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Abstract

Digital integrated circuits (ICs) are the driving force behind computing, communication
and entertainment in today’s world. More powerful and energy efficient ICs continue
to be designed and built by the semiconductor industry to meet current demands. In
addition, complexity in Electronic Design Automation(EDA) software continues to grow
to keep up with the design and technological advances in ICs. Design parameters that
control various aspects of EDA software, such as synthesis, placement and routing settings,
can affect the performance of ICs, and current standard cell logic synthesis and physical
design flow tools consist of hundreds of such parameters to be specified by the designer.
Discovering the optimal value for each parameter can result in significant performance
and power efficiency gains. In this thesis, we develop a proof of concept web tool that
uses open source EDA software to generate datasets for a large number of circuits and
uses the data to build predictive models using statistical learning techniques. We use
these models to select design parameters for the VLSI physical design flow floorplanning
and placement stages that minimize the total wirelength of the integrated circuit. Using
empirical evaluation on three real-world test circuits, we show a 15x-35x reduction in time
spent to discover predicted values of one of the studied parameters that reduces total wire-
length with statistical significance compared to a brute force exploration of the design
space, with an error rate below 5%.

The key contributions of this thesis are:

• Development of a web based tool to perform VLSI physical design flow of a standard
cell based integrated circuit, as well as to generate and record datapoints at various
stages of the flow.

• Development and investigation of predictive models through the web based tool, using
the recorded datapoints and utilizing statistical learning techniques, to predict VLSI
physical design flow floorplanning and placement tool parameters that minimize total
wirelength in a particular integrated circuit.
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Chapter 1

Introduction

The integrated circuit industry, in which digital integrated circuits have the largest mar-
ketshare, has been one of the core drivers in the current information revolution. Affordable
and powerful electronic devices such as smartphones, tablets, laptops, as well as support-
ing backend infrastructure, such as data-centers and telecommunications networks have
transformed the way humankind works, communicates and lives in today’s world. Digital
integrated circuits, such as microprocessors, memory chips, wireless and wireline tran-
ceivers, sensors, displays and other ASICs form the core components in the devices driving
this revolution.

Performance and power efficiency in digital integrated circuits have continued to im-
prove to keep up with the demands in today’s world, governed by Moore’s law and Dennard
scaling respectively. A dizzying array of design and technological improvements have kept
both these trends alive for over 40 years. State of the art digital integrated circuits in-
clude the Intel Xeon R© E5-2600 v3 processor which packs 5.56B transistors on a 31.9mm
x 20.8mm die providing 18 dual threaded processor cores at upto 3.8GHz frequency[3];
and the Intel 6th generation Core processor with feature size of 14 nm built using tri-gate
technology, consuming 90mW of power on idle[11].

Circuit designers rely on Electronic Design Automation software such as Synopsys De-
sign Compiler, Synopsys IC Compiler, Cadence Encounter etc to create new digital inte-
grated circuits. As the semiconductor industry evolves to accommodate more transistors
at smaller geometries, EDA tools need to add an increasing number features to support
these changes. For example, IC Compiler II, the current Place and Route solution from
Synopsys, allows designers to add trigate transistors known as FinFETs to their designs.
Support for FinFETs adds a new power optimization metric to enable designers to balance
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power goals[36]. This adds to existing design parameters that designers already need to
manually tune during the design process; for example, during the floorplanning stage using
Cadence Encounter tool, designers can set values for the desired aspect ratio, core utiliza-
tion, core margins, row spacing and so on[8]. Some of these parameters have default values,
but the designer can get better results by using a value different from the default based
on the circuit under design. For example, the core utilization metric which determines the
density of standard cells in the core has a default value of 70% to make room for in place
optimization and clock tree synthesis cells - however for more complex designs the designer
can get better results by reducing the default utilization value.[8].

Support for new features results in an increase in the complexity of EDA Tools, and
designers have to tune an increasing number of design parameters. This takes a toll on
engineers working in design roles[35]. Over the years, while IC Complexity has grown by
58 percent, designer productivity has grown by 21 percent, resulting in the phenomenon
known as the design productivity gap[1].

The other effect of increasing complexity in the integrated circuit design process is
the widening supply gap between IC design and software engineers[19]. Many students
in Engineering at University look for a quicker return on their education and choose a
career in the software industry instead of devoting more time in post-graduate education
needed for an IC designer position. Building better tools that allow students to retain their
interest in circuit design in their undergraduate education is a challenge that needs to be
solved to combat this gap.

The objective of this thesis is two-fold. The first objective is to create an intuitive
web based interface on top of open source EDA Software to perform the ASIC design
flow, using a cloud computing paradigm to perform the design flow on a server through
actions by users on a web browser. The second objective is to incorporate features in
this web-based tool that uses statistical learning models to simplify certain aspects of the
digital integrated circuit design process, in particular, automating the selection of EDA
tool parameters that minimize the total wire-length of the integrated circuit. We study
various predictive models to evaluate the best approach, and explore the effectiveness of
these models in selecting design parameters for the VLSI physical design flow floorplanning
and placement stages.

In summary, through this thesis, we demonstrate a way to address the EDA tool com-
plexity issue, helping improve designer productivity and making the EDA tool more ap-
proachable for undergraduate students interested in integrated circuit design by utilizing
a familiar and intuitive web based solution.
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Chapter 2

Background

Digital integrated circuits can be designed using a number of implementation strategies.
Custom circuit methodology involves building the circuit topology and performing the
physical design without using design automation tools. Custom circuits can achieve the
best performance, but is expensive and time consuming to design. Semi-custom method-
ology, or standard cell based design, involves using a library containing a fixed number of
standard cells such as logic gates with different fan-in and fan-out counts to implement the
design. This approach yields more time savings as design automation tools such as logic
synthesis tools and automating placement and routing tools can be used to generate the
schematic from ta high level description language such as VHDL or Verilog, significantly
reducing the design effort. However, performance of the design can lag behind custom de-
sign as fine-tuning the design is harder due to the limited number of gates in the standard
cell library.

Standard cell based methodology is now the dominant approach to circuit design, with
the majority of integrated circuits in production today built using this approach. For
example, in the Intel Pentium R© 4 Processor, released in the year 2000, only the phase
locked-loops and the clock buffers were designed manually, with virtually all other por-
tions designed using standard cell methodology[31]. More modern processors, such as a
RISC-V processor built using 45nm Silicon on Insulator technology[23], are designed and
implemented entirely using the standard cell methodology. The RISC-V processor design
involves writing the RTL in a high level language which is synthesized to Verilog, and using
Synopsys physical design tools to map the Verilog to a 45 nm standard cell library. The
processor design consists of 425K standard cells.

In the rest of this chapter, we take a look at the standard cell ASIC design flow and

3



Electronic Design Automation tools for the standard cell methodology.

2.1 Standard Cell ASIC Design Flow

The standard cell ASIC design flow, which is the name given to the series of steps to realize
a taped out circuit ready for fabrication from a behavioral description of the circuit in a
hardware description language, consists of the steps shown in figure 1 and briefly described
below.

Figure 2.1: Standard Cell ASIC Design Flow Steps

Logic Synthesis Once a circuit is designed, logic synthesis translates the Register-Transfer
Level(RTL) behavioral description of the circuit to a structural model, initially com-
prising of generic gates. After this step, a series of optimization steps are performed to
improve the delay, power and area metrics of the circuit. For standard cell methodol-
ogy, multi-valued logic minimization[6] and the use of Boolean Satisfiability for formal
verification of the synthesized circuit are the popular optimization strategies used.
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The next step in logic synthesis involves a transformation to an electrical representa-
tion by mapping the generic gates to a particular implementation architecture, such
as the logic libraries, embedded memories etc available for GLOBALFOUNDRIES
28-nm technology. A series of further optimization steps are performed. The resulting
output is a netlist, a network of gates in the implementation technology.

Chip Planning Chip planning involves identifying and planning the arrangement of blocks
and large modules in a circuit, such as caches, sensors, power converters and other
intellectual property cores. These modules usually have known area and positional
characteristics. Chip planning is useful as it can provide an early estimate of delay,
power and area of a chip, allowing designers to identify areas of improvement[20].
Chip planning consists of:

• Partitioning - When the modules in a circuit are not specified clearly, partition-
ing is used to identify these modules[20]. Partitioning helps to divide the design
into smaller subcircuits, each of which can operate somewhat independently
from the rest. The main goal of partitioning is to perform the partitions in such
a way that the connections between subcircuits is minimized, minimizing delay
and improving modularity. Some popular partitioning algorithms used by EDA
tools are the Kernighan-Lin algorithm and the Fiduccia-Mattheyses algorithm.

• Floorplanning - Floorplanning is the arrangement of the subcircuits on the chip.
The aspect ratio and position of each module is determined during this stage.
Floorplanning optimization goals include a combination of minimizing the area
of the bounding box consisting of all floorplan blocks, and minimizing the to-
tal wirelength. Cluster growth, where floorplan is constructed by iteratively
adding blocks until all blocks have been assigned, and the simulated annealing
algorithm, which will be discussed later, are widely used iterative approaches to
solving the floorplanning issue.

• Pin Assignment - Pin assignment is the assignment of a location to every pin
that has an external connection, such as an I/O Pad. The main objectives in
Pin Assignment are the reduction in electric parasitics and wirelength.

Placement Once chip planning is completed, in the placement stage of the design flow,
each standard cell is assigned a location and orientation while ensuring no overlap
occurs and all design constraints are met. The optimization objectives in the place-
ment stage include estimated total wirelength, signal delay and routing congestion
minimization. To perform placement, first a cost function is devised to model the
placement problem. Next the two approaches that are used are a) analytic approach -
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mathematical analysis is used to find optimal value of the cost function(eg. quadratic
placement, force-directed placement) and b) stochastic approach - randomized moves
are used to search for a configuration with a low cost(eg. simulated annealing).

Routing The routing stage inserts wires needed to connect the placed standard cells of
the circuit. The routing task is divided into two stages to manage the complexity of
the task.

• Global Routing - During global routing, the routing region is broken into tiles,
and connections between tiles are determined by respecting the design rules
and maximizing routing utility functions, such as wirelength or critical path
minimization. In this way an approximate path is found between the pins of
different standard cells, and between pins of standard cells and I/O pads. The
global routing tiles and interconnections are modeled as a graph, and graph
search algorithms such as maze search, A* search and line search are used for
both global and detailed routing.

• Detailed Routing - In the detailed routing stage, the connections between tiles
discovered in the previous stage are made concrete, by assigning specific tracks,
vias and metal layers to these connections.

2.2 Motivation for Optimizing Total Wirelength

In this thesis, we explore using statistical learning techniques to speed up floorplanning and
placement design parameter selections that minimize total wirelength. In this section we
take a deeper look at interconnect wires and the motivation for choosing total wirelength
minimization as our optimization goal.

2.2.1 On-chip Interconnects

On-chip interconnect wires in todays integrated circuits introduce a number of parasitics
that affect the integrated circuits behaviour. Each parasitic causes an increase in signal
propagation delay and energy dissipation and adds additional noise to an integrated circuit.
These parasitics are

• Resistance - Resistance in wires is directly proportional to the length of the wire and
indirectly proportional to the area of the wire. In high frequencies, an additional
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resistive effect, skin effect is also present, which is most common in wires carrying
high frequency clock signals. Copper is the most popular material used in wires.

• Capacitance - In todays circuits with multiple metal layers, capacitance has a large
effect in circuits behavior, since capacitance manifests not only between a metal wire
and its semiconductor substrate dielectric layer, but also between wires at different
layers. Capacitance consists of parallel plate capacitance and fringing capacitance.
The most common dielectric material used in integrated circuits is Silicon dioxide.

• Inductance - Inductance is also prevalent in modern integrated circuits with high clock
frequencies, causing effects such as switching noise, ringing and overshoot effects, and
reflection of signals [31].

As device geometries have decreased, wires have not scaled down in an ideal fashion.
In particular, while local interconnections have scaled down with device geometries, global
interconnections which provide connectivity between subcircuits of the integrated circuit
and with I/O have lengths which are proportional to either the die size or the complexity
of the circuit[31]. Total wire length on a chip is expected to amount to around 7 km/cm
by the year 2020. Other studies have shown that delay of global wires increase 50 percent
per year[31], in contrast to gate delay which reduces with device geometry. As a result,
interconnect delays caused by parasitics have surpassed gate delay as the major source of
latency in an integrated circuit.

2.2.2 Total wirelength minimization in floorplanning and place-
ment

Total wirelength minimization is a key optimization goal in the both the floorplanning and
placement stage. A shorter total wirelength between the different blocks used for floor-
planning can reduce signal propagation delays and power consumption. It also improves
the routability of the integrated circuit, as it increases the amount of routing resources
needed to route all standard cells and pins of the chip. Finally, since long wires between
floorplan blocks can lie on the critical path of the circuit, minimizing the total wirelength
between blocks is desirable from a timing closure aspect of the design process, such that
the clock frequency requirements are met.

For placement, all three points mentioned in the previous paragraph applies, only the
interconnects are now between standard cells instead of modules of the integrated circuit.
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The figure shows the effect efficient versus inefficient placement can have on the total
wirelength.

Figure 2.2: Efficient(left) vs Inefficient(right) placement of same circuit

2.3 Related Work

A number of studied have been conducted earlier that explore the use of learning algorithms
to efficiently select EDA tool parameters. Wah et al [38] have explored using Genetic-based-
learning to study parameter selection for Timberwolf Placement and Routing tool in order
to reduce cost of placement and routing. Other studies [21] [25] have focused on using
learning algorithms to efficiently select FPGA CAD tool parameters. A recent study by
Ziegler et al [41] has explored using learning algorithms to tune VLSI flow parameters for
the synthesis stage where the objective is to minimizing timing.

Our work is distinct from these other studies in the sense that we use statistical/machine
learning algorithms to adaptively select VLSI digital flow parameters for the floorplanning
and placement stages by focusing on minimizing the total wirelength.
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Chapter 3

Statistical Learning Methods For
Regression

In this chapter, we take a look at statistical learning methods for regression that are utilized
to predict the total wirelength of an integrated circuit from its features in the next chapter.

3.1 Supervised Learning and Regression Analysis

Given a dataset containing a set of variables denoted as inputs where each input has an
output as shown in equation 3.1, supervised learning is the process of learning a mapping
from inputs to outputs. Based on this mapping, the goal of supervised learning is to make
a prediction of the output given a certain input.

X =

∣∣∣∣∣∣∣∣
x11 x12 ... x1n
x21 x22 ... x2n
: : : :

xm1 xm2 ... xmn

∣∣∣∣∣∣∣∣ Y =

∣∣∣∣∣∣∣∣
y1
y2
:
ym

∣∣∣∣∣∣∣∣ (3.1)

Supervised learning is categorized into classification and regression.

• Classification - Outputs and predictions take discrete or categorical values. One
example of classification is using the iris dataset [2] to predict the type of iris plant
from the physical measurements of its flower, such as the petal length, height etc.

9



• Regression - Outputs and predictions take continuous values. One example of regres-
sion is using the abalone dataset[2] to predict the age of an abalone from its physical
measurements, such as length, diameter, height and so on.

3.1.1 Regression

We focus on regression for the rest of the chapter. Regression in supervised learning can
be further subcategorized as either linear or non-linear regression. A model is said to be
linear when the each term in the output function is a sum of either a constant or a product
of a single parameter and an input, as shown below

Y = β0 + β1x1 + β2x2 + ... (3.2)

On the other hand, a model is non-linear when it does not follow equation 3.2. A term
can contain more than one parameter per input for example, as shown below

Y = β0 + β1β2x1 + ... (3.3)

Non-linear regression is preferred for problems where a linear regression is unable to fit the
data as it allows the model more degrees of freedom.

Once a regression model is trained using a training dataset, the performance of the
model can be assessed by using a test dataset and evaluating the error of the prediction
generated by the model compared to the actual output. The following two error measure-
ments are typically used for regression models:

• Root Mean Squared Error - Root mean squared error measures the deviation of the
actual output values from the regression prediction line. It is given by the equation 3.4

RMS =

√√√√ 1

n

n∑
i=1

(yi − prediction(xi))2 (3.4)

• Mean Absolute Error - Mean absolute error is a measure of the average of the absolute
values of errors between the predictions and the actual output using a test set, given
by the equation 3.5

MAE =
1

n

n∑
i=1

|yi − prediction(xi)| (3.5)
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3.1.2 Bias-Variance TradeOff

One of the important considerations when choosing a statistical learning model is the bias-
variance tradeoff. Bias can be defined as the true error of the model used to predict the
sample dataset. A model is said to have high bias if the model is too simple and does
not fit the data well, leading to underfitting. Variance, on the other hand, is defined as
the variability of a model for a given datapoint. High variance leads to overfitting, which
means the model is too closely adapted to the training data and does not generalize well,
leading to a big difference between errors on the data used to train the model, versus
the data used to test the model. The expected prediction error of a regression fit for a
particular input X = x0 can be expressed with bias and variance terms as

Err(x0) = IrreducibleError +Bias2 + V ariance[13] (3.6)

In an ideal world, models should exhibit low bias and low variance. If a model has high
bias, both training and test error will be high, while if a model has high variance, the train-
ing error will be low while test error will be high. If we try to make the hypothesis model
used to predict the sample data more complicated to reduce bias, variance is increased as
the model has overfit on the training data. This leads to the bias-variance tradeoff shown
in Figure 3.1.

Figure 3.1: The Bias-Variance Tradeoff [12]

In the next few sections we explore some linear and non-linear models for regression that
tackle the bias-variance tradeoff by using strategies such as regularization and ensembles.
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3.2 Linear Regression

3.2.1 Ordinary Least Squares Regression

Ordinary least squares regression(OLS) is a common linear regression method which in-
volves picking coefficients of the vector β that minimizes the residual sum of squares(equation 3.7)
for the training set given in equation 3.1. Residual refers to the signed difference between
true target y and the prediction ŷ.

RSS =
n∑

i=1

(yi − ŷi)2

=
n∑

i=1

(yi − β0 −
m∑
j=1

xijβj)
2

(3.7)

Using the residual sum of squares as a cost function, a gradient descent algorithm gives
a solution of predicted β as

β̂ = (XTX)−1XTy (3.8)

The full derivation of the equation is given by Hastie, Tibshirani and Friedman[13].
Once β̂ is calculated, the predicted ŷ can be calculated as ŷ = Xβ̂.

3.2.2 Regularized Linear Regression

OLS regression has one limitation that reduces its usefulness in modern statistical learning.
OLS regression can display high variance resulting in overfitting on the training data and
capturing its idiosyncrasies, instead of generalizing. This is due to the fact that OLS
does not have a mechanism to throttle back when it overfits[4]. To control overfitting, a
number of methods such as subset selection (setting some input variables to 0), shrinkage
(shrinking some input variables) and hybrid methods have been developed. Together these
approaches are known as regularization of linear regression, as a regularization parameter
is introduced to the cost function of linear regression as a control to fitting parameters.
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LASSO

One approach to regularized linear regression is the Least Absolute Selection and Shrinkage
Operator(Lasso)[37]. Lasso regression is formulated by ading a coefficient penalty to the
OLS minimization problem in equation 3.7, such that equation 3.7 is minimized with the
condition

p∑
j=1

|βj ≤ t| (3.9)

The bound t acts as a tuning parameter. Lasso regression balances the contradictory
goals of minimizing the residual sum of squares, and minimizing the sum of absolute
values of coefficients. A large value of t results in normal OLS regression. A small value of
t greater than 0 results in solutions of β that are shrunken versions of what are obtained
from OLS regression, or even with some coefficients set to 0. This reduces the number of
input variables in the prediction, or the influence of certain input variables, resulting in
lower variance. Lasso solutions can be obtained by utilizing numerical analysis or through
the Least Angle Regression algorithm[13].

3.3 Non-linear Regression

When the training data consists of many features that interact with each other in complex,
non-linear ways, global functions given by linear models such as OLS regression or regu-
larized regression cannot model the data accurately. Non-linear models such as decision
trees come into play for these situations.

3.3.1 Decision Trees

A binary decision tree is a representation of a function that predicts a response or a class
Y from a series of inputs Xi. At each branch of a decision tree, a test is conducted on one
of the inputs. Each branch leads to another branch, or to an output. Depending on the
result of the test, values that resolve to true go in one direction, and false go to a different
direction. Eventually at a leaf node a prediction is made which aggregates all training data
points leading to that leaf node[33].

13



Regression Trees

A decision tree used for regression is called a regression tree. In a regression tree, the output
variables of the training data are continuous valued and the prediction error is measured
by taking the squared difference between the observed and predicted values. One example
of a regression tree with two input variables is given in the Figure 3.2, which is models
Boston housing data from 1978[15]. The goal of the tree is to predict MEDV - Median
value of owner occupied homes in $1000’s. The input variables to the regression tree are:

• RM - Average number of rooms per dwelling

• NOX - Nitric oxides concentration, pphm

Using the regression tree in Figure 3.2, we can make the prediction that given the average
number of rooms per dwelling is greater than 6.9 and the Nitric oxides concentration is
greater than 0.66 pphm, the median value of a home was $16,000 in 1978.

Figure 3.2: Decision Tree

Regression Tree Construction

To grow a regression tree, the algorithm needs to make a number of decisions regarding
which input splitting variables j to use at branches, and the split point s for each input
variable. Finding the optimal partitioning of data for a decision tree is NP-Complete[17].
As a result, popular decision tree growing algorithms use a greedy approach. For each input
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splitting variable, the training data is first divided into two regions R1(j, s) = X|Xj ≤ s
and R2(j, s) = X|Xj ≥ s, each region is approximated by its average value of y, and then
the sum of squared error is calculated. For each splitting variable j an exhaustive search
finds the split point s that minimizes this sum of squared error. This procedure is repeated
for each splitting variable until j and s are found that minimize overall sum of squared
error[13].

After splitting variables and points have been discovered for the regions R1 and R2,
the algorithm continues, splitting each region in farther regions and finding the best split
variables and points for each. The recursive process stops when a stopping criterion is
reached, such as a given tree depth or too small a change sum of squared error. Pruning
the tree is pursued in some cases to find a subtree that minimizes the sum of squared error
further.

Limitation of Decision Trees

Although decision trees are a good model to capture non-linearities in the training data,
they display high variance. This is due to the hierarchical nature of the tree construction
process that can cause errors at the top nodes of a tree to affect the rest of the tree[27].
Decision trees display low bias, but some bias error is seen due to the greedy nature of tree
construction where local cost functions are minimized. In the next few sub-sections we
take a look at some techniques to reduce variance and improve the performance of decision
tree based models.

3.3.2 Random Forests

Developed by Adele Cutler and Leo Breiman [7], random forests consist of a collection of
decision tree models. The random forest algorithm introduces two randomizing aspects to
a decision tree based model building process.

1. Random sampling with replacement - A bootstrap sample consists of a random se-
lection of several datapoints from the training data with replacement. In random
forests, a number of bootstrap samples each containing a subset of the training data
are used to generate a sequence of decision tree models.

2. Random feature selection - In addition, the random forest algorithm uses a random
subset of attributes for each decision tree it constructs, leaving out some features in
the bootstrap sample training data.
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Once a collection of M trees fm(x) are grown with these two randomizing objectives,
for regression, the average of each tree is taken to obtain the resulting random forest model
f(x), given by

f(x) =
M∑

m=1

1

M
fm(x) (3.10)

By averaging the trees, the variance displayed by each tree is reduced. The variance
is further reduced through random feature selection in each tree, as the trees are now
de-correlated from each other in a random forest. Mathematically, Equation 3.11 shows
the variance of M identically distributed random variables, each with variance σ2 and
pairwise correlation ρ. Reducing pairwise correlation between the variables and increasing
the number of M reduces overall variance.

V ariance = ρσ2 +
1− ρ
M

σ2 (3.11)

3.3.3 Gradient Boosting

Gradient boosting is an ensemble tree based learning model developed by Jerome Friedman[14]
to solve regression problems. Gradient boosting works by training models sequentially,
starting with simple models and moving up in complexity. Each tree in gradient boosting
is trained on the error left behind by all trees trained before it[4]. The set of models are
combined in the end to give a complex predictor. The following example illustrates the
gradient boosting algorithm.

Given a training dataset illustrated as red dots in left panel of Figure 3.3, gradient
boosting algorithm initially fits a decision tree of depth 1 on the data, given by the step
function in left panel of Figure 3.3. Next, the error residuals are calculated for this model,
which is illustrated using green dots in the right panel of Figure 3.3. Using the error
residuals as training data, another decision tree of depth 1 is used to predict the error
residuals, given by the step function in the right panel of Figure 3.3.
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Figure 3.3: Gradient Boosting Steps 1 and 2 [18]

The two models in Figure 3.3 are added together to give a more complex model shown
in the left panel of Figure 3.4. We see that the aggregated model has done a better job of
predicting the training data compared to the single layer decision tree model in Figure 3.3.
This series of steps is repeated, measuring the error residual after each combination, fitting
a model to it and combining with earlier models until a stopping criterion is reached, such
as the number of boosting stages. The overall prediction is given by a weighted sum of the
collection of the individual models.

Figure 3.4: Gradient Boosting Steps 3 and 4 [18]
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Chapter 4

Approach

In this chapter, we propose MachineFlow, a proof of concept web based ASIC design flow
tool that allows integrated circuit designers to perform the following actions:

• Perform ASIC Design flow through an intuitive interface.

• Automate the selection of design parameters by

– Generating training data by varying design parameter values within a range.

– Building and using predictive models using statistical learning methods intro-
duced in Chapter 3.

As highlighted in Section 2.2, we use total wirelength as the metric to optimize when
selecting these design parameters adaptively. In particular, our statistical models are
trained to minimize the measured total wirelength after the routing step of the
ASIC flow completes, instead of an estimate of the total wirelength which is often used in
existing EDA tools[20]. In the rest of this chapter, we describe the components, features
and implementation details of Machineflow as well the experimental setup.

4.1 EDA Software and Design Parameters

4.1.1 Open Source ASIC Flow: Qflow

MachineFlow is based on the open source and free digital synthesis flow tool chain, Qflow,
developed by Tim Edwards[9]. Using Qflow, a digital circuit defined using the high-level
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behavioral language Verilog can be physically laid out with a particular standard cell
technology and fabrication process. Qflow does not support the cutting edge technolo-
gies supported by commercial EDA tools developed by companies such as Cadence and
Synopsys, but it is a capable tool for generating the layout of smaller digital integrated
circuits such as signal processing, communication, ALU circuits and so on. For example,
openMSP430, a 16bit microcontroller, has been placed and routed by Qflow[9].

Qflow tool chain consists of the following components:

Design Flow Stage Component Function

Logic Synthesis Yosys[40] RTL to Boolean Logic
ABC[5] (Included in Yosys) Optimizations

ABC Technology Mapping

Chip Planning TimberWolf[32] Partitioning, floorplanning, pin placement

Placement TimberWolf Placement

Routing TimberWolf Global Routing
QRouter[10] Detailed Routing

Table 4.1: Components of Qflow, an open source ASIC Design Flow Software Package

We use a 0.35µm standard cell technology provided by the FreePDK design kit[34] in
MachineFlow as it is supported by default in Qflow. The 0.35µm standard cell technology
used is a 3-metal, 2-poly, n-well standard CMOS process originally developed American
Microsystems Inc.

4.1.2 EDA Design Parameters Tuned Using MachineFlow

To investigate if statistical learning techniques can be used to find the design parame-
ters that minimizes total wirelength of an integrated circuit, we focused on two design
parameters of Qflow, one in the floorplanning stage and another in the placement stage.
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Design Flow
Stage

Parameter Function Default Value

Floorplanning Number of Rows of Standard Cells
Determines the
aspect ratio of

the circuit
Square

Placement Acceptance Ratio

Determines
acceptance

probability of
new

configurations

0.44

Table 4.2: Design Parameters in QFlow choosen to investigate predictive modeling

Number of Rows/Aspect Ratio

The number of rows of standard cells affects the area and shape of the global bounding box
of an integrated circuit which in turn impacts the performance of an integrated circuit[20].
In Qflow, the number of rows defaults to a number that results in a square aspect ratio.
Instead of using the default value, in MachineFlow we try to find an aspect ratio for the
integrated circuit under design that will minimize total wirelength.

Acceptance Ratio

Acceptance ratio is a design parameter of the TimberWolf placement tool which uses sim-
ulated annealing for placement. Simulated annealing is a probabilistic method for finding
the approximate global optimum of a combinatorial optimization problem. Annealing in
this case refers to heating a system to a high temperature and cooling it down gradually
so that ground state for the system is reached as the particles in the system rearrange in
a perfectly crystallized state. In order for annealing to be effective, the cooling must be
done in a way such that the particles have ample time to be rearranged and reach thermal
equilibrium at each temperature involved in the cooling schedule.

In TimberWolf, to use simulated annealing for placement, a cost function C is defined
whose major component is total estimated interconnect wirelength. Initially, the standard
cells are randomly assigned. Next new states are generated for these cells by displacing
cells, interchanging cells or changing the orientation of the cells. These new states are
always accepted if change in cost ∆C ≤ 0, however they can also be accepted if this is
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not the case due to the hill climbing nature of the simulated annealing algorithm. The
temperature parameter T controls the acceptance of new states. Initially during a high
temperature regime, every hill climbing move is accepted. Next T is reduced in a manner
that ∆C is approximately the same at each temperature during a mid temperature regime.
Finally a stopping criterion is reached which gives the final placement.

The parameter acceptance ratio α comes into play during the mid temperature regime.
The annealing schedule during the mid temperature regime is given by

s+ = s+ γ
4α(1− α2)

s2(2− α)2σ3(s)
[22] (4.1)

Here s+ is the new inverse of temperature T . Lam et al[22] found that a value of
α=0.44 was ideal to decrease the temperature while maintaining an approximate of the
thermal equilibrium needed for simulated annealing. Using MachineFlow, we investigate if
we can use predictive models to find a value of α for each integrated circuit under design
that reduces total post routing wirelength.

4.2 Algorithm and Experimental Setup

To build predictive models to adaptively select the parameters in Section 4.1.2, we first
build up a training dataset for each parameter. The training dataset consists of the fol-
lowing columns according to Equation 3.1:

• Input variables (X) - Consist of the design parameter plus other circuit features.

– Design parameter - The value of the design parameter is varied within a certain
range and the total wirelength is measured for these values. For number of
rows of standard cells N , MachineFlow allows designers to vary N from 2 to
any integer greater than 2. In our training data, we limit N to 25 rows. For
acceptance ratio, MachineFlow is designed to vary the value± 40% of the default
value of 0.44.

– Other circuit features - Other circuit features, such as the number of standard
cells, global routing tracks etc. are used as other input variables in the training
data. A full list of these features is given in Table 4.3.

• Dependent variable (Y) - The dependent variable is the total wirelength of the circuit
measured after routing stage of the ASIC flow.
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Algorithm 1 Algorithm for Design Parameter Optimization using Statistical Learning

1: procedure Training Data and Feature Selection
2: Choose between built-in or uploaded initial training dataset
3: Visually explore the chosen training dataset using boxplots and correlation heat maps
4: for each feature that is derived from digital flow stage earlier than stage under

examination, and shows correlation to target of over 0.5(pearson coefficient) do
5: choose feature for final training dataset

6: Perform test-train split of training dataset and save. Randomly split data into:
train set ← 75% of data,
test set ← 25% of data;

7: procedure Predictive Model Training & Design Parameter Optimization
8: Select linear (LASSO) or non-linear (decision tree, random forests,

gradient boosting) regression model and build model using train set
9: Use test set to calculate Root Mean Squared Error for chosen model
10: Select predictive model with lowest error, M
11: Build model M with full training data, instead of using 75% of data
12: for each value of design parameter over its range do
13: predict target(total post-route wirelength) using model M
14: store design parameter and target in an associative array

15: Find value of design parameter, V, from associative array that has smallest total
wirelength

16: Set design parameter to V and perform a ASIC design flow.

The algorithm for design parameter optimization using statistical learning is given in
Algorithm 1.The training data is comprised of 30 integrated circuits with Verilog sources
obtained from OpenCores [28] and other sources. A full list of ICs used is provided in
Appendix A. Training data is recorded by MachineFlow into two Comma-separated values
(CSV) files, one for each design parameter. The training data is also randomly split into
two sets, a training set and a test set. The test set contains 25 percent of the data and is
not used to train the predictive models, but is held out to evaluate the model. The test
set is also used to evaluate a cross-validation score to find the best model parameters, as
defined in Section 4.3.1.

The common column headers for each CSV file is given below.
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name description
Common Features cells number of logic gates

wire-bits number of wire bits
stdcells number of standard cells

global-routing-tracks number of global routing tracks
stdcells-after-fillers number of standard cells with fillers

detail-routing-tracks number of detailed routing tracks
total-signals internal + input + output signals

Target total-wire-length post routing total wire length

Table 4.3: Common headers in Training CSV Files

Once training data is generated, correlation between features and target of training
data can be examined and features which show strong correlation can be selected to build
predictive models. A number of linear and non-linear regression models are available to
the circuit designer. The circuit designer chooses the model that gives the lowest error
rate for the given training data. Next MachineFlow makes a sequence of predictions
against this model, using the design parameter varied over the allowed range as input, along
with other circuit features chosen earlier that show a strong correlation to the target. The
predicted values of the total wirelength and the corresponding design parameters are stored
in a key value data structure. We do a search on this data structure to find the value of
the design parameter that corresponds to the lowest total wirelength. MachineFlow is
then configured to use the chosen value of design parameter, and a ASIC design flow is
performed.

4.3 MachineFlow Web Tool

MachineFlow is used to conduct the experiment described in the previous section. We ex-
plore the features, architecture and implementation details of MachineFlow in this section.

23



4.3.1 Features

Simple ASIC Flow Interface

The ASIC flow interface of MachineFlow consists of a simple upload box for the design
source. Users are able to submit the Register-Transfer level abstraction of their design using
Verilog 2005(IEEE Standard 1364-2005) Hardware Description Language. For designs
broken down into multiple Verilog modules in different files, users can upload the archived
tarball compressed with gzip (tar.gz file). The top level module identifying the top module
in the hierarchy needs to be specified. A screenshot of the ASIC Flow interface is shown
in Figure 4.1.

Figure 4.1: Verilog File Upload

If any errors are encountered during the ASIC design flow, the error will be displayed
to the user on the MachineFlow site. If no errors are encountered, the results of the ASIC
design flow for the uploaded Verilog design is displayed to the user. The results obtained
from ASIC design flow is tabulated in Table 4.4. Our objective is to generate a wide variety
of data at different points of the design flow to aid us in building predictive models later.
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Presynthesis Synthesis Floorplanning Placement/Routing

num of wires type of standard cells rows of standard cells standard cells with fillers
num of wires internal signals global routing tracks

num of wire bits input signals detailed routing tracks
num of public wires output signals routing layers

num of public wire bits total signals horizontal tracks
total wire bits num of standard cells vertical tracks

num of memories
num of memory bits total wirelength

num of processes
num of cells

Table 4.4: ASIC Flow Results

Versatile Training Data Generation

Training data can be generated by MachineFlow by choosing one of the available design
parameters to tune and vary, and selecting the number of simulations to perform. The
interface is shown in Figure 4.2.

Figure 4.2: Generating Training Data
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The output of this section is a graph showing the value of the total wirelength for each
design flow performed using a particular value of the design parameter. This graph can be
used to identify the value of design parameter that results in the shortest total wirelength
through a brute force search.

In addition to generating training data, MachineFlow allows users to use existing train-
ing data. Figure 4.3 shows the interface which allows users to select the circuit features
they want to use alongside design parameters to generate models.

Figure 4.3: Choosing features

Statistical Learning Method Integration

The interface to build predictive models using statistical learning techniques is shown in
Figure 4.4. Each algorithm is implemented using the scikit-learn machine learning library
[30]. For certain models the user can provide parameters for the models. Table X shows
the confiurable parameters for each model. If the fields are left blank for the random
forests and gradient boosting models, a scikit-learn feature called Grid Search is used by
MachineFlow to generate a grid of parameter values and do an exhaustive search to choose
the parameters that give the best cross-validation score.
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Model Parameter Range
Decision Trees Maximum Depth of Decision Tree 2 - 10

Random Forests Number of Trees In Forest 5 - 100
Max Depth of Decision Trees 2 - 10

Gradient Boosting Number of Boosting Stages 5 - 100
Max Depth of Decision Trees 2 - 10

Learning Rate of Decision Trees 0.01 - 1.0

Table 4.5: Predictive Model Parameters Available for Tuning

For the decision tree model, scikit-learn does not provide a mechanism to find the depth
of the tree that minimizes root mean square error(RMSE). As a result, if the maximum
depth of tree field is left blank, we measure the RMSE 3 times at each depth, average
them, and choose the depth that minimizes RMSE.

Figure 4.4: Training and Testing Models
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Once a model is chosen, the root mean squared error for the model is displayed to the
user for train and test data scatter plots. Root mean squared error, as given in equation 3.4
is used to assess the performance of the model.

4.3.2 Implementation

MachineFlow has been developed as a modern web application. The user interface has been
implemented using HTML, Javascript, CSS and the Bootstrap front-end framework, while
the backend has been implemented using Python and the Django web framework. SQLite
has been used as the transactional database engine, while Gunicorn has been used as the
HTTP web server and NGINX as the proxy server. Asynchronous requests are handled
by the Celery distributed task queue. The workflow and architecture of MachineFlow is
shown in Figure 4.5.

When a HTTP request comes in from a user’s browser, it first hits MachineFlow’s
NGINX reverse proxy. A reverse proxy is used for load balancing, security, caching and
as an additional layer of abstraction and anonymity. NGINX sends the HTTP request
over to Gunicorn web server over UNIX sockets, since they are lighter and faster than
TCP/IP sockets. We use Gunicorn over Django’s built-in single threaded web server since
Gunicorn is multi-threaded and can handle more than one request at a time. Gunicorn
consists of a master process and worker processes. The master process monitors incoming
requests and manages the worker processes, increasing or reducing their numbers based on
the number of concurrent requests. Each worker process handles one request, with each
worker basically carrying a copy of the web application to process the request.

Django HTTP request handler receives the request from Gunicorn and sends it to
the URL dispatcher, which based on the URL, passes the request to the relevant view
Python function. All business logic is contained within the views. For example, specific
views start the ASIC design flow process, records generated data, build statistical learning
models, make predictions and so on. Requests are processed by views and returned back to
the user’s browser. For requests which are asynchronous in nature, for example a request
to perform multiple design flows while changing the design parameter inputs, the results
are not returned immediately to the user, instead a real-time monitoring status for the
task is shown. Asynchronous requests are placed in a task queue, where they are processed
by Celery worker execution units. Once the task completes, the results are stored in the
database, which is polled by Django. This result is then returned to the user.

In addition to data, MachineFlow also responds with relevant visualizations to the
user. Visualizations are currently generated by the views using the Matplotlib plotting
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library[16] and saved as .png files on NGINX which acts as a server for static files, and
served to the user on demand.

Python was chosen as the implementation language due to two reasons. First, there
exist excellent data processing and statistical learning libraries in Python such as Numpy,
Pandas and Scikit-learn which can be easily integrated with a Python web framework to
process user requests and send responses to a browser. Secondly, Python is a simple to use
interpreted, dynamically typed language allows which allows rapid iteration without com-
pilation. This was instrumental in the fast development of the feature set of MachineFlow
through quick develop-test cycles.
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Figure 4.5: Architecture of MachineFlow
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Chapter 5

Results and Analysis

We take two approaches to find the values of design parameters a) number of rows of
standard cells and b) acceptance ratio described in Section 4.1.2 that minimize total wire-
length. First we use predictive models to find the value of each parameter as described in
Algorithm 1. Next we perform the same operation by taking a brute force approach. We
use an integrated circuit which has not been included as part of the training data for these
tests. We demonstrate the performance of the statistical learning approach in comparison
to the brute force approach.

5.1 Statistical Learning Approach

5.1.1 Feature Selection from Training Data

The training data for each design parameter is summarized in Tables 5.1 and 5.2, showing
the count, mean, standard deviation, minimum, maximum and quartile values for each
column. The number of rows dataset consists of 603 records while the acceptance ratio
dataset contains 502 records. This summary is shown upon choosing a training dataset in
MachineFlow.

The training dataset summary page also displays a correlation matrix for each variable
in the dataset to investigate the dependence between them. Each element of the symmetric
matrix is a correlation coefficient between the variables i and j. We use the Pearson
correlation coefficient[29] which gives the linear correlation between two variables, with
a value of +1 for absolute positive correlation, 0 for no correlation and -1 for absolute
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num-of-rows cells wire-bits stdcells stdcells-with-fillers global-route-tracks detail-route-tracks total-signals total-wire-length
count 603 603 603 603 603 603 603 603 603
mean 12.48 27.47 452.75 454.8 470.68 78.53 906.66 401.43 2402922.73

std 6.17 27.59 294.65 267 269.36 39.96 545.16 236.96 1879075.01
min 2 2 81 70 71 10 135 66 210190
25% 7 6 290 237 258 46 482 205 1060535
50% 12 13 358 376 403 73 769 397 1811670
75% 17 47 634 634 650 104 1268 520 3812650
max 25 121 1310 1044 1084 198 2322 1136 9540120

Table 5.1: Summary of Number of Rows Dataset

(The acceptance ratio for this dataset is the default value of 0.44)

acceptance-ratio num-of-rows cells wire-bits stdcells stdcells-with-fillers global-route-tracks detail-route-tracks total-signals total-wire-length
count 502 502 502 502 502 502 502 502 502 502
mean 0.4403 9.47 28.69 355.23 382.01 393.45 62.59 769.12 344.46 2003895.07

std 0.1075 3.40 32.25 213.59 256.77 261.19 31.60 527.35 202.01 1789688.47
min 0.2667 4 2 81 64 64 17 131 66 201750
25% 0.3467 6.25 6 182 162 172 39 328 172 620220
50% 0.4400 9 13 341 335 345 54 636 349 1358305
75% 0.5333 12.75 47 413 584 601 84 1198 501 2764937
max 0.6133 17 137 1173 1044 1066 150 2184 724 7922890

Table 5.2: Summary of Acceptance Ratio Dataset

(The number of rows for this dataset is the value that gives a square aspect ratio)

negative correlation. The correlation matrix for each dataset is used for feature selection.
We visually identify the correlation of the target variable (total wire length) with each
circuit feature and select features that show a high correlation to the target.

Figure 5.1 shows the correlation matrix displayed as a heatmap for the number of rows
dataset. The colorbar next to the heatmap maps correlation matrix value to a color, with
dark red signifying a strong correlation and dark blue zero correlation. We see that the
target ’total wire length’ has correlation above 0.5 for the features a) standard cells b)
standard cells with fillers c) global routing tracks d) detail routing tracks and e) total
signals. We choose a) standard cells and b) total signals as the features for the number of
rows training dataset along with the number of rows input variable. The rest of the features
are not chosen since these measurements are obtained after the floorplanning stage.
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Figure 5.1: Correlation Heatmap for Number of Rows Dataset

Similarly, for the acceptance ratio heatmap in Figure 5.2, we see that the target ’total
wire length’ has correlation above 0.5 for the features a) number of rows b) standard cells
c) standard cells with fillers d) global routing tracks e) detail routing tracks and f) total
signals. We choose a) number of rows b) standard cells and c) total signals as the features
for the acceptance ratio training dataset along with the acceptance ratio variable. The rest
of the features are not chosen since these measurements are obtained after the placement
stage.
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Figure 5.2: Correlation Heatmap for Acceptance Ratio Dataset

Appendix B lists boxplot and whisker plots for each feature and target variable in each
dataset, which gives a visual representation of the distribution of data for these variables.

5.1.2 Model Selection

Once feature selection is done for each dataset, the final training data is generated through
MachineFlow to train predictive models. As mentioned in Section 4.3.1, a train set from
this training data is used to build the model while a test set is used to find the root mean
squared error(RMSE) against this model. The root mean squared error shows the standard
deviation between predicted and observed values for each model.

Methodology

Since the models are built from a random sample of the training data(the train split), we
use the following methodology to find the RMSE.
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• Perform a train-test split for each dataset, and calculate 5 RMSE values for each
model using this split.

• Perform a second train-test split for each dataset, calculate 5 RMSE values for each
model using this split.

• Calculate the mean of the 10 RMSE samples for each model.

The RMSE values following the methodology above for each dataset and each model is
given in Appendix B.

LASSO Regression

The mean RMSE values for both datasets are given in Table 5.3. Figure 5.3 and 5.4 show
the scatter plot of one sample of the actual total wirelength against the predicted total
wirelength given by the LASSO regression model.

Design
Parameter

Dataset
Samples Mean RMSE

Number of
Rows of

Standard Cells
10 363516.99

Acceptance
Ratio

10 253034.53

Table 5.3: LASSO: Mean RMSE Values
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(a) Number of Rows Dataset (b) Acceptance Ratio Dataset

Figure 5.3: LASSO Regression Test Scatter Plots(one sample from each dataset)

Decision Trees

The mean RMSE at each tree depth is given in Table 5.4. Scatter plots at each depth are
not included for this model since to keep report concise. For the number of rows dataset,
the lowest RMSE is at depth of 7 while for the Acceptance Ratio dataset the lowest RMSE
is at depth 9.
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Depth Samples
Mean RMSE of

Number of
Rows Dataset

Mean RMSE Acceptance Ratio Dataset

2 10 621186.47 464468.78
3 10 432082.96 317023.57
4 10 292669.76 180596.03
5 10 253998.19 141299.77
6 10 236501.97 135934.92
7 10 228582.76 141498.93
8 10 235714.23 132819.57
9 10 236752.97 131743.80
10 10 240375.51 131757.68

Table 5.4: Decision Trees: Mean RMSE Values At Each Maximum Depth Value

Random Forests

The mean RMSE values for both datasets are given in Table 5.5. Figure 5.4 shows the scat-
ter plots of one sample of the actual total wirelength against the predicted total wirelength
given by the Random Forests regression model.

Design
Parameter

Dataset
Samples Mean RMSE

Number of
Rows of

Standard Cells
10 189066.79

Acceptance
Ratio

10 117856.43

Table 5.5: Random Forests: Mean RMSE Values
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(a) Number of Rows Dataset (b) Acceptance Ratio Dataset

Figure 5.4: Random Forests Regression Scatter Plots(one sample from each dataset)

Gradient Boosting

The mean RMSE values for both datasets are given in Table 5.6. Figure 5.5 shows the scat-
ter plots of one sample of the actual total wirelength against the predicted total wirelength
given by the Gradient Boosting regression model.

Design
Parameter

Dataset
Samples Mean RMSE

Number of
Rows of

Standard Cells
10 170038.69

Acceptance
Ratio

10 125797.08

Table 5.6: Gradient Boosting: Mean RMSE Values
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(a) Number of Rows Dataset (b) Acceptance Ratio Dataset

Figure 5.5: Gradient Boosting Regression Test Scatter Plots(one sample from each dataset)

Model RMSE Analysis

Figure 5.6: Mean RMSE values for each model by dataset
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The root mean squared error for each model is compared in Figure 5.6. We make two
observations:

1. Non-linear models demonstrate significantly lower RMSE compared to the linear
LASSO model.

2. Among the non-linear models, Gradient Boosting model has the lowest RMSE for
the number of rows dataset and Random Forests model has the lowest RMSE for the
acceptance ratio dataset.

To explain the first observation, we explore the scatter plots for both datasets. To
make it easier to visualize the data in 3D, we plot the total wirelength against the design
parameter and one common attribute for both datasets - the number of standard cells.
The hyperplane in Figures 5.7 and 5.8 represents the linear total wirelength values pre-
dicted by a linear model, while the dots represent the actual values of total wirelength
for given inputs. The white dots represent observations above the plane and black dots
represent observations below the plane. The color of the plane corresponds to predicted
total wirelength (red - high, blue - low).

Figure 5.7: Scatter Plot for Number of Rows Dataset in Floorplanning

In Figure 5.7, we see that at lower values of number of rows, the total wirelength is
higher for most sizes of circuits, with a pronounced increase for high standard cell count
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circuits. This can be explained through congestion caused due to limited vertical routing
space. When large circuits are forced into a core with a smaller number of rows of standard
cells, the efficacy of feedthrough cells used by TimberWolf placement tool in a later stage
decreases as now a net can be routed through a smaller number of rows vertically. More
demand is placed on horizontal routing tracks as pins that could be connected economically
vertically are placed further away from each other. This can cause congestion in horizontal
routing tracks and routing detours are often required. This causes total wirelength to
increase as the shortest path between pins is not taken. As can be seen in Figure 5.7, a
linear model given by the plane does not accurately capture the behavior of the data to
account for higher wirelength at lower number of rows, which results in a higher root mean
squared error for the linear model in Figure 5.6.

Figure 5.8: Scatter Plot for Acceptance Ratio Dataset

We also explore the acceptance ratio data distribution in Figure 5.8. We see that for
circuits with higher standard cell counts, a number of minima of the total wirelength are
displayed for certain inputs of acceptance ratio, while the minima are not as pronounced
or not noticeable for circuits with lower standard cell counts. To explain this behavior, we
revisit placement using TimberWolf tool which attempts to place cells while minimizing
total estimated interconnect cost. A simulated annealing algorithm is used during place-
ment which takes a hill climbing approach to get out of local minima and to find the global
minimum estimated interconnect cost for a particular placement. Acceptance ratio is a
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tuning parameter for the middle stage of simulated annealing. For circuits with a smaller
number of standard cells and wires, congestion is negligible as there is ample whitespace,
therefore we believe the tuning parameter does not have a large effect on placement and
ultimately final routed total wirelength. However, for a large circuit, there is more hori-
zontal and vertical congestion than a smaller circuit, an effective placement given by an
optimal tuning parameter can lead to less congestion and a reduction in final routed total
wirelength. This is why we believe we see more pronounced minima at certain values of
acceptance rates for larger circuits. Once again the linear model does not capture this
behavior of the data, resulting in higher RMSE for the linear model.

Non-linear models such as decision trees described in Section 3.3 are able to better
model non linear features of data by dividing the area in question into smaller sub-spaces
and fitting a model in the subspace. By modeling the number of rows and acceptance ratio
data features described above more accurately than a linear model, the decision tree models
exhibit a lower RMSE. However, as discussed in Section 3.3.1, decision trees display high
variance because the hierarchial nature of tree construction can propagate errors from the
top of a tree. Random Forests and Gradient Boosting models use a collection of decision
trees as described in Section 3.3.2, reducing the variance of individual trees. As a result,
Random Forests and Gradient Boosting models accurately model the non-linearities in
data not captured by linear models, while also reducing the variance and error in decision
tree models, giving the lowest root mean squared error of the models studied.

5.1.3 Prediction Results

We choose Gradient Boosting and Random Forest models to adaptively obtain design
parameters for test circuits that reduces total wirelength in this section. We use three test
circuits of varying sizes. The test circuits are not part of the training data of the models.

• Small Circuit - Twos Complement module from the Fixed Point Arithmetic Mod-
ules project at OpenCores(http://opencores.org/project,fixed_point_arithmetic_
parameterized [282 standard cells]

• Medium Circuit -Ethernet Media Independent Interface Management module
from the Ethernet MAC 10/100 Mbps project at OpenCores(http://opencores.
org/project,ethmac [640 standard cells]

• Large Circuit -Addition module from the Fixed Point Math Library for Verilog
project at OpenCores(http://opencores.org/project,verilog_fixed_point_math_
library [991 standard cells]
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To compare predicted values with the actual total wirelength we first perform ASIC
Design Flow runs with default design parameter values (acceptance ratio of 0.44 and square
aspect ratio). For each circuit, 10 samples of total wirelength using default values are
taken(Tables B.8, B.9 and B.10). The mean total-wirelength for the test circuits are given
below.

• Two’s Complement module - 713020

• Ethernet MIIM module - 3745690

• Addition module - 4167770

Next, we use MachineFlow to choose the random forests and gradient boosting models
and find the predicted total wirelength values as described in Algorithm 1, using the button
”Start Predictive Digital Flow”. Since simulated annealing is a probabilistic process, the
total wirelength obtained after each flow can vary. Therefore 10 samples are taken and the
mean of the total wirelength is reported in the table below. If the prediction by any model
chooses a default value, the result is not reported.

The predicted total wirelengths and time elapsed are summarized in Tables 5.7, 5.8 and
5.9.

Design
Parameter

Dataset
Model

Parameter
Value Chosen

By Model
Mean Total Wirelength Samples

Number of
Rows of

Standard Cells
Random Forests 4 568025 10

Number of
Rows of

Standard Cells
Gradient Boosting 5 561330 10

Acceptance
Ratio

Random Forests 0.2667 695125 10

Acceptance
Ratio

Gradient Boosting 0.2667 695125 10

Table 5.7: Two’s Complement Module - ASIC Design Flow Using Predictions from Statis-
tical Models
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Design
Parameter

Dataset
Model

Parameter
Value Chosen

By Model
Mean Total Wirelength Samples

Number of
Rows of

Standard Cells
Random Forests 11 3218500 10

Number of
Rows of

Standard Cells
Gradient Boosting default - 10

Acceptance
Ratio

Random Forests 0.3867 3405050 10

Acceptance
Ratio

Gradient Boosting 0.2667 3522730 10

Table 5.8: Ethernet MIIM Module - ASIC Design Flow Using Predictions from Statistical
Models

Design
Parameter

Dataset
Model

Parameter
Value Chosen

By Model
Mean Total Wirelength Samples

Number of
Rows of

Standard Cells
Random Forests 12 3986960 10

Number of
Rows of

Standard Cells
Gradient Boosting default - 10

Acceptance
Ratio

Random Forests 0.3867 4053480 10

Acceptance
Ratio

Gradient Boosting 0.3867 4097835 10

Table 5.9: Addition Module - ASIC Design Flow Using Predictions from Statistical Models

5.2 Brute Force Approach

We take a brute force approach in this section to find the design parameter values which
has smallest total wirelength. Using MachineFlow, we vary the number or rows of standard
cells from 2 rows to 25 rows and perform a ASIC Design Flow at each stage for all 3 circuits.
Similarly for the acceptance ratio dataset, we vary the acceptance ratio from 0.267 to 0.613
and perform a ASIC Design Flow at each stage. The results are displayed in Figures 5.9,
5.10 and 5.11. The complete data is provided in Appendix B.
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(a) Number of Rows of Standard Cells (b) Acceptance Ratio

Figure 5.9: Brute Force Exploration of Design Parameters of Two’s Complement Module

(a) Number of Rows of Standard Cells (b) Acceptance Ratio

Figure 5.10: Brute Force Exploration of Design Parameters of Ethernet MIIM Module
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(a) Number of Rows of Standard Cells (b) Acceptance Ratio

Figure 5.11: Brute Force Exploration of Design Parameters of Addition Module

Using this approach, the shortest total wirelength, the design parameter and the elapsed
time for each circuit is given in Table 5.10.

Circuit Design Parameter
Parameter

Value
Total Wirelength Time Elapsed

Two’s
Complement

Number of Rows of Standard Cells 3 576880 168.67s

Acceptance Ratio 0.5867 660340 155.54s
Ethernet MIIM Number of Rows of Standard Cells 8 3260440 561.17s

Acceptance Ratio 0.320 3276170 350.65s
Addition Number of Rows of Standard Cells 10 3885790 1212.74

Acceptance Ratio 0.2933 3934040 485.24s

Table 5.10: Shortest Wirelength through Brute Force Exploration

5.3 Analysis

To verify if the total wirelength obtained using predicted design parameters is lower with
statistical significance compared to the total wirelength using default parameters, we use
the Mann–Whitney-Wilcoxon(MWW) test[26]. The Mann–Whitney-Wilcoxon test is used
to compare two independent group of samples from continuous distributions, to check if
observations in one sample are greater than the other. For each circuit, the MWW P value
is calculated. If P is less than or equal to 0.05, the test indicates with a high degree of
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confidence that the two groups differ, thus we can say that the predicted design parameter
decreased total wirelength. The P-Value for each circuit is given in Table 5.11.

Circuit Design Parameter Model P-Value
Two’s Complement Number of rows Random Forests 0.000157

Gradient Boosting 0.000157
Acceptane Ratio Random Forests 0.34470

Gradient Boosting 0.34470
Ethernet MIIM Number of rows Random Forests 0.00193

Gradient Boosting -
Acceptane Ratio Random Forests 0.13057

Gradient Boosting 0.01556
Addition Module Number of rows Random Forests 0.00815

Gradient Boosting -
Acceptane Ratio Random Forests 0.02334

Gradient Boosting 0.05878

Table 5.11: Mann–Whitney-Wilcoxon test results

We only consider the prediction results where the Mann–Whitney-Wilcoxon test shows
the total wirelength is lower than the defaults. We obtain a P value of lower than 0.05 for
the number of rows design parameter prediction for all circuits using the Random Forests
model. For the acceptance ratio design parameter prediction, the Ethernet MIIM module
and the Addition module circuit shows a P value of lower than 0.05 using the Gradient
Boosting and Random Forests models respectively.

The percentage difference in total wire-length for the predictions passing the Mann–
Whitney-Wilcoxon test and the speedup compared to a brute force search are given in
Table 5.12.

Circuit Design Parameter Model Difference (w.r.t. Brute Force) Speedup(w.r.t Brute Force)
Two’s Complement Number of rows Random Forests 0.14 % 16x

Gradient Boosting 3.42 % 15x
Ethernet MIIM Number of rows Random Forests 1.21 % 25x

Acceptane Ratio Gradient Boosting 5.49 % 17x
Addition Module Number of rows Random Forests 3.70 % 35x

Acceptane Ratio Random Forests 3.73 % 15x

Table 5.12: Percentage Differences and Speedups
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As observed in Table 5.12, the number of rows design parameter can be accurately
predicted using MachineFlow framework for all three circuits with a percentage difference
with respect to brute force below 5% using Random Forests Model, resulting in a speedup
of 16-35x over the brute force approach. The acceptance ratio parameter could only be
predicted for the large circuit under test, with a percentage difference below 5%.

The scatter plot for acceptance ratio dataset in Figure 5.8 provides a clue as to why we
cannot predict the acceptance ratio for small and medium sized circuits with an acceptable
percentage difference. We see that the data shows very little correlation between acceptance
ratio and total wirelength for circuits with small and medium number of standard cells. The
average value of total wirelength changes very little in response to changes in acceptance
ratio. The probable cause for this behavior is explained in Section 5.1.2 on page 41. As a
result, acceptance ratio is not a good feature for models using total wirelength as a target
unless the circuit is large.

Thus our approach is capable of giving accurate and timely results for some but not
all design parameters and a careful analysis of dataset, models and predictive performance
should be conducted for each design parameter we want to predict.
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Chapter 6

Conclusions

6.1 Summary of Contributions

This thesis describes an end to end web tool used to build and investigate statistical
learners and predict design parameters of standard cell VLSI design flows. Using datasets
built from 30 Verilog circuit sources, and with a target of minimizing the total-wirelength,
a number of linear and non-linear models are built and evaluated to find the model that
demonstrates the lowest root mean squared error values. Next an empirical evaluation is
made with 3 real world circuits against these models to verify if the chosen models are
capable of predicting design parameters with high accuracy and time efficiencies versus a
brute force approach. We demonstrate a methodology to test if our approach is able to
accurately predict a particular design parameter with confidence. Using this methodology,
we demonstrate that we are able to predict a design parameter from the floorplanning
stage for all classes of circuits under test using our approach.

6.2 Future Work

We would like to evaluate a number of different areas in the future.

• Neural networks/deep learning - Neural networks are a powerful learning method.
Recent advances in neural networks, such as deep learning and the release of open
source tools such as TensorFlow provides us with one other powerful learning tech-
nique that can be used to predict circuit design parameters.
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• Larger/More diverse datasets - For the design parameters studied in this thesis, our
dataset consisted of approximately 500 datapoints from 30 circuits obtained mostly
from OpenCores. In the future, we would like to build a dataset with 100+ circuits
and 1000+ datapoints from more diverse sources to create more rounded datasets.

• More features/targets - We would like to evaluate if we can extract more finer grained
information from a standard cell VLSI design flow to test whether they would be good
features showing strong correlation to targets. We would also like to explore new
targets apart from minimizing total wirelength, such as minimizing the maximum
interconnect delay, or minimizing delay in critical nets.

• New design parameters - We would also like to evaluate more design parameters from
other stages of the flow, such as the Routing stage.
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Appendix A

List of Integrated Circuits Used to
Build Training Data

1. adc driver.v

2. afifo.v

3. ahb2wb.v

4. analog bridge.v

5. at boot reg writer.v

6. average pipeline.v

7. big vga hexdisp4.v

8. debouncer.v

9. display 16hex.v

10. display mux.v

11. eth crc.v

12. eth receivecontrol.v

13. eth rxcounters.v
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14. eth shiftreg.v

15. eth txcounters.v

16. fht.v

17. LIN2ALAW.v

18. MLAW2LIN.v

19. parallel crc.v

20. radio controller TxTiming.v

21. rc motor.v

22. real time clock.v

23. rtcdate.v

24. sensor controller.v

25. SerialRx.v

26. SerialTx.v

27. sockit owm.v

28. uart.v

29. wbm picoblaze.v

30. wb regfile.v
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Appendix B

Feature and Model Selection Data

sample RMSE Number of Rows RMSE Acceptance Ratio
1 499304.75 413550.06
2 499304.75 413550.06
3 499304.75 413550.06
4 499304.75 413550.06
5 499304.75 413550.06
6 528295.99 466075.36
7 528295.99 466075.36
8 528295.99 466075.36
9 528295.99 466075.36

10 528295.99 466075.36
Mean 513800.37 439812.71

Table B.1: LASSO Regression RMSE Values

depth sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9 sample 10
2 589187.40 589187.40 589187.40 589187.40 589187.40 653185.55 653185.55 653185.55 653185.55 653185.55
3 404095.56 404095.56 404095.56 404095.56 404095.56 460070.36 460070.36 460070.36 460070.36 460070.36
4 306279.88 306279.88 306279.88 306279.88 306279.88 279059.65 279059.65 279059.65 279059.65 279059.65
5 256360.26 256360.26 256360.26 256360.26 256360.26 251636.12 251636.12 251636.12 251636.12 251636.12
6 241525.76 241525.76 241525.76 241525.77 241525.77 231478.19 231478.19 231478.19 231478.19 231478.19
7 230769.03 230769.03 230769.03 230769.03 230769.03 226396.50 226396.50 226396.50 226396.50 226396.50
8 235883.30 235883.30 235883.30 235883.30 235883.30 235545.16 231448.83 235545.16 231448.84 231448.84
9 238951.26 238951.26 238951.26 238951.26 238951.26 234554.68 238635.38 238635.38 238635.38 238635.38

10 241050.89 241050.89 241050.89 241050.89 241050.89 239700.14 239700.14 235661.16 235661.16 239700.14

Table B.2: Decision Tree Model RMSE for Number of Rows Dataset
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depth sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9 sample 10
2 427549.94 427549.94 427549.94 427549.94 427549.94 501387.63 501387.63 501387.63 501387.63 501387.63
3 305816.47 305816.47 305816.47 305816.47 305816.47 328230.67 328230.67 328230.67 328230.67 328230.67
4 187503.85 187503.85 187503.85 187503.85 187503.85 173688.22 173688.22 173688.22 173688.22 173688.22
5 146651.09 146651.09 146651.09 146651.09 146651.09 135948.46 135948.46 135948.46 135948.46 135948.46
6 131323.84 131323.84 131323.84 131323.84 131323.84 140546.01 140546.01 140546.01 140546.01 140546.01
7 142706.25 142706.25 142706.25 142706.25 142706.25 140291.61 140291.61 140291.61 140291.61 140291.61
8 132435.44 132435.44 132435.44 132435.44 132435.44 133203.70 133203.70 133203.70 133203.70 133203.70
9 132512.37 132512.37 132512.37 132512.37 132512.37 130975.24 130975.24 130975.24 130975.24 130975.24

10 132414.78 132414.78 132414.78 132414.78 132414.78 131100.58 131100.58 131100.58 131100.58 131100.58

Table B.3: Decision Tree Model RMSE for Acceptance Ratio Dataset

sample RMSE Number of trees in forest max-depth
1 182322.82 100 8
2 188864.09 100 9
3 179311.36 100 6
4 183465.25 100 6
5 180206.33 100 6
6 193816.70 100 9
7 195183.56 100 8
8 198607.97 100 10
9 191022.92 100 7

10 197866.97 100 10

Table B.4: Random Forest Model RMSE for Number of Rows Dataset

sample RMSE Number of trees in forest max-depth
1 117692.80 100 9
2 116159.14 100 7
3 114554.49 100 7
4 113807.93 100 10
5 117985.25 100 6
6 119791.03 100 7
7 119743.98 100 7
8 117447.86 100 8
9 119270.76 100 7

10 122111.07 100 7

Table B.5: Random Forest Model RMSE for Acceptance Ratio Dataset
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sample RMSE Number of trees in forest max-depth learning rate
1 166842.78 100 3 0.5
2 166831.81 100 3 0.5
3 165785.86 100 3 0.5
4 166677.83 100 3 0.5
5 154261.70 100 3 0.1
6 176715.67 100 3 0.5
7 176439.65 100 3 0.5
8 175225.71 100 3 0.5
9 175745.89 100 3 0.5

10 175860.07 100 3 0.5

Table B.6: Gradient Boosting Model RMSE for Number of Rows Dataset

sample RMSE Number of trees in forest max-depth learning rate
1 121773.02 100 4 0.1
2 121773.02 100 4 0.1
3 121074.00 100 4 0.1
4 121865.98 100 4 0.1
5 121167.82 100 4 0.1
6 129763.13 100 5 0.05
7 129763.13 100 5 0.05
8 129963.80 100 5 0.05
9 130870.07 100 2 1.0

10 129956.91 100 5 0.05

Table B.7: Gradient Boosting Model RMSE for Acceptance Ratio Dataset

sample total wire-length
1 713020
2 714970
3 714970
4 713020
5 676810
6 713020
7 676810
8 676810
9 713020

10 692870

Table B.8: Measured Total Wirelength for Two’s Complement Module Circuit
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sample total wire-length
1 3740960
2 3750420
3 3366090
4 3740960
5 3750420
6 3358410
7 3750420
8 3358410
9 3796540

10 3796540

Table B.9: Measured Total Wirelength for Ethernet MIIM Circuit

sample total wire-length
1 4270300
2 4065240
3 4065240
4 4059430
5 4065240
6 4277540
7 4270300
8 4277540
9 4065240

10 4277540

Table B.10: Measured Total Wirelength for Addition Module Circuit

sample RF rows RF Total Wirelength RF Elapsed Time(s) GM rows GM Total Wirelength GM Elapsed Time(s)
1 4 595180 10.13s 5 649150 10.00
2 4 595180 9.92s 5 561330 10.06
3 3 569350 10.35s 5 561330 9.71
4 4 566700 10.33s 5 561300 9.93
5 4 596030 10.18s 5 650030 9.69
6 4 566700 9.97s 5 561330 9.96
7 5 561330 10.24s 5 649150 9.63
8 4 596030 9.70s 5 561330 9.38
9 5 561330 9.97s 5 561300 10.04

10 4 569350 9.84s 5 650030 9.67

Table B.11: Prediction Results with Random Forests (RF) and Gradient Descent (GM)
Models for Number of Rows Dataset for Two’s Complement Circuit
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sample RF Acc-Ratio RF Total Wirelength RF Elapsed Time GM Acc-Ratio GM Total Wirelength GM Elapsed Time
1 0.2667 697380 10.79s 0.2667 692870 10.88s
2 0.2667 697380 11.16s 0.2667 692870 10.69s
3 0.2667 692870 11.23s 0.2667 697380 11.11s
4 0.2667 692870 10.82s 0.2667 692870 10.71s
5 0.2667 697380 10.84s 0.2667 697380 11.06s
6 0.2667 697380 10.19s 0.2667 697380 10.16s
7 0.2667 692870 10.11s 0.2667 692870 10.52s
8 0.2667 697380 10.10s 0.2667 692870 9.84s
9 0.2667 692870 9.99s 0.2667 697380 10.80s

10 0.2667 692870 10.20s 0.2667 697380 9.79s

Table B.12: Prediction Results with Random Forests (RF) and Gradient Descent (GM)
Models for Acceptance Ratio Dataset for Two’s Complement Circuit

sample RF rows RF Total Wirelength RF Elapsed Time(s) GM rows GM Total Wirelength GM Elapsed Time(s)
1 11 3218500 21.79s 14 - -
2 11 3218500 22.61s 14 - -
3 11 3520730 21.35s 14 - -
4 11 3431280 21.51s 14 - -
5 11 3520730 22.40s 14 - -
6 11 3218500 21.89s 14 - -
7 11 3218500 23.61s 14 - -
8 11 3218500 21.79s 14 - -
9 11 3217930 21.59s 14 - -

10 11 3217930 25.26s 14 - -

Table B.13: Prediction Results with Random Forests (RF) and Gradient Descent (GM)
Models for Number of Rows Dataset for Ethernet MIIM Circuit

sample RF Acc-Ratio RF Total Wirelength RF Elapsed Time GM Acc-Ratio GM Total Wirelength GM Elapsed Time
1 0.3867 3401550 21.74s 0.2667 3523210 20.27s
2 0.3867 3405050 22.31s 0.2667 3523210 20.23s
3 0.3867 3518340 21.05s 0.2667 3522730 20.16s
4 0.3867 3401550 22.53s 0.2667 3355780 20.77s
5 0.3867 3518340 21.13s 0.2667 3355780 20.90s
6 0.3867 3405050 20.72s 0.2667 3523210 20.40s
7 0.3867 3518340 21.24s 0.2667 3522730 20.55s
8 0.3867 3405050 20.72s 0.2667 3522730 20.51s
9 0.3867 3401550 20.71s 0.2667 3355780 20.63s

10 0.3867 3518340 21.12s 0.2667 3355780 20.61s

Table B.14: Prediction Results with Random Forests (RF) and Gradient Descent (GM)
Models for Acceptance Ratio Dataset for Ethernet MIIM Circuit
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sample RF rows RF Total Wirelength RF Elapsed Time(s) GM rows GM Total Wirelength GM Elapsed Time(s)
1 11 3807480 36.09s 13 - -
2 12 3986960 35.81s 13 - -
3 12 3982600 35.29s 13 - -
4 12 4231280 36.88s 13 - -
5 12 3986960 35.37s 13 - -
6 12 3986960 35.68s 13 - -
7 12 4260210 36.32s 13 - -
8 11 4083070 36.15s 13 - -
9 12 3982600 35.42s 13 - -

10 12 3986960 32.10s 13 - -

Table B.15: Prediction Results with Random Forests (RF) and Gradient Descent (GM)
Models for Number of Rows Dataset for Addition Circuit

sample RF acceptance ratio RF Total Wirelength RF Elapsed Time(s) GM acceptance ratio GM Total Wirelength GM Elapsed Time(s)
1 0.3867 4142190 32.73s 0.3867 4167600 32.48
2 0.3067 3948930 32.05s 0.3867 4053480 32.39
3 0.3867 4167600 32.43s 0.3867 4053480 32.51
4 0.3867 4142190 32.57s 0.3867 4167600 32.53
5 0.3867 4052790 32.55s 0.3867 4053480 32.53
6 0.3867 4052790 32.64s 0.3867 4167600 39.25
7 0.3867 4053480 32.57s 0.3867 4053480 36.11
8 0.3867 4053480 32.63s 0.3867 4052790 36.09
9 0.3867 4052790 32.67s 0.3867 4167600 36.00

10 0.3867 4142190 32.49s 0.3867 4142190 36.02

Table B.16: Prediction Results with Random Forests (RF) and Gradient Descent (GM)
Models for Acceptance Ratio Dataset for Addition Circuit
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rows-Of-stdcells stdcells global-routing-tracks stdcells-after-fillers detail-routing-tracks total-signals total-wire-length
2 640 38 642 1667 89 NaN
3 640 41 642 1380 89 5347210
4 640 44 644 1310 89 4145530
5 640 46 643 1310 89 3830480
6 640 48 648 1328 89 3414390
7 640 56 644 1330 89 3501280
8 640 55 652 1310 89 3260440
9 640 67 648 1312 89 3489130

10 640 73 648 1335 89 3516220
11 640 74 660 1364 89 3513950
12 640 84 648 1331 89 3500210
13 640 82 660 1338 89 3264260
14 640 88 658 1326 89 3466790
15 640 101 663 1322 89 3463100
16 640 100 668 1361 89 3618620
17 640 107 663 1344 89 3472880
18 640 122 648 1325 89 3723450
19 640 111 667 1337 89 3522630
20 640 128 669 1349 89 3503660
21 640 134 672 1316 89 3689540
22 640 134 682 1334 89 3714350
23 640 142 678 1313 89 3589410
24 640 147 660 1313 89 3532980
25 640 158 678 1333 89 3977990

Table B.17: Raw Data of Brute Force Number of Rows Exploration

acceptance-ratio rows stdcells global-routing-tracks stdcells-after-fillers detail-routing-tracks total-signals total-wire-length
0.266667 14 640 92 658 1325 89 3362760
0.293333 14 640 89 658 1324 89 3364840
0.320000 14 640 90 658 1310 89 3276170
0.346667 14 640 88 658 1336 89 3455840
0.373333 14 640 94 658 1328 89 3349350
0.400000 14 640 88 658 1334 89 3554910
0.426667 14 640 100 658 1346 89 3499710
0.453333 14 640 90 672 1331 89 3504860
0.480000 14 640 89 658 1340 89 3587670
0.506667 14 640 96 658 1321 89 3913070
0.533333 14 640 102 658 1333 89 3914590
0.560000 14 640 96 658 1321 89 3605040
0.586667 14 640 87 658 1327 89 3595380
0.613333 14 640 98 658 1324 89 3846970

Table B.18: Raw Data of Brute Force Acceptance Ratio Exploration
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