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Abstract

This document is a review of the perspective on classical field the-

ories presented in [2] and [3].
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1 Introduction

This document is essentially a review of the perspective on classical field

theories presented in [2] and [3]. The only previously unwritten material is

the presentation of AKSZ type theories in this language, but this is really

only marginally original, and was explained to me by Kevin Costello.

The following is a summary of the contents of this document in the order

in which they should be understood:

• Appendix A: the linear algebraic constructions underlying all the tech-

niques in this paper.

• Section 2.1: the geometric interpretation of L∞ algebras as formal de-

rived stacks

• Appendix B: the functional analytic background necessary for doing

the above constructions with sheaves of sections of vector bundles

• Section 2.2-2.3: the technology necessary for, and the definition of,

classical field theories in the BV formalism

• Appendix C: the differential operators and DM modules background

necessary for a detailed description of the spaces of, and spaces of

deformations of, classical field theories

• Section 2.4-2.5: Description of classical field theories by local action

functionals and deformation theory of local L∞ algebras classical field

theories

• Section 3: a family of examples of classical field theories
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2 Classical Field Theories

2.1 Formal Derived Stacks and Finite Dimensional L∞

Algebras

Let k be the base field and g an L∞ algebra over k. Then g can be understood

as encoding the information of the infinitesimal neighbourhood of a point x

in a space X. Precisely, g can be interpretted as the −1 shifted tangent

complex to a derived stack X at a geometric point x ∈ X, and this contains

enough information to reconstruct the formal neighbourhood X̂x of x. We

can think of X̂x as itself a space, with only one underlying geometric point

but with a potentially interesting derived ring of functions, and we call such

spaces formal derived stacks. We will not define derived stacks here, but will

just define the category of formal derived stacks to be the opposite of the

category of L∞ algebras, and then explain how to understand these objects as

describing the derived algebraic geometry of a space with a single underlying

geometric point.

Recall from appendix 4 that for g an L∞ algebra we define the cdga of

Chevalley-Eilenberg cochains by

C•(g; k) := Sym•̂k(g
∗[−1])

together with the differential dCE determined on generators g∗[−1] by the

duals of the L∞ structure maps. We define the formal derived stack Bg

corresponding to g by

Bg := SpeckC
•(g; k) so that O(Bg) = C•(g; k)

Here we define Speck to mean that Bg is the space with one underlying

geometric point and ring of functions C•(g; k). Note that this is a complete

augmented cdga, with augmentation ε : C•(g; k)→ k given by the projection

2



to Sym0
k = k; the augmentation map is interpretted as the evaluation of a

function at the underlying geometric point of Bg, or dually as the inclusion

of the geometric point Speckk.

We define a vector bundle on Bg to be an L∞ module N for g, and define

its space of global sections by

Γ(Bg, N) := C•(g;N) = Sym•(g∗[−1])⊗N

Note that Γ(Bg, N) is a dg module for O(Bg), a derived version of the usual

fact that the sheaf of sections of a vector bundle N over X is a sheaf of

modules for the structure sheaf OX . In particular, we define the k-shifted

tangent and cotangent bundles by

Γ(Bg, T [k]Bg) = C•(g; g[k + 1]) Γ(Bg, T ∗[k]Bg) = C•(g; g∗[k − 1])

For k = 0 we drop the shift from the notation. The primary geometric

features of these vector bundles are:

Proposition 2.1. Let g be a finite type L∞ algebra.

• There is a natural universal derivation

d : O(Bg)→ Γ(Bg, T ∗Bg)

defined on each degree n ≥ 1 by a symmetrizing sum over the inclusions

Symn(g∗[−1]) ↪→ Symn−1(g∗[−1])⊗ g∗[−1]

and defined as 0 on Sym0.

• There is a natural non-degenerate pairing

〈·, ·〉Bg : Γ(Bg, T [k]Bg)⊗ Γ(Bg, T ∗[−k]Bg)→ O(Bg)
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defined by contracting the additonal g[1] and g∗[−1] tensor factors,

which is a map of O(Bg) dg modules, and thus we can identify

Γ(Bg, T ∗[−k]Bg) = Γ(Bg, (T [k]Bg)∗) := HomO(Bg)(Γ(Bg, T [k]Bg),O(Bg))

• There is a natural map of O(Bg) dg modules

Γ(Bg, T [k]Bg)→ Derk(O(Bg)) defined by X(f) = 〈X, df〉Bg

for each X ∈ Γ(Bg, T [k]Bg) and f ∈ O(Bg), where Derk denotes the

algebra of cohomological degree k derivations.
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2.2 Local L∞ Algebras and Modules

Throughout the remainder of this chapter, let M be a smooth manifold over

R and C∞M denote the sheaf of smooth functions on M . Recall from Appendix

6.2 the definition:

Definition 2.2. Let E1, ..., En, F be vector bundles on M and Ei,F their

sheaves of sections. We define the sheaf of polydifferential operators by:

PolyDiff(E1 ⊗ ...⊗ En,F) = Diff(E1, C
∞
M )⊗C∞M ...⊗C∞M Diff(En, C∞M )⊗C∞M F

There is a natural inclusion PolyDiff(E1⊗...⊗En,F) ↪→ Hom(E1⊗̂...⊗̂En,F)

defined by

(D1 ⊗ ...⊗Dn ⊗ f)(e1 ⊗ ...⊗ en) = (D1e1)...(Dnen)f

for each Di ∈ Diff(Ei, C∞M ), ei ∈ Ei, f ∈ F . We let Homloc(E1⊗̂...⊗̂En,F)

denote the image of this inclusion, and identify polydifferential operators

with their corresponding maps of sheaves of sections throughout.

Definition 2.3. A local L∞ algebra on M is a graded vector bundle L on M ,

with sheaf of sections L, together with a collection of polydifferential operators

{ln : L⊗̂n → L[2− n]}n∈N+

making L into a sheaf on M of L∞ algebras in the category NF.

A local L∞ algebra L is called abelian if ln = 0 for n ≥ 2 and trivial if

ln = 0 for n ≥ 1.

Given a local L∞ algebra L, let C•(L), the Chevalley-Eilenberg cochains

on L, be the precosheaf of cdga’s in the category NDF, defined by:

C•(L(U)) ≡ O(BL(U)) := Sym•̂(L(U)∗[−1]) =
∏
n∈N

(L(U)[1]⊗̂n)∗Sn
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equipped with the Chevalley-Eilenberg differential; the notation O(BL(U))

indicates that we think of a local L∞ algebra as determining a presheaf of

formal derived stacks BL over the base manifold M .

Definition 2.4. Let L be a local L∞ algebra. A local L∞ module for L is a

graded vector bundle N on M , with sheaf of sections N , and a differential

operator d : N → N [1] satisfying d2 = 0, such that

• N is a sheaf of L∞ modules for the sheaf of L∞ algebras L in the

category NF

• The L∞ module structure maps L⊗n ⊗ N → N [1 − n] are given by

polydifferential operators of each n ∈ N

Given a local L∞ algebra L and a local L∞ module N for L, we let

C•(L,N ), the Chevalley-Eilenberg cochains on L with coefficients in N , be

the precosheaf of cdga’s defined by

C•(L;N )(U) = C•(L(U);N (U)) =
∏
n∈N

Hom(L(U)[1]⊗̂n,N (U))Sn

equipped with the Chevalley-Eilenberg differential.

Further, we define the subsheaves of local and/or reduced Chevalley-

Eilenberg cochains by

C•loc(L;N )(U) :=
∏
n∈N

Homloc(L(U)[1]⊗̂n,N (U))Sn

C•red(L;N )(U) :=
∏
n∈N+

Hom(L(U)[1]⊗̂n,N (U))Sn

C•loc,red(L;N )(U) :=
∏
n∈N+

Homloc(L(U)[1]⊗̂n,N (U))Sn

Each L∞ module N (U) over L(U) defines a vector bundle over BL(U),

and under this correspondence

Γ(BL(U),N (U)) = C•(L;N )(U) ∼= O(BL(U))⊗̂N (U)
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where ∼= here denotes only an isomorphism of vector spaces. Further, we

let Γloc(red)(BL(U),N (U)) denote the subspaces corresponding to the local

(and/or reduced) cochains; note the geometric interpretation of the reduced

cochains is as the space of sections of the vector bundle N vanishing to first

order at the closed point of BL.

In particular, for each k ∈ Z the vector bundle L[k + 1] on M together

with the kth shift of the first L∞ bracket l1 : L[k + 1] → L[k + 2] defines

a local L∞ module for L, and the corresponding vector bundle on BL is

denoted T [k]BL, so that

Γ(BL, T [k]BL) = C•(L;L[k + 1])

There is a natural map

Γ(BL, T [k]BL)→ Derk(O(BL))

where Derk(O(BL)) denotes the cohomological degree k derivations of the

precosheaf O(BL) of cdga’s in the category NDF. For each open set U ⊂M ,

and each vector field

X =
∑
n∈N

Xn ∈ C•(L;L[k+ 1])(U) =
∏
n∈N

Hom(L(U)[1]⊗̂n,L(U)[k+ 1])Sn

define the action of the corresponding derivation X̃ ∈ Derk(O(BL(U))) on

the subspace of linear functionals l ∈ L∗(U)[−1] by

X̃(l) = l ◦X =
∑
n∈N

l ◦Xn ∈
∏
n∈N

(L(U)∗[−1])⊗̂nSn
[k] = O(BL(U))[k]

and extend it to O(BL(U)) as a graded derivation. Let Derkloc(O(BL)) de-

note the image of Γloc(BL, T [k]BL) under this map.
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In particular, recalling ln ∈ Homloc(L[1]⊗̂n,L[2])Sn , we can consider

QL :=
∑
n∈N+

ln ∈
∏
n∈N+

Homloc(E ⊗̂n, E [1])Sn = Γloc,red(E , T [1]E)

where E is the sheaf of sections of the vector bundle E := L[1], interpreted

as a sheaf of affine spaces with −1 shifted tangent complex given by the

trivial local L∞ algebra with underlying vector bundle L; in keeping with this

interpretation, we abuse notation and use E for both the sheaf of sections E
and the presheaf of linear spaces B(E [−1]).

In fact, the data of L as a local L∞ algebra is equivalent to that of E
equipped with the vector field QL; the vector field and the maps underlying

the L∞ brackets are precisely the same data, the locality of the vector field

is equivalent to the L∞ brackets being polydifferential operators, and the

L∞ identities are equivalent to the derivation Q̃L ∈ Der1
loc(O(E)) satisfying

Q̃2
L = 0. Note that the derivation Q̃L is precisely the Chevalley-Eilenberg

differential on O(BL). The above equivalence and a generalization of it are

stated precisely in propositions 2.10 and 2.11, respectively.

The cotangent bundle is a bit more subtle due to analytic issues in our

infinite dimensional setting. We define

Γ(BL, T ∗[k]BL) = C•(L;L∗[k − 1])

equipped with the Chevalley-Eilenberg differential. However, L∗ is not the

sheaf of sections of a vector bundle and thus does not fit into the preceeding

definition. We will be careful about this distinction whenever we discuss

sections of the cotangent bundle in what follows.

There is a natural derivation

d : O(BL) = C•(L)→ C•(L;L∗[−1]) = Γ(BL, T ∗BL)

given on each degree n ≥ 1 by taking a symmetrizing sum over the inclusion
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maps

Symn(L∗[−1]) ↪→ Symn−1(L∗[−1])⊗̂L∗[−1]

and defined as 0 on Sym0(L∗[−1]).
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2.3 Invariant Symplectic Pairings and Hamiltonian Vec-

tor Fields

Definition 2.5. Let L be a local L∞ algebra and E = L[1]. A strictly local

k-shifted symplectic structure on BL is a map of vector bundles

ω : E ⊗ E → DensM [k]

which is graded-antisymmetric, fibrewise non-degenerate, and is invariant

under the L∞ structure, in the sense that the functionals

(QL ∨ ω)n := IM ◦ ω ◦ (1E ⊗ ln) ∈ Hom(E ⊗̂nc ,C)

are Sn invariant for each n ≥ 2, where {ln : ∧nE → E [1]}n∈N are the poly-

differential operators corresponding to the local vector field QL and IM :

(DensM)c → C denotes the integration map.

We also define

ω : E → E![k] and Π : E! → E[−k]

to be the corresponding vector bundle isomorphism and its inverse, respec-

tively, where E! := E∨ ⊗ DensM for E∨ the dual bundle to E and DensM

the bundle of densities on M . Equivalently, we have ω : L → L![k − 2] and

Π : L! → L[2− k].

Note that the invariance condition is trivial for a trivial L∞ algebra, so

that a pairing ω which satisfies the above hypotheses except for the invariance

condition defines a shifted symplectic structure on the trivial local L∞ algebra

underlying L; moreover, in this situation the remaining invariance condition

can be restated equivalently as the condition that QL ∈ Γloc,red(E , T [1]E) be a

symplectic vector field for the −1-shifted symplectic structure ω on E , in the

sense given in definition 2.12; see proposition 2.14 for the precise statement.

For a finite dimensional symplectic manifold (P, ω), each function f ∈
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C∞(P ) determines a vector field Xf := Π(df) where Π = ω−1 : T ∗M → TM

is the Poisson tensor corresponding to ω; this can equivalently be character-

ized by the condition df = ιXf
ω. In our infinite dimensional setting most of

the naive definitions fail to be well-defined in general, and we will have to

be careful about various classes of functions for which we can make sense of

these ideas.

A priori, a strictly local k-shifted symplectic structure on BL gives iso-

morphisms

1O(BL)⊗̂ ω : C•(L;L[1− k]) � C•(L;L![−1]) : 1O(BL)⊗̂ Π

of precosheaves of cochain complexes in the category Nuc. This gives an

equivalence between the space of cohomological degree −k vector fields on

BL and something which is morally a space of 1-forms on BL of cohomo-

logical degree 0. Applying the map Π to 1-forms in this space which are in

some sense the differential of a functional gives the Hamiltonian vector field

corresponding to the given functional. In the next section, we explain one

context in which this is made precise.

Finally, we are now in a position to just state the main definition of the

chapter:

Definition 2.6. A classical field theory on M is a local L∞ algebra L equipped

with a strictly local −1-shifted symplectic structure on BL.
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2.4 Local Functionals and Local Hamiltonian Vector

Fields

Let L be a local L∞ algebra over M with sheaf of sections L and jet bundle

J(L); we denote the sheaf of sections of J(L) by J (L). The following follows

formally from the discussion in appendix 6.2:

Proposition 2.7. J (L) is an L∞ algebra object in the symmetric monoidal

category (DM -Mod,⊗C∞M ).

We define the reduced Chevalley-Eilenberg cochains on J (L) by

C•red(J (L)) =
∏
n∈N+

Symn
C∞M

(J (L)∨[−1]) =
∏
n∈N+

HomC∞M
(J (L)[1]⊗n, C∞M )Sn

which, equipped with the Chevalley-Eilenberg differential, defines a presheaf

of reduced cdga’s in the category DM -Mod; here J (L)⊗n denotes the nth

tensor power over C∞M of the sheaf of sections of the jet bundle. Now

HomC∞M
(J (L)[1]⊗n, C∞M ) ∼= HomC∞M

(J (L)[1], C∞M )⊗n ∼= PolyDiff(L[1]⊗n, C∞M )

so that an element F ∈ C•red(J (L)) defines for each n ≥ 1, a symmetric map

Fn : J (L)[1]⊗n → C∞(M) determined by

Fn(j(l1)⊗ ...⊗ j(ln)) =
k∑
i=1

Di
1l1...D

i
nln

for all li ∈ L, for some collection of differential operators Di
j ∈ Diff(L[1], C∞M )

defined for each i = 1, ..., k, j = 1, ..., n; here j(l) ∈ J (L) is the infinite jet

extension of l ∈ L.

Now, we define

Oloc(BL) := Γ(M,DensM)⊗DM
C•red(J (L))

12



which is the space of local action functionals on BL. Evidently C•red(J (L))

is the space of Lagrangians on the space of fields L[1], while Γ(M,DensM)

is the space of densities on M against which one can integrate the given

Lagrangian; the tensor product is taken over DM to account for the fact that

some a priori different Lagrangian densities are equivalent via integration by

parts, or equivalently to quotient by the space of Lagrangian densities which

are total derivatives and thus define trivial action functionals.

Elements of Oloc(BL) can be thought of as functionals explicitly via the

natural inclusion of presheaves valued in NDF: Oloc(BL) ↪→ C•(Lc) defined

on U ⊂M by

F |U ⊗ η 7→
∏
n∈N

[
l 7→

∫
M

Fn(j(l)⊗n) η

]
where η ∈ DensM(U) and l ∈ Lc(U), noting the integral is convergent since

the Fn ◦ j⊗n maps Lc(U) to C∞c (U).

Now, we can restrict the universal derivation

d : C•(Lc)→ C•(Lc;L∗c) =
∏
n∈N

Hom(L⊗̂nc ,L∗c)Sn

to the image of Oloc(BL). For F̃ = F ⊗ η ∈ Oloc(BL) we obtain dF̃ =∑
n∈N dF̃n where dF̃n is defined by

dF̃n(l1 ⊗ ...⊗ ln−1)(ln) =

∫
M

Fn(j(l1)⊗ ...⊗ j(ln)) η

Note that

dF̃n(l1⊗...⊗ln−1)(ln) =

∫
M

η

k∑
i=1

Di
1l1...D

i
nln =

∫
M

(
k∑
i=1

D̃i
n(η Di

1l1...D
i
n−1ln−1)

)
ln

by integration by parts, where D̃i
n is the formal adjoint of Di

n, defined as

the differential operator making the above integration by parts formula hold.

This implies the more restrictive condition that dF̃n ∈ Homloc(L⊗̂(n−1),L![−1]) ⊂

13



Homloc(L⊗̂(n−1)
c ,L∗c [−1]) and thus we in fact obtain a map

d : Oloc(BL)→
∏
n∈N

Homloc(L⊗̂n,L![−1])Sn = C•loc(L;L![−1])

Now, given a strictly local k shifted symplectic structure on BL defined

by ω : L→ L![k − 2], we obtain a map

Πloc : C•loc(L;L![−1])→ C•loc(L;L[1− k])

as discussed in the preceeding section. We can now formulate the definition

of Hamiltonian vector field corresponding to a local actional functional:

Definition 2.8. Let F ∈ Oloc(BL) of cohomological degree 0, a local action

funcitonal on BL. The local Hamiltonian vector field corresponding to F is

Πloc(dF ) ∈ Γloc(BL;T [−k]BL) = C•loc(L;L[1− k])

Further, a vector field X ∈ C•loc(L;L[1 − k]) is called Hamiltonian if it is a

local Hamiltonian vector field corresponding to some F ∈ Oloc(BL).

Finally, we define the induced Poisson bracket of local functionals in

Oloc(BL):

Definition 2.9. Let F,G ∈ Oloc(BL). Define

{F,G}ω = µ ◦ (1C•(L) ⊗ 1C•(L) ⊗ ω)(dF ⊗̂dG) ∈ C•(L)

where µ : C•(L)⊗̂2 → C•(L) is the algebra multiplcation map.
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2.5 Deformations of Local L∞ Algebras and Local Ac-

tion Functionals

Let L be a vector bundle with sheaf of sections L and E = L[1]. Recall

that we think of the sheaf of sections E of E as the sheaf of affine spaces

B(E [−1]), where B(E [−1])(U) is the formal derived stack with −1 shifted

tangent complex E(U)[−1] equal to the trivial L∞ algebra with underlying

vector space L(U).

Recall that in the discussion in section 2.2 we established the following:

Proposition 2.10. Let E ,L as above. Then the following are equivalent:

• A collection of polydifferential operators

{ln : L⊗̂n → L[2− n]}n∈N+

which make L into a local L∞ algebra.

• A vector field

QL ∈ Γloc,red(E , T [1]E)

satisfying Q2
L = 0.

One can interpret the above proposition in a more general context: it

shows that a deformation of a trivial local L∞ algebra E [−1] into a general

local L∞ algebra L is equivalent to a square zero vector field on the sheaf

of affine spaces modelled by E . The analogous geometric description of the

space of deformations of a general local L∞ algebra is as follows:

Proposition 2.11. Let L be a local L∞ algebra with L∞ brackets {ln : L⊗̂n →
L[2−n]}n∈N+ and let QL ∈ Γloc,red(E , T [1]E) be the corresponding local vector

field. Then the following are equivalent:

• A collection of polydifferential operators

{l̃n : L⊗̂n → L[2− n]}n∈N+

15



such that {ln + l̃n : L⊗̂n → L[2−n]}n∈N+ again make L into a local L∞

algebra.

• A vector field

V ∈ Γloc,red(BL, T [1]BL)

such that [QL, V ] + 1
2
[V, V ] = 0.

Proof. Evidently the local vector field corresponding to the collection of poly-

polydifferential operators {ln + l̃n}n∈N+ is given by Q̃ = QL + V . By the

previous proposition, this defines an L∞ structure if and only if Q̃2 = 0, and

Q̃2 = [QL, QL] + 2[QL, V ] + [V, V ] = 2[QL, V ] + [V, V ]

where the last equality follows again from the previous proposition since QL

defines a local L∞ algebra.

Next, we wish to give the analogous results concerning the construction

and deformation of classical field theories. To begin, we make the following

definition:

Definition 2.12. Let E as above and ω a strictly local −1 shifted symplectic

form on E. A local vector field X ∈ Γloc,red(E , T [1]E) is called symplectic if

the functionals

(X ∨ ω)n := IM ◦ ω ◦ (1E ⊗ ln) ∈ Hom(E ⊗̂nc ,C)

are invariant under Sn for each n ≥ 2; here {ln : ∧nE → E [1]}n∈N are

the polydifferential operators corresponding to the local vector field X and

IM : (DensM)c → C denotes the integration map.

In particular, we have the following proposition, which can be interpreted

as the vanishing of a certain Poisson cohomology module:

16



Proposition 2.13. Let E as above, ω a strictly local −1 shifted symplectic

form on E and X ∈ Γloc,red(E , T [1]E) a symplectic vector field. Then X is

Hamiltonian in the sense of definition 2.8, with corresponding local functional

F ∈ Oloc(E) defined by

F =
∑
n∈N+

IM ◦ ω ◦ (1E ⊗ ln)

as an element of C•(Ec[−1]), where {ln : ∧nE → E [1]}n∈N are the polydifferen-

tial operators corresponding to the local vector field X and IM : (DensM)c →
C denotes the integration map.

From this proposition, together with 2.10, we have:

Proposition 2.14. Let E a vector bundle over M , consider L = E[−1] as a

trivial local L∞ algebra, and let ω : E → E![−1] be a strictly local, −1 shifted

symplectic pairing on E. The following are equivalent:

• A collection of polydifferential operators {ln : L⊗̂n → L[2 − n]}n∈N+

making L into a local L∞ algebra for which ω is an invariant symplectic

pairing.

• A symplectic vector field

QL ∈ Γloc,red(E , T [1]E)

satisfying Q2
L = 0.

• An element S ∈ Oloc(E) of cohomological degree zero, which is at least

quadratic as a polynomial on E and satisfies

{S, S}ω = 0

Motivated by this, we make the following definition:
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Definition 2.15. A functional S ∈ Oloc(BL) satisfies the classical master

equation if

{S, S}ω = 0

Thus, by the preceeding proposition, we have the equivalent definition of

classical field theory:

Definition 2.16. A classical field theory on M is a vector bundle E with

a strictly local, −1 shifted symplectic structure ω on E and an action func-

tional S ∈ Oloc(E) which is atleast quadratic as a polynomial and satisfies

the classical master equation.

Finally, we proceed to discuss deformations of classical field theories with

a fixed symplectic form. Such a deformation is in particular a deformation

of a local L∞ algebra of the type described by the preceeding proposition; it

simply must satisfy the additional condition that the symplectic form is still

preserved by the vector field corresponding to the new L∞ structure. Thus,

we have:

Proposition 2.17. Let L be a local L∞ algebra with L∞ brackets given by

{ln : L⊗̂n → L[2 − n]}n∈N+, ω a strictly local −1 shifted symplectic form on

BL, and S ∈ Oloc(BL) be the corresponding local action functional. Then

the following are equivalent:

• A collection of polydifferential operators

{l̃n : L⊗̂n → L[2− n]}n∈N+

such that {ln + l̃n : L⊗̂n → L[2−n]}n∈N+ again make L into a local L∞

algebra L̃, such that ω again defines a strictly local symplectic form on

BL̃.

• A symplectic vector field

V ∈ Γloc,red(BL, T [1]BL)
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such that [QL, V ] + 1
2
[V, V ] = 0.

• An element S̃ ∈ Oloc(E) of cohomological degree zero, which is at least

quadratic as a polynomial on E and satisfies

{S, S̃}ω +
1

2
{S̃, S̃}ω = 0
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3 Formal AKSZ-Type Theories

In this section, we define a family of examples of classical field theories, first

constructed in [1].

Let g a finite dimensional L∞ algebra over R with an invariant, skew-

symmetric, non-degenerate pairing ωg : g⊗2 → k[n−2], so that Bg is n-shifted

symplectic as a formal derived stack.

Then for each orientable manifold M of dimension n + 1, we define a

classical field theory on M with underlying local L∞ algebra defined by

L = T0Maps((·)dR, Bg)[−1] := Ω•M ⊗ g

with local L∞ algebra structure given on each U ⊂M as the tensor product

of the cdga Ω•M(U) and the L∞ algebra g: explicitly, we have

l1 : L → L[1] defined by l1 = dM ⊗ 1g + 1Ω•M
⊗ lg1

and

ln : L⊗n → L[2− n] defined by ln = µnM ⊗ lgn

for n ≥ 2, where we let µnM : (Ω•M)⊗n → Ω•M denote the (associative) mul-

tiplication of n elements, and lgn : g⊗n → g[2 − n] denote the L∞ brackets

for g. Note that l1 is differential operator, and the maps ln for n ≥ 2 are in

fact maps of C∞M modules, and thus in particular differential operators in a

trivial way.

The initial insight of [1] is that local L∞ algebras constructed as presheaves

of formal mapping spaces in this way have a natural compatible, strictly local

−1 shifted symplectic structure ω : L⊗2[1]→ DensM [−1] defined on sections

by:

ω = πn+1 ◦ (µM ⊗ ωg) : Ω•(M)⊗2 ⊗ g[1]⊗2 → DensM [−1]

where πn+1 : Ω•M → Ωn+1
M [n + 1] ∼= DensM [n + 1]; note ω is in fact coming
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from an underlying map of vector bundles.

We now give two familiar examples of theories in this class:

3.1 Topological Classical Mechanics

Let V be a symplectic vector space, with symplectic form ω : V ⊗2 → C and

let g = V [−1] be the −1 shifted tangent complex of V , viewed as a trivial L∞

algebra. Then ωg = ω : g⊗2 → C[−2] defined a 0 shifted symplectic structure

on V = Bg. By the above construction, this yields a dimensional classical

field theory on 1 manifolds called topological classical mechanics valued in V ;

this name comes from the fact that it is the classical field theory underlying

topological quantum mechanics.

3.2 Classical Chern-Simons Theory

Let g be a complex, semi-simple Lie algebra viewed as an L∞ algebra con-

centrated in cohomological degree 0 with ln = 0 for n 6= 2, and let ωg :=

κ : g⊗2 → C denote the Killing form, which defines a 2 shifted symplec-

tic structure on Bg. By the above construction, this yields a classical field

theory on 3 manifolds called classical Chern-Simons theory. Note that the

action functional corresponding to this classical field theory, in the sense of

definition 2.16 is given by

S(A) =

∫
M

κ(dA ∧ A+ A ∧ [A ∧ A]) A ∈ Ω•(M)⊗ g

21



4 Commutative Differential Graded Alge-

bras and L∞ Algebras

4.1 Graded Linear Algebra

Throughout the remainder of this paper fix a base field k of characteristic

zero.

Definition 4.1. A graded vector space V is a vector space along with a direct

sum decomposition

V =
⊕
k∈Z

Vk

For a graded vector space V , Vk is called homogenous degree k summand,

and for v ∈ Vk we let |v| = k.

Given a graded vector space V , we write V [i] for the graded vector space

given by shifting the degree of each summand by i, or explicitly by the

decomposition

V [i] =
⊕
k∈Z

Vk+i

When we need to be more careful about degree, we include vector spaces

into graded vector spaces concentrated in degree zero, and thus can write

V =
⊕
k∈Z

Vk[−k]

for the graded vector space with homogenous degree k summand Vk. Here

the direct sum is of graded vector spaces (defined below).

Definition 4.2. A graded algebra is an algebra A over k such that the un-

derlying vector space is a graded vector space

A =
⊕
k∈Z

Ak
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and the multiplication satisfies

µ(Aj ⊗ Ak) ⊂ Aj+k

A graded algebra A is called graded-commutative if

a · b = (−1)|a||b|b · a

Throughout let V,W be graded vector spaces.

Definition 4.3. A (degree 0) morphism of graded vector spaces f : V → W

is a collection of linear maps (fk : Vk → Wk)k∈Z.

Definition 4.4. A degree i morphism of graded vector spaces is a (degree 0)

morphism of graded vector spaces f : V → W [i].

Definition 4.5. The dual of V is the graded vector space V ∗ given by the

decomposition

V ∗ =
⊕
k∈Z

V ∗−k

Definition 4.6. The direct sum V ⊕W is the graded vector space given by

the decomposition

V ⊕W =
⊕
k∈Z

(V ⊕W )k (V ⊕W )k = Vk ⊕Wk

Definition 4.7. The tensor product V ⊗W is the graded vector space given

by the decomposition

V ⊗W =
⊕
k∈Z

(V ⊗W )k (V ⊗W )k = ⊕i+j=kVi ⊗Wj

or more generally for graded vector spaces V 1, ..., V n with V i = ⊕k∈ZV i
k , we

define
n⊗
i=1

V i =
⊕
k∈Z

⊕
i1+...+in=k

V 1
i1
⊗ ...⊗ V n

in
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Definition 4.8. The tensor algebra T (V ) is a graded algebra, with underlying

vector space given by

T (V ) =
⊕
n∈N

⊗nV =
⊕
n∈N

(⊕
k∈Z

⊕
i1+...+in=k

Vi1 ⊗ ...⊗ Vin

)

where the grading is given by the direct sum decomposition in the final ex-

pression.

Definition 4.9. The symmetric algebra Sym•(V ) is the quotient algebra

T (V )/I where I is the two-sided ideal generated by elements of the form

v ⊗ w − (−1)|v||w|w ⊗ v

Definition 4.10. The alternating algebra ∧•(V ) is the quotient algebra T (V )/I

where I is the two-sided ideal generated by elements of the form

v ⊗ w + (−1)|v||w|w ⊗ v

The most trivial example of all these constructions is for V = V0 a vector

space V0, so concentrated in degree zero, in which case they reduce to the

original vector space operations, with resulting vector spaces all concentrated

in degree zero.

If we take V = V0[−1] for a vector space V0, so concentrated in degree

1, then the tensor algebra yield the usual tensor algebra with the usual

graded algebra structure given by the degree of the tensor as a multilinear

map. The symmetric algebra Sym•(V ) yields the alternating algebra ∧•V
equipped again with the usual graded algebra structure, and vice versa.

4.2 Commutative Differential Graded Algebras

In this section we recall the definition of the category of commutative differ-

ential graded algebras.

24



Definition 4.11. A degree j derivation on a commutative graded algebra A

over k with product µ is a k − -Mod map d : A→ A[j] such that

d ◦ µ = µ ◦ (d⊗ 1A + (−1)j+1
1A ⊗ d)

Let Derjk(A) denote the degree j derivations of A.

Definition 4.12. A commutative differential graded algebra is a commutative

graded algebra together with a degree 1 derivation d : A → A[1] such that

d2 = 0.

A map of commutative differential graded algebras is a map of graded

algebras over k which is also a map of cochain complexes.

Given a graded vector space V , let A(V ) denote the free graded commu-

tative algebra. We have:

Proposition 4.13. The free commutative algebra on a graded vector space

V over k is given by

A(V ) = Sym•k(V ) with µ((v1 ·...·vj)⊗(w1 ·...·wl)) = v1 ·...·vj ·w1 ·...·wl

for each v1, ..., vj, w1, ..., wl ∈ V , where · denotes the symmetric algebra mul-

tiplication.

For A(V ) a free graded commutative algebra, a derivation is determined

by its restriction to the generators:

Proposition 4.14. There is a bijection

Homk−-Mod(V [−j], A(V ))→ Derjk(A(V )) defined by X 7→ µ◦(1A(V )⊗X)◦∆

where ∆ : A(V ) → A(V ) ⊗ A(V ) is the symmetric algebra comultiplication.

The inverse of this bijection is given by

Derjk(C(V ))→ Homk−-Mod(V [−j], A(V )) defined by d 7→ d ◦ π
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where π : A(V )→ V denotes the projection to Sym1(V ) = V .

This gives us a concrete way to construct commutative differential graded

algebras. We make the following definition:

Definition 4.15. A commutative differential graded algebra with underlying

graded algebra given by a free graded commutative algebra is called quasi-free.
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4.3 L∞ Algebras

Definition 4.16. An L∞ algebra over k is a graded vector space g together

with a family of k linear maps

ln : ∧ng→ g[2− n]

defined for n ∈ N, satisfying the n-Jacobi identity∑
σ∈Sn
j,k≥1

j=n−k+1

(−1)?lj(lk(xσ(1), ..., xσ(k)), xσ(k+1), ..., xσ(n)) = 0

for each n ∈ N.

In particular, l1 : g → g[1] can be identified with a differential since the

1-Jacobi identity is just that l1 ◦ l1 = 0. Thus an L∞ algebra with ln = 0 for

n ≥ 2 is just a cochain complex.

Further, an L∞ algebra with ln = 0 for n ≥ 3 is just a differential graded

Lie algebra: l2 : ∧2g → g can be identified with a Lie bracket since the

3 Jacobi identity reduces to the normal Jacobi identity and the 2 Jacobi

identity gives the compatibility of the differential l1 and the Lie bracket l2.

In particular, this implies that an L∞ algebra with ln = 0 for n 6= 2 is a

graded Lie algebra. In general, l2 need not satisfy the Jacobi identity, but

will modulo terms involving l3.

4.4 Commutative-Lie Koszul Duality

Let g be a graded vector space which is degree-wise finite dimensional, and

consider the free commutative algebra A(g∗[−1]). From proposition 4.14,

a degree 1 differential on A(g∗[−1]) is is equivalent to a k − -Mod map
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l∗ : g∗[−2]→ A(g∗[−1]). Decomposing

Sym•(g∗[−1]) =
⊕
n∈N

Symn(g∗[−1]) =
⊕
n∈N

(∧ng∗)[−n]

this is equivalent to a family of maps

l∗n : g∗[n− 2]→ ∧ng∗ or dually ln : ∧ng→ g[2− n]

defined for n ∈ N. Now we have:

Proposition 4.17. A degree 1 derivation d on Sym•(g∗[−1]) satisfies d2 = 0

if and only if the corresponding maps {ln}n∈N satisfy the n-Jacobi identity for

each n ∈ N.

Proof. It suffices to check that d2 = 0 on generators since then it follows on

products by applying the graded Leibniz rule:

d2(µ(a⊗ b)) = µ(d2a⊗ b+ da⊗ db− da⊗ db+ a⊗ d2b) = 0

To check it on generators, we need only verify that the direct summands of

the map

d2 ◦ π : g∗[−1]→
⊕
n∈N

Symn(g∗[−1])

vanish for each n ∈ N. By definition we have

d2 ◦ π = d ◦
⊕
n∈N

l∗n = µ ◦ (1A(g∗[−1]) ⊗
⊕
n∈N

l∗n) ◦∆ ◦
⊕
n∈N

l∗n

and the component of this map corresponding to the nth direct summand

of the codomain is precisely the dual of the left hand side of the n Jacobi

identity above.

The above has shown we have a bijection between quasi-free commutative

differential graded algebras and L∞ algebras with finitely many non-zero
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brackets (since we considered the non-completed symmetric algebra). We

now make the following definition:

Definition 4.18. Let g be an L∞ algebra. The Chevalley-Eilenberg complex

of g with coefficients in k is the commutative differential graded algebra

C•(g; k) := Sym•̂(g∗[−1])

where Sym•̂ denotes the completion of Sym• with respect to the natural aug-

mentation on the symmetric algebra given by projection to Sym0 = k.

Recall that an L∞ algebra concentrated in degree 0 with ln = 0 for

n 6= 2 is just a Lie algebra. One can easily check that in this case the above

definition agrees with the usual Chevalley-Eilenberg complex for Lie algebra

cohomology with coefficients in the trivial module k.

4.5 L∞ Modules and Chevalley-Eilenberg Cochains with

Coefficients

In this section, we define L∞ modules for L∞ algebras, generalizing the defini-

tion of modules for strict Lie algebras. In analogy with the commutative-Lie

Koszul duality discussed above, we will define an L∞ module in such a way

that it is equivalent data to determining a square zero differential defining

the Chevalley-Eilenberg cochains with coefficients in this module, which will

be a dg module for the cdga C•(g; k).

Definition 4.19. Let A be a cdga with differential dA. A differential graded

(dg) module V for A is a graded module V for the graded algebra underlying

A, together with a differential dV : V → V [1] making V into a cochain

complex, such that

dV (av) = (dAa)v + (−1)|a|a(dV v)
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for each a ∈ A of homogeneous degree and v ∈ V .

Now, let g be an L∞ algebra, N a cochain complex with differential

dN : N → N [1], and consider the graded vector space over k

V (g;N) := Sym•̂(g∗[−1])⊗k N

We would like to define a map dN : V (g;N) → V (g;N)[1] making this

V (g;N) into a dg module for the cdga C•(g; k) with action map

ρ : C•(g; k)⊗ V (g;N)→ V (g;N) defined by f ⊗ (g ⊗ n) 7→ fg ⊗ n

for f, g ∈ C•(g; k) and n ∈ N . In particular, this requires

dN(f ⊗ n) = dN(f · 1⊗ n) = dCE(f)⊗ n+ (−1)|f |f ⊗ dN(1⊗ n)

so that dN is determined by its restriction to N = 1⊗N ↪→ V (g; k):

dN |N : N → V (g;N)[1] =
∏
n∈N

Symn(g∗[−1])⊗N [1]

This is equivalent to a family of maps

an : ∧ng⊗N → N [1− n]

for each n ∈ N. The restriction that the resulting differential dN satisfies

d2
N = 0 imposes a family of equations on the {an} analogous to the n-Jacobi

identities in the definition of L∞ algebra; we do not write them here.

Definition 4.20. An L∞ module for g is a k module N together with a family

of maps

{an : ∧ng⊗N → N [1− n]}

such that the corresponding differential dN : V (g;N) → V (g;N)[1] satisfies

d2
N = 0.
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Further, for N an L∞ module, we define the Chevalley-Eilenberg cochains

with coefficients in N to be the C•(g; k) dg module C•(g;N) := V (g;N)

together with this differential.

Let g be an L∞ algebra with structure maps given by {ln : ∧ng→ g[2−
n]}n∈N. Then for each k ∈ N, the vector space g[k] is an L∞ module for g

with structure maps defined by

an := ln+1[k] : g⊗n ⊗ g[k]→ g[k][1− n]

Similarly, one defines an L∞ module structure on g∗[k] for each k ∈ Z.
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5 Nuclear Vector Spaces

Throughout this paper, we use many constructions from homological/homotopical

algebra in situations where the underlying vector spaces are infinite dimen-

sional. For example, given a local L∞ algebra L on a manifold M , its evalua-

tion on an open set U ⊂M yields an L∞ algebra L(U), but with underlying

vector space the infinite dimensional vector space of sections of the vector

bundle L over U . In such situations, the correct mathematical statement is

that we obtain an L∞ algebra object in the appropriate category of infinite

dimensional vector spaces. However, in order to make such statements, we

need to ensure this category has all the of the neccessary structures to fa-

cilitate such definitions, such as duals, tensor products and enrichment over

vector spaces. In this appendix, we summarize without proof the relevant

facts to make sense of these notions in the contexts we use them.

5.1 Categories of Nuclear Vector Spaces

In this section, we record the relevant statements about the existence of

appropriate categories of infinite dimensional vector spaces for the construc-

tions of this paper. An early reference for these results is [4] and a complete

treatment is given in [5].

Theorem 5.1. There exists a full subcategory Nuc of the category of topo-

logical vector spaces, called the category of nuclear vector spaces, satisfying

the following properties:

• Nuc is enriched over vector spaces

• There is a projective tensor product functor ⊗̂ : Nuc × Nuc → Nuc

making Nuc a symmetric monoidal category

• Closed subspaces of nuclear vector spaces, and quotients of nuclear vec-

tor spaces by their closed subspaces, are nuclear
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• Countable direct sums, and more generally countable colimits, of nu-

clear vector spaces are nuclear

This is all of the information necessary to make sense of the linear al-

gebraic constructions given in appendix 4 in the category Nuc, with the

exception of the use of duals. These are described in the following:

Theorem 5.2. There exist full subcategories NF and NDF, called the nuclear

Fréchet spaces and nuclear dual Fréchet spaces, respectively, satisfying the

following properties:

• Closed subspaces of NF (NDF) spaces, and quotients of NF (NDF)

spaces by their closed subspaces, are NF (NDF) spaces

• NF is closed under countable limits and finite colimits

• NDF is closed under countable colimits and finite limits

• NF and NDF are symmetric monoidal subcategories of Nuc

• Taking the strong dual of a topological vector space gives equivalences

of symmetric monoidal categories:

(·)∗ : NF
∼=−→ NDFop (·)∗ : NDF

∼=−→ NFop

A further useful property of NF spaces is that they share the following

descriptions of Hom spaces from finite dimensional linear algebra:

Hom(E,F ) = E∗⊗̂F Hom(E∗, F ) = E⊗̂F Hom(E,F ∗) = E∗⊗̂F ∗

for each E,F ∈ NF; these equalities are only claimed here at the level of vec-

tor spaces (without topology), which is the only enrichment we have referred

to, but more precise statements are available.
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5.2 Vector Spaces from Geometry

Throughout, let M be a smooth manifold with sheaf of smooth functions

C∞M and DensM the bundle of densities on M (by abuse of notation, we also

use this notation for its sheaf of sections). Recall that for any vector bundle

E over M , the sections of E form a sheaf E over M while the compactly

supported sections form a cosheaf Ec, with extension maps given by extension

by zero. Further, define the sheaf of distributions D on M by

D(U) = Densc(U)∗

where the subscript c denotes compactly supported sections.

Now, for each vector bundle E over M define

E! = E∨ ⊗Dens(M)

where (·)∨ denotes the dual vector bundle, or equivalently dualizing the sheaf

of sections in the category of C∞M modules, and let E ! denote the sheaf of

sections of E!.

Moreover, let

• E := E ⊗C∞ D the sheaf of distributional sections of E

• Ec := Ec ⊗C∞ D the cosheaf of compactly supported distributional sec-

tions of E

• E ! := E ⊗C∞ D the sheaf of distributional sections of E!

• E !
c := Ec ⊗C∞ D the cosheaf of compactly supported distributional sec-

tions of E!

We have:

Proposition 5.3. Let E a vector bundle over M and U ⊂ M open. Then

we have:
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• The vector spaces E(U), Ec(U) are naturally objects in NF.

• The vector spaces E(U), Ec(U) are naturally objects in NDF.

Now, there is a natural pairing

〈·, ·〉 : E ⊗ E !
c → R defined by 〈e, ξ〉 =

∫
M

〈e, ξ〉E

where 〈·, ·〉E : E ⊗ E∗ → (DensM)c denotes the fibrewise duality pairing on

E. There are equivalently pairings on

Ec ⊗ E ! E ! ⊗ Ec E !
c ⊗ E

each of which can be extended in the first arguement to distributional sec-

tions of the respective bundles maintaining finiteness of the pairing. Via this

pairing, we have:

Proposition 5.4. There are natural isomorphisms:

• E ∼= (E !
c)
∗ as presheaves.

• Ec ∼= (E !)∗ as precosheaves.

• E ! ∼= E∗c as presheaves.

• E !
c
∼= E∗ as precosheaves.

where the target category is Nuc.

5.3 Integral Kernels

Note that for each U ⊂M there is a natural embedding

I : C∞ ↪→ D defined on U ⊂M by I(f)(ξ) =

∫
U

f · ξ
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and more generally

IE : E ↪→ E defined by e 7→ e⊗ I(1)

Thus we have the commutative square

Ec(M) ↪→ (E(M), Ec(M)) ↪→ E(M)

in the category Nuc. Motivated by this, we make the following definition:

Definition 5.5. Let E,F vector bundles over M,N with spaces of sections

E ,F , respectively. A general operator from E to F is a map

P : Ec(M)→ F(M)

in the category Nuc.

In particular, letting Ẽ(M), F̃(M) denote any of the distributional and/or

compactly supported versions of the spaces of global sections of E ,F , respec-

tively, we see that any map P̃ : Ẽ(M)→ F̃(M) determines a general operator

P : Ec(M)→ F(M).

Moreover, letting Homgen(E ,F) denotes the space of general operators P

from E to F , we have:

Theorem 5.6. There is a natural isomorphism

P(·) : Γ(M×N,E!�F ) ∼= E !⊗̂F → Homgen(E ,F) Pξ⊗f (e) =

∫
M

f ·〈ξ, π∗M(e)〉E

for ξ ∈ E and f ∈ F , and where πM : M ×N →M is the projection.
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6 Differential Operators, Jet Bundles and Smooth

D-Modules

6.1 Differential Operators and the Jet Bundle

Throughout let M a smooth manifold, and let C∞M denote the sheaf of smooth

functions.

Definition 6.1. Let E,F be vector bundles on M with sheaves of sections

E ,F . A (linear) differential operator is a map of sheaves of vector spaces

A : E → F such that for any local coordinates and trivializations of E and

F over U ⊂M we have

A|U =
∑
|α|≤n

aα ◦ ∂α

for some n ∈ N and aα ∈ HomC∞(U)(E(U),F(U)) for each α, where α denotes

a multi index and |α| denotes its total degree.

A differential operator A : E → F has order less than or equal to k ∈ N if

for each point x ∈M there is a choice of coordinates and local trivializations

in a neighbourhood of x such that the above description can be written as a

sum over |α| ≤ k.

Let Diff(E ,F) denote the sheaf of differential operators from E to F , con-

sidered as a sheaf of C∞M modules, and Diffk(E ,F) the subsheaf of differential

operators from E to F of order less than or equal to k.

For each k ∈ N and vector bundle E over M , there is a vector bundle

Jk(E) over M called the kth jet bundle of E, with sheaf of sections J k(E),

and an injective differential operator jk ∈ Diffk(E ,J k(E)) called the kth jet

extension, defined by the fact that

HomC∞M
(J k(E),F)

∼=−→ Diffk(E ,F) via the map ϕ 7→ ϕ ◦ jk

That is, the functor Diffk(E , ·) is representable with representing object J k(E)
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in the category of locally free, finitely generated sheaves of C∞M modules. The

section jk(e) ∈ J k(E) thus contains all information about the section e ∈ E
and all of its mixed partial derivatives in local coordinates of degree less than

or equal to k.

For each k ≤ l there is a projection J l(E) → Jk(E) dual to the natural

inclusion Diffk(E ,F) ↪→ Diffl(E ,F), and thus we have sequences of maps

· · · → Jk+1(E)→ Jk(E)→ · · · → J1(E)→ E

and

· · · → J k+1(E)→ J k(E)→ · · · → J 1(E)→ E

From this, we define a pro-vector bundle J(E) := limk J
k(E), the (infinite)

jet bundle of E, which by definition has sheaf of sections given by the locally

free, pro finitely generated sheaf of C∞M modules

J (E) = lim
k
J k(E)

Further, there is a pro differential operator j := limk j
k : E → J (E) called

the infinite jet extension, such that we have

HomC∞M
(J (E),F)

∼=−→ Diff(E ,F) via the map ϕ 7→ ϕ ◦ j

38



6.2 DM-Modules, the Jets Functor, and Polydifferen-

tial Operators

Define the sheaf of smooth differential operators on M by

DM = Diff(C∞M , C
∞
M )

viewed as a sheaf of C∞M modules, and additionally a sheaf of (non-commutative)

algebras with product given by composition.

Definition 6.2. The category DM -Mod is the category of sheaves of left

modules for the sheaf DM .

Note that we have an inclusion of sheaves of algebras C∞M ↪→ DM and thus

have a pullback functor on categories of sheaves of modules DM -Mod →
C∞M -Mod. We have the following characterization of DM modules with a

locally free underlying C∞M module, or equivalently, given by the sheaf of

sections of a vector bundle E:

Proposition 6.3. Let E be a vector bundle with corresponding sheaf of sec-

tions E, viewed as a C∞M module. A choice of extension of the C∞M -Mod

structure on E to a DM -Mod stucture is equivalent to a flat connection

∇ : E → Ω1
M ⊗ E.

The simplest example of a DM module is C∞M , via the inclusion

Diff(C∞M , C
∞
M ) ↪→ Hom(C∞M , C

∞
M ) where Hom with corresponding flat connec-

tion given by the de Rham differential. Another important example for this

paper is DensM , viewed as a left/right DM module with flat connection given

by

∇Xω = ±LXω = ±dιXω

For R, S ∈ DM -Mod we define a tensor product functor ⊗C∞M : DM -Mod×
DM -Mod→ DM -Mod by

R⊗C∞M S ∈ DM -Mod by D(r ⊗ s) = Dr ⊗ s+ r ⊗Ds
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We have

Proposition 6.4. The category DM -Mod together with the tensor product

⊗C∞M is symmetric monodial.

Note that for any vector bundle E with sheaf of sections E , the sheaf of

sections of the jet bundle J (E) is naturally a DM module, as it carries a flat

connection defined by the criteria that a section ε ∈ J (E) is flat if and only

if ε = j(e) for e ∈ E . Further, note that this in fact extends to a functor

J : C∞M -Modlf ∼= VBM → DM -Mod defined by E ∼= E 7→ J (E)

where C∞M -Modlf denotes the full subcategory of C∞M -Mod on locally free

sheaves of modules.

We make the following definition:

Definition 6.5. Let E1, ..., En, F be vector bundles on M and Ei,F their

sheaves of sections. We define the sheaf of C∞M modules of polydifferential

operators by:

PolyDiff(E1 ⊗ ...⊗ En,F) = Diff(E1, C
∞
M )⊗C∞M ...⊗C∞M Diff(En, C∞M )⊗C∞M F

Now, we have the following crucial proposition explaining the significance

of polydifferential operators in the formulation of classical field theories given

in definition 2.6:

Proposition 6.6. Let Ei, F vector bundles over M with sheaves of sections

E , Ei, F for i = 1, ..., n. Then

HomDM
(J (E1)⊗C∞M ...⊗C∞M J (En),J (F)) = PolyDiff(E1⊗̂...⊗̂En,F)
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