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Abstract

distributed computing has changed. Large commodity hard-

ware clusters, typically operating in some form of MapRe-
duce framework, are becoming prevalent for organizations that re-
quire both tremendous storage capacity and fault tolerance. How-
ever, the high cost of communication can dominate the compu-
tation time in large-scale optimization routines in these frame-
works. This thesis considers the problem of how to efficiently con-
duct univariate line searches in commodity clusters in the context
of gradient-based batch optimization algorithms, like the staple
limited-memory BFGS (LBFGS) method. In it, a new line search
technique is proposed for cases where the underlying objective func-
tion is analytic, as in logistic regression and low rank matrix fac-
torization. The technique approximates the objective function by a
truncated Taylor polynomial along a fixed search direction. The co-
efficients of this polynomial may be computed efficiently in parallel
with far less communication than needed to transmit the high-
dimensional gradient vector, after which the polynomial may be
minimized with high accuracy in a neighbourhood of the expansion
point without distributed operations. This Polynomial Expansion
Line Search (PELS) may be invoked iteratively until the expansion
point and minimum are sufficiently accurate, and can provide sub-
stantial savings in time and communication costs when multiple

IN trying to cope with the Big Data deluge, the landscape of
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iterations in the line search procedure are required.

Three applications of the PELS technique are presented herein
for important classes of analytic functions: (i) logistic regression
(LR), (ii) low-rank matrix factorization (MF) models, and (iii) the
feedforward multilayer perceptron (MLP). In addition, for LR and
MF, implementations of PELS in the Apache Spark framework for
fault-tolerant cluster computing are provided. These implementa-
tions conferred significant convergence enhancements to their re-
spective algorithms, and will be of interest to Spark and Hadoop
practitioners. For instance, the Spark PELS technique reduced the
number of iterations and time required by LBFGS to reach terminal
training accuracies for LR models by factors of 1.8-2. Substantial
acceleration was also observed for the Nonlinear Conjugate Gra-
dient algorithm for MLP models, which is an interesting case for
future study in optimization for neural networks. The PELS tech-
nique is applicable to a broad class of models for Big Data process-
ing and large-scale optimization, and can be a useful component of
batch optimization routines.
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1

Introduction

optimization problem. This is not hyperbole—or at least,

not entirely: the second law of thermodynamics describes
how particles and systems transition towards low energy states and
achieve minimal potential energy at equilibrium. Take your exis-
tence, as a topical example. Your DNA is none other than an or-
dered sequence of three billion nucleotides being iterated upon each
generation over millions of years such that the current material is
hardy enough to survive its environment and be replicated in turn.!
Furthermore, said replication often happens with a mate chosen as
the solution to the formally-termed stable matching problem, which
is the colourful optimization of pairing off three billion men with

EVERYTHING under the sun (and the sun) is the result of an

In fact, the field of DNA Computing is predicated on the idea of
DNA being used as a mathematical vector in computations; beginning
in 1994 with Leonard Adleman solving a Hamiltonian path problem [2],
researchers are developing ways to exploit molecular interactions in DNA
equivalently to register operations in conventional computers. Fans of
Douglas Adams hitherto unaware of Adleman’s work may now be expe-
riencing an eerie feeling of foreboding—don’t panic.
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three billion women with minimal ensuing conflict. People seem
particularly and almost invariably fixated on the matching prob-
lem, to the general mercantile benefit of others optimizing their
revenues by offering cosmetic enhancements and geolocating dat-
ing services and [seemingly] unironic reality TV.

This thesis is written for that latter group: the good capitalists
providing material support to consumers solving daily optimization
problems of their own. With the omnipresence of the e-commerce,
internet search, and social media industries in North American
daily life, internet companies are inundated with data about on-
line users’ behaviours and interactions. While social media compa-
nies like Facebook and InterActiveCorp? are obvious progenitors
of the data deluge, the ripples permeate far and wide via track-
ing capabilities provided to other sites and advertisers through the
purchase of cookies from e.g. Google’s subsidiary DoubleClick or
Facebook’s subsidiary Atlas Solutions.? The marriage of rampant

2IAC is an American conglomerate that doesn’t get much mention un-
less you read the fine print, but owns all the big household dating sub-
sidiaries like Tinder, OkCupid, Match.com, and PlentyOfFish—which
basically makes them capable of studying and experimenting with North
America’s [explicit] electronic sexual selection habits, some of which
are revealed in the book Dataclysm [92] by the co-founder of OkCu-
pid, Chrisitan Rudder. Gratuitous example [according to Rudder]: while
women target partners whose ages are approximately linearly correlated
with their own, men of any age unanimously seek women in the youngest
cohort on OkCupid. Admittedly, this little factoid merely reaffirms a phe-
nomenon some of us are already uncomfortably aware of, like teen being
the American porn industry’s most frequent titular landmark [78].

3Facebook’s transition from social media platform to universal ad-
vertising infrastructure via social promotion is a notable one (for a con-
densed history, see Gerlitz & Helmond [43]). Your authors posit that
strong parallels abound between Facebook’s incremental and ongoing
transformation and how the credit card industry repurposed itself into
the fundamental payment infrastructure for daily commercial purchases
[22], even those for which drawing credit is financially unnecessary. In
purview of how [both] credit card companies quietly became virtual toll-
booths that affect the pricing of almost all consumer goods via merchant
transaction fees and are (almost) without exception the sole payment
method for online transactions, Facebook may be poised to wield simi-
lar powers—Ilet’s hope they have some scruples.



targeted behavioural advertising and cheap computer storage has
culminated as one instance of the Big Data problem trumpeted by
tech tabloids [and this thesis], whereby traditional computational
methods for data analysis and pattern extraction cannot scale up
to the sheer amount of data and still churn out results quickly
enough. For instance, imagine trying to compute the singular val-
ues of a matrix X € R™*™ when the problem dimension m can be
greater than 107, and the number of rows (datapoints) is growing
into the billions—fat chance.

The response to the Big Data problem over the past fifteen
years has been twofold as both the systems and the algorithms
have changed drastically. First of all, traditional workstations or
high performance computing (HPC) clusters have been replaced
by clusters of thousands of commodity hardware machines [6, 106],*
such that data is distributed across the commodity cluster and net-
work communication costs and faults (i.e. machine failures) are cru-
cial factors in the completion times of jobs submitted to the cluster
[87, 98]. Because standard parallel HPC techniques like the Message
Passing Interface (MPI) [46] are ill-suited for this system architec-
ture, the highly fault-tolerant MapReduce [32] processing paradigm
has been a de facto standard since its publication by Google in
2004. The second trend has been the rise of stochastic algorithms
for large-scale optimization [14] to become standard techniques for
companies like Google [31] and Twitter [67], particularly over the
past five years with the popularity of artifical neural network mod-
els for classification problems [64, 63, 97]. This ascent has been
driven partly by the increasing cost of iterating through the mas-
sive datasets and concomittant communication costs of old-school
deterministic algorithms, but also by the effectiveness of stochastic
methods in the face of the redundancy and noise currently inherent
to data dredged from clickbaited internet users, since these meth-
ods only calculate approrimate function and gradient values by

4Commodity hardware is important jargon referring specifically to
inexpensive, run-of-the-mill computer servers that can be purchased in
bulk indiscriminately from any manufacturer [106]. Their purpose and
usage are more apparent from their specs: these machines often have
slow yet power-efficient CPUs with clock frequencies less than 2.0 GHz,
compared to deluxe workstations that now reach 4.0 GHz.
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sampling. Without editorializing the stochastic versus determinis-
tic debate,? the underlying message is that for algorithms and their
implementations to be useful in modern machine learning applica-
tions, the use of commodity hardware and the high cost of commu-
nication between nodes for prevalent MapReduce architectures are
vital design criteria.

And that’s where this thesis comes in: accelerating algorithms
in the context of Big Data and distributed parallel systems. In par-
ticular we are concerned with efficiently solving the prototypical
problem in machine learning—the minimization of a loss function
averaged over a large dataset of many records—via gradient-based
batch optimization algorithms that conduct univariate line searches
in each iteration to minimize the loss function along the search di-
rection generated by the algorithm. Accelerating the function and
gradient evaluations in the line search is initially straightforward
within a commodity cluster: multiple compute nodes can parallelize
the function and gradient computations and reduce the CPU-bound
computational time. However, this approach isn’t a free lunch; the
associated increased communication costs from the increasing num-
ber of compute nodes in the cluster eventually and ouroborically
negate the savings, since network traffic remains orders of mag-
nitude slower than the memory accesses required to retrieve data
in the local computations [40]. Thus, the reduction in the size of
data transferred between the compute nodes can be a determin-
ing factor in the efficiency of implementations of parallel batch
algorithms, which communicate gradient vectors between compute
nodes potentially multiple times per univariate line search.

The main contribution of this thesis is a general technique for
efficiently performing parallel line searches in batch optimization
routines. Our method is here termed the Polynomial Expansion
Line Search (PELS), and is applicable whenever the loss function
is analytic as in logistic regression, low rank matrix factorization, or

5Although it may interest the reader to know that Jorge Nocedal,
one of the foremost researchers in the field of [traditional] numerical
optimization, and discoverer of the staple LBFGS algorithm [84, 70],
has for several years been working on stochastic variants of quasi-Newton
methods [18, 19, 20]. Said Pliny the Elder: Ruinis inminentibus musculi
praemigrant.



feedforward artificial neural network models. In this technique, we
approximate the loss function by a truncated Taylor polynomial,
whose coefficients may be computed efficiently in parallel with less
communication than evaluating the gradient, since the Taylor co-
efficients of a low degree (i.e. 4-6) form a smaller vector than the
gradient in large-scale problems. Once the coeflicients are com-
puted, the polynomial may be minimized with high accuracy in a
neighbourhood of the expansion point, with the process repeated
iteratively in a line search invocation until the expansion point and
minimum are sufficiently accurate. The secondary contribution of
this thesis is that we present the PELS method in the Apache Spark
distributed data processing environment [114], which is an evolu-
tionary descendent of the MapReduce framework and is designed
to narrow the performance gap between HPC and MapReduce sys-
tems. Since Spark is designed to supersede Hadoop [the open-source
MapReduce framework [12]], and is quickly being adopted by tech
giants such as Amazon, eBay, and Baidu [according to Spark’s de-
velopers|, we hope that the results herein will be relevant for both
industry and academia solving large-scale optimization problems
both now and in the future.

Three applications of PELS are presented in the subsequent
chapters, two of which appear in the context of the Apache Spark
distributed data processing environment described in §2. The first
application concerns the use of PELS in the convex Ls-regularized
logistic regression optimization problem, and is presented in §3.
There we provide a comparison of the common gradient-based Non-
linear Conjugate Gradient (NCG) and limited memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) algorithms using standard line
search techniques versus PELS for large-scale datasets in Spark
with millions of records and model parameters. The second ap-
plication is matrix factorization, for which §4 details an effective
nonlinearly preconditioned version of the NCG algorithm in which
the polynomial structure of the loss function allows the optimal
step length in the line search to be computed ezactly after the
PELS coefficients are known. Finally, in §5 we derive expressions
for the PELS coefficients for deep feedforward artifical neural net-
work functions, and present initial serial comparison tests for the
NCG and LBFGS algorithms.

The remainder of this introduction describes the mathematical
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formulation of the optimization problems and LBFGS and NCG
algorithms considered in later chapters. The notation attempts to
follow the conventions of the fields of machine learning as presented
by Hastie et al. [52] and numerical optimization as presented by
Nocedal & Wright [85]. While most symbols can co-exist harmo-
niously, n.b. that we have adopted the convention from machine
learning that the parameter vector be denoted w and a given da-
tum instance be denoted by x—don’t let that get you down.

1.1 Line Search Algorithms

In large-scale optimization and machine learning, the problem often
considered is the minimization of a scalar loss function £(w) with
a parameter vector w € R™ [13, 52], where the value of £ depends
on a dataset of n observations, R. Though the form of the data
depends on the particular problem, we consider supervised learning
data of input/response tuples, R = {(x;,v;)},—, where x; € RP
is the independent vector variable, and y; € R is the dependent
scalar response variable. Using image classification as an example,
the {x;} may be a set of vectorized images with their accompanying
enumerated labels {y;}, whereas in linear regression each y; would
instead be a continuous value. Given a problem-dependent function
f, the loss for each (x;,y;) is evaluated as f(w;x;,y;), with the full
loss £ computed as the mean of f over the dataset,

L(w) = %Zf(w;xi,yi) + AR(W) (1.1)

i=1

where R(w) is an additional regularization term with coefficient
A > 0 designed to prevent overfitting to the data, or specify condi-
tions on w. In general the form of R(w) considered here is an Lo
penalty, R(w) = %Hw”%, which is commonly used for many practi-
cal problems [112, 111}, though other forms of regularization exist
and are burgeoning field of study in their own right.5

% An optimization subfield garnering a lot of attention in the literature
is that of sparse optimization. Here the regularization term is a mons-
mooth Li-norm penalty, which induces sparsity (i.e. few nonzero param-
eters, reducing storage requirements and model complexity). The lasso

6



1.1. Line Search Algorithms

The unconstrained optimization problem for (3.2) is to deter-
mine the optimal parameters w* as

w* = arg min L(w), (1.2)

for which any unconstrained optimization algorithm may be ap-
plied. Gradient-based optimization algorithms such as LBFGS and
NCG that solve (1.2) through iterative updates with line searches
work by computing a search direction px € R™ in each kth iter-
ation, and determining the next iteration’s approximate solution
Wp41 through the recurrence

Wi+t1 = Wk + QkPk,

where the scalar aj is the step size. This step size is computed
as the approximate or exact solution to the univariate line search
problem for a given ray w + ap as

a* = arg 1gl>11(}£(w +ap) = arg min (). (1.3)

As such, gradient-based optimization methods are inherently two-
stage processes: first the direction is fixed, and afterwards the func-
tion is minimized along the fixed direction. While the outer algo-
rithm prescribes how the {px} are chosen, the line search plays a
large role in the efficiency of the entire minimization routine due
to the number of evaluations of ¢(a) and ¢'(a) required. As will

method of Tibshirani [102] for sparse linear regression is a seminal and
renowned example in statistics, and the QUIC method for sparse inverse
covariance matrix estimation [55] is another recent and well-received ap-
plication. These techniques are arguably another trend driven by the Big
Data problem, or at least the curse of dimensionality interwoven with
it [in which modern models used in prediction and regression have so
many parameters that only a sparse solution is feasible or desirable]. To
our knowledge, the PELS method is less immediately amenable to Lq-
regularized models due to their non-differentiability. However, this may
be an interesting direction of future research, since a general analysis
technique in sparse optimization is to separate the loss function into its
smooth and non-smooth components, and then conduct coordinate de-
scent on the smooth local model with bound constraints derived from
the non-smooth components [104].
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be discussed in §3, in practice one often only seeks approximate
solutions to (1.3) that satisfy the Wolfe conditions of sufficient de-
crease in magnitude and curvature of ¢(«), since these conditions
are sufficient for convergence of the algorithms in the standard tool-
box. However, note that an inexact line search cannot in general
be expected to perform better than an exact line search [85].

1.1.1 Limited Memory BFGS

The (full) BFGS algorithm is a gradient-based quasi-Newton op-
timization algorithm developed simultaneously and independently
by all of its eponymous discoverers in an annus mirabilis between
1969-1970 [34], and is widely credited as being the quasi-Newton
update formula of choice [70, 34, 85]. The algorithm determines the
search direction py in each iteration by forming an approximation
to the inverse Hessian H; ' ~ [V2£]~! from previous parameters
{w;},<, and gradient estimates {g;}, ,, where g = VL(wg).
Once formed, a search direction is computed as an approximate
Newton step, pr = —H,;l gk, after which a line search is performed.
Furthermore, due to the quasi-Newton property, the direction pg
is often well-scaled such that the Newton step size ajp = 1 often
satisfies the Wolfe conditions.

However, note that the above BFGS formula for approximat-
ing Hj, depends on all previously computed gradients {g; }j <5 and
parameters {w; }j <> Which has a large storage cost for difficult or
high dimensional problems. To rememdy this, the limited-memory
BFGS [84, 70] algorithm is a modification to the original algo-
rithm that stores only n. previous gradients, such that the approx-
imate Hessian is constructed from {Wj}?:k—nc and {gj}fzk_nc.
This method is summarized in Alg. 1. With n. < 5 in practice
since further corrections do not substantially improve the approx-
imation for large problems [70], the LBFGS algorithm has a fized

"The actual theory and procedure for this is beyond this introduc-
tion’s scope; see Nocedal & Wright [85] for the gritty details. In brief,
the secant rule is enforced for each (w41 — wi) and (gk+1 — k), and
the Sherman-Woodbury formula allows H;lgk to be computed using
rank-one updates that need only inner products, multiplications, and
additions. The whole idea is really quite nifty.

8



1.1. Line Search Algorithms

Algorithm 1: Limited-memory BFGS
Input: wy € R™
Output: wy, ~ w* = arg miny, £(w)

1 Po < —80

2 k<0

3 while not converged do

4 ay + argmin, L(wy + apy)

5 W41 < Wi + QkPk

6 k< k+1

7 Compute Hy, from {wj}fzk_nc and {gj}f:k_nc
8 pr < H;'gr

and reasonable storage requirement. Coupled with its very fast lin-
ear convergence [85], it’s no wonder that LBFGS has been a staple
method in the optimization community [117, 27, 65].

1.1.2 Nonlinear Conjugate Gradient

The NCG algorithm was first proposed in 1964 for nonlinear op-
timization by Fletcher & Reeves [39], and has since received con-
siderable use and refinement (the survey and review by Hager &
Zhang [49] is highly recommended). As summarized in Alg. 2, the
search direction py41 for the next line search is chosen for param-
eters wy1 through a simple linear combination of the previous
search direction and current gradient as

Pit+1 = BkPk — 8k+1, (1.4)

where pg = —gg, and various forms for the update parameter [y
exist. The motivation for such an update is to recombine direc-
tions in an intelligent manner such that the directions are conjugate
and have the property that p{+1(gk+1 — gg) = 0, which hopefully
avoids the situation where pg41 has considerable similarity to pre-
vious search directions. While the performance depends on both
the problem and the form for i, one formula that consistently
performs well numerically (and the only one considered here) is

9



Introduction

the positive Polak-Ribiere formula given by

T _
Br = max (g’““(z’;; &) , 0> . (1.5)
k Bk

In particular, Alg. 2 with 85 as in (1.5) is globally convergent on
non-convex functions with an inexact Strong Wolfe line search [44].
With minimal storage requirements and simple code, the NCG al-
gorithm can be a very effective tool for certain problems [82], how-
ever there are some practical considerations to be bourne in mind
for its effective use. To begin, the search directions {py} can be
poorly scaled (in contrast to LBFGS), and several iterations with
corresponding function/gradient evaluations are needed to find a
step size satisfying the Wolfe conditions in a univariate line search.
Because of this, it’s necessary to estimate the initial step size 042 in
a univariate line search procedure, for which a common and simple
technique is to take [85]

0 8r_1Pk—-1
o= Q1 — (1.6)
¥ g{pk

where «ay_1 is the accepted step size from the previous iteration
as in (1.1), and af = 1/||go|| for k¥ = 0. Finally, to cope with the
eventuality in which the search directions lose conjugacy, periodic
restarts of the NCG search direction are often used. A popular
restart method was given by Powell [89] that performs a gradient
cosine check in each iteration; for a restart threshold v ~ 0.2, Bj is
set to zero if
81118k

> 7. (L.7)
gg+1gk+1

Note also that when 8 = 0 in (1.4), a restart is implied in the NCG
algorithm. While the restarts provide convergence guarantees by
taking gradient descent steps by default, restarting too frequently
is undesirable: while the Gradient Descent algorithm is globally
convergent, it is quixotically and painstakingly slow [85].

10



1.1. Line Search Algorithms

Algorithm 2: Nonlinear Conjugate Gradient

Input: wyg € R™

Output: wy, = w* = arg miny, £(w)
1 Po < —80
2 k<0
3 while not converged do

4 ay < argmin, L(wg + apg)
5 Wit1 < Wi + 0Pk

6 Compute

7 Pr+1 < BkPr — 8k+1

8 k+k+1

11






2

Apache Spark

puting framework designed to supersede MapReduce by
maintaining program data in memory as much as possi-
ble between distributed operations. It was first conceived in 2009
by Matei Zaharia [114], a then PhD candidate at UC Berkeley,
and now operates as an open-source software project under the
Apache Foundation umbrella. The system differs fundamentally
from Hadoop and other MapReduce models by treating all its com-
pute nodes identically; by contrast, the MapReduce framework ex-
plicitly allocates the available nodes in the cluster as either map-
pers or reducers with disjoint functions, such that the two sets
must communicate an unnecessarily large amount of program data
between themselves in each phase of computation. By using ho-
mogeneous compute nodes and synchronizing computational tasks,
Spark’s goal is to reduce unnecessary communication costs by main-
taining program data in local RAM and to provide an expressive
programming model better suited to iterative optimization algo-
rithms in commodity clusters than MapReduce.
The Spark environment is built upon two components: a data
abstraction, termed a resilient distributed dataset (RDD), and the

! PACHE Spark is a fault-tolerant, distributed cluster com-
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task scheduler, which uses a delay scheduling algorithm [113]. A
Spark cluster is composed of a set of slave executor programs run-
ning on homogeneous compute nodes, and a driver program run-
ning on a master node that is responsible for managing on which
nodes data is stored, and then scheduling and allocating tasks to
the compute nodes based on data locality. Each executor program
manages the local memory and processors of the machine on which
it’s instantiated, and executes machine instructions received from
the master on its locally stored data. In this chapter we describe
the fundamental aspects of RDDs and the basic operations of the
scheduler, with an emphasis on conveying the general execution of
the system as it pertains to the gradient-based optimization rou-
tines considered in §1.1.

RDDs are immutable, distributed datasets that are evaluated
lazily via their provenance information—that is, their functional
relation to other RDDs or datasets in stable storage. To formally
describe an RDD, consider an immutable distributed dataset D
of n records with homogeneous type: D = |J! d; with d; € D.
The distribution of D across a computer network of n, nodes {v;},
such that d; is stored in memory or on disk on node v, is termed
its partitioning according to a partition function P(d;) = v;. If
D is expressible as a finite sequence of deterministic operations
on other datasets Dy, ..., D; that are either RDDs or persistent
records, then its lineage may be written as a directed acyclic graph
L formed with the parent datasets {D;} as the vertices, and the op-
erations along the edges. Thus, an RDD of type D (written RDD [D])
is the tuple (D, P, L).! An illustration of an RDD partitioned across

If you have ever heard of the functional programming paradigm,
then you may be experiencing déja vu from this paragraph, especially at
the words immutable and lazy. The idea of specifying quantities as im-
mutable, categorically-typed objects with functional provenance relation-
ships has been kicking around in the theoretical computer science world
since at least the late 1920s when A-calculus was proposed by Alonzo
Church as a formal system of logic [25]. The history is actually quite fas-
cinating to read retrospectively (see Cardone & Hindley’s account [21]),
since it revolves around logicians attempting to devising axiomatic sys-
tems of computability just as the wrench of Kurt Godel’s incompleteness
theorems was thrown at them. But be they inconsistent or not, the 1960s
brought about renewed research into functional paradigms for computer

14



programming with work like McCarthy’s on the LISP programming lan-
guage [75], amongst others, to be followed by later formulations such as
the ML language by Milner [79]. A large motivation for these A-calculus-
based systems is for a computer program to be written using mathe-
matical operations and then proven correct using a series of irreducible
algebraic steps (without side-effects) and the structure of the objects.
While this all sounds rather rosey, the systems lose their shine [in your
authors’ opinion| the moment you have to understand whatever monads
are to read or write a file. But that aside, a proper treatment of the RDD
abstraction should in truth devolve into a formal specification of its list
operations according to an appropriate axiomatic, functional specifica-
tion (pick whichever one strikes your fancy—our favourites are those by
Meertens [76, 77] and Bird [10, 9]). Now, don’t strap yourself in yet,
because we shan’t go that far; but if you finish this extended footnote to
get a feel for the basic building blocks of a Turing-complete functional
programming language specification, hopefully the RDD abstraction will
feel more intuitive.

Consider the ordered list [z1,...,2,] where all elements are drawn
from the same space, z; € X. The fundamental operation on list is the
constructor or cons operator that constructs a list recursively from a
scalar and an existing (possibly empty) list. The specification is cons :
X x [X] — [X], where the set of all lists formable from the elements of
X is denoted [X]. . Denoting cons by “:”; any list may be recursively
constructed by applying cons to its elements

1, o zn])=x1 (T2 (@ [])-40),

noting that = : [] = [z] for any = and the empty list []. The
concatenation of two lists [z;], [#:] € [X] of respective lengths n and
f is the operator 4 : [X] x [X] — [X]. This operator can be expressed
recursively in terms of cons, and gives the convenient shorthand

[ZBZ}%[@Z] = [$1,...,mn,£i'1,,..,xﬁ].

A map operation on [z;] € [X] is the element-wise application of a func-
tion f: X — Y on [x;]. Formally written * : f x [X] — [Y], we have
that

fxlz1, . xn] = [Tx1, ..., Tzn] = [yi]
for [y;] € [Y]. A reduce operation on [z;] produces a scalar value in X.
For an associative infix operator @& : X x X — X, the reduction of &
on [z;] is (/) : & x [X] =» Xt

®/[x17-~~»xn] =21 Dx2D - Dxn :@xl
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Figure 2.1: Distribution of RDD partitions {p1,pa,...} of the
dataset {d;} in the RAM of N compute nodes. Note that the enu-
meration of the partitions does not correspond to either that of the
RDD elements or the compute nodes, which is representative of the
physical distribution of data in a Spark cluster. Furthermore, the
number of partitions stored per node is depicted as unequal in this
example, which is possible for RDDs.

several compute nodes is shown in Fig. 2.1, where the partitions of
elements {d;} have been denoted as {p1,p2,...}. Note that the enu-
meration of the partitions does not correspond to either that of the
RDD elements or the compute nodes.

Physically computing the records {d;} of an RDD is termed its
materialization, and is managed by the Spark scheduler program.
To allocate computational tasks to the compute nodes, the sched-
uler traverses an RDD’s lineage graph L and divides the required
operations into stages of local computations on parent RDD par-
titions. Suppose that Ry = (U, i, Po, Lo) is an RDD of numeric
type RDD [R], and let Ry = (U, vs, P1, L1) be the RDD resulting
from the application of a function f : R — R to each record of

(continued) Finally, the filter operation applies a logical predicate ¢
to each member of [z;], and returns only those elements for which ¢(z;)
is true. For ¢: X — B where B is the boolean set the filter operator is
denoted < : ¢ x [X] — [X], where

e <fwi] = [2:],{%: € [@:] - (&)}
These operations can be recursively composed to form the higher-order

functions of MapReduce frameworks, with the details here omitted in
the interest of ever concluding this chapter.
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val Y = X.map{z => f(2)} }

v Vg

P2t Mgy pi: ’T‘
val X f)]] == Fa1)

F(za) f(z2)

val Y __ o ________
Figure 2.2: Overview of a Spark map operation of a function f(x)
on an RDD X. The Scala code snippet encircled at the top expresses
the application of f(x) to all elements of X. The two compute nodes
apply the function to the elements of X in their local partitions, cre-
ating partitions of the RDD Y, which has an identical partitioning
to X due to the narrow dependency.

Ry. To compute {y;}, R1 has only a single parent in the graph
Ly, and hence the set of tasks to perform is {f(z;)}. This type
of operation is termed a map operation, and has a narrow lineage
dependency: P; = Py, and the scheduler would allocate the task
f(z;) to a node that stores x; since each y; may be computed lo-
cally from x;. Fig. 2.2 depicts a map operation for a function f(z)
on an RDD X; for the two compute nodes shown, the elements of
X in the local partitions are mapped to those of the RDD Y, which
has an identical partitioning to X due to the narrow dependency.
Stages consist only of local map operations, and are bounded
by shuffle operations that require communication and data trans-
fer between the compute nodes. For example, shuffling is necessary
to perform reduce operations on RDDs, wherein a scalar value is
produced from an associative binary operator applied to each ele-
ment of the dataset. In implementation, a shuffle is conducted by
writing the results of the tasks in the preceding stage, {f(z;)},
to a local file buffer. These shuffle files may or may not be writ-
ten to disk, depending on the operating system’s page table, and
are fetched by remote nodes as needed in the subsequent stage via
a TCP connection. Shuffle file fetches occur asynchronously, and
multiple connections between compute nodes to transfer informa-
tion are made in parallel. In addition, map tasks on the previous
stage’s results that are stored locally by a compute node will occur
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concurrently with remote fetches.?

A reduce operation on an RDD of type RDD [A] produces a
scalar value of type A by an application of an associative binary
operator @ : A x A — A to all of the elements {a;} as

al@a2@~--@an:@ai. (2.1)
i=1

Reduce operations require first performing local reductions on the
partitions stored locally by each node before communicating the
nodes’ results to the driver. The local reduction of the parti-
tion of {a;} stored on node v; is written all and computed as
altl = D, ez, @i, for Zp = {i: P(a;) = v;} and requires no com-
munication between nodes. The full reduction for multiple nodes
is then @}, al’l, which incurs communication costs dependent on
n, and the size (in bytes) of an element in A: reducing scalars
(A = RR) is cheaper than reducing vectors (A = RP). Addition-
ally, reduce operations on an RDD may be performed in two ways:
either through an all-to-one communication pattern (Fig. 2.3a) in
which all n, local results from the compute nodes are communi-
cated to the host machine on which the driver program is running,
or through a multi-level tree communication [3] where intermedi-
ary (locally reduced) results are aggregated by compute nodes in
n; levels before being transferred to the driver [109] (Fig. 2.3b).

2For more details on the Spark shuffle, see Ousterhout [86] and David-
son & Or [29]—but if you want more details than that, just throw in the
towel. While the Spark project has many helpful people and a large
amount of documentation about how to deploy Spark code, one notable
shortcoming [in your authors’ opinion] is the lack of precise and spe-
cific documentation about the system’s internals. Ousterhout’s afore-
mentioned shuffle documentation was written in response to an email
thread on the developer mailing list involving your authors’ continued
questions about how shuffle was implemented—she was kind enough to
give authoritative answers replete with extended footnotes. But if you
want to generally understand the control flow or hierarchical structure
of the Spark codebase, it can be read the code or bust, which is a hidden
cost for organizations adopting Spark if they ever reach a juncture at
which the optimization of performance in their codebase or diagnosis of
unexpected behaviour requires knowledge of system internals.
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7 Level 1

3

(a)
Figure 2.3: Comparison of an (a) all-to-one communication where
every node, depicted by circles, communicates results with the driver
(bottom circle), and a (b) multi-level scheme with n; = 2, such that
the final reduction to the driver requires communication with only
2 nodes.

" Level 2

In §1 we discussed how the communication costs of gradient
evaluations can be an expensive component of the univariate line
search. Having now reviewed the architecture of the Spark system,
we recapitulate this idea, using the evaluation of the gradient VL
for a mean loss function as an illustrative example. We consider
the dataset of observations R = {(x;,y;)} to be stored as an RDD
with type RDD [(R?,IR)], but assume the VL vector is small enough
such that the master node stores both it and the other vectors
necessary in an optimization procedure such as Alg. 1 or Alg. 2.
In such a case, the gradient computations are farmed out to the
compute nodes, with the results shuffled back to the master node.
Since VL is the mean of all {V f(w;x;,y;)}, it is easily expressible
through map/reduce operations by first mapping f(w;x;,y;) onto
R to form a new RDD of gradients, and subsequently reducing this
new RDD where the operator @ is vector addition. This process
is depicted in several stages in Fig. 2.4 for two compute nodes and
a dataset with four records, where the shorthand f; is used to de-
note f(w;x;,y;). Fig. 2.4a shows the functional pseudocode for the
calculation, and Fig. 2.4b illustrates the mapping of the gradient
function onto the RDD of R. In Fig. 2.4c, an implementation fea-
ture of a reduce operation is shown in which both nodes perform
map-side reductions of locally stored gradient vectors. The writing
of shuffle files occurs in Fig. 2.4d, and the network communication
occurs in Fig. 2.4e. The final stage occurs in Fig. 2.4f, in which the
gradients are reduced to the master node, which averages the re-
sults to form a consolidated vector. Note that the network shuffle
in Fig. 2.4e is dependent on the number of compute nodes as well
as the dimension of V£L: the more nodes and the larger the vector,
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the greater the cost of shuffling.?

To conclude this chapter, it behooves us to mention the fault
tolerance built into the Apache Spark system, since it is often
run on commodity Hadoop clusters. The system’s fault tolerance
is achieved through the functional lineage graph specified by any
RDD, and is managed by the scheduler using the simple delay
scheduling algorithm [113] which prioritizes data locality when sub-
mitting tasks to the available compute nodes. If the node v, stores
the needed parent partition containing element x; to compute task
f(z;), but is temporarily unavailable due to faults or stochastic de-
lays, rather than submitting the task on another node, the sched-
uler will wait until v, is free. In the case that v, does not become
available within a specified maximum delay time (several seconds in
practice), the scheduler will resubmit the tasks to a different com-
pute node. However, if the partition containing x; is not available
in memory on this other node, the lineage of the RDD containing
x; must be traversed further back in ancestry, and tasks required
to recompute z; afresh from the parent RDDs will be submitted for
computation in addition to and before the task f(x;). In this way,
fault tolerance is achieved in the system through recomputation.*

3Tt also bears noting that Fig. 2.4 shows an all-to-one communication
pattern for simplicity, though it is generally less efficient than a multi-
level scheme for large clusters. Furthermore, readers familiar with Spark
should be quick to point out that terser idioms exist to compute VL than
explicitly using map and reduce operations. We are sympathetic to your
cause, but confine the discussion to the simplest functional operations
available for pedagogical purposes.

4Although it’s no stretch of the imagination to consider pathologi-
cal circumstances where the recomputation model stagnates if failures
occur frequently enough to result in recomputation in perpetuum, we
are unaware of any reported cases. At any rate, in commodity clusters
large enough that the failure probability for at least one machine is high
at any given time, it is possible to replicate the data contained within
RDDs by sufficiently large integer factors (for Hadoop, this replication
factor may be 3-4 [106]) in order that the data contained by any ma-
chine is accessible elsewhere should it become unresponsive. In addition,
Spark provides a checkpointing mechanism that writes in-memory data
to stable storage, such that any RDDs dependent on the stored data
have shorter lineage graphs that require fewer stages of recomputation
in the event of failures.
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(a) val VL = ’R.map{(x,;,yi) => Vf(w;xi,yi)}
.reduce{(Vfi,ij) = Vfi+ V]

——

Node; Nodey
P21 (x4, ya) Pr (%2, 42)
) vLR [ VA ]l
N z

—— Master Node ¥——

******* [vel=ixn, Viwixm) -

Figure 2.4: Schematic of the procedure for computing VL with
map/reduce operations in Apache Spark with two example compute
nodes with R stored in two partitions, p; and ps. Subplot (a) shows
sample map and reduce pseudocode to evaluate VL on a distributed
dataset R. In (b) the gradients are evaluated for each (x;,y;) locally
stored by the nodes. Map-side reduction of subgradients into one
m-dimensional vector per node occurs in (c), and these resultant
vectors are written to shuffle files in (d). Network shuffle transfer
occurs in (e), and the master node averages each partial gradient
obtained from the network to obtain VL in (f).

21






3

Polynomial Expansion Line Search

AVING now some appreciation for the predicament that
H befalls optimization methods in parallel distributed sys-
tems, we turn our attention to the meat of the matter.

In this chapter, we present the Polynomial Expansion Line Search
(PELS) for solving the univariate line search problem

o = arg Ian>113£(w + ap) = arg min (), (3.1)

where w, p € R™ are fixed and £ is a mean loss function:

n

D F(wixi, yi) + AR(w). (3.2)

i=1

1
Lw) =
The main idea of PELS is simple but powerful: we propose to ap-
proximate £(w -+ ap) in a univariate line search by a low-degree
polynomial expansion in «, and show that the coefficients of this
polynomial may be computed in a single pass over the dataset with
modest communication requirements, after which the polynomial
approximation may be minimized with high accuracy. In each line
search invocation, the expansion may be repeated iteratively until
the expansion point and minimum are sufficiently accurate.
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The advantages of PELS stem from two main improvements.
Firstly, the PELS technique can obtain more accurate minima when
the high intrinsic potential accuracy of the polynomial expansion
is realized, which can lead to significantly fewer iterations of the
optimization method to reach a desired accuracy than with classi-
cal approximate line searches. Secondly, if multiple iterations are
required in a line search, the PELS method is much more efficient
in terms of parallel communication than the iterations in approx-
imate line searches that seek to impose the Wolfe conditions and
require evaluating V£ in each line search iteration: aggregating the
polynomial coefficients requires much less communication than ag-
gregating the m-dimensional gradient vectors {V f(w; x;,y;)}. Ad-
ditionally, when ¢(«) is itself polynomial, the PELS expansion can
be made exact with a sufficiently large degree.

The contributions of this chapter are organized as follows. In
§3.1, the standard line search technique for solving (3.1) approx-
imately using the Wolfe conditions is presented, followed by the
PELS algorithm in §3.2. In §3.3 we detail our implementation in
the Apache Spark framework for fault-tolerant distributed com-
puting, where it has been used to accelerate the training of Lo-
regularized logistic regression models by NCG and LBFGS on sev-
eral large binary classification datasets in experiments described in
§3.4. Finally, §3.5 compares the performance of these algorithms in
Apache Spark using either PELS or a standard approximate line
search scheme.

3.1 Wolfe Approximate Line Searches

Since computing ¢(a) and ¢'(a) = p?’ VL(W + ap) are expensive
operations, often an approximate solution to (3.1) is sought in-
stead of an exact solution in order that the number of function
evaluations required in the line search may be reduced. Approx-
imate line searches compute a sequence of iterates {aj}j>0 until
convergence criteria are satisfied, which are normally the Strong
Wolfe conditions [85]. These conditions are a set of two inequalities
guaranteeing (i) sufficient decrease as

p(a) < ¢(0) + v1a¢'(0), (3.3)
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a=wo
Figure 3.1: [llustration of a cubic interpolating polynomial con-
structed from function & gradient values at the two control points,
a =0 and a = «ag. The control values are ¢(0) and ¢'(0), and
d(ap) and ¢' (), where the gradients are shown as arrows tangent
to the interpolating curve at. The point o is here determined as
the (local) minimum of the constructed polynomial.

and (ii) a curvature condition requiring

¢/ ()] < v2|¢/ (0)] (3-4)

for 0 < 11 < g < 1 (where v ~ 10~* and vy ~ 0.9 [85]).

There are a multitude of widely-used inexact univariate line
search algorithms for satisfying (3.3) and (3.4) for general L(w)
[80, 4, 47, 48], and we refer to an algorithm in this class as a
Wolfe approximate (WA) line search. Most successful WA algo-
rithms are variants of the following classic interpolation scheme,
summarized in Alg. 3. In each jth iteration of the line search, an in-
terval I; = oy, ay,] containing o is determined, and the next o1
is generated by the minimization of an interpolated cubic poly-
nomial Pj(a) with control points ¢(a;), ¢(ow), ¢’ (au), and ¢'(ow,)
(ie. Pj(au) = ¢(au), Pi(au) = ¢'(au), etc as shown in Fig. 3.1).
The next interval I;;; is computed such that the endpoints are
closer to a*, and methods such as bisection, secant, and dual in-
terpolation/minimization can be used to shrink the interval. Each
evaluation of ¢(a) and ¢'(«) requires an O(n) pass over R, and
it is typical in publicly available codes to structure optimization
routines with a function that computes both ¢(«) and ¢'(«) simul-
taneously by evaluating £(w + ap) and VL(w + ap), explicitly
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Algorithm 3: Cubic Interpolating WA Line Search
Input: a9 > 0
Output: o; satisfying (3.3) and (3.4) for ¢(a)

1 Iy + [0, o)

2 7+0

3 while «; does not satisfy (3.3) and (3.4) do

4 [y, o] < I

5 Pj (Oé) < interpolate ¢(Oél), ¢(au)’ ¢/(al)7 ¢/(au)
6 a1 ¢ argmin, Pj(a)

7 I; 41 < update interval using oy, oy, 41

8 j—i+1

9 return q;

returning a scalar and an m-dimensional vector such that, if the
current step size is accepted, the computed value of VL(w + ap)
provides VL(wygy1) for the next iteration. Note, however, that if
the initial ap in Alg. 3 satisfies (3.3) and (3.4), it is accepted as
the solution to (3.1) without constructing and minimizing Py(«),
regardless of the accuracy of ag.

3.2 Polynomial Expansion Line Search

Our goal with the PELS method is to solve (3.1) accurately with
the cheapest distributed operations possible when both the regu-
larization R(w) and individual loss f(w;x;,y;) are smooth with
respect to w. In this case, we consider the Taylor expansion of
¢(a) = L(w + ap) in terms of «, which requires summing the
Taylor expansions of each f(w;x;,y;) in (3.2) in addition to an
expansion for R(w). For an expansion about a step size a;, we
have

L(w+ap) = Qx(a)]a, + Y Y brila —ay)

i=1 £=0

where Q(a)lq, is a polynomial expansion of AR(w), and {bs;},-,
are the coefficients in the expansion of f(w;x;,y;) that depend ex-
plicitly on (x;, ;) and the direction p. To make this representation
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amenable to a distributed setting, we reorder the summations and
write the degree-d approximation to £(w + ap) as

d
W (0w, p)la, = Qa(@)la, + Y cla—ay),  (35)
=0

which has a truncation error q441(a)la; as
W(asw,p)la, = £+ ap) — 24s1(a)ly.  (36)

This error is an O ((o — o;)?*1) term and hence small for « near o;.
Each coefficient ¢y in (3.5) contains a summation over the dataset
as

c = sz,i = ZFE(RP%Xi,yi% (3.7)
i—1

i=1

where r = w + a;p, and the functions {Fg}j:o compute the coefli-
cients for the /th terms for a single observation.

The PELS algorithm exploits the following facts: (i) computing
the coeflicients in (3.7) is a parallelizable operation, and (ii) once
the {c/} are computed, W ()|, is a useful approximation that
may be used to estimate minima in a neighbourbood of «;. The
PELS method proceeds as follows. Starting from the iterate «;, a
polynomial approximation W(a)|a, is constructed by computing
the coefficients {¢;} in parallel, after which the subsequent iterate
is determined as

Q1 = arg gl;%W(a;w, P)la,- (3.8)

Solving (3.8) is a subproblem that will generate further iterates in
a minimization routine, however, since the coefficients of W (a)|a;
are fized, the minimization problem requires no further distributed
operations. In addition, computing the first and second derivatives
W'|a, and W"|,, are inexpensive O(d + 1) operations in a min-
imization routine when performed with Horner’s rule. If ojy; is
found to be insufficiently accurate, then the process repeats iter-
atively: ajy1 is chosen as the new expansion point, and the co-
efficients of W(a)l|a,,, are computed. This general form of the
PELS algorithm is summarized in Alg. 4, where the coefficients
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for W(a)la, are denoted by the vector ¢; = [co,c2,...,cq]", and
the procedure CALC__COEFFS for computing the coefficients in the
Apache Spark framework will be described in §3.3.

As a termination condition at step 7 of Alg. 4, we propose using
an error metric () that estimates the fractional error in the value
of W(aj+1)la,- The estimation uses the difference between polyno-
mial approximations to L(w + ap) of degree d and degree (d — 1),
and is based on the intuition that a degree-d Taylor polynomial is
heuristically bounded above by the error in the polynomial of de-
gree (d — 1) in the relevant neighbourhood of the expansion point
aj. Thus, we denote the polynomial of degree (d—1) by Wg_1, and
take

W()a; = Wa-1(@)]a ¢

_ ca(o — o)
E(Oé)|aj — W(a)‘aj

W(a)laj

(3.9)

It can be readily seen that (3.9) uses the highest order term in
W(a)|a,; as the approximate truncation error. While the true er-
ror in W(a)|q, is an unknown O((a — a;)?*1) term, e(a)q, can
be a particularly effective proxy when we note that e(a)la;, — 1
as |a — aj| — oo, which is in accordance with our knowledge that
W(a)|a, is a 100% incorrect approximation to £ for large |a — o ].
Alternatively, (3.9) measures the dominance of the degree-d term
in the polynomial expansion: intuitively, when c4(a — a;)? is the
largest term our approximation, it is almost certain that the ap-
proximation is wrong. By using (3.9) as the termination criterion
of Alg. 4, the algorithm progresses until the expansion point «; is
sufficiently close to o* such the O((a — a*)?) error metric is small.’

!The shrewd or incredulous reader may be chewing several questions
at this point, e.g. Q1: What about the Wolfe conditions—don’t we need
those and the Zoutendijk theorem? and Q2: How you even know this
converges? and Qs: Do you have a feasible proof outline? A;: While our
implementation of PELS for the convex logistic regression loss function
uses (3.9) as a convergence criterion and hence forgoes the convergence
properties that the Wolfe conditions bring, it is actually both possible
and simple to use the Wolfe conditions in the PELS method, since con-
ditions (3.3) and (3.4) may be evaluated using W (c)|a, either evactly at
a; or with an approximation error in a neighbourhood about a;. In a
combined manner, the €(c)|«; error metric may best serve as a threshold
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Algorithm 4: Polynomial Expansion Line Search

Input: we R™,pe R™, a9 > 0,0 >0
Output: o =~ o* = argmin, £ (W + ap)

17+0

2 repeat

3 c; ¢ CALC_ COEFFS(W,p, ;)

4 aji1 < argming W(a; w,p)la,

5 €(aj11)|a; < approximate e441(j11)la,
6 j—j+1

7 until e(aj)|a; , <0

8 return q;

Procedure CALC__ COEFFS(wW, p, ag)

1 r< W+ qop
2 Broadcast r, p to n, compute nodes
3 for compute node ¢t € {1,...,n,} do
4 for £ €{0,...,d} do
t
5 CL]% Z FZ(I‘?p;Xil)yil)
local 7;
A 2 T 2 T
o | oxe 3 [l 27p, Ip)3,0,0,.. ]
¢ et @z
8 | returnc

for estimating a trust region in which the Wolfe conditions, if they hold
according to W (a) and W’(a), would be believed such that the conver-
gence guarantees of Zoutendijk-type proofs for optimization algorithms
hold. As: The basic mechanism of Newton’s method is to construct and
minimize a degree-2 model function at «; in each iteration. Increasing
to degree-3 leads to Halley’s method, and increasing the degree further
then leads to the family of higher-order Householder methods. Newton’s
method is globally convergent on convex functions with positive definite
Hessians [85], and it seems unreasonable that increasing the degree of the
model (and thereby improving the accuracy) could alter the convergence;
so for any problem for which Newton-Raphson iteration converges, the
same would be expected of this formulation of PELS. As: A standard
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When L£(w) is itself polynomial, such as for least squares
regression and low-rank matrix factorization as formulated by
e.g. Gemulla et al. [42], then 441 (a) = 0 for sufficiently large d, and
Alg. 4 can solve (3.1) ezactly in a single step without further coeffi-
cient computations. For the more general case of analytic £(w), the
advantages of Alg. 4 over Alg. 3 are twofold. Firstly, the communi-
cation costs are lesser in the distributed operations: the summation
in (3.7) to compute the coefficients {c,} requires communicating
d + 1 scalar values for each (x;,y;), whereas the distributed com-
putation of VL in Alg. 3 communicates the m-dimensional gradient
vectors {V f(w;x;,y;)}. The second—and most important—reason
is that, unlike standard line searches that compute values for £ and
VL for only a single a;, the distributed operation computing the
{c¢} in PELS produces a model which is valid for an entire neigh-
bourhood of «j; thus, if «; is close to a*, the PELS method can
compute a very accurate approximation to o* with only a single
O(n) pass over the dataset to evaluate the polynomial coefficients.
This is illustrated in Fig. 3.2, where both Alg. 3 and Alg. 4 have
been applied to the function ¢(a) = ae® + e~(@=%. In Fig. 3.2a,
iterates produced by Alg. 3 (implemented as in [80] with vy = 10~*
and vo = 0.9) are shown, however only a single iterate has been
generated since (3.3) and (3.4) are satisfied at the input ag = 1;
as such, the algorithm terminates with a relatively inaccurate min-
imum, rather than compute V£ with an O(n) pass over the data
for another step a;. On the other hand, Fig. 3.2b shows PELS with
a degree-3 polynomial approximation W,, to ¢(a) for the same

proof technique for the convergence of Newton and other fixed point
methods is to use the analytic formula for ¢ in a fixed point iteration
aj+1 = a;j — ¢(ay), such that inequalities may be used to bound the
term |a; — | for each iterate in the sequence generated by ¢. The
problem induced by an arbitrary degree-d polynomial is that for d > 4,
there are no closed form expressions for its roots (cf. Abel’s impossibil-
ity theorem), and even the quartic formula is pretty hairy. Hence there
is no analytical formula for the minima of an arbitrary degree-d poly-
nomial [since the roots of a degree-d polynomial are the minima of the
appropriate degree-(d 4+ 1) polynomial] and thus no fixed point ¢ func-
tion to construct and grind through standard fixed point techniques. At
current we are unaware of a standard method of analysis, and welcome
suggestions.
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Figure 3.2: Ezample iterates {o;} produced by (a) Alg. 3 with
vy = 1074 and v5 = 0.9 (implemented as described by Moré &
Thuente [80]) and (b) PELS with expansions using d = 3 for
pla) = ae* +e (@4,

ap = 1. Here, a; is determined as the solution to (3.8), and is
visibly more accurate than «p in Fig. 3.2a (only d = 3 is shown
since W|q, could not be distinguished from ¢(«) at this scale for
larger degrees). This example is not a toy problem, but a case that
we have often observed experimentally for the LBFGS algorithm:
though the initial step size ap = 1 frequently obeys the Wolfe con-
ditions and is accepted in Alg. 3, g is an inaccurate solution to
(3.1).

3.3 PELS Implementation In Spark

The PELS method in Alg. 4 was implemented in Apache Spark 1.5
and tested using an Ls-regularized logistic regression model for bi-
nary classification of a continuous vector x; € R™ by the discrete
label y; € {0,1}. In implementing PELS, we mimicked the struc-
ture of the algorithms implemented within Spark 1.5’s optimization
library. The method assumes that the arrays storing the parameter
vector w, gradient VL, and associated search direction vector p fit
into memory on the master node, which drives the outer optimiza-
tion routines. The evaluation of £ and VL were farmed out to the
compute nodes, as illustrated by Fig. 2.4 in §2. Analogously, the
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PELS coefficient computations were evaluated through map and
reduce operations, and the local minimization in (3.8) occurred on
the master node.

The logistic loss function is derived from the maximum log
likelihood of the logistic model probability Pr[y; = 0|x;, w] as [52]

L(w) = %||w||§ + % S (togle ™" + 1]+ Ng)w'x,)  (3.10)

i=1

where N(y;) = 1 — I(y;) and I(y;) is a boolean indicator function
equal to 1 only if y; # 0. It can be shown that (3.10) is strictly
convex and has a unique global minimizer [66]. Since (3.10) is in-
finitely differentiable, we may use a Taylor expansion about «aq for
¢(a)) = L(w + ap). Denoting the ray w + agp by r, and using the
simplifications p; = pTx; and r; = e“"T"f‘, the expansion up to 4th
order is

=1

(o — ap) [ sz< Vi) 111)+Ap r]

bla) = [j} S (loglr + 1]+ N(yi) rx,) + Qnr@] (3.11)

1 & piT A
+ (o — ap)? [22(7"2‘*‘1) §HP||§
me rzfl
n—i—l

(a—ao)

Note that the functions {Fg(rbpk;xi,yi)}?:o are the coefficients
of the (a—ayp) terms in (3.11), and also that due to the structure of
the loss function (i.e. the recursion of gradients of the exponential
e”), the high order coefficients in (3.11) depend only on the scalars
p; and r; and thus do not have a significant computational cost
beyond the initial calculation of p; and r;.

The observations R = {(x;,y;)} were stored in an RDD with
type RDD [(R™,IR)], where the vectors {x;} were either sparse or
dense vectors with double precision. The parameter and search di-
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rection vectors {wy} and {py} were not partitioned over the com-
pute nodes, but stored as dense vector objects on the master node.
Communicating the vectors p;, and ry = Wi +a; Py, to the compute
nodes in the cluster for any «; in the line search was performed via a
torrent broadcast [109]. To compute the coefficient vector ¢; in any
PELS iteration, the functions {Fy(ry, pk;Xi,yi)}2l=0 in (3.11) were
calculated as parallel map operations on the RDD of R, and the
resulting c; € R4 was summed via a multi-level reduce operation
(recall Fig. 2.3b), where the operator @ was vector addition.? The
Lo regularization terms were computed by the master node as the
vector ¢y = %[Hrk”;,QI{pk, Hpk||§,(),0, ...] (with zeros appended
so cy € R%!) and added to c;. These steps are enumerated in pro-
cedure COMPUTE__COEFFS in Alg. 4 in which the local, map-side
reduction (Fig. 2.4¢) of coefficient vectors occurs in step 5, and the
global reduction to the master node occurs in step 7.

In our implementation of PELS, we used the NR method as the
optimization routine for minimizing the polynomial Wl,; in step
4 of Alg. 4, which is equivalent to solving for the roots of W’|,;.
However, it is possible that W'|,, < 0 for a > 0 if o is far from o*
(i.e. W'|4, has no relevant real roots). In this case, instead of using
a minimization routine, ;1 was determined by NR iteration at
o as

NR ¢'(a ) €1
o =y ¢//(Oéj) = 202’
where only the coefficients ¢; and co appear since ¢(e;) =
W (aj)la, - Since it was observed that NR iteration converged within
machine precision to a stationary point of W\a]. in very few itera-
tions, (3.12) was used as a default whenever the NR method start-
ing from «; failed to compute a zero gradient within a tolerance of

(3.12)

2To be precise for Spark aficionados, the map and reduce operations
were performed using a multi-level treeAggregate, which operates more
efficiently by using two functions, one that specifies a transformation
fmap : R™ x R — R to create the Taylor polynomial coefficients for
a single instance (x;,7;) in the dataset, and another feomp : R4T! x
R - RI*! that sums the coefficients for two distinct instances. The
aggregation reduces the required memory usage by creating a minimal
number of objects to be managed by the JVM [since the second combiner
function operates on the objects in-place].
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10~1% in fewer than 10 iterations.?

3.4 PELS Performance Tests

To evaluate the efficacy of PELS, performance tests were conducted
in which the Gradient Descent (GD), NCG, and LBFGS algorithms
were used to optimize the parameters of a logistic regression model.
These algorithms each were run in two sets, using either PELS or a
standard WA cubic interpolating line search [4, 85] from the open-
source Breeze library [50] with v; = 10~* and v, = 0.9, which
is used in Spark’s native LBFGS implementation. The implemen-
tations using PELS will be henceforth denoted with a suffix -P
as LBFGS-P, NCG-P, and GD-P. All algorithms using a WA line
search were implemented such that the operations other than the
line search were identical to those in the LBFGS-P, NCG-P and
GD-P implementations, respectively, except where noted.*

3Just in case you were wondering whether this statement contradicts
the NR convergence argument for convex functions in footnote 1, remem-
ber that the function being minimized by the NR routine is W (a)la,
and not ¢(c). In reality, the NR iterate in (3.12) is the initial step com-
puted in every invocation of our NR minimization routine solving (3.8)
in PELS [since W(;)|a; = co, W'(ay)la; = c1, etc], but the full NR
procedure may diverge because W (a¥?)|a, # ¢(aNF), and there aren’t
guarantees about the local boundedness of the gradient or Hessian of the
approximating Taylor polynomial once you leave the sweet spot around
a;. Naturally it’s possible to use an alternative minimizaton routine to
(3.12)—one that minimizes W(a)la; on a bounded interval, with the
bounds prudently chosen based on a maximal value of (3.9) above which
solutions are disallowed [which is necessary unless you’d hazard accept-
ing —oo as your minimum|. However you’ll have to wait until §5 in which
nonconvex functions are tackled for that trick; here it was sufficient to
use (3.12) for the odd time that NR iteration diverged.

‘The LBFGS implementation we are considering is not the na-
tive Spark LBFGS code. We found that it had significant overheads
stemming—it seems—from the deeply nested data structures in Breeze.
It was possible to re-implement the algorithm in an imperative style that
took only circa 65% as much time as the Spark code on large problems.
The issue with the native implementation, so far as can be gleaned from
the code, is both the many layers of OOP required to compute the new
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For both LBFGS and LBFGS-P, the initial step size in each
invocation (i.e. the input g in Alg. 3 and Alg. 4) was taken to be
1 for both the WA line search in LBFGS and PELS in LBFGS-
P, which is the recommended trial step for the LBFGS algorithm
[70]. A history of n. = 5 corrections was used in our tests, as rec-
ommended for large problems [70], and the initial inverse Hessian
approximation in each iteration used Liu and Nocedal’s M3 scal-
ing [70]. This is the same scaling formula used in the LBFGS code
for Spark 1.5. The NCG-P update rule was the positive Polak-
Ribiere formula in (1.5), and the NCG and GD algorithms with
and without PELS both used the scaling formula in (1.6) to deter-
mine the initial step size in their respective univariate line searches.
For NCG-P and GD-P, the search directions used to compute the
coefficients in PELS and subsequently update wj were normalized
as pr < Pr/||Pxlly. Finally, the NCG-P algorithm was run with
a Powell restart condition of v = 0.2 in (1.7), however NCG was
given a restart threshold of v = 1 because smaller values often trig-
gered restarts in every iteration, reverting the method to GD and
yielding poor performance.

The logistic regression models were trained on binary classifi-
cation datasets procured from the LIBSVM repository [23], which
are listed in in Tab. 5.1. This table also gives summary information
about the datasets’ respective sizes of n and m, mean number of
nonzero elements in x;, ratio of the number of true (nonzero) y;
labels to false y; labels as ny : n_, and magnitudes of A used in
(3.10). The dense {x;} in the Epsilon dataset were represented by
contiguous dense vectors, while the other datasets’ instances were
stored in compressed sparse vector format. All x; were further aug-
mented as x! < [x!' 17 to implicitly include a constant offset
term in the inner product w’x;. For all datasets, each algorithm

pr as well as the way in which the vectors {gr+1 — gr } and {wry1 — Wi}
are stored for the quasi-Newton update. For the latter case, it seems that
in Breeze a new sequence object of arrays is created from the previous
one in each iteration by stripping the vector from the sequence’s head
and concatenating the most recent vector to the sequence’s tail. For large
m, it may be more efficient to create a statically-sized array for these vec-
tors and in each iteration overwrite one entry at index i* = mod(k, nc)
of the array, such that the modular arithmetic takes care of all the heavy
lifting in the LBFGS two-loop recursion procedure.
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Table 3.1: Properties of LIBSVM classification datasets used in
numerical experiments, and respective magnitudes of \.

Dataset n m  nnz(X;) N4 : no A

Epsilon 400,000 2,001 2001 1.0:1.0 10°
RCV1 (test) 677,399 47,237 T4 £54 1.1:1.0 1077
URL 2,396,130 3,231,962 117+17 1.0:20 1078
KDD-A 8,407,752 20,216,831 37+9 58:1.0 107°
KDD-B 19,264,097 29,890,095 29 £8 62:1.0 107°

was run with wo = 0. In each iteration, computed values of L(wy,)
and ||VL(wy)||, were written to the standard output filestream.
The values of § used in Alg. 4 were § = 10~ (approximately 0.01%
error), except for the Epsilon and KDD-A datasets, on which 1076
was used. While smaller 6 generated more accurate step sizes, the
additional PELS iterations increased the computational time; val-
ues of 6 € [107%,107%] were a good compromise between accuracy
and speed.

All performance tests were performed on a computing cluster
composed of 16 homogeneous compute nodes, 1 storage node host-
ing a network filesystem, and 1 master node. The nodes were in-
terconnected by a 10 Gb ethernet managed switch (PowerConnect
8164; Dell). Each compute node was a 64 bit rack server (Pow-
erEdge R620; Dell) running Linux kernel 3.13 with two 8-core 2.60
GHz processors (Xeon E5-2670; Intel) and 200 GB of SDRAM. The
master node had identical processor specifications and 512 GB of
RAM. Compute nodes were equipped with six ext4-formatted 600
GB SCSI hard disks, each with 10,000 RPM nominal speed. The
storage node (PowerEdge R720; Dell) contained two 6-core 2 GHz
processors (Xeon E5-2620; Intel), 64 GB of memory, and a hard
drive speed of 7,200 RPM. Further information about the cluster
hardware specifications is available in §A.

Our Apache Spark assembly was built from a snapshot of the
version 1.5 master branch using Oracle’s Java 7 distribution, Scala
2.10, and Hadoop 2.0.2. Input files to Spark programs were stored
on the storage node in plain text. The compute nodes’ local SCSI
drives were used for both Spark spilling directories and Java tempo-
rary files. Shuffle files were consolidated into larger files, as recom-
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Table 3.2: Default settings for Spark configuration parameters.

Property Key Value Units
spark.kryoserializer.buffer.max 1024 MB
spark.driver.maxResultSize o0 MB
spark.storage.memoryFraction 0.5
spark.shuffle.spill false
spark.shuffle.file.buffer 256 kB
spark.shuffle. memoryFraction 0.4
spark.reduce.maxMblInFlight 256 MB
spark.broadcast.compress true
spark.akka.threads 32

mended for ext4 filesystems [29], and Kryo serialization was used.
In our experiments, the Spark driver was executed on the master
node in standalone client mode, and a single instance of a Spark
executor was created on each compute node. All RDDs had 256
partitions, corresponding to 1 partition per available physical core;
performance decreased in general as more partitions were used. Fi-
nally, n; was set to log, 16 in all tree aggregations; empirically, this
was faster for large datasets than the default of n; = 2. All other
relevant Spark configuration settings are listed in Tab. 3.2.5

3.5 Results & Discussion

Our performance results are presented in two parts. In our initial
tests, we are interested purely in the convergence improvements
possible with PELS, and hence consider the Epsilon and RCV1

5Spark practitioners interested specifically in these details should be
aware that they reflect some bounds that may be permissible only with
our particular cluster hardware; for instance, disallowing shuffle spill
could [imaginably] be catastrophic without the oodles of RAM on our
compute nodes. Setting the spark.driver.maxResultSize parameter to co
was also important for performing large reductions on RDDs to the driver
program, and it caused some headaches before being made infinite. Ad-
ditionally, the use of Kryo serialization is highly recommended since it
significantly accelerated Spark runtimes for all of the experiments we
have considered, sometimes by 25-50%.
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datasets that have little noise and are well-posed with m < n.
In these tests, we present high-accuracy convergence traces since
L(w*) may be computed to machine precision. By contrast, real-life
machine learning applications are often ill-posed and have statis-
tical errors in the model or instances that exceed the numerical
optimization error, such that w* is computed to only a few signifi-
cant digits until the training loss ceases to decrease appreciably [16].
To demonstrate that PELS is effective in this practical setting as
well, we present results on the large and ill-posed URL, KDD-A, and
KDD-B datasets, and compute the acceleration in reaching termi-
nal values of the training label prediction accuracy, exp{—L(wy)},
achievable by using PELS.

For the Epsilon and RCV1 datasets, respectively, Fig. 3.3 and
Fig. 3.4 show the traces of |L(wy) — L(w*)| as a function of (a)
iterations and (b) clock time for the algorithms considered in §3.4.
In both plots, £(w*) was determined as the minimal loss com-
puted by any algorithm within the maximum number of iterations.
That w* was computed accurately is evinced by the gradient norm
at w*: [[VL(w*)||, was 1.3 x 107! for the Epsilon dataset and
8.7 x 1072 for the RCcV1 dataset, as computed by NCG-P. It is
notable in both plots that NCG-P has drastically outperformed
both the NCG and LBFGS algorithms that use a standard WA
line search. LBFGS-P outperformed LBFGS in iterations and time
for the Epsilon dataset, and performed similarly to LBFGS on the
RCV1 dataset. GD-P and GD are virtually indistinguishable at the
scale of Fig. 3.3 and Fig. 3.4 since there is little substantive differ-
ence in the two algorithms’ traces.

The convergence traces for the large URL, KDD-A, and KDD-
B datasets are shown in Fig. 3.5, Fig. 3.6, and Fig. 3.7, respec-
tively (traces for GD and GD-P have been omitted from these
plots since these algorithms made little progress towards the so-
lution). These datasets required considerably more iterations and
training time, and the LBFGS-P and NCG-P algorithms have out-
performed their counterparts by multiple decimal digits in accu-
racy. However, since in many machine learning applications, the
training procedure is halted once exp{—L(wy)} reaches a plateau,
only log,q |L(wg) — L(w*)] & —3 may be necessary in practice.
Bearing this, the speedup factors as a function of training accuracy
for LBFGS-P relative to LBFGS were computed for the URL and
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Figure 3.3: Convergence traces in reqularized loss for the Epsilon
dataset in (a) iterations and (b) elapsed time.
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Figure 3.4: Convergence traces in regularized loss for the RCV1
dataset in (a) iterations and (b) elapsed time.

both KDD datasets, and are shown in Fig. 3.8, where the factors
in Fig. 3.8a have been computed for the number of iterations re-
quired, and the factors in Fig. 3.8b have been computed for the
amount of clock time required. These speedup factors were de-
termined by finding the first iterate produced by LBFGS-P that
reached the same or greater value of exp{—L(w})} as LBFGS,
and the error bars in this plot show the standard deviation about
the mean speedup ratios computed in non-overlapping windows of
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Figure 3.5: Convergence traces in reqularized loss for the URL
dataset in (a) iterations and (b) elapsed time.

() (b)

o 0 T T T T O o
5 05 et ea T T ] - 105 =
2 | i a 14 2
\1 \1
| -15 F . - —4-1.5 |

N 1 12 %
I -25 F 3 - —4-2.5 I
= 3r \ I 13 =
%D 3.5 LBLFBgsé-;l(S; :vt_ i B LBLF§§§%— -3.5 gD
— ) NEG-P ——) | NCG-p ——, L -

0 1000 2000 3000 0 5 10 15 20
Iteration, k Elapsed Time (h)

Figure 3.6: Convergence traces in regularized loss for the KDD-A
dataset in (a) iterations and (b) elapsed time.

width 0.02 along the x-axis. To reach the terminal training accu-
racies (e.g. ~97% for URL), Fig. 3.8 shows that factors of 1.8-2 in
both iterations and clock time are achievable on the KDD-A, KDD-B,
and URL problems.

To complement the convergence traces and explain the speedup
in clock time of the PELS method in a distributed setting, Tab. 3.3
presents timing measurements for the distributed operations, aver-
aged for each algorithm over all iterations. The quantity 7, repre-
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Figure 3.7: Convergence traces in reqularized loss for the KDD-B
dataset in (a) iterations and (b) elapsed time.
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sents the mean clock time required to evaluate £ and VL through
a map operation on the RDD of R with a subsequent aggregation.
However, since £ does not need to be computed explicitly in the
PELS method, ¢, denotes the time required to compute only VL
for LBFGS-P, NCG-P, and GD-P (although evaluating VL alone
takes as much time as evaluating £ and V£ simultaneously). For
the algorithms using the PELS method, 745 gives the mean time to
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both compute and aggregate the coeflicient vector c;. The quan-
tity me represents the average number of iterations per line search
in the respective manners in which they were conducted: for the
WA algorithms, n, is the mean number of function/gradient evalua-
tions per line search, and for the PELS algorithms, it represents the
mean number of coefficient evaluations performed in Alg. 4 per line
search. Thus, in each outer iteration of the optimization method,
PELS algorithms perform 1 gradient computation taking ¢, sec-
onds and then n. operations lasting 7y seconds, while WA algo-
rithms perform n. operations taking ¢, seconds. The total time per
iteration is shown as Tyo¢. All uncertainty bounds show the stan-
dard deviation about the mean value; no uncertainty is given for
n. since it was taken as the ratio of the total number of line search
calls to outer iterations.

The advantage of PELS for accurate large-scale distributed line
searches is apparent when comparing 745 to ¢ in Tab. 3.3, as well
as the difference in n, between PELS and WA algorithms. For all
datasets, Tgs < Ttg, however when the problem size is large, such
as for the KDD-A and KDD-B datasets, computing the PELS coeffi-
cients took only a quarter of the time required to compute VL. For
all problems, LBFGS-P and NCG-P required a lower number of n,
evaluations in the line search than LBFGS and NCG, respectively,
and in addition n, =~ 1 for all PELS algorithms on the datasets
considered. NCG-P is particularly effective when contrasted with
NCG on the Epsilon, RCV1, and URL datasets: on these problems,
NCG produced poorly scaled search directions requiring many line
search iterations. While preconditioning in the NCG algorithm can
be used to mitigate the poor scaling, it requires additional matrix-
vector operations in each iteration, often constructing an approxi-
mation to the Hessian with LBFGS-type updates [49]; we thus find
it notable that NCG-P often had better performance than LBFGS,
without the need for preconditioning. In contrast to NCG, LBFGS
generally had n. ~ 1 in Tab. 3.3; as such, the performance gains
of LBFGS-P over LBFGS stem principally from reducing the total
number of required iterations by computing more accurate minima
in each line search invocation.

In examining the average 7ot for LBFGS on the large prob-
lems, it can be seen to be approximately the same for both PELS
and WA implementations, however the standard deviation is far
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Table 3.3: Mean clock times for each iteration (Tiot), evaluating
L and VL (145), and computing c; (145). The average number of
function calls or line search iterations per outer iteration of the
optimization algorithms are given by ne.

Alg. Teot (S) Teg (S) Tos (8) Ne
Epsilon
LBFGS 0.5+0.2 0.42 + 0.07 1.15
NCG 4+ 2 0.43 £+ 0.08 9.92
GD 0.42 £ 0.10 0.42 £+ 0.08 1.01
LBFGS-P 0.7£0.1 0.42 £ 0.07 0.32 + 0.06 1.00
NCG-P 0.7+0.1 0.42 + 0.07 0.32 + 0.06 1.00
GD-P 0.7+0.1 0.42 + 0.07 0.32 + 0.06 1.00
RCV]
LBFGS 0.6 £0.3 0.47 £+ 0.08 1.24
NCG 5+ 2 0.44 + 0.07 10.48
GD 0.5£0.2 0.5+0.1 1.06
LBFGS-P 0.8+0.2 0.45 + 0.07 0.29 + 0.06 1.05
NCG-P 0.8+0.2 0.46 + 0.07 0.30 + 0.06 1.08
GD-P 0.8 +0.1 0.45 + 0.07 0.29 + 0.06 1.00
URL
LBFGS 6+ 2 4.5+ 0.2 1.14
NCG 56 + 15 4.6 £0.3 11.10
LBFGS-P 6.1 +£0.3 4.3 £0.2 1.0+0.1 1.00
NCG-P 5.9 +0.3 4.44+0.2 1.0+0.1 1.01
KDD-A
LBFGS 24+5 19+1 1.05
NCG 30 + 18 1941 1.38
LBFGS-P 25+ 2 18+1 4.6+0.4 1.03
NCG-P 24+ 2 18+1 4.7+ 0.6 1.03
KDD-B
LBFGS 37+38 28 + 2 1.07
NCG 45 + 28 28 £ 2 1.41
LBFGS-P 38 +2 27+ 2 6.7 £ 0.6 1.00
NCG-P 36 +3 27 £ 2 7.1+0.8 1.00

larger for LBFGS-P and there is more time unaccounted for in the
values of the difference 7ot — ne - 74, for LBFGS than for LBFGS-
P. Using the KDD-B dataset for instance, the difference is 4 + 3 s
for the LBFGS-P algorithm, but 7 &+ 8 s for LBFGS.® Since the

5The absurdly large standard error here is propagated through
quadrature of the [unrounded]| values for standard deviation about
the mean for 7yt and 7¢ in Tab. 3.3 and afterwards rounded from
6.9397 £ 8.1553 to a single significant digit. Of course, such a large un-
certainty begets questions—e.g. wherefore the large standard deviation
in 7oy for LBFGS in Tab. 3.3. With respect to the KDD-B dataset, the
histograms below show the distribution of the 7t and 7¢; measurements
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algorithm implementations differ only in the line search, the sim-
plest conjecture is that there is a large amount of variability in
the time required for some [yet unknown| component of the Breeze
WA line search. If that variability could be removed by altering or
re-implementing the Breeze code, it would not be unreasonable to
expect a decrease of 3 seconds in the average time per iteration of
LBFGS (i.e. a decrease at least equal to the difference in the extra
times of the implementations of LBFGS-P and LBFGS, since their
codes were otherwise identical). This would reduce the time taken
for the KDD-B dataset by a factor of approximately 92%, with an ac-
companying reduction in the temporal speedup factors in Fig. 3.8b.
While this does not dramatically alter the results presented here,
it bears mention that further optimizations are possible.”

for LBFGS in panel (a) and LBFGS-P in panel (b), such that bimodality
of Ttot is starkly visible in (a). The right mode for LBFGS stems from the
260/4000 iterations that required 2 gradient evaluations; without those
values, the standard deviation about the mean for the 7ot of LBFGS
was 2.0. The absence of a bimodal distribution for LBFGS-P is specific
to the KDD-B dataset, since we observed n. = 1.00.

(a) LBFGS (b) LBFGS-P
2000
T T T T _ITlol T T T T _ITlol 2000
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= =
g 9
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£ 1000 - - 4 1000 2
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In fact, an obvious and straightforward improvement lies in wait in
step 2 of procedure CALC__COEFFS of Alg. 4. As w,p are fized for the
entirety of the line search, it is necessary to broadcast these vectors to the
compute nodes only once. The required modification to the code is not
particularly substantive, but requires that some closures [specific jargon
for computer code that is serialized at program runtime and transmitted
by the master node to the compute nodes to provide instructions for
their map operations on local RDD partitions] in PELS line search be
tweaked so that the broadcast variables remain in scope for subsequent
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3.6 Conclusion

In this chapter, we have presented the Polynomial Expansion
Line Search method for large-scale batch and minibatch opti-
mization algorithms, applicable to smooth loss functions with Lo-
regularization such as least squares regression, logistic regression,
and low-rank matrix factorization. The PELS method constructs
a truncated Taylor polynomial expansion of the loss function that
may be minimized quickly and accurately in a neighbourhood of
the expansion point, and additionally has coefficients that may be
evaluated in parallel with little communication overhead. Perfor-
mance tests with our implementations of LBFGS, NCG, and GD
with PELS in the Apache Spark framework were conducted with
a logistic regression model on large classification datasets on a 16
node cluster with 256 processing cores. It was found, perhaps sur-
prisingly, that NCG with PELS often exhibited better convergence
and faster performance than LBFGS with a standard Wolfe ap-
proximate line search. For large datasets, the PELS technique also
significantly reduced the number of iterations and time required by
the LBFGS algorithm to reach high training accuracies by factors
of 1.8-2. The PELS technique may be used to accelerate parallel
large-scale regression and matrix factorization computations, and
is applicable to important classes of smooth optimization problems.

map operations.
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consumer merchandise are easily modelled and predicted

by something as simple as a mathematical dot product?
Or that this technique powers the eager product recommendation
systems of Amazon [68], Netflix [7], and Spotify [60], just to name
a few? Well don’t worry if you were out of the loop—this chapter is
your how-to guide on finding out what people want using the data
about what all the other people wanted.

Low-rank matrix factorization is one of the simplest yet effec-
tive techniques [7, 35] in the field of collaborative filtering, in which
many people’s preferences for products are used to build models
for recommending those products to other people [95, 61]. The
low-rank latent factor model works by associating with each user
and product a vector of rank ny, of which each component is a
linear measurement of how much that user likes the factor or fea-
ture associated with that component (or conversely, how much of
that component the item has). This may sound sort of vague, but
that’s why the factors are called latent: they’re supposed to cap-
ture the je ne sais quoi of what you like and put it into a number.
For movies the factors might be interpretable as genres or motifs,

D ID you know that people’s tastes in movies and music and
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such that work by filmmakers like Scorsese, Quentin Tarantino,
and the Coen Bros. would be represented by vectors with similar
measurements [in all the right places].

So how does this work? Inserting ourselves specifically in the
user-movie framework, a low-rank matrix factorization procedure
takes as its input a user-movie ratings matrix R, in which each
entry is a numerical rating of a movie by a user, and for which the
known entries are notoriously few.! The procedure then determines
the low-rank user and movie matrices, U and M respectively, where
a column in these matrices represents a latent feature vector for a
single user or movie, respectively, and (ideally) R = UTM for the
known values in R. This relationship is illustrated in Fig. 4.1, in
which a column u; of U representing a user and a column m; of M
representing an movie align such that their inner product produces
the numerical ranking of movie j by user i as ul v = ;5. The real
trick is solving the resultant optimization problem of determining
good values of U and M such that the relationship R ~ UTM
holds—which is where we come in.

The standard approach to determine U and M is by minimiz-
ing the sum of the squared difference (r;; — ul'm;)? for all known
{rij}. And just like any optimization problem, there are a number
of techniques on the market, such as distributed SGD by Gemulla
et al. [42], coordinate descent by Yu et al. [110], and the Alternat-
ing Least Squares (ALS) algorithm [116]. In particular, the ALS
algorithm is well-established as a choice method [62, 41]. ALS is
easily parallelized [116, 56], and has recently been proposed as an
efficient nonlinear preconditioner for the Nonlinear Conjugate Gra-

'For example, the MovieLens 20M dataset with 138,493 users and
27,278 movies contains only 20 million ratings (less than 1% of all pos-
sibilities), and in the famous Netflix Competition, the Netflix dataset
of half a million ratings included information from customers who had
mostly rated fewer than 5 movies. However, in this latter Netflix prize,
there were users who had somehow legitimately rated more than 10,000
movies [81]. As this is on the order of two years’ worth of nonstop
moviegoing, it has to raise at least a few eyebrows—if not about the
dataset, then about something else with a lot of that latent, je-ne-sais-
quoi factor. To defer to Lily Tomlin: “If you read a lot of books, you're
considered well-read. But if you watch a lot of TV, you're not considered
well-viewed.”
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Figure 4.1: Schematic of the relationship R = UTM. The col-
umn u; of U representing the ith user and a column m; of M
representing the jth movie are aligned such that the inner product

. . . . _ T
produces the ranking of movie j by user i as r;; = u; v.

dient (Alg. 2) by De Sterck & Winlaw [30], who report that the
combined ALS-NCG algorithm can converge faster for tensor de-
composition problems than either of the two algorithms separately.

In this chapter, we present both a parallel implementation of
the nonlinearly preconditioned ALS-NCG algorithm in the Apache
Spark framework, built around Spark’s existing ALS implementa-
tion for matrix factorization. In particular, because the ALS-NCG
algorithm conducts a univariate line search in each iteration just
like NCG, our ALS-NCG implementation is an ideal example to
showcase the utility of the PELS algorithm from §3. We show that
because of the structure of the matrix factorization loss function,
the univariate line search function to be minimized is itself polyno-
mial, and the Taylor coefficients computed by PELS are exact. As
such, the line search routines in the ALS-NCG algorithm are fixed
costs in each iteration, which improves the parallel efficiency.

The rest of this chapter is organized as follows. §4.1 formu-
lates the matrix factorization loss function, which is part of the
family of mean loss functions. The ALS algorithm and the exist-
ing implementation in Spark is then described in §4.2, followed
by a description of the nonlinearly preconditioned ALS-NCG al-
gorithm in §4.3 and its parallel implementation in Apache Spark.
§4.4, describes our performance experiments using the MovieLens
20M dataset [51] and big synthetic datasets sampled from it with 6

49



When ALS Met NCG

million users and 800 million ratings. We present our observations
that ALS-NCG was capable of optimizing the U and M matrices
faster than the existing ALS implementation in Spark by factors of
2-5 in clock time. Furthermore, like the standalone ALS algorithm,
the implementation is linearly scalable with the size of the input
data.

4.1 Low Rank Matrix Factorization

In a low-rank factorization model [62, 116], we attempt to recon-
struct the known entries of the sparse matrix R € R™**"™ within
a rank-ny feature space, with the final objective of correctly pre-
dicting the unknown values in R. In the user/movies setting we
consider, we adopt the notation that n, is the number of users,
and n,, is the number of items. For the user feature matrix U =
[u;] € R™*™ and movie feature matrix M = [m;] € R"/*"m  we
construct a loss function measuring the prediction error for each of
the known values of {r;;} € R such that R ~ UTM. Explicit in
this relationship is that each vector u; € R"™/ is associated with a
user 1 < i < n,, and each vector m; € R"f is associated with a
movie 1 < j < n,,, such that the interaction of user i with movie
jis uszj ~ 1i;. The objective is then to minimize a squared loss
function dependent on only the index set Z of known ratings,

ﬂ(U,M) = Z (’I“ij - uiij)g-i-

(i,5)eT
il 7 [y ),
J

where n,, denotes the number of ratings by user i, and n,, is the
number of ratings of movie j. This latter term A", ny, ||uil|* +
> N, [m;||?) for A > 0 is a Tikhonov regularization [103] term
included to prevent overfitting.

(4.1)

4.2 Alternating Least Squares

The ALS algorithm is a simple one. In each iteration, the method
proceeds by cyclically fixzing one of the unknown matrices—either U
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or M—and then solving for the remaining variable matrix column
by column, since each column can be written as the solution to a
system of linear equations. In §4.2.1 we derive the expressions for
these systems and show how ALS is immediately parallelizable, and
then discuss in §4.2.2 the parallel implementation in the Apache
Spark codebase based on the work by Johnson [59].

4.2.1 Derivation & Parallelization

We consider the first step of the ALS algorithm in which the movie
matrix M is fixed. The least squares solution to (4.1) is then deter-
mined for each u; by setting to zero each component of the gradient
of (4.1) related to u;: % = 0 for each kth component of u; such
that ug; is an element of U. Expanding the terms in the derivative
of L, we then have the equality

Z 2(111ij — rij)mkj + 2An,uk; =0 Vi k
JEL;

in which my; is a scalar element of M and Z; is the index set of
movies that user ¢ has rated. This form may be rearranged and
vectorized to achieve the resultant linear system for any u;,

(Mz, M7 + Any, I)u; = Mz, R (4, T;),

where I is the ny x ny identity matrix, and Mz, represents the
sub-matrix of M where columns with indices from Z; are selected.
Similarly, R(¢,Z;) is a row vector that represents the ith row of R
with only the columns in Z; included. The explicit solution for any
u; is then given by

w =A; v, Vi, (4.2)

where A; = Mz, M% + Ang, I, and v; = Mz, RT(i,7;).
The analogous solution for the columns of M is found by fixing
U, such that each m; is given by the solution of the system

m; =A;'v;Vj (4.3)
where A; = UIJ.U%], + Ay, I and v; = Uz, R(j,Z;). Here, Z; is

the index set of users that have rated movie j, Uz, represents the
sub-matrix of U € R/ *" where columns in the index set Z; are
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Algorithm 5: Alternating Least Squares (ALS)
Output: U M

1 Initialize M

2 while not converged do
3 fori=1,...,n, do
4 ‘ u; < Ai_lvi

5 end

6 for j=1,...,n, do
7 ‘ m; — Aj_lvj

8 end

9 end

selected, and R(j,Z;) is a column vector that represents the jth
column of R with only the rows in Z; included. From (4.2) and
(4.3), it is readily apparent that each of the columns of U and M
may be computed independently since all {u;} depend only on the
fized {m;} and vice versa. Thus can ALS be easily parallelized,
as done by Zhou et al. [116]. In addition, note that non-negativity
bound constraints can be easily enforced in practice through the
choice of linear solver for u; and m; (see e.g. an NCG variant for
bound-constrained problems given by Polyak [88]). The full ALS
algorithm for iteratively minimizing (4.1) repeats the procedure
described above, and is summarized in Alg. 5.

4.2.2 ALS Implementation in Spark

The Spark implementation of ALS has several data structures for
optimized communication patterns when forming the matrices A;
and A; for all 4,j. We first give an overview of the RDD parti-
tioning, and then describe the routing table data structures that
reduce the size of data shuffled between RDD partitions in each
ALS iteration.

Overview. The ALS codebase stores the factor matrices U
and M as single precision column block matrices, with each block
as a single element of an RDD partition. A given U column block
stores factor vectors for a subset of the users, and an M column
block stores factor vectors for a subset of the movies. The rat-
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ings matrix is stored twice: both R and R are stored in separate
RDDs, partitioned in row blocks (i.e., R is partitioned by users and
R” by movies), both stored in a compressed sparse matrix format.
The U and R RDDs have the same partitioning, such that a node
that stores a partition of U also stores the partition of R such that
the ratings for each user in its partitions of U are locally available.
When updating a U block according to (4.2), the required ratings
are available in a local R block, but the movie factor vectors in
M corresponding to the movies rated by the users in a local U
block must be shuffled across the network. These movie factors are
fetched from different nodes, and, as explained below, an optimized
routing table strategy is used that avoids sending duplicate infor-
mation [59]. Similarly, updating a block of M according to (4.3)
uses ratings data stored in a local R” block, but requires shuffling
of U factor vectors using a second routing table.

Block Partitioning. All RDDs are partitioned into ny; parti-
tions?, where, in practice, ny is an integer multiple of the number
of available compute cores. For example, M is divided into col-
umn blocks M, with block (movie) index j, € {0,...,n, — 1} by
hash partitioning the movie factor vectors such that m; € R;, if
Jj = jb (mod ny) as in Fig. 4.2.  Similarly, U is hash partitioned
into column blocks U;, with block (user) index i, € {0,...,n, — 1}.
The RDDs for M and U can be taken as type RDD [(j, M;,)] and
RDD [(is, UL )], where the blocks are tracked by the indices j, and 4.
R is partitioned by rows (users) into blocks with type RDD [(ip, Ry, )]
with the same partitioning as the RDD representing U (and sim-
ilarly for the R” and M RDDs). By sharing the same user-based
partitioning scheme, the blocks R;, and U;, are normally located
on the same compute node, except when faults occur. The same ap-
plies to R]-Tb and M, due to the movie-based partitioning scheme.

Routing Table. Fig. 4.3 shows how a routing table optimizes
data shuffling in ALS. Suppose we want to update the user factor
block U;, according to (4.2). The required ratings data, R;,, is
stored locally, but a global shuffle is required to obtain all the
movie factor vectors in M that correspond to the movies rated
by the users in U;,. To optimize the data transfer, a routing table

2Strictly speaking, the U and M matrices may be partitioned with
different numbers of blocks, but for simplicity we use n, for both.
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mp, my,... My, , My, 41, Mpy 42, .. M2p,, M2p, 1, M2n, 42, - -
N5 L[ 4]
M
Y 4 \ YV 4
M; M,

Figure 4.2: Hash partitioning of the columns of M, depicted as
rectangles, into ny blocks My, ..., M,, . Each block M;, and its
index j, forms a partition of the M RDD of type RDD [(js, Mj, )].

T, (m;) is constructed by determining, for each of the movie factor
blocks M, , which factor vectors have to be sent to each partition
of R;, (that may reside on other nodes). In Fig. 4.3a, the blocks
M;, are filtered using T,,,(m;) such that a given m; € M,, is
written to the buffer destined for R,,, Mi”], only once regardless
of how many u; in U;, have ratings for movie j, and only if there
is at least one u; in U;, that has rated movie j. This is shown by
the hatching of each m; vector in Fig. 4.3a; for instance, the first
column in M; is written only to M[ll] and has one set of hatching

lines, but the last column is written to both M[12] and M[lnb] and
correspondingly has two sets of hatching lines. Once the buffers are
constructed, they are shuffled to the partitions of R, as in Fig. 4.3b
such that both the movies factors are ratings are locally available
to compute the new U;, block, as in Fig. 4.3c. The routing table
formulation for shuffling U, with mapping T, (u;), is analogous.
Note that the routing tables are constructed before computation
begins in the ALS algorithm, and hence do not need recomputation
in each iteration.

Updating u; and m;. As in Fig. 4.3c, a compute node that
stores R;,, will obtain n; buffered arrays of filtered movie factors.
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Figure 4.3: Schematic of the use of the routing table T,,(m;)
in the Spark ALS shuffle. In (a) the blocks {M,;,} are filtered us-
ing T,,(m;) for each destination R;, and shuffled to the respective
blocks in (b), where arrows between the shaded backgrounds repre-
sent network data transfer between different compute nodes. In (c),
when updating block U, , the ratings information is locally available
mn Rib .

Once the factors have been shuffled, A; is computed for each u; as
>jer, mym] +An, I, and v; as Y, 7ijm; using the Basic Lin-
ear Algebra Subprograms (BLAS) library [11].3 The resulting linear

3Jargon alert here and to follow. The BLAS library [technically, spec-
ification: there are several libraries available with different licenses and
architecture-dependent optimizations that implement all the routines
mandated by the specification] is a standard set of subroutines used ubig-
uitously in numerical linear algebra, like dot and matrix-vector products.
The LAPACK library routines use BLAS routines in turn as compo-
nents of solvers for linear systems and eigenvalue decomposition. The
functions in all these libraries were written and debugged in Fortran
once upon a time by early waves of computer scientists and mathemati-
cians standardizing the first reusable numerical codes, and hence follow
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system for u; is then solved via the Cholesky decomposition using
LAPACK routines [5] if no constraints are enforced, giving the
computation to update U an asymptotic complexity of O(nun?})
since n,, linear systems must be solved. Solving for M is an identi-
cal operation with the appropriate routing table and has O(nmnz})
complexity. If non-negativity constraints are specified, the systems
are solved via a modified form of a bound-constrained NCG algo-
rithm [88].

4.3 The ALS-NCG Algorithm

In this section we present the combined ALS-NCG algorithm. Our
approach in §4.3.1 is to frame the hybrid algorithm as a nonlinearly
preconditioned NCG method in the general framework given by De
Sterck & Winlaw [30]. The contributions of parallelizing ALS-NCG
for Spark then follow in §4.3.2, wherein the technical challenges of
adding the additional NCG components to the existing Spark ALS
framework are addressed. Since ALS-NCG requires a line search,
the main consideration is how to compute the loss function (4.1)
and its gradient in an efficient way in Spark so that good parallel
performance is attainable. To this end, we demonstrate that the
PELS coefficients computed for a fixed descent direction of (4.1)
are exact and can be performed with a single Spark shuffle step.
In addition, we show how to take advantage of the routing table
mechanism to obtain a cheaper communication phase in computing
the Taylor coefficients.

the notoriously terse naming conventions that were in vogue at the time.
Example: the mnemonic function axpby performs the scaled vector addi-
tion, ax + by. BLAS operations are divided into levels, such that level-1
is for vector-vector operations like dot products, level-2 is for matrix-
vector operations such as A -x, and level-3 operations are matrix-matrix
operations such as full-blown multiplication, A -B. Perhaps this footnote
strikes you as overkill, but know that the initial published manuscript of
this chapter contained several references to these specific routines [which
seemed sensible at the time] that are preserved herein—just a heads up.
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4.3.1 Nonlinearly Preconditioned NCG

Recall that the standard NCG algorithm in Alg. 2 generates search
directions by the linear recombination of previous directions and
gradient information. The nonlinearly preconditioned NCG tech-
nique builds on this idea by taking a preconditioned gradient vector
rather than the actual gradient vector. First, with respect to the
matrices U and M, define the solution vector x € R X ("utnm) a5
the augmented vector

xT = [u{ ug...uzu m?! mgmfm} . (4.4)
For the iterate xj, the preconditioned direction gy is constructed
through the application of a nonlinear preconditioning function
P(x). Taking the preconditioned iterate X as

)_(k = 1:)(Xk)7 (45)
the preconditioned gradient direction is computed by the difference
8L = Xk — Xy (4.6)

Here, —g,, is expected to be a gradient-like descent direction that is
an improvement compared to the steepest descent direction, —gg.
As such, the form of P(x) should be the result of an another op-
timization routine (like ALS) that improves upon the current pa-
rameter vector xy, but may still benefit from a line search and the
conjugacy constructed through the NCG search direction update
equation, which is adapted from (1.4) to use the preconditioned
direction as

Pi+1 = BkPk — Bk+1- (4.7)
Here the update parameter § from (1.5) is redefined to include both
the actual gradient and the preconditioned gradient vectors as

T — -
B, = max g’““(g’;i 178 o) (4.8)
g1 8k

Other forms for i and analysis thereof are given by De Sterck
& Winlaw, accompanied by convergence guarantees [30]. However,
(4.8) is the only form considered here. The general nonlinearly pre-
conditioned NCG algorithm is summarized in Alg. 6. At current,
the calculation of the search direction py4+1 in Alg. 6 is not capable
of handling non-negativity constraints on U and M.
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Algorithm 6: Nonlinearly Preconditioned NCG
Input: xg € R™
Output: x; ~ x* = arg miny £(x)

1 k<0
2 go < X0 — P(x0)
3 Po < —8o
4 while not converged do
5 oy < argming L(xy + apg)
6 Xk+1 < Xk + QkPk
7 Brt1 ¢ Xir1 — P(Xp41)
8 Compute S
9 Pr+1 < BrPrk — 8rt1
0 | k<« k+1

4.3.2 ALS-NCG Implementation in Spark

This section describes the implementation of the additional vector
operations of the preconditioned NCG algorithm in Alg. 6 along-
side the existing datastructures in the Spark ALS framework. We
first define how the additional NCG vectors were implemented,
such that vector operations like addition were possible with co-
aligned RDD data structures. The univariate line search procedure
required in step 5 of Alg. 6 is then presented, in which the PELS
methodology of §3 is used to evaluate the loss function in (4.1)
[but reparameterized by x as in (4.4) for the ALS-NCG algorithm]
for a fixed search direction, £(x 4+ ap). Finally, some notes on the
evaluation of the gradient of (4.1) are given.

Vector Storage. The additional vectors X, g, g, and p for each
iteration were each split into two separate RDDs, such that blocks
corresponding to the components of u; were stored in one RDD,
partitioned in the same way as U with block index i;. Analogously,
blocks corresponding to components of m; were stored in another
RDD, partitioned in the same way as M with block index j;. This
ensured that all vector blocks were aligned component-wise for vec-
tor operations; furthermore, the p blocks could also be shuffled ef-
ficiently using the routing tables, which was important in the line
search (to follow).
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Algorithm 7: RDD Block Vector BLAS. axpby
Input: x = RDD [(¢p,X;,)]; ¥ = RDD [(i5,y34,)]; @, € R
Output: z = ax + by

1 z < x.join(y).map{ Vi,
Allocate z;,

Ziy, < Yiy

Call BLAS. axpby(a, X, , b, 2;,)
Yield (ib7 Zib)

S A WN

Vector Operations. RDDs have a standard operation termed
a join, which concatenates the entries of two RDDs of key-value
pairs by matching common keys. For RDDs R; and Ry of tu-
ples J; (ki, a;) and |J;(k;, b;) with type (K,.A) and (IC, B), respec-
tively, their join is an RDD Rj3 of type RDD[(K, (A, B))], where
R3 = R, .join(R;) represents the dataset | J;(ki, (ai, br)) of combined
tuples and k; is a key common to both R; and R,. Parallel vector
operations between RDD representations of blocked vectors x and
y were implemented by joining the RDDs by their block index i,
and calling BLAS level-1 interfaces on the vectors within the resul-
tant tuples of aligned vector blocks, {(x;,,y;,)}. Since the RDD
implementations of vectors had the same partitioning schemes,
this operation was local to a compute node, and hence inexpen-
sive. One caveat, however, is that BLAS subprograms generally
perform modifications to vectors in place, overwriting their previ-
ous components. For fault tolerance, RDDs must be immutable;
as such, whenever BLAS operations were required on the records
of an RDD, an entirely new vector was allocated in memory and
the RDD’s contents copied to it. Alg. 7 shows the operations re-
quired for the vector addition ax+by using the BLAS . axpby routine
(note that the result overwrites y in place). The inner product of
two block vector RDDs and norm of a single block vector RDD
were implemented in similar manners to vector addition, with an
additional reduce operation.

Univariate Line Search. The PELS method from §3 yields a
computationally cheap way to implement a line search in Spark for
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the matrix factorization loss function. The form of £ in (4.1) is ex-
actly quartic for a a fixed descent direction. To see this, substitute
the rays xy, + apuy, for u; and X, + apm; for m; in (4.1), where
Xy, and py, refers to the components of x and p related to user 7,
respectively (of course, x,, = u;, but the notation attempts to re-
main analogous to the notation in step 5 of Alg. 6 and cirumvent the
alternate and somewhat confusing substitution of u; + u; +apy,).
The vectors py,, Xm,;, and pm, are defined identically, mutatis mu-
tandis. Using the bilinearity of the inner product, we may expand
the terms in the loss function for the squared difference between
projected and actual ratings to obtain a degree-4 polynomial in «
as

W(a) = Z Z C’i[;ﬂ a”. (4.9)

n=0 \(i,j)€T

The second summation over the index set Z is achievable through

a Spark reduce overation once the coefficients {C’Z[;l]} in (4.9) are
computed. The full expression for W(«) is given below as

W(0) = 3 (e stm, i) 4 A D s B+ 3 o e, 2
T ) J
+ a[z (X4, Pm; + P, Xm, ) (X4, Xm, — 745)
A
+ 2>\<Z N, X Pu, + nmjxapmjﬂ
i J
[; (PP, (55, = 1] + x|
DL, (<5 i, + 260, )
(S b+ 3 o )
i J
+ab Z 2Py, P, (X4, Pm, + P, Xm,)

T
+a* > (P pm,)” (4.10)
A

Pu;
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Note that the terms in the summations for each coefficient
only require level-1 BLAS operations between the block vectors
Xu;, Pu;s Xm;, and Pm;. The minimization in step 5 of Alg. 6 can
be performed via minimizing the polynomial W («) once its coef-
ficients are computed, as in §3. By computing the coefficients of
W (a) at the beginning of the line search, further evaluation of the
loss function in each iteration is a constant time operation that re-
quires very few operations; in practice, it took on the order of 1073
s, while computing the initial coefficients was on the order of 10 s
for the problems considered. Since each iteration of the line search
was performed in constant time after computing the coefficients of
W(a) and W(a), we used relatively stringent values in a simple
backtracking line search (as formulated by Nocedal & Wright [85]
with parameters p = 0.9, ¢ = 0.5, and initial step size of 10) that
searched intensively along the direction p to satisfy a sufficient de-
crease condition.* Finally, note that the summation over Z in (4.1)
may be performed in two ways; either U or M may be shuffled,
depending on which routing table is used. Generally, n, > n,, and
hence there is far more communication required to shuffle {u;}.
Thus, in evaluating {C’i[?]}, the movie factors {m;} were shuffled
across the network.

Gradient Evaluation. We computed gj with respect to a
block for u; using only BLAS level-1 operations as

8u, = 2An,,u; + 2 Z m;(ul m; — r;),
JET;

4With all of the work required to compute and reduce the coefficients
{C’l[?]} and emphasis on achieving better accuracy with PELS in §3, you
might be aghast to hear that a backtracking line search was used. In
retrospect, so are we. But this all becomes clearer once you understand
the anecdotal history of the PELS method: (4.10) came about during
frantic efforts to make the ALS-NCG implementation in Spark run fast
enough. While initial serial experiments had shown that ALS-NCG could
improve on the runtimes for ALS, the shuffle overhead for conducting
multiple function and gradient evaluations in a line search made the
method impractical. Realizing that (4.1) could be written as a polyno-
mial in (4.10) came about in a moment of lucidity before the looming
conference deadline for submitting the ALS-NCG manuscript. While the
backtracking line search was later improved upon, it was less pressing
than other matters at the time.
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with an analogous operation for the gradients with respect to each
m;. As this computation requires matching the u; and m; fac-
tors, the routing tables T, (u;) and T,,(m;) were used to shuffle
u; and m; consecutively. Evaluating g can be performed with
O(nyg(nu D2 Mu; + Nam D Mimy;)) operations, but requires two shuf-
fles. As such, the gradient computation required as much commu-
nication as a single iteration of ALS in which both U and M are
updated.

Evaluating . The update parameter in (4.8) was used in
the parallel implementation since it empirically produced smoother
convergence traces. Computing the update parameter required the
evaluation of g1 and storage of the gradient g from the previous
iteration. The preconditioned direction gj4+1 was computed using
RDD BLAS operations on the ALS-preconditioned vector Xp.i.
However, to avoid additional the additional operation gry1 — gk,
the inner product g%‘_,'_lngrl was stored between iterations, and (5
was computed using g%‘+lgk+1 — ggﬂgk in the numerator of (4.8).

4.4 Parallel Performance of ALS-NCG

To compare the performance of ALS and ALS-NCG in Spark, the
two algorithms’ implementations were used to optimize user and
movie matrices on the MovieLens 20M dataset with A = 0.01 and
ny = 100. For each experimental run of ALS and ALS-NCG, two
experiments with the same initial user and movie factors were per-
formed: in one, the gradient norm in each iteration was computed
and printed (incurring additional operations); in the other experi-
ment, no additional computations were performed such that the
elapsed times for each iteration were correctly measured. Since
RDDs are materialized via lazy evaluation, to obtain timing mea-
surements, actions were triggered to physically compute the parti-
tions of each block vector RDD at the end of both each ALS sub-
component and each iteration of Alg. 6. In both algorithms, the
RDDs were checkpointed to persistent storage every 10 iterations,
since it is a widely known issue in the Spark community that RDDs
with very long lineage graphs cause stack overflow errors when the
scheduler recursively traverses their lineage [26].

Our comparison tests of the ALS and ALS-NCG algorithms
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in Spark were performed on a computing cluster composed of 16
homogeneous compute nodes, 1 storage node hosting a network
filesystem, and 1 master node. The nodes were interconnected by a
10 Gb ethernet managed switch (PowerConnect 8164). Each com-
pute node was a 64 bit rack server (PowerEdge R620) running
Ubuntu 14.04, with linux kernel 3.13 compiled with symmetric mul-
tiprocessing. The compute and master nodes all had two proces-
sors, both 8-core 2.60 GHz chips with 20M onboard cache (Xeon
E5-2670). Compute nodes each had 256 GB of SDRAM, while the
master node had 512 GB. The single storage node (PowerEdge
R720) contained two 2 GHz processors, each with 6 cores (Xeon
E5-2620), 64 GB of memory, and 12 hard disk drives of 4 TB ca-
pacity and 7200 RPM nominal speed. Finally, compute nodes were
equipped with 6 extd-formatted local SCSI 10k RPM hard disk
drives, each with a 600 GB capacity.

Our Apache Spark assembly was built from a snapshot of
the 1.3 release using Oracle’s Java 7 distribution, Scala 2.10, and
Hadoop 1.0.4. Input files to Spark programs were stored on the
storage node in plain text. The SCSI hard drives on the compute
nodes’ local filesystems were used as Spark spilling and scratch di-
rectories, and the Spark checkpoint directory for persisting RDDs
was specified in the network filesystem hosted by the storage node,
and accessible to all nodes in the cluster. Shuffle files were consoli-
dated into larger files, as recommended for ext4 filesystems [29]. In
our experiments, the Spark driver was executed on the master node
in standalone client mode, and a single instance of a Spark executor
was created on each compute node. It was empirically found that
the ideal number of cores to make available to the Spark driver
was 16 per node, or the number of physical cores for a total of
256 available cores; hence the value of n;, was set to the number of
cores in all experiments. Though the multithreading ability of our
processors allowed for 32 logical cores to be specified, it was found
that performance worsened in general by allocating more cores than
physically available.

Fig. 4.4 shows the convergence in gradient norm, normalized by
the degrees of freedom N = ny X (n, + n.,), for six separate runs
of ALS and ALS-NCG on 8 compute nodes for the MovieLens 20M
dataset. The subplots (a) and (b) show = gx|| over 100 iterations
and 25 minutes, respectively. This time frame was chosen since it
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took just over 20 minutes for ALS-NCG to complete 100 iterations;
note that in Fig. 4.4b, 200 iterations of ALS are shown, since with
this problem size it took approximately twice as long to run a sin-
gle iteration of ALS-NCG. The shaded regions in Fig. 4.4show the
standard deviation about the mean value for 3;|/g || across all runs,
computed for non-overlapping windows of 3 iterations for subplot
(a) and 30 s for subplot (b). From the width of these regions, we
see that there is greater fluctuation in the gradient norm between
iterations for ALS-NCG than ALS (however, traces of the loss in
(4.1) computed in each iteration are smooth and monotonically
decreasing). Yet even within this uncertainty bound, to reach ac-
curate values of +-[|gx| (e.g. below 107%), ALS-NCG requires much
less time and many fewer iterations.

The operations that we have implemented in ALS-NCG that
are additional to standard ALS in Spark have computational com-
plexity that is linear in problem size. To verify the expected lin-
ear scaling, experiments with a constant number of nodes and in-
creasing problem size up to 800 million ratings were performed
on 16 compute nodes. Synthetic ratings matrices were constructed
by sampling the MovieLens 20M dataset such that the synthetic
dataset had the same statistical sparsity, realistically simulating
the data transfer patterns in each iteration. To do this, first the di-
mension n,, of the sampled dataset was fixed, and for each user n,,
was sampled from the empirical probability distribution p(n.,|R)
of how many movies each user ranked, computed empirically from
the MovieLens 20M dataset. The n,, movies were them sampled
from the empirical likelihood of sampling the jth movie, p(m;|R),
and the resultant rating value was sampled from the distribution
of numerical values for all ratings. This method of scaling the users
was chosen to model the situation in which an industry’s user base
grows far more rapidly than its items.

Fig. 4.5 shows the linear scaling in computation time for both
ALS and ALS-NCG. The values shown are average times per iter-
ation over 50 iterations, for n, from 1 to 6 million, corresponding
to the range from 133 to 800 million ratings. The time values were
computed as a weighted average of time per iteration for iterations
with and without checkpointing the RDDs to persistent storage,
since the periodic checkpoint operation significantly increases the
time required in that iteration. The error bars show the uncertainty
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Figure 4.4: Convergence in normalized gradient norm = ||gx|| for
6 instances of ALS and ALS-NCG with different starting values
in both (a) iteration and (b) clock time, for the MovieLens 20M
dataset. The two solid lines in each panel show actual convergence
traces, while the shaded regions show the standard deviation about
the mean value over all instances, computed for mon-overlapping
windows of & iterations for (a), and 30 s for (b). The experiments
were conducted on 8 nodes (128 cores).

in this measurement, where the standard deviation about the mean
values for both the checkpoint and non-checkpoint iterations have
been propagated in the weighted average calculation. The uncer-
tainty in the time per iteration for ALS-NCG is larger due to the
greater overhead of memory management and garbage collection by
the Java Virtual Machine required with more RDDs. While each
iteration of ALS-NCG takes longer due to the additional line search
and gradient computations, we note that many fewer iterations are
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Figure 4.5: Linear scaling of computation time per iteration with
increasing n, on a synthetic dataset for ALS and ALS-NCG on 16
compute nodes (256 cores) for up to 6M users, corresponding to
800M ratings.

required to converge.

Finally, we compute the relative speedup that was attainable
on the large synthetic datasets. For the value of +||gx|l in each
iteration of ALS-NCG, we determined how many iterations of reg-
ular ALS were required to achieve an equal or lesser value gra-
dient norm. Due to the local variation in +||gx|| (as in Fig. 4.4),
a moving average filter over every two iterations was applied to
the ALS-NCG gradient norm values. The total time required for
ALS and ALS-NCG to reach a given gradient norm was then esti-
mated from the average times per iteration in Fig. 4.5. The ratios
of these total times for ALS and ALS-NCG are shown in Fig. 4.6 as
the relative speedup factor for the 1M, 3M, and 6M users ratings
matrices. When an accurate solution is desired, ALS-NCG often
achieves faster convergence by a factor of 3-5, with the accelera-
tion factor increasing with greater desired accuracy in the solution
(i.e. decreasing + gk ll).®

5Note that while the speedup ratios in Fig. 4.6 agree with the accel-
eration in Fig. 4.4, the optimization problem being solved on synthetic
data sampled from the distribution of movies in the MovieLens 20M
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Figure 4.6: Speedup of ALS-NCG over ALS as a function of
normalized gradient norm on 16 compute nodes (256 cores), for
a synthetic problem with up to 6M users and 800M ratings. ALS-
NCG can easily outperform ALS by a factor of 4, especially when
accurate solutions (small normalized gradients) are required.

4.5 Conclusion

In this chapter, we have presented a case study in which the nonlin-
early preconditioned NCG algorithm was successfully applied for

dataset is fundamentally different than the actual data, since the struc-
ture and nuance of people’s likes and dislikes has been washed away and
replaced by aggregate statistics. We can only conjecture whether this
synthetic problem is easier or harder to solve (although a simple experi-
ment to comment on this would be to compare the convergence rates in
Fig. 4.4 with those from sampled datasets of the MovieLens 20M data
with the same dimensions as the original), which is perhaps related to a
broader question about how diverse or complex people’s tastes in movies
or stories are really. We shall not tackle that question here, bearing in
mind that Kurt Vonnegut Jr. once proposed as a (rejected) thesis topic
for his Master’s degree in anthropology [which was also later rejected]
an analysis of storylines that suggested that Cinderella and the Judeo-
Christian Creation story were paradigmatically identical [105]. Appar-
ently his commitee wasn’t pleased.
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optimizing feature matrices in low-rank matrix factorization prob-
lems. The particular form of the matrix factorization loss function
lends itself naturally to the W method from §3, where it was here
used to evaluate the exact Taylor coefficients and minimize the
subsequent polynomials in univariate line searches. This technique
circumvents having to evaluate the loss function multiple times in
a line search invocation, since the polynomial may be minimized
locally on the Spark driver program. The parallel ALS-NCG im-
plementation is considered a highly preferable alternative to the
standard ALS implementation in Spark for practitioners and orga-
nizations seeking efficient and scalable recommender systems, based
on the significant speedup factors achievable with this method. We
expect that our acceleration approach will be especially useful for
advanced collaborative filtering models that achieve low root mean
square error (RMSE), since these models require solving the opti-
mization problem accurately, and that is precisely where acceler-
ated ALS-NCG shows the most benefit over standalone ALS. Fu-
ture interesting directions of research include experimentation with
other distributed optimization methods as preconditioners, such as
distributed Stochastic Gradient Descent [42, 101]. Furthermore, ex-
tensions of this approach for the popular ALS-based implicit feed-
back algorithm [56], which is already implemented in Spark, may
be of interest to the collaborative filtering community.
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PELS for the Multilayer Perceptron

the fields of statistics and machine learning, and have

been successfully applied to tasks such as image classifi-
cation [31], speech recognition [45] and molecular interaction mod-
elling [71]. Their success in pattern recognition likely stems from
their hierarchical nature allowing representation of highly nonlin-
ear relationships between network parameters, since the prototyp-
ical ANN function is composed of a sequence of densely coupled
sigmoidal classification units. However, this flexibility comes with
a price: deep ANNs are both very high-dimensional and noncon-
vex, and determining optimal network parameters is notoriously
challenging for optimization algorithms [54, 74, 97].

The optimization algorithm of choice in the ANN community
has long been Stochastic Gradient Descent (SGD) [15, 53, 97],
which is a variant of the steepest descent method in which an ap-
proximate gradient instead of the full gradient is used to update
the parameters, and a step size decreasing according to a preor-
dained function—termed the learning rate in the machine learning
community—is used for each update instead of a line search. While
SGD has very impressive convergence properties when the step

3 RTIFICIAL neural networks (ANNs) are popular models in
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size in each iteration is well-tuned, it is an inherently sequential
algorithm. As such, parallelized extensions are an active research
topic in which several camps exist. Some prominent methods in-
clude minibatch techniques [33] in which a subset of the dataset
under consideration is sampled to compute a stochastic gradient,
asynchronous methods [31, 90] in which the parameters are up-
dated concurrently by multiple optimization routines running SGD
without synchronization, and a surprising technique from people at
Yahoo! that averages solution vectors determined by parallel and
independent SGD routines on (non-disjoint) subsets of the dataset
[118].

Admittedly, this chapter is not about any of those methods:
we specifically confine ourselves to batch optimization. While an
overview of optimization methods for ANNs cannot omit SGD’s
market dominance, there exist circumstances in which batch meth-
ods are [arguably] legitimately preferable. For instance, in Yoshua
Bengio’s discussion [8] of practical considerations in optimizing
ANN parameters, he outlines both how having to tune SGD’s learn-
ing rate meta-parameters is an inherent and time-consuming meta-
algorithm that must be done in addition to the bona fide SGD
routine,! Bengio also discusses having to practically determine the

!The meta-optimization of tuning parameters in SGD really is a well
known hidden cost—so much so that meta-algorithms for choosing a good
learning rate encompass an extensive field of research in their own right.
The most renowned methods of this type are perhaps ADAGRAD [36] or
ADADELTA [115], as well as the more recent Pesky paper by Schaul et
al. [96] whose principles are advanced and extended in a production sys-
tem described by Dalessandro et al. [28]. Recently in the proceedings of
NIPS 2015, an interesting probabilistic line search with stochastic Wolfe
conditions was proposed by Mahsereci & Hennig [73], which resonates
in this thesis for obvious reasons. With the furor of development in this
field, it’s worth sharing a quotation from the original 1951 SGD paper by
Robbins & Monro [91], who prefaced their convergence proof with an al-
most apologetic remark that “no claim is made that the procedure to be
described has any optimum properties (i.e. that it is efficient)”. Decades
later the advent of Big Data entirely rephrased that efficiency question,
and their work became a household name in machine learning—keep that
in mind the next time someone bemoans tax dollars wasted on fusion
reactors that are never going to work.
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break-even point at which there is sufficient data for SGD to best
LBFGS in running times, which is echoed in a fairly recent em-
pirical case report of first order optimization methods by Le et
al. [83] that compares minibatch SGD with minibatch versions of
the NCG and LBFGS algorithms. They write that their particular
formulation of minibatch LBFGS can outperform minibatch SGD
in elapsed clock time for GPU workstations and small clusters (of
2-8 nodes), which is a parallel setting available to many researchers
and small to medium size companies.? As such, a formulation of
the PELS methodology may be a useful tool for practitioners who
employ parallel batch algorithms in this setting and must conduct
univariate line searches as part of those algorithms.

In this chapter, the PELS technique is applied to the smooth,
sigmoidal multilayer perceptron (MLP), which is a classic but im-
portant type of neural network model. §5.1 presents a compact
matrix formulation of the MLP, followed by a derivation of matrix
expressions for the polynomial coefficients of a degree-d Taylor ex-
pansion of the MLP for a softmax output layer and a squared loss
function in §5.2. Since the MLP is nonlinear and nonconvex, §5.2
also presents modifications to the PELS algorithm to adapt it to
this setting. The experiments in §5.3 describe an initial feasibil-
ity study comparing LBFGS and NCG using a Wolfe approximate
line search [80] with the LBFGS-P and NCG-P algorithms using
the nonconvex PELS procedure on several datasets for binary and
multiclass classification problems. While this initial effort has been

2There are currently many formulations of stochastic or minibatch
LBFGS being proposed in the literature each year, so this statement
begs further explanation if it is to lend support to our argument that
batch and/or minibatch methods are of interest. The procedure of Le et
al. [where Andrew Ng of Stanford counts among that alia, if that helps]
for minibatch LBFGS and NCG is to sample a subset of the dataset and
run the deterministic version of these algorithms on the subset for 20
and 3 iterations, respectively, before sampling anew and repeating ad
libitum. While theirs is a very different approach from those of e.g. Byrd
et al. [18, 20] or Sohl-Dickstein et al. [99] (from which the introduction is
recommended as an overview of the current players in stochastic quasi-
Newton research), and admittedly lacks an accompanying theoretical
foundation, it has the benefits both of being simple and having been
reproduced empirically in our own limited experiments.
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done in a serial setting on small datasets, the results in §5.4 show
that the PELS methodology can accelerate the convergence of these
batch algorithms in terms of the number of iterations required to
reach terminal values of the loss function, particularly for NCG.

5.1 Sigmoidal Multilayer Perceptron

An MLP is a nonlinear function A :IRP° — RPN that computes an
output vector through the iterative application of nonlinear func-
tions to a given input vector yg € IRP°. These updates are said
to occur in layers, producing the sequence of intermediate vectors
associated with each /th layer, {yg}évzl. Each y, is computed re-
cursively from yy_; using the weight matrices {Wz}é\;l and bias
vectors {bg}évzl according to the update rule

ye = o0¢(z) (5.1)
zg =W;-yi1+by, 1IN '

where oy : RP* — RP¢ is the layer function. Each W, has dimen-
sion RP¢*Pe-1_ projecting the previous vector y,_; into the space
RP¢. Similarly, by € RP¢ adds a constant offset in each layer. The
quantity z, is thus an affine transformation applied to the vector
Ye—1, which is in turn a nonlinear mapping applied to an affine
transformation. Thus the network is completely characterized by
its weights and biases as the tuple ({W,},{bs}). A sample net-
work for N = 2 is depicted in the graph in Fig. 5.1, where the
vectors {yo,¥1,¥2} are shown as vertices, and the edges represent
computations through the functions o and os.

In an MLP, the vector function o, (-) at each layer is often
sigmoid-like such that each component of its output vector ranges
in [0, 1], and oy is more specifically given by o,:RP¢ — [0, 1]P¢. Note
that typically the functions {o,} have identical operations regard-
less of their index for £ < N, and are normally applied element-wise
to their input vector such that each component of y, depends only
on the component of z, in the same dimension. The typical form
for a feedforward layer function with index ¢ < N is to take, for
some z € RP¢,

1 1 1 T
(TZ(Z) = [1+exp{—z1} 14+exp{—2z2} " 1+exp{—zpz}i| s (52)

72



5.1. Sigmoidal Multilayer Perceptron

W
E o |:| + H E ”, ( |:2||:| + |:|2> E
" yvo U o~ N

Yy
Layer 1 @ Layer 21 @

Figure 5.1: Schematic of a feedforward MLP with N = 2, where
the vertices represent the vectors {yg}gzo in their respective lay-
ers. Edges denote computation, where the vector transformations
have been drawn with dimensionally consistent block matrices to
illustrate sample dimensions of W1 and Ws.

where z; is the ith component of z. However, the final output
layer function oy depends on the particular problem and does not
normally have the element-wise restriction as the {ag}év:l. For in-
stance, for classification of the input vector into one of K classes,
on often takes the form of the softmax function S(z), which maps
a vector z € R¥ to a probability vector by exponentially projecting
its elements as

1
S(z) =—————
) ZiKeXP{Zi}

_ exp{z}
lexp{z}l,’

fexpla} o expax)]”
(5.3)

where the shorthand exp{z} produces a vector of identical size to
z with components equal to the corresponding elements of z expo-
nentiated. Due to the normalization, ||S(z)||; = 1, and furthermore
||S(z)||, is smooth despite the L;-norm since the components of
exp{z} are non-negative. As each element of S(z) ranges in [0, 1]
and all elements sum to 1, the softmax function is used to express
a vector of probabilities where the magnitude of the ith component
of S(z) gives the relative probability of the ith class.

5.1.1 Multiclass Classifcation with MLPs

To use the MLP network output yx for multiclass classification in a

mean loss function £(w) over a set of observations {(x,,y,)}_,, we
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use the squared loss metric for the individual loss of a given (x,., yr).
The softmax output layer in (5.3) renders each ith component of
output vector y  as the probability of the observation X, belonging
to the ith class. As such, the scalar y,. € {1,2,..., K} is taken
as a positive integer index, and the component yy,. € [0,1] is
compared to the known probability of 1 for that label.? However,
since the components {yn,;}. iy, are also valid probabilities of the
known label being other than what it is, this information can also
be used in the form of the loss function. Consider the constructed
“observed” probability vector ¥, for each y,., where ¥, is a binary
vector nonzero only in the component y,.. The ¥, vector may then
be compared with the MLP’s predicted value for that r, yny =
N (x;.), where the input observation is taken as yo = x,. using the
squared Lo-norm, 3|y, — N (XT)||§7 which is termed the squared
loss. The full mean loss function is then

\]

W= 2 gl - N AR, (5)

where the vector w is defined as the vectorized listing of all weight
matrix and bias parameters associated with the MLP network func-
tion:

w= bl vee(W)T ... b} vec(WN)T]T. (5.5)

Here, the vec(-) operator denotes the (column major) concatenation
of all matrix elements; thus the dimension of the full w vector is

ZéV:1 DPe - (pzq + 1)~

5.1.2 MLP Gradient Computations

To determine the matrix formulation of the gradient %, ex-

pressions are needed for differentiating E with respect to each
of the parameter matrices {dd—vsl,... } and bias vectors

7dW

3The notation yn 4, is mildly unusual but not inconsistent. In case
you’re wrinkling your brow, remember that the ¢th component of the
vector yn is yn,i, where the bold weight is neglected since the ith element
of a vector is a scalar quantity. The rest follows since i = y, is a valid
positive integer index.
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%7'“7%}' To formally use these quantities, we adopt the

matrix calculus notation of Magnus and Neudecker [72] such that
meaningful and self-consistent extensions of the chain and prod-
uct rules from conventional calculus exist. In this convention, the
derivative of a matrix A € R"*® by a matrix B € RP*? is the
-8 X p-q matrix

dAqi dA;i dA;
dBi,1 dB21 77 dBpyg
dAgyl dAz,l dAQ,l
dA . dvec(A) | dBi,i dB2a 77 dBpyg (5 6)
dB  dvec(B) : : S '
dA, s dA. dAr s
dBi,1  dB21 7" dBpg

such that ddT{l:,_; is represented by a 1 X (pg+1 - p¢) vector.

To obtain dd—vf,ﬁ, the chain rule can be applied to £(W) and

each yy,z¢ pair in (5.1), yielding the product
dL 6£ 6yN 6ZN 6yN_1 8zN_1 8ye ng

AW,  Oyn 0zy Oyn_1 0Ozy_10yn_o  Ozg AW,

Each derivative % is specific to the layer function oy, and is de-

noted by the matrix ¥, € RP¢*P¢ which is diagonal if o, is a

purely element-wise vector function. From (5.1), the derivative g—;’;

is merely equal to W/. Finally, the 1 x (pg - pe+1) derivative ddeV?[ is
given by the kronecker product yy;_; ® Iy. The general formula for

the derivatives may be neatly expressed for 1 < ¢ < N as
dc

dW,

where I, is the py X py identity matrix and the backpropagation pref-

actor B, € RY*?¢ is defined through the (backwards) recurrence
relation

=B¢ ¢ (ye-1 ® L) = vee([Be - 2" -y )", (5.7)

B _ oL
N7 ayw (5.8)
By =Bi1-2p1-We, 1IN

Similarly, the derivative (?ng for each £ is obtained as

dL

——~ —_-B,-3,. 5.9
T, = Be % (5.9)
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Note that the leading backpropagation matrix By depends
on the form of L(w). For instance, for the squared loss,
%8}%“}7 - yN||§ = (ynv — $)T. Finally, for ox equal to softmax
output in (5.3) (with K = py), the ¥y matrix is not diagonal, but
will depend on the vector zy since for a general z € RX,

) _ diag (15) - 5(2) - (2)" (5.10)

where the diag (-) operator constructs a square diagonal matrix
with the elements of its input vector along the diagonal.

From the recurrence relation in (5.8), the procedure of com-
puting the derivatives can be appreciated as being computable via
two passes through the layers of the MLP. The first (forward) pass
iteratively computes the values of o4(z¢) from (5.1) required for the
next layer as well as the elements of the 3, derivative matrix de-
pendent on z,. The second (backward) pass then uses these stored
values to calculate the components of %. This two-pass method
for evaluating the output and gradient vector of an MLP is widely
known in the neural network community as a procedural compo-
nent in the backpropagation algorithm, which is that community’s
term for the SGD algorithm.*

4Please don’t misconstrue this comment as being a shot fired in a
naming convention turf war—this is just one example of many in which
distinct academic communities have developed different nomenclatures.
But this particular divergence is way more intriguing when you read the
original 1986 Nature letter by Rumelhart al. [93], Learning representa-
tions by back-propagating errors, which does in fact state in its body—but
not its abstract—that the underlying optimization method is Gradient
Descent (cf. Eq. 8 therein). Their follow-up paper is [we opine] even
clearer that they describe a procedure for computing a gradient direction
in the Gradient Descent algorithm for a particular type of feedforward
network function, e.g.: “To minimize E by gradient descent it is neces-
sary to compute the partial derivative of F with respect to each weight
in the network” [94]. In light of those papers, and having some slight
suspicion that it’s [perhaps] more common in academia to cite abstracts
rather than contents of papers than most academics [including your au-
thors] would like to admit, would it be unseemly to conjecture that this
particular divergence in nomenclature could stem entirely from people
having systematically misread or not read the paper they cited?
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5.2 PELS Formulation for the MLP

In this section, we formulate the PELS methodology of construct-
ing a degree-d Taylor polynomial approximation for the feedforward
layers of the MLP function. We seek the polynomial coefficients of
the Taylor expansion in « of £(w+ap) about the point ag in order
to solve the univariate line search problem. As before, p is a fixed
descent direction defined analogously to w in (5.5) as a vectorized
listing of the matrices {P}, each of which is the search direction
for the respective parameter matrix W, in an iterative optimiza-
tion algorithm. Our approach determines the expansion coefficients
of L(w + ap) through an iterative application of the chain rule to
op at each layer, which in turn uses Taylor expansions of the pre-
ceding oy_1 to supply the derivatives {%w_l}n needed in the
chain rule procedure. Concretely, starting from ¢ = 1 in which yq

is fixed, we evaluate the derivatives {%01([W1 + aPyq] - Y())}Zzl
at g, from which the degree-d Taylor expansion of o1 about ag
is computed. The process then repeats in succession for layers 2
through N, where the chain rule is applied at each o, to determine
its derivatives {%@}n in terms of the derivatives of the previous
layer, {%ag,l}n.

The Taylor expansion procedure for a feedforward MLP is pre-
sented in several parts. The primary goal is to determine a coef-
ficient matrix Cy; for the fth layer, where each ith row contains
the coefficients in the Taylor expansion for the ith component of
that layer’s y,. In §5.2.1, the iterative procedure for determining
C; given the previous Cy_; matrix is described, where the func-
tions {O’g}é\[:_ll are assumed to be element-wise mappings (i.e. Xy is
diagonal). §5.2.2 then gives the formulation for a softmax output
layer of the network, which has a more complicated treatment due
to each element of the output vector yn = on(zn) having wide
dependences on each component of yy_; such that 3y is non-
diagonal. §5.2.3 then finishes with the coefficients for the squared
loss output, and §5.2.4 discusses modifications to the PELS algo-
rithm to cope with the MLP’s nonconvexity.

To simplify presentation in the remainder of this section, we
adopt the following conventions to present the expressions yielding
the polynomial coefficients in the Taylor expansions in matrix for-
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mat. First, we explicitly consider augmented parameter matrices
that ¢nclude the bias as an additional column: W, « [b[ Wg].
As such, each Wy and Py are understood to be py x (pg—1+1) matri-
ces. Correspondingly, each y, is also implicitly augmented before
its use in matrix-vector operations as y, + [1 y?]T. We denote
the coefficients of the expansion for the ith component of y,_; ()

about ag by the vector it e R, such that all coefficients can

i
be compactly represented by the coefficient matrix of dimension
(pe—1 + 1) x (d + 1) given by

T
Cr1= {el c[lzfl] C[QLU c][fgj]] , (5.11)
where e; = [1 0 0 ... O]T € R accounts for the bias vec-

tor by incorporated as the first column of the augmented W, ma-
trix. This arrangement of Cy_; aligns coefficients for terms with
the same degree in « in each column such that the multiplication

Cir- [l (@—ag) (a—ag)? - (a—ao)d]T

yields approximations to y¢—1(a) with O([a — ag]*™) element-
wise truncation error in a neighbourhood of ay.

5.2.1 Feedforward Layer Polynomial Expansions

We consider the problem of computing the coefficients in a Tay-
lor expansion for oy ([Wy + aPy] - ye—1(a)) for a feedforward layer
function o, that is assumed to be an element-wise vector function,
such that the derivative matrix 3, is diagonalﬂ. In this case, it is
straightforward to compute the derivatives {%O’g}n by applying
the chain rule to oy, and we show that each coefficient vector cy]
of the C; matrix can be expressed as a matrix-vector product of a
lower triangular matrix dependent on the derivatives from the pre-
vious layer and a vector formed from the nonzero diagonal entries
of 2@.

Let the ray qe(a) € RP¢+t in the parameter search space be
defined as

qg(oz) = [Wg + OéPd . yg_l(oz), (5.12)
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where y,_1 () is the output of the previous layer in the line search,

(
o¢—1(qe—1()), that has explicit dependence on «.. The nth deriva-

tive qgn) = d‘f;, q¢(a) can be arithmetically expanded to

Q" = (Wi +aPy) -y, +nPe -y Y, (5.13)

where yéﬁ)l = %yg_l(a). Since X, is diagonal, it simplifies the

presentation to consider each ith component of ygT_L)l (a) so that
scalar calculus may be employed. For a functional composition fog
of f:R— R and ¢g: R — R, repeated application of the chain
rule to analytically produce the nth derivative (f o ¢)("™ yields an
expression that depends only on the individual functions’ deriva-
tives { f(”)}n and {g(”)}n, for which general formulas exist (see
e.g. Huang et al. [57]). By factoring out terms related to the deriva-
tives of f, it is straightforward to form a matrix-vector product that
yields the derivatives up to an arbitrary degree n as

(fog) 1 f
(fog) 0 ¢ f
(fog)"| =10 ¢" (¢) /" (5.14)
(f o g)l// O g/// 3g/g// (91)3 f///
where all the { 9,9 .. } terms are evaluated at a given input z,

and each of the {f, f’,...} terms is evaluated at g(z).

With the recipe in (5.14) for the derivatives of a scalar func-
tional composition, the coefficients of a Taylor polynomial expan-
sion for each ith component of y,, can be computed by scaling each
%w(q@,i) by 1/n!, where gg; is the ith component of q,. A simple
€]

expression for ¢, is then the matrix-vector product

1 a(qe,i)

0 qé,i o7(qe,i)
d—p-1 |0 @ (q,) o7(qei) | (5.15)

’ 0 ¢ "(qe.i)

! Vi ! 3 V/
Qi 340,90 (qé,i) Oy

for 1 < i < pp where qéz) denotes the ith component of qén), and

D is a square diagonal scaling matrix of dimension (d+ 1) in which
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the nth diagonal entry is n!. Note that in (5.15), both ¢¢; and all

its derivatives {qéz)}n have been computed at ag, as in (5.14).

Finally, we note that evaluating (5.13) for each i is straightfor-
ward due to the arrangement of the polynomial coefficient matrix
in (5.11). If we denote Qg as p; x (d + 1) block matrix

Q = |aao) a(00) a’(e0) af(00)].  (5.16)
then at each layer Q, may be computed from the previous Cy_; as
Q= [W( + OzoPg]Cgle +P,C,_1DG, (5.17)

where G is an off-diagonal square matrix with dimension (d + 1)
that accounts for the nPyy'" " term in (5.13) as

01

G= S (5.18)

5.2.2 Softmax Layer Polynomial Expansion

For an output layer on equal to the softmax function in (5.3), the
derivative matrix ¥ is not diagonal, and the simplified treatment
in (5.15) cannot be applied. A brute-force approach that attempts
to evaluate the derivatives {%S (z)}n would be computationally
infeasible, but is unncecessary since it is instead possible to ex-
ploit the structure of softmax function as the functional compo-
sition S(z) = L(z) - exp{z} where L(z) = Hexp{z}Hl_l7 such that
the product rule can be applied to S[qy(«)] using the derivatives
{ d” L[qN(a)]}n and {dda exp[qN(a)]}n. The advantage of this

dan

approach is twofold: %L[qN(a)] is scalar with a recurrent depen-

dence the computable function (f:%L[qN(a)], and the function
exp{qn(a)} is applied element-wise such that its derivatives with
respect to o can be expressed by a matrix-vector product similar
to (5.15), mutatis mutandis.®

5There is one very important detail in this procedure as described that
should be altered in actual implementation. Numerical analysts will be
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The recurrence formula for ddan Llgn(a)] can be obtained by
several applications of the product rule. Recall first that for two
functions f:IR — R and ¢g: R — R, the derivatives of the product
f(x) - g(x) of an arbitrary order of can be expressed as a binomial

sum of the constituent functions’ derivatives as

dn—m

dd:n Zn:( )dzm (@) = 9(2)- (5.19)

m=0

Considering L[z(a)] for an arbitrary vector z(a) € R¥ its (scalar)
first derivative is

dL 1 v dz
— =—————exp{z(a)} (5.20)
da Jlexp{z}|? “da’

To apply the product rule in (5.19), (5.20) may be rewritten as a
product of scalar real functions 1 («) and ¢(a) defined as

{wa) = Llz(o))? (5.21)

¢(a) =—exp{z(a)}’ - 4,

each of which have easily computable derivatives. Denoting s =
—exp{z(a)}, the derivative dd—ns € RE can be written element—

wise for each ith element s; by a functional composition matrix as

all too aware of the potential numerical instabilities in the exponentials
of the softmax function, which result from the finite precision available
in a floating point number system (Bryant & O’Hallaron’s textbook [17]
is a highly recommended reference both for these details and cautionary
parables of historical engineering catastrophe, such as missile systems
failing due to arithmetic overflow). In particular, for IEEE double preci-
sion numbers, exp{x} is indiscernible from the numerical representation
of infinity for > 720. The simple way to circumvent errors in the soft-
max function is to take an equivalent but numerically stable form

§'(z) = exp{z — Zmax} 7
lexp{z — 2max}[|;

where zmax = max(z). For all of the derivations presented here, prac-
tical numerical codes should ensure that any vector argument to the
exponential function is suitably modified to prevent overflow.
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in (5.14). Once the { d” s}, are computed, the derivatives of ¢(c)

dan
then follow immediately as

R D 9l () L [ L R R

m=0

Computing the derivatives %L and d‘i:'n ¢ follow from (5.19), and
can be evaluated through a simple dynamic programming proce-
dure, since %L depends on %w, and (fa—nnw depends on dd(:%L.
The final desired derivatives { {-ox} = result from one final appli-
cation of the product rule to S(z) with z = qn such that the Qn
matrix formed in (5.17) supplies z(«) and its derivatives evaluated

at the expansion point «p.

5.2.3 Squared Loss Output Polynomial

Approximating the squared loss function in (5.4) by a Taylor poly-
nomial adds one final matrix-vector operation to account for the
Iy — yn(a) Hg loss term, where y () is the output of the network
as a function of @ > 0 along the parameter ray w + ap. The Lo-
norm term for results in the summation Y 2~ (9; — yn,;)? for each
ith component of (§ — yn); as such, the loss function expansion
coefficient vector cgﬁ] for each dimension of the difference vector
(¥ —yn~), once computed, need only be summed over all i to obtain
the polynomial approximation to the full loss function £(w + ap)
for a single observation (X,,¥;).

Since ||y — yN||§ is quadratic, the coefficient vectors {CEL]} re-
sult immediately from the functional composition matrix-vector
product as in (5.14), given by

1 (Qi*yN‘f,)2
2
0 Yy, ) YN, — Ui
" !
cgﬁ] =D !0 N (yNz> 1

3

0 y%z 3y§\f,iy§(7,i (ZUEVZ) 0

(5.23)

where D is a square diagonal scaling matrix as before, with dimen-
sion py.
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Example Taylor approximations to £(w + ap) for the squared
loss function in (5.4) using an N = 4 feedforward MLP with a
softmax output layer is shown in Fig. 5.2a. Here, p is the steepest
descent direction, and the expansion point is oy = 1/||p||,. Tay-
lor polynomial approximations of degree 6 and degree 5 are over-
laid to show the agreement for small (o — «y). Correspondingly,
Fig. 5.2b shows both the actual computed percentage error between
the polynomial approximation Ws(«) to the loss £L(w + ap), as
well as the approximate error computed by the error metric from
(3.9) that depends on the difference between degree-6 and degree-5
approximations. It can be seen that the approximate error corre-
sponds well with the actual percentage difference between Wg(a)
and L(w+ ap). Fig. 5.2 gives an intuitive sense of how well a poly-
nomial will approximate the loss function along a single dimension;
in general the radius (o — a) in which the approximation is valid
will depend on the degree of curvature around ay.

5.2.4 Modifications to PELS for Nonconvexity

Recall the univariate line search problem for fixed w and descent
direction p:

o = arg gl;r(}/i(w + ap) = arg min (). (5.24)

The PELS line search in Alg. 4 operated by iteratively forming
the Taylor polynomial model W (c; w, p)|o, approximating ¢(«) in
the neighbourhood of a;; and determining each successive step size
through the minimization of the model,

11 = arg m>i18W(oz;W, P)la,- (5.25)

While in previous chapters we approached (5.24) with better be-
haved functions, the MLP is less amenable to simple techniques
due to its nonlinearity. For instance, NR iteration as applied pre-
viously would be hard-pressed to succeed for the very flat regions
of L(w + ap) in Fig. 5.2a in which the Hessian is close to zero
within the limits of numerical representation. As such, to solve
(5.25) for general non-convex functions, we modify the PELS algo-
rithm to include the interpolation technique from the WA class of
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L(w + ap)

Approximation Error (%)

107° F Actual Error —e— 4
10-5 . . Approx. Error —e—
0 0.5 1 1.5

«

Figure 5.2: (a) Example degree-6 polynomial approximation in «
about oy = 1/||pl|, where p is steepest descent direction of a mean
squared loss function with a sample sigmoidal MLP and nonzero
reqularization for several randomly sampled instances from the IRIS
dataset. Note that the sharpness at the minimum near a = 0 is an
artifact due to the number of gridpoints used to compute L(w+ap).
In (b) the percentage error of the approximation relative to the
actual network output as computed by the metric in (3.9) is shown
on a logarithmic scale.

line searches. This addition is used to recover from minimization
failures for polynomials constructed with bad initial guesses for the
step size in regions where NR iteration would diverge. Furthermore,
it benefits naturally from the error metric previously proposed,

ca(a — a;)?

Wl | (5.26)

(@), =
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which may be used to determine a trust radius about «; to bound
a feasible solution to (5.25).

The cubic interpolating polynomial constructed in WA line
searches uses the pairs of control points ¢(¢;) and ¢'(¢;), and
é(aj—1) and ¢'(cj_1). Since the PELS Taylor coefficients of up
to degree d at the bias points a; and o;_; are ezact, they may
be used to construct interpolating polynomials with higher degrees
than cubic. Suppose that we wish to create an interpolant P, («)
for the interval [a, b] (which could be the steps [a;_1, ¢;]) and have
evaluated the coefficients {cq,7},, and {cp, i}, of Taylor poly-
nomials biased about a and b, respectively, with 1 < ng,np < d.
The coefficients {C[’i}i\io of the interpolant polynomial P, ; with
degree M = ng + ny + 1 are then determined by constructing an
augmented matrix system of two smaller Vandermonde-type sys-
tems. Specifically, we first take the coefficients {c4},. The first
(under-determined) Vandermonde-type linear system is

cr,M Ca,0
Cr,M—1 Ca,1
Vu(a) - = (5.27)
——
ng X (M+1) Cr,1 Cang—1
Cr1,0 Ca,n,

where Vjs(a) € R"*M+1) is a Vandermonde-type matrix of a
particular form. In Vs(a), each nth row corresponds to the inter-
polation equation for the nth derivative,

M

d(i:n <Z CI,mozm>

m=0

= Cans (5.28)

a=a

and is ordered such that each mth column aligns with the coefficient
¢1,m in (5.27). Thus we have that

a™M aM-1 .. 2

. a
Virla) = MaM=t (M —1)a™=2 ... 2a 1

O =

(5.29)

The full (soluble) linear system for {cs;}, is then determined by
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the solution of the (M 4 1) x (M + 1) augmented system

VM(G/) CI,M Cqa
— Col =, (5.30)
VM(b) CI,O Cp
h - T and cp = T
where c, [€a,0 Ca1 ---sCam,]” and cp [Cb.0 Cb1 -3 Chmy)

Note that for n, = n, = 1, (5.30) may be solved for the coefficients
of a cubic interpolant using function and gradient information at
the points a and b. Allowing for ng,n, > 1 gives greater repre-
sentation potential for the curvature of the interpolant, which may
help in cases where the MLP function changes radically. The case
ng 7 nyp is also permitted by this construction, and is useful since
the known values ¢(0) and ¢'(0) may be combined with the degree-
d information computed by PELS at op in an interpolant Fp o, if
a minimum to W (a)|a, cannot be computed.®

The error metric €(a)|y, in (5.26) has one further use: it is
possible to solve for values of « at which the error metric is equal
to a desired approximate fractional error p. By inverting the error
metric formula, a step size a; near a;; with a given p may be found
as one of the relevant roots of the equation

d—1
- _ 1
1+Zid(a,%)m d fgzo. (5.31)
m=0

By relevant, we mean that the desired solution to (5.31) lies in
the direction of descent for the expansionj point «; (i.e. left if

6 Another reason for which ng may not equal np is one of numerical
stability. (5.30) can only be solved when the columns of the Vandermonde
matrix are sufficiently independent, but raising small values of a or b to
a large power may leave the system insoluble. Hence it is necessary to
verify that the solution is well conditioned, and decrease the number of
coefficients in the vectors c, and c, otherwise. In the worst case, the
cubic interpolation can be constructed, since this particular interpolant
always exists and is unique [85]. In future references to (5.30), please
mentally insert a note that in the PELS code, solving this linear system
included a procedure that iteratively solved for [cro ... cIYM]T with
decreasing M until the interpolant values at the control points differed
from the known values by less than 10™° (or until M = 3).
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¢'(a;) > 0 and right if ¢'(e;) < 0) since a lower value of ¢(a) than
#(«;) should be bracketed in the interval (a;, @;] or [&;, o). Note
that the roots of (5.31) were computed through bisection to avoid
computing the large derivatives near o; or vanishing derivatives as
a — +oo for numerical robustness.”

With these two tools in hand, the PELS method is adapted
as follows. After having computed the coefficients of W(a)|a,, we
continue to use NR iteration to attempt a solution for a4, as in
(5.25), since the fast convergence properties of NR iteration remain
desirable, if possible. However, if the routine is unable to compute a
valid solution 41, taken as having achieved decrease in the poly-
nomial value as W(a;11)la; < W(a;)|a, (in addition to standard
numerical convergence critera as used previously in NR iteration;
our implementation required that the iterative change to the step
size be less than 10~!* within 50 iterations), then a high degree in-
terpolant P, ; is constructed and minimized on a bounded interval,
with bounds determined according to (5.31). The values of [a,b]

"Solving for the roots of either (c)|o, —6 = 0 or the inverted equation

W — % = 0 should in principle be a six-in-one-hand, half-a-dozen-
oj

in-the-other type of question. We have not implemented the former and
cannot comment on its robustness or practicalities, since in our initial
design phase of the procedure, the latter equation seemed more appealing
for the absence of pesky potential zeros in the denominator. Plus, it has
the guarantee that m diverges at o, entailing that that a numerical

bisection procedure seeking zero on the right (say) of a;, can bracket a
zero pretty dependably [barring numerical representation] by starting
from the lefthand value o; + po with a tiny po, and increasing that
value to find a right bracket with a function value of opposite sign.
This routine has worked reliably for us for a heuristic reason that we
attribute to the numerical values of the coefficients {¢n} in (5.31): we
have observed |cq| < |ca—1] < |ca—2| < ... for the high order coefficients
(no general inequality is claimed to relate co, c1, and ¢2). Thus the ﬁ

functions in our test problems increased or decreased monotonically in
practice insofar as we could tell. Also note for completeness that our
bisection implementation used the convergence criteria that either (i)
the difference between the midpoint and endpoints was less than 1078
or (ii) the machine epsilon for the midpoint was greater than 10~ within
2000 iterations.
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are updated in each iteration as in a conventional WA line search;
initially [a,b] = [0, ], where ¢(0) and ¢'(0) are known. Once a;
is found by either the minimization of W(a)|a, or Pp,a, (), the
interval [a, b] is updated to be either [0, o] if |y — 0] < | — ]
or [aq, ap] otherwise (and ordered such that a < b). In each itera-
tion, the interval I is determined from the relevant root of (5.31)
for the current values of @ and b (and where the initial left bound of
the interval is 0). This procedure repeat is repeated iteratively un-
til the error metric €(a;jt1)|a,., for the iterate a1 is sufficiently
small, where ouag; is the closest to ;1 of the latest expansion
points stored in a or b (however, note that o = 0 is never used
as aast since the PELS coefficients are not computed for this step
size along the direction p under consideration). This procedure is
summarized in Alg. 8, but note that several details discussed in the
above paragraph are omitted from the summary for simplicity of
presentation.

Alg. 8 has many similarities to the standard methodology for
performing WA line searches with cubic interpolants in each iter-
ation, which underlines that the PELS methodology of computing
Taylor coefficients for conducting a univariate line search, rather
than evaluating ¢(«) directly, is not at all incompatible with other
techniques. For instance, enforcing the Wolfe conditions could be
added as a criterion for convergence at the solution point in ad-
dition to the polynomial error metric, where the Wolfe conditions
could be evaluated exactly at the expansion point of a Taylor poly-
nomial or approximated using that polynomial’s coefficients. The
work by Hager & Zhang [48] may interest the reader as an example
from the literature of approzximate Wolfe conditions. In it they prof-
fer a reformulation of the Wolfe sufficient decrease condition that
depends on the gradient ¢’ as opposed to ¢, but can be evaluated
more accurately due to numerical representation errors. Other op-
timization researchers or practitioners may have related use cases
in which a procedure as described here lends itself naturally.

5.3 PELS Feasibility Tests

To investigate the feasibility of the PELS method in batch opti-
mization algorithms for training parameters in feedforward mul-
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Algorithm 8: PELS for the MLP

Input: ¢(0) € R,¢'(0) <0, a9 >0,0 >0, u>0
Output: o = o = argmingso ¢(a)

[a, b] < [0, a]

=

2 ¢, ¢+ [¢(0) ¢/(0)]"
37«0
repeat
4 Compute {cm};inzo for W(a; w, p)|a,
5 a?m < argmingso W(a; w,p)la,
6 if o™ is valid then
_ NR
7 ‘ Qg1 < Q;
else
8 Compute I from (5.31) on a and b with tolerance u
9 Construct Py p(c)
10 a1 argminger Pop(a)
11 Update and order [a, b] to best bound ;1
12 Update c,, ¢, with coefficients corresponding to [a, b]
13 Qlast < min (|41 — al, |ajp1 — b))
14 j—j+1

15 until G(Oéj)|oztuat <0
16 return o;

tilayer perceptron models, a comparison was made of the NCG
and LBFGS using Alg. 8 or the cubic interpolating line search by
Moré & Thuente [80] for univariate line searches. As before, the
implementations using PELS are denoted by a suffix -P as NCG-P
and LBFGS-P. While our focus in previous chapters has been on
parallel implementations, our current PELS codebase is an unopti-
mized serial prototype; as such, the experiments were conducted on
small binary and multiclass classification datasets that are standard
and readily available online for prototyping and testing in the ma-
chine learning community. All results pertain to mean squared loss
functions over labelled datasets as in (5.4) without regularization
(A = 0), where the predicted probability vectors were generated by
multi-layer MLP functions with softmax output layers.

The PELS algorithm was implemented in the interpreted Oc-
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tave language [37] in conjunction with the matrix-based MLP
implementation formulated in §5.1 and run with § = 1078 and
p =15 x 1072 (which entails approximately 5% error). The bound-
constrained minimization problem in step 10 of Alg. 8 was per-
formed using Octave’s univariate fminbnd function with an input
tolerance of 10~ and a maximum of 250 iterations. The LBFGS
and NCG algorithms were also implemented in Octave with a user-
specifiable line search routine such that the LBFGS and LBFGS-P,
and NCG and NCG-P algorithms had identical operations besides
their univariate line searches, respectively. The NCG implementa-
tions used the positive Polak-Ribiere update formula from (1.5),
and the initial step size in each line search invocation was chosen
through the scaling formula (1.6), except for restarts in some kth
iteration, in which case the initial step was taken as 1/|/g||,. Fur-
thermore, a Powell restart condition of v = 0.9 was used in (1.7).
The LBFGS routine used the typical settings of n. = 5 corrections,
an initial step size of 1 in the line search, and Liu and Nocedal’s
M3 scaling [70] in the Hessian approximation. The Wolfe condi-
tions in the WA algorithm were vy = 10% and vy = 0.9. Lastly, a
maximum of 20 iterations was allowed for both the WA and PELS
algorithms in all experiments.

The datasets considered were: the IRIS [38] sepal and petal mea-
surements for K = 3 classes of irises, the PARKINSON’s dataset [69]
with 23 clinical voice measurements for binary classification of pa-
tients with Parkinson’s disease, and an 500-image subset of the
MNIST [64] dataset of vectorized pixels from handwritten postal
code digits with K = 10 classes. For MNIST, the subset was sam-
pled randomly and uniformly from all available images in the full
set. The properties of these datasets and the layer dimensions of
their respective MLPs classification functions are summarized in
Tab. 5.1. Selecting the dimensions of the MLP functions is undeni-
ably black magic, but the dimensions in Tab. 5.1 were chosen ad hoc
such that there were sufficiently many parameters to drive £(wy,)
to zero for large k, as well as to minimic the relative dimensional
ratios previously reported for MLPs for the MNIST dataset [64]. The
observations vectors {x,}/'_, in the IRIS and PARKINSON’S datasets
were preprocessed such that the mean and variance of the values
{@,};~, for each ith dimension were 0 and 1, respectively (this
process is termed standardization in machine learning). The subset
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Table 5.1: Summary of classification datasets and MLP model
properties. Here, n gives the number of observations in the dataset,
K gives the number of classes, and N gives the number of layers
in the MLP function evaluated through (5.1). The dimensions of
the weight matrices are shown, separated by hyphens, where each
distinct digit corresponds to the number of rows in the subsequent
layer. For example, the PARKINSON’S dataset had 2 layers with
weight matrices W, € R?3*32 and W, € R32%2, with dimensions
denoted 23-32-2.

n K N Dimensions of {Wg}
PARKINSON’S [69] 197 23 2 23-32-2
4
3

IRIS [38] 150 3 4-16-8-3
MNIST [64] 500 10 591-256-64-10

of the MNIST handwritten digit dataset was preprocessed slightly
differently. Instead of standardizing the vectors, the dimensions for
which each observation in the dataset had zero-valued entries were
removed, which appreciably reduced the dimension of the input
vectors since the images are very sparse. The nonzero pixel val-
ues contained in the images were otherwise unchanged. Finally, the
initial values of wq for all algorithms and experiments were drawn
pseudorandomly from the standard unit normal distribution.

5.4 Results & Discussion

The convergence traces of L(wy) for the NCG-P and LBFGS-P
algorithms are presented both as a function of iterations taken
and the number of dataset reads (i.e. cumulative evaluations of
L(wy) and VL(wg)). The two tales allow the feasibility of the
PELS method to be considered in view of both the achievable con-
vergence speedup, but also the cost in terms of passes over the
dataset.® Note also that the raw loss function values are shown,

8 A nagging question you could ask: why not also show the elapsed
clock time for the algorithms as an alternate [and arguably more palpa-
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rather than traces of |£(w}) — L(w*)]| since in the nonconvex neu-
ral network landscape, disparate solutions were computed by each
algorithm (this was also verified numerically; each algorithm con-
verged to a different minimum, most likely a local one [24]).

The loss traces for the IRIS, PARKINSON’S, and MNIST datasets
are depicted in Fig. 5.3, Fig. 5.4, and Fig. 5.5, respectively. For each
figure, subplot (a) shows the number of iterations along the hor-
izontal axis, while the ordinates of subplot (b) show the number
of cumulative dataset reads. As a general remark on the potential
convergence improvements, the NCG-P algorithm performs sub-
stantially better on these example datasets than its counterpart,
which is a similar result as found in §3 for logistic regression—
in particular, the trace in Fig. 5.5a has comparable convergence to
LBFGS. The LBFGS-P method exhibits slightly faster convergence
on these problems than LBFGS, but not to the extent previously
observed for logistic regression. To quantify this, the speedup fac-
tors in terms of the number of iterations required to reach a given
value of £(wy) were computed and are shown in Fig. 5.6, where
Fig. 5.6a shows the factors for NCG-P over NCG, and Fig. 5.6b
shows those for LBFGS-P over LBFGS. The acceleration factors

ble] metric for efficiency? The answer is partly that the current imple-
mentation in Octave began as a feasibility study in a graduate project
with the expedient goal of correctly implementing and investigating
whether PELS improved convergence behaviour, and is sufficiently slow
that plots with elapsed time in the horizontal axis would not be much
to look at. However, the more important important detail not to be
glossed over is that by showing either iterations or dataset passes, all
the additional work required in to compute the Taylor coefficients in
§5.2 has been discounted. The tacit assumption that the extra work is
somehow inherently negligible would be wrong, and we do not wish to
ignore that. While it may have been the case in §3, where the logistic
regression Taylor coefficients in (3.11) took only a few extra flops after
having evaluated the inner product terms, it is not necessarily the case
for the MLP, which has far more dense linear algebra to do. Ultimately,
just bear in mind that the convergence behaviour measured in iterations
is an upper bound on what could be done if two methods took the same
amount of time, and that for parallel systems the communications costs
for PELS will be lesser. Beyond that, your mileage may vary based on
how expensive communication is by comparison with dataset reads and
CPU-bound computations.
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Figure 5.3: Convergence traces compared between PELS and the
cubic interpolating WA line search from Moré € Thuente for the
IRIS dataset.

for LBFGS-P fall mostly in the range of 1.1-1.3x for the traces on
the datasets considered, while NCG-P can require fewer than half
as many iterations as NCG. However, the loss traces dependent on
the cumulative passes through the dataset also reveal that several
additional function and gradient evaluations were made in each
line search invocation. For instance, though in Fig. 5.5a only about
125 iterations of LBFGS-P were performed, over 400 coefficient or
function/gradient evaluations were required in Fig. 5.5b, which is
approximately 2.2 per line search (cf. that number with the values
of ne &~ 1 in Tab. 3.3). This motivates a discussion of whether or
not the convergence gains for LBFGS-P over LBFGS justify further
research on a large-scale system: does the additional work required
in the PELS line search for the MLP make the improvements a
pyrrhic victory?

Back in the parallel performance evaluation of PELS in §3, we
saw that the distributed Apache Spark framework for large-scale
processing had significant communication costs. Hence optimizing a
logistic regression model in Spark was exemplary of a case in which
the number of passes over the dataset was less important than the
subsequent communication of the result of the computations on the
data [evinced by how the end-to-end time for evaluating the Taylor
coefficients in §3.5 was only about a quarter of the time needed to
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Figure 5.4: Convergence traces compared between PELS and the
cubic interpolating WA line search from Moré € Thuente for the
PARKINSON’S dataset.
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Figure 5.5: Convergence traces compared between PELS and the
cubic interpolating WA line search from Moré & Thuente for the
MNIST dataset.

evaluate the full gradient vectors]. The convergence enhancements
produced by computing more accurate minima in the univariate
line search invocations were thus realizable without significant ad-
ditional work. Serial settings or systems without expensive com-
munication overheads are the obverse: unless the convergence gains
are sufficient to justify the extra work, doubling the time per iter-
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Figure 5.6: Speedup factors in iterations required to reach a given
value of L(wy), as computed for (a) NCG-P over NCG and (b)
LBFGS-P over LBFGS on the datasets in Tab. 5.1.

ation with additional passes over the dataset will only slow things
down. Further experimentation with optimized implementations of
methodology outlined here in systems such as Spark in which the
gains could be substantial would be a better determinant of the
applicability of PELS in this setting, particularly given our initial
results showing that NCG can be substantially improved.

5.5 Conclusion

In this chapter, we have presented an extension of the Polynomial
Expansion Line Search algorithm for nonconvex objective func-
tions. One adaptation included the construction of polynomial in-
terpolants constructed from the previously computed Taylor coeffi-
cients in the PELS line search procedure, similar to the cubic inter-
polation performed by classical Wolfe Approximate line searches.
The second addition to the method was to use the polynomial error
metric previously defined to compute trust intervals in which the
interpolant was minimized in a bound-constrained minimization
procedure. A matrix formulation of the multilayer perceptron AN-
Nmodel was presented, as well as a derivation of its Taylor expan-
sion coefficients replete with a procedure for their recursive com-
putation. model. This derivation specifically considered multiclass
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classification via a softmax output layer and mean squared loss
error function. We implemented a serial prototype of PELS and
conducted several initial performance comparisons with a cubic in-
terpolating WA algorithm for the NCG and LBFGS algorithms for
optimizing MLP parameters. On the small datasets considered, it
was found that NCG-P could obtain speedup factors greater than
2 over NCG in the number of iterations required to minimize the
loss function to a given order of magnitude. The speedup factors for
LBFGS-P over LBFGS were approximately between 1.1-1.3 for the
same problems. However, the increased number of passes through
the dataset per line search invocation entail that the feasibility
of PELS for accelerating LBFGS is less straightforward than for
NCG, and it is thought likely that the communication costs of the
particular system using a parallel implementation of PELS in the
optimization of ANN parameters will determine the technique’s
suitability.
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6

Conclusion

OW begins the fat lady’s song. This thesis has consid-
| \l ered the problem of how to efficiently conduct univari-
ate line searches in commodity clusters in the context
of gradient-based batch optimization algorithms. In it, the Poly-
nomial Expansion Line Search (PELS) technique was proposed,
which is a line search technique for cases where the underlying ob-
jective function is analytic, as in logistic regression and low rank
matrix factorization. In this method we approximate the objective
function by a truncated Taylor polynomial along a fixed search
direction, and compute the Taylor coefficients for the expansion
explicitly along that direction. The coefficients of this polynomial
may be computed efficiently in parallel with far less communica-
tion than needed to transmit the high-dimensional gradient vector,
after which the polynomial may be minimized locally by a driver
program with high accuracy in a neighbourhood of the expansion
point without further distributed operations.

Three applications of the PELS technique were presented for
important classes of analytic functions: (i) logistic regression, (ii)
low-rank matrix factorization models, and (iii) feedforward multi-
layer perceptrons (MLPs). Furthermore, the PELS implementa-
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tions for logistic regression and matrix factorizations were pre-
sented in the Apache Spark framework for fault-tolerant clus-
ter computing, where significant convergence enhancements were
achievable using the technique. For instance, in training large-scale
logistic regression models with the LBFGS algorithm, the number
of iterations and time required to reach terminal training accuracies
for was reduced by factors of 1.8-2. The PELS technique was also
used as an integral component of a nonlinearly preconditioned Non-
linear Conjugate Gradient algorithm for solving the matrix factor-
ization problem as formulated for recommender systems, for which
the speedup over the conventional Alternating Least Squares al-
gorithm reached 3-5 for obtaining accurate solutions to the opti-
mization problem. Substantial acceleration was also observed for
the Nonlinear Conjugate Gradient algorithm for MLP models, and
may be of interest as a future tool for optimizing neural networks
models.

The Polynomial Expansion Line Search technique as presented
herein has been applicable to several models for Big Data process-
ing and large-scale optimization, and has been a useful component
of batch optimization routines in certain circumstances. However,
it is not necessarily a blanket solution: we have presented instances
for MLP models in which it has had only modest gains or even
hampered convergence for the LBFGS algorithm due to the extra
computational work required. As such, the method presented is not
a hammer, but a screwdriver! that has specific but invaluable use
cases. At any rate, we release PELS into the wild and hope that
it may find its way into researchers’ and practitioners’ numerical
toolboxes for their own optimization problems.

'Possibly in the vein of a degree-d generalization of those strange
double- and triple- square screw heads formed by the superposition of
rotated concentric Robertson squares. That sufficiently large d would
reduce such a screw head to a futile blind hole is also not lost on us.
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Appendices






A

Himrod Cluster Architecture

23 compute nodes, 4 large compute nodes with additional

memory, and 1 storage node hosting a network filesystem.
The head node is the entry point to the cluster via an ssh tun-
nel. Our experiements here have been conducted with the Spark
master and driver programs on the large compute nodes; hence
we refer to these nodes (homogenous) specifications as the master
node. All nodes are 64 bit rack servers (PowerEdge R620; Dell,
Round Rock, TX, US) running Ubuntu 14.04.2 LTS with linux
kernel 3.13.0-54-generic, compiled with symmetric multiprocessing.
The compute nodes all have two processors, both 8-core 2.6 GHz
chips with 20M onboard cache (Xeon E5-2670; Intel, Santa Clara,
CA, US) and 16 registered DIMMs with 16 GB of DDR3 SDRAM
(M393B2G70BHO-YKO; Samsung, Seoul, KR) for a total of 256
GB of memory. The single storage node (PowerEdge R720; Dell)
contains two 2 GHz processors, each with 6 cores (Xeon E5-2620;
Intel), 64GB of memory, with 8 DIMMSs, each slot providing 8 GB
of DDR SDRAM (Hynix; Icheon, RK) and 12 hard disk drives of
4 TB capacity and 7,200 RPM nominal speed. The master node
[i.e., any large compute node] differs from the [standard] compute

THE himrod computing cluster is composed of 1 head node,
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Table A.1l: Processor information for each node in the himrod
cluster. Each chip is a member of the Intel Xeon family.

Master Slave Storage
Chip  E5-2670 E5-2670  E5-2620
Quantity 2 2 2
Speed (GHz) 2.6 2.6 2.0
Cores 8 8 6
Threads 16 16 12

Table A.2: Memory information for each node in the himrod clus-
ter. The speeds given are the configured chip speeds as determined
by dmidecode.

Master Slave Storage
Chlp M393B4G70BMO-YH9 M393B2G70BHO-YKO HMT31GR7EFR4A-PB
Quantity 16 16 8
Size (MB) 32,768 16,384 8,192
Speed (MHz) 1,333 1,600 1,600

nodes only by its onboard memory chips, which have 32 GB ca-
pacity (M393B4G70BMO-YH9; Samsung) making for 512 GB of
total memory. The processor and RAM information for each node
in the cluster is summarized in Tab. A.1 and Tab. A.2, respec-
tively. Furthermore, the RAM chipset serial numbers are provided
in Tab. A.2.

Each compute node’s root filesystem is mounted on a local solid
state drive with a read speed of 6 Gb/s (LB206M; SanDisk, Mil-
pitas, CA, US) and formatted with an ext4 filesystem. For local
storage, compute nodes also have 6 ext4-formatted SCSI 10,000
RPM hard disk drives, each with a 600 GB capacity. The network
storage system hosted by the storage node is mounted on both the
head and compute nodes via the automount daemon, and nodes
are interconnected by a 10 Gb ethernet managed switch (Power-
Connect 8164; Dell).

To determine the above hardware information, several standard
methods were used. Firstly, basic information about the storage de-
vices was taken from the nodes’ local /proc directories. Specifically,
/proc/scsi/scsi contained basic information about the vendor
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and model of available SCSI [pronounced scuzzy] devices. For more
detailed information about the hardware, the 1shw program was
invoked as:

$ sudo 1lshw -class disk -class storage

The processor and memory specifications were obtained via the
dmidecode program, called as

$ sudo dmidecode --type processor

for the CPU listings, and

$ sudo dmidecode --type 17

for RAM information.
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