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Abstract:

Recently, there has been huge attention paid to equiangular tight frames
and their constructions, due to the fact that the relationship between these
frames and quantum information theory was established. One of the problems
which has been studied is the relationship between equiangular tight frames and
covering graphs of complete graphs. In this thesis, we will explain equiangular
tight frames and covering graphs of complete graphs and present the results
that show the relationship between these two concepts. The latest results about
the constructions of equiangular tight frames from projective geometries and
Steiner systems also has been presented.
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Introduction

We discuss the relationship between covering graphs of complete
graphs and equiangular tight frames.

0.1 Covering Graphs

A distance regular graph G with diameter d is antipodal if we can
partition the vertices of G into equivalence classes such that each
pair of vertices of each class are at distance d from each other; that
is, if two vertices are at distance d from a vertex, they are also at
distance d from each other. We call each class a fibre of G.

Let G be a graph such that we can partition its vertices into cells
with the following conditions.

(a) The vertices in each cell are independent; that is, each cell is an
independent set.

(b) Either there is not any edge between any pair of cells, or there
is a perfect matching between them.

We denote this partition by P and call each cell a fibre. Let Q be
a graph such that each of its vertices corresponds to a cell of P ,
and two vertices are adjacent if and only if the edges joining the
corresponding cells in P is a matching. We denote Q by G/P and
call G, a covering graph of G/P . The covering map maps each
vertex in each fibre of G to the corresponding vertex of that fibre
in G/P . In this note, we specifically talk about the covering graphs
of complete graphs. The definition of abelian covering graphs of
complete graphs is as follows.

Let G be an r-fold cover of Kn with the vertex set V (G) =
V (Kn) × {1, ..., r}. Then, the vertices of G can be partitioned to
n independent sets with r vertices, such that there is a matching
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0. INTRODUCTION

between each pair of these sets. We can show each of these matchings
by a permutation of {1, ..., r}. Thus, we can define an arc function
of index r over the complete graph Kn as a function f from the
set of arcs of Kn to the symmetric group of the permutations of
{1, ..., r}; that is, Sym(r) such that f(u, v) = f−1(v, u) for each
pair of vertices u and v of Kn. Therefore, for each pair of vertices u
and v, f(u, v) denotes the matching between two independent sets
in G corresponding to u and v. We can consider f as the identity
permutation if we evaluate it over the edges of a spanning tree. In
this situation, we call f a normalized arc function.

We denote the permutation group that is generated by the image
of the arc function f over the arcs of the complete graph Kn by
〈f〉. An r fold cover G of the complete graph Kn is an abelian
covering graph of the complete graph Kn if 〈f〉 is an abelian group.
In Chapter 0.3 we will present a table of feasible parameters of
abelian covering graphs of complete graphs.

0.2 Equiangular tight frames

A sequence F = {f1, ..., fn} is a frame for a Hilbert space H if there
exist two constants A and B such that for every vector x in H, we
have

A||x||2 ≤
n∑
i=1

|〈x, fi〉|2 ≤ B||x||2.

A tight frame is a frame such that A = B. In Chapter 0.11, we
will present some characteristics of tight frames. In this note, we
specifically discuss equiangular tight frames which are defined as
follows.

A set of lines spanned by vectors v1, ..., vn in Cd (or Rd) is a set
of complex (or real) equiangular lines if there is α ∈ R such that,
for all i and j with i 6= j, we have |〈vi, vj〉| = α; that is, the angles
between each pair of distinct lines are the same.

The set E = {v1, v2, ..., vn} of vectors in Rd is an equiangular
tight frame if for each i 6= j, 〈vi, vj〉 = α for some α ∈ R, and there
exists a constant A such that,

n∑
i=1

|〈x, vi〉|2 = A||x||2
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0.3. OUTLINE OF THE THESIS

for each x ∈ Rd. In Chapter 0.11, we present two bounds for the
size of a set of equiangular lines and we show that this set is a tight
frame if and only if these bounds hold with equality for it.

To show the relationship between equiangular tight frames and
covering graphs of complete graphs we need to present the defini-
tion of Seidel matrices which is defined as follows. Suppose F =
{f1, ..., fn} is a frame in H, the Gramian operator for F is the op-
erator G : `2(n)→ `2(n) such that:

Gx = (
n∑
i=1

xi〈fi, fj〉)nj=1 =
n∑
i=1

xi(〈fi, fj〉)nj=1,

for x = (xi)
n
i=1 in H. we call G, the Gram matrix of the frame.

Let E = {v1, v2, ..., vn} be a set of equiangular lines in Rd, and
M be the matrix whose columns are the members of E. Then, the
Gram matrix of the vectors of E is as follows

G = MTM.

G is a positive semidefinite symmetric matrix which has the same
rank as M . Let E = {v1, v2, ..., vn} be a set of equiangular lines
such that vi is a unit vector for each 1 ≤ i ≤ n and vTi vj = ±α for
all 1 ≤ i, j ≤ n, so we have the following for its Gram matrix G:

G = αS + I,

such that S is a symmetric matrix whose diagonal entries are zero
and off-diagonal entries are ±1. S can be the nonstandard adjacency
matrix of a graph G if −1 shows the adjacency of two vertices and
1 shows the non-adjacency of two vertices of G.

The matrix S is known as the Seidel matrix of G.

0.3 Outline of the Thesis

In Chapter 0.3, we will define antipodal distance regular graphs,
and antipodal distance regular covering graphs of complete graphs.
Secondly, we present the arc function of these graphs and abelian
covering graphs of complete graphs. We will demonstrate a table of
feasible parameters of abelian covering graphs of complete graphs
in this chapter. After that, we will present some constructions of
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0. INTRODUCTION

covering graphs of complete graphs and at last we will present a
table of abelian covering graphs of complete graphs.

In Chapter 0.11, we will define frames and present some operators
which are related to frames. Secondly, we will present the definition
of a set of equiangular lines and present two bounds on the size of
these sets. After that, we will demonstrate the equiangular tight
frames. At last, we will present the definition of Seidel matrices.

In Chapter 0.18, we will present the new results about construc-
tions of equiangular tight frames from design geometries, Steiner
systems, hyperovals, and projective planes.

In Chapter 0.24, we will present two theorems which show the
relationship between equiangular tight frames and covering graphs
of complete graphs. Secondly, we will present the definition of
Steiner systems and show that for each Steiner system there exists
an equiangular tight frame corresponding to that system.

4



Covering graphs

0.4 Introduction

In this chapter, we will talk about covering graphs, specifically an-
tipodal distance regular covering graphs of complete graphs, and
discuss their characteristics. Most of the information in this chap-
ter is from Godsil and Hensel [7], which completely describes cov-
ering graphs. Firstly, we define antipodal distance regular graphs,
and present some characteristics of these graphs. We will discuss
the covering graphs, following this we will define covering graphs
of complete graphs, and demonstrate some characteristics of these
graphs and show their feasibility conditions. After that, we define
the arc functions of covering graphs of complete graphs and discuss
abelian covering graphs of complete graphs. We also present a table
of feasible parameters of abelian covering graphs of complete graphs.
At last, we will present some well known constructions of covering
graphs of complete graphs.

0.5 Antipodal Distance Regular Graphs

The first part of this section will define distance regular graphs and
their properties. A graph G with diameter d is a distance regular
graph if for each pair of vertices v and u in G and for each 0 ≤ i, j ≤
d, the number of vertices which are at distance i from v and j from
u is depends just on i and j and the distance between v and u in G
and the distance between u and v.

Example. Figure 1 presents two distance-regular graphs. The graph
in the figure (a), which is known as the Petersen graph, is a distance
regular graph. We can easily see that the diameter of this graph is

5



0. COVERING GRAPHS

(a) The Petersen graph which is a distance
regular graph with diameter d = 2.

(b) The Dodecahedron graph which is a dis-
tance regular graph with diameter d = 5.

Figure 1: An example of two distance regular graphs

two. Figure (b) shows a dodecahedron, a distance regular graph
with diameter five. If we check the graphs, we can see that for any
pair of vertices u and v where 0 ≤ i, j ≤ 2, the number of vertices
at distance i from u and j from v depends only on i and j.

A distance regular-graph G with diameter d is antipodal if we
can classify the vertices of G into equivalence classes such that each
pair of vertices of each class are at distance d from each other; that
is, if two vertices are at distance d from a vertex, they are also at
distance d from each other. We call each class a fibre of G.

Let u and v be two vertices of the antipodal distance regular
graph G at distance i from each other. We denote the number of
neighbours of u which are at distance i−1 from v by ci, the number
of neighbours of u which are at distance i from v by ai and the
number of neighbours of u which are at distance i + 1 from v by
bi.These numbers are called the intersection numbers of G.

Since all of the neighbours of u are at distance i−1, i, or i+1, we
can see that ci + ai + bi is equal to the degree of u. Thus, we have a
constant ci+ai+bi for each 0 ≤ i ≤ d, because G is a regular graph.
Therefore, we can associate to each antipodal distance regular graph
by its intersection array which is {c1, c2, ..., cd; b0, b1, ..., bd−1}.
Example. The figure 2 shows a graph which is an antipodal distance
regular graph with diameter 3 and intersection array {1, 1, 2; 2, 1, 1}.

The vertices of this graph are partitioned into three independent
sets, each has two vertices, and there is a matching between each

6



0.5. ANTIPODAL DISTANCE REGULAR GRAPHS

Figure 2: An antipodal distance regular graph eith distance 3

pair of these sets. We can easily see that the distance between the
vertices of each set is three which is the diameter of the graph.

The following theorem from [1] and [6] presents two fundamental
characteristics of antipodal distance regular graphs.

0.5.1 Theorem. Let G be an antipodal distance regular graph with
intersection array {c1, c2, ..., cd; b0, b1, ..., ba1} and diameter d such
that d ≥ 2. Then G has the following characteristics.

i) If there is an edge between two fibres, then there is a perfect
matching between them; that is, each vertex in one fibre has a unique
neighbour in the other one.

ii) If the distance between two fibres is i, then for each vertex v
in each fibre, there exists a unique vertex u in the other fibre which
is at distance i from v, and v is at distance d − i from the vertices
in the second fibre other than u.

We will define another graph which is related to the antipodal
distance regular graphs and is an example of a covering graph.

Let G be an antipodal distance regular graph with intersection
array

{c1, c2, ..., cd; b0, b1, ..., bd−1}
and diameter d ≥ 2. Suppose each fibre of G has size r. Let Q be
the graph such that each vertex of this graph corresponds to a fibre
of G and two vertices are adjacent if and only if there is a matching
between their corresponding fibres in G. This graph is an antipodal
quotient of G.

7



0. COVERING GRAPHS

The following theorem (see [1, 6, 7]) shows that the antipodal
quotient graph Q is a distance regular graph and presents the rela-
tionship between the eigenvalues of Q and G.

0.5.2 Theorem. Let G be an antipodal distance regular graph. If
Q is its antipodal quotient, then we have:

i) Q is a distance regular graph with intersection array
{c2, c3, ..., αcm; b0, b1, ..., bm−1} such that if d = 2m, then α = r and
if d = 2m+ 1 then α = 1.

ii) The set of eigenvalues of Q is a subset of the set of eigenvalues
of G.

0.6 Covering Graphs

In this section, we will define covering graphs and discuss their prop-
erties.

The following definition presents covering graphs. After that, we
will discuss the properties of these graphs. Let G be a graph with
a permutation of its vertices into the cells, such that the following
conditions hold:

(a) The vertices in each cell are independent; that is, each cell is an
independent set.

(b) Either there is not any edge between any pair of cells or there
is a perfect matching between them.

We denote this partition by P and call each cell a fibre. Let Q be a
graph such that each of its vertices corresponds to a cell of P , and
two vertices are adjacent if and only if there is a matching between
their corresponding cells in P . We denote Q by G/P and call G, a
covering graph of G/P . The covering map maps each vertex in each
fibre of G to the corresponding vertex of that fibre in G/P .

We can easily see that if G/P is connected, then all of the fibres
of G have the same size which is the index of the covering. We
denote the index of G by r. Thus, we can call G an r-fold covering
graph of G/P .

8



0.7. COVERING GRAPHS OF COMPLETE GRAPHS

0.7 Covering graphs of Complete Graphs

In this section, we present the properties of covering graphs drawn
from complete graphs. For this purpose, we discuss the antipo-
dal distance regular graphs of diameter three because they are the
covering graphs of complete graphs. At first, we show that we can
characterizing many properties of these graphs by three parameters.

Let G be an antipodal distance regular graph with diameter
three. Thus, there exist some positive integers r and n such that G
is the r-fold cover of a complete graph Kn. Let u be an arbitrary
vertex of G, and Gi be the subset of vertices of G which are at
distance i from u in G for 1 ≤ i ≤ 3.

Let v be a vertex in G3, so v is at distance three from u and
they are in the same fibre. All of the neighbours of u are in other
fibres. Since there is a matching between each pair of fibres, the
neighbours of u cannot be adjacent to v. Thus, they are at distance
two from v. Thus, u has a neighbour in each fibre other than its
fibre. Therefore, the degree of u is n− 1 and c3 = n− 1.

Let w represent a vertex at distance two from u. Thus, they are
in different fibres and are not adjacent. All of the vertices which
are at distance three form u are in the same fibre with u, and just
one of them is a neighbour of w. Thus, there exists only one vertex
which is a neighbour of w and is at distance three from u. Therefore,
b2 = 1.

If we do double counting on the number of edges between G2 and
G3, we can see that |G2| = (n− 1)(r − 1). By double counting the
number of edges between G1 and G2, we have (n−1)b1 = (n−1)(r−
1)c2. Thus, b1 = (r − 1)c2. Hence, we can describe G with three
parameters (n, r, c2).

Example. The graph which was presented in Example 0.5, the figure
2, is a 2-fold covering graph of the complete graph K3. This graph
is an antpodal distance covering graph with the parameters (3, 2, 1).

The following lemma presents a characteristic of the covering
graphs of the complete graphs.

0.7.1 Lemma. Let G be an r-fold cover of a complete graph with
n vertices (Kn). There exists some positive integer c2 ≥ 1 such that
G is an antipodal distance regular graph with parameters (n, r, c2)
if and only if each pair of non-adjacent vertices, which are from
different fibres, have c2 common neighbours.

9



0. COVERING GRAPHS

Proof. At first, let G be a covering graph of a complete graph such
that any pair of non-adjacent vertices from different fibres have c2

common neighbours. We prove that G is an antipodal distance
regular graph of diameter 3 with parameters (n, r, c2). Let u and
v be two vertices in a fibre f . Since each fibre is an independent
set, u and v are not adjacent. If w is a neighbour of u, then w is
from another fibre. w can just be adjacent with u in f , thus the
distance between u and v is not two. v and w are from different fibres
and they are non-adjacent, so they have c2 common neighbours.
Therefore, the distance between w and v is two, and so the distance
between u and v is three.

Since G is a cover of a complete graph, each vertex a which is not
in f has a neighbour in f like u. As we discussed above, the distance
between this vertex and the vertices in f \ u is two. Therefore, a
has c2 common neighbours with each of the vertices of f \ u. Thus,
a has (r−1)c2 neighbours which are at distance two from u. Hence,
the number of common neighbours of u and a is

(n− 1)− (r − 1)c2 − 1 = n− 2− (r − 1)c2.

As a result, G is an antipodal distance regular graph with inter-
section array {1, c2, n− 1;n− 1, (r − 1)c2, 1}.

Now suppose G is an antipodal distance regular graph with pa-
rameters (n, r, c2). Since the distance between two non-adjacent
vertices from different fibres is two, They have c2 common neigh-
bours.

Now, let u be a vertex of G, and H be the induced subgraph
containing the neighbours of u.Thus, H has n−1 vertices and is not
a complete graph, so 0 ≤ a1 ≤ n− 3. Let v be a vertex of H, so it
is a neighbour of u. v has c2 common neighbours with the vertices
which are in the same fibre as u in G. Since there are r vertices in
each fibre, we can see that a1 = (n− 2)− (r − 1)c2.

We know that there are an even number of vertices which have
odd degree in a graph. Therefore, if n is even, n−1 is odd, and since
H is a a1 regular graph with n− 1 vertices, a1 must be even. n− 2
is even, thus by a1 = n−2− (r−1)c2 we can conclude that (r−1)c2

must be even. Consequently, if n is even, then (r−1)c2 is also even.
In [1], the authors proved that if δ := a1−c2 and ∆ := δ2 +4(n−1),

10



0.7. COVERING GRAPHS OF COMPLETE GRAPHS

then the following are the eigenvalues of G:

n− 1,−1, θ =
(δ +

√
∆)

2
, τ =

(δ −
√

∆)

2
.

G is an (n− 1)-regular connected graph, so it has an eigenvalue
n − 1 with multiplicity 1. As we said in Theorem 0.5.2, the set of
eigenvalues of Kn is a subset of the set of the eigenvalues of G. We
also know that the eigenvalues of Kn are n − 1 with a multiplicity
of 1 and −1 with a multiplicity of n− 1. Thus, −1 is an eigenvalue
of G with a multiplicity equals to n− 1. The multiplicities of θ and
τ are

mθ =
n(r − 1)τ

τ − θ
,mτ =

n(r − 1)θ

θ − τ
respectively. Since mθ and mτ are the multiplicities of the eigenval-
ues, they have to be integer numbers.

The following two lemmas, which are from [7], determine the
conditions of covering graphs of complete graphs.

0.7.2 Lemma. If δ 6= 0, then θ and τ are integers, and if δ = 0,
then θ = −τ =

√
n− 1.

0.7.3 Lemma. If n is even, then c2 is also even.

Proof.
If n is even, then n− 1 is odd. We know that n− 1 = θτ . Thus,

either θ and τ are odd integers, or δ = 0. In both cases, δ = θ + τ
is even. Therefore, by using δ = n − 2 − rc2, and since n is even,
rc2 must be even. We have proved that if n is even, then (r − 1)c2

is also even. Hence, c2 is even.

Now, by using the results that we have proved above, we have
the following feasibility conditions for the covering graphs of the
complete graphs:

(a) n, r and c2 are three positive integers such that 1 ≤ (r− 1)c2 ≤
n− 2.

(b) mθ and mτ are positive integers.

(c) If n is even, then c2 is also even.

The following theorem is a result for covering graphs of complete
graphs with c2 = 1, which is from [1].

11



0. COVERING GRAPHS

0.7.4 Theorem. Let G be a covering graph of a complete graph
with parameters (n, r, 1). We have the following:

• n is odd,

• (n− r) divides (n− 1),

• (n− r)(n− r + 1) divides rn(n− 1),

• (n− r)2 ≤ n− 1.

Proof.
By the feasibility condition (b), we know that if n is even, then

c2 must be even. Therefore, since c2 is odd, then n must be odd.
Now, let v be a vertex of G, and G′ be the induced subgraph of G
by the neighbours of v. Let u and w be two non-adjacent vertices
of G′. They have exactly one common neighbour in G which is v.
Therefore, they do not have a common neighbour in G′, and their
distance is not two. Thus, G′ is composed of cliques of size a1 + 1.
We know that a1 = n − 1 − r, so the size of each clique is n − r.
Since G′ has n− 1 vertices, n− r divides n− 1. The vertex v is in
(n−1)
(n−r) cliques which have n− r + 1 vertices. Therefore, there are

(nr)
n− 1

n− r
1

n− r + 1
= nr(n− 1)/(n− r)(n− r + 1)

of these cliques in G. Hence, (n − r)(n − r + 1) divides rn(n − 1).
Let C be a clique in G′ and w be a vertex which is antipodal to v.
Let H be an induced subgraph of G by the neighbours of w, and C ′

be a clique of H. Each vertex of H has a neighbour in G′. Let a
and b be two vertices of C and c and d be two vertices of C ′ such
that a is adjacent with c and b is adjacent with d. Since a and b
are the vertices of a clique, they are adjacent. In the same way,
we can prove that c and d are adjacent. It is a contradiction with
c2 = 1, because a and d are two vertices at distance two which have
two common neighbours. Thus, each vertex of C has a neighbour
in a unique clique in H. Since |C| = n − r and H has n−1

n−r cliques,

n− r ≤ n−1
n−r . Therefore, (n− r)2 ≤ n− 1.

Now, we present the following result from [7] which gives us a
condition for the multiplicity of an eigenvalue of covering graphs of
complete graphs.

12



0.7. COVERING GRAPHS OF COMPLETE GRAPHS

0.7.5 Lemma. Suppose G is an antipodal distance regular graph
which is a cover of a complete graph with n vertices. Let λ be an
integer eigenvalue of G, not −1 or n − 1 with multiplicity m. If
n > m− r + 3, then λ+ 1 divides c2.

The following two theorems, which are the last results of this
section, classify the covering graphs of complete graphs depending
on the value of δ = a1 − c2. These four classes are δ = −2, 0, 2 or
none of them. The following theorem has been proved by Godsil
and Hensel in [7]

0.7.6 Theorem. The number of parameter sets for the distance
regular covering graphs of the complete graphs with n vertices and
constants r and δ is finite, unless δ = −2, 0, 2.

Proof.
Let (n, r, c2) be the feasible parameters of an antipodal distance

regular graph G. Suppose, θ and τ are two eigenvalues of G neither
−1 nor n − 1, and mθ and mτ are the multiplicities of θ and τ
respectively. We have:

mθ −mτ =
n(r − 1)(θ + τ)

θ − τ
=
n(r − 1)δ√

∆
.

We know that mθ and mτ are integers, so mθ −mτ is also integer.
If δ 6= 0, then by using Lemma 0.7.2, we can conclude that

√
∆ is

an integer number. We have:

(
√

∆− δ)2 = ∆ + δ2 − 2δ
√

∆ = 2(δ2 + 2(n− 1)− δ
√

∆).

Therefore, (
√

∆ − δ) is even. Thus, there is an integer s such that√
∆−δ = 2s, and so ∆ = (δ+2s)2. We know that ∆ = δ2 +4(n−1).

Therefore, 4n = ((2s+ δ)2 + (4− δ2)). We know that 4(mθ −mτ ) is
an integer number, thus

((2s+ δ)2 + (4− δ2))(r − 1)δ

2s+ δ
= (2s+ δ)(r− 1)δ+

(4− δ2)(r − 1)δ

2s+ δ

is an integer. Hence, 2s + δ is bounded above by (4 − δ2)(r − 1)δ
unless δ = ±2. We know that n is function of δ and s. Thus, n is
bounded by a function of δ and s unless δ = ±2 or δ = 0.

13



0. COVERING GRAPHS

0.7.7 Lemma. If the parameter set (n, r, c2) satisfies the conditions
(a) and (b), then the following hold, depending on the value of δ.

If δ = ±2, then (c) holds if and only if n is a square number.
If δ = 0, then (c) is satisfied.

Proof.
Let (n, r, c2) be the parameter set which satisfies the conditions

(a) and (b).
If δ = 0, then

θ =
√

∆/2 =
√
n− 1 and τ = −

√
∆/2 = −

√
n− 1.

Thus,

mθ =
−n(r − 1)

√
n− 1

−2
√
n− 1

= n(r − 1)/2

and

mτ =
n(r − 1)

√
n− 1

2
√
n− 1

= n(r − 1)/2.

We know that δ = n − 2 − rc2 = 0, so if n is odd then r is also
odd. Thus, in either case that n is odd or even, n(r − 1) is even,
and mθ and mτ are integer numbers. Therefore, if δ = 0, then the
parameter set satisfies the condition (c).

If δ = ±2, then ∆ = 4+4(n−1) = 4n. Therefore, θ = (±2+
√

4n)
2

=

±1 +
√
n and τ = (±2−

√
4n)

2
= ±1−

√
n. As the result,

mθ =
n(r − 1)(±1−

√
n)

−2
√
n

= −
√
n(r − 1)(±1−

√
n)/2

and

mτ =
n(r − 1)(±1 +

√
n)

2
√
n

=
√
n(r − 1)(±1 +

√
n)/2.

Hence, mθ and mτ are integer if and only if n is a square.

In the next section, we will present some constructions of covering
graphs, and explain them.

0.8 Abelian Covering Graphs of Complete Graphs

This section will show that we can describe each covering graph of
complete graphs with a function, and define the abelian covering

14



0.8. ABELIAN COVERING GRAPHS OF COMPLETE GRAPHS

graphs by using this function. Let G be an r-fold cover of Kn with
the vertex set V (Kn) × {1, ..., r}. Then, the vertices of G can be
partitioned into n independent sets with r vertices, such that there
is a matching between each pair of these sets. We can show each
of theses matchings by a permutation of {1, ..., r}. Thus, we can
define an arc function of index r over the complete graph Kn as a
function f from the set of arcs of Kn to the symmetric group of
the permutations of {1, ..., r}; that is, Sym(r) such that f(u, v) =
f−1(v, u) for each pair of vertices u and v of Kn. Therefore, for each
pair of vertices u and v, f(u, v) defines a matching between two
independent sets in G corresponding to u and v. We can consider
f as the identity permutation if we evaluate it over the edges of a
spanning tree. In this situation, we call f a normalized arc function.

We use 〈f〉 to denote the the permutation group that is generated
by the image of the arc function f over the arcs of the complete
graph.

An r-fold cover G of the complete graph Kn is regular if 〈f〉 is
regular. We say G is cyclic if 〈f〉 is cyclic. And G is an abelian
covering graph of the complete graph Kn if 〈f〉 is an abelian group.
G is regular if and only if |〈f〉| = r.

Let f be an arc function for the complete graph Kn. Then,
A(Kn)f is the adjacency matrix of a graph with n vertices, each of
its rows and columns are corresponded to a vertex of Kn, and for
each pair of distinct vertices u and v of Kn, A(Kn)f (u, v) = f(u, v),
and for all vertices u of Kn, A(Kn)f (u, u) = 0.

Suppose P is a permutation representation of 〈f〉 with dimension
d. We define the matrix A(Kn)P (f) as the matrix which is derived
from A(Kn)f by replacing each entries A(Kn)f (u, v) by a d×dmatrix
which is a permutation matrix corresponding to its image under P
for each pair of distinct vertices u and v of Kn, and replacing each
entries of the diagonal by a d× d zero matrix.

Let G be a regular covering graph of Kn which is defined by the
arc function f of Kn, and P be the regular representation of 〈f〉,
then we can see that

A(Kn)P (f) = A(G)

Which is the adjacency matrix of G.
The following theorem, which has been presented in [7] by Godsil

and Hensel, shows the relationship between the representations of

15



0. COVERING GRAPHS

Figure 3: The table of feasible parameters of abelian covering graphs of complete
graphs for n ≤ 10

an arc function of a complete graph and the adjacency matrix of its
r-fold covering graph.

0.8.1 Theorem. Suppose f is a normalized arc function corre-
sponding to a connected r-fold covering graph of the complete graph
Kn, and P1, P2, ..., Pr are the linear characters of 〈f〉. We have the
following results.

(a) We can write the adjacency matrix of G; that is, A(G) as,
A(Kn)P1(f)

A(Kn)P2(f)

. . .

A(Kn)Pr(f)

 .

(b) The graph G is an antipodal distance regular covering of Kn

with parameters (n, r, c2) if and only if for each 1 ≤ i ≤ r, the
minimal polynomial of A(Kn)Pi(f) is

t2 − (n− rc2 − 2)t− (n− 1).

We present a table of feasible parameters of abelian covering
graphs of complete graphs for n ≤ 10. We will demonstrate this
table for n ≤ 50 in the appendix.
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0.9. CONSTRUCTIONS

0.9 Constructions

In this section, we present some constructions of the covering graphs
of the complete graphs. The following construction has been pre-
sented by Mathon in [1].

Construction 1: To introduce this construction at first we need
the following definitions.

A bilinear function B : V × V → GF (q) satisfying S(x, x) = 0
for all x ∈ V is a symplectic form on V . A symplectic form S is
non-degenerate if S(x, y) = 0 results y = 0 for all of the elements
x ∈ V .

Now suppose q is a prime power and q = rc2 + 1 such that r > 1
and if q is odd then c2 is even. Let V be a two dimensional vector
space over the field GF (q) and S be a non-degenerate symplectic
form on V . Consider the multiplicative group of GF (q) and let H
be the subgroup of index r of this group. Construct a graph with
vertex set {Hx|x ∈ V \0} such two vertices Hx and Hy are adjacent
if and only if S(x, y) ∈ H. This graph is a covering graph of the
graph Kq+1 with parameters (q + 1, r, c2).

The following construction is generated by De Caen and Fon-der-
Flaas in [4] and is known by their names.

Construction 2: Suppose V is a vector space over GF (2t) with
dimension d. Let B be a skew product of V that has the following
properties:

• a→ B(a, a) is a bijection.

• B(a, b) = B(b, a) if and only if a and b are linearly dependent.

Let L = (lij) such that i, j ∈ F be a symmetric latin square whose
entries are the elements of GF (2t). Suppose G is a graph whose
vertex set is V×F×V and each pair of vertices (x, y, z) and (x′, y′, z′)
are adjacent if and only if z + z′ = B(x, y) +B(y, x) + lij(B(x, x) +
B(y, y)). The graph G is an antipodal distance regular covering
graph of a complete graph with parameters (2t(d+1), 2td, 2t). By its
construction, we can see that G is an abelian covering graph and
the automorphism group that fixes each fibre is isomorphic to Ztd2 .

The following construction was presented first by Thas [25] and
then extended by Somma in [23].
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0. COVERING GRAPHS

Construction 3: Suppose p is a prime number and q = pj for
some j. Let v be a 2i-dimensional vector space over GF (q) with
non-degenerate symplectic form S. Construct a graph with vertex
set {(x, y)|x ∈ GF (q), y ∈ V } such that two vertices (x1, y1) and
(x2, y2) are adjacent if and only if S(y1, y2) = x1 − x2 and y1 6= y2.
This graph is a cover of the complete graph Kq2i with parameters
(q2i, q, q2i−1).

The following construction has been introduced by Godsil and
Hensel in [7] which is known as The Quotient Construction.

Construction 4: Let p be a prime and q = pi for some i. Sup-
pose V is a two-dimensional vector space over GF (q) equipped with
a non-degenerate symplectic form S. Let A be an additive subgroup
of index pi−k in GF (q) such that 0 ≤ k < i. Construct a graph with
the vertex set {(A+α, u)|α ∈ GF (q), u ∈ V } such that two vertices
(A+α, u) and (A+β, v) are adjacent if and only if α−β−S(u, v) ∈ A
and u 6= v. This graph is a covering graph of the complete graph
Kp2i with parameters (p2i, pi−k, pi+k).

The following construction was presented by Biggs in [2].

Construction 5: To present this construction we need the fol-
lowing definitions. A projective plane P is a plane whose elements
called points and some subsets of points called lines which satisfies
the following conditions:

• each pair of points are in exactly one common line.

• each pair of lines have exactly one common point.

• There exists four points such that none of the triple points of
it lies in the same line.

A polarity is a one by one function π between points and lines such
that for each pair of points x and y, x ∈ π(y) if and only if y ∈ π(x).
Now, we have the following definitions.

The point x is absolute if x ∈ π(x) and the line l is absolute if
π−1(l) ∈ l.

Let P be a projective plane with n2+n+1 (order n) with polarity
π having n absolute points. Suppose line l consists of all absolute
points. Construct a graph with vertex set consists of the points of
P other than the points on the line l and the point π−1(l) such that
two vertices x and y are adjacent if and only if x ∈ π(y). This graph
is a cover for Kn with parameters (n, n− 2, 1).
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0.9. CONSTRUCTIONS

The following construction which is the last construction was
demonstrated by Brouwer in [3].

Construction 5: Suppose G is a strongly regular graph with
parameters (s(t+1), st, 1, t+1). Let G have a partition of its vertices
into cliques of size s + 1. Construct a graph by deleting the edges
of G which are in these cliques. This graph is a covering graph of
the complete graph Kst+1 with parameters (st+ 1, s+ 1, t− 1).
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Frames

0.10 Introduction

In this chapter, we discuss equiangular tight frames. As we men-
tioned in Chapter , equiangular tight frames are type of frames and
are the most important frames with a finite dimension. One of the
problems about equiangular tight frames is the existance of these
frames; for example, [10, 20, 24, 22] are about this problem and dis-
cuss this problem, or you can find some tables of existence of these
frames in [12, 27, 13].

One of the most important problems in this field is constructing
equiangular tight frames by combinatorial objects like block designs
or graphs. In this thesis, we show the relationship between these
frames and covering graphs of complete graphs.

At first, we define frames and present an example of frames and
after that, we demonstrate a theorem which has shown an elemen-
tary property of frames. Following this, we present the operations
which are related to the frames. We will define specifically tight
frames, and explain equiangular lines. We demonstrate two bounds
for the the size of a set of equiangular lines. These bounds hold if
and only if the set of lines is an equiangular tight frame. We will
need the Seidel matrices to show the relationship between covering
graphs and equiangular tight frames in the next chapter, and so we
define these matrices here.

0.11 Frames

As we mentioned, a frame of a vector space is a generalization of
the idea of a basis.

A sequence F = {f1, ..., fn} is a frame for a Hilbert space H if
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0.11. FRAMES

there exist two constants A and B such that for every vector x in
H, we have

A||x||2 ≤
n∑
i=1

|〈x, fi〉|2 ≤ B||x||2.

We call A and B the frame bounds of F .
To explain furthur, we present an examples of frames. The following
example is the famous Mercedes-Benz frame, which is the most well-
known frame [21].

Example (Mercedes-Benz Frame). This frame is a set of three vectors

F = {f1, f2, f3} =

{(
0,

√
2

3

)
,

(
− 1√

2
,− 1√

6

)
,

(
1√
2
,− 1√

6

)}
.

The set F is a frame for the vector space R2. Consider the matrix
F which has the columns f1, f2 and f3. Thus,

F =

(
0 −1/

√
2 1/

√
2√

2/3 −1/
√

6 −1/
√

6

)
.

Hence,

FF ∗ =

(
0 −1/

√
2 1/

√
2√

2/3 −1/
√

6 −1/
√

6

) 0
√

2/3

−1/
√

2 −1/
√

6

1/
√

2 −1/
√

6

 = I.

We have,
3∑
i=1

|〈x, fi〉|2 = FF ∗||x||2 = ||x||2.

Therefore, F is a frame with the frame bounds A = B = 1.

There are different kinds of frames. An equal norm frame is a
frame in which ||fi|| = ||fj|| for all 1 ≤ i, j ≤ n. A uniform norm
frame is an equal norm frame such that for all 1 ≤ i ≤ n, ||fi|| = 1.
A tight frame is a frame whose frame bounds are equal; that is,
A = B. We call a tight frame with frame bounds equal to A, an
A-tight frame. Tight frames are further described in section 0.14.
In the next section, we show the properties of frames.
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0. FRAMES

0.12 Properties of Frames

This section presents some properties of frames. The following the-
orem shows that a frame is a generalization of a basis, although the
vectors of the frame can be linearly dependent.

0.12.1 Theorem. If a family F = {fi}i∈I of vectors spans the
Hilbert space H, then F is a frame of H.

Proof.
To prove that F is a frame, it is sufficient to find A and B such

that for every x in H we have the following inequalities.

A||x||2 ≤
∑

i∈I
|〈x, fi〉|2 ≤ B||x||2.

To find B, by Cauchy-Schwarz inequality we know that for each
i ∈ I,

|〈x, fi〉|2 ≤ 〈x, x〉〈fi, fi〉 = ||x||2||fi||2.
Thus, we can write,∑

i∈I
|〈x, fi〉|2 ≤

∑
i∈I
||x||2||fi||2 = ||x||2

∑
i∈I
||fi||2.

Therefore, we can consider B as B =
∑

i∈I ||fi||2.
To find A, suppose φ is the function from H to R, such that for
every x in H,

φ(x) =
∑
i∈I

|〈x, fi〉|2.

Consider a unit ball in H. It is bounded and closed, so it is compact.
Thus, the set

{
∑

i∈I
|〈x, fi〉|2, ||x|| = 1}

has an infimum, and there is a y ∈ H such that ||y|| = 1 and,

∑
i∈I
|〈y, fi〉|2 = inf

{∑
i∈I

|〈x, fi〉|2, ||x|| = 1

}
.

Since for each x in H the norm of the vector x
||x|| is one, we have:

∑
i∈I
|〈x, fi〉|2 =

∑
i∈I
|

〈
x

||x||
fi

〉
|2||x||2 ≥

∑
i∈I
|〈y, fi〉|2.
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0.13. OPERATIONS

We know that
∑

i∈I |〈y, fi〉|2 > 0, so let A =
∑

i∈I |〈y, fi〉|2, and we
have,

A||x||2 ≤
∑

i∈I
|〈x, fi〉|2 ≤ B||x||2.

Thus, F is a frame.

0.13 Operations

In this section, we define the frame operations and present the the-
orems that are related to these operations. The definitions in this
section are from [21], Chapter 1. In the following definitions, let H
be a real or complex N -dimensional Hilbert space, and L2 denotes
`2(n).

Let F = {f1, ..., fn} be a frame in H. The associated analysis
operator T : H → L2 is

Tx := (〈x, fi〉)ni=1, x ∈ H,

and the associated synthesis operator is defined as

T ∗y :=
n∑
i=1

yifi,

for y = (yi)
n
i=1 in L2.

By the definition of analysis and synthesis operators, we can show
that T ∗ is the adjoint operator of T . Suppose R is the adjoint of T ,
then

〈Ry, x〉 = 〈y, Tx〉 = 〈(yi)ni=1, (〈x, fi〉)ni=1〉

=
n∑
i=1

yi〈x, fi〉

=

〈
n∑
i=1

yifi, x

〉
.

Therefore we can write R as
n∑
i=1

yifi, and so R = T ∗ becomes the

adjoint operation of T .
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0. FRAMES

Now, we define the frame operator. Let F = {f1, ...fn} be a frame
with analysis operator T and synthesis operator T ∗; the associated
frame operator S is then defined as follows:

Sx := T ∗Tx =
n∑
i=1

〈x, fi〉fi,

for x ∈ H.
Suppose F = {f1, ..., fn} is a frame in H with the analysis op-

erator T and synthesis operator T ∗; the Gramian operator for F is
the operator G : L2 → L2 such that:

Gx = TT ∗x =

(
n∑
i=1

xi〈fi, fj〉

)n

j=1

=
n∑
i=1

xi(〈fi, fj〉)nj=1,

for x = (xi)
n
i=1 in H. we call G = TT ∗, the Gram matrix of the

frame.

0.14 Tight Frames and Equiangular Lines

In Section 0.11 we defined different types of frames, but this the-
sis specifically discusses tight frames. In this section, at first, we
discuss these frames and their properties. After that, we present
the definition of special sets of vectors which are called equiangular
lines, and discuss an example.

In Section 0.17 the relationship between tight frames and equian-
gular lines will be demonstrated. Tight frames are defined as follows:

A frame F = {f1, ..., fn} is a tight frame if its frame bounds are
equal; that is,

A||x||2 ≤
n∑
i=1

|〈x, fi〉|2 ≤ A||x||2.

for some constant A. A tight frame F is a parseval frame, if its
frame bound is equal to one; that is A = 1. Next example can clear
this definition.

Example. Let f1, f2, ..., fn be an orthonormal basis for H. Then,
F = {f1, f1, f2, f2, ..., fn, fn} is a tight frame for H with frame bound
A = 2, since {f1, f2, ..., fn} is a parseval frame.
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0.15. THE ABSOLUTE BOUND

The following definition discusses equiangular lines. after that
we present an example about these lines.

A set of lines spanned by vectors v1, ..., vn in Cd (or Rd) is a set
of complex (or real) equiangular lines if there is α ∈ R such that,
for all i and j with i 6= j, we have |〈vi, vj〉| = α; that is, the angles
between each pair of distinct vectors are the same.
If the angle between each pair of vectors is θ, then for i 6= j,

〈vi, vj〉 = vTi vj = ± cos(θ).

That is, α = | cos(θ)|.
Example. Let E = {e1, e2, ..., en} be an orthonormal basis for H,
then E is a set of equiangular lines, because for each 1 ≤ i < j ≤ n
we have |〈ei, ej〉| = 0.

In Sections 0.15 and 0.16 we will present two bounds for the size
of a set of equiangular lines.

0.15 The Absolute Bound

We explore two bounds for the size of a set of equiangular lines. In
[11], the following theorem is demonstrated which provides a bound
for a number of equiangular lines in Rd, that is called the absolute
bound.

0.15.1 Theorem. (The Absolute Bound) If E is a set of equiangular
lines for Rd, then

|E| ≤
(
d+ 1

2

)
.

Proof.
Let E = {v1, v2, ..., vn} be a set of n unit vectors in Rd such that

〈vi, vj〉 = α for each i 6= j. Now for each 1 ≤ i ≤ n, the matrix
Vi = viv

T
i is a d×d matrix in the space of symmetric d×d matrices.

This space has dimension
(
d+1

2

)
.

To prove this theorem, we should prove that all Vis are linearly
independent in this space. We can easily see that for all 1 ≤ i ≤ n,
Vi is a symmetric matrix and

V 2
i = ViVi = viv

T
i viv

T
i = viv

T
i = Vi.
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0. FRAMES

Now we have ViVj = viv
T
i vjv

T
j . Thus, tr(ViVj) = (vTi vj)

2 = α2 for
i 6= j. Also,

tr(V 2
i ) = tr(Vi) = tr(viv

T
i ) = vTi vi = 1.

Now suppose X =
n∑
i=1

CiVi for constants Ci for all 1 ≤ i ≤ n. We

have

tr(X2) =
∑
i,j

CiCj tr(ViVj) =
n∑
i=1

C2
i +

∑
i,j:i 6=j

CiCjα
2 =

α2

(
n∑
i=1

Ci

)2

+ (1− α2)
n∑
i=1

C2
i .

We know that 1 < α < 0, so tr(X2) = 0 if and only if Ci = 0 for
all 1 ≤ i ≤ n. Since Vi is symmetric for all 1 ≤ i ≤ n, the matrix X
is also symmetric. Thus, tr(X2) ≥ 0 and tr(X2) = 0 if and only if
X = 0. Therefore, X = 0 if and only if Ci = 0 for all 1 ≤ i ≤ n.
Hence, all Vis are linearly independent. Thus,

n ≤
(
d+ 1

2

)
.

As an example for absolute bound, we can consider a regular
icosahedron centered at 0 in R3, and the six lines through pairs of
opposite vertices. Since

(
3+1

2

)
= 6, the absolute bond holds with

equality for these lines.

0.16 The Relative Bound

In the following theorem, Van Lint and Seidel [26] present a bound
for the number of equiangular lines in Rd, a bound related to d and
α.

0.16.1 Theorem. Let E = {v1, v2, ..., vn} be a set of n equiangular
lines in Rd such that for each i 6= j, 〈vi, vj〉 = α. If 1/α2 > d, then

n ≤ d− dα2

1− dα2
.
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0.17. EQUIANGULAR TIGHT FRAMES

Equality holds if and only if
n∑
i=1

viv
T
i = (n/d)I.

Proof.

Let Vi = viv
T
i and X = I − d

n

n∑
i=1

Vi where 1 ≤ i ≤ n.

Each Vi is symmetric, so X is also symmetric. Thus, tr(X2) ≥ 0
and tr(X2) = 0 if and only if X = 0. We have,

X2 = I2 − 2
d

n

n∑
i=1

Vi +
d2

n2
(
n∑
i=1

Vi)
2.

Thus,

tr(X2) = tr(I)− 2d

n

n∑
i=1

tr(Vi) +
d2

n2
tr(

n∑
i=1

Vi)
2.

Therefore,

d− 2d

n
n+

d2

n2

( n∑
i=1

tr(V 2
i ) +

∑
i 6=j

tr(ViVj)
)
≥ 0.

We know that tr(ViVj) = α2 and tr(Vi)
2 = 1. Hence,

−d+
d2

n2
(n+ n(n− 1)α2) ≥ 0.

By solving this inequality for n, we have n ≤ d−dα2

1−dα2 when 1
α2 > d.

The equality holds if and only if X = 0. Thus, I − d
n

n∑
i=1

Vi = 0,

and so
n∑
i=1

Vi = n
d
I.

Therefore, the equality holds if and only if
n∑
i=1

viv
T
i = n

d
I.

0.17 Equiangular Tight Frames

As can be seen from the name, the set E = {v1, v2, ..., vn} of vectors
in Rd is an equiangular tight frame if there is an α ∈ R such that
for each i 6= j, we have 〈vi, vj〉 = α, and there exists a constant A
such that,

n∑
i=1

|〈x, vi〉|2 = A||x||2
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0. FRAMES

for each x ∈ Rd.
In fact, the set E is a tight frame if

v1v
T
1 + v2v

T
2 + ...+ vnv

T
n =

n

d
I.

Example. Looking at the first example of this chapter, which is
about the Mercedes-Benz frame, we can see that this frame is an
equiangular tight frame. The Mercedes-Benz frame is

F = {f1, f2, f3} =

{(
0,

√
2

3

)
,

(
− 1√

2
,− 1√

6

)
,

(
1√
2
,− 1√

6

)}
.

As we proved in that example,
3∑
i=1

|〈x, fi〉|2 = ||x||2 for each x ∈ R2.

Thus, F is a tight frame with a frame bound equal to 1. Also, we
can see that for each 1 ≤ i, j ≤ 3 such that i 6= j, 〈fi, fj〉 = −1

3
.

Therefore, F is a set of equiangular lines in R2, and so F is an
equiangular tight frame.

If we go back to Sections 0.15 and 0.16, we can write the theorems
in these sections as follows.

0.17.1 Theorem. If E is a set of unit equiangular lines for Rd, then

|E| ≤
(
d+ 1

2

)
.

If equality holds, then E is a tight frame.

The following theorem shows that equality holds for the relative
bound if the set of lines is a tight frame for Rd.

0.17.2 Theorem. Let E = {v1, v2, ..., vn} be a set of n equiangular
lines in Rd such that if i 6= j, then 〈vi, vj〉 = α. If 1

α2 > d, then

n ≤ d− dα2

1− dα2
.

The equality holds if and only if
n∑
i=1

viv
T
i = n

d
I. Thus, the equality

holds if and only if E is a frame for Rd.
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0.18 Seidel matrix

Let E = {v1, v2, ..., vn} be a set of equiangular lines in Rd, and M be
the matrix whose columns are the members of E. Then, the Gram
matrix of the vectors of E is as follows

G = MTM.

G is a positive semidefinite symmetric matrix which has the same
rank with M . Since, for every n × n symmetric semidefinite ma-
trix we can find a d × n matrix M such that G = MTM , We
can represent the set of equiangular lines by its Gram matrix. Let
E = {v1, v2, ..., vn} be a set of equiangular lines such that vi is a
unit vector for each 1 ≤ i ≤ n and vTi vj = ±α for all 1 ≤ i, j ≤ n,
so we have the following for its Gram matrix G:

G = αS + I,

such that S is a symmetric matrix whose diagonal entries are zero
and off-diagonal entries are ±1. S can be regarded as the nonstan-
dard adjacency matrix of a graph G if −1 shows the adjacency of
two vertices and 1 shows the non-adjacency of two vertices of G.

The matrix S is known as the Seidel matrix ofG and the following
formula shows the relationship between the Seidel matrix of G and
its adjacency matrix A(G),

S(G) = J − I − 2A(G).

The following theorem, which has been proved by Lemmens and Sei-
del [11], demonstrates that we can have two sets of equiangular lines
from a Seidel matrix which are related to its largest and smallest
eigenvalues.

0.18.1 Theorem. Suppose S is an n× n Seidel matrix whose least
eigenvalue is θ and largest eigenvalue is τ with multiplicities mθ and
mτ respectively. We have the following Gram matrices of two sets
of equiangular lines.

• There is a sets of equiangular lines in dimension n −mθ with
Gram matrix I − (1/θ)S.

• There is a set of equiangular lines in dimension n − mτ with
Gram matrix I − (1/τ)S.
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In addition, a set of equiangular lines E = {v1, v2, ..., vn} with
vTi vj = α for all 1 ≤ i < j ≤ n is an equiangular tight frame if
and only if its corresponding Seidel matrix has two distinct eigen-
values θ = − 1

α
and τ = n−d

αd
with multiplicities mθ = n − d and

mτ = d respectively.
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New constructions of
equiangular tight frames

0.19 Introduction

One of the important problems in frame theory is constructing
frames by combinatorial objects. Since tight frames are the most im-
portant kinds of frames, discussing the constructions of these frames
attracts more attention.

In this chapter we will discuss new results about the construc-
tions of equiangular tight frames. At first we show the constructions
which are from design geometries. After that we discuss Steiner
equiangular tight frames. Following this, we present equiangular
tight frames from hyperovals. We present a theorem to show the
relation between equiangular tight frames and projective planes. At
last, we demonstrate an abstract of the new results about equian-
gular tight frames.

0.20 Design geometries

In this section, we present the new results in constructing equiangu-
lar tight frames. At first we need some definitions which are useful
to show these constructions.

A balanced incomplete block design is the finite set V of n points
and any set B of the subsets of V whose elements are called blocks,
such that there exist positive integers λ, k and r with the following
properties.

(a) The size of each block is exactly k,

(b) every points is in exactly r blocks,
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(c) each pair of points is in exactly λ blocks.

We denote these designs by (n, k, λ). They have the following char-
acteristics:

(a) Each point is in exactly r = (n− 1)/(k − 1) blocks.

(b) The size of B is |B| = n(n− 1)/k(k − 1).

A Steiner system (t, k, n) is a set A of n points and a collection B
of k-subsets of A which are called blocks such that any t points of A
are exactly in one sets of B. This Steiner system has the following
characteristics:

(a) Each point is in exactly r blocks such that

r =

(
n−1
t−1

)(
k−1
t−1

) .
(b) The size of B; that is, the total number of blocks is

|B| = nr

k
.

A Steiner system is resolvable, if we can partition its blocks into
disjoint subcollections {Br}r∈R such that the blocks in each Br form
a partition for V .

Affine planes are an example of Steiner systems which are defined
as follows.

An affine plane is a set of points V and a collection B of subsets
of V which are called blocks with the following properties.

(a) Each pair of points is exactly in one block,

(b) each block has at least two points,

(c) For any point and block either the point is in block, or there
is a unique block which contains a point and does not have a
common point with the block,

(d) there are three points which are not in a common block.
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The incidence matrix X of a Steiner system is the matrix whose
rows are corresponding to the points of the system, and whose
columns are corresponding to the blocks of the system such that:

X(i, j) =

{
1 if i ∈ j,
0 if i /∈ j.

.

A projective plane of order q is a collection of q2 + q+1 lines and
q2 + q + 1 points such that:

(a) Every point is on q + 1 lines,

(b) every line contains q + 1 points,

(c) any two distinct points lie on exactly one line,

(d) any two distinct lines have exactly one common point.

Therefore, a projective plane is a balanced incomplete block design
with λ = 1.

A hyperoval in a projective plane of order q is the set of q + 2
points such that no three of these points are in a common line.

In [9], Jasper, Mixon and Fickus present a construction from re-
solvable Steiner systems, providing new families of constant-amplitude
equiangular tight frames. We present their construction as follows.

0.20.1 Theorem. Suppose (V,B) is an resolvable (2, k, v)-Steiner
system. Assume {fi}Ri=0 is a unimodular regular simplex in CR and
{hs}s∈S is a unimodular orthogonal basis for CS. Let {Br}r∈R be a
partition of B such that for any r, the subcollection Br = {br,s}s∈S
is a partition of V .

Let M = R × S and N = V × {0, ..., R}, then {ψi,k}(i,k)∈N is a
Steiner equiangular tight frame for the space CM as follows:

ψi,k(r, s) := R−1/2

{
fi(r) if k ∈ br,s,
0 if k /∈ br,s.

In addition, we have the following Kirkman equiangular tight frame

ψi,k(r, s) := B−1/2fi(r)hs(r,k)(s),

such that for each r ∈ R and k ∈ V , s(r, k) is the unique s ∈ S
where k ∈ br,s.
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0. NEW CONSTRUCTIONS OF EQUIANGULAR TIGHT FRAMES

By the above theorem, they demonstrate some constructions of
equiangular tight frames as follows. All of the these constructions
are from [9].

Affine geometries over finite fields: Let q be a prime power and
j ≥ 1. There is a resolvable (2, k, n)-Steiner system with k = q and
n = qj+1. The points of this design are the vectors in Fj+1

q such that
Fq is the finite field of order q. The blocks of this design are the
sets of the form {au + v : a ∈ Fq} for some initial point v ∈ Fj+1

q

and direction vector u ∈ Fj+1
q \ {0}. We can partition its blocks

into disjoint subcollections {Bu}u∈Fj+1
q \{0} such that each {Bu} is a

collection of blocks {au+ v : a ∈ Fq} for a constant u.
For the Kirkman equiangular tight frame with N vectors in a

space with dimension M , we have:

M = qj
(qj+1 − 1

q − 1

)
, N = qj+1

(qj+1 − 1

q − 1
+ 1
)
.

Denniston designs: Let i and j be two positive integers such that
i < j. There is a resolvable (2, k, n)-Steiner system with k = 2i and
n = 2i+j + 2i − 2j. The resulting Kirkman equiangular tight frame
has

N = (2j + 1)(2j + 1− 2j−i)

vectors in a M -dimensional space such that

M = 2i(2j + 2)(2j + 1− 2j−i).

Kirkman’s Schoolgirl problem: Let n ≡ 3 mode 6. There is a
resolvable (2, 3, n)-Steiner system. The resolution of this system is
the subcollections {Br}r∈R of its blocks such that each {Br} is a
collection of 3-subsets of {1, ..., n} which are pairwise disjoint. The

resulting Kirkman equiangular tight frame has n(n+1)
2

vectors in a
n(n−1)

6
-dimensional space.

Three-dimensional projective geometries: If q is a prime power,
then there is a resolvable (2, q + 1, q3 + q2 + q + 1)-Steiner system.
The resulting Kirkman equiangular tight frame has

N = (q2 + 1)(q2 + q + 1)

vectors in M -dimensional space such that

M = (q2 + q + 2)(q3 + q2 + q + 1).
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0.21 Steiner equiangular tight frames

In [18] Fickus, Mixon and Tremain present a construction of equian-
gular tight frames from Steiner systems and provide some examples
of these constructions from different kinds of Steiner systems. After
that in [14] Fickus, Mixon and Jasper generalize the construction in
[18] to construct a new infinite family of complex equiangular tight
frames. We present their construction as the following theorem, and
provide their example to show how this construction works. After
that, we demonstrate one of their constructions from Steiner system
that is a construction from projective geometries.

0.21.1 Theorem. We can construct an equiangular tight frame
from every (2, k, n)-Steiner system with N = n(1 + n−1

k−1
) vectors

in M = n(n−1)
k(k−1)

-dimensional space.

In addition, if there exists a real Hadamard matrix of size 1+ n−1
k−1

,

then a n(n−1)
k(k−1)

× n
(
1 + n−1

k−1

)
equiangular tight frame matrix will be

constructed as follows:

(a) Suppose AT is the n(n−1)
k(k−1)

× n transpose of the incidence matrix

of (2, k, n)-Steiner system.

(b) For each 1 ≤ i ≤ n, suppose Hadamard matrix H be any(
1 +

n− 1

k − 1

)
×
(

1 +
n− 1

k − 1

)
matrix whose rows are orthogonal and entries are unimodular,
such as a possibly complex Hadamard matrix.

(c) For each 1 ≤ i ≤ n, suppose Fi is a n(n−1)
k(k−1)

× (1 + n−1
k−1

) matrix

which is generated by replacing each of the one-valued entries
of the ith column of AT with a distinct row of Hi and every
zero-valued with a row of zeros.

(d) concatenate and rescale the Fi’s to reach the matrix

F =

(
k − 1

n− 1

)1/2

[F1F2...Fn].

The columns of matrix F form an equiangular tight frame.
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0. NEW CONSTRUCTIONS OF EQUIANGULAR TIGHT FRAMES

Proof. To prove that F is a tight frame we have to prove that the
inner product of each pair of distinct rows of F is zero and the rows
of F have constant norm. The inner product of each pair of distinct
rows is the sum of the inner products of the corresponding rows of
the Fi’s over all 1 ≤ i ≤ n. For any 1 ≤ i ≤ n, the inner product of
each pair of rows of Fi is zero, because either these rows correspond
to the rows of Hi which are orthogonal, or one of these rows is zero
and so their inner product is zero. To prove that the rows of F have
constant norm, we know that each block of a (2, k, n)-Steiner system
has k elements in it and so each row of AT has k ones. For each
1 ≤ i ≤ n, the matrix Hi has entries which have the same absolute
value, thus the squared-norm of any row of F is the squared-scaling
factor k−1

n−1
times a sum of k

(
1 + k−1

n−1

)
ones; that is,

M

N
=
k − 1

n− 1

(
1 +

n− 1

k − 1

)
= k

(
1 +

k − 1

n− 1

)
.

To prove that F is equiangular we should show that each of the
columns of F has unit norm and the inner product of each pair of
distinct columns has constant modulus. To prove that each column
has unit form, we should find the norm of each column of Fi for
each 1 ≤ i ≤ n. The entries of Hi have the same absolute values
and each column of AT contains n−1

k−1
ones, because each point is in

n−1
k−1

blocks. The squared norm of each column of F is k−1
n−1

times the
squared norm of a column of Fi’s, and so it is equal to(

k − 1

n− 1

)(
n− 1

k − 1

)
1 = 1.

Now, we prove that the inner product of each pair of distinct
columns of F has constant modulus. We know that each pair of
distinct blocks have a unique common point, thus any pair of distinct
columns of AT have a single entry of mutual support, so any pair
of distinct columns of F that arise from distinct Fi bocks have a
single entry of mutual support. Therefore, the inner product of
such columns is k−1

n−1
times the product of two unimodular numbers.

Thus, the square-magnitude of inner product of each pair of columns

is N−M
M(N−1)

=
(
k−1
n−1

)2
. For each 1 ≤ i ≤ n, the matrix Hi is a scalar

multiple of a unitary matrix, thus its columns are orthogonal. The
matrix Fi contains all of the rows of the matrix Hi except one of
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0.21. STEINER EQUIANGULAR TIGHT FRAMES

them, namely one for each of the 1-valued entries of AT . Therefore,
the inner product of the rows in the common part of Hi and Fi
is equal to zero minus the contribution from the left over entries.
The matrix Hi is unimodular, so the squared-magnitude of such

inner product is N−M
M(N−1)

=
(
k−1
n−1

)2
. As a result, the inner product

of each pair of columns of F has constant modulus. Thus, F is an
equiangular tight frame.

The following example shows how this construction works.

Example. As an example, we will find an equiangular tight frame
F for (2, 2, 4)-Steiner system. The transpose of incidence matrix of
this system is:

AT =



1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1


.

Since there are three 1s in each column of AT , we need a 4×4 matrix
H with unimodular entries and orthogonal rows. We consider H as
follows:

H =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 .
Now, we replace each 1-valued entries of AT with a distinct row of

H. For each one entry we choose either the second, third or fourth
row of H. As a result, the following matrix F is an equiangular
tight frame with M = 6 and N = 16.

F =
1√
3


1 −1 1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0
1 1 −1 −1 0 0 0 0 1 −1 1 −1 0 0 0 0
1 −1 −1 1 0 0 0 0 0 0 0 0 1 −1 1 −1
0 0 0 0 1 1 −1 −1 1 1 −1 −1 0 0 0 0
0 0 0 0 1 −1 −1 1 0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1


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We can easily see that the rows of F are orthogonal and have
constant norm. The inner product of each pair of columns which
are from the same block is −1

3
and from distinct blocks is ±1

3
. Thus,

F is an equiangular tight frame.

Projective Geometries: Let q be a prime power, then for any
n ≥ 2, there exists a (2, k, v)-Steiner system such that k = q+1 and

n = qn+1−1
q−1

. These projective geometries generate equiangular tight

frames with qn+1−1
q−1

(1 + qn−1
q−1

) for a (qn−1)(qn+1−1)
(q+1)(q−1)2

-dimensional space.

0.22 Construction from hyperovals

We present the construction of equiangular tight frames which has
been demonstrated in [14] as follows. At first, we need some defini-
tions and lemmas to prove the main theorem.

Suppose X is an incidence matrix of a balanced incomplete block
design (n, k, 1) with n points and b blocks. For each i = 1, ..., n, a
corresponding embedding Ei : Fr → Fb is an operator which maps
Fr to the subspace of Fb which consists of vectors supported on

{j : X(j, i) = 1}.

This subspace is an r-dimensional subspace.
For any r ≥ 3, a corresponding unimodular cosimplex is a se-

quence {ck}r−1
k=1 in Fr with the following properties:

(a) For each 1 ≤ i ≤ r − 1, the vector ci has unimodular entries.

(b) For each 1 ≤ i ≤ r − 1, the last two entries of ci sum to zero.

(c) For all 1 ≤ i, i′ ≤ r − 1, we have |〈ci, ci′〉| = 1.

Let X be a matrix with the following form

X =

[
X1,1 X1,2

0 X2,2

]
such that X1,1 is the incidence matrix of a balanced incomplete block
design (q + 2, 2, 1), and the matrix XT

2,2 is the incidence matrix of a

balanced incomplete block design (1
2
q(q − 1), 1

2
q, 1) where q is even.

Let Y be a matrix with the following form

Y =

[
Y1,1 Y1,2

0 Y2,2

]
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such that Y1,1 is the incidence matrix a balanced incomplete block
design (1

2
q(q−1), 1

2
q, 1) and Y T

2,2 is the incidence matrix of a balanced
incomplete block design (q + 1, 2, 1).

The following theorem shows there exists an equiangular tight
frame from a projective plane which contains a hyperoval. This
theorem has been proved by Fickus, Mixon and Jasper in [14]. First
we need the following definition.

Suppose D is a balanced incomplete block design with parameter
(n, k, 1). For each 1 ≤ i ≤ n, a corresponding embedding is an
operator Ei : Fr → Fs which maps the standard basis Fr to the
standard basis of the subspace of Fs which consists of the vectors
supported on {k : D(k, i) = 1} and has dimension r.

0.22.1 Theorem. Consider a projective plane of order q which con-

tains a hyperoval. Suppose {Ei}q
2

i=1 are embeddings arising from
an affine plane of the form of the matrix Y . Assume {sl}q+2

l=1 and
{cl}ql=1 respectively are a unimodular simplex and cosimplex for
Fq+1. Therefore if P = {Eisl} for 1 ≤ i ≤ 1

2
q(q−1) and 1 ≤ l ≤ q+2,

and Q = {Eicl} for 1
2
q(q − 1) + 1 ≤ i ≤ q2 and 1 ≤ l ≤ q,then the

set of vectors
P ∪Q

is an equiangular tight frame with q(q2 + q− 1) vectors in the (q2 +
q − 1)-dimensional subspace of Fq(q+1) which consists of the vectors
whose last q + 1 entries sum to zero.

In addition, let {Ei}q
2+q+1
i=1 be embeddings arising from the pro-

jective plane of the form of the matrix X. Assume P ′ = {Eisl}
for 1 ≤ i ≤ 1

2
q(q − 1) and 1 ≤ l ≤ q + 2, and Q′ = {Eicl} for

1
2
q(q−1)+1 ≤ i ≤ q2 +q+1 and 1 ≤ l ≤ q. Thus, the set of vectors

P ′ ∪Q′

is an equiangular tight frame with q2(q+2) vectors for the subspace

of Fq2+q+1 with dimension q(q+1) and consists of the vectors whose
last q + 2 entries sum to zero.

0.23 Projective planes

In [17] Fickus, Jasper, Mixon, Peterson and Watson present the
following theorem which shows that there is an equiangular tight
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frame from some projective planes with λ = 1. We present this
theorem as follows.

0.23.1 Theorem. Let φ be a matrix whose entrywise squared-
modulus |φ|2 is the incidence matrix of a balanced incomplete block
design (v, k, 1) with v points and b blocks. The columns of |φ| form
an equiangular tight frame for their span if and only if

b∑
k=1

v∑
l=1

φ(i, l)φ(k, l)φ(k, j) = 0 for all i and j such that φ(i, j) = 0.

(0.23.1)

Proof. Let r = v−1
k−1

. By using Lemma ?? we can see that the
columns of φ generate an equiangular tight frames for their span if
and only if φφ∗φ = aφ such that

a =
rn

d
= r

v

d
= r + k − 1.

Thus, the columns of φ generate an equiangular tight frame for their
span if and only if the following holds.

(r + k − 1)φ(i, j) = (φφ∗φ)(i, j) =
b∑

k=1

v∑
l=1

φ(i, l)φ(k, l)φ(k, j) for all i and j.
(0.23.2)

Let |φ(i, j)| = 1. The sum in (0.23.2) is nonzero if and only if the
following holds.

|φ(i, j)| = |φ(i, l)| = |φ(k, l)| = |φ(k, j)| = 1. (0.23.3)

Thus, the sum in (0.23.2) is nonzero if and only if ith and kth points
are in both jth and lth blocks. We know that two distinct points
are exactly in one block, and the intersection of two distinct blocks
is exactly one point. Therefore, the equation (0.23.3) holds if either
i = k or j = l.

Hence, if |φ(i, j)| = 1, then the sum in (0.23.2) is as follows:

φ(i, j)φ(i, j)φ(i, j) +
v∑

l=1,l 6=j

φ(i, l)φ(i, l)φ(i, j)

+
b∑

k=1,k 6=i

φ(i, j)φ(k, j)φ(k, j) = (r + k − 1)φ(i, j).

(0.23.4)
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Therefore, the columns of φ generate an equiangular tight frame if
and only if the Equation (0.23.1) holds.

0.24 More results in equiangular tight frames

In [15] Fickus, Mixon and Tremain presented a new method for
constructing equiangular tight frames, that is provided by a tensor-
like combination of a Steiner system and a regular simplex. This
construction is valid in both the real and complex settings.

In [19] Fickus, Mixon, Peterson and Jasper revisited Steiner equian-
gular tight frames. They showed that we can construct an equiangu-
lar tight frame from the synthesis operator of a Steiner equiangular
tight frame. Their proof is more formal and symbolic than the proof
which has been demonstrated in [18]

In [16] Fickus, Jasper, Mixon and Peterson provided a new in-
finite family of complex equiangular tight frames which are called
Tremain equiangular tight frames. In some cases, the construction
lead to a new strongly regular graphs or a new finite family of dis-
tance regular antipodal covering graphs of complete graphs.
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Covers and equiangular
tight frames

0.25 Introduction

Recently, there has been huge attention to equiangular tight frames,
due to the fact that the relationship between these frames and quan-
tum information theory was established. For example, in [18] Fickus,
Mixon and Tremain have constructed euiangular tight frames from
Steiner systems, and in [13] Fickus and Mixon provide a survey of
constructions of equiangular tight frames.

In this chapter, we present the relationship between covering
graphs of complete graphs and equiangular tight frames. At first,
we show that if there exists an antipodal distance regular covering
graph of a complete graph, then there is an equiangular tight frame
corresponding to the graph.

After that, conversely we present a theorem which shows that we
can construct an abelian covering graph of a complete graph from
every equiangular tight frame. To prove this theorem we need the
definition of two-graphs which has been explained in this chapter.
All of the proofs in this chapter are from Coutinho, Godsil, Shirazi
and Zhan [5].

0.26 Equiangular Tight Frames from Covering
Graphs

In this section we present a theorem which shows us how we can
build an equiangular tight frame from an abelian covering graph of
the complete graph.
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0.26.1 Theorem. Suppose G is an abelian antipodal distance reg-
ular graph which is a covering graph of a complete graph with pa-
rameters (n, r, c2) and symmetric arc function f . Let n − 1, −1, θ
and τ be the eigenvalues of G with multiplicities 1, n − 1, mθ and
mτ , and let ψ be a non-trivial character of 〈f〉. Then, we have the
following:

(a) There is an equiangular tight frame with n lines in dimension(
n− mθ

r−1

)
,

(b) There is an equiangular tight frame with n lines in dimension(
n− mτ

r−1

)
.

Proof. Suppose ψ1, ψ2, ..., ψr are linear characters of 〈f〉 such that
ψ1 is the trivial character of 〈f〉. Thus, A(Kn)ψ1(f) is equal to the
adjacency matrix of Kn, and its eigenvalues are (n − 1) and (−1)
with multiplicities 1 and (n− 1). By using Theorem 0.8.1, we know
that A(G) is similar to the following matrix:

A(Kn)ψ1(f)

A(Kn)ψ2(f)

. . .

A(Kn)ψr(f)

 .

Thus, the eigenvalues of the matrices A(Kn)ψi(f) for i = 2, ..., r are
the multiple copies of θ and τ . We know that the trace of each
of the matrices A(Kn)ψi(f) for i = 2, ..., r is zero. Therefore, the
multiplicities of their eigenvalues are not dependent on i, and so
the multiplicity of θ is the same for all of these matrices. By the
same discussion, we know that the multiplicity of τ is also the same
for all of these matrices. Hence, the multiplicities of θ and τ for
each of the matrices A(Kn)ψi(f) for all i = 2, ..., r are mθ

(r−1)
and

mτ
(r−1)

respectively. By using Theorem 0.18.1, we can conclude that

there are n equiangular lines in dimension n − mθ
(r−1)

, and there are

n equiangular lines in dimension n− mτ
(r−1)

.

0.27 Two-graphs

In this section, we will define two-graph which is a combinatorics
object. All of the definitions in this section are from Godsil and
Royle [8]. At first, we present the definition of switching class.

43



0. COVERS AND EQUIANGULAR TIGHT FRAMES

Let E = {v1, v2, .., vn} be a set of n equiangular lines. We can
also replace each of the vectors of E by its negative; that is, we
can replace vi by −vi for each 1 ≤ i ≤ n. Therefore, there are
2n possibilities for E. As we demonstrated in Section 0.18, each
of these possibilities has its own Gram matrix, and we can derive a
graph from these matrices which are different from each other. Now,
suppose P is a subset of {1, ..., n}, and replace each of the vectors
vi for i ∈ P by −vi to reach the set E ′. Thus, the Gram matrix of
E ′ is constructed by multiplying −1 to all of the columns and rows
of Gram matrix of E which are corresponding to the elements of
P . Let G be the graph which is derived from the matrix of E and
G′ be the graph that is derived from the Gram matrix of E ′ by the
method which was explained in Section 0.18. We can easily see that
G′ can be constructed from G by removing the edges of G which
are between P and G \ P and put the edges between every pair of
non-adjacent vertices, such that one of them is in P and the other
one is in G \P . This operation is known as switching on the subset
P .

Let G be a graph and P ⊂ V (G), and suppose that we apply
the switching operation on P . The result graph is denoted by GP .
Let ∆ be the symmetric difference operator. Then, for each pair of
subsets P and Q of V (G) we have the following:

(a) GP = GV (G)\P ,

(b) (GP )Q = (GQ)P = GP∆Q.

The switching class of G is the collection of all graphs which are
reached by switching on every subset of the set of vertices of G.
Another name for switching class is two-graph.

In the next section, we will demonstrate how we can construct a
two-graph from a set of equiangular lines.

0.28 Covering Graphs from Equiangular Tight
Frames

In this section we show that we can build a covering graph from
an equiangular tight frame which was proved by Coutinho, Godsil,
Shirazi, and Zhan [5].
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0.28. COVERING GRAPHS FROM EQUIANGULAR TIGHT FRAMES

The following lemma demonstrates that we can construct a two-
graph from a set of equiangular lines.

0.28.1 Lemma. Let E = {v1, v2, ..., vn} be a set of n equiangular
lines with Seidel matrix S. There exists a graph G which is a 2-fold
cover of Kn whose adjacency matrix is derived from S. If E is an
equiangular tight frame, then S has only two distinct eigenvalues,
and G is an abelian antipodal distance regular graph which is a
covering graph of the complete graph Kn.

To prove the above lemma, it is sufficient to replace each of its
off-diagonal entries by a 2× 2 matrix as follows:

replace each −1 by

(
0 1
1 0

)
and replace each 1 by

(
1 0
0 1

)
. We

know that the diagonal entries of S are zero and its off-diagonal
entries are ±1.

We can see easily that the new matrix is a 2n× 2n matrix which
is the adjacency matrix of a 2-fold covering graph of Kn; That is,
the graph G in the lemma. These graphs are equivalent to regular
two-graphs.

0.28.2 Theorem. Let E = {v1, v2, ..., vn} be an equiangular tight
frame in Cd with Gram matrix G, such that 〈vi, vj〉 = α for each pair
of 1 ≤ i, j ≤ n with i 6= j and a constant α. Suppose S = 1

α
(G− I).

If all of the off-diagonal entries of S are r-th roots of unity for some
prime r, then there is a cyclic antipodal distance regular graph with
parameters (n, r, c2) which is a covering graph of Kn and

c2 =
1

r

(
(n− 2) +

(2d− n)

dα

)
.

Proof. Suppose Mr is the multiplicative group of the r-th roots of
unity, and ψ is a representation of Mr with degree k. Let Sψ be
a matrix wich is constructed by replacing each of the off-diagonal
entries of S by its image under ψ and replacing each of the diagonal
entries of S by a k × k block of 0s.

If ψ is a regular representation of Mr, then Sψ is the adjacency
matrix of some graph H. We will show that H is an antipodal
distance regular covering graph of Kn for some n.

Suppose ψ1, ψ2, ..., ψr are the linear characters of Mr, such that :

ψk(e
2πi/r) = e(k−1)2πi/r.
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0. COVERS AND EQUIANGULAR TIGHT FRAMES

We have A(Kn) = Sψ1 and S = Sψ2 . Now, we have the following
claim.

Claim: The minimal polynomials of the matrices Sψl are all
equal for all 2 ≤ l ≤ r.

Suppose pr(t) is the r-th cyclotomic polynomial. Since r is a
prime number, we have

φ(t) = tr−1 + tr−2 + ...+ t+ 1.

We know
Q(e2πi/r) ∼= Q(t)/〈φr(t)〉.

Thus, S can be written as a matrix such that its off-diagonal entries
are the indeterminate t subject to p(t) = 0.

For matrix A, let m(A) be the minimal polynomial of A. Since
for any j, we know φj(e

2πi/r) is a root of the minimal polynomial
Pr(t), then m(Sφj) will vanish. Since the set of lines is equiangular
tight frame, it meets the relative bound, and so

α2 =
n− d

(n− 1)d
.

By using Theorem 0.18.1, we can conclude that m(S) has degree
two, and for all js, the matrix Sφj is not a multiple of the identity
matrix. Therefore, the claim holds.

We can see that the trace of all of the matrices Sψl is zero. Hence,
all of these matrices are cospectral. The matrix Sψ is a block diag-
onal matrix whose blocks are the matrices Sψl for 1 ≤ l ≤ r, due
to the fact that the eigenvalues of the regular representation of an
abelian group are its characters. By using the above facts and using
the Theorem 0.18.1 for the expression for the eigenvalues of S, it
has been proved that the graph H is an r-fold covering graph of
the complete graph with the eigenvalues n − 1 , n−d

αd
, −1 and −1

α
with multiplicities 1, d(r− 1), n− 1 and (r− 1)(n− d) respectively.
Since r is prime, the graph H is connected, this has been proved
by Godsil and Hensel in [7]. By using the above facts and using
the Theorem 0.8.1, we can conclude that H is an antipodal distance
regular covering graph of the complete graph Kn with parameters
(n, r, c2).
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Appendix

Figure 4: The table of feasible parameters of abelian covering graphs of complete
graphs for n ≤ 17
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Figure 5: The table of feasible parameters of abelian covering graphs of complete
graphs for 18 ≤ n ≤ 28
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Figure 6: The table of feasible parameters of abelian covering graphs of complete
graphs for 29 ≤ n ≤ 36
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Figure 7: The table of feasible parameters of abelian covering graphs of complete
graphs for 37 ≤ n ≤ 45
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Figure 8: The table of feasible parameters of abelian covering graphs of complete
graphs for 46 ≤ n ≤ 50
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