Tabular Abstraction, Editing, and Formatting

by

Xinxin Wang

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
n

Computer Science
Waterloo, Ontario, Canada, 1996

(©Xinxin Wang 1996

jonal Lib
L ey

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

385 Wellington Strest
QOttawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

ISBN 0-612-09397-2

i+l

Canada

395, rue Wellington
Ottawa (Ontario)

Your fila Votre référence

Qur flile Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
metire des exemplaires de cette
thése a la disposition des
personnes intéressées,

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Nila these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation. '

Name
Disserhation Absiracts Infernational is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your disseriation. Enter the corresponding four-digit code in the spaces provided.

SUBJECT TERM SUBJECT CODE

Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE ARTS Psychology ...vvevvececrieiiricirinns 0525 PHILOSOPHY, RELIGION AND Ancient,.....ocoocoienerrenenen.. 0579
Architochingcemiveiivnns 0729 Reading0535 THEOLOGY Medieval .. 0581
i . . Religious . ..0527 Philoseoh Modern 0582
iences ..., L0714 R ivo?;e Y e Black w..cvvvuvverererecrenreeraene 0328
o ~0533 ° |ghne\n:u AFEAN oo eceenne 0331
Social Sciences .. 0534 Biblical S Asia, Australio and Oceania 0332
iology of ..0340 cl Canadianoereeierrnrren.. 0334
2 0529 Qorgy ¢ EUrOEAN ..o 0335
Poﬁhor Training g;:]ig Pﬁ?l ogph);'a: : Lﬁ.l‘i:‘r:irrgericun et 833%
ecl . , : iddle Easterncevinees
Tests " 0288 Theology .oevveveeririvrieserinnenn.. 0469 United Sfales e 0337
Vocotionalcveeeresrersenseerenre 0747 SOCIAL SCIENCES I-Lgsiory of Sciencecvvivecennenens gggg
LANGUAGE, LITERATURE AND ﬁr:;:g:;\l Studiesccooernrernen... 0323 Politicai &diares
LINGUISTICS mhcggf’ogy o324 General ..c......oroeevnniscecneennn 0615
Lan Coltoral 0326 Internatienal Law and
Administration, ..0514 %‘:r?:}d i 0679 Physical ... 0327 Relafions L0616
Adult and Continuing 0316 ANCIONY ceroerr oo .0 Business Administration Public Adm -0617
Agricultural0517 Linowishics Geanerd 0310 Recreation .. 814
1 S 0273 Mogdem - ACCOOMENg o 0372 Social Work 0452
Blli |und Mullicuhuml 0282 . Satestsansr sy 0 g .. N SOCIO'OQY
ngua Literatura Banking0770
SINESS coveesricnessenssssersassnnessenss 0688 Genera! Manacerment 0454 General e 0626
Community College........... . 0275 Classical . Mcﬂ(e%in " 0338 Criminol oclogy ...0627
Curriculum and Instruction ..0727 Comparative. " Canadian Sh?dues " 0385 Demograp Ry0938
Early Childhood 0518 Modiaral - Eennamics Ethnic and Kagial Studies 0631
Elementary ..., 0524 Moderns .o General oo, 0501 Individual and Family
Finance ... 0277 pcen - sl ~0a SHudies e 0628
Guidance a 0519 Americon Commerce-Business 0505 Industrial and Labor
HK]'H'I 0680 Asian - Finance . - 0508 RE[D“OHS0629
Higher .. 0745 Canadian (English) - History oo " 0509 Public and Sacial Wellare ... 0630
Hisfor}r Of - 0520 Canadian Fravgnc] i ‘0355 Lﬂbo:y 05]0 SOC[OI Structure and
Econ 0278 Enalish i "0593 Theory .. “ 0511 Developmentc....c... 0700
Indusirial ... 921 Gepmanic | 0311 Follore . /0358 Theory ond Methods 0344

Latin American ... 20312 Geography.... 0366 Transportalionogeeneen
0280 Middle Eastern 0315 Geronto?ogy BTSRRI + < L1 Urban and Regional Planning 0959
..0522 ROMIGRCE oo 0313 HisIory Women's Sudiesocvvvvrnerieeinens 0453
gggg Slavic and East European 0314 Genertlcovvriernriieennnnn 0578
THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES GORSY .ovreererranriaransrreensesans 0370 Speech Pathology 0440 Engineerin
Agriculture Geology ... 0372 Toxicology ... 383 General0537
General ... 0473 Geophysics 0373 Home Econormics0386 Aerospace .0538
AGroRomy ..u..oc.esurismsrsien 0283 lﬁ-k_rdrology . 0388 Agricultura .0539
Animal Culture and ineralogy 0411 PHYSICAL SCIENCES Automotive .0540

Nutrition Palecbotany .. 0345 Pure Science Biomedical0541
Animal f‘arhologﬁ Pa eoeccilogy . 0426 C'F:emish-ly 5) Chemical0542
Fcoedc}?:cl’ence ur‘l . ;g'g:&?%y. ggég Gen.er?l N g;gg EI:éironics and Electrical 823431
Forestry and Wi Palynology0427 ‘RQ”C“.“‘"'I“ - " 0484 Heat and Thermodynamics ... 0348
Flant Culture .. Physica?geogrcphy ..0368 B."“LY"C? " 0487 Hydroulicc.oooeer i 0545
Flanl gﬁfho!?gy Physical Oceanography0415 Ir:gc OEI'“T;ICSITY " 0488 Industrial .. 824?

ant Physiology B0 I N i oAy - Maringcoeevn. ..054

Range Management 0777 HEALTH AND ENVIRONMENTAL S‘;c::rc 8138 Materials Science .

. [Wood Technology0746 SCIENCES Phc?nnacEJﬁEu 0491 Mechanical
'°a/ | 0306 Environmental Sciences 0768 Physical0494 mﬁiguurgy
G nIeru e 0308 Health Sciences Polymer .. 0495 lelng

IO, General Radialion . 0754 o
Biostafistics . 0308 Audiology . 0300 MGHBMIONCS rrrrrorerrorrorrr. 0405 Packeging ...

B fﬁ:ny.... - 0a08 Chemothera 0992 Physice g;ell'rg eum R

Ee oy 8399 Dentistry .. 0567 General ... 0605 2 n'ltarysu_n UnICIDO. 0330
Ec?oogyl 838 Education .. 0350 Acoustics . " 0985 Geo yshernl cience 7
Gne rr‘\oogy. " 0389 Hospital Man 0769 Astronomy) 1ecr nogng e -

u NENCs ... 5793 Human Development . 0758 Asirophysics . .. 0606 PIP?-'G |_n|:_msh esleurc :

IMNG.oQY ... Immunclogy 0982 Alrnospﬁeric 5 0408 ostics SEna ogy ... -
Microbiclogy - ...0410 by ; Texfile Technologycccocuvee
Molecul 9307 Medicine and S ...0564 Afomic

olecular ... Mental Health 0347 Electronics and El
Neuroscience0317 Nursin 0569 i orw Portic] 3’ PSYCHOLOGY
Oceanography ... 0416 Nty e s o Bty e @ S < SR —— 0621
;hﬁs_lo‘!ogy “““ 83%? Obstetrics and Gynecology .. 0380 Fluid and Plasma 0759 g?hgw?m! - ggg%

adighon ... Occupational Health an Molecular 0609 mea s -
Veterinary Science. ...0778 RO < ' Nuclear 0610 Developmental 0620

5 Zhooogy ...0472 Ophthoﬁnobgy " 0381 Oplics. . 0759 Fx ru:nelnlal . ..0223
fophysics 0786 Pathalogy 0571 Radiction ... 0756 nausteic . 0624
Meggru[.............................. acee Pharmatology 0419 solid State “0611 Pﬁrsc'mlc ity .. 623
N Pharmacy 0572 SIOlSHCS orveecors s 0463 pISERIES L
EARTH SCIENCES physical Therapy 0382 Applied Sci Peychometrics 532
Biogeochemistry v 0425 ud|_|c|Hea|rh """ 0373 Appli:-,d Mecl}?:ncig: 0346 Sf))?luf’me e 451
GeOChERISITY . rsnrressssesn 0996 Radiolagy orvrverrene- 0374 i T ooed

0575 Computer Scienceovveeeeeee 0984 @

1

Nom
Dissertation Abstracts Infernational est organisé en cotégories de sujets. Veuillez s.v.p: choisir le sujet qui décrit le mieux votre

thése et inscrivez le code numérique approprié dans l'espace réservé ci-dessous,

SUJET CODE DE SUJET

Cabégories par sujets
HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS Lecturecoveriicnercenreermernconeens 0535 ;H]ERSOPHIE, RELIGION ET ANCienneooovioeceicencn. 0579
Architcturecoerrivianininnn. 0729 Mathématiques0280 HEOLOGIE Medievale0581
Bequx-arfs 0357 Musique0522 Philosophieccco.cosvrcnene. 0422 Moderne............ ..0582
Bibliohéconomie 0399 Orientalion et consultation0519 Religion Hisloire des noirs ..0328
Ci Freresrsnsssngens .0900 Philosophie de I'éducafion 0998 énéralitesccooeeernennn... 0318 Alricaine 0331
Communication verbale . .0459 Physiqueocvetrecreirecrierennn.. 0523 Clergé............ Canadienne ..0334
gaommuniouﬁons 873’(733 Pragrammes d'iéiudes e o727 Er_ucl;%? bilbliquelas Eluls-Unis - 8%%%
NSBoccvereenes . enseignementcccvnneee istoire des religions ... uropéenne
Histoire de I'art ... 0377 Psychologie0525 Philosophie de la religion Moysr?orienfufe0333
Journalisme ... L0391 Sciences 0714 gologie .. 0469 Latine-américaine 0334
MUSIQUE ... rocrenrriraesnse .0413 Sciences socioles...............cne..... 0534 Asie, Austratie et Océanie ... 0332
%iences de Vinformation gigg ?oclzol ie de |'éducation 89?8 JSACIrEHCEsI SOCIALES Histoire des sciences............ 8.33]33
BEIre ...oiiiiis i echnelogie ..., nthropologie LOISIES ooveereearcniemce e o
EDUCATION LANGUE, AITTERATURE ET ér?:’éo"ogie gggg P|upifjcotii:n urbaine et 0999
ulturelle”... ségionole ..o,
e reion LINGUISTIaUE Drar e 8308 5“:3%12213-'12:' s 0615
PPN .- L] =
Lon uprsnémlités 0679 Economie Administration publigue 0817
Colldges ¢ Anciennes ... 0289 Généralités 0501 Droil ef relatiops
ommerce . auiehaue . ommerce-Aftairt infernationales ... "
Economie dome . .0278 I‘, lan:g:lu;shque... 8%3? %:onomie agrirgc; e gggg Sociol;:gie foncl ge16
Education permanente 0516 - IS wrvermmsnsems s Economie du travail 0510 Généralités 0826
Eﬂucghtion gfégﬁ;a_loire 82&3 L'“egéunr;difés 0401 Linances 8ggg éide et %)ien-c‘:ire socidl0630
ucation sanitaire . : istoire riminologie et
Enseignement agrico L0517 Ag:,"em:g;""' gggg Théorie 0511 étublis?grnenls .
Ensei _nminenll llingue 0282 Mediévale .. 0297 .Efuges amé i 0323 Pénilenriaires 8g§g
mulficulturel ..o - . Etudes canadiennes , 0385 Demographiec.occovenene
Enseignement industriel . . 0521 m‘;?‘: gg?g Etudes beministes .. 0453 Eiud:sg cepl' individu ef
Enseignement primaire.0524 Américaine 059 Folklere 0358 , delafomille ..o 0628
Enseignement professionnet0747 Anglaise T 0593 Géogrophie0366 Etudes des relations
Enseignement religieux 0527 Asi%li e . ' 6305 Gérantologie ,........cowieecneans 0351 inferethniques et
Enseignement secondaire0533 Canadienne [Anglaisel ... 0352 Gestion des affaires des relations raciales 0631
Enseignement spécial -...0529 Canadienne [Fro% aise) o Géneralitésoocoervn oo 0310 Structure et développement
Esseignemenl supérieur, 8%;3 Garmanique ¢ ' édminislration . 8;;3 Thsoci«:nl e 8;2(3
aluation CR S ' ANQUESce. éorie et méthades.
Finances0277 kﬂuhn:nc_:g:?er::gll:e. ’ Con?plabilité . ..0272 Travail et relafions .
}F-Iormoﬁ? des enseignants. 8?%8 Roon):une 0313 y Markefingcooevnenen. ... 0338 T industrielles ..o 0629
istoire de I'éducation ... e istoire ransports .
Langues et ligérature 0279 Slave ef est-européen - 0314 Histoire générale 0578 Trcvaﬁﬂso;iol
SCIENCES ET INGENIERIE
iCIEm':ES BIOLOGIQUES %lo}?ie 8%;% SCIENCES PHYSIQUES Bcil:anllédiccleh 0541
riculture sSigue aleur ef ther
¢ Genéralitdsocererrerennern. 0473 L‘lzdlfjolggii0388 gﬁ'-er-'ces Pures madynamique0348
TONOMIE. ..o e 0285 inéralogie0411 '"é:: ralits 0485 Conditionnement
Alimentation et f Océanographie pl 0415 B “ﬁ‘.’“ 85 oo 187 {Emballoge)
alimentaire 0359 Po.t:eol?oki:mgue 0345 c'ﬁcmi':’ézr}'é;;[e o740 Génie aérespotia
3 7 ok I
Explotution des péterages ... 0777 Palé . Chimie minérole --0488 Génie électronique ef
Snﬂ_lologie cmimole gjgg Pa i .0 Eh:m:: z‘r’;!;‘:’lgﬁe gigg Gélectricéue e
athologie vagétale . . . mt énie industriel .
Ph sio?ggie o Etale e 0817 SCIENCES DE LA SANTE ET DE C#'”."e pharmaceutique gjgl Génie mécanique ..
Syz\’ficullure o Toune 0478 L'ENVIRONNEMENT :; e Genie nucléaire..........
. Technologie du bais.............. 0744 Economie domesique 0386 Rgirg'%gs : Ingénierie des systémes.
B el5 .o 0306 Scionces de Fenvironnement0768 Mathématiques Weialurgre oo
Anatomie.........c.cc.oonnns 0287 Scne&%isér:“fuéssunfe 0566 Physcl;c}aue' lité Science des matérigux .
Biclogie [Statistfiques) 0308 Administration des Finiiame” 4769 A ner? iés Technique du pétrele
Biclogte moléculaire 0307 ‘Alimentation ef nutriﬁﬁn 0570 A‘:°“5 MQUE - Technique miniére 0551
Botanique 0309 ‘Audioloaie v 4300 ""‘t’r""m'e."f 0406 Techniques sanitaires et
Cellule ...t 0379 Chimiothéran {09972 Elosfrop' Ys'q“'""_""""'.";": """" 0407 municipales...........c... e, 0554
Ecologie ..o 0329 nonerep : ecironique e elecincite Technologie hydraulique0545
Entomologie 0353 Denlisterie..... -0567 Fluides et plosma................ 0759 Mécanique appliquée 0346
Hom 32 e 0329 Devejoppemen 0758 Mé!éorologie Ciotacs s FJIF; QUEeE...............l 0128
Limno §g[ie':::: o7 Ay Saao. St - i Noiires Fﬂ%lq]o \
Microbiclogie ..o 4 Lais : [0575 leoi achnologie) 795
Neurologiecewrreeriens 0317 hﬁlescilrescme ' P nuc ecurei] Recherche opérationnelle0796
%‘cyes?agg{gehre 83:133 gllérqpie _____ - 0354 Ph;:;gﬂg geolrf;fg; : Texdiles et tissus {Technologie] 0794
ROGHGHON ... 11 rrororor 082] Mbdecine of chirurgle ... 0364 Physique moléculaire PSYCHOLOGIE
Scie]nce VAIBTINGIreoec..c. gigg Ophtoin?ologiegy ogie .- 0381 Ru)é!ilcﬂ;]:nnuc ealre. Eénérulillés 82%}5
oologie ... G T e ersonnalite .,
Biophysi:%e PO:TIES hti,eme ----- ggg? Statisfiques ... e Psychobiologia ... " H34%
Généralitéscoooveeeenrerenae 0786 Pmrm?:?:ie 0572 Sciences Appliqués Et Psychologie dlinique 0422
Medicalecc.coeeveeeeenn 0760 Pmrmucolo.é.i.e oa1e Technologm Psychologie 50 gom;foriemenr gggé
iothérapie .. HQUE oo eeenesieias 4 Psychologie dis développement ..
SCIENCES DE LA TERR Physiothérapie .. 0382 Informatique . 0984 b chologie expérimentole ... 0623
e Radiolegie0574 ngénierie o e X
Biogéochimieccoovrvuvenn.. 0425 Sante mantale . 0347 Genéralités Psychologie industrielle
Sonté publique . 0573 Agricdle ... Psychologie physiologique ..
Sains infirmiers . ..0569 Automabile psycnologie soclale -
Psychomatrie ..o

Toxicologierrmmmmn, 0383

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other istitutions or
individuals for the purpose of scholarly research.

O@JL/WW;

I further authorize the University of Waterloo to reproduce this thesis by photocopying
or by other means, in total or in part, at the request of other institutions or individuals
for the purpose of scholarly research.

WWW/

The University of Waterloo requires the signatures of all persons using or photocopy-
ing this thesis. Please sign below, and give address and date.

Abstract

This dissertation investigates the composition of high-quality tables with the use of
electronic tools. A generic model is designed to support the different stages of tabu-
lar composition, including the editing of logical structure, the specification of layout
structure, and the formatting of concrete tables. The model separates table’s logical
structure from its layout structure, which consists of tabular topology and typographic
style. The notion of an abstract table, which describes the logical relationships among
tabular items, is formally defined and a set of logical operations is proposed to manip-
ulate tables based on these logical relationships. An abstract table can be visualized
through a layout structure specified by a set of topological rules, which determine the
relative placement of tabular items in two dimensions, and a set of style rules, which
determine the final appearance of different items. The absolute placement of a concrete
table can be automatically generated by applying a layout specification to an abstract
table. An NP-complete problem arises in the formatting process that uses automatic
line breaking and determines the physical dimension of a table to satisfy user-specified
size constraints. An algorithm has been designed to solve the formatting problem in
polynomial time for typical tables. Based on the tabular model, a prototype tabular
composition system has been implemented in a UNIX, X Windows environment. This
prototype provides an interactive interface to edit the logical structure, the topology and
the styles of tables. It allows us to manipulate tables based on the logical relationships
of tabular items, regardless of where the items are placed in the layout structure, and
is capable of presenting a table in different topologies and styles so that we can select a
high-quality layout structure.

v

Acknowledgements

I would like to express my gratitude to my supervisor, Professor Derick Wood, for
his support, advice and encouragement. Without his tireless reading and constructive

criticism, there would have been no dissertation.

I would also like to acknowledge my external examiner, Professor Richard Furuta
from the Texas A & M University, and the remaining members of my thesis committee,
Professors Donald Cowan, Frank Tompa, and David Matthews for their contribution to

the improvement of this dissertation.

My thanks to Darrell Raymond for his help in providing information about tabular
typesetting.

Professor Ming Li made suggestions for Chapter 5 (Formatting) and proofread the
chapter. I also benefited much from discussions with Dr. John Tromp on the definition
of the tabular formatting problem and with Professor Qiang Yang on the final algorithm.

The Department of Computer Science, University of Waterloo, provided me with an

excellent study and work environment.

I am grateful for the financial support I received from the Information Technology

Research Center of Ontario and the Natural Sciences and Engineering Research Council
of Canada.

To my friends, Roger Skubowius and Jane Liang, thank you for your friendship, help
and encouragement along the way.

Finally, to my parents, who provide endless love and support.

Contents

1 Introduction

1.1

1.2

1.3

1.4
1.5

1
Definition and characteristics 0 2
1.1.1 Thecontentofatable, 2
1.1.2 The presentational form of atable. 3
1.1.3 Thefunctionofatable 5
Tabular composition oL, 7
1.2.1 Logical structure design 9
1.2.2 Tabular arrangement 10
1.2.3 Presentational style 12
1.2.4 Dealing with sizeand shape 13
Reviewof previous work 14
1.3.1 The development of electronic tabular composition 14
1.3.2 Some tabular composition systems 16
1.3.3 Evalwation of priorwork 22
Research Objectives. 25
Contributions 27

vi

2 Abstraction

2.1 Guidelines for tabular abstraction
2.2 Terminology
2.3 The definition of an abstract table.
2.4 Expressiveness of the abstract model

3 Editing

3.1 What operations are necessary?
3.1.1 Tableoperations0..0....
3.1.2 Category operations 0.0 .u....
3.1.3 Label and entry operations

3.2 Applyinganoperation

3.3 Labeled-domain operations

3.4 Editing operations for abstract tables

3.5 Expressiveness of editingmodel

4 Layount specification

4.1 Tabular Layouts.,,
4.2 Topological specification
4.3 Stylespecification L L
4.3.1 Formatting attributes.
4.3.2 Presentational-oriented stylerules
4.3.3 Content-Oriented stylerules
4.3.4 Layout-Oriented stylerules.
4.3.5 Collective and specific stylerules

4.4 Problems

29
29
30
33
36

40
40
41
42
42
46
47
50
69

44.1 Styleconflict 91

4.4.2 Side effects of layout-oriented stylerules 93
4.4.3 Dynamic changeof spacing. 93
4.5 Expressiveness of the presentational model 94
Formatting 98
5.1 Complexity of tabular formatting 98
5.2 Gridstructure e 102
5.3 The tabular formatting problem 104
5.4 Tabular formatting is NP-complete 106
5.5 An exponential-time algorithm 111
5.6 A polynomial-time greedy algorithm 115
5.7 Aneflicientalgorithm, 123
Implementation | 127
6.1 Objectives e 128
6.2 Abstract to concrete L L L. 129
6.2.1 Gridstructure L L 129
6.2.2 Sizeconmstraints 130
6.2.3 Arrangement 131
6.2.4 Formatting, 133
6.3 Tabular objects and their operations 134
6.4 Overall system structure 136
6.4.1 Inputandoutput 136
6.4.2 Internal data structures and processes 138
6.5 Userinterface 140

viil

6.5.1 Toolboxes v v v i it e e e e e e e e e e e
6.5.2 Menus i e e e e e e e e e e e e e e e e

6.6 Merits and limitations e e e e e e

7 Concluding remarks
7.1 Relational databasetables
7.2 Extending the abstract model o0
7.3 Different abstract model oo oL
7.4 Logical structurerecognition o 0oL
7.5 Different presentational methods
7.6 Complexity of tabular formatting
7.7 Formatting algorithms
78 Largetables
7.9 Tabular browsing e e

A Expressiveness

B Pseudo-code algorithms

C Screen shots of XTABLE

D Examples of XTABLE’s input files
D.1 Anexampleofatablefile

D.2 An example of a collective stylefile

Bibliography

Index

146
147
147
148
148
149
149
151
152
1562

153

156

164

170
171
173

174

180

List of Tables

1.1 The average marks for 1991-1992. 2
1.2 University of XXX sponsored research funds (in millions of dollars). . . . 7
2.1 The average marks for 1991-1992. 34
22 Metricunits. e 38
2.3 Correlation table — wheat and flour prices by months, 1914-1933. 39
3.1 The average marks for 1991-1992. 41
3.2 An implicit conversion table from pounds to kilograms. 43
3.3 An explicit conversion table from pounds to kilograms. 44
3.4 The average marks for 1991-1992. 52
3.5 The average marks for 1991-1992. 53
3.6 The frame of a flight schedule between major cities of Canada. 54
3.7 The average marks for 1991-1993. 55
3.8 The average marks for 1991-1992. 57
3.9 The average marks for 1991-1992. 59
3.10 The average marks for 1991-1992. 60
3.11 A conversion table from pounds to kilograms. 61
3.12 After combining two subcategories in Table 3.11.. 62

3.13
3.14
3.15
3.16

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
412
4.13
4.14
4.15
4.16

5.1
5.2
5.3
5.4

A conversion table from pounds to kilograms.
After splitting a subcategory in Table 3.13.
The average marks for 1991-1992.
The average marks for 1991-1992,

The average marks for 1991-1992.

The average marks for 1991-1992.

The average marks for 1991-1992.
The marks for CS340.
The average marks for 1991-1992.
The average marks for 1991-1992.
The formatting attributes for different stylexules.
The marks of CS340.
The marks of CS340.
The average marks of some courses, 1991-1992.
The average marks for 1991-1992,
The average marks for 1991-1992.
The average marks for 1991-1992.
The average marks for 1991-1992.
Apartments at 31 Eleanor Drive, Nepean.

Phosphorus loadings to the Great Lakes, 1976 to 1982.

The complexity of tabular formatting.
The tournament schedule.
The tournament schedule.

The conditions that determine if there is a solution for an instance.

32
83

5.5
5.6

6.1
6.2
6.3
6.4

Al
A2

The possible assignments of Ly. 119

A schedule of computer science courses. 125
The average marks for 1991-1992. 133
The object classes and their operations. 135
The initial table of correlations for 10 TV programs. 144
The modified table of correlations for 10 TV programs. 144
The expressiveness of the abstract model. 154
The expressiveness of the presentational model. 155

List of Figures

1.1
1.2

2.1

3.1
3.2

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5

The terminology for the row—column presentational structure of table. . . 4
A pictorial form of Table 1.2. 6
The relationship between a labeled domain and a corresponding labeled

bree. . . . e e e e e e e e e 32
The transformations between implicit and explicit structures. 45
Examples of the labeled-domain operations. 49
AdxTerid. 102
The characteristics of a size function. 104

An example of constructing an instance of TF from an instance of SS. . . 109

An exponential-time algorithm for TF. 112
A i)olynomial-time algorithm that partially solves TF.. 121
An efficient algorithm that always solves TF. 124
The genealogical relationship of some scopes. 132
The object class hierarchy. 137
The input/output of XTABLE. 138
The internal system structure of XTABLE. 139
The main window of XTABLE. 141

C1
C.2
C.3
C4
C.5

The original three-dimensional table. 166
After moving the category Year to the boxhead. 167
After adding a new label under the subcategory Assignments. 168
After assigning the name Ass4 for thenewlabel. 169
After entering the marks associated with Ass4. 170

Chapter 1
Introduction

This thesis investigates different issues of tabular composition: abstract model, layout
specification, editing and formatting. We consider the composition of tables to be one of
the most challenging aspects of document typesetting. Tables may contain different kinds
of objects, such as text, graphics, mathematical formulas, and so on, which display dis-
tinct characteristics and need different treatment. From the logical point of view, tables
are multi-dimensional objects. They are, however, usually presented in two dimensions.
Tabular typesetting needs to solve the same problem that we need to solve to typeset text
and tabular typesetting raises additional problems that need to be solved. Moreover, we
often need to explore different layouts and styles of the same tables, so that we can choose
one layout and style that presents the table’s data in a convincing way. We do not know
of any generally available fabular composition system that satisfies these requirements.
We introduce various aspects of tabular composition in this chapter. We first describe
the characteristics of tables. We then discuss the different stages that are involved in
tabular composition. Next, we review the development of tabular composition systems
and give our research objectives. Finally, we state the major research contributions of
the thesis.

CHAPTER 1. INTRODUCTION 2

Table 1.1: The average marks for 1991-1992.

Assignments Examinations
Grade
Assl Ass2 Ass3 Midterm Final
1991
Winter 8% 80 75 60 5 75
Spring | 80 65 75 60 70 70
Fall 80 8 75 55 80 75
1992
Winter 8 80 70 70 75 75
Spring 80 80 70 70 75 75
Fall 7™ 70 65 60 80 70

1.1 Definition and characteristics

It may be easy to point out a table in a book, but a precise definition of a table is elusive.
The Ozford English Dictionary defines a table as: “An arrangement of numbers, words
or items of any kind, in a definite and compact form, so as to exhibit some set of facts
or relations in a distinct and comprehensive way, for convenience of study, reference,
or calculation.” This definition summarizes the characteristics of a table using three
different aspects: content, form and function.

1.1.1 The content of a table

The content of a table is a collection of interrelated items, which may be numbers,
text, symbols, figures, mathematical equations, or even other tables. Some of the items
are the basic data a table displays, and the others are the auxiliary data that are used
to locate the basic data. We use the term entries to denote the former kind of data and
the term labels to denote the latter kind. Labels are further classified into categories that
are organized hierarchically. For example, Table 1.1 presents the average marks of the

CHAFPTER 1. INTRODUCTION 3

assignments and examinations for a course offered in the three trimesters of 1991 and
1992. The marks are entries and the strings that denote the years, the terms, and the
kinds of marks are labels. Furthermore, Year is a category that comsists of the labels
1991 and 1992. Term is another category that consists of the labels Winter, Spring,
and Fall. Mark is a category that consists of the subcategories Assignments and
Examinations and the label Final Grade. There are logical relationships between the
entries and the labels. Each entry is associated with one label from each of the categories.
For example, the entry 85 at the top-left corner is associated with the labels 1991,
Winter, and Assl, and the entry 70 at the bottom-right corner is associated with the
labels 1992, Fall, and Final Grade. The tabular items and their logical relationships
provide the logical structure of the table and the number of categories defines the logical
dimension of the table. Table 1.1 has three categories; thus, it is a three-dimensional
table.

1.1.2 The presentational form of a table

The content of a table must be presented in some form and on some medium. Usually, ta-
bles are presented as row—column structures on a planar medium, such as paper or screen.
Fig. 1.1 defines the terminology for the parts of a table represented as a row—column struc-
ture. We inherit the most terminology from The Chicago Manual of Style [Chi93] except
that we define the concepts of ’stub head’ and 'block’ for our convenience. A table is
divided into four main regions by stub separation and bozhead separation. The stub is the
lower left region that contains the row headings, the bozhead is the upper right region
that contains the column headings, the stub head is the upper left region that contains
the categories in the stub, and the body is the region to the right of the stub and below
the boxhead that contains the entries. The intersection of a row and a column is called
a cell and a rectangular collection of cells is called a block.

In traditional tabular presentation, the entries are usually put in the body of a table
and the labels are placed in the stub or in the boxhead. To present multidimensional
tables in two dimensions, we have to associate more than one category with the stub or
with the boxhead. In this case, some labels appear more than once. For example, in the
stub of Table 1.1, the labels of category Term appear twice so as to present the asso-

CHAPTER 1. INTRODUCTION

Stub head Stub separation Boxhead

Boxhead
|~ separation

Row—]
1992
Winten
Spring ! i
LRl N5 10 L AN
Stub | \ Body

Cell Column Block

Figure 1.1: The terminology for the row—column presentational structure of table.

CHAPTER 1. INTRODUCTION]

ciations between Year and Term. The arrangement of labels decides the arrangement
of entries. Each entry is usually put in a cell such that it is to the right of its associ-
ated labels in the stub and beneath its associated labels in the boxhead. Different types
of typographic cues can be used to help readers search for information in a table. We
can use rules or white space to separate tabular items, distinct type faces or point sizes
to distinguish different types of items, and background colors or patterns to highlight

important information.

Although the row—column structure is a familiar and natural form for tabular pre-
sentation, tabular data can also be presented in other forms. For example, Fig. 1.2 is a
pictorial form of Table 1.2. The combination of pictorial form and the row—column struc-
ture can increase the accuracy of obtaining tabular information [PLSS84]. The reasons
are that the row—column structure provides precise information for a particular question,
while the pictorial form provides general information for browsing and comparison. Vari-
ous graphical techniques have been investigated to reveal tabular information with visual
presentation [Bril4, Tuf90, Tuf83, Zei85]. In this thesis, we focus on presenting tables
only in the row—column structure. We use layout structure to denote the presentational

_form of a table.

1.1.3 The function of a table

The main function of tables is to present detailed information in a compact way such that
the ability to search and compare the information is enhanced. Since tabular information
is conveyed by its presentational form, one critical factor in determining how easily tables
can be read depends on the presentational forms selected by the designer. This selection is
motivated, in part, by an understanding of how users interact with tables [Wri82]. At least
three cognitive processes are involved in users’ interaction with a table [Wri80a, Wri80b):

1. A comprehension process, needed for understanding the principle on which the
table is organized to grasp the underlying logical structure of the table.

2. A search process, needed for locating the relevant information within the table.

3. An interpretive and comparative process, needed to answer specific questions after

the relevant information has been obtained.

CHAPTER 1. INTRODUCTION

University of XXX Sponsored Research
funds awarded in millions of dollars

. ADD907
’ 77%7%%%%
M.

Figure 1.2: A pictorial form of Table 1.2.

CHAPTER 1. INTRODUCTION 7

Table 1.2: University of XXX sponsored research funds (in millions of dollars).

Fund
Year
Grant Contract

1981 8.8 4.0
1982 11.6 5.1
1983 18.0 6.4
1984 18.0 5.1
1985 21.6 6.8
1986 22.8 6.4
1987 25.1 6.4
1988 25.1 8.0
1989 25.1 14.4
1990 26.8 16.8

Based on these three cognitive processes, a well-designed table should be organized in
such a way that the underlying logical structure is made obvious and tabular items are
located and interpreted easily.

1.2 Tabular composition

In traditional typesetting, tables were always treated separately from the main body of
text. They involve the most frequent change in typographic style within the text and
require the skill of a compositor or typesetter to handle them [Wil83]. Two kinds of
people are involved in the composition of tables. The author is mainly responsible for
the design of the logical structure and the topological arrangement whereas the graphic
designer is concerned with the presentational style. Since authors know their subject ma-
terial and graphic designers are familiar with aesthetic principles and publishers’ styles,
their cooperation guarantees the production of high-quality tables. Nowadays however,
anybody can produce tables with the help of a tabular editor and formatter. Although

CHAPTER 1. INTRODUCTION 8

users may know their subject material very well and be quite familiar with statistical
principles, they still may not know how to design high-quality tables, or even realize the

shortcomings of a given table.

The criteria for a well-designed table may differ for different people and different
purposes. The most important criteria that most people agree with are legibility and
accuracy. A well-designed table should enable readers to obtain information rapidly
and make few errors. With respect to the three cognitive processes we mentioned in
Section 1.1.3, a well-designed table should enable readers to learn to use the table quickly
with little or no instruction in the comprehension process, to locate information easily
and accurately in the search process, and to avoid the time-consuming calculations that
provide opportunities to make mistakes in the interpretive and comparative process.
The other criteria that affect the design of tables are the style of a publisher, the space
constraints of the medium on which a table is to be displayed, and the purpose for which
a table is to be used.

Researchers from psychology, statistics, and typography have suggested possible guide-
lines for the design of high-quality tables. Hall [Hal43] discusses the principles and
technical details involved in the design of statistical tables and the improvement of the
tables. He gives rules to guide the design of tables and gives examples that illustrate
how badly-designed tables can be improved by applying these rules. In a series of pa-
pers (WE70, Wri68, Wri77], Wright provides guidelines for the design of tables based
on previous cognitive research and experiments conducted by herself and others. Her
research focuses on improving the comprehension of the underlying logical structure of
a table and on improving the effectiveness of obtaining tabular information. Ehren-
berg [Ehr77] provides basic precepts for the presentation of numerical data which have
largely been ignored in statistical practice. These precepts can be used to address the
criterion that the underlying logical structure of a table should be obvious at a glance
with little or no instruction. Norrish [Nor89] gives the conventions for tabular presenta-
tion in the traditional publishing industry. These conventions not only address the issues
of how to present the table body, but also how tables are related to the surrounding
text. The Chicago Manual of Siyle [Chi93] is the standard style guide for authors and
editors involved in publishing. It devotes one section to the conventions and techniques
for tabular typesetting, including the arrangement of elements, the selection of styles for

CHAPTER 1. INTRODUCTION 9

different components, and the handling of different sizes and shapes. Zeisel [Zei85] draws
attention to the difficulties in the presentation of statistical tables and presents some
solutions to these difficulties. He also discusses analytical techniques for the refinement
of statistical tables to meet readers requirements. The emphasis of his book 1s on the
relationships among data that describe what is and what happens, rather than on issues

of presentational form.

Based on these studies, we have abstracted guidelines for the design of high-quality

tables at different stages of composition. These guidelines are summarized.

1.2.1 Logical structure design

At this stage, we decide the content of a table by taking into account the readers’ re-

quirements and convenience. There are three guidelines for this stage:

1. Contain only necessary information [Hal43, Zei85]

Suppose a course instructor needs to design a table to show students their final
marks. Students are concerned not only with their marks but also how their marks
compare with those of other students. Thus, the table should list not only the
marks for each student, but should also give the average, minimum and maximum
marks. On the other hand, a large table with complex structure needs more time to
comprehend. If a table contains more information than readers need, it is better to
simplify the table by combining items and removing redundant and unrelated items.
For example, if a department chair wants to examine the marks for a course, he
or she is probably interested only in the average, minimum, and maximum marks,
and how many students have failed the course. Thus, a table for the chair need not
display the marks of every student. We can consider such a summary table a view,
in the database sense, of the original table.

2. Present a table as an explicit structure [WF70]

A table in which all the information is given explicitly such that a reader needs only
to locate the required item, is called an ezplicit structure. A table that contain all

necessary information, but requires readers to do some calculation after locating

CHAPTER 1. INTRODUCTION 10

an item is called an implicit structure. For example, if we design a table conversion
from pounds to kilograms in the range 0 through 99 pounds, an explicit structure
will list all the conversion values for 0, 1, ..., 99 pounds, whereas an implicit
structure may list only the conversion values for 0, 1, ..., 9 pounds and 10, 20, ...
90 pounds. The implicit structure requires readers to do an addition if they want
to know how many kilograms are equivalent to 55 pounds. Obviously, an explicit
structure is more efficient for the reader and an implicit structure’s presentation

normally uses less space.

3. Reduce the number of categories and subcategories as appropriate [WriT7, Zei85]

Experiments carried out by Wright have shown that increasing the number of de-
cisions to be made is a handicap in reading tabular information. The number of
decisions is proportional to the number of categories and the number of subcate-
gories in each category. We can combine categories to reduce the logical dimension
or merge two levels of labels to lower the depth of a category. For example, we can
combine the categories Year and Term in Table 1.1 to form a new category that
has labels W91, S91, F91, W92, S92 and F92. One advantage of the reduction
of the logical dimension or the depth of category is that it can save space in the

presentation of a table.

1.2.2 Tabular arrangement

After we decide on the content of a table, we need to arrange the items in two dimensions
so that the logical structure of the table is clearly seen. Some guidelines for this stage
are:

1. Place related items close together [WF70, Ehr77]

Placing related items close together helps readers locate and compare information.
For example, university terms are normally used in connection with years. It would
be unwise to change the topological arrangement of Table 1.1 by placing category
Term in the boxhead and category Year in the stub. Similarly, Midterm and
Final are closely related in that they are both examinations. It is inappropriate to
separate them with other items.

CHAPTER 1. INTRODUCTION 11

2. Avoid using two dimensions whenever possible [WF70, Wri68]

Although presenting a table in two dimensions (using both row and column head-
ings) saves space, a two-dimensional structure is more difficult to comprehend than
a one-dimensional structure because readers need to integrate a row heading and a
column heading simultaneously to locate a cell. This guideline is, however, appro-
priate for tables that have only one or two categories, even though we can always
reduce the dimension of a table to one. When a table has more than two cate-
gories, it is better to present it in two dimensions. A one-dimensional presentation
of a table with three or more categories is hard to read, and it is aesthetically
displeasing.

3. Place the most frequently referenced items to the left or at the top of a table [Wri68]

Westerners are used to reading information from left to right and from top to
bottom. These reading habits greatly affect the way we read tables. Previous stud-
ies provide evidence that searching from left to right takes less time than searching
from right to left. That is why in traditional tabular presentation labels are usually
put in the stub and boxhead and entries in the body.

4. Vertically arrange items to be compared [WF70, Ehr77)

It is easier to search and compare items reading down a column rather than reading
across a row, especially for a large number of items [Ehr77). For example, it is casier
to compare a group of decimal numbers that are aligned vertically on their decimal
points.

5. Arrange items in some meaningful order [Hal43, Ehr77]

Arranging the rows and columns in some meaningful order often enables readers to
see the overall distribution of the data. It also helps readers to compare a particular
entry with others. For example, if we want to generate a table to show students
the marks in a course, we may want to sort the students’ names in decreasing order
of their marks.

CHAPTER 1. INTRODUCTION 12

1.2.3 Presentational style

Finally, we are at the stage of selecting a presentational style for a table. In the world
of publishing, various publishers have their own styles for tabular presentation [Chi93,
AAU78]. These styles control the general appearance of tables throughout a publica-
tion, although for some particular tables, we may need to specify specific styles. Some
guidelines for the selection of presentational style are:

1. Use type sizes between 8 and 12 point [WF70, Chi93]

Researchers have found that an 8-point typeface is more legible than a 6-point
typeface in mathematical tables [Tin30], and for non-numerical material a type
size larger than 12 point can reduce reading efficiency [Spe68]. Type sizes between

8 point and 12 point are the best choices.

2. Separate and group items by spaces or rules [Hald3, WF70, Ehr77, Nor89]

Occasionally using spaces and rules to separate or group items can help the read-
ers’ eyes to align the items across a row and down a column. Wright [WF70] has
observed that it is better to leave less space between related columns than between
unrelated ones [Wri73). Widely spaced items require the readers’ eyes to travel too
far and slow down the searching process. Tinker [Tin60] has found that group-
ing rows is much more helpful than having all rows equally spaced, and grouping
rows into blocks of approximately five rows is the best solution. With the advent
of mechanization in typesetting, such as the use of linotype machines, it became
difficult and expensive to typeset vertical rules. Consequently, there was a uni-
versal trend by publishers to give up the use of vertical rules. Although there is
no longer a problem in generating vertical rules with computer-aided typesetting,
many publishers still maintain this style and many style manuals, such as The
Chicago Manual of Style [Chi93], still do not advocate the use of vertical rules.

3. Use typographic cues to distinguish different kinds of items [WF70]

Previous studies indicate that distinguishing different kinds of items by typographic
cues, such as type faces, type sizes, foreground and background colors, and patterns,
can significantly reduce errors when reading a table. Typographic cues can help

readers scan selectively and locate the appropriate answers more easily.

CHAPTER 1. INTRODUCTION 13

4. Flush left and indent the row headings in the stub [Chi93, Nor89]
Many publishers prefer to left justify the row headings left in the stub. If there are

two or more levels of subheadings, successive levels are indented at least two quads
from the previous levels. Tables presented in this way not only clearly display the
logical structure but also use less space.

5. Align the items as appropriate for different classes of items [Chi93]

For example, numbers should be aligned vertically on decimal points, dollar sym-
bols, pound symbols, or percentage symbols. Mathematical formulae are aligned
on operators (such as +, —, <, =, and so on). For columns that contain text, if all
entries are short, then they may be centered in the column. Long segments of text

and mixed-length segments of text are normally left justified.

6. Round numbers to just two or three significant digits [Ehr77]
It is difficult to compare a pair of numbers and calculate their difference mentally

if the numbers are too long. Rounding numbers to two or three significant digits

makes comparison easier.

7. Span the items that contain the same value [Chi93]

If adjacent entries contain the same values, we can present the common value once
and place it in the center of the area occupied by these entries. An item that
occupies more than one table cell is spanned. Spanning items enable us to easily
comprehend which entries share the same value and may reduce the presented table

size if the common items occur very frequently.

1.2.4 Dealing with size and shape

At all stages of tabular composition, we should take into account the space limitations
of the medium on which a table is presented and the proportion between tabular width
and height [Chi93]. No publisher is happy to see a tall, thin table or a short, fat one
that must be printed broadside. Also, the variation among column widths and among
row heights affects the appearance of a table. We would prefer not to have a table that

CHAPTER 1. INTRODUCTION 14

contains one column that is a centimeter wide and another one that is 10 centimeters

wide.

If a table has unsatisfactory size or shape, we can improve it by changing the content,
the topological arrangement, or the typographic style of the table. To change the con-
tent of a table, we can remove unnecessary information and use shorter text to make a
large table smaller, or replace abbreviations with their complete forms to make a narrow
column wider. To change the topological arrangement, we can transpose a fat and short
table, or move some categories from the stub to the boxhead for a tall and thin table. To
change the typographic style, we can select smaller type sizes and reduce the white space
between columns and rows of a large table, or change the sizes of columns and rows to
correct unpleasant proportions between them. When we change the width of a column

that contains long text, the line-breaking points have to be adjusted to fit the new width.

If we cannot place a large table on one page, then we have to use other typesetting
techniques. We can break a table that is too tall, but is not too fat, into multiple pages
by duplicating the column headings for each page. For a table that is too fat for one
page, we can print it broadside or print it on facing pages. If a table is still too fat, then
we have to print it on a larger sheet of paper and fold it, an expense that no publisher
likes to incur, except for important tables in profitable books.

1.3 Review of previous work

We first briefly describe the development of computer-aided document typesetting and
how it has affected the evolution of electronic tabular composition. We then describe
several tabular composition systems in some detail. Finally, we evaluate these systems
according to criteria that evaluate their functionality and ability to support the different
stages of tabular composition.

1.3.1 The development of electronic tabular composition

Tables are indispensable objects and the evolution of electronic tabular formatting is
closely associated with the development of computer-aided typesetting [Fur82]. The use

CHAPTER 1. INTRODUCTION 15

of the computer for document typesetting began in the 1960’s. The earliest discussions
of computer-composition systems are Barnett’s Computer Typesetting [Bar65], Stevens’s
Automatic Typographic-Quality Typesetting Techniques [SL67], and Phillips’s Computer
Peripherals and Typesetting [Phi68]. All of the early document formatting systems ac-
cepted a stream of text characters interleaved with action codes and produced very
simple layouts. Some of them did not even deal with page layout but only produced
typeset galleys to be pasted-up manually in the traditional way. Early efforts in tabu-
lar typesetting used special programs that performed calculations over numerical data
and generated tables in a single format. The pioneering system in style specification
was TABPRINT [Bar65)] developed by Barnett at MIT in the early 1960’s. Typographic
styles for each table preceded the data and provided basic formatting choices.

A significant evolution of document formatters occurred when formatting commands
were embedded in documents to govern the presentation of the logical content of the
documents. The document formatting systems at this stage, such as troff with me
and ms macros [Oss76], Scribe [Rei80] and TEX with BTEX macros [Knu84, Lam85],
compile a document with embedded formatting tags and generate formatted documents,
possibly accompanied by some error and warning messages. These systems separate the
document structure from the document style and enable users who lack the skills of
document design to produce high-quality documents in multiple presentational layouts.
They describe tables as row structures and provide more styles for tabular formatting,
including vertical and horizontal alignment options for text, different types of rules and
spanning specification. These systems do not capture the logical structure of tables and
they treat rows and columns differently. Moreover, the available document styles provide
little support for the achievement of a consistent appearance for tables.

NLS [EE68], the first interactive document composition systems, introduced the
notion of WYSIWYG (what you see is what you get) during the late 1960s. Subse-
quently, a number of integrated document composition systems, including Etude [Is80],
Janus [Cea82], Tioga [Tei84], Furuta’s system [Fur86], and Grif [QV86], were developed
to provide a WYSIWYG environment for editing and formatting structured documents.
These systems allow users to view and manipulate documents through a visual interface
and integrate multiple objects into a uniform representation. A WYSIWYG environment
is especially suitable for tabular editing and formatting because tabular items are orga-

CHAPTER 1. INTRODUCTION 16

nized simultaneously in two dimensions (rows and columns) and the logical relationships
among the items are presented through their relative positions in two dimensions. By
modeling tables as two-dimensional row—column structures, these interactive composi-
tion systems can manipulate rows and columns equally well and select styles in a more
direct way for both rows and columns. Yet, these systems still do not capture the logical
structure of tables.

Although the separation of the logical and layout structures of documents has been
widely used, there was no distinction between the logical and layout structures of ta-
bles until Improv [Imp91], a commercial spread sheet system, was introduced. At about
the same time, Vanoirbeek adopted a new tabular model, in Grif [QV86], that specifies
the logical structure of tables [Van92]. Both systems maintain the logical relationships
among tabular items, provide the ability to arrange these interrelated items easily in two
dimensions, and allow users to manipulate tables based on their logical structure. These
two systems, however, are weak in the manipulation of tabular logical structure and pro-
vide insufficient styles to govern the presentation of logical components. More recently, a
tabular formatting system called TAFEL MUSIK [SKS94, SSK94] was designed to spec-
ify the logical structure and typographic styles using database schemas and techniques.
This system does not appear to support tabular editing.

1.3.2 Some tabular composition systems

We introduce only systems that are representative of the different approaches to tabular
processing at different development periods.

TABPRINT

TABPRINT [Bar65] was developed at MIT in the early 1960s. It dealt with numerical
data punched on cards or written on magnetic tape in a fixed format and generated
formatted output. The input consisted of three parts: the typographic specification, the
heading section, and the data section. The typographic specification gave the general
style for the whole table, including type face, point size, and line spacing. The heading
section described the column headings and their alignment options. The data section
specifies row by row.

CHAPTER 1. INTRODUCTION 17

Tbl

Tbl [Les79] is a preprocessor for the batch-oriented document formatting system troff [Oss76].
It processes the table definitions and generates the formatting commands for troff. Ta-
bles are defined in three sections: options, format, and data. The option section gives
the global parameters for the whole table, such as the rule types for the table frame,
the alignment options for the whole table, and the delimiters for data items. The for-
mat section specifies the formatting attributes for each column, including type faces and
sizes, column widths, column separation space, vertical rule types, alignment options,
and horizontal spanning headings. The data section specifies the entries row by row.
The entries can be strings of characters, troff commands, horizontal rule types, vertical
spanning headings, and text blocks. Tbl is capable of determining the heights of rows
and widths of columns based on the text placed in them, but users have to give either
the line-breaking points or the width of text for troff to do the line breaking.

ETEX

BTEX [Lam85) is a document preparation system based on TEX, a procedural formatting
system [Knu84]. The system is based on the concept of structured document design.
Users specify documents by their logical components, which are actually TgXmacro def-
initions. Tables are specified with the tabular environment and the array environment.
The first environment is designed for common text tables, and the second one is for ta-
bles that contain mathematical equations. These environments allow users to specify the
border line style, the justification of each column, and the data as rows that consist of
a list of entries mixed with additional formatting information. Like Tbl, BTEX can also
determine the heights of rows and widths of columns based on the text, provided that
either the line-breaking points or the width of text are given in advance.

Tabular mark up in SGML

SGML [Int86], the Standard Generalized Markup Language, is an ISO standard that
provides a syntactic meta-language for the definition of textual markup systems, which
are then used to indicate the logical structures of documents. Each markup system,

CHAPTER 1. INTRODUCTION 18

specified by a context-free grammar, defines the structure and rules for marking up the
document instances. The marked-up document instances can be formatted by compiling
the mark up into the mark up for a formatting system such as WTgX, can be interchanged
across a heterogeneous network, or can be added to a database system. When translating
a marked-up document for a formatting system, the typographic description of how to
present documents is usually supplied in a style sheet, which is a collection of styles
that may be attached to part or all elements of a document. A specific tabular markup
method has been designed as an application of SGML [Int88]. Using this method, a
table is specified by four components: a heading, a body, a caption, and an optional
description. The table heading specifies only the hierarchical structure of the column
headings, which can be divided into four levels of subheadings. The table body is a
list of rows, and each row is a list of entries for the columns. The table caption and
description are text. With a second SGML tabular markup method {Int92], a table is
modeled by a four-level hierarchy: the first level is the whole table; the second level may
contain a head that specifies the column headings, a foot that specifies the footnotes,
and a body that specifies the entries; the third level consists of rows, and the fourth
level consists of cells. The formatting attributes can be specified with different levels of
objects, including type sizes, size constraints, cell arrangement, alignment options, and

rule types.

TABLE

TABLE [BEF84] is a prototype interactive editor that provides a uniform editing envi-
ronment and true integration for a variety of dissimilar objects (specifically text objects
and table objects) in a WYSIWYG environment. All document objects are represented
as an object-oriented architecture and the operations upon different objects are deter-
mined by the nature of the objects. Each object in the hierarchy has its own variables
and operations. Subobjects can inherit variables and operations from their superobjects.
TABLE describes a table with a dual-hierarchical structure (row hierarchy and column
hierarchy). Tables are manipulated using an object-oriented mode as follows. An object
can be activated, the levels of granularity can be changed, from the granularity of a whole
table to the granularity of a single character, and a different logical object can be selected
in the current granularity. The currently active operations are determined by the nature

CHAPTER 1. INTRODUCTION 19

of the active object.

Spreadsheet systems

Lotus 1-2-3 [Lot84] and Microsoft Excel [MS-90] are sophisticated spreadsheet systems,
that provide automated business tools for the manipulation, computation, and analysis
of data as well as providing presentational tools for reporting results in different formats.
Tabular data is put in a worksheet, a two-dimensional lattice that can be addressed by
row and column indices. Formatting attributes can be assigned to any data cell. A part
from lattice formats, tabular data can be presented in different forms, such as bar graphs,
pie graphs, and line graphs.

Beach’s system

Richard Beach [Bea85] presented a framework for formatting tables that is suitable for
use in interactive editors and formatters. A central idea in his approach is the separation
of the table arrangement from the table layout. The table arrangement, or table topology,
is expressed by a grid structure. Geometric constraints are expressed as linear inequalities
in which the independent variables are the positions of the grid lines and the alignment
points of table entries. The table layout, or table geometry, is computed from both the
table topology and the physical dimensions of the table entries. A linear-inequality-
constraint solver is used to compute the table geometry. He implemented sophisticated
algorithms to manipulate and render tables based on the grid structure. All editing
objects, including the whole table, a row, a column, an entry, and a rule, are orgarized
with an object-oriented architecture, and style attributes can be specified for each of
them. The style options include alignment options, rule parameters, or bearoff distances.
A subobject may inherit the style attributes of a superobject. For example, an entry may
either have its own style attributes or inherit the style attributes of its row and column,
or of the whole table.

CHAPTER 1. INTRODUCTION 20

Furuta’s prototype

Richard Furuta [Fur86] developed an integrated editor-formatter that merges the flexi-
bility of document representation using an the abstract object-oriented approach with the
naturalness of document manipulation using the exact-representation editor-formatters.
Documents are represented by a heterogeneous structure: nt (strict tree — not strict
tree). The top level of a int is a strict tree, and the leaves of the strict tree are tree blocks
with arbitrary structure, which are used to represent nonhierarchical objects (for exam-
ple, tables and mathematical equations). Tree blocks can contain objects that are tnt
structures. A table block is modeled with a variety of dual-hierarchy structures. The int
structure allows table entries to be different kinds of objects such as text, equations, and
subtables. Furuta’s prototype provides operations to manipulate a table’s row—column

structure, to edif the contents of entries, and to span entries horizontally and vertically.

Cameron’s system

John P. Cameron [Cam89] presented a cognitive model for tabular editing. The model
is an extension of the model presented by Beach. The goal of the model is to propose
a group of functions which allow table designers to manipulate both the topological
structure and the content of a table in a natural manner to give a visual, interactive
environment. To provide the operations that are involved in the mental process of making
a table, Cameron introduced two distinguishing concepts: region and section. A region
of a table is an area of the table that is obtained by slicing completely through the table
with either two parallel horizontal lines or two parallel vertical lines. A section is any
group of cells in a rectangular box. Cameron’s system breaks down the mental process
underlying tabular construction into three steps: structure editing, content editing, and
visual editing. Structure editing consists of the creation or modification of the topological
structure of a table. The operations in this process are: splitting and joining cells, and
inserting, deleting, duplicating and moving a region. Cameron also mentions that more
complex operations such as rearranging the label region (reversing the hierarchy of index
items and their subindex items in a label region) and transposing a table can also be
added to his system, but it would increase the complexity of the system. Content editing
consists of the activities involved in entering, deleting, and modifying the individual

CHAPTER 1. INTRODUCTION 21

entries in a table. Since the entries can be of various types, such as numeric, textual,
mathematical, graphical, or even tabular, different operations are required to support
each of these activities. Visual editing comsists of modifying the visual format of the
entries in a section of a table. The allowable modifications are: type faces, alignment
options, background shading and colors, and the types of border rules.

Improv

Improv [Imp91} is an improved version of Lotus 1-2-3. It is an interactive commercial
system for the editing and formatting of tabular data for finance and business. Tables are
defined by specifying multiple categories in both the horizontal and vertical dimensions
of a spreadsheet. The labels of these categories are placed at the top or on the left
side of the spreadsheet. Entries are placed in cells that are addressed by the labels of
different categories. Besides inheriting the functions provided by Lotus 1-2-3, Improv
also provides some operations to manipulate tables logically. For example, tables can
be topologically rearranged by moving a category from the horizontal dimension to the

vertical dimension, and conversely.

Vanoirbeek’s system

In Vanoirbeek’s system [Van92], a table is specified as a collection of entries that are
semantically connected to multiple labels of different categories. The logical structure of
a table is modeled by a tree with additional edges: a table consists of a set of logical di-
mensions (categories) and a set of items (entries); the logical dimensions include rubrics
(labels) which may themselves contain subrubrics; additional edges are used to repre-
sent the connections between items and rubrics. The main reason for this representation
mechanism is to comply with the hierarchical document representation used in the host
system Grif [QV86]. Vanoirbeek breaks table creation into two processes: editing and
formatting. Editing includes structure editing and content editing. When editing the
structure, one can add or suppress dimensions, rubrics, and subrubrics, and also merge
items. When editing the content, one can use classical text editing functions to edit the

names of dimensions, rubrics, subrubrics, and the content of items. Formatting associates

CHAPTER 1. INTRODUCTION 22

the values of typographic attributes with the tabular components. The typographic at-
tributes include the presentational options that control the geometric arrangement of the
table and formatting options for data, rules, and decoration. The typographic attributes
can be specified in a generic way by a set of presentational rules. Each presentational
rule is related to an attribute, and it specifies how the value must be calculated during
formatting. Presentational rules allow the propagation and synthesis of attribute values

in a tree structure to achieve consistent typographic choices throughout the document.

TAFEL MUSIK

TAFEL MUSIK [SKS94, SSK94] borrows database techniques to handle various aspects
of tabular processing. It provides a data model to represent a homogeneous class of
tabular logical structures and supports a tabular style description language (TSDL) to
specify styles for tabular logical structures. A TSDL interpreter applies the styles to a
tabular logical structure retrieved from the database and generates the final tabular lay-
out. The details of the data model and TSDL are not yet known since the paper [SSK94]
about them is still in preparation. The authors do, however, describe an algorithm that
attempts automatic formatting and high-quality layout has been described [SKS94]. The
algorithm automatically determines the physical dimensions of the rows and columns
and breaks text into lines according to the widths of the columns. Moreover, the al-
gorithm generates a layout that satisfies some objective function (for example, minimal
area, minimal diameter, and minimal white space) and satisfies all the user-specified size
constraints expressed as linear inequalities. The algorithm divides the entire optimization
problem into a number of subproblems, and it uses accelerating techniques to increase
efficiency.

1.3.3 Evaluation of prior work

We evaluate tabular composition systems based on the following criteria, which we believe
can be used to indicate whether they provide sufficient functionality to support the
different stages of tabular composition:

CHAPTER 1. INTRODUCTION 23

1. Does it specify the multi-dimensional logical structure of tables and provide suffi-
cient functionality to manipulate the logical structure?

2. Does it specify the topological arrangement of tables and provide the ability to
arrange tabular items flexibly in both the horizontal and vertical dimensions?

3. Does it specify suflicient styles for different kinds of tabular components to achieve
high-quality layout?

4. Does it help users to deal with different table sizes and shapes?

The early system, TABPRINT, provides little functionality to support tabular com-
position. It can generate tables according to only limited formatting styles that control

the presentation of the whole table. Variant styles for different items are not allowed.

Using Tbl and BTREX, users specify tables explicitly based on the topological arrange-
ment; thus, there is no clear separation between the logical structure and the topol-
ogy. Tbl and BTEX are specification languages that rely on the underlying formatting
systems troff and TEX, respectively. These formatting systems do not provide true
two-dimensional formatting. Table specifications are precompiled and tabular items are
broken down into two separate formatting processes: a horizontal formatting process
followed by a vertical formatting process. Because Thl and IXTEX do not provide editing
facilities, users have to respecify tables if they want to change the topological arrange-
ment of these tables. Tbl provides many typographic styles, but the styles for columns
and rows are treated differently. BTEX provides styles for only columns. It is difficult for
users to specify tables that require complex layouts, such as the cut-in style and grouping
items in a number of rows with white space and rules. Tbl and BTEX can break text
into lines if the text width is given and the tabular markup mechanism specifies size
constraints for both rows and columns. Such functionality can help users to control table
size and shape to a limited extent.

The tabular markup methods using SGML are not tabular composition systems. They
specify explicitly the topological arrangement and do not separate the logical structure
from the topology. Like Tbl and BTEX, they require the respecification of a table if
its topological arrangement needs to be changed. The latest tabular markup method in
SGML provides many styles for the whole table, the column headings, the rows, and the

CHAPTER 1. INTRODUCTION 24

cells, but it provides no styles for the columns except an alignment option. It also allows

size constraints for both rows and columns.

TABLE, spreadsheet systems, Beach’s system, Furuta’s prototype, and Cameron’s
system, which are all interactive, also describe tables based on their topological arrange-
ment and do not separate the logical structure from the topology. These systems provide
true two-dimensional formatting and treat rows and columns equally. Although these
systems provide a WYSIWYG environment for editing the topological arrangement of a
table, users may need many editing operations to rearrange tabular items. For example,
if we want to change the topological arrangement of a table by exchanging the labels
in the stub and the boxhead, we have to use many moving operations. These systems
are able to specify typographic styles interactively for the whole table, columns, rows,
blocks, and cells. Beach’s system can automatically calculate the heights of rows and
widths of columns that satisfy a set of size constraints expressed as linear inequalities
and achieve the minimal value for the sum of the tabular width and height. It assumes,
however, that the text is broken into lines in advance, which enables the system to find

a layout in polynomial time.

Improv and Vanoirbeek’s system are able to specify the multi-dimensional logical
structures of tables. Neither of them, however, provides sufficient ability to modify the
logical structure of a table. Both systems offer only the basic functions to create a
new logical structure interactively. Some changes to an existing structure, such as the
change from an implicit structure to an explicit one, may require the user to abandon
the old structure and create a new one. Both systems provide the ability to edit the
topological arrangement by changing the position of a category inside the stub or the
boxhead and by moving a category from the stub to the boxhead, and conversely. This
ability also helps users to control tabular size and shape. Although Improv captures the
tabular logical structure, it provides few typographic styles to control the presentation of
logical components. Vanoirbeek’s system does provide some basic typographic styles for
categories, labels and entries, but it provides no typographic styles for complex tabular
layouts. Both Improv and Vanoirbeek’s system can control the sizes and shapes by
specifying the widths and heights of tables or the sizes of columns and rows. Yet they
do not deal with automatic line-breaking and size constraints during the calculation of
the physical dimensions of a table.

CHAPTER 1. INTRODUCTICON 25

TAFEL MUSIK is a tabular typesetting system that is currently under development
and as such little is known about it. It also describes tables based on their multi-
dimensional logical structure. It is, however, a batch-oriented formatting system and
provides no editing ability to update the logical structures of tables. TAFEL MUSIK
provides a powerful ability to control tabular size and shape by allowing users to specify
size constraints as linear inequalities, automatically breaking text into lines, and calcu-

lating the optimal layouts for a small number of objective functions.

1.4 Research Objectives

The general goal of our research is to create a tabular model for the design of high-quality
tables in two dimensions. It should support the different stages of tabular composition,
including the design of the logical structure, the arrangement of tabular items, the specifi-
cation of typographic styles, and the formatting of concrete tables. This model should be
based only on the nature of tables and should be independent of any existing formatting
and editing systems. The specific objectives are:

1. To propose an abstract model to specify tabular logical structure

Like Vanoirbeek’s system and TAFEL MUSIK, our abstract model should also
describe the multi-dimensional logical structure of tables. The major difference
between our abstract model and theirs should be the representation used to specify
the logical structure. Vanoirbeek’s system abstracts tables as a tree with additional
edges to comply with the hierarchical structure used in its host system Grif. TAFEL
MUSIK uses a two-dimensional database model to specify multi-dimensional tables.
Neither the hierarchical structure nor the database model naturally describe the
characteristics of multi-dimensional tables. Our abstract model should use well-
understood mathematical notation to abstract tables and should hide the represen-

tation and implementation.

2. To investigate what operations are needed for the manipulation of abstract tables.

The editing operations for row-column structures have been investigated. The

operations for multi-dimensional logical structures, however, have been little in-

CHAPTER 1. INTRODUCTION 26

vestigated. The editing model should manipulate tables at an abstract level. The
operations in the editing model should be topology independent.

3. To explore what topological and style rules are necessary to specify a tabular layout
structure.

We divide layout specification into two parts: topological specification and style
specification. In topological specification, we should focus on the rules needed
to specify the relative placement of tabular items in two dimensions. In style
specification, we should provide style rules that govern the presentation of the
whole table, the main regions (the stub, boxhead, stub head, and body), the logical
components (categories, labels, and entries), and the layout components (rows,
columns, and blocks). These style rules should include not only basic formatting
attributes, such as the type face and point size, spacing and rule type, horizontal
and vertical alignment options, and size constraints, but also formatting attributes
that enable us to easily specify complex layout structures, such as grouping items,
cut-in headings, and spanning options for entries.

4. To solve the formatting problem arising in the generation of a concrete table when
applying layout specifications to an abstract table.

The most difficult problem arising in tabular formatting is how to determine ef-
ficiently the physical dimensions of a table that satisfies user-specified size con-
straints. Beach [Bea85] has given a polynomial-time algorithm that requires users
to indicate the line breaks in advance. TAFEL MUSIK’s developers have designed
an exponential-time algorithm that achieves automatic line-breaking and satisfies
one of a small number of objective functions. Automatic line-breaking and size con-
straints are important features that can help users to deal with table size and shape.
Our objectives are to analyze the computational complexity of tabular formatting
with respect to different restrictions and to design an algorithm that supports au-
tomatic line-breaking and size constraints expressed as linear inequalities and finds

the physical dimensions in polynomial time for many tables.

5. To demonstrate that our model is feasible by implementing a prototype tabular
composition system that helps users to efliciently design high-quality tables.

CHAPTER 1. INTRODUCTION 27

Based on our tabular model, we should implement a prototype tabular editor and
formatter. This prototype should provide an interactive interface to help users
easily specify and manipulate logical structure, topological arrangement, and ty-
pographic styles. It should also generate formatted tabular cutputs for different
typesetting systems.

1.5 Contributions

The contributions of this thesis can be summarized from five aspects. First, we propose
an abstract model to specify the multi-dimensional logical structure of tables. This model
uses well-understood mathematical notation, such as sets and functions, to abstract
tables, which distinguishes our model from other models. This model not only precisely
abstracts the category structure and the logical associations between labels and entries
but also allows us to determine what operations are necessary for the manipulation of

the multi-dimensional logical structure.

Second, we present an editing model for the manipulation of the multi-dimensional
logical structure of tables. The editing model enables us to edit tables independently of
their topology. We no longer need to perform a transformation between logical compo-
nents and layout components when editing tabular logical structure. As far as we know,
no one has explored what operations are needed for multi-dimensional tables at such an
abstract level.

Third, we give a presentational model for the specification of tabular layout struc-
ture. We adopt a similar arrangement of the categories to those used in Improv and in
Vanoirbeek’s system, but offer more options to arrange labels. The style rules provided
in the presentational model can be used to specify style from different viewpoints. In
addition to the traditional style for the row-column structure, we provide style rules to
specify the style for the logical components of an abstract table and for the four major
regions of a table: stub, boxhead, stub head and the body. To our knowledge, no current
system. offers such an abundance of style rules for tabular presentation. Moreover, we

also propose an approach to solve style conflicts when applying a set of styles rules to a
table.

CHAPTER 1. INTRODUCTION 28

Fourth, we are the first to prove that the tabular formatting is NP-complete with
respect to two useful features: automatic line breaking and size constraints expressed as
linear inequalities. We also design a polynomial-time greedy algorithm that can partially
solve the tabular formatting problem for many tables.

Lastly, we implemented a prototype to validate our ideas and demonstrate that we
can integrate our models in an interactive tabular editor and formatter. This prototype
not only helps users to easily design high-quality tables in two dimensions, but also offers
users a tool to analyze and explore tabular data efficiently.

This thesis describes our proposals, discussion and investigations, and it presents
possible future work based on our current achievements. In Chapter 2, we present a for-
mal model for the abstraction of tabular logical structure. In Chapter 3, we discuss the
operations for the manipulation of tabular logical structure. In Chapter 4, we describe
what presentational rules are necessary for topological specification and style specifica-
tion. In Chapter 5, we formally define the tabular formatting problem and prove its.
NP-completeness. We also give an algorithm that solves the problem in polynomial time
for many common cases. In Chapter 6, we introduce a prototype interactive tabular edi-
tor and formatter which is based on the tabular model and describes how we solve some
key problems arising during the implementation of the prototype. In the last chapter,
we draw some conclusions about current achievements and discuss what remains to be

done.

Cha—ipter 2

Abstraction

Tabular abstraction plays an important role in tabular composition because it determines
the capabilities of editing and presentation. When we design a table, we usually decide on
the logical structure before we select a presentational form. Thus, we should deal with the
logical structure and the layout structure separately. There are at least two advantages
with the separation the logical structure and the layout structure. First, tables can be
manipulated independently of their layout structure. For example, to remove a label from
a category, we no longer have to determine which rows or columns should be removed
from the layout structure. Second, by associating different topologies and styles with
the logical structure, we easily can obtain various layout structures for a table. For
example, to obtain the transposition of a table, we need to respecify only the topology
of a table. We now present an abstract model that specifies only the logical structure
of tables and ignores their layout structures. This model is based on our preliminary
model [WW93]. We describe an editing model and a presentational model, which are
based on the abstract model, in Chapters 3 and 4, respectively.

2.1 Guidelines for tabular abstraction

We propose three guidelines for the design of a tabular abstract model. We base the
model on observation of tables in the literature [CRC88, Sta86, BR74, Rit86] and on

29

CHAPTER 2. ABSTRACTION 30

the discussions of tables from the perspectives of typography [Chi%3, Rub88, Wil83],
psychology [WF70, Wri68, Wri77, Tin60, SW84], and statistics [Zei85, Ehr77, Hal43].

First, the model should capture a wide range of tables. We do not expect to provide an
approach that models the logical structures of all tables. There are some tables that have
a complex logical structure (see Section 2.4). We focus our efforts on the most common
kinds of tables, with one simplifying assumption: we ignore footnotes. We examined
tables in books from various sources, including typography, statistics, sociology, science,
and business, and found that majority of tables can be specified with a multi-dimensional
logical structure (see Table A.1 in Appendix A). A table with multi-dimensional logical
structure consists of a number of categories and a set of entries. The labels in each
category are organized hierarchically and each entry is logically associated with exactly
one label from each category.

Second, the model should not include any characteristic that is related to the presen-
tational form of a table. Any concept that is associated with tabular topology (such as
row or column) or typography (such as typeface or rule type) should not appear in the

model.

Third, the model should abstract tabular logical structure with well-understood math-
ematical notions, rather than with a specific representational scheme. In this way, we
can view an abstract table as an abstract data type that hides its representation and
implementation. We can also use this model to define the semantics of the editing model
described in Chapter 3.

2.2 Terminology

We specify the logical structure of a table as an abstract table, which describes the
hierarchical label structure of categories and the logical relationships between labels and

entries. We first define some necessary terminology and notation before we define an
abstract table.

CHAPTER 2. ABSTRACTION 31

Labels

A label can be any string of characters and symbols, including the empty string.

Labeled sets

A labeled set is a set together with a label. We specify a labeled set as an ordered pair
(label, set). For example, (1991, #) and (Grade, {50,60}) are labeled sets.

Labeled domains

A labeled domain is defined inductively as follows:

1. A labeled empty set (L,®) is a labeled domain.

2. A labeled set of labeled domains such that the labels of the labeled domains are
pairwise distinct is a labeled domain.

3. Only labeled domains that are obtained from rules 1 and 2 are legal.

For a labeled domain D = (I, 5), we use Ibl(D) to denote the label { and set(D) to denote
the set s. A labeled domain can be represented by a labeled tree in which the children of
a node are unordered. Fig. 2.1 presents the relationship between a labeled domain and its
labeled tree. Each node in the free represents a labeled domain and each external node
represents a labeled empty set. For convenience, we will use the tree of a labeled domain
to explain some concepts and operations that are related to labeled domains. It should
be clear that we can use labeled domains to describe the hierarchical label structures of

categories.

Label sequences

We use label sequences to uniquely identify the labeled subdomains in a labeled do-
main. For a labeled domain D = (I,s), the label [is a label sequence that identifies
D. We extend this notion inductively for the labeled subdomains in D as follows. If

CHAPTER 2. ABSTRACTION 32

(D1, { (d11, { (d111, phi), (D)

(d112, phi),
b @ @ @
(d12,phi),
(d13, phi),

}) @y - @

Figure 2.1: The relationship between a labeled domain and a corresponding labeled tree.

a labeled sequence [identifies a labeled domain which contains a set of labeled do-
mains {({1,381),..., (L, 3.)}, then LI is a label sequence that identifies labeled subdo-
main (l;, ;). For example, the label sequence D1.d11 identifies the labeled subdomain
(d11, {d111,0},{d112,0}) in the labeled domain in Fig. 2.1. The dot notation that we
use is well known in library classification systems and it is often called Dewey notation.
An explicit dot is used to separate the labels in a label sequence to avoid ambiguity.
Given a label sequence I, we use A(!) to denote the labeled domain identified by {. We
also use Ibl(l) and set(!) to denote the label and the set of A(I).

Frontier label sequences

A label sequence that identifies a labeled domain with an empty set is a frontier label
sequence. In the associated labeled tree, such a label sequence corresponds to a root-to-
frontier path. The frontier fr(D) of a labeled domain D is the set of all frontier label
sequences of D and for a set C of labeled domains, fr(C)} = {fr(D)|D € C}. Given
a labeled domain D, fr(D) is unique and, moreover, given fr(D), we can reconstruct
a unique D. Thus, given a set S of label sequences that satisfies the following two
conditions:

1. All label sequences in S have a common first label,

2. § is prefix-free; that is, whenever a label sequence z.y is in S, for some label
sequences z and y, the label sequence x is not in S,

CHAPTER 2. ABSTRACTION 33

we can construct a labeled domain D such that fr(D) = §. If we can construct a labeled
domain D from a set S of label sequences such that § = fr(D), then S is consistent. For
example, S = {D1.d11.d111, D1.d11.d112, D1.d12, D1.d13} is consistent because S is the
frontier of the labeled domain in Fig. 2.1. § = {D1.d11, D1.d11.d111} is not consistent
because we cannot construct a labeled domain such that S is the frontier of the labeled
domain.

Unordered Cartesian product

Given n > 1 disjoint sets A;, Aa,..., A, their unordered Cartesian product 4;®...® 4,
is a set A such that each element of A is a set that contains exactly one element from
each of the sets A;(1 < i < n). We use the unordered Cartesian product to associate
frontier label sequences with entries in an abstract table. When we have n disjoint
labeled domains Dy, D,,...,D,, we need the unordered Cartesian product of their sets
of frontier label sequences, namely fr(D1)®...® fr(D,). For a set C of labeled domains
Di,y...,Dp, we use @ fr(C) to denote fr(D;) ®...® fr(D,).

2.3 The definition of an abstract table

Now we are ready to define an abstract table. An abstract table is specified by an ordered
pair (C,), where

1. C is a finite set of labeled domains.

2. ¢ is a2 map from @ fr(C) to the universe of possible value.

We have introduced labeled domains to model the informal notion of a category; thus,
we now treat a category as a labeled domain and C' as a finite set of categories. We use
®fr(C) to model the entry set of a table. Each entry is identified by a |C|-element set in
®fr(C) and is assigned a value by 4. If § assigns no value for an entry {fi, f5,. .., fieths
we say that entry {fi, fo,..., fic;} is undefined. We use the word “frame” to denote a
table in which the map § is empty, or is considered to be empty; thus, ® fr(C) is also
called the frame of a table. There are two important quantitative measures of a table:

CHAPTER 2. ABSTRACTION 34

Table 2.1: The average marks for 1991-1992.

Mark

Year | Term Assignments Examinations

Assl | Ass2 | Ass3 | Midterm | Final

Grade

Winter 8 80 75 60 75 7

1991 | Spring | 80 65 75 60 70 70
Fall 80 8 75 55 80 75

Winter | 85 80 70 70 75 75

1992 | Spring | 80 80 70 70 75 75
Fall 75 70 65 60 80 70

its dimension and size. The dimension dim(T) of an abstract table T' = (C, §) is the size
of C, the number of categories in C. On the other hand, the size size (T) of an abstract
table T' = (C,) is the size of ® fr(C), the number of entries in T'. Using this model, we
can specify the logical structure of Table 2.1 with the abstract table T = (C,4) in which
C consists of following three categories:

(Year, {(1991,0), (1992, 0)}),

(Term,{(Winter,), (Spring, 8), (Fall,$)}), and

(Mark, {(Assignments, {(Assl,8), (4ss2,0), (4ss3,0)}),
(Ezaminations, {(Midterm,0), (Final,0)}),
(Grade, 0)}).

and ¢ is defined by:
d({Year.1991, Term.Winter, Mark.Assignments.Assl}) = 85;

0({Year.1991, Term.Winter, Mark.Assignments.Ass2}) = 80;
0({Year.1991, Term.Winter, M ark.Assignments.Ass3}) = 75;

CHAPTER 2. ABSTRACTION 35

3({Year.1991,
3({Y ear.1991,
§({Year.1991,
§{({Year.1991,
§({Year.1991,
§({Year.1991,
d({Y ear.1991,
§({Y ear.1991,
6({Year.1991,
d({Y ear.1901,
§({Y ear.1991,
d({Year.1991,
d({Year.1991,
§({Year.1991,
§{{Y ear.1991,
§({Year.1992,
§({Y ear.1992,
5({Y ear.1992,
§({Year.1992,
§({Y ear.1992,
§({Y ear.1992,
§({Y ear.1992,
5({Y ear.1992,
§({Y ear.1992,
§({Y ear.1992,
5({Year.1992,
d({Y ear.1992,
§({Y ear.1992,
d({Year.1992,
§({Year.1992,
8({Y ear.1992,
8({Y ear.1992,
d({Year.1992,

Term.Winter, Mark.Ezaminations. Midterm}) = 60;
Term.Winter, Mark.Ezaminations. Final}) = 75;
Term.Winter, Mark.Grade}) = 75;

Term.Spring, Mark.Assignments.Assl}) = 80;
Term.Spring, Mark.Assignments.Ass2}) = 65;
Term.Spring, Mark.Assignments.Ass3}) = T5;
Term.Spring, Mark.Ezaminations. Midterm}) = 60;
Term.Spring, Mark.Ezaminations.Final}) = 70;
Term.Spring, Mark.Grade}) = 7T0;

Term.Fall, Mark.Assignments.Assl}) = 80;
Term.Fall, Mark.Assignments.Ass2}) = 85;
Term.Fall, Mark.Assignments.Ass3}) = 75;
Term.Fall, Mark.Ezaminations. Midterm}) = 55;
Term.Fall, Mark.Ezaminations. Final}) = 80;
Term.Fall, Mark.Grade}) = 75;

Term.Winter, Mark.Assignments.Assl}) = 85;
Term.Winter, Mark.Assignments.Ass2}) = 80;
Term.Winter, Mark.Assignments.Ass3}) = 70;
Term.Winter, Mark.Examinations. Midterm}) = T0;
Term.Winter, Mark.Ezaminations. Final}) = 75;
Term.Winter, Mark.Grade}) = 75;

Term.Spring, Mark.Assignments.Ass1}) = 80;
Term.Spring, Mark.Assignments.Ass2}) = 80;
Term.Spring, Mark.Assignments.Ass3}) = 70;
Term.Spring, Mark.Ezaminations. Midterm}) = 70;
Term.Spring, Mark.Exzaminations.Final}) = T5;
Term.Spring, Mark.Grade}) = 75;

Term.Fall, Mark.Assignments.Ass1}) = T5;
Term.Fall, Mark.Assignments.Ass2}) = T0;
Term.Fall, Mark.Assignments.Ass3}) = 65;
Term.Fall, Mark.Examinations. Midterm}) = 60;
Term.Fall, Mark. Ezaminations.Final}) = 80;
Term.Fall, Mark.Grade}) = 70.

CHAPTER 2. ABSTRACTION 36

Since we use sets to specify the category structure of a table, the categories are
unordered and the labels in a category or a subcategory are also unordered. Ordering is
an issue of topology, and we do not include it in the abstract model. We will deal with
category ordering and label ordering in Chapter 4.

The definition of an abstract table fulfills our three guidelines; that is, it can be used
to specify the logical structures of commonly used tables, it is independent of tabular
topology and typography, and it uses sets and mappings, which are well-understood
mathematical notions. In the next chapter, we will use this model to specify the semantics

of the tabular editing operations.

2.4 Expressiveness of the abstract model

We have made the simplying assumption that we do not model footnotes in the abstract
model. Clearly, footnotes play an important role in tables. See the examples in the
book Human Activity and Environment [Sta86]. In this book, 148 of the 172 tables have
footnotes (see Table A.1, Appendix A). Although we do not model footnotes, a user can
still use footnotes with any tabular entry. The limitation is that they are dealt with by
the target typesetting system, they are not manipulable as abstract objects within our

model.

Second, the abstract model does not capture all tables even when we ignore footnotes.
The model can be used to specify tables that have only a multi-dimensional logical struc-
ture. Not all tables have such a nice structure however. Some tables are a combination of
several tables as a multi-dimensional structure. For example, Table 2.2 is a combination
of two tables as a multi-dimensional structure. There are two categories: Barome-
ter reading and Temp. alt. factor in this table. The entries of the table are divided
into two groups. Omne group, including all the entries above the double line, are associ-
ated with only partial labels in the category Temp. alt. factor and the partial labels in
the Barometer reading. The other group, including the entries below the double line,
are also associated with partial labels in the two categories. We can break the category

Barometer reading into two categories in this way: Barometer reading 1 includes

CHAPTER 2. ABSTRACTION 37

the labels above the double line and Barometer reading 2 includes the labels below
the double line. Similarly, we can also break the category Temp. alt. factor into two
categories: Temp. alt. factor 1 and Temp. alt. factor 2. Then, we obtain two tables
that can be specified as a multi-dimensional structure. Another example, Table 2.3, is a
combination of three tables in multi-dimensional structure. There are three categories:
X, Y, and Type of calculations (the category in the stub head) in this table. The first
subtable, whose entries are associated with the categories X and Type of calculations,
is placed in the boxhead. The second subtable, whose entries are associated with the cat-
egories Y and Type of calculations, is placed in the stub. The third subtable, whose
entries are associated with categories X and Y, is placed in the body. To specify these
tables, we should be able to specify multiple mappings that can share some categories
in an abstract table. This is a topic of future investigation. We also need to investigate
how to present these kinds of abstract tables in two dimensions.

We carried out an experiment to measure how well our abstract model specifies tables
in the real world. We counted tables in books from various sources, including statistics,
sociology, science, and business. The results of the experiment, given in Table A.l,
Appendix A, reveals that the abstract model can be used to specify 56 percent of the
tables if we consider footnotes, or 97 percent of the tables if we ignore footnotes. From
this experiment, we see that the majority of the tables in traditional printed documents
can be specified with a multi-dimensional logical structure.

CHAPTER 2. ABSTRACTION

Table 2.2: Metric units.

Barometer reading
Temperature-
altitude factor | 180 | 760 | 740 | 720 | 700
mm | mm | mm | mm | mm
1 0.9 09| 09| 08 0.8
5 45| 44 43| 42| 4.0
10 9.0} 88| 86 83| 8.1
15 13.0 |13.2 |12.9 |12.5 [12.2
20 18.2 |17.7 |17.2 | 16.8 | 16.3
25 22.8 122.2 [21.6 {21.0 | 20.4
30 27.4 126.7 |26.0 | 25.3 | 24.6
3B | ... 31.2 | 30.4 | 29.6 | 28.8
760 | 740 | 720 | 700 | 680 | 660
mm | mm | mm | ;m | mm | mm
40 35.8 134.9 {33.9 {33.0 [32.0 |31.1
45 40.4 [39.3 | 38.3 |37.2 136.2 |35.1
50 45.0 [43.8 |42.7 |41.5 |40.3 |39.1
55 49.7 |48.4 |47.1 [45.8 |44.5 |43.1
60 | ... 52.9 |51.5 | 50.1 [48.6 |47.2
65 | ... 97.5 155.9 |54.4 [52.8 [51.2
0] 62.1 |60.4 [58.7 } 57.1 | 55.4
™| 66.7 | 64.9 |63.1 [61.3 [59.5

38

CHAPTER 2. ABSTRACTION

Table 2.3: Correlation table — wheat and flour prices by months, 1914-1933.

X
= o] o] ot oo s aclyeof sz olz 0]z 40l o0z S0 ot (xdy)
mid. 5|7 |9 [11]13|15{17]19]|21|23|25|27]29
feui 0l1(2|3]4|5]|6]7|8]9]|10]|11|12
frequg- 20| 6 |25|37(52|24[15/15]|13|18[6 |5 | 4 | 240
fd 0 | 6 {50]111/208/120| 90 [105{104]162] 60 | 55 | 48 | 1119
fd*[0 | 6 |100|333[832]600|540|735|83211458600|605(576| 7217
150005.5 12| 1 |12 (144 1 144
94511 5 |55 605 1]2]2 616
0 113.5 10| 5 | 50 |500 112|141 520
Y [1290012.5 9 | 1090 |s10 622 864
SO0 8 | 5 |40/320 181 360
o0 0.5 7 | 14|98 [686 6|8 840
29 19-5] 6 | 17 |102612 1]1([10]5 726
59 18.5] 5 | 28 |140700 4)8)11]4(1 790
700 17.5] 4 | 46 [184]736 2(7]22]12]3 764
500 16.5] 3 |54 [162]486 5(20/25| 3 1 576
500 15.5] 2 |16 (32|64 1]4(10]1 86
400 |45 1 (34|34|34]15] 5 |14 33
300135/ 0|5(0]0fs 0
Total 240{9995691 6319

X= Wheat price per bushel in dollars; Y= Flour price per barrel in dollars.

Chapter 3
Editing

Modeling a table as a row-column structure requires users to perform a transformation
from logical components to layout components when editing the logical structure of the
table. For example, if we want to delete a label from a category, we need to determine
the rows or the columns that contain this label and remove these rows or columns.
Modeling tables with their logical structure, however, makes editing independent of their
topological arrangement. We can manipulate tables at a logical level without worrying
about their layout structure. We present an editing model that proposes a set of editing
operations for tables. We use the abstract model described in Chapter 2 to specify
the logical structure of tables and the semantics of these operations. As we will see
in Chapter 6, we use these operations to implement the editor in a prototype tabular
composition system..

3.1 What operations are necessary?

We need to be able to create a new table and to manipulate and modify an existing
table. The operations should include: changing logical dimension, reorganizing the label
structure of categories and updating the entry values and labels. Thus, we divide the
operations into three groups.

40

CHAPTER 3. EDITING 41

Table 3.1: The average marks for 1991-1992.

Mark

Year | Term Assignments Examinations

Assl | Ass2 | Ass3 | Midterm | Final

Grade

Winter 86 80 75 60 75 75
1991 | Spring 80 65 75 60 70 70

Fall 80 8 75 55 80 75
Winter 8% 80 70 70 75 75
1992 | Spring 80 80 70 70 75 75
Fall ™ 70 65 60 80 70

3.1.1 Table operations

Table operations may change the dimensions of tables and, therefore, change their frames.
The size of a table, however, may or may not be changed by these operations. The basic
operations for this group include the creation of an empty table, the addition of a new
category, and the deletion of an existing category. More complex operations may be
necessary when we take into account some special requirements of editing. Sometimes
we need to generate new categories that are based on existing omes. For example, if
we want to design a table that shows the flight schedules between the major cities of
Canada for an airline company, we can use a two-dimensional table with two categories
that consist of the same labels—the cities. It is easier to design such a table if we create
one category first and then copy it to make the second category. Thus, we may need an
operation to duplicate a category. Other examples of additional operations are: reducing
the logical dimension of Table 3.1 by combining categories Year and Term, or undoing
the combination by splitting the combined category into two categories. Thus, we need
operations to combine two categories and split one category into two categories.

CHAPTER 3. EDITING 42

3.1.2 Category operations

Category operations change the label structure of a category; thus, they preserve
the dimension of a table and may change the size of a table. The basic operations for
this group include inserting a subcategory into a category, deleting a subcategory from
a category, moving a subcategory to a new place within a category, and duplicating a
subcategory. Now suppose that we want to design a conversion table from pounds to
kilograms for the range of 0 to 99 pounds. We may present the table as an implicit
structure shown in Table 3.2, in which the labels of the category Pounds are organized
as shown in Fig. 3.1(a). Assume that we want to change it to the explicit structure
shown in Table 3.3, in which the labels of the category Pounds are organized as shown
in Fig. 3.1(d). Fig. 3.1 shows an approach to transforming the category structure from an
implicit to an explicit structure. It is helpful if we have an operation that can combine two
subcategories by appending all the children of a subcategory to the frontier nodes of the
other categories and a reverse operation that splits a subcategory into two categories. We
also need an operation that promotes a set of subcategories up one level and an operation
that demotes a set of subcategories down one level to change the depth of a category.

3.1.3 Label and entry operations

Label and entry operations change only the labels and entry values. The operations
in this group are simple but are frequently used. These operations do not change the
frame of an abstract table, but affect the content of items in the frame. They preserve
both the dimension and the size of a table. The operations include changing a label and
assigning a new value for an entry. If we want to support a searching ability, we also
need operations that read the entry values. Sometimes we need to compute the value of
an entry based on its old value. For example, if the value of an entry is a set of numbers,
we may need to change the entry value to be the sum of the numbers. Thus, we need an
operation that performs a calculation over an entry value.

CHAPTER 3. EDITING

Table 3.2: An implicit conversion table from pounds to kilograms.

Pounds Kilograms
One digit
0 0.00
1 0.45
2 0.90
3 1.36
4 1.81
5 2.26
6 2.72
7 3.17
8 3.63
9 4.08
Two digits
00 0.00
10 4.54
20 9.07
30 13.60
40 18.14
50 22.68
60 27.22
70 31.75
80 36.29
90 40.82

CHAPTER 3. EDITING

Table 3.3: An explicit conversion table from pounds to kilograms.

Pounds | Kilograms
0 0.00
1 0.45
2 0.90
8 3.63
9 4.08

10 4.54
11 4.99
12 5.44
18 8.17
19 8.62
90 40.82
91 41.27
92 41.72
98 44.45
99 44.90

CHAPTER 3. EDITING

@f Do @@ - \.

Split the label tree ‘“Two digits’ into
two label trees and label the new
label tree ‘One digit’

Combine the label tree ‘One d1g1t\l’ T
with the label tree ‘Two digits’

(b)
Remove ‘0’s from the label of the Generate new parents for 10 groups
nodes at the 3rd level and merge l T of nodes at the 3rd level and add ‘@’s
the nodes of the 3rd and 4th level to the labels of the new parents

node ‘Two digits’ and merge it
with its children

“T'wo digits’ for all the nodes at

Assign an empty label for the L T Generate a new parent labeled
the 2nd level

/\
D) DD G oo DD ()

Figure 3.1: The transformations between implicit and explicit structures.

CHAPTER 3. EDITING 46
3.2 Applying an operation

After applying an operation to a table T = (C,), we obtain a new table 7/ = (C’,§’). An
operation may change the category structure C' and the mapping 6. If C is changed, the
domain ® fr(C) of 4 is also changed, which causes a change in the associations between
labels and entries. Mathematically, &' defines new values for the entries of 7. In the
editing model, we could assign no values to §'; however, in most cases, the values of &'
depend on the values of §. Thus, we generate new entry values from old entry values
according to the requirements of the different operations.

The table operations that change the dimension of a table generate a new table in
which ® fr(C”) is different from @ fr(C); thus, §’ associates new values for all the entries
in ® fr(C"). Suppose we insert a new category, which contains frontier label sequences,
into an n-dimensional table T'. Before the insertion, each entry is associated with n
frontier label sequences from n different categories. After the insertion, the number of
entries increases by a factor [and each entry is now associated with n + 1 frontier label
sequences. For this operation, we assign the value of an old entry to the ! new entries
that are also associated with the frontier label sequences of the old entry. Removing a
category with & frontier label sequences from a table T is more complex. In contrast
with insertion, the number of entries in the new table is smaller and each entry is now
associated with n — 1 frontier label sequences. Each new entry corresponds to the & old
entries that were associated with the common frontier label sequences of the new entry.
There are many possible ways to assign values for the new entries. For example, we may
choose one of the values from the % old entries or use the average of these values. It is
impossible to make an appropriate choice unless we know the motivation for removing
the category. We should provide a method that allows users to make the decision. OQur
strategy is to assign a multiset of the k old entry values to the new entry so that we can
generate a new value from it with subsequent operations.

When we consider the category operations that change the label structure of a cat-
egory, only some of the entries in ® fr(C’) are affected. §' needs to assign new values
for only the affected entries and should not change the other associations. For example,
consider the operation that relocates a subcategory within a category. The modified cat-
egory loses some frontier label sequences and gains some new ones. The value of an old

CHAPTER 3. EDITING 47

entry that was associated with a lost frontier label sequence is assigned to the new entry
that is associated with the corresponding new frontier label sequence. Another example
is the deletion of a subcategory from a category. After the deletion, the modified category
loses some frontier label sequences and may also gain one new one. If the deletion of a
subcategory results in a new frontier label sequence being added to the category, we also
assign a multiset of the old entry values associated with the lost frontier label sequences

to the new entry associated with the new frontier label sequence.

The label and entry operations that change only the entry values and labels are much
easier to handle. These operations affect only one label or one entry.

3.3 Labeled-domain operations

Since we use labeled domains to model the category structure, we define some basic
operations for labeled domains before we define editing operations. We also need to

define some operations for labels and label sequences.

Label operations

Given two labels =z and y, zy is the catenation of z and y and z\y is the left quotient
of # and y. For example, if x = “lab” and y = “labeled”, then zy = “lablabeled” and
z\y = “eled”. We define strip(z,y) to be z\y if z is a prefix of y and to be y, otherwise.

Label-Sequence operations

Given a label sequence I, the first label in I, denoted by first(l), is undefined if ! is the
empty label sequence; otherwise, it is the label [; such that { = [;.l; and [, is a label
sequence. The last label in I, denoted by last(l), is undefined if [is the empty label
sequence; otherwise, it is the label I; such that { = [;.l; and [; is a label sequence. The
Jront of a label sequence I, denoted by front(l), is undefined if [is the empty label
sequence; otherwise, it is the label sequence I’ such that I = I'.last(l). The back of a label
sequence [, denoted by back(l), is undefined if { is the empty label sequence; otherwise,
it is the label sequence I’ such that { = first(l).l".

CHAPTER 3. EDITING 48

Given a labeled domain d, a label sequence [of d determines a labeled subdomain
d' of d. The subdomain d' satisfies {bl(d") = last(l). Observe that fr(d') satisfies the

relation

{l.back(h): h € fr(d)} C fr(d).

Expansion

Given a labeled domain d and a label sequence ! of d such that first(l) = Ibl(d), the
expansion of d with I, denoted by d 4+ [, is the labeled domain & such that

fr(d") = (fr(d) U {I}) — {=z : Jy 2 non-empty label sequence and zy = I[}.

From the viewpoint of a labeled tree, d+{ adds one or more nodes to d to ensure that there
is a path from the root to a frontier node identified by I. To maintain the consistency of
fr(d'), we need to remove all prefix label sequences of I that were frontier label sequences
of d. We generalize this operation for a set L of label sequences in the obvious way; we
denote it by d + L. Fig. 3.2(a) illustrates the expansion of a labeled domain d with two
label sequences d.d1.d4 and d.al.a2.

Contraction

Given a labeled domain d and a label sequence [of d, the contraction of d with I, denoted
by d — I, is the labeled domain d' such that

fr(d} = (fr(d) — {I}) U {front(l) : front(l).y is not in fr(d), for any y}.

From the viewpoint of a labeled tree, d — [removes the subtree whose root is the node
identified by I. If the node identified by front(l) becomes a frontier node after removing
the node identified by [, front(l) will be added to fr(d’). Obviously, if fr(d) is consistent,
fr(d') is also consistent. We generalize this operation for a set L of label sequences in the
obvious way; we denote it by d — L. Fig. 3.2(b) illustrates the contraction of a labeled
domain d with label sequences d.d1 and d.d2.d5.

CHAPTER 3. EDITING 49

"
(d1) D + {d.d1.d4, d.al.a2} @ @
@@ @

©

&)
©
(=)

- (@)
() (&2 D — {dd1, dd2.ds} x
2 .

(b)

2 e oo S %
: @{ 3%

()

A @
@@@
@) @

(d)

Figure 3.2: Examples of the labeled-domain operations.

CHAPTER 3. EDITING 50

Product

Given two labeled domains d; and ds, the product of d; and d;, denoted by d; - d,, is the
labeled domain d that satisfies

fT(d) = {ll.baCk(lz) H ll € f‘l"(dl) A 12 € f’f‘(dg)}.

That is, [is in fr(d) if and only if there are unique /; and I; such that }; is in fr(d;), Iy is
in fr(d,), and I = l;.back(l,). Fig. 3.2(c) illustrates the product of two labeled domains
D and A.

Quotient

Given two labeled domains d; and dj, the quotient of d; and d», denoted by d, /d,, is the
labeled domain d such that
d]_ = d . dz.

If there is no d such that d; = d - ds, then d,/d, is undefined. Fig. 3.2(d) illustrates the
quotient of two labeled domains D and A.

3.4 Editing operations for abstract tables

We propose 18 editing operations for the manipulation of abstract tables. We describe
the syntax of these operations in a functional form by giving the names of the operations
and the types of their operands and results. We have used extra white space to divide
them into three groups, namely, tabular operations, category operations and label and

entry operations:

Empty : — table
Insert_Category : table x labeled domain — table
Delete_Category : table x label seq. — table
Duplicate_Category . table x label seq. X label — table
Combine_Categories: table x label seq. x label seq. — table

Split_Category : table x label seq. x label seq. x label — table

CHAPTER 3. EDITING 61

Insert_Subcategory : table x label seq. x label seq. x labeled domain — table
Delete_Subcategory : table x label seq. X label seq. — table
Move_Subcategory : table x label seq. x label seq. x label seq. — table
Duplicate_Subcategory : table x label seq. X label seq. x label seq. x label — table
Comline_Subcategories : table x label seq. x label seq. x label seq. — table
Split_Subcategory : table x label seq. x label seq. x label seq. x label — table
Promote_Subcategories : table x label seq. x label seq. x label set — table

Demote_Subcategories : table x label seq. x label seq. x label set x label — table

Change_Label : table x label seq. x label seq. x label — table
Change_Entry Value: table x entry X entry value — table
Compute_Entry Value: table x entry x operator — table
Get_Entry_Value : table x entry — entry value

The semantics of an operation can be specified by giving the change in an abstract table
as a result of applying the operation; thus, the operations are independent of a table’s
presentational form. We define the semantics of these operations using the labeled-
domain operations defined in the previous section. To make them easier to understand,
we use concrete tables rather than abstract tables to present examples of the operations;
thus, we have to specify the label orders for the categories and the placement of categories
in the stub and boxhead for these concrete tables. All the operations, however, are

ordering independent. We use the notation {i --- i} to represent a multiset.

Empty

This operation generates an empty table (C,§), where C =@ and § = 0.

Insert_Category

This operation adds a new category to a table. Given a table T = (C, §) and a category d,
we obtain a new table TV = ((”, §"), where €’ = C U {d} and §' is defined as follows. For
each f' € ® fr(C’), there is a unique f € ® fr(C) and a frontier label sequence I € fr(d)
such that f' = f U {I}. We define 6'(f') = §(f). For example, Table 3.4 is generated by

CHAPTER 3. EDITING 52

Table 3.4: The average marks for 1991-1992.

Mark
Year | Term | Section Assignments Examinations
Grade
Assl | Ass2 | Ass3 | Midterm | Final
Winter Sectionl 8 80 75 60 75 75
T MSection2 | 85 80 75 60 7% 75
. Sectionl 80 65 75 60 70 70
S
1991} Spring e ion2 | 80 65 75 60 70 70
Fall Sectionl 80 85 75 55 80 5
Section2 80 85 75 55 80 75
Winter Sectionl 85 &0 70 70 75 75
M Moection2 | 85 80 70 70 575
. Sectionl 80 80 70 70 75 75
215
1992 | Spring =g Gom2 | 80 80 70 (O R
Fall Sectionl 5 70 65 60 80 70
Section2 75 70 65 60 80 70

adding a new category
(Section, {(sectionl, D), (section2, B)})
to Table 3.1.

Delete_Category

This operation removes a category from a table. Given a table T' = (C, §) and a category
din C, we obtain a new table T' = (C”,§"), where C' = C — {d} and &' is defined as
follows. For each f € fr(C"), there are |fr(d)| frontier label sequences Iy, s, ... A#r(a)]
such that f U {;} € fr(C). We define

() ={ts(fu{}) : L€ fr(d)

CHAPTER 3. EDITING 33

Table 3.5: The average marks for 1991-1992.

Mark
Year Assignments Examinations
- Grade
Assl| Ass2 | Ass3 | Midterm | Final
85 | 80 | 75 60 75 75
1991 80 | 65 | 75 60 70 70
8 | 8 | 75 55 80 75
86 | 80 | 70 70 75 75
1992 8 | 80 | 70 70 75 75
75 | 70 | 65 60 80 70

For example, if we remove the category Term from Table 3.1, we get Table 3.5, in which
each entry is a multiset of marks that were associated with the three removed terms. If
we do not keep the repeated values, we may not get the appropriate result. We can also
supply an operator to Compute_Entry_Value to remove the repeated elements.

Duplicate_Category

This operation duplicates a category for a table. Given a table T' = (C,), a category d
in € and a label { which should be different from the labels of categories in C, we obtain
a new table TV = (C", §'), where

C' = CU{({l,set(d))}

and ¢’ is defined as follows. For each f' € @ fr(C"), there is an f € fr(C) and a frontier
label sequence s € fr{d) such that f' = f U {s}. We define &'(f') = §(f). For example,
suppose d is the category: '

(From, {(Toronto, B), (Vancouver, #), (Montreal, 0), (Ottawa,),
(Edmonton, 0), (Calgary,0)}),

CHAPTER 3. EDITING 54

Table 3.6: The frame of a flight schedule between major cities of Canada.

To
Toronto Vancouver Montreal Ottawa Edmonton Calgary

From

Toronto
Vancouver
Montreal
Ottawa
Edmonton
Calgary

then the following operations

T\ := Empty
T, := Insert_Category(Ty, From)
Ts := Copy_Category(Ts, From,To)

generate the frame of a flight schedule between major cities of Canada as shown in
Table 3.6.

Combine_Categories

This operation combines two categories of a table using the product of labeled domains.
Given a table T = (C,d) and two categories ¢; and ¢; in C, we obtain a new table
T' = (¢, 4"), where

C'=(C—{ei,ee}) U{er -2}

and &' is defined as follows. First, observe that size(T') = size(T); therefore, 7" and T
have the same number of entries. For each f € ® fr(C), there are [; € fr(c;), fori = 1,2,
such that {I;,5;} C f. There is a unique corresponding f’ € @ fr(C") such that

= (f = {i,12}) U {l.back(L)}.

CHAPTER 3. EDITING 55

Table 3.7: The average marks for 1991-1993.

Mark
Year Assignments Examinations
Grade

Assl | Ass2| Ass3 | Midterm | Final
Winter 8 80 75 60 75 75
1991 | Spring 8 65 75 60 70 70
Fall 80 8 75 55 80 75
Winter 86 80 70 70 75 75
1992 | Spring 80 8 70 70 75 75
Fall 7% 70 65 60 80 70

We define §(f') = &6(f). For example, after combining categories Year and Term in
Table 3.1, the new table contains only the two categories Year and Mark. Mark keeps
the same label structure as before and Year has the new label structure:

(Year,{(1991,{(Winter, D), (Spring,0), (Fall,0)}),
(1992, {(Winter, B), (Spring,), (Fall, §)})
}-

The new table, which is shown in Table 3.7, looks similar to Table 3.1 except that the
stub head contains only the name of the category Year.

Split_Category

This operation splits a category of a table into two categories using the quotient of labeled
domains. Given a table T = (C, d), a category ¢ in C, a label sequence s of ¢ such that
sct(s) # 0 and ¢/A(s) is not undefined, and a label I which is different from the labels
of the categories in C, we obtain two categories ¢; and c, in this way: ¢; = c/A(s), the

quotient of ¢ and A(s), and ¢, is (I, set(s)), the labeled domain obtained after assigning

CHAPTER 3. EDITING 56

a new label [for A(s). We obtain a new table 77 = (C”, §"), where
¢ = (G~ {e}) Uer,ca)

and ¢’ is defined as follows. First, observe that size(T') = size(T); therefore, T/ and T
have the same number of entries. For each f € ®fr(C), there is an d € f such that
d = L.l; € fr(c), where I; € fr(c;) and I, is the back of a frontier label sequence in
fr(A(s)). There is a unique corresponding f' € ® fr(C") such that

F=(f - {hbL}) U {l,lL).

We define d(f') = d(f). For example, suppose T specifies the logical structure of
Table 3.7, which contains only two categories, Year and Mark. We can split category
Year into two categories, Year and Term, by performing the operation

Split Category(T,Year,Year.1991, Term)

to change Table 3.7 back to Table 3.1.

Insert_Subcategory

This operation expands a category by inserting a new subcategory into it. Given a table
T = (C,9), a category ¢ in C, a labeled domain d, and a label sequence s of ¢, the
insertion of d into ¢ with respect to s is a category ¢’ that satisfies

d=c+{sz:zec fr(d)}.

We obtain a new table 77 = ((”, §"), where

C'=(C—{chu{c}

and ¢ is defined as follows. For each f € @ fr(C'), if f € ®fr(C), we define §(f) = 6(f).
If f € ®fr(C') — @fr(C), there must be a t € fr(d) such that s.t € f; thus, we define
§(f) = o((f—{s-t})U{s}) if s € fr(c); otherwise, it is undefined. For example, Table 3.8
is the result of inserting (Summer, §) into the category Term with respect to Term and
(0.3A 4 0.3M + 0.4F, @) into the category Mark with respect to Grade in Table 3.1.

CHAPTER 3. EDITING 57

Table 3.8: The average marks for 1991-1992.

Mark

Year | Term Assignments Examinations Grade

Assl | Ass2 | Ass3 | Midterm | Final | 0.3A4+0.3M--0.4F

Winter 85 80 75 60 75 75

1901 Spring 80 65 75 60 70 70
Summer

Fall 80 85 75 55 80 75

Winter 8 80 70 70 75 75

i 70 5

1099 Spring 80 80 70 75

Summer

Fall ™ T 6b 60 80 70

Delete_Subcategory

This operation removes a subcategory from a category of a table. Givena table T' = (C,§),
a category ¢ in C, and a label sequence s of ¢, the deletion of ¢ with respect to s is a
category ¢’ that satisfies

d=¢c—s.
We obtain a new table T = (C", §"), where
¢'=(C—-{hu{c}

and ¢’ is defined as follows. For each f € @ fr(C"), if f € @ fr(C), we define §'(f) = 4(F)-
If f € fr(C") — @fr(C), f must contain front(s) which becomes a frontier label
sequence of d’ after removing s; thus, we define

() = {1 8((f — {front(s)}) U {front(s).k}) : k € fr(A(s)) {}-

For example, after deleting the labeled domains (Summer,®) and (0.34+0.3M +0.4F, B)
from Table 3.8, we obtain Table 3.1.

CHAPTER 3. EDITING 58

Move_Subcategory

This operation moves a subcategory inside a category of a table. Given a table T' = (C, §),
a category c in C, and two label sequences s and p of ¢, we obtain a new category ¢’ by
making labeled domain A(s) a labeled subdomairn of A(p):

d=(c—3s)+{pz:z € fr(s)}
We obtain a new table TV = (C’, &), where
¢' = (G~ {eh u{ch,

and ¢’ is defined as follows. For each f € @ fr(C’), if f € ®fr(C), we define §'(f) = §(f).
If f € ®fr(C’") — @fr(C), there are two cases:

L. f contains front(s) and fromt(s) is a frontier label sequence of ¢, in which case

&8’(f) is undefined.

2. f contains a label sequence p.t, where t € fr(s), in which case
§(f) = 8((f — {pt}) U {front(s).t}).

For example, suppose that Ass3 is a quiz and we want to reclassify it as an examination.
We can move subcategory Ass3 under Examinations with this operation and change
its label to Quiz to obtain Table 3.9.

Duplicate_Subcategory

This operation duplicates a subcategory inside a category of a table. Given a table
T = (C,9), a category c in C, two label sequences s and p of ¢, and a label ! which is
different from the labels of the labeled domains in sef(p), we obtain a new category ¢’ by
adding a copy of A(s) to set(p) after labeling the new labeled domain as I:

d =c+{lz:zc fr(set(s)}.
We obtain a new table TV = (C’, '), where

¢ = (C - {h)u{c}

CHAPTER 3. EDITING 59

Table 3.9: The average marks for 1991-1992.

Mark

Year | Term Assignments Examinations

Grade
Assl | Ass2 | Midterm | Final | Quiz

Winter 85 80 60 75 75 75
1991 | Spring 80 65 60 70 5 70
Fall 80 85 55 80 75 75
Winter 85 80 70 75 70 75
1992 | Spring 80 80 70 75 70 75
Fall 75 70 60 80 65 70

and ¢’ is defined as follows. For each f € ® fr(C"), if f € @fr(C), we define &'(f) = §(f).
If f € @fr(C’) — @fr(C), f must contain a label sequence p.l.t, where t € fr(set(s));
thus, we define

§(f) = 8((f —{pLt}) U {s.2}).
For example, if we want to add one more assignment Ass4 under Assignments to
Table 3.1 and the marks for assignment 4 are almost the same as for assignment 3, we

can use this operation to duplicate subcategory Ass3 and its associated entries to obtain
Table 3.10.

Combine_Subcategories

This operation combines two subcategories in a category of a table using the product of
labeled domains. It is similar to Combine_Categories except that the operation is applied
to subcategories. Given a table T' = (C, d), a category c in C, and two label sequences

51 and s3 of ¢ such that s; is not a prefix of 51, we obtain a new category ¢’ by removing
labeled domains A(s;) and A(sz) from c and adding a new labeled domain A(s;) - A(s;)

CHAPTER 3. EDITING 60

Table 3.10: The average marks for 1991-1992.

Mark
Year | Term Assignments Examinations
Grade

Ass] | Ass2 | Ass3 | Ass4 | Midterm | Final
Winter 8 8 75 75 60 75 75
1991 | Spring 80 65 75 75 60 70 70
Fall 80 85 75 75 55 30 75
Winter 8 80 T0 70 70 75 75
1992 | Spring 80 8 70 70 70 75 75
Fall ™ 70 65 65 60 80 70

to set(front(s;)):
¢ = ((c— 51) — 82) + {front(s)).z : 2 € Fr(A(s1) - A(s2)))}-
We obtain a new table T" = (C", §"), where
C' = (C - {c}) U{c}

and ¢’ is defined as follows. For each f € ® fr(C"), if f € @ fr(C), we define §'(f) = §(f).
If f € ®fr(C’') — ®@fr(C), there are two cases:

1. f contains froni(s;) and front(s,) is a frontier label sequence of ¢/, in which case
&'(f) is undefined.

2. f contains a label sequence s;.u.v, where u € fr(set(s1)) and v € fr{set(s;)), in
which case

§(F) = {1 6((f ~ {sr-wv}) U {s1.u}), 8((f — {s1:u.v}) U {s2.0}) 1}.

For example, suppose T is the conversion table from pounds to kilograms in the range of
0 to 19 pounds shown in Table 3.11. We can change the label structure of the category

CHAPTER 3. EDITING 61

Table 3.11: A conversion table from pounds to kilograms.

Pounds Kilograms

0.00
0.45
0.90
1.36
1.81
2.26
2.72
3.17
3.63
4.08

0.00
4.54

One digit

DI | O | W|IND (RO

o
o

Two digits

—
o

Pounds into the structure of Table 3.12 by performing the operation
Combine_Subcategory(T, Pounds, Pounds.two digits, Pounds.one digit).

To convert Table 3.12 into a conversion table we need to add the values in each entry

multiset using the operation
Compute_Entry_Value(T', Pounds.two digits.i.j, Sum)

where ¢ = 00 or 10 and 7 = 0,...,9.

Split_Subcategory

This operation splits a subcategory in a category of a table into two subcategories using
the quotient of labeled domains. It is similar to Split_Category except that the operation
is applied to subcategories. Given a table T' = (C,d), a category ¢ in C, two label
sequences 8; and s; of ¢ such that s, is a prefix of s;, and a label ! which is different

CHAPTER 3. EDITING

Table 3.12: After combining two subcategories in Table 3.11.

Pounds

Kilograms

Two digits

00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.45
0.90
1.36
1.81
2.26
2.72
3.17
3.63
4.08

10

LI |~ ||| W= O oo ~T|m|U| e |w| |~

4.54
4.54
4.54
4.54
4.54
4.54
4.54
4.54
4.54
4.54

0.00
0.45
0.90
1.36
1.81
2.26
2.72
3.17
3.63
4.08

62

CHAPTER 3. EDITING 63

from the labels of the labeled domains in set(front(s,)), we obtain a new category ¢’ by
removing labeled domain A(s;) from ¢ and adding two new labeled domains A(s1)/A(s2)
and (I, set(sz)) to set(froni(s,)):

¢ = ((e—s1) +{front(s1).z: z € fr(A(s1)/A(s2))}) + {front(s;).l.z : z € fr(set(ss))}.
We obtain a new table T” = (C", §"), where
¢’ = (€ — {eH Ui

and ¢” is defined as follows. For each f € @ fr(C"), if f € @ fr(C), we define §'(f) = 3(f).
If fe(®fr(C') — ®fr(C)), there are two cases:

1. f contains a label sequence front(s;).t, where ¢ € fr(A(s1)/A(s2)), in which case
§'(f} = {1 6((F — {front(s1).4}) U {front(s,).t-u}) : u € fr(set(sz)) §}.
2. f contains front(s;).L.t, where t € fr(set(sy)), in which case
§'(F) = {1 6((f — {front(sy).LE}) U {s1.u.8}) : sp.ut € fr(c) £

For example, suppose T is the conversion table of Table 3.13. We can change the label
structure of T" into Table 3.14 by performing the operation

Split_Subcategory(T, Pounds, Pounds.two digits, Pounds.two digits.00, one digit).

Promote_Subcategories

This operation promotes a set of subcategories up one level in a category. Given a table
T = (C,§), a category c in C, a label sequence s of ¢, and a set L of labels of the labeled
domains in set(s), we obtain a new category ¢’ by moving labeled domains A(s.z),z € L,
to set(front(s)) and assign last(s)z as the labels of the corresponding promoted labeled

CHAPTER 3. EDITING

Table 3.13: A conversion table from pounds to kilograms.

Pounds Kilograms

0.00
0.45
0.90
1.36
1.81
2.26
2.72
3.17
3.63
4.08

4.54
4.99
5.44
5.90
6.35
6.80
7.26
7.71
8.17
8.62

00

Two digits

10

OO (IO ||| =S | O] 0| =3 | U (o 2|

CHAPTER 3. EDITING

Table 3.14: After splitting a subcategory in Table 3.13.

Pounds Kilograms

0.00 4.54
0.45 4.99
0.90 5.44
1.36 5.90
1.81 6.35
2.26 6.80
2.72 7.26
3.17 7.71
3.63 8.17
4.08 8.62

0.00 0.45
0.90 1.36
00 1.81 2.26
2.72 3.17
Two 3.63 4.08
digits 4.54 4.99
5.44 5.90
10 6.35 6.80
7.26 7.71
8.17 8.62

One
digit

Ol |Ww|]|= O

CHAPTER 3. EDITING 66

subdomains. If set(s) is empty after the promotion, the labeled domain A(s) is also

removed from the category. We can define ¢’ as:
¢ = ({(c—{sz:z€L})—{s:L={lbl(z): z € set(s)}})
+ Uzer{front(s).last(s)z.t : £ € fr(set(s.z))}.
We obtain a new table 7" = (C’, §’), where

¢’ = (C - {hu{e)
and ¢’ is defined as follows. For each f € @fr(C’), if f € ®@fr(C), we define &(f) =

a(f). If f € (@fr(C') — @fr(C)), there is a label sequence v € f such that v =
front(s).last(s)z.t, where z € L and t € fr(set(s.z)); thus, we define

5(F) = 6((f — {u}) U {s.2.83).

For example, suppose T identifies the logical structure of Table 3.1; then we can generate
Table 3.15 by performing following operations:

T1 := Combine_Categories(T, Year, Term)
Ty = Promote_Subcategories(Ty,Y ear, Year.1991, {Winter, Spring, Fall})
Ts := Promote_Subcategories(Ts, Y ear,Year.1992, {Winter}).

Demote _Subcategories

This operation demotes a set of subcategories down one level in a category. Given a table
T = (C,§), a category c in C, a label sequence s of ¢, a set L of labels of the labeled
domains in set(s), and a label { that is different from the labels of the remaining labeled
domains in set(s), we obtain a new category ¢’ by replacing all the labeled domains in

set(s) whose labels are in L with a new labeled domain
(I, {(strip(l, Ibl(z)), set(z)) : = € set(s) A lbl(z) € L}).

For each demoted labeled domain, if the old label contains I as a prefix, the new label
is the remaining part of the old label after removing the prefix I; otherwise, the label is
unchanged. We can define ¢ as:

d=(c~{szeLl})+ UL{s.strip(l,a;).t 1t € fr(set(s.z))}.

CHAPTER 3. EDITING

Table 3.15: The average marks for 1991-1992.

67

Mark
Year Assignments Examinations
Grade

Assl | Ass2 | Ass3 | Midterm | Final
1991 Winter 8 80 75 60 75 75
1991Spring 80 65 75 60 70 70
1991Fall 8 85 75 55 80 75
1992Winter 85 20 70 70 75 75
i 80 0 75 5
1992 Spring 8 70 7 7
Fall ™ 70 65 60 80 70

We obtain a new table TV = (C’, '), where

where z € L and t € fr(set(s.z)); thus, we define

C' = (C - {ehyu{c}

and ¢’ is defined as follows. For each f € @ fr(C'), if f € @ fr(C), we define §'(f) = §(f).
If f € (®fr(C") — ®fr(C)), there is a label sequence u € f such that u = s.strip(l, z).t,

§'(F) = 8((f = {w}) U {s.2.t}).

For example, suppose T identifies the logical structure of Table 3.15; then we can generate

Table 3.16 by performing the operation

Demote_Subcategories(T, Year, Year,
{1991Winter, 1991Spring, 1991 Fall},
1991).

CHAPTER 3. EDITING 68

Table 3.16: The average marks for 1991-1992.

Mark
Year Assignments Examinations
Grade

Assl | Ass2 | Ass3 | Midterm | Final
Winter 8 80 75 60 75 75
1991 | Spring 80 65 75 60 70 70
Fall 80 85 5 55 80 75
1992Winter 85 80 70 70 75 75
1692 Spring 80 80 TO 70 75 75
Fall 75 T0 65 60 80 70

Change_Label

This operation changes the label of a labeled domain in a category. Given a table
T = (C,6), a category ¢ in C, a label sequence s of ¢, and a label [that is different
from the labels of the labeled domains in set(front(s)), we obtain a new category ¢’ by
replacing the old label of A(s) with I. We obtain a new table 7 = (C”, §'), where

¢’ = (C = {eh U {c}

and ¢’ is defined as follows. For each f € @ fr(C"), if f € ® fr(C), we define §'(f) = §(f).
K f € (®fr(C') — ®fr(C)), there is a label sequence u € f such that u = front(s).Lt,
where £ € fr(set(s)); thus, we define §'(f) = 6((f — {u}) U {s.t}).

Change_Entry_Value

This operation assigns a new value for an entry in a table. Given a table T' = (C,), an
entry e in ® fr(C), and a value v of any kind, we obtain a new table TV = (C", §'), where
C' = C and ¢’ is defined as follows. For each f € ® fr(C’), we define §(f) = v if f =,
and ¢'(f) = §(f), otherwise.

CHAPTER 3. EDITING 69

Compute_Entry_Value

This operation computes a new value based on the old value of an entry in a table. Given
a table T' = (C, ¢), an entry e in ®fr(C), and a user-defined operation op which takes
an entry value as an operand, we obtain a new table 77 = (C’, §’), where C' = C, and
d" is defined as follows. For each f € ® fr(C’), we define &(f) = op(6(f)) if f = e, and
§'(f) = 6(f), otherwise. Given an entry value v, suppose we define an operation Sum
that returns the sum of the numbers in v if v is a multiset, and returns v, otherwise. We
can use Compute Entry_Value with Sum to generate Table 3.13 from Table 3.12.

The frequently-used user-defined operations are for numerical calculations such as
Sum, Product, Average, Minimum, Mazimum, and so on. There are also many other
useful operations; for example, transforming a multiset into a set or catenating all el-
ements in a set. We can implement Compute_Entry_Value in a table editor in at least
two ways. In the first approach, the system provides some frequently-used operations
and users can choose only these operations for Compute_Entry_Value. In the second
approach, the system provides a language to define user-defined operations and a mech-
anism to interpret the operations defined in that language. Our prototype adopts the
first approach. How to implement Compute Entry_Value using the second approach is

left for future investigation.

Get_Entry_Value

This operation returns the value of an entry in a table. Given a table T' = (C, §) and an
entry e in ® fr(C), this operation returns §(e).

3.5 Expressiveness of editing model

The editing model provides the basic operations that support the editing of tables as
multi-dimensional logical structures. We can use these operations to compose tables step
by step, from an empty table to a table with a complex structure. We can also construct
complex operations from these operations for some special applications. We believe that
we have provided complete operations for editing a single table as a multi-dimensional

CHAPTER 3. EDITING 70

logical structure. A table that can be specified as a multi-dimensional logical structure
consists of two parts: the categories which are hierarchical structures and the mapping
from the categories to entries. The editing model provides sufficient operations to add
and remove categories, to manipulate the category hierarchy, and to update the mapping
from categories to entries. However, we do not provide operations that can be applied to
more than one tables, for example, to combine or split tables. Suppose Table A contains
categories X and Y, and Table B contains categories X and Z. We could combine Tables
A and B to obtain Table C that contains the category X and a new category that is the

conjunction of Y and 7.

We also believe that the operations in the editing model are non-redundant. One may
argue that we need only the operations: Empty, Insert_Category, Delete_Category,
Insert_Subcategpry, Delete_Subcategory, Change_Label, Change_Entry_Value,
Compute_Entry_Value, and Get_Entry_Value, and that the other operations can be
obtained from these operations. Suppose we decompose Move_Subcategpry into the two
operations: Delete_Subcategory and Inseri_Subcategory. After we delete a subcategory,
all associated entries are also removed. When we insert a subcategory into a table, the
associated entries are empty. Thus, the semantics of Move_Subcategpry is not preserved
under decomposition. Similar problems occur when we decompose the other operations

into sequences of more basic operations.

Chapter 4

Layout specification

The final purpose of tabular composition is to generate a concrete table in two dimen-
sions such that it clearly exhibits its underlying logical structure. The layout of a table
determines the efficiency of reading the table and the accuracy of obtaining pertinent in-
formation. There are two components that affect tabular layout. The topology of a table
determines the arrangement of tabular items in two dimensions and the style governs the
final appearance of different tabular components. We have discussed some guidelines for
the specification of topology and styles in Sections 1.2.2 and 1.2.3. We now propose a
presentational model to specify layouts for abstract tables. This model consists of a set
of presentational rules for tabular topology and style. These presentational rules support
the high-quality tabular layouts with respect to the topology and style guidelines.

4.1 Tabular Layouts

When we present a table as a row—column structure, we usually first arrange the labels
in the stub and boxhead and then decide the positions of the entries according to the
positions of their associated labels. Each entry is placed in a cell such that it is to the
right of its associated labels in the stub and beneath its associated labels in the boxhead.
In the abstract model, labels are grouped into categories; thus, the arrangement of labels
can be determined by the arrangement of categories in the stub and the boxhead as well

71

CHAPTER 4. LAYOUT SPECIFICATION 72

as by the label orderings of the categories. We use topological specification to describe

the relative arrangement of tabular items in two dimensions.

The selection of style rules is the key to the design of high-quality layouts of tables.
Most current tabular composition systems provide only style rules that govern the ap-
pearance of layout objects, such as rows, columns or blocks. In the traditional style sheets
of tables, we usually need to specify only the style for the whole table and its major re-
gions, including the stub, the boxhead, the stub head, and the body. Thus, it is useful to
provide style rules for these presentational objects. In addition, we may need to specify
styles that govern the appearance of logical objects, such as categories, labels and entries,
no matter where these objects appear in a concrete table. The style rules for both the
presentational objects and the logical objects enable us to control the appearance of a
table independently of the tabular topology. In this way, we do not have to respecify style
rules for a table after we change its topology. When we compose a document, we usually
present all tables in a uniform style so as to achieve consistent appearance throughout
the document. It is crucial that we can specify collective style rules to govern the general
appearance of a collection of tables. We use style specification to describe the selection
of style rules for a table or for a set of tables.

4.2 'Topological specification

When a table contains more than two categories, multiple categories appear in the stub,
in the boxhead, or in both although they are not orthogonal to each other. When this
multiplicity occurs, the labels in these categories are either indented as shown in the
stub of Table 4.1 or organized hierarchically as shown in the stub of Table 4.2. Different
orderings of categories in the stub or in the boxhead give rise to different topological
arrangements. By interchanging the order of Year and Term, we get the arrangement
shown in Table 4.3. We use two topological rules to specify the category orderings, one
for the stub and the other for the boxhead:

STUB: c;,Cs,...,C2
BOXHEAD: Cb C%,...,C¢E,

where Cf is the ¢th category in the stub and C';? is the jth category in the boxhead. For

CHAPTER 4. LAYOUT SPECIFICATION

Table 4.1: The average marks for 1991-1992.

Assignments Examinations
Grade
Assl Ass2 Ass3 Midterm Final
1991
Winter 8 80 75 60 75 75
Spring 80 65 75 60 70 70
Fall 80 8 75 55 80 75
1992
Winter 8% 80 70 70 75 75
Spring 80 80 70 70 75 75
Fall ™ 70 65 60 80 70
Table 4.2: The average marks for 1991-1992,
Assignments Examinations
Grade
Assl Ass2 Ass3 Midterm Final
Winter 8% 80 75 60 75 75
1991 Spring 80 65 75 60 70 70
Fall 80 8 75 99 80 75
Winter 8% 80 70 70 75 75
1992 Spring 80 80 70 70 75 75
Fall ™ 70 65 60 80 70

CHAPTER 4. LAYOUT SPECIFICATION 74

Table 4.3: The average marks for 1991-1992.

Assignments Examinations
Grade
Assl Ass2 Ass3 Midterm Final
Winter
1991 85 80 75 60 75 75
1992 8 80 70 70 75 75
Spring
1991 80 65 75 60 70 70
1992 80 80 70 70 75 75
Fall
1991 80 8 75 55 80 75
1992 75 70 65 60 80 70

example, the category orderings of Tables 4.1 and 4.2 can be specified by

STUB: Year, Term
BOXHEAD: Mark.

The label ordering within a category is another attribute that affects the topological
arrangement. In Table 4.1, the labels in category Term are arranged in the order of
Winter, Spring, Fall. If we reverse the order to give Fall, Spring, Winter, we get a
different arrangement. Therefore, we need another topological rule to specify the label

ordering within a category:
ORDER C: Ly, L,,..., L,

where C' is a category and L; is the ith label of C in the ordering. Sometimes, we do
explicitly specify the label ordering for a category; instead, we implicitly specify the order
using standard ordering, such as numerical order or lexicographic order. Thus, another
form of topological rule for label ordering is:

CHAPTER 4. LAYOUT SPECIFICATION 75

ORDER C: <ordering option>,

where <ordering option> includes numerical order, reverse numerical order, lexicographic
order, and reverse lexicographic order. For example, the label orderings for the categories

in Table 4.1 can be specified as:

ORDER Year: lexicographic order
ORDER Term: Winter, Spring, Fall
ORDER Mark: Assignments, Examinations, Grade.

This specification does not, however, completely describe the label orderings in Table 4.1
because it does not specify the orderings of labels Assl, Ass2 and Ass3 for Assign-
ments, and Midterm and Final for Examinations. We must use the topological rules
for the subcategories. Thus, the complete ordering specification of the labels for Table 4.1

15

ORDER Year: lexicographic order
ORDER. Term: Winter, Spring, Fall
ORDER Mark: Assignments, Examinations, Grade

ORDER Mark.Assignments: lexicographic order
ORDER Mark.Examinations: Midterm, Final.

Sometimes, we need to order labels based on their associated entries. For example, in
Table 4.4, the student IDs are ordered based on their grades (in the last column): the
student IDs with associated higher grades appear earlier than student IDs with associated
lower grades. To specify this kind of indirect ordering, we extend the topological rule for
label ordering to:

ORDER C: <order option> [ON <label sequence set>].

If ON <label sequence set> is omitted, the labels are ordered with respect to their own
values; otherwise, they are ordered with respect to the entries that are associated with
the given label sequence set. We can specify the label orderings for Table 4.4 with:

ORDER. Mark: Midterm, Final, Grade
ORDER Student ID: reverse numerical order ON {Mark.Grade}.

CHAPTER 4. LAYOUT SPECIFICATION 76

Table 4.4: The marks for CS340.

Mark
Student ID
Midterm Final Grade

90800108 90 96 93
90800103 92 88 90
90800112 82 84 83
90800102 73 85 79
90800100 82 68 75
90800111 54 86 70
90800114 70 64 67
90800101 64 68 66
90800104 50 68 59
90800110 45 61 53

Once we are given a topological specification, we can determine the topological positions
of the labels and the entries of a table. The geometric positions, however, cannot be

determined without a style specification.

4.3 Style specification

A style rule consists of a scope and a set of formatting attributes that are associated with
the scope. For example, tables (scope) are displayed in Roman (formatting attribute)
with horizontal rules only (formatting attribute). The style rules for tables fall into
three classes: presentational-oriented style rules, content-oriented style rules, and layout-
oriented style rules. A presentational-oriented style rule has a scope that is a major region
of a table: the table itself, the stub, the boxhead, the stub head, and the body. It affects
the cells and separations (rules and spacing) in the major regions. A content-oriented
style rule has a scope that is a logical object or a set of logical objects of an abstract

table, including a category, a subcategory, a label, an entry, an entry value, and an entry

CHAPTER 4. LAYOUT SPECIFICATION 77

set. It affects only the cells in which the logical objects are located and the separations
of these cells. A layout-oriented style rule has a scope that is a layout component of a
concrete table, mncluding a row, a column, and a block. It always affects the cells and
separations in the layout component no matter what objects are put into it.

The presentational-oriented style rules are independent of both the logical structure
and the topology of a table. These style rules determine the general appearance of a table,
regardless of any change in the logical structure and topology. The content-oriented style
rules are associated with the logical components of a table and are independent of the
topology. These style rules are always applied to the items in their scopes, no matter
where the items are placed. The layout-oriented style rules are independent of the logical
structure and affect the appearance of a set of items that are dependent on the current
topology. If we rearrange the tabular items, then the layout-oriented style rules may be
applied to unexpected items and require adjustment. For example, we have specified the
following style rules for Table 4.5:

TABLE: Roman
double line for the top and bottom edges of the frame
single line for the stub and the boxhead separations only

STUB: indented style
CATEGORY Year: bold face
COLUMN 7: grey background.

By applying these style rules to a new topology, the transposition of Table 4.5, we get
Table 4.6. The general appearance of these two tables is similar because they have the
same presentational-oriented style rules for the table and the stub. The labels of category
Year are displayed in bold face for both tables, even though they are in different positions.
Although the entries that are associated with label Grade are a logical unit, we intended
to highlight these entries by specifying a layout-oriented style rule for column seven in
the first topology. After the change of topology, this layout-oriented style rule is applied
to the marks that are associated with 1992 Fall term. To highlight the correct items
in the new topology, we have to remove the layout-oriented style rule for column seven
and add a new rule for row ten. From this example, we see that presentational-oriented
and content-oriented style rules enable us to specify styles for tables independently of

their specific topologies. If we ignore the inconvenience caused by the layout-oriented

CHAPTER 4. LAYOUT SPECIFICATION

Table 4.5: The average marks for 1991-1992.

Assignments Examinations
Assl Ass2 Ass3 Midterm Final

1991
Winter
Spring
Fall

1992
Winter
Spring
Fall

85 80 75 60 75
80 65 75 60 70
80 85 75 55 80
8 80 70 0 75
80 80 70 0 75
70 65 60 80

Table 4.6: The average marks for 1991-1992.

1991 1992
Winter Spring Fall Winter Springf

Assignments
Assl
Ass2
Ass3

Examinations
Midterm
Final

Grade

85 80 80 35 80
30 65 85 80 80
75 75 7 70 70

60 60 99 70 70
75 70 80 75 75

75 70 75 (i} 75

78

CHAPTER 4. LAYOUT SPECIFICATION 79

style rules when changing a table’s topology, they have some advantages. First, since
tables are presented as a row-column structure, we are accustomed to specifying style
rules for rows and colummns. Second, sometimes it is easier to specify layout-oriented
style rules, than to specify content-oriented style rules to achieve the same effect. In
the last example, we would need to use two content-oriented style rules to replace the
layout-oriented style rule for column seven: one style rule for the label Grade and the
other for the set of entries that are associated with label Grade.

In the remainder of this section, we first discuss the formatting attributes for different
style rules and then we provide more details about the presentational-oriented style rules,
the content-oriented style rules, and the layout-oriented style rules. We also introduce
the concepts of collective style rules and specific style rules.

4.3.1 Formatting attributes

We provide eight types of formatting attributes for style rules:

o Cell style

Thi allows us to control the appearance and the background of the items in cells. We
can specify type faces and sizes, background colors, line spacing, leading spacing,
horizontal and vertical alignment options, and so on.

¢ Separation style

Appropriate separation of tabular items can assist readers to find information in
table move easily. We should be able to select white space or different types of
horizontal and vertical rules to separate different kinds of items.

o Frame style

Sometimes we want to highlight the items in a particular rectangular area by placing
rules or white space around the area. The frame style enables us to select white
space or different types of rules to surround a rectangular area.

¢ Arrangement style

CHAPTER 4. LAYOUT SPECIFICATION 80

This style enables us to control the arrangement of labels in the stub, boxhead, and
stub head. We can specify four different styles for the stub: hierarchical, indented,
cut-in, and repeated. These styles are in common used. Since indented style and
cut-in style are never applied to the boxhead, we can specify only repeated style
and hierarchical style for the boxhead. We can fill the stub head with the headings
of the categories in the stub or leave the stub head empty.

¢ Spanning style

This allows us to span the entries that have the same value in a rectangular block.
The spanning options are: no spanning, horizontal spanning only, vertical spanning
only, horizontal spanning first, and vertical spanning first. These spanning options
enable us to span entries in one dimension without spanning in the the other dimen-
sion, or to span the entries in two dimensions by giving priority to one dimension.
Rectangular spanning is the most useful spanning shape for most tables. Other
spanning shapes, such as an L shape, an ortho-convex shape, or even an arbitrary
shape may be used in some tables, but it is unclear where to put the spanned value
inside these shapes. Inappropriate placement of a spanned value may make the
table less legible.

¢ Grouping style

This groups items into blocks of a given number of rows by the use of either white
space or rules. We can turn grouping on or off and specify how many rows are
in a group. The grouping separation should be specified in the separation style.
Grouping style is usually applied to tall tables to assisting searching for items. We

do not provide vertical grouping since the grouping of columns is never observed.

¢ Category heading style

This specifies the style of the category headings. For example, in Table 4.7 the
category heading Formatting attributes is displayed above its labels, but the
category heading Scopes is presented in the stub head. The display of category
headings can help readers comprehend the logical structure of a table more easily.
On the other hand, some category headings, such as Year or Weekday, are familiar
to us and we can still interpret the logical structure even when these category
headings are not displayed.

CHAPTER 4. LAYQUT SPECIFICATION 81

e Size constraints

To present a table in limited space and also achieve an aesthetic layout, we may
want to constrain the area, the column widths, or row heights. Size constraints

enable us to restrict the size and the shape of tables.

Style rules may have different formatting attributes in different scopes. For example,
the grouping style can be applied to the whole table only and the category heading style
can be applied only to the scopes that are associated with categories. Table 4.7 shows the
formatting attributes for different style rules. The same formatting attribute for different
scopes may not allow the same choices. For example, the separation style for the whole
table allows more separation specifications than the same style for the other scopes. We
explain the differences in the following subsections.

4.3.2 Presentational-oriented style rules

Presentational-oriented style rules control the general appearance of a table and its four

major regions. The scope of these style rules can be the whole table or one of its regions:
the stub, the boxhead, the body, and the stub head.

A style rule for the whole table can specify the cell style, the separation style, the
frame style, the grouping style, the category heading style, and the size constraints. The
separation style includes the selections of rule types, rule widths, and white space for
different kinds of separations in a table, including horizontal separation (which separates
the rows), vertical separation (which separates the columns), grouping separation (which
separates a group of rows), block separation (which horizontally and vertically separates
the items that are associated with labels in different subhierarchies), stub separation
(which vertically separates the stub and the stub head from the boxhead and the body),
and boxhead separation (which horizontally separates the stub head and the boxhead
from the stub and the body). For example, the separation styles:

CHAPTER 4. LAYOUT SPECIFICATION 82
Table 4.7: The formatting attributes for different style rules.
Formatting attributes
Scopes Cell | Separ- | Frame | Arrange- | Spann- | Group- | Cate- | Size
ation ment ing ing gory |constr.
Present- | Table v v v v v v
ational- |Stub v v v v
structure | Boxhead v v Vi v
style Stub head v v v
rules | Body VIV 7
Category V|V v
Content. | Subcategory v v v
oriented | Label v v
style Entry v v
rules Entry value | v/ Vv
Entry set v v v
Layout- | Block vV v v v
et [Row ARA N v v
rules Column v v Vv v v

CHAPTER 4. LAYOUT SPECIFICATION 83

Table 4.8: The marks of CS340.

Assignments 1 Examinations E
: Grade

Assl Ass2 Ass3 | Midterm Final |

1991 E i
Winter | 85 80 75 1 60 5 . 75
Spring 80 65 75 60 70 7 70
Fall 80 8 75 | 55 8 75

1992 | :
Winter 8 80 70 | 70 ™o T
Spring 8 80 70 ! 70 % 75
Fall 570 65 1 60 80 70

Stub separation: single line with 10pt white space

Boxhead separation: single line with 10pt white space
Horizontal separation: 5pt white space

Vertical separation: 5pt white space

Block separation: dashed line with 10pt white space

generate Table 4.8.

A frame style for the whole table includes the selection of rule types, rule widths, and
white space for the left, right, top, and bottom edges of the table frame. The frame style
for Table 4.8 is:

Left edge: 5pt white space
Right edge: 5pt white space
Top edge: =~ single lines with 5pt white space

Bottom edge: single lines with 5pt white space

The grouping style includes the selection of grouping and the number of rows to be
grouped. Table 4.9 is given by the following style rules:

CHAPTER 4. LAYOUT SPECIFICATION

Table 4.9: The marks of CS340.

Mark
Student ID
Midterm Final Grade

90800100 82 68 75
90800101 64 68 66
90800102 73 85 79
90800103 92 88 90
90800104 50 68 59
90800108 90 96 93
90800110 45 61 53
90800111 54 86 70
90800112 82 84 83
90800114 70 64 67
90800115 60 70 75
90800116 88 70 79
90800117 65 71 68
90800118 04 80 87
90800119 72 72 72
90800201 85 75 80
90800202 46 60 53
90800203 98 90 94
90800204 74 84 89
90800205 88 60 70

CHAPTER 4. LAYOUT SPECIFICATION

Table 4.10: The average marks of some courses, 1991-~1992.

1991 E 1991 21991 i 1992 E _1_9_9_2__5_1???_
| Winter : Spring: Fall | Winter! Spring: Fall
CS241
Midterm 60 60 55 70 70 60
Final 75 70 80 75 75 80
Grade 75 70 75 75 75 70
CS242
Midterm 90 84 55 70 70 60
Final 76 70 75 80 50 84
Grade 83 77 65 75 60 72
CS5246
Midterm 60 80 a5 60 78 74
Final 40 70 83 72 70 80
Grade 50 75 89 66 T4 77

CHAPTER 4. LAYOUT SPECIFICATION

Table 4.11: The average marks for 1991-1992.

Mark
Assignments Examinations
: Grade
Assl Ass2 Ass3 Midterm Final
1991
Winter 8 80 715 60 75 75
Spring 80 65 15 60 70 70
Fall 80 8 75 55 80 75
1992
Winter 8 80 70 70 75 75
Spring 8 80 70 70 75 75
Fall 7% 70 65 60 80 70

4.3.3 Content-Oriented style rules

87

The scope of a content-oriented style can be a category, a subcategory, a label, an entry,

a set of entries with the same value, or a set of entries that are associated with a label

set.

The style rule for a category may specify the category heading style, the cell style,

and the separation style. For example, the style rules:

CATEGORY Term: bold face
CATEGORY Mark: heading is displayed
single line for horizontal separation

generate Table 4.11.

The style rule for a label, an entry or a set of entries with the same value may specify

the cell style and the frame style. The style rules:

LABEL Mark.Grade: underlined

CHAPTER 4. LAYOUT SPECIFICATION 88

Table 4.12: The average marks for 1991-1992.

Assignments Examinations
Grade
Assl Ass2 Ass3 Midterm Final
1991
Winter 60 [N - S
Spring 60 70 : 70 .:
Fall 55 80 75
1992
Winter 70 75 75
Spring 70 75 75
Fall 60 80 70

ENTRY {Year.1991, Term.Spring, Mark.Grade}:
bold face
dotted line for the frame
ENTRY VALUE 85: grey background

generate Table 4.12.

The style rule for a subcategory or for an entry set that is associated with a label
set may specify the cell style, the separation style, and the frame style. The frame style

controls all the frames of the blocks occupied by a subcategory or an entry set. The style
rules: '

SUBCATEGORY Examinations: dotted line for the left and right edges of the frame

dashed lines for the horizontal and vertical separation
ENTRY SET {Term.Winter, Mark. Assignments}:
grey background

generate Table 4.13.

CHAPTER 4. LAYOUT SPECIFICATION 89

Table 4.13: The average marks for 1991-1992.

Assignments ! Examinations :
R - -~ Grade
Assl Ass2 Ass3 : Midterm ' Final :
1991
Winter 60 75 75
Spring 60 70 70
Fall 55 80 75
1992
Winter 70 75 75
Spring 70 75 75
Fall 60 80 70

4.3.4 Layout-Oriented style rules

The scope for a layout-oriented style rule can be a row, a column, or a block. The possible
style rules for these scopes are the spanning style, the cell style, the separation style, the
frame style and the size constraints. The size constraints specify lower and upper bounds
of the column widths and row heights within the scope and lower and upper bounds on
the total width and height within the scope. For example, the style rules:

COLUMN 7: single line for the left edge of the frame
ROW 6: grey background
BLOCK (8, 2, 10, 4): horizontal spanning first
dashed line for all separations
single line for the top and right edges of the frame

generate Table 4.14.

CHAPTER 4. LAYOUT SPECIFICATION 90

Table 4.14: The average marks for 1991-1992.

Assignments Examinations
Grade
Assl Ass2 Ass3 Midterm Final
1991
Winter 86 80 75 60 75 75
Spring 80 65 75 60 70 70
1992
Winter | 85 : 80 | 70 70 5 | 75
Spring 80 ! 70 75 75
Fal | 75 :70:65 | 60 8 | 70

4.3.5 Collective and specific style rules

The appearance of a table can be governed by many style rules. Some style rules are given
by a publisher or an editor of a book to achieve a uniform appearance of all tables in the
same book. Some style rules are given by a table designer for the specific presentation
of one table. We can classify the style rules for a table into two classes: collective style
rules and specific style rules.

A collective style rule is a style rule for the presentation of a collection of tables.
A collective style rule can be any style rule that we have discussed in Sections 4.3.2
through 4.3.4. I a collective style rule is a presentational-oriented style rule, it should
be applied to all the tables. If a collective style rule is a content-oriented style rule or
layout-oriented style rule, it is applicable to only the tables that contains the scope of the
style rule. For example, a collective style rule for a category, say the category Year, is
applicable only to tables that contain a category named Year, and a collective style rule
for a particular column, say the fifth column, is applicable only to tables that contain at
least five columns.

CHAPTER 4. LAYOUT SPECIFICATION 91

Sometimes we need to override some formatting attributes of the collective style rules
to present a table differently for specific reasons. In these cases we use specific style rules.
For example, if we want to highlight the highest grades, we can use a specific style rule
to set a grey background for the entries with the highest grades.

There are a number of advantages in the separation of the collective style rules from
specific style rules. First, the collective style rules need to be specified only once for a
collection of tables. Second, if we want to change the appearance of a collection of tables,
we need to change only the collective style rules. Third, authors do not need to know
the details of the collective style rules and editors do not need to know the details of the
tables when they design the collective style specification.

4.4 Problems

Applying a topological specification to a table is straightforward. However, applying
a style specification is another story. Many problems arise when applying a group of
style rules to a table. We discuss three key problems: style conflict, the side effects of
layout-oriented style rules, and the dynamic change of spacing.

4.4.1 Style conflict

We do not have to specify style rules for all components of a table. A component can
inherit the style rules of one of its super-components or the default style rules. For
example, a cell that holds 2 label can inherit the style rules of the label’s category and
the cell’s region (stub, boxhead, or stub head); a cell that holds an entry can inherit the
style rules of any entry set that contains the entry or the style rules of the cell’s row
and column. Thus, we need to find approaches to solve style inheritance. If we were
able to use a tree structure to describe the relationships among the tabular components,
we would define a priority order for style inheritance based on single inheritance. There
are, however, multiple inheritances in a table. For example, a cell belongs to its row and
column, which do not contain each other completely; thus, it can inherit style rules from
both the row and the column. Therefore, the approaches for style inheritance should

handle multiple inheritance. Three approaches can be used to make the decision:

CHAFPTER 4. LAYOUT SPECIFICATION 92

1. Combine the style rules of all super-objects

In this approach, we attempt to find style rules that satisfy all the style rules from
all the super-objects. For example, italic Roman is the result of combining Roman
and italic. There may not be, however, such a simple solution for all the style rules.
For example, there is no suitable font that is the result of combining Roman and

Courier.

2. Use the style rules of the super-object with the highest priority

In this approach, either the tabular system or the user determines which super-
object has the highest priority. Although we may define a realizable solution with-
out user intervention, there are always cases that cannot meet users’ expectations.
This approach does not allow an object to inherit the combination of the style
rules of its super-objects, which is similar to the way that C** handles multiple
inheritance: a subobject can inherit a method from a specific super-object, but it
cannot inherit the combination of the methods in all super-objects.

3. Combine the previous two approaches

First, we try to combine the style rules of all super-objects. Whenever there is
no satisfactory combination, we use the style rules of the super-object with the
highest priority. This approach overcomes the shortcomings of the previous two

approaches.

Beach’s system provides style rules for columns and rows and allows a cell to inherit
the style rules of its column and row. Therefore, his system also needs to handle multiple
inheritance. Beach adopted the first approach to solve style conflicts. He didn’t, however,
discuss the case in which there is no solution for the combination of multiple style rules.
Since Vanoirbeek’s system models tables as a tree structure, it provides only style rules
for the objects in a tree structure; thus, this system does not have the problem of multiple
inheritance. Our system adopts the third approach to handle style conflicts. We describe
our approach in more detail in Chapter 6.

CHAPTER 4. LAYOUT SPECIFICATION 93

4.4.2 Side effects of layout-oriented style rules

From previous examples, we have seen that layout-oriented style rules may be applied to
unexpected items after changing the topology of a table. This may happen whenever we
specify layout-oriented style rules for logical components. To avoid these unpleasant side
effects, we encourage users to specify content-oriented style rules for logical components.

We can use three methods to handle the problem of layout-oriented style rules:

1. We do not change the style rules, but provide commands to remove layout-oriented
style rules. In this case, users are responsible for the removal of old layout-oriented

style rules and for the specification of new rules.

2. We remove or automatically suppress all layout-oriented style rules once the topol-

ogy is changed. Therefore, users have to specify new style rules for the new topology.

3. We attempt to adjust the style rules after a topological change. For some changes,
such as transposition, we can easily adjust the style rules. For other changes,
however, we cannot adjust the style rules so easily. Since items in a block may be
separated in multiple blocks after changing topology, a style rule for a block in the
old topology needs to be replaced by multiple style rules for different blocks in the
new topology.

We adopt the first approach in our tabular editor since it gives users the power to
remove or to keep the layout-oriented style rules after changing the topology.

4.4.3 Dynamic change of spacing

To achieve an aesthetic layout, line and separation spacing should depend on the font
size used to present the items. If we use a larger (or smaller) font to present a table,
this spacing should be larger (or smaller) as well. We can use one of the following three
approaches to handle this problem:

1. Users must change the spacing whenever they change a font size. They may not

know, however, how much spacing is appropriate for a well-designed presentation.

CHAPTER 4. LAYOUT SPECIFICATION 94

2. We change the spacing to the appropriate values for well-designed presentation
whenever the font sizes are changed. If users really do not like the new spacing,
they can change it.

3. We provide two kinds of spacing: relative and absolute. Relative spacing is propor-
tional to the font size of an object and absolute spacing is fixed. Users can select
either kind according to their requirements.

The third approach is the best solution because it does not require respecification of the
spacing after changing font size. Our editing system, however, uses the second approach
because we had not developed the third approach when implementing the system.

4.5 Expressiveness of the presentational model

The topological rules in the presentational model allow only the arrangement of labels
in the stub and the boxhead. This approach forces users to follow the guideline we
gave in Section 1.2.2; namely, place the most frequently referenced items to the left or
top of a table. Experiments [Wri68] have proved that readers tend to ignore the labels
that are put in the body and consider them as entries. Thus, the presentation model
does not allow a user to specify a topology in which some labels are placed in the table
body, such as in Table 4.15. In Table 4.15, the apartment numbers in boldface are labels
and they are placed in the body to shorten the table length. In some large tables, the
labels in the boxhead are replicated many times in the body to help users to locate items
faster. Table 4.16 shows the phosphorus loadings to the Great Lakes, from 1976 to 1982.
Notice that the labels in the boxhead are repeated three times for each lake in the stub.
After users locate a lake, they can immediately search for a year in the same row. The
replication saves eye-traveling time between the the boxhead and the located row. QOur
presentational model is also unable to specify this kind of topological arrangement.

The presentational model enables users to specify styles from different viewpoints:
general, logical, and layout. The presentational-oriented style rules, which control the
general appearance of tables, are usually specified as collective style rules for a set of
tables. The content-oriented style rules, which specify style for the logical components,

CHAPTER 4. LAYOUT SPECIFICATION

Table 4.15: Apartments at 31 Eleanor Drive, Nepean.

Floor Number Size Exposure Number Size Exposure
number | of rooms (ft?) of rooms (ft?)
Aptl Apt2
1 1 700 West 1 700 West
Apt3 Apt4
1 1 700 West 1 700 East
Apt5 Apt6
1 1 700 East 1 700 East
Apt7 Apt8
2 2 1050 West 2 1050 West
Apt9 Aptlo
2 2 1050 East 2 1050 East
Aptil Apt12
3 3 1550 West 3 1550 West

95

CHAPTER 4. LAYOUT SPECIFICATION

Table 4.16: Phosphorus loadings to the Great Lakes, 1976 to 1982.

Lake Erie 1976 1977 1978 | 1979 1980 1981 1982
Point source 6,006 5,832 4,631 2,890 2,452 1,898 1,455
Non-Point source

Tributary 7,211 6,545 12,874 6,241 9,773 6,745 9,154

Atmospheric 1,119 1,119 879 1,550 1,550 729 660
Total load 14,336 13,496 18,384 10,681 13,773 9,372 11,269
Target load 14,606 14,606 11,000 11,000 11,000 11,000 11,000
Lake Ontario 1976 1977 1978 1979 1980 1981 1982
Point source 2,119 2,594 2030 2,419 2,122 1,818 1,643
Non-Point source

Tributary 4,490 2,970 2,899 3,200 3,069 2,435 3,318

Atmospheric 473 623 764 311 311 328 600
Total load 7,082 6,187 5,693 5,930 5,502 4,581 4,961
Target load 6,072 6,072 5,000 5,000 5,000 5,000 5,000
All takes 1976 1977 1978 1979 1980 1981 1982
Point source 9,595 9,802 7,739 6,252 5,568 4,536 3,893
Non-Point source

Tributary 21,248 16,017 24,517 18,432 20,631 17,750 21,500

Atmospheric 5,433 5,583 7,284 11,157 11,157 2,481 3,393
Total load 36,276 31,402 39,540 35,841 37,356 24,767 28,786
Target load 32,562 36,562 31,360 31,360 31,360 31,360 31,360

96

CHAPTER 4. LAYOUT SPECIFICATION 97

enable users to specify style independently of a table’s topology. The layout-oriented style
rules, which specify style for the layout components, provide the traditional way to specify
style based on the row-column structure. The formatting attributes for various style rules
were carefully chosen according to the guidelines we gave in Section 1.2.3 and as a result
of the examination of different kinds of tables. We offer the styles that are commonly
provided by other systems, such as various typographic options for items, commonly-used
styles for rules, sufficient alignment options, and different methods of spanning items. We
also provides some styles that are seldom provided by other tabular composition systems,
for example, grouping items with rules or white space and arranging items in the stub
in cut-in or indented styles. However, the presentational model cannot specify all styles
observed in all tables. For example, we do not handle oblique lines; thus, we are unable
to specify a table in which the headings of the categories in both dimensions are put
in the stub head, separated by an oblique line. We allow only horizontal typesetting of
text, vertical typesetting is not provided. We are not able to use graphical elements to
highlight visual presentations; for instance, using horizontal or vertical braces to group

items, or using arrows to strengthen the effect of spanning items.

We also did experiments to measure how well the presentational model can be applied
to tables in the real world. We classified the tables from the books used in the experiment
for the abstract model described in Section 2.4. Table A.2 in Appendix A reveals that
the model can be used to specify the topology of 94 percent of the tables in these books
and to specify the style of 97 percent of the tables. From these experiments, we see that

our presentational model matches the real-world situation quite well.

Chapter 5

Formatting

An abstract table specifies only the logical structure of a table, it ignores the topological
and typographical attributes, whereas a concrete table is a visualization of an abstract
table in two dimensions. After applying a topological specification and a style specifi-
cation to an abstract table, we generate a grid structure, an intermediate form between
an abstract table and a concrete table, and size constraints for the columns and rows of
the grid structure. The formatting process determines the physical dimension of -a grid
structure that satisfies the size constraints. Many factors contribute to the complexity
of the formatting process. We focus on tabular formatting that provides automatic line
breaking and allows size constraints expressed as linear equalities or inequalities, but does
not provide objective functions. We first prove that the complexity of tabular formatting
is NP-complete, and then we present an exponential-time algorithm that can solve the
formatting problem in polynomial time for many tables.

5.1 Complexity of tabular formatting

The following three factors contribute to the complexity of tabular formatting:

1. The method of handling the line breaking of text within a table cell: fixed or

automatic.

98

CHAPTER 5. FORMATTING 99

Table 5.1: The complexity of tabular formatting.

Line Size Objective functions
breaks constraints None |Diameter| Area |White space
Hone p! pr | P P7

Linear equality

. 23 1 73 23
leed or inequa].ity P ! P P { P !
Nonlme?ar 0 . 0 0
expression
None P ? ? ?
Linear equality 5
. 23 23 73
Automatic or inequality NPC NP7 NPCY NPC?
Nonline'a.r 0 0 ? a
expression

1 Proved by Richard Beach [Bea85].

2 See Theorem 5.1.

3 These results are conjectured; see the report of Wang and Wood [WW96] and the dis-
cussion in Chapter 7.

2. The kinds of size constraints for the columns and rows: none, linear equalities or

inequalities, or non-linear expressions.

3. The objective function that evaluates the quality of a tabular layout: none, minimal

diameter, minimal area, or minimal white space.

Based on previous research and our current work, we list the complexity of tabular
formatting for different combinations of the restrictions in Table 5.1, where P denotes
polynomial-time solvable and NPC denotes NP-complete.

As far as we know, Beach is the only person who has discussed the computational
complexity of tabular formatting. In his PhD thesis [Bea85], Beach presented a tabular

CHAPTER 5. FORMATTING 100

formatting problem, RANDOM PACK, that arranges a set of unordered table entries into
minimum area and proved that RANDOM PACK is NP-complete. Because of the random
positioning of the table entries, RANDOM PACK does not produce pleasing and readable
tables that clearly convey the logical structure. Beach also presented another problem,
GRID PACK, that formats a set of table entries assigned to lie between particular row and
column grid coordinates within the table and proved that GRID PACK is polynomial-
time solvable. GRID PACK, however, assumes that the width and the height of the table
entries are fixed; thus only fixed line breaks are allowed. Although Beach also allowed
size constraints expressed as linear equalities or inequalities in his table model, he did
not include the size constraints in RANDOM PACK and GRID PACK. The designers of
TAFEL MUSIK have designed an exponential-time algorithm for tabular formatting that
provides automatic line breaking, allows size constraints expressed as linear equalities and
inequalities, and considers objective functions. However, they have analyzed neither the

complexity of tabular formatting nor the running time of their algorithm.

We present a tabular formatting problem with restrictions on the three factors listed
above. Automatic line breaking is important and useful for tabular formatting. It is also
immportant to allow users to control the selection of the dimensions of columns and rows
for a table. We simplify tabular formatting without losing these features.

We first disregard objective functions. The size constraints, we believe, play a more
important role than the objective function in the selection of the final layout for the

following reasons:

1. A layout that is optimal with respect to an objective function does not always
provide the most appropriate layout.

An optimal solution may make one column too narrow and another too wide,
or generate a table with an unacceptable aspect ratio. We need to specify size

constraints to avoid such pathological cases.
2. Users are more concerned about size constraints than they are about objective
functions.

Users tend to care more about the sizes of tabular components, Such as whether
a table can be placed inside a region of a given width and height, whether the

CHAFPTER 5. FORMATTING 101

proportions of the sizes among components in a table are appropriate, and whether
the proportions between a table and the surrounding objects are appropriate. For
example, the width of a table should not be wider than the page size, the widths of
different columns should not differ too much, and the width of a table should not be
too narrow if the table is placed between wide objects. Once these requirements are
satisfied, it really does not matter too much whether a table occupies the smallest
space or contains the least white space. Such requirements are specified by size

constraints, rather than by objective functions.

3. We do not always need an optimal solution.

In most cases, a solution that is close to optimal is good enough. Users can adjust
the size constraints to approach a solution that is closer to the optimal solution
for a particular table. For example, we can specify a thinner column to reduce the
white space in a column or specify a thinner or shorter table to reduce the area or
diameter of a table. .

When we do not use objective functions, we can select any layout that satisfies the size
constraints. We call this strategy an if-satisfied-then-taken strategy.

We next simplify the size constraints. We consider only the size constraints that can
be expressed as linear equalities or inequalities that contain only variables for column
widths or variables for row heights, but not for both. Size comstraints expressed with
these kinds of linear equalities or inequalities are called homogeneous. For example,
suppose we use w; to denote the width of the jth column and A; to denote the height of
the ith row, then w; + 2ws < 100 and h; — 3hy = 0 are homogeneous size constraints,
whereas hy + wy > 500 is not. If a size constraint contains only variables for column
widths, it is called a width constraint, and if a size constraint contains only variables for

row heights, it is called a height constraint.

Finally, we fix the direction of typesetting. We assume that the text is read row by
row from top to bottom and either from left to right or from right to left within each
row. Given a rectangular region, we first horizontally fill the region with text that is as
wide as possible. If the region is not wide enough for all the text, we break the text into
lines and vertically fill the region. We can easily extend our model to allow text that is

read column by column, but our assumption simplifies the presentation.

CHAPTER 5. FORMATTING 102

cl c2 cd cd ch cb el

rl
r2
3

rd

| Cell (2,3)

- Block (3, 4, 4, 6)

Figure 5.1: A 4 x 7 grid.

5.2 Grid structure

A grid structure describes the placement of tabular items in a two-dimensional lattice.
We inherited this concept from Beach’s system [Bea85] and make some changes. A grid
structure consists of two components: a grid and a set of non-overlapping items that are
placed on the grid.

An m x n gridis a planar integer lattice with m rows and n columns. For example,
Fig. 5.1 shows a 4 x 7 grid. The rows are identified from top to bottom by 1,2,...,m and
the columns are identified from left to right by 1,2,...,n. The intersection of a row and
a column is called a cell and the cell that is the intersection of the ith row and the jth
column is identified by (i,7). A block is a rectangular region that completely surrounds
a set of cells, and it is identified by (¢,1,b,7), where (£,1) is its upper left cell and (5,7)
is its lower right cell.

An item is an object that is placed in a block of a grid. The content of an item
can be a string, a number, a textual object, a fixed-sized picture and image, or a table.
The size function of an item is a decreasing step function that describes the line-breaking
characteristics of the item for a particular output device. It takes a width as its argument
and returns the height of the item when the item is typeset within the given width. We

CHAPTER 5. FORMATTING 103

can assume that both the width and the height are integers. The characteristics of a size

function for a textual item are shown in Fig, 5.2, from which we can see that:

1. The height of an item is monotonically non-increasing as the width increases, be-
cause an item does not require more lines when the width increases.

2. The height of an item does not change continuously. When we increase the width
of an item, the height is unchanged until the width is large enough to allow the
first non-broken unit in a line to move to the previous line. Thus, at some specific
widths (break points by, b3, and bs in Fig. 5.2), the height of an item decreases. For
the range of widths between two consecutive break points, the height of an item is
constant,

3. There is a minimal width for an item (b, in Fig. 5.2). The minimal width should
be the width of the longest non-broken unit in the item. We designate the min-
imal width as a special break point. The height is maximized when the width is

minimized.

4. There is a maximal width for an item (b4 in Fig. 5.2). The maximal width is the
width of the item without any line breaking. The height is minimized when the
width is maximal.

These characteristics also hold for tables, mathematical equations, and fixed-sized pic-
tures and images. They do not, however, hold for variable-sized pictures and images,
because the height of a picture or an image also increases when the width increases. We
use a step to denote the range of widths in [bg, by1), where b and by, are two adjacent
break points or b; is the maximal break point and by, is +o0. The lower bound of a
step is called a step head and the upper bound of a step, which is b4y — 1 if the step is
[Bk, br41) or +oo if the step is [b, +00), is called a step tail. A size function returns the
same height for all the widths in a step. In Fig. 5.2, the size function consists of four
steps [by,82), [b2, bs), [bs, b4), and [by, +00).

We can specify an item by a six-element tuple (¢,1,b,7,¢,v), where (£,1,b,7) is the
block in which the item is placed in the grid, £ is its size function, and + is the set of

step heads for £. For convenience, we need to define some more notation. If s is a step,

CHAPTER 5. FORMATTING 104

£(w)

Figure 5.2: The characteristics of a size function.

we use s.head to denote its head and s.fail to denote its tail. If 7 is a set of step heads
for a size function, we use 1)[min] to denote the minimal step head and 7[maz] to denote

the maximal step head.

5.3 The tabular formatting problem

The goal of tabular formatting is to calculate the final geometric positions of all the
tabular components. By applying a topological specification and a style specification to
an abstract table, we are able to generate an m X n grid, a set of items placed on the grid,
and a set of size constraints. After that, we need to determine the physical dimensions
of the columns and the rows in the grid so that all the size constraints are satisfied and
all the items are placed completely inside the block they occupy. We can formally define
Tabular Formaiting as follows:

CHAPTER 5. FORMATTING 105

INSTANCE: An m x n grid, r non-overlapping items: or = (t,, bk, 7k, &k, Vi)

(1 <k <r),and s size constraints: ey, ey,...,e,.
QUESTION: Are there n + m integers wy, ws, ..., ws and hy, ks, ..., Ay, such that
1. W = wy,ws,...,w, satisfy all width constraints among e;, e, ..., €,;

2. H="hy,hs,..., h, satisfy all height constraints among e, ez, 5 €
3. Vou(1 Sk <7), 505, wp > dufmin] and & (Tpky, wp) < Tty b

The w;(1 < j < n) are the column widths and the h;(1 < ¢ < m) are the row heights of
the grid. The first two conditions ensure that w;(1 < 7 <) and Ai(1 < ¢ < m) satisfy all
the size constraints. The third condition ensures that the width of the block for each item
is at least the minimal width of the item and the height of the block should be sufficient
to hold the item when it is typeset within the width of the block. If w;(1 < j < n)
and h;(1 < 7 < m) satisfy all three conditions for an instance, we say that the instance
has solution (W, H). If they satisfy only the third condition for an instance, we say the
instance has layout (W, H).

For an instance of the tabular formatting problem, there may be more than one
solution. Suppose we have an instance that consists of a 5 x 3 grid and the 13 items

shown in Table 5.2. The size constraints for this instance are:

290pt < wi + ws + ws < 380pt
hi + hy + hs + hy + hs < 350pt
ws > 120pt.
there are several solutions for this instance. One solution, shown in Table 5.2, is:
wy = 65pt, w, = 68pt, wz = 230pt,
hy = 31pt, h, =4Tpt, hs =45pt, hy=4Tpt, hs = 45pt

and another solution, shown in Table 5.3, is:

U = 65pt, Wy = 105pt, Wy = 125pt,
hy =33pt, hy =62pt, hs =T4pt, hy = T6pt, hs = T4pt.

CHAPTER 5. FORMATTING

Table 5.2: The tournament schedule.

106

Activity | Final Entry | Starting Date, Location, Times
Date
Men’s & Prelim. Sat. Jan. 28, Finals Sun. Jan. 29,
Women’s | Monday, 11:00am-6:00pm, Court 1068-1073, PAC
squash Jan. 23,
Singles 1:00pm, Prelim. Sun. Feb. 5, 10:00am-6:00pm,
Tennis PAC 2039 |Finals Sun. Feb. 12, 10:00am-6:00pm,
Waterloo Tennis Club
Mixed Prelim. Wed. Mar. 8, 8:00pm-11:30pm,
Volleyball | Friday, Finals Mon. Mar. 13, 8:00pm-11:30pm,
Mar. 3, Main Gym, PAC
Men’s & |1:00pm, Prelim. Fri. Mar. 17, 12:00pm-5:00pm,
Co-Rec PAC 2039 |Finals Sat. Mar. 18, 3:00pm-1:00am,
Broomball Columbia Icefield

5.4 Tabular formatting is NP-complete

We show that Tabular Formatting is NP-complete by reducing it to Subset Sum [GJ79],
which is known to be NP-complete. The definition of the Subset Sum is as follows:

INSTANCE: A finite set A, a size s(a) € Z7, for each a € A, and a positive

integer B.
QUESTION: Is there a subset A’ C A such that Y, 4 s{a) = B.

For convenience, we abbreviate Tabular Formatting as TF and Subset Sum as S8.
Theorem 5.1 TF is NP-complete.

Proof:
a given set of n 4 m integers satisfies all three conditions.

It is easy to see that TF € NP since we can check in polynomial time whether

We reduce SS to TF. Given an instance of SS, we first divide A into d nonempty

subsets A;, A, ..., A4 by putting elements of the same size into the same subset. For

CHAPTER 5. FORMATTING

Table 5.3: The tournament schedule.

Activity | Final Entry Date |Starting Date,
Location, Times
Men’s & Prelim. Sat. Jan. 28,
Women’s Finals Sun. Jan. 29,
squash 11:00am-6:00pm,
| Monday, Jan. 23, Court 1068-1073, PAC
Singles 1:00pm, PAC 2039 Prelim. Sun. Feb. 5,
Tennis 10:00am-6:00pm,
Finals Sun. Feb. 12,
10:00am-6:00pm,
Waterloo Tennis Club
Mixed Prelim. Wed. Mar. 8,
Volleyball 8:00pm-11:30pm,
Finals Mon. Mar. 13,
8:00pm-11:30pm,
Friday, Mar. 3, Main Gym, PAC
Men’s & | 1:00pm, PAC 2039 | prelim. Fri. Mar. 17,
Co-Rec 12:00pm-5:00pm,
Broomball Finals Sat. Mar. 18,

3:00pm-1:00am,
Columbia Icefield

107

CHAPTER 5. FORMATTING 108

example, if A = {a1,a,as,as,as,ac}, s(a1) = s(as) = s(as) = 3, s(az) = s(ag) = 5, and
s(as) = 2, then A is partitioned into three subsets: 4; = {a;,as,as}, A; = {as, ag} and
As = {as}. We use s(A;) to denote the size of the elements in subset A4; and |A;| to
denote the number of elements in A;. Thus, SS is equivalent to this question: Are there
d integers 2y, 23, . . ., 2zq such that 0 < z; < |4g| (1 < &k < d) and ¢, (2 x s(4x)) = B.
We can construct an instance of TF from this version of SS as follows:

I.Let m=n=d.
2. Let 8 = 2 and the size constraints be:

Timw; = B+Xi s(4),
b = Tio((l4el +1) x s(As)) - B.

3. Let r =d and, for each k, 1 < k <7, o = (k, k, k, k, &, i), where

';bk:{iXs(Ak) |i=1,2,...,|Ak[+1}

&(z) is undefined if 2 < s(Ax)
= (IAkI -+ 1) X S(Ak) ﬁS(Ak) <z<2x S(Ak)

.= (|Ax| +2 —4) x s(Ax) if i x 8(Ar) <z < (i4+1) x s{Az)

2 X S(Ak) if |Ak| X S(Ak) <z< (!Akl + 1) x S(Ak)
S(Ak) ifz > (lAkI + 1) X S(Ak).

From the previous example of an instance of SS, we can construct a 3 x 3 grid in which
three items are to be placed in the cells along the diagonal (Fig. 5.3(a)). The size function
for o; is shown in Fig. 5.3(b). It is should be clear that the construction takes polynomial
time in the size of the instance.

Suppose that there is a subset A’ C A such that 3, 4 s(¢) = B. Then, there must be
d integers z1, 2y, ...,24 such that 0 < 2z, < |Ag| (1 < k< d) and T, (2 x s(4z)) = B.
We let w; = (z; +1) X s(4;) (1 <j <n)and by = (|| +1— 2) x s(4) (1 <i<m).
Now we prove that w; (1 < j < n) and k; (1 < i < m) satisfy the three conditions of
TF.

CHAPTER 5. FORMATTING 109

&1(w)
cl c2 c3
rl| % 1ar ! !
9r : :—:
r2 02 6_ : : :_‘
| 1 1 b
3 0s i
1 I] 1 w
3 6 9 12
(a) (b)

Figure 5.3: An example of constructing an instance of TF from an instance of SS.

First,

Yiaw; = i ((z+1) x 5(4;)
Tio1(ze x s(Ar)) + Tho; s(As)
B+ ¥4, s(4r),

which implies that the first condition holds.

Second,

Tk = TL((Al+1-2) x s(4))
o=t (([Ae] + 1) x s(Ar)) — hy (25 % 5(44))
=1 ((J4e] + 1) x s(Ax)) — B,
which implies that the second condition holds.
Now, for each ox(1 < k <),

S(Ak)

¢'k [mzn] ,

k
Ep:k wp

vl

and

CHAPTER 5. FORMATTING 110

E(Tprwe) = &(wy)

e((z +1) x s(Az))
(IAkl +1- zk) X s(Ak)
b

Zq'—‘k hq’

which implies that the third condition holds.

IA

Therefore, the instance of TF has solution (W, H).

Conversely, if the instance of TF has a solution (W, H), then w; (1 < j < n) must
fall in a step s; = [u; % s(A;),t;) of item o0;, where 1 < u; < |4;|+ 1 and ¢; is either
(uj 4+ 1) x 8(A;) or 400. Welet zx = up — 1 (1 < k < d), in which case 0 < z;, < |4kl
We prove that Y5_, (2 x s(A4x)) = B in two steps.

First,

Tiema ((ur — 1) x s(Ay))

Z§=1 (ur x s(Az)) ~ Eg:l 3(Ax)
2=t Wk — Ei=1 s(A)

B’

Shema (2 X 5(Ax))

Al

which implies that 3°%_, (2 x 8(4z)) < B.

Second,

Tz x s(A4)) = T ((JAkl+1) x s(Av))—
(k= (ARl 1) x s(A)) — T, (22 X s(Ar)))

Ster ((1Ar] +1) x s(Ar)) — T, (1A% + 1 — 28) x s(Ar))
Siea (| Ax| + 1) x 5(Ar)) — Zk_l((lAkl + 2 —ug) X s(A))
T (1 Ak] + 1) x s(Ar)) — Xy & (e x s(Ax))
T ((JAr] + 1) x 5(Ar)) — Ty & (wy)
i1 ((1Ax] + 1) x s(Ax)) — TF, by
B,

v

which implies that %_, (zx % s(4z)) > B.

CHAPTER 5. FORMATTING 111

Thus, combining the two inequalities, we have shown that Zj‘:=1 (zr x s(Ax)) = B.
We can define a subset A’ by choosing z; elements from Az (1 < k < d), in which case
Yaca @ = Tiea (2 X s(Ax)) = B.

Therefore, TF is NP-complete. D

NP-complete problems do not have polynomial-time algorithms unless P = NP,
which is considered unlikely. With this assumption, we can provide only an exponential-
time algorithm for TF that solves every instance. We first present an exponential-time
algorithm for TF in Section 5.5, and then we describe a polynomial-time greedy algo-
rithm in Section 5.6 that partially solves TF for many common instances. Finally, in
Section 5.7, we combine these two algorithms to obtain an algorithm that guarantees to

solve TF completely and correctly and takes only polynomial time for many instances.

5.5 An exponential-time algorithm

The simplest way to solve TF is to check all the possible combinations of row heights and
column widths. The first combination that satisfies all three conditions of TF is selected
as a solution. Suppose we know the maximal range W; for the width of the jth column
and the maximal range H; for the height of the ith row; then the number of possible

combinations of row heights and column widths is

n ™
N = ([T w;) x (]I H#:)-

5=1 i=1
Since we usually use small units such as points or even small fractions of a point to
measure length in a formatting system, W; and H; may have values in the hundreds or
even thousands. Increasing the values m and n leads to an exponential increase in the
size of N. We can avoid examining all combinations of row heights and column widths
by solving the size constraints to obtain row heights for given column widths. Once the
column widths are fixed, the heights and widths of the items are also fixed; thus, we
can use Beach’s approach to find the row heights in polynomial time. Thus, we need to
examine only .

N = H W;

=1

CHAPTER 5. FORMATTING 112

Algorithm 1 TF Exponential-Time.Algorithm(column widths, row_heights): bool;

var integer column_widths [1..column number], row_heights [1..rownumber];
begin
integer pair current_steps[i..itemmnumber];

for current_steps := each step combination of all the items do
if Find Column_Widths (current steps, column_widths) and
Find _Row Heights(current_steps, row heights) then

return(true);
end if

end for;

return(false) ;

end

Figure 5.4: An exponential-time algorithm for TF.

combinations.

We can reduce this number further by taking advantage of the characteristics of size
functions. Since the height of an item will be the same when it is typeset within the
widths of a step, we need to test only one of the widths in a step. For each combination
of steps, we can find the column widths and row heights by solving inequalities. Suppose

that item o; has K; steps; then the number of combinations can be reduced to

N still increases at an exponential rate when most of the items have more then one
step. In many tables, however, most of the items contain only one step. The number
of combinations that used to be checked is not too large for these cases. Based on this
approach, we design the exponential-time algorithm that completely solves TF shown in
Fig. 5.4.

CHAPTER 5. FORMATTING 113

Based on a given step combination C = {s,$3,...,3.} of all the items, where s, is
a step of item 0, Find_Column Widths attempts to find column widths w;(1 < 7 < n)
such that:

1. w;(1 < j < n) satisfy all the width constraints.

2. For each item o = (tx, Iz, bx, Tx, &k, Y1), sp.head < 37

et Wp < sp.tail.

Similarly, Find Row Heights attempts to find row heights A;(1 <7 < m) such that

1. hi(1 <7 < n) satisfy all the height constraints.

2. For each item o, = (tr, I, b, Tk, &y Y1), Ei(sk-head) < Zrt;,

Find.Column Widths is false only when there are no column widths for the step com-
bination and Find Row_Heights is false only when there are no row heights for the
step combination. Therefore, Algorithm 1 has a solution for a given step combination if
and only if both Find Column Widths and Find Row Heights have a solution. We give
pseudo code algorithms for Find_Column Widths and Find Row. Heights in Appendix B.

Find Column Widths and Find Row Heights find solutions by solving a set of lin-
ear equalities and inequalities. There is an algorithm for this problem based on the
simplex method that runs in O(#®) time, where ¢ is the number of equalities and inequal-
ities [Dan63]. Moreover, the algorithm guarantees that the sum of the values of the vari-
ables in the equalities and inequalities is minimum. Therefore, both Find_Column Widths
and Find Row Heights can find solutions in O((r + s)®) time, where r is the number of
items and s is the number of size constraints. The total running time of Algorithm 1 is
then

HK X (r + 8)%),

where Kj is the number of steps for item o;.

We need to introduce some notation before we prove that Algorithm 1 completely
and correctly solves TF. Suppose C is a step combination for an instance of TF. We use
WIE(C) to denote the set of equalities and inequalities generated by Find_Column Widths
for C and we use HIE(C) to denote the set of equalities and inequalities generated by

CHAPTER 5. FORMATTING 114

Find RowHeightsfor C. Clearly WIE(C') has solutions if and only if Find Column Widths
has a solution w;(1 < j < n), and HIE(C) has solutions if and only if Find Row_Heights

returns a solution h;(1 < 7 < m). If w;(1 < j < n) satisfy only the inequalities for

item sizes (Condition 2) in WIE(C'), then w;(1 < j < n) is called @ layout of WIE(C); if

hi(1 < 4 < m) satisfy only the inequalities for item sizes (Condition 2) in HIE(C), then

hi(l < i < m)is called a @ layout of HIE(C). We are now ready to prove the following

results.

Lemma 5.2 Given an instance I of TF, there is a solution for I if and only if there is
a step combination C such that WIE(C) and HIE(C) each have a solution.

Proof: Suppose instance I has a solution (W, H); then, for each o = (¢, Ik, bx, 7&, &, ¥r),
we can find a step s such that si.head < oo, Wp < sg.tail. Let step combination
C = {s1,92,...,8:}. Since (W, H) is a solution of I, then w;(1 < j < n) must satisfy
all the width constraints and h;(1 < ¢ < m) must satisfy all the height constraints.
Moreover, for each item o, ng—.tk he 2 & (35, wp). Since 308, 1wy is inside step sk, we
have (5205, wp) = &i(sk-head); thus, szmk hyg > &(sk.-head). Thus, w;(1 <j<n)isa

solution of WIE(C') and (1 < i < m) is a solution of HIE(C). Therefore, WIE(C) and
HIE(C) each have a solution.

Conversely, suppose there is a step combination C = {s3, 52, .. ., 8, } such that WIE(C)
has a solution w; (1 < j < n) and HIE(C) has a solution k(1 < ¢ < m). Then,
w; (1 £ j £ n) must satisfy all the width constraints and h; (1 < i < m) must
satisfy all the height constraints. Moreover, for each item o = (£, L, bk, 7%, &, ¥2),
si-head <374 wp < sp.tail and Eg":tk hy > &(sk-head). Because 370%, w, is inside step

sk, we know that &u(327%,, wp) = &(se.head). Thus, 305, wy, > ¢i[min] and T, A, >

=l =l a=ty

&e(X7k, wp). Therefore, (W, H) is a solution for I, where W = w;, ..., wpand H = hy, ..., hm.

p=l;
O

Theorem 5.3 Given an instance I of TF, there is a solution for I if and only if
Algorithm 1 has a solution.

Proof: If there is a solution (W, H) for I, then, by Lemma 5.2, there must be a step com-

bination C such that both WIE(C') and HIE(C) have solutions. Thus, Find_Column Widths

CHAPTER 5. FORMATTING 115

has a solution w3(1 < j < n) for C and Find Row.Heights has a solution (1 <i < m)
for C. If Algorithm 1 has not found a solution before C, then it will terminate with C
and return solution (W', H'), where W' = wj},...,w} and H' = hi,...,k;,. Therefore,
Algorithm 1 must find a solution.

Conversely, if Algorithm 1 finds a solution (W, H), then it must terminate after check-
ing a step combination C' for which Find Column Widths finds w;(1 < j < n) and
Find Row Heights finds A;(1 < ¢ < m). Thus, both WIE(C) and HIE(C) have at least

one solution. Therefore, by Lemma 5.2 there is a solution for the instance. O

5.6 A polynomial-time greedy algorithm

Algorithm 1 takes exponential time, in most cases, to find a solution for TF. Most
tables, however, usually have few size constraints. For many such cases, we are able
to find a solution in polynomial time by taking advantage of the monotonicity prop-
erty of size functions. Given an instance I of TF, the monotonicity property of size
functions enables us to generate a list Ly = C},C,,...,C, of step combinations, where

Cu = {st,55,...,8*H1 < u < z), that satisfies the following properties:

Property 1 For the first step combination €, WIE(C) must have at least one solution.

Property 2 For each item oy = (tg, lx, bi, 7k, &k, Pr), s}:"'l is either the same as s} or the
successor of s¥; thus, {k(sytt.head) < £i(sY.head).

Property 3 There is at least one item such that its step in C,y; is larger than its step

in C,.

Property 4 In the last step combination C,, for each &, 1 < k < r, sf is the largest
step of item of.

Property 5 For each step combination C,(1 < u < z}, there is a layout wi(l < j < n)
for WIE(C,) and a layout A¥(1 < ¢ < m) for HIE(C,).

By checking only the step combinations in this list, we may be able to determine whether

there is a solution for the instance. Before we describe how we generate a list of step

CHAPTER 5. FORMATTING 116

combinations that satisfies Properties 1-5 for an instance, we prove that these properties
enable us to obtain a polynomial-time algorithm for TF that returns solutions for many
tables.

Lemma 5.4 If there is a solution for an instance I of T'F, then there is a step combi-
nation that satisfies Property 1.

Proof: If there is a solution (W, H) for I, by Lemma 5.2 there must be a step combination
C such that both WIE(C) and HIE(C) have at least one solution. Thus, C is a step
combination that satisfies Property 1. 0

An implication of Lemma 5.4 is that if there is no step combination C such that
WIE(C) has at least one solution, then there is no solution for the instance. Given an
instance I of TF, if there is a step combination € such that WIE(C') has a solution, then
we are able to generate a list L of step combinations that satisfies Properties 1-5. For

these instances, we obtain the following results,

Lemma 5.5 The number of step combinations in Ly is at most T}_; K;, where Kj is

the number of steps for item o;.

Proof: By Properties 2 and 3, there is at least one item such that its step in C,y; is
the successor of its step in C,. Since there are only K steps for item o0;(1 < 7 < r), the

number of step combinations in L is at most Yo K , O
Lemma 5.6 If there is a solution for instance I, then there is a solution for HIE(C,).

Proof: Suppose there is a solution for the instance. Then, by Lemma 5.2, there is a step
combination C' = {sy, 82,..., 8.} such that both WIE(C) and HIE(C) have at least one
solution. Suppose h;(1 < ¢ < m) is a solution of HIE(C). Since C; consists of the largest
steps for all the items (Property 4), s must be either the same step as sf or a smaller step
than sf; thus, {i(sf.head) < &i(si.head). Since h;(1 << < m) is a solution of HIE(C), it
must satisfy all the height constraints. Moreover, for each item og = (£, Ik, bk, T, £k, ¥k,
Eg’.‘_,tk hq 2 &(si-head); thus, Eg":tk hq 2 &c(sf.head). Therefore, h;(1 < i < m)is also a
solution of HIE(C,). O

CHAPTER 5. FORMATTING 117

Lemma 5.7 If there is e solution for HIE(C,), then there is a solution for HIE(C,),
where u < v < z.

Proof: By Property 2, for each item ox = (¢, lg, bk, 7%, &k, ¥r), S} is either the same
as sp or larger than sf; thus, {i(s}.head) < &(si.head). If HIE(C,) has a solution
hi(1 < i < m), then k(1 < ¢ < m) satisfy all the height constraints and, for each item
ok, ngzt,, hq 2 &x(st.head) > &(s}.head); thus, a solution for HIE(C,,) is also a solution
for HIE(C,). 0

Theorem 5.8 Instance I has a solution, if the following three conditions all hold:

1. There is a step combination Cy such that WIE(C,) has a solution.
2. There is a solution for HIE(C,).

8 If (1 < h < 2z} is the largest integer such that WIE(C)) has e solution and
[(1 <1< z) is the smallest integer such that HIE(C]) has a solution, then I < h.

Proof: If there is no step combination C; such that WIE(C,) has a solution, then,
by Lemma 5.4, there is no solution for the instance. Similarly, if there is no solution
for HIE(C,), by Lemma 5.6, there is no solution for the instance. Since the first two
conditions hold, both ! and % in the third condition are well defined. By Lemma 5.7,
there is a solution for HIE(C),) because HIE(C}) has a solution and ! < A. Since WIE(C})
also has a solution, by Lemma 5.2, there is a solution for the instance. o

Based on Theorem 5.8, Table 5.4 indicates that we have three possible conclusions
while checking the step combinations in L; (see Table 5.4):

¢ We have found a solution for I
o We are sure there 1s no solution for I

e We are uncertain whether there is a solution for I

It is clear that we get an uncertain answer only if L; satisfies the first two conditions
of Theorem 5.8 and fails the third condition. When attempting to solve WIE(C,) or

CHAPTER 5. FORMATTING 118

Table 5.4: The conditions that determine if there is a solution for an instance.

WIE(C))

Cannot
has solution find C;
HIE(C.) I1<h
has solution 1>h > Yes No
Uncertain
HIE(C,) has
No No

no solution

HIE(C,) (1 € u < z), we get two possible results: there is a solution (Yes) or there is
no solution (No). An assignment of Ly is a combination of the two possible results (yes
or no) for each WIE(C,) and HIE(C,) (1 < u < z). The following theorem gives the

proportion of the assignments of L; that generate an uncertain answer for instance I.

Theorem 5.9 If L; = C,C,,...,C, is such that WIE(C,) and HIE(C.)} each have ¢

solution, then the proportion of the assignments of Ly that give an uncertain answer is

22-1 -1 1

~
~

z2%-1 z

b]

where z s the number of step combinations in Ly.

Proof: We need to count the total number of assignments of L; and the number
of assignments that give an uncertain answer. The results for. WIE(C}) and HIE(C,)
are certain (both are ‘Yes’) and the results for WIE(C,) (2 < » < z) and HIE(C,}
(1 < u < z—1) are uncertain (see Table 5.5). Thus, we have at most 22*~) possible
assignments of L;. By Lemma 5.7, however, if [is the smallest integer such that HIE(C})
has a solution, then HIE(Ci11), HIE(Ciy.2), . . ., HIE(C,) also have solutions. Thus, there
are only z possible combinations of the results for HIE(C,), HIE(C:), ..., HIE(C.,).
Therefore, the total number of assignments of Ly is 22*~. For each of these assignments,
we assume that A(1 < k < z) is the largest integer such that WIE(C}) has a solution and
(1 << z)is the smallest integer such that HIE(C)) has a solution. Since L satisfies the

CHAPTER 5. FORMATTING 119

Table 5.5: The possible assignments of L;.

Ly WIE HIE
Ci Yes ?
C> ?

Chr ? ?
C. ? Yes

first two conditions of Theorem 5.8, an assignment of L; generates an uncertain answer
only if it fails the third condition, that is, if A < {. Thus, we need to calculate only
how many assignments of L; satisfy A < I. Assume that h < [. Since C}, is the last
step combination such that WIE(Cy) has a solution, there is no solution for WIE(C)),
WIE(Ci41), .., WIE(C,). Because WIE(C;) must have a solution and I > h > 1, [
can only be 2, 3, ..., or z. For each [, only WIE(C:), ..., WIE(C,_,) have two possible
results; thus, there are only 2/~2 possibilities such that [> k. Hence the total number
of possibilities that satisfy [> h is 37, 22 = 2*~! — 1. Dividing this number by the
total number of assignments of Ly, it follows that the proportion of the assignments that

generate an uncertain answer is
27~ 1

which converges to 1/2z as z — oo. =

For each step combination C, of Ly, from Property 5, we know that WIE(C,) and
HIE(C.,) each have a layout; thus, it is the size constraints that determine whether there
are solutions for WIE(C,) and HIE(C,). If we assume that size constraints generate
each assignment of L; with equal probability, then the probability of giving the uncertain

CHAPTER 5. FORMATTING 120

answer is (2°7! — 1)/(22*7!). Let

2=t 1
P = i

Pr=0if z=1. When z > 1, P; becomes smaller as z become larger. P; = 0.25 if 2 = 2,
and Pr = 0.1if z = 10. When z = 100, Pr = 0.01. From Theorem 5.9, we obtain the
following heuristic: A long list, L, of step combinations for instance I tends to reduce
the possibility of generating an uncertain answer. Therefore, we should try to find as
many step combinations as possible for the list L.

Given an instance I of TF, we try to generate a list L; of step combinations that
satisfies Properties 1-5. While we are checking the step combinations in L;, we have
three possible results: yes, no, and uncertain. Based on this approach, we obtain a
polynomial-time algorithm that partially solves TF as given in Fig. 5.5.

In Algorithm 2, Find First_Combination, given in Appendix B, generates the first
step combination C; that satisfies Property 1 and a layout (W*, H*), where W' = wi,..., w
and H' = hj,..., kL, in which all items are typeset within the corresponding steps in

Yo

C;. The algorithm returns one of three possible answers:

e Not_Found, if there is no step combination that satisfies Property 1.

® Both 0k, if C; exists and WIE(C)) and HIE(C,) each have a solution. In this case,
wji(1 < j < n)is asolution of WIE(C;) and h}(1 < i < m) is a solution of HIE(C)).

e Wid.Ok, if C; exists and only WIE(C,) has a solution. In this case, wi(l < j<n)
is a solution of WIE(C1) and A}(1 < i < m) is a layout of HIE(C,).

To find the first step combination, Find First_Combination first attempts to find the
column widths w}(1 < j < n) such that

1. wi(1 < j < n) satisfy the width constraints.

2. For each item o = (tk, Ik, bk, 7k, &k, Yr), Tpry, wh > p[min).

If there are no such column widths, the function returns Not_Found; otherwise, it finds
the steps for all the items based on w}(1 < j < n) and generates the row heights

CHAPTER 5. FORMATTING 121

Algorithm 2 TF Polynomial-Time Algorithm(column widths, row heights): enum

var integer column widths[1..columnnumber], row heights[1..row number];
begin

integer pair com_steps[1..item number];

enum {Not_Found, Wid Ok, Hei Ok, Both Ok, None Ok, End} result, pre result;

result := Find First Combination(com steps, column.widths, row.heights);
if result = Not_Found then
return{No)
else while not result = Both Ok and mot result = End do
preresult := result;
result := Find Next_Combination(com.steps, column widths,
row heights) ;
end while;
if result = Both_ Ok then
return(Yes)
else if result = End and not preresult = Hei Ok then
return(No)
else return(Uncertain) end if
end if

end

Figure 5.5: A polynomial-time algorithm that partially solves TF.

CHAPTER 5. FORMATTING 122

h}(1 <1 < m), which ensures that L; satisfies Property 1 and C; satisfies Property 5.
Moreover, Inequality Solver guarantees that 37, w} is the minimum among the step

combinations that satisfy Property 1.

Given a step combination C, and its layout (WW*, H*), where W* = w¥,...,w* and
H* =h¥,..., k%, Find Next_Combination, given in Appendix B, finds a new step com-
bination Cy41, generates a new layout (W*t!, H*+'} where W*t! = o™, .. w¥t! and
Hutt = py+t . h%FH) in which all items are typeset within the corresponding steps in
Cu+t1, and ensures that L; satisfles Properties 2-5. It returns one of the five possible

aNsweErs:

e End, if all steps in C), are the largest steps of their corresponding items.

® Both 0k, if C,y exists and both WIE(Cl4,) and HIE(C,,,) have solutions. In
this case, w}‘“(l < j < n)is a solution of WIE(C,41) and Af™(1 <7< m)isa
solution of HIE(Cyy1)-

o Wid Ok, if Cyy1 exists and only WIE(C\41) has a solution. In this case, wit!(1 <
j < n) is a solution of WIE(C\41) and A¥™ (1 <i < m) is a layout of HIE(C,,,,).

o Hei Ok, if Cyy; exists and only HIE(C,1,) has a solution. In this case, A¥ (1 <
i < m) is a solution of HIE(Cyy,) and w¥t!(1 < j < n) is a layout of WIE(Cyyy).

® None Ok, if Cyy4; exists and neither WIE(C),4,) nor HIE(C,;;) has a solution. In
this case, wi*'(1 < j < n) is a layout of WIE(C,y1) and A¥*' (1 <7 < m)is a
layout of HIE(C\q.).

To reduce the number of uncertain responses, we try to find a step combination that
can generate a solution or lead us to a solution rapidly by selecting as few items as
possible whose steps we increase, to avoid reaching the largest steps of the items as long

as possible. Based on these ideas, we use the following heuristics to obtain Cj,1,:

1. For each column 1 < k < n, we increase its width w} to a new width w} such
that wj, is the minimal width to cause at least one item to fall into the next step.

Based on wy,..., wi_;, w§, Wiy, .., w), we generate a new step combination CJ
and a layout (Wy, Hy), where Wy = wy,,...,w}, and H} = h,,...,h, . Then

step combinations C1,C},...,C}, are possible candidates for Cy.;.

CHAPTER 5. FORMATTING 123

2. During Step 1, if we find that all items have reached their largest steps, we return
End.

3. If there is a Cj, such that both WIE(C}) and HIE(C}) have solutions, then Cyy; is
chosen as this C}, and (W**, H¥+1) as (WY, H}).

4. If we do not find a Cyy; in Step 3, welet Cyyy be a Cj, such that 37, wy .+, A

3=1 Vkj
is a minimum. In this case, (W**!, H**!) is chosen as (W}, H}).

Step 1 guarantees that each Cj satisfies Properties 2 and 3. It also guarantees that
each Oy, satisfies Property 5 because wf,...,w}_;,w§,w},,,..., ws must be a layout for
WIE(C}) and A¥(1 < 7 < m) must be a layout for HIE(C). Step 2 ensures that L
satisfies Property 4. Steps 3 and 4 increase the likelihood that we find a solution. Step 4
is based on the observation that we usually specify size constraints for table width and
height. If we make the table width and height as small as possible, we are more likely to

find a solution in the succeeding search.

The running time for Find First_Combinationis O((r + s)®) and the running time
for Find Next.Combination is O(n(n + m + (r + s)%)). By Lemma 5.5, the number of
the step combinations in the list is at most 37, K. Therefore, the total running time
for Algorithm 2 is

O Kin(n+m+ (r+5)%),
i=1
where n is the number of columns, m is the number of rows, r is the number of items, s
is the number of size constraints, and X is the number of steps for item 0;. The running
time increases at a polynomizal rate as n, m, =, and s increase.

5.7 An efficient algorithm

By combining Algorithms 1 and 2, we obtain a more efficient algorithm that can com-
pletely and correctly solve TF as given in Fig. 5.6. For each instance of TF, Algorithm 3
first uses Algorithm 2 to check a list of step combinations C, Cs, . .., C, that satisfy Prop-
erties 1-5. If Algorithm 2 does not find a solution for the instance, then Algorithm 1
is used. By Theorems 5.3 and 5.8, Algorithm 3 guarantees to solve TF completely and

CHAPTER 5. FORMATTING 124

Algorithm 3 TF Efficient_Algorithm(columnwidths, row_heights): bool

var integer column.widths[1..column number], row_heights[1..row number];
begin

enum {Yes, No, Uncertain} result;

result := TF Polynomial Algorithm(column widths, row_heights);
if result = Uncertain then
return(TF Exponential Algorithm(column widths, row_heights));
else if result = Yes then
return(true) ;

else return(false); end if

end

Figure 5.6: An efficient algorithm that always solves TF.

correctly. Although Algorithm 3 is still an exponential-time algorithm in the worst case,
it is many more efficient than Algorithm 1 for many instances.

We can divide the instances of TF into two groups, G, and G,. G, includes the
instances for which Algorithm 2 returns Uncertain and G, includes the instances for
which Algorithm 2 returns either Yes or No. Thus, Algorithm 3 takes polynomial time
to solve the instances in G, and takes exponential time to solve the instances in G..
By Theorem 5.9, the probability of giving an uncertain answer by Algorithm 2 for each
instance of TF is no more than 0.25 if we assume that the size constraints generate
each assignment of the corresponding list of step combinations with equal probability.
In addition, given a rectangular region, text is usually typeset to fill a region that is as
wide as possible. If the region is not wide enough, text is broken into lines to vertically
fill the region. Thus, we usually specify only width constraints to control the layout of
a table. In these cases, HIE(C;) must have solutions; thus, we can decide whether there
are solutions for the instances by Algorithm 2. The height constraints may be necessary
when a table is too long to fit into a region and it is possible to shorten it by widening

the table. Therefore, we believe that G, contains many more common instances than

CHAPTER 5. FORMATTING

Table 5.6: A schedule of computer science courses.

125

Monday Tuesday | Wednesday | Thursday Friday
Time Introduction to | Data System Algorithm | Software
computer science | structure | softwares |analysis engineering
This section is for those who already know
Morning | This section is for | something about computer science and intend
9:00-12:00 | those who don’t | to have a career in the software industry in the
know anything | future.
about computer | This section is for . L
science and just |those who already This section is for }
Afternoon | want to know know something about those who know quite
1:00-4:00 |something about |computer science and |2 ¥°t about ?omputer
- it. intend to learn how to | S¢1€nce and intend to
write simple programs. learn more so that
- — - they can have a career
Evening This s.ectmn is for those who do'n t know in the software
7:00-10:00 anything about .com.puters and intend to industry in the fature.
learn how to write simple programs.

G.. For the languages in which people are used to reading text from top to bottom (such
as Chinese and Japanese), a similar algorithm holds when we interchange the roles of
widths and heights in the algorithm.

We end this chapter with an example that was generated by our tabular composition
system. Table 5.6 consists of a 5 x 6 grid and 19 items. We have the following size

constraints:

400pt < wy + w2 + ws + ws + w5 + we < 450pt
wy = 100pt

hy < 100pt

hy + hy + hg + hy 4+ hs < 400pt

For this instance, Algorithm 3 is able to find a solution in polynomial time. If we add

the additional size constraint

CHAPTER 5. FORMATTING 126

hs > 200pt

to the instance, Algorithm 3 takes exponential time to discover that there is no solution
for the new instance.

Chapter 6
Implementation

A tabular composition system should help users to design and produce high-quality
tables. A user friendly system should allow users to concentrate primarily on the ma-
nipulation of the logical structure of a table and to specify the layout structure using a
style-based approach. To achieve this goal, a tabular system should be able to abstract
and manipulate a table’s logical structure and provide the ability to specify the layout re-
quirements, including topology and style. In Chapter 2, we presented an abstract model
for the specification of a table’s logical structure. This model can be used as the basis
of a tabular composition system. The editing model described in Chapter 3 provides
operations for the logical manipulation of tables. The topological rules and the style
rules described in Chapter 4 provide one method of specifying a table’s layout structure
through a set of presentational rules. Based on these ideas, we have implemented a pro-
totype tabular composition system XTABLE. XTABLE runs in a UNIX and X Windows
environment. In the remainder of this chapter, we first describe, in Section 6.1, the ob-
Jectives of XTABLE. Then, in Section 6.2, we describe the steps that are involved in the
generation of a concrete table from an abstract table by applying a set of user-defined
topological and style rules. In Section 6.3, we present a hierarchical object-oriented view
of various tabular objects and their operations. Finally, we introduce the overall system
structure in Section 6.4 and the user interface in Section 6.5.

127

CHAPTER 6. IMPLEMENTATION 128

6.1 Objectives

XTABLE was designed to provide an interactive environment for the composition of high-
quality tables in two dimensions. It should meet following objectives:

¢ To describe and manipulate tables based on their logical structure

The logical relationships among the components of a table should be abstracted to
form an abstract table that is independent of the layout structure of the table. In
addition, XTABLE should provide operations to edit tables based on their logical
structure.

o To topologically arrange the tabular components in two dimensions

XTABLE should topologically arrange objects in both horizontal and vertical di-
mensions, should allow a user to order labels, and should automatically place the
entries in appropriate positions so as to convey clearly the logical relationships

among tabular components.

¢ To specify style rules for different kinds of tabular components

XTABLE should allow a user to specify both collective style rules for a collection
of tables and specific style rules for particular tables. These style rules should be
applied to presentational objects, logical objects, and layout objects.

o To format tables based on user-defined layout specifications

XTABLE should automatically determine the physical dimensions of a final layout
according to user-defined topological and style specifications. It should provide
both fixed and automatic line-breaking methods and should satisfy column and
row constraints simultaneously. The formatting should satisfy row and column
constraints simultaneously.

» To provide a WYSIAWYG environment to edit the logical structure, topology and
styles of tables

The presentational-oriented, logical and layout objects should be organized hier-
archically. Users should be able to select these objects by using a mouse and to

CHAPTER 6. IMPLEMENTATION 129

indicate operations by menu, tool-box and dialog-box techniques. The new presen-

tation of a table should be redisplayed on the screen right after each operation.

o To create a stand-alone tabular system that can support various formatting systems

XTABLE should be independent of any existing document formatting system. It
should generate formatted tabular output for several typesetting systems; for ex-
ample, for BTEX, troff, and Postscript.

6.2 Abstract to concrete

We specify, in XTABLE, the logical structure of a table using the abstract model given
in Chapter 2 and the layout structure using the topological and style rules described in
Chapter 4. Given an abstract table, a topological specification, and a style specification,
we generate a concrete table using a two-step process. First, the arrangement step gen-
erates a grid structure and a set of size constraints for the columns and rows in the grid
structure. Then, the formatting step determines the physical dimensions of the columns
and rows for the grid structure according to the size constraints.

6.2.1 Grid structure

The implemented grid structure is more complex than the definition we used in Chapter 5,
where we extracted only the properties necessary for the formal description of tabular
formatting. In XTABLE, a grid structure consists of three components: a grid, a set of
nonoverlapping items, and a set of separations. Recall that an m x n grid is a planar
integer lattice with m rows and n columns. An item is an object that is placed in a block
of a grid. We use a four-element tuple (position, content, format, size function) to define
an item. The position of an item is the block in which the item is placed. The content of
an item can be any kind of data, such as a string of characters, a fixed-size picture and
image, a table, and so on. At present, we allow only strings of characters. The format of
an item includes the typographic attributes that determine the appearance of the item,
such as font families and sizes, background patterns, line spacing, and so on. The size
function 1s a decreasing step function that describes the line-breaking characteristics of

CHAPTER 6. IMPLEMENTATION 130

the items. Before we define separation, we need to introduce more terminology. The lines
that horizontally separate the rows are called row grid lines and the lines that vertically
separate the columns are called column grid lines. A grid point is the intersection of a
row grid line and a column grid line. A separation is either a rule surrounded by white
space or white space that we use to separate cells, blocks, rows, and columns in a table.
We can use a three-element tuple (position, rule style, spacing) to define a separation.
The position of a separation specifies two grid points between which the separation lies.
These two grid points must be on the same horizontal line or the same vertical line. The
rule style consists of the rule type and the rule width. The spacing specifies the extents
of the left and right (or upper and lower) spacing on each side of the rule.

6.2.2 Size constraints

Although the formatting algorithm in Chapter 5 supports any size constraints expressed
as linear equalities or inequalities, we further restrict the size constraints in XTABLE to
simplify the user interface and decrease the execution time of the tabular formatting
algorithm. XTABLE allows only four kinds of linear inequalities for the size constraints:

¢ [<% w; (the width of a set of consecutive columns is no less than {)

e 3% w; < u (the width of a set of consecutive columns is no more than u)
o I <Y1, R (the height of a set of consecutive columns is no less than /)

o X%, ki < u (the height of a set of consecutive columns is no more than)
We have used w; to denote the width of the jth column and h; to denote the height of
the ith row, and [and u are positive integer constants. We believe that these four kinds
of size constraints are sufficient to specify most size requirements for tables. XTABLE,
however, does not allow the specification of equality constraints for columns or rows,
which imposes the equality of column widths or row heights in a table.

CHAPTER 6. IMPLEMENTATION 131

6.2.3 Arrangement

Given an abstract table, a topological specification, and a style specification, it is easy
to generate a grid and the blocks occupied by the items in the grid. It is more difficult
to determine the formatting atéributes for the items and the separations. We have to
decide on a reasonable strategy to determine what formatting attributes an item or a

separation should use when multiple inheritance occurs.

As we mentioned in Section 4.4.1, there are three approaches for handling multiple
inheritance of style rules. The strategy we use is a combination of priority order and com-
bining style approaches. We try to combine the style rules of all super-objects. Whenever
there is no satisfactory combination, we use the style rules of the super-object with the
highest priority as specified by the user. There are two possible ways to determine the
inheritance priority: fixed and free. With fized priority , the inheritance ordering of style
rules is predetermined by the designers of the system. For example, we, as system de-
signers, can specify that the style rules for rows have a higher priority than the style rules
for columns. In this framework, users do not have to specify the inheritance ordering of
style rules. On the other hand, users are unable to change the fixed priority. With free
priority, the inheritance ordering of style rules is dynamically specified by users based
on the requirements of their tables. Although it gives users flexibility to handle style
inheritance, this approach requires users to specify inheritance orderings for each table.
The combination of these two approaches provides a better solution. In XTABLE, the
priority for some scopes, including the whole table, the stub, the boxhead the stub head,
the body, and the categories, is predetermined. We use the genealogical tree, shown in
Fig. 6.1, to describe the relationships between these scopes. Therefore, we can predeter-
mine the priority for these scopes using single inheritance. The style rules for a cell can
be inherited according to the priority: the category that contains a label that occupies
the cell, the region that contains this cell, and the whole table. For example, in Table 6.1,
the cells that contain the label Winter inherit the style rules of category Term first,
then of the stub, and finally of the whole table. Since the style rules for these scopes
determine the general appearance of a table, they are appropriate for most tables. With
fixed-priority inheritance, users do not need to indicate the inheritance ordering if they
specify only the style rules for these scopes. Since the remaining scopes, including the
rows, the columns, the blocks, the labels, the subcategories, the entries, the entry set,

CHAPTER 6. IMPLEMENTATION 132

Figure 6.1: The genealogical relationship of some scopes.

and the entry values, are specified infrequently and may cause multiple inheritance, the
priority for these scopes is determined by users according to their requirements. For
the style rules with these scopes, the last specified style rule has the highest priority.
Moreover, these style rules have higher priority than the style rules in the preceding

single-inheritance ordering.

Multiple formatting attributes for a cell or for a separation are combined by inher-
itance of the style rules of various objects based on the priority we have described. A
cell may inherit the font family from the style rule of the stub and the font size from the
style rule of the whole table. If an item occupies a block that contains more than one
cell, we need to determine the formatting attributes of the cell used to display the item.
In XTABLE, we use the formatting attributes of the top-left cell of a block to display the
item that occupies the block.

We give an example to explain our inheritance strategy. Table 6.1 is generated by
specifying four style rules. We assume that the style rules are specified in this order:

TABLE: Roman
BOXHEAD: bold face
COLUMN 2: Courier
ROW 4: Helvetica

The labels in the boxhead are displayed in bold Roman by inheriting the Roman attribute
from the whole table and the bold face attribute from the boxhead. The label Spring
in cell (4, 2) is displayed in Helvetica because the style rule for the 4th row is specified

CHAPTER 6. IMPLEMENTATION 133

Table 6.1: The average marks for 1991-1992.

Assignments Examinations
Grade

Assl Ass2 Ass3 Midterm Final
Winter 85 80 75 60 75 75
1991 Spring 80 65 75 60 70 70
Fall 80 85 75 55 80 75
Winter 85 80 70 70 75 75
1992 Spring 80 80 70 70 75 75
Fall 75 70 65 60 80 70

last. Label 1991 is presented in Roman instead of Helvetica because the top-left cell (3,
1) of its block inherits the font family from the whole table.

6.2.4 Formatting

The formatting step must calculate the physical dimensions of the columns and the rows
in a grid structure so that all size constraints are satisfied and all items can be placed
completely inside the block they occupy. If an item is a long string, there are two ways to
break the string into lines. Fized line breaking requires users to indicate the line breaks
in the string and automatic line breaking requires the system to determine the line-
break points based on the current dimension of the column. XTABLE allows both fixed
line breaking and automatic line breaking. We adopt the main ideas of the formatting
algorithm presented in Chapter 5 to determine the physical dimensions of a table. Since
the allowable size constraints in XTABLE are simpler, we are able to reduce the running
time of the algorithm by making two changes. First, we do not use the simplex method
to solve the linear equalities and inequalities since the size constraints in XTABLE can be
expressed using a small number of inequalities. We use a more efficient inequality solver.
Second, we use a branch-and-bound strategy to generate only those step combinations

that guarantee to give a layout for a table. Any step combination for which does not

CHAPTER 6. IMPLEMENTATION 134

give to a layout is not considered. For example, suppose two items o; and o, are placed
in the same column and o; has a step [20, 30) and o; has a step [50, 60); then there is no
layout for a step combination that contains these two steps because they do not overlap.
By omitting such step combinations, the number of step combinations that are checked
in the exponential-time search is greatly reduced.

The size functions of items are dependent on the medium that is used to display
the table. Since different media use different font sizes, the line breaks of an item may
be different with different media and the same table may be presented differently with
different media. Thus, the formatting process needs to take a size function as a parameter

and generate a concrete table that is dependent on the given size function.

6.3 Tabular objects and their operations

We adopt an object-oriented technology in XTABLE to provide an interactive environment
for the manipulation of the logical structure, the topology, and the styles of tables.
Tabular components are classified into object classes and editing operations are associated
with them. Table 6.2 shows the object classes and their operations in XTABLE.

There are three kinds of object classes: presentational objects, logical objects, and
layout objects. The presentational objects include the entire table and the four major
regions: the stub, the boxhead, the stub head, and the body. The logical objects are
the logical components of an abstract table including category, subcategory, label, entry,
entry set, and entry value. The layout objects are the layout components of a concrete
table including block, row, and column.

There are also three kinds of operations for the object classes: logical, topological, and
style. A logical operation changes the logical structure of a table for example, by adding
a category to a table, deleting a label from a category, or editing an entry. Logical
operations can be decomposed into sequences of the editing operations introduced in
Chapter 3. A topological operation changes only the topological specification of a table,
for example, transposing a table, moving a category from the stub to the boxhead, or
changing the ordering for a category. A style operation changes only the style specification
of a table, for example, changing the cell style, the separation style, or the arrangement

CHAPTER 6. IMPLEMENTATION

135

Table 6.2: The object classes and their operations.

. Operations
Objects : : : : :
Logical operations | Topological operations | Style operations
Frame style,
grouping style,
Table Clear Transpose size constraints,
category h. style,
Present- basic style*
ational- | Stub Arrangement style,
oriented category h. style,
objects Boxhead basic style®
Stub head Arr-angemint style,
basic style
Spanning style,
Body basic style*
Add, remove, Move, Category h. style,
Category copy, combine, chanee order basic stele*
split, text edit & asic sty
Add, remove,
Subcategory | ©P¥ .loglca.l move, Topological move, Frafne styl:,
_ combine, split, change order basic style
Logical text edit
objects Remove, copy,
Label text odit
move, texv € Frame style,
Entry cell style
Entry value Copy, move,
remove, compute,
Entry set text edit Frame style,
basic style*
Block Spanning style,
Layout R Copy, move, frame style,
objects ow remove, text edit size constraints,
Column basic style*

*Basic style includes cell style and separation style.

CHAPTER 6. IMPLEMENTATION 136

style for different objects.

After introducing some internal object classes, we obtain the object hierarchy shown
in Fig. 6.2. The operations of the object classes in this hierarchy are synthesized. The ob-
jects at lower levels may inherit the operations of ancestral objects. The hierarchy enables

us to use object-oriented technology to implement an interactive editing environment.

6.4 Overall system structure

We separate the collective style specification from the specific style specification in
XTABLE. The collective style rules are in a separate file and the specific style rules
are associated with a specific table. Thus, the collective style rules can be applied to
multiple tables.

6.4.1 Input and output

As shown in Fig. 6.3, XTABLE accepts three kind of input: table files, collective
style files, and user instructions. A table file has three parts: an abstract table, a
topological specification, and a specific style specification. A collective style file contains
only collective style rules. Appendix D gives examples of a table file and a collective style
file. Through an interactive editing environment, users provide XTABLE with instructions
for the manipulation of the logical structure, the topological specification, and the style
specification (both specific and collective). At any time, the current status of the abstract
table, the topological specification, and the specific style specification can be saved as
a table file, and the current status of collective style specification can be saved as a
collective style file. The updated presentation of an edited table is displayed on the fly.
Users can create an abstract table in a particular topology without specifying any style.
In this case, the table file contains only the abstract table and the topology, and the table
is displayed on the screen using the default style specification. XTABLE is designed to
be a preprocessor for some formatting systems, including BWTEX, Postscript, and troff.
Currently XTABLE generates only BTEX output.

CHAPTER 6. IMPLEMENTATION 137

Table

Stub

P-Oriented object Boxhead

Stub head

Body

Category
Structure object <

Subcategory

Table object Logical object

Label

Value objec Enfry set Entry

Entry value

Block

Layout object Row

Column

Figure 6.2: The object class hierarchy.

CHAPTER 6. IMPLEMENTATION 138

\ Table file , , Collective style file,

e

XTABLE <~ ~
7
/
r'-_-_L--_--l
| BTEX file |
L e = == = a1

Figure 6.3: The input/output of XTABLE.

6.4.2 Internal data structures and processes

XTABLE, as shown in Fig. 6.4, maintains four major data structures for the abstract
table, the topological specification, the specific style specification, and the collective style
specification. Their initial values are given by a table file and a collective style file or
assume defaults if neither table file nor collective style file is provided. During the inter-
active editing process, these data structures are updated according to user commands.
We use Motif as the interface between a user and the system. We generate three interme-
diate data structures whenever XTABLE displays a table or compiles a table specification
into a BTEX file. The arrangement process generates a grid structure and a set of size
constraints, and then the formatting process generates a concrete table. A concrete table
can either be displayed through the Motif interface or be transformed into a source file
for BTEX. Since different systems use different font sizes, the formatting process needs to
know the size function for a particular system before calculating the absolute positions of
all the items and rules. Thus, we need to implement the size functions for Motif, BTRX,
Postscript, and troff. Due to limitations of the B'TEX table environment, we transform
a concrete table to the WTEX picture environment in which all tabular items and rules

CHAPTER 6. IMPLEMENTATION 139

Table file | : Collective style file,

A R N

Table output Collective style output

\-
Abstract table}| Topol. spec || Spec. style spec || Collec. style spec

Editing process

Grid structure

|
|
L

Size constraints

Motif ~

Formatting process

Concrete table Motif display

Figure 6.4: The internal system structure of XTABLE.

CHAPTER 6. IMPLEMENTATION 140

are treated as graphical objects. To implement the size function for BTEX, we need to
use METAFONT tfm files that are used in TEX.

6.5 User interface

XTABLE’s user interface enables users to select editing objects by using mouse and to
indicate the operations by the menu, tool-box, and dialog-box techniques. Fig. 6.5 shows
the main window of XTABLE in which a table is displayed. There are three editing areas
in the main window: stub, boxhead, and table. The categories that are assigned to the
stub (the boxhead) appear in the stub area (the boxhead area) and the concrete table is
presented in the table area. A menu bar and a set of tool boxes are created for users to
use for editing. Once users have selected an object and indicated an operation and its
arguments, a new presentation of the table is generated in the table area after applying
the operation to the object. Two approaches are used to specify editing operations: tool
boxes and menus.

6.5.1 Tool boxes

The most frequently used operations (add, remove, copy, move, combine, split, and
text) are provided as tool boxes. Once the user clicks on a tool box, the corresponding
operation is active until the user clicks on another tool box. When a tool box is active,
the user needs to indicate to which object the operation is applied and to specify the
required arguments by pointing and dragging in the three editing areas. We use different
mouse buttons to distinguish the insertion modes: the left, middle, and right keys are
used to insert an object before, under, and after the active object, respectively. The tool
box select is used to indicate the editing objects for menu operations. The content
of the current active object is displayed in the subwindow at the bottom of the main
window. Users can edit the content of the object in that subwindow and press the
button content on its left after the editing is down. The button redraw at the bottom
is used to redisplay the edited table on the screen.

To show how users edit tables using XTABLE, we have included some screen shots
in Appendix C. Suppose we have constructed the table given in Fig. C.1. To move the

"HIGVLY JO MOPUIM UTRT 9], :C'Q 2MmM31]

xtable EEERREREYE

mark.tab{perfect.sty)

File Edit Style Collective-Style Calculation Setting| jSelect]indd]{Remove|[Move][Copy][Combine][Split][Text]

@' Boxhead

Assignments Examinations
Year Term rade
Assl Ass2 Ass3 Midterm Final
Winter 85 80 75 é0 75 75
1991 Spring 8 45 75 &0 70 70
Fall 80 85 75 55 80 75
Winter 85 80 70 70 75 75
1992 Spring 80 80 70 70 75 75
Fall 75 70 65 60 g0 70
[Content] | l {Redrau

NOILVINHWHIINI "9 H4LdVHO

[A28

CHAPTER 6. IMPLEMENTATION 142

category Year from the stub to the boxhead immediately before the category Mark, we
first click on the tool box move, click on Year in the stub area, and, finally, click on
Mark in the boxhead area by pressing the left key of the mouse. Now we obtain the
table given in Fig. C.2. To add a new label Ass4 under the subcategory Assignments
and place it after Ass3 in the ordering, we first click on tool box add, then click on
the label Assignments in the table area by pressing the middle key of the mouse, and
finally enter Ass4 in the content widget and press content. Figs. C.3 and C.4 show the
changes to the table after adding a new label and assigning the new name Ass4. Now we
can enter the marks that are associated with Ass4 to obtain Fig. C.5. We first click on
tool box text, then drag the cursor to select all the cells for the new marks, and finally
enter the marks in the table.

6.5.2 Menus

Most topological operations, style operations, and system commands are listed in the
menu bar. The menu File consists of input and output commands, such as reading a
table file or a collective style file, and generating a B TEXsource files; the menu Edit
consists of the other logical and topological operations that are not available as tool
boxes; the menu Style consists of the style operations for specific style specification that
can be applied only to the current edited table; menu Collective-Style consists of the
style operations for collective style specification that can be applied to a collection of
tables; the menu Calculation consists of the operations average, total, minimum, and
maximum that are used to compute entry values; and the menu Setting consists of the
commands for the selection of the system parameters. Users have to select an editing
object with the tool box select before pulling down the menu and clicking on an option.
If an operation is associated with only one object, such as transpose or clear for the
whole table, then the user can directly click on the operation without first indicating
the editing object, independently of which tool box is active. When a style operation
is selected, a dialog box pops up to assist users to edit the formatting attributes of the
style rule for the selected object.

CHAPTER 6. IMPLEMENTATION 143
6.6 Merits and limitations

XTABLE is a tool that helps users to design high-quality tables in two dimensions, It
provides an interactive environment for editing the logical structure, topology, and style
of a table and for presenting a table easily with multiple layout structures. XTABLE is
also a tool that helps users to explore the data from different viewpoints. By arranging
table items flexibly in two dimensions, users are able to discover relationships among of or
patterns in the data. This ability helps users to analyze and understand tabular data in
an efficient way. Tables 6.3 shows the correlations for 10 TV programs based on whether
people in a sample of 7,000 UK adults said they “really liked to watch” the range of
programs such as World of Sport (WoS), Match of the day {MoD), and Panorama. (Pan).
In Table 6.3, TV programs are subcategories of two TV broadcasting stations: ITV and
BBC. This presentation does not show any clear pattern in the data. After combining the
TV programs with the corresponding TV broadcasting stations and reordering them, we
obtain Table 6.4 that shows a cluster for the five Sports programs and another cluster for
the five Current Affairs programs. Now we can clearly see the main pattern of the data:
correlations of 0.3 to 0.6 between the five Sports programs and of 0.2 to 0.5 between the
five Current Affairs programs, with correlations of approximately 0.1 between these two
clusters. What we have done in this example is similar to knowledge discovery and data
mining that extracts understandable rules and patterns from a large database. Resently
there has been an increased interest in exploring various data mining techniques for
database applications [FPSSU95]. XTABLE can be used as a visual data-mining tool for
database applications if we can establish a connection between XTABLE and a database
system.

Since XTABLE is a prototype for validating our tabular model, it does not provide some
functionality that a production system will provide. For example, we did not provide
well-designed languages for the specifications of table files and the collective style files,
because we originally did not expect users to edit them directly. However, there are
at least two advantages to allow users to edit these files directly. First, it provides a
batch-oriented approach for users to compose tables. In this way, XTABLE can be used
as a formatting system that compiles table specifications and generates formatted tables
for various systems. Second, other systems can direct their output to XTABLE so that

CHAPTER 6. IMPLEMENTATION

Table 6.3: The initial table of correlations for 10 TV programs.

Programs PrB Thw ToD WoS GiS LnU MoD Pan Rgs 24H

ITV P:B 0.1 0.1 0.5 0.5 01 05 02 03 01
Thw 0.1 0.3 0.1 01 02 01 04 01 04
ToD 0.1 0.3 0.1 01 62 00 02 01 0.2
WoS 0.5 01 0.1 06 01 06 02 03 01

BBC GzS 05 0@ 01 0.8 01 06 0.2 03 0.1
LU 0.1 02 02 01 0.1 0.0 0.2 0.1 0.3
MoD | 05 0.1 0.0 06 06 0.0 0.1 03 0.1
Pan 0.2 04 02 0.2 0.2 02 01 0.1 0.5
Rgs 03 01 01 0.3 03 01 03 01 0.1
24H 01 04 02 0.1 01 03 0.1 05 0.1

Table 6.4: The modified table of correlations for 10 TV programs.

Programs | WoS MoD GrS PrB Rgs 24H Pan Thw ToD LaU
ITV WoS 06 06 05 03 01 02 01 01 0.1
BBC MoD | 0.6 06 05 03 01 01 01 00 0.0
BBC GrS 06 0.6 056 03 01 02 01 01 0.1
ITV P:B 05 05 0.5 03 01 02 01 01 0.1
BBC Rgs 03 03 03 03 01 01 01 01 0.1
BBC 24H 01 01 01 01 0.1 05 04 02 03
BBC Pan 02 01 02 062 01 05 04 0.2 0.2
ITV Thw 01 01 01 061 01 04 04 03 0.2
ITV ToD 01 00 01 01 01 02 02 03 0.2
BBC LnU ¢1 00 01 01 01 03 02 02 02

144

CHAPTER 6. IMPLEMENTATION 145

they can use XTABLE’s abilities to edit, analyze, and format tabular data. For example,
as we have mentioned, XTABLE can be a data-mining tool if a database table can be
transformed to an XTABLE table.

Since XTABLE is based on the abstract model and the presentational model, it inherits
the merits and the limitations of these models (see Sections 2.4 and 4.5). All the tables
except Tables 2.3 and 5.4 in this thesis were generated by XTABLE in BTEX format. We
have edited the BTRX files for Table 5.1 to add the footnotes. For Tables 2.2, 4.15, and
4.16, we treated the labels in the body as entries and introduced some empty labels with
which the fake entries can be associated.

Chapter 7

Concluding remarks

We presented a tabular model that can support the different stages of tabular compo-
sition, including the description and manipulation of logical structure, the specification
of topology and style, and the formatting of concrete tables. Based on this model, we
have implemented a prototype tabular composition system XTABLE that helps users to
design high-quality table layouts. XTABLE enables users to concentrate primarily on the
manipulation of a table’s logical structure and the specification of the layout with pre-
sentational rules. The resulting concrete tables are automatically generated by applying
user-defined topology and style specifications to the logical structure. By separating the
logical structure of tables from their layout structure, we are able to edit tables based
on the logical relationships among tabular items, regardless of where the items appear
in the layout structure. We can also easily present a table with different topologies and
styles so as to compare different presentations and select the most appropriate one.

We have investigated only the basic requirements for tabular editing, presentation,
and formatting. As a result of our exploration, we believe that there are many issues
that should be investigated further. In the following sections, we discuss some issues

regarding abstract models, presentation, formatting, and browsing.

146

CHAPTER 7. CONCLUDING REMARKS 147
7.1 Relational database tables

The basic difference between relational database tables and abstract tables is the logical
dimension. A database table is two-dimensional with attributes in one dimension and
tuples in the other. To represent an abstract table in a relational database, we need
to determine which category corresponds to the attribute names, which category corre-
sponds to the primary keys, and which category corresponds to the non-primary keys.
Other database models exist, however, for the direct representation of multidimensional
tables. Darrell Raymond [Ray96] proposes the use of partial orders as a unifying data
model] for databases. His model makes it possible to represent multidimensional tables
directly in a partial-order database and present them in different topological layouts by
applying partial-order operators. Using his model, each dimension of an abstract table
can be specified with a partially ordered set and the topology of a table can be spec-
ified with a nested partial-order product of these dimensions. For example, using the
three-dimensional abstract table defined on page 34, if we place the categories Year
and Term in the stub and the category Mark in the boxhead, the topology can be
specified as (Y'ear x Term) x Mark, where the parentheses indicate the grouping.

7.2 Extending the abstract model

As we have mentioned in Section 2.4, we can extend the model by allowing multiple
mappings to specify the tables that are a combinations of several tables in a multi-
dimensional structure.

Our abstract model captures only the logical relationships among labels and entries;
there are often other relationships among entries. For example, an entry may be the sum
of some other entries, as in a spreadsheet. If we extend the abstract model to capture
this kind of relationship, we can update an entry once the values of its associated entries
are changed. To achieve this objective, we may allow entry values to be formulas whose
variables are other entries. We can use, for example, Average({Year.1991, Mark. Final})
to represent the value of an entry that is the average of the final marks for the three terms
of 1991.

CHAPTER 7. CONCLUDING REMARKS 148

The abstract model does not distinguish entry and label types; for example, string,
number, date, time, and so on. Such distinctions could be used for specifying styles and
for computing derived values.

7.3 Different abstract model

QOur abstract model requires the distinction between labels and entries. An item has
to be a label or an entry, but not both. This limits the representation of the logical
associations among such items. For example, a table that converts temperatures between
Celsius and Fahrenheit contains two groups of items: the temperatures in Celsius and
the temperatures in Fahrenheit. Items in both groups can be either labels or entries.
To specify this table with our abstract model, we need to determine which group acts
like labels and which like entries. A possible approach to this problem is to make no
distinction between labels and entries. We can specify entries as a category and use a
relation rather than a function to specify the logical associations among items in different
categories. This, however, increases the complexity of arranging items in two dimensions
if a table contains more than two categories. We need add one more topological rule to
specify which category is put in the body. If one places a category that contains entries
in the stub or in the boxhead, the labels may need to be put in the table body. This
kind of presentations is, however, against the convention for high-quality tables [Wri68].

7.4 Logical structure recognition

We map an abstract table into a concrete table, but what about the reverse? Can we
derive the logical structure of a table when given a concrete table? Image processing
techniques enable us to determine the tabular items in a two-dimensional grid. To re-
construct a logical structure we need to distinguish labels from entries. We can use some
presentational heuristics to distinguish them. For example, the font and the size of labels
may be different from the font and size of entries, or the stub and boxhead separation
may be different from other separations in rule type, in rule width, or in spacing. If

a user can provide the positions of stub and boxhead separation, recognition is much

CHAPTER 7. CONCLUDING REMARKS 149

easier. Douglas et al. [DHQ94] present an approach that extracts the logical structure
from a table in plain text in two steps: first recognizing its canonical layout, which is
similar to a relational database table, and then applying a series of transformations to
the canonical layout. Reconstructing a multidimensional logical structure from a two-
dimensional database table is comparatively easy, because the attribute names and the
items in a column that is a part of the primary key are used mostly as indices; thus, they
can be classified as labels. Automatic recognition of tabular logical structure can improve
the efficiency of table construction from published documents, hand-written drafts, and
database output.

7.5 Different presentational methods

Our tabular model focuses only on presenting tables as a row-column structure in two
dimensions. We have not addressed the issue of presenting tables in other forms, such as
with bar graphics, line graphics, pie charts, and so on. We would need to introduce dif-
ferent presentational rules to specify the topology and style for these graphical elements.
Also we need to investigate possible graphical techniques that utilize the full capabilities
of the human visual system. In addition, how might we present an abstract table in three
dimensions? We could use different pages as sheets to present the third dimension or we
could use a two-dimensional display to present a three-dimensional layout.

7.6 Complexity of tabular formatting

We have given the complexities of tabular formatting problems with different combi-
nations of restrictions in Table 5.1 on page 99, in which 3 problems were solved, 10
problems have conjectures, and 11 problems are unsolved. We obtained the conjectured
results by inference and did not give proofs in this thesis. We now give a brief discussion
of these conjectured results. For convenience, we define a tabular formatting problem
with restrictions as TF(L, S, O), where L is either “fixed line breaking” or automatic
line breaking”; S is “none”, “linear” for linear equality or inequality, or “non-linear” for

non-linear expression; and O is “none”, “diameter”, “area” or “w_space” for white space.

CHAPTER 7. CONCLUDING REMARKS 150

For example, the formatting problem TF(automatic, linear, diameter) uses automatic
line breaking to find a table with the minimal diameter that satisfies the size constraints
expressed as linear equalities or inequalities.

Beach proved that TF(fixed, linear, diameter) is polynomial-time solvable [Bea85].
This result implies that TF(fixed, linear, none) is polynomial-time solvable. Since all
item sizes are fixed, a solution with minimal diameter is also a solution with the mini-
mal area and a solution with the minimal white space. Thus, TF(fixed, linear, area) and
TF(fixed, linear, w_space) are also polynomial-time solvable. Since TF(fixed, none, diam-
eter), TF(fixed, none, area), and TF(fixed, none, w_space) are subproblems of TF(fixed,
linear, diameter), TF(fixed, linear, area), and TF(fixed, linear, w_space), respectively,
they are also polynomial-time solvable. For TF{(automatic, none, none), we can first fix
the item sizes by typesetting all items in their maximum widths; thus, it can be trans-
formed to TF(fixed, none, none), which has been proved to be polynomial-time solvable
by Beach [Bea85]. Therefore, TF(automatic, none, none) is polynomial-time sclvable.

We have proved that TF(automatic, linear, none) is NP-complete (see Theorem 5.1),
If we restrict TF such that the size constraints contain at least two linear equalities:
Wy <3 w; < Wz and Hy < T, h < Hy, it is still NP-complete, because the proof
of Theorem 5.1 also holds in this case. We name this NP-complete problem SUBTF.
To prove that TF(automatic, linear, diameter) is NP-complete, we can define an equiv-
alent problem of TF(automatic, linear, diameter) by changing the definition of TF in
Section 5.3 on page 105 to:

INSTANCE: An m x n grid, r nonoverlapping items: or = (tx,l, by, 7%, 6k, ¥i)
(1< k<), s size constraints: ey, ey,...,¢€,, and an integer D.
QUESTION: Are there n 4 m integers wy, wa, ..., w, and hy, ks, ..., h, such that
1. W =w,wy,...,w, satisfy all width constraints among e,, e,,...,e,;
2. H = hy, by, ..., hy satisfy all height constraints among ey, e,,. .., e,;
3. Vok(l <k< '-")a Erizk Wp > ¢k[min] and Jk(Z;f_—t,, 'wp) < ES":t,, hq-
4. 2w+ Xt k<D
We add D to the INSTANCE portion and add condition 4, which specifies that the sum of
the table width and height is no more than D, to the QUESTION portion. We can prove
that TF(automatic, linear, diameter) is NP-complete by reducing SUBTF to this equiva-

lent problem. Similarly, we obtain an equivalent problem of TF(automatic, linear, area)

CHAPTER 7. CONCLUDING REMARKS 151

by replacing condition 4 with

Xn:wa' ihi <D

7=1 =1
and obtain an equivalent problem of TF(automatic, linear, w_space)by replacing condi-
tion 4 with

_Ejjlei}h; - kz:jl((i) wp)ak(:zkl w,)) < D.

We can also prove that TF(automatic, linear, area) and TF(automatic, linear, w_space)
are NP-complete by reducing SUBTF to their equivalent problems. The formal proofs
will be given in Wang and Wood [WW96].

We have not classified the complexities of TF(automatic, none, diameter), TF(automatic,
none, area), and TF(automatic, none, w_space). These problems may be polynomial-
time solvable. The complexity results for all problems that handle size constraints with

non-linear expressions are also unknown.

7.7 Formatting algorithms

To obtain an algorithm to solve the tabular formatting problem that runs in polynomial
time for many common tables, we ignored objective functions. We can improve our
algorithm by generating locally optimal solutions for an objective function among a
set of layouts. In a polynomial-time search, we can check all the step combinations and
select an optimal solution among the layouts found in the search, rather than terminating
when we have found a layout that satisfies the size constraints. A more challenging and
interesting future investigation includes the following problems:

o If we take objective functions into account in the formatting process, can we design

an algorithm to solve the problem in polynomial time for many tables?

o If we simplify the problem by weakening the size constraints instead of ignoring

the objective functions, can we still obtain a polynomial-time algorithm for many
tables?

CHAPTER 7. CONCLUDING REMARKS 152

7.8 Large tables

When a table is too large to be presented on a given page, we need to break it into
subtables. This process is more complex than the pagination of text. Where should we
break the table such that difficulty of reading is minimized? Since our tabular model
captures logical structure, we expect that it provides sufficient information to assist in
the pagination of tables. For example, if a subcategory has subsubcategories, it is unwise
to break a table such that the subsubcategories appear on different pages. To reduce the
difficulty of reading a multipage table, we may have to duplicate the labels in the stub
or in the boxhead for each page. Observe that when one dimension is much larger than
the other dimension, we can break the table with respect to the larger dimension and we
may be able to place the subtables side by side in the smaller dimension on one page.

7.9 Tabular browsing

Qur tabular model provides a basis for adding tabular browsing in an interactive environ-
ment since the model captures the logical structure. Such an extension might highlight

the entries that satisfy queries. Here are some example queries:

1. Highlight all marks that are less than 50 and associated with the Winter term and

the final examination.
2. Highlight all the students who gained the highest mark in the midterm of a course.
3. Highlight all students whose final marks are between 90 and 100.
We might also wish to create a subtable in response to a query and then automatically
lay it out using the methods described in the thesis. We should be able to borrow the

ideas in database query languages such as SQL; however, the design of an appropriate
query language is an open problem.

Appendix A

Expressiveness

To find out how well the abstract and presentational models described in Chapters 2 and
4 can be used to specify the tables in the real world, we performed two experiments that
measure the expressive power of these models. We checked books from different sources,
including statistics, sociology, science, and business. The CRC Handbook of Chemistry
and Physics [CRC88] collects a few hundred tables used in chemistry and physics. These
tables are representative of scientific tables that may contain many numbers, mathemat-
ical equations, and special symbols. The Human Activity and the Environment [Sta86],
published by Statistics Canada, contains 148 statistical tables. Most of them contain
footnotes and many of them have three or more categories. Most of the tables in In-
vestments: Principle/Practices/Analyses [BRT4] are two-dimensional numerical tables.
Social Problems [Rit86] contains many tables with long text.

The result of the experiment for the logical structure, given in Table A.1, reveals that
the abstract model can be used to specify 56 percent of the tables in these four books
if we consider footnotes and 97 percent of the tables if we ignore footnotes. From this
experiment we can see that most of the tables can be specified with a multi-dimensional

logical structure.

The result of the experiment for the layout structure, given in Table A.2, shows that
the presentational model can be used to specify the topology of 94 percent of the tables
in the four books and to specify the style of 97 percent of the tables. These percentages
also indicate that the presentational model matches the real-world situation quite well.

153

Table A.1: The expressiveness of the abstract model.

Logical structure

Can be specified

Cannot be specified

Books
Without footnotes | With footnotes Total
number
Number | Percent | Number | Percent | Number | Percent
CRC Handboock of
Chemistry and Physics 322 66 150 31 16 03 488
Human Activity and 23 13 148 86 1 10 172
Environment
Investment: Principles/
Practise/Analyses 106 64 56 34 4 2 166
Social Problems 47 78 12 20 1 2 60
Total number 498 56 366 4] 22 3 886

SSHNHAISSHUIXH 'V XIANHIIV

124!

Table A.2: The expressiveness of the presentational model.

Topology Style
Book Can be Cannot be Can be Cannot be Total
0oks specified specified specified specified number
Number | Percent | Number | Percent | Number | Percent | Number | Percent

CRC Handbook
of Chemistry 451 92 37 8 463 95 25 5 488
and Physics
Human Activity 168 98 4 2 172 1 0 0 172
and Environment
Investmen:
Principles/ 161 97 5 3 161 97 5 3 166
Practise/Analyses
Social Problems 57 95 3 5 60 1 0 0 60
Total number 837 94 49 6 856 97 - 30 3 886

SSHNHAISSHYIXH 'V XIANHIdV

a1

Appendix B

Pseudo-code algorithms

This appendix includes the pseudo-code algorithms invoked by Algorithms 1, 2, and 3 in
Chapter 5:

Function Find Column Widths(com.steps, column_widths): bool

integer pair com_steps[1..item number];

var integer column widths[1..column number];
begin

array of inequality wid inequ;

integer wid_inequ.num;

/* Generate width inequalities for item sizes */
wid_inequnum := 0;
for each item or = (i, Ik, bk, 7k, ¥k, 6) do
/* ensure that the width of the block falls into the step for the item */

wid_inequlwid inequ num] := { com_steps[k].head < ;":,k wy }i
wid_inequlwid inequnum+1] := { 3°°*, w, < comsteps[k].tail };

wid_inequnum := wid.inequnum + 2;

end for

/* Generate width equalities and inequalities for width constraints */

for each width constraint e do

156

APPENDIX B. PSEUDO-CODE ALGORITHMS 157

wid_inequlwid inequnum] := { ¢ };
wid.inequnum := wid_inequnum + 1;
end for

/* Solve the width equalities and inequalities */
if Inequality Solver(wid-inequ, wid_inequ.num, column widths)) then
return(true);
else return(false); end if
end

Function Find Row_Heights(com steps, row heights): bool

integer pair com_steps[1..item number];

var integer row heights[1..row.number];
begin

array of inequality hei_inequ;

integer hei_inequ num;

/* Generate height inequalities for item sizes %/
hei_inequmnum := 0;
for each item oy = (&, Ik, b, 7k, ¥k, k) do
/* ensure that the height of the item is no more than the height
of its block */

hei_inequlhei_inequnum] := { & (com_steps[k].head) < Eg":tk hy };
hei_inequnum := hei_ inequ.num + 1;

end for

/* Generate height equalities and inequalities for width constraints */
for each height constraint ¢ do

hei_inequlhei_inequnum] := { ¢ };
hei_inequ.num := hei_inequ.num + 1;
end for

/* Solve the height equalities and inequalities */

APPENDIX B. PSEUDO-CODE ALGORITHMS 158

if Inequality Solver(hei inequ, hei_inequnum, row heights)) then
return{irue);
else return(false); end if

end

Function Find First Combination(com steps, column widths, row. heights): enum

var integer pair com steps[1..item number];

var integer column widths[1..column number], row_heights[1i..row number];
begin

array of inequality wid_inequ;

integer wid_inequ num;

/* Generate width inequalities for item sizes */
wid_inequnum := 0;
for each item o = (i, I, bk, 7k, Ok, ¥%) do
/* ensure that the width of the block is no less than the minimal
step head of the item */
wid-inequlwid_inequnum] := { }7*, w, > 4i[mind };
wid_inequnum := wid_-inequ_num + 1;

end for

/* Generate width equalities and inequalities for width constraints */
for each width constraint ¢; do

wid_inequ[wid_inequnum] := { ¢ };

wid_inequnum := wid_inequnum + 1;

end for

/* Solve the width equalities and inequalities */
if Inequality Solver(wid-inequ, wid_inequ num, column_widths)) then
for k:=1 to column_number do
Find Step_Combination(k, column_widths, com_steps);
end for

if Find Row_Heights(com steps, row heights) then

APPENDIX B. PSEUDO-CODE ALGORITHMS 159

return(Both 0k) ;
else Find Layout_Row Heights(com_steps, row_heights);
return(Wid 0k) ;
end if
else return(Not_Found); end if

end

Function Find Next_Combination(com steps, column widths, row_heights): enum

var integer pair com_steps[i..item.number];

var integer column widths[1..columnnumber], row_heights[1..rownumber];
begin

integer pair next_com_steps[i..itemnumber];

integer next_column widths[1..columnnumber], next row heights[i..row number];

integer pair selected_com.steps[1..itemnumber];

integer selected col wids[1..column number], selected row heis[1..rownumber];

integer selected_value, this_value;

enum {Not Found, Wid Ok, Hei_Ok, Both Ok, None Ok, End} sel result;

bool is_wid ok, is hei_ok:

selected_value := +00;
for k = 1 to column_number do
next_com_steps := com_steps;
if Find Widened Ttems{k, column.widths, next_com_steps) then
is wid ok := Find Column Widths(next_com_steps, next_column_widths);
is_hei ok := Find Row Heights(next_com_steps, next_row_heights);
if is_wid_ok and is_hei_ok then
com_steps := next_com_steps;

column_widths := next_column_widths:

row heights := next_column_widths;
return(Both_0k) ;
end if

if not is_wid ok then
Find Layout_Column_Widths{(next_com steps, next_column_widths);

APPENDIX B. PSEUDO-CODE ALGORITHMS

end if
if not is_hei_ok then

Find Layout Row _Heights(next_com.steps, next_row.heights);

end if

this.value := } 7 ;next_column widths{j] + Y7 next.row heights[i];

i=]
if this_value < ;elected_value then
selected value := this_value;
selected com.steps := next_com_steps;
selected_col_wids := next_column_widths;
selected row_heis := next row heights;
if not is.wid_ok and not is_hei_ok then
sel_result := None Ok;
else if is_wid ok then
sel result := Wid Ok;
else sel_result := Hei 0k; end if;
end if
end if
end for
if selected_value # +oco then
com.gteps := selected com_steps;
column.widths := selected_col_wids;
row_heights := selected_row.heis;
return(sel._result);

else return(End); end if

end

Function Find Widened Ttems(column, column widths, com.steps): bool

integer column, column widths[1..column number];

var integer pair com_steps[1i..itemnumber];
begin

bool found;

integer other width, this_step.head, next_width;

APPENDIX B. PSEUDO-CODE ALGORITHMS 161

/* calculate the new width for the column based on current column widths */
found := false;
next_width := +c0;
for each item oy = (fx, Ik, br, 7k, Ok, ¥%) that satisfies [y < column < r; do
if com_steps[k] .head # tYr[max] then
this step head := com.steps[k].tail + 1;
other width := ;":lkcolumn_widths[p] - column_widths[column];
if (this_step head - other_width) < next_width then
next width := this_step_head - other_width;
end if
found := true;
end if
end for
/* change the steps of the items for the new column width */
if found then
column_widths[column] := next_width;
Find Step_Combination(column, column widths, com_steps});
end if

return(found) ;

end

Procedure Find Step_Combination{column, current widths, com_steps)

integer column, column_widths;

var integer pair com.steps[1..item number];
begin

integer block_width;

for each item op = (tx, Ik, b, Tk, Ok, k) that satisfies I} < column < 7 do
block width := ;’;lkcolumn_widths[p];
com steps[k] := step s; such that s;.head < block.width < s;.tail;

end for

APPENDIX B. PSEUDO-CODE ALGORITHMS

end

Function Find Layout _Column Widths(com steps, column widths): bool

integer pair com_steps[1..itemnumber];

var integer column widths[1..column number];
begin

array of inequality wid_inequ;

integer wid_inequ.num;

/* Generate width inequalities for item sizes */

wid_inequ num := 0;

for each item og = (i, Ik, bk, 7k, Ok, ¥} do
wid_inequfwid inequnum] := { comsteps[k].head < 377*, w, };
wid inequlwid inequnum+1] := { 377* w, < comsteps[k].tail };
wid_inequmnum := wid_inequnum + 2;

end for

/* Solve the width inequalities */

if Inequality Solver(wid_inequ, wid_inequnum, column widths)) then
return(true) ;

else return(false); end if

end

Function Find Layout Row Heights(com steps, row heights): bool

integer pair com steps[1i..item number];

var integer row_heights[1..rownumber];
begin

array of inequality hei_inequ;

integer hei_inequ.num;

/* Generate height inequalities for item sizes */

162

APPENDIX B. PSEUDO-CODE ALGORITHMS 163

hei_inequ num := Q;
for each item o = (tk,lk,bk,rkgak;'ﬁbk) do

hei_inequlhei_inequnum] := { Egk:tk hy > 8 (com_steps[k] .head) };
hei inequ.num := hei_inequnum + 1;
end for

/* Solve the height inequalities */
if Inequality_Solver(hei_inequ, hei.inequnum, row.heights)) then
return(true);
else return(false); end if
end

Appendix C

Screen shots of XTABLE

This appendix includes a number of screen shots that shows how users edit tables using
XTABLE. The operations that generate these screen shots are given in Section 6.5.1.

164

1'D em3rg

.
*

'3[R} [RUOISUSTIIP-9211[] [eUISIIO o,

mark.,tab{perfect.sty)

i £

File Edit Style Collective-5tule Calculation Setting

§Select] Add||Remove| [Move|lCopyl[Combine [Sp1it] IText]

Boxhead
Assignments Examinations
Year Term Grade
Assl Ass2 Ass3 Midterm Flnal
Winter 85 80 75 &0 75 75
1591 Spring 80 65 75 &0 70 70
Fall 80 85 75 55 80 75
Winter 85 80 70 70 75 75
1592 Spring &0 80 70 70 75 75
Fall 7% 65 &0 80 70
Stub

[Content] |

I E IRedraw|

dTIVLYX 40 SLOHS NHAYDS 'O XIANHddV

a9T1

"pesyxoq 973} 0} Ieax £10309ed oy Suraowr 13y :7°D) iy

E xtable SRR I B A R R e
mark, tab{perfect.sty)
File Edit Style Collective-Style Calculation Setting| |Select]|Add|[RemoveliMove]|Copy|[Combine|[Split]{Text]

@ Boxhead

RTa

Examinations

ssignmen aminations
Grade Orade
Assl Ass2 Ass3 Midterm Final Assl Ass2 Ass3 Midterm Final

Term

Winter 85 80 75 &0 75 75 85 80 70 70 75 75
Spring 80 65 75 &0 70 70 &0 80 70 70 75 75

Fall 80 85 75 55 80 75 75 70 65 &0 80 70

Stub

iContent] I Year

{Redrau|

HTIV.LX 40 SLOHS NHHYDS O XIANHddV

991

gD o3y

‘sjuamiuBissy £1089320qns 27} Iopun [oqe[MoU ¢ JUIppe ISy

) xtable BRI R R S

mark,tab{perfect.sty)

File Edit Style Collective-Style Calculation Setting

ESelect|

add}{Remova|[Move][Copy] [Combine] [Split][Text]

ik |Boxhead

LEE

Assignments Examinations
Year Term Grade
Assl Ass2 Ass3 Midterm Final
Winter 85 80 75 &0 75 75
1991 Spring 80 45 75 40 70 70
Fall 80 85 75 55 80 75
Winter 85 80 70 70 75 75
1992 Spring 80 80 70 70 75 75
Fall 75 70 65 80 70

Stub

[Content| I Labeld

I E !Redr‘aul

ATEVLYX J0O SLOHS NHHYOS "D XIANAJIdY

491

¥'0D aIm8rg

.
.

‘[oqe] 49U 9Y) I0] $SSY suwreu o) Surudisse L)y

E ¥iablo e R O e TN T T SO S A
mark,tab(perfect.sty)

File Edit Style Collective-Style Calculation Setting

{Select||Add]{Remove| |Move||Copy| [Combine|{Split]|Text|

Boxhead

Assignments

Year Term
Assl Ass2 Ass3
Winter 85 80 75
1991 Spring 80 65 75
Fall 80 85 75
Winter 85 80 70
1992 Spring 8 80 70
Fall 75 70 a5

Examinations
Grade
Midterm Finel
60 75 75
60 70 70
55 81 75
70 75 75
70 75 75
&0 B0 70

{Content] | gss¢

| E IRedraw|

HTdVLX 4O SLOHS NHHZHDS 'O XIANHddY

891

G'Q 2mdrg

PSSV YYM POJRIDOSSE SYIRUX 97} Suleques 1093y

Riahie R e 3 B I R RN
mark.tab(perfect,sty)

File Edit Style Collactive-Style Calculation Setting| |Select]|Add|{Remove|[Move||Copy]{Combine]|Split|| Text]

@, Boxhead

Assignments Examinations
Year Term Grade
Assl Ass2 Ass3 Ass4d Midterm Final

&0 75 75
&0 70 70

55 80 75
70 75 75
70 75 75
& 80 70

Winter 85 80 75

1991 Spring 80 65 75
Fall 80 85 75

Winter 85 80 70

1952 Spring 8D 80 70
Fall 75 70 &5

Stub

[Content| I 20 I IRedraw|

HTHVLX O SLOHS NHHYOS O XIANAddV

691

Appendix D

Examples of XTABLE’s input files

This appendix gives examples of a table file and a collective style file. We specify an
abstract table, a topological specification, and a specific style specification in a table
file, and specify a collective style specification in a collective style file. The expressive
methods, however, are different from the ways we use in Chapters 2 and 4. For example,
a label in Chapter 2 is a string of characters, whereas a label in a table file consists of a
umique ID assigned by the system and a value shown on the screen. In Chapter 4 we use
pseudo-code to specify the style rules. In a table file or a collective style file, however,
we specify style rules in a less readable way; for instance, the cell style is specified as:

CELL = (, «<slant>, <shape>, <size>, <line space>, <vertical alignment >,
<horizontal alignment>, <background pattern>, <left leading space>,
<right leading space>, <top leading space>, <bottom leading space>)

and a separation style, say vertical separation, is specified as
VER RULE = (<line type>, <width>, <left space>, <right space>).

The keyword INHERITANCE indicates that the option is inherited from the super object
or the default value if the style rule is specified for the whole table.

170

APPENDIX D. EXAMPLES OF XTABLE’S INPUT FILES 171

D.1 An example of a table file

TABLE mark
BEGIN

ABSTRACTION

CATEGORY Year|"Year":
{_X271343872|"1991", _X271343936|"1992"};
CATEGORY Term|'Term":
{_X271344256 |"Winter", -X271344384 | "Spring", _X271344448|"Fall"};
CATEGORY Mark|"Mark":
{_X270847808|"Assignments", _X270847744|"Examinations", _X271344064|"Grade"};
SUBCATEGORY Mark._X270847744|"Examinations";
{_X270847936 | "Midterm", _X271343616|"Final"};
SUBCATEGORY Mark._X270847808|"Assignments";
{_X270847488|"Ass1", _X270847552|"Ass2", _X270847680|"Ass3"};

MAPPING:

{{ Year._X271343936, Term._X271344448, Mark._X271344064 } -> "7Q",
{ Year._X271343936, Term._X271344384, Mark._X271344064 } -> "75",

{ Year._X271343936, Term._X271344266, Mark._X271344064 } -> "75",
{ Year._X271343872, Term._X271344448, Mark._X271344064 } -> "75",

{ Year._X271343872, Term._X271344384, Mark._X271344064 } -> "70",

{ Year._X271343872, Term._X271344256, Mark._X271344064 } -> "75",
{ Year._X271343936, Term._X271344448, Mark._X270847744._X271343616 } -> "go",
{ Year._X271343936, Term._X271344384, Mark._X270847744._X271343616 } -> 75",
{ Year._X271343936, Term._X271344256, Mark._X270847744._X271343616 } -> w7,
{ Year._X271343872, Term._X271344448, Mark._X270847744._X271343616 } —> "8on,
{ Year._X271343872, Term._X271344384, Mark._X270847744._X271343616 } -> "7o",
{ Year._X271343872, Term._X271344256, Mark._X270847744._X271343616 } —> "Te",
{ Year._X271343936, Term._X271344448, Mark._X270847744._X270847936 } -> vsov,
{ Year._X271343936, Term._X271344384, Mark._X270847744._X270847936 } —-> "ro",
{ Year._X271343936, Term._X271344256, Mark._X270847744._X270847936 } —> ro",
{ Year._X271343872, Term._X271344448, Mark._X270847744._X270847936 } -> "56",

APPENDIX D. EXAMPLES OF XTABLE’S INPUT FILES

{ Year.
{ Year.
{ Year.
{ Year.

-X271343872, Term._X271344384,
-X271343872, Term._X271344256,
-X271343936, Term._X271344448,
_X271343936, Term._X271344384,

{ Year._X271343936, Term._X271344256,
{ Year._X271343872, Term._X271344448,
{ Year._X271343872, Term._X271344384,
{ Year._X271343872, Term._X271344256,

{ Year.
{ Year.

-X271343936, Term._X271344448,
-X271343936, Term._X271344384,

{ Year._X271343936, Term._X271344256,
{ Year._X271343872, Term._X271344448,
{ Year._X271343872, Term._X271344384,

{ Year.
{ Year.
{ Year.
{ Year.

-X271343872, Term._X271344256,
X271343936, Term._X271344448,
X271343936, Term._X271344384,
X271343936, Term._X271344256,

{ Year._X271343872, Term._X271344448,
{ Year._X271343872, Term._X271344384,
{ Year._X271343872, Term._X271344256,

};

TOPOLOGY

STUB: Ye
BOXHEAD:

STYLE

BOXHEAD:

ar > Term;
Mark;

Mark

Mark.
Mark.
Mark.

Mark

Mark.
Mark.
Mark.
Mark.
Mark.
Mark.
Mark.
Mark.
Mark.
Mark.
Mark.
Mark.
Mark.
Mark.
Mark.

._X270847744.
_X270847744,
-X270847808.
_X270847808.
._X270847808.
_X2703847308.
_X270847808.
_X270847808.
-X270847808,
-X270847808,
_X270847808.
-X270847808.
_X270847808,
-X270847808.
_X270847808.
_X270847808.
_X270847808.
_X270847808.
-X270847808.
_X270847808.

_X270847936 } ->
_X270847936 } ~>
_X270847680 } ->
-X270847680 } ->
_X270847680 1 ->
_X270847680 } ->
-X270847680 } ->
_X270847680 } ->
_X270847552 }; ->
_X270847552 }; ->
X270847552 } >
_X270847552 } ->
_X270847552 } ->
_X270847552 } ->
_X270847488 } ->
_X270847488 } ->
-X270847488 } ->
-X270847488 } ->
_X270847488 } >
_X270847488 } >

172

ll60l| s
Il60ll s
ll65ll s
IITOII s
“70" ,
IITSII s
|l75ll ,
1l75l| ,
"70" s
"80" s
Il80|| R
ll85l| s
ll'65ll s
IISOH s
ll?sll ,
l180ll .
Il85ll s
II80I| .
Il80ll s
ll85ll

CELL={ INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE,
INHERITANCE, BASELINE, INBERITANCE, INHERITANCE, INHERITANCE,

END

INHERITANCE, INHERITANCE };

APPENDIX D. EXAMPLES OF XTABLE’S INPUT FILES

D.2 An example of a collective style file

GLOBAL_STYLE

TABLE:
CATEGORY_HEAD_TYPE = WITHOUT_HEAD,
STUB_RULE = { SINGLE, 24 , INHERITANCE , INHERITANCE },
BOXHEAD_RULE = { SINGLE, 24 , INHERITANCE , INEERITANCE },
BOX_LEFT_RULE = { DOUBLE, 24 , INHERITANCE , INHERITANCE },
BOX_TOP_RULE = { DOUBLE, 24 , INHERITANCE , INHERITANCE },
BOX_RIGHT_RULE = { DOUBLE, 24 , INHERITANCE , INHERITANCE },
BOX_BOTTOM_RULE = { DOUBLE, 24 , INHERITANCE , INHERITANCE };

STUB:

CELL = { INHERITANCE, INHERITANCE, BOLD, INHERITANCE, INHERITANCE,
INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE,
INHERITANCE, INHERITANCE, INHERITANCE },

HOR_RULE = { NONE, INHERITANCE , INHERITANCE , INHERITANCE };

BOXHEAD:

CELL = { INHERITANCE, INHERITANCE, BOLD, INHERITANCE, INHERITANCE,
INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE,
INHERITANCE, INBERITANCE, INHERITANCE },

VER_RULE = { NONE, INHERITANCE , INHERITANCE , INHERITANCE };

BODY:
TYPE = VERTICAL_SPANNING_ONLY,
HOR_RULE = { SINGLE, INHERITANCE , INHERITANCE , INHERITANCE };

ENTRY_VALUE "" :
CELL = { INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE,
INHERITANCE, INHERITANCE, INHERITANCE, LIGHT_GRAY,
INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE };

173

Bibliography

[AAUTS]

[Bar65]

[Bea85]

[BEF84]

[BR74]

[Brild]

[Cam89]

[CeaB2]

One book/Five ways. William Kaufmann, Inc., Los Altos, CA, 1978.

M. P. Barnett. Computer Typesetting: Ezperiments and Prospects. MIT
Press, 1965.

R. J. Beach. Setting Tables and Illustrations with Style. PhD thesis, Dept. of
Computer Science, University of Waterloo, Waterloo, Ontario, Canada, May
1985. Also issued as Technical Report CSL-85-3, Xerox Palo Alto Research
Center, Palo Alto, CA.

T. J. Biggerstaff, D. M. Endres, and I. R. Forman. TABLE: Object ori-
ented editing of complex structures. In Proceeding of the 7th International
Conference on Software Engineering, pages 334-345, 1984.

D. H. Bellemore and J. C. Ritchie. Investments - Princi-
ple/Pratices/Analyses. South-Western Publishing Co., 4th edition, 1974.

W. C. Brinton. Graphic Methods for Presenting Facts. The Engineering
Magazine Company, New York, 1914.

J. P. Cameron. A cognitive model for tabular editing. Technical Report
OSU-CISRC-6/89-TR, 26, The Ohio State University, Columbus, OH, June
1989.

D. C. Chamberlin and et al. JANUS: An interactive document formatter
based on declarative tags. IBM Systems Journal, 21(3), 1982.

174

BIBLIOGRAPHY 175

[Chi93)

[CRCSS]

[Dan63]

[DHQ94]

[EE68]

[Ehe77]

[FPSSU95)

[Fur82]

[Fur86]

[GI79]

[Hal43]

The Chicago Manual of Style. The University of Chicago Press, Chicago and
London, 14th edition, 1993.

CRC Handbook of Chemistry and Physics. CRC Press, 68th edition, 1987-
1988.

G. Dantzig. Linear Programming and Eztensions. Princeton University Press,
1963.

Shona Douglas, Matthew Hurst, and David Quinn. Using natural language
processing for identifying and interpreting tables in plain text. Construction
Industry Specification Analysis and Understanding System (CISAU) Project
No: IED4/1/5818, December 1994.

D. C. Engelbart and W. K. English. A research center for augmenting human
intellect. AFIPS Conference Proceedings, 33, 1968.

A. S. C. Ehrenberg. Rudiments of numeracy. Journal of the Royal Statistical
Society, A. 140, part 3:277-297, 1977.

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Ad-
vances in Knowledge Discovery and Data Mining. AAAI Press/The MIT
Press, 1995.

R. Furuta. Document formatting systems: Survey, concepts, and issues.
Computing Surveys, 14(3):417-472, September 1982.

R. Furuta. An Integrated but not FEzact-Representation, Editor/Formatter.
PhD thesis, Dept. of Computer Science, University of Washington, Seattle,
WA, September 1986. Also issued as Technical Report 86-09-08, University
of Washington.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New York,
NY, 1979.

R. O. Hall. Handbook of Tabular Presentation. The Ronald Press Company,
New York, 1943.

BIBLIOGRAPHY 176

[11s80]

[Imp91]

[Int86]

[Int88]

[Int92]

[Knu84)

[Lam85]

[LesT9]

[Lot84]

[MS-90]

[Nor89]

[Oss76]

[Phi68]

R. Ilson. An integrated approach to formatted document production. Tech-
nical Report MIT/LCS/TR-253, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, August 1980. Master thesis.

Improv Handbook. Lotus Development Corporation, Cambridge, MA, 1991.

International Organization for Standardization. ISO 8879, Information pro-
cessing — Text and office systems — Standard Generalized Markup Lan-
guage(SGML), October 1986.

International Organization for Standardization and International Elec-
trotechnical Commission. ISO/IEC TR 9573:1988(E), Information process-
ing — SGML Support Facilities — Techniques for Using SGML, 1988.

International Organization for Standardization and International Elec-
trotechnical Commission. ISO/IEC TR 9573-11:1992(E), Information pro-
cessing — SGML Support Facilities — Technigues for Using SGML, 1992.

D. E. Knuth. The TgXbook. Addison-Wesley, Reading, MA, 1984.

L. Lamport. BTgX: A Document Preparation System. Addison-Wesley,
Reading, MA, 1985.

M. E. Lesk. Tbl — a program to format tables. In UNIX Programmer’s Man-
ual, volume 2A. Bell Telephone Laboratories, Murray Hill, NJ, 7th edition,
January 1979.

Lotus 1-2-83 User’s Handbook. Ballantine Books, New York, NY, 1984.
Microsoft Ezcel User’s Guide. Microsoft Corporation, Redmond, WA, 1990.

P. Norrish. Semantic structures of text. In R. Furuta J. André and V. Quint,
editors, Structured Documents. 1989.

J. F. Ossanna. Nroff/troff user’s manual. Computing Science Technical
Report 54, Bell Laboratories, Murray Hill, NJ, 1976.

A. Phillips. Computer Peripherals and Typesetting. Her Majesty’s Stationery
Office, 1968.

BIBLIOGRAPHY 177

[PLSS84]

[QV8s]

[Ray96]

[Rei80]

[Rit86]

[Rub8s]

[SKS94]

[SL67]

[Spe68]

[S5K94]

[Sta86)

M. Powers, C. Lashley, P. Sanchez, and B. Shneiderman. An experimental
comparison of tabular and graphic data presentation. International Journal
of Man-Machine Studies, 20:545-566, 1984.

V. Quint and L. Vatton. Grif: An interactive system for structured document
manipulation. In Text Processing and Document Manipulation, Proceedings
of the International Conference, pages 200-312, Cambridge, UK, 1986. Cam-
bridge University Press.

D. R. Raymond. Partial Order Databases. PhD thesis, Dept. of Computer
Science, University of Washington, Waterloo, Ontario, Canada, 1996.

B. K. Reid. Scribe: A Document Specification Language and its Compiler.
PhD thesis, Dept. of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA, October 1980. Also issued as Technical Report CMU-CS-81-100,
Carnegie-Mellon University.

George Ritzer. Social Problems. Random House, new York, 2nd edition,
1986.

R. Rubinstain. Digital Typography: An Introduction to Type and Composition
for Computer System Design. Addison Wesley, Reading, MA, 1988.

K. Shin, K. Kobayashi, and A. Suzuki. TAFEL MUSIK, formating algorithm
of tables. In Principles of Document Processing’94, pages 1-25, Lufthansa
Training Center, Seeheim, May 1994.

M. E. Stevens and J. L. Little. Automatic typographic-quality typesetting
techniques: A state-of-the-art review. NBS Monograph, 99, April 1967.

H. Spencer. The Visible Word. Times Drawing Office Ltd, London, 1968.

K. Shin, A. Suzuki, and K. Kobayashi. Data model for retrieving tabular data
structures and formatting techniques for retrieved structures. In preparation,
1994,

Human Activity and the Environment — A statistical compendium. Statistics
Canada, 1986.

BIBLIOGRAPHY 178

[SW84]

[Tei84]

[Tin30]

[Tin60]

[Tuf33]

[Tuf90]

[Van92]

[WF70]

[Wil83]

[Wri68]

[Wri73]

[Wri77]

M. T. Swanston and C. E. Walley. Factors affecting the speed of acquisition
of tabulated information from visual displays. Ergonomics, 27(3):321-330,
1984.

W. Teitelman. The cedar programming environment: A midterm report and
examination. Xerox PARC Technical Report CSL-83-11, June 1984.

M. A. Tinker. The relative legibility of modern and old style numerals.
Journal of Exzperimental Psychology, 13:453-461, 1930.

M. A. Tinker. Legibility of mathematical tables. Journal of Applied Psychol-
ogy, 44:83-87, 1960.

E. R. Tufte. The visual Display of Quantitative Information. Graphics Press,
Cheshire, Connecticut, 1983.

E. R. Tufte. Envisioning Information. Graphics Press, Cheshire, Connecti-
cut, 1990.

C. Vanoirbeek. Formatting structured tables. In C. Vanoirbeek & G. Coray,
editor, EP92(Proceedings of Electronic Publishing, 1992), pages 291-309,
Cambridge, UK, 1992. Cambridge University Press.

P. Wright and K. Fox. Presenting information in tables. Applied Ergonomacs,
1(1):234-242, 1970.

H. Williamson. Methods of Book Design: The Practice of An Industrial Craft.
Yale University Press, New Haven and London, 3rd edition, 1983.

P. Wright. Using tabulated information. Ergonomics, 11(4):331-343, 1968.

P. Wright. Understanding tabular displays. Visible Language, 7:351-359,
1973.

P. Wright. Decision making as a factor in the ease of using numerical tables.
Ergonomics, 20:91-96, 1977.

BIBLIOGRAPHY 179

[WriB0a] P. Wright. The comprehension of tabulated information: Some similarities
between reading prose and reading tables. NSPI Journal, XIX(8):25-29,
October 1980.

[Wri80b] P. Wright. Tables in text: the subskill needed for reading formatted infor-
mation. In L. John Chapman, editor, The Reader and The Test. 1980.

[Wrig2] P. Wright. A user-oriented approach to the design of tables and flowcharts. In
The Technology of Text, Principles for Structuring, Designing, and Display-
ing tezt. Educational Technology Publications, Englewood Cliffs, NJ, 1982.

[WW93] X. Wang and D. Wood. An abstract model for tables. TUGBOAT, The
communications of the TgX Users Group, 14(3):231-237, October 1993.

[WW96] X. Wang and D. Wood. Complexity results for tabular formatting problems.
In preparation, 1996.

[Ze185) H. Zeisel. Say It With Figures. Harper & Row, Publishers, New York, NY,
6th edition, 1985.

Index

BTEX 17

\ 47

- 50

4 33

{t 1}51

® 33

P 104

P[maz] 104

P[min] 104, 105

£ 103

A() 32

+ 48

— 48

/ 50

abstract table 33, 129, 136, 138
alignment 13
arrangement process 138
arrangement step 129, 131
arrangement style 79, 84
assignment 118

author 7

back() 47

Beach’s system 19, 24, 26
block 3, 89, 102

body 3, 84

boxhead 3, 72, 84

180

hierarchical 84
repeated 84
Cameron’s system 20, 24
category 2, 87
combine 41, 50, 54
copy 50
delete 46, 50, 52
‘duplicate 53
insert 46, 50, 51
split 41, 50, 55
structure 31, 42, 46
category heading 80, 84
catenation 47
cell 3, 79, 102
cognitive processes 5
collective style file 136
column 89, 102, 129
combining style 92
composing style 131
concrete table 26, 71, 98, 129, 138
conditions 105, 117, 150
consistent 33
content 14
contraction 48
contributions 27
Database tables 147

INDEX

dialog box 142
dim() 34
dimension
logical dimension 3, 34, 41, 46
physical dimension 26, 98, 133
editor 90
entry 2, 33, 42, 87
calculate 46, 142
compute 42, 51, 69
set 88
value 46, 47, 51, 68, 69, 87
equality 130
Etude 15
expansion 48
explicit structure 9, 42
external node 31
first() 47
fixed priority 131
font 12

formatting attributes 5, 76, 79, 82, 129

arrangement style 79, 84
category heading 80, 84
cell 79
frame 79, 83
grouping 80, 83
separation 79, 84
size constraints 81, 84, 89
spanning 80, 84
formatting process 98, 138
formatting step 129, 133
fr() 32, 33
frame 33, 79, 83
free priority 131

front() 47
frontier label sequence 32
Furuta’s prototype 20, 24
Furuta’s system 15
graphic designer 7
grid 102, 129
grid line 130
grid point 130
grid structure 19, 102, 129
Grif 15, 16, 21
grouping 12, 80, 81, 83
guidelines
abstraction 29
tabular composition 8
HIE() 113
implicit structure 10, 42
Improv 16, 21, 24
inequality 101, 112, 130

181

imequality solver 19, 113, 133, 158, 159

nput 136
item 102, 103, 105, 129, 131, 150
Janus 15
label 2, 31, 42, 87
\ 47
catenation 47
strip() 47
value 47, 51, 68
label sequence 31
back() 47
first() 47
front() 47
last() 47
labeled domain 31, 33

INDEX 182

- 50 objectives 25, 128
+ 48 operations 137, 140, 142
— 48 logical 40, 46, 50, 134
/ 50 style 134
contraction 48 topological 134
expansion 48 output 136
product 50 physical dimension 26, 98, 133
quotient 50 Postscript 129, 136
labeled set 31 presentational objects 72, 134
labeled tree 31 priority 92, 131
large table 14, 152 product 50
last() 47 properties 115, 120, 123
BTREX 15, 23, 129, 136 quotient 50
layout 105, 114, 115 region 3, 81
layout objects 72, 134 body 3
layout structure 5, 16, 26, 27, 129 boxhead 3
Ibl() 31, 32 stub 3
left quotient 47 stub head 3
line breaking 26, 98, 102, 129, 133, 134 rounding 13
logical dimension 3, 34, 41, 46 row 89, 102, 129
logical objects 72, 134 rule 12, 79
logical relationship 3 running time 113, 123
logical structure 3, 9, 16, 25, 27, 30, 128, scope 76
148 Scribe 15
Lotus 1-2-3 19, 21 separation 12, 79, 81, 84, 130, 131
menu 140, 142 block 81
Microsoft Excel 19 boxhead 3, 81
Motif 138 grouping 81
multiple inheritance 91, 131 horizontal 81
NLS 15 stub 3, 81
node 31 vertical 81
object class 134, 137 set() 31, 32

objective function 99, 100 SGML 17, 23

INDEX

shape 13
Simplex method 113
single inheritance 91, 131

size 13

size constraints 81, 84, 89, 99, 100, 101,
105, 130, 150

size function 102, 105, 129, 150

size() 34

solution 105, 113, 114, 116

space 79

spacing 93

spanning 13, 80, 84
spreadsheet systems 19, 24
SS 106
step 103, 116
combination 112, 113, 115
head 103
tail 103
strip() 47
stub 3, 13, 72, 84
cut-in 84
hierarchical 72
indented 72
repeated 84
stub head 3, 84
style 7, 12, 14, 71, 128
conflict 91
inheritance 131
specification 26, 72, 76, 129, 136, 138
style rule 76, 82
collective 90, 136
content-oriented 77, 87
formatting attributes 5, 76, 79

183

general 77
layout-oriented 77, 89, 93
presentational-oriented 81
scope 76
specific 90, 136
subcategory 88
combine 42, 51, 59
copy 51
delete 47, 51, 57
demote 42, 51, 66
duplicate 58
insert 51, 56
move 46, 51, 58
promote 42, 51, 63
split 42, 51, 61
Subset Sum problem 106
table 18, 24
abstraction 29, 147
browsing 152
content 2, 9
definition 2
empty 50, 51
formatting 98, 128, 149, 151
function 5
presentation 3, 71, 149
style 81
table file 136
TABPRINT 15, 16, 23
tabular composition 7
evolution 14
stages 9
systems 14, 16, 22, 26, 127
tabular formatting problem 26, 104, 151

INDEX 184

definition 104
efficient algorithm 26, 123, 133
exponential-time algorithm 111, 112
NP-completeness 106
polynomial-time algorithm 115, 121
TAFEL MUSIK 16, 22, 25, 26
Thl 17, 23
TF 106
Tioga 15
tool box 140
topological rule 72
topology 71, 128
arrangement 3, 10, 14, 71
order 11, 72, 74
specification 26, 72, 129, 136, 138
transpose 14
troff 15, 129, 136
typesetting direction 101, 125
UNIX 127
unordered Cartesian product 33
user interface 140
Vanoirbeek’s system 21, 24
well-designed table 8
WIE() 113
wysiawyg 128
wysiwyg 15, 24
X Windows 127
XTABLE 127

