
Prediction for Projection on
Time-Varying Surfaces

by

Adam Daniel Gomes

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2016

c© Adam Daniel Gomes 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In spatial augmented reality applications, when video projectors display images on time-
varying, non-planar surfaces, rather than on flat, rigid surfaces, undesired image distortion
may occur. For applications where realism is of the utmost importance, such as surgical
simulations, image distortion can significantly detract from the user experience. To combat
this, the time-varying surface can be modelled using a mass-spring model, commonly used
for simulating deformable objects in computer graphics. The mass-spring model can be
formulated into a nonlinear state space equation that describes the dynamics of discrete
points making up the surface of the object. Two simulation techniques are used to verify
the model and to determine the best approach for real-time simulations.

To project images in real-time onto quickly changing surfaces, an extended Kalman filter
(EKF) prediction algorithm is developed to predict the position of the deforming surface, at
a specified point in time, Ts seconds, in the future. Using the linearized mass-spring system,
the EKF is formulated and tested upon two simulation scenarios. The simulation scenarios
include a falling cloth with added process noise, and a cloth perturbed by random viscous
forces. Using mean squared error, the results show the EKF predictions and simulation
outputs converge within a narrow band. For each scenario, the parameters of the EKF
are manually tuned to improve the accuracy of the predictions. Experimental data is
collected by measuring the movement of cloth-like materials to verify the effectiveness of the
prediction algorithm. Specifically, cloth movement data is captured using infra-red markers
and motion capture software. The EKF prediction algorithm is run on the experimental
data producing near convergent results between the predictions and the measurements.

When the physical surface is changing noticeably and quickly, compared to the projec-
tor’s drawing rate, additional distortion may occur. An inter-frame prediction algorithm is
developed to further predict the position of discrete points at their corresponding projec-
tion times. This is most useful when the prediction algorithm produces predictions slower
than the drawing rate of the projector (Ts >

1
fps

).

When implementing the EKF in real-time, there is a trade-off between speed and ac-
curacy. If the number of discrete points is large, the EKF is required to solve a large
system of equations. To combat this, nonlinear optimization techniques are used to find
parameters that reduce the number of states while maintaining system dynamics. This
results in a sparser, more computationally efficient model with similar physical behaviour
to the original system.

Applications for time-varying surface prediction include surgical simulations, projection
for entertainment and advertising, and other spatial augmented reality applications.

iii

Acknowledgements

I would like to first thank my advisor Professor David Wang for his guidance, advice
and feedback. I would also like to thank my research group, particularly Madeleine Wang
for assisting with experimental data collection. Lastly, I would like to thank my friends
and family who have helped me through this journey.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 4

2.1 Deformable Models . 4

2.2 Spatial Augmented Reality . 9

2.2.1 Non-Rigid Projection Based AR . 10

2.2.2 Projection Mapping . 11

3 Derivation of Mass-Spring-Damper Model 14

3.1 State Space Formulation . 14

3.2 Linearization . 22

3.3 Model Simulation . 27

4 Review of Filtering Approaches 34

4.1 Least Squares Estimation . 34

4.2 Kalman Filter . 37

4.3 Extended Kalman Filter . 39

4.4 Unscented Kalman Filter . 41

v

5 Model Compression 44

5.1 Data Driven Compression . 44

6 Estimation Filtering Applied to Model 61

6.1 Formulation of Filter . 61

6.2 Results . 64

6.3 Parameter Tuning . 69

6.4 Experimental Results . 75

6.5 Projector Compensation . 85

7 Conclusions and Future Works 92

References 96

APPENDICES 102

A Sparsity Result for Rectangular Mass Spring Model Jacobian 103

vi

List of Tables

5.1 Electrical and mechanical parameters . 46

6.1 5× 5 Node Model Parameters . 64

vii

List of Figures

1.1 Surgical simulator projector setup . 2

1.2 Singer wearing dress being projected onto [4] 3

2.1 Checkerboard pattern [2] . 13

2.2 Projection mapping onto torso . 13

3.1 Connection of mass nodes . 15

3.2 Spring force between nodes . 17

3.3 2× 2 example initial conditions . 18

3.4 2× 2 example mesh configuration . 19

3.5 Runge Kutta simulation of falling 21× 21 node anchored cloth 29

3.6 Implicit Euler Backwards simulation of falling 21× 21 node anchored cloth 31

3.7 Comparison of Runge-Kutta and Euler Backwards Methods 32

3.8 Comparison of Runge-Kutta and Euler Backwards Methods with the same
∆T . 33

5.1 Electrical analogy of single mass-spring-damper system 48

5.2 Electrical analogy of two mass-spring-damper system 49

5.3 Simulated annealing results 5× 5 . 52

5.4 Final parameter vector θN values for 5× 5 compression 53

5.5 Simulated annealing results 11× 11 . 54

5.6 Final parameter vector θN values for 11× 11 compression 55

viii

5.7 Mean squared error between compressed models and the original model . . 56

5.8 Updated simulated annealing costs for compression to 5× 5 model 57

5.9 Mean squared error between compressed models and the original model with
new cost function . 57

5.10 Updated final parameter vector θN values for 5× 5 compression 58

5.11 Error plots when using two scenario cost function 59

6.1 EKF applied to 5× 5 node mass spring cloth model with added zero-mean
Gaussian noise . 66

6.2 Mean squared error of EKF predictions . 67

6.3 Euclidean error of EKF prediction of single node over time 68

6.4 Random Viscous Force . 68

6.5 EKF predictions of 5×5 node mass-spring cloth model with random viscous
force applied . 70

6.6 Mean squared error of EKF predictions random force 71

6.7 Euclidean error of EKF prediction of single node over time for random vis-
cous force simulation . 71

6.8 Mean squared error between EKF predictions and simulation outputs over
time for large random viscous force simulation 72

6.9 Euclidean error of EKF prediction of every node over time for large random
viscous force simulation . 72

6.10 EKF MSE error for varying Rk in process noise scenario 74

6.11 EKF MSE prediction mean squared error for varying Qk 76

6.12 EKF MSE prediction mean squared error for varying Rk 77

6.13 Experimental data collection equipment . 79

6.14 EKF applied to 5× 4 node experimental data 81

6.15 Mean squared error of EKF prediction on experimental data 82

6.16 Condition number of P matrix . 84

6.17 Mean squared error between EKF predictions and measured cloth positions
over time with new parameters . 85

ix

6.18 Orientation of cloth with respect to projector 87

6.19 Inter-frame prediction of 5× 5 node cloth at a projection frame rate of 24fps. 89

6.20 Inter-frame prediction of 5× 5 node cloth at a projection frame rate of 10fps 90

6.21 Inter-frame prediction of experimental data 91

x

Chapter 1

Introduction

In spatial augmented reality applications, projection of images onto non-rigid surfaces can
pose many issues. As the surface geometry is not necessarily stationary, standard projection
techniques can fail to create a realistic experience due to improper image mapping. For
applications where realism is of great importance, such as surgical simulators, this can
effect how well a user can perform their intended task. To use projection in these situations,
the position of the deformable object’s surface must be tracked. There are a number of
publications that have studied tracking and projection onto non-rigid surfaces; however, for
quickly changing surfaces, there is no mention of how well these techniques perform. When
the surface being projected onto is moving quickly, the computational time of processing
images, in addition to surface tracking, may cause distorted images to be projected. To
combat this, a prediction scheme can be used to approximate the position of the surface at
the time of projection. Using this predicted surface, images can be processed in advance,
resulting in a smoother experience for the user.

To implement a prediction scheme for surface tracking, a physically accurate deformable
model needs to be used. A large number of deformable models have been studied in the field
of computer graphics. These models range from aesthetically pleasing models to physically
accurate models built from a theoretical foundation. Using deformable models, tracking
of object surfaces has been used in the fashion and movie industries [20]. Since these
industries require a high level of realism in their models, tracking is done post production
rather than in real-time. Aesthetically pleasing, real-time models have been used for video
games; however, these models often times lack physical realism. Even though surface
tracking and estimation using deformable models in real-time seems like an obvious area
of research in spatial augmented reality, very few papers have studied it. One example is
Killpack [42], where he examines and tracks the motion of cloth in conveyor belts. Using

1

video data and a physical model for cloth, Killpack’s goal is to eventually be able to control
the surface behaviour of the belt.

An application where time-varying surface prediction would be very useful is in sur-
gical simulators. To make surgical simulators more realistic, the visual experience should
closely match what the surgeon sees while performing surgery. Many studies have looked
at graphically representing the surface of organs using physically accurate models [22].
When using projector based spatial augmented reality for the visuals, the malleable sur-
face of organs require surface tracking for accurate projection. Surface tracking can be
combined with these models to accurately recreate visuals using a projector setup (Figure
1.1). Moafimadani et al. [50] created a haptic device to simulate the tactile sensations that
surgeons feel during pedicle screw insertion surgery for scoliosis. To make the simulator
more compelling for surgical training, a visual component is being developed using pro-
jectors. Since the surgeon applies tremendous amounts of force on the patient during the
procedure, the skin will move quite drastically from its resting position. As a result, for the
surgical simulator, the surface geometry must be able to change to match the experience
of the real surgery. Surface prediction can be applied to the simulator to account for these
surface changes, allowing the visuals to match the real life surgery, making the simulator
far more suitable for use as a real training device.

Figure 1.1: Surgical simulator projector setup

Another application where time-varying surface prediction can be used is in the enter-
tainment industry, especially during live projection shows. For example, in Figure 1.2, the
singer is wearing a long white dress being projected upon by a video. The projection takes

2

advantage of the dress’ geometry, making it a focal point of the performance. The pro-
jectors are calibrated to project onto the fixed surface of the dress, and as a result, issues
may arise if the performer moves during the show. When the performer moves, the dress,
and therefore the display surface, changes shape. The images may no longer align with the
geometry, ruining the experience. By using surface estimation, the surface geometry can
be continuously accounted for during projection, resulting in a fluid show. Furthermore,
additional effects can be added to the performance that take advantage of the changing
display surface geometry. Images can be projected onto surfaces changing due to wind, or
even onto fluids to create a more immersive atmosphere for the audience.

Figure 1.2: Singer wearing dress being projected onto [4]

The following chapters guide the reader through the contributions and relevant details
of this thesis. Chapter 2 reviews relevant background concepts that are required for de-
formable object modelling and spatial augmented reality. Chapter 3 examines the mass
spring model in detail, providing the model formulation, model linearization and simulation
results. Chapter 4 reviews common filtering approaches and discusses how suitable these
techniques are to deformable model estimation. Chapter 5 presents techniques for reduc-
ing the order of the model so that the prediction filter can run more efficiently. Chapter
6 discusses how the extended Kalman filter can be combined with the mass spring model
to create a deformable surface prediction filter. The prediction filter is applied to both
simulation and experimental scenarios, and the results are discussed. Also in Chapter 6,
an additional prediction scheme is developed to compensate for surface movement dur-
ing image projection. Lastly, Chapter 7 summarizes the results of the experiments and
presents topics for future research.

3

Chapter 2

Background

To create a model for deformable surfaces for augmented reality applications, a number
of research areas need to be explored. This chapter provides a review of the techniques
used in computer graphics to simulate deformable objects, so that a physically realistic
deformable model can be used in augmented reality applications. Also in this chapter, past
and current applications of projector based augmented reality, along with their advantages
and disadvantages, will be discussed. Works related to non-rigid object projection will also
be reviewed. Lastly, projection mapping on three-dimensional surfaces will be discussed.

2.1 Deformable Models

The simulation of solid objects such as rigid bodies, soft bodies or cloth has been an impor-
tant and active research area in computer graphics since the late 1980’s [31]. Early works
focused on non-physical models of deformable objects, where purely geometric deformation
techniques were employed. These techniques are extremely efficient; however, they rely on
the skill of the designer rather than on the physical properties of the object [31]. The
designer would generally have to have prior knowledge of how the objects behave, making
these techniques just as aesthetic as analytical. One of the main approaches in this field
is the free-form deformation (FFD) technique. The FFD technique is a general method
for deforming objects in which the shape of object is changed by deforming the space in
which the object lies. Linear transformations of the space are composed together to provide
complex deformations; however, the user’s control of deformations are not very intuitive.
Non-physical methods for modelling deformations are limited by the expertise and patience
of the user. Deformations are explicitly specified and the system has no knowledge of the

4

nature of the objects being manipulated. As a result, modelling complex structures with
non-uniform shapes are almost impossible using non-physical models.

The most common approaches for deformable body simulations are called the classical
dynamic simulation methods (or physical models). These approaches formulate the change
of momentum of a system as a function of applied forces, and determine positions through
numerical integration of accelerations and velocities. These techniques are well studied,
and as a result, are well established in computer graphics. The main methods in this
area are the mass spring model method and the finite-element model (FEM) method.
The mass spring model method is a technique that has been used widely and effectively
for modelling deformable objects. An object is modelled as a collection of point masses
connected by springs and dampers in a specific orientation. Newton’s Second Law, which
governs the motion of masses when forces are applied, determines the position of each point
mass after every time-step in the simulation. A more detailed analysis of this method
can be found in Chapter 3. Mass spring systems are simple physical models which are
easy to construct and very fast to compute. They are so useful that they are still being
used for simulations of deformable bodies in new application areas such as virtual and
augmented reality systems [51]. One of the major drawbacks of this method is that the
point masses are chosen discretely throughout the object. This causes the simulation to
be an approximation, rather than a true simulation of continuous bodies. Additionally, it
is quite difficult to determine the optimal mass, spring, and damper parameters to best
match real-world objects. For most applications, these parameters are chosen so that the
visual appearance is pleasing. As a result, mass spring models often say little about the
material properties of the object being modelled [51]. However, more recent studies have
found close-to-optimal parameter sets for mass spring models using parameter identification
techniques or physical properties of the real-world material [61][21][33]. Teschner [61]
employs generlized springs that preserve distances, areas and volumes. Bridson[21] presents
a physically correct bending model for triangle meshes. Grinspun [33] presents a similar
model for simulating discrete shells. Eberhardt [28] and Choi [26] improve the realism by
modelling nonlinear material properties. Eberhardt base their spring model on measured
cloth data to model hysteresis and Choi approximate cloth buckling using a fifth-order
polynomial. Lahey [44] models the bending effect of fabrics including nonlinear elasticity
and viscous and Coulomb friction with hysteric effects.

Numerical stiffness can occur in the model when spring constants are chosen to be too
large. This is a well known problem in mathematics [11]. A system is numerically stiff if a
numerical method is forced to use a steplength which is excessively small in relation to the
smoothness of the exact solution [45]. For linear differential equations, numerical solving
is unstable if the step time, ∆T , is chosen to be greater than the natural period of the

5

system. The natural period, T0 of a linear system is given by

T0 ∝ π

√
m

k
, (2.1)

where m is a given mass and k is the spring constant. The critical stiffness can therefore
be solved to be approximately,

kc ∝ m
π2

T 2
0

. (2.2)

The critical stiffness value, kc, is the spring constant value at which the system becomes
numerically unstable at a step time ∆T = T0. Therefore, the only way to increase the
maximum value of k, is to decrease the value of ∆T . As a result, to obtain convergent
simulation results, small integration step times need to be chosen, resulting in far more
calculations. If integration step times are chosen to be too large, the simulation behaviour
will be divergent and unstable. A number of studies have found ways around the numerical
stiffness problem. Provot [54] avoided these issues by applying constraints to the movement
of each point mass. This technique has been shown to significantly improve the numerical
stability of the model; however, it detracts from the physical realism of the model. Ascher
[10] proposes using alternate integration techniques, such as implicit integration schemes
to improve the likelihood of convergence of the model. Hauth [34], Boxerman [18] and
Ascher[10] use both implicit and explicit integration schemes; implicit integration is used
on the stiff portions of the model and explicit integration is used on the non-stiff parts. This
allows for a balance of stability, from the implicit scheme, and simplicity, from the explicit
scheme. Overall, mass spring models have generally been the de facto deformable body
simulation technique used in practice due to its ease of formulation and computational
efficiency.

Models that treat objects as continuous bodies, rather than discrete points, are called
continuum methods. The continuum model of a deformable object considers the equi-
librium of a general body acted on by external forces. The equilibrium configuration of
an object is the undeformed, resting shape of the object. The object reaches equilibrium
when its potential energy is at a minimum. As a result, the deformation is a function of
these forces and the object’s material properties. The partial differential equation (PDE)
governing the dynamics of elastic materials is given by [51],

ρẍ = ∇ · σ + fext, (2.3)

where ρ is the material density, x is the material position as a function of (x, y, z), σ is the
3× 3 stress tensor and fext is a vector of externally applied forces as a function of (x, y, z).

6

The portion ∇ · σ represents the internal forces in the deformed volume. Since it is not
always possible to find a closed-form solution, x(t), to Equation (2.3) for an entire body,
FEM methods are used. The finite element method turns a PDE into a set of algebraic
equations that can be solved numerically. The method takes the continuous domain and
discretizes it into a finite number of elements. Therefore, instead of solving for the solution
x(t) for the PDE for the entire body, it solves the PDE for each discrete element xi(t).
The solution x(t) can be approximated by linear combination of these discrete solutions,
that is [51],

x(t) ≈ x̃(t) =
∑
i

bixi(t), (2.4)

where bi are the nodal basis functions. The value of bi is usually 1 at node i and 0 at
all other nodes. However, in the most general case of the FEM, this may not be true.
Substituting x̃(t) into Equation (2.3) for x(t) results in a series of equations solving for
each xi(t). Finding the solution is then viewed as an optimization problem minimizing the
error between x(t) and x̃(t), as x̃(t) is not the exact solution to Equation (2.3).

To solve this problem in computer graphics, the explicit FEM method is used to solve
for xi(t). This is a simple form of the FEM that does not solve a system of equations
for the positions xi(t). The method treats nodes of the mesh as mass points, as in the
mass spring model, and FEM elements as generalized springs connecting all adjacent mass
points. The relationship between nodal forces and positions happen to be nonlinear, and
when linearized, can be expressed as

fe = Keue, (2.5)

where fe are the nodal forces and ue are the nodal displacements (x − x0) for all nodes
connected to spring element e. The matrix Ke is the stiffness of the element e, and the
stiffness for the entire mesh is given as the sum

K =
∑
e

Ke. (2.6)

Using the linearized force-displacement relationship for each element, the equation of mo-
tion for the entire mesh becomes

Mü + Du̇ + Ku = F, (2.7)

where M is the mass matrix, D is the damper matrix, K is the stiffness matrix, F is the
applied force vector and u is node displacement vector. The matrix M is generally found

7

by integrating over the volume of each element, and D is a linear combination of both M
and K, in a method called Rayleigh Damping [8]. Often times, to save on computations,
diagonal matrices are used for M and D in a method called mass-lumping. In this method,
M contains the mass of each node along its diagonal.

Finite element methods provide more physically realistic simulations than mass spring
systems with fewer node points. However, due to numerical integration for parameters of
FEM systems significant pre-processing time is required. Additionally, the linear elastic
theory using FEM systems only assumes small deformations of the objects. If the position
of a node moves greatly from its equilibrium point, the model is no longer physically
accurate. Nonlinear FEM methods avoid this problem. However, they are computationally
prohibitive [31].

More contemporary methods for deformable body simulations include the position-
based methods. Position-based methods compute positions directly, based on the solution
to a quasi-static problem [13]. This is in contrast to the classical methods which evolve posi-
tions through numerical integration of accelerations. Position based methods use constraint
functions to limit the behaviour of each particle, while explicit forward Euler integration is
used to solve for the positions at the next time step. This method recreates the behaviour
of a second-order system, but it needs no acceleration data. The position-based methods
are mainly used in applications where performance, controllability and stability are more
important than accuracy. These methods have been used in surgical simulations [64], and
hair style simulations [56]. Other recent approaches for deformable modelling include the
Mesh-free methods [12]. Mesh-free methods are an extension of the continuum approaches
for modelling, where surfaces are constructed entirely out of nodes rather than meshes.
This allows for discontinuities in the model to have little effect on simulation accuracy,
making it possible to solve large classes of problems ranging from stiff structures to fluids.
Lastly, there are the Eulerian methods for deformable body simulations. All previously
mentioned methods fall under the category of Lagrangian methods, where an object is
described as a set of moving points that change position over time [51]. Eulerian meth-
ods looks at a stationary set of points and calculates how the material properties stored
at those points change over time. The Eulerian methods are mainly used for fluid simu-
lations, as their formulation solves the Navier-Stokes equations [65][24][23]. Using these
methods, Zhu [65] were able to model sand as a fluid, Carlson [24] modelled solid objects
that can melt into liquids and Carlson [23] were able to model rigid body interactions with
fluids. Most contemporary methods have seen little application as they require too much
computational power[23]. Although newer techniques can create more visually compelling
simulations, they can take hours or days to produce results, and therefore cannot be used
for real-time applications.

8

2.2 Spatial Augmented Reality

Spatial Augmented Reality (SAR) is a technological variation of Augmented Reality (AR)
where large, spatially aligned optical elements, such as transparent screens or video pro-
jectors, are used as the display medium [17]. Within SAR, projector-based augmentation
integrates augmented reality directly into the user’s environment, rather than simply into
their visual field. To do this, projector based displays apply front-projection to project
images directly onto physical objects instead of onto an image plane [17]. Since projec-
tors traditionally project on rectangular flat surfaces, projection on non-planar surfaces
require special rendering process. For images to be projected properly onto an object’s
surface, texture mapping needs to be performed on virtual models that closely resemble
the object to be projected upon. Texture mapping allows an image to be ”painted” on an
object by defining transformations from the desired image coordinates to the coordinates
of the virtual object. The texture mapped virtual object is then projected onto the real
world object to create the illusion of alternate lighting, texture and material properties.
Generally, projector based augmentation works best when the geometry of virtual objects
closely match that of the physical objects. To match the geometry of both objects, a
CAD model of the real world object is most often used. The textured virtual object is
then projected on materials such as styrofoam, cardboard, or any material with neutral
colour and texture. Many software packages exist that specialize in projector based SAR
such as MadMapper[5] and Derivative TouchDesigner[3]. Projector based spatial displays
overcome the shortcomings of AR displays as they provide improved ergonomics, a scalable
resolution and easier eye accommodation. On the negative side, projector based spatial
displays are prone to shadows and occlusion, they are constrained to the size and shape of
physical objects being projected on, and they are difficult to calibrate and keep aligned.

Projector based augmentation has been used in many artistic and advertising ventures.
Examples of projector based SAR include the Being There project developed at UNC [48],
where researchers built a walk-through of a virtual building by projecting architectural
objects such as columns, cupboards and tables onto simple shapes made of styrofoam. The
experiment showed that projector augmentation provides a stronger sense of immersion
when compared to other displays. More advanced applications of projector based augmen-
tation include projection onto dynamic mechanical models and projection onto deformable
surfaces. In [17], the researchers project images on a model of a car to create the illusion
of motion. Rather than have the car move in the environment, the projections change to
create the illusion of a moving vehicle. By using the dynamic effects of acceleration, the
researchers warp images to match the expected shape and colouration of a vehicle in mo-
tion. Adding additional effects such as induced shadows and lighting helped improve the

9

realism of the demonstration. Commercial applications of projection based SAR include
the projection of product images on building facades for advertisement. Large companies
such as Nokia, Samsung and BMW have used SAR to promote their products in major
cities. Other applications of projection based AR include appearance enhancement [38]
and creating the illusion of deformations on rigid surfaces [37].

Another area of research within projector based augmented reality is occlusion correc-
tion. Occlusion correction studies how to compensate for unwanted optical interference
effects and how to artificially create shadows that would exist if the projections were real
objects. Sukthankar [59] addresses the problem of undesired shadows by redundantly illu-
minating the display surface using multiple projectors in different locations. Additionally,
the researchers use cameras to identify occlusions as they occur and dynamically adjust
the projected image. Punpongsanon [55] uses feature tracking techniques, where occluded
features are ignored on each frame, to reduce projection error. Steimle [58] detects body
parts, such as hands and fingers, and accounts for them during image projection. On the
other hand, often times it is advantageous to create occlusions, such as virtual shadows, to
increase the realism of the SAR scenario. For example, to create virtual occlusions, Bimber
[16] uses computer controlled projectors to create lighting on a per-pixel basis, allowing for
artificial, view-dependent shadows to be ”projected” onto real objects.

2.2.1 Non-Rigid Projection Based AR

For the most part, projection based AR research has primarily focused on projection onto
rigid objects, and very little work has been conducted on non-rigid objects. One of the first
systems for projection on non-rigid surfaces was developed by [53]. In this system, users
interacted with clay terrains while a projector superimposed depth related information onto
the surface. Newer work, such as the work done by [43], project navigation information
onto a patient’s body, while the patient is undergoing surgery. To do this, the researchers
estimate the bump deformation (deformation from pushing) using visual feature tracking.
To capture the pose of a projection surface, a number of different strategies are used. These
include marker and marker-less camera systems, texture feature selection [62], optical flow
[36], and object contour analysis [25]. In a very recent study, [55] uses non-rigid materials
such as silly putty, sodium borate and clay as surfaces, painted with infra-red paint, to
project images on the changing surface geometry. Their method determines tangential
deformations, like kneading and stretching, from feature extraction by tracking the motion
of the infra-red markers. However, since the infra-red camera must be placed directly above
the surface, only two-dimensional motion can be measured. Also in a very recent study,
[58] created a system where sheets of paper can be used as handheld displays. If the paper

10

is slightly bent, the deformation is estimated using a Kinect, and the projection is warped
to fit the new shape of the paper, making it a spatially aware display. This work does
not examine tangential deformation, such as stretching, and does not comment on how the
speed of deformations affects performance. They do admit that when working with fully
flexible materials, only simple deformations can be tracked.

2.2.2 Projection Mapping

Traditionally, projectors are used to create flat and rectangular images, and as a result,
rendering algorithms used for LCD panels can be used without any modification. However,
in SAR applications, where the display surface can vary geometrically, alternate rending
approaches have been proposed. The rendering process requires a mathematical model for
the projector, the shape of the display surface, and for cases where the user is not aligned
with the display, the user’s location.

Display Surface

The display surface can be represented by a polygonal mesh using a piece-wise planar ap-
proximation. The mesh is defined by a set of vertices along with their associated normals
to determine surface orientation. The advantage of defining surfaces this way is that graph-
ics hardware use polygons and the associated normals as geometric primitives (OpenGL).
There are many techniques that can be used to generate the display surface. Common
techniques for obtaining geometry is by using depth cameras or multiple camera set-ups.
Bimber [16] proposes using triangulation techniques based on correspondences extracted
from the images from two cameras. Corresponding points are determined by sequentially
illuminating points until a three-dimensional point cloud is created. This technique is
called the active structured light technique. Other techniques include capturing discrete
points of data using markers and interpolating to create a dense mesh, and using video
data, combined with machine learning, to approximate the 3D shape of an object.

Projector Model

The projector model can be approximated by a pin-hole model, similar to a pin-hole
camera model. As explained by Bimber [16], the pin hole camera model is defined by
a 3 × 4 perspective projection matrix. To find the equivalent projection matrix for the
projector model, let m = [u, v]T be the pixel location of the projector and M = [X, Y, Z]T

11

be the associated point in three-dimensional space. These two points can be written in
homogeneous coordinates [16] as m̃ = [u, v, 1]T and M̃ = [X, Y, Z, 1]T . The relationship
between the pixel position m and 3D point M is found to be

wm̃ = F
[
R t

]
M̃, (2.8)

where w is a scaling factor, R and t represent the external parameters (transformation
matrix converting the world coordinate system to the projector coordinate system), and
F is the projector’s intrinsic matrix defined as

F =

α γ u0

0 β v0

0 0 1

 , (2.9)

where (u0, v0) are the coordinates of the principal point which is the point where the
principal plane crosses the optical axis, usually the centre of the image, α and β represent
the focal length in terms of pixels, and γ represents the skew between the u and v axes.
The equivalent projection matrix can be extracted form this formulation to be

P = F
[
R t

]
, (2.10)

which is a 3 × 4 matrix that completely specifies the idealized pin-hole projection for a
projector. Assuming the display surface has been computed, the mapping between each
projector pixel and each surface point is known. As a result, the projection matrix P can
easily be found.

Rendering

To render an image onto a surface, two steps are required [16]. The first step involves
producing a texture map of the desired image to be projected. The second step is pro-
jecting the texture onto the the polygonal model of the display surface. Projection of a
two-dimensional texture onto a three-dimensional model is done through the process of UV
mapping. UV mapping defines a coordinate system (u, v) for the texture and a coordinate
system (x, y, z) to the 3D model. The mapping creates polygons in the (u, v) texture,
and paints this portion of the image onto the associated polygon in (x, y, z) coordinates.
This is done by assigning each vertex i in the 3D model with the associated values (ui, vi),
and allowing the graphics engine, usually OpenGL, to decide how to render each poly-
gon. Additional techniques, such as shading, specifically Phong shading, can be applied to

12

texture mapping to increase the level of realism. Phong shading is an interpolation tech-
nique that computes pixel colours based on the surface normals and a specified reflection
model [30]. After the UV mapping is complete, the textured model is then rendered from
the projector’s viewpoint using Equation (2.8), and displayed onto the object of interest.
Figure 2.2 shows a 3D printed replica torso projected with a red and white checkerboard
pattern rendered upon it using projection based AR (using the TouchDesigner software).
The checkerboard pattern itself is shown in Figure 2.1.

Figure 2.1: Checkerboard pattern [2]

Figure 2.2: SAR example of checkerboard rendered onto torso

13

Chapter 3

Derivation of Mass-Spring-Damper
Model

As described by Provot in [54], a realistic model of cloth can be assembled by interconnect-
ing a set of point masses (nodes) with springs and dampers. This model represents a two
dimensional surface in three dimensional space. Each point mass in the model is connected
to its neighbouring nodes above, below, to the left and to the right with structural springs
(and dampers); to its diagonal nodes with shear springs (and dampers), and to the nodes
2 elements away with flexion springs (and dampers). Structural springs keep the mesh to-
gether when pure compression or traction (stretching) stresses are applied. Shear springs
prevent the model from collapsing diagonally when shear stresses are applied. Flexion
springs prevent the cloth from folding onto itself due to pure flexion stresses. Figure 3.1
shows a square 3 × 3 node cloth system where all connecting springs are drawn. In this
arrangement, the structural, shear, and flexion springs can easily be seen emanating from
each node.

In this Chapter, the mass spring model will be developed in state space form, will be
linearized, and simulated for implementation into estimation filters.

3.1 State Space Formulation

The mass spring cloth model can be described by a first order differential equation of the
form,

ẋ = f(x, t). (3.1)

14

Figure 3.1: Connection of mass nodes with structural springs (blue), shear springs (red
dashed), and flexion springs (grey dashed)

Here x ∈ R6n is the state vector containing the position pi ∈ R3 and velocity vi ∈ R3 of
each point mass (node) i in Euclidean space, for all i = 1, 2, . . . , n, i.e.,

x = [pT1 p
T
2 . . . p

T
nv

T
1 v

T
2 . . . v

T
n]T . (3.2)

Therefore, the state vector can also be written as,

x =

[
p
ṗ

]
, (3.3)

where p = [pT1 . . . p
T
n]T and ṗ = [vT1 . . . v

T
n]T . n is the number of point masses in the

system and f(·) : R6n → R6n is a sufficiently smooth nonlinear state transition function,
i.e., f(·) ∈ C1. The function f(·) is required to be differentiable as the Jacobian of the
system is required for both numerical integration and the filter formulation. The mass
spring model is a time invariant system, and therefore, the state transition function can

15

be written as f(x) = f(x, t). The state derivative vector can also be written as

ẋ = f(x) =



v1
...
vn

a1(x)
...

an(x)


. (3.4)

Here ai(·) : R6n → R3 represents the acceleration of each node. The resulting state deriva-
tive vector is composed of the point velocities concatenated with the point accelerations.
Using Newtonian mechanics, the point accelerations are found to be

ai(x) =
1

mi

(mi~g +
∑
j∈Ai

Fj(pj, vj)), (3.5)

for i = 1 . . . n. In Equation (3.5), Fj is the force applied onto point mass mi by point mass

mj, and ~g is the acceleration due to gravity (i.e. ~g =
[
0 −9.81 0

]T
m/s). The set Ai is

the set of all nodes which are connected to the node i by a spring and damper. Since each
node is connected to another in the set Ai by both a spring and damper, the internal force
on a node i can be written in the form of a second order differential equation:

mip̈i = −ksipi − kdi ṗi. (3.6)

From this, the force Fj caused by each node j on node i has the form:

Fj(pj, vj) = −ksij(‖pi − pj‖2 − rij)
pi − pj
‖pi − pj‖2

− kdij(vi − vj). (3.7)

In Equation (3.7), the constants ksij and kdij are the spring and damper coefficients for a
connection between nodes i and j, respectively. The portion of Equation (3.7),

ksij(‖pi − pj‖2 − rij)
pi − pj
‖pi − pj‖2

,

is derived from Hooke’s law, Figure 3.2, where the constant rij ∈ R represents the resting
length of the spring between nodes i and j. The force caused by the spring is applied
in the opposite direction to the vector created between points i and j when stretched,
and in the same direction as the vector when compressed. The damping force is always

16

applied in the opposite direction of the velocity vector created between points i and j.
The spring and damper coefficients are assumed to be linear constants for this model.
Models with nonlinear spring and damper coefficients may create more physically realistic
simulations [26]; however, their characteristics are difficult to determine. Due to the specific
arrangement of springs and dampers, the size of the connected node set Ai can range from
node to node due to the positioning of the node. For example, a corner node will always
have two fewer structural springs, three fewer shear springs and two fewer flexion springs
than a center node in a high order system. It can easily be seen that a single node can be
connected to at most 12 other points, and as little as 3 other points. This implies that the
size of the connected points set, Ai, can range from 3 to 12 elements.

Figure 3.2: Illustration of spring force between two nodes i and j

To illustrate this model derivation, a simple 2×2 node mass spring model is formulated.

17

The model has the initial conditions at time t0

x0 =

[
p(t0)
ṗ(t0)

]
p(t0) =


p1(t0)
p2(t0)
p3(t0)
p4(t0)

 =



0
1
0
1
1
0
0
0
0
1
0
0



ṗ(t0) =


v1(t0)
v2(t0)
v3(t0)
v4(t0)

 =



0
0
0
0
0
0
0
0
0
0
0
0


as shown in Figure 3.4, and parameters mi = 1kg for all four nodes, ksi = 100N/m and
kdi = 0.1N·s/m for all six node connections. The initial conditions imply the rest length,
rij, for all structural springs to be 1m and all shear springs to be

√
2m.

Figure 3.3: Initial positions of 2× 2 example mesh

18

Now assume the model is at time t1 > t0, where the state vector at time t1 is

x(t1) =

[
p(t1)
ṗ(t1)

]
p(t1) =


p1(t1)
p2(t1)
p3(t1)
p4(t1)

 =



0
2
0
1
2
0
0
0
0
1
−1
0



ṗ(t1) =


v1(t1)
v2(t1)
v3(t1)
v4(t1)

 =



0
0

0.5
1
0
0
0
0
0
1
0
0



.

Figure 3.4: Configuration of 2× 2 example mesh at time t1

The state derivative vector at time t1, ẋ(t1), can be found by using Equation (3.4).
The first 12 elements of ẋ(t1) are simply ṗ(t1) and the next 12 elements are found using
Equation (3.5).
Node 1:

A1 = {2, 3, 4},

19

F2 = −ks12(‖p1 − p2‖2 − r12)
p1 − p2

‖p1 − p2‖2

− kd12(v1 − v2) =

 0.1
0

−0.05

N

F3 = −ks13(‖p1 − p3‖2 − r13)
p1 − p3

‖p1 − p3‖2

− kd13(v1 − v3) =

 0
−100
−0.05

N

F4 = −ks14(‖p1 − p4‖2 − r14)
p1 − p4

‖p1 − p4‖2

− kd14(v1 − v4) =

 55.38
−165.84
−0.05

N

a1(t1) =
1

m1

(m1~g + F2 + F3 + F4) =

 55.48
−275.65
−0.15

 m

s2

Node 2:
A1 = {1, 3, 4},

F1 = −ks21(‖p2 − p1‖2 − r21)
p2 − p1

‖p2 − p1‖2

− kd21(v2 − v1) =

−0.1
0

0.05

N

F3 = −ks23(‖p2 − p3‖2 − r23)
p2 − p3

‖p2 − p3‖2

− kd23(v2 − v3) =

−36.85
−73.51

0

N

F4 = −ks24(‖p2 − p4‖2 − r24)
p2 − p4

‖p2 − p4‖2

− kd24(v2 − v4) =

 0
−200

0

N

a2(t1) =
1

m2

(m2~g + F1 + F3 + F4) =

 −36.95
−283.32

0.05

 m

s2

Node 3:
A1 = {1, 2, 4},

F1 = −ks31(‖p3 − p1‖2 − r31)
p3 − p1

‖p3 − p1‖2

− kd31(v3 − v1) =

 0
100
0.05

N

20

F2 = −ks32(‖p3 − p2‖2 − r32)
p3 − p2

‖p3 − p2‖2

− kd32(v3 − v2) =

36.85
73.51

0

N

F4 = −ks34(‖p3 − p4‖2 − r34)
p3 − p4

‖p3 − p4‖2

− kd34(v3 − v4) =

 29.39
−29.29

0

N

a3(t1) =
1

m3

(m3~g + F1 + F2 + F4) =

 66.24
134.41
0.05

 m

s2

Node 4:
A1 = {1, 2, 3},

F1 = −ks41(‖p4 − p1‖2 − r41)
p4 − p1

‖p4 − p1‖2

− kd41(v4 − v1) =

−55.38
165.84
0.05

N

F2 = −ks42(‖p4 − p2‖2 − r42)
p4 − p2

‖p4 − p2‖2

− kd42(v4 − v2) =

 0
200
0

N

F3 = −ks43(‖p4 − p3‖2 − r43)
p4 − p3

‖p4 − p3‖2

− kd43(v4 − v3) =

−29.39
29.29

0

N

a4(t1) =
1

m4

(m4~g + F1 + F2 + F3) =

−84.77
385.32
0.05

 m

s2

To find the state vector at t2, say 0.01s after t1, i.e. t2 = t1 + 0.01, a numerical integration
method, such as first order Euler approximation can be taken:

x(t2) = x(t1) + 0.01 · ẋ(t1). (3.8)

21

Therefore,

x(t2) =

[
p(t2)
ṗ(t2)

]
p(t2) =


p1(t2)
p2(t2)
p3(t2)
p4(t2)

 =



0
2

0.005
1.01

2
0
0
0
0

1.01
−1
0



ṗ(t2) =


v1(t2)
v2(t2)
v3(t2)
v4(t2)

 =



0.5548
−2.76

0.5
0.63
−2.83

0
0.66
1.34

0
0.15
3.58

0



.

The solution at at time t2 can be approximated using other numerical integration methods
as well. Higher order approximations can be solved for by using methods such as the
Runge-Kutta integration method.

3.2 Linearization

Since the system from Equation (3.1) is geometrically nonlinear, the system needs to be
linearized in order to be integrated into both the EKF formulation and implicit integration
schemes. To do this, the Jacobian of the state vector needs to be evaluated at each time
step. The Jacobian of a vector function ~f(x1, . . . , xn) is defined as,

J =
∂fi
∂xj

=


∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
...

...
. . .

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 . (3.9)

For the mass spring model derived in Section 3.1, the Jacobian can be divided into four
sub-matrices, i.e.,

J(x) =

[∂v
∂p

∂v
∂v

∂a
∂p

∂a
∂v

]
, (3.10)

where p, v and a are R3n vectors representing the positions, velocities and accelerations

22

of all nodes respectively.

The Jacobian is evaluated as follows:

The upper left quadrant of J(x) contains the derivatives of the velocity states vi with
respect to the position states pj, i.e.,

dvi
dpj

= 03×3. (3.11)

These derivatives are trivially 0. As a result, the upper left sub-matrix is a 3n× 3n zeros
matrix.
The upper right quadrant of J(x) contains the derivatives of states vi with respect to states
vj. The result is a 3n× 3n identity matrix, I3×3. In other words,

dvi
dvj

=

{
I3×3, i = j

03×3, i 6= j
. (3.12)

The lower two sub-matrices contain the derivatives of the acceleration, Equation (3.5), with
respect to the state variables p and v. The lower right quadrant contains the derivatives
of the accelerations ai with respect to the velocity states vk, which are derived as:

∂ai
∂vk

= −
∑
j∈A

∂

∂vk
kd(vi − vj),

∂ai
∂vk

= −
∑
j∈A

∂

∂vk
kdvi −

∂

∂vk
kdvj.

(3.13)

Since the derivative is not zero for only certain values of k, namely k = j if j ∈ A, and if
k = i. The result for the first case is

∂ai
∂vj

=
∂

∂vj
kdvj

∂ai
∂vj

= kdI3×3.

(3.14)

23

Now taking the derivative of ai with respect to vi, the result is,

∂ai
∂vi

= −
∑
j∈A

∂

∂vi
kdvi

∂ai
∂vi

= −
∑
j∈A

kdI3×3,

(3.15)

where I is the identity matrix. Therefore, the lower right quadrant of the Jacobian contains
the values −

∑
j∈A kd along the diagonal, and the sub-matrices kdI3×3 sparsely placed based

on spring connections.

Finally, for the bottom left quadrant of the Jacobian, the elements result from the
taking derivative of accelerations, ai, with respect to the positions, pk. The derivation is
as follows,

∂ai
∂pk

= −
∑
j∈A

∂

∂pk
[ks(‖pi − pj‖2 − r)

pi − pj
‖pi − pj‖2

] (3.16)

To simplify Equation (3.16), let D(pi) = (‖pi−pj‖2− r) and E(pi) =
pi−pj
‖pi−pj‖2 , so that D(·)

and E(·) are only functions of pi. Therefore, Equation (3.16) can be rewritten as

∂ai
∂pk

= −
∑
j∈A

∂

∂pk
[D(pi) · E(pi)]. (3.17)

Now, when k = i, to take the derivative of D(pi) · E(pi) with respect to pi, the chain rule
is applied

∂ai
∂pi

= −ks
∑
j∈A

[D(pi)
dE(pi)

dpi
+
dD(pi)

dpi
E(pi)]. (3.18)

Since D(pi) is a scalar function, its derivative results in a R3 vector. E(pi), on the other
hand, is a R3 → R3 vector function, meaning its derivative results in a R3×3 matrix.
Therefore,

dD(pi)

dpi
=

(pi − pj)T

‖pi − pj‖
dE(pi)

dpi
=

I3×3

‖pi − pj‖
− (pi − pj)(pi − pj)T

‖pi − pj‖3
.

(3.19)

24

Combining Equations (3.18) and (3.19) results in

∂ai
∂pi

= −ks
∑
j∈A

[(1− r

‖pi − pj‖
)[I3×3 −

(pi − pj)(pi − pj)T

(pi − pj)T (pi − pj)
] +

(pi − pj)(pi − pj)T

(pi − pj)T (pi − pj)
].

(3.20)
When k = j, to find the derivative of ai with respect pj, notice how 3.16 can be rearranged
to

∂ai
∂pj

=
∑
j∈A

∂

∂pj
[ks(‖pj − pi‖2 − r)

pj − pi
‖pj − pi‖2

]. (3.21)

Using the same technique from Equations (3.18)-(3.20), the derivative resolves to

∂ai
∂pj

= ks[(1−
r

‖pi − pj‖
)[I3×3 −

(pi − pj)(pi − pj)T

(pi − pj)T (pi − pj)
] +

(pi − pj)(pi − pj)T

(pi − pj)T (pi − pj)
]. (3.22)

Altogether, the Jacobian can be written in the block matrix form of,

J(x) =

[
0 I
Jap Jav

]
, (3.23)

where Jap = M−1 ∂a
∂p

is composed of the matrices from Equations (3.20) and (3.22), Jav =

M−1 ∂a
∂v

is composed of the matrices from Equations (3.14) and (3.15), and M is a diagonal
matrix with the node mass values along its diagonal.

To gain further intuition about the Jacobian of a mass spring system, a numerical
example follows. Using the same initial and final configuration from the numerical example
in Section 3.1, the Jacobian about the initial configuration (Figure 3.4) will be found. The
parameters of the system aremi = 1kg for all four nodes, ksi = 100N/m and kdi = 0.1N·s/m
for all six spring connections. As there are 4 nodes in this system, the Jacobian will be a
R24×24 matrix. The upper left and right quadrants of the Jacobian are trivially found to
012×12 and I12×12, respectively. i.e.,

dp

dv
= 012×12,

dv

dv
= I12×12.

(3.24)

The lower right R12×12 matrix, Jav = I da
dv

, can easily be found using Equations (3.14) and

25

(3.15),

da

dv
=


−4kdI kdI kdI kdI
kdI −4kdI kdI kdI
kdI kdI −4kdI kdI
kdI kdI kdI −4kdI

 =


−0.4I3×3 0.1I3×3 0.1I3×3 0.1I3×3

0.1I3×3 −0.4I3×3 0.1I3×3 0.1I3×3

0.1I3×3 0.1I3×3 −0.4I3×3 0.1I3×3

0.1I3×3 0.1I3×3 0.1I3×3 −0.4I3×3

 .
(3.25)

Lastly, the lower left R12×12 matrix, Jap = I da
dp

, can be found using Equations (3.20) and

(3.22). The result is

da

dp
=



−150 50 0 100 0 0 0 0 0 50 −50 0
50 −150 0 0 0 0 0 100 0 −50 50 0
0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 −150 −50 0 50 50 0 0 0 0
0 0 0 −50 −150 0 50 50 0 0 100 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 50 50 0 −150 −50 0 100 0 0
0 100 0 50 50 0 −50 −150 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
50 −50 0 0 0 0 100 0 0 −150 50 0
−50 50 0 0 100 0 0 0 0 50 −150 0

0 0 0 0 0 0 0 0 0 0 0 0



. (3.26)

If the system is modelled with many nodes, the Jacobian can be constructed into a
sparse matrix. Since each point can be connected to a maximum of 12 other points, due to
the size of the set A, each row in the sub-matrices Jap and Jav can have at most 13 non-zero
elements. The sparse structure of the Jacobian is an important attribute when simulating
using implicit integration techniques. Implicit techniques often incorporate Newton solvers
[19] that require the inverse of the Jacobian of a system. A sparse Jacobian allows for fewer
computations, as sparse solvers are more computationally efficient than finding matrix
inverses. The sparse matrix derivation for a rectangular mass spring model can be found
in Appendix A.

26

3.3 Model Simulation

To obtain the state vector x(t), the equation given in Equation (3.4) needs to be solved.
An approximate solution to this equation can be solved using a numerical integration
algorithm. A number of studies have looked at the convergence of numerical integration
algorithms on mass spring cloth models [26]. Both implicit and explicit integration schemes
have been studied for simulating cloth motion. Explicit integration is called explicit be-
cause it provides explicit formulas for the solution at the next time step. Implicit integra-
tion is called implicit because the solution is implicitly given as the solution of a system
of equations[51]. Explicit integration algorithms such as the Euler forward method and
Runge-Kutta method, among others, compute the next step of integration using only past
information, making implementation straightforward. Explicit algorithms, however, can
be numerically unstable if the integration step time is not chosen carefully. Addition-
ally, the choice of step time can alter how quickly the effects of forces propagate over the
cloth material. Implicit integration algorithms, on the other hand, use information at the
terminus of its step time. Implicit integration, as a result, has a number of advantages
over explicit integration methods. Firstly, because terminus information is being used,
the system will be unconditionally numerically stable. This is ideal for systems which are
numerically stiff. Secondly, because of the stability of the method, larger time steps can be
used without the worry of unstable solutions. This allows the implicit methods to achieve
the same level of accuracy as explicit methods, with fewer integration steps. Therefore,
implicit approaches are more suitable for real-time applications. For deformable model
simulations, implicit integration schemes allow for more robust parameter choices. From
[54], larger spring constants require smaller explicit integration step times for numerically
stable solutions. Implicit schemes, however, tend to settle when using larger step sizes,
making them suitable to more rigid mass spring models. On the negative side, implicit
techniques often times have no analytic solution. Instead, solution finding algorithms, such
as a Newton solver, need to be run concurrently to find a solution. These solvers often
times need the Jacobian of the system to be solved for at every time step, making them
quite computationally intensive. For systems which are difficult to model, the Jacobian
may need to be approximated, resulting in additional simulation error.

The fixed step-time Runge-Kutta method and the Euler backwards method are com-
pared in this chapter to show the similarities between explicit and implicit simulation
methods. Additionally, they are also compared to show that the implicit scheme, due its
computational efficiency, is the better choice as the integration method for model compres-
sion in Chapter 5.

27

Runge-Kutta Method

Given the system,
ẋ = f(t, x), x(t0) = x0,

and time step ∆T , the fixed step-time Runge-Kutta solves the next integration step x[k+1]
using the current solution x[k] in the following way [60]:

x[k + 1] = x[k] +
∆T

6
(k1 + 2k2 + 2k3 + k4), (3.27)

where,
k1 = f(tk, x[k])

k2 = f(tk +
∆T

2
, x[k] +

∆Tk1

2
)

k3 = f(tk +
∆T

2
, x[k] +

∆Tk2

2
)

k4 = f(tk + ∆T, x[k] + ∆Tk3).

This process is continued until the termination of the simulation. The fixed step-time
Runge-Kutta algorithm, as a result, provides an approximation of the state vector x[k] at
each step k. Here,

x[k] = x(t0 + k∆T) k = 0, 1, . . . (3.28)

Figure 3.5 shows a series of snapshots of simulation data, solved with the Runge-Kutta
algorithm, for a falling 21× 21 node cloth model anchored horizontally along the top row
of nodes. The solution was solved for at an integration step time of ∆T = 0.001s. For
this simulation, the model parameters (mass, spring constants, dampers) were arbitrarily
chosen to be the same for each node and spring/damper connection. The masses were
chosen to be 0.025kg for each node making the total mass of the cloth 11.025kg, the
spring constants were chosen to be 300N/m, and the damper constants were chosen to
be 0.08N·s/m. Both the total length and width of the cloth are 1.5m, evenly separated
between nodes.

Euler Backward Method

A simple implicit integration scheme is the Euler backward method. As described by [26],
it allows for stability at larger time steps. As a result, it is significantly faster than explicit
simulation methods due to the reduced number of computations. The method begins by

28

(a) Initial cloth position, t = 0s (b) Intermediate cloth position, t = 3.3s

(c) Intermediate cloth position, t = 6.6s (d) Intermediate cloth position, t = 9.9s

Figure 3.5: Runge Kutta simulation of falling 21× 21 node anchored cloth

29

first defining the change in state

∆x =

[
∆p
∆v

]
=

[
p(t0 + ∆T)− p(t0)
v(t0 + ∆T)− v(t0)

]
, (3.29)

and solving the first order approximation,[
∆p
∆v

]
= ∆T

[
∆v + v0

∆a+ a0

]
. (3.30)

Here ∆a is the change in acceleration and is a function of p and v as in Equation (3.5).
Since a(x) is nonlinear, the first order Taylor approximation is used to aid in solving for
∆v,

∆v ≈ a(p0, v0) +
∂a

∂p
∆p+

∂a

∂v
∆v. (3.31)

Rearranging for ∆v in Equation (3.31), and replacing ∆p with ∆T (∆v + v0), ∆v is found
to be the solution to the linear system,

(I−∆T 2∂a

∂p
−∆T

∂a

∂v
)∆v = ∆Ta(p0, v0) + ∆T 2∂a

∂p
v0 (3.32)

The partial derivatives ∂a
∂p

and ∂a
∂v

are found from the Jacobian derived in Section 3.2,

J(x) =

[∂v
∂p

∂v
∂v

∂a
∂p

∂a
∂v

]
.

Using the solution ∆v, p(t0 + ∆T) is solved for by taking,

p(t0 + ∆T) = ∆T (∆v + v0)

and v(t0 + ∆T) is solved for by taking,

v(t0 + ∆T) = ∆v + v0.

These steps are completed at each integration time step until the termination of the sim-
ulation.

Figure 3.6 shows snapshots of the forward Euler method applied to a 21 × 21 node
cloth model falling while anchored along a row of nodes. The solution was solved for at an
integration step time of ∆T = 0.01s. For this simulation, the model parameters are chosen

30

to be the same as the Runge-Kutta simulation.

(a) Initial cloth position, t = 0s (b) Intermediate cloth position, t = 3.3s

(c) Intermediate cloth position, t = 6.6s (d) Intermediate cloth position, t = 9.9s

Figure 3.6: Implicit Euler Backwards simulation of falling 21× 21 node anchored cloth

A comparison of the Runge-Kutta simulation and Euler backwards simulation is shown
in Figure 3.7. The plot shows the average between the nodes of each cloth for each time
step, i.e.,

e[k] =
1

n

n∑
i=1

‖prki [k]− pebi [k]‖2, k = 0, 1, (3.33)

Here prki [k] is the position of node i at time step k produced by the Runge-Kutta method,
and pebi [k] is the position of the associated node produced by the Backwards Euler method.

31

Both methods produce very similar results, as the difference between associated nodes is
at most 3.5cm for a 10 second simulation. However, the difference does increase as the
simulations progress. This is expected as approximation error increases in each method
as the simulations progress. Comparing the error between the two methods when the
integration step times are the same, e.g. ∆T = 0.001, the result is 0 for the entire simulation
(Figure 3.8). This shows that both methods produce the same results with the same step
time, as long as the methods are still numerically stable. As the Runge-Kutta does not
produce stable results at ∆T = 0.01, the results at this step time cannot be compared.
Since real world systems do not behave exactly like the mass spring model, small differences
between simulation results are not significant enough to discard either method.

Figure 3.7: Comparison of Runge-Kutta at ∆T = 0.001s and Euler Backwards Methods
at ∆T = 0.01s

Using the mass spring model derived in this chapter, a filter can be built that makes
estimates of an object’s future positions. The next chapter will review filtering approaches
that produce optimal estimation results assuming certain conditions. The efficiency of an
estimation filter, however, is inversely proportional to the number of states in the system.
In this case, the number of nodes needs to be reduced to allow for predictions to be run

32

Figure 3.8: Comparison of Runge-Kutta at ∆T = 0.001s and Euler Backwards Methods
at ∆T = 0.001s

in real-time. To reduce the number of nodes in the model, optimal spring, damper and
mass parameters can be found that match the behaviour of the sparse desired model to
a dense actual model. Chapter 5 will present this technique and provide results of model
compression.

33

Chapter 4

Review of Filtering Approaches

When measuring the movement of a time-varying surface, there will inherently be noise in
the position data due to sensor noise. Additionally, since the mass spring model is used as
the dynamic model of real world surface, there will be modelling error that will affect the
system. As a result, filtering techniques are used to obtain an accurate estimate of system
states when the measurement data contains statistical noise or other inaccuracies. Gen-
erally, these techniques attempt to find an estimate that minimizes the error between the
actual state value and the estimated states. This chapter will focus on filtering techniques
that minimize the squared error between actual state values and state estimates, i.e.,

arg min
x̂
‖x− x̂‖2, (4.1)

where x̂ is the state estimate and x is the actual state value. This chapter will review
common filtering approaches for state estimation: the least squares estimator, the Kalman
filter, the extended Kalman filter, and the unscented Kalman filter.

4.1 Least Squares Estimation

The least squares method is a method of finding a state estimate that minimizes the squared
discrepancy between the actual value of the state and the state estimate. The method was
independently discovered by both Gauss and Legendre in the early 19th century for appli-
cations in astronomy. The least squares method has been applied to numerous application
areas for both state estimation and parameter identification [40]. The classic least squares
method is explained as follows [35].

34

Given a sequence of n noisy measurements {yi}ni=1 ∈ L2 and random variable Z ∈ L2,
where L2 is the space of square Lebesgue-integrable functions, i.e., a random variable Z is
square integrable if

E[Z2] <∞, (4.2)

the least squares estimate Ẑ of Z is the solution

Ẑ = f(y1, y2, . . . , yn), (4.3)

to the minimization problem

f(y1, y2, . . . , yn) = arg min
g
{E[(Z − g(y1, y2, . . . , yn))2]| g : Rn → R}. (4.4)

Here, E[·] is the expected value function, and g(·) is a nonlinear function applied to the
set of noisy measurement data. In other words, the least squares method finds a random
variable Ẑ that minimizes the expected value of the squared difference between Z and Ẑ.
It is well known that the solution to this problem is given as

f(y1, y2, . . . , yn) = E[Z|y1, y2, . . . , yn], (4.5)

where E[Z|y1, y2, . . . , yn] is the conditional expectation of Z given y1, y2, . . . , yn [35]. When
Z, y1, y2, . . . , yn are all random variables chosen from a Gaussian distribution, the condi-
tional expectation of Z given y1, y2, . . . , yn, and therefore the solution to the least squares
problem, becomes an affine function of the measured data. More specifically,

Ẑ = E[Z|y1, y2, . . . , yn] =
n∑
i=1

αiyi + βi, (4.6)

where αi, βi ∈ R.

Furthermore, when the estimator function f(·) is in the form of a linear function (Equa-
tion (4.6) with βi = 0 for all i = 1, . . . , n), Ẑ it is called the linear least squares estimate
of random variable Z. The linear least squares estimate has a closed form solution of the
form,

Ẑ = E[ZY]TE[ZZT]−1Y, (4.7)

where Y = [y1y2 . . . yn]T and E[Z] = E[yi] = 0 ∀i = 1 . . . n.

A straightforward example of the linear least squares estimator is the following: Given

35

a linear system defined by the equation

Az = y, (4.8)

where A ∈ Rn×n defines the linear system, z ∈ Rn is the system state vector, and y ∈ Rn

is the output vector, the linear least squares estimate, ẑ, is the solution to the optimization
problem

arg min
ẑ
‖Aẑ − y‖2

2. (4.9)

The solution to this problem is closed formed, and can be solved by setting the derivative
of Equation (4.9) to zero, i.e.,

∂‖Aẑ − y‖2
2

∂z
=
∂(Aẑ − y)T (Aẑ − y)

∂z
= 0,

2ATAẑ − 2ATy = 0,

ẑ = (ATA)−1ATy.

(4.10)

If not all measurement data is available immediately, the linear least squares estimator can
be solved in a recursive fashion. Equation (4.11) gives the recursive algorithm for finding
the linear least square estimate for the current time step given the previous state estimate
and the current measurement.

Ẑk = Ẑk−1 +
E[Zk−1ỹk]

E[ỹ2
k]

ỹk (4.11)

Here, ỹk = yk − P (yk|Lk−1), where P is the projection operator that finds the minimum
projection of yk onto the subspace Lk−1, the space spanned by y1, . . . , yk−1.

As mentioned in Equation (4.6), when all inputs are Guassian random variables with
non-zero means, the solution to the least squares problem takes the form of an affine
function. The least squares estimate Ẑ has the following solution,

Ẑ = P ((Z − E[Z])|Lck) + E[Z] (4.12)

where Lck is the subspace spanned by y1 − E[y1], . . . , yk − E[yk].

The following three algorithms discussed in this chapter find the linear least squares

36

state estimate given a dynamic system of the form

ẋ = f(x)

y = h(x),
(4.13)

where x is the state vector, f(·) is the state transition function, y is the output vector, and
h(·) is the observation model.

4.2 Kalman Filter

The Kalman filter, named after one if its primary developers, Rudolph E. Kalman, is an
algorithm that finds a affine least squares state estimate of a linear dynamic system given
noisy measurement data. The Kalman filter, derived in [41], is a recursive, efficient algo-
rithm requiring only the previous state estimate, rather than the entire history of states,
to calculate the current state estimate. Under certain circumstances, the Kalman filter
provides the optimal state estimate for a linear system. The Kalman filter has numerous
applications in technology including guidance and navigation of vehicles, signal process-
ing, and econometrics. Due to its popularity and effectiveness, there are many available
resources solely focused on the applications of the Kalman filter. The remainder of this
section describes the relevant equations and conditions required to apply the Kalman filter.

Suppose a linear, dynamic system is given in the form

x[k + 1] = Fkx[k] + wk

y[k] = Hkx[k] + vk,
(4.14)

where Fk ∈ Rn×n is the state transition matrix, Hk ∈ Rn×n is the observation matrix,
x[k] ∈ Rn is the state vector, y[k] ∈ Rm is the output vector, wk ∈ Rn is the process noise
vector, and vk ∈ Rm is the measurement noise vector, all at time step k. Since the system
is in a recursive form, the recursive affine least-squares estimator can be used to find the
state estimate vector x̂k|k at time step k, as described in Equation (4.6). The Kalman
filter finds the optimal least squares state estimate when the noise vectors are chosen from
a Gaussian distribution. In practice, however, the Kalman filter does not require noise
vectors wk and vk to be Gaussian random variables to produce convergent results.

The Kalman filter algorithm can be written in a number different forms; for this thesis,
the two step approach is used. The two steps are composed of the prediction step and the
update step. The prediction step procedure is listed in Equation (4.15).

37

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k +Qk.

(4.15)

Here, x̂k|k−1 is the state prediction given the previous k − 1 measurements, Pk|k−1 is the
state covariance matrix given the previous k − 1 measurements, and Qk is the process
noise covariance matrix. The prediction step uses the previous state estimate to produce
an estimate of the state at the current time step. This predicted state is known as the
a priori state estimate as it does not contain any information about the observations at
the current time step. For deformable surface prediction, the a priori state estimate is
used as the state prediction, since only previous data is available at the any given time
step.

The Kalman update step equations are shown in Equation (4.16).

ỹk = y[k]−Hkx̂k|k−1

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S
−1
k

x̂k|k = x̂k|k−1 +Kkỹk

Σk|k = (I −KkHk)Pk|k−1

(4.16)

Here ỹk is the measurement residual, which is the error between the measured output
and the predicted output, Sk is the residual covariance, Kk is the Kalman gain, x̂k|k is the
updated state estimate and Pk|k is the updated estimate covariance, all at time step k. The
update step improves the a priori state estimate by combining it with current observation
information and refining the estimate. The new estimate is called the a posteriori state
estimate.

In most applications, the prediction and update steps alternate. The state prediction
advances until the next observation is made, which allows the update step to be applied.
The algorithm continues repeatedly until termination. To begin the Kalman filter al-
gorithm, an initial state vector x̂0|0 and state covariance matrix P0|0, along with noise
covariance matrices Qk and Rk need to be supplied. The selection of x̂0|0, P0|0, Qk and
Rk greatly affect the performance of the Kalman filter, and in general, they are difficult
to find. These parameters can be estimated using a priori statistical knowledge about the
noise and errors in the system; however, often times, they are simply tuned until the best
results are observed [57].

As the standard Kalman filter can only be applied to linear systems, the algorithm
needs to be reworked to handle nonlinear dynamical systems. The extended Kalman filter

38

and the unscented Kalman filter are variations of the standard Kalman filter that handle
nonlinearities with varying amounts of success. These methods are reviewed and discussed
in the remainder of this chapter.

4.3 Extended Kalman Filter

Although the Kalman filter is used in a vast number of application areas, it is only ap-
plicable to linear systems and is only optimal when the systems are subject to Gaussian
process and measurement noises. The extended Kalman filter (EKF) is an extension of the
standard Kalman filter, designed to handle systems with nonlinear dynamics. It enables
the estimation of state variables through the linear approximation of the system’s dynam-
ics. Essentially, the EKF follows the same methods as the standard Kalman Filter after
linearizing the system at every time step. The rest of this section describes the EKF and
its implementation on nonlinear systems [9].

Given a nonlinear dynamic system of the form

x[k + 1] = f(x[k]) + wk

y[k] = h(x[k]) + vk,
(4.17)

where f : Rn → Rn and h : Rn → Rm are sufficiently smooth functions, x[k] is the state
vector at time step k, wk is the process noise at time step k, y[k] is the output at time
step k, and vk is the measurement noise at time step k. Additionally, for optimality, the
noise vectors wk and vk are assumed to be Gaussian, independent random variables with
covariances of Qk and Rk respectively, that is:

E[wkw
T
k] = Qk

E[vkv
T
k] = Rk

E[wkv
T
k] = 0.

(4.18)

Since the standard Kalman filter uses only linear operators in its prediction and update
steps, the functions f and h need to be linearized. Since the functions f and h are assumed
to be smooth, and as a result, differentiable, the Jacobian of f and h can be evaluated at
each time step k. The Jacobians of f and h are used in place of the state transition matrix
F [k] and observation matrix H[k] in the standard Kalman filter, respectively. Equation

39

(4.19) lists the Jacobians of f and h.

Fk−1 =
∂f

∂x
|x̂k−1|k−1

Hk =
∂h

∂x
|x̂k|k−1

(4.19)

The EKF recursively predicts the states at time step k by using the measurement data
available at the previous time step, k − 1. This prediction is denoted as x̂k|k−1 and the
associated state covariance at time k given the k − 1 measurement is denoted as Pk|k−1.
The new state prediction x̂k|k−1 is calculated by applying the state transition function f to
the most recent state estimate x̂k−1|k−1. The Kalman prediction step is shown in Equation
(4.20).

x̂k|k−1 = f(x̂k−1|k−1)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1

(4.20)

To update the state prediction to the current state estimate, x̂k|k the EKF completes the
steps listed in Equation (4.21).

ỹk = yk − h(x̂k|k−1)

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S
−1
k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I−KkHk)Pk|k−1

(4.21)

After the current measurement is made, the residual ỹ is computed and is multiplied by
the Kalman gain Kk to correct for error in the state prediction. The Kalman gain term is
also used to update the state covariance Pk|k.

To begin the EKF recursion, an initial state estimate x̂0|0 and an initial covariance
matrix P0|0 must be supplied.

Since the EKF computes a first order approximation of the nonlinear system, perfor-
mance limitations may arise due to the linearization. Unlike the standard Kalman Filter,
which is guaranteed to converge given a linear model with Gaussian, independent noise, the
EKF may not converge. Generally, the EKF performs best when the error caused by lin-
earization is smaller than other uncertainties in the system. Higher order approximations
of the nonlinear system may reduce model error. However, they only provide significant
improvements when measurement noise is small. Additionally, the choice of initial vari-

40

ables x̂0|0 and P0|0, as well as well as noise covariance matrices Qk and Rk, could greatly
effect the performance of the EKF. Choosing these parameters, or parameter tuning, is a
highly researched component of Kalman filters and the choice of parameters is application
dependent.

4.4 Unscented Kalman Filter

When there are nonlinearities in the dynamic state model, the EKF provides an approx-
imate solution for the optimal term x̂k|k−1 as simply a function of the mean value of the
prior estimates. Additionally, since the model is linearized by taking the Jacobian of the
system, the covariance matrices are propagated through a first order approximation of the
system. These approximations may introduce errors into the a posteriori state estimate,
and as a result, cause sub-optimal or even divergent behaviour. The unscented Kalman
filter (UKF)[63] addresses these issues by providing a third order approximation, when
the noise variables are Gaussian distributed, and a second order approximation, if not.
This allows for a more accurate estimation of the a posteriori state estimate’s mean and
covariance. The UKF utilizes the unscented transformation (UT), which is a method for
calculating the statistics for a random variable undergoing a nonlinear transformation.
Since it is difficult to find the statistical properties of a nonlinearly transformed random
variable, the UT uses a set of carefully chosen sample points, or sigma points, to estimate
the mean and covariance of the random variable.

The UKF algorithm begins by defining augmented state estimate, xak−1|k−1, and state
covariance matrix, Pa

k−1|k−1, as

xak−1|k−1 =
[
x̂Tk−1|k−1 0

]T
Pa
k−1|k−1 =

[
Pk−1|k−1 0

0 Qk

]
.

(4.22)

A set of 2L + 1 sigma points χik−1|k−1 are chosen based on the augmented state estimate
and augmented covariance matrix:

χ0
k−1|k−1 = xak−1|k−1

χik−1|k−1 = xak−1|k−1 + (
√

(L+ λ)Pa
k−1|k−1)i, i = 1, . . . , L

χik−1|k−1 = xak−1|k−1 + (
√

(L+ λ)Pa
k−1|k−1)i−L, i = L+ 1, . . . , 2L,

(4.23)

41

where (
√

(L+ λ)Pa
k−1|k−1)i is the ith column of the matrix

√
(L+ λ)Pa

k−1|k−1. The matrix

B is the square root of a matrix A,
√
A, if BBT = A. Each χi has weights associated

with their state and covariance values, W i
s and W i

c , respectively, and are defined as:

W 0
s =

λ

L+ λ

W 0
c =

λ

L+ λ
+ 1− α2 + β

W i
s = W i

c =
λ

2(L+ λ)

(4.24)

where λ = α2(L + κ) − L. α determines the spread of the sigma points around xak−1|k−1,
κ is a secondary scaling parameter and β is used to incorporate prior knowledge of the
distribution of xak−1|k−1.

For the prediction step of the UKF algorithm, the sigma points are first passed through
the nonlinear state transition function f(·), such that

χik|k−1 = f(χik−1|k−1). (4.25)

These transformed sigma points are recombined linearly to produce the predicted state
and covariance matrix:

x̂k|k−1 =
2L∑
i=0

W i
sχ

i
k|k−1

Pk|k−1 =
2L∑
i=0

W i
c(χ

i
k|k−1 − x̂k|k−1)(χik|k−1 − x̂k|k−1)T .

(4.26)

The update step is takes the predicted state and covariance values, and once again creates
augmented variables

xak|k−1 =
[
x̂Tk|k−1 0

]T
Pa
k|k−1 =

[
Pk|k−1 0

0 Rk

]
.

(4.27)

New sigma points χik|k−1 are found by replacing xak−1|k−1 and Pa
k−1|k−1 in Equation (4.23)

with xak|k−1 and Pa
k|k−1, respectively. The sigma points are then passed through the obser-

vation model h(·), such that
γik = h(χik|k−1). (4.28)

42

These γik values are combined with their associated weights to produce the predicted mea-
surement and covariance matrices:

ŷ =
2L∑
i=0

W i
sγ

i
k

Pykyk =
2L∑
i=0

W i
c(γ

i
k − ŷk)(γik − ŷk)T

Pxkyk =
2L∑
i=0

W i
c(γ

i
k − x̂k|k−1)(γik − ŷk)T .

(4.29)

The Kalman gain Kk is now defined as

Kk = PxkykP
−1
ykyk

, (4.30)

and the estimated state vector and covariance matrix are found to be

x̂k|k = x̂k|k−1 +Kk(yk − ŷk)
Pk|k = Pk|k−1 −KkPykykK

T
k .

(4.31)

For state transition functions which are difficult to differentiate, or non-differentiable, the
EKF can not be used as the algorithm requires the Jacobian of the system. As can be seen
in the steps of the UKF, the Jacobian of the system does not need to be explicitly calculated
for the UKF to be implemented. Furthermore, the overall number of computations are the
same order as the EKF. As a result, the UKF has largely replaced the EKF in a number
of nonlinear control applications including ground and air navigation [29].

For the mass spring model derived in Chapter 3, the only filtering techniques reviewed
in this chapter that can be used are the EKF and UKF, due to the model’s nonlinearity.
Since the model is differentiable, with the Jacobian having an analytic solution, the EKF
can be easily applied. Due to the ease of implementation and effectiveness of the EKF, it
will be the primary focus for prediction filtering in this thesis. With more time, the UKF
can be implemented with the mass spring model, possibly increasing the accuracy of state
predictions and estimations. Other techniques, such as particle filtering methods, can be
used to estimate state values with varying degrees of effectiveness.

43

Chapter 5

Model Compression

Although modelling mass spring systems with a large number of point masses increases
the realism of the model, the cost of running the EKF increases significantly due to the
large number of state variables. The update step of the EKF algorithm, specifically the
Kalman gain calculation,

Kk = Pk|k−1H
T (HPk|k−1H

T +Rk)
−1, (5.1)

requires the inverse of a 6n × 6n matrix. Matrix inversion is often a O(n3) computation
time operation, implying that the number of operations increase cubically with the number
of mass nodes. Furthermore, even solving the linear system implicitly, i.e., solve for Kk in

Kk(HPk|k−1H
T +Rk) = Pk|k−1H

T , (5.2)

is a computationally expensive task, as the matrix HPk|k−1H
T + Rk does not have any

beneficial structure. Therefore, finding a reduced ordered system, with similar physical
behaviour as the original system, will result in a less computationally expensive EKF
model, while maintaining realism. This would allow for close to real-time prediction of
cloth movement. This chapter will explore techniques of compressing dense state models
to models with fewer states, while keeping physical meaning, for more efficient prediction.

5.1 Data Driven Compression

To reduce the order of a mass spring system, a data driven approach can be used. In
other words, a sparse model can be found by minimizing the error between the outputs of

44

a ”measured” dense system and the ”desired” sparse system,

min

∫ t

0

‖Hz(τ)−AHx(τ)‖dτ. (5.3)

Here, x(t) is a Rm time series vector of the higher order system states, z(t) is a Rn time
series vector of the lower order system states where m > n, H is the observation model,
and A is a Rn×m matrix that selects the corresponding states of the higher order system
to compare to the lower order system. Equation (5.3) can be written as a minimization
problem of the squared error between the two systems, where the minimization variable
is the parameter vector θ. In this case, the parameter vector θ would contain all spring
constants, damper constants and masses of the reduced order system. The general mini-
mization problem is defined as:

min
θ

∫ t

0

‖Hz(τ)−AHx(τ)‖2
2dτ

s.t. ż(t) = f(z, θ),

(5.4)

where θ is a R2s+n parameter vector and s is the total number of spring connections in the
lower order system. For a rectangular mass spring model with n1 rows and n2 columns,
i.e. n1 × n2 nodes, the total number of spring connections s is found to be

s = n1(n2−1)+n2(n1−1)+2(n1−1)(n2−1)+n1 ·max{0, n2−2}+n2 ·max{0, n1−2}. (5.5)

The parameter vector θ contains three types of parameters: spring constants ks, damper
constants kd, and masses m. Written in a vector:

θ =



ks1
...
kss
kd1

...
kds
m1
...
mn


. (5.6)

45

Due to the outputs being in discrete time, the minimization term in Equation (5.4) can be
approximated by

N∑
i=0

‖Hz[i]−AHx[i]‖2
2, (5.7)

where N is the number of samples, and x[i] = x(t0 + i∆T) where ∆T is the step time of
the integration that solved x[i] and z[i]. By the nature of this minimization, there may
not be a unique parameter vector θ that minimizes Equation (5.4). In other words, there
may not be a unique compressed realization of the model. This can be seen by looking at a
simple one dimensional example. Given two mass-spring-damper systems, the parameters
of a single mass-spring-damper system can be found, such that the behaviour of the system
matches the behaviour of a given two mass-spring-damper system. Figure 5.2 shows a two
mass-spring-damper system (a) and its analogous electrical circuit topology (b). Figure 5.1
shows a single mass-spring-damper system (a) and its equivalent electrical circuit topology
(b). The equivalent parameters between the mechanical and electrical models are shown
in Table 5.1 [1].

Table 5.1: Electrical and mechanical parameters

Electrical Mechanical

Voltage e Velocity v
Current i Force F

Capacitance C Mass 1/M
Inductance L Stiffness 1/K
Resistance R Damping 1/D

In both circuits, the Norton equivalents are taken so that there is a single current source
connected to a load impedance. This allows for the impedances and currents of each circuit
to be compared to one another. By inspection, it is obvious that the impedance of Figure
5.2b is a function of all mass, spring, and damper parameters (all passive circuit elements).
As a result, the Norton equivalent impedance has the form

Z2 = g2(L1, R1, C1, L2, R2, C2) + jp2(L1, R1, C1, L2, R2, C2), (5.8)

where j is the imaginary number, g2(·) is a function representing the real part of Z2, and
p2(·) is a function representing the imaginary part of Z2 . The Norton equivalent impedance

46

of Figure 5.1b has the form

Z1 = g1(L∗, R∗, C∗) + jp1(L∗, R∗, C∗). (5.9)

Since both the real and imaginary parts of Z1 and Z2 are functions of all their respective
passive elements, there is no unique choice of L∗, R∗, C∗, and therefore, K∗, D∗, M∗ in
the single mass-spring-damper system that produces the same impedance as the two mass-
spring-damper system. There are an infinite number of combinations of components that
produce the same impedance result. Therefore, in the three dimensional mesh case, it is
more than likely that there is no unique solution to Equation (5.4). As a result, numerical
optimization techniques can be used to find a ”more” optimal solution than just arbitrarily
choosing parameters.

Equation (5.4) is a optimization problem with nonlinear constraints, i.e. ẋ = f(x, θ),
and as a result nonlinear optimization methods are required. As previously explained,
Equation (5.4) is most likely non-convex, having multiple minima, and a global minimum
that is difficult to find. Therefore, convex solvers cannot be used. Since the gradient of
the minimization problem, with respect to minimization variable, θ, is not easily solvable,
a gradient descent solver is not applicable. To obtain a solution to the minimization prob-
lem, a heuristic based, nonlinear optimization algorithm can be used. Heuristic methods
can find global optimum under certain conditions. For example, in simulated annealing,
the probability of finding the global optimum approaches 1 as time increases. This is not
helpful as the time required will likely exceed the time required for a complete search of
the space [32]. Under normal conditions, heuristic optimization techniques may find the
optimum of a function, but are not guaranteed to converge to an optimal, or even close to
optimal solution. Heuristic approaches do, however, attempt to move away from local min-
ima to find a global minimum. Heuristic based nonlinear optimization techniques include
simulated annealing, genetic algorithms and swarm algorithms, among others. A number
of these techniques have been used for data driven parameter identification for mass spring
models. Data driven parameter identification, as discussed in Section 6.4, is a method of
finding mass and spring constants that allow a simulation model to match experimental
data. Genetic algorithms [14] and evolutionary algorithms [47] have been used in data
driven parameter identification producing positive results. However, they require large
amounts of preprocessing to create population sets. The method of simulated annealing
was used in [27] to get good nodal approximations of deformable bodies. Each method has
trade-offs regarding computation time and optimal convergence. In [46], the author men-
tions data driven approaches only work well for identifying parameters of smaller meshes.
Therefore, other approaches, such as finding analytic expressions for solutions, have been
researched. Studies that try to match the elastic properties of a mass spring model to

47

(a) Single mass-spring-damper system

(b) Electrical circuit equivalent

Figure 5.1: Electrical analogy of single mass-spring-damper system

48

(a) Two mass-spring-damper system

(b) Electrical circuit equivalent

Figure 5.2: Electrical analogy of two mass-spring-damper system

49

those of a real deformable object, such as [61], often require the two volumes to be equal.
In the case of mass spring model compression, it would imply the sum of the masses of the
compressed model to be equal to the sum of the masses of the original model. However,
for the purpose of this study, it is not necessary for the mass of the sparse model to be
equal to the mass of the original model. This is because the behaviour of the model is
more important, for the purpose of surface projection, than volume matching.

For this study, Equation (5.4) is solved for using the simulated annealing heuristic
algorithm. Simulated annealing is used due to its fast computation time compared to
other heuristic based algorithms. Large sets of solutions do not have to be preprocessed,
as in genetic and evolutionary algorithms, since creating a population is an expensive
task. Instead, during each iteration, only one, likely more optimal, solution is found.
The simulated annealing algorithm mimics the physical concept of annealing materials.
Annealing is the thermal process of achieving a low-energy state in a solid, making the
material less fragile. By cooling the material at a specific rate, the structural properties
of the material change. Generally, the material is heated until it reaches its annealing
temperature, and the temperature is even throughout. The material is then cooled slowly
to minimize the internal energy [49].

The simulated annealing algorithm begins by taking an initial guess of the parameter
vector, θ0 and finding its associated cost. In this case, the associated cost, C(θ), is set to
be the minimization term

C(θ) =
N∑
i=0

‖Hz[i]−AHx[i]‖2
2. (5.10)

The implicit backwards Euler method is used to compute the vector z[i], as it is far more
computationally efficient than explicit integration methods. After finding the initial cost
term, C(θ0), zero-mean Gaussian noise, W , is added to each parameter in θ0 to create the
new candidate solution θ1,

θ1 = θ0 +W. (5.11)

The cost of the candidate solution is then calculated, C(θ1), and is compared to the the
cost of the initial guess. If C(θ1) ≤ C(θ0), then θ1 is taken as the new optimal solution. If
C(θ1) > C(θ0), θ1 is chosen as the new optimal solution with a probability

P = e
−∆C

T ,

where ∆C is the difference in cost between the new solution and the old solution, i.e. ∆C =
C(θ1)−C(θ0), and T is the so-called temperature term. T is initially set based on how many

50

iterations of the algorithm the programmer requires. After a certain number of iterations,
the temperature term T decreases in value, which causes the probability of choosing a bad
solution to decrease. This process is continually repeated until a termination condition is
reached. After reaching a termination condition, such as a minimum value for T , the final
solution θN is obtained. θN should produce a result that is close to the global minimum,
however there is no guarantee. The longer the algorithm is run for, the more likely the
solution θN will converge to the global minimum. The choice of initial temperature and
rate of cooling have some effect on the final solution, as they directly contribute to the
number of iterations and the probability of choosing a suboptimal solution.

The simulated annealing algorithm is used here to compress a 21×21 mesh into a 5×5
mesh. The 21× 21 mesh is also compressed into a 11× 11 mesh, to study how the number
of states in the sparse model effects the model behaviour. It is expected that with fewer
nodes, matching the dynamics of the original system will be more difficult. For the first
iteration of the simulated annealing algorithm, the initial parameter vector θ0 begins with
all ks being the same value, all kd being the same value, and all m being the same value.
Figure 5.3 shows the cost of each solution of the 5×5 mesh compression over the iterations
of the simulated annealing algorithm. The results show the cost of the final solution,
C(θ5

N), is approximately 66% less than the cost of the initial solution. The associated
mass, spring and damper distributions for θ5

N are shown in Figure 5.4. The costs of the
11× 11 compression solutions are shown in Figure 5.5 and the parameter distributions of
θ11
N is shown in Figure 5.6.

The results in Figure 5.7 show that the denser 11 × 11 mesh has far less error when
compared to the original system than 5× 5 model. Here, the mean squared error between
the compressed and original systems is plotted. The 11 × 11 model produces 10 times
less error than the 5 × 5 model throughout the simulation. This also holds true when
comparing the cloth motion visually. The low inertia of the sparser 5 × 5 model, due to
the lighter mass, causes sluggish behaviour over time. Although the 11× 11 model is also
slightly sluggish, its dynamics compare far more favourably to the 21 × 21 configuration.
To obtain less sluggish results from the 5 × 5 model, the cost function in Equation (5.4)
is replaced with a function that gives exponentially larger weighting to future data. The
is done to keep the two sets of data closer together for a longer period of time. The new
minimization problem is given in Equation (5.12).

min
θ

∫ t

0

eατ‖Hz(τ)−AHx(τ)‖2
2dτ

s.t. ż(t) = f(z, θ).

(5.12)

51

Figure 5.3: Simulated annealing costs for compression to 5× 5 model

Here α is a scaling factor which determines the weighting of future time data. The associ-
ated cost function for optimization is

C(θ) =
N∑
i=0

eαi∆T‖Hz[i]−AHx[i]‖2
2, (5.13)

where ∆T is the step time of the integration that solved x[i] and z[i].

It can also be seen from the circuit analogy in Figure 5.2, that the current source, and
therefore the external force, changes when the Norton equivalent circuit is found. The
overall force applied to the new mass becomes the sum of the two current sources, i.e.

Fext = Ieq0 = M1~g +M2~g
ZC

ZC + ZR//ZL
, (5.14)

where Z(·) is the impedance of the specified circuit element, and ~g is the acceleration due to
gravity. This shows that even in the one dimensional linear case, the new force is a linear
combination of external forces on the two original masses. In the case where more masses
are linked together, this would likely imply that the force on the compressed system masses
are a linear combination of all external forces. Extending this to the mass spring model,

52

(a) Solution masses (b) Solution spring constants

(c) Solution damper constants

Figure 5.4: Final parameter vector θN values for 5× 5 compression

53

Figure 5.5: Simulated annealing costs for compression to 11× 11 model

each node in the compressed system would likely have an additional amount of external
force applied onto it. This additional force is some combination of the external forces
applied to the surrounding nodes of the original system. As the exact set of nodes from
the original model that effect the nodes of the compressed model is unknown, new scaling
parameters Gi for i = 1 . . . n are added to the parameter vector θ. These parameters are
applied as follows

Fexti = Gimi~g, (5.15)

as the only external force on the falling cloth model is the force due to gravity. The new
parameter vector θ now contains 2(s+n) elements: s spring constants, s damper constants,
n masses, and n scaling terms. The results of the simulated annealing with the new cost
function (Equation (5.13)), where α = 0.001, and extra parameters are shown to in Figure
5.8. Here, the 21 × 21 model is compressed to a 5 × 5 model where the initial parameter
vector θ0 contains identical values for all spring constants, damper constants, masses, and
scaling factors, respectively. The distribution of parameters in θN are shown in Figure
5.10. The final simulated annealing cost is, again, significantly lower than the initial cost
(by 94%) when the parameters were chosen to be equal. The mean squared error between
the compressed and original model is shown in Figure 5.9. Also shown in Figure 5.9 is
the mean squared error of the 11 × 11 model using the parameters from Figure 5.5. The

54

(a) Solution masses (b) Solution spring constants

(c) Solution damper constants

Figure 5.6: Final parameter vector θN values for 11× 11 compression

55

Figure 5.7: Mean squared error between compressed models and the original model

11× 11 compression results do not use the new parameter vector and cost function. These
are the same results as the first iteration of the simulated annealing algorithm.

Using the extra parameters and new cost function, the error reduced by a factor of
20 compared to solution found using the old cost function. As can be seen by comparing
Figures 5.7 and 5.9. Additionally, the compression to a 5× 5 model now produces better
results than the compression to a 11 × 11 model using the previous cost function. The
error associated with the new 5 × 5 model is now less than 50% of the error associated
with the 11× 11 model.

The problem with using this solution for general model compression, is that it specific
to only one scenario. As a result, the solution may be overtrained to a single model. To
determine whether this solution has been overtrained, the parameter set is applied to a
model with different initial conditions. Figure 5.11a (red line) shows the error of using this
parameter set with the new 5×5 simulation. The error here is quite large compared to the
original simulation. To combat this, a new cost function compensating for both simulation
scenarios is used. For simulation scenarios S1 and S2, the associated cost function becomes

56

Figure 5.8: Updated simulated annealing costs for compression to 5× 5 model

Figure 5.9: Mean squared error between compressed models and the original model with
new cost function

57

(a) Solution masses (b) Solution spring constants

(c) Solution damper constants (d) Solution scaling factors

Figure 5.10: Updated final parameter vector θN values for 5× 5 compression

58

the sum of the two cost functions Cnew(θ) = CS1(θ) + CS2(θ), or

Cnew(θ) =
N∑
i=0

[eαi∆T‖HzS1 [i]−AHxS1 [i]‖2
2 + eαi∆T‖HzS2 [i]−AHxS2 [i]‖2

2]. (5.16)

Using this new solution, the error of the second scenario compared to the error using
the old solution, is shown in Figure 5.11a. As can be seen, the error is nearly 4 times
lower using this new solution. The results of using the new solution in the original model
is shown in Figure 5.11b (note the difference in scale between Figures 5.11a and 5.11b).
Although the error using this parameter set is larger than using the previous parameter
set, the error is still significantly lower than using the solution from Figure 5.6. Therefore,
to prevent overtraining, the cost function for simulated annealing needs to incorporate
multiple models. Applying more than two models to the cost function will likely result in
an even more general solution.

(a) New scenario error plots (b) Original scenario error plots

Figure 5.11: Error plots when using two scenario cost function

The results of the model compression in this chapter justify that a reduced order model
can be used in the EKF almost as effectively as a larger model. By using heuristic optimiza-
tion techniques, the behaviour of sparse models can almost exactly match the behaviour
of the dense, original model. It is, therefore, reasonable to assume that when working
with dense state models, these models can be reduced to smaller models that have similar
dynamic characteristics. As a result, for the last chapter of this thesis, reduced order mass
spring models will be used to validate the EKF as a surface predictor. The models used

59

in Chapter 6 will all have fewer than 25 nodes, compared to the 441 nodes used for cloth
simulations in Chapter 3.

60

Chapter 6

Estimation Filtering Applied to
Model

In this chapter, the extended Kalman filter, described in Section 4.3, is applied to the mass
spring model, derived in Chapter 3, to create a prediction filter for deformable surface
motion. The EKF is first formulated using the Jacobian of the mass spring model found
in Section 3.2 and is applied to two different simulation scenarios. These scenarios use
the model simulation techniques from Section 3.3 with added disturbances in the form
of Gaussian noise and random viscous forces. For both simulation scenarios, the noise
covariance parameters of the EKF are tuned to minimize the mean-squared error between
the predictions and the simulation outputs. The EKF is applied to real experimental data
of cloth movement to predict its motion. The results are discussed, as well as strategies for
finding mass, spring, and damper parameters to best match the model to the experimental
data.

For spatial augmented reality applications, where a projector is projecting images on
moving surfaces, the EKF predictor may not be fast enough to compensate for inter-frame
perturbations. As a result, an inter-frame prediction technique is derived to compensate
for any of these disturbances.

6.1 Formulation of Filter

To combine the EKF and the deformable mass spring model, the model needs to be lin-
earized using a first order approximation. This implies that the Jacobian derived in section

61

3.2 must be used in place of the state transition matrix described in Section 4.3. In other
words, given the state transition function

ẋ = f(x),

the state transition matrix, Fk, must be

Fk = J(x̂k|k) =
∂f

∂x
|x̂k|k . (6.1)

The prediction step of the EKF can therefore be written as:

x̂k|k−1 = f(x̂k−1|k−1)

Pk|k−1 = J(x̂k−1|k−1)Pk−1|k−1J(x̂k−1|k−1)T +Qk−1,
(6.2)

where the initial conditions are x̂0|0 = x[0] and P0|0 = 0, assuming the initial state is given,
and Qk = αI ∀k ∈ Z+, where α ∈ R+ (positive real numbers). A diagonal matrix is chosen
for Qk as the process noise vectors are assumed to be independent random vectors. Here,
the system is linearized about the current state estimate, and therefore, is less accurate for
deviations far from the current state estimate.

Since the mass spring model is a continuous time state space model, having the form

dx

dt
= f(x), (6.3)

the model needs to be discretized to allow for the use of the discrete time EKF. To discretize
the model, a first order Euler approximation is used, i.e.,

x[k + 1] = x[k] + Tsf(x[k]), x[0] = x(t0), (6.4)

or in the state prediction step of Equation (6.2),

x̂k|k−1 = x̂k−1|k−1 + Tsf(x̂k−1|k−1). (6.5)

In Equations (6.4) and (6.5), Ts is the sampling time for the discretization of Equation
(6.3). As the EKF uses this discretized model in its formulation, it results in the EKF
providing a state prediction every Ts seconds.

After the prediction of the next state x̂k|k−1 and covariance matrix Pk|k−1 are calculated,
and new measurement data is available, the update step of the EKF is applied to obtain

62

the current state estimate and covariance matrix. The update step is as follows:

ỹk = y[k]−Hkx̂k|k−1

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S
−1
k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I−KkHk)Pk|k−1.

(6.6)

Comparing Equation (6.6) to Equation (4.21), the output function hk(x) is a linear operator
selecting only the position states of x at time step k. Therefore, hk(x) = Hkx, where

Hk = H =
[
I3n×3n 03n×3n

]
∀k = 0, 1, . . . (6.7)

The measurement noise covariance matrix, Rk, is chosen to be a diagonal matrix, similar
to Qk, however it must be positive definite. Therefore, Rk = βI ∀k = 0, 1, . . ., β ∈ R++

(strictly positive numbers). A diagonal matrix is chosen for Rk as the measurement noise
vectors are assumed to be independent random vectors.

The initialization of the EKF recursion is shown in Equations (6.8)-(6.11). First, a
state prediction is made using the current state estimate vector, x̂k|k, initialized with the
given initial conditions. The state covariance prediction is then made by linearizing the
model about the current state estimate. The measured outputs are then combined with
the prediction results to obtain an updated state estimate and state covariance matrix.
The process is continually repeated until termination.

Prediction Step 1:

{
x̂1|0 = x̂0|0 + Tsf(x̂0|0)

P1|0 = J(x̂0|0)P0|0J(x̂0|0)T +Q0

(6.8)

Measure Step 1:

{
x[1] = x[0] + Tsf(x[0])

y[1] = Hx[1]
(6.9)

Update Step 1:



ỹ1 = y[1]−Hx̂1|0

S1 = HP1|0H
T +R1

K1 = P1|0H
TS−1

1

x̂1|1 = x̂1|0 +K1ỹ1

P1|1 = (I−K1H)P1|0

(6.10)

63

Prediction Step 2:

{
x̂2|1 = x̂1|1 + Tsf(x̂1|1)

P2|1 = J(x̂1|1)P1|1J(x̂1|1)T +Q1

(6.11)

...

6.2 Results

To determine the effectiveness of the extended Kalman filter when applied to the mass
spring model, two simulation scenarios are chosen for EKF implementation. In the first
scenario, the EKF is applied to a square, 5×5 node cloth configuration with Guassian noise
added to the derivative state vector ẋ. The Gaussian noise is of zero-mean with variance
of 0.001m2

s2 added to the velocity states and 0.001m4

s4 added to the acceleration states.
Since the noise is added directly into ẋ, the noise acts as process noise in the system, i.e.
wk ∼ N(0, 0.001) and are independent and identically distributed for all k = 1 The
parameters for the mass spring model are chosen arbitrarily and are as listed in Table 6.1.

Table 6.1: 5× 5 Node Model Parameters

Parameter Value

Total Length 1.5m
Total Width 1.5m

Spring Constants ksi 300N/m
Damper Constants kdi 0.08N·s/m

Masses mi 0.441kg

For the above scenario, each node has the same mass, and all node connections have the
same damper and spring constants. Since the model is a square 5× 5 mesh, the nodes are
evenly spaced about the length and width of the cloth. This results in a 0.375m separation
between horizontally and vertically adjacent nodes. During the simulation, the cloth starts
at an initial position parallel to the ground, and is dropped while the top nodes are kept at
a fixed position; similar to anchoring a flag to a horizontal pole. The motion of the cloth
is like that of a pendulum.

For the EKF formulation of the system, the values chosen for the noise covariance
matrices, Rk and Qk, are I and 0.001I, respectively, for all k ∈ Z+. The process noise
covariance matrix Qk was chosen to be 0.001I as this is exactly the variance of the noise
added to the vector ẋ. Since the noise added to the system is in fact wk, and Qk is

64

the covariance of wk, this is the obvious choice of parameter. The observation covariance
matrix Rk, on the other hand, was chosen arbitrarily. The initial state covariance matrix
was set to be P0|0 = 0, since the initial states of the EKF model were set equal to the
initial states of the simulation model, i.e. x̂0|0 = x[0]. Figure 6.1 shows snapshots of the
EKF position state predictions overlaid on the measured outputs for four time instances of
the Runge-Kutta simulation. The blue dots represent the measured positions of the cloth
nodes (simulation outputs), while the red dots represent the EKF predicted positions of the
cloth nodes. Figure 6.1a shows that there is no difference between outputs and predictions
at the start of the EKF recursion because the initial configuration of the EKF is set to
the same positions as the simulation model. As the EKF recursion progresses, the error is
quite large at first (Figure 6.1b); however, it visually decreases through the completion of
the recursion (Figures 6.1c and 6.1d).

Figure 6.2 shows the mean-squared error between the EKF predicted position states
and the simulation position states for each time step of the EKF. The mean squared error
is defined as,

e[k] =
1

n
(p̂[k]− p[k])T (p̂[k]− p[k]), (6.12)

where n is the number of position states, p̂[k] are the predicted position states and p[k] are
the measured position states. Since the Kalman filter finds an estimate which minimizes
the squared error between the state estimates and the expected states, it is expected that
e[k] will decrease as k increases. It can be seen from Figure 6.2 that the mean squared error
converges to approximately 5× 10−4m2 after running the EKF for 10 seconds. Just as in
Figure 6.5, the same trend of error reduction can be seen in this plot. The error decreases
almost exponentially over time, with intermittent spikes in error near the start of the EKF
recursion. By taking the square root of the mean-squared error, i.e. root mean-squared
error, an approximation of the average distance between each predicted node’s position
and the associated simulation node’s position is be made. Therefore, the predicted nodes
were on average 3.9cm away from the measured values in each direction after 10 seconds of
running the EKF. This represents an error that that is 2.6% of both the length and width
of the cloth.

To obtain a more physical representation of the effectiveness of the EKF predictor,
the Euclidean error between the EKF prediction and the measured position of a node i is
computed. The Euclidean error is given by

ei[k] = ‖p̂i[k]− pi[k]‖2, (6.13)

where ‖ · ‖2 is the 2-norm operator, and gives the distance between the predicted node and

65

(a) Initial cloth position (b) Cloth position at 0.8 seconds

(c) Cloth position at 5 seconds (d) Cloth position at 10 seconds

Figure 6.1: EKF applied to 5 × 5 node mass spring cloth model with added zero-mean
Gaussian noise

66

Figure 6.2: Mean squared error between EKF predictions and simulation outputs over time

measured node. For perfect prediction, the distance between predicted node and measured
node should be zero, implying error ei[k] = 0. Figure 6.3 shows the Euclidean error of
the EKF prediction for a single node over time. The bottom corner node of the cloth is
analyzed in Figure 6.3, as it has the largest peak in Euclidean error. This is the worst case
node for this EKF implementation. Near the start of the EKF recursion, at 0.8 seconds, the
error is very large, with the distance between the predicted node and measured node being
of over 30cm. As the recursion continues, the error decreases significantly, to approximately
5cm after 10 seconds. This shows that the position of worst case node can be predicted
reasonably accurately after allowing the algorithm to run for some time.

The second simulation scenario that the EKF is implemented on is when the mass
spring surface is acted upon by a random viscous force defined as

Fi = kvisi(n̂i · (u− vi))n̂i. (6.14)

Here, n̂i is the unit vector normal to the surface at a specific node i, u is a random R3

vector representing the viscous entity’s velocity in meters per second, such as wind [54],
and vi is the velocity of node i. The viscous force is applied to each node (Figure 6.4),
excluding the anchoring nodes, in addition to all other internal and external mesh forces.
In this simulation scenario, the cloth is once again anchored along the top row of nodes,

67

Figure 6.3: Euclidean error of EKF prediction of single node over time

Figure 6.4: Random viscous force applied to cloth node

68

similar to hanging a flag on a pole, and dropped while a viscous force is applied. Using the
same masses, cloth dimensions, and spring and damper constants as the first scenario, the
simulation outputs and EKF predictions of the viscous force model are shown in Figure

6.5. In this simulation, the random input u is chosen to be
[
α 0 β

]T
where both α and β

are random variables chosen from a uniform distribution U(1m/s, 10m/s). The constants
kvisi are chosen to be 1 for all nodes i, and EKF parameters Rk and Qk are chosen to be
I and 100I respectively. The large value of Qk is chosen to compensate for the modelling
difference between the EKF model and the simulation model. Since the EKF does not
include the viscous forces in its model formulation, the effects of the viscous forces are
assumed to be included in the modelling/process noise wk. The initial state covariance
matrix P0|0 is set to 0 since the initial state estimate x̂0|0 is set to the same value as the
initial state measurement x[0], as can be seen from Figure 6.5a.

Just as in the the first scenario, the EKF predictor progressively improves as the sim-
ulation progresses (Figures 6.5b-6.5d). This is also confirmed by the EKF mean squared
error plot shown in Figure 6.6. Each marker has, on average, 6× 10−4m2 of error in each
direction near the beginning of the EKF recursion. However, the error approaches zero
after 10 seconds of running the EKF. Figure 6.7 shows the Euclidean error between a single
predicted node and the associated measured output node, for the worst case scenario. The
prediction error exponentially decreases from 10cm after 10 iterations (0.1 seconds) of the
EKF recursion to less than 0.5cm after 100 iterations (10 seconds). Since the speed of
the viscous force is not very large, the EKF performed well predicting the motion of the
cloth. When the viscous force is chosen from a larger distribution, i.e. the viscous velocity

ui is chosen from a uniform distribution between
[
1 0 1

]T
and

[
100 0 100

]T
at every

time-step, the EKF has a poorer performance predicting the position of the cloth as seen in
Figure 6.8. The peak mean squared error is nearly 80 times larger compared to the slower
viscous velocity case, at 0.05m2. Additionally, the Euclidean error of every node (Figure
6.9) is very large; near or above 1m of error for some nodes during the EKF recursion.
The EKF prediction error still exponentially decreases to a point where it converges to
5× 10−4m2. The predictions settle after the initial transient effects from the large external
forces dissipate. This shows that the EKF still predicts very accurately after running for
a certain amount of time.

6.3 Parameter Tuning

A well known drawback of the standard Kalman filter and the EKF is that they both
require a priori knowledge of the process and measurement noise statistics [57] to produce

69

(a) Initial cloth position (b) Intermediate cloth position

(c) Intermediate cloth position (d) Intermediate cloth position

Figure 6.5: EKF predictions of 5 × 5 node mass-spring cloth model with random viscous
force applied

70

Figure 6.6: Mean squared error between EKF predictions and simulation outputs over time
for random viscous force simulation

Figure 6.7: Euclidean error of EKF prediction of single node over time for random viscous
force simulation

71

Figure 6.8: Mean squared error between EKF predictions and simulation outputs over time
for large random viscous force simulation

Figure 6.9: Euclidean error of EKF prediction of every node over time for large random
viscous force simulation

72

optimal results. In most practical applications, information about these statistics are
difficult to obtain, and as a result, the covariance matrices need to be tuned to improve
the estimation results. For the simulation scenarios in Section 6.2, the values of the noise
covariance matrices, Qk and Rk, along with the initial state covariance matrix, P0|0, were
chosen intuitively and arbitrarily. A more optimal set of parameters can be found that
produce better prediction results from the EKF. Therefore, a trial and error approach is
used select values of Qk and Rk that minimize the EKF prediction error in a least squares
sense.

Intuitively, for the scenario where Guassian noise is added directly into the position
and velocity states, the best choice for the process noise covariance matrix Qk is the
variance of the added Gaussian noise itself. In this scenario, the simulation model is
injected with zero-mean, Gaussian distributed process noise, wk, with variance of 0.001m2

s2

and 0.001m4

s4 for velocity and acceleration states, respectively. Since the noise was added
directly into the state derivative vector, this would imply the process noise covariance
matrix is Qk = 0.001I ∀k ∈ Z+. In other words, the diagonal terms are equal to the
variance of the noise, while the off diagonal terms are equal to 0, as the random variables
are independent. To find the best value for Rk, Qk is kept fixed at 0.001I, while the value
of Rk is varied to find the lowest mean squared error between predictions and simulation
outputs. The results of this technique are shown in Figure 6.10. As Rk decreases below I,
the error consistently decreases until Rk = 0.00001I. At this point, the peak mean squared
error is approximately 3.5 × 10−3m2, which is lower than with any other tested choice of
Rk. The small value of Rk can be attributed to the fact that the noise was only added as
process noise, not as measurement noise. As a result large values of Rk are not necessary.

For the scenario where a random viscous force is applied to the mass spring model, there
are no available statistics from which the parameters Qk and Rk can be obtained. Tuning
parameters for the EKF in this scenario, as like in most applications of EKFs, will result
in parameters unique to the specific situation. As a result, finding the best parameters
is an exercise in trial-and-error. Intuitively, since the viscous force is not included in the
EKF model formulation, the elements of Qk need to compensate for the discrepancies in
modelling. Larger values of Qk are required to compensate for larger uncertainties in the
EKF model. Therefore, viscous forces with large velocities would likely require Qk to have
larger diagonal elements to compensate for the variance between the EKF and simulation
models. To tune the EKF covariance matrices, Rk is first fixed and Qk is varied. After
finding the best choice for Qk, Rk is then varied while Qk remains fixed. Figure 6.11 shows
a series of mean squared error plots of the EKF predictions, where Rk is kept fixed at I,
and Qk is varied from I to 1000I. As expected, as Qk increases, the mean squared error
decreases in the early stages of the EKF recursion. However, there is a point of diminishing

73

(a) EKF with Qk = 0.001I and Rk = 1I (b) EKF with Qk = 0.001I and Rk = 0.01I

(c) EKF with Qk = 0.001I and Rk =
0.0001I

(d) EKF with Qk = 0.001I and Rk =
0.00001I

Figure 6.10: EKF MSE error for varying Rk in process noise scenario

74

returns. For example, setting Qk = 100I and Qk = 1000I produce very similar prediction
results. Therefore, Qk can be set to 100I, and Rk is varied. When varying Rk, Figure
6.12, increasing the diagonal values past 1 decreases the initial prediction error. However,
the peak error increases by nearly 15%. Furthermore, decreasing the diagonal elements
below 1 does not result in significant changes in EKF prediction error. As a result, tuning
the noise covariance matrices Qk and Rk to 100I and I, respectively, produce the best
prediction results. Using more sophisticated parameter tuning approaches, such as the
Autocovariance Least-Squares technique [52], would likely result in values of Qk and Rk

that further increase the accuracy of the EKF.

6.4 Experimental Results

In order to validate both the mass spring model and the EKF formulation, implementation
on real world data is required. A cloth-like material would be the obvious choice of surface
to implement the algorithm on, as the simulation models from Section 3.3 behave like cloth.
As a result, a towel is used for experimental data collection. Since the position of discrete
points on the object is used as the measurement variable in the EKF, a sensor system
that can capture positional data is required for data collection. A number of different
techniques can be used for capturing positional data, such as image processing techniques
or 3D camera systems, however, for greater data accuracy, a motion capture system is
used in this experiment. The NaturalPoint OptiTrack system [6] is an infra-red camera
based motion capture system system that provides positional data, both translational and
rotational, within millimetre precision. The OptiTrack system measures the position of
specific sized infra-red markers by triangulating each marker with multiple cameras in a
known configuration. For this experiment, a four camera configuration is used to measure
the position of 12.7mm diameter infra-red markers (Figure 6.13c). The markers are placed
on the towel to match the initial positions of the mass nodes in the model. For example,
if a 5 × 5 node mass spring model is used, 25 markers will placed on the real object at
same locations as the point masses in the model. The four camera configuration used for
the experiment is shown in Figure 6.13a, and the towel, fitted with 20 markers in a 5× 4
rectangular configuration, is shown in Figure 6.13b. The towel, along with the markers,
have a combined mass of 0.34 kg, with dimensions of 0.51m× 0.8m. Each marker is placed
0.17m away from an adjacent marker in the horizontal direction and 0.2m away from an
adjacent marker in the vertical direction. Here the horizontal and vertical directions are
with respect to the view of the cameras. The OptiTrack system captures the position and
orientation of each marker at a rate of 100 times per second, implying new data is available

75

(a) EKF MSE with Qk = I and Rk = I (b) EKF MSE with Qk = 10I and Rk = I

(c) EKF MSE with Qk = 100I and Rk = I (d) EKF MSE with Qk = 1000I and Rk = I

Figure 6.11: EKF MSE prediction mean squared error for varying Qk

76

(a) EKF MSE with Qk = 100I and Rk =
10I

(b) EKF MSE with Qk = 100I and Rk = I

(c) EKF MSE with Qk = 100I and Rk =
0.1I

(d) EKF MSE with Qk = 100I and Rk =
0.01I

Figure 6.12: EKF MSE prediction mean squared error for varying Rk

77

every 0.01 seconds. This allows the EKF prediction algorithm to be run every 0.1 seconds,
just as in the simulation scenarios in Section 6.2. The data collected from the Optitrack
system needs to be post-processed because the structure of the data is not suited for the
EKF algorithm. As a result, the EKF is run offline, post data collection. However, with
more development time, a real time algorithm could be developed in conjunction with a
different sensor system.

During the data collection phase, the cloth is initially placed approximately 2.2m away
from the calibrated cameras, so that all markers are viewable by all four cameras. The
cloth is anchored along the top row of markers, just as in the simulation scenarios in
Section 3.3, by a custom made fixture shown in Figure 6.13d. A small fan is placed behind
to the cloth to provide external forces to the cloth. The fan rotates sideways, producing
oscillatory forces on the cloth. The cloth begins in a resting state, and when the fan is
turned on, the cloth movement is carefully observed so that self-occlusions do not occur.
In other words, all markers must be viewable at all times in at least two cameras. This
allows for a constant stream of 20 marker positions to be available throughout experiment.
Data is collected for 10 seconds, and is stored in a comma separated value file formatted by
the OptiTrack software. This file contains time stamp of each frame, the position of each
marker in (x, y, z), the orientation of each marker (roll, pitch, yaw, as well as quaternions),
as well as additional information about the cameras. Using Matlab, the data is parsed
such that only time and positional data are available to the EKF algorithm.

For the EKF formulation, the initial state estimate x̂0|0 is set to the initial configuration
of the towel with the velocity states set to zero. In other words,

x̂0|0 =

[
y(0)
03n×1

]
. (6.15)

The initial state covariance matrix P0|0 is set to the zero matrix, 06n×6n, since the cloth
model begins at the same position as the actual towel (the first frame of recorded data).
The mass parameters for the model are chosen by evenly distributing the mass of the towel
and markers over all 20 nodes. This results in mi = 0.017kg for all i = 1 . . . 20. The
spring and damper parameters were chosen arbitrarily for this experiment to be kspringj =
300N/m and kdamperj = 0.08N · s/m for all j = 1 . . . 77; the same as values chosen for the
simulation scenarios in Section 6.2. Here, the number of spring connections are solved
using Equation (5.5). The arbitrary choice of spring and damper parameters may induce
additional modelling error into the system; however, this will be compensated by the choice
of process noise covariance matrix Qk. For the initial implementation of the EKF to the

78

(a) Four camera configuration (b) Towel with 20 infra-red mark-
ers

(c) 12.7mm infra-red marker (d) Cloth hanging fixture

Figure 6.13: Experimental data collection equipment

79

real cloth, the covariance matrices were chosen be:

Qk = 100I

Rk = I.

The noise covariance matrices chosen for this configuration are the same as the ones tuned
for the viscous force simulation in Section 6.3. Due to the difficulty of modelling the
applied forces in the experiment, the movement in the cloth is assumed to be attributed
to random viscous-like forces. As a result, the covariance matrices are chosen to be the
same as those tuned for the random viscous force simulation model. The results of the
EKF, Figure 6.15, show there are large peaks in mean squared error periodically, nearly
7 × 10−4m2 approximately every 5 seconds. This obviously results from the oscillatory
motion of the fan providing the external force. After the peaks in error, the EKF predictor
nearly converges to the measured value, since there is less than 2.5 × 10−5m2 of error 7.5
seconds into the recursion. Figure 6.14 shows the positions of the predicted nodes overlaid
onto the measured positions of the real data. The peak in error in Figure 6.15 occurs
approximately 5 seconds into the EKF recursion, which can visually be seen in Figure
6.14c. Comparing the results at 0.1 seconds, 2 seconds, 5 seconds, and 10 seconds into
the EKF recursion, it can be seen that the EKF predictions deviate the most from the
measured data at 5 seconds, and the least at 2 seconds 6.14b; which is to be expected
from results of the MSE plot. The predictions begin to deviate again at 10 seconds, Figure
6.14d, as the external force increases. These results show that even though the external
forces are not modelled in the EKF, the EKF still produces near convergent predictions
after the external forces are applied.

Instead of arbitrarily choosing the spring constants, ksi , there are a number of spring
parameter identification techniques that allow the mass spring model to more closely re-
semble its real-life counterpart. As discussed in [46], these techniques include data driven
parameter identification and analytic parameter identification from isotropic linear elastic
reference models. Data driven parameter identification uses nonlinear optimization tech-
niques to find parameter sets that minimize some form of error between the simulation
model and real cloth data. As described in [46], the objective function

G(θ) =
∑
i

‖prefi − pi(θ, f
ref)‖2

2, (6.16)

where pi(θ, f
ref) are the equilibrium positions of the simulated cloth for a specific spring

parameter vector θ and given external force f ref , and pref are the vertex positions of a
reference model, must be minimized to obtain the optimal parameter vector θ̂. Heuristic

80

(a) Cloth position at 0.1s (b) Cloth position at 2s

(c) Cloth position at 5s (d) Cloth position at 10s

Figure 6.14: EKF applied to 5× 4 node experimental data

81

Figure 6.15: Mean squared error between EKF predictions and measured cloth positions
over time

based optimization techniques such as simulated annealing and genetic algorithms can be
used to find a global minimizer for G(θ). Data driven parameter identification can give
near optimal results for lower order systems relatively quickly, however, as the number
of nodes increase, these techniques become computationally expensive. Additionally, the
solution is very sensitive to the choice of reference deformations, due to the nonlinearity of
the mass spring system. Further, the reference deformations themselves may be difficult to
model when being applied as external forces to the mass spring system. Lloyd [46] proposes
using analytical expressions for identifying the system parameters (only spring constants)
for mass spring cloth systems by equating the finite element model equations of the cloth,
to a mass spring model, linearized about the same equilibrium point as FEM model. The
analytic solutions use the elastic properties of the material being analyzed. Specifically,
the Poisson ratio and the Young’s modulus of the material is used. Poisson’s ratio is the
ratio between the change in expansion and the change in compression for small changes in
a material. For a material stretched along the axial direction, Poisson’s ratio is defined as

ν = −dεtrans
dεaxial

, (6.17)

82

where εtrans is the strain in the transverse direction (negative for stretching) and εaxial is
the strain in the axial direction (positive for stretching). For most materials, the Poisson’s
ratio is between 0 and 0.5. Young’s modulus is the relationship between the stress and
strain in a material. More specifically,

E =
FL0

A0∆L
, (6.18)

where F is the force exerted on the object, A0 is the cross-sectional area through which
the force is applied, ∆L is the amount by which the length of the object changes, and L0

is the length of the object.

There only exists an exact solution to this problem for two dimensional equilateral
triangle mesh formulations at a Poisson ratio of 1

3
. For the more general case of 3 dimen-

sional tetrahedral based meshes an approximation is made. The most optimal solution to
the problem, in a least squares sense, that is the squared difference between the elements
of the stiffness matrices for the FEM model and the mass spring model, is

k(i,j) =
∑
A

2
√

2

25
lE. (6.19)

Here l is the Euclidean length between nodes i and j and the Poisson ratio is assumed to
be 1

4
. Lloyd [46] states that this is the only Poisson’s ratio at which a mass spring model

can approximate the reference FEM model in an optimal way.

Assuming that the Poisson’s ratio for the real cloth is 1
4
, and using a Young’s modulus

between 7GPa and 30Gpa, which is similar to the value for cotton fabric, the spring con-
stants k(i,j) are calculated and implemented in the EKF. As [46] does not propose optimal
values for damper constants nor node masses, they are again chosen to be kdamper(i,j)

=
0.08N · s/m and mi = 0.017kg, respectively. Using these derived values for the spring con-
stants, the EKF algorithm did not produce successful results. The large spring constant
values, resulting from the very large Young’s modulus, caused the state covariance matrix
to be close to singular, as evidenced by the large condition number

κ(P) =
|λmax(P)|
|λmin(P)|

, (6.20)

shown in Figure 6.16. The condition number is consistently greater than 1 × 1020 for all
iterations of the EKF. Large spring values cause the system to be numerically unstable,
and as a result, the analytic solution does not produce a useful outcome. If the elastic

83

properties of the material were chosen more carefully, or if the solver was more precise,
the analytic solution may have produced better results. This will be the subject of future
research.

Figure 6.16: Condition number of state covariance matrix Pk|k during EKF recursion

Since the analytic parameter ID did not return useful results, a simulated annealing
data driven parameter identification technique is used on a simpler scenario to determine
the best model parameter for EKF implementation. The scenario used for the parameter
identification is dropping the same 5 × 4 node towel at a slight angle, with gravity being
the only external force. This removes the need to model additional forces in the simulation
model. Using the same approach as the model compression from Chapter 5, a parameter
vector is found that best matches the simulation model to the real world measurements. For
this case, the simulated annealing algorithm finds a solution that solves the minimization
problem:

min
θ

∫ t

0

eατ‖Hz(τ)−Hx(τ)‖2
2dτ

s.t. ż(t) = f(z, θ),

(6.21)

where x(t) is the time series of measured states, z(t) is the time series of simulated states,
H is the observation model, θ is the parameter vector and α = 0.001. The final parameter
vector θN is applied to the EKF model to predict the motion of the original real world

84

scenario. This is the scenario where the towel is perturbed by a wind force from a portable
fan. As can be seen by the mean squared error in Figure 6.17, the new prediction error
is much lower than the prediction error in Figure 6.15. The peak error has decreased by
nearly a factor of 4, while the transients near the 6 second mark have been significantly
reduced. Once again, if more cloth scenarios are implemented into the cost function of
the simulated annealing algorithm, a more general parameter set may be found. Using
an expanded cost function will essentially train the EKF to run well on any scenario the
specific object, in this case the towel, is subject to.

Figure 6.17: Mean squared error between EKF predictions and measured cloth positions
over time with new parameters

6.5 Projector Compensation

For spatial augmented reality applications, where deformable objects are required to be
projected upon, it is imperative to consider the speed at which the object’s surface is mov-
ing. Since video projectors draw images at specified rates, surfaces that move noticeably
and quickly, with respect to the drawing rate of the projector, may incur additional im-
age distortion when the frames have finished being drawn. To compensate for the effects

85

of surface movement during the drawing of frames, an inter-frame prediction method is
proposed.

Video projectors generally draw at rates between 24 frames per second (fps) and 60fps,
as specified by the video file format; however, newer video encodings allow for frame rates
up to 300fps. Within each frame, projectors draw images based on the specified display
resolution and the source file’s scanning format. The display resolution of a projector, or
any display monitor, is given by its pixel dimensions. The pixel dimensions of a display are
simply the physical number of columns and rows of pixels which create the display. For
example a 1920 × 1080 display would have 1080 rows of 1920 pixels each. Modern, high
definition projectors generally have resolutions ranging between 1280×720 and 1920×1080
pixels. However, ultra high definition displays can have much larger pixel counts. The scan-
ning format of a video file describes how a video is ”painted” on a display. There are two
common methods for scanning video images: progressive scanning and interlaced scanning.
Progressive scanning is method of displaying images in which each row of pixels is drawn
in sequence. This is in contrast to interlaced scanning where every other row of pixels is
drawn, in an alternating fashion. More specifically, the interlaced scanning method reads a
signal containing two ”fields” of data, odd-numbered rows and even-numbered rows, cap-
tured at two different times, and alternates drawing each field during each frame. This
allows the display to appear to be running at twice its normal frame rate. Progressive
scanning is far more common in modern displays, as it allows motion to appear smoother
and is free of the visual artifacts which can be caused by interlacing. However, broadcast-
ing still distributes interlaced signals, as progressive signals require twice the bandwidth.
Concatenating the number of horizontal lines in a display with the letter associated with
the scanning type (p for progressive and i for interlaced) is the standard naming convention
for describing the resolution and scanning of a display. For example, a 1920 × 1080 high
definition display with progressive scanning is labelled as a 1080p display (1080 horizontal
progressively scanned lines).

For a 1080p display drawing images at the standard frame rate of 24fps, an entire frame
is drawn every 1

24
s. Now, since each of the 1080 horizontal lines are drawn sequentially,

due to progressive scanning, each line is drawn at a rate of 25.9kHz. For a 5×5 node mass
spring model, with evenly spaced nodes, 270 rows of pixels are projected between each
horizontal row of nodes. As a result, each horizontal row of nodes is drawn 270

25900
= 0.0104

seconds after the previous row of nodes. Here, horizontal rows of nodes refer to rows that
are horizontal from the point of view of the projector. Considering the sampling rate of
the EKF is Ts, if the cloth’s position changes significantly during inter-sample periods,
there may significant error between the prediction and the position of the cloth at the
Kalman update step. To compensate for this, an interpolation approach is used. As the

86

cloth is moving, the EKF solves for an estimate of the velocity states, and using an Euler
approximation, the inter-sample position of every node is calculated. This estimation is
based on the assumption that drawing horizontally is instantaneous, as each pixel in a row
of 1920 pixels is drawn in 1

25900
seconds.

Using the previous state estimate x̂k|k and the corresponding time step, m∆T , where
m is the row number, and the time step ∆T is calculated based on the frame rate and the
number of rows of nodes, assuming the top row of nodes is the top of the display, in the
following way:

∆T =
1

frame rate× (#rows− 1)
, (6.22)

the inter frame prediction can be computed. First the state estimate vector is split into a
position estimate vector p̂k|k and a velocity estimate vector v̂k|k. The position estimates are
then reordered, such that the elements are ordered based on their horizontal position with
respect to the projector. More specifically, the first i elements of the position vector would
contain the positional information about the first horizontal row of nodes with respect
to the projector, the next j elements would contain the positional information about the
second horizontal row of nodes with respect to the projector, and so on (Figure 6.18).

Figure 6.18: Orientation of cloth with respect to projector for inter-frame prediction

After reordering the position estimates, the state estimates are passed through the state
transition function f(·). This returns the derivative of the state estimates, and as a result,
the velocities to obtain the next position vector. This velocity vector is also reordered, in

87

the same way the position estimates are ordered, so that each node’s position aligns with
its velocity. The velocity vector is then multiplied by a 3n×3n matrix defining the time at
which each row of of the object is predicted. The result is added to the position estimates
to obtain the inter-frame position predictions. This process is shown in Equation (6.23).



p̂′k|k(1)
...

p̂′k|k(i)

p̂′k|k(i+1)
...

p̂′k|k(i+j)
...

p̂′k|k(n−l)
...

p̂′k|k(n)



=



p̂k|k(1)
...

p̂k|k(i)

p̂k|k(i+1)
...

p̂k|k(i+j)
...

p̂k|k(n−l)
...

p̂k|k(n)



+


0∆T × I3i×3i

1∆T × I3j×3j

. . .

(n− 1)∆T × I3l×3l



·
[
I3n×3n

03n×3n

]T
f(x̂k|k) (6.23)

Figure 6.19 shows the results of an inter-frame prediction where a projector is projecting at
a frame rate of 24fps on a 5×5 node cloth surface. The inter-frame prediction is compared to
the the previous state estimate, the next EKF prediction and the next measured output.
The plot shows the position of each row of nodes as a line. The top lines represents
the position of nodes at the beginning start of drawing the frame, and the bottom line
represents the last row of nodes at the end of drawing the frame. The inter-frame prediction
is at the same position as the previous state estimate for the first row of nodes, and
progressively gets closer to the next prediction and measurement at each successive row.
Since the frame rate of the projection is 24fps, the last row of cloth is predicted 0.04 seconds
in the future using the inter-frame prediction. This is faster than the EKF sampling time
of 0.1 seconds, implying that the EKF prediction would not have been able to compensate
for any perturbations.

In the scenario where the frame rate is chosen to be 1
Ts

, where Ts is the sampling time
of the EKF, the last row of the inter-frame prediction will match the position of the next
EKF prediction. If the frame rate of the projection is chosen to be 10fps, possibly due
to computational power, it ensures the drawing time of a single frame to be 0.1 seconds,

88

Figure 6.19: Inter-frame prediction of 5× 5 node cloth at a projection frame rate of 24fps.

89

the same as the sampling rate of the EKF from the previous example. Figure 6.20 shows
the results of inter-frame prediction when the frame rate is set to 10fps. It can be seen
that the position of the first horizontal line of the inter-frame prediction is at the same
position as the previous estimate. This is due to the anchoring of nodes in the model.
However, even if it was not anchored, it would match the previous estimate due to p̂′k|k(1) =
p̂k|k(1) + 0∆T × v̂k|k(1). Also, due to the frame rate of the projector, the last horizontal
row of the inter-frame prediction is at the same position of the final row of the next EKF
prediction. With this frame rate chosen, the final row equation of the inter-frame prediction
(from Equation (6.23)) is exactly the EKF equations for the state prediction.

Figure 6.20: Inter-frame prediction of 5× 5 node cloth at a projection frame rate of 10fps

To validate the inter-frame prediction algorithm, the algorithm is applied to the experi-
mental data from Section 6.4. The results for the algorithm at a single instance of time, t0,
are shown in Figure 6.21. The results assume that the projector is running at a frame rate

90

of 10fps. Since the data is collected at a rate of 100Hz by the Optitrack motion capture
system, the accuracy of the inter-frame prediction can be verified. The red lines in Figure
6.21 represent the measured positions of each row of nodes, of the 5× 4 configuration, at
the time they are projected upon. The top row of nodes are shown at t = t0, the second
row of nodes are shown at t = t0 + 0.025, and so on. The times are rounded to the nearest
hundredth of a second as to match the time-steps from the measured data. The green lines
show the position of each row of nodes from the previous measurement, the starting time
of the projection. This is what the surface would look like if no prediction was run. Lastly,
the inter-frame prediction of each row of nodes is shown in blue. It can easily be seen that
the position of the nodes further down the cloth are better predicted using the inter-frame
prediction than using just the outputs at the time the projection begins. This result shows
that using inter-frame prediction can reduce image distortion during projection, as it better
matches the true position of the surface compared to just using measurement data.

Figure 6.21: Inter-frame prediction of experimental data

91

Chapter 7

Conclusions and Future Works

The purpose of this thesis was to validate the use of the extended Kalman filter (EKF)
for predicting the position of time-varying surfaces. More specifically, by combining a well
known model for simulating deformable bodies with the EKF, a real-time prediction algo-
rithm was created. Further, for surface movement during image projection, an additional
prediction scheme was developed to minimize error at the the time of projection.

In Section 3.1, the mass spring model was was explained and derived. Interconnected
mass-spring-damper systems are used to reproduce the dynamics of deformable bodies, and
can be represented using a nonlinear state space model. The dynamics of the system are
produced by forces from springs and dampers, along with any external forces. The model
is verified by simulating with two integration schemes. The first scheme is an explicit
integration algorithm, the Runge-Kutta method. The Runge-Kutta method, as with all
explicit methods, uses only previous data points to calculate the next output. As a result, it
can become unstable when dealing with numerically stiff systems. Thus, small integration
step times are required to obtain stable results, making it computationally demanding.
The second scheme is an implicit integration scheme, the backwards Euler method. This
method uses both the previous and the next data point to compute the next output,
making it inherently stable. As a result, larger integration step times can be used, making
it applicable for real-time applications. It is less accurate than the Runge-Kutta algorithm
when the integration step-time is larger than the Runge-Kutta’s integration step-time.
However, they produce equivalent results when the same step-time is chosen (assuming the
Runge-Kutta is numerically stable).

Since the efficiency of the EKF algorithm is inversely proportional to the number of
states in the model, reducing the number of states allows the algorithm to be run faster,

92

and as a result, in real-time. In Chapter 5, state compression is completed by identifying
parameters that minimize the difference in behaviour between the original dense model
and a desired sparse model. As the system does not seem to have a unique minimizing
parameter set, a heuristic based minimization algorithm is used to find a solution. So-
lution sets were found for compressing a 21 × 21 model to both a 11 × 11 and a 5 × 5
model. Generally, when fewer states are used in the compressed model, the results are
less accurate. However, by introducing a new cost function for simulated annealing, and
additional parameters, the behaviour of sparse models can be improved. When searching
for the optimal parameter vector, the simulated annealing algorithm was first run on only
one scenario. This resulted in the overfitting of data. Instead, another cost function which
finds a parameter vector that minimizes the error between multiple scenarios is used. Al-
though this produced slightly worse results when applied to the original scenario, it did
produce a more general parameter set. By including many scenarios into the cost function,
it is likely that a general solution can be found. The results of this section show that dense
models can in fact be compressed, with little loss in behaviour, so that prediction can be
run in real-time.

In Chapter 6, the EKF is formulated using the linearization of the mass spring model.
The model is linearized by finding the Jacobian at a specific operating point, and is used as
the state transition matrix in the EKF algorithm. The EKF produced convergent results
in two simulation scenarios: one with added process noise and the other with external
random viscous forces. These perturbations were assumed to be modelling errors in the
system, and were compensated for by tuning the noise covariance matrices Qk and Rk. To
validate the effectiveness of the EKF, experimental data was collected and tested upon.
Using an Optitrack motion capture system, the position of discrete nodes on a towel being
perturbed was recorded. The EKF was able to predict the position of nodes 0.1 seconds
into the future with convergent results. An obvious next step for this algorithm is real-
time implementation. The EKF ran on the recorded data fast enough to show real-time
implementation is possible; however, the data collection method needs improvement for
the system to be usable. Optimal choices for model parameters (spring constants, damper
constants, masses) were also discussed in this thesis. Finding more precise values of model
parameters would likely improve the accuracy of the predictions. Using previously studied
analytic values for spring parameters did not produce useful results. As a result, a data
driven system ID approach was used. By using a simulated annealing algorithm, a new
parameter set was found that reduced the prediction error by a factor of 4. An additional
prediction method was also developed to compensate for motion during the projector’s
drawing phase. The position of each node is estimated at their specific time of drawing
so that image distortion can be minimized. The results show that using the inter-frame

93

prediction method provides an improvement over using just measurement data, as it more
closely approximates the position of the surface at the time of image projection.

While the results of using the mass spring model are visually appealing, it does lack
in physical accuracy when compared to newer methods. Many studies have improved
the model by using nonlinear parameters or introducing material properties to the model
[28] [26]. Future work includes using these modified mass spring systems as the base
physical model for prediction. Furthermore, if more computational power is available, the
model can be abandoned entirely for a more physically accurate model. With technological
advancement in computational power, models for deformable body motion, such as Eulerian
models, can be used in real-time. This will allow for the most accurate predictions that
fully encapsulate the properties of the physical object.

Since a heuristic approach was used to find the minimizing parameter set in Chapter 5,
there is no guarantee that the solution is the global minimum. Furthermore, the solutions
are specific to the simulation scenarios they were solved for. This means that for every
situation, a new parameter set has to be found. This is computationally expensive, and as
a result, not advised. Using multiple scenarios in the cost function was studied, providing
more general results; however, this requires a great amount of preprocessing. Current
research looks at how to use system identification techniques to find optimal mass spring
parameters. Techniques such as approximate analytic expressions can be used to find
minimizing parameters quickly and without any preprocessing. Future work, therefore,
involves applying these techniques to model compression, in real-time, to determine the
optimal parameters for EKF implementation.

In Chapter 6, a marker based motion capture system is used to measure position data
of surfaces. Marker-based motion capture systems are highly accurate, but are expensive
and very prone to occlusions. Camera based systems combined with computer vision
techniques, such as feature selection, can be used instead to capture the position of surfaces
in real-time. Future work includes using the Microsoft Kinect, for example, to measure
the position of a deformable surface. Although this will likely cause an increase in sensor
noise in the system, the estimation filter should be able to compensate. Further, if the
accuracy of the EKF is not high enough, other estimation filter algorithms could be applied
to improve the accuracy of predictions. The unscented Kamlan filter can be explored as it
solves for a higher order approximation of the nonlinearities in the model with the same
computational complexity. Particle filters can also be implemented as they may improve
prediction accuracy.

Immediate future work would be to implement this in a real-time system to determine
if, in fact, the inter-frame prediction does improve the user experience. Further, the first

94

real-time implementation of this algorithm will be to the surgical simulator in [50]. This
prediction scheme will allow for a more immersive experience for surgeons while they train
for pedicle screw insertion surgery.

95

References

[1] Analogous electrical and mechanical systems.

[2] Checkerboard background patterns.

[3] Derivative touchdesigner. http://www.madmapper.com/. Accessed: 2016-08-05.

[4] Jennifer lopez american idol. http://akkidokie.com/blog/wp-content/uploads/

2015/03/JLos-epic-Projector-Dress_akkidokie-1.jpg/. Accessed: 2016-08-05.

[5] Madmapper. http://www.madmapper.com/. Accessed: 2016-08-05.

[6] Optitrack motion capture systems. http://www.http://optitrack.com/. Accessed:
2016-08-05.

[7] Tutorial 5 : A textured cube. http://www.opengl-tutorial.org/

beginners-tutorials/tutorial-5-a-textured-cube/. Accessed: 2016-08-05.

[8] A Alipour and F Zareian. Study rayleigh damping in structures; unceratinties and
treatments. In Proceedings of 14th World Conference on Earthquake Engineering,
Beijing, China, 2008.

[9] Brian DO Anderson and John B Moore. Optimal filtering. Courier Corporation, 2012.

[10] Uri M Ascher, Steven J Ruuth, and Brian Wetton. Implicit-explicit methods for time-
dependent PDE’s. University of British Columbia, Department of Computer Science,
1993.

[11] KJ Bathe and H Saunders. Finite element procedures in engineering analysis, 1984.

[12] Ted Belytschko, Yury Krongauz, Daniel Organ, Mark Fleming, and Petr Krysl. Mesh-
less methods: an overview and recent developments. Computer methods in applied
mechanics and engineering, 139(1):3–47, 1996.

96

http://www.madmapper.com/
http://akkidokie.com/blog/wp-content/uploads/2015/03/JLos-epic-Projector-Dress_akkidokie-1.jpg/
http://akkidokie.com/blog/wp-content/uploads/2015/03/JLos-epic-Projector-Dress_akkidokie-1.jpg/
http://www.madmapper.com/
http://www.http://optitrack.com/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-5-a-textured-cube/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-5-a-textured-cube/

[13] Jan Bender, Matthias Müller, Miguel A Otaduy, and Matthias Teschner. Position-
based methods for the simulation of solid objects in computer graphics. Eurographics,
2013.

[14] Gérald Bianchi, Barbara Solenthaler, Gábor Székely, and Matthias Harders. Simul-
taneous topology and stiffness identification for mass-spring models based on fem
reference deformations. In International Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 293–301. Springer, 2004.

[15] Oliver Bimber and Bemd Frohlich. Occlusion shadows: using projected light to gen-
erate realistic occlusion effects for view-dependent optical see-through displays. In
Mixed and Augmented Reality, 2002. ISMAR 2002. Proceedings. International Sym-
posium on, pages 186–319. IEEE, 2002.

[16] Oliver Bimber and Ramesh Raskar. Spatial augmented reality: merging real and virtual
worlds. CRC press, 2005.

[17] Oliver Bimber and Ramesh Raskar. Modern approaches to augmented reality. In
ACM SIGGRAPH 2006 Courses, page 1. ACM, 2006.

[18] Eddy Boxerman and Uri Ascher. Decomposing cloth. In Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 153–161.
Eurographics Association, 2004.

[19] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[20] Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and Tamy Boubekeur.
Markerless garment capture. In ACM Transactions on Graphics (TOG), volume 27,
page 99. ACM, 2008.

[21] Robert Bridson, Sebastian Marino, and Ronald Fedkiw. Simulation of clothing with
folds and wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, pages 28–36. Eurographics Association, 2003.

[22] Morten Bro-Nielsen. Finite element modeling in surgery simulation. Proceedings of
the IEEE, 86(3):490–503, 1998.

[23] Mark Carlson, Peter J Mucha, and Greg Turk. Rigid fluid: animating the interplay
between rigid bodies and fluid. ACM Transactions on Graphics (TOG), 23(3):377–384,
2004.

97

[24] Mark Carlson, Peter J Mucha, R Brooks Van Horn III, and Greg Turk. Melting and
flowing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 167–174. ACM, 2002.

[25] Yunqiang Chen, Yong Rui, Thomas S Huang, et al. Multicue hmm-ukf for real-time
contour tracking. IEEE transactions on pattern analysis and machine intelligence,
28(9):1525, 2006.

[26] Kwang-Jin Choi and Hyeong-Seok Ko. Stable but responsive cloth. In ACM SIG-
GRAPH 2005 Courses, page 1. ACM, 2005.

[27] Oliver Deussen, Leif Kobbelt, and Peter Tücke. Using simulated annealing to ob-
tain good nodal approximations of deformable bodies. In Computer Animation and
Simulation95, pages 30–43. Springer, 1995.

[28] Bernhard Eberhardt, Andreas Weber, and Wolfgang Strasser. A fast, flexible, particle-
system model for cloth draping. IEEE Computer Graphics and Applications, 16(5):52–
59, 1996.

[29] Naser El-Sheimy, Eun-Hwan Shin, and Xiaoji Niu. Kalman filter face-off: Extended
vs. unscented kalman filters for integrated gps and mems inertial. Inside GNSS,
1(2):48–54, 2006.

[30] T Ertl. Computer graphicsprinciples and practice. In Data Acquisition and Analysis
for Multimedia GIS, pages 411–421. Springer, 1996.

[31] Sarah FF Gibson and Brian Mirtich. A survey of deformable modeling in computer
graphics. Technical report, Citeseer, 1997.

[32] Vincent Granville, Mirko Krivánek, and J-P Rasson. Simulated annealing: A proof
of convergence. IEEE transactions on pattern analysis and machine intelligence,
16(6):652–656, 1994.

[33] Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. Discrete shells.
In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 62–67. Eurographics Association, 2003.

[34] Michael Hauth, Olaf Etzmuß, and Wolfgang Straßer. Analysis of numerical methods
for the simulation of deformable models. The Visual Computer, 19(7-8):581–600, 2003.

[35] Andrew J. Heunis. ECE 686 Course Notes. University of Waterloo, 1 edition.

98

[36] Anna Hilsmann, David C Schneider, and Peter Eisert. Realistic cloth augmentation
in single view video under occlusions. Computers & Graphics, 34(5):567–574, 2010.

[37] Masaru Hisada, Keiko Yamamoto, Ichiroh Kanaya, and Kosuke Sato. Free-form shape
design system using stereoscopic projector-hyperreal 2.0. In 2006 SICE-ICASE Inter-
national Joint Conference, pages 4832–4835. IEEE, 2006.

[38] Daisuke Iwai and Kosuke Sato. Document search support by making physical docu-
ments transparent in projection-based mixed reality. Virtual Reality, 15(2-3):147–160,
2011.

[39] Thomas Jakobsen. Advanced character physics. In Game Developers Conference,
volume 3, 2001.

[40] Rolf Johansson. System modeling and identification. Prentice-hall, 1993.

[41] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 82(1):35–45, 1960.

[42] Marc D Killpack. Automated tracking and estimation for control of non-rigid cloth.
arXiv preprint arXiv:1403.1653, 2014.

[43] Bojan Kocev, Felix Ritter, and Lars Linsen. Projector-based surgeon–computer in-
teraction on deformable surfaces. International journal of computer assisted radiology
and surgery, 9(2):301–312, 2014.

[44] TJ Lahey and GR Heppler. Mechanical modeling of fabrics in bending. Journal of
applied mechanics, 71(1):32–40, 2004.

[45] John Denholm Lambert. Numerical methods for ordinary differential systems: the
initial value problem. John Wiley & Sons, Inc., 1991.

[46] Bryn Lloyd, Gábor Székely, and Matthias Harders. Identification of spring parameters
for deformable object simulation. IEEE Transactions on Visualization and Computer
Graphics, 13(5):1081–1094, 2007.

[47] Jean Louchet, Xavier Provot, and David Crochemore. Evolutionary identification of
cloth animation models. In Computer Animation and Simulation95, pages 44–54.
Springer, 1995.

99

[48] Kok-Lim Low, Greg Welch, Anselmo Lastra, and Henry Fuchs. Life-sized projector-
based dioramas. In Proceedings of the ACM symposium on Virtual reality software
and technology, pages 93–101. ACM, 2001.

[49] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The journal of chemical physics, 21(6):1087–1092, 1953.

[50] Maryam Moafimadani, Adam Gomes, Karl Zabjek, Reinhard Zeller, and David Wang.
Haptic Training Simulator for Pedicle Screw Insertion in Scoliosis Surgery, pages 301–
311. Springer International Publishing, Cham, 2016.

[51] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson.
Physically based deformable models in computer graphics. In Computer graphics
forum, volume 25, pages 809–836. Wiley Online Library, 2006.

[52] Brian J Odelson, Murali R Rajamani, and James B Rawlings. A new autocovariance
least-squares method for estimating noise covariances. Automatica, 42(2):303–308,
2006.

[53] Ben Piper, Carlo Ratti, and Hiroshi Ishii. Illuminating clay: a 3-d tangible interface
for landscape analysis. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 355–362. ACM, 2002.

[54] Xavier Provot. Deformation constraints in a mass-spring model to describe rigid cloth
behaviour. In Graphics interface, pages 147–147. Canadian Information Processing
Society, 1995.

[55] Parinya Punpongsanon, Daisuke Iwai, and Kosuke Sato. Projection-based visualiza-
tion of tangential deformation of nonrigid surface by deformation estimation using
infrared texture. Virtual Reality, 19(1):45–56, 2015.

[56] Witawat Rungjiratananon, Yoshihiro Kanamori, and Tomoyuki Nishita. Chain shape
matching for simulating complex hairstyles. In Computer graphics forum, volume 29,
pages 2438–2446. Wiley Online Library, 2010.

[57] Manika Saha, Bhaswati Goswami, and Ratna Ghosh. Two novel costs for determining
the tuning parameters of the kalman filter. arXiv preprint arXiv:1110.3895, 2011.

[58] Jürgen Steimle, Andreas Jordt, and Pattie Maes. Flexpad: highly flexible bending
interactions for projected handheld displays. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 237–246. ACM, 2013.

100

[59] Rahul Sukthankar, Tat-Jen Cham, and Gita Sukthankar. Dynamic shadow elimi-
nation for multi-projector displays. In Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on,
volume 2, pages II–151. IEEE, 2001.

[60] Endre Süli and David F Mayers. An introduction to numerical analysis. Cambridge
university press, 2003.

[61] Matthias Teschner, Bruno Heidelberger, Matthias Muller, and Markus Gross. A ver-
satile and robust model for geometrically complex deformable solids. In Computer
Graphics International, 2004. Proceedings, pages 312–319. IEEE, 2004.

[62] Aydin Varol, Mathieu Salzmann, Engin Tola, and Pascal Fua. Template-free monocu-
lar reconstruction of deformable surfaces. In 2009 IEEE 12th International Conference
on Computer Vision, pages 1811–1818. IEEE, 2009.

[63] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear
estimation. In Adaptive Systems for Signal Processing, Communications, and Control
Symposium 2000. AS-SPCC. The IEEE 2000, pages 153–158. Ieee, 2000.

[64] Yanzhen Wang, Yueshan Xiong, Kai Xu, Ke Tan, and Guangyou Guo. A mass-
spring model for surface mesh deformation based on shape matching. In GRAPHITE,
volume 6, pages 375–380, 2006.

[65] Yongning Zhu and Robert Bridson. Animating sand as a fluid. In ACM Transactions
on Graphics (TOG), volume 24, pages 965–972. ACM, 2005.

101

APPENDICES

102

Appendix A

Sparsity Result for Rectangular Mass
Spring Model Jacobian

To determine the sparsity of the Jacobian as a function of the total number of nodes
n = n1 × n2, the total number of non-zero elements must be found. The number of spring
and damper connections here is s, where s is solved for by using Equation (5.5). Trivially,
the upper left 3n× 3n matrix has no non-zero elements, as it is always 03n×3n. The upper
right 3n× 3n matrix contains 3n non-zero elements as it is always I3n×3n. The lower right
3n× 3n matrix Jav can always be written as

Jav = Uav + Vav, (A.1)

by solving Equations (3.14) and (3.15). Here Uav is a negative definite, diagonal, 3n× 3n
matrix, and Vav is a 3n × 3n matrix containing 2s (due to symmetry) negative definite,
diagonal, 3 × 3 sub-matrices. Therefore, Jav will always have 3n + 6s non-zero elements.
The total number of non-zero elements contained lower left 3n × 3n matrix, Jap, cannot
be analytically determined. Instead, an upper bounds of the number of non-zero elements
will be calculated instead. Similar to Jav, Jap can be written as the sum of two matrices

Jap = Uap + Vap. (A.2)

Here, Uap is a 3n×3n block-diagonal matrix containing only the values found from Equation
(3.20). The maximum number of non-zero elements in Uap is therefore 9n. Similar to Vav,
Vap contains 2s 3 × 3 matrices, and as a result, will have a a maximum of 18s non-zero
elements. Altogether, Jap can have a maximum of 9n+ 18s non-zero elements. Therefore,
the entire Jacobian can have a maximum of 15n + 24s non-zero elements. As n1 and n2

103

increase in magnitude, the number of spring connections can be approximated by

s ≈ 6n. (A.3)

As a result, the sparsity of the Jacobian, S(n), for large values of n1 and n2 is

S(n) =
15n+ 24s

36n2
≈ 53

12
· 1

n
. (A.4)

For example, a 21× 21 node cloth model would have a sparsity of approximately S(441) ≈
0.01, or 1% of its elements are non-zero. Due to the sparsity of this system, sparse matrix
decomposition techniques, such as LU factorization [19], can be used to solve linear systems
containing the Jacobian. For example, the implicit integration scheme in Section 3.3 can be
implemented much more efficiently when using LU factorization on a highly sparse system.

104

	List of Tables
	List of Figures
	Introduction
	Background
	Deformable Models
	Spatial Augmented Reality
	Non-Rigid Projection Based AR
	Projection Mapping

	Derivation of Mass-Spring-Damper Model
	State Space Formulation
	Linearization
	Model Simulation

	Review of Filtering Approaches
	Least Squares Estimation
	Kalman Filter
	Extended Kalman Filter
	Unscented Kalman Filter

	Model Compression
	Data Driven Compression

	Estimation Filtering Applied to Model
	Formulation of Filter
	Results
	Parameter Tuning
	Experimental Results
	Projector Compensation

	Conclusions and Future Works
	References
	APPENDICES
	Sparsity Result for Rectangular Mass Spring Model Jacobian

