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Abstract

Interference is assumed to be one of the main barriers to improving the throughput

of communication systems. Consequently, interference management plays an integral

role in wireless communications. Although the importance of interference has promoted

numerous studies on the interference channel, the capacity region of this channel is still

unknown.

The focus of this thesis is on Gaussian interference channels. The two-user Gaus-

sian Interference Channel (GIC) represents the standard model of a wireless system in

which two independent transmitter-receiver pairs share the bandwidth. Three important

problems are investigated: the boundary of the best-known achievable rate region, the

complexity of sum-rate optimal codes, and the role of causal cooperation in enlarging the

achievable rate region.

The best-known achievable rate region for the two-user GIC is due to the Han-

Kobayashi (HK) scheme. The HK achievable rate region includes the rate regions achieved

by all other known schemes. However, mathematical expressions that characterize the

HK rate region are complicated and involve a time sharing variable and two arbitrary

power splitting variables. Accordingly, the boundary points of the HK rate region, and

in particular the maximum HK sum-rate, are not known in general. The second chapter

of this thesis studies the sum-rate of the HK scheme with Gaussian inputs, when time

sharing is not used. Note that the optimal input distribution is unknown. However, for

all cases where the sum-capacity is known, it is achieved by Gaussian inputs. In this

thesis, we examine the HK scheme with Gaussian inputs. For the weak interference class,

this study fully characterizes the maximum achievable sum-rate and shows that the weak

interference class is partitioned into five parts. For each part, the optimal power splitting

and the corresponding maximum achievable sum-rate are expressed in closed forms. In

the third chapter, we show that the same approach can be adopted to characterize an

arbitrary weighted sum-rate. Moreover, when time sharing is used, we expressed the

entire boundary in terms of the upper concave envelope of a function. Consequently, the

entire boundary of the HK rate region with Gaussian inputs is fully characterized.

The decoding complexity of a given coding scheme is of paramount importance in

wireless communications. Most coding schemes proposed for the interference channel
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take advantage of joint decoding to achieve a larger rate region. However, decoding

complexity escalates considerably when joint decoding is used. The fourth chapter studies

the achievable sum-rate of the two-user GIC when joint decoding is replaced by successive

decoding. This achievable sum-rate is known when interference is mixed. However, when

interference is strong or weak, it is not well understood. First, this study proves that

when interference is strong and transmitters’ powers satisfy certain conditions, the sum-

capacity can be achieved by successive decoding. Second, when interference is weak, a

novel rate-splitting scheme is proposed that does not use joint decoding. It is proved

that the difference between the sum-rate of this scheme and that of the HK scheme is

bounded. This study sheds light on the structure of sum-rate optimal codes.

Causal cooperation among nodes in a communication system is a promising approach

to increasing overall system performance. To guarantee causality, delay is inevitable in

cooperative communication systems. Traditionally, delay granularity has been limited to

one symbol; however, channel delay is in fact governed by channel memory and can be

shorter. For example, the delay requirement in Orthogonal Frequency-Division Multi-

plexing (OFDM), captured in the cyclic prefix, is typically much shorter than the OFDM

symbol itself. This perspective is used in the fifth chapter to study the two-user GIC with

full-duplex transmitters. Among other results, it is shown that under a mild condition,

the maximum multiplexing gain of this channel is in fact two.
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Chapter 1

Introduction

The accelerated improvement of wireless technology, in which numerous wireless devices

employ the same frequency band, has made interference an intrinsic part of today’s

communication systems. The first study of a communication system that considered

interference as an intrinsic element, was in Shannon’s work on the two-way channel [1].

His work was followed by that of several other scholars, and nowadays, the interference

channel is the accepted model of a communication system in which interference, signal,

and noise interact with each other [2–7].

The importance of interference in wireless communication has promoted many studies

on the interference channel. The two-user Gaussian Interference Channel (GIC) is of

particular interest. This channel models a practical wireless network consisting of two

independent receiver-transmitter pairs. Each transmitter tries to send its message to its

corresponding receiver, but it inevitably causes interference for the unintended receiver.

Both receivers suffer from Gaussian noise as well.

Although the capacity region of the Gaussian interference channel has been studied

for more than 40 years, it is only known for some specific cases. For example, with

strong interference, the whole capacity region is known to be achieved by decoding the

inference [7–9]. On the other hand, with very weak interference, the sum-capacity is

achieved by treating the interference as noise [10–12].

This thesis is intended to provide a better understanding of the capacity region of the

two-user Gaussian interference channel. The main contribution is to address three impor-

tant aspects of this channel: (1) the boundary of the best-known achievable rate region,

1



Chapter 1. Introduction

(2) the complexity of sum-rate optimal codes, and (3) the role of causal cooperation in

enlarging the achievable rate region.

1.1 Boundary of the HK Rate Region

One challenging aspect of characterizing the capacity region is to find a tight inner bound

corresponding to a particular coding scheme. A general coding scheme, based on the idea

of rate splitting, was first proposed by Calieal [5]. This scheme was then improved by

Han and Kobayashi [6], whose main contribution was joint decoding at the receivers. In

fact, Carlieal used successive decoding instead of joint decoding but Han and Kobayashi

proved that joint decoding at the receivers can increase the achievable rate region.

For the two-user GIC, the Han-Kobayashi (HK) scheme results in the best-known in-

ner bound. By optimizing over a time-sharing variable and two power splitting variables,

the HK scheme can include all known achievable results as its special cases. However,

the optimization problem involving the underlying variables has yet to be clarified. In

fact, [13] states

“ Unfortunately, the optimization among such myriads of possibilities

is not well-understood”.

This thesis aims to shed light on this issue by investigating the HK scheme and finding

the optimal power-splitting policy that maximizes the weighted sum-rate. Consequently,

the boundary of the HK rate region with Gaussian inputs is fully characterized. This

important has been investigated for more than 30 years.

The other challenging aspect of characterizing the capacity region is to find tight outer

bounds. For the two-user GIC, various outer bounds have been derived using different

techniques [10, 13–17]. Unlike achievable schemes, where the HK scheme results in the

best-known inner bound, no converse scheme results in the best-known outer bound. In

fact, each outer bound can be tighter or looser than other outer bounds, depending on the

channel parameters. The outer bound obtained in [13] is of particular interest. Using a

genie that provides information about the intended message to each receiver, [13] proves

that a sub-region of the HK scheme is within 1 bit of the capacity region. In this thesis,

our focus is on the achievable schemes. We use the existing outer bounds to check the

optimality of the achievable schemes under certain conditions.
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1.2 Complexity of Sum-Rate Optimal Codes

Joint decoding is used in the HK scheme to enlarge the achievable rate region. Joint

decoding is a powerful coding scheme; however, it considerably increases decoding com-

plexity. The decoding complexity of the joint decoding of k messages of a random coding

scheme is proportional to 2nRsum , where n is the block length, and Rsum is the sum of

the rates corresponding to the messages that are jointly decoded, i.e., Rsum =
∑k

i=1 Ri.

However, the decoding complexity of the successive decoding of the same set of messages

is proportional to 2nRmax , where Rmax = max(R1, R2, ..., Rk) [18]. Therefore, practical

coding schemes employ successive decoding in their decoder to decrease the complex-

ity of decoding. Moreover, there exist numerous studies regarding the construction of

high performance point-to-point codes [19–23], whereas there are fewer studies on mul-

tiuser codebooks, which are jointly decoded. Thus, this study compares the performance

of successive decoding, which employs existing point-to-point codes, with that of joint

decoding, which employs multiuser codebooks.

Rate Splitting (RS) and Successive Decoding (SD) can reduce decoding complexity

and have been used to investigate the multiple access channel and the interference channel

[24,25]. The capacity region of the two-user multiple access channel can be achieved by RS

and SD [18,26]. However, for the two-user Gaussian interference channel (GIC), RS and

SD cannot achieve even the Simultaneous Non-unique Decoding (SND) rate region [27].

RS and SD have been used to investigate the maximum achievable sum-rate of the

two-user GIC. For instance, when interference is mixed, it is known that the sum-capacity

can be achieved with SD [10]. When interference is strong or weak, the performance of RS

and SD has not been well-understood. This study characterizes the maximum achievable

sum-rate when joint decoding is replaced by successive decoding, and shows that, under

a set of mild conditions on transmitters’ powers, RS and SD can achieve the sum-rate of

the HK scheme.

1.3 Causal Cooperation among Transmitters

Cooperation among nodes in a communication system is a promising approach to increas-

ing overall system performance. Full-duplex transmitters can not only double the rate of

3
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wireless communication systems, but also facilitate collaborative signaling and coopera-

tive communication [28]. For the two-user interference channel, full-duplex transmitters

can take advantage of the signal they receive from each other to mitigate interference

at their receivers, and this simple cooperation among the transmitters can enlarge the

achievable rate region. In the context of cognitive radio channels, the role of cooperation

in enlarging the capacity region of the GIC has been studied, and rate-splitting along with

Gelfand-Pinsker binning has been used to improve the achievable rate region [29], [30].

Moreover, the capacity region of the two-user Gaussian interference channel with confer-

encing encoders is established in [31] to within a constant gap. To investigate the effect

of causal cooperation, the achievable rate region of two-user interference channels with

cribbing encoders is studied in [32–34].

Furthermore, multiplexing gain has been used as a measure to investigate the role

of partial non-causal cooperation in wireless networks in the high Signal-To-Noise Ratio

(SNR) regime. It is proved that, for the K-user GIC, as the cooperation among transmit-

ters increases from no cooperation to perfect cooperation, the multiplexing gain increases

from 1
2
K to K [35]. However, practical cooperation among different nodes requires the

causal delay consideration as an essential constraint. The signal transmitted by a node

will be received and processed by other nodes with some delay, and the minimum ac-

ceptable delay can significantly affect the potential gains of cooperative communication

systems. For instance, in the two-user GIC, when only transmitters cooperate non-

causally, the channel behaves like the broadcast channel, and the maximum multiplexing

gain of two is achievable [36, 37]. Similarly, non-causal cooperation among the receivers

achieves the multiple-access-channel multiplexing gain of two [38]. This study investi-

gates the two-user GIC with full-duplex transmitters to show that causal cooperation

among transmitters can increase the multiplexing gain.

1.4 Outline of Thesis and Main Contributions

The main objective of this thesis is to provide a better understanding of the capacity

region of the two-user GIC. To this end, three important problems are investigated: the

boundary of the HK rate region with Gaussian inputs, the complexity of sum-rate optimal

codes, and the role of cooperation in enlarging the achievable rate region.

4



Chapter 1. Introduction

The first problem is addressed in Chapters 2 and 3. In Chapter 2, we investigate the

maximum HK sum-rate. Note that the HK scheme results in the best-known achievable

rate region. However, mathematical expressions that characterize the achievable sum-

rate of the HK scheme are complicated, involving two power-splitting variables and one

time-sharing variable. For simplicity, we first investigate the maximum HK sum-rate with

Gaussian inputs when time sharing is not used. Then in Chapter 3, we return to time

sharing and investigate its role in increasing the achievable sum-rate. Note that, when

interference is strong or mixed, the maximum HK sum-rate is known. However, for the

weak interference class, the maximum HK sum-rate has remained unknown. The main

contribution of Chapter 2 is the characterization of the explicit power-splitting policy that

maximizes the HK sum-rate when interference is weak. We first describe the optimization

problem that corresponds to the maximum HK sum-rate and highlight the challenges in

solving the optimization problem. In particular, the fact that the objective function is

non-differentiable over the feasible region is discussed. Then we explain our idea for

solving the problem. The idea is to partition the entire feasible region into several parts

such that, inside each part, the objective function is differentiable. In other words, we

partition the feasible region into several parts such that all non-differentiable points lie on

the boundary of the parts. Relying on this idea, we solve the optimization problem and

fully characterize the maximum HK sum-rate. Chapter 2 shows that, depending on the

values of channel parameters, five different power-splitting policies maximize the HK sum-

rate. In fact, we partition the weak interference class into five sub-classes, and for each

sub-class, we fully characterize the optimal power-splitting policy and the corresponding

maximum sum-rate.

In Chapter 3, we generalize the results of Chapter 2 and characterize the maximum

weighted sum-rate of the HK scheme with Gaussian inputs. In other words, we fully

characterize the optimal power-splitting policy that maximizes a linear combination of

R1 and R2. Note that the time-sharing variable can increase the sum-rate of the HK

scheme. We first highlight that time sharing and time division are not essentially the

same. In fact, time division, which convexifies the achievable rate region, is a special case

of time sharing. Then we show that the role of time sharing in increasing the achievable

weighted sum-rate can be described in terms of the upper concave envelope of a function

of transmitters’ powers. This characterization can reveal several important properties.
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For instance, it allows to identify the regions in which time sharing does not increase

the achievable sum-rate. More importantly, we can identify regions in which simple time

division with power control is as good as the general time sharing strategy.

In Chapter 4, we address the second problem. To achieve the sum-capacity of the

two-user GIC, most coding schemes take advantage of joint decoding. However, decoding

complexity increases when joint decoding is used. Rate splitting and successive decoding

provide alternatives that can reduce this complexity. On the other hand, this complexity

reduction is achieved at a price. Some points of the capacity region cannot be achieved

by successive decoding. In this study, we investigate the achievable sum-rate, when joint

decoding is replaced by successive decoding. First, we express the optimization prob-

lem that corresponds to the maximum achievable sum-rate. Chapter 4 highlights the

challenges in solving the optimization problem. In particular, it is shown that the opti-

mization problem is non-convex. Then a method is proposed for solving this optimization

problem. We explicitly determine the number of required splits and the amount of power

allocated to each split. We then show that the sum-rate loss, caused by replacing joint

decoding with successive decoding, is bounded, even when transmitters’ powers approach

infinity.

Chapter 5 addresses the third problem, namely the role of cooperation in enlarging

the achievable rate region. It is known that causal cooperation among transmitters of

the two-user GIC does not increase the multiplexing gain [39]. This result is obtained

with the traditional delay assumption. To guarantee causality, delay granularity has been

assumed to be limited to one symbol; however, channel delay is in fact determined by

channel memory and can be much shorter. Using this perspective, we investigate the

two-user GIC with full-duplex transmitters, and reach the following conclusion: with a

new constraint of causal delay, which is slightly different from the traditional one, the role

of delay is captured more accurately. As a result, the maximum multiplexing gain is in

fact two, rather than the limit of one, previously proved under the traditional constraint

of causal delay [39]. Furthermore, we study the optimal power allocation that maximizes

the achievable sum-rate and examine its effect through several numerical simulations.

Finally, Chapter 6 summarizes the main contributions of this thesis and discusses

future research directions.
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Chapter 2

Maximum Han-Kobayashi Sum-Rate

Chapters 2 and 3 investigate the best-known achievable rate region proposed for the

two-user Gaussian interference channel, i.e., the Han-Kobayashi (HK) region. Chapter

2 characterizes the maximum sum-rate achieved by the HK scheme, when time sharing

is not used. The main challenge in this characterization is to solve a non-differentiable

optimization problem. A method is proposed for solving the optimization problem and

is discussed in detail. Chapter 3 extends the method and characterizes the maximum

weighted sum-rate achieved by the HK scheme.

2.1 Introduction

Shannon’s work on the two-way channel [1] is one of the first studies of a communication

system that considered interference as an essential element. In wireless communications,

interference is assumed to be one of the main challenges that hinders overall system per-

formance. The two-user Gaussian Interference Channel (GIC) models a practical wireless

network consisting of two independent transmitter-receiver pairs. Each transmitter aims

to send a message to its receiver, thereby inevitably causing interference for the other

receiver.

Although the two-user interference channel has been studied for more than 40 years,

its capacity region is known only for a few specific cases. Several coding schemes have been

proposed for the two-user GIC, such as time division with power control, Treating Inter-

ference as Noise (TIN), Simultaneous Non-unique Decoding (SND), and Han-Kobayashi
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(HK) [37, Chapter 6].

Rate splitting provides a general frame work to enlarge the achievable rate region of

this channel. In fact, Carleial was the first to propose a scheme based on rate splitting

and successive decoding [5]. This scheme was subsequently improved by HK [6], whose

main contribution was the use of joint decoding at receivers. Their work proved that

joint decoding at receivers can increase the achievable rate region. For the two-user GIC,

the HK scheme has four main ingredients: (1) rate splitting, (2) power splitting, (3)

joint decoding, and (4) time sharing. By modifying the power-splitting policies and using

different time-sharing strategies, the HK scheme can include all known coding schemes

as its special cases. However, the optimization among the power-splitting variables and

time-sharing variables is complicated. In fact, [13] states that

“ Unfortunately, the optimization among such myriads of possibilities is

not well-understood, ... it is not very clear how much improvement can

be obtained and in which parameter regime would one get significant

improvement”.

This chapter is intended to provide a better understanding of this issue by investigating

the HK scheme and finding the optimal power splitting that maximizes the sum-rate.

The sum-capacity of the interference channel is known for only a few special cases.

When interference is strong, the sum-capacity is achieved by decoding both messages

at both receivers [7, 8]. When interference is mixed, the sum-capacity is achieved if

one transmitter sends only the private message and the other transmitter sends only the

public message [10]. When interference is weak, the sum-capacity is not known in general.

For a small part of the weak interference class, the sum-capacity is achieved by treating

interference as noise [10–12]. In all cases where the sum-capacity is known, it is achieved

by the HK scheme with Gaussian inputs and no time sharing. However, for the weak

interference class, the maximum sum-rate of the HK scheme with Gaussian inputs and

no time sharing is not known.

When interference is weak, the maximum achievable sum-rate of the HK scheme,

even when inputs are Gaussian, is unknown. This problem has been studied in [40–42].

Reference [40] studies the two-user symmetric GIC when the HK scheme with Gaussian

inputs and no time sharing is used. Among all possible power-splitting policies, reference

8



Chapter 2. Maximum HK Sum-Rate

[40] investigates only two special cases: the symmetric power splitting and an asymmetric

power splitting in which exactly one user allocates all its power to its public message.

Moreover, reference [41] studies the achievable sum-rate of the two-user GIC when the HK

scheme with Gaussian inputs and no time sharing is used. For some parts of the weak

interference class, reference [41] finds a closed form expression for the optimal power

splitting that maximizes the achievable sum-rate.

This chapter studies the achievable sum-rate of the two-user GIC, when the HK

scheme uses Gaussian inputs. Note that the optimal distribution of the inputs is not

known. However, in all cases where the sum-capacity is known, it is achieved by the

HK scheme with Gaussian inputs. In this thesis, we always assume that inputs are

Gaussian. First, the full characterization of the achievable sum-rate is found, when no

time sharing is used [43]. It is shown that when interference is weak, the achievable sum-

rate can have five distinct closed-form expressions. For each expression, the optimal power

splitting that achieves the maximum sum-rate is found. Moreover, for given channel gains

and given transmit powers, the optimal strategy that achieves the maximum sum-rate

is derived. In doing so, we characterize an optimization problem that formulates the

maximum HK sum-rate. We show that this optimization problem is challenging, as it

involves a non-differentiable objective function. The main contribution of Chapter 3 is the

characterization of the solution to the optimization problem. Since the proof is involved,

we divide the proof into several steps and examine each step separately. Moreover, we

use several figures to visually illustrate each step.

In Chapter4, we show that the approach used in Chapter 3 for finding the maximum

sum-rate can be adopted to find the support function of the HK rate region, i.e, the

maximum of any linear combination of the individual rates. Accordingly, we express the

optimal power-splitting strategy that achieves any boundary point of the HK scheme

with Gaussian inputs and no time sharing. More importantly, we examine the role of

the time-sharing variable in enlarging the achievable rate region. We show that, for the

weak interference class, the optimization problem over the time-sharing variable and the

power-splitting variables can be decoupled. Relying on this idea, we can significantly

decrease the complexity of the HK rate region for the weak interference class.

The rest of this chapter is organized as follows. Section 2.2 introduces the channel

model and existing results and reviews different classes of interference. Then we examine

9
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the existing results on the capacity region of each class. In Section 2.3, the maximum

sum-rate of the HK scheme is studied for the two-user GIC with weak interference. This

section, which demonstrates how power is allocated among public and private messages,

contains the main contributions of Chapter 3. Finally, Section 2.4 concludes the chapter.

2.2 Channel Model and Preliminaries

In this chapter, the following notations are used. Random variables are denoted by upper

case letters. N(m,σ) represents the Gaussian distribution with mean m and variance σ2.

The notation [1 : n] represents the set of integers from 1 to n, and a
.
= b means b is the

definition of a. C(x)
.
= 1

2
log(1 + x) where log(x)

.
= log2(x). The notation 1(x ≥ y) = 1

if x ≥ y, otherwise 1(x ≥ y) = 0. Moreover, [x]+
.
= max{x, 0}. The expectation with

respect to a random variable Z is expressed by EZ . For a set Q, |Q| denotes the size of

the set. Finally, ⊕ represents addition modulo 2 and R2
+ represents the set of all (R1, R2),

such that both R1 and R2 are non-negative real numbers.

The two-user GIC is modeled by the following expressions:

Y1 = X1 +
√
aX2 + Z1, a ∈ R+,

Y2 = X2 +
√
bX1 + Z2, b ∈ R+,

Zi ∼ N(0, 1), E[(Xi)
2] ≤ Pi, i ∈ {1, 2}, (2.1)

where Xi is transmitted by the ith transmitter and Yi is received by the ith receiver.

The ith encoder assigns a codeword Xn
i (mi) to each message mi ∈ [1 : 2nRi ], where n is

the length of the codeword and Ri is the rate of the ith transmitter. The gains of the

cross-link channels, which affect the power of interference, are represented by
√
a and

√
b. Additionally, the ith transmitter has limited power Pi to transmit its message. The

capacity region of the two-user GIC is the closure of all (R1, R2) ∈ R2
+, such that each

receiver is able to decode its intended message with arbitrarily small probability of error

as n approaches infinity.
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Figure 2.1: Classes of interference and the corresponding sum-capacity expressions.

2.2.1 Classes of Interference and the Corresponding Sum-Capacity

Based on the values of a, b, P1, and P2, the interference is categorized into several classes

as shown in Figure 2.1. Note that each class is a region in R4
+. However, to demonstrate

each class, we use one of the following ways: either for a given (P1, P2), the projection

of the class onto the ab-plane is depicted or for a given (a, b), the projection of the class

onto the P1P2-plane is depicted. Four main classes of interference are defined as follows:

If a ≥ 1 and b ≥ 1, the interference is strong. If either 0 < a < 1 and b ≥ 1 or 0 < b < 1

and a ≥ 1, the interference is mixed. For more clarity, we refer to the class corresponding

to 0 < b < 1 and a ≥ 1 as mixed I. Similarly, we refer to the class corresponding to

0 < a < 1 and b ≥ 1 as mixed II. Moreover, if a < 1 and b < 1, the interference is weak.

To investigate one class, we partition it into some sub-classes. For instance, in the

strong interference class, a ≥ 1 + P1 and b ≥ 1 + P2 specify the very strong interference

sub-class. The weak interference class is the focus of this chapter. Therefore, we focus on

some sub-classes within the weak interference class, namely very weak, somewhat weak,

and barely weak sub-classes. For a < 1 and b < 1, the very weak interference sub-class

is specified by P1

√
b + P2

√
a ≤ 1−

√
a−
√
b√

ab
[10, 37]. As shown in Figure 2.4, we refer to

P1 ≤ 1−a
ab

, P2 ≤ 1−b
ab

as the somewhat weak interference sub-class and P1 >
1−a
ab

, P2 >
1−b
ab

as the barely weak interference sub-class.

The sum-capacity of the two-user GIC is known, when the interference is strong [7],

or when the interference is mixed [10]. However, when the interference is weak, the sum-
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capacity is not known in general. Define Csum as the sum-capacity of the two-user GIC.

Figure 2.1 shows the main classes and the corresponding sum-capacity expressions. For

the weak interference class, the sum-capacity is known only for the very weak interference

sub-class [10, 11]. This sub-class is shown in Figure 2.2.

Moreover, we can partition each class into some sub-classes, such that inside each sub-

class, Csum is given by a single expression. To this end, we define the following sub-classes.

For the strong interference class, the entire capacity region is achieved by SND [7, 37],

therefore, Csum is given by

Csum = min

C(P1 + aP2), C(P2 + bP1),

C(P1) + C(P2)

 . (2.2)

Note that the strong interference class can be partitioned into three sub-classes, such that

in each sub-class, Csum is given by one of the terms inside the min{} in (2.2). In fact,

when the interference is very strong, i.e., a ≥ 1 + P1 and b ≥ 1 + P2 , (2.2) reduces to

Csum = C(P1) + C(P2). (2.3)

In addition, when 1 ≤ b < 1 + P2 and a ≥ b, (2.2) reduces to

Csum = C(P2 + bP1). (2.4)

We refer to this sub-class as the mixedly strong I sub-class.

Similarly, we refer to 1 ≤ a < 1 + P1 and b ≥ a as the mixedly strong II sub-class. In

this sub-class, (2.2) reduces to

Csum = C(P1 + aP2). (2.5)

Figure 2.2 shows how the entire strong interference class is partitioned into these three

sub-classes.

Moreover, for the mixed I and mixed II classes, the sum-capacity is known [10]. In

fact, [10] shows that for the mixed I class, Csum is given by

Csum = C(P1) + min
{
C
( P2

1 + bP1

)
, C
( aP2

1 + P1

)}
, (2.6)

and for the mixed II class, Csum is given by

Csum = C(P2) + min
{
C
( P1

1 + aP2

)
, C
( bP1

1 + P2

)}
. (2.7)
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Figure 2.2: All sub-classes of interference for which the sum-capacity is known.

Note that we can partition the mixed I class into two sub-classes, such that for each sub-

class the sum-capacity is given by one of the terms inside the min{} in equation (2.6).

Accordingly, we define the following sub-classes inside the mixed I and mixed II classes:

the weakly mixed I sub-class satsifies 0 ≤ b < 1 and 1 ≤ a ≤ 1+P1

1+bP1
. The strongly mixed I

sub-class satisfies 0 ≤ b < 1 and a > 1+P1

1+bP1
. Note that for the weakly mixed I sub-class,

(2.6) reduces to

Csum = C(P1 + aP2), (2.8)

and for the strongly mixed I sub-class, (2.6) reduces to

Csum = C(P2 + bP1) + C
((1− b)P1

1 + bP1

)
. (2.9)

Similarly, the weakly mixed II sub-class satisfies 0 ≤ a < 1, 1 ≤ b ≤ 1+P2

1+aP2
, and

the strongly mixed II sub-class satisfies 0 ≤ a < 1, b > 1+P2

1+aP2
. For the weakly mixed II

sub-class, (2.7) reduces to

Csum = C(P2 + bP1), (2.10)

and for the strongly mixed II sub-class, (2.7) reduces to

Csum = C(P1 + aP2) + C
((1− a)P2

1 + aP2

)
. (2.11)
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Figure 2.2 shows how the mixed I and mixed II classes are partitioned into four sub-

classes.

Note that whenever the sum-capacity is known, it is achieved by the HK scheme

with Gaussian inputs. Therefore, a step toward finding the sum-capacity can be the

full characterization of the achievable sum-rate of the HK scheme. In the following, we

briefly review the HK scheme. In particular, we review all cases for which the maximum

achievable sum-rate of the HK scheme is known.

2.2.2 Han-Kobayashi Coding Scheme

The HK scheme divides each message Mi, i ∈ {1, 2} into two parts: public and private.

Following the notation of [37], Mii represents the private message at rate Rii and Mi0

represents the public message at rate Ri0. Consequently, Ri = Rii + Ri0. Each encoder

uses superposition coding to encode its message: Mi0 is encoded by the cloud center Ui

and (Mi0,Mii) is encoded by the satellite codeword Xi. Then, using two power-splitting

variables, λ1 and λ2, each transmitter splits its available power between its public and

private messages. In fact, since the total power of the ith transmitter is limited to Pi, the

total power is divided between the messages: λiPi is allocated to Mii and (1 − λi)Pi is

allocated to Mi0, where 0 ≤ λi ≤ 1.

The ith decoder uses joint decoding and finds the unique (m̂i0, m̂ii) and some m̂(i⊕1)0,

such that (uni (m̂i0), uni⊕1(m̂(i⊕1)0), xni (m̂i0, m̂ii), y
n
i ) are jointly typical. Note that we did

not consider the time-sharing variable Q. Moreover, the optimal input distribution is

still an open problem. In this study, we assume that both transmitters use Gaussian

distribution. For fixed values of (λ1, λ2), the average probability of error at decoders

approaches zero as the block length goes to infinity, if R1 and R2 satisfy the following

inequalities:
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R1 <C
( P1

1 + aλ2P2

)
,

R2 <C
( P2

1 + bλ1P1

)
,

R1 +R2 <C
(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ2P2

1 + bλ1P1

)
,

R1 +R2 <C
(P2 + bλ̄1P1

1 + bλ1P1

)
+ C

( λ1P1

1 + aλ2P2

)
,

R1 +R2 <C
(λ1P1 + aλ̄2P2

1 + aλ2P2

)
+ C

(λ2P2 + bλ̄1P1

1 + bλ1P1

)
,

2R1 +R2 <C
(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ1P1

1 + aλ2P2

)
+ C

(λ2P2 + bλ̄1P1

1 + bλ1P1

)
,

R1 + 2R2 <C
(P2 + bλ̄1P1

1 + bλ1P1

)
+ C

( λ2P2

1 + bλ1P1

)
+ C

(λ1P1 + aλ̄2P2

1 + aλ2P2

)
. (2.12)

It is worth mentioning that (2.12) is in fact the simplified description of the HK con-

straints, presented in [44]. Define G0 as all the rate pairs (R1, R2) ∈ R2
+ that satisfy all

the constraints of (2.12). Clearly, G0 is a function of (P1, P2, λ1, λ2).

Moreover, if R1 and R2 satisfy all inequalities of (2.12), then the maximum achievable

sum-rate for a fixed power splitting (λ1, λ2) is denoted by Rsum-HK, as expressed in the

following equation:

Rsum-HK(λ1, λ2)
.
= max

R1,R2∈G0
R1 +R2. (2.13)

In this chapter, we investigate the maximum achievable sum-rate of the HK scheme

with Gaussian inputs. We first investigate the following optimization problem:

Rmax
sum-HK

.
= max
λ1,λ2∈[0,1]

Rsum-HK(λ1, λ2). (2.14)

This optimization problem characterizes the optimal power allocation that maximizes

the HK sum-rate without time sharing. Although time sharing can strictly increase the

HK sum-rate, for all the cases that the sum-capacity is known, it is achieved by the HK

scheme without time sharing. Therefore, in the following, we first review the existing

results on the maximum HK sum-rate without time sharing.

2.2.3 Sum-Capacity versus Maximum HK Sum-Rate

It is important to note that for all cases in which the sum-capacity Csum is known, we

have Csum = Rmax
sum-HK. This means, although the time sharing variable Q can increase the
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Sub-class sumC  
max
sum-HKR  

Optimal 
1 2( , )λ λ∗ ∗  

Ref. 

1 2

1 a b
P b P a

ab

− −+ ≤   1 2

2 1

( ) ( )
1 1

P P
C C

aP bP
+

+ +
 1 2

2 1

( ) ( )
1 1

P P
C C

aP bP
+

+ +
 (1,1)  [10-12] 

1 2

1 1
0 ,0

a b
P P

ab ab

− −≤ ≤ ≤ ≤  unknown 1 2

2 1

( ) ( )
1 1

P P
C C

aP bP
+

+ +
 (1,1)  [41] 

1 2

1 1
0 ,

a b
P P

ab ab

− −≤ ≤ >  unknown 2 1(P )C bP+  (0,1)  [41] 

1 2

1 1
,0

a b
P P

ab ab

− −> ≤ ≤  unknown 1 2(P )C aP+  (1,0)  [41] 

1 2

1 1
,

a b
P P

ab ab

− −> >  unknown Theorem 1 Theorem 1  

 

1 2

2 1

max
sum-HK ( ) ( )

1 1
P P

C C
aP bPR = ++ +
1 2

2 1

max
sum-HK ( ) ( )

1 1
P P

C C
aP bPR = ++ +

Table 2.1: Sub-classes in the weak interference class and the corresponding sum-capacity

expressions and maximum sum-rate expressions.

achievable sum-rate, for all cases that the sum-capcity is knwon, it is achieved without

any time sahring. Let Rmax-Q
sum-HK denote the achievable sum-rate when time sharing is used.

Although Rmax-Q
sum-HK ≥ Rmax

sum-HK, for all cases that the sum-capacity is known, we have

Csum = Rmax
sum-HK = Rmax-Q

sum-HK.

For instance, in the strong and the mixed interfere classes, Rmax-Q
sum-HK is known. For

these classes, Csum is known and Rmax-Q
sum-HK = Rmax

sum-HK = Csum, as shown in Figure 2.1.

However, for the weak interference class, Rmax
sum-HK is known only for a few sub-classes. A

primary goal of this chapter is to find Rmax
sum-HK for the entire weak interference class.

We first review all known results for the weak interference class. When interference is

somewhat weak, reference [41] shows that treating interference as noise achieves Rmax
sum-HK.

Therefore, in this sub-class, Rmax
sum-HK is given by

Rmax
sum-HK =C

( P1

1 + aP2

)
+ C

( P2

1 + bP1

)
. (2.15)

Moreover, when a ≤ 1
1+P1b

and b > 1
1+P2a

, Rmax
sum-HK is given by the same expression

corresponding to the mixed II class, i.e., b ≥ 1 and a < 1 [41]. Therefore,

Rmax
sum-HK =C(P2) + min

{
C
( P1

1 + aP2

)
, C
( bP1

1 + P2

)}
. (2.16)

Note that, for the weak interference class, C
(

P1

1+aP2

)
≥ C

(
bP1

1+P2

)
, and therefore, for

a ≤ 1
1+P1b

and b > 1
1+P2a

, we have

Rmax
sum-HK =C(P2 + bP1). (2.17)
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b

1
1

1(1 )P −+

Barely weak 
interference

2 1
max
sum-HK ( )C P bPR +=

1

1
1

a
Pb

= +
a1

1
2(1 )P −+Somewhat weak 

interference

1 2

2 1

max
sum-HK ( ) ( )

1 1
P P

C C
aP bPR = ++ +

1 2
max
sum-HK ( )C P aPR +=

max
sum-HK isunkown.R

2

1
1

b
P a

= +

Figure 2.3: For fixed values of P1 and P2, the weak interference class is partitioned into

four sub-classes. These sub-classes and their corresponding maximum sum-rate expres-

sions are demonstrated in the ab-plane.

Similarly, when a > 1
1+P1b

and b ≤ 1
1+P2a

, Rmax
sum-HK is given by

Rmax
sum-HK =C(P1 + aP2). (2.18)

Table 2.1 summarizes all sub-classes for which Rmax
sum-HK is known.

Note that, for the barely weak interference sub-class, Rmax
sum-HK has been unknown. This

chapter characterizes Rmax
sum-HK for the barely weak interference sub-class. In Theorem 2.1,

we partition the barely weak interference sub-class into four smaller sub-classes, and for

each sub-class, we characterize Rmax
sum-HK.

Figure 2.3 demonstrates the sub-classes of Table 2.1 in the ab-plane. As mentioned

earlier, it is traditional to use the ab-plane to investigate different interference classes. In

fact, Figure 2.3 shows all sub-classes of Table 2.1 in the ab-plane, and for each sub-class,

Rmax
sum-HK is depicted. However, it turns out that it would be easier to investigate all these

sub-classes in the P1P2-plane. Figure 2.4 shows all sub-classes of Table 2.1 in the P1P2-

plane. In the following, as the main contribution of this chapter, we explicitly determine

the optimal power splitting policy that maximizes the sum-rate.
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2 1
max
sum-HK ( )C P bPR +=

2
1 bP
ab
−=

Somewhat weak 
interference

Barely weak 
interference

max
sum-HK ?R =

2P

1 2

2 1

max
sum-HK ( ) ( )

1 1
P P

C C
aP bPR = ++ + 1 2

max
sum-HK ( )C P aPR +=

1
1 aP
ab
−= 1P

Figure 2.4: For fixed values of a and b, the weak interference class is partitioned into

four sub-classless. These sub-classless and the corresponding maximum sum-rate are

demonstrated in the P1P2-plane.

2.3 Maximum HK Sum-Rate without Time Sharing

In this section, the maximum achievable sum-rate of the two-user GIC is investigated

when the HK scheme is used. The mathematical optimization problem that characterizes

the maximum sum-rate of the HK scheme is presented. Our main result is the solution to

this optimization problem. Note that Chapter 3 does not consider time sharing. Chapter

4 shows how time sharing increases the achievable sum-rate.

2.3.1 Main Results

Theorem 2.1 is the main result of this chapter. In this theorem, we characterize the

achievable sum-rate of the two-user GIC when the HK scheme is used.

Theorem 2.1. For the two-user Gaussian interference channel, when interference is

weak, the maximum achievable sum-rate of the HK scheme with Gaussian inputs and no

18
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time sharing is given by

Rmax
sum-HK =

max

{
C
( P1

1 + aP2

)
+ C

( P2

1 + bP1

)
,

C(P1 + aP2),

C(P2 + bP1),

C(P1 + aP2) + g(λ̃1, λ̃2)1(λ̃1 ≥ 0)1(λ̃2 ≥ 0)1(λ̂2 ≥ λ̃2),

C(P1 + aP2) + g(λ̂1, λ̂2)1(λ̂1 ≥ 0)1(λ̂2 ≥ 0)1(λ̃2 ≥ λ̂2)

}
, (2.19)

where g(λ1, λ2)
.
= C( (1−a)λ2P2+bλ1P1

1+aλ2P2
)− C(bλ1P1) and (λ̃1, λ̃2) is given by

λ̃1 = ab− 1− a
P1

,

λ̃2 = ab− 1− b
P2

. (2.20)

Moreover, λ̂2 is the non-negative solution of the following equation:

(λ2
2) + 2

(1 + bP1c)

(bP1m+ P2)
(λ2) +

(1 + bP1c)(abP1c+ a− 1)

abP1m(bP1m+ P2)
= 0, (2.21)

and λ̂1 is given by

λ̂1 = mλ̂2 + c, (2.22)

where m and c are given by

m
.
=
P2

(
(1− a) + P1(1− ab)

)
P1

(
1− b+ P2(1− ab)

) , (2.23)

c
.
=

P1(1− b)− P2(1− a)

P1

(
1− b+ P2(1− ab)

) . (2.24)

Theorem 2.1 shows that the maximum sum-rate of the HK scheme can have five

distinct mathematical expressions, depending on the values of a, b, P1, and P2. In fact,

this theorem partitions the weak interference class into five sub-classes. For each sub-

class, Theorem 2.1 computes Rmax
sum-HK. Note that each sub-class is a region in R4

+. We

demonstrate these sub-classes in two different planes: the P1P2-plane and the ab-plane.

Figure 2.5 shows the P1P2-plane. This figure shows that quadrant I of the P1P2-plane

is partitioned into five regions, such that in each region, one of the expressions given in
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−
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a ab ab
− −= +−

2P

�

2
2

1ab
P

bλ −= −

1P

1 2

2 1

max
sum-HK ( ) ( )

1 1
P P

C C
aP bPR = ++ +

1 2
max
sum-HK ( )C P aPR +=

1 a
ab
−

2
1( 1)

( )
1
1 ab

a
ab

−−
−

1 b
ab
−

1 2
1 2

max
sum-HK ,( ) 1 a 1g(ab ab )

P P
C P aP b

R += + − −− −

Figure 2.5: The maximum achievable sum-rate of the HK scheme (Rmax
sum-HK) for the two-

user GIC with weak interference. The weak interference class is partitioned into five

sub-classes. For fixed (a, b), these sub-classes are demonstrated in the P1P2-plane, and

for each sub-class, Rmax
sum-HK is characterized.

(2.19) is the maximum achievable sum-rate. Similarly, Figure 2.6 shows that quadrant

I of the ab-plane is partitioned into five regions, such that in each region, one of the

expressions given in (2.19) is the maximum achievable sum-rate.

Theorem 2.1 demonstrates the maximum achievable sum-rate expressions but does not

show the optimal power splitting. Each sum-rate expression is achieved by a particular

pair of power-splitting variables (λ1, λ2) as explained in the following theorem:

Theorem 2.2. For the two-user Gaussian interference channel, when interference is

weak, the maximum achievable sum-rate of the HK scheme with Gaussian inputs and no

time sharing is given by

Rmax
sum-HK = Rsum-HK(λ?1, λ

?
2), (2.25)
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b

1
2 1

max
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max
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1
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max
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1 1
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aP bPR = ++ +

1 2
max
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2

1
1

b
P a

= +
1 2

1 2
max
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Figure 2.6: The maximum achievable sum-rate of the HK scheme for the two-user GIC

with weak interference. The weak interference class is partitioned into five sub-classes,

and for each sub-class, Rmax
sum-HK is characterized.

where Rsum-HK is defined in (2.13) and the optimal power splitting (λ?1, λ
?
2) is given by

(λ?1, λ
?
2) =

(0, 0) if (a, b, P1, P2) ∈ somewhat weak sub-class,

(λ?1 ≥ c, 0) if (a, b, P1, P2) ∈ weakly mixed I sub-class ,

(0, λ?2 ≥ c′) if (a, b, P1, P2) ∈ weakly mixed II sub-class,

(λ̃1, λ̃2) if (a, b, P1, P2) ∈ power splitting I sub-class ,

(λ̂1, λ̂2) if (a, b, P1, P2) ∈ power splitting II sub-class,

(2.26)

where c and c′ are given by

c
.
=

P1(1− b)− P2(1− a)

P1

(
1− b+ P2(1− ab)

) ,
c′
.
=

P2(1− a)− P1(1− b)
P2

(
1− a+ P1(1− ab)

) , (2.27)

and the descriptions of all sub-classes are given in Table 2.2.

Table 2.2 shows how the entire weak interference class is partitioned into five sub-

classes. For each sub-class, the maximum achievable sum-rate and (λ?1, λ
?
2), the optimal

values of λ1 and λ2 that result in the maximum achievable sum-rate, are specified. Note

that the optimal power splitting is unique for three sub-classes, namely somewhat weak,
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Sub-class 
Name Sub-class Description 

max

sum-HKR  
Optimal 

1 2( , )λ λ∗ ∗  

Somewhat 
Weak 

Interference 

1

2

1
0 ,

1
0 .

a
P

ab
b

p
ab

−≤ ≤

−≤ ≤
 1 2

2 1

( ) ( )
1 1

P P
C C

aP bP
+

+ +
 (1,1)  
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1

2 1

1
,

1 (1 )
0 max{ , 1

1
}.

a
P

ab
b b ab

P P b
ab a

−>

− −≤ ≤ + −
−

 1 2(P )C aP+  (0,1)  
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2

1 1

1
,
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1
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b
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−
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�

1 2

2
2
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ab ab
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ab
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λ
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1 2
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( , )

C aP
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+ +
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2
2
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,

1
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ab

P
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ab

P

λ

λ

∗

∗

−= −

−= −
 

Non-zero 
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ɵ

1 1

2 1

2

2

(1 )
1,

1
(1 )
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1

1
.

a ab
P P a

b
b ab

P P b
a

b
ab

P
λ

−> + −
−
−> + −
−

−< −

 
ɵ ɵ

1 2

1 2

(P )

( , )

C aP

g λ λ

+ +
 ɵ ɵ

1 2( , )λ λ  

 

Table 2.2: The weak interference class is partitioned into five sub-classes. For each

sub-class, the optimal power splitting (λ?1, λ
?
2) and the corresponding optimal sum-rate

Rmax
sum-HK are given.

power splitting I, and power splitting II. However, for the weakly mixed I sub-class any

(λ?1, 0) that satisfies c ≤ λ?1 ≤ 1 is an optimal power splitting. Similarly, for the weakly

mixed II sub-class, any (0, λ?2) that satisfies c′ ≤ λ?1 ≤ 1 is an optimal power splitting.

To prove Theorem 2.1 and Theorem 2.2, we first need to derive an optimization

problem that characterizes the maximum sum-rate of the HK scheme, as provided in the

following.

2.3.2 The Optimization Problem Corresponding to the Maxi-

mum HK Sum-Rate

The HK scheme imposes several bounds on the achievable sum-rate. For a given interfer-

ence class, some of these bounds may not be active. Consequently, one can simplify the

mathematical expression that characterizes the maximum HK sum-rate. In the following
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theorem, we show that, for the weak interference class, exactly three bounds are active.

Theorem 2.3. For the two-user Gaussian interference channel with weak interference,

the maximum achievable sum-rate of the HK scheme with Gaussian inputs and no time

sharing is given by the following optimization problem:

Rmax
sum-HK =

max
λ1,λ2∈[0,1]

[
C(

λ1P1

1 + aλ2P2

) + C(
λ2P2

1 + bλ1P1

)+

min
{
C(

λ̄1P1 + aλ̄2P2

1 + λ1P1 + aλ2P2

), C(
λ̄2P2 + bλ̄1P1

1 + λ2P2 + bλ1P1

),

C(
aλ̄2P2

1 + λ1P1 + aλ2P2

) + C(
bλ̄1P1

1 + λ2P2 + bλ1P1

)
}]

(2.28)

.

Proof. To be presented after Lemma 2.1.

We first need to find a compact upper bound on the achievable sum-rate of the HK

scheme. If we directly use (2.12) to find an upper bound on the maximum achievable

sum-rate of the HK scheme, we would obtain the following optimization problem:

Rmax
sum-HK =

max
λ1,λ2∈[0,1]

[
min

{
C(

λ1P1

1 + aλ2P2

) + C(
λ2P2

1 + bλ1P1

),

C
(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ2P2

1 + bλ1P1

)
,

C
(P2 + bλ̄1P1

1 + bλ1P1

)
+ C

( λ1P1

1 + aλ2P2

)
,

C
(λ1P1 + aλ̄2P2

1 + aλ2P2

)
+ C

(λ2P2 + λ̄1P1

1 + bλ1P1

)
,

1

2

(
C
(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ1P1

1 + aλ2P2

)
+

C
(λ2P2 + λ̄1P1

1 + bλ1P1

)
+ C

( P2

1 + bλ1P1

))
,

1

2

(
C
(P2 + bλ̄1P1

1 + bλ1P1

)
+ C

( λ2P2

1 + bλ1P1

)
+

C
(λ1P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( P1

1 + aλ2P2

))}]
. (2.29)

Note that (2.29) involves minimization over six different functions, whereas (2.28)

involves minimization over only three functions. We prove that, for the weak interference
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class, (2.29) and (2.28) are equivalent. To do so, we first look at the HK scheme in detail.

The HK scheme jointly decodes the common messages and the intended private message

at each receiver. However, we show that, if the common messages are decoded first while

treating the private messages as noise, and then the private messages are decoded, the

HK achievable sum-rate does not decrease. The following lemma describes this point.

Lemma 2.1. For the two-user interference channel, if the HK scheme first decodes the

common messages while treating the private messages as noise and then decodes the pri-

vate messages, it achieves the sum-rate of the classical HK scheme, in which common

messages and the intended private message are jointly decoded at each receiver.

Proof. This idea has been mentioned in [13, 40] without formal proof. For the sake of

completeness, we provide its proof. As explained in the previous section, in the HK

scheme, decoder 1 finds the unique message pair (m̂10, m̂11) and some m̂20, such that

(un1 (m̂10), un2 (m̂20), xn1 (m̂10, m̂11), yn1 ) are jointly typical. It can be shown [37] that the

probability of error for the first receiver approaches zero as the block length n goes to

infinity, if

R11 <I(X1;Y1|U1, U2),

R11 +R10 <I(X1;Y1|U2),

R11 +R20 <I(X1, U2;Y1|U1),

R11 +R10 +R20 <I(X1, U2;Y1). (2.30)

However, if successive decoding is used instead of joint decoding, i.e., decoder 1 first

finds the unique pair (m̂10, m̂20), and then finds the unique m̂11, the probability of error

approaches zero, if

R11 <I(X1;Y1|U1, U2),

R10 <I(U1;Y1|U2),

R20 <I(U2;Y1|U1),

R10 +R20 <I(U1, U2;Y1). (2.31)
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Note that we have

I(X1;Y1|U2) = I(U1;Y1|U2) + I(X1;Y1|U1, U2), (2.32)

I(X1, U2;Y1|U1) = I(U2;Y1|U1) + I(X1;Y1|U1, U2), (2.33)

I(X1, U2;Y1) = I(U1, U2;Y1) + I(X1;Y1|U1, U2). (2.34)

Therefore, the rate region characterized by (2.31) is a sub-set of the rate region charac-

terized by (2.30). Similarly, one can prove the same argument for decoder 2. However,

using Fourier-Motzkin elimination, one can show that both schemes impose the same set

of constraints on R1 + R2 = R11 + R22 + R10 + R20. In fact, both schemes impose the

following four constraints on the sum-rate:

R1 +R2 < I(X1;Y1|U2) + I(X2;Y2|U1), (2.35)

R1 +R2 < I(X1;Y1|U1, U2) + I(U1, X2;Y2), (2.36)

R1 +R2 < I(X2;Y2|U1, U2) + I(U2, X1;Y1), (2.37)

R1 +R2 < I(U2, X1;Y1|U1) + I(U1, X2;Y2|U2). (2.38)

This lemma facilitates finding a compact upper bound on the achievable sum-rate of

the HK scheme. We use this lemma to prove Theorem 2.3.

Proof. Here we provide the proof of Theorem 2.3. According to Lemma 2.1, for the

two-user GIC, the rate of private messages should satisfy the following constraints:

R11 ≤ C
( λ1P1

1 + aλ2P2

)
,

R22 ≤ C
( λ2P2

1 + bλ1P1

)
. (2.39)
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Similarly, the rate of common messages should satisfy the following constraints:

R10 ≤ C
( λ̄1P1

1 + λ1P1 + aλ2P2

)
,

R20 ≤ C
( aλ̄2P2

1 + λ1P1 + aλ2P2

)
,

R10 +R20 ≤ C
( λ̄1P1 + aλ̄2P2

1 + λ1P1 + aλ2P2

)
,

R20 ≤ C
( λ̄2P2

1 + λ2P2 + bλ1P1

)
,

R10 ≤ C
( bλ̄1P1

1 + λ2P2 + bλ1P1

)
,

R10 +R20 ≤ C
( λ̄2P2 + bλ̄1P1

1 + λ2P2 + bλ1P1

)
. (2.40)

Note that the first three bounds in (2.40) are the MAC bounds at receiver Y1 when

common messages with the power of λ1P1 + aλ2P2 are treated as noise. Similarly, the

last three bounds in (2.40) are the MAC bounds at receiver Y2 when common messages

with the power of λ2P2 + bλ1P1 are treated as noise.

From (2.39), it is clear that there is only one constraint on R11 +R22 as follows:

R11 +R22 ≤ C
( λ1P1

1 + aλ2P2

)
+ C

( λ2P2

1 + bλ1P1

)
. (2.41)

However, (2.40) imposes six constraints on R12 +R21 as follows:

R10 +R20 ≤ min

{
C
( λ̄1P1

1 + λ1P1 + aλ2P2

)
+ C

( aλ̄2P2

1 + λ1P1 + bλ2P2

)
, (2.42)

C
( λ̄1P1 + aλ̄2P2

1 + λ1P1 + aλ2P2

)
, (2.43)

C
( λ̄2P2

1 + λ2P2 + bλ1P1

)
+ C

( bλ̄1P1

1 + λ2P2 + bλ1P1

)
, (2.44)

C
( λ̄2P2 + bλ̄1P1

1 + λ2P2 + bλ1P1

)
, (2.45)

C
( λ̄1P1

1 + λ1P1 + aλ2P2

)
+ C

( λ̄2P2

1 + λ2P2 + bλ1P1

)
, (2.46)

C
( aλ̄2P2

1 + λ1P1 + aλ2P2

)
+ C

( bλ̄1P1

1 + λ2P2 + bλ1P1

)}
. (2.47)

Note that constraint (2.42) is always looser than (2.43). Similarly, constraint (2.44)

is always looser than (2.45). Moreover, (2.46) is the sum of “direct” individual rates,
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whereas (2.47) is the sum of “cross” individual rates. In the following, we show that

constraint (2.46) is always looser than (2.47).

C
( λ̄1P1

1 + λ1P1 + aλ2P2

)
+ C

( λ̄2P2

1 + λ2P2 + bλ1P1

)
≥ C

( aλ̄2P2

1 + λ1P1 + aλ2P2

)
+ C

( bλ̄1P1

1 + λ2P2 + bλ1P1

)
⇔(1 + P1 + aλ2P2)(1 + P2 + bλ1P1)

≥ (1 + λ1P1 + aP2)(1 + λ2P2 + bP1)

⇔1 + P1(1 + bλ1) + P2(1 + aλ2)+

P 2
1 bλ1 + P 2

2 aλ2 + P1P2(1 + λ1λ2ab)

(a)

≥ 1 + P1(b+ λ1) + P2(a+ λ2) + P 2
1 bλ1 + P 2

2 aλ2 + P1P2(λ1λ2 + ab), (2.48)

where (a) is valid because for 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, 0 ≤ λ1 ≤ 1, and 0 ≤ λ2 ≤ 1, the

following inequalities are valid:

1 + bλ1 ≥b+ λ1,

1 + aλ2 ≥a+ λ2,

1 + λ1λ2ab ≥λ1λ2 + ab. (2.49)

The above arguments show that R12+R21 is upper bounded by only (2.43), (2.45), and

(2.47). Moreover, there is only one constraint (2.41) on (R10+R20). SinceRsum-HK(λ1, λ2) =

(R11+R22)+(R10+R20), the HK scheme imposes only three constraints onRsum-HK(λ1, λ2).

Therefore, for the weak interference class, Rmax
sum-HK is given by

Rmax
sum-HK = max

λ1,λ2∈[0,1]
Rsum-HK(λ1, λ2)

= max
λ1,λ2∈[0,1]

[
C(

λ1P1

1 + aλ2P2

) + C(
λ2P2

1 + bλ1P1

)+

min
{
C(

λ̄1P1 + aλ̄2P2

1 + λ1P1 + aλ2P2

), C(
λ̄2P2 + bλ̄1P1

1 + λ2P2 + bλ1P1

),

C(
aλ̄2P2

1 + λ1P1 + aλ2P2

) + C(
bλ̄1P1

1 + λ2P2 + bλ1P1

)
}]
, (2.50)

and this completes the proof of Theorem 2.3.

We frequently use the following lemma which facilitates deriving compact expressions.
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Lemma 2.2. If P1, P2, and N are all positive real numbers, then we have

C
(P1

N

)
+ C

( P2

P1 +N

)
= C

(P1 + P2

N

)
. (2.51)

Proof.

C
(P1

N

)
+ C

( P2

P1 +N

)
=

1

2
log
(P1 +N

N

)
+

1

2
log
(P2 + P1 +N

p1 +N

)
=

1

2
log
(P2 + P1 +N

N

)
=C
(P1 + P2

N

)
(2.52)

2.3.3 The Proposed Optimization Technique for Maximizing

the HK Sum-Rate

To prove Theorem 2.1, we first review an optimization technique to find the global max-

imum of an arbitrary function. Note that, according to Fermat’s theorem (also known

as Interior extremum theorem), the global maximum of a differentiable function f over

a feasible region A is achieved at one of the following points: a stationary point or a

boundary point [45]. In particular, assume that f1(x) and f2(x) are both functions from

R+ to R+ which are differentiable over [0,1]. Now, consider the following optimization

problem:

max
0≤x≤1,

min
{
f1(x), f2(x)

}
. (2.53)

Define fmin(x)
.
= min

{
f1(x), f2(x)

}
. We can thus rewrite the optimization problem as

max
0≤x≤1,

fmin(x). (2.54)

If fmin(x) were differentiable over [0, 1], then the optimal solution x? would be either a

stationary point ( d
dx
g(x?) = 0) or a boundary point (x? = 0 or x? = 1). Since fmin(x) =

min
{
f1(x), f2(x)

}
, fmin(x) may not be differentiable over [0, 1]; however, since f1(x) and

f2(x) are both differentiable, the only points at which fmin(x) may not be differentiable

is when f1(x) = f2(x). Therefore, if x? is the optimal solution of (2.53), it belongs to
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1
(x)f
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(x)f

x0 s
x

nd
x 1

b
x =

Figure 2.7: To find the maximum of min{f1(x), f2(x)} over [0, 1], it is sufficient to check

all stationary points like xs and all boundary points like xb and all non-differentiable

points like xnd.

one of the following categories: I- stationary points, II- boundary points, and III- non-

differentiable points. Consequently, the search for the optimal solution of (2.53), in the

feasible region [0, 1], can be restricted to the three categories of points mentioned above.

Relying on this perspective, we can solve the optimization problem in Theorem 2.3.

Define h0(λ1, λ2)
.
= C( λ1P1

1+aλ2P2
) + C( λ2P2

1+bλ1P1
). In fact, h0(λ1, λ2) represents the sum-rate

of private messages. Moreover, define h1(λ1, λ2), h2(λ1, λ2), and h3(λ1, λ2) as follows:

h1(λ1, λ2)
.
=h0(λ1, λ2) + C

( λ̄1P1 + aλ̄2P2

1 + λ1P1 + aλ2P2

)
(a)
=C

(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ2P2

1 + bλ1P1

)
, (2.55)

h2(λ1, λ2)
.
=h0(λ1, λ2) + C

( λ̄2P2 + bλ̄1P1

1 + λ2P2 + bλ1P1

)
(b)
=C
(P2 + bλ̄1P1

1 + bλ1P1

)
+ C

( λ1P1

1 + aλ2P2

)
, (2.56)

h3(λ1, λ2)
.
=h0(λ1, λ2) + C

( aλ̄2P2

1 + λ1P1 + aλ2P2

)
+

C
( bλ̄1P1

1 + λ2P2 + bλ1P1

)
(c)
=C
(λ1P1 + aλ̄2P2

1 + aλ2P2

)
+ C

(λ2P2 + bλ̄1P1

1 + bλ1P1

)
, (2.57)

where (a), (b), and (c) are valid by Lemma 2.2. Then the optimization problem of Theo-
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rem 2.3 is equivalent to

Rmax
sum-HK = max

λ1,λ2∈[0,1]
Rsum-HK(λ1, λ2)

= max
λ1,λ2∈[0,1]

min
{
h1(λ1, λ2), h2(λ1, λ2), h3(λ1, λ2)

}
. (2.58)

Similar to (2.53), the search for the optimal solution of (2.58) can be restricted to three

categories of points, namely stationary points, boundary points, and non-differentiable

points. In the following, we describe each category.

In order to analyze this optimization problem, it is useful to know the condition under

which one function inside the min is less than the other function. The following lemma

describes this condition.

Lemma 2.3. For h1(λ1, λ2), h2(λ1, λ2) and h3(λ1, λ2) defined in (2.55-2.57), we have

A) h1(λ1, λ2) ≤ h3(λ1, λ2)⇔ P2 ≥
1− b
ab− λ2

or λ1 = 1 (2.59)

⇔ λ2 ≤ ab− 1− b
P2

or λ1 = 1. (2.60)

B) h2(λ1, λ2) ≤ h3(λ1, λ2)⇔ P1 ≥
1− a
ab− λ1

or λ2 = 1 (2.61)

⇔ λ1 ≤ ab− 1− a
P1

or λ2 = 1. (2.62)

C) h1(λ1, λ2) ≤ h2(λ1, λ2)⇔ P1((1− b)(1− λ1))

+ P1P2((1− ab)(λ2 − λ1))

≤ P2((1− a)(1− λ2)) (2.63)

⇔ λ1 ≥ mλ2 + c, (2.64)

where m and c are given in 2.23 and 2.24, respectively.
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Proof. The proof is straightforward. In fact, for part A, we have

h1(λ1, λ2) ≤h3(λ1, λ2)

⇔C
(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ2P2

1 + bλ1P1

)
≤C
(λ1P1 + aλ̄2P2

1 + aλ2P2

)
+ C

(λ2P2 + bλ̄1P1

1 + bλ1P1

)
(a)⇔C

( λ̄1P1

1 + aλ2P2 + λ1P1 + +aλ̄2P2

)
≤C
( bλ̄1P1

1 + bλ1P1 + λ2P2

)
⇔λ1 = 1 or P2 ≥

1− b
ab− λ2

⇔λ1 = 1 or λ2 ≤ ab− 1− b
P2

, (2.65)

where (a) is valid by Lemma 2.2.

The proof of part B follows similarly. For part C, we have

h1(λ1, λ2) ≤h2(λ1, λ2)

⇔C
(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ2P2

1 + bλ1P1

)
≤C
(λ1P1 + aλ̄2P2

1 + aλ2P2

)
+ C

(λ2P2 + bλ̄1P1

1 + bλ1P1

)
(b)⇔C

( λ̄1P1 + aλ̄2P2

1 + aλ2P2 + λ1P1

)
≤C
( λ̄2P2 + bλ̄1P1

1 + bλ1P1 + λ2P2

)
⇔P1(1− b)(1− λ1) + P1P2(1− ab)(λ2 − λ1)

≤P2(1− a)(1− λ2)

⇔λ1 ≥ mλ2 + c, (2.66)

where (b) is valid by Lemma 2.2. This completes the proof.

In the following, we investigate three different categories of points in detail. The

optimal power splitting belongs to one of these categories.

31



Chapter 2. Maximum HK Sum-Rate

2.3.4 Three Categories of Points Corresponding to Optimal Power

Splitting

To find the optimal solution of (2.58), we need to investigate the following three categories

of points:

I- Stationary Points: If (λ1, λ2) is a stationary point of min{h1(), h2(), h3()}, then it

is a stationary point of h1() or h2() or h3(). Therefore, the category of stationary points

represents (λ1, λ2), such that (λ1, λ2) is a stationary point of h1() or h2() or h3() inside the

region 0 < λ1 < 1, 0 < λ2 < 1. Moreover, a stationary point (λ1, λ2) corresponding to h1()

can be the optimal solution of (2.58), if we have h1(λ1, λ2) ≤ min
{
h2(λ1, λ2), h3(λ1, λ2)

}
.

Similar arguments follow for h2() and h3(). Since we have three functions, we have three

sub-categories of stationary points, namely S1, S2, and S3. These sub-categories are

described by the following sets:

S1
.
=
{

(λ1, λ2) : λ1, λ2 ∈ (0, 1),∇h1(λ1, λ2) = 0,

h1(λ1, λ2) ≤ min
{
h2(λ1, λ2), h3(λ1, λ2)

}}
, (2.67)

S2
.
=
{

(λ1, λ2) : λ1, λ2 ∈ (0, 1),∇h2(λ1, λ2) = 0,

h2(λ1, λ2) ≤ min
{
h1(λ1, λ2), h3(λ1, λ2)

}
, (2.68)

S3
.
=
{

(λ1, λ2) : λ1, λ2 ∈ (0, 1),∇h3(λ1, λ2) = 0,

h3(λ1, λ2) ≤ min
{
h1(λ1, λ2), h2(λ1, λ2)

}
. (2.69)

II- Boundary Points: Since 0 ≤ λ1 ≤ 1 and 0 ≤ λ2 ≤ 1, the boundary of the feasible

region consists of four line segments. Each line segment is a sub-category of boundary

points, as described by the following sets:

B1
.
= {(λ1, 0) : 0 ≤ λ1 ≤ 1}, (2.70)

B2
.
= {(λ1, 1) : 0 ≤ λ1 ≤ 1}, (2.71)

B3
.
= {(0, λ2) : 0 ≤ λ2 ≤ 1}, (2.72)

B4
.
= {(1, λ2) : 0 ≤ λ2 ≤ 1}. (2.73)

III- Non-differentiable Points: This category includes all (λ1, λ2) where

min{h1(λ1, λ2), h2(λ1, λ2), h3(λ1, λ2)}
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can be non-differentiable. This category is the union of all (λ1, λ2) for which two of hi()s

are equal and are less than the third one. Since we have three functions, we have three

sub-categories of non-differentiable points, as described by the following sets:

ND1
.
=
{

(λ1, λ2) : λ1, λ2 ∈ (0, 1), h1(λ1, λ2) = h2(λ1, λ2) ≤ h3(λ1, λ2)
}
, (2.74)

ND2
.
=
{

(λ1, λ2) : λ1, λ2 ∈ (0, 1), h2(λ1, λ2) = h3(λ1, λ2) ≤ h1(λ1, λ2)
}
, (2.75)

ND3
.
=
{

(λ1, λ2) : λ1, λ2 ∈ (0, 1), h3(λ1, λ2) = h1(λ1, λ2) ≤ h2(λ1, λ2)
}
. (2.76)

Note that, if (λ1, λ2) belongs to one of the sub-categories of non-differentiable points,

it is not necessarily a non-differentiable point of min{h1(), h2(), h3()}. However, if (λ1, λ2)

is a non-differentiable point of min{h1(), h2(), h3()}, it necessarily belongs to one of the

sub-categories of non-differentiable points.

2.3.5 A Sufficient Condition for Optimal Power Splitting

If (λ?1, λ
?
2) is the optimal solution of (2.58), it must belong to one of the three categories

of points, listed above. In the following, we investigate each category in detail and find

all points of each category that can maximize the sum-rate. By comparing the achievable

sum-rate of all these points, we find the optimal solution of (2.58). To demonstrate our

proof more clearly, we investigate each category in a separate lemma. We first find a

sufficient condition under which the point (λ1, λ2) is the optimal solution of (2.58).

Lemma 2.4. Sufficient condition for optimality: Let m ∈ {1, 2, 3} be a fixed integer. If

(λ?1, λ
?
2) is the optimal solution of

max
λ1,λ2∈[0,1]

hm(λ1, λ2), (2.77)

and if we have

hm(λ?1, λ
?
2) ≤ hj(λ

?
1, λ

?
2), (2.78)

for every j ∈ {1, 2, 3}, then (λ?1, λ
?
2) is the optimal solution of

max
λ1,λ2∈[0,1]

min
{
h1(λ1, λ2), h2(λ1, λ2), h3(λ1, λ2)

}
. (2.79)
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Proof. Note that, for (λ1, λ2) = (λ?1, λ
?
2), according to (2.78), we have

min
{
h1(λ?1, λ

?
2), h2(λ?1, λ

?
2), h3(λ?1, λ

?
2)
}

= hm(λ?1, λ
?
2). (2.80)

Let us denote the optimal solution of (2.79) by (λ∗1, λ
∗
2). According to (2.80), we have

min
{
h1(λ∗1, λ

∗
2), h2(λ∗1, λ

∗
2), h3(λ∗1, λ

∗
2)
}
≥ hm(λ?1, λ

?
2). (2.81)

Note that (2.81) implies that

hm(λ∗1, λ
∗
2) ≥ hm(λ?1, λ

?
2). (2.82)

On the other hand, according to (2.77), (λ?1, λ
?
2) is the optimal solution of max

λ1,λ2∈[0,1]
hm(λ1, λ2).

Therefore, we have

hm(λ∗1, λ
∗
2) ≤ hm(λ?1, λ

?
2). (2.83)

Comparing (2.82) with (2.83), we conclude that hm(λ?1, λ
?
2) = hm(λ∗1, λ

∗
2). This completes

the proof.

In the following, we use this sufficient condition to characterize the maximum achiev-

able sum-rate for some parts of the weak interference class.

2.3.6 Maximum HK Sum-Rate over Stationary Points

Next, we investigate the first category of points, i.e., stationary points. We show that

over the feasible region 0 < λ1 < 1, 0 < λ2 < 1, the optimization problem (2.58) has no

stationary points, as described in the following lemma:

Lemma 2.5. Stationary points: Over 0 < λ1 < 1, 0 < λ2 < 1, no stationary points

exist, that is, the equation ∇(hi(λ1, λ2)) = 0, i ∈ {1, 2, 3} has no solutions. Therefore, the

optimal solution of (2.58) is either over the boundary points or over the non-differentiable

points.

Proof. Let us start with S1 and S2. To find all solutions of ∇(h1(λ1, λ2)) = 0, we first

calculate ∇(h1(λ1, λ2)) as follows:

∇(h1(λ1, λ2)) =
∂h1(λ1, λ2)

∂λ1

î+
∂h1(λ1, λ2)

∂λ2

ĵ

=
−bλ2P2P1î

(1 + bP1λ1)(1 + bP1λ1 + λ2P2)
+

P2(1− a− abλ1P1)ĵ

(1 + aP2λ2)(1 + bP1λ1 + λ2P2)
.

(2.84)
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Figure 2.8: The behavior of h1(λ1, λ2) over the boundary.

Therefore, ∇(h1(λ1, λ2)) = (0, 0) has no solutions over 0 < λ1 < 1, 0 < λ2 < 1.

Similarly, one can calculate ∇(h2(λ1, λ2)) as follows:

∇(h2(λ1, λ2)) =
∂h2(λ1, λ2)

∂λ1

î+
∂h2(λ1, λ2)

∂λ2

ĵ

=
P1(1− b− abλ2P2)̂i

(1 + bP1λ1)(1 + aP2λ2 + λ1P1)
+

−aλ1P2P1ĵ

(1 + aP2λ2)(1 + aP2λ2 + λ1P1)
.

(2.85)

One can show that ∇(h2(λ1, λ2)) = (0, 0) has no solutions over 0 < λ1 < 1, 0 < λ2 < 1.

Next, we consider S3. We first calculate ∇(h3(λ1, λ2)) as follows:

∇(h3(λ1, λ2)) =
∂h3(λ1, λ2)

∂λ1

î+
∂h3(λ1, λ2)

∂λ2

ĵ

=
P1(1− b− abP2)̂i

(1 + bP1λ1)(1 + aP2 + P1λ1)
+

P2(1− a− abP1)ĵ

(1 + aP2λ2)(1 + bP1 + P2λ2)
. (2.86)

Clearly, ∇(h3(λ1, λ2)) = 0 has no solutions in 0 < λ1 < 1, 0 < λ2 < 1, and this completes

the proof.

An interesting observation about Lemma 2.5 is the behavior of h1(λ1, λ2), h2(λ1, λ2),

and h3(λ1, λ2). According to Lemma 2.5, none of these functions has a stationary point

inside the feasible region. Therefore, they all achieve their maximums over the bound-

ary. Figure 2.8 demonstrates the behavior of h1(λ1, λ2) over the boundary. Note that,

according to (2.84), as (λ1, λ2) moves from (0,0) to (0,1), the value of h1(λ1, λ2) increases
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from C(P1 + aP2) to C(P2) + C( P1

1+aP2
). Moreover, as (λ1, λ2) moves from (1,0) to (1,1),

the value of h1(λ1, λ2) decreases from C(P1 + aP2) to C( P2

1+bP1
) + C( P1

1+aP2
). Therefore,

h1(λ1, λ2) achieves its maximum value of C(P2) + C( P1

1+aP2
) at (λ1 = 0, λ2 = 1) and its

minimum value of C( P2

1+bP1
) + C( P1

1+aP2
) at (λ1 = 1, λ2 = 1). Moreover, according to

(2.84), ∇h1(λ1, λ2) equals zero in the direction of ĵ, for λ1 = 1−a
abP1

. Therefore the function

h1(λ1, λ2) remains constant over the line λ1 = 1−a
abP1

, as depicted in Figure 2.8.

Similarly, Figure 2.9 demonstrates the behavior of h2(λ1, λ2) over the boundary. Note

that, according to (2.84), as (λ1, λ2) moves from (0,0) to (1,0), the value of h2(λ1, λ2)

increases from C(P2 + bP1) to C(P1) + C( P2

1+bP1
). Moreover, as (λ1, λ2) moves from (0,1)

to (1,1), the value of h1(λ1, λ2) decreases from C(P2 + bP1) to C( P2

1+bP1
) + C( P1

1+aP2
).

Therefore, h2(λ1, λ2) achieves its maximum value of C(P1) +C( P2

1+bP1
) at (λ1 = 1, λ2 = 0)

and its minimum value of C( P2

1+bP1
) + C( P1

1+aP2
) at (λ1 = 1, λ2 = 1).

The behavior of h3(λ1, λ2) can be used to find Rmax
sum-HK. The sign of ∇(h3(λ1, λ2)),

corresponding to both directions î and ĵ, does not depend on λ1 or λ2 and depends

only on (a, b, P1, P2). Therefore, for each direction, h3(λ1, λ2) is either strictly increasing

or strictly decreasing, as shown in Figure 2.10. Consequently, h3(λ1, λ2) achieves its

maximum at one of the four corner points of the feasible region, namely (λ1 = 0, λ2 = 0),

(λ1 = 0, λ2 = 1), (λ1 = 1, λ2 = 0), and (λ1 = 1, λ2 = 1). This property can be used in

conjunction with Lemma 2.4 to find Rmax
sum-HK, as explained in the following remark.

Remark 2.1. In this remark, we partition the weak interference class into four sub-

classes. Using Lemma 2.4, we characterize Rmax
sum-HK for three sub-classes. For one

sub-class, namely the barely weak interference sub-class, Lemma 2.4 cannot character-

ize Rmax
sum-HK.

A) If P1 ≤ 1−a
ab

and P2 ≤ 1−b
ab

, then ∇(h3(λ1, λ2)) has positive values in both directions

î and ĵ. Therefore, h3(λ1, λ2) achieves its maximum when (λ1 = 1, λ2 = 1), that is,

when the entire interference is treated as noise in both decoders. The maximum value of

h3(λ1, λ2) is

max
λ1,λ2∈[0,1]

h3(λ1, λ2) =h3(1, 1)

=C
( P1

1 + aP2

)
+ C

( P2

1 + bP1

)
, (2.87)

as shown in Figure 2.10A. One can check that h3(1, 1) = h1(1, 1) = h2(1, 1). By
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Figure 2.9: The behavior of h2(λ1, λ2) over the boundary.

Lemma 2.4, this means if P1 ≤ 1−a
ab

and P2 ≤ 1−b
ab

, treating interference as noise max-

imizes the achievable sum-rate of the HK scheme with Gaussian inputs and no time

sharing. Therefore, we have

Rmax
sum-HK = C

( P1

1 + aP2

)
+ C

( P2

1 + bP1

)
. (2.88)

B) If P1 ≤ 1−a
ab

and P2 >
1−b
ab

, then ∇(h3(λ1, λ2)) has negative value in the direction

of î and positive value in the direction of ĵ. Therefore, h3(λ1, λ2) achieves its maximum

when λ1 = 0 and λ2 = 1, that is when the entire interference is teated as noise in the

first decoder and the entire interference is decoded in the second decoder. As a result, the

maximum value of h3(λ1, λ2) is given by

max
λ1,λ2∈[0,1]

h3(λ1, λ2) = h3(0, 1) = C
(
P2 + bP1

)
, (2.89)

as shown in Figure 2.10B. One can check that h3(0, 1) ≤ h1(0, 1) and h3(0, 1) ≤ h2(0, 1).

By Lemma 2.4, this means, if P1 ≤ 1−a
ab

and P2 >
1−b
ab

, (λ1, λ2) = (0, 1) is the optimal

solution of (2.58), and the maximum achievable sum-rate is given by:

Rmax
sum-HK = C

(
P2 + bP1

)
. (2.90)

C) If P1 > 1−a
ab

and P2 ≤ 1−b
ab

, one can show that (λ1, λ2) = (1, 0) is the optimal

solution of (2.58), and the maximum achievable sum-rate is given by

Rmax
sum-HK = C

(
P1 + aP2

)
. (2.91)
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Figure 2.10: The behavior of h3(λ1, λ2) over the boundary

This is in agreement with the result of [41].

D) If P1 >
1−a
ab

and P2 >
1−b
ab

, i.e., for the barely weak interference sub-class, ∇(h3(λ1, λ2))

has negative values in both directions î and ĵ. Therefore, h3(λ1, λ2) achieves its maximum

when (λ1 = 0, λ2 = 0), that is, when the entire interference is decoded at both decoders.

The maximum value of h3(λ1, λ2) is

max
λ1,λ2∈[0,1]

h3(λ1, λ2) = h3(0, 0) = C(aP2) + C(bP1), (2.92)

as shown in Figure 2.10D. However, we cannot use Lemma 2.4, because the following

inequalities are not satisfied:

h3(0, 0) ≤ h1(0, 0),

h3(0, 0) ≤ h2(0, 0). (2.93)

For the barely weak interference sub-class, we have

h3(0, 0) = C(aP2) + C(bP1) ≥ h1(0, 0) = C(P1 + aP2),

h3(0, 0) = C(aP2) + C(bP1) ≥ h2(0, 0) = C(P2 + bP1), (2.94)
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maximum sum-rate corresponding to each sub-category.

and consequently, (2.92) is not the maximum achievable sum-rate. In fact, we will later

show that for the weak interference class, (λ1, λ2) = (0, 0) is never the optimal solution

of (2.58), i.e., SND does not achieve Rmax
sum-HK, as will be explained in Corollary 2.1.

Note that, for the barely weak interference sub-class, the maximum achievable sum-rate

has been unknown. In the rest of our analysis, we focus on the barely weak interference

sub-class, that is, we assume that P1 >
1−a
ab

and P2 >
1−b
ab

.

2.3.7 Maximum HK Sum-Rate over Boundary Points

Now that we have investigated the behavior of h1(λ1, λ2), h2(λ1, λ2), and h3(λ1, λ2) over

the boundary, we investigate the behavior of

min{h1(λ1λ2), h2(λ1, λ2), h3(λ1, λ2)}

and find all local maximum points over the boundary.

Lemma 2.6. Boundary points: For the boundary points, when P1 >
1−a
ab

and P2 >
1−b
ab

,

define c
.
= P1(1−b)−P2(1−a)

P1

(
1−b+P2(1−ab)

) and c′
.
= P2(1−a)−P1(1−b)

P2

(
1−a+P1(1−ab)

) , then we have

2.6-A: For the sub-category of boundary points B1, i.e., λ2 = 0, the optimal λ1 is

not unique. In fact, any λ?1 ∈
[
[c]+, 1

]
is an optimal solution, and the corresponding

maximum sum-rate is given by C(P1 + aP2), as shown in Figure 2.11.
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2.6-B: For the sub-category of boundary points B2, i.e., λ2 = 1, λ?1 = 0 is the unique

optimal solution, and the corresponding maximum sum-rate is given by C(P2 + bP1), as

shown in Figure 2.11.

2.6-C: For the sub-category of boundary points B3, i.e., λ1 = 0, the optimal λ2 is

not unique. In fact, any λ?2 ∈
[
[c′]+, 1

]
is an optimal solution, and the corresponding

maximum sum-rate is given by C(P2 + bP1), as shown in Figure 2.11.

2.6-D: For the sub-category of boundary points B4, i.e., λ1 = 1, λ?2 = 0 is the unique

optimal solution, and the corresponding maximum sum-rate is given by C(P1 + aP2), as

shown in Figure 2.11.

Proof. 2.6-A: When λ2 = 0 and 0 ≤ λ1 ≤ 1, the optimization problem (2.58) reduces to

max
λ1,λ2∈[0,1]

Rsum-HK(λ1, λ2) = max
0≤λ1≤1

min
{
h1(λ1, 0), h2(λ1, 0), h3(λ1, 0)

}
(a)
= max

0≤λ1≤1
min

{
h1(λ1, 0), h2(λ1, 0)

}
, (2.95)

where (a) is valid because, for λ2 = 0 and P2 >
1−b
ab

, according to Lemma 2.3, we have

h1(λ1, 0) < h3(λ1, 0). To solve the optimization problem (2.95), we first characterize

min
{
h1(λ1, 0), h2(λ1, 0)

}
as follows:

Note that h1(λ1, 0) = C(λ1P1) + C
(
λ̄1P1+aP2

1+λ1P1

)
= C(P1 + aP2). Therefore, h1(λ1, 0)

is a constant function for all values of λ1. On the other hand, h2(λ1, 0) = C(λ1P1) +

C
(
bλ̄1P1+P2

1+bλ1P1

)
. Therefore, we have ∂h1(λ1,0)

∂λ1
= P1

1+P1λ1
− P1b

1+P1bλ1
≥ 0. This implies that

h2(λ1, 0) is an increasing function over λ1 ∈ [0, 1]. Finally, according to Lemma 2.3,

h1(λ1, 0) ≤ h2(λ1, 0) if and only if λ1 ≥ c = P1(1−b)−P2(1−a)

P1

(
1−b+P2(1−ab)

) . Consequently, we have

min
{
h1(λ1, 0), h2(λ1, 0)

}
=

 h2(λ1, 0) if λ1 < c

h1(λ1, 0) if λ1 ≥ c.
(2.96)

Moreover, since h2(λ1, 0) is an increasing function, we conclude that

max
0≤λ1≤1

min
{
h1(λ1, 0), h2(λ1, 0)

}
=h1(λ?1, 0)

=C(P1 + aP2), (2.97)

and any λ?1 ≥ max{c, 0} is an optimal solution. This completes the proof of 2.6-A of

Lemma 2.6. Figure 2.11 shows that any λ?1 that is greater than c achieves the maximum

sum-rate over the boundary sub-category B1.
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2.6-B: When λ2 = 1 and 0 ≤ λ1 ≤ 1, the optimization problem (2.58) reduces to

max
λ1,λ2∈[0,1]

Rsum-HK(λ1, λ2) = max
0≤λ1≤1

min
{
h1(λ1, 1), h2(λ1, 1), h3(λ1, 1)

}
(a)
= max

0≤λ1≤1
h2(λ1, 1), (2.98)

where (a) is valid, because by Lemma 2.3, for λ2 = 1, we have h2(λ1, 1) = h3(λ1, 1) <

h1(λ1, 1). Moreover, according to (2.56), h2(λ1, 1) = C
(
P2+bλ̄1P1

1+bλ1P1

)
+C

(
λ1P1

1+aP2

)
. Therefore,

∂h2(λ1,1)
∂λ1

= P1

1+P1λ1+aP2
− P1b

1+P1bλ1
= P1(1−b−abP2)

(1+P1λ1+aP2)(1+P1bλ1)
. Since P2 > 1−b

ab
, we see that

∂h2(λ1,1)
∂λ1

is strictly negative over [0, 1]. Therefore, h2(λ1, 1) achieves its maximum when

λ1 = 0. The maximum of (2.98) is C(P2 + bP1). This completes the proof of 2.6-B of

Lemma 2.6. Figure 2.11 shows that (λ1, λ2) = (0, 1) achieves the maximum sum-rate,

over the boundary sub-category B2.

Note that the proof of 2.6-C and 2.6-D follows by exchanging the indices 1, 2, as well

as exchanging the cross-link gains a and b, in the proof of 2.6-A and 2.6-B, respectively.

Figure 2.11 summarizes all parts of this lemma. It demonstrates the optimal point over

each sub-category of the boundary points. This completes the proof of Lemma 2.6.

Lemma 2.6 completely characterizes the sum-rate corresponding to the boundary

of the feasible region. The constants c and c′ determine the optimal points over the

boundary. Note that if c is positive, then c′ is negative, and therefore, c′ does not restrict

the optimal points over the boundary. Similarly, if c′ is positive, then c is negative, and

therefore, c does not restrict the optimal points over the boundary. Figure 2.12 shows the

achievable sum-rate over the boundary, when c is positive. Note that for (λ1 = 0, λ2 = 0),

the achievable sum-rate is given by min{C(P1 + aP2), C(P2 + bP1)} = C(P2 + bP1). If

λ1 remains zero, but λ2 starts to increase, the achievable sum-rate remains constant.

However, if λ2 remains zero, but λ1 starts to increase, the achievable sum-rate increases,

until λ1 = c. At this point, the achievable sum-rate is given by min{C(P1 + aP2), C(P2 +

bP1)} = C(P1 + aP2). If λ1 increases further, the achievable sum-rate remains constant,

until (λ1, λ2) reaches the point (λ1 = 1, λ2 = 0). If (λ1, λ2) moves from (0, 1) to (1,1), then

the achievable sum-rate decreases to C( P1

1+aP2
)+C( P2

1+bP1
). Note that, for the barely weak

interference sub-class, we have C( P1

1+aP2
) + C( P2

1+bP1
) ≤ min{C(P1 + aP2), C(P2 + bP1)}.

This means, the sum-rate achieved by treating interference as noise is less than the sum-

rate achieved by SND. Moreover, the sum-rate achieved by SND is less than the sum-rate

achieved by (λ1 ≥ c, λ2 = 0).
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Figure 2.12: The achievable sum-rate of the HK scheme over the boundary of the feasible

region, for the barely weak interference sub-class with c ≥ 0.

Note that the sum-capacity of the two-user GIC is known for some sub-classes, as

shown in Figure 2.2. For all such sub-classes, the sum-capacity is is equal to Rmax
sum-HK.

Moreover, the optimal (λ1, λ2) belongs to one corner point of the feasible region. For the

sarong interference class, (λ1 = 0, λ2 = 0) leads to Rmax
sum-HK. For the mixed I interference

class, (λ1 = 1, λ2 = 0) leads to Rmax
sum-HK, and for the mixed II interference class, (λ1 =

0, λ2 = 1) leads to Rmax
sum-HK. Finally, for the very weak interference sub-class, (λ1 = 1, λ2 =

1) leads to Rmax
sum-HK. For the weak interference class, the following corollary compares the

achievable sum-rates corresponding to the four corner points of the feasible region.

Corollary 2.1. For the two-user GIC with weak interference, the HK scheme can achieve

the following sum-rate:

Rbnd
sum

.
= max

{
C
( P1

1 + aP2

)
+ C

( P2

1 + bP1

)
,

C(P1 + aP2), C(P2 + bP1)
}
. (2.99)

Table 2.3 shows the achievable sum-rate corresponding to the four corner points of the
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(λ1, λ2) h1(λ1, λ2) h2(λ1, λ2) h3(λ1, λ2) Rsum-HK(λ1, λ2) =

min{h1(), h2(), h3()}

(0, 0) C(P1 +aP2) C(P2 + bP1)
C(aP2) +

C(bP1)
Rsum-SND

(0, 1)
C( P1

1+aP2
) +

C(P2)
C(P2 + bP1) C(P2 + bP1) C(P2 + bP1)

(1, 0) C(P1 +aP2)
C( P2

1+bP1
) +

C(P1)
C(P1 +aP2) C(P1 + aP2)

(1, 1)
C( P1

1+aP2
) +

C( P2

1+bP1
)

C( P1

1+aP2
) +

C( P2

1+bP1
)

C( P1

1+aP2
) +

C( P2

1+bP1
)

C( P1

1+aP2
) +

C( P2

1+bP1
)

Table 2.3: The achievable sum-rate corresponding to four corner points of the boundary.

feasible region. Note that the sum-rate corresponding to (λ1 = 0, λ2 = 0) is the sum-rate

achieved by SND, denoted by Rsum-SND. For the weak interference class, Rsum-SND is given

by

Rsum-SND =

min
{
C(P1 + aP2), C(P2 + bP1), C(aP2) + C(bP1)

}
. (2.100)

For the weak interference class, this sum-rate is smaller than the sum-rate correspond-

ing to (λ1 = 1, λ2 = 0) or (λ1 = 0, λ2 = 1), as shown in Table 2.3. Therefore, although

SND achieves the sum-capacity for every (a, b, P1, P2) that belongs to the strong interfer-

ence class, SND achieves the sum-capacity for no (a, b, P1, P2) that belongs to the weak

interference class. Consequently, the sum-rate (2.99) is achieved by just considering the

three corner points of the boundary of the feasible region, namely (λ1 = 0, λ2 = 0),

(λ1 = 0, λ2 = 1), and (λ1 = 1, λ2 = 0). In fact, when P1 ≤ 1−a
ab

or P2 ≤ 1−b
ab

, Remark 2.1

shows that the maximum sum-rate of HK scheme is given by (2.99). However, for the

barely weak interference sub-class, i.e., P1 >
1−a
ab

and P2 >
1−b
ab

, the maximum sum-rate

of HK is not known.

Figure 2.13 shows quadrant I of the P1P2-plane. This quadrant is divided into three
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Figure 2.13: The sum-rate of the HK scheme achieved by investigating only the boundary

points: Quadrant I of the P1P2-plane, is partitioned into three regions. In each region,

exactly one of the C
(

P1

1+aP2

)
+ C

(
P2

1+bP1

)
, C(P1 + aP2), C(P2 + bP1) is the achievable

sum-rate.

regions. In each region, exactly one of the C
(

P1

1+aP2

)
+C

(
P2

1+bP1

)
, C(P1+aP2), C(P2+bP1)

is greater than the other two, as shown in the figure. Note that the line P1(1 − b) =

P2(1 − a) separates two regions: the region in which C(P1 + aP2) is the maximum of

the three and the region in which C(P2 + bP1) is the maximum of the three. Lemma 2.5

and 2.6 studied all stationary points and all boundary points, respectively. Figure 2.13

demonstrates the summary of these lemmas. To solve the optimization problem (2.58),

all that is left is to investigate the last category of points, i.e., the non-differentiable

points.

2.3.8 Maximum HK Sum-Rate over Non-Differentiable Points

As highlighted in (2.74-2.76), there exist three sub-categories of non-differentiable points,

namely ND1, ND2, and ND3. We characterize each sub-category inside the λ1λ2-plane.

For sub-category ND1, we have h1(λ1, λ2) = h2(λ1, λ2) ≤ h3(λ1, λ2). According to

44



Chapter 2. Maximum HK Sum-Rate

Lemma 2.3, for λ1, λ2 ∈ (0, 1), we have

h1(λ1, λ2) = h2(λ1, λ2)⇔ λ1 = mλ2 + c, (2.101)

h1(λ1, λ2) ≤ h3(λ1, λ2)⇔ λ2 ≤ ab− 1− b
P2

, (2.102)

h2(λ1, λ2) ≤ h3(λ1, λ2)⇔ λ1 ≤ ab− 1− a
P1

. (2.103)

Therefore, the subcategory ND1 can be expressed by

ND1 =
{

(λ1, λ2) :λ1, λ2 ∈ (0, 1), λ1 = mλ2 + c,

0 < λ1 ≤ ab− 1− a
P1

, 0 < λ2 ≤ ab− 1− b
P2

}
. (2.104)

All points that belong to the sub-category ND1 lie on the line λ1 = mλ2 + c, and are

shown by the blue solid line in Figure 2.14. In fact, ND1 is a line segment that has

two end points. One end point is given by (λ1 = ab − 1−a
P1
, λ2 = ab − 1−b

P2
), as shown in

Figure 2.14. Depending on the value of c, the other end point can have two cases. If

c ≥ 0, the other endpoint is given by (λ1 = c, λ2 = 0), as shown Figure 2.14. However, if

c < 0, the other endpoint is given by (λ1 = 0, λ2 = c′), as shown Figure 2.15.

For the sub-category ND2, we have h2(λ1, λ2) = h3(λ1, λ2) ≤ h1(λ1, λ2). According

to Lemma 2.3, for λ1, λ2 ∈ (0, 1), we have

h2(λ1, λ2) = h3(λ1, λ2)⇔ λ1 = ab− 1− a
P1

, (2.105)

h2(λ1, λ2) ≤ h1(λ1, λ2)⇔ λ1 ≤ mλ2 + c, (2.106)

h3(λ1, λ2) ≤ h1(λ1, λ2)⇔ λ2 ≥ ab− 1− b
P2

. (2.107)

Therefore, the subcategory ND2 can be expressed by

ND2 =
{

(λ1, λ2) : λ1, λ2 ∈ (0, 1), λ1 = ab− 1− a
P1

, λ2 ≥ ab− 1− b
P2

}
. (2.108)

Consequently, all points that belong to the sub-category ND2 lie on the vertical line

λ1 = ab− 1−a
P1

, as shown by the blue dashed line in Figure 2.14.

Finally, for the sub-category ND3, we have h3(λ1, λ2) = h1(λ1, λ2) ≤ h2(λ1, λ2).

According to Lemma 2.3, for λ1, λ2 ∈ (0, 1), we have

h3(λ1, λ2) = h1(λ1, λ2)⇔ λ2 = ab− 1− b
P2

, (2.109)

h3(λ1, λ2) ≤ h2(λ1, λ2)⇔ λ1 ≥ ab− 1− a
P1

, (2.110)

h1(λ1, λ2) ≤ h2(λ1, λ2)⇔ λ1 ≥ mλ2 + c. (2.111)
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Figure 2.14: Three sub-categories of non-differentiable points in the λ1λ2-plane, when

c ≥ 0.

Therefore, the subcategory ND3 can be expressed by

ND3 =
{

(λ1, λ2) : λ1, λ2 ∈ (0, 1), λ2 = ab− 1− b
P2

, λ1 ≥ ab− 1− a
P1

}
. (2.112)

Consequently, all points of the sub-category ND3 lie on the horizontal line λ2 = ab− 1−b
P2

and are shown by the blue dotted line in Figure 2.14.

Lemma 2.5 shows that there exists no stationary points. Corollary 2.1 shows that by

investigating the boundary points, the maximum achievable sum-rate is given by

Rbnd
sum = max

{
C
( P1

1 + aP2

)
+ C

( P2

1 + bP1

)
, C(P1 + aP2), C(P2 + bP1)

}
.

We now investigate the three sub-categories of non-differentiable points to see, if we can

achieve a sum-rate greater than the sum-rate corresponding to the boundary points. The

following lemma describes the result.

Lemma 2.7. Non-differentiable points: Over the non-differentiable points, when P1 >

1−a
ab

and P2 >
1−b
ab

, we have

2.7-A: For the non-differentiable sub-category ND1, the optimal solution of (2.58), is

given by

(λ?1, λ
?
2) ∈ {(c, 0), (0, c′), (λ̃1, λ̃2), (λ̂1, λ̂2)}, (2.113)
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Figure 2.15: Three sub-categories of non-differentiable points in the λ1λ2-plane, when

c < 0.

where (λ̃1, λ̃2) is given by

λ̃1
.
= ab− 1− a

P1

,

λ̃2
.
= ab− 1− b

P2

. (2.114)

Moreover, λ̂1
.
= mλ̂2 + c, where m =

P2

(
(1−a)+P1(1−ab)

)
P1

(
1−b+P2(1−ab)

) , c = P1(1−b)−P2(1−a)

P1

(
1−b+P2(1−ab)

) , and λ̂2 is

the non-negative solution of the following second order equation:

(λ2
2) + 2

(1 + bP1c)

(bP1m+ P2)
(λ2) +

(1 + bP1c)(abP1c+ a− 1)

abP1m(bP1m+ P2)
= 0. (2.115)

The maximum achievable sum-rate corresponding to the this sub-category is given by

max{h1(c, 0), h1(0, c′), h1(λ̃1, λ̃2), h1(λ̂1, λ̂2)1(λ̂1 ≥ 0)(λ̂2 ≥ 0)1(λ̃2 ≥ λ̂2)} =

max

{
C(P1 + aP2), C(P2 + bP1),

C(P1 + aP2) + g1(λ̃1, λ̃2),

C(P1 + aP2) + g1(λ̂1, λ̂2)1(λ̂1 ≥ 0)(λ̂2 ≥ 0)1(λ̃2 ≥ λ̂2)

}
, (2.116)

where the function g1(λ1, λ2) is defined by

g1(λ1, λ2)
.
= C(

(1− a)λ2P2 + bλ1P1

1 + aλ2P2

)− C(bλ1P1). (2.117)
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Moreover, (λ̂1, λ̂2) is an acceptable power splitting, i.e., λ̂1, λ̂2 ∈ [0, 1], that belongs to

ND1 if and only if

(1− b)ab
1− a

P1 + b− 1 ≤ P2, (2.118)

(1− a)ab

1− b
P2 + a− 1 ≤ P1, (2.119)

λ̂2 ≤ ab− 1− b
P2

. (2.120)

2.7-B: For the non-differentiable sub-category ND3, the optimal solution of (2.58) is

given by

λ?1 = λ̃1
.
= ab− 1− a

P1

,

λ?2 = λ̃2
.
= ab− 1− b

P2

, (2.121)

and the corresponding achievable sum-rate is given by

Rsum-HK(ab− 1− a
P1

, ab− 1− b
P2

) = h1(ab
1− a
P1

, ab− 1− b
P2

). (2.122)

Moreover, (λ̃1, λ̃2) = (ab− 1−a
P1
, ab− 1−b

P2
) is an acceptable power splitting, i.e., λ̃1, λ̃2 ∈ [0, 1]

if and only if

P1 ≥
1− a
ab

, (2.123)

P2 ≥
1− b
ab

. (2.124)

2.7-C: For the non-differentiable sub-category ND2, the optimal solution of (2.58) is

the same as 2.7-B.

Proof. 2.7-A: When h1(λ1, λ2) = h2(λ1, λ2) ≤ h3(λ1, λ2), the optimization problem (2.58)

reduces to

max
λ1,λ2∈[0,1]

Rsum-HK(λ1, λ2) =

max
λ1,λ2∈[0,1]

h1(λ1, λ2)

subject to h1(λ1, λ2) ≤ h3(λ1, λ2). (2.125)

Since h1(λ1, λ2) = h2(λ1, λ2), by Lemma 2.3, we know that the optimal λ1 and λ2 are

linearly dependent, and we have

λ1 = mλ2 + c. (2.126)
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where

m
.
=
P2

(
(1− a) + P1(1− ab)

)
P1

(
1− b+ P2(1− ab)

) , (2.127)

c
.
=

P1(1− b)− P2(1− a)

P1

(
1− b+ P2(1− ab)

) . (2.128)

Therefore, the optimization problem (2.125) reduces to

max
0≤λ2≤1

h1(mλ2 + c, λ2)

subject to h1(mλ2 + c, λ2) ≤ h3(mλ2 + c, λ2). (2.129)

To solve the optimization problem (2.129), note that the feasible region is a line segment,

as shown in Figure 2.14. Therefore, the optimal point is either a stationary point on this

line segment or one of the two ends of this line segment. One of the end points is (λ̃1, λ̃2).

This point achieves the sum-rate of h1(λ̃1, λ̃2). The other end point can have two cases,

depending on the value of c. If c is positive, the other end point is given by (c, 0), as

shown in Figure 2.14. This point achieves the sum-rate of h1(c, 0). Note that according

to (2.128), we have

c =
P1(1− b)− P2(1− a)

P1

(
1− b+ P2(1− ab)

)
≤ P1(1− b)
P1

(
1− b+ P2(1− ab)

)
≤1. (2.130)

However, if c is negative, the other end point is given by (0, c′ = −c
m

), as shown in

Figure 2.15. This point achieves the sum-rate of h1(0, c′). Note that According to (2.128)

and (2.127), we have

c′ =
−c
m

=
P2(1− a)− P1(1− b)
P2

(
1− a+ P1(1− ab)

)
≤ P2(1− a)

P2

(
1− a+ P1(1− ab)

)
≤1. (2.131)

Let us denote the stationary point that belongs to ND1 by (λ̂1, λ̂2). Therefore, if

c ≥ 0, the maximum achievable sum-rate corresponding to ND1 is given by

max{h1(c, 0), h1(λ̃1, λ̃2), h1(λ̂1, λ̂2)}, (2.132)
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and if c < 0, it is given by

max{h1(0, c′), h1(λ̃1, λ̃2), h1(λ̂1, λ̂2)}. (2.133)

Therefore, for ND1, the optimal solution of (2.58) is given by

(λ?1, λ
?
2) ∈ {(c, 0), (0, c′), (λ̃1, λ̃2), (λ̂1, λ̂2)}. (2.134)

Note that, since h1(c, 0) = C(P1 + aP2) and h1(0, c′) = C(P2 + bP2), we have

h1(c, 0) ≥ h1(0, c′)⇔ P1(1− a) ≥ P2(1− b)⇔ c ≥ 0. (2.135)

Consequently, the maximum achievable sum-rate corresponding to ND1 is given by

max{h1(c, 0), h1(0, c′), h1(λ̃1, λ̃2), h1(λ̂1, λ̂2)}. (2.136)

Note that (c, 0), (0, c′), and (λ̃1, λ̃2) necessarily belong to ND1. However, h1(mλ2 +

c, λ2) may not have any stationary points that belongs to ND1. In the following, we

prove that h1(mλ2 + c, λ2) can have at most two stationary points, namely λ̌2 and λ̂2,

where λ̌2 ≤ λ̂2. Moreover, λ̌2 is negative, and consequently, does not belong to ND1.

However, λ̂2 belongs to ND1 if and only if

(1− b)ab
1− a

P1 + b− 1 ≤ P2, (2.137)

(1− a)ab

1− b
P2 + a− 1 ≤ P1, (2.138)

λ̂2 ≤ ab− 1− b
P2

. (2.139)

To find the stationary points, we investigate ∂h1(mλ2+c,λ2)
∂λ2

= 0. According to (2.55),

for λ1 = mλ2 + c, we have

h1(mλ2 + c, λ2) = C
(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ2P2

1 + b(mλ2 + c)P1

)
. (2.140)

Consequently,

∂h1(mλ2 + c, λ2)

∂λ2

=− aP2

1 + aλ2P2

+
P2(1 + bcP1)(

1 + bP1(mλ2 + c)
)(

1 + bP1(mλ2 + c) + P2λ2

) . (2.141)
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To solve ∂h1(mλ2+c,λ2)
∂λ2

= 0, we need to solve

aP2

1 + aλ2P2

=
P2(1 + bcP1)(

1 + bP1(mλ2 + c)
)(

1 + bP1(mλ2 + c) + P2λ2

) , (2.142)

which is equivalent to

abP1m(bP1m+ P2)(λ2
2) + 2abP1m(1 + bP1c)(λ2)

+(1 + bP1c)(abP1c+ a− 1) =0

⇔ (λ2
2) + 2

(1 + bP1c)

(bP1m+ P2)
(λ2) +

(1 + bP1c)(abP1c+ a− 1)

abP1m(bP1m+ P2)
=0. (2.143)

Let us denote the solutions of (2.143) by λ̌2 and λ̌2 , such that Re
{
λ̃2

}
≤ Re

{
λ̂2

}
. In

fact, we can express λ̌2 and λ̂2 as follows:

λ̂2 =
1 + bP1c

bP1m+ P2

(
− 1 +

√
1− (bP1m+ P2)(abP1c+ a− 1)

(1 + bP1c)(abP1m)

)
,

λ̌2 =
1 + bP1c

bP1m+ P2

(
− 1−

√
1− (bP1m+ P2)(abP1c+ a− 1)

(1 + bP1c)(abP1m)

)
. (2.144)

Note that λ̌2 and λ̂2 are functions of a, b, P1, and P2. We find the constraints on

(a, b, P2, P2) under which the equation (2.143) has exactly one non-negative solution that

belongs to ND1. Note that, we have

λ̌2 + λ̂2 =− 2
1 + bP1c

bP1m+ P2

, (2.145)

λ̌2λ̂2 =
(1 + bP1c)(abP1c+ a− 1)

abP1m(bP1m+ P2)
. (2.146)

We claim that λ̌2 + λ̂2 < 0. Note that according to (2.127), m ≥ 0, and consequent,

bP1m+ P2 > 0. Moreover, according to (2.128), we can simplify 1 + bP1c as follows:

1 + bP1c =
(1− b)(1 + bP1 + P2)

1− b+ P2(1− ab)
> 0. (2.147)

Therefore, we have

λ̌2 + λ̂2 = −2
(1 + bP1c)

(bP1m+ P2)
< 0. (2.148)

Note that by (2.148), we can conclude that λ̌2 cannot be a non-negative real number.

Therefore, equation (2.143) does not have two non-negative solutions. Moreover, equation

(2.143) has exactly one non-negative solution if λ̂2 is a non-negative number. Note that
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λ̂2 > 0 if and only if λ̌2λ̂2 < 0, which is valid if and only if

(abP1c+ a− 1) <0

⇔ P1c <
1− a
ab

. (2.149)

Note that (2.149) is valid if and only if

P1(1− b)− P2(1− a)(
1− b+ P2(1− ab)

) <
1− a
ab

⇔ (1− b)ab
1− a

P1 + b− 1 ≤P2. (2.150)

Therefore, λ̂2 is non-negative if and only if (2.150) is satisfied.

Note that (λ̂1 = mλ̂2 + c, λ̂2) is an acceptable power splitting if both λ̂1 and λ̂2 belong

to [0, 1]. We already showed that λ̂2 is non-negative if and only if (2.150) is satisfied.

Similarly, it follows that that λ̂1 is non-negative if and only if

(1− a)ab

1− b
P2 + a− 1 ≤ P1. (2.151)

We now show that λ̂2 ≤ 1. Note that λ̂2 is the nonnegative root of the equation (2.143).

Since (2.143) has one negative root λ̌2, we can conclude that λ̂2 ≤ 1, if for λ2 = 1, the

value of equation (2.143) is nonnegative, that is

f(P1, P2)
.
=

abP1m(bP1m+ P2)(λ2
2) + 2abP1m(1 + bP1c)(λ2)

+ (1 + bP1c)(abP1c+ a− 1)|(λ2=1) ≥ 0. (2.152)

Note that we only need to prove (2.152), for P1 >
1−a
ab

and P2 >
1−b
ab

. To this end, we first

show that f(P1, P2) ≥ 0, when P1 = 1−a
ab

and P2 = 1−b
ab

. Then we show that f(P1, P2) is

an increasing function of P1 and P2, for P1 >
1−a
ab

and P2 >
1−b
ab

.

By inserting (2.127) and (2.128) into (2.152), we see that

f(P1, P2) =

1

1− b+ P2(1− ab)

(
ab2(1− ab)P 2

1P2 + ab(1− ab)P1P
2
2

+ 2ab(1− ab)P1P2 + ab2(1− b)P 2
1 + ab(1− a)P 2

2

+ (1− a)(ab+ b− 1)P2 + (1− b)(2ab− b)P1

− (1− a)(1− b)
)
. (2.153)
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First, note that, for P1 = 1−a
ab

and P2 = 1−b
ab

, we have

f(P1, P2) =
1− a
ab

> 0. (2.154)

Moreover, since 1
1−b+P2(1−ab) ≥ 0, to show that f(P1, P2) remains positive for P1 >

1−a
ab

and P2 >
1−b
ab

, it is sufficient to show that the numerator in (2.153) remains positive. Let

us denote the numerator in (2.153 ) by

fN(P1, P2)
.
=

ab2(1− ab)P 2
1P2 + ab(1− ab)P1P

2
2

+ 2ab(1− ab)P1P2 + ab2(1− b)P 2
1 + ab(1− a)P 2

2

+ (1− a)(ab+ b− 1)P2 + (1− b)(2ab− b)P1

+ (1− a)(1− b). (2.155)

One can check that ∂fN (P1,P2)
∂P1

is an increasing function of P1, when P1 > 1−a
ab

and

P2 >
1−b
ab

. Moreover, we have

∂fN(P1, P2)

∂P1

|(P1= 1−a
ab

,P2= 1−b
ab

) =
1− a
ab
≥ 0, (2.156)

which proves that ∂fN (P1,P2)
∂P1

is positive, for P1 >
1−a
ab

and P2 >
1−b
ab

. Therefore, we have

∂fN(P1, P2)

∂P1

≥ 0. (2.157)

Similarly, one can check that ∂fN (P1,P2)
∂P2

is an increasing function of P2, when P1 >
1−a
ab

and P2 >
1−b
ab

. Moreover, we have

∂fN(P1, P2)

∂P2

|(P1= 1−a
ab

,P2= 1−b
ab

) =
1− a
ab
≥ 0, (2.158)

which proves that ∂fN (P1,P2)
∂P2

is positive, for P1 >
1−a
ab

and P2 >
1−b
ab

. Therefore, we have

∂fN(P1, P2)

∂P2

≥ 0. (2.159)

Note that, (2.154), (2.159), and(2.159) prove that f(P1, P2) is greater than zero, for

P1 >
1−a
ab

and P2 >
1−b
ab

. This proves that λ̂2 ≤ 1, as intended.

Next, we prove that λ̂1 ≤ 1. Note that λ̂1
.
= mλ̂2 + c. According to (2.127), m ≥ 0.

Therefore, λ̂1 takes its maximum value when λ̂2 take its maximum value. Moreover, we
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have proved that λ̂2 ≤ 1. Consequently, we have

λ̂1 =mλ̂2 + c

≤m+ c

=1, (2.160)

where the last equality is valid, according to the definitions of m and c, given in (2.127)

and (2.128), respectively.

Constraints (2.150) and (2.151) are the necessary and sufficient conditions for λ̂1, λ̂2 ∈

[0, 1]. However, λ̂1, λ̂2 should belong to ND1. Therefore, we should have

λ̂1 ≤ ab− 1− a
P1

, (2.161)

λ̂2 ≤ ab− 1− b
P2

, (2.162)

as shown in Figure 2.14. Note that (λ1 = ab− 1−a
P1
, λ2 = ab− 1−b

P2
) is one of the end points

of ND1. Therefore, we have

ab− 1− a
P1

= m(ab− 1− b
P2

) + c. (2.163)

Consequently, (2.161) is satisfied if and only if (2.162) is satisfied.

Note that the three constraints (2.150), (2.151), (2.162) represent the necessary and

sufficient conditions for (λ̂1, λ̂2) ∈ ND1. In fact, (2.150) guarantees that λ̂2 ≥ 0, (2.151)

guarantees that λ̂1 ≥ 0, and (2.162) guarantees that λ̂2 ≤ λ̃2. If these three constraints

are satisfied, the stationary point that belongs to ND1 is given by

(λ?1, λ
?
2) = (mλ̂2 + c, λ̂2), (2.164)

and the corresponding achievable sum-rate is given by

Rsum-HK(mλ̂2 + c, λ̂2) = h1(mλ̂2 + c, λ̂2). (2.165)

Note that we can simplify the achievable sum-rate given by h1(λ1, λ2) as follows:

h1(λ1, λ2) =C
(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ2P2

1 + bλ1P1

)
=C
(P1 + aλ̄2P2

1 + aλ2P2

)
+ C(aλ2P2)

+ C(
(1− a)λ2P2 + bλ1P1

1 + aλ2P2

)− C(bλ1P1)

=C(P1 + aP2) + g1(λ1, λ2), (2.166)
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where the function g1(λ1, λ2) is defined by

g1(λ1, λ2)
.
= C(

(1− a)λ2P2 + bλ1P1

1 + aλ2P2

)− C(bλ1P1). (2.167)

Consequently, the achievable sum-rate expressed in (2.165) is equal to

Rsum-HK(mλ̂2 + c, λ̂2) = C(P1 + aP2) + g1(mλ̂2 + c, λ̂2). (2.168)

Similarly, one can simplify h2(λ1, λ2) as follows:

h2(λ1, λ2) =C
(P2 + bλ̄1P1

1 + bλ1P1

)
+ C

( λ1P1

1 + aλ2P2

)
=C
(P2 + bλ̄1P1

1 + bλ1P1

)
+ C(bλ1P1)

+ C(
(1− b)λ1P1 + aλ2P2

1 + bλ1P1

)− C(aλ2P2)

=C(P2 + bP1) + g2(λ1, λ2), (2.169)

where the function g2(λ1, λ2) is defined by

g2(λ1, λ2)
.
= C(

(1− b)λ1P1 + aλ2P2

1 + bλ1P1

)− C(aλ2P2). (2.170)

Since we have h1(mλ̂2 + c, λ̂2) = h2(mλ̂2 + c, λ̂2), we can equivalently express the

maximum achievable sum-rate by

Rsum-HK(mλ̂2 + c, λ̂2) =h2(mλ̂2 + c, λ̂2)

=C(P2 + bP1) + g2(mλ̂2 + c, λ̂2). (2.171)

If the three constraints (2.150), (2.151), (2.162) are satisfied, then ND1 includes

exactly one stationary point (λ̂1, λ̂2), and therefore, the maximum achievable sum-rate

corresponding to ND1 is given by

max{h1(c, 0), h1(0, c′), h1(λ̃1, λ̃2), h1(λ̂1, λ̂2)}. (2.172)

However, if these three constraints are not satisfied, then ND1 does not include any

stationary point, and therefore, the maximum achievable sum-rate corresponding to ND1

is given by

max{h1(c, 0), h1(0, c′), h1(λ̃1, λ̃2)}. (2.173)
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Therefore, we can use the function 1() and express the maximum achievable sum-rate

corresponding to ND1 by

max{h1(c, 0), h1(0, c′), h1(λ̃1, λ̃2),

h1(λ̂1, λ̂2)1(λ̂1 ≥ 0)(λ̂2 ≥ 0)1(λ̃2 ≥ λ̂2)}. (2.174)

Note that we have

h1(c, 0) =C(P1 + aP2), (2.175)

h1(0, c′) =C(P2 + bP1), (2.176)

h1(λ̃1, λ̃2) =C(P1 + aP2) + g1(λ̃1, λ̃2), (2.177)

h1(λ̂1, λ̂2) =C(P1 + aP2) + g1(λ̂1, λ̂2), (2.178)

where the last two equalities are valid by (2.166 ). Therefore, (2.174) is equivalent to

max

{
C(P1 + aP2), C(P2 + bP1),

C(P1 + aP2) + g1(λ̃1, λ̃2),

C(P1 + aP2)+

g1(λ̂1, λ̂2)1(λ̂1 ≥ 0)(λ̂2 ≥ 0)1(λ̃2 ≥ λ̂2)

}
. (2.179)

This completes the proof of 2.7-A of Lemma 2.7.

2.7-B: When h1(λ1, λ2) = h3(λ1, λ2) ≤ h2(λ1, λ2), the optimization problem (2.58)

reduces to

max
λ1,λ2∈[0,1]

Rsum-HK(λ1, λ2) =

max
λ1,λ2∈[0,1]

h1(λ1, λ2)

subject to h1(λ1, λ2) ≤ h2(λ1, λ2). (2.180)

Since h1(λ1, λ2) = h3(λ1, λ2), by Lemma 2.3, we have

λ2 = ab− 1− b
P2

. (2.181)

Therefore, the optimization problem (2.180) reduces to

max
0≤λ1≤1

h1(λ1, ab−
1− b
P2

)

subject to h3(λ1, ab−
1− b
P2

) ≤ h2(λ1, ab−
1− b
P2

). (2.182)
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To solve the optimization problem (2.180), we investigate
∂h1

(
λ1,ab− 1−b

P2

)
∂λ1

= 0. Accord-

ing to (2.55), for λ2 = ab− 1−b
P2

, we have

h1(λ1, ab−
1− b
P2

) = C
(P1 + a(1− ab+ 1−b

P2
)P2

1 + a(ab− 1−b
P2

)P2

)
+ C

((ab− 1−b
P2

)P2

1 + bλ1P1

)
. (2.183)

Clearly, (2.183) is a decreasing function of λ1. Therefore, the optimal λ1 is the smallest

λ1 that satisfies h3(λ1, λ2) ≤ h2(λ1, λ2). According to Lemma 2.3, h3(λ1, λ2) ≤ h2(λ1, λ2)

is equivalent to λ1 ≥ ab − 1−a
P1

. Consequently, the optimal λ1 that maximizes (2.180) is

given by:

λ?1 = λ̃1
.
= ab− 1− a

P1

. (2.184)

This means the optimal solution of (2.180) is given by

λ?1 = λ̃1 = ab− 1− a
P1

,

λ?2 = λ̃2 = ab− 1− b
P2

, (2.185)

and the achievable sum-rate is given by

Rsum-HK(ab− 1− a
P1

, ab− 1− b
P2

) = h1(ab− 1− a
P1

, ab− 1− b
P2

). (2.186)

Note that, according to Lemma 2.3, for (λ1, λ2) = (λ̃1, λ̃1), we have h1(λ̃1, λ̃1) = h2(λ̃1, λ̃1) =

h3(λ̃1, λ̃1). Therefore, (2.186) can be expressed as

Rsum-HK(λ̃1, λ̃1) =h1(λ̃1, λ̃1)

=h2(λ̃1, λ̃1)

=h3(λ̃1, λ̃1). (2.187)

Similar to (2.166), we can simplify (2.187). In fact, the achievable sum-rate is equal

to

Rsum-HK(ab− 1− a
P1

, ab− 1− b
P2

) =C(P1 + aP2) + g1(ab− 1− a
P1

, ab− 1− b
P2

)

=C(P2 + bP2) + g2(ab− 1− a
P1

, ab− 1− b
P2

), (2.188)

where the functions g1() and g2() are defined in (2.167) and (2.170), respectively.
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Note that (λ̃1, λ̃2) is an acceptable power splitting if both λ̃1 and λ̃2 belong to [0, 1].

Since (λ̃1, λ̃2) = (ab− 1−a
P1
, ab− 1−b

P2
), we have

λ̃1 ∈ [0, 1]⇔ P1 ≥
1− a
ab

, (2.189)

λ̃1 ∈ [0, 1]⇔ P2 ≥
1− b
ab

. (2.190)

This completes the proof of 2.7-B of Lemma 2.7. Note that the proof of 2.7-C follows

from the proof of 2.7-B, if we exchange indices 1 with 2 and cross-link gains a with b.

Therefore, the proof of Lemma 2.7 is complete.

2.3.9 Solving the Optimization Problem Corresponding to the

Maximum HK Sum-Rate

Now that we have investigated all the three categories of points, we can prove Theorems

2.1 and 2.2. In fact, it is sufficient to compare the achievable sum-rates corresponding to

all sub-categories. In Lemma 2.5-2.7, we calculated the achievable sum-rate of all these

sub-categories. By comparing these achievable sum-rates, we can now prove Theorem 2.1

and Theorem 2.2 as follows:

Proof. First, note that Rmax
sum-HK is only unknown for the barely weak-sub-class, as depicted

in Figure 2.4. In the following, we show that the barely weak-sub-class can be partitioned

into four parts. For each part, we characterize the optimal power splitting and find the

maximum achievable sum-rate Rmax
sum-HK. Note that the optimal power splitting belongs

to one of the sub-categories investigated in Lemma 2.6 and 2.7. Table 2.4 summarizes

the results of these Lemmas. Note that for any (a, b, P1, P2) in the barely weak sub-class,

the optimal power splitting belongs to one of the sub-categories of Table 2.4. Therefore,

we should find the constraints under which the achievable sum-rate of one sub-category

is greater than that of all other sub-categories.

Note that in Table 2.4, the optimal power splitting corresponding to ND1 is (λ̂1, λ̂2).

In Lemma 2.7, we proved that the optimal power splitting of this sub-category can have

four cases and is given by

(λ?1, λ
?
2) ∈ {(c, 0), (0, c′), (λ̃1, λ̃2), (λ̂1, λ̂2)}.

58



Chapter 2. Maximum HK Sum-Rate

Sub-category Optimal (λ?1, λ
?
2) Achievable sum-rate

Rsum-HK(λ?1, λ
?
2)

B1 (λ?1 ≥ c, 0) C(P1 + aP2)

B2 (0, 1) C(P2 + bP1)

B3 (0, λ?2 ≥ c′) C(P2 + bP1)

B4 (1, 0) C(P1 + aP2)

ND1 (λ̂1, λ̂2) h1(λ̂1, λ̂2)

ND2 (λ̃1, λ̃2) h1(λ̃1, λ̃2)

ND3 (λ̃1, λ̃2) h1(λ̃1, λ̃2)

Table 2.4: Sub-categories, their corresponding optimal power splittings and achievable

sum-rate expressions, for the barely weak interference sub-class.

Note that (c, 0) and (0, c′) belong to the boundary. Moreover, (λ̃1, λ̃2) belongs to ND2.

Therefore, if we do not consider (c, 0), (0, c′), and (λ̃1, λ̃2) in ND1, the maximum achiev-

able sum-rate does not decrease.

First we characterize the constraints under which the Rmax
sum-HK is given by h1(λ̂1, λ̂2),

i.e., the optimal power splitting belongs to the sub-category ND1. Note that, according

to Lemma 2.7, the sum-rate h1(λ̂1, λ̂2) is achievable if and only if

(1− b)ab
1− a

P1 + b− 1 ≤P2, (2.191)

(1− a)ab

1− b
P2 + a− 1 ≤P1, (2.192)

λ̂2 ≤ab−
1− b
P2

. (2.193)

These three constraints demonstrate a region in R4
+ which can be demonstrated in

the P1P2-plane. Note that this region is a subset of the barely weak interference sub-

class. We refer to this region as the non-zero power splitting II sub-class, as can be seen in

Figure 2.16. For this sub-class, (mλ̂2 +c, λ̂2) is an acceptable power splitting that belongs
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to the non-differentiable sub-category ND1 and results in the maximum achievable sum-

rate given by h1(λ̂1, λ̂2). We prove that for any (a, b, P1, P2) that belongs to this sub-class,

we have Rmax
sum-HK = h1(λ̂1, λ̂2). To this end, we should show that if (a, b, P1, P2) belongs

to the non-zero power splitting II sub-class, then h1(λ̂1, λ̂2) is greater than all other

sum-rates listed in Table 2.4.

Note that the non-zero power splitting II is inside the barely weak interference re-

gion. For the barely weak interference sub-class, the maximum sum-rate achieved by

investigating the boundary points is given by

max
{
C(P1 + aP2), C(P2 + bP1)

}
, (2.194)

as shown in Figure 2.13. Therefore, we need to prove that

h1(λ̂1, λ̂2) ≥ max
{
C(P1 + aP2), C(P2 + bP1)

}
. (2.195)

We present the proof for the case

max
{
C(P1 + aP2), C(P2 + bP1)

}
= C(P1 + aP2). (2.196)

Note that (2.196) is valid if and only if P1(1 − b) ≥ P2(1 − a). Due to the symmetry of

the problem, the proof of (2.195) for P1(1− b) ≤ P2(1− a) follows by exchanging index

1 with 2 and channel gain a with b.

Figure 2.17 demonstrates the proof of h1(λ̂1, λ̂2) ≥ C(P1 + aP2), for P1(1 − b) ≥

P2(1− a). In fact, in the barely weak interference sub-class, when P1(1− b) ≥ P2(1− a),

we have

max
{
C(P1 + aP2), C(P2 + bP1)

}
= C(P1 + aP2), (2.197)

as shown in Figure 2.13. Note that (λ̂1, λ̂2) is the optimal solution of (2.58) if we restrict

our search to the points that lie on ND1. Note that since P1(1− b) ≥ P2(1−a), we know

that c ≥ 0. Since (c, 0) lies on the line segment ND1, we have

Rsum-HK(λ̂1, λ̂2) ≥ Rsum-HK(c, 0), (2.198)

as shown in Figure 2.17. On the other hand, in Lemma 2.6, we proved that when λ2 = 0,

we have

Rsum-HK(λ1, 0) ≤ Rsum-HK(c, 0) = C(P1 + aP2). (2.199)
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Figure 2.16: The non-zero power splitting II sub-class demonstrated in the P1P2-plane.

Comparing (2.198) and (2.199), we conclude that

Rsum-HK(λ̂1, λ̂2) ≥ Rsum-HK(c, 0) = C(P1 + aP2). (2.200)

Similarly, one can show that

Rsum-HK(λ̂1, λ̂2) ≥ Rsum-HK(0, c′) = C(P2 + bP1). (2.201)

Therefore, we have

Rsum-HK(mλ̂2 + c, λ̂2) = h1(λ̂1, λ̂2)

= h2(λ̂1, λ̂2)

≥ max
{
C(P1 + aP2), C(P2 + bP1)

}
. (2.202)

Therefore, we have shown that, for the non-zero power splitting II sub-class, h1(λ̂1, λ̂2)

is greater than the sum-rate achieved by the four sub-categories of the boundary, i.e., B1,

B2, B3, and B4. The proof will be complete if we show that it is also greater than the

sum-rate of the ND2 and ND3 sub-categories. In the proof of Part 2.7-B, we show that

the optimal power splitting over non-differentiable points expressed in ND2 and ND3 is

given by (λ1, λ2) = (ab− 1−a
P1
, ab− 1−a

P1
). Therefore, we need to show that

Rsum-HK(λ̂1, λ̂2) ≥ Rsum-HK(ab− 1− a
P1

, ab− 1− a
P1

). (2.203)
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Figure 2.17: For the non-zero power splitting II sub-class, the achievable sum-rate cor-

responding to ND1 is greater than the achievable sum-rate corresponding to all other

sub-categories.

However, (λ1, λ2) = (ab − 1−a
P1
, ab − 1−a

P1
) lies on the line λ1 = mλ2 + c, as shown in

Figure 2.17. Over this line, (λ̂1, λ̂2) is the optimal solution of (2.58). Therefore, (2.203)

is valid, and this proves that over the non-zero power splitting II sub-class, we have

Rmax
sum-HK = h1(λ̂1, λ̂2) = C(P1 + aP2) + g1λ̂1, λ̂2). (2.204)

Second, we characterize the constraints under which the Rmax
sum-HK is given by h1(λ̃1, λ̃2),

i.e., the optimal power splitting belongs to the sub-category ND2. Therefore, we need

to compare the sum-rate corresponding to ND2 with the sum-rate corresponding to all

other sub-categories.

Remember that we only investigate the barely weak interference sub-class, in which

P1 > 1−a
ab

and P2 > 1−b
ab

. According to Lemma 2.7, for the barely weak interference

sub-class, both λ̃1 and λ̃2 are acceptable power splittings.

Moreover, note that

h1(λ̃1, λ̃2) =h2(λ̃1, λ̃2)

=C(P1 + aP2) + g1(λ̃1, λ̃2)

=C(P2 + bP2) + g2(λ̃1, λ̃2). (2.205)
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Therefore, we have

h1(λ̃1, λ̃2) ≥ max
{
C(P1 + aP2), C(P2 + bP1)

}
, (2.206)

if and only if

g1(λ̃1, λ̃2) ≥ 0, (2.207)

g2(λ̃1, λ̃2) ≥ 0. (2.208)

According to (2.167), we have

g1(λ1, λ2) ≥ 0

⇔ (1− a)λ2P2 + bλ1P1

1 + aλ2P2

≥ bλ1P1

⇔ λ1 ≤
1

bP1

(
1

a
− 1). (2.209)

Similarly, according to (2.170), we have

g2(λ1, λ2) ≥ 0

⇔ (1− b)λ1P1 + aλ2P2

1 + bλ1P1

≥ aλ2P2

⇔ λ2 ≤
1

aP2

(
1

b
− 1). (2.210)

Therefore, we have

h1(λ̃1, λ̃2) ≥ max
{
C(P1 + aP2), C(P2 + bP1)

}
, (2.211)

if and only if

λ̃1 ≤
1

bP1

(
1

a
− 1),

λ̃2 ≤
1

aP2

(
1

b
− 1), (2.212)

which can be re-written as

ab− 1− a
P1

≤ 1

bP1

(
1

a
− 1),

ab− 1− b
P2

≤ 1

aP2

(
1

b
− 1). (2.213)

Note that (2.213) is equivalent to

P1 ≤
1− a
1− ab

(
1

(ab)2
− 1),

P2 ≤
1− b
1− ab

(
1

(ab)2
− 1). (2.214)
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Therefore, for the barely weak interference sub-class, h1(ab− 1−a
P1
, ab− 1−b

P2
) ≥ max

{
C(P1+

aP2), C(P2 + bP1)
}

if and only if

1− a
ab

< P1 ≤
1− a
1− ab

(
1

(ab)2
− 1),

1− b
ab

< P2 ≤
1− b
1− ab

(
1

(ab)2
− 1). (2.215)

This region is depicted in Figure 2.18. In this region, h1(ab − 1−a
P1
, ab − 1−b

P2
) is greater

than the sum-rate corresponding to all four sub-categories of the boundary. Finally, we

compare h1(ab− 1−a
P1
, ab− 1−b

P2
) with h1(λ̂1, λ̂2), i.e., the sum-rate corresponding to ND1.

According to Lemma 2.7, h1(λ̂1, λ̂2) is the sum-rate corresponding toND1 if (a, b, P1, P2)

belongs to the power splitting II sub-class. Moreover, inside this sub-class, h1(λ̂1, λ̂2) is

greater than the sum-rates corresponding to all other sub-categories. Therefore, we only

need to consider the compliment of the Power splitting II sub-class. Consequently, the

constraints under which h2(ab− 1−a
P1
, ab− 1−b

P2
) is greater than all other sum-rates corre-

sponding to other sub-categories is specified by

1− a
ab

<P1 ≤
1− a
1− ab

(
1

(ab)2
− 1),

1− b
ab

<P2 ≤
1− b
1− ab

(
1

(ab)2
− 1),

λ̂2 >ab−
1− b
P2

. (2.216)

Since λ̂2 > ab− 1−b
P2

implies that P1 ≤ 1−a
1−ab(

1
(ab)2
− 1) and P2 ≤ 1−b

1−ab(
1

(ab)2
− 1), (2.216) is

equivalent to

1− a
ab

< P1,

1− b
ab

< P2,

λ̂2 > ab− 1− b
P2

, (2.217)

as can be seen in Figure 2.18. We refer this region as the non-zero power splitting I

sub-class. For this sub-class, we have

Rmax
sum-HK = h1(λ̃1, λ̃2) = C(P1 + aP2) + g1(λ̃1, λ̃2). (2.218)

Third, we characterize the constraints under which the Rmax
sum-HK is given by C(P1 +

aP2), i.e., the optimal power splitting belongs to the sub-category B1 or B4. Since we have
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Figure 2.18: The non-zero power splitting I sub-class, projected onto the P1P2-plane. For

this sub-class, C(P1 +aP2) + g1(ab− 1−a
P1
, ab− 1−b

P2
), which corresponds to ND2, is greater

than the sum-rate corresponding to all other sub-categories.

characterized the Power splitting I and II sub-classes in which h1(λ̃1, λ̃2) and h1(λ̂1, λ̂2)

show Rmax
sum-HK, respectively, we only need to compare C(P1 + aP2) with C(P2 + bP1).

Note that C(P1 + aP2) ≥ C(P2 + bP1) if and only if P1(1 − b) ≥ P2(1 − a). Therefore,

C(P1 + aP2) is greater than other subcategories and equals Rmax
sum-HK if and only if

(1− b)ab
1− a

P1 + b− 1 ≥ P2,

1− b
ab
≤ P2, (2.219)

as shown in Figure 2.19.

Similarly, C(P2 + bP1) is greater than other subcategories and equals Rmax
sum-HK if and

only if

(1− a)ab

1− b
P2 + a− 1 ≥ P1,

1− a
ab
≤ P1, (2.220)

as shown in Figure 2.19. In fact, Figure 2.19 shows that the entire barely weak interference

sub-class is partitioned into four sub-classes. For each sub-class, the expression that shows

Rmax
sum-HK is demonstrated.

Note that Figure 2.4 demonstrates Rmax
sum-HK for the entire weak interference class, ex-

cept the barely weak interference sub-class. On the other hand, Figure 2.19 demonstrates
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Rmax
sum-HK only for the barely weak interference sub-class. By comparing these two figures,

we see that C(P1 + aP2) corresponds to Rmax
sum-HK for two adjacent sub-classes. In fact,

Rmax
sum-HK = C(P1 + aP2) if

(1− b)ab
1− a

P1 + b− 1 ≥ P2,

1− b
ab
≤ P2, (2.221)

as shown in Figure 2.19. On the other hand, Rmax
sum-HK = C(P1 + aP2) if

P1 >
1− a
ab

,

P2 ≤
1− b
ab

, (2.222)

as shown in Figure 2.4. Therefore, Rmax
sum-HK = C(P1 + aP2) for the union of the regions

expressed by (2.221) and (2.222). Therefore, for the weak interference class, we have

Rmax
sum-HK = C(P1 + aP2) if

P1 >
1− a
ab

,

P2 ≤ max{1− b
ab

,
(1− b)ab

1− a
P1 + b− 1}, (2.223)

as shown in Figure 2.5. We denote to this sub-class as weakly mixed interference I sub-

class.

Similarly, for the weak interference class, we have Rmax
sum-HK = C(P2 + bP1) if

P2 >
1− b
ab

,

P1 ≤ max{1− a
ab

,
(1− a)ab

1− b
P2 + a− 1}, (2.224)

as shown in Figure 2.5. We denote to this sub-class as weakly mixed interference II

sub-class. As one can see in Figure 2.5, the entire weak interference class is partitioned

into five sub-classes. For each sub-class, the optimal power splitting and the maximum

sum-rate is shown in Table 2.2. This completes the proof.

Theorem1 investigates the maximum achievable sum-rate of a general two-user GIC,

when HK scheme with Gaussian inputs and no time sharing is used. Therefore, it can

be used to characterize the maximum achievable sum-rate for some particular classes

of the two-user GIC. For instance, define the class of semi-symmetric two-user GICs as
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Figure 2.19: The barely weak interference sub-class is partitioned into four sub-classes,

and for each sub-class, Rmax
sum-HK is demonstrated.

all two-user GICs in which P1(1 − b) = P2(1 − a). Note that the two-user symmetric

GIC, in which P1 = P2 and a = b, is a special member of this class. Over the barely

weak interference sub-class, when P1(1 − b) = P2(1 − a), the optimal solution is always

a non-differentiable point. In fact, for the class of semi-symmetric two-user GICs, the

optimal power splitting (λ?1, λ
?
2) is always symmetric, i.e., λ?1 = λ?2. The following theorem

investigates the achievable sum-rate of the semi-symmetric two-user GIC.

Theorem 2.4. For a two-user semi-symmetric GIC, the maximum achievable sum-rate

of the HK scheme with Gaussian inputs is given by

Rmax
sum-HK =

C
(

P1

1+aP2

)
+ C

(
P2

1+bP1

)
if P1 ≤ 1−a

ab
,

C(P1 + aP2) + g(λs) if 1−a
ab

< P1 ≤ (1−a)(
√
ab−(ab)2)

(1−ab)(ab)2 ,

C(P1 + aP2) + g(λ̂) (1−a)(
√
ab−(ab)2)

(1−ab)(ab)2 < P1,

(2.225)

where g(λ) = C( P1λ
1+aλP2

)− C(bλP1), and

λs = ab− 1− a
P1

, (2.226)

λ̂ =
1− a
1− ab

√
ab− ab
abP1

. (2.227)
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Moreover, the optimal power splitting is given by

(λ?1, λ
?
2) =


(1, 1) if P1 ≤ 1−a

ab
,

(λs, λs) if 1−a
ab

< P1 ≤ (1−a)(
√
ab−(ab)2)

(1−ab)(ab)2 ,

(λ̂, λ̂) if (1−a)(
√
ab−(ab)2)

(1−ab)(ab)2 < P1.

(2.228)

Proof. In a two-user semi-symmetric GIC, if P1 ≤ 1−a
ab

, then we have P2 ≤ 1−b
ab

. Therefore,

the maximum sum-rate is achieved by treating interference as noise. When P1 ≤ 1−a
ab

, if

λ̂2 ≥ ab− 1−b
P2

, then the maximum sum-rate is achieved by (λ?1, λ
?
2) = (ab− 1−a

P1
, ab− 1−b

P2
).

Note that since P1(1−b) = P2(1−a), we have ab− 1−a
P1

= ab− 1−b
P2

. Finally, if λ̂2 < ab− 1−b
P2

,

then the maximum sum-rate is achieved by (λ?1, λ
?
2) = (mλ̂2 + c, λ̂2), where m, c, and λ̂2

are given by (2.127), (2.128), and (2.144), respectively.

Note that, since P1(1 − b) = P2(1 − a), we can easily check that m = 1 and c = 0.

Therefore,

λ̂2 =
1 + bP1c

bP1m+ P2

(
− 1 +

√
1− (bP1m+ P2)(abP1c+ a− 1)

(1 + bP1c)(abP1m)

)
=

1

bP1 + P2

(
− 1 +

√
1− (bP1 + P2)(a− 1)

abP1

)
(a)
=

1− a
(1− ab)P1

(
− 1 +

√
1

ab

)
=

1− a
(1− ab)P1

√
ab− ab
ab

, (2.229)

where (a) is valid because bP1 + P2 = P1
1−ab
1−a . Moreover, λ̂2 ≥ ab − 1−b

P2
is valid if and

only if

1− a
1− ab

√
ab− ab
abP1

≥ab− 1− b
P2

⇔ 1− a
1− ab

√
ab− ab
abP1

≥ab− 1− a
P1

⇔ P1 ≤
(1− a)(

√
ab− (ab)2)

(1− ab)(ab)2
. (2.230)

This completes the proof.

On interesting observation about Theorem 2.4 is the value of g(λ̂) = C( P1λ̂

1+aλ̂P2
) −
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C(bλ̂P1). Note that, according to (2.227), we have

P1λ̂ =
1− a
1− ab

√
ab− ab
ab

,

P2λ̂ = P1
1− b
1− a

λ̂ =
1− b
1− ab

√
ab− ab
ab

. (2.231)

Therefore, g(λ̂) does not depend on P1 and P2. In fact, we have

g(λ̂) = log
1 +
√
ab

√
a+
√
b

= 2C
((1−

√
a)(1−

√
b)

√
a+
√
b

)
. (2.232)

This implies that for fixed values of a and b and large values of P1, i.e., P1 >
(1−a)(

√
ab−(ab)2)

(1−ab)(ab)2 ,

the achievable sum-rate is given by C(P1 + aP2) plus a constant term 2C
(

(1−
√
a)(1−

√
b)√

a+
√
b

)
.

Corollary 2.2. For a two-user symmetric GIC, in which P1 = P2 = P and a = b, the

maximum achievable sum-rate of the HK scheme with Gaussian inputs is given by

Rmax
sum-HK =

2C
(

P
1+aP

)
if P ≤ 1−a

a2
,

C
(
P (a+ 1)

)
+ g(λs) if 1−a

a2
< P ≤ 1−a3

(1+a)a3
,

C
(
P (a+ 1)

)
+ g(λ̂) if 1−a3

(1+a)a3
< P,

(2.233)

where g(λ) = C( Pλ
1+aλP

)− C(aλP ), and

λs = a2 − 1− a
P

, (2.234)

λ̂ =
1− a

a(1 + a)P
. (2.235)

Moreover, the optimal power splitting is given by

(λ?1, λ
?
2) =


(1, 1) if P1 ≤ 1−a

a2
,

(λs, λs) if 1−a
a2

< P ≤ 1−a3
(1+a)a3

,

(λ̂, λ̂) if 1−a3
(1+a)a3

< P.

(2.236)

Note that [40] investigates the two-user symmetric GIC, and shows that if power is

allocated symmetrically, (2.233) is the maximum achievable sum-rate of the HK scheme.

However, Corollary 2.2 shows that (2.233) is indeed the maximum achievable sum-rate

of the HK scheme and no non-symmetric power splitting can achieve a higher sum-rate.
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Figure 2.20: The maximum achievable sum-rate of the HK scheme with Gaussian inputs

and no time sharing for all values of a and b.

Next, we characterize the maximum achievable sum-rate of the HK scheme for all

values of a and b. Note that, when interference is weak, Theorem 2.1 completely char-

acterizes the maximum achievable sum-rate of the two-user GIC achieved by the HK

scheme with Gaussian inputs and no time sharing, as shown in Figure 2.6. Moreover, the

maximum achievable sum-rate expressions for the mixed and strong interference classes

are already known, as shown in Figure 2.2. Comparing Figure 2.6 with Figure 2.2, we

characterize the maximum achievable sum-rate of the HK scheme with Gaussian inputs

and no time sharing, for all values of a and b, as shown in Figure 2.20.

One interesting observation about Figure 2.20 is the region that corresponds toRmax
sum-HK =

C(P1 +aP2). Figure 2.6 shows that, for the weakly mixed I sub-class, we have Rmax
sum-HK =

C(P1 + aP2). On the other hand, Figure 2.2 shows that, for the mixed weak I sub-

class, we also have Rmax
sum-HK = C(P1 + aP2). Consequently, these two sub-classes can

be merged together, as shown in Figure 2.20. Note that for the weakly mixed I sub-

class, it is known that Csum = Rmax
sum-HK = C(P1 + aP2). However, for the mixed weak I

sub-class, Csum is unknown. Similar arguments follow for the region that corresponds to

Rmax
sum-HK = C(P2 + bP1). In the next chapter, we show that a similar approach can be

used to find the maximum of any linear combination of R1 and R2.
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2.4 Conclusion

This chapter studied the maximum achievable sum-rate of the HK scheme with Gaussian

inputs for the class of weak interference. We fully characterized the maximum sum-

rate without time sharing. We showed that when interference is weak, depending on the

values of P1 and P2, five distinct power-splitting policies can maximize the achievable sum-

rate. For each power splitting policy, the corresponding maximum sum-rate expression

is explicitly determined. In the next chapter, we show that time sharing increases the

maximum achievable sum-rate, and the corresponding increase can be expressed using

the upper concave envelope of a function of P1 and P2.
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Boundary of the Han-Kobayashi

Rate Region

In the previous chapter, we characterized the maximum HK sum-rate. In this chapter,

we first generalize the results of the previous chapter and characterize the maximum of

an arbitrary weighted sum-rate. Moreover, we show that the role of the time-sharing

strategy in enlarging the achievable rate region can be described in terms of calculating

the upper concave envelope of a function of P1 and P2.

3.1 Introduction

Recall that, for the two-user Gaussian Interference Channel (GIC), the Han-Kobayashi

(HK) scheme has two arbitrary variables: power splitting and time sharing. In this

scheme, each message is divided into public and private messages, and using two power-

splitting variables, λ1 and λ2, the available power of each transmitter is shared between

its public and private messages. Moreover, a time-sharing variable Q can exploit differ-

ent strategies to enlarge the achievable rate region. However, the optimization problem

involving all possible power splits and all time-sharing strategies that characterizes the

boundary of this region is not well-understood. In particular, [13] states

“even if we restrict ourselves to use only Gaussian codebooks, we need

to consider all possible power splits and different time-sharing strategies

among them. This is in general very complicated”.
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This chapter addresses this issue by investigating the HK scheme with Gaussian inputs

and finding the optimal power splitting that results in boundary points of the achievable

rate region.

The boundary of the HK rate region is known for only a few particular cases. When

interference is strong, it is known that the rate HK region in which (λ1 = 0, λ2 = 0)

characterizes the capacity region [6–8]. Moreover, this region is a polygon, and therefore,

the entire boundary can be easily characterized.

There is a one-to-one correspondence between a closed set and its support function

[46]. Let G denote the region achieved by the HK scheme with Gaussian inputs. For G,

the support function is a mapping from R2
+ to R1

+, defined by

hG(µ) = max{R1 + µR2|(R1, R2) ∈ G}. (3.1)

Therefore, by characterizing the maximum of R1 + µR2, one can fully catheterize G.

However the maximum of R1 + µR2 is not known in general. For µ = 1, the maximum

sum-rate is known for only a few particular cases. For the few cases where the sum-

capacity is known, it equals the maximum sum-rate of the HK scheme. Unfortunately,

the sum-capacity is not known in general, but only for strong interference [7] and mixed

interference [10]. For weak interference, the sum-capacity is an open problem and is

known for only a small part of the weak interference class [10–12]. For weak interference,

not only is the boundary of the HK rate region unknown, but its corresponding maximum

sum-rate is also unknown [40–42]. This chapter fully characterizes the boundary of the

HK scheme with Gaussian inputs, even when time sharing is used, a problem that has

been unsolved for more than 30 years.

This chapter studies the HK scheme with “Gaussian” inputs. Note that the optimal

distribution of the inputs is not known. In fact, for all cases where the capacity is

known, it has been achieved using the HK scheme with “Gaussian” inputs. First, the

full characterization of the achievable rate region is found, when no time sharing is used.

It is shown that, when interference is weak, the optimal power splitting that achieves a

boundary point is not unique and belongs to a set with a finite size that can be explicitly

characterized. Moreover, we examine the role of the time-sharing variable Q and the

Frequency Division (FD) technique in enlarging the achievable rate region.
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The rest of this chapter is organized as follows. In Section 3.2, the existing results

are reviewed. In particular, the difference between time sharing and time division is

highlighted. In Section 3.3, the boundary of the HK rate region is studied for the two-

user GIC with weak interference. This section, which demonstrates how optimization

over power splitting and time sharing is performed, contains the main contributions of

this chapter. Moreover, in this section, using upper concave envelope, we show how time

sharing increases the achievable rate region. Finally, Section 3.4 concludes the chapter.

3.2 Preliminaries

In this chapter, the following notations are used. The notation m
.
= n means n is the

definition of m, and C(x)
.
= 1

2
log(1+x). Moreover, for non-negative numbers a, b, x such

that a ≤ b, [x]ba
.
= min{max{x, a}, b}. For a set Λ, |Λ| shows the size of Λ. For a function

f : R2
+ → R1

+, C[f ] represents the upper concave envelope of f , i.e. the smallest concave

function that is bigger than f . Note that, by Caratheodory’s theorem,

C[f ](P1, P2) = sup
θi,αiβi∈[0,1]

3∑
i=1

θif
(αiP1

θi
,
βiP2

θi

)
, (3.2)

subject to
∑3

i=1 θi =
∑3

i=1 αi =
∑3

i=1 βi = 1.

In this chapter, we investigate the weak interference class, i.e., when a < 1 and b < 1.

Recall that, for the two-user GIC, the HK scheme results in the best-known achievable

rate region. As stated in the previous chapter, this region is described by [6, 44,47]
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R1 <D1
.
= C

( P1

1 + aλ2P2

)
,

R2 <D2
.
= C

( P2

1 + bλ1P1

)
,

R1 +R2 <D
1
3
.
= C

(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ2P2

1 + bλ1P1

)
,

R1 +R2 <D
2
3
.
= C

(P2 + bλ̄1P1

1 + bλ1P1

)
+ C

( λ1P1

1 + aλ2P2

)
,

R1 +R2 <D
3
3
.
= C

(λ1P1 + aλ̄2P2

1 + aλ2P2

)
+ C

(λ2P2 + bλ̄1P1

1 + bλ1P1

)
,

2R1 +R2 <D4
.
= C

(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ1P1

1 + aλ2P2

)
+ C

(λ2P2 + bλ̄1P1

1 + bλ1P1

)
,

R1 + 2R2 <D5
.
= C

(P2 + bλ̄1P1

1 + bλ1P1

)
+ C

( λ2P2

1 + bλ1P1

)
+ C

(λ1P1 + aλ̄2P2

1 + aλ2P2

)
. (3.3)

3.2.1 Time Sharing versus Time/Frequency Division

One of the contributions of Han and Kobayashi is the introduction of the time-sharing

variable Q which can enlarge the achievable rate region. It is important to highlight that

the role of the time-sharing variable Q is not necessarily equivalent to the convex hull

operation of the FD technique [10,12,37].

Following [10], we define

D3
.
= min{D1

3, D
2
3, D

2
3}. (3.4)

Let the vector

D(P1, P2, λ1, λ2)
.
= (D1, D2, D3, D4, D5)t, (3.5)

where Dis are defined in (3.3). The rate region G0 is defined as follows:

G0 = {R ∈ R2
+|AR ≤ D}, (3.6)

where R
.
= (R1, R2)t, and A is defined as

A =

1 0 1 2 1

0 1 1 1 2


t

.
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G0 is a polytope which has at most 7 extreme points. In fact, G0 represents the region

achieved by a fix power splitting (λ1, λ2). Observe that (0, 0), (C(P1), 0), and (0, C(P2))

are three extreme points of G0. For this region, the maximum of R1 + µR2 is denoted by

Rµ-HK and is expressed by

Rµ-HK(P1, P2, λ1, λ2)
.
= max

R1,R2∈G0
R1 + µR2. (3.7)

We can enlarge the achievable rate region G0 using different techniques. For instance,

define G1 as the union of the G0(P1, P2, λ1, λ2), where the union is taken over all λ1, λ2 ∈

[0, 1], as explained in the following:

G1
.
=

⋃
λ1,λ2∈[0,1]

G0(P1, P2, λ1, λ2). (3.8)

For this region, the maximum of R1 +µR2 is denoted by Rmax
µ-HK, as given by the following

expression:

Rmax
µ-HK

.
= max
R1,R2∈G1

R1 + µR2. (3.9)

Note that we have

Rmax
µ-HK(P1, P2) = max

λ1,λ2∈[0,1]
Rµ-HK(P1, P2, λ1, λ2). (3.10)

One can enlarge G0 using the time-sharing variable Q. Define GQ as

GQ = {R ∈ R2
+|AR ≤ DQ}, (3.11)

where DQ
.
=
∑5

i=1 qiD
(
αiP1

qi
, βiP2

qi
, λ1i, λ2i

)
, and we have λ1i, λ2i, αi, βi, qi ∈ [0, 1], such

that
∑5

i=1 qi =
∑5

i=1 αi =
∑5

i=1 βi = 1. It is proved that, using more than 5 qis does not

enlarge GQ [48]. This scheme is called Coded Time Sharing (CTS) [37]. We denote the

maximum of R1 +µR2 of the HK scheme with Gaussian inputs and with CTS by Rmax-Q
µ-HK ,

as expressed in the following:

Rmax-Q
µ-HK

.
= max
R1,R2∈GQ

R1 + µR2. (3.12)

Moreover, we can enlarge G0 by using the Time Division (TD) or FD technique. Define

GFD as

GFD =
{

R|R =
3∑
i=1

θiRi, ARi ≤ D
(αiP1

θi
,
βiP2

θi
, λ1i, λ2i

)}
, (3.13)
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for Ri ∈ R2
+ and λ1i, λ2i, αi, βi, θi ∈ [0, 1], such that

∑3
i=1 θi =

∑3
i=1 αi =

∑3
i=1 βi = 1.

Intuitively, in the FD scheme, the entire bandwidth is divided into 3 sub-bands, where

the ith sub-band has θi percentage of the bandwidth. The first transmitter allocates αi

percentage of its power to the ith sub-band and the second transmitter allocates βi per-

centage of its power to the ith sub-band. Finally, (λ1i, λ2i) represents the power splitting

used in the ith sub-band. It is known that GFD is a closed and convex region and increas-

ing the number of sub-bands to more than 3 does not enlarge GFD [10, 48]. We denote

the maximum weighted sum-rate of the HK scheme with Gaussian inputs and with FD

by Rmax-FD
µ-HK , as expressed in the following:

Rmax-FD
µ-HK

.
= max
R1,R2∈GFD

R1 + µR2. (3.14)

One can see that G0 ⊆ G1 ⊆ GFD ⊆ GQ, and therefore, Rµ-HK(λ1, λ2) ≤ Rmax
µ-HK ≤

Rmax-FD
µ-HK ≤ Rmax-Q

µ-HK . However, for the weak interference class, [10] proves that CTS and

FD result in the same achievable rate region, i.e., GFD = GQ. Therefore, we can conclude

the following corollary:

Corollary 3.1. For the two-user GIC with weak interference,

Rmax-FD
µ-HK = Rmax-Q

µ-HK .

This corollary is used to find Rmax-Q
µ-HK . Solving the optimization problem (3.12) is

complicated. However, in the next section, we solve (3.14) in two steps. In the first step,

we optimize over λ1j, λ2j, for a fixed j. In the second step, we show that the optimization

over θj, αj, and βj is equivalent to calculating the upper concave envelope with respect

to (P1, P2).

3.3 Boundary of the HK Rate Region

This section characterizes the entire boundary of the HK rate region. The main results

are given in the following two theorems. The first theorem shows the set of optimal

power splittings. The second theorem discusses the role of time sharing in enlarging the

achievable rate region.
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3.3.1 Main Results

Theorem 3.1. For the two-user GIC, when interference is weak, the maximum of R1 +

µR2 achieved by the HK scheme with Gaussian inputs and without CTS is given by

Rmax
µ-HK(P1, P2) = max

λ1,λ2∈Λµ
Rµ-HK(λ1, λ2), (3.15)

where Λµ is a finite set representing the optimal power splittings that maximize R1 +µR2.

More importantly, for a fixed µ, one can explicitly find all elements of Λµ.

Theorem 3.1 demonstrates that the optimal power splitting, and consequently, the

maximum of R1 + µR2 can have up to |Λµ| distinct mathematical expressions, depend-

ing on the values of P1 and P2. In fact, this theorem partitions the weak interference

class into |Λµ| sub-classes. For each sub-class, Theorem 3.1 demonstrates Rmax
µ-HK and the

corresponding optimal power-splitting variables.

Note that according to (3.10), Rmax
µ-HK(P1, P2) is obtained by maximizing Rµ-HK(λ1, λ2)

over all (λ1, λ2). Theorem 3.1 claims that one can restrict the search for optimal power-

splitting variables to the finite set Λµ. We show that the set of optimal power splitting

points can be partitioned into three categories of points: points that correspond to sta-

tionary points inside the feasible region, points that lie on the boundary of the feasible

region, and points at which the function Rµ-HK(λ1, λ2) is non-differentiable. Before prov-

ing this theorem, we state our second result. The next theorem shows how CTS increases

R1 + µR2.

Theorem 3.2. For the two-user GIC, when interference is weak, the maximum of R1 +

µR2 achieved by the HK scheme with Gaussian inputs and with CTS is given by

Rmax-Q
µ-HK (P1, P2) = C[Rmax

µ-HK](P1, P2). (3.16)
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Proof. When interference is weak, we have

Rmax-Q
µ-HK

(a)
= Rmax-FD

µ-HK

= max
R1,R2∈GFD

R1 + µR2

= max
θi,αiβi,λi1,λ

i
2∈[0,1]

3∑
i=1

θiRµ-HK

(αiP1

θi
,
βiP2

θi
, λi1, λ

i
2

)
= max

θi,αiβi∈[0,1]

3∑
i=1

θi max
λi1,λ

i
2∈[0,1]

Rµ-HK

(αiP1

θi
,
βiP2

θi
, λi1, λ

i
2

)
= max

θi,αiβi∈[0,1]

3∑
i=1

θiR
max
µ-HK

(αiP1

θi
,
βiP2

θi

)
(b)
= C[Rmax

µ-HK](P1, P2), (3.17)

where (a) is valid by Corollary 3.1 and (b) is valid by (3.2).

Theorem 3.2 shows that when CTS is used, the maximum of R1 +µR2 increases from

Rmax
µ-HK(P1, P2) to C[Rmax

µ-HK](P1, P2). Note that, by the definition of the upper concave en-

velop, we have Rmax
µ-HK(P1, P2) ≤ C[Rmax

µ-HK](P1, P2). Moreover, this theorem clarifies the role

of time sharing in increasing the achievable rate region. For instance, if Rmax
µ-HK(P1, P2) is

concave, then time sharing does not increase it. In fact, for mixed and strong interference,

the achievable sum-rate of the HK scheme without time sharing is a concave function of

(P1, P2), and therefore, time sharing does not increase it. However, when interference is

weak, Rmax
µ-HK(P1, P2) is not concave and time sharing can be useful.

In the following, we discus two interesting properties of the HK achievable rate region.

We show that similar to the achievable rate region of the multiple access channel, which

corresponds to a pentagon, the achievable rate region of the HK scheme with no time

sharing is a polygon with seven extreme points. These properties are used to prove

Theorem 3.1.

3.3.2 Properties of the HK Rate Region

To prove Theorem 3.1, we first explore some properties of the HK rate region, as stated

in the following lemmas.
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Lemma 3.1. For the HK rate region defined in (3.3), we have

D4 +D5 = D1
3 +D2

3 +D3
3, (3.18)

D4 +D5 ≥ 3D3, (3.19)

D1 +D3
3 ≥ D4, (3.20)

D2 +D3
3 ≥ D5, (3.21)

D1 +D5 ≥ 2D3, (3.22)

D2 +D4 ≥ 2D3, (3.23)

D2
3 +D1 ≥ D4 if a < 1, ab < 1, (3.24)

D2
3 +D2 ≥ D5 if a < 1, ab < 1, (3.25)

D1
3 +D1 ≥ D4 if b < 1, ab < 1, (3.26)

D1
3 +D2 ≥ D5 if b < 1, ab < 1, (3.27)

D3 +D1 ≥ D4 if b < 1, a < 1, (3.28)

D3 +D2 ≥ D5 if b < 1, a < 1, (3.29)

D2 +D1 ≥ D3 if a < 1, b < 1, (3.30)

D1
3 = D2

3 ⇔ λ1 = (1− c)λ2 + c, (3.31)

D2
3 = D3

3 ⇔ λ1 = λ̃1 or λ2 = 1, (3.32)

D3
3 = D1

3 ⇔ λ2 = λ̃2 or λ1 = 1, (3.33)

where c
.
= P1(1−b)−P2(1−a)

P1(1−b+P2(1−ab)) and (λ̃1, λ̃2)
.
= (ab− 1−a

P1
, ab− 1−b

P2
).

Proof. The proof is straightforward. In fact, (3.18) is validated by direct calculation, and

(3.19) is the direct consequence of (3.18). Note that

3D3 =3 min{D1
3, D

2
3, D

3
3}

≤D1
3 +D2

3 +D3
3

=D4 +D5. (3.34)
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To prove (3.20), we calculate D4 −D1 −D3
3.

D4 −D1 −D3
3

(a)
=C

(P1 + aλ̄2P2

1 + aλ2P2

)
+ C

( λ1P1

1 + aλ2P2

)
− C

(λ1P1 + aλ̄2P2

1 + aλ2P2

)
− C

( P1

1 + aλ2P2

)
(b)
=C
( λ̄1P1

1 + λ1P1 + aP2

)
− C

( λ̄1P1

1 + λ1P1 + aλ2P2

)
(c)

≤0, (3.35)

where (a) is valid by (3.3), (b) is valid by Lemma 2.2 of the previous chapter, and (c) is

valid because λ2 ≤ 1. (3.21) can be proved similarly.

To prove (3.22), note that

D1 +D5
(a)
=D1 +D1

3 +D2
3 +D3

3 −D4

(b)

≥D1
3 +D2

3

(c)

≥2D3, (3.36)

where (a), (b), and (c) are valid by (3.18), (3.20), and (3.4), respectively. (3.23) can be

proved similar to (3.22).

To prove (3.24), we directly calculate D2
3 +D1 −D4, as follows:

D2
3 +D1 −D4

(a)
=C

( P1

1 + aλ2P2

)
+ C

(P2 + bλ̄1P1

1 + bλ1P1

)
− C

(P1 + aλ̄2P2

1 + aλ2P2

)
− C

(λ2P2 + bλ̄1P1

1 + bλ1P1

)
(b)
= − C

( aλ̄2P2

1 + P1 + aλ2P2

)
+ C

( λ̄2P2

1 + bP1 + λ2P2

)
=− C

( λ̄2P2

1
a

+ P1

a
+ λ2P2

)
+ C

( λ̄2P2

1 + bP1 + λ2P2

)
(c)

≥0, (3.37)

where (a) is valid by (3.3), (b) is valid by Lemma 2.2 of the previous chapter, and (c) is

valid if a + abP1 ≤ 1 + P1, which is satisfied because we have assumed that a < 1 and

ab < 1. (3.25) can be proved similarly.
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To prove (3.26), we calculate D1
3 +D1 −D4, as follows:

D1
3 +D1 −D4

(a)
=C

( P1

1 + aλ2P2

)
+ C

( λ2P2

1 + bλ1P1

)
− C

( λ1P1

1 + aλ2P2

)
− C

(λ2P2 + bλ̄1P1

1 + bλ1P1

)
(b)
= + C

( λ̄1P1

1 + λ1P1 + aλ2P2

)
− C

( bλ̄1P1

1 + bλ1P1 + λ2P2

)
= + C

( λ̄1P1

1 + λ1P1 + aλ2P2

)
− C

( λ̄1P1

1
b

+ λ1P1 + λ2
P2

b

)
(c)

≥0, (3.38)

where (a) is valid by (3.3), (b) is valid by Lemma 2.2 of the previous chapter, and (c) is

valid if b + abP2 ≤ 1 + P2, which is satisfied because we have assumed that b < 1 and

ab < 1. (3.27) can be proved similarly.

To prove (3.28), note that when a < 1 and b < 1, we have

D1
3 +D1

(a)

≥D4,

D2
3 +D1

(b)

≥D4,

D3
3 +D1

(c)

≥D4,

where (a), (b), and (c) are valid by (3.26), (3.24), and (3.20), respectively. Therefore,

(3.28) is valid. (3.29) can be proved similarly.

To prove (3.30), we can write

D1 +D2

(a)

≥D4 +D5 − 2D3

(b)
=D1

3 +D2
3 +D3

3 − 2D3

≥D3, (3.39)

where (a) is valid by (3.28) and (3.29) and (b) is valid by (3.18).

Observe that (3.31), (3.32), and (3.33) are valid by Lemma 2.3, proved in the previous

chapter. This completes the proof.

Lemma 3.2. For the two-user GIC with weak interference, the HK rate region G0, charac-

terized in (3.3), is a polygon with exactly seven extreme points if (λ1, λ2) /∈ {(1, 1), (λ̃1, λ̃2)}.

Moreover, if (λ1, λ2) = (1, 1), G0 has four extreme points, and if (λ1, λ2) = (λ̃1, λ̃2), G0

has six extreme points.
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Figure 3.1: The achievable rate region G0 and its extreme points.

Proof. The proof can be established using Lemma 3.1. For instance, G0 can have six

extreme points if and only if D4 + D5 ≤ 3D3. However, according to (3.19), D4 + D5 ≥

3D3. Therefore, G0 can have six extreme points if and only if

D4 +D5 =D1
3 +D2

3 +D3
3

=3D3. (3.40)

On the other hand, D1
3 +D2

3 +D3
3 = 3D3 if and only if

D1
3 = D2

3 = D3
3. (3.41)

Note that, according to (3.31), (3.32), and (3.33), one can satisfy (3.41) if and only if

(λ1, λ2) ∈ {(1, 1), (λ̃1, λ̃2)}. (3.42)
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Therefore, if (λ1, λ2) /∈ {(1, 1), (λ̃1, λ̃2)}, then G0 cannot have six extreme points. One can

check that if (λ1, λ2) = (1, 1), then G0 has four extreme points, as shown in Figure 3.1.

Similarly, if (λ1, λ2) = (λ̃1, λ̃2), then G0 has six extreme points, as shown in Figure 3.1.

Following a similar line of arguments, one can see that G0 cannot have five extreme

points. Moreover, G0 can have four extreme points if and only if (λ1, λ2) = (1, 1). This

completes the proof.

The properties of the HK rate region can be used to describe the optimization problem

that corresponds to the maximum of an arbitrary weighted sum-rate. In the next section,

we use linear programming tools to describe that optimization problem.

3.3.3 The Optimization Problem Corresponding to the Maxi-

mum Weighted HK Sum-rate

To prove Theorem 3.1, we express an optimization problem that characterizes the maxi-

mum of R1 + µR2, as explained in the following theorem.

Theorem 3.3. For the two-user GIC with weak interference, Rmax
µ-HK is given by the fol-

lowing optimization problem:

Rmax
µ-HK =



max
λ1,λ2∈[0,1]

D1 + µ(D4 − 2D1) if 0 < µ ≤ 1
2

max
λ1,λ2∈[0,1]

D4 −D3 + µ(2D3 −D4) if 1
2
< µ ≤ 1

max
λ1,λ2∈[0,1]

2D3 −D5 + µ(D5 −D3) if 1 < µ ≤ 2

max
λ1,λ2∈[0,1]

D5 − 2D2 + µD2 if 2 < µ,

where D1, D2, D3, D4, and D5 are defined in (3.3).

Proof. Assume that (λ1, λ2) /∈ {(1, 1), (λ̃1, λ̃2)}. By Lemma 3.2, we know that the feasible

region G0 has seven extreme points, as shown in Figure 3.2. Since the objective function

R1 + µR2 is a linear function, it achieves its maximum at one of the extreme points of

the feasible region. In fact, Rmax
µ-HK is the solution of the optimization problem (3.9), and

R1 +µR2 obtains its maximum at E2, E3, E4, and E5, if µ ≤ 0.5, 0.5 < µ ≤ 1, 1 < µ ≤ 2,
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Figure 3.2: Depending on the value of µ, R1 + µR2 is maximized at one of the extreme

points.

and 2 < µ, respectively, as stated in Theorem 3.3. Moreover, if (λ1, λ2) = (1, 1), one can

show that E2 = E3 = E4 = E5. Similarly, if (λ1, λ2) = (ab− 1−a
P1
, ab− 1−b

P2
), then E3 = E4.

Consequently, for these two cases, optimization of Theorem 3.3 holds. This completes

the proof.

To prove Theorem 3.1, we need to solve four optimization problems, the problems

given in Theorem 3.3 for different values of µ. According to the interior extremum

theorem, the global maximum of a function f over a feasible region A is achieved at one

of the following points: a stationary point or a boundary point or a point at which the

function f is non-differentiable [45,46]. Note that the feasible region of the optimization

problems of Theorem 3.3 is λ1, λ2 ∈ [0, 1]. Therefore, the boundary of the feasible region,

denoted by B, is the boundary of a unit square which can be represented as B = B1 ∪
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Figure 3.3: Behavior of Rµ = R1 + µR2 = D1 + µ(D4− 2D1) over the feasible region and

the six optimal power splittings that maximize Rµ.

B2 ∪ B2 ∪ B4, where

B1
.
= {(λ1, 0) : 0 ≤ λ1 ≤ 1},

B2
.
= {(λ1, 1) : 0 ≤ λ1 ≤ 1},

B3
.
= {(0, λ2) : 0 ≤ λ2 ≤ 1},

B4
.
= {(1, λ2) : 0 ≤ λ2 ≤ 1}.

Relying on this idea, we solve the optimization problems corresponding to µ ≤ 0.5,

and 0.5 < µ ≤ 1 in two separate lemmas. The other two optimization problems of

Theorem 3.3, corresponding to 1 < µ ≤ 2 and 2 < µ, can be solved similarly. Lemma 3.3

investigates the case in which µ ≤ 1
2
. This lemma proves Theorem 3.1, for µ ≤ 1

2
. It

shows that for this range of µ, |Λµ| ≤ 6.

Lemma 3.3. If R?
µ is the optimal solution of the optimization problem

R?
µ = max

λ1,λ2∈[0,1]
D1 + µ(D4 − 2D1), (3.43)

then R?
µ = max

λ1,λ2∈Λµ
Rµ-HK(λ1, λ2), where Λµ is given by

Λµ = {(0, d), (0, 1), (1, 0), (1, d), (0, [λsB3 ]
1
d), (1, [λ

s
B4 ]

d
0)}, (3.44)

where d
.
= [ 1−b

abP2
]10. Moreover, λsB3 and λsB4, which are stationary points corresponding to

local maximums over B3 and B4, respectively, can be obtained by solving the following
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equations:

∂
(
D1(0, λ2) + µ(D4(0, λ2)− 2D1(0, λ2))

)
∂λ2

= 0, (3.45)

∂
(
D1(1, λ2) + µ(D4(1, λ2)− 2D1(1, λ2))

)
∂λ2

= 0. (3.46)

Proof. Note that we have

∂
(
D1 + µ(D4 − 2D1)

)
∂λ1

= µ
∂D4

∂λ1

=
−µP1(abλ2P2 + b− 1)

(1 + bλ1P1)(1 + λ1P1 + aλ2P2)
.

This shows that, with respect to λ1, D1 + µ(D4 − 2D1) is increasing if λ2 ≤ d
.
= [ 1−b

abP2
]10,

and is decreasing if λ2 > d (see Figure 3.3). Therefore, the optimal λ?1 belongs to {0, 1}. If

λ?1 = 0, then by taking derivative with respect to λ2, one can show that λ?2 ∈ {d, 1, [λsB3 ]
1
d}.

Similarly, if λ?1 = 1, then λ?2 ∈ {0, d, [λsB4 ]
1
d}, as shown in Figure 3.3. One can check that

equations (3.45) and (3.46) can have at most one solution in [0, 1] that corresponds to a

local maximum. This completes the proof.

Solving the optimization problem of Theorem 3.3 corresponding to 1
2
< µ ≤ 1 is more

challenging because the function D3 = min{D1
3, D

2
3, D

3
3} is not differentiable over the

feasible region. However, we use properties (3.31-3.33) and partition the feasible region

into up to three parts, namely I1, I2, and I3, where

Ij
.
= {(λ1, λ2) : D3 = Dj

3}. (3.47)

Note thatD3 is differentiable within each partition. Figure 3.4 shows how this partitioning

is performed, depending on the values of P1 and P2. D3 can be non-differentiable only

at the boundary between two adjacent partitions. As shown in Figure 3.4, adjacent

partitions are separated by black solid line segments. These three lines are expressed by

N1
.
= {(λ1, λ2) : λ1 = (1− c)λ2 + c}, (3.48)

N2
.
= {(λ1, λ2) : λ1 = λ̃1}, (3.49)

N3
.
= {(λ1, λ2) : λ2 = λ̃2}. (3.50)
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Figure 3.4: Behavior of D3 over the feasible region.

Moreover, we explore the behavior of D3 with respect to λ1. Note that we have

∂D1
3(λ1, λ2)

∂λ1

=
−bλ2P2P1

(1 + bP1λ1)(1 + bP1λ1 + λ2P2)
, (3.51)

∂D2
3(λ1, λ2)

∂λ1

=
P1(1− b− abλ2P2)

(1 + bP1λ1)(1 + aP2λ2 + λ1P1)
, (3.52)

∂D3
3(λ1, λ2)

∂λ1

=
P1(1− b− abP2)

(1 + bP1λ1)(1 + aP2 + P1λ1)
. (3.53)

Therefore, for each partition, we can check if D3 is increasing (inc), decreasing (dec), or

constant (con) with respect to λ1, as shown in Figure 3.4. Relying on this perspective,

we prove Theorem 3.1 for 0.5 < µ ≤ 1, in the following lemma:
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Figure 3.5: Behavior of Rµ = R1 +µR2 = (1−µ)D4 +(2µ−1)D3 over the feasible region:

the optimal power splittings that maximize Rµ are shown by solid black dots.
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Lemma 3.4. If R?
µ is the optimal value of the optimization problem

R?
µ = max

λ1,λ2∈[0,1]
D4 −D3 + µ(2D3 −D4)

= max
λ1,λ2∈[0,1]

(1− µ)D4 + (2µ− 1)D3, (3.54)

then R?
µ = max

λ1,λ2∈Λµ
Rµ-HK(λ1, λ2), where Λµ is given by

Λµ =
{

(0, 1), (0, [λsB3 ]
1
0), (1, 0), (1, [λsB4 ]

1
0), (1, 1), ([λsB2 ]

1
0, 1)

([λ̃1]10, [λ
s
N2

]10), ([λ̃1]10, [λ̃2]10), ([λsN3
]10, [λ̃2]10),

([λs1−N1
]10, [λ

s
2−N1

]10), ([λ1−I1 ]
1
0, [λ2−I1 ]

1
0),

([λ1−I2 ]
1
0, [λ2−I2 ]

1
0), ([λ1−I3 ]

1
0, [λ2−I3 ]

1
0)
}
. (3.55)

Figure 3.5 demonstrates all optimal power splittings of Λµ, and Table 3.1 provides their

corresponding definitions.

Proof. Once the feasible region is partitioned, we need to solve an optimization problem

over each partition. For instance, if P1 >
1−a
ab

and P2
1−b
ab

, we solve three optimization

problems, corresponding to three feasible regions, namely I1, I2, and I3, as shown in

Figure 3.5.

The optimal power splitting is either a stationary point inside one of the partitions

or a point on the boundary of the partitions. To find the stationary point inside Ij, we

should solve the equation

∇
(
R?
µ) =(0, 0)

⇔ ∇
(
(1− µ)D4 + (2µ− 1)D3) =(0, 0)

⇔ ∂(1− µ)D4(λ1, λ2) + (2µ− 1)Dj
3(λ1, λ2)

∂λ1

=0 and

∂(1− µ)D4(λ1, λ2) + (2µ− 1)Dj
3(λ1, λ2)

∂λ2

=0. (3.56)

In fact, (λ1−Ij , λ2−Ij) is the solution of (3.56) that corresponds to a local maximum inside

Ij. Other elements of Λµ belong to the boundary of partitions. Note that the boundary

of all partitions are line segments. Therefore, an optimal power splitting on the boundary

of partitions is either a vertex of the boundary or a local maximum over the boundary

which has a derivative of zero along the direction of the boundary. Table 3.1 shows all
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Power

splitting
Given by the solution of

λsB2

∂
(

(1−µ)D4(λ1,1)+(2µ−1)D3(λ1,1)
)

∂λ1
= 0

λsB3

∂
(

(1−µ)D4(0,λ2)+(2µ−1)D3(0,λ2)
)

∂λ2
= 0

λsB4

∂
(

(1−µ)D4(1,λ2)+(2µ−1)D3(1,λ2)
)

∂λ2
= 0

λsN2

∂
(

(1−µ)D4(λ̃1,λ2)+(2µ−1)D3(λ̃1,λ2)
)

∂λ2
= 0

λsN3

∂
(

(1−µ)D4(λ1,λ̃2)+(2µ−1)D3(λ1,λ̃2)
)

∂λ1
= 0

λs2−N1

∂
(

(1−µ)D4((1−c)λ2+c,λ2)+(2µ−1)D3((1−c)λ2+c,λ2)
)

∂λ2
= 0

λs1−N1

λs1−N1
= (1− c)λs2−N1

+ c

λ1−Ij
∂(1−µ)D4(λ1,λ2)+(2µ−1)Dj3(λ1,λ2)

∂λ1
= 0, j ∈ {1, 2, 3}

λ2−Ij
∂(1−µ)D4(λ1,λ2)+(2µ−1)Dj3(λ1,λ2)

∂λ2
= 0, j ∈ {1, 2, 3}

Table 3.1: The optimal power splittings.

the optimal power splittings. For instance, (λsB2 , 1) is a point on the boundary section B2.

The point (λ̃1, λ
s
N2

) lies on non-differentiable points N2. Finally, the point (λ1−Ij , λ2−Ij)

is a stationary point inside Ij.

In the next section, we show that Theorems 3.1 and 3.2 can be used to rederive several

known results about the HK achievable rate region.

3.3.4 Rederiving Existing Results

Using Theorems 3.1 and 3.2, we prove some known results. First, note that the set Λµ,

given in (3.55), leads to a full characterization of R1 +µR2 for 0.5 < µ ≤ 1. For instance,
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for µ = 1, Chapter 1 shows that the set Λµ reduces to

Λ1 = {(0, 1), (1, 0), ([λ̃1]10, [λ̃2]10), (1, 1), ([λs1−N1
]10, [λ

s
2−N1

]10)}.

Consequently, the maximum sum-rate ( max
λ1,λ2∈Λ1

R1-HK(λ1, λ2)) equals the maximum of five

distinct functions of (P1, P2), as proved in the previous chapter.

Remark 3.1. Sason proposes a coding scheme that achieves a maximum sum-rate of

C(P1 + P2) for all values of a and b [49]. For the symmetric channel, we compare this

achievable sum-rate with Rmax
sum-HK, given in (2.233). When P is small, i.e., P ≤ 1−2a

a2
,

one can see that Rmax
sum-HK ≥ C(2P ). For this range, the HK scheme with no time sharing

outperforms the Sason’s scheme. On the other hand, when P goes to infinity, Rmax
sum-HK

approaches 1
2

(
log(P ) + log(a + 1) + gs(λ̂)

)
= 1

2

(
log(P ) + log( (1+a)3

4a
)
)
, whereas C(2P )

approaches 1
2

(
log(P ) + log(2)

)
. One can see that, if a ≤

√
5− 2, then Rmax

sum-HK ≥ C(2P ),

and if a >
√

5− 2, then Rmax
sum-HK < C(2P ). This implies that for large values of a and P ,

Sason’s scheme outperforms the HK scheme with no time sharing.

The observation that Sason’s scheme can sometimes achieve a higher sum-rate is a

special case of the following argument: if the FD technique is used, the achievable sum-

rate increases from Rmax
sum-HK(P1, P2) to C[Rmax

sum-HK](P1, P2), where

C[Rmax
sum-HK](P1, P2) = max

θi,αiβi∈[0,1]

3∑
i=1

θiR
max
sum-HK(

αiP1

θi
,
βiP2

θi
),

subject to
∑

θi =
∑

αi =
∑

βi = 1.

In this scheme, the entire bandwidth is divided into 3 sub-bands, and in each sub-band

the HK scheme is used. In the ith sub-band, which has θi percentage of the bandwidth,

the first transmitter uses αi percentage of its total power and the second transmitter

uses βi percentage of its total power. According to Caratheodory’s theorem, the rate

region achieved by th FD technique will not enlarge if more than three sub-bands are

used [10,48]. Sason’s achievable sum-rate of C(P1 + P2) can be directly achieved by this

scheme. Note that f1(P1, P1)
.
= C(P1 + aP2) and f2(P1, P1)

.
= C(P2 + bP1) are both

achievable sum-rates. Therefore, using the FD technique, C[max{f1, f2}](P1, P2) is also

achievable. In the following, we show that

C[max{f1, f2}](P1, P2) = C(P1 + P2). (3.57)
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Let f
.
= max{f1, f2}. By Caratheodory’s theorem,

C[f ](P1, P2) = sup
θi,αiβi∈[0,1]

3∑
i=1

θif
(αiP1

θi
,
βiP2

θi

)
, (3.58)

subject to
∑3

i=1 θi =
∑3

i=1 αi =
∑3

i=1 βi = 1. Therefore, we have

C[f ](P1, P2) = sup
θi,αiβi∈[0,1]

3∑
i=1

θif
(αiP1

θi
,
βiP2

θi

)
≥θ̂1f

( α̂1P1

θ̂1

,
β̂1P2

θ̂1

)
+ θ̂2f

( α̂2P1

θ̂2

,
β̂2P2

θ̂2

)
≥θ̂1f1

( α̂1P1

θ̂1

,
β̂1P2

θ̂1

)
+ θ̂2f2

( α̂2P1

θ̂2

,
β̂2P2

θ̂2

)
=θ̂1C(P1 + P2) + θ̂2C(P1 + P2)

=C(P1 + P2), (3.59)

where

θ̂1 =
P1

P1 + P2

, (3.60)

θ̂2 =
P2

P1 + P2

, (3.61)

α̂1 = 1, (3.62)

α̂2 = 0, (3.63)

β̂1 = 0, (3.64)

β̂2 = 1. (3.65)

On the other hand, C[f ](P1, P2) is the smallest concave function which lies above C(P1 +

aP2) and C(P2 + bP1). Since C(P1 + P2) is concave and is larger than C(P1 + aP2) and

C(P2 + bP1), we have

C[f ](P1, P2) ≤ C(P1 + P2). (3.66)

Comparing (3.66) with (3.59), we conclude that

C[f ](P1, P2) = C(P1 + P2). (3.67)

Therefore, for all values of a < 1 and b < 1, one can achieve C(P1 + P2). On the

other hand, if the first receiver decides to decode the entire interference, then a MAC

bound on the sum-rate implies that R1 + R2 < C(P1 + aP2). Note that since a < 1,
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C(P1 + aP2) < C(P1 + P2). This shows that, for weak interference, if the HK scheme

requires one of the receivers to decode the entire interference, then the achievable sum-

rate will not be optimal. This is in contrast to the strong and mixed interference classes,

in which to achieve the sum-capacity, at least one of the receivers must decode the entire

interference.

The time-sharing variable Q can also enlarge the achievable rate region. Furthermore,

this region includes the rate region achieved by the FD technique [6]. However, under

some constraints, these two regions are in fact equal. For instance, when interference is

weak, FD and Q result in the same achievable rate region, as stated in Corollary 3.1.

Therefore, one can characterize the maximum achievable sum-rate, even when time shar-

ing is used, as explained in the following corollary:

Corollary 3.2. When interference is weak, the maximum achievable sum-rate of the

HK scheme with Gaussian inputs (and with time sharing) is given by C[Rmax
sum-HK](P1, P2),

where the function Rmax
sum-HK(P1, P2) is given in (2.19).

Remark 3.2. Explicit calculation of the upper concave envelope of a function is in gen-

eral very complicated. However, under some constraints, one can use supporting hyper-

planes and explicitly characterize the upper concave envelope. Using this idea, Costa and

Nair [42] characterized the maximum achievable sum-rate of the symmetric channel, for

some ranges of channel parameters. Following a similar approach, one can explicitly

characterize C[Rmax
sum-HK](P1, P2), for some ranges of channel parameters. Moreover, it is

known that representing the achievable rate region in terms of upper concave envelope can

help characterize the capacity region [50–53].

3.4 Conclusion

This chapter examined the boundary of the HK rate region relying on Gaussian inputs.

When no time sharing is used, we characterized the boundary for the class of weak

interference. When time sharing is used, we expressed the entire boundary in terms of

the upper concave envelope of a function of (P1, P2). Therefore, we fully characterized

the entire boundary of the HK region.
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Chapter 4

Rate Splitting and Successive

Decoding for Gaussian Interference

Channels

This chapter investigates the structure of sum-rate optimal codes proposed for the two-

user Gaussian Interference Channel (GIC). It describes an optimization problem that

corresponds to the maximum achievable sum-rate through rate splitting and successive

decoding. First, the complexity of the optimization problem, and in particular the non-

convexity of the problem, is highlighted. Then an optimization method is proposed to

solve the problem under a set of mild conditions. The main result of this chapter is the

closed form expression for the optimal power allocation that achieves the sum-capacity.

4.1 Introduction

Most coding schemes proposed for the two-user GIC employ joint decoding to enlarge

the achievable rate region. For instance, the Simultaneous Non-unique Decoding (SND)

scheme [37] and the well-known Han-Kobayashi (HK) scheme [6] employ joint decoding;

however, joint decoding increases decoding complexity.

To decrease decoding complexity, practical coding schemes employ Successive De-

coding (SD). Moreover, there exists a considerable amount of literature regarding the

construction of high performance point-to-point codes [19–23], whereas there is much less
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research on multiuser codebooks, which can be jointly decoded. Thus, it is important to

have a comprehensive understanding of the performance of SD, which employs existing

point-to-point codes, in comparison to joint decoding, which employs multiuser codes.

Rate Splitting (RS) and successive decoding can reduce decoding complexity and have

been used to investigate the multiple access channel and the interference channel [24,25].

RS and SD have been used in a wide range of problems in information theory [54–57]. The

capacity region of the two-user Gaussian multiple access channel can be achieved using

RS and SD. In fact, if each message is split into two parts and decoding is done in the

proper order, the boundary of the capacity region can be achieved using SD. Moreover,

even the boundary of the capacity region of the K-user Gaussian multiple access channel

can be achieved using RS and SD [18,26,58].

For the interference channel, a misconception exists that RS and SD can achieve

the entire SND rate region or even the HK rate region. Reference [59] explains this

misconception and highlights that, when several receivers have to decode a rate-splitting

codebook, the entire capacity region may not be achieved. In particular, it is proved

that, for the two-user GIC, RS and SD cannot achieve even the SND rate region [27].

Moreover, [27] proposes a sliding window decoding scheme that achieves the performance

of the simultaneous non-unique decoding inner bound.

The problem of sum-rate maximization has been studied in the literature [60–63]. In

particular, RS and SD have been used to investigate the maximum achievable sum-rate

of the two-user GIC. For instance, [64] proposes an algorithm based on RS and SD which

is derived by first investigating the deterministic interference channel [65, 66]. For the

symmetric two-user GIC, [64] provides numerical evaluations to show that the sum-rate

of the SD algorithm is above that of the single-split schemes and below that of the HK

scheme. In addition, [10] shows that, when interference is mixed, the sum-capacity can

be achieved using SD. However, when interference is strong or weak, the performance of

RS and SD has not been well-understood. This study shows that, under a mild condition

on transmitters’ powers, RS and SD can achieve the sum-rate of the HK scheme [67,68].

This study examines the achievable sum-rate of the two-user GIC when SD is used

instead of joint decoding. Although it is known that a corner point of the SND rate region

cannot be achieved using SD [27], this chapter shows that SD can achieve the maximum
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sum-rate of the HK scheme. First, this chapter investigates the strong interference class

and shows that, if transmitters’ powers satisfy certain conditions, RS and SD achieve

the sum-capacity of the channel. The order of decoding at the receivers, the number

of the required splits, and the amount of power allocated to each split are described as

closed-form expressions. Moreover, when SD is strictly inferior to joint decoding, this

study calculates the maximum sum-rate loss when joint decoding is replaced by SD. It

is shown that the maximum sum-rate loss does not depend on transmitters’ powers and

remains constant as powers approach infinity. Second, this chapter investigates the weak

interference class. Similar to the strong interference class, it is shown that, if transmit-

ters’ powers satisfy certain conditions, the maximum sum-rate of the HK scheme can be

achieved using SD. It is shown that for a wide range of channel gains and transmitters’

powers, a single-split scheme can achieve the sum-rate of the HK scheme. For a small re-

gion, the single-split scheme actually achieves the sum-capacity. Moreover, we propose a

coding scheme based on RS and SD in which both transmitters divide their messages into

N + 1 parts, where N can be any positive integer. We show that this scheme can achieve

the sum-rate of the HK scheme. Once again, the order of decoding at the receivers, the

number of required splits, and the amount of power allocated to each split are described

as closed-form expressions. When SD is strictly inferior to the HK scheme, this study

calculates the maximum sum-rate difference. It is shown that the maximum sum-rate

difference does not depend on transmitters’ power and remains constant as transmitters’

powers approach infinity.

The HK scheme results in the best-known achievable rate region. Unfortunately,

the mathematical expressions that characterize the HK rate region are complicated and

involve some arbitrary power splitting variables. In contrast, our SD scheme does not

have arbitrary variables and results in simple characterization of the achievable sum-rate.

Consequently, our scheme provides insight into structures of sum-rate optimal codes.

Joint decoding is also used in parallel channels. An important question about parallel

channels is separability: is it necessary to jointly encode and decode across all sub-

channels to achieve the capacity region? Can separate encoding and decoding achieve

the entire capacity region? In fact, it is known that parallel Gaussian point-to-point

channels, parallel Gaussian multiple access channels, and parallel Gaussian broadcast

channels are separable [37], [69] and there is no need for joint coding. However, parallel
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Gaussian interference channels are not separable and separate decoding can considerably

decrease the achievable rate region [70]. Specific cases of parallel Gaussian interference

channels are studied by [71, 72] and the optimality of separate coding is investigated for

each case. Note that this chapter does not investigate parallel channels. Rather, in this

chapter, joint decoding is performed over one GIC, and the decoders jointly decode some

messages that are transmitted over a single channel.

The structure of this chapter is as follows. In Section 4.2, the channel model and

preliminaries are introduced. This section expresses the optimization problem that corre-

sponds to maximizing the achievable sum-rate. Although it is shown that the optimiza-

tion problem is non-convex and involves a discrete optimization, we provide closed-form

expressions for the optimal solution. In Section 4.3 and 4.4 the achievable sum-rate is

studied for the strong and weak interference classes, respectively. These sections, which

demonstrate how many splits are required and how much power should be allocated to

each split, highlight the main contributions of Chapter 4. This chapter concludes in

Section 4.5.

4.2 Preliminaries

The following notations are used in this chapter. S1:N
1 represents {S1

1 , S
2
1 , ..., S

N
1 }. For

a random variable S1, P (S1) represents the power of S1 and for a set S1:N
1 , P (S1:N

1 )
.
=∑N

i=1 P (Si1). For a statement Q, 1(Q) = 1 if Q is true, otherwise 1(Q) = 0.

The two-user GIC is defined in Chapter 2. Based on the values of a and b, the

interference is divided into some classes, namely weak, strong, and mixed, as defined in

Chapter 2. In this chapter, we investigate the achievable sum-rate of each class separately.

4.2.1 The Underlying Optimization Problem Corresponding to

Maximum Sum-Rate

We formulate the achievable sum-rate of the two-user GIC, when RS and SD are used. The

ith transmitter, i ∈ {1, 2}, splits its message Mi into Ni parts, namely M1
i ,M

2
i , ...,M

Ni
i .

Then, M j
i is encoded by Xj

i according to N(0, P j
i ) where P j

i is the power allocated to M j
i .
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Moreover, Rj
i represents the rate of M j

i and Ri =
∑Ni

j=1 R
j
i . Finally, all Ni codewords are

superimposed and Xi =
∑Ni

j=1X
j
i is transmitted. Transmitters’ powers are bounded by

P1 and P2, i.e.,

N1∑
j=1

P j
1 ≤ P1,

N2∑
j=1

P j
2 ≤ P2. (4.1)

The order of decoding at the receivers can affect the sum-rate achieved using SD. The

first receiver successively decodes all parts of M1 using a specific order S1 where S1
.
=

(S1
1 , S

2
1 , ..., S

N1+N2
1 ). In fact, each Sj1 represents exactly one of the Xj

i , i ∈ [1 : 2] and j ∈

[1 : Ni], such that S1 is a permutation of {X1
1 , X

2
1 , ..., X

N1
1 }∪{

√
aX1

2 ,
√
aX2

2 , ...,
√
aXN2

2 }.

First, SN1+N2
1 is decoded by the first receiver, while considering all other splits as noise.

After decoding SN1+N2
1 , SN1+N2−1

1 is decoded, while considering S1:N1+N2−2
1 as noise. The

first receiver follows S1 until all parts of M1 are decoded. Note that some parts of

M2 may not be decoded. For instance, if S1
1 =
√
aX1

2 , then the first receiver does not

decode X1
2 . Similarly, the second receiver successively decodes all parts of M2 using a

specific order S2
.
= (S1

2 , S
2
2 , ..., S

N1+N2
2 ) where S2 is a permutation of {X1

2 , X
2
2 , ..., X

N2
2 } ∪

{
√
bX1

1 ,
√
bX2

1 , ...,
√
bXN1

1 }.

The first receiver must decodeXj
1 , but the second receiver only decodesXj

1 if according

to the order S2, Xj
1 is required to be decoded. Therefore, the first receiver imposes a

constraint on Rj
1, but the second receiver only imposes a constraint on Rj

1 if it decodes

Xj
1 . Mathematically,

Rj
1 ≤ cj1

.
= C

( P (S
Kj

1
1 )

1 + P (S
1:Kj

1−1
1 )

)
, (4.2)

so that Xj
1 can be reliably decoded at the first receiver where S

Kj
1

1 = Xj
1 in the decoding

order S1. Similarly, if Xj
1 is decoded at the second receiver, then

Rj
1 ≤ dj1

.
= C

( P (S
Lj1
2 )

1 + P (S
1:Lj1−1
2 )

)
, (4.3)

so that Xj
1 can be reliably decoded at the second receiver where S

Lj1
2 =

√
bXj

1 in the

decoding order S2. Therefore,
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Rj
1 ≤

min{cj1, d
j
1} if the second receiver decodes Xj

1 ,

cj1 otherwise.

(4.4)

Similarly, Xj
2 should be decoded by the second receiver, but the first receiver only

decodes it if the decoding order S1 requires decoding of Xj
2 . Therefore,

Rj
2 ≤

min{cj2, d
j
2} if the first receiver decodes Xj

2 ,

cj2 otherwise.

(4.5)

where cj2
.
= C

(
P (S

L
j
2

2 )

1+P (S
1:L

j
2−1

2 )

)
, dj2

.
= C

(
P (S

K
j
2

1 )

1+P (S
1:K

j
2−1

1 )

)
, S

Kj
2

1 =
√
aXj

2 , and S
Lj2
2 = Xj

2 .

To find the maximum sum-rate achieved using SD, the following optimization problem

is investigated.

Ropt
sum-SD

.
= max
N1,N2,P

j
1 ,P

j
2 ,S1,S2

( N1∑
j=1

Rj
1 +

N2∑
j=1

Rj
2

)
,

subject to (4.1), (4.4), (4.5). (4.6)

This optimization problem is not convex, and finding the general solution can be difficult.

However, in this chapter, we characterize the optimal solution of this problem, for a wide

range of a, b, P1, and P2.

Note that when interference is mixed, the optimal solution of (4.6) can be easily

found. In fact, [10] shows that, for the mixed class in which a ≥ 1 and 0 < b < 1, the

sum-capacity is given by

Csum = C(P1) + min
{
C
( P2

1 + bP1

)
, C
( aP2

1 + P1

)}
. (4.7)

On the other hand, consider the following solution to the optimization problem (4.6).

(N1, N2) =(1, 1),

S1 =(X1,
√
aX2),

S2 =(
√
bX1, X2). (4.8)

This solution leads to the following achievable rates:

R1 = c1
1 = C(P1),

R2 = min{c1
2, d

1
2} = min

{
C
( P2

1 + bP1

)
, C
( aP2

1 + P1

)}
. (4.9)
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sum 2 1( )C P bPC +=

1b−

2P

1 2( 1) P ( 1)P b a− = −

1P

sum 1 2( ) ( )C CP PC = +
sum 1 2( )C P aPC +=

1a−

Figure 4.1: The sum-capacity of the strong interference class.

Comparing (4.9) with (4.7), we conclude that the solution (4.8) achieves the sum-capacity,

and therefore, is the optimal solution of (4.6). Similarly, one can show that for the mixed

class in which b ≥ 1 and 0 < a < 1,

(N1, N2) =(1, 1),

S1 =(
√
aX2, X1),

S2 =(X2,
√
bX1), (4.10)

shows the optimal solution of (4.6) that achieves the sum-capacity.

In the following, two distinct cases are studied, namely the strong interference class

and the weak interference class. We calculate closed-form expressions for the number of

splits, the optimal power allocated to each split, and the achievable rate of each split.

4.3 Strong Interference Class

The strong interference class is the case defined by a ≥ 1 and b ≥ 1. The sum-capacity

of this class is known. In fact, for the strong interference class, the entire capacity region

is achieved using SND [7,37], and the sum-capacity is given by

Csum = min


C(P1 + aP2), C(P2 + bP1),

C(P1) + C(P2)

 . (4.11)
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Consequently,

Csum =



C(P1) + C(P2) if P1 ≤ a− 1, P2 ≤ b− 1,

C(P1 + aP2) if P1 ≥ max{a− 1, P2
(a−1)
(b−1)
},

C(P2 + bP1) if P2 ≥ max{b− 1, P1
(b−1)
(a−1)
},

(4.12)

as shown in Figure 4.1.

The main goal of this section is to show that, the sum-rate achieved using RS and

SD equals the sum-capacity for a wide range of (a, b, P1, P2). In other words, the optimal

solution of (4.6) equals Csum for a wide range of (a, b, P1, P2). In doing so, we first show

that without using rate splitting, one can achieve Csum for some values of (a, b, P1, P2).

Then we show that by using rate splitting, but without any joint decoding, one can

achieve Csum for a wide range of (a, b, P1, P2).

4.3.1 Is Rate Splitting Required?

We calculate the achievable sum-rate when no RS is used. Our main goal is to show

that, for some values of (a, b, P1, P2), RS is not required. In doing so, we first solve the

optimization problem (4.6) for N1 = N2 = 1. Then we compare the results with the sum-

capacity expression given in (4.12). The following theorem characterizes the maximum

achievable sum-rate when no rate splitting is used.

Theorem 4.1. For the two-user GIC with strong interference, the maximum sum-rate

achieved with no rate splitting is given by

RNRS
sum = min

{
C(

bP1

1 + P2

) + C(
aP2

1 + P1

),

C(P1 + aP2),

C(P2 + bP1),

C(P1) + C(P2)
}
. (4.13)

Proof. When no RS is used, we have N1 = N2 = 1. Therefor, the optimization (4.6)

reduces to

RNRS
sum

.
= max

S1,S2

R1 +R2. (4.14)
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Decoding

order S1

Decoding

order S2

R1 +R2

(
√
aX2, X1) (

√
bX1, X2) C( P1

1+aP2
) + C( P2

1+bP1
)

(X1,
√
aX2) (

√
bX1, X2)

C(P1) + min{C( P2

1+bP1
), C( aP2

1+P1
)}

= C(P1) + C( P2

1+bP1
)

(
√
aX2, X1) (X2,

√
bX1)

min{C( P1

1+aP2
), C( bP1

1+P2
)}+

C(P2)

= C( P1

1+aP2
) + C(P2)

(X1,
√
aX2) (X2,

√
bX1)

min{C(P1), C( bP1

1+P2
)}+

min{C(P2), C( aP2

1+P1
)}

= min{C( bP1

1+P2
) + C( aP2

1+P1
),

C(P1 + aP2), C(P2 + bP1),

C(P1) + C(P2)}

Table 4.1: The achievable sum-rate of the strong interference class corresponding to four

decoding orders.

There exist four possibilities for S1 and S2, as shown in Table 4.1. This table shows

the achievable sum-rate corresponding to the four possible decoding orders. In the first

case, both receivers treat the interference as noise. In the second case, the first receiver

decodes the interference whereas the second receiver treats the interference as noise. In

the third case, the second receiver decodes the interference whereas the first receiver

treats the interference as noise. Finally, in the fourth case, both receiver decode the

interference. Note that the sum-rate corresponding to the fourth decoding orders, i.e.,

S1 = (X1,
√
aX2),S2 = (X2,

√
bX1), is greater than the sum-rate achieved by other

decoding orders. Therefore, for all values of (a, b, P1, P2), the maximum achievable sum-

rate is given by the rate expression corresponding to fourth decoding orders, as stated in

(4.13). This completes the proof

For fixed values of a and b, Figure 4.2 demonstrates RNRS
sum in the P1P2-plane. By
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sum sum 2 1( )NRS C P bPR C += =

1b−

2P

1 2

2 1
sum

sum

( ) ( )
1 1

NRS bP aPC C
P P

R

C

= ++ +
<

1P

sum sum 1 2( ) ( )NRS C CP PR C= = + sum sum 1 2( )NRS C P aPR C += =

1a−

Figure 4.2: Comparison of RNRS
sum with the sum-capacity for the strong interference class.

comparing this figure with Figure 4.1, we can compare RNRS
sum with Csum. Note that,

Csum > RNRS
sum if and only if

P1 > a− 1,

P2 > b− 1. (4.15)

Moreover, when interference is very strong, i.e., 1 + P1 ≤ a and 1 + P2 ≤ b, Figure 4.2

shows that without any rate splitting, the sum-capacity is achieved. We highlight this

observation in the following corollary.

Corollary 4.1. For the two-user GIC, when interference is very strong, the sum-capacity

can be achieved using SD.

In the next sub-section, we propose a novel coding scheme based on RS and SD that

achieves a sum-rate better than RNRS
sum . We show that our scheme achieves the sum-

capacity for a wide range of (a, b, P1, P2).

4.3.2 How Many Splits Are Required?

In this sub-section, we propose a coding scheme that divides both messages into N + 1

parts. We show that, to achieve the sum-capacity, N should be properly chosen according

to the value of (P1, P2).
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To find the optimal solution of (4.6), the following decoding orders are proposed. For

a 6= 1 and b 6= 1, let

(S1
1 , S

2
1 , S

3
1 , S

4
1 , ...) = (X1

1 ,
√
aX1

2 , X
2
1 ,
√
aX2

2 , ...),

(S1
2 , S

2
2 , S

3
2 , S

4
2 , ...) = (X1

2 ,
√
bX1

1 , X
2
2 ,
√
bX2

1 , ...). (4.16)

Since the optimization problem (4.6) is non-convex, it may be difficult to find the

optimal power allocations. The main idea is to use proper power allocations, such that

cj1 = dj1 if Xj
1 is decoded by the second receiver,

cj2 = dj2 if Xj
2 is decoded by the first receiver. (4.17)

Intuitively, these extra constraints prevent power loss. If cj1 > dj1, then we have allocated

some power to enhance the channel between the first transmitter and the first receiver.

However, since dj1 < cj1, the capacity of the channel between the first transmitter and the

second receiver restricts the achievable rate of the channel between the first transmitter

and the first receiver.

Relying on (4.17), we characterize a feasible solution to the optimization problem

(4.6). As highlighted earlier, due to non-convexity of (4.6), characterizing the optimal

solution can be difficult. However, we show that, for a wide range of (a, b, P1, P2), the

feasible solution that satisfies (4.17) is in fact the optimal solution of (4.6). The idea to

prove the optimality of our solution is to use some form of duality certificate. Instead of

proving the optimality directly, we show that our solution achieves the sum-capacity. In

the following, we first propose our feasible solution. Then we show that for a wide range

of (a, b, P1, P2) our solution achieves the sum-capacity.

According to (4.16), we have c1
1 = C(P 1

1 ) and d1
1 = C(

bP 1
1

1+P 1
2

). To satisfy (4.17), we

have c1
1 = d1

1, and consequently, P 1
2 is found as follows:

c1
1 =d1

1

⇒ P 1
2 =b− 1. (4.18)

Similarly, we have c1
2 = C(P 1

2 ) and d1
2 = C(

aP 1
2

1+P 1
1

). By letting c1
2 = d1

2, P 1
1 is found.

c1
2 =d1

2

⇒ P 1
1 =a− 1. (4.19)
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Generally, for k ≥ 2, ck1 and dk1 are given by

ck1
(a)
= C

( P k
1

1 +
∑k−1

j=1 P
j
1 + a(

∑k−1
j=1 P

j
2 )

)
,

dk1
(b)
= C

( bP k
1

1 +
∑k

j=1 P
j
2 + b(

∑k−1
j=1 P

j
1 )

)
, (4.20)

where (a) and (b) is calculated based on the decoding orders given in (4.16). Next, by

letting ck1 = dk1, P k
2 is found, as follows.

ck1 =dk1

⇒
(

1 +
k∑
j=1

P j
2 + b(

k−1∑
j=1

P j
1 )
)

=b
(

1 +
k−1∑
j=1

P j
1 + a(

k−1∑
j=1

P j
2 )
)

⇒ P k
2 =(b− 1) + (ab− 1)

k−1∑
j=1

P j
2

(a)⇒ P k
2 =(b− 1)(ab)k−1, k ∈ {1, 2, 3, ...}, (4.21)

where (a) is justified by induction on k. Similarly, ck2 and dk2 are given by

ck2 = C
( aP k

2

1 +
∑k

j=1 P
j
1 + a(

∑k−1
j=1 P

j
2 )

)
,

dk2 = C
( P k

2

1 +
∑k−1

j=1 P
j
2 + b(

∑k−1
j=1 P

j
1 )

)
, (4.22)

and by letting ck2 = dk2, P k
1 is found.

P k
1 = (a− 1)(ab)k−1, k ∈ {1, 2, 3, ...}. (4.23)

Moreover, by inserting (4.21) and (4.23) into (4.20), ck1 and dk1 simplify to

ck1 = dk1 = C(a− 1). (4.24)

Similarly, by inserting (4.21) and (4.23) into (4.22), ck2 and dk2 simplify to

ck2 = dk2 = C(b− 1). (4.25)

Note that the values of ck1 and ck2 do not depend on k.

With this power allocation, the constraints (4.4) on Rk
1 and (4.5) on Rk

2 simplify to

Rk
1 ≤ min{ck1, dk1}

(a)
= C(a− 1),

Rk
2 ≤ min{ck2, dk2}

(b)
= C(b− 1), (4.26)
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where (a) is valid by (4.24), and (b) is valid by (4.25).

For the strong interference class, define P opt
1,S (N) and P opt

2,S (N) as

P opt
1,S (N)

.
=

N∑
j=1

P j
1 ,

P opt
2,S (N)

.
=

N∑
j=1

P j
2 , (4.27)

where P j
1 and P j

2 are given by (4.23) and (4.21), and N is a positive integer. Therefore,

P opt
1,S (N) =

a− 1

ab− 1

(
(ab)N − 1

)
,

P opt
2,S (N) =

b− 1

ab− 1

(
(ab)N − 1

)
. (4.28)

To simplify the notations, we define P opt
1,S (0) = 0 and P opt

2,S (0) = 0. In fact, if P1 = P opt
1,S (N)

and P2 = P opt
2,S (N), for some positive integerN , then each transmitter can split its message

into exactly N parts and can allocate a proper amount of power to each of these N parts

such that (4.17) is satisfied. This power allocation has the property that all splits of

M1 can achieve the same rate, i.e., C(a − 1), and all splits of M2 can achieve the same

rate, i.e., C(b − 1). Therefore, based on the proposed decoding orders (4.16) and power

allocations (4.21,4.23), SD results in the following achievable sum-rate.

R1 +R2 = NC(a− 1) +NC(b− 1). (4.29)

The following theorem shows that if P1 = P opt
1,S (N) and P2 = P opt

2,S (N) for some positive

integer N , then SD can achieve the sum-capacity of the strong interference class.

Theorem 4.2. For the two-user GIC with strong interference, if P1 = P opt
1,S (N) and

P2 = P opt
2,S (N) for some positive integer N , then splitting of M1 and M2 into N parts and

allocating power according to (4.21,4.23) and decoding according to (4.16) is sum-rate

optimal.

Proof. For P1 = P opt
1,S (N) and P2 = P opt

2,S (N), since both P opt
1,S (N) and P opt

2,S (N) are strictly

increasing functions of N , P1 ≥ P opt
1,S (1) = a − 1 and P2 ≥ P opt

2,S (1) = b − 1. Therefore,

interference is strong but not very strong, and Csum is given by

Csum
(a)
= min{C(P1 + aP2), C(P2 + bP1)}, (4.30)
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where (a) is valid by (4.12). For such values of P1 and P2,

C(P1 + aP2) =
1

2
log(1 + P1 + aP2)

(a)
=

1

2
log
(
1 +

a− 1

ab− 1

(
(ab)N − 1

)
+ a(

b− 1

ab− 1
)
(
(ab)N − 1

) )
=

1

2
log((ab)N)

=N
1

2
log(a) +N

1

2
log(b)

=NC(a− 1) +NC(b− 1), (4.31)

where (a) is valid by (4.28). Similarly,

C(P2 + bP1) = NC(a− 1) +NC(b− 1). (4.32)

Since C(P1 + aP2)=C(P2 + bP1)=NC(a− 1) +NC(b− 1), the sum-capacity is given by

Csum = min{C(P1 + aP2), C(P2 + bP1)}

=NC(a− 1) +NC(b− 1), (4.33)

but this sum-rate is achieved using the proposed SD, as explained in (4.29). This com-

pletes the proof.

Theorem 4.1 and Theorem 4.2 show that if P1 and P2 satisfy certain conditions, then

SD achieves the sum-capacity of the channel. In the next theorem, we propose a novel

RS scheme that divides both messages into N + 1 parts. We show that N should be

properly chosen according to (P1, P2). The next theorem, uses Theorem 4.2 to find even

more values of P1 and P2 for which SD is sum-rate optimal.

In the rest of this chapter, we deal with many calculations that involve the function

C(x). We frequently use the following property of this function: if x and y are non-

negative real numbers, we have

C(x+ y) = C(x) + C(
y

1 + x
). (4.34)

Theorem 4.3. For the two-user GIC with strong interference, if one of the following

conditions holds for some non-negative integer N , then allocating power according to

(4.21,4.23) and decoding according to (4.16) is sum-rate optimal.
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Condition A:

P opt
2,S (N) ≤ P2 < P opt

2,S (N + 1), P opt
1,S (N + 1) ≤ P1. (4.35)

Condition B:

P opt
1,S (N) ≤ P1 < P opt

1,S (N + 1), P opt
2,S (N + 1) ≤ P2. (4.36)

Proof. We prove this theorem when condition A holds. The proof, corresponding to

condition B, can be obtained by changing indices 1 and 2. The main idea is to use a

portion of P1 and a portion of P2 for the first splits of M1 and M2 such that the remaining

powers satisfy conditions of Theorem 4.2. Therefore, we express P1 and P2 as follows:

P1 = P opt
1,S (N) + ∆P1,

P2 = P opt
2,S (N) + ∆P2, (4.37)

and since condition A holds, we have

∆P1 ≥ P opt
1,S (N + 1)− P opt

1,S (N)
(a)
= (a− 1)(ab)N ,

∆P2 < P opt
2,S (N + 1)− P opt

2,S (N)
(b)
= (b− 1)(ab)N , (4.38)

where (a) and (b) are valid by (4.28). In fact, for each value of N , (4.37) describes a

power region in the P1P2-plane. For this region of powers, the first transmitter uses

∆P1 to transmit XN+1
1 . Similarly, the second transmitter uses ∆P2 to transmit XN+1

2 .

Then each receiver successively decodes both XN+1
1 and XN+1

2 . After this step, the

remaining power of each transmitter satisfies Theorem 4.2, i.e., P1−∆P1 = P opt
1,S (N) and

P2 −∆P2 = P opt
2,S (N). In fact, according to the decoding order (4.16), we have

R1 =NC(a− 1) + min
{
cN+1

1 , dN+1
1

}
=NC(a− 1) + min

{
C
( ∆P1

1 + P opt
1,S (N) + aP opt

2,S (N)

)
,

C
( b∆P1

1 + P opt
2,S (N) + ∆P2 + bP opt

1,S (N)

)}
(a)
=NC(a− 1) + min

{
C
( ∆P1

(ab)N

)
, C
( b∆P1

(ab)N + ∆P2

)}
(b)
=NC(a− 1) + C

( ∆P1

(ab)N

)
, (4.39)
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Figure 4.3: Regions in the P1P2-plane for which SD can achieve the sum-capacity of the

strong interference class. The label associated with each point shows the theorem and

the value of N corresponding to the point.

where (a) is valid since

(ab)N =1 + P opt
1,S (N) + aP opt

2,S (N)

=1 + P opt
2,S (N) + bP opt

1,S (N), (4.40)

and (b) is valid since ∆P2 < (b− 1)(ab)N . Similarly,

R2 =NC(b− 1) + min

{
C
( ∆P2

1 + P opt
2,S (N) + bP opt

1,S (N)

)
,

C
( a∆P2

1 + P opt
1,S (N) + ∆P1 + aP opt

2,S (N)

)}
(a)
=NC(b− 1) + min

{
C
( ∆P2

(ab)N

)
, C
( a∆P2

(ab)N + ∆P1

)}
(b)
=NC(b− 1) + C

( a∆P2

(ab)N + ∆P1

)
, (4.41)

where (a) is valid by (4.40), and (b) is valid because ∆P1 ≥ (a− 1)(ab)N . Therefore, the

following sum-rate is achievable

R1 +R2 =NC(a− 1) +NC(b− 1)

+ C

(
∆P1

(ab)N

)
+ C

( a∆P2

(ab)N + ∆P1

)
. (4.42)

Moreover, we know that SND achieves the sum-capacity of the strong interference

channel. Therefore, for the values of P1 and P2 satisfying condition A, the sum-rate is
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upper-bounded by

Rsum-SND =min{C(P2 + bP1), C(P1 + aP2)}

=C(P1 + aP2)

=C(P opt
1,S (N) + aP opt

2,S (N) + ∆P1 + a∆P2)

=C(P opt
1,S (N) + aP opt

2,S (N)) + C
( ∆P1 + a∆P2

1 + P opt
1,S (N) + aP opt

2,S (N)

)
=NC(a− 1) +NC(b− 1) + C

(∆P1 + a∆P2

(ab)N

)
. (4.43)

One can use (4.34) and check that (4.42) and (4.43) are equal, and this completes the

proof.

Results of Theorems 4.1, 4.2, and 4.3 describe conditions under which SD achieves

the sum-capacity. These conditions can be interpreted in two ways. For fixed a and b,

Figure 4.3 visualizes regions in the P1P2-plane for which SD achieves the sum-capacity.

On the other hand, for fixed P1 and P2, Figure 4.4 shows regions in the ab-plane for which

SD achieves the sum-capacity. For each value of N , Theorem 4.2 demonstrates a point

in the P1P2-plane or in the ab-plane. These points are shown by stars in Figure 4.3 and

Figure 4.4. For instance, the star T1(1) satisfies the condition of Theorem 4.1 for N = 1.

Theorem 4.2 describes the very strong interference region. This region is filled with a

triangle, labeled T2, in both Figure 4.3 and Figure 4.4. For each value of N , Theorem 4.3,

under condition A, also describes a region. For instance, for N = 0, Theorem 4.3 describes

the region P1 > a− 1 and 0 < P2 < b− 1. For fixed values of a and b, this region is filled

with three circles in Figure 4.3. These circles are labeled T3A(0). On the other hand, for

fixed values of P1 and P2, this region is expressed by a < P1 + 1 and b > P2 + 1 and is

filled with one circle labeled T3A(0) in Figure 4.4. The circle labeled T3A(i) represents

a point that satisfies condition A of Theorem 4.3 for N = i. Figure 4.3 and Figure 4.4

show the regions characterized by Theorem 4.3A only for N ∈ {0, 1, 2}. Similarly, the

regions characterized by Theorem 4.3B for N ∈ {0, 1, 2} are demonstrated in Figure 4.3

and Figure 4.4 and are filled with rectangles. The rectangle labeled T3B(i) represents a

point that satisfies condition B of Theorem 4.3 for N = i.

Next, we summarize the results of Theorem 4.3. In Theorem 4.3, we proposed a

novel coding scheme, and we showed that, for a wide range of (a, b, P1, P2), our scheme

achieves the sum-capacity. Let Rsum-SD represent the achievable sum-rate of this scheme.
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Figure 4.4: Regions in the ab-plane for which SD can achieve the sum-capacity of the

strong interference class. The label associated with each point shows the theorem and

the value of N that corresponds to the point.

In the following, we explicitly characterizer Rsum-SD. Consider a pair of power allocation

(P1, P2). We can uniquely determine (P1, P2) as follows:

P1 = P opt
1,S (N) + ∆P1,

P2 = P opt
2,S (N) + ∆P2, (4.44)

where N is the greatest non-negative integer such that ∆P1 ≥ 0 and ∆P2 ≥ 0. Note

that N , ∆P1, and ∆P2 are unique. Then, by dividing each message into N + 1 parts, the

following sum-rate is achievable by the scheme proposed in Theorem 4.3.

Rsum-SD = NC(a− 1) +NC(b− 1) +RN+1
sum , (4.45)

where RN+1
sum

.
= RN+1

1 +RN+1
2 is given by

RN+1
sum =



C
(

∆P1+a∆P2

(ab)N

)
if ∆P1 ≥ (a− 1)(ab)N ,∆P2 ≤ (b− 1)(ab)N ,

C
(

∆P2+b∆P1

(ab)N

)
if ∆P1 ≤ (a− 1)(ab)N ,∆P2 ≥ (b− 1)(ab)N ,

C
(

∆P1

(ab)N

)
+ C

(
∆P2

(ab)N

)
if ∆P1 ≤ (a− 1)(ab)N ,∆P2 ≤ (b− 1)(ab)N .

(4.46)
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The first line of (4.46) is exactly equivalent to the condition A of Theorem 4.3. Simi-

larly, the second line of (4.46) is equivalent to the condition B of Theorem 4.3. The third

line shows the case, in which SD does not achieve the sum-capacity.

The proof of achievability of the third line follows similar to (4.39). In fact, one can

see that SD achieves the following rates:

R1 =NC(a− 1) + C
( ∆P1

(ab)N

)
,

R2 =NC(b− 1) + C
( ∆P2

(ab)N

)
. (4.47)

4.3.3 Maximum Sum-Rate Loss

According to Figure 4.3, the only regions in the P1P2-plane for which sum-capacity is not

achieved using SD are as follows:

P1 = P opt
1,S (N) + ∆P1, 0 < ∆P1 < (a− 1)(ab)N ,

P2 = P opt
2,S (N) + ∆P2, 0 < ∆P2 < (b− 1)(ab)N ,

N ≥ 1. (4.48)

A natural question is the maximum difference between the optimal sum-rate and the

sum-rate achieved using SD. Interestingly, the next theorem shows that the maximum

sum-rate difference is only a function of channel gains, i.e., a and b, and does not depend

on the number of splits N + 1.

Theorem 4.4. For the two-user GIC with strong interference, if joint decoding is replaced

by SD, the maximum sum-rate loss is given by ∆Rmax
sum = log

(
1+
√
ab√

a+
√
b

)
.

Proof. First, note that ∆Rmax
sum represents the maximum difference between Csum and

Rsum-SD. Since, for the strong interference class Csum = Rsum-SND, ∆Rmax
sum is given by

∆Rmax
sum

.
= max

P1>0,P2>0

(
Rsum-SND −Rsum-SD

)
. (4.49)

Second, if P1 and P2 are not in the region described by (4.48), then Theorems 4.1,

4.2, and 4.3 show that SD is sum-rate optimal and there is no sum-rate loss. If P1 and
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P2 belong to the region described by (4.48), the sum-rate of our proposed SD, Rsum-SD,

the sum-rate of SND, Rsum-SND, and the sum-rate difference, ∆Rsum, are as follows:

Rsum-SD =NC(a− 1) +NC(b− 1) + C
( ∆P1

(ab)N

)
+ C

( ∆P2

(ab)N

)
,

Rsum-SND =NC(a− 1) +NC(b− 1)

+ min

{
C
(∆P1 + a∆P2

(ab)N

)
, C
(∆P2 + b∆P1

(ab)N

)}
,

∆RN
sum

.
=Rsum-SND −Rsum-SD

=min

{
C
(∆P1 + a∆P2

(ab)N

)
, C
(∆P2 + b∆P1

(ab)N

)}
− C

( ∆P1

(ab)N

)
− C

( ∆P2

(ab)N

)
. (4.50)

Therefore, to find the maximum sum-rate loss, the following optimization problem is

solved.

∆Rmax
sum = max

∆P1,∆P2

∆RN
sum,

subject to 0 ≤ ∆P1 ≤ (a− 1)(ab)N , N ≥ 1,

0 ≤ ∆P2 ≤ (b− 1)(ab)N , N ≥ 1. (4.51)

Let us review an optimization technique. According to interior extremum theorem, the

global maximum of a differentiable function f over a feasible region A is achieved at one

of the following points: an stationary point or a boundary point [45, 46]. In particular,

consider the function ∆RN
sum(∆P1,∆P2), defined in (4.50). First note that this function

is not necessarily differentiable. The function min{} can make ∆RN
sum(∆P1,∆P2) non-

differentiable. However, ∆RN
sum(∆P1,∆P2) can be non-differentiable only if

C
(∆P1 + a∆P2

(ab)N

)
=C
(∆P2 + b∆P1

(ab)N

)
⇒ (a− 1)∆P2 =(b− 1)∆P1. (4.52)

Consequently, all non-differentiable points of the function ∆RN
sum(∆P1,∆P2) lie on (a−

1)∆P2 = (b− 1)∆P1.

The feasible region of the optimization problem (4.51) is a rectangle, as shown in

Figure 4.5. Observe that (a− 1)∆P2 = (b− 1)∆P1 is a line inside the feasible region that
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Figure 4.5: The feasible region of the optimization problem (4.51).

divides the feasible region into two parts, namely F1 and F2, where

F1 = {(∆P1,∆P2) :0 ≤ ∆P1 ≤ (a− 1)(ab)N ,

0 ≤ ∆P2 ≤ (b− 1)(ab)N ,

(a− 1)∆P2 ≤ (b− 1)∆P1}, (4.53)

F2 = {(∆P1,∆P2) :0 ≤ ∆P1 ≤ (a− 1)(ab)N ,

0 ≤ ∆P2 ≤ (b− 1)(ab)N ,

(a− 1)∆P2 ≥ (b− 1)∆P1}. (4.54)

We solve the optimization problem (4.51) in three steps. First, we find the optimal

solution over F1. Second, we find the optimal solution over F2. Finally, we compare the

results together. To do so, we first solve the following problem

∆Rmax
sum = max

∆P1,∆P2

∆RN
sum,

subject to (∆P1,∆P2) ∈ F1. (4.55)

Inside F1, ∆RN
sum is a differentiable function. According to interior extremum theorem,

the optimal solution of (4.51) is either an stationary point, or a point over the boundary.
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Figure 4.6: Comparison of the achievable sum-rate Rsum-SD with the sum-capacity.

We can see that the function ∆RN
sum has no stationary points.

∆RN
sum =min

{
C
(∆P1 + a∆P2

(ab)N

)
, C
(∆P2 + b∆P1

(ab)N

)}
− C

( ∆P1

(ab)N

)
− C

( ∆P2

(ab)N

)
=C
(∆P1 + a∆P2

(ab)N

)
− C

( ∆P1

(ab)N

)
− C

( ∆P2

(ab)N

)
=C
( a∆P2

(ab)N + ∆P1

)
− C

( ∆P2

(ab)N

)
. (4.56)

(4.56) shows that ∆RN
sum(∆P1,∆P2) is a decreasing function of ∆P1. Therefore, ∆RN

sum

has no stationary points.

To investigate the boundary, first note that F1 is a right triangle. Over the two legs

of the right angle, we have

∆RN
sum = Rsum-SND −Rsum-SD

(a)
= 0, (4.57)

where (a) is valid by Theorem 4.3. Consequently, ∆RN
sum achieves its maximum over the

line

(b− 1)∆P1 = (a− 1)∆P2. (4.58)

In fact, by letting the derivatives equal zero, we find the following point that maximizes
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the sum-rate loss over (b− 1)∆P1 = (a− 1)∆P2:

∂

∂∆P2

(
C
( a∆P2

(ab)N + (∆P2)a−1
b−1

)
− C

( ∆P2

(ab)N

))
=0

⇒ ∆P opt
2 =

(
√
ab− 1)(b− 1)(ab)N

(ab− 1)
, (4.59)

Moreover, since (b− 1)∆P1 = (a− 1)∆P2, we have

∆P opt
1 =

(
√
ab− 1)(a− 1)(ab)N

(ab− 1)
. (4.60)

Inserting (4.60) and (4.59), into (4.56), we see that

∆RN
sum

.
= Rsum-SND −Rsum-SD

= C
( a∆P2

(ab)N + ∆P1

)
− C

( ∆P2

(ab)N

)
(a)
= C

( b− 1

1 +
√

b
a

)
− C

( b− 1

1 +
√
ab

)
=

1

2
log
(

1 +
b− 1

1 +
√

b
a

)
− 1

2
log
(

1 +
b− 1

1 +
√
ab

)

=
1

2
log
( (1 +

√
ab)2

(
√
a+
√
b)2

)
= log

( 1 +
√
ab

√
a+
√
b

)
, (4.61)

where (a) is valid by (4.60) and (4.59).

Similarly, one can show that over F2, the optimal solution that maximizes ∆RN
sum is

given by (4.60). Therefore, (4.60) represents the optimal solution of the original problem

(4.51), and (4.61) represents the maximum sum-rate loss, as claimed in Theorem 4.4.

Note that (4.60) and (4.59) show the optimal solution (∆P opt
1 ,∆P opt

2 ) that maximizes

the optimization problem (4.51) and the value of the maximum sum-rate loss is given by

(4.61). Moreover, ∆P opt
1 and ∆P opt

2 are functions of N , whereas the maximum sum-rate

loss is not. This means, for each N ≥ 1, there is exactly one pair of (∆P opt
1 ,∆P opt

2 ), and

for all N ≥ 1, these pairs result in the same maximum sum-rate loss.

Theorems 4.2-4.3 show that for a wide range of (a, b, P1, P2), Csum − Rsum-SD = 0.

Theorem 4.4 shows that, for values of (a, b, P1, P2) that Csum − Rsum-SD > 0, we know

that Csum −Rsum-SD is bounded. Figures 4.6 compares Csum with Rsum-SD.
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Figure 4.7: Comparison of the sum-capacity and the sum-rate achieved using SD for the

symmetric two-user GIC with strong interference.

Moreover, we demonstrate the results of previous theorems by considering the sym-

metric Gaussian interference channel in which P1 = P2 = P and a = b. Figure 4.7

investigates the strong interference class and compares the sum-rate achieved using our

proposed SD and the sum-capacity achieved using SND. It shows that when interference

is very strong, i.e., P ≤ a− 1, SD achieves the sum-capacity. When interference is strong

but not very strong, if P = P opt
S (N)

.
= a−1

a2−1
(a2N − 1), SD still achieves the sum-capacity.

Moreover, Figure 4.7 depicts the sum-rate loss when the proposed SD scheme is used. In

fact, according to Theorem 4.4, the maximum sum-rate loss equals log
(
a+1
2
√
a

)
and does

not depend on P . Figure 4.7 shows that this maximum loss is seen exactly once in every

interval
(
P opt

S (N), P opt
S (N + 1)

)
.

4.4 Weak Interference Class

In this section, we investigate the weak interference class. The weak interference class is

more challenging than the strong interference class. The sum-capacity of the weak inter-

ference class is unknown. For the strong interference class, the maximum HK sum-rate

is achieved by decoding the entire interference at both receivers. For the weak interfer-

ence class, [43] shows that to achieve the maximum HK sum-rate, a specific portion of
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the interference should be decoded by each receiver. This portion varies as (a, b, P1, P2)

varies inside the weak interference class. For the strong interference class, a fixed de-

coding order, given in (4.16), achieves the sum-capacity for a wide range of transmitters’

powers. For the weak interference, we show that different decoding orders should be used,

depending on the value of (a, b, P1, P2).

The structure of this section is as follows. We first show that, without any RS and

joint decoding, the maximum sum-rate of the HK scheme is achievable for a wide range

of (a, b, P1, P2). Second, to achieve the maximum sum-rate of the HK scheme for a wider

range of (a, b, P1, P2), we propose a novel scheme in which both transmitters divide their

messages into some parts.

4.4.1 Is Rate Splitting Required?

We calculate the achievable sum-rate when no RS is used. Our main goal is to show

that, for a wide range of (a, b, P1, P2), RS is not required. In doing so, we first solve

the optimization problem (4.6) for N1 = N2 = 1. Then we compare the result with the

maximum achievable sum-rate of the HK scheme.

Theorem 4.5. For the two-user GIC with weak interference, the maximum sum-rate

achieved with no rate splitting is given by

RNRS
sum = max

{
C
( P1

1 + aP2

)
+ C

( P2

1 + bP1

)
,

C(P1 + aP2), C(P2 + bP1)
}
. (4.62)

Proof. When no RS is used, we have N1 = N2 = 1. Therefor, the optimization (4.6)

reduces to

RNRS
sum

.
= max

S1,S2

R1 +R2. (4.63)

There exists four possibilities for S1 and S2, as shown in Table 4.2. This table shows

the achievable sum-rate corresponding to the four possible decoding orders. In the first

case, both receivers treat the interference as noise. In the second case, the first receiver

decodes the interference, while the second receiver treats the interference as noise. In
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Decoding

order S1

Decoding

order S2

R1 +R2

(
√
aX2, X1) (

√
bX1, X2) C( P1

1+aP2
) + C( P2

1+bP1
)

(X1,
√
aX2) (

√
bX1, X2)

C(P1) + min{C( P2

1+bP1
), C( aP2

1+P1
)}

= C(P1 + aP2)

(
√
aX2, X1) (X2,

√
bX1)

min{C( P1

1+aP2
), C( bP1

1+P2
)}+

C(P2) = C(P2 + bP1)

(X1,
√
aX2) (X2,

√
bX1)

min{C(P1), C( bP1

1+P2
)}+

min{C(P2), C( aP2

1+P1
)}

= C( bP1

1+P2
) + C( aP2

1+P1
)

Table 4.2: The achievable sum-rate of the weak interference class corresponding to four

decoding orders.

other words, since S2 = (
√
bX1, X2), the second receiver does not decode X1. Con-

sequently, R1 is “not” required to be smaller than C(bP1). In fact, R1 = C(P1) and

R2 = min{C( P2

1+bP1
), C( aP2

1+P1
)} = C( aP2

1+P1
), and therefore, R1 +R2 = C(P1 + aP2). In the

third case, the second receiver decodes the interference, while the first receiver treats the

interference as noise. Therefore, we have R1 +R2 = C(P2 +bP1). In the fourth case, both

receivers decode the interference. Note that the sum-rate corresponding to this order is

smaller than the sum-rate achieved by other decoding orders. Therefore, the maximum

achievable sum-rate is the maximum of the three rate expressions corresponding to the

first three decoding orders, as stated in (4.62).

This completes the proof.

Remark 4.1. The sum-rate achieved by RNRS
sum is greater than the sum-rate achieved using

SND: For the weak interference class, Rsum-SND is given by

Rsum-SND =

min
{
C(P1 + aP2), C(P2 + bP1), C(aP2) + C(bP1)

}
. (4.64)
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Figure 4.8: The maximum achievable sum-rate when rate splitting is not used: Quadrant

I of the P1P2-plane is partitioned into three regions. In each region, RNRS
sum is demonstrated.

For the weak interference class, this sum-rate is smaller than RNRS
sum given in (4.62). There-

fore, although SND achieves the sum-capacity for the strong interference class, SND fails

to achieve RNRS
sum for the weak interference class.

Figure 4.8 shows quadrant I of the P1P2-plane. This quadrant is divided into three

regions. In each region, exactly one of C
(

P1

1+aP2

)
+C
(

P2

1+bP1

)
, C(P1+aP2), and C(P2+bP1)

is greater than the others, as shown in the figure. Note that the region in which RNRS
sum

equals C(P1 + aP2) and the region in which RNRS
sum equals C(P2 + bP1) are separated by

the line P1(1− b) = P2(1− a).

The main goal of this section is to find out when RS is required. To this end, we need

to compare RNRS
sum with the maximum sum-rate of the HK scheme with Gaussian inputs,

denoted by Rmax
sum-HK. We have

RNRS
sum ≤ Ropt

sum-SD ≤ Rmax
sum-HK. (4.65)

Therefore, wherever we have RNRS
sum = Rmax

sum-HK, we have found an optimal solution of the

optimization problem (4.6).

The maximum sum-rate of the HK scheme with Gaussian inputs, Rmax
sum-HK, was char-

acterized in Chapter 2. In the following theorem, we review this characterization. To

make comparison simpler, we use a slightly different notation here.
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Theorem 4.6. For the two-user Gaussian interference channel, when interference is

weak, let Rmax
sum-HK denote the maximum achievable sum-rate of the HK scheme with Gaus-

sian inputs, without time sharing. Then Rmax
sum-HK is given by

Rmax
sum-HK(P1, P2) = (4.66)

max

{
C
( P1

1 + aP2

)
+ C

( P2

1 + bP1

)
,

C(P1 + aP2),

C(P2 + bP1),

C(P1 + aP2) + g1(λ̃1, λ̃2)1(λ̃1 ≥ 0, λ̃2 ≥ 0),

C(P1 + aP2) + g1(λ̂1, λ̂2)1(λ̂1 ≥ 0, λ̂2 ≥ 0, λ̃2 ≥ λ̂2)

}
,

where

g1(λ1, λ2)
.
=C(

(1− a)λ2P2 + bλ1P1

1 + aλ2P2

)− C(bλ1P1), (4.67)

(λ̃1, λ̃2)
.
=(ab− 1− a

P1

, ab− 1− b
P2

), (4.68)

λ̂2
.
=

1 + bP1c

bP1α + P2

(
− 1 +

√
1 +

(bP1α + P2)(1− abP1c− a)

(1 + bP1c)(abP1α)

)
, (4.69)

λ̂1
.
=αλ̂2 + c, (4.70)

c
.
=
P1(1− b)− P2(1− a)

P1

(
1− b+ P2(1− ab)

) , (4.71)

α
.
=1− c. (4.72)

As expected, (4.66) shows that RNRS
sum ≤ Rmax

sum-HK. More importantly, Theorem 4.6

shows that the maximum HK sum-rate has five distinct mathematical expressions, de-

pending on the value of (a, b, P1, P2). Table 4.3 partitions the entire weak interference

class into five sub-classes, namely A, B, C, D, and E. For each sub-class, the maximum

H-K sum-rate is demonstrated. By comparing RNRS
sum with Rmax

sum-HK, we characterize three

sub-classes inside the weak interfere class, for which RNRS
sum = Rmax

sum-HK, as explained in the

following theorem.

Theorem 4.7. For the two-user GIC with weak interference, if (a, b, P1, P2) belongs to

the union of sub-classes A, B, and C, then RNRS
sum = Rmax

sum-HK.

Proof. Theorem 4.5 and Theorem 4.6 characterize RNRS
sum and Rmax

sum-HK, respectively. Ta-

ble 4.3 partitions the weak interference class into five sub-classes. For each sub-class, we
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Sub-

class
Description Rmax

sum-HK RNRS
sum

A
0 ≤ P1 ≤ 1−a

ab
,

0 ≤ P2 ≤ 1−b
ab
.

C( P1

1+aP2
)+

C( P2

1+bP1
)

C( P1

1+aP2
)+

C( P2

1+bP1
)

B

P1 >
1−a
ab
,

0 ≤ P2 ≤ max{1−b
ab
,

(1−b)ab
1−a P1 + b− 1}

C(P1 + aP2) C(P1 + aP2)

C

P2 >
1−b
ab
,

0 ≤ P1 ≤ max{1−a
ab
,

(1−a)ab
1−b P2 + a− 1}

C(P2 + bP1) C(P2 + bP1)

D
P1 >

1−a
ab
, P2 >

1−b
ab
,

λ̂2 > ab− 1−b
P2

C(P1 + aP2)

+g1(λ̃1, λ̃2)

max{

C(P1 + aP2),

C(P2 +bP1)}

E

P1 >
(1−a)ab

1−b P2 +a−1,

P2 >
(1−b)ab

1−b P1 + b− 1,

λ̂2 ≤ ab− 1−b
P2

C(P1 + aP2)

+g1(λ̂1, λ̂2)

max{

C(P1 + aP2),

C(P2 +bP1)}

Table 4.3: The weak interference class is partitioned into five sub-classes. For each sub-

class, Rmax
sum-HK is compared with RNRS

sum .

can compare RNRS
sum with Rmax

sum-HK, as shown in Table 4.3. For the first three sub-classes,

we have RNRS
sum = Rmax

sum-HK. This completes the proof.

Note that the sum-capacity of the weak interference channel is not known in general.

For the small sub-class of the very weak interference, characterized by P1

√
b + P2

√
a ≤

1−
√
a−
√
b√

ab
, treating interference as noise is sum-rate optimal [10, 11]. This sub-class is

strictly inside sub-class A. Therefore, for the very weak interference sub-class, RNRS
sum

achieves the sum-capacity, as stated in the following corollary.

Corollary 4.2. For the two-user GIC with very weak interference, RNRS
sum achieves the
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Figure 4.9: The weak interference class is partitioned into five sub-classes. For each

suc-class, ∆Rsum
.
= Rmax

sum-HK −RNRS
sum is demonstrated.

sum-capacity.

Moreover, Figure 4.9 shows that the entire weak interference class is partitioned into

five sub-classes. For each sub-class, ∆Rsum
.
= Rmax

sum-HK − RNRS
sum is shown. For two sub-

classes, namely D and E, we have ∆Rsum ≥ 0. To characterize ∆Rsum, let us define

g2(λ1, λ2)
.
= C(

(1− b)λ1P1 + aλ2P2

1 + bλ1P1

)− C(aλ2P2). (4.73)

Using direct calculation, one can show that

C(P1 + aP2) + g1(λ1, λ2) = C(P2 + bP1) + g2(λ1, λ2). (4.74)

Consequently, for sub-class D, ∆Rsum is given by

∆Rsum =C(P1 + aP2) + g1(λ̃1, λ̃2)−max{C(P1 + aP2), C(P2 + bP1)}

=C(P2 + bP1) + g2(λ̃1, λ̃2)−max{C(P1 + aP2), C(P2 + bP1)}

= min{g1(λ̃1, λ̃2), g2(λ̃1, λ̃2)}. (4.75)

Similarly, for sub-class E, ∆Rsum is given by

∆Rsum = min{g1(λ̂1, λ̂2), g2(λ̂1, λ̂2)}. (4.76)

In the next sub-section, we propose a novel coding scheme based on RS and SD that

achieves a sum-rate better than RNRS
sum . We show that the proposed scheme achieves

Rmax
sum-HK, for sub-classes A, B, C, and D.
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Figure 4.10: Quadrant I of the P1P2-plane is partitioned into rectangles. Each rectangle

determines the decoding orders (S1,S2) and the number of splits (N + 1).

4.4.2 How Many Splits Are Required?

In this sub-section, we propose a novel coding scheme that divides both messages into

N + 1 parts. We show that to achieve the HK sum-rate, N should be properly chosen.

In fact, the number of splits depends on the value of (P1, P2). Note that (P1, P2) is a

point in the first quadrant of R2
+. We partition the entire R2

+ into rectangles, as shown in

Figure 4.10. The point (P1, P2) lies in one of these rectangles, denoted by REC(m,n). As

demonstrated in Figure 4.10, the partitioning is created by vertical lines P1 = P opt
1,W(N)

and horizontal lines P2 = P opt
2,W(N), where

P opt
1,W(N)

.
=

1− a
1− ab

(
1

(ab)N
− 1

)
, (4.77)

P opt
2,W(N)

.
=

1− b
1− ab

(
1

(ab)N
− 1

)
. (4.78)

If the point (P1, P2) lies on REC(m,n), we let

N = min{m,n}, (4.79)

and divide each message into N+1 parts. According to (4.79), N is a function of (P1, P2).

In other words, (P1, P2) determines the number of splits. There is a close relation between

the partitions introduced in Table 4.3 and the rectangles REC(m,n). For instance, sub-

class A is exactly REC(0, 0), and sub-class D is a part of REC(1, 1). This relation is

demonstrated in Figure 4.11.
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We represent (P1, P2) as follows:

(P1, P2) = (P opt
1,W(N) + ∆P1, P

opt
2,W(N) + ∆P2), (4.80)

as shown in Figure 4.10. Note that according to (4.80), each (P1, P2) has a unique

representation. Furthermore, according to the value of m and n, we have the following

constraints on ∆P1 and ∆P2:

If m = n, then we have

∆P1 < P opt
1,W(N + 1)− P opt

1,W(N) =
1− a

(ab)N+1
, (4.81)

∆P2 < P opt
2,W(N + 1)− P opt

2,W(N) =
1− b

(ab)N+1
. (4.82)

If m > n, then we have

∆P1 > P opt
1,W(N + 1)− P opt

1,W(N) =
1− a

(ab)N+1
, (4.83)

∆P2 < P opt
2,W(N + 1)− P opt

2,W(N) =
1− b

(ab)N+1
. (4.84)

If m < n, then we have

∆P1 < P opt
1,W(N + 1)− P opt

1,W(N) =
1− a

(ab)N+1
, (4.85)

∆P2 > P opt
2,W(N + 1)− P opt

2,W(N) =
1− b

(ab)N+1
. (4.86)

We already noticed in Theorem 4.5, that the optimal decoding orders S1 and S2

depend on the value of (P1, P2). Figure 4.8 shows that depending on the value of (P1, P2),

three different decoding orders can be optimal. Relying on this idea, we use the following

three decoding orders, based on the value of (P1, P2).

If (P1, P2) lies onREC(m,n), then S1 = (S1
1 , S

2
1 , S

3
1 , S

4
1 , ...) and S2 = (S1

2 , S
2
2 , S

3
2 , S

4
2 , ...)

are given by the following:

If m = n, then we let

S1 = (
√
aX1

2 , X
1
1 ,
√
aX2

2 , X
2
1 , ...,

√
aXN+1

2 , XN+1
1 ),

S2 = (
√
bX1

1 , X
1
2 ,
√
bX2

1 , X
2
2 , ...,

√
bXN+1

1 , XN+1
2 ). (4.87)

If m > n, then we let

S1 = (X1
1 ,
√
aX1

2 ,
√
aX2

2 , X
2
1 , ...,

√
aXN+1

2 , XN+1
1 ),

S2 = (
√
bX1

1 , X
1
2 ,
√
bX2

1 , X
2
2 , ...,

√
bXN+1

1 , XN+1
2 ). (4.88)
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Figure 4.11: The relation between rectangles REC(m,n) and sub-classes A, B, C, D,

and E.

If m < n, then we let

S1 = (
√
aX1

2 , X
1
1 ,
√
aX2

2 , X
2
1 , ...,

√
aXN+1

2 , XN+1
1 ),

S2 = (X1
2 ,
√
bX1

1 ,
√
bX2

1 , X
2
2 , ...,

√
bXN+1

1 , XN+1
2 ). (4.89)

Observe that only the first two elements of S1 and S2 have changed in (4.87-4.89).

We have determined the number of splits and the decoding orders, based on the

value of (P1, P2) in (4.79) and (4.87-4.89), respectively. We also need to determine the

value of the optimal power allocations, i.e., P j
1 and P j

2 . Using (4.87-4.89) and (4.17), we

characterize a feasible solution to the optimization problem (4.6).

Similar to the strong interference class, we use (4.17) to characterize a feasible solution

to the optimization problem (4.6). According to (4.2) and for the decoding orders given

in (4.87-4.89), we have

cN+1
1 = C

( PN+1
1

1 +
∑N

k=1 P
j
1 + a(

∑N+1
k=1 P

j
2 )

)
,

dN+1
1 = C

( bPN+1
1

1 +
∑N

k=1 P
j
2 + b(

∑N
k=1 P

j
1 )

)
. (4.90)
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By letting cN+1
1 = dN+1

1 , we calculate PN+1
2 , as follows:

cN+1
1 =dN+1

1

⇒ b(1 +
N∑
k=1

P j
1 + a(

N+1∑
k=1

P j
2 )) =1 +

N∑
k=1

P j
2 + b(

N∑
k=1

P j
1 )

⇒ PN+1
2 =1− b+ (1− ab)P2. (4.91)

Similarly, by letting cN+1
2 = dN+1

2 , we have

PN+1
1 = 1− a+ (1− ab)P1. (4.92)

Inserting (4.91) and (4.92) into (4.90), cN+1
1 and dN+1

1 simplify to

cN+1
1 = dN+1

1 = C
((1− ab)P1 + 1− a

a(P2 + bP1 + 1)

)
. (4.93)

Similarly, one can show that

cN+1
2 = dN+1

2 = C
((1− ab)P2 + 1− b
b(P1 + aP2 + 1)

)
. (4.94)

Following this scheme, let cj1 = dj1 and cj2 = dj2 for all j ≥ 2. Consequently, we calculate

P j
1 and P j

2 for 2 ≤ j ≤ N , as follows:

P j
1 = 1− a+ (1− ab)(P1 −

N+1∑
k=j+1

P j
1 ), (4.95)

P j
2 = 1− b+ (1− ab)(P2 −

N+1∑
k=j+1

P j
2 ). (4.96)

With this choice of values for P j
1 and P j

2 , the values of cj1 = dj1 and cj2 = dj2 simplify to

cj1 = dj1 = C
((1− ab)P1 + 1− a

a(P2 + bP1 + 1)

)
,

cj2 = dj2 = C
((1− ab)P2 + 1− b
b(P1 + aP2 + 1)

)
. (4.97)

Note that the values of cj1 and cj2 are independent of j. This is a direct consequence of

(4.95) and (4.96). Moreover, according to (4.1), we have
∑N+1

k=1 P
k
1 = P1 and

∑N+1
k=1 P

k
2 =

P2. Therefore, by choosing the values of P k
1 and P k

2 according to (4.95) and (4.96),

respectively, P 1
1 and P 1

2 are determined by

P 1
1 = P1 −

N+1∑
k=2

P k
1 , P

1
2 = P2 −

N+1∑
k=2

P k
2 . (4.98)
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Using (4.95-4.96), one can show that P 1
1 and P 1

2 are given by

P 1
1 = ∆P1(ab)N ,

P 1
2 = ∆P2(ab)N . (4.99)

For a given (P1, P2), (4.79) determines the number of splits, (4.87-4.89) determine the

decoding order, and (4.95-4.96) determine the power allocation. Consequently, one can

calculate the achievable sum-rate of this scheme, as stated in the next theorem.

Theorem 4.8. For the two-user GIC with weak interference, if (P1, P2) lies on REC(m,n),

then rate splitting and power allocation according to (4.95,4.96) and successive decoding

according to (4.87-4.89) achieves the following sum-rate:

RRS-SD
sum = NC

(1− a
a

)
+NC

(1− b
b

)
+R1

sum. (4.100)

where N = min{m,n} and R1
sum

.
= R1

1 +R1
2 is given by

R1
sum =



C
( ∆P1(ab)N

1+a∆P2(ab)N

)
+ C

( ∆P2(ab)N

1+b∆P1(ab)N

)
if m = n,

C
(
∆P1(ab)N + a∆P2(ab)N

)
if m > n,

C
(
∆P2(ab)N + b∆P1(ab)N

)
if m < n.

(4.101)

Proof. For 2 ≤ j ≤ N + 1, we have

Rj
1 +Rj

2 = min{cj1, d
j
1}+ min{cj2, d

j
2}

(a)
= cj1 + cj2

(b)
= C

((1− ab)P1 + 1− a
a(P2 + bP1 + 1)

)
+ C

((1− ab)P2 + 1− b
b(P1 + aP2 + 1)

)
=

1

2
log
((

1 +
(1− ab)P1 + 1− a
a(P2 + bP1 + 1)

)(
1 +

(1− ab)P2 + 1− b
b(P1 + aP2 + 1)

))
=

1

2
log

(
1

ab

)
= C

(1− a
a

)
+ C

(1− b
b

)
. (4.102)

where (a) is valid by (4.17), and (b) is valid by (4.97). Therefore,

RRS-SD
sum =

N+1∑
j=1

(
Rj

1 +Rj
2

)
=

N+1∑
j=2

(
Rj

1 +Rj
2

)
+R1

1 +R1
2

(a)
= NC

(1− a
a

)
+NC

(1− b
b

)
+R1

sum, (4.103)
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where (a) is valid by (4.102).

Moreover, for m = n,

R1
sum = R1

1 +R1
2 = c1

1 + c1
2

(a)
= C

( ∆P1(ab)N

1 + a∆P2(ab)N
)

+ C
( ∆P2(ab)N

1 + b∆P1(ab)N
)
. (4.104)

where (a) is valid because, according to (4.87), c1
1 and c1

2 are given by

c1
1 = C

( P 1
1

1 + aP 1
2

)
= C

( ∆P1(ab)N

1 + a∆P2(ab)N
)
,

c1
2 = C

( P 1
2

1 + bP 1
1

)
= C

( ∆P2(ab)N

1 + b∆P1(ab)N
)
. (4.105)

This completes the proof for m = n.

For m > n,

R1
sum = R1

1 +R1
2 = c1

1 + min{c1
2, d

1
2}

(a)
= c1

1 + d1
2

(b)
= C

(
∆P1(ab)N

)
+ C

( a∆P2(ab)N

1 + ∆P1(ab)N
)

= C
(
∆P1(ab)N + a∆P2(ab)N

)
(4.106)

where (a) and (b) are valid because, according to (4.88), c1
1, c1

2, and d1
2 are given by

c1
1 = C

(
P 1

1

)
= C

(
∆P1(ab)N

)
,

c1
2 = C

( P 1
2

1 + bP 1
1

)
= C

( ∆P2(ab)N

1 + b∆P1(ab)N
)
,

d1
2 = C

( aP 1
2

1 + P1

)
= C

( a∆P2(ab)N

1 + ∆P1(ab)N
)
. (4.107)

This completes the proof for m > n. The proof for m < n follows similarly.

The previous theorem characterizes RRS-SD
sum . In order to compare the performance of

RRS-SD
sum with Rmax

sum-Hk, we need to simplify the expressions given in Theorem 4.8, as stated

in the following theorem.

Theorem 4.9. For the two-user GIC with weak interference, if (P1, P2) lies on REC(m,n),

then rate splitting and power allocation according to (4.95,4.96) and successive decoding
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Figure 4.12: The achievable sum-rate RRS-SD
sum .

according to (4.87-4.89) achieve the following sum-rate:

RRS-SD
sum =



C
(

P1

1+aP2

)
+ C

(
P2

1+bP1

)
if m = n = 0,

C(P1 + aP2) + hN1 (∆P1,∆P2) if m = n ≥ 1,

C(P1 + aP2) if m > n,

C(P2 + bP1) if m < n,

(4.108)

where hN1 (∆P1,∆P2)
.
= C

( ∆P2(ab)N

1+b∆P1(ab)N

)
− C

(
a∆P2(ab)N

)
is a non-negative function.

Proof. To prove this theorem, we simplify the expression of RRS-SD
sum given in (4.100). Note

that, according to (4.77) and (4.78), we have

(ab)−N = 1 + P opt
1,W(N) + aP opt

2,W(N)

= 1 + P opt
2,W(N) + bP opt

1,W(N). (4.109)

Moreover,

C(P1 + aP2) =C(P opt
1,W(N) + aP opt

2,W(N) + ∆P1 + a∆P2)

=C
(
P opt

1,W(N) + aP opt
2,W(N)

)
+ C

( ∆P1 + a∆P2

1 + P opt
1,W(N) + aP opt

2,W(N)

)
(a)
=NC

(1− a
a

)
+NC

(1− b
b

)
+ C

(∆P1 + a∆P2

(ab)−N

)
, (4.110)
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where (a) is valid by (4.109). Consequently, for m > n, we have

RRS-SD
sum

(a)
= NC

(1− a
a

)
+NC

(1− b
b

)
+
(∆P1 + a∆P2

(ab)−N
)

(b)
= C(P1 + aP2), (4.111)

where (a) is valid by (4.101), and (b) is valid by (4.110). Similarly, for m < n, one can

see that

RRS-SD
sum = C(P2 + bP2). (4.112)

For m = n = 0, according to (4.101)

RRS-SD
sum = C

( ∆P1

1 + a∆P2

)
+ C

( ∆P2

1 + b∆P1

)
= C

( P1

1 + aP2

)
+ C

( P2

1 + bP1

)
. (4.113)

Finally, for m = n ≥ 1,

RRS-SD
sum

(a)
=NC

(1− a
a

)
+NC

(1− b
b

)
+ C

( ∆P1(ab)N

1 + a∆P2(ab)N
)

+ C
(
a∆P2(ab)N

)
+ C

( ∆P2(ab)N

1 + b∆P1(ab)N
)
− C

(
a∆P2(ab)N

)
=NC

(1− a
a

)
+NC

(1− b
b

)
+ C

(∆P1 + a∆P2

(ab)−N

)
+ C

( ∆P2(ab)N

1 + b∆P1(ab)N
)
− C

(
a∆P2(ab)N

)
(b)
=C(P1 + aP2) + hN1 (∆P1,∆P2), (4.114)

where (a) is valid by (4.101) and (b) is valid by (4.110). Moreover,

hN1 (∆P1,∆P2)
.
=C
( ∆P2(ab)N

1 + b∆P1(ab)N
)
− C

(
a∆P2(ab)N

)
(a)

≥0. (4.115)

where (a) is valid by (4.81). This completes the proof.

The previous theorem characterizes simplified expressions for the achievable sum-rate.

Note that for m = n ≥ 1, RRS-SD
sum is given in terms of C(P1 + aP2) plus a nonnegative

function. Similarly, one can show that, RRS-SD
sum can be given in terms of C(P2 + bP1) plus
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a nonnegative function too. In fact, for m = n ≥ 1, we have

RRS-SD
sum

(a)
=NC

(1− a
a

)
+NC

(1− b
b

)
+ C

( ∆P2(ab)N

1 + b∆P1(ab)N
)

+ C
(
b∆P1(ab)N

)
+ C

( ∆P1(ab)N

1 + a∆P2(ab)N
)
− C

(
b∆P1(ab)N

)
=NC

(1− a
a

)
+NC

(1− b
b

)
+ C

(∆P2 + b∆P1

(ab)−N

)
+ C

( ∆P1(ab)N

1 + a∆P2(ab)N
)
− C

(
b∆P1(ab)N

)
(b)
=C(P2 + bP1) + hN2 (∆P1,∆P2), (4.116)

where (a) is valid by (4.101) and (b) is valid by (4.112). Moreover,

hN2 (∆P1,∆P2)
.
=C
( ∆P1(ab)N

1 + a∆P2(ab)N
)
− C

(
b∆P1(ab)N

)
(a)

≥0. (4.117)

where (a) is valid by (4.82). Therefore, for m = n ≥ 1, we have

RRS-SD
sum =C(P1 + aP2) + hN1 (∆P1,∆P2)

=C(P2 + bP1) + hN2 (∆P1,∆P2)

= max{C(P1 + aP2), C(P2 + bP1)}

+ min{hN1 (∆P1,∆P2), hN2 (∆P1,∆P2)}. (4.118)

Relying on this observation, we compare this simplified sum-rate with RNRS
sum and show

that RRS-SD
sum ≥ RNRS

sum , as explained in the following remark.

Remark 4.2. RRS-SD
sum ≥ RNRS

sum : To compare RRS-SD
sum with RNRS

sum , we can compare Fig-

ure 4.12 with Figure 4.8. For m 6= n, we have RRS-SD
sum = RNRS

sum . Moreover, for m = n = 0,

we have RRS-SD
sum = RNRS

sum . However, for m = n ≥ 1

RRS-SD
sum −RNRS

sum

(a)
= max{C(P1 + aP2), C(P2 + bP1)}

+ min{hN1 (∆P1,∆P2), hN2 (∆P1,∆P2)}

−max{C(P1 + aP2), C(P2 + bP1)}

= min{hN1 (∆P1,∆P2), hN2 (∆P1,∆P2)}

≥0, (4.119)

133



Chapter 4. RS and SD for GICs

where (a) is valid by (4.118). Since both hN1 (∆P1,∆P2) and hN2 (∆P1,∆P2) are nonnega-

tive functions, (4.119) shows that for m = n ≥ 1, we have RRS-SD
sum ≥ RNRS

sum .

Remark 4.2 shows that our proposed scheme can achieve a higher sum-rate compared

to RNRS
sum . Next, we compare RRS-SD

sum with Rmax
sum-HK to show that for a wide range of

(a, b, P1, P2), RRS-SD
sum achieves the maximum HK sum-rate. In fact, Tables 4.3 shows that

the HK scheme partitions the weak interference class into five sub-classes. Next theorem

proves that for the first four sub-classes, we have RRS-SD
sum = Rmax

sum-HK.

Theorem 4.10. For the two-user GIC with weak interference, if (a, b, P1, P2) belongs to

the union of sub-classes A, B, C, and D, then RRS-SD
sum = Rmax

sum-HK.

Proof. Figure 4.12 demonstrates RRS-SD
sum inside all rectangles REC(m,n). By comparing

Figure 4.12 with Figure 4.9, we see that for sub-classes A, B, and C, we have RRS-SD
sum =

Rmax
sum-HK. For sub-class D, according to (4.114), RRS-SD

sum = C(P1 + aP2) + h1(∆P1,∆P2).

On the other hand, according to Theorem 4.6, Rmax
sum-HK = C(P1 + aP2) + g1(λ̃1, λ̃2). One

can verify that h1
1(∆P1,∆P2) = g1(λ̃1, λ̃2) and conclude that RRS-SD

sum = Rmax
sum-HK. In fact,

according to (4.68), we have

λ̃1P1 = abP1 − (1− a), (4.120)

λ̃2P2 = abP2 − (1− b). (4.121)

On the other hand, since sub-class D is inside REC(1, 1, )

∆P1ab =(P1 − P opt
1,W(1))ab

=(P1 −
1− a
ab

)ab

=abP1 − (1− a)

(a)
=λ̃1P1, (4.122)

where (a) is valid by (4.120). Similarly,

∆P2ab = λ̃2P2. (4.123)

Inserting (4.122) and (4.123) into (4.67), we have

g1(λ̃1, λ̃2) =C(
(1− a)λ̃2P2 + bλ̃1P1

1 + aλ̃2P2

)− C(bλ̃1P1)

=C(
(1− a)∆P2ab+ b∆P1ab

1 + a∆P2ab
)− C(b∆P1ab). (4.124)
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On the other hand,

h1
1(∆P1,∆P2)

.
= C

( ∆P2(ab)

1 + b∆P1(ab)

)
− C

(
a∆P2(ab)

)
. (4.125)

Observe that (4.125) and (4.124) are equal because

h1
1(∆P1,∆P2) =g1(λ̃1, λ̃2)

⇔C
( ∆P2(ab)

1 + b∆P1(ab)

)
− C

(
a∆P2(ab)

)
=C(

(1− a)∆P2ab+ b∆P1ab

1 + a∆P2ab
)− C(b∆P1ab)

⇔C
( ∆P2(ab)

1 + b∆P1(ab)

)
+ C(b∆P1ab)

=C(
(1− a)∆P2ab+ b∆P1ab

1 + a∆P2ab
) + C

(
a∆P2(ab)

)
⇔C(∆P2ab+ b∆P1ab)

=C(∆P2ab+ b∆P1ab). (4.126)

This shows that, for sub-class D, RRS-SD
sum = Rmax

sum-HK. The proof is complete.

4.4.3 Maximum Sum-Rate Loss

The previous theorem shows that inside sub-class E, RRS-SD
sum ≤ Rmax

sum-HK. However, we can

show that even in this sub-class, RRS-SD
sum is close to Rmax

sum-HK. First, we show that there

exist hyperplanes inside sub-class E, for which we have RRS-SD
sum = Rmax

sum-HK. Second, we

show that inside sub-class E, Rmax
sum-HK −RRS-SD

sum is bounded.

Theorem 4.11. For the two-user GIC with weak interference, if (a, b, P1, P2) belongs to

REC(N,N) and also belongs to the hyperplane LN characterized by

LN
.
={(a, b, P1, P2) ∈ R4

+ :

λ̂2 = (ab)N −
1−b
1−ab

(
1− (ab)N

)
P2

}, (4.127)

for some positive integer N , then RRS-SD
sum = Rmax

sum-HK .

Proof. First, remember that sub-class E represents all (a, b, P1, P2) ∈ R4
+ that satisfy

the description given in Table 4.3. Observe that λ̂2, given in (4.69), is a function of
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(a, b, P1, P2). Therefore, for a fixed N , the equation λ̂2 = (ab)N −
1−b
1−ab

(
1−(ab)N

)
P2

represents

a hyperplane in R4
+.

Second, note that if N=1, (4.127) simplifies to

λ̂2 =ab−
1−b
1−ab

(
1− ab

)
P2

=ab− 1− b
P2

=λ̃2 (4.128)

Moreover,

λ̂1 =αλ̂2 + c

=αλ̃2 + c

=λ̃1 (4.129)

Consequently, for N = 1, Theorem 4.11 reduces to equality (4.126).

For N > 1, we have

RRS-SD
sum = C(P1 + aP2) + hN1 (∆P1,∆P2).

Rmax
sum-HK = C(P1 + aP2) + g1(λ̂1, λ̂2).

We claim that if (4.127) is satisfied, then hN1 (∆P1,∆P2) = g1(λ̂1, λ̂2), and consequently,

we haveRRS-SD
sum = Rmax

sum-HK. To prove this claim, on one hand, if λ̂2 = (ab)N−
1−b
1−ab

(
1−(ab)N

)
P2

,

then λ̂1 is given by

λ̂1 =αλ̂2 + c

=(1− c)
(

(ab)N −
1−b
1−ab

(
1− (ab)N

)
P2

)
+ c

(a)
=(ab)N −

1−a
1−ab

(
1− (ab)N

)
P1

, (4.130)

where (a) is valid by (4.72). On the other hand, for m = n = N , we have

∆P1(ab)N =(P1 − P opt
1,W(N))(ab)N

=
(
P1 −

1− a
1− ab

( 1

(ab)N
− 1
))

(ab)N

=(ab)NP1 −
1− a
1− ab

(
1− (ab)N

)
(a)
=λ̂1P1, (4.131)
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Figure 4.13: The sub-class E is partitioned by hyperplanes Li. On the boundary of each

part, Rmax
sum-HK = RRS-SD

sum . Inside each part, the maximum of Rmax
sum-HK−RRS-SD

sum occurs when

(P1, P2) =
(
P opt

1,W(N), P opt
2,W(N)

)
for N > 1.

where (a) is valid by (4.130). Similarly, one can show that

∆P2(ab)N = λ̂2P2. (4.132)

Therefore, g1(λ̂1, λ̂2) is given by

g1(λ̂1, λ̂2) =C(
(1− a)λ̂2P2 + bλ̂1P1

1 + aλ̂2P2

)− C(bλ̂1P1)

=C(
(1− a)∆P2(ab)N + b∆P1(ab)N

1 + a∆P2(ab)N
)−

C(b∆P1(ab)N). (4.133)

On the other hand,

hN1 (∆P1,∆P2)
.
= C

( ∆P2(ab)N

1 + b∆P1(ab)N
)
− C

(
a∆P2(ab)N

)
. (4.134)

Similar to (4.126), one can see that (4.133) and (4.134) are equal. This completes the

proof.

The hyperplane LN is demonstrated in Figure 4.13, for N = 1, N = 2, and N = 3.

Theorem 4.11 shows that the hyperplanes Li, partition the sub-class E into many parts.

Over the boundary of each part, we have RRS-SD
sum = Rmax

sum-HK. In the next theorem, we show

that inside each part, the maximum difference between RRS-SD
sum and Rmax

sum-HK is limited to
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Figure 4.14: The function gmin(P1, P2) over the sub-class E.

log
(

1+
√
ab√

a+
√
b

)
. Interestingly, there exists exactly one (P1, P2) inside each part that leads to

this maximum difference. Note that the maximum difference is the same for all parts.

Theorem 4.12. For the two-user GIC with weak interference, if joint decoding is replaced

by SD, the maximum sum-rate loss is given by ∆Rmax
sum = log

(
1+
√
ab√

a+
√
b

)
.

Proof. Our goal is to show that

max
P1,P2

(
Rmax

sum-HK −RRS-SD
sum

)
= log

(
1 +
√
ab

√
a+
√
b

)
. (4.135)

Note that RRS-SD
sum < Rmax

sum-HK only in the sub-class E. Therefore, we can restrict

(P1, P2) to the sub-class E. Let E represents the sub-class E, for fixed values of a and b.

We have

E = {(P1, P2) :P1 >
(1− a)ab

1− b
P2 + a− 1,

P2 >
(1− b)ab

1− b
P1 + b− 1,

λ̂2 ≤ ab− 1− b
P2

}. (4.136)

Then the optimization problem (4.135) is equivalent to

max
P1,P2

(
Rmax

sum-HK −RRS-SD
sum

)
subject to (P1, P2) ∈ E . (4.137)
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We can partition E into parts, namely E1, E2, ..., as shown in Figure 4.13. Our idea to

solve this optimization problem is as follows. Instead of looking for the optimal solution

over E , we look for the optimal solution over each Ei. Let ∆REi be defined as

∆REi = max
P1,P2

(
Rmax

sum-HK −RRS-SD
sum

)
subject to (P1, P2) ∈ Ei. (4.138)

Since Eis form a partitioning of E , we conclude that (4.137) is equivalent to

max
i

(
∆REi

)
. (4.139)

In the following, we show that we have

∆REi = log

(
1 +
√
ab

√
a+
√
b

)
, (4.140)

and therefore, (4.137) is equivalent to

max
i

(
∆REi

)
= log

(
1 +
√
ab

√
a+
√
b

)
. (4.141)

To solve (4.138) and characterize Ei, we first note that over the boundary of each

part, we have RRS-SD
sum = Rmax

sum-HK.

Moreover, according to Remark 4.2, RRS-SD
sum ≥ RNRS

sum . Therefore, we have

Rmax
sum-HK −RRS-SD

sum ≤Rmax
sum-HK −RNRS

sum

=∆Rsum

(a)
= min{g1(λ̂1, λ̂2), g2(λ̂1, λ̂2)}, (4.142)

where (a) is valid by (4.76). Define

gmin(P1, P2)
.
= min{g1(λ̂1, λ̂2), g2(λ̂1, λ̂2)}. (4.143)

According to (4.69) and (4.70), λ̂2 and λ̂1 are functions of (P1, P2), and therefor, gmin()

is a function of (P1, P2). Figure 4.14 demonstrates the function gmin() over the sub-class

E. Observe that, we have

max
P1,P2

(
Rmax

sum-HK −RRS-SD
sum

)
≤max
P1,P2

gmin(λ̂1, λ̂2), (4.144)
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subject to (P1, P2) belongs to the sub-class E. Instead of solving (4.135) directly, we solve

max
P1,P2

gmin(P1, P2) (4.145)

In the following, we first prove that

max
P1,P2

gmin(P1, P2) = log

(
1 +
√
ab

√
a+
√
b

)
, (4.146)

then, we show that only if (P1, P2) =
(
P opt

1,W(N), P opt
2,W(N)

)
, we have

Rmax
sum-HK −RRS-SD

sum = log

(
1 +
√
ab

√
a+
√
b

)
. (4.147)

To show that (4.146) is valid, we note an optimization technique. According to interior

extremum theorem, the global maximum of a differentiable function f over a feasible

region A is achieved at one of the following points: an stationary point or a boundary

point [45, 46]. In particular, g1(λ̂1, λ̂2) and g2(λ̂1, λ̂2) are both differentiable functions of

(P1, P2). However, gmin(P1, P2) can be non-differentiable. In fact, over the hyperplane

P1(1− b) = P2(1−a), we have g1(λ̂1, λ̂2) = g2(λ̂1, λ̂2). Consequently, if gmin(P1, P2) is not

differentiable at (P1, P2), then (P1, P2) belongs to the hyperplane P1(1− b) = P2(1− a).

Therefore, if (P ?
1 , P

?
2 ) maximizes the optimization problem (4.146), then (P ?

1 , P
?
2 ) is either

an stationary point, or a point on the boundary, or a non-differentiable point on the

hyperplane P1(1− b) = P2(1− a).

We solve the optimization problem (4.146) in three steps. First, we note that gmin(P1, P2)

has no stationary points inside the sub-class E. Then we show that over the hyperplane

P1(1− b) = P2(1− a), which include all non-differentiable points, we have gmin(P1, P2) =

log
(

1+
√
ab√

a+
√
b

)
. Finally, we show that over the boundary of the sub-class E, we have

gmin(P1, P2) ≤ log
(

1+
√
ab√

a+
√
b

)
.

To show that gmin(P1, P2) has no stationary point, we should investigate∇(P1,P2)g1(λ̂1, λ̂2).

Direct calculation shows that ∇(P1,P2)g1(λ̂1, λ̂2) = (0, 0) has no solution in the sub-class

E. Similarly, ∇(P1,P2)g2(λ̂1, λ̂2) = (0, 0) has no solution in the sub-class E. Consequently,

gmin(P1, P2) has no stationary point in the sub-class E.

Next, we investigate the non-differentiable points of gmin(P1, P2). If (P1, P2) belongs to

the hyperplane P1(1−b) = P2(1−a), according to (4.72), c = 0 and α = 1. Consequently,
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by (4.69),

λ̂2 =
1 + bP1c

bP1α + P2

(
− 1 +

√
1− (bP1α + P2)(abP1c+ a− 1)

(1 + bP1c)(abP1α)

)
=

1

bP1 + P2

(
− 1 +

√
1− (bP1 + P2)(a− 1)

abP1

)
(a)
=

1− a
(1− ab)P1

(
− 1 +

√
1

ab

)
=

1− a
(1− ab)P1

√
ab− ab
ab

. (4.148)

where (a) is valid because bP1 + P2 = P1
1−ab
1−a . Moreover, by (4.70)

λ̂1 =αλ̂2 + c

=λ̂2

=
1− a

(1− ab)P1

√
ab− ab
ab

. (4.149)

Inserting this value of (λ̂1, λ̂2) into (4.67) and (4.73), we see that

g1(λ̂1, λ̂2) = log

(
1 +
√
ab

√
a+
√
b

)
, (4.150)

g2(λ̂1, λ̂2) = log

(
1 +
√
ab

√
a+
√
b

)
. (4.151)

Consequently,

Rmax
sum-HK −RNRS

sum =gmin(P1, P2)

= min{g1(λ̂1, λ̂2), g2(λ̂1, λ̂2)}

= log

(
1 +
√
ab

√
a+
√
b

)
. (4.152)

Therefore, when P1(1−b) = P2(1−a), the value of gmin(P1, P2) is independent of (P1, P2).

Finally, we investigate gmin(P1, P2) over the boundary. The boundary of sub-class E

is characterized by the following three hyperplanes:

P1 =
(1− a)ab

1− b
P2 + a− 1, (4.153)

P2 =
(1− b)ab

1− b
P1 + b− 1, (4.154)

λ̂2 = ab− 1− b
P2

. (4.155)
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For fixed values of a and b, these hyperplanes are lines in the P1P2-plane, as shown in

Figure 4.14.

If (P1, P2) belongs to the hyperplane (4.153), then (4.69) shows that λ̂2 = 0, and

consequently,

g1(λ̂1, λ̂2) =C(
(1− a)λ̂2P2 + bλ̂1P1

1 + aλ̂2P2

)− C(bλ̂1P1)

=C(
0 + bλ̂1P1

1 + 0
)− C(bλ̂1P1)

=0. (4.156)

Therefore, when (4.153) is satisfied,

Rmax
sum-HK −RNRS

sum =gmin(P1, P2)

= min{g1(λ̂1, λ̂2), g2(λ̂1, λ̂2)}

=0. (4.157)

Similarly, if (P1, P2) belongs to the hyperplane (4.154), then λ̂1 = 0, g2(λ̂1, λ̂2) = 0.

Consequently, when (4.154) is satisfied,

Rmax
sum-HK −RNRS

sum =gmin(P1, P2)

= min{g1(λ̂1, λ̂2), g2(λ̂1, λ̂2)}

=0. (4.158)

If (P1, P2) belongs to the hyperplane (4.155), then (λ̂1, λ̂2) = (λ̃1, λ̃2). Note that,

for fixed values of a and b, this hyperplane is demonstrated by L1, shown in Fig-

ure 4.13. One can see that as (P1, P2) moves over L1 and goes from (P opt
1,W(2), P opt

2,W(1)) to

(P opt
1,W(1), P opt

2,W(2)), the value of g1() continuously increases from 0 to C( (1−a)(1−b)
a

). Sim-

ilarly, as (P1, P2) moves over L1 and goes from (P opt
1,W(1), P opt

2,W(2)) to (P opt
1,W(2), P opt

2,W(1)),

the value of g2() continuously increases from 0 to C( (1−a)(1−b)
b

). Consequently, gmin() =

min{g1(), g2()}, achieves its maximum when g1() = g2(). Direct calculation shows that

g1() = g2() occurs when

P1(1− b) = P2(1− a). (4.159)
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Note that according to (4.152), when (4.159) is satisfied, we have gmin(P1, P2) = log
(

1+
√
ab√

a+
√
b

)
.

Therefore, over L1 we have

gmin(P1, P2) ≤ log

(
1 +
√
ab

√
a+
√
b

)
(4.160)

Examining (4.157), (4.158), and (4.160), we conclude that over the boundary of sub-class

E, we have

gmin(P1, P2) ≤ log

(
1 +
√
ab

√
a+
√
b

)
(4.161)

and equality occurs if (4.159) is satisfied.

Since gmin(P1, P2) has no stationary points, it achieves its maximum value over the

boundary or at a non-differentiable points. (4.152) and (4.161) show that this maximum

value is attained over the hyperplane P1(1 − b) = P2(1 − a), and therefore, (4.146) is

valid.

Next, we prove that (4.147) is valid. Note that by (4.142) and (4.146), Rmax
sum-HK −

RRS-SD
sum = log

(
1+
√
ab√

a+
√
b

)
only if we have

RRS-SD
sum =RNRS

sum . (4.162)

On the other hand, Remark 4.2 shows that RRS-SD
sum ≥ RNRS

sum . According to (4.119) and for

sub-class E, RRS-SD
sum = RNRS

sum only if

hN1 (∆P1,∆P2) = 0,

hN2 (∆P1,∆P2) = 0. (4.163)

According to (4.115), hN1 (∆P1,∆P2) = 0 if and only if ∆P2 = 0. Similarly, according

to (4.117), hN2 (∆P1,∆P2) = 0 if and only if ∆P1 = 0. Note that when ∆P1 = 0 and

∆P2 = 0, we have

P1 =P opt
1,W(N),

P2 =P opt
2,W(N). (4.164)

Consequently, for sub-class E, we have RRS-SD
sum = RNRS

sum if and only if (4.164) is satis-

fied. Observe that in the sub-class E, (4.164) can be satisfied for N ≥ 2, as shown in
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Figure 4.13. It is straightforward to see that if (P1, P2) =
(
P opt

1,W(N), P opt
2,W(N)

)
, we have

P1(1− b) = P2(1− a), and Consequently, by (4.152),

Rmax
sum-HK −RRS-SD

sum =Rmax
sum-HK −RNRS

sum

= log

(
1 +
√
ab

√
a+
√
b

)
. (4.165)

This completes the proof.

4.5 Conclusion

This chapter studied the role of RS and SD in the two-user GIC when interference is

strong or weak. It was proved that, for a wide range of (a, b, P1, P2), the sum-rate of the

HK scheme can be achieved using RS and SD. When SD is strictly inferior to the HK

scheme, the maximum sum-rate loss was calculated and was shown to remain constant

as P1 and P2 approach infinity. This study revealed some interesting structures of sum-

rate optimal codes. The extension of the results of this chapter to more than two-user

channels can be an interesting future work.
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Chapter 5

Delay in Cooperative

Communications:

Multiplexing Gain of Gaussian

Interference Channels with

Full-Duplex Transmitters

This chapter investigates the role of cooperation among transmitters of the two-user

Gaussian interference channel in enlarging the achievable rate region. In particular, we

focus on causal cooperation among transmitters, in which a delay constraint guarantees

causality. We review the existing results and highlight the importance of the delay con-

straint. The main contribution of this chapter is a more accurate analysis of delay in

cooperative communications. We introduce a new constraint of causal delay. This new

constraint allows the coding scheme to achieve a higher multiplexing gain.

5.1 Introduction

The importance of interference in wireless communications has generated major interest

in the interference channel. Different coding schemes have been proposed for the two-user

GIC, that maximize the achievable sum-rate under certain conditions. For example, under
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strong interference, in which each cross-link channel gain is greater than the corresponding

direct-link channel gain, the optimal coding scheme is to decode the interference as well as

the desired signal [7–9]. In contrast, when cross-link channel gains are much smaller than

direct-link channel gains, the sum-capacity is achieved by simply treating the interference

as noise [10–12].

Cooperation among nodes in a communication system is a promising approach to

increasing the overall system performance. Full-duplex transmitters can not only double

the rate of wireless communication systems, but also facilitate collaborative signaling

and cooperative communication [73–76]. In the two-user interference channel, full-duplex

transmitters can take advantage of the signal they receive from each other to mitigate

the interference at their receivers, and this simple cooperation among transmitters can

enlarge the achievable rate region. In the context of cognitive radio channels, the role

of cooperation in enlarging the capacity region of the GIC has been studied and rate

splitting along with Gelfand-Pinsker binning has been used to improve the achievable rate

region [29], [30]. Moreover, the capacity region of the two-user GIC with conferencing

encoders is established in [31] to within a constant gap. To investigate causal cooperation,

the achievable rate region of the two-user interference channel with cribbing encoders is

studied in [32–34,77,78].

Multiplexing gain has been used as a measure to investigate the role of partial non-

causal cooperation (or cognitive message sharing) in wireless networks in the high Signal-

To-Noise Ratio (SNR) regime. The multiplexing gain of multiple-input multiple-output

(MIMO) Gaussian channels depends on the minimum number of transmits and receive

antennas [79,80]. Furthermore, in the K-user GIC, as the cooperation among transmitters

increases from no cooperation to perfect cooperation, the multiplexing gain increases

from 1
2
K to K [35]. However, practical cooperation among different nodes requires causal

delay to be considered as an essential constraint. The signal transmitted by a node will be

received and processed by other nodes with some delay, and the minimum acceptable delay

can significantly affect the potential gains of cooperative communication systems. For

instance, in the two-user GIC, when only transmitters cooperate non-causally (no delay

constraint), i.e., each transmitter non-causally knows the other transmitter’s message,

the channel behaves similar to the broadcast channel, and the maximum multiplexing

gain of two is achievable [36, 37]. Similarly, non-causal cooperation among the receivers
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achieves the Multiple-Access-Channel multiplexing gain of two [38].

In contrast, when cooperation is causal, Host-Madsen and Nosratina [39] have proved

that the maximum achievable multiplexing gain is limited to one. Interestingly, this

multiplexing gain can be achieved by half-duplex transmitters without any cooperation.

Furthermore, even when all nodes are synchronized and operate in the full-duplex mode,

as long as they satisfy the traditional constraint of causal delay, the maximum multi-

plexing gain remains limited to one [39,81]. Therefore, [39] states that “the multiplexing

gains promised by the MIMO systems are critically dependent on a tight coordination

among the transmit antennas on the one side, or among the receive antennas on the other

side; a level of coordination that seemingly cannot be achieved by the wireless connec-

tions available to cooperative communication”. Similarly, causal cooperation is known to

increase the capacity region of the MIMO GIC, but not its multiplexing gain [82].

This study investigates the two-user GIC with full-duplex transmitters to reach the

following conclusion: with a new constraint of causal delay, which is slightly different

from the traditional one and captures the role of delay more accurately, the maximum

multiplexing gain is in fact two [83]. We introduce this new constraint of causal delay

and compare it with that of [39]. The causal delay constraint is traditionally applied to

each symbol, whereas in this study, we apply this constraint to a block of M symbols

that constitute one OFDM symbol. This new constraint plays an integral role in this

study as it allows the coding scheme to achieve a higher multiplexing gain. Moreover,

it is known that the channel delay does not affect the capacity of the point-to-point

memoryless channel, the memoryless broadcast channel, and the memoryless multiple

access channel [84]. However, we show that a small change in the delay of the channels

between full-duplex transmitters of the two-user GIC can significantly change the sum-

capacity.

To illustrate our results, we first consider a case in which only one of the transmitters

operates in the full-duplex mode. Then, we consider the general case in which both trans-

mitters are full-duplex and cooperative. We highlight the potentials (higher multiplexing

gain) and limitations (caused by the closed loop between transmitters) that emerge when

both transmitters are full-duplex. Furthermore, we study the optimal power allocation

that maximizes the achievable sum-rate and examine its effect through some simulations.

Interestingly, the simulation results reveal that, when full-duplex transmitters are de-
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signed to cancel interference, the achievable sum-rate of the symmetric GIC does not

significantly degrade. In fact, we show that when the interference power increases, as the

cross-link channel gains increase, the achievable sum-rate of full-duplex transmitters is

almost flat and close to that of non-interfering transmitters.

The rest of this chapter is organized as follows: in Section 5.2, our notation and the

channel model are introduced. Section 5.3, which contains our main contribution, investi-

gates the achievable multiplexing gain of the two-user GIC with full-duplex transmitters.

The case when only one of the transmitters is full-duplex is studied separately. Further-

more, the closed form expression of the optimal power allocation is computed. In Section

5.4, simulation results are presented to highlight the corresponding improvement in the

sum-rate. Moreover, the role of optimal power allocation in increasing the achievable

sum-rate is depicted in simulation results. Finally, Section 5.5 concludes the chapter.

5.2 Preliminaries

In this chapter, matrices including vectors, are denoted by boldface uppercase letters.

a
.
= b means that b is the definition of a. diag(P1,1, P1,2, ...P1,M) demonstrates an M ×M

matrix in which (P1,1, P1,2, ...P1,M) is the main diagonal and all other entries are zero.

For a square complex matrix C1, C1[i] is the complex number that represents the ith

element of the main diagonal. For a complex vector S1 = [S1,1, S1,2, ..., S1,M ]T , S1[i]

is the complex number that represents the ith element of the vector, i.e., S1[i]
.
= S1,i.

The notation ∇(R1) represents the gradient of the function R1. [x]+ = x if x > 0,

otherwise [x]+ = 0, and log(x) = log2(x). The notation 1(x ≤ y) = 1 if x ≤ y, otherwise

1(x ≤ y) = 0. Finally, for a complex number z, |z| represents the magnitude of z.

5.2.1 Channel Model

In the system model studied in this chapter, a bandwidth of B is divided into M orthog-

onal sub-carriers and is shared between 2M links (a link is composed of a transmitter

and its corresponding receiver). Therefore, we assume that M orthogonal sub-carriers

are shared by two groups of transmitter-receiver pairs where each group has exactly

M links, as depicted in Figure 5.1. In other words, the two groups share the entire
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Figure 5.1: Two groups (A and B) of wireless transmitters sharing M sub-carriers of

OFDMA.

bandwidth, based on Orthogonal Frequency-Division Multiple Access (OFDMA) with M

sub-carriers. Each sub-carrier is used by both groups, and therefore, M parallel two-user

GICs are formed, as shown in Figure 5.2. Note that OFDMA is used in many wireless

standards. For instance, in the Long-Term Evolution (LTE) standard, used by many

telecommunications providers, OFDMA is used in the down-link [85].

One of the main advantages of OFDM systems is their immunity to multi-path fading.

When a signal x(t) is transmitted through a channel with impulse response c(t), the

recieved signal y(t) is expressed by a linear convolution as follows:

y(t) =

∫ +∞

−∞
x(τ)c(t− τ)dτ + z(t), (5.1)

where z(t) represents the noise at the receiver. The multi-path delay can be modeled as

c(t) =

Npath∑
i=1

ζiδ(t− τi), (5.2)

where ζi and τi represent the gain and the delay of the ith path, respectively. Npath is

the number of paths, and δ(t) is the Dirac delta function. For this channel, the delay

spread td is given by td = max{τi}−min{τi}. The receiver retrieves x(t) from y(t) using

an equalizer; however, the complexity of implementing such an equalizer increases as

Npath increases. The basic idea of OFDM is to transmit the message through narrow-

band orthogonal sub-carriers, so that each sub-carrier experiences a complex gain, and

consequently, the equalizer structure is simplified.

To realize an OFDM symbol of sizeM , a symbol of incoming data S(n) = [S1(n), S2(n), ..., Si(n), ..., SM(n)]T

is multiplied by an inverse Fast Fourier Transform (FFT) matrix to create the time-

domain symbol D(n) = [D1(n), D2(n), ..., Di(n), ..., DM(n)]T , where n, i, and M repre-

sent the time index, the sub-carrier index and the symbol size, respectively. Note that
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one OFDM symbol conveys M messages. Furthermore, a cyclic prefix of size Lcp is added

at the beginning of the OFDM symbol D(n). Then, a parallel to serial converter and

a digital to analogue converter are used to generate the analogue signal d(t), in which

the OFDM symbol has duration t0 and the cyclic prefix has duration tcp. The cyclic

prefix is used to avoid interference among sub-carriers. In fact, if the delay spread td

is shorter than tcp (or equivalently, if the channel impulse response is shorter than Lcp),

the cyclic prefix turn the linear convolution into the cyclic convolution. Since circular

convolution can be diagonalized in the Fourier basis [86], it can be verified that multi-

path delay in the time domain is transformed into complex gains over sub-carriers in

the frequency domain [87–89]. Therefore, by adding a redundancy of size Lcp to an

OFDM symbol of size M , OFDM systems can effectively handle the multi-path fad-

ing. In OFDM systems, instead of dealing with the delay of each Di(n), the delay of

D(n) = [D1(n), D2(n), ..., Di(n), ..., DM(n)]T is managed by adding a cyclic prefix. This

in turn results in the message embedded in each OFDM sub-carrier to be multiplied by

a complex channel gain value, without any interaction with the rest of the messages em-

bedded in other OFDM sub-carriers. This is the key idea that let us relax the traditional

delay constraint, as will be further explained in Remark 5.1.

In this study, the ith sub-carrier is used by both groups simultaneously; in group A,

it is used by the ith transmitter-receiver pair. Similarly, in group B, it is used by the

ith transmitter-receiver pair. From the receivers’ points of view, the entire channel is

similar to M parallel two-user GICs; therefore, in Figure 5.3, all transmitters of group

A are gathered together and labeled T A and all receivers of group A are labeled RA. In

our notation, T A,i and RA,i represent the ith transmitter and the ith receiver of group

A, respectively. Similarly, all transmitters of group B are labeled TB and all receivers of

group B are labeled RB.

Moreover, we assume that transmitters have full-duplex capability. When a signal

is broadcasted from the ith transmitter of T A, it is received by the other three nodes

operating over the same sub-carrier, i.e., the ith transmitter of TB, the ith receiver of

RA, and the ith receiver of RB, passing through the corresponding channels with gains

C12[i], G11[i], and G12[i], respectively. Similarly, the broadcasted signal from TB,i is

received by T A,i, RB,i, and RA,i, affected by channel gains denoted by C21[i], G22[i], and

G21[i], respectively. Note that the self interference, i.e., the leakage from a transmitter’s
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Figure 5.2: M parallel GICs formed across M sub-carriers of OFDMA.

antenna to the receiver of the same transmitter is assumed to be fully compensated. All

considered channels between the nodes are illustrated with blue boxes in Figure 5.3. It

is assumed that all channel gains are constant during the transmission of one OFDM

symbol and are fully known by all transmitters and all receivers.

The goal of this study is to mitigate the interference through cooperation among

transmitters when receivers simply treat the interference as noise. This interference

mitigation is performed by a scheme that we call superimposed interfere cancellation. In

this scheme, T A superimposes a filtered version of the signal it receives from TB on the

original signal of T A. The filter is chosen such that the interference is canceled at RA.

Similarly, TB superimposes the signal it receives from T A on its own signal to cancel the

interference at RB. The filter at T A, which is used to cancel the interference at RA, is

denoted by F 1 and the filter at TB, which is used to cancel the interference at RB, is

denoted by F 2 (see Figure 5.3). Note that F 1 represents M filters; each used by the

corresponding transmitter of T A. The ith transmitter of T A is designed to cancel the

interference only over the ith sub-carrier at the ith receiver of RA. As explained in the

rest of this chapter, under some assumed conditions, the filter used by the ith transmitter

of T A, i.e., F 1[i], is a simple one tap filter that has a constant magnitude and a constant

phase.

Note that T A represents M distinct transmitters of group A, installed at different

locations. Each transmitter communicates with a corresponding receiver over a narrow

frequency band. Such a narrow frequency band is formed over a single OFDM sub-

carrier, or a group of adjacent OFDM sub-carriers with equal gains. The requirement
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Figure 5.3: The equivalent GIC with full-duplex transmitters.

is that the channel formed over each of such narrow bands is frequency flat. Relying

on this assumption, filters F 1[i] and F 2[i], for the ith transmitter/receiver pair, will

operate over a frequency flat channel. Consequently, each such filtering operation will be

equivalent to multiplication by a complex number (phase and magnitude adjustment).

Under this condition, each of these M pairs of filters can be implemented in the time

domain, without introducing any additional delay, and without the need to filter/separate

OFDM sub-carriers. Each such filter will introduce a phase and magnitude adjustment

over the entire band. This will effectively provide the phase and magnitude adjustment

required to cancel the (narrow band) interference term over the corresponding two-users

GIC. Due to orthogonality of sub-carriers , each pair of filters, although operating over

the entire band, will affect only its corresponding two-user GIC. In other words, such a

filtering operation will be transparent to other transmitter/receiver pairs.

This model only requires that transmitters are physically separated, each operating

over a narrow-band (flat) sub-channel. However, receivers can be either grouped together

in one physical location, or be in separate locations. If the receivers are physically to-

gether, the model will correspond to the uplink in an OFDMA system. Note that in the

uplink, coverage is typically governed by the limitation on the amount of power mobile

nodes can transmit. Using a narrow band channel allows mobile units to concentrate

their available power in a smaller band and satisfy the required link budget.

The case in which receivers are in separate locations corresponds to M physically

152



Chapter 5. Delay in Cooperative Communications

separate transmitter receiver pairs (M two-users GIC) sharing the spectrum. Use of

small cells in emerging wireless standards, such as LTE, would be an example for the

application of such a set of separate transmitter/receiver pairs. Each link connects a

micro/pico base-station to a client within a small cell. The model would capture 2M

such small cells sharing the spectrum. In this case, frequency planning would ideally

assign a pair of two-user CIG sharing a sub-carrier to small cells further away from each

other, while neighboring small cells would be separated by assigning them to orthogonal

sub-channels. This is aligned with our assumption in Theorem 5.1 that the product of

the cross-link channel gains is smaller than the product of the direct-link channel gains.

It should be added that such filters can be implemented directly as part of the Ra-

dio Frequency (RF) front end as a simple tunable phase/magnitude adjustment of the

incoming signal prior to combining it (in the RF domain) with the outgoing radio signal.

Finally, note that although F 1[i] and F 2[i] are implemented in the time domain, in our

notations, these are equivalently represented as complex multiplications in the frequency

domain.

The signal received by RA and RB are expressed as

Y 1 = G11X1 + G21X2 + Z1,

Y 2 = G12X1 + G22X2 + Z2, (5.3)

where G11,G21,G12, and G22 are diagonal M×M complex matrices, representing channel

gains. X1 and X2 are complex M × 1 vectors, representing the outputs of T A and TB,

respectively. Furthermore, Z1 and Z2 are M × 1 vectors, representing the zero-mean

unit-variance complex Gaussian noise of RA and RB, respectively. Z1 and Z2 have

independent equal variance real and imaginary parts. As depicted in Figure 5.3, since

T A has full-duplex capability, its output, X1, is the sum of the S1, i.e., an M×1 Gaussian

vector that represents the original message of T A, and W 1 = F 1(C21X2 + N 1). W 1 is

an M×1 vector, and it represents the filtered signal that T A receives from TB. Similarly,

X2 is the sum of S2 and W 2 = F 2(C12X1 + N 2), therefore,

X1 = S1 + F 1(C21X2 + N 1),

X2 = S2 + F 2(C12X1 + N 2), (5.4)

where N 1 and N 2 represent zero-mean unit-variance complex Gaussian noise of the

receivers of T A and TB, respectively. Moreover, all noises are independent of each other
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and are independent of the inputs S1 and S2. Define L as the gain of the loop between

transmitters. Therefore,

L = F 1C21F 2C12. (5.5)

Note that F 1, C21, F 2, and C12 are all diagonal matrices, and therefore, are commuting

matrices. From (5.4), X1 and X2 are expressed as functions of S1 and S2 as follows:

X1 = (S1 + F 1N 1 + F 1C21(S2 + F 2N 2))(I −L)−1,

X2 = (S2 + F 2N 2 + F 2C12(S1 + F 1N 1))(I −L)−1. (5.6)

Note that Sj(n) = [Sj,1(n), Sj,2(n), ..., Sj,M(n)]T , j ∈ {1, 2}, represents an OFDM symbol

of size M , transmitted through M orthogonal sub-carriers, and n represents the time

index. In this chapter, whenever the time index n is clear from the context, it will be

omitted.

Although the M transmitters of T A can have different powers, we impose a power

constraint on the total power transmitted by all of them. Consequently, the transmission

power at T A and TB are bounded by P1 and P2, respectively. The justification for this

power constraint is further discussed, when we investigate the optimal power allocation.

Since in OFDMA, the sub-carriers are orthogonal, the transmission power constraint is

applied over the M orthogonal sub-carriers. Consequently, the total power of X1, which

is the sum of powers of X1[i]s, i ∈ {1, 2, ...,M}, is restricted to P1, and the total power

of X2, which is the sum of powers of X2[i]s, i ∈ {1, 2, ...,M}, is restricted to P2.

5.2.2 Causal Cooperation

Next, we examine the constraint of causal cooperation, used in this study. In a causal co-

operation among transmitters, X1(n) = [X1,1(n), X1,2(n), ..., X1,M(n)]T can be a function

of its received signal, i.e., W 1(n− 1),W 1(n− 2), ...,W 1(1). Moreover, T A can superim-

pose W 1(n) on S1(n). Similarly, X2(n) can only depend on W 2(n− 1), ...,W 2(1), and

TB can superimpose W 2(n) on S2(n). Note that to achieve a multiplexing gain of two,

transmitters do not need to use the past received signals. In this study, we show that by

just superimposing W j(n) on Sj(n), a multiplexing gain of two is achievable.
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Remark 5.1. Causal delay: Since T A is not aware of the message of TB, to consider

a causal scenario, it is traditionally assumed that X1(n) can only depend on W 1(n −

1),W 1(n−2), ...,W 1(1). With this traditional constraint of causal delay, [39] proves that

cooperation among transmitters does not increase the multiplexing gain of the two-user

GIC. However, in this study, T A can filter the signal it receives from TB and superimpose

it on its own signal. Note that T A does not decode X2(n) = [X2,1(n), X2,2(n), ..., X2,M(n)]T

and does not use it to encode X1(n). The justification behind our assumption is the fact

that the actual delay is determined by the channel memory length and not by one symbol

length. In OFDM systems, as far as the maximum delay spread is less than the tcp, the

effect of multi-path delay is just M complex gains over the M parallel sub-channels in

the frequency domain. Note that the message embedded in each OFDM sub-carrier will

be detectable only after the entire OFDM symbol is received, however this extension in

time is the same for all paths, and it is consistent with the OFDM structure. Due to

the cyclic prefix, this results in a simple linear combination of the desired signal and the

interference over each OFDM sub-carrier.

In this setup, the role of the relaying of the interfering signal is equivalent to creating

some additional paths in the propagation of the OFDM symbol, and consequently, as long

as all the paths corresponding to any given OFDM symbol are received by the destination

within a delay spread satisfying the cyclic prefix condition, the superposition principal

over each sub-carrier will be valid. With this idea, we can capture the role of delay inside

the OFDM symbol. A longer delay requires a longer cyclic prefix. For a fixed M , as the

size of the cyclic prefix Lcp increases, the effective rate of the OFDM symbol decreases.

In the next section, we investigate this issue.

In the scenario investigated in this chapter, the signal transmitted by TB, reaches RA

through two distinct paths: a direct path from TB to RA and an indirect path from TB

to T A and then from T A to RA. Therefore, as far as the total delay spread, including the

delay from TB to T A and the processing delay in T A and the delay from T A to RA, is

less than the cyclic prefix duration, the ith transmitter of T A can deploy a proper filter,

i.e., F 1[i] to apply the required gain/phase shift in the indirect path. Note that since

each transmitter operates over a sub-carrier of OFDMA, such filtering operation can be

performed in time by operating over successive time samples of each OFDM symbol as

these are received and relayed. With this filtering, the ith receiver of RA experiences an
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Figure 5.4: The interference, caused by TB, reaches RA directly by Idi and indirectly by

Iin. The filter F 1 can guarantee that Idi + Iin = 0.

interference-free sub-channel. This is depicted in Figure 5.4 for the signals transmitted

by TB that reaches RA trough two distinct paths. In Section 5.3, we characterize the

direct interference Idi and the indirect interference I in. Then, we compute the filter F 1

that satisfies Idi + I in = 0.

In this chapter, multiplexing gain is used to investigate the role of cooperation in the

achievable rate region of the two-user GIC. Intuitively, multiplexing gain is the factor

in front of log(SNR) in the expression of the achievable sum-rate. Mathematically, the

following is used as the definition of multiplexing gain [37]:

Definition 5.1. For the two-user GIC, a multiplexing gain of l is said to be achievable, if

for P1 = P2 = P , there exists a coding scheme that achieves the rate tuple (R1(P ), R2(P )),

such that

lim sup
P→∞

R1(P ) +R2(P )

log(P )
= l. (5.7)

In the next section, we show that a simple causal cooperation among full-duplex

transmitters of the two-user GIC, can achieve a multiplexing gain of two.

5.3 Interference Cancellation with Full-Duplex Trans-

mitters

In this section, we first study the case in which transmitters of only one group are full-

duplex. Then, we investigate the general case in which transmitters of both groups are
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full-duplex.

5.3.1 The Two-User GIC with One Full-Duplex Transmitter

We first study the case in which only T A is full-duplex. This would be equivalent to the

general case depicted in Figure 5.3 if we let F 2 = N 2 = 0. In fact, X1 and X2 are given

by

X1 = S1 + F 1N 1 + F 1C21S2, (5.8)

X2 = S2. (5.9)

The signal received by receivers, i.e., Y 1 and Y 2 are expressed as

Y 1 = G11X1 + G21X2 + Z1

= G11(S1 + F 1N 1 + F 1C21S2) + G21S2 + Z1

= G11(S1 + F 1N 1) + (G11F 1C21 + G21)S2 + Z1, (5.10)

Y 2 = G12X1 + G22X2 + Z2

= G12(S1 + F 1N 1 + F 1C21S2) + G22S2 + Z2

= G12(S1 + F 1N 1) + (G12F 1C21 + G22)S2 + Z2. (5.11)

As expressed in (5.10), the interference caused by S2, reaches RA though two distinct

paths. Directly, through G21, S2 causes the interference Idi, which is expressed as

Idi = G21S2, (5.12)

and indirectly, through G11F 1C21, S2 causes the interference I in, which is expressed as

I in = (G11F 1C21)S2. (5.13)

To cancel the interference, we choose F 1 such that

Idi + I in = 0. (5.14)

Therefore, F 1 is given by

F 1 = −G21(G11C21)−1. (5.15)
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Note that RB simply treats the existing interference as noise. Consequently, the achiev-

able rate of T A and TB are given by

R1 =
M∑
i=1

log(1 +
Ai1P

i
1

J i1
),

R2 =
M∑
i=1

log(1 +
Ai2P

i
2

Bi
2P

i
1 + J i2

), (5.16)

where P i
1 and P i

2 represent the power of S1,i and S2,i, respectively. Ai1 and Ai2 represent

the effective channel gains at the ith receiver of RA and RB, respectively. Bi
2P

i
1 represents

the power of the interference that the ith receiver of RB experiences. Finally, J i1 and J i2

determine the power of the effective noise at the ith receiver of RA and RB, respectively.

Moreover, according to (5.10) and (5.11), we have

Ai1 = |G11[i]|2,

Ai2 = |(G12F 1C21 + G22)[i]|2,

Bi
2 = |G12[i]|2,

J i1 = |(G11F 1)[i]|2 + 1,

J i2 = |(G12F 1)[i]|2 + 1. (5.17)

Moreover, since X2 = S2, the power constraint of TB is simply
∑M

i=1 P
i
2 ≤ P2. However,

since X1 = S1 +F 1N 1 +F 1C21S2, the power constraint of T A is a constraint involving

P i
1 and P i

2. In fact, to show that the total power of X1 is restricted to P1, we have

M∑
i=1

P i
1 + |F 1[i]|2 + |(F 1C21)[i]|2P i

2 ≤ P1. (5.18)

This constraint can be rewritten as follows:

M∑
i=1

Ci
1P

i
1 +Di

1P
i
2 ≤ E1, (5.19)

where according to (5.18), Ci
1, Di

1, and E1 are expressed as

Ci
1 = 1,

Di
1 = |(F 1C21)[i]|2,

E1 = P1 −
M∑
i=1

|F 1[i]|2. (5.20)
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By canceling the interference using filter F 1, given in (5.15), R1 increases proportion-

ally to log(P1). The power of the noise of the ith sub-carrier of RA and RB has increased

from 1 to J i1 and J i2, respectively. Moreover, because of power constraint (5.19),
∑M

i=1 P
i
1

is strictly less than P1. However, as can be seen from (5.16) and (5.20), the full-duplex

transmitter can cancel interference at its receiver, and in the high SNR regime, R1 is pro-

portional to log(P1) while R2 is proportional to log(P2

P1
). In the next subsection, we show

that if both transmitters are full-duplex, then both R1 and R2 can increase proportionally

to log(P1) and log(P2), respectively.

5.3.2 The Two-User GIC with Two Full-Duplex Transmitters

In this subsection, we study the general case, where transmitters of both groups are full-

duplex. Transmitters superimpose the signal they receive on their own messages such

that their intended receiver will see no interference. The signal received at RA is

Y 1 =G11X1 + G21X2 + Z1

(a)
=G11(S1 + F 1N 1 + F 1C21(S2 + F 2N 2))(I −L)−1

+ G21(S2 + F 2N 2 + F 2C12(S1 + F 1N 1))(I −L)−1 + Z1

=(S1 + F1N1)(G11 + G21F 2C12)(I −L)−1

+ (S2 + F 2N 2)(G21 + G11F 1C21)(I −L)−1 + Z1, (5.21)

where (a) is valid by (5.6). Similarly, Y2 can be expressed in terms of S1, S2, and Z2,

as follows:

Y 2 =G12X1 + G22X2 + Z2

=(S1 + F1N1)(G12 + G22F 2C12)(I −L)−1

+ (S2 + F 2N 2)(G22 + G12F 1C21)(I −L)−1 + Z2. (5.22)

In addition, the power constraints for X1 and X2 are expressed as

M∑
i=1

E[|X1,i|2] ≤ P1,

M∑
i=1

E[|X2,i|2] ≤ P2. (5.23)
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Since X1 and X2 are given by (5.6), we obtain

X1,i =

(
S1 + F 1N 1 + F 1C21(S2 + F 2N 2)

)
[i]

1−L[i]
,

X2,i =

(
S2 + F 2N 2 + F 2C12(S1 + F 1N 1)

)
[i]

1−L[i]
. (5.24)

Therefore, we can rewrite (5.23) as follows:

M∑
i=1

Ci
1P

i
1 +Di

1P
i
2 ≤ E1,

M∑
i=1

Ci
2P

i
1 +Di

2P
i
2 ≤ E2, (5.25)

where P i
1 and P i

2 represent the power of S1,i and S2,i, respectively, as expressed by the

following equations:

E[|S1,i|2] = P i
1,

E[|S2,i|2] = P i
2. (5.26)

According to (5.24), for j ∈ {1, 2}, Ci
j, D

i
j, and Ej are given by

Ci
1 =

∣∣∣∣ 1

1−L[i]

∣∣∣∣2 , Ci
2 =

∣∣∣∣(F 2C12)[i]

1−L[i]

∣∣∣∣2 ,
Di

1 =

∣∣∣∣(F 1C21)[i]

1−L[i]

∣∣∣∣2 , Di
2 =

∣∣∣∣ 1

1−L[i]

∣∣∣∣2 ,
Ej = Pj −

M∑
i=1

Ci
j|F 1[i]|2 −

M∑
i=1

Di
j|F 2[i]|2. (5.27)

A simple power allocation scheme is the uniform power allocation. When the entire

power is allocated uniformly across all sub-carriers, P i
1 = P k

1 = P̆1 and P i
2 = P k

2 = P̆2 for

i, k ∈ {1, 2, ...,M}. Therefore, according to (5.25), we obtain

P̆1

M∑
i=1

Ci
j + P̆2

M∑
i=1

Di
j = Ej, j ∈ {1, 2}, (5.28)

which results in the following expressions for the uniform power allocation:

P̆1 =
E1

∑M
i=1D

i
2 − E2

∑M
i=1D

i
1∑M

i=1 C
i
1

∑M
i=1D

i
2 −

∑M
i=1 C

i
2

∑M
i=1D

i
1

,

P̆2 =
E1

∑M
i=1 C

i
2 − E2

∑M
i=1C

i
1∑M

i=1 D
i
1

∑M
i=1 C

i
2 −

∑M
i=1 D

i
2

∑M
i=1 C

i
1

. (5.29)
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Note that in the high SNR regime, in which P1 = P2 = P approach infinity, we have

lim
P→∞

P̆1

P
= c1,

lim
P→∞

P̆2

P
= c2, (5.30)

where c1 and c2 are positive constants. This means that in the high SNR regime, a

fixed portion of the entire power is allocated to each sub-carrier. The following theorem

shows that if both transmitters are full-duplex, using the uniform power allocation, a

multiplexing gain of two is achievable.

Theorem 5.1. When the magnitude of the product of cross-link channel gains is smaller

than the magnitude of the product of direct-link channel gains, the maximum multiplexing

gain of the two-user GIC with full-duplex transmitters is equal to two.

Proof. The proof has two main parts. First, we show that full-duplex transmitters can

use filters F 1 and F 2 to simultaneously cancel the interference at their receivers. To do

so, transmitters use OFDM symbols of size M with cyclic prefix of size Lcp. Second, we

show that in the high SNR regime, M and Lcp can be chosen such that the use of cyclic

prefix does not reduce the multiplexing gain. As it will be shown later, we need to assume

that

|G12[i]G21[i]| ≤ |G11[i]G22[i]|, (5.31)

for all i ∈ {1, 2, ...,M}. This means the magnitude of the product of cross-link channel

gains is smaller than the magnitude of the product of direct-link channel gains.

According to (5.21), T A can cancel the interference at RA, if G21 + G11F 1C21 = 0.

Consequently, T A uses the following filter:

F 1 = −G21(G11C21)−1. (5.32)

Similarly, TB can cancel the interference at RB, if the following filter is used by TB:

F 2 = −G12(G22C12)−1. (5.33)

When the interference is canceled, Y 1 and Y 2 are given by

Y 1 = (S1 + F1N1)(G11 + G21F 2C12)(I −L)−1 + Z1,

Y 2 = (S2 + F2N2)(G22 + G12F 1C21)(I −L)−1 + Z2. (5.34)
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Let R1 and R2 denote the achievable rate of RA and RB, respectively. Then, R1 and

R2 are given by

Rj =
M∑
i=1

log
(

1 +
AijP

i
j

J ij

)
, (5.35)

where Aij and J ij represent the effective gain and the power of the effective noise at the ith

sub-carrier of Y j, i ∈ {1, ...,M} and j ∈ {1, 2}, respectively. According to (5.34), these

quantities are described in terms of L = F 1C21F 2C12 as follows:

Ai1 =

∣∣∣∣(G11 + G21F 2C12)[i]

1−L[i]

∣∣∣∣2 ,
Ai2 =

∣∣∣∣(G22 + G12F 1C21)[i]

1−L[i]

∣∣∣∣2 ,
J i1 = |F 1[i]|2Ai1 + 1,

J i2 = |F 2[i]|2Ai2 + 1. (5.36)

Although the achievable sum-rate depends on the value of Aij and J ij , the achievable

multiplexing gain does not. The achievable multiplexing gain can be computed by letting

P1 = P2 = P → ∞. Note that according to (5.30), for the uniform power allocation,

limP→∞
log(P i1)

log(P )
= limP→∞

log(P i2)

log(P )
= 1 for all i ∈ {1, 2, ...,M}. Therefore, for OFDM

symbols of size M , we have

lim sup
P→∞

R1(P ) +R2(P )

M log(P )

= lim sup
P→∞

∑M
i=1 log(1 +

Ai1P
i
1

Ji1
) +

∑M
i=1 log(1 +

Ai2P
i
2

Ji2
)

M log(P )

= lim sup
P→∞

∑M
i=1 log(P i

1) +
∑M

i=1 log(P i
2)

M log(P )

=2, (5.37)

which shows the achievability of a multiplexing gain of two.

For the above argument to be valid, we should show that the cyclic prefix does not

decrease the achievable multiplexing gain. The addition of the cyclic prefix at the be-

ginning of the OFDM symbol decreases the spectral efficiency. When a cyclic prefix of

size Lcp is added to an OFDM symbol of size M , the effective rate would decrease by an

efficiency factor of M
M+Lcp

. By choosing a large M , or equivalently a large duration t0,

this efficiency factor tends to one.
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In addition, the time duration, required to reach the steady state signals expressed in

(5.6), should be smaller than the cyclic prefix duration tcp. More precisely, let tlp be the

loop duration, i.e., the time required for the signal to go from T A to TB and to come back

from TB to T A. In the following, we show that if the cyclic prefix duration is greater

than a certain multiple of tlp, a multiplexing gain of two is achievable.

Assume that a time duration of k × tlp has passed, where k is an integer. As can be

seen in Figure 5.3, we have

X1 =
k∑
l=0

(S1 + F 1N 1)Ll +
k∑
l=0

F 1C21(S2 + F 2N 2)Ll. (5.38)

When k goes to infinity, (5.38) will be equivalent to (5.6), as explained by the following

expression:

∞∑
l=0

(S1 + F 1N 1)Ll +
∞∑
l=0

F 1C21(S2 + F 2N 2)Ll

= (S1 + F 1N 1 + F 1C21(S2 + F 2N 2))(I −L)−1. (5.39)

However, for a finite k, we have

X1 =
k∑
l=0

(S1 + F 1N 1)Ll +
k∑
l=0

F 1C21(S2 + F 2N 2)Ll

=
∞∑
l=0

(S1 + F 1N 1)Ll +
∞∑
l=0

F 1C21(S2 + F 2N 2)Ll

−
∞∑

l=k+1

(S1 + F 1N 1)Ll −
∞∑

l=k+1

F1C21(S2 + F 2N 2)Ll

=(S1 + F 1N 1 + F 1C21(S2 + F 2N 2))(I −L)−1 −NA, (5.40)

where the last equality is valid by (5.39). Therefore, after a time duration of k × tlp,

X1 is equal to the steady state expression given in (5.6) and a noise term NA, where

NA = [NA,1, NA,2, ...NA,M ]T is an M × 1 vector, representing the noise experienced by

receivers of T A, caused by approximating (5.38) by (5.6). According to (5.40), NA is

expressed as

NA =
∞∑

l=k+1

(S1 + F 1N 1)Ll +
∞∑

l=k+1

F1C21(S2 + F 2N 2)Ll

= (S1 + F 1N 1 + F 1C21(S2 + F 2N 2))Lk+1(I −L)−1. (5.41)

163



Chapter 5. Delay in Cooperative Communications

Similarly, after a time duration of k × tlp, TB will experience an additional noise term

NB, which is given by

NB =
∞∑

l=k+1

(S2 + F 2N 2)Ll +
∞∑

l=k+1

F2C12(S1 + F 1N 1)Ll

= (S2 + F 2N 2 + F 2C12(S1 + F 1N 1))Lk+1(I −L)−1. (5.42)

In (5.40), (5.41), and (5.42), we have used the following geometric series:

∞∑
l=0

Ll = (I −L)−1 = (I − F 1C21F 2C12)−1, (5.43)

∞∑
l=k+1

Ll = Lk+1(I −L)−1, (5.44)

where these equalities are valid if |L[i]| < 1 for all i ∈ {1, 2, ...,M}. Note that

|L[i]| = |(C21F 1C12F 2)[i]| (a)
= |(G12G21G

−1
11 G

−1
22 )[i]|, (5.45)

where (a) is valid by (5.32) and (5.33) and the fact that C21, C12, G11, G22, G12, and

G21 are all commuting matrices. Therefore, |L[i]| < 1 is equivalent to

|(G12G21G
−1
11 G

−1
22 )[i]| ≤ 1. (5.46)

Note that (5.46) means that over all sub-carriers, the magnitude of the product of cross-

link channel gains should be smaller than that of the product of direct-link channel gains,

i.e.,

|G12[i]G21[i]| ≤ |G11[i]G22[i]|, (5.47)

which was assumed in Theorem 1. (5.47) is reminiscent of the weak interference condition,

in which each cross-link channel gain is smaller that the corresponding direct-link channel

gain. The interference channel formed across the ith sub-carrier is weak if we have

|G12[i]| ≤ |G22[i]|,

|G21[i]| ≤ |G11[i]|. (5.48)

Clearly, if the interference channels formed across all sub-carriers are weak, then the

constraint |L[i]| < 1 is satisfied for all i ∈ {1, 2, ..,M}.

Receivers of T A can consider NA as an extra noise, in addition to N 1. To achieve

a multiplexing gain of two, it would be enough to keep the power of NA,i at the same
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level as the power of N1,i. More precisely, as P1 and P2 go to infinity, we should make

sure that max
i
{E[|NA,i|2]} does not approach infinity, so that in the high SNR regime, the

effect of the power of NA on the achievable sum-rate is negligible. Assume that power

is allocated uniformly according to (5.29). Note that in the high SNR regime, both P i
1

and P i
2 are proportional to P as highlighted in (5.30). Consequently, for P1 = P2 = P ,

a multiplexing gain of two is achievable if we can find two positive constants b1 and b2

such that the following inequalities are satisfied:

lim
P→∞

max
i

{
E[|N1,i +NA,i|2]

}
≤ b1, (5.49)

lim
P→∞

max
i

{
E[|N2,i +NB,i|2]

}
≤ b2. (5.50)

The ith receiver of T A treats NA,i +N1,i as the total noise that it observes. Therefore, if

(5.49) is satisfied, then the power of the total noise experienced by the ith receiver of T A

is upper bounded by b1. Similarly, if (5.50) is satisfied, then the power of the total noise

experienced by the ith receiver of TB is upper bounded by b2. This means that the effect

of NA,i and NB,i is equivalent to a bounded increase in the power level of N1,i and N2,i,

respectively, and therefore, does not decrease the multiplexing gain.

In the following, we show that if |L[i]| < 1 for all i ∈ {1, 2, ..M}, we can always keep

max
i
{E[|NA,i + N1,i|2]} and max

i
{E[|NB,i + N2,i|2]} to be small enough such that (5.49)

and (5.50) are satisfied. In doing so, note that

E[|NA,i +N1,i|2] ≤ E[|NA,i|2 + |N1,i|2 + 2|N1,iNA,i|]
(a)
= E[|NA,i|2] + 1+

2E[|N1,i(F 1N 1L
k+1(I −L)−1)[i]|]

= E[|NA,i|2] + 1+

2E[|(F 1L
k+1(I −L)−1)[i]||N1,i|2]

= E[|NA,i|2] + 1 + 2|(F 1L
k+1(I −L)−1)[i]|2. (5.51)

where (a) is valid because N1,i is unit-variance noise and is independent of S1[i], S2[i],

and N2,i. Therefore, to upper bound E[|NA,i +N1,i|2], we find upper bounds on E[|NA,i|2]
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and 2|(F 1L
k+1(I −L)−1)[i]|2. According to (5.51), we obtain

lim
P→∞

max
i

{
E[|N1,i +NA,i|2]

}
≤

1 + lim
P→∞

max
i

{
E[|NA,i|2]

}
+ lim

P→∞
max
i

{
2|(F 1L

k+1(I −L)−1)[i]|2
}
. (5.52)

First, we find an upper bound on the power of NA,i. Note that the power of NA,i is

proportional to |L[i]|2. According to (5.41), since S1, S2, N 1, and N 2 are independent

random variables, we have

E[|NA,i|2] ≤(
P i

1 + |F 1[i]|2 + |F 1[i]C21[i]|2(P i
2 + |F 2[i]|2)

)(
|L[i]|2(k+1)|1−L[i]|−2

)
. (5.53)

Note that according to (5.27), E1 ≤ P1 and E2 ≤ P2. Therefore, in (5.25), we can replace

E1 with P1 and E2 with P2, and we have

M∑
i=1

Ci
1P

i
1 +Di

1P
i
2 ≤ P1,

M∑
i=1

Ci
2P

i
1 +Di

2P
i
2 ≤ P2. (5.54)

Moreover, according to (5.27), Ci
1, Ci

2, Di
1, and Di

2 are all non-negative values, therefore,

it follows that

P i
1 ≤

P1

Ci
1

, P i
2 ≤

P1

Di
1

, (5.55)

P i
1 ≤

P2

Ci
2

, P i
2 ≤

P2

Di
2

. (5.56)

Inserting (5.55) into (5.53),

E[|NA,i|2] ≤(P1

Ci
1

+ |F 1[i]|2 + |F 1[i]C21[i]|2(
P1

Di
1

+ |F 2[i]|2)
)(
|L[i]|2(k+1)|1−L[i]|−2

)
. (5.57)

Moreover, define λ as the maximum magnitude of the loop gains, given by

λ
.
= max

i∈{1,2,..M}
|L[i]|. (5.58)

Since we have assumed that over all sub-carriers, the product of cross-link channel gains

is smaller than that of direct-link channel gains, by (5.45), we deduce that |L[i]| ≤ 1.
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Therefore, we can conclude that 0 < λ < 1. For P1 = P2 = P , let n(P ) be the smallest

positive integer such that

λ2(n(P )+1) ≤ 1

P
. (5.59)

Equivalent, n(P ) can be defined as

n(P ) =

⌊
− ln(P )

2 ln(λ)

⌋
, (5.60)

where b.c represents the floor function. Note that since 0 < λ < 1, we can always choose

a large n(P ) that satisfies (5.59). Consequently, for all i ∈ {1, 2, ..M}, we have

|(L[i])|2(n(P )+1)|(1−L[i])|−2
(a)

≤ λ2(n(P )+1)|1−L[i]|−2

(b)

≤ |1−L[i]|−2

P
, (5.61)

where (a) is valid because of (5.58), and (b) is valid because of (5.59). Inserting (5.61)

into (5.57),

E[(NA,i)
2] ≤(P1

Ci
1

+ |F 1[i]|2 + |F 1[i]C21[i]|2(
P1

Di
1

+ |F 2[i]|2)
)( |1−L[i]|−2

P

)
. (5.62)

Therefore, for P1 = P2 = P , we can bound the power of the noise NA,i, as follows:

lim
P→∞

max
i

{
E[|NA,i|2]

}
(a)

≤ lim
P→∞

max
i

{
P
Ci1

+ |F 1[i]|2 + |F 1[i]C21[i]|2( P
Di1

+ |F 2[i]|2)
}

P
|1−L[i]|−2

= max
i

{ |1−L[i]|−2

Ci
1

+ |F 1[i]C21[i]|2(
|1−L[i]|−2

Di
1

)
}

(b)
= max

i

{
|1−L[i]|−2|1−L[i]|2 + |1−L[i]|−2|1−L[i]|2

}
= 2, (5.63)

where (a) is valid by (5.62), and (b) is valid by (5.27). Therefore, we have

lim
P→∞

max
i

{
E[|NA,i|2]

}
≤ 2. (5.64)

Similarly, after a time duration of n(P )× tlp, we have

lim
P→∞

max
i
{E[|NB,i|2]} ≤ 2. (5.65)
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Note that the bounds used in (5.55) and (5.56) are not sharp. As a result, two is not

a sharp upper bound on the maximum power of the noise, as expressed in (5.64) and

(5.65). However, this upper bound is enough to prove that a multiplexing gain of two is

achievable.

Second, we find an upper bound on

|(F 1L
n(P )+1(I −L)−1)[i]|2. (5.66)

In particular, we show that

lim
P→∞

max
i
{|(F 1L

n(P )+1(I −L)−1)[i]|2} = 0. (5.67)

Note that

lim
P→∞

max
i
{|F 1[i]|2|L[i]|2(n(P )+1)|1−L[i]|−2}

(a)

≤ lim
P→∞

max
i
{|F 1[i]|2 |(1−L[i])|−2

P
}

= lim
P→∞

1

P
max
i
{|F 1[i]|2|1−L[i]|−2}

= 0, (5.68)

where (a) is valid by (5.61). Inserting (5.68) and (5.63) into (5.52),

lim
P→∞

max
i

{
E[|N1,i +NA,i|2]

}
≤1 + lim

P→∞
max
i

{
E[|NA,i|2]

}
+ lim

P→∞
max
i

{
2|(F 1L

k+1(I −L)−1)[i]|2
}

≤3. (5.69)

This shows that (5.49) is satisfied with b1 = 3. Similarly, one can show that

lim
P→∞

max
i

{
E[|N2,i +NB,i|2]

}
≤ 3, (5.70)

which shows that (5.50) is also satisfied with b2 = 3.

Consequently, a sufficient condition, under which a multiplexing gain of two is still

achievable, is to make sure that n(P )× tlp is smaller than tcp, that is,

tcp ≥ n(P )× tlp, (5.71)

or equivalently,

tcp ≥
⌊
− ln(P )

2 ln(λ)

⌋
× tlp. (5.72)
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Under this condition, the power of NA,i and the power of NB,i become negligible and a

multiplexing gain of two is still achievable. This means, as P increases, n(P ) will increase,

and consequently, tcp should also increase such that (5.72) is satisfied. Therefore, Lcp

should increase and this increase can reduce the achievable rate. However, as highlighted

earlier, one can increase the size of the OFDM symbol M such that the ratio M
M+Lcp

tends

to one. Note that

lim
P→∞

M

M + Lcp
= lim

P→∞

1

1 + Lcp
M

. (5.73)

Consequently, a multiplexing gain of two is achievable if M grows as P goes to infinity

such that

lim
P→∞

Lcp
M

= 0. (5.74)

Note that Lcp is proportional to tcp, and according to (5.72), tcp is proportional to ln(P ).

Therefore, one can see that for,

M = ln(ln(P )) ln(P ), (5.75)

(5.74) is satisfied and a multiplexing gain of two is achievable.

For the converse part of the proof, note that even if transmitters are non-interfering

and each transmitter non-causally knows all the messages of the other transmitters, the

maximum multiplexing gain of the channel is limited to two, and this completes the

proof.

Remark 5.2. Note that in the proof of Theorem 5.1, we forced the power of the noise at

T A and TB to be bounded, as expressed in (5.49) and (5.50). It is worth mentioning that

even if the power of the noise is proportional to ln(P ), still the achievable multiplexing

gain is two. In fact, one can replace (5.49) and (5.50) with

lim
P→∞

max
i

{
E[|N1,i +NA,i|2]

}
ln(P )

≤ b1, (5.76)

lim
P→∞

max
i

{
E[|N2,i +NB,i|2]

}
ln(P )

≤ b2. (5.77)

This relaxation can lead to a smaller lower bound on the size of the cyclic prefix Lcp.
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Remark 5.3. Comparison with the relay channel: It is interesting that just one time

slot delay, assumed by [39], decreases the achievable multiplexing gain from two to one.

On the other hand, if transmitters of each group are non-causally provided with all of the

other transmitters’ messages, the achievable multiplexing gain will not be greater than two.

This is reminiscent of the results of [90] in which the lookahead relay is investigated. [90]

defines C0 as the capacity of the relay channel when relay has access to the present signal

transmitted by the main transmitter in addition to its past received signal. It is shown

than having access to the present transmitted signal, allows C0 to pass the cut-set bound

of the classical relay channel in which relay does not have access to the present signal

transmitted by the main transmitter. Note that in the definition of the capacity, the

block length, and consequently, the delay go to infinity. Therefore, it might seem that

the channel delay has no effect on the capacity of the channel. In fact, the capacity

region of the memoryless multiple access channel does not depend on the channel delay

[84]. However, [90] shows that for the relay channel, the channel delay can significantly

change the capacity. Moreover, [90] defines C∗ as the capacity of the relay channel, when

relay has non-causal access to future signals of the main transmitter. Clearly, C0 ≤ C∗;

however, [90] shows that under a condition on channel gains, C0 = C∗, and a simple

amplify and forward strategy achieves the capacity.

Furthermore, we can compare the achievable sum-rate of full-duplex transmitters with

that of non-interfering transmitters. If the T A,i and TB,i were non-interfering, then the

SNR at the ith sub-carrier of RA would be P i
1|G11|2, and the power constraint for T A is

given by
∑M

i=1 P
i
1 ≤ P1. This case is investigated as an upper bound on the achievable

sum-rate of the full-duplex interfering transmitters. On the other hand, when interfering

full-duplex transmitters cancel the interference at their receivers, the SNR at RA is

calculated by (5.36). The power of the signal of the ith sub-carrier that is intended for RA

is amplified by (Ai1)2, while the power of the noise is amplified by F 1[i]2Ai1 +1. Moreover,

the power constraint
∑M

i=1C
i
1P

i
1 +Di

1P
i
2 ≤ E1, implies that a portion of the power of T A

is used to cancel interference, and only a portion of its total power is available to transmit

its original messages across sub-carriers. Therefore, although interference is canceled, the

SNR and the achievable sum-rate will decrease in comparison with the SNR and the

achievable sum-rate of two non-interfering transmitters. However, as P = P1 = P2 goes

to infinity, the effect of this decrease of the available power on the achievable sum-rate

170



Chapter 5. Delay in Cooperative Communications

becomes insignificant. Consequently, both interfering and non-interfering transmitters

achieve the same multiplexing gain of two.

It is worth noting that the proof of Theorem 5.1 shows that the uniform power allo-

cation achieves the maximum multiplexing gain. However, the uniform power allocation

does not achieve the maximum sum-rate of the channel. The following sub-section in-

vestigates the optimal power allocation that achieves the maximum sum-rate and shows

that the optimal power allocation is given by a generalization of the well-known water

filling.

5.3.3 Optimal Power Allocation

The model used in the derivation of the power allocation relies on one main assumption:

limiting the total power distributed among different sub-carriers, rather than limiting the

power allocated to each sub-carrier. This assumption is justified noting that in reusing the

spectrum in neighboring areas, the amount of interference is governed by the total amount

of transmitted power. Note that such a power allocation strategy does not require a tight

coordination among different links, and does not contradict the assumption that links

operate autonomously. The reason is that issues such as power allocation, or structure

of filters used in interference removal, depend only on factors that vary slowly with time.

As a result, it is possible to use some form of central coordination to adjust the relevant

system parameters according to a particular realization of such factors. On the other

hand, instead of imposing a constraint on total power, one can impose a constraint on

the power of each transmitter of T A and TB. In the following, we study both cases.

First, consider the case in which the total power distributed among different sub-

carriers is limited. After interference is canceled at all receivers, channels behave similar

to two distinct parallel Gaussian point-to-point channels; however, the power constraint at

each transmitter depends on the power allocated to other transmitters. Mathematically,
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to maximize the achievable sum-rate, the following optimization problem is solved:

max
P i1,P

i
2

{R1 +R2} =

max
P i1,P

i
2

{
M∑
i=1

log(1 +
Ai1P

i
1

J i1
) +

M∑
i=1

log(1 +
Ai2P

i
2

J i2
)

}

subject to
M∑
i=1

Ci
jP

i
1 +Di

jP
i
2 − Ej ≤ 0, j ∈ {1, 2},

− P i
j ≤ 0, j ∈ {1, 2}, i ∈ {1, 2, ...,M}. (5.78)

where Aij, C
i
j, and Di

j, and Ej are constants known by all transmitters and receivers,

given in (5.27). As can be seen in (5.78), the achievable rate of T A, i.e., R1, only depends

on how P1 is distributed over sub-carries; however, the power constraint for T A, i.e.,∑M
i=1C

i
1P

i
1 +Di

1P
i
2 ≤ E1, shows that the power allocation used across sub-carries of TB,

affects the power allocation over the sub-carries of T A. We denote the optimal power

allocation, which maximizes (5.78), by (P̂ i
1, P̂

i
2). Therefore, to find (P̂ i

1, P̂
i
2), the Karush-

Kuhn-Tucker (KKT) conditions are written and the result is explained in the following

theorem:

Theorem 5.2. The optimal power allocation (P̂ i
1, P̂

i
2) that maximizes the achievable sum-

rate of the parallel two-user GICs with full-duplex transmitters, when transmitters coop-

erate to cancel interference at their receivers, is given by

P̂ i
1 =

[
1

µ1Ci
1 + µ2Ci

2

− J i1
Ai1

]+

,

P̂ i
2 =

[
1

µ1Di
1 + µ2Di

2

− J i2
Ai2

]+

, (5.79)

where µ1 and µ2 are KKT multipliers that are determined by

M∑
i=1

Ci
1P̂

i
1 +Di

1P̂
i
2 ≤ E1,

M∑
i=1

Ci
2P̂

i
1 +Di

2P̂
i
2 ≤ E2. (5.80)

Moreover, for the symmetric two-user GIC, where C12 = C21, G12 = G21 = αI, and

P1 = P2, when the available power at transmitters is high enough, i.e.,

E1

M
> max

i
{J

i
1(Ci

1 +Di
1)

Ai1
} −

M∑
i=1

J i1(Ci
1 +Di

1)

MAi1
, (5.81)
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the closed-form expressions for P̂ i
1 = P̂ i

2 and µ1 = µ2 are given by

P̂ i
1 = P̂ i

2 =
1

µ1(Ci
1 +Di

1)
− J i1
Ai1
,

µ1 = µ2 =
M

E1 +
∑M

i=1
Ji1
Ai1

(Ci
1 +Di

1)
. (5.82)

Proof. The KKT conditions for the optimization problem (5.78) are given by

Stationarity:

∇(R1 +R2) = µ1∇
( M∑
i=1

(Ci
1P

i
1 +Di

1P
i
2)
)

+ µ2∇
( M∑
i=1

(Ci
2P

i
1 +Di

2P
i
2)
)

+
M∑
i=1

λi1∇(−P i
1) +

M∑
i=1

λi2∇(−P i
2). (5.83)

Primal feasibility:

M∑
i=1

(Ci
jP

i
1 +Di

jP
i
2)− Ej ≤ 0, j ∈ {1, 2}.

− P i
j ≤ 0, j ∈ {1, 2}, i ∈ {1, 2, ...,M}. (5.84)

Dual feasibility:

µj ≥ 0 and λij ≥ 0, j ∈ {1, 2}, i ∈ {1, ...,M}. (5.85)

Complementary slackness:

µj

( M∑
i=1

(Ci
jP

i
1 +Di

jP
i
2)− Ej

)
= 0, j ∈ {1, 2},

λijP
i
j = 0, j ∈ {1, 2}, i ∈ {1, ...,M}. (5.86)

First, note that KKT conditions are generally necessary conditions for optimality.

However, for a maximization problem, if the feasible region is convex and the objective

function is concave, then the KKT conditions are sufficient for optimality [45, 46]. The

feasible region of the optimization problem (5.78) is a convex region. Moreover, the

Hessian matrix of the objective function is given by

∇2(R1 +R2) = log(e)diag
( −(A1

1)2

(J1
1 + A1

1P
1
1 )2

, ...,
−(AM1 )2

(JM1 + AM1 P
M
1 )2

,

−(A1
2)2

(J1
2 + A1

2P
1
2 )2

, ...,
−(AM2 )2

(JM2 + AM2 P
M
2 )2

)
. (5.87)

Note that the Hessian matrix is a 2M by 2M negative semidefinite matrix. This means the

objective function is concave. Consequently, the KKT conditions are sufficient conditions.
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Simplifying the stationarity condition leads to

∇
( M∑
i=1

log(1 +
Ai1P

i
1

J i1
)
)

+∇
( M∑
i=1

log(1 +
Ai2P

i
2

J i2
)
)

=µ1∇
( M∑
i=1

(Ci
1P

i
1 +Di

1P
i
2)
)

+ µ2∇
( M∑
i=1

(Ci
2P

i
1 +Di

2P
i
2)
)

+
M∑
i=1

λi1∇(−P i
1) +

M∑
i=1

λi2∇(−P i
2). (5.88)

Calculating the gradient with respect to P i
1 and P i

2, we have

P i
1 +

J i1
Ai1

=
1

µ1Ci
1 + µ2Ci

2 − λi1
.

P i
2 +

J i2
Ai2

=
1

µ1Di
1 + µ2Di

2 − λi2
. (5.89)

If 1
µ1Ci1+µ2Ci2

≥ Ji1
Ai1

, let λi1 = 0 and P i
1 = 1

µ1Ci1+µ2Ci2
− Ji1

Ai1
. On the other hand, if

1
µ1Ci1+µ2Ci2

<
Ji1
Ai1

, let λi1 = µ1C
i
1 + µ2C

i
2 −

Ai1
Ji1

and P i
1 = 0. This choices of P i

1 and λi1 is

equivalent to

P i
1 =

[
1

µ1Ci
1 + µ2Ci

2

− J i1
Ai1

]+

, (5.90)

λi1 =

[
µ1C

i
1 + µ2C

i
2 −

Ai1
J i1

]+

. (5.91)

Similarly, let

P i
2 =

[
1

µ1Di
1 + µ2Di

2

− J i2
Ai2

]+

, (5.92)

λi2 =

[
µ1D

i
1 + µ2D

i
2 −

Ai2
J i2

]+

. (5.93)

Note that

∇(R1 +R2) =∇
( M∑
i=1

log(1 +
Ai1P

i
1

J i1
)
)

+∇
( M∑
i=1

log(1 +
Ai2P

i
2

J i2
)
)

=
M∑
i=1

log(e)
Ai1

J i1 + Ai1P
i
1

ĵi1 +
M∑
i=1

log(e)
Ai2

J i2 + Ai2P
i
2

ĵi2, (5.94)

where, ĵi1 and ĵi2 represent 2M orthonormal vectors. Therefor, ∇(R1 + R2) = 0 has no

solution for P i
1 ≥ 0 and P i

2 ≥ 0. This means that the optimal solution of (5.78) is achieved

over the boundary of the feasible region, in which at least one of the inequalities of (5.80)

is satisfied with equality.
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If
∑M

i=1 C
i
1P

i
1 + Di

1P
i
2 = E1 and

∑M
i=1C

i
2P

i
1 + Di

2P
i
2 < E2, then by complementary

slackness, µ2 = 0. In addition, µ1 ≥ 0 is determined by

E1 =
M∑
i=1

Ci
1P

i
1 +Di

1P
i
2

=
M∑
i=1

Ci
1

[
1

µ1Ci
1

− J i1
Ai1

]+

+Di
1

[
1

µ1Di
1

− J i2
Ai2

]+

=
M∑
i=1

[
1

µ1

− Ci
1J

i
1

Ai1

]+

+

[
1

µ1

− Di
1J

i
2

Ai2

]+

. (5.95)

Similarly, if
∑M

i=1 C
i
1P

i
1 + Di

1P
i
2 < E1 and

∑M
i=1 C

i
2P

i
1 + Di

2P
i
2 = E2, then by comple-

mentary slackness, µ1 = 0. In addition, µ2 ≥ 0 is determined by

E2 =
M∑
i=1

Ci
2P

i
1 +Di

2P
i
2

=
M∑
i=1

Ci
2

[
1

µ2Ci
2

− J i1
Ai1

]+

+Di
2

[
1

µ2Di
2

− J i2
Ai2

]+

=
M∑
i=1

[
1

µ1

− Ci
2J

i
1

Ai1

]+

+

[
1

µ1

− Di
2J

i
2

Ai2

]+

. (5.96)

Finally, if
∑M

i=1 C
i
1P

i
1 +Di

1P
i
2 = E1 and

∑M
i=1C

i
2P

i
1 +Di

2P
i
2 = E2, then µ1 and µ2 are

the non-negative solutions of the following set of equations:

M∑
i=1

Ci
1

[
1

µ1Ci
1 + µ2Ci

2

− J i1
Ai1

]+

+
M∑
i=1

Di
1

[
1

µ1Di
1 + µ2Di

2

− J i2
Ai2

]+

= E1,

M∑
i=1

Ci
2

[
1

µ1Ci
1 + µ2Ci

2

− J i1
Ai1

]+

+
M∑
i=1

Di
2

[
1

µ1Di
1 + µ2Di

2

− J i2
Ai2

]+

= E2. (5.97)

One can easily verify that this solution satisfies all the KKT conditions.

For a symmetric two-user GIC, where C12 = C21, G12 = G21 = αI, and P1 = P2, it

can be verified that Ai1 = Ai2, Ci
1 = Di

2, Ci
2 = Di

1, J i1 = J i2, and E1 = E2. For a symmetric

two-user GIC, (5.90), (5.92), and (5.97) are all symmetric expressions, which imply that

P i
1 = P i

2,

µ1 = µ2. (5.98)

Therefore, the optimal power allocation is given by

P̂ i
1 = P̂ i

2 =
[ 1

µ1(Ci
1 +Di

1)
− J i1
Ai1

]+

=
[ 1

µ2(Ci
2 +Di

2)
− J i2
Ai2

]+

, (5.99)
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where µ1 = µ2 can be computed from

E1 =
M∑
i=1

Ci
1P

i
1 +Di

1P
i
2

=
M∑
i=1

Ci
1

[ 1

µ1(Ci
1 +Di

1)
− J i1
Ai1

]+
+Di

1

[ 1

µ1(Ci
1 +Di

1)
− J i1
Ai1

]+
=

M∑
i=1

[ Ci
1

µ1(Ci
1 +Di

1)
− Ci

1J
i
1

Ai1

]+
+
[ Di

1

µ1(Ci
1 +Di

1)
− Di

1J
i
1

Ai1

]+
=

M∑
i=1

[ 1

µ1

− (Ci
1 +Di

1)J i1
Ai1

]+
. (5.100)

Note that the last equality is a standard water filling problem in which E1 is the total

amount of water and 1
µ1

represents the level of the water. For this equation, if we have

E1

M
+

M∑
i=1

J i1(Ci
1 +Di

1)

MAi1
> max

i
{J

i
1(Ci

1 +Di
1)

Ai1
}, (5.101)

then 1
µ1(Ci1+Di1)

− Ji1
Ai1
≥ 0 and 1

µ2(Ci2+Di2)
− Ji2

Ai2
≥ 0 for all i ∈ {1, 2, ...,M}. Therefore, the

optimal power allocation is given by

P̂ i
1 = P̂ i

2 =
1

µ1(Ci
1 +Di

1)
− J i1
Ai1

=
1

µ2(Ci
2 +Di

2)
− J i2
Ai2
, (5.102)

where µ1 = µ2 can be computed from (5.100) as follows:

M∑
i=1

( 1

µ1

− (Ci
1 +Di

1)J i1
Ai1

)
=E1

⇒ M

µ1

=E1 +
M∑
i=1

(Ci
1 +Di

1)
J i1
Ai1

⇒ µ1 =
M

E1 +
∑M

i=1
Ji1
Ai1

(Ci
1 +Di

1)
. (5.103)

One can see that this solution satisfies all KKT conditions, and due to the sufficiency of

KKT conditions, the proof is complete.

As mentioned earlier, to improve coverage in the uplink, mobile nodes may increase

their transmit power without accounting for the total interference caused to the larger

network. A second power allocation scheme, discussed next, accounts for such scenarios.

In this power allocation, we investigate the case in which a power constraint is imposed
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on every transmitter of T A and TB. This means, instead of the two power constraints

given in (5.23), we impose 2M power constraints as follows:

E[|X1,i|2] ≤ Qi
1,

E[|X2,i|2] ≤ Qi
2, (5.104)

for i ∈ {1, 2, ...,M}, where Qi
1 and Qi

2 represent the power constraints on the ith trans-

mitter of T A and TB, respectively. Similar to (5.25), we can rewrite (5.104) as follows:

Ci
1P

i
1 +Di

1P
i
2 ≤ Ei

1,

Ci
2P

i
1 +Di

2P
i
2 ≤ Ei

2, (5.105)

where Ci
j and Di

j are the same quantities given in (5.27). The only new quantity is Ei
j

which is defined by

Ei
j = Qi

j − Ci
j|F 1[i]|2 −Di

j|F 2[i]|2. (5.106)

With these new power constraints, the optimization problem dealing with the maximum

sum-rate is given by

max
P i1,P

i
2

{R1 +R2} =

max
P i1,P

i
2

{
M∑
i=1

log(1 +
Ai1P

i
1

J i1
) +

M∑
i=1

log(1 +
Ai2P

i
2

J i2
)

}
subject to Ci

jP
i
1 +Di

jP
i
2 − Ei

j ≤ 0,

− P i
j ≤ 0, j ∈ {1, 2}, i ∈ {1, 2, ...,M}. (5.107)

where Aij, J
i
j are given in (5.27).

Note that in the previous optimization problem given in (5.78), the achievable sum-

rate of different sub-carriers depend on each other through the two power constraints

given in (5.78). However, with the 2M power constraints of the optimization problem

(5.107), the achievable sum-rate of different sub-carriers become independent of each
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other. Therefore, the optimization problem (5.107) is equivalent to

max
P i1,P

i
2

{R1 +R2} =

M∑
i=1

(
max
P i1,P

i
2

{
log(1 +

Ai1P
i
1

J i1
) + log(1 +

Ai2P
i
2

J i2
)
})

subject to Ci
jP

i
1 +Di

jP
i
2 − Ei

j ≤ 0,

− P i
j ≤ 0, j ∈ {1, 2}, i ∈ {1, 2, ...,M}. (5.108)

Theorem 5.3. The optimal solution of the optimization problem (5.108) is given by

P i
1 =

[
1

µi1C
i
1 + µi2C

i
2

− J i1
Ai1

]+

, (5.109)

P i
2 =

[
1

µi1D
i
1 + µi2D

i
2

− J i2
Ai2

]+

, (5.110)

where µi1 and µi2 are the KKT multipliers determined by the power constraints (5.105).

Proof. Note that according to (5.108), we have a separate optimization problem for each

i. For each P i
1 and P i

2, the feasible region of this optimization problem is a convex

region. The feasible region is a polygon with at most four edges as depicted in Figure

5.5. Moreover, the objective function is concave. Therefore, the KKT conditions are

sufficient. Define Ri
1 +Ri

2 as

Ri
1 +Ri

2
.
= log

(
1 +

Ai1P
i
1

J i1

)
+ log

(
1 +

Ai2P
i
2

J i2

)
. (5.111)

Note that we have

∇(Ri
1 +Ri

2) =∇
(

log
(

1 +
Ai1P

i
1

J i1

)
+ log

(
1 +

Ai2P
i
2

J i2

))
=log(e)

Ai1
J i1 + Ai1P

i
1

ĵi1 + log(e)
Ai2

J i2 + Ai2P
i
2

ĵi2, (5.112)

where ĵi1 and ĵi2 are two orthonormal vectors corresponding to P i
1 and P i

2, respectively.

One can see that the equation ∇(Ri
1 + Ri

2) = (0, 0) has no solution for P i
1 ≥ 0

and P i
2 ≥ 0. Consequently, the optimal solution of the optimization problem (5.108) is

attained over the boundary of the feasible region, and therefore, satisfies at least one of

the following equalities:

Ci
1P

i
1 +Di

1P
i
2 = Ei

1,

Ci
2P

i
1 +Di

2P
i
2 = Ei

2, (5.113)
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Figure 5.5: The feasible region of the optimization problem (5.108) and the optimal

solution on the boundary.
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for all i ∈ {1, 2, ...,M}. One can write the KKT conditions for this new problem. Note

that since we have 2M power constraints, we have 2M corresponding KKT multipliers

given by µij, where j ∈ {1, 2} and i ∈ {1, 2, ...,M}. Similar to the previous optimiza-

tion problem, one can write the stationarity condition and show that the optimal power

allocation satisfies

P i
1 =

[
1

µi1C
i
1 + µi2C

i
2

− J i1
Ai1

]+

,

P i
2 =

[
1

µi1D
i
1 + µi2D

i
2

− J i2
Ai2

]+

. (5.114)

If Ci
1P

i
1 + Di

1P
i
2 = Ei

1 and Ci
2P

i
1 + Di

2P
i
2 < Ei

2, by complementary slackness, µi2 = 0.

Moreover, µi1 > 0 is determined by

Ei
1 =Ci

1P
i
1 +Di

1P
i
2

=Ci
1

[
1

µi1C
i
1

− J i1
Ai1

]+

+Di
1

[
1

µi1D
i
1

− J i2
Ai2

]+

=

[
1

µi1
− Ci

1J
i
1

Ai1

]+

+

[
1

µi1
− Di

1J
i
2

Ai2

]+

. (5.115)

Similarly, if Ci
1P

i
1 +Di

1P
i
2 < Ei

1 and Ci
2P

i
1 +Di

2P
i
2 = Ei

2, by complementary slackness,

µi1 = 0. Moreover, µi2 ≥ 0 is determined by

Ei
2 =Ci

2P
i
1 +Di

2P
i
2

=Ci
2

[
1

µi2C
i
2

− J i1
Ai1

]+

+Di
2

[
1

µi2D
i
2

− J i2
Ai2

]+

=

[
1

µi2
− Ci

2J
i
1

Ai1

]+

+

[
1

µi2
− Di

2J
i
2

Ai2

]+

. (5.116)

Finally, if Ci
1P

i
1 + Di

1P
i
2 = Ei

1 and Ci
2P

i
1 + Di

2P
i
2 = Ei

2, then µ1 and µ2 are the non-

negative solutions of the following set of equations:

Ci
1

[
1

µi1C
i
1 + µi2C

i
2

− J i1
Ai1

]+

+Di
1

[
1

µi1D
i
1 + µi2D

i
2

− J i2
Ai2

]+

= Ei
1,

Ci
2

[
1

µi1C
i
1 + µi2C

i
2

− J i1
Ai1

]+

+Di
2

[
1

µi1D
i
1 + µi2D

i
2

− J i2
Ai2

]+

= Ei
2. (5.117)

In Figure 5.5, these three cases are shown. Figure 5.5A shows the case in which

µi1 = 0 and µi2 ≥ 0. The optimal power allocation is demonstrated by the point O1, in

which the contour curve Ri
1 + Ri

2 = c1 tangentially touches the line Ci
1P

i
1 + Di

1P
i
2 = Ei

1.
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Figure 5.5B shows the second case in which µi1 ≥ 0 and µi2 = 0. The optimal power

allocation is demonstrated by the point O2, in which the contour curve Ri
1 + Ri

2 = c2

tangentially touches the line Ci
2P

i
1 + Di

2P
i
2 = Ei

2. Finally, Figure 5.5C shows the third

case in which µi1 ≥ 0 and µi2 ≥ 0. The optimal power allocation is demonstrated by the

point O3, in which the contour curve Ri
1 + Ri

2 = c3 passes through the intersection of

Ci
1P

i
1 +Di

1P
i
2 = Ei

1 and Ci
2P

i
1 +Di

2P
i
2 = Ei

2. This competes the proof

We can further investigate the solution of the optimization problem (5.108), and find

the optimal power allocation explicitly such that the KKT multipliers are eliminated.

This solution can reveal the conditions under which exactly one of the possible three

cases depicted in Figure 5.5 determines the optimal solution. In doing so, we solve

equations (5.115), (5.116), and (5.117).

To solve equation (5.115), define mi
1
.
=

Ci1J
i
1

Ai1
and ni1

.
=

Di1J
i
2

Ai2
. Then (5.115) is equivalent

to [
1

µi1
−mi

1

]+

+

[
1

µi1
− ni1

]+

= Ei
1. (5.118)

Note that (5.118) is a standard water filling equation, and therefore, µi1 is given by

µi1 =


1

Ei1+min{mi1,ni1}
if Ei

1 ≤ |mi
1 − ni1|,

2
Ei1+mi1+ni1

otherwise.

(5.119)

Therefore, inserting (5.119) and µi2 = 0 into (5.114), the optimal power allocation (P̂ i
1, P̂

i
2)

is given by

P̂ i
1 =


Ei1
Ci1
1(mi

1 ≤ ni1) if Ei
1 ≤ |mi

1 − ni1|,
Ei1−mi1+ni1

2Ci1
otherwise.

(5.120)

P̂ i
2 =


Ei1
Di1
1(ni1 ≤ mi

1) if Ei
1 ≤ |mi

1 − ni1|
Ei1+mi1−ni1

2Di1
otherwise.

(5.121)

Note that (5.120) and (5.121) represent the optimal solution of the optimization problem

(5.108), if and only if Ci
2P

i
1 +Di

2P
i
2 < Ei

2, that is, for Ei
1 ≤ |mi

1 − ni1|, we should have

Ci
2

Ei
1

Ci
1

1(mi
1 ≤ ni1) +Di

2

Ei
1

Di
1

1(ni1 ≤ mi
1) < Ei

2, (5.122)
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and for Ei
1 > |mi

1 − ni1|, we should have

Ei
2 >C

i
2

Ei
1 −mi

1 + ni1
2Ci

1

+Di
2

Ei
1 +mi

1 − ni1
2Di

1

=
( Ci

2

2Ci
1

+
Di

2

2Di
1

)
Ei

1 +
(ni1 −mi

1)(Di
1 − Ci

1)

2Ci
1D

i
1

. (5.123)

In the first quadrant of the Ei
1E

i
2-plane, (5.122) and (5.123) specify a region. Label the

region characterized by (5.122) and (5.123) as R1. Note that R1 represents the region

inside which the optimal power allocation is given by (5.120) and (5.121).

Similarly, one can solve (5.116) and find the optimal power allocation. Define mi
2
.
=

Ci2J
i
1

Ai1
and ni2

.
=

Di2J
i
2

Ai2
. By solving (5.116) and inserting into (5.114), the optimal power

allocation (P̂ i
1, P̂

i
2) is given by

P̂ i
1 =


Ei2
Ci2
1(mi

2 ≤ ni2) if Ei
2 ≤ |mi

2 − ni2|,
Ei2−mi2+ni2

2Ci2
otherwise.

(5.124)

P̂ i
2 =


Ei2
Di2
1(ni2 ≤ mi

2) if Ei
2 ≤ |mi

2 − ni2|,
Ei2+mi2−ni2

2Di2
otherwise.

(5.125)

Note that (5.120) and (5.121) demonstrate the optimal solution of the optimization prob-

lem (5.108), if and only if Ci
1P

i
1 + Di

1P
i
2 < Ei

1, that is, for Ei
2 ≤ |mi

2 − ni2|, we should

have

Ci
1

Ei
2

Ci
2

1(mi
2 ≤ ni2) +Di

1

Ei
2

Di
2

1(ni2 ≤ mi
2) < Ei

1, (5.126)

and for Ei
2 > |mi

2 − ni2|, we should have

Ei
1 >C

i
1

Ei
2 −mi

2 + ni2
2Ci

2

+Di
1

Ei
2 +mi

2 − ni2
2Di

2

=
( Ci

1

2Ci
2

+
Di

1

2Di
2

)
Ei

2 +
(ni2 −mi

2)(Di
2 − Ci

2)

2Ci
2D

i
2

. (5.127)

Let us label the region characterized by (5.126) and (5.127) as R2. In fact, R2 represents

the region inside which the optimal power allocation is given by (5.124) and (5.124).

Finally, we solve equation (5.117). Note that (5.117) is not a standard water filling

equation and finding µi1 and µi2 from (5.117) can be complicated. However, as depicted

in Figure 5.5, there exist exactly three cases for (µi1, µ
i
2). We have already shown that if

(5.122) and (5.123) are satisfied, then (µi1 = 0, µi2 ≥ 0). Similarly, if (5.126) and (5.127)
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Figure 5.6: The optimal power allocation of the optimization problem (5.108), when

ni1 ≤ mi
1 and ni2 ≥ mi

2.

are satisfied, then (µi1 ≤ 0, µi2 = 0). Therefore, for all other cases, the optimal power

allocation satisfies (µi1 ≥ 0, µi2 ≥ 0). In other words, the first quadrant of Ei
1E

i
2-plane can

be partitioned into three regions such that inside each region, the closed form expression

of the optimal power allocation is explicitly given, as shown in Figure 5.6.

We have already investigated two regions inside the first quadrant of Ei
1E

i
2-plane,

namely R1 and R2. For the remaining region, that we label as R3, the optimal power

allocation is the solution of (5.117). In fact, R3 is characterized by the following expres-

sions: for Ei
2 ≤ |mi

2 − ni2|,

Ci
2

Ei
1

Ci
1

1(mi
1 ≤ ni1) +Di

2

Ei
1

Di
1

1(ni1 ≤ mi
1) ≥ Ei

2,

Ci
1

Ei
2

Ci
2

1(mi
2 ≤ ni2) +Di

1

Ei
2

Di
2

1(ni2 ≤ mi
2) ≥ Ei

1, (5.128)

and for Ei
1 > |mi

1 − ni1|,( Ci
2

2Ci
1

+
Di

2

2Di
1

)
Ei

1 +
(ni1 −mi

1)(Di
1 − Ci

1)

2Ci
1D

i
1

≥ Ei
2,( Ci

1

2Ci
2

+
Di

1

2Di
2

)
Ei

2 +
(ni2 −mi

2)(Di
2 − Ci

2)

2Ci
2D

i
2

≥ Ei
1. (5.129)

To find the solution of (5.117), instead of finding µi1 and µi2, we directly find P i
1 and
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P i
2. Note that (5.117) is equivalent to

Ci
1P

i
1 +Di

1P
i
2 = Ei

1,

Ci
2P

i
1 +Di

2P
i
2 = Ei

2. (5.130)

Therefore, we can directly find the optimal power allocation (P̂ i
1, P̂

i
2) as follows:

P̂ i
1 =

Di
2E

i
1 −Di

1E
i
2

Ci
1D

i
2 − Ci

2D
i
1

,

P̂ i
2 =
−Ci

2E
i
1 + Ci

1E
i
2

Ci
1D

i
2 − Ci

2D
i
1

. (5.131)

Note that (5.131) represents the optimal power allocation, if and only if (Ei
1, E

i
2) ∈ R3,

as depicted in Figure 5.6. Moreover, one can easily check that inside the region R3,

expressions of (5.131) assign positive values to P̂ i
1 and P̂ i

2.

In order to demonstrate how R1, R2, and R3 partition the first quadrant of Ei
1E

i
2-

plane, we need to know whether mi
1 is smaller than ni1 or not. Similarly, we need to

know whether mi
1 is smaller than ni1 or not. The case in which ni1 ≤ mi

1 and ni2 > mi
2 is

depicted in Figure 5.6. In this figure, the first quadrant of the Ei
1E

i
2-plane is partitioned

into three regions, namely R1, R2, and R3. For each region, the optimal power allocation

is explicitly given. In R1, the optimal power allocation is only a function of Ei
1 and is

independent of Ei
2. This can be justified by noting that in R1, the value of Ei

2 is large

enough such that the power constraint Ci
2P

i
1 +Di

2P
i
2 ≤ Ei

2 is inactive, as shown in Figure

5.5A. Similarly, in R3, the value of Ei
1 is large enough such that the power constraint

Ci
1P

i
1 +Di

1P
i
2 ≤ Ei

1 is inactive, and therefore, the optimal power allocation is independent

of Ei
1. In R3, both power constraints are satisfied with equality, as shown in Figure 5.5C,

and the optimal power allocation is a function of both Ei
1 and Ei

2.

One interesting observation about Figure 5.6 is to note that the regions R1, R2,

and R3 demonstrate a valid partitioning of the first quadrant of Ei
1E

i
2-plane. To do so,

we should make sure that for large values of Ei
1 and Ei

2, the lines that determine the

boundaries of R1 and R2 do not intersect. As can be seen in Figure 5.6, the boundary

of R1 is a line that has a slope given by

∆Ei
2

∆Ei
1

=
Di

2

2Di
1

+
Ci

2

2Ci
1

. (5.132)

On the other hand, the boundary of R2 is a line that has a slope given by

∆Ei
2

∆Ei
1

=
( Di

1

2Di
2

+
Ci

1

2Ci
2

)−1

. (5.133)
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To make sure that R1 and R2 have no intersection, we should make sure that (5.132) is

greater than or equal to (5.133). Note that (5.132) represents the arithmetic mean of
Di2
Di1

and
Ci2
Ci1

. However, (5.133) represents the harmonic mean of
Di2
Di1

and
Ci2
Ci1

, and by the power

mean inequality, we know that the arithmetic mean is always grater than or equal to the

harmonic mean.

Next, to conclude this section, we compare the optimal power allocation (5.79) with

the uniform power allocation (5.29). For the symmetric two-user GIC, in which E1 =

E2 = E, (5.82) shows that the optimal power allocation is given by

P i
1 = P i

2 =
E

M(Ci
1 +Di

1)
+

1

M

M∑
k=1

Jk1
Ak1

Ck
1 +Dk

1

Ci
1 +Di

1

− J i1
Ai1
. (5.134)

Moreover, (5.29) shows that for the symmetric two-user GIC, the uniform power allocation

is given by

P i
1 = P i

2 = P̆1 =
E∑M

k=1(Ck
1 +Dk

1)
. (5.135)

Comparing (5.134) and (5.135), we see that the optimal power allocated to the ith channel

will increase, if Ci
1+Di

1 decreases. On the other hand, if all parallel GICs are identical such

that Ci
1 +Di

1 and
Ji1
Ai1

are independent of i, the uniform power allocation and the optimal

power allocation will be the same. However, when parallel GICs are different, the optimal

power allocation achieves a higher sum-rate. In the next section, we demonstrate some

simulation results to compare the achievable sum-rate of the optimal power allocation

and that of the uniform power allocation.

5.4 Simulation Results

The considered system model is simulated based on an OFDM system with M = 512 sub-

carriers and a cyclic prefix of size Lcp = 16. Figure 5.7 considers parallel symmetric two-

user GICs, in which C12 = C21, G12 = G21, G11 = G22. Moreover, P1 = P2 = M × 103.

Since noise power is normalized to one, this power value corresponds to an average power

of 30db per sub-carrier, which is typical in wireless systems supporting modulations with

high spectral efficiency. For 1 ≤ i ≤ M , |G11[i]| and |G12[i]| are distributed according

to a Rayleigh distribution with means of
√
π

2
and α

√
π

2
, respectively, where 0 ≤ α ≤ 1
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represents the cross-link channel gain. Furthermore, it is assumed that all channel gains

are fully known at all transmitters and all receivers.

In the simulation, 10000 symbols of OFDM are generated, and for the GIC formed

over each symbol, independent channel gains are realized according to the Rayleigh dis-

tribution. Note that the independence assumption is justified by the fact that different

transmitters operate in different physical locations, resulting in physically separate links

for different transmitter/receiver pairs. Then, the average achievable sum-rate per com-

plex sub-carrier is calculated for four different scenarios. We have considered two different

power allocations: the uniform power allocation and the optimal power allocation given

in (5.79). Both power allocations satisfy the power constraint (5.25). OFDM symbols

are transmitted through the channel as depicted in Figure 5.3. Furthermore, the additive

white Gaussian noise with zero mean and unit variance is added to the received signals

of every receiver in the system.

Figure 5.7 compares the achievable sum-rate of four different cases when the cross-link

channel gain α goes from zero to one. Note that to satisfy |L[i]| < 1 for all i ∈ {1, 2, ..M},

α should be smaller than one. The red line shows the case where transmitters are not

full-duplex and interference is treated as noise. As can be seen, when the power of the

interference increases as α goes to 1, the achievable sum-rate decreases significantly. Both

the black line and the blue line show the case in which full-duplex transmitters are used to

cancel the interference at their corresponding receivers. The black line shows the sum-rate

when power is allocated optimally according to (5.79), whereas in the blue line, power is

allocated uniformly. When power is allocated uniformly, i.e., P i
1 = P i

2 = E1∑M
i=1(Ci1+Di1)

, the

achievable sum-rate is less than that of the optimal power allocation but still considerably

more than the case in which transmitters are not full-duplex and interference is not

canceled.

The green line, which shows the case in which transmitters do not interfere with each

other, is considered as an upper bound. In this case, and with the specified values of

P1 and P2, each complex sub-carrier can achieve around 9 bits per transmission. This

achievable rate is motivated by the new trend for using higher order modulation such as

512-QAM and above. The black line represents the sum-rate of full-duplex transmitters

with optimal power allocation as described in (5.79). As seen in Figure 5.7, the achievable

sum-rate of full-duplex transmitters is strictly less than that of non-interfering transmit-
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Figure 5.7: The average achievable sum-rate (per complex sub-carrier) of the symmetric

two-user GIC for four different coding schemes, with M = 512 and P1 = P2 = M × 103.

ters. In fact, although cooperative transmitters can completely cancel the interference,

this cancellation is achieved at a price. To combat multi-path fading, a cyclic prefix of

size Lcp = 16 is used. Consequently, the effective achievable rate is reduced by a factor of

512
512+16

. Moreover, a portion of the power of each transmitter is used to cancel the inter-

ference and for each transmitter less power is available to transmit its original message.

Therefore, although full-duplex transmitters can completely cancel the interference, this

cancellation reduces the available power to transmit the original message.

To clarify this power loss, Figure 5.8 shows the percentage of the power that is used

to transmit the messages of each group. According to (5.6), S1(I − L)−1 is the signal

that conveys the original messages of the transmitters of T A and F 1C21S2(I − L)−1 is

the signal used to cancel the interference at RA. Define PS1 as the power of S1(I −

L)−1, i.e., PS1 =
∑M

i=1 C
i
1P

i
1, where Ci

1 is defined in (5.27). The ratio
PS1
P1

represents the

percentage of P1 that is used to transmit the original M messages of T A, conveyed by

S1 = [S1,1, S1,2, ...S1,M ]T . Figure 5.8 shows that, as the cross-link channel gain α goes to

one, more power is required to cancel the interference. In fact, when α = 1, the power

of the interference is maximized, and consequently, more power is required to transmit

F 1C21S2(I −L)−1 such that the interference is canceled at RA. Figure 5.8 shows that,

for most values of α, at least half of the total power is used by T A to transmit the

original messages. Therefore, the maximum sum-rate loss for most values of α, due to

the power loss, is limited to 2log2(2) = 2. This is clearly seen in Figure 5.7, as the
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Figure 5.8: The power available for T A to transmit its own message S1, when optimal

power allocation is used.

achievable sum-rate of the full-duplex transmitters with optimal power allocation drops

from approximately 17.7 to 15.8 bits per transmission.

Remark 5.4. The achievable sum-rate does not significantly depend on the cross-link

channel gain α: As can be seen in Figure 5.7, the achievable rate of the two-user GIC with

half-duplex transmitters decreases significantly as the cross-link channel gain increases.

This rate loss is expected, since as α increases, the power of the interference increases,

and consequently, the SNR at the receivers decreases. However, the achievable sum-rate

of full-duplex transmitters does not change significantly. In fact, as α increases, the

power of the interference received by RA increases. Therefore, more power is required to

cancel the interference and less power remains available at each transmitter to transmit

its own messages. For instance, consider the uniform power allocation, i.e., P i
1 = P i

2 =

E1∑M
i=1(Ci1+Di1)

. If α → 1, both Ci
1 and Di

1 will increase according to (5.27), and therefore,

P i
1 and P i

2 will decrease. Similarly, when the power is allocated optimally according to

(5.79), as α increases, P i
1 and P i

2 decrease. This is clearly depicted in Figure 5.8. The

power constraint
∑M

i=1C
i
1P

i
1 +Di

1P
i
2 ≤ E1 implies that

∑M
i=1 D

i
1P

i
2 is a portion of P1 that

is used to cancel the interference at RA, and PS1 =
∑M

i=1C
i
1P

i
1 is a portion of P1 that

is used to transmit the original message S1. Figure 5.8 shows that when optimal power

allocation is used, as the cross-link channel gain increases, less power remains available

for the transmission of S1.

Interestingly, the overall SNR, i.e.,
P i1A

i
1

Ji1
, does not vary significantly, and since log( SNR)

determines the achievable sum-rate, a small change in SNR does not lead to a major

change in the achievable sum-rate. Thus, full-duplex transmitters can guarantee an almost
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constant rate for different fading gains. Moreover, the achievable sum-rate of full-duplex

transmitters is shown to be close to that of non-interfering transmitters.

5.5 Conclusion

In this chapter, a new perspective was introduced that captures the role of the delay

in cooperative communications more accurately. Relying on this perspective, the role of

cooperation in increasing the achievable sum-rate of the two-user GIC was investigated.

We showed that, in the context of OFDM systems, the traditional constraint of causal

delay can be slightly modified. Then, we showed that when full-duplex transmitters

causally cooperate with each other to cancel the interference, a multiplexing gain of

two is achievable. Moreover, we computed the optimal power allocation that maximizes

the achievable sum-rate when interference has been canceled. Simulation results were

included to highlight the role of interference cancellation in improving the achievable

sum-rate and the impact of interference cancellation on the optimal power allocation.

The new perspective introduced in this study can shed light on the role of delay in a wide

range of scenarios related to cooperative communications or multi-hop networks.
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Chapter 6

Conclusion and Future Research

Directions

6.1 Conclusion

In our attempt to offer a better understanding of the capacity region of the two-user

GIC, we investigated three important aspects of this channel, as briefly explained in

what follows.

In Chapters 2 and 3, we characterized the boundary of the HK region. In doing

so, we first derived an optimization problem that corresponds to the maximum sum-

rate achieved by the HK scheme with Gaussian input and no time sharing. The general

optimization problem that demonstrates the maximum HK sum-rate is complicated. Our

first contribution is a simpler characterization of this optimization problem for the weak

interference class. However, even the simplified optimization problem is still difficult

to solve and involves a non-differentiable objective function. We have thus used an

optimization technique to overcome this difficulty. In fact, by partitioning the feasible

region, we were able to solve the optimization problem. Consequently, we explicitly

derived the optimal power allocation that maximizes the HK sum-rate. For the weak

interference class, we showed that, depending on transmitters’ powers, different power

allocation policies maximize the HK sum-rate. This situation is in contrast to the strong

and mixed classes, where a unique power allocation policy maximizes the sum-rate.

Chapter 3 extended the results of Chapter 2 and characterized the optimal power

190



Chapter 6. Conclusion and Future Research Directions

allocation policy that maximizes an arbitrary weighted HK sum-rate. Moreover, we de-

scribed the role of time sharing in increasing the HK sum-rate. For strong and mixed

classes, the time sharing variable Q does not increase the maximum HK sum-rate. How-

ever, for the weak interference class, we showed that time sharing can strictly increase the

achievable sum-rate. We proved that the role of time sharing in increasing the sum-rate

can be expressed in terms of calculating the upper concave envelope of a function of P1

and P2.

In Chapter 4, we discussed the complexity of sum-rate optimal codes. Most coding

schemes proposed for the two-user GIC employ joint decoding to increase the achiev-

able sum-rate. However, joint decoding significantly increases decoding complexity. In

Chapter 4, we showed that joint decoding can be replaced by rate splitting and suc-

cessive decoding. In doing so, we first characterized an optimization problem that cor-

responds to the maximum sum-rate achieved by rate splitting and successive decoding.

We highlighted that the optimization problem is complicated and involves a non-convex

optimization. We thus used an optimization technique to find a feasible solution for the

optimization problem. Then an optimality certificate was used to investigate the optimal-

ity of the solution. Our main contribution is the closed-form expressions for the optimal

power allocation, optimal number of splits, and optimal decoding order. We showed

that the sum-rate loss, caused by replacing joint decoding with successive decoding, is

bounded and remains constant as transmitters’ powers approach infinity.

In Chapter 5, we discussed the role of causal cooperation among transmitters in

enlarging the achievable region. In cooperative communications, a delay constraint is used

to guarantee causality. Traditionally, delay granularity has been limited to one symbol;

however, channel delay is in fact governed by channel memory and can be shorter. With

this perspective, we introduced a new constraint to guarantee that cooperation is causal.

In chapter 5, our main contribution is a more-accurate analysis of delay in cooperative

communications. We showed that the new constraint allows the coding scheme proposed

for the two-user GIC to increase the multiplexing gain.
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6.2 Future Research Directions

This dissertation gives rise to several interesting research questions, as will be briefly

discussed below.

In Chapter 2, we focused on the two-user GIC. One possible research direction is

to characterize the boundary of the HK scheme for the K-user GIC. Note that general

understanding of the achievable region of theK-user GIC is limited. Most of the results on

theK-user GIC correspond only to interference alignment and the achievable multiplexing

gain. Therefore, obtaining solid understanding of the achievable region is of paramount

importance.

Another research direction is to develop optimization techniques that can address

the maximum HK sum-rate. In this thesis, we used the partitioning idea to solve the

optimization problem. Another useful optimization technique is the min-max idea. One

can replace the non-differentiable objective function with a new function that involves

minimization over new variables. Then, by replacing the order of maximization and

minimization, one might be able to solve the optimization problem. This idea has been

used to investigate the boundary of the Marton’s rate region [53]. It would be interesting

to see whether a similar approach can characterize the boundary of the HK rate region.

In Chapter 4, we focused on the maximum sum-rate through rate splitting and suc-

cessive decoding. It would be worthwhile to use this idea and characterize the entire

boundary of the achievable region. In fact, characterizing the maximum of an arbitrary

weighted sum-rate involves an optimization problem, which is slightly more complicated.

In Chapter 4, the symmetry of the sum-rate results in simplified closed-form expressions.

However, by characterizing the maximum of an arbitrary weighted sum-rate, one can

demonstrate how power should be allocated to achieve a boundary point of the achiev-

able region. Another interesting direction would be to generalize the results of Chapter

4 to the K-user GIC. This generalization could shed light on the characterization of the

HK scheme for the K-user GIC.

In Chapter 5, we introduced a new delay constraint that guarantees causality. We

showed that this new constraint allows the coding scheme proposed for the two-user GIC

to achieve a higher multiplexing gain. This new constraint can be used to analyze the

multiplexing gain of multi-hop networks. Therefore, the application of this idea to other
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multi-hop networks would be a useful future research area.
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