
Tabular Abstraction, Editing, and Formatting 

by 

Xinxin Wang 

A thesis 

presented to the University of Waterloo 

in fulfilment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

111 

Computer Science 

Waterloo, Ont.aria, Canada, 1996 

@Xinxin Wang 1996 



••• National Library 
of Canada 

Bibliotheque nationale 
du Canada 

Acquisitions and Direction des acquisitions et 
Bibliographic Services Branch des services bibliographiques 

395 Wellington Street 
Ottawa, Ontario 
K1AON4 

395, rue Wellington 
Ottawa (Ontario) 
K1AON4 

The author has granted an 
irrevocable non-exclusive licence 
allowing the National Library of 
Canada to reproduce, loan, 
distribute or sell copies of 
his/her thesis by any means and 
in any form or format, making 
this thesis available to interested 
persons. 

The author retains ownership of 
the copyright in his/her thesis. 
Neither the thesis nor substantial 
extracts from it may be printed or 
otherwise reproduced without 
his/her permission. 

Your file Votre reference 

Our file Notre reference 

L'auteur a accorde une licence 
irrevocable et non exclusive 
permettant a la Bibliotheque 
nationale du Canada de 
reproduire, preter, distribuer ou 
vendre des copies de sa these 
de quelque maniere et sous 
quelque forme que ce soit pour 
mettre des exemplaires de cette 
these a la disposition des 
personnes interessees. 

L'auteur conserve la propriete du 
droit d'auteur qui protege sa 
these. Ni la these ni des extraits 
substantials de celle-ci ne 
doivent etre imprimes OU 

autrement reproduits sans son 
autorisation. 

ISBN 0-612-09397-2 

Canada 



Name~~-,-~~~----,--.,.,..-~~-,-,......,,---,-~~-,--,-~~~,---:::-
DiSMrll:Jtion Abstrads ln#ernaliona/ is arranged by broad, general subject categories. Please select the one subject which most 
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spoces provided. 

SUIJECT1UM 

Subject Categories 

THI HUMANlffll AND SOCIAL SCIINCIS 
COIIIIUIIICATIONS AND lHE ARTS 
Ard,-,..,re .............................. 0729 

t.!.""?::::::::::::::::::::::::::::::::~ 
Dance ..•....•.••.......•................... 0378 
Fine Arts ..................... : ............ 0357 
Information Science ................... 0723 
Journalism ....•..•..•..................... 0391 
Libra~ Science •.•..•..•.....•.......... 0399 
Moss Communications ............... 0708 
l,Ausic ....................................... 0413 
Speech Communicoti6n ............. 0459 
Theater ••.•....•........................... 0465 

EDUCATION 
General ................................... 0515 
Administration .......................... 0514 
Adult and Continuing ........•....... 0516 
~riculturol .............................. 0517 
Ail ........................................... 0273 
Bili".'9001 and Multicultural ......... 0282 
Business ................................... 0688 
Community Coll~ •.................. 0275 
Curriculum and Instruction ......... 0727 
Early Childhood ........................ 0518 
Elenienlory ..•........................•... 0524 
Finance .................................... 0277 
Guidance and Counseling ......... 0519 
Health ...................................... 0680 
Higher ..................................... 0745 
History of ................................. 0520 
Home Economics ...................... 0278 
Industrial .................................. 0521 
language and Literature ... , ........ 0279 
Mathematics ............................. 0280 
Music ....................................... 0522 
Philosophy of ............................ 0998 
Physical .................................... 0523 

Psyct,ology ............................... 0525 

t4~:::::::::::::::::::::::::::::::::::81?~ 
Secondary ................................ 0533 
Social Sciences ............ , .......... , . 0534 

~~a'Jm.'..~f.:::::::::::::::::::::::::::::8~~ 
Teacher Training ....................... 0530 
Technolccv ............................... 0710 
Tests and"fi.easurements ............ 0288 
Vocational ................................ 07 47 

LANGUAGE, LITERATURE AND 
UNGUISTICS 

Lon!/l'.~1 .............................. 0679 
Ancient ............................... 0289 

~~c.~.:::::::::::::::::::::::::::8~~ 
Literature 

General .............................. 0401 
Classical ............................. 0294 
Comparative ....................... 0295 
Med,eval ............................ 0297 
Modem .............................. 0298 
African ............................... 0316 
American ............................ 0591 
Asian ................................. 0305 
Canadian !English} ............ ,.0352 
Canadian French) .............. 0355 
English ............................... 0593 
Germanic ........................... 0311 
Latin American .................... 0312 
Middle Eastern .................... 0315 
Romance ............................ 0313 
Slavic and East European ..... 0314 

THE SCIENCES AND ENGINEERING 
BIOLOGICAL SCIENCES 
Agriculture 

General .............................. 0473 
Agronomy .......................... 0285 
Animal Culture and 

Nutrition .......................... 0475 
Animal Pathologx ................ 0476 
Food Science oncl 

Technology ...................... 0359 
Forestry and Wildlife ........... 0478 
Plant Culture ....................... 0479 
Plant Pothol99r ................... 0480 
Plant Physiology .................. 0817 
Range Manoaement ............ 0777 
Wood Techn61ogy ............... 07 46 

Biol~nerol .............................. 0306 
Anatomy ............................ 0287 
Biostatistics ......................... 0308 

t~?:::::: ::::: :: :::: ::::::::::85n 
Ecologx .............................. 0329 
Entomology ........................ 0353 
Genetics ............................. 0369 
Limnologr, ...............•••....•••.• 0793 
Microbio ogy ...................... 0410 
Molecular ........................... 0307 
Neuroscience ...................... 0317 
Oceanography .................... 0416 
Physiology .......................... 0433 
Roi::liation ............................ 0821 
Veterinary Science ............... 0778 
Zoology .............................. 0472 

Biophysics 
General .............................. 0786 
Medicol .............................. 0760 

EARTH SCIENCES 
Biogeochemistry ........................ 0425 
Geochemistry ........................... 0996 

~~. :::: ::::::::::::·:::: ::::::85;~ 
Geophysics .............................. 0373 
Hydrol<?9Y ................................ 0388 
Mineralogy ............................... 0411 
Poleobotony ............................. 0345 
Poleoecology ., .......................... 0426 
Paleontol~ ............................. 0418 
Poleozoology ............................ 0985 
Palynol991 ............................... 0427 
Physical l?eoQrophy .................. 0368 
Physical Oceanography ............ 0415 

HEALTH AND ENVIRONMENTAL 
SCIENCES 
Environmental Sciences ............. 0768 
Health Sciences 

General .............................. 0566 
Audiology ........................... 0300 
Chemot'1E!ropy ................... 0992 
Dentistry ............................. 0567 
Education ........................... 0350 
Hospital Management .......... 0769 
Human Development ........... 0758 
Immunology ........................ 0982 
Medicine and Surgery ......... 0564 
Mental Health ..................... 0347 

~~~itign·:::::::::::::::::::::::::::::8g~g 
Obstetrics and Gynecology .. 0380 
Occupational Health and 

Therapy ........................... 035a 
Ophthalmology ................... 0381 
Pathology ......................... ;.0571 
Pharmacology ..................... 0419 
Pharmacy ........................... 0572 
Physical Therapy ................. 0382 
Public Health ....................... 0573 
Radiology ... , ....................... 0574 
Recreation .......................... 0575 

PHILOSOPHY, RELIGION AND 
THEOLOGY 
Philosophy ................................ 0422 

Reli~eral .............................. 0318 
BiblicCJI Studies .................... 0321 

~\:~ ~r::::::::::::::::::::::::::: g5; 
Philosophy of ...................... 0322 

Tl)eology .................................. 0469 

SOCIAL SCIENCES 
American Studies ...................... 0323 

Anth,,::r'~ogy ....................... 0324 
Cultural .............................. 0326 
Physical .............................. 0327 

Business Administration 
General .............................. 0310 
Accounting ......................... 0272 
Banking .............................. 0770 
Management ...................... 04.54 
Marketing ........................... 0338 

Canadian Stui::lies ..................... 0385 
Economics 

General .............................. 0501 
Agricultural ......................... 0503 
Commerce·Business ............. 0505 
Finance .............................. 0508 

~::r.:::::::::::::::::::::::::::·:::::8~?6 
Folk~:'.:..::::::::::::::::::::::::::::::::8~1i 
g.og,o~hy ............................... 0366 
Gerontology ............................. 0351 
History 

General .............................. 0578 

Speech Pathology ................ 0460 
Toxicology .......................... 0383 

Home Economics ...................... 0386 

PHYSICAL SCIENCES 
Pure Sciences 
Chemistry 

General .............................. 0485 
Agricultural ......................... 07 49 
Ana!Ytical ........................... 0486 
Biocliemistry ....................... 0487 
Inorganic ............................ 0488 
Nucfear .............................. 0738 
Organic .............................. 0490 
Pharmaceutical .................... 0491 
Physicol .............................. 0494 
PolY.mer .............................. 0495 
Raaiotion ............................ 0754 

Mathematics .... , ........................ 0405 
Physics 

General .............................. 0605 
Acoustics ............................ 0986 
Astronomy and 

Astrophysics ..................... 0606 
Ahnospheric Science ............ 0608 
Atomic ............................... 07 48 
Electronics and Electricity ..... 0607 
Elementary Particles and 

High Energy ..................... 0798 
Fluid and Plasma ................. 0759 
Molecular ........................... 0609 
Nuclear .............................. 0610 

~ciJ\~~i~~·:::::::::::::::::::::::::::: g~~~ 
Solid State .......................... 0611 

Statistics ................................... 0463 
ApRlied Sciences 
Applied Mechanics ................... 0346 
Computer Science ..................... 0984 

~I 1,.........,1,.........,1,.........,1 U·M-1 
SUBJECT CODf 

Ancient ............................... 0579 
Medieval ............................ 0581 
Modern .............................. 0582 
Black .................................. 0328 
African ............................... 0331 
Asia, Australia and Oceania 0332 
Canadian ........................... 0334 
Euro~n ............................ 0335 
Latin American .................... 0336 
Middle Eastern .................... 0333 
United States ....................... 0337 

History of Science ..................... 0585 
l.ow .......................................... 0398 
Political Science 

General .............................. 0615 
International Law and 

Relations .......................... 0616 
Public Administration ........... 0617 

Recreation ................................ 0814 
Social Work ............................. 0452 
Sociology 

General .............................. 0626 
Criminology and Penology ... 0627 
DemograP.hY ....................... 0938 
Ethnic ancl Racial Studies ..... 0631 
Individual and Family 

Studies ............................ 0628 
Industrial and Labor 

Relations .......................... 0629 
Public and Social WEilfore .... 0630 
Social Structure and 

Development ................... 0700 
Theory and Methods ............ 0344 

Transportation .......................... 0709 
Urbon and Regional Planning .... 0999 
Women's Studies ...................... 04.53 

Engineering 
General .............................. 0537 
AerosP,OCe .......................... 0538 
Agricultural ......................... 0539 
Automotive ......................... 0540 
Biomedical .......................... 0541 
Chemical ............................ 0542 
Civil ................................... 0543 
Electronics and Electrical ...... 0544 
Heat and Thermodynamics ... 0348 
Hydraulic ............................ 0545 
fni::lustriol ............................ 0546 
Marine ............................... 0547 
Materials Science ................ 0794 
Mechanical ......................... 0548 
Metallurgy .......................... 07 43 

~~:il~r·::::::::::::::::::::::::::::::8~~1 
Packaging .......................... 0549 
Petroleum ........................... 0765 
Sonitarx and Municipal ....... 0554 
System Science .................... 0790 

Geotechnol~ ......................... 0428 
Operations Research ................. 0796 
Plastics Technology ................... 0795 
Textile Technology ..................... 0994 

PSYCHOLOGY 
General ................................... 0621 
Behavioral ................................ 0384 
Clinical .................................... 0622 
Developmental .......................... 0620 
Experimental ............................ 0623 
Industrial .................................. 0624 
Personality........ .. .. 0625 
Physiolpa1cal .... .. .. 0989 
Psychobiology .... 0349 
Psychometrics . .. ..... 0632 
Scicial ......... .. ..... 0451 



Nom~~~~~~~~~~~~~~~~~~~~~~~~~~~~-
Disserlation Abs/rads /nlemotiona/ est organise en categories de sujets. Veuillez s.v.p: choisir le sujet qui decrit le rnieux votre 
these et inscrivez le code numerique appraprie dons I' es pace reserve ci-dessous. 

SUJET 

Categories par sujets 

HUMANITIIS IT SCIINCIS SOCIALIS 
COMMUNICATIONS ET LES ARTS 
Architec::ture .............................. 0729 
Beaux-arts ................................ 0357 
Bibliolheconomie ...................... 0399 
Gnema .c ................................. 0900 
Communication verbole ............. 04.59 
Communications ....................... 0708 
Donse ...................................... 0378 
Histoire de l'ort ......................... 03n 
Joumalisme .............................. 0391 
Musique ................................... 0413 
Sciences de l'infon'nation ........... 0723 
Theatre .................................... 0465 

EDUCATION 
Generolites ................................. 515 
Adminislration .......................... 0514 
Art ........................................... 0273 
Colleges communautaires .......... 0275 
Commerce ...........•.................... 0688 
Economie domestique ................ 0278 
Education permanenle ............... 0516 
Education prescoloire ................ 0518 
Education sanitaire ................... 0680 
Enseignement pgricole ............... 0517 
Enseignement bilingue el 

multiculturel ........................... 0282 
Enseignemenl industriel ............. 0521 
Enseignement primaire .............. 0524 
Enseignemenl professionnel ....... 07 47 
Enseignement religieux ........... : .. 0527 
Enseignement secondaire .......... 0533 
Enseignement speciol ................ 0529 
Enseignement superieur ............. 07 45 
Evaluation ................... : ............ 0288 
Finances ................................... 0277 
Formation des enseignants ......... 0530 
Histoire de !'education ............... 0520 
Longues el litterature ................. 0279 

lectun, ..................................... 0535 
Math6matiques ......................... 0280 
Musique ................................... 0522 
Orientation et consultation ......... 0519 
Philosophie de !'education ......... 0998 
~sique .................................. 0523 
Programmes d'6tudes et 

en,sei~nement ........................ 0727 
Psrchol09ie .............................. 0525 
Sciences ................................... 0714 
Sciences sociales ....................... 0534 
Sociologie de !'education ........... 0340 
Technologie ............................ 0710 

LANGUE, UTTERATURE ET 
LINGUISTIQUE 

Lan~~ralites ......................... 0679 
Anciennes ........................... 0289 
Linguistique ...........•............. 0290 
Moclernes ........................... 0291 

lillerature 
Generalites ......................... 0401 
Anciennes ........................... 0294 
ComP,Oree .......................... 0295 
Med18Vale ........................... 0297 
Moderne ............................. 0298 
Africaine ............................ 0316 
Am6ricaine ......................... 0591 
Anglaise ............................. 0593 

ti~~i;lr~~~~··kgi~ii~i·::::::::85g~ 
Conodienne !Fron~aise) ....... 0355 
Germanique ....................... 0311 
Latino·om6ricoine ................ 0312 
Moyen·orientale .................. 0315 
Romane .............................. 0313 
Slave et esl·europeenne ....... 0314 

SCIENCES IT INGENIIRIE 
SCIENCES BIOLOGIQUIS 
Agriculture 

Gcneralites ......................... 0473 

~~;~~\~~ ·~t·t~h~~1~;~··· 0285 
alimentoire ..................... 0359 

Culture ............................... 0479 
Eleva9e et alimenlation ........ 0475 
ExRl01totion des P,eturoges ... 0777 
Pathologie animale .............. 0476 
Pothol99ie v~etole ............. 0480 
Physiol?9ie vegetale ............ 0817 
Sylviculture et faune ............. 0478 
Technologie du bois ............. 0746 

Biol~ie · 
Generalites ......................... 0306 
Anatomie ............................ 0287 
Bio!ogie (StatistiAuesJ ........... 0308 
Biol09ie mole<:ulaire ............ 0307 
Botamque .......................... 0309 
Cellule ................................ 0379 
Ecologie ....... ....... . ..... 0329 
Entomologie ......... .. .... 0353 
Genetique ............ .. ....... 0369 
Limnologie .......................... 0793 
Microbiol~ie ..................... 0410 
Neurologie ......................... 0317 
Oceonogrophie ................... 0416 
Physiologie ......................... 0433 
Rai:liation ............................ 0821 
Science veterinaire ........ 0778 
Zoologie ...... . ............ 0472 

Biophrsi~ue .. 
Genera lites ........................ 0786 
Medicale ........................... 0760 

SCIENCES DE LA TERRI 
~t!/:.i.~.::::::::::::::::::::::::::::8~~~ 
Geodesie ................................. 0370 
Geographie physique ................ 0368 

Geolqgie .................................. 0372 
Geopliysique ............................ 0373 
Hydrolc;,gie ............................... 0388 
Minerologie .............................. 0411 
OceClnogrophie physique .......... 0415 
Poleobotomgue ......................... 0345 
Paleoe<:oloaie ........................... 0426 
Poleontol991e ............................ 0418 
PalE!Ozoologie ........................... 0985 
Polynologie .............................. 0427 

SCIENCES DE LA SANT! ET DE 
L'ENVIRONNEMENT 
Economie domestique ................ 0386 
Sciences de l'environnemenl ...... 0768 
Sciences de la sante 

Generalites ......................... 0566 
Administration des hipitaux .. 0769 
Alimentation et nutrition ....... 0570 
Audiologie .......................... 0300 
ChimiotFierapie ................... 0992 
Denlisterie ........................... 0567 
Developpement humain ....... 0758 
Enseignement ...................... 0350 
lmmunologie ....................... 0982 · 
loisirs ................................. 0575 
Medecine du travail el 

therapie ........................... 0354 
Medecine et chirur~ie .......... 0564 
Obstetrique et gynecologie ... 0380 
Ophtalmolc;,gie .................... 0381 
Orthophonie ....................... 0460 
Pothofogie .......................... 0571 
Pharmocie .......................... 0572 
Pharmacologie .................... 0419 
Physiotheropie .................... 0382 
Rai:liologie .......................... 0574 
Sonte mentale ..................... 0347 
Sante publigue .................... 0573 
Soins mfirm1ers ................... 0569 
Toxicologie . . .................. 0383 

fnlbi~rlE, RELIGION ET 
Philo~hie ............................... 0422 
Religjon 

Generalites ......................... 0318 
Cle,ye ................................. 0319 
Etudes bibliques .................. 0321 
Histoire des religions ........... 0320 
Philosophie de ICI religion ..... 0322 

Theologie ................................. 0469 

SCIENCES SOCIALES 

An~t!,~~ie ........................ 0324 
Culturelle ............................ 0326 

0roi~:.~i.~~~.:::::::::::::::::::::::::::::85i, 
Economie 

Generolites ......................... 0501 
Commerce·Affoires .............. 0505 
Economie agricole ............... 0503 
Economie du travail ............. 0510 
Finances ............................. 0508 
Histoire ............................... 0509 

• Theorie ...................... : ........ 0511 
e1udes americaines ................... 0323 
Eludes canadiennes ................... 0385 
Eludes Feminisles .............. , ... : .... 0453 
Folklore .................................... 0358 
GeogroP.hie .............................. 0366 
Gerontol99ie ............................ 0351 
Gestion des affaires 

Generalites ........................ 0310 
Administration .................... 0454 
Banques ........ .. .......... Ono 
Comptabilite ..... . 0272 
Marketing . ....... . ...... 0338 

Histoire 
Histoire generale ................ 0578 

SCIENCES PHYSIQUES 
Sciences Pures 
Chimie 

Genera lites ........................ 0485 
Biochimie .... . ................ 487 
Chimie agricole .................. 07 49 
Chimie anar'ic;iue ............... 0486 
Chimie minerale .................. 0488 
Chimie nucleoire ................. 0738 
Chimie organique ............... 0490 
Chimie pharmoceutique ....... 0491 
Physique........... . .............. 0494 
PolY.mC:res ........ . ............ 0495 
Rocliation ............................ 0754 

Mathemaliques .......................... 0405 
Physi8ue 

Genera lites ....... . 
Acoustique ...... . 
Aslronomie el 

..0605 

.. 0986 

oslrophysique ................... 0606 
Electronique el electricite ...... 0607 
Fluides el plasma ................. 0759 
MetE!Orologie ...................... 0608 
Optique .............................. 0752 
Particules (Physique 

nucleoire) ............ .... . 0798 
Physique atomique ............. 07 48 
Physique de l'etal solide ...... 061 l 
Physique mole<:ulaire .......... 0609 
Physique nucleClire .............. 061 0 
Rai:liation ............. .. ....... 0756 

Statistiques ......... 0463 

Sciences Appliques Et 

..098A 
Technolog1e 
lnformatique .. 
lngenierie 

Generolites .. . .. 0537 
Agricole ............................ 0539 
Automobile ........................ 0540 

~~I U·M·I 
CODE DE SUJET 

Ancienne ............ . ...... 0579 
Medievole ....................... 0581 
Moderne .............. . .... 0582 
Histoire des noirs ................ 0328 
Africoine ......................... 0331 
Conadienne ....................... 0334 
Etals·Unis ... ... .. . .. 0337 
Europeenne .......... . .... 0335 
Moyen·orientale .. ... 0333 
latino·americaine ............... 0336 
Asie, Australie et OceClnie .. 0332 

Histoire des sciences ................ 0585 
loisirs .................................... 0814 
Planification urbaine el 

regionole ....... . ...... 0999 
Science palitique 

Generalites ......................... 06 15 
Administration publique ...... 0617 
Droil el relations 

internationales ................. 0616 
Sociol?9,ie . , 

General1tes ....................... 0626 
Aide et bien·Olre social ...... 0630 
Criminologie el 

etoblissemenls 
penitenhaires , 

OemogroP.hie ........ . 
Eludes de I' individu el 
• de la famille ..... -. 
Eludes des relations 

.0627. 
.. 0938 

.. 0628 

interelhniques et 
des relations racioles ....... 0631 

Structure el developperr,ent 
social ............................. 0700 

ThE!Orie el methodes ............. 03.d4 
Travail el relations 

. industrielles 
TransP,Orts ...... 
T rovml sO!'.=iol .. 

......... 0629 
. 0709 
.. OA52 

Biomedicole ....................... 0541 
Chaleur el ther 

modynamique .............. 03.d8 
Condit1onnemenl 

(Embol!age) .................... 0549 
Genie aerospotial ............... 0538 
~n!e c~i!flique .................. 0542 
Geme cJVd ........................ 0543 
Genie electronique el 

electrique ........................ 054.d 
Genie inclustriel ................. 05.d6 
Genie mecanique . . 0548 
Genie nucleoire ... ... . .. . . . .. 0552 
lnijenierie des systcimes .. 0790 
Mecanique navale .............. 05.d7 
Metallurgie ........................ 07 43 
Science des materioux ........ 079.d 
Technique du petrole ... .. ... 0765 
Technique miniere .............. 0551 
Techniques sanitoires et 

municipales. ... ... ... ... . .. 0554 
T echnologie hydraulique ..... 0545 

ME!Conique appliquee .............. 0346 
Geotechno!ogie ..... . 0.d28 
Motit'!res P.lostiques 

{Technologie) .......... .. 0795 
Recherche operationnelle ..... 0796 
Textiles el tissus (Technologie) .... 079.d 

PSYCHOLOGII 
Generalites ........ . .............. 0621 
Personnolite ........... . ...... 0625 
Psychobiologie ........................ 03.d9 
Psychologie clinique ................. 0622 
Psychologie du comP.ortement ... 0384 
Psychologie du develop~menl .. 0620 
Psychologie experimentale .. . .. 0623 
Psychologie industrielle ....... ... 062.d 
Psychologie physiologique ... 0989 
Psychol~ie sociale ......... ... 0451 
Psychometrie . . ........ 0632 

* 



I hereby declare that I am the sole author of this thesis. 

I authorize the University of Waterloo to lend this thesis to other institutions or 

individuals for the purpose of scholarly research. 

I further authorize the University of Waterloo to reproduce this thesis by photocopying 

or by other means, in total or in part, at the request of other institutions or individuals 

for the purpose of scholarly research. 

(!;J7 

11 



The University of Waterloo requires the signatures of all persons using or photocopy­

ing this thesis. Please sign below, and give address and date. 

ill 



Abstract 

This dissertation investigates the composition of high-quality tables with the use of 

electronic tools. A generic model is designed to support the different stages of tabu­

lar composition, including the editing of logical structure, the specification of layout 

structure, and the formatting of concrete tables. The model separates table's logical 

structure from its layout structure, which consists of tabular topology and typographic 

style. The notion of an abstract table, which describes the logical relationships among 

tabular items, is formally defined and a set of logical operations is proposed to manip­

ulate tables based on these logical relationships. An abstract table can be visualized 

through a layout structure specified by a set of topological rules, which determine the 

relative placement of tabular items in two dimensions, and a set of style rules, which 

determine the final appearance of different items. The absolute placement of a concrete 

table can be automatically generated by applying a layout specification to an abstract 

table. An NP-complete problem arises in the formatting process that uses automatic 

line breaking and determines the physical dimension of a table to satisfy user-specified 

size constraints. An algorithm has been designed to solve the formatting problem in 

polynomial time for typical tables. Based on the tabular model, a prototype tabular 

composition system has been implemented in a UNIX, X Windows environment. This 

prototype provides an interactive interface to edit the logical structure, the topology and 

the styles of tables. It allows us to manipulate tables based on the logical relationships 

of tabular items, regardless of where the items are placed in the layout structure, and 

is capable of presenting a table in different topologies and styles so that we can select a 
high-quality layout structure. 

IV 



Acknowledgements 

I would like to express my gratitude to my supervisor, Professor Derick Wood, for 

his support, advice and encouragement. Without his tireless reading and constructive 

criticism, there would have been no dissertation. 

I would also like to acknowledge my external examiner, Professor Richard Furuta 

from the Texas A & M University, and the remaining members of my thesis committee, 

Professors Donald Cowan, Frank Tampa, and David Matthews for their contribution to 

the improvement of this dissertation. 

My thanks to Darrell Raymond for his help in providing information about tabular 

typesetting. 

Professor Ming Li made suggestions for Chapter 5 (Formatting) and proofread the 

chapter. I also benefited much from discussions with Dr. John Tromp on the definition 

of the tabular formatting problem and with Professor Qiang Yang on the final algorithm. 

The Department of Computer Science, University of Waterloo, provided me with an 

excellent study and work environment. 

I am grateful for the financial support I received from the Information Technology 

Research Center of Ontario and the Natural Sciences and Engineering Research Council 

of Canada. 

To my friends, Roger Skubowius and Jane Liang, thank you for your friendship, help 

and encouragement along the way. 

Finally, to my parents, who provide endless love and support. 

V 



Contents 

1 Introduction 1 

1.1 Definition and characteristics 2 

1.1.1 The content of a table 2 

1.1.2 The presentational form of a table . 3 

1.1.3 The function of a table . 5 

1.2 Tabular composition ...... 7 

1.2.1 Logical structure design 9 

1.2.2 Tabular arrangement 10 

1.2.3 Presentational style . 12 

1.2.4 Dealing with size and shape 13 

1.3 Review of previous work ...... 14 

1.3.1 The development of electronic tabular composition 14 

1.3.2 Some tabular composition systems 16 

1.3.3 Evaluation of prior work 22 

1.4 Research Objectives. 25 

1.5 Contributions .... 27 

VI 



2 Abstraction 29 

2.1 Guidelines for tabular abstraction 29 

2.2 Terminology . . . . . . . . . . . . 30 

2.3 The definition of an abstract table . 33 

2.4 Expressiveness of the abstract model 36 

3 Editing 40 

3.1 What operations are necessary? 40 

3.1.1 Table operations .. 41 

3.1.2 Category operations 42 

3.1.3 Label and entry operations . 42 

3.2 Applying an operation ... 46 

3.3 Labeled-domain operations . 47 

3.4 Editing operations for abstract tables 50 

3.5 Expressiveness of editing model 69 

4 Layout specification 71 

4.1 Tabular Layouts . 71 

4.2 Topological specification 72 

4.3 Style specification . . . . 76 

4.3.1 Formatting attributes . 79 

4.3.2 Presentational-oriented style rules 81 

4.3.3 Content-Oriented style rules 87 

4.3.4 Layout-Oriented style rules . 89 

4.3.5 Collective and specific style rules 90 

4.4 Problems ............. 91 

vii 



5 

4.4.1 Style conflict .............. . 

4.4.2 Side effects of layout-oriented style rules 

4.4.3 Dynamic change of spacing . . . . . 

4.5 Expressiveness of the presentational model 

Formatting 

5.1 Complexity of tabular formatting 

5.2 Grid structure . . . . . . . . . . 

5.3 The tabular formatting problem 

5.4 Tabular formatting is NP-complete 

5.5 An exponential-time algorithm . . . 

5.6 A polynomial-time greedy algorithm 

5.7 An efficient algorithm . ........ 

6 Implementation 

6.1 Objectives .. 

6.2 Abstract to concrete 

6.2.1 Grid structure . 

6.2.2 Size constraints 

6.2.3 Arrangement 

6.2.4 Formatting . 

6.3 Tabular objects and their operations 

6.4 Overall system structure 

6.4.1 Input and output 

6.4.2 Internal data structures and processes 

6.5 User interface ......... . 

Vlll 

91 

93 

93 

94 

98 

98 

102 

104 

106 

111 

115 

123 

127 

128 

129 

129 

130 

131 

133 

134 

136 

136 

138 

140 



6.5.1 Tool boxes . 140 

6.5.2 Menus ... 142 

6.6 Merits and limitations 143 

7 Concluding remarks 146 

7.1 Relational database tables 147 

7.2 Extending the abstract model 147 

7.3 Different abstract model .. 148 

7.4 Logical structure recognition 148 

7.5 Different presentational methods . 149 

7.6 Complexity of tabular formatting 149 

7.7 Formatting algorithms 151 

7.8 Large tables . . . 152 

7.9 Tabular browsing 152 

A Expressiveness 153 

B Pseudo-code algorithms 156 

C Screen shots of XTABLE 164 

D Examples of XTABLE's input files 170 

D.1 An example of a table file ... 171 

D.2 An example of a collective style file 173 

Bibliography 174 

Index 180 

IX 



List of Tables 

1.1 The average marks for 1991-1992. . . . . . . . . . . . . . . . . . . . 2 

1.2 University of XXX sponsored research funds (in millions of dollars). 7 

2.1 The average marks for 1991-1992. 34 

2.2 Metric units. . . . . . . . . . . . . 38 

2.3 Correlation table - wheat and flour prices by months, 1914-1933. 

3.1 The average marks for 1991-1992 ............ . 

3.2 An implicit conversion table from pounds to kilograms. 

3.3 An explicit conversion table from pounds to kilograms. 

3.4 The average marks for 1991-1992. 

3.5 The average marks for 1991-1992. 

3.6 The frame of a flight schedule between major cities of Canada. 

3.7 The average marks for 1991-1993. 

3.8 The average marks for 1991-1992. 

3.9 The average marks for 1991-1992. 

3.10 The average marks for 1991-1992. 

3.11 A conversion table from pounds to kilograms. 

3.12 After combining two subcategories in Table 3.11. . 

X 

39 

41 

43 

44 

52 

53 

54 

55 

57 

59 

60 

61 

62 



3.13 A conversion table from pounds to kilograms. 

3.14 After splitting a subcategory in Table 3.13 .. 

3.15 The average marks for 1991-1992. 

3.16 The average marks for 1991-1992. 

4.1 The average marks for 1991-1992. 

4.2 T_he average marks for 1991-1992. 

4.3 The average marks for 1991-1992. 

4.4 The marks for CS340. . . . . . . 

4.5 The average marks for 1991-1992. 

4.6 The average marks for 1991-1992. 

4. 7 The formatting attributes for different style rules. 

4.8 The marks of CS340. 

4.9 The marks of CS340. 

4.10 The average marks of some courses, 1991-1992. 

4.11 The average marks for 1991-1992. 

4.12 The average marks for 1991-1992. 

4.13 The average marks for 1991-1992. 

4.14 The average marks for 1991-1992. 

4.15 Apartments at 31 Eleanor Drive, Nepean. 

4.16 Phosphorus loadings to the Great Lakes, 1976 to 1982. 

5.1 The complexity of tabular formatting .. 

64 

65 

67 

68 

73 

73 

74 

76 

78 

78 

82 

83 

85 

86 

87 

88 

89 

90 

95 

96 

99 

5.2 The tournament schedule. 106 

5.3 The tournament schedule. 107 

5.4 The conditions that determine if there is a solution for an instance. 118 

Xl 



5.5 The possible assignments of Lr. ..... 119 

5.6 A schedule of computer science courses .. 125 

6.1 The average marks for 1991-1992 ..... 133 

6.2 The object classes and their operations .. 135 

6.3 The initial table of correlations for 10 TV programs .. 144 

6.4 The modified table of correlations for 10 TV programs. 144 

A.1 The expressiveness of the abstract model. . . . . 154 

A.2 The expressiveness of the presentational model. 155 

Xl1 



List of Figures 

1.1 The terminology for the row-column presentational structure of table. . 4 

1.2 A pictorial form of Table 1.2. . . . . . . . . . . . . . . . . . . . . . . . 6 

2.1 The relationship between a labeled domain and a corresponding labeled 

tree ................................ . 

3.1 The transformations between implicit and explicit structures .. 

3.2 Examples of' the labeled-domain operations. 

5.1 A 4 x 7 grid. 

32 

45 

49 

102 

5.2 The characteristics of a size function. 104 

5.3 An example of constructing an instance of TF from an instance of SS. 109 

5.4 An exponential-time algorithm for TF. . ....... . 

5.5 A polynomial-time algorithm that partially solves TF .. 

5.6 An efficient algorithm that always solves TF .. 

6.1 The genealogical relationship of some scopes .. 

6.2 The object class hierarchy. . . 

6.3 The input/output of XTABLE. 

6.4 The internal system structure of XTABLE. 

6.5 The main window of XTABLE. . 

Xlll 

112 

121 

124 

132 

137 

138 

139 

141 



C.1 The original three-dimensional table. ....... 166 

C.2 After moving the category Year to the boxhead .. 167 

C.3 After adding a new label under the subcategory Assignments. 168 

C.4 After assigning the name Ass4 for the new label. 169 

C.5 After entering the marks associated with Ass4. 170 

XIV 



Chapter 1 

Introduction 

This thesis investigates different issues of tabular composition: abstract model, layout 

specification, editing and formatting. We consider the composition of tables to be one of 

the most challenging aspects of document typesetting. Tables may contain different kinds 

of objects, such as text, graphics, mathematical formulas, and so on, which display dis­

tinct characteristics and need different treatment. From the logical point of view, tables 

are multi-dimensional objects. They are, however, usually presented in two dimensions. 

Tabular typesetting needs to solve the same problem that we need to solve to typeset text 

and tabular typesetting raises additional problems that need to be solved. Moreover, we 

often need to explore different layouts and styles of the same tables, so that we can choose 

one layout and style that presents the table's data in a convincing way. We do not know 

of any generally available tabular composition system that satisfies these requirements. 

We introduce various aspects of tabular composition in this chapter. We first describe 

the characteristics of tables. We then discuss the different stages that are involved in 

tabular composition. Next, we review the development of tabular composition systems 

and give our research objectives. Finally, we state the major research contributions of 

the thesis. 

1 



CHAPTER 1. INTRODUCTION 2 

Table 1.1: The average marks for 1991-1992. 

Assignments Examinations 
Grade 

Assl Ass2 Ass3 Midterm Final 

1991 

Winter 85 80 75 60 75 75 
Spring 80 65 75 60 70 70 
Fall 80 85 75 55 80 75 

1992 

Winter 85 80 70 70 75 75 
Spring 80 80 70 70 75 75 
Fall 75 70 65 60 80 70 

1.1 Definition and characteristics 

It may be easy to point out a table in a book, but a precise definition of a table is elusive. 

The Oxford English Dictionary defines a table as: "An arrangement of numbers, words 

or items of any kind, in a definite and compact form, so as to exhibit some set of facts 

or relations in a distinct and comprehensive way, for convenience of study, reference, 

or calculation." This definition summarizes the characteristics of a table using three 

different aspects: content, form and function. 

1.1.1 The content of a table 

The content of a table is a collection of interrelated items, which may be numbers, 

text, symbols, figures, mathematical equations, or even other tables. Some of the items 

are the basic data a table displays, and the others are the auxiliary data that are used 

to locate the basic data. We use the term entries to denote the former kind of data and 

the term labels to denote the latter kind. Labels are further classified into categories that 

are organized hierarchically. For example, Table 1.1 presents the average marks of the 



CHAPTER 1. INTRODUCTION 3 

assignments and examinations for a course offered in the three trimesters of 1991 and 

1992. The marks are entries and the strings that denote the years, the terms, and the 

kinds of marks are labels. Furthermore, Year is a category that consists of the labels 

1991 and 1992. Term is another category that consists of the labels Winter, Spring, 
and Fall. Mark is a category that consists of the subcategories Assignments and 

Examinations and the label Final Grade. There are logical relationships between the 

entries and the labels. Each entry is associated with one label from each of the categories. 

For example, the entry 85 at the top-left corner is associated with the labels 1991, 

Winter, and Assl, and the entry 70 at the bottom-right corner is associated with the 

labels 1992, Fall, and Final Grade. The tabular items and their logical relationships 

provide the logical structure of the table and the number of categories defines the logical 

dimension of the table. Table 1.1 has three categories; thus, it is a three-dimensional 

table. 

1.1.2 The presentational form of a table 

The content of a table must be presented in some form and on some medium. Usually, ta­

bles are presented as row-column structures on a planar medium, such as paper or screen. 

Fig. 1.1 defines the terminology for the parts of a table represented as a row-column struc­

ture. We inherit the most terminology from The Chicago Manual of Style [Chi93] except 

that we define the concepts of 'stub head' and 'block' for our convenience. A table is 

divided into four main regions by stub separation and boxhead separation. The stub is the 

lower left region that contains the row headings, the boxhead is the upper right region 

that contains the column headings, the stub head is the upper left region that contains 

the categories in the stub, and the body is the region to the right of the stub and below 

the boxhead that contains the entries. The intersection of a row and a column is called 

a cell and a rectangular collection of cells is called a block. 

In traditional tabular presentation, the entries are usually put in the body of a table 

and the labels are placed in the stub or in the boxhead. To present multidimensional 

tables in two dimensions, we have to associate more than one category with the stub or 

with the boxhead. In this case, some labels appear more than once. For example, in the 

stub of Table 1.1, the labels of category Term appear twice so as to present the asso-



CHAPTER 1. INTRODUCTION 

Stub head Stub separation Boxhead 

Stub 

---, r 

' Term : 1 Assignme jl\J Examinations Final : 

' ' ' Assl Ass2 "\j§i Midterm Final Grade' L _____ _J L - - - _ _ _ _ ::; @.;:<!,?· 

Iii==============-~ r - - - - - -, r - - - - - - -
, 1991 1 1 

80 !1111 60 75 75 
' ' 

Winter' ' 85 

Fall 

1992 

' ' 
' 
' 
' ' 

Cell Column 

55 80 

Block 

75 

75 

75 

Boxhead 
separation 

Body 

Figure 1.1: The terminology for the row-column presentational structure of table. 

4 



CHAPTER 1. INTRODUCTION 5 

ciations between Year and Term. The arrangement of labels decides the arrangement 

of entries. Each entry is usually put in a cell such that it is to the right of its associ­

ated labels in the stub and beneath its associated labels in the boxhead. Different types 

of typographic cues can be used to help readers search for information in a table. We 

can use rules or white space to separate tabular items, distinct type faces or point sizes 

to distinguish different types of items, and background colors or patterns to highlight 

important information. 

Although the row-column structure is a familiar and natural form for tabular pre­

sentation, tabular data can also be presented in other forms. For example, Fig. 1.2 is a 

pictorial form of Table 1.2. The combination of pictorial form and the row-column struc­

ture can increase the accuracy of obtaining tabular information [PLSS84]. The reasons 

are that the row-column structure provides precise information for a particular question, 

while the pictorial form provides general information for browsing and comparison. Vari­

ous graphical techniques have been investigated to reveal tabular information with visual 

presentation [Bri14, Tuf90, Tuf83, Zei85]. In this thesis, we focus on presenting tables 

only in the row-column structure. We use layout structure to denote the presentational 

form of a table. 

1.1.3 The function of a table 

The main function of tables is to present detailed information in a compact way such that 

the ability to search and compare the information is enhanced. Since tabular information 

is conveyed by its presentational form, one critical factor in determining how easily tables 

can be read depends on the presentational forms selected by the designer. This selection is 

motivated, in part, by an understanding of how users interact with tables [Wri82]. At least 

three cognitive processes are involved in users' interaction with a table [Wri80a, Wri80b]: 

1. A comprehension process, needed for understanding the principle on which the 

table is organized to grasp the underlying logical structure of the table. 

2. A search process, needed for locating the relevant information within the table. 

3. An interpretive and comparative process, needed to answer specific questions after 

the relevant information has been obtained. 



CHAPTER 1. INTRODUCTION 

Funds 

1 

University of XXX Sponsored Research 
funds awarded in millions of dollars 

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 
rzzzJ GRANTS i==:J CONTRACTS 

Figure 1.2: A pictorial form of Table 1.2. 

6 



CHAPTER 1. INTRODUCTION 7 

Table 1.2: University of XXX sponsored research funds {in millions of dollars). 

Fund 
Year 

Grant Contract 

1981 8.8 4.0 
1982 11.6 5.1 
1983 18.0 6.4 
1984 18.0 5.1 
1985 21.6 6.8 
1986 22.8 6.4 
1987 25.1 6.4 
1988 25.1 8.0 
1989 25.1 14.4 
1990 26.8 16.8 

Based on these three cognitive processes, a well-designed table should be organized in 

such a way that the underlying logical structure is made obvious and tabular items are 

located and interpreted easily. 

1.2 Tabular composition 

In traditional typesetting, tables were always treated separately from the main body of 

text. They involve the most frequent change in typographic style within the text and 

require the skill of a compositor or typesetter to handle them [Wil83]. Two kinds of 

people are involved in the composition of tables. The author is mainly responsible for 

the design of the logical structure and the topological arrangement whereas the graphic 

designer is concerned with the presentational style. Since authors know their subject ma­

terial and graphic designers are familiar with aesthetic principles and publishers' styles, 

their cooperation guarantees the production of high-quality tables. Nowadays however, 

anybody can produce tables with the help of a tabular editor and formatter. Although 



CHAPTER 1. INTRODUCTION 8 

users may know their subject material very well and be quite familiar with statistical 

principles, they still may not know how to design high-quality tables, or even realize the 

shortcomings of a given table. 

The criteria for a well-designed table may differ for different people and different 

purposes. The most important criteria that most people agree with are legibility and 

accuracy. A well-designed table should enable readers to obtain information rapidly 

and make few errors. With respect to the three cognitive processes we mentioned in 

Section 1.1.3, a well-designed table should enable readers to learn to use the table quickly 

with little or no instruction in the comprehension process, to locate information easily 

and accurately in the search process, and to avoid the time-consuming calculations that 

provide opportunities to make mistakes in the interpretive and comparative process. 

The other criteria that affect the design of tables are the style of a publisher, the space 

constraints of the medium on which a table is to be displayed, and the purpose for which 

a table is to be used. 

Researchers from psychology, statistics, and typography have suggested possible guide­

lines for the design of high-quality tables. Hall [Hal43] discusses the principles and 

technical details involved in the design of statistical tables and the improvement of the 

tables. He gives rules to guide the design of tables and gives examples that illustrate 

how badly-designed tables can be improved by applying these rules. In a series of pa­

pers [WF70, Wri68, Wri77], Wright provides guidelines for the design of tables based 

on previous cognitive research and experiments conducted by herself and others. Her 

research focuses on improving the comprehension of the underlying logical structure of 

a table and on improving the effectiveness of obtaining tabular information. Ehren­

berg [Ehr77] provides basic precepts for the presentation of numerical data which have 

largely been ignored in statistical practice. These precepts can be used to address the 

criterion that the underlying logical structure of a table should be obvious at a glance 

with little or no instruction. Norrish [Nor89] gives the conventions for tabular presenta­

tion in the traditional publishing industry. These conventions not only address the issues 

of how to present the table body, but also how tables are related to the surrounding 

text. The Chicago Manual of Style [Chi93] is the standard style guide for authors and 

editors involved in publishing. It devotes one section to the conventions and techniques 

for tabular typesetting, including the arrangement of elements, the selection of styles for 



CHAPTER 1. INTRODUCTION 9 

different components, and the handling of different sizes and shapes. Zeisel (Zei85] draws 

attention to the difficulties in the presentation of statistical tables and presents some 

solutions to these difficulties. He also discusses analytical techniques for the refinement 

of statistical tables to meet readers requirements. The emphasis of his book is on the 

relationships among data that describe what is and what happens, rather than on issues 

of presentational form. 

Based on these studies, we have abstracted guidelines for the design of high-quality 

tables at different stages of composition. These guidelines are summarized. 

1.2.1 Logical structure design 

At this stage, we decide the content of a table by taking into account the readers' re­

quirements and convenience. There are three guidelines for this stage: 

1. Contain only necessary information [Hal43, Zei85] 

Suppose a course instructor needs to design a table to show students their final 

marks. Students are concerned not only with their marks but also how their marks 

compare with those of other students. Thus, the table should list not only the 

marks for each student, but should also give the average, minimum and maximum 

marks. On the other hand, a large table with complex structure needs more time to 

comprehend. If a table contains more information than readers need, it is better to 

simplify the table by combining items and removing redundant and unrelated items. 

For example, if a department chair wants to examine the marks for a course, he 

or she is probably interested only in the average, minimum, and maximum marks, 

and how many students have failed the course. Thus, a table for the chair need not 

display the marks of every student. We can consider such a summary table a view, 

in the database sense, of the original table. 

2. Present a table as an explicit structure [WF70] 

A table in which all the information is given explicitly such that a reader needs only 

to locate the required item, is called an explicit structure. A table that contain all 

necessary information, but requires readers to do some calculation after locating 



CHAPTER 1. INTRODUCTION 10 

an item is called an implicit structure. For example, if we design a table conversion 

from pounds to kilograms in the range O through 99 pounds, an explicit structure 

will list all the conversion values for 0, 1, ... , 99 pounds, whereas an implicit 

structure may list only the conversion values for 0, 1, ... , 9 pounds and 10, 20, ... 

90 pounds. The implicit structure requires readers to do an addition if they want 

to know how many kilograms are equivalent to 55 pounds. Obviously, an explicit 

structure is more efficient for the reader and an implicit structure's presentation 

normally uses less space. 

3. Reduce the number of categories and subcategories as appropriate [Wri77, Zei85] 

Experiments carried out by Wright have shown that increasing the number of de­

cisions to be made is a handicap in reading tabular information. The number of 

decisions is proportional to the number of categories and the number of subcate­

gories in each category. We can combine categories to reduce the logical dimension 

or merge two levels of labels to lower the depth of a category. For example, we can 

combine the categories Year and Term in Table 1.1 to form a new category that 

has labels W91, S91, F91, W92, S92 and F92. One advantage of the reduction 

of the logical dimension or the depth of category is that it can save space in the 

presentation of a table. 

1.2.2 Tabular arrangement 

After we decide on the content of a table, we need to arrange the items in two dimensions 

so that the logical structure of the table is clearly seen. Some guidelines for this stage 

are: 

1. Place related items close together [WF70, Ehr77] 

Placing related items close together helps readers locate and compare information. 

For example, university terms are normally used in connection with years. It would 

be unwise to change the topological arrangement of Table 1.1 by placing category 

Term in the boxhead and category Year in the stub. Similarly, Midterm and 

Final are closely related in that they are both examinations. It is inappropriate to 

separate them with other items. 



CHAPTER 1. INTRODUCTION 11 

2. Avoid using two dimensions whenever possible [WF70, Wri68] 

Although presenting a table in two dimensions (using both row and column head­

ings) saves space, a two-dimensional structure is more difficult to comprehend than 

a one-dimensional structure because readers need to integrate a row heading and a 

column heading simultaneously to locate a cell. This guideline is, however, appro­

priate for tables that have only one or two categories, even though we can always 

reduce the dimension of a table to one. When a table has more than two cate­

gories, it is better to present it in two dimensions. A one-dimensional presentation 

of a table with three or more categories is hard to read, and it is aesthetically 

displeasing. 

3. Place the most frequently referenced items to the left or at the top of a table [Wri68] 

Westerners are used to reading information from left to right and from top to 

bottom. These reading habits greatly affect the way we read tables. Previous stud­

ies provide evidence that searching from left to right takes less time than searching 

from right to left. That is why in traditional tabular presentation labels are usually 

put in the stub and boxhead and entries in the body. 

4. Vertically arrange items to be compared [WF70, Ehr77] 

It is easier to search and compare items reading down a column rather than reading 

across a row, especially for a large number of items [Ehr77]. For example, it is easier 

to compare a group of decimal numbers that are aligned vertically on their decimal 

points. 

5. Arrange items in some meaningful order [Hal43, Ehr77] 

Arranging the rows and columns in some meaningful order often enables readers to 

see the overall distribution of the data. It also helps readers to compare a particular 

entry with others. For example, if we want to generate a table to show students 

the marks in a course, we may want to sort the students' names in decreasing order 

of their marks. 



CHAPTER 1. INTRODUCTION 12 

1.2.3 Presentational style 

Finally, we are at the stage of selecting a presentational style for a table. In the world 

of publishing, various publishers have their own styles for tabular presentation [Chi93, 

AAU78]. These styles control the general appearance of tables throughout a publica­

tion, although for some particular tables, we may need to specify specific styles. Some 

guidelines for the selection of presentational style are: 

1. Use type sizes between 8 and 12 point [WF70, Chi93] 

Researchers have found that an 8-point typeface is more legible than a 6-point 

typeface in mathematical tables [Tin30], and for non-numerical material a type 

size larger than 12 point can reduce reading efficiency [Spe68]. Type sizes between 

8 point and 12 point are the best choices. 

2. Separate and group items by spaces or rules [Hal43, WF70, Ehr77, Nor89] 

Occasionally using spaces and rules to separate or group items can help the read­

ers' eyes to align the items across a row and down a column. Wright [WF70] has 

observed that it is better to leave less space between related columns than between 

unrelated ones [Wri73]. Widely spaced items require the readers' eyes to travel too 

far and slow down the searching process. Tinker [Tin60] has found that group­

ing rows is much more helpful than having all rows equally spaced, and grouping 

rows into blocks of approximately five rows is the best solution. With the advent 

of mechanization in typesetting, such as the use of linotype machines, it became 

difficult and expensive to typeset vertical rules. Consequently, there was a uni­

versal trend by publishers to give up the use of vertical rules. Although there is 

no longer a problem in generating vertical rules with computer-aided typesetting, 

many publishers still maintain this style and many style manuals, such as The 

Chicago Manual of Style [Chi93], still do not advocate the use of vertical rules. 

3. Use typographic cues to distinguish different kinds of items [WF70] 

Previous studies indicate that distinguishing different kinds of items by typographic 

cues, such as type faces, type sizes, foreground and background colors, and patterns, 

can significantly reduce errors when reading a table. Typographic cues can help 

readers scan selectively and locate the appropriate answers more easily. 



CHAPTER 1. INTRODUCTION 13 

4. Flush left and indent the row headings in the stub [Chi93, Nor89] 

Many publishers prefer to left justify the row headings left in the stub. If there are 

two or more levels of subheadings, successive levels are indented at least two quads 

from the previous levels. Tables presented in this way not only clearly display the 

logical structure but also use less space. 

5. Align the items as appropriate for different classes of items [Chi93] 

For example, numbers should be aligned vertically on decimal points, dollar sym­

bols, pound symbols, or percentage symbols. Mathematical formulae are aligned 

on operators (such as +, -, <, =, and so on). For columns that contain text, if all 

entries are short, then they may be centered in the column. Long segments of text 

and mixed-length segments of text are normally left justified. 

6. Round numbers to just two or three significant digits [Ehr77] 

It is difficult to compare a pair of numbers and calculate their difference mentally 

if the numbers are too long. Rounding numbers to two or three significant digits 

makes comparison easier. 

7. Span the items that contain the same value [Chi93] 

If adjacent entries contain the same values, we can present the common value once 

and place it in the center of the area occupied by these entries. An item that 

occupies more than one table cell is spanned. Spanning items enable us to easily 

comprehend which entries share the same value and may reduce the presented table 

size if the common items occur very frequently. 

1.2.4 Dealing with size and shape 

At all stages of tabular composition, we should take into account the space limitations 

of the medium on which a table is presented and the proportion between tabular width 

and height [Chi93]. No publisher is happy to see a tall, thin table or a short, fat one 

that must be printed broadside. Also, the variation among column widths and among 

row heights affects the appearance of a table. We would prefer not to have a table that 



CHAPTER 1. INTRODUCTION 14 

contains one column that is a centimeter wide and another one that is 10 centimeters 

wide. 

If a table has unsatisfactory size or shape, we can improve it by changing the content, 

the topological arrangement, or the typographic style of the table. To change the con­

tent of a table, we can remove unnecessary information and use shorter text to make a 

large table smaller, or replace abbreviations with their complete forms to make a narrow 

column wider. To change the topological arrangement, we can transpose a fat and short 

table, or move some categories from the stub to the boxhead for a tall and thin table. To 

change the typographic style, we can select smaller type sizes and reduce the white space 

between columns and rows of a large table, or change the sizes of columns and rows to 

correct unpleasant proportions between them. When we change the width of a column 

that contains long text, the line-breaking points have to be adjusted to fit the new width. 

If we cannot place a large table on one page, then we have to use other typesetting 

techniques. We can break a table that is too tall, but is not too fat, into multiple pages 

by duplicating the column headings for each page. For a table that is too fat for one 

page, we can print it broadside or print it on facing pages. If a table is still too fat, then 

we have to print it on a larger sheet of paper and fold it, an expense that no publisher 

likes to incur, except for important tables in profitable books. 

1.3 Review of previous work 

We first briefly describe the development of computer-aided document typesetting and 

how it has affected the evolution of electronic tabular composition. We then describe 

several tabular composition systems in some detail. Finally, we evaluate these systems 

according to criteria that evaluate their functionality and ability to support the different 

stages of tabular composition. 

1.3.1 The development of electronic tabular composition 

Tables are indispensable objects and the evolution of electronic tabular formatting is 

closely associated with the development of computer-aided typesetting [Fur82]. The use 



CHAPTER 1. INTRODUCTION 15 

of the computer for document typesetting began in the 1960's. The earliest discussions 

of computer-composition systems are Barnett's Computer Typesetting [Bar65], Stevens's 

Automatic Typographic-Quality Typesetting Techniques [SL67], and Phillips's Computer 

Peripherals and Typesetting [Phi68]. All of the early document formatting systems ac­

cepted a stream of text characters interleaved with action codes and produced very 

simple layouts. Some of them did not even deal with page layout but only produced 

typeset galleys to be pasted-up manually in the traditional way. Early efforts in tabu­

lar typesetting used special programs that performed calculations over numerical data 

and generated tables in a single format. The pioneering system in style specification 

was TABPRINT [Bar65] developed by Barnett at MIT in the early 1960's. Typographic 

styles for each table preceded the data and provided basic formatting choices. 

A significant evolution of document formatters occurred when formatting commands 

were embedded in documents to govern the presentation of the logical content of the 

documents. The document formatting systems at this stage, such as troff with me 

and ms macros [Oss76], Scribe [Rei80] and 'IEX with B-'IEX macros [Knu84, Lam85], 

compile a document with embedded formatting tags and generate formatted documents, 

possibly accompanied by some error and warning messages. These systems separate the 

document structure from the document style and enable users who lack the skills of 

document design to produce high-quality documents in multiple presentational layouts. 

They describe tables as row structures and provide more styles for tabular formatting, 

including vertical and horizontal alignment options for text, different types of rules and 

spanning specification. These systems do not capture the logical structure of tables and 

they treat rows and columns differently. Moreover, the available document styles provide 

little support for the achievement of a consistent appearance for tables. 

NLS [EE68], the first interactive document composition systems, introduced the 

notion of WYSIWYG (what you see is what you get) during the late 1960s. Subse­

quently, a number of integrated document composition systems, including Etude [Ils80], 

Janus [Cea82], Tioga [Tei84], Furuta's system [Fur86J, and Grif [QV86], were developed 

to provide a WYSIWYG environment for editing and formatting structured documents. 

These systems allow users to view and manipulate documents through a visual interface 

and integrate multiple objects into a uniform representation. A WYSIWYG environment 

is especially suitable for tabular editing and formatting because tabular items are orga-



CHAPTER 1. INTRODUCTION 16 

nized simultaneously in two dimensions (rows and columns) and the logical relationships 

among the items are presented through their relative positions in two dimensions. By 

modeling tables as two-dimensional row-column structures, these interactive composi­

tion systems can manipulate rows and columns equally well and select styles in a more 

direct way for both rows and columns. Yet, these systems still do not capture the logical 

structure of tables. 

Although the separation of the logical and layout structures of documents has been 

widely used, there was no distinction between the logical and layout structures of ta­

bles until Improv [Imp91], a commercial spread sheet system, was introduced. At about 

the same time, Vanoirbeek adopted a new tabular model, in Grif [QV86], that specifies 

the logical structure of tables [Van92]. Both systems maintain the logical relationships 

among tabular items, provide the ability to arrange these interrelated items easily in two 

dimensions, and allow users to manipulate tables based on their logical structure. These 

two systems, however, are weak in the manipulation of tabular logical structure and pro­

vide insufficient styles to govern the presentation oflogical components. More recently, a 

tabular formatting system called TAFEL MUSIK [SKS94, SSK94] was designed to spec­

ify the logical structure and typographic styles using database schemas and techniques. 

This system does not appear to support tabular editing. 

1.3.2 Some tabular composition systems 

We introduce only systems that are representative of the different approaches to tabular 

processing at different development periods. 

TABPRINT 

TABPRINT [Bar65] was developed at MIT in the early 1960s. It dealt with numerical 

data punched on cards or written on magnetic tape in a fixed format and generated 

formatted output. The input consisted of three parts: the typographic specification, the 

heading section, and the data section. The typographic specification gave the general 

style for the whole table, including type face, point size, and line spacing. The heading 

section described the column headings and their alignment options. The data section 

specifies row by row. 



CHAPTER 1. INTRODUCTION 17 

Thi 

Thi [Les79] is a preprocessor for the batch-oriented document formatting system troff [Oss76]. 

It processes the table definitions and generates the formatting commands for troff. Ta-

bles are defined in three sections: options, format, and data. The option section gives 

the global parameters for the whole table, such as the rule types for the table frame, 

the alignment options for the whole table, and the delimiters for data items. The for-

mat section specifies the formatting attributes for each column, including type faces and 

sizes, column widths, column separation space, vertical rule types, alignment options, 

and horizontal spanning headings. The data section specifies the entries row by row. 

The entries can be strings of characters, troff commands, horizontal rule types, vertical 

spanning headings, and text blocks. Tbl is capable of determining the heights of rows 

and widths of columns based on the text placed in them, but users have to give either 

the line-breaking points or the width of text for troff to do the line breaking. 

B-'I'.EX [Lam85] is a document preparation system based on '!'.EX, a procedural formatting 

system [Knu84]. The system is based on the concept of structured document design. 

Users specify documents by their logical components, which are actually 'I'.EXmacro def­

initions. Tables are specified with the tabular environment and the array environment. 

The first environment is designed for common text tables, and the second one is for ta­

bles that contain mathematical equations. These environments allow users to specify the 

border line style, the justification of each column, and the data as rows that consist of 

a list of entries mixed with additional formatting information. Like Tbl, B-'I'.EX can also 

determine the heights of rows and widths of columns based on the text, provided that 

either the line-breaking points or the width of text are given in advance. 

Tabular mark up in SGML 

SGML [Int86], the Standard Generalized Markup Language, is an ISO standard that 

provides a syntactic meta-language for the definition of textual markup systems, which 

are then used to indicate the logical structures of documents. Each markup system, 



CHAPTER 1. INTRODUCTION 18 

specified by a context-free grammar, defines the structure and rules for marking up the 

document instances. The marked-up document instances can be formatted by compiling 

the mark up into the mark up for a formatting system such as H-TEX, can be interchanged 

across a heterogeneous network, or can be added to a database system. When translating 

a marked-up document for a formatting system, the typographic description of how to 

present documents is usually supplied in a style sheet, which is a collection of styles 

that may be attached to part or all elements of a document. A specific tabular markup 

method has been designed as an application of SGML [Int88]. Using this method, a 

table is specified by four components: a heading, a body, a caption, and an optional 

description. The table heading specifies only the hierarchical structure of the column 

headings, which can be divided into four levels of subheadings. The table body is a 

list of rows, and each row is a list of entries for the columns. The table caption and 

description are text. With a second SGML tabular markup method [Int92], a table is 

modeled by a four-level hierarchy: the first level is the whole table; the second level may 

contain a head that specifies the column headings, a foot that specifies the footnotes, 

and a body that specifies the entries; the third level consists of rows, and the fourth 

level consists of cells. The formatting attributes can be specified with different levels of 

objects, including type sizes, size constraints, cell arrangement, alignment options, and 

rule types. 

TABLE 

TABLE [BEF84] is a prototype interactive editor that provides a uniform editing envi­

ronment and true integration for a variety of dissimilar objects (specifically text objects 

and table objects) in a WYSIWYG environment. All document objects are represented 

as an object-oriented architecture and the operations upon different objects are deter­

mined by the nature of the objects. Each object in the hierarchy has its own variables 

and operations. Subobjects can inherit variables and operations from their superobjects. 

TABLE describes a table with a dual-hierarchical structure (row hierarchy and column 

hierarchy). Tables are manipulated using an object-oriented mode as follows. An object 

can be activated, the levels of granularity can be changed, from the granularity of a whole 

table to the granularity of a single character, and a different logical object can be selected 

in the current granularity. The currently active operations are determined by the nature 



CHAPTER 1. INTRODUCTION 19 

of the active object. 

Spreadsheet systems 

Lotus 1-2-3 [Lot84] and Microsoft Excel [MS-90] are sophisticated spreadsheet systems, 

that provide automated business tools for the manipulation, computation, and analysis 

of data as well as providing presentational tools for reporting results in different formats. 

Tabular data is put in a worksheet, a two-dimensional lattice that can be addressed by 

row and column indices. Formatting attributes can be assigned to any data cell. A part 

from lattice formats, tabular data can be presented in different forms, such as bar graphs, 

pie graphs, and line graphs. 

Beach's system 

Richard Beach [Bea85] presented a framework for formatting tables that is suitable for 

use in interactive editors and formatters. A central idea in his approach is the separation 

of the table arrangement from the table layout. The table arrangement, or table topology, 

is expressed by a grid structure. Geometric constraints are expressed as linear inequalities 

in which the independent variables are the positions of the grid lines and the alignment 

points of table entries. The table layout, or table geometry, is computed from both the 

table topology and the physical dimensions of the table entries. A linear-inequality­

constraint solver is used to compute the table geometry. He implemented sophisticated 

algorithms to manipulate and render tables based on the grid structure. All editing 

objects, including the whole table, a row, a column, an entry, and a rule, are organized 

with an object-oriented architecture, and style attributes can be specified for each of 

them. The style options include alignment options, rule parameters, or bearoff distances. 

A subobject may inherit the style attributes of a superobject. For example, an entry may 

either have its own style attributes or inherit the style attributes of its row and column, 

or of the whole table. 



CHAPTER 1. INTRODUCTION 20 

Furuta's prototype 

Richard Furuta [Fur86] developed an integrated editor-formatter that merges the flexi­

bility of document representation using an the abstract object-oriented approach with the 

naturalness of document manipulation using the exact-representation editor-formatters. 

Documents are represented by a heterogeneous structure: tnt ( strict tree - not strict 

tree). The top level of a tnt is a strict tree, and the leaves of the strict tree are tree blocks 

with arbitrary structure, which are used to represent nonhierarchical objects {for exam­

ple, tables and mathematical equations). Tree blocks can contain objects that are tnt 

structures. A table block is modeled with a variety of dual-hierarchy structures. The tnt 

structure allows table entries to be different kinds of objects such as text, equations, and 

subtables. Furuta's prototype provides operations to manipulate a table's row-column 

structure, to edit the contents of entries, and to span entries horizontally and vertically. 

Cameron's system 

John P. Cameron [Cam89] presented a cognitive model for tabular editing. The model 

is an extension of the model presented by Beach. The goal of the model is to propose 

a group of functions which allow table designers to manipulate both the topological 

structure and the content of a table in a natural manner to give a visual, interactive 

environment. To provide the operations that are involved in the mental process of making 

a table, Cameron introduced two distinguishing concepts: region and section. A region 

of a table is an area of the table that is obtained by slicing completely through the table 

with either two parallel horizontal lines or two parallel vertical lines. A section is any 

group of cells in a rectangular box. Cameron's system breaks down the mental process 

underlying tabular construction into three steps: structure editing, content editing, and 

visual editing. Structure editing consists of the creation or modification of the topological 

structure of a table. The operations in this process are: splitting and joining cells, and 

inserting, deleting, duplicating and moving a region. Cameron also mentions that more 

complex operations such as rearranging the label region {reversing the hierarchy of index 

items and their subindex items in a label region) and transposing a table can also be 

added to his system, but it would increase the complexity of the system. Content editing 

consists of the activities involved in entering, deleting, and modifying the individual 



CHAPTER 1. INTRODUCTION 21 

entries in a table. Since the entries can be of various types, such as numeric, textual, 

mathematical, graphical, or even tabular, different operations are required to support 

each of these activities. Visual editing consists of modifying the visual format of the 

entries in a section of a table. The allowable modifications are: type faces, alignment 

options, background shading and colors, and the types of border rules. 

lmprov 

Improv [Imp91) is an improved version of Lotus 1-2-3. It is an interactive commercial 

system for the editing and formatting of tabular data for finance and business. Tables are 

defined by specifying multiple categories in both the horizontal and vertical dimensions 

of a spreadsheet. The labels of these categories are placed at the top or on the left 

side of the spreadsheet. Entries are placed in cells that are addressed by the labels of 

different categories. Besides inheriting the functions provided by Lotus 1-2-3, Improv 

also provides some operations to manipulate tables logically. For example, tables can 

be topologically rearranged by moving a category from the horizontal dimension to the 

vertical dimension, and conversely. 

Vanoirbeek's system 

In Vanoirbeek's system [Van92), a table is specified as a collection of entries that are 

semantically connected to multiple labels of different categories. The logical structure of 

a table is modeled by a tree with additional edges: a table consists of a set of logical di­

mensions (categories) and a set of items (entries); the logical dimensions include rubrics 

(labels) which may themselves contain subrubrics; additional edges are used to repre­

sent the connections between items and rubrics. The main reason for this representation 

mechanism is to comply with the hierarchical document representation used in the host 

system Grif [QV86). Vanoirbeek breaks table creation into two processes: editing and 

formatting. Editing includes structure editing and content editing. When editing the 

structure, one can add or suppress dimensions, rubrics, and subrubrics, and also merge 

items. When editing the content, one can use classical text editing functions to edit the 

names of dimensions, rubrics, subrubrics, and the content of items. Formatting associates 



CHAPTER 1. INTRODUCTION 22 

the values of typographic attributes with the tabular components. The typographic at­

tributes include the presentational options that control the geometric arrangement of the 

table and formatting options for data, rules, and decoration. The typographic attributes 

can be specified in a generic way by a set of presentational rules. Each presentational 

rule is related to an attribute, and it specifies how the value must be calculated during 

formatting. Presentational rules allow the propagation and synthesis of attribute values 

in a tree structure to achieve consistent typographic choices throughout the document. 

TAFEL MUSIK 

TAFEL MUSIK [SKS94, SSK94] borrows database techniques to handle various aspects 

of tabular processing. It provides a data model to represent a homogeneous class of 

tabular logical structures and supports a tabular style description language (TSDL) to 

specify styles for tabular logical structures. A TSDL interpreter applies the styles to a 

tabular logical structure retrieved from the database and generates the final tabular lay­

out. The details of the data model and TSDL are not yet known since the paper [SSK94] 

about them is still in preparation. The authors do, however, describe an algorithm that 

attempts automatic formatting and high-quality layout has been described [SKS94]. The 

algorithm automatically determines the physical dimensions of the rows and columns 

and breaks text into lines according to the widths of the columns. Moreover, the al­

gorithm generates a layout that satisfies some objective function (for example, minimal 

area, minimal diameter, and minimal white space) and satisfies all the user-specified size 

constraints expressed as linear inequalities. The algorithm divides the entire optimization 

problem into a number of subproblems, and it uses accelerating techniques to increase 

efficiency. 

1.3.3 Evaluation of prior work 

We evaluate tabular composition systems based on the following criteria, which we believe 

can be used to indicate whether they provide sufficient functionality to support the 

different stages of tabular composition: 



CHAPTER 1. INTRODUCTION 23 

1. Does it specify the multi-dimensional logical structure of tables and provide suffi­

cient functionality to manipulate the logical structure? 

2. Does it specify the topological arrangement of tables and provide the ability to 

arrange tabular items flexibly in both the horizontal and vertical dimensions? 

3. Does it specify sufficient styles for different kinds of tabular components to achieve 

high-quality layout? 

4. Does it help users to deal with different table sizes and shapes? 

The early system, TABPRINT, provides little functionality to support tabular com­

position. It can generate tables according to only limited formatting styles that control 

the presentation of the whole table. Variant styles for different items are not allowed. 

Using Tbl and :0-TEX, users specify tables explicitly based on the topological arrange­

ment; thus, there is no clear separation between the logical structure and the topol­

ogy. Tbl and H-TEX are specification languages that rely on the underlying formatting 

systems troff and TEX, respectively. These formatting systems do not provide true 

two-dimensional formatting. Table specifications are precompiled and tabular items are 

broken down into two separate formatting processes: a horizontal formatting process 

followed by a vertical formatting process. Because Tbl and H-TEX do not provide editing 

facilities, users have to respecify tables if they want to change the topological arrange­

ment of these tables. Tbl provides many typographic styles, but the styles for columns 

and rows are treated differently. H-TEX provides styles for only columns. It is difficult for 

users to specify tables that require complex layouts, such as the cut-in style and grouping 

items in a number of rows with white space and rules. Tbl and :0-TEX can break text 

into lines if the text width is given and the tabular markup mechanism specifies size 

constraints for both rows and columns. Such functionality can help users to control table 

size and shape to a limited extent. 

The tabular markup methods using SGML are not tabular composition systems. They 

specify explicitly the topological arrangement and do not separate the logical structure 

from the topology. Like Tbl and H-TEX, they require the respecification of a table if 

its topological arrangement needs to be changed. The latest tabular markup method in 

SGML provides many styles for the whole table, the column headings, the rows, and the 



CHAPTER 1. INTRODUCTION 24 

cells, but it provides no styles for the columns except an alignment option. It also allows 

size constraints for both rows and columns. 

TABLE, spreadsheet systems, Beach's system, Furuta's prototype, and Cameron's 

system, which are all interactive, also describe tables based on their topological arrange­

ment and do not separate the logical structure from the topology. These systems provide 

true two-dimensional formatting and treat rows and columns equally. Although these 

systems provide a WYSIWYG environment for editing the topological arrangement of a 

table, users may need many editing operations to rearrange tabular items. For example, 

if we want to change the topological arrangement of a table by exchanging the labels 

in the stub and the boxhead, we have to use many moving operations. These systems 

are able to specify typographic styles interactively for the whole table, columns, rows, 

blocks, and cells. Beach's system can automatically calculate the heights of rows and 

widths of columns that satisfy a set of size constraints expressed as linear inequalities 

and achieve the minimal value for the sum of the tabular width and height. It assumes, 

however, that the text is broken into lines in advance, which enables the system to find 

a layout in polynomial time. 

Improv and Vanoirbeek's system are able to specify the multi-dimensional logical 

structures of tables. Neither of them, however, provides sufficient ability to modify the 

logical structure of a table. Both systems offer only the basic functions to create a 

new logical structure interactively. Some changes to an existing structure, such as the 

change from an implicit structure to an explicit one, may require the user to abandon 

the old structure and create a new one. Both systems provide the ability to edit the 

topological arrangement by changing the position of a category inside the stub or the 

boxhead and by moving a category from the stub to the boxhead, and conversely. This 

ability also helps users to control tabular size and shape. Although Improv captures the 

tabular logical structure, it provides few typographic styles to control the presentation of 

logical components. Vanoirbeek's system does provide some basic typographic styles for 

categories, labels and entries, but it provides no typographic styles for complex tabular 

layouts. Both Improv and Vanoirbeek's system can control the sizes and shapes by 

specifying the widths and heights of tables or the sizes of columns and rows. Yet they 

do not deal with automatic line-breaking and size constraints during the calculation of 

the physical dimensions of a table. 



CHAPTER 1. INTRODUCTION 25 

TAFEL MUSIK is a tabular typesetting system that is currently under development 

and as such little is known about it. It also describes tables based on their multi­

dimensional logical structure. It is, however, a batch-oriented formatting system and 

provides no editing ability to update the logical structures of tables. TAFEL MUSIK 

provides a powerful ability to control tabular size and shape by allowing users to specify 

size constraints as linear inequalities, automatically breaking text into lines, and calcu­

lating the optimal layouts for a small number of objective functions. 

1.4 Research Objectives 

The general goal of our research is to create a tabular model for the design of high-quality 

tables in two dimensions. It should support the different stages of tabular composition, 

including the design of the logical structure, the arrangement of tabular items, the specifi­

cation of typographic styles, and the formatting of concrete tables. This model should be 

based only on the nature of tables and should be independent of any existing formatting 

and editing systems. The specific objectives are: 

1. To propose an abstract model to specify tabular logical structure 

Like Vanoirbeek's system and TAFEL MUSIK, our abstract model should also 

describe the multi-dimensional logical structure of tables. The major difference 

between our abstract model and theirs should be the representation used to specify 

the logical structure. Vanoirbeek's system abstracts tables as a tree with additional 

edges to comply with the hierarchical structure used in its host system Grif. TAFEL 

MUSIK uses a two-dimensional database model to specify multi-dimensional tables. 

Neither the hierarchical structure nor the database model naturally describe the 

characteristics of multi-dimensional tables. Our abstract model should use well­

understood mathematical notation to abstract tables and should hide the represen­

tation and implementation. 

2. To investigate what operations are needed for the manipulation of abstract tables. 

The editing operations for row-column structures have been investigated. The 

operations for multi-dimensional logical structures, however, have been little in-



CHAPTER 1. INTRODUCTION 26 

vestigated. The editing model should manipulate tables at an abstract level. The 

operations in the editing model should be topology independent. 

3. To explore what topological and style rules are necessary to specify a tabular layout 

structure. 

We divide layout specification into two parts: topological specification and style 

specification. In topological specification, we should focus on the rules needed 

to specify the relative placement of tabular items in two dimensions. In style 

specification, we should provide style rules that govern the present~tion of the 

whole table, the main regions (the stub, boxhead, stub head, and body), the logical 

components (categories, labels, and entries), and the layout components (rows, 

columns, and blocks). These style rules should include not only basic formatting 

attributes, such as the type face and point size, spacing and rule type, horizontal 

and vertical alignment options, and size constraints, but also formatting attributes 

that enable us to easily specify complex layout structures, such as grouping items, 

cut-in headings, and spanning options for entries. 

4. To solve the formatting problem arising in the generation of a concrete table when 

applying layout specifications to an abstract table. 

The most difficult problem arising in tabular formatting is how to determine ef­

ficiently the physical dimensions of a table that satisfies user-specified size con­

straints. Beach [Bea85] has given a polynomial-time algorithm that requires users 

to indicate the line breaks in advance. TAFEL MUSIK's developers have designed 

an exponential-time algorithm that achieves automatic line-breaking and satisfies 

one of a small number of objective functions. Automatic line-breaking and size con­

straints are important features that can help users to deal with table size and shape. 

Our objectives are to analyze the computational complexity of tabular formatting 

with respect to different restrictions and to design an algorithm that supports au­

tomatic line-breaking and size constraints expressed as linear inequalities and finds 

the physical dimensions in polynomial time for many tables. 

5. To demonstrate that our model is feasible by implementing a prototype tabular 

composition system that helps users to efficiently design high-quality tables. 



CHAPTER 1. INTRODUCTION 27 

Based on our tabular model, we should implement a prototype tabular editor and 

formatter. This prototype should provide an interactive interface to help users 

easily specify and manipulate logical structure, topological arrangement, and ty­

pographic styles. It should also generate formatted tabular outputs for different 

typesetting systems. 

1.5 Contributions 

The contributions of this thesis can be summarized from five aspects. First, we propose 

an abstract model to specify the multi-dimensional logical structure of tables. This model 

uses well-understood mathematical notation, such as sets and functions, to abstract 

tables, which distinguishes our model from other models. This model not only precisely 

abstracts the category structure and the logical associations between labels and entries 

but also allows us to determine what operations are necessary for the manipulation of 

the multi-dimensional logical structure. 

Second, we present an editing model for the manipulation of the multi-dimensional 

logical structure of tables. The editing model enables us to edit tables independently of 

their topology. We no longer need to perform a transformation between logical compo­

nents and layout components when editing tabular logical structure. As far as we know, 

no one has explored what operations are needed for multi-dimensional tables at such an 

abstract level. 

Third, we give a presentational model for the specification of tabular layout struc­

ture. We adopt a similar arrangement of the categories to those used in Improv and in 

Vanoirbeek's system, but offer more options to arrange labels. The style rules provided 

in the presentational model can be used to specify style from different viewpoints. In 

addition to the traditional style for the row-column structure, we provide style rules to 

specify the style for the logical components of an abstract table and for the four major 

regions of a table: stub, boxhead, stub head and the body. To our knowledge, no current 

system offers such an abundance of style rules for tabular presentation. Moreover, we 

also propose an approach to solve style conflicts when applying a set of styles rules to a 

table. 



CHAPTER 1. INTRODUCTION 28 

Fourth, we are the first to prove that the tabular formatting is NP-complete with 

respect to two useful features: automatic line breaking and size constraints expressed as 

linear inequalities. We also design a polynomial-time greedy algorithm that can partially 

solve the tabular formatting problem for many tables. 

Lastly, we implemented a prototype to validate our ideas and demonstrate that we 

can integrate our models in an interactive tabular editor and formatter. This prototype 

not only helps users to easily design high-quality tables in two dimensions, but also offers 

users a tool to analyze and explore tabular data efficiently. 

This thesis describes our proposals, discussion and investigations, and it presents 

possible future work based on our current achievements. In Chapter 2, we present a for­

mal model for the abstraction of tabular logical structure. In Chapter 3, we discuss the 

operations for the manipulation of tabular logical structure. In Chapter 4, we describe 

what presentational rules are necessary for topological specification and style specifica­

tion. In Chapter 5, we formally define the tabular formatting problem and prove its. 

NP-completeness. We also give an algorithm that solves the problem in polynomial time 

for many common cases. In Chapter 6, we introduce a prototype interactive tabular edi­

tor and formatter which is based on the tabular model and describes how we solve some 

key problems arising during the implementation of the prototype. In the last chapter, 

we draw some conclusions about current achievements and discuss what remains to be 

done. 



Chapter 2 

Abstraction 

Tabular abstraction plays an important role in tabular composition because it determines 

the capabilities of editing and presentation. When we design a table, we usually decide on 

the logical structure before we select a presentational form. Thus, we should deal with the 

logical structure and the layout structure separately. There are at least two advantages 

with the separation the logical structure and the layout structure. First, tables can be 

manipulated independently of their layout structure. For example, to remove a label from 

a category, we no longer have to determine which rows or columns should be removed 

from the layout structure. Second, by associating different topologies and styles with 

the logical structure, we easily can obtain various layout structures for a table. For 

example, to obtain the transposition of a table, we need to respecify only the topology 

of a table. We now present an abstract model that specifies only the logical structure 

of tables and ignores their layout structures. This model is based on our preliminary 

model [WW93]. We describe an editing model and a presentational model, which are 

based on the abstract model, in Chapters 3 and 4, respectively. 

2.1 Guidelines for tabular abstraction 

We propose three guidelines for the design of a tabular abstract model. We base the 

model on observation of tables in the literature [CRC88, Sta86, BR74, Rit86] and on 

29 



CHAPTER 2. ABSTRACTION 30 

the discussions of tables from the perspectives of typography [Chi93, Rub88, Wil83], 

psychology [WF70, Wri68, Wri77, Tin60, SW84], and statistics [Zei85, Ehr77, Hal43]. 

First, the model should capture a wide range of tables. We do not expect to provide an 

approach that models the logical structures of all tables. There are some tables that have 

a complex logical structure (see Section 2.4). We focus our efforts on the most common 

kinds of tables, with one simplifying assumption: we ignore footnotes. We examined 

tables in books from various sources, including typography, statistics, sociology, science, 

and business, and found that majority of tables can be specified with a multi-dimensional 

logical structure (see Table A.I in Appendix A). A table with multi-dimensional logical 

structure consists of a number of categories and a set of entries. The labels in each 

category are organized hierarchically and each entry is logically associated with exactly 

one label from each category. 

Second, the model should not include any characteristic that is related to the presen­

tational form of a table. Any concept that is associated with tabular topology ( such as 

row or column) or typography (such as typeface or rule type) should not appear in the 

model. 

Third, the model should abstract tabular logical structure with well-understood math­

ematical notions, rather than with a specific representational scheme. In this way, we 

can view an abstract table as an abstract data type that hides its representation and 

implementation. We can also use this model to define the semantics of the editing model 

described in Chapter 3. 

2.2 Terminology 

We specify the logical structure of a table as an abstract table, which describes the 

hierarchical label structure of categories and the logical relationships between labels and 

entries. We first define some necessary terminology and notation before we define an 

abstract table. 



CHAPTER 2. ABSTRACTION 31 

Labels 

A label can be any string of characters and symbols, including the empty string. 

Labeled sets 

A labeled set is a set together with a label. We specify a labeled set as an ordered pair 

(label, set). For example, (1991, 0) and ( Grade, {50, 60}) are labeled sets. 

Labeled domains 

A labeled domain is defined inductively as follows: 

1. A labeled empty set ( L, 0) is a labeled domain. 

2. A labeled set of labeled domains such that the labels of the labeled domains are 

pairwise distinct is a labeled domain. 

3. Only labeled domains that are obtained from rules 1 and 2 are legal. 

For a labeled domain D = (l, s), we use lbl(D) to denote the label I and set(D) to denote 

the set s. A labeled domain can be represented by a labeled tree in which the children of 

a node are unordered. Fig. 2.1 presents the relationship between a labeled domain and its 

labeled tree. Each node in the tree represents a labeled domain and each external node 

represents a labeled empty set. For convenience, we will use the tree of a labeled domain 

to explain some concepts and operations that are related to labeled domains. It should 

be clear that we can use labeled domains to describe the hierarchical label structures of 

categories. 

Label sequences 

We use label sequences to uniquely identify the labeled subdomains in a labeled do­

main. For a labeled domain D = (l, s ), the label I is a label sequence that identifies 

D. We extend this notion inductively for the labeled subdomains in D as follows. If 



CHAPTER 2. ABSTRACTION 

(Dl, { ( dll, { ( dlll, phi), 

( dl12, phi), 

} ), 

( d12, phi), 
( d13, phi), 

} ) 

32 

Figure 2.1: The relationship between a labeled domain and a corresponding labeled tree. 

a labeled sequence l identifies a labeled domain which contains a set of labeled do­

mains {(l1, s1), •.. , (lr, Sr)}, then l.l; is a label sequence that identifies labeled sub do­

main (l;, s;). For example, the label sequence Dl.dll identifies the labeled subdomain 

(dll,{dlll,0},{dl12,0}) in the labeled domain in Fig. 2.1. The dot notation that we 

use is well known in library classification systems and it is often called Dewey notation. 

An explicit dot is used to separate the labels in a label sequence to avoid ambiguity. 

Given a label sequence l, we use A(l) to denote the labeled domain identified by l. We 

also use lbl(l) and set(/) to denote the label and the set of A(I). 

Frontier label sequences 

A label sequence that identifies a labeled domain with an empty set is a frontier label 

sequence. In the associated labeled tree, such a label sequence corresponds to a root-to­

frontier path. The frontier fr(D) of a labeled domain D is the set of all frontier label 

sequences of D and for a set G of labeled domains, fr(C) = {fr(D)[D E G}. Given 

a labeled domain D, fr(D) is unique and, moreover, given fr(D), we can reconstruct 

a unique D. Thus, given a set S of label sequences that satisfies the following two 

conditions: 

1. All label sequences in S have a common first label, 

2. S is prefix-free; that is, whenever a label sequence x.y is in S, for some label 

sequences x and y, the label sequence xis not in S, 



CHAPTER 2. ABSTRACTION 33 

we can construct a labeled domain D such that fr(D) = S. If we can construct a labeled 

domain D from a set S of label sequences such that S = fr(D), then Sis consistent. For 

example, S = {Dl.dll.dlll, Dl.dll.d112, Dl.dl2, Dl.d13} is consistent because Sis the 

frontier of the labeled domain in Fig. 2.1. S = {Dl.dll, Dl.dll.dlll} is not consistent 

because we cannot construct a labeled domain such that S is the frontier of the labeled 

domain. 

Unordered Cartesian product 

Given n 2:: 1 disjoint sets A1, A2 , ••• , An their unordered Cartesian product A1 © ... ©An 
is a set A such that each element of A is a set that contains exactly one element from 

each of the sets A;(l S i S n). We use the unordered Cartesian product to associate 

frontier label sequences with entries in an abstract table. When we have n disjoint 

labeled domains D1 , D2 , ••• , Dn, we need the unordered Cartesian product of their sets 

of frontier label sequences, namely fr(D1)© ... ©fr(Dn)- For a set C of labeled domains 

D1 , ••• , Dn, we use ©fr(C) to denote fr(D1) © ... © fr(Dn). 

2.3 The definition of an abstract table 

Now we are ready to define an abstract table. An abstract table is specified by an ordered 

pair ( C, o), where 

1. C is a finite set of labeled domains. 

2. <l is a map from ©fr( C) to the universe of possible value. 

We have introduced labeled domains to model the informal notion of a category; thus, 

we now treat a category as a labeled domain and C as a finite set of categories. We use 

©fr(C) to model the entry set ofa table. Each entry is identified by a [Cl-element set in 

©fr( C) and is assigned a value by o. If o assigns no value for an entry {f1 , f 2 , ••• , f1o1}, 
we say that entry {f1 , f 2 , ••• , f101} is undefined. We use the word "frame" to denote a 

table in which the map o is empty, or is considered to be empty; thus, ©fr( C) is also 

called the frame of a table. There are two important quantitative measures of a table: 



CHAPTER 2. ABSTRACTION 34 

Table 2.1: The average marks for 1991-1992. 

Mark 

Year Term Assignments Examinations 

Assl j Ass2 i Ass3 Midterm I Final 
Grade 

Winter 85 80 75 60 75 75 
1991 Spring 80 65 75 60 70 70 

Fall 80 85 75 55 80 75 

Winter 85 80 70 70 75 75 
1992 Spring 80 80 70 70 75 75 

Fall 75 70 65 60 80 70 

its dimension and size. The dimension dim(T) of an abstract table T = ( C, <>) is the size 

of C, the number of categories in C. On the other hand, the size size(T) of an abstract 

table T = (C, <>) is the size of ®fr(C), the number of entries in T. Using this model, we 

can specify the logical structure of Table 2.1 with the abstract table T = ( C, <>) in which 
C consists of following three categories: 

(Year, {(1991, 0), (1992, 0)} ), 

(Term, {(Winter, 0), (Spring, 0), (Fall, 0)} ), and 

(Mark, {(Assignments, {(Assl, 0), (Ass2, 0), (Ass3, 0)} ), 
(Examinations, {(Midterm, 0), (Final, 0)} ), 
( Grade, 0)} ). 

and ,I' is defined by: 

<>({Year.1991, Term.Winter, Mark.Assignments.Assl}) = 85; 

<>({Year.1991, Term.Winter, Mark.Assignments.Ass2}) = 80; 

<>({Year.1991, Term.Winter, Mark.Assignments.Ass3}) = 75; 



CHAPTER 2. ABSTRACTION 

J({Year.1991, Term.Winter, Mark.Examinations.Midterm})= 60; 

J({Year.1991, Term.Winter, Mark.Examinations.Final})= 75; 

J({Year.1991, Term.Winter, Mark.Grade})= 75; 

J({Year.1991, Term.Spring, Mark.Assignments.Assl}) = 80; 

J( {Y ear.1991, Term.Spring, M ark.Assignments.Ass2}) = 65; 

J( {Year.1991, Term.Spring, M ark.Assignments.Ass3}) = 75; 

J( {Y ear.1991, Term.Spring, Mark.Examinations.Midterm}) = 60; 

J( {Y ear.1991, Term.Spring, Mark.Examinations.Final})= 70; 

J( {Y ear.1991, Term.Spring, Mark.Grade}) = 70; 

J({Year.1991, Term.Fall, Mark.Assignments.Assl}) = 80; 

J( {Y ear.1991, Term.Fall, M ark.Assignments.Ass2}) = 85; 

J( {Y ear.1991, Term.Fall, M ark.Assignments.Ass3}) = 75; 

J( {Year.1991, Term.Fall, Mark.Examinations.Midterm})= 55; 

J( {Y ear.1991, Term.Fall, Mark.Examinations.Final}) = 80; 

J({Year.1991, Term.Fall, Mark.Grade})= 75; 

J({Year.1992, Term.Winter, Mark.Assignments.Assl}) = 85; 

J( {Y ear.1992, Term. Winter, M ark.Assignments.Ass2}) = 80; 

J({Year.1992, Term.Winter, Mark.Assignments.Ass3}) = 70; 

J({Year.1992, Term.Winter, Mark.Examinations.Midterm})= 70; 

J({Year.1992, Term.Winter, Mark.Examinations.Final})= 75; 

J({Year.1992, Term.Winter, Mark.Grade})= 75; 

J( {Y ear.1992, Term.Spring, M ark.Assignments.Assl}) = 80; 

J( {Y ear.1992, Term.Spring, M ark.Assignments.Ass2}) = 80; 

J( {Y ear.1992, Term.Spring, M ark.Assignments.Ass3}) = 70; 

J( {Y ear.1992, Term.Spring, Mark.Examinations.Midterm}) = 70; 

J( {Y ear.1992, Term.Spring, Mark.Examinations.Final})= 75; 

J( {Y ear.1992, Term.Spring, Mark.Grade}) = 75; 

J({Year.1992, Term.Fall, Mark.Assignments.Assl}) = 75; 

J( {Y ear.1992, Term.Fall, M ark.Assignments.Ass2}) = 70; 

J( {Y ear.1992, Term.Fall, M ark.Assignments.Ass3}) = 65; 

J({Year.1992, Term.Fall, Mark.Examinations.Midterm})= 60; 

J( {Y ear.1992, Term.Fall, Mark.Examinations.Final}) = 80; 

J({Year.1992, Term.Fall, Mark.Grade})= 70. 

35 



CHAPTER 2. ABSTRACTION 36 

Since we use sets to specify the category structure of a table, the categories are 

unordered and the labels in a category or a subcategory are also unordered. Ordering is 

an issue of topology, and we do not include it in the abstract model. We will deal with 

category ordering and label ordering in Chapter 4. 

The definition of an abstract table fulfills our three guidelines; that is, it can be used 

to specify the logical structures of commonly used tables, it is independent of tabular 

topology and typography, and it uses sets and mappings, which are well-understood 

mathematical notions. In the next chapter, we will use this model to specify the semantics 

of the tabular editing operations. 

2.4 Expressiveness of the abstract model 

We have made the simplying assumption that we do not model footnotes in the abstract 

model. Clearly, footnotes play an important role in tables. See the examples in the 

book Human Activity and Environment [Sta86]. In this book, 148 of the 172 tables have 

footnotes (see Table A.l, Appendix A). Although we do not model footnotes, a user can 

still use footnotes with any tabular entry. The limitation is that they are dealt with by 

the target typesetting system, they are not manipulable as abstract objects within our 

model. 

Second, the abstract model does not capture all tables even when we ignore footnotes. 

The model can be used to specify tables that have only a multi-dimensional logical struc­

ture. Not all tables have such a nice structure however. Some tables are a combination of 

several tables as a multi-dimensional structure. For example, Table 2.2 is a combination 

of two tables as a multi-dimensional structure. There are two categories: Barome­

ter reading and Temp. alt. factor in this table. The entries of the table are divided 

into two groups. One group, including all the entries above the double line, are associ­

ated with only partial labels in the category Temp. alt. factor and the partial labels in 

the Barometer reading. The other group, including the entries below the double line, 

are also associated with partial labels in the two categories. We can break the category 

Barometer reading into two categories in this way: Barometer reading 1 includes 



CHAPTER 2. ABSTRACTION 37 

the labels above the double line and Barometer reading 2 includes the labels below 

the double line. Similarly, we can also break the category Temp. alt. factor into two 

categories: Temp. alt. factor 1 and Temp. alt. factor 2. Then, we obtain two tables 

that can be specified as a multi-dimensional structure. Another example, Table 2.3, is a 

combination of three tables in multi-dimensional structure. There are three categories: 

X, Y, and Type of calculations ( the category in the stub head) in this table. The first 

subtable, whose entries are associated with the categories X and Type of calculations, 

is placed in the boxhead. The second subtable, whose entries are associated with the cat­

egories Y and Type of calculations, is placed in the stub. The third subtable, whose 

entries are associated with categories X and Y, is placed in the body. To specify these 

tables, we should be able to specify multiple mappings that can share some categories 

in an abstract table. This is a topic of future investigation. We also need to investigate 

how to present these kinds of abstract tables in two dimensions. 

We carried out an experiment to measure how well our abstract model specifies tables 

in the real world. We counted tables in books from various sources, including statistics, 

sociology, science, and business. The results of the experiment, given in Table A.1, 

Appendix A, reveals that the abstract model can be used to specify 56 percent of the 

tables if we consider footnotes, or 97 percent of the tables if we ignore footnotes. From 

this experiment, we see that the majority of the tables in traditional printed documents 

can be specified with a multi-dimensional logical structure. 



CHAPTER 2. ABSTRACTION 38 

Table 2.2: Metric units. 

Temperature-
Barometer reading 

780 760 740 720 700 altitude factor 
mm mm mm mm mm 

1 0.9 0.9 0.9 0.8 0.8 
5 4.5 4.4 4.3 4.2 4.0 

10 9.0 8.8 8.6 8.3 8.1 
15 13.0 13.2 12.9 12.5 12.2 
20 18.2 17.7 17.2 16.8 16.3 
25 22.8 22.2 21.6 21.0 20.4 
30 27.4 26.7 26.0 25.3 24.6 
35 ...... 31.2 30.4 29.6 28.8 

760 740 720 700 680 660 
mm mm mm mm mm mm 

40 35.8 34.9 33.9 33.0 32.0 31.1 
45 40.4 39.3 38.3 37.2 36.2 35.1 
50 45.0 43.8 42.7 41.5 40.3 39.1 
55 49.7 48.4 47.1 45.8 44.5 43.1 
60 ...... 52.9 51.5 50.1 48.6 47.2 
65 ...... 57.5 55.9 54.4 52.8 51.2 
70 ...... 62.1 60.4 58.7 57.1 55.4 
75 ...... 66.7 64.9 63.1 61.3 59.5 



CHAPTER 2. ABSTRACTION 39 

Table 2.3: Correlation table - wheat and fl.our prices by months, 1914-1933. 

X 
class .40 .60 .80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 ::40 i:.-so :.so Total f(dxdy) -- -- - ne '• n, ... I• ., ... I • - In 

mid, 5 7 9 11 13 15 17 19 21 23 25 27 29 
evil 0 1 2 3 4 5 6 7 8 9 10 11 12 

: equt-
--- 20 6 25 37 52 24 15 15 13 18 6 5 4 240 

fd 0 6 50 111 208 120 90 105 104 162 60 55 48 1119 

fd2 0 6 100 333 832 600 540 735 832 lt45 600 605 576 7217 
15.00 15.1 12 1 12 144 1 144 . - --
14.00 14.i 11 5 55 605 1 2 2 616 - --
13.00 13.i 10 5 50 500 1 2 1 1 520 . ---

y 12.00 12. 9 10 90 810 6 2 2 864 - - --

11.00 11. 8 5 40 320 1 3 1 360 .. --
10.00 10. 7 14 98 686 6 8 840 - . --

9.00 9.5 6 17 102 612 1 1 10 5 726 • n• 

8.00 8.5 5 28 140 700 4 8 11 4 1 790 -· --
7.00 7.5 4 46 184 736 2 7 22 12 3 764 - nn 

6.00 6.5 3 54 162 486 5 20 25 3 1 576 -" --
5.00 5.5 2 16 32 64 1 4 10 1 86 - nn 

4.00 4.5 1 34 34 34 15 5 14 33 -· --
3.00 3.5 0 5 0 0 5 0 n •• 

Total 240 999 669 6319 

X= Wheat price per bushel in dollars; Y= Flour price per barrel in dollars. 



Chapter 3 

Editing 

Modeling a table as a row-column structure requires users to perform a transformation 

from logical components to layout components when editing the logical structure of the 

table. For example, if we want to delete a label from a category, we need to determine 

the rows or the columns that contain this label and remove these rows or columns. 

Modeling tables with their logical structure, however, makes editing independent of their 

topological arrangement. We can manipulate tables at a logical level without worrying 

about their layout structure. We present an editing model that proposes a set of editing 

operations for tables. We use the abstract model described in Chapter 2 to specify 

the logical structure of tables and the semantics of these operations. As we will see 

in Chapter 6, we use these operations to implement the editor in a prototype tabular 

composition system. 

3.1 What operations are necessary? 

We need to be able to create a new table and to manipulate and modify an existing 

table. The operations should include: changing logical dimension, reorganizing the label 

structure of categories and updating the entry values and labels. Thus, we divide the 

operations into three groups. 

40 



CHAPTER 3. EDITING 41 

Table 3.1: The average marks for 1991-1992. 

Mark 

Year Term Assignments Examinations 

Assl j Ass2 I Ass3 Midterm I Final 
Grade 

Winter 85 80 75 60 75 75 
1991 Spring 80 65 75 60 70 70 

Fall 80 85 75 55 80 75 

Winter 85 80 70 70 75 75 
1992 Spring 80 80 70 70 75 75 

Fall 75 70 65 60 80 70 

3.1.1 Table operations 

Table operations may change the dimensions of tables and, therefore, change their frames. 

The size of a table, however, may or may not be changed by these operations. The basic 

operations for this group include the creation of an empty table, the addition of a new 

category, and the deletion of an existing category. More complex operations may be 

necessary when we take into account some special requirements of editing. Sometimes 

we need to generate new categories that are based on existing ones. For example, if 

we want to design a table that shows the flight schedules between the major cities of 

Canada for an airline company, we can use a two-dimensional table with two categories 

that consist of the same labels-the cities. It is easier to design such a table if we create 

one category first and then copy it to make the second category. Thus, we may need an 

operation to duplicate a category. Other examples of additional operations are: reducing 

the logical dimension of Table 3.1 by combining categories Year and Term, or undoing 

the combination by splitting the combined category into two categories. Thus, we need 

operations to combine two categories and split one category into two categories. 



CHAPTER 3. EDITING 42 

3.1.2 Category operations 

Category operations change the label structure of a category; thus, they preserve 

the dimension of a table and may change the size of a table. The basic operations for 

this group include inserting a subcategory into a category, deleting a subcategory from 

a category, moving a subcategory to a new place within a category, and duplicating a 

subcategory. Now suppose that we want to design a conversion table from pounds to 

kilograms for the range of O to 99 pounds. We may present the table as an implicit 

structure shown in Table 3.2, in which the labels of the category Pounds are organized 

as shown in Fig. 3.l(a). Assume that we want to change it to the explicit structure 

shown in Table 3.3, in which the labels of the category Pounds are organized as shown 

in Fig. 3.1( d). Fig. 3.1 shows an approach to transforming the category structure from an 

implicit to an explicit structure. It is helpful if we have an operation that can combine two 

subcategories by appending all the children of a subcategory to the frontier nodes of the 

other categories and a reverse operation that splits a subcategory into two categories. We 

also need an operation that promotes a set of subcategories up one level and an operation 

that demotes a set of subcategories down one level to change the depth of a category. 

3.1.3 Label and entry operations 

Label and entry operations change only the labels and entry values. The operations 

in this group are simple but are frequently used. These operations do not change the 

frame of an abstract table, but affect the content of items in the frame. They preserve 

both the dimension and the size of a table. The operations include changing a label and 

assigning a new value for an entry. If we want to support a searching ability, we also 

need operations that read the entry values. Sometimes we need to compute the value of 

an entry based on its old value. For example, if the value of an entry is a set of numbers, 

we may need to change the entry value to be the sum of the numbers. Thus, we need an 

operation that performs a calculation over an entry value. 



CHAPTER 3. EDITING 43 

Table 3.2: An implicit conversion table from pounds to kilograms. 

Pounds Kilograms 

One digit 

0 0.00 
1 0.45 
2 0.90 
3 1.36 
4 1.81 
5 2.26 
6 2.72 
7 3.17 
8 3.63 
9 4.08 

Two digits 

00 0.00 
10 4.54 
20 9.07 
30 13.60 
40 18.14 
50 22.68 
60 27.22 
70 31.75 
80 36.29 
90 40.82 



CHAPTER 3. EDITING 44 

Table 3.3: An explicit conversion table from pounds to kilograms. 

Pounds Kilograms 

0 0.00 
1 0.45 
2 0.90 

8 3.63 
9 4.08 

10 4.54 
11 4.99 
12 5.44 

18 8.17 
19 8.62 

90 40.82 
91 41.27 
92 41.72 

98 44.45 
99 44.90 



CHAPTER 3. EDITING 

~ --=:::-- ---===--
1 digit 

~ ...... ®@ 
(a) 

Combine the label tree 'One digit'I t 
with the label tree 'Two digits' i 

Split the label tree 'Two digits' into 
two label trees and label the new 
label tree 'One digit' ----Pounds 

(b) 
Remove 'O's from the label of the t t Generate new parents for 10 groups 
nodes at the 3rd level and merge of nodes at the 3rd level and add 'O's 
the nodes of the 3rd and 4th level to the labels of the new parents ----

Assign an empty label for the 
node 'Two digits' and merge it 
with its children 

Pounds 

(c) 

1 1 
Pounds 

---~/~ 

Generate a new parent labeled 
'Two digits' for all the nodes at 
the 2nd level 

®®······® 
(d) 

Figure 3.1: The transformations between implicit and explicit structures. 

45 



CHAPTER 3. EDITING 46 

3.2 Applying an operation 

After applying an operation to a table T = ( C, 8), we obtain a new table T' = ( C', 81
). An 

operation may change the category structure C and the mapping 8. If C is changed, the 

domain ©fr( C) of 8 is also changed, which causes a change in the associations between 

labels and entries. Mathematically, 8' defines new values for the entries of T'. In the 

editing model, we could assign no values to 8'; however, in most cases, the values of 8' 
depend on the values of 8. Thus, we generate new entry values from old entry values 

according to the requirements of the different operations. 

The table operations that change the dimension of a table generate a new table in 

which ©fr(C') is different from ©fr(C); thus, 81 associates new values for all the entries 

in ©fr(C'). Suppose we insert a new category, which contains l frontier label sequences, 

into an n-dimensional table T. Before the insertion, each entry is associated with n 

frontier label sequences from n different categories. After the insertion, the number of 

entries increases by a factor l and each entry is now associated with n + 1 frontier label 

sequences. For this operation, we assign the value of an old entry to the l new entries 

that are also associated with the frontier label sequences of the old entry. Removing a 

category with k frontier label sequences from a table T is more complex. In contrast 

with insertion, the number of entries in the new table is smaller and each entry is now 

associated with n - 1 frontier label sequences. Each new entry corresponds to the k old 

entries that were associated with the common frontier label sequences of the new entry. 

There are many possible ways to assign values for the new entries. For example, we may 

choose one of the values from the k old entries or use the average of these values. It is 
impossible to make an appropriate choice unless we know the motivation for removing 

the category. We should provide a method that allows users to make the decision. Our 

strategy is to assign a multiset of the k old entry values to the new entry so that we can 

generate a new value from it with subsequent operations. 

When we consider the category operations that change the label structure of a cat­

egory, only some of the entries in © fr( C') are affected. 8' needs to assign new values 

for only the affected entries and should not change the other associations. For example, 

consider the operation that relocates a subcategory within a category. The modified cat­

egory loses some frontier label sequences and gains some new ones. The value of an old 



CHAPTER 3. EDITING 47 

entry that was associated with a lost frontier label sequence is assigned to the new entry 

that is associated with the corresponding new frontier label sequence. Another example 

is the deletion of a subcategory from a category. After the deletion, the modified category 

loses some frontier label sequences and may also gain one new one. If the deletion of a 

subcategory results in a new frontier label sequence being added to the category, we also 

assign a multiset of the old entry values associated with the lost frontier label sequences 

to the new entry associated with the new frontier label sequence. 

The label and entry operations that change only the entry values and labels are much 

easier to handle. These operations affect only one label or one entry. 

3.3 Labeled-domain operations 

Since we use labeled domains to model the category structure, we define some basic 

operations for labeled domains before we define editing operations. We also need to 

define some operations for labels and label sequences. 

Label operations 

Given two labels x and y, xy is the catenation of x and y and x\y is the left quotient 

of x and y. For example, if x = "lab" and y = "labeled", then xy = "lablabeled" and 

x\y = "eled". We define strip(x, y) to be x\y if xis a prefix of y and to bey, otherwise. 

Label-Sequence operations 

Given a label sequence l, the first label in l, denoted by first([), is undefined if l is the 

empty label sequence; otherwise, it is the label li such that l = [i.l2 and 12 is a label 

sequence. The last label in l, denoted by last(l), is undefined if I is the empty label 

sequence; otherwise, it is the label 12 such that I = l1.l2 and l1 is a label sequence. The 

front of a label sequence I, denoted by front([), is undefined if l is the empty label 

sequence; otherwise, it is the label sequence l' such that l = l'.last(l). The back of a label 

sequence l, denoted by back(l), is undefined if l is the empty label sequence; otherwise, 

it is the label sequence l' such that l = first(l).l'. 



CHAPTER 3. EDITING 48 

Given a labeled domain d, a label sequence l of d determines a labeled subdomain 

d' of d. The subdomain d' satisfies lbl(d') = last(l). Observe that fr(d') satisfies the 

relation 

{l.back(h): h E fr(d')} <; fr(d). 

Expansion 

Given a labeled domain d and a label sequence l of d such that first(l) = lbl(d), the 

expansion of d with l, denoted by d + l, is the labeled domain d' such that 

fr(d') = (fr(d) U {l})-{x: 3y a non-empty label sequence and xy = l}. 

From the viewpoint of a labeled tree, d+ l adds one or more nodes to d to ensure that there 

is a path from the root to a frontier node identified by l. To maintain the consistency of 

fr(d'), we need to remove all prefix label sequences of l that were frontier label sequences 

of d. We generalize this operation for a set L of label sequences in the obvious way; we 

denote it by d + L. Fig. 3.2(a) illustrates the expansion of a labeled domain d with two 

label sequences d.dl.d4 and d.al.a2. 

Contraction 

Given a labeled domain d and a label sequence l of d, the contraction of d with l, denoted 

by d - l, is the labeled domain d' such that 

fr(d') = (fr(d) -{l}) U {front(l): front(l).y is not in fr(d), for any y}. 

From the viewpoint of a labeled tree, d - l removes the subtree whose root is the node 

identified by l. If the node identified by front(l) becomes a frontier node after removing 

the node identified by l, front(l) will be added to fr(d'). Obviously, if fr(d) is consistent, 

fr( d') is also consistent. We generalize this operation for a set L oflabel sequences in the 

obvious way; we denote it by d - L. Fig. 3.2(b) illustrates the contraction of a labeled 

domain d with label sequences d.dl and d.d2.d5. 



CHAPTER 3. EDITING 

d 

\ 5 

d 

\ 
@ ~ 

Q@ 

D + { d.dl.d4, d.al.a2} 

(a) 

D - { d.dl, d.d2.d5} 

(b) 

D·A 

(c) 

D/A 

(d) 

d 

d2 

Gi) 

/ "" 
l @ 

3 

Figure 3.2: Examples of the labeled-domain operations. 

49 



CHAPTER 3. EDITING 50 

Product 

Given two labeled domains d1 and d2 , the product of d1 and d2 , denoted by d1 • d2 , is the 

labeled domain d that satisfies 

That is, l is in fr(d) if and only if there are unique l1 and l2 such that 11 is in fr(di), 12 is 

in fr(d2 ), and I= Zi.back(/2 ). Fig. 3.2{c) illustrates the product of two labeled domains 

D and A. 

Quotient 

Given two labeled domains d1 and d2 , the quotient of d1 and d2 , denoted by dif d2 , is the 

labeled domain d such that 

If there is no d such that d1 = d · d2 , then di/ d2 is undefined. Fig. 3.2( d) illustrates the 

quotient of two labeled domains D and A. 

3.4 Editing operations for abstract tables 

We propose 18 editing operations for the manipulation of abstract tables. We describe 

the syntax of these operations in a functional form by giving the names of the operations 

and the types of their operands and results. We have used extra white space to divide 

them into three groups, namely, tabular operations, category operations and label and 

entry operations: 

Empty: 

Insert_Category: 

Delete_Category: 

Duplicate_Category: 

C ombine_C ategories : 

Split_Category: 

table x labeled domain 

table x label seq. 

table x label seq. x label 

table x label seq. x label seq. 

--+ table 

--+ table 

--+ table 

--+ table 

--+ table 
table x label seq. x label seq. x label --+ table 



CHAPTER 3. EDITING 51 

Insert..Subcategory: table x label seq. x label seq. x labeled domain -+ table 

Delete..Subcategory : table x label seq. x label seq. -+ table 

M ove_Subcategory : table x label seq. x label seq. x label seq. -+ table 

Duplicate..Subcategory : table x label seq. x label seq. x label seq. x label -+ table 

Combine..Subcategories: table x label seq. x label seq. x label seq. -+ table 

Split..Subcategory : table x label seq. x label seq. x label seq. x label -+ table 

Promote_Subcategories : table x label seq. x label seq. x label set -+ table 

Demote_Subcategories : table x label seq. x label seq. x label set x label -+ table 

Change...Label: table x label seq. x label seq. x label -+ table 

Change_E}ntry_Value : table x entry x entry value -+ table 

Compute_E}ntry_Value: table x entry x operator -+ table 

GeLEntry_Value: table x entry -+ entry value 

The semantics of an operation can be specified by giving the change in an abstract table 

as a result of applying the operation; thus, the operations are independent of a table's 

presentational form. We define the semantics of these operations using the labeled­

domain operations defined in the previous section. To make them easier to understand, 

we use concrete tables rather than abstract tables to present examples of the operations; 

thus, we have to specify the label orders for the categories and the placement of categories 

in the stub and boxhead for these concrete tables. All the operations, however, are 

ordering independent. We use the notation {+ · · · :j:} to represent a multiset. 

Empty 

This operation generates an empty table ( C, J), where C = 0 and <l = 0. 

Insert_Category 

This operation adds a new category to a table. Given a table T = ( C, J) and a category d, 

we obtain a new table T' = ( C', J'), where C' = CU { d} and J' is defined as follows. For 

each f' E @fr(C'), there is a unique f E @fr(C) and a frontier label sequence l E fr(d) 

such that /' = f U {l}. We define J'(f') = J(f). For example, Table 3.4 is generated by 



CHAPTER 3. EDITING 52 

Table 3.4: The average marks for 1991-1992. 

Mark 

Year Term Section Assignments Examinations 

Assl j Ass2 j Ass3 Midterm j Final 
Grade 

Winter 
Section! 85 80 75 60 75 75 
Section2 85 80 75 60 75 75 

Spring Section! 80 65 75 60 70 70 1991 
Section2 80 65 75 60 70 70 

Fall 
Sectionl 80 85 75 55 80 75 
Section2 80 85 75 55 80 75 

Winter 
Sectionl 85 80 70 70 75 75 
Section2 85 80 70 70 75 75 

1992 Spring Sectionl 80 80 70 70 75 75 
Section2 80 80 70 70 75 75 

Fall 
Sectionl 75 70 65 60 80 70 
Section2 75 70 65 60 80 70 

adding a new category 

(Section, {(sectionl, 0), (section2, 0)}) 

to Table 3.1. 

Delete_Category 

This operation removes a category from a table. Given a table T = ( C, o) and a category 

din C, we obtain a new table T' = (C',o'), where C' = C - {d} and o' is defined as 

follows. For each / E fr( C'), there are 1/r( d) I frontier label sequences li, l2 , ••• , ll/r(d)I 

such that f U {l;} E fr(C). We define 

o'(f) = {j: o(f U {l}) : l E fr(d) :j:}. 



CHAPTER 3. EDITING 53 

Table 3.5: The average marks for 1991-1992. 

Mark 

Year Assignments Examinations 

Assl Ass2 Ass3 Midterm Final 
Grade 

85 80 75 60 75 75 
1991 80 65 75 60 70 70 

80 85 75 55 80 75 

85 80 70 70 75 75 
1992 80 80 70 70 75 75 

75 70 65 60 80 70 

For example, jf we remove the category Term from Table 3.1, we get Table 3.5, in which 

each entry is a multiset of marks that were associated with the three removed terms. If 

we do not keep the repeated values, we may not get the appropriate result. We can also 

supply an operator to Compute..Entry_Value to remove the repeated elements. 

Duplicate_Category 

This operation duplicates a category for a table. Given a table T = ( C, 8), a category d 

in C and a label l which should be different from the labels of categories in C, we obtain 

a new table T' = ( C', 8'), where 

C' =Cu {(Z, set(d))} 

and 8' is defined as follows. For each f' E ®fr( C'), there is an f E fr( C) and a frontier 

label sequences E fr(d) such that f' = f U {s}. We define 8'(!') = 8(1). For example, 
suppose d is the category: 

(From, {(Toronto, 0), (Vancouver, 0), (Montreal, 0), (Ottawa, 0), 
(Edmonton, 0), (Calgary, 0)} ), 



CHAPTER 3. EDITING 

Table 3.6: The frame of a flight schedule between major cities of Canada. 

From 

Toronto 
Vancouver 
Montreal 
Ottawa 
Edmonton 
Calgary 

To 

Toronto Vancouver Montreal Ottawa Edmonton Calgary 

then the following operations 

T1 := Empty 

T2 := InserLCategory(T1, From) 

T3 := Copy_Category(T2, From, To) 

54 

generate the frame of a flight schedule between major cities of Canada as shown in 

Table 3.6. 

Combine_Categories 

This operation combines two categories of a table using the product of labeled domains. 

Given a table T = ( C, <>) and two categories c1 and c2 in C, we obtain a new table 

T' = ( C', <>'), where 

and <>' is defined as follows. First, observe that size(T') = size(T); therefore, T' and T 

have the same number of entries. For each f E ®fr(C), there are l; E fr(c;), for i = 1, 2, 

such that {l1, 12} i:::; f. There is a unique corresponding f' E ®fr(C') such that 



CHAPTER 3. EDITING 55 

Table 3.7: The average marks for 1991-1993. 

Mark 
Year Assignments Examinations 

Assl I Ass2 I Ass3 Midterm I Final 
Grade 

Winter 85 80 75 60 75 75 
1991 Spring 80 65 75 60 70 70 

Fall 80 85 75 55 80 75 

Winter 85 80 70 70 75 75 
1992 Spring 80 80 70 70 75 75 

Fall 75 70 65 60 80 70 

We define J(f') = J(f). For example, after combining categories Year and Term in 

Table 3.1, the new table contains only the two categories Year and Mark. Mark keeps 

the same label structure as before and Year has the new label structure: 

(Year,{(1991, {(Winter, 0), (Spring, 0), (Fall, 0)} ), 
(1992, {(Winter, 0), (Spring, 0), (Fall, 0)}) 

} ). 

The new table, which is shown in Table 3.7, looks similar to Table 3.1 except that the 

stub head contains only the name of the category Year. 

SpliLCategory 

This operation splits a category of a table into two categories using the quotient oflabeled 

domains. Given a table T = (C, J), a category c in C, a label sequences of c such that 

set( s) f 0 and c/ A( s) is not undefined, and a label l which is different from the labels 

of the categories in C, we obtain two categories c1 and c2 in this way: c1 = c/A(s), the 

quotient of c and A(s), and c2 is (l, set(s)), the labeled domain obtained after assigning 



CHAPTER 3. EDITING 56 

a new label l for A(s). We obtain a new table T' = (C', o'), where 

and o' is defined as follows. First, observe that size(T') = size(T); therefore, T' and T 

have the same number of entries. For each f E ®fr(C), there is and E f such that 

d = l1.l2 E fr( c), where l1 E fr( c1) and l2 is the back of a frontier label sequence in 

fr(A(s)). There is a unique corresponding f' E ®fr(C') such that 

We define o(f') = o(f). For example, suppose T specifies the logical structure of 

Table 3.7, which contains only two categories, Year and Mark. We can split category 

Year into two categories, Year and Term, by performing the operation 

Split_Category(T, Year, Year.1991, Term) 

to change Table 3.7 back to Table 3.1. 

Insert_Subcategory 

This operation expands a category by inserting a new subcategory into it. Given a table 

T = ( C, o), a category c in C, a labeled domain d, and a label sequence s of c, the 

insertion of d into c with respect to s is a category c' that satisfies 

c' = c + {s.x: x E fr(d)}. 

We obtain a new table T' = (C',o'), where 

C' = (C - {c}) U {c'} 

and 01 is defined as follows. For each f E ®fr(C'), if f E ®fr(C), we define o'(f) = o(f). 
If f E ®fr(C') - ®fr(C), there must beat E fr(d) such that s.t E f; thus, we define 

o'(f) = o((f-{s.t})U{s}) ifs E fr(c); otherwise, it is undefined. For example, Table 3.8 

is the result of inserting (Summer, 0) into the category Term with respect to Term and 

(0.3A + 0.3M + OAF, 0) into the category Mark with respect to Grade in Table 3.1. 



CHAPTER 3. EDITING 57 

Table 3.8: The average marks for 1991-1992. 

Mark 

Year Term Assignments Examinations Grade 

Assl I Ass21 Ass3 Midterm I Final 0.3A+0.3M+0.4F 

Winter 85 80 75 60 75 75 

1991 
Spring 

Summer 

80 65 75 60 70 70 

Fall 80 85 75 55 80 75 

Winter 85 80 70 70 75 75 

1992 
Spring 80 80 70 70 75 75 

Summer 
Fall 75 70 65 60 80 70 

Delete_Subcategory 

This operation removes a subcategory from a category of a table. Given a table T = ( C, J), 
a category c in C, and a label sequence s of c, the deletion of c with respect to s is a 
category c' that satisfies 

C
1 = C - S. 

We obtain a new table T' = ( C', J'), where 

C' = (C - {c}) U {c'} 

and J' is defined as follows. For each/ E ©fr(C'), if/ E ©fr(C), we define J'(f) = J(f). 
If/ E ©fr(C') - ©fr(C), f must contain front(s) which becomes a frontier label 
sequence of d' after removing s; thus, we define 

J'(f) = {+ J((f-{front(s)}) U {front(s).k}): k E fr(A(s)) :j:}. 

For example, after deleting the labeled domains (Summer, 0) and (0.3A+0.3M +0.4F, 0) 
from Table 3.8, we obtain Table 3.1. 



CHAPTER 3. EDITING 58 

Move_Subcategory 

This operation moves a subcategory inside a category of a table. Given a table T = ( C, J), 
a category c in C, and two label sequences s and p of c, we obtain a new category c' by 

making labeled domain A(s) a labeled subdomain of A(p): 

c' = (c- s) + {p.x: x E fr(s)}. 

We obtain a new table T' = (C',J'), where 

C' = (C - {c}) U {c'}, 

and J' is defined as follows. For each f E 0/r(C'), if f E 0/r(C), we define J'(f) = J(f). 
If f E 0/r(C') - 0/r(C), there are two cases: 

1. f contains front(s) and front(s) is a frontier label sequence of c', in which case 

J' (!) is undefined. 

2. f contains a label sequence p.t, where t E fr( s), in which case 

J'(f) = J((f- {p.t}) U {front(s).t}). 

For example, suppose that Ass3 is a quiz and we want to reclassify it as an examination. 

We can move subcategory Ass3 under Examinations with this operation and change 

its label to Quiz to obtain Table 3.9. 

Duplicate_Subcategory 

This operation duplicates a subcategory inside a category of a table. Given a table 

T = (C, J), a category c in C, two label sequences sand p of c, and a label l which is 

different from the labels of the labeled domains in set(p), we obtain a new category c' by 

adding a copy of A(s) to set(p) after labeling the new labeled domain as l: 

c' = c+ {l.x: x E fr(set(s))}. 

We obtain a new table T' = ( C', J'), where 

C' = (C -{c}) U {c'} 



CHAPTER 3. EDITING 59 

Table 3.9: The average marks for 1991-1992. 

Mark 

Year Term Assignments Examinations 

Assl I Ass2 Midterm I Final 
Grade 

Quiz 

Winter 85 80 60 75 75 75 
1991 Spring 80 65 60 70 75 70 

Fall 80 85 55 80 75 75 

Winter 85 80 70 75 70 75 
1992 Spring 80 80 70 75 70 75 

Fall 75 70 60 80 65 70 

and <11 is defined as follows. For each f E ®fr(C'), if f E ®fr(C), we define <11(!) = <1(!). 
If f E ®fr(C') - ®fr(C), f must contain a label sequence p.l.t, where t E fr(set(s)); 
thus, we define 

<11(!) = <1((! - {p.l.t}) U {s.t} ). 

For example, if we want to add one more assignment Ass4 under Assignments to 

Table 3.1 and the marks for assignment 4 are almost the same as for assignment 3, we 

can use this operation to duplicate subcategory Ass3 and its associated entries to obtain 

Table 3.10. 

Combine_Subcategories 

This operation combines two subcategories in a category of a table using the product of 

labeled domains. It is similar to Combine_Categories except that the operation is applied 

to subcategories. Given a table T = (C, <!), a category c in C, and two label sequences 

s1 and s 2 of c such that s2 is not a prefix of s1 , we obtain a new category c' by removing 

labeled domains A(s1 ) and A(s2 ) from c and adding a new labeled domain A(s1 ) • A(s2 ) 



CHAPTER 3. EDITING 60 

Table 3.10: The average marks for 1991-1992. 

Mark 

Year Term Assignments Examinations 

Assl J Ass2 I Ass3 I Ass4 Midterm I Final 
Grade 

Winter 85 80 75 75 60 75 75 
1991 Spring 80 65 75 75 60 70 70 

Fall 80 85 75 75 55 80 75 

Winter 85 80 70 70 70 75 75 
1992 Spring 80 80 70 70 70 75 75 

Fall 75 70 65 65 60 80 70 

to set(front(s1)): 

c' = ((c- s1) - s2) + {front(s1).x: x E fr(A(s1) · A(s2))}. 

We obtain a new table T' = ( C', .5'), where 

C' = (C - {c}) U {c'} 

and .5' is defined as follows. For each f E ®fr(C'), if f E ®fr(C), we define .5'(!) = .5(1). 
If f E ®fr(C') - ®fr(C), there are two cases: 

1. f contains front(s 2) and front(s 2) is a frontier label sequence of c', in which case 

.5' (!) is undefined. 

2. f contains a label sequence s1.u.v, where u E fr(set(s1)) and v E Jr(set(s2)), in 

which case 

For example, suppose T is the conversion table from pounds to kilograms in the range of 

0 to 19 pounds shown in Table 3.11. We can change the label structure of the category 



CHAPTER 3. EDITING 

Table 3.11: A conversion table from pounds to kilograms. 

Pounds Kilograms 

0 0.00 
1 0.45 
2 0.90 
3 1.36 

One digit 4 1.81 
5 2.26 
6 2.72 
7 3.17 
8 3.63 
9 4.08 

Two digits 00 0.00 
10 4.54 

Pounds into the structure of Table 3.12 by performing the operation 

Combine..Subcategory(T, Pounds, Pounds.two digits, Pounds.one digit). 

61 

To convert Table 3.12 into a conversion table we need to add the values in each entry 

multiset using the operation 

Compute_Entry_Value(T', Pounds.two digits.i.j, Sum) 

where i = 00 or 10 and j = 0, ... , 9. 

Split_Subcategory 

This operation splits a subcategory in a category of a table into two subcategories using 

the quotient of labeled domains. It is similar to SpliLCategory except that the operation 

is applied to subcategories. Given a table T = (C, 5), a category c in C, two label 

sequences 81 and s2 of c such that 8 1 is a prefix of s2 , and a label l which is different 



CHAPTER 3. EDITING 62 

Table 3.12: After combining two subcategories in Table 3.11. 

Pounds Kilograms 

0 0.00 0.00 
1 0.00 0.45 
2 0.00 0.90 
3 0.00 1.36 

00 
4 0.00 1.81 
5 0.00 2.26 
6 0.00 2.72 
7 0.00 3.17 
8 0.00 3.63 

Two digits 
9 0.00 4.08 

0 4.54 0.00 
1 4.54 0.45 
2 4.54 0.90 
3 4.54 1.36 

10 
4 4.54 1.81 
5 4.54 2.26 
6 4.54 2.72 
7 4.54 3.17 
8 4.54 3.63 
9 4.54 4.08 



CHAPTER 3. EDITING 63 

from the labels of the labeled domains in set(front(s1)), we obtain a new category c' by 

removing labeled domain A{s1) from c and adding two new labeled domains A{s1)/ A{s2) 

and (l, set(s2)) to set(front(s1)): 

c' = {(c - s1) + {front(s1).x : :i: E /r{A(s1)/ A(s2))}) + {front(s1).l.x : :i: E fr(set(s 2))}. 

We obtain a new table T' = {C',J'), where 

C' = (C -{c}) U {c'} 

and J' is defined as follows. For each f E 0/r(C'), if f E 0/r(C), we define J'(f) = J(f). 
If f E (0/r(C') - 0/r{C)), there are two cases: 

1. f contains a label sequence front(si).t, where t E fr(A(s 1)/ A(s2 )), in which case 

J'(f) = {:j: J((f-{front(si).t}) U {front(s1).t.u}): u E fr(set(s2)) :j:}. 

2. f contains front(s 1).l.t, where t E fr(set(s 2)), in which case 

J'(f) = {:j: J((f- {front(s1).l.t}) U {s1 .u.t}): s1.u.t E fr(c) :j:}. 

For example, suppose T is the conversion table of Table 3.13. We can change the label 

structure of T into Table 3.14 by performing the operation 

Split_Subcategory(T, Pounds, Pounds.two digits, Pounds.two digits.DO, one digit). 

Promote_Subcategories 

This operation promotes a set of subcategories up one level in a category. Given a table 

T = ( C, J), a category c in C, a label sequence s of c, and a set L oflabels of the labeled 

domains in set(s), we obtain a new category c' by moving labeled domains A(s.:i:),:i: EL, 

to set(front( s)) and assign last( s )x as the labels of the corresponding promoted labeled 



CHAPTER 3. EDITING 64 

Table 3.13: A conversion table from pounds to kilograms. 

Pounds Kilograms 

0 0.00 
1 0.45 
2 0.90 
3 1.36 

00 
4 1.81 
5 2.26 
6 2.72 
7 3.17 
8 3.63 
9 

Two digits 
4.08 

0 4.54 
1 4.99 
2 5.44 
3 5.90 

10 
4 6.35 
5 6.80 
6 7.26 
7 7.71 
8 8.17 
9 8.62 



CHAPTER 3. EDITING . 65 

Table 3.14: After splitting a subcategory in Table 3.13. 

Pounds Kilograms 

0 0.00 4.54 
1 0.45 4.99 
2 0.90 5.44 
3 1.36 5.90 

One 4 1.81 6.35 
digit 5 2.26 6.80 

6 2.72 7.26 
7 3.17 7.71 
8 3.63 8.17 
9 4.08 8.62 

0.00 0.45 
0.90 1.36 

00 1.81 2.26 
2.72 3.17 

Two 3.63 4.08 
digits 4.54 4.99 

5.44 5.90 
10 6.35 6.80 

7.26 7.71 
8.17 8.62 



CHAPTER 3. EDITING 66 

subdomains. If set( s) is empty after the promotion, the labeled domain A( s) is also 

removed from the category. We can define c' as: 

c' = ((c-{s.x: x E L})-{s: L = {lbl(x): x E set(s)}}) 
+UxeL{front(s).last(s)x.t: t E fr(set(s.x))}. 

We obtain a new table T' = (C',5'), where 

C' = (G-{c}) U {c'} 

and 5' is defined as follows. For each f E ®fr(C'), if f E ®fr(C), we define 5'(!) = 
5(1). If f E (®fr(C') - ®fr(C)), there is a label sequence u E / such that u 

front(s).last(s)x.t, where x EL and t E fr(set(s.x)); thus, we define 

5'(!) = 5((1-{u}) U {s.x.t}). 

For example, suppose T identifies the logical structure of Table 3.1; then we can generate 

Table 3.15 by performing following operations: 

T1 := Combine_Categories(T,Year,Term) 

T2 := Promote_Subcategories(T1 , Year, Year.1991, {Winter, Spring, Fall}) 

T3 := Promote_Subcategories(T2 , Year, Year.1992, {Winter}). 

Demote_Subcategories 

This operation demotes a set of subcategories down one level in a category. Given a table 

T = ( C, 5), a category c in G, a label sequence s of c, a set L of labels of the labeled 

domains in set(s), and a label l that is different from the labels of the remaining labeled 

domains in set(s), we obtain a new category c' by replacing all the labeled domains in 

set(s) whose labels are in L with a new labeled domain 

(l,{(strip(l,lbl(x)),set(x)): x E set(s) /1 lbl(x) E £}). 

For each demoted labeled domain, if the old label contains l as a prefix, the new label 

is the remaining part of the old label after removing the prefix l; otherwise, the label is 

unchanged. We can define c' as: 

c' = (c-{s.x EL})+ LJ {s.strip(l,x).t: t E fr(set(s.x))}. 
zEL 



CHAPTER 3. EDITING 67 

Table 3.15: The average marks for 1991-1992. 

Mark 

Year Assignments Examinations 

Assl I Ass2 I Ass3 Midterm I Final 
Grade 

1991Winter 85 80 75 60 75 75 
1991Spring 80 65 75 60 70 70 
1991Fall 80 85 75 55 80 75 
1992Winter 85 80 70 70 75 75 

1992 
Spring 80 80 70 70 75 75 
Fall 75 70 65 60 80 70 

We obtain a new table T' = ( C', 8'), where 

C' = (C-{c}) U {c'} 

and 8' is defined as follows. For each f E 0/r(C'), if/ E 0/r(C), we define 8'(!) = 8(1). 

If/ E (0/r(C')- 0/r(C)), there is a label sequence u E / such that u = s.strip(l,x).t, 
where x EL and t E fr(set(s.x)); thus, we define 

8'(!) = 8((1-{u}) U {s.x.t}). 

For example, suppose T identifies the logical structure of Table 3.15; then we can generate 
Table 3.16 by performing the operation 

Demote_Subcategories(T, Year, Year, 

{1991 Winter, l991Spring, 1991FaZZ}, 

1991). 



CHAPTER 3. EDITING 68 

Table 3.16: The average marks for 1991-1992. 

Mark 

Year Assignments Examinations 

Assl I Ass21 Ass3 Midterm I Final 
Grade 

Winter 85 80 75 60 75 75 
1991 Spring 80 65 75 60 70 70 

Fall 80 85 75 55 80 75 

1992Winter 85 80 70 70 75 75 

1992 
Spring 80 80 70 70 75 75 

Fall 75 70 65 60 80 70 

Change_Label 

This operation changes the label of a labeled domain in a category. Given a table 

T = (G,8), a category c in G, a label sequences of c, and a label l that is different 

from the labels of the labeled domains in set(front(s)), we obtain a new category c' by 

replacing the old label of A( s) with l. We obtain a new table T' = ( C', 8'), where 

C' = (C - {c}) U {c'} 

and 8' is defined as follows. For each/ E ®/r(C'), if f E ®/r(C), we define 8'(!) = 8(1). 

If f E (®fr(C') - ®fr(C)), there is a label sequence u E / such that u = front(s).l.t, 

where t E fr(set(s)); thus, we define 8'(!) = 8((1- {u}) U {s.t}). 

Change_Entry _ Value 

This operation assigns a new value for an entry in a table. Given a table T = ( C, 8), an 

entry e in ®fr(C), and a value v of any kind, we obtain a new table T' = (C', 8'), where 

C' = C and 8' is defined as follows. For each / E ® fr( C'), we define 8' (!) = v if f = e, 

and 8' (!) = 8 (!), otherwise. 



CHAPTER 3. EDITING 69 

Compute_Entry _ Value 

This operation computes a new value based on the old value of an entry in a table. Given 

a table T = ( C, 6), an entry e in ©fr( C), and a user-defined operation op which takes 

an entry value as an operand, we obtain a new table T' = (C',6'), where C' = C, and 

6' is defined as follows. For each f E ©fr(C'), we define 6'(!) = op(6(!)) if/= e, and 

6'(!) = 6(1), otherwise. Given an entry value v, suppose we define an operation Sum 
that returns the sum of the numbers in v if vis a multiset, and returns v, otherwise. We 

can use Compute...Entry_Value with Sum to generate Table 3.13 from Table 3.12. 

The frequently-used user-defined operations are for numerical calculations such as 

Sum, Product, Average, Minimum, Maximum, and so on. There are also many other 

useful operations; for example, transforming a multiset into a set or catenating all el­

ements in a set. We can implement Compute...Entry_Value in a table editor in at least 

two ways. In the first approach, the system provides some frequently-used operations 

and users can choose only these operations for Compute...Entry_Value. In the second 

approach, the system provides a language to define user-defined operations and a mech­

anism to interpret the operations defined in that language. Our prototype adopts the 

first approach. How to implement Compute...Entry_Value using the second approach is 

left for future investigation. 

Get__Entry _ Value 

This operation returns the value of an entry in a table. Given a table T = ( C, 6) and an 

entry e in ©fr(C), this operation returns 6(e). 

3.5 Expressiveness of editing model 

The editing model provides the basic operations that support the editing of tables as 

multi-dimensional logical structures. We can use these operations to compose tables step 

by step, from an empty table to a table with a complex structure. We can also construct 

complex operations from these operations for some special applications. We believe that 

we have provided complete operations for editing a single table as a multi-dimensional 



CHAPTER 3. EDITING 70 

logical structure. A table that can be specified as a multi-dimensional logical structure 

consists of two parts: the categories which are hierarchical structures and the mapping 

from the categories to entries. The editing model provides sufficient operations to add 

and remove categories, to manipulate the category hierarchy, and to update the mapping 

from categories to entries. However, we do not provide operations that can be applied to 

more than one tables, for example, to combine or split tables. Suppose Table A contains 

categories X and Y, and Table B contains categories X and Z. We could combine Tables 

A and B to obtain Table C that contains the category X and a new category that is the 

conjunction of Y and Z. 

We also believe that the operations in the editing model are non-redundant. One may 

argue that we need only the operations: Empty, Insert_Category, Delete_Category, 

Insert..Subcategpry, Delete..Subcategory, Change_l,abel, Change...Entry_Value, 

C ompute...Entry_ Value, and GeLEntry_ Value, and that the other operations can be 

obtained from these operations. Suppose we decompose M ove_Subcategpry into the two 

operations: Delete_Subcategory and InserLSubcategory. After we delete a subcategory, 

all associated entries are also removed. When we insert a subcategory into a table, the 

associated entries are empty. Thus, the semantics of M ove_Subcategpry is not preserved 

under decomposition. Similar problems occur when we decompose the other operations 

into sequences of more basic operations. 



Chapter 4 

Layout specification 

The final purpose of tabular composition is to generate a concrete table in two dimen­

sions such that it clearly exhibits its underlying logical structure. The layout of a table 

determines the efficiency of reading the table and the accuracy of obtaining pertinent in­

formation. There are two components that affect tabular layout. The topology of a table 

determines the arrangement of tabular items in two dimensions and the style governs the 

final appearance of different tabular components. We have discussed some guidelines for 

the specification of topology and styles in Sections 1.2.2 and 1.2.3. We now propose a 

presentational model to specify layouts for abstract tables. This model consists of a set 

of presentational rules for tabular topology and style. These presentational rules support 

the high-quality tabular layouts with respect to the topology and style guidelines. 

4.1 Tabular Layouts 

When we present a table as a row-column structure, we usually first arrange the labels 

in the stub and boxhead and then decide the positions of the entries according to the 

positions of their associated labels. Each entry is placed in a cell such that it is to the 

right of its associated labels in the stub and beneath its associated labels in the boxhead. 

In the abstract model, labels are grouped into categories; thus, the arrangement oflabels 

can be determined by the arrangement of categories in the stub and the boxhead as well 

71 



CHAPTER 4. LAYOUT SPECIFICATION 72 

as by the label orderings of the categories. We use topological specification to describe 

the relative arrangement of tabular items in two dimensions. 

The selection of style rules is the key to the design of high-quality layouts of tables. 

Most current tabular composition systems provide only style rules that govern the ap­

pearance of layout objects, such as rows, columns or blocks. In the traditional style sheets 

of tables, we usually need to specify only the style for the whole table and its major re­

gions, including the stub, the boxhead, the stub head, and the body. Thus, it is useful to 

provide style rules for these presentational objects. In addition, we may need to specify 

styles that govern the appearance of logical objects, such as categories, labels and entries, 

no matter where these objects appear in a concrete table. The style rules for both the 

presentational objects and the logical objects enable us to control the appearance of a 

table independently of the tabular topology. In this way, we do not have to respecify style 

rules for a table after we change its topology. When we compose a document, we usually 

present all tables in a uniform style so as to achieve consistent appearance throughout 

the document. It is crucial that we can specify collective style rules to govern the general 

appearance of a collection of tables. We use style specification to describe the selection 

of style rules for a table or for a set of tables. 

4.2 Topological specification 

When a table contains more than two categories, multiple categories appear in the stub, 

in the boxhead, or in both although they are not orthogonal to each other. When this 

multiplicity occurs, the labels in these categories are either indented as shown in the 

stub of Table 4.1 or organized hierarchically as shown in the stub of Table 4.2. Different 

orderings of categories in the stub or in the boxhead give rise to different topological 

arrangements. By interchanging the order of Year and Term, we get the arrangement 

shown in Table 4.3. We use two topological rules to specify the category orderings, one 

for the stub and the other for the boxhead: 

STUB: Cf, c;, ... , c:,.. 
BOXHEAD: ct, ct .. . 'C!, 

where c; is the ith category in the stub and Cj is the jth category in the boxhead. For 



CHAPTER 4. LAYOUT SPECIFICATION 73 

Table 4.1: The average marks for 1991-1992. 

Assignments Examinations 
Grade 

Assl Ass2 Ass3 Midterm Final 

1991 

Winter 85 80 75 60 75 75 
Spring 80 65 75 60 70 70 
Fall 80 85 75 55 80 75 

1992 

Winter 85 80 70 70 75 75 
Spring 80 80 70 70 75 75 
Fall 75 70 65 60 80 70 

Table 4.2: The average marks for 1991-1992. 

Assignments Examinations 
Grade 

Assl Ass2 Ass3 Midterm Final 

Winter 85 80 75 60 75 75 
1991 Spring 80 65 75 60 70 70 

Fall 80 85 75 55 80 75 

Winter 85 80 70 70 75 75 
1992 Spring 80 80 70 70 75 75 

Fall 75 70 65 60 80 70 



CHAPTER 4. LAYOUT SPECIFICATION 74 

Table 4.3: The average marks for 1991-1992. 

Assignments Examinations 
Grade 

Assl Ass2 Ass3 Midterm Final 

Winter 

1991 85 80 75 60 75 75 
1992 85 80 70 70 75 75 

Spring 

1991 80 65 75 60 70 70 
1992 80 80 70 70 75 75 

Fall 

1991 80 85 75 55 80 75 
1992 75 70 65 60 80 70 

example, the category orderings of Tables 4.1 and 4.2 can be specified by 

STUB: Year, Term 

BOXHEAD: Mark. 

The label ordering within a category is another attribute that affects the topological 

arrangement. In Table 4.1, the labels in category Term are arranged in the order of 

Winter, Spring, Fall. If we reverse the order to give Fall, Spring, Winter, we get a 

different arrangement. Therefore, we need another topological rule to specify the label 

ordering within a category: 

where C is a category and L; is the ith label of C in the ordering. Sometimes, we do 

explicitly specify the label ordering for a category; instead, we implicitly specify the order 

using standard ordering, such as numerical order or lexicographic order. Thus, another 

form of topological rule for label ordering is: 



CHAPTER 4. LAYOUT SPECIFICATION 75 

ORDER C: <ordering option>, 

where <ordering option> includes numerical order, reverse numerical order, lexicographic 

order, and reverse lexicographic order. For example, the label orderings for the categories 

in Table 4.1 can be specified as: 

ORDER Year: lexicographic order 

ORDER Term: Winter, Spring, Fall 

ORDER Mark: Assignments, Examinations, Grade. 

This specification does not, however, completely describe the label orderings in Table 4.1 

because it does not specify the orderings of labels Assl, Ass2 and Ass3 for Assign­

ments, and Midterm and Final for Examinations. We must use the topological rules 

for the subcategories. Thus, the complete ordering specification of the labels for Table 4.1 

lS 

ORDER Year: 

ORDER Term: 

ORDER Mark: 

ORDER Mark.Assignments: 

ORDER Mark.Examinations: 

lexicographic order 

Winter, Spring, Fall 

Assignments, Examinations, Grade 

lexicographic order 

Midterm, Final. 

Sometimes, we need to order labels based on their associated entries. For example, in 

Table 4.4, the student IDs are ordered based on their grades (in the last column): the 

student IDs with associated higher grades appear earlier than student IDs with associated 

lower grades. To specify this kind of indirect ordering, we extend the topological rule for 

label ordering to: 

ORDER C: <order option> [ON <label sequence set>]. 

If ON <label sequence set> is omitted, the labels are ordered with respect to their own 

values; otherwise, they are ordered with respect to the entries that are associated with 

the given label sequence set. We can specify the label orderings for Table 4.4 with: 

ORDER Mark: Midterm, Final, Grade 

ORDER Student ID: reverse numerical order ON {Mark.Grade}. 



CHAPTER 4. LAYOUT SPECIFICATION 76 

Table 4.4: The marks for CS340. 

Mark 
Student ID 

Midterm Final Grade 

90800108 90 96 93 
90800103 92 88 90 
90800112 82 84 83 
90800102 73 85 79 
90800100 82 68 75 
90800111 54 86 70 
90800114 70 64 67 
90800101 64 68 66 
90800104 50 68 59 
90800110 45 61 53 

Once we are given a topological specification, we can determine the topological positions 

of the labels and the entries of a table. The geometric positions, however, cannot be 

determined without a style specification. 

4.3 Style specification 

A style rule consists of a scope and a set of formatting attributes that are associated with 

the scope. For example, tables (scope) are displayed in Roman (formatting attribute) 

with horizontal rules only {formatting attribute). The style rules for tables fall into 

three classes: presentational-oriented style rules, content-oriented style rules, and layout­

oriented style rules. A presentational-oriented style rule has a scope that is a major region 

of a table: the table itself, the stub, the boxhead, the stub head, and the body. It affects 

the cells and separations (rules and spacing) in the major regions. A content-oriented 

style rule has a scope that is a logical object or a set of logical objects of an abstract 

table, including a category, a subcategory, a label, an entry, an entry value, and an entry 



CHAPTER 4. LAYOUT SPECIFICATION 77 

set. It affects only the cells in which the logical objects are located and the separations 

of these cells. A layout-oriented style rule has a scope that is a layout component of a 

concrete table, including a row, a column, and a block. It always affects the cells and 

separations in the layout component no matter what objects are put into it. 

The presentational-oriented style rules are independent of both the logical structure 

and the topology of a table. These style rules determine the general appearance of a table, 

regardless of any change in the logical structure and topology. The content-oriented style 

rules are associated with the logical components of a table and are independent of the 

topology. These style rules are always applied to the items in their scopes, no matter 

where the items are placed. The layout-oriented style rules are independent of the logical 

structure and affect the appearance of a set of items that are dependent on the current 

topology. If we rearrange the tabular items, then the layout-oriented style rules may be 

applied to unexpected items and require adjustment. For example, we have specified the 

following style rules for Table 4.5: 

TABLE: Roman 

double line for the top and bottom edges of the frame 

single line for the stub and the boxhead separations only 
STUB: indented style 

CATEGORY Year: bold face 

COLUMN 7: grey background. 

By applying these style rules to a new topology, the transposition of Table 4.5, we get 

Table 4.6. The general appearance of these two tables is similar because they have the 

same presentational-oriented style rules for the table and the stub. The labels of category 

Year are displayed in bold face for both tables, even though they are in different positions. 

Although the entries that are associated with label Grade are a logical unit, we intended 

to highlight these entries by specifying a layout-oriented style rule for column seven in 

the first topology. After the change of topology, this layout-oriented style rule is applied 

to the marks that are associated with 1992 Fall term. To highlight the correct items 

in the new topology, we have to remove the layout-oriented style rule for column seven 

and add a new rule for row ten. From this example, we see that presentational-oriented 

and content-oriented style rules enable us to specify styles for tables independently of 

their specific topologies. If we ignore the inconvenience caused by the layout-oriented 



CHAPTER 4. LAYOUT SPECIFICATION 

Table 4.5: The average marks for 1991-1992. 

1991 
Winter 
Spring 

Fall 

1992 

Winter 
Spring 

Fall 

Assignments 

Assl Ass2 Ass3 

85 80 75 
80 65 75 

80 85 75 

85 80 70 
80 80 70 
75 70 65 

Examinations 

Midterm Final 

60 
60 

55 

70 75 ~ffifu%~¥.i~ 
70 15 :;tillti 
60 80 ~@}lG=tt! 

Table 4.6: The average marks for 1991-1992. 

Assignments 

Assl 
Ass2 
Ass3 

Examinations 
Midterm 
Final 

Grade 

1991 
Winter Spring Fall 

85 
80 
75 

60 
75 

75 

80 
65 
75 

60 
70 

70 

80 
85 
75 

55 
80 

75 

Winter 

85 
80 
70 

70 
75 

75 

1992 
Spring~ 
~ 

g~~\1~1 
80 ii.till 
80 :,171~w: 

liittt 
70 ttil.t{ 
75 Jmlt'J 
75 :IBtil1l 

78 



CHAPTER 4. LAYOUT SPECIFICATION 79 

style rules when changing a table's topology, they have some advantages. First, since 

tables are presented as a row-column structure, we are accustomed to specifying style 

rules for rows and columns. Second, sometimes it is easier to specify layout-oriented 

style rules, than to specify content-oriented style rules to achieve the same effect. In 

the last example, we would need to use two content-oriented style rules to replace the 

layout-oriented style rule for column seven: one style rule for the label Grade and the 

other for the set of entries that are associated with label Grade. 

In the remainder of this section, we first discuss the formatting attributes for different 

style rules and then we provide more details about the presentational-oriented style rules, 

the content-oriented style rules, and the layout-oriented style rules. We also introduce 

the concepts of collective style rules and specific style rules. 

4.3.1 Formatting attributes 

We provide eight types of formatting attributes for style rules: 

• Cell style 

Thi allows us to control the appearance and the background of the items in cells. We 

can specify type faces and sizes, background colors, line spacing, leading spacing, 

horizontal and vertical alignment options, and so on. 

• Separation style 

Appropriate separation of tabular items can assist readers to find information in 

table move easily. We should be able to select white space or different types of 

horizontal and vertical rules to separate different kinds of items. 

• Frame style 

Sometimes we want to highlight· the items in a particular rectangular area by placing 

rules or white space around the area. The frame style enables us to select white 

space or different types of rules to surround a rectangular area. 

• Arrangement style 



CHAPTER 4. LAYOUT SPECIFICATION 80 

This style enables us to control the arrangement oflabels in the stub, boxhead, and 

stub head. We can specify four different styles for the stub: hierarchical, indented, 

cut-in, and repeated. These styles are in common used. Since indented style and 

cut-in style are never applied to the boxhead, we can specify only repeated style 

and hierarchical style for the boxhead. We can fill the stub head with the headings 

of the categories in the stub or leave the stub head empty. 

• Spanning style 

This allows us to span the entries that have the same value in a rectangular block. 

The spanning options are: no spanning, horizontal spanning only, vertical spanning 

only, horizontal spanning first, and vertical spanning first. These spanning options 

enable us to span entries in one dimension without spanning in the the other dimen­

sion, or to span the entries in two dimensions by giving priority to one dimension. 

Rectangular spanning is the most useful spanning shape for most tables. Other 

spanning shapes, such as an L shape, an ortho-convex shape, or even an arbitrary 

shape may be used in some tables, but it is unclear where to put the spanned value 

inside these shapes. Inappropriate placement of a spanned value may make the 

table less legible. 

• Grouping style 

This groups items into blocks of a given number of rows by the use of either white 

space or rules. We can turn grouping on or off and specify how many rows are 

in a group. The grouping separation should be specified in the separation style. 

Grouping style is usually applied to tall tables to assisting searching for items. We 

do not provide vertical grouping since the grouping of columns is never observed. 

• Category heading style 

This specifies the style of the category headings. For example, in Table 4. 7 the 

category heading Formatting attributes is displayed above its labels, but the 

category heading Scopes is presented in the stub head. The display of category 

headings can help readers comprehend the logical structure of a table more easily. 

On the other hand, some category headings, such as Year or Weekday, are familiar 

to us and we can still interpret the logical structure even when these category 

headings are not displayed. 



CHAPTER 4. LAYOUT SPECIFICATION 81 

• Size constraints 

To present a table in limited space and also achieve an aesthetic layout, we may 

want to constrain the area, the column widths, or row heights. Size constraints 

enable us to restrict the size and the shape of tables. 

Style rules may have different formatting attributes in different scopes. For example, 

the grouping style can be applied to the whole table only and the category heading style 

can be applied only to the scopes that are associated with categories. Table 4. 7 shows the 

formatting attributes for different style rules. The same formatting attribute for different 

scopes may not allow the same choices. For example, the separation style for the whole 

table allows more separation specifications than the same style for the other scopes. We 

explain the differences in the following subsections. 

4.3.2 Presentational-oriented style rules 

Presentational-oriented style rules control the general appearance of a table and its four 

major regions. The scope of these style rules can be the whole table or one of its regions: 

the stub, the boxhead, the body, and the stub head. 

A style rule for the whole table can specify the cell style, the separation style, the 

frame style, the grouping style, the category heading style, and the size constraints. The 

separation style includes the selections of rule types, rule widths, and white space for 

different kinds of separations in a table, including horizontal separation (which separates 

the rows), vertical separation (which separates the columns), grouping separation (which 

separates a group of rows), block separation (which horizontally and vertically separates 

the items that are associated with labels in different subhierarchies), stub separation 

(which vertically separates the stub and the stub head from the boxhead and the body), 

and boxhead separation (which horizontally separates the stub head and the boxhead 

from the stub and the body). For example, the separation styles: 



CHAPTER 4. LAYOUT SPECIFICATION 82 

Table 4. 7: The formatting attributes for different style rules. 

Formatting attributes 
Scopes Cell Separ- Frame Arrange- Spann- Group- Cate- Size 

ation ment mg mg gory constr. 

Present- Table v' v' v' v' v' v' 
ational- Stub v' v' v' v' 
structure Boxhead v' v' v v' 
style Stub head v' ;;r v' 
rules Body v' v' v' 

Category v' v' v' 
Content- Subcategory v' v' v' 
oriented Label v' v' 
style Entry v' v' 
rules Entry value v' v' 

Entry set v' v' v' 
Layout- Block v' v' v' v' v' 
oriented 

Row v' v' v' v' v' style 
rules Column v' v' v' v' v' 



CHAPTER 4. LAYOUT SPECIFICATION 

Table 4.8: The marks of CS340. 

Assignments Examinations 
Grade 

Assl Ass2 Ass3 Midterm Final 

1991 

Winter 85 80 75 60 75 75 
Spring 80 65 75 60 70 

' 
70 

' Fall 80 85 75 55 80 ' 75 
' ---------- ----------------~---------------L-------

1992 

Winter 
Spring 

Fall 

Stub separation: 

Boxhead separation: 

Horizontal separation: 

Vertical separation: 

Block separation: 

generate Table 4.8. 

' 
' ' ' 85 80 70 ' 70 75 

80 80 70 70 75 

75 70 65 60 80 

single line with lOpt white space 

single line with lOpt white space 

5pt white space 

5pt white space 

dashed line with lOpt white space 

' ' ' ' ' 75 ' 
75 

70 

83 

A frame style for the whole table includes the selection of rule types, rule widths, and 

white space for the left, right, top, and bottom edges of the table frame. The frame style 

for Table 4.8 is: 

Left edge: 5pt white space 

Right edge: 5pt white space 

Top edge: single lines with 5pt white space 

Bottom edge: single lines with 5pt white space 

The grouping style includes the selection of grouping and the number of rows to be 

grouped. Table 4.9 is given by the following style rules: 



CHAPTER 4. LAYOUT SPECIFICATION 85 

Table 4.9: The marks of CS340. 

Student ID 
Mark 

Midterm Final Grade 

90800100 82 68 75 
90800101 64 68 66 
90800102 73 85 79 
90800103 92 88 90 
90800104 50 68 59 

------------ ---------------------
90800108 90 96 93 
90800110 45 61 53 
90800111 54 86 70 
90800112 82 84 83 
90800114 70 64 67 

------------ ---------------------
90800115 60 70 75 
90800116 88 70 79 
90800117 65 71 68 
90800118 94 80 87 
90800119 72 72 72 

------------ ---------------------
90800201 85 75 80 
90800202 46 60 53 
90800203 98 90 94 
90800204 74 84 89 
90800205 88 60 70 



CHAPTER 4. LAYOUT SPECIFICATION 86 

Table 4.10: The average marks of some courses, 1991-1992. 

1991 ' 1991 : 1991 : 1992 ' 1992 : 1992 ' ' ------ 1 ______ 1 ---- 1 _______ 1 ----- 1 _____ 
I L I I I 

Winter : Spring : Fall : Winter : Spring : Fall 

CS241 

Midterm 60 60 55 70 70 60 
Final 75 70 80 75 75 80 
Grade 75 70 75 75 75 70 

CS242 

Midterm 90 84 55 70 70 60 
Final 76 70 75 80 50 84 
Grade 83 77 65 75 60 72 

CS246 

Midterm 60 80 95 60 78 74 
Final 40 70 83 72 70 80 
Grade 50 75 89 66 74 77 



CHAPTER 4. LAYOUT SPECIFICATION 87 

Table 4.11: The average marks for 1991-1992. 

Mark 

Assignments Examinations 
Grade 

Assl Ass2 Ass3 Midterm Final 

1991 

Winter 85 80 75 60 75 75 
Spring 80 65 75 60 70 70 
Fall 80 85 75 55 80 75 

1992 

Winter 85 80 70 70 75 75 
Spring 80 80 70 70 75 75 
Fall 75 70 65 60 80 70 

4.3.3 Content-Oriented style rules 

The scope of a content-oriented style can be a category, a subcategory, a label, an entry, 

a set of entries with the same value, or a set of entries that are associated with a label 

set. 

The style rule for a category may specify the category heading style, the cell style, 

and the separation style. For example, the style rules: 

CATEGORY Term: bold face 

CATEGORY Mark: heading is displayed 

single line for horizontal separation 

generate Table 4.11. 

The style rule for a label, an entry or a set of entries with the same value may specify 

the cell style and the frame style. The style rules: 

LABEL Mark.Grade: underlined 



CHAPTER 4. LAYOUT SPECIFICATION 

Table 4.12: The average marks for 1991-1992. 

Assignments Examinations 
Grade 

Assl Ass2 Ass3 Midterm Final 

1991 
,,, ....... f'tt 80 ~Mt~J.)1% 

80 65 
75 
75 

Winter 
Spring 
Fall 80 !!t§iR:11 75 

1992 

Winter tW!Jff/1 80 
Spring 80 80 
Fall 75 70 

70 
70 
65 

60 
60 
55 

70 
70 
60 

ENTRY {Year.1991, Term.Spring, Mark.Grade}: 

bold face 

dotted line for the frame 

ENTRY VALUE 85: grey background 

generate Table 4.12. 

75 75 ············ 70 . 70 : ............. 
80 75 

75 
75 
80 

75 
75 
70 

88 

The style rule for a subcategory or for an entry set that is associated with a label 

set may specify the cell style, the separation style, and the frame style. The frame style 

controls all the frames of the blocks occupied by a subcategory or an entry set. The style 
rules: 

SUBCATEGORY Examinations: dotted line for the left and right edges of the frame 

dashed lines for the horizontal and vertical separation 
ENTRY SET {Term.Winter, Mark.Assignments}: 

grey background 

generate Table 4.13. 



CHAPTER 4. LAYOUT SPECIFICATION 

Table 4.13: The average marks for 1991-1992. 

1991 

Winter 
Spring 
Fall 

1992 

Spring 
Fall 

Assignments 

Assl Ass2 Ass3 

80 
80 

80 
75 

65 
85 

80 
70 

75 
75 

70 
65 

4.3.4 Layout-Oriented style rules 

Examinations : 
-------------~ Grade ' . Midterm : Final ( 

60 
60 
55 

70 
70 
60 

75 
70 
80 

75 
75 
80 

75 
70 
75 

75 
75 
70 

89 

The scope for a layout-oriented style rule can be a row, a column, or a block. The possible 

style rules for these scopes are the spanning style, the cell style, the separation style, the 

frame style and the size constraints. The size constraints specify lower and upper bounds 

of the column widths and row heights within the scope and lower and upper bounds on 

the total width and height within the scope. For example, the style rules: 

COLUMN 7: single line for the left edge of the frame 

ROW 6: grey background 

BLOCK (8, 2, 10, 4): horizontal spanning first 

dashed line for all separations 

single line for the top and right edges of the frame 

generate Table 4.14. 



CHAPTER 4. LAYOUT SPECIFICATION 

Table 4.14: The average marks for 1991-1992. 

1991 

Winter 
Spring 

1992 

Winter 
Spring 

Fall 

Assignments Examinations 

Assl Ass2 Ass3 Midterm Final 

85 
80 

80 
65 

85 : 80 : 

75 
75 

- - - - - L - - - - ' 70 
80 : 

t------r----r-----
75 : 70 65 

60 
60 

70 
70 
60 

75 
70 

75 
75 

80 

4.3.5 Collective and specific style rules 

Grade 

75 
70 

75 
75 
70 

90 

The appearance of a table can be governed by many style rules. Some style rules are given 

by a publisher or an editor of a book to achieve a uniform appearance of all tables in the 

same book. Some style rules are given by a table designer for the specific presentation 

of one table. We can classify the style rules for a table into two classes: collective style 
rules and specific style rules. 

A collective style rule is a style rule for the presentation of a collection of tables. 

A collective style rule can be any style rule that we have discussed in Sections 4.3.2 

through 4.3.4. If a collective style rule is a presentational-oriented style rule, it should 

be applied to all the tables. If a collective style rule is a content-oriented style rule or 

layout-oriented style rule, it is applicable to only the tables that contains the scope of the 

style rule. For example, a collective style rule for a category, say the category Year, is 
applicable only to tables that contain a category named Year, and a collective style rule 

for a particular column, say the fifth column, is applicable only to tables that contain at 
least five columns. 



CHAPTER 4. LAYOUT SPECIFICATION 91 

Sometimes we need to override some formatting attributes of the collective style rules 

to present a table differently for specific reasons. In these cases we use specific style rules. 

For example, if we want to highlight the highest grades, we can use a specific style rule 

to set a grey background for the entries with the highest grades. 

There are a number of advantages in the separation of the collective style rules from 

specific style rules. First, the collective style rules need to be specified only once for a 

collection of tables. Second, if we want to change the appearance of a collection of tables, 

we need to change only the collective style rules. Third, authors do not need to know 

the details of the collective style rules and editors do not need to know the details of the 

tables when they design the collective style specification. 

4.4 Problems 

A pp lying a topological specification to a table is straightforward. However, applying 

a style specification is another story. Many problems arise when applying a group of 

style rules to a table. We discuss three key problems: style conflict, the side effects of 

layout-oriented style rules, and the dynamic change of spacing. 

4.4.1 Style conflict 

We do not have to specify style rules for all components of a table. A component can 

inherit the style rules of one of its super-components or the default style rules. For 

example, a cell that holds a label can inherit the style rules of the label's category and 

the cell's region (stub, boxhead, or stub head); a cell that holds an entry can inherit the 

style rules of any entry set that contains the entry or the style rules of the cell's row 

and column. Thus, we need to find approaches to solve style inheritance. If we were 

able to use a tree structure to describe the relationships among the tabular components, 

we would define a priority order for style inheritance based on single inheritance. There 

are, however, multiple inheritances in a table. For example, a cell belongs to its row and 

column, which do not contain each other completely; thus, it can inherit style rules from 

both the row and the column. Therefore, the approaches for style inheritance should 

handle multiple inheritance. Three approaches can be used to make the decision: 



CHAPTER 4. LAYOUT SPECIFICATION 92 

1. Combine the style rules of all super-objects 

In this approach, we attempt to find style rules that satisfy all the style rules from 

all the super-objects. For example, italic Roman is the result of combining Roman 

and italic. There may not be, however, such a simple solution for all the style rules. 

For example, there is no suitable font that is the result of combining Roman and 

Courier. 

2. Use the style rules of the super-object with the highest priority 

In this approach, either the tabular system or the user determines which super­

object has the highest priority. Although we may define a realizable solution with­

out user intervention, there are always cases that cannot meet users' expectations. 

This approach does not allow an object to inherit the combination of the style 

rules of its super-objects, which is similar to the way that c++ handles multiple 

inheritance: a subobject can inherit a method from a specific super-object, but it 

cannot inherit the combination of the methods in all super-objects. 

3. Combine the previous two approaches 

First, we try to combine the style rules of all super-objects. Whenever there is 

no satisfactory combination, we use the style rules of the super-object with the 

highest priority. This approach overcomes the shortcomings of the previous two 

approaches. 

Beach's system provides style rules for columns and rows and allows a cell to inherit 

the style rules of its column and row. Therefore, his system also needs to handle multiple 

inheritance. Beach adopted the first approach to solve style conflicts. He didn't, however, 

discuss the case in which there is no solution for the combination of multiple style rules. 

Since Vanoirbeek's system models tables as a tree structure, it provides only style rules 

for the objects in a tree structure; thus, this system does not have the problem of multiple 

inheritance. Our system adopts the third approach to handle style conflicts. We describe 

our approach in more detail in Chapter 6. 



CHAPTER 4. LAYOUT SPECIFICATION 93 

4.4.2 Side effects of layout-oriented style rules 

From previous examples, we have seen that layout-oriented style rules may be applied to 

unexpected items after changing the topology of a table. This may happen whenever we 

specify layout-oriented style rules for logical components. To avoid these unpleasant side 

effects, we encourage users to specify content-oriented style rules for logical components. 

We can use three methods to handle the problem of layout-oriented style rules: 

1. We do not change the style rules, but provide commands to remove layout-oriented 

style rules. In this case, users are responsible for the removal of old layout-oriented 

style rules and for the specification of new rules. 

2. We remove or automatically suppress all layout-oriented style rules once the topol­

ogy is changed. Therefore, users have to specify new style rules for the new topology. 

3. We attempt to adjust the style rules after a topological change. For some changes, 

such as transposition, we can easily adjust the style rules. For other changes, 

however, we cannot adjust the style rules so easily. Since items in a block may be 

separated in multiple blocks after changing topology, a style rule for a block in the 

old topology needs to be replaced by multiple style rules for different blocks in the 

new topology. 

We adopt the first approach in our tabular editor since it gives users the power to 

remove or to keep the layout-oriented style rules after changing the topology. 

4.4.3 Dynamic change of spacing 

To achieve an aesthetic layout, line and separation spacing should depend on the font 

size used to present the items. If we use a larger ( or smaller) font to present a table, 

this spacing should be larger ( or smaller) as well. We can use one of the following three 

approaches to handle this problem: 

1. Users must change the spacing whenever they change a font size. They may not 

know, however, how much spacing is appropriate for a well-designed presentation. 



CHAPTER 4. LAYOUT SPECIFICATION 94 

2. We change the spacing to the appropriate values for well-designed presentation 

whenever the font sizes are changed. If users really do not like the new spacing, 

they can change it. 

3. We provide two kinds of spacing: relative and absolute. Relative spacing is propor­

tional to the font size of an object and absolute spacing is fixed. Users can select 

either kind according to their requirements. 

The third approach is the best solution because it does not require respecification of the 

spacing after changing font size. Our editing system, however, uses the second approach 

because we had not developed the third approach when implementing the system. 

4.5 Expressiveness of the presentational model 

The topological rules in the presentational model allow only the arrangement of labels 

in the stub and the boxhead. This approach forces users to follow the guideline we 

gave in Section 1.2.2; namely, place the most frequently referenced items to the left or 

top of a table. Experiments [Wri68] have proved that readers tend to ignore the labels 

that are put in the body and consider them as entries. Thus, the presentation model 

does not allow a user to specify a topology in which some labels are placed in the table 

body, such as in Table 4.15. In Table 4.15, the apartment numbers in boldface are labels 

and they are placed in the body to shorten the table length. In some large tables, the 

labels in the boxhead are replicated many times in the body to help users to locate items 

faster. Table 4.16 shows the phosphorus loadings to the Great Lakes, from 1976 to 1982. 

Notice that the labels in the boxhead are repeated three times for each lake in the stub. 

After users locate a lake, they can immediately search for a year in the same row. The 

replication saves eye-traveling time between the the boxhead and the located row. Our 

presentational model is also unable to specify this kind of topological arrangement. 

The presentational model enables users to specify styles from different viewpoints: 

general, logical, and layout. The presentational-oriented style rules, which control the 

general appearance of tables, are usually specified as collective style rules for a set of 

tables. The content-oriented style rules, which specify style for the logical components, 



CHAPTER 4. LAYOUT SPECIFICATION 95 

Table 4.15: Apartments at 31 Eleanor Drive, Nepean. 

Floor Number Size Exposure Number Size Exposure 
number of rooms (ft2

) of rooms (ft2
) 

Aptl Apt2 

1 1 700 West 1 700 West 

Apt3 Apt4 

1 1 700 West 1 700 East 

Apt5 Apt6 

1 1 700 East 1 700 East 

Apt7 Apt8 

2 2 1050 West 2 1050 West 

Apt9 AptlO 

2 2 1050 East 2 1050 East 

Aptll Apt12 

3 3 1550 West 3 1550 West 



CHAPTER 4. LAYOUT SPECIFICATION 96 

Table 4.16: Phosphorus loadings to the Great Lakes, 1976 to 1982. 

Lake Erie 1976 1977 1978 1979 1980 1981 1982 

Point source 6,006 5,832 4,631 2,890 2,452 1,898 1,455 
Non-Point source 

Tributary 7,211 6,545 12,874 6,241 9,773 6,745 9,154 

Atmospheric 1,119 1,119 879 1,550 1,550 729 660 

Total load 14,336 13,496 18,384 10,681 13,773 9,372 11,269 

Target load 14,606 14,606 11,000 11,000 11,000 11,000 11,000 

Lake Ontario 1976 1977 1978 1979 1980 1981 1982 

Point source 2,119 2,594 2,030 2,419 2,122 1,818 1,643 

Non-Point source 
Tributary 4,490 2,970 2,899 3,200 3,069 2,435 3,318 
Atmospheric 473 623 764 311 311 328 600 

Total load 7,082 6,187 5,693 5,930 5,502 4,581 4,961 

Target load 6,072 6,072 5,000 5,000 5,000 5,000 5,000 

All takes 1976 1977 1978 1979 1980 1981 1982 

Point source 9,595 9,802 7,739 6,252 5,568 4,536 3,893 
Non-Point source 

Tributary 21,248 16,017 24,517 18,432 20,631 17,750 21,500 
Atmospheric 5,433 5,583 7,284 11,157 11,157 2,481 3,393 

Total load 36,276 31,402 39,540 35,841 37,356 24,767 28,786 
Target load 32,562 36,562 31,360 31,360 31,360 31,360 31,360 



CHAPTER 4. LAYOUT SPECIFICATION 97 

enable users to specify style independently of a table's topology. The layout-oriented style 

rules, which specify style for the layout components, provide the traditional way to specify 

style based on the row-column structure. The formatting attributes for various style rules 

were carefully chosen according to the guidelines we gave in Section 1.2.3 and as a result 

of the examination of different kinds of tables. We offer the styles that are commonly 

provided by other systems, such as various typographic options for items, commonly-used 

styles for rules, sufficient alignment options, and different methods of spanning items. We 

also provides some styles that are seldom provided by other tabular composition systems, 

for example, grouping items with rules or white space and arranging items in the stub 

in cut-in or indented styles. However, the presentational model cannot specify all styles 

observed in all tables. For example, we do not handle oblique lines; thus, we are unable 

to specify a table in which the headings of the categories in both dimensions are put 

in the stub head, separated by an oblique line. We allow only horizontal typesetting of 

text, vertical typesetting is not provided. We are not able to use graphical elements to 

highlight visual presentations; for instance, using horizontal or vertical braces to group 

items, or using arrows to strengthen the effect of spanning items. 

We also did experiments to measure how well the presentational model can be applied 

to tables in the real world. We classified the tables from the books used in the experiment 

for the abstract model described in Section 2.4. Table A.2 in Appendix A reveals that 

the model can be used to specify the topology of 94 percent of the tables in these books 

and to specify the style of 97 percent of the tables. From these experiments, we see that 

our presentational model matches the real-world situation quite well. 



Chapter 5 

Formatting 

An abstract table specifies only the logical structure of a table, it ignores the topological 

and typographical attributes, whereas a concrete table is a visualization of an abstract 

table in two dimensions. After applying a topological specification and a style specifi­

cation to an abstract table, we generate a grid structure, an intermediate form between 

an abstract table and a concrete table, and size constraints for the columns and rows of 

the grid structure. The formatting process determines the physical dimension of ·a grid 

structure that satisfies the size constraints. Many factors contribute to the complexity 

of the formatting process. We focus on tabular formatting that provides automatic line 

breaking and allows size constraints expressed as linear equalities or inequalities, but does 

not provide objective functions. We first prove that the complexity of tabular formatting 

is NP-complete, and then we present an exponential-time algorithm that can solve the 

formatting problem in polynomial time for many tables. 

5.1 Complexity of tabular formatting 

The following three factors contribute to the complexity of tabular formatting: 

1. The method of handling the line breaking of text within a table cell: fixed or 

automatic. 

98 



CHAPTER 5. FORMATTING 

Table 5.1: The complexity of tabular formatting. 

Line Size 
breaks constraints 

None 

Fixed 
Linear equality 
or inequality 

Nonlinear 
expression 

None 

Automatic 
Linear equality 
or inequality 

Nonlinear 
expression 

1 Proved by Richard Beach [Bea85]. 
2 See Theorem 5.1. 

None 

pl 

p7a 

1 

p73 

NPC2 

1 

Objective functions 

Diameter Area 

p7a p73 

pl p73 

1 1 

1 1 

NPC?3 NPC?3 

1 1 

White space 

p73 

p7a 

1 

1 

NPC?3 

1 

3 These results are conjectured; see the report of Wang and Wood (WW96] and the dis­
cussion in Chapter 7. 

99 

2. The kinds of size constraints for the columns and rows: none, linear equalities or 

inequalities, or non-linear expressions. 

3. The objective function that evaluates the quality of a tabular layout: none, minimal 

diameter, minimal area, or minimal white space. 

Based on previous research and our current work, we list the complexity of tabular 

formatting for different combinations of the restrictions in Table 5.1, where P denotes 

polynomial-time solvable and NPC denotes NP-complete. 

As far as we know, Beach is the only person who has discussed the computational 

complexity of tabular formatting. In his PhD thesis [Bea85], Beach presented a tabular 



CHAPTER 5. FORMATTING 100 

formatting problem, RANDOM PACK, that arranges a set of unordered table entries into 

minimum area and proved that RANDOM PACK is NP-complete. Because of the random 

positioning of the table entries, RANDOM PACK does not produce pleasing and readable 

tables that clearly convey the logical structure. Beach also presented another problem, 

GRID PACK, that formats a set of table entries assigned to lie between particular row and 

column grid coordinates within the table and proved that GRID PACK is polynomial­

time solvable. GRID PACK, however, assumes that the width and the height of the table 

entries are fixed; thus only fixed line breaks are allowed. Although Beach also allowed 

size constraints expressed as linear equalities or inequalities in his table model, he did 

not include the size constraints in RANDOM PACK and GRID PACK. The designers of 

TAFEL MUSIK have designed an exponential-time algorithm for tabular formatting that 

provides automatic line breaking, allows size constraints expressed as linear equalities and 

inequalities, and considers objective functions. However, they have analyzed neither the 

complexity of tabular formatting nor the running time of their algorithm. 

We present a tabular formatting problem with restrictions on the three factors listed 

above. Automatic line breaking is important and useful for tabular formatting. It is also 

important to allow users to control the selection of the dimensions of columns and rows 

for a table. We simplify tabular formatting without losing these features. 

We first disregard objective functions. The size constraints, we believe, play a more 

important role than the objective function in the selection of the final layout for the 

following reasons: 

1. A layout that is optimal with respect to an objective function does not always 

provide the most appropriate layout. 

An optimal solution may make one column too narrow and another too wide, 

or generate a table with an unacceptable aspect ratio. We need to specify size 

constraints to avoid such pathological cases. 

2. Users are more concerned about size constraints than they are about objective 

functions. 

Users tend to care more about the sizes of tabular components, Such as whether 

a table can be placed inside a region of a given width and height, whether the 



CHAPTER 5. FORMATTING 101 

proportions of the sizes among components in a table are appropriate, and whether 

the proportions between a table and the surrounding objects are appropriate. For 

example, the width of a table should not be wider than the page size, the widths of 

different columns should not differ too much, and the width of a table should not be 

too narrow if the table is placed between wide objects. Once these requirements are 

satisfied, it really does not matter too much whether a table occupies the smallest 

space or contains the least white space. Such requirements are specified by size 

constraints, rather than by objective functions. 

3. We do not always need an optimal solution. 

In most cases, a solution that is close to optimal is good enough. Users can adjust 

the size constraints to approach a solution that is closer to the optimal solution 

for a particular table. For example, we can specify a thinner column to reduce the 

white space in a column or specify a thinner or shorter table to reduce the area or 

diameter of a table. . 

When we do not use objective functions, we can select any layout that satisfies the size 

constraints. We call this strategy an if-satisfied-then-taken strategy. 

We next simplify the size constraints. We consider only the size constraints that can 

be expressed as linear equalities or inequalities that contain only variables for column 

widths or variables for row heights, but not for both. Size constraints expressed with 

these kinds of linear equalities or inequalities are called homogeneous. For example, 

suppose we use w3 to denote the width of the jth column and h; to denote the height of 

the ith row, then w1 + 2wa ::; 100 and h2 - 3h4 = 0 are homogeneous size constraints, 

whereas h1 + w2 2: 500 is not. If a size constraint contains only variables for column 

widths, it is called a width constraint, and if a size constraint contains only variables for 

row heights, it is called a height constraint. 

Finally, we fix the direction of typesetting. We assume that the text is read row by 

row from top to bottom and either from left to right or from right to left within each 

row. Given a rectangular region, we first horizontally fill the region with text that is as 

wide as possible. If the region is not wide enough for all the text, we break the text into 

lines and vertically fill the region. We can easily extend our model to allow text that is 

read column by column, but our assumption simplifies the presentation. 



CHAPTER 5. FORMATTING 

rl 

r2 

r3 

r4 

cl c2 c3 c4 c5 

• Block (3, 4, 4, 6) 

Figure 5.1: A 4 x 7 grid. 

5.2 Grid structure 

102 

c6 c7 

A grid structure describes the placement of tabular items in a two-dimensional lattice. 

We inherited this concept from Beach's system [Bea85] and make some changes. A grid 

structure consists of two components: a grid and a set of non-overlapping items that are 
placed on the grid. 

An m x n grid is a planar integer lattice with m rows and n columns. For example, 

Fig. 5.1 shows a 4 x 7 grid. The rows are identified from top to bottom by 1, 2, ... , m and 

the columns are identified from left to right by 1, 2, ... , n. The intersection of a row and 

a column is called a cell and the cell that is the intersection of the ith row and the jth 

column is identified by ( i, j). A block is a rectangular region that completely surrounds 

a set of cells, and it is identified by (t, l, b, r), where (t, l) is its upper left cell and (b, r) 
is its lower right cell. 

An item is an object that is placed in a block of a grid. The content of an item 

can be a string, a number, a textual object, a fixed-sized picture and image, or a table. 

The size Junction of an item is a decreasing step function that describes the line-breaking 

characteristics of the item for a particular output device. It takes a width as its argument 

and returns the height of the item when the item is typeset within the given width. We 



CHAPTER 5. FORMATTING 103 

can assume that both the width and the height are integers. The characteristics of a size 

function for a textual item are shown in Fig. 5.2, from which we can see that: 

1. The height of an item is monotonically non-increasing as the width increases, be­

cause an item does not require more lines when the width increases. 

2. The height of an item does not change continuously. When we increase the width 

of an item, the height is unchanged until the width is large enough to allow the 

first non-broken unit in a line to move to the previous line. Thus, at some specific 

widths (break points b2, ba, and b4 in Fig. 5.2), the height of an item decreases. For 

the range of widths between two consecutive break points, the height of an item is 

constant. 

3. There is a minimal width for an item (b1 in Fig. 5.2). The minimal width should 

be the width of the longest non-broken unit in the item. We designate the min­

imal width as a special break point. The height is maximized when the width is 

minimized. 

4. There is a maximal width for an item (b4 in Fig. 5.2). The maximal width is the 

width of the item without any line breaking. The height is minimized when the 

width is maximal. 

These characteristics also hold for tables, mathematical equations, and fixed-sized pic­

tures and images. They do not, however, hold for variable-sized pictures and images, 

because the height of a picture or an image also increases when the width increases. We 

use a step to denote the range of widths in [bk, bk+i), where bk and bk+i are two adjacent 

break points or bk is the maximal break point and bk+i is +oo. The lower bound of a 

step is called a step head and the upper bound of a step, which is bk+i - 1 if the step is 

[bk, bk+1) or +oo if the step is [bk, +oo ), is called a step tail. A size function returns the 

same height for all the widths in a step. In Fig. 5.2, the size function consists of four 

steps [b1,b2), [b2 ,b3 ), [b3 ,b4), and [b4,+oo). 

We can specify an item by a six-element tuple (t, l, b, r, e, ,p ), where (t, l, b, r) is the 

block in which the item is placed in the grid, e is its size function, and 7/; is the set of 

step heads for f For convenience, we need to define some more notation. If s is a step, 



CHAPTER 5. FORMATTING 104 

~(w) 

'---'----'----'-----L-______ w 

b1 b2 ba 

Figure 5.2: The characteristics of a size function. 

we use s.head to denote its head and s.tail to denote its tail. If ,j, is a set of step heads 

for a size function, we use ,J,[min] to denote the minimal step head and ,J,[max] to denote 
the maximal step head. 

5.3 The tabular formatting problem 

The goal of tabular formatting is to calculate the final geometric positions of all the 

tabular components. By applying a topological specification and a style specification to 

an abstract table, we are able to generate an m x n grid, a set of items placed on the grid, 

and a set of size constraints. After that, we need to determine the physical dimensions 

of the columns and the rows in the grid so that all the size constraints are satisfied and 

all the items are placed completely inside the block they occupy. We can formally define 

Tabular Formatting as follows: 



CHAPTER 5. FORMATTING 105 

INSTANCE: An m X n grid, r non-overlapping items: Ok = (tk, lk, bk, Tk, ek, 'Pk) 

(1::; k::; r), ands size constraints: e 1 ,e2 , ••• ,e,. 

QUESTION: Are there n + m integers w1 , w2, ... , Wn and h1, h2, ... , hm such that 
l. W = W1, W2, •.• , Wn satisfy all width constraints among e1, e2, ... , e,; 
2. H = h1, h2, ... , hm satisfy all height constraints among e 1 , e 2 , ... , e,; 

3. \lok(l::; k::; r), I:;~z. Wp ~ 'Pk[min] and ek(I:;~z. Wp) ::; I:~~t• hq• 

The w;(l ::; j ::; n) are the column widths and the h,(l ::; i::; m) are the row heights of 

the grid. The first two conditions ensure that w;(l ::; j ::; n) and h,(1 ::; i ::; m) satisfy all 
the size constraints. The third condition ensures that the width of the block for each item 

is at least the minimal width of the item and the height of the block should be sufficient 

to hold the item when it is typeset within the width of the block. If w3(l ::; j ::; n) 
and h,(1 ::; i ::; m) satisfy all three conditions for an instance, we say that the instance 

has solution (W, H). If they satisfy only the third condition for an instance, we say the 

instance has layout (W, H). 

For an instance of the tabular formatting problem, there may be more than one 

solution. Suppose we have an instance that consists of a 5 x 3 grid and the 13 items 

shown in Table 5.2. The size constraints for this instance are: 

290pt ::; W1 + W2 + W3 ::; 380pt 

h1 + h2 + hs + h4 + hs ::; 350pt 
W3 ~ l20pt. 

there are several solutions for this instance. One solution, shown in Table 5.2, is: 

W1 = 65pt, W2 = 68pt, W3 = 230pt, 

h1 = 31pt, h2 = 47pt, hs = 45pt, h4 = 47pt, h5 = 45pt 

and another solution, shown in Table 5.3, is: 

W1 = 65pt, W2 = l05pt, W3 = 125pt, 

h1 = 33pt, h2 = 62pt, hs = 74pt, h4 = 76pt, h5 = 74pt. 



CHAPTER 5. FORMATTING 106 

Table 5.2: The tournament schedule. 

Activity Final Entry Starting Date, Location, Times 
Date 

Men's & Prelim. Sat. Jan. 28, Finals Sun. Jan. 29, 
Women's Monday, 11:00am-6:00pm, Court 1068-1073, PAC 
squash Jan. 23, 
Singles 1:00pm, Prelim. Sun. Feb. 5, 10:00am-6:00pm, 
Tennis PAC 2039 Finals Sun. Feb. 12, 10:00am-6:00pm, 

Waterloo Tennis Club 
Mixed Prelim. Wed. Mar. 8, 8:00pm-11:30pm, 
Volleyball Friday, Finals Mon. Mar. 13, 8:00pm-11:30pm, 

Mar. 3, Main Gym, PAC 

Men's & 1:00pm, Prelim. Fri. Mar. 17, 12:00pm-5:00pm, 
Co-Rec PAC 2039 Finals Sat. Mar. 18, 3:00pm-1:00am, 
Broomhall Columbia Icefield 

5.4 Tabular formatting is NP-complete 

We show that Tabular Formatting is NP-complete by reducing it to Subset Sum [GJ79], 

which is known to be NP-complete. The definition of the Subset Sum is as follows: 

INSTANCE: A finite set A, a size s( a) E z+, for each a E A, and a positive 
integer B. 

QUESTION: Is there a subset A'~ A such that LaEA' s(a) = B. 

For convenience, we abbreviate Tabular Formatting as TF and Subset Sum as SS. 

Theorem 5.1 TF is NP-complete. 

Proof: It is easy to see that TF E NP since we can check in polynomial time whether 

a given set of n + m integers satisfies all three conditions. 

We reduce SS to TF. Given an instance of SS, we first divide A into d nonempty 

subsets A1 , A2 , ••• , Aa by putting elements of the same size into the same subset. For 



CHAPTER 5. FORMATTING 107 

Table 5.3: The tournament schedule. 

Activity Final Entry Date Starting Date, 
Location, Times 

Men's & Prelim. Sat. Jan. 28, 
Women's Finals Sun. Jan. 29, 
squash 11:00am-6:00pm, 

Monday, Jan. 23, 
Court 1068-1073, PAC 

Singles Prelim. Sun. Feb. 5, 1:00pm, PAC 2039 
Tennis 10:00am-6:00pm, 

Finals Sun. Feb. 12, 
10:00am-6:00pm, 
Waterloo Tennis Club 

Mixed Prelim. Wed. Mar. 8, 
Volleyball 8:00pm-ll:30pm, 

Finals Mon. Mar. 13, 
8:00pm-11:30pm, 

Friday, Mar. 3, Main Gym, PAC 

Men's & 1:00pm, PAC 2039 Prelim. Fri. Mar. 17, 
Co-Rec 12:00pm-5:00pm, 
Broomhall Finals Sat. Mar. 18, 

3:00pm-1:00am, 
Columbia Icefield 



CHAPTER 5. FORMATTING 108 

example, if A= {a1,a2,a3,a4,a5,a6}, s(a1) = s(a3 ) = s(a5 ) = 3, s(a2) = s(a6) = 5, and 

s(a4) = 2, then A is partitioned into three subsets: A1 = {a1, a3 , a5}, A2 = {a2, a6 } and 

A3 = {a4}. We use s(A,) to denote the size of the elements in subset A; and IA,I to 

denote the number of elements in A;. Thus, SS is equivalent to this question: Are there 

d integers zi, z2, ... , zd such that O :S zk :S !Aki (1 :S k :S d) and Lti (zk x s(Ak)) = B. 

We can construct an instance of TF from this version of SS as follows: 

1. Let m = n = d. 

2. Let s = 2 and the size constraints be: 

- B + L%=1 s(Ak), Lj=l Wj 

L~1h; L%=1 ((1Akl + 1) x s(Ak)) - B. 

3. Let r = d and, for each k, 1 :S k :Sr, Ok= (k, k, k, k, tk, ,/Jk), where 

"'Pk= {ix s(Ak) Ii= 1,2, ... , !Aki+ 1} 

tk(x) 1s undefined ifx < s(Ak) 

- (IAkl + 1) x s(Ak) if s(Ak) :S x < 2 x s(Ak) 

if !Aki x s(Ak) :S x <(!Aki+ 1) x s(Ak) 
if x ?: {!Aki+ 1) x s(Ak). 

From the previous example of an instance of SS, we can construct a 3 x 3 grid in which 

three items are to be placed in the cells along the diagonal (Fig. 5.3(a)). The size function 

for o1 is shown in Fig. 5.3(b ). It is should be clear that the construction takes polynomial 

time in the size of the instance. 

Suppose that there is a subset A'~ A such that LaEA' s(a) = B. Then, there must be 

d integers z1, z2, ... , Zd such that O :S Zk :S IAkl (1 :S k :S d) and L%=1 (zk x s(Ak)) = B. 

We let w; = (z; + 1) x s(A;) (1 :S j :Sn) and h, = (IA.I+ 1 - z;) x s(A;) (1 :Si :Sm). 
Now we prove that w; (1 :S j :S n) and h; (1 :S i :S m) satisfy the three conditions of 
TF. 



CHAPTER 5. FORMATTING 

cl c2 c3 

r1 01 

r2 02 

r3 03 

(a) 

12 

9 

6 

3 

3 

I ,------, 

6 

I 
I ,------, 
I I 

9 12 

(b) 

109 

w 

Figure 5.3: An example of constructing an instance of TF from an instance of SS. 

First, 

Lj=l w; - Lf=1((z; + 1) x s(A;)) 
- L%=1 (zk x s(Ak)) + L%=1 s(Ak) 
- B + L%=1 s(Ak), 

which implies that the first condition holds. 

Second, 

L~1 h; - Lf=1 ((IA;I + 1 - z;) x s(A,)) 
- L%=1 ((1Akl + 1) x s(Ak)) - L%=1 (zk x s(Ak)) 
- L%=1 ((1Akl + 1) x s(Ak)) - B, 

which implies that the second condition holds. 

Now, for each ok(l ::; k::; r), 

L;=kWp - Wk 
> s(Ak) 
- 7Pk[min], 

and 



CHAPTER 5. FORMATTING 

{k(I:;=k Wp) {k(Wk) 
- {k((zk + 1) x s(Ak)) 

(IAkl + 1- zk) x s(Ak) 
- hk 

< I:!=k hq, 

which implies that the third condition holds. 

Therefore, the instance of TF has solution (W, H). 

110 

Conversely, if the instance of TF has a solution (W, H), then w3 (l ~ j ~ n) must 

fall in a step s3 = [u3 x s(A3), t3) of item o3, where 1 ~ u3 ~ IA3I + 1 and t3 is either 

(u3 + 1) x s(A;) or +oo. We let Zk = uk - l (1 ~ k ~ d), in which case O ~ Zk ~ IAkl• 
We prove that I:%= 1(zk x s(Ak)) =Bin two steps. 

First, 

I:%= 1(zk x s(Ak)) - I:%:1((uk -1) x s(Ak)) 
I:%=1(uk x s(Ak)) - I:%:1 s(Ak) 

< I:k=l Wk - I:%:1 s(Ak) 
- B, 

Second, 

I:%=1(zk X s(Ak)) - I:%:1((1Akl + 1) x s(Ak))-

(I:%=1((1Akl + 1) X s(Ak)) - I;;:'=1(zk X s(Ak))) 
- I:%=1((1Akl + 1) x s(Ak)) - I:;;'=1((1Akl + 1- zk) x s(Ak)) 
- I:%=1((1Akl + 1) X s(Ak)) - I:;;'=1((1Akl + 2 - uk) x s(Ak)) 

I:%=1((IAkl + 1) x s(Ak))-I:i:'=i{k(uk x s(Ak)) 
- I:%=1((1Akl + 1) X s(Ak))- I:i:'=i{k(wk) 
2'. I:%=1((1Akl + 1) x s(Ak))- I:i:'=ihk 
- B, 



CHAPTER 5. FORMATTING 111 

Thus, combining the two inequalities, we have shown that L%=1 (zk x s(Ak)) = B. 
We can define a subset A' by choosing Zk elements from Ak (1 :::; k :::; d), in which case 

LaEA' a= L%=1(zk X s(Ak)) = B. 

Therefore, TF is NP-complete. D 

NP-complete problems do not have polynomial-time algorithms unless P = NP, 

which is considered unlikely. With this assumption, we can provide only an exponential­

time algorithm for TF that solves every instance. We first present an exponential-time 

algorithm for TF in Section 5.5, and then we describe a polynomial-time greedy algo­

rithm in Section 5.6 that partially solves TF for many common instances. Finally, in 

Section 5.7, we combine these two algorithms to obtain an algorithm that guarantees to 

solve TF completely and correctly and takes only polynomial time for many instances. 

5.5 An exponential-time algorithm 

The simplest way to solve TF is to check all the possible combinations of row heights and 

column widths. The first combination that satisfies all three conditions of TF is selected 

as a solution. Suppose we know the maximal range W3 for the width of the jth column 

and the maximal range H; for the height of the ith row; then the number of possible 

combinations of row heights and column widths is 

n m 

N = (II Wj) X (II H;). 
i=l i=l 

Since we usually use small units such as points or even small fractions of a point to 

measure length in a formatting system, W3 and H; may have values in the hundreds or 

even thousands. Increasing the values m and n leads to an exponential increase in the 

size of N. We can avoid examining all combinations of row heights and column widths 

by solving the size constraints to obtain row heights for given column widths. Once the 

column widths are fixed, the heights and widths of the items are also fixed; thus, we 

can use Beach's approach to find the row heights in polynomial time. Thus, we need to 

examine only 
n 

N=IIW3 
j=l 



CHAPTER 5. FORMATTING 112 

Algorithm 1 TF..Exponential-Time..Algorithm(colwnn_llidths, roll..heights): bool; 

var integer colwnn_llidths [1 .. colwnn~urnber] , roll..heights [1 .. roll~urnber] ; 

begin 

integer pair current..steps [1. .item~urnber]; 

for current_steps := each step combination of all the items do 

if Find_Colwnn_l/idths (current..steps, colwnn_llidths) and 

Find..Roll...l!eights(current..steps, roll..heights) then 

return ( true) ; 

end if 

end for; 

return(false); 

end 

Figure 5.4: An exponential-time algorithm for TF. 

combinations. 

We can reduce this number further by taking advantage of the characteristics of size 

functions. Since the height of an item will be the same when it is typeset within the 

widths of a step, we need to test only one of the widths in a step. For each combination 

of steps, we can find the column widths and row heights by solving inequalities. Suppose 

that item o3 has K 3 steps; then the number of combinations can be reduced to 

r 

N=ITK;. 
j=l 

N still increases at an exponential rate when most of the items have more then one 

step. In many tables, however, most of the items contain only one step. The number 

of combinations that used to be checked is not too large for these cases. Based on this 

approach, we design the exponential-time algorithm that completely solves TF shown in 

Fig. 5.4. 



CHAPTER 5. FORMATTING 113 

Based on a given step combination C = { s1 , s2 , ••• , Sr} of all the items, where Sk is 

a step of item Ok, Find_Column_Widths attempts to find column widths w.i(l ::; j ::; n) 
such that: 

1. w.i(l ::; j::; n) satisfy all the width constraints. 

Similarly, Find...Row_Heights attempts to find row heights h;(l::; i::; m) such that 

1. h;(l ::; i::; n) satisfy all the height constraints. 

2. For each item Ok = (tk, lk, bk, rk, ek, ,/Jk), ek(sk.head) ::; 2:::~t. hq. 

Find_Column_Widths is false only when there are no column widths for the step com­

bination and Find...Row_Heights is false only when there are no row heights for the 

step combination. Therefore, Algorithm 1 has a solution for a given step combination if 

and only if both Find_Column_Widths and Find...Row_Heights have a solution. We give 

pseudo code algorithms for Find_Column_Widths and Find...Row_Heights in Appendix B. 

Find_Column_Widths and Find...Row_Heights find solutions by solving a set of lin­

ear equalities and inequalities. There is an algorithm for this problem based on the 

simplex method that runs in O(t3) time, where tis the number of equalities and inequal­

ities [Dan63]. Moreover, the algorithm guarantees that the sum of the values of the vari­

ables in the equalities and inequalities is minimum. Therefore, both Find_Column_Widths 

and Find...Row_Heights can find solutions in O((r + s)3 ) time, where r is the number of 

items and s is the number of size constraints. The total running time of Algorithm 1 is 

then 
r 

O((Il K.i) x (r + s)3
), 

j=l 

where K.i is the number of steps for item o.i. 

We need to introduce some notation before we prove that Algorithm 1 completely 

and correctly solves TF. Suppose C is a step combination for an instance of TF. We use 

WIE( C) to denote the set of equalities and inequalities generated by Find_Column_Widths 

for C and we use HIE( C) to denote the set of equalities and inequalities generated by 



CHAPTER 5. FORMATTING 114 

Find...Row.lleights for C. Clearly WIE( C) has solutions if and only if Find_Column_Widths 

has a solution w;(l :S: j :S: n ), and HIE( C) has solutions if and only if Find...Row.lleight s 

returns a solution h;(l :S: i :S: m). If w;(l :S: j :S: n) satisfy only the inequalities for 

item sizes (Condition 2) in WIE(C), then w;(l :S: j :S: n) is called a layout of WIE(C); if 

h;(l :S: i :S: m) satisfy only the inequalities for item sizes (Condition 2) in HIE(C), then 

h;(l :S: i :S: m) is called a a layout of HIE(C). We are now ready to prove the following 
results. 

Lemma 5.2 Given an instance I of TF, there is a solution for I if and only if there is 

a step combination C such that WIE(C) and HIE(C) each have a solution. 

Proof: Suppose instance I has a solution (W, H); then, for each Ok = (tk, lk, bk, rk, ek, "Pk), 

we can find a step Sk such that Sk.head :S: I:;~1, Wp :S: Bk.tail. Let step combination 

C = {s1,sz, ... ,sr}- Since (W,H) is a solution of I, then w;(l :S: j :S: n) must satisfy 

all the width constraints and h;(l :S: i :S: m) must satisfy all the height constraints. 

Moreover, for each item Ok, I:!~t, hq 2:: fk(L;~1, wv)- Since I:;~1, Wp is inside step sk, we 

have ek(L;~l, wp) = ek(sk.head); thus, I:!~t, hq 2:: ek(Sk.head). Thus, w;(l :::; j:::; n) is a 

solution of WIE(C) and h;(l :S: i :S: m) is a solution of HIE(C). Therefore, WIE(C) and 

HIE( C) each have a solution. 

Conversely, suppose there is a step combination C = {s1 , s2 , ••• , sr} such that WIE(C) 

has a solution w; (1 :S: j :S: n) and HIE(C) has a solution h;(l :S: i :S: m). Then, 

w; (1 :S: j :S: n) must satisfy all the width constraints and h; (1 :S: i :S: m) must 

satisfy all the height constraints. Moreover, for each item Ok = (tk, lk, bk, rk, ek, "Pk), 

Bk.head :S: I:;~1. Wp :S: Bk.tail and I:!~t, hq 2:: ek(Sk,head). Because I:;~1. Wp is inside step 

sk, we know that ek(L;~l. wp) = ek(Sk.head). Thus, I:;~1. Wp 2:: 1Pk[min] and I:!~t, hq 2:: 
ek(L;~l. Wp)• Therefore, (W, H) is a solution for I, where W = W1, ... , Wn and H = h1, ... , hm. 
D 

Theorem 5.3 Given an instance I of TF, there is a solution for I if and only if 

Algorithm 1 has a solution. 

Proof: If there is a solution (W, H) for I, then, by Lemma 5.2, there must be a step com­

bination C such that both WIE( C) and HIE( C) have solutions. Thus, Find_Column_Widths 



CHAPTER 5. FORMATTING 115 

has a solution w1(1 ::0: j ::0: n) for C and Find..Row..Heights has a solution h:(1 ::0: i ::0: m) 

for C. If Algorithm 1 has not found a solution before C, then it will terminate with C 

and return solution (W',H'), where W' = w~, ... ,w~ and H' = h~, ... ,h',,.. Therefore, 

Algorithm 1 must find a solution. 

Conversely, if Algorithm 1 finds a solution (W, H), then it must terminate after check­

ing a step combination C for which Find_Column_Widths finds w;(l ::C: j ::0: n) and 

Find..Row..Heights finds h;(l ::0: i ::0: m). Thus, both WIE(C) and HIE(C) have at least 

one solution. Therefore, by Lemma 5.2 there is a solution for the instance. D 

5.6 A polynomial-time greedy algorithm 

Algorithm 1 takes exponential time, in most cases, to find a solution for TF. Most 

tables, however, usually have few size constraints. For many such cases, we are able 

to find a solution in polynomial time by taking advantage of the monotonicity prop­

erty of size functions. Given an instance I of TF, the monotonicity property of size 

functions enables us to generate a list Lr = C1 , C2 , .•• , C. of step combinations, where 

C,, = {sf, s;, ... , s~}(l ::0: u ::0: z), that satisfies the following properties: 

Property 1 For the first step combination C1 , WIE(C1) must have at least one solution. 

Property 2 For each item Ok = (tk, h, bk, Tk, ~k, ,fak), s;:+1 is either the same as sk or the 

successor of sk; thus, ~k(s;:+1 .head) ::0: ~k(sJ:.head). 

Property 3 There is at least one item such that its step in Cu+i is larger than its step 

in C,,. 

Property 4 In the last step combination C., for each k, 1 ::C: k ::C: r, si, is the largest 

step of item Ok. 

Property 5 For each step combination C,,(1 ::0: u ::0: z), there is a layout w}'(l ::C: j ::C: n) 

for WIE(C,,) and a layout hf(l ::0: i ::0: m) for HIE(C,,). 

By checking only the step combinations in this list, we may be able to determine whether 

there is a solution for the instance. Before we describe how we generate a list of step 



CHAPTER 5. FORMATTING 116 

combinations that satisfies Properties 1-5 for an instance, we prove that these properties 

enable us to obtain a polynomial-time algorithm for TF that returns solutions for many 

tables. 

Lemma 5.4 If there is a solution for an instance I of TF, then there is a step combi­

nation that satisfies Property 1. 

Proof: If there is a solution (W, H) for I, by Lemma 5.2 there must be a step combination 

C such that both WIE( C) and HIE( C) have at least one solution. Thus, C is a step 

combination that satisfies Property 1. D 

An implication of Lemma 5.4 is that if there is no step combination C such that 

WIE( C) has at least one solution, then there is no solution for the instance. Given an 

instance I of TF, if there is a step combination C such that WIE( C) has a solution, then 

we are able to generate a list L 1 of step combinations that satisfies Properties 1-5. For 

these instances, we obtain the following results. 

Lemma 5.5 The number of step combinations in L1 is at most Lj=l K;, where K; is 

the number of steps for item o;. 

Proof: By Properties 2 and 3, there is at least one item such that its step in C.,+1 is 

the successor of its step in C.,. Since there are only K; steps for item o;(l :-S: j '.S'. r ), the 

number of step combinations in Lr is at most Lj=l K;. D 

Lemma 5.6 If there is a solution for instance I, then there is a solution for HIE(C.). 

Proof: Suppose there is a solution for the instance. Then, by Lemma 5.2, there is a step 

combination C = {s1 , s2, ... , sr} such that both WIE(C) and HIE(C) have at least one 

solution. Suppose h;(l :'S'. i :'S'. m) is a solution ofHIE(C). Since C, consists of the largest 

steps for all the items (Property 4), Sk must be either the same step as sk or a smaller step 

than sk; thus, {k(s%,head) '.S'. {k(sk,head). Since h;(l :-S: i :-S: m) is a solution ofHIE(C), it 

must satisfy all the height constraints. Moreover, for each item Ok= (tk, lk, bk, rk, {k, "Pk), 

1:::~ .. hq 2:'. {k(sk.head); thus, 1:::~,. hq 2:'. {k(sk.head). Therefore, h;(l :-S: i :-S: m) is also a 
solution of HIE( C.). o 



CHAPTER 5. FORMATTING 117 

Lemma 5.7 If there is a solution for HIE(C,,), then there is a solution for HIE{Cv}, 

where u '.S v '.S z. 

Proof: By Property 2, for each item Ok = (tk, lk, bk, rk, (k, 1Pk), sZ is either the same 

as sJ: or larger than s):; thus, (k(sz.head) '.S (k(s):.head). If HIE(C,,) has a solution 

h,(1 :'.Si :'.Sm), then h;(l :'.Si :'.S m) satisfy all the height constraints and, for each item 

Ok, 1::~1• hq?: (k(s):.head)?: (k(sZ.head); thus, a solution for HIE(C,,) is also a solution 

for HIE(Cv). D 

Theorem 5 .8 Instance I has a solution, if the following three conditions all hold: 

1. There is a step combination C1 such that WIE{C1} has a solution. 

2. There is a solution for HIE(C,). 

3. If h(l :'.S h '.S z) is the largest integer such that WIE{Ch} has a solution and 

1(1 :'.S l '.S z) is the smallest integer such that HIE(C1) has a solution, then l '.Sh. 

Proof: If there is no step combination C1 such that WIE( C1 ) has a solution, then, 

by Lemma 5.4, there is no solution for the instance. Similarly, if there is no solution 

for HIE( C,), by Lemma 5.6, there is no solution for the instance. Since the first two 

conditions hold, both l and h in the third condition are well defined. By Lemma 5.7, 

there is a solution for HIE( Ch) because HIE( C1) has a solution and 1 '.S h. Since WIE( Ch) 

also has a solution, by Lemma 5.2, there is a solution for the instance. D 

Based on Theorem 5.8, Table 5.4 indicates that we have three possible conclusions 

while checking the step combinations in Lr (see Table 5.4): 

• We have found a solution for I 

• We are sure there is no solution for I 

• We are uncertain whether there is a solution for I 

It is clear that we get an uncertain answer only if LI satisfies the first two conditions 

of Theorem 5.8 and fails the third condition. When attempting to solve WIE( C,,) or 



CHAPTER 5. FORMATTING 118 

Table 5.4: The conditions that determine if there is a solution for an instance. 

WIE{Ci) Cannot 
has solution find C1 

HIE(C,) 1 :Sh 

has solution l>h Yes No 
Uncertain 

HIE(C,) has 
No No no solution 

HIE(C.,) (1 :Su :S z), we get two possible results: there is a solution {Yes) or there is 

no solution (No). An assignment of Lr is a combination of the two possible results (yes 

or no) for each WIE(C.,) and HIE(C.,) (1 :S u :S z). The following theorem gives the 

proportion of the assignments of Lr that generate an uncertain answer for instance I. 

Theorem 5.9 If Lr = C1 , C2 , ••• , C, is such that WIE{C1) and HIE(C,) each have a 

solution, then the proportion of the assignments of Lr that give an uncertain answer is 

1 ---~-, 
z2•-1 z 

where z is the number of step combinations in Lr. 

Proof: We need to count the total number of assignments of Lr and the number 

of assignments that give an uncertain answer. The results for.WIE{C1) and HIE(Cz) 

are certain (both are 'Yes') and the results for WIE(C.,) (2 :S u :S z) and HIE(C.,) 

(1 :S u :S z - 1) are uncertain (see Table 5.5). Thus, we have at most 22<•-1) possible 

assignments of Lr, By Lemma 5.7, however, if I is the smallest integer such that HIE(C1) 

has a solution, then HIE( C1+1), HIE( C1+2), ••• , HIE( C,) also have solutions. Thus, there 

are only z possible combinations of the results for HIE{ Ci), HIE( C2 ), ••• , HIE( C,_i). 

Therefore, the total number of assignments of Lr is z2•-1. For each of these assignments, 

we assume that h{l :Sh :S z) is the largest integer such that WIE(Ch) has a solution and 

1(1 :S l :S z) is the smallest integer such that HIE{C1) has a solution. Since Lr satisfies the 



CHAPTER 5. FORMATTING 

Table 5.5: The possible assignments of Lr. 

Lr 

c. 

WIE 

Yes 
? 

? 

? 

HIE 

? 
? 

? 

Yes 

119 

first two conditions of Theorem 5.8, an assignment of Lr generates an uncertain answer 

only if it fails the third condition, that is, if h < l. Thus, we need to calculate only 

how many assignments of Lr satisfy h < l. Assume that h < l. Since Ch is the last 

step combination such that WIE( Ch) has a solution, there is no solution for WIE( C1), 

WIE(C1+1), ... , WIE(G.). Because WIE(C1 ) must have a solution and l > h 2'. 1, l 

can only be 2, 3, ... , or z. For each l, only WIE(C2), ••• , WIE(C1-i) have two possible 

results; thus, there are only 21- 2 possibilities such that l > h. Hence the total number 

of possibilities that satisfy l > h is Li=2 2
1- 2 = 2•-1 - 1. Dividing this number by the 

total number of assignments of Lr, it follows that the proportion of the assignments that 

generate an uncertain answer is 

which converges to 1/ z as z --+ oo. D 

For each step combination Gu of Lr, from Property 5, we know that WIE(Cu) and 

HIE( Gu) each have a layout; thus, it is the size constraints that determine whether there 

are solutions for WIE( Cu) and HIE( Cu). If we assume that size constraints generate 

each assignment of Lr with equal probability, then the probability of giving the uncertain 



CHAPTER 5. FORMATTING 120 

answer is (2•-1 - l)/(z2•-1 ). Let 

Pr = 0 if z = 1. When z > 1, Pr becomes smaller as z become larger. Pr = 0.25 if z = 2, 

and Pr = 0.1 if z = 10. When z = 100, Pr = 0.01. From Theorem 5.9, we obtain the 

following heuristic: A long list, Lr, of step combinations for instance I tends to reduce 

the possibility of generating an uncertain answer. Therefore, we should try to find as 

many step combinations as possible for the list Lr. 

Given an instance I of TF, we try to generate a list Lr of step combinations that 

satisfies Properties 1-5. While we are checking the step combinations in Lr, we have 

three possible results: yes, no, and uncertain. Based on this approach, we obtain a 

polynomial-time algorithm that partially solves TF as given in Fig. 5.5. 

In Algorithm 2, Find...First_Combination, given in Appendix B, generates the first 

step combination C1 that satisfies Property 1 and a layout (W1
, H 1 ), where W 1 = w~, ... , w~ 

and H 1 = hL ... , h~, in which all items are typeset within the corresponding steps in 

C1 • The algorithm returns one of three possible answers: 

• Not...Found, if there is no step combination that satisfies Property 1. 

• Both_Ok, if C1 exists and WIE( C1 ) and HIE( Ci) each have a solution. In this case, 

w}(l::; j::; n) is a solution ofWIE(C1 ) and ht(l::; i::; m) is a solution ofHIE(Ci). 

• Wid_Ok, if C1 exists and only WIE( C1 ) has a solution. In this case, w} (1 ::; j ::; n) 
is a solution of WIE(C1) and ht(l::; i::; m) is a layout of HIE(C1). 

To find the first step combination, Find...First_Combination first attempts to find the 

column widths w}(l ::; j ::; n) such that 

1. w} (1 ::; j ::; n) satisfy the width constraints. 

If there are no such column widths, the function returns Not...Found; otherwise, it finds 

the steps for all the items based on w}(l ::; j ::; n) and generates the row heights 



CHAPTER 5. FORMATTING 121 

Algorithm 2 TF_Folynomial-Time..Algorithm(colurnn_widths, row..heights): enum 

var integer colurnn_widths [1.. column.number], row..heights [1. .row.number]; 

begin 

end 

integer pair com_steps [1. . i tern.number] ; 

enum {Not..Found, Wid_Ok, HeLOk, Both_Ok, None_Ok, End} result, pre_result; 

result := Find..First_Combination(com_steps, colurnn_widths, row..heights); 

if result = Not..Found then 

return(No) 

else while not result = Both_Ok and not result = End do 

pre_result := result; 

result := Find...Next_Combination(com_steps, colurnn_widths, 

row..heights); 

end while; 

if result = Both_Ok then 

return(Yes) 

else if result = End and not pre_resul t = HeLOk then 

return(No) 

else return(Uncertain) end if 

end if 

Figure 5.5: A polynomial-time algorithm that partially solves TF. 



CHAPTER 5. FORMATTING 122 

hl{l ::; i ::; m), which ensures that L1 satisfies Property 1 and C1 satisfies Property 5. 

Moreover, Inequality..Solver guarantees that ~J=l WJ is the minimum among the step 

combinations that satisfy Property 1. 

Given a step combination C., and its layout (W", H"), where W" = wf, ... , w~ and 

H" =hf, ... , h;:., Find...Next_Combination, given in Appendix B, finds a new step com­

bination C.,+i, generates a new layout (W"+1 , H"+l ), where wu+i = wf+i, ... , w~+1 and 

H"+l = hf+1
, .•• , h;:.+1

, in which all items are typeset within the corresponding steps in 

C.,+1 , and ensures that L1 satisfies Properties 2-5. It returns one of the five possible 

answers: 

• End, if all steps in C., are the largest steps of their corresponding items. 

• Both_Ok, if C.,+l exists and both WIE(C.,+1) and HIE(C.,+1 ) have solutions. In 

this case, w3+1 (1 ::; j ::; n) is a solution of WIE(C.,+1) and hf+1 (1 ::; i ::; m) is a 

solution of HIE( C.,+i). 

• Wid_Ok, if C.,+1 exists and only WIE( C.,+1 ) has a solution. In this case, wJ+l(l ::; 

j::; n) is a solution ofWIE(C.,+1) and hf+l(l::; i::; m) is a layout ofHIE(C.,+1)-

• HeLOk, if C.,+1 exists and only HIE( C.,+i) has a solution. In this case, hf+l(l ::; 

i::; m) is a solution of HIE(C.,+1) and w3+1(1::; j::; n) is a layout of WIE(C.,+1)-

• None_Ok, if C.,+l exists and neither WIE(C.,+1) nor HIE(C.,+1 ) has a solution. In 

this case, w3+1 (1 ::; j ::; n) is a layout of WIE(C.,+1) and hf+1(1 ::; i ::; m) is a 

layout of HIE( C.,+i). 

To reduce the number of uncertain responses, we try to find a step combination that 

can generate a solution or lead us to a solution rapidly by selecting as few items as 

possible whose steps we increase, to avoid reaching the largest steps of the items as long 

as possible. Based on these ideas, we use the following heuristics to obtain C.,+l: 

1. For each column 1 ::; k ::; n, we increase its width w;: to a new width w;; such 

that w;; is the minimal width to cause at least one item to fall into the next step. 
B d u u • u u t t b" t· C' ase on w 1 , . .. , wk-i, wk, wk+i, ... , wn, we genera e a new s ep com 1na 10n k 

and a layout (Wk,Hl), where Wk= w;,1> ... ,w;,n and Hl = h;, 1 , •.. ,h~m· Then 

step combinations Cf, C~, ... , C~ are possible candidates for Cu+l · 



CHAPTER 5. FORMATTING 123 

2. During Step 1, if we find that all items have reached their largest steps, we return 

End. 

3. If there is a Ck such that both WIE( Ck) and HIE( Ck) have solutions, then C.,+1 is 

chosen as this Ck and (W"+1 ,H"+1
) as (W£,Hk). 

4. If we do not find a C.,+i in Step 3, we let C.,+i be a Ck such that I:i=l w~; + I:?,:,1 h~, 

is a minimum. In this case, (W"+1 , H"+1 ) is chosen as (W£, Hf.). 

Step 1 guarantees that each Ck satisfies Properties 2 and 3. It also guarantees that 

each Ck satisfies Property 5 because wf, ... , w',:_1 , wj;, w',:+1 , ••• , w~ must be a layout for 

WIE(Cf.) and hf(l ::::; i ::::; m) must be a layout for HIE(Ck). Step 2 ensures that L1 

satisfies Property 4. Steps 3 and 4 increase the likelihood that we find a solution. Step 4 

is based on the observation that we usually specify size constraints for table width and 

height. If we make the table width and height as small as possible, we are more likely to 

find a solution in the succeeding search. 

The running time for Find...First_Combination is O((r + s)3) and the running time 

for Find..Next_Combination is O(n(n + m + (r + s)3)). By Lemma 5.5, the number of 

the step combinations in the list is at most Lj=l K;. Therefore, the total running time 

for Algorithm 2 is 
r 

O(L K;n(n + m + (r + s)3)), 
j=l 

where n is the number of columns, m is the number of rows, r is the number of items, s 

is the number of size constraints, and K; is the number of steps for item o;. The running 

time increases at a polynomial rate as n, m, r, and s increase. 

5. 7 An efficient algorithm 

By combining Algorithms 1 and 2, we obtain a more efficient algorithm that can com­

pletely and correctly solve TF as given in Fig. 5.6. For each instance of TF, Algorithm 3 

first uses Algorithm 2 to check a list of step combinations C1 , C2 , ••• , C. that satisfy Prop­

erties 1-5. If Algorithm 2 does not find a solution for the instance, then Algorithm 1 

is used. By Theorems 5.3 and 5.8, Algorithm 3 guarantees to solve TF completely and 



CHAPTER 5. FORMATTING 124 

Algorithm 3 TF..Efficient..Algorithm(column_widths, row-1leights): bool 

var integer column_widths [1 .. column.number] , row-1leights [1 .. row.number] ; 

begin 

end 

enu1n {Yes, No, Uncertain} result; 

result := TF_Folynomial..Algorithm(column_widths, row-1leights); 

if result = Uncertain then 

return(TF..Exponential..Algorithm(column_widths, row-1leights)); 

else if result = Yes then 

return ( true) ; 

else return(false); end if 

Figure 5.6: An efficient algorithm that always solves TF. 

correctly. Although Algorithm 3 is still an exponential-time algorithm in the worst case, 

it is many more efficient than Algorithm 1 for many instances. 

We can divide the instances of TF into two groups, Ge and Gp. Ge includes the 

instances for which Algorithm 2 returns Uncertain and Gp includes the instances for 

which Algorithm 2 returns either Yes or No. Thus, Algorithm 3 takes polynomial time 

to solve the instances in Gp and takes exponential time to solve the instances in G •. 

By Theorem 5.9, · the probability of giving an uncertain answer by Algorithm 2 for each 

instance of TF is no more than 0.25 if we assume that the size constraints generate 

each assignment of the corresponding list of step combinations with equal probability. 

In addition, given a rectangular region, text is usually typeset to fill a region that is as 

wide as possible. If the region is not wide enough, text is broken into lines to vertically 

fill the region. Thus, we usually specify only width constraints to control the layout of 

a table. In these cases, HIE( Ci) must have solutions; thus, we can decide whether there 

are solutions for the instances by Algorithm 2. The height constraints may be necessary 

when a table is too long to fit into a region and it is possible to shorten it by widening 

the table. Therefore, we believe that Gp contains many more common instances than 



CHAPTER 5. FORMATTING 125 

Table 5.6: A schedule of computer science courses. 

Monday Tuesday Wednesday Thursday Friday 
Time Introduction to Data System Algorithm Software 

computer science structure softwares analysis engineering 

This section is for those who already know 
Morning This section is for something about computer science and intend 
9:00-12:00 those who don't to have a career in the software industry in the 

know anything future. 
about computer This section is for 
science and just those who already This section is for 

Afternoon want to know know something about those who know quite 

1:00-4:00 something about computer science and a lot about computer 

it. intend to learn how to science and intend to 

write simple programs. learn more so that 

This section is for those who don't know 
they can have a career 

Evening in the software 
7:00-10:00 

anything about computers and intend to industry in the future. 
learn how to write simple programs. 

Ge. For the languages in which people are used to reading text from top to bottom (such 

as Chinese and Japanese), a similar algorithm holds when we interchange the roles of 
widths and heights in the algorithm. 

We end this chapter with an example that was generated by our tabular composition 

system. Table 5.6 consists of a 5 x 6 grid and 19 items. We have the following size 

constraints: 

~~~~+~+~+%+~+%~~~ 

W2 2: lOOpt 

h4 ~ lOOpt 

h1 + h2 + ha + h4 + hs ~ 400pt 

For this instance, Algorithm 3 is able to find a solution in polynomial time. If we add 

the additional size constraint 



CHAPTER 5. FORMATTING 126 

h3 ?: 200pt 

to the instance, Algorithm 3 takes exponential time to discover that there is no solution 

for the new instance. 



Chapter 6 

Implementation 

A tabular composition system should help users to design and produce high-quality 

tables. A user friendly system should allow users to concentrate primarily on the ma­

nipulation of the logical structure of a table and to specify the layout structure using a 

style-based approach. To achieve this goal, a tabular system should be able to abstract 

and manipulate a table's logical structure and provide the ability to specify the layout re­

quirements, including topology and style. In Chapter 2, we presented an abstract model 

for the specification of a table's logical structure. This model can be used as the basis 

of a tabular composition system. The editing model described in Chapter 3 provides 

operations for the logical manipulation of tables. The topological rules and the style 

rules described in Chapter 4 provide one method of specifying a table's layout structure 

through a set of presentational rules. Based on these ideas, we have implemented a pro­

totype tabular composition system XTABLE. XTABLE runs in a UNIX and X Windows 

environment. In the remainder of this chapter, we first describe, in Section 6.1, the ob­

jectives of XTABLE. Then, in Section 6.2, we describe the steps that are involved in the 

generation of a concrete table from an abstract table by applying a set of user-defined 

topological and style rules. In Section 6.3, we present a hierarchical object-oriented view 

of various tabular objects and their operations. Finally, we introduce the overall system 

structure in Section 6.4 and the user interface in Section 6.5. 

127 



CHAPTER 6. IMPLEMENTATION 128 

6.1 Objectives 

XTABLE was designed to provide an interactive environment for the composition of high­

quality tables in two dimensions. It should meet following objectives: 

• To describe and manipulate tables based on their logical structure 

The logical relationships among the components of a table should be abstracted to 

form an abstract table that is independent of the layout structure of the table. In 

addition, XTABLE should provide operations to edit tables based on their logical 
structure. 

• To topologically arrange the tabular components in two dimensions 

XTABLE should topologically arrange objects in both horizontal and vertical di­

mensions, should allow a user to order labels, and should automatically place the 

entries in appropriate positions so as to convey clearly the logical relationships 

among tabular components. 

• To specify style rules for different kinds of tabular components 

XTABLE should allow a user to specify both collective style rules for a collection 

of tables and specific style rules for particular tables. These style rules should be 

applied to presentational objects, logical objects, and layout objects. 

• To format tables based on user-defined layout specifications 

XTABLE should automatically determine the physical dimensions of a final layout 

according to user-defined topological and style specifications. It should provide 

both fixed and automatic line-breaking methods and should satisfy column and 

row constraints simultaneously. The formatting should satisfy row and column 

constraints simultaneously. 

• To provide a WYSIAWYG environment to edit the logical structure, topology and 
styles of tables 

The presentational-oriented, logical and layout objects should be organized hier­

archically. Users should be able to select these objects by using a mouse and to 



CHAPTER 6. IMPLEMENTATION 129 

indicate operations by menu, tool-box and dialog-box techniques. The new presen­

tation of a table should be redisplayed on the screen right after each operation. 

• To create a stand-alone tabular system that can support various formatting systems 

XTABLE should be independent of any existing document formatting system. It 

should generate formatted tabular output for several typesetting systems; for ex­

ample, for B-'I'.EX, troff, and Postscript. 

6.2 Abstract to concrete 

We specify, in XTABLE, the logical structure of a table using the abstract model given 

in Chapter 2 and the layout structure using the topological and style rules described in 

Chapter 4. Given an abstract table, a topological specification, and a style specification, 

we generate a concrete table using a two-step process. First, the arrangement step gen­

erates a grid structure and a set of size constraints for the columns and rows in the grid 

structure. Then, the formatting step determines the physical dimensions of the columns 

and rows for the grid structure according to the size constraints. 

6.2.1 Grid structure 

The implemented grid structure is more complex than the definition we used in Chapter 5, 

where we extracted only the properties necessary for the formal description of tabular 

formatting. In XTABLE, a grid structure consists of three components: a grid, a set of 

nonoverlapping items, and a set of separations. Recall that an m x n grid is a planar 

integer lattice with m rows and n columns. An item is an object that is placed in a block 

of a grid. We use a four-element tuple (position, content, format, size function) to define 

an item. The position of an item is the block in which the item is placed. The content of 

an item can be any kind of data, such as a string of characters, a fixed-size picture and 

image, a table, and so on. At present, we allow only strings of characters. The format of 

an item includes the typographic attributes that determine the appearance of the item, 

such as font families and sizes, background patterns, line spacing, and so on. The size 

function is a decreasing step function that describes the line-breaking characteristics of 



CHAPTER 6. IMPLEMENTATION 130 

the items. Before we define separation, we need to introduce more terminology. The lines 

that horizontally separate the rows are called row grid lines and the lines that vertically 

separate the columns are called column grid lines. A grid point is the intersection of a 

row grid line and a column grid line. A separation is either a rule surrounded by white 

space or white space that we use to separate cells, blocks, rows, and columns in a table. 

We can use a three-element tuple (position, rule style, spacing) to define a separation. 

The position of a separation specifies two grid points between which the separation lies. 

These two grid points must be on the same horizontal line or the same vertical line. The 

rule style consists of the rule type and the rule width. The spacing specifies the extents 

of the left and right ( or upper and lower) spacing on each side of the rule. 

6.2.2 Size constraints 

Although the formatting algorithm in Chapter 5 supports any size constraints expressed 

as linear equalities or inequalities, we further restrict the size constraints in XTABLE to 

simplify the user interface and decrease the execution time of the tabular formatting 

algorithm. XTABLE allows only four kinds of linear inequalities for the size constraints: 

• l :,::; ~]=p w3 ( the width of a set of consecutive columns is no less than l) 

• ~]=p w3 :,::; u (the width of a set of consecutive columns is no more than u) 

• l :::; ~r=p h; ( the height of a set of consecutive columns is no less than l) 

• ~r=p h; :::: u ( the height of a set of consecutive columns is no more than u) 

We have used w3 to denote the width of the jth column and h; to denote the height of 

the ith row, and l and u are positive integer constants. We believe that these four kinds 

of size constraints are sufficient to specify most size requirements for tables. XTABLE, 

however, does not allow the specification of equality constraints for columns or rows, 

which imposes the equality of column widths or row heights in a table. 



CHAPTER 6. IMPLEMENTATION 131 

6.2.3 Arrangement 

Given an abstract table, a topological specification, and a style specification, it is easy 

to generate a grid and the blocks occupied by the items in the grid. It is more difficult 

to determine the formatting attributes for the items and the separations. We have to 

decide on a reasonable strategy to determine what formatting attributes an item or a 

separation should use when multiple inheritance occurs. 

As we mentioned in Section 4.4.1, there are three approaches for handling multiple 

inheritance of style rules. The strategy we use is a combination of priority order and com­

bining style approaches. We try to combine the style rules of all super-objects. Whenever 

there is no satisfactory combination, we use the style rules of the super-object with the 

highest priority as specified by the user. There are two possible ways to determine the 

inheritance priority: fixed and free. With fixed priority , the inheritance ordering of style 

rules is predetermined by the designers of the system. For example, we, as system de­

signers, can specify that the style rules for rows have a higher priority than the style rules 

for columns. In this framework, users do not have to specify the inheritance ordering of 

style rules. On the other hand, users are unable to change the fixed priority. With free 

priority, the inheritance ordering of style rules is dynamically specified by users based 

on the requirements of their tables. Although it gives users flexibility to handle style 

inheritance, this approach requires users to specify inheritance orderings for each table. 

The combination of these two approaches provides a better solution. In XTABLE, the 

priority for some scopes, including the whole table, the stub, the boxhead the stub head, 

the body, and the categories, is predetermined. We use the genealogical tree, shown in 

Fig. 6.1, to describe the relationships between these scopes. Therefore, we can predeter­

mine the priority for these scopes using single inheritance. The style rules for a cell can 

be inherited according to the priority: the category that contains a label that occupies 

the cell, the region that contains this cell, and the whole table. For example, in Table 6.1, 

the cells that contain the label Winter inherit the style rules of category Term first, 

then of the stub, and finally of the whole table. Since the style rules for these scopes 

determine the general appearance of a table, they are appropriate for most tables. With 

fixed-priority inheritance, users do not need to indicate the inheritance ordering if they 

specify only the style rules for these scopes. Since the remaining scopes, including the 

rows, the columns, the blocks, the labels, the subcategories, the entries, the entry set, 



CHAPTER 6. IMPLEMENTATION 132 

body 

category s1 category ,n categorn1 categorybm 

Figure 6.1: The genealogical relationship of some scopes. 

and the entry values, are specified infrequently and may cause multiple inheritance, the 

priority for these scopes is determined by users according to their requirements. For 

the style rules with these scopes, the last specified style rule has the highest priority. 

Moreover, these style rules have higher priority than the style rules in the preceding 

single-inheritance ordering. 

Multiple formatting attributes for a cell or for a separation are combined by inher­

itance of the style rules of various objects based on the priority we have described. A 

cell may inherit the font family from the style rule of the stub and the font size from the 

style rule of the whole table. If an item occupies a block that contains more than one 

cell, we need to determine the formatting attributes of the cell used to display the item. 

In XTABLE, we use the formatting attributes of the top-left cell of a block to display the 

item that occupies the block. 

We give an example to explain our inheritance strategy. Table 6.1 is generated by 

specifying four style rules. We assume that the style rules are specified in this order: 

TABLE: Roman 

BOXHEAD: bold face 

COLUMN 2: Courier 

ROW 4: Helvetica 

The labels in the boxhead are displayed in bold Roman by inheriting the Roman attribute 

from the whole table and the bold face attribute from the boxhead. The label Spring 

in cell ( 4, 2) is displayed in Helvetica because the style rule for the 4th row is specified 



CHAPTER 6. IMPLEMENTATION 133 

Table 6.1: The average marks for 1991-1992. 

Assignments Examinations 
Grade 

Assl Ass2 Ass3 Midterm Final 

Winter 85 80 75 60 75 75 
1991 Spring 80 65 75 60 70 70 

Fall 80 85 75 55 80 75 

Winter 85 80 70 70 75 75 
1992 Spring 80 80 70 70 75 75 

Fall 75 70 65 60 80 70 

last. Label 1991 is presented in Roman instead of Helvetica because the top-left cell (3, 

1) of its block inherits the font family from the whole table. 

6.2.4 Formatting 

The formatting step must calculate the physical dimensions of the columns and the rows 

in a grid structure so that all size constraints are satisfied and all items can be placed 

completely inside the block they occupy. If an item is a long string, there are two ways to 

break the string into lines. Fixed line breaking requires users to indicate the line breaks 

in the string and automatic line breaking requires the system to determine the line­

break points based on the current dimension of the column. XTABLE allows both fixed 

line breaking and automatic line breaking. We adopt the main ideas of the formatting 

algorithm presented in Chapter 5 to determine the physical dimensions of a table. Since 

the allowable size constraints in XTABLE are simpler, we are able to reduce the running 

time of the algorithm by making two changes. First, we do not use the simplex method 

to solve the linear equalities and inequalities since the size constraints in XTABLE can be 

expressed using a small number of inequalities. We use a more efficient inequality solver. 

Second, we use a branch-and-bound strategy to generate only those step combinations 

that guarantee to give a layout for a table. Any step combination for which does not 



CHAPTER 6. IMPLEMENTATION 134 

give to a layout is not considered. For example, suppose two items o1 and o2 are placed 

in the same column and o1 has a step [20, 30) and o2 has a step [50, 60); then there is no 

layout for a step combination that contains these two steps because they do not overlap. 

By omitting such step combinations, the number of step combinations that are checked 

in the exponential-time search is greatly reduced. 

The size functions of items are dependent on the medium that is used to display 

the table. Since different media use different font sizes, the line breaks of an item may 

be different with different media and the same table may be presented differently with 

different media. Thus, the formatting process needs to take a size function as a parameter 

and generate a concrete table that is dependent on the given size function. 

6.3 Tabular objects and their operations 

We adopt an object-oriented technology in XTABLE to provide an interactive environment 

for the manipulation of the logical structure, the topology, and the styles of tables. 

Tabular components are classified into object classes and editing operations are associated 

with them. Table 6.2 shows the object classes and their operations in XTABLE. 

There are three kinds of object classes: presentational objects, logical objects, and 

layout objects. The presentational objects include the entire table and the four major 

regions: the stub, the boxhead, the stub head, and the body. The logical objects are 

the logical components of an abstract table including category, subcategory, label, entry, 

entry set, and entry value. The layout objects are the layout components of a concrete 

table including block, row, and column. 

There are also three kinds of operations for the object classes: logical, topological, and 

style. A logical operation changes the logical structure of a table for example, by adding 

a category to a table, deleting a label from a category, or editing an entry. Logical 

operations can be decomposed into sequences of the editing operations introduced in 

Chapter 3. A topological operation changes only the topological specification of a table, 

for example, transposing a table, moving a category from the stub to the boxhead, or 

changing the ordering for a category. A style operation changes only the style specification 

of a table, for example, changing the cell style, the separation style, or the arrangement 



CHAPTER 6. IMPLEMENTATION 135 

Table 6.2: The object classes and their operations. 

Objects 
Operations 

Logical operations Topological operations Style operations 

Frame style, 
grouping style, 

Table Clear Transpose size constraints, 
category h. style, 

Present- basic style* 

ational- Stub Arrangement style, 
oriented category h. style, 
objects Boxhead basic style* 

Stub head 
Arrangement style, 
basic style* 

Body Spanning style, 
basic style* 

Add, remove, 
Move, Category h. style, Category copy, combine, 
change order basic style* 

split, text edit 

Add, remove, 

Subcategory copy, logical move, Topological move, Frame style, 
combine, split, change order basic style* 

Logical text edit 
objects Remove, copy, 

Label move, text edit Frame style, 
Entry cell style 

Entry value Copy, move, 
remove, compute, 

Frame style, Entry set text edit 
basic style* 

Block Spanning style, 
Layout 

Row 
Copy, move, frame style, 

objects remove, text edit size constraints, 
Column basic style* 

*Basic style includes cell style and separation style. 



CHAPTER 6. IMPLEMENTATION 136 

style for dilferent objects. 

After introducing some internal object classes, we obtain the object hierarchy shown 

in Fig. 6.2. The operations of the object classes in this hierarchy are synthesized. The ob­

jects at lower levels may inherit the operations of ancestral objects. The hierarchy enables 

us to use object-oriented technology to implement an interactive editing environment. 

6.4 Overall system structure 

We separate the collective style specification from the specific style specification in 

XTABLE. The collective style rules are in a separate file and the specific style rules 

are associated with a specific table. Thus, the collective style rules can be applied to 
multiple tables. 

6.4.1 Input and output 

As shown in Fig. 6.3, XTABLE accepts three kind of input: table files, collective 

style files, and user instructions. A table file has three parts: an abstract table, a 

topological specification, and a specific style specification. A collective style file contains 

only collective style rules. Appendix D gives examples of a table file and a collective style 

file. Through an interactive editing environment, users provide XTABLE with instructions 

for the manipulation of the logical structure, the topological specification, and the style 

specification (both specific and collective). At any time, the current status of the abstract 

table, the topological specification, and the specific style specification can be saved as 

a table file, and the current status of collective style specification can be saved as a 

collective style file. The updated presentation of an edited table is displayed on the fly. 

Users can create an abstract table in a particular topology without specifying any style. 

In this case, the table file contains only the abstract table and the topology, and the table 

is displayed on the screen using the default style specification. XTABLE is designed to 

be a preprocessor for some formatting systems, including H-'IEX, Postscript, and troff. 

Currently XTABLE generates only H-'IEX output. 



CHAPTER 6. IMPLEMENTATION 

Table 

Stub 

~-~O~r~ie~n~t~ed~o~b~je~c~t~::::--j Boxhead 

Stub head 

Body 

Structure object 

Table object Logical object 

137 

Category 

Subcategory 

Label 

Value objec 1?----1 Entry set Entry 

Block 

Row 

Column 

Figure 6.2: The object class hierarchy. 

Entry value 



CHAPTER 6. IMPLEMENTATION 

r---------, 
I fil I , Table e , 
L--------J 

I, 

r---------------, 
: Collective style file : 
L-----· -- ______ .J 

XTABLE 

r----1------, 
I f1"'JEX file J 

L _________ J 

. 

Figure 6.3: The input/output of XTABLE. 

6.4.2 Internal data structures and processes 

138 

XTABLE, as shown in Fig. 6.4, maintains four major data structures for the abstract 

table, the topological specification, the specific style specification, and the collective style 

specification. Their initial values are given by a table file and a collective style file or 

assume defaults if neither table file nor collective style file is provided. During the inter­

active editing process, these data structures are updated according to user commands. 

We use Motif as the interface between a user and the system. We generate three interme­

diate data structures whenever XTABLE displays a table or compiles a table specification 

into a I1"'JEX file. The arrangement process generates a grid structure and a set of size 

constraints, and then the formatting process generates a concrete table. A concrete table 

can either be displayed through the Motif interface or be transformed into a source file 

for T1"'JEX. Since different systems use different font sizes, the formatting process needs to 

know the size function for a particular system before calculating the absolute positions of 

all the items and rules. Thus, we need to implement the size functions for Motif, I1"'JEX, 
Postscript, and troff. Due to limitations of the I1"'JEX table environment, we transform 

a concrete table to the T1"'JEX picture environment in which all tabular items and rules 



CHAPTER 6. IMPLEMENTATION 

r---------, 
I I , Table file , 

r----------------, 
: Collective style file : 

Collective style output 

Grid structure Size constraints 

Formatting process 

Concrete table 1------""{ Motif display 

~'IEX output 

r--- -----, 

: ~'IEX file : L _________ _J 

Figure 6.4: The internal system structure of XTABLE. 

139 

\ 



CHAPTER 6. IMPLEMENTATION 140 

are treated as graphical objects. To implement the size function for 11-1'.EX, we need to 

use METAFONT tfm files that are used in TEX-

6.5 User interface 

XTABLE's user interface enables users to select editing objects by using mouse and to 

indicate the operations by the menu, tool-box, and dialog-box techniques. Fig. 6.5 shows 

the main window of XTABLE in which a table is displayed. There are three editing areas 

in the main window: stub, boxhead, and table. The categories that are assigned to the 

stub (the boxhead) appear in the stub area (the boxhead area) and the concrete table is 

presented in the table area. A menu bar and a set of tool boxes are created for users to 

use for editing. Once users have selected an object and indicated an operation and its 

arguments, a new presentation of the table is generated in the table area after applying 

the operation to the object. Two approaches are used to specify editing operations: tool 

boxes and menus. 

6.5.1 Tool boxes 

The most frequently used operations (add, remove, copy, move, combine, split, and 

text) are provided as tool boxes. Once the user clicks on a tool box, the corresponding 

operation is active until the user clicks on another tool box. When a tool box is active, 

the user needs to indicate to which object the operation is applied and to specify the 

required arguments by pointing and dragging in the three editing areas. We use different 

mouse buttons to distinguish the insertion modes: the left, middle, and right keys are 

used to insert an object before, under, and after the active object, respectively. The tool 

box select is used to indicate the editing objects for menu operations. The content 

of the current active object is displayed in the subwindow at the bottom of the main 

window. Users can edit the content of the object in that subwindow and press the 

button content on its left after the editing is down. The button redraw at the bottom 

is used to redisplay the edited table on the screen. 

To show how users edit tables using XTABLE, we have included some screen shots 

in Appendix C. Suppose we have constructed the table given in Fig. C.l. To move the 



~ 
OQ 

~ 
(1) 

0, 

°' 
>-3 
i:,-
(1) 

s ~-I=' 
~ ~-
I=' 

"" 0 
~ 
a, 

~ 
tll 
I:"' 
[_,;I 

18] Xtable 

11ark. tab(perf'ect._stl,J_) 

File Edit Style Collective-Style Calculation Setting !Selectl~iRe.,ove!~~!Comblne!~~ 

~ Boxhead 

Assignments Examinations 
Year Tenn Grade 

Assl Ass2 Ass3 Midterm Final 

Winter 85 80 75 60 75 75 
1991 Spring 80 65 75 60 70 70 

Fell 80 85 75 55 80 75 

Winter 85 80 70 70 75 75 

1992 Spring 80 80 70 70 75 75 

Fell 75 70 65 60 80 70 

Stub I jY'earl [Tennl 
I i ! C<>1>1:ent! I !Redraw! 

~ e; 
~ 
::i::i 
?> 

~ 
~ 
~ 
'.2: 
~ 
~ 
~ 

,_. 
>l'>­,_. 



CHAPTER 6. IMPLEMENTATION 142 

category Year from the stub to the boxhead immediately before the category Mark, we 

first click on the tool box move, click on Year in the stub area, and, finally, click on 

Mark in the boxhead area by pressing the left key of the mouse. Now we obtain the 

table given in Fig. C.2. To add a new label Ass4 under the subcategory Assignments 

and place it after Ass3 in the ordering, we first click on tool box add, then click on 

the label Assignments in the table area by pressing the middle key of the mouse, and 

finally enter Ass4 in the content widget and press content. Figs. C.3 and C.4 show the 

changes to the table after adding a new label and assigning the new name Ass4. Now we 

can enter the marks that are associated with Ass4 to obtain Fig. C.5. We first click on 

tool box text, then drag the cursor to select all the cells for the new marks, and finally 

enter the marks in the table. 

6.5.2 Menus 

Most topological operations, style operations, and system commands are listed in the 

menu bar. The menu File consists of input and output commands, such as reading a 

table file or a collective style file, and generating a :0-TEXsource files; the menu Edit 

consists of the other logical and topological operations that are not available as tool 

boxes; the menu Style consists of the style operations for specific style specification that 

can be applied only to the current edited table; menu Collective-Style consists of the 

style operations for collective style specification that can be applied to a collection of 

tables; the menu Calculation consists of the operations average, total, minimum, and 

maximum that are used to compute entry values; and the menu Setting consists of the 

commands for the selection of the system parameters. Users have to select an editing 

object with the tool box select before pulling down the menu and clicking on an option. 

If an operation is associated with only one object, such as transpose or clear for the 

whole table, then the user can directly click on the operation without first indicating 

the editing object, independently of which tool box is active. When a style operation 

is selected, a dialog box pops up to assist users to edit the formatting attributes of the 

style rule for the selected object. 



CHAPTER 6. IMPLEMENTATION 143 

6.6 Merits and limitations 

XTABLE is a tool that helps users to design high-quality tables in two dimensions. It 
provides an interactive environment for editing the logical structure, topology, and style 

of a table and for presenting a table easily with multiple layout structures. XTABLE is 

also a tool that helps users to explore the data from different viewpoints. By arranging 

table items :flexibly in two dimensions, users are able to discover relationships among of or 

patterns in the data. This ability helps users to analyze and understand tabular data in 

an efficient way. Tables 6.3 shows the correlations for 10 TV programs based on whether 

people in a sample of 7,000 UK adults said they "really liked to watch" the range of 

programs such as World of Sport (WoS), Match of the day (MoD), and Panorama (Pan). 

In Table 6.3, TV programs are subcategories of two TV broadcasting stations: ITV and 

BBC. This presentation does not show any clear pattern in the data. After combining the 

TV programs with the corresponding TV broadcasting stations and reordering them, we 

obtain Table 6.4 that shows a cluster for the five Sports programs and another cluster for 

the five Current Affairs programs. Now we can clearly see the main pattern of the data: 

correlations of 0.3 to 0.6 between the five Sports programs and of 0.2 to 0.5 between the 

five Current Affairs programs, with correlations of approximately 0.1 between these two 

clusters. What we have done in this example is similar to knowledge discovery and data 

mining that extracts understandable rules and patterns from a large database. Resently 

there has been an increased interest in exploring various data mining techniques for 

database applications [FPSSU95]. XTABLE can be used as a visual data-mining tool for 

database applications if we can establish a connection between XTABLE and a database 

system. 

Since XTABLE is a prototype for validating our tabular model, it does not provide some 

functionality that a production system will provide. For example, we did not provide 

well-designed languages for the specifications of table files and the collective style files, 

because we originally did not expect users to edit them directly. However, there are 

at least two advantages to allow users to edit these files directly. First, it provides a 

batch-oriented approach for users to compose tables. In this way, XTABLE can be used 

as a formatting system that compiles table specifications and generates formatted tables 

for various systems. Second, other systems can direct their output to XTABLE so that 



CHAPTER 6. IMPLEMENTATION 144 

Table 6.3: The initial table of correlations for 10 TV programs. 

Programs PrB Thw ToD WoS GrS LnU MoD Pan Rgs 24H 

ITV PrB 0.1 0.1 0.5 0.5 0.1 0.5 0.2 0.3 0.1 
Thw 0.1 0.3 0.1 0.1 0.2 0.1 0.4 0.1 0.4 
ToD 0.1 0.3 0.1 0.1 0.2 0.0 0.2 0.1 0.2 
WoS 0.5 0.1 0.1 0.6 0.1 0.6 0.2 0.3 0.1 

BBC GrS 0.5 0.1 0.1 0.6 0.1 0.6 0.2 0.3 0.1 
LnU 0.1 0.2 0.2 0.1 0.1 0.0 0.2 0.1 0.3 
MoD 0.5 0.1 0.0 0.6 0.6 0.0 0.1 0.3 0.1 
Pan 0.2 0.4 0.2 0.2 0.2 0.2 0.1 0.1 0.5 
Rgs 0.3 0.1 0.1 0.3 0.3 0.1 0.3 0.1 0.1 
24H 0.1 0.4 0.2 0.1 0.1 0.3 0.1 0.5 0.1 

Table 6.4: The modified table of correlations for 10 TV programs. 

Programs WoS MoD GrS PrB Rgs 24H Pan Thw ToD LnU 

ITV WoS 0.6 0.6 0.5 0.3 0.1 0.2 0.1 0.1 0.1 
BBCMoD 0.6 0.6 0.5 0.3 0.1 0.1 0.1 0.0 0.0 
BBC GrS 0.6 0.6 0.5 0.3 0.1 0.2 0.1 0.1 0.1 
ITV PrB 0.5 0.5 0.5 0.3 0.1 0.2 0.1 0.1 0.1 
BBC Rgs 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 

BBC 24H 0.1 0.1 0.1 0.1 0.1 0.5 0.4 0.2 0.3 
BBC Pan 0.2 0.1 0.2 0.2 0.1 0.5 0.4 0.2 0.2 
ITV Thw 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.3 0.2 
ITV ToD 0.1 0.0 0.1 0.1 0.1 0.2 0.2 0.3 0.2 
BBC LnU 0.1 0.0 0.1 0.1 0.1 0.3 0.2 0.2 0.2 



CHAPTER 6. IMPLEMENTATION 145 

they can use XTABLE's abilities to edit, analyze, and format tabular data. For example, 

as we have mentioned, XTABLE can be a data-mining tool if a database table can be 

transformed to an XTABLE table. 

Since XTABLE is based on the abstract model and the presentational model, it inherits 

the merits and the limitations of these models (see Sections 2.4 and 4.5). All the tables 

except Tables 2.3 and 5.4 in this thesis were generated by XTABLE in B-'JEX format. We 

have edited the B-'JEX files for Table 5.1 to add the footnotes. For Tables 2.2, 4.15, and 

4.16, we treated the labels in the body as entries and introduced some empty labels with 

which the fake entries can be associated. 



Chapter 7 

Concluding remarks 

We presented a tabular model that can support the different stages of tabular compo­

sition, including the description and manipulation of logical structure, the specification 

of topology and style, and the formatting of concrete tables. Based on this model, we 

have implemented a prototype tabular composition system XTABLE that helps users to 

design high-quality table layouts. XTABLE enables users to concentrate primarily on the 

manipulation of a table's logical structure and the specification of the layout with pre­

sentational rules. The resulting concrete tables are automatically generated by applying 

user-defined topology and style specifications to the logical structure. By separating the 

logical structure of tables from their layout structure, we are able to edit tables based 

on the logical relationships among tabular items, regardless of where the items appear 

in the layout structure. We can also easily present a table with different topologies and 

styles so as to compare different presentations and select the most appropriate one. 

We have investigated only the basic requirements for tabular editing, presentation, 

and formatting. As a result of our exploration, we believe that there are many issues 

that should be investigated further. In the following sections, we discuss some issues 

regarding abstract models, presentation, formatting, and browsing. 

146 



CHAPTER 7. CONCLUDING REMARKS 147 

7.1 Relational database tables 

The basic difference between relational database tables and abstract tables is the logical 

dimension. A database table is two-dimensional with attributes in one dimension and 

tuples in the other. To represent an abstract table in a relational database, we need 

to determine which category corresponds to the attribute names, which category corre­

sponds to the primary keys, and which category corresponds to the non-primary keys. 

Other database models exist, however, for the direct representation of multidimensional 

tables. Darrell Raymond [Ray96] proposes the use of partial orders as a unifying data 

model for databases. His model makes it possible to represent multidimensional tables 

directly in a partial-order database and present them in different topological layouts by 

applying partial-order operators. Using his model, each dimension of an abstract table 

can be specified with a partially ordered set and the topology of a table can be spec­

ified with a nested partial-order product of these dimensions. For example, using the 

three-dimensional abstract table defined on page 34, if we place the categories Year 

and Term in the stub and the category Mark in the boxhead, the topology can be 

specified as (Year x Term) x Mark, where the parentheses indicate the grouping. 

7.2 Extending the abstract model 

As we have mentioned in Section 2.4, we can extend the model by allowing multiple 

mappings to specify the tables that are a combinations of several tables in a multi­

dimensional structure. 

Our abstract model captures only the logical relationships among labels and entries; 

there are often other relationships among entries. For example, an entry may be the sum 

of some other entries, as in a spreadsheet. If we extend the abstract model to capture 

this kind of relationship, we can update an entry once the values of its associated entries 

are changed. To achieve this objective, we may allow entry values to be formulas whose 

variables are other entries. We can use, for example, Average( {Year.1991, Mark.Final}) 

to represent the value of an entry that is the average of the final marks for the three terms 

of 1991. 



CHAPTER 7. CONCLUDING REMARKS 148 

The abstract model does not distinguish entry and label types; for example, string, 

number, date, time, and so on. Such distinctions could be used for specifying styles and 

for computing derived values. 

7.3 Different abstract model 

Our abstract model requires the distinction between labels and entries. An item has 

to be a label or an entry, but not both. This limits the representation of the logical 

associations among such items. For example, a table that converts temperatures between 

Celsius and Fahrenheit contains two groups of items: the temperatures in Celsius and 

the temperatures in Fahrenheit. Items in both groups can be either labels or entries. 

To specify this table with our abstract model, we need to determine which group acts 

like labels and which like entries. A possible approach to this problem is to make no 

distinction between labels and entries. We can specify entries as a category and use a 

relation rather than a function to specify the logical associations among items in different 

categories. This, however, increases the complexity of arranging items in two dimensions 

if a table contains more than two categories. We need add one more topological rule to 

specify which category is put in the body. If one places a category that contains entries 

in the stub or in the boxhead, the labels may need to be put in the table body. This 

kind of presentations is, however, against the convention for high-quality tables [Wri68]. 

7.4 Logical structure recognition 

We map an abstract table into a concrete table, but what about the reverse? Can we 

derive the logical structure of a table when given a concrete table? Image processing 

techniques enable us to determine the tabular items in a two-dimensional grid. To re­

construct a logical structure we need to distinguish labels from entries. We can use some 

presentational heuristics to distinguish them. For example, the font and the size oflabels 

may be different from the font and size of entries, or the stub and boxhead separation 

may be different from other separations in rule type, in rule width, or in spacing. If 
a user can provide the positions of stub and boxhead separation, recognition is much 



CHAPTER 7. CONCLUDING REMARKS 149 

easier. Douglas et al. [DHQ94] present an approach that extracts the logical structure 

from a table in plain text in two steps: first recognizing its canonical layout, which is 

similar to a relational database table, and then applying a series of transformations to 

the canonical layout. Reconstructing a multidimensional logical structure from a two­

dimensional database table is comparatively easy, because the attribute names and the 

items in a column that is a part of the primary key are used mostly as indices; thus, they 

can be classified as labels. Automatic recognition of tabular logical structure can improve 

the efficiency of table construction from published documents, hand-written drafts, and 

database output. 

7.5 Different presentational methods 

Our tabular model focuses only on presenting tables as a row-column structure in two 

dimensions. We have not addressed the issue of presenting tables in other forms, such as 

with bar graphics, line graphics, pie charts, and so on. We would need to introduce dif­

ferent presentational rules to specify the topology and style for these graphical elements. 

Also we need to investigate possible graphical techniques that utilize the full capabilities 

of the human visual system. In addition, how might we present an abstract table in three 

dimensions? We could use different pages as sheets to present the third dimension or we 

could use a two-dimensional display to present a three-dimensional layout. 

7.6 Complexity of tabular formatting 

We have given the complexities of tabular formatting problems with different combi­

nations of restrictions in Table 5.1 on page 99, in which 3 problems were solved, 10 

problems have conjectures, and 11 problems are unsolved. We obtained the conjectured 

results by inference and did not give proofs in this thesis. We now give a brief discussion 

of these conjectured results. For convenience, we define a tabular formatting problem 

with restrictions as TF(L, S, 0), where L is either "fixed line breaking" or automatic 

line breaking"; S is "none", "linear" for linear equality or inequality, or "non-linear" for 

non-linear expression; and O is "none", "diameter", "area" or "w_space" for white space. 



CHAPTER 7. CONCLUDING REMARKS 150 

For example, the formatting problem TF(automatic, linear, diameter) uses automatic 

line breaking to find a table with the minimal diameter that satisfies the size constraints 

expressed as linear equalities or inequalities. 

Beach proved that TF(fixed, linear, diameter) is polynomial-time solvable [Bea85]. 

This result implies that TF(fixed, linear, none) is polynomial-time solvable. Since all 

item sizes are fixed, a solution with minimal diameter is also a solution with the mini­

mal area and a solution with the minimal white space. Thus, TF(fixed, linear, area) and 

TF(fixed, linear, w_space) are also polynomial-time solvable. Since TF(fixed, none, diam­

eter), TF(fixed, none, area), and TF(fixed, none, w_space) are subproblems of TF(fixed, 

linear, diameter), TF(fixed, linear, area), and TF(fixed, linear, w_space), respectively, 

they are also polynomial-time solvable. For TF(automatic, none, none), we can first fix 

the item sizes by typesetting all items in their maximum widths; thus, it can be trans­

formed to TF(fixed, none, none), which has been proved to be polynomial-time solvable 

by Beach [Bea85]. Therefore, TF(automatic, none, none) is polynomial-time solvable. 

We have proved that TF(automatic, linear, none) is NP-complete (see Theorem 5.1). 

If we restrict TF such that the size constraints contain at least two linear equalities: 

W1 S I:i=l W3 S W2 and H1 S I:~1 h; S H2, it is still NP-complete, because the proof 

of Theorem 5.1 also holds in this case. We name this NP-complete problem SUBTF. 

To prove that TF(automatic, linear, diameter) is NP-complete, we can define an equiv­

alent problem of TF(automatic, linear, diameter) by changing the definition of TF in 
Section 5.3 on page 105 to: 

INSTANCE: An m x n grid, r nonoverlapping items: Ok = (tk, lk, bk, rk, Ok, 1/Jk) 
(1 S k Sr) , s size constraints: e1 , e2 , ••• , e., and an integer D. 

QUESTION: Are there n + m integers W1, W2, ... , Wn and h1, h2, ... , hm such that 
l. W = w1, w2, ... , Wn satisfy all width constraints among e1, e2 , .•• , e,; 
2. H = hi, h2, ... , hm satisfy all height constraints among e1 , e2 , .•• , e,; 
3. Vok(l s ks r), I:;~1. Wp?: 1/Jk[min] and ok(I:;~1. wp) s I:~:: •• hq. 
4. I:1=1 Wj + I:~1 h; s D 

We add D to the INSTANCE portion and add condition 4, which specifies that the sum of 

the table width and height is no more than D, to the QUESTION portion. We can prove 

that TF(automatic, linear, diameter) is NP-complete by reducing SUBTF to this equiva­

lent problem. Similarly, we obtain an equivalent problem of TF(automatic, linear, area) 



CHAPTER 7. CONCLUDING REMARKS 151 

by replacing condition 4 with 
n m 

~w3 ~h,::; D 
j=l i=l 

and obtain an equivalent problem of TF(automatic, linear, w_space)by replacing condi-

tion 4 with 
n m r r1c r1e 

~ w3 ~ h, - ~(( ~ wv)Jk( ~ wp)) ::; D. 
j=l i=l k=l p=l1c p;;;;l1,: 

We can also prove that TF(automatic, linear, area) and TF(automatic, linear, w_space) 

are NP-complete by reducing SUBTF to their equivalent problems. The formal proofs 

will be given in Wang and Wood [WW96]. 

We have not classified the complexities of TF( automatic, none, diameter), TF( automatic, 

none, area), and TF(automatic, none, w_space). These problems may be polynomial­

time solvable. The complexity results for all problems that handle size constraints with 

non-linear expressions are also unknown. 

7. 7 Formatting algorithms 

To obtain an algorithm to solve the tabular formatting problem that runs in polynomial 

time for many common tables, we ignored objective functions. We can improve our 

algorithm by generating locally optimal solutions for an objective function among a 

set of layouts. In a polynomial-time search, we can check all the step combinations and 

select an optimal solution among the layouts found in the search, rather than terminating 

when we have found a layout that satisfies the size constraints. A more challenging and 

interesting future investigation includes the following problems: 

• If we take objective functions into account in the formatting process, can we design 

an algorithm to solve the problem in polynomial time for many tables? 

• If we simplify the problem by weakening the size constraints instead of ignoring 

the objective functions, can we still obtain a polynomial-time algorithm for many 
tables? 



CHAPTER 7. CONCLUDING REMARKS 152 

7.8 Large tables 

When a table is too large to be presented on a given page, we need to break it into 

subtables. This process is more complex than the pagination of text. Where should we 

break the table such that difficulty of reading is minimized? Since our tabular model 

captures logical structure, we expect that it provides sufficient information to assist in 

the pagination of tables. For example, if a subcategory has subsubcategories, it is unwise 

to break a table such that the subsubcategories appear on different pages. To reduce the 

difficulty of reading a multi page table, we may have to duplicate the labels in the stub 

or in the boxhead for each page. Observe that when one dimension is much larger than 

the other dimension, we can break the table with respect to the larger dimension and we 

may be able to place the subtables side by side in the smaller dimension on one page. 

7.9 Tabular browsing 

Our tabular model provides a basis for adding tabular browsing in an interactive environ­

ment since the model captures the logical structure. Such an extension might highlight 

the entries that satisfy queries. Here are some example queries: 

1. Highlight all marks that are less than 50 and associated with the Winter term and 

the final examination. 

2. Highlight all the students who gained the highest mark in the midterm of a course. 

3. Highlight all students whose final marks are between 90 and 100. 

We might also wish to create a subtable in response to a query and then automatically 

lay it out using the methods described in the thesis. We should be able to borrow the 

ideas in database query languages such as SQL; however, the design of an appropriate 

query language is an open problem. 



Appendix A 

Expressiveness 

To find out how well the abstract and presentational models described in Chapters 2 and 

4 can be used to specify the tables in the real world, we performed two experiments that 

measure the expressive power of these models. We checked books from different sources, 

including statistics, sociology, science, and business. The CRC Handbook of Chemistry 

and Physics [CRC88] collects a few hundred tables used in chemistry and physics. These 

tables are representative of scientific tables that may contain many numbers, mathemat­

ical equations, and special symbols. The Human Activity and the Environment [Sta86], 

published by Statistics Canada, contains 148 statistical tables. Most of them contain 

footnotes and many of them have three or more categories. Most of the tables in In­

vestments: Principle/Practices/ Analyses [BR74] are two-dimensional numerical tables. 

Social Problems [Rit86] contains many tables with long text. 

The result of the experiment for the logical structure, given in Table A.1, reveals that 

the abstract model can be used to specify 56 percent of the tables in these four books 

if we consider footnotes and 97 percent of the tables if we ignore footnotes. From this 

experiment we can see that most of the tables can be specified with a multi-dimensional 

logical structure. 

The result of the experiment for the layout structure, given in Table A.2, shows that 

the presentational model can be used to specify the topology of 94 percent of the tables 

in the four books and to specify the style of 97 percent of the tables. These percentages 

also indicate that the presentational model matches the real-world situation quite well. 

153 



Table A.1: The expressiveness of the abstract model. 

Logical structure 

Books 
Can be specified Cannot be specified 

Without footnotes With footnotes 

Number I Percent Number I Percent Number I Percent 

CRC Handbook of 
Chemistry and Physics 322 66 150 31 16 03 

Human Activity and 
23 13 148 86 1 10 Environment 

Investment: Principles/ 
106 64 56 34 4 2 Practise/ Analyses 

Social Problems 47 78 12 20 1 2 

Total number 498 56 366 41 22 3 

Total 
number 

488 

172 

166 

60 

886 

~ 
@ 
>< 
?>--

~ 

i 
~ 
~ 
~ 

,_. 
°' "'" 



Books 

CRC Handbook 
of Chemistry 
and Physics 

Human Activity 
and Environment 
Investmen: 
Principles/ 
Practise/ Analyses 

Social Problems 

Total number 

Table A.2: The expressiveness of the presentational model. 

Topology Style 

Can be Cannot be Can be Cannot be 
specified specified specified specified 

Number J Percent Number J Percent Number I Percent Number I Percent 

451 92 37 8 463 95 25 5 

168 98 4 2 172 1 0 0 

161 97 5 3 161 97 5 3 

57 95 3 5 60 1 0 0 

837 94 49 6 856 97 30 3 

Total 
number 

488 

172 

166 

60 

886 

~ 

~ 
~ 
>< 
?>-
t:>:l 

~ 

i 
~ 
~ 
~ 

>--' 

°' °' 



Appendix B 

Pseudo-code algorithms 

This appendix includes the pseudo-code algorithms invoked by Algorithms 1, 2, and 3 in 

Chapter 5: 

Function Find_Colurnn_Widths (com..steps, colurnn_widths): bool 

integer pair com..steps [1. . i tem__number] ; 

var integer colurnn_widths [1 .. colurnn__number] ; 

begin 

array of inequality wid_inequ; 

integer wid_inequ__num; 

f* Generate width inequalities for item sizes *f 
wid_inequ__num : = 0; 

for each item Ok= (tk,lk,bk,rk,'Pk,ok) do 

f* ensure that the width of the block falls into the step for the item *f 
vid_inequ[wid...inequ__num] := { com..steps[k] .head '.','. I:;~1• wp }; 

wid_inequ[wid...inequ__num+1] := { I:;~1• Wp '.','. com_steps [k]. tail } ; 

wid_inequ__num : = wid_inequ__num + 2; 

end for 

f* Generate width equalities and inequalities for width constraints *f 
for each width constraint ez do 

156 



APPENDIX B. PSEUDO-CODE ALGORITHMS 

end 

wid_inequ[wid...inequJ1urn] := { ec } ; 
wid_inequJ1urn : = wid_inequJ1urn + 1; 

end for 

I* Solve the width equalities and inequalities *I 
if Inequality..Solver(wid...inequ, wid_inequJ1urn, colurnn_widths)) then 

return ( true) ; 

else return (false) ; end if 

Function Find-1low-11eights (corn_steps, row..heights): bool 

integer pair corn_steps [1 .. i temJ1urnber] ; 

var integer row..heights [1. .rowJ1urnber]; 

begin 

array of inequality heLinequ; 

integer hei_inequJ1urn; 

I* Generate height inequalities for item sizes *I 
heLinequJ1urn : = 0; 

for each item Ok= (tk, lk, bk, Tk, 1/Jk, ok) do 
I* ensure that the height of the item is no more than the height 

of its block *I 
heLinequ [hei...inequJ1urn] : = { Ok ( com_steps [k] . head) :::; I:!~,. hq } ; 

heLinequJ1urn : = heLinequJ1urn + 1; 

end for 

I* Generate height equalities and inequalities for width constraints *I 
for each height constraint ec do 

heLinequ [hei...inequJ1urn] : = { ec } ; 
heLinequJ1urn : = hei...inequJ1urn + 1 ; 

end for 

I* Solve the height equalities and inequalities *I 

157 



APPENDIX B. PSEUDO-CODE ALGORITHMS 

end 

if Inequality...Solver(hei...inequ, heLinequ..num, row..heights)) then 

return(true); 

else return(false); end if 

158 

Function Find..First_Combination(com..steps, column_widths, row..heights): enum 

var integer pair com..steps [1.. item..number]; 

var integer column_widths [1 .. column.number] , row..heights [1 .. row..number] ; 

begin 

array of inequality wid_inequ; 

integer wid_inequ..num; 

I* Generate width inequalities for item sizes *I 
wid_inequ..num : = 0; 

for each item Ok= (tk, lk, bk, rk, Ok, 'Pk) do 

I* ensure that the width of the block is no less than the minimal 

step head of the item *I 
wid_inequ [wid...inequ..num] : = { I:;~1• Wp > 'Pk [min] } ; 

wid_inequ..num : = wid_inequ..num + 1; 

end for 

I* Generate width equalities and inequalities for width constraints *I 
for each width constraint e1 do 

wid_inequ [wid...inequ..num] : = { e1 } ; 

wid_inequ..num : = wid_inequ..num + 1; 

end for 

I* Solve the width equalities and inequalities *I 
if Inequality...Solver(wid...inequ, wid_inequ..num, column_widths)) then 

for k:=1 to column..number do 

Find...Step_Combination(k, column_widths, com_steps); 

end for 

if Find...Row..J!eights (com..steps, row..heights) then 



APPENDIX B. PSEUDO-CODE ALGORITHMS 159 

end 

return(Both_Ok); 

else Find.Layout...Row..lleights(com..steps, row.lteights); 

return (Wid_Ok) ; 

end if 

else return(Not.Found); end if 

Function Find...Next_Combination(com..steps, column_widths, row.lteights): enum 

var integer pair com..steps [1. . i tern.number] ; 

var integer column_widths [1 .. column.number], row.lteights [1 .. row.number]; 

begin 

integer pair next_com_steps [1. .item.number]; 

integer next_column_widths [1 .. column.number] , next.row.lteights [1 .. row.number] ; 

integer pair selected_com_steps [1 .. i tern.number] ; 

integer selected_col_wids[1 .. column.number], selected.row.1teis[1 .. row.number]; 

integer selected_value, this_value; 

enum {Not.Found, Wid_Ok, HeLOk, Both_Ok, None_Ok, End} sel.result; 

bool is_wid_ok, is.lteLok; 

selected_value : = +oo; 

for k = 1 to column.number do 

next_co!ILsteps := com_steps; 

if Find_Widened..Items (k, column_widths, next_com_steps) then 

is_wid_ok : = Find_Column_Widths (next_com_steps, next_column_widths) ; 

is.ltei_ok := Find..Row..lleights(next_com..steps, next.row.lteights); 

if is_wid_ok and is.lteLok then 

com_steps := next_com_steps; 

column_widths : = next_column_widths; 

row.lteights : = next_column_widths; 

return(Both_Ok); 

end if 

if not is_wid_ok then 

Find.Layout_Column_Widths(next_com_steps, next_column_widths); 



APPENDIX B. PSEUDO-CODE ALGORITHMS 

end if 

if not is..heLok then 

Find_Layout...Row...lleights(next_com_steps, next..row..heights); 

end if 

160 

this_value := I;J=1next_column_widths[j] + I;Z:,1next..row..heights[i]; 

if this_value < selected_value then 

end 

selected_value := this_value; 

selected_com_steps := next_com_steps; 

selected_coLwids : = next_column_widths; 

selected..row..heis := next..row..heights; 

if not is_wid_ok and not is..heLok then 

sel..result := None_Ok; 

else if is_wid_ok then 

sel..result := Wid_Ok; 

else sel..result := HeLOk; end if; 
end if 

end if 

end for 

if selected_value f. +oo then 

com_steps := selected_com_steps; 

column_widths := selected_col_wids; 

row..heights := selected..row..heis; 

return(sel..result); 

else return (End) ; end if 

Function Find_Widened-1:tems(column, column_widths, com_steps): bool 

integer column, column_widths[1 .. column-11umber]; 

var integer pair com_steps[1. .item_number]; 

begin 

bool found; 

integer other_width, this_step..head, next_width; 



APPENDIX B. PSEUDO-CODE ALGORITHMS 161 

I* calculate the new width for the column based on current column widths *I 
found := false; 

next_,1idth : = +oo; 

for each item Ok= (tk,lk,bk,rk,lik,'Pk) that satisfies lk 5, column 5, rk do 

if com..steps [k] .head # 'Pk [max] then 

this..step..head := com_steps[k].tail + 1; 

other_width : = I:;~1• column_widths [p] - column_widths [column]; 

if (this_step..head - other_width) < next_width then 

next_width := this_step..head - other_width; 

end if 

found : = true; 

end if 

end for 

I* change the steps of the items for the new column width *I 
if found then 

column_widths[column] := next_width; 

Find...Step_Combination(column, column_widths, com..steps); 

end if 

return(found); 

end 

Procedure Find...Step_Combination(column, current_widths, com_steps) 

integer column, column_widths; 

var integer pair com..steps [1 .. i tem..number] ; 

begin 

integer block_width; 

for each item Ok= (tk,lk,bk,rk,lik,'Pk) that satisfies lk 5, column 5, rk do 

block_width : =I:;~1• column_widths [p]; 

com_steps [k] : = step Sk such that Bk. head < block_width < sk. tail; 

end for 



APPENDIX B. PSEUDO-CODE ALGORITHMS 

end 

Function Find..Layout_Column_Widths(com__steps, column_widths): bool 

integer pair com__steps [1. . i tem..number] ; 

var integer column_widths [1 .. column.number] ; 

begin 

array of inequality wid_inequ; 

integer wid_inequ.num; 

f* Generate width inequalities for item sizes *f 
wid_inequ.num : = 0; 

for each item Ok= (tk, lk, bk, rk, t5k, 'Pk) do 

wid_inequ [wid..inequ.num] : = { com__steps [k] . head :::; 1:;~1• Wp } ; 

wid_inequ[wid..inequ.num+1] := { 1:;~1• wP ::; com_steps [k]. tail } ; 

wid_inequ.num : = wid_inequ.num + 2; 

end for 

f* Solve the width inequalities *f 
if Inequality...Solver(wid..inequ, wid_inequ.num, column_widths)) then 

return ( true) ; 

else return (false) ; end if 

end 

Function Find..Layout..Row...lleights (com__steps, row.lieights): bool 

integer pair com__steps [1. . i tern.number] ; 

var integer row.lieights [1. . row.number] ; 

begin 

array of inequality heLinequ; 

integer hei_inequ.num; 

f* Generate height inequalities for item sizes *f 

162 



APPENDIX B. PSEUDO-CODE ALGORITHMS 

end 

heLinequ.num : = O; 

for each i tern Ok = (tk, lk, bk, rk, Ok,'•Pk) do 

heLinequ[hei..inequ.num] := { I:~~t, hq > Ok(com_steps[k] .head)}; 

heLinequ.num : = heLinequ.num + 1; 

end for 

f* Solve the height inequalities *f 
if Inequality..Solver(hei..inequ, hei..inequ.num, row..heights)) then 

return ( true) ; 

else return(false); end if 

163 



Appendix C 

Screen shots of XTABLE 

This appendix includes a number of screen shots that shows how users edit tables using 

XTABLE. The operations that generate these screen shots are given in Section 6.5.1. 

164 



:::1 I 
()q 

~ 
Cl) 

0 .... 
r"l 
p" 
Cl) 

0 .., ~-
()q ~-i:, 
e. .... 
if 
Cl) 
Cl) 

' 8-: s 
Cl) 
i:, 

"' ~-
0 
i:, 
e. .... 
g. 
rs-

18] Xtable 

mark. tab{_e~r.Pect.sty) 

File Edit Style Collective-Style Calculation Setting lselecti~!Re,.ove!~~ICoJObine!~~ 

IMark I Boxhead 

1 

Assignments Examinations 
Year Term Grade 

Assl Ass:2 Ass3 Midterm Final 

Winter 85 BO 75 60 75 75 
1991 Spring 80 65 75 60 70 70 

Fall 80 85 75 55 BO 75 

Winter 85 80 70 70 75 75 
1992 Spling 80 BO 70 70 75 75 

Fall 75 70 65 60 80 70 

Stub I §'ear! !Tenn! 

jC<>1>t<,nt! I !Redraw! 

~ 

~ 
@ 
~ 
0 
CQ 

~ 
t,;j 

~ 
~ 
0 

~ 
~ 

~ 
t:o 
t< 
t;;J 

.... 
O> 

"" 



>rj 

1· 
(1) 

0 

""' > :;:;, 
~ 
s 
~. 

Jg 
.... 
g" 

" ~ 
j 
~ 
ei .... 
0 .... 
g" 
,::" 

i 
(1) 

p. 

181 xtable 

mark.tab(e_erfect.sty) 

File Edit Style Collective-Style Calculation Setting jselecti~iRemoveiS~iCombinei~~ 

Im~ Boxhead 

:~~~~~~~&l~~~I;~~~~;;~~~~~;;;±~~;~~~=~[a!~s 
Tcrm I Assignments Examinations Assignments Examinations 

Grade Grade 
Ass1 Ass2 Ass3 Midtcrm Final Assl Ass2 Ass3 Midtmn Fmal 

Winter 8S 80 7S 60 7S 7S 8S 80 70 70 75 7S 
Spring 80 65 75 60 70 70 JI(] JI(] 70 70 75 75 

Fall 80 85 75 55 80 75 75 70 65 60 80 70 

Stub I !Tenn! 

11 Content! IX""'" I IRedrawl 

;i:. 

~ 
@ 
>< 
0 
c,, 

@ 

I 
§ 
~ 
~ 

~ 
t:c 
I:"" 
t,;J 

.... 
0) 
0) 



t-rj ~-
°" 
~ 
0 
<:,) 

> 
~ 
~ 

~ 

! 
~ 

~ -g. 
~ 

" " ~ ..,.. 
g" 
., 
g. 
R 
1 
> ., ., ~-l)q 

= s 
(I) 

a. ., 

Ill] Xtable ~ 
mark.tab(pe~fect.sty) 

File Edit Style Collective-Style Calculation Setting ISelect!EB]IRemove!~~!Co,nblne!~~ 

~-= ·--~ I Boxhead 

Assignments Exammations 
Year Term Grade 

Assl AssZ Ass3 Midtenn Final 

Winter 85 BO 75 60 75 75 
1991 Spring 80 65 75 60 70 70 

Fall 80 85 75 55 BO 75 

Winter 85 BO 70 70 75 75 
1992. Spring 80 BO 70 70 75 75 

Fall 75 70 65 60 BO 70 

Stub I {Yearl ITennl 
i ! Content! l_kabel9 I !Redraw! 

~ 
~ 
ti 

>< 
0 
c,, 

~ ; 
~ 
0 

~ 
0 
',;j 

~ 
c:1 
t"" 
t::rj 

..... 
0, ..., 



"rj 

1· 
0 
~ 
> 
~ 
f)l 

~ 
"' d,i" 
I:!. 
Jg 
.,.,. 
g-
1::! 

~ 
> ., ., ... 
8' ,., 
.,.,. 
~ 
Cl) 

~ 
g: 
~ 

18] xt,,ble g[I 

mark.tab(perfect.sty) 

File Edit Style Collective-Style Calculation Setting ISelect!~IRemove!~~IComine!~~ 

!fl~!j I Boxhead 

Assignments Examinations 
Year Term Grade 

Assl Ass2 AssS Midterm Fmol 

Wmter 85 80 75 60 75 75 
1991 Spring 80 65 75 60 70 70 

Fall 80 85 75 55 80 75 

Wlnto.r 85 80 70 70 75 75 

1992 Spring 80 80 70 70 75 75 

Fall 75 70 65 60 BO 70 

Stub I jY"earl !Tenn.I 

11 Content! 1#•4 I !Redraw! 

> 

~ 
@ 
>< 
0 
c,, 

fa 
~ 
~ 

~ 
0 

~ 
~ 

~ 
to 
t" 
t_:rj 

>--' 
O> 
00 



:::-1 

1 
0 

°' 
> :;:, 
~ 

lt 
~ Jg. 
OT 

g" 
s 
~ 
g; 
"' 0 o. 
~ 
(1) 
p.. 

:;; ~-
OT 
p" 

> 
00 
00 

ti>-

ll1] xtable 

mark. tab(perf'ect_.st.w> 

File Edit Style Collective-Style calculation Setting !Select!~IRemove!~~IComblne!~S 

~ IBoxhead 

Assignments Examinations 
Year Tenn Grade 

Assl Ass2 Ass3 Ass4 Midterm Final 

Wmter 85 80 75 60 75 75 
1991 Spring 80 65 75 60 70 70 

Fall 80 85 75 55 80 75 

Winter 85 80 70 70 75 75 
1992 Spring 80 80 70 70 75 75 

Fall 75 70 65 60 80 70 

Stub I flearl lTeDnl 

i I Content! ll'l 
! 

I !Redraw! 

> 

~ 
@ 
~ 
0 
Cr., 

2 
~ :;:: 

§ 
~ 
~ 

~ 
l:!:I 
t< 
t:rJ 

I-' 

"' '° 



Appendix D 

Examples of XTABLE's input files 

This appendix gives examples of a table file and a collective style file. We specify an 

abstract table, a topological specification, and a specific style specification in a table 

file, and specify a collective style specification in a collective style file. The expressive 

methods, however, are different from the ways we use in Chapters 2 and 4. For example, 

a label in Chapter 2 is a string of characters, whereas a label in a table file consists of a 

unique ID assigned by the system and a value shown on the screen. In Chapter 4 we use 

pseudo-code to specify the style rules. In a table file or a collective style file, however, 

we specify style rules in a less readable way; for instance, the cell style is specified as: 

CELL = ( <font>, <slant>, <shape>, <size>, <line space>, <vertical alignment>, 

<horizontal alignment>, <background pattern>, <left leading space>, 

<right leading space>, <top leading space>, <bottom leading space>) 

and a separation style, say vertical separation, is specified as 

VER.RULE = ( <line type>, <width>, <left space>, <right space>). 

The keyword INHERITANCE indicates that the option is inherited from the super object 

or the default value if the style rule is specified for the whole table. 

170 



APPENDIX D. EXAMPLES OF XTABLE'S INPUT FILES 

D.1 An example of a table file 

TABLE mark 

BEGIN 

ABSTRACTION 

CATEGORY Yeari"Year": 

{_X2713438721"1991", _X271343936l"1992"}; 

CATEGORY Termi"Term": 

CX271344256l"Winter", _X271344384l"Spring", _X271344448i"Fall"}; 
CATEGORY Marki"Mark": 

171 

{_X270847808l"Assignments", _X270847744l"Examinations", _X271344064l"Grade"}; 
SUBCATEGORY Mark ._X270847744 I "Examinations": 

{_X270847936l"Midterm", _X271343616i"Final"}; 

SUBCATEGORY Mark._X270847808l"Assignments": 

{_X270847488l"Ass1", _X270847552l"Ass2", _X270847680l"Ass3"}; 

MAPPING: 

{{ Year._X271343936, 

{ Year._X271343936, 

{ Year._X271343936, 

{ Year._X271343872, 

{ Year._X271343872, 

{ Year._X271343872, 

{ Year._X271343936, 

{ Year._X271343936, 

{ Year._X271343936, 

{ Year._X271343872, 

Term._X271344448, 

Term._X271344384, 

Term._X271344256, 

Term._X271344448, 

Term._X271344384, 

Term._X271344256, 

Term._X271344448, 

Term._X271344384, 

Term._X271344256, 

Term._X271344448, 

Mark._X271344064} -> 11 70 11
, 

Mark._X271344064} -> 117511' 

Mark._X271344064} -> 117511 ' 

Mark._X271344064} -> 117511' 

Mark._X271344064} -> 117011' 

Mark._X271344064} -> 117511' 

Mark._X270847744._X271343616} -> 
Mark._X270847744._X271343616} -> 
Mark._X270847744._X271343616} -> 
Mark._X270847744._X271343616} -> 

11 80 11
, 

117511, 

117511' 
11

80
11

' 

{ Year._X271343872, Term._X271344384, Mark._X270847744._X271343616} -> "70", 

{ Year._X271343872, Term._X271344256, Mark._X270847744._X271343616} -> "75", 

{ Year._X271343936, Term._X271344448, Mark._X270847744._X270847936} -> "60", 

{ Year._X271343936, Term._X271344384, Mark._X270847744._X270847936} -> "70", 

{ Year._X271343936, Term._X271344256, Mark._X270847744._X270847936} -> "70", 

{ Year._X271343872, Term._X271344448, Mark._X270847744._X270847936} -> "55", 



APPENDIX D. EXAMPLES OF XTABLE'S INPUT FILES 

{ Year._X271343872, 

{ Year._X271343872, 

{ Year._X271343936, 

{ Year._X271343936, 

{ Year._X271343936, 

{ Year._X271343872, 

{ Year._X271343872, 

{ Year._X271343872, 

{ Year._X271343936, 

{ Year._X271343936, 

{ Year._X271343936, 

{ Year._X271343872, 

{ Year._X271343872, 

{ Year._X271343872, 

{ Year._X271343936, 

{ Year._X271343936, 

{ Year._X271343936, 

{ Year._X271343872, 

{ Year._X271343872, 

{ Year._X271343872, 

}; 

TOPOLOGY 

STUB: Year> Term; 

BOXHEAD: Mark; 

STYLE 

BOXHEAD: 

Term._X271344384, Mark._X270847744._X270847936} -> 

Term._X271344256, Mark._X270847744._X270847936} -> 
Term._X271344448, Mark._X270847808._X270847680} -> 

Term._X271344384, Mark._X270847808._X270847680} -> 
Term._X271344256, Mark._X270847808._X270847680} -> 

Term._X271344448, Mark._X270847808._X270847680} -> 

Term._X271344384, Mark._X270847808._X270847680} -> 

Term._X271344256, Mark._X270847808._X270847680} -> 
Term._X271344448, Mark._X270847808._X270847552} -> 

Term._X271344384, Mark._X270847808._X270847552} -> 

Term._X271344256, Mark._X270847808._X270847552} -> 

Term._X271344448, Mark._X270847808._X270847552} -> 

Term._X271344384, Mark._X270847808._X270847552} -> 
Term._X271344256, Mark._X270847808._X270847552} -> 
Term._X271344448, Mark._X270847808._X270847488} -> 
Term._X271344384, Mark._X270847808._X270847488} -> 
Term._X271344256, Mark._X270847808._X270847488} -> 

Term._X271344448, Mark._X270847808._X270847488} -> 
Term._X271344384, Mark._X270847808._X270847488} -> 
Term._X271344256, Mark._X270847808._X270847488} -> 

172 

11
60

11
' 

11 60 II , 

115511 ' 
11 70 11

, 

117011' 

117511' 

117511' 

117511 J 

117011' 
11 80 II , 

"8Q II , 

11 86 11 
J 

11 66 11 
' 

11ao11' 
117511 J 

11
80

11
' 

nas"' 
11 ao II J 

11
80

11
' 

11 86 11 

CELL={ INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE, 

INHERITANCE, BASELINE, INHERITANCE, INHERITANCE, INHERITANCE, 
INHERITANCE, INHERITANCE}; 

END 



APPENDIX D. EXAMPLES OF XTABLE'S INPUT FILES 

D.2 An example of a collective style file 

GLOBAL_STYLE 

TABLE: 
CATEGORY_HEAD_TYPE = WITHOUT_HEAD, 
STUB_RULE = { SINGLE, 24, INHERITANCE, INHERITANCE}, 
BOXHEAD_RULE = { SINGLE, 24, INHERITANCE, INHERITANCE}, 
BOX_LEFT_RULE = { DOUBLE, 24, INHERITANCE, INHERITANCE}, 
BOX_TOP_RULE = { DOUBLE, 24, INHERITANCE, INHERITANCE}, 
BOX_RIGHT_RULE = { DOUBLE, 24, INHERITANCE, INHERITANCE}, 
BOX_BOTTOM_RULE = { DOUBLE, 24, INHERITANCE, INHERITANCE}; 

STUB: 
CELL= { INHERITANCE, INHERITANCE, BOLD, INHERITANCE, INHERITANCE, 

INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE, 
INHERITANCE, INHERITANCE, INHERITANCE}, 

HOR_RULE = { NONE, INHERITANCE, INHERITANCE, INHERITANCE}; 

BOXHEAD: 
CELL= { INHERITANCE, INHERITANCE, BOLD, INHERITANCE, INHERITANCE, 

INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE, 
INHERITANCE, INHERITANCE, INHERITANCE}, 

VER_RULE = { NONE, INHERITANCE, INHERITANCE, INHERITANCE}; 

BODY: 
TYPE= VERTICAL_SPANNING_ONLY, 

HOR_RULE = { SINGLE, INHERITANCE, INHERITANCE, INHERITANCE}; 

ENTRY_VALUE "" : 
CELL= { INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE, 

INHERITANCE, INHERITANCE, INHERITANCE, LIGHT_GRAY, 
INHERITANCE, INHERITANCE, INHERITANCE, INHERITANCE}; 

173 



Bibliography 

[AAU78] One book/Five ways. William Kaufmann, Inc., Los Altos, CA, 1978. 

[Bar65] M. P. Barnett. Computer Typesetting: Experiments and Prospects. MIT 

Press, 1965. 

[Bea85] 

[BEF84] 

[BR74] 

[Bri14] 

[Cam89] 

[Cea82] 

R. J. Beach. Setting Tables and Illustrations with Style. PhD thesis, Dept. of 

Computer Science, University of Waterloo, Waterloo, Ontario, Canada, May 

1985. Also issued as Technical Report CSL-85-3, Xerox Palo Alto Research 

Center, Palo Alto, CA. 

T. J. Biggerstaff, D. M. Endres, and I. R. Forman. TABLE: Object ori­

ented editing of complex structures. In Proceeding of the 1th International 

Conference on Software Engineering, pages 334-345, 1984. 

D. H. Bellemore and J. C. Ritchie. Investments - Princi-

ple/Pratices/Analyses. South-Western Publishing Co., 4th edition, 1974. 

W. C. Brinton. Graphic Methods for Presenting Facts. The Engineering 

Magazine Company, New York, 1914. 

J. P. Cameron. A cognitive model for tabular editing. Technical Report 

OSU-CISRC-6/89-TR 26, The Ohio State University, Columbus, OH, June 

1989. 

D. C. Chamberlin and et al. JANUS: An interactive document formatter 

based on declarative tags. IBM Systems Journal, 21(3), 1982. 

174 



BIBLIOGRAPHY 175 

[Chi93) The Chicago Manual of Style. The University of Chicago Press, Chicago and 

London, 14th edition, 1993. 

[CRC88) CRC Handbook of Chemistry and Physics. CRC Press, 68th edition, 1987-

1988. 

[Dan63) G. Dantzig. Linear Programming and Extensions. Princeton University Press, 

1963. 

[DHQ94) Shona Douglas, Matthew Hurst, and David Quinn. Using natural language 

processing for identifying and interpreting tables in plain text. Construction 

Industry Specification Analysis and Understanding System (CISAU) Project 

No: IED4/1/5818, December 1994. 

[EE68) 

[Ehr77] 

D. C. Engelhart and W. K. English. A research center for augmenting human 

intellect. AFIPS Conference Proceedings, 33, 1968. 

A. S. C. Ehrenberg. Rudiments of numeracy. Journal of the Royal Statistical 

Society, A. 140, part 3:277-297, 1977. 

[FPSSU95] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Ad­

vances in Knowledge Discovery and Data Mining. AAAI Press/The MIT 
Press, 1995. 

[Fur82) 

[Fur86) 

[GJ79) 

[Hal43) 

R. Furuta. Document formatting systems: Survey, concepts, and issues. 

Computing Surveys, 14(3):417-472, September 1982. 

R. Furuta. An Integrated but not Exact-Representation, Editor/Formatter. 

PhD thesis, Dept. of Computer Science, University of Washington, Seattle, 

WA, September 1986. Also issued as Technical Report 86-09-08, University 
of Washington. 

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to 

the Theory of NP-Completeness. W.H. Freeman and Company, New York, 
NY, 1979. 

R. 0. Hall. Handbook of Tabular Presentation. The Ronald Press Company, 
New York, 1943. 



BIBLIOGRAPHY 176 

[Ils80] 

[Imp91] 

[Int86] 

[Int88] 

[Int92] 

[Knu84] 

[Lam85] 

[Les79] 

[Lot84] 

[MS-90] 

[Nor89] 

[Oss76] 

[Phi68] 

R. Ilson. An integrated approach to formatted document production. Tech­

nical Report MIT/LCS/TR-253, Laboratory for Computer Science, Mas­

sachusetts Institute of Technology, August 1980. Master thesis. 

Improv Handbook. Lotus Development Corporation, Cambridge, MA, 1991. 

International Organization for Standardization. ISO 8879, Information pro­

cessing - Text and office systems - Standard Generalized Markup Lan­
guage(SGML), October 1986. 

International Organization for Standardization and International Elec­

trotechnical Commission. ISO/IEC TR 9573:1988{E), Information process­

ing - SGML Support Facilities - Techniques for Using SGML, 1988. 

International Organization for Standardization and International Elec­

trotechnical Commission. ISO/IEC TR 9573-11:1992(E), Information pro­

cessing - SGML Support Facilities - Techniques for Using SGML, 1992. 

D. E. Knuth. The TpjXbook. Addison-Wesley, Reading, MA, 1984. 

L. Lamport. Jd.TpjX: A Document Preparation System. Addison-Wesley, 

Reading, MA, 1985. 

M. E. Lesk. Tbl- a program to format tables. In UNIX Programmer's Man­

ual, volume 2A. Bell Telephone Laboratories, Murray Hill, NJ, 7th edition, 
January 1979. 

Lotus 1-2-3 User's Handbook. Ballantine Books, New York, NY, 1984. 

Microsoft Excel User's Guide. Microsoft Corporation, Redmond, WA, 1990. 

P. Norrish. Semantic structures of text. In R. Furuta J. Andre and V. Quint, 
editors, Structured Documents. 1989. 

J. F. Ossanna. Nroff/troff user's manual. Computing Science Technical 
Report 54, Bell Laboratories, Murray Hill, NJ, 1976. 

A. Phillips. Computer Peripherals and Typesetting. Her Majesty's Stationery 
Office, 1968. 



BIBLIOGRAPHY 177 

[PLSS84] M. Powers, C. Lashley, P. Sanchez, and B. Shneiderman. An experimental 

comparison of tabular and graphic data presentation. International Journal 

of Man-Machine Studies, 20:545-566, 1984. 

[QV86] 

[Ray96] 

[Rei80] 

[Rit86] 

[Rub88] 

[SKS94] 

[SL67] 

[Spe68] 

[SSK94] 

[Sta86] 

V. Quint and I. Vatton. Grif: An interactive system for structured document 

manipulation. In Text Processing and Document Manipulation, Proceedings 

of the International Conference, pages 200-312, Cambridge, UK, 1986. Cam­
bridge University Press. 

D. R. Raymond. Partial Order Databases. PhD thesis, Dept. of Computer 

Science, University of Washington, Waterloo, Ontario, Canada, 1996. 

B. K. Reid. Scribe: A Document Specification Language and its Compiler. 

PhD thesis, Dept. of Computer Science, Carnegie-Mellon University, Pitts­

burgh, PA, October 1980. Also issued as Technical Report CMU-CS-81-100, 
Carnegie-Mellon University. 

George Ritzer. Social Problems. Random House, new York, 2nd edition, 

1986. 

R. Rubinstain. Digital Typography: An Introduction to Type and Composition 

for Computer System Design. Addison Wesley, Reading, MA, 1988. 

K. Shin, K. Kobayashi, and A. Suzuki. TAFEL MUSIK, formating algorithm 

of tables. In Principles of Document Processing'94, pages 1-25, Lufthansa 
Training Center, Seeheim, May 1994. 

M. E. Stevens and J. L. Little. Automatic typographic-quality typesetting 

techniques: A state-of-the-art review. NBS Monograph, 99, April 1967. 

H. Spencer. The Visible Word. Times Drawing Office Ltd, London, 1968. 

K. Shin, A. Suzuki, and K. Kobayashi. Data model for retrieving tabular data 

structures and formatting techniques for retrieved structures. In preparation, 
1994. 

Human Activity and the Environment - A statistical compendium. Statistics 
Canada, 1986. 



BIBLIOGRAPHY 178 

(SW84] 

(Tei84] 

(Tin30] 

(Tin60] 

(Tuf83] 

[Tuf90] 

[Van92] 

(WF70] 

(Wil83] 

(Wri68] 

(Wri73] 

(Wri77] 

M. T. Swanston and C. E. Walley. Factors affecting the speed of acquisition 

of tabulated information from visual displays. Ergonomics, 27(3):321-330, 

1984. 

W. Teitelman. The cedar programming environment: A midterm report and 

examination. Xerox PARC Technical Report CSL-83-11, June 1984. 

M. A. Tinker. The relative legibility of modern and old style numerals. 

Journal of Experimental Psychology, 13:453---461, 1930. 

M.A. Tinker. Legibility of mathematical tables. Journal of Applied Psychol­

ogy, 44:83-87, 1960. 

E. R. Tufte. The visual Display of Quantitative Information. Graphics Press, 

Cheshire, Connecticut, 1983. 

E. R. Tufte. Envisioning Information. Graphics Press, Cheshire, Connecti­

cut, 1990. 

C. Vanoirbeek. Formatting structured tables. In C. Vanoirbeek & G. Coray, 

editor, EP92(Proceedings of Electronic Publishing, 1992), pages 291-309, 

Cambridge, UK, 1992. Cambridge University Press. 

P. Wright and K. Fox. Presenting information in tables. Applied Ergonomics, 

1(1):234-242, 1970. 

H. Williamson. Methods of Book Design: The Practice of An Industrial Craft. 

Yale University Press, New Haven and London, 3rd edition, 1983. 

P. Wright. Using tabulated information. Ergonomics, 11(4):331-343, 1968. 

P. Wright. Understanding tabular displays. Visible Language, 7:351-359, 

1973. 

P. Wright. Decision making as a factor in the ease of using numerical tables. 

Ergonomics, 20:91-96, 1977. 



BIBLIOGRAPHY 179 

[Wri80a] P. Wright. The comprehension of tabulated information: Some similarities 

between reading prose and reading tables. NSPI Journal, XIX(8):25-29, 
October 1980. 

[Wri80b] P. Wright. Tables in text: the subskill needed for reading formatted infor­

mation. In L. John Chapman, editor, The Reader and The Text. 1980. 

[Wri82] P. Wright. A user-oriented approach to the design of tables and flowcharts. In 

The Technology of Text, Principles for Structuring, Designing, and Display­

ing text. Educational Technology Publications, Englewood Cliffs, NJ, 1982. 

[WW93] 

[WW96] 

[Zei85] 

X. Wang and D. Wood. An abstract model for tables. TUGBOAT, The 

communications of the TFf( Users Group, 14(3):231-237, October 1993. 

X. Wang and D. Wood. Complexity results for tabular formatting problems. 
In preparation, 1996. 

H. Zeise!. Say It With Figures. Harper & Row, Publishers, New York, NY, 
6th edition, 1985. 



Index 

~TEX 17 

\ 47 
· 50 
.5 33 

{t n 51 

0 33 

,j, 104 

,/,[max] 104 

,J,[min] 104, 105 

~ 103 
A() 32 

+ 48 
- 48 

/ 50 
abstract table 33, 129, 136, 138 

alignment 13 

arrangement process 138 

arrangement step 129, 131 

arrangement style 79, 84 

assignment 118 

author 7 

back() 47 

Beach's system 19, 24, 26 

block 3, 89, 102 

body 3, 84 

boxhead 3, 72, 84 

180 

hierarchical 84 

repeated 84 

Cameron's system 20, 24 

category 2, 87 

combine 41, 50, 54 

copy 50 

delete 46, 50, 52 

duplicate 53 

insert 46, 50, 51 

split 41, 50, 55 

structure 31, 42, 46 

category heading 80, 84 

catenation 4 7 

cell 3, 79, 102 

cognitive processes 5 

collective style file 136 

column 89, 102, 129 

combining style 92 

composing style 131 

concrete table 26, 71, 98, 129, 138 

conditions 105, 117, 150 

consistent 33 

content 14 

contraction 48 

contributions 27 

Database tables 147 



INDEX 

dialog box 142 

dim() 34 

dimension 

logical dimension 3, 34, 41, 46 

physical dimension 26, 98, 133 

editor 90 

entry 2, 33, 42, 87 

calculate 46, 142 

compute 42, 51, 69 

set 88 

value 46, 47, 51, 68, 69, 87 

equality 130 

Etude 15 

expansion 48 

explicit structure 9, 42 

external node 31 

first() 47 

fixed priority 131 

font 12 

formatting attributes 5, 76, 79, 82, 129 

arrangement style 79, 84 

category heading 80, 84 

cell 79 

frame 79, 83 

grouping 80, 83 

separation 79, 84 

size constraints 81, 84, 89 

spanning 80, 84 

formatting process 98, 138 

formatting step 129, 133 

fr() 32, 33 

frame 33, 79, 83 

free priority 131 

front() 47 

frontier label sequence 32 

Furuta's prototype 20, 24 

Furuta's system 15 

graphic designer 7 

grid 102, 129 

grid line 130 

grid point 130 

grid structure 19, 102, 129 

Grif 15, 16, 21 

grouping 12, 80, 81, 83 

guidelines 

abstraction 29 

tabular composition 8 

HIE() 113 

implicit structure 10, 42 

Improv 16, 21, 24 

inequality 101, 112, 130 

181 

inequality solver 19, 113, 133, 158, 159 

input 136 

item 102, 103, 105, 129, 131, 150 
Janus 15 

label 2, 31, 42, 87 

\ 47 
catenation 4 7 

strip() 47 

value 47, 51, 68 

label sequence 31 

back() 47 

first() 47 

front() 47 

last() 47 

labeled domain 31, 33 



INDEX 

· 50 

+ 48 
- 48 

I 50 
contraction 48 

expansion 48 

product 50 

quotient 50 

labeled set 31 

labeled tree 31 

large table 14, 152 

last() 47 

~'I'.EX 15, 23, 129, 136 
layout 105, 114, 115 

layout objects 72, 134 

layout structure 5, 16, 26, 27, 129 

lbl() 31, 32 

left quotient 4 7 

line breaking 26, 98, 102, 129, 133, 134 

logical dimension 3, 34, 41, 46 

logical objects 72, 134 

logical relationship 3 

logical structure 3, 9, 16, 25, 27, 30, 128, 

148 

Lotus 1-2-3 19, 21 

menu 140, 142 

Microsoft Excel 19 

Motif 138 

multiple inheritance 91, 131 

NLS 15 

node 31 

object class 134, 137 

objective function 99, 100 

objectives 25, 128 

operations 137, 140, 142 

logical 40, 46, 50, 134 
style 134 

topological 134 

output 136 

physical dimension 26, 98, 133 

Postscript 129, 136 

presentational objects 72, 134 

priority 92, 131 

product 50 

properties 115, 120, 123 

quotient 50 

region 3, 81 

body 3 

boxhead 3 

stub 3 

stub head 3 

rounding 13 

row 89, 102, 129 

rule 12, 79 

running time 113, 123 

scope 76 

Scribe 15 

separation 12, 79, 81, 84, 130, 131 

block 81 

boxhead 3, 81 

grouping 81 

horizontal 81 

stub 3, 81 

vertical 81 

set() 31, 32 

SGML 17, 23 

182 



INDEX 

shape 13 

Simplex method 113 

single inheritance 91, 131 

size 13 

size constraints 81, 84, 89, 99, 100, 101, 

105,130,150 

size function 102, 105, 129, 150 

size() 34 

solution 105, 113, 114, 116 

space 79 

spacing 93 

spanning 13, 80, 84 

spreadsheet systems 19, 24 

ss 106 

step 103, 116 

combination 112, 113, 115 

head 103 

tail 103 

strip() 47 

stub 3, 13, 72, 84 

cut-in 84 

hierarchical 72 

indented 72 

repeated 84 

stub head 3, 84 

style 7, 12, 14, 71, 128 

conflict 91 

inheritance 131 

specification 26, 72, 76, 129, 136, 138 

style rule 76, 82 

collective 90, 136 

content-oriented 77, 87 

formatting attributes 5, 76, 79 

general 77 

layout-oriented 77, 89, 93 

presentational-oriented 81 
scope 76 

specific 90, 136 

subcategory 88 

combine 42, 51, 59 

copy 51 

delete 47, 51, 57 

demote 42, 51, 66 

duplicate 58 

insert 51, 56 

move 46, 51, 58 

promote 42, 51, 63 

split 42, 51, 61 

Subset Sum problem 106 

table 18, 24 

abstraction 29, 14 7 

browsing 152 

content 2, 9 

definition 2 

empty 50, 51 

formatting 98, 128, 149, 151 

function 5 

presentation 3, 71, 149 

style 81 

table file 136 

TABPRINT 15, 16, 23 

tabular composition 7 

evolution 14 

stages 9 

systems 14, 16, 22, 26, 127 

183 

tabular formatting problem 26, 104, 151 



INDEX 

definition 104 

efficient algorithm 26, 123, 133 

exponential-time algorithm 111, 112 

NP-completeness 106 

polynomial-time algorithm 115, 121 

TAFEL MUSIK 16, 22, 25, 26 

Tbl 17, 23 

TF 106 

Tioga 15 

tool box 140 

topological rule 72 

topology 71, 128 

arrangement 3, 10, 14, 71 

order 11, 72, 74 

specification 26, 72, 129, 136, 138 

transpose 14 

troff 15, 129, 136 

typesetting direction 101, 125 

UNIX 127 

unordered Cartesian product 33 

user interface 140 

Vanoirbeek's system 21, 24 

well-designed table 8 

WIE() 113 

wysiawyg 128 

wysiwyg 15, 24 

X Windows 127 

XTABLE 127 

184 


