
Offset Surface Light Fields

by

Jason Ang

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2003

c©Jason Ang 2003

Author’s Declaration for Electronic Submission of a
Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

For producing realistic images, reflection is an important visual effect. Reflections of the

environment are important not only for highly reflective objects, such as mirrors, but also

for more common objects such as brushed metals and glossy plastics. Generating these

reflections accurately at real-time rates for interactive applications, however, is a difficult

problem. Previous works in this area have made assumptions that sacrifice accuracy in

order to preserve interactivity.

I will present an algorithm that tries to handle reflection accurately in the general case

for real-time rendering. The algorithm uses a database of prerendered environment maps

to render both the original object itself and an additional bidirectional reflection distribu-

tion function (BRDF). The algorithm performs image-based rendering in reflection space

in order to achieve accurate results. It also uses graphics processing unit (GPU) features

to accelerate rendering.

iii

Acknowledgements

Thank you Professor Michael McCool for your support, guidance, and encouragement.

Your knowledge makes me question why I don’t know more and your enthusiasm mo-

tivates me to learn more. This thesis would not have been possible without your help.

Also thanks to Professors William Cowan and Richard Mann for taking time from their

busy schedules to read my thesis and provide valuable comments.

Thanks to the professors and students of the Computer Graphics Lab for providing

a fun and social learning environment. Special thanks to Kevin Moule for giving me

pointers on software and other issues. I’m also indebted to those who have contributed

to my thesis in ways they or I may not be aware.

To my cheerleaders and financial investors, I am forever indebted to you all. I hope I

can return the favour someday.

This thesis uses models from Anis Ahmed, Kevin Moule, Martin Newell, Mira Imag-

ing, and Viewpoint Engineering. Paul Debevec provided the eucalyptus grove high-

dynamic range light probe. Furthermore, my colour conversion algorithm was based on

Mark Ruzon’s source code.

This work was funded by the Ontario Graduate Scholarship Program (OGS), Profes-

sor McCool’s Communications and Information Technology Ontario (CITO) and Natural

Sciences and Engineering Research Council of Canada (NSERC) grants, and the Univer-

sity of Waterloo.

iv

Dedication

For my family and Elsa, for their unconditional love and support.

v

Trademarks

3Dlabs is a registered trademark of 3Dlabs, Inc., Ltd.

Adaptec is a registered trademark of Adaptec, Inc.

AIC is a trademark of Adaptec, Inc.

Alias|Wavefront is a registered trademark of Alias|Wavefront, a division of Silicon

Graphics Limited.

Apple Computer is a registered trademark of Apple Computer, Inc.

ATI is a registered trademark of ATI Technologies, Inc.

Atlas is a trademark of Quantum Corporation.

BMRT is a registered trademark of Larry Gritz.

Casino de Monte-Carlo is a registered trademark of Sociét́e de Bains de Mer et du Cercle

des Etrangers̀a Monaco, Limited.

DirectX is a registered trademark of Microsoft Corporation.

Exluna is a registered trademark of Exluna, Inc.

GeForce is a registered trademark of NVIDIA Corporation.

Intel is a registered trademark of Intel Corporation.

Intel Xeon is a registered trademark of Intel Corporation.

Maya is a registered trademark of Silicon Graphics, Inc., exclusively used by

Alias|Wavefront, a division of Silicon Graphics Limited, and Maya Unlimited is a trade-

mark of Alias|Wavefront, a division of Silicon Graphics Limited.

Microsoft is a registered trademark of Microsoft Corporation.

NVIDIA is a registered trademark of NVIDIA Corporation.

NVIDIA Cg is a registered trademark of NVIDIA Corporation.

vi

OpenGL is a registered trademark of Silicon Graphics, Inc.

Pixar is a registered trademark of Pixar Corporation.

Quantum is a registered trademark of Quantum Corporation.

QuickTime is a registered trademark of Apple Computer, Inc.

RenderMan is a registered trademark of Pixar Corporation.

RenderMonkey is a registered trademark of ATI Technologies, Inc.

Wildcat is a registered trademark of 3Dlabs, Inc., Ltd.

All other company and product names mentioned are trademarks or registered trademarks

of their respective owners.

vii

Contents

1 Introduction 1

1.1 Major Thesis Contributions. 5

1.2 Thesis Organization. 6

2 Background 7

2.1 Reflection Mapping. 7

2.1.1 The Rendering Equation. 7

2.1.2 Environment Mapping. 11

2.2 Image-Based Rendering. 16

2.2.1 The Plenoptic Function. 17

2.2.2 Light Fields. 18

2.2.3 Surface Light Fields. 21

2.3 Summary . 23

3 Offset Surface Light Fields 25

3.1 Parameterization. 26

3.2 Data Acquisition . 29

viii

3.3 Preprocessing. 31

3.4 Surface Reconstruction. 34

4 Specular Reflections 37

4.1 Mirror Reflection . 38

4.2 Blending Basis Functions. 41

4.3 Texture Cache. 46

5 Bidirectional Reflection Distribution Functions 49

5.1 Monte Carlo Integration . 50

5.2 The Ashikhmin and Shirley BRDF Model. 51

5.3 Arbitrary BRDF Models . 56

6 Results 58

6.1 Error Metrics . 58

6.2 Sample Maps. 60

6.3 Surface Reconstruction. 60

6.4 Specular Reflections. 65

6.5 Bidirectional Reflection Distribution Functions. 68

6.6 Texture Cache. 70

6.7 Summary . 73

7 Hardware Implementation 75

8 Conclusion 80

8.1 Future Work. 81

ix

8.1.1 Refining OSLFs . 81

8.1.2 Extending OSLFs. 83

Bibliography 87

x

List of Tables

6.1 Comparison of surface reconstruction using RMSE.. 64

6.2 Comparison of mirror reflections using RMSE.. 67

6.3 Sample map cache statistics.. 71

6.4 Cube map cache statistics for surface reconstruction.. 71

6.5 Cube map cache statistics for specular reflections.. 71

6.6 Cube map cache statistics for Ashikhmin and Shirley’s BRDF model.. 72

6.7 Cube map cache statistics for various image reading strategies.. 73

xi

List of Figures

1.1 Specular component of a highly reflective surface rendered using three

methods.. 4

1.2 Ashikhmin and Shirley’s BRDF model rendered using offset surface light

fields. 5

2.1 Geometry of local illumination.. 8

2.2 Geometry of reflection.. 11

2.3 Geometry of environment maps.. 12

2.4 Geometry of light fields. 19

2.5 Geometry of surface light fields.. 21

3.1 Geometry of offset surface light fields.. 26

3.2 Three views of the gazebo scene.. 29

3.3 Teapot surface sample points.. 30

3.4 Example of an acquired cube map.. 30

3.5 Teapot sample maps displayed with false colours to indicate different

indices. 33

3.6 Geometry of surface reconstruction for offset light fields.. 34

xii

3.7 Comparison of surface reconstruction results.. 36

4.1 Lspecular term for mirror reflections rendered using the closest sample

point in Euclidean space.. 39

4.2 Lspecular term for mirror reflections rendered using the closest sample

point in angular space.. 40

4.3 Lspecular term for mirror reflections rendered usingBavg. 41

4.4 Geometry of reflection for offset surface light fields.. 42

4.5 Lspecular term for mirror reflections rendered usingB~r for variousN . . . 44

4.6 Lspecular term for mirror reflections rendered usingB~n for variousN . . . 45

5.1 Lspecular term for Ashikhmin and Shirley’s BRDF rendered for various

values ofnu andnv. 55

6.1 Surface reconstruction results.. 61

6.2 Geometry of the curved surfaces problem.. 63

6.3 Full surface reconstruction with added specular reflection rendered using

three methods.. 65

6.4 Full surface reconstruction with added Ashikhmin and Shirley BRDF.. 69

7.1 General architecture for GPU rendering pipelines.. 76

xiii

Chapter 1

Introduction

Calculating the colour of an object at each point on its surface is an important part of

achieving photo-realistic images. In the rendering process, shading is responsible for

performing this calculation. Shading determines the light leaving the surface of an object

as a function of the light striking it. There are many variables which affect how this

calculation is performed but the most important factor in photo-realistic rendering is the

object’s bidirectional reflectance distribution function or BRDF. Essentially, this function

determines the object’s material properties—whether the object looks like a fabric, a

matte wall, or a metal is all encapsulated in this function. Calculating this function

accurately and integrating it against the incoming light at each point is vital in achieving

photo-realistic images.

Reflection is one visual effect factored into an object’s BRDF. Varying degrees of this

effect can be seen all around us: from sharp reflections in mirrors to blurry reflections

in glossy plastics to more subtle and diffused reflections in brushed metals, reflections

play an important role in how we perceive everyday objects. Incorporating accurate

1

CHAPTER 1. INTRODUCTION 2

reflections is therefore necessary to produce physically accurate images.

Traditionally, offline rendering techniques, such as ray tracing, have excelled at pro-

ducing photo-realistic images which incorporate reflections and other complex shading

[7, 40, 52, 104, 118]. However, recent works in real-time rendering [6, 50, 78, 82, 91,

93, 94] have closed the gap and brought photo-realistic rendering into the realm of inter-

active applications. These applications usually employ specialized [4, 31, 86, 88, 111]

or consumer grade [2, 34, 68, 87, 113] graphics processor units (GPUs) to accelerate

their rendering processes. The advent of the GPU also ushered in a whole new class of

graphics algorithms which use the hardware in unique and unusual ways [95, 117]. How-

ever, common to these approaches are that they all solve or approximate the rendering

equation [55] in some way.

Compared to their slower, offline rendering cousins, real-time hardware-accelerated

algorithms have improved the workflow in many industries. For example, architectural,

automotive, and industrial designers are able to interactively manipulate and display their

designs for clients without the long turnover times associated with generating animations.

Furthermore, directors and cinematographers are able to previsualize their camera shots

quickly. An example of this is given byA.I. Artificial Intelligence, where the blue-screen

shots in the Rouge City scenes were visualized in real-time for the director, so he could

see how the actors interacted with the environment. Finally, game designers can increase

the realism of their worlds without sacrificing interactivity. In many application areas, it

is often desirable to have real-time feedback for users. Using a hardware accelerator can

result in a speedup of 10 to 1000 times depending on how well the algorithm matches

the capabilities of the accelerator.

CHAPTER 1. INTRODUCTION 3

When migrating software algorithms to hardware-accelerated implementations, usu-

ally compromises have to be made; this typically comes in the form of sacrificing accu-

racy for interactivity. The two main sources of error are errors inherent in the hardware

rendering pipeline and errors due to the rendering algorithm. An example of the former

is accuracy error due to hardware numerical precision. Besides improving the hardware,

there is not much that can be done in this case. However, improvements to the rendering

algorithm itself can be made.

In terms of shading, software based ray tracing approaches [40, 124] can generate

very accurate inter-object reflections such as in Figure1.1(a)without difficulty. Here,

the software shoots a ray through the image plane of the camera. If the ray intersects

a specular object, another ray is generated in the reflection direction and this process

continues recursively until the ray hits a diffuse object. Finally, the results of all the hits

are accumulated to determine the first object’s final colour. Although hardware imple-

mentations of ray tracing algorithms are available [45], they are not geared for real-time

display. Recently, ray tracing of static scenes has been demonstrated on a GPU simulator

[95] which is based on proposals from upcoming API specifications [1, 76]. This work

uses the CPU for preprocessing and still has major memory consumption and perfor-

mance issues to resolve.

For interactive display, hardware designers have implemented reflection mapping

(also known as environment mapping) [13] into their GPUs. This technique, developed

by Blinn and Newell, captures the light flow around a chosen centre of projection onto

a spherical reflection map. This map is then indexed by the reflection vector off the ob-

ject’s surface to produce specular reflection. Reflection mapping, however, breaks down

CHAPTER 1. INTRODUCTION 4

(a) Ray trace (b) Environment map

(c) Offset surface light field

Figure 1.1: Specular component of a highly reflective surface rendered using three meth-
ods.

for non-convex objects and for environments with near-field objects. Figure1.1(b)shows

the deficiencies of this approach—the reflections are inaccurate, blurry, and there is no

object self-reflection. Nevertheless, for some applications the advantage of interactive

display outweighs the accuracy of the result and so environment map based approaches

are commonly used today.

The deficiencies of environment mapping and related approaches motivated me to

investigate ways of obtaining more accurate results while preserving the real-time dis-

CHAPTER 1. INTRODUCTION 5

Figure 1.2: Ashikhmin and Shirley’s BRDF model rendered using offset surface light
fields.

play component. Any solution to this problem should visibly improve the accuracy in

highly reflective surfaces—where the problem is most prominently evident—and also be

extendible to the case of more general glossy BRDFs, such as in Figure1.2. Finally, the

algorithm should be amenable to a high-performance hardware implementation.

1.1 Major Thesis Contributions

I will present an algorithm which tries to handle reflection accurately in the general case

for real-time rendering. The algorithm blends together concepts from reflection mapping

and image-based rendering to achieve its accuracy. It is capable of accurately reproduc-

ing the original object—composed of curved surfaces—from its database of light fields.

Furthermore, it can generate reflections which are qualitatively and quantitatively more

accurate than environment map based approaches. In particular, the new technique per-

mits reflections which are dependent on the position in space of the surface point being

shaded. The solution can be generalized to handle arbitrary BRDFs for local illumina-

CHAPTER 1. INTRODUCTION 6

tion. Finally, the algorithm is evaluable at runtime, amenable to a hardware-accelerated

implementation, and is texture cache friendly.

As this thesis improves real-time reflections, previous work using the environment

map approach can take advantage of it to improve accuracy. Furthermore, this thesis

opens up many possible extensions to the class of rendering algorithms possible within

the offset surface light field paradigm—some of which are listed in Section8.1.

1.2 Thesis Organization

The remainder of the thesis is organized as follows: Chapter2 reviews relevant work

upon which my research draws, including reflection maps and light fields. Chapter3

introduces offset surface light fields and demonstrates how to reconstruct the original

object accurately. Chapter4 describes how specular reflections are generated and Chap-

ter5 generalizes this for evaluating local illumination. The results are discussed in detail

in Chapter6 and Chapter7 then describes how the algorithm can be targeted to hardware.

Finally, Chapter8 summarizes the results and proposes future research topics to pursue.

Chapter 2

Background

My thesis draws from two areas of research: reflection mapping and image-based render-

ing. I will start by reviewing the theoretical framework in both areas before progressing

onto a survey of related work. This chapter concludes by putting this thesis in perspective

relative to prior work.

2.1 Reflection Mapping

Reflection mapping based approaches are best understood and formalized within the con-

text of the rendering equation.

2.1.1 The Rendering Equation

The rendering equation, first described by Kajiya [55] in graphics literature, borrows

from radiative heat transfer and neutron transport literature and has been adapted for use

in computer graphics. The rendering equation describes how light is scattered off an

7

CHAPTER 2. BACKGROUND 8

object’s surface and can be used to characterize many known rendering algorithms. Al-

though it is an approximation, neglecting for example wave effects, it has proven useful

to formalize the rendering process in computer graphics. Omitting occlusions and using

notation from Kautz et al. [60], the rendering equation is:

L(x;~v) = Le(x;~v) +
∫
Ω

fr(~ω(~v, ~n,~t), ~ω(~l, ~n,~t))Li(x;~l)〈~n,~l〉d~l, (2.1)

whereL is the reflected exitant radiance in the viewing direction~v from pointx (with

coordinate frame{~n,~t, ~n × ~t}), Le is the outgoing emitted radiance from pointx in di-

rection~v, fr is the surface’s BRDF,~ω(~v, ~n,~t) is the viewing direction and~ω(~l, ~n,~t) is

the light direction with respect to the given coordinate frame, andLi is the incoming

radiance atx from direction~l (Figure2.1). The integration is performed for all direc-

Ω

~n

x

L(x;~v)

~l

~n× ~t

~t

~v

Figure 2.1: Geometry of local illumination.

tions~l over the hemisphereΩ abovex. Equation2.1 further assumes that the BRDF is

shift-invariant (i.e. it does not depend on surface position) otherwise we will have to

incorporate the dependence onx into fr. The discussion that follows will also assume

there is no emission term (i.e.Le = 0) and omit wavelength dependence (this equation

CHAPTER 2. BACKGROUND 9

is typically evaluated only for the required wavelengths—usually red, green, and blue).

Derivation details can be found in Kajiya [55] or Foley et al. [36]. The rendering equa-

tion basically says that the outgoing radiance is equal to the emitted radiance added to the

sum of all incoming radiance (over the hemisphere) modulated with the BRDF projected

onto the surface with differential solid angled~l.

The BRDF,fr, plays an important role in an object’s appearance. It describes how

light is reflected when it comes in contact with various materials and is a function of

the incoming light direction and the outgoing reflected light direction. When these two

vectors are expressed in spherical coordinates, with respect to the local coordinate frame

of the point, the BRDF becomes a four-dimensional function:

fr(~ω(~v, ~n,~t), ~ω(~l, ~n,~t)) ≡ fr(θ~v, φ~v, θ~l, φ~l). (2.2)

To be physically accurate,fr must satisfy the first law of thermodynamics (conserva-

tion of energy) and Helmholtz’s reciprocity principle [122] for mirrors or Rayleigh’s

reciprocity principle [99] for arbitrary surfaces. BRDFs are divided into two classes:

isotropic and anisotropic. The former class has reflectance properties which are invariant

with respect to surface rotation around the normal vector (e.g. smooth plastics) whereas

the latter class has reflectance properties which change with respect to surface rotation

around~n (e.g. brushed metal and satin). Although tabulated BRDFs have been used,

the high dimensionality of the function has caused many researchers to search for more

compact representations. One such approach is to represent the BRDF as an computable

arithmetic function and many such analytic BRDFs were developed to model specu-

lar reflection [8, 10, 12, 16, 27, 46, 54, 90, 102, 115, 116, 123]. However, unless the

CHAPTER 2. BACKGROUND 10

function was simple, the BRDF could not be evaluated efficiently for real-time display.

For interactive purposes, three main approaches have been developed: basis summation

approaches represent the BRDF as a sum of simpler basis functions [17, 61, 123]; en-

vironment mapping approaches preintegrate the BRDF with the lighting environment

[18, 58, 60]; and factorization approaches represent the BRDF as lower-dimensional

functions which are added or multiplied together [37, 50, 57, 79].

The rendering equation and BRDFs model purely local illumination; real world ef-

fects such as volumetric scattering and fluorescence are not modelled. In spite of this, the

rendering equation still serves as a good starting point. Even so, evaluating Equation2.1

accurately would be too computationally intensive and thus many approximation meth-

ods have been investigated. Ray tracing [40, 124], as described in Chapter1, is ill-suited

for reproducing the complex effects encapsulated in the equation. Distribution ray trac-

ing [26] extends ray tracing by casting multiple rays at each reflection point. By further

perturbing the rays to have a distribution function which represents the surface’s reflec-

tion properties, this method better approximates the integral. However, as many rays

are needed to produce good results, this method is still too computationally intensive.

Path tracing [55] traces random paths of rays from the camera into the scene to sam-

ple outgoing radiance. By accumulating multiple samples with the principles of Monte

Carlo integration [105, 119], the renderer can obtain an estimate for the integral. Monte

Carlo integration will be discussed further in Section5.1. Light tracing [32], on the

other hand, traces rays from the lights to the camera. This approach, however, suffers

from uneven sampling of the image plane which decreases its accuracy. Bidirectional

path tracing [62, 120] casts rays from both the camera and the lights and later connects

CHAPTER 2. BACKGROUND 11

the rays together. Although this method is less expensive and has lower error compared

to distribution ray tracing, it produces very noisy images, and cannot in fact sample all

forms of light transport. This method was later improved by Jensen and Christensen’s

photon mapping [52, 53]. Metropolis light transport [121] further improves error and

noise by taking a path from a light to the camera and perturbing it to see if it still reaches

the camera. The advantages it achieves, however, are offset by its complex implementa-

tion. All these methods are offline software based algorithms and to date there is no way

to evaluate Equation2.1accurately for general scenes for real-time display. Path tracing,

for instance, requires hundreds of samples per pixel and can take hours to render even a

simple scene.

2.1.2 Environment Mapping

For simple BRDFs and single objects or simple environments, environment mapping

based approaches can approximate Equation2.1 at interactive display rates. This tech-

nique was first introduced by Blinn and Newell [13] to approximate mirror reflections.

θ

~n

θ
~rv ~v

Figure 2.2: Geometry of reflection.

For a purely reflective surface, such as an ideal mirror, the outgoing light to the

camera in direction~v is equal in intensity to the incoming light from direction~rv. Here,~rv

CHAPTER 2. BACKGROUND 12

is calculated by reflecting~v in the surface normal,~n (Figure2.2). In functional notation,

L(x;~v) = Li(x;~rv) (2.3)

where

~rv = 2~n〈~n,~v〉 − ~v. (2.4)

From Equation2.3 we can observe that calculating the reflected radiance would be

greatly sped up if we could index into a mapping with the reflection vector to obtain

the reflected radiance. This map can be created by choosing a centre of projection at

x (usually the geometric centre of the reflective object) and projecting the environment

onto it. Such a map is commonly referred to as a spherical environment map. To be

physically accurate, this map should use high-dynamic range radiance values. This map

is then indexed by spherical projection relative to the view vector (Figure2.3). Another

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Sphere Sphere projected onto a flat surface

x

Li(x;~rv)~rv = (θ, φ)

Figure 2.3: Geometry of environment maps.

possible parameterization of this map is given by latitude-longitude maps [118]. How-

ever, both these parameterizations are view-dependent: they are valid only for the view

CHAPTER 2. BACKGROUND 13

for which they were originally generated. Two view-independent environment map pa-

rameterizations are dual parabolic maps [49] and cube maps [43]. Cube maps, which

capture the environment using six faces of an enclosing cube, have since been standard-

ized into hardware [92] which allow for efficient look ups.

Environment mapping assumes the enclosing environment is infinitely far from the

rendering surface. Therefore, it is only valid for environments with distant objects and

lights. Furthermore, planar and concave surfaces present problems because the map is

only indexed by~rv. Planar surfaces can be dealt with using multi-pass techniques [36].

Concave surface problems can be partially alleviated by using the surface position and the

centre of projection to determine a corrected reflection direction. However, problems are

still visible when compared to accurate ray traced reflections. Comparing Figures1.1(a)

and1.1(b), distortion is apparent in the roof beams and the table texture; furthermore,

the teacups in the environment mapped version appear more distant. Moreover, this ap-

proach does not capture the teapot spout, handle, and lid self-reflecting onto the body.

Regardless of their shortcomings, environment maps are used widely for non-critical

applications, such as games, because of their readily available hardware-accelerated im-

plementations.

Since environment maps capture the lighting around a point, researchers noticed that

in some circumstances they could perform the integration in Equation2.1 beforehand,

generating a prefiltered environment map for that point, and then use the GPU to acceler-

ate rendering. For instance, using a purely diffuse BRDF (also known as the Lambertian

BRDF),

fr(~v,~l) := kd, (2.5)

CHAPTER 2. BACKGROUND 14

wherekd describes the surface’s absorption, Miller and Hoffman [85] perform the fol-

lowing preintegration:

Ldiffuse(x;~v, ~n,~t) =
∫
Ω

kdLi(x;~l)〈~n,~l〉d~l

Ldiffuse(x;~n) = kd

∫
Ω

Li(x;~l)〈~n,~l〉d~l. (2.6)

This results in an environment map indexed by the two-dimensional vector~n. Miller and

Hoffman [85] and Heidrich [50] also use the Phong BRDF [16],

fr(~v,~l) := ks
〈~rv,~l〉N

〈~n,~l〉
, (2.7)

whereks andN control the shape and size of the Phong lobe, to prefilter the environment

map:

LPhong(x;~v, ~n,~t) =
∫
Ω

ks
〈~rv,~l〉N

〈~n,~l〉
Li(x;~l)〈~n,~l〉d~l

LPhong(x;~rv) = ks

∫
Ω
〈~rv,~l〉NLi(x;~l)d~l. (2.8)

This produces an environment map indexed by~rv. For isotropic BRDFs, Kautz and

McCool [58] and Cabral et al. [18] have generated two and four-dimensional prefiltered

environment maps respectively for real-time rendering. Kautz et al. [60] further used the

anisotropic Banks BRDF model [10], without self-shadowing, to generate a prefiltered

three-dimensional environment map.

Using spherical harmonics [17, 71, 89, 97, 106], Ramamoorthi and Hanrahan [96]

managed to further reduce the storage requirements for prefiltered environment maps,

CHAPTER 2. BACKGROUND 15

when the filter kernel is broad, by representing them using the nine lowest-order spherical

harmonic coefficients. Spherical harmonics are the analogue on the sphere to the Fourier

basis on the line or circle and can represent functions over the sphere compactly—thus,

they are ideally suited for representing the integral in Equation2.1. The drawback of

Ramamoorthi and Hanrahan’s original approach is that only the diffuse reflection com-

ponent is encoded. However, they later extended this work into frequency space envi-

ronment map rendering [98] which allowed real-time rendering of objects with isotropic

BRDFs under distant illumination. In this work, they calculate the first nine spherical

harmonic coefficients for each texel in the environment map and use them to represent

the preintegrated BRDF at each of those texel points. As integration in spatial domain

is equivalent to convolution in frequency domain, Equation2.1 can be evaluated very

efficiently in frequency space for interactive rendering. However, the main limitation in

their work was that the first nine spherical harmonic coefficients can only represent a low

frequency lighting environment or a broad glossy BRDF.

In a related work, Sloan et al. [109] used the spherical harmonic basis functions to

encode object self-shadowing and self-reflection for diffuse and glossy objects. Light-

ing is sampled sparsely near the object and projected onto the spherical harmonic basis.

Then a radiance transfer function is precomputed for a dense sampling over the object

and stored into vectors or matrices, which are used for real-time shading. Their approach,

however, is limited to isotropic BRDFs. In addition, the transfer functions are defined

only for diffuse self-shadowing and diffuse inter-reflection, and so only low-frequency

lighting environments can be handled. Furthermore, once the transfer function is pre-

computed, no change to the object’s BRDF can be made. Kautz et al. [59] later extended

CHAPTER 2. BACKGROUND 16

this work for rendering arbitrary, but fixed, BRDFs; however, due to current GPU lim-

itations, their implementation requires a fixed view or fixed lighting in order to achieve

interactive performance.

Recently, McAllister et al. [77] performed interactive rendering of spatially varying

BRDFs. They used the Lafortune BRDF [61] as basis lobes to approximate arbitrary

BRDFs. This approach is ideally suited for surfaces with multiple BRDFs, which tradi-

tional methods require multiple rendering passes, because they usually can be approxi-

mated with fewer lobes than BRDFs. The parameters of each Lafortune BRDF lobe were

stored in a series of texture maps and used to evaluate the BRDF at runtime. Their shader

renders at real-time frame rates for a fixed number of hardware lights. For a full eval-

uation of the rendering equation, however, they still made the approximation of using a

common point of projection and stored the preconvolved BRDF in an environment map.

The downside of these reflection map methods is that they are technically only ac-

curate for one point: the pre-chosen centre of projection. Therefore, the environment

captured is only valid for distant objects and illumination. Moreover, concave and planar

objects will exhibit incorrect illumination. However, for low frequency lighting environ-

ments and for the prefiltered environment map case, the results are often blurred which

hides the distortion and errors present. Object self-reflection and self-shadowing (due to

local illumination evaluation) are also not captured in these approaches.

2.2 Image-Based Rendering

Image-based rendering is a relatively new rendering paradigm introduced into the com-

puter graphics community in the 1990s [22, 23, 81]. Compared to traditional geometry-

CHAPTER 2. BACKGROUND 17

based rendering systems, the central idea behind this rendering approach is that images

are the underlying data types and we can shuffle existing pixels around to make new

images, rather than creating them from scratch. Early image-based rendering systems

like Apple Computer’sQuickTime VRsystem [22] and McMillan and Bishop’s plenoptic

modeller [81] used outward looking environment maps at fixed positions which allow

users to change their viewing direction. Other systems use blending, interpolation, warp-

ing, or a combination of these techniques to render their final image. The theoretical

framework behind these systems is the plenoptic function.

2.2.1 The Plenoptic Function

Formalized by Adelson and Bergen [3], the plenoptic function (from the Latinplenus,

complete or full, andoptic) describes pencils of rays through points in space, at any time,

over any wavelengths. By fixing a point (Vx, Vy, Vz) in space, a direction in spherical

coordinates (θ, φ), a time frame (t), and a wavelength (λ), the plenoptic function yields

the intensity of light with those parameters:P (Vx, Vy, Vz, θ, φ, t, λ). This records every

visible phenomenon anywhere, at any time, at any wavelength—making it practically

impossible to tabulate this function. However, the dimensionality of the full plenoptic

function is very high. In computer graphics, the time dimension is usually dropped

(resulting in a static scene with fixed illumination) andλ is assumed to be evaluated at a

three colour value such as red, green, and blue. Furthermore, by restricting the space to

be free of occluding objects (free space), the position dimension drops to two (u andv);

this reduction in dimensionality can be performed because the radiance along two points

in space does not change unless blocked. These simplifications yield a more manageable

CHAPTER 2. BACKGROUND 18

four-dimensional function:

P : (u, v)× (θ, φ) → incident radiance. (2.9)

In this form, the plenoptic function can be easily encoded into a two-dimensional array

of two-dimensional images. In fact, a reflection map can be seen as a special case of the

plenoptic function because it records incident radiance at a point. If we letx = (u, v)

and~rv = (θ, φ), and compare to Equation2.3, we get:

P (u, v, θ, φ) ≡ P (x;~rv) ≡ Li(x;~rv). (2.10)

The plenoptic function will be related to the rendering equation,L(x;~v), in Section2.2.3.

The reason behind using captured images to generate new ones is that there are still

many phenomena which computer graphics cannot reproduce or reproduce well. By

using images from the physical world, we can incorporate those effects into our virtual

world. The key though is in keeping the function manageable while still producing novel

views of the scene, which may not have been recorded originally.

2.2.2 Light Fields

A light field [67] encodes Equation2.9 as two-dimensional slices called a light slab or

a two-plane parameterization of the plenoptic function (Figure2.4). The first plane has

Cartesian coordinates(u, v) and the second plane has Cartesian coordinates(s, t). To ac-

quire an image data set, the camera is placed at each (u, v) point and an image is recorded

of the scene coinciding with the (s, t) plane. Rendering then just involves looking up the

CHAPTER 2. BACKGROUND 19

su

tv

P (u, v, s, t)

Figure 2.4: Geometry of light fields.

value at (u, v, s, t) for each pixel in the new view. To reduce data redundancy, Levoy

and Hanrahan employ vector quantization (VQ) [38] to vectors of the two-dimensional

or four-dimensional image tiles. Entropy coding is also performed using the Lempel-Ziv

[127] compression algorithm. Decompression then involves decoding the Lempel-Ziv

code (during loading) and a table look up into the VQ codebook (during rendering).

Light field display can be accelerated by rendering tiles using projective texture mapping

hardware. Furthermore, mip-mapping hardware can be used to interpolate between the

four-dimensional samples to avoid aliasing artifacts and missing data.

Gortler et al. [42] parameterize Equation2.9 similarly (calling it a lumigraph) and

project the function onto a quadralinear basis function. Furthermore, they use geometric

information to incorporate a depth correction term into their basis function; by doing

this, they reduce the blurriness visible in Levoy and Hanrahan’s final renderings. Finally,

they use a hole filling algorithm to fill out missing information from the acquisition stage.

These holes are caused by scene areas not visible from camera positions in the data set.

The final images are rendered with the aid of texture mapping hardware.

From these two seminal papers, many other parameterizations [19, 51, 63, 69], com-

pression issues [72, 73, 74, 114], and rendering techniques [48, 100, 101, 107, 108]

CHAPTER 2. BACKGROUND 20

were investigated. Furthermore, the theory behind the sampling and reconstruction of

the plenoptic function were solidified using signal processing theory by Chai et al. [21]

and Ramamoorthi and Hanrahan [97]. As an aside, this function has also been studied in

computer vision literature in the areas of stereo disparity, epipolar volume, and optical

flow analysis [9, 14, 41, 73]. Three important papers relating to modelling reflection

properties of surfaces using light fields were provided by Neto and Bishop [29], Hei-

drich et al. [47], and Cabral et al. [18]. Neto and Bishop added dynamic shading to their

image-based rendering system by estimating the three-dimensional geometry and surface

normals from the acquired images. When rendering, they warped the reference images

to the desired camera view and performed an additional shading step to account for new

or moved light sources. On the other hand, Heidrich et al. chose to add reflection and re-

fraction effects to light field rendering by decoupling illumination from scene geometry.

Instead of storing radiance as in Equation2.9, a ray direction is stored:

Pr : (u, v)× (θ, φ) → (θr, φr). (2.11)

Depending on the effect desired,(θr, φr) encodes either the reflection or refraction di-

rection. This vector is then used to look up the radiance value in a dual parabolic en-

vironment map [49] using the pixel texture extension [103]. In work similar to mine,

Cabral et al. use a hybrid environment map and image-based rendering scheme to render

isotropic surface reflectance. They first acquire prefiltered environment maps at vertices

of an icosahedron surrounding a chosen centre of projection. At rendering time, a warp

dependent on the surface’s BRDF is applied to the three environment maps nearest to

the shaded point (assuming the object being shaded is enclosed by the icosahedron).

CHAPTER 2. BACKGROUND 21

Spherical barycentric interpolation is used to blend between the three resulting warped

environment maps. Common to these three approaches is they all use geometric infor-

mation to improve the final rendering’s accuracy.

Although light field methods can reproduce images with stunning results, these meth-

ods have several limitations. First, to avoid blurriness, the plenoptic function has to be

sampled densely. This in turn produces huge data sets; image data sets with the mag-

nitude of several gigabytes are not unheard of. Some sort of compression must be em-

ployed to make the data manageable for real-time rendering. Also inherent in the data

acquisition process are the limitations of free space, static scene, fixed illumination, and

fixed surface BRDFs. Techniques such as hole filling (or multi-dimensional scattered

data approximation) and three-dimensional shape approximation have to be employed if

these limitations are to be circumvented.

2.2.3 Surface Light Fields

Ω

~v = (θ, φ)
Pslf (u, v, θ, φ)

x = (u, v)

Figure 2.5: Geometry of surface light fields.

Surface light fields (SLFs) are light fields parameterized on the surface being ren-

dered. In terms of Equation2.9, (u, v) represents the position on the object’s surface

CHAPTER 2. BACKGROUND 22

mesh (which can be achieved using known parameterization methods [33, 65]) and(θ, φ)

represents a vector originating at(u, v) (Figure2.5). Furthermore, if we letx = (u, v),

and~v = (θ, φ), and compare to Equation2.1, we get:

Pslf (u, v, θ, φ) ≡ Pslf (x;~v) ≡ L(x;~v). (2.12)

Instead of incident radiance in Equation2.9, we have:

Pslf : (u, v)× (θ, φ) → exitant radiance. (2.13)

SLFs are ideally suited for efficient reproduction of many surface reflectance properties

as long as they can be recorded.

SLFs store the precomputed rendering equation for points on the surface. Miller

et al. [84] exploits this property and uses it to solve global illumination problems. To

reduce storage requirements, they apply a JPEG-like compression technique. Wood et

al. [125] took a different approach to their research by capturing physical models by

range-scanning and photography methods, reparameterizing them into the SLF form, and

rendering them at interactive rates. They use a data filling algorithm to cover holes in

the data, and function quantization and principal function analysis to compress it. They

further demonstrate that small changes to the lighting environment, surface reflectance

properties, and mesh shape can be made while still maintaining a believable result. The

accuracy of the result, however, has not been investigated.

Noticing that Equation2.12 is a four-dimensional function similar to Equation2.2,

Chen et al. [24] tried applying BRDF factorization techniques to compress the SLF. First,

CHAPTER 2. BACKGROUND 23

they partitioned the SLF around each vertex of the surface mesh. Next, the SLF around

each vertex is factorized and compressed using principal component analysis [11] or non-

negative matrix factorization [66]. Finally, the resulting SLF is rendered using multi-pass

texture mapping hardware. In related work, Latta and Kolb [64] applied BRDF homo-

morphic factorization techniques [79] to factor the rendering equation with an image-

based lighting environment. Their approach, however, only works for fixed isotropic

BRDFs and static lighting environments.

The image-based SLF techniques have produced some of the most realistic render-

ings to date. Effects such as anisotropy and sub-surface light scattering can be observed

in the final results because they were originally captured in the data set. SLF approaches,

however, inherit limitations from light field methods. Except for Wood et al.’s parame-

terization, the scene acquired and rendered is static with fixed illumination. Furthermore,

the BRDFs of the surface are not easily modified.

2.3 Summary

Reflection mapping methods have been around for some time and their strengths and

weaknesses are well understood. In particular, they are easily implemented and can be

efficiently evaluated in hardware. However, reflection maps are technically only valid

for one point, or when the lights and objects in the environment can be assumed to

be infinitely distant. Distortion and the absence of self-reflection and self-shadowing

are also evident—especially in environments with high-frequency information. On the

other hand, image-based rendering approaches are able to reconstruct surface reflection

properties relatively accurately. Nevertheless, they have significant storage requirements,

CHAPTER 2. BACKGROUND 24

need to deal with missing data, and are limited to static scenes with fixed illumination

and fixed surface BRDFs.

This thesis blends together concepts from reflection mapping, light fields, and sur-

face light fields to try and address some of these shortcomings. Specifically, environ-

ment maps are used for simple and efficient evaluation of surface reflectance. To in-

crease accuracy, an image-based approach is utilized to improve reflections for near-field

objects, and to add a single level of self-reflection and self-shadowing effects. Further-

more, changes to the surface’s BRDF can be performed. Although not implemented in

this thesis, other algorithmic extensions are discussed in Section8.1.

Chapter 3

Offset Surface Light Fields

Offset surface light fields are based on concepts from reflection maps, light fields, and

surface light fields. Since SLFs are well suited to encode the rendering equation accu-

rately, I will try to retain their parameterization. This will help in generating accurate

reflections at rendering time. However, I would like to make my parameterization more

flexible by allowing for reflectance property changes. By moving the sample points

from the surface (as in the case of traditional SLFs) to points slightly above the the sur-

face, the BRDF of the surface becomes semi-decoupled from the lighting environment

(Figure3.1). Doing so allows accurate surface reconstruction, using the original SLF,

and additional reflections and material changes, using the acquired lighting environment.

Furthermore, moving the sample points above the surface also allows more sample points

to be used for each point on the surface. In addition, it also permits a reasonable setting

for the near plane when capturing images. The light field at these sample points are

captured into environment maps to take advantage of simple hardware-accelerated eval-

uation. To avoid overly large storage costs, only enough sample points are acquired

25

CHAPTER 3. OFFSET SURFACE LIGHT FIELDS 26

ε

Poslf (u, v, θ, φ)

Figure 3.1: Geometry of offset surface light fields.

in order to reconstruct the original object accurately. Holes in the data are covered by

blending between these sample points. I call this representation offset surface light fields

(OSLFs) because the sample points are offset from the surface by a small amount.

This chapter will discuss the representation in more detail as well as how it is used

to reconstruct the original object’s SLF. Since I’m primarily concerned with generating

reflections, I make the simplification and assumption that the acquired object has a Lam-

bertian material. Chapter4 will show how relatively accurate reflections can be achieved

using this representation while Chapter5 will show how to generalize OSLFs to evaluate

local illumination.

3.1 Parameterization

To parameterize the lighting environment around an object into the OSLF representation,

a parameterization of the surface must first be obtained. This can be done using known

methods for triangular meshes [33, 65]. To simplify things, I have chosen bicubic tensor

CHAPTER 3. OFFSET SURFACE LIGHT FIELDS 27

product B́ezier patches [35] as my surface representation. Bézier patches are simply

bivariate polynomials of third degree with the Bernstein polynomials,Bn
i (t), as their

basis functions. The patches are specified using a two-dimensional set of control points,

CPi,j, called a control polygon. Evaluation of a surface point,x = x(u, v), just requires

successive linear affine combinations of the control points:

x(u, v) =
3∑

i=0

3∑
j=0

CPi,jB
3
i,j(u, v) (3.1)

where

CPi,j ∈ <3, (3.2)

B3
i,j(u, v) = B3

i (u)B3
j (v), (3.3)

and

B3
i (t) =

 3

i

 ti(1− t)n−i. (3.4)

This can be done efficiently using various algorithms [35, 75] which I will not present

in detail here. B́ezier patches not only yield a surface parameterized by(u, v), but also a

surface normal and tangent plane atx. Moreover, they also allow for a smoother surface

representation compared to triangular meshes.

Next, a sampling of the surface is performed with controlled coverage and the result-

ing surface sample points offset from the surface byε units. These points are enumerated

in an array for fast and easy indexing. At each of these OSLF sample points, an envi-

ronment map is captured—recording a pencil of rays through each point. These pencils

represent the light field at the sample points.

CHAPTER 3. OFFSET SURFACE LIGHT FIELDS 28

As mentioned previously, I would like to emulate the SLF parameterization as closely

as possible while avoiding its huge storage costs and bandwidth. So instead of storing a

SLF at everyx(u, v) point on the surface, indices to a finite set of OSLF sample points

which best represent the light field atx(u, v) is stored. For fast access by GPUs, these

indices are encoded in the form of a texture map associated with the surface patch. As

current texture map formats allow up to four channels per texel, I store four sample

point indices in each texel. I use texture maps with 16 bits per channel which allows a

maximum of 65536 indexed sample points. I will refer to these maps as sample maps.

Compared to SLFs, my parameterization remains as:

Poslf : (u, v)× (θ, φ) → exitant radiance, (3.5)

where

Poslf (u, v, θ, φ) = F(Li(spt0(u, v); θ, φ), Li(spt1(u, v); θ, φ),

Li(spt2(u, v); θ, φ), Li(spt3(u, v); θ, φ)), (3.6)

sptj : (u, v) → OSLF sample point, (3.7)

and

Li : OSLF sample point× (θ, φ) → incident radiance. (3.8)

Heresptj is the mapping between surface coordinates(u, v) and thejth best sample

point (stored in channelj). The intermediate mapping from index to sample point is

omitted for simplicity.Li(sptj(u, v); θ, φ) represents the light field at thejth best sample

CHAPTER 3. OFFSET SURFACE LIGHT FIELDS 29

point (compare to Equation2.3) andF is a function which reconstructs the outgoing

radiance for directions(θ, φ) from the incoming radiance at the four sample points. The

functionF is described in more detail in Sections3.4, 4.1, 4.2, and5.3.

3.2 Data Acquisition

I tested this parameterization using a virtual data set acquired by a ray tracer (Sec-

tion 8.1.1describes what can be done to acquire physical data). Newell’s teapot was

chosen as the test object; this teapot is composed of 28 bicubic tensor product Bézier

patches. The teapot was placed in a gazebo which was generated using Alias|Wavefront’s

Maya Unlimitedand exported to Pixar’sRenderManfile format. Then, a high-dynamic

range environment (Debevec’s eucalyptus grove light probe [30]), lights, and surface

shaders were added. The teapot was assigned a medium-green Lambertian material. Fig-

ure3.2shows three views of this environment. Next, the teapot’s object description was

(a) View 1 (b) View 2 (c) View 3

Figure 3.2: Three views of the gazebo scene.

parsed and sample points were generated on its surface at fixed intervals (Figure3.3).

These points were then offset from the surface byε = 0.1 and 0.25 units; for compar-

ison, the diameter of the teapot’s rim is approximately three units. Next, environment

CHAPTER 3. OFFSET SURFACE LIGHT FIELDS 30

Figure 3.3: Teapot surface sample points.

maps were acquired at each OSLF sample point using Exluna’sBlue Moon Rendering

Tools(BMRT) renderer. The axes of the environment map were taken to be the canonical

world axes. The renderer produces 128×128 and 256×256 LZW-compressed, 32 bits

per channel, IEEE floating-point images in TIFF format which were then assembled into

cube maps (Figure3.4). Along with each cube map, the OSLF sample point’s world

Figure 3.4: Example of an acquired cube map.

coordinates are stored. Finally, the geometry of the teapot is stored just as in the case of

traditional SLFs. There were 1156 OSLF sample points generated for the teapot and the

CHAPTER 3. OFFSET SURFACE LIGHT FIELDS 31

size of the resulting 128×128 data set was approximately 1.325 gigabytes (GBs) while

the 256×256 data set was approximately 5.179 GBs. These sizes may seem large at

first, but previous representations which acquire images with 8 bits instead of 32 bits per

channel achieve similar or much larger data sets. Unless otherwise stated, all renderings

shown in this thesis use the 128×128 data set.

The free space requirement for light fields must be obeyed for the space between

the OSLF sample point and the teapot’s surface itself. Since this distance,ε, is small,

this usually is not a problem. If this precondition is violated, artifacts will appear in the

original teapot’s reconstruction. Since I’m primarily concerned with adding reflection

effects, I have selected a Lambertian material for my test object. Thus, it is important to

note that the surface reconstruction algorithm presented in Section3.4 is only valid for

objects with a diffuse texture. In Chapters4 and5, I will show how an additional mirror

reflection or BRDF can be added onto the original object’s diffuse texture. This is similar

to adding reflections with an environment map, although my method produces more

accurate results. The technique described could also be applied recursively, although I

did not attempt this in my implementation. The only other issue in data acquisition is to

ensure the ray tracer’s near clipping plane value is less thanε otherwise the teapot surface

near the OSLF sample point will not be visible.

3.3 Preprocessing

Preprocessing involves generating the 16 bits per channel sample maps which store in-

dices to the enumerated OSLF sample points. The pseudocode for generating these sam-

ple maps is as follows:

CHAPTER 3. OFFSET SURFACE LIGHT FIELDS 32

for each B ézier patch B {

for each texel in B’s sample map {

Evaluate corresponding point, t, on B’s surface.

Find four sample points that best represents t.

Store indices to these points in B’s sample map.

}

}

Sample maps are mapped onto Bézier patches such that edges of the sample maps

correspond to edges of the Bézier patches. This means that each texel in a sample map

corresponds to a finite region in a Bézier patch. To evaluatet, simply take the coordi-

nates of the texel, map them between zero and one, and evaluate Equation3.1. In my

implementation, I used sample maps of size 256×256 for each patch.

The four best points are chosen to be the four closest sample points which are visible

from t. To do this, perform a search through the OSLF sample point array and pick

the four sample points closest tot using the standard Euclidean distance measure on the

sample points andt. To satisfy the visibility constraint, these points must lie in the upper

hemisphere oft. That is,

〈~nt, ‖(OSLF sample point)− t‖〉 > 0, (3.9)

where~nt is the normal att and‖ · ‖ represents the norm in three-space. Furthermore,

sample points near the horizon should be excluded because their view oft can be ob-

structed due to aliasing in the environment map. Introducing a tolerance angle accounts

CHAPTER 3. OFFSET SURFACE LIGHT FIELDS 33

(a) Channel 0 (Red) (b) Channel 1 (Green)

(c) Channel 2 (Blue) (d) Channel 3 (Alpha)

Figure 3.5: Teapot sample maps displayed with false colours to indicate different indices.

for this:

〈~nt, ‖(OSLF sample point)− t‖〉 > cos(φsamplemap). (3.10)

I usedφsamplemap = 85◦ in my implementation. Finally, these four points are sorted

in ascending order by distance and stored into the RGBA channels of the sample map.

Figure3.5shows the results of this step.

One last implementation detail is for objects with self-intersections, points inside the

surface should be removed before the sample map generation is done. This, however, is

CHAPTER 3. OFFSET SURFACE LIGHT FIELDS 34

not an issue for the teapot model.

3.4 Surface Reconstruction

Reconstruction of the original object’s surface is very easy because every texel in the

sample map stores a constellation of points visible from it. This means the surface’s

diffuse texture can be reconstructed accurately by sampling in the direction of the surface

point (Figure3.6).

(u, v)

sptj(u, v)

x

Figure 3.6: Geometry of surface reconstruction for offset light fields.

Formally, to shade the pointx on the teapot, first obtain the four point indices associ-

ated withx. Texture mapping hardware gives these indices automatically, by performing

the mapping:x → (u, v) → indices. The GPU has to be set to nearest-neighbour texel

interpolation because any sort of interpolation on point indices is invalid. From these

indices, we obtain the corresponding sample points:spt0(u, v), spt1(u, v), spt2(u, v),

and spt3(u, v). By indexing into the light field in the direction of the surface point,

CHAPTER 3. OFFSET SURFACE LIGHT FIELDS 35

~vrecon = (x− sptj(u, v)), we obtain the surface reflectance (Equation3.8):

Li(sptj(u, v);~vrecon) = Li(sptj(u, v); θ~vrecon , φ~vrecon). (3.11)

This indexing is performed using bilinear interpolation of the cube map.

Although a blend of the four resulting samples would make sense, I have found that

the sample from the closest OSLF sample point,spt0(u, v), is sufficient to produce an

accurate result. Blends such as averaging the results produced no visible advantage at

a slightly increased evaluation cost. For non-diffuse objects, a blend between sample

points is necessary and this is discussed in Section8.1.1. The final equation in the case

of surface reconstruction is:

Frecon(Li(spt0(u, v); θ, φ), Li(spt1(u, v); θ, φ), = Li(spt0(u, v); θ~vrecon , φ~vrecon).

Li(spt2(u, v); θ, φ), Li(spt3(u, v); θ, φ)) (3.12)

Figure 3.7 shows results of this surface reconstruction stage. Finally, if the original

surface reconstruction is all that is needed, then

Poslf = F = Frecon. (3.13)

CHAPTER 3. OFFSET SURFACE LIGHT FIELDS 36

(a) Ray trace

(b) Offset surface light field

Figure 3.7: Comparison of surface reconstruction results.

Chapter 4

Specular Reflections

For objects acquired without reflections, such as the diffuse textured teapot in my test

scene, the shading algorithm can add reflections at runtime. Accurate real-time reflec-

tions are difficult to achieve using reflection mapping techniques. In the OSLF repre-

sentation, however, the cube maps at sample pointssptj(u, v) actually describe an ac-

curate light field throughsptj(u, v). The closer the sample points are to the point being

shaded, the more accurate a reflection can be obtained. Since the preprocessing stage

already stores sample points closest to the surface, a blend between incident radiance at

these points will give a fairly accurate reflection. This chapter discusses how to repro-

duce mirror reflections, which, due to high-frequency information, are generally difficult

to reproduce accurately for real-time rendering. The camera view in Figure1.1 will be

used as a basis for comparison because it shows the effects of near-field reflections (the

table texture and teacups), far-field reflections (the roof beams and gazebo environment),

teapot self-reflection, and teapot self-shadowing effects. These are the critical cases to

examine when comparing accuracy between various methods.

37

CHAPTER 4. SPECULAR REFLECTIONS 38

4.1 Mirror Reflection

Traditional mirror reflections are accomplished by adding the surface’s diffuse term

(Ldiffuse) to a specular reflection term (Lspecular). The result is then modulated by the

surface’s colour (Cs):

L(x;~v) = Cs ∗ (Ldiffuse(x;~v) + Lspecular(x;~v)), (4.1)

wherex is the point being shaded and~v is the viewing direction.Lspecular is the com-

ponent shown in Figure1.1. The specular term for mirror reflections is equal to the

incoming radiance from direction~rv (Equation2.4):

Lspecular(x;~v) = Li(x, ~rv). (4.2)

In the OSLF paradigm, pointssptj(u, v) were predetermined to be closest tox. Since

the mirror reflection atx can be approximated by the mirror reflection at a point close to

x, sayspt0(u, v), we obtain the following:

Lspecular(x;~v) ≈ Lspecular(spt0(u, v), ~rv)

≈ Li(spt0(u, v), ~rv). (4.3)

The result of this approximation is shown in Figure4.1. Another possible approximation

uses the sample point closest to the reflection vector in angular space:

Lspecular(x;~v) ≈ Li(sptk(u, v), ~rv), (4.4)

CHAPTER 4. SPECULAR REFLECTIONS 39

Figure 4.1:Lspecular term for mirror reflections rendered using the closest sample point
in Euclidean space.

where

〈‖sptk(u, v)− x‖, ~rv〉 ≥ 〈‖sptj(u, v)− x‖, ~rv〉 ∀j. (4.5)

This approximation is shown in Figure4.2 Already, the reflections generated by these

two approximations are visibly more accurate than environment map reflections. How-

ever, the structure of the sample map is evident in both images. These blocky artifacts,

which are prominent in the table texture and the teapot knob reflections, are caused by

abrupt transitions between points in the sample map. To smooth out the transition, I

perform a blend between the resulting radiance:

Lspecular(x;~v) ≈ Frefl(Li(spt0(u, v); θ, φ), Li(spt1(u, v); θ, φ),

Li(spt2(u, v); θ, φ), Li(spt3(u, v); θ, φ)), (4.6)

CHAPTER 4. SPECULAR REFLECTIONS 40

Figure 4.2:Lspecular term for mirror reflections rendered using the closest sample point
in angular space.

where

Frefl(Li(spt0(u, v); θ, φ), Li(spt1(u, v); θ, φ), =
3∑

j=0

BjLi(sptj(u, v); θ~rv , φ~rv),

Li(spt2(u, v); θ, φ), Li(spt3(u, v); θ, φ)) (4.7)

for some basis functionBj.

CHAPTER 4. SPECULAR REFLECTIONS 41

4.2 Blending Basis Functions

In selecting a basis function for blending, we must ensure the basis functions form a

partition of unity: ∑
j

Bj = 1. (4.8)

The first obvious blend to try is an average of the incident radiance:

Bavg
j =

1

4
. (4.9)

The result is shown in Figure4.3.

Similar to early lumigraphs [42, 48, 67, 101], this basis function produced blurring

and ghosting artifacts, especially in the teacup and table texture reflections, because all

Figure 4.3:Lspecular term for mirror reflections rendered usingBavg.

CHAPTER 4. SPECULAR REFLECTIONS 42

radiance samples were given equal weight. It is desirable then to give more weight to

samples with higher accuracy. Note that another cause for the blurriness is the data

set’s resolution: the 256×256 data set produces clearer reflections than the 128×128 one

(Section6.4).

~n

(u, v)

~rv

sptj(u, v)~sj

~rv

x

Figure 4.4: Geometry of reflection for offset surface light fields.

Next, I tried a basis function based on the cosine lobe. Let~sj = ‖sptj(u, v) − x‖

(Figure4.4). Then the blending function is defined by:

B~r
j =

max(〈~rv, ~sj〉N , 0)∑
j max(〈~rv, ~sj〉N , 0)

, (4.10)

where~rv is the reflection vector. This blending function is similar to a Phong lobe [16]

and its shape is controlled by the parameterN . The inner product achieves a maximum

value when~sj = ~rv. When this occurs, indexing intosptj(u, v)’s cube map in direc-

tion ~rv produces a 100% accurate reflection:Li(sptj(u, v);~rv). Furthermore, the inner

product decreases to zero as the angle between~sj and~rv increases. This means that

points which give more accurate reflection samples are given more weight. The basis

CHAPTER 4. SPECULAR REFLECTIONS 43

function is clamped below by zero to avoid using points in the opposite hemisphere of~rv

(since〈~rv, ~sj〉 < 0 if and only if the angle between~rv and~sj is greater than90◦). Points

in this hemisphere will usually give a more erroneous radiance sample unless they are

closer tox than the other sample points and the angle between~rv and~n is small. To

simplify the algorithm, the weights of these points are set to zero (as an aside, I also tried

B|~r|
j =

∣∣∣∣ 〈~rv ,~sj〉N∑
j
〈~rv ,~sj〉N

∣∣∣∣ but this basis function produced more artifacts). Finally, the basis

function is normalized by the sum of all the inner products so they partition unity. Note

that whenN = 0, this basis function reduces toBavg.

The result of usingB~r is shown in Figure4.5. Compared to the previous results,

blurriness and ghosting artifacts are reduced but still visible. AsN increases, so does the

sharpness of the reflections. The structure of the sample maps is also visible, especially

for higher values ofN . Lastly, the reflections are still more accurate than the environment

map result.

Although the results are quite accurate, they do not look smooth and this is predomi-

nantly due to the sample maps’ structure. To reduce the visibility of this structure, I used

the following basis function instead:

B~n
j =

〈~n,~sj〉N∑
j〈~n,~sj〉N

, (4.11)

where~n is the normal atx and N controls the shape of the cosine lobe. This basis

function simplifies the implementation because〈~n,~sj〉 ≥ 0 by construction of the sample

maps and themax(. . .) function inB~r can be avoided. Using the same analysis as before,

points further away from the normal in angular space will contribute less to the result.

This implies more weight is given to points closer tox and therefore the basis function’s

CHAPTER 4. SPECULAR REFLECTIONS 44

(a) N = 1 (b) N = 4

(c) N = 8 (d) N = 16

Figure 4.5:Lspecular term for mirror reflections rendered usingB~r for variousN .

support is more centred aroundx. This produces a smoother blend between radiance

samples, especially across texel boundaries in the sample map. However, this smoothing

comes at a cost of losing some accuracy, because sampling the reflection fromLi using

~sj = ~n is only accurate if~rv = ~n.

The result of usingB~n is shown in Figure4.6. As expected, transition between texel

boundaries appear more continuous at the expense of some accuracy. My own obser-

vations, performed on a CRT monitor, show thatN = 4 results in the most visually

CHAPTER 4. SPECULAR REFLECTIONS 45

(a) N = 1 (b) N = 4

(c) N = 8 (d) N = 16

Figure 4.6:Lspecular term for mirror reflections rendered usingB~n for variousN .

smooth image. I defined the most visually smooth image as the image which has the

least artifacts due to visual discontinuities, as perceived by the observer. Even though

the images are less accurate than in the previous result, it is still visibly more accurate

than environment map reflections.

Putting together the diffuse and specular components to construct the OSLF in Equa-

CHAPTER 4. SPECULAR REFLECTIONS 46

tion 3.6, with added reflections, we get:

Poslf = F = Frecon + Cs ∗ Frefl. (4.12)

Here,Frecon is the diffuse component of the teapot andFrefl is its mirror reflection. The

result of this evaluation is shown in Section6.4, Figure6.3. This construction can also

be applied to any object for which additional mirror reflections are desired. In the latter

case,Frecon will be the object’s original material, which could in itself incorporate many

complex effects, andFrefl is the mirror reflection obtained by the above algorithm.

4.3 Texture Cache

Most consumer systems today do not have enough main memory, let alone texture mem-

ory, to store the 1.325 GBs required for the smallest data set. That means most of the

data must be stored on slow access hard disks. Even with an Ultra3 SCSI (also known

as Ultra160 Wide) controller, software rendering times for reflections were around half

an hour per frame. To get around this bottleneck, a texture caching system was imple-

mented. As the shader is meant to be executed on a GPU, this texture caching system

must be compatible with graphics hardware for it to be useful.

I implemented three caching systems based on the least recently used (LRU) eviction

strategy [56, 112]. The LRU cache replacement algorithm simply chooses the cache

entry that is least recently used as the eviction candidate. Although there are better

performing algorithms [56], such as least frequently used (LFU), LRU is one of the

most popular in commercial applications because of its simple implementation. LRU

CHAPTER 4. SPECULAR REFLECTIONS 47

is easily implemented in my software shader: a 32-bit counter is initialized to zero and

incremented every time the shader is called. Every time a texture is accessed, an entry

in the cache is created and associated with the current counter value. If the entry already

exists in the cache, then its counter value is updated with the current shader counter.

When the cache is full, a search of the cache line is performed and the entry with the

smallest counter value is replaced. Two separate cache lines are maintained: one for the

sample maps and one for the cube maps.

Sample maps are stored on disk in an uncompressed TIFF format which allows ran-

dom access between image rows; because of this, I decided to store only a single scanline

in its texture cache buffer. This means a cache miss will occur every time a different scan-

line had to be accessed. I found that a 2 item cache produced a 71.8% miss rate whereas

a 64 item cache produced a 15.6% miss rate. However, the actual rendering time only

differed by a second. This shows the bottleneck lies in cube map access.

Cube maps are stored on disk in a LZW-compressed TIFF format which only allows

sequential access; because of this, three different read strategies were employed: read

on demand, read half threshold, and read full image. The read on demand strategy reads

into the cache buffer everything from the start of the image to the requested texel. The

read half threshold strategy is the same as read on demand, except when the requested

texel lies in the second half of the image; in this case, the whole image is read into the

cache buffer. The reasoning is that future reads are likely to lie in the second half of the

image because of the way bilinear interpolation works. In the read on demand case, if a

second cache miss is produced at this stage, the algorithm would have read more data in

total than if it brought in the full image on the first access, avoiding a cache miss. Finally,

CHAPTER 4. SPECULAR REFLECTIONS 48

the read full image strategy reads in the whole image whenever a new cube map face is

requested.

Results (Section6.6) show that the read full image strategy has the lowest miss rate

and shortest rendering time. Since this read strategy parallels theOpenGL[103] and

DirectX [82] texture management systems, the miss rates on a hardware-accelerated im-

plementation should be similar. However, the data set sizes are still larger than I would

like. I discuss possible strategies to deal with the data set size in Section8.1.1.

Chapter 5

Bidirectional Reflection Distribution

Functions

Showing that OSLFs can handle accurate reflection is clearly not enough. Any represen-

tation for surface reflectance should not be reflection model limited. In this chapter, I will

show how OSLFs can be extended to handle arbitrary BRDFs. I will use Monte Carlo

integration to evaluate the rendering equation at the shaded point. Monte Carlo integra-

tion is well suited for this job because OSLFs already store results of Equation2.1 in

cube maps, for points close to the shaded point. These cube maps act as an illumination

cache that the integration algorithm can use. I begin by reviewing the key concepts from

Monte Carlo integration. Next, I will demonstrate evaluation of local illumination using

the anisotropic Ashikhmin and Shirley BRDF model [8]. This chapter concludes with a

description on how to use arbitrary BRDF models.

49

CHAPTER 5. BIDIRECTIONAL REFLECTION DISTRIBUTION FUNCTIONS 50

5.1 Monte Carlo Integration

Monte Carlo methods have been around since the 1940s. The principle behind Monte

Carlo integration is the use of random sampling to estimate integrals (hence the reference

to the infamousCasino de Monte-Carlo). I will quickly review the main results of Monte

Carlo methods but more detail can be found in Shreider [105] and Veach [119].

To evaluate an integral using the Monte Carlo technique, it is first converted into an

equivalent expected value problem using probability theory:

I =
∫

f(x)dx =
∫ f(x)

p(x)
p(x)dx = E

[
f(x)

p(x)

]
, (5.1)

wherep(x) is some arbitrary probability density function (PDF) which satisfiesp(x) > 0

wheneverf(x) 6= 0. The expected value is then estimated fromM random samples

generated with the PDFp(x), making uniform sampling unnecessary. This gives an

estimate for the integral:

I = E

[
f(x)

p(x)

]
≈ 1

M

M∑
i=1

f(xi)

p(xi)
, (5.2)

wherexi’s are the random samples. Monte Carlo methods are unbiased because the

estimatorf(x)
p(x)

is unbiased (Equation5.1). Finally, it can be proved that basic Monte

Carlo methods converge at a rate ofO
(

1√
M

)
[119].

CHAPTER 5. BIDIRECTIONAL REFLECTION DISTRIBUTION FUNCTIONS 51

5.2 The Ashikhmin and Shirley BRDF Model

I chose the Ashikhmin and Shirley model as the BRDF for demonstrating local illumina-

tion because it has an anisotropic specular term which produces a Phong-style specular

lobe. Anisotropic BRDFs are generally more difficult to handle than isotropic BRDFs.

Other properties of this BRDF that make it attractive are: it has intuitive control pa-

rameters, it satisfies the energy conservation and reciprocity principles, it incorporates

Fresnel effects, it allows for a non-Lambertian diffuse term (although I do not use their

diffuse term), and it is Monte Carlo friendly. Recently, Steigleder and McCool have

demonstrated a hardware-accelerated implementation of this BRDF [110].

The Ashikhmin and Shirley BRDF model incorporates ideas from Neumann and

Neumann [90], Schlick [102], and Ward [123]. At the simplest level, the BRDF de-

composes into specular and diffuse components:

fr(~v,~l) = fsr(~v,~l) + fdr(~v,~l), (5.3)

wherefsr is the specular reflection component andfdr is the diffuse reflection compo-

nent. This model is controlled by four parameters:Rs andRd specify the specular and

diffuse reflectance at normal incidence, andnu andnv are two Phong-like exponents that

control the shape of the specular lobe. The model’s diffuse term is

fdr(~v,~l) =
28Rd

23π
(1−Rs)

1−
(

1− 〈~n,~v〉
2

)5

1−

1− 〈~n,~l〉
2

5
 (5.4)

CHAPTER 5. BIDIRECTIONAL REFLECTION DISTRIBUTION FUNCTIONS 52

and its specular term is

fsr(~v,~l) =

√
(nu + 1)(nv + 1)

8π

〈~n,~h〉
nu〈~h,~t〉2+nv〈~h,~n×~t〉2

1−〈~h,~n〉2

〈~h,~k〉max(〈~n,~v〉, 〈~n,~l〉)
F (〈~k,~h〉), (5.5)

where

~h = ‖~v +~l‖ (5.6)

is the halfway vector between~v and~l,

F (〈~k,~h〉) = Rs + (1−Rs)(1− 〈~k,~h〉)5 (5.7)

is Schlick’s approximation of the Fresnel fraction [102], and~k can be either~v or~l.

To use the Monte Carlo method to estimate the rendering equation’s integral with this

BRDF model, first generate the random vector~h using the PDF

ph(~h) =

√
(nu + 1)(nv + 1)

2π
〈~n,~h〉

nu〈~h,~t〉2+nv〈~h,~n×~t〉2

1−〈~h,~n〉2 . (5.8)

This can be done by the following formula:

~h = (θ, φ)

=

arccos

(1− ξ2)

1(
nu〈~h,~t〉2+nv〈~h,~n×~t〉2

1−〈~h,~n〉2

)
+1

 , arctan

(√
nu + 1

nv + 1
tan

(
πξ1

2

)) ,

(5.9)

where(ξ1, ξ2) are two random numbers uniformly distributed in[0, 1) and[0, 1] respec-

CHAPTER 5. BIDIRECTIONAL REFLECTION DISTRIBUTION FUNCTIONS 53

tively. This results in a vector(θ, φ) ∈ [0, π
2
] × [0, π

2
). However, note the integration in

Equation2.1is over the hemisphereΩ. To ensure full coverage and stratification ofΩ, ξ1

is mapped to one of four functions depending on where it lies in[0, 1). For example, if

ξ1 ∈ [0.5, 0.75) then evaluateφ(1− 4(0.75− ξ1)) using Equation5.9and rotate it about

theφ = π axis. Next,~l is calculated using Equation2.4,

~l = 2~h〈~h,~v〉 − ~v, (5.10)

and it has the PDF

p(~l) =
ph(~h)

4〈~v,~h〉
. (5.11)

Finally, using Monte Carlo integration, the rendering equation can be estimated as:

L(x;~v) =
∫
Ω

fr(~ω(~v, ~n,~t), ~ω(~l, ~n,~t))Li(x;~l)〈~n,~l〉d~l

≈ 1

M

M∑
i=1

fr(~v,~l)Li(x;~l)〈~n,~l〉
p(~l)

. (5.12)

As the teapot in my scene already has a diffuse material applied to it, I chose to use

OSLF surface reconstruction (Section3.4) to obtain the diffuse term. The other option is

to usefdr from Equation5.4. The specular component, on the other hand, is calculated

using Equation5.5.

There are two ways to apply the Monte Carlo method for OSLFs. The first method

performs Monte Carlo integration at each of the sample pointssptj(u, v) separately and

then blends the results together. This is illustrated in the pseudocode below:

for each OSLF sample point {

CHAPTER 5. BIDIRECTIONAL REFLECTION DISTRIBUTION FUNCTIONS 54

Generate M random vectors (h).

for each h {

Look up radiance from cube map.

}

Accumulate using Equation 5.12 .

}

Blend results using Equation 4.7 .

On the other hand, the second method’s pseudocode is:

Generate M random vectors (h).

for each h {

for each OSLF sample point {

Look up radiance from cube map.

}

Blend results using Equation 4.7 .

}

Accumulate using Equation 5.12 .

This second method is similar to doing a specular reflection calculation for each random

vector and then accumulating the results an the outer loop. For largeM , I expect the

results of both methods to be similar. However, the first method uses more random

vectors. I chose to implement the first method because it was the simplest to code and

understand.

Just as in the case of specular reflection, usingB~n with N = 4 produced the smooth-

est looking results. Figure5.1 shows the results using theB~n blending function for

CHAPTER 5. BIDIRECTIONAL REFLECTION DISTRIBUTION FUNCTIONS 55

(a) nu = 10, nv = 1000 (b) nu = 100, nv = 1000 (c) nu = 1000, nv = 1000

(d) nu = 10, nv = 100 (e) nu = 100, nv = 100 (f) nu = 1000, nv = 100

(g) nu = 10, nv = 10 (h) nu = 100, nv = 10 (i) nu = 1000, nv = 10

Figure 5.1:Lspecular term for Ashikhmin and Shirley’s BRDF rendered usingB~n with
N = 4, Rs = 1, Rd = 0, and for various exponentsnu andnv. Monte Carlo integration
was used withM = 100 samples for each OSLF sample point.

various values ofnu andnv. The results for the other basis functions mirror the results

from the mirror reflection case and are not included here. Accuracy is not as important in

these renderings compared to the case of mirror reflections. This is because of the low-

frequency result produced when the lighting environment is convolved with the BRDF.

Very high values ofnu andnv, however, will produce sharp mirror-like reflections and

CHAPTER 5. BIDIRECTIONAL REFLECTION DISTRIBUTION FUNCTIONS 56

B~r may be used instead if accuracy is needed.

5.3 Arbitrary BRDF Models

As mentioned before, the Ashikhmin and Shirley BRDF model was chosen because it

is a fairly general model with anisotropic properties. This makes it a good test case for

OSLFs. This section shows how OSLFs can handle arbitrary BRDFs.

There are two ways to generalize this approach for arbitrary BRDFs. The first one

performs Monte Carlo integration to evaluate the arbitrary BRDF at each of the OSLF

sample points,sptj(u, v), separately and then blends the results together to approximate

the BRDF atx(u, v). The second one evaluates the arbitrary BRDF for each random~l

at eachsptj(u, v) separately, blends the results to approximate the incoming radiance

at x(u, v) for that particular~l , and then accumulates all the results using Monte Carlo

integration. These methods are listed in pseudocode at the end of Section5.2.

Implementing either of these methods will allow the use of arbitrary BRDFs. This

shows my representation is not reflection model limited and can be used to evaluate local

illumination generally. Performing the evaluation this way can also be thought of as using

the OSLF as an illumination cache which stores the illumination at every sample point.

Rendering involves looking up lighting information from this illumination cache instead

of going out to the environment to gather radiance—as in the case of the computationally

intensive methods listed in Section2.1.1.

To put everything together, Equation4.12 is evaluated. For my case,Frecon is the

diffuse component of the teapot andFrefl is the newly applied Ashikhmin and Shirley

specular BRDF model. The result of this evaluation for the Ashikhmin and Shirley BRDF

CHAPTER 5. BIDIRECTIONAL REFLECTION DISTRIBUTION FUNCTIONS 57

model is shown in Section6.5, Figure6.4. This construction can also be applied to

any object for which an additional BRDF model needs to be imposed. In the latter

case,Frecon will be the object’s original material, which could in itself incorporate many

complex effects, andFrefl is the additional BRDF evaluated using the above algorithm.

Chapter 6

Results

This chapter begins with a description of error metrics used to evaluate the results and

proceeds to discuss the results of surface reconstruction, mirror reflections, and the

Ashikhmin and Shirley BRDF in detail. Furthermore, it examines sources of error

and describes minor implementation tweaks that were made to remove visible artifacts.

Statistics for the texture cache are also presented and the chapter concludes with a sum-

mary of the results. This chapter can be skimmed over if the amount of detail presented

here is not required.

6.1 Error Metrics

The difference between the final rendered images can be described qualitatively and

quantitatively. Qualitative evaluation is based on observations by the human eye and

tends to be subjective. On the other hand, quantitative evaluation is more objective be-

cause of its reliance on mathematically computable quantities. I will use both methods

58

CHAPTER 6. RESULTS 59

to evaluate OSLF results.

As previously mentioned, the camera view was chosen specifically so various effects

can be observed. Near-field reflection effects can be observed in the teacup and table

texture reflections while far-field reflection effects can be observed in the gazebo wall

and roof beam reflections. Object self-reflection occurs mainly for the teapot spout,

handle, and knob. Finally, object self-shadowing can be observed for the teapot handle

and knob. Qualitative evaluation involves critical examination of areas with these effects.

Since qualitative evaluation depends on viewing conditions such as ambient light,

angle and distance between the eye and the display, and display characteristics, quanti-

tative evaluation presents a more objective measure of image differences. The metrics

used for quantitative evaluation are divided into two categories: distortion metrics and fi-

delity metrics. Distortion metrics describe a mathematically measurable physical change

between images. Examples are colour, intensity, and noise. Fidelity metrics, on the other

hand, describe a mathematically computable perceptible difference between images us-

ing models of human vision and perception. Examples are the Daly Visual Differences

Predictor [28] and Sarnoff Visual Discrimination Model [70]. I will use a simpler metric

based on the CIEL*a*b* space [126]. The CIEL*a*b* space is a perceptually uniform

colour space defined by theCommission Internationale de L’Éclairage(CIE) for subtrac-

tive colours (in contrast to the CIEL*u*v* space which is for additive colours). In this

space, two colours which are perceived to be equally distant by viewers in specific view-

ing conditions are also numerically equidistant. The L* channel represents luminance

relative to a reference white, the a* channel represents the red-green continuum, and the

b* channel represents the yellow-blue continuum. I will perform a root mean-squared

CHAPTER 6. RESULTS 60

error (RMSE) calculation in this space and tabulate the results. Although the RMSE

distortion metric is not suitable for measuring difference in many areas [39], perform-

ing RMSE in the perceptually based CIEL*a*b* space avoids some of its shortcomings.

However, this measure still does not capture differences due to geometric distortions;

defining a measure to compare two images perceptively is still an open research area.

I’ve also included the RMSE in RGB space as a reference. To maintain numerical preci-

sion, 655×460, 32 bits per channel, IEEE floating-point images were used for the error

calculation.

6.2 Sample Maps

Preprocessing results have already been shown in Section3.3. However, there is an

unavoidable point registration error introduced at this step. This error is the difference

between the coordinates of surface points generated by my surface evaluation algorithm

[75] and BMRT’s surface intersection algorithm. When considering the same point on

the surface, I have found the error is usually between 0.01 and 0.0075 units; for compar-

ison, the diameter of the teapot’s rim is approximately three units. Therefore, the points

generated to represent sample map texels are not as accurate as I would like.

6.3 Surface Reconstruction

When comparing surface reconstruction results of ray tracing versus OSLFs (Figure3.7),

the final images are virtually identical. Object self-shadowing is also reproduced be-

cause the shadows were present at the data acquisition stage. However, early surface

CHAPTER 6. RESULTS 61

(a) Final rendering. (b) Early rendering.

Figure 6.1: Surface reconstruction results.

reconstruction renderings (Figure6.1(b)) contained errors in the image, especially on the

teapot rim and knob, due to sampling the cube map near the horizon (i.e.φ close to90◦).

At these glancing angles, the area around the shaded point occupies a very small portion

of view. To see this, take a piece of paper and look at it with the paper’s plane perpen-

dicular to your line of sight. Then slowly rotate the paper90◦ so that the paper’s plane

becomes almost parallel to your line of sight. As you rotate the paper, the visible surface

area decreases. This effect, coupled with aliasing artifacts in the cube maps, resulted in

an incorrect radiance being sampled. Note that this problem does not occur when sam-

pling radiance in the reflection or local lighting evaluation cases: since the sample points

are above the surface, we can sample in directions close toφ = 90◦ without problems,

although with reduced accuracy.

There are many solutions to the sampling near the horizon problem. First, by in-

creasing the resolution of the acquired cube maps, aliasing artifacts will be reduced and

so does the occurrence of this problem. Second, by increasing the sampling density of

the surface, the likelihood of the preprocessing algorithm choosing sample points near

CHAPTER 6. RESULTS 62

the horizon decreases. As the proportion of chosen sample points near the horizon de-

creases, the effect of these points on surface reconstruction is reduced and so are the

artifacts in Figure6.1(b). Third, decreasing the angle toleranceφsamplemap (Section3.3)

in sample map generation also helps reduce the occurrence of this problem. The third

solution is the most attractive because it does not involve regenerating or reacquiring a

new the data set. However, by decreasingφsamplemap, the preprocessing algorithm might

not find four OSLF sample points within the angle of tolerance for each texel. So in-

stead, at runtime the shader finds the closest OSLF sample point within a specified angle

of tolerance,φshader, from the shaded point’s normal and uses that point to sample the

surface. I usedφshader = 65◦ for my renderings. Note that this angle is distinct from

theφsamplemap angle used in sample map generation becauseφsamplemap is specified with

respect to the point in the middle of the sample map texel whereasφshader is specified

with respect to the point shaded at runtime.

This brings up the issue of finding enough sample points for each sample map given

φsamplemap. One solution is to allow for less than four sample points per texel by stor-

ing an invalid index; in fact, I have tried this solution with excellent results. However,

this adds to the runtime shader complexity, for example, by having to assigning zero

weight to invalid sample points. Instead, I elected to base the surface sampling density

on φsamplemap. For a smaller value ofφsamplemap, a higher surface sampling density is

needed to obtain four sample points per texel. This implies that areas with high surface

curvature will have a higher sampling density. The sampling density is fixed per Bézier

patch but is allowed to vary across patches. Finally, I would like to keepφsamplemap as

large as possible to decrease data set size and also because reflections are not affected by

CHAPTER 6. RESULTS 63

this issue as much. This is why the valueφsamplemap = 85◦ was chosen.

One final surface reconstruction implementation issue concerns the use of curved

surfaces. This issue does not occur for triangular mesh objects. When shading high cur-

vature curved surfaces, a sample point below the horizon might be used. In Figure6.2,

texel
X

A

B

Y

~n

T

Figure 6.2: Geometry of the curved surfaces problem.

assume the preprocessing algorithm selects pointT to represent a texel. Further assume

that sample pointsA andB are stored in that texel and thatA is closer toT thanB.

When shading pointX, sample pointA is used to determine the reflected radiance atX

because it is closest toT. The same is true for shading pointY. However, usingA in

this case is incorrect becauseY is not visible fromA: A lies in the lower hemisphere of

Y. Fortunately,φshader accounts for this problem as well.

After accounting for these sources of error, one artifact remains when comparing the

final results (Figure3.7). Examining the teapot’s lid near the rim, there are some small

CHAPTER 6. RESULTS 64

patches of lighter shade—especially near the teapot handle. Violation of the free space

precondition causes these lighter patches to appear. At these regions, the sample map

generation routine determined that the closest points lie on the other side of the rim.

Therefore, the outer rim’s lighter colour is sampled when sampling in the direction of

the shaded point, resulting in these lighter regions. By decreasing the distance,ε, to the

surface, this artifact is reduced and this was observed when I compared theε = 0.25

andε = 0.1 data sets. Figure3.7(b)shows the teapot rendered with theε = 0.1 data

set although some of these artifacts still remain. Another solution is to incorporate a

depth correction term similar the original lumigraph paper [42]. This would be easy

to do, for example, by storing cube maps in RGBZ format instead of RGB and then

using thez coordinate to check for point concordance. AsBMRT does not output the

z coordinate (due to a bug in its RGBZ 32-bit IEEE floating-point output), I did not

try this option. To completely eliminate this artifact, the free space condition has to be

checked for every point in preprocessing. This problem is not unique to OSLFs as other

image-based rendering methods, such as light fields and SLFs, also assume free space

data acquisition.

Method Root Mean-Squared Error
L* a* b* R G B

OSLF128 0.005351 0.012321 0.034318 0.000590 0.000952 0.004827
OSLF256 0.004679 0.007938 0.021619 0.000537 0.000892 0.003098

Table 6.1: Comparison of OSLF surface reconstruction to a ray traced result using
RMSE.

Table6.1compares the quantitative surface reconstruction quality between OSLF and

ray trace methods; the subscripts indicate the resolution of cube maps used. Since RMSE

roughly indicates the average change in a pixel between the two rendering methods, these

CHAPTER 6. RESULTS 65

results show that there is very little difference between ray tracing and OSLFs for surface

reconstruction. As expected, using a higher resolution cube map improves rendering

quality.

6.4 Specular Reflections

(a) Ray trace (b) Environment map

(c) Offset surface light field withB~n, N = 4.

Figure 6.3: Full surface reconstruction with added specular reflection rendered using
three methods.

Qualitatively, OSLF approaches produce more accurate mirror reflections than the

CHAPTER 6. RESULTS 66

environment map approach. Near-field objects, such as the teapot, look more distant

when using environment mapped reflections. In OSLF approaches, the teacups appear

in the same areas as the ray traced reflections. When using theB~r blending function,

the shapes of the teacups are very accurate compared with the slightly enlarged teacups

when usingB~n. Also, while theB~n renderings exhibit more blurriness than theB~r’s, the

latter blending function makes the structure of the sample maps more visible (e.g. in the

knob’s reflection and table texture). The distortion of the table texture near the bottom of

the teapot in the environment map rendering is also reduced in the OSLF renderings.

Similar comments can be made about far-field objects such as the gazebo structure

and roof beams. One obvious flaw in the environment map rendering is the roof beam

distortion near the knob. The OSLF renderings reproduces this reflection accurately.

Teapot self-reflection is notably absent in the environment map rendering whereas

they appear accurately in the OSLF renderings. Reflections of the teapot spout, handle,

knob, and teapot shadow appear in the same general area as in the ray traced rendering.

Note that the reflection of the handle and knob appear on the teapot body as shadowed

areas, because these areas were in shadow when the scene was acquired. Only one level

of self-reflection is possible in a single pass with OSLFs, whereas a ray traced rendering

can have many levels. Furthermore, the reflections are not as sharp as the ray traced coun-

terpart. This is to be expected because of the blending functions used and also because

OSLFs sample from preacquired, fixed-resolution cube maps. Increasing the resolution

of the cube maps helps to reduce blurriness. I have observed, however, that OSLFs match

environment maps in terms of resolving texture detail for the same resolution cube maps.

Table6.2compares the quantitative specular reflection quality between environment

CHAPTER 6. RESULTS 67

Method Root Mean-Squared Error
L* a* b* R G B

EnvMap128 0.198457 0.267233 0.301128 0.074420 0.039586 0.036783
EnvMap256 0.204308 0.268992 0.301899 0.074699 0.041149 0.037367

Distance128 0.136457 0.248841 0.294089 0.072282 0.023559 0.031592
Distance256 0.123106 0.245717 0.292770 0.071869 0.019287 0.030598
Angle128 0.138536 0.249629 0.294369 0.072318 0.024135 0.031722
Angle256 0.125873 0.246529 0.293082 0.071922 0.020223 0.030760

Bavg
128 0.137826 0.249274 0.294176 0.072320 0.023969 0.031726

Bavg
256 0.124964 0.246195 0.292920 0.071915 0.019981 0.030739

B~r
128, N = 1 0.137538 0.249262 0.294211 0.072296 0.023922 0.031665

B~r
128, N = 4 0.137685 0.249351 0.294255 0.072292 0.023942 0.031650

B~r
256, N = 4 0.125065 0.246274 0.292982 0.071902 0.020026 0.030705

B~r
128, N = 8 0.137939 0.249434 0.294283 0.072295 0.023991 0.031662

B~r
128, N = 16 0.138215 0.249515 0.294307 0.072301 0.024058 0.031681

B~n
128, N = 1 0.137068 0.248988 0.294078 0.072287 0.023745 0.031642

B~n
128, N = 4 0.136870 0.248949 0.294102 0.072283 0.023725 0.031616

B~n
256, N = 4 0.124759 0.246009 0.292878 0.071914 0.019957 0.030716

B~n
128, N = 8 0.136788 0.248932 0.294104 0.072283 0.023730 0.031609

B~n
128, N = 16 0.136858 0.248949 0.294114 0.072286 0.023778 0.031617

Table 6.2: Comparison of OSLF mirror reflections to a ray traced result using RMSE.

map and various OSLF blending functions with ray trace methods; the subscripts indicate

the resolution of cube maps used, “EnvMap” represents reflections generated using en-

vironment mapping, “Distance” represents reflections generated using the closest point

in Euclidean space, and “Angle” represents reflections generated using the closest point

in angular space. The bold numbers indicate the lowest RMSE in each channel, for

128×128 and 256×256 sized cube maps. In all cases, OSLF methods produce more ac-

curate reflections than environment mapping. While the RMSE metric indicates that the

closest point method produces the most accurate reflections, the discontinuities across

sample map texel boundaries do not make its images visually pleasing—this is a defect

CHAPTER 6. RESULTS 68

of the RMSE measure. While other techniques also produce results which are quanti-

tatively close to the lowest RMSE, theB~n blending function withN = 4 produces the

most visually smooth result. Finally, while OSLF methods become more accurate as

cube map resolution is increased, environment mapping actually becomes less accurate:

this is because the blurriness in the lower resolution environment map hide many errors

which appear at a higher resolution.

6.5 Bidirectional Reflection Distribution Functions

Due to time constraints, I did not implement a ray tracing, Monte Carlo evaluation of

local illumination for the Ashikhmin and Shirley BRDF model in aRenderManshader.

Therefore, a ray traced result is not available for comparison. However, when this BRDF

is convolved with the lighting environment, a lower frequency result is usually produced

(Figure6.4). Therefore, accuracy is not as much a factor in this case compared to mirror

reflections. Since the mirror reflection results show OSLFs are more accurate than envi-

ronment maps but slightly less accurate than the ray traced result, this comparison will

also hold when evaluating local illumination with a BRDF.

In evaluating local illumination at a point (Equation2.1), radiance is sampled from

directions over the hemisphere and then convolved with the BRDF. Specular reflection

results show OSLFs can sample radiance in the reflection direction more accurately than

the environment map approach (and almost as accurately as a ray tracer). This implies it

can also sample radiance in any direction over the hemisphere more accurately than the

environment map approach (and almost as accurate as a ray tracer). Therefore, I expect

local lighting evaluation using OSLFs to be more accurate than environment map based

CHAPTER 6. RESULTS 69

(a) nu = 10, nv = 10 (b) nu = 100, nv = 100

(c) nu = 1000, nv = 1000

Figure 6.4: Full surface reconstruction with added Ashikhmin and Shirley BRDF.

approaches but slightly less accurate than ray tracing approaches. We can very roughly

validate my lighting computation by comparing Figure5.1 to the metallic spheres in

Ashikhmin and Shirley [8], which were generated with Monte Carlo-based ray tracing.

Examining both set of images show the surface reflectance properties of the teapot is

similar to the metallic spheres.

Finally, OSLFs also incorporate object self-shadowing due to local illumination eval-

uation. These shadows come naturally because evaluating the rendering equation at

CHAPTER 6. RESULTS 70

points on the surface takes this factor into account automatically. This self-shadowing ef-

fect is distinct from the preacquired shadows reproduced by surface reconstruction (Fig-

ure 6.1(a)) and the effect can seen more clearly by examining the specular term of the

BRDF: Figure5.1 reveals shadows of the teapot’s handle and knob on its body. These

shadows, which are really due to one level of radiance transfer at these areas, cannot

be generated by prefiltered environment map based approaches unless specific provi-

sions are made to encode the radiance transfer function [59, 109]. Furthermore, since

prefiltered environment map based approaches are only valid for the chosen centre of

projection, concave objects such as the teapot will display obvious lighting inaccuracy in

their concavities. OSLFs do not suffer from this flaw because local lighting is computed

based on the position in space of the surface point being shaded.

6.6 Texture Cache

This section presents statistics for the texture cache. All images were rendered on a dual

Intel Xeon2 GHz processor, with 2 GBs of shared main memory, an Adaptec AIC7899

Ultra160 SCSI adapter, and a QuantumAtlasWLS 10K3 10,000 RPM 36 GBs Ultra160

SCSI drive.BMRT, however, is a single threaded renderer. Timings are in hh:mm:ss for-

mat which indicate actual processor time used and were obtained usingBMRT’s statistics

output option.

Table6.3 shows the statistics for the sample map cache. These timings only reflect

the time spent indexing into the sample maps and does not take in account the rest of the

shading process. These results show that sample map indexing is not a bottleneck, even

though the maps are stored on hard disk.

CHAPTER 6. RESULTS 71

Cache Size Time Miss Rate
2 00:00:28 71.80%
4 00:00:28 59.41%
8 00:00:27 44.03%
16 00:00:27 31.65%
32 00:00:27 22.20%
64 00:00:27 15.60%

Table 6.3: Sample map cache statistics.

Cache Size Time Miss Rate
0 00:07:26 100.00%
2 00:01:51 24.92%
4 00:01:30 18.67%
6 00:01:22 16.43%
8 00:01:19 15.51%
16 00:01:14 13.99%
32 00:01:11 13.15%

Table 6.4: Cube map cache statistics for surface reconstruction.

Table6.4 shows the statistics for surface reconstruction using the read on demand

strategy. As expected, the rendering times decrease as the size of the cache increases.

Even with a two item cache, the cube map cache provides an impressive improvement

in the rendering times. However, these results show that there is not much benefit going

beyond a 16 item cache as the rendering times start to level out.

Cache Size Time Miss Rate
0 00:27:19 100.00%
4 00:04:04 16.71%
8 00:02:13 8.32%
16 00:01:34 5.19%
32 00:01:19 4.08%

Table 6.5: Cube map cache statistics for specular reflections.

Table6.5shows the statistics for specular reflection using the read on demand strat-

CHAPTER 6. RESULTS 72

egy. OnlyLspecular is computed in this case. The effects of increasing the cache size

are seen more dramatically here because generating reflections involves many more cube

map accesses compared to reconstructing the object’s surface. Again, there is not much

improvement going from a 16 item cache to a 32 item cache.

M nu nv Cache Size Time Miss Rate
100 10 10 0 07:36:10 100.00%

8 00:07:27 0.95%
16 00:04:45 0.46%
32 00:04:00 0.32%

100 100 100 0 08:58:10 100.00%
8 00:04:03 0.30%
16 00:03:30 0.21%
32 00:03:21 0.17%

100 1000 1000 0 09:18:11 100.00%
8 00:03:21 0.20%
16 00:03:08 0.16%
32 00:03:05 0.14%

Table 6.6: Cube map cache statistics for Ashikhmin and Shirley’s BRDF model.

Table6.6shows the statistics for evaluating the Ashikhmin and Shirley BRDF model

for the teapot surface using the read on demand strategy. Again, onlyLspecular is com-

puted. A huge improvement in rendering time is obtained when using a cache size of

eight items compared to not using a cache. However, the improvements in rendering

time when increasing the cache size beyond eight items are not as dramatic. These re-

sults also show that a 16 item cache seems to be sufficient for this scene.

Finally, Table6.7compares the various image reading strategies. The read full image

strategy performs the best. Since most graphics APIs, such asOpenGL[103] andDirectX

[82], manage textures on an image level (although individual driver implementations

may do something different), these texture cache statistics should be similar when the

CHAPTER 6. RESULTS 73

Image Reading StrategyCache Size Time Miss Rate
Read on demand 0 09:19:59 100.00%

8 00:05:19 0.59%
16 00:04:26 0.35%
32 00:04:08 0.29%

Read half threshold 32 00:03:00 0.14%
Read full image 32 00:02:45 0.05%

Table 6.7: Cube map cache statistics for various image reading strategies.

algorithm is migrated to a hardware-accelerated platform.

6.7 Summary

Offset surface light fields can reproduce the original surface’s diffuse material accurately

if the free space precondition is met. In addition, reflections generated with OSLFs

are more accurate than the environment map approach but less accurate than ray trac-

ing. However, OSLFs still have some disturbing visual discontinuities even though their

measured error is lower. OSLFs can model one level of radiance transfer (e.g. object self-

reflection) in a single pass, which is generally missing in environment map approaches.

However, ray tracing approaches do better by allowing multi-level self-reflection. For

OSLFs, the choice between which blending function to use is a choice between trading

off reflection accuracy against visual smoothness. OSLFs can also evaluate local illumi-

nation efficiently by using the cube maps as an illumination cache. Furthermore, direct

object self-shadowing can be reproduced accurately if the shadows were preacquired.

Indirect object self-shadowing, due to local illumination, is generated for free because

evaluating the rendering equation already takes this effect into account. These effects

are not possible with environment map based approaches. Although there was insuf-

CHAPTER 6. RESULTS 74

ficient time to implement a ray tracing, Monte Carlo evaluator for the Ashikhmin and

Shirley BRDF model in theRenderManshading language, the reasoning in Section6.5

can convince us that this method will be more accurate than single point of projection

approaches. The statistics in Section6.6further show that this approach is texture cache

friendly. Lastly, the downsides of OSLFs compared to ray tracing are counterbalanced by

the fact that OSLFs can be used for real-time rendering whereas ray tracing approaches

currently cannot. Real-time rendering of OSLFs are, however, constrained by memory

usage.

Chapter 7

Hardware Implementation

“All processors aspire to be general-purpose”,Tim van Hook.

This chapter sketches a hardware-accelerated implementation for offset surface light

fields. At the time of this writing, the NVIDIAGeForce FXseems to be a promising can-

didate as an implementation platform. However, cards based on this GPU are only slated

for launch next year. My algorithm targets a GPU with more general programming fea-

tures than those available today. The trend in GPU design is to move from fixed-function

graphics pipelines, with feature-based interfaces, to those with limited programmability

and assembly-language like interfaces. Upcoming graphics hardware will push this trend

even further to more general purpose architectures, with higher precision, a convergence

of vertex and fragment pipelines [5], along with high-level programming interfaces.

I implemented my software shader usingRenderMan’s shading language API version

3.1 and C++, and tested it usingBMRT. Note that the shader is fully implementable using

the 3.2 version API. However, sinceBMRTdoes not support this version (specifically the

array data type), I had to revert to writing portions of code usingRenderMan’s C/C++

75

CHAPTER 7. HARDWARE IMPLEMENTATION 76

DSO framework. As Proudfoot et al. have already demonstrated a partial implementa-

tion of theRenderManshading language on current GPUs [94], I expect future GPU

and compiler advancements will be able to compile my shader to a hardware-accelerated

platform. Current high-level shading languages such as ATI’sRenderMonkey[20], Mi-

crosoft’sDirectX 9 HLSL(High-Level Shading Language) [83], NVIDIA’s Cg [91], and

OpenGL2.0’s shading language [1], already show some of this progress.

Curves &
Surfaces

Vertex
Processing

Rasterization Fragment
Processing

Buffer
Compositing

Frame
Buffer

Figure 7.1: General architecture for GPU rendering pipelines.

The general architecture for GPUs today is shown in Figure7.1 [80]. High-level

surface descriptions are converted into triangles which can then be modified by per-vertex

operations. Next, the triangles are rasterized and passed on to the fragment processor

where texture operations and per-pixel shading is performed. Finally, the results are

combined in the compositing stage and written to the frame buffer for display.

OSLFs should be easy to implement on a capable hardware-accelerated platform be-

cause of its simple parameterization. My implementation does most of its work in the

fragment processing stage, at the pixel level. The Bézier patches passed into the render-

ing pipeline are tessellated (e.g. with theGL NV evaluators OpenGLextension) and

rasterized. At the fragment processing stage, a texture shader looks up the four 16-bit

indices in the sample map corresponding to the patch being shaded. These indices are in

turn used to look up the four cube maps which store the light field at the corresponding

OSLF sample points. This step is referred to as dependent texturing because the results

of one texture map are used to index into another texture map. Note that these steps can

CHAPTER 7. HARDWARE IMPLEMENTATION 77

be compressed into one three-dimensional dependent texture look up but with a slightly

more complex implementation. To reconstruct the surface, the cube maps are indexed

in the direction of the surface point. To construct a mirror reflection, the cube maps

are indexed in the reflection direction. The results are then combined using blending

basis functions and accumulated with the results of the reconstruction stage. To apply

a BRDF, a loop construct is needed which generates random vectors to evaluate the lo-

cal illumination using Monte Carlo integration about the sample points. The results are

then combined using the blending basis functions and accumulated with the results of

the reconstruction stage.

There are many complications in implementing this algorithm on current hardware.

First, sample maps are stored in 16-bit integer format and cube maps in 32-bit floating-

point format so the rendering pipeline must be able to handle and perform arithmetic

operations with this level of precision throughout the pipeline. To my knowledge, only

the upcoming NVIDIAGeForce FXhas this capability. Second, a more general instruc-

tion set is needed at the fragment processing stage. At this stage, the sample map look

up returns 16-bit indices which are used to look up into a 32-bit cube map. Current hard-

ware and theGeForce FX, however, cannot index into arrays of textures but this can be

partially remedied by storing the acquired environment maps, as dual parabolic maps,

into a large texture. Then, indexing into the array of cube maps would be replaced by

indexing into a sub-square of a square texture. To perform the environment map look

up, the texture shader needs the shaded point’s coordinates and the stored coordinates

of the OSLF sample points corresponding to the cube maps. The shaded point’s coor-

dinates are usually obtained by interpolating between the triangle’s three vertices which

CHAPTER 7. HARDWARE IMPLEMENTATION 78

are generated at tessellation time. The OSLF sample point coordinates can be obtained

using another dependent texture look up to a texture which stores XYZ point coordinates

in RGB channels. Next, a point subtraction is performed and the resulting vector used to

bilinearly interpolate into the cube maps. However, to perform the horizon angle check

described in Section6.3, a dot product of the shaded point’s normal (obtained by an in-

terpolation step similar to the shaded point’s coordinates) and the index vector must be

computed. The result of this dot product can be stored in a four component vector or in

temporary GPU registers. Then the fragment program needs to check each component

of the vector to see if it satisfies the angle of tolerance criteria—returning a one if it does

and a zero otherwise into another four component vector. The program then scans this

vector to find the closest sample point which satisfies the angle of tolerance and uses it to

reconstruct the surface. The use of SIMD instruction sets [68] accelerate the calculations

at this stage. Similar operations are needed for generating specular reflections. Further-

more, the fragment program needs to calculate the basis functions for each sample point

and blend the results of the cube map look up. The specular reflection results are then

combined with the surface reconstruction results using presently available combiners

(e.g. theGL NV register combiners* extensions). For BRDF and local lighting

evaluation, a general loop construct is needed to accumulate the results of Monte Carlo

integration. Support for mathematical functions, such asarctan() andarccos(), are also

needed to evaluate the Ashikhmin and Shirley BRDF. For current hardware, however,

a popular approach to calculate these functions is to approximate them with a texture

look up into a precomputed look up table. Although a pseudo-random number generator

can be implemented in a fragment program with appropriate operations, a more likely

CHAPTER 7. HARDWARE IMPLEMENTATION 79

approach is to store a precomputed set of random numbers in a texture map and use that

instead.

Unfortunately, current pixel shader extensions, such as theGL NV texture sha-

der* extensions, do not have the capability (and instruction sets) to perform the opera-

tions described above. However, I am confident that OSLFs will be implementable in fu-

ture GPU designs as more general purpose instruction sets appear. This will probably be

true as functionality from vertex and fragment pipelines are combined, as GPUs evolve

towards more generality. One issue that might affect the performance of the hardware-

accelerated algorithm is the cost of transferring textures down the AGP bus to texture

memory. However, architectures which incorporate a virtual memory system, such as

the 3DlabsWildcat VP[2], will address this performance issue as it can make more ef-

ficient use of memory and reduce texture swapping. Because of its relatively simple

implementation and potential for SIMD hardware-acceleration, OSLFs should be able to

render at real-time frame rates.

Chapter 8

Conclusion

In this thesis I have presented a new parameterization of the lighting surrounding an ob-

ject. This offset surface light field representation allows for an accurate reconstruction of

the original object’s diffuse surface light field. Furthermore, additional reflections can be

incorporated into the surface’s material with increased accuracy over traditional reflec-

tion mapping approaches. Local illumination for points on the surface can be evaluated

efficiently using the OSLFs as an illumination cache and, if further desired, a completely

new bidirectional reflectance distribution function can be imposed onto the surface. The

simplicity of the algorithm and its texture cache friendliness lends itself to a real-time,

hardware-accelerated implementation. Such an implementation was sketched out for fu-

ture general-purpose graphics processors.

This new technique can be potentially used for visualizing various data sets in the

areas such as architecture, automotive design, industrial design, three-dimensional pho-

tography, museum display, motion picture production, and game design. Although not

as accurate as ray tracing approaches, a high-performance hardware-accelerated imple-

80

CHAPTER 8. CONCLUSION 81

mentation will allow real-time display rates and interactive manipulation not achievable

using traditional software based methods, although the approach presented is limited to

fixed illumination. Finally, the image-based roots of this approach allow it to accurately

portray effects from the physical world, which can be difficult to do using current algo-

rithms.

8.1 Future Work

OSLFs are based on work from reflection mapping and image-based rendering. Fu-

ture research topics to pursue include applying various refinements from those areas to

this parameterization and extending the class of renderings possible within the OSLF

paradigm.

8.1.1 Refining OSLFs

Basis Functions

I have presented basis functions which trade off smoothness for accuracy and vice versa.

Perhaps a blend of these two basis functions or a completely new basis function would

produce more accurate and visually smoother results.

Sensitivity Analysis

Besides sample map resolution, cube map resolution, and surface sampling density, the

accuracy of surface reconstruction and reflection sampling is sensitive to the distance

of OSLF sample points from the surface,ε, and the angles of tolerance,φshader and

CHAPTER 8. CONCLUSION 82

φsamplemap. Perhaps further analysis of these parameters will yield a basis function which

incorporates them to produce a better blending function.

Sampling Issues and Real World Data

Currently, sampling density is based on the simple criteria of finding enough samples to

fill the sample map givenφsamplemap. This does not necessarily ensure that the sample

points chosen are the best possible representations for the texel considered. An analysis

of surface curvature could potentially produce a better sampling pattern than the current

one. Moreover, OSLFs should be tested with data sets acquired from the physical world.

This would involve creating a rig which can record position accurately, within a small

tolerance, attached with a small rotating camera to acquire environment maps—the tiny

spy cameras come to mind. Gonioradiometers can also be adapted for acquiring physical

data.

Surface Reconstruction

I have presented an algorithm to reconstruct surfaces which is only valid for objects with

a diffuse texture. However, since the OSLF implicitly stores the object’s SLF for a fixed

number of outgoing vectors, we can roughly reconstruct a specular object’s reflectance

properties by adapting Cabral et al.’s [18] method or by applying a blending function

which favours the viewing direction,~v. In this case, data acquisition will involve render-

ing the object’s surface with the same BRDF to be used in the final real-time rendering,

and with reflections as required. However, it is to be determined how well these methods

will work.

CHAPTER 8. CONCLUSION 83

Compression and Storage

Light fields and SLFs have been shown to be readily compressible into forms which al-

low random access [24, 25, 84, 125]. OSLFs contain similar data redundancy and should

be compressible using previously known methods. Since OSLFs contain less data than

SLFs, the resulting data set should be smaller than an equivalent SLF data set. Fur-

thermore, representations other than cube maps can be used to store the OSLFs. For

example, it might be worthwhile to try storing the OSLFs in spherical harmonic form

as in Ramamoorthi and Hanrahan’s spherical harmonic reflection maps (SHRMs) [98].

This would allow more efficient evaluation of local illumination in the frequency do-

main. However, using their SHRMs naı̈vely would result in an explosion of storage

requirements, as they store nine spherical harmonic coefficients per cube map texel. Fur-

thermore, their SHRMs are only valid for prefiltering with isotropic BRDFs. Increasing

the order of SHRMs to handle high-frequency lighting is probably not a good idea as the

number of basis functions increases rapidly.

8.1.2 Extending OSLFs

Bump Mapping

Bump mapping is a technique to simulate surface detail without increasing the number

of triangles rendered. It relies on normals stored in a texture map to define bumps on

the surface. A small modification to the lighting calculation simulates the appearance

of bumps. Since all the information required for this calculation is available at shader

runtime, this technique can also be applied within the OSLF framework.

CHAPTER 8. CONCLUSION 84

Multiple Levels of Reflection

As mentioned before, the specular reflection generation algorithm can be applied recur-

sively to produce multiple levels of reflection. Specifically, we can reacquire cube maps

at the OSLF sample points after the initial reflection is calculated. By using these new

cube maps to perform another specular reflection calculation, we obtain an additional

level of reflection.

BRDFs and Interactive Materials

Various BRDFs can be used when evaluating local illumination at runtime. However,

if the GPU does not have the capabilities to evaluate complicated BRDFs, then another

approach is to preintegrate the cube maps with the BRDF (as discussed in Section2.1.2)

and then sample from these prefiltered cube maps. This would produce smoother results,

making the sample map structure less visible. The general idea of this approach is similar

to Cabral et al.’s algorithm [18] except our evaluation process is much simpler.

If the BRDF can be evaluated at runtime, we have the option of completely replacing

the surface material and letting users edit its parameters interactively. This is possible by

either ignoring the acquired SLF or by acquiring an object with a purely diffuse material

and incorporating a specular BRDF on top of it. Another possibility is to acquire the

object with a modified blue-screen technique which displays one colour where the object

is completely illuminated and another where the object is in shadow (a special shader

can accomplish this for virtual data sets). Evaluating local illumination at runtime then

allows for interactive manipulation of the surface material.

CHAPTER 8. CONCLUSION 85

Object Replacement

Instead of changing the surface material, we can completely replace the object. To do

this, we densely sample the space which the object is to reside in. Then preprocessing

will create sample maps for a number of objects using only relevant sample points. Ren-

dering different objects just involves switching between the different object geometries

and sample maps. This technique, however, cannot produce self-reflection and self-

shadowing effects unless special provisions are made to handle them. However, reflec-

tions and local illumination evaluation will remain reasonably accurate. This idea is

related to Greger et al.’s irradiance volumes [44].

Relighting

We can perform simple manipulation of the lighting environment by rotating the cube

maps before indexing. This can be done by changing the associated texture matrix at

runtime. To get around the fixed illumination assumption, it is possible to add additional

light sources to illuminate the object in real-time, as this data is readily available at

shader runtime and already hardware accelerated. This is almost the same approach used

by Neto and Bishop’s software implementation [29]. One problem with doing this is that

the added lights do not affect the environment in the preacquired cube maps. However,

this problem is about reproducing a second-order effect. All first-order effects will be

captured correctly.

CHAPTER 8. CONCLUSION 86

Thin Lens Refractions

Refractions can be simulated with OSLFs. Instead of indexing in the reflection direction,

we simply index in the refraction direction. Refractions generated this way, however, are

technically only valid for thin surfaces where the thin lens approximation holds [15] and

where there are no internal reflections.

Bibliography

[1] 3Dlabs. 3Dlabs’ OpenGL 2.0 specifications and white papers resource site.

http://www.3dlabs.com/support/developer/ogl2/index.htm, June 2002.3, 76

[2] 3Dlabs. 3Dlabs P10 Visual Processing Unit and Wildcat VP documentation.

http://www.3dlabs.com/support/developer/index.htm, June 2002.2, 79

[3] Edward H. Adelson and James R. Bergen. The plenoptic function and the elements

of early vision. In M. Landy and J. A. Movshon, editors,Computation Models of

Visual Processing, chapter 1, pages 3–20. MIT Press, Cambridge, MA, 1991.17

[4] Kurt Akeley. RealityEngine graphics. In James T. Kajiya, editor,Proceedings of

SIGGRAPH 1993, Computer Graphics Proceedings, Annual Conference Series,

pages 109–116. ACM SIGGRAPH, ACM SIGGRAPH / ACM Press / Addison-

Wesley, August 1993. Anaheim, CA, Aug 1-6, 1993.2

[5] Kurt Akeley and Pat Hanrahan. Real-time graphics architectures. CS448A Course

Slides, September 2001. http://www.graphics.stanford.edu/courses/cs448a-01-

fall/. 75

87

BIBLIOGRAPHY 88

[6] Tomas Akenine-M̈oller and Eric Haines.Real-Time Rendering. A K Peters, Ltd,

Natick, MA, second edition, 2002.2

[7] Anthony A. Apodaca and Larry Gritz.Advanced RenderMan: Creating CGI for

Motion Pictures. Morgan Kaufmann, New York, NY, 2000.2

[8] Michael Ashikhmin and Peter Shirley. An anisotropic Phong BRDF model.Jour-

nal of Graphics Tools, 5(2):22–32, 2002.9, 49, 69

[9] Harlyn H. Baker and Robert C. Bolles. Generalizing epipolar-plane image anal-

ysis on the spatiotemporal surface. InIEEE Computer Society Conference on

Computer Vision and Pattern Recognition 1988, pages 2–9, Washington, D.C.,

June 1988. SRI, Computer Society Press. Ann Arbour, MI, June 5-9, 1988.20

[10] David C. Banks. Illumination in diverse codimensions. In Andrew S. Glassner,

editor, Proceedings of SIGGRAPH 1994, Computer Graphics Proceedings, An-

nual Conference Series, pages 327–334. ACM SIGGRAPH, ACM SIGGRAPH /

ACM Press / Addison-Wesley, July 1994. Orlando, FL, July 24-29, 1994.9, 14

[11] Christopher M. Bishop.Neural Networks for Pattern Recognition. Oxford Uni-

versity Press, New York, NY, 1995.23

[12] James F. Blinn. Models of light reflection for computer synthesized pictures. In

James George, editor,Proceedings of SIGGRAPH 1977, Computer Graphics Pro-

ceedings, Annual Conference Series, pages 192–198. ACM SIGGRAPH, ACM

Press, July 1977. San Jose, CA, July 20-22, 1977.9

BIBLIOGRAPHY 89

[13] James F. Blinn and Martin E. Newell. Texture and reflection in computer generated

images.Communications of the ACM, 19(1):542–546, October 1976.3, 11

[14] Robert C. Bolles and Harlyn H. Baker. Epipolar-plane image analysis: A tech-

nique for analyzing motion sequences. In L. S. Baumann, editor,Proceedings:

Image Understanding Workshop, pages 137–148, San Mateo, CA, 1985. DARPA

/ SRI, Morgan Kaufmann. Miami Beach, FL, December 9-10, 1985.20

[15] Max Born and Emil Wolf. Principles of Optics. Cambridge University Press,

Cambridge, UK, seventh edition, 1999.86

[16] Phong Bui-Tuong. Illumination for computer generated pictures.Communications

of the ACM, 18(6):311–317, June 1975.9, 14, 42

[17] Brian Cabral, Nelson Max, and Rebecca Springmeyer. Bidirectional reflection

functions from surface bump maps. In Maureen C. Stone, editor,Proceedings of

SIGGRAPH 1987, Computer Graphics Proceedings, Annual Conference Series,

pages 273–281. ACM SIGGRAPH, ACM SIGGRAPH / ACM Press / Addison-

Wesley, July 1987. Anaheim, CA, July 27-31, 1987.10, 14

[18] Brian Cabral, Marc Olano, and Philip Nemec. Reflection space image based ren-

dering. In Alyn Rockwood, editor,Proceedings of SIGGRAPH 1999, Computer

Graphics Proceedings, Annual Conference Series, pages 165–170. ACM SIG-

GRAPH, ACM SIGGRAPH / ACM Press / Addison-Wesley, August 1999. Los

Angeles, CA, August 8-13, 1999.10, 14, 20, 82, 84

[19] Emilio Camahort, Apostolos Lerios, and Don Fussell. Uniformly sampled light

BIBLIOGRAPHY 90

fields. In George Drettakis and Nelson Max, editors,Rendering Techniques ’98,

Proceedings of the Eurographics Workshop on Rendering, pages 117–130, New

York, NY, June 1998. Eurographics, Springer Wien. Vienna, Austria, June 29-July

1, 1998. 19

[20] Drew Card and Jason L. Mitchell. RenderMonkey. SIGGRAPH 2002 presentation

slides, August 2002. http://www.ati.com/developer/techpapers.html.76

[21] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum. Plenop-

tic sampling. In Kurt Akeley, editor,Proceedings of SIGGRAPH 2000, Com-

puter Graphics Proceedings, Annual Conference Series, pages 307–318. ACM

SIGGRAPH, ACM SIGGRAPH / ACM Press / Addison-Wesley, July 2000. New

Orleans, LA, July 23-28, 2000.20

[22] Shenchang Eric Chen. QuickTime VR: An image-based approach to virtual envi-

ronment navigation. In Robert L. Cook, editor,Proceedings of SIGGRAPH 1995,

Computer Graphics Proceedings, Annual Conference Series, pages 29–38. ACM

SIGGRAPH, ACM SIGGRAPH / ACM Press / Addison-Wesley, August 1995.

Los Angeles, CA, August 6-11, 1995.16, 17

[23] Shenchang Eric Chen and Lance Williams. View interpolation for image syn-

thesis. In James T. Kajiya, editor,Proceedings of SIGGRAPH 1993, Computer

Graphics Proceedings, Annual Conference Series, pages 279–288. ACM SIG-

GRAPH, ACM SIGGRAPH / ACM Press / Addison-Wesley, August 1993. Ana-

heim, CA, Aug 1-6, 1993.16

[24] Wei-Chao Chen, Jean-Yves Bouguet, Michael H. Chu, and Radek Grzeszczuk.

BIBLIOGRAPHY 91

Light field mapping: Efficient compression and hardware rendering of surface

light fields. ACM Transactions on Graphics, 21(3):447–456, July 2002. SIG-

GRAPH 2002, San Antonio, TX, July 21-26, 2002.22, 83

[25] Wei-Chao Chen, Radek Grzeszczuk, and Jean-Yves Bouguet. Light field map-

ping: Hardware-accelerated visualisation of surface light fields. In Eugene Fiume,

editor,SIGGRAPH 2001 Course 46 Notes, Computer Graphics Proceedings, An-

nual Conference Series, pages 410–416. ACM SIGGRAPH, ACM SIGGRAPH /

ACM Press, August 2001. Los Angeles, CA, August 12-17, 2001.83

[26] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing.

In Hank Christiansen, editor,Proceedings of SIGGRAPH 1984, Computer Graph-

ics Proceedings, Annual Conference Series, pages 137–145. ACM SIGGRAPH,

ACM SIGGRAPH / ACM Press / Addison-Wesley, July 1984. Minneapolis, MN,

July 23-27, 1984.10

[27] Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer

graphics.ACM Transactions on Graphics, 1(1):7–24, January 1982.9

[28] Scott Daly. The visible differences predictor: An algorithm for the assessment of

image fidelity. In Andrew B. Watson, editor,Digital Images and Human Vision,

pages 179–206. MIT Press, Cambridge, MA, 1993.59

[29] Manuel M. de Oliveira Neto and Gary Bishop. Dynamic shading in image-based

rendering. Technical Report TR98-023, University of North Carolina at Chapel

Hill, May 1998. 20, 85

BIBLIOGRAPHY 92

[30] Paul Debevec. Eucalyptus grove light probe. http://www.debevec.org/Probes/,

1998. 29

[31] Michael Deering and David Naegle. The SAGE graphics architecture.ACM Trans-

actions on Graphics, 21(3):683–692, July 2002. SIGGRAPH 2002, San Antonio,

TX, July 21-26, 2002.2

[32] Philip Dutŕe, Eric P. Lafortune, and Yves D. Willems. Monte Carlo light tracing

with direct computation of pixel intensities. InProceedings of Compugraphics

’93, pages 128–137, December 1993. Alvor, Portugal.10

[33] Matthias Eck, Tony DeRose, Tom Duchamp, Hughes Hoppe, Michael Lounsbery,

and Werner Stuetzle. Multiresolution analysis of arbitrary meshes. In Robert L.

Cook, editor,Proceedings of SIGGRAPH 1995, Computer Graphics Proceedings,

Annual Conference Series, pages 173–182. ACM SIGGRAPH, ACM SIGGRAPH

/ ACM Press / Addison-Wesley, August 1995. Los Angeles, CA, August 6-11,

1995. 22, 26

[34] Gordon Elder. Radeon 9700. In Thomas Ertl, editor,Hot3D Presentations in

Graphics Hardware 2002, ACM SIGGRAPH / Eurographics Workshop on Graph-

ics Hardware. ACM SIGGRAPH / Eurographics, ACM SIGGRAPH / ACM Press,

August 2002. Saarbrüken, Germany, September 1-2, 2002.2

[35] Gerald E. Farin.Curves and Surfaces for CAGD: A Practical Guide. Academic

Press, Toronto, ON, fourth edition, 1998.27

[36] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.Com-

BIBLIOGRAPHY 93

puter Graphics, Principles and Practice. Addison-Wesley, Don Mills, ON, second

edition, 1996. Second Edition in C.9, 13

[37] Alain Fournier. Separating reflection functions for linear radiosity. In Pat Han-

rahan and Werner Purgathofer, editors,Rendering Techniques ’95, Proceedings of

the Eurographics Workshop on Rendering, pages 383–392, New York, NY, June

1995. Eurographics, Springer Wien. Dublin, Ireland, June 12-14, 1995.10

[38] Allen Gersho and Robert M. Gray.Vector Quantization and Signal Compression.

Kluwer Academic Publishers, Boston, MA, 1992.19

[39] Bernd Girod. What’s wrong with mean-squared error? In Andrew B. Watson,

editor,Digital Images and Human Vision, pages 207–220. MIT Press, Cambridge,

MA, 1993. 60

[40] Andrew S. Glassner.An Introduction to Ray Tracing. Academic Press, San Diego,

CA, 1989. 2, 3, 10

[41] Rafael C. Gonzalez and Richard E. Woods.Digital Image Processing. Addison-

Wesley, Don Mills, ON, 1992.20

[42] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen.

The lumigraph. In Holly Rushmeier, editor,Proceedings of SIGGRAPH 1996,

Computer Graphics Proceedings, Annual Conference Series, pages 43–54. ACM

SIGGRAPH, ACM SIGGRAPH / ACM Press / Addison-Wesley, August 1996.

New Orleans, LA, August 4-9, 1996.19, 41, 64

BIBLIOGRAPHY 94

[43] Ned Greene. Applications of world projections. InProceedings of Graphics In-

terface 1986, pages 108–114. Canadian Information Processing Society, Cana-

dian Human-Computer Communications Society / Morgan Kaufmann, May 1986.

Vancouver, BC, May 26-30, 1986.13

[44] Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Greenberg. The

irradiance volume. IEEE Computer Graphics and Applications, 18(2):32–43,

March 1998. 85

[45] Daniel Hall. The AR350: Today’s ray trace rendering processor. In Peter N.

Glaskowsky, editor,Hot3D Presentations in Graphics Hardware 2001, ACM SIG-

GRAPH / Eurographics Workshop on Graphics Hardware, pages 13–19. ACM

SIGGRAPH / Eurographics, ACM SIGGRAPH / ACM Press, August 2001. Los

Angeles, CA, August 12-13, 2001.3

[46] Xiao D. He, Kenneth E. Torrance, François X. Sillion, and Donald P. Greenberg.

A comprehensive physical model for light reflection. In Thomas W. Sederberg,

editor, Proceedings of SIGGRAPH 1991, Computer Graphics Proceedings, An-

nual Conference Series, pages 175–186. ACM SIGGRAPH, ACM SIGGRAPH /

ACM Press / Addison-Wesley, July 1992. Las Vegas, NV, July 28-August 2, 1991.

9

[47] Wolfgang Heidrich, Hendrik P. A. Lensch, Michael F. Cohen, and Hans-Peter

Seidel. Light field techniques for reflections and refractions. In Dani Lischinski

and Gregory Ward Larson, editors,Rendering Techniques ’99, Proceedings of the

BIBLIOGRAPHY 95

Eurographics Workshop on Rendering, pages 187–196, New York, NY, June 1999.

Eurographics, Springer Wien. Granada, Spain, June 21-23, 1999.20

[48] Wolfgang Heidrich, Hartmut Schirmacher, Hendrik Kück, and Hans-Peter Sei-

del. A warping-based refinement of lumigraphs. Technical Report 20, Universität

Erlangen-N̈urnberg, 1998.19, 41

[49] Wolfgang Heidrich and Hans-Peter Seidel. View-independent environment maps.

In Arie Kaufman and Wolfgang Strasser, editors,Proceedings of SIGGRAPH / Eu-

rographics Workshop on Graphics Hardware, ACM SIGGRAPH / Eurographics

Workshop on Graphics Hardware, pages 39–45. ACM SIGGRAPH / Eurograph-

ics, ACM SIGGRAPH / ACM Press, August 1998. Lisbon, Portugal, August

31-September 1, 1998.13, 20

[50] Wolfgang Heidrich and Hans-Peter Seidel. Realistic, hardware-accelerated shad-

ing and lighting. In Alyn Rockwood, editor,Proceedings of SIGGRAPH 1999,

Computer Graphics Proceedings, Annual Conference Series, pages 171–178.

ACM SIGGRAPH, ACM SIGGRAPH / ACM Press / Addison-Wesley, August

1999. Los Angeles, CA, August 8-13, 1999.2, 10, 14

[51] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynamically reparame-

terized light fields. In Kurt Akeley, editor,Proceedings of SIGGRAPH 2000, Com-

puter Graphics Proceedings, Annual Conference Series, pages 297–306. ACM

SIGGRAPH, ACM SIGGRAPH / ACM Press / Addison-Wesley, July 2000. New

Orleans, LA, July 23-28, 2000.19

BIBLIOGRAPHY 96

[52] Henrik Wann Jensen.Realistic Image Synthesis Using Photon Mapping. A K

Peters, Ltd, Natick, MA, 2001.2, 11

[53] Henrik Wann Jensen and Niels Jørgen Christensen. Photon maps in bi-directional

Monte Carlo ray tracing of complex objects.Computers & Graphics, 19(2):215–

224, March 1995.11

[54] James T. Kajiya. Anisotropic reflection models. In Brian A. Barsky, editor,Pro-

ceedings of SIGGRAPH 1985, Computer Graphics Proceedings, Annual Confer-

ence Series, pages 15–21. ACM SIGGRAPH, ACM SIGGRAPH / ACM Press /

Addison-Wesley, July 1985. San Francisco, CA, July 22-26, 1985.9

[55] James T. Kajiya. The rendering equation. In David C. Evans and Russell J. Athay,

editors,Proceedings of SIGGRAPH 1986, Computer Graphics Proceedings, An-

nual Conference Series, pages 143–150. ACM SIGGRAPH, ACM SIGGRAPH /

ACM Press / Addison-Wesley, August 1986. Dallas, TX, August 18-22, 1986.2,

7, 9, 10

[56] Ramakrishna Karedla, J. Spencer Love, and Bradley G. Wherry. Caching strate-

gies to improve disk system performance.IEEE Computer, 27(3):38–46, March

1994. 46

[57] Jan Kautz and Michael D. McCool. Interactive rendering with arbitrary BRDFs

using separable approximations. In Dani Lischinski and Gregory Ward Larson,

editors,Rendering Techniques ’99, Proceedings of the Eurographics Workshop on

Rendering, pages 281–292, New York, NY, June 1999. Eurographics, Springer

Wien. Granada, Spain, June 21-23, 1999.10

BIBLIOGRAPHY 97

[58] Jan Kautz and Michael D. McCool. Approximation of glossy reflection with pre-

filtered environment maps. InProceedings of Graphics Interface 2000, pages

119–126. Canadian Information Processing Society, Canadian Human-Computer

Communications Society / Morgan Kaufmann, May 2000. Montreal, PQ, May

15-17, 2000.10, 14

[59] Jan Kautz, Peter-Pike Sloan, and John Synder. Fast, arbitrary BRDF shading

for low-frequency lighting using spherical harmonics. In Paul Debevec and Si-

mon Gibson, editors,Rendering Techniques ’02, Proceedings of the Eurographics

Workshop on Rendering, pages 301–308, New York, NY, June 2002. Eurograph-

ics, Springer Wien. Pisa, Italy, June 26-28, 2002.15, 70

[60] Jan Kautz, Pere-Pau Vázquez, Wolfgang Heidrich, and Hans-Peter Seidel. A uni-

fied approach to prefiltered environment maps. In Bernard Péroche and Holly

Rushmeier, editors,Rendering Techniques ’00, Proceedings of the Eurographics

Workshop on Rendering, pages 185–196, New York, NY, June 2000. Eurograph-

ics, Springer Wien. Brno, Czech Republic, June 26-28, 2000.8, 10, 14

[61] Eric P. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and Donald P. Green-

berg. Non-linear approximation of reflectance functions. In Turner Whitted, ed-

itor, Proceedings of SIGGRAPH 1997, Computer Graphics Proceedings, Annual

Conference Series, pages 117–126. ACM SIGGRAPH, ACM SIGGRAPH / ACM

Press / Addison-Wesley, August 1997. Los Angeles, CA, August 3-8, 1997.10,

16

[62] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. InProceed-

BIBLIOGRAPHY 98

ings of Compugraphics ’93, pages 145–153, December 1993. Alvor, Portugal.

10

[63] Paul Lalonde and Alain Fournier. Interactive rendering of wavelet projected light

fields. InProceedings of Graphics Interface 1999, pages 170–114. Canadian In-

formation Processing Society, Canadian Human-Computer Communications So-

ciety / Morgan Kaufmann, June 1999. Kingston, ON, June 2-4, 1999.19

[64] Lutz Latta and Andreas Kolb. Homomorphic factorization of BRDF-based light-

ing computation. ACM Transactions on Graphics, 21(3):509–516, July 2002.

SIGGRAPH 2002, San Antonio, TX, July 21-26, 2002.23

[65] Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David

Dobkin. MAPS: Multiresolution adaptive parameterization of surfaces. In

Michael F. Cohen, editor,Proceedings of SIGGRAPH 1998, Computer Graphics

Proceedings, Annual Conference Series, pages 95–104. ACM SIGGRAPH, ACM

Press, July 1998. Orlando, FL, July 19-24, 1998.22, 26

[66] David D. Lee and H. Sebastian Seung. Learning the parts of objects by non-

negative matrix factorization.Nature, 401:788–791, 1999.23

[67] Marc Levoy and Pat Hanrahan. Light field rendering. In Holly Rushmeier, editor,

Proceedings of SIGGRAPH 1996, Computer Graphics Proceedings, Annual Con-

ference Series, pages 31–42. ACM SIGGRAPH, ACM SIGGRAPH / ACM Press

/ Addison-Wesley, August 1996. New Orleans, LA, August 4-9, 1996.18, 41

[68] Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A user-programmable ver-

BIBLIOGRAPHY 99

tex engine. In Eugene Fiume, editor,Proceedings of SIGGRAPH 2001, Com-

puter Graphics Proceedings, Annual Conference Series, pages 149–157. ACM

SIGGRAPH, ACM SIGGRAPH / ACM Press, August 2001. Los Angeles, CA,

August 12-17, 2001.2, 78

[69] Dani Lischinski and Ari Rappoport. Image-based rendering for non-diffuse syn-

thetic scenes. In George Drettakis and Nelson Max, editors,Rendering Techniques

’98, Proceedings of the Eurographics Workshop on Rendering, pages 301–314,

New York, NY, June 1998. Eurographics, Springer Wien. Vienna, Austria, June

29-July 1, 1998.19

[70] Jeffery Lubin. A visual discrimination model for image system design and eval-

uation. In Eli Peli, editor,Vision Models for Target Detection and Recognition,

pages 245–283. World Scientific, New Jersey, NY, 1995.59

[71] Thomas Murray MacRobert.Spherical Harmonics; An Elementary Treatise on

Harmonic Functions, with Applications. Pergamon Press, New York, NY, 1967.

14

[72] Marcus Magnor and Bernd Girod. Adaptive block-based light field coding. InPro-

ceedings of the 3rd International Workshop on Synthetic and Natural Hybrid Cod-

ing and 3-D Imaging 1999, pages 140–143, September 1999. Santorini, Greece,

September 1999.19

[73] Marcus Magnor and Bernd Girod. Hierarchical coding of light fields with disparity

maps. InProceedings of the IEEE International Conference on Image Processing

BIBLIOGRAPHY 100

1999, volume 3, pages 334–338, October 1999. Kobe, Japan, October, 1999.19,

20

[74] Marcus Magnor and Bernd Girod. Data compression for light field rendering.

IEEE Transactions on Circuits and Systems for Video Technology, 10(3):338–343,

April 2000. 19

[75] Stephen Mann and Tony DeRose. Computing values and derivatives of Bézier

and B-spline tensor products.Computer Aided Geometric Design, 12(1):107–110,

February 1995.27, 60

[76] Brian Marshall. DirectX graphics future. Meltdown 2001 Conference, July 2001.

http://www.microsoft.com/mscorp/corpevents/meltdown2001/ppt/DXG9.ppt.3

[77] David K. McAllister, Anselmo Lastra, and Wolfgang Heidrich. Efficient render-

ing of spatial bi-directional reflectance distribution functions. In Wolfgang Hei-

drich and Michael Doggett, editors,Proceedings of SIGGRAPH / Eurographics

Workshop on Graphics Hardware, ACM SIGGRAPH / Eurographics Workshop

on Graphics Hardware, pages 79–88. ACM SIGGRAPH / Eurographics, ACM

SIGGRAPH / ACM Press, September 2002. Saarbrüken, Germany, September

1-2, 2002. 16

[78] Michael D. McCool. SMASH: A next-generation API for programmable graphics

accelerators. Technical Report CS-2000-14, University of Waterloo, August 2000.

2

[79] Michael D. McCool, Jason Ang, and Anis Ahmed. Homomorphic factorization

BIBLIOGRAPHY 101

of BRDFs for high-performance rendering. In Eugene Fiume, editor,Proceedings

of SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Se-

ries, pages 171–178. ACM SIGGRAPH, ACM SIGGRAPH / ACM Press, August

2001. Los Angeles, CA, August 12-17, 2001.10, 23

[80] Michael D. McCool and Mauro Steigleder. Graphics accelerators: State of the

art. University of Waterloo Institute for Computer Research talk slides, November

2002. http://www.cgl.uwaterloo.ca/Projects/rendering/Talks/.76

[81] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based ren-

dering system. In Robert L. Cook, editor,Proceedings of SIGGRAPH 1995, Com-

puter Graphics Proceedings, Annual Conference Series, pages 39–46. ACM SIG-

GRAPH, ACM SIGGRAPH / ACM Press / Addison-Wesley, August 1995. Los

Angeles, CA, August 6-11, 1995.16, 17

[82] Microsoft Corporation.DirectX 8.1 SDK Documentation. Seattle, WA, November

2002. http://msdn.microsoft.com/directx/.2, 48, 72

[83] Microsoft Corporation.DirectX 9.0 SDK Documentation. Seattle, WA, May 2002.

http://www.betaplace.com/.76

[84] Gavin Miller, Steven Rubin, and Dulce Ponceleon. Lazy decompression of surface

light fields for precomputed global illumination. In George Drettakis and Nelson

Max, editors,Rendering Techniques ’98, Proceedings of the Eurographics Work-

shop on Rendering, pages 281–292, New York, NY, June 1998. Eurographics,

Springer Wien. Vienna, Austria, June 29-July 1, 1998.22, 83

BIBLIOGRAPHY 102

[85] Gene S. Miller and Robert Hoffman. Illumination and reflection maps: Simu-

lated objects in simulated and real environments. In Hank Christiansen, editor,

SIGGRAPH 1984 Course Notes: Advanced Computer Graphics Animation, Com-

puter Graphics Proceedings, Annual Conference Series. ACM SIGGRAPH, ACM

SIGGRAPH / ACM Press / Addison-Wesley, July 1984. Minneapolis, MN, July

23-27, 1984.14

[86] Steve Molnar, John Eyles, and John Poulton. PixelFlow: High-speed rendering

using image composition. In James J. Thomas, editor,Proceedings of SIGGRAPH

1992, Computer Graphics Proceedings, Annual Conference Series, pages 231–

240. ACM SIGGRAPH, ACM SIGGRAPH / ACM Press / Addison-Wesley, July

1992. Chicago, IL, July 26-31, 1992.2

[87] John Montrym and Henry Moreton. GeForce4. In Thomas Ertl, editor,Hot3D

Presentations in Graphics Hardware 2002, ACM SIGGRAPH / Eurographics

Workshop on Graphics Hardware. ACM SIGGRAPH / Eurographics, ACM SIG-

GRAPH / ACM Press, August 2002. Saarbrüken, Germany, September 1-2, 2002.

2

[88] John S. Montrym, Daniel R. Baum, David L. Dignam, and Christopher J. Migdal.

InfiniteReality: A real-time graphics system. In Turner Whitted, editor,Proceed-

ings of SIGGRAPH 1997, Computer Graphics Proceedings, Annual Conference

Series, pages 293–302. ACM SIGGRAPH, ACM SIGGRAPH / ACM Press /

Addison-Wesley, August 1997. Los Angeles, CA, August 3-8, 1997.2

[89] Claus M̈uller. Spherical Harmonics. Springer-Verlag, New York, NY, 1966.14

BIBLIOGRAPHY 103

[90] Lászĺo Neumann, Attila Neumann, and Lászĺo Szirmay-Kalos. Compact metallic

reflectance models.Computer Graphics Forum, 18(3):161–172, September 1999.

Proceedings of Eurographics ’99.9, 51

[91] NVIDIA. NVIDIA Cg Language Specification. Santa Clara, CA, August 2002.

http://developer.nvidia.com/view.asp?IO=cgspecification.2, 76

[92] NVIDIA. NVIDIA OpenGL Extension Specifications. Santa Clara, CA, October

2002. http://developer.nvidia.com/view.asp?IO=nvidiaopenglspecs.13

[93] Mark S. Peercy, Mark Olano, John Airey, and P. Jeffery Ungar. Interactive multi-

pass programmable shading. In Kurt Akeley, editor,Proceedings of SIGGRAPH

2000, Computer Graphics Proceedings, Annual Conference Series, pages 425–

432. ACM SIGGRAPH, ACM SIGGRAPH / ACM Press / Addison-Wesley, July

2000. New Orleans, LA, July 23-28, 2000.2

[94] Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and Pat Hanrahan. A

real-time procedural shading system for programmable graphics hardware. In

Eugene Fiume, editor,Proceedings of SIGGRAPH 2001, Computer Graphics Pro-

ceedings, Annual Conference Series, pages 159–170. ACM SIGGRAPH, ACM

SIGGRAPH / ACM Press, August 2001. Los Angeles, CA, August 12-17, 2001.

2, 76

[95] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing on

programmable graphics hardware.ACM Transactions on Graphics, 21(3):703–

712, July 2002. SIGGRAPH 2002, San Antonio, TX, July 21-26, 2002.2, 3

BIBLIOGRAPHY 104

[96] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradi-

ance environment maps. In Eugene Fiume, editor,Proceedings of SIGGRAPH

2001, Computer Graphics Proceedings, Annual Conference Series, pages 497–

500. ACM SIGGRAPH, ACM SIGGRAPH / ACM Press, August 2001. Los An-

geles, CA, August 12-17, 2001.14

[97] Ravi Ramamoorthi and Pat Hanrahan. A signal processing framework for inverse

rendering. In Eugene Fiume, editor,Proceedings of SIGGRAPH 2001, Com-

puter Graphics Proceedings, Annual Conference Series, pages 117–128. ACM

SIGGRAPH, ACM SIGGRAPH / ACM Press, August 2001. Los Angeles, CA,

August 12-17, 2001.14, 20

[98] Ravi Ramamoorthi and Pat Hanrahan. Frequency space environment map ren-

dering. ACM Transactions on Graphics, 21(3):517–526, July 2002. SIGGRAPH

2002, San Antonio, TX, July 21-26, 2002.15, 83

[99] B. John William Strutt Rayleigh. On the law of reciprocity in diffuse reflexion.

Philosophical Magazine, 49:324–325, 1900. Reprinted Scientific Papers, volume

4. Dover Publications, New York, NY, 1964.9

[100] Matthew J. P. Regan, Gavin S. P. Miller, Steven M. Rubin, and Chris Kogeinik.

A real-time low-latency hardware light-field renderer. In Alyn Rockwood, edi-

tor, Proceedings of SIGGRAPH 1999, Computer Graphics Proceedings, Annual

Conference Series, pages 287–290. ACM SIGGRAPH, ACM SIGGRAPH / ACM

Press / Addison-Wesley, August 1999. Los Angeles, CA, August 8-13, 1999.19

[101] Hartmut Schirmacher, Wolfgang Heidrich, and Hans-Peter Seidel. High-quality

BIBLIOGRAPHY 105

interactive lumigraph rendering through warping. InProceedings of Graphics

Interface 2000, pages 87–94. Canadian Information Processing Society, Cana-

dian Human-Computer Communications Society / Morgan Kaufmann, May 2000.

Montreal, PQ, May 15-17, 2000.19, 41

[102] Christophe Schlick. An inexpensive BRDF model for physically-based render-

ing. Computer Graphics Forum, 13(3):233–246, September 1994. Proceedings of

Eurographics ’94.9, 51, 52

[103] SGI. OpenGL 1.4 Specification and OpenGL Extension Specifications, 2002.

http://www.opengl.org/developers/documentation/index.html.20, 48, 72

[104] Peter Shirley.Realistic Ray Tracing. A K Peters, Ltd, Natick, MA, 2000.2

[105] Yu A. Shreider.The Monte Carlo Method. Pergamon Press, Oxford, 1966. Also

The Method of Statistical Trials (The Monte Carlo method), Fizmatgiz, Moscow,

1962. 10, 50

[106] François X. Sillion, James Avro, Stephen H. Westin, and Donald P. Greenberg. A

global illumination solution for general reflectance distributions. In Thomas W.

Sederberg, editor,Proceedings of SIGGRAPH 1991, Computer Graphics Proceed-

ings, Annual Conference Series, pages 187–196. ACM SIGGRAPH, ACM SIG-

GRAPH / ACM Press / Addison-Wesley, July 1992. Las Vegas, NV, July 28-

August 2, 1991.14

[107] Peter-Pike Sloan, Michael F. Cohen, and Steven J. Gortler. Time critical lumigraph

rendering. InProceedings of 1997 Symposium on Interactive 3D Graphics, pages

BIBLIOGRAPHY 106

17–ff, New York, NY, April 1997. ACM SIGGRAPH, ACM Press. Providence,

RI, April, 1997. 19

[108] Peter-Pike Sloan and Charles Hansen. Parallel lumigraph reconstruction. InPro-

ceedings of Parallel Visualization and Graphics Symposium 1999, pages 7–14,

October 1999. San Francisco, October, 1999.19

[109] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer

for real-time rendering in dynamic, low-frequency lighting environments.ACM

Transactions on Graphics, 21(3):527–536, July 2002. SIGGRAPH 2002, San

Antonio, TX, July 21-26, 2002.15, 70

[110] Mauro Steigleder and Michael D. McCool. Factorization of the Ashikhmin BRDF

for real-time rendering.Journal of Graphics Tools, Special Issue on Hardware-

Accelerated Rendering Techniques, 2002. To be published.51

[111] Gordon Stoll, Matthew Eldridge, Dan Patterson, Art Webb, Steven Berman,

Richard Levy, Chris Caywood, Milton Taveira, Stephen Hunt, and Pat Hanrahan.

Lightning-2: A high-performance display subsystem for PC clusters. In Eugene

Fiume, editor,Proceedings of SIGGRAPH 2001, Computer Graphics Proceedings,

Annual Conference Series, pages 141–148. ACM SIGGRAPH, ACM SIGGRAPH

/ ACM Press, August 2001. Los Angeles, CA, August 12-17, 2001.2

[112] Andrew S. Tanenbaum.Modern Operating Systems. Prentice Hall, Toronto, ON,

1992. 46

[113] Gary Tarolli. Real-time cinematic effects on the PC: The 3Dfx T-buffer. In

BIBLIOGRAPHY 107

Peter N. Glaskowsky, editor,Hot3D Presentations in Graphics Hardware 1999,

ACM SIGGRAPH / Eurographics Workshop on Graphics Hardware. ACM SIG-

GRAPH / Eurographics, ACM SIGGRAPH / ACM Press, August 1999. Los An-

geles, CA, August 8-9, 1999.2

[114] Xin Tong and Robert M. Gray. Compression of light fields using disparity

compensation and vector quantization. In M. H. Hamza, editor,Proceedings

of IASTED International Conference on Computer Graphics and Imaging 1999,

pages 300–305. ACTA Press, October 1999. Palm Springs, CA, October 1999.

19

[115] Kenneth E. Torrance and Ephraim M. Sparrow. Theory of off-specular peak reflec-

tion from roughened surfaces.Journal of Optical Society of America, 57(9):1105–

1114, September 1967.9

[116] Kenneth E. Torrance, Ephraim M. Sparrow, and R. C. Birkebak. Polarization,

directional distribution, and off-specular peak phenomena in light reflected from

roughened surfaces.Journal of Optical Society of America, 56(7):916–925, July

1966. 9

[117] Chris Trendall and A. James Stewart. General calculations using graphics hard-

ware with application to interactive caustics. In Bernard Péroche and Holly Rush-

meier, editors,Rendering Techniques ’00, Proceedings of the Eurographics Work-

shop on Rendering, pages 387–298, New York, NY, June 2000. Eurographics,

Springer Wien. Brno, Czech Republic, June 26-28, 2000.2

BIBLIOGRAPHY 108

[118] Steve Upstill. The RenderMan Companion: A Programmer’s Guide to Realistic

Computer Graphics. Addison-Wesley, Don Mills, ON, 1990.2, 12

[119] Eric Veach. Introduction to Monte Carlo integration. CS 448 Mathemati-

cal Models for Computer Graphics Lecture Notes, October 1997. http://www-

graphics.stanford.edu/courses/cs448-97-fall/notes.html.10, 50

[120] Eric Veach and Leonidas J. Guibas. Bi-directional estimators for light transport.

In Georgios Sakas, Peter Shirley, and S. Müller, editors,Rendering Techniques

’94, Proceedings of the Eurographics Workshop on Rendering, pages 147–162,

New York, NY, June 1994. Eurographics, Springer Wien. Darmstadt, Germany,

June 12-14, 1994.10

[121] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In Turner Whit-

ted, editor,Proceedings of SIGGRAPH 1997, Computer Graphics Proceedings,

Annual Conference Series, pages 65–76. ACM SIGGRAPH, ACM SIGGRAPH /

ACM Press / Addison-Wesley, August 1997. Los Angeles, CA, August 3-8, 1997.

11

[122] Hermann von Helmholtz.Helmholtz’s Treatise on Physiological Optics, volume 1.

Dover Publications, New York, NY, 1962. Translated from the third German edi-

tion (1909), which includes the entire verbatim text of the first edition (1856).

9

[123] Gregory J. Ward. Measuring and modeling anisotropic reflection. In James J.

Thomas, editor,Proceedings of SIGGRAPH 1992, Computer Graphics Proceed-

ings, Annual Conference Series, pages 265–272. ACM SIGGRAPH, ACM SIG-

BIBLIOGRAPHY 109

GRAPH / ACM Press / Addison-Wesley, July 1992. Chicago, IL, July 26-31,

1992. 9, 10, 51

[124] Turner Whitted. An improved illumination model for shaded display.Communi-

cations of the ACM, 26(6):342–249, June 1980.3, 10

[125] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp,

David H. Salesin, and Werner Stuetzle. Surface light fields for 3D photography.

In Kurt Akeley, editor,Proceedings of SIGGRAPH 2000, Computer Graphics Pro-

ceedings, Annual Conference Series, pages 287–296. ACM SIGGRAPH, ACM

SIGGRAPH / ACM Press / Addison-Wesley, July 2000. New Orleans, LA, July

23-28, 2000.22, 83

[126] Günther Wyszecki and W. S. Stiles.Color Science: Concepts and Methods, Quan-

titative Data and Formulae. John Wiley & Sons, New York, NY, second edition,

1982. 59

[127] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-

pression. IEEE Transactions on Information Theory, IT-23(3):337–343, May

1977. 19

	Preamble
	Abstract
	Acknowledgements
	Dedication
	Trademarks
	Contents
	List of Tables
	List of Figures

	Introduction
	Major Thesis Contributions
	Thesis Organization

	Background
	Reflection Mapping
	The Rendering Equation
	Environment Mapping

	Image-Based Rendering
	The Plenoptic Function
	Light Fields
	Surface Light Fields

	Summary

	Offset Surface Light Fields
	Parameterization
	Data Acquisition
	Preprocessing
	Surface Reconstruction

	Specular Reflections
	Mirror Reflection
	Blending Basis Functions
	Texture Cache

	Bidirectional Reflection Distribution Functions
	Monte Carlo Integration
	The Ashikhmin and Shirley BRDF Model
	Arbitrary BRDF Models

	Results
	Error Metrics
	Sample Maps
	Surface Reconstruction
	Specular Reflections
	Bidirectional Reflection Distribution Functions
	Texture Cache
	Summary

	Hardware Implementation
	Conclusion
	Future Work
	Refining OSLFs
	Extending OSLFs

	Bibliography

