the literature, known as the matrix model. The matrix model is the
integral on Gaussian measure over the space of Hermitian matrices. We are interested in
the one matrix model, for which we will introduce the necessary background and notation,
as well as the theorems we can use to evaluate the integrals that result from using this
model. In the following section, we apply the one matrix model to the one vertex case of
our problem, which gives us the results of the Harer-Zagier formula [19]. Subsequently,
we extend the one matrix model into the two matrix model, which allows us to derive the
result of Goulden and Slofstra [18] algebraically. Finally, we give further context to our
problem by discussing several related problems in enumerating maps and permutations.



Chapter 3 is an extension to the work in Goulden and Slofstra [18], modified so that it
fits our definition of the paired function. First, we give a pictorial description of the paired
functions, which are presented in the form of labelled arrays. Then, we can strip the labels
from the labelled arrays, which gives us our main combinatorial object, the paired arrays.
We introduce the various terminology and lemmas for describing paired arrays, including
the balance and forest conditions. In particular, we will discuss some of the differences
between our definition of paired arrays and the definition in Goulden and Slofstra. By
using these lemmas, we can provide a bijection between paired arrays and labelled arrays,
which shows that this preserves the necessary information for reconstruction. Finally, we
develop some of the tools needed to decompose paired arrays, and start the first step of
our decomposition by decomposing paired arrays into minimal arrays.

Chapter 4 introduces the arrowed array, which is an new extension to the paired array
defined in Chapter 3. First, we define the arrowed array as a combinatorial object, then
extend the notation used for paired arrays to arrowed arrays. Next, we introduce the arrow
simplification lemmas, which is a set of lemmas that allow us to reduce arrowed arrays to
specific forms. This allows us to partition the set of arrowed arrays into substructures,
and describe these substructures using a number of parameters. Furthermore, the arrow
simplification lemmas can be used to reduce one substructure to another. This allows us
to count the numbers of arrowed arrays that satisfy the substructures we have defined, by
using induction and the arrow simplification lemmas on substructures.

Chapter 5 continues the discussion on arrowed arrays by introducing more types of sub-
structures. Each new type of substructure introduced is the aggregate of the substructures
of the previous type. This allow us to derive formulas for the new types of substructures
by summing over the formulas for the previous ones. For each type of substructure, we will
present two results, which correspond to the two decompositions we will give in the next
chapter. This culminates in a pair of formulas that can be used for further decomposing
paired arrays.

Chapter 6 continues the decomposition started in Chapter 3, where we will use the
results derived in the previous two chapters to completely decompose the paired array.
We start by decomposing minimal arrays into vertical arrays, using an alternate proof to
Goulden and Slofstra that does not rely on the forest completion algorithm. This gives
us a formula for the number of paired arrays in terms of the number of vertical arrays,
which is applicable regardless of whether the underlying graph is a tree. In cases where
the graph is a tree with loops and multiple edges, we can recursively decompose vertical
arrays, and use induction to derive an expression for the number of vertical arrays that
can be substituted into the previous formula. To end this chapter, we demonstrate that
the expression we have derived for paired arrays is a polynomial, which allows us to use



this expression as the generating series to the main problem.

Finally, Chapter 7 discusses the application of results derived in this thesis, as well as
other miscellaneous results. We start off by showing how the result in this thesis can be
specialized into the one and two vertex cases covered in Chapter 2. Then, we give a further
simplification to the formula of Goulden and Slofstra by using Pfaff’s identity. Next, we
discuss some results for when the underlying graph is not a tree, and show how they can
be used to derive the series computationally for the main problem in this thesis. Finally,
we talk about the possible directions to go forward, as well as the potential for applying
the techniques in this thesis to other enumeration problems.

Among the many results that appear in this thesis, the main new contributions are given
by Definition 4.1, Definition 4.9, Theorem 4.13, Theorem 6.7, and Theorem 6.9. Together,
these give our extension of the paired array, called the arrowed array, the partitioning of
arrowed arrays into irreducible substructures, and the key steps for using arrowed arrays to
enumerate the number of vertical arrays. We can then combine these results with previous
work to obtain the generating series for the main problem.

1.2 Basic Notation

In this section, we will describe basic combinatorial notation and results used in this thesis.
In particular, we will focus on those relating to sets, functions, and graphs. Let n and k be
integers such that 0 < k < n. We use [n] to denote the set {1,...,n}, [n]" to denote the
Cartesian product of [n| with itself k& times, and [n; k| to denote the set of all k-subsets of
[n]. Suppose S is a set of size n, where n is even. A pairing p of S is a partition of S into
disjoint subsets of size 2. In this context, the set S is called the support of u. Furthermore,
the set of all pairings of [n] is denoted as P,. Next, suppose k is a non-negative integer,
and S is a set of size at least 2k. A partial pairing T of S is a pairing on a subset S’ C S
of even cardinality. If |S’| = 2k, then T is called a k-partial pairing of S. As with pairings,
the set S’ is called the support of the partial pairing 7. Finally, the set of all k-partial
pairings of [n] is denoted as Ty, k.

Next, we will introduce a number of standard notations for expressing the cardinalities
of the above sets. Let n > 0 be an integer. The factorial of n, denoted n!, is defined by

nl=nn-1)---3-2-1

for n > 1, with 0! = 1 by convention. Similarly, the double factorial of n, denoted as n!!,



is defined by

" n(n—2)---5-3-1 nodd
nl!l =

n(n—2)---6-4-2 neven
for n > 1, with 0!! = (—=1)!! = 1 by convention. By rewriting the double factorial in terms
(2k)!

sirs and for

of normal factorials, we see that for n = 2k — 1 odd, we have (2k — 1)!l =
n = 2k even, we have (2k)!! = 2~k!

Now, for a complex number n and an integer k > 0, the rising factorial n®) is defined
by
n® =nn+1)---(n+k—1)

for k > 1, with n(®) = 1. Note that for n > 0 an integer, we have n! = 1. Furthermore,
for a fixed integer k, n*®) is a polynomial in n of degree k. With the rising factorial defined,
the binomial coefficient (Z) is defined by

(Z) - (n_kkj ur

with (Z) = 0 for integer n > 0 and k£ < 0 by convention. If n and k are integers and
0 <k < n, we have (Z) = #lk), As with rising factorials, for a fixed integer k, (Z) is a
polynomial in n of degree k. Unlike in most of the combinatorial literature, we will use the
rising factorial instead of the falling factorial defined by (n), =n(n—1)---(n —k+1).
The reason will become apparent when we define the hypergeometric series in Section 1.3.
Furthermore, we will also elaborate on how we use the factorial function and rising factorial
in that section.

With the values defined above, we can now give the cardinalities of the sets introduced
earlier in this section. Let si,...,s, be the elements of S. Notice that in a pairing p of
S, the element s; must be paired with some element s;, where 2 < i < n. Suppose y’ is p
with the pair {s1, s;} removed, then p’ is a pairing of S\ {s1, s;}. Conversely, any pairing
p' of S\ {s1,s;} can be made into a pairing p of S by adding the pair {sy, s;}. Therefore,



by doing some elementary counting, we obtain the following cardinalities.

el = (})

|P.] = (n—1
_ (" _ 1
| k| (ka) (2k — 1)
n!
— 2FK (n — 2k)!

Next, we will describe various notation involving sets described by multiple integers.
Let p and n be positive integers. We use [p|* to denote the set {1ﬂ, 2% .. ,pﬂ}, whose
elements 2, ¢ = 1,...,p, are regarded as a labelled version of the integer i, labelled by the

n” in the superscript position. Then, suppose p = (p1,...,p,) is a vector of length n of
positive integers, we let [p1, ..., p,] to be the set [101]l U---U|[p,|*. For example, [3,5,2] is

the set {ll, QL, SL, 12, 22, 32, 42, 527 13, 2§}. Furthermore, if p; +- - - +p, is even, then the set

of all pairings of [p1, ..., py| is denoted as P,, . ,,. Now, if u is a pairing of [p1, ..., pn|, then
a pair {xi, yk} in p is a mized pair if i # k, and a non-mized pair otherwise. To describe
the number of mixed and non-mixed pairs in a pairing p, we introduce the parameters
q and s defined as follows. Let q = (¢1,...,¢,) be a vector of length n, where ¢; is the
number of non-mixed pairs of the form {x% 3} in u, and s = (812,513, -,8n_1.,) be an
n x n strictly upper triangular matrix, where s, ; is the number of mixed pairs of the form
{xi, yE} in pu. For ease of notation, we let s, = si; for ¢« > k, and let s; = zk# Si k-
Equivalently, s is a symmetric matrix with zeroes on its diagonal, and s; is the sum of
row 7 of that matrix. For convenience, we will also sometimes treat s as a vector of length
@. As each non-mixed pair {22, 4} has 2 elements of [p;]*, and each mixed pair {z%,y%}
has 1 element of [pz]z, we see that p; = 2¢; + s; for 1 < ¢ < n. Finally, given a strictly
upper triangular matrix s, the support graph of s is the graph G with the vertex set [n],
such that {i, k} is an edge of G if and only if s, > 0.

For example,  — {{1%3&},{2% 23},{12, 25},{33,42},{53, f}} is a pairing of
[3,5,2]. The parameters for this pairing are (gi1,¢2,93) = (1,1,0) and (s12,513,523) =
(1,0,2), which gives us (p1,pa2,p3) = (3,5,2). The support graph of s is a graph with

vertices {1,2,3}, and edges {1,2} and {2, 3}, as seen in Figure 1.1.

Our next step is to partition the pairings of P,, ., according to the parameters q and
s. Let 9 = (q1,...,¢,) and s = (S12,513,...,5,—1,n) be vectors of non-negative integers
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Figure 1.1: Support graph of s = (1,0, 2)

such that p; = 2¢; + s; is positive for 1 < ¢ < n. We define Pr(L ) C P,,....pn, to be the
subset of the pairing such that for € PX% . ;i has ¢; non-mixed pairs of the form {xt, 4t}
and s;;, mixed pairs of the form {xi, yﬁ}. As the parameters p;’s are now redundant, we

can drop them from the definition of L), However, we will keep the parameter n, to be
consistent with other objects defined later in this thesis, where the parameter will be used
to decompose those objects.

To conclude this section, we will discuss some of the auxiliary notation that we will be
using in this thesis. A graph G = (V, E) is a pair consisting of a vertex set V' and edge set
E, where each edge e € F is a pair of vertices u,v € V. A graph is directed if each pair
e € E is ordered, denoted as e = (u,v). The out-degree of a vertex v in a directed graph
is the number of edges e of the form e = (v,u). If G is a directed graph where each vertex
has out-degree at most one, then G is a rooted forest if it is acyclic, in other words, if G
does not contain a directed cycle. The root vertices of G' are the vertices with out-degree
0. Note that this includes the isolated vertices of G. The rooted forest will be used later
to help define one of our combinatorial objects. In general, we will introduce lemmas on
graphs as they are needed, since most results are only needed once.

Finally, we will briefly cover the notation we use for partial functions. Let X and Y
be two sets. A function f is a partial function from X to Y, denoted f: X - Y if f is
a function from a subset X’ C X to Y. By definition, all functions are partial functions.
Now, given a partial function f: X -» X, the functional digraph of f is a directed graph
G with X as its vertex set, and (u,v) is a directed edge of G if and only if f(u) = v.
Furthermore, suppose f: X - X is a partial function that is defined on the set X’ C X,
and Y is a subset of X that contains X' U f (X’). Then, f is a partial function from Y to
Y. Therefore, we can take the functional digraph of f with respect to the vertex set Y.
This means that we consider f as a function f: Y — Y, and take the functional digraph
of this function.

For example, the function f (1) =3, f(2) =5, f(5) =6, f(6
{17

= = 5 is a partial function
f: [8] = [8] that is defined on X’ = {1,2,5,6}. Then, ¥ =

)
2,3,5,6,8} is a subset of
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Figure 1.2: Functional digraph of a partial function

[8] that contains X’ and f (X’). So, f: Y - Y is a partial function that has the functional
digraph shown in Figure 1.2.

1.3 Generalized Hypergeometric Series

In this section, we begin by describing notation related to generalized hypergeometric series
that will be used in this thesis. Most of the definitions in this section are taken from the
book Special Functions by Andrews, Askey, and Roy [!], with some notation adjusted to
match the notation commonly used in combinatorics. Then, we introduce an elementary
but useful technique for manipulating these series that allows us to bypass difficulties
arising when the series are undefined. Finally, we introduce four hypergeometric identities
that we will be using in the later chapters of the thesis.

Recall that for n > 0 an integer, the factorial of n is defined by n! =n(n—1)---3-2-1
for n > 1, with 0! = 1. To extend this definition, we introduce the gamma function, which
can be defined as a limit. For x a complex number with x # 0,—1,—2,..., the gamma
function T' (z) is defined by

This function was originally discovered by Euler, and has several equivalent definitions.
One alternative definition, also by Euler, is to define the gamma function as an infinite
integral for positive real values x, and then extend it analytically to all complex numbers.
By taking the ratio of the limits F(F:C(I)l), we can obtain the identity I' (x + 1) = I ().
Combined with I' (1) = 1, the gamma function satisfies I' (n 4+ 1) = n! for all non-negative
integer n. Also, note that the limit of the reciprocal exists for all complex values z, with
ﬁ = 0 for all non-positive integers x. Therefore, with a slight abuse of notation, we
will use factorials and gamma functions interchangeably, and define % to be 0 if z is a
negative integer. However, note that a term of z! in the numerator is undefined if x is a

8



negative integer. Furthermore, the reciprocal of the gamma function is entire, which means
it has a complex derivative everywhere. This implies that ﬁ is continuous at all complex

numbers, and I' (x) is continuous except at the points  # 0, —1,—-2,....

Our first application of the gamma function is to rewrite rising factorials as normal
factorials. Recall that for a complex number n and an integer £ > 0, the rising factorial
n®) is defined by n®) = n(n+1)---(n+k —1). If n is an integer, then we can rewrite
the rising factorial to obtain

(nt+k=1)!
R — ) D | n>0

(—n—k)!
In the case where —k < n < 0, the denominator of the second expression contains the
factorial of a negative integer, which gives n®) = 0, as desired. Furthermore, by replacing
the factorials in these expressions with their equivalent gamma functions and using the
identity I' (z + 1) = «I" (x), we see that the expressions remain valid for non-integer values
of n. Note that despite the piecewise representation, n*) is continuous as a function of n,
since n® is a polynomial in n for fixed k.

Considering again the case of n an integer and —k < n < 0, note that we can rewrite

n® as (=1)F (=n — k + )™ This gives n® = (2:5;)1!)! with the above formula. Hence, if
we have integers n and k such that n > 0, we can write

n!

T (n—k+1)"

regardless of whether n — £ is non-negative. This will be useful later in the thesis.
Another reason for defining % to be 0 when x is a negative integer is that this matches
up well with the values of the binomial coefficient. Recall that for a complex number n and

: : : : . ke )®
an integer k > 0, the binomial coefficient (Z) is defined by (Z) = (nkk—fl)
it as a ratio of gamma functions, we have

n\ I'(n+1)
(k) TR+ 1)T(n—k+1)

n!

k! (n — k)!

. By rewriting

if we are to write the gamma functions as factorials. Notice that if n is an integer, the
denominator contains the factorial of a negative integer if and only if £ < 0 or &k > n,



precisely when (Z) =0.

With the preliminaries defined, we can now introduce the key tool which we will use to
manipulate summations. This is the hypergeometric series, which is given by the following
definition

Definition 1.1. A generalized hypergeometric series is a series y oo, ¢ such that C’““ is

a rational function of k. Each of the terms c¢;, is referred to as a hypergeometric term By
factoring the numerator and denominator of %= as polynomials in k, we obtain

crr1 (bt a)(k+az) - (k+ap)o
e (kb)) (k+by)---(k+b,)(k+1)

for some non-negative integers p and ¢, and some constant x independent of k. If the factor
k + 1 does not occur naturally in the denominator, we add it to both the numerator and
the denominator of C’Z—Zl . Then, the series can be normalized by factoring out cq, which

gives
f: i (k) " ai,...,a,
cr = Co -—:ICO-F( Y ;:E)
P b““ b““ k! PR by, by

where we define ,F, as the sum in the middle. From the definition, we see that the b;
cannot be non-positive integers.

Historically, the term (ordinary) hypergeometric series refers to hypergeometric series
of the form o F3 (“C’b; x) This was first coined by John Wallis in the work Arithmetica Infin-
itorum (1655), and was later studied by Euler, Gauss, and Kummer [32]. For convenience,
we will refer to both ordinary and generalized hypergeometric series simply as hypergeo-
metric series. Many of the special functions and theorems can be expressed in terms of

. . . g2
hypergeometric series. For example, we can write e* = Fj ( x) sinx = zoF} <3 Pnlr

and cosx = oF} (172, _sz> Further examples of expressing common functions as hyper-

geometric series can be found in the book Special Functions [1]. However, one particular
example we will consider here is the binomial theorem, as this helps to explain some of the

10



techniques used later in this thesis. For n > 0, (1 — z)" can be expressed as

1oy = 3 () (7) -+

In the second line, we take advantage of the fact that ﬁ = 0 for k > n, which allows

us to raise the upper bound of the sum to infinity. To arrive at the third line, we first

substitute in £ = 0 to obtain ¢y = 1. Then, by taking the ratio of successive terms, we

obtain c’:l = ’Z’T’f This shows that the sum is a | Fy, with a; = —n, as desired.

Note that if one of the a; in ,Fj (Zigp,x) is a non-positive integer —n, then the
rervq
series is a polynomial in z, and is a finite sum with n + 1 terms. This means that if we

have a finite sum ), _, ¢ such that the ratio % has n — k as one of its factors in the

numerator, we can write it as the hypergeometric series ,F, (_"b’laz"g’ap;x>, without first
g

raising the upper bound of the sum to infinity as shown above. Conversely, if n is a non-
negative integer, a series Zkzo ¢, that contains m in its denominator has an implicit
upper bound of n. The requirement that the b, cannot be non-positive integers poses a
problem when dealing with combinatorics, as most combinatorial parameters are integers.
There are several methods of bypassing this issue. One method is to define an alternative
series that allows the b; to be non-positive integers. For example, we can divide the series
by I'(by)---T' (by), which transforms the denominator into I' (by + k) ---T' (b, + k). This
approach can be found in the book Generalized Hypergeometric Functions by Slater [32].
A second method is to modify our definition of hypergeometric series to allow for non-
positive integers b; if there are corresponding non-positive integers a; that are smaller in
absolute value. Computer Algebra Systems (CAS) such as Maple use this technique [28].
However, both methods require us to rederive the hypergeometric identities presented in
this section, so that they hold for these alternate definitions. Therefore, instead of using
one of these methods, we will apply the following technique, adapted from Section 2.7 of
Special Functions. This allows us to use the identities in Special Functions as stated.

Fact 1.2. Let A: R* — R and B: R¥ — R be functions continuous at a point t =
(t1,...,t), and o € R*. If there exists 1 € R such that A(t +ea) = B(t +ea) for
all0 < e <r, then A(t) = B(t).

11



While Fact 1.2 is elementary, it is extremely useful. Let t,a € R*, » € R, and N =
{t + ea | 0 < e <r} be a path approaching t. Suppose we have functions A (x ) and B (x)
that are continuous at t, and functions A (x) and B (x) such that A (x) = A (x) = B (x) =
B (x) for all x € N, then A(t) = B(t). In particular, we can let A (x) and B (x) be
functions that are expressed as sums, and are continuous at t. Then, let A (x) and B (x)
be A(x) and B (x), respectively, but written as hypergeometric series. While A (x) and
B (x) may not be defined at t, we can choose « in such a way that the bottom parameters of
the hypergeometric series in A (x) and B (x) are non-integers. This gives us A (x) = A (x)
and B (x) = B (x) for all points x € A Finally, we can prove that A (x) = B (x) forx € N/
using a hypergeometric transformation, and use Fact 1.2 to deduce that A (t) = B (t).

As an example of this technique, we next present the Chu-Vandermonde identity in its
hypergeometric form, then show how to derive the combinatorial form from it. Both forms
of the identity will be used later in the thesis for simplifying certain summations.

Proposition 1.3. Let N > 0 be a non-negative integer, and a,c € C where c is not a
non-positive integer. Then the Chu-Vandermonde identity is given by

_N W)
2F1( ,a;l):&

c cN)

Example 1.4. Let a, b, and n be non-negative integers, and consider the identity A (b) :=
S o (9 (2) = (“I") = B (b), where we consider both sides of the identity as a function

n

12



of b. By using the Chu-Vandermonde identity, we obtain

>((.2)

k=0

- alb!
- g%mm—kﬂM—kﬁw—n+kﬂ

b! -n, —a
= —F) ’ ;1
n! (b —n)!” 1<b—n+1’ )

B b! (a+b—n+1)"
~ nl(b—n)! (b—n+1)"
B b! (a+0b)!(b—n)!
T onlb—n)! (a+b—n)lbl
B (a+b)!

~ nl(a+b—n)!

~ fa+b

- (")
By the conventions described at the beginning of this section, we are using x! to represent
I'(z+1) and % = 0 for integers x < 0. This choice of notation makes lines 1, 2, 6,
and 7 well defined for all values of a, b, and n in consideration. However, if n > b, then
ﬁ = 0and o F} (b_j‘nﬂ, 1) is undefined in line 3. To remedy this, we replace b with b+e
and let € tend to 0. At b+ ¢, each line of the equation is well defined. As A (b) and B (b) as
expressed in lines 2 and 6 are continuous on b € (—1,00), letting b tend to a non-negative
integer value gives us A (b) = B (b), even when n is an integer greater than b, as desired.

This example can be generalized to other identities involving hypergeometric series,
and in the thesis we will implicitly assume the application of this fact when we carry
out hypergeometric manipulations. Furthermore, this example shows that hypergeometric
series and their transforms are in general incredibly robust. The above proof holds even
if A or B are series whose initial terms are 0. The only issue that we need to watch out
for in proving hypergeometric identities is to ensure that the hypergeometric terms in the
initial and final series are defined. In particular, we need to ensure that there are no terms
with negative factorials in the numerator. Even in cases where this factor can be cancelled
out by a factor in the denominator, the bounds implied by the summation may change,
rendering the identity invalid. This is the other reason why we avoid allowing the b;’s to be
non-positive integers. Normally, if there exists a; and b; such that a; = b; in a ,Fj, series,

13



we can remove both a; and b; to obtain a ,_;F,_; series. However, if there exists some

a; and b; such that a; = b;, and they are the smallest negative integer in absolute value,

then cancelling out a; and b; will change where the series terminates. In most cases, the

hypergeometric functions that we use satisfy the following conditions. For our purposes, x
1

is generally 1, —1, or 5, and the a; and b; are generally integers. As our series are generally

finite, there will be at least one a; that is a non-positive integer.

To end this section, we present two hypergeometric identities that we will use later in
this thesis, both of which can be found in Andrews, Askey, and Roy [1]. The first is a 3F5
identity that holds when x = 1 and a; = —N is a non-positive integer.

Theorem 1.5. Let N be a non-negative integer, and a,b,c,d € C. Then, the identity

—N.,b,c (d—c)(N) —N,e—b,c
32( dye ) dM PP\ 1-N—d+ce
holds when both sides are well defined.

This identity can be found as a part of the proof for Sheppard’s identity, on pg. 142
of Andrews, Askey, and Roy. By applying this identity to itself repeatedly, we can arrive
at a group of 18 transformations, including the identity transform. The second identity is
Pfaff’s identity, found on pg. 68 of the same book.

Theorem 1.6. Let a,b,c,z € C. Then, Pfaff’s identity is given by

a,b _a a,c—b x
2F1< ;1’) = (1—513) 3F2( ) )
c c rz—1

when both sides are well defined and converge.

Note that if a is a non-positive integer and x # 1, then both sides of Pfaff’s identity are
polynomials in x. Furthermore, Pfaff’s identity belongs to a group of 24 transformations
(including the identity), known as Kummer’s 24 solutions. These two identities will be
instrumental in transforming our summations into forms where we can apply the Chu-
Vandermonde identity.

1.4 Symmetric Group

This section covers the background of the symmetric group, as well as some of the notation
and elementary results used in this thesis. The exposition of the symmetric group is taken

14



from the book The Symmetric Group by Sagan [30]. Let X = {z1,...,z,} be a set with
n elements, a permutation w of X is a bijective function from X to X. The symmetric
group on X, denoted Sy, is the set of all permutations of X, with the group action being
function composition. In the case X = [n], we will use S, to denote Sj,;. In this thesis, we
will multiply elements of Sy from right to left. That is, given permutations 7 and o, the
permutation 7o is the bijection obtained from first applying o, then 7.

Traditionally, there are three notations for describing a permutation 7 € Sx. The first
of these is the two-line notation, given by the array

@) was) oo (o)

The second notation, applicable when X = [n], is called the one-line notation. For
this notation, we implicitly let x; = ¢, which allows us remove the first row, leaving
m(1),7(2),---,7(n) as the result. The last notation, which for our purposes is the
most important, is the cycle notation. As m is a bijection from X to X, each vertex of
the functional digraph G of 7 has in-degree and out-degree 1. Therefore, GG is the union
of a number of directed cycles. Now, let C' be a directed cycle in G of length p, and ¢ be
an element of C. Then, C' contains the elements i, 7 (i), 72 (¢),..., 7" (i) in order, with
7P (i) = i. We can write this as

(i, 7 (i), 72 (i), ...,7a""" (i)

By writing each cycle of GG in this manner and joining the results, we arrive at the cycle
notation. Note that the representation of a permutation in cycle notation is not unique.
In particular, neither changing the order of the cycles, nor changing the elements which
start the cycles, changes the permutation. For example, the permutation

123 456

3415 26
is written as 3,4, 1,5, 2,6 in the one-line notation, and (13) (245) (6) in the cycle notation.
This permutation can also be written as (452) (31) (6) in the cycle notation.

Now, one advantage of the cycle notation is that permutations of an arbitrary set X can
be written compactly, as the elements of X are implicitly defined. Another advantage is
that the cycles of a permutation can be assigned combinatorial meaning, as we shall see in
the next section. Furthermore, if a permutation 7 is given by the set of cycles Cy, ..., C,,
then 7 can be broken up into the product of its cycles, each taken as a permutation by
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itself. That is, we can write 7 as the product 7 = 7wy 7., where for 1 < t < r, m,
is the permutation such that m; (i) = = (:) if ¢ € C, and m (i) = @ otherwise. Note
that the permutations 7y, ..., 7, commute. Furthermore, given a subset {iy,...,4;} C [r],
the product 7’ = m;, ---m;, consists of the cycles Cj,,...,C;,, and can be treated as a
permutation on the elements of C;, U---U (Cj;, alone. For example, by taking the first and
third cycle of (13) (245) (6), we have that 7' = (13) (6) is a permutation of {1,3,6}.

If a permutation 7 has r cycles of length pq,...,p, > 1 in the cycle notation, then
we say that m has cycle type {p1,...,p,}. Furthermore, if (i,7 (i), 72 (i) ,..., 777 (i)) is a
cycle of 7, and o € Sy is any permutation, we have

0Co™t = (o (i), 0 (x (i), 0 (7)) ,...,0 (77 (i)))

This means that conjugating by o relabels each element i of 7 by o (i) in the cycle nota-
tion, so the cycle type of 7 is invariant under conjugation. Furthermore, if we have two
permutations 7 and p that have the same cycle type, we can match the cycles in the two
permutations by their cycle lengths as follows

™ = (77_1,17"'77[_1,@1)"'(’/Tr,lw"aﬂ_r,fr)

po= (pri,--pre)  (Pris-- s Prsy)

and let o (m; ;) = p;; be the permutation such that omo~! = p. Therefore, the subset of
all permutations in Sy that has the same cycle type as 7 forms a conjugacy class, which
we denote ICr, or alternatively IC,, . ,. if the cycle type of 7 is {p1,...,p,}. Now, the
centralizer of 7, denoted Z, are the elements o € Sx such that omo~! = 7. Furthermore,
there is a bijection between the cosets of Z, and the elements of K, so that

_ 5%
|2+ ]

| Kxl
Now, let 7 be a permutation with cycle type {p1,...,p,}, and for i > 1, let m; be the
number of elements p; such that p; = 4. Then, we have
‘Zﬂ’ = 1m1m1!2m2m2! cee nm”mn!

where n = p; + -+ 4+ p,. This result follows from the cycle notation. Any permutation
o € Z, must send a cycle of length ¢ to a cycle of the same length. So, there are m;! ways
to permute the m; cycles of length ¢ in 7. Then, for each of those cycles, we can perform a
cyclic rotation in ¢ ways, independent of the other cycles. Combining this result with the
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formula for I, we have

n!

|ICP17--~,PT|

N 1m1m1!2m2m2! s nm“mn'
where n = p; + -+ - + p,, as desired.

A permutation 7 of a set X is a transposition if there exists x,y € X such that 7 (x) = y,
m(y) =z, and 7 (z) = z for all z € X, z # z,y. In other words, 7 has exactly one cycle of
length 2, namely (z,y), and all other cycles of 7 have length 1. To simplify the notation,
we will drop the cycles of length 1 if the context for X is clear. As the remaining cycle of
7 is simply an unordered pair of X, we will write the transposition 7 as 7 = {z,y}. We
now have the following elementary proposition.

Proposition 1.7. Let w be a permutation of a set X with L cycles, and o be a transposition
{z,y} of X. Then, o has L + 1 cycles if x and y are in the same cycle of w, and L — 1
cycles otherwise.

Proof. Suppose x and y are in the same cycle C'. Without loss of generality, let C' =
(v,m(x)...,y,...). Then, applying ¢ to 7 will break C into the cycles (z,...,77!(y))
and (y, ..., 71 (z)), while leaving the other cycles unchanged. Therefore, the permutation
om has L 4+ 1 cycles.

Similarly, suppose x is in the cycle C and y is in the cycle Cy, where Cy = (z, 7 (x),...)
and Cy = (y,7(y),...). Then, applying o to 7 will merge C; and Cy into the cycle
(x,....,7 Y (x),y,...,7 1 (y)), again leaving other cycles unchanged. Therefore, the per-
mutation om has L — 1 cycles. O

A permutation p of a set X is an involution if u? is the identity, and is a fized-point
free involution if u is an involution that does not contain a fixed point. That is, p is a
fixed-point free involution of if for all elements i € X, p? (i) = ¢ and p (i) # i. As all cycles
in a fixed-point free involutions have length 2, fixed-point free involutions of a set X are in
direct bijection with pairings of X. Similarly, any involutions of a set X with &k cycles of
length 2 are in direct bijection with k-partial pairings of X. Therefore, in this thesis, we
will often refer to transpositions as pairs, involutions as partial pairings, and fixed-point
free involutions as pairings. Furthermore, we will generally use p to denote fixed-point
free involutions. This terminology with pairings will be particularly helpful when we use
combinatorial objects to enumerate permutations later in this thesis.

Finally, we will look at the case X = [pi,...,p,] and introduce several permutations
of interest. Let py,...,p, be positive integers, let S, ., to be the symmetric group over
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[D1, .., pn). If the sum of the p;’s is even, then the set of pairings P,, ., is the set of fixed-
point free involutions of S,, . ,.. Recall from Section 1.2 that for vectors of non-negative
integers q = (q1,...,¢y) and s = (512,513, -, Sn—1.n)s T(Lq;s) is the subset of pairings such
that for u € P\*, 4 has ¢; non-mixed pairs of the form {z%,4!} and s;x mixed pairs
of the form {z%,y%}. As discussed previously, (@5%) can also be considered as the set of

fixed-point free involutions satisfying the parameters q and s.

A permutation v is a long cycle if v contains only one cycle in its cycle notation. The
canonical long cycle of S, denoted as 7,, is given by 7, = (1,2,...,n). Similarly, the
canonical long cycle of S[pi]i is denoted as 71%1_, and is given by 71%1- = <1i, 2 ..., pi) We
can now define the canonical permutation of S,
the canonical permutation v,, ., of Sy,

. Given positive integers pi, ..., pn,
is defined by

n n

_ 1.2 . n
7p1,~~~,pn - 7p17p2 Vpn

- (1*,2*,...,pi> <12,22,...,p§>---(12,2ﬂ,...,pi)

The permutations 1 € Pp, . and the canonical permutation 7, ., will be of particular
importance when we discuss maps in surfaces in the next section.

1.5 Maps in Surfaces

In this section, we will be describing maps and surfaces. The background and definitions
are generally taken from the survey papers of Walsh and Lehman [10], Zvonkin [11], and
the book Graphs on Surfaces and Their Applications by Lando and Zvonkin [26]. For a
more rigorous treatment of combinatorial maps, as well as a more general construction
applicable to maps in non-orientable surfaces, see Chapter 10 of Graph Theory by Tutte
[38]. We will first define the map as a topological object, then describe a way to transform
it into a combinatorial object. This will allow us to relate the problem of embedding maps
in surfaces to that of counting permutations in the symmetric group. As the problem will
become combinatorial in nature, we will be sketchy with the topological definitions, and
only define what is necessary.

For the purpose of describing maps, we allow graphs to contain loops and multiple
edges. In this context, a graph G = (V, E,I) is a triple consisting of a vertex set V, an
edge set F, and an incidence relation I between the vertex set and the edge set. Each edge
e € F is either incident to 2 vertices u,v € V, or is incident to a single vertex v € V. In

18



the latter case, e is a loop edge of v, and is considered to be incident to v twice. This is
different from the definition of graphs used in Section 1.2, where the incidence relation is
implicitly defined by E. The separation of the edges and incidence relation is needed here
to allow for loops and multiple edges.

Definition 1.8. Let G = (V, E,I) be a connected graph. A map M is an embedding of
G in an orientable surface X without boundary such that

e The vertices are distinct points of X.
e The edges are curves on X that only intersect at the vertices they are incident to.

e X\M is a set of regions each homeomorphic to an open disc, which are called faces.
The set of faces is denoted F.

Given a map M, the degree of a vertex v € V, denoted deg (v), is the number of edges
incident to v, where loop edges incident to v are counted twice. Similarly, the degree of
a face f € F, denoted deg (f), is the number of edges incident to the f, where an edge e
is counted twice if f is incident to both sides of e. In graph theoretic terms, bridges are
counted twice for the face they are contained in. Observe that unlike the vertex degrees,
both the number of faces and the face degrees of a map are dependent upon the surface
X and the way the graph is embedded. Then, by counting the number of edges incident
to each vertex, we have ) _, deg(v) = 2|E|. Similarly, by counting the number of edges
incident to each face, we have . deg (f) = 2|E].

One of the most important attributes of a map is the genus, denoted ¢, which is defined
to be the genus of the underlying surface. The genus of an orientable surface X is a non-
negative integer, given by the maximum number of closed curves that can be cut on X
without disconnecting it. Equivalently, it is the number of handles on the surface. For
example, the sphere is a surface of genus 0, while the torus is a surface of genus 1. Note
that a map embedded in a surface of genus zero can be presented as a map embedded in the
plane, and graphs that have plane embeddings are called planar graphs. An example of a
planar graph and two possible plane embeddings can be found in Figure 1.3 and Figure 1.4.
Note that the face degrees of the two embeddings are different, and that the exterior of
these maps constitute faces. Furthermore, one can check that the embeddings satisfy the
vertex and face degree formulas.

To relate the above concepts together, we have the Euler characteristic, which is given
by
X (M) = V| = |E|+ |F|
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Figure 1.3: A graph with its vertex degrees labelled

Figure 1.4: Two embeddings of the graph in Figure 1.3, with face degrees labelled

For a map M embedded in an orientable surface of genus g, x (M) is equal to 2 —2g. Note
that the maps in Figure 1.4 satisfy the Euler characteristic with g = 0.

Now, two maps M; C X; and My C X, are isomorphic if and only if there exists an
orientation preserving homeomorphism u: X; — X5 such that the restriction of v on M;
and M, is a graph isomorphism from (G; to G3. Note that this is a more general definition
than continuous deformation. In Figure 1.5, we have two maps that are isomorphic, even
though they cannot be continuously deformed from one to the other. Furthermore, as the
surface of the map is orientated, a map and its reflection are in general not isomorphic. To
avoid complications arising from maps with non-trivial automorphisms, combinatorialists
generally count rooted maps instead. A rooted map is a map with a distinguished edge
e € E and a direction associated with that edge. Two rooted maps M; C X; and My C X,
with distinguished edges e; and e are isomorphic if and only if there exists an orientation
preserving homeomorphism u: X; — X, that is a map isomorphism between M; and Mo,
and u maps e; to e; in such a way that preserves the directions associated with them.
As we shall see, assigning a root edge to a map removes all non-trivial automorphisms.
In Figure 1.6, we have the three non-isomorphic rooted maps with 1 vertex and 2 edges.
The first two maps are embedded in the plane and have genus 0, while the third one is
embedded in a torus and has genus 1.

Before discussing rooted maps, we will first motivate and describe labelled maps. Given
a map M and a vertex v in M of degree p,, observe that in the neighbourhood of v, there

20



Figure 1.5: Two pictures of the same map

o 00 &

Figure 1.6: Non-isomorphic rooted maps with 1 vertex, 2 edges

are p, pieces of edges coming out of v. We call these edge pieces half-edges, and the vertex v
with its half-edges a star. As M is embedded in an orientable surface, these half-edges are
arranged in some cyclic order. Furthermore, each half-edge in M must be joined to some
other half-edge, dictated by the underlying graph of M. Therefore, if we label half-edges
of M with a set S, we can describe both the edges and their ordering around the vertices
by a pair of permutations.

Formally, let M be a map, and D = E x {4+, —} be the set of half-edges of M. That is,
each element (e, £) € D represents a distinct end of e € E. A labelled map is a map M and
a labelling of D with a set S of size 2 |E|. As the half-edges incident to each vertex v are
in cyclic order, we can write the labels of those half-edges as a cycle in a permutation of .S.
By doing this for each vertex v € V' and combining these cycles, we obtain a permutation
~v of S, which we call the vertex permutation of M. By convention, the cycles of v describe
the cyclic orderings of the half-edges in counterclockwise order. Also, note that each half-
edge in M is paired with another half-edge to form the edges of the map. This pairing of
half-edges gives a pairing on S, which can be viewed as a fixed-point free involution. We
call this involution the edge permutation of M, which we denote as p. Finally, observe that
the faces of M can be read off from the product § = uy~!. Consider a half-edge labelled
s that is incident to a vertex v in M. Then, v~! (s) is the half-edge incident to v that is
to the right of s, and py~! (s) is the other end of that half-edge. As seen in Figure 1.7,
both s and puy~!(s) are incident to the same face of M on their right, labelled as F in
the diagram. Furthermore, the edge containing py~! (s) is counterclockwise to the edge
containing s with respect to F. Therefore, by successively applying py~! to s, we can trace
out the face F'. As this can be done with all half-edges of M, the cycles of uy~! represent
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Figure 1.7: Applying pvy~! on a half-edge e

the faces of M. Hence, we call uy~! the face permutation of M, and we denote it with §.

Now, given a permutation v and a fixed-point free involution x4 on a set S, we can
attempt to reconstruct the labelled map M as follows. Let each cycle of v describes a
vertex, where a cycle C of length p, represents a vertex v with degree p,. This is graphically
depicted as a star with p, half-edges, labelled with elements C' in counterclockwise order.
Then, for each pair of u, we join together the two half-edges labelled with the elements of
the pair, which becomes an edge of the graph. Note that this always constructs a graph
G with all its half-edges labelled with elements of S, regardless of whether v and p were
extracted from a map. Furthermore, the orbits of the subgroup generated by v and u
describes the half-edges reachable from a given half-edge by moving along the vertices and
edges of G. That is, each orbit is a component of GG, so G is connected if and only if the
subgroup generated by v and p is transitive. Finally, given two permutation pairs (71, 1)
and (72, p2), the two half-edge labelled graphs constructed in this manner will be the same
if and only if u; = ps, and the cycles of 77 and 7, contain the same elements.

Suppose that the subgroup generated by v and p is transitive, then this reconstruction
always produces a unique, valid map. This follows from Edmonds [13], which states that
given a graph with its half-edges labelled, any cyclic ordering of half-edges around each
vertex uniquely determines an embedding of the graph into a surface. Furthermore, we note
that two distinct pairs (71, 1) and (72, p2) cannot produce the same labelled map. This is
because any label preserving map homeomorphism must preserve neighbourhoods of the
vertices, as well as the pairings of the half-edges. Hence, the cycles in the permutations ~
and g must remain the same. Therefore, each pair (v, ) represents one distinct labelled
map and vice-versa, so we can count pairs of permutations instead of maps on surfaces.
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Figure 1.8: Labelled map with 3 vertices and 5 edges

For example, consider the group S35 and permutations 359 and p where

o= <1l3l> <2;22) (122;> (32 4g> (521;)
oss = <1l2l31> <122232 4z5z> <1§2§>

This pair of permutation describes a map with 3 vertices and 5 edges, where the vertices
have degrees 2, 5, and 3. The faces of this map are given by the product 0 = pv; ;72, which

1S
M’Yg:é,g _ (1;> <2;3;222g5232> <1zlg> <42>

Therefore, this map has 4 faces, with face degrees 1, 1, 2, and 6. A diagram of this map
can be found in Figure 1.8. The labels of the half-edges are placed on the right hand side
of their respective half-edges, to make it easier to trace the face permutation.

Remark 1.9. Some authors may use a different direction for the permutation v, or a different
combination of p and v, such as § = yu, to describe the faces of the map M. In terms of
enumerating maps, these are all equivalent. The only differences between these alternate
conventions are the relative positions of the faces with respect to the edges they are incident
to, and the direction with which we trace the edges incident to the faces. By graph duality,
the roles of v and § can be inverted as well, with v describing the faces and ¢ the vertices.
Pictorially, this can be seen as gluing faces along their edges together, as opposed to the
gluing of half-edges we have described here. A more detailed description of this alternate
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picture can be found in Chapter 3 of Lando and Zvonkin [26], where they discuss the
enumeration of one vertex maps.

Given that we can describe labelled maps uniquely as pairs of permutations, we will
now dispense with the topology and describe maps in purely combinatorial terms.

Definition 1.10. Let S be a set of size 2d for some d > 1. A combinatorial map with n
vertices, d edges, and L faces is a pair of permutations (-, ) such that

e 7 is a permutation of S with n cycles.

e 1 is a fixed-point free involution of S.

1

e § = uy " is a permutation of S with L cycles.

e The subgroup generated by v and pu is transitive.

As noted above, a labelled map is equivalent to a combinatorial map. Furthermore,
the vertices of the combinatorial map have degrees py, ..., p, if the cycles of v have length
D1, - - -, Pn, and the faces of the combinatorial map have face degrees hy, ..., hy if the cycles
of § have length hy,...,hy. For convenience, we will sometimes include pairs (7, 1) such
that the subgroup generated by + and g is not transitive in our discussion of combinatorial
maps. When we need to distinguish between the two, we will call (v,u) a connected
combinatorial map if the subgroup generated by v and p is transitive, and a disconnected
combinatorial map otherwise. In general, disconnected combinatorial maps correspond to
graphs that have multiple components, so they do not correspond to rooted maps. One way
to view disconnected maps topologically is to view each component as a map embedded
in its own surface, and the genus of the map is given by the sum of the genera of the
components. This way of defining the genus for disconnected maps is consistent with the
Euler characteristic, when applied to all components of the map as a whole.

Next, we will show the relationship between rooted maps and combinatorial maps. Let
M be a rooted map with d edges. We want to label M with a set S of size 2d in (2d — 1)!
ways. Note that in constructing the rooted map M, we are choosing an edge e € E and a
direction for that edge. This is equivalent to picking a half-edge of M as the root half-edge,
which we will take to be the half-edge on e that is away from the direction of the root. Now,
to label the map M with the set .S, we will label the root half-edge with 1 if S = Sy, or 1
if S=3S8,, . p,- Then, we can label the remaining 2d — 1 half-edges arbitrarily in (2d — 1)!
ways. Each of these labellings corresponds to a combinatorial map (v, ). Furthermore, if
two labellings M7 and My of M give the same combinatorial map (v, u), then M; and M,
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Figure 1.9: A rooted map and two ways of labelling its half-edges

must in fact be the same. By construction, the root half-edge is labelled with 1 in both
M; and Ms. Next, if a half-edge of M is labelled by the same element s € S in M; and
M, then the half-edge counterclockwise to it must be labelled v (s) in both M; and M,.
Similarly, the half-edge that forms the other end of this half-edge must be labelled i (s) in
both M; and Ms. As the subgroup generated by v and p is transitive, all of the half-edges
of M must be labelled the same between M; and M,. Conversely, given any combinatorial
map, we can obtain a rooted map by first creating a labelled map using Edmonds’ result,
then use the label 1 to recover the root edge and its direction. Therefore, for every root
map M with d edges, there are exactly (2d — 1)! combinatorial maps corresponding to it.
As an example, we have a rooted map and two ways to label the half-edges in Figure 1.9.

Note that this also shows that a rooted map cannot have any non-trivial automorphisms.
To prove this fact, we arbitrary label the rooted map to obtain a labelling M;. Then, we
can apply an automorphism to the rooted map to obtain another labelling Ms. As the root
edge is preserved, both M; and M, have the same label on the root half-edge. Furthermore,
the automorphism preserves the neighbourhoods of the vertices and the pairings of the half-
edges, so both M; and M, must give the same combinatorial map (v, p). Therefore, we
have that M; = Ms, so the automorphism must in fact be trivial.

In the literature of combinatorial maps, we generally count maps where the number of
vertices and their degrees are given. Furthermore, we generally enumerate maps according
to their genus, or equivalently, their number of faces. Formally, for p;,...,p, > 1, let MP
be the set of possibly disconnected combinatorial maps (7, x) such that v has cycle type
p ={p1,...,pn}. Then, for L > 1, let ./\/lp C MP be the subset of maps such that for

(v, 1) € MP |, uy~" has exactly L cycles. Finally, let ME C MP and ./\/lp C MP be
the subsets of maps that are connected. Now, one method to make the countmg of these
maps easier is to fix the permutation 7, then count over the permutations p subjected to
certain restrictions, depending on the type of maps that is being counted. To this end,
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Figure 1.10: Feynman diagrams of 1 vertex maps with 2 edges

we say that a combinatorial map is canonical if v = ,, ., for some py,...,p, > 1. As
i ranges over all pairings in P, .., there are exactly d = w possibly disconnected
maps with these parameters. We let CP | C P, . ;. be the subset of pairings such that

for p € CiL, /ij...,pn has exactly L cycles, and let C};’,L C Cf;L be the subset of pairings

such that for u € Cf; 1, the map (7,,.. ., 1) is connected. For example, the labelled map
in Figure 1.8 corresponds to a canonical combinatorial map with its elements in Ssp5 .
For simplicity, all references to combinatorial maps in later chapters implicitly refer to
canonical combinatorial maps.

One way to represent canonical combinatorial maps is to use Feynman diagrams, also
known as ribbon graphs. Instead of representing each half-edge with a single line, we
represent them with a ribbon. For each edge, we label the adjacent corner using the
element of S that represents the edge, and glue the ribbons together without twisting.
For example, a 4-star and all three of its possible gluings are represented in Figure 1.10.
Note that in this example, we take S = {i,j, k,¢}. This set of labels and the method of
labelling corners will be useful when we discuss the algebraic method of enumerating maps
in Chapter 2. Furthermore, we will later show that the Feymann diagrams can be used to
describe and enumerate maps in locally oriented surfaces in Section 2.5.

Next, we will show the relationship between the number of canonical combinatorial
maps and the number of combinatorial maps in general using the following proposition

Proposition 1.11. Let (v, ) be a pair of permutations on a set S such that u is a fizved-
point free involution. Then, (v, 1') = (ocyo™t, ouc™') is also a pair of permutations on S,
where v, p, and py~t have the same cycle types as ', i/, and p' (”y’)_l, respectively. Fur-
thermore, (7, 1) represents a connected combinatorial map if and only if (7, 1) represents
one.

Proof. From our discussion in Section 1.4, conjugating a permutation 7 by o does not
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change the cycle type of 7, so v and u have the same cycle types as 7/ and 1/, respectively.
Then, we see that 1/ (7)™ = ouy ‘o, so uy~! have the same cycle type as /' (7).

Now, let m,...,m € {7, u} be a sequence of permutations. Then,
mmy-m (1) = j

ommy-mo (0 (i) = o (j)

omo tomo - omo Tt (0 (1)) o (7)

This means that if a sequence of permutations using v and g maps ¢ to 7, then the same
sequence of permutations using " and g/ maps o (i) to o (j), and vice-versa. Therefore,
the subgroup generated by + and p is transitive if and only if the subgroup generated by
~" and ' is transitive, so (7, p) is connected if and only if (7', ) is also connected. O

In the cycle notation, conjugating v and p by o is the same as replacing each element
s € S in their cycles by o (s). In topological terms, this is the same as relabelling each
half-edge s of the labelled map represented by (7, 1) with o (s). Hence, (v, 1) and (7', ')
represent the same map if we ignore the labels.

For each fixed permutation vy € ICp,, . ., we know from Section 1.4 that there exists o €
Spi....pn such that o — Vpi,pn» 38 Yo and v, . have the same cycle type. So, for each
pairing 1 € P,, .. ., the pair (7o, 1) is a combinatorial map if and only if (y,,. ., opnc )
is also a combinatorial map. Furthermore, by Proposition 1.11, iy, ! has the same number
of cycles as (a,ua_l)fyp_1 prn. This gives a genus preserving bijection between canonical
combinatorial maps and combinatorial maps of the form (v, ). Therefore, if we are to
fix a permutation o, € S, ,, for each v € ICp, . such that o,y (Uw)_l = Vp1,...pn, then

every pairing in C? ; corresponds to |KC,, .| combinatorial maps in MP ;. So, if we let

Ri ;, be the number of rooted maps with degree sequence {py,...,p,} and L faces, then
— — 2d)! —
(2d - 1)! ’RE,L’ = ‘ME,L‘ = ( ) ] S,L
(IT,m3!) (I,
R 2d B
’Rg,L‘ = S,L

(IT, mst) (T, i)

where d = %, and for ¢« > 1, m; is the number of elements p; such that p; = i.
Furthermore, the same proof shows that this relation holds for R} ; and Cp ; as well. A
brief discussion of how to enumerate canonical combinatorial maps of this type by genus
can be found in Section 2.5.
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Our main focus in this thesis is the enumeration of rooted maps for a fixed underlying
graph. Given a graph G with vertices labelled 1, ... n that allows for loops and multiple
edges, we can uniquely describe it with a vector q = (q1, ..., ¢,) of length n and a strictly
upper triangular matrix s = (s1,2,513,...,Sn—1,) Of size n x n. We do this by simply
letting ¢; be the number of loop edges on vertex 7, and s; , be the number of edges between
vertices ¢ and k. For convenience, we let s, = s;; if ¢ > k, and p; = 2¢; + Zk#l Sik as
in Section 1. 2 By construction, p; is the degree of vertex ¢ in GG. Furthermore, the set
of pairings Pn can be used to represent the set of canomoal combinatorial maps that
satisfies these conditions Hence, we can let .A C P be the subset of pairings such

that for pu € An 7 ufypl pn, has L cycles. Note that it is unnecessary to specify whether
we count disconnected maps, as connectivity of the maps is given by the connectivity of

G.

Now, let M(® be the set of combinatorial maps such that for (v, 1) € M) the
map represent by (v, u) is an embedding of G. In other words, if (v,u) € M) then
there exists a labelling ¢ of the cycles of v with 1,...,n such that the following holds: For
1 < i < n, there are ¢; pairs {z,y} in p where both = and y are in the i’th cycle of ~.
Also, for i < k, there are s, pairs {x,y} in p such that x is in the ¢'th cycle of v and
y is in the k’th cycle of v. In topological terms, M%) g the set of maps such that for
(v, p) € M,&q’s), there is a labelling ¢ of the vertices so that (-, 1) represents an embedding
of the labelled graph G. Note that we can view ¢ as a function ¢: [p1,...,p,] — [n]
that maps two elements to the same output if and only if they belong to the same cycle.
Additionally, we can deduce that if a cycle is labelled ¢ by ¢, then it must have length p;
regardless of the value of u.

Next, let MS},’:S) C M@ to be the subset of maps such that for (v, 1) € ./\/ln I /w -1
has L cycles. Furthermore, let BS,’;S) be the set of triples (7, p, ¢) such that (v, u) € /\/ln 7
and ¢ is a labelling of the cycles of v that makes (+y, i) satisfy the conditions of q and s in the

previous paragraph. Finally, let Df;"LS) C Bﬁf’; ) be the subset of triples (7, p, ) such that
Y = Ypp...pn- Note that each graph automorphism of G is a labelling of the vertices, so it
corresponds to a permutation of the out]S')ut of ¢ that preserves the conditions given by q and
s. Therefore, each map (v, u) € /\/l( corresponds to |aut (G)| triples (v, u, ¢) € Bn 7

B = fant (G | M|

which gives the relation

As with counting maps with fixed vertex degrees, we know that for each fixed permu-
tation vy € Ky, .. p,., there exists o E Sp1...pn such that oyoo™! = 7,, .. This means that

for a given triple (7o, , @) € Bn 1, we can conjugate v and p with o to replace each ele-
ment s of the map (7o, u) with 0( ). To preserve the labelling of the cycles, we apply o~
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to undo the effect of the conjugation before applying ¢, which gives us ¢o~!. Combining
these together gives us (090, oo™, ¢o~'), and we can use the elements o (s) to verify
that it satisfies the conditions of q and s. We can also verify that both the labelling of
the cycles and the number of cycles in uy~! are %areserved. Furthermore, by replacing o

with 71, we see that a triple (v, i, @) is in B(q’ if and only if (v, p.,opnc ' ¢o™1) is
in Dﬁf’; ). This gives a bijection between the set Dﬁff) and the subset of Bff’LS) such that

v = 7. Therefore, if we are to fix a permutation o, € S, . ,, for each v € K, . such
that o,y (0,)"" = Yp,...p., then every triple in DS;LLS ) corresponds to \KCps....pn| triples in
B;LL). In other words, we have BS’LS) = |Kpr,...pn] Df;”LS) :

Let ¢o: [p1,...,pn] — [n] and suppose ¢ (zt) = k;, where 1 < i, k; < n, is a labelling of
the cycles of 7,,,. .. For there to exist a p € P, 5, such that (v, p.. %, ¢0) € DnL),
the cycle labelled ¢ must have length p; for 1 < i < n. Now, let p € §,, ., be the
permutation such that p (z!) = z%. Then, we get that ¢p~? (:U'i) = k; for 1 <i <n, which
can also be expressed as the function ¢r: [py,...,p,] — [n] such that ¢ (2t) = i for all
rt € [p1,...,pa). By the same reason as in the previous paragraph, we can apply p to get
that (Yp,,..pn, iy P0) € D s) if and only if (Yp,....pn, PP~ 01) € D(q S) Furthermore, note
that if we fix v = v,, . and ¢1 to be such that ¢ (2t) = ¢ for all 4, then p € A(q’ if and
only if (%1, oy b B1) E D(q’s) by definition. Therefore, we have a bijection between the
set A7 (4:%) and the subset of Déqj’; such that ¢ = ¢g. Now, if we let m; to be the number of
elements p; such that p; = 4, then there are m;!---m,! functions ¢: [py,...,p,] — [n] to

label 7,, .. », such that the cycle labelled 7 has length p;. Therefore, every pairing ;o € Afz?f)

corresponds to my!---m,! triples in Dflq’LS )

(as)| _ _(2d)! (as)
’Dn,L = oo AL |-

. Combining this with the previous result gives

Finally, if RES’LS) is the number of rooted embeddings of G' with L faces, then we have
these two relationships

24— 1) [REY| = Ml
2d)!
aut G ’Mglqu) — B,ELq’S) — ( quﬂs)
fant (G)] [ ML R
Combining these gives

‘R(qf) 2d ‘ (a:8)

Cpupa faut (G 1T
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as desired. This gives the number of rooted maps that are embeddings of the graph G
in terms of the number of canonical combinatorial maps. In the next chapter, we will
formally state this problem purely in the language of permutations, and show some of the
techniques used to solve restricted cases of this problem.
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Chapter 2

Techniques in Map Enumeration

In the last chapter, we saw that we can describe the problem of enumerating maps on
surfaces as one about multiplying permutations. We will therefore begin this chapter
by stating the problem of enumerating maps corresponding to specific graphs formally,
in terms of multiplying permutations together. We will then provide some elementary
results that allow us to restrict our attention to certain sets of permutations, as well as
set up a framework that is used in the multiple approaches to tackling this problem. In
the subsequent sections, we will discuss the special cases corresponding to maps with one
or two vertices, as well as surveying some of the previous techniques used in deriving
these results. The techniques presented here are mainly algebraic, in contrast to the main
approach used later in this thesis. In the final section, we will briefly cover some of the
other map enumeration problems that can be solved by encoding them as problems of
multiplying permutations.

2.1 Problem Statement

Let n be a positive integer, q = (q1,...,q,) be a vector of length n, and s =
(512,513, ---,5n—1,n) be a strictly upper triangular matrix of size n x n, where the ¢;’s
and s;;’s are non-negative integers for 1 < ¢,k < n, with ¢« < k. For convenience, let

Ski = Sik» Si = Dz Sik, and p; = 2¢; + s;, as in Chapter 1. Let PL4) be the set of
pairings of [pi,...,p,] with ¢; non-mixed pairs of the form {z¢,y'} and s;; mixed pairs

-----

-----

31



q,S) ‘ A(q,

of pairings such that for u € An 7 ,uvp . has exactly L cycles, and let a,,

-Pn
Then, our goal is to determine an expression for the generating series

Alass) (z) = (l(qLS)LUL

L>1

for given values of n, q, and s. Equivalently, the series can also be written as

= > W

HEPy, (ais)

where w is the weight function on Pi*®, defined such that for p € P*, w () is the
number of disjoint cycles in the permutation vy, %...7p

In the language of enumerating maps, this generating series counts the number of
combinatorial maps with n vertices and L faces, such that there are ¢; loop edges incident
to vertex 4, and s; ; edges between vertices ¢ and j. Furthermore, the combinatorial maps
counted in this series are connected if and only if the support graph of s is connected. As in
Chapter 1, we let d = % >, pi be the total number of pairs of 4, which also represents the
total number of edges in the combinatorial map. By Proposition 1.7, the number of cycles
of a permutation changes parity whenever it is multiplied by a transposition, so 7, f_”’pn

has the same parity as n+d. Therefore, Alg) (x) is a polynomial with non-negative integer
coefficients, which is an even polynomial if n + d is even, and is an odd polynomial if n +d

is odd.

We will now state a few elementary propositions related to the problem statement
above, which will in turn allow us to state an assumption that we will use for the rest
of the thesis. Although these results are more easily proved within the context of maps
and graph theory, we will prove them in the context of multiplying permutations, so as to
abstract the problem from its graph theoretical roots.

Proposition 2.1. Let i be a pairing in Pr(Lq;S), where the support graph of s has r compo-
nents. Then, ,uypprn has at most 2r —n +d cycles.

Proof. Let G be the support graph of s, and C,...,C, be the components of G. Let
Ti,...,T, be the spanning trees of C,...,C,, and observe that the r trees have n — r
edges in total. If e = {i,k} is an edge of T}, then p must contain at least one pair of the
form {xi, yﬁ}. Hence, for each edge e = {i, k} in TyU- - -UT,, we can take an arbitrary pair
of the form {93@, yﬁ}, and denote the transposition consisting of that pair as .. As discussed
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in Section 1.4, we can decompose u into a product of transpositions consisting of the d pairs
of u, which commute with each other. Therefore, we can write pt = fifte, , - - - fte,, Where the
transpositions fie,, ..., fte,_, are given by the edges of Ty U---UT,., and i = ppte, , -+ fle,
is an involution consisting of the d — n + r remaining pairs of u.

Let G; be the graph on n vertices and edge set eq,...,e; for 0 <t < n —r. We will
now show inductively that each cycle of p., - - - Meﬂpi..., corresponds to a component of

Gy. Recall that ’yp_l{m,pn

edges, each component of G is a single vertex, so the base case holds. Assume that this
holds for fie, , -+ - fte, ;.. and Gi_1, and let e, = {i,k}. Then, p, is a transposition
of the form (mi, yk) by construction. As the edges eq,...,e,_, form a forest, i and k
must be in two different components of G;_1, so 2t and y%£ must be in different cycles of
ey " fey Vpy {...mn' By Proposition 1.7, multiplying by p., merges these two cycles into one.
Similarly, adding e; to G;_1 merges these two components into one in G;. As all the other
cycles and components are unchanged, this proves our statement.

DPn

contains n cycles, each of the form (f, e ,pﬁ). As Gy has no

From this, we deduce that g, , --- Neﬂp_ll,...,pn has r cycles. By Proposition 1.7, multi-
plying pe,, . --- /’Lel’)/pil},,.,pn by each of the d —n +r transpositions in i can at most increase
the number of cycles by 1. Therefore, py,, %---ﬁpn contains at most 2r — n + d cycles, as
desired. O

This gives an upper bound on the degree of A% (x), which can be useful in computing
the polynomial A{* (z). In graph theoretic terms, permutations x such that py, k. has

2r —n + d cycles are the maps of genus 0. As such, Ale®) (x) may not necessary attain its
maximal degree, since doing so requires the underlying graph to be planar.

Proposition 2.2. Let p be a pairing in PT(Lq;S), such that the support graph of s has r

components Cy, ..., C,.. Suppose the component C; contains the vertices ¢;_1+1,...,¢; for
1<t<r where)=cy<ci < - <c,=n. Then, AT = Ag‘fl_f;) X - X Ag?ﬁ;csle,
where q; = (qct71+1, . ,qct) 1s the vector of length ¢; — ¢;_1 containing the ¢;_1 + 1 to ¢

entries of q, and s; is the submatrixz consisting of the diagonal block of s between rows and
columns ¢;_1 + 1 to ¢;.

Proof. Let S; = [pct_lﬂ]ct*lﬂ U U [pe]® for 1 <t <r, and P, be the set of pairings
of S; such that for u; € Py, 1y has ¢; non-mixed pairs of the form {z,y¢} and s;; mixed
pairs of the form {z% y%}, where ¢, 1 + 1 < i,k < ¢, and i < k. Then, if p. = {2 ¢~}

is a pair of u € P ;S), then ¢ and k£ must be in the component of the support graph of s,
as we have either ¢ = k or s;;, # 0. Therefore, both elements of j. are in the same S; for
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some t. Now, let y; be the product of all transpositions where both elements are in .S; for
1 <t <r. Then, we have u; € P; by counting the number of mixed and non-mixed pairs,
and p can be decomposed as p = pypig - - - . Conversely, given py € P, for 1 <t < r, we
have that p = fi1jtz - - - 1 is an element of PL% . as the pairs of pi, . . ., 4 do not have any
element in common. Together, we conclude that PLEe) — P X - X P,

Similarly, we let 7% = (11- : p;) for 1 < i < n, and let 7 = y2=2*L... 4% be the

canonical permutation of S;. By multiplying the permutations together, we see that
71;1%...,% = vttt Now, as the non-trivial cycles p; and 7y are disjoint unless
t =1, we have

oyt o = e ey et

=y st ey !

where each y;y, ' is a permutation of the subset S;. Since the sets S, partition [pi, ..., pn],
the number of cycles in LWp_ll,...,pn is the sum of the number of cycles in pyy; . That is,
if we let w, (1) be the number of cycles in gy, ' in Sy, then w(p) = wy () + -+ +
w, (p;). By noting that PL) decomposes into the product P; x - - - x P,., we conclude that

A () = A, () Ay (2) -+ A, (z), where A4, (z) = > uep, ). Finally, by relabelling

the elements of S; with elements of [pe,_,11,...,pe,| = [pct_1+1]lu U [pe, [ we see
that A; (z) = Aﬁj‘fiﬁl (x), which proves the proposition. O

Proposition 2.2 allows us to assume that the support graph of s is connected. While
some of the results do not depend on this assumption, we will assume this throughout the
rest of the thesis for consistency, as there are no drawbacks in doing so. In particular, this
means that p; > s; > 0 for 1 < i < n. Later, we will focus our attention on cases where
the support graph of s is a tree, but we will explicitly point out when we need the tree
assumption.

From this point on, we will assume that the support graph of s is connected.

As we shall see in the following sections, the one and two vertex cases of this problem
have been studied by numerous people, with both algebraic and combinatorial methods.
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The common technique that is used in both styles of proof is to colour each cycle of
K, }p%_NM with one of K colours. For this, we will use a combinatorial object called
paired functions, which is related to the paired surjections introduced in Goulden and
Solfstra [15]. The reason for choosing this combinatorial object over the more conventional
treatments is so that we can define the colouring without referring to maps, and this it
fits well with the combinatorial approach we will use in later chapters. See Remark 2.5 for
more details.

Definition 2.3. Let n, K > 1, q = (q1,...,¢x) > 0, s = (512,513,---,50—-1,,) > 0, and
pi = 2q; + Zk# sk for 1 < i <mn. An ordered pair (u, ) is a paired function if u € plas)

and m: [p1,...,p,] — [K] is a function satisfying

T (p(0) =7 Ypyporpn (V) forall v € [py, ...,y

We denote the set of paired functions satisfying the parameters n, K, q, and s as F,(Lq];(s),

and we let fg’;(s) = ]—"(q}(s) .

n,

An example of a paired function, as well as its graphical representation, can be found
at the beginning of Section 3.1, where we go into detail on how to represent such an
object. By substituting in u = 7, p,...p, (v), we have 7 (u) = 7 (7}, . (u)) for all

w € [p1,...,py). This implies that the cycles of K, {p%wpn are preserved by m. Hence, for

any given pairing p € Aﬁf}f), there are K functions 7: [py,...,ps] — [K] such that (u, )
is a paired function. Furthermore, by applying the definition to all pairs { t, yb} of u, we
have that (i, ) is a paired function if and only if

(7 (1 ()7 Oorsrn (#9))) = (7 (prpacn (v5)) 7 (12 (27)))
(w(xi),w((xﬂ)i)) - <w((y+1)ﬁ),w(yﬁ)) (2.1)

holds for all pairs {xi, yﬁ} of u, where addition is done modulo p; and p, on the left and

right hand side, respectively.
We will now demonstrate that the generating series Al () can be used to describe
the number of paired functions fy(f}(s). Recall that afgf) is the number of pairings 1 € PL*®

such that py,, %p%.’pn has exactly L cycles. For each of these pairings, there are K'* functions
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7 such that (u, ) is a paired function. Therefore, for K > 1, we have

Alass) (K) = a(q;LS)KL
L>1 7
— Z K
HGPT(Lq;S)
Sy (2.2)

where w () is the number of cycles in py, !, . Conversely, if we can find an expression

for fquKS) that is a polynomial in K, then this expression agrees with A*® (z) for all

positive integer values of K. As A'*® (z) is also a polynomial, they must in fact be the
same. Therefore, we can substitute K = x into the expression for féqKs) to obtain A ().
This is summarized by the following fact.

Fact 2.4. Let n > 1, q > 0, and s > 0. If there ezists an expression p (K) such that
f(q;?) =p(K) for all K > 1, and p is a polynomial in K, then Alg® () =p(x).

n,

As we shall see, Fact 2.4 will be the basis of all approaches used to compute Aq(lq;s) (x)
in this thesis. In the next few sections of this chapter, we will compute f,(ﬁ(s) for n =1 and
n = 2 using algebraic techniques involving the integration of Gaussian measures. Then,
from Chapter 3 to Chapter 6, we will compute flqKs) for general n using combinatorial
methods, focusing on cases where the support graph of s is a tree. This corresponds to
graphs that are trees with loops and multiple edges.

Remark 2.5. In the literature where this problem is treated using algebraic techniques,
paired functions are often referred to as IN-coloured maps, which we will call K-coloured
maps to match with variable K in this section. A K-coloured map is a map where each
face is assigned one of K colours, without restrictions on the colours of adjacent faces.
An alternative way of counting K-coloured maps is to colour each corner of a map with
one of K colours, then only count the coloured maps where colouring of the corners is the
same for each face. By associating each corner of the map with the half-edge incident to
its left, this method of colouring is equivalent to using a function 7 to assign the elements
2t of p € PL) with elements of [K]. As the faces of a map are given by the cycles of
WY, }p27---7pn’ the condition that the colouring is consistent is equivalent to (u, ) satisfying
(2.1) for all pairs {xi, yﬁ} of p.
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2.2 Background on Matrix Integrals

In this section, we introduce the background to the matrix integral techniques that we will
be using in Section 2.3 and Section 2.4, where we will survey the algebraic techniques used
to approach the main problem stated in Section 2.1 for n = 1,2. Our presentation will
mostly follow that of Lando and Zvonkin [26], with facts related to the Hermite polynomials
modified from Szegé [31]. Furthermore, as our approach for larger n in this thesis is
combinatorial, we will again only define what is necessary. Consequently, the terminologies
defined in this section are only relevant for this chapter, so we will be reusing some of our
notations in other parts of this thesis.

We start off by defining the standard Gaussian measure, denoted p, which is the mea-
sure with the density

1 22
dp () = e zdx
p(r)=——
For convenience of notation, for any function f: X — R, we let (f) = % denote
X

the mean, or average, of f with respect to the measure ;1 on X. Note that if fX du(x) =1,
then p is called a probability measure, and (f)y = [, f(x)du(x). As in the physics
literature, p and X are usually omitted if the context is clear. We can check that p
as defined above is a probability measure, and with respect to du (x), we have (1) = 1,
(x) = 0, and (x?) = 1. Therefore, p is a measure with mean 0 and variance 1. Also, using
integration by parts, we obtain

oe 1 22
<xk> = / i e zdx
—oo V2T
2

_ I a2
k=1, 2 % "

e © pe 1 z?
T T (k—1) /_OO r
= (k—1)(z"?)

This gives (z?") = (2n — 1)!l and (z***!) = 0 for all integers n > 0. Hence, (p(x))
converges for any polynomial p. Finally, we can check by substitution that

= —X

holds for any positive real number b.
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Next, we define the Gaussian measure on a vector space as follows. Let B be a positive
definite matrix of size k x k and dv () = dz1dxy - - - dxg. We define

w\w
wh—t

dp () = (2m) " (det B)? e

{—% (Bx,x)} dv ()

where (z,y) = 2Ty = x1y; + -+ + 2y is the inner product on R™. Note that if we take
i’th entry of x to be x; and the entries of B to be b;; for 1 < i < j < N, then expanding
the inner product gives

(Bx,z) = ZCTBTQZ

= Z bt + Z 207, (2.3)

1<J
To show that du (z) is a probability measure, we apply an orientation preserving or-

thogonal transformation z = Oy to diagonalize B. That is, O is an orthogonal matrix with
det O = 1 such that D = O~'BO is a diagonal matrix. Applying this transform gives us

L@ = [ en@en?e

- /Rk( ™)~ 2 (det B)? Hexp{—ldzy,}dv()
— (2r gdetB§ﬁ<2W)

=1

w\»—t

p{~5 (0'80ss) b (09

m\x-

=1
where the d;’s are the diagonal entries of D, which are also the eigenvalues of B. Integrating
each variable separately and noting that det B = det D = Hle d; finishes the proof.

In probability theory, the matrix C' = B~! is called the covariance matrix, and for any
z; and z;, we have (z;) = 0 and (x;x;) = ¢;;. To prove these results, we first note that
it holds true for diagonal matrices B and C, as we can integrate each variable separately.
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Then, by writing z; as e! x and applying the transformation z = Oy as above, we have

(z;) = /Rk(zw)—’i(detB)% xexp{—%(Bx,x)}dv(x)

- [ e

where ¢; is the i’th standard basis vector. As eZTOy is a linear combination of the y,’s, (z;)
is a linear combination of the averages (y,), taken with respect to D. Therefore, we can
use the result for diagonal matrices to get (z;) = S2*_, ¢, (yn) = 0 for some constants ¢,,
as desired.

w\x-

(det B)2 el Oy Hexp {—% (Dy, y)} dv (y)

Now, let P,; be the matrix that has 1 at position (4, j), and 0 elsewhere. Then, by
writing z;z; as x” P;jz and applying the transformation x = Oy as above, we have

[NIE

(z;z;) = /Rk( 2m) "% (det B)? a Pxexp{—%(Bx,x)}dv(x)

- [ e

= /Rk( )~ g(detB : (Z ymolmojnyn) exp{—%(Dy y)}dv( )

m,n=1

M\x-

1
(et B)! 4O POy exp { =3 (Dy) | o (1)

since (OTR-]-O) o = OO As the off-diagonal entries of D are zero, we can use the result
for diagonal matrices to get that (y,y,) = 0 for m # n. Therefore, the only terms which
can survive the integration are the square terms, which reduces the above sum to

(wiz;) = / (2m)7* (det B)? Z 0in0jny? CXD {—% (Dy. y>} dv (y)

n=1

k

k
= (2r % (det B %Z OdeJn H (QW)
_ Z Oznojn

n=1
where we obtain (y;) = 4 using the results on diagonal matrices. Finally, note that
B~ =0D™'0", so we have ¢;; = Y n_, 2% = (3,7;), as desired.
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Finally, we define the Gaussian measure on the space of Hermitian matrices as follows.
A Hermitian matriz H is an K x K matrix such that for all 1 <4,j < K, h;j = hﬂ, where
h_ji is the complex conjugate of hj;. Now, let Hx be the space of all K x K Hermitian
matrices. Since the diagonal entries of a Hermitian matrix must be real, we can let h; = xy;
for all diagonal entries of H, and h;; = h_JZ = x;; + 1y;; for all @ < j, where x;;, x5, v:;; € R.
Hence, we can treat Hy as a vector space of dimension K?, which allows us to define
the ordinary measure of Hy as dv (H) = [[dx;; [[dzijdy;;. Now, let dp (H), commonly
referred to as the one matriz model, be the measure defined by the quadratic form

K
tr(H2) = th hj;

i,J

QS
I
—

- Z Iz] + Zyu Izj - Z?ng)

i,7=1
K
= szz+2z ng +yz])

That is, we let tr (H?) represent a matrix B such that (Bx,z) = tr (H?), where z is the
vector containing the variables z;;, ;;, and y;; in order, with 1 <4,7 < K and i < j. By
comparing the coefficients with (2.3), we can deduce that B is a diagonal matrix with 1’s

for the first K diagonal entries, and 2’s for the remaining K? — K entries. This gives us
det B = 2K*~K which gives

du(H) = (27r)7K2/2 o(K*-K)/2 exp {—%tr (H2)} dv (H)

By computing C' = B~!, we see that (z3;) = 1 and (z7,) = (y7) = 3. From this,
we deduce that (hZ) = (22) = 1, <h?j = <%+2mwyw yij> = 0, and (hi;h;i) =
(2%, +y3) =1, for all i < j. For all other i, j, k,I € [K], we have (i,7) # (k,1). This gives
(hijhi) = 0, as the terms in the product only involve off-diagonal entries of the covariance
matrix.

Next, we introduce two theorems related to integrating over the space of Hermitian
matrices. We will state these theorems without proof as they be found in Lando and
Zvonkin [20].
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Theorem 2.6. (Wick’s formula) Let fi, fa, ..., fon be a set of (not necessarily distinct)
linear functions of x1,...,x,. Then

<f1f2 : f2n> = Z <fp1fq1> <fp2fq2> T <fpnfqn>

MEPQn

where the sum is taken over all (2n — 1)1 pairings = {{p1, @1}, {Pn, @ }} of [2n].

This theorem allows us to reduce the integral of a product into a sum of the products
of quadratic terms, which we can evaluate using results from the above discussion of the
one matrix model. Conversely, if we have linear functions fi,..., fo, such that the sum
of their averages over all pairings counts some meaningful quantity, we can convert it into
a single integral over the set of Hermitian matrices, which can then be evaluated using
algebraic techniques.

Theorem 2.7. Suppose F' is a unitary invariant function on Hg. That is, suppose
F(U'HU) = F (H) holds for any unitary matriz U and Hermitian matriz H. Then

[ o =a [ [TP0) T = A0 ) di )

1<i<j<K

where cx = m, A is the diagonal K x K matriz with entries Ay, . .., A\, and du (\;)
1s the standard Gaussian measure.

Theorem 2.7 was originally stated by Weyl, and the proof of this can be found in Section
3.2 of Lando and Zvonkin. The computation of the constant cx can be found in Section

3.5 of the same book. Note in particular that the dimension of the integral is reduced from
K?to K.

To facilitate our integration over the measure dyu, we introduce the Hermite polynomials,

defined by

15] k e
—1 z"
Ha (@) = ”!;Ok!((n—)zk)!' ok

The Hermite polynomials are monic polynomials of degree n that are orthogonal with
respect to the measure du. For m,n > 0, they satisfy the relation

/HmHndu () = dpnn!
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where 6,,, = 1 if m = n, and 0 otherwise. The Hermite polynomials also have the
exponential generating series given by

H; () w? w?
E L =explaw— —
: i! 2
i>0

Using this exponential generating series, we can obtain a formula that allows us to rewrite a
product of Hermite polynomials as a sum. This relation was first discovered by Feldheim,
but the technique shown here is by Watson [11]. By taking the coefficient of w™z" in

2 2 .
exp {xw — 5 trz— %}, we obtain

W = [w™z"]exp {xw - w;} exp {IZ a %2}

::hﬁfbm{ﬂw+@—lwwwf}mM@d

2
o Hi(@) (1) i) (5202t
(TR0 ) ()
min(m,n) Hypin—ok ()
P Sl e Ty

where we take j = m — k and i« = m + n — 2k to arrive at the coefficient of w™z". In
particular, by letting m = n and reversing the summation order, we obtain

n

Hgk ([E)

2 2
B o) =nl"2 =
=0

(2.4)

Next, we will develop an inversion formula that allows us to write the monomial x™ in
terms of the Hermite polynomials. Combined with the above formula, this will allow us
to evaluate the integral (x?"H,,, (x)). The technique presented here is sketched out in pg.
385-386 of Szego.

Lemma 2.8. Let g, and f, be two sequences of integers. Then, one of the relations

5] i
fn— 7 (_1) n—2i
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holds for all n if and only if the other holds for all n.

Proof. Note that the odd and even indexed terms are independent of each other. Hence,
we can let dLﬂ | = 9n and Cla] = fn for all n of a given parity. Then, by inclusion-exclusion
2 2

(see pg. 66 of Enumerative Combinatorics, Volume 1, Stanley [33]), we have
b — _ _q\ym—ig
=3 (e — =3 (")
=0 =0
bm - 1 A —i A, & (_1)2 bm—z
—_— = — <> _— =
m! ;z' (m —)! m! ; il (m—1)!
= Cm—i o = (_1>Z dmfi
=27 = m=2
1=0 =0

where we let ¢,, = % and d,, = % for all m. Substituting back in m = L%J gives the
result as desired. O

Now, note that we can rewrite the Hermite polynomial as

,_
0|3

H, (z) V2" J(—1)k g2k /on—2k
B B (n—2h)

n! — k! (n — 2k)!
IR L
“— 2%kl (n — 2k)!



Finally, we can evaluate the value of (z*"Hy,, (z)). For n > m, we have

/_Oo 2" Hyp, (7) dp (z) = /_Oo (2n)! kZ:O 2kg2(n2;k_(5;)k)!}[2m () dup (z)

- [ e Hom ()1

2n=m (p — m)Im!

- 2"m(?:)—' m)! (2:5)

as only the summation term containing Hj, () can survive the integration. This also
shows that the integral is zero for n < m.

Remark 2.9. Further discussion of the Hermite polynomials can be found in Orthogonal
Polynomials by Szegé [31]. However, the reader should be aware that the Hermite poly-
nomial defined here is called He, (z) in some texts (for example, see Chihara [12]), and

H, (x) is instead defined as H, () = n! ZL i o %2),:)% The two functions are related

by H, (r) =22 He, (\/§ . x) The difference in definition stems from the field of study. In
particular, our definition of H,, (x) is common in probability theory, as it is consistent with
the measure du (z).

2.3 Enumeration of One Vertex Maps

In this section, we will examine the simplest non-trivial case of the problem statement
in Section 2.1. This is when n = 1, which is the enumeration of one vertex maps. The
problem was first solved by Harer and Zagier [19], using a matrix integral technique. In
this case, there are no mixed pairs, so we have p; = 2¢;, and s is the 1 x 1 matrix [0],
which we can omit. Using the notation we have developed, the Harer-Zagier formula can
be written as follows.

Theorem 2.10. (Harer-Zagier [19]) Let q be a positive integer, and A}’ (@ pe the subset of

pairings of Pa, such that for p € Af , /qu has exactly L cycles. If we let aL ‘Af) ,

then the generating series for a(Lq) 15 given by

A9 @) = -2 (1) (5)

k>1
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There are numerous proof of this formula in the literature, both algebraic and combi-
natorial. A selection of the proofs can be found in the papers by Goulden and Nica [17],
Itzykson and Zuber [21], Jackson [23], Kerov [24], Kontsevich [25], Lass [27], Penner [29],
and Zagier [12]. As we will be giving a combinatorial proof in the later chapters on a gen-
eralized result, we will not pursue it here. Instead, we will be surveying an algebraic proof
to demonstrate some of the techniques used in the literature. Again, our presentation here
will mostly follow Chapter 3 of Lando and Zvonkin [26], but we will also be using parts
of Jackson [23] for certain computations. This approach encodes the pairing of half edges
as an integral over Hermitian matrices, and then evaluates the integral using techniques
presented in Section 2.2. Note that in our presentation, we will be using paired functions
instead of N-coloured maps. See Remark 2.5 for further details.

Let H €7 Hx be the Hermitian matrix such that h;; = z;; for all diagonal entries of H,
and h;; = hj; = x;; + iy;; for all ¢ < j, where x4, x;5,7;; € R. By considering the integral
of trH? over the measure du (H) and expanding the product, we have

K
<t1"H2q> = < Z hi1i2 hi2i3 e hi2qi1>

i1,eyig=1

K

= Z <hi11'2 hi2i3 T hi2qi1>
11,...,02¢=1
= D (el hage)
™ [2q]=[K]
where we treat the multi-sum of 4y, ...,49, as the sum over all functions 7: [2¢] — [K],

with 7 (u) =i, for 1 < u < 2¢. By Wick’s formula in Theorem 2.6, we have

(hee@m@n® - hror)) = O, T oty Pt ymio, 1))

1E€P2q {uj,v;}€p

where the sum is taken over all pairings © = {{us,v1}, ..., {uy, v,}} of [2¢], with addition
being taken modulo 2q. As described in Section 2.2 with Gaussian measures on Hermi-
tian matrices, each term <h () (wj 1) o o)) (0 41) > is 1 if and only if (7 (u;), 7 (u; +1)) =
(m(v; +1), 7r( ;)) for 1 < j < gq. Since this is the same condition as (2.1), the summation
term is 1 if and only if (u,7) is a paired function. Therefore, (trH??) counts the number
of paired functions, so by (2.2), we have (trH?!) = fl(?l)( = AW (K).

Example 2.11. Let ¢ = 2, and let ¢, j, k, £ represent q,...,74. Then by Wick’s formula,
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we have
K
<trH4> = Z (hijhjrehiehe)
i,k =1

K
= > (highye) (hrehas) + (highre) (hikha) + (higha) (hyhie)
1,7,k 0=1

The three terms here correspond to the three maps in Figure 1.10, from left to right
respectively.

Notice that for any unitary matrix U, tr (U™ HU)* = tr (U"*H2U) = trH, so tr H%
is unitary invariant. By applying Theorem 2.7, we obtain

<trH2q>:cK/_oo--~/_oo (AT + -+ A3 H (N = X) dp (\) - dp (k)

1<i<j<K
where cx = m
Now,
2
1 1 1
A Ao AR
[T o-wr= 7 -
1<i<i<K SRR =
YRVt PP

is the square of the Vandermonde determinant. By taking linear combinations of the
rows of this matrix, we can replace each )\{ by the Hermite polynomials H; ();) without
changing the value of the determinant. If we then expand the determinant using the
cofactor expansion, we can arrive at

<trH2q> = cxK /_00 /_00 )\%q (Z H, ()\g(l)) o Hpig ()\J(K))> dp (A1) -+ dp (M)

oESK

where by symmetry we have replaced \; with \; for 1 <7 < K. Note that the only terms
which can survive the integration are ones where we take the same permutation in both

copies of Y s Ho (Aor)) -+ Hi—1 (Aoi))s as oo Hy (M) Hy (M) dp (Ag) = 0 if ¢ # 4.
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Therefore, we can simplify the expression to

(trH*) = CKK/ / Ap? Z Hoy (A\on)) 2. Hg_ ()\U(K))Zdﬂ()\l)"'dﬂ()\l()

O'ESK

— 1. 110!
= CKK )\Zq - ) +Ho-1(1)-1 ()\1>2 dpi (A1)
1) =1t
UES

:Z/ H)\l Aqu(A)

by integrating all the variables except A\;. The subsequent simplification then Comes from
noting that for 1 < i < K, there are (K — 1)! permutations o € Sk such that o~ (1) = .

To integrate this directly, we use the approach presented in Jackson [23]. Using (2.4)
and (2.5), we have

K-
|
<trH2q> _ Z/ 22522]@ )\1 )\1 d ()\1>

i=0 k=0
e il (2¢)!
kR k)RR (g - k)
B K-1K—-k—-1 <2q)! j+ k
C & KR (g - k)!( k )
N (29) ( K )

L 120 (g — k) \k + 1
= (2q- Y 2! (i) (k ! 1)

E>1

where in the third line we switch the two sums and let j =i — k. We can also drop the
upper summation bound as (Ik{ ) =0 for kK > K. Since this is a polynomial expression in K
of degree ¢ + 1, by Fact 2.4, we can substitute K = x to obtain A (z). Hence, we have

proved the Harer-Zagier formula stated in Theorem 2.10.
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2.4 Enumeration of Two Vertex Maps

The next non-trivial case of the problem statement in Section 2.1 is n = 2, which is the
enumeration of two vertex maps. This was first given in Goulden and Slofstra [18] by a
combinatorial technique that we will be extending later. Therefore, in this section, we will
survey an algebraic proof that uses a similar technique as the one in Section 2.3. This
was carried out by Carrell [I1] and communicated to me privately via e-mail. Note that
for n = 2, the matrix s contains only one non-zero entry, which we denote s. Using the
notation we have developed, the theorem of Goulden and Slofstra can be written as follows.

Theorem 2.12. (Goulden-Slofstra [15]) Let g1 and ga be non-negative integers, and s be a
positive integer. Let A(ql’qz;s) be the subset of pairings of P29 such that for u € .Ag“’qw),

[Yags 4520045 has ezactly L cycles. If we let aj (a1.a2:6) ‘A(ql’qz’ then the generating series
for agh’q"” *) s given by
d+1 %pIJ 2p2J " d ; ]
Alar,a2;s) 1o -t A(q1,q2;8)
S s ()

k=1 i=0 ;=0

where py =21 + 8, po =2q2 + s, d=q1 + g2 + s, and

A(QI7q2§S):<k_1)<k_1)_( k—1 )( k—1 )
: @ —1)\g@—J G +s—i)\q@+s—3j

In this expression, p; and p, are the degrees of vertices 1 and 2, respectively, and d is
the total number of pairs in the pairing.

As in the case n = 1, we want find a matrix integral that encodes (2.1), so that we
can count the number of paired functions in F, (91,2%) " Gince there are two vertices in this
version of the problem, our matrix model will contain two matrices, with one representing
each vertex. Let (G, H) € Hx X Hk be a pair of Hermitian matrices. As in Section 2.2,
we let h;; = x;; for all diagonal entries of H, and h;; = h_JZ = x;; + ty;; for all @ < j,
where z;;, ;5,7;; € R. Additionally, we let g; = z; for all diagonal entries of G, and
9ij = G5 = 2ij +iw;; for all ¢ < j, where z;;, 2;;, w;; € R. Similar to the n = 1 case, we can
treat Hx X Hx as a vector space of dimension 2K 2, and the ordinary measure of Hx X Hx
can be defined as dv (H,G) = [| dzdz; [ [ dxijdy;jdz;jdw;;. However, we need to choose
a quadratic form that can encode the number of loop and non-loop edges on each vertex.
To this end, we let ¢ be an indeterminate, and let tr (H?) + tr (G?) — 2ctr (HG) be our
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quadratic form. Expanding the traces yield

tr(H2) = Zx“—i—QZ :rz]+y2]

1<J

tr (G?) = ZZZZ+2Z z +w

1<j

tr (HG) = Zruz’u —1—22 TijZij + YijWis)

1<j

Note that in the quadratic form, the z;; terms only appear together with the z;; terms,
the x;; with the z;; terms, and the y;; with the w;; terms. Therefore, to make it easier to
describe the matrix B for this quadratic form, we arrange the variables of the vector x in
the order 11, 211, 99, 209, . . ., T K, 2K K, Tollowed by x19, 212, Y12, W12, T13, 213, Y13, W13, - - -
Yr—1.K, Wik—1,x, Which groups correlated terms together. Since we need (Bz, z) = tr (H2)+
tr (G?)—2ctr (HG), by comparing the coefficients with (2.3), we have that B is a 2K? x 2K
matrix with blocks of size 2 x 2 on the diagonal, and 0 everywhere else. Furthermore, the
first 2K diagonal entries of B correspond to the coefficients of z% and 22, which are both
1. Likewise, the coefficients of x;;z; are —2¢, so their correspondmg entries in B are —c.
Therefore, the first K blocks of B are given by

1 —c

— 1
Similarly, the coefficients of xw, yw, w’ and w are all 2, and the coefficients of z;;2;; and
yijw;; are —4c. Therefore, the remaining K? K blocks of B are given by

2 -2
—2c 2
.. o 4<K2—K) 9\ K2 . .
This gives us det B = 2 (1 —¢*)" , which gives

du(H,G) = (2m) %" 22(K-K) (1 — 2)"

exp {—% (tr (H?) +tr (G?) — ctr (HG))} dv (H,G)

We can then compute the covariance matrix C' = B~! by taking the inverse of each
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block. By treating ¢ as an indeterminate, we see that C' is a matrix with K2 blocks, where
the first K blocks are of the form
1 1 ¢
1—¢c%|c 1

while the other blocks are of the form

1 1 1 ¢
2 1—=¢c2|c 1

This gives us the set of averages as follows

1 1 1
<$ZQZ>: 1 _ 2 <xfj>:<yfj>=§ 1_ 2
1 1 1
(2=t ()=l = 5
c 1 c
(wiza) = T (wizy) = (yigwig) = 5 T3
From this, we deduce that
2 2 1 2 2 1
<hz‘z‘> = <56’“> T 2 <9iz'> = <Zu> T2
(hiy) = (o + iy — i) = 0 (95;) = (= + 2iziwi; — wij) =0
1 1
(hiigi) = (Tizi) = 1 _002
(hijgis) = (ij2i5 + Wijzi + 105w — Yigwg) = 0
(hijgii) = (Tijzij + Wiz — 1Tijwij + Yijwi) = 1 _002

holds for all 1 <i,5 <n, and i < j. As with the case n = 1, all other correlations are zero,
as those correlations only involve entries not on the 2 x 2 diagonal blocks of the covariance
matrix.

By considering the integral of tr HP'trGP? over the measure du (H,G) and expanding
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the product, we have

K K
<tI‘Hp1tIGp2> = < Z Z hzm hz2z3 T hip1i1gj1j2gj2j3 e gjp2j1>
i1yoeeripy =

= Z Z <h1112h1213 T zplilgjljzngJB T gjp2j1>

9x(12)a(22) () (s) '9w<p;)w<12>>
where we treat the multi-sums of ¢y,...,%,, and ji,...,Jp, as the sum over all functions
7 [p1,pa] — [K], with 7 (21) =4, for 1 <z < p; and 7 (y2) = j, for 1 < y < py. Then,
to simplify our notation, we let ¢: [p1, pa] — {hij, 9i; | 1 <i < j < K} be defined as
hﬂ'
(), m((y+1)2) if u; = y?2 for some 1 <y < py

: 1
(@)r((@pnyy) i u; == for some 1 <z < py
t(uy) = (+07)

where addition of the z* and 32 are being taken modulo p; and p,, respectively. By using
Wick’s formula in Theorem 2.6 on the product, we have

where the sum is taken over all pairings p = {{u1,v1},...,{uq, va}} in Py, p,.

Let {xi, yﬁ} be a pair in u. By enumerating the possibilities of ¢ and k, we have

<h7r(ml)7r((m+1)l) hw(yl)w((y+1)l)> fi=k=1
<t (:Bl) t (yﬁ)> = <gﬂ(xz)ﬂ((erl)z)gw(yg)ﬂ((ﬁl)g)> fi=k=2
<hw(zl)w((z+1)l)gﬂ(yg)ﬂ((erl)z) if 1 = 1, k=2
In all three cases, (t(z%)¢(y%)) is non-zero if and only if (7r (b)) 7 ((x+ 1)’*)) =

ol



<7r <(y + 1)E) ST (yﬁ)>, which is the same condition as if (u,7) is a paired function, as

shown in (2.1). Furthermore, if (1, 7) is a paired function, then (t (zf)t (y%)) = %5 if

i # k, and <t %) (yﬁ)> = 1562 otherwise. Hence, if y have s mixed pairs, then the

summation term is precisely —) Therefore,

Y = €] (1= ) (T G

counts the number of paired functions (y, 7) such that p € P and 7 € [p1, po] — [K].
As in the n = 1 case, this also gives an expression for A(@2%) (K).

To evaluate this expression, we use what is commonly called the two matriz model. Let
r1, T2 be positive integers, the two matrix model, denoted by M, ,,, is given by

Zk (s,t,9) :/H2 exp{trtU}dv (G, H)

K

where U = Vi + Vo + gHG, V; = Y71 t;H', and Vo = 377 5;G7. In our case, we take
r1 = ry = 2, which yields V; = t; H + toH? and V5 = 5,G + 5,G?. Then, let m,n > 0 be
integers. By Appendix A of Bonora, Constantinidis, and Xiong [(], we have

(trH"trG™)

p/2 min({—2k,p—2q)
nlm!

=22 > 2 Ty Y e—T

=0 k=0 r=0 p=0 ¢=0 7=0

1
(T!j!(r+k—q+%(p—€)) Ll -2k —r —j)! (%(€+p) k:—q—r—j)!_

1
gt =2k —r)l (r—7)! (%(€+p) k‘—q—r) (%(p é)—q—i—k—i—r—])) %

(%w+py_k_q J>( 3 (0+p) - f—q—j+1)x
=

)/24+k+r on—0 om— r 0)/2—k—r
/++51 66 pk+,y§p+)/
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where (-) is the average with respect to the model Zk (s,t, g), and

2t2 gsy — 282t1

gtl — 2t981 252 g
Qg = —7751 =

27’}/1

752

459ty — g* dsoty — g g% — 4dsoty’ 2= 4syty — g2

This is called the 2 point correlation function of the model My 5. Note that if we let
U be —3 (tr (H?) + tr (G?) — ctr (HG)), then the model Zx (s,t,g) differs only from the
model du (H, @) in the normalization factor det B. Therefore, the averages are the same
between the two models, since the normalization factor cancels out. By equating du (H, G)

with U, we see that t; = s; =0, ty = —2, Sg = %, and g = c¢. This gives

c

1 p—
_02772_ 1—62

1
042:_,61:52207’}/1:
c 1

Since f; = P = 0, the only terms that can contribute to the sum are the ones where £ = n
and p = m. Specializing the above equation and substituting in n = p; and m = p, gives

(tr HP trGP?)

p1/2 (p1—2k)/2 p2/2 min(p1 —2k,p2—2q) ol
DP1:Pp2-
—Z Z Z Z SFraplg”
1
rlil(r+k—g+i—p)(p—2k—r— ) (31 +p2) —k—qg—1—7)!
1
o =2k =) =) G +p)—k—qg—r)! G (p2—p)—q+k+r—7j)!

(%(pﬁrpz)—k—q—j)!

Cpl —2k—2r

X

(TR S
s(Prtp) —k—q-j+1

(1 _ 02)(p1+p2)/2

To obtain f2q“q2’ we take the coefficient [¢*] (1 — ¢2)* (trHP trGP2), where we recall that

d = pl;pQ. By comparing the exponent on ¢, we must have k 4+ r = 2=

5—- Doing these
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substitutions and removing the summation index r gives

(q1,92;5)
2,K

p1/2 p2/2 min(p1—2k,p2—2q) 1o |
_ Z Z Z prp2:
ktqllql 41
== 2ktaflqlg!
1

((%(pl_s)_k) LG 2 —35)—a)! (31 +5) =k —35)1 (5 (2 +5) —q—j)!

1
(5 (e 5) =R (5 (1 — ) =k = j)! (%(pz+s>—Q)!(%(p2—8>—q—ﬂ')!>X

K
d—k—q—j)
( ! ﬁ(d—k—q—j+0

Next, we rewrite p; and ps using the fact that p; = 2¢; + s and p; = 2¢2 + s. The above
expression then simplifies to

p1/2 p2/2 min(p1—2k,p2—2q)

1D,
fh,q2, %ZO Z —Qklegi]']' X
q
1

(@r-@%%—@Hm+s—k—ﬂN%+s—q—ﬁ!

1
(m+s—MN%—k—ﬁN%+s—®N@—q—ﬁJX

K
d—k—q—j)
( q‘”(d—k—q—j+1>

For the penultimate step, we replace k by ¢, ¢ by 7, and j by 7, so that it better matches
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the formula given by Goulden and Slofstra, thus obtaining

P1/2 p2/2 min(p1—2i,p2 —2j) D |p|
ql q27 1-P2:
=D 3 S DT
=0 7=0
1

<(Q1—Z) N =) (@ +s—i—1)(ga+s—7—7)!

1

(m+s—w(m—@—ﬂ%%+s—ﬂN%—j—ﬂJ><
o K

(d_z_j_ﬂ%?—i—j—r+1)

Observe that for the inner terms to be non-zero, the factorials in the denominator must
be non-negative. Therefore, we must have ¢; —¢ > 0 and ¢; + s — ¢ — r > 0 for the first
term, and ¢; + s —4¢ > 0 and ¢ — ¢ — r > 0 for the second. In both cases, this adds up
to 2q1 + s —2i—r >0, or r < p; — 2¢. The same argument shows that we must have
r < py — 27 for the inner terms to be non-zero. Therefore, the upper bound of r can

be raised to d — i — 7 without changing the sum. By raising the bound and doing the
substitution r =d — i — j — k + 1, we obtain

p1/2 p2/2 d—i—j+1

|
Q1 q2;8) Z Z Z 21_,_]2'] p1 Pz

=0 7=0 k=1 j_k+1)
< 1
(=) (=) (k=1—g+ ) (k—1—q +1)

1
; - X
(m+8—0(k—l—@—s+ﬁ(%+8-ﬁ%k—1—m—s+wo

T

From here, we can raise the summation bound on k£ to d + 1, as we have the term
(d—1i—j—k+1)!in the denominator. Writing the expression using binomial coefficients
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yields

| p1/2 p2/2 d+1 y j p |p |

Q17Q275 -t 1-P2-

— — X
- Y2y () ) =

=0 j=0 k=1
(GGG L)
g1 —1)\q2—J G+s—1)\qg+s—J

which is a polynomial expression in K that matches the formula of Goulden and Slofstra.
Using Fact 2.4 and substituting K = = completes the proof.

2.5 Other Map Enumeration Problems

In this section, we will briefly examine some related map enumeration problems that exist
in the literature, as well as the techniques used to solve them. The first two problems are
in some ways extensions to the Harer-Zagier formula in Section 2.3, and we will treat them
using the algebraic techniques previously discussed in this chapter. The third problem is
the enumeration of bicoloured maps, which we will treat using a combinatorial approach
similar to the one used later in this thesis. In all three cases, we are more interested in the
approaches used to solve these problems, rather than the technicalities. Therefore, we will
omit proofs and details that are not important to understanding the approaches used.

The first problem we will discuss is the enumeration of maps by genus, according to
vertex degrees. This is essentially the same as the main problem of this thesis, with
the key difference being that there are no restrictions on how the edges are connected
between vertices. The way which we will approach this problem is taken from Section 3.3
of Lando and Zvonkin [20], as well as from the earlier sections of this chapter. When we
set this problem up as a problem about multiplying permutations, it is similar to the one
in Section 2.1. However, instead of having the parameters q and s, we simply have the
parameter p, as we do not need to keep track of the number of edges between each pair
of vertices. Formally, let n be a positive integer, and p = (p1,...,pn) > 1 be a vector
of length n. Then, let P, .. be the set of pairings of [p1,...,p,], and v,, . ,. be the
canonical cycle permutation of S, ., as defined in Chapter 1. For L > 1, we define
Cr 1, € Pp,...p, t0 be the subset of pairings such that for € C} ,, pvy,! |, has exactly L

7p7
cycles, and let cn L= ‘C L‘ Then, our goal is to determine an expression for the generating
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series

Ch(z) = chLxL

L>1

----- pn”

One key difference between this problem and the one in Section 2.1 is that CP (z)
counts all permutations p € Py, . .., regardless of whether the subgroup generated by g
and vy, .. p, is transitive. Therefore, in the language of enumerating maps, this generating
series counts the number of possibly disconnected combinatorial maps with n vertices
and L faces, such that there are exactly p; edges incident to vertex i. As in Chapter 1,
we let d = %Z?’:l p; be the total number of pairs of u, which also represents the total
number of edges in the combinatorial map. The fact that CP () also counts disconnected
combinatorial maps is undesirable from a topological standpoint, and while this issue can
be remedied in some cases, there is no known method in general. For now, we will view
this problem simply as one about multiplying permutations, without concerning ourselves
with whether the permutations we are enumerating represent combinatorial maps.

Analogous to Definition 2.3, for yp € P, ,, and 7: [p1,...,p,] = [K], we can define
an ordered pair (i, 7) to be a paired function if

T (1 (V) = 7T (Vpypareipn (V)

holds for all v € [py, ..., px], and let Df;’ 5 to be the set of all paired functions satisfying the
parameters n, K, and p, with dg’K = ‘DE’K|. Then, by the same logic used in Section 2.1,
we can obtain results analogous to (2.1), (2.2), and Fact 2.4 for this definition of paired
function. In particular, we have that (u,7) is a paired function if and only if

(7r (24) 7 <(:c + 1)2)) = (71' ((y + 1)E> LT (yk)> (2.6)

holds for all pairs {.r?, yﬁ} of u, where addition is done modulo p; and p; on the left and
right hand side, respectively. Then, we have CP (K) = d} ;- for all k& > 1. Finally, we
can conclude that finding a polynomial expression for di x 1s sufficient for determining the
generating series CP (z).

As with the case n = 1 in Section 2.3, we will use the one matrix model, described
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in Section 2.2. Let H Ei-[ x be the Hermitian matrix such that h;; = x; for all diagonal
entries of H, and h;; = hj; = x;; + iy;; for all ¢ < j, where x;;, 245, v;; € R. By expanding
trHPi we have

CHY = ) Rty h(a)e(et) e () n(10)

w: [pi] = [K]

Therefore, if we consider the integral of trHP! - - - tr HP» over the measure du (H), we have

(trHP' - - -trHP") = Z <hﬂ(11>7r(21) -"hw<p%)7r(1;) X

72 [p1,e.,pn] = [K]
() el i)
_ Z Z H <hﬂ(xz)77r((x+1)i) hw(yﬁ) ((+1)) >

7 [P1yesPn ] = K] HEPDy . pp {xl,yk}EM

where we used Wick’s formula in Theorem 2.6 to expand the product. As in the case

n = 1, each term <h7r(xi)7ﬂ_<($+1)i)hﬂ—(yﬁ)m'((y—i-l)ﬁ)> is 1 if and only if (2.6) holds. There-

fore, (trHP'---trHP") counts the number of paired functions. In other words, we have
(trHPr - -trHP) = dp ;- = CP (K). Note that this formula is a direct generalization of the
one in Section 2.3, though unlike the n = 1 case, there is no known method for evaluating
this in general.

Now, in the case where each vertex has degree r, we can write the generating series
for the number of connected combinatorial maps in terms of the generating series for the
number of possibly disconnected combinatorial maps. Recall from Section 1.5 that one
of the conditions for p being a combmatorlal map is that the subgroup generated by p
and vy, . p, is transitive. Let CZ’L . C C ) be the subset of pairings that satisfies this
condition, and cm L= |Cn’ L| is the number of combinatorial maps with n vertices and L
faces, with each vertex having degree r. Then, the generating series for the number of
combinatorial maps is given by

C_ﬁ (z) = Z CZ,LIL

L>1

For convenience, let C7 (x) = cyrr) (x) be the generating series for the number of possibly
disconnected combinatorial maps with n vertices and L faces, with each vertex having
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degree r, as described at the beginning of this section.

Now, let D;, ;c = D(T’ ") be the set of paired functions (u, 7) such that p is a pairing on
[r,.. ] (n tlmes) and 7 is the colouring function 7: [r,...,r] = [K]. The set of connected
paired Junctions Dy, o C Dy, i is the subset of paired function such that the subgroup
generated by p and Y = Yr..r is transitive. By following the same proof as Section 2.1,
we see that C, (K) = |D;, «|. Furthermore, let Dj = U,,5o Dy x and Dy = U,.5; D}, x be
the unions of these sets of paired functions. Then, our objective is to provide a relation
between these two sets, and express that using exponential generating series. Background
on exponential generating series can be found in Combinatorial Enumeration by Goulden
and Jackson [15].

For i > 1, we let St = {1i, e ,ri} be a set labelled ¢, which corresponds to vertex ¢

of a map. Now, a pairing x4 is a permutation on S* U --- U S® for some n, so u can be
treated as an object with labels 1,...,n, with the weight of y being n, denoted v (1) = n,
to distinguish it from the weight given by the number of cycles in gy~ In terms of graph
theory, a pairing p has weight n if the possibly disconnected map that p represents has
n vertices. As the product and composition lemmas for labelled objects use exponential
generating series, we will use these series to enumerate the sets Dj. and D}, where the
weight of (u,7) € D} is given by v (u). Let C" (¢, K) and C” (t, K) be the exponential
generating series for D}, and DY, respectively. Then, we have

CT(tK) = ) w

and

(n,m)€D}

_ n
= ZCZ(K)'E

n>1

Note that C" (¢, K) does not contain the term Cj (K), which is important for the compo-
sition of exponential generating series.
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Consider a paired function (u,7) € D}, observe that each orbit O of the subgroup
generated by p and 7" is a union of some sets St U --- U St In the language of maps,
O represents a component containing the vertices ji,...,J;. By noting that each pair
{xi, yE} of p must either be contained in or disjoint from O, we see the paired function
condition, given by (2.6), still holds if we restrict g and 7 to S2L U --- U S2. Therefore,
(u, ) restricted to the subset St U --- U S is a paired function. We can relabel the
superscripts ji,...,J; of the elements in p and 7 to 1,...,¢, which gives us the paired
function (u',7’) € D} ). Furthermore, the subgroup generated by p’ and 77 is transitive,
so (¢, ') € Dy. This means that paired functions (u,7) € D} can be decomposed into
zero or more connected paired functions, each given by the restriction of (u, ) to an orbit
of the subgroup generated by p and ~; .

Conversely, given connected paired functions (u1,m), ..., (p, m) and a partition ¢ of
[n] with k parts, such that the i’th part of ¢ has size v (u;), we can construct (u, 7) € D
as follows. For each (u;, m;), if the i’th part of ¢ is {j1,..., i}, where t = v (y;), we relabel
the set of elements S1 U ---U St in p; and m; with S U --- U S%. As ¢ is a partition
of [n], the connected paired function (u;, ;) gets labelled with different sets of elements,
and together they contain all of S*U --- U S™. Therefore, we can obtain a pairing x4 on
[r,...,7] (n times) and a colouring function 7: [r,...,r] — [K]| by combining p, ..., u
and mq, ..., together. Furthermore, we can check the paired function condition holds for
(i, ™) by noting that (2.6) holds for all pairs {xi, yk} of i, as each pair is in some paired
function (u;, ;). This gives us (u, ) € D.

Using the language of Goulden and Jackson, we can write this decomposition as D} =
{0,[1],[2],... }y®D}. As the generating series for {0, [1],[2],...} is €%, and the generating
series for the composition of labelled objects is given by the composition of functions, we
have

C"(t,K) =exp{C" (t,K)}
Note that Cf (K) = 0 is required for C" (¢, K) to be well defined. By using CP (K) =
(trHP' - - - tr HP) and simplifying the expression, we obtain

7 (tK) = log{C" (t,K)}

~ log {Z ((brH")") - %}

n>0

= log{<z (tt;'}[T)”>}

— log {(exp {t - trH"})}
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Note that the variables in the summand are independent of the integral, so we can move
them inside the sum as above. Also, if we can take the % coefficient of this series, then

the substitution K = z gives us C7 (z). Further discussion of the application of this result
can be found in Lando and Zvonkin [26].

The second problem we will discuss is the enumeration of maps in locally orientable
surfaces by their genus. As with the first problem, we will place no restrictions on how the
edges are connected between vertices. One way to represent these is to represent each edge
with 4 elements of a permutation, instead of the 2 we have for maps in orientable surfaces.
This approach was used in Graph Theory by Tutte [33], and we can rigourously define the
problem in terms of multiplying permutations as in Section 1.5 and Section 2.1 if we so
desire. However, for the sake of brevity, we will be less formal and instead describe maps
in locally orientable surfaces using Feymann diagrams and K-coloured maps. The method
used here is taken from the exercises in Chapter 3 of Lando and Zvonkin [20], as well as
the paper by Goulden and Jackson [16].

In our discussion in Section 1.5, we know that labelled maps can be described as a set of
vertices with half-edges attached to them. Furthermore, we know that the pairing of these
half-edges uniquely determines a labelled map. To visualize labelled maps, we introduced
Feymann diagrams, which are diagrams of maps where the edges are represented as ribbons.
Each corner in the diagram is labelled with the half-edge adjacent to it, which helps to
visualize which corners of the map belong to the same faces when the half-edges are glued
together.

Note that for maps in orientable surfaces, there is an orientation for the stars, ribbons,
and spaces between the ribbons. Therefore, we have to glue the ribbons representing half-
edges together without twisting them, to preserve their orientations. Now, to construct
maps in locally orientable surfaces, we allow each ribbon to have zero or one twist, where
the direction of the twist is irrelevant. Since our definition of map isomorphism is based
on having an orientation preserving homeomorphism of the faces, it is sufficient to only
consider these two ways of twisting the ribbons.

Analogous to Remark 2.5, a twisted K -coloured map is a map in a locally orientable
surface, where each face is assigned one of K colours, without restrictions on the colours
of adjacent faces. As with K-coloured maps, we can count twisted K-coloured maps by
colouring each corner of a locally orientable map, then only count the maps where the
colouring of the corners is the same for each face. To represent twisted K-coloured maps
as combinatorial objects, we will use the symmetric group, similar to what we did with
K-coloured maps. Given an n vertex map such that vertex ¢ has degree p;, we use the
canonical cycle permutation 7, . ,. of Sp, . to represent the vertices, and we use the

n
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pairing p € P, ... p, to represent the half-edges. Furthermore, we will introduce the twisting
function ¢: p — {0,1}, such that for a pair {z%,y£} in pu, ¢ ({2%,y%}) is 1 if the ribbon
joining 2% and 3% is twisted, and 0 otherwise. Finally, the colouring of the corners will be
represented by w: [p1,...,p,] — [K]. By observing how the ribbons are joined together,
we see that the colouring of the corners is consistent if and only if

s ((y + 1)E> ,m(y%),0) OR

7 (4) 7 <(y+ 1)&) 1 (2.7)

<7T (xz) , T ((x + 1)£> , O ({xz, yﬁ})) =

holds for all pairs {xi, yﬁ} of p. We call the triples (u, 7, ¢) that satisfy this condition
triple functions. Furthermore, if for a given p and 7 there exist at least one ¢ such that

(u, 7, @) is a triple function, then the number of ¢’s such that (u, m, ¢) is a triple function is

2!, where t is the number of pairs {%, y*} in p such that 7 (2%) = 7 ((:c + 1)1) = (y%) =

m ((y + 1)E>
To enumerate triple functions algebraically, we take the approach in Section 2.2 and

Section 2.3. However, instead of using a Hermitian matrix H, we use a symmetric matrix
M with entries m;; = mj;. By computing the determinant, we get

K
tr (MQ) = Zm?i—i-ZZm?j
i=1

1<j

That is, we let tr (M?) represent a matrix B such that (Bz,z) = tr (M?), where z is the
vector containing the variables m;; and m;; in order, with 1 < 7,7 < K and 7 < j. By
comparing the coefficients with (2.3), we can deduce that B is a diagonal matrix with 1’s
for the first K diagonal entries, and 2’s for the remaining K2-K entries. This gives us

2
det B = 2<K2_K)/2, which gives

dp (M) = (277)_(K2+K)/4 (K2 =K)/4 oxpy {—%tr (MQ)} dv (M)

By computing C'= B!, we see that (m3) = 1 and (m;) = (mgmy;) = & for all i < j.
For all other i, 5, k,1 € [K], we have (i,7) # (k,l). This gives (m;;my) = 0, as the terms
in the product only involve off-diagonal entries of the covariance matrix.

As with the problem of enumerating maps in orientable surfaces, if we consider the
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integral of trMP! - .- tr MP" over the measure du (M), we have

(trMP* - trMP) = Z Z H <m7r(xi),7r((:v+1)i>mﬂ'(yE)aﬂ'((lH”l)E)>

T [P17---,Pn}—>[K} MEPP1 ~~~~~ Pn {zayﬁ}ela

by using Wick’s formula in Theorem 2.6 to expand the product. Also, each term
<mw(m1),w((x+1)i)mw(yE),w((yH)E)> is £ if (7T (2%), 7 ((:v + 1)£>> is equal to exactly one of
<7T (y@) , ((y + 1)E>> or <7T <(y + 1)E> S (y5)>, and is 1 if it is equal to both. By com-

paring with (2.7), we see that 2¢ <m7r(xi),7r((z+1)i)mw(y&),w((yﬂ)ﬁ)> counts the number of ¢’s

such that (u,m,¢) is a triple function, where d = is the total number of edges.
Therefore, 2¢ (trMP! - -trMP) counts the number of triple functions. As with the case
of maps in orientable surfaces, there is no known method of evaluating this in general.
However, in the case of n = 1, we can evaluate the integral and obtain the generating
series

p1t-+pn
2

sm=ne s () (1) () S () ()

that counts the number of one vertex maps with p edges in locally orientable surfaces,
sorted by genus. Notice that the second part of the sum is A® (z — 1), where A® (z) is
given by the Harer-Zagier formula in Theorem 2.10. As the derivation for B® (z) is quite
involved, we will not cover it in this thesis. Any reader interested in this result is referred
to Goulden and Jackson [10].

The third problem we will discuss is the enumeration of unicellular bicoloured maps.
The approach we use here is taken from Schaeffer and Vassilieva [31], and is a combinatorial
proof that has much in common with Goulden and Nica [17]. By extension, this proof is
related to the work in this thesis, with which we will draw several comparisons later. Recall
from Section 1.5 that the set of all one vertex maps with ¢ edges can be encoded using the
pairings of Py,. For € Py, we can let 9, = (1,...,2q) represent the vertex, u represent
the edges, and a = u’ygql represent the faces of the map. By using map duality, we can
instead let 79, represent the single face of the map, i represent the edges, and o = u’ygql
represent the vertices. Therefore, the set of pairings of Py, also encode all maps with
one face and ¢ edges. Hence, the enumeration of one vertex maps is also known as the
enumeration of unicellular maps in some parts of the literature.
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Figure 2.1: Rooted unicellular bicoloured map with p = 3, ¢ = 4, and 6 edges

Now, a unicellular bicoloured map is an embedding of a bipartite graph in a surface
such that the embedding has exactly one face, and a rooted unicellular bicoloured map is a
unicellular bicoloured map with a distinguished edge e. Unlike in our description of rooted
maps from Section 1.5, we do not choose a direction for this edge ourselves, but instead
orient the edge going from the white vertex to the black vertex. Without loss of generality,
we can label the edges around the face of the map with a canonical labelling, in a similar
manner to how we labelled the half edges in a rooted map. This is done by tracing the
face of the map and labelling every other edge with the labels 1,...,d, starting from the
right hand side of the root edge. As there is only one face, each edge is traversed exactly
twice, once from each direction. Furthermore, this procedure can only label an edge on
the white to black direction, so each edge is labelled exactly once.

To enumerate unicellular bicoloured maps, we will use the following encoding. Let M
be a rooted unicellular bicoloured map with m white vertices, n black vertices, and d edges.
We represent M as a pair of permutations («, 5) € Sy X S; such that 74 = af. Each cycle
of a represents a white vertex, and the elements of the cycle are the edges incident to it,
in counterclockwise order. Similarly, each cycle of § represents a black vertex, and the
elements of the cycle are the edges incident to it, also in counterclockwise order. Note that
B = a~'v4, so B is actually determined by «. Furthermore, this form of the expression
suggests that unicellular bicoloured maps are in some way related to unicellular maps.
Further discussion on the relationship between maps and bipartite maps can be found in
the paper by Schaeffer and Vassilieva, as well as Section 1.5 of Lando and Zvonkin [26].

As an example, consider the rooted unicellular bicoloured map on the left diagram of
Figure 2.1. This is a map with 3 white vertices, 4 black vertices, and 6 edges. By giving
it a canonical labelling using the procedure described above, we obtain the labelled map
on the right. Then, by letting each vertex be represented as a cycle in a permutation, we
obtain o = (156) (2) (34) and 5 = (124) (3) (5) (6). We can verify that aff = ¢ indeed
holds.

In the remainder of this section, we will give a sketch of a combinatorial proof to the
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following theorem, which allows us to enumerate unicellular bicoloured maps.

Theorem 2.13. (Schaeffer-Vassilieva [71]) Let d be a positive integer, and for m,n > 0,
let B (m,n,d) be the number of permutation pairs (o, 5) € Sq X Sq such that « and B have
m and n cycles, respectively, and v4 = af. Then, the generating series for the numbers
B (m,n,d) is given by

Z B (m,n,d)y™z" = d! Z (p—1)!(q —((f)!_(;)!— p—q+1) (i) @

m,n>1 p,q>1

The general case of this problem was studied earlier by Jackson, using an algebraic
approach with the evaluation of characters of the symmetric group. Using our notation,
the result can be written as follows.

Theorem 2.14. (Jackson [22]) Let d be a positive integer, and B (my,...,mg,d) be the

number of factorizations of v4 = (1,2,...,d) into a product of k permutations with respec-
tively my, ..., my cycles. Then, the generating series for the numbers B (my, ..., my,d) is
given by

Z B(my,...,my,d) 2" 2"

mi,...,mg>1

:d!@{zl"‘Zk((1+21)"'(1+2k)—Zl---zk)dfl}

where ® is the linear operator on polynomials defined by

Y EE (Z) (Z)

The proof of Schaeffer and Vassilieva begins by partitioning the cycles of o and ( into
blocks. Let m and my be partitions of [d] with p and g blocks respectively, and a € S,,.
The triple (71, g, ) is a partitioned unicellular bicolored map if

e Each block of 7 is a union of cycles of «, and

e Each block of 7y is a union of cycles of 8 = a1qy

By letting C, 44 be the set of such triples, and C (p, ¢, d) = |Cpq.4|, we have

C(p.g,d)= Y S(m,p)S(n,q)B(m,n,d)

m2>p,n>q

65



where S (m,p) and S (n,q) are the Stirling numbers of the second kind, which satisfies
oy ($)01S (a,b) = 2. By summing over p and ¢, we can obtain

> By = Y Coad (V)2 (2.9

m,n>1 p,g>1

This technique of partitioning the cycles of o and [, then using Stirling numbers to
write the generating series, is the same as the one used in Goulden and Nica. It is also
similar to the function m we have defined in Section 2.1 for paired functions. However,
we do not have the implicit requirement that 7 is a surjection, unlike the partitions m
and 7y used here. A further discussion on this non-empty condition with respect to paired
functions can be found in Section 7.1.

Now, let BT (p, q) be the set of ordered rooted bicoloured trees with p white vertices,
q black vertices, and a white root. Then, the cardinality of BT (p,q) is given by

p+qg—1(p+q—2\°
IBT(p,q)IZ—( )
q p—1

Let PP (d,d —1,d—p— q+ 1) be the set of partial permutations from a (d —p — g + 1)-
subset of [d] to a (d — p — ¢ + 1)-subset of [d — 1]. Thatis,c € PP (d,d—1,d—p—q+1)
is an injective partial function o: [d] — [d — 1] such that o is defined on d —p — ¢+ 1
elements of [d]. Then, the cardinality of PP (d,d —1,d —p — ¢+ 1) is given by

d d—1
PP(d,d—1,d—p—q+1)| = d—p—q+1)
|PP( p—q+1) (d_p_q+1)<d_p_q+1>( p—q+1)

If we can show that there exists a bijection
¢:Cpga— BT (p,q) x PP(d,d—1,d—p—q+1)

between the set of partitioned unicellular bicoloured maps and the product of ordered
rooted bicoloured trees and partial permutations, then

C(p,q,d) = ijL_l(erq_Q)z( ‘ )( -l )(d—p—q+1)!

Pq p—1 d—p—q+1)\d—p—q+1
dl(d—1)!
Pl (p—D!'(g—D(d—p—q+1)!
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Figure 2.2: Ordered rooted bicolour tree t from decomposing Figure 2.1

Substituting this into (2.8) yields the generating series in Theorem 2.13, as desired.

With the necessary objects defined, we can finally provide the decomposition. As this
is meant to be a brief survey, we will only provide the decomposition, without proving that
the resulting objects are well defined, or that the decomposition is a bijection.

Let 71, ..., m be the white blocks of m; and 7%, ..., 7y be the black blocks of s, such
that 1 € 77% and the other blocks are arbitrarily labelled. Then, let the maximum elements

of ﬁ be m} for 1 < i < p, and the maximum elements of 73 be mj for 1 < j < ¢. We
can then construct a labelled bicoloured tree T with p white vertices and ¢ black vertices,
where each block is represented by a vertex of the same colour.

First, the white block 7#13 is taken to be the root of the tree. Then, for each block W%,
the corresponding black vertex j is a child of the white vertex i if 3 (m%) belongs to white
block ﬁ. If two black vertices j and k are both children of the white vertex ¢, then j is
left of k if (m%) <p (m%) Similarly, for each block ﬁ except 77% the white vertex 17 is

a child of the black vertex j if m%, or equivalently 57! (mil), belongs to black block ’/T%.
If two white vertices ¢ and ¢ are both children of the black vertex j, then ¢ is left of ¢ if
pt <m31> < p! <m§) By removing the labels, we can obtain the tree t € BT (p, q).

Continuing the above example, we let (’/Tll, ’/T%, W%) = (34,2,156) and (7%, 7%) =

(356,124). By computing 571 (m%), we see that (,6’1 <m%> Bt <m%>> = (2,1), so
m1 and 77 are both children of 7, with 77 to the left of 7;. Similarly, by computing
I6] (m%), we see that (ﬂ <m%) .0 (m%)) = (6,1), so 7y and W% are both children of 7r%,

with 7'('% to the left of W%. Putting these together gives us the tree in the left diagram of
Figure 2.2. Removing the labels from this tree gives us the ordered rooted bicolour tree ¢
for our decomposition.
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The construction of the partial permutation o is significantly more involved. First, we
relabel the tree T' from bottom to top, right to left, with p,p — 1,...,1 on white vertices,
and ¢,q — 1,...,1 on black vertices. Then, we let 7} be the white block labelled i for
1 < i < p, and 7 be the black block labelled j for 1 < j < ¢, with m! and mj, being the
maximum elements of their respective blocks. Note that the root vertex retains the label
p, so 1 € 77, By writing out the blocks 7{,..., 7} and 73, ..., 74 in order, we can create
the two row permutations

A:<12 ’d—ld) v (12 ‘d—ld)

where the elements of each block are written in increasing order. Finally, let S =
d)\ {mi,... mP B (ml),. . (m$%)}, and create the partial permutation

g = Vﬁilkil ’)\(5)

where the domain is restricted to A (S). Together (¢, ) is a decomposition of the partitioned
unicellular bicoloured map into the product of an ordered rooted bicoloured tree and a
partial permutation, as desired.

Continuing the example above, we relabel the tree in the left diagram of Figure 2.2,
which gives us the tree on the right. We can then write the blocks down in order to obtain
the permutations A and v, given by

6
6

(2|3 4]1 56 (12
“\1]23|45 6 =11 2

With this, we can compute v37*A~!, which is
6
6
2

Vﬂ—l)\—l _ ( 1
As S =1[6]\{2,4,5(4),5(6)} = {3,5}, we have A (S) = {2,5} and 0 = ( A g ), which
is a partial permutation PP (6,5,2), as desired.

413 5
314 5

3 4 5
2 35

=~ DN

Conversely, given an ordered rooted bicoloured tree ¢ and a partial permutation o, we
will sketch how to reconstruct (my,ms, ). If we write o in the two row notation, then the
first row of o is missing the elements A (m}) and A (5 (m%)) By construction, we have

A(ml) < - < X(my "), and for any child vertex j of 7%, we have A (m{™!) < A (8 (m3)) <
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A(m?). Similarly, the second row of o is missing the elements v (m}) and v (87! (m})).
Again, by construction, we have v (m}) < --- < v (m), and for any child vertex i of 73, we
have v (m} ") < v (87 (mi)) < v (m3). Together with the fact that S~ (mi) < B! (mf)
if vertex i is to the left of vertex ¢, and (m%) <p (m’g) if vertex j is to the left of vertex
k, we can determine A and v on the elements of [d] \S. We can use this information to
extend o to & = v7'A7!, which is a permutation on the whole set [d].

By construction, the blocks A (7}) and v (W%) contain consecutive elements, so our
knowledge of the elements A (m!) and v (m%) allows us to recover the size of the blocks.

Furthermore, we can use & to deduce v (7}) and A (77'%) This allows us to fully recover A
and v by using a variant of the label recovery procedure for paired functions, which we
will not cover here, as a similar procedure is covered in Theorem 3.7. In summary, if we
know what is A (k), and which block of 7, contains it, we can use ¢ to determine v (k),
and which block of 79 contains it. In turn, this allows us to determine A (k + 1), and the
block of 7 that contains it. Combined with the fact that A (1) is the smallest element of
7y, we can inductively recover A and v. This also allows us to recover m; and 7. Finally,
we have a = 7467 ! = w16\, Since the permutations on the right hand side are now
known, we have successfully recovered a as well.

As the authors have noted in their paper, this decomposition is similar to Goulden and
Nica. Furthermore, it is related to the first step of our decomposition of paired functions,
in the form of paired arrays, which we will give in Section 3.1. Like the forest condition
function v for paired arrays, the tree ¢ involves the largest elements of each block, while
o determines the relationship of the rest of the elements. Further parallels can be seen
between this construction and that of Theorem 3.13. Finally, one minor difference between
the construction here and the one for paired functions is that 7 is a function, so we have
no need to relabel the partitions during the decomposition step.
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Chapter 3

Paired Arrays

In this chapter, we will give a graphical representation of the paired functions introduced in
Chapter 2, then show that we can remove the labels from this representation without losing
any information. This allows us to define a stand-alone combinatorial object that does not
refer to permutations. We will then introduce a number of notations, conventions, and
lemmas for this combinatorial object, and show that it is in bijection with paired functions.
Finally, we will start the first stage of the decomposition, where we remove vertex pairs
that are non-critical to the combinatorial object. The approach and techniques used in
this chapter was first given in Goulden and Nica [17], and further extended in Goulden
and Slofstra [18]. However, we will introduce certain changes that allow the results to
be generalized. Critically, we remove one of the conditions for the combinatorial object
used in their paper, as the use of paired functions instead of paired surjections made that
condition unnecessary.

3.1 Definitions and Terminology of Paired Arrays

To represent the paired functions in the set fﬁf‘;) introduced in Chapter 2, we use a
graphical representation introduced in Goulden and Slofstra, called the labelled array.
This is an n x K array of cells arranged in a grid. Each element z¢ of y is represented as
a vertex, where the vertex labelled x! is placed into cell (4, ) if 7 (2¢) = j. The vertices
are arranged horizontally within a cell, in increasing order of the labels. Furthermore, for
each pair {xi, yE} in u, an edge is drawn between their corresponding vertices.

For example, let (u, ) € Féf}fs), where q = (2,2,3), and s = (1,3, 1). Suppose y and 7

70



are given by

L1

(2

(1)
T (2)
T (3)
T (4)

L4

Then, the labelled array representing (u, 7) is given by Figure 3.1.

Note that an n x K array with paired and labelled vertices as described above uniquely

. (as) N o
represents a pairing g € P, and a function 7: [p1,...,p,] — [K]. The condition
T (1 (v)) = T (Vpypo,.pn (v)) is fulfilled if and only if for every pair {z%,y*} in the array,
the vertex (z + 1)* is in the same column as the vertex of y%, where the addition x + 1 is

taken modulo p;.

Next, we will show that this condition is sufficient to reconstruct the array if the
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labels are removed and replaced by marked cells. We do this by defining paired arrays as
abstract combinatorial objects, then creating a bijection between paired arrays and labelled
arrays. Furthermore, we will extend the definition of paired arrays to cover a larger class
of objects, so that we can decompose and enumerate them easily. One major difference in
our definition compared to the one in Goulden and Slofstra is that we will decouple the
conditions that allow paired arrays to be in bijection with labelled arrays. This allows for
greater flexibility in the chapters to come, as we will be violating these conditions when
we further generalize paired arrays.

Definition 3.1. Let n, K > 1, q = (q1,...,¢n) > 0, 8 = (512,513,---,Sn—1,) > 0, and
R = (Ry,...,R,) € [K]". We define PAE:?}?R to be the set of paired arrays, which are
arrays of cells and vertices subjected to the following conditions.

e A paired array is an array of cells, arranged in n rows and K columns.

e Each cell (7, j) contains an ordered list of vertices, arranged left to right, so that row
1 contains p; = 2¢q; + E,Ki Sk + Zbi s; 1 vertices in total.

e Each vertex u is paired with exactly one other vertex v, which is called the partner
of u. Exactly 2¢; vertices of row ¢ are paired with other vertices of row ¢, and for
1 < k, exactly s; vertices of row ¢ are paired with vertices of row k. Graphically,
the pairings are denoted as edges between vertices.

e Fach row ¢ has exactly R; marked cells, which are denoted by marking the cell with
a box in its upper right corner.

e A vertex v is critical if it is the rightmost vertex of a cell, and the cell it belongs to
is not marked. A pair {u,v} that contains a critical vertex is a critical pair.

e A pair of vertices {u,v} is redundant if both v and v belong to the same row, and
neither u nor v is critical. The vertices u and v are called redundant vertices.

e A pair of vertices {u,v} is a mized pair if u and v belong to different rows. The
vertices v and v are called mized vertices.

e An object of a paired array refers to either a vertex, or the box used to indicate that
a cell is marked. If a cell both contains vertices and a box, the box is to be taken as
the rightmost object of the cell.
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Generally, we use a € PA;?}??R to denote a paired array. Before introducing the

conditions used in Goulden and Slofstra, we will first introduce a number of useful notations
and conventions.

Convention 3.2. For notational convenience, we introduce the following:

o We use calligraphic letters to denote columns or sets of columns. For generic columns
or sets of columns, we use the letters X, Y, and Z.

e [or each calligraphic letter, we use the corresponding upper case letter to denote the
number of columns in the set. For example, X = |X|.

e [or each calligraphic letter, we use the corresponding lower case letter, subscripted by
the row number, to denote the total number of vertices in those columns for a given
row. For example, x; is the total number of vertices in row i of the columns of X .

o We generally use i, 7, k, ¢ as index variables, with v and k for rows, and j and ¢ for
columns. Furthermore, we use cell (i,7) to denote the cell in row i, column j of the
array.

o We use K to denote the set of all columns, and K to denote the number of columns.

o We use R; to denote the set of columns that are marked in row i, and R; to denote
the number of columns that are marked in row 1.

o We use F; to denote the set of columns that have at least one vertex in row i, and F;
to denote the number of columns that are marked in row 1.

o We use w; j to denote the number of vertices in cell (i, j), and w to denote a matriz
of w;; describing the number of vertices in each cell of row 1.

o Welet s, = sk, fori >k, and s; = Zk# six be the total number of mizved vertices
of row 1. This means that row © contains p; = 2q; + s; vertices.

With these conventions, we are ready to define the two conditions that allow us to
create a bijection between labelled arrays and paired arrays.

Definition 3.3. Let a € PAS}}??R be a paired array.
e « is said to satisfy the balance condition if for each cell (i, 7), the number of mixed

vertices in cell (4,7) is equal to the number of mixed pairs {u,v} such that u is in
row ¢ and v is in column j (but not row i).
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e For each row i, the forest condition function 1;: F;\R; — K is defined as follows:
For each column j € F;\R;, if the rightmost vertex v is paired with a vertex u in
column ¢, then 1; (j) = £. « is said to satisfy the forest condition if for each row i,
the functional digraph of ¢; on the vertex set F; U, (F;) UR; is a forest with root
vertices R;. That is, for each column j € F;\'R;, there exists some positive integer
t such that 9! (j) € R;. Note that we always include R; in the vertex set of the
functional digraph of v;, regardless of whether they are in the domain or range of ;.

Note that permuting the columns of a paired array does not change whether the array
satisfies the balance or forest conditions, as all this action does is to relabel the vertices of
the functional digraph. By convention, given paired arrays o and o', we use ; and ! to
denote the forest condition functions for row ¢ of o and o/, respectively. A paired array is
proper if it satisfies the balance and forest conditions. A paired array is called a canonical
array if it is proper and R = 1. We denote the set of canonical arrays as CAS?}?), and we

let ) = [eal®?].

In Definition 3.3, the balance condition is expressed in terms of the numbers of mixed
vertices and mixed pairs. Equivalently, the balance condition can also be expressed with
respect to the total number of vertices in cell (i, 7), as shown in the following proposition.

Proposition 3.4. Let a € PAS‘;);R be a paired array. Then, « satisfies the balance
condition if and only if for each cell (i,j), the number of vertices in cell (i,7) is equal to
the number of vertices u in row i such that its partner v is in column j (and possibly in
row ).

Proof. Let p; ; be the number of vertices in cell (7, j), and ¢; ; be the number of non-mixed
vertices in cell (i, 7). Let p,; be the number of vertices u in row i such that its partner v
is in column j, and ¢; ; be the number of vertices u in row 4 such that its partner v is in
cell (7,7). Note that if both vertices of a pair are in cell (4, j), they are counted twice in
both pg’j and qg’j. Now, the number of mixed vertices in cell (¢, j) is given by p; ; — ¢; ;, and
the number of mixed pairs {u, v} such that u is in row ¢ and v is in column j is given by
pij — q; ;- Therefore, it suffices to show that ¢;; = ¢ ;.

Let u be a vertex in row ¢. Then, its partner v is counted in ¢;; if and only if it is
in cell (7,7). Likewise, u is counted in ¢;; if and only if v is in cell (7,j). As both g, ;
and ¢;; require {u,v} to be a non-mixed pair, it is sufficient to only consider vertices
u in row i. This shows that ¢;; = ¢ ;. Therefore, a satisfies the balance condition as
described in Definition 3.3 if and only if it satisfies the balance condition as described in
Proposition 3.4. O
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Of the two conditions in Definition 3.3, the forest condition is the more fundamental
one, and all the arrays we define in this thesis will satisfy some form of this condition.
However, it is relatively row independent, as we shall see in later chapters. The balance
condition is in general difficult to handle, but can be radically simplified if the support of
s forms a tree. This gives rise to the following definition.

Definition 3.5. A paired array a € PAS}?R is called tree-shaped if the support graph of
s forms a tree.

With tree-shaped arrays, we can reduce the balance condition to a condition that only
depends on the number of mixed vertices in a cell, essentially allowing us to ignore it. This
is the main reason why we focus on counting maps where the support graph of s forms a
tree.

Lemma 3.6. Let a € PAEE}??R be a tree-shaped paired array, and suppose that s;y ; is the
number of vertices in cell (i,7) that are paired with a vertex in row k for all 1 < ik <n
and 1 < j < K. Then, « satisfies the balance condition if and only if s, ; = sk ; for all

i # k.

Proof. We will first present some preliminary facts about the s;; ;’s. Let G be the support
graph of s. By Definition 3.5, G is a tree. Furthermore, s, is the number of mixed pairs
{u,v} with u in row ¢ and v in row k, so s; = Zj Sik;- Also, let z; ; be the number of
mixed vertices in cell (i,7). As each mixed vertex in cell (,j) must be joined to a vertex
in some other row k, we have x; ; = Zk# Sik-

Now, suppose ;. = sk ; forall 1 < i,k <nand 1 <j < K. Then, by summing over
all k # i, we have z; ; = Zk# Sikj = Zk# Skij- As Sg;j is the number of mixed vertices
in cell (k,j) that are paired with a vertex in row i, the latter sum counts the number of
mixed pairs {u,v} such that u is in row ¢ and v is in row k. Therefore, « satisfies the
balance condition.

Conversely, suppose « satisfies the balance condition. By the same reasoning, we have
Tij = D ki Sidj = D Skij- We will show by induction that if the support of s;), =
> Sik, forms a tree and @i ; = Y04 i Sik = D gz Skiijs then sip ;= sp;; for all i # k.

Let G be the support graph of s and suppose G is a tree. Without loss of generality,
let the vertex n be a leaf of GG, and assume that it is adjacent to the vertex n — 1. As n is
not joined to other vertices in G, we have s, = s, = 0 for 1 <k <n — 2. This implies
that Zj Spkj = Zj Sk = 0,80 Sppj=5Skn; =0forall <k<n-—-2and1l<j<K.
Substituting this into Zk;ﬁn Snkj = Zk# Sk, We obtain s,,_1; = Sp_1,,. Logether
with s, % ; = Skn; = 0, we have that s, ; = sgpjfor 1 <k <n—-1land1<j<K.
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Now, let s;, = > sipy and @i, = >, ik for 1 < ik < mn—1,4# k, and
1 < j < K. That is, we have effectively removed the last row of a. Then,

E Sikj = E:Si,k,j_si,n,j

k#i,n ki

= E :Sk,m‘ — Snyij

ki

= E :Sk,m‘

k#in

by using the fact that s;, ; = s, ;, and substituting in the identity for z; ;. Furthermore,
as sj;, = siy for 1 < i,k < n — 1, the support graph given by the sj,’s is G\ {n}. As

n is a leaf of G, G\ {n} is also a tree. By the inductive hypothesis, s;;; = sj;; for all
1<i,k<n—1and1<j <K, where i # k.

Therefore, « satisfies the balance condition if and only if s; % ; = sk, ; for all @ # k, as
desired. ]

Now that we have defined the necessary framework for paired arrays, we will prove that
canonical arrays are in bijection with labelled arrays.

Theorem 3.7. Forn, K >1,q>0, ands > 0, fquKS) = cgf}?.

Proof. We will prove the theorem using a modified version of the label recovery procedure
introduced in Goulden and Solfstra. This provides a bijection between paired functions
and canonical arrays. Recall our assumption that the support graph of s is connected, so
each row of the paired array contains at least one vertex. This is required for the bijection
to work.

Let (u,m) € .7-_7(1?;) be a paired function. We can obtain the paired array a from (p, )
by first representing (u,7) as a labelled array, denoted 3. For each row i, we mark the
cell of B containing the label 1* with a box. Then, we remove all labels from 3. This gives
us the desired paired array, which we denote as a. Note that exactly 1 cell in each row is
marked, which gives R = 1.

Now, each pair {xi, yﬁ} of 1 is represented as a pair of vertices in rows ¢ and k, and
contributes to the same parameter in both a and p. Hence, « satisfies the parameters
q and s. Also, recall that if {xi, yk} is a pair such that 3% is in some column j, then
(24 1)" must be in cell (i,7). Therefore, the number of vertices * in row i such that its
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partner y£ is in column j is equal to the number of vertices (z + 1)* in cell (4, 7). By using
Proposition 3.4, we see that « satisfies the balance condition.

To show that « satisfies the forest condition, we need to show that the functional
digraph of 1;, denoted as G;, is acyclic, and has root vertex in the marked cell. Let j
be a column such that v; (j) is defined and suppose v; (j) = ¢. Then, cell (7,5) must be
non-empty and unmarked. Let the rightmost vertex of cell (i, ) be 2t. By the definition
of 1;, #X must have its partner y* in column ¢. Therefore, (x + 1)* must be in cell (i, ). If
(z +1)* =1, then cell (¢,¢) is marked and is in R;. Otherwise, it is unmarked and t; (¢)
must be defined. Therefore, the only possible root vertex of G; is 1%, which is marked.

Furthermore, note that if (x + 1)* # 1°, then the rightmost vertex of cell (i, /) must have
a larger label than that of cell (i, j). Therefore, if G; contains a directed cycle (j1, jo, - - -, Jt)
of length ¢, then the rightmost label of cell (7, j.11) must be larger than the rightmost label
of cell (i,7,) for 1 < r < t, with addition taken modulo ¢. However, this gives a cycle of
strictly increasing labels, which is a contradiction. Therefore, 1); is acyclic. Together, this
shows that « is a canonical array in CAS‘;).

. . . iS) - .
To describe the inverse, if a € C.A;qK) is a canonical array, then we can recover the

labels of a as follows. We label the vertices in each row 4 in increasing order, from 1" to
p;. As the labels within a cell are arranged in ascending order, we will always put the
label on the leftmost unlabelled vertex. First, suppose cell (4, j) is the marked cell in row
i. We label the leftmost vertex of cell (4, j) with 1°. Then, for 1 < z < p, — 1, we place the
label (z + 1)* by looking at the partner v of the vertex labelled 2. Suppose v is in some
column ¢, then (z 4 1)* must be in cell (¢, £) for 7 (1 (v)) = 7 (Y, pa....pn (V) to be satisfied.
Therefore, we label the leftmost remaining vertex of cell (z,¢) with (z + 1)*. We now need
to prove that this procedure can only terminate after all the labels have been placed.

First, note that with the exception of 1, for every label 2t placed in cell (4,7), we must
have already labelled some vertex u in row ¢ with (x — 1)*, whose partner v is in column j.
By Proposition 3.4, the number of such vertices is equal to the number of vertices in cell
(i,7). Hence, with the possible exception of the cell containing 1°, our procedure cannot
place more labels in a cell than the number of vertices in it. Therefore, it suffices to show
that the procedure cannot terminate early on the column containing 1°.

Suppose for contradiction that this is not the case. Note that at termination, if all
vertices of cell (i, j) are labelled, then all vertices u whose partner v is in column j must
also be labelled. This includes the cell containing 17, as the last step of the procedure must
label a vertex u whose partner v is in the same column as 1°. Therefore, if the rightmost
vertex u of cell (4,7) is not labelled, and it is paired with a vertex v in column ¢, then
¥; (j) = ¢. Furthermore, the rightmost vertex of column ¢ is also not labelled. Hence, if
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Figure 3.2: A canonical paired array with 3 rows and 4 columns

X is the set of all columns such that for j € X', the rightmost vertex of cell (i, j) is not
labelled, then v; () is defined, and v; (j) € X . However, this means that the functional
digraph of 1; with the vertex set restricted to X is a directed graph with |X'| vertices and
|X'| edges, so it must contain a directed cycle. Therefore, this violates the forest condition,
which is a contradiction.

Finally, to show that this is a bijection, we only need to start with a canonical array
a € CAS}}?, apply the label recovery procedure, then strip off the labels via the inverse
described above. As the marked cell in each row is the same as the cell containing the vertex
1° in both procedures, the positions of the marked cells of o are preserved. Furthermore,
the positions of the vertices and edges do not change during either procedures. Therefore,
these procedures are inverses of each other. This shows that Fé?;(s) is in bijection with

C A,(;?;) , as desired. O

As an example of the label recovery procedure and its inverse, we have transformed the
labelled array depicted in Figure 3.1 into the canonical array depicted in Figure 3.2.

3.2 Decomposition of Canonical Arrays

Now that we have shown that canonical arrays are in bijection with labelled arrays with
the same parameters, the problem of enumerating maps on surfaces reduces to that of
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enumerating canonical arrays. To solve the latter problem, we will first decompose canon-
ical arrays by removing redundant pairs. Then, we will remove vertex pairs where both
vertices are in the same row. Finally, we will decompose the resulting paired arrays via
induction, removing one row at a time. This motivates us to define subsets of paired arrays
describing each stage of the procedure. At the same time, we will also define notations for
these subsets and their cardinalities.

Definition 3.8. A paired array is called a minimal array if it is proper and does not
contain redundant pairs. We denote the set of minimal arrays as Mqu}{R, and we let

m,, q’s) ‘M.An K. R‘ Similarly, a paired array is called a vertical array if for every pair

{u, v} u and v are in different rows. As with paired arrays, a vertical array is proper
if it satisfies the balance and forest conditions. We denote the set of vertical arrays as
VA(S) KR = P.A(OS xr and the set of proper vertical arrays as PVAn KR- Flnally, we let

a;s)

vn K R= ‘PVAH [ R’ For notational convenience, we extend our definition of | i and

fZ)KRto all R > 1 by letting m( K)R_Ufl)I(R:OifRi > K for some 1 <17 <n.

Note that we will generally not work directly with paired arrays that do not satisfy the
forest condition. However, as vertical arrays not satisfying the forest condition are vital
for extending paired arrays, we have separated the forest condition from the definition of
vertical arrays itself. Next, we will introduce our first extension of paired arrays, where
instead of requiring every vertex to be paired with another vertex, we only require critical
vertices to be paired.

Definition 3.9. If n, K > 1, then a partially-paired array « is an nx K array of cells, where
each cell contains zero or more vertices, and is either marked or unmarked. Furthermore,
each vertex of the array may be paired with another vertex. However, only the rightmost
vertices of unmarked cells are required to be paired with another vertex, and we call the
vertices not paired with any other vertices unpaired vertices. As with paired arrays, we
can define the terms critical vertices, redundant pairs, mized pairs, and objects in the
same manner as in Definition 3.1. Likewise, a partially-paired array is proper if it satisfies
the balance and forest conditions. Additionally, we use p; to denote the total number of
vertices in row ¢, ¢; to denote the number of non-mixed pairs in row i, R; to denote the
number of marked cells in row 7, and s;; to denote the number of mixed pairs with one
vertex in row ¢ and one vertex in row k.

By definition, all paired arrays are partially-paired arrays. Also, as the unpaired vertices
are not critical vertices, they do not affect the forest condition. Furthermore, as they are
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not mixed pairs, they do not affect the balance condition. Hence, we can essentially ignore
these vertices when discussing the two conditions. However, note that we do consider
unpaired vertices to be objects of a partially-paired array.

Now, our main reason for using partially-paired arrays is so that we can unpair vertices
of a paired array. That is, if v and v are non-critical vertices that are paired together in
a partially-paired array «, we can unpair them to create a new partially-paired array o
that is otherwise identical to «, but with u and v unpaired. Then, we can remove u and
v separately, perhaps using different procedures, without impacting the balance and forest
conditions. First, however, we need to show that we can unpair vertices without violating
these conditions. In the case where {u, v} forms a redundant pair, we have the following
proposition.

Proposition 3.10. Let {u,v} be a redundant pair in a partially-paired array «, then
the partially-paired array B formed by unpairing v and v satisfies the balance and forest
conditions if and only if a satisfies them, respectively.

Proof. As redundant pairs consist of vertices in the same row, unpairing them does not
change the number of mixed pairs. Also, as redundant vertices are not the rightmost
objects of their cells, they are not used in the forest condition function. Hence, « satisfies
the balance and forest conditions if and only if 3 satisfies them, respectively. m

In particular, given partially-paired array a and a redundant pair {u, v}, the partially-
paired array (3 formed unpairing u and v is proper if and only if « is proper. Now, one
recurrent theme in the proofs of the theorems that follow is the labelling of objects in a
row of a partially-paired array with a set of positive integers. This allows us to remove
a subset of the unpaired vertices while keeping track of their positions. Conversely, we
can insert unpaired vertices into a row of a partially-paired array, again using a subset of
positive integers to denote the positions of insertion.

Procedure 3.11. Let a be a partially-paired array with p; vertices and R; marked cells in
row i, where 1 <1 <n. We describe the following three procedures:

1. Let S be a set of positive integers of size p; + R;. To label row i of o with S is to
assign from left to right elements of S to the objects of row i, from smallest to largest.
As described in Definition 3.1, in a cell that contains both vertices and a box, the box
15 to be taken as the rightmost object of the cell.

2. Let V be a subset of the unpaired vertices in row i. To extract V from « is to create
a partially-paired array o and a set of positive integers W, where o is o with V
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deleted, and W is a |V|-subset of [p; + R; — 1]. This is done by labelling row i of «
with [p; + R;], then deleting V from o. We let W be the labels of the vertices deleted.
As the deleted vertices are non-critical, none of them can be the rightmost object of

a cell. Therefore, they cannot acquire the label p; + R;. Hence, W is a |V|-subset of
[p; + R; — 1], as desired.

3. Let W be a y-subset of [p; + R; + y — 1], where y > 0. To insert W into row i of «
is to add y unpaired vertices to row i of a to create a partially-paired array o’ . This
is done by labelling row i of a with [p; + R; +y] \W. Then, for each w € W, we find
the smallest w' ¢ W such that w' > w, and place a vertezx to the left of and in the
same cell as the object labelled w'. As the new vertex is not the rightmost object of
a cell, it is non-critical. Furthermore, if there is more than one vertex to be inserted
to the left of an object, they should be inserted in increasing order from left to right.
In the end, row i of & contains p; + R; +y objects, labelled from left to right by 1 to
pi + R; + vy in increasing order. Finally, we let )V denote the set of vertices inserted,
to mirror the extraction procedure.

Notice that in both the extraction and insertion procedures, the vertices involved are
unpaired. The reason for this is that the processes using these procedures require different
ways of pairing the vertices. Furthermore, the use of the same variables V and W between
procedure 2 and 3 is deliberate, as we shall now show that the extraction and insertion
procedures are inverses of each other.

Proposition 3.12. Let o be a partially-paired array with p; vertices and R; marked cells
in row i, and V be a subset of the unpaired vertices in row i, where 1 < i < n. Let
be the partially-paired array and W be the subset of [p; + R; — 1] created from extracting
V from a. Suppose o is the partially-paired array formed by reinserting YW into row i of
B, and V' is the set of vertices inserted, then « = o and V =V'. Conwversely, let B be a
partially-paired array with p; vertices and R; marked cells in row i, where 1 < i < n, and
suppose W is a y-subset of [p; + R; +y — 1], with y > 0. Let « be the partially-paired array
formed by inserting VW into row i of B, and V be the set of inserted vertices. Suppose [’
and W' is the pair of objects created from extracting ¥V from «, then 8= " and W =W .
In both cases, a satisfies the balance and forest conditions if and only if B satisfies them,
respectively.

Proof. Note that when we extract V from «, we obtain the partially-paired array S and

the set W that is a |V|-subset of [p; + R; — 1]. Furthermore, J is a partially-paired array
with p; + R; — |V| objects in row 4, so W is a subset of [p; + R; — [V| + [W| — 1]. Therefore,
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we can insert YV into 8 to obtain the partially-paired array o’ and the set V' of inserted
vertices. Notice that the objects remaining in /5 are labelled with [p; + R; — 1] \W during
the extraction, and that they acquire the same labels when we insert W into row i of (.
Consequently, the relative positions of V' compared to the objects remaining in 5 are the
same as that of V. All that is left to check is that the vertices of V' are in the same cells as
the ones they are extracted from. Consider a vertex v € V. As v is a non-critical vertex,
there must be another object in the same cell and to the right of v. Let u be the leftmost of
such an object, and suppose v is labelled w, and u is labelled w,, by the extraction process.
When inserting W into row ¢ of 3, a vertex with the label w, will be inserted to the left of
and in the same cell as the object labelled w,. This means that a vertex is inserted into
the same cell as u. As this holds for every vertex of V, the vertices of V' are in the same
cells as the vertices of V' . Therefore, « = o/ and V =V,

Conversely, when we insert WV into row ¢ of 3, each vertex being inserted is to the
left of and in the same cell as another object. Therefore, the vertices inserted by W are
non-critical vertices. After the insertion, the objects in row 7 of a are labelled from left
to right with [p; + R; + |[W)|], where by construction the set of inserted vertices is labelled
with W. Therefore, when we extract V from «, we label these same vertices with W before
removing them from the array. This implies that 5 = " and W = W'.

Now, let o be a partially-paired array, V be a subset of the unpaired vertices in row i,
and (8 be the resulting partially-paired array when we extract V from «a. As the vertices
of V are unpaired, the extraction does not impact the balance condition. Similarly, as the
vertices of V are non-critical, they are not used in the forest condition function 1;, so v;
remains unchanged between o and 3. Finally, as the extraction procedure and insertion
procedure are inverses of each other, the converse statements also hold. Hence, o satisfies
the balance and forest conditions if and only if § satisfies them, respectively. n

One immediate corollary is that given a partially-paired array «, and a partially-paired
array ( formed by extracting some vertex set V from row ¢ of o, « is proper if and only if
B is proper. Furthermore, the result holds when we simply remove V instead of extracting
it, as we do not have to keep track of WW. Conversely, the result also holds when we insert
a set of unpaired vertices V into row 7 of «, regardless of the means of insertion. Now
that we have the extraction and insertion procedures, we will provide the first stage of our
decomposition. This composition takes a canonical array, and removes all its redundant
pairs. In its place, we are left with a minimal array, and a set of partial pairings describing
the positions and pairings of the vertices removed.
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Theorem 3.13. Letn, K >1,q >0, and s > 0. We have

q
. 2 24y, "
cﬁb‘?}?) :Z( C114‘81) ( Gn + )(2251 — ) (28, — 1)||m(thls)

t—0 2t 2'[5” B
where s; = z#i Sij and t = (t1,...,t,).

Proof. For each row i, let p; = 2¢; + s;, and recall that 7, ;, is the set of ¢;-partial pairings
on [p;]. We will provide a mapping

q
C: CA K q’S) - U Toitr X oo X Tyt X MAantf

and show that this mapping is a bijection.

Let a € C.An o, and suppose that a has ¢; redundant pairs in row ¢. Now, for each
row 7, let V; be the set of redundant vertices. By unpairing and extracting each of the V;’s
from « as described in Procedure 3.11, we can obtain sets Wy, ..., W,, and a paired array
[ that contains no redundant vertices. Furthermore, we can keep track of the pairing of
redundant vertices by creating a pairing 7; on W;. That is, for each redundant pair {u, v}
in row i of «, we let {w,, w,} be a pair of T};, where w, and w, are the labels corresponding
tow and v in W;. As R; = 1, W, is a 2t; subset of [p;]. Therefore, T; is a t;-partial pairing

n [pi], so T; € Tp,+,. Now, as the pairs of V; are non-mixed pairs, 5 contains ¢; — t;
non-mixed pairs in row ¢. In addition, the number of mixed vertices and the number of
marked cells remains unchanged between oo and 3. Since 3 contains no redundant vertices,
and is proper by Proposition 3.10 and Proposition 3.12, it is a minimal array. Hence,
B e MAantls as desired.

Conversely, let 8 € MAS?;(ES) and T; € 7,4, for 1 < i < n. We can recover o by
doing the following. For each i, let W; be the support of T;. By inserting each of the W,’s
into 8 as described in Procedure 3.11, we can obtain a partially-paired array o/ and sets
V1, ..., V, of unpaired vertices in /. Now, note that each T; records a pairing of vertices
of the corresponding V;, which we can use to reconstruct a. For each pair {w,,w,} in
T;, we let {u,v} be a pair of a, where u and v are the vertices labelled w, and w, in the
insertion procedure. As these vertices are non-critical, the inserted pairs are redundant
pairs. Therefore, a contains ¢; non-mixed pairs in row 7. In addition, the number of mixed
vertices and the number of marked cells remain unchanged between a and 3. Again, by
Proposition 3.10 and Proposition 3.12, both o/ and « are proper paired arrays. Therefore,
« is a canonical array. Hence, a € CAS?}?) as desired.
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By Proposition 3.12, the extraction procedure and insertion procedure are inverses of
each other. Furthermore, if we extract the V;’s and reinsert them, they acquire the same
labels as before the extraction. Hence, the redundant pairs of o can be recovered from the
T;’s. Therefore,  as described, is a bijection. By taking the cardinality of both sides, we
obtain our result as desired. O

For example, if for each row ¢ we label the rows of the canonical array in Figure 3.2
with [p; + R;], we obtain the diagram in Figure 3.3. Then, by decomposing the paired
array using the bijection described in Theorem 3.13, we obtain the tuple (7%, Ty, T3, &),
where 71 = {{5,6}} € Ts1, To = 0 € Tso, T3 € {{1,3},{4,10},{7,9}} € To3, and 3 is
the minimal array in Figure 3.4.

Note that this decomposition works regardless of whether the support of s forms a
tree. Furthermore, as s does not change, the paired arrays in C ff‘;’ are tree-shaped if

and only if the paired arrays in MAE;};{S) are tree-shaped. Now that we have decomposed

canonical arrays into minimal arrays, it suffices to decompose minimal arrays and find a
formula for the number of them. However, our present tools are inadequate for the task.
In Goulden and Slofstra’s paper, they introduced the forest completion algorithm, which
is a method for constructing rooted forests that contain a given subforest. Here, we will
use an alternative method that generalizes two-row paired arrays by the introduction of
arrows. This new method allows us to not only decompose minimal arrays into vertical
arrays, but also to recursively decompose vertical arrays into smaller vertical arrays.

84



U
o0

NITs 4 [544 4
e

6
)
~e « o e

1 2134516 7/]91011

el
).

0|7

e

Figure 3.3: Figure 3.2 with objects labelled with [p; + R;]

\.

SV
NP
KT

Figure 3.4: Minimal array corresponding to Figure 3.2

85



Chapter 4

Arrowed Arrays

In this chapter, we will extend two-row paired arrays by the addition of arrows, which
represent hypothetical critical vertices. This will allow us to decouple the forest condition
with the vertex pairings, which allows for the deletion of vertices and pairings from paired
arrays. Next, we will discuss the use of substructures to further partition the set of paired
arrays with arrows into subsets that can be enumerated separately. These substructures
will fix the positions of the marked cells, arrows, and vertices. We will then derive several
reduction lemmas to limit the possible forms of these arrowed arrays, and introduce pa-
rameters to describe substructures. Finally, we will give an inductive proof on the number
of arrowed arrays based on these parameters, by deleting edges one at a time.

4.1 Definitions and Terminology of Arrowed Arrays

We start off by defining the following extension of paired arrays.

Definition 4.1. Let K > 1, s > 0, and 1 < Ry, Ry < K. An arrowed array is a pair
(v, @), where o € VAgT;QRLRZ is a two-row vertical array, and ¢: K\R; — K is a partial
function from H C K\R; to K, with R, being the set of marked columns in row 1 of a.
Graphically, ¢ is denoted by arrows drawn above row 1, where an arrow from j to j’ is
drawn if j € H and ¢ (j) = j'. For convenience, the two ends of the arrow belonging to
columns j and j’ are called the arrow-tail and arrow-head respectively, and column j is
said to point to column j’. Furthermore, both the arrow-tail and arrow-head belong to row
1 of their respective columns.
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With the generalization of paired arrays to arrowed arrays, there are corresponding
generalizations of the terms and conventions used to describe paired arrays. These gener-
alizations will be compatible with the conventions for paired arrays if the partial function

¢ is empty.

e An object of (a, ¢) refers to either a vertex, a box, or an arrow-tail. If a cell both
contains vertices and a box, or vertices and an arrow-tail, either the box or the
arrow-tail is to be taken as the rightmost object of the cell.

e A vertex v of an arrowed array is critical if it is the rightmost vertex of a cell, and
the cell it belongs to is neither marked nor contains an arrow-tail.

e (a,¢) is said to satisfy the non-empty condition if for each column j, there exists at
least one cell that contains an object.

o (a,¢) is said to satisfy the balance condition if for each column j, the number of
vertices in cell (1, ) is equal to the number of vertices in cell (2, j).

e Let F; be the set of columns in row ¢ that contain at least one vertex. The forest
condition function y: (HUF;)\Ry — K for row 1 is defined as follows: For each
column j € H, let ¥y (j) = ¢ (j); for j € Fi\ (HURy), if the rightmost vertex v is
paired with a vertex w in column j’, let ¢ (j) = j'. The forest condition function v,
for row 2 is defined to be the same as the one for paired arrays in Definition 3.3. («, ¢)
is said to satisfy the forest condition if the functional digraph of v; on the vertex
set HUF; Uiy (HUJF;) UR, is a forest with root vertices Ry, and the functional
digraph of 5 on the vertex set Fy U1y (F2) U Ry is a forest with root vertices R.
That is, for each column j € (H U F;) \R1, there exists some positive integer ¢ such
that ¢! (j) € Ry, and for each column j € F,\ R, there exists some positive integer
t such that ¥% (j) € Ra.

e Additionally, («, ¢) is said to satisfy the full condition if every cell contains at least
one object.

The set of arrowed arrays that satisfies the forest condition is denoted AR&? Ri.Ry-

Notice in particular that a cell cannot contain both an arrow-tail and be marked at
the same time. Unless otherwise stated, we will continue to use the conventions for paired
arrays defined in Convention 3.2 for arrowed arrays. However, we will be using the defi-
nition of critical vertex defined here instead of the one in Definition 3.1. As with paired
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Figure 4.1: A arrowed array in .ARgi3

arrays, we will always include the columns R; in the vertex set for the functional digraph
of 1;, regardless of whether they are in the range of ;. Similarly, given arrowed arrays
(ar, ¢) and (o, ¢'), we will use ¥; to denote the forest condition function for row i of («, ¢),
and v} to denote the forest condition function for row i of (¢, ¢’). Another parallel is that
permuting the columns of an arrowed array does not change whether the array satisfies
the balance or forest conditions, as all this action does is to relabel the vertices of the
functional digraph. Furthermore, to reduce cluttering, we will draw the boxes for row 2
at the lower right corner instead of the upper right. An example of an arrowed array that
satisfies the forest condition can be found in Figure 4.1.

Remark 4.2. Notice that the definition of critical vertices for both paired arrays and arrowed
arrays refers to vertices that contribute the forest condition. Also, the balance condition
for arrowed arrays is the result of restricting the balance condition of paired arrays to two
rows. As arrowed arrays are generalized vertical arrays, there are no redundant pairs, and
all pairs are mixed pairs. One thing that differs is the notation used to describe the set of

paired arrays compared with the set of arrowed arrays. With paired arrays, PA;q;?R does

not require the forest condition to be satisfied, while AR&?) Ry.R, assumes that it is so. The
reason for this difference is so that we can use paired arrays to define arrowed arrays.

While the parameters used for defining the set of arrowed arrays is natural with respect
to paired arrays, it does not easily lend itself to a formula. To make it manageable for
summation, we need to partition the set of arrowed arrays by adding further constraints.

Definition 4.3. Let K > 1,5 >0, and 1 < Ry, Ry < K. A substructure I of ARS?RLR& is

a set of constraints that defines a subset of AR&? Ri.R,+ FOT convenience, an arrowed array
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(o, ) is said to satisfy I' if (o, ¢) satisfies the constraints given by I'. In particular, let w
be a non-negative matrix of size 2 x K, Ry, Ry be Ry and Ry subsets of I, and ¢ be a
partial function from ‘H C KL\R; to K. The substructure I' = (w, R, Ra, ¢) is defined to
be the subset of AR? Ry.Ry» SUch that for each pair (o, ¢') € AR&? Ry.Rys the marked cells
in row 1 and 2 of o’ are Ry and R, respectively, o’ contains w; ; vertices in cell (4, 5), and

¢ =¢.

Note that knowing w, R1, R2 and ¢ is enough to determine whether an arrowed array
satisfies the balance, non-empty, or full conditions. It is also sufficient to determine whether
a vertex is critical, regardless of the actual pairing of the vertices. Therefore, we can use
these terms, and terms such as arrow-head, arrow-tail, and points to with respect to I'.

4.2 Arrowed Array Simplification Lemmas

Next, we will lay the ground work for the enumeration of arrowed arrays satisfying a
given substructure I'. This involves introducing several lemmas that limit the number of
possibilities we have to consider, as well as lemmas that allow us to remove pairings from
arrowed arrays. This allows us to categorize I based on a number of parameters that serve
as invariants for the number of arrowed arrays that satisfy I'.

Lemma 4.4. Let G and R be disjoint subsets of K. Let ¥: G — K and G = (V, E) be the
functional digraph of 1 on the vertex set GU Y (G) UR.

1. If (u,v) is an edge of G and v € R, then G is a forest with root vertices R if and
only if G' = (V, E\ (u,v)) is a forest with root vertices R U {u}.

2. If (u,v) and (v,w) are edges of G, then G is a forest with root vertices R if and only
if G' = (V,EU (u,w) \ (u,v)) is a forest with root vertices R.

3. If (u,v) is an edge G and w is a leaf vertex, then G is a forest with root vertices R
if and only if G' = (V\{u}, E\ (u,v)) is a forest with root vertices R.

Proof. Note that in all three cases, aside from the component(s) containing u and v, G is
a forest with root vertices in R if and only if G’ is a forest with root vertices in R. Let C
be the component of G that contains u, and T" be the subgraph of C' that has a directed
path to u. If C is a tree, then T is a tree with root .
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Now, let (u,v) be an edge of G and v € R. Suppose G is a rooted forest, and C' is
the component containing u. Then, both T"and C\T are rooted trees with roots u and v
respectively, so G’ is a rooted forest with root vertices R U {u}. Conversely, suppose T is
a tree rooted at u and C'is a tree rooted at v € R. Then, adding the edge (u,v) joins T
to C, forming a tree with root v. Therefore, GG is a rooted forest with root vertices R.

Similarly, let (u,v) and (v,w) be edges of G. Suppose G is a rooted forest, and C' is
the component containing u. Deleting (u, v) gives us the trees T" and C\T', with w in C\T.
Hence, adding the edge (u,w) gives us a new tree C’, with the same root as C'. Conversely,
suppose G’ is a rooted forest, and C’ is the component containing u. Deleting (u, w) gives
us the trees T" and C'\T, with v in C\T'. Hence, adding the edge (u,v) gives us back the
tree C'. In either case, the root vertices remain unchanged, hence G is a rooted forest with
root vertices R if and only if G’ is a rooted forest with root vertices R.

Finally, let (u,v) be an edge of G and u be a leaf vertex. Suppose G is a rooted forest,
and C' is the component containing u. As u is a leaf, C' is a tree if and only if C\ {u} is a
tree. As the root vertices remain unchanged, G is a rooted forest with root vertices R if
and only if G’ is a rooted forest with root vertices R. [

Note that in Item 2, the distance between u and its root vertex in R is closer in G’ than
it is in G. This means that if G is a forest with root vertices R, by repeatively applying
Item 2, we can reduce G to a graph where all edges are from G to R. This lemma allows
us to modify the forest condition functions ; of an arrowed array in certain ways that
preserve the forest condition. In particular, by applying the first two points, we obtain the
following lemmas.

Lemma 4.5. Let (o, ¢) be an arrowed array, and suppose that ¢ contains a column X that
points to a column Y, where cell (1,)) of o is marked. Let (o/,¢") be an arrowed array,
such that o/ is a vertical array otherwise identical to «, but with cell (1, X') marked, and
@' is such that

&) = undefined j =X
’ 0G)  JeH\X,

that is, instead of having an arrow pointing from X to Y, we mark (1,X) of (d/,¢).
Then, (c, @) is in AR&?&,RQ if and only if (o/, @) is in AR§3R1+1,R2' Furthermore, (o, @)
satisfies the balance, non-empty, and full conditions if and only if (/,¢") satisfies them,
respectively.
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By applying the arrow simplification procedure to the left figure, we arrive at the right
figure. R1 and R2 can be arbitrary in whether they are marked, but they must be the
same between the two figures.

Figure 4.2: Arrow Simplification 1

Proof. As we have not changed the vertex pairings, ¥, remains unchanged between (a, ¢)
and (o/,¢'). On the other hand, ¢} (X) is now undefined and X € R}. By taking the
functional digraph and applying Item 1 of Lemma 4.4, v, satisfies the forest condition if
and only if ¢} satisfies it. Furthermore, K, Rs, and s remain the same between the two
arrowed arrays, and |R}| = |Rq|+1. Therefore, (a, ¢) is in .AR%) Ri.R, if and only if (o, ¢')
is in AR§3R1+1,R2'

Note that the only change between («, ¢) and (¢, ¢’) is the replacement of an arrow-tail
by a box in cell (1, X), so cell (1, X') contains at least one object in both («, ¢) and (o, ¢').
As all other objects of (¢, ¢’) remain unchanged, including the positions of the vertices,
(o, @) satisfies the balance, non-empty, and full conditions if and only if (o, ¢’) satisfies
them, respectively. O

Lemma 4.6. Let («, ¢) be an arrowed array, and suppose that ¢ contains a column X that
points to a column Y, and the column Y points to another column Z. Let (a,¢’) be an
arrowed array, where ¢' is such that

A . z j=4&
Pl = {¢<j> jEM\X
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that is, instead of pointing to Y, X now points to Z in ¢'. Then, (a, @) is in AR(;?RLRQ if

and only if (/,¢') is in AR%RI’RQ. Furthermore, (o, @) satisfies the balance, non-empty,
and full conditions if and only if (¢, ¢') satisfies them, respectively.

Proof. Again, as we have not changed the vertex pairings, 1) remains unchanged between
(cr, ¢) and (o, ¢’). On the other hand, ¥ (X) = Z is the only change in row 1 between
and v]. By taking the functional digraph and applying Item 2 of Lemma 4.4, 1), satisfies
the forest condition if and only ¢ satisfies it. Furthermore, K, Ry, Ry, and s remain

the same between the two arrowed arrays. Therefore, (o, ¢) is in AR&? Ry.R, if and only if
(ar,¢') is in AR&??RLRQ.

Note that the only change between (a, ¢) and («, ¢') is the position of an arrow-head,
so all objects of (¢, ¢') remain unchanged, as an arrow-head is not an object of an arrowed
array. Since this includes the positions of all vertices, («, ¢) satisfies the balance, non-
empty, and full conditions if and only if (o, ¢') satisfies them, respectively. ]

Collectively, Lemma 4.5 and Lemma 4.6 are the arrow simplification lemmas for arrowed
arrays, and pictures describing the applications of these lemmas can be found in Figure 4.2
and Figure 4.3. Note that these lemmas can be applied repeatedly to simplify an arrowed
array, until either all arrow-heads are in cells that are unmarked and have no arrow-tails,
or an arrow-head is in the same cell as its own arrow-tail. Furthermore, we can extend
these lemmas to substructures of the form I' = (w, Ry, Ry, ¢). This gives us the following
lemmas.

Lemma 4.7. Let T' = (w,R1,Rs,¢) be a substructure of AR@RLRQ, and suppose that
¢ contains a column X that points to a column Y, with cell (1,)) marked. Let T" =

(W, R1 U{X},Rs,¢) be a substructure of AR§3R1+1,R27 such that

v Jundefined j=2X
)= {¢(j> jEHX |

that is, instead of pointing to Y, we mark cell (1,X) of I''. Then, the number of arrowed
arrays satisfying I' and the number of arrowed arrays satisfying I are equal. Furthermore,
I’ satisfies the balance, non-empty, and full conditions if and only if T satisfies them,
respectively.

Proof. Let a € VAS}(; Ry.R, D€ @ two-Tow vertical array, and o’ be a vertical array otherwise
identical to o, but with cell (1, X) marked. By Lemma 4.5, (a, ¢) is in ARY . 5. if and
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By applying the arrow simplification procedure to the top figure, we arrive at the bottom
figure. R1, R2, R3, and R4 can be arbitrary in whether they are marked, but they must
be the same between the two figures. The same holds for the optional arrow with Z as its
tail.

Figure 4.3: Arrow Simplification 2
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only if (o/,¢') is in AR&? Ri,- Furthermore, (a, ¢) satisfies the remaining constraints of
I' if and only if (o/,¢’) satisfies them for I'' by construction. Therefore, the number of
arrowed arrays satisfying I" and I are equal.

As with Lemma 4.5, the only change between I and I is the replacement of an arrow-
tail by a box in cell (1, X), so cell (1, X') contains at least one object in both I' and I". As
all other objects of I remain unchanged, including the positions of the vertices, I" satisfies
the balance, non-empty, and full conditions if and only if I satisfies them, respectively. [

Lemma 4.8. Let I' = (w,R1,Rs,¢) be a substructure of AR@RI’RQ, and suppose that
¢ contains a column X that points to a column Y, and the column Y points to another
column Z. Let TV = (w, Ry, Ra, ¢’) be a substructure of .AR&?RLR2 such that

N z j:X
Pl = {¢<j> jEM\X

that is, instead of pointing to Y, X now points to Z in ¢'. Then, the number of arrowed
arrays satisfying I' and the number of arrowed arrays satisfying I are equal. Furthermore,
I’ satisfies the balance, non-empty, and full conditions if and only if T satisfies them,
respectively.

Proof. Let a € VA(Q‘}; Ri.R, D€ @ two-row vertical array. By Lemma 4.6, (a,¢) is in

AR%? Ru.R, if and only if (a, ¢') is in AR% Ry, Furthermore, (o, @) satisfies the remaining
constraints of I' if and only if («, ¢') satisfies them for IV by construction. Therefore, the
number of arrowed arrays satisfying I' and I are equal.

As with Lemma 4.6, the only change between I" and I is the position of an arrow-head,
so all objects of IV remain unchanged, as an arrow-head is not an object of an arrowed
array. Since this includes the positions of all vertices, I' satisfies the balance, non-empty,
and full conditions if and only if I satisfies them, respectively. n

Correspondingly, Lemma 4.7 and Lemma 4.8 are the arrow simplification lemmas for
substructures I' = (w, Ry, R, ¢). As with individual arrowed arrays, these lemmas can
be applied repeatedly to simplify a substructure, until either all arrow-heads are in cells
that are unmarked and have no arrow-tails, or an arrow-head is in the same cell as its own
arrow-tail. We are only interested in the former, as the latter implies that there is a cycle
in the functional digraph of ¢, which violates the forest condition. This gives rise to the
following definition.
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Figure 4.4: Simplification of the arrowed array in Figure 4.1 into an irreducible array

Definition 4.9. A substructure I' = (w, Ry, Rq, ¢) is irreducible if the functional digraph
of ¢ is acyclic, and I" cannot be further simplified with the application of the arrow simpli-
fication lemmas. Any cell of an irreducible substructure containing an arrow-head must be
unmarked in row 1, and cannot contain an arrow-tail. Furthermore, it follows from defini-
tion that if an irreducible substructure satisfies the full condition, then any cell containing
an arrow-head must also contain a critical vertex in row 1.

As we can use the arrow simplification lemmas to simplify arrowed arrays, and we can
call an arrowed array irreducible if cannot be further simplified. In particular, an example
of an irreducible arrowed array can be found in Figure 4.4. This corresponds to the arrowed
array in Figure 4.1.

Definition 4.10. If ' = (w, Ry, R, ¢) is an irreducible substructure, then we can cate-
gorize the columns of I" as follows: Let A, B,C,D be a partition of the columns of K\H,
where

e Columns in A have both row 1 and row 2 unmarked
e Columns in B have row 1 marked and row 2 unmarked
e Columns in C have row 1 unmarked and row 2 marked

e Columns in D have both row 1 and row 2 marked

Furthermore, if X' is a column or a set of columns, let X and X be the sets of columns that
have arrows pointing to X, and that have row 2 unmarked and marked, respectively. In
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Figure 4.5: Column types and variables for the number of vertices

particular, A and A denotes the sets of columns pointing to A, and C and C denotes the
sets of columns pointing to C, with row 2 unmarked and marked, respectively. These sets
of columns implicitly defined by I' are referred to as column types, and a diagram with all
the column types can be found in Figure 4.5.

As with irreducibility, we can also apply these column types to individual arrowed
arrays, as long as they are irreducible. Now, these eight column types form a partition
of K on irreducible substructures. Furthermore, we shall see that knowing the number of
columns and the number of vertices for each column type of I' is sufficient to count the
number of arrowed arrays satisfying it. However, before proving the main theorem of this
chapter, we will need another two lemmas for simplifying arrowed arrays that contain a
fixed pair of vertices.

Lemma 4.11. (column pointing) Let I' = (w, R, Ra, @) be a substructure of AR&??RLRQ,
v be a critical vertex in cell (1, X), u be a non-critical vertez in cell (2,Y), and X # Y.
Let the substructure Iy, be the set of arrowed arrays that satisfies I' and contains the pair
{v,u}, and T = (W', Ry, Ra, ¢') be a substructure of AR&?;_Rll)’RQ such that

;o {wm —1 cell (i,7)contains u or v

w; ;=
7 W otherwise
" o) jeH
¢ ) = .
() { S
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Note that ¢’ contains one more element in its domain than ¢. Then, the number of arrowed
arrays satisfying Uy, and the number of arrowed arrays satisfying I are equal. Further-
more, 1"y, satisfies the non-empty and full conditions if and only if I'" satisfies them.

Proof. To prove that the number of arrowed arrays are equal, we provide a bijection be-
tween arrowed arrays satisfying 'y, and arrowed arrays satisfying V. Let (o, ¢) be an
arrowed array that satisfies I' and contains the pair {v,u}. As u is not critical, removing
the pair {v,u} does not affect ¢,. Therefore, we can obtain an arrowed array (¢, ¢’) by
removing {v,u} and replacing it by an arrow pointing from X to ), while keeping all the
other pairs intact. This reduces the number of vertices in (1, X') and (2,)) by 1, and leaves
11 unchanged. Hence, the forest condition is preserved, and (¢, ¢') satisfies 7.

Conversely, given an arrowed array (o', ¢’) that satisfies I, we can remove the arrow
pointing from X’ to ) and replace it by the pair {v,u} given by I',,. Since the positions of
v and u are fixed in I',,, there is no ambiguity as to where to add them. Again, the forest
condition is preserved as 1/, and 15 are unchanged by this substitution. Finally, both cells
(1, X) and (2,)) contain at least one object in both I',,, and I". Cell (1, X’) contains either
a critical vertex or an arrow-tail, and cell (2,))) contains at least one other object as u is
not critical. Since all other cells remain unchanged, I'y, satisfies the non-empty and full
conditions if and only if I satisfies them. ]

Lemma 4.12. (column merging) Let I' = (w, R, Ra, ¢) be a substructure ofARgRI’RQ, v
be a critical vertez in cell (1,X), u be a critical vertez in cell (2,)), and X # ). Suppose
that T' satisfies the full condition, and without loss of generality, assume that Y is the
last column of T' for purposes of column indexing. Let the substructure 'y, be the set of
arrowed arrays that satisfies I' and contains the pair {v,u}, and I" = (W', R}, RS, ¢') be a
substructure of AR&?:BRLRQ such that

R —
! R, otherwise

{Riwc\y YVeER,

w; otherwise

¢(V) j=X,0() is defined
d ) = X  jeEH, () =Y
o) JEH. 0(U)FY

Then, the number of arrowed arrays satisfying I'y, and the number of arrowed arrays
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satisfying I'" are equal. Furthermore, I also satisfies the full condition.

Proof. To prove that the number of arrowed arrays are equal, we provide a bijection be-
tween arrowed arrays satisfying I',,, and arrowed arrays satisfying IV. The idea behind this
bijection is to merge the columns X and Y in such a way that keeps the rightmost objects
of cell (2,X) and (1,)) intact. By construction, the rightmost objects of cells (1,)) and
(2,X) in « are the same as the rightmost object of cells (1, X) and (2,X) in /. As all
other cells remain unchanged, I" satisfies the full condition.

Let (a, ¢) be an arrowed array that satisfies I" and contains the pair {v,u}. To obtain
o/, we take the vertices of cell (2,)) except u and place them in cell (2, X') in order, before
the vertices originally in (2, X’). Then, for any column j that points to ), we change them
to point to X instead. For convenience, let the forest condition function for row 1 at this
stage be ¢]. Next, we take the vertices of cell (1,)) and place them in cell (1, X) before
v. Here, we let the forest condition function for row 2 be ¢4. Furthermore, if cell (1,)) is
marked, we mark cell (1, X'), and if column ) points to some column Z, we make X point
to Z. Finally, we remove the pair {v,u} and the column ).

Conversely, given an arrowed array (o, ¢') that satisfies I, we can recover (a, ¢) by
splitting the column X. Since we only use the forward direction to show that the forest
condition is preserved, we will describe the recovery in a more convenient order. We first
add the column Y to (a/,¢'). Then, if cell (1,X) is marked, we mark cell (1,)) and
unmarked cell (1, X). Furthermore, if column X points to some column Z, we make
column Y point to Z and remove the arrow from X'. Afterwards, we move the last w; y
vertices of cell (1, X) of o/ to cell (1,)), and move the first wq y — 1 vertices of cell (2, X)
of o/ to cell (2,)), keeping all pairings intact. Finally, we add the vertices u and v to cells
(1, X) and (2, )) respectively, and pair them to obtain («, ¢). This is unambiguous, as the
column ) and the quantities w;y are given by I', which is fixed.

By construction, («, ¢) satisfies Iy, if and only if (o/, ¢’) satisfies IV, with the possible
exception of the forest condition. Now, consider v, during the transformation from («, ¢)
to (a/,¢'). Note that moving the vertices of cell (2,)) and moving the arrow-heads has
no impact on ty. Then, when a vertex of (1,)) is moved, there is either no impact, or
the vertex is paired with some critical vertex in cell (2,7). In the latter case, we have

5(j) =X. As 1y (Y) = X, by the repeated application of Item 2 of Lemma 4.4, we have
that 1, satisfies the forest condition if and only if ¢} satisfies it. Finally, from ¥f to 5,
we deleted the pair {v,u} and the column ). As X’ contains at least 1 object, it remains
in the forest condition function 5. Therefore, we can apply Item 3 of Lemma 4.4 to show
that 19 satisfies the forest condition if and only if ¥/, satisfies it.
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The proof for row 1 is similar, though slightly more complicated. By moving the vertices
of cell (2,)) and moving the arrow-heads, we are changing 1, so that if j is a column
where ¢ (j) = Y, then ¥} (j) = X. As in the row 2 case, we can repeatedly apply Item 2
of Lemma 4.4, but with the roles of G and G’ reversed. Then, the movement of the non-
critical vertices in cell (1,)) does not change . If cell (1,)) contains a critical vertex or
an arrow-tail, we obtain that ¢4 ()) = Z for some column Z. This implies ¢] (X') = Z, due
to either moving the arrow-tail or the critical vertex. By Item 2 and 3 of Lemma 4.4, we
can remove the column ), and ¢} satisfies the forest condition if and only if ¢| satisfies it.
Otherwise, cell (1,)) is marked in « as («, ¢) satisfies the full condition, which translates
to cell (1, X') being marked in /. Therefore, we can use Item 1 of Lemma 4.4 to show that

1 satisfies the forest condition if and only if 1] satisfies it. This allows us to safely delete
Y, as it is now an isolated root vertex in R;. Consequently, ¢, satisfies the forest condition
if and only if ] satisfies it. This shows that the numbers of arrowed arrays satisfying I,
and I are equal. H

The application of Lemma 4.11 to replace I',, with I is called the column pointing
procedure, and a diagram of this procedure can be found in Figure 4.6. Similarly, the ap-
plication of Lemma 4.12 to replace I',, with I'"” is called the column merging procedure, and
a diagram of this procedure can be found in Figure 4.7. After applying either procedure,
we can apply the arrow simplification lemmas to IV to further simplify the substructure.

Note that unlike the other simplification lemmas, column merging requires the sub-
structure to satisfy the full condition. In particular, it requires each cell of the columns
being merged to be non-empty. Otherwise, the resulting column will completely drop out
of the forest condition, which can break the the bijection. Namely, it is possible to have
a substructure I' such that the substructure I',,, cannot be satisfied by any arrowed array,
while the substructure I'" is satisfied by some arrowed arrays. An example of this can be
found in Figure 4.8.

4.3 Enumeration of Substructure I' = (w, Ry, Ro, ¢)

Now, we have everything we need to provide a formula for the number of arrowed arrays
satisfying the substructure I' = (w, Ry, R2, ¢), where ' is an irreducible substructure
satisfying the full condition. The formula will be given by the number of vertices in each
column type, as well as the number of columns of type A. Let T'(I') be the number of
arrowed arrays that satisfy the substructure I', then the following are two theorems for the
formulas of T'(T"), one for the case s > A + 2, and one for the case s = A+ 1.
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R3
Dia Piz | P1a Dy | P11 Pra| i a1,y
. .« o o . . .« . o . . o« o o . . o .
. DY . . DY . . Y . . . .
Pai Dags| D21 D2gn| P21 P2aa|d21 42,y,
O R1 R2

X X X Y

AA L \\1

R3
Pia Piz|DPia Piz | Prl Prai—1 | qi1 41,y
. DY . . DY . . DY . . D) .
. .« o o . . .« o o . . .« o o . . .« o o .
Do Doz, ﬁQ,l ﬁQ,ig D2,1 P2ao| G222 G2,y
O R1 R2

X X X Yy

By applying the column pointing procedure to the top figure, we arrive at the bottom
figure. Here, v = p1,, and v = g21. R1, R2, and R3 can be arbitrary in whether they
are marked, but they must be the same between the two figures. The same holds for the
optional arrow with ) as its tail.

Figure 4.6: Column pointing

100



N

.7 ~
’

R2
Pia ]_91751 51,1 2’51751 P11 P12, 51,1 61@1 Zjl,l 51@1 qi1 q1,y,
[} [ ] [ ] [ ] [ ] .\\ [} [ ] [ ] [ ]
° ° ° ° ) ° ) ) ° ) o\o
Dai Doms| D21 D2gn| P21 P2a2|Ga1  Qog,| 21 @, | 121 42,y,
O R1 O
X X X Yy Y Y
R2
Pip Digz|Pig DPig | Pri Prei-1q1 D |G Qg | G Q.
[ ] . [ ] [ ] [ ] ® - 0 [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [} [ ] [} ® - O [ ] . [ ] [ ] [ ] [ ) [ ]
P21 Dogs| D21 Dogs| 921 @242-1P21  P2as| Qo 923, | 2.1 92,5
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By applying the column merging procedure to the top figure, we arrive at the bottom
figure. Here, u = p1,, and v = ¢2,,. R1 and R2 can be arbitrary in whether they are
marked, but they must be the same between the two figures. The same holds for the
optional arrow with ) as its tail.

Figure 4.7: Column merging
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U 0J

A failed attempt to merge columns 1 and 2 when the full condition is not satisfied. Note
that the first arrowed array fails the forest condition for row 2, while the second arrowed
array satisfies it.

Figure 4.8: Column merging without full condition

Theorem 4.13. Given an irreducible substructure I' = (w, Rq, Rq, ¢) that satisfies the full

condition with s > A + 2, the number of arrowed arrays (o, ¢) € AR%?RLRQ that satisfy T’
is given by the formula

bg+d2) (51+C1 +51+d1) 4 b1 (CQ +62+52)—51 (bg‘ng)
s—A (s—A)(s—A-1)

T(r) = (s — 1)t |4

By the convention set out in Convention 3.2, we let a lower case variable x; represent
the total number of points in row 7 of the columns of type X', and A represent the number
of columns of type A.

Proof. We prove this via induction on the total number of vertices, and tiebreak by the
number of critical vertices in the row 2. There are two base cases and three inductive cases
to consider, depending on whether I' contains a column of type A, a column of type C and
no columns of type A, or no columns of type A or C.

Base case 1:

Suppose I' has no critical vertex. As I is irreducible, each cell must either be marked or
have an arrow-tail. However, the latter cannot happen as an arrow-head of an irreducible
substructure must be in an unmarked cell. Hence, every cell of I' must be marked, so the
forest condition is trivially satisfied. Therefore, there are s! ways to pair the vertices of the
array. By substituting d; = ds = s into T (I"), and setting all other variables to 0, we see
that T (T') = s! as desired.
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Base case 2:

If s=2, A=0, and C # (), then

(b2 + dg) (Cl +51 + dl) 1 b1 (CQ +EQ +52) —51 (bz + dg)
2 2
- b1+(1 —b1 —51) (b2+d2>

T() =

by substituting in 2 = b; + ¢; + ¢; + ¢; + d;. This case is needed as the inductive step for I'
containing no columns of type A but at least one column of type C requires that 7' (I") be
true for s — 1. However, if s = 1, then s < A+ 2, and this creates a zero in the denominator
of our formula.

Suppose ¢; # 0, then ¢; = 1 and b; = 0, as a column of type C contains a critical vertex
in row 1, and C is non-empty. Furthermore, this implies that there is only one column of
type C. In this case, our formula gives T'(I') = 0. Combinatorially, if there is a column
of type C, then it has a critical vertex in row 2, as the array is full. Now, if this vertex
is matched with the vertex in row 1 of C, then the forest condition for row 1 is violated.
Otherwise, it is matched with the vertex in row 1 of C, and the forest condition in row 2
is violated. Therefore, no such arrowed array exists, and so 7' (I') = 0 as desired.

Suppose ¢; = 0 and b; # 0, then b; = 1, as again there is exactly one column of type
C. In this case, our formula gives T'(I') = 1. Let the column contributing to by be X, and
note X is a column of type B, which is unmarked in row 2. Therefore, X must contain
a critical vertex in row 2, and this vertex must be joined with the critical vertex in C to
not violate the forest condition for row 2. Doing so satisfies the forest condition in row
1, as 91 (C) = X, which is in Ry. Now, The other vertex in row 2 is either a non-critical
vertex, or a critical vertex that is paired with the vertex of X in row 1. In either case, the
forest condition for row 2 is satisfied as 15 (X') = C, which is in Ry. This gives T'(I') = 1
as desired.

For the last case, suppose ¢; = 0 and b; = 0. In this case, our formula gives T (') =
bs + dy. Note that all vertices of row 1 are in CuCuU D, which are all marked in row
2. Therefore, no matter where the vertices in row 2 are positioned, they are paired with
vertices in row 1 whose columns are marked in row 2. This means that the forest condition
for row 2 is automatically satisfied.

Now, there are 2 subcases for row 1. If there is only one column of type C, then the
other vertex in row 1 is in either C or D. In the former case, that column points to C, and
in the latter case, row 1 of that column is marked. In both cases, the array satisfies the
forest condition if and only if the column that the vertex in C pairs to is marked in row 1.
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As the columns marked in row 1 are B and D, we have T'(I') = by + dy as desired.

Otherwise, there are 2 columns of type C, each containing 1 critical vertex. We denote
the two columns as C; and Cy. If both vertices in row 2 are in B U D, then we can pair
them with the vertices of C arbitrary, so T (I') = 2. Suppose one vertex in row 2 is in some
column X in CUCUC , and the other vertex is in some column Y in BUD. Without loss of
generality, let X be Cy, or a column that points to C;. In this case, the vertex in row 1 of
C; must be paired with the vertex of BUD to not violate the forest condition. The vertex
in row 1 of Cy is consequently paired with the vertex in X. As X is either C; itself, or
points to Cy, the entire component of the functional digraph has Y as its root, which is in
R1. This gives T (I') = 1. Finally, if both vertices of row 2 are in CUC UC, then no matter
how they are paired, the component(s) of the functional digraph containing C is entirely
in CUCUC. Therefore, it cannot have roots in B U D, so the forest condition for row 1
can never be satisfied. This gives T'(I') = 0. In all three cases, we have T (I') = by + d; as
desired.

Case 1:

Suppose I' contains at least one column of type A, and & is one such column. Let
X and X be columns pointing to A" as defined in Definition 4.10, and note that they are
columns of type A and A, respectively. Then, the critical vertex v of cell (1, X) must be
paired with some vertex u in a cell (2,)). To satisfy the forest condition for row 1, Y
cannot be a column of X, X, or X. By fixing u, we can pair vertices u and v to obtain the
substructure I'y,. Then, we simplify I',, using the column pointing and column merging
procedures described in Lemma 4.11 and Lemma 4.12, which makes the columns of &, X,
and X" point to ). Now, } cannot point to &, X, or X, as that would either imply that
Y € XU X, or that ' is not irreducible. Therefore, ) must either not contain an arrow-
tail, or be pointing to some other column Z that has a critical vertex in row 1. Therefore,
the functional digraph of ¢ is acyclic, and by using the arrow simplification procedures
described in Lemma 4.5 and Lemma 4.6, we obtain an irreducible substructure I'” that has
one less vertex per row than I'. Furthermore, both s and A decrease by 1, so the inequality
s > A+ 2 holds. Depending on the column type of ) and whether u is critical, we can use
the inductive hypothesis to determine 7' (I') in terms of existing parameters given by the
column types of I'. The full list of substitutions can be found in Table 4.1, where an entry
Z in the table means that ) is a column of type Z and w is a non-critical, while an entry
Zc means that ) is a column of type Z, and w is critical.

For example, let } be a column of type D. Then, after applying the column pointing
procedure, X becomes a column of type B, the columns of X become columns of type B,
and the columns of type X become columns of type D. Hence, in the resulting substructure
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| Column type of Y [ d] a; a; | b;

)

./4, a; — Xq al+$1—1
Qa9 — T2 62+$2—1
CLl—l
Ac
a2—1
— — a; — Xq El—i-xl—l
A or Ac _
Qa9 — T2 CL2+132—1
,:4V a; — X El—l—xl—l
Qa9 — X9 Qo + X9 52—1
B or Be a; — I a; — T Eil—%l b1+$1+fl—1
Qa9 — X9 a9 — To 62—52 bz—f—ZL’Q—i‘Tz—l
C a, — I dl—fl Eil—fl
a9 — Ty 62—52 ag—[’fg
= = a, — I El—fl Eil—fl
CorCc _ -~ =
a9 — Ty a9 — T a9 — X9
5 a, — I El—fl Zil—fl
a9 — Ty 62—@ 52_52
D a; — I a; — Ty fdl—t”fl bl—f—l’l—i‘fl—l
ag — T3 Ay — T3 ag — To by + 3 + T

Table 4.1: Table of substitution when I" contains a column of type A. In all cases, s’ = s—1
and A" = A — 1. Table continues at Table 4.2
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’ Column type of ) \ c \ G G d;
A
Ac
A or Ac
A
B or Bc Zl i?
2 2
C 51+$1+fl—1 val—i‘fl
cp— 1 Cy+ 19+ o Co + Ty
5 5 Ci+r+7—1 1+ 11
C or Cc _ = -~
Co+ Xy +Ty—1 Co + X
e ci+r+7—1 1+ 11
51+IE1+T1 52—{—%2—1
dy + 7,
D -
d2 + T9 — 1
Table 4.2: Continuation of Table 4.1
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[ = I' 4p after simplification, we have

1|

i i g

°
S

Il
o

N

[ ] Gi: z_%z
o by =0bi+x +T; — 01,

[ ] d;:dz—i‘fl—(&ﬂ

where §; ; = 1 if ¢ = j, and 0 otherwise. Substituting this into the inductive hypothesis,
we have

52+5E2+52+d2+§2—1)(a1+01+51+d1)+
s—A

by +x1+T1—1)(co+C+C)—C(ba+ a0+ Ty +do+ 72— 1)

(s—A)(s—A-1)

T(Cw) = (s—2) |t

We repeat this computation for all possible column types of ), and whether u is critical.
The results of this are listed in Table 4.3, where T'(I" 4z) is the number of arrowed arrays
with substructure I', and the vertex v is joined to a non-critical vertex u in a column of
type Z; T (" 4z.) is the number of arrowed arrays with substructure I'; and the vertex v is
joined to a critical vertex u in a column of type Z. The A here denotes that v is a column
of type A, to separate it from a similar table in Case 2.

By letting u range across all vertices of row 2, we obtain all possible pairings of the
critical vertex v in column X. Therefore, by counting the number of vertices of each column
type, we obtain the number of occurrences of each IV. Adding everything together, we have

TT) = (ac—xo+a—To+as —T2) T (T'an) +
(CQ + EQ + 52) T (F_Ac) + (bQ + dz) T (F.AB)
By substituting in s = a; + a@; + a; + ¢; + ¢; + ¢; + b; + d; and simplifying, we can show that

T (') satisfies the inductive hypothesis. This proves the case where I' contains a column
of type A.

Case 2:
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T (T 4pc)

b2+d2) (514—01 —|—El +d1)
+
s—A
bl (CQ + Co +52) —C (bQ"‘dQ)
(s—A)(s—A-1)

(s —2)! (

T (T aa)

T (T a4)

T (T aa)

T (Tan)

(s — 2)! [(bz + 29 + Ty + do + To —Al) (a1 4+ c1+ ¢ +d1)+
5 —

(b1+.231 +fl—1)<62+62+/52)—El(bg+$2+fg+d2+f2—1)
G-A)(s—A-1)

T (T 45) - N

(S—Q)! [(bg—i‘dg) <a;—_|—§11+01+d1)—|—

by(co+Cotzo+To+ca+a2—1)—(G1+x1+7—1) (52+d2)}
(s—A)(s—A-1)

T (T 4c)

T (T 4c)

T (T 4c)

T (T 45)

Table 4.3: Case 1: Formula for 7' (I") after simplification
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Suppose that I' does not contain columns of type A, but contains at least one column
of type C. The formula simplifies to

| (bz + dg) (Cl +51 + dl) 4 b1 (CQ +52 +52) —51 (bg + dg)

T(0) = (s—1) ! o)

While the formula is simpler in this case, the proof is slightly more involved. Let X
be a fixed column of type C, and let X and X be columns pointing to X as defined in
Definition 4.10. Note that they are columns of type C and C, respectively. As in Case 1,
the critical vertex v of cell (1, X') must be paired with some vertex u in a cell. Again, to
satisfy the forest condition for row 1, ) cannot be a column of X', X or, X. Therefore, we
pair u and v to obtain the substructure I';,,,, which we simplify using the same lemmas used
in Case 1 to obtain an irreducible substructure I"V. As the case s = 2 is already handled,
we can assume s > 3, so s > A + 2 still holds. Depending on the column type of ) and
whether w is critical, we can use the inductive hypothesis to determine 7' (I") in terms of
existing parameters given by column types of I'. The full list of substitutions can be found
in Table 4.4, where an entry Z in the table means that ) is a column of type Z and u is a
non-critical, while an entry Zc¢ means that ) is a column of type Z, and wu is critical. The
major difference in this case is that if u is a critical vertex, then both X and ) become
columns of a different type, so we must introduce the parameters y; for the number of
vertices in column ¢ of ).

As in Case 1, we can compute T (I') for all possible column types of ), and whether u
is critical. Doing this gives us the formulas listed in Table 4.5. Again note that y; depends
on the column Y, so some of the formulas are dependent on which particular column u is
in.

By letting u range across all vertices of row 2, we obtain all possible pairings of the
critical vertex v in column X. Notice that as we pair v each vertex of B, we add y;T¢5.
if and only if u is the rightmost vertex of ). Since each column of B has exactly one
rightmost vertex, >,z 41 = b1. Similarly, ),z y1 = ¢ — 7. Therefore, by counting the
number of vertices of each column type, we obtain the number of occurrences of each I".
Adding everything together, we have

T(T) = (ca—@a+C —To+0Co— o) T (Dee) +
T, (€1 —T1) + (by +d2) T (T'ep) + biTese

By substituting in s = ¢34 s+ ¢y + be + dy and simplifying, we can show that 7' (I") satisfies
the inductive hypothesis. This proves the case where I' contains a column of type C, but
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’ Column type of Y \ b; \ G C;

B b1 + 7 C1 — I1 ¢ — T
b2+f2_1 Co — T2 52—52
BC bl +f1—y1 C1 — 1 El—fl
by + Ty — 1o Co — T Coy — T
i —I1
¢ CQ—JZQ—]_
Ve i — X1
C Co — T2 52—1
EC C1 — 1 El_yl
Co — T3 Co — Yo
= C1 — 1
¢ Co — T2
D b1 +Tl C1 — 1 El—fl
by + T Co — T3 Co — T3
’ Column type of ) \ Ci \ d;
B 51—51 d1+$1+f1—1
Cy — Ty dy + 9 + Ty
Be 1 — 11 di+x+1 +y — 1
Cy — Ty dy + 2o+ Ty +y2— 1
51+x1—1
¢ EQ—FZEQ
- gl—f—fEl—l
¢ 52+932
= ci+a+y —1
C ~
¢ 62+I2+y2—1
o a+a—1
52+$2—1
D €1 — 21 dy+x1+71 -1
,52—52 d2+$2+§2—1

Table 4.4: Table of substitution when I' contains no columns of type A, but a column of
type C. In all cases, s’ =s—1
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T (Cepe)

T (Tee)

T (Fcé)

T (FCzc)

(s — 2)! {(b2+52+d2+$2+%2—1)(C1+51+d1—1)+
s—1
(b1 +T1) (co — X9+ Co — Ty + Gy — Tg) B
(s—1)(s—2)
(El_fl)(b2+f2+d2+x2+52_1)
G-1(-2)
(s — )1 {(bz+$2+d2+fz+f€v2—1)(61 tatdity—1)
s—1
(bl "’El_yl) (CQ—LCQ +62—52 +E{2—§2) _
(s—=1)(s—2)
(€1 —T1) (e +Ta+do + 29+ 72— 1)
(s—1)(s—2)
T (Teg) +

<b2+$2+d2+52+52—1) (CQ—.TQ—FEQ—fQ—FEQ—fg)
y1 (s —2)! -
s—1 (s—1)(s—2)
T (Tes) + yiTese

(s — 2)! [(bQ‘l‘dQ) (C;—l_-§1+d1 — 1)+

bi(ca+c+ca—1)—7¢ (b2+d2)}
G-D(5-2)

T (Tee) R

(8—2)' |:(b2+d2) (Cl —;?;_dl + Yy — 1)+

bl (CQ +EQ +EQ — 1) — (51 — yl) (bg +d2):|

-1 (-2

T (Tee) + 11 (s — 3)! (by + da)

T (Tee) + yiTee,

T (Tee)

T (Tep)

Table 4.5: Case 2: Formula for T (I") after simplification
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no columns of type A.
Case 3:

If I' does not contain any column of type A or C, then every cell in row 1 is marked,
leaving us only with columns of type B and D. In this case, the formula simplifies to

T(D) =d, (s —1)!

as s = by +dy. Since I' does not contain any arrows, we can switch the two rows and invert
the roles of B and C to obtain I". Furthermore, at least one cell in row 2 is unmarked, as
otherwise we would have the base case. Therefore, the number of critical vertices in row 2
decreases in IV, and we can continue the induction using Case 2. Furthermore, neither s
nor A changed, so s > A + 2 still holds. Now, IV only have columns of type C and D, so
by the inductive hypothesis,

T(F,) = d2 (S — 1)'

as § = ¢; + dy in IV, This completes the induction and proves our formula for 7 (I'). [

In the case where s = A+1, the second term of the aforementioned formula is undefined.
Fortunately, we can simply set it to zero and pretend it does not exist.

Theorem 4.14. Given an irreducible substructure I' = (w, Ry, Ra, @) that satisfies the
full condition with s = A + 1, the number of arrowed arrays (o, ¢) € AR%RLRQ with
substructure ' is given by the formula

T(F) = (S — 1)' (b2 +d2) (61 + +El —|—d1)

Proof. We prove this via induction on the number of columns of type A.
Base case:

Suppose I' has no columns of type A. Since s = A+ 1, we have A = 0, a; = 0, and
s = 1. Furthermore, ¢; = 0 as a column of type C requires a critical vertex in row 1.
Therefore,

T (F) = (bg + dQ) (Cl + dl)
Now, if the vertex in row 1 is in CUD, and the vertex in row 2 is in BUD, then pairing

them satisfies the forest condition for those two cells. All other cells are either marked or
have an arrow on them. If they are marked, they satisfy the forest condition for the row
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T(Taa) = (s=2)(ba+d2) (a1 +c1+c+di)
T(Taac) = T(Lana)

T(Cyz) = T(Taa)
T yz) = T(Taa)

Tz = T(Taa)

T(Tus) = (s=2)!(bg+xo+To+do+22—1)(a1+c+0¢1+dy)
T (Cape) = T (Tan)

T(Tac) = T(Laa)

T (FA’) =T (FAA)

T(Lype.) = T(Laa)

T(Tye) = T(Taa)

T(Tap) = T(Tan)

Table 4.6: Case s = A + 1: Formula for 7' (I") after simplification

they belong in. Otherwise, the cells must be in row 1, and must be pointing at a column
of type C. As the vertex in C is matched with a vertex in BU D, row 1 satisfies the forest
condition.

Suppose that the vertex in row 1 is not in C U D. It cannot be in C or CN, as those
require a column of type C. Therefore, it must be in a column of type B. This column
has a critical vertex in row 2, which if paired will violate the forest condition in row 2.
Similarly, if the vertex in row 2 is not in B U D, it must be in a column of type C, C, or
C. In all such cases, a column of type C exists, and contains a critical vertex in row 1. If
these vertices are paired together, the forest condition in row 1 is again violated. In both
cases we have T (I') = 0 as desired.

Inductive step:

Suppose I' contains at least one column of type A. The proof here is exactly the same
as in Case 1 of the proof for Theorem 4.13. We also end with the same substitutions as
the ones in Table 4.1 and Table 4.2. By substituting this into the inductive hypothesis, we
obtain the results for 7" (I") as listed in Table 4.6.

By letting v range across all vertices of row 2, we obtain all possible pairings of the
critical vertex v in column X. Therefore, by counting the number of vertices of each column
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type, we obtain the number of occurrences of each IV. Adding everything together, we have

T(T) = (ag—To+ay — T+ dp — To+ o+ Co+ ) T (Daa) +
(b2+d2)T(FAB)

By substituting in s = a; + @ + a; + ¢; + ¢ + ¢ + b; + d; and simplifying, we can show
that T (I") satisfies the inductive hypothesis. This completes the induction and proves our
formula for 7' (I). O

Note that if I" satisfies the full condition and s < A, then T (I') = 0, as each column of
type A requires one critical vertex for each row. Furthermore, as those vertices can only
be paired with each other, 1; (X) € A for all X € A. This violates the forest condition
for row ¢. Together, Theorem 4.13 and Theorem 4.14 give the number of arrowed arrays
satisfying a substructure I', where I satisfies the full condition. In the next chapter, we
will sum over T (I") to obtain formulas for more general substructures, where the positions
of the marked cells are no longer fixed.
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Chapter 5

Enumeration of Arrowed Arrays

In this chapter, we will define increasingly coarse substructures that capture larger sub-
sets of arrowed arrays, where the positions of the marked cells are not fixed. Then, by
summing over the formulas on the number of arrowed arrays satisfying the refined substruc-
tures, we can provide formulas for the number of arrowed arrays satisfying these coarser
substructures. Furthermore, we will use hypergeometric identities to simplify the resulting
formulas, and transform the formulas so that they can be readily used in the next chapter.
By the end of the chapter, we will obtain two formulas, corresponding to the two different
ways we can use arrowed arrays to extend vertical arrays.

5.1 Substructure A = (w, Ry, ¢)

Our first substructure allows us to mark the cells of row 2 arbitrarily, while keeping the
positions of the marked cells in row 1 and the vertices fixed. Additionally, we also define
a substructure that fixes the number of columns of type A, as T (") is dependent on A.

Definition 5.1. Let w be a non-negative matrix of size 2 x K, R; be an R;-subset of
K, and ¢: K\R; — K be a partial function from H C K\R; to K. The substructure
A = (w, Ry, ¢) is defined to be the subset of AR%RI,RQ, such that for each pair (o/, ¢') €
AR&?) Ry.Ry» the marked cells in row 1 of o' is Ry. Furthermore, o’ contains w; ; vertices in
cell (i,7), and ¢ = ¢. For a given substructure A = (w, Ry, ¢) and A > 0, we define Ay
to be the substructure that describes the set of arrowed arrays that satisfies A, and have
exactly A columns of type A. For convenience, we say a substructure I' is a refinement
of another substructure A if the set of arrowed arrays satisfying I' is a subset of the
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arrowed arrays satisfying A. We denote it as I' — A. Furthermore, if I'y,... T is a set of
substructures that are refinements of a substructure A, we say that I'y,...,['; partitions
A if the sets of arrowed arrays satisfying the I';’s are mutually disjoint, and their union
is the set of arrowed arrays that satisfy A. Finally, we say A = (w,Rq, ¢) satisfies the
non-empty condition if each cell in row 1 has at least one object in it.

Note that the non-empty condition for substructure A = (w, Ry, ¢) is more stringent
than it is for arrowed arrays. This is to account for the fact that we do not have control of
the positions of the marked cells in row 2. By considering all possible Ry-subsets R, we
see that the set of substructures of the form I' = (w, Rq, Ra, ¢) partitions the substructure
A = (w, Ry, ¢). Furthermore, the subset of substructures with exactly A columns of type
A partitions A4, which in turn partitions A by taking A from 0 to s — 1. Now, as the
arrow simplification lemmas only act on row 1, we can obtain arrow simplification lemmas
for substructures A = (w, R4, ¢) similar to those of Lemma 4.7 and Lemma 4.8.

Lemma 5.2. Let A = (w,Ry,9) be a substructure of AR&??Rl’RQ, and suppose that ¢
contains a column X that points to a column Y, with cell (1,Y) marked. Let A" =

(W, RiU{X}, ) be a substructure of AR%?RHI,Rg’ such that

8 () = undefined j =X
’ 0()  JEMX,

that is, instead of pointing to Y, we mark cell (1,X) of A’. Then, the number of arrowed
arrays satisfying A and the number of arrowed arrays satisfying ' are equal. Furthermore,
A satisfies the balance and non-empty condition if and only if A’ satisfies them, respectively.

Proof. Let o € V.Ag{; Ry, D€ & two-row vertical array, and o/ be a vertical array otherwise
identical to «, but with cell (1, ') marked. By Lemma 4.5, («, ¢) is in AR%?RLRQ if and

only if (o/,¢') is in AR&?) Ri.r,- Furthermore, (o, @) satisfies the remaining constraints of
A if and only if (o/, ¢') satisfies them for A’ by construction. Therefore, the number of
arrowed arrays satisfying A and A’ are equal.

As with Lemma 4.5, the only change between A and A’ is the replacement of an arrow-
tail by a box in cell (1, X), so cell (1, X') contains at least one object in both A and A’. As
all other objects of A’ remain unchanged, including the positions of the vertices, A satisfies
the balance and non-empty conditions if and only if A’ satisfies them, respectively. O

116



Lemma 5.3. Let A = (w,Ry,0) be a substructure of AR&??RLRw and suppose that ¢
contains a column X that points to a column Y, and the column Y points to another
column Z. Let A' = (w,Rq,¢') be a substructure of AR%?RI’RZ such that

/- o Z j:X
Py = {w) jeH\X

That is, instead of pointing to Y, X now points to Z in ¢'. Then, the number of arrowed
arrays satisfying A and the number of arrowed arrays satisfying A" are equal. Furthermore,
A satisfies the balance and non-empty condition if and only if A’ satisfies them, respectively.

Proof. Let a € VAS}(; RiR, D€ @ two-row vertical array. By Lemma 4.6, (a,¢) is in

AR&?) Ry.R, if and only if (a, ¢') is in AR(I? Ry, Furthermore, (o, @) satisfies the remaining
constraints of A if and only if (o, ¢') satisfies them for A’ by construction. Therefore, the
number of arrowed arrays satisfying A and A’ are equal.

As with Lemma 4.6, the only change between A and A’ is the position of an arrow-
head, so all objects of A’ remain unchanged, as an arrow-head is not an object of an
arrowed array. Since this includes the positions of all vertices, A satisfies the balance and
non-empty conditions if and only if A’ satisfies them, respectively. O]

Correspondingly, Lemma 5.2 and Lemma 5.3 are the arrow simplification lemmas for
substructures A = (w, Ry, ¢). While we will not be using these directly until Section 5.3,
they will serve as the motivation for the following definition.

Definition 5.4. A substructure A = (w, Ry, ¢) is irreducible if the functional digraph
of ¢ is acyclic, and A cannot be further simplified with the application of the arrow
simplification lemmas. As with Definition 4.9, any cell of an irreducible substructure
containing an arrow-head must be unmarked in row 1, and cannot contain an arrow-tail.
Furthermore, if the substructure satisfies the non-empty condition, then any cell containing
an arrow-head must also contain a critical vertex in row 1.

With the substructure A = (w, Ry, ¢) defined, we will now provide two formulas for it,
corresponding to the two ways we can use it to extend vertical arrays.

Lemma 5.5. Given an irreducible substructure A = (w, Ry, ¢) that satisfies the non-empty

condition and with Ry = K, the number of arrowed arrays (o, ¢) € AR%RLRz satisfying
substructure A is given by
T(A)=ry(s—1)!
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where 1o is the total number of vertices in row 2 that are in the columns of Rq.

Proof. As Ry = K, there is only one substructure I' = (w, R, Ra, ¢) that is a refinement
of A. Namely, we have Ry = K, so each cell of row 2 also contains at least one object.
Therefore, I' satisfies the full condition, and we can use the formula of 7' (I") given by
Theorem 4.13. As all cells of the row 2 are marked, there are no columns of type A, B, A,
or C. This also implies that there are no columns of type A. Hence,

T(A) = (5—1)!{
= dQ(S_].)'

dg (Cl +51 + dl):|
S

as s = ¢; + ¢; + dy. Since all cells in row 2 are marked, a vertex is in a column of type
D if and only if its column is marked in row 1. This gives dy = 19, and our formula, as
desired. O

This formula will be useful for decomposing minimal arrays into vertical arrays. How-
ever, to decompose vertical arrays into arrowed arrays, we need a much more substantial
theorem.

Theorem 5.6. Let Ry, Ry > 1, and let A = (w, Ry, ¢) be an irreducible substructure that
satisfies the balance and non-empty conditions. Furthermore, suppose wo; > 0 for all cells

(2,7). Then, the number of arrowed arrays (a,¢) € AR%?RLRQ with substructure A is
given by the formula

s—1
r M K—M-1
= gl -
T(A) S'AZ:OS—A(M—A> (RQ—M—l—A—l)

where 1 is the total number of vertices in row 1 of the columns of Ry, and M 1is the number
of columns that contain a critical vertex in row 1.

Proof. To prove this theorem, we sum 7' (I') over all substructures I' = (w, Ry, Ra, ¢) that
are refinements of A. Since wy; > 0 for all cells (2, j), all substructures I' satisfy the full
condition, so we can use the formulas of 7' (I") given by Theorem 4.13 and Theorem 4.14.
Note that T (I') only depends on the number of columns of type A, even though it depends
on the number of vertices of other column types. Therefore, we first sum over all I' with
A columns of type A to obtain T (Ay), then we sum A from 0 to s — 1 to obtain 7" (A).
As A satisfies the balance condition, so must all I" that are refinements of A. This implies
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that we can drop the subscripts from 7' (I'). For convenience, we will refer to the number
of vertices of row 1 in a set of column X simply as the number of vertices in X', as that
number is the same between row 1 or row 2.

Let M be the set of columns that contains a critical vertex in row 1, and H be the set
of columns that contains an arrow-tail. Then, R, M, and H partitions . As R; > 1, we
have M < K. In the case where M = 0, we have M = H = () and R; = K. By inverting
the two rows and applying Lemma 5.5, we have

T(A)= ) r(s—1)

I'—sA

where r is the number of vertices in Ro. Note that a vertex v in row 1 of a column X

contributes to r if X' is marked in row 2. As there are ( 112(2 __11) ways to mark the columns of

K in row 2 with X marked, and s vertices in row 1, we have

T(a) = r<s_1>!.§(§2:11>

_ K—1
T\ Ry —1

This result agrees with substituting M = A = 0 into the formula of T (A).

In the case where 1 < M < K — 1, we have Ry = BUD. This gives us r = b + d, and
allows us to rewrite T'(T") as

(b+d)(a+c+c+d) b(c+tc+c)—c(b+d)

i = { s—A (s—A)(s—A—1)
= (s— DTy (T) + T3 (T) + T3 (T) + T, ()

where
nr) = s iCA
Ty (F) = %
b(c+¢+7)
L (1) G- A A1)
T4 (F) _ rc

(s—A)(s—A-1)
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for0 < A<s—2 For A=s—1, welet Ty (I') and T5 (I") be defined as above, and let
T3 (') = Ty (I') = 0. As the substructures I' = (w, Ry, R, ¢) with A columns of type A
partitions Ay, we can let T; (Aa) = > p 1, Ti (I') for i = 1,2, 3,4, which gives us

T(Ax)=(s—=DIT1 (Aa) + T2 (An) + T35 (A4) + Ty (Ay))

and

T(A)=(s—1)! (i (T1 (Aa) + To (An)) + i (T3 (AA) + Ty (AA)))

A=0 A=0
Note that the second summation for A goes from 0 to s — 2 as T3 (As_1) = T4 (As—1) = 0.

To evaluate each of the T; (A4), we look at the number of substructures I' such that
a vertex or a pair of vertices contributes to the numerator of T; (A4). Note that we can
ignore r since it is the number of vertices in R;, which is a constant with respect to A.
Of the three sets of columns, only the columns of M can become columns of type A, as
the columns of type A require both the top and bottom cells to be unmarked. Therefore,
if a substructure I' is a refinement of A4, it must have exactly M — A marked cells in row
2 of M, where M = |M]|. It must also have exactly Ry — M + A marked cells in row
2 of Ry UH. This means in total, there are ( Mﬂf A) ( R;:%r A) substructures of the form
' = (w,R1,Rs, ¢) that are refinements of A,. Observe that by letting 1 < M < K — 1,
we ensure that the top terms of the binomial coefficients are never negative, and that we

do not divide by zero later on.

Now, a vertex v in row 1 of a column X contributes to ¢ if X € M and X is marked
in row 2. As there are ( M]\f ,71£1) ways to mark the columns of M in row 2 with X marked,
and ( R;i 7\4]\1 A) ways to mark the columns of K\ M, v contributes ( M]\f;‘l_l) ( R:i }/[]\i A) times
to c. Let m be the total number of vertices in M, we have

m({ M-1 K—M
Ti(Aa) = Tl(r)'?(M—A—1)(RQ—M+A)
_rm M—-1 K-M
T O s—A\WM—-A—1)\R,—M+ A

Next, a vertex v in row 1 of a column X" contributes to a+c¢+d if X € K\M and X is
marked in row 2. As there are ( v ) ways to mark the columns of L\ M in row 2 with

Ro—M+A—1
X marked, and ( Mﬂf A) ways to mark the columns of M, v contributes ( Mﬂf A) ( R;i ;\%r ;117 1)
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times to a + ¢ + d. Given that there are s —m vertices in K\ M, we have

s—m M K—-M-1
L(A4) = TQ(F)'ZHEM(M—A) <R2—M+A—1)
r(s—m){ M K—M-1
S—A M—A Rg—M-FA—l

Similarly, let {v,u} be a pair of vertices with v in row 1 of a column X and w in row
2 of a column Y. Then, {v,u} contributes to b (c + ¢+ ¢) if the following conditions hold.
First, we have X € Ry, Y € K\R, and X unmarked in row 2. Furthermore, let Z be the
column Y if Y € M, and Z be the column that ) points to if JJ € H. Then, Z must be
a column of M and must also be marked. Now, as there are ( M]\i[ ;1_1) ways to mark the

columns of M with Z marked, and ( KM ) ways to mark the columns of K\ M in row 2

Ro—M+A
with X unmarked, {v,u} contributes (M]\i[;;) (é:%;;) times to b (¢ + ¢+ ¢). Given that

there are r (s — r) such pairs of {v,u}, we have

non = o5 () (e a)
r(s—r) M -1 K—-M-1
- (s—A)(s—A—l)(M—A—l)(R2—M+A)

Finally, a vertex v in row 1 of a column X contributes to ¢ if X € H, X is unmarked

in row 2, and the column Z that X points to is marked in row 2. As there are ( éﬁ :%:4)
ways to mark the columns of £\ M in row 2 with X unmarked, and ( M]\f ;11_1) ways to mark

the columns of M with Z marked, v contributes ( M1 )( K—M-1 ) times to ¢. Given

ALREC M—A—1) \Ry—M+A-1
that there are s — m — r vertices in ‘H, we have

s—m-—r M-1 K—-M-1
Li(Aa) = T4(F)'T(M—A—1)<R2—M+A>
. r(s=m-—r) M-1 K—-—M-1
(5= A)(s—A-D\WM-A-1)\Ry— M+ A
Now, let T4 (As) =T5(A4) + T4 (A4), and observe that

Tsra(Ba) = (S—A)(:L—A—l)(MA{z?ll—l)(gi%:‘l)
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and

r(sMRy — sM? + sMA —mMRy + mMK —mAK) "

Ty (Aa) +To(As) = M (s —A) (K — M)

) ()

= TT(AA)—i-Tml (AA)+Tm2(AA)
T (A4) = S_A(M—A>(R2—M+A—1)
rm M—1 K-M-1
Tt (A = —
m (Aa) S_A(M—A—1)<R2—M+A)

rm (M —1 K-M-1
Tna (Ba) = _s—A(M—A>(R2—M+A—1>

By substituting these formulas into 7' (A), we have

where

s—1 s—2

T(A) = (s — 1) (Z (T, (D) + Tt (Aa) + Tz (D)) + > Tya (M)

A=0 A=0

)

Next, we will show that 22;10 (Tin1 (Aa) + T2 (A4)) + 22;20 T3:4 (A4) = 0. By combin-

ing Tpn1 (Aa) with T4 (A4), we have

rm M—-1 K—-M-1
L1 (Aa) + T34 (An) = s——A(M—A—l) (Rg—M+A> +

=t i) (v a)

B rm M—1 K—-—M-1
o s—A—1\M-A—-1)\R,—M+ A

122

)



for 0 < A < s — 2. Therefore,

[y

S—

(T (Aa) + T2 (An)) Z T5i4 (Ay)

B rm M—-1 K—-—M-1 n
N s—A—1\M—-A—-1)\Ry— M+ A

=0
M — K—-—M-1
m
M — Ry—M+s—1
rm (M —1 K—-—M-1
. s—A\M—-AJ\ Ry —M+A-1
M—1 K—-M-1
= r
T\ —s)\Ry— M +5-1
by shifting the index of the second sum and noting that (M]\; 1) = 0. Now, for (%:1) to be
non-zero, we require M > s. However, this implies that there are at least s columns of M,
each requiring a critical vertex. As there are only s vertices in row 1, r is forced to be 0.

Therefore, the entire sum is equal to zero regardless of the value of M. Substituting this
result back into T'(A), we obtain

o‘>3>
wg

b

<

;_-

S—

?r

T(A) = (s—1)! (Sz: (11 (Aa) +T5 (A4)) +sz: T5 (Ag) + 1T, (AA))>

A=0

- (S—l)!iTT<AA)
— S'Zs—A<M A)@i;j{,}l—l)

This proves our formula for 7' (A). O

Remark 5.7. The proof for Theorem 5.6 works even if A does not satisfy the balance
condition, as long as ws; > 0 remain satisfied for all j. However, we will have to retain
the row subscripts from both the formula and the proof of 7' (A). By following the same
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proof, we obtain that

s—1
v [ M K—M-1
T(A) = s
() e s—A(M—A)(Rz—M+A—1>+

sl r — T2 M—1 K-M-1
(s A)(s-A-D\M-A-1)\R, - M+ 4

N o

when A satisfies the non-empty condition, but does not necessary satisfy the balance
condition. The second term of this expression is given by the simplification of T3.4 (A4),
where r; is the number of vertices in row ¢ of the columns of R;. Note that both r;’s refer
to the columns with marked cells in row 1, as the marked cells in row 2 are not fixed.

5.2 Admissible Substructures

Recall that our overall strategy in proving a formula for the number of tree-shaped n-row
vertical arrays is to decompose each n-row vertical array into an (n — 1)-row vertical array
and an arrowed array, then provide the inverse to establish a bijection. Then, for each
(n — 1)-row vertical array we count the number of arrowed arrays that are compatible
with it, and sum this over all (n — 1)-row vertical arrays. However, the resulting vertical
array and arrowed array from the decomposition may not necessarily satisfy the non-
empty condition, even if the original vertical array satisfies it. Furthermore, there is also
no guarantee that there will be a vertex in each cell of row 2 of the resulting arrowed
array, which is a crucial condition for Theorem 5.6. With the vertical array, we can bypass
this issue either by temporarily removing columns with no vertices, or by allowing vertical
arrays to have empty columns and using inclusion-exclusion to remove them. However,
these approaches do not work on arrowed arrays as arrowed arrays may have arrows in
columns that are otherwise empty, and may not have at least one vertex per cell. Therefore,
we need to extend Theorem 5.6 to cover a wider range of arrowed arrays.

Definition 5.8. An irreducible substructure A = (w, R, ¢) is admissible if it satisfies the
following conditions

1. For each cell in row 1 containing an arrow-head, it contains at least one vertex.

2. For each cell in row 1 containing a vertex, the corresponding cell in row 2 contains
at least one vertex.

124



3. For each cell in row 2 containing a vertex, the corresponding cell in row 1 contains
at least one object.

Let A be an admissible substructure, and («,¢) be an arrowed array that satisfies
A. Suppose cell (i,7) contains a critical vertex or an arrow-tail, then v, (j) is either in
Ri, or 1; (1; (7)) is defined. In other words, there does not exist a column j such that
cell (i,1; (j)) contains no object. This means that the only way for (o, ®) to violate the
forest condition of row ¢ is for there to be a cycle in the functional digraph of ;. Note
that conditions 2 and 3 are not symmetric, and this discrepancy stems from the fact that
we are permuting the marked cells in row 2, which means we cannot guarantee that an
empty cell is marked for the forest condition function ¢,. Now, if A satisfies the balance
condition, then the second and third point of the definition are automatically satisfied.

Theorem 5.9. Let Ry, Ry > 1, and let A = (w,Rq,¢) be an admissible substructure.

Then, the number of arrowed arrays (o, ¢) € AR&??RLR2 with substructure A is given by
the same formula as in Theorem 5.6 and Remark 5.7. That is,

s—1
r [ M K—M-1
T(A) = s
(4) S;OS—A(M—A)(R?—M+A—1>+

S!S(S_Agl(:QA—D(MA:l—l)(g:%lD

A=0

with the latter term naturally being zero if A satisfies the balance condition.

Proof. As permuting the columns of an arrowed array does not change whether it satisfies
the forest condition, we can without loss of generality assume that the first k£ of the K
columns of A are the ones that contain at least one vertex in row 2. By condition 2 of
Definition 5.8, all vertices in row 1 are in these k£ columns. In particular, it means that
¢i (7) € [k] as each cell containing an arrow-head must contain at least one vertex. Now,
let A be the subset of arrowed arrays that satisfies A, and have exactly R marked cells in
the first k columns of row 2. Furthermore, let A®* = (w', R, N [k],¢') be the restriction
of A% to the first k columns. In other words, A%* = (w/, Ry N[k],¢') is a substructure
of ARI(cS;I)Rm[k]I,R’ where w; ; = w; ; and ¢} (j) = ¢; (j) for 1 < j < k. Note that ¢; (j) € [K]
implies that ¢ (j) € [k], so this is well defined. We will show that there is a (é:lﬁz) to 1
correspondence between arrowed arrays satisfying A® and arrowed arrays satisfying A,

Let (o, ¢) be an arrowed array satisfying A and consider the cell (i, 5), where k +1 <
j < K. By condition 1, it cannot contain an arrow-head. Furthermore, as the column
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contains no vertices, there cannot be another column j" such that ; (') = j. Now, this
cell can either be unmarked, marked, or contain an arrow-tail. If the cell is unmarked,
then it does not factor into the forest condition of row i, as it is in neither the domain
nor range of ¢;. If the cell is marked, then it is in R;, so it is an isolated root in the
functional digraph of ;. Finally, if it contains an arrow-tail, then the column it points
to must contain at least one vertex, and must be unmarked. Therefore, cell (i, j) is a leaf
in the functional digraph of ;. In all three cases, we can remove the column j from the
array without violating the forest condition, using Lemma 4.4 for the third case. As this
holds for all j > k, we can simply cut off the rightmost K — k columns of (a, ¢) to obtain
an arrowed array (a/, ¢') that satisfies A%,

Conversely, given an arrowed array (o, ¢') satisfying A% we can add K — k columns
with no vertices to obtain an arrowed array («, ¢) satisfying A®. Note that the positions
of arrows and marked cells in row 1 is completely fixed by A®. However, only the first &
columns of («, ¢) are predetermined in row 2, as given by («/, ¢'). For the remaining K —k
columns, we can mark Ry — R cells arbitrarily and satisfy the forest condition, as adding
columns with no vertices does not change 1. Therefore, for each arrowed array (o, ¢')

satisfying Af* there are exactly ( If; :I;{) arrowed arrays satisfying A,

By construction, each of the Af* satisfies the non-empty condition, and has ws; > 1
for 1 < j < k. Therefore, we can use Theorem 5.6 and Remark 5.7 to obtain T (AR?’“),
with K and R, being substituted by k& and R respectively. Furthermore, A', ... Amn(kR2)
partitions A, and for R =0 or R > k, we have T’ (AR;’“) = 0. This is given by the factors
r1 and ro in the former case, and the binomial term in ( M1 ) the latter. Therefore,

R—M+A—1
we can change the bounds of k to 0 < k < Ry, and use the Chu-Vandermonde identity
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introduced in Proposition 1.3 to obtain

min(k,R2)

r) = > T ()

R=0

2 ) () ()

A=0 R=0
s—2 Ro
S'ZZ 7“1—7'2 M—1 k—M-—1 K-k
(s—A)(s—A-1)WM—-A—-1)\R-M+A)\R,— R
A=0 R=0
K—-M-1
pu— '
SZS—A(M A)(RQ—M+A—1)+
i =T M—1 K—M-1
S!Z
- A)-A-1DN\M-A-1)/\R; =M+ A

which is the formula for 7' (A) as given by Theorem 5.6 and Remark 5.7. O]

Before defining another substructure and further generalizing this formula, we will first
rewrite it using hypergeometric transformations, as that will simplify our work later. From
here on, we will only consider the case when A satisfies the balance condition. One reason
for this assumption is that the balance condition holds for tree-shaped arrays. Another
reason is that we will permute the marked cells in row 1, which allows us to cancel out
and r;.

Theorem 5.10. Let Ry, Ry > 1, and let A = (w,R1, ¢) be an admissible substructure that

satisfies the balance condition. Then, the number of arrowed arrays (o, ¢) € AR;?RM}@
with substructure A is given by the formula

min(s,K)=1 5 ry (K-A-1!(s—A-1)!
TA=r 2 I AK Ry A - 1)

where r is the total number of vertices in row 1 of the columns of Ry, and M is the number
of columns that contain a critical vertex in row 1.
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Proof. First, we rewrite 7' (A) using factorials to obtain

S SIM! (s —A— D (K — M —1)!
T(A):TZ(s—A)!(M—A)!A!(RQ—MJrA—1)!(K—RZ—A)!

Since Ry > 1, we have M < K, so the numerator is always defined. Furthermore, as
discussed in Section 1.3, we can take 1/z! to be zero if x is a negative integer. Note that
M > s implies r = 0, as each column of M requires a critical vertex, and there are only
s vertices in row 1. In this case, the theorem is true as both the original formula and the
new formula imply that 7" (A) = 0. Otherwise, we have M < s — 1. Since 1/ (M — A)! is
zero for A > M, we can lower the upper bound of the summation to M. We can then write
it as a generalized hypergeometric function with —M as one of the parameters, matching
the upper bound of the sum. This gives us

& SIMU (s — A— 1) (K — M —1)!
) = T;)(s—A)!(M—A)!A!(RQ—M+A—1)!(K—RQ—A)!
B —M,—s,—K + Ry (s—DI(K—-M-1)!
N T'SFQ( Ry— M,—s+1 ’1) (Ry — M — 1)l (K — Ry)!
o (—M,l,—K+R2_1) (K — M) (s — 1)1 (K — M —1)!
TP L=K, s +1 7 ) (R~ M)™ (Ry — M — D)I(K — R,)!
& MUK -A-D(s—A-1)
- TAZ:O(M—A)!(K—RQ—A)!(RQ—D!

min(s,K)—1

- Y M (K—A—-1)(s—A—1)!
A=0 (M — AN (K - Ry — A)! (Ry — 1)!

where we use the 3F5 identity described in Theorem 1.5. As 1/ (M — A)! is again part of
the new summation, we can raise the summation index without changing the value of the
sum. Note that we know M < s — 1, and we can deduce that M < K —1 as R; > 1. This
allows us to raise the upper bound to min (s, k') — 1, while keeping the numerator well

defined. ]

The benefit of this new formula is that we are no longer required to keep M <
min (s, K) — 1. While taking M > min (s, K') for A makes no sense combinatorially, the
value for 7' (A) is well defined and finite. This frees up M for manipulation and summation
if we can multiply 7' (A) with an expression that is zero if M > s or M > K. When we
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do the induction on the number of vertical arrays, this fact will become extremely useful.

5.3 Substructures © = (y, P, ¢) and A = (x,P, ¢)

In this final section, we will turn our focus to specific substructures that can be directly used
to extend vertical arrays, instead of generic substructures with generalized parameters. To
this end, we want to define a pair of substructures © and A such that A is a partition
to both of them. These two substructures will correspond to the two ways we will use
arrowed arrays to extend vertical arrays. For both substructures, instead of taking the set
of marked cells in row 1 as being fixed, we take the set of marked cells as a Ri-subset of a
set P C K. Furthermore, instead of fixing the number of vertices in each cell, we fix the
number of non-critical vertices in each cell of a given row. Finally, we will provide formulas
for both substructures, using the two formulas for T (A).

Definition 5.11. Let P be a subset of K with |P| > R; > 1, y be non-negative vectors
of size K, and ¢: K\P — K be a partial function from H C K\P to H U P. Suppose that
yj=0forall j ¢ HUP and };y; = |P| — R;. The substructure © = (y, P, ¢) is defined

to be the subset of AR%?E%), such that for each pair (¢/,¢') € AR&L?E%), the set of
marked cells in row 1 of o/ is a subset of P and ¢’ = ¢. Furthermore, for each j € P such
that cell (1, ) is unmarked, o’ contains a vertex in that cell. Finally, for each 1 < j < K|
o' contains y; vertices in cell (2, j).

Note that all cells in row 2 are marked in this substructure, corresponding to Lemma 5.5.
Furthermore, all the vertices are in the columns of H U P. This allows us to later remove
the columns not in H U P, as they contain no vertices, arrow-heads, or arrow-tails. The
motivation behind this definition is to convert marked cells into critical vertices, so that
the number of marked cells and non-critical vertices remain constant. As y represents the
number of vertices in row 2, we have s = |P| — R;.

Lemma 5.12. Let © = (y,P,d) be a substructure of AR&E‘%:%), and suppose that ¢
contains a column X that points to a column )Y, and the column )Y points to another
column Z. Let © = (y,P,¢') be a substructure of AR%?E%) such that

rN z j=4&
sur = {m) jEH\X .

that is, instead of pointing to Y, X now points to Z in ¢'. Then, the number of arrowed
arrays satisfying © and the number of arrowed arrays satisfying ©' are equal.
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Proof. First, we need to check that ©’ is a proper substructure of form 0" = (y,P,¢).
Note that none of y, P, or R, have changed, so we have ), y; = [P|— R;. Then, note that
H remains the same as the domain of ¢, so we have y; = 0 for all j ¢ HUP in ©'. Finally,
we have that ¢/ (j) = ¢(j) € HUP for all j # X, and ¢/ (X) = Z = ¢(Y) € HUP.
Therefore, ©' satisfies the conditions for a substructure of type ©' = (y, P, ¢').

Let o € VASQ;;?}I)( be a two-row vertical array. By Lemma 4.6, (a, ¢) is in AR;I(?E%)

if and only if («, ¢') is in ARQ{ZE?;). Furthermore, as the sets of marked cells and vertices
are unchanged, («a, ¢) satisfies the remaining constraints of © if and only if («, ¢’) satisfies
them for ©" by construction. Therefore, the number of arrowed arrays satisfying © and ©’
are equal. O

As the marked cells in row 1 are not fixed, there is only one arrow simplification
lemma for substructures © = (y, P, ¢), corresponding to Lemma 4.6. However, we can still
repeatedly use this lemma to simplify substructures of the form © = (y, P, ¢), which gives
rise to the following definition.

Definition 5.13. A substructure © = (y, P, ¢) is irreducible if the functional digraph of
¢ is acyclic, and © cannot be further simplified with the application of Lemma 5.12. As
the arrow-heads of an irreducible substructure must be in cells of H U P, and cannot be in
H, a substructure © = (y, P, ¢) is irreducible if and only if ¢ is a function from H to P.

Note that the definition of irreducible is compatible with Definition 5.4. That is, if
© = (y, P, ¢) is an irreducible substructure and A = (w, Ry, @) is a refinement of O, then
A can be reduced to an irreducible substructure A’ by the application of Lemma 5.2. With
the substructure © = (y, P, ¢) defined, we will now provide a formula for it, corresponding
to the subset of substructures A such that all cells in row 2 are marked.

Theorem 5.14. Given an irreducible substructure © = (y, P, ), the number of arrowed
arrays (o, ¢) € ARQ(Z‘%:?;) satisfying substructure © is given by the formula

(P —1)!

T(®) = (R, — 1)!

where P is the number of columns of P.
Proof. We prove this by substituting into the formula for 7" (A) given by Lemma 5.5.
Without loss of generality, assume that H U P are the first k of the K columns of ©. Let

R1 be an R;-subset of P, and consider the substructure A = ([x',y],R1, ¢), where 2} = 1
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if z € P\Ry, and 2 = 0 otherwise. That is, w := [x/,y] is a 2 X K matrix containing
the number of vertices in each cell. By construction, the number of vertices in cell (i, j)
is 0if 7 ¢ HUP. As all arrow-tails of ¢ are contained in H, and all arrow-heads of ¢
are contained in P, the columns of IC\ (% U P) contain only a marked cell in row 2, and
no other objects. Now, let A’ be the substructure A restricted to the columns of H U P.
Notice that the set of arrowed arrays satisfying A’ is in bijection with the set of arrowed
arrays satisfying A, as we can add or remove the columns of K\ (H U P) without violating
the forest condition. The forest condition of row 2 is always satisfied, as all cells in row 2
are marked. Furthermore, for any arrowed array satisfying A, both the domain and range
of the forest condition function ¢4 for row 1 are in H UP. Therefore, 11 remains the same
when we transform an arrowed array satisfying A to an arrowed array satisfying A’ by
restricting the set of columns to H U P , and vice-versa.

Now, A’ may not be irreducible, as there can be arrows pointing to the columns of R;.
Therefore, we have to reduce A’ using the arrow simplification lemma defined in Lemma 5.2.
This gives us an irreducible substructure A” = ([x',y], R1 U H1, ¢'), where H; C H is the
set of columns that points to R4, and ¢’ is ¢ restricted to the columns of H\#;. That is,
we have changed all the cells that point to R in A’ into marked cells. Observe that in A”,
the columns of Ry U H; are marked in row 1, the columns of H\H; contain arrow-tails,
and the columns of P\R; contain critical vertices in row 1. Therefore, A" satisfies the
non-empty condition, so we can use the formula for 7' (A) given by Lemma 5.5. Now, a
vertex u in row 2 of a column X contributes to 9 of the formula for 7' (A) if X € R4, or
X € H and X points to a column in R;. In either case, there are ( f; :11) different subsets
R, such that X' is marked in A”, out of the ( }I; ) possible Ri-subsets of P. Given that all
vertices of row 2 are in P U H, we have

T(©) = T(A")-i(P_l)

ro \ 2y — 1
_ s'(P_l)
R —1
(P—1)!
(R, —1)!
as desired. ]

As a final step, we want to remove the restriction that © is irreducible. This can be
done by repeatedly applying Lemma 5.12, which gives us the following corollary.
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Corollary 5.15. Given a substructure © = (y, P, ¢) such that the functional digraph of
¢ on HUP is a rooted forest with root vertices P, the number of arrowed arrays (o, ¢) €

AR&E‘%:%) satisfying substructure © is given by the formula

(P —1)!

T(®) = (R, — 1)!

where P is the number of columns of P.

Proof. We use Lemma 5.12 to reduce © to an irreducible substructure ©' = (y,P,¢).
As Ry and P remain the same, we have T (0) = T'(©’). The result then follows from
Theorem 5.14. O

As we will see in the next chapter, this theorem is useful for decomposing minimal
arrays into vertical arrays. To decompose vertical arrays, we will need to introduce another
substructure and a corresponding theorem to go with it.

Definition 5.16. Let P be a subset of K with |P| > R; > 1, x be a non-negative
vector of size K, and ¢: K\P — K be a partial function from H C K\P to H U P.
Suppose that z; = 0 for all j ¢ H UP and s be such that >, z; = s — [P| + R;. The

substructure A = (x, P, ¢) is defined to be the subset of AR? Ry.Ry» Such that for each pair

(o, ¢) € AR%? RiRy» (@, @) satisfies the balance condition, the set of marked cells in row
1 of & is a subset of P, and ¢ = ¢. Furthermore, for each column j € H U P, cell (1, )
contains x; 4 1 vertices if j € P and is unmarked, and z; vertices otherwise.

By the balance condition, cell (2, j) also contains either x; or z; 4 1 vertices, depending
on whether cell (1,7) is marked. As with the previous definition, the motivation behind
this definition is to convert marked cells into critical vertices. However, we want to do it
in such a way that the balance condition is preserved. This corresponds to Theorem 5.6
and Theorem 5.10, where the balance condition is also satisfied. Note that x represents
the number of non-critical vertices in row 1, as the columns of H contain an arrow-tail,
and columns of P are either marked or contain one extra vertex. Therefore, we have
>_;xj = s —|P|+ Ri. Note that this also implies P < s+ R;. As with the definition of
©, this definition also restricts all vertices to be in the columns of H U P. This will allow
us to use admissible substructures when providing a formula for substructures of type A.

Lemma 5.17. Let A = (x,P,¢) be a substructure of AR;?RLRQ, and suppose that ¢
contains a column X that points to a column Y, and the column Y points to another

132



column Z. Let N = (y,P,¢') be a substructure of AR&??RLRQ such that

L [z j=x
AR {¢<j) jEMX

that is, instead of pointing to Y, X now points to Z in ¢'. Then, the number of arrowed
arrays satisfying A and the number of arrowed arrays satisfying A’ are equal.

Proof. First, we need to check that A’ is a proper substructure of form A’ = (x,P,¢').
Note that none of x, P, Ry, or s have changed, so we have Zj z; = s — |P| + Ry. Then,
note that H remains the same as the domain of ¢/, so we have z; = 0 for all j ¢ HUP in A'.
Finally, we have that ¢’ (j) = ¢ (j) € HUP forall j # X, and ¢/ (X) = Z = ¢ () € HUP.
Therefore, A" satisfies the conditions for a substructure of type A’ = (y, P, ¢').

Let o € VAS}(;RL& be a two-row vertical array. By Lemma 4.6, (o, ¢) is in AR&??RL&

if and only if (a, ¢') is in .AR&? Ryi.R,- Furthermore, as the sets of marked cells and vertices
are unchanged, (o, ¢) satisfies the remaining constraints of A if and only if («a, ¢') satisfies
them for A’ by construction. Therefore, the number of arrowed arrays satisfying A and A’
are equal. O

As with substructure ©, there is only one arrow simplification lemma for substructures
A = (x,P,¢), corresponding to Lemma 4.6. However, we can still repeatedly use this
lemma to simplify substructures of the form A = (x, P, ¢), which gives rise to the following
definition.

Definition 5.18. A substructure A = (x, P, ¢) is irreducible if the functional digraph of
¢ is acyclic, and A cannot be further simplified with the application of Lemma 5.17. As
the arrow-heads of an irreducible substructure must be in cells of H U P, and cannot be in
H, a substructure A = (x, P, ¢) is irreducible if and only if ¢ is a function from H to P.

Note that the definition of irreducible is compatible with the definition of admissible in
Definition 5.8. That is, if A = (x,P, ¢) is an irreducible substructure and A = (w, Ry, ¢)
is a refinement of A, then A can be reduced to an admissible substructure A’ by the
application of Lemma 5.2. With the substructure A = (x,P,¢) defined, we will now
provide a formula for it, corresponding to the subset of substructures A such that the
balance condition is satisfied.
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Theorem 5.19. Given an irreducible substructure A = (x,P,¢), the number of arrowed
arrays (o, @) € AR%RL R, Satisfying substructure A is given by the formula

min(s,K)—1
(s—P+R)(K—A-1!(s—A-1I(P-1)!

T(A) = AZ_O (P =Ry — A (K — Ry — A)l (R — 1) (Ry — 1)!

where P s the number of columns of P.

Proof. The proof of this theorem is similar to that of Theorem 5.14. However, we will
be substituting into the formula for 7'(A) given by Theorem 5.10 instead. Let R be an
Ry-subset of P, and consider the substructure A = ([x/,x'], R1, ¢), where x} = z; + 1 if
r € P\Ry, and z; = x;, otherwise. That is, w = [x/,x/] is a 2 x K matrix containing
the number of vertices in each cell. Now, note that A may not be irreducible, as there
can be arrows pointing to the columns of R;. Therefore, we have to reduce A using the
arrow simplification lemma defined in Lemma 5.2. This gives us an irreducible substructure
A= ([x',x'],R1 UH,¢), where Hy C H is the set of columns that points to Ry, and ¢’
is ¢ restricted to the columns of H\H;.

Now, A’ satisfies the balance condition by construction. Furthermore, any cell of A’
that contains an arrow-head must be in P\Rq, as otherwise A’ will not be irreducible.
Since the columns of P\R; must each contain at least one vertex, A’ is an admissible
substructure, so we can use the formula for 7" (A) given by Theorem 5.10. As A’ satisfies
the balance condition, we can take r to be the number of vertices in row 1 of Ry. Observe
that the P — R; vertices added to row 1 of P\R; are all critical vertices, regardless of
the choice of Ry. Hence, they never contribute to 7' (A). This means that we only need
to consider the non-critical vertices of row 1, which are given by x. Now, a non-critical
vertex u in row 1 of a column X contributes to r of the formula for T (A) if X € R4, or
X € ‘H and X points to a column in R;. In either case, there are ( }I; :11) different subsets

R, such that X is marked in A’, out of the (]{; ) possible Ri-subsets of P. Given that
all non-critical vertices of row 1 are in P U H, and that there are s — P + R; non-critical
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vertices in row 1, we have
s—P+R (P—-1
T(A) = T(A) ———
I ()
min(s,K)

_ 71(S—P+R1)M'(K—A—1)!(3—A—1)! P-1
- ;) (M (K — Ry — A)! (Ry — 1)! (R1—1)

min(s,K)—1

A)l
(s—P+R)(K—A—1)l(s—A—1)I(P—1)
A)l

A=0 (P Ry — (K_RZ_A)!(Rl—l)!(Rz—l)!

where we substitute in M = P — R; as the number of critical vertices in row 1. Finally,
we simplify the expression using factorials, so that we can apply hypergeometric transfor-
mations in the next chapter. O

As with substructure ©, we want to remove the restriction that A is irreducible. This
can be done by repeatedly applying Lemma 5.17, which gives us the following corollary.

Corollary 5.20. Given a substructure A = (x, P, ) such that the functional digraph of ¢
on H U P is a rooted forest with root vertices P, the number of arrowed arrays (a, ¢) €

AR%?RM R, Salisfying substructure A is given by the formula

min(s,K)—

T(A) = "(s=P+R)(K-A-1l(s—A-1I(P-1)

(P— Ry — A) (K — Ry — A) (R, — 1)] (Ry — 1)

A=0

where P is the number of columns of P.

Proof. We use Lemma 5.17 to reduce A to an irreducible substructure A’ = (y, P, ¢’). As
s, K, Ry, Ry, and P all remain the same, we have T'(A) = T (A’). The result then follows
from Theorem 5.19. O

It is possible to generalize these two theorems so that the set of vertices does not lie
strictly inside H U P. It is also possible to remove the balance condition from the second
theorem. The same proofs can be applied to obtain two similar, but more complicated
formulas. However, the benefits of doing so is limited, so we shall not pursue it here. With
these two substructures and theorems ready, we can proceed to decompose minimal and
vertical arrays, which we will do in the next chapter.
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Chapter 6

Enumeration of Paired Arrays

In this chapter, we will continue with the decomposition of paired arrays started in Chap-
ter 3. Recall that we have decomposed canonical arrays by removing redundant pairs,
which gave us minimal arrays and sets of partial pairings 7; on [p;] for each row i. Then, in
the previous two chapters, we took a detour to define arrowed arrays and substructures for
sets of arrowed arrays. Furthermore, we have developed formulas that count the number
of arrowed arrays satisfying these substructures. With these new tools, we can decompose
minimal arrays into proper vertical arrays by removing non-mixed pairs, using a ¢;-subset

of [s; + ¢;], @ minimal array, and an arrowed array to record the removed pairs. By doing

so, we can give a formula for mfl K)R in terms of vn KR, where m ’M.An I R‘ and

vn K R = ‘PVAH x.r| are as defined in Definition 3.8.

6.1 Decomposition of Minimal Arrays

We start with defining a compatibility condition between arrowed array substructures and
minimal arrays.

Definition 6.1. Let o € /\/lAnKR be an n-row minimal array with ¢; = 0, R; as its set
of marked cells in row ¢, and 1; as its forest condition function for row i. A substructure
© = (y, P, ¢) as defined in Definition 5.11 is ©-compatible with row i of « if P = R; and
¢ = 1b;. Furthermore, suppose W is a y-subset of [s; + R; +y — 1] for some y > 0. We
define ©,; to be the substructure of AR%?RZ__%K with parameters O, w = (v, Ri, i),
where y = (y1,...,yx) and y; is the number of vertices inserted into cell (4, j) of o if W is
inserted into row ¢ of o by the insertion procedure defined in Procedure 3.11.
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By definition, ©,,y is ©-compatible with row ¢ of . Also, by summing over the
number of vertices inserted into cell (i,j), we have [W[ = }_.y;. Now, before we go into
the actual decomposition, we will first present the following proposition.

Proposition 6.2. Let o € PAES}??R be a proper paired array. Suppose cell (i,7) of a is an
unmarked cell containing at least one vertex, then o that is formed by marking cell (i, j)
of a is also a proper paired array.

Proof. As s remains the same between v and o/, o’ satisfies the balanced condition. Sim-
ilarly, as « satisfies the forest condition, the functional digraph G of the forest condition
function 1; is a forest with root vertices R,;. As cell (i,j) is unmarked and non-empty,
its rightmost vertex must be paired with some vertex in column v, (5), so (j,%; (j)) is an
edge of G. By marking cell (4,7), we have removed this edge from G, which splits the
component containing j into two components. One component retains its original root
vertex, which is in R;, while the other component has j as its root vertex. Therefore, the
functional digraph of the forest condition function v is a forest with root vertices R; U{j}.
Therefore, o/ satisfies the forest condition. Together, this implies that o’ is a proper paired
array. O

Note that the converse of the Proposition 6.2 is not true. For example, if o/ has only
one marked cell in row ¢, then unmarking that cell violates the forest condition for that
row. This proposition allows us to mark cells containing critical vertices, making those
vertices non-critical and removing them from the forest condition. Afterwards, we can
unpair and extract those vertices while keeping the resulting paired array proper.

With the preliminaries defined, we will now provide a decomposition of minimal arrays
into proper vertical arrays and arrowed arrays. This is done iteratively, by removing the
non-mixed vertices one row at a time. For a given row i, we mark the cells containing
the critical vertices of non-mixed pairs, then remove these pairs to form a minimal array
with only mixed pairs in row 7. To keep track of the removed pairs, we use a g;-subset to
represent the non-critical vertices, and an arrowed array to represent the critical vertices
and their pairings with the non-critical vertices.

Theorem 6.3. Letn, K >1,q>0,s>0, Re [K]|", and 1 <i <n. Then, there exists
a decomposition

ni: MAS}QR — U (B, W,08:w)
emald ),

Welsi+Ri+2q;—1;q:]
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of minimal arrays into triples of smaller arrays, q;-subsets, and arrowed arrays, where
Si = Zk;ﬁi Sik and

R, =

Ry otherwise

{Ri—Fq@' k=1

, 0 k=1
q, = .
qr otherwise
Furthermore, this decomposition is a bijection.

As a side note, the fact that each non-mixed, non-redundant pair in row 4 contains a
critical vertex in row ¢ means that R; + ¢; < K, so R’ € [K]".

Proof. We will provide the decomposition and its inverse, and prove that it is a bijection.
Conceptually, we take the non-mixed pairs of a minimal array «, and split them into critical
and non-critical vertices. We put the critical vertices into row 1 of an arrowed array (o, ¢),
and put the non-critical vertices into row 2. Then, we add marked cells and arrows to (o, ¢)
in such a way that row i of a has the same forest condition function as row 1 of (o, ¢).
To record the position of the non-critical vertices, we extract and record these vertices as
a gi-subset of [s; + R; + 2¢; — 1]. Finally, we mark the cells of a containing the removed
critical vertices, so as to preserve the forest condition for row 1.

Let a € MAS?}?R be a minimal array, and suppose {u, v} is a non-mixed pair in row
i of a.. If neither u nor v is critical, then {u,v} is a redundant pair. If both u and v are
critical, then the functional digraph of ¢; contains a cycle between the columns containing
u and v. As both of these are contradictions, exactly one of the two vertices is critical.
Therefore, there are ¢; non-critical vertices in row ¢ of «, the set of which we denote as V,
and there are ¢; critical vertices in row ¢ of «, the set of which we denote as . Note that
the vertices of U must be in distinct columns, and each vertex of & must be paired with a
vertex of V.

To construct the paired array € MAS;{S;)R, and the subset W € [s; + R; + 2¢; — 1; ¢,
we first mark the columns containing the vertices of ¢/. This causes the pairs of U UV
to be redundant, so we can unpair them to obtain the partially-paired array o’. By
Proposition 6.2 and Proposition 3.10, o/ is a proper partially-paired array. Next, we
remove the vertices of U from o’ to obtain partially-paired array «”, and extract ¥ from
o’ as described in Procedure 3.11 to obtain the subset W and the paired array (5. As
« has s; + 2¢; vertices and R; marked cells in row i, o’ has s; + ¢; vertices and R; + ¢;
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marked cells in row . Therefore, W is a g;-subset of [s; + R; + 2¢; — 1]. Furthermore, by
Proposition 3.12, 3 is also a proper paired array. Notice that we have not changed any
row other than row i, so ¢, = g, and R = Ry, for k # i. Also, as we have not changed any
mixed pairs, s remains the same between o and 5. Now, we have removed ¢; non-mixed
pairs and marked ¢; cells in row i, so ¢, = 0 and R, = R; + ¢;. Finally, as there are no
non-mixed pairs in row ¢ of 3, and the non-mixed pairs in the other rows are not redundant,
[ is a minimal array. Together, we have 5 € MA,(S;}S;)R, as desired.

To preserve information on the pairs we removed, we construct an arrowed array (o, ¢) €
©p.w such that ¢, = 9|, where 1); and 1] are the forest condition functions for row 7 of
a and row 1 of (o, @), respectively. For each cell (7, ) of a, we do the following

o If cell (7,7) of a is empty, we leave cell (1, 7) of o empty.
o If cell (7,7) of v is a marked cell, we mark cell (1, j) of o.

e If the rightmost object of cell (i, ) of a is a vertex u € U, we place a vertex x, in
cell (1,4) of o.

e If the rightmost object of cell (7,7) of «v is a vertex u ¢ U, we leave cell (1,7) of o
empty. However, suppose v is the vertex paired with u, and v is in the column j’, we

let ¢ (j) = j".

Next, we mark all cells in row 2 of 0. Then, for each vertex v € V that is in cell (i, 7) of
a, we place a corresponding vertex x, in cell (2, 7) of o. If we need to place more than one
vertex into the same cell, we place them in the same order in o as they are in a. Finally,
for each non-mixed pair {u,v} € U UV in row i of o, we pair their corresponding vertices
x, and z, in o. This completes the construction of (o, ¢).

Now, to show that (o,¢) € g = (¥, R}, 0:), we need to show that (o, ¢) satisfies
the forest condition, as well as the conditions defined by y, R}, and 6;, where R/ is the
set of marked cells in row ¢ of 3, and #; is the forest condition function for row 7 of [.
Suppose cell (7, j) of a is empty, then by construction both cell (7, ) of § and cell (1, j)
of o are empty. Therefore, neither 6; (j) nor ¢ (j) are defined. Alternatively, suppose that
the rightmost object of cell (,7) of a is a mixed vertex u ¢ U and it is paired with some
vertex v. Then, cell (i,j) of f remains unmarked, and u remains the rightmost vertex
of 5. Furthermore, as u is still paired with the same vertex v, we have 6; (j) = ¥; (j).
Correspondingly, by construction of (o, ¢), we let ¢ (j) be the column that v resides in, so
¢ (j) = (j) = 0; (). Finally, suppose that the rightmost object of cell (7, j) of « is not a
mixed vertex. Then, it is either a box or a non-mixed vertex. In either case, the cell would
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be marked in (3, so 6; () is not defined. Similarly, in our construction of o, we either mark
cell (1,7) of o or place a vertex in that cell, which leaves ¢ (j) undefined. Combining these
three cases, we have shown that ¢ = 6; as desired.

Next, we will show that (o, ¢) satisfies the forest condition. As all cells in row 2 are
marked, the forest condition of row 2 is trivially satisfied. To show that row 1 also satisfies
the forest condition, it suffices to show that ¢; = ¢} and R; = R/, where R; and R/ are the
marked cells of row 7 of @ and row 1 of o, respectively. This is because « is a minimal array,
so 1; must satisfy the forest condition. By construction, we have R; = R. Furthermore,
cell (i,7) of a is empty if and only if cell (1,7) of o is empty, and cell (4, 7) of « is marked
if and only if cell (1,7) of o is marked. Now, suppose cell (7,7) of a is unmarked, and
the rightmost object is a vertex u ¢ U. As explained in the previous paragraph, we have
1 (j) = ¢ (j) = ¢y (j). Finally, suppose cell (i,j) of o is unmarked, and the rightmost
object is a vertex u € U. Let v € V be the vertex that u is paired to, and suppose v
is in column j'. Then, the vertices z, and x, corresponding to u and v are paired with
each other in ¢. Furthermore, x, and x, are in the same columns as u and v are in «,
respectively. As z, is the rightmost object of cell (1, j) of o, we have ¢} (j) = 7' = ¥; (j).
Combining these results, we have 1, = 1] as desired.

Then, if we reinsert W into row i of 3, we recover o’ and the set V of extracted vertices
by Proposition 3.12. Recall that by construction, for each vertex v € V in cell (7, j) of a,
we have placed a vertex x, in cell (2,7) of 0. Therefore, the number of vertices inserted
into cell (4, 7) of B is the same as the number of vertices in cell (2, j) of (o, ¢). This proves
that (o, ¢) satisfies y. Finally, note that the set of marked cells in row 1 of ¢ is equal to
the set of marked cells in row ¢ of «, so it is a subset of the set of marked cells in row 7 of
B. Furthermore, if cell (7, j) is marked in (3, then it must either be marked in a, or contain
a vertex v € U. In the former case, cell (1,j) is marked in o, and in the latter case, it
is unmarked and contains the vertex x,. Therefore, (o, ¢) satisfies R. Together, we have
(0,¢) € Og,w as desired.

Conversely, let f € MASS;;{S;)R,, W e [si+Ri+q¢—1;¢], and (0,9) € O5,n. We
first construct partially-paired array S’ by inserting W into row i of § as described in
Procedure 3.11. This gives us a set V of unpaired vertices in ', which are labelled with
the elements of W by the insertion procedure. By Proposition 3.12, §’ is a proper partially-
paired array. Furthermore, by the definition of ©, )y, the vertices of V are in the same
columns as the vertices in row 2 of 0. Therefore, we can create a correspondence between
the vertices of V and the vertices in row 2 of 0. We do this by labelling the vertices in
row 2 of o with W from left to right, ignoring the boxes used for marking cells. Then, for
each vertex v € V, we let x, be the vertex in row 2 of ¢ that acquired the same label as
v. Next, consider each cell (1, j) of o that contains a vertex. Since ©g; )y is ©-compatible
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with f3, cell (7, 5) of f must be marked. Furthermore, as the set of marked cells is the same
between 5 and ', cell (i, j) of 5’ is also marked. This means that we can add an unpaired
vertex u to cell (4, 7), which we place to the right of all other vertices in that cell. Similar
to the vertices of V, we let the corresponding vertex in cell (1, j) of o be z,. After adding
these vertices, we let the resulting partially-paired array be 8", and let the set of vertices
added to obtain 8” be U. By Proposition 3.12, 8" is a proper partially-paired array. Also,
since W is a g;-subset, (o, ¢) has ¢; vertex pairs, so |U| = |V| = ¢;. Finally, to recover «,
we unmarked the cells containing the vertices of U, and for each pair {z,, z,} in o, we pair
their corresponding vertices u € U and v € V in row i of 5”. Note that these pairs are
non-redundant, as the vertices of U are now the rightmost objects of their respective cells,
which means that they are critical.

To show that a € MAES‘}?);R, we need to show that « satisfies the parameters R, q, and
s, and that it satisfies the balance and forest condition. As the vertices of U and V are in
the same row, they become non-mixed pairs in . Hence, they do not affect the balance
condition. By the same reasoning, the parameter s remains unchanged between 3, 5", and
a. Now, as [U| = ¢;, a has ¢; non-mixed pairs in row i. Furthermore, this means we have
unmarked ¢; cells from row ¢ of a, so @ has R, — ¢; = R; marked cells in row 7. As the
number of non-mixed pairs and marked cells in the other rows remain unchanged, we have
¢, = qr and R}, = Ry, for k # i. Therefore, o satisfies the parameters R and q as desired.

What remains to be shown is that « satisfies the forest condition. As the other rows
are unchanged, we only have to show that the forest condition holds for row 7. To this end,
we will show that ¢; = 9| and R; = R/, where 1; and 1] are the forest condition functions
for row i of a and row 1 of (o, ¢), respectively. Similarly, R; and R} are the marked
cells of row i of a and row 1 of o, respectively. This is sufficient, as (o, ¢) is an arrowed
array, which satisfies the forest condition. Note that (o, ¢) € O,y implies that (o, ¢) is
O-compatible with row i of 3, so ¢ is the forest condition for row ¢ of 5. Furthermore, if
R is the set of marked cells in row ¢ of 8, then by Definition 5.11, R is also the set of
columns that contains the marked cells and vertices in row 1 of o.

Now, consider cell (i,7) of 8. Suppose that the cell is empty, then ¢ (j) is undefined.
As j is not in R}, cell (1,7) of o is also empty, so ¢] (j) is undefined. Then, since the
vertices of U and V are unpaired in 7, they are added only to non-empty cells of £.
Therefore, both cell (4, j) of 8” and cell (, j) of @ remain empty, so ©; (j) is also undefined.
Next, suppose cell (i,j) of § contains a critical vertex u, paired with some other vertex
v. In this case, ¢ (j) is defined, and ¢} (j) = ¢ (j). Again, since the vertices of & and V
are unpaired in 57, they are not the rightmost objects of their cells, so the set of critical
vertices of 5 and 3" are the same. Furthermore, since cell (7, j) of 5" is already unmarked,
unmarking marked cells has no effect on w. In particular, u remains a critical vertex in
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a, and is paired with the same vertex v. Therefore, ¥} (j) = ¢ (j) = ©; (j). On the other
hand, if cell (7,7) of 5 and cell (1,7) of o are both marked, then cell (1, ) of ¢ does not
contain a vertex, so no vertices of U are added to cell (7,7) of 5”. Hence, cell (i,j) of
a remains marked when we unmark the columns containing vertices of . In this case,
neither ¢} (7) nor v¢; (j) are defined. Finally, if cell (7, j) of 8 is marked, but cell (1, 7) of o
is not, then cell (1, j) must contain a vertex x, paired with some vertex z, in a column j'.
In our construction of 5”7, we have added vertices u € U and v € V to cell (i,5) and cell
(1,7") corresponding to z, and x,, respectively. When cells containing the vertices of U are
unmarked, u becomes a critical vertex. Since u is paired with v and z,, is paired with x,,
we have that ¢} (j) = 7/ = 1¥; (j). Combining these results, we have 1; = 9| as desired.
Furthermore, cell (7, 7) of « is marked if and only if cell (1,7) of ¢ is marked, so we have

R; =R} as well. This shows that « € MAE:‘;?R.

Finally, we have to show that the two operations presented are inverses of each other.
By Proposition 3.12, the extraction and insertion procedures are inverses. Furthermore,
if we extract }V and reinsert it, the vertices inserted acquire the same labels as before the
extraction. Therefore, we can identify the vertices in row 2 of (o, ¢) with the vertices of V.
Then, the columns which contain the critical vertices U are exactly the columns of (o, ¢)
that contain vertices in row 1. This allows us to recover the columns of U, so that we can
add critical vertices and unmark cells. Finally, as we have a correspondence between the
vertices of U and V with the vertices of (o, ¢), the pairing of vertices in (o, ¢) allows us to
recover the pairing of the removed vertices. Therefore, 7; as described, is a bijection. [

Note that in the proof of Theorem 6.3, o/ and " corresponds to each other, so does
o and '. Now, observe that if we iteratively decompose each of the n rows of a minimal
array, the resulting minimal array will have no non-mixed vertices, and hence will be a
vertical array. Since minimal arrays are by definition proper, the resulting vertical array is
proper. Also note that the decomposition of row 7 of a minimal array does not change the
vertices, boxes, and pairings of the other rows. Therefore, the ordering of the rows in which
we decompose the minimal array can be arbitrary. Furthermore, the proper vertical array,
the arrowed arrays, and the g;-subsets resulting from the decomposition remain the same
regardless of the order in which we decompose the minimal array. In particular, as the
definition of ©g;)y depends only on row 7 of 3, we can replace § with the proper vertical
array resulting from the iterated decomposition without changing the set of arrowed arrays
satisfing this substructure. In fact, we can simultanenously decompose all n rows at once
and obtain the same result. The reason why we have not taken that approach is to keep
the proof simple, and also to keep in parallel to the decomposition of proper vertical arrays
in the next section.
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Figure 6.1: Partially-paired array o and o’ corresponding to the decomposition of row 1
of Figure 3.4

As an example, we will decompose the minimal array in Figure 3.4. By following
the decomposition described in Theorem 6.3, we arrive at the partially-paired array o
and o, as depicted in Figure 6.1. For clarity, we have marked the vertices of U and V
in o/, and labelled the objects in row 1 of o”. After the decomposition, we obtain the
minimal array 8 and the arrowed array (o, ¢), depicted in Figure 6.2. We also obtain the
subset W, = {3} € [6;1]. We can then continue the decomposition with rows 2 and 3.
This gives us the subsets Wy = {4,6} € [6;2], and W3 = () € [4;0], the proper vertical
array in Figure 6.3, and the arrowed arrays in Figure 6.4, corresponding to rows 2 and 3,
respectively.

Now that we have a decomposition of minimal arrays, we can use it to give an expression
for mﬁf}?R with respect to US’)K;R. In particular, we are interested in the case R =1, as
that corresponds to the decomposition of canonical arrays. By iterating the decomposition
in Theorem 6.3 and taking the cardinality of both sides, we obtain the following corollary.

Corollary 6.4. Letn, K > 1, q >0, and s > 0. Then,

(a;s) - (314‘2%)' (s)
my ka1 = H (s: + q)! " Un,K;q+1

where s; =73, ,; Sij-
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Figure 6.2: Minimal array  and arrowed array (o, ¢) corresponding to the decomposition
of row 1 of Figure 3.4
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Figure 6.3: Proper vertical array from the iterated decomposition of Figure 3.4
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Figure 6.4: Arrowed arrays from the decomposition of rows 2 and 3 of Figure 6.2

Proof. If ¢; > K for some i such that 1 < i < n, then mff‘;’l = 0, as any minimal array
in MAEIQ}?l must have at least K critical vertices and 1 marked cell in row 7, which is

a contradiction. On the right hand side, we have that ¢; +1 > K, so vﬁj}(;q 41 = 0 by
convention. Therefore, the identity holds trivially.

Let 5 be a minimal array with R, = R; 4 ¢; marked cells in row ¢, and W be a ¢;-subset
of [s; + R; +2¢; — 1]. As [ is a proper minimal array, the forest condition function 6; for
row ¢ satisfies the forest condition, so it is a forest with root vertices P = R;. Therefore,
by applying Corollary 5.15, we have

(Ri+¢q —1)!

TOsiw) = Ry,

as arrowed arrays satisfying ©4 ;1 have R; marked cells in row 1. Note that this is constant

for all minimal arrays € MAS;;{S;)R, and all subsets W € [s; + R; + 2¢; — 1; ¢;]. Therefore,
by taking the cardinality of Theorem 6.3 and substituting in the above formula, we obtain

m{de = > T (©piw)
ﬁeMAS‘;z{,

WE[si+Ri+2q;—1;qi]

where R’ and ¢’ are as defined in the theorem. By iterating this equation over 1 <7 < n,
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we have

m(q;s) _ ﬁ Sz + R + 2% - ]-) (Rz + q; — 1)' . (0;s8)
n,K;R P Sz + R +q — 1) (Rz N 1)| n,K;R+q
n
(as) _ (si + 2% 09
My, K1 E Sz + qz My Kiq+1

where in the second row we substitute R; = 1 to simplify the expression. The result of
the corollary then follows from noting that m(O;) a1 = US)K;q 41, as the set of minimal
arrays with no non—mlxed palrs is pre01sely the set of proper vertical arrays of the same

parameter. That is, /\/lAn Koqrl = VA® Kl O

Note that this formula is consistent with and is a direct generalization of Theorem 4.2
of Goulden and Solfstra. Furthermore, we can now express the number of paired functions
in terms of the number of proper vertical arrays using this formula.

Corollary 6.5. Letn, K > 1, q >0, and s > 0. We have

q n

(q7 2% + Sz) (s)
nK - ZH ot it; l 52 +q — t@)] ) Un,K;qft+1

t=0 =1

Furthermore, if US)K;R can be written as a polynomial expression in K for all R;, where

1< R <q+1, then féf%s) can be written as a polynomial expression in K.

Proof. By combining Theorem 3.7, Theorem 3.13, and Corollary 6.4, we have

q n
(@) QQz + 8; ' I". (82‘ + 2q1 — 2t1)' (s
D 31 [ L R

o H 2% + s; ) . 'U(S)

- n,K;q—
3 20t (s + g — 1) a-t+l

where we used the fact that (2¢; — 1)!! = gfft): to simplify the above expression. Polynomi-

ality of f,% (%) f5]lows from the fact that the summation bounds are independent of K, so

fﬁ() as expressed above is a polynomial combination of vn Kq_t+1, With coefficients that

are also independent of K. O
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6.2 Enumeration of Vertical Arrays

At this point, we are ready to decompose proper vertical arrays. In this section, we
will focus on tree-shaped vertical arrays. Recall from Definition 3.5 that a paired array
a € PAS?}?);R is tree-shaped if the support graph of s is a tree. With tree-shaped vertical
arrays, we can delete a row that is a leaf in the support graph while keeping the support
graph a tree. This allows us to recursively decompose tree-shaped vertical arrays into
smaller tree-shaped vertical arrays and arrowed arrays. Then, by using the substructures
defined in the previous chapter, we can provide a formula for vfj}cR when the support
graph of s is a tree.

Definition 6.6. Let o € PV.AS)K;R be an n-row proper vertical array with R; as its set
of marked cells in row 7, and v; as its forest condition function for row i. A substructure
A = (x,P,¢) as defined in Definition 5.16 is A-compatible with row i of a if P = R; and
¢ = ;. Furthermore, let R} and R;, be such that 1 < R < R; and 1 < R, < K, and
suppose that W is a z-subset of [s; + R; + x — 1] for some x > 0. We define A, ;  to be the

(z+Ri—R})
substructure of AR KiR),R,

and z; is the number of vertices inserted into cell (7, 7) of v if W is inserted into row 7 of
a by the insertion procedure defined in Procedure 3.11.

with parameters A, ;v = (X, Ry, 1;), where x = (2q,...,2k)

By definition, A, ;)y is A-compatible with row ¢ of a. Note that unlike O, ;y, defined
in Definition 6.1, the parameters of the arrowed array is not predetermined by x. Also, by
summing over the number of vertices inserted into cell (i, j), we have [W|=>" i T

With this substructure defined, we can now decompose tree-shaped vertical arrays. Let
a € PVA,(iL k.r be an (n + 1)-row proper vertical array, and without loss of generality
assume that row n + 1 is a leaf vertex adjacent to row n in the support graph of s. To
extract row n+1 from «, we mark the cells in row n containing the critical vertices matched
with vertices in row n+ 1. Then, we remove all pairs between rows n and n+ 1, and delete
row n—+ 1. To keep track of the removed vertices in row n, we use a (s,+1 — P + R,,)-subset
to represent the positions of the non-critical vertices, and an arrowed array to represent
the critical vertices and pairings of the vertices removed.

Theorem 6.7. Let n, K > 1, s = (S12,513,---,5unt1) > 0, and R = (Ry,...,Ry41) €
[K]"H. Suppose the support graph of s is a tree with the vertex n+ 1 as a leaf adjacent to
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the vertex n. Then, there exists a decomposition

min(sp4+1+Rn,K)

C:PVAY, en— U U (B, W, Ag )
P=fin sePval) .,
WG[S7L+R7L_1;571+1_P+R7L]

of proper vertical arrays into a triple of smaller vertical arrays, (sp+1 — P + R,)-subsets,
and arrowed arrays. Here, Ag,,w are substructures of AR%E:L)RMN s’ is s restricted to an
n X n matrix by removing the last row and column, s; = Ek# sig for1 <i<n+1, and

R’ is a vector of length n given by

R, k<n
R, = { "
P k=n

Furthermore, this decomposition is a bijection.

Note that s,, includes the vertex pairs between rows n and n + 1, and the marked cells
in row n of § are given by R/, which is a set of size P that contains R,, as a subset.

Proof. The proof of this theorem uses techniques similar to those in the proof of Theo-
rem 6.3. That is, we will provide the decomposition and its inverse, and prove that it is a
bijection. We take the mixed pairs between row n and row n + 1 of a, and put them into
an arrowed array (o, ¢). Then, we add marked cells and arrows to (o, ¢) in such a way that
rows n and n 4+ 1 of o have the same forest condition functions as rows 1 and 2 of (o, ¢),
respectively. To record the position of the non-critical vertices in row n, we extract and
record these vertices as a $,4.1 — P+ R,-subset of [s,, + R,, — 1]. Finally, we mark the cells
of a containing the critical vertices of row n that are paired with vertices of row n + 1, so
as to preserve the forest condition for row n.

Let V be the set of non-critical vertices that are paired with vertices of row n+1, and U
be the set of critical vertices that are paired with vertices of row n+1. Note that the vertices
of U and V must be in row n by our assumption, and that |/ U V| = s,,1. Furthermore,
the vertices of & must be in distinct columns, and these columns must be unmarked in row
n. Therefore, if we let P = R,,+|U|, we have R, < P < K. Furthermore, since [U| < s,,,1,
we have P < s,.1 + R,, which combines to give R, < P < min(s,41 + R,, K). Then,
suppose that s;; is the number of vertices in cell (7, j) that are paired with vertices of
row k, where ¢ # k. By Lemma 3.6, s, = s forall1 <i<k<n+land1<j<K.
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Now, to construct the proper vertical array § € PV.ASII)(;R, and the subset W €
[$n + Ry — 1; 8,41 — P+ R,], we first mark the cells containing the vertices of U, and
call this vertical array o/. By Proposition 6.2, o/ is also proper. Next, we unpair all vertex
pairs with one vertex in row n + 1, delete row n + 1, and call the resulting array o”. As
this leaves all other mixed pairs unchanged, s’ describes the number of mixed pairs of o”,
as it is the restriction of s to the first n rows and columns. Then, as the support graph of
s’ is the support graph of s with the vertex n + 1 removed, the support graph of s’ is also
a tree. Also, note that deleting row n + 1 removes the variables s,,114; and sy 41 ; from
o/, but leaves the remaining s, ; the same for all 1 < i,k <n, i # k. Therefore, we have
Sir; = Siky for all 1 <,k <mn, so the conditions of Lemma 3.6 remain satisfied in o, so
o' satisfies the balance condition. In addition, since the vertices of U/ UV are non-critical
in o, they do not affect the forest condition. Therefore, the forest condition remains sat-
isfied when we unpair the vertices of &/ UV and delete row n 4+ 1. This means that o” is
a proper partially-paired array. Next, we remove the vertices of U from o” to obtain the
partially-paired array «’’, and we extract V' from o as described in Procedure 3.11 to
obtain the subset W and the vertical array /5. Note that o/ has R, + |U| marked cells,
sp — [U] total vertices, and |V| = s, — P + R,, unpaired vertices in row n. Therefore, W is
a s, — P+ R,-subset of s, + R, — 1. Furthermore, by Proposition 3.12, 3 is also a proper
paired array. Notice that we have not changed any row other than row n and n + 1, so
R, = Ry for k < n. Then, as row n of § has R, + |U| marked cells, we have R/, = P. Also,
as with o, the set of mixed pairs in /3 is described by s’. Finally, as a has no non-mixed
pairs, neither does 3, so (3 is a vertical array. Together, we have [ € PVAS;)(;R, as desired.

To preserve information on the pairs we removed, we construct an arrowed array (o, ¢) €
Ag o such that ¢, = ] and 9,41 = 105, where ¢, and 1,41 are the forest condition
functions for rows n and n + 1 of «, while ¢] and 1%, are the forest condition functions for
rows 1 and 2 of (o, ¢), respectively. For each vertex v € U UV that is in cell (n,j), we
place a corresponding z, into cell (1, ) of o. Similarly, for each vertex w in cell (n + 1, j),
we place a corresponding vertex x, in cell (2,7) of o. If we need to place more than one
vertex into the same cell, we place them in the same order in ¢ as they are in . Then, for
each pair {v,u} between row n and n+ 1, we pair their corresponding vertices x, and z, in
0. Next, we mark cell (1, 7) of o if cell (n, j) of o is marked, and we mark cell (2, j) of o if
cell (n+1,7) of a is marked. Finally, suppose (n,j) of « contains a critical vertex u ¢ U.
Then, it must be paired with some vertex v in some cell (k,j’), where 1 <k <n—1. In
this case, we let ¢ (j) = j'. This completes the construction of (o, ¢).

Now, to show that (0,¢) € Ag,w = (x, R}, 0,), we need to first show that (o, ¢) is

in AR%&?R”H. Then, we need to show (o, ¢) satisfies the balance and forest conditions,
as well the conditions defined by x, R,,, and 6,,, where R/, is the set of marked cells in
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row n of 3, and #,, is the forest condition function for row n of 5. By construction, the
set of marked cells in rows 1 and 2 of ¢ are the same as the set of marked cells in rows
n and n + 1 of a. Furthermore, there are |U| + |V| = 5,41 vertices in each row of o, so
(0,0) € AR&??EL?RRH. Next, note that ¢ (j) is defined if and only if cell (n, j) of o contains
a critical vertex u ¢ U. Suppose u is paired with some vertex v, then cell (n,j) of g
remains unmarked, and u remains the rightmost vertex of 5. Furthermore, as u is still
paired with the same vertex v, we have 6, (j) = v, (j). Correspondingly, we have defined
¢ (j) to be the column that u resides in by construction of (o, ¢), so ¢ (j) = ¥y, (j) = 0, (4)-
Therefore, we have that ¢ = 6, as desired.

Next, we will show that (o, ¢) satisfies the balance and forest conditions. Recall that
in our construction of o, we placed a vertex in cell (1, 7) of o for every vertex in cell (n, j)
of U UV. Similarly, we placed a vertex into cell (2, j) of o for every vertex in cell (n + 1, j)
of a. Therefore, cell (1,7) of o has s, ,11,; vertices, and cell (2, j) of o has s,11,; vertices.
By Lemma 3.6, we have S, n41,; = Sn+1.0,; for all j, so (o, ¢) satisfies the balance condition.

To show that (o, ¢) satisfies the forest condition, it suffices to show that v, = 1,
Uni1 =y R, = RY, and R,y = RS, where R, and R, 41 are the set of marked cells
for rows n and n + 1 of «, while R} and R} are the marked cells of rows 1 and 2 of
o, respectively. Similarly, ¢, and ¢, are the forest condition functions for rows n and
n+ 1 of a, while 9] and v/, are the forest condition functions for rows 1 and 2 of (o, ¢),
respectively. This is because « is a proper vertical array, so v, and v, 11 must both satisfy
the forest condition. By construction, we have R,, = R}. Furthermore, cell (n, j) of « is
empty if and only if cell (1, 7) of o is empty, and cell (n, j) of « is marked if and only if cell
(1,7) of o is marked. Now, suppose cell (n, j) of a is unmarked, and the rightmost object
is a vertex u ¢ U. As explained in the previous paragraph, we have ¥ (j) = ¢ (j) = ¥ (j)-
Finally, suppose cell (n,j) of a is unmarked, and the rightmost object is a vertex u € U.
Let v be the vertex in row n+1 that u is paired to, and suppose v is in column j'. Then, the
vertices x, and x, corresponding to v and v are paired with each other in ¢. Furthermore,
x, and x, are in the same columns as u and v are in «, respectively. Since the vertices in
row 1 of ¢ are in the same relative order as the vertices of YUV, x,, is the rightmost object
of cell (1,7) of o. This gives us ¢} (j) = j° = ¥, (j). Combining these results, we have
Yy, = 1] as desired. The proof for row 2 is identical, except that since all critical vertices
of row n 4 1 are paired with vertices of row n, we can omit the case that requires ¢ (j).

Note that the set of marked cells in row 1 of ¢ is equal to the set of marked cells in
row n of «, so it is a subset of the set of marked cells in row n of 5. Then, if we reinsert
W into row n of 3, we recover o and the set V of extracted vertices by Proposition 3.12.
Recall that by construction, for each vertex v € V in cell (n,j) of a, we have placed a
vertex z, cell (1,7) of o. Furthermore, if cell (n,j) is marked in £, then it must either

150



be marked in «, or contain a vertex u € U. In the former case, cell (1,7) is marked in
o, and in the latter case, it is unmarked and contains the vertex z,. Therefore, cell (1, j)
of o contains z; + 1 vertices if cell (n,7) is marked in  and contains a critical vertex
in o, and z; vertices, otherwise. Therefore, (o, ¢) satisfies x and R/,. Together, we have
(0,9) € Og,; as desired.

Conversely, let f € PVAS,;)(;R,, W € [sp+R,—1;8,41 — P+ R,], and (0,¢) €

AR%E,)R”H that satisfies Ag, . We first construct partially-paired array 8’ by inserting
W into row n of 8 as described in Procedure 3.11. This gives us a set V of unpaired
vertices in ', which are labelled with the elements of VW by the insertion procedure. By
Proposition 3.12, £’ is a proper partially-paired array. Furthermore, by the definition of
Ag ., the vertices of V are in the same columns as the non-critical vertices in row 1 of o.
Therefore, we can create a correspondence between the vertices of ¥V and the non-critical
vertices in row 1 of 0. We do this by labelling the non-critical vertices in row 1 of ¢ with
W from left to right, ignoring the critical vertices and boxes used for marking cells. Then,
for each vertex v € V, we let z, be the non-critical vertex in row 1 of ¢ that acquired the
same label as v. Next, consider each cell (1,7) of ¢ that contains a critical vertex. Since
Ag o is A-compatible with 3, cell (n,j) of  must be marked. Furthermore, as the set
of marked cells is the same between § and /', cell (n,j) of f'is also marked. This means
that we can add an unpaired vertex u to cell (n, j), which we place to the right of all other
vertices in that cell. Similarly to the vertices of V, we let the corresponding vertex in cell
(1,7) of o be x,. After adding these vertices, we let the resulting partially-paired array
be 8”, and let the set of vertices added to obtain 3” be U. By Proposition 3.12, 5" is a
proper partially-paired array. Since row n of 8” has P marked cells, while row 1 of ¢ has
R,, marked cells, we have [U| = P — R,,. Also, since W is a (s,11 — P + R,,)-subset, we
have |[U| + |V| = sp41 as desired. Next, we extend 3" by adding row n + 1, and for each
cell (2, ) of o that is marked, we mark cell (n + 1, j) of 5”. Similarly, for each vertex z, in
cell (2,7) of o, we add a corresponding vertex v in row (n + 1, j) of 8”. Then, for each pair
{xy,z,} in o, we pair their corresponding vertices v € Y UV and v in row n + 1. We call
the resulting array $”. Finally, to recover a;, we unmark the cells containing the vertices
of U.

To show that a € PVASL’ xRr» We need to show that a satisfies the parameters R
and s, and that it satisfies the balance and forest condition. Since 3 satisfies the balance
condition, by Lemma 3.6, s;,,w. = 5;7i7j forall 1 <7 <k <nand1 < j < K. Note
that for each vertex in cell (1,7) of o, we have added a vertex in cell (n,j) of 8" and
have paired it with a vertex in row n + 1. Similarly, for each vertex in cell (2, j) of o, we
have added a vertex to cell (n+ 1,j) of 0. As o satisfies the balance condition, we obtain
Snn+lj = Sntimj. Next, note that s;x; = s}, ; for 1 <,k <n, as the only pairs we have
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added are between rows n and n + 1. Furthermore, s,,4+1x; = Sgnt1,; = 0 for £ <n, as all
vertices in row n + 1 are paired with vertices of row n by construction. This means that
the s, ; satisfies Lemma 3.6, so " and « satisfies the balance condition. Now, as the
vertices of Y UV are in row n and [ UV| = s,,41, « has s,,11 mixed pairs between rows n
and n 4+ 1. Then, as the vertices of row n + 1 are only paired with vertices of row n, we
have s, 41 = sp41 and s,41 5 = 0 for & < n. Furthermore, the set of marked cells is the
same between « and f for the first n — 1 rows, so R, = Ry, for 1 <k <n — 1. Also note
that row n of a has R/, — [U| = R,, marked cells in row n, as R/, = P and [U| = P — R,,.
Finally, row n + 1 of a has R, ;1 marked cells in row n + 1, as the set of marked cells in
row n + 1 of « is the same as the set of marked cells in row 2 of 0. Therefore, « satisfies
R and s as desired.

What remains to be shown is that « satisfies the forest condition. As the other rows are
unchanged, we only have to show that the forest condition holds for rows n and n + 1. To
this end, we will show that ¥, = ¥, ¥,41 = ¥4, R, = R}, and R,.41 = R, where R,, and
R.+1 are the set of marked cells for rows n and n+1 of o, while R} and R, are the marked
cells of rows 1 and 2 of o, respectively. Similarly, v, and 1,,., are the forest condition
functions for rows n and n + 1 of «, while ¥} and 1} are the forest condition functions
for rows 1 and 2 of (o, ¢), respectively. Note that (o,¢) € Ag, implies that (o, ¢) is
A-compatible with row n of 5, so ¢ is the forest condition for row n of 8. Furthermore, if
R! is the set of marked cells in row n of £, then by Definition 5.11, R! is also the set of
columns that contains the marked cells and critical vertices in row 1 of o.

Now, consider cell (n, j) of . Suppose that the cell is empty, then ¢ (7) is undefined. As
jisnot in R}, cell (1,7) of o is also empty, so 9| (j) is undefined. Then, since the vertices
of U and V are unpaired in 5", they are added only to non-empty cells of 3. Therefore,
both cell (n, ) of " and cell (n,j) of @ remains empty, so 1, (j) is also undefined. Next,
suppose cell (n, j) of 5 contains a critical vertex u, paired with some other vertex v. In this
case, ¢ (7) is defined, and 9} (j) = ¢ (j). Again, since the vertices of U and V are unpaired
in 8", they are not the rightmost objects of their cells, so the set of critical vertices of (3
and " are the same. Furthermore, since cell (n,7) of 5” is already unmarked, unmarking
marked cells has no effect on u. In particular, u remains a critical vertex in «, and is paired
with the same vertex v. Therefore, ¥} (j) = ¢ (j) = ¥ (§). On the other hand, if cell (n, j)
of f and cell (1,7) of o are both marked, then cell (1, j) of ¢ only contain the vertices of
V, as we only add vertices of U to a cell (n,7) of 8" if cell (1,4) of o contains a critical
vertex. Hence, cell (n,j) of o remains marked when we unmark the columns containing
vertices of U. In this case, neither ¢ (j) nor 1, (j) are defined. Finally, if cell (n, j) of 3 is
marked, but cell (1,7) of o is not, then cell (1,7) must contain a critical vertex z, paired
with some vertex x, in a column j'. In our construction of 5”, we have added vertices
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u € U to cell (n,j) corresponding to x,. Furthermore, we have added a vertex v to cell
(n+1,7) in 5" corresponding to z,. When cells containing the vertices of i are unmarked,
u becomes a critical vertex. Since wu is paired with v and =z, is paired with z,, we have
1 (j) = j' =, (j). Combining these results, we have 1), = 1)} as desired. Finally, as cell
(n,j) of o is marked if and only if cell (1, j) of o is marked, we have R,, = R} as well.

The proof that 1,11 = 1 is similar. Note that cell (n + 1, 7) is marked in « if and only
if cell (2, j) is marked in o by construction. Therefore, we have R, 1 = R). Next, suppose
that cell (n + 1, j) of « contains a critical vertex v, paired with some vertex u in cell (n, j)
for some j'. Then, their corresponding vertices x, and x, must be in cell (2,7) and cell
(1,7") of o respectively. Furthermore, cell (2,7) of o must be unmarked by construction,
so we have ¥,,.1 (7) = ¥, (j). Together, we have 1,1 = ¥}, as desired. This shows that «

satisfies the forest condition, so a € PVASL KR

Finally, we have to show that the two operations presented are inverses of each other.
By Proposition 3.12; the extraction and insertion procedures are inverses. Furthermore,
if we extract }V and reinsert it, the vertices inserted acquire the same labels as before the
extraction. Therefore, we can correspond the non-critical vertices in row 1 of (o, ¢) with
the vertices of V. Then, the columns which contain the critical vertices U are exactly the
columns of (o, ¢) that contain critical vertices in row 1. This allows us to recover the
columns of U, so that we can add critical vertices and unmark cells. Similarly, the vertices
in row 2 of (o, ¢) correspond to the vertices of row n+1 of a. As we have a correspondence
between the vertices of U/ UV and vertices of row n + 1 with the vertices in row 1 and 2
of (o, @), respectively, we can recover the pairing of the removed vertices via the pairing of
vertices in (o, ¢). Therefore,  as described, is a bijection. O

Note that in the proof of Theorem 6.7, o' and " corresponds to each other, so does
o’ and (", as well as o and (. Also, note that the decomposition works with any row
that is a leaf vertex of the support graph. The assumption that the leaf vertex is n + 1
and is adjacent to vertex n is only for the convenience of proving the theorem. With this
decomposition, we can iteratively pick a row where the support graph of s is a leaf, and
remove that row. This leaves arrowed arrays with support graph s’, which is a tree with
n rows, so we can repeat the induction. Therefore, we can reduce the problem to 1 row
vertical arrays, for which the answer is simply ( Il?i )

As an example, we will decompose the tree-shaped vertical array in Figure 6.5. As the
edges are between rows 1 and 2, rows 2 and 3, and rows 2 and 4, the support graph of s is
a tree. By following the decomposition described in Theorem 6.7, we can decompose row 4
and arrive at the partially-paired array o’ and o/, as depicted in Figure 6.6. For clarity, we
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Figure 6.5: A tree-shaped, 4-row vertical array

/

have marked the vertices of U and V in «”, and labelled the objects in row 2 of /. After
the decomposition, we obtain the minimal array  and the arrowed array (o, ¢), depicted
in Figure 6.7. We also obtain the subset W, = {1,2,6} € [12;3] and P; = 3. We can
then continue the decomposition with row 3. This gives us the subset W5 = {2,4} € [9; 2],
P; = 4, and the arrowed array in the left figure of Figure 6.8. Subsequently decomposing
row 2 gives us the subset Wy = {3,4,6} € [6; 3], P, = 4, and the arrowed arrays in the right
figure of Figure 6.8. The final resulting vertical array is a 1-row array with no vertices,
and cells 1, 2, 4, and 5 marked, as depicted in Figure 6.9.

Now that we have a decomposition of tree-shaped vertical arrays, we can provide an
explicit formula for US)K,R via induction. We start with the following corollary.

Corollary 6.8. Let n, K > 1, s = (512,513,+--,8nmt1) > 0, and R = (Ry,...,Ry41) €
[K]”+1. Suppose the support graph of s is a tree with the vertex n+ 1 as a leaf adjacent to
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Figure 6.6: Partially-paired array o” and o’ corresponding to the decomposition of row 4
of Figure 6.5
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Figure 6.8: Arrowed arrays from the decomposition of row 3, then row 2, of Figure 6.7

U U U 0

Figure 6.9: 1-row vertical array from the complete decomposition the vertical array in
Figure 6.5

the vertex n. Then,

min(sp+1+Rn,K) min(sp41,K)—1

’Uﬁzil,K;R = Z Z (
P=R, Apy1=0

(Sn+1 — P + Rn> (K - An+1 - ].)' (Sn+1 - An+1 — 1)' (P — ].)'

(P~ Ry — Ayt (K — Ropr — Apt)! (B — D1 (Ryir — 1)!

sp+ R, —1 U(S/) «
Spl — P + Rn o EGRY

where s’ is s restricted to an n X n matriz by removing the last row and column, s; =
Zk# sir for1 <i<mn+1, and R is a vector of length n given by

R, k<n
R, = {*
P k=n

Proof. Let P be such that R, < P < min(s,41 + R, K), B € PV.AS%;R, be an n-row
vertical array with parameters as defined in Theorem 6.7, W be a (s,41 — P + R,)-subset
of [s, + R, — 1], and Ag, v be a substructure of AR&?’?&?R”H' As 3 is a proper vertical
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array, the forest condition function 6, for row n satisfies the forest condition, so it is a
forest with root vertices P = R/,. Therefore, by applying Corollary 5.20, we have
min(sp41,K)—1 | |
Z (Sn+1—P—|—R )(K—An+1—1) (Sn—i-l _An+1 —1)(P—1)
(P Ry, — An—H) (K Ry — An-i-l) (R - 1) (Rn-i-l - 1)!

T (Agnw)

An+l =0

Note that this formula is independent on 5 and W, and only depends on P. Furthermore,
the constraint R,, < P < min (s,,1 + R,, K) matches with the definition of substructure A.
Then, for a given P, there are (sz:r_Rg;;n) distinct (s,41 — P + R,,)-subset of [s,, + R, — 1].
Finally, for a given R = P, there are vfj I)<;R’ proper vertical arrays. Combining these gives

the formula of our corollary as desired. O]

As we have assumed that the support graph G of s is a tree, we can repeatedly select a
row that corresponds to a leaf vertex in (G, and iterate the decomposition in Theorem 6.7.
Then, by taking the cardinality of both sides, we obtain the following theorem.

Theorem 6.9. Let n, K > 1, s > 0, and R > 1. Suppose the support graph G of s is a
tree. Then,

min(sel,K)—l min(senil,K)— n—1 K Ae] )'

U'ELS,}CR = Z Z H K—i—s:—A: '),X

Ael =0 Aen71:0 ] 1

ﬁ K+Zm(5m Aig = DR =14+ 8ik)!
i—1 VK = Ry = D g Aie) (R + 2 (sie — 1))!

where ey, ..., e,_1 are the edges of G. Furthermore, for each edge e; = {i,k} in G, the
summation variable Aej can be equivalently written as A; and Ay;. Finally, the sum ),
is over all indices k that are adjacent to i in the support graph of s.

For example, if n = 3 and sy 3 = 0, the formula reduces to

min(s1,2,K)—1 min(s13,K)—1
D S D e [Ty e el
Aiamo Arazo 1 Va5 Vs - 2 1,2)!
(K +si20+s13—A1o—A13—2) (R + 512+ 513 —1)!
(K—Rs—Ai3)l (K =Ry — A1 — A1 3)! (R + 512 + 513 — 2)!
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Notice that the bounds on A, ensure that the factorials in the numerators are non-negative.
As we shall later see, we can remove the upper bounds of K —1, but upper bounds of s., —1

are necessary and cannot be removed. For a list of expressions of UT(LS)I('R for small values
of n, see A.

in the denominator of our

Proof. Note that if R; > K for some i, we have (K_Ri_zljk,\,i T

summation term. This causes the entire sum to be zero, consistent with our convention

that requires vT(LS)K‘R = 0 in such cases. Otherwise, we prove this theorem via induction on

the number of rows.
Base case:
Suppose n = 1, then there are exactly ( 11%(1 ) vertical arrays in PV.AS}(; Ry as l-row

vertical arrays cannot contain mixed pairs. Hence, arrays in PV.A&S}(; r, have K columns,
Ry marked cells, and no vertices. On the other hand, this also means that the variables
Se, and summations A.; do not appear in viS}( r,» S0 our inductive formula reduces to

N K!(Ry —1)!
LEsR T (R — DI (K — Ry)IRy!

- ()

which agrees with our base case as desired.

Inductive step:

We want to prove that Ufil, xR 8lves the number of vertical arrays in PVASL KR

assuming that the formula is true for n-row vertical arrays. Let s = (512,513, -, Snnt+1) >
0 and R = (Ry,...,R,41) > 1. Without loss of generality, assume that the functional
digraph of s has vertex n+1 as a leaf, and is adjacent to vertex n. Then, for convenience of
notation, let s; = >, . sik, Ai=> ;. Aig, and §; = >, .1for 1 <i<n+1. Note that
since n+1 is a leaf adjacent to n, we have s,1 = s, n11 and A, = A, 1. Furthermore,
let the ey, ..., e, be the edges of the support graph of s, with e, being the edge between
vertex n and n + 1. This means that for 1 <7 <n — 1, A; does not contain the variable

An,n+1 .

Now, by applying s,, = s, — S,41 to our inductive hypothesis, we have
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min(sel,K)—l min(senfl,K)—l n—1 (K o Aej - 1)]

e = DL ) H(K—i—sej—Aej—l)!X

Ae; =0 Ac,, =0 j=1

en—1

n—1

(K+ 58y —Snt1—Apn+ A1 — 0+ DH(P+ 8, — Spy1 — 1)
(P-DI(K—P— Ay + A ) (P + 50— Spet — 0, + 1)

Note that A,, and §,, are substituted with A,, — A, and §,, — 1, respectively, as the support
graph of s’ does not contain the edge e,, = {n,n + 1}. To simplify the expression for further
manipulation, we let C' (Ael, - ,Aen_l) to be the first two products inside the sum. That
is, we rewrite the above expression as

W =Y. C(Ag,. Al ) X

(K+ 58y —Sn11 —An+ A1 — 0+ DH(P+ 8, — Spyr — 1)!
(P—1DI(K—-P—A,+ A1) (P+ 58, — Sps1— 0 + 1)!
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Then, we can substitute this expression into Corollary 6.8, which gives

min(sy+1+Rn,K)
o kR = > Yo O (A A ) X
P=R, AcyAe,
(K + Sn — Sn41 — An + An+1 - 671 + 1)' (P+ Sp — Sn4+1 — 1)'
(P—1)I(K—-—P—A,+ A1) (P+5p — Spe1 — 0 + 1)
(sn + R, —1)! "
(Sps1 — P+ Ry)! (s — Spe1 — 1+ P)!

min(sy41,K)—1

Z (Sn+1 - P + Rn> (K — An+1 — 1)' (Sn+1 — An+1 — ]_)' (P — 1)'
(P — Ry — Ao) (K — Rt — Ane)! (B — )1 (Ross — 1!

An+1:0
min(sp+1,K)—1 min(sn+1,K—Rn)
Y S O (A )

AcqseesAey 4 Ap4+1=0 P=0

(K4 8p—Snt1 — A+ Aps1 — 6+ D! (s + R, — 1)!
(K—P—R,— A+ A1) (P+ Ry + 5p — Spg1 — 0 + 1)

(K — An+1 — 1)' (8n+1 — An+1 — 1)'

o — P — DI (P — A )N (K — Ryt — Ana)! (R — D! (Rogr — 1)

In the second equation, we have shifted the summation index P down by R,, and have
also rearrange the order of summation. This can be done as the summation bounds are
independent of other summation variables. Now, recall that as discussed in Section 1.3,
we can take % to be zero if x is a negative integer. This means that for P > s, — 1
and P> K — R, — A, + A,.1 > K — R,, the entire summation term is zero, as we have
(Spy1—P—1)!and (K—P—R, — A, + An1)! in the denominator. Note that A, >
A, 11 comes from the vertex n being the only vertex adjacent to the vertex m 4+ 1 in the
support graph. Also note that P is not part of the numerator, so we can safely increase
the upper bound of the P summation to infinity, without creating a negative factorial in
the numerator. Furthermore, if P < A, .1, then the summation term is also zero, as we
have (P — A,41)! in the denominator. This allows us to substitute P = @ + A, 11, and

160



sum over () > 0 instead. By doing these substitutions, we obtain

min(sp41,K)—1
Wien = Y S S (A AL X
AcyrnAe, | App1=0 Q>0
(K + 58— Snp1 — Apn+ Apir — 0 + D! (s + R, — 1)! "
(K—Q—R,—A)N(Q+ R, +Api1+ Sn— Snt1 — 0p + 1)
(K = Appn = D! (8041 — Apgr — 1)
(Sn+1 = Ap1 — Q = DIQNE — Rppq — Apya)! (B — D Ry — 1))

min(sy41,K)—1

_ Z Z C(Aey,. ., Ae, ) ¥

AcqreAe, Ant1=0
<_3n+1 + A1 +1,-K+ R, + A, )
2F1 ’1
Ry + Api1 & 8p = Snp1 — 0n + 2
(K + s = Snp1 — An + Angr = 00 + D! (50 + By — 1)!
(K= B = An)! (B + Anid 80 = Snga = On + 1)1
(K — Apyy —1)!
(K — Rps1 — Apy ) (R — D (Rpgy — 1)1
min(sp41,K)—1
= 2 S C(Ag. A X
Acyode, o Anp1=0
(Apy1 + 80— Spp1 =00 + K — Ay + 2)(5”+1—An+1—1)
(Rn + A1+ Sn — Spa1 — O + 2)(3n+1—An+1—1)
(K4 8p— Spp1 — Ap+ Apy1 — 0p + D (s, + R, — 1)!
(K — Ry — A)! (R + Angt + 85 — St — 0, + 1)
(K —Ap —1)!
(K — Rus1 — Aps ) (Ry — 1) (Rygy — 1)

min(sy4+1,K)—1

_ Z Z C(Aey,. ., Ae, ) ¥

AeqsesAe, 4 Ap4+1=0
(K + 50— Ay — 6)! (R + 50 — DK — Apypy — 1)!

X

where we have used the Chu-Vandermonde identity introduced in Proposition 1.3. Finally,
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note that since 6,1 = 1, we have

(K + sp1 — Ang1 — 0ps1)! (Rog1 + Spga — 1)1

=1
(K + spy1 — Apy1 — DN Rpg1 + Spg1 — Onp1)!

Multiplying this by the formula we obtained for USJ)FL x-r and expanding C (Ael, ey Aen_l),
we obtain

o min(sezl,:K>—1 min(sezn,:K)l ﬁ — A, —1)!
Uns ' — “e. x
+LKR =, Pt L_ K+ s, — Ae] 1)!

s (K+si—Ai—5»)'(Ri+si—1)!

=1

which proves our induction as desired. O]

To remove the upper bounds of K — 1 in Theorem 6.9, we will for each edge e of the
support graph of s, assign a vertex v that is incident to e. This will allow us to regroup the
factorial terms in vflf)l(;R, which will allow us to rewrite the expression with rising factorials.

Proposition 6.10. Let T'= (V, E) be a tree on n vertices, and x be a fived vertex in V.
Then, there exists a bijection p: E — V\ {x} such that for e € E, p(e) is a vertex incident
to e.

Proof. We prove this by induction. The proposition trivially holds for n = 1. Suppose
that for some n > 1, the result holds for trees with n — 1 vertices. Since trees with more
than one vertex have at least 2 leaves, let vy be a leaf of T' distinct from z, and ey be
the edge incident to vg. Then, by deleting vy and e, we obtain a tree 7" = (V', E’) with
n — 1 vertices, one of which is x. Hence, our inductive hypothesis gives us a bijection
p': B — V'\ {x} such that for e € E', p/ (e) is a vertex incident to e in 7”. From this, we
can define p: E — V\ {z} such that

p<€> _ {UO I e 6'0

p'(e) otherwise

For each e € FE, p(e) is a vertex incident to e. This is because either e = eg, which is
incident to vy by construction, or e € E’, in which case the result follows from 7" being
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a subtree of T'. Furthermore, as the vertices of V' are distinct from vy, p is an injective
function. The fact that |E| = |V\ {z}| shows that p is bijective, as desired. O

Note that in Proposition 6.10, we can let V = [n], E = {e1,...,e,_1}, and x = n.
Furthermore, we can label the edges in £ such that for 1 < j <n—1, p(e;) = j. By
pairing off the factorial terms in US)K;R involving the edge e; and terms involving its incident

vertex 7, we have the following corollary.

Corollary 6.11. Letn, K > 1,8 > 0, and R > 1. Suppose that the support graph G of s is
a tree with edges ey, ..., e,_1, such that e; is incident with vertex j in G for1 < j <n-—1.
Then,

(s) . - (Ri =1+, ;8ir)!
= 1 (R = DR + 3oy (s — 1))!

Seq—1 Sep_q1—1

k~n

X

X

) (Zhon (snk—1)+Rn)

) (Bi+ Ty Ajr—Ac;=1)
X

n—1
(K—Rj ) A1

j=1 k~j

(K + s, — Aej)(zkwj(sj,kf‘j,kl)seﬁA@j“)] (6.1)

where for each edge e; = {j, £} in G, the summation variable A., can be equivalently written
as Aj, and Ay j. Asin Theorem 6.9, the sum ZkNj 1s over all indices k that are adjacent
to j in the support graph of s. Furthermore, vS)K;R as expressed in this corollary is a

polynomial in K.

Note that we have dropped the upper bounds of K — 1 from each of the sums in the
corollary. However, the bounds of s, — 1 are vital, and cannot be removed.

For example, suppose n = 3 and s = 0. Then, we can let e; = {1,3} and e; = {2, 3},
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so the formula for %) 5 can be written as

v(s) _ (Rl + S120 + 813 — 1)! «
nHKGR (Ri — D! (Ry — 1)! (R3 — 1! (Ry + 812 + 813 — 2)!
s1,3—1 s33—1

Z Z (K —Rg— A3 — Agz+ 1)(R3+81‘3+82’372) X
A1,3=0 A3 3=0

[(K — Ry — Ay + )P (K = Ry — Agy + 1)

Alternatively, suppose n = 3 and s;3 = 0. Then, we can let e; = {1,2} and e; = {2, 3},

so the formula for Ufls,)K;R can be written as

n

o® = H (B + 512+ 513 —1)! X
n, KR 11 (R — DRy — D)1 (Rs — DN (R + 512+ 515 — 2)!

s1,2—1 s23—1

Z Z (K — R3 — A2’3 + 1)(R3+5273—1) y

A1,2=0 A3 3=0

[(K — Ry — A172 + 1)(R1—1) (K — Ry — AL? _ A273 + 1)(R2+A1,2—1) %

(K + S23 — Ag’g)(sl’2_A1’2_1)

In both instances, rising factorials of the form z(*) are omitted for clarity. Furthermore,
these are effectively equivalent expressions, the only difference being the labelling of the
vertices in the support graph of s.

Proof. First, we need to show that the expression in Corollary 6.11 is well defined. For
that, we need to show that the factorial terms in the numerator are non-negative, and
that the rising factorials each have a non-negative number of terms. That is, for each
rising factorial ), we need to show that y > 0. Observe that for 1 < i,k < n, we have
R; > 1 and s;; > 0. Together, this gives R; — 1+ >, .s;x > 0, so the factorials in
the numerator are well defined. Then, for each s;; that appears in the sum ), S,
we have s;; > 1, as we are only summing over terms s;; where {i,k} is an edge of
the support graph of s. This gives >,  (spx —1) + R, > 0. By our convention in
labelling the edges, each edge e; is incident to the vertex j, so can we let e; = {j,(}.
This means that A;, appears in the sum ZkNj A, s0 ZkNj Ajp — Ae, = Zi;% A >0,

which gives R; + kaj Ajp — Ae; —1 > 0. Similarly, s;, appears in the sum ZkNj Sj ks
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80 D i (Sik — Ajr — 1) — 8¢, + A, +1 = Ei;% (sjx — Ajr —1) > 0, as the summation

bounds of the expression gives A., < s.;, — 1 for all edges e; in the support graph. This
shows that the rising factorials all have a non-negative number of terms in them, so the
entire expression is well defined.

Next, we need to show that the expression in Corollary 6.11 gives the same values as
the expression in Theorem 6.9. Recall that we have assumed that each edge e; is incident
to vertex j in the support graph of s. Therefore, we can rearrange the expression in
Theorem 6.9 to

n

e = 11 (Bi =143 i Sik)!
Cm KR (Ri = D! (Ri 4 3 (s — 1)

min(se1 ,K)—l min(sen717K)—1

Z Z (K 4D n (Snp — Ay — 1))! y

X

=

Aey =0 Ae, =0 (K — Rn — Zan An,k)'
ﬁ (K — Aej B 1)' (K + Zk"‘j (Sj,k‘ — Aj,k _ 1))' (6 2)
Jj=1 (K - Rj - Zk’vj Aj,k;)! (K + Se; — Aej _ 1)| .

Furthermore, recall from Chapter 3 that for integers x and y such that x > 0, we have
(If—!y)! =(r—y+ 1)(y). Then, observe that the summation bounds implies that 0 < A, <
K—1and 0 < A, <s., — 1, s0in rows 2 and 3 of (6.2), the factorials in the numerator
are non-negative. Therefore, we can use this fact to convert the ratios of factorials into
rising factorials. Doing so shows that the summation terms in (6.1) and (6.2) are equal if
0 < Ac; < min (s, K) — 1 holds for all edges e;. As both expressions contain the bounds
0 < A, < s, — 1, it remains to show that the summation term in (6.1) is equal to zero if
A, > K for some edge e;.

Suppose 0 < A,, < 5., — 1 holds for all edges ey, but there exists some edge e; such
that A.;, > K. Let G' = (V', E') be the graph on n vertices, such that {7, k} € E" if A is
defined and A;;, > K. As A, is defined if and only if s;;, > 0, G’ is a subgraph of G, so G’
is a forest. Therefore, each component of G’ must have one more vertex than the number
of edges in the component. Let V be the set of vertices in G' with degree at least one, and
V be the set of vertices such that for v € V we have e, € E'. As we have assumed that

A, > K, Vis non-empty, so |V} )V‘ Let ¢ € V\V. Then, /¢ is incident to some edge
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{j, ¢} € G', but ¢y ¢ G'. If { = n, then

(X (sn0=1)+Fn)
_ _ _ (K + Zan (Sn,k - An,k - 1))‘

k~n

= 0

as K+, ., (Sng — Anr —1) > K > 0 implies that the factorial in the numerator is non-
negative, while K — >, A, < K —A,,<0and R, > 1 implies that the denominator
is the factorial of a negative integer. Otherwise, we have ¢ # n, which yields

BV e W
(K = Rp =3 Ack)!
=0

<K_R€_ZAN€+1

k~t

as e, ¢ G’ implies that 0 < ¢y < K — 1, which means that the factorial in the numerator
is non-negative. Since {j,¢} € G', we have K — >, , Ay < K —A;; <0 and R, > 1,
so the denominator is the factorial of a negative integer. In both cases, at least one of the
rising factorial is zero within the summation term, so the entire term is zero if A., > K,
as desired.

Note that the numbers of terms in the rising factorials are independent of K, so each
summation term in (6.1) can be written as a polynomial of K. Furthermore, as the number
of summation terms is bounded by the s ’s, the number of terms is finite and independent
of K. Therefore, the entire sum is a polynomial in K. Finally, the factorials outside the
sum are independent of K, so the entire expression for vs)}(;R as written in this corollary
is a polynomial in K, as desired. O

With this, we have obtained an expression for vflf)l(;R that is a polynomial in K for all
R > 1, if the support graph of s is a tree. We can then substitute this into Corollary 6.5
to obtain a polynomial expression for fé?}(s) by Theorem 3.7. Then, using Fact 2.4, we can

substitute K = z into the expression for f,gfl}?) to obtain AT (x). This solves the problem
we have laid out in Section 2.1, for the cases when the support graph of s is a tree. Explicit
computations of Alg®) (x) for small values of n, q, and s can be found in B.
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Chapter 7

Applications and Conclusion

7.1 Reduction of Main Result ton =1,2

In this section, we will show how our results generalize the formulas of Harer and Zagier [19]
for n = 1, and Goulden and Slofstra [18] for n = 2, introduced in Section 2.3 and Section 2.4
respectively. To achieve this, we combine the results of Corollary 6.5 and Theorem 6.9 to
obtain an expression for 72?}(3), and do the necessary algebraic manipulations to transform
the expression into a form we desire. By Fact 2.4, we can substitute K = x into the
expression for ,EqKS) to obtain A% (x), and compare it with the formulas presented in

those two papers to see that they are equal.

In the case n = 1 of our main problem, there are no mixed pairs. Thus, vertical arrays
in VA(IS}(; g, contain K columns, zero vertices, and R; marked cells, arbitrary placed. By
direct computation, we see that vﬂ( R = ( Ji%(l ) For simplicity, we let ¢ = ¢; and t = t;.
(29)!

Substituting this into Corollary 6.5, and using the fact that (2¢ — 1)!! = 22, we have

24q!?
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(@) - & K
foge = Zztt!(q—t)l (q—t+1)

t=0

" K q! K
= Q=D 20=atl (g — t)! (q —t+ 1)

t=0

_ (2q—1)”§2kﬁik)!. (kﬁ)
= (2g-pu) 2t (k ! 1) (IID

k>1

where we substitute ¢ = ¢ — k to reverse the sum in line 3. To obtain the final result, we
shift the summation index by 1, and note that for £ > ¢ + 1, the summand is zero. This
allows us to remove the upper bound on the sum. By substituting in K = x, we see that
A% (1) is the same as the Harer-Zagier formula given in Theorem 2.10, as desired.

In the case n = 2, we show that the generating series Al (x) we have computed is
equivalent to that of Goulden and Slofstra by using the 3F, identity described in Theo-
rem 1.5. The technique for proving this is motivated by comparing the definitions of paired
arrays between the two papers. In particular, they have included in their paired arrays a
non-empty condition. As the matrix s contains only one entry, we will simply denote it as
s for convenience.

Definition 7.1. A paired array « satisfies the non-empty condition if each column of «
contains at least 1 object. We denote the set of proper vertical arrays that satisfy the non-

empty condition as N VAS’)K;R, and we let hS)K;R = ‘N VA,(QS’)K;R‘. To mirror our definitions

for mfﬁ'}??R and US}(;R, we extend our definition of hSLS’)K;R to all R > 1 by letting h,(z)K;R =0

if R; > K for some 1 <¢<n.

Note that vertical arrays are paired arrays with q = 0, so the definition of A/ VAS)K;R
is consistent with the non-empty condition. Now, there is a simple relation between the
number of proper vertical arrays satisfying the non-empty condition, and the number of
proper vertical arrays in general, given by the following lemma.
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Lemma 7.2. Letn, K >1,s >0, and R € [K]". We have

Proof. To prove this result, we will provide a mapping

K
C:PYVAn — U K F x NVAS

F=max(R1,...,Rn)

and show that this mapping is a bijection. The idea behind this proof is to remove all
columns without vertices, while keeping track of the position of those columns.

Let o € PVAS’)K;R be a proper vertical array, F be the set of columns of o that contain
at least one object, and |F| = F. As the boxes used to mark cells are considered objects,
we see that F C [K; F], where R; < F < K holds for 1 < i < n. We can permute the
columns of F so that they are the first F' columns of the array, while keeping their relative
order with each other. This gives us a vertical array, which we denote o/. As discussed
back in Section 3.1, permuting the columns preserves the balance and forest conditions,
so o is a proper vertical array. Then, we can simply delete the empty columns. As these
columns do not contain vertices or marked cells, they do not affect the balance or the forest
conditions. This results in a vertical array § with F' columns and R; marked cells in row
i,s0 € NVAS)F;R, as desired.

Conversely, given max (Ry,...,R,) < F < K, F C [K;F]|, and 8 € NVAS’)F;R, we

can reconstruct o € PVAS)K.R by reversing the decomposition. First, we add K — F

empty columns to the right of the existing columns, giving us a vertical array o/ with K
columns and R; marked cells in row 7. As the added columns do not contain any vertices
or marked cells, both the forest and balance conditions are preserved. Therefore o’ is a
proper vertical array. To recover «, we permute the columns of o’ so that the F' non-empty
columns of o/ are placed in the columns F, doing it in a way that preserves their relative
order. The remaining K — F' columns, occupying the columns IC\F, are completely empty,
so this procedure is unambiguous. As permuting the columns of a paired array preserves
the forest and balance conditions, this gives us a proper vertical array, which we denote «.
As o has K columns and R; marked cells in row ¢, we have a € PV.AS)K;R, as desired.

Note that each step of the converse simply reverses the step done in the forward direc-
tion. Therefore, the function ( as described is a bijection. To obtain the formula in the
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lemma, we take the cardinality of both sides of (. We can then change the lower bound
of the summation to ' =1, as hﬁj};R = 0 if R; > F by convention. Doing so gives us the
formula we desire. m

Using this lemma, we can derive the values of véf}QR given the values of hé‘f};;R. In

Theorem 5.2 of Goulden and Slofstra, they have computed a formula for hgﬁ;R. Using our
notation, their formula can be stated as

ORI (s4+ Ry — ) (s4+Ry— 1) s+ Ry + Ry — 2
2, R (s+ Ry + Ry — 2)! F_1

F-1 F—-1 F—-1 F—-1
{<R1—1)(R2—1> a (3+R1—1) (3+R2—1)]
(s+ R — 1Dl (s+Ry— 1I(F—-1)!
(5+Ri+Ra—F— 1) (R — DI (R — DI(F — R)!(F — Ry)!
(F —1)!
(s+Ri+R—F -1 (F—s—R)! (F—s— Ry)!
= Ty — hs (7.1)

where the variables ¢ and j in their paper are given by R; — 1 and Ry — 1, respectively.
Note that this formula holds for all positive integers s, F', Ry, and Ry, since the binomial
coefficients inside the brackets are zero if Ry > F or Ry > F. Equivalently, this follows
from having (F' — R;)! and (F' — s — R;)! in the denominator of the two terms, for i = 1, 2.
For convenience, we let the two terms of the formula be called h; and hy. Combining this
formula with Lemma 7.2, we obtain

K K
s K K
Shn = 2 (5) =2 ()
F=1 F=1

Now, if R; > K for some i = 1,2, then R; > F for 1 < ' < K. Hence, we have Uéﬁ%{;R =0,

which matches our formula for véf}(;R in Theorem 6.9. Otherwise, we have 1 < R; < K, so
we can use the 3F, identity in Theorem 1.5 on both sums separately. By substituting in
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A = K — F to reverse the first sum, we have

" K . & (s+ Ry — DI (s+ Ry — 1)
;(F) b ;) (Ri— D) (Ra— DI (s+ R+ Ra— K+ A—1)l
(K — A—1)IK!
(K — Ry — A)l (K — Ry — A)l (K — A)IAl
B 1 o (—K+R1,—K,—K+R2' >
T B —D!'(Ry—1) PP\ s+ R +R—K -K+1

(s+ Ry — 1) (s+ Ry — 1) (K —1)!
(5+ Ryt Ro— K — 1) (K — R) (K — Ry)!

Note that for A > K — Ry, the summand is zero because of the term (K — Ry — A)! in
the denominator. This allows us to lower the upper bound of the sum to K — Ry, which
we can write as a terminating 3F5, with one of the parameters matching the upper bound.
Using the 3F, identity in Theorem 1.5, we have

K (K)h B (s + Ry) ) - (—K+R1,1,—K+R2'1> .
E 1 — 342 )
F (S+R1—|—R2—K)(K7Rl) 1_K_8’_K+1

- (s+ R — D) (s+ Ry — 1)1 (K — 1)

K—-Ry

B (s+K—-A-1I(K—-A-1)
= 2 (K— Ry — A (K — Ry — A)V(Ry — 1)! (Ry — 1)!

(7.2)

A=0

By applying the substitution A = K — F' to the second sum, we have

K K-1 . . 171
5 K\, 3 (K — A—1)IK! .
F Lo (s+Ri+Ry— K+ A—1)I(K — A)Al

F=1 =0
1

(K—S—Rl—A)|(K—S—R2—A)'

To evaluate this sum, we separate it into two cases. If s > K — Ry, then (K — s — Ry — A)!
in the denominator forces each summation term to be zero. Hence, the entire sum is zero.
Otherwise, (K — s — Ry — A)! allows us to lower the upper bound of the sum to K —s— R;.
This means that we can write the sum as a terminating 3F5, with one of the parameters

171



matching the upper bound. Using the same 3F; identity on the sum, we obtain

K
K -K -K —-K
Z( )h2 _ 3F2< + s+ Ry, , +s+RQ;1>X

i\ F S+ Ri+Ry—K,—K+1
(K —1)!
(s+Ri+R— K- (K—-s—R)(K—5— Ry)!
R K +s+R,1,—K+s+ Ry
:<s+R1+R2—K)<K‘R1‘S>'“( 1— K +s,—K+1 ’1)X
(K —1)!
(s+Ri+Ry— K- (K—-5s—R)!(K—5s—Ry)!

P& (K—s—B—1I(K—B—1)
B §: (Ri — D! (Ry — 1) (K —s5s— Ry — B)! (K — s — Ry — B)!

B=0
e (K—A—-1I(K+s—A—1)

B Z;@rﬂw&—UMK—&—AMK—&—AM

(7.3)

where in the last line we shift the summation index up by letting A = B+ s. Note that the
summands in (7.2) and (7.3) are identical. Furthermore, the summation range of (7.3) is a
subset of that of (7.2). In particular, we are summing over 0 < A < s—1 for s < K — Ry,
and summing over 0 < A < K — R; otherwise. Therefore, we can combine the two sums
to obtain

K K
s K K
kn = 32 (o2 ()
F=1 F=1
7K7 l)

e (K—A-DI(K+s—A—1)
;% (Ri— DRy — DI (K — Ry — A)[(K — Ry — A)!

min(s,K)—1

(K—A-—DI(K+s—A—1)
(R — DI (Ro — DI(K — R, — A\ (K — Ry — A)]

A=0

where we have raised the upper bound from K — R; to K — 1, as the term (K — R; — A)!
in the denominator would make the summand zero for A > K — R;. This matches with

our formula for véS;(,R given in Theorem 6.9, as desired.

This shows how to derive the formula for U%;R given the formula of hgf};R. To derive
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the formula for h(QS};,R from that of vg{,R, we reverse the sequence of computations above
to show that vg{;R can be written as > x_, (%) (h1 — hy), then use induction on F with

Lemma 7.2 to show that hé‘f},;R = hy — hy for all F > 1. Furthermore, this derivation can

be seen as an algebraic proof that shows véf}(;R = ?:1 (?) hgf}(;R, given the formulas of

véf}{;R and hg{;R as defined in Theorem 6.9 of this thesis and Theorem 5.2 of Goulden and
Slofstra, respectively. With this g;)roof we can algebraically show that the generating series
for the number of pairings in A" in the paper of Goulden and Slofstra is equivalent to
the generating series computed i in thrs thesis. For clarity, we let the series in Goulden and
Slofstra be denoted B{** (z). By combining Proposition 3.2, Theorem 4.1, and Theorem

4.2 of their paper, we have

B () = Y% ( ) (qu N S) (2i — 1)!!(2%2;_L S) (27 — 1) x

k>1 >0 j>0
2q1 +s—2))! (22 +5—25)! ()
((I1 + 5 — i)! (q2 + 55— j)' 2,k;q1—i+1,q2—j+1

- IS ()
k 2t1+t2t1!t2 (Ch + 55— tl) (QQ + s — t2) 2,k;q1—t1+1,g2—t2+1

k>1 t1=01t2=0

Again, we have written the generating series using the notation we have developed, where
p and ¢ in their paper are given by 2¢; 4+ s and 2¢, + s, respectively. Furthermore we have
lowered the summation bounds to ¢; and ¢, as their convention implies that h2 kRiRy =0
if R <0 or Ry <0. Substituting in x = K, we have

BE () = 3 (21 + 5)! (242 + 5) Z
; t1=0 to=0 2t1+t2t1't2 91 +5— tr) ga+ S — tg ' ql—t1+1,q2—t2+1
1= 2=
== 2t1+t2t1't2 (g1 + s — tl). (q2 s —ty)) Ga-title—ttl

_ (q1,92;s)
= ok

by Corollary 6.5. Note that the conversion from Z;{:r ([;) hgcR to Uéf%(;R is done without
using Lemma 7.2, and only using the 3F5, identity in Theorem 1.5. By (2.2), we know

that A (K) = 2(7‘1[15(12;5) for all K > 1 as well. Therefore, by Fact 2.4, we have that
A(q’s) () = Béq’ (z) for all ¢ >0, g2 > 0, and s > 1, as desired.
Remark 7.3. This technique of transforming the sum with a 3F5 identity does not appear to
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be generalizable when applied to Theorem 6.9. It can only be used on summation variables
Ac; such that e; is an edge incident to a leaf vertex in the support graph of s. If e; is
not incident to a leaf vertex in the support graph, then the hypergeometric series with
respect to A, is a p11F),, where p > 3. In those cases, there are no known hypergeometric
transformations that can be applied.

7.2 Further Reduction to the Goulden-Slofstra For-
mula

In this section, we will show a method of reducing the number of sums in the formula of
Goulden and Slofstra using Pfaft’s identity. We start by rewriting Theorem 2.12 using our
notation, which gives the formula for A{* (z) as

s an (2q1 + $)! (2q2 + s x\ [(d—1t —t
Aéq)(l") - ZZZQtwg;lth _(12151_)752).'(/{)( kil 2) x
k=1 t1>0 t2>0
(o) lae) - () (5]
G —1t1) \q2 —t2 s+q —t1) \S+ g — 1o
_ %ZZ (2q1 + 9)! 2q2+s) (k —1)! (x)x
2t1+t2t1't2 — 1t —ty — k + 1)' k

k=1t1>0t2>0

1

(=t (k—q+t— 1) (g — t2)! (k — g2+t — 1)! -
d+1

ZZZ 2q1+3 2q2+5) (k—l)' ) s %
2t1+t2t1't2 -t —ty—k+ 1)' k

k=1 t1>0t2>0

1
(s+qp—t)(k—s—qg+ti—D(s+qg—t)! (k—s—q+1ta—1)!
= g1 — 92

where we have d = ¢; + g2 + s as in the original theorem. Similar to (7.1), we denote the
two terms of the formula by ¢g; and g, for convenience. Note that we have removed the
upper bounds for ¢; and t,. We can justify this by showing that the summation terms
can only be non-zero if both ¢t; < ¢ and t3 < ¢ hold. For gy, the term (¢, —t;)! in
the denominator means that for the summation term to be non-zero, we have t; < ¢;.
Similarly, the terms in the denominator of g imply that for the summation term to be
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non-zero, we have d —t;y —to —k+1>0and k — s — gy +t5 — 1 > 0. Together, this also
yields the bound ¢; < ¢;. By changing the indices, the same arguments show that t; < go
as well. As ¢; and ¢ are both smaller than the bounds in the original paper, we can safely
remove the upper bounds without changing the sum.

To reduce the number of sums in g; and g», we manipulate them separately with the
same transforms. We first use Pfaff’s identity to transform the sum involving ¢;, then
use the Chu-Vandermonde identity to eliminate t5. Afterwards, we make the summation
variables symmetric by making a substitution for k, before combining the results together.
For reference, the identities used for this procedure can be found in Proposition 1.3 and
Theorem 1.6.

By rewriting the t; sum of g; as a hypergeometric series and using Pfaff’s identity, we
have

d+1
—d—f—tg—i‘k—l,—ql'l
D ) 3 (4 AT B

k=1 t2>0
(2q1 +5)! (2g2 + 5)! (k — 1)!
(d-tg-k‘i‘l 1(k3—ql—1) (q2_t2 (k?—QQ+t2—1>

)!
_ dizg% ()(1_%)‘1—@—’“1 (d+t2+k—1 k7 1)><
(

k=1 t2>0 k—a
21 + )1 (2g2 + s)! (kK — 1)!

(d—ty—k+Dlg! (k—qr — 1) (g2 — t2)!
d+1

1 x
- ZZZ?d M (d —t —ty — K+ 1)! (k)x

k=1 t3>01,>0
(2q1 + $)! (22 + ) (kK +t; — 1)!
alk—qg+ti =D (g —t)! (k- g+t —1)!

D!
(

— @+t —1)!

While there is no upper bound for t;, the term (d — t; —ts — k + 1)! in the denominator
causes the sum to terminate. Furthermore, for the summation term to be non-zero, we
must have d —t; —to —k+1>0and k — g +t2 — 1 > 0 at the same time. Combining
these inequalities together gives us t; < ¢; + s, which can be used as an upper bound for
t;. Next, we rewrite the t; sum as a hypergeometric series, and note that it satisfies the
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Chu-Vandermonde identity. This yields,

d+1 q1+s
. —q2,—d—|—t1+k—1_
o= 5 gy ()n (TR T T )

k=1 t1=0
(21 + 9)! (22 + 8)! (k + 1 — 1)!
(d=ti—k+Da!(k—q +t1—1lg! (k—q —1)!
_ %qis +Q1—t1+1)(q2) ($)><
=1 t1= 2d R QQ)(qQ) k
(2q + 3) (22 + s)! (K + 751 - 1)
d+1 q1+s

_ ZZ —tl)‘ ) xr %
2R (d—t — k+ 1) \k

k=1 t1=0
(2q1 + 5)! (2(]2—|-S) (k’—i—t1 - 1)

Note that the term (d —t; — k+ 1)! in the denominator means that for & > d — ¢, + 1,
the summation term is zero. Therefore, we can switch the two sums and lower the upper
bound of k to d—t; +1. Next, the terms (k — ¢; +¢; — 1)! and (k — 1)! in the denominator
means that for the summand to be non-zero, we have k > max {¢; — t; + 1, 1}. Hence, we
can change the lower bound of k to ¢ —t; +1. Ask+1t; —1 > ¢ > 0 with this new
lower bound, the factorial term in the numerator remains non-negative. After changing
the bounds, we can reverse the sum with the substitution ¥ = d — t; — t5 + 1. This gives
us the formula

+s +s
t1=0 t2=0 2t1+t2t1't2 (d—tl—tz). d—1t; —ts+1

1

7.4
PP P 1 prap—— (7.4)

which is symmetric between t; and t,.

We now apply the same transformations to g,. By rewriting the ¢; sum of g; as a
hypergeometric series and using Pfaft’s identity, we have
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d+1
1 x —d+to+k—1,—q—s 1
g2 = ZZQtQtZ!'<k>2F1( ,§>><

k—aq — s

(2q1 + 5)! (2q2 + 5)! (B — 1)!
(d—to—k+1) (@ +s)!(kE—qg—s—1)(g+s—t)!(k—q— s+t —1)!

d+1 d—to—k+1
1 1 2 — —1
_ L s 1- = 2F1 d+t2—|—]€ 7k;—1 %
2.2 ot2t,]  \ k 2

k—q —s
k=1 t2>0 a1

(21 + 9)! (2g2 + 5)! (k — 1)!

(d—to—k+1)(r+s)!(k—qg—s—1)(g+s—t)(k—q— s+t —1)!
d+1

1 T
B ZZ Z 20—k+1g It (d — ty —ty — k + 1)1 (k:) .

k=1 t2>01t1>0

g1 + ) 2q0 + ) (k+ 1, — 1)!
(+s)k—q—s+ti =Dl (gg+s—t)l(k—q—s5+1t,—1)!

As with the case for g, the sum of ¢; terminates because of the term (d —t; — ty — k + 1)!
in the denominator. Also, for the summation term to be non-zero, we must have d — t; —
to—k+1>0and k — gy — s+ 1ty — 1 > 0 at the same time. Combining these inequalities
together gives us t; < g1, which can be used as an upper bound for t;. Next, we rewrite
the to sum as a hypergeometric series, and note that it satisfies the Chu-Vandermonde
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identity. This yields,

d+1 q1
B @ —8,—d+t;+k—1
o= S gy ()en (TR T )

k=1 t1=0
(21 + 8)! (22 + 8)! (kb + 1 — 1)!
(d—ti—k+D) (@ +s)!(k—qg—s+t:— D (ga+3)(k—g—s—1)!

B 3) SEUCLES L N (4 8
k=1 t;= 02d MLt ' —q2 — )(q2+s) k

(2q1 + ) (2g2 + s)! (k + £ — 1)!
d—t1—k+)(@g+s)k—qg—s+t1 =D (g2 + ) (k—gs—s—1)!
d+1 q )

= 33 s, L)
B e k+1t1 —ti—k+ 1! \k

(2q: + s) (22 + s)! (K +t; — 1)!
(1 +8) (g —t)(k—q —s+ti = 1) (g2 +s)! (k- 1)!

Note that the term (d —t; — k+ 1)! in the denominator means that for & > d — ¢, + 1,
the summation term is zero. Similarly, the term (k —¢; — s +¢; — 1)! in the denomlnator
means for k < q; +s — t; + 1, the summation term is also zero. Therefore, we can tighten
the boundsof kto g1 +s—t1+1 <k <d—t1+1,asd—t1+1 < d+land g1 +s—t;+1 > 1.
After doing so, we can reverse the sum with the substitution k = d —t; —t5 + 1. This gives
us the formula

qzqu? —t)!(d —t2)! (2q1 + 5)! (2g2 + 5)! < x )x
1=0 t2=0 20ttty o) (d — 1 — to)! d—1t; —ta+1

1
(@1 +8)! (g2 +8) (1 — t1)! (g2 — t2)!

(7.5)
which is again symmetric in ¢; and 5.

As we have (¢, — t1)! and (g2 — t2)! in the denominator of g, we can actually increase
the bounds of t; and t, to ¢; +s and ¢s + s without changing the sum, matching the bounds
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of g;. Finally, we can put (7.4) and (7.5) together and obtain

AT (@) = g1 —go
1+sq2+s

ZZ d—t)!(d—t2)! (2q1 + 5)! (2q2 + 5)! ' x y
2t1+t2t1't2 (d —t1 — tg). d—t —ty+1

t1=01t2=0

1 1
{QN%! (s4+q —t1)! (s +q2 —t2)! (611 + ) (g2 + ) (1 — t1)! (g2 — t2)!}
where d = q1 + ¢2 + s.

Remark 7.4. Note that the transformations used in this section cannot be directly ap-
plied to the formula of A (x) derived from Theorem 6.9, as the variables R; do not
appear together in the same factorial terms. This means that applying a o[} transform
on a summation variable ¢; will not have any effect on the type or the parameters of the
hypergeometric series of another summation variable ¢;. One potential method to remedy
this is to use the techniques in Section 7.1. This involves picking an edge e; = {7, k} in
the support graph of s, such that i is a leaf vertex. This allows us to break up the sum
of Ac; into two parts by raising the upper bound of A., from min (sej, K) —1to K —1.
Then, we can use one of the eighteen 3F, transforms on the summation variable A, in
hopes of creating an expression that has the variables t; and t; in a common factorial term.
However, for n > 3, the results of these transformations either fail to create a factorial term
with both ¢; and tx, or change the type of the hypergeometric series of ¢; or t; into a 3Fb,
with x = j:% as a parameter. This prevents us from using one of Kummer’s 24 solutions.
Other variations of this technique, such as applying hypergeometric transformations to ¢;,
ty, and A, in various orders, have also failed to create an expression that can be further
simplified.

7.3 Enumeration of Vertical Arrays with s Non-Tree

In this section, we will describe a method of computing v( ) r for small values of n, K, R,
and s, when the support graph of s is not a tree. This wﬂl allow for the computation of
Ale®) (x) for small values of n, q, and s. In general, this method of computation is more
efficient than doing an exhaustive search over all potential vertical arrays, then counting
the ones that satisfy the balance and forest conditions. Furthermore, for very small values

of n and s, we can derive a formula for v }(R that holds for all R > 1, and is a polynomial
in K.
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Definition 7.5. A paired array « satisfies the full condition if each column of « contains
at least 1 vertex. We denote the set of proper vertical arrays that satisfy the full condition

as F V.AS)K;R, and we let gS)K;R = ‘.7-" V.AS)K;R‘. Again, to mirror our definitions for mff;?R

and ’US}(;R, we extend our definition of gS)K;R to all R > 1 by letting gT(Lf)[(;R =0if R; > K
for some 1 <7 < n.

In contrast to the full condition for arrowed arrays in Definition 4.1, each cell must
contain a vertex instead of an object. Consider a column j of o for 1 < 5 < K. It must
contain a mixed vertex in some cell (7, 7) of that column, as « is a vertical array that
satisfies the full condition. Since « also satisfies the balance condition, by Definition 3.3, «
must contain a vertex pair {u, v} such that u is in row ¢ and v is in column j, but not row
7. This means that every column of o must contain at least 2 vertices, which also implies
that gS)K;R can only be non-zero if K' <'s, where s = »_._ s; is the total number of pairs
in the array. Combining this with the fact that 1 < R; < K, we have that for fixed values
of n and s, there is a finite number of values for K and R such that gfj)K;R is non-zero.

Theorem 7.6. Letn, K >1,s >0, and R € [K]". We have

. L d /KN /K-F K—F\
U;}(;R:ZZ”.Z(F)(Rl—rl)m(Rn—r)97(‘};‘”

F=1r1=1 rn=1 n

where v = (11, ...,7m,). Furthermore, for fized values of s and R, vflS’)K;R 1S a polynomial in
K.

Remark 7.7. Notice that for fixed values of s and R, gS)KR is non-zero only for a finite

number of values of K. Therefore, gfj}aR cannot be a polynomial in K without being

identically zero, which is not true in general.

Proof. The proof of this theorem is similar to that of Lemma 7.2. We will provide a
mapping

K min(Ry,F) min(Ry,,F)

¢PYvAYw - U U - U

F=1 ri=1 rn=1

(K F] % [K = F; Ry — 1] % -+ % [K = F; Ry — 1] X FVASy,
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and show that this mapping is a bijection. Again, we remove all columns without vertices,
while keeping track of the position of those columns. In addition, we need to keep track of
the number and positions of the marked cells within the columns without vertices.

Let a € PVAS?KR be a proper vertical array, F be the set of columns of o that contain
at least one vertex, and |F| = F. We see that 1 < F' < K, and F C [K; F]. Then, we
label the columns of F from left to right with [F] = 1,..., F, and label the columns of
IC\F with [K — F|'=1',..., (K — F)'. We can permute the columns of a so that they are
intheorder 1,...,F,1',..., (K — F)', and call the resulting vertical array o’. As discussed
back in Section 3.1, permuting the columns preserves the balance and forest conditions, so
o is a proper vertical array.

Now, let 1} be the forest condition function for row i of o’. As all vertices of o’ are
in the first F' columns, both the domain and range of v} are in [F], so the functional
digraph of ¢} has all its edges in [F]. This means that a column j' € [K — F]' is either an
isolated root vertex in the functional digraph if cell (7, ') is marked, or does not appear
at all if that cell is unmarked. In either case, the columns of [K — F|" can be removed
without violating the forest condition of row ¢. Furthermore, as these columns do not
contain any vertices, removing them preserves the balance condition as well. Then, recall
our overarching assumption that the support graph of s is connected. This means that row
i must contain at least one vertex, in some column j € [F]. Again using the fact that the
edges of the functional digraph are in [F/] , we have that the root vertex of the component
containing j in the functional digraph of ¢ must also be in [F]. Consequently, there
must be some r; marked cells in the columns of [F] in row 4, with 1 < r; < min (R;, F).
Therefore, we can remove the columns [K — F ]/ and be left with a proper vertical array f3,
where each column of 5 has at least one vertex. By letting r = (r1,...,7,), we see that
cF V.AS)FJ. Finally, note that for 1 < ¢ < n, there are R; —r; marked cells in the columns
of [K — F ]', with no restrictions on how they are placed. Hence, we can represent them
with a set §; C [K — F; R; — r;], where j € §; if and only if cell (¢,7') is marked in /.
This shows that given a vertical array «, we can determine the values of F' and r, then
decompose « into the objects F, 3, and §;’s, as desired.

Conversely, given 1 < F < K, 1 <r; <min(R;, F), F C[K;F],S; C[K — F; R; — ry],
and 8 € J’:VA;S’)F;IM with 1 <i<mandr=(ry,...,r,), we can reconstruct a € PVAS)K;R
by reversing the decomposition. First, we label the columns of g with [F] = 1,...,F,
then add K — F columns labelled [K — F|' = 1',..., (K — F)" to the right of the existing
columns. Next, we mark the cells in the columns of [K — F] with the sets S;. For each
i, we mark cell (7, ;') if and only if j € S;, marking R; — r; cells in total. This gives us a
vertical array o with K columns and R; marked cells in row 7. As adding empty columns
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does not add any vertices, the balance condition is preserved. Similarly, the only change to
the functional digraph v} of row 7 is adding isolated vertices, corresponding to the marked
cells in [K — F]'. Therefore, the forest condition is also preserved, so o’ is proper vertical
array. To recover a, we let the set of all columns, denoted K, be labelled with 1,..., K
from left to right, and note that F represents a subset of the columns of size F. This
means that we can permute the columns of o so that the columns of [F] are in F, and
that the columns of [K — F|]" are in K\F, preserving the relative order of both sets. As
permuting the columns of a paired array preserves the forest and balance conditions, this
gives us a proper vertical array a. So, we have a € PVAS)K;R, as desired.

As with the proof of Lemma 7.2, each step of the converse simply reverses the step
done in the forward direction. Therefore, the function ¢ as described is a bijection. To
obtain the formula in the theorem, we take the cardinality of both sides of (, then adjust
the summation bounds. As (f;) = 0 for K > F', we can raise the upper bound of F' from K
to s if K < s. Alternatively, we can also decrease the upper bound of F to s if K > s, as

gS)K;R = 0 for K > s. Finally, we can remove the upper bounds of K from the summations

of the r;’s, since we take gﬁj};;r =0ifr; > F for some 1 <¢ <n.
To show that vfzs’)K;R is a polynomial in K, recall from Section 1.2 that for integer k£ > 0,

_ (k) . . . .
we have (Z) = % As K only appears in the numerator of the binomial coefficients,

they are each a polynomial in K. Therefore, each summation term is a polynomial in K,
as the gs%;r are constants. As the number of summation terms is independent of K, the
entire sum is also a polynomial in K, as desired. O

Next, we will manipulate the expression in Theorem 7.6, so that we can remove the
u%)%oer bounds for r;. This will allow us to expand the sum and write an expression for
v, ir that does not require special cases for small values of R. Recall from Section 1.2

: ny _ (n—k+1)® . . . .
that for integer £ > 0, we have (k) = 7 — By viewing the binomial coefficient as a

function of n and manipulating this expression, we obtain the following identities
n\  k+1( n
k)] n—k\k+1
on—k+1(n+1
B n—+1 k
Effectively, these identities multiply both the numerator and the denominator of the ex-

pression by the same term, so they introduce removable singularities for n. Therefore, for
certain integer values of n, these expressions are undefined. However, we will generally
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simplify our expressions before evaluating them in our application, so these singularities
are removed, and the expression remains valid. By using these identities to expand ( g :f_ ),
we have for r; < R;

K-F\  (Ri—-r+1n"Y K—F 76)
Ri—ri) (K—F—R;+2)"D \Ri—1 .

Ri—ri+ )" V(K -F-R+2)"Y (K-1
(
(K—F—-R+2)" V(K -F+1)"Y \R-1

If we are to treat K as a variable, then these identities hold for all integers R; > r; > 0,
as we can write everything as rising factorials and simplify the expressions as necessary.
Furthermore, by writing the binomial coefficients as rising factorials, we see that the second
expression simplifies to the first, regardless of whether R; > r;. Now, for fixed integers
R; and r; such that r; > R; > 0, the rising factorial (R; — 7, + 1)(”_1) evaluates to zero.
This agrees with the upper bound of r; in the expression of Theorem 7.6, which allows us
to remove that upper bound. Then, to make the sums finite, we can decrease the upper
bound for each r; to F', as g,(;};;r = 0if r, > F. Doing so yields

s F F K
dhn = 2D alhe ()
F=1r=1 rp=1

IIua—n+nm*NK—ﬁuJﬁ+m”*)(K—1)
A K-F-R 42"V (K —-F+1)"Y \Ri—1

(7.7)

Note that when evaluating this expression, we should first substitute in the values for
R, simplify, then substitute in the value of K. Alternatively, we can leave the simplified
expression as a function in K, which by Theorem 7.6 is a polynomial. From there, we can

substitute these expressions for US)K;R into Corollary 6.5 to obtain a generating series for

Algs) (x), via the use of Fact 2.4.

Remark 7.8. Depending on the method of evaluation, the expression for (g :f ) in (7.6)

can be non-zero for r; > R;. In particular, if we are to substitute in K before R;, then
we can have (K — F — R; + 2)(”71) = 0, which causes the expression to be undefined.
(Rurit1)( )
(K—F—R;+2)("i~1)
contains the factor R; in both the numerator and denominator. As at most one term in
each rising factorial can be zero, we can cancel out this factor, which causes the expression

to evaluate to a finite number. Furthermore, we can also deduce that K — F — R; +2 < 0,

However, for fixed values of r;, K, and F', is a rational function in R; that
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or K—F < R;—1. However, for ( ) to be non-zero, we must have either K — F' > R;—1
or K — F' <0, the former of which we have already ruled out. In the latter case, the term

K
() in our expression for v }(R makes the summation term zero regardless. Therefore, our

expression for U,S )K,R remains valid for computing the number of vertical arrays, no matter

how we choose to evaluate this expression.

As an example, we will compute the formula for v,(f’)K;R in the simplest case where the

support graph of s is not a tree. This computation can be repeated for larger values of s,
as long as it remains feasible to compute all non-zero values of gq(f};r.

Example 7.9. Let n = 3 and s = (1,1,1). As gq(f},;r can only be non-zero for F' < s,

we only need to compute the values of gS};r for1 < F<3and 1< ry,ry,ryg < F. This
gives us the table of values in Table 7.1. Then, by substituting these values into (7.7) and
simplifying the result, we can obtain the following formula

n = (g:ll)(gj)(g:ll)x[(Rl+1)(RZ+1)(Rg+1)+

(K+1)(2K — Ry — 1) (2K — Ry — 1) (2K — Ry — 1)
(K —1)°

Note that ( )({;2 ) (RS V) (R1 + 1) (Ry + 1) (R3 + 1) matches the summation term of
(s)

Up xR I Theorem 6.9, if we are to extend the term in a straightforward manner. However,
in cases where the support graph is not a tree, this expression comes with a correction
term like the one in the second row. Furthermore, the size of the correction term increases
dramatically as the values in s grows large, even in the case n = 3, which makes producing
a compact formula for US)K;R difficult. This prohibits the creation of a compact formula

for A ().

Now, for fixed values of R, UT(ALS;(;R can be simplified to polynomials in K. In particular,

we have (2K — R; — 1) = 2(K — 1) if R; = 1. Otherwise, % is a polynomial in K

that contains the factor K — 1. In both cases, this cancels out the term (K — 1)* in the
denominator, leaving us with a polynomial in K. Doing so for small values of R gives
us Table 7.2. By substituting these values into Corollary 6.5 and using Fact 2.4, we can
obtain the generating series for AT (x) for 0 < q < 3, where s = (1,1,1). The values
of these series can be found in Table B.10 of B, where we have also computed the series
Al (x) for other small values of n, q, and s.
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| F | (r1,r2,73) | g8

;I

OO..qv

—_
D

co| oo

—_
S

O DN DO DNO| = =] = = =] = DO = =] =
W W NN WD NN | —
Ol W WD W W N W N DN DN DD —

DD DO OO OO O

~— | — | — | — | — | — | — | — | — || —

Table 7.1: Table of values for gﬁf};;r withs=(1,1,1) and 1 < FF <3

7.4 Future Work

In this thesis, we have devised methods for finding the generating series Alg) (x), which
effectively counts the number of rooted embeddings of a given graph G by genus. In the case
where the support graph of s is a tree, this problem is completely solved by the combined
application of Fact 2.4, Corollary 6.5, and Theorem 6.9. Topologically, this corresponds to
G being a tree that contains loops and multiple edges. However, the question remains open
to find the generating series Alg®) (x) for an arbitrary connected graph G. As Fact 2.4 and
Corollary 6.5 remain valid regardless of whether the support graph of s is a tree, it suffices
to find a polynomial expression in K for vS}(;R, which is the number of proper vertical
arrays. To find such an expression, there are two main obstacles that need to be overcome,
one for each of the two conditions that make a paired array proper.

The first obstacle that needs to be overcome is the forest condition. In the case where
the support graph of s is a tree, we have shown in Section 6.2 that we can decompose
vertical arrays row by row. Let row i be a leaf vertex in the support graph of s, and row
k be its neighbour. Then, deleting row ¢ is the same as deleting all mixed pairs with one
vertex in row ¢ and one vertex in row k. Therefore, one way of decomposing vertical arrays
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R17 RQa R3) ‘ Ur(LS,)I(R

(1,1,1) QK2

IK (K 1) (2K — 1)

4K (K —1)° (K —2)

K (K —1)(K —-2)(K —3) (2K — 3)

4K (K —1) (2K* — 4K + 3))

2K (K — 1) (K — 2) (2K2— 5K +5))

2K (K —1)(K—-2)(K—-3)(2K* — 6K +7)

2K (K —1) (K —2)* (K? — 3K + 4)

K(K—-1)(K —2)°(K —3)(2K? — 7K + 11)

1
3

§K (K — 1) (K —2)" (K — 3)"(2K* — 8K + 15)

K (K —1) (K — 2) (4K% — 16K + 31K — 21)

%K(K— 1) (K —2)(K —3) (8K? — 36K? + 79K — 57)

K (K —1)(K —2)°(2K® — 9K? + 21K — 16)

IK (K —1) (K —2)* (K — 3) (4K® — 20K? + 53K — 43)

LK (K —1) (K —2)? (K —3)* (8K® — 44K + 133K — 115)

K(K —1)(K —2)*(K?—5K?+ 14K — 12)

1K (K = 1) (K —2)° (K —3) (2K — 11K? 4+ 35K — 32)

LK (K —1) (K —2)° (K —3)? (4K® — 24K? + 87K — 85)

(1,1,2)
(1,1,3)
(1,1,4)
(1,2,2)
(1,2,3)
(1,2,4)
(1,3,3)
)
(2,2,2) K (K —1)(8K3—28K*+ 45K — 27)
(2,2,3)
(2,2,4)
(2,3,3)
(2,3,4)
(2,4,4)
(3,3,3)
(3,3,4)
(3,4, 4)
(4,4,4)

S K (K — 1) (K —2)° (K — 3)° (8K® — 52K + 215K — 225)

Table 7.2: Table of values for US)K;R with s = (1,1,1) and 1 < R; < 4
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when the support graph of s is not a tree is to remove all vertex pairs between a given
pair of rows. By doing this, we only have to concern ourselves with the forest condition
functions of those two rows, instead of the forest condition functions of multiple rows if we
are to entirely remove a row from the vertical array.

To facilitate this, we can extend arrowed arrays to allow for arrows in both rows, which
we call double arrowed arrays. Note that the arrow simplification lemmas and irreducible
substructures introduced in Section 4.2 generalize to double arrowed arrays. However, the
irreducible structures for double arrowed arrays can be significantly more complex than
the ones when we have arrows only on row 1. For example, an arrow in row 1 can point to
a column that has an arrow-tail in row 2, but is unmarked in row 1. This arrow in row 2
can then point to another column that has an arrow-tail in row 1, and is unmarked in row
2. This means that we can have chains, trees, or even cycles of arrows alternating between
row 1 and row 2, and some examples of that can see be in Figure 7.1. These can then be
combined in various ways, and while we have conjectures in limited cases, we have yet to
find a formula or a proof in the general case.

For example, if we are to take the top diagram of Figure 7.1 and leave the cell R
unmarked, then it is a column of type A, as described in Definition 4.10. The number of
double arrowed arrays satisfying this substructure is given by

T (F) = dl,le,l (8 - 2)'

However, if the cell R is marked, then it becomes a column of type C, and the number of
double arrowed arrays satisfying this substructure is the sum

|45
T()=doa [ (s=1!+ Z (—=1)" (@ = D! a12i01 + a12i42 + - Farx) (s —i —1)!
i=1

Notice that whether the term a;; appears in a given sum depends on the distance of
column j to the column of type C in the chain of arrows. This fact appears to hold true
even if multiple arrows are pointing to the same cell, so that the chain of arrows forms a
tree instead.

Another way we can chain the arrows together is to make them form a cycle, like in
the bottom diagram of Figure 7.1. The number of double arrowed arrays satisfying this
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substructure gives another sum

T(T) =diaday Y (=17 (i=1)!(s—i—1)!

i=1

In all cases, we have included a column of type D to ensure that there are root vertices
for the functional digraphs. Now, the way we have created these conjectures is to fix the
number of columns, as well as the positions of the marked cells and arrows, but without
fixing the number of vertices in each cell. This way, we can simply enumerate all possible
ways of pairing the critical vertices in both rows so that they satisfy the forest condition,
and pair all other vertices arbitrarily.

The second obstacle that needs to be overcome is the balance condition. In the case
where the support graph of s is a tree, the balance condition is radically simplified by
Lemma 3.6. If row 7 is a leaf vertex in the support graph of s, and row k is its neighbour,
then the number of vertices in cell (4, 7) is equal to the number of vertices in cell (k, 7) that is
paired with a vertex in row ¢. This means that if we delete row ¢, the remaining rows satisfy
the balance condition, so we can recursively decompose vertical arrays. Furthermore, this
gave us a clean method of determining the number of ways to place the vertices into row
k during the decomposition. None of these hold true when the support graph of s is not a
tree. As an example, the vertical array in Figure 7.2 satisfies both the balance and forest
conditions. However, deleting any of the three rows will leave a vertical array that violates
the balance condition, as will deleting all vertex pairs between any two rows. Despite that,
by using Proposition 3.4, we can determine whether a given paired array o € PA;?}??R
satisfies the balance condition by only knowing the rows of the partners of each vertex, as
this gives the number of vertices in row ¢ such that its partner is in column j. Therefore,
this allows us to separate the balance and the forest condition, even though we currently
do not have a formula for the number of ways to place the vertices.

In cases where the support graph of s contains a bridge, it may be possible to separate
the balance and forest conditions in another manner. If e = {i, k} is a bridge in the support
graph, then by modifying the proof of Lemma 3.6, we see that the balance condition implies
that s;5; = sk,; holds for 1 < j < K. Note that this condition only holds between rows
i and k, with s; 5 ; being the number of vertices in cell (¢, j) that are paired with a vertex
in row k, and vice-versa.

Aside from directly generalizing our work for arbitrary graphs, here are some other
observations and directions that may be pursued. In Section 2.1, we noted that the gen-
erating series Ale®) (x) is either an odd or a even polynomial, depending on the parity of
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O
dy ai2 ai,3 a1,4 ais a1,K a1,K
OR
da az,2 az,3 az.4 azs a2, K a2, K
O R
O
dia a1,2 ai,3 a14 ai,s . a1, k-1 | 01K
d2’1 a2 9 a3 2.4 25 s s K1 a2 K
O

Figure 7.1: Examples of double arrowed arrays
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AV,

Figure 7.2: Non-tree vertical array that satisfies the forest and balance conditions

n + d. However, the formula we have computed by combining Corollary 6.5 and Theo-
rem 6.9 gives no indication on why this should be the case. It would be useful to find a
direct proof of this, as it may allow us to determine the properties and relationships of the

numbers US)K;R. On a more practical note, this fact can be used to help compute specific

values of A (z) when direct computation is infeasible. By combining Corollary 6.5 and
Theorem 7.6, we know that we can write fflqKs) as an expression that is polynomial in K,

and has coefficients that are linear combinations of g,(:}x;r, the number of full vertical arrays.
For a fixed s, the number of gs%;r that are non-zero is known and finite. Combining this

with Fact 2.4, we can equate the coefficients of fr(f}?) that are zero, and set up a system of
(s)

linear equations to solve for g, 5.

Next, recall that in Section 2.3 and Section 2.4, we have used the matrix integral
method to find the generating series Alg®) () for n = 1,2. As far as we are aware, the are
no generalizations of this method that can be used to derive the results in this thesis. The
only generalizations that we have are similar to the ones covered in Section 2.5. Therefore,
it may be useful to derive the results of this thesis with algebraic methods, and see whether

those methods can be extended to arbitrary graphs.

Finally, in bijective proofs used in Goulden, Nica, and Slofstra [17, 18], they have
used partitions to label the cycles of puy~!, which is effectively a surjective colouring of
the cycles. This translates to the non-empty condition that exists in their version of the
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paired array, as described in Section 7.1. As we saw in Section 2.5, the same technique
was used in Schaeffer and Vassilieva [31], and in the follow up paper of Vassilieva [39]. In
contrast, in both the algebraic technique for map enumeration, as well as our extension of
the combinatorial technique in this thesis, we do not require the colouring function to be
a surjection. This eliminates the need of a non-empty condition. Consequently, our proofs
have become simpler in many aspects. It may be useful to see whether this approach can
be used to simplify other combinatorial proofs in map enumeration.
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Appendix A
(s)

Table of Formulas for Un KR

The following expressions give the number of vertical arrays for 1 < n < 5 where the
support graph of s is a tree. This comes from specializing the formula in Theorem 6.9.

e n =1, support graph of s is empty

(5) K
U, K-
WIGR T RN(K — Ry)!

e n = 2, support graph of s contains the edge 1 — 2

min(sy,2,K)—1

Z (K — ALQ — 1)' (K + 8172 — ALQ — 1)'
(R1 — 1)' (RQ - 1)' (K - Rl - A1,2)! (K - RQ - Al,?)!

A1,2=0

e n = 3, support graph of s contains the edges 1 —2 and 1 — 3

X

s) (K—A s —DI(K—-A;5—-1)!
v . ==
nKR A;O A%:O (Rl — 1)' (R2 — 1)' (R3 — 1)' (K — R2 — ALQ)!

(K+s120+s13—A1a—Aig—2) (Ri+ 512+ 513 —1)!
(K — Rg — ALg)! (K — Rl — ALQ — Al’g)! (Rl + 51,2 + 51,3 — 2)‘

min(sy,2,K)—1 min(sy 3,K)—1 |:
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e n = 4, support graph of s contains the edges 1 —2,1—3,and 1 — 4

US)K.R ) mln(si,:l() 1m1n(s§,:K) 1mm(s§,:K) 1 {(K s DU — Ay — 1) )
o Prgul Poped Ao (Ry — 1)!(Ry — 1) (R3 — 1)!
(K —Aig— DK +s12+ 8513+ 514— A12— A3 — A4 —3)!
(Ry — D) (K — Ry — A1 9)! (K — Ry — Ay 3)! (K — Ry — Ay 4)!
(Ri+s12+ 513+ 514—1)
(K—Ry—Aig— A3 — A1) (R1+ 512+ 513+ 514 —3)!

e n =4, support graph of s contains the edges 1 —2, 2 -3, and 3 — 4

v,(lS}(,R _ mln(siK) 1m1n(S§K) 1mm(s§K) 1 {(K — A — DK — Ay —1)! y
. A1,2=0 Az 3=0 A3.4=0 (R — DRy — 1) (R3 — 1)!

(K — A4 — D! (Ry+ 512+ 823 — 1) (R3 + s23+ s34 — 1)! .

(Ry = DK = By = Aug)! (K = Ry = Aip — Ao )

(K + 812+ 893 — A2 — Agz —2)!

(K —R3— A3 — As )| (K — Ry — A3 4)! (K 4 593 — Ag3 — 1)!

(K + 823+ 834 — Aoz — Az g — 2)!
(Ry + 512+ 823 — 2)! (R3 + S23 + 534 — 2)!}

X

e n =5, support graph of s contains the edges 1 —2,1—-3,1—4,and 1 —5

o min(si,:K)1min(sl,3,K)1min(sl,4,K)1min(sl,5,K)1 [ (K — Ay — 1)1
U em = X
n, KR et AIZ;_O Ag_o Ag_o (Ry — ! (Ry — 1)!
(K—A3—DI(K—-A,-1DI(K—-A;—1)!
(Rs— 1)V (Ry — 1) (Rs —DI(K — Ry —Ajg— Ay 35— A1y — Ars)!
(K +s12+s13+ 514+ 515—A12— A1 — A1a— A5 —4)! «
(Ri + 812+ 513+ 514+ 515 —4)!
(Ri+ 812+ 513+ 814+ 515 — 1)!
(K — Ry — Aio)l (K — Ry — Au3)! (K — Ry — A1 1) (K — Rs — Ay 5)!

X
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e n = 5, support graph of s contains the edges 1 —2,2—-3,3—4,and 4 —5

" min(sin)l min(siK)l min(sil()1 min(sil()l { (K — Ay — 1)
U, wm = : %
R Ap.2=0 Ag.3=0 As.4=0 As5=0 (R = 1) (Ry = 1)!
(K —Ays — DI (K —Asy— DI (K — Ay — 1)!
(Rs — DI (Ry — DN (Rs — DI (K — Ry — Ay 5 — Ag3)!
(Ry + s12+ S23 — 1)1 (R3 + s23+ s34 — 1)!
(K — Ry — Aoy — A3 )l (K — Ry — Az — Ays)! (K — Ry — App)!
(Ry+ 834+ 545 — 1) (K + 512+ 523 — A1 — Az —2)!
(K — Rs — Ay)! (Ry+ 812+ s23 — 2)! (R3 + S23 + S34 — 2)
(K + 503+ 534 — Aog— Asa —2)l (K + 534+ Sa5 — Aga — Ags — 2)!
(Ry+ s34+ 845 — 21 (K + 803 — Agz — 1) (K + 534 — Az 4 — 1)!

X

X

X
!

e n =5, support graph of s contains the edges 1 —2,2—-3,3—4,and 3 —5

" min(s1,2,5)—1 min(s2.3,K)—1 min(ss4,K)—1 min(ss,5,K)—1 (K — Ayp— 1))
U e = X
R A%;o A;Fo A;Fo A;:,:o {(Rl — DHE, - 1)

(K —Ass — DI(K — Asy— DI (K — Az 5 — 1)!

(Rs — 1)1 (Ry — 1)! (Rs — 1)1 (K — Ry — Aj)!
(Ry+s12+ 523 — ) (K + 812+ 523 — A190— Az —2)!
(K —Ry— A5 — Ag3)! (K — Ry — Ay 3 — A3y — As5)!
(R3 + 523+ 834 + 535 — 1)!

(K — Ry — A3 )l (K — Rs — A35)! (K + 593 — Ay 3 — 1)!
(K + 533+ 834+ 535 — Ags — Azy — A5 — 3)!
(Ry + 512+ 523 — 2)! (R34 523 + 534 + 535 — 3)!

X
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Appendix B

Table of Formulas for A%qﬁ) ()

The following is a selection of the values for Alass) (x), where 1 < n < 4. They are computed

by the combined use of Corollary 6.5, Theorem 6.9, and Fact 2.4. When the support graph
. (s) i i

of s is a tree, the values of v, g are computed using Theorem 6.9. Otherwise, the

technique described in Section 7.3 is used instead.
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B.1

Formulas for n =1

)
[

Al(x)

T

1’2

203 + &

5at 4+ 1022

142° + 7023 + 212

4225 4+ 4202 4 48322

13227 + 23102° + 64682° + 1485z

429x% 4+ 120122° + 660662* + 5662872

143027 4+ 600602" + 5705702° + 116974027 + 225225z

OO0 || U = | W —| O

4862x'Y + 2917202° + 43903862° + 17454580z + 1231787722

—_
@)

16796z + 13856702 + 31039008z + 2110837302° + 3516830462° + 59520825

—_
—_

58786z + 646646020 + 2056334282°
+21985964002° + 70345385112 + 430401699022

—_
\}

208012z 4 297457162 + 12939386462°
+20465052608z" + 1111597406922° + 1589597542263 + 243257033252

13

742900z 4 135207800z + 7808250450217
+1744373774002° + 14805930139002° + 4034735959800z + 2208143028375x2

14

26744402 + 6084351002
+45510945480z! + 1384928666550z + 17302190625720x7
+795534977601002° + 1009407711243602% + 142305364451252

15

9694845x1° + 27145566002
+2576114213402'2 + 1036999400580021° + 1822318492094102°
+13027727180286002° + 3130208769783780z* + 1564439686929000x2

Table B.1: Values of A% for n =1
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B.2 Formulas for n =2

’ (51,2; qi, Q2) ‘ A (x)
(1,0,0) T
1,0,1 3a?
1,0,2 1023 + 5z
.0, 35z% + 702?
,0, 1262° + 63022 + 189z
1, 93
30z* + 1522

1052° + 2102°

378x% + 18902 + 56722

1002° + 100z° + 25z

3502° + 8752 4+ 35022

1260x" 4+ 6930x° + 50402 + 945z

122527 + 49002° + 49002°

4410z® 4 308702° + 507152* + 1323022

158762 + 15876027 + 444528x° + 23814022 + 35721

21?2

8x3 + 4x

302* + 6022

1122° + 560z° + 168z

42025 + 4200x* + 483022

322 + 4022

1202° + 360z° + 60z

4482° + 2800z* + 179222

1680x" 4+ 193202° + 319203 + 3780z

4502° + 22502* + 13502

16802 + 14280z° + 19320z + 2520z

63002° + 88200x° + 2299502 + 10080022

62722% + 7683225 + 1897282 + 7996822

235202° + 42336027 + 1728720x° + 163464023 + 158760x

P P P P P P P S ] P ] Py S P P P P P Y P ] P P P ) Y P )

w[\)[\D[\3I\DI\DNM[\D[\D[\D[\D}\DM[\DP—‘HH}—‘}—‘}—‘}—‘P—‘HH}—‘}—‘

W W= = OO OO O W W NN == == OO
A S QO A QO DN | QO | | W N R O i A QO | WIS W N R W
S | S [ S | S | S | S S | S | S | S | | S S | e S | S | | S | | S | S S | S | S S | N  —

88200210 + 2116800x° + 129654002° + 221382002 + 734265022

Table B.2: Values of A%q;s) for n =2, Part 1
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| (512,41, 42) | Al(x)

(3,0,0) 343 + 3

152 + 4522

63x° + 42023 + 147z

252x% + 31502 + 415822

990x" + 20790z° + 65835z + 16335

752° 4+ 42523 + 100z

3152% + 31502 + 283522

1260x" 4 207902° + 4599023 + 7560z

49502° 4 1270502° + 560175x* + 34732527

132327 + 198452° + 383672 + 6615

529228 + 1173062° + 426888z* + 244314x>

20790z° + 665280z + 41476052° + 536382023 + 717255

21168z° + 63504027 + 36673562 + 46305002 + 571536

w| ool wlw| ol w| wl el w|w|w
w|wl| || =R =lolo
| 0ol | o Do | ol ho| | | o

8316021° + 3367980x° + 296881202° + 684614702 + 293762702>

326700z + 168795002 + 20810790027
+7726455002° + 72579127523 + 77182875z

2415 + 2402 + 96

1122% + 19602 + 296822

48027 + 13440z° + 4872023 + 12960z

1980x® + 831602° + 582120z* + 58014022

1442° + 23402 4 291622

672x" + 16800z° + 48048z + 10080

28802° + 1058402° + 582120x* + 4431602

11880z” + 617760x" + 5821200x° + 105494402 + 1710720

31362 + 1097602° + 5495842* + 395920

134402° + 6451202 + 52920002° + 8594880z + 1330560z

5544020 + 35758802% + 45405360x° + 1384891202 + 7442820022

5760020 + 35856002° + 42940800x° + 1258164002 + 657396002

237600z 4 190080002 + 3243240002"

)
)
)
)
)
)
)
)
)
)
)
)
)
)
1,0,0) 42" + 2027
)
)
)
)
)
)
)
)
)
)
)
)
) +15515280002° + 18096804002° + 224532000

i | s s s | s s s s
w | W= =
| 00| | o Do | ol ho| |

980100z + 970299002 + 2208165300x°
+1568258010025 + 330401511002* + 1380470850022

Table B.3: Values of A% for n = 2, Part 2
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B.3 Formulas for n = 3, Tree Support Graph

600x° + 600x> + 150
540x° + 27023
18002° + 1800z* + 450z*
6000z" + 90002° + 45002° + 750

’ (01,92, q3) ‘ Al(z) ‘
(0,0,0) 2z
(0,0, 1) 622
(0,0,2) 202° + 10z
(0,1,1) 1823
(0,1,2) 60x* 4+ 302*
(0,2,2) 2002° + 20023 + 50z
(1,0,0) 1222
(1,0,1) 3623
(1,0,2) 120z* + 60
(1,1,1) 1082%
(1,1,2) 360x° + 180z°
(1,2,2) 12002° 4+ 12002* + 3002
(2,0,0) 602” + 30z
(2,0,1) 180x* + 902
(2,0,2)
(2,1,1)
(2,1,2)
(2,2,2)

Table B.4: Values of A% for n = 3, (512,513, 523) = (1,1,0)
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’ (01,42, q3) ‘ A(x)
62
2423 + 122
90x* + 18022
1823
722% + 3622
2702° + 54023
60x* + 3022
2402° + 24023 + 60z
900z° + 2250z* + 900z
4023 + 20z
1602* + 20022
6002 + 1800z° + 300z
120x* + 6022
4802° + 60023
18002° + 5400x* + 90022
400z° + 40023 + 100z
160025 + 28002* + 100022
60002" + 21000z° + 120002> + 15002
2102* + 42022
840x° + 252023 + 420z
31502° + 157502% + 945022
6302° + 126023
25202° + 7560z* + 126022
945027 + 472502° + 28350z°
21002° + 5250z* + 210022
840027 + 294002° + 168002 + 2100z
3150028 4 1732502° + 173250x* + 4725022

=
o
o

=
o
—_

SINSINCINITNIRSIRSI TSI DS Rl Rl Rl Real Rl Rl Rl Rl Rl A= K=l A=l K=l R =l R =
N[N R R R OIOIOINININ R R RN N R R RO
N OO OO OO =D

P P P P P Py P Py ) ] P Py S P P S P P P Py ] P N ) | N
~— — | — | — | — [ — | — [ — I — | — | — | — I — [ — I — | — | — | — — | — | — | — | — | — [ — | — |~ —

Table B.5: Values of A% for n = 3, (812,513, 823) = (1,2,0)
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’ (1,92, 93) \ A(x)
0,0,0 1223 4+ 12z
0,0,1 60z* + 1802

252x° + 1680z° + 588z

36z + 3622

180z° 4 5402°

7562° + 50402* + 176422

1202° + 180z + 60z

600x° + 2100z* + 90022

2520x" 4 18060x° + 14280x° + 2940z

90z* + 27022

450z° + 25502° + 600x

1890x° + 18900z* + 1701022

2702° + 8102

13502° + 76502 + 180022

5670x" + 56700x° + 51030x°

900x° + 3150z* + 13502

450027 + 277502° + 1875023 + 3000

18900z° + 1984502° + 2646002 + 85050

504z° + 33602 + 1176z

25202° + 25200z + 226802*

105842 4 1587602 + 30693622 + 52920z

151225 + 10080z + 352822

756027 + 756002° + 680403

3175228 + 476280x° + 920808z* + 158760z

504027 + 36120x° + 285602° + 5880

252002° + 2646002° + 3528002* + 1134002

P P P P P Py P Py ] P ] P S S P Sy P P P P ] P N ) | P
~— — — | — | — [ — | — [ — — | — | — | — I — [ — I — | — | — | — — | — | — | — | — | — — | — | —

l\D[\D[\D[\D[\Dl\Dl\D[\D[\DHH)—‘J—‘P—‘}—lb—\HHOOOOOOO
NN R R R OOIOINININ R R RN N R R RO
N = OO OO ORI RO O N

1058402 + 164052027 + 38631602° + 20638802 + 264600x

Table B.6: Values of A% for n = 3, (812,513, 823) = (1,3,0)
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’ (01,92, g3) \ A(x)

0,0,0 1623 + 8z

64x* + 8022

=
=
—_

240z° + 7202° + 120z

2562° + 51223 + 96

960x° + 3600z* + 192022

3600z 4+ 19800z° + 234002 + 1800z

1202* + 24022

4802° + 144023 + 240z

18002° + 9000x* + 5400z*

19202° + 7680z + 336022

720027 + 432002° + 4320023 + 3600

270002° + 2160002° 4+ 3780002* + 108000

672x° + 33602 + 1008z

2688x5 + 168002 + 1075222

10080z + 85680z° + 115920z° + 15120z

10752z" + 80640x° + 83328z + 6720z

403202° + 3931202° + 715680x* + 21168022

~—_— [ — — | — | — [ — [ — — [ — | — | — [ — | — | — | — [ —

~—| || /| /| /| /| /| /| /| /| /| —/—|—/—~|—/—~| /| —/—~|—/—~
NN NN PR RO O OO
N R OO OO RO
NN RN OINN N O — DN

1512002 + 181440027 + 4914000x° + 309960023 + 226800x

Table B.7: Values of A% for n = 3, (812,513, 523) = (2,2,0)
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’ (91,92, 43) \ A(x)

302* + 9022

=
=
]

1502° 4 85022 + 200

=
=
—_

6302° + 63002 + 567022

1202° + 48023 + 120

6002° + 4000z* + 260022

252027 4+ 27720x° + 394802° + 5880z

4502° + 2700z* + 225022

2250x" 4 195002° + 2925022 + 3000z

94502° + 1228502° + 305550z + 12915022

252x° + 1680x° + 588z

12602° + 126002* + 1134022

529227 + 79380x° + 153468x3 + 26460z

1008x° + 7980z* + 613222

5040x" 4+ 567002° + 810602 + 8400z

21168z° + 3439802° + 878472z* + 34398022

3780x" + 38430x° + 623702 + 8820z

18900z° 4 2551502° + 626850z + 23310022

79380x° + 14685302 + 5477220x° + 448497023 + 396900x

151225 + 18900z* + 2494822

756027 + 1247402° + 2759402° + 45360

317522° + 70383625 + 2561328z + 14658842

6048z" + 84672x° + 16027223 + 21168z

302402° + 5443202° + 15573602* + 589680z2

1270082° + 30058562 + 131029922° + 1138838423 + 952560

22680z° + 3742202° + 1111320z + 53298022

1134002 + 232470027 + 94122002° + 788130022 + 680400

||| |||~~~ ]|~~~ || || || |||
~— — — | — | — [ — | — [ — | — | — | — | — I — — I — | — | — | — — | — | — | — | — | — — | — | —

SIRNIRCINSTISI RIS TS el Rl Rl Rl Rl Rl Rl Nanl Reml K=l K=l R o=l Rem) fon) en) Haw
NININ| == OO OIN NN =R =OOOINNN = ==O
N OO OO OO =D N

4762802 + 124626602° + 704100602° + 1018445402 + 2913246022

Table B.8: Values of A% for n = 3, (812,513, 823) = (2,3,0)
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’ (91,92, 33) \ A(x)

54x° + 45023 + 216z

=
=
o]

2702% + 31502* 4+ 37802

=
=
—_

113427 + 189002° + 454862 + 10080

135027 + 202502° + 44400z° 4 6000z

56702% + 1134002° + 416430z* + 22050022

23814x° + 59535027 + 3257226x° + 358533022 + 476280z

504x° + 75602* + 1209622

252027 + 47880x° + 1276802° 4 23520z

10584z® + 261072z° + 11183762 + 72676822

12600z® + 289800x° + 11424002 + 57120022

5292029 + 1517040x" + 8767080x° + 97725602 + 1058400z

22226420 + 76310642° + 600359762° + 1133793362 + 4099536022

324027 + 79380x° + 29106023 + 79920z

16200z® + 4725002° + 24003002 + 164700022

6804027 + 241542027 + 17146080x° + 244603802 + 3538080x

81000z + 2740500z " + 18238500x° + 22032000z + 2268000x

3402002 + 136647002° + 1209222002° + 2503683002 + 909846002

1428840z + 664410602° + 74688642027
+2289557340x° + 1739453940z + 157172400z

—~ —| || /| /| /| /| /| /| /| /| —/—|—/|—/—~|—/—|—/—~|—/—
SR RNSINSINCHNOHTON e el Rl Rl Rl Rl Rl R ==) R =) )
sl Ren R R=IR=I Y N R Rt =I R = S e R R =

»N

~— ~— [ — | — | — | — [ — | — [ — | — | — | — | — | — | — | — | ~— | ~—

N (NN OINN N OIN NN

Table B.9: Values of A% for n = 3, (512,513, 523) = (3,3,0)
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B.4 Formulas for n = 3, Non-Tree Support Graph

’ (01,92, G3) ‘ Al(x)

812

3223 + 16z

1202* + 24022

44877 + 224023 + 672x

12821 + 160x2

480z° + 144023 + 240z

17922% + 11200z* + 716822

1800x° 4 9000z* + 54002>

672027 + 57120x° + 77280z + 10080z

5122° + 121623

19202° + 8640x* + 2400z*

716827 + 58240x° + 5555223

72002" + 504002° + 360002° + 3600z

26880z° + 2956802° + 477120z* + 10752022

10035229 + 154291227 + 42900482° + 2533888z°

270002° + 2700002° 4 3240002* + 108000z

100800z + 1461600z" + 32760002° + 18144002 + 151200x

376320210 + 73382402° + 254016002° + 255897602 + 47980802

)
)
)
)
)
)
)
|
) 250882° + 3073282° + 758912z + 31987227
)
)
)
)
)
)
)
)
)
)

WINN|N| R === O OO OO O

W W NN W N H W NN = OO
W W W N W WIN W N W WNW N W DN

1404928z + 352988162° + 16859136027 + 272029184x° + 11537971223

Table B.10: Values of A% for n = 3, (s12,813,823) = (1,1,1)
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’ (91,92, 33) \ A(x)

1822 + 18x

=
=
o]

90x* + 27022

=
=
—_

3782° + 2520z° + 882w

15122° + 189002* + 24948z>

450x° 4 255023 + 600z

1890x° 4 18900z* + 1701022

756027 + 1247402° + 27594023 + 45360z

7938z 4+ 1190702° + 2302022° + 39690

317522° + 7038362° + 2561328z + 14658842

127008z + 381024027 + 22004136x° + 277830002 + 3429216z

72x* 4+ 14422

360z° 4+ 1560z° 4 240z

15122% 4+ 126002* + 85682

6048x" + 87696x° + 160272z> + 18144z

18002° + 134002* + 640022

756027 + 924002° + 11844023 + 8400x

302402° + 5796002° + 1607760z* + 50400022

317522% + 5644802° + 1361808z + 42336022

127008z + 323870427 + 13843872x° + 107321762 + 635040z

508032z 4 172730882 + 11291011225 + 1726038722 + 396264962

270x° + 1080z° + 270z

13502° + 9000z* + 585022

5670x" + 62370x° + 888303 + 13230z

226802° + 3969002° + 1111320z* + 51030022

6750z 4+ 69000x° + 772502 + 9000z

28350x° + 4378502° + 9166502* + 318150

1134002 + 258930027 + 97902002° + 72387002 + 680400x

1190702 + 256662027 + 85465802° + 60328802 + 595350x

47628021 + 142090202° + 75966660x° + 96922980z* + 267510602

1905120z + 742996802 + 573917400x"
+1207846080x° + 662505480z + 51438240

—~ |~~~ |~~~ ~|~|~|~|~|~| ~|~|=|=| =]~ =~ =| =] ~| |~
l\Dl\Dl\DM[\D[\DI\DMI\DM}—‘P—‘HHJH}—‘}—‘}—‘P—‘HOOOOOOOO

~— ~— — — — | — [ — — — | — | — | — | — I — [ — | — | — | — [ — | — [ — I — | — | — | — | — | — | — | — |~ —

W I NN HHRPOODO W NP OO WNN P OO
LW | WD W N WO W WN W N WO W W N W N W N

Table B.11: Values of A% for n = 3, (512,513, 823) = (1,1,2), Part 1
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(1.2, 03) | A(x)
3,0,0) 10082° + 75602* 4+ 655222
) 5040x" + 529202° + 831602 + 10080z
3,0,2) 211682% + 321048z° + 8608322 + 38455212
3,0,3) 846722 4 1862784x" + 8149680x° + 81920162° + 762048x
3,1,1) 252002° + 3654002° + 8358002 + 28560022
3,1,2) 105840z + 213444027 4 74793602° + 580356023 + 352800
3.1,3)
3,2,2)
3,2,3)

423360210 + 118540802° + 64456560x° + 913399202 + 22438080z
444528210 + 119281682° + 58455432x° + 76977432z + 188924402
17781122 + 63419328z + 450306864x"
+939732192x° + 51846782423 + 26671680x
7112448z + 32361638420 + 310991788825
+94960071362° + 930752726421 + 1760330880x>

Table B.12: Values of A% for n = 3, (s12,813,823) = (1,1,2), Part 2

’ (01,92, 93) ‘ A(x)

362* + 18022

=
=
o

216x° + 2160z° + 864z

=
=
—_

10082° + 17640z* + 26712z*

4320x" + 120960x° + 438480z + 116640

1802° + 15002 + 480z

1080x° + 15300z* + 1602022

504027 + 1134002° + 2847602 + 50400z

216002° + 7308002° + 3641400z + 24102002

75625 + 10080z* + 1184442

45362 4+ 907202° + 2071442° + 37800

211682° + 6174002° + 25542722 + 156996022

90720z° + 374976027 + 262483202° + 36318240z° + 5034960

302427 + 61992x° + 170856x° + 36288z

181442° + 508032x°% + 2181816x* + 137440822

8467227 + 321753627 + 21189168x° + 288519842 + 3810240

||| || || || ||~~~ —~
O QIO e

W W W W NN NN =] = == OO
WIN = O|W N O W N O W N
S | | S | | S | S S | S | S S N | | N

3628802 + 185068802 + 18289152025 + 4521031202 + 203439600z>

Table B.13: Values of A% for n = 3, (512,513, 823) = (1,2,2), Part 1
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A(x)

900x° + 10900z* + 9830022

540027 + 1020002 + 1926002° + 24000

252002° + 7098002° + 2599800z* + 12012002

108000z + 4368000z + 28308000x° + 322320002 + 3024000z

3780z + 66360x° + 13482023 + 21840z

22680z° + 5733002° + 1917720z* + 88830022

1058402 + 37573202" + 20532960z° + 2111508023 + 2116800z

453600210 + 221004002° + 1911294002° + 374043600z + 1266930002

151202° + 380520x° 4 1484280x* + 8416802

907202° + 306936027 + 172216802° + 18627840z° + 1814400z

423360z'Y + 190512002° + 1548439202° + 297939600z + 9927792022

1814400z + 1073520002 + 1257379200z
+3983061600x° + 2994818400x° + 228614400z

15876x% + 3722042° + 1289484z + 7038362

9525627 + 306936027 + 1546322425 + 155055602 + 1587600x

44452810 + 193369682° + 144150552x° + 2523190322 + 8384292022

19051202 + 1100736002 + 12077402402°
+3486898800x° + 248522904023 + 209563200

635042 + 20003762 + 113037122° + 1355810423 + 1651104z

IO W INRRIO W IO WN O W N

3810242 + 157489922° + 11916525625 + 2198508482 + 735058802

W W W N NN W [(WWWNINNN

17781122 + 9542534427 4 9861112802 "
+2789561376x° + 1968221808z + 160030080z

(2,3,3)

7620480z + 5258131202 + 74756908802°
+316716674402° + 399351254402 + 1040100264022

(3,3,0)

2540162 4 101606402° + 831267362° + 178128720z + 71251488

(3,3,1)

15240962 + 777288962 + 806627808x"
+2383686144x° + 17370884162 + 137168640z

(3,3,2)

7112448x' + 458752896x'% + 616827052828
+25468787232x5 + 317650818242 + 81455310722

(3,3,3)

304819202 + 24690355202 + 435967660802
+2508966835202" + 4945843929602° + 2713424313602 + 17283248640x

Table B.14: Values of A% for n = 3, (512,513, 82,3) = (1,2,2), Part 2
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’ (91,92, 93) \ A(x)

642° + 108823 + 576z

0,0,1 384x° + 9600z* + 1593622

17922 4 636162° + 23564823 + 61824

76802% + 3763202° + 2593920z + 24652802

230427 + 78480x° + 25329623 + 54720z

107522% + 4905602° + 2804928z* + 213696022

46080z + 277344027 + 25976160x° + 4564656023 + 72057602

2150402 + 158860802 + 2029305602° + 6063187202 + 317721600z>

921600z + 834624002 + 144910080027
+6845716800x° + 78197616002 + 947116800z

(o= =] o) Ren) Ren) Ren] Ran) N

OJ[\D[\DJ—kr—kr—\OO
W | WD WD | W N

138242° + 6125762° + 31743362* + 203126427

645122% + 368121627 + 2974204825 + 4271702423 + 5443200

27648020 + 201312002° + 2448230402° + 6638544002 + 295634880

30105620 + 213749762° + 2435543042° + 6142295042* + 26361216022

129024021 + 11346048027 + 1805448960"
+74291011202° 4 708916320023 + 707616000

—~ ||| ~—~ ||| || —~|[—~|—~|—~

)
)
)
)
)
)
)
) 5017627 + 292275227 + 253137922° + 414830082° + 6435072
)
)
)
)
)
)
)

— —| ===
[\ DO | = =
w DN W N —

5529600x'% + 586483200x'% + 12244608000z°

(1,3,3) +74183472000x5 + 1277895744002 + 4238153280022
(2,2,2) 1404928z + 1211750402° + 1829040640x"

o +7038689280x° + 637257779223 + 640120320z
(2,2,3) 602112022 + 6292070402 + 125969356802°

o +71987758080x% + 1169395584002 + 3788563968022
(2,3,3) 25804800z '3 + 3201408000z + 812101248002

+64054327680027 + 16458746976002° + 1137918499200 + 919029888002

1105920002 4 1604275200022
(3,3,3) +4990740480002"° + 51503333760002®
+191475774720002° + 231939961920002* + 6003017568000x2

Table B.15: Values of A% for n = 3, (512,513, 523) = (2,2,2)
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’ (91,92, 93) \ A(x)

60z° + 90023 + 480z

420z° + 10500z* + 1932022

2160z" + 83160x° + 3553202° + 103680

99002 + 55440025 + 4504500z* + 491040022

3602° + 8100z + 1314022

252027 + 85680x° + 29736023 + 68040z

12960z° + 6350402° + 41050802 + 341172022

59400z + 4039200z + 43991640x° + 868428002° + 14754960x

168027 + 546002° + 1957202 + 50400z

117602° + 5350802° + 32163602* + 258720022

6048027 + 374976027 + 3596443225 + 639727202° + 10559808

27720020 + 228690002° + 3341368802° + 11086614002 + 62968752022

7200z® + 3276002° + 2179800z + 20214002

5040027 + 302400027 + 29317680x° + 539280002 + 8935920x

2592002 + 202176002 + 2808691202° + 9067140002 + 506548080z>

11880002 + 118800000 + 2320164000"
+120886128002° + 149747400002° + 1930975200

(=R =] o) Ren] Ren) Renl Reml Re=) Rl Red Reel fel R R

300x° + 5900z* + 82002

21002 + 64260x° + 197400z° + 38640x

108002° + 486360x° + 2860200z* + 20858402>

495002 + 3141600z + 317625002° + 565224002° + 8316000

1800x" 4 498002° + 1392002 + 25200

126002° 4+ 5065202° + 25200002* + 149688022

6480027 + 364392027 + 30315600x° + 426340802 + 4989600x

— | — | — | — | — [ — | — [~~— ~— ~— | — | — | — | — [ — | — | — | — | — | — | — | — | ~— | ~~—

HHH}—‘OOOOOOCJO\.WQO[\?[\D[\D[\DP—‘}—‘P—‘P—‘OO

WIN O WO W (N OWNFOWN O W N

2970002 + 226512002° + 2970198002° + 824788800x" + 352123200z>

Table B.16: Values of A% for n = 3, (512,513, 823) = (1,2,3), Part 1
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’ (41,2, q3) ‘

A (x)

El, 2,0)
1,2,1) 840028
’ + 3206002°
1,2 588002° 0025 +
8
(1,3,0) +91990 + 126911400” 1669602" + 253 -
131D 360002° & 18 206002 - 8646607 T 216742680027 96560012
+75388 + 1122768002° 0112002 + 217
(1,3,3) 9680025 29 1+ 182710 62720022
594000022 + 701604720023 + 08002"
(2,0,0) 191212264000 N 6526030002 = 14 650462400
(2,0,1) 12605(;71 + 1576175040002 5256760002
(2,0,2) 8820x° 32760z° + 9534 3+ 503308080002
(2,0,3) 153602° & 24 1 33308420 + 1672 0z° + 21840z
2 20790021 1466427 + 19 860z* + 1159
(2,1,0) T+ 15093540428 85558427 + 3032 53622
5292027 ® 4 2608202° + 5584332602 56z
(2,1,2) 02° 4 254 2%+ 1214 60" + 280
: 27216021 + 17726368&7 18319140 5640334 78493027 13832022
2 6882° x
S 12474 88x° + 1935284402° + 2380165227 + 2910
002t + 10 1 45873475224 600x
(2,2,0) +69323 75258802° 52" + 187
(2,2,1) 352802° + 1605823:1920955 + 6324900128r 1729977480z" 041960z*
— 24 0x” x
(2.2.2 B 6212052001
22 1270080x11+ 1546792802° + 353111601:5 + 2257920x
BT 1010136962” 7043442" + 14
(2,2,3) 7755841° x? + 147090 315448022
(2,3,0) 1678524803 - 595508760z 449608320
o 15120021 + 8996402025 * 05100101500, 120877218002°
3,1) 05 40%2 1 1‘:_98343000x6 = 215?3)2?69971712%2
8093 0z
(2,3,2) +4428292680x° 23202 4 117863 " 41163358002
(2,3,3) T S A Ll
T 249480 86823 2402°
+ 00213 360x*
6081973128002" + 151 S PRET 00T + 2688709464022
51733486 + 77939
52002° + 1013 21520027
3087580002 + 8
0786613600

Table B.1
17: Value (a;
s of A% for n =3, (s
) 1,27513 823)_(
39 ) y — 1 2 3) P
,2,3), Part 2
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’ (01,92, 93) \

Al(x)

(3,0,0) 50402° + 1738802° + 914760z" + 7207202
(3,0,1) 3528027 + 16687442 + 13078296x° + 203988962 + 2921184«
(3,0,2) 18144020 4 1153958428 + 13278686425 + 36426801621 + 1770672962>
831600zt + 697712402° + 1156090320x"
(3,0,3) +5152676760x° + 5565732480z + 628689600z
(3,1,0) 30240z° + 131544027 + 97070402° + 142581602 + 1905120z
(3,1,1) 21168020 + 122986082 + 12730435225 + 3064914722 + 12522988822
(3.1,2) 1088640z + 82954368x° + 120136867227
o +4555196352x° + 4069826208z + 377213760z
(3,1,3) 4989600x% + 4904776802 + 9840489120x°
o +565875525602° + 925660612802 + 2911730976022
(3,2,0) 1411202 + 77616002° + 802620002° + 201625200z* + 91234080z>
391 987840z + 705317762 + 97139246427
(3:2,1) +3553112304x° + 311209113623 + 293388480
(3,2,2) 508032022 + 463833216x'Y + 853722374428
T +4512073507225 + 688531959362 + 2104700371222
2328480023 + 2682408960z + 65792366640x°
(3.2,3) +49531426560027 + 12132416973602° + 8018307158402 + 61611580800
330 6048002 + 420336002 + 604195200x"
(3.3,0) +2418897600x° + 2396520000z + 253108800z
(3,3,1) 42336002 + 3712867202 + 6810168960x°
s +368071300802° + 580263566402 + 1800338400022
(3,3,2) 2177280023 + 23819443202 + 560464531202
T +41063827392027 + 992067834240x° + 6500748441602 + 49174957440
99792000z + 1348189920022
(3,3,3) +4074906528002"° + 40352791248002®
+14355847598400x° + 166696049520002* + 4125640780800

Table B.18: Values of A% for n = 3, (512,513, 82,3) = (1,2,3), Part 3
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B.5 Formulas for n = 4, Tree Support Graph

(@1, 02,03, q4) | A(x) |
(0,0,0,0) 6z
(0,0,0,1) 1822
(0,0,0,2) 60z° + 30
(0,0,1,1) 5423
(0,0,1,2) 180z* + 90z*
(0,0,2,2) 600z° + 600> + 150z
(0,1,1,1) 162z
(0,1,1,2) 540x° + 27023
(0,1,2,2) 18002° + 18002* + 45022
(0,2,2,2) 6000z" + 90002° + 4500z* + 750z
(1,0,0,0) 6022
(1,0,0,1) 18023
(1,0,0,2) 600z* 4+ 300z
(1,0,1,1) 54024
(1,0,1,2) 18002° + 900z
(1,0,2,2) 60002° 4+ 60002* + 150022
(1,1,1,1) 16202°
(1,1,1,2) 5400x° + 27002
(1,1,2,2) 1800027 + 180002° + 450023
(1,2,2,2) 60000z® + 90000z° + 450002 + 75002
(2,0,0,0) 4202° + 210z
(2,0,0,1) 12602* + 63022
(2,0,0,2) 42002° 4 420023 + 1050z
(2,0,1,1) 3780z° + 1890z*
(2,0,1,2) 126002° + 126002 + 315022
(2,0,2,2) 42000z + 630002° + 3150022 + 5250
(2,1,1,1) 113402° + 56702*
(2,1,1,2) 3780027 + 37800x° 4 94502°
(2,1,2,2) 1260002® + 1890002° + 94500z* + 1575022
(2,2,2,2) | 4200002 4+ 840000x" 4 630000° 4 21000023 + 26250x

Table B.19: Values of A% for n = 4, (812,513, S1.4, S2.3, S2.4, 534) = (1,1,1,0,0,0)
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’ (91,92, 93, Q) \ Al(x)

96002° + 168002 4 600022
36000z" + 1260002° + 72000z> + 9000z

(0,0,0,0) 2422

(0,0,0,1) 962> + 48z
(0,0,0,2) 360z + 7202*
(0,0,1,0) 7223

(0,0,1,1) 288z% + 144x*
(0,0,1,2) 10802° + 21602
(0,0,2,0) 2402t + 12022
(0,0,2,1) 9602° + 96023 + 240x
(0,0,2,2) 3600z° + 90002 + 36002
(0,1,1,0) 216"

(0,1,1,1) 864x° + 43223
(0,1,1,2) 324025 + 64802*
(0,1,2,0) 720x° + 36023
(0,1,2,1) 288025 + 28802* + 72022
(0,1,2,2) 10800z" + 270002° + 1080023
(0,2,2,0) 240025 4 24002* + 6002
(0,2,2,1) 96002" + 14400x° + 720023 + 1200z
(0,2,2,2) | 360002° + 1080002 + 81000z* + 1800022
(1,0,0,0) 24023 + 120z
(1,0,0,1) 960x* + 120022
(1,0,0,2) 36002° 4+ 108002> + 1800z
(1,0,1,0) 7202 + 360z*
(1,0,1,1) 2880z° + 3600z°
(1,0,1,2) 108002° + 324002* + 540022
(1,0,2,0) 24002° 4 24002° + 600z

( )

( )

Table B.20: Values of A% for n = 4, (819,513, S1.4, 2.3, S2.4,534) = (1,1,2,0,0,0), Part 1
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| (@12, 43, 04) | A(z)
(1,1,1,0) 2160x° + 1080x°
8640x° + 10800x*
3240027 + 972002° + 1620023
72002 4 72002* + 18002

2880027 + 504002° + 1800023

1080002° + 3780002° + 2160002 + 2700022
24000z" + 360002° + 1800023 + 3000x

1,22, 96000z° + 2160002 + 1440002 4 3000022
1,2,2,2 36000027 + 144000027 + 13500002° + 45000023 + 45000
2,0,0,0 16802 + 336022

2,0,0,1 67202° + 201602° + 3360z

2,0,0,2 252002° + 12600027 + 7560022

)

)

)

)

)

)

)

)

)

)

)

) 50402 + 1008023

) 201602° + 60480z + 1008022
2.0,1,2) 7560027 + 3780002° + 22680023

)

)

)

)

)

)

)

)

)

)

)

)

168002° + 420002* + 1680022
6720027 + 2352002° + 13440022 + 16800z
2520002% + 13860002° + 1386000x* + 378000z
151202° + 3024024
6048027 + 181440x° + 302403
22680028 4 11340002° + 68040022
5040027 4+ 1260002° + 5040023
20160028 4 7056002° + 4032002 + 5040022
7560002 + 41580002" + 41580002° 4 11340002°
1680002 + 5040002° + 378000x* + 840002
672000z 4+ 268800027 + 25200002° + 8400002 + 84000z
252000020 + 1512000028 4+ 207900002° + 10710000z 4+ 189000022

Table B.21: Values of A% for n = 4, (819,513, S1.4, 2.3, S2.4, 534) = (1,1,2,0,0,0), Part 2
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| (01,42, 43, 04) | Al(x)

(0,0,0,0) 4z

(0,0,0,1) 1222

(0,0,0,2) 402 + 20z
(0,0,1,0) 242

(0,0,1,1) 7223

(0,0,1,2) 240z* + 12022
(0,0,2,0) 1202° + 60z
(0,0,2,1) 360x* + 1802
(0,0,2,2) 12002° 4 120023 + 300z
(0,1,0,1) 7223

(0,1,0,2) 240z + 12022
(0,1,1,0) 14423

(0,1,1,1) 4322*

(0,1,1,2) 14402° + 7203
(0,1,2,0) 720" + 3602
(0,1,2,1) 21602° 4 10802°
(0,1,2,2) 7200z° + 72002 + 180022
(0,2,0,1) 360z + 180z*
(0,2,0,2) 12002° + 120023 + 300z
0,2,1,1) 2160x° + 108023
0,2,1,2) 72002° + 72002* + 180022
(0,2,2,0) 36002° + 36002 + 900z
0,2,2,1) 108002° + 10800z* + 270022
(0,2,2,2) | 360002 + 54000z° + 2700023 + 4500z
(1,0,0,1) 3623

(1,0,0,2) 120z* + 6022
(1,0,1,1) 2162

(1,0,1,2) 720x° + 36023
(1,0,2,1) 1080z + 5402°
(1,0,2,2) 360025 4+ 3600z* + 9002

Table B.22: Values of A%q;s) for n = 4, (SLQ, 51,3,51,4, 52,3, 52,4, 8374) = (17 0, O, ]_, 07 1), Part 1

216



| (01, 42,43, 04) | Al(x)

(1,1,0,2) 7202° + 360z

(1,1,1,1) 12962°

(1,1,1,2) 43202° + 21602*

(1,1,2,1) 64802° + 32402*

(1,1,2,2) 21600z" 4 216002° + 54002°
(1,2,0,2) 360025 4 36002* + 90022
(1,2,1,2) 2160027 + 21600x° + 5400x>
(1,2,2,1) 32400x" + 324002° + 810023
(1,2,2,2) 108000x® + 1620002° + 81000z* + 135002*
(2,0,0,2) 4002° + 4002> 4 100z

(2,0,1,2) 240025 4 2400z* + 60022
(2,0,2,2) 1200027 + 18000z° + 900023 + 1500
(2,1,1,2) 1440027 + 144002° + 360023
(2,1,2,2) 720002° + 1080002° + 54000z* + 900022
(2,2,2,2) | 360000z 4+ 720000z 4 5400002° + 18000023 + 22500z

Table B.23: Values of A% for n = 4, (12,513, 51,4, 52,3, S2.4, S3.4) =

Table B.24: Values of A% for n = 4, (812,513, S1.4, S2.3, S2.4, S3.4) =

’ (91, 92, 93, Q) ‘ A(x)
(0,0,0,0) 1822
(0,0,0,1) 543
(0,0,0,2) 1802 + 9022
(0,0,1,0) 12023 + 60z
(0,0,1,1) 360z* + 180x*
(0,0,1,2) 12002° + 120023 + 300z
(0,0,2,0) 6302* + 12602*
(0,0,2,1) 18902° + 3780x3
(0,0,2,2) | 63002° + 157502 + 630022
(0,1,0,1) 360z + 1802
(0,1,0,2) 12002° + 120023 + 300z
(0,1,1,0) 800z* + 1000z>
(0,1,1,1) 24002° + 30002°
(0,1,1,2) | 80002% + 14000x* + 500022
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(1,0,0,2,0,1), Part 1



[ (g1, 42,03, q0) | A ()
(0,1,2,0) 420027 + 126002° + 2100z

0,1,2,1 126002° + 378002 + 630022

0,1,2,2 42000z 4 147000x° 4 8400022 + 10500
0,2,0,1 18902° 4 378023

0,2,0,2 630028 4 157502 + 630022

0,2,1,1 126002° + 378002* + 630022

0,2,1,2 4200027 + 1470002 + 8400022 + 10500z
0,2,2,0 2205025 + 1102502 + 661502
0,2,2,1 6615027 + 3307502° + 19845023
0,2,2,2 2205002 + 12127502° + 12127502* + 33075022

)

)

)

)

)

)

)

)

)

) 16277

) 5402° + 27027

) 108025 + 54027
) 36002° + 360027 + 90027
) 56702° + 11340z"
) 189007 + 472502° + 189003
)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

| == OO OINN NN === == OO OO OO
NI =N O N O NN = = O OO
RINININININ NN NN NN —

36002° + 36002 4 90022
72002° + 9000x*
24000z + 420002° + 1500023
37800z" + 1134002° + 189003
1260002 + 4410002° + 252000z + 3150022
18900x" + 47250z° + 18900z°
1260002 + 4410002° + 252000z + 315002*
1984502 + 9922502° + 595350z
6615002 + 363825027 + 36382502° + 9922502
18002° 4 1800z* + 45022
12000z" + 18000x° 4+ 900023 + 1500z
630002° + 1890002° + 1417502* + 315002
80000z° + 1800002° 4+ 1200002* + 250002
420000z + 1680000z + 15750002 + 5250002 + 52500x
22050002 + 132300002° + 181912502° + 93712502 + 165375022

NS NG NG) [ NG [Ny Ty R TR (R Ty Uy [y Uy [y [N Y S [y -

Table B.25: Values of Aglq;s) for n = 47 <81727 51,3,51,4, 52,3, 52,4, 8374) = (17 0, O, 2, 0, 1), Part 2
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’ (01,92, g3, q4) ‘ Al(x)

(0,0,0,0) 1222

(0,0,0,1) 4823 + 24x

(0,0,0,2) 180z* + 360z*

(0,0,1,0) 802° + 40x

(0,0,1,1) 3202t + 40022

(0,0,1,2) 12002° + 36002° + 600z
(0,0,2,0) 420zt + 84022

(0,0,2,1) 16802 + 504023 + 840z
(0,0,2,2) 63002 4 315002 + 1890022
(0,1,0,0) 7223

(0,1,0,1) 2887* + 14422

(0,1,0,2) 1080z° + 21603

(0,1,1,0) 480zt + 2402

(0,1,1,1) 19202° + 240023

(0,1,1,2) 72002° + 216002* + 360022
(0,1,2,0) 2520x° 4 504027

(0,1,2,1) 100802° + 30240z* + 504022
(0,1,2,2) 37800z" 4 189000x° + 11340023
(0,2,0,0) 3602t + 18022

(0,2,0,1) 14402° + 144023 + 360z
(0,2,0,2) 540025 4 135002* + 540022
(0,2,1,0) 24002° 4 24002> + 600z
(0,2,1,1) 96002° + 168002 + 600022
(0,2,1,2) 360002" + 1260002° + 7200023 + 9000
(0,2,2,0) 126002° + 31500z* + 1260022
(0,2,2,1) 5040027 + 1764002° + 1008002 + 12600z
(0,2,2,2) | 1890002® 4 10395002° + 10395002 + 28350022

Table B.26: Values of A% for n = 4, (819,513, S1.4, 2.3, S2.4,534) = (1,0,0,1,0,2), Part 1
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(@1 2,43, 04) | A(z)
(1,0,0,0) 3623
) 1442* + 7222

) 5402° + 108023

) 240z + 120z?

) 960z° + 120023

) 36002° + 10800z* + 180022
) 12602 + 252023

) 504025 + 151202 + 252022
) 1890027 4 9450025 + 5670023
) 216"

) 864x° + 43223

) 32402° 4 64802"

) 14402° + 7202°

) 57602% 4 72002*

) 2160027 + 648002° + 108002°
)

)

)

)

)

)

)

)

)

)

)

)

N[NNI NN N = === =] =] = OO OO
NI == OO == O OO N NN+

N OO OO~ OO O

7560x° + 151202*
30240x" + 90720x° + 1512023
1134002% 4+ 5670002° + 3402002*
1080z° + 540z°
43202° 4 4320z* + 108022
16200x" + 405002° + 1620023
720025 + 7200x* + 180022
28800z + 50400z° + 18000z
108000z° + 3780002° 4+ 216000z + 2700022
37800x" + 94500x° + 37800z
1512002° + 5292002° + 3024002* + 378002
5670002° + 3118500x" + 31185002° + 85050023

Table B.27: Values of A% for n = 4, (819,513, S1.4, 2.3, S2.4, 534) = (1,0,0,1,0,2), Part 2
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[ (g1, 02,03, 04) | A(z)

(2,0,0,0) 120z* + 60z*

(2,0,0,1) 480x° + 48023 + 120z

(2,0,0,2) 18002% 4 45002 + 180022

(2,0,1,0) 800x° + 80023 + 200x

(2,0,1,1) 3200z° + 56002 + 200022

(2,0,1,2) 12000z" + 420002° 4 240002 + 3000
(2,0,2,0) 42002% + 105002 4 420022

(2,0,2,1) 16800x" + 58800z° + 336002 + 4200z
(2,0,2,2) 630002° + 3465002° + 3465002* + 94500
(2,1,0,0) 7202° + 36023

(2,1,0,1) 288025 + 2880x* + 7202

(2,1,0,2) 1080027 + 27000z° + 108003

(2,1,1,0) 480028 4 48002* + 120022

(2,1,1,1) 19200z" + 336002° + 1200023

(2,1,1,2) 720002 + 2520002° + 144000z* + 180002*
(2,1,2,0) 25200z + 630002° + 25200

(2,1,2,1) 1008002° + 3528002° + 201600z + 2520022
(2,1,2,2) 378000z + 2079000z + 20790002° + 56700023
(2,2,0,0) 36002° + 36002 + 90022

(2,2,0,1) 14400z + 21600z° + 108002 + 1800z
(2,2,0,2) 540002° + 1620002° + 121500z* + 2700022
(2,2,1,0) 24000z" + 360002° + 180003 + 3000x
(2,2,1,1) 960002° + 2160002° + 144000z* + 3000022
(2,2,1,2) 36000027 4 144000027 + 13500002° + 4500002 + 45000
(2,2,2,0) 1260002° + 3780002° + 2835002 + 6300022
(2,2,2,1) 5040002 + 20160002" + 1890000z° + 6300002 + 63000
(2,2,2,2) | 1890000z + 11340000z + 155925002 + 80325002 + 141750022

Table B.28: Values of A% for n = 4, (819,513, S1.4, 2.3, S2.4, 534) = (1,0,0,1,0,2), Part 3
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B.6 Formulas for n = 4, Non-Tree Support Graph

(01, 02,03, q4) | A(z) |
(0,0,0,0) 24
) 7213

) 2402* + 120z°

) 9623 + 48z

) 2882 4 14422

) 9602° + 96027 + 240z

) 3602 + 72022

) 10802° + 21602

) 36002° 4+ 90002* + 360022
) 3842 + 48022

) 11522% + 144023

) 384025 4 6720z" + 24002°
) 144025 + 432027 + 720z

) 43202° + 129602 + 216022
) 1440027 + 504002° + 28800z + 3600z
)

)

)

)

)

)

)

)

)

)

)

)

5400z° 4 270002* + 1620022
16200z" + 81000z° + 486002°
54000z° + 2970002° 4 297000x* + 8100022
16023 + 80z
480x* 4 24022
16002° + 160023 + 400z
6402* 4 800z
19202° + 240023
64002° + 112002* 4+ 400022
2400x° + 720022 + 1200z
72002°% 4 216002* + 360022
24000z" + 84000z° + 480002 + 60002

Table B.29: Values of A%q;s) for n = 4, (SLQ, 51,3, 51,4, 52,3, 52,4, 83’4) = (1, 1, 1, 1, 0, 0), Part 1
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| (@12, 43, 04) | A(z)
(1,1,1,0) 2560x° + 6080x°
7680x° + 18240x%

2560027 + 736002° + 3040023
960025 + 43200z* 4 1200022
2880027 + 129600z° + 360002
960002 + 4800002° + 336000z + 6000022
360002 + 2520002° + 18000023 + 18000z

1,2,2, 1080002% 4 7560002° + 5400002* + 5400022
1,2,2,2 36000027 4+ 270000027 + 30600002° + 10800002 4+ 90000
2,0,0,0 840z* + 168022

2,0,0,1 2520x° + 50402°

2,0,0,2 84002°% + 21000z* + 840022

)

)

)

)

)

)

)

)

)

)

)

) 33602° + 100802° + 1680z

) 100802° + 302402% + 504022
2.0,1,2) 3360027 + 1176002° + 6720027 + 8400z

)

)

)

)

)

)

)

)

)

)

)

)

126002° + 63000z* + 37800z*
37800x" + 189000z° + 1134002°
1260002® + 6930002° + 6930002* + 18900022
134402° + 60480z + 168002
40320x" 4 1814402° + 5040023
1344002° + 6720002° + 470400z + 8400022
50400z + 3528002° + 2520002 + 25200
1512002 + 10584002° + 7560002* + 756002
5040002 + 3780000z" + 4284000z° + 15120002 + 126000z
1890002% + 1890000x° + 22680002 + 75600022
5670002 + 5670000z + 68040002° + 22680002°
189000021° + 198450002° + 321300002° + 18900000z + 37800002

Table B.30: Values of A% for n = 4, (819,513, S1.4, 2.3, S2.4,534) = (1,1,1,1,0,0), Part 2
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[ (01,92, 5. qu) | A(x)
(0,0,0,0) 1622
(0,0,0,1) 64z° + 32x
(0,0,0,2) 240z + 480>
(0,0,1,1) 25621 + 32022
(0,0,1,2) 960x° + 28802 + 480
(0,0,2,2) 36002% 4 180002* + 1080022
(0,1,0,1) 25621 + 32022
(0,1,0,2) 960x° + 288023 + 480«
(0,1,1,1) 10242° + 243223
0,1,1,2) 384025 4 172802 + 480022
0,1,2,1) 384025 4 172802 + 480022
0,1,2,2) 144002 + 1008002° + 720002 + 7200
(0,2,0,2) 36002 4 180002* + 1080022
(0,2,1,2) 14400z" + 1008002° + 720002° + 7200
0,2,2,2) 540002° + 5400002° + 648000z* + 216000z>
(1,1,1,1) 40962° + 166402*
(1,1,1,2) 1536027 + 103680x° + 36480x°
(1,1,2,2) 576002° + 57600025 + 460800z* + 7200022
(1,2,1,2) 576002° + 57600025 + 460800z* + 7200022
(1,2,2,2) 216000z + 302400027 + 38880002° 4 151200023 + 108000z
(2,2,2,2) | 8100002 + 153900002° + 275400002° + 17820000x* + 405000022

Table B.31: Values of A% for n = 4, (812,513, S1.4, S2.3, S2.4, 534) = (1,0,1,1,0,1)
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’ (CI1,CI27(]3aQ4) ‘ A(.QZ)
©0,0,0,0) 205 + T2x

0,0,0,1 28847 + 57612
0,0,0,2 108027 + 432027 + 1080z
0,0,1,1 115227 + 34562° + 5767
0,0,1,2 43202° + 2160027 + 1296022

16200x" + 1134002° + 145800z 4 16200
3602* + 108022
14402° + 62402° + 960z

54002% 4+ 360002* + 2340022

57602% 4 326402* + 1344022
21600z" 4 1728002 + 1800002> + 14400z

810002% 4+ 8370002° + 1539000z* + 45900022
15122° + 1008023 + 3528
604825 + 504002* 4 3427242

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
ey
(0,2,1,1) 2410227 + 24192027 + 2580482° + 20160z
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

0,2,0,2 2268027 + 2494802° + 35532023 + 52920

0,2,1,2 90720z% + 11491202° + 21772802 + 66528022
0,2,2,2 34020027 + 521640027 + 147420002° + 95256002° + 793800z
1,1,0,0 18002° + 10200z + 2400z

1,1,0,1 72002° + 536002 + 2560022

1,1,0,2 27000z + 2760002° + 3090002 + 36000

1,1,1,1 2880027 + 2656002° + 2240002°

1,1,1,2 1080002® + 12960002° + 2100000z 4 3840002
1,1,2,2 40500027 4+ 598500027 + 152550002° + 69750002 + 5400002
1,2,0,0 756025 + 756002 + 6804022

1,2,0,1 30240z + 3696002° + 4737602 + 33600x

1,2,0,2 1134002° + 17514002° + 3666600z* + 127260022
1,2,1,1 1209602 + 17472002° + 31046402 + 47040022
1,2,1,2 45360027 4 801360027 + 217224002 + 1013040023 4 504000
1,2,2,2 170100020 + 355320002% + 1341900002° + 111888000 + 228690002

Table B.32: Values of A%q;s) for n = 4, (SLQ, 51,3,51,4, 52,3, 52,4, 8374) = (17 1, ]_, ]_, 17 0), Part 1
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’ (q1, 92,93, q4) \ A(z)

(2,2,0,0) 3175227 + 4762802° + 920808z + 158760z

( ) 127008z° + 22579202° + 5447232x% + 169344022

( ) 4762802 + 1026648027 + 341863202° + 2413152023 + 2381400
(2,2,1,1) 5080322 + 1044288027 + 31667328x° + 138297602 + 705600
( )

( )

1905120z'Y + 463579202° + 1896652802° + 160030080z" + 3069360022
71442002 + 200831400z° + 1063692000z"
+1351047600x° + 5564538002 + 35721000

Table B.33: Values of A% for n = 4, (819,513, S1.4, 2.3, S2.4,534) = (1,1,1,1,1,0), Part 2

| (91,92, 93, q4) | A(x) |
(0,0,0,0) 162x* + 113422
(0,0,0,1) 8102° + 891022 + 3240z
(0,0,0,2) 34022°% + 567002* + 7597822
(0,0,1,1) 40502% + 625502* + 6300022
(0,0,1,2) 170102" 4 3666602° + 833490x° + 143640
(0,0,2,2) 714422% + 200831425 4 77077982* + 450084622
0,1,1,1) 202502 + 4117502° + 7800002° + 84000z
0,1,1,2) 850502 + 22869002° + 7821450z* + 341460022
0,1,2,2) 3572102° + 1210545027 + 631467902° + 6118875023 + 6085800
(0,2,2,2) | 1500282210 4 620116562° + 44997346825 + 7448066642* + 24198993022
(1,1,1,1) 1012502 + 25987502 + 7920000z + 234000022
(1,1,1,2) 4252502° + 1389150027 + 672472502° + 515760002 + 29400002
(1,1,2,2) | 178605020 + 716404502° + 4947799502° + 698786550z + 16184700022
(1.2.2.9) 75014102 + 360067680z 4 3327847740x"
e +73135969202° + 374375925023 + 250047000z
(2.2.2.9) 3150592222 + 177483360620 + 210638481482°
e +6543196556425 + 571015664102 + 1212589035022

Table B.34: Values of A% for n = 4, (812,513, S1,4, 523, S2.4,534) = (1,1,1,1,1,1)
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3F5 transform, 14, 128, 171

arrow simplification lemma, 92
substructure A, 117, 131, 134
substructure I'; 94
substructure A, 133
substructure ©, 130

arrowed array, 86
arrowed head, 86
arrowed tail, 86
balance condition, 87
critical vertex, 87
forest condition, 87
full condition, 87
irreducible, 95
non-empty condition, 87
object, 87
point to, 86

binomial theorem, 10

canonical array, 74, 76, 82
Chu-Vandermonde identity, 12, 126, 161,
176
column merging, 97
column pointing, 96
combinatorial map, 24
canonical, 26
disconnected, 24, 57

generating series of, 32

double arrowed array, 187
double factorial, 4

Euler characteristic, 19
exponential generating series, 42, 59
extraction procedure, 80

Feymann diagram, 26, 61

forest completion algorithm, 84

forest condition function, 74, 87

functional digraph, 7, 15, 74, 87, 89, 132,
135

gamma function, 8
Gaussian measure, 37

mean, 37

on Hermitian matrices, 40

on vector spaces, 38
generalized hypergeometric series, 10

identities, 11, 12, 14
Goulden-Slofstra formula, 48, 168
graph, 7, 18

planar, 19

root vertices, 7

rooted forest, 7, 89

Harer-Zagier formula, 44, 168
Hermite polynomial, 41, 46



Hermitian matrix, 40
hypergeometric term, 10

inclusion-exclusion, 43, 124
insertion procedure, 81

label recovery procedure, 76
labelled array, 70, 76
labelling procedure, 80
locally orientable surface, 61

map, 19
degree, 19
genus, 19

half-edge, 21
isomorphism, 20
labelled, 21
rooted, 20
star, 21

minimal array, 79, 82, 137

N-coloured map, 36, 61

one matrix model, 40
one vertex map, 44, 167
orientable surface, 19

paired array, 72
balance condition, 73
critical vertex, 72
forest condition, 74
full condition, 180
mixed pair, 72
non-empty condition, 168
object, 72
partner, 72
proper, 74
redundant pair, 72
tree-shaped, 75

paired function, 35, 57, 62, 70, 76, 146

pairing, 4
mixed pair, 6
non-mixed pair, 6
partial, 4, 83
support, 4
partial function, 7
partially-paired array, 79
critical vertex, 79
mixed pair, 79
object, 79
proper, 79
redundant pair, 79
unpaired vertex, 79
permutation, 15
canonical long cycle, 18
canonical permutation, 18
conjugacy class, 16
cycle notation, 15
cycle type, 16
fixed-point free involution, 17
transposition, 17
two-line notation, 15, 68
Pfaft’s identity, 14, 175
probability measure, 37

quadratic form, 40, 49
rising factorial, 5, 9, 163, 182

substructure, 88
admissible, 124
column types, 96
A-non-empty, 116
irreducible, 95, 117, 130, 133
A-compatible, 147
partition, 116
refinement, 115
O-compatible, 136
substructure formula
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substructure A, 117, 118, 125, 127
substructure I', 102, 112
substructure A, 134
substructure ©, 130

support graph, 6

symmetric group, 15

two matrix model, 52
two vertex map, 48, 168
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unicellular bicoloured map, 63
partitioned, 65
rooted, 64

unicellular map, 63

Vandermonde determinant, 46
vertical array, 79, 137, 146, 147
proper, 79

Wick’s formula, 40, 45, 51, 58, 63
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