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Abstract 

Solar energy is a strong contender among the sustainable alternatives that offer practical potential for 

replacing increasingly depleted fossil fuels and supplying the world’s growing energy demands. 

However, despite its sustainability, the spread of its use has been limited due to the high costs arising 

from its inadequate efficiency.  

With this challenge as motivation, the goal of the research presented in this thesis was to contribute 

to the expansion of the utilization of photovoltaic (PV) systems. To achieve this goal, the work was 

approached from two perspectives: 1) facilitation of research into PV systems through the enhancement 

of existing PV models and simulation tools, which are highly complex and necessitate substantial 

computational effort, and 2) improvement of the efficiency of PV systems through the development of 

new techniques that mitigate power losses in PV systems. 

With respect to the first perspective, two innovative modeling approaches are introduced. The first, 

a new circuit model for PV systems, features accuracy comparable to that of existing models but with a 

reduced computational requirement. The proposed model mimics the accuracy of existing models 

without their dependency on a transcendental implicit equation, thus providing a shorter computational 

time without sacrifying the accuracy.   

The second modeling approach, which was developed for use in model-based online applications, 

involved the creation of a fast tool for estimating the power peaks of the power-voltage curves for 

partially shaded PV systems. Utilizing a PV circuit model for estimating the power peaks in large PV 

systems through the simulation of their entire power curve consumes extensive computational time, 

which is unacceptable for online applications even with the use of the proposed circuit model mentioned 

above. Rather than employing a PV circuit model to find the power peaks, the proposed tool relies on 

simple rules that govern the formation of power peaks in a partially shaded PV system as a means of 

establishing the power peaks directly, thus significantly reducing the time required.  

The second perspective led to the development of three methods for reducing different types of 

power losses prevalent in PV systems. The first is an MPPT technique for use with partially shaded PV 

systems that exhibit multiple power peaks in their output power curves. The proposed MPPT is uniquely 

distinguishable because of its ability to eliminate misleading power losses in PV systems. Rather than 

searching and scanning heuristically for the GMPP, it employs the fast modeling tool mentioned above 

to calculate the location of the GMPP deterministically, thus avoiding the need for curve scanning. The 
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irradiance values required by the modeling tool are estimated innovatively using captured images of the 

PV modules obtained by an optical camera.  

The objective of the second was to reduce the mismatch power losses common in partially shaded 

PV systems through the development of an improved PV reconfiguration method. The reconfiguration 

proposed in this thesis is produced by a simple algorithm that establishes a better configuration and 

requires only negligible computational time for ensuring the minimization of mismatch power losses.  

The third is an enhanced maximum power point tracker (MPPT) for reducing tracking power losses 

in PV systems that operate under rapidly changing irradiance levels. The proposed method combines 

model-based and heuristic techniques in order to accelerate the tracking speed and thus decrease this type 

of loss. In the proposed MPPT, the temperature measurements typically necessary in any model-based 

PV application have been eliminated through reliance on a new set of equations capable of estimating the 

temperature through the utilization of current and voltage measurements. 
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Chapter 1 INTRODUCTION 
 

Despite their harsh and polluting effects on the environment, fossil fuels are still the most economical 

option, so they remain the world’s primary source of energy supply [1]. More than 70 % of global 

generated electricity is supplied by fossil fuels such as natural gas, coal, and petroleum [2]. 

Unfortunately, the available supply of these resources is shrinking and will inevitably run out [3]. On the 

other hand, worldwide energy demands are increasing exponentially, with a resultant urgent need for 

new alternative energy resources to replace the disappearing fossil fuels [4]. One sustainable energy 

source that has a practical potential to replace fossil fuels and meet growing energy demands is solar 

power [5], which is also viewed as beneficial with respect to climate change and public health 

considerations. 

The most predominant method of converting solar energy into electrical energy is the use of 

photovoltaic (PV) systems consisting of thousands of small solar cells [6]. The efficiency of the first 

solar cell developed was only 1 %, making it impractical for power generation [7]. Fortunately, the work 

conducted by PV material researchers has led to efficiency levels as high as 21.7 % in today’s 

commercial solar cells, an improvement also accompanied by declining costs [8]. These advances have 

contributed to exponential growth in the use of PV power systems over the past two decades. As shown 

in Figure  1-1, the cumulative capacity of installed PV power plants has increased from less than 10 GW 

in 2006 to almost 180 GW in 2014 [9], with a projected capacity of 540 GW by 2019, which corresponds 

to a five-year projection of more than triple the installed capacity. The International Energy Agency has 

predicted that by 2050, solar energy will be the world's largest source of electricity [6].  

1.1. Research Motivation 

In spite of continuous improvements in the efficiency and cost-effectiveness of PV systems, their spread 

nonetheless continues to be restricted due to the relatively high costs arising from their still 

comparatively low efficiency [10, 11]. The primary goal of PV system research therefore remains further 

enhancement of efficiency. In addition to the efforts of PV material scholars, power systems researchers 

also contribute to the achievement of this goal by endeavoring to increase the overall efficiency of PV 

systems through the mitigation of their losses. They are also working on facilitating the investigation of a 

variety of aspects of PV systems through the enhancement of existing PV models and simulation tools, 

which are characterized by significant complexity and entail major computational effort. 
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Figure  1-1: The global capacity of installed PV systems. 

1.1.1. Power Losses in PV Systems 

As illustrated in Figure  1-2, PV systems are subject to numerous types of power losses, including 

tracking power losses, misleading power losses, and mismatch power losses. Tracking power losses 

occur in homogeneous PV systems that receive the same irradiance level across all of their modules. 

These losses are caused by the inability of maximum power point tracking (MPPT) algorithms to track 

the maximum power of PV systems quickly in a rapidly changing irradiance environment. 

Figure  1-3 illustrates the operation of an MPPT algorithm based on the power curve of a PV system. 

As can be seen, the power curve has a power peak at a specific voltage, termed the maximum power 

point (MPP) voltage. The location of this voltage changes with variations in the irradiance throughout 

the day. To extract the maximum available power, an MPPT algorithm is therefore implemented as a 

means of ensuring that the system operates at this varying MPP voltage [12]. The algorithm typically 

relies on a hill-climbing principle whereby the operating voltage is incremented or decremented in order 

to achieve increases in the power generated. The process begins with an increment/decrement in the 

voltage, followed by the measurement of the corresponding amount of power generated. If the generated 

power increases, the algorithm continues to change the voltage in the same direction. However, if the 

generated power decreases, the algorithm causes changes in the opposite direction. This procedure 

continues until the voltage reaches and oscillates around the MPP voltage and thus generates peak 

power. It is important to mention that these changes in PV voltage has no effect on the load voltage 

because PV systems are isolated by DC-DC converters which keep the output voltage regulated at a 

fixed load voltage.  

As noted above, before reaching the MPP voltage, the system operates at non-maximum power 

points  (represented by the black circles in Figure  1-3) and thus loses some of the available power. These  
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Figure  1-2: Categories of the most common power losses in PV systems. 

 

Figure  1-3: Conceptual operation of the hill-climbing MPPT. 

losses are called tracking power losses [13] and are more predominant in systems that operate under 

rapidly varying irradiance levels, which cause a continual shifting of the location of the MPP voltage. 

Many MPPT methods have been developed for improving the operation of PV systems and reducing 

their tracking power losses. The most recent and effective methods are dependent on mathematical PV 

modeling as a means of reducing the heuristic nature of the tracking and accelerating its speed. The 

determinism of the model shortens the time needed for searching for the MPP voltage, which in turn 

decreases tracking power losses. However, these methods have not been commonly sought after or 

implemented because the precise temperature measurement required increases the complexity and cost of 

their implementation.  

Other types of power losses in PV systems are caused by partial shading, which occurs when some 

modules of a  PV system are shaded by  passing clouds, trees, adjacent objects, etc., while the rest  of the  
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system is fully illuminated, as represented in Figure  1-4. Under these conditions, not only is the power of 

the shaded modules reduced, but some of the power of the unshaded modules is also lost [14, 15]. These 

power losses in unshaded modules appear in two forms: misleading and mismatch power losses, as 

indicated in Figure  1-2. 

 An examination of the power curve for the partially shaded PV system shown in Figure  1-5 can 

provide an understanding of misleading power losses. As can be seen, multiple power peaks appear in 

the power curve of partially shaded PV systems as opposed to the single power peaks that appear in the 

curves of homogeneous PV systems [16]. Multiple power peaks make tracking the MPP challenging 

because MPPT algorithms can become trapped in one of the local maximum peaks rather than continuing 

on to identify the global maximum power peak (GMPP) [17]. In this case, the difference between the 

available global power and the local power extracted is called a misleading power loss. 

Biological optimization is a method that has been recently applied for solving this problem and 

tracking the global power peak in partially shaded PV systems [18, 19]. In spite of its accurate 

convergence to the GMPP, this technique requires periodic scanning of the power curve, during which 

the system is forced to operate with non-maximum power points, which induces power losses. The 

periodicity of the scanning can also prevent the system from working on the true GMPP if the shading 

profile changes between two successive scans, because the system continues to function with the 

previous GMPP until the next scan. Therefore, optimization-based MPPTs are incapable of eliminating 

misleading power losses. 

 

Figure ‎1-4: An example of a partially shaded PV system. 
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Figure  1-5: The power curve of a partially shaded PV system. 

 

Figure  1-6: The power curves of two series connected PV modules. 

Mismatch power losses, which occur in partially shaded series-connected PV modules, are the 

second form of partial shading losses. An example of this type of loss is illustrated in Figure  1-6, which 

shows the power curves of two series-connected PV modules: one shaded and the other fully illuminated. 

Although the operating current passing through both modules (represented by a dashed line in the figure) 

can harvest the maximum power from the second PV module (point b), it cannot extract the maximum 

power from the first module (point a). The difference between the extracted power (point c) and the 

maximum available power (point a) of the first module is referred to as a mismatch power loss. 

PV reconfiguration has been reported as an effective method for reducing mismatch power losses in 

partially shaded PV systems [20, 21]. This technique is based on the fact that the mismatch power losses 

in a system can be minimized through appropriate changes in the configuration of the system. The PV 

system modules are therefore connected through switches, permitting them to be reconfigured during the 

operation of the system in order to minimize mismatch power losses. The optimal configuration that 
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results in minimum mismatch power losses is first determined, and the PV modules are then 

reconfigured accordingly. However, the main deficiency associated with the available reconfiguration 

methods is the long delay required for establishing the optimal configuration, during which time the 

system does not operate based on the optimal configuration and the mismatch power losses are hence not 

minimized. For this reason, despite their effectiveness in cases involving slowly moving shadows such as 

those from trees and adjacent objects, existing methods are ineffective in the presence of faster-moving 

shadows, such as those caused by shifting clouds. 

1.1.2.  Limitations of Existing PV Models 

The accurate PV models described in the literature are complex due to their dependency on a 

transcendental implicit equation [22]. This feature poses no problem for studies of PV systems that 

receive homogeneous irradiance because of the feasibility of quickly modeling an arbitrary number of 

PV units using only one aggregated PV model. However, it creates challenges with respect to 

investigating PV systems that receive nonhomogeneous irradiance [23]. Since each PV unit might be 

subjected to a different irradiance level, such systems require the simultaneous simulation of connected 

PV models, resulting in a lengthy computational time.  

Such excessive computational time, which might reach hours or days for the modeling of large 

partially shaded PV systems, is accompanied by two challenges. The first is that it impedes the ability of 

PV system designers and researchers to conduct simulation studies easily in a reasonable amount of time. 

Second, it hinders the feasibility of developing model-based MPPT algorithms for partially shaded PV 

systems, thereby limiting the exploration of potential further improvements in the efficiency of PV 

systems [24]. This is because model-based MPPTs are online applications that require PV systems to be 

modeled in a few seconds, which is unfortunately impossible using currently available PV models [24]. 

In spite of the demonstrated advantages of existing model-based MPPTs with respect to reducing 

tracking power losses in homogeneous PV systems, no model-based MPPT methods have yet been 

developed for use with partially shaded systems. 

1.2. Research Objectives 

Driven by these motivations, the goal of the work presented in this thesis was to mitigate the different 

types of power losses that occur in PV systems as a means of improving system efficiency, and to 

develop enhanced modeling and simulation tools for use with PV systems. The following specific 

objectives were targeted: 
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1. Facilitate PV system research and enable PV designers and researchers to conduct simulation 

studies easily in reasonable amounts of time by developing a new PV circuit model that requires 

shorter computational time than that associated with existing PV models. 

2. Develop a fast modeling tool for partially shaded PV systems that provides computational speed 

suitable for model-based online applications, thus enabling the practical creation of model-based 

MPPT algorithms for partially shaded PV systems, which have the potential to improve the PV 

system efficiency, 

3. Develop an enhanced MPPT method that accelerates tracking for PV systems, thereby offering a 

means of reducing tracking power losses in homogeneous PV systems that operate under rapidly 

changing irradiance conditions. 

4. Eliminate misleading power losses in partially shaded PV systems through the removal of the 

periodic curve scanning required in existing optimization-based MPPT approaches. 

5. Minimize mismatch power losses in partially shaded PV systems affected by rapidly moving 

shadows through the development of an improved reconfiguration method that entails only a 

negligible time delay. 

1.3. Thesis Outline 

This thesis is divided into two main parts: the next two chapters, which are concentrated on the modeling 

of PV systems, and the subsequent three chapters, which are focused on the mitigation of the three types 

of power losses common in PV systems. The individual chapters are organized as follows. 

Chapter 2 explains the challenges facing PV system researchers and designers with respect to modeling 

PV systems. It describes the complexity of the available accurate models and the extensive 

computational time needed for correctly modeling large PV systems. To address these issues, a new 

PV circuit model is proposed that reduces computational time while maintaining accuracy. 

Chapter 3 reveals the gap in the literature with respect to the investigation of model-based MPPTs for 

partially shaded PV systems, which have not yet been developed, in spite of their potential to 

improve dynamic and steady-state tracking performance, which is adversely affected by the 

computational time needed for existing models. A fast modeling tool capable of performing the 

modeling required in model-based MPPTs in just a few seconds is then proposed. Rather than using 

a PV circuit model for simulating the entire power curve in order to estimate its peaks, a time-

consuming process even with the PV model proposed in Chapter 2, the proposed approach 
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calculates the power peaks of partially shaded PV systems directly based on simple rules, without 

the need for simulating the entire curve.  

Chapter 4 highlights the drawbacks associated with the model-based MPPTs recently reported in the 

literature as methods of accelerating the MPP tracking speed for PV systems and of reducing 

tracking power losses. These techniques require accurate temperature measurements that increase 

the cost and complexity of their implementation compared to that of non-model-based MPPTs. A 

method for eliminating the need for temperature measurements in model-based MPPTs is then 

suggested. 

Chapter 5 reveals the weakness inherent in optimization-based MPPTs and discusses their inability to 

eliminate misleading power losses in partially shaded PV systems, despite their effectiveness in 

mitigating them. An interdisciplinary solution is proposed for eliminating these losses by 

employing, for the first time, an imaging device for the MPPT of PV systems.  

Chapter 6 demonstrates the failure of existing PV reconfiguration methods to minimize mismatch power 

losses in PV systems that are subject to rapidly moving shadows. It points out that the time delay 

associated with their response to changes in shadowing has a negative impact on the reduction of 

power losses. A more effective reconfiguration method based on the newly developed algorithm is 

proposed; it offers a negligible time delay that enhances the mitigation of power losses.  

Chapter 7 concludes the thesis, highlights the research contributions, and suggests topics for future 

investigation. 
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Chapter 2 A PHOTOVOLTAIC MODEL WITH REDUCED 

COMPUTATIONAL TIME 
 

A reliable and accurate photovoltaic model is essential in PV system studies. It can be used for 

simulating the electrical characteristics and dynamics of PV power plants under various metrological 

conditions, or for estimating the operating temperature and efficiency of a solar plant in a specific 

location [25]. In addition, PV models help designers optimize the design and sizing of PV power plants 

[26] and are also used to verify and test the performance of newly developed MPPT algorithms [27], 

control schemes [28], and designs of PV power electronic converters [29].  

Various versions of PV models were developed in the past, as depicted in Figure  2-1. The practical 

model consists of a voltage-dependent current source, a diode, a series, and shunt resistances, as shown 

in Figure  2-1(a). Despite parameterization difficulties [30], this model has been widely used in the 

literature because it strikes a good compromise between complexity and accuracy [31]. The practical 

model is selected in [32] to simulate and verify the newly developed hybrid power generation system. As 

well, it is exploited to test new supervisory algorithms [33] and analyze novel PV power electronic 

converters [34]. It is generally preferred in studies where accuracy is important [35].  

For simplification, the shunt resistance is neglected in the simplified series model portrayed in (b). 

This model has mostly been used to test newly developed MPPT algorithms, as in [36]. In addition to the 

shunt resistance, the series resistance is also neglected in the ideal PV model as depicted in Figure  2-1(c). 

It is the simplest model available [37] and consists only of a voltage-dependent current source and a 

diode.  

More advanced PV models are the double diode [38] and triple diode models [39], shown in 

Figure  2-1(d) and Figure  2-1(e), respectively. Both of these models feature high accuracy because they 

take the recombination of carrier into consideration [40]. On the other hand, they are rarely used due to 

their complexity, high computational cost, and inability to be parameterized based solely on datasheet 

information [41]. 

The previously mentioned models (practical, simplified, double diode, and triple diode) suffer from 

high computational time due to their dependency on complex transcendental implicit equations [22]. The 

only model that exhibits significantly lower computational time is the ideal model, which relies on a 

simple non-transcendental equation [22]. However, its accuracy is not guaranteed because it has only 

three degrees of freedom (corresponding to the three parameters), which are insufficient to reproduce the 

information provided by manufacturing datasheets [42]. 
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                                                (a)                                (b)                              (c)               

            

                                                            (d)                  (e)    

Figure ‎2-1: Existing circuit PV models: (a) practical model; (b) simplified series model; 

(c) ideal model; (d) double diode model; and (e) triple diode model. 

Lambert W function based PV model is also available in the literature. It expresses the PV voltage as 

an explicit function of the PV current [43]. Similar to the ideal PV model, there is no dependency on 

complex transcendental implicit equation in this model as it relies on a simple non-transcendental 

equation. On the other hand, executing Lambert W function is not straightforward and requires nontrivial 

calculations.  

In studies of PV systems which receive homogeneous irradiance, it is possible to model an arbitrary 

number of PV units using only one aggregated PV model because they receive the same irradiance. This 

leads to quick computational time modeling as in [44]. On the other hand, studies considering the partial 

shading impact require simulating numerous connected PV modules simultaneously, as each PV unit 

might be subjected to a different irradiance level [45]. This results in a high computational time which 

impedes the ability of PV researchers and designers of conducting simulation studies easily in reasonable 

amount of time. Unfortunately, there is still no available PV model desirable for modeling large partially 

shaded, which requires low computational time and high accuracy. 

This chapter proposes an accurate and low computational time model based on the practical PV 

model. It reduces the computational time by replacing the series resistance of the model with a voltage-

dependent voltage source. The voltage source is a third-degree polynomial function of the terminal 

voltage to mimic the characteristics of the practical model. The model does not have an implicit 

dependency and thus decreases the simulation effort. The proposed model, with added dependent voltage 

source, has five degrees of freedom, which is sufficient to accurately align the I-V and P-V curves with 

the information provided by manufacturer datasheets, yet at a lower computational time. Moreover, the 

model is parameterized based on manufacturing datasheets without a need for extra measured points. The 
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effectiveness of the model is verified and compared at different atmospheric conditions to measurements 

of various PV materials available commercially, such as mono-crystalline, poly-crystalline, and thin 

film.  

The chapter is organized as follows: it starts with an outline of the limitations of the most commonly 

used practical PV model, after which the proposed model is presented, derived, and implemented to 

model various commercial PV modules. The proposed model is then adjusted to take the effect of 

temperature and irradiance variations into consideration, and a new factor is introduced to improve the 

accuracy of the model at low irradiance levels. Next, a comprehensive model evaluation is conducted in 

which the accuracy of the model is verified by comparing it to the measured curves provided by 

manufacturers of mono-crystalline, poly-crystalline and thin film PV technologies. Finally, the 

computational time of the model is measured and compared to that of other available models, and a case 

study of a partial-shaded PV system is conducted to test and compare the effectiveness of the proposed 

model under certain conditions. 

2.1. Proposed PV Model 

As stated in the Introduction, the available models in the literature are either inaccurate or suffer from 

high computational time. The following equation of the practical model shown in Figure  2-1 (a) [46] is 

the I-V characteristic equation that relates the terminal voltage V to the output current I [47]: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠[𝑒
𝑞(𝑉+𝐼𝑅𝑠)
𝑁𝑠𝐾𝑇𝐴 − 1] −

𝑉 + 𝐼𝑅𝑠
𝑅𝑠ℎ

 ( 2-1) 

where q, K, T and Ns are the electron charge (1.60217657 × 10
-19

), Boltzmann constant (1.3806488×10
-

23
), module temperature and number of series connected cells, respectively. The five parameters Iph, Is, A, 

Rs and Rsh are the photon current, saturation current, ideality factor of diode, series and shunt resistances, 

respectively. These parameters are determined such that the corresponding I-V curve precisely passes 

through the datasheet information [40]. However, ( 2-1) is a transcendental nonlinear equation and cannot 

be solved for one variable, either the voltage V or the current I, in terms of the other. Solving such an 

equation is complicated, time-consuming and requires a numerical iterative solver, since it cannot be 

solved analytically, as Figure  2-2(a) illustrates. 

2.1.1. Equivalent Circuit 

The proposed PV model relies on the practical PV model and reduces the computational time by 

replacing its series resistance with a voltage-dependent voltage source. The proposed model, depicted in 

Figure  2-3, consists of a current source, diode, shunt resistant and polynomial voltage-dependent voltage  
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Figure ‎2-2: Simulation model implementation: (a) practical model where I=f(V,I); (b) 

proposed model where I=f(V). 

 

Figure ‎2-3: Proposed equivalent PV circuit model. 

source. The voltage source dependency on the terminal voltage V is a third-degree polynomial that 

possesses four degrees of freedom. The polynomial function is chosen as a third order because it has four 

parameters capable to pass through the four points given by PV manufacturers. 

Equation (‎2-2) describes the relation between the terminal voltage V and current I of the proposed 

model shown in Figure  2-3: 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 [𝑒
𝑞(𝛼𝑜+𝛼1𝑉+𝛼2𝑉

2+𝛼3𝑉
3)

𝑁𝑠𝐾𝑇𝐴 − 1] −
𝛼𝑜 + 𝛼1𝑉 + 𝛼2𝑉

2 + 𝛼3𝑉
3

𝑅𝑠ℎ
 (‎2-2) 

where α0, α1, α2 and α3 are the polynomial coefficients determined such that the model analogously 

follows the behavior of the practical PV model. It is important to emphasize that (‎2-2) is a non-

transcendental equation that is easily simulated by direct substitution, without a need for a numerical 

solver, as shown in Figure  2-2(b). This feature reduces the computational time of the proposed model 

without affecting its accuracy. The model would be advantageous in studies of PV systems operating 

under partial shading conditions, as demonstrated later in this chapter. 
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2.1.2. Model Parameterization 

There are two sets of parameters which need to be determined for the proposed PV model. The first set is 

the parameters corresponded to the practical model which are Iph, Is, A, Rs and Rsh. The second set is the 

polynomial coefficients α0, α1, α2 and α3. All the model parameters at standard test conditions STC 

(where temperature and irradiance are equal to 25°C and 1 KW/m
2
) are determined based on the 

information provided by all manufacturing datasheets, without a need for additional measurements. The 

manufacturers provide the following information at STC: short-circuit current point (0, Isc), open circuit 

voltage point (Voc, 0), voltage and current at max power point (Vm, Im), and the implicit information that 

the slope of power curve equals zero at voltage Vm (dP/dV = 0 at V=Vm) [48].  

The first set of parameters is determined similar to the standard parameterization approach available 

in the literature for the practical PV model such as in  [49]. Starting with the short-circuit current point 

and substituting (0, Isc) in ( 2-1) results in: 

𝐼𝑝ℎ = 𝐼𝑠𝑐 + 𝐼𝑠𝑜[𝑒
𝑞𝐼𝑠𝑐𝑅𝑠
𝑁𝑠𝐾𝑇𝐴 − 1] +

𝐼𝑠𝑐𝑅𝑠
𝑅𝑠ℎ

 (‎2-3) 

where Ipho and Iso are the photon current and saturation current both at STC. Similarly, substituting an 

open circuit voltage (Voc, 0) point in ( 2-1) produces: 

Substituting ( 2-3) in ( 2-4) and rearranging results in: 

Substituting the max current and voltage point (Vm, Im) in ( 2-1) results in:  

Finally, applying (dP/dV = 0) and substituting voltage and current at maximum power (Vm, Im) results 

in:  

Equations ( 2-3), ( 2-5), ( 2-6) and ( 2-7) are the four equations which can be written from the 

information provided by manufacturer datasheets. Because there are five parameters to be estimated for 

the practical model, while there are only four information provided by manufacturer datasheets, an 

additional equation or assumption needs to be introduced to find the fifth parameter. In [40], one 

𝐼𝑝ℎ − 𝐼𝑠𝑜[𝑒
𝑞𝑉𝑜𝑐
𝑁𝑠𝐾𝑇𝐴 − 1] −

𝑉𝑜𝑐
𝑅𝑠ℎ

= 0 (‎2-4) 

𝐼𝑠𝑜 = [(𝑉𝑜𝑐 − 𝐼𝑠𝑐𝑅𝑠)/𝑅𝑠ℎ − 𝐼𝑠𝑐]/(𝑒
𝑞𝐼𝑠𝑐𝑅𝑠
𝑁𝑠𝐾𝑇𝐴 − 𝑒

𝑞𝑉𝑜𝑐
𝑁𝑠𝐾𝑇𝐴) (‎2-5) 

𝐼𝑚 − 𝐼𝑝ℎ𝑜 + 𝐼𝑠𝑜[𝑒
𝑞(𝑉𝑚+𝐼𝑚𝑅𝑠)
𝑁𝑠𝐾𝑇𝐴 − 1] +

𝑉𝑚 + 𝐼𝑚𝑅𝑠
𝑅𝑠ℎ

= 0 (‎2-6) 

𝐼𝑝ℎ𝑜 − 𝐼𝑠𝑜[(1 +
𝑞(𝑉𝑚 + 𝐼𝑚𝑅𝑠)

𝑁𝑠𝐾𝑇𝐴
)𝑒
𝑞(𝑉𝑚+𝐼𝑚𝑅𝑠)
𝑁𝑠𝐾𝑇𝐴 − 1] −

2𝑉𝑚
𝑅𝑠ℎ

= 0 (‎2-7) 
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predefined parameter, the ideality factor, was assumed arbitrary and then the rest four parameters are 

derived accordingly. Similarly, the parameterization in [50] approximates that one parameter, the shunt 

resistance Rsh, equals to inverse of the slope at short-circuit point, and then derives the rest four 

parameters accordingly. The parameterization in [49] finds empirically the value of the ideality factor 

that results in minimum deviation between the simulated and measured I-V curves and then the rest of 

the parameters are derived. Here the parameterization provided in [49] is followed. The parameterizing 

procedure is summarized in the flowchart shown in Figure  2-4.  

The flowchart starts by determining the value of the ideality factor of the diode ‘A’. It is worth 

mentioning here that any assumed value for the ideality factor guarantees the passing of the model 

through the information provided in the manufacturer datasheet. However, choosing an appropriate value 

for ‘A’ improves the accuracy at the rest of the points of the I-V curve. Following the parameterization in 

[49], different values of ‘A’ in the range of [1-2] are substituted and the value that results in minimum 

deviation between the modeled and measured curve is chosen.  

After determining ‘A’, the constants K, q and datasheet parameters Vm, Im, Isc and Voc are substituted 

in ( 2-3), ( 2-5), ( 2-6) and ( 2-7) to find the four parameters of the model Ipho, Iso, Rs and Rsh. First, the 

parameters ‘Rs’ and Rsh are determined by solving ( 2-6) and ( 2-7) numerically using the well-known 

Newton-Raphson iterative method. If the iteration results in a non-divergent solution, the initial value of 

the variables Rs and Rsh should be changed. An initial value for Rs can be chosen in the range of (0-0.5) Ω 

and an initial value for Rsh is in the range of (100-10,000) Ω. Once Rs and Rsh are found, they are 

substituted directly in ( 2-3) and ( 2-5) to determine the value of the photon current Ipho and saturation 

current Iso.  

After determining the first set of parameters, the polynomial coefficients are estimated such that the 

model analogously follows the behavior of the practical PV model. Namely, they are determined by 

equating (‎2-2) and its derivative with ( 2-1) and its derivative. Equating (‎2-2) with ( 2-1) and substituting 

the short circuit current point, the maximum current-voltage point and the open circuit voltage point 

results in the following equations: 

 

𝛼0 = 𝐼𝑠𝑐𝑅𝑠 (‎2-8) 

𝛼0 + 𝛼1𝑉𝑚 + 𝛼2𝑉𝑚
2 + 𝛼3𝑉𝑚

3 = 𝑉𝑚 + 𝐼𝑚𝑅𝑠 (‎2-9) 

𝛼0 + 𝛼1𝑉𝑜𝑐 + 𝛼2𝑉𝑜𝑐
2 + 𝛼3𝑉𝑜𝑐

3 = 𝑉𝑜𝑐 (‎2-10) 
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Substitute K, q and Datasheet Information; Isc, Im, 
Voc, Vm and Ns in (2.3), (2.5), (2.6) and (2.7) 

Converges ?

Apply Newton Raphson 
method to solve (2.6) and (2.7)

Rs=Rs_n,  Rsh=Rsh_n

Initialize Rs and Rsh

Find Iso using (2.5)

End

Yes

No

Find Ipho using (2.3)

Start

Determine ‘A’

Calculate α0, α1, α2 and α3 by 
solving (2.8)-(2.11)

 

Figure ‎2-4: The flowchart for parameterizing the proposed PV model. 

Equating the derivatives of ( 2-2) with that of ( 2-1) and substituting the maximum voltage and current 

point results in: 

Equations ( 2-8)-( 2-11) are linear and can be trivially solved analytically to determine the values of 

the four coefficients α0, α1, α2 and α3. 

As an example, the PV module JAM5(l)-72-155 is parameterized in this paragraph utilizing the 

flowchart in Figure  2-4. The ideality factor of the diode A=1.8 is determined using the procedure 

described in [49]. Then, the model parameters Rs and Rsh are determined by solving ( 2-6) and ( 2-7) 

numerically using the well-known Newton-Raphson iterative method. The values of Rs and Rsh for this 

module equal to 0.0991 and 333.663 Ω, respectively. Finally, the model parameters are substituted in 

( 2-3) and ( 2-5) to determine the photon current Ipho and saturation current Iso. The values of photon 

current and saturation current equal to 4.9415 A and 9. 7116×10
-6

 A, respectively. Finally, the values of 

𝛼1 + 2𝛼2𝑉𝑚 + 3𝛼3𝑉𝑚
2 = 1 − 𝑅𝑠 × 𝐼𝑚/𝑉𝑚 (‎2-11) 
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polynomial coefficients α0, α1, α2 and α3 are determined by solving the equations ( 2-8) - ( 2-11) 

analytically which are as follows α0=0.4898, α1=0.8924, α2=0.0064 and α3=-0.000095. 

It is important to emphasize here that the proposed model represented by (‎2-2) can be completely 

simulated using direct substitution analytically without a need for numerical iterative solver. However, 

parameterizing the model requires solving two nonlinear equations ( 2-10) and ( 2-11) numerically. 

Because the model is parameterized usually a single time, this should not impose difficulties while 

simulating the proposed model.  

The parameters at STC of other commercial PV modules are determined using the parameterization 

approach in Figure  2-4. These are presented in detail in Table ‎2.1. Furthermore, the parameters are 

substituted in ( 2-2) to plot the I-V and P-V curves for each PV module at STC. The current-voltage I-V 

and power-voltage P-V curves of the PV modules are shown in Figure  2-5(a) and Figure  2-5(b), 

respectively. It can be seen that the modeled I-V curves pass precisely through the three points given by 

the manufacturer. Moreover, P-V curves pass accurately through the peak power point at its 

corresponding voltage Vm.  

2.1.3. Adjustment to Metrological Variations 

The determined model parameters extracted by the flowchart in Figure  2-4 are at STC and therefore must 

be adjusted for temperature and irradiance variations. The photon current Ipho is adjusted to the 

temperature and irradiance using (‎2-12), where G denotes irradiance (KW/m
2
), ΔT is the temperature 

difference between the module temperature and the STC temperature, and Ci is the current temperature 

coefficient given by the product datasheet [40]: 

Estimating the effect of meteorological conditions on Iso is more challenging. Equation (‎2-13) is 

usually used to estimate the saturation current Is for the practical model at any metrological condition, 

where |B| is the absolute value of the voltage temperature coefficient given by product data sheets [40]: 

Analogously, (‎2-13) can be rewritten for the proposed circuit model shown in Figure  2-3 as follows 

where 𝑉𝑜𝑐̅̅ ̅̅ = 𝑉𝑜𝑐 − |𝐵|∆𝑇 : 

 

 

𝐼𝑝ℎ = 𝐺(𝐼𝑝ℎ𝑜 + 𝐶𝑖∆𝑇) (‎2-12) 

𝐼𝑠 =
𝐼𝑝ℎ − (𝑉𝑜𝑐 − |𝐵|∆𝑇)/𝑅𝑠ℎ

𝑒
𝑞(𝑉𝑜𝑐−|𝐵|∆𝑇)

𝑁𝑠𝐾𝑇𝐴 − 1

 (‎2-13) 
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Table ‎2.1: Extracted Parameters of the Proposed Model for Different PV Modules 

 Mono-Crystalline Poly-Crystalline Thin-Film 

Parameters JAM5(l) 

-72-155 

JAM5(l)  

-72-80/SI 

JAP6- 

72-250 

NDQ2 

E3E 

GE-C 

dTe78 

NA-E 

125G5 

Ipho 4.9415 5.4411 7.8022 7.9293 1.2303 3.3706 

Iso×10-6 9.7116 3.4104 4.0546 1.653 70.166 400.79 

A 1.8 1.7 1.63 1.5 2.5 1.3 

Rs 0.0991 0.1015 0.099 0.1166 0.9091 0.0298 

Rsh 333.663 493.4728 352.968 98.7726 3989.9 179.80 

α0 0.4898 0.5523 0.7719 0.9234 1.1182 0.1003 

α1 0.8924 0.8620 0.8108 0.6889 0.9366 0.9924 

α2 0.0064 0.0078 0.0111 0.0283 0.0019 0.0003 

α3×10-5 -9.5197 -11.229 -16.499 -65.238 -1.388 -41.69 

 

 

Figure  2-5: Modelled current and power curves for PV Modules in Table  2.1. 

Unfortunately, the proposed model exhibits inaccuracy at low irradiance levels. To improve the 

accuracy, the open circuit voltage variation due to irradiance ∆𝑉𝑜𝑐(𝐺, 𝑇𝑜) is added to (‎2-14) to take the 

irradiance-variation effect into consideration, as shown in the following equation: 

𝐼𝑠 =
𝐼𝑝ℎ − (𝛼0 + 𝛼1𝑉𝑜𝑐̅̅ ̅̅ + 𝛼2𝑉𝑜𝑐̅̅ ̅̅

2
+ 𝛼3𝑉𝑜𝑐̅̅ ̅̅

3
)/𝑅𝑠ℎ

𝑒

𝑞(𝛼0+𝛼1𝑉𝑜𝑐̅̅ ̅̅̅+𝛼2𝑉𝑜𝑐̅̅ ̅̅̅
2
+𝛼3𝑉𝑜𝑐̅̅ ̅̅̅

3
)

𝑁𝑠𝐾𝑇𝐴 − 1

 (‎2-14) 
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where ∆𝑉𝑜𝑐(𝐺, 𝑇𝑜) is the difference between open circuit voltages at an operating irradiance G and STC 

irradiance Go, both at STC temperature To. The open circuit voltage can be approximated as follows: 

The difference between open circuit voltages at different irradiances ∆𝑉𝑜𝑐(𝐺, 𝑇𝑜) is expressed in 

the following: 

Substituting ( 2-16) and ( 2-12) in ( 2-17) results in: 

To compensate for the approximations while deriving ( 2-18), the following will replace it: 

Moreover, Y is determined in ( 2-20) where 𝑉𝑜𝑐(𝐺1) can be found in the curves provided by the 

manufacturer’s datasheet: 

To summarize, ( 2-12) and ( 2-15) are used to adjust STC parameters Ipho and Irs to Iph and Is at any 

irradiance and temperature level. Equation ( 2-19) finds the introduced term ∆𝑉𝑜𝑐(𝐺, 𝑇𝑜) in ( 2-15), and 

( 2-20) finds the value of the Y factor that appears in ( 2-19).  

Finally, it is important to mention that the polynomial coefficients α0, α1, α2 and α3 are also affected 

by the temperature and irradiance variations. However, the effect of the meteorological conditions on the 

polynomial coefficients is slight and can be neglected as presented in Appendix A. Similarly, the 

temperature effect on the ideality factor, series and shunt resistances can also be neglected as reported in 

[41]. 

𝐼𝑠 =
𝐼𝑝ℎ − (𝛼0 + 𝛼1𝑉𝑜𝑐̅̅ ̅̅ + 𝛼2𝑉𝑜𝑐̅̅ ̅̅

2
+ 𝛼3𝑉𝑜𝑐̅̅ ̅̅

3
+ ∆𝑉𝑜𝑐(𝐺, 𝑇𝑜))/𝑅𝑠ℎ

𝑒

𝑞(𝛼0+𝛼1𝑉𝑜𝑐̅̅ ̅̅̅+𝛼2𝑉𝑜𝑐̅̅ ̅̅̅
2
+𝛼3𝑉𝑜𝑐̅̅ ̅̅̅

3
+∆𝑉𝑜𝑐(𝐺,𝑇𝑜))

𝑁𝑠𝐾𝑇𝐴 − 1

 (‎2-15) 

𝑉𝑜𝑐 ≃
𝑁𝑠𝐾𝑇𝐴

𝑞
𝑙𝑛 (𝐼𝑝ℎ/𝐼𝑠) (‎2-16) 

∆𝑉𝑜𝑐(𝐺, 𝑇𝑜) = 𝑉𝑜𝑐(𝐺, 𝑇𝑜) − 𝑉𝑜𝑐(𝐺𝑜, 𝑇𝑜) (‎2-17) 

∆𝑉𝑜𝑐(𝐺, 𝑇𝑜) ≃
𝑁𝑠𝐾𝑇𝐴

𝑞
𝑙𝑛 (𝐺/𝐺𝑜) (‎2-18) 

∆𝑉𝑜𝑐(𝐺, 𝑇𝑜) ≃ 𝑌 × 𝑙𝑛 (𝐺/𝐺𝑜) (‎2-19) 

𝑌 ≃ (𝑉𝑜𝑐(𝐺1, 𝑇𝑜) − 𝑉𝑜𝑐(𝐺𝑜, 𝑇𝑜))/𝑙𝑛 (𝐺1/𝐺𝑜) ( 2-20) 
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2.2. Model Evaluation 

2.2.1. Model Accuracy 

It was shown earlier that the proposed model can accurately pass through the four STC points provided 

in the manufacturer’s datasheet. This section evaluates the accuracy of the model at the rest points of the 

curve. The evaluation is conducted by comparing the modeled I-V curves of the proposed model to the 

corresponded I-V curves produced by the practical model. The comparison is conducted with reference to 

the measurements provided in the manufacturer datasheets from different PV technologies available 

commercially, as shown in Figure  2-6. The deviation of the modeled I-V curve with reference to the 

measured curve for the existing models and proposed model is also presented in Figure  2-7, depicted as a 

percentage of the short-circuit current Isc. 

The comparison in Figure  2-6 demonstrates a good match between the modeled and measured data 

for the three PV technologies available commercially. It can also be seen that the accuracy of the 

proposed model highly matches that of the practical model, as shown in Figure  2-7. There are a few 

points where the practical model negligibly outperforms the proposed model, and similarly a few points 

where the proposed model negligibly outperforms the practical model. Generally, however, it can be said 

that both of them have the same accuracy. 

To verify the effectiveness of the proposed model under various environmental conditions, three PV 

modules of different PV technologies are tested under a range of irradiances and temperatures. The 

modeled characteristic curves are compared to the measured curves provided by the manufacturer 

datasheet of mono crystalline, poly crystalline and amorphous thin film PV modules, as shown in 

Figure  2-8, Figure  2-9 and Figure  2-10, respectively. The resulting curves show a good match between 

the measured curves and the modeled curves. The slight deviations between the measured and modeled 

curves are due to measurement errors and to imperfections in the model. 

The accuracy of the proposed model is also investigated and compared numerically with the existing 

models at different irradiance and temperature levels as shown in Table  2.2. The root mean square RMS, 

maximum and minimum modeling deviation represented as percentage of the short circuit current Isc is 

summarized for each model type and under different meteorological conditions. It is shown that the 

accuracy improves going from the ideal, through simplified to practical model. Moreover, the accuracy 

of the proposed model is highly close to the accuracy of the practical model. 
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Figure ‎2-6: Modelled and measured current curves for mono-crystalline, poly-

crystalline and thin-film PV modules. 

 

Figure ‎2-7: Deviation in the practical and proposed models with respect to measured 

data. 
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Figure ‎2-8: Modelled and measured current curves for a mono-crystalline PV module 

under different irradiances and temperatures. 

 

 

Figure ‎2-9: Modelled and measured current curves for a poly-crystalline PV module 

under different irradiances and temperatures. 
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Table ‎2.2: The Percentage of Modeling Deviation of the Proposed Model and Existing 

Models at Various Temperature and Irradiance Levels 

Irradiance G and 

Temperature T 

Ideal Model Simplified Model Practical Model Proposed Model 

Min Max RMS Min Max RMS Min Max RMS Min Max RMS 

G =   1 kW/m2 & T=25°C 0.04 9.8 4.61 0.04 2.70 1.21 0.04 2.44 0.59 0.02 2.55 0.55 

G =0.8 kW/m2 & T=25°C 0.01 4.0 1.54 0.01 1.56 0.97 0.01 1.78 0.59 0.01 1.73 0.79 

G =0.6 kW/m2 & T=25°C 0.04 10.4 2.31 0.01 2.90 1.76 0.02 3.08 0.93 0.02 2.93 1.15 

G =0.4 kW/m2 & T=25°C 0.01 13.9 4.27 0.01 2.88 1.90 0.01 4.48 1.55 0.01 3.47 1.30 

G =0.2 kW/m2 & T=25°C 0.03 15.9 4.09 0.02 2.75 1.87 0.01 6.24 1.50 0.01 1.82 0.72 

G =   1 kW/m2 & T=50°C 0.02 13.2 6.90 0.37 15.69 6.80 0.03 3.05 1.31 0.04 3.22 1.92 

G =   1 kW/m2 & T=75°C 0.14 14.2 7.13 0.17 20.51 7.54 0.02 3.60 1.50 0.30 3.87 1.43 

 

 

 

 

Figure ‎2-10: Modelled and measured current curves for a thin-film PV module under 

different irradiances. 

2.2.2. Computational Time  

The main motivation for this chapter, as highlighted in the introduction, is building a PV model that can 

reduce the high computational time of the practical PV model. This section evaluates the computational 

time needed to run a simulation of a PV module from zero to open circuit voltage Voc, using the proposed 

model in MATLAB. This is then compared to the available models in the literature, i.e., practical, 

simplified and ideal PV models. The model is also compared to the Lambert based PV model [51, 52]. A 

poly-crystalline module is chosen to be simulated from 0 to Voc, using the proposed model and other 

models for computational time comparisons. The extracted parameters shown in Table  2.1 and Equations 

( 2-12) and ( 2-15) are utilized to build the model in SIMULINK environment shown in Figure  2-11 

below. The simulation is used to plot the P-V curve for the module, operating under 0.8 KW/m
2
 of 

irradiance and 60°C of temperature. The proposed model and other available models in the literature are 

used in the same computer and for the same discrete time step. The resulting computational time, 

normalized over the computational time of the ideal model, for the proposed model and other models is 
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summarized in Table  2.3. The computational time was determined by the clock function several times, 

and the average value of the measurements is recorded. Table  2.3 shows that the proposed model has 

lower computational time compared to that of the practical, simplified and Lambert models. The 

computational time of the proposed model almost equals that of the simple ideal model. This is because 

the proposed model relies on the non-transcendental equation, which does not require a numerical solver, 

as demonstrated earlier. Although the reduction of the computational time with respect to the practical 

model does not appear significant when simulating one PV module, there are substantial advantages 

when simulating a larger system, as demonstrated in the next section. 

2.3. Case Study: Partially Shaded PV System 

In this section, the accuracy and the computational time of the proposed model under partial shading 

conditions are investigated. Studying partial-shaded impact on a system is an active area of research and 

is of significant importance to designing PV systems [53]. It is also essential for testing maximum power 

point tracking algorithms proposed for these systems [16, 54]. Furthermore, studies of energy prediction 

needs to consider shade levels affecting the system in order to obtain real values of available power 

throughout the day.  

As illustrated earlier, the challenge in such studies is the need for simulating an enormous number of 

series and parallel connected PV modules simultaneously, because each PV unit might be subjected to a 

different irradiance level. This results in a high computational time and therefore oftentimes becomes 

challenging to simulate and study these systems. 

 

 

Figure ‎2-11: MATLAB-SIMULINK simulation of the proposed PV model. 
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Table ‎2.3: Computational Time Comparison for the Proposed and Existing Models 

Used Model Normalized 

Time (s) 

Ideal Model 1.000 

Simplified Model 1.190 

Practical Model 1.210 

Lambert Model 3.254 

Proposed Model 1.036 

2.3.1. Model Accuracy  

This section verifies the accuracy of the proposed model under partial shading conditions. The PV 

system under study consists of 12 series connected PV modules as shown in Figure  2-12. Each PV 

module is of type Yingli YL-165 and contains 48 series connected PV cells with 3 bypassed diodes 

where each diode is connected to 16 PV cells. The shading scenario and irradiance distribution of the PV 

modules in the system are shown in Figure  2-12. Four PV modules are fully illuminated receiving 0.97 

KW/m
2
 while the rest of PV modules are partially shaded. One third of a partial shaded PV module 

receives fully illuminated irradiance of 0.97 KW/m
2
 whereas the rest receives 56% of the fully 

illuminated irradiance.  

The proposed model is used to simulate the system shown in Figure  2-12 in SIMULINK. One PV 

module is modeled using 48 series connected PV cells with three bypassed diodes. The entire system is 

then modeled by series connecting 12 PV modules together. The same system is also re-simulated using 

the practical PV model. It is important to mention that parameterizing a PV cell is similar to that of a PV 

module except that the value of the open circuit voltage Voc and maximum voltage Vm provided by 

manufactures datasheet must be divided by the number of PV cells Ns in the PV module. The resulted I-V 

curves in both cases are compared to experimental data, provided in [43], as shown in Figure  2-13. As it 

can be shown, the proposed model can simulate partial shaded PV systems accurately.  

2.3.2. Computational Time  

As mentioned earlier in the introduction, a quick approach to model PV systems is conducted by 

using one aggregated PV model for an arbitrary number of PV modules [44]. Unfortunately, this 

approach can only be applied on homogeneous PV systems in which all units receive same irradiance, 

and thus cannot be applied on partial shaded systems. Each PV unit in partial shaded PV system must be 

modeled using a separate PV model because each unit might have a different irradiance level. This 

results in a high computational time. This section shows the advantage of the proposed PV model in 

reducing the computational time when simulating partially shaded PV systems. The partially shaded PV 

system under study is shown in Figure  2-14. The system consists of 10 parallel connected columns of PV  
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Figure ‎2-12: A partially shaded PV system composed of twelve series PV modules. 
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Figure 2-13: The modeled current curves using both the proposed and 

practical models compared to the experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

strings; each PV column consists of 10 series-connected PV modules, and each module has a bypassing 

diode. The system is subjected to four different irradiance levels: 1 KW/m
2
, 0.5 KW/m

2
, 0.3 KW/m

2
 and 

0.1 KW/m
2
, all under 60°C of temperature, as illustrated in the figure. The simulation is conducted to 

simulate the voltage-power curve of the system from 0 to Voc with 0.1 V of discrete voltage step. The 

simulation is conducted in MATLAB Simulink where each PV module is represented by the proposed 

PV model connected in parallel to a bypass diode. 
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Figure ‎2-14: The Partially shaded photovoltaic system under study. 

In Figure  2-14, the only string simulated in the system is the left-most PV column. The simulation is 

repeated for the two left-most columns, then three, then four, and so on, until the whole 10 PV columns 

in the system are reached. The resulting computational time in each scenario is recorded in Table  2.4 for 

both the proposed and practical PV models. The simulation is repeated for the case of non-shaded PV 

system where all the PV modules of Figure  2-14 receive full irradiance of 1 KW/m
2
. The results are also 

recorded in Table  2.4. It is noteworthy that all of the simulations are conducted in the same computer and 

at the same discrete time step. 

Table  2.4 shows two important results. The first is that the proposed model has a lower computational 

time than the practical PV model. The second is that the percentage reduction in computational time for 

the proposed model, with respect to the practical model, increases with the size of the simulated system 

for both shaded and unshaded PV system. 

When one string in the PV system in Figure  2-14 is simulated in the shaded system, the percentage of 

reduction in computational time is 32.36%. However, when the complete PV system of Figure  2-14 is 

simulated, a computational time reduction of 51.28% is recorded. This is shown in Figure  2-15, which 

plots the computational time for both the proposed and practical models. The computational time, when 

simulating a partial-shaded or non-shaded PV system, increases exponentially with the size of the PV 

system. Furthermore, the rate of time increase in the practical time is higher than that of the proposed 

model. This indicates that the reduction in computational time featured in the proposed model is 

proportional to the number of PV modules in the simulated system. This can be generalized for systems  



 

 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

working both under shaded and unshaded conditions as demonstrated. Therefore, the proposed model not 

only decreases the computational time, the reduction increases exponentially with the size of a PV 

system. This feature of the proposed model provides a clear advantage when simulating a large PV 

power system. 

Table ‎2.4: Computational Time of the Practical and Proposed Models at Different System Sizes  

No. of PV Practical Model (s) Proposed Model (s) Reduction in time % 

Strings Unshaded 

system 

Shaded 

System 

Unshaded 

system 

Shaded 

System 

Unshaded 

system 

Shaded 

System 

1 2.57 5.5 1.51 3.72 41.14 32.36 

2 7.52 12.15 4.38 7.87 41.67 35.23 

3 16.51 24.78 8.61 14.07 47.85 43.22 

4 32.60 43.63 15.22 23.82 53.29 45.4 

5 54.08 73.12 24.79 37.95 54.16 48.1 

6 84.97 106.78 38.72 54.58 54.43 48.89 

7 120.29 152.7 54.59 77.94 54.62 48.96 

8 166.68 215.51 74.83 107 55.10 50.35 

9 224.52 291.04 99.38 144.34 55.73 50.7 

10  294.48 383.5 129.08 186.84 56.16 51.28 
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 Figure 2-15: The computational time of the proposed and practical models at different 

system sizes under shaded and unshaded conditions. 
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2.3.3. Comparison to the Lambert based PV Model 

Simplified Lambert function based PV models are employed in the literature to model partially shaded 

PV systems with improved computational speed. In this section, the Lambert modeling approach 

presented in [55] is applied on the proposed model and the overall performance is compared to the 

modeling performance resulted when instead Lambert model is adopted. The relation between the output 

current I and terminal voltage V of a PV module in the Lambert model is represented in the following 

equations [43]:  

The partial shaded PV system under study is a PV string composed of 15 series connected PV modules 

operating at different irradiance and temperature levels. The value of irradiance and temperature at each 

of the PV module is shown in Table  2.5. 

The simulation is conducted to simulate the voltage-power curve of the system from 0 to Voc with 0.1 

V of discrete voltage step. First of all, only one PV module is simulated which is the PV module number 

1. The simulation is repeated for the two PV modules 1 and 2, then three, then four, and so on, until the 

whole 15 PV modules in the string is reached. The resulting computational time in each scenario is 

recorded in Table  2.6 for both the proposed and Lambert PV model proposed in [55]. Furthermore, the 

computational times are plotted in Figure  2-16 for both the proposed model and the Lambert model. 

Table  2.6 and Figure  2-16 show clearly that the proposed model provide reduced computational time 

compared to the Lambert model. As an example, when simulating the whole PV string, 93% reduction in 

computational time is resulted. Moreover, they show that the reduction in computational time increases 

with increasing the size of PV string.  

2.4. Discussion 

This chapter highlighted the shortcomings found in the available PV models, which suffer either from 

excessive computational time or from inaccuracy. It then clarified the need for an accurate and low 

computational time PV model for modeling partially-shaded PV systems. 

To meet this need, the chapter proposed an accurate photovoltaic model that featured a lower 

computational time. The proposed model relies on the practical model and reduces the computational 

time by replacing the model series resistance with a third-degree polynomial voltage-dependent source. It 

mimics   the   accurate   characteristics   of   the   practical   model   without   depending  on  the  implicit  

V = (Iph + Is). Rsh − (Rs + Rsh). I − a × Lambert(W)      2-21) 

W =
Rsh × Is
a

e
(
Rsh.(Iph+Is−I)

a )
  2-22) 



 

 29 

Table ‎2.5: Irradiance and Temperature Profile  

Module 

# 

Irradiance 

KW/m2 

Temperature 

C° 

Module 

# 

Irradiance 

KW/m2 

Temperature 

C° 

1 1.000 72° 9 0.400 39° 

2 0.700 47° 10 0.260 32° 

3 0.100 25° 11 0.575 29° 

4 0.250 27° 12 0.500 39° 

5 0.850 27° 13 0.950 34° 

6 0.530 42° 14 0.755 49° 

7 0.620 33° 15 0.280 43° 

8 0.715 37° - - - 

 

Table ‎2.6: Computational Time of Lambert and Proposed Models at Different String 

Sizes  

Number of 

PV Modules 

Lambert Model 

[55] (s) 

Proposed Model 

(s) 

Reduction in time % 

1     0.0282    0.0196    30.31 

2     0.1194     0.0501    58.05 

3     0.2530     0.0844    66.62 

4     0.4536     0.1243    72.58 

5     0.7722     0.1726    77.65 

6     1.1892     0.2217    81.36 

7     1.7383     0.2789    83.95 

8     2.4069     0.3391    85.91 

9     3.2240     0.3831    88.11 

10     4.1966     0.4472    89.34 

11     5.3429     0.5218    90.23 

12     6.6170     0.5928    91.04 

13     7.9478     0.6518    91.79 

14     9.5378     0.7193    92.45 

15    11.1761     0.7783    93.03 

 

transcendental equation, thus providing a lower computational time. The proposed model consists of 

current source, diode, shunt resistant and polynomial voltage dependent voltage source.  

The effectiveness of the proposed model over the practical model was verified by comparing their 

computational times. Moreover, the accuracy of the model was verified by measuring data at different 

temperatures and irradiances in commercially available mono-crystalline, poly-crystalline and thin-film 

PV technologies. A case study of a partially shaded PV system was then conducted to show the 

effectiveness of the proposed model under partial shading conditions. The advantage of using the 

proposed model in these conditions is amplified, because the percentage of the reduction in 

computational time increases nonlinearly with the number of connected PV units. 

In spite of the reduction in the computational time achieved by the proposed circuit model in this 

chapter, it is still considered too large for some model-based online applications. These applications 
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require estimating the power peaks of the power-voltage curves of partially shaded PV systems in few 

seconds. Using the circuit model to simulate the entire power curve and then finding the power peaks is 

time consuming and might reach to hundreds of seconds as demonstrated in this chapter. Therefore, the 

literature lacks many model-based tools that would improve PV systems. For this reason, next chapter 

will develop a fast modeling tool for finding the power peaks of partially shaded PV systems in few 

seconds suitable for developing online applications. 
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Figure 2-16: Computational time of the proposed and Lambert models at different sizes. 
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Chapter 3 FAST POWER-PEAK ESTIMATOR FOR PARTIALLY 

SHADED PV SYSTEMS 
 

Unlike homogeneous PV systems whose output power curves exhibit only a single power peak, partially 

shaded PV systems are characterized by multiple power peaks. These peaks and their corresponding 

MPP voltages can be determined by simulating the power curve of a partially shaded PV system using 

numerous connected PV circuit models. Although utilizing the circuit model proposed in the previous 

chapter can reduce the length of the computational time required for conducting such simulations, 

computational time is still too long for some useful online applications. 

An example is the fact that, although model-based MPPTs have been successfully implemented for 

improving dynamic MPPT performance in homogeneous PV systems, none yet exists for use with 

partially shaded PV systems. Model-based MPPTs require a determination of the PV system power 

peaks in a few seconds, which is infeasible with existing PV models that can require hours for large 

systems. 

This chapter proposes a novel power-peak estimator capable of determining the power peaks of large 

PV systems with a reduced computational time in the range of only a few seconds. Rather than 

simulating the entire power curve, the proposed estimator finds the power peaks directly by utilizing 

three developed rules that govern the formation of power peaks in partially shaded PV systems. The 

proposed estimator was then used, for the first time, for the development of a model-based MPPT. The 

developed MPPT can successfully improve the dynamic power-extraction performance of 

nonhomogeneous PV systems. 

3.1. Rules Governing the Formation of Power-Peaks in Partially Shaded PV Systems 

As mentioned, the proposed modeling approach relies on three developed rules governing the formation 

of power peaks in partially shaded PV systems. The first rule finds the power peaks of partially shaded 

series PV units connected without bypass diodes, such as those depicted in Figure  3-1(a). The second 

rule determines the power peaks of partially shaded series PV units connected with bypass diodes, such 

as those shown in Figure  3-1(b). The third rule finds the power peaks of partially shaded PV units 

connected in parallel, such as those shown in Figure  3-1(c). The combined three rules can find the power 

peaks of partially shaded PV systems composed of series PV units (connected with and without bypass 

diodes) and parallel PV strings, such as those shown in Figure  3-1(d). 
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                             (b) 

    

                   (c)                            (c) 
                                   

           

                

  

 

  

                      (d) 

Figure ‎3-1: PV systems: a) series PV units connected without bypass diodes; b) series 

PV units connected with bypass diodes; c) parallel PV units; and d) series PV units 

connected in parallel. 

The three rules presented in this section are based on the Lambert PV circuit model [55]. The relation 

between the output current I and terminal voltage V of a PV module in the Lambert model is represented 

in the following equations [43]: 

where the parameter a is equal to NsKTA/q. The photon and saturation currents are calculated using the 

following equations [40]: 

𝑉 = (𝐼𝑝ℎ + 𝐼𝑠) × 𝑅𝑠ℎ − (𝑅𝑠 + 𝑅𝑠ℎ). 𝐼 − 𝑎 × 𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊)     (‎3-1) 

𝑊 =
𝑅𝑠ℎ × 𝐼𝑠
𝑎

𝑒
(
𝑅𝑠ℎ.(𝐼𝑝ℎ+𝐼𝑠−𝐼)

𝑎 )
 (‎3-2) 

𝐼𝑝ℎ = 𝐺 × (𝐼𝑠𝑐 + 𝐶𝑖. ∆𝑇) (‎3-3) 

𝐼𝑠 = [(𝐼𝑠𝑐 + 𝛼 × ∆𝑇) −
𝑉𝑜𝑐 − |𝐵|∆𝑇

𝑅𝑠ℎ
]/[𝑒

𝑞(𝑉𝑜𝑐−|𝐵|∆𝑇)
𝑁𝑠𝐾𝑇𝐴 − 1] (‎3-4) 
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3.1.1. First Rule 

It is known that the output power curve of series PV units connected without bypass diodes always has a 

single power peak [56]. The value of the current at this single maximum power point (MPP) can be 

calculated by equating the summation of the derivatives of the power-current curves corresponding to the 

series PV units to zero, as expressed in the following: 

where ns refers to the number of series connected PV units. The derivative of the power-current curve of 

a PV unit dP/dI is expressed as follows: 

where dV/dI  is the voltage derivative with respect to current and is expressed in the following: 

Substituting ( 3-1) and ( 3-7) in ( 3-6) results in: 

 

Substituting ( 3-8) in ( 3-5) produces:  

Solving ( 3-9) for ns number of series PV units determines the MPP current of the series PV units. 

Equation ( 3-9) can be easily solved using any numerical method, such as the well-known Newton-

Raphson technique. The value of the power peak at the determined MPP current, resulting from solving 

( 3-9), can be calculated by summing the powers of all series-connected PV units generated at the MPP 

current using the following equation: 

∑
𝑑𝑃𝑖
𝑑𝐼

𝑛𝑠

𝑖=1

= 0 (‎3-5) 

𝑑𝑃

𝑑𝐼
= 𝑉 + 𝐼 ×

𝑑𝑉

𝑑𝐼
 (‎3-6) 

𝑑𝑉

𝑑𝐼
= −(𝑅𝑠 + 𝑅𝑠ℎ) −

𝑅𝑠ℎ(𝐼𝑝ℎ + 𝐼𝑠 − 𝐼)𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊)

1 + 𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊)
 (‎3-7) 

𝑑𝑃

𝑑𝐼
= 𝑅𝑠ℎ × (𝐼𝑝ℎ + 𝐼𝑠) −

𝑅𝑠ℎ × 𝐼(𝐼𝑝ℎ + 𝐼𝑠 − 𝐼) × 𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊)

1 + 𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊)
− 2𝐼 × (𝑅𝑠 + 𝑅𝑠ℎ) − 𝑎

× 𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊) 

(‎3-8) 

∑𝑅𝑠ℎ × (𝐼𝑝ℎ𝑖 + 𝐼𝑠𝑖) − 2𝐼 × (𝑅𝑠 + 𝑅𝑠ℎ) − 𝑎𝑖 × 𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊𝑖)

𝑛𝑠

𝑖=1

−
𝑅𝑠ℎ × 𝐼 × (𝐼𝑝ℎ𝑖 + 𝐼𝑠𝑖 − 𝐼)𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊𝑖)

1 + 𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊𝑖)
= 0 

(‎3-9) 

∑𝑃𝑖

𝑛𝑠

𝑖=1

= 𝐼 ×∑𝑉𝑖

𝑛𝑠

𝑖=1

= 𝐼 ×∑((𝐼𝑝ℎ𝑖  + 𝐼𝑠𝑖)𝑅𝑠ℎ − (𝑅𝑠 + 𝑅𝑠ℎ)𝐼 − 𝑎𝑖 × 𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊𝑖))

𝑛𝑠

𝑖=1

 (‎3-10) 
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To summarize, the first rule states that, for any series PV units connected without bypass diodes, 

there is a single power peak, which can be calculated using ( 3-10), while the corresponding MPP current 

can be determined by solving ( 3-9). 

3.1.2. Second Rule 

The output power curve of series PV units, connected with bypass diodes, could have multiple peaks 

rather than only one peak [45, 57]. The value of the MPP currents at the power peaks can be calculated 

by equating the summation of the derivatives of the power-current curves for all series PV units to zero, 

as expressed in the following equation: 

where nd refers to the number of diode-bypassed PV units and Zj is an integer modeling the effect of a 

bypass diode. The integer Zj is equal to one when the photon current Iph of the jth PV unit is higher than 

the current passing through the series units; otherwise, it is equal to zero. 

If a bypassed PV unit is composed of series-connected PV units, such as in the system shown in 

Figure ‎3-2, then equation (‎3-11) should be adjusted as follows: 

Substituting (‎3-8) in (‎3-12) results in: 

Solving ( 3-13) for any set of series PV units connected with bypass diodes produces the value of the 

MPP current corresponding to one of the power peaks of the system. Because multiple power peaks 

could exist, equation ( 3-13) should be solved several times at various initial guesses to determine the 

MPP currents corresponding to all power peaks. Similar to ( 3-9), equation ( 3-13) can be easily solved by 

any numerical method. 

 

 

∑(𝑍𝑗 ×
𝑑𝑃𝑗

𝑑𝐼
)

𝑛𝑑

𝑗=1

= 0 (‎3-11) 

∑𝑍𝑗
𝑑𝑃𝑗

𝑑𝐼

𝑛𝑑

𝑗=1

=∑𝑍𝑗 × (∑
𝑑𝑃𝑖
𝑑𝐼

𝑛𝑠

𝑖=1

)

𝑗

𝑛𝑑

𝑗=1

= 0 (‎3-12) 

∑𝑍𝑗 (∑(𝑅𝑠ℎ(𝐼𝑝ℎ𝑖 + 𝐼𝑠𝑖) −
𝑅𝑠ℎ × (𝐼𝑝ℎ𝑖 + 𝐼𝑠𝑖 − 𝐼)𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊𝑖)𝐼

[(1 + 𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊𝑖))]
− 2𝐼 × (𝑅𝑠 + 𝑅𝑠ℎ)

𝑛𝑠

𝑖=1

𝑛𝑑

𝑗=1

− 𝑎𝑖 × 𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊𝑖)))

𝑗

= 0 

(‎3-13) 
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Figure ‎3-2: Series connected PV units with and without bypass didoes. 

The power peak at a determined MPP current, resulting from solving ( 3-13), can be calculated by 

summing the powers generated from all the series-connected PV units operating at the MPP current, 

considering the voltage drop in the bypassed diodes Vd, using the following equation: 

Substituting ( 3-1) in ( 3-14), equation ( 3-14) becomes: 

In summary, the second rule states that, for any series PV units connected with bypass diodes, the 

MPP currents can be calculated by solving ( 3-13) at different initial guesses, and the power peaks are 

determined using ( 3-15). 

3.1.3. Third Rule 

The output power curve of parallel PV units could have multiple power peaks [56]. The value of the 

corresponding MPP voltages can be calculated by equating the summation of the derivatives of the 

power-voltage curves for all parallel PV units to zero, as expressed in ( 3-16), and by equating the 

voltages of the parallel PV units, as in ( 3-17): 

∑𝑃𝑗

𝑛𝑑

𝑗=1

=∑(𝑍𝑗 × (∑𝑃𝑖

𝑛𝑠

𝑖=1

) − (1 − 𝑍𝑗) × 𝑛𝑠𝐼𝑉𝑑)

𝑗

𝑛𝑑

𝑗=1

=∑(𝑍𝑗 (𝐼 ×∑𝑉𝑖

𝑛𝑠

𝑖=1

)

𝑗

− (1 − 𝑍𝑗)𝑛𝑠𝐼𝑉𝑑)

𝑗

𝑛𝑑

𝑗=1

 

(‎3-14) 

∑𝑃𝑗

𝑛𝑑

𝑗=1

=∑(𝑍𝑗 ×∑((𝐼𝑝ℎ𝑖 + 𝐼𝑠𝑖) × 𝑅𝑠ℎ𝐼 − (𝑅𝑠 + 𝑅𝑠ℎ) × 𝐼
2 − 𝑎𝑖 × 𝐼 × 𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊𝑖))

𝑛𝑠

𝑖=1

𝑛𝑑

𝑗=1

− (1 − 𝑍𝑗) × 𝑛𝑠𝐼. 𝑉𝑑)

𝑗

 

(‎3-15) 

∑
𝑑𝑃𝑘
𝑑𝑉

𝑛𝑝

𝑘=1

= 0 (‎3-16) 
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where np refers to the number of parallel PV units. If a paralleled PV unit is composed of series-

connected PV units, equation ( 3-16) should be adjusted as follows: 

Substituting ( 3-7) and ( 3-12) in ( 3-18) results in: 

Solving ( 3-19) with the equations represented in ( 3-17), for any number k of parallel PV units, 

produces the set of currents [I1, I2,..,Ik] passing through the paralleled PV strings at one power peak of the 

system. Because multiple power peaks could exist, the equations should be solved several times at 

various initial guesses to determine the sets of currents corresponding to all power peaks. 

The value of the power peak corresponding to a determined set of currents can be calculated by 

summing the powers of all parallel connected PV units generated at the determined set of currents, 

using the following equation: 

Substituting ( 3-1) in ( 3-20) results in: 

𝑉1 = 𝑉𝑥 , for all 𝑥 = [2, 3, . . 𝑘] (‎3-17) 

∑
𝑑𝑃𝑘
𝑑𝑉

𝑛𝑝

𝑘=1

=∑(∑(𝑍𝑗 ×
𝑑𝑃𝑗

𝑑𝐼
)

𝑛𝑑

𝑗=1

×∑(𝑍𝑗 ×
𝑑𝐼𝑗

𝑑𝑉
)

𝑛𝑑

𝑗=1

)

𝑛𝑝

𝑘=1

= 0 (‎3-18) 

∑

(

 
 
(∑𝑍𝑗 × (∑

𝑑𝑃𝑖
𝑑𝐼

𝑛𝑠

1

)

𝑗

𝑛𝑑

𝑗=1

)× (∑𝑍𝑗 × (∑
𝑑𝐼𝑖
𝑑𝑉

𝑛𝑠

𝑖=1

)

𝑗

𝑛𝑠

𝑖=1

)

)

 
 
= 0

𝑛𝑝

𝑘=1

 (‎3-19) 

∑𝑃𝑘

𝑛𝑝

𝑘=1

=∑(∑(𝑍𝑗∑𝑃𝑖

𝑛𝑠

𝑖=1 𝑗

− (1 − 𝑍𝑗) × 𝑛𝑠𝑉𝑑)

𝑗

𝑛𝑑

𝑗=1

)

𝑘

𝑛𝑝

𝑘=1

=   ∑(∑(𝑍𝑗 (𝐼 ×∑𝑉𝑖

𝑛𝑠

𝑖=1

) − (1 − 𝑍𝑗) × 𝑛𝑠𝐼𝑉𝑑)

𝑗

𝑛𝑑

𝑗=1

)

𝑘

𝑛𝑝 

𝑘=1

 

(‎3-20) 

∑𝑃𝑘

𝑛𝑝

𝑘=1

=∑(∑(𝑍𝑗∑((𝐼𝑝ℎ𝑖 + 𝐼𝑠𝑖)𝑅𝑠ℎ𝐼 − (𝑅𝑠 + 𝑅𝑠ℎ)𝐼
2 − 𝑎𝑖𝐼𝐿𝑎𝑚𝑏𝑒𝑟𝑡(𝑊𝑖))

𝑛𝑠

𝑖=1

𝑛𝑑

𝑗=1

𝑛𝑝

𝑘=1

− (1 − 𝑍𝑗). 𝑛𝑠. 𝐼. 𝑉𝑑)

𝑗

)

𝑘

 

( 3-21) 
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In summary, the third rule states that, for any parallel PV units, the set of currents corresponding to a 

power peak can be determined by solving ( 3-19) with the equations represented in ( 3-17), and the value 

of the power peak can be calculated using ( 3-21). 

3.2. The Proposed Modeling Tool 

This section presents the proposed modeling algorithm that determines the power peaks of partially 

shaded PV systems. The algorithm utilizes the three rules presented in the previous section to quickly 

determine the peaks of a PV system without simulating the entire power curve.  

The algorithm starts by applying the first rule, represented in equation ( 3-9), to the groups of PV 

units connected without a bypass diode to determine the MPP currents of the groups. The initial guess 

for solving ( 3-9) for a group is best chosen to be 90% of the group’s photon current, which 

approximately equals the photon current of the PV unit receiving the lowest irradiance level in the group. 

 Once the MPP currents of all the groups of PV units connected without diodes are calculated, the 

second rule, represented in equation ( 3-13), will be applied to the groups of PV units connected with 

bypass diodes (PV strings). The initial guesses needed to solve ( 3-13) for a PV string are the MPP 

currents resulting from applying the first rule to the groups of PV units inside the PV string. The integer 

Zj for a group is equal to one if the photon current of the group is higher than the used initial guess. 

Finally, the third rule, represented by ( 3-17) and ( 3-19), will be applied to find the power peaks and 

their corresponding currents of the entire system. Applying the third rule produces the set of currents 

passing through the parallel PV strings at one of the power peaks. To find the sets of currents 

corresponding to all power peaks, the third rule will be applied at various sets of initial guesses. The 

number of required sets of initial guesses equals the number of MPP currents resulting from applying the 

second rule. This means that a set of initial guesses is produced from each MPP current resulting from 

the second rule. To obtain a set of initial guesses from an MPP current, the MPP current is first 

substituted in the corresponded PV string to find the string voltage. The resulting voltage is used to 

calculate the currents in all of the parallel strings. These currents are a set of initial guesses. This process 

is repeated for all MPP currents resulting from the second rule to find all sets of initial guesses. It is 

important to mention that when the resulting voltage is used to calculate the current in a parallel string, 

all the diodes inside the string are firstly assumed not activated. Then, the voltage of each group is 

calculated using the resulted current. If a negative voltage appears in any of the group, the calculation is 

repeated assuming that the diode of the group with minimum photon current is activated. If again any of 



 

 38 

the resulted voltages is negative, the diode of the group with minimum photon current, excluding the 

already deactivated group, is deactivated.  

A summary of the proposed algorithm is shown in the flowchart in Figure  3-3. The proposed 

algorithm is illustrated further using the example of a partially shaded PV array, as shown in Figure  3-4. 

The PV array is composed of two PV strings, each with two series PV modules. The used PV modules 

consist of 36 PV cells and 3 bypassing diodes. The profile of the irradiances is illustrated in the same 

figure. The inputs to the algorithm are the irradiances and temperatures received by all PV cells of the 

array. First, the photon and saturation currents (Iph, Is) of all the PV cells are calculated using ( 3-3) and 

( 3-4). Next, the photon current of each group of series PV units connected without diodes is estimated by 

finding the photon current of the PV unit receiving the lowest irradiance in each group. Then, ( 3-9) is 

solved for all groups of PV cells connected without bypass diodes (circled by a black dotted line). Since 

there are seven groups of PV cells connected without bypass diodes which have dissimilar shading 

patterns in Figure  3-4, equation ( 3-9) is solved seven times. The resulting currents from solving ( 3-9) for 

the series groups in a PV string are used as initial guesses to solve ( 3-13) for the PV strings (circled by a 

blue dashed line). Equation ( 3-13) will be solved three times (corresponding to the three different initial 

guesses) for the first string, and five times for the second PV string. After ( 3-13) is solved for all PV 

strings, the third rule is applied to the parallel PV units (circled by a red dashed line). First, the resulting 

MPP currents from solving ( 3-13) are used to find the set of initial guesses for the third rule. Each MPP 

current is substituted in the corresponding PV string to find the string voltage, which is then used to find 

the currents in all of the strings. Solving ( 3-17) and ( 3-19) (rule 3) for the entire system using all of the 

sets of initial guesses produces the sets of currents corresponding to the power peaks of the system. 

Because there are eight sets of initial guesses (corresponding to the eight times that equation ( 3-13) is 

solved), equations ( 3-17) and ( 3-19) will be solved eight times. Finally, substituting each set of currents 

in ( 3-21) determines the corresponding power peak. Equation ( 3-21) will be solved eight times, similar to 

( 3-17) and ( 3-19). 



 

 39 

Calculate photon and saturation currents Iph , Is 

using (3.3) and (3.4) for all PV units 

Irradiances and Temperatures of the 

PV units

Solve (3.9) for each  group of 

series PV units connected without 

diodes (First Rule)

Solve (3.13) for each PV 

string (Second Rule)

Solve (3.17) and (3.19) for the 

entire system (Third Rule)

Find the Power at the 

resulted sets of MPP 

currents by solving (3.21) 

Power peaks and their corresponded 

currents

Find the minimum photon current Iph_min 

(the initial guess ) for each group of series 

PV units connected without diodes

Convert the resulted MPP 

currents to the corresponded 

set of currents

 

Figure ‎3-3: Flowchart summarizing the proposed modelling tool. 

3.3. Evaluation of the Proposed Modeling Tool  

3.3.1. Accuracy 

This section evaluates the accuracy of the proposed modeling approach in finding the power peaks of 

partially shaded PV systems. The evaluation is conducted by comparing the modeled power peaks (using 

the proposed approach) to those resulting from simulating the entire P-V curve (existing approach). The 

Lambert function implementation in MATLAB is conducted via the Halley's method, presented in [58]. 
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Series PV units connected 

with diodes (PV String)

Parallel PV 

units

Series PV units connected 

without diodes

 

Figure ‎3-4: A 2×2 PV array composed of series PV units connected without bypassed 

diodes; series PV units connected with bypass diodes and parallel PV units. 

The system under study is composed of twelve series-connected PV modules, as shown in 

Figure  3-5. Each PV module is of the type “Yingli YL-165” and contains 48 series-connected PV cells 

with 3 bypassed diodes, where each diode is connected to 16 PV cells. The system is first modeled using 

the proposed modeling approach, after which the results are compared to those resulting from the 

simulation, as shown in Figure  3-6. It can be seen that the modeled power peaks using the proposed 

approach are highly close to the power peaks resulting from using circuit simulation. The numerical 

values for the extracted peaks are also compared in Table  3.2. The table reveals that the accuracy of the 

proposed approach is high where the percentage error does not exceed 0.4%. 

3.3.2. Computational Time 

The effectiveness of the proposed approach to quickly find the power peaks of a partially shaded PV 

system is verified in this section. The computational times required to find the power peaks of a partially 

shaded PV system using the proposed approach are recorded and then compared to the computational 

times that result when the circuit simulation is used. The discrete voltage step used is 0.1 V in all cases. 

Table  3.2 reveals that the proposed modeling approach significantly reduces the computational time 

compared  to the circuit  simulation. Furthermore, it  shows that the  computational time of the  proposed  
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Table ‎3.1: Comparison between the Modeled and Measured Power Peaks 

Proposed Modeling Approach Existing Modeling Approach Percentage Deviation % 

Current 

(A) 

Power 

(W) 

Current 

(A) 

Power 

(W) 

Current 

% 

Power 

% 

6.9843 935.7 7 938.3 0.224 0.267 

4.0292 1037.7 4.04 1040.9 0.277 0.307 

 

PV Cell operating at 

0.97 KW/m
2
 and 52°

Partially Shaded

Module 

PV Cell operating at 

       0.56×0.97 KW/m
2
 and 52°

Fully Illuminated

Module 

 

Figure ‎3-5: Partially shaded PV system composed of twelve series-connected PV 

modules. 

 

Figure ‎3-6: The power curve of the system under study and the estimated power peaks 

using the proposed tool. 
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Table ‎3.2: Computational Time Comparison at Different System Sizes 

No. of 

PV 

Strings 

Global Power Peak Computational Time 

Current 

(A) 

Power 

(W) 

Circuit Simulation Proposed Approach 

1 1.86 578.23 66 s 0.1970 s 

2 3.73 1156.5 09 m: 18 s 0.2120 s 

3 5.59 1734.7 28m: 11 s 0.2260 s 

4 7.97 2486.4 50 m: 52 s 0.4820 s 

5 10.35 3240.8 1 h: 34 m: 11 s 0.5630 s 

6 14.13 4128.8 2 h: 27 m: 10 s 0.9230 s 

7 17.90 5094. 3 h: 29 m: 40 s 1.5220 s 

8 21.66 6086 4 h: 55 m: 05 s 1.8410 s 

9 25.41 7087 6 h: 42 m: 33 s 2.0850 s 

10 29.24 8138.9 8 h :44 m:14 s 2.2570 s 

 

approach does not increase significantly with the increase of system size, unlike circuit simulation. This 

shows a clear advantage for the proposed modelling approach over the existing approach, particularly 

when modelling large PV systems. 

The system under study is composed of a 10×10 PV array with an irradiance and temperature profile 

shown in Figure  3-7. Each PV module is of the type Mono Crystalline JAM5(l)-72-155 and consists of 

72 PV cells and 3 bypass diodes. First, the left-most PV string is only considered for modeling. The 

modeling is then repeated for two and three PV strings until reaching all ten PV strings. The resulting 

global power peaks, using the proposed modeling approach and the needed computational times, are 

recorded in Table  3.2. The peaks are also compared to those that result from circuit simulation. It is 

worth mentioning that each group of PV cells receiving the same irradiance is simulated using a separate 

circuit PV model, and that all models are then connected in series and parallel to form the system under 

study. 

3.4. Comparison with the Empirical Approaches 

A method to model the power peaks of partially shaded PV systems using empirical equations is 

available in the literature [59, 60]. It estimates the current, voltage and power of the possible peaks in 

partially shaded PV systems with simplified empirical expressions. This section compares this method 

with the proposed approach in this chapter. The system under study is composed of 10×10 PV modules 

operating  under the  shading  scenario depicted  in  Figure  3-7. The  entire power  curve of  the system is  
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Figure ‎3-7: A 10×10 partially shaded PV system. 

simulated first using circuit simulation. The resulting peaks are used as a benchmark to evaluate the 

accuracy of the proposed and empirical peak estimators. The discrete voltage step used in the simulation 

is 0.1 V, and the time needed to simulate the system is 880 s. 

Although there are several empirical approaches available in the literature [59, 60], the method 

proposed in [60] is selected for comparison because it is the latest method and has the best reported 

accuracy among the available methods. Table  3.3 compares the accuracy and the computational time of 

the proposed and the empirical power peak estimators. As can be seen, the computational time in the 

simplified empirical method is smaller than that of the proposed method. However, the accuracy of the 

empirical approach is poor and might not be accepted, as the error can exceed 15%. In contrast, the 

proposed approach can produce highly accurate results. 

Another disadvantage of the empirical method is that it assumes that the PV cells connected with 

bypass diodes receive the same atmospheric conditions. It cannot be used when the PV cells connected 

with bypass diodes work at dissimilar conditions. Other disadvantage is that the method finds a large 

number of possible power peaks, not only the true power peaks. More specifically, the method produced  
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Table ‎3.3: Comparison between the Proposed and Simplified Empirical Peak Estimators 

 

 

 

 

 

more than twelve possible power peaks, whereas there are only three power peaks in the system shown 

in Figure  3-8. It then becomes the user’s responsibility to choose the true power peaks among the 

possible peaks, which can be an impossible task if the user has not previously obtained the power curve. 

3.5. Case Study: Developing a Model-based Maximum Power Point Tracker 

This section utilizes the proposed modeling approach, successfully evaluated in the previous section, to 

develop a model-based maximum power point tracker (MPPT) for partially shaded PV systems. Similar 

to model-based MPPT methods available in the literature for homogeneous PV systems, the proposed 

method starts with obtaining the irradiance and temperature received by a PV system. The irradiance and 

temperature can be either measured using irradiance and temperature sensors or indirectly using current 

and voltage sensors. The irradiance and temperature data are then fed to the proposed modeling approach 

proposed in this chapter to determine the current (or voltage) that delivers the global maximum power of 

the PV system. Once this is determined, it is used as a reference for the power converter connected to the 

PV system to extract its maximum power. 

To test the effectiveness of the developed model-based MPPT in tracking the maximum power of 

partially shaded PV systems, a partially shaded PV system composed of 2×2 PV array, shown in 

Figure  3-9, is simulated in Simulink. The proposed model-based MPPT method is implemented in the 

PV system for maximum power point tracking. The PV module used in the system is of the type mono-

crystalline JAM5(l)-72-155.  

First, the system operates on the shading scenario appearing in Figure  3-9(a) for 10 sec. Then, the 

system operates on the shading scenario of Figure  3-9(b) for 10 sec. Finally, it operates back again on the 

first shading scenario for another 10 sec. The power-voltage curves of the systems under the two 

different shading scenarios are shown in Figure  3-10. 

The extracted power of the system is depicted in Figure  3-10 and compared to the extracted power 

when the Perturb and Observe (P&O) method is implemented instead of the proposed approach. As can 

be  seen in  the figure, the proposed  algorithm  guarantees tracking  the  global  maximum  power point, 

 

Power  Peaks 

Proposed Peak Estimator Empirical Peak Estimator in [60] 

1st 2nd 3rd 1st 2nd 3rd 

Voltage Error % 0.15 0.22 0.11 16.87 9.93 10.7 

Power Error % 0.04 0.05 0.03 10.5 11.38 15.6 

Comp. Time 0.991 s 9 ms 
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Figure ‎3-8: A partially shaded photovoltaic system. 

 

thereby avoiding being trapped in a local peak, as occurs in the P&O method. This means no misleading-

power losses results when using the proposed model-based MPPT method. 

In addition to the verification conducted using the circuit simulation, the effectiveness of the 

proposed method is validated in real-time using OPAL-RT real-time simulator (RTS). The system shown 

in Figure  3-9 is used again for verification in real-time simulation. The first scenario is applied for 10 s. 

The second scenario is then applied for another 10 s before operating the system again for 10 s on the 

first scenario. The scaled voltage and power waveforms are shown in Figure  3-12(a) and Figure  3-12(b), 

respectively. As can be seen, the voltage at maximum power in the first and second scenarios is around 

27 V and 62 V, respectively. This complies with the information revealed in Figure  3-10. Moreover, the 

power generated in the first and second scenarios complies with the information revealed in Figure  3-10 

and Figure  3-11. 
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                        (a)                                                            (b) 

Figure ‎3-9: Partially shaded PV system under different shading scenarios. 

 

Figure ‎3-10: The power curves of the PV systems shown in Figure ‎3-9. 
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Figure ‎3-11: The extracted power using (a) the proposed MPPT and (b) P&O MPPT. 

 

                       

(a)                                                                                      (b) 

Figure  3-12: The resulted waveforms of the real time simulation (a) voltage (with 

scaling factor= 7) waveform and (b) power (with scaling factor=25) waveform. 

3.6. Discussion 

This chapter proposed a fast modeling tool for partially shaded PV systems. The proposed approach 

utilizes three developed rules governing the formation of power peaks in partially shaded PV systems to 

determine their power peaks without simulating the entire power curve and thus saves significant 

computational time. The effectiveness of the proposed modeling approach to find the power peaks 

quickly and accurately was verified using MATLAB simulation. 

The proposed modeling approach was also utilized in this chapter to build, for the first time, model-

based MPPT for partially shaded PV systems. The developed MPPT enhances the dynamic performance 

compared to the existing heuristic MPPT techniques. Moreover, the developed approach guarantees the 

tracking of the global maximum power without getting trapped in a local power point and thus decreases 
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the misleading power losses. The effectiveness of the developed MPPT was verified using MATLAB 

and real time simulation. 

One disadvantage of the proposed model-based MPPT in this chapter is the needed irradiance 

measurement for each PV cell in the PV system. This means that hundreds of current and voltage sensors 

are required for each PV module which impedes the practicality of the method. Moreover, as the 

modeling accuracy is deteriorated with aging of PV modules, the accuracy of the tracking of the 

proposed model-based MPPT would be affected. These two challenges will be addressed in the next 

chapter using an introduced interdisciplinary solution to support the practicality of the proposed model-

based MPPT. 
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Chapter 4 A NOVEL MPPT TECHNIQUE BASED ON AN IMAGE OF 

PV MODULES 
 

Tracking the GMPP in partially shaded PV systems is usually challenging as mentioned earlier in 

Chapter 1 because the conventional MPPT algorithms (such as P&O, hill climbing, incremental 

conductance and fuzzy logic…etc.) can get trapped in a local power peak and thus miss the true GMPP 

[61]. Therefore, numerous MPPT techniques have been developed in the literature for tracking GMPP of 

partially shaded PV modules. In [62], a short circuit pulse based MPPT is proposed but requires 

measuring the short circuit current of the PV system periodically. A similar method, but based on open 

circuit voltage measurement, is available in [63]. Both methods cause momentary power losses due to 

the periodic disconnection of the PV system for short circuit current and open circuit voltage 

measurements [61]. 

The line search algorithm with Fibonacci sequence, presented in [64], uses the Fibonacci sequence to 

track the GMPP under partially shaded conditions. It is similar to the conventional well-known Hill 

climbing method except that the perturbation in this method is adaptive and determined by the Fibonacci 

sequence. The major drawback of this method is the possibility of missing the GMPP under some 

shading conditions [19, 65].  

The load-line MPPT approach proposed in [66] uses the computed load line to find the vicinity of the 

GMPP. However, the GMPP cannot be obtained if the GMPP lies on the left side of the load line [19]. In 

[67], an instantaneous operating power optimization approach is proposed. It relies on the linear 

relationships between the max current and max power as well as the max current and short circuit current 

to estimate the GMPP. However, all the voltage factors of all the maxim power peaks (MPPs) have to be 

previously known which means that the method is system dependent and can only be used for specific 

shading patterns [19]. 

A new observation about the shape of power-voltage curves of partially shaded PV systems is 

utilized to build an effective and fast MPPT method in [68]. The observation states that the power peaks 

in the left and right sides of the GMPP decreases in a descending manner. However, the comprehensive 

study in [69] demonstrated that this observation is not correct for all shading scenarios and therefore the 

method cannot guarantee finding the GMPP. 

The Dividing Rectangles Technique proposed in [70] employs a Lipschitz condition and advanced 

mathematical tools to track the GMPP. However, if the initial point in the algorithm is not chosen 

properly, the controller may get trapped in a local power point [61]. Another method is proposed in [16] 
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which relies on a constant power operation to track the GMPP. Unlike the majority of the methods which 

track the power peak by incrementing or decrementing the current or voltage, this method directly 

increments power using a constant power electronic converter. The deficiency of this method is the slow 

tracking due to the small power perturbation that is required to detect small power differences between 

power peaks [71].  

Biological optimization algorithms such as Artificial Bee Colony [18] and particle swarm [19, 72, 

73] have been extensively utilized for maximum point tracking. They are probably the most effective 

methods available so far in the literature for tracking the GMPP. However, these methods suffer from 

slow settling time due to the need to scan the power curve [18, 65]. Moreover, they rely heavily on the 

preciseness of a few parameters [74] and cause oscillations in output power before reaching GMPP [18, 

54].  

In addition to the highlighted drawbacks in the aforementioned techniques, the majority require a 

periodic scanning of the power curve. Unfortunately, this has several drawbacks [71]. It causes a 

reduction in the extracted power because it forces the PV system to operate on non-maximum power 

points. Also, it disturbs the tracking during normal operation (homogeneous conditions) of the system 

causing further power losses. Moreover, it does not guarantee the GMPP operation when the shading 

pattern is changing rapidly. 

A relatively different solution is developed in [75] in which a thermal camera is employed to find the 

GMPP. The thermal camera provides the temperatures of the PV cells, and then empirical 

approximations are used to locate the GMPP. However, the method could suffer from poor accuracy due 

to the approximations used. Moreover, the expensive cost of thermal cameras hinders the practical 

implementation of the method.  

The previous chapter proposed a promising model-based MPPT that has the ability to find the GMPP 

without the need for scanning the power curve. However, it was indicated that the method is unsuitable 

for practical implementation due to the excessive number of the required irradiance sensors, and the 

impreciseness in the used PV model. This chapter introduces an interdisciplinary solution to solve these 

challenges. The first challenge is addressed innovatively by relying on an image of PV module, obtained 

by an optical camera, to estimate the irradiances instead of using irradiance sensors. The second 

challenge is resolved by merging the well-known iterative P&O MPPT with the proposed model-based 

MPPT to correct any inaccuracy in the determined GMPP resulted from the model`s  impreciseness. 

The chapter starts by presenting the proposed method which estimates the irradiances from a 

captured image. Then, it adjusts the estimated irradiances to the elevation and azimuth angles of the 
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lighting source. Finally, a developed prototype is used to experimentally validate the proposed MPPT 

under various shading scenarios. 

4.1. Proposed Irradiance Estimation Method 

In the proposed irradiance estimation approach, a camera periodically takes images of the PV module’s 

surface as shown in Figure  4-1. The captured images are processed to extract the incident irradiances on 

the cells of the PV module. This requires a knowledge of two relations as shown in Figure  4-2: first, the 

camera’s response function which is the relation between the reflected radiance in the direction of the 

camera and the intensity of the corresponding image, and second, the reflectance of the PV cell which is 

the relation between the incident radiance on a PV cell and the reflected radiance in the direction of the 

camera. A pre-knowledge of these two relations is required to estimate the incident irradiance on a PV 

cell from its captured image. The following describes the pre-characterization of both relations. 

4.1.1. Camera’s‎Response‎Function 

Detectors found in optical cameras consist of an array of rectangular grid of photo-sensors sensitive to 

light. Each photo-sensor is a small rectangular box that converts light into voltage. Any digital image is 

represented by a matrix of numbers, called pixels, representing the intensity of light received by the 

corresponded photosensitive sensors. A digital image M(x, y) denotes the image intensity at pixel (x, y) 

and encodes the intensity recorded by the photo-sensors of the array contributing to that pixel. M(x, y) is 

a bit in the range [0-255] (typically, 0 is black and 255 is white) [76]. 

The relation between the received intensity of light at a photo-sensor (x, y) and the corresponding 

intensity of a pixel M(x, y) is not a linear relationship. There is usually nonlinear mapping called camera 

response function that determines how radiance in the scene becomes pixel values in the image.  

In the literature, there are many methods to determine the response function of a camera. An 

effective method is presented in [77] to recover a response function using a set of images taken for the 

same scene at different exposure durations. The exposure duration is the time during which the aperture 

of the camera opens while capturing an image. 

The algorithm in [77] is based on utilizing a property of imaging systems known as reciprocity. It 

states that only the term G×∆t, where G is the irradiance and ∆t is the exposure duration, is important 

where halving G and doubling ∆t will not change the intensity of a pixel Z. The input to the algorithm is 

a number of photographs taken of the same scene at different exposure durations. A set of equations can 

be  written by applying  the reciprocity  property for all pixels as the following: Z=f (∆t×G) where f is the  
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Figure ‎4-1: The proposed system for estimating the incident irradiance. 
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Figure ‎4-2: Flowchart for the proposed irradiance estimation method. 

response function. The unknowns (f and G) can be found by solving the written equations in a least 

squares error minimization. 

Using the described algorithm, the response function of a Canon Power Shot A620, which is the camera 

used in this research, is estimated. Four images for an arbitrary scene are captured at different exposure 

durations as shown in Figure  4-3. They are inputted to the coded algorithm to estimate the response 

function. The resulting response function is depicted in Figure  4-4. As seen, the response function  

contains a  mapping  for  all  pixel   values  from  0  to  255  to a  corresponded  irradiance. It is 

important to note that the corresponding irradiance, y-axis in Figure  4-4, is determined up to an unknown 

scale factor F. However, this will not pose a problem as will be shown later. 
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Figure ‎4-3: Four images taken by Canon Power Shot A620 at different exposure 

durations. 

 

Figure ‎4-4: The response function for Canon Power Shot A620 

4.1.2. Reflectance of PV Cell 

The reflectance of a PV cell refers to how much of the incident radiance is reflected in the direction of 

the camera. It is the ratio between the reflected radiance in the direction of the camera and the incident 

radiance on the PV cell. It is entirely a surface property and is not dependent on the incident light.  

Measuring the reflectance of a PV cell requires capturing an image of the cell at a known level of 

incident irradiance. The ratio between the reflected irradiance in the direction of the camera, which is the 

outcome of processing the captured image through the camera’s response function (refer to Figure  4-2) 

and the known incident irradiance is the reflectance of the PV cell. 
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 First, a monocrystalline PV cell is captured by a Canon Power Shot A620 camera under a known 

level of irradiance (462 W/m
2
). The captured image is mapped through the response function shown in 

Figure  4-4. The ratio between the resulting array of numbers to the known irradiance is depicted in 

Figure  4-5 which is the reflectance of the PV cell. Because the used response function is scaled to a 

factor F, the resulting reflectance is also scaled to the same factor. The two high reflectivity lines in the 

reflectance map represent the two metallic current collecting grids in PV cells. 

4.1.3. Experimental Verification 

Once both the camera response function and the reflectance of the PV cell are extracted, they are used to 

estimate the incident irradiances on the PV cell from its captured images. In this section, the captured 

images of the PV cell are at six different levels of irradiances as depicted in Figure  4-6. Each captured 

image is used with the two extracted relations, in the previous section, to find the incident irradiance.  

The images are first mapped through the camera response function shown in Figure  4-4 and then the 

mean of the resulting array, which represents the radiance reflected to the camera, is divided by the mean 

of the reflectance array shown in Figure  4-5 to find the incident irradiance of the PV cell. Because both 

the irradiance reflected to the camera and the reflectance is scaled to the same factor F, the division will 

cancel the unknown F factor. Table  4.1 summarizes the estimated irradiance levels using the proposed 

approach and compares them to the measured irradiances. The absolute deviation between the estimated 

and measured irradiances is shown also in the Table. It can be seen that the error is acceptable, revealing 

an effective and accurate estimation. It is also important to mention that the parameters of the used 

camera such as the aperture and exposure duration require fine tuning one time at the installation of the 

system. The tuning can be roughly conducted such that the captured images at fully illuminated and 

shaded conditions are not too bright or too dark. This is to ensure that the data in the captured images are 

not distorted. 

4.2. Adjustment to Lighting Source Angles 

In this section, it is shown that the reflectance of PV cells changes with variation in lighting source 

angles both elevation and azimuth angles. Because sun location in the sky changes during the day, it is 

important to investigate the effect of the sun angles on the proposed irradiance estimation method. A 

geniophotometer,   shown  in  Figure  4-7,  is  used  for  this  purpose  which  is  a  device  used  to  allow  
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positioning the lighting source at various angles in the semi-sphere surrounding the PV cell. The azimuth 

angle of the lighting source is varied from 0° to 180° with a step of 10°, and at each step the elevation 

angle is also varied between 0° and180° covering all the possible angles in the semi-sphere above the 

solar cell. At each angle, an image is captured, the irradiance is measured and the mean reflectance is 

calculated. Figure  4-8 plots the resulting reflectance values versus the elevation angles at different 

azimuth angles. Furthermore, the reflectance for the complete range of angles is plotted in 3d as shown 

in Figure  4-9. The data in  the figure  can be saved in a look-up table to be used for  irradiance estimation 

 

Figure ‎4-5: The reflectance map of a mono-crystalline PV cell. 

 

 (a)                       (b)                        (c) 

 

(d)                        (e)                        (f) 

Figure ‎4-6: Images of the PV cell under various irradiance levels. 
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Table ‎4.1: Comparison between the Measured and Estimated Irradiances of the PV 

Cells shown in Figure ‎4-6 

Image # Measured (W/m2) Estimated (W/m2) Absolute Error 

(a) 410 423.8 13.8 

(b) 368 387.2 19.2 

(c) 310 339.4 29.4 

(d) 230 256.2 26.2 

(e) 134 165.6 31.6 

(f) 63 83.2 20.2 

 

 

Figure ‎4-7: The geniophotometer constructed by the author.  

at different lighting source angles. The sun elevation and azimuth angles at any time of the day and at 

any day of the year can be calculated via the equations provided in [78, 79]. Once the angles are 

obtained, they are used to find the mean reflectance of the PV cell using Figure ‎4-9 and then the 

irradiance is estimated as described in the previous section.  

To experimentally test the effectiveness of the proposed irradiance estimation method at different 

angles, the experiment conducted in the previous section is repeated outdoor at different times of the day.  
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(a)                           (b) 

 

(c)                           (d) 

Figure ‎4-8: The variation of reflectance versus the elevations angles at different 

azimuth angles: (a) 0°, (b) 40°, (c) 90° and (d) 140°. 

 

Figure ‎4-9: The reflectance at various elevation and azimuth angles. 
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Ten images were captured at different irradiance levels at different times. Then, the irradiances were 

estimated from the captured images considering the different angles of the sun at time the image was 

captured. The resulting estimated irradiances were compared to the measured irradiances in  

Table  4.2. The sun angles for the image are also provided in the table. As seen, the table reveals a good 

accuracy for the proposed method. 

4.3. Temperature Estimation 

The presented model-based MPPT requires the irradiances and temperatures of the PV cells. The 

estimation of the irradiances is already discussed in the previous section. The temperatures can be 

determined from the estimated irradiances through the thermal model of PV modules presented in [80]. 

The difference between the atmospheric and PV cell temperatures is directly related to the irradiance G 

received by the PV cell as in the following where Ke is a constant determined empirically: 

Based on this relation, knowing the temperature of a reference cell will be sufficient to estimate the 

temperatures of the remaining cells. This means that measuring the temperature of one PV cell in the PV 

module can determine the temperatures of the rest. This is represented in the following equation where 

Tco and Gco are the temperature and irradiance of the reference PV cell. 

4.4. Experimental Prototype 

A method for estimating the irradiances from a captured image of the PV module as well as its 

temperatures was already presented. Although its accuracy was already experimentally verified, the 

overall model-based MPPT method combining the irradiance estimation method and the power-peaks 

estimator is not yet validated. This section aims to validate the proposed method including irradiance 

estimation, temperature estimation and power-peaks estimator. A prototype composed of eight PV cells, 

connected with two bypass diodes, and a camera is developed to test the effectiveness of the proposed 

technique experimentally under two different shading patterns as shown in Figure  4-10. The electrical 

characteristics of the entire PV module are as follows: the short circuit current Isc= 2.95 A, the operating 

current Im= 2.73 A, the open circuit voltage Voc=4.96 and the operating voltage Vm = 4 V. 

 

∆𝑇 = 𝐾𝑒 × 𝐺 ( 4-1) 

𝑇 = 𝑇𝑐𝑜 + 𝐾𝑒 × (𝐺 − 𝐺𝑐𝑜) ( 4-2) 
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Table ‎4.2: Comparison between the Measured and Estimated irradiances under 

Various Sun’s Angles 

Measured 

(W/m2) 

Elevation 

Angle 

Azimuth 

Angle 

Estimated 

(W/m2) 

Absolute 

Error  

675.3 40.20 10.9 683.7 8.4 

701.4 39.60 9.5 705 3.6 

536 25.20 15.0 516.9 19.0 

217.2 23.60 17.0 255.9 39.0 

448 22.70 18.0 410.7 37.0 

369.5 21.90 19.0 350.9 19.0 

232 21.00 20.0 258.2 26.0 

289.2 21.00 20.0 280 9.2 

213.3 13.20 28.4 160.0 53.3 

84.7 13.20 28.4 100.4 15.7 

 

First, the captured images were mapped through the camera response function, shown in Figure  4-4, 

to find the irradiance reflected in the direction of the camera. Then, the reflectance of the PV cells, 

presented in Figure  4-9, was used to estimate the incident irradiances on the different solar cells of the 

prototype. After estimating the irradiances, the temperature of the solar cells were determined using 

( 4-2). Then, the power-peaks estimator was used to find the GMPP. The resulting GMPPs were plotted 

in Figure  4-11 along with the measured power curves. The measured GMPPs are 3.27 V and 1.01 V in 

the first and second scenarios respectively, while the estimated GMPPs are 3.6V and 0.83V. As noticed, 

the estimated GMPPs lie in the measured GMPP vicinity and very close to the exact GMPP. The small 

error can be attributed to the impreciseness of the PV model and irradiance estimation. However, it can 

be safely compensated by the P&O MPPT merged with the proposed model-based MPPT. The time 

needed for the proposed MPPT to find the GMPP, including the time of the image processing as well as 

the time of the peak estimator equals to 0.1 s. This means that the proposed method can effectively 

operate under fast-changing environmental conditions.  
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.                            

(a)         (b) 

Figure ‎4-10: Solar PV array test platform under: (a) unshaded and (b) partially shaded 

conditions. 

 

     (a)              (b) 

Figure ‎4-11: Measured PV curves and estimated GMPP in both shading scenarios. 

4.5. Economic Feasibility of the Proposed Method 

Although it was mentioned that a camera would be needed for each micro inverter in the proposed 

method, it has not yet been discussed whether this arrangement is economically feasible. In this section, 

the cost of energy savings gained by using the proposed method is quantified and compared to the cost of 

the camera and other hardware requirements.  

It might be useful here to review the two sources of power losses in optimization-based MPPT 

methods, as these are eliminated in the proposed method. The first is the power loss during the periodic 

scanning time in which the PV module is forced to work on non-maximum power points. The second 
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occurs when shading scenario changes between two successive scans. In this case, the PV module will be 

working on the previous GMPP, not the true GMPP, until the next scan. This means the PV module will 

not generate its maximum power after the change in shading scenario until the subsequent scan. These 

two sources of power losses are eliminated in the proposed method, as it does not require a heuristic 

scanning and can find the GMPP analytically after changes in the shading scenario.   

The energy losses due to these two sources in the optimization based methods will now be quantified 

and their cost will be compared to that of the camera. The P-V curve of the PV module used in the 

comparison under a random shading scenario is plotted in Figure  4-2. In the comparison, it is supposed 

that the periodic scanning in the optimization-based methods occurs every 15 minutes for 2-second 

durations (typically used assumptions in the available methods). It is assumed that there would be an 

abrupt irradiance change every one hour throughout a day having 10 hours of illumination. An abrupt 

change in the irradiance is also expected to occur approximately in the midst of two successive curve 

scans (after 5 minutes of the scanning). Therefore, the system would work on the local point for the rest 

ten minutes until the next scanning every time the system experience abrupt change in the irradiance.  

The losses during the scanning time can be calculated by multiplying the scanning duration (2 sec) 

by the number of scans in a day (40 scans) and fifty percent of the GMPP (165 W), assuming that the 

scanning causes a 50% power loss. This results in 1.83 W.h. of energy per day. Similarly, the power 

losses occurring between the successive scans due to the changes in shading scenarios can be calculated 

by multiplying the difference between the GMPP power (105 W) and the local peak power (19 W) by the 

number of times a change in shading scenario occurs in a day (10 times) and its duration (10 min), which 

is equal to 143.3 W.h. per day. The price of this energy is $34 per year, calculating the Canadian feed in 

tariff at 0.642 $/KWh. 

In addition to the needed camera in the proposed approach, it requires a camera interfacing hardware, 

mounting arrangement and a temperature sensor. The average cost of the DSP camera module, which 

consists of a camera and an interfacing hardware to the DSP, is 25$. Mounting hardware for a camera 

could be less than 10$. Temperature sensors are available with less than 5$. This means that the added 

hardware costs approximately 40$. Adding 10% additional cost for any extra hardware results in a total 

cost of 44$. Considering this cost and the cost of energy savings, the payback period for the required 

hardware of the proposed method is less than a year and a half. 
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Figure ‎4-12: Power-voltage curves of a PV module under normal 

operating and random shading conditions. 

4.6. Discussion 

This chapter proposes a practical model-based MPPT method that is able to track the GMPP of partially 

shaded PV systems without the need for periodic curve scanning. The proposed method utilizes the 

images captured by an optical camera to estimate the incident irradiances, and then uses the estimated 

irradiances to find the GMPP analytically via the power-peak estimator, which is developed using the 

mathematical model of PV modules in the previous chapter. The proposed MPPT is also combined with 

the P&O MPPT to correct any inaccuracy in the determined GMPP which can exist due to any 

imprecision in the irradiance estimation or the model.  

The proposed irradiance estimation method utilizes two relations, which must be pre-characterized, 

to determine the incident irradiances: the camera response function and the solar cell reflectance. These 

two relations are first determined in this chapter for the camera and solar cell, and then utilized to find 

the incident irradiances. A Geniophotometer was built by the author to find the reflectance variations at 

various sun angles. The effectiveness of the overall proposed irradiance estimation method is 

experimentally verified. Further experimental validation was also carried out to verify the effectiveness 

of the whole model-based MPPT method under various shading scenarios. 

The proposed MPPT is the first model-based MPPT method developed for partially shaded PV 

systems. The existing methods are heuristic and require scanning the power curve to find the GMPP 

which causes power losses. The proposed method analytically determines the GMPP and thus removes 

the required curve scanning. Therefore, it can uniquely eliminate the first form of power losses in 
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partially shaded PV systems: misleading-power losses. The second form of power losses in partially 

shaded PV systems, termed as mismatch power losses, will be covered in the next chapter. 
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Chapter 5 ENHANCED RECONFIGURATION METHOD FOR 

MINIMIZING MISMATCH POWER LOSSES 
 

In addition to power losses caused by mistracking the GMPP, partially shaded PV systems experience 

another form of power losses due to power mismatch occurring between their series-connected PV 

modules as illustrated in the first chapter. PV array reconfiguration has been reported as an effective 

solution for minimizing these losses. As shown in Figure  5-1, the PV system is divided into two groups: 

fixed and reconfigurable. Each PV module in the reconfigurable group is connected to all rows of the 

fixed group through switches and is continuously relocated during the operation of the system [21]. First, 

the irradiance of each PV module is estimated, and then the modules are relocated to satisfy the 

irradiance equalization principle which states that mismatch power losses are minimized when the 

summations of irradiances in all the PV rows are approximately equal [81]. This ensures that the MPP 

currents for all rows are almost equal and thus minimizes the mismatch power losses. 

While all available reconfiguration methods follow this general irradiance equalization principle, the 

methods differ in how the principle is applied. The simplest PV reconfiguration technique for 

minimizing partial shading losses is presented in [82]. The reconfigurable PV module that receives the 

highest illumination is connected to the fixed PV row that receives the lowest illumination, and this is 

repeated until all the reconfigurable PV modules are connected to the fixed PV rows. Although simple, 

this is a slow method, as it requires measurements and processing after connecting each PV module. In 

other words, the reconfigurable PV modules are not connected simultaneously to the fixed rows. 

In [81], the sums of irradiances in the PV rows are calculated in all the possible configurations, and 

then the configuration producing the best equalization is selected. Because of the massive number of 

possible configurations that exist in a PV system, this method becomes impractical for large PV systems 

due to the excessive computational time required.   

An optimization-based PV reconfiguration method is also proposed in [21]. Choosing the best 

configuration is treated as a quadratic programming problem that is solved by using the branch and 

bound algorithm. In this approach, the goal is to find the configuration that minimizes the difference 

between the irradiance summations of the PV rows. This method, however, is impractical for large PV 

systems due to the long time delay needed to solve the optimization problem, as will be shown in this 

chapter. 
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Fixed Part Reconfigurable 

Part

PV Rows

 

Figure ‎5-1: A PV system composed of fixed and reconfigurable parts. 

In the reconfiguration method proposed in [83], a simple and fast algorithm that is able to find the 

best configuration in reduced time was developed. However, this method does not always guarantee 

finding the best configuration and might result in a PV configuration that is not optimal, thus impeding 

the exploitation of the maximum available power. 

To summarize, the existing available PV reconfiguration methods either have impractically large 

time delay requirements or are unable to guarantee minimizing the mismatch losses. To resolve these 

challenges, this chapter proposes a new reconfiguration method which features a simple algorithm that 

can quickly find the best configuration, minimizing the power losses, in a fast computational time.  

An overview of the reconfiguration method adopted in this work is first presented, followed by a 

description of the proposed reconfiguration algorithm. Then, a comprehensive comparison is carried out 

using MATLAB to validate the effectiveness of the method over existing methods under various shading 

scenarios. A case study of a large PV system is conducted to show the improvement in energy due to the 

reduced time delay of the proposed method.  

5.1. PV Reconfiguration Review 

As mentioned, a PV system is divided into two parts: fixed and reconfigurable. Each PV module in the 

reconfigurable part is connected to all the PV rows of the fixed part through switches, where only one 

switch among the switches connected to a PV module is turned on at the same time. The number of 

switches needed for a PV system is composed of nf number of fixed modules, nr number of 

reconfigurable modules, and r number of rows equal to nr of double-poles r-throws switches. It is worth 

mentioning that decreasing the number of reconfigurable PV modules has the advantage of reducing the 
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number of required switches. However, it also causes a reduction in the available power in some shading 

scenarios. 

The reconfigurable PV modules are connected to the fixed rows to fulfil the irradiance equalization 

principle, which is to reconfigure the PV panels such that the sums of irradiances in all the PV rows are 

equal. This is illustrated in Figure  5-2, which shows a PV system consisting of nine reconfigurable PV 

modules and zero fixed PV modules, before and after reconfiguration. As can be seen, the summations of 

irradiances in all the rows after reconfiguring the system are equal. While it is not always possible to find 

a configuration which results in exactly equal summations of irradiances, the goal remains to minimize 

the difference between the summations in irradiances. 

To illustrate how reconfiguring PV modules could increase the extracted energy of a PV system, the 

PV curves for both scenarios shown in Figure  5-2 are plotted in Figure  5-3. As can be seen, the GMPP 

for the same system changes with reconfiguration. An increase from 480 W to 600 W is achieved in this 

example, as illustrated in the figure. It is important to note that while reconfiguration mitigates the 

majority of mismatch power losses, it does not completely eliminate them. The mismatch still exists in 

the parallel-connected PV modules, although it disappears in series-connected PV modules. This is the 

reason for the appearance of a small power peak in the power curve of the system after configuration, as 

shown in Figure  5-3. 

5.2. Proposed Reconfiguration Algorithm  

This section presents the proposed algorithm that finds the PV configuration that minimizes mismatch 

power losses. The proposed algorithm is based on the irradiance equalization principle, which is similar 

to the available algorithms in the literature, but is distinguished by its simplicity and reduced time delay. 

The flowchart of the proposed algorithm is depicted in Figure  5-4. To find the new PV configuration, 

the following steps are required: 

1- Calculate the row irradiances, which are the summations of the irradiances received by the PV 

modules of each row. 

2- Identify the two rows that have the highest and lowest row irradiances.  

3- Replace, one by one, all the PV modules in the row receiving the lowest irradiance with the PV 

modules in the row receiving the highest irradiance. 
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Figure ‎5-2: An example of a PV system before and after reconfiguration. 

 

Figure ‎5-3: The power curves of the PV system before and after reconfiguration. 

4- At each replacement, the new row irradiances for both rows will be calculated and the replacement 

will be approved if the lowest row irradiance of both rows after the replacement exceeds the lowest 

row irradiance before the replacement. 

5- If a replacement is approved, steps 3 and 4 will be repeated by identifying the new rows receiving the 

lowest and highest row irradiances. 

6- Otherwise, none of the replacements will be approved, and step 4 will be repeated between the PV 

row receiving the lowest row irradiance and the PV row receiving the second-highest (then third-

highest, fourth-highest, etc.) row irradiance. 
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Figure ‎5-4: Flowchart illustrating the proposed algorithm. 

7- If any replacement is approved, the process will be repeated from the beginning between the rows of 

highest and lowest row irradiances. 

After this procedure is conducted for all the PV rows, a new configuration that fulfills the irradiance 

equalization principle will result. However, the new configuration will have the same reconfigurable PV 

modules in all the PV rows. This means that there could be more replacements that result in better 

configurations if the number of reconfigurable PV modules in the rows was allowed to be different. To 

further reconfigure the PV system to result in a better configuration that is not constrained by the number 

of PV modules in the rows, the algorithm will proceed as follows: 

8- Move all the PV modules in the PV row that has the highest row irradiance to the PV row that has the 

lowest row irradiance, one by one.  

9- If moving a PV module results in an improvement in the row irradiances, then the movement is 

approved, and this process will be repeated for the new PV rows that have the highest and lowest 

irradiances.  



 

 69 

10- However, if no movements were approved, then this process will be repeated between the PV rows 

receiving the lowest row irradiance and second-highest (third-highest, fourth-highest, etc.) row 

irradiance. 

The algorithm will be better understood by applying it to the partially shaded PV system shown in 

Figure  5-5. The system is composed of 9 fixed PV modules and 9 reconfigurable PV modules. The 

incident irradiance on each PV module is indicated inside each module. As can be seen, the row 

irradiances (4700 W/m
2
, 3200 W/m

2
, and 2600 W/m

2
) are not equal and there is a significant difference 

between them. The goal of applying the proposed algorithm is to reconfigure the reconfigurable PV 

modules in Figure  5-5 to result in equal row irradiances. 

The proposed algorithm starts by identifying the two rows that give in the highest and lowest row 

irradiances, which are the first and third rows (4700 W/m
2
 and 2600 W/m

2
), respectively. Then each PV 

module in the row receiving the lowest irradiance (2600 W/m
2
) will be replaced with each PV module in 

the row receiving the highest irradiance (4700 W/m
2
). This will replace the PV module receiving 100 

W/m
2
 with the PV module receiving 1000 W/m

2
, as shown in the first table of Figure  5-6. This 

replacement will be approved because the lowest row irradiance (3500 W/m
2
) after the replacement, 

shown in the second table in Figure  5-6, is higher than the lowest row irradiance (2600 W/m
2
) before the 

replacement, as shown in the first table. Because the replacement is approved, this process will be 

repeated and the new PV rows receiving the lowest and highest row irradiances will be identified, which 

are 3800 W/m
2
 and 3200 W/m

2
, respectively, as seen in the second table in the figure. Then, the PV 

module (200 W/m
2
) in the second row will be replaced by the PV module (100 W/m

2
) in the first row. 

This replacement will not be approved, however, as it will not result in better row irradiances. The 

same result also occurs when replacing the PV module (100 W/m
2
) with the PV module (800 W/m

2
). In 

contrast, replacing the PV module (200 W/m
2
) with the PV module (700 W/m

2
) will be approved 

because the lowest row irradiance (3300 W/m
2
) after the replacement, shown in the third table, is higher 

than the lowest row irradiance (2300 W/m
2
) before the replacement, shown in the second table.  

The process will be repeated and the PV rows receiving the lowest and highest row irradiances, 

which are (3300 W/m
2
 and 3700 W/m

2
), respectively, as shown in the third table, will be identified. The 

PV module (200 W/m
2
) will then be replaced with the PV module (100 W/m

2
), as shown in the third 

table. Since the replacement results in row irradiances (3400 W/m
2
 and 3600 W/m

2
) shown in the fourth 

table are higher than the lowest row irradiance prior to the replacement (3300 W/m
2
), the replacement 

will be approved. The process will be repeated for all the PV modules  in the first row in the fourth  table  
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Figure ‎5-5: The partially shaded PV system under study. 
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Figure ‎5-6: A step-by-step illustration on how the PV system shown in Figure ‎5-6 is 

reconfigured using the proposed algorithm. 
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with all the modules of the second and third PV rows. However, no replacement will be approved. This 

means that no further improvement is possible. 

At this point, the second part of the algorithm will start. All the PV modules of the second row in the 

fourth table (which receives the highest row irradiance) will be added to the first row (which receives the 

lowest row irradiance). As illustrated, moving the PV modules (700 W/m
2
 and 600 W/m

2
) results in no 

improvement, but the PV module (100 W/m
2
) will be moved, as it improves the situation. As seen in the 

fifth table, all the row irradiances are equal, which means the irradiance equalization principle is 

satisfied. This second part of the algorithm removes the constraint that the number of PV modules in all 

rows must be equal. This allows for a better configuration to appear and it does not have a negative 

impact on the system. 

5.3. Test and Validation  

5.3.1. Accuracy Verification 

This section verifies the effectiveness of the proposed reconfiguration algorithm using MATLAB 

simulation. The PV system under study is a 6×6 PV array consisting of two fixed and four reconfigurable 

PV columns, as shown in Figure  5-7(a). The first two columns of the PV modules, which are indicated 

by the solid line, are fixed and the rest of PV modules, which are indicated by the dashed lines, are 

reconfigurable. The test is conducted under two different shading scenarios. 

The first shading scenario is shown in Figure  5-7 (a). As can be seen, the minimum row irradiance is 

800 W/m
2
 while the maximum is 4000 W/m

2
, which indicates a sizeable variation between them. This 

means that mismatch power losses exist in this system. To reduce these losses, the proposed algorithm, 

described in Figure  5-4, is applied to reconfigure the system. The resulting configuration is depicted in 

Figure  5-7 (b). As shown, the row irradiances in the new configuration are equal, which means that the 

mismatch power losses are minimized. The power curves for this PV system before and after 

reconfiguration are plotted in Figure  5-8. It can be seen that the available maximum power for the system 

after reconfiguration (1950 W) is higher than the power prior to reconfiguration (1750 W). This is due to 

reducing the mismatch power losses. 

The simulation is also repeated for a second shading scenario shown in Figure  5-9(a). As can be 

seen, there is a large variation in the row irradiances from 1700 W/m
2
 to 6000 W/m

2
, which indicates the 

existence of high mismatch power losses in the system. After applying the proposed algorithm, the 

system is reconfigured, as shown in Figure  5-9(b). Although it is not possible in this shading scenario to 

equate  all  the   row  irradiances, the   proposed  algorithm  found  a  better  configuration  that  reduced 
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Figure ‎5-7: The PV system under first shading scenario a) before reconfiguration and b) 

after reconfiguration. 

 

Figure ‎5-8: The power curves for the PV system under first shading scenario before and 

after reconfiguration. 

the differences between the row irradiances. This means that the mismatch power losses are minimized 

after reconfiguration. The power curves for the system before and after reconfiguration are plotted in 

Figure  5-10. The available power increases from 1700 W to 2550 W after reconfiguration due to 

reducing the mismatch power losses. 
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Figure ‎5-9: The PV system under second shading scenario a) before reconfiguration and 

b) after reconfiguration. 

 

Figure ‎5-10 The power curves for the PV system under second shading scenario before and 

after reconfiguration. 

5.3.2. Comparison with Existing Methods 

As mentioned in the introduction, the available PV reconfiguration methods in the literature either 

have high accuracy but long time delay (such as the method presented in [21]), or they have negligible 

time delay but do not lead to large reduction in mismatch power losses (such as the method proposed in 

[83]). In this section, it is shown that the proposed method combines both advantages – high accuracy 

and negligible time delay– in the available techniques. 
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First, the accuracy of the reconfiguration methods in [21] and [83] will be compared with that of the 

proposed method. These two methods are used as a benchmark for the comparison because they are the 

newest and most effective methods presented in the literature. Next, the computational time needed to 

find the optimal configuration in the existing and proposed methods will be evaluated. The method 

proposed in [82] is not included in the comparison because it is an older approach that requires the PV 

modules to be physically connected and disconnected during the search for the best configuration. 

The PV system used in this comparison is shown in Figure  5-11(a). The PV configurations that 

resulted after applying the reconfiguration methods in [21] and [83] are shown in Figure  5-11(b) and 

Figure  5-11(c), respectively. The PV configuration that resulted after applying the proposed 

reconfiguration method is shown in Figure  5-11(d). 

As can be seen, while there is still a variation in the row irradiances after applying the method in 

[83], the row irradiances are equal after applying the proposed method and the one in [21]. This indicates 

that the power mismatch losses of the method in [21] and in the proposed method are lower than that of 

the method in [83]. The power curves for the system before and after reconfiguration of both the existing 

methods and the proposed method are depicted in Figure  5-12. It is clear that the proposed method is 

able to generate maximum power similar to the method in [21]. However, the method in [83] is unable to 

generate this maximum power due to inaccurate reconfiguration, as was discussed in the introduction.  

The computational time required to find the best configuration in the proposed and existing methods 

is also compared and summarized in Table  5.1. As shown, the time delay in the proposed method is very 

short and may even be negligible, similar to the method in [83]. However, the time delay in [21] is 

longer, as was discussed in the introduction. 

5.4. Case Study: Large PV System 

The main feature of the proposed reconfiguration method presented in this chapter is the reduced time 

delay compared to other methods in the literature. Although this feature was already tested and verified 

in the previous section, its advantages and impact on the efficiency of PV systems have not been yet 

presented. In this section, a large PV system is tested under both the proposed method (fast 

reconfiguration) and the method in [21] (slow reconfiguration), and the energy generated in both cases is 

compared. This will show how the reduction in time delay affects the generated energy of partially 

shaded PV systems. 

The chosen PV system is composed of 600 PV modules comprised of 30 rows and 20 columns; of 

these, ten columns are fixed and ten columns are reconfigurable. A shadow of a moving cloud  above the  
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Figure ‎5-11: A PV system under a random shading a) before reconfiguration, b) after 

the reconfiguration presented in [21], b) after the reconfiguration presented in [83] and 

d) after the proposed reconfiguration. 

PV system is simulated, as shown in Figure  5-13. First, the shadow will shade the first PV row, and then 

it will continue moving to shade the adjacent rows, where it can shade six adjacent PV rows at once. 

Ideally, the reconfiguration would occur instantaneously, and there would be no time delay between 

the moment when a shadow covers a PV row and the moment the PV system operates on the new 

configuration. Under such conditions, a PV system always works on the best configuration because the 

reconfiguration occurs faster than the change in the shading scenario. However, in reality, there is a time 

delay, which is the computational time of the reconfiguration method. As was shown in the previous 

section, the time delay for the proposed and existing methods are 0.01 s and 76 s, respectively. Assuming 

that the  cloud  shadowing  will move from one module to  another in 3 seconds, the  shadow  will  move  
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Table ‎5.1: Comparison between the Proposed and Existing Methods 

Methods Improvement in Power % Computational time (s) 

The method in [21] 41.8 76 

The method in [83] 32.4 0.001 

The Proposed method 41.8 0.01 

 

 

Figure ‎5-12: The power curves for the PV system after reconfiguration using both the 

proposed and existing reconfiguration. 
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Figure ‎5-13: The large PV system under study under a moving shadow. 
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from the first row to the last row in less than the time  needed for the reconfiguration method in [21]. 

This means that the system will not be able to operate at the established configuration during the shade 

movement, which would affect the harvested energy. 

On the other hand, in the proposed method, the PV system will be able to operate on its optimal 

configurations during the shade movement from one row to another. However, the small time delay of 

this method also causes energy losses. The energy losses in both methods are quantified and summarized 

in Table  5.2. As can be seen, while the energy losses in the existing reconfiguration reach 8.55%, they do 

not exceed 0.3% in the proposed method, which reveals the superiority of this method. 

The aforementioned analysis was also repeated for the two cases when the ratio between fixed and 

reconfigurable PV modules is 5-15 and 15-5, respectively, instead of 10-10 for the same system. The 

results are summarized in Table  5.3 and Table  5.4, respectively. As noted, the improvement in efficiency 

achieved by using the proposed reconfiguration is nearly the same in all cases. Furthermore, it is clear 

that the harvested energy is improved with increases in the number of reconfigurable PV modules, 

although the increase is negligible for this type of shading scenario. 

5.5. Discussion 

The existing PV reconfiguration methods either have high accuracy but suffer from long time delay, or 

they have negligible time delay but do not result in large reduction in the mismatch power losses. This 

chapter proposed a new PV reconfiguration that combines both advantages of the available methods: 

finding a better configuration in a negligible time delay. 

The effectiveness of the proposed method was validated using MATLAB. The method was tested 

under different shading scenarios and showed its effectiveness in finding a better configuration. The 

proposed method was also compared with existing configuration methods in terms of time delay and 

accuracy. It was shown that the proposed method has high accuracy and low computational time. Finally, 

a case study conducted on a large PV system revealed that the proposed method’s negligible time delay 

reduces mismatch-power losses and thus increases the efficiency of partially shaded PV systems.  

It is also important to mention that although the proposed method was able to find the same 

configurations resulted from the optimized based reconfiguration techniques in all the cases covered in 

this thesis, the proposed method, similar to any heuristic based techniques, may not guarantee finding the 

optimal configurations under all cases.   

After mitigating the two forms of power losses, prevailing in partially shaded PV systems, in this 

chapter and the previous chapter, the tracking-power losses existing in homogeneous PV systems will be  
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Table ‎5.2: Comparison between the Existing and Proposed Methods (10 Fixed and 10 

reconfigurable PV modules) 

Methods Harvested Energy (KJ) Efficiency % 

Instantaneous Reconfiguration 5851.87 100 

Reconfiguration in [21] 5351.67 91.45 

Proposed Reconfiguration 5836.86 99.74 

 

Table ‎5.3: Comparison between the Existing and Proposed Methods (5 fixed and 15 

reconfigurable PV module) 

Methods Harvested Energy (KJ) Efficiency % 

Instantaneous Reconfiguration 5856.884 100 

Reconfiguration in [21] 5351.678 91.374 

Proposed Reconfiguration 5841.72782 99.74 

 

Table ‎5.4: Comparison between the Existing and Proposed Methods (15 fixed and 5 

reconfigurable PV modules) 

Methods Harvested Energy (KJ) Efficiency % 

Instantaneous Reconfiguration 5850.456 100 

Reconfiguration in [21] 5351.678 91.474 

Proposed Reconfiguration 5835.49266 99.74 

 

covered in the next chapter. Although the available MPPT methods combining model based and heuristic 

techniques effectively mitigates tracking power losses, they have not been desirable and utilized due to 

the required temperature measurement which increases the implementation complexity and cost 

compared to heuristic techniques. In the next chapter, a new temperature estimator is proposed that is 

able  to  estimate  the  temperature  of  PV  system   without  the  need  for  temperature  measurements, 

increasing the desirability and practicality of these MPPT methods in comparison to the existing 

heuristic techniques. 
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Chapter 6 AN ENHANCED MPPT METHOD COMBINING MODEL-

BASED AND HEURISTIC TECHNIQUES 
 

Many MPPT algorithms exist in the literature for homogeneous PV systems. The most commonly used 

one is the hill climbing technique which keeps altering the duty cycle of the power electronic converters 

in the direction which results in an increase in the generated power [84, 85]. A similar method is the 

P&O which works exactly as the hill climbing technique except that the perturbation here is in the 

voltage instead of the duty cycle [86, 87]. A small step size in both methods reduces the oscillations 

around the maximum power point but results in slow tracking speed, while a big step size results in fast 

tracking but with high oscillations [88]. 

To eliminate the output power oscillations, the incremental conductance MPPT method was 

proposed [89]. It is based on the fact that the slope of the P-V curve is equal to zero at MPP, positive to 

the left and negative to the right of the MPP point. The max power is then tracked by comparing the 

incremental conductance ∆I/∆V to the instantaneous conductance I/V. Once the system reaches the MPP, 

the operation is preserved at the same point without oscillations. Modified incremental conductance 

MPPT methods have also appeared to improve the tracking accuracy under rapid irradiance variations 

[74, 90].  

Fuzzy logic controller-based MPPT techniques are also available [91]. Compared to the conventional 

methods, they improve the tracking performance under varying atmospheric conditions. However, many 

parameters need to be selected based on trial and error and thus it is greatly affected by the knowledge of 

the user. Neural networks have been also utilized in the MPPT to find the optimum voltage point [92, 

93], but they require extensive training and the use of enormous amounts of data at various temperature 

and irradiance conditions. 

Ripple correlation control MPPT exploits the current and voltage ripples inherent in PV systems to 

extract information about the power gradient in order to evaluate if the PV system operates close to the 

maximum power point [94, 95]. Extremum seeking control [96, 97] and adaptive extremum seeking 

control approaches [98] track the MPP by establishing a feedback system that is able to produce an 

oscillatory behavior around the equilibrium point. Optimization algorithms are also adopted to find the 

MPP, such as particle swarm optimization [99] and biological swarm chasing algorithm [100]. 

The aforementioned methods are known as heuristic techniques and their operation can be 

summarized as: disturbing the PV system, observing the effect and then taking the appropriate action 
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[101]. The main disadvantage of such techniques is their slow tracking speed and poor performance in 

the rapidly changing irradiance [102]. 

Model-based MPPTs have recently appeared in the literature to improve the tracking speed and 

dynamic performance of the MPPTs [103]. Relying on the mathematical model of the PV system in 

addition to the temperature and irradiance measurements, the MPP point is analytically determined. The 

weakness in the model based MPPTs is the need for irradiance and temperature sensors, which increases 

their implementation cost. The authors in [102] proposed an improved model–based MPPT that does not 

require an irradiance meter. Their method relies on the PV model inverse as well as the voltage and 

current measurements to estimate the irradiance received by the PV system mathematically. However, its 

efficiency is highly affected by the PV model accuracy which is not perfect and decreases with the aging 

of PV systems. Similar methods are presented in [103-107] in which the PV model is utilized to find the 

MPP voltage. Unfortunately, they do not perform accurately in case of any mismatch between the real 

and modeled characteristics of the PV system. To improve the accuracy of the model-based MPPTs 

while maintaining its high tracking speed, an MPPT method combining both the model-based and 

heuristic techniques is proposed in [101]. The method merges a heuristic method and the PV 

mathematical model to obtain accurate and high speed tracking. The disadvantage of this method in 

comparison to the heuristic techniques is the need for temperature measurement. 

This chapter proposes an enhanced combined heuristic and model-based MPPT method which 

eliminates the need for temperature measurement. The proposed method relies on a new set of derived 

equations that estimate the temperature utilizing the current and voltage measurements. It combines the 

well-known P&O and the model-based methods to obtain an accurate and high speed tracking. 

Furthermore, the proposed MPPT uniquely relies on a recently developed simple non-transcendental PV 

circuit model, presented in chapter 2, featuring lower computational effort to reduce the computational 

complexity of the tracking.  

In this chapter, the proposed temperature estimator is first derived. Then, it is utilized to build the 

enhanced MPPT method combining model-based and heuristic techniques. Next, a comprehensive 

comparison with the available methods is conducted to show the effectiveness of the proposed method. 

Finally, an experimental setup is built to validate the proposed method. 

6.1. Proposed Temperature Estimator 

As indicated, the main contribution of this chapter is to eliminate the temperature measurement required 

in the combined heuristic and model based MPPT methods. This section derives a mathematical 
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temperature estimator which will be used to replace the temperature measurement. The mathematical 

estimator is derived relying on the polynomial based PV circuit model presented in chapter 2. 

Taking the derivative of both sides of (2.2) with respect to the voltage V results in: 

Substituting the saturation current equation ( 2-15) in ( 6-1) and manipulating yield: 

Equation ( 4-2) has three unknowns: the temperature T, current I and voltage V. Knowing the current 

and voltage, which are continuously measured, the temperature of the PV module can be estimated. The 

term dI/dV appearing in ( 4-2) can be discretized and represented as ∆I/∆V where ∆V and ∆I are the 

difference between the present and previous successive voltages and currents. An iterative technique, 

such as the Newton Raphson method, is needed to solve ( 4-2). Therefore, the first derivative of ( 4-2) 

with respect to the temperature will be required which is represented as follows: 

where the variables X1, X2, X3 and X4 are expressed as follows: 

The temperature estimation procedure is summarized in the flowchart of Figure  6-1. It starts by 

measuring the current and voltage of the PV system, and then substituting the datasheet information (Isc,  
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Substitute Datasheet Information (Isc, Voc Ci, B and Ns), the model 
parameters, the measured current and voltage in (4.2) and (4.3) 

If F1 < 1×10-6 

T (n)= T(n-1) - F1/F2

T = T (n)

Initialize T ( i.e. T=298 k)

End

Yes

No

Start

Measure the voltage V and current I

F1= equ. (4.3)

 

Figure ‎6-1: Flowchart illustrating the temperature estimation procedure. 

Voc, Ci, B and Ns), model parameters (α0, α1, α2, α3, A, and Rsh), measured voltage V and current I in 

equations ( 6-2) and ( 6-3). Next, the Newton Raphson method is used to solve ( 6-2) to find the 

temperature T. The STC temperature (T= 298 k) can be efficiently used as the initial guess. The iterations 

will run until the error becomes as low as 1×10
-6

 and the resulting temperature will be the final estimated 

temperature. 

To test the accuracy of the proposed temperature estimator, a PV system composed of a PV module 

equipped with an MPPT method, as shown in Figure  6-2, is built in MATLAB. As illustrated, the 

estimator uses the measured current and voltage for estimating the operating temperature. 

As shown, the output of the temperature estimator is the estimated temperature, while the inputs are 

the current and voltage of the PV module. The temperature and irradiance profiles inputted to the 

simulated PV system are plotted in Figure  6-3. The irradiance is initially at 1000 W/m
2
, then changed to 

400 W/m
2
 and lastly elevated to 800 KW/m

2
. The temperature started at 70°, then fell to 50° and finally 

to 25°.  

The resulting averaged estimated temperatures using the proposed temperature estimator are depicted 

in Figure  6-4. As seen, they highly match the real temperatures at the various values of the irradiances  
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Figure ‎6-2: Simulated PV system connected to the temperature estimator. 

 

Figure ‎6-3: The irradiance and temperature profiles used in the system under study. 

 

Figure ‎6-4: The real and estimated temperatures. 
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Table ‎6.1:Comparison between the Estimated and Actual Temperatures at Different 

Irradiances 

Irradiance 

W/m2 

Temperature 

C° 

Estimated Temperature 

C° 

Absolute Error 

C° 

1000 70 70.0094 0.0094 

1000 50 50.0087 0.0087 

400 50 50.0083 0.0083 

400 25 24.8082 0.1918 

800 25 24.8086 0.1914 

 

and temperatures. Moreover, the absolute error between the real and estimated temperatures is shown in 

Table  6.1. The table reveals the high accuracy of the estimator. 

6.2. The Developed MPPT Method 

This section presents the proposed combined heuristic and model-based MPPT method. The proposed 

MPPT utilizes the well-known heuristic P&O MPPT method, for accurate maximum power point 

tracking, and the polynomial-based PV model, for accelerating the tracking speed. It is also equipped 

with the proposed temperature estimator to eliminate the temperature measurement. 

6.2.1. P&O MPPT 

The P&O MPPT method is based on perturbing (incrementing or decrementing) the voltage of the PV 

system and then observing the corresponding change in the output power. If it results in an increase in 

the output power, the perturbing is maintained in the same direction to increase the extracted power. 

Otherwise, the perturbing direction is reversed. This process continues throughout the operation of the 

PV system.  

A flowchart summarizing the operation of the P&O MPPT method is depicted in Figure  6-5. It starts 

by measuring the PV voltage and current, and then calculates the power. If the power increases compared 

to its previous value, then the PV voltage is perturbed by a voltage step ∆V in the same direction as the 

previous perturbation. However, if the current power decreases in comparison with its previous value, 

then the PV voltage is perturbed by a voltage step ∆V in the opposite direction of the previous 

perturbation. 
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S= +1

If P(n) >P(n-1) 

End

Yes No

Start

Measure the voltage V and current I

S=-1×S

V(n+1)=V(n)+ S.∆V

P(n)=I× V

 

Figure ‎6-5: The flowchart summarizing the P&O MPPT operation. 

The P&O method is distinguished by its simplicity and accuracy but suffers from slow tracking 

speed. The tracking speed is directly related to the size of the selected voltage step where small step size, 

which is mandatory for accurate tracking, results in slow tracking speed as highlighted in the 

introduction. The voltage step can have an adaptive size to increases the speed of the accurate tracking 

[108]. 

To demonstrate the slow tracking speed of the P&O method, the created circuit model simulation in 

the previous section is simulated again, using the P&O MPPT. The P&O method utilized is adaptive 

where the voltage step size changes depending on how the operating point is close to the maximum 

power. The resulting simulated power, under same irradiance and temperatures shown in Figure  6-3, is 

plotted in Figure  6-6. The plot reveals the slow dynamics of the P&O method which causes power losses 

particularly under quick variations in irradiance. As seen, the P&O method does not guarantee extracting 

the maximum available power immediately after the atmospheric variations as it requires time delay until 

it generates its maximum available power. 

6.2.2. Model-Based MPPT 

This subsection builds a model based MPPT relying on the polynomial based PV model. The 

objective is to derive a relation between the MPP current and voltage and then utilize it for the MPPT 

tracking. Using the information that the derivative of the power at the MPP is equal to zero, the 

following equation can be written: 
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Figure ‎6-6: The simulated power resulted when using the adaptive P&O MPPT. 

 

 

Substituting the derivative dI/dV from ( 6-1) in ( 6-8) and manipulating yield: 

The resulting equation ( 6-9) relates the MPP current Im and voltage Vm at any value of temperature T. 

A distinguishing feature of ( 6-9) is that it does not depend on the irradiance, and thus it eliminates the 

need for measuring or estimating it. Therefore, the MPP voltage can be determined by substituting the 

measured current and the temperature in ( 6-9). Another distinguishing characteristic of ( 6-9) is that it 

provides a non-transcendental relation between Vm and Im as it is of the form Im=f(Vm). 

Relying on ( 6-9), the proposed model-based MPPT can be constructed in Simulink as shown in 

Figure  6-7. The proposed MPPT needs current measurement and knowledge of the temperature in order 

to solve ( 6-9). The resulting MPP voltage is then supplied to the controlled voltage source. 

To test the effectiveness of the developed model based MPPT, the system, shown in Figure  6-7, is 

simulated under the irradiance and temperature profile shown in Figure  6-3. The resulting simulated 

power is depicted in Figure  6-8. As seen, the model based MPPT shows fast tracking dynamics under the 

variations  in irradiance  and  temperature. As can  be noted, the  maximum  available  power is extracted  

𝑑𝑃
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( 6-9) 

0 50 100 150 200 
1000 

1500 

2000 

2500 

3000 

3500 

4000 

Time (s) 

 P
o

w
er

 (
W

) 

  

  

Power using Adaptive P&O 

Max Available Power 



 

 87 

+
-

Controlled Voltage 

SourceA

T Proposed Model-based 

MPPT Tracker

PV Module

I
MPP 

Voltage

Temperature  

Figure ‎6-7: The simulated PV system using the proposed model based MPPT tracker. 

 

Figure ‎6-8: The simulated power resulted when using the model based MPPT method. 

almost immediately after any change in the atmospheric conditions. 

Although the model based MPPT exhibits high accuracy in tracking the maximum available power as 

shown in Figure  6-8, any deviation between the PV model and real characteristics of the PV module, 

which is predicted particularly with the aging of the system, is expected to affect the accuracy of the 

tracking. To illustrate this effect, a 10% error is intentionally inserted in the PV model, and then the 

operation of the model based MPPT is repeated. The resulting extracted power in this case is plotted in 

Figure  6-9. As shown, significant power losses result, which is the main drawback of the model based 

MPPTs. 
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Figure ‎6-9: The simulated power resulted when using the model based MPPT method 

subjected to PV model inaccuracy. 

6.2.3. Proposed Combined P&O and Model-based MPPT 

It was shown in the preceding sections that the heuristic adaptive P&O method can achieve high 

accuracy in tracking the maximum available power but suffers from slow tracking dynamics. On the 

other hand, the model based MPPT exhibits high tracking speed but its accuracy is highly affected by the 

PV model imprecision. 

This section combines the P&O MPPT method with the proposed model based MPPT technique for 

obtaining efficient and high speed tracking. The operation of the proposed combined MPPT is 

summarized in the flowchart of Figure ‎6-10. As noted, it sums the determined MPP voltages using both 

P&O and model-based methods. First, the measured current and voltage are used to estimate the 

temperature using the proposed temperature estimator. Then, the temperature, along with the current, are 

utilized to determine the MPP voltage. Once the MPP voltage Vm is determined, it is summed with the 

voltage Vp determined using the P&O MPPT. 

To test the effectiveness of the proposed MPPT, a Simulink model for the PV system under study is 

used again for simulating the system under the irradiance and temperature profile shown in Figure  6-3. 

The simulated system embedded with the proposed combined P&O and model-based MPPT is depicted 

in Figure  6-11. The resultant maximum power extracted is shown in Figure  6-12. As seen, the proposed 

MPPT can achieve high dynamic response and accurate tracking. The simulation is also repeated to test 

the performance under an inaccuracy in the PV model. A 10% deviation in the PV model is intentionally 

added and the resulting power is plotted in Figure  6-13. As it is clear, it is not affected by the PV model 

impreciseness, providing a clear advantage over the model-based MPPT. 
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Figure ‎6-10: The flowchart summarizing the operation of the proposed combined P&O 

and Model-based MPPTs.  
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Figure ‎6-11: The simulated PV system with the proposed combined P&O and model 

based MPPT tracker. 
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Figure ‎6-12: The simulated power waveform resulted when using the proposed combined model based 

and P&O MPPT method. 

 

Figure ‎6-13: The simulated power resulted when using the proposed combined model 

based and P&O MPPT method subjected to PV model inaccuracy.    

Comparing the power waveforms resulting from using the adaptive P&O shown in Figure  6-6 and 

the proposed combined model based and heuristic method shown in Figure  6-13 reveals the high speed 

of the proposed approach in comparison with the heuristic approach. The adaptive P&O is chosen 

because it has higher speed compared to the basic P&O method. Table II presents a quantitative 

comparison in terms of transient efficiency, tracking speed and steady state accuracy. The transient 

efficiency is the ratio between the extracted power to the available power during the transient period, 

while the steady state accuracy is at the steady state period. As shown, while the steady state accuracy is 

almost the same in both methods, the proposed method exhibits higher transient efficiency (around 3%  
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Table ‎6.2: Comparison between the Proposed and the Adaptive P&O Methods 

 

Time Period 

Transient Efficiency Tracking Speed Steady State Accuracy 

Adaptive 

P&O 

Proposed 

Technique 

Adaptive 

P&O 

Proposed 

Technique 

Adaptive 

P&O 

Proposed 

Technique 

0 - 65 s 89.94 % 97.53 % 25 s 4 s 99.98 % 99.99 % 

65 - 100 s 99.30 % 99.68 % 14 s 2 s 99.99 % 99.98 % 

100 - 140 s 99.04 % 99.78 % 20 s 4 s 99.99 % 99.98 % 

140 - 190 s 98.13 % 99.82 % 36 s 2 s 99.97 % 99.98 % 

190 - 230 s 99.68 % 99.97 % 18 s 3 s 99.99 % 99.99 % 

Average 96.74 % 99.24 % 22.6 s 3 s 99.99 % 99.99 % 

 

more), as well as higher tracking speed. This will result in power savings particularly in fast changing 

atmospheric conditions. 

To measure the improvement in the overall energy under real environmental conditions, a 

comparison between the energy generated by one PV module using both methods over long period of 

time is conducted. Real irradiance and temperature measurements provided in [13] were used for the 

comparison. The power gained by replacing the adaptive P&O method with the proposed method is 

plotted in Figure  6-14. At initial operation of the system, the power gained is high (about 70W), but 

reduces at steady state. The rest gain occurs at the irradiance variations. This shows the advantage of the 

proposed method in enhancing the dynamic performance of tracking. The gain is also quantified and 

summarized in Table  6.3. As shown, the proposed method increases the energy gained by 2%. 

6.3. Real Time Simulation 

In addition to the verification conducted using Simulink, the effectiveness of the proposed method is 

validated in real-time using OPAL-RT (RTS). The PV system and the proposed MPPT algorithm are 

implemented in the RTS. The current and voltage of the virtual PV system are connected to the 

implemented MPPT, and the reference voltage determined by the MPPT algorithm is connected to the 

virtual PV system. 

The system used for the real time simulation consists of a PV array, DC boost converter and a DC 

bus. The real time simulation is conducted under the irradiance and temperature profile shown in 

Figure  6-3. The resulting real time power waveform is shown in Figure  6-15. As seen, the resulting 

power waveform complies with the simulated waveform. 
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Table  6.3 Accumulated Energy 

MPPT Method Energy 

Adaptive P&O MPPT 461.8 KJ 

Proposed MPPT 471.3 KJ 

Improvement 2.06 % 

 

 

Figure ‎6-14: Power gained by using the proposed method over the adaptive P&O. 

 

 

Figure ‎6-15: The power waveform of the real time simulation (scaling factor=790). 

6.4. Experimental Set-up 

This section verifies the effectiveness of the proposed method experimentally. The experimental setup, 

which is shown in Figure  6-16, consists of a PV module of the type Sharp ND-123UJF, data acquisition  
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Figure ‎6-16: The used experimental setup. 

device (PCI-1716), DC power supply (BK- 1687B), resistive load and computer, where the PV module, 

the  resistive  load  and  the   power   supply  are  connected  in  parallel.  A schematic diagram for the 

experimental setup is depicted in Figure  6-17. As seen, the current and voltage of the PV module are first 

measured and inputted to the data acquisition device which is connected to the computer. The measured 

current and voltage are filtered and then used by the proposed method, which is implemented in the 

computer through MATLAB, to find the temperature. The estimated temperature is filtered and updated 

periodically to the model based MPPT which finds the MPP voltage. Then, the determined MPP voltage 

is sent through the data acquisition device to the DC voltage supply to operate the PV module on this 

MPP voltage. The function of the resistor connected in parallel with the voltage supply is to dissipate the 

current generated by the PV module. 

The described experimental system was used to verify the effectiveness of the proposed method and 

to compare it to the model based MPPT. First, the algorithm started to extract the maximum available 

power, and then the irradiance of the PV module was decreased. The algorithm was successfully able to 

find the new maximum power point. To verify that the extracted power is the truly available maximum 

power, the I-V curves of the PV module was measured twice under both irradiance values. The extracted 

power was equal to the measured power in both scenarios. Moreover, this test was exactly repeated for 

the model based MPPT. As expected, the resulted power of the model based MPPT is lower than that of 

the proposed method. As was illustrated before in this chapter, this is due to the mismatch between the 

PV model used in the model based MPPT and the actual characteristic of the PV module.  
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Table ‎6.4:Accumulated Energy 

MPPT Method Energy 

Model based MPPT 25.12 KJ 

Proposed MPPT 26.96 KJ 

Improvement 7.3 % 
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Figure ‎6-17: Schematic of the used experimental setup. 

To quantify the improvement in the extracted energy for the proposed method, the energy of both 

methods were measured in the previous tests. The comparison between them is summarized in Table ‎6.4. 

As seen, the energy generated using the proposed method was 26.96 KJ while the energy generated using 

the model based MPPT was 25.12 KJ. This means that there is a 7.3% energy gain when the proposed 

MPPT is adopted compared to the model based MPPT. This can clearly show the superiority of the 

proposed method over the model based MPPT. 

6.5. Discussion 

This chapter proposed an enhanced MPPT method combining the heuristic P&O and model-based MPPT 

techniques. The main feature of the proposed method is it eliminates the need for temperature 

measurement, reducing the cost and complexity of the implementation. Moreover, it does not require an 

irradiance measurement. 

The proposed method relies on a new set of equations capable of estimating the temperature by 

utilizing the current and voltage measurements. It uniquely adopts the polynomial based PV model, the 
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developed model in chapter 2 featuring reduced computational time, to reduce the computational 

complexity of the MPPT.  

The chapter began by demonstrating the slow tracking speed of the heuristic methods and the 

inaccuracy of the model-based techniques. Then, it was shown that the proposed model combines both 

distinguished features of the heuristic and model-based methods and thus provides high accuracy and 

tracking speed. It was also shown that the proposed method is unaffected by the PV model inaccuracy. 

An experimental set up was built to verify the effectiveness of the proposed method.  

The heuristic MPPT methods have been always preferred over the model-based MPPTs in industrial 

and practical applications, in spite of their slow tracking speed, because they do not require irradiance or 

temperature measurements, and they are not affected by the PV model accuracy which is influenced by 

PV system aging. However, the proposed method is expected to be chosen over the heuristic methods 

due to its improved tracking speed, while it does not require temperature or irradiance measurements and 

is not affected by the PV model inaccuracy.  
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Chapter 7 CONCLUSIONS 

7.1. Summary 

Although numerous PV systems have recently been built in locations around the world, the spread of PV 

systems has been limited due to the high costs arising from their inadequate efficiency. The primary goal 

of the work presented in this thesis was therefore to support and increase the global spread of 

photovoltaic (PV) power systems. The specific objectives for achieving this goal were 1) the 

development of a new PV circuit model and an enhanced modeling tool that would facilitate research 

into and the investigation of PV systems, and 2) the improvement of the efficiency of solar PV systems 

through the mitigation of their power losses. As indicated in the following paragraphs, the 

accomplishment of the first objective has been described in Chapter 2 and Chapter 3, while the work 

associated with realizing the second objective has been presented in the remaining chapters. 

Chapter 2 details the challenges facing PV system designers and researchers with respect to the 

lengthy computational time required for the simulation of large PV systems. To address these issues, a 

new PV circuit model is proposed, which reduces computational time without scarifying the accuracy of 

existing models. Experimental measurements were obtained in order to validate the proposed model. For 

commercially available mono-crystalline, poly-crystalline, and thin-film PV technologies, the new model 

was proven to provide a high level of accuracy for both homogeneous and nonhomogeneous conditions 

at different temperatures and irradiance levels. A case study involving large, partially shaded PV systems 

showed that the percentage of the reduction in computational time increases exponentially with the size 

of the PV system, thus providing a clear advantage with respect to the simulation of large systems. 

Chapter 3 explains how, in spite of the reduced computational time provided by the model proposed 

in Chapter 2, the time required is still large and unacceptable for some online applications for which the 

estimations of PV system power peaks must be in the range of a few seconds. Unfortunately, even when 

the proposed model is used, the estimation of the peaks requires the simulation of the entire power curve 

and consumes copious amounts of computational time: in the range of hours. A new, fast modeling tool 

has been developed, which is able to estimate the system power peaks directly without simulating the 

entire power peak. The proposed tool relies on developed rules that govern the formation of power peaks 

in a PV system. The accuracy of the proposed modeling tool was verified experimentally for a partially 

shaded PV system. The ability of the proposed tool to find the power peaks in only a few seconds was 

also validated, and the proposed method was thus found suitable for online applications. The proposed 
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tool was also utilized for the first-time development of a model-based MPPT for partially shaded PV 

systems.  

Chapter 4 highlights the sources of misleading power losses in partially shaded PV systems and the 

inability of existing MPPT methods to eliminate them. It explains how these power losses are caused by 

the periodic curve scanning required in optimization-based MPPT methods during the tracking of the 

global power peak. A novel MPPT method is proposed that avoids the need for periodic curve scanning, 

thus eliminating misleading power losses. The proposed method utilizes the power peak estimator 

proposed in Chapter 3 for tracking the global maximum power point (GMPP), and innovatively employs 

an optical camera for estimating the irradiance levels received by the PV cells in the system. An 

experimental prototype was built for validating the effectiveness of the proposed method with respect to 

correctly tracking the GMPP without causing misleading power losses. 

Chapter 5 reviews the failure of existing reconfiguration methods to minimize mismatch power 

losses of PV systems that are subject to rapidly moving shadows due to the time delay inherent in these 

methods. A proposed reconfiguration algorithm is presented. The new algorithm provides a reduced time 

delay that ensures the minimization of mismatch power losses. A case study was conducted with a large 

PV system. The results demonstrate the superiority of the proposed method over existing methods with 

respect to responding to rapidly changing shadows and confirm the ability of the proposed method to 

improve system energy gains. 

Chapter 6 sets out the advantages of MPPT methods that combine both model-based and heuristic 

techniques for improving dynamic tracking performance and reducing tracking power losses in PV 

systems. However, as pointed out, the drawback of these MPPT methods is that they require accurate 

temperature measurements, which increases the complexity of commonly used heuristic MPPT methods 

and the cost of their implementation. A novel method for temperature estimation is then presented. The 

new model, which is based on the circuit model proposed in Chapter 2, was designed to estimate the 

temperature indirectly without the need for temperature measurements. The effectiveness of the method 

with respect to improving the speed and dynamic performance of the tracking was verified through both 

MATLAB and real-time OPAL-RT simulations. Validation of the proposed method also included the 

building of an experimental setup. 

7.2. Contributions 

The primary outcomes of the research presented in this thesis can be summarized as follows: 
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1- A reduction in the heavy computational time needed for simulating large, partially shaded PV 

systems has been provided by the proposed PV circuit model, which offers comparable accuracy 

but requires less computational time. 

2- The estimation of power peaks for partially shaded PV systems is now possible in a few seconds 

as opposed to the few hours previously required with existing methods. 

3- Misleading power losses have been eradicated for partially shaded PV systems through the 

development, for the first time, of a model-based MPPT method for use with partially shaded PV 

systems. The new method avoids the curve scanning required with existing MPPT methods.  

4- Mismatch power losses in partially shaded PV systems have been minimized by the development 

of a new reconfiguration algorithm that reduces the time delay inherent in existing methods.  

5- The use of MPPT methods that combine model-based and heuristic techniques, which feature 

reduced tracking power losses, has been facilitated by reducing their cost and complexity 

through the elimination of the previously required temperature measurements. 

7.3. Direction of Future Work 

Suggested areas for further investigation include the following: 

1- Further improve the efficiency of PV systems by tackling other sources of power losses, such as 

power losses in micro-inverters.  

2- Extend the developed image-based MPPT method in order to increase the number of covered PV 

modules that can be monitored by a camera. 

3- Develop an improved reconfiguration method that can overcome the necessity for the voltage 

and current sensors required for estimating the levels of irradiance received by PV modules. 
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Appendix A TEMPERATURE AND IRRADIANCE EFFECT ON 

THE POLYNOMIAL COEFFICIENTS 

 

This appendix shows that the temperature and irradiance effect on the polynomial coefficients of the 

proposed model is negligible. First, the PV module (mono-crystalline SM50-H) is parameterized at STC 

conditions and the resulted STC parameters are used to plot the I-V curves at different irradiance and 

temperature levels. Then the same PV module is parameterized again at each temperature and irradiance 

level using the measured I-V curves, and the resulted parameters at each temperature and irradiance level 

are used to plot the I-V curve at the corresponded temperature and irradiance. Finally, the resulted I-V 

curves from both methods are compared in the same figure to observe the deviation between them.  

The characteristics I-V curves are compared in Figure A-1 at different temperature and irradiance with 

reference to the measured data. It is shown that the deviation between the I-V curves with and without 

considering the effect of the meteorological on polynomial coefficients are very small. Furthermore, the 

values of root mean square deviation between them are also quantified and compared in Table A.1. 

Table A.1: The Percentage of Modeling Deviation at Different Temperature and 

Irradiance Levels with and without Considering Meteorological Effect on Polynomial 

Coefficients 

Irradiance G and Temperature T RMSD Without 

considering meteo. effect 

RMSD with Considering 

meteo. effect 

Percentage  

Difference  

G =   1 kW/m2 & T=25°C 0.5128 0.5128 0 

G =0.8 kW/m2 & T=25°C 1.1724 0.9318 0.2406 

G =0.6 kW/m2 & T=25°C 1.8789 0.5486 1.3303 

G =0.4 kW/m2 & T=25°C 1.2038 0.3629 0.8409 

G =0.2 kW/m2 & T=25°C 1.4100 0.3220 1.0880 

G =   1 kW/m2 & T=40°C 3.1049 2.2603 0.8446 

G =   1 kW/m2 & T=60°C 4.9584 4.1064 0.8520 
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Figure A-1: I-V curves at different irradiance and temperature levels with and without 

considering the meteorological effect on the polynomial coefficients 
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Appendix B  LIST OF PUBLICATIONS 

The following is a list of IEEE journal publications by the author during doctoral studies. 

 

[1] Y. Mahmoud, and E. F. El-Saadany, "Image-based Maximum Power Point Tracker for Partially 

Shaded PV Systems," in IEEE Transactions on Energy Conversion, under revision. 

[2] Y. Mahmoud, and E. F. El-Saadany, "Enhanced PV Reconfiguration Method for Improving the 

Efficiency of Partially Shaded PV Systems," in IEEE Transactions on Industrial Informatics, under 

revision.  

[3] Y. Mahmoud, M. Abdelwahed and E. F. El-Saadany, "An Enhanced MPPT Method Combining 

Model-Based and Heuristic Techniques," in IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 

576-585, April 2016. 

[4] Y. Mahmoud and E. F. El-Saadany, "Fast Power-Peaks Estimator for Partially Shaded PV Systems," 

in IEEE Transactions on Energy Conversion, vol. 31, no. 1, pp. 206-217, March 2016.  

[5] Y. Mahmoud and E. El-Saadany, "Accuracy Improvement of the Ideal PV Model," in IEEE 

Transactions on Sustainable Energy, vol. 6, no. 3, pp. 909-911, July 2015. 

[6] Y. Mahmoud and E. F. El-Saadany, "A Photovoltaic Model With Reduced Computational Time," in 

IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3534-3544, June 2015. 
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