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Abstract

This thesis is devoted to a two-pronged study of non-perturbative quantum field theory.
In Part I we focus on the four-dimensional super conformal A" = 4 Yang Mills theory. We
compute smooth Wilson loops and correlation functions in the strong-coupling regime of
the theory using the classical integrability of the dual string theory as our main tool. In
both cases the solution is given as a set of integral equations of thermodynamic bethe
ansatz type. The correlation function and Wilson loop are then written in terms of the
corresponding TBA free energy. The equations for the Wilson loop expectation value can
be used for generic smooth contours embeddable in an R'! subspace of R'3. In Part II
we ask general questions about the allowed space of massive quantum field theories based
only on crossing symmetry and unitarity. We approach this question in two ways. First we
consider putting massive QFT into an AdS box and study the conformal boundary theory
using standard conformal bootstrap tools. We call this procedure the boundary bootstrap.
It is applicable in any dimension but takes its simplest form for a 1 + 1 dimensional bulk
QFT where we use it to obtain rigorous bounds on allowed QFT couplings. For 1 + 1
dimensional QFT we are also able to obtain rigorous bounds directly in flat space using
unitarity, crossing symmetry and analyticity of the S-matrix. The bounds obtained in this
way agree perfectly with those obtained from the boundary bootstrap.
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Chapter 1

Searching for a QFT Rosetta Stone

The current status of fundamental physics presents an unusual predicament. Our under-
standing is completely based on quantum field theory, yet our mastery of quantum field
theory itself is limited in many ways. It is often as if we are given the laws of physics
in a language that we cannot fully decipher. An outstanding example is the problem of
computing the mass of the proton. Although the theory of QCD has been well known for
many decades, and certainly contains this number within its predictions (as predicated by
lattice results), given the QCD Lagrangian a theorist has no means to extract this number
within a controlled approximation scheme.

This example is representative of a widespread difficulty in QFT which is that we often
do not know what is the best set of variables to use in the description of a given theory.
Generically when the interactions become strong the utility of the Lagrangian formulation
is limited and the propagating degrees of freedom are far removed from those described by
the Lagrangian (as in the example of QCD, which becomes a theory of stringlike objects
in the IR). Moreover, the parameters in the Lagrangian are not the physical parameters
and undergo renormalization. These issues point to two of the most important problems
in modern physics:

Q1: How do we describe strongly coupled QFT?

Q2: How do we formulate QFT in terms of physical quantities?

Of course these questions are not independent, and an answer to the second may provide
insight into the first.



In this thesis we will approach these questions from two perspectives. In part I we will
focus on the study of very special theories with enhanced symmetries which makes them
more tractable. In particular, we focus on N' = 4 Super Yang Mills, which is perhaps
the simplest 3 + 1 dimensional gauge theory. In part II, rather than focus on any specific
theory, we instead do exactly the opposite and consider the space of all possible quantum
field theories compatible unitarity and Lorentz invariance. These two parts are mostly
disjoint and may be read independently.

1.1 Invitation to part I

When discussing such general questions as Q1 and 2, it is useful to have toy models which
can provide inspiration and a means to test ideas. For this reason, it is of paramount
importance to have at least one example of a fully interacting 341 dimensional gauge
theory which we can solve exactly. Exact solvability, or integrability, is a property which
formally is only possible in two-dimensional systems and one may wonder in what sense a
4 dimensional theory may be integrable without also being trivial. What makes such an
idea possible is the concept of holography [1-6]. A remarkable outcome of this principle
is that certain gauge theories are exactly equivalent to theories of strings living in higher
dimensional, curved space-times. Thus, some special quantum field theories can be mapped
to a 2-dimensional world-sheet theory where one might hope to apply the techniques of
integrability. We shall now discuss a very special theory for which this is indeed the case.

The canonical example of holography is the equivalence of the fully interacting, 4D
gauge theory N' = 4 Super Yang Mills with U(N,) gauge group and the theory of type
[IB strings living in the space AdSs; x S° [3-5]. As an important example of how this
correspondence works, let us consider the computation of a wilson loop

W[C] = —Tr Pexp i/A (1.1)
NC cC
in the gauge theory [6]. Here C is a closed spacetime contour, A is the gauge field and
the trace is over the fundamental representation. One should think of the guage theory as
living at the boundary of AdSs which is precisely RY® and thus the Wilson loop contour
C sits at this boundary. The strings live inside the full AdSs x S°. The prescription for
computing the Wilson loop using the string theory is

wie) = > ¢~ SurinelX] (1.2)

Xe {surfaces ending on C}
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Although a remarkable equation, at first sight computation using the right hand side seems
even harder than computation in the QFT. This brings us to an extremely powerful aspect
of this duality: it is a so-called weak/strong duality in the sense that the strong coupling
regime of the QFT maps to a weak coupling regime of the string theory and visa versa.
Let us make this more precise. The parameters of the gauge theory and string theory are

related by [3]
VA

gﬁsz =27 Gstring » T = ? (13)

where we have introduced the t'Hooft coupling A = g%, N, and T is the string tension. We
first consider the planar limit of the theory defined as N. — oo keeping A fixed. Finally
we concentrate on the regime of infinite t” Hooft coupling which corresponds to gstring — 0
and T" — oo. When the string tension is large the string path integral (1.2) is localized
upon the classical solution so that we have the following recipe for computing wilson loops

at strong coupling!
= -

where X is any surface in AdS5 ending on C and X,;, € {X} is the solution of the classical
string equations. Thus the completely intractable problem of computing an arbitrary
wilson loop in the strongly interacting guage theory has been reduced to a simple minimal
surface problem!

QArea
s

Wich=> e 2
X

A =0 6—2—\/5Area

(1.4)

For the case of N' = 4 the utility of the duality goes far beyond strong coupling. It
turns out that the worldsheet theory is integrable [7]. This provides a concrete realization
of the possibility mentioned above that a 4D QFT can indeed be nontrivial and secretly
integrable by having an integrable string dual. Using this correspondence and exploiting
the techniques of integrability it has been possible to compute the full spectrum of operators
in planar N' = 4 for any value of the coupling [8] and also to give an all-loop description
of the scattering amplitudes in that theory [9-17].

These unprecedented results in interacting quantum field theories give hope that it
might be possible to solve N’ = 4 completely (at least in the planar limit, which we shall
focus on exclusively in this thesis). To solve a quantum field theory completely it is useful

I'Note that the usual duality involves the super wilson loop which also contains a coupling to the scalars
of N = 4 related to motion of the string in S°. This coupling is through a curve n (o) on the five sphere.
By choosing n! to point in a single direction we ensure that the sting is point-like in the sphere and the
usual gluonic contribution (1.1) is isolated.



to solve for a complete basis of operators in that theory. The set of all correlation functions
of local operators is one sufficient basis. The set of all possible Wilson loops is another
possible basis. Inspired by the achievements of [10,18] Part I of this thesis is toward an all-
loop description of correlation functions and Wilson loops in N = 4. The first step toward
this end is to develop an integrable formulation of the classical worldsheet problem that
emerges at strong coupling. Indeed, this was the case in both the spectrum problem [8,18]
and the polygon OPE program [10, 19] where an integrable formulation of the purely
classical worldsheet problem was a key step in solving the full quantum problem. Chapter
2 describes an integrability-based program for computing smooth Wilson Loops at strong
coupling in N' = 4. Chapter 3 focuses on computing the strong coupling contribution to a
large class of n-point correlation functions in N = 4.

To conclude this invitation, we note that the study of N' = 4 clearly relates to the
first question Q1 posed above: how to describe a strongly coupled QFT. Although the
beta function of N' = 4 vanishes, the theory nonetheless mimics some behavior of QCD.
In particular when the coupling is weak the theory is best described in terms of the QFT
Lagrangian and its respective degrees of freedom. However, when the coupling is strong
the theory is best described in terms of string theory. By solving N' = 4 for any value of the
coupling, we may be able to extract some key concepts about how a weakly coupled gauge
theory can transition into a theory of strings when interactions are strong. For example,
can we understand in NV = 4 precisely how the holographic direction emerges from the
gauge theory? It is expected that such a holographic direction is also necessary to describe
the QCD string [2] — what insight can we gain from N = 47

1.2 Invitation to part II

In part IT of this thesis we take the precisely opposite approach to that taken in part I.
Rather than consider a very specific theory, such as N/ = 4, we instead consider the space
of possible Lorentz invariant and unitary quantum field theories. The idea of constraining
theories through a minimal set of indisputable principles is what is commonly referred to
as bootstrap philosophy. It shows up in various incarnations, the most well known being
perhaps the conformal bootstrap and the S-matrixz bootstrap.

The conformal bootstrap works beautifully in two dimensions [20] where it allows for
analytic description of a plethora of conformal field theories. In higher dimensions, the
bootstrap lay dormant for decades until the seminal work [21]. This work gave rise to a
new research field where one looks for bounds on the couplings and spectra of conformal
field theories by exploring crossing and reflection positivity. Using computers, one rules out
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particular couplings or spectra by searching for linear functions which yield impossibilities
when acting on the crossing symmetry relations. Remarkably, one can ultimately use these
methods to study some specific theories (such as the 3D ising model!) which show up as
distinguished points at the boundary of allowed theories.

The S-matrix bootstrap tries to completely determine S-matrix elements by exploring
the analytic properties of these objects to the fullest. This program enjoyed significant
attention during the sixties (see e.g. [22,23] for nice books on the subject) and resulted
in many powerful results such as the celebrated Froissart bound [24]. However, ultimately
the S-matrix bootstrap fell short of its goal of being a useful tool for determining S-
matrix elements or calculating observable quantities.? Moreover, with the development of
efficient perturbative techniques and with the appearance of quantum chromodynamics,
the program lost much of its original motivation. However, the basic philosophy of the
S-matrix bootstrap still has undeniable appeal and one cannot help but wonder if it is
awaiting a magnificent revival of its own.

Given the recent stunning success of the CF'T bootstrap, the time seems ripe to return
to the S-matrix bootstrap with insight gained from the former. Most importantly, the
CFT bootstrap provides us with the right type of questions to ask. Our usual approach
to QFT is to start with some specific theory — usually specified by a Lagrangian — and
trying to compute its physical properties such as its spectrum of masses and couplings.
The intuition from the CFT bootstrap seems to indicate that the correct question is the
reverse of the usual: one should start with a tentative set of physical data and ask weather
or not this data is compatible with the constraints of unitarity and crossing. In this way,
one studies the space of allowed quantum field theories.

Part II of this thesis is devoted to exactly such a program. We aim at carving out the
space of massive quantum field theories by trying to establish upper bounds on couplings
given a fixed spectrum of masses. As we shall see, one may use the exact same structures
appearing in the CFT bootstrap to constrain non-conformal quantum field theories. To
see this, consider putting a gapped D-dimensional QFT into a large AdS box described by
the metric
dz* +dr* + r2dQ?

22

ds* = R (1.5)
where z > 0 and 7 is a radial coordinate for R where d = D — 1. This idea is not a new
one [26], and one may think of it as a way of introducing an IR regulator (the AdS radius
R) while maintaining all of the isometries of flat space. For our purposes, this is a useful

2A notable exception is in the special case of integrable theories, where the program was borne out to
great success starting with the work [25].
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Figure 1.1: Cartoon of QFT in AdS.

box due to boundary at z = 0 where the isometry group SO(D, 1) acts as the conformal
group on R% As a result bulk correlation functions whose insertion points approach this
flat conformal boundary obey all the axioms of correlation functions in a d-dimensional
conformal theory.? In other words, bulk QFTs define or “induce” conformal theories at the
boundary whose correlators are defined by the boundary correlators of the bulk theory as
shown in figure 1.1. Further, the AdS/CFT dictionary [3-5] tells us that a massive scalar
bulk state is dual to a boundary operator with dimension

A(A —d) = m*R? (1.6)

The space of these conformal boundary theories is constrained by the usual CFT bootstrap
that we just discussed above. This, in turn, translates to constraints on the space of massive
bulk theories.

The structure of QFTs in hyperbolic space forms an interesting subject by itself, but
for obvious reasons it would be more interesting if we could study flat space physics within
this framework. The flat space limit is achieved by taking the radius of curvature R to

3Except for the existence of a stress tensor. For this reason we refrain from referring to these boundary
theories as conformal field theories, and rather call them simply conformal theories.



infinity while keeping the particle masses of the bulk theory fixed which implies that the
dimensions A ~ mR of the dual boundary operators will also diverge. In this limit the
boundary correlators of the bulk theory are naturally associated with S-matrix elements
which are then constrained by the large-A limit of the conformal bootstrap. We refer to
this procedure as the boundary bootstrap.

In chapter 4 we will discuss the implementation of the boundary bootstrap numerics.
The large A limit in the conformal bootstrap is computationally rather challenging. For
this reason we will focus on the the simplest setting: a 1+ 1 dimensional bulk and thus a 1-
dimensional conformal theory. The major simplification in this case is that we do not need
to sum over spins in the OPE. In chapter 5 we shall take a more pedestrian approach and
study the question of bounding couplings directly within the framework of flatspace QFT.
The flatspace QFT intuition motivating the existence of such bounds is that as couplings
become larger bound state masses tend to decrease and new bound-states may be pulled
down from the continuum. Thus it is reasonable to expect that for a fixed spectrum the
couplings cannot be arbitrarily large. We again focus on unitary, Lorentz invariant theories
in 1+1 dimensions. Using only the usual crossing symmetry and unitarity of the flat space
S-matrix we are able to establish bounds on the couplings which perfectly match those
derived from the the boundary bootstrap.

To conclude this invitation, we would like to note that these bootstrap methods ad-
dress both questions Q1 and Q2 posed in the introduction. Most notably, Q2 is directly
addressed. In the formulation described here we work directly with the physical data of
the QFT (particle masses and couplings) which is the input. Moreover, the formulation
is completely non-perturbative and assumes nothing about the strengths of interactions,
thus addressing Q1. Will the bootstrap be the Rosetta Stone that allows us to decode the
secrets of nonperturbative QFT?
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Wilson Loops and Correlators from
Integrability



Chapter 2

Wilson Loops at strong coupling

In this chapter we focus on the computation of Wilson loops in N = 4 at strong coupling.
Our main tool is the formula (1.4) which relates the impossible QFT computation to a
tractable (although still difficult) computation of minimal surfaces in AdS.

The study of minimal surfaces goes back at least as far as the time of Lagrange who
in 1768 considered the problem: Find a surface of least area ending on a given closed
contour [27]. This problem grew into an entire field of mathematics known as minimal
surface theory and has occupied the attention of mathematicians and physicists alike for
over two centuries (see [28] for a recent review).

Although historically most effort has focused on surfaces embedded in flat space, recent
years have seen a shift in attention to minimal surfaces embedded in special curved spaces
with the advent of the AdS/CFT correspondence [3-5]. While the mathematical statement
of the problem is simple and perfectly well-posed — compute the area of the minimal surface
ending on a given closed contour at the boundary of AdS — in practice this is a challenging
task. A hand full of exact solutions exist in cases where the boundary curve has an
exceptional amount of symmetry. For example, for closed loops in Euclidean AdS3; one
can construct solutions for a circular [29] and lens-shaped [30] boundary curve. In the
case of closed spacelike loops in Minkowskian AdS the area can be computed exactly for
the circle and the 4-cusp [31,32] solution, for example. There is also a beautiful method
for constructing quite general solutions parameterized by Riemann surfaces using theta-
function techniques [33-37].

In a parallel development, recent years have witnessed a boom in our understanding
of special types of surfaces in AdS based on the integrability of the underlying sigma
model. Thus far, integrability based techniques have successfully been applied to describe
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Clobal AdS;

Figure 2.1: Artistic depiction of minimal surfaces in global AdS. Surface A ends on a null
polygon at the boundary of global AdS3, which is indicated by the gray cylinder. As the
number of cusps becomes large surface A limits to surface B, which ends on the smooth
curve X, shown in red.

surfaces which approach the boundary at spikes — relevant for the study of correlation
functions [38-44] — as well as surfaces which approach the boundary along generic null
polygons — relevant for the study of Wilson Loops and scattering amplitudes [19,45-47].
These results hold only in the strong coupling limit of the theory, where the problem
becomes one of classical strings moving in AdS.

Two features of the integrability-based approach should be emphasized. First, this
approach is very economical in that one directly computes the minimal area without ever
needing to know the shape of the embedding surface. This gives an enormous analytical
and numerical advantage in the treatment of the problem. Second, and most important,
they provide a manifestly integrable formulation of the purely classical worldsheet problem.
As we have already mentioned in the invitation 1.1, this was the key step in determining
the full finite coupling solution for the spectral problem and for scattering amplitudes.

In this chapter, we set our sights on an all-loop description of smooth Wilson loops in
N = 4 Super Yang Mills Theory. The first step toward this end is to develop a manifestly
integrable formulation of the classical worldsheet problem that emerges at strong coupling.
We will initiate a systematic integrability-based study of minimal surfaces in AdS which
end on smooth curves at the boundary. The main observation is the simple and well-known
fact that any smooth curve can be approximated to arbitrary accuracy by a sequence of
null segments (see figure 2.1). Thus we can start with the results of [19] for null polygons
and compute the minimal area of any smooth (simply connected) boundary curve by
performing a careful continuum limit. The result of this continuum limit, and the main
result of this chapter, is a novel set of integral equations whose solution yields the area of

10



minimal surfaces ending on smooth curves at the boundary of AdS. We will refer to these
equations as the Continuum Thermodynamic Bethe Ansatz equations or simply CTBA
equations since they are the continuum analog of TBA equations derived in [19] for null
polygons.

The content of this chapter is based on the work [48]. We begin in section 2.1.1 with
a brief review of the AMSV solution [19] for the case of null polygonal Wilson loops. In
section 2.1.2 we develop the the necessary technology for the analytic continuation of the
AMSV equations. This analytic continuation is needed in order to describe all possible
configurations of a null polygonal wilson loop. Indeed, as we understand in section 2.2
an elaborate continuation is needed to pass from the original AMSV equations to a set
of equations which is suitable for the continuum limit. Only after this continuation is
performed do the equations describe generic smooth curves in the continuum limit. Sections
2.2.2 and 2.2.3 contains the derivation of the continuum version of the AMSV equations
and present the main results of this chapter. In section 2.2.5 we study a special exact
solution of the CTBA whose area can be computed exactly. Finally, in section 2.3.1 we
develop a numerical implementation of our method for computing minimal areas. This
allows us to demonstrate that the CTBA is not only a powerful tool for analytics, but is
also a useful computational tool. It also affords the opportunity to perform a final check
of the equations presented here. In particular, we show that results obtained from the
CTBA agree with those obtained from direct numerical integration of the string equations
of motion.

2.1 Null Polygonal Wilson Loops

2.1.1 Review of AMSYV solution

In this section we briefly review the solution of AMSV for computing the area of surfaces in
AdS; ending on null polygonal boundary contours. Recall that AdS; can be considered as
a surface embedded in R?2. The starting point of the AMSV construction is to reduce the
AdS; sigma model to a set of manifestly R*? invariant variables whose equations of motion
simultaneously encode those of the embedding coordinates and the Virasoro constraints.
This is the well known Pohlmeyer reduction procedure [49-51]. In these reduced variables
the 2N — 6 cross ratios of a null polygon with 2/ sides are encoded in cycle integrals

Zy = }{dz\/p(z) (2.1)

11



Figure 2.2: Cycles integrals Z,. The black x indicate zeros of p(z) and are arranged along
the real axis. The wavy black lines indicate our convention for defining the branches of
\/p(z). The branch chosen here is such that Z, is real and positive when the zeros are all
on the real axis.

where p(z) is a holomorphic polynomial of degree N — 2 and ~, are cycles on the riemann
surface defined by y?> = p(z). This polynomial is constructed from the string embedding
coordinates and z is the worldsheet coordinate.’ Since the worldsheet has the topology of a
disk the riemann surface has N — 3 independent cycles, which gives 2N — 6 real parameters
as required by the counting of cross ratios.

Of course there are many different possible choices of cycles. Careful WKB analysis of
the flat connection problem associated with the Pohlmeyer reduced equations of motion
selects a distinguished set of these cycles. Which set is selected depends on the precise
form of p and is exhaustively explored in [52,53]. The simplest scenario — the one originally
considered in AMSV — is the case in which the zeros of p are close to the real axis. In this
case we have the cycles shown in figure 2.2 which are the input into the TBA equations

log Ya(0) =—2|Zs| cosh 61— ~ Kuy(6 — 0)  log(1 + Y3(¢')) (2.2)
b

where the kernel is given by
_ {a,b)
 2misinh(6 4 id, — i)

Here ¢, = arg Z, and (a,b) is the intersection number of cyles v, and v,.> There is one
so-called Y-function Y, (6) corresponding to each cycle integral. The Y-functions obey an

Kap(0) (2.3)

IThe worldsheet is euclidean and we choose the standard complex coordinates z,z.

2The branch of arg is not important due to the periodicity of the kernel. Note that when the zeros are
all along the real axis we have ¢a,41 = /2, ¢a, = 0. This pattern of phases is easily inferred from the the
contours of Re,/p and Im,/p. Furthermore, according to figure 2.2 we have (2a + 1,2a) = —(2a,2a+ 1) =
+1. Thus we have K 5 = Kp, = —1/ cosh and we recover the usual form of the TBA given in [19].
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important functional identity known as the Y-system
Yo(0 +im/2)Yo(0 —inm/2) = (1 4+ Yoi1(0))(1 + Ya1(0)) (2.4)

which can be derived from the TBA (2.2) by smoothly shifting the equation to  — 0+im /2
and adding it to the equation shifted to 6 — 6 — im/2.

Once the Y-functions are obtained from (2.2) (typically via numerical integration) the
interesting part of the minimal area is computed as

1 -0
Area = Za:/de\m e log(1+Y,) + ... (2.5)

where the +... are some explicitly computable terms that we are not concerned with
presently. As we have already mentioned, the geometry of the boundary curve is en-
coded parametrically in the polynomial p(z). After solving the TBA we determine the
physical cross ratios of the polygon from the Y-functions via

/\$+)( a+1/\x a— 1)

5o (22
a0 = DG et (26)
S o (xi_a AR ) ( Toy1 x-i—_a—2)
B S CEAR Sy 0
where we have defined R
Ya.(0) =Y, (0 +ip,) (2.8)

The same expressions with ™ — 2~ are obtained by evaluating at § = in/2. Equations
(2.2)-(2.8) give, in principle, a complete solution to the problem of computing minimal
surfaces in AdS3 ending on an arbitrary null polygon. Several comments are in order.

Note that this solution is parametric. The input into the equations is a polynomial (or
rather it’s cycle integrals). The number of edges of the polygon fixes the degree of the
polynomial, but other than that little is known about what specific polynomial should be
chosen to describe a specific polygon. In this parametric form of the equations one would
need slowly vary the parameters of the polynomial until the desired cross-ratios (2.8) are
attained. We can do much better though. In fact it is possible to explicitly eliminate the
Z, in (2.2) in favour of the cross-ratios (2.8) such that the latter are the direct input into
the problem as explained in [9].

Equations (2.2)-(2.8) are derived when the zeros of the polynomial are close to the real
axis, and therefore are only valid for a region of the full space of null polygons which cor-
respond to such polynomials. In order to describe the full space of polygons the equations
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must be analytically continued. This issue will play an central role in our analysis of the
continuum limit later in this chapter and section (2.1.2) is devoted to this point. The
parametric form of the equations given above seems to be the most suitable for performing
this continuation. For this reason, we work exclusively with this form of the equations,
keeping in mind that we can rewrite them directly in terms of cross ratios if we wish.

2.1.2 TBA Morphing

In this section we study the analytic continuation of the AMSV solution in the space of
cross ratios, which amounts to analytically continuing the TBA equations in the parameters
Z,.> The analytic continuation is non trivial due to fact that the poles of the kernel (2.3)
move as we deform the Z, and can cross the contours of integrations as we pass from one
region of parameter space to another. We will refer to this as a “wall crossing”. It will be
important for later purposes to be able to easily follow the changes in the TBA equations
as we wall cross through the parameter space. The goal of this section is to introduce a
set of simple graphical rules which allows this process to be performed with ease.

As we perform generic deformations of the phases ¢, the poles of the kernel 2.3 move.
When a pole of the kernel crosses the integration contour the correct prescription is to
analytically continue the Y-functions by deforming the contour and picking the residue of
the pole. As we will see in this section, ultimately the process of analytic continuation does
not change the schematic form of the equations (2.2); the only change is in what cycles are
present in the equations.

Let us begin with the AMSV equations [19] which hold when the zeros of p are suffi-
ciently close to the real axis. The TBA is given by (2.2) with the cycles shown in figure 2.2.
Our first step will be to put these equations into a graphical form. To this end, it is useful
to make the following notational change. We number the zeros of p from left to right and
then label the cycles according to which zeros they encircle — e.g Z7 — Z19, Zy — Zo3,etc.
The Y-functions, and other variables are relabelled accordingly Y, — Y5 where we use the
bold index s = 12,23, ... to represent a pair of numbers. Note that in this notation the
order of the indices on a given object do not matter — e.g Y5 = Y5, etc.

Although figure 2.2 encodes the intersection matrix, one can not see from this figure
when a wall crossing will occur. For this reason, it is useful to work directly with the Zg
since it is their relative phases that control the crossings. Each Zg is a complex number

3This analytic continuation presents a beautiful mathematical problem with many connections to the
topic of wall-crossing [52, 53].
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Figure 2.3: Cycles Zs when the zeros of p are along the real axis. In this case the phases
obey ¢19 = ¢34 = -+ = /2 and ¢o3 = ¢y5 = .-+ = 0. We represent each complex Zg
by a vector. By arranging these vectors tail-to-tip the intersection matrix is encoded as
follows: if Zs and Z; touch at their endpoints (s,t) = +1; if they do not then (s,t) = 0.
The sign is determined by the usual right-hand-rule. We thus read off from the figure
(12,23) = (34,23) = --- = —1.

which can be represented with a vector. By arranging these vectors ‘tail to tip’ as shown
in figure 2.3 we can read off the intersection matrix as follows: if Zg and Z; touch at their
endpoints (s, t) = +1; if they do not then (s,t) = 0. The sign is determined by the usual
right-hand-rule. Thus the TBA equations corresponding to figure 2.3 are given by 2.2 with
¢s and (s, t) given in the caption. As a concrete example consider the case of a 12-sided
polygon for which the corresponding TBA is given by

do' log (1 + Yas(9))

log Y; = 21z ho— (-1 —
08 12(9) ’ 12‘ cos 0 ( ) 27 1 sinh (9 — 9, —+ i¢12’23)
df’  log(1+ Yi(0))
log Yo3() = —2|Zs3|coshf — (+1) [ —— —
t%;ﬂ 27 isinh (6 — 0" + i3 t)
logY3,(0) = —2|Z34|coshf — (—1) 45" log (1 + Y (¢)) (2.9)

% 7 Sil’lh (9 — 9, —+ Zlqb34,23)

and the corresponding graphical representation is given in figure 2.4A.

Now let us consider deforming the Zg away from the AMSV configuration. In fact, the
12-gon case given above will demonstrate all the essential features of the continuation for
a general N and so we will continue to use it as a concrete example. Consider smoothy
rotating the point 1 clockwise about the point 2 as shown in figure 2.4A. When Z5 aligns
with Zs3 the phases ¢1293 = —¢@2312 are such that the poles in the kernels coupling Y,
and Yos will cross the contour of integration. We analytically continue by deforming the
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Figure 2.4: Deformation of the Zs. The cycles shown in A corresponds to the AMSV case
where all zeros of p are along the real axis. Whenever two of the Zg align the TBA must be
analytically continued since a pole of the kernel is crossing the integration contour. Thus
to pass from configuration in A to that in B we must analytically continue the TBA. The
analytic continuation due to the the alignment of Z;, ;, and Z,,,, results in the addition of
a new Y-function associated with the cycle Z, s, = Zs,5, + Zs,5, as explained in the main
text. This gives the TBA shown in C.

integration contour and picking the pole of the kernel which gives the modified equations

IOg Ylg(e) = —2|Zlg| COSh9 + log(l + ng(e + i¢12723)> — K12723*10g (1 + }/23)
IOg }/23(9> = —2|Zzg| cosh 6 + 10g(]. + }/12(9 + i¢23,12>> — Z K23,t*10g (1 + Yt)

t=12,34

IOg %4(9) = —2|Zg4’ cosh 6§ — K34’23*10g (1 + }/23) (210)

Since the new source terms are evaluated off of the real axis, the equations are no longer
closed. One needs to introduce additional equations which compute the Y-functions at
shifted argument. There is a particularly beautiful way of implementing this described
in [19]. We first absorb the new source terms in the left hand side by defining the new
Y-functions

}/12(9) /

= - , Y, (0
1 4 Y53(0 + ig12,93) 2(0)

Y23(0)

Y/ 0 prm B
12(0) 1+ Yi2(0 + iga312)

(2.11)

To close the equations we must rewrite the right hand side of equations (2.10) in terms
of Y{,(0) and Y35(0). To achieve this we introduce a new Y-function Y3 defined by the
equations®

(L+Y12(0)) = (1+Y5(0)(1+ Yi3(0 +idi2,13)) (2.12)
(1+Y53(0)) = (14 Yas(0))(1 + Yi3(0 + ida313)) (2.13)

4These two equations are consistent due to the identity (1 + Yi2)/(1 + 3?1’2) =1+ 5723)/(1 + ?2/3)
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Figure 2.5: Analytic continuation of the TBA as we deform the Zs.

Plugging these into (2.10) we have

log Y/, (0) = —2|Z15| cosh 6 — Z Kiaexlog (1 +Y])

t=23,13

log Y55 (0) = —2|Za3| cosh 6 — Z Koz ¢xlog (1+Y,)
t=12,34,13

log Y34(0) = —2|Z34| cosh 6 — Z Ksypxlog (14Y]) (2.14)
t=23,13

Now to close the equations we need only to derive the equation satisfied by Yi3. This is
done by adding together the Yj5 and Y53 equations with the appropriate shifts. The result
is

log Y13(6) = —2|Z3| cosh 6 — Z Kist xlog (1 +YY) (2.15)

t=12,23,34

where |Zy3|e®? = Zi5 + Z3. This completes the necessary analytic continuation to pass
from the parameters in figure 2.4A to the those in figure 2.4B. Equations (2.14)-(2.15)
provide a closed set of equations valid in the new range of parameters.

Now we would like to find a graphical representation of this procedure. To this end,
consider the graph shown in figure 2.4C which contains the deformed Z as well as the new
Z13. This graph encodes the analytically continued equations (2.14)-(2.15). For example,
one can check that the intersection matrix between the Y-functions is correctly encoded in
this figure.® Thus we have a simple graphical rule for analytically continuing the equations:
whenever two of the Zg, say Z,, and Zg (with non-zero intersection (rs, st) # 0) cross over
by aligning we simply to add a new Z,., = Z,; + Z4 which represents a new Y-function in
the integral equations. Thus with such diagrams we can easily keep track of the form of
the equations as we perform a general analytic continuation of the TBA for a Wilson loop

5In other words, the intersection matrix is still just equal to the intersection matrix of the cycles.
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with any number of sides. As an example, let us continue to deform the N = 6 example
studied above. Suppose we now want to rotate the point 4 clockwise about the point 3
as shown in figure 2.5B. First Z3, will align with Z3 so we must analytically continue
resulting in the new form of the TBA shown in figure 2.5C which includes the new cycle
Za4. From this graph we can easily read off the TBA equations in this region of parameter
space. For example, the equation for Yj3 is given by

dp’  log(1+Y4(0'))
21 isinh (6 — 0’ + ip134)

log Yi3(0) = —2|Zys| cosh0 — > (13, t)

£=12,23,34

with (13,12) = —1, (13,23) = +1,(12,13) = +1. If we continue to rotate then Z3; will
align with Z;3 resulting in the equations shown in figure 2.5D with the new cycle Z14. In
this later figure we see a new feature of the graphs: Z;4 and Zs3 cross over each other
rather than touching at an endpoint. Such a crossing indicates an intersection matrix
(rs,tu) = +2 with the sign fixed again by the right hand rule.5 In particular, in the

example of figure 2.5D we have (14,23) = +2. For example, the equation for Yy, is given
by

40 log (1 + Yy (0))
log Yi4(0) = —2|Zua| cosh — ) 14,t) | 2= 2.1
08 Y14(0) |Z14] cos (14, >/27risinh(0—0’+i¢14t) (2.16)
t=12,13,34,24,23 ’

with (14,12) = —1, (14,13) = +1, (14,34) = —1, (14,24) = +1, (14,23) = +2.

Let us now make a few comments about the features of this example which are charac-
teristic of the general N case. First, note that in configuration D the Zg form a complete
graph. As a result, there is no way to create new edges in the graph: all possible wall-
crossings will only remove edges. For example, this can happen through a reversal of the
rule in figure 2.4. Thus this region of parameter space contains the maximum number of
Y-functions in its TBA and we will refer to this region of parameter space as the mazimal
region. This is in contrast with the region of parameters where the AMSV equations hold,
which contains the minimal number of Y-functions and we thus refer to as the minimal
region. For any N the TBA in the maximal region corresponds to the complete graph
spanned by the (deformed) Zg of the minimal region. In section 2.1.3 We will study the
maximal region TBA in detail.

As we wall-cross in the TBA it is useful to rewrite the area (2.5) in terms of the new
Y-functions in each region of parameter space. This can be done with a simple application

6This rule can be derived by simply repeating the steps given above for deriving the analytically
continued equations.
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of the identities (2.12). For example, the free energy corresponding to the TBA in figure
2.5A is given by

1 0
Mo = 5 > [ dB1Z] " log(1 + Yi(0) (217)
s=12,23,34
1 ~
-l ¥ /d@Zse" log(1 + 7,(0)) (2.18)
2m
s=12,23,34

To rewrite this in terms of the the Y-functions appropriate for the parameters of figure
2.5B we simply plug in (2.12) to obtain

1 6 B
A = 5= Y / 4074 " log(1+ V2 (9) (2.19)
s=12,23,34,13
1 0 B
D> /d9|Zs|e log(1 + Y.2(6)) (2.20)
s=12,23,34,13

where in the first line we have used the fact that Z;3 = Z15 + Z53 and we are using the
notation Y2 to indicate the Y-functions in the region of parameter space of figure 2.5B
(i.e. Y5 =Y/, and V¥ = Y3,). Applying this procedure after each wall crossing, the free
energy always maintains the form (2.5) where the sum is taken over all the Y-functions of
the parameter region.

2.1.3 Maximal TBA

In this section we will perform a detailed study of the TBA in the maximal region. We will
first determine what form of p corresponds to the maximal TBA. We then write the form
of this TBA for general N and work out the relation between the maximal cell Y-functions
and geometry. Both of these are crucial steps in obtaining the continuum TBA as we will
discover in the following sections.

Let us begin by determining what form of p corresponds to the maximal region. It is
useful to start with the example of N = 6 and consider a specific deformation of the zeros
that achieves the wall-crossing sequence of figure 2.5. For example, consider a deformation
like the one shown on the left side of figure 2.6. In the right panel of figure 2.6 we evaluate
the cycle integrals as a function of the deformation parameters (o, as). Our objective
is to analytically continue from the lower left corner (ay,as) = (0,0) to the upper right
corner (o, as) = (1,1) which corresponds to the configuration where the zeros are at the
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Figure 2.6: We consider a deformation parameterized by («, as) of the polynomial p for
the case N = 6. We start at (aq, as) = (0,0) where all of the zeros are real and deform to
(a1, ) = (1,1) where the zeros are arranged at the 4th roots of unity. We evaluate the
cycle integrals as a function of the deformation parameters (aq,as) and on the right we
show the contours where the relative phases of are vanishing such that a pole is crossing
the integration contour (i.e two Zg are aligning). The lower left corner corresponds to the
AMSV configuration where all of the zeros are along the real axis and thus the TBA is
represented by the diagram in figure 2.5A and is given in equation 2.9.

4th roots of unity. As per the TBA morphing rules of section 2.1.2 the AMSV form of the
TBA will hold until two of the Zg align and thus throughout the region labeled A. The
red contour labeled ¢12 23 corresponds to Zjo and Z,3 aligning, and thus the new TBA in
the region labeled B is given by that in figure 2.5B. Similarly, the TBA in regions C' and
D correspond to figure 2.5 C and D respectively. In particular, we see in this example
that when the zeros are arranged near the roots of unity the TBA takes the maximal form
described in section 2.1.2. Moreover, repeating this process for the next few values of N
reveals that this is a general pattern — for any N the TBA for zeros near the roots of unity
takes the maximal form. Now it is a trivial matter to write the TBA in the maximal region
for any N as we can easily draw its graphical representation in that region.

Let us make a simplifying remark. Note that according to the discussion of section
2.1.2 the sign of the intersection matrix is correlated with the sign of the angle ¢s¢ — they
are determined by the same right-hand-rule. Thus, we can use the identity sinh(f) =
—sinh(f £ i7) to write the TBA in the form

do' log(1+ Yy (#))
log Y4 () = —2|Zs| cosh § — > " [(s, t /27m (o :L 7or) (2.21)
t S
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where gt = Mod [¢s ¢, 7] so that 0 < st < 7. The great advantage of this form is that we
no longer need to keep track of the orientation of the edges in the graphical representation
of the TBA —i.e. we can simply drop the arrowhead on each graph. To clarify, consider
again the N = 6 case, and examine the maximal region Y34 equation given in (2.16). Note
that the elements of the intersection matrix that satisfy (s,t) > 0 correspond to angles
obeying 0 < ¢s < 7 (see figure 2.5D) while (s,t) < 0 correspond to —7 < ¢s¢ < 0. Thus,
in the later case we can absorb the minus sign from the intersection matrix into the kernel
by replacing ¢st — ¢st + 7™ which gives equations (2.21).

We will now examine the relationship between the maximal cell Y functions and ge-
ometry. We can easily use the morphing rules to follow the change in the Y-functions as
we wall cross. Doing this for the N = 6 and N = 7 deformations discussed above suggests
that the basis Y-functions transform as

R £ W (2.22)
’ I+ YER)+ Y n) (Vi)™

where in the second step we used the Y-system (2.4). For example, for EA/45 we have”
(YE™) (Y™™ = 1+ Y5™)(L+Y™) (2.23)

Since the relation between the Y™ and geometry is given by (2.6) then equation (2.22)
provides the relation between the Y™** and geometry. There is a simple way to derive
(2.22) from the graphical rules which goes as follows. Consider the wall crossing sequence
of figure 2.5. In this example we see that Yis is only involved in the first wall-crossing and
Y53 is involved in the first two. Using the morphing rules 2.11 we immediately see

~

Yio Smax Yos

1+Yes 0 (14 Vi) (14 Yay)

{max __
Yt =

(2.24)

which is in accord with (2.22) (we now drop the label min of the RHS). The Y3, is involved
in the second and third wall-crossing and thus it is not so simple to see that (2.22) holds.
However, after some algebra we indeed see

ymax — e = 2 (2.25)
(AY2§ + 1) (A Y12Yo3 + 1) 14 Y5,
Yio+1 Y12+Yas+1

"Since ¢, = ¢ = 7/2 and ¢9; = 0 (where ¢? is the value of the phases when the zeros are real) which
we can see from figure 2.3.
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Figure 2.7: Generating the maximal graph for the N = 7 case from the N = 6 case. We
start with the maximal graph for the N = 6 case and attach a new “leg” to the point 4.
The new leg should be attached such that the angle ¢34 45 is as it would be in the minimal
region. We then rotate the point 5 counterclockwise such that all possible wall-crossings
involving this leg are achieved. The result is the maximal graph for the N = 7 case.

However, such a simplification must occur because we could have wall-crossed to the max-
imal region by the alternate route in figure 2.6 where we first cross angle ¢34 93 then @19 93
and then ¢1994. In this case Y34 undergoes only one wall-crossing and it is obvious that Y34
and Yas satisfy (2.22). Thus by considering these two deformations (2.22) is obvious for
the N = 6 case. We will now extend this argument to any NV recursively. We can generate
the maximal region equations for the N = 7 case from the N = 6 case as shown in figure
2.7. Then we see that Y3, undergoes an additional crossing such that it is given by

. Y.
P €L - (226)
(14 Yas)(1+ Yis)

in accord with 2.22 for N = 7. The Y5 however undergoes 3 crossings giving
Yis
(X1 +1D)(Xe+1)(X3+1)

Yis = (2.27)
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where in the denominator we have defined

Y.
X, - _ 3417 . (2.28)
53 12Y23
<i}12+1 + 1) (?124‘?234‘1 + 1)
Yas Y

X, = 2; 34 _ (2.29)

(Vio +1) (zfil + Vo + 1)

Y12 Ya5Y

X, 12423134 (2.30)

~ A % V1o¥: %

(1/12 + 3/23 + 1) (371223_1 + 1) (3712-15-2572233+1 * ?ng-i-l + 1)
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Again one can check with a bit of algebra that this complicated denominator does indeed
reduce to 1 + Y34 such that (2.22) holds. However, we can consider a different sequence to
the maximal region in which Y5 is involved in the first crossing only. That is, start with
four points labeled 2,...,5 and cross to the maximal region for N = 6. Then attach the
new point 1 to point 2 and generate the N = 7 maximal equations by the same method
as in figure (2.7). In the later case it is obvious that Yj; obeys (2.22) and thus we have
also established this identity for N = 7. We could now repeat this argument for N = 8
by attaching a point 6 to point 5 in the maximal graph for N = 7 and so on. Clearly this
can be repeated recursively to derive (2.22) for any N. Now that we have determined the
relation to geometry for a basis of the Y,;"** it is simple to determine the relations for the
rest of the Y-functions. Here we simply note that there is a simple symmetry relating any
Y-function to a basis Y-function by an overall rotation. For example, for the N = 6 case
we have

Yia(0) = Yau(0 — i) = Yau(0 — 3im) = Yis(0 — 4im),  Yas(0) = Yia(6 — i27)  (2.31)

This is all the information we will require for our purposes below.

2.2 The continuum limit

In this section we consider minimal area surfaces in AdS ending on smooth contours at the
AdS boundary. We are interested in computing the area of these surfaces as a function of
the boundary contour. We solve this problem by taking a continuum limit of the AMSV
equations for the minimal area of surfaces ending on generic null polygonal contours. The
AMSV result consists of a set of Thermodynamic Bethe Ansatz (TBA) equations (2.2),
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with the minimal area computed by the TBA free energy (2.5). These TBA equations
must be carefully analytically continued in order for the limit of a large number of cusps
to approach a smooth boundary contour. This analytic continuation or “TBA morphing”
was considered in the previous section, and the tools and intuition developed there will be
essential. Once the continuum limit is performed we find a novel TBA-like system whose
input is a continuous curve parametrizing the continuous boundary curve. The output is a
continuous spectrum of y-functions which encoding the cross ratios of the boundary curve,
as well as the area which is a continuum version of the free energy. The layout of this
section is as follows. In section 2.2.1 we will discuss how the continuum limit is achieved
at the level of the polynomial p which parameterizes the cross ratios. From this, using
the tools we developed in section 2.1.2 we then determine the proper form of the TBA for
taking the continuum limit. The limit is performed in section 2.2.2.

2.2.1 Parameterization of the continuum limit

Since the form of the TBA depends on p, we must first understand how to take the
continuum limit at the level of p. Clearly we must take the number of zeros to infinity
since we are taking the limit of a large number of cusps. But how these zeros should be
arranged is a more subtle question. Generically it is the divergence of p which drives the
string embedding to the boundary. For example, in the null polygon case p diverges at
infinity, and thus infinity in the z-plane maps to the AdS boundary. On the other hand, for
the continuum limit one must create a curve in the z plane where p(z) passes rapidly from
finite values to infinity — this divergence forces the worldsheet to the boundary along this
curve and thus creates a smooth boundary contour. The way to achieve this is to let zeros
of p(z) accumulate uniformly along the unit circle as shown in figure 2.8. In this case p(z)
will limit to a polynomial p;, inside the unit circle and infinity outside the unit circle. This
remnant polynomial p;, parameterizes the (smooth) boundary curve of the wilson loop. In
this way we can describe a generic family of surfaces ending on smooth boundary contours.

We now see that the form of p needed for the continuum limit is radically different
from that considered by AMSV. In particular, we need to understand what form of the
TBA corresponds to p of the form shown in figure 2.8 for general N. For this, the tools
developed in section 2.1.2 will be essential. To utilize these tools we must understand how
the Zs change as we deform the zeros from the real axis into this configuration. Then we
can easily use the graphical representation of the previous section to obtain the correct
form of the TBA equations in that region.

In section 2.1.3 we considered the case in figure 2.8 where there are no yellow zeros, and
only zeros near the unit circle. Let us consider the case in which the zeros are arranged
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Figure 2.8: Parametrizing the continuum limit. We consider a polynomial like the one
shown on the left where each X represents a zero. We take a subset of the zeros (the red
ones) and place them uniformly along the unit circle, accumulating there in the continuum
limit. The yellow zeros remain at arbitrary positions. As number of red zeros increases
the polynomial limits to p;y, inside the unit circle and oo outside. The divergence in p
drives the worldsheet to the boundary along the edge of the unit circle, while the remnant
polynomial p;, parametrizes the shape of the physical boundary curve.

precisely at the roots of unit and consider large N. In this case, the polynomial p will
limit to p;, = —R inside the unit circle. This will describe a specific family of continuous
solutions (parameterized by R) and we shall study this solution in detail below. For now
we would like to describe a much more general family of solutions. In fact there is a simple
generalization of the above discussion which allows us to do this without re-doing the
analytic continuation of section 2.1.2. The key observation is that each Y-function Yj is
strongly suppressed when Zg is large, vanishing in the limit Zg — co. Now consider adding
some yellow zeros outside of the unit circle. For finite N the corresponding Y-functions
will interact in some non-trivial way with the Y-functions corresponding to those of the
red zeros thus complicating the analytic continuation discussed above. However, in the
limit N — oo since pous — 00, all these Y-functions will vanish and the TBA will take the
usual maximal form described above — the only remnant of the yellow zeros will be that

pin=R][(z - z) (2.32)

where z, are the yellow zeros sprinkled only outside the unit circle. In this way we can
parameterize a huge class of solutions. Of course to discuss the most general solution one
must also include yellow zeros inside of the unit disk in the large N limit. We shall not
consider such solutions in this thesis. We only note that one could derive the corresponding
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TBA using the TBA morphing tools developed in section 2.1.2 and following the values of
the Zg) in the presence of these additional zeros.

Let us summarize the main points of this section. We first determined that the correct
form of p for the continuum limit is that shown in figure 2.8 where we take the number
of red zeros to infinity and the yellow zeros generate a residual polynomial p;, which
parameterizes the shape of the continuous boundary curve that results in the limit. We
then considered the case in which p;, is a polynomial with no zeros inside the unit disk. In
this case the form of the TBA in the limit of a large number of cusps is the same as that
with no yellow zeros — i.e. the maximal TBA of the red zeros — but with a nontrivial py,

generated by the presence of these zeros. In the next section we will derive the continuum
limit of this TBA.

2.2.2 Continuum limit of maximal TBA

In this section we will study the limit N — oo in the maximal region TBA. The first order
of business is to determine the scaling of the Y-functions with N which can be ascertained
from the relation between the Y-functions and their corresponding space time cross ratios.
Note that each time a wall-crossing occurs involving an angle ¢s¢ the Y-functions Yy and
Y} are redefined according to (2.11) and the geometrical cross ratios corresponding to these
Y-functions changes accordingly. Thus the scaling of the Y™® can be different from that
of Y™, Indeed, from (2.6) we see that Y2, ~ N? since the distances in the denominator
involve two neighbouring cusps. Thus is follows from (2.22) that Y33 ~ N ~2. Since all
other maximal Y-functions are just rotations of this basis, it follows that in the continuum
limit the Y-functions scale like

1
Ya(0) ~ iz o) (2.33)
where y, is finite and independent of N and o = (0y,02) where the o € [0,27) are

continuous variables.

Now note that on the right hand side of the maximal TBA we sum over O(N?) y-
functions, with each one scaling as N=2 (after expanding the log) such that it is very
tempting to replace Y, , N7*Fy4, = [ dmdmfr .. For this, we must be sure that F},,
limits to a smooth function and thus the alternating sign of (s; t) seems to pose a problem.
However, note that according to the discussion of section 2.1.3 the sign of the intersection
matrix is correlated with the sign of the angle ¢s¢ such that we can write the TBA in
the form (2.21) where it is manifest that the integrand will limit to a smooth function of
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01 To

1 pin(z)

02

Figure 2.9: On the left we show the discrete version of the equations in the maximal cell
for N = 12. Note that we have already dropped the couplings to the Y-functions related
to the yellow zeros since they vanish in the continuum limit. The s, and t, label red
zeros which accumulate along the unit circle. In the continuum limit these become o, and
T, which parameterize the unit circle as shown on the right. On the left, the black lines
indicate Y-functions with non-zero coupling to the blue Y-function while the grey lines
indicate those with no coupling to this Y-function. Recall that two Y-functions have a
nonzero intersection only if their lines touch |(s,t)| = 1, or if they cross |(s, t)| = 2. This
intersection matrix results in the 7 integration limits in (2.34) as well as the “missing”1/2 in
the continuum kernel (for a given blue line there are only O(N) Y-functions with [(s,t)| = 1
and thus these do not contribute in the continuum limit).

t1,ts. Plugging the scaling (2.33) into (2.21) and and replacing the sum with integration
we obtain

o1+2m—e 02—¢€ o 6,
) yT( )
lo o 0 + l()g 2 =4 Zo| CO 119 — d? dn d , 7 sinh 6 — 6 —+ Dot

(2.34)
where now ¢ and 7 are continuous variables that live in [0,27), ¢ = 1/N and in accord
with our usual notation z, = 2,4, with®

eio'2

Ro109 — / dZ\/ pin(z) (235)

eto1

The limits of integration of 7 and 75 are the continuum version of the intersection matrix

8The source term in (2.34) has acquired an additional factor of 2 since 2, is defined to be only half of
the cycle integral. That is Zg — 2z, in the continuum limit.
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|(s189;t1t2)| as shown in figure 2.9.° The explicit log divergence that appears on the left
hand side of the TBA equations comes from the region of integration where the points 71,
79 pinch down on o7, 05. Because of the local nature of the singularity, it can be regulated
by a solution of (2.34) corresponding to a different z,. In particular we can consider the
limit |z5| — 0 which is R — 0 in figure 2.8. Then a solution is given by any #-independent
function of the form

circ afcn af02

Yo = (fO'l - fcr2)2 (236>

where f, is any smooth, monotonic curve running from —oo to +o0o. Now we can write a
regulated form of (2.34) by subtracting from it the equation satisfied by (2.36) to obtain

y,,(@) /Ul+27r/02 /+oo / yT(el) B yCirC
log =22 = —4|z,|cosh0 — [ dry [ d dé - 2
o8 circ |Z ‘ o8 o 2 o1 n - i sinh(@ -0 + Z'QO(,.,-) ( 37)

2 [e.9]

What is important is that because of its bilocal form (2.36) automatically has the proper
short-distance singularity in o such that the integration in (2.34) is regulated in the pinch
region. Additionally, it has the correct transformation properties such that (2.37) is pa-
rameterization invariant. Of course regulating with a solution of the R — 0 problem is not
the only possible choice. We shall see in later sections that we can find much less trivial
solutions to (2.34) and that for some purposes (such as numerical integration of (2.34))
these solutions are preferable as regulators.

Recall that the TBA equations of AMSV (2.2) imply the the Y-system (2.4). In the
same way our continuum TBA equations (2.37) imply the continuum y-system

o1+2m—e

log 0 (6 + i) + log u (8) = —2log 2 — 2 / i / dn ge(0)  (2.38)
o2+€ o1+€

where we have defined 7, (0 + ipy) = y5(0).1° To see the full implication of this equation,
we note that the (2.37) further implies that the y-functions are ir-periodic in 6. This
allows us to drop the shift by ¢7 on the left hand side of the y-system. The resulting
equation is a constraint on the o-structure of the y-functions. It requires them to have the

9The factor of 2 that cancels the 2 in 1/2mi also comes from the intersection matrix as explained in the
caption of figure 2.9.

10Note that we could eliminate the €’s in (2.38) in the same way as we did in (2.34) — by dividing through
by the y-system for y°*® which is identical to (2.38) but without the #-dependence.

To see this, one needs to shift by i in (2.37) making sure to pick all of the residues on the righthand
side. The end result is that the equation for y, (6 + i) is identical to that for y, (). Since the integral
equation uniquely determines the y-functions, we conclude that y,(0) = yo (0 + 7).
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Figure 2.10: Boundary curve X, and cross ratios. To go back to global AdS one simply
imagines wrapping the Poincaré patch (in grey) on the cylinder. We indicate the lightcone
directions z* and show four points along the = direction. From four such points one
can form the cross ratios X ., ,..,. The regularized area depends only on the conformal

invariant quantities X . Here we will exclusively work in terms of the bi-local cross
ratios formed by taking the limit oo — 01, 04 — 03. These bi-local cross ratios are an

(over)complete basis of the full set of cross ratios.

form of a bi-local cross-ratio 5%
Ty Oy
o (0) = AI—A22
(IUI - x02)

for some function Z, = Z,(0) and we use the notation df, = Osf,. This is the general
solution to (2.38) once the shift in 6 is dropped.'? This same structure can be deduced by
studying the continuum limit of the Y-functions defined in terms of special solutions of the
linear problem associated with the Pohlmeyer-reduced equations of motion. The important
point is that at the physical values § = 0,im we can identify z, with the physical boundary
curve z, so that we have

(2.39)

+ 9yt
Ozl 0z ],

(23, —xf,)%

Oz, 0z,

T G

9o (0) = (2.40)
which allows us to reconstruct the (continuous) cross ratios of the (continuous) boundary
curve once we have solved for the y-functions. These bi-local cross ratios are related to the
usual definition of a cross ratio (involving four points) as shown in figure 2.10. Equations

(2.40) are of course the continuum analog of the relations (2.6).

We call (2.37) the Continuum Thermodynamic Bethe Ansatz (CTBA) equations. They
are the continuum analog of the TBA equations derived in [19] for null polygons and the

120nce we drop the shift in @ the y-system (2.38) is an integral form of the liouville equation.
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main result of this section. In the next section we will derive the continuum analog of the
area formula. Finally, in section 2.2.5 we will consider an exact solution of these equations.

2.2.3 Continuum area formula

The goal of this section is to write the continuum analog of the area formula (2.5). In the
case of the TBA equations (2.2) it turned out to be possible to easily take the continuum
limit starting with null polygons, once the proper analytic continuation was identified.
Once this analytic continuation has been performed, the area formula (2.5) also has a nice
continuum limit, although with an additional subtlety due to regulation. This issue arises
because the nature of the divergence in the area is very different in the case of null poly-
gons and smooth curves. In particular, it is not clear apriori how/if the cusp divergences
of the former become the arc-length divergence of the later. To address this issue we must
momentarily return to the flat connection and recall some aspects of Pohlmeyer reduction
that are relevant for the computation and regulation of the area. Once the issue of regula-
tion is dealt with, the continuum area emerges naturally from the continuum limit of the

AMSYV result.

In the Pohlmeyer reduced formalism we define the SO(2,2) invariant combination
a(z, Z) in terms of the worldsheet metric as

2e** = 0X - 0X (2.41)

where X(z, Z) are the AdS3 embedding coordinates. The full area (including cusp and/or
arclength divergences) is then given as

Apgy = 4 / dzdze* (2.42)

It is possible to show (after some calculation) that the equations of motion for the embed-
ding coordinates and the virasoro constraints imply that « obeys the equation

D0a = e** — ppe (2.43)

Generically p can be any holomorphic function. For real surfaces p is the complex conjugate
of p. In the null polygon case p is the holomorphic polynomial discussed in the introduction
and the cusp divergences in Ag, come from the large z region where ao ~ 1/2log /pp. For
this reason [19] (following [46]) separate the area as

Ay = 4 / dzdZ/F + 4 / d=dZ(e* — \/p) (2.44)
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The first term contains the cusp divergences as well as various finite contributions (see [46]
for a detailed discussion). The second term is now manifestly finite and is given by [19]

1
/ B2~ Vo) = 5= Y / 40 Zoper] e~ Tog(1 + Yapa,) (2.45)

82>81

We would now like to consider the continuum limit of (2.44).

In the the continuum limit discussed in section 2.2.1 we replace p with the residual
function p;, and the domain reduces to the unit disk. The boundary conditions on « are
that the solution should look locally like the straight line solution at any point near the
boundary. The strait line solution corresponds to p;, — 0 and thus satisfies the equation

DT = 2 (2.46)
The solution obeying the proper boundary conditions for the strait line is then given by
20 (2) = (1 — 27)72 (2.47)

We use the notation o to denote the strait line solution since it is conformally equivalent
to the circular solution. Thus we see that the second term in (2.44) develops a new
divergence, which is just the arc-length divergence of the continuous wilson loop. We
are interested in computing the finite part of the area that remains after removing this
divergence. To this end we write (2.42) as

Afull = Adiv + AE + Afree (248)

where

circ

Adiv = 4/ d2d262a
D
Ay = 4 / d=dz|pi] (2.49)
D
Afree — 4/ dZdZ(eQa _ |pin| _ €2acirc)
D

In writing (2.48) we have added and subtracted the boundary behavior of the integrand
e2* ~ €2 We have also discarded all contributions outside of the unit disk D which is
like cutting the surface where it approaches the boundary along the AdS boundary curve
X,. Note that in doing this, we have discarded the cusp divergences stemming from the

large z integration of the first term in (2.44).
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Let us now study (2.48) term by term. The contribution A4, can be evaluated by
adapting appendix B of [34] to obtain'3
Ay =% _op (2.51)
E
where L is the arc-length of the boundary contour and £ is the cutoff distance from the
boundary. The term Ay is already written in terms of the continuum quantity p;,. Thus we
are left only with the last term in (2.48) which we must write in terms of y-functions. The
(divergent) integral over (e** —|pi,|) is given by the continuum limit of (2.45). Plugging the
scaling (2.33) into the area formula (2.45) where now the sum is over all of the Y-functions
of the maximal cell we obtain'*

4/ dzdz(e*™ — |pil) —hm —/d02 / doy /d9 12| €70 Yo () (2.52)
D

O+e

As expected, this expression is divergent as € — 0 due to the region of integration o; ~
oy where y, ~ (01 — 09)72. This divergence is just the manifestation of the arc-length
divergence of the area, and we should regulated as explained above by subtracting the
integral over 2™, This last integral is just (by definition) the pi, — 0 limit of (2.52).
This limit is subtle and we must carefully consider the behaviour of the solutions of (2.37)
when the sources become small. We provide a detailed analysis in appendix A. The end
result is that the p;, — 0 limit of (2.52) is given by the same formula, but with the
y-function replaced by its limiting form

YRk (9) = 22(0,, 0,108 24 ) € 20T %) csch ™2 (670 2, |) (2.53)
Finally, Ag.. is the difference between (2.52) and the same formula with y replaced by 3%k
giving the finite result

o2 “+o00

Afree = 5 /dUZ/dal /d9 |Za'| e ( yl;mk> (254)

0 —00

BMore specifically, we use the equations of motion for o™ to write
= 2a°C =99, circ L
4 | dzdze =44 | dzdz00a®"® = = — 27 (2.50)
D D g

The last equality is proven in appendix B of [34]. Note that we are using the fact that we can replace
" — o in the boundary term.
1Gee the discussion at the end of section (2.1.2) for the area formula after wall crossing.
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Physically the subtraction of y*"* corresponds to regulating by subtracting the area of a

surface ending on a circular boundary contour whose circumference is equal to the arc-
length L of the boundary contour x,. Of course we should add back the same quantity,
which is nothing other than Ag;, (2.51) in (2.49).

To summarize the results of this section we have

L
A = 7 21 + As + Afree (2.55)

where Ay, is given explicitly in (2.49) and Agee is given by (2.54) in terms of the y-functions
which are in turn obtained by solving the CTBA (2.37) and " which is given explicitly
by (2.53). Equation (2.55) is the continuum generalization of the AMSV area formula.
This equation together with (2.37) are the main results of this chapter. They provide an
integrability-based solution to the problem of computing minimal surfaces in AdS3 ending
on smooth boundary contours.

2.2.4 Numerical check

Given the length and technicality of the derivation of the CTBA system (2.37), (2.55),
(2.54) we find it useful to pause momentarily and perform a check that makes contact
with our usual notion of minimal area computations. We consider the special (but highly
non-trivial) case p;, = R. As we shall see below, although p;, has rotation symmetry, the
corresponding worldsheet curve generically does not.

Our strategy in this section is to numerically compute the minimal area in two ways.
First, we solve the CTBA by iteration and evaluate the area using (2.55) and (2.54). We will
describe how to implement this iterative procedure in section 2.3 (for general py,). Second,
we perform a direct numerical integration of the Pohlmeyer reduced string equations of
motion. These later numerics are quite simple for the case at hand so we describe them in
a bit more detail. Due to the rotational symmetry the equation of motion (2.43) reduces
to the ODE

1/4 (02 +77'0,) a = * — R%e™™* (2.56)
with the boundary condition
a~ = log(1 — r?) (2.57)

—1
This ODE can be solved by a number of methods (e.g. shooting point or relaxation). We
solve it for a few values of R using a standard relaxation method and directly evaluate each
part of the area according to (2.49). In table 2.1 we compare the results of these numerics
with the results of the CTBA numerics. We see that the results obtained from the CTBA
agree well with the results of the direct computation of the minimal area!
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’ R \ CTBA \ Relaxation ‘
1/2] 5292 | -5.293
1 ] -2.781 -2.782
2 4.431 4.429

Table 2.1: Comparison of the area obtained by numerically integrating the CTBA and the
area obtained from solving (2.56) by relaxation.

2.2.5 The Mathieu solution

In the previous section we performed a numerical test of the CTBA equations for the
special case p;, = R. In this section we observe that, quite surprisingly, the CTBA can
actually be solved exactly in this case! The exact y-function is given by (2.39) with

Mec(if + o)

i,(0) = V(i £ o)

(2.58)

where Mc and Ms are Mathieu cos and sin functions.!® We can extract the area of the

minimal area surface ending on this family of boundary curves from the exact y-function
and formula (2.55). The result is

A(R) = —21 + 27 (1/4 — a(R)) (2.59)

where a(R) is the Mathieu Characteristic (see footnote 15).

It is interesting to consider the boundary curve of this solution. Although p;, has
rotational symmetry, the spacetime surface enjoys a rotational symmetry only when R — 0
which corresponds to the circle. On the other hand, as R — oo the boundary curve
approaches a null square. For intermediate values of R the boundary curve is some non-
trivial closed curve on the cylinder which interpolates between these limiting cases as shown
in figure 2.11. Note that while the finite R curve is specific to this example, its limiting
behaviour is a demonstration of a generic feature of all solutions. Indeed, for any py, (2.32)

15 In Mathematica we have the following implementation:

Mec(z) = MathieuCla(R), R, 2]
Ms(z) = MathieuS[a(R), R, 2]
a(R) = MathieuCharacteristicA[1/2, R]
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( 3

R =00

Figure 2.11: Boundary curves for the Mathieu solution for R =0,3/4, 00 plotted in the

Poincaré Patch. For this plot we use the convenient conformal frame z}f = 2970, 2z =

(—14+257™%) /(14+257™/%) which differs from the one in the main text by a simple conformal
transformation.

with no zeros inside the unit circle the boundary curve approaches the circle or null square
the limits R — 0 and R — oo respectively.!®

Unfortunately we are not able to obtain this solution directly by solving the CTBA
which seems rather complicated. Rather we engineered the solution by a different method
that we describe below and then numerically verify that it satisfies the CTBA. For example,
one can directly substitute (2.58) into the CTBA and verify using numerical integration
that it is indeed a solution.!” A stronger check is to solve the CTBA numerically by
iteration. We will describe how to implement such a procedure in section 2.3. In figure
2.12 we plot the exact y-function against the results of these numerics and in figure (2.13)
we compare the numerically computed area with the exact area (2.59). One can see that
the numerical y-functions and the resulting area converge to the exact results.

Finally, let us now comment on how the solution (2.58) was obtained. Underlying the
integrability construction described above is the linear problem associated with the string
equations of motion in AdS3. It turns out that for the case p;, = R, the corresponding linear
problem is equivalent to one that was recently studied [55] in the context of the Sinh-Gordon
model. Remarkably, in [55] the exact wronskian (@Q-function) of that linear problem was
constructed. Starting from this @-function we were able to construct the solution (2.58).

16 Actually, R — 0 will always correspond to the circle even if p;y, has zeros inside the unit circle. For
R — oo the boundary curve will approach a (4 4+ 2n)-gon for py, with n zeros inside of the unit disk.

1"This is actually somewhat difficult due to the complicated analytic structure of the integrand and
the difficulty of computing the Mathieu functions throughout the necessary range of variables. We will
comment more on the former point in section 2.3.

35
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1/2 |

Figure 2.12: Comparison of the y-function constructed from (2.58) with the results of
solving the CTBA with z, = R(e"? — ¢'°*). Here we plot the results for R = 1. Due
to the rotational symmetry of p;, the y-functions depend on oy and oy only through the
combination o = oy — o1. We plot o2y, () for o = 1.00, 0.30, 0.14, 0.04, 0.01. The thick
grey curves are the results of the numerics while the dashed orange curves are the exact
result. Note the formation of plateaus for small values of o and that the plateau height
diverges as 1/0?, all in accord with the discussion of section 2.2.3.

Here we only compute the area and the boundary contour, however perhaps it is possible
to actually construct the full embedding surface. An extremely interesting generalization
of this solution for the case when when p;, = R 2" was recently proposed in [36].

2.3 CTBA numerics

In this section we turn to a numerical study of the CTBA (2.37). The main purpose of this
section is to develop the proper numerical techniques to integrate these equations. This
allows us to demonstrate that these equations are more than a formal curiosity, but are also
a practical tool for computing minimal areas. The second goal of this section is to perform
a final check of the CTBA as well as the numerical recipe that we present below. For this
we directly numerically integrate the (Pohlmeyer reduced) string equations of motion. The
results obtained from the two approaches agree well within the expected numerical error
from each side.
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Figure 2.13: Area as a function of R. The gray curve is A(R) computed from (2.59). The
red points are the results of the relaxation numerics applied to the problem 2.56. Note that
A(R) > A% = —27 with the equality holding only at R = 0. The blue curve is the small
R expansion of A(R). One can check that this expansion is in precise agreement with the
wavy line approximation [54]. The large R expansion (not shown here) is also consistent
with the approach to the 4 cusp solution as it develops divergences in R which one can
interpret as cusp divergences.

2.3.1 CTBA

For the purposes of this section it is useful to work in a new worldsheet coordinate w(z)
defined via

w(z) = / don/pn(2),  pu(2) = <d7”2iz))2 (2.60)

Because p;,(z) has no zeros inside the unit disk this domain maps to a simply connected
region of the w-plane with boundary w, = w(e?). The primary utility of this set of
coordinates is that the integrals z,,,, = w,, — w,, are just the (complex) “distances”
between points on the curve w,. Thus, in this set of coordinates py, is eliminated and the
shape of the AdS boundary contour z, is encoded in the complex curve w,. In analogy
with our previous notation we use the shorthand w, = w,, — w,, .

The first order of business is to find a suitably regularized function for which to solve.
There are two types of singularities in the region oy ~ 0y which make y,(6) an unsuitable
function to use for numerics. In the limit 0o — o7 with fixed 6 the y-function has the
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expansion

1 1 _ 1
(01 — 02)? - §|801wa1|26 - §|aalwol|2€+20 + .. (2.61)

where the +... represents terms finite as 0o — 07 and # — +o00. The first term presents
one type of singularity which is simple to treat as it has only to do with short distances in
0. One can remove it by forming combinations like y, — <. The second, more difficult,
type of singularity is due to the §-dependent terms in (2.61) which reflect a subtle order of
limits that occurs at small separation in ¢ and large values of 6. From (2.61) we see that
if we take oo — o7 and then take 6 large then the y-function diverges exponentially in 6.
On the other hand, if we first send # — 400 and then take o5 — o7 in the y-function, the
result will be zero. To see this, first note that the expansion (2.61) is not valid in this limit.
For finite separation in ¢ the dominant large 6 behavior is given by dropping the kernel
term in (2.37). From this it is clear that the y-function will go to zero double exponentially
at large theta for any nonzero separation in o. In other words, there is a sort of “boundary
layer” at g9 — 01 = 0 whose height diverges exponentially in 6. This divergent boundary
layer is quite toxic for the numerics, but fortunately it can be regulated easily. The key
point is that the kink y-function captures this behavior exactly. Thus a fully regulated
function is given by

Yo ™~

yreg =y — ykink o yakink + ycirc (262)

where y?57K is given by

yakink(e) — ykink(_e)* (2.63)

Note that y*"¥ regulates the boundary layer at # — —oo, y*k regulates the boundary

layer at # — 400 and the double poles in (2.61) at o9 ~ o7 cancel between the terms on
the right hand side of (2.62). Thus y™® is a good function for numerics.

The integral equation obeyed by 3™% can be obtained by recalling that y*"* obeys

CTBA equation (2.37) but with cosh — 1/2e7? as explained in appendix A. Similarly,
y*ik obeys the CTBA but with coshf — 1/2e*?. Finally, y"¢ obeys the CTBA with
|zo| = 0 in the source. Putting all of this together yields the y**& equation.

) ) ) ykinkyakink o
reg __ _ykmk _ yaklnk + yCH‘C + G—K*y € (264)

Yy circ
Yy

where K x f represents the action of the CTBA kernel on the function f.

Now that we have the equation (2.64) suitable for numerics, we will describe our numer-
ical method which is based on the usual iteration scheme used for TBA equations. That

is, we start with some initial guess for the y-function (yzg)g = 0, for example), plug it into
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Figure 2.14: Convergence of CTBA. Area A,, computed from (2.55) from the nth iteration
of the CTBA starting from the initial iterate y;f = 0. We use the curve w, = e +1/5¢e%°.
We used a 10 x 30 grid for (a1, az). More points are required in the ay direction due to some
remaining non-analytic behavior even after the regulation (2.62) (i.e. there is a remaining
boundary layer of finite height due to the +... in (2.61)). The theta variable is cutoff at
+10 and contains 32 grid points. The CTBA converges to A°TBA = 3.990.... The blue line
is at AFOM = 3.989... and indicates the value obtained by direct numerical integration of
the Pohlmeyer-reduced string equations of motion which we explain in section 2.3.2.

the RHS of the CTBA, and integrate to produce an updated y-function yﬁf which we plug
back into the CTBA to produce ygf and so on. We repeat the process until it converges.
At first sight this seems painfully slow. At each iteration one must perform a triple in-
tegration for each point in a suitable {0, 01,05} grid. This grid typically contains around
10* points and direct numerical implementation of the integration (using Mathematica’s
NIntegrate, for example) takes several seconds for each point in this grid. The end result
is that each iteration takes a few hours. Given that a few hundred iterations are needed
for good convergence, this approach is clearly too slow to be practical or useful. This
difficulty can be circumvented with the use of Fourier methods which allow one to convert
the integrations into matrix multiplication such that each iteration (i.e. evaluation of the
entire {6, 01,05} grid) can be performed in under a second even in an un-parallelized code.
We will now explain this in greater detail.

First consider the #'-integration. Using convolution theorem we can write the integra-
tions in (2.37) as

o1+2m o2

/dTg /dﬁ Fol[ebm“F, [(mcosh @) '] F, [yi&(0')]] (2.65)

o2 o1
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where F and F ! are forward and reverse Fourier transforms, w is the Fourier variable
conjugate to 6, and'®

dor = (T/2+ 06 — pr) (2.66)

Now consider the 7 integration. The 7-variables are compact and thus we can expand
y=8(0') in modes as

Z Z TN cos(T a0 ) Ugyay (0) (2.67)
a1=—00 az=0
where we have introduced the useful shorthand

2T+ 147 Ty — Ty
=t rr2rt il = 2.68
“ o %2 om ( )

and made use of the 7 <> 71 symmetry of y™¢. Plugging this expansion into (2.65) gives

Fo L [Cae2(w)F, [(mcosh )7 Fu, [Uaya, (0)]] (2.69)

0102

where
o1+2m o9

Coro2(w) = /dT2 /dﬁ 1O cos(Tagay )edo (2.70)
o2 o1

The mode transfer matrix C is a fixed object: it is computed once and for all for a given w,,
and then is an input into the numerical algorithm. Once this transfer matrix is computed,
the RHS of (2.69) gives an extremely numerically efficient representation of the integrations
in (2.37). Even with a {0, 0,05} grid containing on the order of 10* points, each iteration
of the CTBA can be performed in under one second on an ordinary modern computer with
only a single core. With an appropriate damping scheme the method typically converges
in around 100 or so iterations as shown in figure 2.14.

2.3.2 String Equations of Motion

Let us now turn to an alternative method for computing minimal areas, which is a brute
force attack on the string equations of motion, or some reduced variant of them. This will
allow us to perform a final check of the CTBA and the numerical recipe described above.
Since we are only interested in the area (i.e. and not the full string embedding) it is useful
to work only with SO(2,2) scalars formed from the R?*? embedding coordinates X (z, z).

18 Here one must take care to properly define the branches of the arg function appearing in ¢, = arg(wg ).
This subtlety does not arise in (2.37) due to the 2mi periodicity of the kernel.
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In particular, it is useful to use work with the variable «(z, z) defined by (2.41) which
appears in the on-shell string action (2.42). Working in terms of such scalar variables goes
by the name of Pohlmeyer reduction [49-51], and is actually the starting point for the
integrability-based method for computing minimal areas of surfaces with null polygonal
boundaries [19,46]. We will numerically integrate the sinh-Gordon equation (2.43) in the
usual z-coordinate with p — pi, = dw(z)/dz and unit disk for the domain. This equation
must be supplemented with boundary conditions that o approach the straight line solution
A given in (2.47) at the boundary.

For the purpose of numerics we must define a suitable function for which to solve. This
is simple: a function which is regular everywhere in the unit disk and on its boundary is
given by

' = — o (2.71)

which obeys the boundary conditions a"® — 0 at the boundary. Now we have a well
defined numerical problem: solve (2.43) written in terms of o™ subject to the boundary
condition o**® — 0 at the boundary of the unit disk and then evaluate (2.48)-(2.49). With
(2.43) written in terms of the regular function " we solve the resulting equation using
a standard relaxation method which is suitable for the elliptic operator 9. One could
of course use faster integration schemes based on spectral methods, however we prefer
relaxation for its simplicity and stability. The results of this procedure for an example case
are shown in figure 2.15. In figure 2.14 we compare the results obtained from the numerical
integration of the CTBA and the results obtained from integrating the Pohlmeyer reduced
equations of motion. The numbers obtained from the two different methods agree within
the expected error of the numerics on both sides.

As a final comment we note that, as in the case of the CTBA, the Pohlmeyer numerics is
completely parameterized in terms of p;,. However, unlike the CTBA, we cannot directly
recover the physical boundary curve x, after integration. In order to do that in this
approach, one would need to further integrate the equations of motion for the embedding
coordinates with (2.41) to obtain X near the boundary. Here we are only interested in
checking the results of the CTBA and thus this inherent difficulty is of no consequence to
us. Indeed, it clearly demonstrates the advantage of the integrability based approach over
direct numerical methods.

2.4 Discussion

In this chapter we developed an integrability-based method for computing the area of
minimal surfaces in AdS which end on smooth curves at the boundary. Our main result is
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Figure 2.15: Here we plot o*#(w,w) the regulated solution of (2.43) for the curve w, =
e + 2/5¢e%° obtained from the relaxation numerics described in this section. In these
coordinates the unit disk of the z-plane maps to a simply connected region bounded by
the curve w, = w(e™) where w(z) is defined in (2.60).

the set of integral equations (2.37) and (2.55). These integral equations, which we dubbed
the CTBA, provide a powerful tool for analytic study of minimal surfaces. The CTBA
also provides a powerful tool for numerics and we developed an algorithm for numerically
integrating these equations. It efficiently reproduces the results obtained from a brute force
numerical integration of the string equations of motion as shown in figure 2.14.

Perhaps the most exciting aspect of this work is the myriad possibilities for future
directions. First, it would be interesting to generalize the results here to minimal surfaces in
the full AdSs. It should be possible to do this by following the same steps used to derive the
equations presented here, but starting from the AdSs version of the AMSV equations [19].
Another interesting direction would be to adapt the results described above for the case of
Fuclidean AdS. This would be of interest in the study of entaglement entropy and should
also reveal a fascinating connection between (C)TBA and theta functions [33-37]. We have
made much progress towards this end and will present the results elsewhere.

First and foremost, we see the results presented here as the first step in the study of
smooth Wilson loops in A/ = 4 at any value of the t'Hooft coupling. Although a daunting
task, history has taught us that it is indeed possible as demonstrated by the exact solution
of the spectrum problem as well as recent results from the OPE of null polygonal Wilson
loops and 3-point functions. In these examples, the first step was to identify integrability
in the extreme strong and weak coupling limits. In this paper we achieve the former. A
natural next step is to study the weak coupling problem where there have been remarkable
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advances in the study of null polygonal Wilson loops. It would be very interesting to
study the continuum limit of these perturbative results and to try to identify some hidden
integrability structure present at both weak and strong coupling.
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Chapter 3

Correlators at strong coupling

We now turn our attention to the computation of correlators in N' = 4 at strong coupling.
The computation of correlators is generally highly nontrivial and obtaining explicit expres-
sions outside the perturbative regime is typically impossible. As in the previous chapter,
our main tool will be the AdS/CFT correspondence [2-5] which due to (1.3) maps the
problem at strong coupling to a problem of classical strings moving in a curved spacetime.
In particular, the problem of computing the correlation function at strong coupling is that
of finding the area of the minimal surface in AdSs x S° that goes to the AdS boundary at
the operator insertion points x,.

In this chapter, we compute the AdS part of the correlation function for arbitrary
heavy scalar operators inserted along a line. The method used here is inspired by the
integrability techniques originally developed for the Null Polygonal Wilson loop problem
[19,46,47] and later applied to the computation of three-point functions [38-40,42-44]. As
in these previous applications, integrability allows one to compute the minimal AdS action
without knowing the explicit classical solution. For the four point correlation function the
connection with Hitchin systems and the formalism developed in [52, 53] is used intensely.
As in the previous chapter the starting point of the method is the map of the string
equations of motion in AdS to a certain auxilliary linear problem by Pohlmeyer reduction.
Ultimately the solution takes the form of a set of functional equations that we call a y-
system. These functional equations are similar in spirit to the Y-system that appeared in
the solution of the null polygon problem [19] and which naturally arise in the solutions
of integrable QFT’s. While we have mostly focused on the 4-point computation, we note
that the method used below could in principle be applied for the corresponding N-point
computation.
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For some specific BPS operators dual to strings spinning on the same great circle of S°
the sphere contribution is well know. In this case we can construct the full strong-coupling
correlation function. We emphasize that these 4-point functions are generically neither
extremal nor protected. Complete, non-protected results for correlation functions of heavy
operators at strong coupling are quite rare. For example, in [38], the AdS part of the
three-point function is computed, but the only case for which the sphere is known (BPS
operators) is protected.’

This chapter is based on the work [41]. The layout is as follows. In the section 3.1
we start by giving the general strategy of this work and discuss some physically relevant
aspects of the problem. Then, in section 3.2 we write the AdS part of the correlation
function in terms of objects which are naturally computed using the integrability of the
string equations of motion. In section 3.3 we introduce a formalism that will lead to the
x-system which is the set of functional equations that allows one to compute the minimal
AdS action. In section 3.4 we compute explicitly the AdS part of the correlation function
using the y-system and explain the mechanism by which the dependence on the spacetime
points emerges. We also present some numerical tests of the results. In section 3.5.1, we
compute the sphere part for the specific case of BPS operators with large charges. In section
3.5.2, we discuss the saddle points of the fourth insertion point of the correlation function.
We then study the extremal limit of the correlation function which is an analytical test of
the result. In section 3.6 we conclude and discuss some open problems.

3.1 Four point function generalities

For large 't Hooft coupling A, the semi-classical computation of correlation functions corre-
sponds to the evaluation of the AdSs and S® actions for classical solutions with the topology
of a four punctured sphere. The boundary conditions are that the solution close to each
puncture P,, which is associated with the gauge theory operator O,(z,), approaches the
AdS boundary at the point x, in the same way as a 2-point function involving O,(z,) and
some other heavy, scalar operator. In this paper, we study the simplest case where the
operators are inserted on a line in R*. This implies that the string solution is contained in
a BEuclidean AdS, subspace of AdSs. Moreover, there is only one independent cross-ratio.
The conformal symmetry of A = 4 constrains the four-point correlation function to take

1Using the results of this paper it may be possible to extend the results of [?] to the complete N-point
functions of GKP strings at strong coupling since the mathematical problem is similar to the one treated
here.
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the form \

(O1(21)Oa(w2) O3(3) Os(4)) = f(w) | [(war) >, (3.1)

a>b

where x4, = z, — 23, A, is the dimension of operator O,, Ay = (D, Ac) /3 — Ay — Ay and

u 1s the conformal cross-ratio
L14T23

u= (3.2)

L12X34

Both the AdS and sphere contributions contain divergences as the string approaches
the position of the operators at the boundary of AdS, which requires a cut-off z = £.
To describe the world-sheet we use complex variables w,w. On the 4-punctured sphere,
the physical cut-off £ corresponds to cutting out small disks of radius ¢, around each
puncture P, at w,. Ultimately, we will need to establish a precise relation between the
cut-oftf’s €, and €. As we will review later, this is possible given the data accessible from
integrability [56].

In this paper, we will consider operators with charges scaling as VA, and without spin
in AdS. Following the prescription developed in [38,56], we account for the states in the
sphere by introducing an extra contribution of wave-functions. Therefore, the semi-classical
four-point function is given schematically by

/dw4e‘gfz\{ea}“d%‘?fz\{ea}ﬁs5\lf1\112\113\1f4 (3.3)

where the actions are evaluated on a classical (Euclidean) string solution approaching the
boundary of AdS at the positions of the insertion points z,.

In principle, there is an integral over all four insertion-points on the worldsheet. In
(3.3) we only integrate over the insertion wy since the position of the other punctures can
be fixed by conformal transformations. Since we are considering the A\ — oo limit, one can
evaluate the integral over wy by saddle point and the end result is the integrand of (3.3)
evaluated at the dominant saddle point.

Let us consider the issue of the saddle point in some detail since it will be an interesting
aspect of our computation. There are two issues here: the positions of the operators on the
boundary and the positions of the insertion points on the sphere. We can use the target-
space conformal symmetry to place three of the operators at 1 = 1, x5 = o0, x3 = —1
and the world-sheet conformal symmetry to fix w; = 1, wy = 00, wy = —1.

The position x4 is an input since we can put O4 anywhere along the line that contains
O;,23. On the other hand, once we choose x4 the position of the fourth puncture is fixed
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Figure 3.1: Insertions on the 4-punctured sphere. The gray ball represents the world-
sheet (the complex plane plus the point at infinity, or simply ‘the sphere’) and the black
boundary of the ball represents the equator of the sphere. The points w, are the punctures
on the sphere corresponding to the operators inserted at the positions z, at the boundary
of AdS,, which is represented by the strait line. We fix the points wq, ws, ws and x, s,
x3 using the world-sheet and target-space conformal symmetry respectively. The position
of the fourth insertion w, should be fixed at the dominant saddle point w} of the integrand
of (3.3). By symmetry we expect this saddle point to also be along the real axis, and thus
we have a notion of an ordering of the 4 punctures. In particular, there is three distinct
ranges for the location of w}. Consider the ordering of the z, shown in this figure. If the
dominant saddle point is located between ws and w3 (as in panel A) then the insertions
will not cross and the string embedding will look schematically like the one shown in figure
3.2A. If the dominant saddle-point is located between w3 and w; (as in panel B) or between
wy and wsq then the insertions cross each-other and we expect the string embedding to look
like the one shown in figure 3.2B.

at wy = w) by the saddle-point condition. By symmetry we expect the dominant saddle-
point to be located on the real axis and in this case we have a notion of an ordering of
the punctures. In particular, there are three possible in-equivalent orderings depending on
the position of wy. Figure 3.1 shows two of these possibilities. If the ordering of the x,
is the same as the w, then the insertions do not cross each other, as in figure 3.1A4. If
the ordering of the z, is different from that of the w,, then the insertions will cross as in
figure 3.1B. These two possibilities lead to two types of string embeddings with distinctly
different properties as is shown in figure 3.2. We will see that two types of solutions arise
naturally in our construction. We are able to characterize the qualitative features of the
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Figure 3.2: Two different possible string embeddings in AdS; which obey the required
boundary conditions. These two solutions are shown in panels A and B. The center panel
shows how to generate the configuration of panel B from that of panel A by interchanging
the order in which the insertions on the sphere attach to the boundary; this interchange
results in the characteristic folding shown in the embedding of panel B. These two types
of solutions arise from the possibility that for a given choice of operator insertion points x,
the insertion point wj (see figure 3.1) can be located in any of the three possible intervals

(wa, w3), (w3, wy), (wy,ws).

spacetime embeddings and compute the minimal AdS action of both types of solutions.
We will return to this topic below.

3.2 AdS; Pohlmeyer reduction

In this section we briefly review the Pohlmeyer-reduction process. We begin with a discus-
sion of the string equations of motion and the stress-energy tensor, which is the starting
point of the reduction. We then introduce the function 7 in terms of which the AdS La-
grangian can be written. It turns out that v satisfies a non-linear but scalar equation of
motion that is a modified version of the well-know sinh-Gordon equation. Next we show
how the different types of string embeddings discussed in section 3.1 are encoded though
the boundary conditions imposed on ~. Finally we use the function v to write the AdS
action in a form where integrability is more readily applied.
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Figure 3.3: Schematic analytic structure of 7. The blue dots represent the (double) poles
of T at locations w, and corresponding to the operator insertions O,(z,). The yellow
crosses indicated zeros of T. We have fixed the positions of wy, we and w3 using the world-
sheet conformal symmetry. We have arbitrarily placed w, in the interval (w3, w;) although
generically the saddle-point wj can be located in any of the three intervals along the real
axis.

3.2.1 Equations of motion and stress-energy tensor

Recall that we can consider (euclidean) AdSs as a surface in R'? obeying the constraint
YoY = (1) - (2)  + (Ya)* = -1 (34)

We write the action for a string in AdSs as

S:%/dQJ[aaY-aaY—l—)\(Y-Y—I—l)] (3.5)

and the resulting equations of motion as
Oy = (0Y - 0Y)Y (3.6)

The first term in the action is just the free string action in RY?; the second term is a
Lagrange multiplier term that imposes (3.4).

The equations of motion (3.6) must be supplemented by the Virasoro constraints and
boundary conditions. The Virasoro constraint requires T'ays + Ts = 0. In particular, the
AdS contribution to the stress-energy tensor does not vanish. Fortunately the boundary
conditions allow us to completely fix the form of Ty = —Ts. Here we are interested
in solutions with the topology of a four-punctured sphere where the punctures are at the
position of the operator insertions and thus the boundary conditions give the behavior of
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the string solutions near the insertion points. The correct prescription is to demand that
the string goes to the boundary at the insertion points. Furthermore, it should approach
the boundary in a specific way as dictated by the vertex operators. The behavior of the
solution near the boundary will be dominated by the operator inserted there, independent
of the properties or number of other operators inserted at different points. This means that
the behavior near the insertion points can be determined from the 2-point function, where
the string solution is know explicitly. From the explicit solution for the 2-point function
one finds that the desired property of the solution near insertion point w, is [38]

AQ

(0Y)2 = T(’Uj) ~ m

(w — w,) (3.7)

where T (w) is the holomorphic component of T4qs. The corresponding property also is
required for the anti-holomorphic component T (w). Thus we know that T should be an
analytic function on the (4-punctured) Riemann sphere with double-pole singularities at
the punctures. This fixes T' to be a specific rational function.

First consider the denominator of the rational function 7. The polynomial in the
denominator is determined by the positions of the insertions. Three of the insertions can
be fixed by conformal symmetry, leaving one final insertion. The integrand of (3.3) will be
a function of this final insertion point. In the limit v/A — oo the integral localizes at the
saddle point wy = w}, thus fixing completely the denominator of 7.

Now consider the numerator of 7. Without loss of generality we can consider the case
where there is no insertion at infinity since we can perform a transformation that maps
any arbitrary point to infinity. Then the polynomial in the numerator can be at most of
degree 4 (otherwise T would not be regular at infinity) and therefore it is characterized by
5 parameters. Four of these parameters are fixed by the condition (3.7). The final unfixed
parameter, which we will call U, parameterizes the single cross-ratio of the four operators
(recall that four points in a line have only one independent cross-ratio). The precise map
between the parameter U and the cross-ratio u is quite involved but fortunately we will
not need it since the cross-ratio will be encoded in the y-system in a simple way. The
analytic structure of T is shown schematically in figure 3.3. We will use this sort of figure
to represent T' throughout this paper.
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3.2.2 The function ~

Our objective is to evaluate the AdS part of the string action. In Poincaré coordinates the
on-shell action becomes?

oY - Y = Or0z + 0202 _ VTT coshy (3.9)

22

where the above formula defines the function v(w,w). It follows from the equations of
motion that v satisfies the modified sinh-Gordon equation

00~y =V TT sinh . (3.10)

It is well known that this equation is classically integrable, and in what follows we exploit
this integrability to compute the AdS action.

Now let us determine what boundary conditions should be imposed on ~. For the
2-point function 7 = 0. Recall that the string solution should approach that of the 2-
point function as the string approaches the boundary at the operator insertion points z,.
Therefore we should require that v — 0 as w — w, [38]. Furthermore, in order to have
a non-singular world-sheet metric the right-hand side of (3.9) should never vanish. Thus
when T has a zero v must have a logarithmic singularity to cancel it. In summary, the
boundary conditions on vy are

1 _
v o= 15 logTT (w — z,) (3.11)
v — 0 (w — w,) (3.12)

where z, denotes a zero of T" and w, a pole of T". Notice that the regularity of the world-
sheet metric does not fix the sign of the logarithmic ‘spike’ in (3.11) and, in principle,
different choices are possible at each zero (recall that generically 7" will have 4 zeros for the
4-point function, as follows from the discussion of the previous section). These different
choices correspond to different string solutions having differing properties, and generically
different total action. We will refer to the spikes with the 4+ (—) sign as u-spikes (d-spikes).
We will now describe how the choice of these signs is related to the string embeddings shown
in figure 3.2.

2The AdS, Poincaré coordinates are given by

e, v R, -

T
2z z z

ol



w3 wy wa

Figure 3.4: Contours where v = 0 based on the choice of signs in equation (3.11). These
contours are shown schematically by the black curves. The label u (d) at a zero indicates
the choice of sign + (—) in equation (3.11). We give a detailed discussion of why these are
the only possible structures for these contours in appendix B.4. The key in relating these
figures to the embeddings in figure 3.2 is that contours on the world-sheet where v = 0
map onto folds of the embedding.

3.2.3 Spikes, fold-lines and string embeddings

As mentioned in the previous section there are 4 zeros of T" and at each zero we have a Zs
ambiguity (see equation (3.11)) in the choice of spikes of . A priori there are 2* different
choices for the spikes. However, it turns out that there are only 2 distinct choices that
correspond to target-space solutions with the desired properties. These two possibilities
are shown in figure 3.4. A discussion of why these are the only two possible choices is
given in appendix B.4.> These two different possibilities correspond precisely to the two
different possible string solutions shown in figure 3.2. The key ingredient in making this
correspondence is the observation that contours on the world-sheet where v = 0 correspond
to fold-lines in the string embedding (see appendix B.4). The location of these contours is

3The main ideas are: first, configurations related by v — —v are not distinct since this is a symmetry
of (3.10), and second, one should choose the spikes such that v — —v under reflection about the real axis.
See appendix B.4.
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directly connected with the choice of spikes. For example, between a u-spike and a d-spike
we know that there must be at least one such contour. In figure 3.4 the v = 0 contours
are indicated by the black curves. In appendix B.4 we discuss in detail how the structure
of these contours is inferred from the choice of spikes.

Let us describe in more detail how we relate the two spike configurations in figure 3.4
to the two string embeddings in figure 3.2. As mentioned above, the key ingredient is to
study the fold lines in the two figures. First consider the target-space solution. In figure
3.2A it is clear that there is a single fold-line that runs through each of the punctures in
sequence. That is, there is a fold-line directly connecting x4 with x3 then x3 with zq, etc.
This is in agreement with the fold-structure implied by figure 3.4A since for this choice of
spikes we can deduce that there is a single contour where v = 0 running along the real
axis connecting wy to ws then ws to wy, etc. Thus the spike configuration of figure 3.4
describes a string embedding of the type shown in figure 3.2A.

Now consider the folds of the embedding shown in figure 3.2B. Insertions x; and x3
are both connected by fold lines directly to the insertions x5 and x4. Furthermore, x,
and xz, are connected to each other by two fold-lines. This is because this configuration
is double-folded along that line, as one can see from the construction shown in the center
panel of figure 3.2. All of this is in perfect agreement with the fold-structure implied by
figure 3.4B. In particular, for this choice of spikes both w; and w3 are directly connected to
we and wj by contours where v = 0. Moreover, wy and wj are connected by two contours
where v = 0, precisely corresponding to the double-fold line connecting x5 and x4 in figure
3.2B.

Let us comment on a subtle point regarding figure 3.4. Note that we have placed the
saddle point wj in different intervals in the two figures. On one hand, we should do this in
order to be in agreement with figures 3.1 and 3.2. However, as we will see, given a cross-
ratio v and the saddle point wj, the fold structure is fixed. So, to compare two different
fold structures for a given cross ratio we are forced to place the saddle point wj in different
intervals. This is in perfect agreement with the intuitive perspective of figures 3.1 and 3.2.
We will return to this point in section 3.5.2.

3.2.4 The action as a wedge product

We will now return to the computation of the minimal AdS action (see equation (3.3)).
Explicitly, the quantity we want to evaluate is

B \/_X Ox0x + 0202

(3.13)
T J8\fea) z?
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where ¥\{¢,} denotes the sphere with small disks of radius €, cut out at each puncture.
These cut-offs are not independent and are all fixed in terms of the single target-space
cut-off z = &; this is important in recovering the spacetime dependence of the correlation
function and we will return to this point below [38]. It is convenient to separate the action
into a piece that is independent of the cut-offs, and a piece where the dependence can be
explicitly evaluated. This can be done because the solution near the punctures is know.
In particular, we may write [19, 38]

A= —?/ VTT (coshy —1) — VA VTT (3.14)

T J2\{ea}

To extend the integration to the full sphere in the first term we have used the fact that
the action (3.9) goes like VT'T near the punctures as follows from (3.12). We will refer to
the first and second term in (3.14) as Ay, and Ag, respectively. Since T is known Ag,
can be evaluated explicitly in terms of the €,, but to eliminate the ¢, in terms of £ requires
detailed information about the string solution itself. Fortunately, the tools necessary for
computing Ay;, will also provide the necessary information to complete the calculation of
Agiv. Thus, let us focus for the time being on the computation of Ay, and return to Ag,
afterwards.

We would like to write Ay;, in a form where the integrability of (3.10) is more readily
usable. Following [19,38] we introduce the forms

w = VTdw (3.15)
1 = 11
and then from a direct computation it follows that
Apin = L / wAN (3.17)
2 Js

where ¥ denotes the double cover of the sphere defined by y?> = T(w). Extending the
integration from X to 5 simply involves a factor of 2 since each form is odd under sheet-
exchange. An important property of these forms is that they are both closed. The form w
is clearly closed since it is holomorphic, and the closure of 7 follows from the equations of
motion for 7. Notice that (3.17) would be true for any choice of the dw component of 7.
The specific coefficient appearing in (3.16) is necessary for the closure of the form.

Now we would like to apply the Riemann bilinear identity (RBI) to reduce (3.17) to
one-dimensional integrals over cycles on 5. There are two caveats in doing this — the
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singularities in w and the singularities in 7. These issues where resolved in [38], and we
follow the approach used there (see [38] for a more detailed treatment and also [39] for a
different approach). The basic idea of the RBI is to write one of the forms of the wedge
product as an exact form, w = dF where F' = [ PPO w, which is always possible on a Riemann
surface minus some contour, L. In the present case w has single poles and thus F' will have
logarithmic cuts which need to be accounted for. A way to side-step this complication is to
spread the single poles in w into a small square-root cuts such that F" has only square-root
cuts and no singularities. The cost of doing this is that the genus of ¥ increases, but the
upside is that the application of the RBI is simplified. This takes care of the singularites
in w. Now consider the form 7 which behaves as n ~ (w — z,)~>/? near the zeros of T. The
prescription of [38] is to remove the points z, from the domain by taking L to be the sum
of the standard contour for a Riemann surface of genus ¢g and small contours C, encircling
the points z,. The integrand of (3.17) can then be written as d(F'n) (since dn = 0 on
the domain) and then Stokes theorem can be used to reduce the surface integral to a line
integral over the usual boundary of the genus g Riemann surface and the contours C,.

The end result is that each boundary C, contributes a correction of 7/12 to A fin I (3.17)

while the integral over the boundary of 5 gives the usual sum over cycles on 3 and thus

we have [38]
Ayip, = (number of zeros)l _ ]{w I} j{n (3.18)
12 2\ e

where {v,} is a complete basis of cycles on > and I, is their intersection matrix. For
the four-point function there is generically 4 zeros and 4 poles. When we spread the four
poles we introduce an additional 4 cuts and thus the surface is genus 5 and there will be 5
a~cycles and 5 b-cycles; that is {Ya} = {Vays Vo1s Yag, -+ Vass Vo5 }- The main point is that we
have reduced the computation of the surface integral (3.17) into a sum of 1-dimensional
cycle integrals of a closed form. Such integrals are precisely what integrability is good at
computing. In the following section we will see how to compute the cycles 55%77 by exploiting
the integrability of (3.10).

3.3 The linear problem

To compute the n-cycles appearing in (3.18) it is useful to consider the linear problem
associated with equation (3.10). Consider a function ¢ obeying

O+ ) =0, (0+Jz)p=0 (3.19)
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where the components of the connection J = J,dw + Jgzdw are given by

Jo = Ay + %d)w, Jo = Ag + Dy (3.20)
where A and ® are independent of the spectral parameter ¢ and given in terms of v and
T, T. We give the explicit forms of A and ® in appendix B.1. Note that we will frequently
write the spectral parameter as & = €.

Compatibility of equations (3.19) for all £ is equivalent to the flatness of J, which is
satisfied if v obeys the equation of motion (3.10) and T (T') is purely holomorphic (anti-
holomorphic). In the following section we will discuss the relation between the solutions

of the (3.19) and the n-cycles appearing in (3.18).

3.3.1 Basic properties

There are a few aspects of the linear problem which will be essential for the following
analysis. Let us comment on each of them in turn.

e Solutions near punctures. Using (3.7) and (3.12) one can show that near the punc-
tures P, there are two linear-independent solutions of the form (see Appendix B.1)

PEw) = (T/T) eIy (3.21)
~ (W= we) FIAET T (@ — ) FTRE T | 1) (3.22)

where |+) are the eigenvectors of 0®. Notice that there is a solution that is expo-

nentially big and one that is exponentially small as one approaches the puncture
P4

e ‘Small’ solutions. Demanding that a function is both a solution of the linear problem
and also small at some puncture P uniquely defines that solution (up to overall
normalization). Thus there is a family of ‘small’ solutions s, each of which is small
at puncture P,. On the other hand, specifying that a solution has the big asymptotic
near P does not uniquely determine the solution since one could create another
solution obeying the same boundary conditions by adding an arbitrary multiple of

Sp.

“In going from (3.21) and (3.22) we have been careless about the branches of w. In particular, we may
choose a particular branch at some P, such that the near-puncture solutions take the form (3.22) but
then if we smoothly continue /7 to some other puncture P, it is possible that the small and big solutions
correspond to the opposite components from the small and big solutions at P,. This will be very important
below, since it will usually be the case in the construction we will use.
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o 7o symmetry and ‘big’ solutions. Even though one cannot uniquely specify a solution
by demanding that it has the big asymptotic near P, there is nevertheless a special
solution big near P that is uniquely defined. This follows from the Zy symmetry of
the connection (3.20) which is given by

UJEU ! = J(e™¢) (3.23)

where U = ic3. This symmetry implies that if sp(£) (we are suppressing the w, w
dependence) is the solution to (B.1) small at P then

ip = o®sp(e”™E) (3.24)

is another solution of the linear problem. Moreover, from (3.21) it follows that 5p
is big at P. Thus we have a second uniquely defined family of solutions §,, each of
which is big at puncture P,.

e Products of solutions. Given two solutions of the linear problem ; and 15, there is
a natural S L, invariant inner product

(1 Atha) = Det [{th1, ¢ }] (3.25)

This inner product is equivalent to the Wronskian of the two solutions. Important
properties of this Wronskian are that it is independent of w and w, and thus only
depends on the spectral parameter £&. Further, the product will vanish if the two
solutions are linearly dependent.

Now that we have introduced these basic facts of the linear problem, we can state what is

perhaps the key ingredient in the whole computation.” We claim that the £ — 0 expansion
of the inner product of two small solutions is the following [19, 38]

1, 1 b )
(Sa A\ sp) ~ exp 55 Wab + §5wab + 5/ n+0 (¢ )} (3.26)

where 7 is precisely the same form (3.16) that appears in the action formula (3.18) and
Wap, @ap are explicitly known in terms of integrals of w and @.° A derivation of (3.26) is

5To our knowledge the following fact first appear in [19]. Later it was used in [38,39] for 3-point function
computations. We give a derivation in appendix B.3; we thank Pedro Vieira and Amit Sever for explaining
the basic components of the derivation used for [19]. A different derivation appears in [39].

6To be more precise, this expansion will be true for certain s, and s, depending on certain conditions
stemming from the form of T' and also depending on the value of Arg(¢). Furthermore, the contour of
integration will be precisely defined by these conditions. We will discuss these conditions in detail below.
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given in appendix B.3. The point is that by computing the inner products (s, A sp) (§) we
can extract the “puncture-puncture” integrals f:n by extracting the O (§) coefficient of
this inner product. All of the n-cycles appearing in (3.18) can be written in terms of linear
combinations of these puncture-puncture integrals. Thus, we can compute area (3.18) by
computing the inner products (s, A sp). The rest of this section is devoted to explaining
how we compute such inner products using techniques from integrability.

3.3.2 Defining solutions globally

Let us now comment on how to globally define the small solutions. Suppose that we want
to construct the small solution sp away from puncture P, say at some generic point A.
To do this we need to use the connection to transport the solution along some path from
the neighborhood of P to the point A. However, it is clear from (3.21) that the solutions
of the linear problem have non-trivial monodromies around the punctures and therefore
homotopically different paths on the 4-punctured sphere will result in different values of the
small solution at A. In other words, solutions of the linear problem live on a (generically
infinite-sheeted) Riemann surface with branch points at the punctures. For the purposes
of calculating it is convenient to fix some conventions for dealing with the multivaluedness
of the solutions. We first define the sheets by cutting the Riemann surface as shown in
figure 3.5. The cuts all join at a common point and the monodromy about that point is
the identity since a path passing through all the cuts is contractable on the sphere. We
then define the value of the small solution associated with puncture P at some point A
as follows. Draw any curve from the neighborhood of P to A. In the neighborhood of P
one starts with sp. For every time the path crosses a cut emanating from some puncture
Q in the clockwise (counterclockwise) sense attach a factor Mg (Mg').” In this way, if
we transport along a path that is homotopically equivalent to a path that does not cross
any cuts then the small solution at A will be sp|4. If the path crosses the cut emanating
from puncture ) once in the clockwise sense, then the value of the small solution at A will
be (Mgsp)|a, and so on (see figure 3.5). In the case when sp is transported around the
puncture P one can see from the explicit form (3.21) of sp near P that the result will be
multiplication by a constant. That is

MPSP = UpSp (327)
Mpsp = [ipép (3.28)

"Note that the result of a monodromy can be expressed as the linear map M since both s and Ms are
solutions of the linear problem. Therefore they can both be expanded in terms of two linearly independent
solutions of the linear problem, and thus they are related to each other simply by a linear map, or in other
words simply by multiplication by some matrix, M.
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(Mzsa)|a = (My "M My s4)|a

Figure 3.5: Our conventions for defining the solutions globally. The dashed blue lines
emanating from the punctures indicate the conventions for ‘cutting’ the full Riemann
surface, thus defining the sheets. The red lines indicate the parallel transport of a solution
from P, to the point A along three paths. Two of the paths are homotopically equivalent
due to the triviality of the total monodromy M4M;3MsM; = 1 (which follows from the fact
that any path encircling all the punctures with the same orientation is contractable on the
sphere). The third path is homotopically distinct from the other two, and thus the value
of the solution at A will differ by monodromy factors.

so that sp and §p are eigenvectors of Mp with eigenvalues pup and jip = 1/up respectively.
One cannot repeat such an analysis to evaluate Mgsp since generically one does not know
the explicit form of sp in the neighborhood of Q).

3.3.3 WKB approximation and WKB Curves

As we will discuss shortly, it will be essential to have control over the & — 0, oo asymptotics
of the inner products (sp A sg) (§). It is clear from (3.19) — (3.20) that these are both
singular limits, and the basic idea of extracting this singularity — which is called the WKB
approximation — is as follows.® As discussed above, we have good control over the solutions
in the neighborhood of the punctures. Thus we would like to study, in the limits & — 0, oo,
the transport of small sp along a curve w(t) which connects a neighborhood of a puncture

8See appendix B.3 or [52] for a more detailed treatment.

29



P with a neighborhood of another puncture (). Let us consider the transport away from
P (see figure 3.6). We will discuss the £ — 0 limit since the £ — oo limit is similar.

w(t)

P

Re (‘/Twa) >0

Figure 3.6: Transporting sp away from P along w(t). We have chosen the branch of ® in
(3.29) such that sp o |[4+) near wp. In other words, we have chosen the branch of ® such

that Re ((+] — ®,,/{dw|+)) = Re <dw\/T/§> > 0 for dw pointing along w(t) away from
P and thus exp < flz"(t) dwv'T / §> is exponentially diverging as & — 0.

/
P

At any point in ¥ the matrix ® has the two eigenvalues Fw/2 = Fv/T/2 dw (which are

single valued on the double cover i), and thus we can choose a gauge along w(t) where @
is diagonal and given by

(AT )

In the limit & — 0 some component of ®/¢ will dominate and thus the leading contribution
to s, at some point w along w(t) will be given by

e Jul /¢ ) (3.30)

where the value of o = £ depends on the branch of ® we have chosen (recall that |+) are
the eigenvectors of ¢3). This is the singular contribution in the limit £ — 0 for the same
reason that it is the small solution — namely, because

Re (o] (=®/¢) |o)) > 0 (3.31)
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along a path traveling away from P,. The basic statement of the WKB approximation is
that so long as we transport along paths such that (3.31) is true along the whole path then
the leading contribution to sp in the & — 0 limit is indeed given by (3.30). In other words,
as long as we transport along curves satisfying (3.31) everywhere, then we can reliably
extract the singularity as & — 0 as it is simply given by (3.30). The curves along which
(3.31) is satisfied most strongly are those for which

Im (o] (<®/€) o)) = 0 (3.32)

Curves satisfying this condition are called WKB curves. If we transport along some curve
satisfying (3.32) for Arg(£) = ¢, then the condition (3.31) will be satisfied for Arg () €
(0 —7/2,¢ + 7/2). In fact, we will need to control the asymptotics of sp in precisely such
a wedge of the &-plane, and thus we should always transport along WKB lines. We will
give the a very brief overview of the properties of these lines in the next subsection. For a
detailed treatment see [52].

3.3.4 WKB triangulation

As we discussed in section 3.3.2 we define the solutions of (3.19) globally by transporting
along specific paths. Transport of solutions along homotopically equivalent paths will lead
to the same result, whereas transport along homotopically inequivalent paths generically
will give different results. For this reason it is useful to set up a system of fiducial paths
between the punctures which we will use to globally define the solutions. Because we will
need to control the large/small £ asymptotics of the Wronskians, it is best to choose these
paths to be WKB curves — i.e. curves satisfying (3.32).

We will first consider the local structure of WKB curves. In the neighborhood of a
generic point on the punctured sphere the WKB curves are smooth and non-intersecting
(see figure 3.7A). In the neighborhood of a (double) pole of 7' the WKB curves follow
logarithmic spirals that asymptote to the singular point (see figure 3.7B). All that will be
important here is that the poles act as sources/sinks of WKB curves but the exact nature
of these spirals will not be important. Finally, working in the neighborhood of a simple
zero of T one can show that there are three special WKB curves that asymptote to the
zero and which govern the WKB lines near the zero (see figure 3.7C).

Now consider the global structure of the WKB curves. All WKB curves fall into one
of the following types [52]

e Generic WKB curves which are those that asymptote in both directions to a pole of
T (potentially the same one);
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A: generic point B: pole C: zero

Figure 3.7: Local structure of WKB lines in the neighborhood of, A: a generic point;
B: a double pole of T'; C: a simple zero of T. In the case of a generic point the WKB
curves form continuous non-intersecting lines. In the case of a singular point they form
logarithmic spirals for generic values of Arg(£). The exact nature of these spirals will not
be important. What is important is that the singular points act as sources/sinks of WKB
curves. In the case of a zero, there are three special WKB curves that asymptote to the
zero which are the red curves in panel C. These special curves, called separating curves,
determine the global structure of the WKB foliation.

e Separating WKB curves which asymptote to a zero of T in one direction and to a
pole of T" in the other;

e Finite WKB curves which are closed or asymptote in both directions to a zero of T’
(potentially the same one).

We will now describe how we use the WKB curves to set up a system of fiducial paths,
or more specifically, a triangulation. By triangulation we mean a triangulation of the
punctured sphere with all vertices at the punctures and at least one edge incident on
each vertex. Consider fixed 7" and Arg(¢) such that there are no finite WKB curves (this
can always be done since such curves only appear at special, discrete values of Arg(&)).
First draw all of the separating WKB curves — there will be 3N, of these, where Ny is
the number of zeros of T' (since for the moment we are not allowing finite WKB curves).
These curves will divide the punctured sphere up into cells with each cell defining a family
of homotopically equivalent generic WKB curves as shown in figure 3.8 for an example
of the 4-punctured sphere. To construct the triangulation, choose a representative curve
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Figure 3.8: Global WKB structure for an example with 4 punctures. The separating curves
are shown in black. In one cell we show several examples of homotopically equivalent curves
(shown in gray) that sweep the cell. Each cell defined by the separating curves has a 1-
parameter family of such curves. By choosing a representative curve from each family we
obtain the triangulation shown in figure 3.9. Notice that near each puncture (the blue
dots) we see the spiral structure shown in panel B of figure 3.7 and near each zero (yellow
x) we see the local structure shown in panel C of figure 3.7.

from each cell, e.g. any one of the silver curves shown in figure 3.8. The claim is that
the collection of these representative curves, which we will call edges, gives the desired
triangulation [52].” As a concrete example, the triangulation associated with the cell-
construction of figure 3.8 is shown in figure 3.9. This same triangulation will play an
important role in the 4-point function computation below.

We have now finished the discussion of how to construct the WKB triangulation for a
given T and Arg (£). Before moving on the the next section let us discuss one final point.
In the following it will be useful to lift edges of the triangulation to the double cover 3 and
to endow the lifted edges with an orientation. Recall that w = VTdw is a single valued
form on X. Let 0; be a tangent vector of the lifted edge F at a point on X. There are of

9To see this in general consider a single zero of T as shown in figure 3.7. The zero is on the boundary
of three cells. Choosing edges from the family of curves in each cell we see that they form a triangle. Thus
the edges form a triangulation of the punctured sphere with each triangle containing a zero of T'.
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E 74

P4 Pl

Figure 3.9: The WKB triangulation of the 4-punctured sphere following from the WKB
foliation shown in figure 3.8. Each edge E,; of the triangulation is a representative from
one of the families of homotopotically equivalent lines in each cell of figure 3.8. This
triangulation will be of central interest in the 4-point function computation.

course two possible orientations for d;. Note that by virtue of (3.32) we have e *w-9; € R.
We define the orientation of the lifted edge F by the condition e=*w - 9, > 0. Notice that
each edge on the punctured sphere will lift to two edges — one on each sheet of ¥ and that
these two edges will have opposite relative orientation. Picking a particular orientation of
some edge is equivalent to picking a particular sheet of >.

3.3.5 Coordinates

From the WKB triangulation we will now construct the so-called Fock-Goncharov coordi-
nates [52]. These are natural objects to work with because they are gauge invariant and
independent of the normalization of the small solutions. From the coordinates we will be
able to extract the n-cycles that we need to compute the action (3.18).

Consider some edge E of the triangulation. This edge is shared by precisely two trian-
gles, and these triangles form the quadrilateral Qg (see figure 3.10). Number the vertices
of Qg as shown in figure 3.10 with E going between P; and P3;. As we mentioned in section
3.3.1, associated with each puncture P, there is a small solution s,. The solutions cannot
be made globally smooth and single valued on the punctured sphere due to the monodromy
around each puncture. However, we can define them such that they are single valued and
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P

Figure 3.10: The two triangles sharing the edge E:3. These two triangles define the quadri-
lateral )g,,, which is shown in gray shading. Each blue dot represents a puncture, which
are the verticies of the triangulation and each black line and is an edge.

smooth throughout Qz.'® We then define the Fock-Goncharov coordinate as [52]

(81 A 82)(83 A\ S4>
(82 A 83)<S4 A 51>

xe = (—1) (3.33)
where all the s, are evaluated at a common point in Q.

As a concrete example consider the triangulation of the 4-punctured sphere shown in
figure 3.9. In figure 3.11 we show how to apply the procedure just described to construct
the coordinates corresponding to edges Fyy and Eyj,. Consider first the left panel of 3.11.
We define each solution s, throughout (o4 by parallel transporting from each P, where
the explicit form of the solutions is known — see (3.21). The red lines indicate the parallel
transport of each s, from P, to a common point A; clearly we can define the small solutions
at any point A € Qo4 in this way. Further, if the paths never leave the quadrilateral (or at
least is always homotopically equivalent to a paths that never leave the quadrilateral) then
the solution defined in this way is guaranteed to be single-valued and smooth through-
out the quadrilateral, as required. With the solutions defined at a common point in the
quadrilateral we can construct the coordinate o4, which is independent of the choice of
A € (Q24. Now consider the right panel of figure 3.11 where the grey shading indicates the

10We will show this in some concrete examples momentarily.
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\\ // (M 481 ) | A \\

Figure 3.11: Here we show how to construct the coordinates xo4 (left panel) and y,
(right panel) of the triangulation of figure 3.9. The gray shaded regions represent Q)24 and
()5, respectively. These figures should be pictured on the sphere. The dashed blue lines
emanating from the punctures indicate our conventions for defining the sheets of the small
solutions as explained in section 3.3.2. The red lines indicate how we globally define the
solutions s, by transporting away from P, using the connection. We use paths that never
leave the quadrilateral such that the solutions used to form the coordinates are guaranteed
to be single-valued and smooth throughout the quadrilateral, as required.

quadrilateral associated to edge (4,. These figures should be imagined on the sphere. Now
to transport the small solutions to a common point one cannot avoid passing under a cut
onto new sheets of some of the small solutions. For example s, must pass onto a new sheet
in order to be smoothly continued to the point A. This is because if we were to compare
the so of the left panel and the sy of the right panel (by moving each respective A to a
common point A’ along the edge Fs4, for example) the two paths of continuation would
differ by a holonomy around Pj, and thus the values at the point A" would not coincide
but would differ by the action of Mfl. Of course which solution we call s, and M3i182 is
purely a matter of convention. Similarly, which solutions acquire factors of M, depends
on the choice of the point A. We stress that the coordinates are independent of all such
ambiguities, as one can easily check using identities such as (M.s, A sp) = (5o A M 'sp),
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Figure 3.12: Here we describe the construction of the coordinate for the slightly degenerate
case where the coordinate corresponds to an edge ending at a vertex that has only two in-
cident edges (e.g. P, has only 2 incident edges: Ej5 and Es3). We construct the coordinate
for edge Fs3 of the triangulation shown in figure 3.9. The quadrilateral prescription de-
scribed above still applies, but one must take care to correctly define (Qg and the solutions
inside Q. First of all, in order to have single-valued and smooth solutions throughout
(223 we must exclude a region between P; and P,. Otherwise ()53 would contain P3; and
thus the solutions could not be single valued in Q23 (there would be a monodromy around
P3). Since the boundaries of the quadrilateral must be edges of the triangulation, the only
choice is to remove a thin region running along edge E34 and then to treat the two ‘sides’
of F34 as different edges. In the figure we have represented this process by showing Fs, as
doubled and with the region between the new edges excluded from ()o3. We then define
the solutions throughout ()23 in the same way as described in figure 3.11, by analytically
continuing the solutions along paths from P, to A that stay within (o3 which is represented
as the shaded region. Once we have defined the solutions at a common point we form the
coordinate ya3 given in equation (3.35).

etc. Then from figure 3.11 we read off

(82 A 83)(84 A\ Sl>
(s3 A sq)(s1 A s2)

(M:.:lsg VAN M451)(84 VAN 83)
(M481 AN 84)(83 N M3_182)

X1 = (—1) Xz = (—1) (3.34)
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We will also need to construct coordinates in the slightly degenerate case where the
coordinate corresponds to an edge ending at a vertex that has only two incident edges
(including the edge under consideration) for example all edges in figure 3.9 except Foyy
and Ey,. We show how to construct this coordinate in figure 3.12. Using the procedure
described there we find

(82 N M384)(53 A 84)
(M384 A\ 83)(84 VAN 82)’

(51 A M sg) (52 A 84)
(M54 A 85)(54 A 81)

X23 = (—1) xi2 = (—1) (3.35)
The other two coordinates y34 and x4 are computed in a similar way.

We have now completed our discussion of how to construct the coordinates. Before
we continue, let us comment on a useful property of these objects. Consider multiplying
all of the coordinates associated with edges meeting a given puncture P. For example,
the edges ending at P, in the triangulation of figure 3.9 are Fi9, Ej,, Ess and Eyy. Using

(3.34)-(3.35) we have
X12X54X23X24 = /15 - (3.36)

This property is true in general since the inner-products in the coordinates telescopically
cancel in the product and the only thing that remains is the effect of the monodromy
around the puncture which produces a u% factor. Thus we have the general rule [52]

I xe=u. (3.37)

E meeting P

3.3.6 WKB asymptotics of the coordinates

The advantage of using the WKB triangulation is that the & — 0, 00 asymptotics of the
coordinates of the triangulation are easily extracted given the discussion of section 3.3.3.
That is, because we have maximum control over the large/small ¢ asymptotics of the
small solutions when we transport along WKB curves. We give only the basic idea of the
derivation of these asymptotics here and refer the reader to appendix B.3 and [52] for
details.

To obtain the asymptotic of some yg one simply needs to use expression (3.30) for
each inner-product of the coordinate, taking care to account for the direction of the WKB
lines. Consider the coordinate associated with edge Fs4 in figure 3.13. The expression for
this coordinate in terms of the small solutions is given in (3.34). We will now use formula
(3.30) to compute the asymptotic of this coordinate in the & — 0 limit. Let us take the
directions of the WKB lines to be as given in figure 3.13. To evaluate the inner product
(s2 A s3) we must transport the solutions to a common point. Since there is a WKB line

68



Figure 3.13: Computing the & — 0 asymptotic of the coordinate yo4 for a typical WKB
triangulation. The blue disks represent the punctures and the black lines represent edges
of the triangulation. A yellow X represents a zero of w and the wavy yellow line shows
our convention for defining the sheets of ¥. The black arrows running along the edges
indicate the choice of the direction for the edges. Each red curve indicates the transport of
a small solutions in the limit & — 0. The dashed red lines correspond to the transport of
a solution appearing in the denominator of the coordinate. The transports used to form
the coordinate combine into the continuous integral of w near the boundary of ()94, which
can then be deformed into the cycle integral 754 shown in gray.

flowing from P; to P, we can safely use (to leading order) expression (3.30) to transport
s3 to the neighborhood of P, giving a contribution of the form (sg A s3) ~ ezl W/t To
evaluate (s3 A s4) we must transport sz to Py since that is the direction of the WKB line
and thus we get the contribution (s3 A s4) ~ e2 )i /s We may then reverse the order of
integration in (s3 A s4) and also move it to the numerator of the coordinate. Then the
integrations from (sg A s3) and (s3 A s4) combine nicely into a continuous integral running
just inside the boundary of )94 from the neighborhood of P, to P5 to P;. Repeating this
analysis for the remaining two brackets one obtains a closed cycle integral passing along
the boundary of (Q94. Recall from the discussion of section 3.3.4 that each triangle in the
WKB triangulation encloses one zero of w. The integral of w thus encloses two zeros and
so it can be deformed to the cycle integral shown in figure 3.13. Thus the non-vanishing
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contribution in the limit & — 0 is given by

Y5 ~ (—1)exp Gg—l/ W+ CS”) (3.38)
YE

The contour g is the cycle encircling the two zeros contained in Qg and its direction is
the same as that of the WKB lines corresponding to the brackets in the numerator of the
coordinate. The term C’g)) is the O(£%) contribution to the WKB expansion, which we will
discuss momentarily. The overall (—1) prefactor in (3.38) is the same (—1) appearing in
the definition of the coordinate (3.33).

To derive the subleading WKB corrections (in the £ — 0 limit, for example) is essen-
tially a matter of perturbation theory once the singular contribution has been extracted.
We give a detailed discussion of this in appendix B.3. Here we will simply focus on the
result and its implications. We find the first subleading contribution is given by

CV =log(—1)*" + ir (3.39)

where ug is the number of u-spikes enclosed by vg.

Finally the £ — oo asymptotic follows in the same way as the £ — 0 and leads to a
cycle integral around Qg of &w.

To summarize, the £ — 0, oo asymptotics for yg are given by

Xe ~ (—=1)"F exp [%/ (" +§w)] (3.40)
E

where g is the cycle encircling the two zeros contained in Qg and its direction is the same

as that of the WKB lines corresponding to the brackets in the numerator of the coordinate.

Now it is clear how the choice of spikes (i.e. the choice of signs in (3.11)) is encoded into the

coordinates — via the constant term in the WKB expansion which contributes the (—1)“£

factor in (3.40). Recall that up is the number of u-spikes encircled by ~vg.

3.3.7 Shift relation.

In section 3.3.1 we explained that there are two special solutions sp, §p associated with each
puncture P and that they are related to each other by a shift in the spectral parameter:
5p(€) = o3sp(e™™¢). Here we give an alternative relation between the small and big
solutions that does not involve shifting the spectral parameter. The solutions sp and §p
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are linearly independent and thus we can expand any solution sg in terms of them. In
particular we have

gp/\SQ Sp/\SQ -
= | — _— 3.41
8Q (gp/\SP) sp+ (Sp/\§P Sp ( )
Mpsg = (2205 e, 4+ (22150 1 (3.42)
Pe@ = §p/\8p Hpsp Sp/\gp ’uP P ’

For the second equality we have used (3.27)-(3.28). Combining these two equations it

follows that \ ~
PSQ N\ S 9 Sp A\ sqQ
——= | =(1- _— 3.43
(MpSQ/\Sp) ( ’up) (gp/\Sp) ( )

The utility of this equation is that it allows us to replace certain wronskians involving big
solutions (as on the RHS of (3.43)) in terms of small solutions with monodromies. This
will play a key role in the derivation of the functional equations that we present in the
following section.

3.3.8 x-system.

We will now derive a set of functional equations for the coordinates which, together with
certain analytic properties, allows us to determine the coordinates completely. Our inspi-
ration comes from the solution of the bosonic Wilson-loop problem at strong coupling [19]
where the solution involves a set of functional equations of the schematic form!

Yy = F,(Y) (3.44)

where f"** = f(64nin/2). On the RHS of (3.44) the function F, can depend on all of the
Y,, but with their arguments un-shifted. The only shifts in the spectral parameter occur
on the LHS of (3.44). For the Wilson-loop problem the F, are such that (3.44) takes the
form of a so-called Y-system which commonly appear in the context of 1 + 1 dimensional
integrable QFT’s. Here, using the general formalism of [52], we will arrive at a set of
functional equations with the same schematic form as (3.44) but with the F, of a different
form than that occurring in the Wilson-loop problem. We will call this type of functional

"' The linear problem associated with that problem is very similar to the one considered here and the Y,
are (up to shifts in the spectral parameter) the coordinates associated with that problem. We are referring
here to the special case where the Wilson loop lives in an R; ; subspace.
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equation a y-system.
To derive a relation of the form (3.44) we begin with the LHS. Using (3.24) we have

XEXE = XEXE (3.45)

where X g is defined by taking y g and replacing each small solutions s, — S,. To obtain the
schematic form (3.44) we need to rewrite (3.45) in terms of only un-shifted small solutions.
That is, we need to get rid of all the tildes without introducing any shifts in the spectral
parameter. For this we can use (3.43) after applying the Schouten identity'? to (3.45) to

obtain (4 A)(1+ A
~ + Aap + Acq
page = 3.46
where we have defined the useful auxiliary quantity
NS NS
Apg = (-1)lelie)lsr M) (3.47)

(sp A 3p) (sq N\ 5q)
= (D) (+3) " () ( ) (3.48)

Here, the edge FE is the edge ac in Qg where the vertices are labeled abed in counter-
clockwise order. To go from (3.47) to (3.48) we used the shift relation (3.43). The last step
is to rewrite the wronskians appearing in (3.48) in terms of the coordinates. Once this is
done, combining (3.45) — (3.48), we can assemble a functional equation of the form (3.44).
To do this (following [52]) we introduce the quantity

Y(PQ—Q)=1+xpa(l+Xxpa(I+..xp2(1+xpr1))) (3.49)

The coordinates appearing in this object are shown in figure 3.14. By repeatedly apply-
ing the Schouten identity (see footnote 12) starting with (14 xp1) one can see that the
Wronskians in (3.49) telescopically cancel so that'?

(50 A Sat+1)(sp A Sq) _ (sp A sa)(Mpsg N s5q)
(Sat1 A Sa)(So Asp) (s A sa)(Mpsg A sp)
In going from the first equality to the second in (3.50) we have accounted for the mon-

odromy acquired by the small solutions when they are analytically continued around P
(see figure 3.14). Then, from (3.50) and (3.48) we have

MPSQ/\SQ MQSP/\SP
Mpsg N sp Mgsp N sqg

S(PQ—Q) =

(3.50)

(L4 1) (1 + 10)*Arg = XpS (PiQ = Q) S (Q: P — P) (3.51)
12 (50 A sp)(8e A sq) + (8a A se)(8a A sy)+ (5 Asq)(sy Ase) =0.
13An easy way to see this in general is to use induction [52]. The case a = 1 is simple to

prove using Schouten identity. Then one can show (again using Schouten) that ¥ (P;Quq2 — Qo) =
1+ XPa+12 (P; Qar1 — Qo).
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Figure 3.14: Graphical rules for constructing ¥ (P; Q) — Q). Start at edge Epg and con-
tinue in a counterclockwise fashion about P forming the nested product (3.49) by mul-
tiplying the coordinates for each edge encountered along the way (i.e. the coordinates
associated with each edge intersected by the red line in the order indicated by the arrow).
The dashed blue line indicates our convention for cutting the solutions to account for the
monodromy around P. The small solutions used to form the coordinates are defined in the
vicinity of P by analytically continuing them throughout the triangles along the direction
indicated by the red arrow and thus if we use sg in xp, then we must include a monodromy
matrix when the solution is continued around P to form xp;.

Finally, using (3.51) in (3.46) and noting (3.49) we obtain a closed functional equation
for xg of the form (3.44). Repeating this procedure for the coordinate associated to each
edge in a given triangulation gives the desired set of functional equations. Note that this
procedure can be applied to derive the y-system for an arbitrary number of punctures.
In section 3.4 we will apply this procedure to the triangulation (3.9), which is one of the
triangulations of interest for the four-point function computation.

3.3.9 Inverting y-systems

In the previous section we showed how to derive the y-system associated with a given
triangulation of the N-punctured sphere. In this section we will discuss how to use the y-
system along with certain analytic properties of the coordinates to obtain integral equations
that determine the xg uniquely.

The basic idea behind the inversion of a x-system is to Fourier transform (the log of)
each equation since in Fourier space these nonlocal relations become local as the shifts in
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the parameter 6 can be undone in the usual way. For such a procedure to be successful one
must have a certain amount of control of the analytic properties of the coordinates. Let
us discuss this carefully. The equations that we want to Fourier transform have the form

log x5 (0 +i¢) +log x5 (0 + i¢) = log Fiy (Xi 0+ Zgb)) (3.52)

where F'g () is an explicit function of the coordinates which follows from the discussion of
section 3.3.8. We have introduced the arbitrary shift ¢ for reasons that will be explained
momentarily. Note that xgx5" = xzx5  since the small solutions are 27i-periodic, which
is why we can have either shift Fr (x*) on the RHS. The choice of this shift is arbitrary
since the objects we will eventually compute (the n-cycles) are functionals of the coordi-
nates only through Apg which is im-periodic and thus does not care about the choice of
shift. As a convention we choose the shift —imr/2.

To Fourier transform the relationship (3.52) one must be sure that the transform con-
verges. Moreover, to undo the shifts on the LHS, one must account for the singularities
(if any) of log xg in the strip of width 7 centered along the line where the transform has
been performed. We will now discuss each of these issues in turn.

The information from the WKB analysis will allow us to ensure the convergence of
the Fourier transform, provided certain conditions are satisfied. First consider the LHS
of (3.52). We need to ensure that the transform of each individual term converges. We
can ensure this if we know the asymptotics of the coordinates in the full strip Im (6) €
(¢ — /2,0 + m/2). The coordinates should be derived from the triangulation that one has
at Im () = ¢. Then the WKB analysis guarantees that the asymptotics are given by (3.40)
in a strip that includes the region Im € (¢ — 7/2,¢ + 7/2). Each term on the LHS can
be made safe to transform by making (on the LHS only) the replacement xp — xg/ XEEO)

where X(b?) is the asymptotic (3.40). This replacement does not modify the equation since

++
(x%”) (x?) =1
Now consider the RHS of (3.52), which has the form (see equation (3.46))

(14 Aw)(1+ Ay)
(14 Ape) (1 + Aga)

Each Apg is computed by (3.51) and (3.49). For the RHS of (3.53) to be decaying it is
sufficient for all of the Apg in (3.53) to be decaying. If all the y-functions are decaying
then from (3.51) and (3.49) it is clear that all of the Apy will decay; the p-factors will
decay by virtue of the rule (3.37). On the other hand, if all the y-functions are growing
the p-factors in (3.51) will dominate the RHS of (3.51) so that Apq is still decaying; to
see this one should re-express the u-factors in terms of the coordinates using (3.37). Thus

log Fip (x* (0 +i¢)) = log

(6 +im/2 +i0) (3.53)
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the RHS of (3.53) will decay if all of the x-functions are growing, or alternatively if they
are all decaying. For generic ¢ it will generally not be true that the RHS of (3.53) is well
behaved, and one must try to find a range of ¢-values for which the yg are all decaying
or are all growing. If a suitable ¢ can be found, then (3.52) can be directly solved by
Fourier-transform. In all of the examples we have considered (in particular, those relevant
for the 4-point function) it has been possible to find such a ¢.

Concerning the issue of singularities within the strip of inversion, it follows from (3.19)
that the Wronskians (s, A sp) (0) are (in an appropriate normalization) analytic away from
0 = 4o0. It is, however, possible for these objects to have zeros and in the following it is
an assumption that there are no zeros in the strip where we do the inversion.!* In section
3.4.1 we perform numerical tests that support this assumption.

Finally, we use the Fourier analysis to obtain

49’ log Fy (X (9)
2mi sinh (0" — 6 4 10)

log X (6) = log XV (9) — / (3.54)

where X (0) = xg (0 + i¢ — iw/2) and Xg)) is the (shifted) asymptotic (3.40) and Fg (X)
is an explicit function of the coordinates which follows from the discussion of the previous
section.

The equations (3.54) can easily be solved for the X by iterating them in a computer.
In the next subsection we will show how to extract the n-cycles of formula (3.18) from
the Xg which are computed using (3.54). We will then perform some numerical tests in
section 3.4.1.

3.3.10 Extracting n-cycles

Once the coordinates are computed according to the prescription of the preceding section
we extract the n-cycles as follows. What we need to compute are the individual Wronskians
(sa A sp). For this, note that from (3.47) and footnote 12 we have

. (Sa A\ Sb) (ga A §b)
(1+Aw) = G A7) (30 A7) (3.55)

14 Tn the limit where the WKB approximation holds, i.e. when # — 400 or in the limit of large zero
modes |Zg| — oo [52], it is clear that (in an appropriate normalization) the Wronskians will not have any
zeros since (suppose we compute the Wronskian near P,) then s, will be the big solution near P, and is
thus linearly independent of s, which is small at P,. For finite values of 6 (or alternately of |Zg|) we have
no concrete way of arguing that these zeros are not present.
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We can choose a guage where (sp A §p) = 1. The final result will be gauge independent.
With this gauge choice we have

log (sa A sp)~ +1og (sa A sp)" =log (14 A,) (3.56)

Here we will use the notation & — 6 + i¢ where # and ¢ are real. We then insert the
zero-modes on the LHS in the same way as for the y-system (see section 3.3.9). We are
only interested in P, and P, that are connected by a WKB line when Arg () = ¢, and thus
we have good control over the asymptotics in the required strip. Performing the Fourier
transforms we obtain

, IR 1 o' log (14 A, (6 + i¢))
! 04 ig) = (et 4 Leltios / @ ab .
05 (54 A 53) (6+ i) (2e mat e oy ) + [ LI el L) 50
where we have defined
. . Aa / Ab /
We = lim  lim VTdw+ — log(w, — w),) + — log(wy, — wy) (3.58)
W}, —Wq w{)—)wb Egp 2 2

The integration in (3.58) is performed along edge E,,. The direction of integration is the
same as the direction of the edge E,; (see appendix B.3). Note that the logarithmic terms
precisely cancel the divergence from the endpoints of integration in (3.58) so that the wgy,
are finite. In going from (3.56) to (3.57) we have used the asymptotics for (s, A s3) derived
in appendix B.3.

Expanding (3.57) around § — —oo, and comparing with (3.26) with & = €+ we read
off

/ n= / “log (1+ Ay, (6 +i9)) (3.59)
a.b

The contour of integration in || 5., " is along the WKB line connecting P, and P, and the
direction of integration is the same as the direction of the edge F,,. This formula allows

us to compute the 7-cycles from the y-functions since the Apg are explicit functions of the
coordinates.

3.4 The AdS action

3.4.1 Regularized AdS action

Now that we have introduced the needed tools we are ready to calculate the action (3.18).
We will demonstrate for the case of the 4-point function, but the method is general and
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could be performed for any number of operators inserted along a line. The computation
will be as follows. First we will introduce the relevant WKB triangulation which will
be topologically equivalent to the triangulation shown in figure 3.9. Second, using the
procedure of section 3.3.8 we will derive the y-system satisfied by the coordinates of this
triangulation. Supplementing these functional relations by the WKB asymptotics we will
invert these functional relations using the technique of section 3.3.9 to obtain a set of
integral equations that uniquely determine the coordinates. Finally, from coordinates we
extract the n-cycles using the method of section 3.3.10. Once we have the n-cycles, we
compute the action using (3.18).

Stress-energy tensor and WKB triangulation

For the purpose of the following computation, a useful parameterization of the stress energy
tensor is

T(w) =

1 2+ Uw?
. (Coo co + cw + cow® + Uw > (3.60)

(w — wy (1+w)?*(1 —w)?

Here we have fixed three of the insertion points at w; = +1, wy = 00, w3 = —1 using the
world-sheet conformal symmetry. The fourth insertion point is left at the position w, which
should be fixed at the saddle point w} once the full action is assembled. For the purpose of
demonstration we will take w, to be between ws = —1 and w; = +1. When the dominant
saddle point is located in one of the other intervals one can proceed by a similar procedure.
The constants ¢, = ¢, (wy, A) are functions of wy and dimensions of the operators and are
fixed by the condition (3.7). Their explicit expressions are given in appendix B.6. The
parameter U is unfixed by the condition (3.7) and implicitly parameterizes the cross ratio
of the four operators (recall that they are inserted along a line in the boundary theory
so that there is only one cross ratio). The analytic structure of 7', the resulting WKB-
structure and the WKB triangulation are shown in figure 3.15.

x-system for the 4-point function

From equation (3.46) and figure 3.15 we have

-1 (1 —|— Azg) (1 —|— A14)
++ ot _
X24X24 = <X24X2*4> (1+ As) (1 + Ap) (3.61)
(14 Agy)

1 -1
= X34X§§fr = (X23X;3+) = m (3.62)
24

X12XT;r = (X14XT4+)
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Figure 3.15: Constructing the triangulation for the 4-point function. In the left panel
we show the WKB cells for Arg(¢) = 0. The cell walls are formed by the separating
WKB curves as described in section 3.3.4; as described there, inside each cell there is a
1-parameter family of generic WKB curves and by taking a representative curve from each
family we obtain the triangulation shown in the right panel. In the right panel the black
lines are the edges of the WKB triangulation and the wavy yellow lines show our convention
for defining the branches of w. Notice that this triangulation is topologically equivalent to
the one shown in figure 3.9. This means that we can borrow the results derived for that
example. In particular, the coordinates can be carried over from that example by making
the proper identifications. The cycles corresponding to each coordinate are represented by
the gray curves — we show only the portion of each cycle on the sheet of w where the edge
Es34 has orientation towards P, as indicated by the black arrow along edge Fsy.

To compute each Apg we use formulas (3.51) and (3.49) along with the rules given in figure
3.14. In that way we find

Coxaa (T xa2 (T4 Xy (T + x23))) (1T + xas (14 X (1 + Xa1)))

An = (1= p3) (1 — pf) (363)
~oxzs (T4 x3a) (14 x2a (T4 X2 (1 + xa4)))

A = (=) (1 2) (3.64)

with the rest of the Apg being related by relabeling (see appendix B.6 for the explicit
formulas). These expressions and equations (3.61) — (3.62) provide a closed system of

functional equations for the 6 coordinates associated with the triangulation shown in figure
3.15.
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These functional equations can be converted into integral equations of the form (3.54)
using the technique described in section 3.3.9. To apply the procedure of section 3.3.9 one
must find a ¢ such that the RHS of (3.52) is decaying, and for this one should appeal to
the WKB analysis. The WKB cycles which determine the asymptotics of the coordinates
are shown in figure 3.15. When A; ~ Az and U ~ 0, w4 ~ 0 the cycles shown in figure 3.15
all have Arg($, w) ~ 7/2."° In this case ¢ = 0 is a suitable choice since then all x will be
growing and (3.53) will decay rapidly.'® In summary, the integral equations in the region
of present interest are given by equations (3.54) with Fj given by (3.61) — (3.64). These
equations will remain valid for all values of the parameters A,, U, and w, such that the
triangulation is unchanged. If one deforms these parameters too much the triangulation
will jump. One can then easily write the y-system for the new triangulation and apply the
same procedure to obtain the integral equations for that region of parameters.!”

By numerically iterating these equations (using ng]) as the initial iterate for each xg)
we obtain the y-functions. The 7-cycles are then extracted from the y-functions using the
procedure of section (3.3.10). In the following section we will write the regularized AdS
action in terms of these n-cycles.

Finite part of AdS action

Now that we are able to compute the n-cycles (see previous subsection) we can use the

formula ‘
Aﬁn:/\/TT(coshy—U:f—f(]{w> I}t (%n) . (3.65)
X 3 2 Ya b

(see section 3.2.2 and equation (3.18)) to compute the regularized part of the AdS action.
To use (3.65) there are few steps. These steps are simple but tedious and we will only list
them here (see appendix B.6 for a detailed implementation). As described in section 3.2.2
one should first modify 7 by spreading the double poles slightly such that w = v/T'dw has
an additional square-root cut at each of these points. Then one should choose a complete

5Interestingly, when A; = Az and U = wy = 0 there is a symmetry which causes the RHS of the
Xx-system to trivialize (i.e. to reduce to 1 for all xg) and the y-functions can be computed explicitly (they
are just equal to their zero-mode part). This is reminiscent of the case for the three-point function and,
in fact, there is also a change of coordinates that maps the specific case A1 = Az and U = wy = 0 to two
copies of a three-point function.

16This will continue to be the case as long as the Arg(§. w) remain in the upper-half plane. In other-
words, the inversion procedure will be valid for all U angl wy such that the triangulation is unchanged
since the triangulation will jump precisely when one of the fw w crosses the real-axis [52].

17 Another (more elegant) approach would be to find a systematic way of analytically continuing the
integral equations from one region of parameters to another as was done for the TBA equations of [19].
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basis of a- and b-cycles (five of each is needed for the 4-point function). One can then apply
formula (3.18) and then take the limit in which the small cuts close to form simple poles in
w. Once this is done the area will generically be expressed in terms of three different types
of n-cycles: cycles connecting two punctures, cycles connecting a puncture with a zero and
cycles connecting two zeros. The latter two can be expressed as linear combinations of the
puncture-puncture cycles as described in appendix B.6. Once this is done, the final result
takes the elegant form

s .
Apin = 3~ i Z WENE (3.66)

where the sum runs over the edges in the triangulation (see figure 3.15), ng,, is defined
in (3.59) while wg,, is the w-cycles that intersects edge E,p (i.e. the integral of w that is
associated with the coordinate y.; these integrals are shown as the gray contours in figure
3.15).18

Formula (3.66) and the procedure of section 3.3 for computing the n-cycles solve the
problem of computing the regularized AdS contribution to the 4-point function. In the
next section we present some numerical tests of the procedure. Let us note that the
procedure of section 3.3 is general and can be implemented for any number of punctures.
Further, while we have only proved equation (3.66) for the case of the 4-point function,
given its simplicity one might suspect that the formula holds in general (with 7/3 —
7/12 x (#number of zeros of T), of course).”” Even if the general result does not take
the simple form (3.66), for a given 7" (i.e. for any number of punctures) the procedure
described in section 3.2.2 is still valid and one can still write A, in terms of the ng for
the corresponding triangulation). In principle this solves the problem of computing the
regularized AdS contribution to the N-point function. We have performed numerical tests
only for the case of the 4-point function. We present these numerical results in the following
section.

Numerical tests

We now present numerical tests of the method described above. We solved numerically
the modified sinh-Gordon equation (3.10) for the function v and then using this numerical

18Note that in formula (3.66) both integrals wg and ng are the segment integrals between the appropriate
limits. For example, the wp = % fw w. In this sense we are abusive with the term ‘cycle’.

19Tt would be a simple matter to check this, but we have not pursued this issue. We did check that the
formula holds for the 3-point function (see appendix B.7).
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’ U \ As \ Ay \ AN \ Ay \ Numerics \ X-system ‘
/5| 1 2 1 2 0.84807 0.84812
/2| 1 2 1 2 0.82421 0.82423

Table 3.1: Comparison of the Ay;, obtained by numerically integrating (3.10) and the area
computed from the y-system. The results are for the spike configuration of figure 3.4B.

solution to directly compute Ay;, via
/ VTT (coshy — 1) (3.67)
b

The general set-up of the numerical problem essentially follows that of [38] with some
modifications. However, the numerical method that we use to solve the PDE (3.10) is
quite different from that of [38].2° We place the punctures at w3 = —1, wy = 0, wy = 1,
and wy = oo. We then map the sphere to a square domain with the point at infinity
mapping to the boundary of the square and the real axis mapping onto itself. Since v must
vanish at the punctures, we should impose v = 0 along the boundary of the square domain
since wy maps to the boundary of the square in the new coordinates. Further, since for
either configuration of spikes (see section 3.2.3 and figure 3.4) there is a fold-line along
the real axis, we know v (x,0) = 0 where we are using the coordinates w = = + 7y and
writing v = 7y(z,y). Thus we can solve the problem in half of the square with the Dirichlet
boundary conditions v = 0 on the boundaries. Lastly, we must remove the logarithmic
singularities (3.11) in order to have a nice smooth function to solve for. A suitable function
N (w = 24) (@ — 74)
(1+ ww)

2Yreg =7 + % Z 0, log [ (3.68)
where we 0, = %1 is determined by v ~ —aa% logTT at z,. The numerator of (3.68)
removes the log divergences (3.11) in v while the denominator is included to kill off these
additional log terms at infinity. In the numerical implementation we fix the spike config-
uration we want to describe by choosing the set of {0,}. Finally, to numerically integrate
the equation (3.10) (re-written in terms of 7,4, of course) we use a standard relaxation
method with an uniform grid.

In table 3.1 we compare the numerical results with the analytic results. The numerical
results are obtained by the area computed using (3.67) with the numerical solution for .

20We are very grateful to Romuald Janik for providing us with a copy of the code used in [38] which
was very useful in helping us to develop and test our own numerics.
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malA] ma|B| N
—0.033166||—0.031624 ?
—0.033166|—0.031624
—0.033167||—0.031626
—0.033168/|—0.031628
~0.033169/|—0.031629
—0.033168|—0.031629
—0.033167||—0.031627
—0.033166 ||-0.031626 || w, W

134[A] 1134 [B] 23
—0.014496 ||—0.013581
—0.014497||—0.013582
—0.014499 || —0.013585
—0.014501 ||—0.013587
—0.014503 ||—0.013589
—0.014503 ||—0.013589
—0.014502||—0.013589
~0.014502 ||-0.013588 || ws Wa

Figure 3.16: Here we show the values of 714 and 734 evaluated along several different
contours. For example, the column labeled n14[A]([B]) shows the values of 714 for the spike
configuration of figure 3.4A(B) for each of the contours shown to the right of the column.
We use the parameter values Ay = Ay = 1, Ay = Ay = 2 and U = 1/5 for both spike
configurations. There are five digits that we trust since they are unchanged for the different
contours and they should be compared with our result from the functional equations that is

g SV A & 0.033160, 7Y S5 A] & —0.014503 and 7 VY SMB] ~ —0.031628,

M system[B] ~ —0.013588. In the digits where the forms are closed there is perfect

agreement with the analytic results.

The analytic result is obtained from (3.66) with the n-cycles computed using the y-system
procedure. These results show a good agreement of our formula with the numerics.

A sharper measure of the agreement between the analytics and numerics is to compare
directly the n-cycles. In figure 3.16 we show the numerical results for 714 and 734 computed
along several different contours. This allows us to test the closure of the numerical n which
we obtain from the numerical v via (3.16). Note that closure of  implies that v must obey
(3.10) and thus this is a good measure of the numerical error. Indeed, one can see in figure
3.16 that the numerical cycles agree with the analytical predictions in all digits in which
they are closed. That is, the numerics is in agreement with the analytics in all of the digits
for which the numerics can be trusted.
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Finally, it would be interesting to perform numerical tests for a larger portion of the
parameter space (i.e. more values of the A,, U and wy). To perform a systematic study
will probably require an improvement of our numerical method as our current method,
while extremely simple, has very slow convergence.

3.4.2 Divergent part

In section 3.4.1 we completed the task of computing the first term in formula (3.14). In
this section we will discuss the second term

- / PV TT = — = > Alloge, = Areg (3.69)
S\ {ea) 24

where A,, is finite at ¢, — 0. The contribution A,., can be computed by simple but
tedious application of the Riemann bilinear identity and there are many ways to write the
result. For example

. 1
Areg =1 Z WEWE — z§(w24 - w2~4)(w24 - w2*4) (370)

EeT

where the sum is over the triangulation shown in figure 3.15 and wg,, = @, is defined in
(3.58). The wg are defined in the same way as in (3.66). One can check this formula by
comparing with the direct 2D numerical integration of VTT with small circular disks cut
out around the puncture (in Mathematica one can use NIntegrate along with the Boole
command, for example).

We recall that (3.69) came from the regularization of the string action where we have
added and subtracted vI'T from the integrand of the AdS action. This integral depends
explicitly on the cut-off ¢, around the punctures. It will be important to understand the
connection with the physical cut-off £ at the boundary of AdS. Fortunately we can extract
the needed information from the linear problem since we have good analytic control over
the solutions near the insertion points. To proceed by this route (which parallels the
discussion of [38] for the 3-point function) we must first describe how the string embedding
coordinates are recovered from the linear problem formalism, which is via the aptly-named
reconstruction formulas. We will discuss this in the next subsection, 3.4.2. After that,
in section 3.4.2 we will use the reconstruction formulas to eliminate the ¢, in favor of £.
From this procedure we will recover the standard spacetime dependence in (3.1) along
with a contribution to the function f(u,v). This will complete the computation of the
semiclassical AdS contribution to (3.1).
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Reconstruction formulas

The reconstruction formulas allow us to express the string embedding coordinates in terms
of solutions of the linear problem. This point is crucial in our construction for the following
reasons. First, we have introduced some regulators in the world-sheet, €,, that must be
related to the physical cut-off in the boundary of AdS, z = £. Second, by using them we
will be able make the spatial dependence explicit in the final result, namely the insertion
points z, of the operators in the gauge theory.

Consider two solutions of the linear problem, 14 and ¥ normalized as (¥4 A ¥p) = 1,
and construct a matrix ¥ as

U = (¢q ¥p). (3.71)
The matrix U obeys the same equations of motion as ¢4 5 (3.19), namely
O+ J,)¥ =0, (0+Jg)¥=0. (3.72)

where J,, and Jg are defined in (3.19)-(3.20). One can verify using (3.9) that the quantity

yh = —% Tr (6'0* V" o' 0)|,_, (3.73)

1 2

with 6! = o', 62 = —io?, 3% = 03, satisifes the same equations of motion as Y/ and also
the constraint y-y = —1 (with the AdS metric). In this way we establish a correspondence
between target space coordinates and solutions of the linear problem,

1 x

- = Y2 - Yl - QZ \1111\1121, - = Y3 - Z (\1111\1122 + \:[112\1/21) (374)
z z

3

In order to relate the operator insertion points z, and physical cut-off £ with the linear
problem data, it is convenient to express 14 and ¥ in terms of the elementary solutions
s, and §, whose behavior close to the punctures is given by (3.21),

wA = (¢A A =§a) Sa + (Sa A 77ZJA) §aa wB = (,QZ}B A ga) Sa + (Sa A wB) §a (375)

Close to the punctures the solution §, becomes dominant. Then, using (3.74) and the
explicit form of §, close to the puncture P, we get that

p= | — w, | (3.76)

where the subscript 0 indicates that the solutions are evaluated at # = 0 (recall that this is
the value where the physical problem is recovered — see equation (3.73)). Equation (3.76) is
the relation needed to make the connection between the world-sheet and physical cut-off’s

Agloge, =1log€ +log | (sq Aha) |2 (3.77)
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Finally, using once again (3.74) we express the insertion points x, of the operators in the
gauge theory as
. (Sa A wB)O

% = A e) (3.78)

Physical regulator and spacetime dependence

We can now use (3.77) to eliminate the ¢, in (3.69) in favor of the physical cut-off at the
boundary of AdS z = &. We have

Z A?loge, = (Z A, log € + Z Aglog| (54 A1ha) |(2)> (3.79)

where a and A refer respectively to the small solution s, and one generic solution 4
appearing in the reconstruction formulas. Now we will eliminate the factors | (s, A ¥4) |o
in terms of objects that we can compute.

The terms | (s, A14) |3 can be related to the insertion points z, in target space and
overlaps of the elementary solutions evaluated at § = 0 through expression (3.78). Using
Schouten’s identity one can verify that

Lbe | (Sb A Sa) |0| (Sc A Sa) ’0

Sa ANa) |2 =
‘ ( ¢ A) |0 LbaZcq | (Sc A Sb) |0

(3.80)

for a,b, ¢ distinct. This solution is unique up to different ways of rewriting the spatial
dependence using the cross-ratio

o = T1ates (s1 A\ s4)g (82 A s3)g (3.81)

T1o®3a (81 /A S2), (831 84),

where we have used (3.78). Note that we can compute the brackets appearing in (3.77)-
(3.78) using (3.57). In particular we have

1 1 df log (1+ A=
log (sa A sp)y = <§wab + §wab> + /R %W (3.82)

This formula is valid when there is a WKB line connecting P, and P,. If a bracket appears
for which we do not have a WKB line, we can simply use the cross ratio (3.81) to eliminate
it in terms of brackets that can be computed using (3.82).
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Finally, using (3.80) in (3.79) and massaging the resulting spacetime dependence by
extracting multiples of v and (1 4 u) we find

4
eh@Ai logea H (’3a A SbIO)_\/XAab (@

VAAap
g>m

(3.83)

a>b

where Ay, = (>, Ac) /3— A, — Ap. The extra factor of 2 in the exponent on the left hand
side of (3.83) anticipates the sphere regularization which turns out to be similar to the
AdS part and will be treated in section 3.5.1.

We recognize in (3.83) the canonical spacetime dependence in the 4-point function of
a conformal field theory (compare with equation (3.1)). The appearance of the cut-off in
(3.83) is related to the renormalization of the operators. In fact, if we define Op, = £24O4,
this will cancel the £ factors in (3.83). To be more precise, we should define a 4-point func-
tion that is independent of the operator renormalization. The standard procedure is to
divide by the appropriate product of 2-point functions such that normalization factors
cancel. The same factors of £ will appear in these 2-point functions and will cancel with
those in (3.83). We will thus drop the factors of £ in the formulas below.

3.4.3 Summary of the AdS and divergent contributions

We have now computed all the parts of (3.14). In this section we summarize the full result.
The semiclassical limit of the 4-point function (3.1) is given by

4

(fr S 1) T @an) ™ (3.84)

a<b

where the * denotes evaluation at w, = w} and we define

SRS (wy) = e A (3.85)
4
_9VA _
205xS () = e 2% A T (10 A splo) ™4 (3.86)
a>b

and ffm will be defined momentarily. The contribution Ay, is given by (3.66), A, is
given in (3.70), the brackets in f%°*% are given by (3.82).
The sphere part of the correlation function contains divergences of the same type as
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AdS. We therefore regularize it also by subtracting vV T'T. Such finite contribution is what
we denote by f}gm
f}q — e—é fZ<S5 contribution—\/ﬁ) ' (387)

where S5 contribution stands for the S® Lagrangian and wavefunctions [38]. To compensate
this subtraction, we include the factor of 2 in front of A,., in expression (3.86). In general
we cannot complete the construction of the 4-point function because we are unable to
compute the contribution ffsm Fortunately, for correlators involving only BPS operators
of the same type (e.g. only Z and Z) the sphere part is known and we can assemble the
full result. This is the subject of the next section.

3.5 Full correlation function for BMN operators

In this section we compute the full correlation function for operators of the type TrZ* when
A scales as v/\. For these type of operators, the sphere part fﬁn was already known [57]
and therefore we can complete our computation. We stress that, unlike the three point
function, this four point correlator is not protected. In section 3.5.2, we fix the location
of the puncture wy by the saddle point method and discuss some issues on the multiple
string embedding configurations. In section 3.5.3 we perform an analytical check of our
procedure by studying the extremal limit where Ay = Ay + Ag + Ay, which is known to
be protected from quantum corrections.

3.5.1 Sphere part

The sphere part of the correlation function involves the classical wave-functions associated
to the external states. We consider specifically the correlation function of four BMN
operators?! A A A A

(TrZ2 () TrZ22(29) TrZ2% (a3) TrZ2(14) ), (3.88)

for which the wave-functions are known [58,59]. The string dual of these operators cor-
responds geometrically to a string that is point-like in the sphere and rotates around an
equator [60]. The surface developed by the worldsheet is not extended in the sphere.

Let X; (i = 1,...,6) be the coordinates in S®. This particular string state can be
expressed as

X1 +iX, =€ X, =0, i=3,...,6 (3.89)

21'We are using the following notation for the dimensions of the operators As = VA,
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where ¢ is an azimuthal angle of the sphere. The wave-functions for TrZ Aa and TrZA2« are
given respectively by

Wy = @lepwaa) = pmiBap(vete) (3.90)

where the field ¢ is evaluated at the puncture corresponding to the respective operator
insertion.

As the wave-functions scale exponentially with /A, they will act as sources for the
equations of motion for . The total sphere contribution is then given by

\ _
exp [_\/7_ (/ d2w 890890 +am (A?)Sow:fl + A490w:w4 - A1Q0w=1 - A2§0w=00))] : (391>

Considering both the contributions from the S° action and wave-functions as an effective
action, we obtain the equations of motion for ¢ which are solved by

o(w,w) =i (Aslog |w + 1| + Aglog |w — ws| — Ay log |w — 1) . (3.92)

This solution has an additional singularity at infinity with charge —Az — Ay + Aq(=
—Ay), corresponding to the wave-function inserted at infinity. This is consistent with R-
charge conservation. We may now plug (3.92) into (3.91), introducing cut-off’s around
the punctures to regulate this contribution. This amounts to evaluate the solution at a
distance € away from the punctures. As in the case of the AdS action, the logarithmic
divergences

exp

g > Allog ei] (3.93)

need to be regularized. We do this by subtracting VTT from the integrand. To compensate,
we add a similar contribution to the divergent part, that was already treated in the previous
section (indeed, this regularization procedure is responsible for the factor of 2 appearing
in front of A, in expression for f19*% see (3.86)). The dependence on the cut-off’s
then disappears yielding the following expression for the regularized sphere action and
wave-functions

M)] : (3.94)

s AsA
[iim = exp [\/X (Areg — log 2737t — log |wy + 1]As4

where 7, was defined in (3.87)
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3.5.2 Fixing the fourth insertion point

We have shown how to compute the quantities (3.85)-(3.86) as a general function of wy.
However, to compute (3.84) we must evaluate at the saddle point wy = wj. Let us now
describe how we determine the saddle point in practice. All the physical information that
we input is contained in the stress-energy tensor. Besides the conformal dimensions of the
operators and the position of the punctures, there is the extra parameter U that translates
the additional degree of freedom of the cross ratio. The two are implicitly connected by
the expression

Xoa(0 = 0;U) = 21408 — (3.95)

L12 T34

by formulas (3.81) and (3.34). If we use (3.95) to fix the parameter U than we have one
unfixed parameter wy. This remaining freedom allows us to impose the Virasoro constraint

T =Tas = —Ts = —(0pp)* (3.96)

which so far we have not imposed on T". Plugging in (3.92) and using R-charge conservation
Ay + Ay = Az + Ay we find the saddle point is given by
A(2-U)+A32+U) + AU

Depending on the cross-ratio and the conformal dimensions the saddle point can be located
in any of the three intervals along the real axis. In section 3.1 and appendix B.4, we
discussed the different AdS; string embedding geometries and its connection with the
different boundary conditions (3.11) that one can impose on . At the level of the functional
equations, we have seen that the different boundary conditions manifest in the different
¢ — 0, 00 asymptotics of the coordinates. More precisely they will affect the constant C’g))
in the expression (3.40). One may ask which of the configurations in figure 3.2 we should
find given a cross ratio and a set of conformal dimensions. We now see that once we fix
the external data (cross ratio and conformal dimensions) the saddle point is fixed by (3.97)
and thus embedding is also fixed. This is in perfect agreement with the mapping between
figure 3.1 and 3.2 and it is non-trivial that the integral equations encode this mapping.

3.5.3 Extremal Limit

In this section, we study the correlation function

(TrZ2 (1) TeZ2 (25) TrZ2 (w3) TrZ24 (4)) (3.98)
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Figure 3.17: In the extremal limit, the main feature is that the zeros collide on the real
axis. The black lines represent the WKB cells whereas the gray lines represent the WKB
triangulation. At the exact extremal configuration, there are no WKB lines connecting 1
to 0 nor —1 to 0. We interpret this as a manifestation of the field theory fact that at tree
level all operators are Wick contracted only to the fourth operator.

in the extremal limit when

Ay =2A + Ay (3.99)

Such correlator is protected from quantum corrections as conjectured in [61] and later
proved in [62]. Thus, we expect to obtain the tree level gauge theory result which in the
planar limit is simply given by Wick contractions

1

2A L 2A 274"
Ty T3 Loy

(3.100)

The AdS part of our formula is universal in the sense that it only depends on the dimensions
of the operators. On the other hand, the sphere part of the correlation function involves
the precise details of the operators inserted. Compared to the previous sphere calculation
(3.88), computing (3.98) just amounts to take the complex conjugate of the wave function
located at z;, due to the replacement of Z — Z.

Let us start by studying the case when the cross ratio is u = 1, where we know the
saddle point is w; = 0. From this we will be able to see the general mechanism that gives
the expected simplification of our result. The first important observation is that in this
limit the zeros of T'(w) collide on the real axis as depicted in figure 3.17. Let us start
by analyzing what this implies at the level of the y-system. As the integrals w4 and wsy
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vanish, the x’s associated to these cycles, namely x34 and Y14, tend to —1. This observation
has the remarkable consequence that the right hand side of all equations in the y-system
becomes trivially equal to 1 as one can easily verify ?2. As a result, all y-functions are
ezactly given by leading term of the WKB expansion (3.40)%3. For convenience, let us
introduce an infinitesimal ¢ defined by the condition § = 2A + Ay — As. At the end of the
day, we will take 6 — 0. In this limit, the solutions of the x-system are then given by

_w cosh

75 T (2A2—6)
— %> cosh 6 ——==f£—% cosh
X23 = X12 — —e , X34 = X14 = —€ 2 s 2

Xoa = X4 = €
(3.101)

We may now plug this solution in the expression (3.51) and extract the cycles using as
described in section 3.3.10. We find that all A’s vanish in the limit 6 — 0 except for Ay
and Asy, which tend to —1 as d goes to zero. This implies that all ng,, vanish except
for m14 and 734, which diverge since the integrand of these cycles becomes singular in this
limit. However, one must go back to the area formula (3.66) and realize that such cycles
are multiplied by a vanishing quantity. Indeed, (3.66) simplifies to

1 T
In the limit 6 — 0, the first term of this expression is explicitly given by
5/ Mmﬁm%O—é%M@ﬁ+O@:—g+O@. (3.103)
0

Hence, it turns out that the finite AdS contribution vanishes in the extremal limit. We
believe this is the general mechanism for any value of the cross ratio.

The computation of the sphere contribution follows the same steps as before, with a
slight change on one vertex operator (recall that to get the extremal case, we replaced the
operator located at z; in (3.88) by TrZ A). The new solution for the equations of motion
is

o(w,w) =i (Alog|w + 1| + Aylog |w| + Alog |w — 1) . (3.104)

22This trivialization of the y-system is general and follows just from the fact that the two cycles w14 and
w34 vanish which implies that the y-functions y34 and x14 become —1. In the specific case of U = wy =0
and A; = Ag, which turns out to correspond to cross ratio 1, the y-system is already trivial because of
the symmetry of the stress energy tensor in this particular point of the parameter space, see footnote 15).
Nevertheless, we emphasize that the trivialization of the x-system in general does not rely on this specific
symmetry of the stress energy tensor.

ZIndeed, when the right hand side of the y-system is 1, the kernel term in equation (3.54) vanishes and
we are left with leading WKB contribution.
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Now when we compute the contribution of the sphere action and wavefunctions on this
solution, we find that it ezactly cancels the term VT'T for A’s satisfying (3.99). Conse-
quently, the sphere part of the correlation function also vanishes in the extremal limit.

The divergent piece in the extremal becomes simply

4
) < dp 1 L
5 A TT (sa A splo) Y2 =5 6 / T conig OB N )HO(0) = Zlog THO(0)

oo 2mcosh 6

a>b

(3.105)
which goes to zero as 6 — 0. We are left with the spatial dependent part which, using that
the cross-ratio is 1, can be written as

1

()" () ()

(3.106)

This is nothing but the tree level result (3.100) of the gauge theory.

3.6 Discussion

In this chapter, we have computed the AdS part of the four point function for heavy scalar
operators in AV = 4 SYM in the classical limit. For the particular case of BPS operators
on a line with a single scalar field, the sphere part is known and thus we can construct the
full strong coupling four point function.

The main ingredient of our method is the integrability of the string equations of motion
in AdSs. Specifically, we use the method of Pohlmeyer reduction to map the problem to
that of solving a certain modified Sinh-Gordon equation which is known to be integrable.
We construct the linear problem associated with this equation, which has the form of
an SU(2) Hitchin system. This approach was used in the solution of the Null Polygonal
Wilson-Loop problem at strong coupling [19] as well as in the study of three-point functions
of heavy operators at strong coupling [38-40,42-44].

Let us mention that while our approach was inspired by these previous works, to solve
the N > 3 point function problem required significant generalization of [19,38-40] as well as
nontrivial new ingredients. For the case of the Null-Polygonal Wilson loop the world-sheet
has the topology of a disk, whereas in our problem it is that of an N-punctured sphere
and this changes the boundary conditions that one imposes. This issue was addressed in
[38,39] for the case of the 3-punctured sphere, however in those works the total monodromy
condition was enough to derive the functional equations that determine the necessary
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objects. These functional equations are linear and can be easily inverted using standard
techniques. For the case of 4 or more punctures the situation becomes significantly more
complex. First of all, the total monodromy condition no longer provides enough information
to fix the necessary objects. We have made heavy use of the formalism developed in [52,53]
to derive the functional equations. Second, the inversion of these functional equations is
more subtle due to their complexity. The result turns out to be some integral equations
resembling the usual TBA equations.

There are a multitude of interesting applications and extensions of the results presented.
Let us consider each of these in turn.

e Multiple configurations and phase transitions. An important physical outcome of this
paper is the emergence of multiple string configurations in Ad.S,. Each of these con-
figurations is associated to the existence of several saddle points. A natural question
is to figure out whether the dominant saddle point depends on the parameters of the
theory. If so it would be interesting to study the phase diagram and the possible
transitions.

e OPE. A natural question to ask given any 4-point function in a conformal field theory
is what can be learned from its OPE decomposition. In particular, important infor-
mation about the spectrum and structure constants of the theory can be extracted.

e GKP string. An interesting aspect of [38,39] is the similarity between the mathemat-
ical formalism employed despite the differences in the physical problem: [38] describes
strings without spin in AdSs whereas [39] describes spinning strings in AdSs. In the
formalism of [39,40], one expresses the N-point function of GKP string in terms of a
universal AdS contribution and a contribution from vertex operators, both of which
can be computed for the case of the three-point function. It is possible that one could
use the formalism developed in this work to calculate the AdS contribution to the
N-point function of GKP strings.

e N-point functions. The formalism developed here does not depend in any special
way on having only 4 punctures and in principle one could use the same methods to
study the N-punctured sphere for any N. It would be interesting to understand how
the functional equations generalize to higher N. Furthermore, since for the N-point
function there will be N — 3 unfixed insertion points, the moduli space of possible
configurations should be quite interesting.

e TBA equations. We should note that the techniques developed in [52], in principle,
allow one to write the functional equations derived in this paper in the usual form of
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a Y-system. Typically this Y-system will involve an infinite number of Y-functions.
This form of the equations could be useful for various applications including analytic
continuation of parameters and generalization to N-point functions.

e Generalizing out of the line and WL/CF duality A natural step would be to generalize
this work for operators not inserted on a line. In this case the string is embedded in a
higher dimensional AdS space, which involves a more complicated Pohlmeyer reduc-
tion scheme. It would be interesting to study the question of whether the multiple
string configurations/ saddle points we have found is special to AdS, case. Another
promising application of such generalization would be the possibility of studying the
OPE for the Null Polygonal Wilson Loop [9-17]. One could also investigate the dual-
ity between Null Polygonal Wilson Loops and Correlation functions of null separated
local operators at strong coupling [63—68].

Many of these points present interesting opportunities to try to learn about finite coupling

and weak /strong coupling interpolation and this is probably the most stimulating reason
for pursuing them.
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Part 11

Conformal and S-matrix Bootstrap
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Chapter 4

The boundary bootstrap

In this chapter we aim at carving out the space of massive QFT's based only on fundamental
properties of any Lorentz invariant, unitary theory. As we discussed in the invitation 1.2
by considering QFT in AdS we can study the boundary correlators using the technology of
the CFT bootstrap as summarized in the cartoon 1.1. We call this procedure the boundary
bootstrap. The goal of this chapter is to give life to this cartoon. We start in section 4.1
by establishing some basic properties of QFT in AdS, especially the relation between the
bulk and boundary theories and the justification for applying the conformal bootstrap to
the boundary theory. We then work out a concrete dictionary for translating the boundary
CFT data into flatspace QFT data. In section 4.2 we recall the basic setup of the conformal
bootstrap with special attention to problem of bounding structure constants. In section
4.3 we momentarily return to a flatspace perspective in order to formulate interesting QFT
questions that can be attacked with the tools of sections 4.1-4.2. Finally in section 4.4 we
combine the results of all these previous sections in order to obtain bounds on couplings
in 1 + 1 dimensional QFT’s thereby realizing a concrete implementation of the boundary
bootstrap. The content of this chapter is based on the work [69].

4.1 QFT in hyperbolic space

In this section we shall consider QFT in AdS in greater detail. Our main objectives are
to justify the boundary bootstrap and to explain the relation between the large A limit of
the conformal theory data and the physical data of the flat-space QFT.
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Figure 4.1: Euclidean AdS in Poincaré coordinates (a) and global coordinates (b). In
Poincaré z is the bulk coordinate and z are the coordinates on the R? conformal boundary
at z = 0. A hemisphere of radius a centred at z = |r| = 0 maps to a slice of constant
global time 7 = log a in global coordinates. In particular, the point z = |z| = 0 maps to
T = —00.

Boundary operator - Bulk state correspondence and OPE

The first order of business is to establish the relationship between states in the bulk and
operators in the boundary theory. For this it is useful to consider two different represen-
tations Euclidean AdS,,;. First consider Poincaré coordinates where the metric takes the

form
dz? + dr? + Tde?lil
2

ds® = R?

(4.1)

z

where z > 0 and r is a radial coordinate for R%. In these coordinates there is a flat
conformal boundary at z = 0 as shown in figure 4.1a. The operators of the boundary
theory are defined by pushing local bulk operators to this bounary. Correlation functions
of boundary operators naturally inherit the SO(d 4 1,1) isometry of AdS which is the
conformal group in R?. They thus have the same global transformation properties as
correlation functions of local operators in a d-dimensional CFT. For example, the 2- and
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(a) (b)

Figure 4.2: In global coordinates (a) a state [¢)(7)) defined on a constant global time
slice can be produced by time evolution from an appropriate state |¢)(—o0)) in the infinite
past. In Poincaré coordinates (b) this state lives on a hemisphere of radius r = log 7 and
evolving to the infinite past shrinks this hemisphere to a point. We can thus create the
state |¢)(—o0)) by acting on the vacuum with a local operator Oy at z = r = 0.

3-point functions can be written as [70]

- 5o~
<0(I1)O($2)> = # (4-2)
Cabc
(Oa(21)Op(22)Oc(23)) = o B BBy B AT A B A

where x,, = 7, — 7 are boundary coordinates and d,5 = 1 if O = O and zero otherwise.
For this reason we say that the bulk QFT “induces” a conformal theory at the boundary.*

Now consider changing to global coordinates via z = e cosp, r = €7 sin p where the
metric takes the form
dr? + dp? + sin? pd3_,

cos? p

ds* = R (4.3)

with —oo < 7 < oo and 0 < p < 7/2 as shown in figure 4.1b. We can produce a bulk
state |1)(7)) defined on a slice of constant global time 7 by starting with a specific state in

'We refrain from calling this theory a conformal field theory since it lacks a stress tensor. Instead we
shall refer to it simply as a conformal theory.
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(a) (b) (c)

Figure 4.3: (a) Inserting the operators O; and Oy produces the state [112(7)) at fixed
global time 7. (b) Same picture in Poincaré coordinates. We show only the boundary. (c)
According to the boundary operator - bulk state correspondence, the state |i12(r)) can
equally be produced by inserting the local operator O5 at the origin.

the infinite past [1)(—o0)) and evolving it using the generator of global time translations
H as show in figure 4.2a. Now consider this same process in Poincaré coordinates. The
state |¢(7)) lives on the hemisphere defined by vr2 4+ 72 = €7 as show in figure 4.2b. As
we evolve to the infinite past this surface shrinks to an infinitesimal hemisphere about
the point » = z = 0 and thus we can think of the state |¢)(—o0)) as being created by
the insertion of a local operator O,(0) at this point. In this way we see that there is
a one-to-one correspondence between boundary operators and bulk states. Specifically,
since the hamiltonian H is just the operator which generates dilatations about the point
r = z = 0 its eigenstates correspond to the primaries (and their descendants) of the
conformal boundary theory. Thus, the states are organized according to representations of
the d-dimensional conformal group which are labeled by the conformal dimension A and
the SO(d) irreducible representation of the corresponding primary operator.

OPE of boundary operators
Conformal symmetry of the boundary theory requires the OPE to take the form [70]

O.(x)0(0) = Z Cape (2%)7(Be=2720) [0 (0) + decendants] (4.4)
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where Cy. is the c-number called the structure constant which appears in 4.2. A important
consequence of the correspondence between boundary operators and bulk states is that this
OPE is actually convergent for finite x rather than just an asymptotic statement for small
x [71]. We can see this as follows. Start with the vacuum state at 7 = —oo and insert two
operators on the boundary before the time 7 as shown in figure 4.3a. The effect of these
two insertions is to create a certain bulk state at the time slice 7 in global coordinates,
or on a hemisphere of radius r = log7 in Poincaré coordinates as shown in figure 4.3a
and 4.3b respectively. However, by the operator-state correspondence this bulk state could
equally well have been prepared by acting on the vacuum with a local operator at 7 = —o0
as show in figure 4.3c so that we have

O1(21)O2(72)|0) = O12(0)[0) (4.5)

The local operator Q5 can be written as a sum over primary operators of definite dimension
and spin, thus yielding the OPE (4.4). When derived in this way the convergence of the
OPE follows from a basic theorem about Hilbert spaces: a scalar product of two states
converges when one of the states is expanded in a complete basis of states. The argument
above can break down when other operators are present. In particular, the argument will
hold as long as we can find a time slice 7 such that only O; and O, are inserted before 7.
For example, in 4.3a as we move operator Oy upward the OPE will continue to converge
until Oy passes O3. This translates to the general rule in Poincaré coordinates: inside
correlation functions the OPE of two operators will converge as long as one can make a
sphere around them that does not contain any other operators.

Flat space limit

We will now explain how flat-space data is extracted from the boundary theory [69]. As
we have already seen a primary operator O, corresponds to a massive bulk state where
A, ~ mgR in the flat space limit. Thus the mass spectrum of the flat space QFT can be
obtained from the limit

— = lim — (4.6)

where m is the mass of the lightest bulk particle dual to the operator of smallest dimen-
sion A.

Scattering amplitudes can be extracted from the flat space limit of the boundary cor-
relators. This is essentially an AdS version of the LSZ prescription where one extracts
the S-matrix by properly amputating the correlator. This can be done using the Mellin-
space formalism, which leads to a general formula for scattering amplitudes in terms of
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Figure 4.4: Witten diagram giving the leading contribution to the boundary three-point
function.

the Mellin transform of the boundary correlator [69]. Here we shall only need the result
for the simplest case of a three-point coupling, which can be extracted from the flat-space
limit of the appropriate boundary 3-point function. The amputation procedure simply
amounts to dividing off the contributions from propagating to the boundary of AdS. As a
concrete example (which will be essential for our purposes) consider a bulk theory whose
lightest particle is a scalar of mass m with a cubic coupling g. This particle is dual to the
boundary operator O of lowest conformal weight A. To see explicitly the relation between
the QFT coupling g and the structure constant Copo consider the leading contribution to
the three-point function given by the Witten diagram in figure 4.4 which is

<O(.’B1)O($2)O(l’3)>:gR5;d/dd+1X\/—gAdSGBa($1,X)GBa($2,X)GBQ(Ig,X) (47)

AdS

where the propagator from the bulk point X = (z, ) to the boundary point (0, z;) is given
by

22 r'A)

G Xy, X) = vV C s Ca = . 4.8

sol ) = (22 + (z — ;)" ° dﬂ'%F(A —d/2+1) (48)

The normalization has been chosen such that the two-point functions have unit norm as is
our convention in (4.2) and the factors of R in (4.7) have been inserted to make the cubic
coupling ¢g dimensionless. At the same time, we know from (4.2) that

(O(21)O(22)O(3)) = _ Cooo (4.9)

N
(xfzxg:sl'%s) 2

Computing the integral (4.7) and comparing with this expectation gives

o, AT (BA=d\ 3 (A 03/2
TG (4.10)
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As we discussed above, the flat-space limit corresponds to the limit of large R with fixed
m which means large A. We thus find

da

" it space _ (§)2 VB lim A Aot oo (4.11)
2 A—o0

Although our argument was perturbative the relation (4.11) is exact. The explanation of
this is quite simple. There are two types of diagrams that can appear at higher orders
— those correcting the individual leg factors and those connecting various leg factors. As
for the later type of diagram, exchanges that occur deep inside AdS are already accounted
for in g since it is defined as the exact cubic coupling (reside of the pole of the S-matrix
at s = m?). Exchanges that do not occur near the centre of AdS are suppressed in the
flat space limit. As for the corrections to the leg factors, we are already using propagators
corresponding to the physical mass m and any wave function renormalization factors are
already included in the exact g.

In summary, we now have the concrete formulas for relating the conformal data of the
boundary theory to the flat space QFT data. In particular, we have learned how to extract
the flat space mass spectrum from the spectrum of conformal dimensions (4.6) and the
flat space couplings from the structure constants (4.11). Through these relations, we see
that by using the conformal bootstrap to bound Cppep in the d-dimensional conformal
theory, we can bound g"e*sPa of the d + 1 dimensional massive QFT!?> We will refer to
this procedure as the boundary bootstrap.

4.2 The conformal bootstrap program

In the previous section we saw that a massive QFT in AdS induces a conformal boundary
theory and that its conformal data (dimensions and structure constants) encode the mass
spectrum and couplings of the bulk theory. In this section we shall review the basic
ingredients of the conformal bootstrap which places strong constraints on the conformal
data of the boundary theory and thus on physical data of the bulk QFT.

Our main object of study will be the four-point function in a d-dimensional conformal
theory. Consider a scalar primary operator ¢ with conformal dimension Ay. It’s four point
function is constrained by conformal symmetry to take the form

(Oe1)blas)b(as) b)) = — L) (4.12)

- |$12|2A¢‘$34|2A¢

20f course it could happen that the bound becomes trivial (diverges) in the flat-space limit. We shall
see that, at least for a 1 + 1 dimensional bulk this does not occur.
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where v and v are the cross-ratios

2 .2 2 .2
_ T1oT34 _ T14%33
~ T2 2 2.2

L1324 L1394

(4.13)

The two essential ingredients in the CF'T bootstrap are crossing symmetry and the confor-
mal block decomposition which follows from the OPE. Let us now quickly recall these basic

properties.

e Crossing symmetry: This is simply the statement that since the left side of (4.12) is

invariant under the interchange of two z,, the right side must also be invariant. This
leads to a set of crossing symmetry constraints. Symmetry under z; ¢+ 3 gives®

v g(u,v) = ug(v, u) (4.14)

Operator product expansion: The OPE expresses the product of two primary oper-
ators at finite separation in terms of a sum of local primaries and can be written
schematically as

3()p(0) = > _ Co P(x,d,) O(x) (4.15)

where the sum is over all primary operators and the coefficients P are fixed by
conformal symmetry. The structure constant Cy is the constant appearing in the
three point function (p¢O). Note that we are suppressing all spin dependence for
notational simplicity.

Conformal block decomposition: This follows from applying the OPE (4.15) to the
four-point function (4.12). Applying this relation to the products ¢(z1)¢p(x2) and
o(z3)p(xy4) gives the conformal block decomposition

g(u,0) =1+ N go(u,v) (4.16)
O

where we have explicitly separated out the contribution of the identity operator. The
functions go are called conformal blocks. They receive contributions from the two
point function of the operator O as well as those of all its descendants. Closed form
expressions for these objects in terms of hypergeometric functions exists for even d,
while in odd dimensions there are power series representations and also recursion re-
lations which allow them to be efficiently computed. In any dimension the conformal
blocks for identical scalars depend only on the spin and dimension of the exchanged
operator as well as the cross ratios go = ga(u,v).

103



D D Y
O ¢ ¢ o)
¢ ¢

Figure 4.5: CFT bootstrap condition. Equating the conformal partial wave expansion
(4.16) in two different channels leads to the sum rule (4.17).

The conformal block decomposition (4.16) and the crossing equations (4.14) are all the
ingredients needed for the conformal bootstrap. The combination of the two turn out to
be a rather strong constraint on the conformal data. Applying the crossing constraint to
the conformal block decomposition. gives the so-called sum rule

ute — v 4 Z C [v*¢go(v,u) — u*go(u,v)] =0 (4.17)
o

The derivation and content of this equation is summarized in figure 4.5. This equation
must be valid for any four-point function of identical scalars in any conformal theory. It
can be thought of as a continuous set of functional constraints on the (potentially infinite)
set of structure constants Cp appearing in the ¢ x ¢ OPE.

We will now show how the sum rule can be used to derive rigorous constraints on the
conformal data [21]. We write the sum rule as

L+ C3, Fp, (u,0) + Y C3 Fo, (u,v) =0 (4.18)
Oa;él
where we defined

v%gA,l(v, u) — uAd)gA,l(u, v)
ule — phe

Fo(u,v) = Fp,(u,v) = (4.19)

and we have explicitly separated out the contribution of the operator O; for reasons that
will become clear momentarily. Now consider acting on (4.18) with a linear functional of

3There is an additional constraint from 1 <+ zo which gives g(u,v) = g(u/v,1/v). However, this will
not play a role in our considerations.
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the form

N

1= X oo w] (120)
where \,, are arbitrary real numbers and N is a parameter which counts the number of
derivatives in our functional. Now, given a tentative spectrum (dimensions and spins) of
operators appearing in the ¢ x ¢ OPE we can evaluate all of the Fj (u,v) explicitly. Then,
if one can find a A such that

All] >0 and A[F,,] >0 (4.21)

then this spectrum is excluded since acting on (4.18) with this A generates a contradiction.
To obtain this contradiction it is essential that C% > 0 which is ensured by the reality of
the structure constants [21].

With a slight variation of this argument, we can obtain bounds on the structure con-
stants given a tentative spectrum of dimensions and spins. For this we seek a functional
which satisfies

AlFo,.,] >0, AlFp,]=1 (4.22)

which gives the bound
C3, < —A[1] (4.23)

Note that if A[1] > 0 we have the situation in (4.21) and spectrum is excluded, but if
A[1] < 0 we obtain a genuine bound on the structure constant Cp, for any theory with the
spectrum we started with. Note that increasing N (the number of derivatives in A) can
only make a bound stronger. Any coupling or spectrum that was previously ruled out with
smaller N will still be ruled out (but previously acceptable couplings and spectra may be
excluded). Thus even for finite N the bounds are ezact — they can go down but never up.

Typically, one makes assumptions about the lowest few dimensions in the spectrum but
allows an arbitrary spectrum above some gap Ag,,. For example, we could consider theories
whose spectra consist of a scalar operator O of dimension A and then no other operators
below some Ag,,. Given a spectrum of this form, we can ask what is the maximum allowed
value of Cope. For this one must discretize the space of A’s between Ag,, and some cutoff
Anax. Additionally one must truncate the sum over spins at some [,,,,. Since the conformal
blocks converge rapidly for large dimension and spin, this is a good approximation. In this
way, we can bound the structure constants appearing in any CFT whose lowest dimensions
satisfy some desired properties.

So far we have avoided commenting on how one actually goes about searching the
space of functionals (4.20). It turns out that this is a standard problem in linear algebra
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which goes by the name of Linear Programming. There are efficient algorithms such as
JuliBootS [72] and SDPB [73] designed precisely for such a task. With these algorithms,
the ideas presented in this section become a practical and powerful tool for constraining
the space of CFT’s which has already been applied with great success to a number of
important problems [74-83].

4.3 An interesting QFT question

In this section we devise a set of interesting QFT questions that have a natural formulation
in terms of the boundary bootstrap.

QFT perspective

Consider a D-dimensional QFT whose lightest stable particle is a scalar of mass m and
consider the elastic scattering of two such particles m +m — m + m. In flat space this
scattering process is described by the S-matrix element S(s,t) where s and ¢ are the usual
mandelstam variables. We denote by m = {mq,ms,...} the mass spectrum of stable
single-particle states that appear in the scattering event S. Such single particle processes
generate poles in the S-matrix at the mass of the intermediate particles s = m? and
the residue of each pole is precisely the square of the cubic coupling g2 for the process
m + m — m,. We take the list m to be ordered m; < msy < --- < 2m so that g; is always
the coupling to the lightest exchanged particle.*

Let us consider the simplest case m = {m} which corresponds to theories where the
only intermediate single-particle state that can occur in m + m scattering is m itself. It is
well known that scalar exchange generates an attractive potential and thus we expect that
the attractive force becomes stronger as g7 increases such that eventually the formation of
a bound state m +m — my cannot be avoided. Thus we are led to the very interesting
question: what is the maximum value of g? consistent with the spectrum m = {m}? More
generally, we can ask:

e Question: given some spectrum m what is the maximum possible value of a given
coupling ¢2?

“In some cases the lightest exchanged particle is the external particle (which is the lightest in the
theory) so that m; = m; we will still refer to the coupling as g;.
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In practice we shall focus on maximizing the coupling to the lightest particle m; € m. In
chapter 5 we shall explore this question in 1 4+ 1 dimensions in great detail. For now, for
the sake of concreteness, let us specialize to two specific scenarios:

e Scenario I: Max ¢g1: m = {m, ma}.

e Scenario II: Max g;: m = {m,}.

Of course in Scenario II we have m; > m by assumption. As we shall now see, both
scenarios have a natural formulation in terms of the boundary bootstrap.

Boundary bootstrap perspective

In the boundary theory a scalar bulk state with mass m, corresponds to the scalar primary
operator O, with dimension A, ~ m,R. Thus the analog of the S-matrix element S is
the flat space limit of the four point function of the scalar operator O with the smallest
dimension A. Further, the spectrum of intermediate states m, € m corresponds to a
spectrum of scalar operators with dimensions A, < 2A appearing in the O x O OPE.
Thus the two scenarios formulated above translate to the following restrictions on the form
of the O x O OPE

e Scenario I: O x O =1+ C; O+ Cy Oy + (operators with dimension > 2A)

e Scenario II: O x O =1+ C; O; + (operators with dimension > 2A)

Assuming these forms of the OPE we can run the machinery of the CFT bootstrap and ask
for the largest possible value of the structure constant C; as outlined in section 4.2. Using
(4.11) we then translate this to a bound on g;. In the next sectiom we will do precisely
this for the case of QFT in D = 2 dimensions.”

5In practice in Scenario I we only impose a gap up to Ay and then allow for an arbitrary spectrum.
This turns out to be equivalent to the statement of Scenario I that we have given since optimization sets
the structure constants to zero between As and 2A;. This is somewhat mysterious from the boundary
bootstrap perspective, but can be simply explained in the language of the flat-space S-matrix.
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4.4 The 1D Boundary Bootstrap

In this section we shall describe the implementation and results of the boundary bootstrap
for 2D QFT or a 1D boundary conformal theory. The restriction to a 1D boundary provides
a significant simplification as there is no spin to sum over in the OPE. However, the problem
is still far from easy. As we shall see the limit of large A significantly complicates the
application of the conformal bootstrap techniques described in section 4.2.

Analysis of Scenario 1

In scenario I we focus on a spectrum with lowest dimension A = A; and then a gap
until Ay < 2A. We assume a non-zero structure constant C; = Copp which we seek to
maximize. The application of the technology of section 4.2 yields a bound which depends on
three parameters. First we have the non-physical parameter N which counts the number of
derivatives we use in the functional (4.20). As explained above, the bound becomes stronger
for larger N and thus we want to take /N as large as possible or at least large enough until
convergence is observed. The second parameter is the dimension of the external operator
A which must also be made large in order to achieve the flat space limit.° Finally, we
have the relative gap Ay/A, which we would like to keep finite since we want to study the
dependence of this bound on this parameter. Figure 4.6 shows the bound as a function of
A for several values of N and a gap of Ay = 1.825A. From (4.11) we see that in order to
obtain a finite bound we must have

4 1
log O™ ~ — <g log §> A+ 1 log A + finite (4.24)

for large A. Thus, as a function of A we should observe and approximately linear curve
with a precise slope of —% log %. In plot 4.6 we observe that the bounds start out with a
negative slope, but then turn upward and seem to diverge for large A. However, the curves
for different N become more widely spaced for large A indicating that convergence has not
been achieved there. Notably, we also observe that the bound monotonically decreases
with increasing N. The value N = 100 is already quite computationally difficult, and thus
we seek to access the large N limit through extrapolation. We fit the data for fixed A,
A, to a large degree polynomial in 1/N and then evaluate the result at N = co.” The
result of this extrapolation is thick red curve in 4.6. Remarkably, this curve has exactly

6Since A is the lowest dimension this implies all other dimensions become large in this limit.
"Adding data points of larger N does not significantly affect the results of the extrapolation and thus
we have confidence that we are accurately extracting the large N limit through this procedure.
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Figure 4.6: We bound the structure constant C} assuming the OPE in Scenario I with
Ay = 1.825A using several values of N. We then extrapolate to N = oo as explained in
the main text which gives the thick red curve. The dashed black line indicates the expected
slope from the linear term in (4.24). Bounds obtained with JuliaBot.

the expected slope!® We can thus use (4.11) to extract a finite result for the maximum
flat space coupling ¢***. For this, we perform one more extrapolation in A — we fit to
a low degree polynomial in 1/A (typically no more than quadratic) and then evaluate at
A = oo. The reason we must perform such a low degree fit in this case is that the data
already contains a reasonable amount of error due to the extrapolation in N. Repeating

this procedure for many values of the gap results in the plot shown in figure 4.7.

Figure 4.7 represents the culmination of all the ideas developed so far in this chapter.
It is a concrete realization of the boundary bootstrap which gives life to the cartoon 1.1
in the Invitation 1.2. Each data point represents a bound on the coupling of any 2D QFT
that falls within Scenario I. For example, no such QFT can exist with (mg/m)? ~ 3.5 and
log(g1)? 2 6. Note that as per (4.11) the flat space coupling is given in units of the mass of
the lightest particle. In the limit m3 — 4m? we recover the spectrum m = {m} discussed
in 4.3 which inspired our investigation of Scenarios I and II. We find that such a system
cannot exist in 1+ 1 dimensions with log(g;)? 2 3.03; if the coupling is any larger, a bound
state must form. Another interesting limit is m3 — 3m? where the bound diverges. From

8The small deviations for large delta are due to the subleading log term in (4.24).
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Figure 4.7: Bound on the flat space coupling ¢; for Scenario I. The black squares are the
result of the boundary bootstrap numerics. All theories above these points are excluded.
To generate each point (i.e. for fixed Ay) we perform the procedure to generate the thick
red curve in 4.6 (result of extrapolating in N) and then we extrapolate this red curve to
infinity (extrapolate to infinite A). In this way we measure the finite term in (4.24) which
gives the flat space coupling according to (4.11). The solid curve is an analytic bound that
we will derive in the next chapter 5 from the S-matrix bootstrap.

boundary bootstrap perspective the loss of the bound at this point is somewhat mysterious,
although it may be possible to understand it from the analysis of [84]. However, as we
shall see in the next chapter, from the perspective of the S-matrix bootstrap there is a very
simple kinematical explanation for this phenomenon. Note that the bootstrap numerics
become more difficult as we approach a point where the bound is lost which accounts for
the poor agreement of the leftmost datapoint with the exact bound.”

9 Although the conformal bootstrap produces exact bounds for finite N as explained in section 4.2, this
statement is no longer true after the extrapolations in N and A. Thus it is no contradiction that some of
the data points sit below the exact bound.
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Figure 4.8: We bound the structure constant C; assuming the OPE in Scenario II with
A; = 1.2A using several values of N. We then extrapolate to N = oo which gives the
thick red curve. The dashed black line indicates the expected slope. Bounds obtained
using SDPB.

Analysis of Scenario II

In Scenario 2 we assume a single scalar operator with A; > A and then a gap until 2A.
With these restrictions on the spectrum we again maximize the first OPE coefficient (' in
the self-OPE of the operator of lowest dimension. We again have three parameters N, A,
Aq. The results for A; = 1.2A are shown in figure 4.8 and several values of N. We see that
again extrapolation to large N is necessary. Once this is done we beautifully recovered
the expected slope required for a finite flat-space bound which is indicated by the black
dashed line in figure 4.8 . We repeat this procedure for several values of Ay, in each case
extrapolating to A = 0o as described in the analysis of Scenario I. The results are shown
in figure 4.9.

There are a few interesting regimes of the bound for Scenario II. First, note that when
my — 1 we again recover the case m = {m}; we see that in this case the results agree with
those of Scenario I. Second, as m? — 2m? the bound diverges. Again it is not obvious
why this occurs from the conformal bootstrap perspective, but we shall see in the next
chapter that it has a simple kinematical explanation in the S-matrix bootstrap. Finally,

as m? — 4m? the coupling vanishes. This is intuitive since in this limit m; can be thought
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Figure 4.9: Bound on the flat space coupling g; for Scenario II. The black squares are the
result of the boundary bootstrap numerics. We generate each point from an analysis like
that of figure 4.8 using the same procedure used to generate the points in figure 4.7 (see
corresponding caption). The solid curve is the analytic result that we will derive in the
next chapter from the S-matrix bootstrap.

of as a bound pair of the lightest particle m with a very small binding energy; hence the
attractive interaction should be correspondingly small.*’

10This regime is also non-relativistic and can be studied using ordinary quantum mechanics.
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Chapter 5

The 2D Amplitude Bootstrap

Inspired by the success of the boundary bootstrap of section 4.4, in this chapter we shall
try to establish the bounds directly within the framework of flat space QFT using only the
usual crossing symmetry and unitarity of the S-matrix. As mentioned in the invitation 1.2,
it is intuitive that for a fixed spectrum the coupling ¢; cannot be made arbitrarily large.
In this section we systematically study these bounds in two dimensions where everything
is simpler in the S-matrix world (the kinematical space simplifies significantly and crossing
symmetry can be taken care of very explicitly). Not only do we find the above mentioned
bounds but also manage to identify known integrable theories which saturate the bounds
at special points. We hope these results will constitute the first steps in a general program
aimed at extending the successful CF'T bootstrap to massive QFT’s.

Our main object of study will be the 2 — 2 S-matrix elements of a relativistic two
dimensional quantum field theory. We will further focus on the scattering process involving
identical chargeless particles of mass m. For the most part, we shall take the external
particles to be the lightest in the theory.

Let us very briefly review a few important properties of this object, setting some no-
tation along the way. A major kinematical simplification in 2 — 2 scattering in two
dimensions is that there is only a single independent Mandelstam invariant. In particular,
for scattering involving particles of identical masses there is zero momentum transfer as

I Strictly speaking, what we shall use is that any two particle cut in the S-matrix element opens up
after the two particle cut of the external particles. The 2 — 2 S-matrix element of the lightest particles
is also free of Coleman-Thun singularities [85](which render the analysis more involved and which will not
be considered here). Sometimes, symmetry alone forbids such cuts or poles. In those case, the restriction
to the lightest particle can be relaxed.

113



ks(=ko) ka(=Fk1)

SE(]{J1+I€2)2
t= (ko —k3)? =4m? —s
UE(k‘g,—kl)Q:O

k1 ko

Figure 5.1: The 2 — 2 S-matrix element. Time runs vertically in this figure. In two dimen-
sions energy-momentum conservation implies there is only one independent Mandelstam
variable such that S = S(s) with /s the centre of mass energy.

depicted in figure 5.1. If all external particles are identical, crossing symmetry which flips
t and s simply translates into

S(s) = S(4m? — s), (5.1)

while unitarity states that for physical momenta, i.e for centre of mass energy greater
than 2m, probability is conserved,

IS(s)? <1, s> 4m?. (5.2)

We shall come back to this relation in more detail below, in section 5.2.

Finally, we have the analytic properties of S(s) depicted in figure 5.2. Of particular
importance for us are the S-matrix poles located between the multi-particle cuts. Such
poles are associated to single-particle asymptotic states. Note that there is no conceptual
difference between fundamental particles or bound-states here. We refer to both as particles
in what follows. The poles in S always come in pairs as

2

: 2 4
S~ g 9 and S~ —J— B (7= = 2)

—m2 YIS 2 o 20
§—my 4m? — s —mj 2mj1/4m2—mj

(5.3)
corresponding to an s- or t-channel pole respectively. Here we normalize g? to be the
residue in the invariant matrix element 7" which differs from S by the subtraction of the
identity plus some simple Jacobians related to the normalization of delta functions in the
connected versus disconnected components. This justifies the prefactors J; in (5.3).2 Note

2 We have S = 1 x S(s) = 1+ i(27)26(P) T. The contribution 1 = (27)® /B EyEsEy(6(ky —
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Figure 5.2: Analytic properties of the S-matrix element S(s) for the scattering of the
lightest particle of the theory. We have a cut starting at s = 4m? corresponding to
multi-particle s-channel processes. As implied by (5.1), we have another cut starting at
t = 4m? (or s = 0) describing multi-particle t-channel processes. The segment s € [0, 4m?]
can contain poles corresponding to intermediate propagation of single particle asymptotic
states. We distinguish s and ¢ channel poles (solid and empty circles respectively) by the
sign of their residues. When the external particles are not the lightest in the theory, we
sometimes have more singularities such as further two particle cuts and/or Coleman-Thun
poles.

that we can always clearly tell the difference between an s- or a t-channel pole: since in
a unitary theory gjz is positive, an s-channel pole has a negative residue (in s) while a
t-channel pole has a positive residue (in s).

This concludes the lightning review of two dimensional scattering. We now have all
the ingredients necessary to state the problem considered in this paper. As input we have
a fixed spectrum of stable particles of masses m; < msy < --- < my which can show up
as poles in S(s). Note that by definition of stable asymptotic state (be it a bound-state
or a fundamental particle) we have m; < 2m. Note also that m; might be equal to the
mass m of the external particle itself if the cubic coupling m + m — m is non-vanishing

k3)8(ky — ki) + (k1 <> k2)) represents the (disconnected) contribution of the free propagation while T
accounts for the connected contribution. Here we are we denoting the momentum component as k even
though it is just a number just to distinguish it from the 2-momentum k. Now, the delta function
multiplying T is the energy-momentum conservation delta function 6 (P) = §® (ky4ky—k3 —k4). On the
support of the solution ki = k_;,, ko = ks we have B, Es 5(1)(E1 —k_é)(S(l)(EQ —k_él) = (2sv4m? — s)_15(2)(P).
This Jacobian relating the J-functions results in the denominator in the definition of 7; in (5.3). The m?*
numerator is just dimensional analysis. It is there so that ¢; is dimensionless. In other words, as defined,
g1 is the coupling measured in units of the external mass.
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(e.g. if such a cubic coupling is not forbidden by a Z, symmetry for instance). Similarly,
there might be other stable massive particles which are not produced in scattering of the
lightest particle and thus do not appear as poles of S(s) — e.g. for symmetry reasons. The
question we ask is then what is the maximum possible value of the coupling to the lightest
exchanged particle (i.e g;) compatible with such a spectrum,

g = max gy =" (5.4)
Physically, we expect the right hand side to be less than infinity. After all, as we increase
the coupling to m; we expect this to generate an attractive force mediated by the particle
my between the two external masses. At some point, this force is such that new bound
states are bound to show up thus invalidating the spectrum we took as input. This should
then set a bound on g;. This question bears strong resemblance with very similar questions
recently posed in the conformal bootstrap approach mentioned above. There also we can
put upper bounds on the OPE structure constants given a fixed spectra of dimensions [76].

We will approach this simple problem from two complementary angles. First in section
5.1 we will combine numerics with dispersion relation arguments to find a numerical answer.
In section 5.2 we present an analytic derivation of this bound exploring the power of
analyticity for two dimensional kinematics. The content of this chapter is based on the
work [86].

5.1 Dispersion Relations and the Numerical Bootstrap

On the physical sheet the S-matrix has singularities corresponding to physical processes
but is otherwise an analytic function. Analyticity places strong constraints on S(s) which
can be summarized in a so-called dispersion relation which relates the S-matrix at any
complex s to its values at the cuts and poles, see e.g. [22,23]. To set the notation and
to specialize to two dimensions, we briefly recall the argument here. We start with the

identity
dx S(z) — Ss
)~ 8m = f 370 )

v

where 7 is a small counterclockwise contour around the point s away from any pole or cut.
Now consider blowing the contour outward. For simplicity we assume that S(s) approaches
a constant S,, € [—1,1] as s — oo although this restriction can easily be lifted by means
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Figure 5.3: Approximation of an arbitrary density with a linear spline. The red dashed line

represents some unknown p(z) which we approximate with the grey spline passing through
the points (p,, z,,). Explicitly we have p(z) =~ pn% +pn+1% for x € [, Tpi].
We use this approximation up to some cutoff z,; after which we assume the density decays

as p(x) ~ 1/x. That is, we have p(z) = py 2 /x for & > xp; which allows us to explicitly

integrate the tail from x,; to co.

of so-called subtractions.® In this case we can drop the integration over the arcs at infinity
so that we have only the integration around the poles and cuts giving

7 2 r 1 1

J J

S(s) = S = 3 j]( 2+4m2_s_m2>+/d:cp(x) <x_8+x_4m2+5)
J

o mj I 4m?2
(5.6)

where we have defined the discontinuity 27ip(s) = S(s +i0) — S(s — i0) and we have
further used the crossing equation (5.1) to replace the discontinuity across to the t-channel

cut in terms of the s-channel discontinuity.

Equation (5.6) is the sought after dispersion relation: it simultaneously encodes the
analyticity constraints as well as the the crossing condition and thus provides a concrete

3The basic idea of the subtraction procedure is to start with an identify of the form S(s) =

%% I, % where n = 1,2,... is the number of subtractions. As we blow the contour, the
integrand in the new identity is now more suppressed at large s such that dropping the arc at infinity is
often safer. In the end, this leads to similar albeit a bit more involved dispersion relations as compared to
(5.6) below. We checked on a few examples that the numerics described below yield similar results with a
few subtractions. More generally we expect never to need more than n = 1 in two dimensions.
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framework for addressing the question (5.4). In this form, the question becomes: what is
the largest value of g; for which one can find g¢s, ..., g5 and p(z) such that (5.2) is satisfied?

Let us describe a concrete numerical solution to this question. Denote by p,, the value
p(z,) where z,, € [4m? 00). We can choose a set of x,, and approximate p(x) by a linear
spline connecting the points (x,, p,) as shown in figure 5.3. We can then analytically
perform the integral in (5.6) to obtain

S(s) ~ S — ij (S _gj S+ — _gj 2) +anKn(3) (5.7)

m;  4m 7
where K,(s) are explicit functions of s given in appendix C.1. Evaluating this expression
at some value so > 4m? and plugging it into equation (5.2) gives us a quadratic constraint
in the space of variables g]z, pn and S,. The space of solutions of the constraints is then
the intersection of all these regions for all values of sy > 4m?. (We can visualize it as the
intersection of a bunch of cylinders in a very high dimensional space.) It now suffices to
start inside this region and move in the direction of increasing g7 until we hit the boundary
of the region and can move no more.

In practice, these numerics are simple enough that they can be performed in a few
seconds in Mathematica using the built-in function FindMaximum which allows one to
search for the maximum value of a function inside of some constraint region. For more
details see appendix C.1.

To illustrate, let us consider scenario II from section 4.3. This corresponds to the case
in which only a particle of mass m; couples to the external particle of mass m. In other
words, we consider an S-matrix with a single s-channel pole whose residue we are trying to
maximize. We can then follow the procedure outlined in this section to find the maximum
value of the coupling gi"** for each value of m;/m. The results are depicted in figures 5.4
and 5.5. The maximum coupling plotted in 5.4 is the same result plotted in figure 4.9
where one can see that it agrees perfectly with the results from the boundary bootstrap!

The numerical results depicted in these plots reveal various interesting features. First,
we have the spike in figure 5.4. It has a simple kinematical explanation. As m; — v/2m
the s- and ¢-channel poles in (5.6) collide and thus annihilate each other. As such we can
no longer bound the residue at this point. The symmetry ¢"*(m?) = ¢g"®(4m? — m?)
observed in the numerics is equally simple to understand. Each solution to the problem
with m; > v/2m can be turned into a solution to the problem with m; < V2m provided
we re-interpret who is the s- and who is the ¢- channel pole which we can easily do if we

must multiply the full S-matrix by —1. The plots in figures 5.5 corroborate this viewpoint.
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Figure 5.4: Maximum cubic coupling ¢*** between the two external particles of mass m
and the exchanged particle of mass m,. Here we consider the simplest possible spectrum
where only a single particle of mass m; shows up in S(s). The red dots are the numerical
results obtained from the discretized dispersion relation. The solid line is an analytic curved
guessed below (i.e. the coupling extracted from (5.9)) and derived in the next section. It
is the same curve plotted in figure 4.9. The blue (white) region corresponds to allowed
(excluded) QFT’s for this simplest spectrum.

Another interesting regime is that where the exchanged particle is a weakly coupled
bound-state of the external particles, that is m; >~ 2m. As m; — 2m we see in the numerics
that the maximum coupling vanishes. This is an intuitive result: only a small coupling
can be compatible with this spectrum as a larger coupling would decrease the mass of the
bound state. Note that this corner of our bounds can be tested in perturbation theory in
various theories.

Finally, and most importantly, we observe in the plots in figure 5.5 that the numerical
solutions for the S-matrices with the maximal residues actually saturate unitarity at all
values of s > 4m?. This observation has immediate implications. It implies the absence
of 2 — n particle production for any n > 3. After all,

Soa(s)P=1—= > [Seox(s)),  s>4m®. (5.8)

other stuff X

Absence of particle production is the landmark of integrable models. S-matrices which
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Figure 5.5: Result of numerics for (a) m; = v/3 and (b) m; = 1. In both figures the green,
orange and blue curves are Im(S), Re(5), |S| respectively. Note that the blue curve is flat
and equal to 1. In other words, the S-matrix that maximizes g; saturates unitarity at all
values of s > 4m?. The red dashed lines are real part, imaginary part and magnitude of
the sine-Gordon S-matrix (5.9). In figure (a) the numerical results match perfectly with

(5.9), while in figure (b) the numerics give precisely (—1) times the sine-Gordon S-matrix
as explained in the text.

saturate unitarity often show up in the integrable bootstrap and can usually be deter-

mined analytically. When m; > v/2m, for instance, there is a well known S-matrix obey-
ing |S(s)|> =1 for s > 4m? and with a single bound-state s-channel pole at s = m?. It is

the Sin-Gordon S-matrix describing the scattering of the lightest breathers in this theory;
and the bound-state is the next-to-lightest breather. Explicitly, it reads [87]

_ V/svAm? — s+ myy/4m? — m]
VEVAM2 =5 — my\/Am? — m?

(5.9)

Ssg(s)

The dashed lines in figure 5.5a correspond to the values of the real and imaginary parts
of this S-matrix element. Clearly, it agrees perfectly with the numerics. Our claim is that
there is no unitary relativistic quantum field theory in two dimensions whose S-matrix
element for identical particles has a single bound-state pole at s = m? > 2m? and a bigger

residue than that of the Sine-Gordon breather S-matrix.

Also, according to what we discussed above, we conclude (and cross-check in figure 5.5b)
max and with a bound-state m; < v/2m is

that the S-matrix with the maximum coupling g7
given by an S-matrix which differs from the Sine-Gorgon S-matrix by a mere minus sign,
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S(s) = —Ssg(s). We do not know of any theory with this S-matrix.*

In the next section we will explain that the phenomenon we encountered empirically
here — i.e. saturation of unitarity — is actually generic and not merely a peculiarity of
this simplest example with a single exchanged particle. This will open the door toward an
analytic derivation of ¢g"®* for any bound-state mass spectrum of {my/m,my/m,...}.

5.2 Castillejo-Dalitz-Dyson factors and the Analytic
Bootstrap

An important hint arose from the numerics of the last section: For the simplest possible
mass spectrum (with a single s-channel pole), we found that the optimal S-matrix — leading
to a maximum coupling ¢gi"®™ — saturates unitarity at any s > 4m? (see the blue curves
in figure 5.5). This simple example suggests that one should be able to borrow standard
machinery from the integrable bootstrap literature to tackle this problem analytically. This
is what we pursue in this section. Ultimately, this will lead to an analytic prediction for
g™ (my/m, .. .) for an arbitrary spectrum of masses. Actually, our analysis will determine
the full S-matrix element corresponding to this maximal coupling.

To proceed, it is convenient to change variables from s to the usual hyperbolic rapidity ¢
with s = 4m?cosh®(/2). The mapping from s to # is shown in figure 5.6. The strip
Im(0) € [0, 7] covers the full physical s-plane of figure 5.2 and is thus called the physical

strip. We recall in appendix C.2 a few useful properties of this parametrization. In terms
of 6 we write crossing and unitarity as

S(0) = S(ir —0),  S(6+i0)S(—6 +i0) = f(6), (5.10)

Where f is the right hand side of (5.8) which we do not know. We do know that, by
definition, this absorption factor takes values in f € [0, 1] for physical momenta, that is
for € R. Now, a solution to (5.10) can always be written as

o log f(¢)
2mi sinh (6 — 6’ 4 10)

5(9) = SCDD(H) eXp <— (511)

41t is also conceivable that such theory does not exist at all; the bound for m; /m > /2 must be optimal
since Sine-Gordon theory exists but the left region of the plot in figure 5.4 for m;/m < /2 might still move
down as we include into the game further constraints such as those coming from S-matrix elements involving
other particles in the theory as external states. Similar things happened in the conformal bootstrap story.
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Figure 5.6: Mapping from s to 8. The map “opens” the cuts and rotates clockwise by
7/2. The physical sheet of the s-plane is mapped to the strip Im(0) € [0, 7] with s = 0
(s = 4m?) mapping to 6 = it (0 = 0).

where the exponential factor is a particular solution to (5.10) — known as the minimal
solution — while Scpp(#) is a solution to (5.10) with f = 1. Note that the minimal solution
has no poles (or zeros) in the physical strip; any poles (or zeros) are taken into account by
Scop.

It is now rather straightforward to understand why the process of maximizing the
coupling to the lightest exchanged particle leads to S-matrices which saturate unitarity,
i.e. for which f = 1. Indeed, using the fact that f is an even function, we can symmetrize
the integral in the minimal solution to get

, , oo do' sin(t) cosh (' ,
S(it) = Scpp(it) X exp (/ o \sin(h)(it — é/)‘L x log f(0 )) : (5.12)
~ - negative

~
positive for t € [0, 7]

in the segment ¢ € [0, 7] corresponding to s € [0,4m?] where the potential poles of the
S-matrix lie. We see that the minimal solution always decreases the magnitude of the
S-matrix in this segment unless f = 1. Therefore, if we are to maximize some residue in
this region it is always optimal to set f = 1. This simple observation explains and the
saturation of unitarity observed experimentally in the last section and establishes it for
any spectrum of poles.

Next we have the Castillejo-Dalitz-Dyson (CDD) factor which solves the homogenous
problem

SCDD(H) = SCDD(iW — 9), SCDD(Q)SCDD(_Q) = 1. (513)
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Figure 5.7: Panel (a) shows a CDD pole [7/8] for § purely imaginary between 0 and in.
Note that the magnitude of this factor is always greater or equal 1. Also note that it is
positive between its s- and ¢- channel poles, while the tails of the function are negative.
Panel (b) shows a CDD zero [—7/8| in the same interval. The magnitude of this function
in this interval is always less than or equal to 1.

There are infinitely many solutions to this homogenous problem which we can construct
by multiplying any number of so-called CDD factors,

R

Without loss of generality, we take « to be in the strip Re(a) € [—7, x]. Still, depending
on its value these CDD factors [ can represent very different physics. There are basically
three different instances to consider:

Consider first the case when « is in the right half of the above mentioned strip, i.e.
Re(a) € [0,7]. In this case the corresponding CDD factor will have a pole at § = i« in
the physical strip. Because of locality such poles should always be located in the segment
s € [0,4m?] corresponding to 6 purely imaginary between 0 and imw. Therefore if « is in
the right half of its strip, it ought to be purely real with « € [0, 7]. In this case, the CDD
factor [a] is referred to as a CDD-pole; an example is plotted in figure 5.7a. Clearly,
these factors are very important. They are the only factors which give rise to poles in the
S-matrix corresponding to stable asymptotic particles.

When « is in the left half of the above mentioned strip there are less physical constraints
on its admissible values. The reason is that in this case the corresponding factor induces
a pole at 8 = ¢« which is now no longer in the physical strip. In terms of s it would
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Figure 5.8: Panel (a) shows the behaviour of two types of CDD resonances for real §. The
upper and lower plots show [—7/2 4 10i] and [—7/5 — 10i][—7/5 + 10i] respectively. The
orange curve is the real part while the green curve is the imaginary part. Resonances can
be added at very little cost. If some parameters are large, for example, their effect only
shows up at very high energies nearly not affecting low energy physics as expected. Panel
(b) shows the behaviour of two resonance factors for 6 purely imaginary between 0 and
im. The upper and lower panel show [—7/2 + i| and [—7/3 — i|][—7/3 + 7] respectively. In
the former case the resonance factor is purely real in this interval while in the later case
the product is real although the individual factors are not. Note that in this interval CDD
resonances always have magnitude less than 1 and that each individual CDD resonances
never changes sign.

be on another sheet after crossing some of the cuts in figure 5.2. A priori, there is not
much we can say about possible positions of poles which leave the physical strip. It is still
convenient to separately consider two possible cases. If « is purely real in the left strip
— that is if @ € [—m,0] — we say [o] is a CDD-zero. The reason is clear: such factor
has a zero at # = —i« inside the physical strip and along the very same segment where
possible poles will be. An example of a CDD zero is plotted in figure 5.7b. We can also
have complex values of a provided they are carefully chosen not to spoil real-analyticity of
S-matrix which requires that S(6) should be real in the segment between 0 and iw. One
possibility, for example would be to have & = —7/2 + i3 where ( is purely real. Another
option would be to have a pair of complex conjugate a’s such that their product would
lead to a real contribution in the above mentioned segment. Such CDD contributions also
lead to zeros in the physical strips, this time at complex values of #. We refer to such
factors as CDD-resonances. Examples of CDD resonances are plotted in figure 5.8.

Let us now discuss some general features of these three CDD factors which are relevant
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for our present purposes. We see in figure 5.7a that a CDD-pole factor has magnitude
greater than one at any point in the segment = [0,77]. On the other hand from figure
5.7b and 5.8 we see that CDD-zeros and CDD-resonances have magnitude always smaller
or equal to one in this segment. As such, one may (incorrectly) conclude that the S-
matrix which maximizes g; and is compatible with a given spectrum of asymptotic stable
particles {mj/m,ms/m, ...} is simply given by a product of CDD-poles, one for each
stable particle.

This is too hasty for the simple reason that such a naive product of CDD-poles will
generically have wrong signs for the corresponding residues contradicting (5.3).> Hence,
a more thoughtful conclusion is that while we can indeed discard any CDD-resonances,
CDD-zeros are sometimes a necessary evil. In contradistinction with the CDD-ressonances
and also with the minimal solution discussed above, CDD-zeros change sign in the segment
0 = [0,im]| so we can — and must — use them to flip the wrong signs of any residues. The
correct prescription is therefore to dress the product of CDD-poles by a potential overall
sign plus a minimal amount of CDD-zeros such that the signs of all the residues come out
right. The position of the CDD-zeros is then fixed such that g; is maximal. Appendix
C.4 contains the final outcome of this maximization problem for the most general mass
spectrum. Here we find it instructive to proceed in some detail with some simple examples.

Let us begin with the simplest case in which there is a single particle with m; < 2m. We
wish to maximize the coupling for the process m +m — m;. This was the case considered
in section 5.1 and for which the results of the numerics are given in figures 5.5 and 5.4.
Since there is only a single bound state, we require only one pole and thus the solution is
given by S = +[a;]| where «; is fixed by the condition

m? = 4 cosh?(ia;/2) (5.15)

and the =+ is fixed such that the residue of the s-channel pole is positive. This leads to
S = [ay] for m; > V2and S = —loy] for my < V2.

Now suppose we have two particles such that m; < my < 2m and again we wish to
maximize the coupling for the process m +m — m;. Clearly we should start with at least
two CDD factors to accomodate bound-state poles at s = m? and s = m3. However, the
analysis is complicated by the requirement that the residues of these poles be positive since
each individual CDD factor changes sign at its poles (see figure 5.7a). We must consider the
four distinct configurations of s- and t-channel poles shown in figure 5.9a. First consider

STranslating (5.3) to f-space we have that a proper s-channel pole corresponding to a mass m? =

4 cosh?(6;/2) should behave as S = iT'%/(0 — 0;) with I'; positive and related to g7 by some trivial
Jacobians. Correspondingly, the associated t-channel pole will be located at 6 = im — ¢; and will have a
negative residue S o~ —il'5 /(0 — im + ;).
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Figure 5.9: Panel (a) shows the four possible configurations of poles for a spectrum m; <
my < 2m and no cubic coupling. Cases (1) and (2) correspond to m; < v/2 < my the
former with m? > 4 — m3 and the latter with m? < 4 —m3. Cases (3) and (4) correspond
to V2 < my < mg and my < ma < V2 respectively. The residues of a product of CDD
factors alternate between positive and negative since a CDD factor changes sign at each of
its poles and nowhere else. Thus in case (1) and (2) we can arrange for (5.3) to be satisfied
simply by fixing the overall sign of the S-matrix. Cases (3) and (4) cannot be repaired in
this way. Instead we must multiply by a CDD zero in order to fix the signs. Panel (b)
shows a CDD zero factor [—/] with ap < ; < ay such that is changes sign between the
two s-channel poles and also between the two t-channel poles. In this way the product
+]on][—pF1][ae] will have the correct residues (the overall sign which can be then fixed as
in cases (1) and (2)). The precise value of 3; must then be fixed to maximize g? which is
the residue at a;. We see that [—f;] grows monotonically as we shift the zero to the left
toward ay. Optimizing then implies that we must collide this zero with the pole at as.

cases (1) and (2) which correspond to m; < v/2 < msy. Here the solution is simply given
by S = % [ay] [ae]. Once the correct overall sign is selected, the residues of the poles work
out since the poles alternate between s and ¢ channel. We fix the overall sign as follows.
Notice from figure 5.7a that an individual CDD factor is positive between its poles and
negative before and after — i.e. the tails of the CDD factors are always negative. Further,
the pole of an individual CDD factor closest to im has the form i (—1) X (positive). Thus,
for a general product of such factors the sign of the residue closest to ¢m has the form
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i (—1)Y x (positive). If m? > 4 — m2 this pole will be t-channel as in case (1) of figure
5.9a and since N = 2 we should choose the overall sign (—1). On the other hand when
m? < 4 —m3 the first pole is s-channel is in case (2) and thus we should choose the overall
sign (+1).°

Now consider the case (3) in figure 5.9a which corresponds to v/2 < m; < msy. Now a
simple product of two CDD poles cannot have the correct signs for its residues. The signs
alternate at each pole but we have two consecutive s-channel poles with no t-channel pole
in between. To correct for this, we are forced to insert a CDD zero [—f;] between the two
s-channel poles ay < 7 < «;. Such a factor also has a zero between the two t-channel
poles since it is crossing symmetric. The precise position of this zero is then fixed by the
condition that g7 be maximized — i.e we want to maximize the value of the CDD zero at
the position a;. From figure 5.9b we see that this means we should move the zero as far
away from «; as possible. In particular, it implies that we should collide the zero with the
pole at ap, thus decoupling that state from the scattering of the lightest particle. In other
words, the the optimal S-matrix is given by S = [ay] for /2 < m; < msy. Note that this
does not contradict our assumption that there is a particle my in the spectrum. Rather,
it simply implies that the S-matrix that maximizes ¢g; has no coupling to this asymptotic
state (i.e. go = 0). Lastly, case (4) is related to (3) by reflection about 7/2 so in that case
we have S = —[ay]. The final result of all this analysis is summarized in figure 5.10.

Note that this example contains scenario I from section 4.3 as a special case. In par-
ticular, it corresponds to the slice of this plot along the plane m;/m = 1 which is the
upper-left boundary of the plotted region. A range of this slice is precisely what is plotted
in figure 4.7 where one can see that it agrees beautifully with the data from the boundary
bootstrap in the region where numerical results from the later are available.

The case N = 2 that we have just discussed demonstrates all the salient features of
the general case. In particular for a set of masses m; <msy <...<my < 2m corresponding
to {au,...,an} the optimizing S(s) will always be given by (5.14) where the product runs
over a subset of the masses. The product is only over a subset because the collision of
zeros and poles we observed in the N = 2 case is a feature present in the general solution.
That is, whenever the poles do not alternate between s- and t-channel, we are forced to
insert CDD zeros so that the residues obey (5.3). Maximizing with respect to the position
of these zeros always forces them to collide with a pole, thus decoupling that state from
the scattering process. Precisely which poles get canceled is explained in appendix C.4.
Finally, the overall sign in (5.14) is fixed by considering whether the pole closest to i is

SIn general, configurations of poles which are related by reflection about /2 have an S-matrix related
by an overall sign. This follows from the dispersion relation (5.6) as explained in section 5.1.
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Figure 5.10: Maximal coupling ¢7**(m1/m, m2/m) for the spectrum m; < mg < 2m and

no cubic coupling. Each region corresponds to one of the four configurations of poles shown
in figure 5.9a with regions A B,C,D corresponding to (4),(2),(1),(3), respectively.

s- or t-channel. The end result of this analysis is formula (C.7) given in appendix C.4. As
an application of this formula which will be relevant in the next section, in figure 5.11 we
present the maximal coupling for the case m; = m (i.e. a cubic coupling m +m — m) and
generic my; < mo < mg < 2m. Finally, we have verified in all these cases that performing
the numerics of section 5.1 for the various configuration of poles confirms the CDD solutions
given above.

We will now conclude with some comments regarding the CDD solution (5.14). First
we note this solution (5.14) does not cover the full space of solutions of (5.13). We can
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Figure 5.11: Maximal coupling ¢7***(ms/m, ms/m) for the spectrum m; = m (i.e. a cubic

coupling m +m — m) and generic m < mg < ms < 2m.

always multiply (5.14) by any other solution of (5.13) such as the factor
Sgrav(s) _ eilgw/s(s—4) _ 62il§m2smh0 (5.16)

with an arbitrary parameter (2. This solution, called a “gravitational dressing factor” was
recently introduced in [88]. For our purposes we can rule out the possibility of such a
factor since Sgav € [0,1] in the segment § = [0,in] and thus will always decrease the
value of g;. We are not aware of any other solutions of (5.13) and the agreement of our
results with numerics indicates that we have identified the correct class of solutions for our
considerations.

Second, note that the general CDD solution (5.14) saturates unitarity (|Scpp| = 1 for
0 real) which implies the absence of particle production in the scattering m + m. As we
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have already mentioned in section 5.1 absence of particle production is an indication of
integrability. Thus one may wonder if each point on the surfaces of figures 5.10 and 5.11
correspond to some integrable model. As we shall see in the next section, generic points in
these plots cannot correspond to integrable models without the addition of new particles
into the spectrum. As such, for a fixed spectrum only very special points correspond to
integrable theories.

5.3 The Ising Model with Magnetic Field

Figures 5.10 and 5.11 are examples of bounds on couplings of a quantum field theory given
some mass spectrum. An obvious question is whether there are interesting field theories
saturating these bounds. Also, when the answer is no what can we do to lower the bounds
further until the answer is yes?

In some regions of these plots we already know the answer to these questions. Take for
example the my = 2 section of figure 5.10. As mo — 2 this particle enters the two-particle
continuum thus disappearing from the spectrum. We are thus left with a single exchanged
particle m;. This was precisely the case discussed in the simple numerics example and
depicted in figure 5.4. For any my > v/2m we do know of a theory which saturates this
bound: it is the Sine-Gordon integrable theory when we identify m as the first breather
and m; as the second breather.

What about the more general bounds in figures 5.10 and 5.117 All the optimal S-
matrices there which maximize g; saturate unitarity and thus admit no particle production.
Do they correspond to proper S-matrices of good integrable quantum field theories with
their respective mass spectra? We will now argue that the answer to this question is no.

As an example we will focus on region B in figure 5.11. That is we will focus on the
space of theories where there are three stable particles: the lightest particle itself with
my; = m and two other heavier particles with

\/§m1 < Mo < \/§m1 <msz<2mj. (517)
In this region the S-matrix which maximizes g; is a simple product of three CDD factors,

(0) = sinh(6) + ¢sin(27/3) " sinh(€) + i sin(az) " sinh(€) + i sin(as)
sinh(6) — isin(27/3)  sinh(f) — isin(ay)  sinh(f) — isin(as)

m; = 2 cos(a;) .

(5.18)
We will now argue that in the region (5.17) of parameter space our bound should not be
the strongest possible bound except at a single isolated point which we will identify with
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Figure 5.12: Blow up of region B from figure 5.11. The thick black line is where the
cubic fusion property (5.20) holds (i.e. assumption (1) in the discussion of section 5.3).
In the upper right corner we plot the s-channel poles of Si5 versus those of S. We see
that, following the thick black line, only at the blue dot does Si2 have poles at the same
locations as S indicating that assumption (3) from section 5.3 also holds.

a well known and very interesting field theory.” We will do this by observing some simple
pathologies with (5.18) which are resolved once ay and ag take some particular values

“The reader fond of section titles probably guessed which one.

131



which we identify below.

To proceed we need to make three natural assumptions about a putative theory living
in the boundary of our bounds for a fixed mass spectrum m:

A1l The theory is integrable.®

A2 The exchanged particle with mass m; = m is the same as the external particle and
not just another particle in the theory with the same mass as the external particle.

A3 There are no other stable particles below the two particle threshold 2m; other than
those in m.

In an integrable theory we can construct bound-state S-matrix elements from the fun-
damental S-matrix by so called fusion. If the stable particle shows up as a pole at § = iq;
in S(#) then the S-matrix of this bound-state with the fundamental particle of mass m can
be built by scattering both its constituents,

Sjth bs, fund(g) = 5(6’ + ZCY]/Q)S(Q — ZO@/Z) . (519)

This relation can be easily established starting with the 3 — 3 S-matrix which is factorized
as a product of three two-body S-matrices. We can then take two of the three particles
in the initial state and form a bound-state. This will then describe a scattering of that
bound-state with the remaining fundamental particle. (Because the theory is integrable,
the individual momenta in the out state are the same as in the in-state so automatically
we will be fusing into another bound-state in the future.) In this fusion process one of the
three S-matrices (the one involving the particles being fused into a bound-state) simplifies
(it yields a single pole of which we extract the residue) leaving us with two S-matrices
which are nothing but the right hand side of (5.19). We can also justify (5.19) in a more
physical way as depicted in figure 5.13.

With the fusion property (5.19) following from assumotion Al we will now show that
powerful constraints on the spectrum follow from assumptions A2 and A3.

If a theory has a cubic coupling and m; = m shows up as a pole in the S-matrix then
it can itself be thought of as a bound-state. That is, under the assumptions (1) and (2)
above we conclude that we must have

S(0) = S(0 + in/3)S(0 — ir/3). (5.20)

8This is of course very natural since the S-matrices we found saturate unitarity and thus admit no
particle production. Absence of particle production is of course a necessary condition for integrability. In
most cases it is also a sufficient condition, see e.g. [89].
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Figure 5.13: Suppose we take two (to be) constituents of a bound-state and throw them
very slowly at each other so that they travel (almost) parallel to each other in space-time
until they are close enough to feel each other and thus form the bound-state. Now suppose
we want to scatter a fundamental particle with this bound-state as indicated on the left
in this figure. This is how we would compute the left hand side of (5.19). In an integrable
theory we can shift at will the position of the wave packet of this fundamental particle. So
we can shift it far into the past such that it scatters instead with the constituents of the
bound-state well before they were bound together as represented on the right. This leads
to the right hand side of (5.19).

This is an important self-consistency constraint. We can now plug the solution (5.18) in
this relation. We observe that it is generically not satisfied. However, there is a line a3(cav)
or equivalently mg(msg) where it holds. This is the thick black line in figure 5.12. Away
from this black line we can already conclude that our bound is either not the optimal
bound or some of the assumptions Al or A2 (or both) should not hold.

Sticking to the black line and continuing with assumption (3) we can do even better.
We can now construct the S-matrix element Sj5(0) = S(0 + i /2)S(0 — iay/2) for the
scattering m; +mo — m; +ms involving the lightest and the next-to-lightest particles. We
can then look at the poles of this S-matrix which will correspond to asymptotic particles
of the theory. There is a point in the black line, marked with the blue dot in figure 5.12
where these poles correspond perfectly to the spectrum m = {m;(= m), ma, mz}. Namely
we find precisely three s-channel poles at s = m?,m3 m3 < (2m;)? which are the very
same locations in the fundamental S-matrix S(¢). However, as we move away from this
blue point something bad happens. We see that the poles at s = m? and s = m3 are
as expected however the pole at m3 shifts to a nearby position m/. This would indicate
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the presence of a new particle not in m with a mass close to that of msy. This violates
assumption A3.

Ultimately, only the blue dot in figure 5.12 which is located at
me = 2cos(m/5)my , mg = 2cos(m/3)my, (5.21)

survives! We conclude that under the assumptions A1-A3 the maximal coupling in region
B of plot 5.11 (which corresponds to masses satisfying (5.17)) should be lower than the
one we found everywhere except perhaps at the blue point.”

What about this blue dot? Is there a special integrable theory with these masses and an
S-matrix given by (5.18)7 Yes, it is the Scaling Ising model field theory with magnetic field
[90]. Its is a very interesting strongly coupled integrable theory with E8 symmetry which
describes the massive flow away from the critical Ising model when perturbed by magnetic
field (holding the temperature fixed at its critical value).'® Thus the CDD solution provides
a sharp (i.e. as strong as possible) upper bound on g; for this value of the masses. In what
follows we shall refer to the blue dot in figure 5.12 as the magnetic point.

The thin blue line in figure 5.12 represent the variation of the masses of the stable
particles my and mg of the scaled Ising model as we move away from the magnetic point
by shifting the Ising model temperature away from its critical value. The slope dms/dmg
defining this line can be computed using so-called form factor perturbation theory as
recalled in appendix C.3. As we turn on the temperature the corresponding field theory
is no longer integrable (see [91] for a review of the scaling Ising model with temperature
and magnetic field turned on). Particle creation shows up to linear order in the thermal
deformation but since this same particle production only shows up quadratically on the
right hand side of (5.8), its effect of the elastic component S should be subleading. As
such we expect that our bound for g; also captures the residue of the Scaled Ising model
in the vicinity of the magnetic point. This is what we check in detail in appendix C.3.

A conclusion of the discussion above is that for finite deformations away from the
magnetic point, the bound in figure 5.12 is not optimal. The obvious question is then
how to improve it? One strategy would be to include other S-matrix elements into our

9Note that we can not exclude having other integrable theories living in the black line provided we
accept more stable particles below threshold showing up in other S-matrix elements. We could also drop
assumption A2 and conceive integrable theories where m; is not the same particle as the external one
(despite having the same mass). If we keep assumption A3, the conclusion leading to the blue dot as a
special isolated theory still holds.

10This is perhaps not that surprising. After all, many of the conditions we just imposed are simple
recast of standard integrable bootstrap logic as used, for instance, in [90].

134



analysis. In particular, it would be very interesting to include into the game the simplest
absorptive components which are the inelastic 2 — 2 processes m + m — m + ms and
m + m — ms + mo. Their existence, away from the integrable magnetic point, will forbid
us to saturate unitarity for S(@) since they will show up in the right hand side of (5.8). By
taking them into account we expect therefore to be able to improve our bound. As we add
these components to our analysis, it would be formidable if a ridge-like feature passing the
magnetic point represented by the blue dot would develop in figure 5.12. By moving along
this ridge we would hopefully be moving along the non-integrable thermal deformation
thus accessing the full Scaling Ising model with temperature and magnetic field. We are
currently studying this problem and hope to report on progress in this direction in the
near future. In the CFT bootstrap, adding further components to the analysis proved
to be a very powerful idea [82]. Hopefully the same will be true here. It would also be
very interesting to consider multi-particle scattering such as 2 — 3 processes but these are
kinematically more complicated and we did not dare explore them yet.

5.4 Discussion

Armed with the insights of the remarkable recent progress in the conformal bootstrap and
with the well ironed technology of the integrable bootstrap, we revisited here the S-matriz
bootstrap program. We found bounds on the maximal couplings in massive two dimensional
quantum field theories with a given mass spectrum. We obtained these bounds numerically
(see section 5.1) and analytically (see section 5.2) with perfect agreement between the two
methods, see e.g. figure 5.4. These bounds also made contact with well known integrable
theories. We found, for example, that there is no unitary relativistic quantum field theory
in two dimensions whose S-matrix element for identical particles has a single bound-state
pole at s = m? > 2m? and a bigger residue than that of the Sine-Gordon breather S-matrix.

In the section 4.4 we attacked this same bound problem from yet a different perspec-
tive. There, we considered a Gedankenexperiment where we put massive (d-dimensional)
quantum field theories into a (Anti de Sitter fixed background) box. We can then study
their landscape by analyzing the conformal theories they induce at the (d — 1 dimensional)
boundary of this space-time. This allows us to make use of well developed numerical meth-
ods of the conformal bootstrap for putting bounds on conformal theory data which then
translate into bounds on the flatspace QFT data. An important difference with respect
to previous works on conformal bootstrap is that the setup used here requires all confor-
mal dimensions involved in the bootstrap to be very large. This is how we make sure the
AdS box is large and the physics therein is equivalent to that in flat space. This poses
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Figure 5.14: Maximal coupling ¢"** for (a) a single exchanged particle of mass m;
and (b) a particle of mass m; = m plus an heavier particle of mass my. The solid
blue lines are the analytic results of the two dimensional S-matrix bootstrap. These
are nothing but the top right and top left slices of the more general figure 5.10. The
black squares are the outcome of the one dimensional conformal bootstrap numerics
from [69]. These numerics are obtained using SDPB in (a) and JuliaBot in (b). In
either case, within the precision of the numerics, the agreement with the analytic re-
sult is striking. It is worth emphasizing that the solid curves are very non-trivial
functions. The right-most branch of (b), for instance, corresponds to the analytic re-

sult (go)? = 12(z(6v/4 — 22 — 3z (2? — 4)) + 3v/3) /(2 — 42® + 3) with = my/m.

formidable technical challenges as discussed in detail in [69]. This method of extract QFT
bounds is very onerous and requires several hours of computer time whereas the numerical
method described in section 5 takes a few seconds. Beautifully, in the end, we reproduce
precisely the same bounds as encountered in this paper as illustrated in figure 5.14.

We find the agreement between the conformal bootstrap and the S-matrix bootstrap
to be conceptually very interesting. (At least in the case at hand corresponding to d = 2)
we observe that the d — 1 dimensional conformal bootstrap knows about the d dimensional
massive S-matrix bootstrap. From an AdS/CFT-like intuition this is perhaps to be ex-
pected since we can always put whatever we want into boxes. On the other hand, we still
find it comforting albeit counterintuitive that we can learn about massive quantum field
theories from massless conformal theories in lower dimensions.

There are two natural follow up directions to this work. One is to explore further the

136



two dimensional world by including into the analysis S-matrix elements involving heavier
particles. When these other components do not vanish, unitarity is not saturated and
therefore we expect in this way to make contact with interesting non-integrable theories.
One may learn, for example, about the full scaling ising model with magnetic and temper-
ature deformations as discussed at the end of section 5.3. The second promising direction
would be to stick with the simplest S-matrix element involving identical lightest particles
but move to higher dimensions. In both cases we no longer expect the luxury of analytic
results as obtained here. The hope, however, is that proper generalizations of the numerical
methods — both the S-matrix and the conformal bootstrap one — will survive.

From the conformal bootstrap point of view, either direction seems straightforward
although technically challenging. The technology for dealing with multiple correlators
exists [82] even though it is well known that the numerics are much slower in this case.
Going to higher dimensions also seems very doable. Indeed, almost all of the recent progress
in the conformal bootstrap program has been focused on higher dimensions. A complication
as compared to the one dimensional bootstrap is that we will also be forced to sum over
spins in the OPE. Hopefully this is only a technical hurdle. For some preliminary results
in this direction see [69]. In short, the conformal bootstrap provides a conceptually clear
path along which we may proceed for both multiple correlators and higher dimensions.
The price for this clarity is the difficult nature of the conformal bootstrap numerics and
the feeling that one is dealing with a bit of a black box.

From the perspective of the numerical S-matrix bootstrap it seems simple to include
amplitudes involving heavier particles. We no longer expect to find analytic bounds and
we expect the conformal bootstrap numerics to provide a valuable way of testing these
generalizations. Going to higher dimensions, however, seems much more difficult and it is
less clear how to proceed. We now have to deal with two mandelstam variables and with
angular momentum. Moreover, there are many representations of S-matrix elements which
converge in different regions of physical parameters and which make different properties
manifest. It is not yet clear which provides the best starting point. In particular, it is not
clear how to efficiently impose unitarity and crossing at the same time. This is in contrast
to 2d where crossing can be made manifest and unitarity can still be easily imposed.

In any case, it seems very fruitful to pursue the conformal and S-matrix bootstrap
hand-in-hand. Both for the multiple correlator story as well as for higher dimensions,
having a conformal bootstrap bound, even if it is numerically hard to get, would serve as
an invaluable hint. Such lamp posts are extremely valuable and may provide key insights
to the S-matrix bootstrap which were missing in the 60’s.
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Chapter 6

Concluding remarks

At the start of this thesis we asked the two basic QFT questions Q1 and Q2: How do
we describe strongly interacting QFT and how do we describe QFT in terms of physical
parameters? We attacked these questions from two complementary angles. In Part I we
gain insight by studying the very special theory N’ =4 SYM while in part II we study the
space of QFTs obeying a minimal set of fundamental properties. To conclude this thesis
we return to these overarching questions and examine what progress we have made toward
their resolution.

Let us first consider Part I. We are of course not the first to note that N' = 4 suggests
a very natural answer to Q1 which is that strongly coupled gauge theories are naturally
described in terms of strings. Although N = 4 is a very special theory, this sort of duality
is expected to be a general feature of gauge theories as was already recognized in the
pioneering works of Wilson [92] and t’ Hooft [1]. In particular, in the seminal paper from
which the term “Wilson-loop” was born [92], Wilson observed that the strong-coupling
limit of such loops are given as a sum over surfaces weighted by their area very much like a
string partition function. A concrete realization of this idea was not borne out until many
decades later with the advent of the gauge/gravity duality and in particular the paper [6]
which gave the precise map (1.4) and (1.3). Wilson loops are arguable still the most natural
variables for studying the transformation of a gauge theory into a string theory since they
are hybrid objects that have a simple meaning on both sides of the duality as made explicit
in the case of N' =4 by (1.4). Moreover, N’ = 4 is the perfect laboratory for calculating
wilson loops. Its beta function is identically zero so the coupling does not run and much
of the problems associated with Q2 are avoided. Furthermore, it is an integrable theory
in the sense that the string dual has integrable world-sheet dynamics. This gives us hope
that we may be able to use the tools of integrability to explicitly compute Wilson loops
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at any finite coupling. Much progress has been made in this direction for null polygonal
Wilson loops (which are dual to scattering amplitudes in N=4) where now an all-loop
representation is available [9-17]. In this thesis we made the first step towards a finite
coupling description of smooth Wilson loops, which was to formulate the minimal surface
problem that arises at strong coupling in terms of integrability. Our hope is that an explicit
solution for any coupling will give some insight into how the gauge theory transforms into
a theory of strings as the coupling is increased. For example, we see very concretely in the
case of N' = 4 that the dual string theory lives in a larger space than the gauge theory
having and additional holographic direction as well as a compact manifold. It is suspected
that the QCD string also requires such a holographic direction [2]. What general lessons
can we learn from A/ = 47 Perhaps we can say that N' = 4 is to gauge/string dualities
as the 2D ising model is to renormalization group. In this sense it is a theory where we
should learn/compute as much as possible.

Let us now turn to Part II. There we revisited the old idea of the S-matrix bootstrap.
We returned to this idea armed with the recent revelations of the CFT bootstrap as well
as modern ideas of holography as our inspiration. Our perspective in chapter 4 is to
consider placing a massive quantum field theory in AdS. The massive bulk theory induces a
conformal theory on the AdS boundary that can be studied using the conformal bootstrap.
By studying the flat space limit we can try to constrain the space of possible theories in
any dimension. We showed that this can be borne out explicitly in the case of a 1 4+ 1
dimensional QFT in the bulk where the boundary bootstrap yielded numerical bounds
on the space of couplings of any gapped quantum field theory that is unitary and lorentz
invariant. Then in chapter 5 we derived analytical bounds on the couplings in 1+1 directly
from unitarity, crossing and analyticity of the S-matrix. These analytical bounds are in
stunning agreement with the bounds obtained from the boundary bootstrap. Even in 1+ 1
this is an extremely non-trivial result since there are many gapped, strongly interacting
theories in two dimensions for which we have no analytical means of calculating mass
spectra and couplings. Nevertheless we have shown that it is possible to place analytical
bounds on these quantities. The incarnation of the S-matrix bootstrap that we have used
provides a possible solution to both Q1 and Q2 — it is manifestly non-perturbative and the
S-matrix is manifestly parameterized in terms of the physical data of the theory (e.g. the
mass spectrum and couplings). There are two questions at this point. First and foremost,
can the method be applied in higher dimensions? The boundary bootstrap employed in
chapter 4 is applicable in any dimension although if the boundary dimension is greater
than one there are spins in the OPE and this greatly complicates the numerics. This does
not a priori guarantee bounds, since the bounds obtained from the conformal bootstrap can
be lost in the flat-space limit. As for the direct S-matrix bootstrap in flat space, it seems
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much more difficult to proceed in higher dimensions. The two-to-two S-matrix is now a
function of two complex variables s and ¢. Furthermore one needs to find a representation
of the S-matrix where crossing symmetry and unitarity can be efficiently implemented.
A second important question is how to strengthen the bounds by bootstrapping S-matrix
elements involving other particles of the theory. Even in two dimensions this is still an open
and interesting question. The hope is that as the bounds are strengthened surfaces such
as those shown in figure 5.12 will start to develop features which correspond to physical
theories. The basis of this hope is that exactly such a phenomena occurs in the conformal
bootstrap where the bounds often exhibit knee-like features at the location of important
physical theories, the 3D ising model being the most famous example. By measuring the
location of these features one is able to measure the physical data of a specific theory by
studying general bounds of the space of theories. At an intuitive level, it is natural that
important physical theories sit at distinguished points in such a space. In our incarnation
of the S-matrix bootstrap, such features would allow us to directly measure the mass
spectrum and couplings from the location of the feature. Will we some day be able to use
our S-matrix bootstrap to measure the spectrum of important physical theories such as
pure glue and QCD?

Finally, let us conclude this thesis by commenting on interrelation between Parts I and
II. In Part II we have seen that integrable theories play an important role in the 1 4 1
dimensional S-matrix bootstrap. They appear as theories saturating the coupling bounds
and provide a means by which we may understand the mechanism for the existence of a
bound as well as how/when the bound can be improved. Of course our ultimate goal is to
perform the S-matrix bootstrap in higher dimensions, especially 3+ 1. The closest thing we
have to integrable theories in higher dimensions is theories with string duals whose world-
sheet dynamics posses the usual two dimensional integrability. In fact, one may take this
as a working definition of “higher dimensional integrability” which manages to evade the
Coleman-Mandula theorem. Will such theories appear in the bootstrap in an analogous way
as the integrable theories of two dimensions appeared in the two dimensional bootstrap?
Of course N/ = 4 is a massless theory so it can not play an analogous role to the massive
integrable theories of the two dimensional bootstrap. However, it provides the canonical
example of higher dimensional integrability and thus the best laboratory for understanding
this phenomenon. For this reason we believe the study of such special theories is an
important ingredient in the success of a higher dimensional S-matrix bootstrap program
and that these two avenues should be pursued in parallel.
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Appendix A

Regulation of continuum area

Consider replacing pi, — 0%piy 80 that |z4| — d|25| in (2.37) and (2.52). Then we have

_ 2acirc o
4/Ddzdze —11_{%(15% /d02 / dal/de EACRETAC) (A.1)

0+e€ —00
where 32 () is defined as the solution of the modified CTBA equation
d o1+27 / c1rC
45(6) [0 [ [
1 —~ = —40|2,| cosh A2
og = Z— e d|zg|cosh@ — | dry | dny do i sinh (0 — 9/ + i) (A.2)

As we have already mentioned in section 2.2.2 when § = 0 this equation admits 6-
independent solutions of the form (2.36). Here is is important to consider how the solutions
approach these values. As § — 0 each y2 form broad plateaus in 6 of width ~ 21log(8|zs|);
at the edge of this plateau there is a “kink” where the solution decays rapidly to zero. In
the limit 6 — 0 the plateaus become infinite in width and their height is given by constants
of the form (2.36).! As we will see shortly, the important contribution to the area comes
from these kinks in the y-function. The shape of the kinks become independent of § in
the limit — they simply move further and further apart. We can write an equation for the
shape of the left-kink by changing variables § — 6 4 log ¢ and then taking the limit 6 — 0
which gives

kmk o1+2m kmk ! c1rc
log (6) _ = —2[z,]e”? — / de/ dﬁ/ ao’ (6") — (A.3)

01rc v Slnh 0— 6 "‘ 7/900'1-)

1 As we have already mentioned, any function of the form (2.36) will solve (A.2) with § = 0. Precisely
what values one obtains for these constants depends on how we take pi, to zero. Below we will find the
explicit values of the constants when the limit is taken by sending pi, — §?pi, and then § — 0 in (A.2).
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where we have defined
y?nk(e) = (lsinol yf,(e +log d) (A4)
—

With a bit of guess-work we find, quite remarkably, that equation (A.3) can be solved for
arbitrary pi, with the solution given by?

YAk (9) = 22(0,,0,,108 25) e’2<9+i“"")csch*2(e’9]zU]) (A.5)

With this solution in hand, we can now take 6 — 0 in (A). We have

o0
lim /dea\z,,|e W20 ):/de 2| e~ yink(9) (A.6)

where we made the change of variables § — 6 + logd and then take the limit § — 0.
Plugging this result into gives

4/ dzdz ™ =lim —/d02 / doy /d@ | 2| 70 yink(g) (A.7)
D e—0

0+-e€

which is the result used in the derivation of the continuum area formula (2.54).

2This can be most easily checked by substitution into equation (A.3) and evaluating the integrals
numerically for some p;, and various values of # and o. In later versions of Mathematica it is useful
to use NIntegrate with the option Method -> {"GlobalAdaptive", Method -> "GaussKronrodRule",
"SingularityDepth" -> Infinity}.

3In (A.6) there is a competition between the vanishing of the explicit factor of §|z,| and the divergence
of the f-integrals as the plateaus become infinite. The region of integration that contributes in this limit
comes from the edge of the plateau. One can see this, for example, by adding a derivative to the exponential
e? = 0ge? and then moving the derivative to y via integration by parts. The result of this competition is
the finite integral on the right hand side of (A.6).
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Appendix B

Four-point function appendices

B.1 The linear problem

B.2 Summary of the linear problem

The linear problem associated with (3.10) is given by

O+ J)p=0, (0+Ja)v=0

where the connection has the form

Ju =

1
E(I)w‘i‘Aw, (]@ :éq)@‘i‘A@
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For compactness we have introduced the combination 5 = 1/2(y+1log VTT ). The function
v is defined as the solution of the following problem

00y = A TTsinhvy
1 _
v o= :|:§ logTT  (w — z,) (B.7)
v — 0 (w — w,)

where z, and w, are the zeros and the poles of T, respectively.
For the near-puncture analysis as well as the WKB analysis it is useful to make the
field redefinition ¢ — @/} Gz/} Where

G — 5 <+e v/271/Ap-1/4 1) (B.8)

—_e—/271/Ap—1/4 ¢

This is usually refered to as ‘diagonal gauge’ in the literature. In diagonal gauge we have

- 1
¢, = 5\/T(_01?) (B.9)
T 1 [ — in
n = VT (2507 o)) (B.10)
i 17— 3 log(TT) -3
Ay = aw<4 il ivfélig(TT)> (B.11)
f . Lyt Llog(TT) 0
Ao = aﬂ’<4 "o §w+§log(TT)> (B.12)

We are now ready to consider the behavior of the solutions near the points w, and z,.

B.2.1 Solutions near w,

Let us first consider the solutions of the linear problem in the neighborhood of one of the
punctures. From (B.7) and the explicit expressions for  and A for w — w, we have

by o VT (P 0), B VT (3 0) (B.13)

o 1 _
Aw_>au(_§bgTT)(gxg), Ay — 04 ( bgTT)( 10y (B.4)
Then the solution in the vicinity of puncture P, is given by‘
&i (w) = (T/T)l/s ei%fwg—1w+5@‘i> ~ (w— wa)i 108.671 -4 (w O )i $AaE+: +) (B.15)

where |+) are the eigenvectors of the Pauli matrix 0. Note the characteristic monodromy
of the solutions about w,.
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B.2.2 Solutions near z,

Now we will consider the behavior of the solutions near the zeros z, of T'. Notice from (B.3)
- (B.6) and (B.7) that the connection is regular or singular at z, depending on the direction
of the spike in 7y at z,. More specifically, the connection is regular if v ~ —log |w — z,| and
thus the solution will be regular in the vicinity of a d-spike. However, the connection has
a singularity if v ~ +log |w — z,| and at the u-spikes one can check that in gauge (B.3) -
(B.6) there are two linearly independent solutions behaving as

_ wW—2gq —1/4 W—2Zq +1/4 0
U, = << )Moz (w,zE)w(wiza)—l/‘l) (B.16)
where we have written the two solutions in matrix form as in (3.71). Notice that ¥ has
square-root type singularity at z, since it has a monodromy of ¥ — (—1) ¥ about z,. The
solutions associated with the punctures {sp} and {5p} inherit this square-root singularity
as one can see by expanding them in the basis (B.16) near z,.

In our analysis it is crucial to account for the additional monodromies originating
from wu-spikes. Let us explain our conventions for doing this. If there is a wu-spike at z,,
one can always make the gauge-transformation ¥ — W2'W that removes the square root
singularity (¥,, is given in (B.16)). Of course this gauge transformation contains the
same multivaluedness and one must still account for it at the end of the day. In the main
text we use the point of view that this gauge transformation has been performed for each
u-spike. The connection in this gauge will only have singularities at the punctures and
the solutions in this gauge will only have non-trivial monodromies around the punctures.
In this way we can define small solutions that are single valued throughout some Qg, as
is the prescription of [52]. We must then be sure to account for the multivaluedness of
these gauge transformations whenever we have a holonomy that encloses an odd number
of u-spikes. Such holonomies arise in the WKB expansion of the coordinates and we will
return to this issue below.

B.3 WKB analysis

B.3.1 Statement of the WKB approximation

As we have discussed above, it is essential to have control over the £ — 0, 0o asymptotics
of the inner products. It is clear from (B.1 — B.2) that these are both singular limits, and
the basic idea of extracting this singularity is as follows. As discussed above, we have good
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control over the solutions in the neighborhood of the punctures. Thus what we would like
to study is the transport

1 = /
Pexp [— /C(w;—m) ECD + A+ f@} W (w)) (B.17)

where C (w/, — w) is a curve starting at w/,, a point in the neighborhood of w,, and termi-
nating at a generic point w. Note that at any point on the punctured sphere C' the Higgs
field ® has the two eigenvalues Fw/2 = F+/T /2 dw (which are single valued on the double

cover i), and thus we can choose a gauge along C where ¢ is diagonal and given by

1 /—w 0

o= 1( ) e
Now consider the & — 0 limit. First consider an infinitesimal segment of C in the neigh-
borhood of P,. In the neighborhood of P, the connection (in diagonal gauge) becomes
diagonal (see (B.13)-(B.14)) and thus one can break apart the path-ordered exponential.
In particular, one can isolate the singular part e~/ ®/¢|4) which will have one component
growing exponentially and one component decaying. Let us choose the branch of & such
that the |[+) component is the one that is growing as we transport along C away from P,
(although for the moment we are still working in a neighborhood of P,). This will cor-
respond to the small solution at P, since it is exponentially decaying as it is transported
toward from P,. The WKB approximation is the statement that the exponentially growing
part of the solution as & — 0 will continue to be given by e~/ ®/¢|+) as we transport away
from the neighborhood of P, (now leaving the neighborhood of P,) as long as we follow a
curve such that at every point we have

Re (w/§) >0 (B.19)
This condition is satisfied most strongly along a curve such that
Im(w/€) =0 (B.20)

Condition (B.19) is called the WKB condition and curves satisfying (B.20) are called WKB
curves [52]. Along a WKB curve defined for Arg(£) = 6 the WKB condition is satisfied
for Arg (§) € (0 — 7/2,0 4+ 7/2) and the WKB approximation is guaranteed to hold in this
range. For example, suppose there is a WKB line connecting P, to P, for 6 € (6_,0,)
but not outside that range. Then the WKB approximation will reliably give the & — 0, 0o
asymptotic for § € (0_ — 7/2,0, 4+ 7/2). These statements are proven in [52] and we refer
the reader there for a more detailed discussion.
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B.3.2 Subleading WKB

We will now consider the & — 0 limit of the inner products (or Wronskians) (s, A s4) (§)-
We consider the case when P, and P, are connected by a WKB line which will be an
edge E,, in the WKB triangulation. From the analysis of B.2.1 we know s, and s, in the
neighborhood of P, and P, respectively. In order to evaluate the Wronskian we need to
know the solutions at a common point. The approach here is to use the connection to
transport the solution s, along E,, to a point wjy in the neighborhood of P, and then to
evaluate the Wronskian at wj;. That is, we want to study the £ — 0 behavior of

|
(sp|Pexp {— / dt EHO + V]|5a> (B.21)
0
where we defined
Hy = wd,, V =wA,+ A+ idy (B.22)

The contour of integration in (B.21) is the edge E, and the components of (B.22) are
defined in appendix B.1. The basic idea of the computation is to expand in a perturbative
series where {71 Hj acts as the free Hamiltonian. Such a procedure will be valid so long as
the free part of the Hamiltonian is sufficiently larger than V' for all points along the curve,
which will be true along the edges of the WKB triangulation. Then we can expand (B.21)
in the Born series

1 1 t1
(=) o <<+|efo Hofg 4y / dty (e T HolSy (4 )em Jo" HolE| 1) (B.23)
0

1 to . to .
+ /dtQ/ dt1(+|e_f12H0/5V(t2)e’ft1 H0/5V(t1)e—folHo/5‘+>>
0 0

Let us explain a subtle point regarding the ‘external states’ in the above expression. We
start with the small solution at P, which we take to be ¢;. We then transport it to P,
and then extract the coefficient of the exponentially growing part — that is, we take the
inner product with the small part of this transported solution. Since ¥ ~ |+) grows as
we transport it along a WKB curve (i.e. it decays as one follows the curve into P, and
thus grows as we transport it away from P,) and Hj is diagonal, we infer that the small
part of the solution at P, is the solution proportional to |—). Thus we take the out-state
to be (—|v, . Finally, since the inner product is the antisymmetric the (—| gets flipped to
a (+].
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Using the fact that |+) are eigenstates of the free Hamiltonian we can easily evaluate
the order O(V?) and O(V?') terms in (B.23). For the O(V?) term, we insert the identity
|[+){(+| + |—)(—]| between the two insertions of V. We find

(— 1)y oy €+§f°1w/§(1—/ dty (+[V (t1)[+) + ;{/0 dt1<+|V(t1)\+>} +  (B.24)

/dt2/ dtle Jit ! +\V(t2)]—><—]V(t1)|+>>

Now concentrate on the second term on the O (V?) contribution. As & — 0 the factor
exp (— j;tf w/ f) will suppress the integrand except for the small range t5 = ¢; + O(&) and

thus the result of the first integration will already be O(£). So to order £ we can take
w to be constant and V(t;) — V(t3). We then find for the second term in the O(V?)
contribution

1 2
e [(HV ()]

Putting everything together, we see that the result re-exponentiates and we find

(=)0, z&+exp{ g/ VT - /dt +|V(1)|+) +§/ dtﬂv—\/w} (B.26)

Grouping each term based on its order in ¢ (including the prefactors 1;1; ﬂj whose explicit
expression are given in (B.15)) we find

1 1
(5 0 30) (€) ~ ex9 [+367 0+ + 56701+ ) (B.27)
where
o . . Aa / Ab /
@We = lim  lim VTdw+ — log(w, — w,) + — log(w, —wy)| (B.28)
w{l—>wa w{)—)wb Eab 2 2
1 [= 1 o
Qgp = _/ <_8w <’Y - log TT> dw + _aﬂ) ('Y + log TT> d/u_)) <B29)
Eaup 4 4
1 \/T _ 1 2 )

b = VT (coshy—1) dw+ —= (07)" dw B.30
wo = [ (GVT (ot =) dus (o) (B.30)
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This completes the derivation of formula (3.26) used in the main text. The integral wgy
is defined as in (3.58). Note that the logarithmic terms in @, in (B.27) are due to the
prefactor i, ¢F. These terms precisely cancel the singularities at the endpoints of the

integral ffw so that w,, is finite as we continue the limits of integration all the way up
the to punctures at w, and wy [38].

B.3.3 WKB expansion of the coordinates

In the previous section we derived the ¢ — 0 WKB expansion of (s, A s,) up to order O(§).
To compute the WKB expansion of the coordinate xg we simply combine the expansions
for each edge of the quadrilateral g, taking care to account for the directions of the WKB
lines as discussed in section 3.3.6. When this is done each of the integrals (B.28) - (B.30)
become closed integrals along the cycle vg. The asymptotics of the y-functions are needed
for the inversion of the y-system described in section 3.3.9. For that purpose only the
non-vanishing contributions are needed in the £ — 0, 0o limits.

There is one very important subtlety that must be addressed here, which is that of the
monodromy around u-spikes discussed in appendix B.2.2. We take the point of view that we
have made the (multi-valued) gauge-transformation (B.16) that removes the monodromy
about each u-spike. The small solutions in this gauge are single valued throughout Qg,
but we must account for the monodromy of the gauge transformation about QQr. This
monodromy is simply (—1)“Z where ug is the number of u-spikes in Q.

Combining the above discussion with (B.29), the constant term in the WKB expansion
of xg is given by

Cg)) = log(—1)"" — 411/ (dv + xdlog \/_> log(—1)"" +im (B.31)

B
To arrive at the last equality (B.31) we have used the fact that 7 is single-valued on the
4-punctured sphere so that the integral of dy on any closed contour is zero. The integral

of xdlog VTT is simple to do explicitly and gives the +ir factor.!
The discussion of the £ — oo limit follows along the same lines as the & — 0 limit.

The singular term is given by ¢“h5¥ The constant term is the same. Thus the full
non-vanishing WKB asymptotic is given by

Xe ~ (—1)“E exp E /w (Elw+ §w)] (B.32)

!The 4 depends on the orientation of vz but both signs have the same overall effect so that the + is
irrelevant.
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where we recall that ug is the number of u-spikes enclosed in vg. This is the expression
(3.40) used in the main text.

B.4 Fold lines and Properties of v

In this appendix we discuss some properties of the function v and how they are related to
geometric features of the string embedding. In appendix B.5 we show that the world-sheet
contours where v = 0 map to the fold-lines of the target space solution; in appendix B.5.1
we discuss how the geometry of the string embedding near the boundary is deduced from
the structure of these v = 0 contours near the points w,; finally, in section B.5.2 we show
how the global structure of the v = 0 contours is deduced from the choice of spikes in
~. The point of this appendix is to give the background details that were omitted in the
discussion of section 3.2.3.

B.5 Fold lines

In this section we show that the contours on the worldsheet where v = 0 map to the fold
lines of the string embedding. This was pointed out in [38]. Recall the relation between =
and the world-sheet metric

VTT coshry = M (B.33)
Furthermore, we have
ox)* + (92)° _ 5902—#522

Now, suppose that C is a curve on the worldsheet that maps to a fold-line of the string
and consider a point P in that curve. We can choose local coordinates at P so that
the derivative takes the form 9, — €*® (O +i0,,) where the direction 0, is chosen such
that 0,z = 0. The prefactor ¢ is the Jacobian of the coordinate transformation (just
a translation and rotation). The defining property of the fold-line is then that the z-
coordinate reaches an local extrema and thus we also have d,x = 0 as we cross the fold.
Therefore along the fold-line we have (with 0,z = %)

+2 22
e_ma: + z

2 2 2 22
VTT coshy — vtz , T(w) — e%‘bu, T(w) — 5
2

22 22

(B.35)
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Using the last two equations to solve for VTT we see that they are consistent with the
first equation only if v = 0. Therefore, the worldsheet contours where v = 0 map to the
fold-lines of the string-embedding. For this reason, we frequently refer to the contours
where v = 0 as fold-lines.

B.5.1 Structure of v near w,

To gain some intuition about the structure of the contours where v = 0 it is useful to study
the behavior of v near the points w,. Recall that v is defined as the solution to the PDE:

00~y =\ TT sinh~y (B.36)

subject to the boundary conditions

1 _
Y — j:§ logTT (w — z,) (B.37)
v — 0 (w— P,) (B.38)

The boundary condition (B.38) simply imposes that v is non-singular at the singularities
of T and this condition is automatically imposed if we demand the solution be regular
away from the zeros of T

Since we know that v must vanish at singularities of T, it’s natural to study the function
in the neighborhood of these points. Let us consider some P, and use polar coordinates
(r,¢) in which the origin is at w,. Since 7y is vanishing, we can linearize the RHS of (B.36).
Further, we can take VTT ~ |A[%/(4r2). The PDE becomes linear and separable and
using standard techniques one finds the series solution

o~ go 132 4N gsin (me + §,,) r3V (B.39)

m=1

Now consider a small circle centered at r = 0. As r — 0 the series (B.39) is dominated
by the lowest mode in the expansion. Thus along an infinitesimal circle centered at r = 0
the series (B.39) will vanish 2m* times, where g,,+ is the smallest non-zero coefficient g,,,
m = 0,1,2,... in the series. Thus, if gy is the smallest non-zero coefficient then the series
will vanish only at the point w, which will be a local extrema. If m* = 1 then the series
will vanish along a single curve passing through P,; if m* = 2 then ~ will vanish along two
curves that intersect at P,, and so on.

The fact that the contours where v = 0 map to fold-lines of the target-space solution
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Figure B.1: Single-folded and double-folded string in panels A and B respectively.

gives a clear geometric meaning to each possible behavior m* = 1,2, ... near an insertion
point. For m* = 1 we will cross two fold-lines as the world-sheet coordinate traverses
a small loop around the point w,. This means that near the insertion point the string
is single-folded as shown in figure B.1A. For m* = 2 we will cross two fold-lines as the
world-sheet coordinate traverses a small loop around the point w,. This means that near
the insertion point the string is double-folded as shown in figure B.1B, for example. In
general for n > 0 the case m™ = n should correspond to an n-folded string. The only subtle
case seems to be m* = 0. Apparently if m* = 0, as we traverse a closed loop around w,
the contour swept out in the target space does not close since there is no point at which
the coordinates (z, z) can ‘turn around’. In this paper we are only interested in solutions
that are closed (i.e. the embedding coordinates have trivial monodromies around operator
the insertion points x,) and thus we will only study cases for which m* > 0 at all w,. This
is further discussed in appendix B.5.2.

It is important to keep in mind that (as we mentioned above) the behavior of v at
P, is not our choice, and is determined by regularity and the conditions (B.37). In other
words, for fixed T the only remaining conditions one can specify are the choice of signs in
(B.37). For each choice of signs there will be a unique m* for each P,. In the next section
we demonstrate how this works using the T of the 4-point function discussed in the main
text.

B.5.2 Structure of contours where v =0

In this section we describe why the spike configurations of figure 3.4 are the only two
physically relevant configurations. Furthermore, we deduce the structure of the contours
where v = 0 for each of these spike configurations.
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Consider T fixed to be that of the 4-point function discussed in the main text (see
equation (3.60) and figure 3.15). There are 4 zeros and therefore 24 ways to choose the
signs in (B.37). Because of the symmetry of (B.36) under v — —~, without loss of
generality we can fix one of the spikes to be up which leaves 22 choices. Now, because
the string is embedded in AdS; we know that it must be folded. Moreover we know that
the operator insertions x, will sit along the fold-lines of the target-space solution. In the
world-sheet coordinates this translates to the statement that we should require m* > 0 at
each w,. That is, there should be at least one contour where 7 = 0 running through each
insertion point w,. For the 4-point function 7" (see equation (3.60) and figure 3.15) the
only obvious way to accomplish this in general is to choose the spikes such that v — —~v
under reflection about the real axis. This leaves only the spike configurations of figure
B.2A,B, which are those of figure 3.4 used in the main text. We will now discuss the
global structure of the v = 0 contours for these two choices of spikes.

In figure B.2 we show the fold-structure for three different spike configurations. The
black lines schematically represent the contours where v = 0 and one can read off the m*
associated with each puncture. The structure of these contours is determined purely by
the choice of the directions of the spikes of 7. We refer to these contours as ‘fold lines’ since
they map onto the fold-lines of the target-space embedding (see appendix B.5). We guess
the structure of the fold lines for each choice of the spikes as follows: w spikes must be
separated from d spikes by at least one fold line; we use the minimum number of fold lines
needed to accomplish this for all spikes. Note that fold lines must encircle at least one zero
of T'.2 This restriction is useful because, for example, it allows one to rule-out the possibility
of fold-lines corresponding to the gray contours in figure B.2C. This is important because
if it was possible for the gray contours to be fold-lines then it might be possible to have
a solutions with all m* > 0 for configuration C'. Configurations A and B are the physical
configurations that we study in this paper and we have checked the fold structures of figure
B.2A,B numerically. Configuration C' is an example of a spike-configuration that does not
correspond to a target-space solution with the desired properties; the corresponding fold
structure is only our best guess but we have not checked it numerically.

To summarize this appendix, in appendix B.5 we showed that the world-sheet contours
where v = 0 map to the fold-lines of the target space solution; in appendix B.5.1 we

2 Consider a closed contour along which v = 0 and suppose (for a contradiction) that it does not enclose
any zeros of T'. Let D be the region enclosed by the contour. This contour must separate positive values
from negative values (i.e. it cannot sit at the bottom of a ‘valley’ since this locally violates the equation
(B.36)). Suppose for simplicity that v < 0 in D. Since 7y is regular away from the zeros of T, there must
be at least one local minimum inside D, and therefore at least one point where (8% + (“)5) v > 0. Thus at
such a point the LHS of (B.36) is positive or zero, but the RHS is strictly less than zero by assumption,
which is the desired contradiction.
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Figure B.2: Three different spike configurations and the corresponding structure of the
~v = 0 contours. The black lines schematically represent the contours where v = 0 and one
can read off the m* associated with each puncture. Panels A and B show the physically
relevant configurations studied in the main text. Panel C' shows a third spike configuration
which is not physical due to the presence of m* = 0 behavior at two of the insertion points.
The gray contours in panel C' indicate contours that cannot cannot correspond to fold-
lines due to the restriction that v = 0 contours must encircle at least one zero of T' (see
footnote 2). In this figure we are not indicating the location saddle-point wj because it is
not relevant for the present discussion (so long as it is located somewhere on the real axis).

discussed how the geometry of the string embedding near the boundary is deduced from
the structure of these v = 0 contours near the points w,; finally, in section B.5.2 we
discussed how the global structure of the v = 0 contours is deduced from the choice of
spikes in . From all of this one can deduce some qualitative global features of the string
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embedding, which is discussed in detail in section 3.2.3.

B.6 Details of the 4-point function computation

B.6.1 Explicit expression for stress-energy tensor coefficients

For completeness we present the coefficients ¢, of the stress-energy tensor in formula (3.60),

AQ
o T T4
1
CO:Z
1
0125
1
CQZZ

B.6.2 Explicit expressions for x-functions and Apg

[—2 U+ <—1 + U)4) QA% - (1 + U}4) 2A§]

[—4Uws +2 (1 +wy) A + (=1 4+ wa) (=247 + (1 + wy) (—A3 + AF)|B.40)

For reference, we include here the explicit expressions for the y-functions for the triangu-
lation of figure 3.15. They are given by

X12

X23

X34

X14

X24

X4

(
(

(51 A M s4) (52 A 84)
(M s4 A s3)(54 A 51)
(s2 A M3s4)(s3 A S4)

(Mssy A s3)(S4 A S2)
(
(
(
(

Sq N So) (53 A M3_182)
Sy A S3) (M:;182 A 54)
Sy N Myss) (s1 A s2)
Misy A s1) (82 A Sq)

S9o A 53)<84 A 81)
s3 A S4)(s1 A S2)
Mz;ng VAN M481>(S4 A 83)

!
&
1l
(M481 A 84)(83 VAN MB_ISQ)
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One can check that these coordinates satisfy the rule (3.37) at each puncture. The y-system
obeyed by these coordinates is given by

-1 (1 —|— A23) (1 + A14)
++ ot _
X24X24 (X24X2“4 ) (1+ Asa) (1 + Apo) (B.47)
-1 _1 1+ A
X12X1+2+ = (X14X1+4+) = ><34><3T4Jr = (X23X2+3+) = ﬁ (B.48)
24

where the Apg are given by

A, - Xo (1 + x14) (14 xoa (1 + x23 (1 + x24))) (B.49)

(1 =) (1 = pi3)
Ay = Xa3 (14 X34)<§1_+M)§§4(§1_+;52 (1+x51))) (B.50)
A, - o (1+ XZS)(§1_+M>§§4(§1_+;54 (14 x24))) (B.51)
A, = x4 (1 + X12)(§1_+M>§4(§1_+M>§4 (14 x24))) (B.52)

A, = X (1+x12 (1 +xg (1 + ng))) (1 +2X43 (1+xpp (1 +x41))) (B.53)
(1 —p3) (1 — p3)
o Xea (T4 xes (T4 x2a (1 +x12))) (1 + xar (1 + xa2 (1 + xa3)))
A (1= p3) (1 — i) (B54)

Using the explicit expressions for the coordinates (B.41)-(B.46), schouten identity and the
shift relation (3.43) one can directly verify the functional equations (B.47)-(B.48).

B.6.3 Finite part of AdS

In this section, we present some intermediate steps in the derivation of our formula (3.66)
for the finite part of the AdS contribution. We want to compute

i)

according to the steps outline in section 3.4.1. The complete basis of five a-cycles and
five b-cycles that we chose is depicted in figure B.3. From this figure we also read-off the
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Figure B.3: The cycles for Riemann bilinear identity. The dashed line represents a contour
in a different Riemann sheet. The wavy lines represent a choice of branch cuts. From this
picture we also read the intersection matrix I, of the cycles. For each pair of cycles, say
v, and 7, intersecting at a point with tangent vectors d, and 0, respectively, we assign
Iy =+1 (—1) if det [{0u, Op}] > 0(< 0).

intersection matrix I, = (da41,, — 0q—1,) using the conventions described in the caption.
The only other ingredient we need is

/n:o, i=2...,5 (B.56)

7

which follows from the regularity of 1 at the poles of T'. Plugging into (B.55) and computing
we find

5
™ . .
Afm - § T (Wa17723,z2 T WayT)—1,20 T WazTlz,zp T Way .2, T Wa57700722) - (Z Whi | Tlzs,za
=1

(B.57)
where we are using the notation 7,, = f: n and we = fc w and the contours are defined in
figures B.3 and B.4.

Each of these 74 can be written as a linear combination of the ng, = | 5.1 where
the integral is taken along the WKB-line from P, to P, and the direction of the contour
is the same as that of the WKB line. The idea is to combine the 7g,, to form the contour
that we want. Let us exemplify with 7, ,,. From the WKB configuration, see figure B.4,
we see that the large 6 expansion of the ratio % involves a cycle that can be
continuously deformed into twice the line integral connecting the puncture at w = 1 and
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Figure B.4: To extract line integrals connecting a zero to puncture or connecting two
zeros we combine products of elementary solutions that have WKB expansions involving
integrals over the paths indicated by the black lines. The resulting closed contours can be
continuously deformed into the contour that we want, indicated by the green lines. The
precise way of combining these products is dictated by the direction of the WKB lines
indicated by the gray arrows.

the zero at w = z5. Therefore we have

1 [2do o, |(1+AL) (1+AL)| 1
M,z 9 /_OO Ju € 0g (1 i A54) 9 (nEm + NEw 77E24) ( )
In the same way we obtain
1
Neg,zg = 5 (7724 - 7]24) <B59)
1
-1z = 5 (2134 + M2 — M1a — 724) (B.60)
1
Moz = 5 (2 — M4 — M24) (B.61)
1
oz = 5 (14 — T2 — N24) (B.62)
1
Negze = 2 (M2 + N34 — M4 — M23) (B.63)

where the notation is the natural simplification of that used in (B.58). Plugging these
expressions into (B.57) and re-collecting each ng, one finds that the coefficient of ng is
simply wg where wg is the w-cycle the intersects edge E, not the integral of w along
edge E (which would be divergent). That is, it’s (1/2 of) the w-cycle associated with the
coordinate y g which are shown in figure 3.15. Thus we have

™ .
Afm = g —ZZWET]E <B64)
EcT
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which is formula (3.66) as desired.

Equation (B.64) is perhaps the simplest possible result one could write from the trian-
gulation data. Given this simplicity, it is probably possible to derive the result in a much
more elegant way and perhaps even for any number of punctures. We have not pursued
this issue but feel that it merits further exploration.

B.7 Three-point function in GMN language

In this section we apply the method developed in section 3.3 to the three point correlation
function studied in [38]. We use the setup of [38], namely the same stress-energy tensor.
We aim at deriving a set of functional equations to extract the cycles used there.

As a starting point, we introduce the WKB triangulation for this configuration from
which we define the coordinates, see figure B.5. From this figure, we easily derive the
x-system. Since the quadrilateral is very degenerate it follows from (3.46) that the right
hand side of the x-system is equal to 1. The reason is that the same auxiliary Apg’s
appear both in numerator and denominator canceling each other. Hence, the solution of
the functional equations is simply given by the WKB asymptotics. More explicitly, the y
functions take the form

1, I - Hafhe
Xac = (—1) exp (—e / w+ —e / w) = - B.65
( ) 2 ’Y(ZC 2 FYCLC Mb ( )

where a, b and ¢ are distinct.> The spikes must be in pointing in opposite direction as
follows from the discussion of appendix B.4. This is the the origin of the (—1) prefactor in
(B.65). The cycles of w are given in terms of the dimensions of the operators,

/ w=1m(—Ay — Ac+ Ay) (B.66)

Yac

Having the solutions of the functional equations, we can easily find the auxiliary quantities
Apg using the rules of section 3.3.8. The determination of the n-cycles is also straightfor-
ward. To compare with the result in [38] let us set A; = Ay = A and Az = A,. We use

3This result also follows directly from the definition of the coordinates in terms of the small solutions,

_ (scAsp) (sa AM T sy)

Xac = (Mg spAse)(spA8a)
monodromy factors in (B.65).

for distinct a, b and c¢; all the inner-products cancel and one is left with only the
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Figure B.5: The WKB triangulation for the 3-point function is composed of 3 edges forming
two triangles on the sphere. Here we show the construction of the coordinate y;3. We are
using the edge-splitting procedure discussed in section 3.3.5 (in particular, see figure 3.12).
The gray contour shows the cycle associated with the coordinate x3.

expression 3.57 to compute the cycles, and we get

/_1 n = /Rgee log(14+ Ap) = h(2A — Ay) + h(2A + Ay) — 2h(2A)  (B.67)

1

/100 n = /Rge‘9 log(14 Ag) = h(Ax) + h(2A + Ay) — h(2A) — h(2A4,)(B.68)

where we define

do
h(z) = / — cosh@log (1 — e *meosh?y (B.69)
R T

This is precisely the result obtained in [38]. A last comment about the expression for the
area in the three point function. It is easy to show using the same type of manipulation
of the four point function case that the area can be expressed in terms of elements of the
WKB triangulation as

Afm =——1 WENE (B?O)
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where the sum is over the edges of the triangulation of figure B.5. As in the case of the
four point function, we define ng,, as the n-cycle that passes along edge E,;, from P, to B,
and wg,, as the w-cycle that intersects edge E.
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Appendix C

Bootstrap appendices

C.1 S-matrix bootstrap numerics

In this appendix we give more details on the numerics described in section 5.1. We consider
a grid {zg, 1 ...z} and measure everything in units of m so that zo = 4. Denote by p,
the value p(x,) and approximate p(z) by a linear spline connecting the points (x,, p,) as
shown in figure 5.3. We can then perform the integrals in (5.6) analytically giving (5.7)
with

Ko (s) = (a1 — 8)log (xq_1 — 5) N (Ta+1 — 8)l0g (Tat1 — 8)  (Tam1 — Tat1) (Ta — 5) log (¥ — )
¢ LTo—1 — Tq Lo — Tat1 (xa—l - :L‘a) (xa - xa—i—l)
+(s—>4—3s),

with a = 1,2,..., M — 1 while for the last point of the grid

(xpr—1 — s)log (xpr—1 — 8) M log () N (xpr—1 —xar — 8) (xpr — 8)log (xpr — 5) .
TM—1 — T S s(xp—1 — xpr)
+(s—>4—3s).

KM(S) =

Note that for x > z), we assume a tail of the form p(x) ~ pasxp/z which leads to the
above result for K),.

We can now evaluate the approximate S-matrix (5.7) at a bunch of points with s > 4.
It is convenient to evaluate on the gridpoints z, themselves (although not necessary of
course) so that we can make use of the identity

Im S(z, +i0) = 7p,. (C.1)
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Figure C.1: Result of numerics for the spectrum m = {1,1.6,1.8} compared with the
expectation (5.18) and its near-threshold close-up (on the right). The green, orange and
blue curves are Im(Syum), Re(Shum); |Snum| where Syum is (5.7) evaluated on the result of
the numerics given in (C.2). The black dots indicate the points (z,, p,); note that we use
a grid which clusters points near threshold. The dashed red curves are the corresponding

parts of the exact solution (5.18).

This gives set of M constraints’

2
+ (Wpa)2 <1

5} g, -

[Soo ZJ ( S e _mQ) + ZR (K ()] pa
for a = 1,..., M. The goal is, for a given set of masses m;, to find the point in the space
{So0s g1, G2y s N, P15 ---» par } Such that gy is as big as possible and the constraints (C.2)
are satisfied. This amounts to a standard problem in quadratic optimization and the
Mathematica program FindMaximum is conveniently designed to carry out such a task.
The attached notebook contains our implementation of this problem in Mathematica.
There we implement a function MaxCoupling[m_] which takes a spectrum m as input
and returns the maximum value of g; along with the corresponding values of the variables
gij>1, pn and So. To illustrate with a typical example, the output of MaxCoupling for

Note that Re[K, ()] can be computed simply by replacing log(...) — log(abs(...)) in the expressions
for K,,(s).
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m = {1,16/10,18/10} (in units of m) is

{g[1] »90.1938, g[2] - 98.5414, g[3] > 49.9688, Sw— 1., p[1] »-0.0106059, p[2] > -0.0365801,
p[3] >-0.0792579, p[4] » -0.136035, p[5] - -0.201675, p[6] > -0.264856, p[7] - -0.309091,
p[8] »-0.314682, p[9] - -0.265642, p[10] > -0.159441, p[11] »-0.0111107, p[12] - 0.14126,
p[13] »0.261091, p[14] - 0.316077, p[15] -» 0.298462, p[16] - 0.220909, p[17] - 0.108434,
p[18] »-0.0121623, p[19] » -0.121235, p[20] » -0.207034, p[21] » -0.266571,

p[22] »-0.301614, p[23] > -0.316666, p[24] »-0.316865, p[25] - -0.306922, p[26] > -0.290668,
p[27] »-0.270967, p[28] > -0.249832, p[29] - -0.228599, p[30] - -0.2081, p[31] »-0.188812,
p[32] »-0.170974, p[33] > -0.154669, p[34] > -0.139878, p[35] - -0.126544, p[36] > -0.114527,
0[37] »-0.103793, p[38] > -0.0940492, p[39] - -0.0854934, p[40] - -0.0773852}

(C.2)
Note that this is within the parameter range (5.17) which is the region plotted in figure
5.12 and also region B in plot 5.11. Thus we expect the S-matrix to be given by (5.18)
with the values of a; chosen according to m. We can see in figure C.1 that our numerics
agree perfectly with expectation.

C.2 Hyperbolic Rapidity

In two dimensions, hyperbolic rapidities are a very useful parametrization of energy and
momenta of relativistic particles. For two particles, for instance, we would write

P} = (E1,p1) = (my cosh(6y), my sinh(6,)), py = (B2, p2) = (ma cosh(fy), mgsinh(6s)) .

In this parametrization consider the elastic scattering of these two particles. In the final
state, conservation of energy and momentum imply that the final individual momenta are
the same as the initial one, that is p3 = p; and py = po so that there is no momentum
exchange u = (p3 — p1)? = 0. As for the other Mandelstam invariants we have

s = (p1+p2)® = mi+mj+2myms cosh(d) t = (p2—p3)® = mi +mj—2myms cosh(d)

where 6 = 6, — 6, is the difference of hyperbolic rapidities.

Note that these relativistic invariants are invariant under shifts of both rapidities. In-
deed, boosts act as shifts of ; and 6, such that 6 is invariant.

Note also that 6 <> im — 6 is a crossing transformation which exchanges s and t. This is
also nicely seen directly in terms of the two vectors above. For instance, if we keep 65 fixed
and send #; — im — 01 we get that p| — (—FE1, p1) as expected for a particle/anti-particle
transformation. This sends p; to the future (and ps to the past) as expected for a crossing
transformation.
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The hyperbolic parametrization is also convenient when dealing with bound-states.
Suppose for instance we form a bound-state out of two constituent particles with rapidities
0 4+ in and mass m. Then the total two-momenta of the bound-state would be

Dboundstate = (M cosh(é + in) + mcosh(f — in), msinh(€ + in) + msinh(6 — in))

= (mbound-state COSh(9>7 Mpound-state Slnh<0)) ’ (CB)

where the bound-state mass
Mbound-state — 2m COS(W) . (C4>

A necessary (but not sufficient) condition for such bound-states to form is the existence of a
pole at # = 2in in the S-matrix element S(#) describing the elastic process m+m — m+m.

Some theories have a cubic coupling and the particle of mass m can also be though of
a bound-state of two particles of mass m. In these cases n = 7/3. The Ising field theory
with magnetic field discussed in the main text is one such example.

C.3 Form Factor Expansion

The so called Scaled Ising Field Theory is a remarkable field theory, see [91] for a beautiful
review. This theory describes the flow from the critical Ising model as we turn on magnetic
field and temperature (measured as a deviation from its Curie value). When we turn on
temperature only (without magnetic field) or magnetic field alone (without temperature)
we end up with integrable theories. The first is that of free fermions while the second is
Zamolodchikovs E8 theory [90]. We rediscovered this second special point in section 5.3 as
the integrable theory with three stable particles of masses in the range (5.17) and whose
cublic coupling to the lightest particle is maximal.

Away from these two Integrable points, the Scaled Ising Field Theory can be studied
numerically, either from the lattice or using the so-called Truncated Conformal Space
Approach [93-95]. We can also use Integrable Form Factor perturbation [96] theory to
study small deformations away from the integrable points. Let us discuss briefly how our
general bounds in figure 5.12 compare with this second analysis.

As we deform away from the E8 theory by turning on the temperature slightly the
masses of the stable particles move. More precisely, we chose to measure everything in
terms of the mass of m; = 1 which is thus kept fixed but my and ms will move. This
is a slightly different point of view compared to what is typically taken in the literature
— see e.g. [96] — where masses are measured in unit of magnetic field. In this convention
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all masses move as we deform away from the integrable point. The results (in this second
notation) are given in equations (11) and (64) of [96]. Converting to our conventions we
get therefore

(5m2 o 5(m2/m1) . 5m2 — mg/ml 6m1

6m3 here B 6(m3/m1) there a 5m3 - m3/m1 5m1 there

~ 1.57322. (C.5)

In the small thin blue line in figure 5.12 we marked this slope. We can now compute the
slope of our bound for ¢gi"** along this blue line. We find

log(g1) = 6.585891698 — 8.683281573 dmy + O ((dms)?) . (C.6)

This value must coincide with the variation of the coupling of the Scaled Ising model as
we move away from this point or else we will violate our bound as we slightly increase or
decrease the temperature. This is what we verified. It is a somehow involved check since
extracting this residue from the form factor expansion is considerably harder than cor-
recting the masses. Fortunately, attached to [96] is a long notebook with the four-particle
form factor for the energy density operator. Using it we can construct the correction §.5(6)
to the S-matrix. From it, we can read off the correction dg; to the cubic coupling to the
lightest particle. In this way we obtain exactly the slope (C.6) (within the eleven digits of
numerical precision of the notebook in [96]).

C.4 Most General Optimal CDD solution

A given mass spectrum {my/m,...,my/m} leads to 2N poles between § = 0 and 0 = ix.
They come in pairs (for the s-channel and the t-channel contribution) related by 0 <> imr —6
and thus it is enough to focus on the segment [0, i7/2]. We order the poles in this segment
and denote them as 6; = iy; with 0 < v < 7 < --- < vy < /2. (Needless to say, this
ordering is not the same as the order m; < my < --- < my.) To each pole v; we associate
a sign sgn(j) = +1 if this is an s-channel pole or sgn(j) = —1 for a t-channel pole. In this
way, the set {(71,sgn(1)),..., (yn,sgn(N))} encodes all the information about the mass
spectrum. In terms of this useful notation, the optimal solution is simply

N

— 1 Losgn(s)sen(i+1) 1—sgn(j—1)sgn(y)
Symx(0) = sgn(1)( H x [y < I 1wl 2 (C.7)

j=J+1

where v is the pole associated to the lightest exchanged particle, that is m? = 2m?(1 +
sgn(J) cos(7y)) or m2(4m? — m?) = 4m?sin*(v;). In words, the optimal solution (C.7)
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carefully removes CDD-poles whenever the alternating pattern between s- and t-channel
poles is not observed. This immediately guarantees that all signs come out right. The
optimal residue ¢"** can now be straightforwardly read from (5.3) and (C.7) as

(1) = 16sin® 7y x (I'P™)? (C.8)

with

1-o(HDo(+1) N 1-o(o(i=1)

max\2 _ N-19 tan 17 (sin(v,) + sin(y)) 2 sin(y,) + sin(y;)
(TP=)? = o(1)(=1)N " 2 tan(y,) L (Sm T em() jlll(sin(w)—sin(vj))

(C.9)

.

where we are using the shorthand o(j) = sign(j).
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