Digital Signature Scheme Variations

Fiona Emer Siobhan Dunbar

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2002

(©Fiona Emer Siobhan Dunbar 2002

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

A digital signature scheme is the process of signing an electronic message that can
be transmitted over a computer network. A digital signature provides message
authentication that can be proved to a third party. With the rise of electronic
communications over the Internet, digital signatures are becoming increasingly im-
portant, especially for the exchange of messages of legal significance. In 1988,
Goldwasser, Micali and Rivest (GMR) [31] defined a signature scheme as a collec-
tion of algorithms: key generation, signature generation and signature verification.
They defined a signature scheme as secure if it was existentially unforgeable against
a chosen-message attack. These general definitions suited most signatures at the
time, however, over the last decade digital signatures have emerged for which the
GMR definitions are unsuitable. These signature schemes, together with their ap-
plications and security and efficiency considerations, will be explored in this thesis.
These signature scheme variations have been classified by the additional services
they provide to ordinary signature schemes, namely increased efficiency, increased

security, anonymity, and enhanced signing and verifying capabilities.

111

Acknowledgements

I would like to thank Alfred Menezes for his continuous support in helping me com-
plete this thesis. I would also like to thank the Department of Combinatorics and
Optimization and OGS for their financial support over the course of my graduate
work. Thanks also to Edlyn Teske and Doug Stinson for reviewing this thesis.

I owe many thanks to my undergraduate mathematics professors, specifically Dr.
Ed Wang, Dr. Sydney Bulman-Fleming and Dr. Anthony Bonato for encouraging
me to pursue a Master’s degree in Mathematics.

Thanks to my family and friends for supporting me over the last few years,
particularly Eithne, Tony, Kevin, Siobhan and Aileen Dunbar, Matt Brodie, Karen

Priestman, Robin Caicco and Vivian Ibeas.

v

Contents

1 Introduction

2 Schemes with Increased Efficiency

2.1 On-Line/Off-Line
2.2 Batch
2.3 Server-Aided
2.4 Identity-Basedo
2.5 Incremental

3 Schemes with Increased Security

3.1 Fail-Stop
3.2 Arbitratedo
3.3 Threshold
3.4 Proactive
3.5 Forward Secure

4 Schemes with Anonymity Services

4.1 Blind

10
14
19
24

28

32
33
41
44
52
60

68

4.2 Partially Blind o 72

4.3 Fair Blind 81
4.4 Group 87
45 Ring 90
5 Schemes with Enhanced Signing and Verifying Capabilities 97
5.1 Proxy 98
5.2 Undeniable 102
5.3 Convertible Undeniable, 111
5.4 Designated Confirmer o Lo 116
Bibliography 122

Vi

Chapter 1

Introduction

Handwritten signatures attached to a document provide us with the means to be
certain that the person who signed the document is in fact responsible for it. It
is the aim of digital signatures to transfer this property from the physical realm
to the electronic realm. Like a handwritten signature, a digital signature pro-
vides message authentication that can be proved to a third party. This is known
as non-repudiation. Although we assume that it is impossible to copy someone’s
handwritten signature, a digital signature could be easily copied from one message
to another. Thus, it 1s imperative that one person’s digital signature on two differ-
ent messages be distinct. This implies that the signature must be a function of the
signer and the message itself.

With the rise of electronic communications over the Internet, digital signatures
are becoming an important addition to, if not substitute for, the written signature.
Specifically, digital signature schemes must be in place for all applications of elec-

tronic commerce such as digital payment schemes, the purchase of products on-line,

2 CHAPTER 1. INTRODUCTION

and the authentication of commercial software.

A signature scheme is the method of creating and confirming digital signatures
on a message to be transmitted over an electronic channel. Not to be confused
with encryption, signatures do not need to be sent over a secure channel, since
signature schemes do not aim to provide confidentiality, but authenticity. Another
common misconception is that digital signatures are a form of identification. With
a handwritten signature, the sequence of letters contained in the signature reveals
the signer’s identity. A digital signature, however, is simply a sequence of 0’s and
1’s that tell us nothing about the identity of the signer . We will see shortly that
identification is an issue of key distribution rather than the signature itself, and

that digital signatures aim to authenticate the message rather than the individual.

In 1988, Goldwasser, Micali and Rivest (GMR) [31] defined a signature scheme
as a collection of three algorithms: key generation, signature generation and sig-
nature verification. In the key generation stage, the signer randomly selects a pair
of keys; one will be kept secret, and the other will be published. The secret key
or signing key is used in the signature generation algorithm, where the signer signs
a message and sends the resulting signature and the message to the verifier. The
public key or verification key is used in the signature verification phase, where the
verifier checks that the signature on the given message is authentic. If the ver-
ification algorithm returns true, the verifier accepts the signature, otherwise it is

rejected. Note that all algorithms are public, and only the signing key is kept secret.

Some important aspects of digital signature which will not be discussed further

in this paper, but are worth mentioning here, are the problems involved with key

generation and key distribution. We indicated that each user must select a secret
key in order to create signatures. To prevent others from discovering any informa-
tion about this secret key, it should be chosen randomly. Generating truly random
sequences can be quite time-consuming, so in practice a pseudo-random number
generator is often used. It was also mentioned that each user must select a public
key. If users are to verify that a signature is valid, they must first be sure that
the public key they have obtained is indeed the correct one. This is the problem
of key distribution, where the users themselves must be authenticated. A solution
is certification, whereby a trusted third party called a certification authority binds
together a user’s identity and her public key. To minimize storage, authentication
trees can be used to authenticate several public keys at once using one-way hash

functions.

The most crucial requirement of signature schemes is that given some message,
it should be infeasible for anyone other than the true signer to compute a signature
such that the verification algorithm returns the value “true”. If an adversary creates
such a signature, it is called a forgery. There are three different attack models to
consider when defining the information available to an adversary who wishes to forge
a signature. In a key-only attack, the adversary knows only the public key. For a
known-message attack, the adversary has a list of valid message-signature pairs at
her disposal. In a chosen-message attack, the adversary requests the signatures from
the true signer on some messages of the adversary’s choice. We will consider three
possible goals of the adversary when launching an attack on a signature scheme. In

a total break, the adversary either uncovers the secret key of the signer, or creates an

4 CHAPTER 1. INTRODUCTION

efficient algorithm for forging valid signatures. With selective forgery, the adversary
can create a valid signature on a particular message of her choice. By ezistential
forgery, we mean there exists at least one message for which the adversary can forge

a signature.

According to the GMR definition of security [31], an ordinary signature scheme
is secure if it resists a chosen-message attack by an adversary with computation-
ally bounded resources, whose goal is existential forgery. This is also known as
unforgeability. In practice, it is unlikely that a signer would sign every message
for an adversary, since otherwise there would be no need for forgery. However, by
assuming the most powerful adversary with the weakest goal of attack in our notion

of security, we also protect against the other forms of attacks.

We say that a signature scheme is unconditionally secure if it is secure against
an adversary with infinite computational resources. In practice, signature schemes
cannot be unconditionally secure since an attacker with infinite resources can al-
ways try all signatures up to a given length (assuming there is some publicly known
bound on the length of possible signatures) for a given message until a valid one
is found. Since we assume an adversary’s resources are computationally bounded,
this is infeasible provided the bounds are large enough. Thus, signature schemes
can only be computationally secure. As a result, the security of digital signatures
must rely on some underlying, usually unproven mathematical assumptions. These
assumptions generally state there is no method for solving a particular problem
without unlimited computational power. In terms of digital signatures, if a com-

putationally bounded adversary tries to forge a signature, she will be faced with

an instance of some problem for which no feasible solution is known. A signa-
ture scheme is provably secure if it can be proven secure assuming the underlying
problem is infeasible.

Some well-known problems that are believed to be infeasible are factoring an
integer n that is the product of two large primes, and finding the discrete logarithm
of an element in a cyclic group G. Of course, these problems can be solved by
exhaustive search if n is small or if G has small order, so minimum bounds are
set on the length of these parameters. We call these bounds security parameters.
Increasing the security parameters makes the key and signature length increase,
which in turn produces a less efficient signature generation and verification. But, it
is believed that forging signatures becomes substantially harder with only a slight
increase in the security parameters.

To get an idea of what has been discussed so far, we will present a simple
and widely used signature scheme called RSA, which is based on the difficulty of

factoring.

RSA Key Generation

To generate a public and private key pair, the signer does the following:

1. Randomly selects two large distinct primes p and ¢ and computes N = pqg

and ¢(N) = (p—1)(¢ —1).
2. Selects a random integer e such that 1 < e < ¢(N) and ged(e, p(N)) = 1.

3. Finds d such that ed = 1(mod¢(N)) using the Extended Euclidean algo-
rithm [40].

6 CHAPTER 1. INTRODUCTION

Then the signer’s public key is (N, e) and private key is d.

RSA Signature Generation and Verification

e In order to sign the message m € Zy, the signer computes S = m? mod N.

o To verify that S is a valid signature on the message m, the verifier computes

5S¢ =m' mod N, and accepts S iff m = m’.

As we’ve described RSA above, it is always possible for an adversary to forge
the signer’s signature on random messages. This is accomplished by computing
m = S°mod N for some S. Then 5 is the signer’s signature on the message m.
There are two ways to prevent such an attack. We can add redundancy or apply a
hash function to the message m.

To add redundancy, we require that the message m be padded with a bit-string
having some prescribed structure before it is signed. Then, when the signature is
verified, it must be checked that m’ = S° mod N has the prescribed redundancy.
We can see that the attack described above will fail, since the probability that
5S¢ mod N has the prescribed form for a random S is very small if the redundancy
is defined suitably.

A hash function H : {0,1}* — {0,1} maps messages of arbitrary length to
outputs of fixed bit-length [. In practice, [= 160 is common. A one-way hash
function has the property that given M = H(m), it is computationally infeasible
to find a corresponding m. If we assume that a one-way hash function H is applied
to the message m € {0,1}* before it is signed, the attack described above will

vield the signer’s signature on M = H(m), from which it is infeasible to obtain the

original message m. In our subsequent references to RSA, we will employ one-way

hash functions in the signature generation and verification protocols as follows:

RSA Signature Generation and Verification with Hash Functions

e To sign the message m € {0,1}*, the signer computes M = H(m) and S =
M mod N and sends the signature S and the original message m to the

verifier.

e To verify the signature S on the message m € {0,1}*, the verifier computes
M = H(m) and M’ = S°mod N, and accepts S as a valid signature iff
M = M.

In our discussion so far, we have been concerned with the general framework
of signature schemes. However, the scope of signature schemes has broadened
significantly over the last decade to contain schemes that do not naturally fit into
the signature scheme and security definitions discussed earlier. These new schemes
were designed for specific applications and are equipped with additional features
that cater to the signers and verifiers. These signature scheme variations are the
main focus of this thesis.

We will present examples of 19 such signature schemes, including a discussion
of their applications, security requirements, and efficiency considerations where
appropriate. In our discussions of security, we will provide heuristic arguments
rather than formal proofs of security. We will see that in some cases, there are no
existing proofs, however, if such a proof is available, we will refer the reader to the

appropriate paper.

8 CHAPTER 1. INTRODUCTION

As we stated, the signature schemes we are interested in do not satisfy the
general definitions. In 1993, Pfitzmann [46] rewrote the definition of signature
schemes to include all types of schemes. Rather than altering the general digital
signature definition, we will present new signatures in comparsion to the well-known
GMR definition. To this end, we have classified them into four categories based
on their relationship to ordinary signatures. The schemes that supply an increased
level of efficiency over ordinary schemes are On-line/Off-line, Batch, Server-Aided,
Incremental, and Identity-Based. Fail-Stop, Arbitrated, Threshold, Proactive, and
Forward-Secure signatures provide an enhanced degree of security. Blind, Partially
Blind, Fair Blind, Group, and Ring signature schemes allow for users to remain
anonymous. Finally, schemes which explore the limitations and possibilities of the
signer and verifier are Prozy, Undeniable, Convertible Undeniable, and Designated

Confirmer signatures.

Chapter 2

Schemes with Increased Efficiency

RSA is a very popular scheme on its own as well as being the basis for numerous
signature scheme variations. However, RSA involves the computationally expensive
modular exponentiation operation in its signature generation stage. On-line/off-line
signatures break up the workload of signature generation to minimize the work done
on-line. For some computational devices such as a smart card, verification of RSA
signatures can also be costly. Batch verification allows for several signatures to
be verified at once. Server-aided mechanisms provide another way for smart cards
to verify quickly with the help of a computationally powerful source. Incremental
signatures use a special type of hash function which can be used for the rapid signing
of several closely related messages. Identity-based signatures simplify public key

management, improving the overall efficiency of the scheme.

10 CHAPTER 2. SCHEMES WITH INCREASED EFFICIENCY

2.1 On-Line/Off-Line

RSA-based signature schemes are very popular in practice because their security lies
in the problem of factoring large integers, which is considered infeasible. However,
these schemes require performing modular exponentiations with a large modulus
in their signature generation stage, which can be very time consuming. In many
applications of digital signature schemes, once a message is presented to the signer,
a signature should be generated very quickly. An on-line/off-line signature scheme
allows for fast signature generation by dividing the computations into two stages:
off-line and on-line. The first stage is performed off-line, before the message to be
signed is known to the signer. This stage is often an RSA-based signature scheme,
involving the tedious modular exponentiations and, as a result, is relatively slow.
The second stage is much faster and is done on-line after the message to be signed
is presented to the signer. Here, a one-time signature scheme is often used because
it provides a much faster signing process than ordinary signature schemes. One-
time signatures can be used to sign at most one message before a new public key
is chosen. When an authentication tree is used in combination with a one-time
signature scheme, many messages can be signed. For a complete description of
how an authentication tree can be used in conjunction with the one-time signature

scheme employed in the following example, see [41].

The following example of an on-line/off-line signature scheme uses RSA as the
ordinary signature scheme in the off-line portion of the scheme and Merkle’s one-
time signature scheme [43] during the on-line phase. We will denote the verifica-

tion and signing keys of the ordinary signature scheme and the one-time signature

2.1. ON-LINE/OFF-LINE 11

scheme as (VKA,SK) and (vk, sk), respectively. Note that the signing key is the

private key and the verification key is the signer’s public key.

Key Generation

The key generation for our scheme corresponds to the key generation of RSA. Thus
VK = (N,e)and SK = d.

Off-Line Computation

The off-line computation consists of the key generation stage of the one-time scheme
of keys vk and sk and the signing of vk with RSA. Thus, in order to sign messages

of bit-length n, the signer first does the following:
1. Chooses t = n+ [logn]| 4+ 1 random secret strings ky, ka2, ..., k¢ of bit-length .

2. Computes v; = H(k;), 1 <1 <t, where H : {0,1}* — {0,1} is a pre-image-

resistant hash function.

Then vk = (v1,vz,...,v) and sk = (k1, k2, ..., k).
Now, the signer signs vk with the RSA signing key, SK , obtaining . = (H(vk))¢ mod

N and the signer stores (vk, sk, X).

On-line Signing

To sign the message m € {0,1}", the signer retrieves the stored, pre-computed,
unused triple (vk,sk,¥) and computes the one-time signature of m, using sk as

follows:

12 CHAPTER 2. SCHEMES WITH INCREASED EFFICIENCY

1. Computes ¢, the binary representation for the number of 0’s in m.

2. Forms the bit-string w = m||e = (a1, ag, ..., az).
3. Determines the coordinate positions 7; < iy < --- < i, in w such that a;; =
L1 <) <w.

4. Sets s; = ki;, 1 < j < u.

Then the one-time signature on the message m is o = (s1, $2,...,8,) and the full
on-line/off-line signature on the message m is (vk, X, o).

Note that the one-time signature o reveals part of the secret key. Suppose two
different messages m and m’ were signed using the same public key, then w’ = m/||¢/
will have a 1 in some position where w = m||c has a 0. This will result in another
private key element being revealed to the requester, who could then possibly use
the acquired portion of the private key to sign a new message. This explains why

the on-line portion of the scheme is a one-time signature scheme.

Signature Verification

To verify that (vk, ¥, o) is a valid signature on the message m, the verifier does the

following:

1. Checks that X is a valid RSA signature of vk with respect to VK, i.e., ¥ =

H(vk) (mod n).
2. Checks that o is a valid one-time signature of m with respect to vk as follows:

(a) Computes ¢, the binary representation for the number of 0’s in m.

2.1. ON-LINE/OFF-LINE 13

(b) Forms the string w = mljc = (a1, ag, ..., a).

(c¢) Determines the coordinate positions 7; < iz < --+ < 4, in w such that

azjzlvlgjgu

(d) Accepts o iff v;; = h(s;) for all 1 < j < u.

If steps 1 and 2 are verified, then (vk, X, o) is a valid on-line/off-line signature on

the message m.

Security

The security of the on-line/off-line signature scheme depends on the security of the
one-time signature scheme and the RSA signature scheme against chosen message
attacks. The security of RSA relies on the factoring of large integers, which is
considered infeasible.

Suppose an attacker launches a chosen-message attack on Merkle’s one-time
signature scheme. That is, suppose o = (51, S2, ..., 8,) is a one-time signature on
the message m, and w = m||¢, where ¢ is the binary representation for the number of
0’s in m. Let w’ = m/||¢/, where ¢ is the binary representation for the number of 0’s
in m’ # m. An adversary has access only to the portion of the signer’s private key
which consists of o = (81 = kyy, $2 = kiy, .y Sy = ki,). Thus, the set of coordinate
positions in m’ having the value “1” must be a subset of the coordinate positions in
m having the value “1”, in order to be able to use the known portion of the private
key. This implies that m’ has more 0’s than m and ¢ > ¢, as integers. Then ¢

will have a “1” in a position where ¢ has a “0”. Therefore, the adversary needs

the private key element corresponding to this position, which was not contained

14 CHAPTER 2. SCHEMES WITH INCREASED EFFICIENCY

in 0. We have shown that Merkle’s one-time signature scheme is secure against
a chosen-message attack. We conclude that the on-line/off-line signature scheme

described above is secure.

Efficiency

The off-line computation requires n + |logn| 4 1 hash function evaluations to gen-
erate vk, and one hash evaluation and one modular exponentiation to the d-th
power to obtain 3. The on-line portion of signature generation requires virtually
no computation. Signing an n-bit message m requires [(n + [logn]| 4+ 1) bits of
storage for vk and I(n + |logn| 4+ 1) bits of storage for sk. Suppose the message
m contains r 1’s. Then ¢ is the binary representation of n — r; the number of 0’s
in m. Let r’ be the number of 1’s in ¢. Then the signature o requires I(r + 1)
bits of storage. Step 1 of signature verification requires one hash evaluation and
one modular multiplication. If we take e = 3, which is common in practice, this is
a fairly quick computation. Step 2 of signature verification requires no more than
n+ |logn| 4 1 hash function evaluations. Since the evaluation of hash functions is

very fast, we can conclude that this scheme is very efficient.

2.2 Batch

As we mentioned in the previous section, modular exponentiation produces the
greatest computational expense in many digital signature schemes. Batch cryp-
tography allows for many signatures to be generated or verified together. This

is very useful in electronic commerce where many customers are interacting with

2.2. BATCH 15

the same banking server. Batching was introduced by Fiat [26] to assist in the
signing and decryption operations of RSA. Fiat proposed a procedure for signing
whereby messages are first batched together, then a single modular exponentiation
is performed, and finally the batch is split apart into individually signed messages.
This is possible because of the homomorphic property of RSA. For some variants
of Fiat’s RSA batch verification, see [26].

Batch cryptography can also be used for signature verification. A technique
called the small exponents test was developed by Bellare, Garay, and Rabin [6] for
batch verification of exponentiation. Before we describe this test, we will show how

batch verification of exponentiation works.

Batch Verification of Exponents

Suppose we have n elements y1, ys, ..., ¥, in a multiplicative group G of prime order
g, n exponents xy,2,,...,x, € Z,, and a generator g of G. We want to verify
that y; = ¢ for each 7, meaning the batch is correct, without performing n full

exponentiations. If the batch is correct, then the following equation holds:

[Ty =g>= (2.1)
=1

Note that the converse is not true. To see this, note that adding a constant to one
of the z; values and subtracting the same constant from another of the z; values will
satisfy equation (2.1), but the batch is incorrect. To make equation (2.1) useful in
batch verification, random values must be introduced. By multiplying the z; values

by small random values, which must also be incorporated as small exponents for

16 CHAPTER 2. SCHEMES WITH INCREASED EFFICIENCY

the y;’s, an attacker needs to correctly guess these random values in order to fool

the verifier into thinking an incorrect batch is acceptable.

Small Exponents Test

The small exponents test proceeds as follows, where [is a security parameter:
1. Choose sy, 59, ..., 5, € {0, 1} randomly.
2. Compute @ = >, a;8; mod ¢ and y = [, y/".
3. If ¢* =y, accept. Otherwise, reject.

We will now show how the small exponents test can be used for batch verification
of RSA signatures. We cannot directly apply the small exponents test to RSA since
in step 2, we reduced modulo the group order, and the verifier of an RSA signature
does not know the order ¢(N) of the group Z%.

The technique we will describe was used by Yen and Laih [37] for a modification
of ElGamal signatures in 1995. Recall that an RSA signature S satisfies S =
M?mod N, where d is the RSA private key, N is the RSA modulus, and M =

H(m), where H is a one-way hash function and m is the message.

Batch Verification of RSA

Suppose that 51, 59, ..., 5, are proposed RSA signatures on the hash values My, M,, ..., M,,,
respectively. The signer sends the verifier the pairs (my, S1), (m2,52), ..., (Mn, Sp).
The verifier then proceeds as follows, using the batch verification test to decide

whether S; = M mod N fori =1, ...,n.

2.2. BATCH 17

1. Computes H(m;) = M, for alli =1,2,...,n.
2. Chooses sy, 5, ..., 5, € {0,1} randomly.

3. Computes v = ([, 57)" mod N and y = [[_, M;" mod N, where ¢ is the

signer’s RSA public key.

4. It x = y, accept. Otherwise, reject.

Security

The method of RSA batch verification described above was chosen for the sake of
simplicity and is not at all a secure verification algorithm. In order to be secure,
verification must be complete, meaning it is always possible for a valid signature
to be proved valid and an invalid signature to be proved invalid, and sound, which
means no valid signature can be proved invalid and no invalid signature can be
proved valid. It is clear that the described method of RSA batch verification is
complete. However, verification is not sound, since an invalid signature can be
proven valid in the following way. Suppose a dishonest signer replaces 5;; by —5;,.
Then the batch will be correct with probability 1/2 depending on the parity of s;,.

Bellare et al. introduced a weaker notion of verification security called screen-
ing. If this screening condition is satisfied, then one is convinced that the signatures
were originally signed by the true signer, even if none of the individual proposed
signatures are valid. The batch verification we described above passes the screening
test because one cannot create incorrect signatures that satisfy batch verification
without knowing the original valid signatures of the signer. Thus, even if the indi-

vidual signatures are incorrect, the messages M are unchanged. Depending on the

18 CHAPTER 2. SCHEMES WITH INCREASED EFFICIENCY

application, screening can be a sufficient security condition. Suppose, for example,
that a user wants to batch verify many certificates. Here, it is not necessary to
obtain the valid signature, but merely to be assured that the messages are authen-
tic. Bellare et al. [6] provide a proof that the RSA batch verification algorithm

described above satisfies the screening condition.

Batch verification can also be used for DSA signature schemes. Harn [33] pro-
posed a scheme for batch verifying DSA signatures that is also based on the small
exponents test. Boyd and Pavlovski [10] describe a modified small exponents test
which they use as a basis for a more secure version of DSA batch verification than

the one proposed by Harn.

Efficiency

The small exponents test uses one full exponentiation in Z3 and n small exponen-
tiations to obtain x and then n small exponentiations to obtain y. Note that if a
public exponent value of e = 3 is used, as is often the case in practice, batch verifi-
cation is no more efficient than individual verification, since the ‘small’ exponents
s; are most likely greater than 3. However, there are some applications, such as
communication between users of varying computational abilities, in which a larger
public key and a smaller private key is desired. For example, suppose a smart card
with limited computing power generates a signature that is to be verified by a large
banking server. Then a small signing key and a large verification key will provide
an optimal trade-off. For an in-depth look at applications of larger verification keys,

see [36].

2.3. SERVER-AIDED 19

2.3 Server-Aided

Server-aided signature schemes allow the client to borrow computing power from an
untrusted server without revealing any secret data of the client. Often, the client is
a smart card, which is a small, inexpensive secure device that can store and protect
data, but which has poor computing power. The untrusted server is a banking
terminal having high computational power. The expensive computing power can

be put into a few large servers rather than in many small smart cards.

Since the server is an untrusted device, the smart cards must protect their
secret information and verify that the computations done by the server are correct.
There are two types of attacks on server-aided schemes. In a passive attack, the
attacker does not participate in the scheme, but rather obtains information about
the secret data by simply observing it. An active attack involves a malicious server
who returns false values during its computation phase in order to find the secret

information contained in the smart card.

To secure the secret information transmitted during server-aided computation,
this data is blinded using random numbers, or decomposed so that only some of the
pieces are revealed to the server. In RSA, where server-aided signature generation is
most common, the secret information is the private exponent d. Since this exponent
is a 1024-bit integer, the signing of the hashed message M, S = M? mod N should
be computed by the server in such a way that the server obtains no knowledge of d.
We will see how this is accomplished in the following example due to Béguin and
Quisquater [5].

The signature scheme presented uses a method due to Brickell, Gordon, McCur-

20 CHAPTER 2. SCHEMES WITH INCREASED EFFICIENCY

ley and Wilson [12] for performing fast exponentiation. In order to compute M¢9,
one precomputes and stores M* M* ... M* ! for some integers xg, Ty, ..., T,_1,
and then finds a decomposition d = E::_é a;x;, where 0 < a; < h for 0 < <r—1.

Then one can compute

h
d __ t
M =1]d.
t=1

where ¢; = [[,._, M.
=

To see that this computation does in fact compute M9, note that

[= ﬁ [Mt = Moo pgms .. pormiors = M o =,
t=1 t=1 a;=t
The following algorithm based on the method described above computes M? using
r 4+ h — 2 multiplications. For a detailed analysis of the efficiency of this algorithm,
see [12].
b1
a1
for g < hto1lby —1 do
for each ¢ such that ¢; = g do
b+ bx M
end for
a<axb
end for

return a.

2.3. SERVER-AIDED 21

We are now ready to present the protocol for server-aided RSA signature generation.

Key Generation
The smart card does the following:
1. Computes N = pq, where p, ¢ are two large primes, and ¢(N) = (p—1)(¢—1).

2. Finds integers e, d such that ed =1 (mod N), 1 < e,d < ¢(N).

3. Using the Extended Euclidean Algorithm, finds integers w, and w, such that
wp + wy = 1,w, mod p = 0,w, mod g = 0 and 0 < |w,|, |w,] < N. That
is, integers k, [such that pk + ¢l = 1,1 < |pk|,|¢l| < N, then w, = pk and

w, = ¢l are found.

Signature Generation
The following protocol creates a signature on the hashed message M:

1. The smart card randomly chooses integers ag, a1, ..., a,_1, where a; € {0, ..., h},
and xg, 21, ..., T,—1, where [(x;) < j —log,(rh) — 2. (I(x;) is the bit-length of

z; and j = max(l(p),1(q)) — 1.)
2. The card computes s; = E::_é G55,
3. The card sends M, N and z¢, x1, ..., z,_1 to the server.

4. The server returns zg, 21, ..., 2,1, where z; = M* mod N.

5. The card computes z, = ::_5 z# mod p and z, = ::_5 z" mod ¢ using the

algorithm above. Note that z, = H:& M#% mod p = M* mod p.

22 CHAPTER 2. SCHEMES WITH INCREASED EFFICIENCY

6. The card computes s; = d— sy, then blinds s3 by 0, = s mod (p—1)+p,(p—
1), where p, €r {0,1,...,¢ — 2} and o, = sy mod (¢ — 1) + p,(q — 1), where

Pq €R {07 17 ey P — 2}
7. The card sends o, and o, to the server.

8. The server computes and sends y, = M°? mod N and y, = M7 mod N to

the smart card.
9. The card computes s, = y,2, mod p and s, = y,z, mod q.
10. The card computes S = wys, + wys, mod N.

11. The card verifies that S¢ mod N = M.

Then, as long as step 11 is verified, the smart card transmits S as the signature on

the message M. To see that this will produce a valid signature, note that

S = wys, + wys; mod N
= (wq(ypzp mod p) + wp(y,z, mod ¢)) mod N
= (weM7P(M* mod p) + w,M7¢(M* mod ¢)) mod N
— (qu82 mod (p—l)-l—pp(p—l)(Msl mod p) + pr52 mod (g—1)+pq(g—1)
X (M?® mod ¢q)) mod N
— (qu82 mod (p—l)MPp(p—l)(M51 mod p) -+ pr52 mod (‘I—I)Mpq(q—l)
X (M?® mod ¢)) mod N
= (Ms1 qu52 mod (p—l)MPp(p—l) mod p+ M* pr52 mod (q—l)Mpq(q_l) mod (])

mod N

2.3. SERVER-AIDED 23

= Yw 2 " mod p+ Yw 2 ~/ mod g) mo
M? qu mod (p—1) d M? pMs mod (g—1) d dN

= M*M?*(w, + w,) mod N

= M M?*(1) mod N

= M%mod N

Security

There is no proof that this server-aided signature scheme is secure. Béguin and
Quisquater [5] present several possible passive attacks including exhaustive search.
However, these attacks are all shown to be ineffective. They also show that an
active attack previously presented by Pfitzmann and Waidner [48] is impossible

because of the random values chosen by the smart card.

Efficiency

Suppose we have a 1024-bit RSA modulus. To minimize the number of modular
multiplications done by the card, and to ensure that the attacks proposed by Béguin
and Quisquater remain ineffective, we take h = 10 and r = 19 in the above protocol.
Then the number of modular multiplications done by the card is 25, as compared
to 516 multiplications using the Chinese Remainder Theorem to compute an RSA

signature without the aid of the server. This is an acceleration factor of 20.6.

24 CHAPTER 2. SCHEMES WITH INCREASED EFFICIENCY

2.4 Identity-Based

Identity-based cryptography was introduced by Shamir in 1984 for the simplification
of key management in e-mail systems. For identity-based signature schemes, Shamir
proposed that each participant use their e-mail address as their public key. The
corresponding secret keys must be computed by a key generation centre rather than
the users themselves since if a user could compute her own secret key, she could
compute any other user’s secret key. Suppose user A signs a message with her
secret key given to her by the key generation centre. Then user B can easily obtain

A’s e-mail address and use it to verify the signature.

Identity-based signature schemes provide a way for users to sign and verify each
others signatures without the exchange of private and public keys. There is also
no need for the storage of keys in a central directory nor the online assistance of a
third party. Instead, a trusted key generation centre issues each user a smart card
containing unique identification information such as the user’s email address. This
information is the user’s public key. The trusted centre computes the corresponding
secret key which is also embedded in the smartcard. Once the cards are issued, the
trusted centre is no longer required for the remainder of the scheme. New users can
be added at any time and previous cardholders do not need to update their cards

as a result.

We will describe an identity-based signature scheme due to Fiat and Shamir [27]

that is a variation of Shamir’s original scheme [52].

2.4. IDENTITY-BASED 25

Key Generation

Before the trusted centre begins issuing smart cards, it selects and publishes a
modulus N = pg and a pseudorandom function f : {0,1}* — [0, N). In this
signature scheme, only the trusted centre knows the factors of N, so the same
modulus can be used for all signers requesting cards. When a signer requests a
smart card, the centre produces a string [which contains information about the
signer such as her name, address, and ID number and about the smart card such

as the expiration date. The trusted centre does the following:
1. Computes v; = f(I,1) for small values of [.

2. Chooses k distinct values of [, say ly,[s,...,1;, for which v; is a quadratic

residue modulo N and compute the smallest square root s; of v;"' modulo N.
3. Issues a smart card which contains I, the k s; values, and their indices.

Then the signer’s public key is I and the indices (I1,ls, ..., [;) and her secret key is
(81,5815, -y 51,,). Note that this scheme is not strictly identity-based, as the indices
ly,..., 1} are included as part of the public key.

Signature Generation

In order to sign the message m, the signer does the following:
1. Selects random integers ry,...,r; € [0, N) and computes z; = r? mod N.

2. Computes b = f(m,xq,...,x;) and defines e; ; for 1 < <t,1 < j <k, as the

first kt bits of b.

26 CHAPTER 2. SCHEMES WITH INCREASED EFFICIENCY

3. Computes y; = r; [[.. _; s;; mod N for 1 <7 < ¢,

8,’7‘]‘
Then (e;j,y;) for all 1 <¢ <+¢,1 <j <k is the signature on the message m. Note
that the ¢; ;’s can be arranged in matrix form for simplicity.

Signature Verification

To verify that (e;;,y;) is a valid signature on the message m, the verifier does the

following:
1. Computes v; = f(I,1;) for 1 < j < k.
2. Computes z; = y? He”:l v;; mod NV for 1 <4 <t

3. Computes b’ = f(m,z1,...,z;) and verifies that the first k¢ bits of ¥/ are ¢, ;

forl1 <:<t,1 <5<k,

To see that signature verification works, note that

eij=1 eij=1

This implies that f(m,z1,....,2:) = f(m,xy,...,2;), and thus the first kt bits of ¥/

are the same as the first kt bits of b, which is equal to ¢ ;.

Security

The security of this scheme is based on the difficulty of computing square roots
modulo N which is equivalent to factoring N. In order to forge signatures without

attempting to find the secret key, a forger could try to guess the e, ; values for all

2.4. IDENTITY-BASED 27

1 <i¢<t1<j <k This guess will be correct with probability 27*. In order to
complete this attack, the forger computes z; = r? He,»j:1 v;; mod N for ¢ random
values of r; € [0, N) and let y; = r;. The forger then sends the e; ; matrix and y; to

the verifier. Then the verification condition holds since z; = y? [|

v;; mod N =

eij=1

r? He,»j:1 v;; mod N = z; and the verifier accepts the forged signature.

Efficiency

For the attack mentioned above to be considered infeasible, we require that k¢ > 80.
If we choose k = 10 and t = 8, we achieve a security level of 28¢. The private key is
comprised of k integers modulo N, where N is a 1024-bit modulus. This takes up
(1024/8) x 10 = 1280 bytes of storage. If we assume a signature is comprised of the
kt e;; bits and the t 1024-bit y; values, a signature is (80/8) 4 (1024/8)8 = 1034
bytes in length. The average number of modular multiplications in computing the
x;’s and the y;’s in generating the signature is (tk/2) + ¢t = 8(12)/2 = 48 if we

assume roughly 1/2 of the e, ;’s are equal to 1.

Note that there is a trade-off between the length of the private key and the
length of the signature. As the length of the key increases, the signature length
decreases and vice versa. Also, the number of modular multiplications decreases
with ¢, so, depending on the amount of storage and computing power available, one
can adjust the values of k and ¢ accordingly. Fiat and Shamir also propose that by
computing the y;’s in parallel, we can further reduce the number of multiplications

to 4% of that required in the RSA signature scheme.

28 CHAPTER 2. SCHEMES WITH INCREASED EFFICIENCY

2.5 Incremental

Incremental signatures, introduced by Bellare, Goldreich and Goldwasser in 1994 [7],
are signatures that are easily updated after the message is slightly modified. The
time it takes to update the signature is proportional to how much the message is
modified. Incremental signatures use a variation of the hash-then-sign mechanism.
The message m is hashed using a collision-free hash function H to obtain H(m).
Then H(m) is signed using an ordinary signature scheme obtaining o(H(m)). The
final signature on the message m is o(H(m). To update this signature on a modified
message m’ of m, the hash of m’ is computed according to the incremental hashing

algorithm and then this hash value is signed from scratch.

As an application, suppose a signer wishes to send the same long message to
many different users so that the text is identical except for the heading information
which specifies the intended recipient. Rather than computing the hash value of
each message from scratch, only one message needs to be completely hashed and
the others can be hashed quickly using only the altered portion of the original
message. Note that incremental hashing is only useful when signing long messages,
since ordinarily computing a signature is more expensive than computing a hash

function for inputs of the same length.

Recall that a collision-free hash function maps arbitrarily long inputs to outputs
of a fixed length so that it is computationally infeasible to find two distinct inputs
which map to the same hash value. Thus in order to devise an incremental signature
scheme, we first need a collision-free hash function H which satisfies the following:

Let m = my,mg,...,m, be a message viewed as a sequence of blocks. Suppose

2.5. INCREMENTAL 29

block ¢ is modified to m} and m’ is the modified message. Given H(m),i, m; and

/
79

m}, computing H(m') is easy.

Most hash functions employed in practice involve iterations, in which each suc-
cessive block in the message contributes to the final hash value. Clearly, these hash
functions are useless for incrementality, where we only want to recompute the hash
of the altered block of the message. Merkle [42] describes a tree structure in which
adjacent blocks of the message are hashed together to obtain a string half the length
of the original, then the process is repeated until a final hash value is computed.
Here, a single block of the tree can be modified and only the hash computations
from this point of the tree down need to be done. However, the entire tree must
be stored, and for incremental hashing we wish to store only the final hash value.
The following incremental scheme due to Bellare and Micciancio [8] accomplishes

this by using a new method for constructing collision-free hash functions called

randomaize-then-combine.

Randomize

1. The message m is written as a sequence of blocks my, ms, ..., m,, where each

block is b bits long.

2. For each block + = 1,2, ...,n, concatenate the binary encoding < ¢ > of the
block index ¢ to the message block m,;. We will let [= log(n) + b denote the

bit-length of the largest such concatenated string < n > my,.

3. The “randomizing” function H is applied to each concatenated string as fol-

30 CHAPTER 2. SCHEMES WITH INCREASED EFFICIENCY

lows:

H(<i>mi) = ;.

The function H in this construction must be a collision-free compression function,
where H : {0,1} — Zy and p is a large prime.
Combine

The outcomes y; are then combined to yield the final hash value

yzHyz mod p.

=1

Since the “combining” operation is multiplication, we call our collision-free hash

function MuHASH.

Incrementality

Now suppose block ¢ of the message m changes from m,; to m/. Given the final hash
value y of the original message m, one can simply recompute the hash value 3" of

the altered message m’ as follows:
y =y-H(<i>m;) " H(< i >m!}) mod p.

Once the hash value is computed on the message m, an ordinary signature scheme

such as RSA can be applied to the hash value.

2.5. INCREMENTAL 31

Security

We are really only concerned with the security of the hash function construction
and not the signature scheme. In particular, we require that the hash function we’ve
constructed is collision-free. An interesting result in [8] shows that, if p is chosen
large enough so that the discrete logarithm problem in Z7 is hard, and H is an ‘ideal’
hash function, then MuHASH is collision-free. This result is perhaps surprising
since MuHASH does not appear to have any relation to discrete logarithms. The
result can be equivalently stated as: If there is any attack that finds collisions in
MuHASH then there is an efficient way to compute discrete logarithms in Z7. In
practice, this statement is stronger still since even if the discrete logarithm problem

were easy, we still don’t know a method for finding collisions in MuHASH.

Efficiency

Computing MuHASH takes one multiplication per block of m. To speed up this
computation, the block size can be increased. The increment operation takes one
inverse operation and two multiplication operations in Z; and two evaluations of H.
Thus, we can see that incrementing is faster than separately hashing long messages
using a regular hash function such as SHA-1. Note that because the randomizing
function H is not iterative, it is possible to apply H to the blocks of the message in
parallel. The multiplications in computing y can also be accomplished in parallel.
Given sufficient hardware, this can greatly reduce the cost of computing this hash

function.

Chapter 3

Schemes with Increased Security

As we mentioned in the introduction, ordinary signature schemes can only be
computationally secure. Thus, an attacker with exceptionally large computational
power could potentially break these schemes. If an adversary does succeed in forg-
ing a signature, is there any way to distinguish between a forged valid signature
and an authentic valid signature? This is an important question in legal terms
because it introduces the problem of liability. In the case of forgery, the supposed
signer will still be held responsible. Another breach of security occurs if the signer
falsely denies her own signature. Fail-stop signature schemes prevent against both
situations by means of a disavowal protocol. Another object of attack is the secret
key of the signer. This key can be shared with a third party in arbitrated signature
schemes so that no one can forge without the help of the arbitrator. Rather than
sharing the entire secret key with another user, one can divide the key into shares
which can be distributed among many users. Threshold signatures are generated in

this way and maintain that a minimum prescribed number of users must collaborate

3.1. FAIL-STOP 33

to reconstruct the secret key. Proactive signatures also use the idea of distribution
together with the notion of key share renewal. This provides an even higher level of
security as shares of the secret are updated over time further restricting the ability
of an attacker to discover the secret. Forward secure schemes contain an update
algorithm for the private keys, so that in case the current key is exposed, previous

signatures are still valid.

3.1 Fail-Stop

Fail-stop signature schemes provide an improved level of security over ordinary
signature schemes in the sense that if someone succeeds in forging a signature, the
supposed signer can prove it is a forgery. If a forged signature is shown to the signer,
she can prove that the underlying assumption upon which the fail-stop signature
scheme is based has been broken. More precisely, the signer’s proof of forgery is not
actually a mathematical proof, but a string that should be infeasible to construct
(even by the signer) based on the underlying assumption. This string provides
evidence that the assumption has been broken, and thus a forgery has occurred.
Once such a forgery is detected, the signing algorithm is no longer used; hence the
term “fail-stop” [47].

The fail-stop signature scheme involves a trusted third party as well as a proof
of forgery algorithm. With this algorithm, a forger is unable to construct signatures
that could be verified by the verification algorithm without performing an expo-
nential amount of computation, and a signer is unable to construct signatures that

could later be declared forgeries. We will now provide an example of a particular

34 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

fail-stop signature scheme due to van Heyst and Pedersen [54] that relies on the
intractability of the discrete logarithm problem.
Key Generation

The trusted third party (TTP) does the following:

1. Selects primes p and ¢, where ¢ divides p — 1 and ¢ is large enough so that
the discrete logarithm problem is intractable in the subgroup H, of order ¢

M *
n Zp.

2. Randomly selects g € Z; and computes a = g®PY/4mod p. If @ = 1, the

TTP chooses a new g.

3. Randomly selects a secret integer a, 1 < a < ¢ — 1, and computes § =

a® mod p.
4. Sends the public values (p, ¢, o, 3) to the signer.
The signer then does the following:
1. Randomly selects secret integers a1, xq, y1,y2 € {0,1,...,¢— 1}.
2. Computes 31 = o™ %2 mod p and [y = o¥ ¥ mod p.

Then the signer’s public key is (81, 52, p, ¢, o, f) and her private key is & = (21, 22, Y1, y2).
Note here that our assumption that the discrete logarithm problem is intractable

in H, maintains that only the TTP has knowledge of a. The mathematical as-

sumption in this particular fail-stop signature scheme is that the discrete logarithm

problem is infeasible in H,. Hence, evidence of forgery would be the integer a. We

3.1. FAIL-STOP 35

will describe the proof of forgery algorithm momentarily, but first we will present

the algorithms for signature generation and verification.

Signature Generation

To sign a message m € {0,1,...,¢ — 1}, the signer computes
Sim = x1+ my; mod g,
and Sy, = 22+ myz mod g.

Then (S1m,S2,m) is the signature on the message m.

Note that this is a one-time signature scheme, so each time a signature is gener-
ated, the signer should choose a new secret x. Otherwise, if two different messages
were signed with the same z, this secret could be uncovered from the two systems
of linear equations in two unknowns for S; ,,, and 53 .

Signature Verification
To verify the signer’s signature on the message m, the verifier does the following:

1. Obtains an authentic copy of the signer’s public key (51, B2, p, q, @, B).

2. Computes v; = 3147 mod p and vy = a1 352m mod p.

3. Accepts the signature (Sym, S2.m) iff v; = vy.

To see that signature verification works, note that

vy = BBy

36 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

(axl 6$2)(ay1 6y2)m

z1+my; 69€2+my2

(a4

asl,m /852,777,

vy (mod p).

Proof of Forgery

To prove the signature S’ = (9]

, : :
1m>S2.m) on a message m is a forgery, the signer

does the following:

1. Computes a signature pair S = (51, S2.m) for m using the private key z (see

the signature generation stage).
2. If § = S5’ then stop - the forgery is undetectable; otherwise proceed to step 3.

3. Computes a = (Sim — 51 ,,)(S2.m — S)~ mod g¢.

!
2,m

To see that this algorithm works, from the verification algorithm we have

OzSLm /852,777, = aS{,m /Bsé,m (mod p)

= aSlym_S{,m aa(sé,m_s2ym)

(mod p)
& Sim — SLm = a(SAm — So.m) (mod q)

= a

(Sl,m - S{,m)(sé,m - SZ,m)_l (mOd q)

Security

In order for a fail-stop signature scheme to be considered secure, it must be resist

existential chosen-message attacks. Before we present our main theorem of security,

3.1. FAIL-STOP 37

which states that an adversary can only compute a valid signature with negligible

probability, we require some preliminary results regarding the keys of the scheme.

Lemma 3.1.1 There are ¢* different quadruples T = (2, %2,y1,Y2) that yield the

same pair (P1, B2) as part of the signer’s public key.

Proof Recall that 8; = o™ %2 = o™ a2 = o™ T2 (mod p), where o, 3, p, ¢, and
a are fixed by the TTP. Fix ;. Now there are ¢ ways to choose x1, and for each
x1 there is one choice for x5 which produces the same ;. Thus, there are ¢ pairs
(21, x2) that give the same ;. Similarly, there are ¢ pairs (yi,y2) that produce the
same 5. This implies that there are ¢* quadruples ¥ = (2, 22, Y1, y2), which yield

the same pair (1, f2).

Lemma 3.1.2 Suppose T = (21,29, Y1, y2) and 2’ = (2}, 25, y,,y}) are two distinct
quadruples that yield the same portion of the signer’s public key (S1,32). Suppose
z produces a valid signature (S1m,S2.m) on a message m. Then z' also produces a

valid signature on m.

Proof Note that 8, = o™ = a®1% (mod p) and f, = ¥ ¥ = a¥i[%
(mod p). Also, note that if m is signed using 2/, then S1m = @ + my; mod ¢

and S5, = x4 +my; mod ¢. We need to show that (5]

Lms 5% m) 1s a valid signature
? ?

for m. This is true because

vy = a’imB%m (mod p)
= (a"itmigm) (mod p)

= axiﬁxé(ay{ﬁyé)m (mod p)

38 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

A1By" (mod p)

vy (mod p).

Lemma 3.1.3 Let T be the set of ¢* quadruples that yield the same portion of the
signer’s public key (1, P2). For each m € Zg,, there are exactly q quadruples in T

that give the same signature (S1m, S2.m)-

Proof We want to determine the number of quadruples (1,22, y1, y2) that satisfy

the following congruences:

e
B2
Sl,m

a®™ 3% (mod p)

Oéyl 6y2 (mod p)

1+ my; (mod q)

So.m z9+mys (mod q).

Since « is a generator of the cyclic subgroup H, of order ¢ in Z3, we can write

f1 = o (mod p)
5 = o (modp)

&) a® (mod p).

Combining these two systems of equations, we obtain

¢ = 11+ axy (mod q)

3.1. FAIL-STOP

¢ = yi+ay: (modg)
Sim = x1+my; (mod q)
Som = T2+ mys (mod g).

In terms of matrices over Z,, we have

1 a 0 O T 1
00 1 a X Co
1 0 m 0 (% - Stm
01 0 m s S2.m

Row-reducing, we can simplify the coefficient matrix to

1 00 —a
01 0 m
001 a
000 0

We end up with three equations in terms of y;:

r1 = e +ay: (modq)
Ty = ¢ —my; (mod q)
Y1 = Sim —ayz (mod q).

Each choice for y, gives a unique solution for z,z,, and y;.

39

Since there are ¢

40 CHAPTER 3. SCHEMES WITH INCREASED SECURITY
possibilities for yo € {0,1,...,¢ — 1}, this gives ¢ solutions for (w1, x2,y1, y2).

Corollary 3.1.4 Let m' € Z,, m # m'. Then the q quadruples in T that yield the

signer’s signature (S1,m, Sam) for m, yield ¢ different signatures for m'.

Theorem 3.1.5 Given that (S1m,S2.m) s a valid signature for m and m’ # m, an

adversary can compute o valid signature (Sy ms, S2.m) for m’ with probability 1/q.

Proof Using Lemma 3.1.3 and Corollary 3.1.4, we note that given that (S1 ., S2.m)
is a valid signature for m, there are ¢ possible quadruples (x1, 2, y1,y2) that give the
same signature (S m, S2.m) for m. But for any message m’ # m, these ¢ quadruples
will produce ¢ different signatures on m’. One of these will be the valid signature

for m'.

We have shown that the probability of a successful forgery is 1/q if an adversary
has access to a message and a valid signature created by the signer. Suppose an
adversary only has access to the signer’s public key. Then, by Lemma 3.1.1, there
are ¢* quadruples which give rise to the public key (3, 32), ¢ of which produce a
valid signature. Once again, the probability of a successful forgery is ¢/¢* = 1/q.
Note that this probability does not depend on the computational power of the
adversary. The unconditional security arises from the fact that the adversary has
no idea which secret quadruple is being used by the signer.

Since we have achieved a level of unconditional security, given a valid signature
on a message m, it is infeasible for an adversary to compute the signer’s signature on
a different message m’. It is, however, still possible for an adversary to forge her own

signature on the message m’ that will pass the verification condition. Nevertheless,

3.2. ARBITRATED 41

as we mentioned previously, if the signer is given this forged signature, she can
produce a proof of forgery with probability 1 — 1/¢. This probability arises from
step 2 in the proof of forgery algorithm. The probability that S = S’ and the
proof of forgery fails is 1/¢, by Lemma 3.1.2. The evidence of forgery is the value
a = log, f mod ¢, which was supposed to have been known only to the trusted

third party.

Efficiency

The described fail-stop signature scheme has a complexity comparable with RSA
signature schemes. The construction of a fail-stop signature requires two multi-
plications and two additions modulo a prime number. Signature verification can
be accomplished in less than two modular exponentiations modulo a prime. Thus,
fail-stop signature generation is very efficient, while fail-stop signature verification

1s only slightly slower than RSA signature verification.

3.2 Arbitrated

Arbitrated signatures were introduced as a method of employing symmetric key
encryption in digital signature schemes. Because public key cryptography was rela-
tively new at the time, it was believed that a signature scheme based on symmetric
key encryption would offer more security than its public key counterpart. With
symmetric key encryption, the ability to sign and verify could be limited to those
with whom a secret key was shared. To prevent users with knowledge of the secret

key from signing on behalf of other users, a trusted third party, called the arbi-

42 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

trator, is required in the signature generation and verification stages. Since the
arbitrator’s cooperation is involved in both these stages, the arbitrator can control
who is is capable of signing and verifying signatures.

The scheme begins with each possible signer and verifier, sharing their secret key
with the arbitrator. This secret key will be used as a means of authenticating users.
The scheme we will present below uses a message authentication code algorithm to
accommodate the authentication requirement rather than an encryption function,
as is employed by Davies and Price [24]. Since encryption was designed to achieve

confidentiality, it is not desirable to use it to obtain authenticity.

Key Generation

The arbitrator selects a secret key kr € K, where K is the key space. FEach user
A selects a random secret key k4 € K and sends it to the arbitrator over a secure
and authentic channel.

Signature Generation

In order to generate a signature for a message m, A does the following:

1. Computes M = H(m), where H : {0,1}* — {0,1}' is a one-way hash func-

tion.

2. Computes u = MACy, (M), where MACy : {0,1} — {0,1} is a message

authentication code algorithm.

3. Sends u, M and a public identification string I4 to the arbitrator.

3.2. ARBITRATED 43
Upon receiving u, M and 4, the arbitrator does the following:

1. Verifies that © = MACy ,(M).

2. Computes S = Ep. (M || 14).

3. Sends S to A.

Then A’s signature on the message m 1s S. Suppose Alice wants to send the
authenticated message m to Bob. She sends the pair (m, .S).
Signature Verification

In order to verify Alice’s signature on the message m, Bob does the following:

1. Computes v = MACy,(S5).

2. Sends v, S and his public identification string Ip to the arbitrator.
Upon receiving v, S and Ig, the arbitrator does the following:

1. Verifies that v = M AC,(S).
2. Computes Ek_Tl(S) to get M || 1a.
3. Computes w = MACy, (M || I4).

4. Sends w and M || I4 to Bob.
Upon receiving w and M || 14, Bob does the following:

1. Verifies that w = MACy, (M || I4).
2. Computes M’ = H(m).

3. Accepts signature S iff M’ = M.

44 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

Security

The security of this arbitrated signature schemeis dependent on the particular sym-
metric key encryption function chosen. The authenticity of the scheme depends on
the security of the message authentication code algorithm. The arbitrator provides
increased security because no one can forge a signature without the cooperation of
the arbitrator. Since each users’ private key is shared authentically and secretly
with the arbitrator prior to signature generation, only the authentic signers will be
given signatures. An additional feature of this scheme is that the arbitrator never
sees the message m shared between users A and B. However, the arbitrator must
be unconditionally trusted with the secret keys of the two users and there is nothing

to stop the arbitrator from forging signatures herself.

Efficiency

Because symmetric-key encryption is faster than public-key encryption, the process
of creating and verifying arbitrated digital signatures is quite efficient. However,
there are many message and key exchanges involved between users and the arbi-

trator in order to sign a single message.

3.3 Threshold

Threshold cryptography involves the distribution of some secret information into
shares such that a minimum predetermined number, or threshold, of shares are

required in order to reconstruct or apply the secret. Each share is then given to

3.3. THRESHOLD 45

a group of servers called shareholders. Some threshold schemes involve a trusted
dealer, whose task is to choose and distribute the secret information into shares.
The secret information is often the private key of the signer in signature schemes.
Thus, a signature can be generated without anyone but the dealer knowing the sign-
ing key. There are two types of threshold protocols depending on the application.
Threshold secret sharing is used for single-use data. The secret information can be
derived at most once from a set of secret shares without being revealed. Threshold
function sharing is used for multiple-use keys such as the private key of a certi-
fied authority. The distributed key can be used repeatedly without compromising

security.

Threshold cryptography is an important concept which is used widely by cer-
tification authorities. A certification authority (or CA) is a trusted third party
whose signature binds an entity to their public key. Since a CA signs many public
keys, its signing key is a target for attackers who may wish to certify their own
invalid public keys. If the CA’s signing key is kept in one place, once this site is
broken into, the secret key is exposed. However, if the key is distributed among n
sites using a (¢, n) threshold signature scheme, an attacker must break into t sites
in order to reveal the secret key. Threshold cryptography is also the idea behind
key escrow, whereby two or more escrow agents hold part of the private key. As
needed, the escrow agents are called upon to use their part of the key to compute

the entire secret key.

The two important requirements of threshold systems are data secrecy and

data integrity. Suppose only data secrecy was desired. Then the secret information

46 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

could be divided among all n shareholders and all users must cooperate to reveal
the secret. However, if one shareholder alters her part of the secret, the secret
information is destroyed. On the other hand, suppose data integrity was the only
requirement. To satisfy this condition, n copies of the secret key could be made so
that each shareholder obtains a copy of the entire key. This would prevent against
up to n — 1 shareholders collaborating maliciously in attempting to alter the secret
key. However, any single shareholder could easily give away the entire secret key
to an adversary. To achieve both data secrecy and data integrity, a (¢,n) threshold
protocol involves a group of ¢ shareholders such that any ¢ shareholders can combine
their shares to obtain the secret information s, and no ¢t — 1 shares will yield any

significant information about s.

The following threshold secret sharing RSA protocol was designed by Gennaro
et al. [29]. This (¢,n) threshold signature scheme has two phases. In the first phase
called the Dealing Phase, the signing key d is distributed by the dealer among n
shareholders or players {P;, Ps, ..., P,} so that each player P; has a share d; of
d. These shares must be chosen carefully so that during the second phase called
the Signature Phase, given the message m, any subset of ¢ players can collaborate
to produce a valid RSA signature S on a message m from their partial signatures
S; = m% mod N. We will discuss the formation of the d;’s and how the resulting
signature is computed using Lagrange interpolation below, but we can note here
that it is imperative that all partial signatures be correct in order to generate a
valid signature. This scheme contains a protocol for detecting an improper partial

signature. This is accomplished through the use of public verification data to ensure

3.3. THRESHOLD 47

that each player is providing the correct partial signature. The verification data is
generated during the dealing phase and is comprised of a public sample message w
and its corresponding partial signature w® mod N for each of the shares d;. These
sample signatures are made public to all the players so that during the signature
phase, each player P; can verify the partial sample signatures computed by any
other player P;.

Before we describe the dealing phase, signature phase and the interactive verifi-
cation protocol for detecting invalid partial signatures, we will present the following
observation which yields a method for computing polynomials.

Let p(z) = Yi_, a;z’ be a polynomial of degree t with coefficients in a finite

field F having order greater than ¢. Then the following conditions hold:

1. Values {p(z;)}!Z] for distinct values z; determine p on all points by Lagrange’s

interpolation formula:

2. t or fewer values {p(z;)}!_, for distinct values of z; yield no information about

p(y) for any single value of y ¢ {w1, x9, ..., 24}

De Santis et al. [51] show how to extend this notion from a finite field F' to the ring
Zgny. For simplicity, in the following discussion, we will assume that Lagrange
interpolation works in the ring Z4(y), even though some technical modifications are

required.

48 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

Dealing Phase

The dealer selects an RSA modulus V, a public key e, and a secret key d € Z;(N),
such that ed = 1(modp(N)). The dealer selects the key shares d; € Ly, and
sends share d; to player P; for each 1 = 1,2,...,n. Once the d;’s are distributed,

the dealer discards the secret key d.

The d;’s are chosen as follows:

e The dealer chooses a random polynomial p(x) of degree at most ¢+ — 1 with

t—1
=0

coeficients in Zg(ny, such that p(0) = d. That is, p(x) = a;xt, where

ap = d and a; €r Zgvy for 1 <12 <t —1.
e Fach d; is then computed as d; = p(i).

Using Lagrange interpolation, it is possible to reconstruct d from the d;’s given

any t shares d; in the following way: d = E;Zl(dj Hl# S—j) mod ¢(N). However,
we do not want a single user to recompute the secret key d since this would coun-
teract the purpose of a threshold signature scheme. Rather, we would like the

signature to be jointly created by all players without any of them knowing the

secret key d.

Signature Phase

To compute the signature S on the message m, each player P; computes and

publishes their partial signature S; = m% mod N. Given ¢ of these shares, say

0—1
Iy 5=

S1, 99, ...,.5;, anyone can compute S = H;‘:1 S; mod N. To see that this

3.3. THRESHOLD 49

collaboration generates an RSA signature, note that

0—

t t
s=]] S]Hl#j = T s 71 = m o=@l 50 = pd - (mod W),
7=1 7=1

Note that any subset of ¢ partial signatures S; will generate the signature for m.

In order for the resulting signature to be correct, each of the partial signatures 5;
must be correct. A solution is provided for detecting an improper partial signature.
The public exponents €; corresponding to d; are unknown to even the signer P;,
since otherwise, the signer could use ¢; and d; to find ¢(N) and factor N. Since only
the dealer knows the e,;’s, users are unable to verify the partial RSA signatures in
the usual manner. Rather, the signers must generate some new information which
will allow the other users to verify these partial signatures. The idea is that in order
to verify a partial signature on the message m under the key share d;, it suffices
to know a single sample message w and its corresponding correct partial signature

d

w* mod N. The following two phases comprise a protocol for detecting incorrect

partial signatures.

Generation of Verification Data

The dealer chooses a random value w € Z% and publishes it. Each player P,
1 = 1,2,...,n, computes their partial signature on the sample message w, w; =

w® mod N, and publishes w; after it has been verified by the dealer.

50 CHAPTER 3. SCHEMES WITH INCREASED SECURITY
Verification of Partial Signatures

Each player P; must verify that the partial signatures produced by each other
player P; is correct. For simplicity, we will examine the protocol between two
players P and P,. Suppose P; wishes to verify that P,’s claimed partial signature
on the message m is correct. Recall that P, has access to the sample message w,
its partial signature w; = w® mod N as signed by P, the message m, and P,’s

claimed partial signature S;. The interactive verification protocol is as follows:

1. P, randomly chooses 7,7 € {1,2,..., N}, computes R = m‘w’ mod N and
sends R to Py.

2. P, computes Sp = R® mod N and sends Sg to P;.

3. P, verifies that S = S%w% mod N. If this holds, then P; accepts 9, as the
correct partial signature on m. Otherwise, P rejects it, and P, is exposed as

the malicious shareholder.

This interactive verification works since

Sgr Séwg (mod N)

& R® Siw®l (mod N)

& (miw’)® Siw™’ (mod N)

& m'® S5 (mod N)

—=m

Sy (mod N).

3.3. THRESHOLD o1

Note that the partial signature will be accepted as valid if §; = bm® mod N, where
b is a square root of unity in Zy. However, b = £1 (mod N) is the only possibility
since if P, could find S, such that b = Sym~® (mod N) is a non-trivial root of
unity, then she could factor N, which was assumed to be infeasible. Thus, 55 is
accepted as valid if and only if S, = £m® (mod N). This may cause both resulting
signatures S and —S to be accepted as valid. This problem can be quickly overcome

by verifying the final signature using the public exponent e.

Security

The scheme outlined above is both robust and unforgeable. Robustness is satisfied
for t < [n/2], meaning that even if up to ¢+ — 1 players behave maliciously, the
correct signature will still be generated. This is because of the ability to detect
malicious players. The d; values belonging to the malicious players can simply be
left out of the signature generation stage, and a subset of size ¢ can be chosen which
does not contain any of the faulty d,’s, since ¢ < [n/2]. Unforgeability is met since
a subset of less than t players is unable to produce a valid signature because in
order to perform polynomial interpolation, ¢ shares S; are required.

The final security requirement is the completeness, soundness and zero-knowledge
property of the interactive verification protocol. We showed above that complete-
ness is satisfied when we proved that verification works. Gennaro et al. [29] show
that a cheating player P, can only convince P; to accept an invalid signature
S £ m% mod N with probability %. Thus, the protocol is sound. The pro-

tocol as it stands above is not zero-knowledge. That is, some information can be

leaked as a result of a cheating P;, who could simply choose an R which does not

32 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

comply with the protocol and learn Sp = R% mod N, which could not be com-
puted by P; alone. However, through the use of a commitment function, which
is collision-resistant and one-way, P, can be assured that the R as chosen by P;
was formed correctly. This is accomplished by sending commit(Sg) to P; instead
of Sr. Only after P reveals the values ¢ and j used to compute R and P, checks
that R = m'w’ mod N, does P, send Sk to P;. This technique provides the desired

zero-knowledge property and thus the scheme is secure.

Efficiency

This threshold RSA signature scheme involves a small constant number of modular
exponentiations in order to sign a message m. The interactive protocol increases
the complexity of an ordinary threshold signature scheme because of the series of
checks between pairs of players. However, it is only necessary to carry out this error
detection procedure if the final signature m¢ mod N is first found to be incorrect.
That is, the resulting signature can be checked using the public key e, and if the
signature 1s verified, there is no need to carry out the verification of the partial

signatures.

3.4 Proactive

Like threshold cryptography, the goal of proactive cryptography is to protect the
secrecy of the private keys used in signature schemes and encryption schemes. Using
a threshold signature scheme, an attacker must break into many sites before the

secret key is exposed. This provides a high level of security as long as the scheme

3.4. PROACTIVE 33

is used only for a short period of time. However, keys that remain unchanged for a
long time, such as the signing keys of a certified authority or a bank, run the risk of
being revealed by an attacker who has a considerable amount of time to uncover all
shares of the key. Proactive schemes combine the concept of key distribution used
in threshold schemes with the notion of key share renewal. Instead of distributing
fixed key shares to the players, the key shares are updated at frequent intervals
to help prevent against the attack mentioned above. The idea is to fix the secret
key, but change its representation into key shares from one interval to the next.
Proactive signature schemes use threshold signature schemes as a basis, but the
entire lifetime of the scheme is split up into time periods such that in each time
period, it is assumed that no more than ¢ players will follow the protocol incorrectly.
A scheme is t-proactive if it is secure and robust even if up to ¢ players are corrupted
in any given time period. Therefore, an attacker who wants to learn the secret key

must corrupt ¢ + 1 players in a relatively short amount of time.

The concept of proactive security was introduced by Ostrovsky and Yung [45]
in 1991. The first proactive signature scheme for RSA was developed by Jakobsson
et al. [35], but was inefficient. There are many simple proactive RSA signature
schemes which are secure against passive attacks, but most do not prevent against
active adversaries such as the players themselves refusing to follow the protocol
correctly. The scheme that we will present is due to Rabin [49], and includes a
protocol for reconstructing shares of the secret key in the case that a player will

not cooperate in the signature generation and share renewal phases.

This scheme is comprised of a key distribution stage, signature generation stage

54 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

and a share-refreshing protocol. This proactive scheme is an RSA based scheme
where (N, e) is the public key, d is the private key to be shared, g is an element of

high order in Z%;, n is the number of players, L = n!, and ¢ is the threshold.

Key Distribution

During the key distribution stage, the dealer shares the key d in additive form
using an (n,n) threshold scheme. Each share d; is then further shared using a (¢, n)
threshold sharing scheme. This back-up procedure allows for a corrupted player’s
share d; to be reconstructed by t other players. The dealer then computes and
publishes all the partial signatures on a sample message g. These witness signatures
w; = g% mod N enable the players to verify each others partial signature on the
message m during the signature generation stage.

The complete protocol the dealer executes for sharing the secret key d € ZQ(N)

is the following:

1. Select random d; € [-nN?,...,nN?], for each 1 < i < n, send d; to player P;,

and set dpublic =d — E?:l d,
2. Compute the witness or sample value w; = ¢% mod N, for each 1 <17 < n.

3. Share d; using the Sharing Protocol (see below).

Signature Generation

The signature to be generated on the message m is m¢ mod N. Each player must

use their partial key d; to generate this signature. Since d = dpupiic + 2?21 d;, then

3.4. PROACTIVE 35

md = mdpuviict iz di = pdpustic [T m® (mod N). Thus, each player must publish
their partial signature o; = m% mod N on the message m in order to obtain the
resulting signature S = mwic [['_, o; mod N.

Now suppose a player generated their partial signature incorrectly. Then, the
resulting signature will not be verified and the players proceed in checking each
of the partial signatures so the corrupted user can be detected. Recall that for
each share d;, we have a public sample partial signature w;. Each player will
be asked to prove that their partial signature on the message m is correct by
showing that log,, o; = log, w;; this can be accomplished using the partial signature
verification protocol for threshold signature described in Section 3.3. Since log, w; =
d;, if equality holds we can be assured that the partial signature o; was generated
correctly. If equality does not hold, this player’s share d; will be reconstructed using
the Reconstruction procedure which we will describe momentarily.

Before describing the protocol for share renewal, we will pause and give an
explanation of the protocols for sharing and reconstructing secrets, which are used

throughout this scheme. This verifiable secret sharing protocolis based on a scheme

due to Feldman [25].

Sharing Protocol

In order to distribute some secret s € [-nN? ...,nN?| among the n players, the

dealer does the following:

1. Randomly chooses ay,as,...,a; € [-nL*N? nL?N?] and defines the polyno-

mial f(x) = sL + a1 + agz® + - - + aa'.

36 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

2. Computes f(i) € Z for 1 < 7 < n and by = ¢** mod N,b; = ¢g* mod

N,...,by = ¢* mod N.
3. Gives player P; the value f(i) and publishes the values by, by, ..., b;.

To verify that the dealer has executed the protocol correctly, the following verifi-

cation protocol is performed between each player and the dealer.

1. Each player P; verifies that ¢/®) = T’ (bj)ij (mod N). If this not hold, she

4=0

requests that the dealer publishes f(i).

2. The dealer publishes the shares that were requested by the players in step 1.

If she refuses to do so, she is disqualified.

3. Each player P; repeats step 1 for all shares published by the dealer in step 2.
If any verification fails, the dealer is disqualified. If a player’s published share

is valid, then that player is disqualifies.

To see that verification works, note that
gf(z) — gsL—I—a1i+a2i2—|—...—|—atit — gngaliga2i2 . .gatit = bobzlbz; . b;t (mod N)

Reconstruction Protocol

In the case that a player refuses to cooperate, a threshold value of ¢t players can

collaborate to reconstruct the secret value s as follows:

1. Each player P; publishes f(i).

3.4. PROACTIVE 37

2. Player P; finds a set I of size t + 1 of indices such that for all ¢+ € I, the
following equation holds: ¢/ = [T' (bj)ij (mod N). That is, the shares

J=0

f(2) for « € I are genuine.

3. P; selects a prime P > 2nN? and computes the secret s using polynomial

interpolation: s = ., f(i) H]a#l =]/L smod P, where

r ifa < PJ2,

z smod P =

x—P ifax>P/2.

Share-refreshing Protocol

The share-refreshing protocol allows us to change the representation of the secret
key as shares while maintaining the value of the key. We must also change the
representation of the back-up of the shares. This is accomplished as follows: Each
player splits her share d; into sub-shares d; ;, gives each player one of the sub-shares,
and sets d; pubtic = dz’—EL d; ;. Then the new shares are formed by adding together
all the subshares received from the other players. For example, player ¢ receives the
subshares dy ;,dy;,...,d,,; and forms her new share d" = 2?21 d;;. The player

also sets dggg;lc = dpublic + E?:l d; pubtic- We can see that this new sharing is still an

additive sharing of d = >"7"_ d; + dpuiic since

n

Z &+ dpprie = Z Z dj;i + dpubtic + Z d; public

=1 11]1

— Z Z dij + Z d; public + dpublic

=1 j7=1

38 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

= Z (Z di; + di,pubuc> + dpubtic

=1 7=1

= Z d; + dpupiic = d.

=1

Now suppose that P; does not generate her subshares correctly, i.e. 2?21 dij #
d;. This can be detected by each player generating public sample values ¢, ; =
g%i mod N for the new additive sub-shares d; ;. Then each other player can check
that gdipuiic H?Zl ¢ (mod N) = w;.

We also need to ensure that the sharing of the new values d7“" is correct. From
the previous verification we have a witness signature d*" of the form w]* =
g% mod N. Also, when the d"“’s are shared using the sharing protocol, the
value (%)L mod N = by is computed as a by-product. To verify that the sharing
protocol was carried out correctly, we need only check that by = (w!*)* mod N.

2

The protocol for updating the shares of the secret key d is summarized:

1. P; randomly chooses d;; € [-N?* N?] for all 1 < j < n, computes and

publishes ¢; ; = ¢%i mod N, and sets di pubtic = di — >_"_, d;

j=1 %3
2. P, sends d; ; to P;.
3. P; verifies that d;; € [-N? N?] and ¢;; = ¢%J mod N. If not, P; re-

quests that the d;; chosen by P, be made public and then P; computes

Gij = g% mod N.

4. It P; refuses to cooperate in step 3, P;’s share of the key d; is reconstructed

by the other players using the Reconstruction protocol.

3.4. PROACTIVE 39

5. P; verifies that w; = gdiruttic H?Zl ¢i; mod N. If not, P;’s share of the key d;

is reconstructed by the other players using the Reconstruction protocol.

6. P; computes her new share d*" = 2?21 dj;i+ >0 di pubtic +dpuiic, and shares
it with the other players using the Sharing protocol. Note that as a result of

this protocol, the value ¢g*/ mod N is revealed, where s = d"%.

7. If P; refuses to share her new secret or (¢%"")F # ¢*/ mod N, then P; pub-
lishes d; ;. If P; refuses to publish d, ;, then P;’s share d; is reconstructed by

the other players using the Reconstruction protocol.

Security

The scheme described above is robust since even if ¢ players are corrupted, the cor-
rect signature will still be generated for ¢ < n/2 because this leaves ¢ honest players
to collaborate and reconstruct the corrupted players shares. This feature provides
the optimal resilience characteristic which is so often unattained in previous RSA
proactive schemes. This scheme also prevents against the exposure of the secret
key even in the case that a player’s share of the key is reconstructed and revealed.
As long as we assume that not all the players’ shares are compromised, which is a
realistic assumption, the security is intact. For a detailed proof of the security of

the verifiable secret sharing protocols, see [49] and [25].

Efficiency

The sharing of the key in additive form allows for simple signature generation as

well as an efficient share renewal process. To generate a signature, each player must

60 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

perform one exponentiation as long as the players all follow the protocol correctly.
If a fault occurs, the faulty player must be detected and then their shares must
be recovered using the verifiable secret sharing Reconstruction Phase, which is an
efficient protocol. In some previous RSA proactive schemes, the size of the shared
key increases linearly with the number of players involved or the run time increases
linearly with the number of faults. The scheme we have described runs in constant

time even when faults occur.

3.5 Forward Secure

Forward secure signature schemes were first proposed by Anderson in 1997 [3] as a
way of preserving the validity of previously signed messages even after the secret
signing key has been compromised. Ordinary digital signature schemes do not have
this property. In fact, once the secret key of an ordinary scheme is lost, all past
and future signatures are meaningless. A malicious signer could also post the secret
signing key k anonymously on the Internet and claim that her key was lost. Then
the signer can claim that she never signed messages that she did in fact sign before
the key was published. We can see that this can be disastrous in terms of achieving
non-repudiation.

The idea behind forward secure schemes is that 7', the total time for which a
public key is valid, is split into time periods where each period uses a different secret
key. The public key remains fixed while each subsequent secret key is computed
from the previous key using a key update algorithm. The update algorithm is

public, so there is nothing stopping an adversary from forging future secret keys

3.5. FORWARD SECURE 61

after discovering the current secret key. However, once a forgery is detected, the
public key can be revoked to prevent against this attack. Even if the current secret
key is compromised, previous secret keys cannot be computed from this revealed
key. The time period during which a message was signed is included in the signature
so that it can be verified that the signature was created in the time indicated.

Previous forward secure signature schemes contain efficient signing and key up-
date algorithms but very slow verification. We will present the first scheme where
both signing and verifying are as efficient as the underlying ordinary scheme upon
which it is based. This forward secure scheme due to Itkis and Reyzin [34] is based
on the ordinary Guillou-Quisquater signature scheme [32]. We will begin by giving
a brief description of the GQ) signature scheme. In the following, & and [are secu-
rity parameters and H is a hash function. Typical values of k and [are k = 1024
and [= 160.

Guillou-Quisquater Signature Scheme

To generate the signing key and verification key, the signer does the following:

1. Generates random [k/2]-bit primes pq, p2 and computes their product N =

pPip2.

2. Randomly selects s € Zy and e € [2/,2'1) such that ged(e, (N)) = 1.
3. Computes v = 1/s° mod N.

Then the signing key is (s,e, N) and the verifying key is (v,e, N). To sign the

message m, the signer does the following:

62 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

1. Randomly selects r € Z3,.
2. Computes y = r° mod N, 0 = H(y,m), and z = rs” mod N.

Then the signature on the message m is (z,0).
To verify that (z,0) is a valid signature on the message m, the verifier does the

following:

1. Checks that z 20 (mod N). If z =0 (mod N), reject.
2. Computes y' = z°v” mod N.
3. Verifies that o = H(y',m). If not, reject.

Note that the security of this scheme is dependent on the assumption that comput-
ing e-th roots modulo N is infeasible without knowledge of the factors of N.

The idea of the forward secure version of the G(Q scheme is for the signer to
generate distinct (I + 1)-bit primes eq,es,...,ep such that ged(e;,e;) = 1 and
ged(e;, ¢(N)) = 1 for all 1 < i,5 < T, where T is the lifetime of the fixed public
key. The e;’s are generated by a deterministic algorithm. Then the signer selects
81, 82,...,87 such that s{ = 1/v (mod N) for 1 < ¢ < T. At time period i, the
signer uses the GQ signature scheme with secret key (s;,e;, N) to sign the message
m and the verifier uses the GQ) verification procedure with public key (v, e;, N)
to verify that the signature is valid. Then forward security is obtained because
if a forger breaks in during time b and learns the secret key s, it is possible to
compute the ep-th, epyi-th,....er-th roots of v modulo N from spyq, ..., s7 because

of the public update algorithm, however, they will be unable to compute the e;-th

root of v for 57 < b.

3.5. FORWARD SECURE 63

During key generation, the signer computes the e;’s and the s;’s as we mentioned
above. However, the signer does not store all these values since this would require
storage linear in T'. This problem is addressed by defining f; = e; - €;41 - - - er mod
¢(N) and introducing t; such that t{i = 1/v (mod N). Then, during time period
J, the signer stores only s; and ¢,41. When it comes time to update the secret key,
the signer computes s;41 = t;ff mod N and t;4, = t;j_:f mod N. This requires
only two values modulo N to be stored at any time.

Note that the f;’s and the e;’s are not stored by the signer. Rather, the ¢; for
the current time period 7, as well as a small fixed string p from which the e;’s were

generated, are stored as part of the secret key sk;. During the update algorithm,

the new ¢;’s for ¢ > j can be regenerated using the seed p.

Key Generation

In order to generate the public key for the total time T and the initial secret key

skq, the signer does the following:

1. Generates random ([k/2] —1)-bit primes ¢, g2 such that p; = 2¢; +1 are both

prime and computes N = pyp,.
2. Selects t; randomly from Z%.

3. Using a deterministic algorithm such as sequential operations from a fixed
starting point p, generates primes ¢; such that 2/(1 + (1 — 1)/T) < ¢ <
2/(1+1i/T) for 1 <7 < T. (The bounds on ¢; ensures that the ¢; are pairwise

distinct.)

64 CHAPTER 3. SCHEMES WITH INCREASED SECURITY
4. Sets fr = ey - e3- -+ er mod ¢(N).
5. Computes s; = t> mod N, v = 1/55 mod N, and t, =t mod N.

Then the secret key for the initial time period is sk; = (1, s1,%9, €1, p, N) and the
public key pky is (N, v, T).

Update Algorithm

To generate the secret key for time j 4+ 1 from the previous secret key sk; =

(7, 8j,tj41, €5, p, N), the signer does the following:
1. If y =T, return to key generation protocol.
2. Regenerates €41, ..., e using the fixed starting point p.

Cipo-ejqser i1
3. Computes sjy; =77 mod N and ;15 =77 mod N.

Then the new secret key is skji1 = (7 + 1, 841, tj42, €541, 0, N).

As we mentioned, the message m 1s signed according to the GQ signature scheme
in time period j with secret key sk;. Included in the signature is the current value
e;j used to sign the message. This 1s an important feature which speeds up signature
verification by enabling the verifier to obtain e; without having to recompute the
e;’s from scratch for ¢ < j. Since a dishonest signer could easily include an incorrect
e; as part of the signature, there are several things that need to be checked by the
verifier to be sure that the e; contained in the signature is the true e;. These checks
are carried out during signature verification. We will call the supposed ¢; included

in the signature e and the actual value e; for simplicity.

3.5. FORWARD SECURE 65

Firstly, it must be verified that ¢ > 2! and ged(e, ¢(N)) = 1 as in the original
GQ signature scheme. It is easy for the verifier to check that e > 2!, and as long
as e is odd and e < 2[F/21=1 then e is relatively prime with ¢(N) = 4¢1qs.

Secondly, the verifier must check that e is relatively prime with e, ..., er, where
b is the break-in time period. This is to ensure that the e;-th,....e;-th roots of
v for 7 < b cannot be computed by the attacker even though she knows the e-
th,...,ep-th roots of v. However, it is not a simple task for the verifier to check that
e is relatively prime with ep,...,er since she does not know b, the time the attack
occurs, nor does she know the values ey,...,er. The solution to this problem is for
the interval between 2! and 2*' to be split into T consecutive subintervals of size
2! /T, where e¢; is a prime from the i-th subinterval. Then the verifier can be assured
that the true values e;i1,....er are primes greater than or equal to 2! + % So if
the e included in the signature for time period j is less than 2! + %, then it must

be relatively prime with the true values e;11,...,e7 and thus with e, ..., er, since

b>j.

Signature Generation

In order to sign the message m using the current signing key sk; = (j, s;,t;41, €;,p, N),

the signer does the following:
1. Selects a random integer r from Z3,.
2. Computes y = r% mod N.

3. Computes o = H(j,¢;,y,m), where H : {0,1}* — {0,1} is a hash function.

66 CHAPTER 3. SCHEMES WITH INCREASED SECURITY

4. Computes z = rs7 mod N.

Then (z,0,7,€;) is the signature on the message m.

Signature Verification

To verify that (z,0,7,¢€;) is a valid signature on the message m, the verifier does

the following:
1. Ife; > s'(1 +5/T) or ¢; < 2 or ¢; is even, reject.
2. If z=0 (mod N) then reject.
3. Compute y' = z%v? mod N.

4. If o = H(j,e;,y’,m) then accept. Otherwise, reject.

Security

A formal proof of security is given in [34], so we will only informally describe how
forward security is obtained in this scheme.

Suppose an attacker breaks in during time b and uncovers the signer’s secret key
sp. Using the public update algorithm, the attacker can easily compute spiq, ..., 7.
Note that s,' = /v, s}, = “®/v,....,sp7' = “/v. Since the ¢;’s are relatively
prime for 1 < ¢ < T, knowing the ep-th, ep1-th,..,er-th roots of v will not assist
the attacker in computing the e;-th root of v for j < b. Thus, an attacker will be

unable to compute the signer’s secret key s; for any previous time period.

3.5. FORWARD SECURE 67

Efficiency

As noted, the key feature of this scheme is the efficiency of both signing and verify-
ing, which is equivalent to that of the underlying GQ scheme. Signing and verifying
each take two modular exponentiations, one modular multiplication and an appli-
cation of H. This gives a total time of O(k*l) plus the time to apply H. This
time can be improved upon by performing one of the two modular exponentiations
for signing off-line before the message to be signed is known. Key generation re-
quires O(k® + I*T + k*l 4+ kIT) bit operations and the key update algorithm takes

O(K*IT + I*T) bit operations. These running times are explained in [34].

Chapter 4

Schemes with Anonymity Services

The primary goal of ordinary signature schemes is authenticity rather than confi-
dentiality. However, in some applications of digital signatures, a degree of privacy
is desirable. In a blind signature scheme, the message to be signed is hidden by a
blinding function so that the signer cannot see the message she signs. This prevents
the signer from linking the signed message to the user who requested the signature.
A partially blind signature contains some additional information to prevent against
fraud that can occur in a fully blind signature. Fair blind signature schemes involve
a trusted third party who can link signed messages to users in specific situations.
So far, the signatures mentioned hide the message to be signed. Alternatively, the
signer’s identity can be hidden among an ensemble of other users. Group signatures
prevent the receiver of a signature from linking the signature to a specific member
of the collection of users who collaborated to sign it. There is a group manager who
can revoke the identity of the signer in case of a dispute. Ring signatures provide

an even stronger degree of anonymity since there is no such group manager.

4.1. BLIND 69

4.1 Blind

Blind signature schemes were first introduced by David Chaum in 1982 [18]. Chaum
developed the notion of an electronic coin, which maintains the privacy features of
an actual coin, namely untraceability and unlinkability. Electronic coins are bit
strings produced and signed by the bank using a blind signature scheme to ensure
authenticity. The blind signature scheme ensures that the bank does not see the
actual coin it is signing, and consequently, cannot link the buyer of the coin to the
coin itself. For example, suppose the buyer of the coin uses it to purchase an item
at a retail store. Eventually the coin is deposited back to the bank by the retail
store. The bank cannot trace the coin back to the owner because it did not see the
coin to begin with, since it was signed using a blind signature scheme. With the use

of blind signature schemes, spending patterns of consumers cannot be monitored.

There are two parties involved in the signature generation stage of this scheme.
There is a requester A and a signer B. A sends a message to B, which is then
signed by B and returned to A. A uses this signature to compute B’s signature on
another message of A’s choice. Hence, the signer issues a blind signature without
knowing the message she signs and therefore is unable to link the requester’s signed

message with the requester.

The blind signature scheme contains an ordinary signature scheme as a sub-
routine of the signature generation stage. The signature generation stage consists
of three actions: blinding, signing and unblinding. During the blinding stage, per-
formed by A, the message m is given some predetermined redundancy and then a

function f called the blinding function is applied to the message m. The signing

70 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

portion of the signature generation stage uses some general signature scheme, which
the signer B uses to sign a blinded message f(m). B then sends her signature on the
blinded message, Sp(f(m)), to A. In the unblinding stage, the requester A applies
an unblinding function g to Sg(f(m)) defined by g(Sg(f(m)) = Sp(m). Thus, B’s
signature on the message m is obtained with B knowing neither m nor her resulting
signature on m. Note that the choice of blinding and unblinding functions will be
determined by the choice of ordinary signature scheme used.

To illustrate the process of a blind signature scheme, we will describe an example
from Chaum [19] of a blind signature scheme that uses the RSA signature scheme

in the signing stage.

Key Generation

We will define Sg according to the definition of an RSA signature. Thus, the signer
B will choose a public key (N, e) and private key d. The requester A will select a

fixed secret integer k such that gcd(N, k) = 1.

Signature Generation

Since we will be working with the RSA signature scheme, appropriate choices for
the blinding function and unblinding function are as follows:

Blinding: f : Zy — Zy is defined by f(m) = mk® mod N.

Unblinding: g : Zy — Zy is defined by g(m) = k~'m mod N.

Suppose requester A wishes to obtain B’s signature on a message m € Zy. This
can be accomplished using the following blind signature protocol based on RSA:

Blinding: A computes f(m) = mk® mod N and sends this to B.

4.1. BLIND 71

Signing: B computes s* = Sg(f(m)) = (f(m))? mod N and sends it to A.
Unblinding: A computes s = g(s*) = k™'s* mod N.
Then

s = k'(f(m))? (mod N)

Et (mke)d (mod N)

E~tm ket (mod N)

E 'k (mod N)

m? (mod N)

= Sg(m)

as required.

Signature Verification

Suppose a third party C' wishes to verify the signature s on the message m. Then

C does the following:

1. Computes m’ = s mod N.

2. Accepts s iff m’ has the predetermined redundancy.

Security

A blind signature scheme has the following two notions of security: blindness and
unforgeability. Blindness refers to a signer being unable to link her signature s* on

the message f(m) to the resulting message-signature pair (m, s). In the example

72 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

above, the signer needs to know & in order to view m = (s*)°4~! mod N and the
resulting signature s = k~1s* mod N. Since k was chosen secretly by the requester
A, the signer can only guess k with probability 1/¢(N), since ged(k, N) = 1.
Unforgeability (often called one-more unforgeability) means that after receiving [
valid blind message-signature pairs from the signer, it is infeasible for the attacker
to compute a new valid blind message-signature pair. In our example using RSA
above, assuming the supposed attacker was the sender herself, she would need to
know the signer’s private key d in order to compute s* = (f(m))? mod N. This is
equivalent to computing d-th roots modulo N, which is considered to be infeasible.
For a more formal detailed analysis of the security of other blind signature schemes

see [17] and [2].

Efficiency

The scheme presented above is very efficient. To generate a blind signature, the
signer must compute one modular exponentiation. The requester must compute two
modular multiplications on-line. The rest of the requester’s modular operations can

be computed off-line before the message m is known.

4.2 Partially Blind

An obvious drawback of blind signature schemes arises from the fact that the signer
cannot see the message she signs. Potentially, a requester could ask for the bank’s
signature on an electronic coin whose actual monetary value is greater than what

the requester claims. A simple solution to this problem is to introduce distinct

4.2. PARTIALLY BLIND 73

signing keys for each coin denomination. Suppose the requester claims a coin is $1,
when it is in fact $100. The signer signs the blinded $100 coin with the private key
corresponding to $1. Then the requester can only verify this signature with the $1
public key, giving the coin a monetary value of $1 rather than $100. However, this
proposed solution requires users to have several public keys at their disposal. This
can be difficult, since in electronic payment schemes, customers often interact with

the bank using a smart-card, which has a limited memory capacity.

Another disadvantage of blind signature schemes is that since the coins them-
selves are untraceable, there is nothing to prevent users from making several copies
of a signed electronic coin and spending it at different locations. One remedy is for
the bank to keep a record of all coins that have been previously spent. However,

the size of this list would increase without end, which is highly inefficient.

A more effective solution to the two aforementioned problems is a modification
of blind signature schemes called partially blind signature schemes, proposed by
Abe and Fujisaki in 1996 [1]. In this scheme, instead of having no control over
the contents of the signature, the signer is able to include some information in the
signature, like a monetary value or an expiration date. With a coin value embedded
in the signature, only one signing key is needed for all coin values. A signature
scheme that contains an expiration date in the signature allows the banks to remove

previously spent coins from their database once the expiry date has passed.

We will give an example of such a scheme based on RSA, where the signer
and requester (or client) agree on some information that will be contained in the

signature [23].

74 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

Key Generation

The signer selects an RSA public key (N,) and corresponding private key d. The

signer also selects a secure one-way hash function H.

Signature Generation

To obtain a signature containing some common information ¢ on a message m, the

requester does the following:
1. Randomly chooses r,u € Zx,.
2. Computes o = r*H(m)(u? + 1) mod N.
3. Sends (a,) to the signer.

Upon receiving (a, o), the signer does the following:
1. Verifies the common information a.
2. Chooses a random positive integer x < N.
3. Sends z to the requester.

Upon receiving z, the requester does the following:
1. Selects a random integer r' € {1,..., N}.
2. Computes b = rr’ mod N and 8 = b°(u —) mod N.
3. Sends S to the signer.

Upon receiving [, the signer does the following:

4.2. PARTIALLY BLIND 75
1. Computes S~ mod N.
2. Computes t = H(a)¥(a(z? +1)37%)? mod N.
3. Sends (371, t) to the requester.
Upon receiving (571,), the requester does the following:
1. Computes ¢ = (ux +1)37'6° = (ux 4+ 1)(v — =)~ mod N.
2. Computes s = tr?r"* mod N.

Then (a, ¢, s) is the partially blind signature on the message m.

Signature Verification

One can verify that (a,c,s) is the correct signature on the message m by checking

whether

s° H(a)H(m)2(02 + 1)2 (mod N). (4.1)

To see that signature verification works, note that:

Se = (tr2r/4)e

H(a)de(ae(xZ T 1)8/8—28)2(17,,287,,/48

H(a)(reﬂ(m)(uz T 1))2@d(x2 T 1)28(16_48(17“287“/48

H(G)TZEH(M)Z(UZ _I_ 1)2(1,2 _I_ 1)2T_4€T/_4€(u _ x)—4r2€r/4€

H(a)H(m)*(u*2* + 2> +u* +1)*(u — 2)™*

76 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

H(a)H(m)*[(uz +1)* + (u = 2)]*(u - 2)™

H(a)H(m)*[(uz +1)* + 2(uz + 1)*(u — 2)* + (u — 2)*)(u — 2)*

H(a)H(m)z[(ux + 1)4(u — :1;)_4 + 2(ux + 1)2(u — :1;)_2 + 1]

H(a)H(m)2(02 + 1)2 (mod N).

Security

In order for a partially blind signature scheme to be considered secure, it must pass
the unforgeability and unlinkability conditions, as well as the partially blind re-
quirement. The scheme described above contains another security property, namely
randomization. The signer randomizes the blinded message by choosing the random
value x which is returned to the requester. This prevents chosen plaintext attacks
whereby an attacker chooses a message and requests a signature on it. Since the
random value z is incorporated into the blinded message, the attacker has no con-
trol over the blinded message that is signed. Now, suppose an attacker attempts to
remove the random value x from the blinded message. In order for the signature to
pass the verification condition, the attacker would have to compute ¢ that does not
incorporate . This would require the attacker to compute 3’ such that 5? = 22 +1
(mod N) so that when 3’ is sent to the signer in place of 5 and substituted into

the equation for ¢, the (2 4+ 1) term cancels out. That is,

o~
Il

H(a)"(a(a® +1)87%)*

H(a)(a(a® +1)(* +1)71)*

= H(a)doz2d (mod N).

4.2. PARTIALLY BLIND 7

Without the factorization of N, an attacker would be unable to compute square

roots modulo IV, and thus it would be infeasible to compute such a 3’

Partial blindness is the inability of the requester to alter the common informa-
tion @ embedded in the signature. In the scheme described above, the requester
would have to compute o’ such that o = H(a)™' mod N, and send this o’ to the
signer in place of a. Then, when the signer computes ¢, the common information «

is removed from the equation as follows:

t = H(a)d(o/(:z:z—l—l)ﬁ_z)m

H(a)da/Zd(xZ T 1)2d6—4d

H(a)!(H(a))+ 1257

(:1;2 + 1)2dﬁ_4d (mod N).

Similarly, the requester could try to compute 3’ such that 8* = H(a) (mod N).
In either case, the common information a is removed from the signature generation
stage, and so the requester can publish the tuple (d', ¢, s) as a valid signature, where
a’ is some information chosen by the requester without the signer’s cooperation.
However, in order to compute such values o’ or ', one needs to compute square
roots and quartic roots modulo N. This task requires the requester to know the

factorization of IV, which is considered infeasible.

To show that the scheme is unforgeable, we will assume that an attacker is
given a valid signature (a,c,s) on a message m, and is trying to derive a valid

signature (¢, ¢, s’) for another message m’. Firstly, an attacker could attempt to

78 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

find an m’ # m such that H(m') = H(m). Then the same signature (a, ¢, s) could
be used on the message m’. However, finding such an m’ is difficult since H is a
secure one-way hash function. Now suppose H(m) # H(m') (mod N). Since s is a
valid signature on m, s satisfies the verification equation 3.1. We can rewrite this

equation by raising both sides to the power d:

s = H(a)dl"-f(m)z‘i(c2 + 1)2d mod N.

To forge a valid signature, the attacker needs to find an s’ that satisfies

F— H(a)le-.T(7n’)2d(c2 + 1)2d

H(a) H(m')™(c* + 1) H (m)* H (m)

SH(m)_ZdH(m’)Zd (mod N).

However, the attacker would need to know the signer’s secret key d, which it does
not. In order to compute a valid ¢’ that satisfies (3.1), the attacker would have to

solve

A = (SEIT-I(CL)_IH(m’)_z)l/2 —1 (mod N).

But in order to compute a square root modulo N, the attacker would need to know

the factorization of V.

Finally, we will show that the scheme presented above passes the unlinkability

requirement. That is, the signer is unable to link the final signature (a, ¢, s,m) to

4.2. PARTIALLY BLIND 79

the particular instance it was signed. That is, if the signer signs many partially
blinded messages, she is unable to distinguish which final signature corresponds to
each of her previous signing processes. The following theorem gives us the desired

result.

Theorem 4.2.1 Suppose a signer wishes to find a particular previous signing pro-
cess instance corresponding to a given valid signature (a, ¢, s, m). Suppose the signer
has previously signed k partially blinded messages with the same common informa-
tion a (eg. within a valid time period). For each of the previous instances, rep-
resented by (a, oy, z;, Bi, ti)1<i<k, the signer can find the unique b;, r;, and u; that
were chosen by the requester during the signature generation stage of the scheme

from the following equations:

a; = (r)*H(m)(u?+1) (mod N) (4.2)
i = b(u; —x;) (mod N) (4.3)
c = (wizi+1)(w;i — ;)" (mod N). (4.4)

Proof From equation (4.4), we can solve for wu;, obtaining

u; = (cx; +1)(c — ;)" (mod N). (4.5)

If we substitute equation (4.5) into (4.2), we have

a; = riH(m)((ex; + 1)*(c — ;)" +1) (mod N).

80 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

Then solving for r;, we obtain

r, = a?H(m)_d((csi + 1)2(0 — l’,’)_z + 1)_d (mod N). (4.6)

Substituting (4.5) into (4.3), we have

B = b5((cx; + 1)(c—)" — ;) (mod N)

and finally solving for b;,

b, = ﬁld((cx, +1)(e—a;)" — xi)_d (mod N). (4.7)

From equations (4.5), (4.6), and (4.7), we can see that for each of the signer’s views
of the signing process, there is a unique triple (b;,r;, u;) which was chosen by the
requester in the signing process. Thus, every instance of the signing process is a

possibility for the given signature (a, ¢, s).

This theorem tells us that the signer cannot eliminate any instance of the signing

process as a possibility of being the correct one for the given signature.

Efficiency

In most applications of blind signature schemes, the client or requester is a smart
card of limited computational power. Thus, it is important that the work done
by the smart card in blind signature schemes is minimal. In the scheme described

above, the client must compute 21 modular multiplications and 2 hashing computa-

4.3. FAIR BLIND 81

tions. Compared with a previous partially blind scheme due to Abe and Fujisaki [1],

this scheme reduces the amount of computation done by the client by 98%.

4.3 Fair Blind

The unlinkability requirement of blind signature schemes provides an opportunity
for criminals to misuse payment systems. In this “perfect crime” scenario, a cus-
tomer could be blackmailed by the criminal and forced to withdraw digital coins
from her account. If a blind signature was used to sign the coins, there is no way
to trace the coins deposited by the blackmailer to the coins withdrawn from the
victim’s account. A fair blind signature scheme has the property that a trusted
third party such as a judge has some additional information which can be used
to revoke anonymity of suspected criminals. That is the judge is able to link the
signer’s view of the signing process to the resulting message-signature pair.

A physical analog of blind signature schemes is the following: The requester
writes a message on a piece of paper, places it with a carbon paper into an envelope,
seals it and sends it to the signer. The signer signs the envelope and because of the
carbon, the signature is copied onto the paper with the message. Since the envelope
is sealed, no one can tamper with the signed message inside. The signer returns
the envelope to the requester who can open the envelope to obtain the message and
signature.

Similarly, we can give a physical analog of fair blind signatures. The signer puts
a blank piece of paper and a carbon paper in an envelope and seals it. The requester

writes the message to be signed on the envelope using “magic ink”. This magic

82 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

ink is visible only after it is “developed”. The signer signs the envelope. Because
of the carbon paper, the message and the signature are inside the sealed envelope.
The signer keeps the envelope and the requester gets the internal paper. In case
of discrepancy, the signer can develop the magic ink on the envelope obtaining the

message and signature.

There are two classes of fair blind signatures called Type I and Type II. The
classes differ based on the information supplied to the judge by the signer. In a
Type I signature, the judge is given the signer’s view of the signing process, and
provides the signer with information that enables her to find the corresponding
message-signature pair. In a Type II signature, the judge is given the message-
signature pair, and provides the signer with the corresponding view of the signing

process.

The following example of a fair blind signature scheme described by Stadler,
Piveteau and Camenisch [14] is of Type I and Type II. In this scheme, E; denotes
the enciphering function of a judge’s public-key cryptosystem, H is a one-way hash

function, and k is a security parameter.

Key Generation

The signer chooses an RSA public key (N, e) and corresponding private key d. The
requester and the signer agree on a session identifier I D, where each instance of

the signing process corresponds to a different ID.

4.3. FAIR BLIND 83
Signature Generation

To generate a fair blind signature, the following procedure is carried out by the

requester and the signer:
1. The requester does the following for : = 1,2, ..., 2k:

(a) Randomly chooses r; € Z} and strings o, 5.
(b) Computes u; = Ej(m|ley) and v; = E;(ID||3;).

(c) Computes m; = r{ H(u;||v;) mod N and sends it to the signer.

2. Upon receiving m;, the signer randomly chooses a subset S5, where S C

{1,2,...,2k}, |S| = k and sends S to the requester.
3. Upon receiving 5, the requester sends r;, u;, and 3; for ¢« € § to the signer.

4. The signer then does the following:

(a) Checks whether m; = r{H(u;||E;(ID]|5;)) (mod N) for each i € S.

(b) Computes b = (Hz’gés m;)"/¢ mod N and sends b to the requester.
5. Upon receiving b, the requester computes s = b/(HigéS r;) mod N.

Then s along with the set of pairs T = {(a;,v;)|7 ¢ S} is the resulting fair blind

signature on the message m.

84 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

Signature Verification

The signature can be verified by checking that

s= [[H(Es(m]a)llv) (mod N).

(a,0)€T

To see that signature verification works, note that:

= m)
S =
Hzgsri

((ITigs ma)*/)
HigéS i
[Ligs i H(uil[vi)
HigéS T

T & (uillv:)

i¢S

= TLEEm]o)]v)
i¢S

= I #Esmla)le) (mod N).
(a,0)€T

We will show that this scheme is a fair blind signature scheme of both Type I and
Type II. Suppose the judge is given a value u; for i € S. Then, since u; = Ej(ml|a;)
and Ej is the judge’s encryption function, the judge can decrypt one of these values
with her private key and obtain (m|lc;) for some i € S. Since the length of m is
known, the judge can pick off the message m. Thus, given the signer’s view of the
protocol, the judge can obtain the corresponding message-signature pair. On the
other hand, suppose the judge is given the signature (s,7). By decrypting one of

the v;’s in T', the judge can obtain the session identifier I D. Thus, the judge can

4.3. FAIR BLIND 85

find the instance of the signing process corresponding to a given message-signature
pair.

This scheme can be modified to be solely of Type I or Type II as follows. Suppose
the requester computes v; = H(ID||3;) instead of v; = E;(ID||3;). Then the judge
is no longer able to recover the session identifier I D, since H is a one-way hash
function. The scheme is now of Type I only. Alternatively, suppose the requester
computes u; = H(ml ;) rather than u; = Ej(ml|e;). Then the judge is unable to
disclose the message m, since H is a one-way hash function. The scheme is now of

Type II only.

Security

To show that this scheme is secure, we must first discuss the security requirements of
an ordinary blind signature scheme. Since the message m and the session identifier
ID are encrypted using the judge’s public key, it cannot be decrypted without the
judge’s private key. Therefore, the signer cannot associate the message m with her
view of the signing protocol. Thus, this scheme passes the blindness requirement.
Suppose an attacker is given a valid message signature pair and wishes to com-
pute a valid signature on a different message m. Recall that a signature is composed
of s and the set of pairs T'. Since each v; € T' depends on the unique session iden-
tifier 1D, an attacker would be unable to obtain any information from previously
signed messages to generate a new message-signature pair. Further, in order to pass
the verification condition, an attacker would need to compute e-th roots modulo NV
which is considered infeasible. Thus, the scheme described above is unforgeable.

Suppose a dishonest requester tries to attack the fairness property of this scheme.

86 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

Since the message is recovered from the u;’s and the session identifier from the v;’s,
the requester could attempt to choose u;’s or v;’s that are not formatted according
to the protocol. Suppose the scheme is of Type I. Then the cheating requester
might try to alter the w;’s. The requester must correctly format the half of the u;’s
which correspond to the indices ¢ ¢ S to satisfy the verification condition. The
requester could guess with probability 1/2 an index ¢ € S and form this u; incor-
rectly. But even so, these u;’s for which ¢ € S are thrown out and unused. Thus, if
the requester alters any of the u;’s, it will either be detected during verification or

1t will be harmless.

Now, suppose the scheme is of Type II. Then the cheating requester could
attempt to alter one of the v;’s. The probability that ¢ ¢ S for this altered v;
is 1/2. Suppose ¢ ¢ S for this v;. Thus, when the judge is given the v;’s for all
i ¢ S, one of the v;’s will not contain the encryption of the session identifier I D as
directed by the protocol. To solve this, the judge should take the majority of the

ID’s as the correct one.

Efficiency

Unfortunately the scheme we described above is not at all efficient. There is a great
deal of information exchanged between the signer and the sender during signature
generation. Furthermore, the signature that is produced is quite long. For a more

efficient fair blind signature scheme, see [15].

4.4. GROUP 87

4.4 Group

A group signature scheme allows members of a group to sign messages on behalf
of the entire group. The signature can be verified with a single group public key
without revealing the identity of the signer. Each group has a group manager who
is responsible for generating the group public key and corresponding secret key
known only to the group manager. The group manager is capable of “opening”
signatures, which uncovers the identity of the signer in case of dispute.

Introduced by Chaum and van Heyst [22] in 1991, group signatures are highly
applicable for online voting and bidding. Suppose the group is several bidders
who each place an anonymous bid using the group signature. The group manager
chooses the highest bid and reveals the winner, while keeping the other bidders’
identities secret.

The group signature scheme that we will present is one of the simplest group
signatures from Chaum and van Heyst [22]. It relies on the intractability of the
discrete logarithm problem and uses the ElGamal signature scheme for signing and
verifying.

Let g be a generator of Z7, where p is a prime. Suppose there are n group
members and each week, group members are numbered randomly from 1 to n.

Suppose I; is group member j’s identity, 1 < 5 < n.

Key Generation

The group members’ private and public keys are generated as follows:

1. Each group member j, 1 < 7 < n selects a secret integer a;, computes z; =

88 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES
¢% mod p, and sends z; to the group manager.
2. The group manager stores the list of (z;,1;),1 < j < n.

3. The group manager selects a randomly chosen number b, € {1,...,p — 1},

sends b; to group member j, and computes y; = (¢%)% mod p.
4. Group member j computes s; = a;b; mod (p — 1).

Then, group member j’s private key is s; and corresponding public key is y;.

Signature Generation

To sign the message m € {0,1}*, group member j does the following:
1. Selects a random secret integer k € {1,...,p — 2} such that ged(k,p—1) = 1.
2. Computes M = H(m).

3. Computes R = ¢* mod p.

N

. Computes S = k~'(M — s;R) mod (p — 1).

Then the group signature is (R, S, 7).

Signature Verification

To verify that (R, S) is a valid group signature on the message m, the verifier does

the following:

1. Obtains y,; from the list of group public keys.

4.4. GROUP 89

2. Checks that 1 < R < p — 1. If not, reject.
3. Computes M = H(m).

4. Checks that yf”RS = g™ (mod p) and accepts if and only if this equation
holds.

To see that signature verification works, note that
yr R = (g) " = (") = g™ (mod p).

Opening Signatures

In case of a dispute, the group manager can identify the signer from the number j
contained in the public key in question, by searching the list (z;, [;), and obtaining

the group member’s identity I;.

Security

Note that each secret key s; can only be used once by member j to sign a single
message. Otherwise, signatures can be linked to group member 5. Similarly, group
members must be renumbered randomly each time a message is signed. Even
though her identity I; is not revealed, important information is leaked. Thus, the
group manager sends a new b; to member j, who is then given a new numeric value
r € {1,...,n}, once a message has been signed. If the group decides to sign only
one message a week, the group manager can send out a new b;,1 < 5 < n to each
group member every week. Even if these b;’s are revealed during the transfer, no

information about s; is revealed since a; is still a secret. Lastly, the group manager

90 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

is unable to forge a signature on behalf of a group member, since the manager
cannot uncover «; from ¢% mod p by the intractability of the discrete logarithm
problem.

There is no proof of security provided for this scheme. For a provably secure

group signature scheme, see [4].

Efficiency

The length of the public key of this group signature scheme is linear in the number
of group members. Thus, this scheme is not very efficient. For more efficient group

signature schemes, see [16], [13] and [11].

4.5 Ring

Ring signatures are closely related to group signatures. The main difference is that
there is no group manager present. As a result, there is no procedure for obtaining
a membership certificate or generating a secret membership key and there is no
way to revoke anonymity of the signer. In a ring signature scheme, the signer
does not require the consent of the other ring members to create a ring signature.
This provides an excellent opportunity for leaking secrets. For example, suppose
a member of an internal organization wishes to expose information to an outside
source about the organization without being identified. If a ring signature scheme
is used, the outside source is convinced that the information came from a member
of the organization but has no way of determining which member. Leaking secrets

can be viewed as an important concept in maintaining a free society. Suppose a

4.5. RING 91

member of the government feels that the public deserves to know something that
is being kept from them. This member may fear retribution by those in power,
so signing the important information with a ring signature will keep her identity a

secret.

We will assume that the members of the ring already have a public key corre-
sponding to some ordinary signature scheme. It is possible for different users to use
different public key signature schemes, however, for simplicity we will assume that

all ring members are using the same signature scheme.

To produce a ring signature on a message, the signer selects an arbitrary set of
signers including herself and computes a signature using her own secret key and the
other signers’ public keys. Note that the other users may be completely unaware

that their public key is being used to sign a message.

Rivest, Shamir and Tauman [50] describe a ring signature scheme in which all
ring members use a trapdoor one-way permutation as their individual signature
scheme. We will present the scheme using the RSA signature scheme as the per-

mutation.

Suppose a signer wishes to sign the message m with a ring signature for a ring
of r individuals Ay, ..., A,, where the signer is A,,1 < s < r. Each ring member A,
has an RSA public key (N, ¢;) which can be used to verify signatures using their
trapdoor one-way permutation f;(x) = 2% mod N; of Zy,. Only A; can compute

the inverse permutation or signature efficiently.

Now, since each user can have different sized domains N, it will be difficult to

combine these individual signatures to obtain a ring signature. Thus, the domains

92 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

of the permutations are extended to a single common domain {0,1}", such that
20 > N; for all 1 <: < r. Then any b-bit message m is rewritten as m = ¢;N; + r;
for nonnegative integers ¢;,r; where 0 < r; < N;. Finally a new permutation g¢; is

computed as follows:

@i + fi(ri) if (i +1)N; < 2°,
gi(m) =
m otherwise.
We can see that g; operates by applying f; to the least significant digit of the N;-
ary representation of m, except in the case that this produces a result larger than
2> — 1, in which case m remains unchanged. However, if b is chosen large enough,
the latter case occurs with negligible probability. Note that each g; is a permutation
over {0,1}® and further it is a one-way trapdoor permutation because with high
probability, f;, a one-way trapdoor permutation, is computed for an iteration of g;.
Before we present the signing and verifying protocols of this scheme, we will
define a family of combining functions Ck.,(y1, 2, ¥y,) = 2z € {0,1}* where
Y1, Y2, yr € {0,1}°, k is a key corresponding to a symmetric key encryption

function Ej which is used as a subroutine, and v is an initialization value.

We will assume the following properties regarding this family of functions:

1. Foreach s, 1 < s <r, and for any fixed y;, ¢ # s, Ci,, 1s @ one-to-one mapping

from y, to the output z.

2. For each s, 1 < s < r, given z and all the y; values except y,, one can

efficiently compute y, such that Cr,(y1, Y2, ey Ysy ey Yr) = 2.

4.5. RING 93

3. Given ¢1,...,¢,,k,v and z it is infeasible to solve the equation

Ck,u(gl(l’l),gz(l'z), ...,gr(:zjr)) =z

for xy, g, ..., x, without the ability to invert any of the trap-door functions

91,925 -5 Gr-

To satisfy the above conditions, we will define C} , as follows:

Crw(Y1, Y2y s ¥r) = Ex(yr & Ex(yr—1 & Ex(Yr—2 G Ex(--- & Ex(y1 B v)--+)))),

where y; = g;(x;).

We can see that this function satisfies the three assumptions above. First of all
C.» 1s a permutation since XOR, ¢; and Ej are permutations. Secondly, knowledge
of k allows one to apply the function in the forward direction starting with the
initial value v and backwards from the final output z to compute any single missing
value y;. It 1s slightly more complicated to see that the third condition is met, but a
thorough explanation is given by Rivest et al. in [50]. In order to use this function
for signature verification, we will set z = v and call the resulting function the ring

equation.

In the following description of the procedures involved in generating a ring sig-

nature, H : {0,1}* — {0,1} is a publicly defined collision-resistant hash function.

94 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

Key Generation

The signer A, obtains the public keys Py, P, ..., P, ..., P, of all members of the ring
as well as her own secret key S;.

Signature Generation

To compute a ring signature on the message m € {0,1}°, the signer does the

following:
1. Computes k = H(m).
2. Selects an initialization value v randomly from {0, 1}°.

3. Selects random z; € {0, 1}® for each of the other ring members 1 < i < 7,1 # s

and computes y; = g;(x;).

4. Solves the following ring equation for y,:

Ck,v(y17y27' o Ysy 7y7°) =v.

5. Computes s = g; '(ys), which is possible since user A, knows the inverse of

the trapdoor permutation g,.

Then the ring signature on the message m is the 2r+1-tuple (Py, Py, ..., P,y v; 21, @, ...

Signature Verification

To verify that a proposed signature (Py, Py, ..., Py;v; 21, €2, ..., ,) came from a ring

member, the verifier does the following:

LTy).

4.5. RING 95
1. Computes y; = g;(x;) for 1 <o <r.
2. Computes k = H(m).

3. Checks that the y;’s obtained in step 1 satisfy the ring equation

Ck,v(yh Y2y eens yr) = .

Security

The scheme described above is unforgeable against chosen message attacks. Rivest
et al. [50] show that forging a ring signature on the message m using numerous
ring signatures on chosen messages m; # m is equivalent to inverting one of the
trapdoor one-way functions ¢; on random inputs y. The scheme also provides
irrevocable anonymity. For each input k& and v, there are r — 1 values x; chosen
randomly from {0,1}°. Therefore, the ring equation has (2°)("=) solutions for any
given k and v. Each of these solutions is equally likely and independent of the

signer’s identity, since the x;’s are chosen randomly by the signer.

Efficiency

The ring signature scheme we described above is very efficient. If we assume the
individual public key of each ring member is ¢; = 3, as is often the case in practice
for RSA signature schemes, the signer must compute a modular cubic operation
(or two modular multiplications), on behalf of each of the r — 1 non-signers. Then,
the signer must compute one modular exponentiation to invert her own trapdoor
permutation. Thus, signing requires one modular exponentiation and 2(r — 1)

modular multiplications. Verifying this ring signature requires a modular cubic

96 CHAPTER 4. SCHEMES WITH ANONYMITY SERVICES

operation for each of the r ring members. Equivalently stated, signature verification

requires 2r modular multiplications.

Chapter 5

Schemes with Enhanced Signing

and Verifying Capabilities

There are some applications of digital signatures where the standard characteristics
of signature generation and verification are inappropriate. For example, ordinary
protocols for signature generation assume the participation of the original signer,
however this is not always possible. A proxy signature scheme allows the signer to
delegate her ability to sign to another user of her choice. Another protocol standard
is that the verifier alone carries out the verification procedure. Verification of
undeniable signatures requires the signer’s cooperation in the verification process,
thereby giving the signer control over who can authenticate her signatures. A
convertible undeniable signature is an undeniable signature that can be transformed
into an ordinary signature that can be verified universally. A designated confirmer
signature scheme is an undeniable signature scheme where the signer can select

another user to aid in the verification process in her place.

97

98 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

5.1 Proxy

A proxy signature scheme allows a designated party to sign on behalf of the original
signer. The receiver of the signature must be able to verify the proxy signature in
a similar way to the original signature. Ordinary digital signature schemes are
non-transferable since their security relies on the secret signing key which only
the signer knows. If this secret key is simply given to another user, the underlying
security assumption of digital signature schemes has been broken. A proxy signature
scheme maintains the original signer’s public key and provides the proxy signer with
a functioning secret key that is different from the original signer’s. This produces
distinct signatures for the original signer and the proxy signer, which is important
for non-repudiation. That is, neither the proxy signer nor the original signer can

deny their signature, claiming the other to be the actual signer.

Proxy signatures are useful in situations where the original signer is unavailable
to sign a document. Suppose, for instance, a company executive is on holidays. She
could designate her secretary to sign in her place while she is away by giving the
secretary a proxy signing key.

Mambo, Usuda and Okamoto [39] describe a method for proxy signing key
delegation based on discrete logarithms which can be used in conjunction with any
ordinary signature scheme to create a proxy signature scheme. Here, we will use an
ElGamal signature scheme as the original signer’s scheme. We will briefly present
this scheme used by the original signer A before we describe the process whereby

A delegates signing capability to the proxy signer B.

Suppose p is a large prime, ¢ is a prime factor of p — 1, g € Z} is an element

5.1. PROXY 99

of order ¢, and H : {0,1}* — {0,1}? is a cryptographically strong hash function.
Then = € Z, 1s A’s private key and y = ¢* mod p i1s A’s public key. To sign a

message m € {0,1}*, the original signer selects a random k € Z, and computes

M = H(m),
R = Mg" mod p,

and S = Rx+ kmodgq.

Then (R, S) is the signature of the message M. Signature verification is done by

checking if M = g=°y®R (mod p). This works since
g YRR = g g B MY = M (mod p).

Key Delegation

1. A selects a random k € Z,, computes i = ¢* mod p, and sends 7 to B.
2. DB selects a random a € Z,, computes r = ¢°r mod p, and sends r to A.
3. A computes 5 = rz + k mod ¢ and sends 3 to B.

4. B computes s = 5 + a mod g and accepts s as a valid proxy signing key if

5 T

g° =y'r (mod p).

Verification of the proxy signing key works since

100 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

The proxy signer’s secret signing key is s € Z, and the corresponding public
key is ¥ = y"r mod p.
Proxy Signature Generation

To sign a message m € {0,1}*, the proxy signer does the following:
1. Computes M = H(m), where H : {0,1}* — Z,,.
2. Selects a random k € Z,.
3. Computes R = M¢* mod p and S = Rs + k mod q.

Then (R, S) is the signature of the message m.

Signature Verification

To verify this signature, the verifier computes M = H(m) and checks if M =
g y"BR (mod p). If this equation holds, the signature is accepted, otherwise it is
rejected.

Verification of the proxy signature works since

g_Sy/RR = g_(R5+k)(yTT)RR = g—ng—k(gs)RMgk =M (mod p)

Security

The difficulty of finding the proxy signature key s knowing 7, k, r and « is equivalent

to the discrete logarithm problem. Thus, it is computationally infeasible for the

original signer to forge a proxy signature. On the other hand, computing x,k

5.1. PROXY 101

or forging a valid message-signature pair that satisfies M = ¢~"y"r (mod p) is
infeasible under the assumption that the ElGamal signature scheme is secure. Then
it 1s infeasible for the proxy signer to forge the original signer’s signature on another
message. Clearly, the scheme is unforgeable since it is even more difficult for a third
party who is not the proxy signer to forge the original signer’s signature, and for a

third party who is not the original signer to forge the proxy signer’s signature.

Lee, Hwang and Wang [38] claim that a dishonest proxy signer could cheat
in the key delegation protocol and obtain the original signer’s signature on any
message. The attack is mounted by sending the original signer r = M7 mod p
instead of r = ¢% mod p for a message M = H(m) of the proxy’s choice. Then
when the original signer returns § = 724k mod ¢, the proxy has the original signer’s

signature (r, s) on the message m, since

gy r=g"¢" " Mr = g_ggg_EMf _kMgk =M (mod p).

Il
@

This attack can be prevented by adding a cheating detection protocol to the proxy
signature scheme. The protocol designed by Ghodosi and Pieprzyk [30] works as
follows: Suppose the original signer A suspects her proxy signer B of cheating.
Then, A finds the instance of the key delegation protocol corresponding to the
message in question. If A was indeed cheated in the second step of the protocol,
she can detect it by checking if r = m7r (mod p). To prove that B is a cheating
proxy signer, A asks B to sign a message using her proxy signature. If B is able to
create a valid proxy signature, A is convinced that B is not cheating. Otherwise, B

is a cheater. To see that this works, note that if a cheating proxy B tries to sign the

102 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

message as requested by A, then she must find an @ so that ¢ = M mod p, which
is infeasible assuming the intractability of the discrete logarithm problem. As a
consequence, B cannot compute s = s+ a mod ¢ and therefore cannot compute the

proxy signature.

5.2 Undeniable

Undeniable signatures were introduced by Chaum and van Antwerpen in 1989 [21]
as a way to limit the ability of third parties to verify the validity of signatures
binding parties to a confidential agreement. For example, suppose user A sends a
signed message to user B that she owes her money. A may want to keep private that
she borrowed money from B, so a scheme is required that stops B from showing
the promissory note with A’s signature on it to someone else.

An undeniable signature, sometimes called an invisible signature, provides ad-
ditional privacy to the signer because a signature cannot be verified without the
cooperation of the signer. Thus, only those parties with whom the signer wishes
to communicate are able to verify signatures. However, this gives a lot of power
to the signer, who could easily renounce one of her own valid signatures, claiming
it to be a forgery and refusing to aid in verifying the signature, or alter her part
of the verification process so that the signature will not be validated. To avoid
this situation, an undeniable signature scheme incorporates a disavowal protocol
whereby if the signer claims a signature is a forgery, she has the means to prove
this is so. If she refuses to prove a signature is a forgery, this is evidence that the

signature must be valid. In this sense, the signature is undeniable.

5.2. UNDENIABLE 103

The following example of an undeniable signature scheme from Chaum and van

Antwerpen [21] is based on the discrete logarithm problem.

Key Generation

Each user A does the following:
1. Selects a random prime p = 2g + 1, where ¢ is also a prime.

2. Selects a random element 3 € Z7 and computes o = pr=Y/1 mod p. If o = 1,

choose a new f3.
3. Selects a random integer a € {1,2,...,¢ — 1} and computes y = a® mod p.

Then A’s public key is (p, o, y) and A’s private key is a. Note that computations
are done in the multiplicative subgroup G of order ¢ in Z, generated by a. It is
desirable to take p = 2¢ 4+ 1 because it ensures that the subgroup G of order ¢ is
as large as possible, which is important since all messages and signatures will be

elements of G.

Signature Generation

User A computes S = m® mod p. Then A’s signature on m € G is S.

Signature Verification

To verify this signature, the following protocol must be carried out by signer A and

verifier B:

104 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

1. B randomly selects secret integers xy, x5 € {1,2,...,¢ — 1}, computes z =

S¥1y*? mod p and sends z to A.
2. Upon receiving z, A computes w = (Z)“_l modd mod p and sends w to B.

3. Finally, B computes w’ = m*™ a” mod p and accepts the signature S iff w =

w'.

In the following proof that signature verification holds, note that all exponents are

computed modulo ¢.

w = z (mod p)
(ley“)“_l (mod p)

(m*)"(a*)™)*" (mod p)

x1

X2

Il
3

a (mod p)

Disavowal Protocol

To ensure that the signer has performed the verification protocol correctly, the

following protocol is carried out between the signer and the verifier:

1. Verifier B randomly selects secret integers xq, x5 € {1,2,...,¢— 1}, computes

z = 5% y" mod p and sends z to A.
2. Upon receiving z, signer A computes w = z*~ ™44 mod p and sends w to B.

3. Upon receiving w, B does the following:

5.2. UNDENIABLE 105

(a) If w = m™a™ (mod p), accepts the signature S and halts; otherwise

proceeds.
(b) Randomly selects secret integers o/, 2, € {1,2,...,¢— 1}, computes z' =
S*1y® mod p, and sends 2’ to A.
4. Upon receiving z, A computes w' = z'*~ ™44 mod p and sends ' to B.
5. Finally B does the following:
(a) If w' = m"a™ (mod p), B accepts signature S and the protocol stops;
otherwise proceeds to step (b).

(b) Computes ¢ = (wa™"2)" mod p and ¢ = (w'a™2)™ mod p. If ¢ = ¢,
then B concludes that S is a forgery; otherwise B concludes that the

signature 1s valid and A is trying to deny S.

To see that the disavowal protocol works, we have to show that the signer A can

convince the receiver B that an invalid signature is a forgery.

Theorem 5.2.1 [53] Suppose S is a forgery (S # m® (mod p)) and A and B
follow the disavowal protocol correctly. Then ¢ = ¢’ and so the receiver’s conclusion

that S is a forgery is correct.

Proof We have

(87y) ™ a7 (mod p)

—1,.1 —1,.1 '
— lea xlyx2a xla—x2x1

106 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

lea_lxi O{xQ.Ti O{—le’i (mod p)

= guen (mod p).

Similarly,

d = (w’oz_”&é)””1 E((Z’)“_loz_xé)xl (mod p)

((Sxi yxé)a_

;=1 ;=1 o
lea xlyx2a xla Ty T1 (mod p)

1

a2)™ (mod p)

Sxia_lxl Oéxéxl a—xéxl (mod p)

GeaT e (mod p).

Therefore, ¢ = ¢ and the conclusion that S is a forgery is correct. Note that if
S =m* (mod p), ¢ and ¢ would still be equal, but the protocol would have stopped

before reaching this checking stage.

Security

The security of an undeniable signature scheme relies on unforgeability, invisibility,
completeness and soundness of verification, and non-transferability. Unforgeabil-
ity means the scheme is existentially unforgeable under a chosen message attack.
Invistbility means that there is no efficient algorithm which, given the public key
(p,a,y), a message m and a possible signature S, can decide, with probability
greater than guessing, whether or not S is valid. Completeness means that valid

signatures can be proven valid and invalid signatures can be proven invalid. Sound-

5.2. UNDENIABLE 107

ness means that no valid signature can be proven invalid and no invalid signature
can be proven valid. Non-transferability means that during signature verification,
the verifier does not obtain any information that could be used to convince a third

party about the correctness of a signature.

The unforgeability of this scheme relies on the intractability of the discrete
logarithm problem. That is, suppose an attacker is given a valid message-signature
pair (m, S) and wishes to forge A’s signature on a different message m’. To obtain
a valid signature S’, the attacker needs to compute S’ = m’® mod p. In order to
recover A’s private key «a, the attacker would have to solve S = m® (mod p) for a,

which is infeasible.

Invisibility or the ability to verify is also secured by the intractability of the
discrete logarithm problem. If one could compute ¢ from y = o® (mod p), they
could compute a™!, from which they could compute w, and then could easily verify

signatures without the cooperation of the signer.

We showed that this scheme is complete in the proof that signature verification
works (valid signatures can be proved valid) and the proof of Theorem 5.2.1 (invalid

signatures can be proved invalid).

In the discussion that follows, we will prove the soundness of verification. The-
orem 5.2.2 shows that an invalid signature cannot be accepted as valid except with
negligible probability and Theorem 5.2.3 shows that a valid signature cannot be

proven invalid except with negligible probability.

As we mentioned earlier, a scheme that requires the signer’s cooperation to

verify gives a lot of power to the signer. Let us now consider the case where the

108 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

signer 1s the attacker. Suppose the signer forges a signature S on a message m.
That is, § Z m® (mod p). We will show that the signer cannot fool the receiver
into accepting a forged signature except with a very small probability. This result

is independent of any computational assumptions.

Theorem 5.2.2 [53] If S # m® (mod p), then the receiver will accept S as a valid

signature for m with probability 1/q.

Proof Note that each possible z = S™y*2 (mod p) computed by the receiver cor-
responds to exactly ¢ pairs (2, x3) since S,y € G, where G is a subgroup of order
q. When the signer obtains z, she does not know which of these ¢ pairs the receiver
used. Now, if S £ m® (mod p), when the signer computes w = (Z)“_l modd mod p,

we claim that w = m™a® (mod p) for exactly one of the ¢ possible pairs (x1, x3).

Since « is a generator of G, we can write any element of G as a unique power of «.
We will write z = o', w = o/, m = of, and S = o!, where i, 5,k,1 € {0,1,...,q— 1}.

Now, consider the system of congruences:

z = S%y" (mod p)

w = m"a®™ (mod p).

Expressed as powers of «, the equations become

Oéi = alxl axs

a (mod p)

I = qfmige (mod p).

5.2. UNDENIABLE 109

Equivalently,
i = lzy+axry (mod q)
J = ka4 axz (mod q).
[a
The coefficient matrix of this system is , and since S £ m® (mod p) &
E 1

ol # o* (mod p) & | # ka (mod q), this matrix has non-zero determinant and
thus there is a unique solution for (x1, x3). Therefore, every w € G gives the result
w = w' for exactly one of the g possible pairs (21, 22). So the probability that the

signer has forged a signature S where the verification condition still holds is 1/g.

On the other hand, a dishonest signer could attempt to deny a valid signature.
We will show that the probability that the signer succeeds in renouncing a valid

signature by refusing to follow the disavowal protocol is 1/q.

Theorem 5.2.3 [55] Suppose S = m® (mod p) and verifier B follows the dis-
avowal protocol correctly. If w # m™a® (mod p) and w' # m®a®2 (mod p), then

the probability that ¢ # ¢ is 1 —1/q.

Proof Suppose to the contrary that ¢ = ¢/. Then we have the following congru-

CI1CEes!:

W
Il
Q

m® (mod p)

m* o (mod p)

m* o (mod p)

110 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

c = (wa™)””1 = (w’oz_”&é)””1 = (mod p).

This last congruence can be rewritten as w' = mg'a® (mod p), where my =
wl/*ro=%2/*1 To see this, note that if we substitute mg into the expression for

w’, we obtain:

W= e (o
o wa ™ = /e gmme /e (mod p)
& (wa ™) = wa ™" (mod p).

From Theorem 5.2.2, we can conclude that the probability that 5 is a valid signature
for mg is 1 — 1/q. But we also assumed that S is a valid signature for m. Thus,

with probability 1 — 1/¢, we have

m® =mg (mod p),

which implies that m = mq.

However, above we have that

w #Z m*a®™ (mod p)
=m # w/"a™™/® (mod p)

=m # mg.

We have a contradiction and hence our assumption that ¢ = ¢’ is incorrect. Thus,

5.3. CONVERTIBLE UNDENIABLE 111

¢ # ¢ with probability 1/¢ and hence the signer can fool the receiver into thinking

a valid signature is a forgery with probability 1/q.

Finally, this scheme is non-transferable because of the randomness involved in
the signature verification stage. Recall that the verifier randomly selects zq, 25 €
{1,2,...,g—1}. The verifier is unable to take on the role of the signer with a third
party because they will not be able to respond to a new user’s random requests
x}, x}, unless they happen to be the exact requests xy, 2y of the verifier. Since «
is unknown to the verifier who must reply with w = (5™ y“)“_1 modd mod p, the

verifier is unable to convince a third party that a given signature is valid.

5.3 Convertible Undeniable

Convertible undeniable signatures were introduced as a modification of undeniable
signatures by Boyar et al. [9] in 1991. A convertible undeniable signature scheme
has the additional property that the signer can release a piece of secret information
allowing all of her undeniable signatures to become ordinary digital signatures.
These ordinary digital signatures are universally verifiable. That is, the signer is no
longer required to aid in the verification process. The revealed secret information
must be selected carefully so that it does not allow others to create valid signatures
on behalf of the signer.

As an application of convertible undeniable signature schemes, suppose the
signer signs all documents throughout her lifetime with a convertible undeniable
signature. The secret piece of information is protected by a lawyer or family mem-

ber. After the signer’s death, the secret information is released to the public, so

112 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

that all her signatures can be verified and no one else can create or alter signatures
on behalf of the signer. Another common use of convertible signature schemes oc-
curs in business. In case a business becomes bankrupt, the company should use a
convertible signature scheme to sign their product so that customers are still able to
verify that they have received an authentic copy of the product without cooperation

of the company.

In the example to be presented due to Michels and Stadler [44], there is a
protocol which allows the signer to convince a verifier about the validity or invalidity
of a signature without leaking any information which would give the verifier the
ability to sign. In this particular example, the protocol is a zero-knowledge proof of
the equality or inequality of two discrete logarithms. We will begin our description
of this convertible undeniable signature scheme with this interactive proof which

will be employed in the signature verification stage.

In the following example, GG is a cyclic group of prime order ¢ generated by «
in which computing discrete logarithms is infeasible, and Hg and H; are collision
resistant hash functions such that Hg : {0,1}* — G and H; : {0,1}* x G — {0,1}},

where [~ 160 in practice.

Zero-Knowledge Proof of Equality of Discrete Logarithms

We will assume that the signer or prover knows the discrete logarithm x of y = o
and wants to assist the verifier in deciding whether logg 2 = log, y for 8,z € G.
Note that this protocol does not reveal the secret value x. The protocol between

the signer and verifier is outlined as follows:

5.3. CONVERTIBLE UNDENIABLE 113

1. The verifier randomly chooses u,v € Z,, computes ¢ = a*y" and sends a to

the signer.

2. The signer randomly chooses kkow e Z,, computes r, = a* 7, = a* ry =

B* and 75 = ﬁi“, and sends r,, 75,74, 73, and w to the verifier.
3. The verifier sends v and v to the signer.

4. The signer halts if « # o"y". Otherwise she computes s = k — (v + w)x mod

. 5=k — (v + w)k mod g and sends s and § to the verifier.

5. The verifier checks that a®y"™ = r,, a*r?™ =7, and 657“2"'“’ = rz and then

concludes that logy 2 = log,, y iff 8°2"7" = rg.

Key Generation

The signer randomly chooses two secret integers x1, v3 € Z, and computes y; = a™

and y, = o™2. Then her secret key is (21, x3) and her public key is (y1, y2).

Signature Generation
In order to sign the message m, the signer does the following:

1. Selects a random integer k € Z, and computes R = oF.

2. Computes R = Hg(R)™, ¢ = Hi(m, R), and S =k — cx; (mod ¢).

Then, the resulting signature on the message m is (R, S).

114 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

Signature Verification

The verifier accepts the signature (R, Sy if logH R= log,, y2 and rejects
G

(a5y 1)
if the equality does not hold. The equality or inequality of the discrete logarithms
is proven by executing the interactive protocol described above. Note that the

discrete logarithm in this case is the signer’s private key x5 and is not revealed

during this protocol. Verification works since

log 0) R = logygar-enyp) B

Hg(a%y

—].OgHG(aka—czl azlc) R
= 10gH@(0zk) R

= 1OgHG (R) R

= log, y».

To convert this signature scheme into an ordinary digital signature scheme, the
signer publishes her secret key z5. Then anyone can verify her signatures by check-

ing if

To see that this universal verification works, note that

HG(aSnyl(m,R))gQ _ HG(ak—cxl axlc)xQ — HG(ak)xQ — Hg(R)m — R.

5.3. CONVERTIBLE UNDENIABLE 115

Security

Like the ordinary undeniable signature scheme, the security of a convertible unde-
niable signature scheme depends on four factors: unforgeability, invisibility, com-

pleteness and soundness of verification, and non-transferability.

In the scheme described above, suppose an attacker attempting to forge a signa-

ture is given the secret integer x,. In order to forge a signature, the attacker needs

to compute a pair (R, S) that satisfies the verification condition HG(ozsyfll(m’R))””2 =

R. In order to compute 5, the attacker must compute S = k — cxy mod ¢. But the
attacker has no way of knowing the signer’s secret key xy. Therefore, the scheme

is unforgeable.

The invisibility requirement maintains that there is no efficient algorithm which,
on input the public key y;, a message m, and a possible signature S, can decide
if S is a valid signature. In this scheme, validity is decided based on the equality
or inequality of two discrete logarithms. Since even the value of these two discrete
logarithms is unknown, there is no way one could decide if they are equal without
performing the interactive protocol as part of the scheme. Thus, our scheme is
invisible.

Our scheme is non-transferable because of the zero-knowledge property of the
interactive protocol. During this protocol, there is no information leaked about the
value of the discrete logarithm. Thus, the verifier is unable to act as the prover
and carry out this protocol with a third party. Because of the randomly chosen
challenges, namely u and v, the verifier is unable to compute S in step 4 of the

protocol since it involves the secret x and the randomly selected v, which with high

116 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

probability will be different from the v chosen by the verifier in the original proof.
It follows that our scheme is complete and sound from Michels and Stadler’s
proof that the interactive protocol for proving two discrete logarithms are equal, is

complete and sound. [44]

5.4 Designated Confirmer

A designated-confirmer signature is an undeniable signature that can be proven
valid by a third party appointed by the signer. Recall that an undeniable signature
can only be verified with the cooperation of the signer. We can see that this poses
a problem if the signer becomes unavailable or refuses to cooperate. Designated-
confirmer signatures were introduced by Chaum in 1994 [20] as a way to overcome
this problem. By appointing a third party, or designated confirmer, the signer is
not needed for the verification process since the confirmer can act on the signer’s
behalf.

An interesting application of designated-confirmer signatures is private contract
signing. Garay, Jakobsson and MacKenzie [28] introduced the notion of abuse-
free contract signing between two users which combines designated-confirmer and
convertible undeniable schemes. Suppose A and B are signing a contract. If the
contract is not abuse-free, then, if B signed the contract first, A could prove to
a third party that B is committed to the contract while A is not. Then A could
use B’s willingness to sign to her advantage in her attempts to secure a better
contract. With abuse-free contract signing, both parties have to sign the contract,

after which the confirmer proves the validity of the signatures and converts them

5.4. DESIGNATED CONFIRMER 117

into universally verifiable signatures.

There are four parties involved in a designated-confirmer signature scheme: the
signer, recipient, confirmer and verifier. The signer and the confirmer have public
key and private key pairs corresponding to distinct signature schemes. The recipient
of the signature has no keys at all. The verifier is a party whom the recipient wishes
to prove validity of the signature. Designated-confirmer schemes are made up of
two stages. The Signing Protocol is between the signer and the recipient. The
signer signs the message with her private key and the confirmer’s public key in
such a way that the recipient is convinced that the signature can be verified by
the confirmer. The Confirmation Protocol between the confirmer and the verifier
leaves the verifier convinced that the supposed signature is valid. The recipient
of the signature is unable to prove this to the verifier without the confirmer. As
an optional stage, the designated confirmer signature may be convertible into an
ordinary signature with a Conversion Protocol.

We will now describe Chaum’s original designated-confirmer scheme [20]. In
this example, let p be a large prime so that the discrete logarithm problem in Z7 is
infeasible, and let g € Z7 be a generator. Let (IV, ¢) be the signer’s RSA public key,
where d is the corresponding private key. The confirmer’s private key is 2 € Z;_,

and her corresponding public key is h = ¢° mod p.

Signing Protocol

In this protocol, the signer computes a designated-confirmer signature on the mes-
sage m € {0,1} and convinces the receiver that the signature is valid in such a

way that the receiver is unable to prove the signature is valid to a third party. The

118 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

procedure between the signer and receiver is as follows:

1. The signer selects a random value x € Z; ; and computes A = ¢g” mod p,
B = h*mod p and a = (F(A, B)® H(m))? mod N, where F is a combining
function and H is a hash function. (Recall that a combining function unites
two or more functions through concatenation, composition, multiplication,

etc.)

2. Then the signer sends the signature (A, B, a) to the receiver.

*

»_1, computes ¢ = g*ht mod p and sends

3. The receiver selects random s,t € Z

¢ to the signer.

*

4. The signer selects a random ¢ € Z;_;, computes a = g?mod p and b =

(ca)” mod p and sends «, b to the receiver.
5. The receiver reveals her random integers s and ¢ to the signer.

6. The signer checks that the receiver formed ¢ correctly by verifying that ¢ =
g*h' mod p. If this equation holds, the signer reveals her random ¢ to the

receiver.

7. The receiver checks that « = ¢? mod p, b/A? = A*B* (mod p) and F(A, B)®
H(m) = a° (mod N). If these conditions hold, the receiver is convinced that

B = A% mod p but has no way to prove this to anyone else.

To see that these conditions convince the receiver, note that

b/A? = A°B' (mod p)

5.4. DESIGNATED CONFIRMER 119

(ca)’/g™ = g™ B" (mod p)
(g°h")" = g"B"' (mod p)
Y = B* (mod p)

g* =B (mod p)

r ¢ ¢ ¢ ¢

A*=B (mod p).

Confirmation Protocol

In this protocol, a confirmer designated by the signer can help the receiver prove
to a third party that the designated-confirmer signature (A, B,«) is valid. This
protocol is between the confirmer and a third party verifier whom the receiver

wishes to convince.

1. The verifier checks that F(A, B) @ H(m) = o (mod N)

*

»_1, computes k = g“A” mod p

2. The verifier selects random integers u,v € Z

and sends k£ to the confirmer.

3. The confirmer selects a random w € Z*_,, computes [= ¢ mod p and n =

p—1

(kl)? mod p, and sends [and n to the verifier.
4. The verifier reveals her secret u, v to the confirmer.

5. The confirmer checks that k& was formed correctly by verifying that k& =

g“AY mod p. If this equation holds, the confirmer reveals w to the verifier.

6. The verifier checks that | = ¢ mod p and n/h* = h*BY (mod p). If these

conditions hold, the verifier is convinced that the original signer’s signature

120 CHAPTER 5. ENHANCED SIGNING AND VERIFYING

is correct but has no way to prove this to anyone else.

To see how the verifier is convinced that the signer properly computed B = A* mod

p, where z is the confirmer’s private key, note that

n/h*Y =h"B" (mod p)
(k)*/h* = ¢g**B” (mod p)
(gUAUgUJ)Z/gZUJ = gZUBU (mod p)

gUZAUZ = gZUBU (mod p)

r ¢ ¢ ¢

A*=B (mod p).

Conversion Protocol

The confirmer can convert the designated-confirmer signature into an ordinary dig-

ital signature which can be universally verified as follows:

1. The confirmer selects a random w € Z;_; and computes r = A" mod p and

y=w+ zH(A,r) mod (p — 1) and sends (r,y) to the verifier.

2. The verifier checks that AY = rB7(4") (mod p) and accepts the designated

confirmer signature as valid.
The verifier can now convince anyone else that the signature is valid by publishing

the pair (r,y). Verification works since

AY = pBHAD) (mod p)

& AY/r = BEAY (mod p)

5.4. DESIGNATED CONFIRMER 121

& Avv = BHAY (mod p)
& Al-w/HAN = B (mod p)

& A*=B (mod p).

Given the pair (r,y), any user can be convinced that the signature is valid since
only the confirmer who knows the secret z such that B = A* mod p can compute
y = w+ zH(A,r) mod (p — 1). By the assumption of the intractability of the

discrete logarithm problem, no other user can find such an exponent z to generate

Y.

Security

There is no formal proof of security for the scheme outlined above. We will only note
that the security consideration of non-transferability associated with undeniable
signatures is maintained in designated-confirmer signatures. That is, once a verifier
is convinced that a signature is valid, she has no way to convince any other party
of this. This property is fulfilled in this scheme by the intractability of the discrete

logarithm problem.

Bibliography

1]

M. Abe and E. Fujisaki. How to date blind signatures. In Advances in Cryp-
tology - ASIACRYPT ’96, pages 224-251, 1996.

M. Abe and T. Okamoto. Provably secure partially blind signatures. In Ad-
vances i Cryptology - CRYPTO 2000, pages 271-286, 2000.

R. Anderson. In Proceedings of jth ACM Conference on Computer and Com-

munications Security, 1997. Invited lecture.

G. Ateniese, J. Camenisch, M. Joye, and G. Tsudick. A practical and provably

secure coalition-resistant group signature scheme. In Advances in Cryptology

- CRYPTO 2000, pages 255-270, 2002.

P. Béguin and J. Quisquater. Fast server-aided RSA signatures secure against

active attacks. In Advances in Cryptology - CRYPTO 95, pages 5769, 1995.

M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. In Advances in Cryptology - EUROCRYPT

98, pages 236-250, 1998.

BIBLIOGRAPHY 123

7]

[11]

[12]

[13]

[14]

[15]

M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: The
case of hashing and signing. In Advances in Cryptology - CRYPTO °94, pages
216-233, 1994.

M. Bellare and D. Micciancio. A new paradigm for collision-free hashing:
Incrementality at reduced cost. In Advances in Cryptology - EUROCRYPT

97, pages 163-192, 1997.

J. Boyar, D. Chaum, I. Damgard, and T. Pederson. Convertible undeniable
signatures. In Advances in Cryptology - CRYPTO 90, pages 189-205, 1991.

C. Boyd and C. Pavlovski. Attacking and repairing batch verification schemes.
In Advances in Cryptology - ASIACRYPT 2000, pages 58-71, 2000.

E. Bresson and J. Stern. Efficient revocation in group signatures. In Proceedings

of PKC 2001, pages 190-206, 2001.

E. Brickell, D. Gordon, K. McCurley, and D. Wilson. Fast exponentiation
with precomputation. In Advances in Cryptology - EUROCRYPT 92, pages

200-207, 1992.

J Camenisch. Efficient and generalized group signatures. In Advances in Cryp-

tology - EUROCRYPT 97, pages 465-479, 1997.

J. Camenisch, J. Piveteau, and M. Stadler. Fair blind signatures. In Advances

in Cryptology - EUROCRYPT 95, pages 209-219, 1995.

J. Camenisch, J. Piveteau, and M. Stadler. An efficient fair payment system.

124

[16]

[17]

[20]

[21]

[22]

23]

BIBLIOGRAPHY

In ACM Conference on Computer and Communications Security, pages 88-94,
1996.

J. Camenisch and M. Stadler. Efficient group signature schemes for large

groups. In Advances in Cryptology - CRYPTO 97, pages 410-424, 1997.

J.L. Camenisch, J. Piveteau, and M.A. Stadler. Blind signatures based on the
discrete logarithm problem. In Advances in Cryptology - EUROCRYPT 9/,
pages 428-432, 1995.

D. Chaum. Blind signatures for untraceable payments. In Advances in Cryp-

tology - CRYPTO 82, pages 199-203, 1982.

D. Chaum. Security without identification: transaction systems to make big

brother obselete. Communications of the ACM, 28:1030-1044, 1985.

D. Chaum. Designated confirmer signatures. In Advances in Cryptology -

EUROCRYPT 94, pages 86-91, 1994.

D. Chaum and H. van Antwerpen. Undeniable signatures. In Advances in

Cryptology - CRYPTO 89, pages 212-216, 1990.

D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology -
EUROCRYPT 91, pages 644-654, 1991.

H. Chien, J. Jan, and Y. Tseng. RSA-based partially blind signature with low
computation. In Proceedings of the 8th International Conference on Parallel

and Distributed Systems, pages 385-389, 2001.

BIBLIOGRAPHY 125

[24]

[25]

[26]

[27]

28]

[29]

[31]

D.W. Davies and W.L. Price. Security for Computer Networks: An Introduc-
tion to Data Security in Teleprocessing and Electronic Funds Transfer. John

Wiley & Sons, 1989.

P. Feldman. A practical scheme for non-interactive verifiable secret sharing.

In Proceedings of 28th Annual FOCS, pages 427-437, 1987.

A. Fiat. Batch RSA. In Advances in Cryptology - CRYPTO ’89, pages 175-185,
1990.

A. Fiat and A. Shamir. How to prove yourself: practical solutions to identi-
fication and signature problems. In Advances in Cryptology - CRYPTO 86,
pages 186-194, 1987.

J. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract
signing. In Advances in Cryptology - CRYPTO °99, pages 449-466, 1999.

R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient
sharing of RSA functions. In Advances in Cryptology - CRYPTO ’96, pages
157-172, 1996.

H. Ghodosi and J. Pieprzyk. Repudiation of cheating and non-repudiation of
Zhang’s proxy signature schemes. In Proceedings of ACISP’99, pages 129-134,
1999.

S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme se-
cure against adaptive chosen-message attacks. SIAM Journal on Computing,

17:281-308, 1988.

126

32]

[34]

[35]

BIBLIOGRAPHY

L. Guillou and J. Quisquater. A “paradoxical” identity-based signature scheme
resulting from zero-knowledge. In Advances in Cryptology - CRYPTO °88,
pages 216-231, 1990.

L. Harn. Batch verifying multiple DSA-type digital signatures. In Electronic
Letters, volume 34, pages 870-871, 1998.

G. Itkis and L. Reyzin. Forward-secure signatures with optimal signing and

verifying. In Advances in Cryptology - CRYPTO 2001, pages 332-354, 2001.

M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive RSA for

constant-size thresholds. Unpublished manuscript, 1995.

C. Lath, H. Sun, and W. Yang. On the design of RSA with short secret

exponent. In Advances in Cryptology - ASTACRYPT °99, pages 150-164, 1999.

C. Lath and S. Yen. Improved digital signature suitable for batch verification.

In Proceedings of the IEEE - Transactions on Computers, volume 44, pages
957-959, 1995.

N. Lee, T. Hwang, and C. Wang. On Zhang’s nonrepudiable proxy signature
scheme. In Proceedings of ACISP "98, volume 1438, pages 415-422, 1998.

M. Mambo, E. Okamoto, and K. Uwuda. Proxy signatures for delegating
signing operation. In Proceedings of 3rd ACM Conference on Computer and

Communications Security, pages 48-57, 1996.

A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptog-

raphy, chapter 2.4.2. CRC Press, 1996.

BIBLIOGRAPHY 127

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptog-

raphy, chapter 11.6.3, pages 466-468. CRC Press, 1996.

R. Merkle. One way hash functions and DES. In Advances in Cryptology -
CRYPTO 89, pages 428-446, 1989.

R. Merkle. A certified digital signature. In Advances in Cryptology - CRYPTO
89, pages 218-238, 1990.

M. Michels and M. Stadler. Efficient convertible undeniable signature schemes.
In Proceedings of SAC "97, pages 231-244, 1997.

R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Pro-
ceedings of the 10th PODC. pages 51-59, 1991.

B. Pfitzmann. Sorting out signature schemes. In Proceedings of 1st ACM

Conference on Computer and Communications Security, pages 74-85, 1993.

B. Pfitzmann. Digital Signature Schemes: General Framework and Fail-Stop

Stgnatures, chapter 3, pages 33-36. Springer-Verlag, 1996.

B. Pfitzmann and M. Waidner. Attacks on protocols for server-aided RSA
computation. In Advances in Cryptology - EUROCRYPT ’92, pages 153-162,
1993.

T. Rabin. A simplified approach to threshold and proactive RSA. In Advances

in Cryptology - CRYPTO 98, pages 8§89-104, 1998.

128 BIBLIOGRAPHY

[50] R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Advances in

Cryptology - ASIACRYPT 2001, pages 552-565, 2001.

[51] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely. In Proceedings of 26th ACM Symposium on Theory of Computing,
pages 522-533, 1994.

[52] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances
in Cryptology - CRYPTO "84, pages 47-53, 1985.

[53] Douglas R. Stinson. Cryptography: Theory and Practice, chapter 6, pages
219-223. CRC Press, 1995.

[54] E. van Heyst and T. Pedersen. How to make efficient fail-stop signatures. In
Advances in Cryptology - EUROCRYPT 92, pages 366377, 1993.

