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Abstract 

Country food is a cornerstone of cultural, social, and spiritual life for Inuit communities 

(Gombay, 2005; Van Oostdam et al., 2005).  Country foods refer to marine mammals, fish, 

plants, berries, seabirds and wild game that have been hunted and gathered from the local area 

(Van Oostdam et al., 2005). These country foods are a significant route of exposure to many 

environmental contaminants, including mercury (Hg) (Donaldson et al., 2010; Van Oostdam et 

al., 2005). Mercury can be very detrimental to human health through adverse cardiovascular, 

endocrine and neurotoxic effects, especially in vulnerable populations such as the elderly or 

pregnant women (Clarkson and Magos, 2006; Zahir et al., 2005).  Despite being a major route 

for Hg exposure, country foods are very nutritious and contain high levels of numerous vitamins 

and minerals including the essential micronutrient – selenium (Se), which can potentially 

mitigate Hg toxicity (Kuhnlein and Receveur, 2007, 1996). An in vitro gastrointestinal model 

was used to estimate the in vitro bioaccessibility (IVBA) of Hg and Se in certain country foods.  

We used an in vitro gastrointestinal model to determine the Hg and Se in vitro bioaccessibility 

for country foods collected from Nunavik, Quebec that have been digested separately and in 

combination (i.e. single digest and co-digest, respectively). These country food samples were 

collected 2008-2013 through the community-based sampling programs overseen by the Nunavik 

Research Centre of the Makivik Corporation. 

  The purpose of this thesis was to determine:  

(1) Do the Inuit country foods that have high levels of Hg also have high levels of Se?  

(2) Does the bioaccessibility of Hg and Se vary from one country food to another? 
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(3) Can the co-consumption of specific food combinations affect the solubilization of Hg 

within the GI tract?  

For the single digest country foods, we evaluated Hg and Se in vitro bioaccessibility 

(IVBA) using a two-stage in vitro gastro-intestinal (GI) model for a variety of country foods 

harvested in Nunavik, Québec. By assessing the IVBA (i.e. the metal fraction of that would is 

soluble in the gut lumen), we can approximate metal bioavailability (i.e. the metal fraction o that 

would cross the gut-blood barrier and reach systemic circulation). The results showed a large 

variation in Hg (1.4 - 90%) and Se (29 - 108%) bioaccessibility for the country foods studied.   

The samples with the highest Hg concentration (ringed seal liver) also had the lowest Hg percent 

bioaccessibility. Generally, Se:Hg molar ratios for the majority of country foods increased  and 

they were greater than one after accounting for metal bioaccessibility (i.e. Se bioaccessibility > 

Hg bioaccessibility). The main exceptions to this trend included the muscle and liver of ringed 

seals, which showed similar Se:Hg ratios before and after accounting for metal bioaccessibility. 

Some foods were also co-digested (or co-consumed) meaning they were digested together 

in the GI model. For the co-digested country foods, we evaluated the Hg and Se in vitro 

bioaccessibility (IVBA) using a two-stage in vitro gastrointestinal (GI) model for selected 

country foods.  We compared country foods with high levels of total and IVBA Hg (i.e. ringed 

seal liver, beluga nikku, raw beluga meat, walrus, lake trout, eider duck egg white) and pair them 

with country foods that may have a mitigating effect on Hg IVBA (i.e. crowberries, blueberries, 

seaweed, sculpin eggs and tomato paste). Overall, our results show that there are no additive or 

subadditive results for IVBA Hg when foods were digested together. 
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In the future, this research may aid in the ongoing contaminant exposure assessments in 

Nunavik and assist in the development of culturally relevant strategies promoting country food 

use while decreasing Hg body burden. 



viii 

 

Acknowledgements 

First of all, I would like to thank my supervisor, Dr. Brian Laird, for his unwavering 

support, super human patience and constant encouragement during the completion of my 

Master’s degree. I am truly very thankful for all your advice and guidance. I would also like to 

sincerely thank my committee members, Dr. Rhona Hanning and Dr. Stephen McColl for their 

feedback throughout this project.  

I would like to express my gratitude to all of the participating Inuit communities who 

have made this research possible. Thank you to the Makivik Corporation for conducting the 

sample collection and the analysis of the total trace metal concentrations. In particular, I thank 

Dr. Laurie Chan’s lab in the Center for Advanced Research in Environmental Genomics 

(CAREG) at the University of Ottawa. Dr. Laurie Chan was always available for my many 

questions and I greatly appreciate the opportunity to be a part of such an impactful lab group.  I 

would also like to thank Emmanuel Yumvihoze (University of Ottawa) for his analytical support 

for the measurement of mercury and selenium as well as his help trouble shooting with the 

experimental design. I also really appreciated his light-hearted, fun presence on those long days 

in the lab. Thank you to the School of Public Health and Health Systems at the University of 

Waterloo for allowing me to continue this work and providing me with funding.  I gratefully 

acknowledge the support the Northern Contaminants Program for funding this research.  

Finally, I would like to thank all my family and friends for their continued support 

throughout my graduate studies. Both of my parents have been amazingly caring and 

encouraging in numerous different ways and I truly appreciated all the love they sent my way. 



ix 

My sister, Jana, was another source of support and she added levity on those really tough days. I 

would like to thank my amazing friends in Ottawa who were extremely supportive even from 

afar. Also, I made friends with the most wonderful, supportive, inspiring group of individuals 

during my graduate studies, I will truly cherish all the fun times and heart-to-hearts.  



x 

 

Table of Contents 

List of Figures …………………………………………………………………………………………... xii                     

List of Tables …………………………………………………………………………………………... xiii 

1. Introduction ..............................................................................................................................1 

2. Study Rationale .........................................................................................................................4 

2.1 Mercury in Inuit Country Foods from Nunavik, Quebec ................................................................. 4 

2.2 Study Contributions and Importance ................................................................................................ 5 

2.3 Research Questions and Objectives ................................................................................................... 6 

3. Literature Review ......................................................................................................................7 

3.1 Introduction ........................................................................................................................................ 7 

3.2 Inuit Communities in Canada ..................................................................................................... 8 
3.2.1 Health Patterns within Inuit Communities ........................................................................... 8 
3.2.2 Environmental Contaminants in Circumpolar region ........................................................ 9 
3.2.3 Country Food Consumption ................................................................................................ 10 

3.3 Mercury ............................................................................................................................................ 12 
3.3.1 Mercury and Human Health ................................................................................................ 13 

3.3.1.1 Neurotoxic effects .......................................................................................................... 14 
3.3.1.2 Neurodevelopmental effects ......................................................................................... 15 
3.3.1.3 Cardiovascular effects .................................................................................................. 16 
3.3.1.4 Immune System effects ................................................................................................. 17 

3.3.2 Determination of Mercury Exposure .................................................................................. 18 
3.3.4 Mercury in Country foods .................................................................................................... 20 
3.3.5 Inuit Exposure to Mercury ................................................................................................... 22 

3.4 Selenium ........................................................................................................................................... 23 
3.4.1 Selenium and Human Health ............................................................................................... 24 

3.4.1.1 Neurological effects ....................................................................................................... 25 
3.4.1.2 Immune system effects .................................................................................................. 26 
3.4.1.3 Impact on Thyroid function ......................................................................................... 26 
3.4.1.4 Impact on Carcinogenesis ............................................................................................ 27 

3.4.2 Dietary Recommendations for Selenium ............................................................................ 28 
3.4.3 Selenium in Country foods ................................................................................................... 29 

3.5 Mercury and Selenium Interactions ................................................................................................ 29 



xi 

4. The In Vitro Bioaccessibility of Selenium Exceeds that of Mercury in Inuit Country Foods ....... 36 

4.1 Introduction ................................................................................................................................ 36 

4.2 Materials and Methods .............................................................................................................. 40 
4.2.1 Sample Collection .................................................................................................................. 40 
4.2.2 In vitro GI Model .................................................................................................................. 40 
4.2.3 Chemical Analysis ................................................................................................................. 41 

4.2.3.1 Total Metal Content in Country Foods ....................................................................... 41 
4.2.3.2 Bioaccessible Metals in Country Foods ....................................................................... 42 

4.2.4 Statistical Analysis ................................................................................................................ 43 

4.3 Results and Discussion .............................................................................................................. 44 

4.4 Conclusion .................................................................................................................................. 48 

5.  Additivity of Metal Bioaccessibility in Binary Mixtures of Inuit Country Foods ........................ 53 

5.1 Introduction ...................................................................................................................................... 53 

5.2 Materials and Methods .............................................................................................................. 55 
5.2.1 Sample Preparation .............................................................................................................. 55 
5.2.2 In vitro GI Model .................................................................................................................. 56 
5.2.3 Chemical Analysis ................................................................................................................. 58 
5.2.4 Statistical Analysis for Co-digest Studies ............................................................................ 59 

5.3 Results and Discussion .............................................................................................................. 60 

5.4 Conclusion ........................................................................................................................................ 65 

References ...................................................................................................................................... 68 

Appendix ........................................................................................................................................ 79 

 



xii 

 

List of Figures  

Table 1. Total Hg and Se concentrations of Country Food items in mg kg-1, w.w. ...................... 49 

 

Table 2.  Se:Hg ratios (± standard error) according to total and bioaccessible molar 

concentrations (µmol kg-1 Se:µmol kg-1 Hg) in 18 country foods collected in Nunavik, QC. ...... 52 

 

Table 3. Co-digest treatment combinations ................................................................................. 57 

 

Table 4. Co-digest results for Hg (Mean ± SD) and Se (Mean ±SD) with treatment interaction 

type (μg/L or ppb, w.w.) ................................................................................................................ 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

 List of Tables 

Figure 1. Average % IVBA for Hg in the 18 Inuit country foods collected in Nunavik, QC. The error 

bars represent standard error of the mean. Please note that for certain country foods either the 

IVBA fraction (i.e. blue mussel) or both total and IVBA (i.e.Canadian geese) was below the 

detection limit for Hg. ................................................................................................................... 50 

 

Figure 2.Average IVBA for Se in the 18 Inuit country foods collected in Nunavik, QC. Error bars 

represent standard error of the mean. Please note that the IVBA fraction for eider duck yolk was 

below the detection limit for Se. ................................................................................................... 51 

 

 



1 

1. Introduction  

Country foods play an integral role in cultural, social and spiritual life for Inuit 

communities (Gombay, 2005; Van Oostdam et al., 2005).  These foods are hunted and gathered 

from local surroundings and include marine mammals (e.g., beluga meat, ringed seal meat), fish 

(e.g., Arctic char, lake trout, sculpin), wild game and birds (e.g., caribou, ptarmigan), berries 

(e.g., blueberries, crowberries), and marine algae (Donaldson et al., 2010; Van Oostdam et al., 

2005). Not only are country foods a cornerstone of Inuit social and cultural identity but they also 

provide many nutritional and economic benefits (Donaldson et al., 2010; Gombay, 2005; Van 

Oostdam et al., 2005). These foods are often more healthy and cost-effective than relying solely 

on market foods (Chan et al., 2006; Kuhnlein et al., 1996; Kuhnlein and Receveur, 1996). 

However, even if quality market foods were available at reasonable prices, country foods would 

be consumed because of their large cultural importance (Donaldson et al., 2010).  

The main route of exposure to environmental contaminants for Indigenous people in 

Canada is through the consumption of country foods (Health Canada, 2009; Laird et al., 2013b; 

Richmond and Ross, 2009). In the past, the circumpolar region was considered to be pristine due 

to its distance from sources of contaminant emissions; however, this is not the case (Barrie et al., 

1992; Donaldson et al., 2010).  Heavy metals and persistent organic pollutants can be transported 

and deposited in the Arctic via long-range atmospheric and oceanic currents (Barrie et al., 1992; 

Donaldson et al., 2010; Van Oostdam et al., 2005).  Mercury (Hg), for example, can be emitted 

from industrial or environmental processes in the form of mercury vapor (Hg
0
) and deposited 

anywhere in the world (Barrie et al., 1992; Clarkson and Magos, 2006). Elevated concentrations 

of mercury have been found in the marine mammal and fish populations of Nunavik due to 

bioaccumulation within the organism and biomagnification in the Arctic food chain (Anctil, 
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2004; Dewailly et al., 2007; Dórea, 2008; Duschesneau, 2011). Mercury can be very detrimental 

to human health through adverse cardiovascular, endocrine and neurotoxic effects, especially in 

vulnerable populations such as the elderly or pregnant women (Clarkson and Magos, 2006).  

Inuit populations, such as those living in Nunavik, Québec, have elevated exposure levels of Hg. 

For example, in 2004, biomonitoring efforts showed that Nunavik Inuit have higher blood Hg 

levels (10.7 µg/L) compared with the general Canadian population (0.822 µg/L) (Donaldson et 

al., 2010). Although there has been a significant decline in blood Hg levels observed among 

Inuit, 75% of pregnant woman in Nunavik still exceed the Health Canada (HC) guideline of 8.5 

µg/L (Nunavik Nutrition and Health Committee, 2011). This is cause for concern since Hg has 

been shown to concentrate on the fetal side of placenta-blood barrier leading to the blood Hg 

levels being 1.5X greater on the fetal side than the maternal side (Butler Walker et al., 2006; Van 

Oostdam et al., 2005).  

Conversely, country foods are often excellent sources of many essential nutrients. The 

Kuhnlein & Receveur (2007) found that even a single portion of country foods can increase 

nutrient intakes for vitamins and minerals like vitamin D, vitamin E, riboflavin, vitamin B-6, 

iron, zinc, copper, magnesium, manganese, phosphorus, and potassium. Prior studies have shown 

that selenium (Se), which is particularly high in some country foods, may be able to moderate 

some of the Hg toxicity (Donaldson et al., 2010; Zhang et al., 2014). However, the protective 

mechanisms between Hg and nutrients like Se in country foods are poorly understood (Ralston 

and Raymond, 2010). If benefits of Se can mitigate the risk of Hg toxicity through country food 

consumption, then it can have an effect on public health messaging, risk assessment, and 

mitigation options.  
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My project assessed the bioaccessibility of Hg and Se present in many country foods 

collected from communities in Nunavik, Québec for individual food items as well as food 

mixtures. Within this type of exposure assessment research, the term bioaccessibility refers to the 

fraction of a substance released into the gastrointestinal (GI) lumen (Intawongse and Dean, 

2006).  To characterize the bioaccessibility of Hg and Se, I used an in vitro GI model, which 

simulates gastric and duodenal digestion. The samples studied include: beluga meat (raw and air-

dried), beluga muktuk, ringed seal liver, ringed seal meat, walrus meat, Arctic char, Atlantic 

salmon, brook trout, lake trout, lake whitefish, shorthorn sculpin flesh and eggs, blue mussel, 

caribou, ptarmigan meat, snowshoe hare meat, eider duck eggs, Canada goose eggs, berries and 

seaweed. These samples were collected in 2008 - 2013 through the community-based sampling 

programs overseen by the Nunavik Research Centre of the Makivik Corporation.  This research 

will assist ongoing contaminant exposure assessments in Nunavik and may help promote country 

food use while decreasing Hg body burden. 
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2. Study Rationale  

2.1 Mercury in Inuit Country Foods from Nunavik, Quebec  

Although the Arctic used to be considered pristine and without pollution, seminal 

research conducted in the 1980’s and 1990’s demonstrated there to be high levels of several 

types of environmental contaminants within the Arctic ecosystem (Donaldson et al., 2010; Muir 

et al., 2005; Van Oostdam et al., 2005). As a result, heavy metals like Hg can be inadvertently 

consumed in a traditional Inuit diet. Such exposures to Hg can potentially adversely affect Inuit 

health and wellbeing (Donaldson et al., 2010; Dórea, 2008). For example, the Nunavik Child 

Development Study (NCDS) found that prenatal exposure to Hg was associated with decreased 

intellectual function and attention capacity in the classroom (Nunavik Nutrition and Health 

Committee, 2011). Although the Inuit diet is becoming westernized and country foods account 

for between 6-40 % and 0.4-15% of the daily energy in adults and children, respectively 

(Kuhnlein and Receveur, 2007), country foods are often the primary route by which Inuit are 

exposed to environmental contaminants like Hg (Nunavik Nutrition and Health Committee, 

2011).  Selenium, an essential micronutrient found at high levels in certain country foods (e.g. 

fish eggs and beluga fat), has a high affinity for binding Hg and may, in some circumstances, be 

able to mitigate some of Hg’s adverse effects (Ralston and Raymond, 2010; Ralston, 2008). By 

quantifying metal bioaccessibility in Inuit country foods, we hope to gain insights into 

constraints upon Hg and Se internal doses that result from the consumption country foods in the 

Canadian Arctic. As very little is currently known regarding the bioaccessibility and 

bioavailability of Hg and Se in the country foods of the Inuit of Nunavik, QC, this research will 

help fill an important data gap in the literature.  
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2.2 Study Contributions and Importance  

Country food consumption advisories have occasionally been necessary to inform Inuit 

communities of potential contaminant risks posed by the consumption of country foods. Hg 

consumption advisories are sometimes based upon studies that characterize the total Hg 

concentrations; given the toxicokinetic differences between mercury species, such advisories 

may not focus on the foods that most contribute to internal dose.  

My Master’s thesis is part of a large, multi-institutional, interdisciplinary project to 

determine the effects of country foods on cardiometabolic diseases in Inuit adults in Nunavik. 

Overall this large, interdisciplinary project has four main sections:  

1. Mercury-nutrient interactions on biomarkers of T2D risk in human blood samples. 

2. Mercury-nutrient interactions on the dose-response between in vitro Hg exposure 

and metabolic changes in adipose tissue.  

3. Concentrations, speciation, and bioaccessibility/ bioavailability of Hg and Se in 

Inuit country foods. 

4. Integration and mobilization of this knowledge in order to improve the health of 

Inuit in Nunavik. 

My M.Sc. project, which was funded through the Northern Contaminants Program, 

focused on the third of these four sections. For this, I assessed the bioaccessibility (single and co-

digested country foods) as well as the bioavailability (for a single country food) in a number of 

foods gathered from Nunavik. The in vitro GI model, a modified physiologically based 

extraction test (PBET), assesses the luminal bioaccessibility Hg and Se within Inuit country 

foods. The in vitro extraction procedure, which simulates the food breakdown that occurs in the 
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stomach and the duodenum, allows the measurement of the solubilized Hg and Se for the 

calculation of metal bioaccessibility.  These country foods were studied separately (single 

digests) and also together (co-digests) to assess the IVBA of these trace metals. The single digest 

allows us to estimate the IVBA Hg and Se present in a single country foods type (i.e. Lake Trout 

v. walrus etc). By co-digesting specific country foods, we can determine whether the effect of a 

mixture is additive or not.  Using these bioaccessibility measurements can refine and potentially 

improve the modeling of Inuit contaminant exposure for use in human health risk assessment. 

2.3 Research Questions and Objectives  

The main questions for my M.Sc. thesis research are the following:  

1.  Do the Inuit country foods that have high levels of Hg also have high levels of Se?  

2. Which Inuit country foods contain the most Se relative to their Hg content?  

3. Does the bioaccessibility of Hg and Se vary from one country food to another? 

4. Can the co-consumption of specific food combinations affect the solubilization of Hg 

within the GI tract?  

To answer these questions, I:  

(A) Evaluated the total concentrations of Hg and Se present in the country foods of the Inuit 

of Nunavik, QC 

(B) Estimated the bioaccessibility of Hg and Se within each individual country food 

(C) Estimated the bioaccessibility of Hg and Se when two country foods are digested in pairs. 
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3. Literature Review  

3.1 Introduction 

The following literature review outlines environmental health issues related to Inuit 

country food consumption. This review discusses the nutritional benefits of country foods, the 

levels of Hg and Se within country foods, and the potential implications for Hg-Se interactions 

on human health risk assessment. Issues related to the environmental fate of Hg in the Arctic are 

outside of the scope of this review. Instead, the primary aim of this literature review is to outline 

the impact of country food consumption on oral Hg exposure and investigate the mechanisms by 

which Se co-exposure may prevent or diminish these risks.  

My graduate research assessed the metal bioaccessibility in country foods using a luminal 

in vitro extraction method. Together, this measure may provide a more accurate estimate of 

internal dose than existing risk assessment techniques used to determine exposure. Currently, 

risk assessments often make the default assumption that 100% of the ingested dose is 

bioavailable (Laird et al., 2009). Within my research, bioaccessibility is defined as the fraction of 

a substance that has been solubilized in the GI lumen and is the maximal fraction potentially 

available for absorption into the blood stream (Intawongse and Dean, 2006; Ruby et al., 1999). 

Bioavailability, on the other hand, is defined as the fraction of a chemical absorbed that reaches 

systemic circulation within an organism and reaches its biological target tissue (Caussy, 2003; 

Ruby et al., 1999). The bioaccessible concentrations of trace metals can act as an approximation 

for bioavailable concentrations, which tend to be more difficult to determine experimentally 

(Ruby et al., 1999; Torres-Escribano et al., 2011). Knowledge describing the association between 
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Se and Hg bioaccessibility may be able to improve risk assessment and communication 

regarding contaminants in Inuit country foods.  

3.2    Inuit Communities in Canada  

The Inuit have a population of approximately 50,000 inhabiting the Arctic regions of 

northern Canada (AMAP, 2009). In Canada, Inuit communities are found in Nunavut, Nunavik 

(in northern Quebec), Northwest Territories (NWT), and Northern Labrador (AMAP, 2009; 

Statistics Canada, 2003). The Inuit regions with the largest populations, Nunavut and Nunivak, 

have grown by 26% from 1996 to 2006 (AMAP, 2009; Makivik Corporation, 2015).  Inuit 

communities have a relatively young population, with a large proportion under the age of 21 

(Statistics Canada, 2003). One of the implications of this demographic shift has been a loss in 

traditional knowledge surrounding hunting and fishing, leading to an increased intake of market 

foods in the Inuit regions of Canada (Donaldson et al., 2010; Kuhnlein et al., 1996; Van Oostdam 

et al., 2005).   

 

3.2.1 Health Patterns within Inuit Communities  

Aboriginal peoples bear a disproportionate burden of illness within Canada; these health 

inequities are a function of economic and social conditions as well as past and present oppression 

and marginalization (Macmillan et al., 1996; Richmond and Ross, 2009). Inuit communities face 

several social challenges, including the highest suicide rate globally (Kral, 2013) as well as high 

substance abuse rates (including alcohol, cigarettes, and illicit substances) (Larsen et al., 2013). 

Smoking, which leads to lung cancer and heart disease, is 3-fold higher in Inuit communities 

than the rest of Canada (Adelson, 2005; Harder and Wenzel, 2012; Larsen et al., 2013). 

Compounded on the high rates of suicide and substance abuse, are the high rates of 
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unemployment (4X greater than non-aboriginal counterparts in 2006), working poor, and 

individuals on social assistance (Statistics Canada, 2006, 2003). Due to the high rates of financial 

insecurity as well as expensive market foods, that lack variety and freshness, lead to food 

insecurity and unhealthy diets (Egeland et al., 2011).  

3.2.2 Environmental Contaminants in Circumpolar region  

At one time, the Arctic was considered pristine because of its distance from 

industrialization (Odland and Nieboer, 2012).  However, studies completed in the mid-1980s and 

early 1990s disproved this idea (Odland and Nieboer, 2012). Subsequent studies have confirmed 

elevated levels of contaminants such as heavy metals (i.e. Hg and lead or Pb) and organochlorine 

chemicals (i.e. (dichlorodiphenyltrichloroethane [DDT] and polychlorinated biphenyls [PCBs]) 

in the environment of the Arctic and subarctic regions (Berti et al., 1998). In addition to the 

heavy metals that occur both naturally in the environment and through anthropogenic sources 

worldwide can be deposited in the Arctic following long-range transport (Donaldson et al., 2010; 

Odland and Nieboer, 2012).   

The Hg deposited in Canada, which is transported through atmospheric and oceanic 

currents in the form of Hg vapor, is predominantly from other countries (Pirrone et al., 2010). 

Mercury vapor is a monoatomic stable gas that can reside in the atmosphere for as long as one 

year and can be returned to the ground via rain (Pirrone et al., 2010). This transport of Hg vapor 

and deposition into the ecosystems is known as global cycling (Mason et al., 1994). This process 

of global cycling and long-range transport can result in emissions from distant countries having a 

profound impact on the Arctic environment (Pirrone et al., 2010).  

Many programs exist to monitor and assess contaminant exposure in northern 

communities because environmental contamination disproportionally affects the health of 
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Canadian aboriginal populations (Donaldson et al., 2010). Country foods are nutrient-dense and 

contribute to a healthy diet; Inuit who do not consume country foods are, in general, more 

vulnerable to unfavorable health outcomes (Donaldson et al., 2010; Kuhnlein and Receveur, 

2007). Many environmental contaminants, including Hg, are persistent, bioaccumulate within 

biota, and biomagnify within the food chain. As many of the country foods are high on the food 

chain (3
rd

 or 4
th

 trophic level), Inuit populations are exposed to higher contaminant levels. 

 

3.2.3 Country Food Consumption  

The cost of food in the North is extremely high, usually about 2-3X more expensive than 

foods purchased in the south (even with government subsidies) (Chan et al., 2006; Richmond and 

Ross, 2009). Coupled with market foods being unaffordable, the fresh food options tend to be 

damaged or spoilt  foods that lack variety (Chan et al., 2006). Therefore, the market foods 

purchased are often unhealthy and highly processed leading to a diet high in fats, salt, and sugars 

(Fediuk et al., 2002; Kuhnlein et al., 1996; Kuhnlein and Receveur, 2007). These foods are 

associated with increased prevalence of obesity, type 2 diabetes, cardiovascular disease and other 

chronic diseases (Kuhnlein et al., 1996). On the other hand, the hunting and consumption of 

country foods are healthy complements to store-bought foods (Kuhnlein et al., 1996). 

Country foods play an important role in the economic, cultural, and nutritional welfare of 

Inuit. For a variety of reasons, including cultural importance, these country foods are consumed 

even if market foods were affordable (Donaldson et al., 2010). Inuit practices of sharing food, 

which can foster a sense of community, may have started in response to the unpredictable food 

access (Gombay, 2005; Harder and Wenzel, 2012). More than 250 different species of plants and 

animals are consumed both cooked and raw as part of a traditional diet (Donaldson et al., 2010); 
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however, there are important regional differences that can affect the species and amounts of 

country foods consumed (Donaldson et al., 2010; Harder and Wenzel, 2012). The accessibility of 

country foods depends on a number of factors, including a) whether there is a hunter in the 

family, b) the costs of hunting and c) time to hunt/forage for country foods (Chan et al., 2006). 

Older generations have more hunting knowledge than the younger generations so, they provide 

country foods for the younger population (Chan et al., 2006). 

Over the last couple of decades, the Inuit, like other Aboriginal populations, have been 

undergoing a nutrition transition associated with increasing obesity, health lifestyle changes and 

notably a decrease in dietary energy derived from country foods (Kuhnlein et al., 2004). Prior to 

colonial contact in the Americas, Indigenous people derived 100% of their dietary energy from 

country foods; however, currently only about 10-36% of daily calories come from these foods, 

with the remaining fraction coming from market foods (Kuhnlein et al., 2004). This swift dietary 

transition towards Western foods and away from country foods has resulted in less essential 

nutrient intake (Kuhnlein et al., 2004). Sheikh et al., (2011) found that recent rise in BMI is 

associated with declining country food consumption and increasing market food consumption. 

On days when country foods were consumed, there was significantly less fat, carbohydrates and 

sugar but more protein and essential nutrients in the diet (Kuhnlein et al., 2004). Fish eggs, raw 

whale skin, caribou liver, ringed seal liver, and blueberries are examples of country foods that 

have high levels of vitamin C (Fediuk et al., 2002).  The Kuhnlein & Receveur (2007) study of 

18 Inuit communities found that increased consumption of country foods was linked with 

increased intake of vitamins D, E and B6, riboflavin, iron, zinc, copper, magnesium and 

potassium. Therefore, country foods are not only culturally important but also nutritionally 

important as well. 
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3.3 Mercury  

Mercury is toxic in all chemical forms; however its speciation determines its absorption, 

distribution, and elimination within living organisms (Kehrig et al., 2013). For mercury, 

speciation refers to its oxidation state as well as the presence of alkyl function groups; these 

toxicokinetic factors have a profound impact on Hg’s bioavailability (Ruby et al., 1999). In the 

environment, Hg can be found in many forms, such elemental (as known as metallic mercury, 

Hg
0
), inorganic and organic mercury (Clarkson and Magos, 2006; Clarkson, 1997). Gaseous Hg

0 

is released into the environment through both natural and anthropogenic sources (Clarkson and 

Magos, 2006). Since Hg
0 

is a monoatomic stable gas, it can reside in the atmosphere for 

significant periods of time before returning to the ground in rainwater (Clarkson, 1997).  The 

volatile nature of Hg
0
 allows for the emission into the atmosphere, transportation, deposition and 

re-emission of Hg (ATSDR, 1999).   

Inorganic mercury compounds occur when Hg binds with elements such as chlorine, 

sulfur or oxygen (Clarkson, 1997). They have varying toxicities that depend on their solubility. 

For example, mercury sulphide (HgS) and mercury selenium (HgSe), which are relatively 

insoluble, are regarded to be non-toxic whereas mercuric chloride (HgCl2) is highly soluble and 

very toxic (Khan and Wang, 2009).  Organic Hg compounds are well researched due to their 

harmful effects to neurological function, as manifested in mass poisonings such as observed in 

Japan and Iraq (Clarkson and Magos, 2006). Although both methylmercury (MeHg) and 

ethylmercury (EtHg) are present in the environment, people are primarily exposed to MeHg 

because it is biomagnified within aquatic food chains and can reach high levels at the higher 
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trophic levels of the food chain (Dórea, 2008). Additionally, MeHg is thought to be particularly 

dangerous because it can be highly bioavailable to living organisms (Dórea, 2008).  

 

3.3.1 Mercury and Human Health  

Most human exposure to Hg is through the dietary intake of MeHg (Mergler et al., 2007; 

Zahir et al., 2005).  The GI tract is thought to absorb approximately 95% of ingested MeHg 

through its complexation with the sulfhydryl group in cysteine (Cys) (Clarkson and Magos, 

2006; Clarkson, 1997; Hintelmann et al., 2000). This newly formed complex (MeHg-Cys) is 

structurally similar to methionine (a large neutral amino acid found in the body), thus allowing 

the MeHg-Cys complex to gain entry into cells (Clarkson and Magos, 2006; Clarkson, 1997).  

Conversely, MeHg can also be demethylated into inorganic Hg by GI microbiota for excretion 

from the body (Clarkson and Magos, 2006; Clarkson, 1997). However, the demethylation rate in 

humans is only about 1% daily, which results in a long half-life for MeHg in the body (Clarkson, 

1997). The MeHg remaining in the body distributed systemically to all the tissues within the 

body (Clarkson, 1997). Due in part to its small size, MeHg can cross the blood-brain and 

placental-blood barrier and subsequently biotransform and accumulate in the form of inert, less 

toxic inorganic Hg in the central nervous system and in a developing fetus respectively (Clarkson 

and Magos, 2006; Clarkson, 1997). Because of this slow conversion from MeHg to inorganic 

Hg, inorganic Hg can be found in tissues following prolonged MeHg exposure period. Most of 

the MeHg is demethylated and excreted in the inorganic form of Hg (Clarkson, 1997).  

Mercury can cause many adverse health effects. For example, several large-scale 

epidemiological studies have shown numerous adverse health effects to be directly linked to high 

Hg exposures. In the early 1950s, one of the most well-known cases of mass Hg poisoning 
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occurred in Minimata, Japan (Ekino et al., 2007; Ninamiya et al., 1995). Residents consumed 

MeHg-contaminated fish and the resulting human health effects were devastating. Thousands of 

villagers suffered acute MeHg poisoning that manifested itself in many symptoms including but 

not limited to: blurred vision, hearing impairment, psychiatric symptoms and ataxia (Ekino et al., 

2007). In addition, the MeHg-exposure had tragic effects on the next generation through fetal 

MeHg poisoning (Harada, 1995). The following sections outline the effects of Hg on the 

neurological, neurodevelopmental, cardiovascular, and immunological systems.   

 

3.3.1.1 Neurotoxic effects 

The most noticeable and researched effects of mercury are on the central nervous system 

(ATSDR, 1999). Oral exposure to inorganic mercury salts in therapeutic agents (e.g., teething 

powders, ointments and laxatives) can result in irritability, fretfulness, weakness and muscle 

twitching (Warkany and Hubbard, 1953). However, far more information is available on the 

neurotoxicity of organic mercury, especially MeHg. From the mass MeHg poisoning in 

Minimata, Japan, it was recognized that the brain and nervous system are among the most 

sensitive targets for MeHg (Black et al., 2011; Ekino et al., 2007). The end result of these effects 

includes sensory disturbances, constriction of visual fields, ataxia, tremors and dysarthria 

(Clarkson and Magos, 2006; Harada, 1995). Chronic low doses can result in similar neurological 

problems including ataxia, dysarthria and sensory impairment (Ninamiya et al., 1995). Adults in 

the Amazon with hair Hg levels below 50 µg/g (where the guideline for hair Hg is 6 µg/g) , 

which in this study represented low-level MeHg exposure, showed decreased dexterity, increased 

muscular fatigue and strength and visual contrast sensitivity (Lebel et al., 1998). Individuals who 

had similarly low Hg exposure through the consumption of fish showed poor attention, fine 
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motor function and verbal memory (Yokoo et al., 2003).  These neurological changes stem from 

molecular interactions that result in increased oxidative stress, cell cytotoxicity and β-amyloid 

secretion (Zahir et al., 2005). β-amyloid secretion has been linked to neurodegenetive diseases 

like Alzeheimer’s, Parkinson’s, Autism and Lupus (Wilkinson and Waring, 2002).  As such, 

exposure to either low or high doses of organic Hg can have detrimental effects on neurological 

functioning.  

 

3.3.1.2 Neurodevelopmental effects 

Children born  in Minimata in the 1950’s and 1960’s showed heavy spongiosis of the 

cerebral cortex, thereby causing severe developmental impairment that carried through several 

generations (Ekino et al., 2007).  This is an extreme example of the effects of Hg on the 

developing brain. There are vulnerable periods during brain development (including those 

typified by proliferation, migration, differentiation) that are especially sensitive to environmental 

contaminants like Hg (Zahir et al., 2005). Therefore, the developing fetus is also 2-5X more 

susceptible to MeHg toxicity than an adult (Zahir et al., 2005) . Mothers can pass dietary Hg to 

the fetus via the umbilical cord and to a lesser extent infants via breast milk (Zahir et al., 2005). 

Because of the sensitivity of the developing brain, adverse effects can be observed in children as 

a consequence of fetal exposure even when the mother is unaffected (Clarkson and Magos, 2006; 

Clarkson, 1997; Zahir et al., 2005). Subtle effects on language, memory and motor skills have 

been documented following fetal exposure (Grandjean et al., 1998). In the fish-eating 

communities in the Seychelle Islands in the Indian Ocean and the Faroe Islands in the North 

Atlantic Ocean, epidemiological studies have observed subtle neurodevelopmental effects in 

children as a result of MeHg exposure (Davidson et al., 1998) . They found that fine motor skills, 
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attention, verbal learning and memory could be affected (Davidson et al., 1998). Children that 

have been prenatally exposure to MeHg show structural changes and several developmental 

disturbances (Geelen et al., 1990). 

3.3.1.3 Cardiovascular effects 

The toxic effects of Hg exposure are normally associated with the central nervous system, 

but Hg (especially inorganic Hg) can have an impact on the cardiovascular system. Research 

using rat models have shown exposure to inorganic mercury can cause an increase in blood 

pressure and a decrease in cardiac cell contractility (Carmignani et al., 1992). Halbach et al., 

(1989) studied 40 cities in the Amazon basin and found that Hg concentrations in hair reached up 

to 150 μg/g. They found that these populations had a strong positive correlation with increased 

arterial blood pressure (Halbach et al., 1989). Animal studies have shown decreased in heart rate 

as a result to exposure to organic Hg (Arito and Takahashi, 1991). During the Iraq MeHg 

poisoning of 1971, during which many Iraqis consumed wheat that had been treated with MeHg-

containing fungicide, cardiovascular effects were noted (ATSDR, 1999). Prenatal exposure to 

MeHg can affect the development of cardiovascular homeostasis, which regulates the delivery of 

hormones and nutrient as well as waste removal through the blood stream (Sørensen N, Murata 

K, Budtz-Jørgensen E, Weihe P, 1999). Further studies strengthened the preliminary literature 

correlating Hg and cardiovascular health by finding Hg exposure is associated with increased 

risk of hypertension, myocardial infarction, coronary dysfunction, and atherosclerosis  (Choi et 

al., 2009; Salonen et al., 1995; Yoshizawa et al., 2002).  

Mercury also can be predictor of the levels of oxidized low-density lipoprotein (LDL) 

(Yoshizawa et al., 2002). Mercury exposure can cause in the inactivation of paraoxonase, the 

enzyme responsible for slowing the LDL oxidation process, which results in the formation of 
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atherosclerotic lesions that can result in atherosclerotic disease (Virtanen et al., 2014; Yoshizawa 

et al., 2002). The other suggested mechanism for Hg toxicity in the cardiovascular system is an 

increase in oxidative stress resulting in more free radicals (Virtanen et al., 2014). Chronic 

exposure to Hg can also impact cardiac function (Choi et al., 2009). Salonen et al., (1995) found 

high intake of mercury from non-fatty freshwater fish and increase in MeHg body burden 

resulted in an increased risk of high blood pressure, acute myocardial infarction as well as death 

from coronary heart disease (CHD) and cardiovascular disease (CVD) in Finnish men (Choi et 

al., 2008, 2009). Studies have shown that chronic exposure can induce endothelial dysfunction in 

blood vessels likely due to the increase in oxidative stress (Choi et al., 2009).  

 

3.3.1.4 Immune System effects 

The immune response to Hg exposure is variable, complex and dependent on the dose as 

well as the genetic characteristics of the exposed populations (ATSDR, 1999). For example, 

administering doses of inorganic Hg in animal models can decrease thymus weight and increase 

lymphoproliferative response, both of which indicate immunosuppression (Hultman P, 1991). In 

vitro studies have also shown that low doses of inorganic Hg increase lymphocyte stimulation in 

certain autoimmune and allergic diseases (e.g. multiple sclerosis, autoimmune thyroiditis or 

atopic eczema), thus intensifying and exacerbating symptoms (Karagas et al., 2012). Other 

studies have shown that occupational exposure to Hg was associated with changes in B 

lymphocytes, T-helper cells, T-suppressor cells and T-cell proliferative responses – all of which 

are needed for optimal immune system functioning (Miklav et al., 2011; Queiroz and Dantas, 

1997). 
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Less literature is available on the effect of MeHg on immune function. In rodents, MeHg 

has been shown to alter the non-specific defense mechanisms (ATSDR, 1999). Additionally, 

MeHg can reduce the expression of certain activation markers on T-cells (AMAP, 2011) and 

affect B-cell function, thus reducing immune function (Daum et al., 1993). MeHg has also 

known to result in reduced natural killer cell activity in the spleen and blood (ATSDR, 1999). In 

general, relatively high exposures to elemental Hg is linked to a range of adverse or lessened 

immune functions (including markers for autoimmunity) (Karagas et al., 2012) Chronic exposure 

to MeHg points to lessened immune system functioning but the studies and results are 

inconclusive (Karagas et al., 2012). 

 

3.3.2 Determination of Mercury Exposure  

Along with dietary exposure measurements, exposure to Hg and MeHg can be assessed 

using biomonitoring. The kinetics of the distribution of heavy metals within the body is complex 

and dependent on which tissues store the metals. Hair is particularly useful as a long-term 

retrospective MeHg exposure biomarker and it can be easily obtained and stored (Donaldson et 

al., 2010; Van Oostdam et al., 2005). Additionally, Hg levels in hair can be correlated with blood 

and brain levels (Donaldson et al., 2010; Van Oostdam et al., 2005). Notably, Hg in maternal 

blood and hair is proportional to the levels of Hg exposure that accumulate in the brain tissue of 

the infants (Kuhnlein and Chan, 2000). Governmental agencies and health organizations, such as 

the World Health Organization (WHO) and Health Canada (HC) among others, set the guideline 

or threshold values for these biomarkers (Kuhnlein and Chan, 2000). 

 

3.3.3 Limits and Toxicological Reference Values for Mercury 
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Toxicological reference values (TRVs) allow for the quantification of risk to human 

health when compared with exposure.  These values are normally based on conservative 

estimates and play an important role in risk assessments, which are crucial in policy making and 

implementation (ATSDR, 1999; Institute of Medicine, 2000). The limits and toxicological 

reference values for Hg and MeHg vary between regulatory bodies. For example, HC has 

developed general population blood guidelines for total Hg (HgT) exposure (<20 μg/L 

Acceptable; 20-100 μg/L Increased Risk; 100 μg/L at Risk) (Health Canada, 2007).  These HC 

guidelines are conservative estimates based on 200 μg/L being the lowest concentration at which 

a physiological change was observed from exposure to clinically adverse health effects 

(Legrande et al., 2010). This concentration was determined by studying the large outbreaks of 

exposure to organic Hg that occurred in Minimata, Japan in 1950s-60s and Iraq in 1970s 

(Legrande et al., 2010). The US Environmental Protection Agency (EPA) has a lower benchmark 

dose 58 μg/L for blood Hg levels in adults (Health Canada, 2007).  

 The provisional guidance values for pregnant women, women of child bearing age and 

children are 5.8 μg/L and 8 μg/L for the US EPA and HC, respectively (Legrand et al., 2010). 

These guidance values are intended to reduce the risk of neurodevelopmental effects from Hg on 

the developing fetus (Lye et al., 2013). These values were based on the conservative estimates 

described above as well as epidemiological studies conducted in the Seychelles Islands and 

Faroe Islands to determine the impact on Hg exposure on child development (Legrand et al., 

2010).  
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3.3.4 Mercury in Country foods  

As discussed above, Hg exposures can result in detrimental impacts on the body and, 

even at low chronic exposure levels, can cause adverse effects on neurological, cardiovascular, 

and immune function.  Mercury vapour released into the atmosphere from anthropogenic sources 

from around the world, such as fossil-fuelled power plants and ore processing plants among 

others, deposits in the circumpolar region (Pirrone et al., 2010). Deposited Hg undergoes 

chemical reactions that transform the Hg species allowing for bioaccumulation and 

biomagnification within the arctic food chains (Donaldson et al., 2010).  Methylmercury has a 

high affinity for proteins and tends to accumulate in flesh of fish and marine mammals 

(Wagemann et al., 1998).  Thus, Hg toxicity can be a potential risk for Inuit communities in the 

circumpolar region.  

Since Hg in traditional foods is a health concern, there is literature reporting on the total 

concentrations present in certain foods. In general, marine mammals have high levels of total Hg 

because they are high on the Arctic food chain.  Lemire et al., (2015) conducted a study to assess 

the country food sources of MeHg, Se and omega-3 fatty acids in Nunavik. They concluded that 

the most commonly-consumed foods were relatively low in MeHg – except for beluga meat 

(1.07 μg/g), ringed seal liver (2.73 μg/g) and Lake Trout (1.03 μg/g) (Lemire et al., 2015). The 

Lake Trout samples were above the Health Canada guideline for seafood of 0.5 μg/g MeHg but 

all other fish studied were below this limit (Health Canada, 2010a, 2009, 2007).  Beluga 

(geometric mean (GM) = 6.23 μg/g) and ringed seal kidneys (GM = 0.87 μg/g) have high HgT 

concentrations compared with beluga mattaaq (GM =0.38 μg/g) and ringed seal meat  (GM = 

0.28 μg/g)(Lemire et al., 2015). Due to Hg affinity for sulfhydryl groups found in certain 

proteins (i.e. found in egg whites v. egg yolk or raw beluga meat v. beluga mattaaq), it is 
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unsurprising that lipid-containing beluga mattaaq has lower total Hg levels (Clarkson and 

Magos, 2006; Raymond and Ralston, 2004). There is also a high degree of variability for HgT in 

marine bird eggs due to differences in the Hg in the nesting female and the egg’s position in the 

clutch (Becker, 2009; McCloskey et al., 2013).  It’s important to note that the concentrations of 

these trace metals in animals, especially Hg, can vary greatly based on trophic level, age, and 

size (Becker, 2009; McCloskey et al., 2013).  

Since, there is a lack of detailed information of Hg speciation often times 100% of HgT is 

assumed to be MeHg, in human health risk assessments which is accurate for individuals in 

southern Canada who are exposure to MeHg almost exclusively through fish consumption 

(Donaldson et al., 2010; Health Canada, 2007). However, this is not accurate for Inuit 

individuals because it does not account for the inorganic Hg that is present in some country 

foods- for example, marine mammal organs. Therefore, for risk assessments of dietary Hg to 

Inuit in northern Canada, it is often assumed that one third is inorganic Hg and the remaining 

fraction is MeHg (Laird et al., 2009). Literature shows that the bioaccessibility of Hg varies 

greatly from one food to another (Burger, 2012; Cabañero et al., 2007; Calatayud et al., 2012; 

Moreda-Piñeiro et al., 2011). Cabañero et al., (2007) found very low bioaccessibility for MeHg 

in both gastric and intestinal digestion in certain commerically consumed fish (i.e. tuna, sardines, 

and swordfish). In comparison, Laird et al., (2009) studied 16 different country foods (such as 

caribou, walrus, Arctic char and ringed seal) using an in vitro model found the Hg 

bioaccessibility widely ranged between 1 and 93%.  
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3.3.5 Inuit Exposure to Mercury  

In the general Canadian population, exposure to Hg is primarily through the consumption 

of fish; the form of mercury to which people are exposed from the consumption of fish is 

predominately MeHg (ATSDR, 1999; Wagemann et al., 1998). However, some Aboriginal 

communities can also be exposed to substantial levels of inorganic Hg from the consumption of 

specific country foods (Laird et al., 2013a). Inuit communities are among the most at risk to Hg 

because of the high MeHg levels that accumulate within some country foods (Laird et al., 

2013a). For example, several country foods (e.g. lake trout, beluga meat, ringed seal) relied on 

by Inuit, due to the processes of bioaccumulation and biomagnification, have elevated 

concentrations of MeHg (Donaldson et al., 2010; Dórea, 2008; Van Oostdam et al., 2005). 

Consequently, Inuit exposure to Hg is among the highest in the world (Donaldson et al., 2010; 

Van Oostdam et al., 2005). 

 

Health Canada’s Methylmercury Monitoring Program brought attention to the elevated 

levels of Hg exposure in Aboriginal communities and these results showed that 57% of Inuit 

individuals exceeded the 20 µg/L guideline for ‘‘an increasing risk of health effects” for MeHg 

exposure (Wheatley and Paradis, 1995). Even though some studies show that the levels of Hg is 

increasing in certain country foods (AMAP, 2002; Dewailly et al., 2007), Inuit blood Hg 

concentrations do not mirror this increasing trend. In fact, Dewailly et al., (2007) reported a 30% 

decrease in Inuit blood Hg which is possibly linked to changes in dietary habits namely a 

decrease in country food consumption.  In 1992, a health survey found that the mean blood Hg 

concentration of 21.8 μg/L which was higher than the levels found in southern Quebec (which 

was used as a control)(Dewailly et al., 2007). Although proper longitudinal studies have not been 
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done to confirm this, there is evidence that Hg blood concentrations in Inuit are decreasing, most 

likely as a result of a shift away from country foods and towards more market foods especially in 

younger generations (Kuhnlein et al., 2004).   

 

3.4 Selenium 

Selenium (Se) is an essential micronutrient that is important to human health (Brown and 

Arthur, 2001).  It is a major component of several metabolic pathways and antioxidant defense 

systems (Brown and Arthur, 2001; Hatfield et al., 2014). Selenium is also important for proper 

neurological and immune function (Brown and Arthur, 2001).  It is mainly acquired through diet 

and is particularly abundant in seafood as well as many of the foods consumed as part of a 

traditional Inuit diet (Van Oostdam et al., 2005).  

 

The effects of Se on human health are dependent on dose, speciation and bioavailability 

(Rayman, 2000). Selenium is found in numerous inorganic and organic forms. The 

bioavailability of Se is dependent on the type of Se ingested and the biotransformations that 

occur within the body (Thiry et al., 2012; Yamashita et al., 2011). Organic forms include 

selenomethionine (Se-Met) and selenocysteine (Se-Cys) and the inorganic forms include selenate 

and selenite (Brown and Arthur, 2001; Ralston, 2008; Rayman, 2000) Before entering the 

relevant metabolic systems, selenium undergoes a number of chemical transformations within 

the body before becoming biologically active (Brown and Arthur, 2001; Rayman, 2000). 

Because of its structural similarity to the essential amino acid methionine, selenomethionine is 

readily transported complexed to hemoglobin and albumin (Brown and Arthur, 2001; Rayman, 

2000). However, Se-Met does not become biologically active until it is biotransformed into the 
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inorganic selenite or selenate (Brown and Arthur, 2001; Forceville, 2006). These inorganic forms 

of selenium can be reduced to form Se-Cys, which is the species of Se that is incorporated into 

selenoproteins (Forceville, 2006). Under physiological conditions, the Se in Se-Cys acts as an 

extremely efficient biological catalyst (Brown and Arthur, 2001).  

The importance of Se as an essential trace element within the body is based upon its 

presence in selenoproteins (Brown and Arthur, 2001). Selenoproteins require one Se atom at 

each active or catalytic site. The majority of functionally characterized selenoproteins are 

oxidoreductases because Se-Cys is more nucleophilic than cysteine (Hatfield et al., 2014). 

Approximately 25-30 genetically unique selenoproteins have been discovered, each of which 

have fundamental roles (e.g. protecting against oxidative damage, thyroid hormone metabolism) 

(Forceville, 2006). Selenoproteins are also critical for inhibiting proinflammatory cell responses 

and therefore are important in immune function (Forceville, 2006). 

 

3.4.1 Selenium and Human Health  

Mild Se deficiencies can have adverse health consequences in terms of disease 

susceptibility and maintenance of optimal health (Forceville, 2006; Rayman, 2000). Because of 

the role Se plays in immune function, Se is implicated in the disease aetiology, progression and 

outcome.  Low Se levels are linked with increased occurrence, virulence and accelerated disease 

progression in some types of viral infections (Rayman, 2000). Selenium deficiency has also been 

linked reduced thyroid and anti-carcinogenic function (Brown and Arthur, 2001; Hatfield et al., 

2014; Rayman, 2007; Shamberger, 1969). The following section focuses on the effects of Se on 

immune, thyroid, and neurological function as well as the prevention of certain types of cancer.  
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3.4.1.1 Neurological effects 

Selenium plays a large role in maintaining optimal brain function; therefore, Se levels are 

often maintained in the brain at the expense of other bodily tissues in the event of reduced 

dietary Se (Choi et al., 2008; Rayman, 2012, 2000). Despite these stringent homeostatic controls, 

Se deficiency can affect neurotransmitter turnover, coordination, cognition, and increase risk of 

seizures, Parkinson’s disease, permanent brain injury (Risher et al., 2003). Selenoprotein P 

(SEPP1) plays an important role in Se delivery to the brain (Forceville, 2006). SEPP1 is 

composed of 10 Se-Cys residues and transports Se from the liver to special receptors in the brain, 

testes, and kidneys via plasma (Rayman, 2000). Deficiencies in SEPP1 cause spasticity, 

abnormal movement and spontaneous seizures in studies using mice (Forceville, 2006; Rayman, 

2000). This selenoprotein has a neuroprotective role, enhancing neuronal survival and preventing 

apoptotic cell death due to amyloid-β-induced oxidative damage (Forceville, 2006; Rayman, 

2000). SEPP1 may also act as a heavy metal chelator thus, preventing adverse health effects 

related to heavy metal exposure (Forceville, 2006; Rayman, 2000). There is conflicting research 

on whether or not Se supplementation has a positive impact on mood and mental well-being  so, 

the exact association is inconclusive (Rayman et al., 2006; Rayman, 2000). There is research that 

supports that Se supplementation as a favorable impact on mood and that Se deprivation can 

have the opposite impact on mood and mental wellbeing (Finley and Penland, 1998; Rayman et 

al., 2006; Rayman, 2000) . Overall, Se impacts the synthesis of SEPP1, which is necessary for 

optimal neural functioning and Se also potentially impacts mood.    
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3.4.1.2 Immune system effects 

Selenium is important in maintaining a healthy immune system and increasing the 

proliferation of pathogen-fighting cells (Broome et al., 2004; Rayman, 2012, 2000). Selenium 

can act as both an antioxidant and anti-inflammatory agent. As the antioxidant glutathione 

peroxidases (GPxs), Se can reduce hydrogen peroxide as well as lipid and phospholipid 

hyperoxides, thereby diminishing the effects of reactive oxygen species on cells (Rayman, 2000). 

T-cells, lymphocytes involved in cell-mediated immunity, are sensitive to oxidative stress and 

remain inactive without adequate Se. Hoffmann et al. (2010) used a mouse model to show that a 

high-Se diet results in an increase in cell-signaling cytokines and enhanced T-cell signaling that 

increase pro-inflammatory immune responses. Selenium supplementation in the diets of 

individuals that were Se-deficient showed that there was an enhancement of not only T cells but 

also lymphocyte-mediated tumor cytotoxicity and natural killer cell activity (Rayman, 2012).  A 

study conducted by Broome et al., (2004) showed that a Se enriched diet resulted in disease 

prevention in adults. They supplemented the participants’ diet by 50 μg or  100 μg per day of 

sodium selenite or a placebo and challenged with an active attenuated poliovirus and found that 

both treatment groups cleared the virus more rapidly than the placebo group (Broome et al., 

2004). As such, adequate levels of Se are vital for a healthy immune response.  

 

3.4.1.3 Impact on Thyroid function  

The thyroid is one of the largest endocrine glands in the body and plays an instrumental 

role in controlling energy usage, protein synthesis, as well as the body’s sensitivity to other 

endogenous hormones (Brown and Arthur, 2001). The thyroid gland has the highest Se 

concentration compared to any other bodily tissue (Rayman, 2012). The two principal thyroid 
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hormones produced are triiodothyronine (T3) and thyroxine  (T4), which are synthesized from 

iodine and tyrosine respectively (Brown and Arthur, 2001; Rayman, 2000). Selenium has various 

roles in the thyroid gland including the regulation of three Se-dependent iodothyronine 

deiodinases that catalyze activated T3 from its inactive precursor T4 via reductive deiodination 

(Brown and Arthur, 2001; Rayman, 2000). Selenium, in the form of GPx3, also plays a 

protective role against the oxidative effects of hydrogen peroxide produced during the synthesis 

of T3 and T4 (Brown and Arthur, 2001; Rayman, 2000). Consistent with Se protective effects, 

epidemiological studies have shown an inverse associations between Se status and thyroid 

volume, thyroid function and goiters in French women (Derumeaux et al., 2003).   

 

3.4.1.4 Impact on Carcinogenesis  

Selenium is an uncommon trace element because it has its own genetic code that specifies 

its insertion into selenoproteins as Se-Cys (Hatfield et al., 2014; Rayman, 2007).  Selenium has 

also been shown to have protective effects against the formation of DNA adducts (Ravoori et al., 

2010). DNA adducts, which occur when DNA covalently binds to a xenobiotic, can potentially 

result in carcinogenesis (Ravoori et al., 2010). Numerous in vivo studies have assessed the 

impact and mechanism of Se on cancer formation. Most often, such animal models use doses that 

are much higher than those normally observed in the environment, making direct extrapolation of 

results difficult.  However, Waters et al., (2003) conducted a  “low-dose” study with sexually 

intact male dogs that were biologically predisposed to spontaneous prostate cancer (Waters et al., 

2005, 2003) . The Se-enriched diet consumed by the dogs reduced DNA damage and up-

regulated epithelial cell apoptosis in their prostates (Waters et al., 2005, 2003). Epidemiological 

studies reinforce the findings from these animal studies (Rayman, 2007). There is also an inverse 

http://en.wikipedia.org/wiki/Triiodothyronine
http://en.wikipedia.org/wiki/Thyroxine
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relationship between dietary Se intake and a number of different cancers (Schrauzer et al., 1977; 

Shamberger, 1969). For example, a large longitudinal study of 1389 elderly male and females’ 

individuals conducted by Akbaraly et al., (2005) found that inadequate plasma Se was associated 

with cancer-related mortality after adjusting for sociodemographic characteristics, dietary habits, 

health, and cognitive factors.   

 

3.4.2 Dietary Recommendations for Selenium  

Despite Se being an essential micronutrient, it is important to remember that the “dose 

makes the poison” and at high levels Se can be toxic and perhaps even carcinogenic (Hatfield et 

al., 2014; Rayman, 2000). Exceeding the daily Tolerable Upper Intake Level (UL) for adults at 

400 µg/day, can lead to adverse effects including hair and nail brittleness, gastrointestinal 

disturbances, skin rashes, breath odor, and nervous system disorders (Institute of Medicine, 

2000). The Recommended Daily Allowance (RDA) for Se is based on the amount required to 

maximize synthesis of glutathione peroxidase, an important selenoprotein responsible for 

protecting against oxidative damage (Baker et al., 1993; Institute of Medicine, 2000). The Food 

and Nutrition Board of the US National Academy of Sciences indicated that a safe range for 

daily Se intake is between 50-200 μg/day (Institute of Medicine, 2000). The Se recommendations 

from the Institute of Medicine (IOM) include the No Observed Adverse Effect Level (NOAEL) 

of 800 μg/day, the Estimated Average Requirement (EAR) of 45 μg/day and RDA of 55 μg/day 

for both men and women (Institute of Medicine, 2000).  These recommendations apply to the 

total of the dietary and supplement intake of Se (Institute of Medicine, 2000).  
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3.4.3 Selenium in Country foods  

Country foods have a high nutrient content and their consumption can substantially 

contribute to Se intake (Kuhnlein and Receveur, 2007).  A study was conducted by Gagné et al., 

(2013) to determine the relationship between country food consumption and nutrient intake in 

preschool aged Inuit children in Nunavik. They found that despite country food intake only being 

2.6% of the total energy intake, children who had country foods had statistically significant 

increases in vitamins and minerals, including Se (Gagné et al., 2013). Blood Se levels, as well as 

blood Hg levels, are elevated among Inuit due to their traditional diet (Donaldson et al., 2010). 

Many animals consumed have high Se levels particularly, marine mammals and fish. 

Inuit communities have a Se status that is among the highest in the world (Lemire et al., 

2015). Laird and Chan (2013) showed there was a correlation between the levels of essential 

nutrients like Se and n3 fatty acids as well as the estimated Hg intake in Inuit living in the 

Canadian Arctic likely, due to their traditional diets. Inuit country foods, especially marine 

foods, like beluga mattaaq, marine mammal organs, walrus meat, and fish eggs are exceptional 

sources of dietary Se (i.e. >1.0 µg/g) (Lemire et al., 2015).  Previous work has shown most of the 

country foods of the Nunavik Inuit, including marine mammals, fish, seafood, land animals, 

game birds, wild berries and seaweed, are above the 0.2 µg/g level that coincides with being 

considered a good source of Se (Lemire et al., 2015). Country foods contain high levels of Se, 

and other nutrients that can potentially mitigate Hg toxicity (see Section 3.5).  

 

3.5 Mercury and Selenium Interactions 

Inuit living in Nunavik are exposed to high levels of both Hg and Se compared with the 

general Canadian population due to their traditional diets (Donaldson et al., 2010). Increased 
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dietary Se has been shown to increase MeHg concentrations in the liver, kidney and frontal lobe 

of the brain indicating that these are the primary regions for Hg-Se interactions and potential 

detoxification (Beyrouty and Chan, 2006; Donaldson et al., 2010).  Studies have also shown that 

increasing dietary Se can reverse some of the adverse effects of Hg (Ralston and Raymond, 

2010; Ralston, 2008). The mechanism by which dietary Se reverses Hg toxicity has not been 

completely elucidated on the molecular level. But studies show that the oxidative stress caused 

by MeHg that impacts neurological function because of its effects on the selenoproteins present 

in the neuroendocrine and nervous system (Ralston, 2008). High MeHg concentrations in the 

brain can lead to a diminished selenoenzyme activity in the brain (Watanabe et al., 1999). 

Mercury has a binding affinity for Se that is a million times higher than its affinity for sulfur 

(Dyrssen and Wedborg, 1991). Because of this high affinity, MeHg irreversibly binds to the 

active site of selenoenzymes, thus resulting in enzyme inhibition. Consequently, MeHg interferes 

with the homeostatic maintenance of optimal selenoenzyme function, causing a decrease in 

neurological functioning (Ralston and Raymond, 2010; Ralston, 2008).  

The exact biological mechanism of the protective effects of Se against Hg is unclear; 

however, there are two predominant theories reported in the scientific literature. Briefly, the two 

paradigms of Hg-Se interactions are (1) Se sequesters Hg or (2) Hg sequesters Se (Ralston and 

Raymond, 2010). The conventional theory for Hg-Se interactions is that selenoproteins sequester 

Hg, forming insoluble selenide complexes (Ralston and Raymond, 2010). These complexes are 

then excreted, thereby reducing the potential toxic effects of Hg on the body (Ralston and 

Raymond, 2010). A more recent paradigm of Hg-Se interactions is that Hg sequesters free 

soluble Se from participating in selenoprotein synthesis, resulting in a selenoprotein deficiency 

that impairs neurological function (Ralston and Raymond, 2010). Due to the complexation of the 
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SeCys residue of the selenoprotein and MeHg, the degradation of the selenoprotein is difficult. 

But, eventually this complex is degraded through similar routes that dispose of MeHg-Cys or 

partially degraded and accumulated in lysosomes as HgSe (Ralston and Raymond, 2010). These 

insoluble Hg selenide complexes can be retained in the brain (Moller - Madsen and Danscher, 

1991).  In either paradigm, the Se is no longer available for selenoprotein synthesis.  

In general, marine fish contain more Se than Hg on a molar basis; therefore, it has been 

postulated that marine fish intake generally provides a net health benefit rather than a health risk 

(Burger and Gochfeld, 2012; Ralston, 2008). Inuit communities are exposed to many 

contaminants that can cause oxidative stress; however, the consumption of country foods that 

contain high concentrations of Se and other antioxidants may reduce the effects of Hg in 

particular. For example, Inuit have lower incidence of cardiovascular disease despite similar 

exposure to MeHg because of the high antioxidant nutrient (i.e. polyunsaturated fatty acids, 

selenium, vitamins etc.) levels in their foods (Kuhnlein and Receveur, 2007; Kuhnlein, 1991; 

Laird et al., 2013b).  

It is worth noting though that there is empirical evidence that appears to contradict the 

selenium sequestration hypothesis. For example, rodent models that shows that an enriched 

selenium diet alone does not prevent the adverse effects of MeHg (Beyrouty and Chan, 2006). In 

this work, the authors showed that diets enriched with Se, vitamin E, and phytate do not show 

clear protection against the neurotoxic effects of MeHg (Beyrouty and Chan, 2006). However, 

the rodents showed improved body weight gain and postnatal survival of offspring when their 

diet was enriched with both Se and vitamin E (Beyrouty and Chan, 2006). This study does not 

invalidate the importance of Se in mitigating Hg toxicity; but it does suggest that other 

mechanisms involving different nutrients may also contribute to lowering Hg toxicity.    
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Epidemiological studies have been utilized to further evaluate interactions between Hg 

and Se on human health. Unsurprisingly, there have been epidemiological studies with seemingly 

contradicting results in regards to the effects of dietary MeHg on neurodevelopment. In the 

Republic of Seychelles, many of the islanders consume a diet high in marine fish, leading to a 

moderately high MeHg exposure (Weihe and Joensen, 2012). Davidson et al., (1998) conducted 

a prospective longitudinal cohort study and found that despite a moderately high MeHg exposure 

through a high fish diet, no adverse prenatal or post-natal neurodevelopmental outcomes were 

observed. These results have been confirmed by others including Myers et al., (2003). However, 

the results from the Faroe Islands tell a different story. In the Faroes, the consumption of pilot 

whales is an important part of their culture and way of living. However, several birth cohorts 

have shown that the Hg from pilot whale meat consumption adversely affects the fetal 

development of the nervous system (Weihe and Joensen, 2012). Additionally, these effects on 

fetal neurodevelopment appear permanent as the impacts of Hg on health remain detectable in 

adolescence (Weihe and Joensen, 2012). Diet is one of the suspected factors for this inter-study 

discrepancy despite similar MeHg exposure. The Seychelles islander’s fish diet has medium to 

high levels of MeHg however, the fish also contained high levels of polyunsaturated fatty acids 

(PUFA) and Se (Myers et al., 2003). In contrast, the pilot whale diet of the Faroe islanders had 

far lower PUFA and Se so; these nutrients were not able to mitigate Hg toxicity that resulted in 

adverse health effects (Weihe and Joensen, 2012).  

 

3.6 Assessing the Benefits and Risks of Country food Consumption  

A risk assessment refers to the evaluation the potential for adverse health or 

environmental effects from natural or synthetic chemical stressors (Kleinjans, 2003). A method 
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is needed to determine the risk-benefit relationship of Hg to Se between different country foods. 

A variety of methods have been explored for determining the risk-benefit relationship between 

Hg and Se. One such method involves the calculation of the molar concentrations of Hg and Se 

present in the food. Ralston (2008) showed that an excess in molar Se can mitigate the risks 

posed by Hg from consuming fish (Ralston, 2008). A Se:Hg molar ratio where molar Se is 

greater than molar Hg  may indicate that the dietary Se counteracts the Hg present in the 

consumed fish (Burger and Gochfeld, 2012).  An related method is the calculation of a Se Health 

Benefit Value (Se HBV) (Kaneko and Ralston, 2007). Like the previous method, the Se HBV is 

based on molar Se:Hg ratios; however, the Se HBV also considers the absolute amounts of Se 

and Hg in the food in order to provide an index (Ralston, 2008). The sign of the Se HBV value 

indicates whether health benefits are expected (Se HBV > 0) or health risks (SeHBV < 0).  While 

the magnitude of index is proportional to the expected benefits or risks (Ralston, 2008). The 

equation used to calculate the Se HBV was revised in order to avoid “divide by zero” type errors 

that were common in the first iteration of this equation in situations where MeHg levels were 

very low (Ralston et al., 2015). With the revisions the equation may provide a better index to 

reflect the risks of MeHg (Ralston et al., 2015). The Se HBV has been calculated using the total 

molar concentrations in many species of fish and marine life (Ralston, 2008).  

 

3.7 Assessing Bioaccessibility and Bioavailability   

Bioaccessibility and bioavailability are concepts that are integral to estimating the 

internal dose of Hg and Se according to metal concentrations in the environment (Ruby et al., 

1999; Torres-Escribano et al., 2011). When estimating exposure using external environmental 

concentration, measures of oral bioavailability may provide the best representation of internal 
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dose (Caussy, 2003; Ruby et al., 1999; Thiry et al., 2012). Oral bioavailability can be defined as 

the amount of contaminant ingested that is absorbed and reaches systemic circulation and 

eventually the biological target tissue (Caussy, 2003; Ruby et al., 1999; Thiry et al., 2012) . 

Because the bioavailability of Hg and Se is unknown in Inuit country foods collected from 

Nunavik, it increases the uncertainty of the exposure assessment. In order to more precisely 

determine the internal dose, a series of in vitro approaches have been developed to determine the 

bioaccessibility. 

Bioaccessibility is often used as an estimate or proxy for metal bioavailability (Ruby et 

al., 1999; Torres-Escribano et al., 2011). For the purposes of my thesis, bioaccessibility 

represents the fraction of Hg and Se that would leach out of the solid food and into the gut lumen 

(Ruby et al., 1999; Torres-Escribano et al., 2011) . An in vitro gastrointestinal (GI) model can 

determine the Hg and Se that is bioaccessible using simulated digestive solutions that are pH-

controlled and contain enzymes to aid in food breakdown (Intawongse and Dean, 2006; Torres-

Escribano et al., 2010). The in vitro GI model used in my thesis research simulates the 

physiological conditions of the stomach and duodenum, which are primarily responsible for food 

breakdown.  Laird et al., (2009) looked that the bioaccessibility of Hg, using an in vitro model, in 

country foods and found that percent bioaccessibility was independent of the total 

concentrations. Simply put, you cannot deduce the bioaccessible fraction of Hg from the total 

concentration for the country foods studied. They found high small intestinal Hg bioaccessibility 

in Arctic char (93.9%), ringed seal (70%) and caribou (70%) and low bioaccessibility in ringed 

seal liver (18.9%) and walrus (15.5%). However, given the small number of samples evaluated, 

these results may not be directly applicable to other country foods collected from other regions 

(Laird et al., 2009).    
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In general, Se bioaccessibility is often greater than Hg bioaccessibility. As shown by 

Cabañero et al., (2007) when they found Hg IVBA was consistently lower (<20%) than Se IVBA 

(50-83%) when using an in vitro bioaccessibility method.  They also showed that the gastric 

bioaccessibility was about 47-70% but the intestinal bioaccessibility was about 50-83% 

(Cabañero et al., 2007). As shown in Calatayud et al., (2013), they found the Se to be between 

35-106% and 17-125% respectively in the 16 raw seafood and shellfish samples (such as 

anglefish, salmon, sardine, small hale, clam, cuttlefish, mussel, and squid etc.) analyzed. In terms 

of Se bioaccessibility in country foods, Se bioaccessibility seems to be consistent between 

different marine fish species (Laird and Chan, 2013).  

 

3.8 Bridging the Research Gaps in Literature  

In the current body of scientific literature, there is limited information on Hg and Se 

bioaccessibility and next to no information on the bioaccessibility of these trace metals in Inuit 

country foods. The majority of research focuses on determining the total concentrations of Hg 

and Se in country foods. For example, in a recent paper by Lemire et al., (2015), they focused on 

total concentrations of MeHg, Se and omega-3 fatty acids in country foods collected from 

Nunavik, Quebec. As described in Zhang et al., (2014), there is a very large knowledge gap in 

country food assessments of exposure to Hg and/or Se were found including the lack of 

consideration for Hg-Se interactions and the bioaccessibility of these trace metals within the 

body.  In Inuit communities, were country foods are not only crucial part of their culture and 

identity but also a nutritious alternative to market foods, encouraging consumption of these foods 

is important.  
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This research may assist ongoing contaminant exposure assessments in Nunavik and 

potentially aid in the development of culturally relevant strategies that promote these foods while 

reducing Hg body burden. Our research will determine the following: (1) the Inuit country foods 

that have high levels of Hg also have high levels of Se (2) the bioaccessibility of Hg and Se and 

if it  varies from one country food to another and (3) the effects of  co-digesting specific food 

combinations on the solubilization of Hg within the GI tract? The bioaccessibilities determined 

from this study could help give a better estimate of the internal dose of Hg and Se, which may 

result in more accurate risk assessments in the future.  

4. The In Vitro Bioaccessibility of Selenium Exceeds that of Mercury 

in Inuit Country Foods 
 

4.1 Introduction 

Approximately 50,000 Inuit inhabit the Arctic regions of northern Canada.  Over 10,000 

of these indigenous people live in 14 coastal villages in Nunavik, the northernmost region of 

Québec (Makivik Corporation, 2015). Country foods harvested by Inuit from their local 

surroundings include marine mammals (e.g., beluga mattaaq, beluga meat, ringed seal meat), fish 

(e.g., arctic char, lake trout, sculpin), wild game and birds (e.g., caribou, ptarmigan, geese), 

berries (e.g., cloudberry, blueberries, crowberries, red berries), and certain types of seaweed. 

Collectively, these country foods play a critical role in the cultural, social, economic and 

nutritional welfare of the Inuit (AMAP, 2009; Berti et al., 1998; Chan et al., 2006). Kuhnlein et 

al., 1996  highlighted that country food consumption in other regions of the Arctic increased 

intake of iron, zinc, and vitamins A, E and D. In addition, the marine mammals, fish species, and 

fish eggs particularly those of marine origin, consumed in several regions of the Arctic contain 

from high to exceptional levels of selenium (Se) and omega-3 fatty acids (Kuhnlein, 1991; 
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Lemire et al., 2015). Consumption of country foods is linked with decreased the risk of obesity, 

cardiovascular disease and other chronic ailments (Kuhnlein and Receveur, 2007; Kuhnlein et 

al., 2004; Richmond and Ross, 2009; Sharma, 2010; Sheikh et al., 2011).  Furthermore, country 

foods in Nunavik can be more affordable than nutritious store-bought foods, which are often 

prohibitively expensive despite subsidy programs such as Nutrition North Canada (Chan et al., 

2006; Government of Canada, 2015).  Research has shown than an increased country food 

consumption results in higher levels of Se intake, and increased Se intake is linked to many 

positive health outcomes including: reduced cardiovascular disease, proper immune functioning, 

proper reproductive function and optimal thyroid function (Hatfield et al., 2014; Rayman, 2000).  

Even though there are high levels of Hg in some country foods, these foods can also 

provide many nutrients and minerals. One such nutrient is Se, an essential structural component 

of selenoproteins (Hatfield et al., 2014; Lund, 2013). Selenoproteins play important roles in 

thyroid hormone metabolism, antioxidant defense systems, anti-carcinogenic mechanisms and 

proper neurological functioning (Brown and Arthur, 2001; Hatfield et al., 2014; Rayman, 2000). 

Due to the consumption of these Se-rich country foods, Se blood concentrations are considerably 

higher in Nunavik (geometric mean = 271 µg L
-1

) relative to the general Canadian population 

(mean = 204 µg L
-1

) (Health Canada, 2010b). Additionally, Inuit in Nunavik have blood Se 

levels that exceed those required for optimal selenoprotein activity (Health Canada, 2010b; Yang 

and Xia, 1995).  There is also evidence that Hg toxicity may be mitigated in part by dietary Se 

(Feroci et al., 2005; Jones et al., 2013; Ralston, 2008). Recent studies have shown the presence 

of a new Se species present in predatory fish (i.e. tuna) called selenoneine that reacts with 

radicals and MeHg (Yamashita et al., 2011). In general, dietary Se is thought to protect against 

Hg-dependent toxicity by forming an inert Hg-Se complex that can be eliminated from the body 



38 

(Ralston and Raymond, 2010). The antagonistic relationship between Hg and Se is well known 

even though the exact biological mechanism is unknown (Khan and Wang, 2009). Whether this 

antagonist or synergistic effect occurs is dependent on the sensitivity of the organ/organism 

affects, and the relative Hg and Se concentrations (Khan and Wang, 2009). Consequently, it is 

possible that the high levels of Se present in Inuit individuals can impact and perhaps counteract 

some of the negative effects of Hg (Donaldson et al., 2010; Lemire et al., 2015; Valera et al., 

2009).   

 Inuit exposure to mercury (Hg) in Nunavik is among the highest observed in the world 

(Donaldson et al., 2010). Despite significant declines in exposure over the past two decades, 

biomonitoring efforts conducted in 2004 showed that, on average, more than half of 

childbearing-age women and adults of 40 years old and above had blood Hg levels exceeding 

Canadian blood Hg guidance values (≥8 μg/L for childbearing-age women and ≥20 μg/L for 

other adults) (Dewailly et al., 2007; Lemire et al., 2015). The elevated Hg body burden observed 

among Inuit is a result of high Hg levels within some country foods, particularly some types of 

marine mammals and fish (Donaldson et al., 2010; Van Oostdam et al., 2005). For example, a 

recent deterministic exposure assessment showed beluga meat to be the largest methylmercury 

(MeHg) contributor for Inuit in Nunavik, and this particularly in the Hudson Strait, the region 

where most traditional beluga hunting takes place in Nunavik (Lemire et al., 2015). Similarly, 

even though it was consumed relatively infrequently, ringed seal liver was the largest contributor 

of dietary Hg in the Inuit regions of Nunavut, Nunatsiavut, and the Inuvialuit Settlement Region 

(Laird et al., 2013b). However, both Lemire et al., (2015) and Laird et al., (2013b) demonstrated 

that most of the country foods that are high in Hg could also provide substantial quantities of 

essential nutrients. All together, this work supported the creation of public health messaging that 
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advised Inuit populations on the general healthfulness of country foods as well as how they could 

limit their Hg exposures, and this until there are evidences of a decrease of Hg levels in Arctic 

wildlife (Government of Nunavut, 2012; Nunavik Nutrition and Health Committee, 2011).   

The use of bioaccessible or bioavailable trace metal concentrations found in foods can 

help improve the accuracy of dietary exposure estimates and risk assessments when used instead 

of total concentrations (Moreda-Piñeiro et al., 2011; Torres-Escribano et al., 2010; Wang et al., 

2013). Bioaccessibility, which refers to the amount of the ingested metal that is solubilized in the 

gut lumen, is easier to quantify (than in vivo studies, for example)  and can be used as an 

approximation for bioavailability, i.e. the amount of the ingested metal entering into systemic 

circulation (Ruby et al., 1999; Torres-Escribano et al., 2010). Bioaccessibility can have 

interspecies and interspecies variations as a result of many factors including: food composition 

(i.e. amounts of protein, fats, carbohydrates, and nutrients), tissue composition, location of 

sample collection, cooking technique, and Hg-Se complexation (Burger et al., 2012; Ouédraogo 

and Amyot, 2011; Ruby et al., 1999). Research has shown that the bioaccessibility of Hg and, to 

a lesser extent, Se varies greatly from one food to another (Burger, 2012; Cabañero et al., 2007; 

Calatayud et al., 2012; Moreda-Piñeiro et al., 2011). Therefore, as shown by Moreda-Piñeiro et 

al., (2011) and Torres-Escribano et al., (2010), the use of total concentration for exposure 

modelling can introduce substantial uncertainty into assessments because it does not account for 

possible limitations on metal dissolution and absorption. Incorporating bioaccessibility may 

reduce the uncertainty within estimates of metal dietary intakes/exposures from country foods 

consumed in Nunavik.  

 The primary objective of this research was to characterize the bioaccessibility of Hg and 

Se in a wide variety of country foods consumed by the Inuit of Nunavik. Thereafter, we 



40 

examined whether incorporating bioaccessibility data altered the Se:Hg molar ratios of these 

foods. We hypothesized that due to the high concentrations of Se in certain country foods, that 

the total Se:Hg molar ratios would be less than the bioaccessible Se:Hg molar ratios  indicating 

more Se than Hg is accessible when accounting for bioaccessibility and therefore, an overall 

nutritional benefit.  

 

4.2 Materials and Methods 

4.2.1 Sample Collection 

Country foods were collected from 2008-2013 as part of the community-based sampling 

program overseen by the Nunavik Research Center of the Makivik Corporation. The samples 

collected included: beluga meat and mattaaq (Hudson Strait; East Hudson Bay), ringed seal meat 

and liver (Inukjuaq; Quartaq), walrus meat (Nunavik coast), Arctic char flesh (Deception Bay; 

Salluit), Atlantic salmon flesh (Koksoak River), brook trout flesh (Koksoak River), Lake Trout 

flesh (Lake Qamuttitsait), lake whitefish flesh (Koksoak River), sculpin fish flesh and eggs 

(Koksoak River), blue mussel flesh (Kangiqusuollujjaq), caribou muscle (Leaf River Herd). Inuit 

eat several parts of the caribou, including but not limited to muscle, organs, and ribs. For the 

purposes of my thesis however, I have referred to caribou muscle as caribou meat throughout. 

Other Nunavik country food samples included eider duck eggs and Canada goose eggs. In 

addition to analyzing fresh (i.e. raw) beluga meat, beluga nikku (traditionally made air-dried 

beluga meat) was also evaluated.  

4.2.2 In vitro GI Model 

Hg and Se in vitro bioaccessibility (IVBA) was evaluated using a two-stage in vitro 

gastro-intestinal (GI) model using the method previously described by Laird et al. (2013). 
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Specifically, simulated gastric fluid (30 mL) containing hydrochloric acid (OmniTrace®, pH 

1.5), porcine pancreatin (Sigma-Aldrich®, 6 g L
-1

), and NaCl (8.5 g L
-1

) in MilliQ water was 

added to glass serum bottles containing country food samples (2 g). Subsequently, the 

suspension pH was adjusted to 1.5 ± 0.5 with hydrochloric acid (OmniTrace®, 0.5 M) and the 

extracts were then incubated at 37ºC with orbital shaking (180 rpm) for 2 h. Thereafter, NaHCO3 

(1 M; 5 mL) and simulated duodenal fluid (15 mL) containing NaHCO3 (12.5 g L
-1

), oxgall bile 

dried (EMD Millipore®, 6.0 g L
-1

), porcine pancreatin (Sigma-Aldrich®, 3.0 g L
-1

), and NaCl 

(8.5 g L
-1

) was added to each serum bottle. The extracts were then returned to the incubator 

shaker for an additional 3 h of shaking at 37ºC. At the conclusion of the simulated duodenal 

extraction, samples were centrifuged (10.3 x 10
4 

g; 15 min) and then filtered (0.45 µm; PTFE 

membrane) using a vacuum filtration manifold. Each batch of samples processed through the in 

vitro GI procedure included blanks, duplicates, and standard reference materials. 

4.2.3 Chemical Analysis  

4.2.3.1 Total Metal Content in Country Foods  

The total metal content of the country foods were determined by Michael Kwan of the 

Makivik Corporation in Kuujjuaq, Nunavik. A portion of each country food underwent an acid 

digestion procedure prior to the measurement of HgT and Se. First, trace metal grade 70% w/v 

nitric acid (HNO3) was added to each test tube and the test tube was heated at 78 ± 4ºC for 6 h. 

Thereafter, an aliquot of the digested sample was digested with HNO3 acid, heating again at 78 ± 

4ºC for 3 h. After cooling, concentrated hydrochloric acid (HCl) and concentrated sulphuric 

(H2SO4) acid were added to all the samples. Samples were then mixed and heated for another 3 h 

at 78±4ºC. After cooling, potassium dichromate in 10% v/v HCl (10% v/v) was added. Each 

digested sample was then measured for total Hg and Se within 24 h. Total Hg in the acid digests 
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was measured by Cold-Vapour Atomic Absorption Spectrometry (CVAAS) using a Model 

PinAAcle 900Z Atomic absorption spectrometer (Perkin Elmer) equipped with a Model AS90 

auto sampler (Perkin Elmer) and a computer running the AAWinLab (version 2.3, Perkin Elmer). 

This technique used an electrodeless discharge Hg lamp and a Model FIAS-100 flow injection 

analysis system in a reducing agent containing stannous chloride (10%, w/v) in HCl (30%, v/v). 

For total Hg analysis, the optimal atomization and ashing temperatures were 2200ºC and 1260ºC 

respectively.  A small number of country foods (e.g. sculpin eggs, blue mussel) with Hg 

concentrations below the limit of detection (0.035 µg g
-1

) of the CVAAS, were re-analyzed using 

a NIC MA-3000 (Nippon Instruments) Thermal Decomposition, Amalgamation, Atomic 

Absorption Spectrophotometry (TDAAS). The acid digested country food samples were then 

analyzed for total Se concentrations using graphite furnace atomic absorption spectrometry 

(GFAAS) using a PinAAcle 900Z Atomic Absorption Spectrometer equipped with a 

Transversely-Heated Graphite Atomizer (THGA). The digested sample and a matrix modifier 

(Palladium (II) nitrate, 10 wt. % solution in 10 wt. % HNO3 acid, magnesium nitrate 

hexahydrate, and ammonium dehydrate phosphate in MilliQ water). Total metal concentrations 

were determined in duplicate for each digested sample; the mean of the duplicate data was 

reported. The percent recovery, as determined using spiked controls was consistently greater than 

98% for all metals.  

 

4.2.3.2 Bioaccessible Metals in Country Foods 

 The filtered extract from the in vitro GI model (Section 2.1.1) was diluted in 2% HNO3 

and then analyzed using a MA3000 (TDAAS) and an Agilent 7700x (Inductively Coupled 

Plasma Mass Spectrometry or ICPMS) for Hg and Se, respectively. The metal concentration 
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within aliquots of the in vitro extracts of the country food samples were used to calculate Hg and 

Se in vitro bioaccessibility (IVBA). For each batch of bioaccessibility extracts analyzed using the 

MA-3000; certified reference materials (DORM-2, DORM-3, DORM-4, and DOLT-4; National 

Research Council of Canada) were used as instrumental controls. Percent recovery from the 

CRM was within 10% of its certified value for each batch; average percent recovery for these 

instrumental controls was 95%. The procedural duplicates for each digested sample was only 

accepted if the relative standard deviation was less than 10%. Instrumental controls and blanks 

for Se on the ICP-MS were administered by the lab technician and used spiked solutions of 

varying concentrations. 

 

4.2.4 Statistical Analysis  

For each country food type, descriptive analyses were used to report total Hg and Se 

(undigested) concentrations and bioaccessible percentages. The bioaccessible percentages 

represent the arithmetic mean calculated for each country food. Each country food had two or 

more food samples, each of which were digested in duplicate. For cases where the total or 

bioaccessible Hg or Se concentrations were below the detection limit of the analytical 

equipment, the concentration was recorded as half the detection limit. A matched pairs analysis 

was used to test whether incorporating IVBA significantly altered Se:Hg molar ratios. Statistical 

analysis were performed using JMP 11 (SAS Institute) and differences were declared statistically 

significant when p < 0.05. 
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4.3  Results and Discussion 

Unsurprisingly, the concentrations of total Hg (HgT) and total Se (Se) varied greatly 

between country foods (Table 1). Due Hg’s tendency to bioaccumulate and biomagnify in marine 

and freshwater food chains, the greatest levels of HgT were found in country foods derived from 

long-lived marine mammals, such as ringed seal liver (19 ± 11.1 mg kg
-1

), beluga nikku (5.01 ± 

1.15 mg kg
--1

), and fresh beluga meat (1.16 ± 0.314 mg kg
-1

). Beluga mattaaq, an Inuit delicacy 

comprised of raw whale skin and blubber, had about 2-fold less HgT than observed in fresh 

beluga meat and approximately 9.5-fold less HgT than seen in beluga nikku. The lower HgT 

levels found in the lipid-containing beluga mattaaq is in keeping with Hg’s complexation affinity 

for sulphur groups (e.g. thiols) in muscle proteins and its lack of lipid partitioning (Clarkson and 

Magos, 2006; Raymond and Ralston, 2004). Air-dried beluga meat contained higher 

concentrations HgT (5-fold) and Se (2-fold) than fresh beluga meat. These results give the 

impression that air-drying disproportionately affects HgT concentrations (i.e. relative to Se). 

However, because the raw beluga meat and beluga nikku samples selected for the 

bioaccessibility analyses were not paired, and instead came from different organisms, this 

observation is likely an artifact of the inter-individual variability of Hg and Se in beluga. Lake 

Trout was the only of the analyzed fish species to exceed the 0.5 ppm HgT Canadian Federal 

Guideline for Human Consumption in seafood (Canadian Food Inspection Agency, 2015; Health 

Canada, 2007). Among the wild game and fowl studied (Table 1), HgT concentrations were 

typically low; the egg whites of the eider duck, a marine bird species, were the key exception to 

this observation (Table 1).  This high HgT in egg whites may be attributed to Hg’s high affinity 

to sulphur found in the cysteine residues of ovalbumin proteins (McCloskey et al., 2013; Van 

Oostdam et al., 2005).  
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Marine mammals also tended to have the highest Se levels, especially ringed seal liver 

(10.0 ± 4.4 mg kg
-1

) and beluga mattaaq (4.6 ± 0.40 mg kg
-1

) (see Table 1). Our results are in 

keeping with Lemire et al., (2015), which showed that beluga mattaaq to be the key contributor 

to Se dietary intake among Inuit adults. Walrus meat and sculpin fish eggs, a marine fish species, 

were particularly good sources of Se, especially considering the low Hg concentrations within 

this type of food (Table 1). A study conducted by Burger et al., (2012) in Alaska found that the 

Se in sculpin flesh was 0.609 ± 0.034 mg kg
-1

, similar to the results described here (e.g. 0.44 ± 

0.14 mg kg
-1

). Among Nunavik wild game and fowl, caribou meat had the highest Se (0.16 - 0.25 

mg kg
-1

). These levels were consistent with those reported in a study conducted by Aastrup et al., 

(2000), who found the Se in Greenland caribou to range from 0.03 to 0.25 mg kg
-1

.  

In order to gain a clearer picture of the bioaccessibility of Hg and Se within Nunavik 

country foods, each of the 18 foods were processed through an in vitro GI model. Among the 

country foods studied, Hg IVBA was highest in ringed seal meat (90%), eider duck egg white 

(68%), and Lake Trout (57%), and lowest in eider duck egg yolk (25%), beluga mattaaq (22%), 

and Arctic char (9.8%) (Figure 1; Table S1). Interestingly, ringed seal meat was the only country 

food to approach 100% Hg IVBA.  For this reason, assuming HgT to be completely bioavailable 

while characterizing Inuit Hg exposure from country foods may overestimate risk. Therefore, the 

high HgT concentrations reported within ringed seal liver may be somewhat offset by the 

relatively low bioaccessibility (31%) within this tissue. Laird et al., (2009) used an in vitro GI 

model including gut microbiota and also reported low bioaccessibility (18.9%) in ringed seal 

liver.  The low Hg bioaccessibility reported in ringed seal liver may be a result of the formation 

of poorly soluble HgSe complexes during the hepatic detoxification of Hg, thus making 

dissolution in the simulated digestive solutions more difficult (Clarkson and Magos, 2006; 
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Wagemann et al., 2000). Similarly, the higher HgT concentration reported in beluga nikku 

(relative to raw beluga meat) may be offset by that fact that Hg was 2-fold less bioaccessible in 

beluga nikku. Within the fish and shellfish studied, the highest Hg IVBA was found in blue 

mussel (43%) and lake whitefish (42%) and the lowest was found in Arctic char (10%). The low 

to moderate levels of Hg IVBA in fish we studied are consistent with ranges describe in the 

literature (Cabañero et al., 2007; Laird et al., 2009). In the wild game studied, eider duck egg 

white was high in HgT (0.8ppm) and presented a particularly high HgT bioaccessibility (>60%). 

All but three of the 18 country food items studied showed Se IVBA above 50% (Figure 

2). Se bioaccessibility was highest for caribou meat (108%), Atlantic salmon (106%), and ringed 

seal meat (104%). Relative to the HgT results described above, the bioaccessibility of Se tended 

to vary less between country foods. Additionally, for the majority of the 18 food types, Se IVBA 

tended to be equivalent or greater (1.2- to 3-fold) than Hg IVBA; the only exception to this trend 

was eider duck egg white (Figure 2). Similar to our results, Cabañero et al., (2007) found that Hg 

IVBA was consistently lower (<20%) than Se IVBA (50-83%) when using an in vitro 

bioaccessibility method. The Se IVBA being greater than the Hg IVBA in our research may 

support the assertion of the formation of insoluble complexes in the GI tract. 

Researchers have used molar ratios to compare the relative quantities of HgT and Se 

within seafood (Burger and Gochfeld, 2012; Burger, 2012; Burger et al., 2013). Since higher 

levels of  Se could provide some degree of protection against Hg toxicity, identifying foods with 

high Se:Hg molar ratios may have utility for the development of contaminant advisories and 

other types of risk communication materials (Rayman, 2000; Raymond and Ralston, 2004). 

Although this approach does not take into account all beneficial nutrients or other environmental 

contaminants that may also be found in these foods, we found that Se:Hg molar ratios based on 
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the total concentrations differed dramatically from one food to another (Table 2). For example, 

total Se:Hg ratios were considerably higher in shorthorn sculpin eggs (1600 ± 460), blue mussel 

(220 ± 1.6) and eider duck yolk (88 ± 17) than in ringed seal liver (1.8 ± 0.3), Lake Trout (0.84 ± 

0.43) , and beluga nikku (0.74 ± 0.14). Similarly, Burger and Gochfield (2013) showed there to 

be substantial interspecific variation across commerically-available fish species (e.g. Yellow fin 

tuna, shrimp, swordfish, salmon) for total molar Se:Hg ratios. A Se:Hg molar ratio of less than 1 

is sometimes used as an criterion signifying the food represents a net Hg risk (Ralston, 2008).  

However, a number of significant reservations have been raised about the utility of this criterion: 

(1) the exact ratio that will protect against  the adverse effects of Hg is unknown, (2) the 

protective level is likely different between target tissues, and  (3) sensitive or high risk 

populations may have different threshold Se:Hg molar ratios  (Burger and Gochfeld, 2012; 

Burger, 2012; Ralston, 2008).   

After accounting for metal bioaccessibility, shorthorn sculpin eggs (3300 ± 890), Arctic 

char (170 ± 110) and walrus meat and blubber (100 ± 40) had considerably higher Se:Hg ratios 

than observed in Lake Trout (1.0 ± 0.38), beluga nikku (1.8 ± 0.3) and ringed seal liver (2.4 ± 

0.6). Although Canada goose eggs (2900 ± 620) and blue mussels (1900 ± 1600) had very high 

IVBA Se:Hg ratios, these results may have been somewhat exaggerated from the assumption that 

Hg concentrations less than the detection limit were equal to half the detection limit.  Our results 

show molar Se:Hg ratios were generally higher after accounting for metal bioaccessibility (Table 

2). For example, for the majority of the foods tested, the IVBA Se:Hg ratio was at least 2-fold 

greater than Se:Hg ratio based upon total metal concentrations. The most notable exceptions 

being ringed seal muscle and ringed seal liver which showed only a slight increase in molar 

ratios after accounting for bioaccessibility. Therefore, using total trace metal concentrations and 
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the total Se:Hg molar ratios may err on the conservative side with respect to the relative amount 

of Se and Hg that may be present in the GI tract. However, until bioaccessibility models are 

validated against in vivo measures of Hg and Se oral bioavailability, it remains to be seen which 

approach (i.e. molar ratios based on total vs. bioaccessible concentrations), if either, provides a 

more accurate indicator of Hg risks and Se benefits. Collectively, this work will assist ongoing 

efforts to better characterize the balance between Hg risks and Se benefits within the country 

food systems of Indigenous Peoples in general and Nunavik Inuit in particular. 

 

4.4  Conclusion 

Our results indicate that there are large differences in the bioaccessibility of Hg versus Se 

in the country foods of the Nunavik Inuit. These bioaccessibility estimates are to be used for the 

refinement of dose reconstruction models in order to determine whether accounting for metal 

bioaccessibility improves the association between external dose estimates and internal dose 

measures among Nunavik Inuit. Generally, the bioaccessibility of Se in Inuit foods exceeds that 

of Hg. Consequently, neglecting to account for bioaccessibility appears to systematically 

underestimate the Se:Hg molar ratio in foods. But, whether measures of metal bioaccessibility 

improve the accuracy of Se:Hg ratios as a seafood safety criteria will largely hinge on the 

validation of in vitro gastrointestinal models for the measurement of Hg and Se bioaccessibility.  
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Table 1. Total Hg and Se concentrations of Country Food items in mg kg-1, w.w. 

Country Foods n Total Hg (Mean ± SE) Total Se (Mean ± SE) 

Marine Mammals 

Beluga nikku 

(Delphinapterus leucas) 
3 5.01 ± 1.15 1.33 ± 0.0786 

Beluga meat 

(Delphinapterus leucas) 
7 1.16 ± 0.314 0.747 ± 0.0191 

Beluga mattaq 

(Delphinapterus leucas) 

1

5 
0.529 ± 0.0958 4.58 ± 0.405 

Ringed seal liver        

(Pusa hispida) 
9 19 ± 11.1 10.3 ± 4.38 

Ringed seal meat           

(Pusa hispida) 
3 0.281 ± 0.0875 0.469 ± 0.0872 

Walrus meat & blubber 

(Odobenus rosmarus) 
2 0.0945 ± 0.0185 1.35 ± 0.19 

Fish & Shellfish    

Arctic char           

(Salvelinus alpinus)   
3 0.0593 ± 0.026 0.355 ± 0.0629 

Atlantic salmon            

(Salmo salar) 
6 0.0461 ± 0.00613 0.262 ± 0.0205 

Brook trout            

(Salvelinus fontinalis) 
3 0.0923 ± 0.0194 0.235 ± 0.0328 

Lake Trout              

(Salvelinus namaycush) 
2 1.01 ± 0.186 0.303 ± 0.11 

Lake whitefish          

(Coregonus clupeaformis) 
3 0.156 ± 0.0295 0.265 ± 0.0685 

Shorthorn Sculpin 

(Myoxocephalus scorpius) 
3 0.217 ± 0.0843 0.435 ± 0.14 

Shorthorn Sculpin (eggs) 

(Myoxocephalus scorpius) 
3 0.00257 ± 0.000644 1.4 ± 0.188 

Blue mussel                

(Mytilus edulis) 
3 0.00508 ± 0.0000362 0.435 ± 0 

Wild Game and Fowl    

Caribou meat                 

(Rangifer tarandus) 
6 0.0267 ± 0.00325 0.197 ± 0.0138 

Eider duck egg (yolk)  

(Somateria mollissima) 
3 0.0707 ± 0.0241 2.14 ± 0.251 

Eider duck egg (white) 

(Somateria mollissima) 
3 0.783 ± 0.163 1.06 ± 0.186 

Canada goose egg (whole) 

(Branta canadensis) 
3 0.0175 ± 0 0.492 ± 0.0727 
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Figure 1. Average % IVBA for Hg in the 18 Inuit country foods collected in Nunavik, QC. 

The error bars represent standard error. Please note that for certain country foods either the 

IVBA fraction (i.e. blue mussel) or both total and IVBA (i.e.Canadian geese) was below the 

detection limit for Hg. 
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Figure 2.Average IVBA for Se in the 18 Inuit country foods collected in Nunavik, QC. Error 

bars represent standard error. Please note that the IVBA fraction for eider duck yolk was below 

the detection limit for Se. 
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Table 2.  Se:Hg ratios (± standard error) according to total and bioaccessible molar 

concentrations (µmol kg-1 Se:µmol kg-1 Hg) in 18 country foods collected in Nunavik, QC. 

 

 

Country Foods n Total  Se:Hg IVBA Se:Hg 

Marine Mammals 

Beluga nikku 3 0.74 ± 0.14 1.8 ± 0.3 

Beluga meat  7 2.4 ± 0.6 4.0 ± 0.9 

Beluga mattaq 15 28.0 ± 3.8 98.9 ± 26.7 

Ringed seal liver         9 1.8 ± 0.3 2.4 ± 0.6 

Ringed seal meat            3 5.4 ± 2.1 6.7 ± 2.3 

Walrus meat & blubber  2 39.4 ± 15.2 100 ± 39.6 

Fish & Shellfish    

Arctic char              3 21.8 ± 9.3 167.5 ± 107.1 

Atlantic salmon             6 15.9 ± 2.3 54.5 ± 10.1 

Brook trout             3 7.4 ± 2.3 20.5 ± 6.5 

Lake Trout               2 0.84 ± 0.43 1.0 ± 0.38 

Lake whitefish          3 4.2 ± 0.3 6.8 ± 3.0 

Shorthorn Sculpin  3 5.4 ± 1.0 15.4 ± 7.5 

Shorthorn Sculpin (eggs)  3 1613 ± 462 3306 ± 885 

Blue mussel                 3 218 ± 1.56 1879 ± 1613 

Wild Game and Fowl    

Caribou meat                  6 19.8 ± 2.2 61.1 ± 14.8 

Eider duck egg (yolk)   3 88.2 ± 16.9 216 ± 185 

Eider duck egg (white)  3 3.6 ± 0.8 2.5 ± 0.7 

Canada goose egg (whole)  3 71.5 ± 12.2 2876 ± 615 
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5.  Additivity of Metal Bioaccessibility in Binary Mixtures of Inuit 

Country Foods 
 

5.1 Introduction  

The increase in global industrialization has had a noticeable impact on the environment. 

Formerly considered to be pristine, the Arctic region, which is home to many Indigenous 

populations, did not escape the impact of industrialization. This has resulted in high levels of 

environmental contaminants, like mercury (Hg) being deposited from anthropogenic point 

sources around the world. Mercury is a well-known toxicant that has many adverse effects on the 

body, most notable of which are on the central nervous system (Clarkson, 1997). Communities in 

the circumpolar region are exposed to Hg through their consumption of country foods 

(Donaldson et al., 2010; Van Oostdam et al., 2005). 

Country foods play an important cultural, spiritual, nutritional and economic role in Inuit 

communities (Harder and Wenzel, 2012; Van Oostdam et al., 2005). Inuit country foods include 

marine mammals, fish, wild game, birds, berries and edible seaweed that are hunted or collected 

from local surrounding. Country foods have a multitude of nutritional benefits including 

increased intake of omega-3 fatty acid, iron, zinc, and vitamins A, E and D (Kuhnlein and Chan, 

2000; Kuhnlein, 1991; Lemire et al., 2015). There are numerous benefits to country food 

consumption however; they are also the major route of exposure to many environmental 

contaminants including Hg. It follows that Canadian Inuit exposure to Hg is among the highest 

observed in the world despite a dietary transition towards market foods and away from country 

foods over the past couple of decades (Donaldson et al., 2010). Due to high levels of Hg in 

certain country foods, health advisories can suggest decreased consumption without fully 
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considering the internal concentrations of Hg in the body and the effect of consuming high Hg 

foods with other nutrient-rich foods (Anctil, 2004; Passi et al., 2013).  

Country foods are central to Inuit culture and identity not to mention a wonderful source 

of many nutrients, such as selenium (Se). However due to environmental contamination, country 

foods are also the main source of Hg exposure in Inuit communities. As shown in the previous 

section, there are large differences in the bioaccessibility of Hg and Se between country foods 

and the bioaccessibility of Se in Inuit foods generally exceeds that of Hg. According to Laird et 

al., (2009), the fish, wild game and marine mammals had HgT bioaccessibility ranging from 1 to 

93%.   However, the current research investigating the bioaccessibility of metals in country foods 

is limited in that the extraction models assess foods in isolation. This design of measuring metal 

bioaccessibility for individual food items is convenient, if not a necessity, for typical exposure 

assessments. However, in reality, foods are generally eaten within mixtures (i.e. meals). 

Therefore, the accuracy of bioaccessibility adjustments for exposure assessments hinge on 

whether the bioaccessible fractions of metals in co-consumed foods are additive, less than 

additive, or more than additive.  

The objective of this research was to characterize the impact of co-digesting binary 

country food mixtures on the in vitro bioaccessibility of Hg and/or Se. We focused on 

determining the effect of co-digestion on the in vitro bioaccessibility of two trace metals, Hg and 

Se, in Inuit country foods collected from Nunavik, Quebec. Each binary country food mixture 

tested consisted of a country food with elevated Hg concentrations (e.g. ringed seal liver, beluga 

nikku, raw beluga meat, walrus, lake trout, eider duck egg white) and a second food  that may 

have a mitigating effect on Hg IVBA (e.g. crowberries, blueberries, seaweed, sculpin eggs and 

tomato paste).  The potentially-protective foods (hereafter referred to as the “treatment country 
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food”) included within the binary mixture treatments were selected based upon existing evidence 

pertaining to mercury-nutrient interactions. For example, sculpin eggs have exceptionally high 

Se:Hg ratios and many publications have explored the mitigating effect that Se has on Hg 

toxicity. Berries (i.e. crowberries and blueberries) and seaweed are high in phytochemicals 

which can modulate MeHg toxicity by radical scavenging and metal chelation, potentially 

affecting Hg absorption in the GI tract (Shim et al., 2009). Finally, the tomato paste was included 

because Passos et al., (2003, 2007) showed that fruit consumption can affect Hg exposure in 

Amazonian Indigenous communities while Gagné et al., (2013) demonstrated that tomato 

products were associated with lower Hg blood levels in Inuit children.  We hypothesized that the 

presence of the treatment country food within the in vitro extraction model would decrease metal 

bioaccessibility in some foods. Additionally, we hypothesized that the significance and effect 

size of any impacts on mercury and/or selenium bioaccessibility would differ from one binary 

mixture to another. 

 

5.2 Materials and Methods  

5.2.1 Sample Preparation 

Country foods were collected from 2008-2013 as part of the community-based sampling 

program overseen by the Nunavik Research Center of the Makivik Corporation. The 

bioaccessibility of Hg and Se was evaluated using the in vitro gastrointestinal model using 

previously described methods (Laird and Chan, 2013). Instead of digesting one country food at a 

time in the in vitro GI model, foods were digested in pairwise mixtures. The meats extracted (0.5 

g) were beluga nikku, beluga meat (Hudson Strait; East Hudson Bay), ringed seal liver 

(Inukjuaq; Quartaq), ringed seal meat (Inukjuaq; Quartaq), walrus meat and blubber (Nunavik 
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coast), eider duck egg white, and Lake Trout (Lake Qamuttitsait). The meat samples were co-

digested in pairwise treatments combinations with 0.25 g of crowberries (Karigiqsualujjuaq, 

2012), blueberries (Karigiqsualujjuaq & Inukjuuq, 2012), seaweed (Kangiqsualujjuaq), sculpin 

eggs (Koksoak River), and store-bought tomato paste.  

5.2.2 In vitro GI Model  

Mercury and selenium in vitro bioaccessibility (IVBA) was evaluated using a two-stage 

in vitro GI model using previously described methods (Laird et al. 2013). The individual meat 

extractions were digested using the weights and volumes described in the previous section. The 

individual “treatment” extractions (i.e. for blueberries, crowberries, seaweed, tomato paste, 

sculpin eggs) are 0.5g of country food in 12.5mL of digestive solutions (i.e. 7.25 mL of gastric 

juice, 1.25 mL of concentrated sodium bicarbonate solution, 3.75 mL of duodenal solution) in 

order to test the additive effect of the metal bioaccessibility. For the co-digests, each of the meat 

(0.5 g) and the treatment (0.25g) country foods were added to 25 mL of simulated 

gastric/duodenal fluid, thus maintaining the liquid:solid ratios described in the previous section 

for the single digests. Specifically, simulated gastric fluid (7.5 mL) containing hydrochloric acid 

(OmniTrace®, pH 1.5), porcine pepsin (Sigma-Aldrich®, 6 g L
-1

), and NaCl (8.5 g L
-1

) in MilliQ 

water was added to glass serum bottles containing country foods samples and treatment foods. 

Subsequently, the suspension pH was adjusted to 1.5 ± 0.5 with hydrochloric acid (OmniTrace®, 

0.5 M) and the extracts were then incubated at 37ºC with orbital shaking (180 rpm) for 2 h. 

Thereafter, NaHCO3 (1 M; 1.25 mL) and simulated duodenal fluid (3.75 mL) containing 

NaHCO3 (12.5 g L
-1

), dried oxgall bile (EMD Millipore®, 6.0 g L
-1

), porcine pancreatin (Sigma-

Aldrich®, 3.0 g L
-1

), and NaCl (8.5 g L
-1

) was added to each serum bottle. The extracts were 

then returned to the incubator shaker for an additional 3 h of shaking (180 rpm) at 37ºC. At the 
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conclusion of the simulated duodenal extraction, samples were centrifuged (10.3 x 10
4 
g; 15 min) 

and then filtered (0.45 µm; PTFE membrane) using a vacuum filtration manifold. Each batch of 

samples processed through the in vitro GI procedure included blanks, duplicates, and standard 

reference materials. Subsamples of three replicate samples of each meat type were co-digested 

with the treatments – crowberries, blueberries, seaweed, tomato paste, and sculpin eggs.  Each 

batch of co-digest samples contained blanks and DORM-4 controls to assess quality control 

during the in vitro extraction. In addition to analyzing fresh (i.e. raw) beluga meat, beluga nikku 

(traditionally made air-dried beluga meat) was also evaluated. 

The co-digests were run on binary mixtures of Inuit country foods. Due to insufficient 

quantity for some sample types, not all co-digest treatment combinations could be completed. 

The binary mixtures tested using the above in vitro extraction protocol are summarized in Table  

Table 3. Co-digest treatment combinations 

 

   

Note: Y: we co-digested these two country foods together, N: we did not co-consume this combination of country foods together, 

BMAD: air dried beluga meat also known as beluga nikku; BMR: raw beluga meat; RSL: ringed seal liver; RSM: ringed seal 

 

  Treatment Country Food 

  

 
BB CB SW SE TO 

High 

Hg 

Meats  

BMAD Y Y Y N Y 

BMR Y Y Y Y Y 

EDW Y Y Y N Y 

LT Y Y Y N Y 

RSL Y Y Y Y Y 

RSM Y Y Y N N 

WMB Y Y Y N Y 
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muscle; WMB: walrus meat and blubber; EDW: eider duck egg white; BB: blueberries, CB: crowberries, LT: lake trout; SW: 

seaweed; SE: sculpin eggs; TO: tomato paste 

The samples were filtered using a FORTUNA® Optima glass syringes (either 30ml or 

50ml) with a Millipore ® 0.45 μm PTFE syringe filter. Samples were filtered until 5-10ml of 

filtered sample was acquired.  

5.2.3 Chemical Analysis   

 The filtered extract generated following the duodenal stage of the in vitro GI model 

(Section 4.2) was diluted in 2% HNO3 prior to analysis for Hg and Se using a MA3000 

(TDAAS) and an Agilent 7700x (Inductively Coupled Plasma Mass Spectrometry or ICPMS), 

respectively. Thereafter, the metal concentrations within the in vitro extracts were used to 

calculate the in vitro bioaccessibility of Hg and Se in the traditional foods.  

 For each batch of bioaccessibility extracts analyzed using the MA-3000, certified 

reference materials (DORM-2, DORM-3, DORM-4, and DOLT-4; National Research Council of 

Canada) were used as procedural and instrumental controls. The recovery of the analyte to within 

10% of its certified value is used as a criterion for validation of the batch (recommended by US 

EPA). Cases in which the signals for the blanks were higher than the absorbance corresponding 

to the detection limit of the analyte invalidated the batch. The two measurements taken for the 

digested sample was only accepted if the relative standard deviation was less than 10%. 

Instrumental controls and blanks for Se on the ICP-MS were administered by the lab technician 

and used spiked solutions of varying concentrations.   
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5.2.4 Statistical Analysis for Co-digest Studies  

For each country food type, descriptive analyses were used to report the bioaccessible 

concentration of each of the country foods and treatments and bioaccessible percentages. The 

bioaccessibility percentage values represent the arithmetic mean of two or more samples 

originating from two or more organisms. If the filtered analyte was below the detection, the 

concentration was recorded as half the limit of detection. For the sum of the IVBA 

concentrations for the individually digested meat and treatment country foods, the error was 

propagated.  We also categorized whether the co-digested foods when compared to the sum of 

the foods digested separately were less than additive, additive, or more than additive. 
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5.3 Results and Discussion  

Table 4. Co-digest results for Hg (Mean ± Stdev) and Se (Mean ± Stdev) with treatment 

interaction type (μg/L or ppb, w.w.) 

  
Description n 

Hg (ppb ± 

Stdev) 

Interaction 

Type 

Se (ppb ± 

Stdev) 

Interaction 

Type 

Beluga 

nikku  

BMAD;BB 
4 

61.4 ± 21.7 
Additive 

36.7 ± 16.1 
Additive 

BMAD+BB 57.5 ± 24.8 36.1 ± 9.63 

BMAD;CB 
4 

53.1 ± 23 
Additive 

34 ± 13.6 
Additive 

BMAD+CB 57.7 ± 24.8 36.1 ± 9.63 

BMAD;SW 
4 

62.7 ± 23.8 
Additive 

34.4 ± 13.8 
Additive 

BMAD+SW 57.5 ± 24.8 36.1 ± 9.63 

BMAD;TO  
3 

64.2 ± 36 
Additive 

23.2 ± 9.61 
<Additive 

BMAD+TO  57.7 ± 24.8 37.6 ± 9.72 

Eider duck 

egg white  

EDW;BB 
3 

24.8 ± 7.81 
Additive  

14.2 ± 10.6 
<Additive 

EDW+BB 22.6 ± 7.18 21.4 ± 7.2 

EDW;CB 
3 

24.6 ± 7.59 
Additive  

11.5 ± 3.69 
<Additive 

EDW+CB 22.8 ± 7.2 21.4 ± 7.21 

EDW;SW  
3 

26 ± 9.6 
Additive  

7.05 ± 4.93 
<Additive 

EDW+SW  22.6 ± 7.18 21.4 ± 7.21 

EDW;TO  
3 

25.7 ± 7.5 
Additive  

13.2 ± 8.58 
<Additive 

EDW+TO  22.8 ± 7.2 22.8 ± 7.32 

Lake Trout  

LT;BB 
3 

58.1 ± 18.2 
Additive  

5.44 ± 1.37 
<Additive 

LT+BB 57.1 ± 15.2 9.74 ± 2.86 

LT;CB 
3 

55.1 ± 19.9 
Additive  

5.89 ± 2.16 
<Additive 

LT+CB 57.4 ± 15.2 9.74 ± 2.88 

LT;SW 
3 

44.9 ± 16.2 
Additive 

5.58 ± 2.24 
<Additive 

LT+SW 57.1 ± 15.2 9.74 ± 2.87 

LT;TO  
3 

34.2 ± 8.81 
<Additive 

9.67 ± 3.66 
Additive 

LT+TO  57.4 ± 15.2 11.2 ± 3.15 

Walrus 

meat and 

blubber  

WMB;BB 
3 

2.31 ± 0.615 
>Additive 

31 ± 5.85 
Additive 

WMB+BB 1.49 ± 0.746 35.6 ± 4.87 

WMB;CB 
3 

2.03 ± 0.566 
Additive 

26.2 ± 6.39 
<Additive 

WMB+CB 1.76 ± 0.89 35.6 ± 4.88 

WMB;SW 
3 

2.48 ± 0.707 
>Additive 

26.3 ± 13.2 
<Additive 

WMB+SW 1.49 ± 0.746 35.6 ± 4.88 

WMB;TO  
3 

1.87 ± 0.662 
Additive  

24.3 ± 1.88 
<Additive 

WMB+TO  1.76 ± 0.89 37 ± 5.04 
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Table 4. Continued  

 

Description n 
Hg (ppb± 

Stdev) 

Interaction 

Type 

Se (ppb± 

Stdev) 

Interaction 

Type 

Beluga 

meat 

(raw) 

BMR;BB 
3 

41 ± 20.9 
Additive 

28.6 ± 8.6 
Additive 

BMR+BB 35 ± 15.9 27.2 ± 4.63 

BMR;CB 
3 

39 ± 15.7 
Additive  

27.7 ± 6.15 
Additive 

BMR+CB 35.3 ± 15.9 27.2 ± 4.64 

BMR;SW 
3 

35 ± 14.1 
Additive  

27.6 ± 4.71 
Additive 

BMR+SW 35 ± 15.9 27.2 ± 4.64 

BMR;SE 
3 

42.2 ± 15.5 
Additive 

43.6 ± 0.749 
<Additive 

BMR+SE 35.3 ± 15.9 63.3 ± 9.89 

BMR;TO  
3 

44.8 ± 18.4 
>Additive 

15.9 ± 1.52 
<Additive 

BMR+TO  35.3 ± 15.9 28.7 ± 4.81 

Ringed 

seal liver 

RSL;BB 
3 

78.8 ± 16.1 
Additive 

211 ± 28.1 
>Additive 

RSL+BB 100 ± 17.2 159 ± 30.1 

RSL;CB 
3 

89.2 ± 16.4 
Additive  

197 ± 35.2 
>Additive 

RSL+CB 101 ± 17.2 159 ± 30.1 

RSL;SW 
3 

94 ± 21.9 
Additive 

230 ± 30 
>Additive 

RSL+SW 100 ± 17.2 159 ± 30.1 

RSL;SE 
3 

67.8 ± 15.6 
<Additive 

167 ± 15.2 
Additive 

RSL+SE 101 ± 17.2 195 ± 31.3 

RSL;TO  
3 

88.5 ± 14.2 
Additive 

156 ± 9.06 
Additive 

RSL+TO  101 ± 17.2 160 ± 30.1 

Ringed 

seal 

muscle  

RSM;BB 
3 

16.2 ± 14.7 
>Additive 

36 ± 4.98 
>Additive 

RSM+BB 12.3 ± 10.2 23 ± 4.47 

RSM;CB 
3 

18.5 ± 16.2 
>Additive 

33.5 ± 5.59 
>Additive 

RSM+CB 12.6 ± 10.2 23 ± 4.48 

RSM;SW 
3 

18 ± 18.5 
>Additive 

34.7 ± 8.24 
>Additive 

RSM+SW 12.3 ± 10.2 23 ± 4.48 
 

Note 1: Below the limit of detection (these concentrations are LOD/2) 

Note 2: BMAD: air dried beluga meat also known as beluga nikku; BMR: raw beluga meat; RSL: ringed seal liver; RSM: ringed 

seal muscle; WMB: walrus meat and blubber; EDW: eider duck egg white; BB: blueberries, CB: crowberries, LT: lake trout; 

SW: seaweed; SE: sculpin eggs; TO: tomato paste 

Note 3: The “;” represents co-digested samples and “+” represents the sum of the country foods indicated digested separately 

Note: 4: “<Additive”: less than additive or “subadditive” interaction by <25% of the sum of the IVBA for the country foods 

individually, “Additive”: the co-digested sample is ±25% of the sum of the single digest, “>Additive” ”: more than additive  or 

“superadditive” interaction OR synergistic effect by >25% of the sum of the IVBA for the country foods individually 

Note 5: n refers to the number of different country food sample IDs studied  

Note 6:  The limit of detection was 0.5 ppb (LC ICP-MS) for Se concentrations and the 0.01 ppb (NIC Mercury Analyzer 3000) 

for the Hg concentration 
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The in vitro gastrointestinal model, which simulates the major digestion that occurs in the 

stomach and the duodenum, allowed us to determine the in vitro bioaccessibility of Hg and Se. 

This allowed us to test and quantify the effect of co-consumption of high Hg country foods with 

other local foods like wild berries, sculpin eggs, seaweed and tomato paste. As shown in Table 4, 

co-digestion may affect the bioaccessibility of Hg and Se in country foods, either increasing or 

decreasing metal bioaccessibility. Prior research has shown that co-digesting nutrients can have 

an impact on MeHg toxicity (Beyrouty and Chan, 2006).  

Table 4 characterizes the effect of co-digests on the bioaccessibility of Hg and Se from 

Inuit country foods. As shown in Table 4, although bioaccessible Hg concentrations in each of 

the food modifiers were below the limit of detection (Table S2), the addition of the treatment 

country food in the co-digest appeared to occasionally increase the solubilization of mercury 

from some country foods (e.g. walrus meat/blubber; beluga meat; ringed seal meat). For 

example, the addition of berries and seaweed each appeared to increase the solubilization of 

mercury from ringed seal meat (Table 4). Similarly, the bioaccessible fractions of: beluga meat 

and tomato paste as well as blueberries and walrus meat/blubber both appeared greater than 

additive. In contrast, the co-digest of sculpin eggs appeared to decrease the solubilization of Hg 

from ringed seal liver while tomato paste may have decreased the solubilization of Hg from lake 

trout. Notably, none of the food modifiers consistently lowered Hg bioaccessibility from all of 

the tested country foods. Of the pair of mixtures (Lake Trout + tomato paste; ringed seal meat + 

sculpin eggs) that demonstrated sub- additivity in mercury bioaccessibility, neither demonstrated 

sub-additivity in Se bioaccessibility. Therefore, the prospect of decreasing mercury 

bioaccessibility in the gastrointestinal tract through selenium complexation following the co-

digestion of selenium-rich traditional foods appears unlikely.   
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Unexpectedly, the plurality of binary mixtures showed less than additivity in terms of Se 

bioaccessibility. Accordingly, more often than not, the presence of a food modifier within the in 

vitro extraction fluid decreased the Se bioaccessibility of country foods (Table 4). For example, 

food modifiers decreased Se bioaccessibility between 1.4- (tomato paste) and 3-fold (seaweed). 

The effect seaweed has on some country foods is not surprising since Wang et al., (2009) showed 

that the phytochemicals found in seaweed can contribute to metal chelation. In contrast, although 

bioaccessible Se concentrations in berries and seaweed were below the limit of detection (Table 

S2), the addition of blueberries, crowberries, and seaweed increased the solubilization of Se from 

both ringed seal meat and ringed seal liver. For ringed seal meat (but not ringed seal liver), the 

addition of berries and seaweed both increased Se bioaccessibility and Hg bioaccessibility.   

Sculpin eggs have high levels of total and bioaccessible selenium (Se), an essential 

nutrient. Recent scientific publications have shown that nutrients, like Se, can mitigate the 

toxicity of Hg. For our study, because of insufficient sculpin egg quantities in the sample 

archive, only beluga meat and ringed seal liver were co-digested with sculpin eggs in the in vitro 

extraction model. For these treatments, the bioaccessible fractions of Hg were less than additive 

for ringed seal liver while the bioaccessible fraction of Se were less than additive for beluga 

meat.  

Although Se levels in blueberries and crowberries are below detection limits (Table S2), 

they are rich in phytochemicals that may be able to provide some degree of protection against the 

adverse effects of MeHg. For example, in vitro studies conducted by Black et al., (2011) have 

shown that teas rich in phytochemicals are able to modulate some of MeHg’s effects on 

molecular endpoints (such as liver cytochrome activation and lipid peroxidation due to oxidative 

stress). However, these berries did not affect Hg or Se IVBA in any consistent manner. 
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Therefore, there does not seem to be a potential presence on mercury – nutrient interactions from 

berries.  

Experimental and epidemiological research has highlighted the potentially protective 

effect of fruit consumption on Hg exposure in the Brazilian Amazon (Passos et al., 2003, 2007). 

This work suggested that the soluble dietary content as well as prebiotic nutrients may interfere 

with MeHg absorption in the intestine (Gagné et al., 2013; Passos et al., 2003, 2007).  Similarly, 

Gagné et al., (2013) found that consumption of tomato products is associated with lower blood 

Hg levels in Inuit preschool aged children. They also found that the annual consumption of seal 

meat and tomato products were significant predictors (among others) of blood Hg levels 

compared with beluga muktuk, walrus, Arctic char and caribou meat were not (Gagné et al., 

2013). Our results show that tomato paste may decrease the bioaccessibility of Hg from country 

foods; however, the magnitude of this effect appears to differ between dietary mercury sources 

(e.g. Lake Trout vs. ringed seal liver). Future work will be necessary to determine the underlying 

basis between these differences in the effect of tomato constituents between dietary mercury 

sources. Also, further research is necessary to determine whether these effects on bioaccessibility 

translate to differences in mercury bioavailability.  
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5.4 Conclusion  

Our results indicate there is some differences to IVBA Hg and Se bioaccessibility when 

co-digesting country foods with different potentially nutritious treatments compared with 

digesting the country foods separately. The country food treatments affected the Se IVBA more 

than the Hg IVBA in these high Hg country foods.  None of these food modifiers appear to be 

particularly effective at decreasing Hg bioaccessibility but, this doesn’t necessarily mean that 

there are not other factors that alter metal bioaccessibility. In fact, the food modifiers seem to 

have more of an impact on lowering Se bioaccessibility. Differences in bioaccessibility do not 

necessarily mean that bioavailability would be impacted. The use of in vivo models may provide 

a more robust indication of nutrient-mercury interactions as well as confirm the results of the in 

vitro GI model. Although food modifiers occasionally appeared to alter metal bioaccessibility, 

the effect sizes were relatively small.  This suggests that using the Hg and Se bioaccessibilities 

determined from single digests is appropriate for risk assessments. This is valuable information 

because it shoes that attempting to use mixture-based bioaccessibilities, which would be 

challenging to incorporate into risk assessments, would have limited impact on exposure 

characterizations.  
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6.  Thesis Conclusions  

As mentioned before, this thesis project is part of a much larger interdisciplinary project 

investigating the effects of country foods on cardiometabolic disease in Inuit adults from 

Nunavik. My thesis project focuses on determining the Se and Hg concentrations and in vitro 

bioaccessibility (i.e. single and co-digested) as part of this larger project. The results of my 

project provide more information on the internal dose of Hg and Se from these country foods. 

Through the generation of bioaccessibility data, my research provides information that may help 

improve the accuracy of dose reconstruction, exposure modeling and more pragmatic 

applications in risk messaging (i.e., encouraging co-digestion of high Se and high Hg foods) by 

providing bioaccessibility data. The in vitro model described in this thesis is a fast and 

economical procedure. Our research has utilized a pre-existing sample archive and shown that 

these archives can facilitate research projects that assist in future public health decision making. 

The participatory nature of the sample collection phase helps ground my research within the 

principles of ownership, control, access, and possession (OCAP). Building ties with the 

community is vital for continuing this type of research.  

This thesis focuses on the bioaccessibility of Hg and Se for country foods that have been 

digested separately and co-digested. Section 4 showed that the total concentrations for HgT and 

SeT varied quite a bit between different country foods. The results also showed a large variation 

in IVBA Hg (1.4 - 90%) and IVBA Se (29 - 108%). We also found that after accounting for 

bioaccessibility, the Se:Hg molar ratios for the majority of country foods were greater than one. 

Consequently, neglecting to account for bioaccessibility appears to systematically underestimate 
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the Se:Hg molar ratio in foods. Section 5 focused on the effect of the co-digestion on IVBA Hg 

and IVBA Se. Interestingly, there are greater differences in the Se IVBA compared with Hg 

IBVA when co-digested. None of these food modifiers seem to be particularly effective at 

decreasing Hg bioaccessibility. This may indicate that it is not a feasible avenue to pursue co-

digestion studies such as this one for other country foods.  It seems as though single digest 

provide enough information to refine exposure assessments. However, further results will allow 

for more accuracy in exposure modeling and risk assessments, which in turn could improve Hg 

risk management and communication among Inuit. 

The in vitro model used for this project has numerous benefits however it also has some 

limitations. This model focuses on the food breakdown that occurs in the stomach and duodenum 

and does not account for digestion that occurs before or after. Although, saliva contains amylase 

to break down carbohydrates, the whole process is short and significant compound dissolution 

from food samples is not expected at this stage (Intawongse and Dean, 2006).  Nor does it 

account for the digestion that occurs via the gut microbiota. Also, in vitro GI extraction has not 

been validated with an in vivo model to confirm the bioaccessibility results. Using an animal 

model will allow us to determine if our in vitro model estimates biological conditions with 

accuracy and precision. By looking at more high mercury country foods and their potential 

interactions, we can confirm our current results and increase the statistical power of our study.  
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Appendix  

Table S1. Average % IVBA for Hg and Se in the 18 Inuit country foods collected in 

Nunavik, QC 

Traditional Foods  n IVBA Hg 
a
 IVBA Se 

b,c
 

Marine Mammals 

Beluga nikku 3 32.3 ± 2.05 79.7 ± 1.62 

Beluga meat  7 50.7 ± 4.74 87.3 ± 8.08 

Beluga mattaaq  15 22.2 ± 2.65 60.3 ± 3.15 

Ringed seal liver         9 31.1 ± 3.65 37 ± 6.07 

Ringed seal meat            3 89.7 ± 5.47 104 ± 3.4 

Walrus meat & blubber  2 25.1 ± 1.18 63.4 ± 7.65 

Fish & Shellfish    

Arctic char              3 9.85 ± 0.706 61.2 ± 11.1 

Atlantic salmon             6 33.4 ± 5.32 106 ± 7.42 

Brook trout             3 25.2 ± 0.546 72.7 ± 9.95 

Lake Trout               2 56.7 ± 20.5 56.7 ± 31.5 

Lake whitefish          3 42.4 ± 8.62 55.8 ± 9.26 

Shorthorn Sculpin  3 25.2 ± 9.72 46.2 ± 6.06 

Shorthorn Sculpin (eggs)  3 31.5 ± 6.07 65.5 ± 13.2 

Blue mussel                 3 42.8 ± 24.8 70.2 ± 17.8 

Wild Game    

Caribou meat                   6 39.9 ± 4 108 ± 12.9 

Eider duck egg (yolk)   3 24.8 ± 1.53 29.6 ± 14.9 

Eider duck egg (white)  3 67.8 ± 0.773 47.5 ± 2.48 

Canada goose egg (whole)  3 1.36 ± 0.0162 53.8 ± 20.7 

a The Hg IVBA fraction for blue mussel, and total Hg and the Hg IVBA fraction for Canada goose eggs and sculpin eggs were 

below the detection limit. 

b The Se IVBA fraction for eider duck egg yolk was below the detection limit. 
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Note:  The limit of detection was 0.5 ppb (LC ICP-MS) for Se concentrations and the 0.01 ppb (NIC Mercury Analyzer 3000) for 

the Hg concentration 

 

Table S1A. Average % IVBA for Hg and Se (with Stdev)  in the 18 Inuit country foods 

collected in Nunavik, QC  

  IVBA Hg 
a
 IVBA Se 

b,c
 

Country Foods  n Avg Stdev Avg Stdev 

Arctic char 3 9.85 1.22 61.16 19.27 

Atlantic salmon  6 33.40 13.03 106.14 18.18 

Beluga (air-dried) 3 32.31 3.55 79.69 2.80 

Beluga meat  7 50.71 12.53 87.25 21.38 

Beluga muktuk  15 22.15 10.27 60.34 12.21 

Blue mussel  3 42.85 43.02 70.17 30.89 

Brook trout  3 25.20 0.95 72.66 17.23 

Caribou 6 39.95 9.79 108.10 31.48 

Lake trout  2 56.68 29.01 56.68 44.50 

Lake whitefish  3 42.43 14.92 55.82 16.04 

Ringed seal liver  9 31.07 10.94 37.01 18.20 

Ringed seal meat  6 89.74 13.40 104.13 8.32 

Shorthorn sculpin  3 25.22 16.83 46.23 10.50 

Shorthorn sculpin (eggs) 3 31.51 10.52 65.46 22.82 

Walrus meat & blubber  3 25.11 1.68 63.41 2.95 

Eider duck (egg yolk) 3 24.80 2.64 29.63 22.52 

Eider duck (egg white) 3 67.82 1.34 47.46 1.93 

Canada goose (whole) 3 1.36 0.03 53.75 2.42 

a The Hg IVBA fraction for blue mussel, and total Hg and the Hg IVBA fraction for Canada goose eggs and sculpin eggs were 

below the detection limit. 

b The Se IVBA fraction for eider duck egg yolk was below the detection limit. 

Note:  The limit of detection was 0.5 ppb (LC ICP-MS) for Se concentrations and the 0.01 ppb (NIC Mercury Analyzer 3000) for 

the Hg concentration 
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Table S2. Bioaccessible Hg and Se concentrations of country food items digested separately 

(in μg kg
-1

,w.w.)  

Country food  n Subsamples Hg (ppb) Se (ppb) 

BB 1 3 0 ± 0 0.0075 ± 0.142 

CB 1 3 0.277 ± 0.479 0.0075 ± 0.313 

SW 1 3 0 ± 0 0.0075 ± 0.286 

SE 1 3 0.277 ± 0.479 36.1 ± 8.74 

TO 1 3 0.277 ± 0.479 1.45 ± 1.31 

BMAD 4 11 57.5 ± 24.8 36.1 ± 9.63 

BMR 3 6 35 ± 15.9 27.2 ± 4.63 

RSL 3 6 100 ± 17.2 159 ± 30.1 

RSM 3 6 12.3 ± 10.2 23 ± 4.47 

WMB 3 9 1.49 ± 0.746 35.6 ± 4.87 

EDW 3 9 22.6 ± 7.18 21.4 ± 7.2 

LT 3 9 57.1 ± 15.2 9.73 ± 2.86 
 

Note 1: Below the limit of detection (these concentrations are LOD/2) 

Note 2: BMAD: air dried beluga meat also known as beluga nikku; BMR: raw beluga meat; RSL: ringed seal liver; RSM: ringed 

seal muscle; WMB: walrus meat and blubber; EDW: eider duck egg white; BB: blueberries, CB: crowberries, LT: lake trout; 

SW: seaweed; SE: sculpin eggs; TO: tomato paste 

Note 3:  The limit of detection was 0.5 ppb (LC ICP-MS) for Se concentrations and the 0.01 ppb (NIC Mercury Analyzer 3000) 

for the Hg concentration 
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Table S3. Bioaccessible Hg and Se concentrations of country food items co-consumed with 

treatment country foods (in μg kg-1,w.w.)  

Treatment Group  n Subsamples Hg (ppb) Se (ppb) 

BMAD + BB 4 6 61.4 ± 21.7 36.7 ± 16.1 

BMAD + CB 4 6 53.1 ± 23 34 ± 13.6 

BMAD + SW 4 6 62.7 ± 23.8 34.4 ± 13.8 

BMAD + TO  3 3 64.2 ± 36 23.2 ± 9.61 

BMR + BB 3 7 41 ± 20.9 28.6 ± 8.6 

BMR + CB 3 7 39 ± 15.7 27.7 ± 6.15 

BMR + SW 3 7 35 ± 14.1 27.6 ± 4.71 

BMR + SE 3 3 42.2 ± 15.5 43.6 ± 0.749 

BMR + TO  3 3 44.8 ± 18.4 15.9 ± 1.52 

RSL + BB 3 6 78.8 ± 16.1 211 ± 28.1 

RSL + CB 3 6 89.2 ± 16.4 197 ± 35.2 

RSL + SW 3 6 94 ± 21.9 230 ± 30 

RSL + SE 3 3 67.8 ± 15.6 167 ± 15.2 

RSL + TO  3 3 88.5 ± 14.2 156 ± 9.06 

RSM + BB 3 6 16.2 ± 14.7 36 ± 4.98 

RSM + CB 3 6 18.5 ± 16.2 33.5 ± 5.59 

RSM + SW 3 6 18 ± 18.5 34.7 ± 8.24 

WMB + BB 3 3 2.31 ± 0.615 31 ± 5.85 

WMB + CB 3 3 2.03 ± 0.566 26.2 ± 6.39 

WMB + SW 3 3 2.48 ± 0.707 26.3 ± 13.2 

WMB + TO  3 3 1.87 ± 0.662 24.3 ± 1.88 

EDW + BB 3 3 24.8 ± 7.81 14.2 ± 10.6 

EDW + CB 3 3 24.6 ± 7.59 11.5 ± 3.69 

EDW + SW  3 3 26 ± 9.6 7.05 ± 4.93 

EDW + TO  3 3 25.7 ± 7.5 13.2 ± 8.58 

LT + BB 3 3 58.1 ± 18.2 5.44 ± 1.37 

LT + CB 3 3 55.1 ± 19.9 5.89 ± 2.16 

LT + SW 3 3 44.9 ± 16.2 5.58 ± 2.24 

LT + TO  3 3 34.2 ± 8.81 9.67 ± 3.66 
 

Note 1: Below the limit of detection (these concentrations are LOD/2) 

Note 2: BMAD: air dried beluga meat also known as beluga nikku; BMR: raw beluga meat; RSL: ringed seal liver; RSM: ringed 

seal muscle; WMB: walrus meat and blubber; EDW: eider duck egg white; BB: blueberries, CB: crowberries, LT: lake trout; 

SW: seaweed; SE: sculpin eggs; TO: tomato paste 

Note 3:  The limit of detection was 0.5 ppb (LC ICP-MS) for Se concentrations and the 0.01 ppb (NIC Mercury Analyzer 3000) 

for the Hg concentration 

 


