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Abstract

A map is an embedding of the vertices and edges of a graph into a compact 2-
manifold such that the remainder of the surface has components homeomorphic to open
disks. With the goal of proving the Four Colour Theorem, Tutte began the field of map
enumeration in the 1960’s. His methods included developing the edge deletion decom-
position, developing and solving a recurrence and functional equation based on this
decomposition, and developing the medial bijection between two equinumerous infinite
families of maps.

Beginning in the 1980’s Jackson, Goulden and Visentin applied algebraic methods
in enumeration of non-planar and non-orientable maps, to obtain results of interest for
mathematical physics and algebraic geometry, and the Quadrangulation Conjecture and
the Map-Jack Conjecture. A special case of the former is solved by Tutte’s medial bijection.
The latter uses Jack symmetric functions which are a topic of active research.

In the 1960’s Walsh and Lehman introduced a method of encoding orientable maps.
We develop a similar method, based on depth first search and extended to non-orientable
maps. With this, we develop a bijection that extends Tutte’s medial bijection and par-
tially solves the Quadrangulation Conjecture.

Walsh extended Tutte’s recurrence for planar maps to a recurrence for all orientable
maps. We further extend the recurrence to include non-orientable maps, and express
it as a partial differential equation satisfied by the generating series. By appropriately
interpolating the differential equation and applying the depth first search method, we
construct a parameter that empirically fulfils the conditions of the Map-Jack Conjecture,
and we prove some of its predicted properties.

Arques and Béraud recently obtained a continued fraction form of a specialisation
of the generating series for maps. We apply the depth search method with an ordinary
differential equation, to construct a bijection whose existence is implied by the continued
fraction.
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Chapter 1

Introduction

A map is an embedding of a graph, with vertices sent to points and edges sent
to continuous paths (joining the images of the vertices to which the edge is in-
cident), into a closed surface without boundary (compact 2-manifold), such that
the remainder of the surface has components each of which homeomorphic to an
open disk. Maps are formalised combinatorially in Chapter 2. For fixed values
of certain sets of parameters of maps, the number of maps is, up to isomorphism,
finite.

There are three general objectives of enumeration in this thesis. The first ob-
jective is to a find simple formulae for the cardinalities of finite sets in a given
infinite family of sets, such as the family of finite sets of maps defined above by
a certain set of parameters. As often occurs in enumeration, there is a limit to the
simplicity of the formulae. But on occasion such formulae are shown to give the
cardinality of sets from a different infinite family of finite sets. The second ob-

jective of enumeration is to construct a bijection between the corresponding sets
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of the two families. The methods used to obtain the formula, may or may not
be useful in constructing the bijection. The third objective, a converse to the first
objective, is to construct an infinite family of finite sets with cardinalities given
by a desired formula.

The specific topics of this thesis are the three problems from the enumeration

of maps in surfaces, briefly described as follows.

e The Quadrangulation Conjecture [JV90a]: this involves constructing a bi-
jection between rooted quadrangulations and rooted maps in arbitrary ori-

entable surfaces.

e The Map-Jack Conjecture [GJ96a]: this involves finding a combinatorial
interpretation for an indeterminate b where 1 + b appears as the parameter

of Jack symmetric functions in the generating series for maps.

e The continued fraction bijection problem [AB97]: this involves construct-
ing a bijection between rooted maps and a certain set of trees enumerated

by continued fractions.

These three problems share certain features. Each was suggested from the devel-
opment of an enumerative result whose proof contained algebraic steps which
defy easy combinatorial interpretation. The problems then, are to find combina-
torial, constructive solutions for each of these enumerative results. In this, very
little help was forthcoming from a study of the original algebraic proof. There-
fore other approaches were needed.

The approach taken in this thesis is to employ two other methods, depth first
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search and edge deletion. Depth first search is used to canonically and naturally
label rooted maps. These labels permit further combinatorics on rooted maps.
Edge deletion is a more general operation upon maps, and facilitates inductive
definitions and proofs. Edge deletion induces recurrence relations for the num-
ber of maps, and thence a differential equation for the generating series of these
numbers. With these two methods, new advances, beyond the original develop-
ments of the three problems, are made here.

The advance in the Quadrangulation Conjecture is a partial solution. The
advance in the Map-Jack Conjecture is a candidate solution. The advance in the
continued fraction bijection problem is a complete solution.

The two conjectures are briefly reviewed in §1.1. More detailed information
is provided in later chapters as needed. Implications for the solutions of these
conjectures are discussed in §1.1.3. The continued fraction bijection problem is
given in §1.2. The original applications and the new usage of the two combinato-
rial methods are briefly discussed in §1.3. An outline of the remaining chapters

is provided in §1.4.

1.1 Brief Overview of the Conjectures

The algebraic method, developed in [JV90b, JV90a, GJ96b, GJ96a] involves encod-
ing maps with permutations. Extensive knowledge of permutations and their
algebra is then applied to map enumeration. Chapter 3 describes the algebraic
method in greater depth. There the Quadrangulation Conjecture and the Map-

Jack Conjecture are stated with a simple overview of their original development.
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More complete definitions and details are to be found in Chapters 2 and 3.

The cycle structure of permutations can be described by partitions. The three
cycle partitions of two permutations and their product, have corresponding in-
terpretations as natural parameters of maps, the degree partitions of vertices,
edges and faces. In the case of orientable maps, the centre of the group algebra
of the symmetric group, C&,, is the algebra that we use for enumerative pur-
poses. In the case of locally orientable maps it is another algebra spanned by
permutations, the double coset algebra of the hyperoctahedral group. In both
cases, the enumeration of maps with respect to vertex and face degrees, is ex-
pressible in terms of the structure constants, or connection coefficients, of these
algebras.

Since the connection coefficients can be found with symmetric functions [Mac95,
Sag91], maps can be enumerated by means of symmetric functions [JV90b]. Schur
functions, sy, can be used to find characters of the symmetric group and thus its
connection coefficients. The generating series for rooted orientable maps, ex-

pressed in terms of Schur symmetric functions, [JV90a] is

QX Y,2) = > wounXeyrZ"

o,v,n

0
=2z--log 5 Hisa()sa(Y)s(2)
0z n>0 A\Fn Pj(X)—=Xj,  Pj(Y)—Y;j
pj(2)—2dj.2

(1.1)

where: X = (X1, X, ...), and for partition ¢ = (¢1, P2, ...), X, denotes X, Xg, -« *;
wy,v,n 1S the number of rooted orientable maps with face partition, vertex parti-

tion and number of edges given by ¢, v and n respectively; p; is the power sum
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symmetric function p;(x) = x{ + xg 4+ ...;and H, is the product of hook lengths

of \.

1.1.1 The Quadrangulation Conjecture

In [JV90a], there is a factorisation result for characters of the symmetric group.
Characters are proportional to coefficients of power sum symmetric functions in

Schur functions, so this factorisation may be expressed as:

1
[p[4”]] Sy = on [p[22n]] S\0S)@ (1.2)

which holds only for a restricted subset of partitions A, those which are [JV90a]
2-balanced, the coefficient being zero otherwise. The partitions A\® and A\® form
the 2-factorisation [JV90a] of the partition \.

Under suitable transformations of Q(x,y, z), generating series M(u, X, Y, z)
and Q(u, x,y,z) can be formed which enumerate, rooted orientable maps, and
rooted quadrangulations, i.e. rooted face-4-regular maps, respectively. (The vari-
ables u, x, y, z mark genus, faces, vertices and edges, respectively.) The factorisa-

tion result (1.2) leads to the following relationship:
Q(4u?, x,y,2) = bis,M(4u?,y +u, y, xz°), (1.3)

where bis, f denotes the even bisection 3{f(u) + f(—u)} of the formal power
series f.

The result (1.3) implies existence of bijections between two sets of rooted
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maps, Q rooted orientable quadrangulations, and A, decorated rooted orientable
maps, which are defined in Chapter 5. There are pairs of corresponding weight-
functions defined on Q and A, and the generating series equality (1.3) further
implies that there exists a weight-preserving bijection £ : Q — A. It was not pos-
sible to combinatorialise each step of the proof of (1.3). Thus a construction of

such a bijections ¢ : Q — A does not immediately follow from the proof of (1.3).

Conjecture 1.1 (Quadrangulation Conjecture [JVV90a]). There exists a construc-
tive, weight-preserving bijection = : Q — A admitting an element-wise action

having a combinatorial description.

Of course, the construction in Conjecture 1.1 for the bijection =, if found,
would provide a new and purely combinatorial proof of (1.3).
In Chapter 5, a bijection = : Q — A which preserves one of the two required

weight functions is found. Thus Zisa partial solution to Conjecture 1.1.

1.1.2 The Map-Jack Conjecture

A scalar product (-, -), can be defined on the ring of symmetric functions by:

(p)\a p#>a = aa}\)z)\é‘)\/m (14)

where z, = [];im™m;(\)!, and ), is the Kronecker delta function. Jack sym-
metric functions J&“) are defined as the result of orthogonalising the monomial
symmetric functions my with respect to this scalar product. Chapter 3 gives a

more complete definition of Jack symmetric functions. Jack symmetric functions
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are also described in [Mac95, Sta89].

Since J&l) = H,s,, Jack symmetric functions are a generalisation of Schur func-
tions. For a = 2, Jack symmetric functions specialise to Zonal polynomials Z, =
J&Z). Zonal polynomials play an analogous role to Schur functions in the enumer-

ation of locally orientable maps [GJ96b]. It follows [GJ96a] that the series:

10w @)

(@) 1(a)
n>0 AFn <J)\ ,\])\ >a pi()=Xj,  Pi(Y)—Yj
pj(Z)l—)Zéj_z

W (x,y, z) = Zaz% log (1.5)

enumerates rooted orientable maps when a = 1, and locally orientable maps
when a = 2. This is consistent with the following conjecture, extracted from

[GI96a]:

Conjecture 1.2 (Map-Jack Conjecture [GJ96a]). There exists a parameter v of rooted

locally orientable maps, such that:
1. For ¢(m),v(m) and n(m), the face degree partition, the vertex degree parti-

tion, and the number of edges of a map m, we have:

WOy, 2) = 3 b7 X ymyYm2"™ (1.6)

mekl

where L is the set of rooted locally orientable maps,
2. 9(m) is a non-negative integer,
3. 9(m) = 0 if and only if m is orientable.

Condition 3 suggests that the hypothetical parameter 9 should be regarded
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as a parameter associated with non-orientability.

Hitherto, the main evidence for Conjecture 1.2 has been numerical compu-
tations of the smaller coefficients of W®+1(x y,z), which turn out to be non-
negative integers. In fact, the current theory of Jack symmetric functions only
shows that coefficients [x,y,z"] W +Y are rational functions of b, while Conjec-
ture 1.2 claims that these are polynomials in b with non-negative integer coeffi-
cients.

In Chapter 7, a parameter n of rooted maps is defined. With ¥ = n, Condi-
tions 2 and 3 are met, and Condition 1 holds to the extent of all the computed
data. (These computations include all maps up to 4 edges, and all single vertex

maps with 6 or less edges.)

1.1.3 Implications

There are several implications of the combinatorial solutions to the two conjec-
tures. The enumerative results associated with the conjectures have been applied
to two areas, 2-dimensional quantum gravity and algebraic geometry.

The enumerative result (1.3) proved [JPV96] physicist’s suspected connection
between the ¢*-model and Penner model of 2-dimensional quantum gravity. The
related hypothetical bijection = of the Quadrangulation Conjecture could pro-
vide a physical interpretation of the connection between these two models, at
the level of Feynman diagrams and mesons.

Related general applications of map enumeration to string theory and quan-

tum field theory are given in [Hoo74, BIZ80]. In algebra, Grothendieck’s theory
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of Galois groups, dessins d’enfants [Sch94], involves enumerative aspects of maps.
The Map-Jack Conjecture is related, via Jack symmetric functions, to the Calogero-
Sutherland model [LPS95] in quantum physics. The Map-Jack Conjecture also
has potential applications to algebraic geometry. For b = 0 and b = 1 respec-
tively, the enumeration of maps (especially monopoles) has been used to find
the virtual Euler characteristic of the moduli space of complex [HZ86] and real
algebraic curves respectively. When b is left unspecialised, there is potential ap-
plication to an algebraic construction of a moduli space that interpolates between
these two moduli spaces, and the hypothetical parameter ¥ would have a promi-

nent role in the structure of this moduli space.

1.2 Continued Fraction Bijection Problem

In [AB97], the following result was proved.

Theorem 1.1. Let wy, be the number of rooted orientable maps with k vertices

and n edges. Then

y
Y winy 2" = (1.7)
o (y+1)z
(y+2)z
-

The proof in [AB97] involves relating the solutions to an iterative family of

Ricatti equations. The Ricatti equation was established by the edge deletion
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method. But the iterative solution method to the Ricatti equation does not give
a combinatorial explanation for the continued fraction in (1.7). The problem of
finding a combinatorial explanation for (1.7), in the form of a bijection, was pro-
posed in [AB97].

In Chapter 8, such a bijection © is found. Advantage is taken of the depth first
search method for rooted maps to construct ©. Hence, Theorem 1.1 is provided

with a bijective proof.

1.3 Background and Overview of the Combinatorial

Methods

Two methods, depth first search and edge deletion, appeared early in the enu-
meration of maps. These methods pre-date the algebraic methods of the Quad-
rangulation Conjecture and the Map-Jack Conjecture, and may be regarded as

more elementary than the algebraic methods.

1.3.1 Edge Deletion

Edge deletion was used by Tutte in [Tut62]. A recurrence relation was found for
the number of slicings, which are certain labelled planar maps, by considering
the enumerative effect of edge deletion. Later, Walsh extended this method and
applied it to all labelled orientable maps.

In Chapter 6, the edge deletion method is extended to include non-orientable

maps. Moreover, the recurrence is expressed in a new form, as a partial differ-
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ential equation. A variable b is then introduced into the partial differential equa-
tion. This b appears to have the role of the Jack parameter o of the Map-Jack

Conjecture.

1.3.2 Depth First Search

Depth first search is a standard, general combinatorial algorithm, with applica-
tions to optimisation and to finding strongly connected orientations of graphs.
It is less frequently applied to enumeration [GW79, GS96]. In the enumeration
of maps it is implicitly used in [Wal71].

The canonical integer-parenthesis system for rooted maps was developed by
Lehman [Wal71]. The system was used to obtain some enumerative results, in-
cluding a recurrence form of the Ricatti equation involved in the proof of a con-
tinued fraction result. (The solution (8.7) given in [Wal71] is different from the
continued fraction.)

In Chapter 4, a similar system for rooted maps is defined, and the underlying
mechanism is identified to be depth first search. We develop the edge diagram
model of a rooted map, a combinatorial object similar to the integer-parenthesis
system. The edge diagram model of a rooted map is applied to the Quadrangu-
lation Conjecture and to the continued fraction problem.

A canonical ordered digraph, using the same depth first search method, is
also defined for each rooted map, in Chapter 4. The canonical ordered digraph
is then used to define n of Chapter 7, the candidate parameter for the Map-Jack

Conjecture.
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1.4 Outline of the following chapters

Below are listed brief summaries of the chapters and their logical dependencies.

Chapter 2 defines essential combinatorial notions for the study of maps: parti-

tions, permutations, and of course topological and combinatorial maps.

Chapter 3 addresses the algebraic method behind the Quadrangulation Conjec-
ture and Map-Jack Conjecture. The material is not crucial to later chapters,

but rather motivates them.

Chapter 4 develops depth first search methods. Chapters 5,7 and 8 depend

heavily on these methods.

Chapter 5 uses edge diagrams defined in Chapter 4, to construct a bijection =
which is a partial solution to the Quadrangulation Conjecture. The con-

struction of = involves non-orientable maps, although the domain and

range consist of orientable maps.

Chapter 6 introduces the edge deletion method. A partial differential equation
is obtained for the generating series of ordered digraphs. A parameter 3
of non-orientability of ordered digraphs is defined, which is empirically

related to the Jack parameter of the the Map-Jack Conjecture.

Chapter 7 combines the depth first search method (Ch. 4) with the edge dele-
tion method (Ch. 6) to define a parameter n, which is a candidate for the
parameter 9 of the Map-Jack Conjecture. Some properties of this param-

eter n will be discussed, including some invariance and additivity results,
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and a summation result known to hold for any hypothetical parameter

of the Map-Jack Conjecture.

Chapter 8 also combines the depth first search method (Ch. 4) with the edge
deletion method, but to develop a bijection whose existence is implied by

a recent continued fraction result in the enumeration of maps.

Logical sequences of chapters include: Chapters 2,3 for the motivation behind
the two conjectures; Chapters 2,4,5 for the partial solution to the Quadrangu-
lation Conjecture; Chapters 2,4,6,7 or 2,6,4,7 for the candidate solution to the

Map-Jack Conjecture; and Chapters 2,4,8 for the continued fraction bijection.



Chapter 2

Preliminary Combinatorics

In the theory of combinatorial enumeration, a combinatorial definition of a map
IS more convenient than a topological definition, although the definitions are
equivalent through the Embedding Theorem. This chapter gives both defini-
tions.

Also given is the definition of a rooted map. Rooted maps are crucial to enu-
meration because their lack of nontrivial automorphisms facilitates far more ef-
fective enumeration. Most enumeration results of the following chapters con-
cern rooted maps. Maps and rooted maps are defined in §2.3, following some
preliminary combinatorial notions.

A permutation is a more basic combinatorial object than a map, but funda-
mental to the theory of maps. In particular, combinatorial definitions of a map
are usually expressed in terms of permutations. It is through the study of the
multiplicative properties of permutations that the algebraic method of Chapter 3

enumerates maps. The combinatorial definition of a map in this chapter, uses a

14
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special type of permutation, a matching. Notational conventions for permuta-
tions are defined in §2.2.

Integer partitions will also be used extensively since they are useful in de-
scribing properties of permutations and of maps. The face partition and vertex
partition of a map give information about the degrees of the faces and vertices
of a map, respectively. The cycle partition of a permutation gives information
about the length of its cycles. Partitions are also indices for symmetric functions
of Chapter 3. Because of their use in describing features of permutations and

maps, partitions are defined first, in §2.1.

2.1 Partitions

Definition 2.1. Let nand k be nonnegative integers. An ordered k-tuple A = (Ay, A2, ..., Ay)
of non-ascending positive integers Aj, i.e. Ay > X\, > ... > A, is a partition of the inte-

gernifn= XA+ X2+ ---+ A«. And
1. The weight, |A[, of Aisn,
2. The length, ¢()), of X isk,
3. To signify that A is a partition of n specifically, write A F n,
4. Each J; is called a part of A,

5. The number of i such that A\; = j, is the multiplicity of j in A, denoted by mj(X).
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When multiplicities are important we write

\ = [1m1(>\)2mz(>\) 0,

omitting terms of the form j° and superscripts 1. For example, o = (4,2,2,2,1)
can be written as « = [1234], or in the opposite (descending) order as a = [42°1].

The set of all partitions is denoted by P; the set of all partitions of n is denoted
by P,. The unique partition of 0 is denoted by @.

In the theory of symmetric functions, the partition indexed value

Zy = )\1)\2)\3 s ml()\)'mg()\)' s

occurs frequently.

2.1.1 Lexicographic and Dominance Orders

Lexicographic order of partitions of n is defined as follows. We write A < y if and
only if there exists j such that \; < ujand A = p; for 1 <i < j. Lexicographic
order is a total order since any two partitions of n are comparable. For partitions
of n =5, the order is [1°] < [21%] < [2%1] < [31?] < [32] < [41] < [5].

Dominance order is a partial order. We write A\ < u precisely when A\; + .-+
Aj < p1+--- 4+ pj for all j. Dominance order is the same as lexicographic order
for partitions of n < 5, but for n = 6, we have [3?] < [41?], in the lexicographic
order, but [3%] 4 [41?%] in the dominance order. But conversely, A < 1 = X < p.

(The distinction becomes relevant in the theory of Jack Symmetric functions.)
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2.1.2 Conjugates, Tableaux and Hook Lengths

The conjugate (partition) of A is the partition A’ such that A{ = ¥;.;m;()) for i =
1,..., A

The Ferrers diagram of a partition ), is the set of points (i, j) with i < A;. Itis
represented combinatorially by an array of squares, with i indexing rows of )

squares and index j for columns. For example,

is the Ferrers diagram for (5,3, 1, 1). Note that J; is the length of the i row. The
conjugate partition )\’ is more simply explained as the partition whose Ferrers
diagram is the transpose of the Ferrers diagram of ), i.e. the reflection across the
main diagonal.

For each square s € A, in the Ferrers diagram of A, the arm length, a,(s), is the
number of squares to the right of s, the leg length, I,(s), is the number of squares
below s. The hook length is hy(s) = a,(s) + I.(s) + 1. The product of hook lengths
is denoted by

Hy = Hhk(s).

A tableau T of shape sh T = X is a Ferrers diagram of A\ with a positive integer

assigned to each square. A tableau is semi-standard if it weakly increasing (non-
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decreasing) left to right in each row, and strictly increasing downwards in each

column. For example,

1122‘7‘

213|3

T, =

4
5

is a semi-standard tableau of shape (5,3,1,1). Associated with each tableau is
a monomial x", formed by replacing each entry i by x;, and multiplying these

together. For example, X™ = X$X3X3X4X5X7.

2.2 Permutations

The set of permutations 7 of a finite set X is denoted by Sym(X) = {7 : X — X|
7 is bijective}. Let &, = Sym({1, 2, ...,n}). An example of a permutation o € &g
IS

0:123456 2.1)

526143

which indicates that ¢(1) =5, 0(2) = 2, 0(3) = 6, and so on. A permutation
has a disjoint cycle factorisation. Thus ¢ = (1,5,4)(3,6)(2), because o in (2.1)
interchanges 3 and 6, and sends 1 — 5+ 4 — 1. The lengths of the cycles of
a permutation 7 form a partition 7(r), its cycle type. For example, 7(c) = [321]

above. A matching is a permutation p whose cycle type is of the form 7(u) = [2"].
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The set of matchings on a set X is Match(X) C Sym(X).

2.3 Maps

Two definitions of a map are now provided, a topological map and a combina-
torial map. These definitions are equivalent for enumerative purposes, so the
term map on its own is used refer to either definition in the contexts where it
does not matter. Similar, but more detailed, treatments of topological maps and

combinatorial maps are given in [GT87] and [Tut84], respectively.

2.3.1 Topological Maps

A locally orientable surface [Tut84] is a compact 2-manifold. Up to homeomor-
phism, two parameters, the Euler characteristic x € Z and orientability, suffice
to determine locally orientable surfaces. Orientable surfaces are the sphere, the
torus, the double torus and more generally the sphere with g handles, with Eu-
ler characteristics y = 2,0, —2,and generally 2 — 2g, respectively. The number g
is the genus of the orientable surface. Non-orientable surfaces are the real pro-
jective plane, Klein bottle, and generally the previous two with g handles, with
Euler characteristics y = 1,0, and generally 1 — 2g, or —2g, respectively.

A topological map 9t = (G, S, i) consists of a 2-cell embedding i of a graph G
in a surface S, meaning that all the components of the topological space S —i(G)
are 2-cells, i.e. homeomorphic to open disks. The 2-cells are the faces of the map

M. The Euler characteristic of S may be computed as y = f —e + v, where f,e,v
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are the number of faces, edges and vertices of a topological map 9t = (G, S, i).
Topological maps 9t = (G, S,i) and M’ = (G, S, i) are isomorphic if there
is a homeomorphism h : S — S’ which preserves the images of the graphs, i.e.
h(i(G)) = i'(G'). It follows that if 9t and 9V’ are isomorphic, 9t = 99t', then the un-
derlying graphs are isomorphic, G = G’ and the underlying surfaces are home-
omorphic, S = S’. The converse, however, need not be true. (For example, the
graph consisting of a two edge path plus a loop incident to the middle vertex of
the path, has two non-isomorphic embeddings in the sphere. On the other hand,

3-connected graphs [Tut84] have at most one embedding in the sphere.)

2.3.2 Combinatorial Maps

In preparation for the following definition consider a topological map 9t = (G, S, i).
For each edge e € G, the curve i(e) has two sides and two ends. Choose four
points on S, each very close to one side and one end of i(e). Having done this
for each edge e, forming a set of such points X, let these points be the (side-end)
positions of 2M1. Thus, if G has n edges, then of course |X| = 4n.

The side-end positions are related to each other by the local topology of 9.
More precisely, the positions in X can be naturally paired up in three different

ways.
1. Pairs in X associated with the same end of one edge but on different sides.
2. Pairs in X belonging to the same corner of a face.

3. Pairs in X associated with the same side of one edge, but at different ends.
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This leads to three matchings u;,i = 1,2,3 on X and to the definition given by
Tutte [Tut84] of a combinatorial map, stated purely in finite terms, without ref-

erence to any topology.
Definition 2.2. A quadruple m = (X, u1, p2, p3) is a combinatorial map if:
1. Xisafinite set,
2. pjisamatchingon X, fori =1,2,3,
3. The permutation product u; 3 is also a matching on X,
4. The group (1, p2, pi3) acts transitively on X.

We write m = ~(90) for a combinatorial map m associated with a given topo-
logical map 2, by means of the previous description.
If Condition 3 is omitted, m is called a hypermap. If Condition 4 is omitted, m

is called a premap.

Definition 2.3. A quintuple m = (X, w1, 2, 43, ) isarooted map ifr € X and (X, u1, 2, pt3)

is a combinatorial map.

A combinatorial map or hypermap can be viewed through its matchings

graph:

Definition 2.4. The matchings graph of a map (or hypermap) m = (X, w1, t2, p3) is

I = I'(m) with vertex set VIT = X, and edge set

Er = {{x,y}:y = u(x) for some 1 < k < 3}.
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The matchings graph T is vertex-3-regular (trivalent). The indices of the
matchings u provide a proper edge-3-colouring, or Tait colouring, of . Any
Tait-coloured trivalent graph determines a unique pre-hypermap. Condition 4
in Definition 2.2 is equivalent to ' (m) being connected.

For each topological map 93t, we have shown above how to define an asso-
ciated combinatorial map m = y(91). Vertices, edges and faces of 9t have the

following corresponding structures in I (m):

1. Faces correspond to cycles of I' (m) consisting of (alternating) edges from

and pus.

2. Edges correspond to cycles of I'(m) consisting of (alternating) edges from

ps and py.

3. Vertices correspond to cycles of I'(m) consisting of (alternating) edges from

Jua and 2.

In a combinatorial map, Condition 3 in Definition 2.2 implies that cycles corre-
sponding to the edges in item 2 above correspond are 4-cycles in the matchings
graph I'(m).

Isomorphisms between combinatorial maps

m= (Xa M, /1'27/4'3) andm' = (Xla /1'{1.7/11,27/1’13)

are bijections ¢ : X — X' such that ¢ o px = p; o for 1 < k < 3. Two combina-
torial maps m and m’ arising from isomorphic topological maps 2t and 2t are

themselves isomorphic.
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Let Y denote the construction that associates with each combinatorial map
m a topological map 9t = Y(m). The three sets of cycles in I'(m) associated to
the faces, edges and vertices, serve as boundaries to which can be attached open
disks, forming a surface S, with skeleton I'(m). The functions Y and ~ are in-
verses, up to isomorphism. This result, in an equivalent form, is known as the
Embedding Theorem [Tut84, GT87].

The Euler characteristic of a combinatorial map m is determinable from I'(m)
by counting its cycles corresponding to the faces, edges and vertices of Y(m). The

next result explains how to express orientability of m in terms of I'(m).

Lemma2.l. Let9 = (G, S,i) be a topological map. The surface S is orientable if

and only if I (v(9R)) is a bipartite graph.

Proof. To see this, fix the global orientation of S as clockwise. Use the global
orientation to assign a bipartition of X, by classifying positions at each vertex
as being on the clockwise or counterclockwise side of the edge in clockwise (the
global orientation) circulation of the vertex.

Conversely, given a bipartition (X, X;) of the matchings graph "(y(m)), de-
fine a global orientation of S as follows. In the a neighbourhood of each vertex,
the positions alternate from X; to X,. Choose a local orientation of the neigh-
bourhood of the vertex in such a way that the positions in X; are on the clockwise
earlier side of the edges incident to the vertex. These local orientations are consis-
tent across the neighbourhoods of the edges, because (X, X;) is a bipartition of
I"(m). Finally, each face is contractible to a point, so the local orientation defined

above for a neighbourhood of G can be extended consistently to all of S. O
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The dual of amap m = (X, w1, 2, 3, 1) 1S (X, p3, p2, p1,r). The Euler characteristic

and the orientability of the dual are the same as those of the original.

2.3.3 A mnemonic convention

For mnemonic convenience we can replace pua, u2, u3 by f, e, v respectively. One
may think of p; as a function which changes (at least locally) the face which
contains a position, and therefore u; is denoted by f. (The same vertex and edge
contain positions x and f(x), while x and f(x) may or may not belong to the same
face.) One may think of u, as changing the edge containing a position, and
therefore i, is denoted by e. The vertex and face of the position are unaffected
by e. One may think of u3 as changing the vertex containing a position, and
therefore p3 is denoted by v. The face and edge containing a position are the
same for positions x and v(Xx).

The permutations ev, vf and fe are associated with faces, edges and vertices,
respectively. In each permutation, there is a correspondence between a pair of
disjoint cycles and faces, edges or vertices, respectively. That is, each face corre-
sponds to a pair of cycles in ev, each vertex corresponds to a a pair of cycles in

the permutation fe, and each edge corresponds to a pair of cycles in vf.

2.3.4 Edge Deletion and Submaps

Givenan edge e inamap m = (X, u1, i2, #3), one can form a (pre)mapm’ =m —e

by deleting e from m.

Definition 2.5. Let m = (X, w1, 2, 43) be a premap. Let e be an edge of m, i.e. a 4-
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cycle in the matchings graphs I (m) with edges from 1, and p3. Let the positions in e be
X1, X2, X3, X4, Where i1 : X3 <> Xa, X3 ¢> Xg and pz : Xy <> Xg4, X2 <> X3. Then the premap

m=m-—eis;

m' = (X', p, g, ps)

where X' = X\ {x1, X2, X3, X4 },

, (12 0 11 0 p12)(X) if pa(X) € {X1, X2, X3, Xa },
pa(X) =
w2(X) otherwise, and

the other two matchings are pf = pa|x and pj = ps|x, restrictions to X’ of the match-

ings of m.

If multiple edges are deleted, the result does not depend on the order the
edges are deleted because (m —e;) —e; = (m —e;) —e;. Thus we may define
m — D, for any set of edges D, as the result of the successive deletion of the
edges in D. Since this is analogous to deletion in graphs, the following notion
applies:

Definition 2.6. Let D = {e;,...,eq} be aset ofedgesinamapm. Thens =m — D =

(-..((m—ey) —ey) —---—ey)isasubmap of m.

2.3.5 Rotation Systems

It will be convenient to define an orientable combinatorial map in terms of a pair

of permutations called a rotation system.



CHAPTER 2. PRELIMINARY COMBINATORICS 26

Definition 2.7. A rotation system with n edges, vertex partition v and face partition

¢ isapair (p, €) with p € G,, and € € Match(N3,), such that 7(p) = v and 7(pe) = ¢.

The encoding is done by placing a label at each end of an edge. Then ¢ is
the matching whose pairs are the pairs of labels on each edge. The cycles of
permutation p are formed by listing the labels in cyclic clockwise order around
each vertex. This can be done consistently through the global orientation of the
map. The cycles of pe then correspond to the faces of the map.

The resulting rotation system associated with a map is such that the permu-
tation group (p,e) generated by p and ¢ is transitive (has one orbit on the set

NZn).

2.3.6 Generating Series for Maps

Associated with each map m = (X, f, e, v), are two partition-valued parameters,
¢(m) and v(m), the face (degree) partition and vertex (degree) partition, respectively,
and the integer parameter n(m), the number of edges. In terms of a topologi-
cal map, the vertex partition consists of the degrees (number of incident ends
of edges) of each of the vertices, and the face partition consists of the degrees
(number of incident sides of edges) of each of the faces.

In the terms of combinatorial maps, the vertex partition consists of the half-
lengths of the cycles in I'(m) representing vertices, the fe-cycles. The face par-
tition consists of the half-lengths of the cycles in I'(m) representing faces, the
ev-cycles.

Let £ be the set of all rooted, locally orientable maps. (This includes both
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orientable and non-orientable maps.) Let O be the set of all rooted orientable
maps (so O C L). The generating series for rooted (locally orientable) maps £ is

defined to be

L=LY,2) = 5 XomYumz"™

mel

(where for any partition X, = X, Xy, ..., and y, is similarly defined). The gener-

ating series for rooted orientable maps O is defined to be

Q=Q(x,y,2) = z X¢(m)yu(m)zn(m)-

me0

For partitions ¢, v I 2n, let the coefficient of x,y,z" in L and Q be m,, , and
wg,v.ne respectively. These coefficients are non-negative integers which count the
number of either locally orientable or orientable rooted maps m with n edges,
and face and vertex partitions ¢ and v, respectively.

It was claimed that (1.5) has the specialisations W& = Q (with o = 1) and
W@ = L (with a = 2). To elaborate on the definition of (1.5) one needs the theory

of symmetric functions.



Chapter 3

On the Algebraic Method

The Quadrangulation Conjecture and the Map-Jack Conjecture are based on re-
sults developed by the algebraic method of map enumeration. Although later
chapters do not use the material contained here, this chapter provides a back-
ground and context with an overview of the original development. Many of
the details of this development are omitted, since they are peripheral to the ap-
proach described in this thesis, and the interested reader is directed to the origi-
nal sources.

The Quadrangulation Conjecture is defined in Chapter 5, together with a par-
tial solution. This chapter outlines some of the methods in the complicated proof
of [JV90a] for the enumerative result from which the Quadrangulation Conjec-
ture arises. These methods are not required in Chapter 5, so the treatment here
is to motivate the origin of the bijection.

In the case of the Map-Jack Conjecture, Chapters 6 and 7 only use the material

of this chapter to support the relevance of the combinatorial parameters 3 and n

28
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(to be defined in Chapters 6 and 7). The interest in these parameters derives from
the computational evidence of their association with the Jack parameter a. By
defining Jack symmetric functions, this chapter makes the Map-Jack Conjecture
(Conjecture 1.2) precise.

This chapter also contains a re-derivation, by the algebraic method, of a result
of Walsh. Walsh obtained a recurrence relation by the edge deletion method,
and then solved this recurrence. Analogous steps are taken in Chapter 6 but on
rather different objects. The same result is derived again in this chapter, but by
the algebraic method. In the case of Walsh’s formula, an algebraic method is
used to re-establish a result of the edge deletion method. In later chapters, the
opposite occurs: the edge deletion method is used to produce some predicted

results of the algebraic method.

3.1 Group Algebras and Some Subalgebras

This section gives (without proof) the essential aspects that are needed for char-
acter theory and certain group algebras. Details are to be found in [Sag91, Irv98,
Mac95, JV90b, GJ96b, GJ96a].

Let &, be the set of permutations acting on N, = {1,2,...,n}. The group al-
gebra of &, over C is denoted C&,, and consists of formal linear combinations of

permutations. Addition in C&,, is usual vector space addition 5, a,m+ 5 b,m =
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> «(@r +b)m. Multiplication uses the product from the symmetric group,

Zaﬂr X z b,m = zaﬂbpﬂp = z (z am_lbp> .
™ ™ TP ™ D

The centre Z(C&,) of the group algebra of the symmetric group consists
of all a = Y, a,m such that a, is constant on each conjugacy class, and hence
Z(CB,) is called the class algebra. Since a permutation’s conjugacy class is deter-
mined by its cycle type, it follows that conjugacy classes C, are naturally indexed
by partitions. For example, the conjugacy classes of &3 are Cps; = {1}, Cpyy =
{(1,2),(2,3),(3,1)} and €y = {(1,2,3),(1,3,2)}.

A natural basis for the class algebra is the set of class sums C, = 3 ;c¢, . The

integers
[C.\]C.C, (3.1)

are connection coefficients. Connection coefficients count factorisations of permu-

tations into permutations of specific cycle types, since
|CA\I[CA]C.Co = {(m,0,7):m€C),0 €C,, T €C,,moT =1}].

Thus the number of rotation systems (p, €) with vertex partition v and face parti-
tion ¢ is |€4| [Cy] CprCy, since p € €, € € Cpmy and pe € €. Itis therefore possible

to express a generating series for rotation systems in terms of connection coef-
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ficients. A generating series for rooted orientable maps can be found from the
generating series for rotation systems by applying a differential operator to its

logarithm.

3.1.1 Characters and Orthogonal Idempotents

For each partition \ - n, the group &, has an irreducible character y* : &, — C,
and these constitute all irreducible characters. Characters are constant on each
conjugacy class. Let x; = x\(m) for m € €. Irreducible characters can be used to

express the orthogonal idempotents Fy of C&,, in terms of the class sums by

Xfin
r[“] S X1 Cu- (3.2)
ST

Orthogonal idempotents are called so because of the property that
FAF. = dx.Fa. (3.3)

Class sums are expressed in the orthogonal idempotent basis as follows:

1
Co=lCu Y ——xuFx (3.9
Arn X[

From (3.2), (3.4) and (3.3), connection coefficients may be expressed in terms of

characters by

1€l - €] < XAX[XD

[CA]C.C, =
8 n! = X?l”]

(3.5)
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Thus rotation systems may be enumerated using characters of the symmetric
group. Therefore orientable rooted maps may also be enumerated. But char-
acters of the symmetric group are themselves very difficult to compute and, in
practice, character sums are often intractable. Certain special cases and special
properties of characters can be used to obtain enumerative results about maps,
including the enumerative result behind the Quadrangulation Conjecture. More
importantly, characters of the symmetric group are an intermediate device to the

introduction of symmetric functions into map enumeration.

3.1.2 Two Double Coset Algebras

Non-orientable maps cannot be encoded by rotation systems, so an algebra dif-
ferent from the class algebra is needed for their enumeration. This is the double
coset algebra of the hyperoctahedral group, as was used [GJ96a].

Each subgroup H of a finite group G partitions the group G into double cosets
HgH = {highy|h;, h, € H}. The double coset algebra D(G, H) is a subalgebra of CG,
which has for a basis sums of elements in the double cosets of H. If D(G,H) is a
commutative algebra then (G, H) is called a Gel’fand pair [Mac95].

Fix a matching ¢, = (1,2)(3,4) - - - (2n — 1, 2n) € &,,. The hyperoctahedral group
H, is the centraliser group of ¢, that is all permutation commuting with €,. Then
(S2n, Hy), is a Gel’fand pair. The double cosets of H, may be naturally indexed
by partitions, and thus, so may the corresponding basis {K) } -, of D(&,n, Hp)
[HSS92].

The structure constants [K,]K,K,, may be used to enumerate labelled locally
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orientable maps, in a similar way to the way connection coefficients (3.1) enu-
merate rotation systems. For the double coset algebra of the hyperoctahedral
group, there is also a set of scalar-valued functions which behave like characters
of the symmetric group with respect to a set of orthogonal idempotents Ey in the
double coset algebra D(&,n, Hy).

There is another double coset algebra, described by Macdonald in [Mac95],
which can be used to enumerate orientable maps and which has, moreover, a
close affinity to the double coset algebra for locally orientable maps. We now
digress briefly to describe it.

Let G, = &, x &, considered as a subgroup of &,,, acting independently on
odd and even numbers. For example (2,8,6)(1,5)(3,7) € G4. Let L, = G, N H,.
Then (Gp, L) is also a Gel’fand pair. The algebra D(G,, L,) has a double coset
sum basis {L, }\-n indexed by partitions, which is such that[L,]L,L, =[C,]C,C,.
Thus, theoretically the algebra D(G,, Ly) may replace the class algebra Z(CG&,)

for the enumeration of the orientable maps. For further discussion, see §3.2.4.

3.2 Symmetric Functions

Symmetric functions are formal power series of bounded degree, over (count-
ably) infinitely many ground variables, that are invariant under permutation
of the ground variables. Let the ground variables be X, X5, X3,..., and let x =
(X1, X2, ...).

Each product of finitely many x; is a monomial. The collection of degrees of

the x; inamonomial is its degree partition. Thus for the partition A = (A1, A2, ..., A),
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the corresponding monomial symmetric function is

AL A A

m)\(X) = Z X_11Xi22 e Xikk)
i1.|2,...,ik

summed over distinct monomials with degree partition A, each appearing once.

The ring of symmetric functions is

N=EPZm,,
A

the set of Z-linear combinations of monomial symmetric functions. The rings
formed by allowing other coefficients, such as the rational numbers or complex
numbers, are denoted by Ag or Ac, respectively.

Other symmetric functions include the complete symmetric functions

hn(}) = > m\(x) = Xiy =+ * Xy,
" /\Zn i1§Z§in | |

the elementary symmetric functions en(x) = mpm(X) = ¥ <..<i, Xi, - - * Xi,, and the
power sum symmetric functions p,(X) = mpy(X) = X} + x5 4 ---. For the parti-
tion A = (A, Ag,...), lethy =hy hy, .-, ey =eyey, - and py = py,py,---.

The ring A has {h,} and {e,} as Z-bases, and {p, } is a Q-basis for Ag. More-
over, {h,} and {e,} are algebraic bases for A, i.e..: A = Z[hy, hy, hs,...]. Similarly,
{pn} is an algebraic basis for Ag = Q[p1, p2, - - -]

A symmetric function is homogeneous if all its monomial terms have the
same total degree. The set of homogeneous symmetric functions of (total) degree

n is indicated A" and has {m, } \-n, {h)}-n, @and {e,} \-n as Z-bases.
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3.2.1 Jack Symmetric Functions

Introduce a scalar product ( -, - ), on Agq), uniquely determined by:

(Pxs Pu)y = 5A/LZAO/(A) (3.6)
where
1 if\=yp,
Oy =
0 ifA#uyu,

and for partitions X\ = [1™M2m() 7, recall that
zy = [T mi)L™W,
m i

Since {p, } is a basis for Ay, and a scalar product is by definition linear in each
of its arguments, equation (3.6) suffices to define ( -, - ) over all of Ag,). One
has: (ppzy, Prrey), = 0, but (ppay, Pray), = 2ac and (ppzy, Ppazy),, = 202

Put the Q(c)-basis {m,}, n of Ny iNto lexicographic order.  Use Gram-
Schmidt orthogonalisation on this ordered basis. Let {Jl(f')}wn be the resulting

ordered basis, which satisfies the triangulation condition

Jg\a) = ay\m) + Z ax, My, (37)
<A
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for some a,, € Q(«), the orthogonality condition
<J§a),Jff)>a —0  ifi#],
and the normalisation condition
My 37 = !

Then J{* is a Jack symmetric function. (The symmetric function J{* is called the
integral form of a Jack symmetric function in [Mac95], where Jack symmetric
functions are defined to be P{* with a different normalisation condition.)

Equation (3.7) still holds if lexicographic order in (3.7) is replaced by the
weaker dominance order. Moreover, Jack symmetric functions are still unique
if this condition is weakened. This non-trivial result is proved by using certain
differential, self-adjoint operators, the Sekiguchi-Debiard operators.

The Macdonald-Stanley Conjecture [Sta89] asserted that the a,, are polyno-
mials in a with nonnegative integer coefficients. This conjecture was proved
recently independently in [KS97] and [LV95]. It is not clear how this recent re-
sult can be used to show a necessary consequence of the Map-Jack Conjecture:
that Y®+(x,y, z), from (1.5), is a non-negative integer formal power series.

@ and I for the above defi-

We include a briefly explained calculation of J[P] ]

nition, in the power sum basis, since these functions are so essential to the Map-
Jack Conjecture. We now compute Jg“') for A\Fn <2 Forn=1, there is only

one basis element my;, so Jif) = myy). For n = 0, one has J) = m, = 1 by similar
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reasoning. For n = 2, lexicographic order is [1?] < [2], so the first step of orthog-
onalisation is simply J) = 2my;z;. Next, we must have J5 = ap) M + 2mpz
for some apy ;) = X € Q(a), and, by orthogonality:

0= (),
= (2mz, Xmpg + 2mpgz)
= (Ppz) — Pr1> XPpay + (Przy — p[z])>a
= (X = 1){ppz, Pa), — X = 1) (P21, Pr1),,

+ (Ppazp, Ppay), — (Ppazps Pra),
=0—(X—-1)2a+2a*-0
=2a(—X+ 1+ a),

using mpz; = %(p[lz] — Prz;) and mpy = pz. Solving yields X =1+ «, and therefore

J[(za]) = (14 a)mpy 4+ 2my;z. Consequently,

‘][(za]) = aPr + Pz,

J[(laz)] = —Prz + Ppzy-

in the power sums basis. The need for expressing of Jack symmetric functions in

terms of power sum symmetric functions is seen clearly in (1.5).

3.2.2 Schur Symmetric Functions

When a = 1, Jack symmetric functions specialise, up to a scalar factor, to Schur

symmetric functions since Jf) = H,s,, where, recall, H, is the product of the
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hook lengths of the partition A. Schur symmetric functions are also given by

Aj+n—j
det(x;”"" ")1ci jen
S)\(X17 s 7Xn) = n—j
det(Xi )1§i,j<n

X

(3.8)
and
sy =det(hy iy icijcn forn > £(N) (3.9)

(the equality of (3.8) and (3.9) is essentially the Jacobi-Trudi identity). Schur

symmetric functions are also given by

=y 2, X Pu (3.10)
|uf=IA]

The above three definitions do not seem to have corresponding generalisations
in terms of Jack symmetric functions. There is a combinatorial characterisation

of Schur symmetric functions as
s =3 4 (3.11)

summed over semi-standard tableau T of shape \. Equation (3.11) does have a
generalisation to the setting of Jack symmetric functions. For further details on
symmetric functions see [Mac95].

Because irreducible characters of the symmetric group appear both in (3.10)
and (3.5), Schur symmetric functions may be applied to the enumeration of ro-

tation systems and therefore to the enumeration of rooted orientable maps. In
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particular, the following generating series, already seen in (1.1), for orientable

rooted maps, is expressed in terms of Schur symmetric functions as

0
Q(x,y,2) = 2z5-log HasxA(X)sA(Y)sA(2)
z n=0 AFn Pj (X)X, pj(Y)—Y;j
pj(2)—26;,

The expression (3.9) for Schur symmetric functions in terms of complete sym-
metric functions is useful for obtaining the factorisation (1.2), which expresses
[p[4n]] s, In terms of two other Schur symmetric functions s,o and s,.

This factorisation is achieved by setting p; = 0 for j # 4 in the determinant
det(hy, i.j). Since hy = 5,2, p,, this can be done quite simply. Entries h, of
the matrix with n not divisible by 4 become zero under this substitution. Thus
the determinant may be factorised as the product of two determinants. This also
means the character X[ﬁn] can be expressed simply in terms of some characters
X[

To restrict to quadrangulations set ¢ = [4"]. The number of quadrangulations
may be expressed in terms of the number of all maps, by using the above factori-
sation. A natural bijection for this enumerative result is sought in the Quadran-

gulation Conjecture. More detail can be found in [JV90a].

3.2.3 Zonal Polynomials

When a = 2, a Jack symmetric function specialises to a zonal polynomial Z, =

J&Z). While zonal polynomials do not share all the corresponding properties of
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Schur symmetric functions, they do share one property (not known to generalise

to Jack symmetric functions), a property corresponding to equation (3.10),
Z, = |Hn| Zzz_ul ;\pu
Mn

where wﬁ = w?(r) for any = € D, the double coset of H, indexed by y, and the

function w” is defined

w(s) =

in [HSS92] with a full account of the character theory.

The same functions w” occur for double coset algebra of the hyperoctahedral
groups in the conversions from the double coset sum basis to the orthogonal
idempotents. These w* have the same rdle as characters do for the class algebra.
It then follows that Zonal polynomials Z, may be used to enumerate locally

orientable maps.

3.24 Symmetric Functions and Double Coset Algebras

The relationship between symmetric functions and the two double coset algebras
of §3.1.2 is summarised in this section. The following applies to the class algebra
Z(CB,) as well, because it is related to the double coset algebra D(G,, L,) by
having equal connection coefficients [L\]L,L, = [C,]C,C,.

Let DOV = |L1|L and D& = i ‘K (normalised double coset sums). For i =

1,2, let EQ) be the orthogonal idempotent indexed by ), of D(Gy, L) and D(&3n, Hn)
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respectively. Then for i = 1, 2 the following is true

JVED = ¥ p DO (3.12)
/\Zn A TA /J;’l H=

The chosen normalisation of Dg) gives (3.12) its simple form. The fundamen-
tal relationship of Jack symmetric functions at « = 1 and a = 2 to the structure
of the double coset algebras is made clear by the simplicity of (3.12). The result
(3.12) will not proven here. However, the usefulness of (3.12) is demonstrated by
simultaneously outlining part of the development of symmetric function based
generating series for both the set of orientable maps and the set of locally ori-
entable maps.

By taking coefficients of each side (3.12), it is possible to change bases, ei-
ther between power sums and Schur functions or zonal polynomials, or between

double cosets and orthogonal idempotents. For example

] 30 = [poE0] 5 3VED = [?] 5 0,0 = [EC] o)
n ukEn
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More importantly,

0] DYDY = [P, (9p.()D| ( 3 pe(xmé”) (; pzp(y)DfL))
= | pu00P, DY (; JS)(X)ES)) (Z JS)(V)E$)>
- : Fn

Ykn
=[PP )DY] 5 3003 0)E)

=5 [P0OR.] 170037) D010(@)] 3 I0ED
Fn

T Thkn
=5 [p0P,)] 370937) DY@ 3 po(@IDY
Fn - tFn

=5 ([Pu0] ') (p.02 570) ([1W] @)

But

o <J§a),pA>a (Px, Pa)., <J§a),m>a L) X
5] e = (50,5) ~ <J£,“A’,J§j“)>a b, <Jé:),aJéa)>a [P] 47

Therefore, fori=1and i = 2,

i o ) 1060030 () gD
D] DIDY = 2, [pA()p, (¥)P.(2)] 2 ’ (Z)J(f’) (j:i)); @ @)
0 %0 i

Fn

For i = a = b+ 1, the right hand side of (3.13) is part of the generating series for
maps W+ of (1.5) and the Map-Jack Conjecture. For i = «, the left hand side
of (3.13) has no interpretation because Dgf) has no interpretation, except at the

valuesa=1and a = 2.
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3.3 Algebraic Re-derivation of Walsh’s Monopole For-
mula

An example is given of the use of the algebraic method to obtain an explicit re-
sult. The result is a new proof of a result of Walsh and Lehman [Wal71] obtained
originally by the edge deletion method. It concerns a simple expression for the
number of orientable rooted monopoles (map with a single vertex) with a give
face partition.

The starting point of the new proof is a generating series for maps in terms
of Schur symmetric functions. It is shown that in the case of monopoles, the
generating series simplifies into the form discovered by Walsh and Lehman. The

proof is divided between the next three subsections for convenience.

3.3.1 Walsh’s formula

Walsh and Lehman obtained a formula, which is equivalent to the following
expression for wy on) 0, the number of orientable monopoles (rooted, single vertex

maps) with n edges and face partition ¢,

nl “o)

[un+l] I—!{(l + u)¢j —(1- u)¢J}. (3.14)
=

We,[2n],n = 2”Z¢

The coefficient in (3.14) may be extracted to obtain the sum

nl LONS
Wotrln = g1, ) ﬂ(znﬂ)

i
It +lpg)=9
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where g = (2 — x) = 3(2 — (¢(¢) — n+ 1)) = "4 js the genus of the monopoles
being enumerated by wg j2n] n-

For example,

41 3\ 72\ /1\°
“rzelels = 3713 2)81 { <1> <1> (1) } -
5! 6) (4) . () (4
Wie,41,[101,5 = 23(6-4) { (3) (3) + (5) (1) } =0
6! 9\ /2\ /1
W(9,2,11,[12],6 = 23(9-2-1) { (5) (1) (1) } = 1200

which can be compared to the tables of Appendix B. In §B.4.1, §B.5.1, and §B.6.1
(respectively), these values are found in the column with B = 0 and in the row
with [321%], [6,4] and [9,2,1] (respectively). Incidentally, the values given in
Appendix B are coefficients of the generating series ® of Chapter 6, and are com-

puted by a recurrence that extends the one used by Walsh originally.

3.3.2 From Walsh’s formula to special Schur symmetric func-

tions

The simple formula (3.14) is now manipulated into a form involving a special
class of Schur symmetric functions sy: those where 6 is a hook partition. To
obtain a generating series W(p, z) for the expression (3.14), multiply by p,z",

and sum over all partitions ¢, to give

()
W(p, 2) z" z p¢2n! un+] I_!{(l +u)? — (1 — u)%i}.
J:

n>0
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Proving the validity of Walsh’s formula (3.14) is equivalent to verifying that
W(p, z) is a generating series for orientable rooted monopoles. If the algebraic
method is to be used, then W(p, z) should be shown to equal the expression for
the generating series expressed in terms Schur symmetric functions.

Let m; = mj(¢). As ¢ varies over all partitions, m; varies over all non-negative

integers. So sum over all m; > 0.

W(p,2)= )

n! u™1] ( (1+u)1—(1—u)1>

2"m¢ImyIms!. .. 121 ]

_ v L[ (A arni—a-vi\"
- 20l ]gmjl(pj(ﬁ) o)

1=

where n = (1m; +2m, +- -+ jm; +...) is assumed. Extraction of the coefficient
of u"™ and t"*! may seem problematic if n is not an integer. However, the issue
is resolved by letting u = w? and t = w? respectively, from which it is seen that
coefficient should be zero when n is a half-integer. Let ©, be an operator defined

by @, : z" — n!z", and extended linearly. Then

W(p,2) =0 ['fl]l_!mJ ( Pi~ (\/7>j((1+t)’ (1—t)j))
= O,[t'] |'!exp (pji <\/§>-((1 +t)) -1 —t)j))
_@[tl]exppzl< <\/7( +t)>. <\/7(1—t)>>
= O,[t]exp (Iog H <\/7(1+t)) log H (\/7(1 —t))>

a H(1+1)/%)
BRGRI ((EVe

m;j
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where H(z) = ¥ 50 hmz™. With E(z) = Y n>0emz™ below,

W(p, z) = O,[t']H ((t+ 1) z/(2t)> E ((t —1) z/(2t)> (3.15)

From [Mac95], it can easily be deduced that

HWEYW=1+Y) Y Spy‘u™ (3.16)

o<n,
ogkgn—1

Hence (3.15), under the substitutions u = (t + 1)/z/(2t) and y = =1 into (3.16),

t+1

becomes

W(p,z) =0, [t'] (1 + —: n 1) > Sp-kay (—: n i) ((t + 1), /Zit) . (3.17)
o<n,

0<kg<n-1

3.3.3 Determination of the monopole series M

For orientable rooted maps, the algebraic method gives a generating series in-
volving a sum of a product of three Schur symmetric functions. This is now

specialised to include only monopoles.

0
M(p(x),2) = 2z5-[y] ; Hyse(X)s0(Y)s6(2) ooy (3.18)
pj(2)=24j2
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where z is an ordinary marker variable for edges, and each face of degree k is

marked by a factor of py(x). To evaluate this begin by recalling that
Sp = Z 221 pa (3.19)
ak|8]
where, x? = (sy, p..) is a character. Recall (3.9) which states that
sp = det(hg,—irj)i<ij<n;

for any n > £(6). Since

=73 Z," Py
akn

for n > 0, and since h, = 0 for n < 0, with some work [Mac95] or [JV90a], it

follows that

, (—1D* ifd =[n—k,1¥],
X = (3.20)
0 otherwise,

where0 < k< n-—1. Thus an] vanishes unless 6 has a hook shape.
Therefore only those 6 that are hooks contribute to the sum in (3.18). This
simplifies the sum in (3.18) considerably, because only a small portion of parti-

tions are hooks.
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For0F n,

[y] Sg‘pj(y):y - [pn]SQ9

because when sy is expanded into power symmetric functions of degree n, the
only term of degree one as a polynomial over the variables py, p2, ps, - .- is the

term containing p,. From (3.19)
[Pnlss = Z[_n%XQ[Qn]-

Now we can use (3.20) to simplify the sum in (3.18):

0 ~
228_ Z H[n—k,lk]s[n—k,lk](X)Z[n%(_1)k z 2" [pram) Spn—k,1q | - (3.21)
g >
SKSh—

The last factor in (3.21) can be explained by observing that when s, is expanded
into a polynomial of power symmetric functions the only nonzero terms in sy(z)
arise from the terms of p3' in sy for some m, because of the condition that p;(z) =0
if j # 2.

It follows that, in (3.21), n must be even. So replace n by 2n. Then m = n.

Hence

0 _
M(p(x),z) = 22& Z H[ank,lk]s[ank,lk](X)Z[Z%](_l)kzn [p[Z“]] Spn—k.1q- (3:22)
8§I?<2n71

Since z[‘Zrl]] = % cancels the effect of the differential operator 22% in (3.22), we
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have

M(p(x),z) = z (—1)z "Hizn—k.15[2n— klk](x)z[zn]XEr?] k19 (3.23)

n>0
o<k<2n—1

Clearly z[Zn] Znn, From [Mac95], the value of the character indexed by a hook

partition [2n — k, 1¥] evaluated at a permutation with cycle partition ;. may be

deduced to be

1 (- u) m(u).
|>1

X[Zn k1% _ [uk]

In particular, when p = [2"],

1 2n
1_’_u(l—u)

=W @a-u@-u)"’

(1-
- (e
= (e (1)
(-3
- (),
21 = (—1)lz!, (3.23) can

Omitting the argument (x), and by noting that (—1)</z!

B =

(3.24)

;1>u4_.“)
(")

3
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now be re-expressed as

n—1
¢ (k)
M(p,2)= (—1telzn én/nj| Hian k198120 k1495
8§E<2n71

But the product of the hook lengths of the partition [2n — k, 1] is Hion k19 =
(2n)k!(2n — k — 1)!. Therefore

K k! —k
Mp.D= 3 2 T s

ogk\zn 1

(3.25)

3.3.4 Completing the equality

To complete the proof we show that W(p, z) = M(p, z). From (3.17)

t—1)c 2t n

0<kan-1
=0, [t] T S {(t— DEE+ D@D} 22
og(l)ér;’ﬂ
=0:[t] Stn—ia {2t — Dt + 1) 1K} 222t 2
og(l)ér;’ﬂ
=0 5 2 [P {0- D 2
ogkgrrlmll
= 3 2 (0/2) sy o [ {- DR Y
<,

ogkgn—1
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which forces n to be even. (Again, this is made clearly rigorous by setting t = w?.)

Replacing n by 2n,

W(p? Z) — z 21_nn!ZnS[2n_k71k] [tn] (t — 1)k(t + 1)2n—l—k‘
ogggﬁ—l

We need to evaluate

N N1k i(k\/2n—k-1
[HG—DW+DZlk—ZG®k<J( n_i>

~ K 2n —k—1)
= D e e — k)
K@n—k—1)!

=== (—1)

; n!(n — 1)!
XZ“” in— i)k —i)!(n—1—K+1i)!

_k(2n — 1! ifn\(n—-1
= mm ] D' 3D Q)(k—i)

k (2n ) n n—
= B ] - e
_k@n—k )

(D U] @ —uw@—u)"*

n!(n — 1)!

which, by (3.24),

_ Ki@n —k—1)! 1
= hin - ) DD (LA)
|
_Ken k=Dl gy ( ﬂ
5]

ni(n — )
1 k' 2n—k—1)!

Tl Ern -1 5]

(-1
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Hence
_ (2n —k — 1)! K
W(p,z) = 22" oy g (—1) L2
2 -1 1)
0<k<2n-1
= M(p, 2)

This completes the proof of Walsh’s formula using the algebraic method.

3.4 Summary

The algebraic method was briefly described, in order to indicate the origins of
the Quadrangulation Conjecture and the Map-Jack Conjecture and to define the
latter. A new application of the algebraic method was given, reproving a result

of Walsh.



Chapter 4

Depth First Search

Depth first search is an essential tool in the description of the bijectio