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Abstract

The goal of this study is to design, characterize, and fabricate efficient hydrogenated

amorphous silicon (a-Si:H) photovoltaic (PV) modules, and semi-transparent solar cells on

thin, mechanically flexible, optically transparent plastic substrates for energy harvesting

applications. The cells are deposited on thin flexible plastics at low temperature (120∼150

°C).

In the first part of study, a-Si:H n-i-p solar cells were fabricated using a plasma en-

hanced chemical vapor deposition (PECVD) and the deposition conditions were optimized

to maximize their efficiency. To improve light absorption, we engineered the front window

layer by optimizing p-layer thickness and bandgap (Eg). The best a-Si:H n-i-p solar cell

showed open circuit voltage (Voc) of 0.67 V, short circuit current density (Jsc) of 7.92

mA/cm2, fill factor (FF) of 53.73 %, and energy conversion efficiency (η) of 2.86 %. Us-

ing developed deposition recipes, the a-Si:H PV modules were designed and fabricated on

a 10×10 cm2 polyethylene-naphthalate (PEN) substrate which consists of 72 rectangular

cells. The sub-cells were connected in series forming eight strings with connection pads at

the ends, so that the strings of 18 sub-cells were connected in parallel using the external

blocking diodes. The typical a-Si:H PV module showed Voc of 12.78 V, Jsc of 8 mA/cm2,

FF of 53.8 %, and average η of 3.05 %. The PV module performance is similar to that of

individual solar cells, which means good scalability of our module fabrication process.

In the second part, a-Si:H n-i-p solar cells were inverted to fabricate a-Si:H p-i-n solar

cells. In this device structure, p-type buffer-layer was introduced to improve the interface

between aluminum doped zinc oxide (AZO)/p-layer. The optimum device showed Voc of

0.885 V, Jsc of 8.88 mA/cm2, FF of 52.01 %, and η of 4.09 %.
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In the last part of this study, semi-transparent solar cells were fabricated both on

glass and plastic substrates to demonstrate feasibility of building integrated photovoltaics

(BIPV), based on the a-Si:H p-i-n cells in the second part. To overcome the mechanical

stress inside films between AZO and plastic, the barrier-layer coating was used to prevent

the delamination which is frequently encountered between plastic substrate and transparent

conductive oxide (TCO) layer. Our semi-transparent a-Si:H solar cells showed the η of

4.98 % and 4.77 % for the cells fabricated on glass and plastic substrates, respectively. In

addition, the semi-transparent a-Si:H p-i-n solar cell was also used as radiation detector

within the visible part of the spectrum. From the Ne spectral lines, the micro-plasma

spectral from radiation detector obtained response comparable with fiber optic detector.
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Chapter 1

Introduction

1.1 Overview of solar cell

The first practical solar cell was demonstrated in 1954 by Chapin et al. from Bell laboratory

[1]. It consisted of small strips of doped single crystal silicon, which exhibited energy

conversion efficiency (η) of 6 %. Crystalline silicon (c-Si) is the key semiconductor that

drive the first generation of solar cell due to well developed materials science and device

theory and its bandgap energy (Eg) of 1.1 eV well-suited for the solar spectrum.

The second generation of solar cell, which has been widely studied as an alternative to

the first generation solar cell, is based on thin film materials. The main absorber thickness

of thin film solar cells are in the range of 0.1∼2 µm depending on the type of thin film

material, which is much thinner compared to that of c-Si solar cells (200∼400 µm) (Figure

1.1(a)). The absorbing layers can be deposited on large-area substrates such as low-cost

glass (Figure 1.1(b)). Indeed, thin film solar cells can also made on top of plastic substrates,
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which is possible at low-temperature processes (Figure 1.1(b)). Three common thin film

materials for the second generation solar cell technology are Cadmium telluride (CdTe),

Copper indium gallium selenide (CIGS), and Hydrogenated amorphous silicon (a-Si:H).

Figure 1.2 shows (a) three common thin film solar cell structures and (b) the efficiency

vs. bandgap of various solar cell materials. CdTe is a poly-crystalline thin film semicon-

ductor with direct bandgap and Eg of 1.4∼1.5 eV which is ideally suited for absorbing the

solar spectrum (Figure 1.2(b)). CdTe solar cells have become the main thin film solar cells

showing in manufacturing η of ∼21 % [3]. However, the main disadvantage of CdTe solar

cell is high toxicity of Cd if released [4]. Another poly-crystalline thin film semiconductor,

CIGS, is composed of a solid solution of Copper indium selenide (CIS) and Copper gallium

selenide (CuGaSe2). Depending on the ratio of the two compounds in the solution, this

solar material yields Eg that can vary from 1.0∼1.7 eV. The lab-scale CIGS solar cells

have already shown η of ∼20.5 % [3], which makes this thin film solar technology very

attractive. However, main limitation of CIGS technology is high-cost and shortage of in-

dium, which is a rare metal mainly used for display pixel electrode [4]. The last thin film

solar material, a-Si:H, consists of disordered network of Si and H atoms deposited from

silane (SiH4) plasma at relatively low deposition temperatures (100∼300 °C) compared to

those of the other two thin film solar materials (∼600 °C). Unlike c-Si, a-Si:H has direct

bandgap with Eg near 1.7∼1.8 eV [5]. This specific property permits a-Si:H absorber to

be much thinner than c-Si for solar cell applications due to higher absorption in the visible

wavelength range [5].

Although the η of a-S:H solar cells is lower (lab-scale ∼10 % & ∼7 % in manufacturing)

compared to other thin film solar cells (lab-scale ∼20 %), a-Si:H is preferred to CdTe and

CIGS in terms of material science and manufacturing technology, which are similar to those

2



(a)

(b)

Figure 1.1: (a) Comparison of absorbing layer thickness between c-Si and thin film solar
cells and (b) thin film solar modules on various substrates [2].
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(a)

(b)

Figure 1.2: (a) Three common thin film solar cell structures and (b) the efficiency
vs. bandgap of various solar cell materials (modified from [2]).

of c-Si. a-Si:H solar cells/modules can be fabricated on large-area glass substrates without

any consideration of thermal budget and are suitable for both indoor as well as outdoor

applications. Another advantage of a-Si:H is that it can be deposited on the wide range of
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substrates (including flexible, curved, and roll types) due to its low-temperature deposition

process.

1.2 PV market

Photovoltaics (PV) products have experienced exponential growth for over two decades.

During this period, PV has expanded from small-scaled power applications to mainstream

electricity source. Figure 1.3(a) shows the growth of global annual production from 2005 to

2014 for key countries [6]. One can see that the growth of global PV production increased

about 44 % from 2000 to 2014. The total cumulative PV installations in 2014 in Europe

amounted to 48 % of world’s total (compared to 58 % in 2013), and in China/Taiwan to

17 % (compared to 13 % in 2013) (Figure 1.3(b)) [6].

Meanwhile, the cost of PV has significantly declined due to improvements in the tech-

nology and economy of scale. As the acceptance and development of PV continue to

gain momentum globally, so does the ability for PV to compete with conventional energy

sources. Figure 1.4 shows production capacity and market share for c-Si and thin film PV

technologies. The market share of all thin film technologies in terms of the total annual

production was expected to stabilize at ∼7 % in 2015 [6]. The share of c-Si based PV

technology was now ∼92 % of the total production in 2014 [6] and the market share for

thin film PV continues to grow. By the end of 2014, cumulative PV capacity reached 177

gigawatts, sufficient to supply 1 % of global electricity [6].

As an effective strategy to reduce PV prices, inexpensive absorbing materials and/or

substrates have been extensively demonstrated by many researchers [9]. By using the low-

cost substrate and thin Si, it is possible to significantly reduce the module costs. Due to
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(a)

(b)

Figure 1.3: (a) Growth of global annual PV production between 2005 to 2014 and (b)
global cumulative PV installation until 2014 (modified from [6]).
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Figure 1.4: Production capacity and market share for c-Si and thin film PV technologies
(modified from [6, 7, 8]).

the high cost of producing c-Si wafers, the low-cost thin film materials are thus preferred

as shown in Figure 1.5. Clearly, we can realize the advantage of low-cost materials from

the cost breakdown data for c-Si and a-Si:H solar cells, showing the raw material portion

in total production cost of 52 % cost for c-Si solar cell and only 7 % for a-Si:H solar cell

[9, 10].
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(a) (b)

Figure 1.5: Cost breakdown for (a) c-Si and (b) thin film a-Si:H solar cells (modified from
[9]).

1.3 Motivation and Objectives

One of the critical metrics for evaluating solar cells is the price-to-performance ratio. Sev-

eral cost-to-performance phases of a-Si:H solar cell technology are of importance, in order

to improve the competitiveness of a-Si:H solar cells on the market, which can be distributed

into the following aspects:

1. Major performance improvement is expected by increasing the output current of the

solar cells [11]. This increase can result from improved light management (reduction

of light absorption loss) such as light absorption and light trapping.

2. While device-grade a-Si:H deposition is the most important part of solar cell fab-

rication, the total cost of the complete PV module is also highly affected by other

fabrication steps. These include the front transparent conductive oxide (TCO) elec-

trode deposition, the multi-layer back electrode deposition, laser scribing for the

sub-cell connection, encapsulation, and framing. The choice of overall sequence of
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fabrication steps and deposition techniques are determined by the solar cell struc-

ture and PV module design. The general trend is to increase the substrate size by

lowering the cost per unit area.

a-Si:H solar cells have gained significant research interests as a cheap alternative given

their low manufacturing costs compared to c-Si solar cells as already mentioned in section

1.2. Although their energy conversion efficiency (η=10.1±0.3 %) is lower than that of

c-Si solar cells (η=25±0.5 %) [12, 13, 14], specific material properties and low-temperature

fabrication processes of a-Si:H solar cells allow them to be fabricated over various substrates

from small-area glass to large-area glass and even over flexible plastic substrates.

Flexible PV devices offer an alternative energy source for both indoor and outdoor

applications. In general, the advantages over existing technologies are clear [15].

1. Highly flexible: The true mechanical flexbility of flexible PV modules makes them

suitable for applications with different shapes, sizes, and for designing novel PV

products.

2. Integratable: The “reel to reel” fabrication process allows PV production with various

lengths and widths, which is highly attractive for integrated applications.

3. Light-weight: The PV modules on flexible substrates for applications where low

weight is important.

4. Unbreakable: Unlike conventional c-Si PV modules, which are based on fragile glass

substrates, flexible PV modules are made of thin polymers, which are tough, durable,

and safe to use.

5. Environmentally friendly: Flexible substrates are recyclable. The energy payback

time of flexible products is 3-5 times shorter than that of the products based on

conventional PV technologies [15].
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Compared with ultra-thin c-Si solar cells (lightweight and likely flexible), a-Si:H solar

cells deposited on flexible plastic substrates are less to be damaged by abrasions and

vibrations. In this thesis, we have studied on a-Si:H thin film solar cells fabricated on

flexible plastic substrates at low deposition temperature with the goal to demonstrate

efficient PV modules on plastic substrate.

The maximum area of c-Si solar cells is constrained by the size of silicon wafer, which

is currently 113 inch square. In order to make a c-Si solar module, c-Si solar cells should

be connected each other. However, a-Si:H solar cells/modules can be fabricated up to

3.1×2.9 m2 (in 2014) with series connection of a-Si:H sub-cells using simple laser patterning

technique. As shown in Table 1.1, the prices of glasses and polyethylene-naphthalate (PEN)

are much more competitive than that of single crystal silicon wafers.

Table 1.1: Prices of different types of wafer in similar size (modified from [16]).

Wafer type Diameter (mm) Thickness (µm) Price ($)
Ultra-thin silicon 100 75 559
Silicon 100 335 150
Soda lime glass 100 550 36.9
PEN (plastic) 100 75 ∼10

Given increasing demand in building energy conservation, building-integrated photo-

voltaics (BIPV) has attracted considerable attention [17, 18]. BIPV is highly suitable for

high density cities since PV systems are attached to building itself without using addi-

tional land [19]. Many of BIPVs are just opaque (c-Si based) PV glazed with window

glass on-site, which strains the definition of integrated. Semi-transparent PV windows will

not only be a sensible idea but a realistic one due to their light admission characteristics.

With the intended application of semi-transparent BIPVs, a-Si:H based BIPV becomes

a great candidate because it offers advantages such as large-area deposition, high relia-
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bility, and semi-transparency (Figure 1.6) [20, 21, 22]. With the goal of demonstrating

semi-transparent BIPV and car window mounted PV, we have investigated highly effi-

cient semi-transparent thin film solar cells that are fabricated on both glass and plastic

substrates.

(a) (b)

Figure 1.6: (a) Opaque (c-Si based) and (b) semi-transparent (a-Si:H based) BIPVs.

1.4 Organization of the Thesis

Chapter 2 reviews the properties of a-Si:H thin film critical for solar cell application. The

device physics of a-Si:H solar cell is also compared to that of c-Si solar cell.

In Chapter 3, fabrication processes (including plasma enhanced chemical vapor deposi-

tion (PECVD) and sputtering deposition) are described. An description of various analyt-

ical methods (including conductivity analysis, solar cell I-V characteristics, and external

quantum efficiency (EQE) measurement) used in this work is given.

Chapter 4 is devoted to fabrication and characterization of a-Si:H solar cells. In order

11



to investigate an impact of electrodes on the device performance, device modelling is first

involved. Then, a-Si:H n-i-p solar cells are fabricated on both glass and plastic substrates

were investigated. In addition, PV modules are demonstrated on plastic substrate.

In Chapter 5, a-Si:H p-i-n solar cells fabricated on glass substrate are investigated. Here,

the substrate configuration used in Chapter 4 is inverted to superstrate configuration. p-

type buffer-layer engineering is carried out in order to improve solar cell performance.

Chapter 6 studies the semi-transparent a-Si:H p-i-n solar cells fabricated by substituting

back metal contacts with TCO film. While transferring semi-transparent cell from glass to

plastic substrate, the barrier-layer is introduced to obtain improved device performance.

In addition, our PV devices are demonstrated as a detector to measure the micro-plasma

spectral response compared to fiber optic detector under Ne spectral lines, showing efficacy

of functional diversion of PV devices.

Lastly in Chapter 7, we draw the conclusion of the study and discuss the future work.
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Chapter 2

Literature Review and Background

In this chapter, we review the background of a-Si:H thin films and a-Si:H solar cells. At

first, we overview the a-Si:H solar cell development in section 2.1. The atomic structure,

electrical and optical conductivity, and doping mechanism for a-Si:H thin films are reviewed

in section 2.2. In section 2.3, PECVD system and its deposition parameters are discussed.

The following section 2.4 describes the a-Si:H solar cell operation (we compare two typical

Si based solar cells, which are c-Si solar cell and a-Si:H solar cell), ideal solar cell model,

I-V characteristics with standard test spectrum, and configurations. In the last section

2.5, the background of PV module is described.

2.1 Overview of a-Si:H solar cell development

Carlson and Wronski demonstrated the first single-junction a-Si:H p-i-n solar cell in 1976

[23]. Their a-Si:H solar cell demonstrated an energy conversion efficiency of 2.4 %.
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Most of the research on a-Si:H solar cells was concentrated on developing and char-

acterizing a-Si:H alloys in the 1980s. A p-type hydrogenated amorphous silicon carbide

(p-a-SiC:H) was introduced in a-Si:H solar cells as p-type window layer [24]. High Eg of

p-a-SiC:H layer allowed more light to pass into absorber layer. Surface textured substrates

were incorporated to improve the optical absorption [25]. At the second half of the 1980s,

the single-junction a-Si:H p-i-n PV modules were introduced to the market. By the end

of this decade, the PV module was expanded to between 0.1 and 0.3 m2 with a stable

efficiency up to 5 %.

In the 1990s, the main effort of research and manufacturing was dedicated towards

achieving 10 % stabilized PV module efficiency and high process throughput. Several

companies optimized and implemented a hydrogenated amorphous silicon germanium (a-

SiGe:H) alloy in tandem (BP Solar [26], Sanyo [27], Fuji Electric [28]) and triple-junction

(United Solar [29]) solar cell structures. The emerging a-Si:H based PV modules developed

in the 1990s were thus multi-junction structures. The module size reached 1 m2 with the

stabilized efficiency of 6∼7 %. µc-Si:H deposited by PECVD techniques appeared as a new

candidate for low bandgap material in multi-junction a-Si:H solar cells. The concept of

micromorph tandem solar cell, which consists of a-Si:H top cell and µc-Si:H bottom cell,

was introduced by the University of Neuchâtel in 1994 [30]. The micromorph multi-junction

solar cells showed stable efficiencies in the range of 11∼12 % [31, 32].

At the turn of the century, research effort was devoted to understanding and improving

light trapping techniques, where surface texture and novel TCO materials play an impor-

tant role in improving the optical path. These efforts have resulted in the industry-wide

adoption of novel deposition techniques for conductive ZnO as an alternative TCO mate-

rial to tin oxide (SnO2) [33, 34]. Several equipment manufacturers have started developing
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commercial production machines for the fabrication of thin film Si solar cells [35]. Today,

the fully automated systems and large area deposition lines for a-Si:H based solar module

production are over 1 m2.

Recently, F.-J. Haug reported µc-Si n-i-p solar cells on textured PEN plastic with a

stable 8.4 % efficient [36]. The best stabilized efficiency of a-Si:H p-i-n solar cell on textured

SnO2 coated glass have been reported to be 10.11 % by Takuya Matsui [12].

Nowadays, BIPV has received much attention due to the increasing demand in building

energy conservation. It can offer an efficient method of installing the required amount of

PV without using additional space. In terms of the application aspect of solar cell to BIPV,

a-Si:H solar cells take an advantage over c-Si based solar cells because the former can be

semi-transparent which enables sun light admission into the building interior. Thus, it

is expected that semi-transparent a-Si:H based PV would be able to replace traditional

window glass as an energy harvesting for BIPV system. JungWook Lim reported an a-Si:H

semi-transparent solar cell with transmittance of 48.75 % and efficiency of 5.36 % [37].

2.2 Hydrogenated amorphous silicon

2.2.1 The atomic structure of a-Si:H

The Si-Si bond structure and possible defects in c-Si and a-Si:H is shown in Figure 2.1.

Two Si materials are based on covalent Si-Si bonds in spite of the differences of their

micro-structure. The structure of c-Si shows regular lattice of Si atoms (Figure 2.1(a)).

Because the number of Si-Si bonds per atom in the atomic structure is called the coordina-

tion number or coordination, the coordination number of c-Si is four (also called fourfold
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coordinated). Point defects in c-Si are most commonly vacancies, interstitial atoms, or

extrinsic defects (Figure 2.1(a)). Unlike c-Si, a-Si:H consists of a random network of Si

and H atoms (Figure 2.1(b)), which lacks long range order in a bulk-material. The small

deviations from bonding lengths and angles between the neighboring atoms lead to the loss

of local ordered structure in a-Si:H. As a result, a defect in a-Si:H is defined as an atom

that is over- or under-coordinated in terms of the bonding of Si atoms.

(a) (b)

Figure 2.1: Schematic diagram of Si-Si bonds and possible defects in (a) c-Si and (b)
a-Si:H.

An under-coordinated Si atom in a-Si:H is a dangling bond which may be neutral or

charged [38]. H atoms passivate dangling bond defects as well as increase in Eg due to

higher Si-H binding energy (3.55 eV) than Si-Si binding energy (3.26 eV) [39]. Typical

device-grade a-Si:H thin films have an Eg of 1.7∼1.8 eV with a H content of ∼15 % [5].

Its higher Eg allows a-Si:H to be a more efficient light absorber below 700 nm for solar

cell applications. However, due to existence of deep gap energy states related to dangling

bonds, a-Si:H solar cells show lower energy conversion efficiency compared to c-Si solar

cells [39, 40]. All of these effects can be explained with density of states (DOS) of a-Si:H.
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2.2.2 Electrical properties

Typical conduction of electrons (holes) in a-Si:H occurs via trapping and de-trapping of

carriers in the band tail states as shown in Figure 2.2.

Figure 2.2: The explanation of the distribution of trap [5].

The trap states in the band tails thus affect electronic transport of mobile carriers. As a

result, the drift mobility (µD) is lower than the band mobility (µ0) in the conduction states

and provides a sensitive means of exploring the DOS distribution in the band tail from

equation (2.1) [5]. This definition is also a universal feature of amorphous semiconductors

[41].

µD = µ0
τfree

(τfree + τtrap)
(2.1)

Here: µD is drift mobility, µ0 is band mobility, τfree/(τfree+τtrap) is fraction of time

that the carrier spends in the traps.
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2.2.3 Optical properties

Figure 2.3 shows (a) absorption coefficient (α) of a-Si:H as a function of photon energy

compared to c-Si and (b) determination of bandgap energy for intrinsic a-Si:H, p-type a-

SiC:H, and a-SiGe:H films [42]. In the visible part of the solar spectrum, a-Si:H absorption

coefficient is almost 100 times higher than c-Si (Figure 2.3(a)). This means that a 1 µm

thick a-Si:H layer is sufficient to absorb 90 % of the usable solar energy.

(a) (b)

Figure 2.3: (a) Absorption coefficient (α) of a-Si:H as a function of photon energy compared
to c-Si and (b) determination of bandgap energy for intrinsic a-Si:H, p-type a-SiC:H, and
a-SiGe:H films (modified from [42]).

In practice, the thickness of a-Si:H solar cells is ∼300 nm, which is about 1000 times

thinner than that of typical c-Si solar cell. In addition, the Eg of a-Si:H can be easily
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controlled by isovalent impurities such as Ge for low Eg and C for high Eg [42]. The Eg

for device-quality intrinsic a-Si:H film of ∼1.7 eV, p-type a-SiC:H film of ∼1.95 eV, and

a-SiGe:H film of ∼1.52 eV, is shown in Figure 2.3(b) [42].

2.2.4 The doping mechanism

In c-Si, a dopant atom is constrained in its fourfold coordination by occupying a lattice

site, and weakly bonded electrons or holes are then readily excited from shallow energy

states to the conduction or valence band, respectively, at room temperature. The doping

mechanism in a-Si:H is different from that of c-Si. R. A. Street discussed that dopants

could be incorporated into an a-Si:H network in a similar state if they were ionized before

incorporation [5]. In this way, a phosphorus atom would become positively charged and a

boron atom would become negatively charged. These states are shown in equation (2.2) &

(2.3), where Px and Bx are noted as phosphorus or boron atom with x electrons present in

its outer shell. After incorporation in this manner, dopant atoms would be free to act as

acceptors or donors in a similar manner to their behaviour in c-Si.

P5 → P+
4 + e (2.2)

B3 → B−
4 + h (2.3)

The doping efficiency in a-Si:H is very low which is determined by the fraction of

dopant atoms with fourfold coordination. The formation of defect compensated donors

by phosphorus atoms (defect compensated acceptors by boron atoms) is the major doping

mechanism in a-Si:H. The most important result of this model is that doping of a-Si:H
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creates dangling bonds. Doped a-Si:H has a two or three orders of magnitude higher defect

density than intrinsic a-Si:H.

2.3 PECVD a-Si:H growth

2.3.1 Deposition system and mechanism

The widely used deposition system to produce a-Si:H thin films is PECVD with excitation

frequency of 13.56 MHz. The plasma provides an energy source to dissociate SiH4 gas. The

growth of a-Si:H films is accomplished by attaching reactive deposition species (radicals)

to the substrate surface. By plasma assistance, the growth of a-Si:H can be made at low

deposition temperature (100∼250 °C). The low temperature process allows the use of such

substrates as glass and plastic [40].

The PECVD system contains five main parts (Figure 2.4) [39]:

• High vacuum reaction chamber with coupled parallel electrodes, RF power feed

through substrate holder and substrate heating assembly.

• Gas handling system which consists of flow controllers and gas valves to handle gas

flows required for the deposition of the intrinsic and/or doped layers.

• Pumping system which consists of turbo pump and mechanical rotary pump, which

can handle reactive gasses.

• Exhaust system with a scrubber or a burn box to process the outlet gasses.

• Electronic and control part that consists of DC or RF power generator with matching

box, and vacuum pressure and temperature gauging.
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Figure 2.4: Schematic representation of PECVD system [43].

Plasma deposition of a-Si:H layers can be described as a four-step process (Figure 2.5)

[43]:

1. Primary reactions where SiH4 molecules are decomposed by electron impact excita-

tion, generating various neutral radicals, molecules, ions, and electrons.

2. Secondary reactions in plasma among molecules, ions, and radicals which result in

the formation of reactive species in large Si and H clusters. Neutral species diffuse to

the substrate, positive ions bombard the growing film, and negative ions are trapped

within the plasma.

3. Interaction of radicals with the surface of the growing film such as radical diffusion,

chemical bonding, or H atoms sticking to the surface.

4. Release of H2 on the surface and relaxation of the Si network.

Generally, SiH3 radical is considered to be the one that produces device quality a-Si:H
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Figure 2.5: Schematic representation of the a-Si:H deposition process [44].

growth [45, 46]. Since most of the growing surface is terminated by hydrogen [47], the

SiH3 radical does not bond to the growing film but diffuses over the surface until it collides

with a dangling bond. The SiH3 radical thus contributes to the growth by collision with

the dangling bond [45]. Other radicals do also play an important role in determining

the properties of the film although they contribute much less to the growth. The SiH2

and higher silane radicals (SixHy) have higher sticking coefficients than SiH3, and can

be incorporated directly into the hydrogen terminated surface [5]. However, these radicals
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contribute to poor quality films. Therefore, these radicals in the plasma should be avoided.

2.3.2 PECVD parameters

The deposition process is a complex process of radical generation, transport, and surface

reactions controlled by deposition parameters such as the gas mixture composition, flow

and pressure, the power density and excitation frequency, the substrate temperature, the

electrode geometry, etc [48]. This section briefly overviews some deposition parameters

that control the properties of a-Si:H during PECVD process.

• Pressure: The pressure required to sustain the plasma is affected by electrode sep-

aration. If the pressure is too high (>1 Torr), the secondary reactions yield higher

SixHy to be formed along with the SiH3 radicals within the plasma bulk. This will

not only cause formation of macroscopic particles of silicon-containing powder but

will also significantly increase the film growth rate. SiHx would not have sufficient

time to diffuse to the substrate, hence it would react with ionized molecules and form

polymerized SixHy species (can be negative) [49]. If the pressure is too low, then the

mean free path of electrons will be high, and the secondary electrons can reach the

anode before colliding with gas molecules, which cannot sustain plasma.

• Electrode gap: The distance between the electrodes also dictates whether the powder

formation will prevail over thin film growth or not. At larger electrode separation,

SiH3 diffuses longer to reach the anode [49]. As a result, the probability of powder

formation greatly increases. The plasma becomes unstable, which implies that ion-

ization and excitation processes will be diminished. The optimum electrode spacing

for thin film deposition has been reported to be 5∼15 cm [50].
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• Substrate temperature: The temperature of the substrate surface plays an important

role by determining the surface adatom mobility (e.g. SiH3) with higher temperature

breaking weak bonds between atoms at the surface and provide higher amount of

energy to SiHx adatoms. The adatoms can now diffuse across the substrate surface

and find a equilibrium positions (lowest free energy spots). Further increase in the

substrate temperatures results in the loss of hydrogen from the surface and in the

increase of dangling bonds, which raises sticking coefficient of the surface and thus

decreases the surface adatom mobility [49].

• Power density: Higher power density increases electric fields at the plasma sheath.

This causes positive ions to bombard on to the substrate surface due to acceleration

by electric field. As a result, the dangling bond density in deposited film increases.

Additionally, large SixHy species will bond to the substrate surface due to their low

surface mobility. As a consequence, the combination of these two effects leads to

form a porous film with poor electrical and structural properties.

• Gas flow rate: A decrease in the gas flow rate increases the residence time of heavy

and short lifetime radicals in the plasma. On the other side, the gas utilization rate

is low at higher flow rates [49].

• Hydrogen (H2) dilution ratio: H2 dilution of SiH4 greatly affects the properties of

deposited a-Si:H film [49]. Proper H2 dilution can improve film properties by passi-

vating dangling bonds while high H2 dilution may induce structure ordering.

2.4 a-Si:H solar cells

p-n junction structure commonly used in c-Si solar cells (based on minority carriers diffu-

sion) does not work efficiently if made of a-Si:H. Photo-generated carriers would recombine
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in doped a-Si:H layers before reaching the contacts because of the very short diffusion

length. Therefore, typical a-Si:H solar cells are based on p-i-n junction structure. The

device contains three layers: p-type a-Si:H layer, intrinsic a-Si:H layer, and n-type a-Si:H

layer, which form p-i-n junction. Figure 2.6 shows energy band diagrams of solar cells for

(a) p-n junction and (b) p-i-n junction [51], which Eg is bandgap energy, Vbi is built-in

voltage, Ef is fermi energy.

(a) (b)

Figure 2.6: Energy band diagram of solar cells for (a) p-n junction and (b) p-i-n junction
[51], which Eg is bandgap energy, Vbi is built-in voltage, Ef is fermi energy.

Doped layers have two functions in an a-Si:H solar cell. First, they establish an internal

electric field across the intrinsic a-Si:H layer. The electric field should be high enough to

ensure collection of photo-generated carriers in the intrinsic a-Si:H layer. The electric

field is determined by the doping level of doped layers and the thickness of the intrinsic

layer. Second, the doped layers form ohmic contacts between a-Si:H p-i-n stack and the
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external electrodes. The photo-generated carriers drift towards the doped layers (electrons

towards the n-type layer and holes towards the p-type layer) and then are collected by the

electrodes.

2.4.1 I-V characteristics of solar cell

Figure 2.7 shows a typical illuminated I-V characteristic of a solar cell. Important points

to note are open circuit voltage (Voc), short circuit current (Isc), and the coordinates of

the maximum power output point maximum voltage (Vmp) and maximum current (Imp).

Figure 2.7: A typical illuminated I-V characteristic of a solar cell.

The FF is the ratio of the power that a cell would supply if it is ideal (P=VocIsc), com-

pared to the real maximum output power (Pout=VmpImp). The FF defines the “squareness”

of the I-V characteristics. The equation for the FF is given by:
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FF =
VmpImp
VocIsc

(2.4)

Here: Vmp is the maximum power voltage, Imp is the maximum power current, Voc is

the open circuit voltage, and Isc is the short circuit current.

The most common parameter used to evaluate the performance of a solar cell is the

energy conversion efficiency. η is defined as the ratio of energy output from the solar cell to

input energy from the sun (equation 2.5). In addition to reflecting the performance of the

solar cell itself, η depends on the spectrum and intensity of the incident sunlight (AM1.5

standard test spectrum).

η = 100× (
Pout
Pin

) = 100× (
VocIscFF

AcE
) (2.5)

Here: Ac is the area of the cell and E is the test irradiance.

2.4.2 Ideal solar cell model

The ideal solar cell operation can be described by the equivalent circuit shown in Figure 2.8.

It consists of an ideal diode in parallel with a photo-generated current source. The current

generated by the current source flows in the opposite direction to the diode forward current.

The model also includes shunt resistance (Rsh) and series resistance (Rs) represents current

loss by recombination inside the diode and would be infinitely large in an ideal device. Rs

is the internal series resistance and is heavily influenced by the resistivity and thickness of

a-Si:H layer and the interfaces between them.
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Figure 2.8: Equivalent circuit of an ideal solar cell model.

The expressions for a solar cell in the presence of Rs (equation (2.6)) and Rsh (equation

(2.7)) are:

I = IL − I0exp[
q(V + IRs)

nkT
] (2.6)

I = IL − I0exp[
qV

nkT
]− V

Rsh

(2.7)

Here: I is the cell output current, IL is the light generated current, V is the voltage

across the cell terminals, T is the temperature, q and k are the electron charge and the

Boltzmann constant, and n is the ideality factor.

Figure 2.9 shows schematic representation of the effect of (a) series resistance (Rs) and

(b) shunt resistance (Rsh) on the solar cell I-V characteristic. Rs does not affect the Voc of

the solar cell because the overall current flow through the solar cell, and therefore through

the Rs is zero. However, the I-V characteristic is strongly affected by Rs near the Voc

(Figure 2.9(a)) [52]. In addition, large Rs will limit Isc as well. Low Rsh causes significant

power losses in solar cells by providing an alternate current path for the photo-generated
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current. Such a diversion reduces the amount of current flowing through the solar cell

junction and reduces the Voc from the solar cell (Figure 2.9(b)).

(a) (b)

Figure 2.9: Schematic representation of the effect of (a) series resistance (Rs) and (b) shunt
resistance (Rsh) on the solar cell I-V characteristics [53].

2.4.3 AM1.5 standard test spectrum

Two standard solar spectrums (AM1.5 Global and AM1.5 Direct spectrum) are defined as a

standard radiation source to compare performance of solar cells designed for terrestrial use.

The standard test spectrum for photovoltaics is AM1.5 Global (Air Mass 1.5) spectrum. It

is defined for the range of 200∼5000 nm in units of Wm−2nm−1 for a 37° sun facing tilted

surface. The total irradiance of AM1.5 Global spectrum is normalized to 100 mW/cm2

and the power density of any part of the spectrum can be obtained by integrating between

the relevant wavelengths. The AM1.5 Direct spectrum is defined for solar concentrator

applications. It includes the direct beam from the sun and the circumsolar component in
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a disk 2.5° around the sun. The AM1.5 Direct spectrum has an integrated power density

of 90 mW/cm2.

Figure 2.10 shows AM1.5 standard test spectrum in the range 200∼2500 nm published

by National Renewable Energy Laboratory (NREL). It can be seen that the maximum

of the spectrum is located between 500∼600 nm which matches absorption maximum of

a-Si:H.

Figure 2.10: AM1.5 standard test spectrum. Inset displays the absorption spectrum of
a-Si:H solar cells [54].

2.4.4 a-Si:H solar cell configurations

There are two basic configurations of a-Si:H solar cells, namely n-i-p/substrate configura-

tion and p-i-n/superstrate configuration, which are defined as the sequence of Si thin film

30



layer deposition on transparent substrate. Figure 2.11 shows schematic representation of

(a) substrate configuration and (b) superstrate configuration of a-Si:H solar cell. In the

n-i-p solar cells, the n-type layer is deposited first, then the intrinsic layer and the p-type

layer is deposited last. In the p-i-n solar cells, the sequence of the deposition is inverted.

(a) (b)

Figure 2.11: Schematic representation of (a) substrate configuration and (b) superstrate
configuration of a-Si:H solar cell.

In the substrate configuration (n-i-p structure), the substrate forms the back side of

the cell. This allows the use of opaque substrates such as stainless steel. Alternatively the

polymer foils may be used as substrates, and can be thin enough to be flexible. A highly

reflecting back electrode that contains metal layer such as Ag or Al is deposited onto the

substrate. After depositing n-i-p a-Si:H stack, TCO thin film with a metal grid is formed

as the front electrode. The improvement is required on the back contact texturing and

reflectivity.

In the superstrate configuration (p-i-n structure), the p-i-n deposition sequence requires

transparent substrates such as glass and plastic. Usually TCO-coated glass substrate is

used. The TCO layer acts as the front electrode as well. The surface textured TCO layer
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is used to improve light absorption inside the solar cell due to light scattering at internal

rough interfaces. The p-i-n a-Si:H stack is then deposited on top of TCO layer. The back

electrode is a metal layer with TCO interlayer. The TCO interlayer is used to improve

the reflection from the back electrode by matching the refractive index between the n-type

a-Si:H layer and metal layer.

2.5 PV modules

A PV module consists of many solar cells connected in parallel/series to increase the

current/produce higher voltage. 36-cells module is the industry standard for high power

production. Figure 2.12 shows typical module has 36-cells connected in series [52].

Figure 2.12: Typical module has 36-cells connected in series [52].

There are currently four commercial production technologies for PV Modules [55]:

• c-Si: This is the oldest and more expensive production technique, but it is also the

most efficient energy conversion technology available. The average module efficiency

is about 10∼12 %.
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• poly-Si: This has slightly lower efficiency compared to c-Si but manufacturing costs

are also lower. The average module efficiency is about 10∼11 %.

• String ribbon: This is a refinement of poly-Si production, there is less efficiency and

costs are even lower. The average module efficiency is about 7∼8 %.

• a-Si or thin film: Silicon material is deposited on glass or other low cost substrates.

The cost is lower than any other method. The average module efficiency is about

5∼7 %.

2.5.1 PV module performance

While the voltage from PV module is determined by the number of solar cells connected

in series, the current from the module is primarily dependent on the size of solar cells and

also on their energy conversion efficiency. The current from a module is not affected by

the temperature in the same way as the voltage but is heavily dependent on the tilt angle

of the module.

If all the solar cells in a module have identical electrical characteristics, and they are

all under the same insolation and temperature, then all the solar cells will yield the same

voltage and current. In this case, the I-V curve of the PV module has the same shape as

that of the sub-cells.

2.6 Chapter summary

In this chapter, we reviewed atomic structure, electrical and optical properties, and doping

mechanism in a-Si:H thin films. Deposition system and its parameters for a-Si:H are
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discussed. The a-Si:H solar cell configurations, I-V characteristics under standard test

spectrum, and the ideal solar cell model are also described. We also compare c-Si solar cell

and a-Si:H solar cell.
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Chapter 3

Characterization of Thin films and

Hydrogenated Amorphous Silicon

Solar Cells

In this chapter, we present characterization of thin films and solar cells. Section 3.1 de-

scribes the solar cell structures used in this thesis. Plastic substrate properties are summa-

rized in section 3.2. Section 3.3 discusses the growth rate, micro-structural measurements,

transmittance/reflectance measurements, and electrical conductivity measurements of a-

Si:H thin films. Characterization of aluminum doped zinc oxide (AZO) thin films is also

discussed in section 3.4. Section 3.5 discusses characterization for a-Si:H solar cells includ-

ing I-V measurements and EQE measurements. PV module fabrication process on plastic

substrate and contacts resistance simulation are investigated in section 3.6. At last, sample

labeling scheme is described in section 3.7.
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3.1 Solar cell characterized

The n-i-p solar cells were fabricated on glass and plastic substrates, and were also used in

PV modules on plastic substrate. The substrate was at the back side of the cell. Highly

reflecting back electrode (Al) was deposited on the substrate first. After depositing n-i-p

a-Si:H stack, AZO thin film with metal grid was deposited as the front electrode.

The p-i-n solar cells were fabricated on glass substrate, and the same structure was

used to fabricate semi-transparent solar cells on both glass and plastic substrates. The

substrate was at the front side of the cell, and a AZO thin film was deposited over the

substrate. After depositing p-i-n a-Si:H stack, Al or AZO thin film was deposited and

patterned to form the back electrodes.

3.2 Flexible plastic substrates

3.2.1 Substrate properties

Rigid glass substrate is normally used for a-Si:H solar cells and modules. In our experi-

ments, plastic substrate was also used as an alternative substrate because of its lightweight,

flexibility, and low-cost. The widely-used commercial plastics are polyethylene-terephthalate

(PET) and polyamide (PI). They both have high strength and toughness, good heat re-

sistance, good chemical resistance, and excellent dimensional stability [56]. Some plastics

are able to maintain electrical and mechanical properties over a wide temperature range

at 105∼285 °C (Table 3.1).
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Table 3.1: Properties of various high performance films [56].

Property Unit PEN PET PI

Glass transition temperature °C 155 110 -
Melting point °C 269 258 360∼410

In this study, 100 µm thickness of Teonex® PEN plastic was chosen for solar cell

fabrication. (Teonex® is the trade name of polymer film manufactured by DuPont©).

This product has been developed specifically to meet the needs for optically transparent

films with performance between that of PET and PI. The key features of PEN plastic

include [57]:

• Low thermal shrinkage (0.6 % compared to 1.3 % of PET)

• Excellent dielectric strength (25 % greater than PET)

• High melting point (269 °C compared to 258 °C of PET)

3.2.2 Substrate characterization

Atomic force microscopy (AFM) was used to examine the surface morphology of plastic

substrate. In the process of flexible cell fabrication, the surface roughness of deposited

metallic back contacts could only be investigated using an optical microscope prior to

deposition. While AFM image gave some insight to back contact suitability, there was no

substitute for more advanced technique.

100 nm thick Al electrode was deposited onto PEN in sputtering system at room tem-

perature. 4×4 µm2 area of PEN coated with Al was investigated using AFM scan as

shown in Figure 3.1. The root mean square (RMS) surface roughness was measured to

be 14.96 nm which is comparable with that of the bare PEN surface roughness. Thus,
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we assume that metal layer deposited on top of bare PEN uniformly covers PEN surface,

which eventually enables a-Si:H deposition.

Figure 3.1: The AFM surface morphology image of a 16 µm2 area of PEN coated with Al.

Small surface roughness is necessary to ensure the formation of a closed film during

a-Si:H deposition. As a rule of thumb, the maximum roughness should be less than one

third of the seed film thickness [40]. In addition, for 350 nm thick a-Si:H stack, 14.96 nm

substrate surface roughness transforms to ∼5 % thickness non-uniformity.
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3.3 Intrinsic and doped a-Si:H characterization

3.3.1 Growth rate and structure characterization

Dektak-8 stylus profilometer was used for film thickness measurements. Figure 3.2 shows

(a) photograph of a-Si:H films of different thickness and (b) film thickness as a function

of deposition time for a-Si:H films. Here, a-Si:H films were deposited at [H2]/[SiH4]=5,

deposition pressure of 900 mTorr, RF power of 2 W, and deposition temperature of 150 °C

using RF PECVD system [40].

The color change with film thickness indicates that our a-Si:H films can be used for

semi-transparent solar cell fabrication with different transmittance for some functional

applications (Figure 3.2(a)). It is seen from Figure 3.2(b) that the film growth is almost

linear with deposition time, and the growth rate of tested a-Si:H films was calculated to be

around 0.1 nm/sec from the fitting of Figure 3.2(b). The growth rate of the a-Si:H films

was limited due to hydrogen dilution of SiH4 ([H2]/[SiH4]=5), which is essential to yield

required electronic properties in the case of low-temperature deposition (∼150 °C) [44].

Fourier transform infrared spectroscopy (FTIR) measurements of a-Si:H films grown with

hydrogen dilution and without hydrogen dilution are shown in Figure 3.3. It is seen that

the ratio of absorption intensities at 2000 cm−1 over 2100 cm−1, which corresponds to Si-H

and Si-H2 bonds and correlates with electronic properties [58], in a-Si:H deposited from

hydrogen-diluted SiH4 is higher than that of 100 % SiH4 deposited a-Si:H [44]. Here, Si-H

is indicative to typical Si-H bonds, while Si-H2 is indicative to defective Si-H bonding [58].

The result implies that hydrogen dilution could remove/suppress Si-H2 bonds in a-Si:H

network.

Figure 3.4 shows Raman spectra of a-Si:H film ([H2]/[SiH4]=5) and of nc-Si:H film
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(a)

(b)

Figure 3.2: (a) Photograph of a-Si:H films of different thickness and (b) film thickness as a
function of deposition time for a-Si:H films. Inset of Figure 3.2(b) displays the measurement
error of growth rate of a-Si:H films.
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Figure 3.3: FTIR spectra of Si thin films deposited with hydrogen dilution. Inset of Figure
3.3 displays Si-H bonds configuration from nc-Si films for different deposition temperatures
[59].

([H2]/[SiH4]=50) for comparison. The Raman Spectra were measured with 632 nm laser

source excitation using Renishaw Micro-Raman 1000 spectrometer. The He-Ne laser source

was preferred over 504 nm wavelength Ar laser source because of its longer penetration

depth (∼1 µm) than that of Ar laser source (∼50 nm) [60]. The laser intensity on the film

surface was controlled to be at a 10 % of maximum intensity (approximately 0.27 mW) to

prevent crystallization of a-Si:H film during the measurements. For a-Si:H film, only broad

peak at ∼480 cm−1 is observed, indicating the presence of amorphous phase only. This

result also suggests that hydrogen dilution ([H2]/[SiH4]=5) does not change film structure.

At high hydrogen dilution ([H2]/[SiH4]=50), sharp peak wass observed at ∼520 cm−1 in-

dicating presence of nano crystallites in the film along with broad peak at ∼480 cm−1,
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which means the growth of two-phase material. The film crystallinity X=I520/(I520+I480)

where I520 is the intensity of ∼520 cm−1 peak corresponding to crystalline phase and I480

is the intensity of ∼480 cm−1 peak corresponding to amorphous phase, was measured to

be 53 %. The presence of nanocrystals in nc-Si thin film was also confirmed by FTIR

measurements (Figure 3.3 inset) showing predominant Si-H2 bonding absorption peak at

2100 cm−1, which indicates presence of Si-H bonds located at nanocrystal surfaces [59].

Figure 3.4: Raman spectra of a-Si:H and nc-Si:H films deposited at different hydrogen
dilution.

3.3.2 Transmittance/Reflectance measurement

For Eg measurements, we used an ultraviolet-visible light (UV-Vis) spectrometer by Shi-

madzu (UV-2501PC) with a double-blazed, double-monochromator system. The wave-
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length range is 190∼1100 nm, resolution is 0.1 nm, and accuracy is ±0.3 nm. The relation-

ship between α and Eg is discussed in section 2.2.3. α was obtained from the transmittance

(T ) and reflectance (R) measurements of a-Si:H with known film thickness (d) using ap-

proximated equation:

T ≈ (1−R)2e−αd ⇔ α = −1

d
ln

(
T

(1−R)2

)
(3.1)

Figure 3.5 shows (a) transmittance/reflectance and (b) Eg calculation for intrinsic a-

Si:H film. Transmittance/reflectance measurements and Eg calculation for p-type a-SiC:H

film is also shown in Figure 3.6(a) and Figure 3.6(b), respectively. In order to calculate Eg,√
αEg was plotted vs. photon energy using UV-Vis transmittance/reflectance measure-

ments (Figure 3.5(a) and Figure 3.6(a)) according to equation (3.1). Eg was found to be

1.72 eV and 1.98 eV for intrinsic a-Si:H in Figure 3.5(b) and for p-type a-SiC:H in Figure

3.6(b), respectively. These values are chose to those of device-grade a-Si:H films published

in the literature by other researchers [42].
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(a) (b)

Figure 3.5: (a) Transmittance/reflectance and (b) Eg calculation for intrinsic a-Si:H film.

(a) (b)

Figure 3.6: (a) Transmittance/reflectance and (b) Eg calculation for p-type a-SiC:H film.
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3.3.3 Electrical conductivity measurement

The electrical characteristics of a-Si:H films were evaluated using electrical dark- and photo-

conductivity (σdark and σphoto). Keithley 4200-SCS semiconductor characterization system

was used for σdark measurement. σphoto was measured under illumination using AM1.5

spectrum with incident power of 100 mW/cm2 (which is close to irradiance of the AM1.5

Global spectrum) using solar simulator (ABET technologies, SUN-2000).

Figure 3.7 shows (a) schematic representation of samples with co-planar electrodes

geometry for conductivity measurement and (b) photograph of 300 nm thick a-Si:H film

deposited on co-planar 100 nm thick Al electrodes on glass substrate.

The conductivity was calculated by equation (3.2):

σ =

(
I

V

)(
L

W

)(
1

t

)
(3.2)

Here: V is the voltage bias (80 V), I is measured current, W is the electrode width (1

cm), L is the electrode length (1 mm), and t is the film thickness.

Figure 3.8 shows (a) dark- and (b) photo-current as a function of applied voltage for 300

nm thick a-Si:H film. It is seen that the current is linearly increasing with applied voltage,

which typical of an ohmic behavior. σdark and σphoto were measured to be 5.47×10−10

(Ωcm)−1 and 3.3×10−5 (Ωcm)−1, respectively. Photoresponse (σphoto/σdark) is 6×104, which

is comparable to that of device-grade a-Si:H film reported elsewhere [61].
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(a)

(b)

Figure 3.7: (a) Schematic representation of samples with co-planar electrodes geometry for
conductivity measurement and (b) photograph of 300 nm thick a-Si:H film deposited on
co-planar 100 nm thick Al electrodes on glass substrate.
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Figure 3.8: (a) Dark- and (b) photo-current as a function of applied voltage for the 300
nm a-Si:H film.
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3.4 Characterization of AZO thin films

3.4.1 Deposition temperature effect on AZO thin films

In our study, sputter-deposited AZO was used as transparent front or back electrodes

in a-Si:H solar cells. For solar cell application, the characteristics of AZO thin film are

determined by trade-off between electrical and optical properties. AZO thin film properties

depend on such deposition parameters as Ar gas flow rate, process pressure, substrate

temperature, etc. In particular, electrical properties are mainly affected by the substrate

temperature without significant degradation of optical properties [62]. Furthermore, the

substrate temperature is limited when using plastic substrates by their melting point.

Hence we studied effect of substrate temperature (50∼150 °C) on AZO optical and electrical

properties.

Figure 3.9 shows (a) optical transmittance and (b) sheet resistance (Rsh) of 200 nm thick

AZO thin films deposited at different substrate temperatures. The transmittance spectra

were in the range of 300∼800 nm, which includes a main absorption range (400∼700 nm)

of a-Si:H solar cells The deposition temperature does not affect the optical transmission;

there is no significant difference in transmittance spectra for all the samples (Figure 3.9(a)).

The average optical transmittance in the visible wavelength range is measured to be above

90 % for all AZO thin films deposited at different deposition temperatures. However, Rsh

decreases from 220 Ω/� to 155 Ω/� when the substrate temperature increases from 50 °C

to 150 °C (Figure 3.9(b)). This is attributed to improvement of crystalline structure and

the increase of free electron concentration [63]. For our solar cells on plastic substrates,

the substrate temperature of ∼150 °C was chosen.
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(a)

(b)

Figure 3.9: (a) Optical transmittance and (b) sheet resistance (Rsh) of 200 nm AZO thin
films deposited at different substrate temperatures.
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3.4.2 Film thickness effect on AZO thin films

Figure 3.10 shows (a) optical transmittance and (b) sheet resistance (Rsh) of AZO thin films

of different film thickness deposited at a substrate temperature of 150 °C. As it can be seen

from Figure 3.10(a) that increasing AZO film thickness adversely affects the transmittance

in the visible wavelength range because of higher absorption of thicker film [64]. While

thinner films show better transparency, the Rsh increases from 35 Ω/� to 165 Ω/� (Figure

3.10(b)). For our solar cell, we selected 200 nm thick AZO deposited at 150 °C, showing

155 Ω/� corresponding to a dark-conductivity of 3×10−3 (Ωcm)−1, indeed comparable to

one of the resistivity of 1.17×10−3 (Ωcm)−1 reported in the literature [65].
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(a)

(b)

Figure 3.10: (a) Optical transmittance and (b) sheet resistance (Rsh) of different AZO thin
film thickness deposited at substrate temperature of a 150 °C.
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3.5 Solar cell characterization

Solar cells were characterized by I-V measurements carried out under illumination by Xe-

Arc lamp monitored by using a c-Si reference cell calibrated by global AM1.5 spectrum.

I-V characteristics were recorded by biasing devices with Keithley 2400 source meter. The

current was recorded at each bias point using Tracer I-V measurement software. Figure

3.11 shows the solar simulator system, which provides white illumination needed in the

measurement. Solar cell parameters (Isc, Voc, FF, Rsh, and Rs) as already mentioned in

section 2.4.1 were automatically calculated by the software.

Figure 3.11: Photograph of solar simulator from ABET Technologies.

Figure 3.12 shows measurement setups for (a) a-Si:H n-i-p solar cell and (b) a-Si:H

p-i-n solar cell. Note that the distance between the light source and the solar cell was kept

the same for both measurements.
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(a)

(b)

Figure 3.12: Measurement setup for (a) a-Si:H n-i-p solar cell and (b) a-Si:H p-i-n solar
cell.
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Two types of frame holders for p-i-n solar cells grown the plastic and glass substrates

are shown in Figure 3.13.

Figure 3.13: Two types of frame holders for different shapes of p-i-n solar cells samples.

Besides I-V characteristics of fabricated solar cells, EQE was measured. EQE is defined

as the ratio of the number of charge carriers collected from the solar cell to the number of

photons of given energy incident on the solar cell by equation (3.3):

EQE =
electrons out

photons in
=

current/charge of one electron

total power of photons/energy of one photon
(3.3)

The measurements were performed under short-circuit conditions without background

illumination and Figure 3.14 shows photograph of EQE measurement system components.

The key point for measuring EQE is to provide the photo-current that a solar cell will

produce when illuminated.
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Figure 3.14: Photograph of EQE measurement system components.

3.6 PV modules fabricated on plastic substrates

3.6.1 PV module fabrication

The PV module was fabricate by using three-mask process as shown in Figure 3.15. The

device fabrication started with plastic substrate cleaned in an isopropanol (IPA) bath for

about 1 minute. After drying plastic substrates using N2, 200 nm thick a-SiOxNy:H films

on both surfaces, as the back encapsulation layer and front barrier-layer, using single-

chamber PECVD system at a deposition temperature of 150 °C. Then, the substrate was

attached to the carrier (Figure 3.15(a)) with shadow mask #1 (Figure 3.15(b)) followed

by loading into the metal sputtering system. 200 nm Al/10 nm Cr layers were deposited

using RF sputtering at room temperature. The a-Si:H n-i-p stack layer was then deposited

using multi-chamber RF PECVD using developed deposition recipes in section 4.1. Typical

thickness of a-Si:H solar cell layers were 15 nm for p-a-Si:H, 300 nm for i-a-Si:H, and 20 nm

for n-a-Si:H. AZO front electrode was then deposited through a shadow mask #2 (Figure

3.15(c)) in the sputtering chamber. To perform via opening, the a-Si:H stack layer was

selectively etched using dry etching process. After the dry etching process, 150 nm Al was
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sputtered through shadow mask #3 (Figure 3.15(d)) to form the back metal deposition.

(a) (b)

(c) (d)

Figure 3.15: (a) Substrate carrier, (b) shadow mask #1 for back metal electrodes deposi-
tion, (c) shadow mask #2 for AZO thin-film deposition, and (d) shadow mask #3 for front
metal electrodes deposition.

Figure 3.16 shows process flow diagram for a-Si:H n-i-p PV module on plastic substrate

using shadow masks.
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Figure 3.16: Process flow diagram for a-Si:H n-i-p PV module on plastic substrate using
shadow masks.

3.6.2 Simulation of contact resistance

In a-Si:H PV modules, each cell is connected to other to effectively collect power in the

module structure. For efficient PV module fabrication, besides solar cell layers, contact
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layers such as AZO and Al should be optimized/engineered to suppress any power loss.

Hence, before fabricating the PV modules, we carried out contact layers (AZO and Al)

simulation for better module operation.

Two-dimensional simulation if sheet resistance was performed to characterize the device

design. HSPICE simulator was used to perform calculations, then linked to MATLAB to

form the input file, readout data from the output file, and visualize the results. Input

parameters include the dimensions of the cell, Rsh of the AZO and top metal layers, net

series resistance (Rp), parameters of the diode, and current source elements.

3.7 Sample labeling scheme

For better management with fabricated solar cells, tested cells are named as “substrate type

(g: glass & p: plastic)-fabrication data-number of cell”. For example, cell “g-150729-2”

represents the second cell made on glass substrate on the 29th July, 2015.

3.8 Chapter summary

In this chapter, we summarize plastic substrate properties included AFM analysis to in-

vestigate the PEN surface morphology. The growth rate, micro-structural measurements,

transmittance/reflectance measurements, and electrical conductivity measurements of a-

Si:H thin films are discussed. Characterization of AZO thin films is also discussed, and

then I-V characteristics measurement and EQE measurement is discussed to evaluate a-

Si:H solar cells. We also discuss PV module fabrication on plastic substrate. At last, we

describe the sample labeling scheme.
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Chapter 4

Fabrication and Characterization of

N-I-P Solar Cells

We presented the characterization of a-Si:H and AZO thin films in Chapter 3. In this

chapter, results of fabrication and characterization of a-Si:H n-i-p solar cells on glass and

plastic substrates are presented. In section 4.1, after a discussion about effect of p-a-Si:H

thickness on solar cell performance, we show effect of incorporation of p-type a-SiC:H

window layer on solar cells performance. Section 4.2 discusses the performance of PV

modules fabricated on flexible plastic substrates. Simulation of contact resistance in PV

modules was performed, and then J-V characteristics were measured to investigate the PV

module performance.
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4.1 N-i-p solar cells fabricated on glass substrate

4.1.1 Effect of p-layer thickness on solar cell performance

p-type a-Si:H layer (p-layer) thickness is critical for efficient a-Si:H solar cells. If the p-layer

is too thick, Isc will decrease due to a degradation of short wavelength absorption resulting

from high absorption in highly defective p-layer. If the p-layer is too thin, Voc will decrease

due to degradation of built-in potential. If the p-layer is very thin, it may not be able to

sustain electric field over the intrinsic region in which case collection of generated carriers

will be impacted, resulting in lower Rsh and short circuit current density (Jsc). Hence, we

study the effect of p-layer thickness on our solar cell performance.

For this test, a-Si:H n-i-p solar cells were fabricated with different p-layer thicknesses

of 15 nm (g-141203-2), 25 nm (g-141203-1), and 50 nm (g-141201-1). The gas flow ratio of

[B2H6]/[B2H6+H2] was 0.67 % while SiH4 and H2 were constant at 40 sccm and 80 sccm,

respectively. The thickness of intrinsic a-Si:H (i-layer) and n-type a-Si:H (n-layer) was

fixed at 350 nm and 30 nm, respectively. The other deposition conditions were the same

for all the solar cell layers; substrate temperature, process pressure, RF power were kept

at 150 °C, 900 mTorr, and 2 W, respectively.

Figure 4.1 shows (a) J-V characteristics and (b) solar cell performance parameters of

a-Si:H n-i-p solar cells for different p-layer thickness. The device performance parameters

are also listed in Table 4.1. It is seen that a-Si:H solar cell with thinner p-layer shows higher

Jsc, hence higher η. Although Voc does not change significantly, the increase in Jsc is from

3.10 mA/cm2 to 4.71 mA/cm2 when decreasing p-layer thickness. This result is attributed

to higher optical transmittance of p-layer which leads to improve carrier generation in i-

layer. However, FF decreases from 58.34 % to 53.76 % at low p-layer thickness, which is
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probably related to decreased Rsh (see in Table 4.1). Overall η is improved from 1.35 % to

1.84 % when decreasing p-layer thickness from 50 nm to 15 nm (Figure 4.1(b)).

Table 4.1: Device performance parameters for different thicknesses of p-layer.

Cell g-141201-1 g-141203-1 g-141203-2

p-layer thickness (nm) 15 25 50
Voc (V) 0.774 0.742 0.743

Jsc (mA/cm2) 4.71 3.88 3.10
FF (%) 53.76 57.40 58.34
η (%) 1.84 1.65 1.35

Rs (Ωcm2) 12.52 14.60 14.95
Rsh (Ωcm2) 2.25×104 4.43×104 3.99×104

Figure 4.2 shows the spectral response characteristics of a-Si:H n-i-p solar cells with

different p-layer thicknesses corresponding to Figure 4.1. One can see that EQE is increased

over the entire wavelength region from 400 nm to 700 nm by reducing the p-layer thickness.

The presence of interference fringes in the wavelength range above 600 nm is related to

the cell reflection spectra [66]. This result means that more light comes through p-layer to

i-layer. Thus, EQE results well agree with improved Jsc at lower p-layer thickness.
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(a)

(b)

Figure 4.1: (a) J-V characteristics and (b) solar cell performance parameters of a-Si:H n-i-p
solar cells with different p-layer thicknesses.
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Figure 4.2: Spectral response characteristics of a-Si:H n-i-p solar cells with different p-layer
thicknesses corresponding to Figure 4.1.

4.1.2 Incorporating p-type a-SiC:H window layer

Even though the Jsc was increased with engineering p-layer thickness, the value of Jsc (∼4.5

mA/cm2) is still low compared to the state of art for low-temperature solar cells published

(∼10 mA/cm2) [49]. The main reason may be due to the use of p-type a-Si:H. p-type

a-Si:H shows lower Eg (∼1.65 eV) compared to intrinsic a-Si:H (Eg of ∼1.75 eV) [49]. The

absorption of the p-layer is the limiting factor for Jsc.

p-type a-SiC:H (p-a-SiC:H) layer shows higher Eg (∼2 eV) dependent on C content in

the films [49], and can be used in a-Si:H solar cell p-layer as a high Eg window layer. High

Eg (∼1.98 eV) of p-a-SiC:H was also confirmed in section 3.3.2. Indeed, a-Si:H solar cells

adopting p-a-SiC:H layer as a p-layer are expected to show higher Jsc and Voc compared
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to them with p-a-Si:H as a p-layer. Hence, we study the effect of p-a-SiC:H layers as a

window layer on a-Si:H solar cell performance.

For this test, a-Si:H n-i-p solar cells were fabricated with the p-layer employing the C

atom introduced by using CH4 gas. The p-layer doping gas mixture included SiH4, 2 %

B2H6 diluted in H2, CH4, and H2. The gas flow of SiH4 and H2 was fixed at 15 sccm and

35 sccm, respectively. p-a-SiC:H, i-a-Si:H, and n-a-Si:H thin-film thickness kept at 20 nm,

350 nm, and 30 nm, respectively. Other deposition conditions are the same for all solar

cell layers; substrate temperature and process pressure were kept at 150 °C and 900 mTorr,

respectively. We varied the gas flow ratios of [B2H6]/[CH4] and RF power to characterize

solar cell performance.

Figure 4.3 shows (a) J-V characteristics and (b) solar cell performance parameters

at different [B2H6]/[CH4] ratio at constant RF power of 4 W. It is seen that Jsc is in-

creased compared to p-a-Si:H layer. Furthermore, Jsc is increased from ∼6 mA/cm2 to

∼7.4 mA/cm2 with increasing [B2H6]/[CH4]. However, Voc does not change compared

to that in p-a-Si:H based solar cells and even Schottky barrier behavior occurs for a low

[B2H6]/[CH4]=62.5 %. It is assumed that the low Voc and FF observed may be related to

a poor interface of p-SiC:H/a-Si:H. The band bending at AZO/p-a-SiC:H interface may

degrade built-in potential and charge collection (Figure 4.4) [67], thereby showing a poor

device performance. Nevertheless, the overall efficiency improves from 1.27 % to 2.38 %

with increasing [B2H6]/[CH4] from 62.5 % to 88.9 % as shown in Figure 4.3(b).
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(a)

(b)

Figure 4.3: (a) J-V characteristics and (b) solar cell performance parameters at different
[B2H6]/[CH4] ratio at constant RF power of 4 W.
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Figure 4.4: Band diagram of a-Si:H solar cell with p-a-SiC:H layer.

Figure 4.5 shows (a) J-V characteristics and (b) solar cell performance parameters for

different RF powers used in deposition process of p-a-SiC:H for constant [B2H6]/[CH4]=62.5

%. It is seen that both Jsc and FF increase at lower RF power, thereby increasing cell

efficiency. For the solar cell with p-a-SiC:H layer deposited at low RF power of 2 W, the

Jsc, Voc, FF, and η are 7.92 mA/cm2, 0.67 V, 53.73 %, and 2.86 %, respectively (Figure

4.5(b)). This result implies that the interface of p-a-SiC:H/i-a-Si:H is subject to damage

presumably by ion bombardment during deposition at higher RF power, which leads to

poorer device performance. Furthermore, Voc value is lower than in the case of solar cell

with p-type a-Si:H layer. This can be attributed to band mismatch between p-a-SiC:H

and i-a-Si:H layers due to Eg difference (Eg=1.98 eV for p-a-SiC:H and Eg=1.72 eV for

i-a-Si:H). This issue needs to be addressed. We will study interface engineering and its

effect on solar cell performance in Chapter 5.
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(a)

(b)

Figure 4.5: (a) J-V characteristics and (b) solar cell performance parameters for different
RF powers used in deposition process of p-a-SiC:H for constant [B2H6]/[CH4]=62.5 %.
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4.2 Characterization of PV modules

The size of PV module was 10×10 cm2 which consists of 72 rectangular sub-cells (Figure

4.6(a)), and inset figure shows magnified layout of two cells connected in series. The sub-

cells were connected in series forming eight rows with connection pads. Figure 4.6(b) shows

the photograph of PV module under bending. Its interconnections are illustrated in Figure

4.6(c).

(a) (b)

(c)

Figure 4.6: (a) Layout of the PV module, (b) photograph of PV module under bending,
and (c) cross-sectional view of the cells. Inset of Figure 4.6(a) shows magnified layout of
two cells connected in series.
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4.2.1 Simulation of contact layers for PV module

Figure 4.7 shows (a) equivalent circuit of the sub-cell and (b) simulated cell with uniform

mesh. An equivalent circuit of the sub-cell includes a diode, a current source representing

current generation in the n-i-p structure, the resistors, including the resistance of the p-

layer and contact resistance of the interface of p/AZO (Rp), the top metallization resistor

(Rx), and resistance of AZO (Ry), respectively (Figure 4.7(a)). The sub-cell is divided into

rectangular parts with a node at the centre of each sub-cell (Figure 4.7(b)). Note that Rsh

of the bottom metal is at least two orders of magnitude lower than that of the AZO film,

and the Rs component is not taken into account. Nodes at the front edge of Al grid are

defined as the current sink in this model with the boundary condition being the applied

bias.

(a) (b)

Figure 4.7: (a) Equivalent circuit of the sub-cell and (b) simulated cell with uniform mesh.

The diode forward current is:

I = J0LxLy[exp(
qV

nkT
)− 1] (4.1)
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Here: J0 is the saturation current density, Lx and Ly are the sub-cell dimensions in the

direction X and Y, respectively. q is the elementary charge, n is the photo-diode ideality

factor, k is Boltzmann’s constant, and T is the temperature. The output of the current

source is:

Iph = JphLxLy (4.2)

Here: Jph is the photo-current density. For n-i-p cells, Jph is the bias voltage dependent

function [68]:

Jph = Jph,0
V − Vbi
Vr

[1− exp( Vµ
V − Vbi

)] (4.3)

Vµ =
di

2

µτ
(4.4)

Here: Jph,0 is the photo-current, Vbi is the built-in voltage, di is the intrinsic layer

thickness, and τ is the mobility lifetime product also known as the drift length of the

carriers.

Figure 4.8 shows (a) simulated I-V curve and (b) potential distribution across the

emitter (top surface of the cell) at the bias voltage of 0.5 V. Input parameters used for

simulation are J0=2.3×10−20 A/cm2, n=1.4, Vbi=1.1 V, Vµ=0.1 V, Rp=1.5 Ωcm2, and

Jph,0=9 mA/cm2. Here, the voltage drop across the Al finger is 10 V and voltage variation

across the transparent electrode is up to 50 mV at 0.4 Ω/� and 100 Ω/� are the shunt

resistances of the respective layers. Joule losses in the Al finger and AZO electrode are 22

µW and 61 µW, respectively.

Based on those simulation values, the thickness of the transparent electrode was opti-

mized to minimize the optical and electrical losses. Reflection minimum of TCO coating

at the wavelength, λ0, is at discrete values of film thickness (equation (4.5)):
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(a)

(b)

Figure 4.8: (a) Simulated I-V curve and (b) potential distribution across the emitter at a
biasing voltage of 0.5 V.
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dTCO =
λ0(2m+ 1)

4nr
(4.5)

Here: nr is the refractive index at 0, and m = 0, 1, ...

Figure 4.9 shows (a) the calculated Joule losses in the Al and AZO top layers and

(b) simulated solar cell parameters (η and FF) as a function of AZO thickness. Higher

thickness leads to the reduction of Joule losses in the emitter and to FF enhancement

due to decreasing Rs. However, the η reaches its peak value at a thickness of 3λ0/4nr,

then it decreases due to higher absorption loss. We performed device simulation at AZO

thicknesses that corresponds to the first four reflection minima at λ0=460 nm. To consider

the absorption loss within the AZO layer, Jph,0 was calculated for the given film thicknesses

using α of AZO film measured in the visible wavelength range. Based on this modelling

result, AZO thickness in the module structure was chosen to be at 200 nm.
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Figure 4.9: (a) The calculated Joule losses in the AZO and Al top layers and (b) simulated
solar cell parameters (η and FF) as a function of AZO thickness.

Figure 4.10 shows (a) the calculated Joule losses in the AZO and Al top layers and (b)

simulated solar cell parameters (η and FF) as a function of Rsh. Apparently the metal

grid resistance must be lower than the resistance of AZO to minimize Joule losses. For

our AZO electrode with 60 Ω/� Rsh, metal Rsh has to be below 0.4 Ω/�. 150 nm thick

Al layer with 0.25 Ω/� was chosen for modules as a tradeoff between the sputtering time

and device performance.
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Figure 4.10: (a) The calculated Joule losses in the AZO and Al top layers and (b) simulated
solar cell parameters (η and FF) as a function of Rsh.

4.2.2 PV modules performance

Figure 4.11 shows J-V characteristics of two random chosen sub-cells from different PV

modules. The performance parameters are also listed in Figure 4.11. Jsc, Voc, FF, and η

are observed to be 8±0.17 mA/cm2, 0.67±0.01 V, 50±4 %, and 2.75±0.1 %. Low deviation

of all performance parameters for the sub-cells and for sub-cells presented in section 4.1.2,

suggests that our fabrication processing is reproducible and scalable.

J-V characteristics of several PV modules fabricated are shown in Figure 4.12. Device

performance parameters are also listed in Table 4.2. In the module, Jsc and FF are limited

by the smallest Jsc shown by a sub-cell in the string while Voc is added up for all the

sub-cells. Based on the sub-cell performance from Figure 4.11, the values of Jsc, Voc, and
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Figure 4.11: J-V characteristics of two random chosen sub-cells from different PV modules.

FF in one module can be expected to be 8±0.17 mA/cm2, 10.475±2.5 V, and 50±4 %,

respectively. Jsc and FF seem to be in the expected value range, while Voc shows a higher

variation between the strings. We assume that this may be due to the mismatch of sub-cells

in the module.

Table 4.2: Device performance parameters for several mini PV module strings.

Cell p-130404-1 p-130404-2 p-130318-2 p-130318-4 p-130318-5

Voc (V) 10.475 9.103 13.099 11.139 11.064
Jsc (mA/cm2) 8.12 8.14 7.66 7.86 7.89

FF (%) 54.39 58.23 55.18 52.52 52.90
Average η (%) 2.57 2.40 3.08 2.56 2.56

In real cases, all the sub-cells in a module may be not identical in terms of device

performance. In addition, illumination may not be uniform, which affects the device per-
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Figure 4.12: J-V characteristics of several PV module strings (18 sub-cells connected in
series).

formance. Such variation of electrical output in sub-cells is called “mismatch”. Figure 4.13

shows mismatch in voltage and current for cells in series.

For the mismatch in voltage connected in series, since the voltage just adds up (Voc=V1+V2),

the resulting overall Voc will be the sum of all Vocs in the string. For the mismatch in cur-

rent for the cells connected in series, the resulting overall Jsc will be the same as that of

worst Jsc cell because the current is limited by the smallest Jsc flowing through sub-cell

(Isc=Isc1) [53]. Based on the mismatch in sub-cells in the module, we suspect that observed

variation in Voc values may be due to non-uniformity interfaces of AZO/p-layer/i-layer,

which affects Voc in sub-cells.
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Figure 4.13: Mismatch in voltage and current for cells connected in series (modified from
[53]).

4.3 Chapter summary

In this chapter, we discuss fabrication and characterization of low-temperature a-Si:H n-i-p

solar cells. It was found that optimizing p-a-Si:H thickness and bandgap were important to

improve the solar cell performance. The a-Si:H n-i-p solar cells with 15 nm thick p-a-SiC:H

(p-layer) window layers resulted in Jsc of 8±0.17 mA/cm2, Voc of 0.67±0.01 V, FF of 50±4

%, and η of 2.75±0.1 %. To characterize the device design for PV module, two-dimensional

simulation was performed and suggested the optimized AZO thickness (∼200 nm) for low

Joule loss. Monolithic a-Si:H PV modules were fabricated on the plastic substrate using

150 °C deposition temperature. The sub-cell which randomly chosen from the modules

shows Jsc of 7.92 mA/cm2, Voc of 0.67 V, FF of 53.73 %, η of 2.86 % comparable to those

of sub-cells. Although there are some performance variations due to mismatch in sub-cell,

the best module η was ∼3 %.
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Chapter 5

Fabrication and Characterization of

P-I-N Solar Cells

Results of the fabrication and characterization of a-Si:H n-i-p solar cells and flexible PV

module are shown in Chapter 4. a-Si:H p-i-n solar cells are fabricated on glass substrates;

where the cell structure is inverted from substrate to superstrate configuration. The initial

device performance and issues in a-Si:H p-i-n solar cells are discussed in section 5.1. In

section 5.2, effect of p-type buffer-layer on solar cell performance is discussed, and the

effect of p-layer thickness on a-Si:H p-i-n solar cell performance is also investigated.
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5.1 a-Si:H p-i-n solar cells: device performance

5.1.1 Initial device performance of a-Si:H n-i-p and p-i-n solar

cells

For the fabrication of a-Si:H p-i-n solar cells, the deposition recipes used to fabricate n-

i-p solar cells were used at first. The fabrication of a-Si:H p-i-n solar cells started with

deposition of 200 nm thick AZO film on glass substrate, and then a-Si:H p-i-n stack was

continuously deposited using the same deposition recipes for layers as mentioned in Chapter

4. Finally, 150 nm thick Al film was sputtered and patterned using standard lithography

process to form the back electrode. Fabricated a-Si:H p-i-n solar cells are shown in Figure

5.1.

Figure 5.2 shows J-V characteristics of a-Si:H p-i-n solar cell on glass substrate. J-V

characteristics of a-Si:H n-i-p solar cell fabricated using the same deposition recipes is also

shown here for comparison. The device performance parameters are also listed in Table

5.1. Even though the Voc value of 0.77 V is comparable to that of a-Si:H n-i-p solar cells,

the Jsc of 3.83 mA/cm2 and FF of 28.66 % are significantly lower, thus showing η of 0.83

%. In particular, the shape of J-V characteristics shows dominance of series and shunt

resistances. From Table 5.1, the values of Rsh and Rs are about two orders of magnitude

lower and about 20 times higher, respectively, compared to those of a-Si:H n-i-p solar cells.

Although it is hard to distinguish which of them has most significant effect on degradation

of J-V characteristics, based on the values of Rsh and Rs, p-i-n device may be assumed to

have poor junction interface and/or bulk properties. However, the bulk properties of both

devices are believed to be similar. Thus, the main focus of optimization was determined

to the junction interface, which may result from the different structure for both devices.
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Figure 5.1: Photograph of a-Si:H p-i-n solar cells on glass substrate.

The n-i-p structure consists of glass/back metal/a-Si:H n-i-p stack/front AZO, while the

p-i-n structure is composed of glass/front AZO/a-Si:H p-i-n stack/back metal [69]. It is

generally believed that the anode parts of metal/n-i and i-n/metal for the n-i-p and p-i-n

devices, respectively, do not create the transport issue because the collection efficiency of

electron is high due to its high mobility [70]. So, we assumed that the difference in cathode

parts may be a main source of resistances. In the cathode parts, poor hole transport and

ohmic contact may affect device performance. The AZO/p-i part for the p-i-n device thus

seems to be different from the i-p/AZO for the n-i-p device in terms of carrier transport

and interface. It will be further studied in details next section.
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Figure 5.2: J-V characteristics of initial a-Si:H p-i-n solar cell on glass substrate along with
J-V curve of a-Si:H n-i-p solar cell.

Table 5.1: Device performance parameters of initial a-Si:H p-i-n solar cell and a-Si:H n-i-p
solar cell with the same deposition recipes.

Cell g-150413-1 g-141201-1

Voc (V) 0.77 0.77
Jsc (mA/cm2) 4.71 3.83

FF (%) 53.76 28.26
η (%) 1.84 0.83

Rsh (Ωcm2) 2.25×104 136.24
Rs (Ωcm2) 12.52 273.84
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5.2 Efficiency improvement in p-i-n solar cells

5.2.1 Effect of p-type buffer-layer on solar cell performance

p-type a-Si:H buffer-layer (namely ∆p-layer in this thesis) was deposited using 2 % B2H6

diluted by H2, mixed with SiH4 as the source gas. The gas flow of H2 was fixed at 80

sccm. We varied the gas flow ratio of [B2H6]/[SiH4] from 0.2 % to 2 % at RF power of

10 W, and the ∆p-layer thickness was selected to be 15 nm and 10 nm. p-type a-Si:H,

intrinsic a-Si:H, and n-type a-Si:H thin-film layers were kept at 15 nm, 350 nm, and 15

nm, respectively. Other deposition conditions were the same for all the solar cell layers;

substrate temperature, process pressure, and RF power were kept at 150 °C, 900 mTorr,

and 2 W, respectively.

Figure 5.3 shows J-V characteristics of a-Si:H p-i-n solar cells with different [B2H6]/[SiH4]

ratio of ∆p-layer of constant thickness of 15 nm, along with J-V curve of solar cell fabri-

cated without ∆p-layer for comparison. Device performance parameters are also listed in

Table 5.2. Note that solar cells with ∆p-layer show improved performance compared to

that without ∆p-layer. Furthermore, increasing [B2H6]/[SiH4] ratio leads to Voc and FF

increase from 0.8 V to 0.87 V and from 48 % to 50.91 %, respectively. This is attributed

to improve AZO/p-a-Si:H interface. Also, the ∆p-layer deposited with high doping gas

ratio is expected to reduce contact resistance of AZO/p-a-Si:H interface. However, the

Jsc value (7.89 mA/cm2) is lower at 2 % [B2H6]/[SiH4] ratio than at 0.2 % [B2H6]/[SiH4]

ratio (8.43 mA/cm2) which means that there still may exist some absorption and/or carrier

recombination using highly doped ∆p-layer.

In order to increase photon transmission into i-layer, thinner ∆p-layer was deposited

(minimum ∆p-layer thickness was found to be 10 nm). Figure 5.4 shows J-V characteristics
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Figure 5.3: J-V characteristics of a-Si:H p-i-n solar cells with ∆p-layer fabricated at differ-
ent [B2H6]/[SiH4] ratios and thickness of 15 nm, along with the J-V curve without ∆p-layer
for comparison.

Table 5.2: Device performance parameters at different [B2H6]/[SiH4] ratio of ∆p-layer.

Cell g-150525-1 g-150525-2 g-150211-2

[B2H6]/[SiH4] ratio (%) 0.2 % 2 % -
Voc (V) 0.80 0.87 0.77

Jsc (mA/cm2) 8.43 7.89 3.83
FF (%) 48.28 50.91 28.26
η (%) 3.27 3.50 0.83

Rsh (Ωcm2) 32.29 23.21 136.24
Rs (Ωcm2) 85.49 23.60 273.84

of a-Si:H p-i-n solar cells with 10 nm ∆p-layer thickness in comparison with that for 15

nm ∆p-layer thickness. Device performance parameters are also listed in Table 5.3. It can

be seen that the change in the ∆p-layer thickness does not affect Voc and Jsc. However,
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FF is slightly increased at lower ∆p-layer thickness, thereby improving the cell efficiency

from 3.27 % to 3.50 %. It is attributed to reduction of Rs.

Figure 5.4: J-V characteristics of the a-Si:H p-i-n solar cells with 10 nm and 15 nm thick
∆p-layer.

Table 5.3: Device performance parameters of solar cells with different thickness of ∆p-layer.

Cell g-150612-2 g-150525-4

∆p thickness (nm) 15 10
Voc (V) 0.872 0.873

Jsc (mA/cm2) 7.89 7.87
FF (%) 50.91 56.17
η (%) 3.50 3.86

Rsh (Ωcm2) 23.21 26.26
Rs (Ωcm2) 23.60 20.28

Based on presented experimental results, device performance improvement of a-Si:H p-

i-n solar cells can be explained by modification of work function by adding ∆p-layer at the
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interface of AZO/p-a-Si:H as shown in Figure 5.5. The work function difference between

the AZO layer and p-a-Si:H layer causes band bending effect and builds high interface

potential barrier, which impedes the extraction of photo-generated holes from intrinsic a-

Si:H layer [69, 71]. Usually, conductive buffer-layer such as p-a-SiC:H or p-µc-Si:H enhances

hole collection to lower interface potential barrier [72, 73]. The use of buffer-layer at the

interface of TCO/p-a-Si:H results in an improvement of Voc, due to lowering of Schottky

barrier height [72]. This insertion can also reduce Rs at the interface of AZO/p-a-Si:H,

and build an ohmic contact [74].

Figure 5.5: Schematic representation of a-Si:H p-i-n solar cell band diagram variation with
∆p-layer at the interface of AZO/p-a-Si:H.

5.2.2 Effect of p-layer thickness on solar cell performance

Further study of the effect of p-layer total thickness on solar cell performance was carried

out at ∆p-layer thickness being kept constant. Figure 5.6 shows J-V characteristics of
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a-Si:H p-i-n solar cells with different p-layer total thickness and 10 nm ∆p-layer thickness.

Device performance parameters are also listed in Table 5.4. It is observed that a-Si:H

p-i-n solar cells with thinner p-layer show an increase in Jsc from 7.87 mA/cm2 to 8.88

mA/cm2, which is the same trend as shown in section 4.1.1. This result implies that more

light can pass through p-layer into i-layer, thereby improving charge generation. However,

FF decreases from 56.17 % to 52.01 % with decreasing p-layer thickness, which is related

to increased contact resistance. Regardless of FF degradation, overall η is improved from

3.86 % to 4.09 % with decreasing p-layer thickness from 15 nm to 5 nm (Table 5.4).

Figure 5.6: J-V characteristics of the a-Si:H p-i-n solar cells with different p-layer thickness
and 10 nm ∆p-layer thickness.

Figure 5.7 shows spectral response characteristics of a-Si:H p-i-n solar cells with different

p-layer thickness at ∆p-layer thickness corresponding to Figure 5.6. EQE is increased over

the entire wavelength region from 400 nm to 700 nm by decreasing the p-layer thickness.
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Table 5.4: Device performance parameters of a-Si:H p-i-n solar cells with different thickness
of p-layer with buffer-layer thickness of 10 nm.

Cell g-150525-4 g-150620-1 g-150620-2

p-layer thickness (nm) 15 10 5
Voc (V) 0.873 0.862 0.885

Jsc (mA/cm2) 7.87 8.24 8.88
FF (%) 56.17 51.94 52.01
η (%) 3.86 3.69 4.09

In addition, EQE curve shifts towards higher wavelength region at lower p-layer thickness

[66]. This result means that more light comes through p-layer into intrinsic layer. Thus,

EQE results well correspond to Jsc with decreasing p-layer thickness.

Figure 5.7: Spectral response characteristics of a-Si:H p-i-n solar cells for different p-layer
thickness at 10 nm ∆p-layer thickness corresponding to Figure 5.6.
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5.3 Chapter summary

In this chapter, a-Si:H p-i-n solar cells were fabricated by inverting n-i-p structure on glass

substrate. p-type buffer-layer inserted between the AZO layer and p-layer improves solar

cell performance by lowering the interface potential barrier, and building up an ohmic

contact. Moreover, more light pass through p-layer into i-layer, showing improvement in

Jsc and hence energy conversion efficiency.

The efficiency is close to that previously reported for a-Si:H p-i-n solar cells [69]; the best

measured efficiency was 4.09 % for an a-Si:H p-i-n solar cell fabricated on glass substrate.
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Chapter 6

Fabrication and Characterization of

Semi-transparent Solar Cells

In this chapter, we describe fabrication and characterization of semi-transparent a-Si:H p-i-

n solar cells on glass and plastic substrates to investigate the feasibility of BIPV application

using our current fabrication process. Characterization of semi-transparent a-Si:H p-i-

n solar cells on glass substrates are presented in section 6.1. Section 6.2 discusses the

characterization of semi-transparent a-Si:H p-i-n solar cells on plastic substrates, and the

effect of barrier-layer. The semi-transparent a-Si:H p-i-n solar cells are used as radiation

detectors and investigated the response in the visible part of spectrum is shown in section

6.3.
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6.1 Semi-transparent a-Si:H p-i-n solar cells on glass

substrate

For optically transparent solar cells, ∼200 nm thick AZO layers were used as electrodes

instead of Al back reflective metal. The rest of solar cell structure was made using the

conditions described in section 5.2.1. Figure 6.1 shows (a) schematic representation of

device structure and (b) photograph of semi-transparent a-Si:H p-i-n solar cell fabricated

on glass substrate.

Figure 6.2 shows transmittance spectra of semi-transparent a-Si:H p-i-n solar cell fabri-

cated on glass and a bare glass substrate. Whereas the bare glass substrate shows over 90 %

transparency over the measurement range, the average transparency of semi-transparent

solar cell is over 60 % in the spectral region above 600 nm, which is suitable for BIPV

applications.

92



(a)

(b)

Figure 6.1: (a) Schematic representation of device structure and (b) photograph of semi-
transparent a-Si:H p-i-n solar cell fabricated on glass substrate.
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Figure 6.2: Comparison of transmittance spectra of a semi-transparent a-Si:H p-i-n solar
cell fabricated on glass and a bare glass substrate.

6.1.1 Performance of semi-transparent vsṡtandard solar cells

Figure 6.3 shows (a) J-V characteristics and (b) spectral response of semi-transparent a-

Si:H p-i-n solar cell fabricated on glass substrate, along with standard a-Si:H p-i-n solar

cell as a comparison. Device performance parameters are listed in Table 6.1. We achieve

a η of ∼5 % with Jsc, Voc, and FF being 9.93 mA/cm2, 0.86 V, and 58.10 %, respectively

(Figure 6.3(a)). The results confirm the functionality of a-Si:H p-i-n solar cells for BIPV

application. Note that the semi-transparent solar cell performance is better than that for

standard a-Si:H p-i-n solar cells (Jsc of 8.88 mA/cm2, Voc of 0.885 V, FF of 52.01 %, and η

of 4.09 %) fabricated in Chapter 5 (Table 6.1). There are still open questions why the semi-

transparent solar cells show better performance because higher Jsc and FF are expected for
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the standard p-i-n solar cells with a Al back contact due to its high conductivity and better

back reflectivity. It is assumed that this may be due to solar cell layers (a-Si:H layers) by

ion bombardment Al back contact sputtering, thus degrading solar cell performance. EQE

reaches the maximum value of 68.02 % at 530 nm (Figure 6.3(b)). The results confirmed

that the EQE is high over the entire wavelength region from 400 to 650 nm. There is

no presence of interference fringes in the wavelength range above 600 nm related to the

cell reflection spectra [66], because of high transparency of AZO film compared to opaque

metal.

Table 6.1: Device performance parameters comparison for semi-transparent a-Si:H p-i-n
solar cell and standard a-Si:H p-i-n solar cell.

Cell Semi-transparent Standard
a-Si:H p-i-n solar cell a-Si:H p-i-n solar cell

Voc (V) 0.86 0.885
Jsc (mA/cm2) 9.93 8.88

FF (%) 58.10 52.01
η (%) 4.98 4.09
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(a)

(b)

Figure 6.3: (a) J-V characteristics and (b) spectral response of semi-transparent a-Si:H
p-i-n solar cell fabricated on glass substrate.
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6.2 Semi-transparent a-Si:H p-i-n solar cells on plastic

substrate

Following the results from section 6.1, the fabrication process was transferred from glass

to PEN substrate. In the course of fabrication process, the front AZO film was found

to be cracked (Figure 6.4) after deposition and subsequent 30-minute cooling. This was

attributed to thermal stress between plastic substrate and AZO film [75]. In order to

overcome this issue, barrier-layer was deposited before depositing AZO film. In our study,

we deposited 100 nm thick a-SiOx:H thin-films grown by PECVD on PEN plastic substrate

as barrier-layers not only to suppress stress issue but also to improve adhesion issue. The

barrier-layer properties were characterized by visual inspection and optical transmission

[76].

Figure 6.4: The cracked AZO film on PEN substrate (after deposition with 30-minute
cooling).

We observed no cracks in AZO film over the substrate surface when using barrier-layer.
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In addition, the average transparency of PEN substrate with a-SiOx:H barrier-layer was

measured to be above 60 % in the visible wavelength region as shown in Figure 6.5, which

is ∼15 % lower than that of bare PEN substrate. Using AZO film with barrier-layer,

we fabricated semi-transparent a-Si:H p-i-n solar cells on PEN substrates using the same

deposition recipes as mention in section 6.1.

Figure 6.5: The average transparency of PEN substrate with a-SiOx:H barrier-layer.

The photograph of (a) flat and (b) bent semi-transparent a-Si:H p-i-n solar cells fabri-

cated on PEN substrate is shown in Figure 6.6.

In addition, Figure 6.7 shows transmittance spectra of bare PEN substrate, a-SiOx:H

barrier-layer coated PEN, and semi-transparent a-Si:H p-i-n solar cell fabricated on a-

SiOx:H coated PEN substrate. The average transparency decreases by 10 % for each

samples 80 %, 60 %, 50 %, however, the a-Si:H p-i-n solar cells are still semi-transparent
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(a)

(b)

Figure 6.6: Photograph of (a) flat and (b) bent semi-transparent a-Si:H p-i-n cells fabri-
cated on PEN substrate.

in the visible range (over 600 nm wavelength region).

Figure 6.8 shows (a) J-V characteristics and (b) spectral response characteristics of

semi-transparent a-Si:H p-i-n solar cells fabricated on plastic substrate. a-SiOx:H barrier-
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Figure 6.7: Transmittance spectra of bare PEN plastic substrate, a-SiOx:H barrier-layer
coated PEN, and semi-transparent p-i-n solar cell fabricated on a-SiOx:H coated PEN
plastic substrate.

layer acts as antireflective layer, hence improving Jsc [77]. We achieve η of ∼4.6 % that Jsc,

Voc, and FF are 10.535 mA/cm2, 0.795 V, and 55.02 %, respectively (device performance

in Figure 6.8(a)). The EQE reaches the maximum value of 65.50 % at 550 nm (Figure

6.8(b)). The results confirmed that EQE is similar to that of semi-transparent a-Si:H p-i-n

solar cells fabricated on glass substrate.

100



(a)

(b)

Figure 6.8: (a) J-V characteristics and (b) spectral response characteristics of semi-
transparent a-Si:H p-i-n solar cells on plastic substrate.
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6.3 Semi-transparent a-Si:H solar cell as a photode-

tector

Semi-transparent a-Si:H p-i-n solar cells are known to have very low dark current and does

not require cooling hence can be used as radiation detector [78]. The objective for this

application is to develop an inexpensive and portable a-Si detector with the response in

the visible part of the spectrum [79].

Inductively coupled plasmas (ICPs) are widely-used for elemental analysis. Generally,

an ICP uses 15∼20 L/min of Ar gas and consumes 1∼2 kW of electrical power [80]. In

addition, due to their size and weight, typical ICPs are used not portable. Miniaturized,

light-weight and small-size plasmas (or micro-plasmas) could potentially be used for chem-

ical analysis on-site [81]. Unlike ICPs, micro-plasmas consume 250 mL of an inert gas

(such as: Ar and Ne), and they can be operated from a battery due to electrical power

consumption of 10∼15 W [79]. Thus, micro-plasmas are suitable for chemical analysis

on-site.

Figure 6.9 demonstrates (a) photograph of micro-plasma and (b) the testing system

component. A coin has been included for size comparison, and the micro-plasma fits inside

the letter A (Figure 6.9(a)). The micro-plasma was formed between two electrodes 1 and

2 (E1 and E2) initially used as a spectral lamp, and securely fastened at the entrance slit

of the monochromator. One spectrometer (left hand side of Figure 6.9(b)) was a scanning

monochromator with the a-Si detector affixed to its exit slit. The other spectrometer (right

hand side of Figure 6.9(b)) was a portable spectrometer, with a charge coupled device

(CCD) detector and a fiber optic cable to guide light emission from the micro-plasma onto

its entrance slit.
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(a)

(b)

Figure 6.9: (a) Photograph of micro-plasma and (b) the testing system component.

The width of the entrance and exit slits were adjusted to 1000 µm, so that the spectral

bandpass of the monochromator matched approximately that of the spectrometer with a
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fiber optic cable. The voltage output from the a-Si detector was amplified 2000 times

using a voltage amplifier (model SRS-560) designed by Stanford Research Systems. The

voltage output of the amplifier was digitized [78]. The fiber optic spectrometer (from

StellarNet Inc.) had an entrance slit of 25 µm and a focal length of 12 cm. The fiber optic

spectrometer was equipped with a 600 µm diameter fiber optic cable and a 2048-pixel CCD

detector.

Figure 6.10 shows the comparison of the micro-plasma spectral background obtained

using both spectrometers. From availability of Ne spectral lines, it can be concluded

that the detector is sensitive to visible light, at least between about 580 nm and 700

nm. Ne spectral line around 650 nm perfectly fitted between the a-Si detector (on the

monochromator) and the CCD detector of the fiber optic spectrometer.
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Figure 6.10: The comparison of the micro-plasma spectral background obtained using both
spectrometers.

The a-Si detector used in this study is mainly designed as a solar cell, and the device

size is not well fitted to receive all optical signal. In order to improve the sensitivity of a-Si

detector, further characterization processing is needed.

6.4 Chapter summary

In this chapter, semi-transparent p-i-n solar cells were fabricated on glass and plastic

substrates. A barrier-layer was introduced into cell fabrication on plastic substrate to

enhance the adhesion, and details of different barrier-layers were studied. We found a-

SiOx:H is very important because of its great absorption for optical index, for this reason,
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less recombination happened, and gave an significant improvement of Jsc [77].

The results for efficiency tested agree with previously reported values for a-Si:H p-

i-n solar cells. The best measured efficiency was 4.98 % for a semi-transparent a-Si:H

p-i-n solar cell fabricated on glass substrate, and 4.77 % on plastic substrate with a 0.6

of transmittance. A 6.3 % semi-transparent solar cell fabricated on glass substrate was

reported with textured intrinsic a-Si:H layer, and the transmittance was 0.114 [82].

The semi-transparent a-Si:H p-i-n solar cell was also used as a-Si detector with the

response in the visible part of the spectrum. From the Ne spectral lines, the micro-plasma

spectral from a-Si detector obtained similar response comparable with fiber optic detector.
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Chapter 7

Conclusion and Future Work

a-Si:H solar cells based on both substrate and superstrate configurations have been fabri-

cated on glass and plastic substrates at the maximum substrate temperature of 150 °C.

Intrinsic a-Si:H film shows σphoto of 3.3×10−5 (Ωcm)−1 and σdark of 5.47×10−10 (Ωcm)−1,

yielding the photoresponse of a 6×104. p-a-SiC:H window layer was introduced to enhance

Voc and Jsc. For large-are applications, a-Si:H n-i-p PV modules (10×10 cm2 active area

and 72 sub-cells) were fabricated using the developed deposition recipes for small-scale

devices. The contact layers such as Al and AZO films were simulated to have low Joule

loss in module operation. 200 nm AZO film was found to be the optimized thickness.

Typical module performance was Voc of 13.10 V, Jsc of 7.66 mA/cm2, FF of 55.18 %, and

η of 3.08 %. It is found that the PV module performance is similar to that of single solar

cells, showing scalability of module process.

We also fabricated a-Si:H p-i-n solar cells on glass substrate. Here the a-Si:H stack

was inverted from n-i-p structure in the first part of the study. From an initial result,
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several efficiency refinements were carried out to have better device performance. a-Si:H

p-i-n solar cells with p-type buffer-layer produced Voc of 0.885 V, Jsc of 8.88 mA/cm2, FF

of 52.01 %, and η of 4.09 %.

Furthermore, we demonstrated semi-transparent a-Si:H p-i-n solar cells using TCO back

electrodes instead of opaque metal for functional BIPV applications. Semi-transparent a-

Si:H p-i-n cells were showing η of 4.98 % on glass substrate with transmittance of 60

% in the wavelength range of 500∼800 nm. For plastic substrates, a barrier-layer was

introduced to improve adhesion, and 4.77 % efficient semi-transparent a-Si:H p-i-n solar

cells were demonstrated. Additionally, semi-transparent a-Si:H p-i-n solar cells were used

as detectors with the response in the visible part of the spectrum. From availability of

Ne spectral lines, the comparison of micro-plasma spectral between a-Si detector and fiber

optic detector obtained similar response.

Based on our results in the study, it is believed that a-Si:H thin films should be a

good candidate to produce high efficient energy harvesting on the low-cost and large-area

substrate applications such as glass and even plastic.

7.1 Recommendations for the future work

The work performed in our study on a-Si:H solar cells provides a large scope for further

investigation. Solar cells on plastic substrates were only developed to the point of being

functional on the PEN plastic with high yield. The processing requires characterization

with respect to use flexible masks in “reel to reel” system. This would further reduce

the module cost. Higher conductive AZO film may be characterized to reduce the series

resistance. Semi-transparent a-Si:H p-i-n solar cells can be fabricated into PV modules in
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the future. In addition, design and fabrication process can be further characterized on solar

cells to be suited for functional detectors. For possible inclusion in future, inexpensive and

lightweight micro-plasma based spectrometry systems are being developed for use on-site.

Additionally, the investigation into low temperature deposition of a-Si:H films could

be extended to lower temperatures. The use of H2 dilution and higher RF powers could

compensate for defects created by the reduced temperatures, the deposition temperature

of 75 °C would be a sensible target as it would enable use of a greater variety of plastics

that are cheaper than PEN substrate.
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