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Abstract

The hydrodynamics of the Yucatan peninsula are extremely important due to the strain
on water resources caused by increasing development along the eastern coast. The geology
of the peninsula is unique geologically in that it is dominated by porous limestone (karst)
which results in seawater permeating underneath a fresh water lens. This geology allows
for large fractures or cave networks to form underground and for large sink holes to form on
the surface. These sink holes are traditionally called cenotes. The goal of this research was
to investigate how heavy rainfall impacts the system and to what extent mixing occurs.
This was investigated using sensor data and through numerical simulations. Using salinity
and temperature measurements along with rainfall data we were able to strongly match
heavy rainfall events (such as the hurricanes in 2011 and 2013) to spikes in salinity and
increases in temperature. Through using wavelet analysis we were able to find longer term
trends in the data along with the first eight tidal components. Small scale experiments
were performed to observe the impact that rainfall has on a stable stratification. Through
this observation an analogue of oscillating jets was devised since rainfall is near impossible
to simulate numerically. This analogue was then experimentally shown to produce similar
results to rainfall. A numerical model (SPINS) was then used to simulate an experiment.
A column of tracer was also added to the simulation to model a column of potassium
permanganate. The simulation was analysed using spanwise averaged (through y) 2D
plots, 2D slices (at a particular y or z value) and 3D volumetric plots. These revealed
the generation of a turbulent region which propagated away from the jets and entrained
quiescent fluid. In addition to traditional parameters such as horizontal velocity u, density
p and kinetic energy (u? + v? + w?), new parametrizations for mixing and stirring were
introduced. These were used to analyse how the dye was impacted by the jets, specifically
it’s interaction with the turbulent front. This work is the first step to understanding
this complicated physical system and has links across many disparate disciplines, from
turbulence theory to anthropology.
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Chapter 1

Introduction



1.1 Background

The Yucatan peninsula (see Figure 1.1) is a large geological formation primarily comprised
of limestone. It encompasses three Mexican states and has a total area of 165,000 km?. The
porosity and permeability of the karst (limestone) results in a lack of surface flows as any
surface precipitation quickly enters the extensive aquifer within the bedrock. Over large
(geological) time scales, dissolution of the karst has led to a vast network of fractures and
caves throughout the region. Within the peninsula, there are two types of large structures
comprised of fractures and conduits: a ‘Ring of Cenotes’ [21], located along the impact
crater of the Chicxulub asteroid that resulted in the extinction of the dinosaurs [27], and
several zones of long linear fractures (the Sierrita de Ticul fault line, the Holbox fracture
zone, the Rio Hondo block fault zone and the La Libertad fault zone [37]). These large
structures provide a preferential flow direction for the groundwater within the aquifer that
exists in the karst. Furthermore, due to the depth of the karst geology (below sea level),
seawater can intrude from the coast below the groundwater within the aquifer. This leads
to a system where a freshwater lens (which varies in thickness depending on proximity to
the coast) exists above saline seawater below a certain depth [30]. See [2],[15],[28] for a
more in depth discussion of the geology of this system.

Throughout human history, the most important resource to sustain human, and more
specifically societal, development has been water. It is necessary for consumption, agricul-
ture and residential uses. Specifically humans require fresh, potable water. According to
the World Health Organization (WHO) guidelines [23], the upper limits for water potabil-
ity are 1000 mg/L (or 1 ppt) of salt. Drinking water above these limits results in sodium
toxicity as the kidneys cannot remove the salt quickly enough. Due to the lack of natural
surface flowing rivers within the Yucatan peninsula, groundwater has been the primary
source of fresh water since the area was first inhabited around 10,000 BCE [10],[5]. Specif-
ically, discounting the southern-most portion of the peninsula, people have relied on the
freshwater lens of the aquifer, which they have accessed through the cave networks of the
region, through small freshwater lakes, and through large sinkholes called ‘cenotes’ (see
Figure 1.2). These cenotes were of particular importance to the Mayan civilization which
inhabited the region between 300 CE and 1100 CE. For example, there is evidence that the
Maya would create channels for rainwater into these cenotes to resupply their freshwater
[36]. The importance of water to their society can be highlighted by the many rituals and
festivals dedicated to the water gods [20].

Recent research has posited a link between the ‘collapse’ of the Mayan civilization and
climatic changes. The Mayans were used to temporary changes in rainfall from year to
year, channelling rainwater into cenotes, specifically during rainy periods, for storage during
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Figure 1.1: A map of the Yucatan peninsula (Google Maps). This thesis will pri-
marily be concerned with the eastern coast, particularly the area surrounding the city
of Tulum. (retrieved from https://www.google.ca/maps/019.9129436,-88.5771341,
425145m/data=!3m1!1e37hl=en)

droughts [19], as mentioned previously. However, sediment records from the Cariaco Basin,
Venezuela show that during the Terminal Classic Mayan period (800 CE-1000 CE), there
were a series of prolonged multi-year droughts [I4]. It is argued that the stress on water
resources during this period contributed to the decline of the civilization. It is important
to note that the ‘collapse’ was more of a collapse of the traditional social structures and a
dispersion of people away from the previous metropolitan areas [16].

More recently, there has been a large amount of continuous development along the
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Figure 1.2: The sacred cenote at Chichén Itza which was used extensively for religious cer-
emonies. (retrieved from https://upload.wikimedia.org/wikipedia/commons/9/97/
Mexico_Cenotes. jpg)

coast of Quintana Roo, the eastern shore of the Yucatan peninsula. Out of necessity,
this development uses groundwater as its primary water supply. Despite this dependence
on the groundwater system, there is comparatively little known about the interactions of
the potable freshwater lens with the underlying seawater. This is particularly important
given the number of large weather events that occur in this region which could impact this
balance. In 1992, Moore et al. [21] performed a series of velocity and conductivity mea-
surements along 70 km of the Quinatana Roo coast. They estimated velocities of 2.1-107*
m/s in the freshwater lens and 8.2 - 107* m/s in the seawater within the dual-porosity
karst. Inside large fractures within the freshwater lens, the authors measured a velocity
of 1-1072 m/s 10 km inland and 1.2 - 107! m/s along the coast. They attribute this
change in velocity to the decrease in depth of the freshwater lens closer to the coast. From
their conductivity measurements, the authors state that the halocline is in a steady-state
position due to the rapid flow of fresh and brackish water towards the coast balanced by
the convection of the seawater underneath. A more recent study was carried out in 2006
[3], where conductance and temperature measurements were taken in roughly the same
section of coast. Their measurements within 1 km of the coast showed a very rapid in-
crease in freshwater temperature and conductance, indicating substantial mixing with the
underlying seawater. Inland, the rate of change of temperature and conductivity is much
less, indicating less mixing. The authors further found that inland, within fractures, the
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morphology and geometry are important factors in controlling the quantity of mixing that
occurs. Finally, they showed that the underlying seawater cools as it travels inland, reach-
ing an equilibrium with the freshwater lens 10 km inland. Though studies such as [21] and
[3] provide some dynamic information about the aquifer system one key problem is that
they only provide information at a specific point in time. These studies cannot provide
any information about how the system varies through time and how it is affected by daily,
seasonal or yearly cycles in the environment. A sustained measurement campaign carried
out over multiple seasons would allow for a link to be made from a system driven by the
current climate to the same hydrological system driven by past or future climates. Further-
more, without time variation we cannot observe how specific events (such as hurricanes)
affect the amount of mixing that occurs.

To fill this gap in knowledge, a team headed by Dr. Eduard Reinhardt began placing
temperature, salinity, and pressure sensors within the Yax Chen cave system (part of the
larger Ox Bel Ha cave system, Figure 1.3 shows the entrance to the Yax Chen network),
which remained submerged for long durations of time (approximately six months) and
managed to capture several large scale weather events. This thesis is an analysis of the
data from several of these sensors, along with a set of numerical simulations which will be
shown to have forcing which is qualitatively similar effect to rain. This work is organized as
follows: the remainder of Chapter 1 will review the background theory of wavelet analysis,
provide examples of different signals and compare their wavelet spectrum, and then discuss
the hydrodynamic background and theory used in the simulations. Chapter 2 describes
the methodology and background information about the sensors and their placement, and
is followed by analysis of the sensor data. Chapter 3 begins by showing how the numerical
set up was generated from a series of reductions and simplifications of the original problem.
We then outline the simulation set up and describe the numerical code used. We continue
by analysing the simulation through primary variables, u, K E = %(u2 +v2+w?) and p. We
then examine the impact of the forcing on a dye column placed within the simulation. New
parameters are introduced to quantify and distinguish stirring and mixing effects. Chapter
4 concludes the thesis by linking the numerical simulation to physical observations and
placing the results of the sensor data in a larger scientific context. Finally, we discuss the
current and future work that is planed.



Figure 1.3: The entrance to the Yax Chen cave system is located at the bottom and far
end of this cenote. At this distance from the coast, there is heavy mangrove cover on the
surface. Personal picture.



1.2 Wavelet analysis theory

Time-series analysis is a major part of the study of physical systems. In real-world systems,
measurements are often gathered over long periods of time and include many irrelevant
fluctuations. Many physical processes are periodic, though the exact period may vary over
time or may be on very long time-scales. As a result, one of the primary ways in which time
signals are analysed is through Fourier analysis. The Fourier transform of some temporal
function f(t) is given by

FIf) = fw) = / " (e, (L1)

where w is the frequency, ¢ is the time and ¢ is the square-root of negative one. The Fourier
transform decomposes the function f(t) into an infinite series of sine and cosine waves
with differing frequencies. Provided that the function is sufficiently smooth this series will
converge exactly to the original function. Two important theorems from Fourier analysis
are called the Parseval and Placherel theorems (for proofs and additional information see
standard references such as [13] or [12]).

Theorem 1.2.1 (Plancherel’s theorem). If f and h are in L*(R) (N L2?(R) then,
0o 1 0 R
| sowwa = [ fwi @ (12
—00 T J -0

where x denotes the complex conjugate, A\ denotes the Fourier transform, L*(R) denotes the
space of Lebesgue integrable real functions and L2(R) denotes the space of square integrable
real functions.

Theorem 1.2.2 (Parseval’s theorem). For h = f it follows that

/ TP = [ )P, (13)

These two results are extremely powerful because they apply to any function A that
satisfies the conditions of Theorem 1.2.1, which means that we can use Fourier transforms
to analyse more exotic transforms (such as the wavelet transform). They also show us that
we can relate the ‘energy’ (norm squared) of any function to its spectral power. These
results will become important later when we consider computing the wavelet transform.

While this definition of the Fourier transform is useful in theory, in practice, data is
not given by a continuous signal. Rather, it is measured at discrete times with a finite



number of samples. If we assume a uniform sampling rate, and a spacing of At between
our measurements, we can write a sample of some original function at time ¢ as f[t] =
fInAt],n = 0...(N —1). Using the Dirac delta function we can write our discrete function
as

=

i1 =" F(nAb)S(t — nAt). (1.4)
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The Fourier transform of §(t — nAt) is e=2% and so we can write the discrete Fourier

transform as
N—1

flwl = fnat)e ™ ¥, (1.5)

This process is very general and can be applied to all the continuous theory we will discuss.
For this reason we will continue our discussion of the background theory using continuous
notation but it can be easily extended to the discrete case.

The Fourier transform has been extremely influential throughout the development of
modern physics, having been applied in areas from quantum theory to signal analysis.
However, a major drawback of the analysis is that it provides no information about the
location of the frequencies in time. This effect is a result of f and f being conjugate
variables, and as such must obey an uncertainty principle. Under the Fourier transform
each point in the frequency domain requires information about all points in the time
domain, and vice-versa. Practically, this means that the more localized our function is in
the time domain (the more precise it is) the broader its Fourier transform will be (less
precise). This result also means that when we are in the Fourier domain we have zero
information about the time localization and when we are in the time domain we have zero
information about the frequency localization. For example consider Figure 1.4. In panels
(a) and (b) we see two distinct signals that both result in the same spectrum (panels (c)
and (d) respectively). This effect is a result of Fourier analysis not providing any time
localization information. Since both frequencies of 10 seconds and 30 seconds appear in
both signals (and with the same power) their spectra look the same. As a result of this
effect, Fourier analysis is not adequate for extracting spectrum information from a signal
when we would also like to know at what time a specific frequency is being activated.
However, we can modify the traditional Fourier transform to acquire this information.
The windowed Fourier transform, also called the Gabor transform (first introduced in [3]),
is similar to the traditional transform, only with the addition of a windowing function.
Mathematically this is written as

fmﬁl(w) = /00 f(t)g(t —m)e "dt, (1.6)
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where ¢(t) is the windowing function which is real, symmetric, has compact support,
and is centred around 0. The windowing function allows the transform to measure the
contributions of sine waves of frequency [, locally around the point m. Traditionally, this
window function and the sinusoidal components are combined and called the integration
kernel, g,,;(t) = g(t—m)e . In relation to the uncertainty principle, the windowed Fourier
transform can be thought of as losing certainty in the frequency domain but gaining some
time localization information. Following the procedure in Chapter 4.1 of [20], in order to
examine the uncertainty in each domain, we must look at the properties of the power of
the integration kernels, |g,,;|? and |G, |*>. Our transform no longer brings us to a one-
dimensional domain, but we are now in a two-dimensional domain as a result of preserving
some information from the time domain. Now consider a point in the time-frequency plane
(m,1). Since our windowing function is guaranteed to have compact support, there is a
specific ‘width’ of the function where it is non-negligible. The point (m,[) can only resolve
times within this width, the same is true for frequency. To measure the extent to which
each domain matters, we can calculate the variance for each domain centred around our
point,
o o0
st = [ = mPlgni(Pde = [ (6= mPlgto)ae, (1.7
—0oQ —0o0
and - -
7= [ = Dlgmat)Pde = [ (- 1Pl P (18
—0o0 —0o0
Using the substitution v = ¢t —m and cancelling the exponential terms, we can see that the
variances are independent of m and [. Thus we will have a tiling of similarly-sized boxes
all across the time-frequency domain as we vary (m,!). This is the price that we must pay
to obtain information about both time and frequency, there is uncertainty as to the exact
values. A depiction of these ‘Heisenberg Boxes’ can be seen in Figure 1.5.

The problem with the windowed Fourier transform is that we are limited by the choice
of window, or more specifically by the maximum time-scale of our window (and correspond-
ingly the maximum frequency-scale). Any frequency that is longer than our scales will be
impossible to resolve. One solution to the problems with the windowed Fourier transform
is the idea of the wavelet. The wavelet transform, first developed in [11], decomposes a
signal into a wavelet basis, where a wavelet, 1, is defined to have compact support, along
with the following properties,

lfwww:a|wwzx (1.9)

Following the analysis in Chapter 4.3 of [20] and [17], there are two types of wavelets: real
and complex. Real wavelets cannot provide amplitude and frequency information, but can



(a) (b)

(c) (d)

Figure 1.4: The signal in (a) is sin(10¢)+-sin(30¢) multiplied by a Gaussian envelope centred
at m, while (b) is sin(10¢) multiplied by the same Gaussian centred at 7/2 plus sin(30¢)
multiplied by the same Gaussian centred at 37 /2. Their spectra (c) and (d) respectively,
appear almost identical. Since Fourier analysis does not provide any information about
the time localization of the frequencies within a signal, cases where the same frequencies
are active but at different times will result in the same spectra.

easily pick out isolated peaks or discontinuities. These properties are often used to detect
sharp transitions and thus predominantly used in image processing. Complex wavelets
are similar to the windowed Fourier transform and are used to separate both time and
frequency information. For this reason we will be focusing on complex analytic wavelets,
since they are the type that will be used for signal processing. Once an original ‘mother’
wavelet is chosen, it is scaled and translated to form a ‘dictionary’ (not necessarily a basis)
of ‘daughter’ wavelets. Mathematically, we can write this as

= ()

The continuous wavelet transform is defined as

S

WIS ss)) = () = [ 020 (t - “) it (111)
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Figure 1.5: A depiction of the time-frequency (Heisenberg) boxes that tile the time-
frequency plane. The time width of the box is defined by o; while the frequency width
is defined by o,. Since the variances are constant, the boxes form a symmetric tiling
throughout the plane. This causes issues if we want to investigate low frequencies, which
depend on much large time-scales than are resolved by the box.

The key difference and advantage of the wavelet transform over the windowed Fourier
transform is in the time-frequency resolution. As for the windowed transform, we must
investigate the variances of the integration kernel (in this case the wavelet), o7, and its
conjugate variables variance, o%. For the following calculations it will useful to note that
the Fourier transform of ,,,(¢) is

~

us(w) = Vst (sw) e, (1.12)
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This states that the zﬁw can be considered a stretched version of ﬁ Since 1 is centred
around zero, 1, s is centred around w. Using the change of variable v = t’T“ it can be easily
shown that in the time domain we have that

) - | "t = ()Pt = 202, (1.13)

with of = [7°_t?|1(¢)[*dt. This result corresponds to a stretching of our Heisenberg box.

Since ) (w) = JZ5 w(t)dt = 0, the centre of the spectrum (also called the centre of the
passing band), 7, is located at some point away from origin. Since the spectrum is even
and negative values do not provide additional information, we will limit ourselves to the
positive real line. We can find the centre of the passing band by calculating the first
moment,

I
o 1) P
Using the results calculated earlier for the Fourier transform of 4, ,(¢), the centre of the
frequency is therefore n/s, so we can calculate,

(1.14)

0.2

726 = 5 [ 0= D)o = % (1.15)

)
52

with 02 = [;%(w — n)2|1(t)|2dw. These two results show that as we change our scale, we
change the shape of the Heisenberg box and the frequency at which we are centred. This
can also be thought of as our frequency controlling the scale: as we lower the frequency
we increase the range of times considered, and the opposite is true as the frequency is
increased. This results in a pyramid shaped tiling over the time-frequency domain which
can be seen in Figure 1.6.

By systematically varying the scale, the wavelet transform allows us to tile the time-
frequency plane much more efficiently than the windowed Fourier transform, and enables
us capture the entire range of frequencies of the original signal. This is the reason we chose
to use wavelet analysis over windowed Fourier analysis for our investigation of the sensor
data from the cenotes and for the trace element sediment data. Returning to the example
first given in Figure 1.4, if we now use the wavelet analysis to compare the two different
signals we can readily distinguish the two. In Figure 1.7 we present the same signals from
Figure 1.4 where we have taken the wavelet spectrum of the time-series and presented a
pseudocolor plot of the time-frequency domain. From this plot we can extract the same
frequency information that we could from the Fourier spectrum, (though for wavelet plots it

12
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Figure 1.6: A depiction of the time-frequency (Heisenberg) boxes that tile the time-
frequency plane using a complex wavelet. The time width of the box is defined by so,
while the frequency width is defined by o,/s. This means that as we change our scaling
we also change our position along the frequency axis and the shape of the time-frequency
boxes. This key feature enables sufficient temporal resolution to resolve the corresponding
low frequency.

is customary to display the period), but we can also see the duration for which this signal
is dominant. In the case of panels (a) and (c) both signals are dominant for the same
duration, and are clearly distinct. However in panels (b) and (d) we can now distinguish
that in this case the frequencies peak at different times. This is the major gain for wavelet
analysis, with the downside being that we have given up some accuracy in calculating the
period (the spread of the peaks).
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The changes in shape for each peak as we move to lower frequencies are due to the
changing size of the time-frequency boxes and the large area of the peaks is due to our
uncertainty explained above. The psedocolor plot was interpolated which is why the time-
frequency boxes are not visible due to resolution. Also note that the intensity of the smaller
period was slightly less than the larger period. This is due to the energy scaling similarly
to the support of the frequencies. The other contours shown in Figure 1.7 are important
when presenting wavelet spectra and will be used throughout this work. The red diagonal
line is called the ‘cone-of-influence’ and demarcates the region where boundary effects
become important. Some daughter wavelets which ‘fit” within the centre of time-series,
when translated, would extend beyond the limits of the series, causing problems with the
transform. Anything above the cone-of-influence has extended beyond boundaries and thus
cannot be trusted to be correct. In general we will ignore anything beyond this boundary.
The white contour lines indicate a 95% confidence interval for the signal when compared to
a background distribution. In these example cases a white noise background is selected, for
the field data and in general any physical phenomena, a red noise background is selected.
This contour helps to quickly identify regions of interest within the wavelet spectrum and
provides evidence that the signal is not a random fluctuation.
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Figure 1.7: The wavelet spectrum for the same signals presented in Figure 1.4. It is
important to note is that the y-axis is now given as the period thus the frequencies from
Figure 1.4 are of period: 25 (0.2094) and 27 (0.6283). Due to the uncertainty from our
time-frequency boxes, the specific frequencies are not exact but rather slightly spread in
the time-frequency domain. However, they are sharply spiked at a specific frequency
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1.3 Examples of sample signals

Having now discussed the background theory as to how wavelets can be used on a given
time series, let us now consider some sample signals and view their response in the time-
frequency wavelet plots. We begin by looking at the simplest possible signal, a sine wave.
Figure 1.8 shows both the sinusoidal time-series, y = sin(t), and the corresponding wavelet
plot. There is a very clear response in the wavelet plot which is nearing constant for all
times within the cone-of-influence. We can also see that the wavelet power is concentrated
at the 27 period, which is the period of the time series. There are a few additional
important features that we can note from this simple example. The effect of being outside
the cone-of-influence are visible near the edges of the plot. Again it should be mentioned
that you cannot trust any results from beyond this cone since edges will affect the results.
Also notice that the band is not precisely located at 27 but rather there is a frequency
width to the band. This is due to the loss of accuracy in the frequency domain that we
gave up in order to gain temporal information.

Figure 1.8: A simple sine wave along with its wavelet spectrum. With no changes to the
sine wave, there is a clear band at the 27 period mark in the wavelet spectrum plot. This
band is consistent for most times within the cone-of-influence.

In the example shown in Figure 1.9 we have now combined (by summation) three
different sine waves with different periods (one with the same period as the last figure,
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one doubled and one halved). The first feature that is immediately apparent out from
this plot is that the magnitudes of the bands of power are much larger for the higher
periods. This bias of power at higher periods is because of the width of the wavelet filter in
Fourier space. According to the Torrence and Compo (the authors who’s wavelet package
we use) website FAQ (http://paos.colorado.edu/research/wavelets/faq.html): ‘At
small wavelet scales (high frequency), the wavelet is very broad in frequency, therefore
any peaks in the spectrum get smoothed out. At large wavelet scales, the wavelet is
more narrow in frequency, therefore the peaks are sharper and have a larger amplitude

. [I]n mathematical terms, the global wavelet spectrum is an ‘efficient” estimator of the
‘true’ power spectrum, but it is also ‘biased’. The bias means that there may be a large
difference between the global wavelet spectrum and the ‘true’ Fourier spectrum. ... [I]f
you have sharp peaks in your power spectrum, don’t use the global wavelet spectrum to
determine the relative magnitude of your peaks’. Therefore, as suggested by Torrence and
Compo, we can use the wavelet spectrum to extract time-frequency information from our
signal, but in some cases we must combine this with traditional Fourier analysis to compare
the magnitudes of different signals. Despite the bias, in Figure 1.9 we can see the distinct
bands at the corresponding periods to the sine waves in the time-series.

S : . : _Gmw?
The next example that we consider is a simple Gaussian function, y = ¢~ 202, where

1 is the mean, and o is the standard deviation. In the wavelet spectrum of this Gaussian,
seen in Figure 1.10(b), we see a peak in power at 47 which then spreads out in a cone for
larger periods. Through modifying the variance (and thus the width of the function) we
change both the shape of the cone of periods which are activated and the period of peak
power.

The next example, Figure 1.11, we consider is a combination of the two previous;
in which we multiply the three sine waves by the Gaussian to create a localized signal.
To enable the sinusoids to have enough repetition in time to be differentiated, we have
increased the width of the Gaussian by a factor of five. As in Figure 1.9, we can easily
distinguish the three sine waves present in the time-series. We also see the differing sizes
of the ‘bands’ for each sine wave created by the variable time-frequency grid. Another
striking feature is that the 27 period waves have the highest wavelet power, despite in
the non-Gaussian case the highest power was seen at 4. This is because of the chosen
size of the Gaussian envelope and how the daughter wavelets line up. If the width of
the Gaussian envelope were to be increased, we would see more power at the larger period
oscillation, while the opposite is true for a smaller width. This again enforces the point that
the magnitude of the power of the wavelet spectrum cannot be used to compare different
periods.
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Figure 1.9: Multiple sine waves with different frequencies added together. The time series
is shown in the upper panel while the wavelet spectrum is shown in the lower panel. We
have the unmodified wave, twice the period and half the period. All three periods can be
observed in the wavelet spectrum, however the higher frequencies appear with more power.

The final example we will consider is the same as the example in Figure 1.11, however
we have added a background of white noise. The amplitude of this noise has a similar mag-
nitude to the underlying signal. Mathematically this means that the normal distribution
used for the noise has a variance of one. The time-series and wavelet plot are presented in
Figure 1.12. It is quite evident that despite the addition of significant noise to the signal,
the sinusoidal signals are easily extracted from the wavelet plot. Again we must remember
that comparing the magnitude of the power across periods is not meaningful, but dominant
periods can still be extracted. It is also possible to repeat this with red noise, which is
more common for physical applications. The results will be similar, and it is just as easy
to extract the sinusoidal signals.

18



0.8 -
(a)

0.6 -

(1)

0.2~ —

0 10 20 30 40 50 60 70 80 20 100

Figure 1.10: The time series of a Gaussian is shown in the upper panel while the wavelet
spectrum is shown in the lower panel. The function has a mean of 50 and variance of one.
The wavelet power spectra of this function peaks at 47 and then spreads out in a cone
from there to larger periods.
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Figure 1.11: The time series of a Gaussian multiplied by the various sine waves shown in
Figure 1.9 is shown in the upper panel while the wavelet spectrum is shown in the lower
panel. All three periods can be observed in the wavelet spectrum. In this case the 27
period has the highest power.
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Figure 1.12: The time series of a Gaussian multiplied by the various sine waves shown in
Figure 1.9, now with white noise having been added, is shown in the upper panel while the
wavelet spectrum is shown in the lower panel. Note that the noise is on the same order as
the amplitude of the waves themselves. Again, the three periods can easily be extracted
from the wavelet spectrum.
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1.4 Hydrodynamic background

The dynamic equations for the systems we will be considering are called the Navier-Stokes
equations, under the Boussinesq approximation. These equations are written as

Du 1 PY 3. 2
— = ——Vp+ —k +vV-u, 1.16
Dt Po P Po (1.16)
V-u=0, (1.17)
DT 9
— = T 1.18
p=po(l—a(lT—"1T)). (1.19)
where % = % +u -V is called the material derivative, u is the vector of velocities, p is the

fluid density,py is a constant reference density, p is the pressure, g is the acceleration due
to gravity, p is the dynamic viscosity, 1" is temperature, x is the thermal diffusivity and «
is the thermal expansion coefficient. Equations (1.16) are called the momentum equations
and are Newton’s law of motion for fluids, with one equation for each component of velocity
(see [18], [35], or any standard fluid text for a derivation). Equation (1.17) comes from
conservation of mass and the continuity equation. Equation (1.18) is a dynamic equation
for temperature. Finally, (1.19) is a simple, linear equation of state. In the following
section we will show how this specific set of equations are derived from the full set of more
complicated equations to highlight the specific approximations which must be made.

The Boussinesq approximation states that if we assume that density and temperature
fluctuations are small in comparison to a reference value, the vertical extent of the fluid
is much less than any scale hight (depth d < po/ ‘2—’;), and we consider speeds much less
than the speed of sound (1482 m/s for water), then density changes can be neglected in
all terms except in the gravity term, [29]. To derive this we write

p=po+p(zy,2), (1.20)

where density can be split into a constant part py and a small perturbation p'(z,y, 2)
(I¢'| < |pol). Correspondingly, we also assume that we have a constant temperature 7j
added to a small perturbation, 7. We further assume that the background state (po, po)
is in hydrostatic balance so that we have,

P = Do —f—pl<l’,y, 2)7 (121)
so that p
p
0 g (1.22)
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Substituting this into the full momentum equations,

Du

P or = —Vp + pgk + pV3u, (1.23)

we can cancel out terms and divide through by pg, resulting in

/ D 1 / R
(1 + ﬁ) =2y + Lgle 0V, (1.24)
po) Dt Po Po

In this equation, v is the kinematic viscosity and is defined to be v = u/py, where p is
the dynamic viscosity. If we assume that our density variations are small (|p/| < |po|), we

have for the inertia term that (1 + ;%) ~ 1. However, applying this on the right hand side

of the equation will result in the buoyancy term being eliminated. The buoyancy term is
very important and cannot be neglected. Thus we make the assumption that the density
perturbation can be neglected except in the buoyancy term. For the continuity equation,
we begin with

1 Dp

___‘_v-u:()' 1.25

Dt (1.25)
It is then argued by scaling the terms, that l% will be small compared to the magnitude
of the velocity gradients, V - w. This will not be true when compressible effects begin
to matter, and thus we have a limit on the maximum velocities we can consider. The

Boussinesq approximation also effects the general temperature equation,

DT

20
P20 Dy

= —kV?T + ¢, (1.26)
where k is the thermal conductivity of the fluid, C,, is the specific heat at fixed volume and
¢ is the viscous heating. This equation can be derived from the First Law of Thermody-
namics, see [18] for details. Using a similar scaling argument to the continuity equation,
the magnitude of ¢ in most typical situations will be extremely small (~ 10~") compared
to the other terms and thus can be neglected. The equation of state links thermodynamic
variables together (e.g. the ideal gas law). For liquids there is no first-principles equation
of state available, rather these relations are empirically derived. In general, the variables
in the equation of state could be temperature, salinity, pressure, etc. However in the case
of our simulations (Chapter 3) we assume a simple, linear relation between temperature
and density,

p = po(l —a(T' = Tp)). (1.27)
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Equations (1.16)-(1.19) are the equations which were used during our numerical simu-
lation, and indeed are accurate across all scales of motion on which the continuum approx-
imation holds. However, for our specific physical situation, they are not useful across all
scales. This is due to the complex boundaries within the karst system. Within the large
fractures, caves, and cenotes of the Yucatan peninsula, it is reasonable to assume that the
boundaries could be specified in a manner that is representative of the field conditions.
However, on the scales of flow through the network of pores within the karst (4m to mm),
the Navier-Stokes equations are no longer useful. For such a complicated system it is no
longer possible to model the dynamics of the fluid directly but rather we must examine
the bulk flow through a sample of karst. In this case we would want to move to a macro-
scale equation for flow through porous media, that effectively averages the dynamics at the
pore level. We would then need to add a preferred flow direction for the many caves and
fractures in the landscape which would modify the general flow. The standard, empirical
equation for this type of flow is called Darcy’s Law and reads

u = lK' - VP, (1.28)
1
where the constants and variables have previously been defined except for K which is
called the permeability and defines how much fluid is allowed to flow by a given medium.
In general it is a second order tensor (this allows for a preferred flow direction within the
porous medium), [22].
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Chapter 2

Analysis of sensor data
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2.1 Overview of sensor placement and methodology

Two types of sensors were used for the measurements within the cave network. The
HOBO Fresh Water Conductivity Data Logger from OnSet provided both conductivity
and temperature measurements. The Sensus Ultra from ReefNet provided temperature
and pressure measurements. OnSet builds the HOBO sensors for research applications,
while the Sensus Ultra are a recreational tool for divers. The specifications for the various
fields of interest are reported in Tables 2.1, 2.2 and 2.3. Comparing the specifications for
the temperature fields reveal that despite the Sensus Ultra not having been designed for
research purposes, it can provide roughly the same information as the HOBO sensor. The
key difference between the two is that the HOBO sensor is eight times more accurate than
the Sensus. Another feature that is important to note is that the Sensus Ultra reports
its statistics in depth while the sensor technically takes measurements of pressure. This
means that there is some error involved when converting from pressure to depth since the
calculation assumes that the density is constant and that there is a constant atmospheric
pressure. These approximations do not always hold, especially during storm events where
atmospheric pressure may change quite a bit and the density field may get mixed up.
However, the effect that these have on the measurements are relatively small, and unless
we are looking at centimetre variations they can be considered negligible.

Conductivity HOBO Conductivity Logger
Range 0 £ 0 10,000 £
Accuracy 3 % of reading, or +5 ff—s, whichever is greater
Resolution 12

Table 2.1: Conductivity specifications for the HOBO Conductivity logger that were used
in the Yax Chen cave system. (Retrieved from http://www.onsetcomp.com/products/
data-loggers/u24-001)

To provide the most relevant information in regards to halocline mixing, the sensors
were placed in chains. The two chains that we will be looking at are called the ISOD2
chain and the H2S chain. The location of these chains in the cave system can be seen in
Figure 2.1. The chains are close enough to the cenote openings that we expect to see some
influence from rain or water flow into the sink hole, but far enough into the cave that the
direct dynamic effect of rain falling on the water surface is not seen. Due to the higher
price of the HOBO sensors, the Sensus Ultra sensors were used to fill the gaps between
the HOBO sensors on the chains. The ISOD2 chain had five Sensus Ultra sensors attached

26


http://www.onsetcomp.com/products/data-loggers/u24-001
http://www.onsetcomp.com/products/data-loggers/u24-001

Depth Sensus Ultra

Range 1m to 154 m
Accuracy | +0.3048 m
Resolution 0.0127 m

Table 2.2: Depth specifications for the Sensus Ultra sensor that were used in the Yax Chen
cave system. (Retrieved from https://reefnet.ca/products/sensus/)

Temperature | Sensus Ultra | HOBO Conductivity logger
Range —20°C to 40°C 5°C to 35°C
Accuracy +0.8°C +0.1°C
Resolution 0.01°C 0.01°C

Table 2.3: Temperature specifications for both the Sensus Ultra sensor and the HOBO
conductivity logger that was used in the Yax Chen cave system.

through the length of the cave passage. There were two HOBO sensors attached to the
chain, as well. The H2S chain had four Sensus Ultra and two HOBO. The sensor depth
and serial numbers are provided in Table 2.4

Type | Serial Number | Location | Depth
HOBO 9960690 ISOD2 | 10.1 m
HOBO 10039732 ISOD2 9.1m
Sensus 9208 ISOD2 9.1m
Sensus 9209 ISOD2 | 13.6 m
Sensus 9210 ISOD2 | 122 m
Sensus 9218 ISOD2 | 10.7 m
Sensus 9219 ISOD2 7.6 m
HOBO 10076089 H2S 9.1m
HOBO 10039736 H2S 10.7 m

Table 2.4: Depth and location information for the sensors used to create the sensor chains.
The sensors are split up between two chains, ISOD2 and H2S, the location of which can
be seen in Figure 2.1.

The sensors were left in the cave for six-month intervals starting in 2011. To recover
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the data, the Sensus Ultra had to be retrieved from within the cave by divers and then
manually connected to a computer. For this reason there are gaps within the time series
which were interpolated to create a continuous version. A shuttle from OnSet was used
for the HOBO sensors which allowed for the data to be collected directly within the cave
network and so there was no need to remove the sensors from the chain.

The data that is provided by these sensors can be combined to provide the density
through the equation of state. While there are many empirical options for the equation of
state, for most saline hydrodynamic applications the UNESCO equation of state is used
[341]. This equation computes density using pressure, temperature and salinity. Following
Appendix 3 in [9], the density of pure water is given by

P = 999.842594 4 6.793952 - 10727 — 9.095290 - 10737
+1.001685 - 1077 — 1.120083 - 107°7* + 6.536332 - 1027, (2.1)

The density when pressure is zero (p = 0) is given by

p(S,t,0) = py + S(0.824493 — 4.0899 - 10T 4 7.6438 - 10~°1*
—8.2467 - 107713 + 5.3875 - 107°T*) + S3/%(—5.72466 - 1073
+1.0227 - 10* — 1.6546 - 107°7) 4 4.8314 - 10~ 1S (2.2)

In general we can write that the density is

p(S,T,0)

1~ %@57)

p(S,T,p) = (2.3)

where K is the secant bulk modulus and is given by

K(S,t,p) = 19652.21 + 148.42067 — 2.327105T2 + 1.360477 - 10~2T* — 5.155288 - 10~°T*
+ 5(54.6746 — 0.603459T + 1.09987 - 10~ *T? — 6.1670 - 10~°T?)
+ 53/2(7.944 - 1072 + 1.6483 - 10727 — 5.3009 - 107*7?)
+ p(3.239908 4 1.43713 - 10~*T + 1.16092 - 10~*T% — 5.77905 - 10~ "T%)
+pS(2.2838 - 107% — 1.0981 - 10T — 1.6078 - 10°7?)
+ p?(8.50935 - 107° — 6.12293 - 107 °7T" 4 5.2787 - 10757?)

+ p25(—9.9348 - 1077 4 2.0816 - 10737 4 9.1697 - 10~1°72) + 1.91075 - 10~4pS3/2.
(2.4)

While these equations are complicated to write down, pre-made scripts make the equa-
tion extremely easy to use numerically. Another important calculation will be converting
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from conductivity to salinity. By taking water samples when divers are downloading the
data from the sensors, it is possible to calibrate the sensors so as to very precisely calculate
the salinity. However, since we are within the range of 2 ppt to 42 ppt we can use an
experimentally derived equation for conversion, outlined in [1]. Salinity can be computed
from conductivity, C, as

S(t,C) = 0.0080 — 0.1692RY/* + 25.3851 Ry + 14.0941R2/* — 7.0261 R% + 2.7081 R}/

T —15
+ (1 001627 = 15)> (0.0005 — 0.0056 RY* — 0.0066 Ry — 0.0375R:/?

+ 0.0636R2 — 0.0144R3/?), (2.5)

where Ry is the ratio given as

C
—0.026724373 + 4.663694712 + 861.30276407" + 29035.1640851

Ry(T,C) = (2.6)
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Figure 2.1: A map of the research area c&ﬁtesy of Shawn Collins. Panel (a) shows a
portion of the Yucatan coast, and the location of the Yax Chen cave network. Mangrove
cover is shown in green, and the entrance and furthest well mapped point are labelled.
Panel (b) shows a close up of the cave system and the names of particular areas within the
system.



2.2 Time-series analysis

To allow for easy comparison with figures that do not contain their own precipitation
data, we have provided the full rainfall measurements from the Sian Ka’an Biosphere in
Figure 2.2. This data indicates several large events, the largest of which (dwarfing all the
others) occurs in mid-September 2013, and is a result of Hurricanes Ingrid and Manuel.
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Figure 2.2: Precipitation data gathered from the Sian Ka’an Biosphere relatively close to
the sensor site. This is the full extent of the gathered data. The sensor records precipitation
in 10 minute intervals, however to make the data more manageable it has been binned into
daily amounts. The largest spike in the series correlates with Hurricane Ingrid and Manuel.

Figure 2.3 shows the temperature measurements from the Sensus Ultra sensors on the
ISOD2 chain from June 2011 to March 2014. The temperature decreases vertically up the z
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axis so that the sensors lines appear as they would on the chain. There are two very striking
events visible in this time series, one in September of 2011 and one in September of 2013.
There is a clear response, specifically in the deeper sensors at these times. Comparing this
time series to weather records for the Yucatan peninsula (Figure 2.2), we can see that these
times directly correspond to Hurricane Rina in 2011 and Hurricanes Ingrid and Manuel in
2013. This correlation implies a connection between the hydrodynamics within the caves
and large scale weather events. The oscillations of the 10.2 m (red) sensor, appears to
alternate between a temperature similar to the sensors above it, and one similar to those
below it. This effect can be readily explained by the presence of the halocline at this level,
with the oscillations in temperature corresponding to the halocline oscillating about the
fixed sensor. This is supported by anecdotal evidence from divers who report that the
halocline in this section of the cave is located at roughly a 10 m depth.

Using weather data gathered from the nearby Sian Ka’an Biosphere (this data has
been gathered from 2012 onwards), we can compare the temperature time-series with the
precipitation data to look for closer correlation between the datasets. Figure 2.4 aligns the
temperature time-series with the precipitation data for the time period during and after
the 2013 hurricanes. It is very clear that the large drop in temperature of the lower sensors
occurs at the same time as the large rainfall event. We can also note that the second largest
rainfall event in early November also corresponds to a drop in temperature of the lowest
sensor. Notice that the response to both of these events is similar namely a sharp drop in
temperature followed by a recovery to a new stable state that is cooler than before.

Figure 2.5 compares the temperature responses to both the 2011 and 2013 hurricanes.
The initial drop in temperature looks extremely similar in both cases, especially for the
lower two sensors (11.6m and 12.1m). The response afterwards does differ however, though
the initial decline in temperature is followed by a quick increase in temperature during the
2013 event, then drops again to a similar level to that seen during the hurricane. The 2011
temperatures return to similar values to those before the lowest sensor slowly declining in
temperature. Observing the precipitation data from Figure 2.4, it is apparent that there is
a second rainfall event, thus the second decline in temperature is likely a result of this. We
would argue that were this second event not to have occurred the temperature response
would appear similar to the 2011 hurricane.

While it is possible to observe large events in the raw time-series, we have no information
about the periodicity of the signal, and any underlying structure is difficult to readily
observe. For this we turn to wavelet analysis. Figure 2.6 shows the time-series, (a), global
wavelet power spectrum (GWS), (b), and wavelet power spectrum, (c), for Sensus Ultra
I[SOD2 sensor located at a depth of 7.2 m. The time period that was analysed spans from
September 2012 to September 2013. Neither of the two large hurricane events occur during
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Figure 2.3: The complete time-series of temperature for the Sensus Ultra sensors located
at ISOD2, from May 2011 to March 2014. The sensors were organized in a chain, with
the corresponding depths given in the legend. The temperature axis has been flipped
so that the depths are ascending. Due to the warm surface ocean water entering the

system the overlying fresh-water is cooler, however the salinity differences result in a stable
stratification.

this time, so the data does not contain any large jumps in temperature. Observing the
wavelet power spectrum in Figure 2.6(c), a few features are immediately apparent. Notice
that at the current power saturation it is still possible to see a band of power located at the
one day mark. This corresponds to the tidal signal and will be considered more closely in
Figure 2.7. Focusing on the blue contour representing a 95% confidence in power compared
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Figure 2.4: A comparison of the Sensus Ultra ISOD2 sensor chain temperature data (top)
with the Sian Ka’an weather station precipitation data (bottom). Notice the very strong
correlation of temperature drops in the lower sensors during the large rainfall events.

to a background red noise, almost all of the power with a period longer than seven days
can be considered significant. The lack of contours surrounding the tidal signal indicate
that while it still may be real, the power level at these frequencies is not 95% above the
background distribution. The global wavelet spectrum (GWS) is the time-average of the
wavelet power spectrum, and can be considered an efficient estimator of the Fourier power
spectrum. Using the alignment of the wavelet spectrum and the GWS, Figures 2.6(a) and
(c), we can see that the relatively large oscillations between January 2013 to April 2013
appear to correspond to the large peak in power that appears in Figures 2.6(b) and (c)
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Figure 2.5: A comparison of the 2011 and 2013 hurricane events. There is a very smooth
decline in temperature followed by a quick increase to a slightly lower temperature at the
12.1 m sensor in the wake of the 2011 hurricane. The 2013 hurricane appears to follow
a similar path at first but then repeatedly and rapidly drops in temperature and then
recovers. Observing the precipitation data from Figure 2.4 we can see that there is another
noticeable rainfall event after the initial hurricane. We would argue that were it not for
this second event, the system would follow a very similar path to the 2011 hurricane.

at roughly the 13-14 day period. The arrows in the GWS indicate peaks in the power
of the spectrum using the built-in MATLAB peak finding function the following periods
were extracted: 0.5024 days, 1.0048 days, 12.9682 days, 26.1167 days, 56.7639 days and
111.9648 days. The first two peaks are can be readily identified as the semi-diurnal and
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diurnal tides. The latter three peaks are more difficult to identify. The 13 day peak
may correspond to the luni-solar fortnightly tidal component, to which it is within 5%
of the expected period. The next largest most likely corresponds to the lunar month
to which again matches within 5%. The last two periods are probably due to seasonal
variations, though it is not readily apparent what physical processes correspond to each.
There is a general trend within the GWS of the power increasing for longer periods. This
is in part caused by the bias of the wavelet analysis, as discussed in the previous chapter,
but is also a result of the underlying Brownian noise within the data. Since all physical
processes depend on the motion of matter, which is made of atoms and molecules, any
measure of these processes will contain this form of noise. The spectrum of Brownian noise
is one of exponential decay as frequency increases, thus since period is the reciprocal of
frequency we will have exponential growth for larger periods. The wavelet transform can
also be considered a broadband filter based on the scale of the particular wavelet that
is being used, because of this there is a smoothing effect on the GWS. In comparison to
the traditional Fourier spectrum (see Figure 2.9), this makes it much easier to extract the
general peaks in power.

Figure 2.7 focuses on the shorter periods of the wavelet power spectrum from Fig-
ure 2.6(c). The lower bound of the power spectrum has also been lowered to 272 as
opposed to 2° = 1, to highlight features which were not apparent in the previous figure.
At this saturation level the semi-diurnal and diurnal tidal signals are immediately obvious.
It is important to note that the data presented here are temperature measurements, while
tidal signals are traditionally measured in water depth. We would argue that these oscil-
lations in temperature are due to the water level fluctuating about the fixed sensor, since
the water column should have a stable density profile, as the water level rises the slightly
cooler water below the sensor is now detected, the inverse is true during low tide with the
warmer water above the sensor. The primary dynamical result from the detection of tidal
signals in the sensors is that this portion of the cave network is connected to the oceans.
Any modelling of the large scale hydrodynamics of the region must take in to account this
connectivity.

To further investigate the periodicity and impact of the tides, we move to the pressure
(depth) data. Figure 2.8 shows the same time-domain range as Figure 2.6, but with the
pressure data instead of temperature. In this wavelet spectrum the semi-diurnal signal
is within the 95% confidence interval, which agrees with intuition given that water depth
should change with the tides. In this time-series the spikes in the GWS occur at 0.5130
days, 1.0621 days, 2.4232 days, 8.2643 days, 14.1910 days, 38.2371 days, and 119.1720 days.
Comparing the spikes in the GWS and wavelet spectrum to the ones seen in Figure 2.6,
we find a strong correlation between the ~0.5 day, ~1 day, ~13 day, and ~112 day events
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Figure 2.6: (a) the temperature time-series for the shallowest Sensus Ultra sensor at a
depth of 7.1 m from September 2012 to September 2013. (b) the global wavelet spectrum
(GWS) for the time-series. (c) is the wavelet power spectrum plot, comparing period to
time. The GWS is the temporal average of the wavelet spectrum and can be thought of
as an estimation of the Fourier spectrum. The dashed line indicates the mean red-noise
spectrum and the arrows indicate peaks in power of the GWS. The blue contours indicate a
95% confidence interval and the yellow line indicated the cone-of-influence. Notice a clear
band in the wavelet power spectrum at roughly the 60 day mark for most of the time-series.

with the largest error 8% occurring at the 13 day event. Comparing the remaining spikes
to the wavelet spectrum plot, it is possible to align the 2.5 day spike with the spike that
occur in early June 2013. In the pressure series, this corresponds to the relatively large
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Figure 2.7: A close up of the wavelet power spectrum at low periods for the same time-
series as Figure 2.6. By setting the saturation level at (272) we can clearly extract a tidal
signal from the temperature time-series. Both the diurnal and semi-diurnal tides are visible
at this saturation level. This can be used to confirm the expectation that we can extract
a tidal signal from any hydrological system that is connected to the ocean.

jump in pressure indicating an increase in water depth. With a quick glance to Figure 2.6,
we can notice a spike in temperature as well, though not as strong. The ~38 day spikes
appears to correlate with a large spike in the wavelet spectrum that occurs from June 2013
- September 2013. Again, comparing to the pressure series we can correlate this to the
periodicity of spikes at occur in early June, mid-July, and late August. What is interesting
is that other than the June event there does not appear to be any corresponding spike in
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the temperature data, however, if we compare the dates with Figure 2.2 we can see that
these dates do correlate with precipitation events. It is possible that these events were not
large enough to impact the temperature at a 7.2 m depth, or that the impact was small
enough that it is not noticeable at the current range of the temperature time-series. The
remaining spike, at ~8 days, appears to have contributions throughout the time-series,
thus likely has a geophysical cause, but does not correlate with any tidal components or
rainfall events.

If we are solely interested in frequency (period) information, wavelet analysis has the
disadvantage of losing accuracy in the frequency domain. Thus, in the same cases, it is
more effective to use traditional Fourier analysis. Figure 2.9 presents the power spectrum of
the pressure data from the 7.2 m Sensus Ultra sensor. The range of dates from September
2012 to September 2013 was used. To properly present the power, the logarithm base 10 of
the power is shown. To highlight the diurnal and semi-diurnal signals a magnification from
a period of 0.2 to 1.2 is presented as well. As is to be expected due to the red-noise there
is a general increasing trend as period increases. An especially notable feature is that the
power at the semi-dirnal period (/0.5 days) is massive when compared to the surrounding
data, only for periods larger than 75 days is the power consistently as large as this spike.
Comparing the spikes in the magnified plot with the peaks in the GWS from Figure 2.8(b)
we can see that rather than being a single spike in power, the general peak is made up of
smaller specific peaks. The peaks correspond to the tidal constituents which refer to the
specific physical process that results in this excitation. Table 2.5 compares the ‘theoretical’
values for the eight largest tidal constituents with the largest spikes in spectral power seen
in Figure 2.9. The theoretical values, do not imply that there should be a spike in power
exactly at that value, but rather that there should be a spike around that value. This
is because many factors such as distance from coast, coastal geometry, or geography, can
impact the precise period. Comparing the theoretical period to the largest, closest period
measured, we see that there is fairly close agreement between all the constituents with the
largest error corresponding to a difference of 15 minutes.

We will now move on to analysis of the HOBO sensor data. The HOBO sensors are
both more accurate and provide more relevant information since we are interested in how
mixing events impact the salinity of the freshwater lens which is used for drinking water.
One of the primary motives for this research is to see how large precipitation events affect
the salinity within the water column. Measurements of these two fields are presented in
Figure 2.10. The salinity measurements are taken at two different depths (9.1 m and 10.1
m) from June 2013 to December 2014. These sensors were located on the ISOD2 chain.
In both sensors there is a clear correlation of spikes in salinity with the large precipitation
events. There are eight events with precipitation greater than 50 mm/day: June 4, August
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Figure 2.8: (a) the pressure time-series for the shallowest SensusPro sensor at a depth of
7.1m from Sep. 2012 to Sep. 2013. (b) is the global wavelet spectrum (GWS). The dashed
line indicates the mean red-noise spectrum and the arrows indicate peaks in the GWS. (c)
is the wavelet power spectrum plot, comparing period to time. The blue contours indicate
a 95% confidence interval and the yellow line indicated the cone-of-influence.

17, September 4, September 17, September 19, October 27, November 4, and November 15.
Each of these events has a corresponding response in the salinity measurements. Though
the sensors are located at different levels, it appears that the magnitude of the spikes is
the same; the maximum increase occurs during the September 19 hurricane event with
an increase ~2.3 ppt. This data provides strong evidence to support the hypothesis that
large precipitation events result in mixing events within the Yax Chen system. The next
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Figure 2.9: The spectral power of the pressure data from the 7.2 m deep Sensus Ultra
sensor. A range of dates from September 2012 to September 2013 was used. The horizontal
axis is given in period rather than the traditional frequency, which due to the background
of red-noise, results in growth in spectral power as period increases. An even extension of
the time-series was used so as to make the time-series periodic and avoid errors.

logical question is to what extent this mixing occurs. Currently, with this data, we can
say that there is a significant amount of saline water mixing within the first meter or two
above the halocline but without sensors at higher locations we cannot make claims about
the upper portion of the water column. At this point it is relevant to mention that sensors
located near the surface, which Shawn Kovacs is using for study of calcite rafts, have
detected spikes in salinity which appear to correlate with precipitation events. Further
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Constituent Symbol | Theoretical Period (h) | Period measured (h)
Shallow water overtides of principal lunar Mg 4.140 4.076
Shallow water overtides of principal lunar M, 6.210 6.062
Shallow water terdiurnal MK; 8.177 8.088
Principal solar semi-diurnal S 12 12.120
Principal lunar semi-diurnal M, 12.421 12.550
Larger lunar elliptic semi-diurnal Ny 12.626 12.770
Lunar diurnal K 23.934 24.200
Lunar diurnal (ON 25.819 26.070

Table 2.5: A comparison of the theoretical values of the first eight most powerful tidal
constituents with corresponding spikes in the Fourier spectrum.

study into this data will be needed, but it does support the hypothesis that these mixing
events may extend through the majority of the water column. It appears that after the
October 27 precipitation events, there is an inversion of the salinity measurements between
the two sensors. Before this event the deeper 10.1 m depth sensors consistently measured
higher salinities than the 9.1 m sensor. After the event, it appears that we have more
saline fluid above less saline fluid. For this configuration to remain stable, there must be
a corresponding change in the temperature field as these are two primary variables which
control density. Both the salinity and temperature time-series are presented in Figure 2.11.
In addition to the two sensors shown in Figure 2.10, we have also presented the 9.1m deep
HOBO sensor from the H2S chain. Perhaps the most striking feature of these two plots is
that the 9.1m sensors line up almost perfectly in the salinity measurements but are almost a
degree apart in temperature. One explanation could be that the H2S chain is located closer
to the coast (as seen in Figure 2.1), and so there should be more seawater which is warmer,
though this does not explain why the salinity remains the same. Another explanation
is error during placement resulted in the sensors not exactly being placed at the depths
recorded. In regards to the salinity inversion in late October, we can see that there is no
corresponding change in temperature. The temperatures do not event cross, indicating
that the salinity inversion should correspond to a density inversion. Using the equations
of state from Section 2.1 we can combine the temperature and salinity measurements from
Figure 2.11 into one density field which is presented in Figure 2.12. The density profile
appears very similar to the salinity data, which is to be expected since the temperature
readings remained relatively static during this duration. The second panel shows a positive
density difference between the two sensors’ indicating that the deeper sensor registers a
larger density than the shallower one. The plot has been coloured so that positive values are
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in red while negative values are in blue. After the September 2013 hurricane, the difference
is predominantly negative for the rest of the time-series. As mentioned previously this is
inherently unstable, observing the density difference we can see that change is not a huge
amount. The maximum difference appears to be roughly 1 kg/m? or roughly 0.01%. We
can also see that in the wake of the first declines into a negative difference, the system
returns quickly to a stable state, but after several of these events it returns more slowly.
We would argue that these inversions are caused by the rainfall induced-mixing the water
column above the halocline. Normally these inversions are temporary until the system
reverts back to a stable state, but in this case there are a series of rainfall events which
continuously causes this mixing and extends the duration of this inversion. Furthermore,
due to the large amount of rainwater that gets stored in the mangroves and upper mud
layer of the ground, which takes time to drain into the cave system, and the constant out
flow of the caves into the ocean, it is possible for this unstable state to exist for such as
long period.
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Figure 2.10: The time-series (top) of the salinity data collected by the HOBO sensors
located at the ISOD2 chain,from June 2013 to January 2014. The back line corresponds to
the 9.1 m deep sensor while the red line corresponds to the 10.1 m one. The bottom panel
presents the daily rainfall during the same period. By inspection, it is easy to correlate
large rainfall events with large jumps in salinity.
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Figure 2.11: The time-series of the temperature data (top) collected by the HOBO sensors
located at both the ISOD2 and H2S chains, from June 2013 to Jan 2014. The bottom panel
shows the salinity measurements from the same sensors. Though the temperatures remain
relatively stable during this half-year, the salinities do not, particularly from November
onwards, where it appears that there is salinity inversion with the overlying fluid containing
more salt than the underlying fluid. This along, with the temperature remaining constant,
implies that the water column over this time period is unstable.
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Figure 2.12: A comparison of densities at the two ISOD2 HOBO sensor locations (9.1 m
and 10.1 m). The top panel shows the density computed using the UNESCO equation
of state and the empirical equation for converting conductivity to salinity. The densities
at the two sensors are initially dynamically stable with the deeper sensor registering a
larger density. After the September 2013 hurricanes, this inverts and the higher sensor
registers the larger density. This is highlighted in the bottom panel, which shows the
density difference between the sensors. After the hurricane event, the density difference is
consistently negative, albeit the density difference is quite small (a maximum of 1 kg/m?).
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Chapter 3

Numerical simulation
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3.1 Reduction of physical experiments

As we saw in the previous chapter, field measurements are an extremely important tool for
understanding how hydrological systems such as those seen in the Yucatan peninsula react
to various inputs (i.e., hurricanes) and their general dynamics. However, one of the major
limitations of field measurements is that there are many degrees of freedom and the systems
are extremely complicated. This makes it difficult to concretely conclude that any results
observed is uniquely caused by a specific event or mechanism. There is also a finite amount
of information that can be gathered through the use of discrete sensors which are placed
into the environment. Due to this lack of resolution within the system, many smaller scale
features cannot be observed. In our particular case, the sensors only measured pressure,
temperature and conductivity, giving no information about velocity or how the water within
the freshwater or saltwater layers reacted to the heavy rainfall. Even provided that the
sensors could have detected flow rates we still would have extremely sporadic information,
which may not be sufficient for understanding the full scope of the phenomenon. To
better understand the dynamics, we must thus turn to numerical experimentation. In
this manner, we can examine specific cases and fully observe the resulting dynamics. Of
course it is not possible to simulate the entire, complicated, real world system and so
approximations must be made. One of the primary goals for these simulations is to see
how a region that is being forced and mixed directly (e.g., raining on an open cenote)
results in mixing away from the forcing site (e.g., within a cave network, for which the
mud, mangroves and the karst itself provide shielding from direct rain). The difficulty
for a numerical simulation is that ‘rain’ is an extremely problematic boundary condition
to simulate due to its random, time-dependent nature and due to the input of mass and
momentum. To see how we can simulate the effect of rain more simply we preformed a
series of small scale physical experiments and observed the results. The dimensions of the
tanks that were used are shown in Table 3.1. The specific parameters for each experiment
are presented in Table 3.2 along with the dimensionless Reynolds and bulk Richardson
number. The Reynolds number is a ratio of the inertial force to the viscous force. It is
written as Re = %, where U is the characteristic velocity, [ is the characteristic length,
and v is the dynamic viscosity (for water, and thus all cases considered here, v ~ 107%).
The bulk Richardson number is the ratio of the inertial force to the buoyancy force. It can
be written as Ri = [g]—lé, where U is the characteristic velocity, [ is the characteristic length,
and ¢ = g’”p;lp2 is called the reduced gravity with p; and py being the upper and lower
layer densities. Our first experiment, shown in Figure 3.1, presents the mixing that occurs
for a very small scale event, namely a large beaker. The initial fluid was stratified with a
small saltwater layer approximately five times smaller than the freshwater layer in vertical
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extent. The rain was created using a funnel with a perforated surface covering the bottom,
herein referred to as the ‘rainmaker’. When the rain begins, a small amount of mixing
occurs, however when more water was added to the rainmaker the momentum of the rain
increased slightly (due to the pressure of the increased water depth in the funnel) and this
immediately began disturbing the halocline, and resulting in saltwater being transported
upwards. The experiment indicates that even with an extremely unrealistic freshwater
depth, and at low Reynolds number, that mixing can still occur. Furthermore, from this
experiment it appears that the effect of the rain on the halocline is to force the interface
it downwards resulting in upward motion due to conservation of mass.

Tank | Length | Height | Width
Small | 0.78 m | 0.16 m | 0.17 m
Large | 200 m | 0.30 m | 0.20 m
Beaker | 0.10m | 0.30 m | 0.10 m

Table 3.1: The dimensions of the various tanks which were used for experimentation.

Experiment . . : .
Figure Figure 3.1| Figure 3.2| Figure 3.3| Figure 3.4
Tank beaker large small small
Freshwater

0.28 m 0.10 m 0.11 m 0.08 m
depth
Saltwater 0.02m | 015m |0.05m |0.08m
depth
Density  dif- 3% 2% 2% 2%
ference

1~0.01 1~0.01 1~0.01

. . 1~0.1 m,

Characteristic | m, Um0 01 m, m,
length /velocity U~0.01 m7s ’ U~0.01 | U=0.01

m/s m/s m/s
Reynolds ~10? ~103 ~10? ~102
number
Bulk Richard-1 o9, | 196 ~19.6 | ~19.6

son number

Table 3.2: The experiment figure, tank used, stratification information, and dimensionless
parameters for the various experiments shown.
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Figure 3.1: A small scale experiment of rain dropping on a stratified fluid. The freshwater
lens was made to be approximately five times thicker than the saltwater layer. When the
rain first begins falling on the surface the momentum is transferred all the way to the
bottom of the fluid and forces the halocline which sends saltwater upwards.

To see the impact that the rain has away from the forcing region we performed a
similar experiment in a much larger tank. The halocline was also moved up closer to the
mid depth, see the Saltwater depth in Table 3.2. Potassium permanganate dye was placed
in columns away from the forcing region to observe the horizontal velocity. Figure 3.2
shows this experiment at two times, one shortly after the forcing begins and one later in the

20



evolution. At early times the forcing region begins entraining the saltwater at the halocline
directly below it, thereby inducing motion elsewhere in the tank. There is a corresponding
motion away from the forcing region in the middle of the saltwater and freshwater layers.
At later times we can see that the region close to the forcing has been completely mixed.
The deformation to the potassium permanganate bands seen at the previous time has
become more pronounced, with the region at the halocline moving towards the forcing
region, while the mid portion of the density layers moves in the opposite direction. We
see the same effect in Figure 3.3, where we have performed a similar experiment, however
with a smaller saltwater layer. In this case we can see the extent to which the rain results
in the halocline below the forcing region being entrained to the surface. Combining the
results across the experiments, the net effect of rain on the halocline appears to be to
force the halocline down, which by conservation of mass results in portions being forced
up, and eventually getting mixed directly by the rain above the halocline. Over time,
as more fluid gets pulled in and mixed, the turbulent region grows and fills the entire
domain. Based on these observations, the solution that we came up with to implement in
the numerical simulation was a series of jets located at the halocline which would force the
halocline apart similarly to the momentum effect of the rain. This will then lead to the
propagation of a turbulent front, and systematic transport to and from the forcing region
in different sections of the water column. To test the jets idea we performed an experiment
where we mimicked the jets by physically mixing the halocline with a potato masher. This
experiment is shown in Figure 3.4. This picture was taken 40 seconds after the forcing
began. At this point in the experiment, the potassium permanganate has deformed into
the familiar wedge shape from the bottom panel in Figure 3.2. This comparison supports
our jet idea as a simplification of the net effect of rain. The one major difference apparent
from the figures is that there is no rightward flow along the surface. This is visible in the
shape of the potassium permanganate column within the freshwater layer. In Figure 3.4
the entire column is being transported towards the forcing region while in Figure 3.2 it is
only the portion closest to the halocline. The reason for this difference is that the rain case
we are adding freshwater and so there is a net flow across the tank as this water spreads
out, this effect is not seen in the jet case. In summary, by performing a series of small-
scale experiments and observing the effect that rain has on the halocline we have found
an analogue for this effect which is significantly less difficult to implement numerically. By
performing an experiment mimicking this jet analogue we have shown that it produce a
similar effect as the rain forcing.

ol



Figure 3.2: A rain-halocline experiment in a large tank at early and late times. Both times
show the same general structure, namely motion along the halcline towards the forcing
region, and motion away from this region in the middle of each layer. In the forcing region,
the halocline is pulled up towards the surface where the rain is falling. This eventually
leads to mixing within the entire depth of the tank within this region. Over time, this
region grows as more fluid is entrained and is subsequently mixed.
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Figure 3.3: A similar experiment to that presented in Figure 3.2, however we have made
the saltwater layer smaller, see Table 3.2. We again see the same effect of motion along
the halocline towards the forcing and motion away within the rest of the fluid.

Figure 3.4: To test our jet idea and compare to the actual rain experiment we mimicked
the jets by physically forcing the halocline with a potato masher. From the image we see
a very similar shape to the previous experiments. We have movement along the halocline
towards the forcing region and flow away above and below this level. The similarities are
especially clear when compared to Figure 3.2.
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3.2 Numerical Methods

As mentioned in Section 1.4, our numerical simulation solve the incompressible Navier-
Stokes equations under the Boussinesq approximation. These equations were solved using
the in-house, spectral incompressible Navier Stokes equation solver (SPINS) [31]. For
temporal discretization, the code uses a third-order variable length timestepping method.
A pseudo-spectral collocation method for spatial discretization is implemented, with the
choice of spectral expansion depending on the desired boundary conditions. A Fourier
expansion is used for periodic boundary conditions, a sine/cosine expansion is used for free-
slip boundaries, and Chebyshev polynomials are used for no-slip conditions. See [1] for more
details. The problem with using a spectral collocation method for the nonlinear advection
term is that it introduces aliasing errors, wherein high-wavenumber waves, beyond the
Nyquist frequency, alias onto lower wavenumber, well resolved, waves. To remedy this, an
exponential filter with a cutoff is used to suppress these high wavenumber waves. The most
computationally difficult part of the code is solving the Poisson problem for pressure, since
there is no evolution equation for pressure. To solve this, a finite difference operator is
used to precondition the Poisson operator before using the generalized minimum residual
method (GMRES) to solve the problem. Together, the result of these methods is a fully-
parallelized code which can solve the incompressible Navier-Stokes equations with spectral
accuracy (i.e. the accuracy of the simulation scales with the number of grid points [32]).

For our specific numerical simulation we imposed free-slip boundary conditions along
all boundaries because of our interest in the dynamics of the pycnocline, as opposed to
details of the boundary layer dynamics. This was also done to speed up computation
time, as full 3D simulations are extremely computationally intensive. In accordance with
the small-scale laboratory experiments, the physical dimensions of the tank were chosen
to be Im x 20cm x 20cm (L, x L, x L,). Since we are expecting mixing to occur we
chose to use a high resolution, namely 4096 x 256 x 256 (same ordering as the physical
dimensions). This number of points provides a resolution of 2.44-10~*m in the z-direction
and 7.81-107*m in both y and z. This is sufficient for a direct numerical simulation (DNS)
where we have resolved all scales and do not require a separate model for turbulence below
the grid scale. A calculation of the smallest Kolmogorov length scale, n = (12/2¢;e;;)'/4,
where e;; is the strain rate tensor, at 80s results in 1 ~ 3.7-10~*m which is resolved in the
x direction and nearly resolved in y and z. This is sufficient to show that we are resolving
all the physical scales and can treat the simulation as a ‘numerical experiment’.

The initial conditions for the density are defined as
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Density contours

\

Forcing region

Figure 3.5: A schematic of the numerical simulation set up. The forcing region is located
on the left hand side of the tank, centred at « = 0.25. The pycnocline is located exactly
at the mid-depth, and corresponds to a 1% density change. All the boundaries were given
free-slip boundary conditions since we were interested in the effect that the jets had on the
pycnocline.

z—0.5L
— po (1= 0.005 tanh | Z——=22=
P po( o ( 0.05L. ))

where py = 1000kg/m?3. The pycnocline was fixed at the mid-depth to minimize the
effect of the boundaries. Though not fully comparable to known measurements ([3] mea-
sured a Ap ~ 2-3%), we decided to implement a 1% density change to allow for weaker
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jets, due to lower inertia. As explained in the previous section, we have decided to mimic
the effect of rain forcing by using alternating jets located within the pycnocline. This jet
forcing has the functional form,

' r—025\* [ z\ T \i
F(z,z,t) = 0.2sin(27t) exp (W) sin (WL—Z) sin (2#@) k.

This function forces the w-momentum equation directly, and forms jets which alternate
direction and weaken through z, and pulsate in time with a period of one second. Since
the outputs occur every two seconds, on the second, the forcing will appear to be constant
through outputs. The horizontal extent of the forcing region is 0.1m centred at z = 0.25
m. The forcing is constant through the y direction. We have placed a passive ‘dye’ column
at = 0.65 m (0.1 m wide) to observe how this column is entrained by the forcing, similar
to the potassium permanganate in the physical experiments.

This simulation was performed on the high performance computing (HPC) network
SHARCNET over a period of 32 days using 128 processors. Due to the size of the simula-
tion and the amount of data that it produced, many new issues arose during the analysis
and post processing phase of the project that would not have occurred for smaller-sized
simulations. In computing, these issues are known as the field of big data. While our simu-
lation was not at the scale for which all previous analytical techniques become impossible,
it was still necessary to change almost all of the previous techniques for efficiency (e.g., the
computation of derivatives in post-processing) and in some cases to change the technique
completely (e.g. for 3D graphics the use of Matlab became impossible and the open source
software Visit [0], was used instead).

3.3 Velocity and density

Line plots can often provide more quantitative information than 2D (e.g. contour) or
3D (e.g. isosurface) plots. For examining the general evolution of this simulation, the
vertically and spanwise averaged kinetic energy provides a clear distinction between the
different regions that form within the tank and how they evolve. Figure 3.6 shows this
averaged kinetic energy for a sequence of times from 40 s to 400 s. The x-axis begins at
x = 0.25 m (the centre of the forcing region), since we are primarily interested in how
the forcing impacts the development of a turbulent front that moves into the quiescent
region. For all times, we can see that from x = 0.25 m to x = 0.35 m, the kinetic energy
is completely dominated by the jets, with their shape visible in the kinetic energy. As we
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evolve in time we can see a local maximum (not due to the jets) within the kinetic energy
that propagates rightward through the tank. This is especially visible from 40s (at x ~ 0.45
m) to 200s (at x ~ 0.85 m). To the right of this local maximum the kinetic energy drops
off, though at early times there are oscillations that occur near the far end of the tank.
These oscillations appear to correspond to internal waves which were created when the jets
began disturbing the pycnocline. This also explains their lack of appearance at later times
since by then any waves have reflected back into the turbulent region. Figure 3.6 allows
us to demarcate clear distinct regions based upon their kinetic energy profile. The three
regions can be separated as jet-dominated (from = = 0.25 m to = = 0.35 m for all times),
turbulence dominated (from x = 0.35 m to the turbulent front defined as the local maxima
in kinetic energy) and quiescent (from the front to the end of the tank).

To see the general impact of the jets over time, Figure 3.7 shows a 3D volume plot of
the kinetic energy. The panels correspond to 100 s, 200 s, 300 s and 400 s respectively. A
key result of this figure is that ;throughout the simulation, the areas of large kinetic energy
(seen in white in these figures) do not appear to propagate away from the jet forcing region.
The colorbar has been kept the same between the different panels. Another key aspect
from this figure is the location of the high kinetic energy areas. Other than the jets, which
are obviously high kinetic energy areas, for all times, the regions near the upper and lower
boundaries to the sides of the jets contain high kinetic energy. This can be attributed to
the flow generated as the jet-forced fluid impacts the upper and lower boundaries of the
tank. Comparing these 3D figures to the 1D Figure 3.6, we can see that while the 1D figure
provided general information about the different regions in the simulation. it completely
lacked information about the structure within these regions. For example, in Figure 3.7(d),
there is an extrusion of high kinetic energy along the close wall which is not revealed in
the corresponding 1D plot.

Figure 3.8 shows the spanwise averaged horizontal velocity u in the z-z plane. Panels
(a), (b), (c) and (d) correspond to 100 s, 200 s, 300 s, and 400 s, respectively. The panels
have been saturated at 1 mm/s to highlight the distinct regions. Focusing on the right
side of the jets, we can see that there is a change in dynamics between 100 s and 200
s. For the earlier times, we can see that there is a positive horizontal velocity, u, within
the pycnocline and primarily negative u above and below this. At the later outputs this
reverses and the pycnocline has a negative u with regions of positive u above and below
it. The structure of this velocity field indicates that there are numerous areas of high
shear between the different flow directions which will produce large amounts of vorticity
via tilting and stretching. This is particularly evident in the region near the boundaries
to the sides of the jets, which corresponds to the regions of high kinetic energy visible
in Figure 3.7. As mentioned earlier in regards to the 1D plots, the problem of averaging
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through a dimension is that we lose any information about the 3D structure, which given
the turbulent nature of this simulation is assuredly there. One way to gain this information
through 2D figures is to not average, but rather take a slice of the field at a given time.
In Figure 3.9, we present slice in the x-y plane at (a) z = 0.12 m, (b) z = 0.14 m, (c)
2z =0.16 m, and (d) = 0.18 m. As we move through the region above the pycnocline we can
see a multitude of 3D structures throughout the spanwise dimension. This is particularly
evident in Figure 3.9(c), with a large structure of positive u completely surrounded by
negative wu.

The most useful field to compare to physical simulations, and to field data is density
(since in the lab we can dye one density one colour and we can directly measure this in
the field). Figure 3.10 shows the time evolution of density using a 3D volume plot. Panels
(a), (b), (c) and (d) correspond to 100 s,200 s, 300 s, and 400 s, respectively. At early
times, (a), we can see how the jets immediately begin deforming the pycnocline, however,
it is important to note that the fluid being forced is primarily of a density from the outer
layers of the pycnocline, or the weakly stratified region. It is not until later times, (c)
and (d), where we begin to see fluid from a more intermediate density begin to move.
With how we have chosen the opacity of these plots we can see all the 3D structure that
appears within the turbulent region. We can also see how this region entrains fluid from
the quiescent region towards it. It appears that the fluid being entrained is entirely from
the outermost region of the pycnocline. Furthermore based on the shapes visible within
the turbulent region, the entrainment occurs via vortices within the region ripping away
at the outer layers of the pycnocline. By the last panel (d) the shape of the pycnocline
appears to be extremely similar to the shape seen in experiments, as typified by the first
panel of Figure 3.2.
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Kinetic Energy Power

Figure 3.6: Vertically and spanwise averaging the 3D kinetic energy reduces the full 3D
scalar field into a more manageable 1D vector. This method also highlights the extent to
which the turbulent entrainment has moved through the tank. There are three distinct
regions to the right of the mixing region, which are highlighted by the kinetic energy. The
first region is dominated by the motions induced by the forcing and extends to x = 0.45
m. The second region is characterized by a relatively slow decline in kinetic energy and
is where the entrainment occurs. Over time, the rightward edge of this region has moved
through the tank. The third region is the relatively quiescent fluid that has not been
disturbed yet on the far right. This region shrinks as the turbulent entrainment moves
through the tank. This figure shows that by 80 s the kinetic energy has equilibrated and
follows a steady pattern afterwards.
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Figure 3.7: A 3D volume plot of kinetic energy made using a ray casting method. Panels
(a), (b), (¢) and (d) correspond to 100 s, 200 s, 300 s, and 400 s, respectively. The colour
saturation remains the same between all the panels. The regions of high kinetic energy
(white) are concentrated in the jets and along the boundaries to the sides of the jets.
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Figure 3.8: 2D spanwise-averaged horizontal velocity pseudocolour plots. The panels (a),
(b), (c) and (d) correspond to 100 s, 200 s, 300 s, and 400 s, respectively. The panels
have been saturated at £1mm/s to highlight the distinct regions. There is a switch in the
dynamics between panel (a) and the later ones, with the regions within and around the
pycnocline switching flow direction.
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Figure 3.9: 2D slices of horizontal velocity in the x — y plane. The slices were taken at (a)
60%, (b) 70%, (c) 80%, and (d) 90% of the vertical extent. To allow for more structure to be
seen within positive and negative regions, we have increased the maximum and minimum
velocity values to +=5mm/s. As we move through the upper layers of the tank we can see
a plethora of 3D structures which are not visible when we average in the spanwise.
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Figure 3.10: A 3D volume plot of density made using a ray casting method. Panels (a),
(b), (¢) and (d) correspond to 100 s, 200 s, 300 s, and 400 s, respectively. We can see that,
for early times, the jets only move the outermost fluid of the pycnocline, but at later times,
(d) especially, we begin to see more intermediate density fluid being forced away. We can
also see how the generation of the turbulent front entrains fluid from the quiescent region,
especially from the outermost layers of the pycnocline.
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3.4 Dye

As mentioned in the numerical methods section, we added a column of dye in the simula-
tion. Figure 3.11 shows the time evolution of dye using a 3D volume plot. Panels (a), (b),
(c) and (d) correspond to 100 s, 200 s, 300 s, and 400 s, respectively. An interesting feature
visible when comparing panels (a) and (b) is a change in the shape of the dye column near
the pycnocline. Where in panel (a) the dye at the centre was forced to the right, above
and below this to the left, we have an inversion of this in panel (b) with the centre being
pulled to the left, and above and below to the right. This is consistent with the change in
horizontal velocities visible in Figure 3.8. In the later panels, (c¢) and (d), we can see that
the dye above and below the pycnocline is forced to the right end of the tank, while the
portion that was pulled in from the middle of the pycnocline has reached the left end of
the tank. We can also see the complex 3D structures which are created in the turbulent
region, this is particularly visible in panel (d). In general, it appears that the portions of
the column in the middle of the pycnocline, and along the top and bottom, get entrained
the most, eventually reaching the jet forcing region. While dye in between these regions is
advected in the opposite direction.

One analysis which can be performed on the passive tracer in this simulation is locating,
and separating, mixing from stirring. This is important to quantify the extent to which
actual mixing is occurring and its localization. This can be applicable to trace contaminants
being released into this system. Mixing is the irreversible homogenization of a specific tracer
(eg., p or dye), while stirring is the mechanical motion of the tracer. For two fluids this
increases the interface surface area. Following the derivation in [25], consider a general
passive tracer #. The evolution of this tracer follows a simple advection-diffusion equation
(where £ is the diffusion coefficient for the tracer),

g—fz%+u‘ve:w29.
One way to measure the spatial variability of the tracer is the gradient V6. Over the entire
domain we can define a useful measure,

C’:%// Vo -Vodv.
v

To see how this measure evolves in time, we next consider the time derivative of this term.
By using the evolution equation for the tracer and the no-outflow boundary conditions we
can write,
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Figure 3.11: A 3D volume plot of dye concentration using a ray casting method. Panels
(a), (b), (c) and (d) correspond to 100 s, 200 s, 300 s, and 400 s, respectively. At early
times, only the left side of the dye column is deformed, but by panel (d) the entire column
has been ripped apart. We can also see the shift in horizontal velocities that was visible
in Figure 3.8 by comparing panel (a) to (b). The zigzag shape from (a) becomes inverted
and deformed in the next panel, with part of it being pulled all the way into the jet region.
Also interesting with this change in shape, is that part of the dye above, and below the
pycnocline actually gets pushed away from the jets into the quiescent region.

% = /// ((w- v0)v20 - (720)")

In this equation, the first term inside of the equation represents stirring while the second
represents mixing. Mixing is always negative and decreases the variability in C, this cor-
responds with physical intuition, as mixing homogenizes the fluid. Stirring can be either
sign (though in most cases it is positive since it’s easier to stir then unstir). An indirect
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result of positive stirring is to make the mixing more efficient since stirring will increase
the surface area over which mixing occurs. Together, these effects result in C' increasing to
a maximum at which point it decreases rapidly. Without mixing, C' would solely increase
over time, while without stirring, C' would decrease though at a slower rate than both
together.

Figure 3.12 shows the spanwise-average of this mixing parameter for the dye. The log
base 10 of the colour axis has been taken due to the disparate scales of mixing. The panels
(a), (b), (c) and (d) correspond to 100 s, 200 s, 300 s, and 400 s, respectively. In panel (a)
the mixing appears most dominant within the dye column, this is consistent with the panel
(a) from Figure 3.11 since the column has not been deformed by that time. At intermediate
times, in panels (b) and (c), the mixing reaches its maximum within the turbulent region.
This is consistent with the turbulent region deforming the dye which results in increased
mixing. At late times, in panel (d), the dye has become diffused throughout the tank,
and so the intensity of the mixing has declined, though the areal extent has increased. An
interesting feature primarily visible in panels (b) and (c) is an asymmetry between mixing
above and below the pycnocline. There appears to be significantly more mixing occurring
below the pycnocline than above. It is likely that this is due to large scale motions which
can break the symmetry. Particularly visible in panels (c¢) and (d), are two extrusions of
mixing to the right side of the tank above and below the pycnocline. Comparing these to
panel (d) of Figure 3.11, these likely correspond to the dye that has been forced to the
right side of the tank.

The partner of the mixing term, stirring, is shown in Figure 3.13. The panels (a), (b),
(c) and (d) correspond to 100 s, 200 s, 300 s, and 400 s, respectively. A quick glance at
the panels reveals a very strong correlation between the two fields. When stirring is high
it greatly deforms the tracer interface, which results in higher mixing. This correlation
between the fields is particularly evident in panels (b) and (c). There appears to be little
stirring occurring within the pycnocline and the jets. Not appearing in the jets can be
explained physically since it is very hard for the dye to move against the forcing. However,
within the pycnocline, we might expect some stirring given the presence of mixing and the
3D plots. It is possible that due to the spanwise averaging we are missing some of these
features, however it is also possible that the motion within the pycnocline is not deforming
the dye shape, but solely advecting it, there is evidence for this in Figure 3.11. By not
deforming the dye it is not stirring and thus does not appear.

As when we considered the horizontal velocities, by computing the spanwise average
we have lost any information about 3D structure within each field. This structure can
be seen by considering slices as opposed to averages. Figure 3.14 shows two slices, at
y = 0.05 m and y = 0.15 m, of dye density (shown in purple), along with both stirring and
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Figure 3.12: 2D spanwise averaged mixing parameter pseudocolour plots for dye. The
panels (a), (b), (¢) and (d) correspondto 100 s, 200 s, 300 s, and 400 s, respectively. At
early times in panel (a), the dye mixing is concentrated around the dye column since
there has been little deformation of the column. For intermediate times (b) and (c), the
maximum mixing occurs within the turbulent region, and especially near the front. At late
times (d), the dye has been diffused out and so less intense mixing occurs, albeit over a
larger area.

mixing. The mixing parameter is presented in blue coloured areas, and a single contour
of stirring is overlain in green. Panels (a) and (b) correspond to y = 0.15 m, while (c)
and (d) correspond to y = 0.05 m. Panels (a) and (c¢) have been saturated to show only
the highest regions of mixing, stirring and dye concentration (maximums correspond to
20000 for mixing and stirring and 0.25 for dye concentration), while panels (b) and (d)
have a lower threshold (maximums correspond to 2000 for mixing and stirring and 0.1 for
dye concentration). These slices were taken at 200 s. As in the previous figures, it is very
clear that the mixing and stirring are very closely correlated, almost every location of high
mixing is encircled by a contour of stirring. It is also quite clear that the majority of the
mixing is occurring along the dye that is within the turbulent region. In all the panels the
mixing primarily takes place between z = 0.35 m and z = 0.55 m, which corresponds to
the interface of the dye with the turbulent region. Comparing the saturated ((b) and (d))
panels, with the unsaturated ((a) and (c)) panels, the highest stirring and mixing occurs
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Figure 3.13: 2D spanwise averaged stirring parameter pseudocolour plots for dye. The
panels (a), (b), (c¢) and (d) correspond to 100 s, 200 s, 300 s, and 400 s, respectively.
Mimicking what we saw in Figure 3.12 we can correlate locations of high stirring with
those of high mixing. As in the previous figure the stirring reaches a maximum in panel
(b) and (c) with the stirring concentrated within the turbulent region. It is interesting
that there are some regions of negative stirring, though the majority is positive.

along the edges of dye filaments with steep concentration gradients, mathematically this
is seen by the V20 term in both terms.
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Figure 3.14: Slices of dye concentration shown in purple, with mixing overlain in blue, and
contours of stirring in green. Panels (a) and (b) correspond to y = 0.15 m and (c) and
(d) to y = 0.05 m. The panels are then horizontally organized by saturation with (a) and
(¢) corresponding to maximum values of 20000 for mixing and stirring, and 0.25 for dye
concentration, while panels (b) and (d) correspond to maximum values of 2000 for mixing
and stirring, and 0.1 for dye concentration. This change in saturation results in only the
highest areas of mixing and stirring being shown in the first column. In all of the panels
it is clear that the stirring and mixing occurs along the thin filaments of dye which are
within the turbulent region.
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Chapter 4

Conclusions
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4.1 Linking numerical simulation to physical observa-
tions

While obviously greatly simplified, and not to scale, we can use some of the results from
the numerical simulation and relate them to the full physical system. One key result is
the development of a turbulent front from the forcing which propagates away from the
initial disturbance entraining quiescent fluid. If we consider the direct forcing region to be
an open-air cenote we would have these fronts forming within the water column and then
propagating through the karst system. Assuming that the top mud layer and mangrove
cover prevents the rainwater from directly permeating into the karst, on a regional scale we
would expect the most mixing to occur within the centoes and there to be measurable fronts
moving within the cave networks. Furthermore as the front moves away from the initial
site there should be a measurable flow above and below the halocline entraining new fluid
and mixing. A feature that is uniquely suited to analysis through the numerical simulation
is the dye column and the mixing parameter. While possible (and has been done [21])
releasing dye or other tracers into this system can at best provide point wise measurements
of the dye concentration and no dynamic information. Furthermore to observe the results
during a heavy rainfall event the researcher would have to actively be in the field to release
the dye and perform measurements as the event is occurring. This can be extremely
dangerous in remote locations and during extreme weather. Quantifying mixing would
be practically impossible in the field but is an important measure to understanding the
dynamics. This type of information is extremely relevant in the event of a contaminant
leak into the system during a rainfall event. Quantifying the location of maximum mixing
and how the contaminated water interacts and spreads into the quiescent fluid can provide
key information for managing such a situation.

4.2 General field data

The major result from the field data is the confirmation of the hypothesis that heavy
rainfall results in halocline mixing. There is extremely high correlation between the known
rainfall events and changes in temperature and salinity above the halocline. Within the
data there is evidence of a sustained density inversion which is inherently unstable. Other
than errors in the sensors, a possible explanation could be a series of rainfall events which
prolong this period of instability. Using the wavelet and Fourier analysis it was possible
to very accurately match up the first eight theoretical tidal components to corresponding
spikes in the water level data. The wavelet analysis also found longer scale trends on the
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order of &~ 120 days in both the temperature and the water level data. Further investigation
is required to verify this signal and find a physical cause. More recent wavelet analysis
focusing on the large rainfall events has also found that these events locally suppress the
tidal signal for the days following a large event.

An important use for this field data is relating these observations to the current ge-
ological research being done within the same cave networks. Preliminary trace element
measurements from sediment cores gathered within the cave network (shown in Figure 4.1)
shows an increase in the salinity of the groundwater during the classical Mayan period and
a corresponding decrease in salinity at the end of the Classical period. Historical records
of rainfall show that during the preclassical period of the Maya there was an abundance
of rainfall which helped support their civilization [7], while their decline was characterized
by a rapid series of droughts. We can interpret these historical results through the current
results found from the sensors to argue that during these prolonged periods of rain the
halocline was continuously mixed resulting in an increase in salinity of the groundwater.
The opposite would have happened during prolonged drought with any density differences
in the water having enough time to settle out.
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Figure 4.1: A figure courtesy of Dr. Reindhardt. A comparison of Chlorine trace element
data from a sediment core from Yax Chen to other standard historical records. The chlo-

rine is used as a proxy for the salinity of the groundwater and the shaded areas show a
correspondence between the different records.

4.3 Future work

Currently we are extending the work presented in this thesis, both the numerics and the
field measurements. During the last trip to the field site in May 2016, the HOBO sensors
were repositioned to a higher location in the water column. All HOBO sensors were set
to this constant depth (4m) forming a cross section inland through the cave network.
This will allows us to observe spatial differences in mixing and observe if said mixing
events extend to this level in the water column. We are also planning on placing a small

73



weather station on site which will provide much more accurate rainfall readings and allow
for accurate atmospheric pressure readings to calibrate water level data. Current analysis
of the numerical simulation includes a number of different parameters such as Ay (for
identifying coherent vortices), Q-R (for identifying dominant turbulent structures) and
viscous dissipation (for quantifying energy loss). Through these parameters we can extract
more useful information from the current simulation and link our results to the classical
literature.

Immediate future work on the numerical simulation will include more realistic parame-
ters, such as jet strength, and the addition of temperature and salinity, combined through
the UNESCO equation of state for density. Another avenue is to provide a more realistic
forcing by moving the jets above the pycnocline. We will also apply classical theory of
turbulent fronts (e.g., [33]) to our simulations, and investigate to what extent such theory
is applicable. To achieve a simulation which more physically matches the field it will be
necessary to move to a different model. Simplifications will have to be made to enable com-
putation and would not provide the dynamic accuracy that the current model provides.
However moving to a hydrogeological model would allow for an analogue of the entire
physical system to be modelled and allow for direct comparison with sensor measurements.
Future work in the field will include the addition of flow sensors to accurately measure
and compare with simulations. In general an overall increase in the number of sensors will
provide better resolution within the system and will enable a deeper understanding of the
dynamics. A major area of future work will be the application of the time series analyses
shown here to trace element data from sediment cores. In particular wavelet analysis will
allow us to identify long term high-power climactic signals within the data. This can then
be matched and correlated to known climate signals.

As mentioned in the introduction, this research is important to many of the companies
developing the coastline. As their demand for water increases this will put a strain on the
existing supply and particularly the underdeveloped infrastructure throughout the region.
This research is also relevant for waste management as current common procedure is to
pump waste below the halocline, however we have shown that during heavy rainfall events
this under-layer can mix with the potable water above. A key component of future work
should look to collaborate with some of these companies to allow for better management
decisions to be made.
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