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Abstract 

 Navigating the environment and making everyday decisions is a process plagued by 

noise, uncertainty, and non-stationary contingencies. Efficient and effective action is predicated 

upon a stable internal representation of the environment that guides action without extensive or 

exhaustive observation, deliberation, and alteration at the slightest deviation from expected 

outcomes. The ability of individuals to build these mental models and update them as needed 

represents a critical component of everyday decision and action. The current thesis provides an 

in-depth exploration of this construct though a series of brain imaging and behavioural 

experiments examining the neural correlates of mental model building and updating focusing on 

how other cognitive abilities (i.e., working memory and attention) influence the speed and 

accuracy of these processes. Brain imaging results highlight a network of frontal, parietal, and 

subcortical areas that support mental model updating. Follow-up behavioural experiments reveal 

both working memory and attention to be important gating mechanisms to the processing of 

environmental stimuli that comprise a mental model. Taken together, the results point to a robust 

neural network coupled with working memory and attentional gating mechanisms that support 

this behaviour.  
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Chapter 1: Introduction 

 Interacting with a complex and dynamic environment requires an ability to represent the 

environment and flexibility to adjust to changes amidst uncertainty and noise. Ideally, such a 

process would allow individuals to make optimal predictions about their environment and the 

consequences of their actions without excessive observation and deliberation. Throughout this 

thesis, these processes are collectively referred to as mental model building and updating. 

Extensive research has proposed numerous underlying mechanisms that support mental model 

building an updating, from heuristics (Tversky & Kahneman, 1974; Gaissmaier & Schooler, 

2008), statistical learning (Saffran, Johnson, Aslin, & Newport, 1999; Fiser & Aslin, 2001; 2002) 

to Bayesian cognition (Yu, 2007; Nassar, Wilson, Heasly, & Gold, 2010). Common among these 

is the axiom that individuals seek an expedient understanding of their environment through 

intuitive reasoning and observation for the purpose of decision-making and action (Griffiths & 

Tenenbaum, 2006; Tenenbaum, Kemp, Griffiths, & Goodman, 2011, Johnson-Laird, 2013).  

 Mental models, as defined here, are representations of the regularities in the environment 

that form a cognitive construct to inform decision making and action that facilitates predictions 

concerning the outcomes of those decisions/actions (i.e., “What will happen next?”; e.g., 

Danckert, Stöttinger, Quehl, & Anderson, 2012). For example, one could have a mental model of 

how long it takes to get to work based on repeated timings of their commute factoring in traffic 

patterns, distance, various routes, and ancillary tasks that need to be completed upon arrival (e.g., 

paying for parking, walking to the office from the parking lot). A considerable amount of 

variables and information gets condensed into a representation of time and variance that allow us 

to work backwards to ensure we rarely arrive late despite the confluence of factors that could 

otherwise conspire to delay us. There are numerous examples of such feedforward predictive 



 2 

models in the literature. Anything from playing competitive games to finding the way to the 

bathroom in the middle of the night without stubbing your toe, require individuals to model their 

environment to make optimal predictions and motivate efficient action (Wolpert, 2007; Wolbers, 

Hegarty, Büchel, & Loomis, 2008; Zhu, Mathewson, & Hsu, 2012; Kwon & Knill, 2013; 

Stöttinger, Filipowicz, Danckert, & Anderson, 2014). 

While mental models are useful for making predictions and guiding efficient action, their 

utility is contingent on their ability to adapt when circumstances change or feedback 

demonstrates that the model needs to be updated (Danckert et al., 2012, Stöttinger et al., 2014, 

Valadao, Anderson, & Danckert, 2015). Using an earlier example, should the city decide to 

embark on an ambitious construction project in the middle of the winter, the internal model of 

how long it takes to get to work may change drastically even though the individual lives just as 

close to their job as they once did. Failure to update in this instance would lead to potentially 

costly delays. For successful updating to take place, one would first need to detect a mismatch 

between expected and observed outcomes in the environment, thereby triggering re-evaluation 

and accumulation of evidence in the pursuit of a newly formulated model (d’Acremont, Fornari, 

& Bossaerts, 2013a; 2013b). There exists ample evidence in the literature suggesting that healthy 

individuals are capable of making such shifts as environmental contingencies change (Brown & 

Steyvers, 2009; Berniker, Voss, & Kording, 2010; Nassar, Wilson, Heasly, & Gold, 2010; Green, 

Benson, Kersten, & Schrater, 2010) in addition to indications that diffuse brain damage impairs 

this ability (Danckert et al., 2012).  

The current thesis examines how individuals build and update models of their 

environment by examining the neural and cognitive bases for how the process takes place. 

Chapter 2 examined the neural networks underlying model updating by having individuals play a 
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serial decision making game against a computer opponent using a variety of often-exploitable 

strategies, while being scanned in an fMRI scanner. Chapters 3 and 4 explored the influence of 

working memory (Chapter 3; WM; Baddeley, 1992, 1993) and attention (Chapter 4; Posner, 

Snyder, & Davidson, 1980) on how well individuals are able to build and update simple models 

of their environment. These chapters contribute to a broader literature implicating these abilities 

in the process of learning from regularity in the environment (Nissen & Bullemer, 1987; 

Corbetta & Shulman, 2002; Toro, Sinnet, and Soto-Faraco, 2005; Turk-Browne, Jungé, and 

Scholl, 2005; Unsworth & Engle, 2005; de Gardelle & Summerfield, 2011; Albrecht, Scholl, & 

Chun, 2012; Annac, Manginelli, Pollmann, Shi, Müller, & Geyer, 2013; Manginelli, Langer, 

Klose, & Pollmann, 2013; Zhao, Al-Aidroos, & Turk-Browne, 2013; Kabata, Yokoyama, 

Noguchi, and Kita, 2014).  

Results in the following chapters suggest the presence of a neural network consisting of 

frontal, parietal, and subcortical areas that include the anterior insula and cingulate cortex that 

play a role in supporting the ability of individuals to mentally represent and exploit regularity in 

their environment. In addition, behavioural data highlight the importance of unconstrained WM 

and attentional resources in supporting this ability. The final chapter provides a summary of key 

findings across the current thesis and a discussion of limitations and suggestions for future 

research. 
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Chapter 2: Neural Correlates of Updating1 

2.1. Introduction 

Interactions with our environment are characterized by uncertainty, noisy input, 

distractions, and non-stationary contingencies. As such, behaviourally and cognitively efficient 

interactions require stable and robust internal representations of those aspects of the environment 

most relevant to a desired goal. Such representations – or ‘mental models’ – allow us to make 

optimal decisions without having to waste precious time and resources considering all possible 

outcomes or oversampling the environment (Tenenbaum, Kemp, Griffiths, & Goodman, 2011). 

These mental models reflect the distillation of relevant sources of information and observed 

outcomes into an actionable hypothesis space that is capable of being learned, evaluated in real 

time, and aids in imposing structure over our chaotic environment (Johnson-Laird, 2013). 

Additionally, as the environment changes, a critical component of mental models is that they are 

capable of updating to ensure optimal behavior under mutable contexts. 

Mental models, and their applications, have been demonstrated in numerous domains. As 

evidenced from the action and perception literature, models of space facilitate way-finding in the 

absence or degradation of visual input (Wolbers, Hegarty, Büchel, & Loomis, 2008). Baseball 

players learn the speed tendencies of pitchers to perfectly time and place swings within a time 

window smaller than the blink of an eye (Kwon & Knill, 2013). Indeed, the fluidity and 

economy of our movements have been suggested to rely partially on an existing model that 

facilitates feed-forward inferences about the desired goal state accounting for prior experience in 

performing requisite actions (Wolpert, 2007).  

1 A version of this chapter is under review as Valadao, D. F., Anderson, B., & Danckert, J. Parietal and Cingulate 

Cortex Involvement in Strategy Updating Using a Serial Competitive Zero-Sum Game. Frontiers in 

Neuroscience. It is reproduced here with permission. 
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Mental models have also been shown to be important across a range of cognitive 

domains. For example, visual search has been shown to be more efficient as the configuration of 

distractors becomes more consistent (i.e., contextual cueing; Jiang, Swallow, & Rosenbaum, 

2013), suggesting the presence of a higher order representation that aids in efficient processing. 

Furthermore, a number of studies have begun to reconsider the influence of sequential effects 

(e.g., the “gambler’s fallacy” and “probability matching” behaviours), long believed to be 

evidence of suboptimal human decision making (Tversky & Kahneman, 1974). That is, these so-

called ‘suboptimal’ strategies can be recast as a reflection of an individual’s attempt to model 

global changes in the environment by representing local changes in statistical probabilities (Yu 

& Cohen, 2009; Gaissmaier & Schooler, 2008; Green, Benson, Kersten, & Schrater, 2010; 

Griffiths & Tenenbaum, 2006).  

Bayesian theorists have long suggested that individuals enter a given context with a set 

prior, namely an implicit but demonstrable belief about the elements of a task or the probability 

of relevant events (Tenenbaum et al., 2011). Such priors allow us to determine how discrepant a 

given outcome is relative to predictions based on the prior, which in turn can be used to evaluate 

the efficacy of an existing model (Yu, 2007; Nassar, Wilson, Heasly, & Gold, 2010). Thus, this 

mechanism represents one plausible way in which mental models can be updated to 

accommodate new information.  

 Research on statistical learning has also suggested that individuals are capable of 

representing regularities evident in a seemingly random and chaotic environment (Saffran, 

Johnson, Aslin, & Newport, 1999), and are capable of doing so practically at birth (Bulf, 

Johnson, & Valenza, 2011). By passively observing the environment, one is able to extract the 

statistical organization of objects or events through either its spatial configuration or temporal 
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order, by extracting the transitional probabilities that exist between a set of items or sounds 

(Fiser & Aslin, 2001; 2002). This process typically occurs without awareness and is 

demonstrated by higher than chance performance on forced-choice recognition tasks or by 

behavioural facilitation in speeded response tasks (Turk-Browne, Jungé, & Scholl, 2005). While 

models like those discussed above are undoubtedly useful and efficient means of interacting with 

our world, they would be of little utility if they were unable to change in step with changes 

evident in the environment. As new information contradicts the outcomes predicted by an 

existing model, the model should be updated to account for these events.  

A number of studies have pointed to spontaneous updating of mental models based on 

participants’ observation of new information that contradicts a prior model. Research from our 

lab indicates that healthy individuals are capable of detecting a change in a computer’s play 

strategy in a zero-sum game and subsequently act to exploit it by choosing the option that 

increases their win rate (Danckert, Stöttinger, Quehl, & Anderson, 2012). Brown and Steyvers 

(2009) showed that participants optimally change judgments regarding the nature of an 

underlying distribution of events in step with true changes to the distribution. Indeed, recent 

research has shown that individuals are capable of dynamically shifting their priors over time in 

order to compensate for a shifting environment (Berniker, Voss, & Kording, 2010). Bayesian 

computational models corroborate these results with models that utilize non-stationary priors, 

which allow the model to modify and rebuild an existing prior as a function of the extent to 

which a prediction error exceeds acceptable limits of uncertainty (Nassar et al., 2010; Wilder, 

Jones, & Mozer, 2009).  

Aside from updating in response to discrepant observations, models can also change 

when more information is gleaned about the underlying generative process of seemingly random 
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data. Green and colleagues (2010) explicitly cued participants to the underlying probability of 

outcomes being generated by manipulating a physical aspect of the task (i.e., changing the shape 

of a pinwheel such that larger sections reflected greater probability of a target landing in that 

area). When the physical change indicated higher target probability for a given region, 

participants abandoned the typical ‘probability matching’ behavior (i.e., choosing a given target 

region as often as they observed targets appearing there; Geng, Soosman, Sun, DiQuattro, 

Stankevitch, & Minzenberg, 2013) in favour of the more optimal ‘maximization’ strategy (i.e., 

choosing the larger region 100% of the time; see Koehler and James, 2010 for review). Taken 

together, these studies suggest that individuals are constantly seeking to accurately represent 

their environment; and when given discrepant information or cued to additional relevant 

information, they update their model and shift behaviour accordingly. The research discussed 

above highlights the well-established prevalence and importance of mental models. Furthermore, 

numerous learning mechanisms have been proposed for how mental models of the environment 

are generated. However, the neural correlates of this behavior have yet to be clearly laid out. 

We previously examined the ability of brain-damaged individuals to develop and update 

an internal model of a non-stationary biased strategy of a computer player in a zero-sum 

decision-making game (i.e., “rock, paper, scissors”; Danckert et al., 2012). Participants played 

against a computer that, while initially playing randomly, began to adopt a biased strategy, 

playing one option more often than others (Danckert et al., 2012). By the end of the experiment 

the computer opponent had adopted a strong bias (i.e., one option played on 80% of trials). 

Unsurprisingly, healthy controls (age-matched to our groups of neurological patients) effectively 

detected and exploited the bias by playing the optimal choice to beat the opponent more 

frequently. In fact, healthy controls demonstrated the commonly observed, although suboptimal, 
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probability matching behavior. That is, they chose the play option that would beat their 

opponent’s biased choice approximately 80% of the time (which would lead on average to only a 

64% win rate). In contrast, left brain damage (LBD) patients actually outperformed controls by 

adopting a probability maximizing strategy – i.e., by choosing the option that would beat the 

most likely computer choice (played on 80% of trials) 100% of the time thereby leading to an 

80% win rate. Right-brain damaged (RBD) patients took significantly longer to begin exploiting 

the bias and failed to fully capitalize on the bias at the levels obtained by the either controls or 

LBD patients, with the bulk of the RBD group continuing to play randomly even when faced 

with an opponent’s strong bias. Lesion overlay analyses in the RBD group indicated that the 

superior temporal gyrus (STG), insula and putamen were commonly involved and are thus likely 

to be important structures for updating a mental model. Those same structures were again 

implicated in a second group of RBD patients we studied who failed to update play strategy in a 

different version of rock, paper, scissors and took longer to update perceptual representations of 

ambiguous figures (Stöttinger et al., 2014).  

Functional neuroimaging in healthy individuals highlights similar brain regions to those 

lesioned in our two RBD groups. Paulus and colleagues (2005) used an event-related fMRI 

paradigm to explore the brain regions activated when participants played ‘rock, paper, scissors’, 

against a computer opponent. While prior studies have examined ‘rock, paper, scissors’ in the 

context of fMRI research, they have mainly focused on action and perception (Dinstein, Hasson, 

Rubin, & Heeger, 2007) or reinforcement signals (Kadota, Nakajima, Miyazaki, Sekiguchi, 

Kohno, & Kansaku, 2009; Vickery, Chun, & Lee, 2011) on a trial-by-trial basis. In contrast, 

Paulus and colleagues looked at both outcome and subsequent action selection processes 

following wins, ties, and losses. Results showed that the insula was activated primarily when 
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evaluating outcomes—particularly when the outcome was negative. Further, the STG became 

active primarily during play choice. The authors suggest that these areas are important for 

evaluating outcomes in the service of formulating a strategy.  

While the work of Paulus and colleagues highlights the role these areas play in a zero-

sum game, what remains to be seen is what role these areas play in adapting to a change in 

context requiring the updating of one’s model. Paulus and colleagues merely changed which 

strongly preferred play choice the computer tended towards over the course of their experiment 

(participants exploiting the preferred choice would win 90% of trials if played on every trial) 

rather than altering the weight of the bias over time. In our view, this limits the parameters of 

potential biases the participant must model and exploit, making the task akin to a set-shifting 

exercise, akin to the Wisconsin Card Sorting task (Buchsbaum, Greer, Chang, & Berman, 2005) 

which we showed in prior work was unrelated to deficits in exploiting an opponent’s bias in 

‘rock, paper, scissors’ (Danckert et al., 2012; Stöttinger et al., 2014). That is, once the fact that 

one choice yields success is discovered, all that remains is to determine whether the preferred 

choice (set) has shifted. Furthermore, while Paulus and colleagues focused on establishing the 

regions involved in each component of the decision making process on a trial-by-trial basis (e.g., 

feedback processing, action selection), the current study focuses on an overall network involved 

in modeling regularity over time relative to randomness. The current study also utilizes a more 

complex computer algorithm with multiple bias probabilities, such that participants playing the 

preferred choice would not always result in a high rate of success. Furthermore, the current study 

extends these findings to determine whether the relevant regions are sensitive to different types 

of bias (i.e., no-bias, heavily biased to one option, moderately biased towards two options). 
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In addition, the influence of reinforcement and rewards has not yet been explicitly 

examined in this context. Insofar as previous studies have examined the ability to update one’s 

model, participants also experienced greater rewards as their behavior changed. Thus, it may be 

possible that the experience of having received explicit rewards and the inference that a mental 

model has been updated may have been conflated (e.g., Paulus et al., 2005). It is conceivable that 

participants, whose behavior is taken as representing an updated mental model, are simply driven 

by transient changes in reward. For example, they may be changing strategy in response to 

seeking or securing increased wins as opposed to actually figuring out something new about their 

environment, with all the risk that following through on one’s beliefs entail. In the current study 

we attempted to decouple the reinforcement process from the responses that generate them. 

The current study employed a protocol adapted from Danckert and colleagues (2012) in 

which participants played rock, paper, scissors against a computer opponent that utilized a 

variety of strategies. The protocol was modified for fMRI in order to elucidate a network of areas 

that support the updating of an individual’s mental model as evidenced by behavioural 

exploitation of the shifting biases presented in the computer’s play. It was expected that 

individuals would demonstrate the ability to model and exploit the relatively simplistic computer 

stratagem and that exploration of neural activations under this context would reflect a network of 

right-hemisphere areas supporting the building and updating of mental models. 

 

2.2. Method 

Participants 

 Twelve (5 male; mean age = 29.9, SD = 5.2) neurologically healthy participants with no 

history of psychiatric or neurological illness participated in the experiment. Each participant 
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completed 5 experimental runs. Three of the 60 runs were excluded due to technical reasons. All 

participants had normal or corrected-to-normal visual acuity. All participants provided informed 

consent prior to participation and the research protocol was approved both by the Office for 

Research Ethics at the University of Waterloo and the Tri-Hospital Research Ethics Board of the 

Region of Waterloo in Ontario, Canada. Participants were given $20 remuneration for their 

involvement in the current study. 

 

Design 

 Participants played a zero-sum game of rock, paper, scissors. In this task, participants 

were to choose one of three options (i.e., rock, paper, or scissors) such that any chosen option 

could either beat the computer opponent, be beaten by the opponent, or tie the opponent. 

Participants were informed that the goal for each trial was to defeat the computer opponent’s 

choice.  
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Figure 2.1. Rock Paper Scissors Stimuli. Schematic representation of the experimental stimuli, 

display, and procedure that took place on each trial regardless of condition. Computer (top box) 

would choose first prompting user input. Trial results show computer and player’s choice in the 

top and bottom boxes, respectively. Box outline would change to green, red, or blue to depict 

trial win, loss, or tie, respectively.  
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Each trial began with a vertical array of two boxes; one above and below a fixation cross. 

Fixation was not strictly enforced. Participants were informed that the upper box represented the 

computer’s choice while the lower box represented their own choice. After 200 ms, the computer 

opponent’s selection box turned gray, indicating that the computer had made its choice and was 

awaiting the participant’s decision. Participants then indicated their choice by pressing one of 

three buttons on a response box. Immediately after participants made their choice the trial results 

would appear. Pictorial representations of the choices made were revealed in the upper and lower 

boxes for the computer and participant respectively (Figure 2.1). The outlines of the boxes, 

previously black, would change colour to green if the participant won, red if they lost, and blue 

for a tie. Each trial, in total, lasted 2500 ms. In the rare event that participants took longer than 2 

seconds to respond from the beginning of the trial, they would receive feedback that they were 

too slow by being shown both boxes with a gray interior and red outline instead of the typical 

trial result described above. This occurred infrequently (0.7% of all trials across all participants), 

and when slow responses did occur they were predominantly evident at the very beginning of the 

experiment (i.e., 64% of all slow responses occurred during the first epoch while participants 

became familiar with the time window with which they were required to respond). Only one 

participant had more than 1% of trials in which they responded too slowly (2%). 
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Figure 2.2. fMRI Run Conditions. Schematic representation of a single experimental run 

within the experimental protocol. Different epochs are denoted by the square wave and are 

labelled by the bias adopted by the computer opponent (with example ratios for each choice 

indicated where appropriate). Below this, possible player strategies for each condition and the 

anticipated outcomes corresponding to adherence with each respective strategy are shown (e.g., 

for the 70% bias if a participant chose rock 100% of the time this would lead to a 70% win rate). 

Optimal strategies are indicated in green while suboptimal strategies are depicted in red. 
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While the goal of each individual trial was to beat the computer opponent, the strategy of 

the computer was not stationary. Participants were not informed of this aspect of the task design. 

Throughout each experimental run the computer utilized five different strategies for a minimum 

of 30 trials (Figure 2.2). Paulus and colleagues (2005) demonstrated that 20 trials was sufficient 

to demonstrate learning of relatively simple biases, and reported much of the learning observed 

was found in the first 10 or so trials. Therefore, it was determined that 30 trials would allow 

ample opportunity to model the more complex computer behaviours while still getting sufficient 

data collected within a confined window of time. In order to set a behavioural baseline, as well 

as a functional control for subsequent contrasts, the computer started by playing randomly for 30 

trials (75s per run); whereby each of the three possible choices were played on one third of the 

trials (R, P, S: 33%, 33%, 33%). This was followed by a condition in which the computer ‘let’ 

the participant win for 30 trials by simply choosing the option that would be beaten by the 

participant’s choice on 70% of trials. This arbitrary win rate was intended to provide participants 

with positive reinforcement and increased wins relative to the random condition in a manner that 

did not require the participant to develop a model of the computer opponent’s tendencies by 

detecting and exploiting an observed bias in its play (i.e., strictly speaking, there was no 

observable bias). This allowed us to explore the question of whether merely winning at a certain 

rate would activate regions thought to be necessary for updating. This condition involved some 

level of deception in that participants were told prior to the experiment that when the computer’s 

choice square changed colour this meant that the choice had been “locked in” and would not 

change for the duration of that trial. While true for all other conditions, this arbitrary win rate 

condition involved the computer’s choice box changing colour prior to the participant choosing, 
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with the actual choice of the computer being made after the participant’s choice was entered to 

ensure the participant won on 70% of trials.  

From there, the computer began playing according to a specific bias, whereby it chose 

one option on 70% of trials, choosing each of the other two options 15% of the time (e.g., R, P, 

S: 15%, 70%, 15%) for a total of 60 trials (150 s per run).  

In order to evaluate participants’ ability to navigate more complex scenarios requiring 

mitigation of losses (as opposed to maximizing reward as in the 70% bias), the computer then 

switched to what we call a “two-bias” strategy for 30 trials; whereby the computer chose two 

options on a combined 90% of the trials (i.e., each respective option was chosen on 45% of 

trials), with a third option being chosen on only 10% of trials. This ‘two-bias’ structure 

continued the prior option favoured in the 70% bias albeit to a lesser degree (45% of trials vs. 

70%). The second bias of 45% was then chosen to defeat plays that would have been considered 

optimal under the 70% bias. For example, if the computer had previously been biased towards 

playing rock, thereby reinforcing increased play of paper, the computer would then play rock and 

scissors most often. If the participant continued to prefer paper choices – that is, the optimal play 

under the previous 70% bias structure – they would experience an increase in losses. However, if 

they were able to formulate a new model of the computer’s strategy, and act to minimize losses, 

they would switch to preferring rock; a strategy that would provide a similar amount of wins but 

fewer losses (i.e., more ties). To the extent that participants engaged in this change of strategy, 

their play could be considered optimal in that it minimized losses and maximized wins (Figure 

2.2). It is also important to note that participants, technically, could exhibit a suboptimal strategy 

whereby they experience primarily ties and losses (e.g., choosing scissors). As such, for each 
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permutation of the “two-bias” strategy that the computer could adopt, there was both an optimal 

and suboptimal strategy that participants could adopt. 

The computer then switched to 30 trials of a final two-bias strategy that, again, 

counteracted the previously optimal play strategy. As with the previous two-bias strategy, there 

was an optimal participant strategy (wins and ties) and a suboptimal strategy (ties and losses; 

Figure 2.2). This final condition enabled us to directly examine brain regions responsible for 

updating representations in order to mitigate or avoid losses by directly comparing each two-bias 

condition; whereas typical comparisons in behavioural decision making tasks focus on requiring 

participants to simply maximize rewards values. To prevent participants from merely 

memorizing the correct choice over the course of the five experimental runs, each run had the 

computer exhibit a bias towards a different set of choices than that of the previous run.  

 

fMRI data collection 

 Functional data were collected using T2*-weighted images collected on a 1.5 Tesla 

Phillips machine located at the Grand River Hospital medical imaging department in Waterloo, 

Ontario (TR = 2500 ms; TE = 40ms; slice thickness = 5mm with no gap; 26 slices/volume; FOV 

= 220 x 220 mm2; voxel size = 2.75 x 2.75 x 5mm3; flip angle = 90°). Each experimental run 

began and ended with 5 volumes of fixation. At the beginning of each session, a whole-brain T1-

weighted anatomical image was collected for each participant (TR = 7.5ms; TE = 3.4ms; voxel 

size = 1 x 1 x 1mm3; FOV = 240 x 240mm2; 150 slices with no gap; flip angle = 8°). 

Experimental stimuli were presented to participants in the magnet using an Avotec Silent 

Vision™ fibre-optic presentation system using binocular projection glasses (Model SV-7021). 

The experimental protocol was programmed using E-Prime experimental presentation software 
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(v1.1 SP3; Psychology Software Tools, Pittsburgh, PA). The onsets of trials were synchronized 

to each functional volume collection using trigger-pulses from the magnet. 

 

fMRI Data analysis 

 Functional imaging data were analyzed using Brain Voyager (v2.6, Brain Innovation 

B.V., Maastricht, Netherlands) with each participant’s low-resolution functional data aligned to 

their respective high-resolution anatomical image and subsequently transformed into Talairach 

space (Talairach & Tournoux, 1988). All functional runs were subject to trilinear interpolation to 

correct for motion artefacts. To determine whether significant motion occurred during any one 

run, pre- and post-correction images were compiled into a virtual movie that was played to look 

for instances of movement which would render the data inappropriate for the sample (Culham et 

al., 2003). No serious motion artefacts were present in the sample. All functional data were then 

pre-processed, including the use of linear trend removal and a spatial smoothing filter of 8mm 

FWHM. Predicted activations were convolved to the Boynton hemodynamic response function. 

For each run, linear predictors were applied corresponding to the timeline of the computer 

opponent’s strategy. The predictors were then entered into a General Linear Model where the 

significance for each voxel was evaluated as being significant below threshold of .001, which 

was below a False Discovery Rate threshold of .05. Additionally, a cluster size threshold of 20 

voxels was applied to each contrast. 

 To extract relevant areas of activation in the current study, seven contrasts were 

computed. First, to identify brain regions involved in exploiting a biased computer strategy, we 

contrasted the BOLD signal of the 70% frequency biased condition to the random condition. To 

investigate the role of non-contingent rewards on how individuals model their environment, we 



 19 

contrasted the 70% arbitrary win condition to the random condition. To examine the brain 

regions involved in model building above and beyond non-contingent reinforcement, we 

contrasted the 70% bias condition to the 70% arbitrary win condition. To examine the regions 

sensitive to changes in potential loss rates we contrasted each two-bias condition to the random 

condition, independently. We also contrasted the second two-bias condition against the first to 

determine whether there were any additional areas preferentially involved in switching from one 

model to another. Finally, to investigate the possibility of difficulty-sensitive areas, we 

contrasted the two-biased and one-bias conditions. In all contrasts, significant regions of interest 

are reported with centroid co-ordinates, cluster size and peak t-scores. 

 

Behavioural Data Analysis 

In order to determine the neural regions supporting the building and updating of a mental 

model, it was first necessary to demonstrate that participants were indeed capable of building an 

accurate model in the first instance. To demonstrate this, participants’ play choices on each trial 

of the experiment were coded as being optimal, suboptimal, or neither. For example, if the 

computer was biased towards playing scissors, the optimal choice would be rock, suboptimal 

would be paper, and scissors would be neither. It was then possible to examine whether 

participants chose optimally above chance, and minimized suboptimal play, for each condition of 

the experiment. For conditions where no clear optimal choice was possible (i.e., random and 

arbitrary win conditions), participant’s modal choice during that epoch was tracked to determine 

how participants developed a preference for that particular play choice. Behavioural data were 

subjected to both linear and non-linear curve estimations regressed over each trial for each 

condition. The Durbin-Watson statistic was used to determine the extent to which these data 
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were auto-correlated. Examination of fit statistics suggested that a linear trend provided the best 

fit to these data under all conditions except for the two-bias conditions where a quadratic 

estimation provided significantly better fit.  
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2.3. Results 

 Examination of participant performance when playing against the 70% bias revealed 

proportions of optimal plays that were significantly above chance, t(11) = 7.89, SE = .03, p < 

.001. Further, participants simultaneously minimized suboptimal play choices such that the 

proportion of suboptimal play was significantly below chance, t(11) = 15.23, SE = .01, p < .001. 

Examination of the time course of participant’s ability to adapt to the computer’s strong bias 

revealed a significant trend whereby participants were capable of adapting to the biased 

computer strategy (Table 2.1), reaching probability matching thresholds of optimal play within 

the 30 trial window (Figure 2.3). Consequently, it can be inferred that participants successfully 

represented and exploited the bias in computer play choices (Figure 2.3).  

 

Table 2.1. Curve Estimation Statistics. 

 Linear Quadratic 

Condition blin Fit Fsig D-W blin bquad Fit Fsig 

Arbitrary Win Modal Choice .08 12.02 <.01 1.34 -.25 .35 12.14 <.001 

1-Bias Early .22  83.29 <.001 1.46 .87 -.66 42.69 <.001 

1-Bias Late .09 14.29 <.001 1.54 -.04 .14 8.18 <.001 

1-Bias Combined .22 168.97 <.001 1.49 .48 -.28 93.24 <.001  

2-Bias A .10 4.38 <.001 1.58 1.80 -1.70 27.46 <.001 

2-Bias B .03 1.32 .251 1.62 -2.96 2.99 21.19 <.001 

Linear and quadratic estimation statistics where participant play choices were regressed over the 

course of each experimental epoch. Arbitrary win condition play choice indicates the rate of 

frequency with which participants played their most common choice during that epoch over the 

course of the trials. Remaining conditions were analyzed using the frequency with which 

participants selected the most optimal choice for each trial of each condition. 
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Figure 2.3. Rock Paper Scissors Behavioural Data. Depicts the proportion of optimal choices across each experimental condition. 

For all but the superstitious condition, the optimal choice was the move that carried the best chance of an optimal result (Figure 2.2). 

The superstitious condition, where participants were guaranteed to win on 70% of the trials, did not have a particular bias that 

participants could exploit. Therefore, the modal choice for each participant throughout the condition was plotted over time. 

Performance within the shaded area indicates failure to reach probability-matching thresholds. Dashed red line depicts random chance 

threshold. Dashed blue lines about the curves indicate 95% confidence intervals.
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Contrasting the 70% bias condition against the random control condition revealed a 

network of activations including bilateral STG, right anterior insula, right inferior parietal lobule 

(IPL), and anterior cingulate cortex (ACC; Table 2.2). With respect to the 70% arbitrary win 

condition, the intent was to provide participants with reinforcement signals that were 

disconnected from the requirement to model and exploit the computer’s play. Ideally, 

participants would receive greater amounts of wins relative to the random condition, but would 

do so regardless of their own play strategy. A priori we assumed that participants would play 

randomly both in the random and arbitrary win-rate conditions. They did not. When playing in 

the 70% arbitrary win condition, participants played as if they had discovered a bias in the 

computer’s play and acted to exploit it. That is, rather than playing randomly, participants began 

to favour one option over another much as they did in the 70% bias condition (Figure 2.3). The 

play choice made most often by participants in this condition (i.e., the choice participants 

putatively believed would result in the most wins) was played significantly greater than chance, 

t(11) = 5.65, SE = .05, p < .001. Examining the time course of play (Figure 2.3) suggests that 

participants believed they had “discovered” a bias in play and began to prefer the option that 

would win at an increasing rate over time, such that they adopted a play choice that mimicked 

probability matching (Table 2.1; Figure 2.3). It is important to note that this is not merely a 

carry-over effect from the previous trials (i.e., the random condition). The play option that 

participants heavily favoured in the 70% win condition was played significantly more in that 

condition than it was in the previous random condition, t(11) = 4.82, SE = .05, p < .001. Further, 

participants’ preferred play option in the 70% win condition was not chosen at a greater-than-

chance rate in the previous random condition, t<1.  
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Given the similarities between participants’ performance in the non-contingent 70% win 

condition and how they performed when facing a computer that exhibited a true bias, it would 

not be altogether surprising to find similar areas of activation when computing a similar contrast. 

That is, in the 70% win condition participants played as if their opponent had adopted a 

frequency bias. Thus, when we contrasted the 70% win condition to the random control, we 

found a similar network of cortical areas including the right STG, right ACC, and right MFG 

(Table 2.2). Comparing the 70% win condition with the 70% bias condition yielded no 

significant activations. This finding is consistent with the behavioural data indicating that the 

participants treated the strategy played by the computer similarly in both conditions. 
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Table 2.2. Whole-brain GLM Activations for computed contrasts (p<.001). 

Contrasts Co-ordinates Activated Region(s)    

 X Y Z R/L Region BA Cluster Size Peak t-scorea 

1. 70% Bias > Random  60 -11 8 R STG 22 1483 5.77 

 54 -10 -11 R MTG 21 1029 4.55 

 45 -6 -27 R ITG 20 756 5.58 

 30 -42 53 R IPL 40 2548 6.62 

 34 -20 53 R PCG 4 3410 7.46 

 10 -46 56 R Precuneus 7 2115 5.35 

 9 -46 31 R PCC 31 2683 6.14 

 12 -1 -12 R Ventral striatum -- 687 5.45 

 42 -4 2 R Post. insula 13 3257 5.14 

 38 -9 14 R Ant. insula 13 1095 5.38 

 1 -13 41 R ACC 24 2384 5.66 

 25 21 -15 R OFC 47 2506 5.89 

 -15 0 -13 L Ventral striatum -- 1998 6.00 

 -8 -49 27 L Precuneus 31 4686 6.41 

 -3 -32 57 L SMA 5 1785 6.52 

 -57 -6 -9 L MTG 21 4931 8.22 

 -52 -55 24 L STG 22 3468 5.83 

2. 70% Win > Random  58 -12 1 R STG 22 4825 6.60 

 56 -34 4 R MTG 22 1875 5.6 

 27 -39 57 R IPL 40 1181 5.11 

 25 -30 61 R PCG 3 3858 5.92 

 1 -3 36 R ACC 24 3634 5.90 

 5 -50 28 R PCC 31 3574 5.86 

 7 14 6 R Caudate -- 1445 5.25 

 32 16 -13 R OFC 47 9514 7.03 

 0 61 7 R vmPFC 10 2872 6.38 

 6 45 39 R dmPFC 8 2094 4.77 

 10 7 -8 R Ventral striatum -- 4199 7.28 

 -52 -59 24 L TPJ 39 5490 7.83 

 -57 -12 -9 L MTG 21 7128 8.18 

 -17 0 -13 L Ventral striatum -- 2767 6.33 
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 -40 23 -15 L OFC 47 953 5.06 

 -15 44 44 L dmPFC 8 1655 5.21 

 -5 -52 26 L PCC 31 7215 7.22 

 -19 -47 55 L Precuneus 7 651 5.24 

3. 70% Bias > 70% 

Win 
-- -- -- -- No activations -- -- -- 

4. 2-Bias (A) > 

Random  
-- -- -- -- No activations -- -- -- 

5. 2-Bias (B) > Random  -- -- -- -- No activations -- -- -- 

6. 2-Bias (B) > 2-Bias 

(A) 
43 -57 37 R  TPJ 39 4417 5.41 

 45 -45 38 R  IPL 40 3162 5.42 

 9 31 45 R  dmPFC 8 4332 5.86 

 37 15 46 R  dlPFC 8 2482 4.47 

 29 57 14 R  vmPFC 10 4533 6.53 

 48 21 -9 R  OFC 47 1950 5.50 

7. 2-Bias (A+B) > 70% 

Bias 
15 -18 7 R Thalamus -- 4588 6.80 

 50 -35 -11 R MTG 20 1929 6.22 

 43 -73 -13 R Fusiform Gyrus 19 1584 6.43 

 -28 41 14 L vmPFC 10 1553 5.21 

 -38 -44 38 L IPL 40 1622 5.14 

Rand, control condition where participant played against computer playing without bias towards any of the 

three choices. 70% Bias, condition where computer played one option on 70% of the trials, with each other 

choice being played 15% of the time. 70% Win, condition where computer rigged game to allow participant to 

win on 70% of trials regardless of their choice. Two-Bias A/B, conditions where computer was biased towards 

two of three options (45% of trials for each) such that sticking to previous optimal strategy would yield reduces 

success (i.e., wins, but increased losses). STG, superior temporal gyrus; STS, superior temporal sulcus; MTG, 

medial temporal gyrus; IPL, inferior parietal lobule; SMA, supplementary motor area; SMG, supramarginal area; 

ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; PCG, precentral gyrus; MFG, medial frontal 

gyrus. 
a The peak t-statistic within a specific area of activation. All voxels within specified area surpass significance 

threshold of p<.001. 
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When participants played against the two-biased computer opponent, a strategy requiring a 

more complex representation factoring in an increased risk of losses, there was not a clear-cut 

choice that participants were able to arrive at. None of the three options would guarantee success 

on over half the trials, forcing participants to model the likelihood not only of winning but also 

of losing (or tying) with their opponent. Arguably then, the most optimal choice in these epochs 

would be the one that offers a greater chance at wins, while minimizing exposure to losses. 

Participants were successfully able to model the complex play of the opponent in these 

circumstances and chose the response that maximized wins while minimizing losses at a greater 

than chance level in both the first, t(11) = 3.75, SE = .02, p < .01, and second epochs, t(11) = 

7.07, SE = .02, p < .001. As with the other conditions, participants also avoided the worst 

possible choice and played it at a level significantly lower than chance in both the first, t(11) = 

14.03, SE = .02, p < .001, and second epochs, t(11) = 5.67, SE = .02, p < .001. Examining the 

time-course of participant responses also reveals a significant quadratic trend in their response 

style that reached probability matching thresholds by the end of the epoch on this more difficult 

task, consistent with what was observed in the other conditions (Table 2.1; Figure 2.3).  
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Figure 2.4. Whole-brain GLM Contrast Volume Maps. Significant regions activated when 

comparing the 70% bias vs random condition are depicted in blue, 70% win vs random condition 

in green, and 2-bias B vs 2-Bias A in red. 
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However, compared to the previous conditions, participants were not able to demonstrate 

consistent optimal play that persisted throughout the epoch as with the easier conditions. 

Examination of each respective 2-bias epoch shows that participants’ optimal play choice dipped 

significantly below random chance thresholds following the beginning of each epoch. Critically, 

participants’ optimal play fell below random chance thresholds at the end of the first 2-bias 

epoch, suggesting that they weren’t able to effectively exploit the computer’s strategy by the end 

of this difficult condition despite playing at above probability matching thresholds earlier. 

Conversely, participants optimal play choices were significantly above probability matching 

thresholds by the end of the later 2-bias condition, suggesting that participants needed additional 

experience with the more difficult computer strategy to learn its tendencies, but that with 

sufficient experience they were able to effectively exploit this bias. Given that participants did 

avoid the most obvious suboptimal choice (i.e., the choice that resulted in predominantly losses 

and ties), the variability in optimal play under the two-bias conditions most likely reflects pattern 

seeking, whereby participants knew what two options were best and sought out the right balance 

in which to play them for maximal success. 

As with the conditions involving higher win rates or stronger biases (i.e., 70% arbitrary 

win and 70% bias respectively), contrasting the second two-Bias condition with the first two-

biased condition revealed a similar network of right-hemisphere cortical areas including the TPJ, 

IPL, vmPFC, and dmPFC (Table 2.2; Figure 2.4). However, comparing each respective two-

biased condition against the random control yielded no significant activations. 

Given the relative heterogeneity of our conditions and the sparse pattern of activations 

throughout the explored contrasts, we submitted the dataset to a probability mapping procedure 

where we compared all contrasts that reflected behavioural evidence of modeling and exploiting 
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the computer’s bias. This procedure overlays all volume maps that show significant activations 

and displays activated regions common to all contrasts that reflect behavioural exploitation by 

participants. This allowed us to determine the most commonly activated areas during relevant 

behavioural change across all contrasts (Figure 2.5). 
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Figure 2.5. Probability Threshold Map. Depicts areas of significant overlap across conditions. 

Greater weighted activation probability signifies regions with shared voxels across a greater 

number of contrasts. 
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 For the purpose of this analysis, we focused only on the arbitrary win condition, the 

70%-bias condition, and the second 2-bias condition as these were the only instances in which 

optimal play choice was significantly above probability matching thresholds by the end of the 

epoch (Figure 2.3). Probability mapping analysis revealed a predominantly right-hemisphere 

network of areas. Most notably among these are the parietal cortex, cingulate cortex, anterior 

insula, prefrontal cortex including vmPFC and dmPFC, and reward processing areas including 

the ventral striatum (see Balleine, Delgado, & Hikosaka, 2007 for review).  

 

2.4. Discussion 

Evidence of modeling bias in environmental regularity 

The current study examined the brain regions supporting the ability to build and update a 

mental model of an opponent’s bias in a zero-sum game. As predicted, and consistent with 

previous research (Danckert et al., 2012), participants were consistently able to model the shifts 

in their computer opponent’s play regardless of the complexity of the strategy. Participants 

consistently showed significantly greater proportions of optimal plays while simultaneously 

minimizing suboptimal plays, consistently reaching probability-matching thresholds by the 

conclusion of each respective condition. These behavioural results are consistent with previous 

research showing that individuals are capable of identifying the underlying distributions, and 

changes therein, of events over time despite the apparent noise and complexity of trial-to-trial 

events (Brown & Steyvers, 2009). Whereas some research has highlighted the capacity for shifts 

in models through explicit environmental cues (Green et al., 2010), the current results emphasize 

that individuals are capable of this despite the fact that no explicit cue or warning is given to 

foreshadow a fundamental change in their environment. 
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Examination of the neural correlates of this behavior focused on contrasting BOLD signal 

between conditions where participants played against a computer utilizing a biased strategy vs. a 

control where the computer played randomly. While individual areas may have differed 

somewhat based on particular contrasts, activations were generally observed in a predominantly 

right hemisphere network of areas including the rIPL, cingulate cortex, medial prefrontal cortex, 

and the insula.  

 

Contributions of right parietal cortex to evidence seeking and integration 

Previous research on the role of right parietal cortex have commonly suggested the area 

to be partially responsible for the allocation of attentional resources (Hopfinger, Buonocore, & 

Mangun, 2000), in line with work in neurological patients showing that damage to these areas 

results in failures of attentional orienting towards contralesional space (Ferber & Danckert, 2006; 

Heilman & Edward Valenstein, 2011; Mesulam, 1981). However, more recent evidence has 

begun to implicate right parietal areas such as the IPL, in higher order cognitive processes, such 

as the perception of causality (Straube, Wolk, & Chatterjee, 2011), decision making under 

uncertainty (Paulus, Hozack, Zauscher, McDowell, Frank, Brown, & Braff, 2001;Paulus, 

Feinstein, Tapert, & Liu, 2004), theory of mind and signaling empathic responses (Decety & 

Lamm, 2007; Geng & Vossel, 2013). The common thread through these discrete and disparate 

abilities appears to be less related to orienting attention than to making sense of what is being 

experienced to support appropriate goal-directed action. 

Furthermore, recent meta-analytic research suggests that areas surrounding the right 

temporoparietal junction (TPJ; namely IPL and STG) are more likely to be responsible for 

internal model updating rather than stimulus driven attention orientation as it is typically 



 34 

regarded (Geng & Vossel, 2013; McGuire, Nassar, Gold, & Kable, 2014). This interpretation is 

consistent with work in our lab implicating the right hemisphere in impaired updating 

performance. Specifically, when given a similar rock, paper, scissors task, patients with right 

brain damage typically had greater difficulty modelling and exploiting the simple biases of the 

opponent relative to age-matched healthy controls (Danckert et al., 2012; Stöttinger et al., 2014).  

This conceptualization of TPJ functioning is also consistent with neuroimaging research 

on healthy participants that has also shown the right IPL to be preferentially activated during 

evidence seeking and exploration while completing probabilistic decision making tasks (Daw, 

O'Doherty, Dayan, Seymour, & Dolan, 2006; d'Acremont, Schultz, & Bossaerts, 2013; 

d'Acremont, Fornari, & Bossaerts, 2013; Furl & Averbeck, 2011). In addition, event-related 

fMRI evidence from Paulus and colleagues (2005) suggest that the right STG may be responsible 

for hypothesis space generation and strategy integration based on evaluating outcomes (Paulus et 

al., 2005). The activations of these two areas – namely the IPL and STG – in the current study 

lend further credence to the notion that they share a critical role in model building by seeking out 

and integrating evidence into a model over time. 

 

Cingulate cortex may signal the need to update 

Functional imaging research examining the role of anterior cingulate cortex has long 

suggested it to be partially responsible for error detection (Carter, Braver, Barch, Botvinick, & 

Noll, 1998). As errors occur or tasks become more difficult, suggesting error rates are likely to 

increase, it is typical to observe a rise in ACC activation (e.g., MacDonald, Cohen, Stenger, & 

Carter, 2000). However, recent research has begun to examine the role of the ACC from a 

different perspective. Increasingly, ACC activations have begun to be associated with errors in 
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“belief-based” decision making. In a recent study, Zhu and colleagues (2012) had participants 

play a competitive investment game where they were asked to bid from an endowment in order 

to win a larger prize, but would lose both their initial investment and the prize in the event their 

opponent outbid them (Zhu, Mathewson, & Hsu, 2012). It was possible to succeed in this task by 

adopting a purely reinforcement learning scheme; slowly determining the strategic payoff of 

different levels of investment based on prior outcomes. Conversely, players could adopt a belief-

based approach and actively attempt to model the aggressiveness or passivity of their opponent. 

Doing so would allow participants to rapidly predict the minimum investment necessary to win, 

resulting in much larger payoffs (i.e., the prize plus the extra endowment they did not need to 

invest in order to win). Critically, both of these approaches carried the possibility of experiencing 

errors in decision making. Results showed that ACC activation was higher when the errors were 

made whilst employing a belief-based decision making approach to the task, relative to a 

reinforcement learning approach. Further, ACC activations closely tracked individual differences 

in the level of engagement in the belief-based strategy. The authors concluded that the ACC 

could be better characterized as responsible for belief-based error signals, rather than merely 

error detection in the absence of a pre-existing model of the environment.  

Aside from simply error processing, research has also implicated the ACC in the process 

of updating, where volatility in the environment exists relative to prior stability such that 

individual trial outcomes, positive or negative, must be weighed against expected levels of 

uncertainty (Walton, Croxson, Behrens, Kennerley, & Rushworth, 2007; Woolrich et al., 2007). 

Furthermore, Behrens and colleagues (2007) suggest that the ACC is involved in the integration 

of trial-by-trial outcomes, rather than simply evaluating a single trial in isolation. Indeed, 

numerous studies demonstrate a compelling relationship between ACC activation and increased 
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learning rates (Woolrich et al., 2007; McGuire et al., 2014), suggesting that the ACC is partly 

responsible for signaling when additional hypotheses need to be explored or tested when the 

environment becomes more volatile compared to epochs of relative stability. Furthermore, 

posterior cingulate cortex also appears to play a significant role in change detection by keeping 

track of a cumulative learning rate in a complex environment, which may help to trigger a later 

shift in strategy as new evidence reaches a critical threshold for change (Pearson, Heilbronner, 

Barack, Hayden, & Platt, 2011). 

As it pertains to the current study, the presence of cingulate cortex activity in our sample 

may suggest that participants approached the task with the express purpose of modeling the 

behavior of the opponent; as the computer shifted strategies participants experienced belief-

based errors that triggered a re-evaluation of the computer’s strategy. Furthermore, under the 

context of a changing strategy, the cingulate cortex activation may reflect an integration of trial 

outcomes signaling the need to explore additional hypotheses once the play of the computer 

diverged from expected outcomes. 

 

Involvement of prefrontal cortex in model maintenance 

Activity within the medial prefrontal cortex and related PFC regions (specifically 

vmPFC, dmPFC, and dlPFC) has been consistently implicated in executive control functions 

(Geng, 2013; Hare, Camerer, & Rangel, 2009). More specifically, the medial prefrontal cortex 

(notably the vmPFC) are classically considered to be important for signaling the subjective 

reward value of stimuli and potential decisions in the context of ambiguity (Kable & Glimcher, 

2007; Hare et al., 2009; Rangel & Hare, 2010). This is consistent with lesion symptom mapping 

research implicating medial prefrontal cortex in reward and outcome valuation in the context of 
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reinforcement learning (Gläscher et al., 2012). Recent research has also implicated vmPFC 

functioning in monitoring the reliability of currently utilized strategies (Domenech & Koechlin, 

2015). Furthermore, prior research has shown that the ACC and insular cortex appear to 

modulate vmPFC activity during more complex decision making tasks where action costs and 

prospective rewards are not entirely clear (see Rangel & Hare, 2010 for review). Activity in the 

mPFC and ACC seen in the current study may reflect joint monitoring processes to maintain the 

application of an effective strategy for as long as it remains viable (Donoso, Collins, & Koechlin, 

2014).  

 

Role of insular cortex in balancing risk and reward 

Research on the role of the insula has consistently implicated this area in tasks that 

involve risky decision making that typically involves the potential for gains and losses 

(d’Acremont, Lu, Li, van der Linden, & Bechara, 2009; see Levin, Xue, Weller, Reimann, 

Lauriola, & Bechara, 2012 for a recent review). Research on the insula has also implicated it as a 

key component in probabilistic learning in conjunction with other areas that were activated in the 

current study (e.g., parietal cortex, dmPFC; McGuire et al., 2014). This seems reasonable given 

the broad spectrum of co-activation observed between insular cortex and cognitive processing 

areas and its involvement in numerous cognitive disorders (Uddin, 2014). Indeed, previous 

studies have implicated insular cortex at different stages of the decision making process through 

the use of event-related designs that titrate the components of risk analyses such as the 

anticipation of a risky decision (i.e., prospects for success; Furl & Averbeck, 2011), and in the 

evaluation of the outcome of a risky decision (Paulus et al., 2005). The results of the current 

study lend further evidence suggesting that the insula is involved in learning and adapting to 
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change through its conjunction with other regions to code subjective risk and reward values for 

maintaining a current set of behaviours.  

 

General conclusion 

While the areas mentioned above have been separately implicated in different cognitive 

processes, their combined presence in the current study implicates a broad network of areas 

subsuming important component processes critical to the development and updating of a mental 

model. Areas in the frontal and parietal cortices appear to co-operate in the exploration and 

accumulation of additional evidence in the environment, as well as integrating these experiences 

into a causal model. 

Once built, such a model is only effective as long as the predictions they inform hold 

true. As the model is tested against the environment, metrics that inform the system of the 

viability of the current model are persistently gathered. This may include iterative calculations of 

volatility and subjective ratings of risk and reward given the expected outcome of each decision 

involving prefrontal cortex and the ventral striatum (Table 2.2). However, as the environment 

changes, decisions made upon existing models begin to falter. As this continues, areas of 

cingulate cortex would signal that the prospects of success whilst maintaining the existing belief-

set become increasingly worse. Past some threshold that allows for some expected stochasticity 

in observations (Yu & Dayan, 2005), the existing model becomes invalid, which would signal 

the resumption of evidence seeking and information integration into a new and updated model.  

Although our data showed predominantly more right-hemisphere activation in terms of 

activated voxels, bilateral activations were also observed (e.g., STG, MTG, IPL, Precuneus). 

This is consistent with past research using split brain patients suggesting that the left hemisphere 
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does play a role in integrating the outcomes of previous events (Wolford, Miller, & Gazzaniga, 

2000). This suggestion is further bolstered by fMRI examinations of healthy individuals 

completing prediction tasks that also reveal similar left brain area involvement including the 

STG alongside right temporal and parietal areas (Miller, Valsangkar-Smyth, Newman, Dumont, 

& Wolford, 2005). Taken together with the findings of the current study, it is reasonable to 

suggest that areas in the left hemisphere also contribute to an interpretive process critical to 

building models of one’s environment. However, the specific nature of their contribution, aside 

from inferences that can be made by interpreting comparable activity in the right brain, has yet to 

be fully explored. 

It is important to consider the results of the current study in the context of its relatively 

limited sample size. While literature exploring sample size recommendations (Friston, 2012) 

suggest a sample size of 16 as appropriate, Ingre (2012) asserts that conservative statistical 

corrections and constraints serve to reduce uncertainty around observed effects in the context of 

relatively smaller sample sizes. To that end, the current study has employed multiple statistical 

constraints targeted to reduce uncertainty around observed effects. Namely, the current study 

employs the use of a contiguous voxel cluster threshold, spatial smoothing, and a relatively 

conservative statistical threshold of p<.001. Additionally, the results of the current study are 

considered in context with the existing literature and ongoing research in our lab. In addition to 

limitations around sample size, the discrete nature of these component processes, and the areas 

that support them, warrant further research to establish the precise context and order in which 

these activations occur. While the design of the current study was unsuitable to address this 

question, future research employing an event-related design might. Further, the nature of these 

areas and their purported responsibilities set out clear predictions for the impact of disruption to 
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these regions in the context of updating a mental model. Future research using transcranial 

magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) could potentially 

isolate more specifically the roles played by each region, and therefore corroborate their 

importance in the updating process. 
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Chapter 3: Working memory correlates of updating2. 

3.1. Introduction 

A great deal of research has examined the ubiquity with which humans model and adapt 

to regularities in their environment (Saffran et al., 1996, 1999, 2003; Turk-Browne et al, 2005, 

2008; Abla & Okanoya, 2009; Green et al., 2010; Tenenbaum et al., 2011; Griffiths & 

Tenenbaum, 2006; Jueptner et al., 1997; Mayr, 1996; de Gardelle & Summerfield, 2011; 

Albrecht, Scholl, & Chun, 2012; Fiser & Aslin, 2001; 2002). Accurately modelling such 

regularities has been shown to be important for a broad range of functions from visual and 

auditory learning, to language acquisition, motor control, and predictive decision making (Turk-

Browne et al, 2005; Green et al., 2010; Jueptner et al., 1997; Saffran et al., 1996; Danckert et al., 

2012; Tenenbaum et al., 2011). Critically, in order to construct accurate models of variable and 

incomplete data sets, we must be capable of integrating information across time (Brown & 

Steyvers, 2009). Results of Chapter 2 indicate a network of brain regions that are involved in the 

ability to build and update mental representations that include frontal, parietal, and subcortical 

areas including the anterior insula and cingulate cortex. 

While our prior work in the context of a zero-sum game shows that healthy individuals 

can indeed adapt to unannounced changes in an opponent’s play strategy (Chapter 2; Danckert et 

al., 2012; Stöttinger et al., 2014a, b), what we don’t know from this work, is how other cognitive 

mechanisms impact this ability. At minimum, playing ‘rock, paper, scissors’ involves attending 

to the current play (i.e., attentional resources) and its outcome (i.e., reward signals) over the 

course of at least some subset of prior plays (i.e., working memory resources; Baddeley, 1992; 

2 A version of this chapter has been published as Valadao, D. F., Anderson, B., & Danckert, J. (2015). 

Examining the influence of working memory on updating mental models. The Quarterly Journal of Experimental 

Psychology, 68(7), 1442-1456. It is reproduced here with permission. 
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Baddeley, 2003). With respect to the latter, in order to successfully exploit an opponent’s bias in 

‘rock, paper, scissors’ it would be imperative to maintain some subset of prior plays in working 

memory (WM) in order to detect the bias in the first instance, and, importantly for our current 

purposes, to detect any change in that bias over time.  

There is ample evidence to suggest that WM resources are involved in learning through 

persistent exposure to spatial regularities; as demonstrated by the poorer performance in 

contextual cuing tasks when a WM load is imposed (Chun & Jiang, 1998; Annac, Manginelli, 

Pollmann, Shi, Müller & Geyer, 2013; Manginelli, Langer, Klose & Pollmann, 2013; Travis, 

Mattingley & Dux, 2013). Furthermore, paradigms exploring the ability to detect abrupt, salient 

changes are commonly understood to tax WM resources (Rouder et al, 2011). It is not well 

known, however, what impact a WM load would have on the ability to represent changes to 

information that occur over a longer time scale (i.e., slowly evolving changes to environmental 

regularities). In addition, while previous studies have investigated the impact of WM loads on 

learning, further research is needed in order to determine the relationship between the nature of 

the WM load (e.g., spatial,  featural) and the resulting impact on our ability to detect changes in 

both congruent and incongruent environmental regularities. 

The current study explored the effects of WM on our ability to exploit regularities in 

stimulus properties and to adapt to changes in those regularities – in other words, to build and 

update mental models. We employed a dual task where participants had to predict either the 

upcoming location or shape of a target while simultaneously completing a WM task. Target 

locations and shapes (in separate experiments) were presented with above chance regularity 

along the dimension of interest (see Methods). For example, target locations were initially drawn 

from one quadrant of the screen for 20 trials before changing to a different quadrant. Working 
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memory was then manipulated focusing on either the location, colour or shape of targets using 

versions of the N-Back task. In this way we were able to manipulate the relevance of the 

contents of WM (spatial vs. featural; Luck & Vogel, 1997) to the prediction task. Changing the 

underlying distribution of events on the primary prediction task without notice allowed us to 

examine the interaction of WM and the ability to update representations of regularities. 

Specifically, we hypothesized that WM load would differentially impact performance on the 

prediction task dependent upon the congruence (or lack thereof) of the WM task with the 

demands of the prediction task. Directing WM resources towards the stimulus property that also 

contained some level of probabilistic regularity (e.g., doing a location based n-back task while 

predicting impending target locations), ought to improve the ability to detect that regularity and 

adapt to any changes. 

 

3.2. Experiment 1: Method 

Participants 

 A total of 97 University of Waterloo undergraduate students (33 Male; mean age 19.9, 

SD ± 2.7 years) completed the first experiment. All participants had normal or corrected to 

normal vision and were right-handed by self-report. Participants were instructed to use their right 

hand throughout the experiment. Informed consent was obtained prior to commencing the 

experiment and all procedures were approved by the University of Waterloo, Office of Research 

Ethics. 
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Apparatus 

 Stimuli were presented on a 19" NEC AccuSync 90 monitor with a resolution of 1024 by 

768 at a refresh rate of 60Hz using a GeForce 4 Mx440 graphics processing unit. Button 

responses were captured via a Cedrus RB-530 Response Pad. Pointing behaviour was captured 

using Elo Intellitouch touch screen capture technology. Stimuli were created using Adobe 

Photoshop CS5 and the experimental protocol was created and administered using E-Prime 1.1 

on Windows XP. 

 

Procedure 

 Participants were seated approximately 57cm from a touch screen display. The 

experiment began with a touch screen calibration task, both to ensure that the touch screen was 

calibrated to the participant's responses, and to habituate participants to the use of the touch 

screen. 

 Each experimental trial consisted of two parts – a spatial prediction component and a 

WM component. To generate the spatial prediction component of the trial, participants were first 

shown a target stimulus. After 1250-1500 msec the target disappeared and the screen changed 

colour. This signaled to the participant that they were to predict – by pointing on the touch screen 

– the location they thought the next target would appear (Figure 3.1). Of course, in early trials 

such predictions amount to guesswork. Unbeknown to the participant, target locations were 

drawn from a specific spatial distribution centered around one quadrant of the screen (SDx,y = 60 

pixels) allowing participants to develop a representation over time that would more accurately 

predict upcoming spatial locations. After 20 trials the distribution shifted to a different quadrant 
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of the screen, requiring participants to detect the change in probabilistic regularity of target 

locations and update their representation in order to optimize predictions. Participants were not 

informed of the probabilistic regularity of the target locations or the shift in those regularities. 
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Figure 3.1. Working Memory Prediction Stimuli. Top depicts a schematic of the spatial 

prediction task in Experiment 1. After a brief fixation cross, an object would appear somewhere 

on screen. Participants made a button press response relative to the specific WM load (i.e., 0-

back or 2-back) they were currently performing. The object would then disappear and the screen 

would change color to inform them of the accuracy of their button press response. This also 

acted as a cue for participants to touch the screen indicating their prediction for where the next 

object was most likely to appear.  
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While the first component of each trial examined how efficiently participants could 

predict (and update following a shift) a representation of the spatial locations of targets, the 

second component explored what impact, if any, WM had on their ability to complete this task. 

On each trial, participants completed a WM task with one of two load levels (2-back vs. 0-back), 

focusing on one of three specific stimulus properties: colour (red, green, blue, or yellow), shape 

(circle, square, star, or triangle), or location (the four quadrants of the screen; Figure 3.2). 

Participants completed six blocks of trials with each block consisting of one level of WM load (0 

or 2-back) for each target property (location, colour, shape). For this component, while the target 

stimulus was on screen, participants responded by pressing a button on the touch pad if the 

stimulus met a specific criterion. If the stimulus did not meet the criterion, they were to withhold 

their response and wait for the target to disappear. For the 0-back trials, participants responded if 

the object was a particular colour, shape, or appeared in a specified quadrant of the screen; the 

particular criterion varied across different blocks. For the 2-back WM trials, participants 

responded by pressing a button when the current stimulus matched the stimulus two trials ago for 

either shape, colour, or screen quadrant. Consistent with both levels of the WM load 

manipulation, the target criterion (i.e., shape, colour, location) was varied across blocks of trials, 

but remained consistent within each block. In designing the experiment, it was possible to 

include different levels of the N-back task to explore the differential impact of WM difficulty per 

se on detecting changes in regularity. However, our primary goal was to explore the effect of 

WM modality and its congruence with the prediction task on participants’ ability to adapt to 

changes in probabilistic regularity. We chose the 2-back for the WM load conditions as it 

provided an optimal balance of difficulty when combined with the spatial prediction task. That 
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is, we felt that a 1-back WM load would not be sufficiently difficult to expose differential 

influences of WM modality on detecting changes in regularities, whereas a 3-back load would be 

too difficult, leading all conditions to exhibit a floor effect.  The 0-back detection task was 

included as a dual-task control with no WM load. While it was possible to include additional 

levels of the n-back task, we chose to limit the number of conditions in the study to limit the 

length of the task to a manageable level to minimize the possibility that fatigue and low 

motivation could account for our results.  
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Figure 3.2. 2-Back Task. Depicts a schematic of the different working memory tasks. The tasks 

could focus participants on one of three features of the object (i.e., its location as depicted, or its 

color or shape) in each block of trials. Sample button press responses adjacent to the objects 

indicate the correct response for that object in that block of the experiment (the arrow indicates 

temporal order of target presentation). 
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After an initial practice phase consisting of 20 trials with both levels of the WM task, 

participants moved on to the experimental trials. At the beginning of each experimental block, 

participants were prompted as to which task they would be completing (e.g., 2-back; same 

shape). If participants responded correctly, the screen would turn green to indicate their button 

response was correct; the screen turned red for incorrect responses. Examination of WM 

performance across the current study indicates that participants were capable of completing the 

2-back task, with a mean accuracy of 76%. Notably, 2-back accuracy was somewhat lower in the 

location condition relative to colour and shape conditions for Experiments 1, F(2,288) = 103.2, 

MSE = .02, p<.001, and 2, F(2,69) = 5.05, MSE = .02, p<.01, but not Experiment 3, F(2,72) = 

2.29, MSE = .01, p = .11 (Figure 3.3). Irrespective of their performance on the WM component 

of the task, participants then had to predict the location of the next object by touching the screen 

to indicate their prediction. In other words, the spatial prediction task was constant across all 

variants of WM load and WM target type. 
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Figure 3.3. N-Back Task Accuracy. Depicts dual-task N-Back accuracy as a function of WM load across all experiments. 
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The experiment was performed within-participants and the order of blocks was 

counterbalanced across participants. We predicted that participants would perform better at the 

spatial prediction task when simultaneously completing a WM task that focused their attention 

on the information that was relevant to the statistical learning task (i.e., the location of the 

objects), as opposed to information that was irrelevant to the task (i.e., the stimulus colour or 

shape). 

 

Data Analysis 

Accuracy on the spatial prediction component of the task in Experiment 1 was computed 

by calculating the Euclidian distance between the participant’s prediction on each trial and the 

known mean of the distribution from which the objects were drawn (i.e., √𝑒𝑟𝑟𝑜𝑟𝑥2 + 𝑒𝑟𝑟𝑜𝑟𝑦2), 

also known as radial error). For the remaining two experiments, accuracy for shape prediction 

was characterized as a proportion of how often the participant correctly predicted the object most 

likely to appear on subsequent trials (optimal prediction).  

We first explored spatial prediction performance in the first 20 trials in each experimental 

block (i.e., prior to any change in the distribution of target locations) to establish a behavioural 

baseline from which it would be possible to evaluate how well participants were able to detect a 

change in the distribution of target locations. To do this we calculated the individual accuracy of 

each participant for the first 20 trials of each initial target distribution (Figure 3.1). Non-linear 

curves were then fitted to the data to investigate whether a significant improvement in prediction 

error was evident for the first distribution. A significant curve fit would demonstrate that 

participants had become more accurate in their predictions demonstrating some degree of 

learning of the spatial distribution of targets of the first distribution (i.e., over the first 20 trials). 
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Analysis of these data revealed that participants’ clearly altered their predictions to reflect the 

nature of the first distribution of targets in both the 0-back, b = 0.106, F = 21.92, p < .001, and 2-

back, b = 0.084, F = 13.67, p < .001, conditions (Figure 3.4). Having shown that participants 

accurately learned the first distribution we next explored the improvement in participants’ ability 

to detect the change in the distribution of target locations using the same measure of accuracy as 

described for the first distribution. This allowed us to quantify how well participants’ were able 

to update their representation of object locations as a function of different WM load conditions. 

All data were analyzed using SPSS Statistics version 20.  

 

3.3. Experiment 1: Results 

Analysis of prediction errors after the switch in target distributions indicated that 

individuals were capable of effectively detecting the change in regularity of target locations 

when no WM load was present (i.e., 0-back conditions; Figure 3.4). Inverse curve estimations 

showed significant learning in the 0-Back conditions when participants focused on the object’s 

location, b = 0.201, F = 81.70, p < .001, color, b = 0.072, F = 10.05, p < .01, and shape, b = 

0.065, F = 8.10, p < .01 (Figure 3.4). 
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Figure 3.4. Experiment 1 Location Prediction Data.  

A. Depicts improvement in radial prediction error (relative to known distribution means) for the 

first 20 trials prior to a switch in object location distribution as a function of concurrent WM load 

(i.e., 0-back in white, and 2-back in gray). B. Depicts best fitting curve estimations for change in 

radial prediction error after the switch of object location distribution occurred across all 

experimental conditions (i.e., trials 21-40). 
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Under the different WM loads (i.e., the 2-back conditions) participants only showed 

improvement in learning for the colour, b = 0.056, F = 6.02, p < .05, and shape, b = 0.053, F = 

5.60, p < .05, conditions (Figure 3.4). However, when the 2-back WM task shared the same 

property as the prediction task (i.e., target location) participants showed no significant 

improvement in prediction, b = 0.003, F = 0.01, p = .91, (Figure 3.4). Directly contrasting 

improvements in prediction across the 0-back and 2-back WM conditions showed a significant 

difference for the location task only, t(96) = 6.97, SE = 436.57, p < .001. That is, when focusing 

on location there was a strong learning trend in the 0-back condition that was rendered 

essentially flat in the 2-back condition (Figure 3.4). A graph depicting the raw prediction 

behavior of our sample from a subset of conditions in our dataset is shown in Figure 3.1. 

Visually, this shows a larger degree of overlap in prediction behaviour when the WM task 

targeted the object location, further suggesting some difficulty adapting to changes in 

distributions under congruent WM loads. Taken together, the above results suggest a significant 

effect of congruent WM load on learning the second distribution.
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Table 3.1. Inverse Learning Curve Estimation Statistics.   

 Distribution 1 b Fit Fsig  Distribution 2 b Fit Fsig 

Exp. 1 0-Back     0-Back    

 Combined .106 21.92 <.001  Location .201 81.70 <.001 

      Color .072 10.05 <.01 

      Shape .065 8.10 <.01 

 2-Back     2-Back    

 Combined .085 13.67 <.001  Location .003 0.01 .91 

      Color .056 6.02 <.05 

      Shape .053 5.60 <.05 

Exp. 2 0-Back     0-Back    

 Combined .103† 5.12 <.05  Location -.109 5.75 <.05 

      Color -.097 4.55 <.05 

      Shape -.127 7.87 <.01 

 2-Back     2-Back    

 Combined -.099 4.75 <.05  Location -.072 2.52 .11 

      Color -.094 4.27 <.05 

      Shape .035 0.56 .44 

Exp. 3 0-Back     0-Back    

 Combined -.158 12.79 <.001  Location -.161 13.30 <.001 

      Color -.129 8.40 <.01 

      Shape -.229 27.47 <.001 

 2-Back     2-Back    

 Combined .09† 4.09 <.05  Location -.101 5.16 <.05 

      Color .023 0.26 .61 

      Shape -.049 1.18 .28 
†Where indicated, inverse curve estimation did not provide good fit for these data. Therefore, 

linear estimation statistics, which provided a much better fit in these conditions, are provided. 
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3.4. Experiment 2: Introduction 

The first experiment demonstrated that a spatial WM load impairs the ability to update a 

representation of the spatial distribution of objects when that distribution changes. However, the 

nature of the distributions used was somewhat problematic. Specifically, to avoid having the 2-

back task be overly simple, we presented targets near the border of screen quadrants (Figure 3.1). 

That is, we felt that distributions clearly contained within a given quadrant would be too easy to 

represent. This significantly limited our ability to switch the distribution of object locations (i.e., 

the new distribution also had to have targets appearing close to quadrant borders). Therefore, 

while we did see a reduction in learning rate during the location-based WM load condition 

relative to its no WM load counterparts, it is possible that a ceiling effect accounted for this 

difference. It was therefore important to replicate our findings using a different distribution of 

object features that could be varied without being constrained by the nature of the WM task. For 

the remaining experiments, we used shape as the feature participants had to predict on each trial. 

Since objects can be represented in WM both in terms of spatial and featural components (Luck 

& Vogel, 1997), we expected to replicate our findings when we now explored featural 

processing. That is, we expected prediction performance for the second distribution of shapes to 

be worst when WM load also involved shape processing. 

 

3.5. Experiment 2: Method 

Participants 

 20 University of Waterloo undergraduate students participated in the second experiment 

(7 Male; mean age 20.6, SD +/- 2.1 years).  
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Procedure 

 The objectives, structure, and stimuli for Experiment 2 were identical to Experiment 1 

save for one key difference. Instead of predicting future target locations, participants were asked 

to predict the shape of upcoming targets and indicate their prediction on the touch pad. As with 

Experiment 1, in the first 20 trials, one shape was more likely to appear than the other shapes 

(e.g., squares appeared on 70% of trials, with every other shape appearing 10% of the time). 

After these first 20 trials, the most likely target object was changed unbeknown to participants 

(e.g., circles appeared on 70% of trials, with every other shape appearing 10% of the time). 

Accuracy was computed as a proportion of trials in which participants correctly identified the 

most likely future shape to be the one that was actually most likely to appear. Trial-by-trial 

accuracy for each participant was submitted to non-linear curve estimation to examine the 

relative improvement in prediction accuracy as a function of WM condition. Data on participants 

learning improvement as a function of working memory load were analyzed in the same manner 

as Experiment 1. 

 

3.6. Experiment 2: Results 

Analysis of learning the first distribution (see Experiment 1) revealed significantly 

improved prediction performance for targets in the first distribution over the first 20 trials in both 

the 0-back and 2-back conditions (Table 3.1). As with Experiment 1, under no WM load, 

improvement in shape prediction accuracy occurred for location, (b = -0.109, F = 5.75, p < .05), 

color, b = -0.097, F = 4.55, p < .05, and shape conditions, b = -0.127, F =7.87, p < .01, (Figure 

3.5). 
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Figure 3.5. Experiment 2 Shape Prediction Data.  

A. Depicts improvement in shape prediction accuracy for the first 20 trials prior to the switch in 

shape distribution as a function of concurrent WM load (i.e., 0-back in white, and 2-back in 

gray). B. Depicts best fitting curve estimations for change in shape prediction accuracy after the 

switch of object shape distribution occurred across all experimental conditions (i.e., trials 21-40).  
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Under the context of a WM load, participants demonstrated a significant amount of 

learning in the color condition, b = -0.094, F = 4.27, p < .05. However, participants showed no 

improvement in prediction accuracy when the WM task focused on the object’s location, b =       

-0.072, F = 2.52, p = .11 or its shape, b = 0.035, F = 0.56, p = .44 (Figure 3.5). Critically, the 

largest difference in learning curves was observed when comparing the 2-back and 0-back 

conditions that focused on the target feature congruent with the prediction task (i.e., shape). As 

with Experiment 1 (i.e., location), these data indicate a significantly impaired ability to detect 

changes in regularity of object shapes when a congruent WM load (i.e., shape) was applied, t(19) 

= 2.53, SE = 4.63, p < .05. 

 

3.7. Experiment 3: Introduction 

 To keep Experiment 2 procedurally similar to Experiment 1 we continued to vary the 

spatial location of targets as we had in Experiment 1 (Figure 3.1). That is, not only did the task 

include regularity in the shape information of successive targets, there was also redundant 

regularity in the spatial information conveyed by successive targets (i.e., not only were targets 

more predictably of one shape or another, they were also more likely to appear in one quadrant 

or another). Given that we have shown previously that redundant spatial regularities can aid 

updating of mental models (Filipowicz et al., 2014), we felt it was important to examine shape 

prediction performance with spatially redundant regularities removed from the task. This was 

also considered important in light of prior research showing that WM load is decreased by 

redundancy and regularity (Brady et al., 2009). Therefore, we conducted an experiment in which 

the most likely shape appeared 70% of the time as in Experiment 2, but with locations of target 

objects drawn at random from all possible locations. 
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3.8. Experiment 3: Method 

Participants 

 20 University of Waterloo undergraduate students participated in the third experiment (2 

Male; mean age 19.8, SD +/- 1.1 years).  

 

3.9. Experiment 3: Results 

Analysis of learning the first distribution (see Experiment 1) showed significant 

improvement in the first 20 trials (Table 3.1), indicating that participants improved their 

prediction performance for targets in the first distribution over the first 20 trials. Consistent with 

the first two experiments, participants demonstrated the ability to effectively detect changes in 

the regularity of object shapes after an unannounced shift in the most likely shape occurred. This 

was true regardless of whether the 0-back task focused participants on location, b = -0.161, F = 

13.30, p < .001, color, b = -0.129, F = 8.40, p < .01, or shape, b = -0.229, F = 27.47, p < .001 

(Figure 3.6). 
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Figure 3.6. Experiment 3 Shape Prediction Data.  

A. Depicts improvement in shape prediction accuracy for the first 20 trials prior to the switch in 

shape distribution as a function of concurrent WM load (i.e., 0-back in white, and 2-back in 

gray). B. Depicts best fitting curve estimations for change in shape prediction accuracy after the 

switch of object shape distribution occurred across all experimental conditions (i.e., trials 21-40).  
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Under a modest WM load, we see learning demonstrated only in the location condition, b 

= -0.101, F = 5.16, p < .05. However, participants demonstrated no learning under the color, b = 

0.023, F = 0.26, p = .61 and shape WM conditions, b = -0.049, F = 1.18, p = .28 (Figure 3.6). 

Furthermore, consistent with the first two experiments, we again demonstrate a significant 

impairment in shape prediction improvement when resources are focused on a congruent WM 

task (i.e., 2-Back shape) relative to its no-load control condition, t(19) = 2.87, SE = 4.54, p < .01. 

As with previous experiments, we see a marked decrease in learning the new most likely 

shape after the shift when WM resources were focused on the object’s location, b = -0.101, F = 

5.16, p < .05, color, b = 0.023, F = 0.26, p = .61, or shape, b = -0.049, F = 1.18, p = .28 (Figure 

3.6), relative to the 0-back conditions that placed no WM load on participants. Indeed, 

comparing learning curves directly indicate that participants are significantly poorer at 

improving prediction accuracy when WM was focused on features congruent with the prediction 

task (i.e., shape), t(19) = 2.87, SE = 4.54, p < .01. 

 

3.10. Discussion 

Results of the current study indicate that WM moderates the efficiency with which 

participants were able to detect and exploit a change in the regularity of their environment – in 

other words, updating a mental model. The reduced capacity for detecting change under a 

moderate WM load was modality specific. All experiments showed a consistent interaction 

between WM content and prediction performance such that a WM load that was congruent with 

the content of the prediction task was most detrimental to the ability to represent changes to 

regularities in the prediction task.  
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The purpose of mental models is to optimize predictive behavioural control given 

incomplete and noisy inputs (Howhy, 2012). The success of any given mental model depends on 

the predictive accuracy of the model. When a model’s predictions cease to lead to optimal 

behavioural outcomes we need to either fine tune the model given new information, or abandon 

it altogether in favour of a new model. The determination of the accuracy of a mental model 

depends on a process of comparing current observations with expected, or predicted outcomes 

generated by the model. What the current data suggest is that this comparative process to 

determine the efficacy of a mental model requires free WM resources. While we expected that 

focusing WM resources on the same property in which a change in regularities was to be 

detected would be beneficial to updating, the data showed the opposite. It was as if participants 

could not see the forest for the trees. Focusing on single instances for the purposes of the WM 

task obscured the ability to detect trends evolving over longer time scales (i.e., 20 trials; Figure 

3.4).  

 The current results concur with other research showing that WM loads interfere with our 

ability to attend to regularities (Annac et al., 2013; Manginelli et al., 2013; Travis et al., 2013). 

and detect salient changes (Rouder et al., 2011). Indeed, prior research has shown that individual 

WM capacity correlates with the capacity to learn sequences (Unsworth & Engle, 2005). Here 

we have extended these findings in three important ways. First, as discussed above, WM load 

interferes with the ability to detect slowly evolving changes (i.e., prior work examined only the 

influence of WM on detecting singleton events; Rouder et al., 2011) or repeated exposures to 

identical spatial configurations of stimuli (Annac et al., 2013; Manginelli et al., 2013; Travis et 

al., 2013). Second, the current results show that the influence of WM on detecting changes to 

regularities was modality specific (Figure 3.4). Specifically, prediction performance was only 
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disrupted when the WM task shared the same feature as the prediction task (e.g., remembering 

shape while predicting future shapes). Prior work has focused primarily on the impediment of 

spatial/configural learning due to spatial (but not featural) WM loads. Finally, the n-back nature 

of the WM manipulation in the current study resulted in a persistent and maintained use of WM 

resources across learning trials, whereas the WM loads of previous tasks did not have this 

maintenance built in to their manipulation. Interestingly, prediction performance while 

completing the two-back and the zero-back memory control tasks was similar when the features 

of the objects participants were required to remember differed from the target feature being 

predicted. This result may also suggest that the regularity in stimuli may have eased WM 

demands under certain circumstances, corroborating the notion that probabilistic regularity 

allows for compression of WM resources (Brady et al., 2009). 

In summary, the current study examined the relationship between working memory and 

the ability to detect changes in the environment in order to update an existing mental model. 

Results indicated that free WM resources are needed to effectively appreciate statistical 

regularities (i.e., increased efficiency under no-load conditions) and that modality specific WM 

tasks hindered the ability to detect changes in statistical regularities. These results establish at 

least one cognitive constraint acting on our ability to accurately represent regularities in the 

environment and changes to those regularities. 
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Chapter 4: Attentional Influences on Building and Updating Mental Representations 

4.1. Introduction 

Chapter 2, examining the brain regions involved in building and updating mental models, 

highlighted an important role for parietal cortex during instances where individuals successfully 

modeled and exploited biases in a computer’s play strategy. Notably, parietal cortex is typically 

considered important in governing the allocation of attentional resources (Wojciulik & 

Kanwisher, 1999; Hopfinger et al., 2000; Ferber & Danckert, 2006; Heilman & Valenstein, 

2011) and decision making processes (Straube et al., 2011, Paulus et al, 2004). Despite these 

findings, the role attention plays in facilitating the model building process is relatively unknown. 

Indeed, attention is a natural candidate for further exploration on its own merits. 

Attention is commonly understood as an important mechanism for facilitating information 

processing by selecting or orienting to relevant or salient information in the environment 

(Corbetta & Shulman, 2002). Attention can be oriented both volitionally towards goal-relevant 

stimuli in accordance with expectations (i.e., endogenous cueing; Posner, Snyder & Davidson, 

1980) or can be captured by salient events in the environment (i.e., exogenous cues; Müller & 

Rabbitt, 1989; Yantis & Jonides, 1990). However, additional research has begun to demonstrate 

that attention can be oriented not just by the presence of visually salient stimuli, but by visual 

and temporal regularities in the environment. 

Indeed, there are a number of studies that demonstrate a relationship between visual or 

statistical regularities and attentional biases. Zhao and colleagues (2013) demonstrated that the 

presence of statistical regularities in visual stimuli biased the allocation of attention such that 

participants were quicker to correctly identify search targets interleaved within structured vs. 

random arrays of objects (temporal regularities within streams of objects provided the 
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‘structure’; Zhao, Al-Aidroos, and Turk-Browne, 2013). This is consistent with other research 

which demonstrates that probabilistic regularity in the visual environment enhances the 

allocation of attention in visual search tasks such that frequently repeated search scenes lead to 

much faster identification and classification of target orientations (e.g., contextual cueing; Chun 

& Jiang, 1998; Geng & Behrmann, 2002; Rausei, Makovski, and Jiang, 2007; Jiang, Swallow, 

and Rosenbaum, 2012; Jiang, Swallow, Won, Cistera, and Rosenbaum, 2015). Additionally, 

regularity in the spatial or temporal presentations of visual stimuli has been shown to facilitate 

perceptual classification tasks (Druker & Anderson, 2010; Shaqiri & Anderson, 2012) and 

associative prediction tasks (Turk-Browne, Scholl, Johnson, and Chun, 2010). 

Taken together, this research clearly demonstrates that the presence of probabilistic visual 

regularities in the environment affects the allocation of attention. However, it is unclear whether 

the relationship works in the opposite direction. Namely, whether the explicit allocation of 

attention can improve one’s ability to build a mental representation of the regularities they 

observe. For example, while some suggest that attentional resources are a critical component of 

learning processes such as sequence learning (Nissen & Bullemer, 1987; Kabata, Yokoyama, 

Noguchi, and Kita, 2014), more recent research has demonstrated that sequences can be learned 

equally well in the context of impoverished attention resources (through the use of a dual task) as 

they can be in circumstances allowing full allocation of attentional resources (i.e., no dual task; 

Stadler, 1995). The influence of attention on statistical learning is equally controversial. 

Classically defined as the ability to passively observe probabilistic regularities between events, 

statistical learning is seen as a critical component of early lexical segmentation in the 

development of human language (Aslin, Saffran, and Newport, 1998; Saffran, Johnson, Aslin, 

and Newport, 1999). While Saffran and colleagues argue that such learning can occur without 
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explicit awareness of the translational probabilities, such as when they had individuals listen to 

streams of speech while completing a distractor task (Saffran, Newport, Aslin, Tunick, & 

Barrueco, 1997), others argue that such statistical learning is impossible without freeing up 

attentional resources.  For example, Toro and colleagues had participants either listen to speech 

streams with predictable translational probabilities in isolation or, in one instance, complete a 

detection task while listening to the same speech stream (i.e., responding to repetitions; Toro, 

Sinnet, and Soto-Faraco, 2005). In all cases, participants performed worse at the statistical 

learning task under the context of depleted attentional resources. However, in a similar study, 

Turk-Browne and colleagues presented participants with streams of visual shapes that formed 

regular triplets, with two groups corresponding to distinct colours. Participants viewed these 

groups of shapes interleaved by colour and were asked to detect repetitions of green shapes 

(thereby forcing participants to focus on only one colour of shapes). Results showed significantly 

increased learning of the triplet organization of attended relative to unattended shapes, again 

indicating that attention affects statistical learning (Turk-Browne, Jungé, and Scholl, 2005). 

What the above discussion highlights is that there remains some controversy concerning 

the influence of attention on our ability to represent regularities in the environment (i.e., build 

mental models). Importantly, none of these studies explored the influence of attention on 

updating mental representations when regularities change. While some argue that mere exposure 

to statistical regularity in the environment is sufficient, others demonstrate that directing 

attentional resources can have either a facilitative (Turk-Brown et al., 2005) or deleterious (Toro 

et al., 2005) effect on the learning process. Furthermore, to the extent that attention is an 

important component of the ability to build mental representations, it is unknown whether 

volitionally allocating attention will improve the model building process or whether attention 
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serves as a gating mechanism such that attentional constraints impair the process (Mangun, 1995; 

Fischer & Whitney, 2012). The purpose of the current study was to explore the role of attentional 

resource allocation on the ability to build a mental representation of visual regularity in one’s 

environment.  

 

4.2. Experiment 1: Introduction 

In order to examine the influence of attention on model building, it was first necessary to 

establish that participants could indeed represent two conflicting data constructs simultaneously. 

Therefore, the first experiment served as a behavioural baseline and proof of concept to establish 

our experimental protocol and explore the possibility that participants could later benefit above a 

known baseline of performance when they are eventually asked to allocate attention to one 

aspect of the environment over another.  

 

4.3. Experiment 1: Method 

Participants 

A total of 26 undergraduate students (M = 22.2 years, SD = 3.6 years) from the 

University of Waterloo participated in the current experiment. All participants reported normal 

or corrected-to-normal vision and gave written consent to participation. As remuneration for 

their involvement, participants received credit towards one of their Psychology courses that term. 

The experiment and all procedures were approved by the University of Waterloo, Office of 

Research Ethics. 
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Apparatus 

Stimuli were presented on a 19” monitor with a resolution of 1024 by 768 at 60Hz. 

Participants used a mouse to input their responses throughout the task. The task itself was created 

using Psychopy, a superset of the python programming language developed for the purpose of 

creating experimental stimuli and was administered on a computer running XFCE Linux (Peirce, 

2007). 

 

Procedure 

The experimental stimuli consisted of a visual analogue of the “Plinko” game featured on 

the commonly known daytime TV game show “The Price is Right.” Participants would observe a 

coloured ball fall from the top of the screen through an array of pegs before falling into one of 

the 40 slots at the bottom of the screen (Filipowicz, Valadao, Anderson, & Danckert, 2014; 

Figure 4.1). While the nature of the experimental protocol imparted a sense of randomness to the 

eventual destination of each ball, the eventual landing spot of each ball was pre-ordained to 

conform to a canonical distribution that was created prior to the experimental run. These 

distributions had a known mean and variance and created an array of eventual landing slots for 

the experiment. In the original iteration of the Plinko task, participants would first indicate their 

“prior” by drawing what they thought the distribution would look like before observing ball 

drops. Afterwards, participants would observe a single distribution of ball drops while making 

estimations on every trial as to what their internal model of the true distribution looked like 

(Figure 4.1). For the purpose of this chapter, the original task was extended to include two 

distributions. Participants always saw ball drops conforming to two source distributions grouped 

by colour (red and green balls). In the current experiment, ball drops were interleaved such that 
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only one ball (and hence only one colour) was dropped on each trial. Participants were asked to 

pay attention to both colours of balls equally as they fell so as not to impart any advantageous 

use of attention at this time. 

 

 

 

 

Figure 4.1. Original Plinko Task. Participants observed balls dropping from the top of the 

screen through an array of virtual pegs into one of 40 landing slots. Participants were free to 

estimate their representation of the ball drops on each trial (but could also choose to leave their 

estimate unchanged from trial to trial).
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The primary objective of each experimental run was for participants to observe these ball 

drops and, at 35 trial intervals, input their estimations of what the true distributions looked like. 

This lead to a total of 4 estimates for each distribution in each condition and marked a change 

from prior iterations of this task where participants were free to adjust their estimations on every 

trial. The change was deemed necessary to ensure exposure to many more ball drops in a shorter 

time span than would be possible if they were stopped to input data every trial. Participants 

completed this task by allocating a height to each of the 40 bars underneath the landing spots on 

the Plinko stimuli such that the respective heights of each bar would form their internal model of 

the distribution. That is, a taller bar represented a higher probability of balls falling there, a 

smaller bar represented a lower expected probability and no bar at all indicated that participants 

thought balls would never fall in that slot. As in all experiments in the current chapter, 

participants were asked to estimate both the red and green distributions (Figure 4.2). Participants 

would be prompted to input their estimate for the appropriate colour distribution with a coloured 

text prompt at the bottom of the screen. Additionally, the bars themselves were coloured so that 

participants knew which distribution they were estimating at all times (Figure 4.2). Whenever the 

program paused to prompt participants for data, they were given prompts for both the red and 

green distribution, with the order in which those prompts were given randomized.   
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Figure 4.2. Experiment 1 Plinko Task. After observing alternating ball drops according to a 

red and a green distribution for 35 trials, participants would draw what they thought both red and 

green distributions looked like when prompted.  

 

Each run of the experiment consisted of four pairs of distributions (i.e., red and green in 

each pair). The distributions themselves, from which ball drop landing positions were drawn, 

were pre-generated during the design phase and were split into two conditions. The first 

condition consisted of distribution pairs in which the means for each distribution were separated 
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from each other by 0.5SD, 1.0SD, and 1.5SDs, including a final pair that shared the same mean 

but different variance (i.e., wide v narrow Gaussians). The second condition consisted of 

distribution pairs that overlapped with each other by 22%, 44%, and 66%, followed by a final 

pair that shared the same mean but difference variance (i.e., the same wide v narrow Gaussian 

pair as the other condition). The purpose of these two conditions was to determine whether 

participants’ capacity to represent each individual distribution differed as a function of the 

degree of similarity and whether any such differences could be addressed by allocation of 

attentional resources in subsequent experiments. The two distinct conditions were administered 

between subjects, while distribution pairs for each condition were counter-balanced within-

subjects. 

 

Data Analysis 

 Participants’ data were first pre-processed to normalize the height of their bar estimations 

in each given slot to a percentage of the sum total of their bar heights across all slots. This was 

necessary to ensure that the relative heights of the bars were equal across participants, preventing 

individuals who had a tendency to give all bars a stereotyped baseline height a disproportionate 

amount of bias on the data relative to an individual who left bar heights relatively low. This same 

normalization process was done for the source distributions such that each of the 40 slots had a 

percentage for the participants estimate (P.Sloti) and the true percentage of ball drops coming 

from the source distribution (D.Sloti). 

 From there, participant’s accuracy for estimating the source distribution was computed 

according to the following formula which sums the lower of the two percentages of each slot. 
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∑𝑀𝐼𝑁(𝑃. 𝑆𝑙𝑜𝑡𝑖|𝐷. 𝑆𝑙𝑜𝑡𝑖)

40

𝑖=1

 

 

This creates an accuracy value that penalizes relative under- and over-estimation of the source 

distribution across each slot, such that a value of 0 would be returned if the participant made 

absolutely no slot estimates in a region where the distribution existed and would approach a 

value of 1 as a participant’s slot estimates began to match the exact distribution slot percentages 

(Figure 4.3). 

 

 

Figure 4.3. Accuracy Estimation Example. Participant’s estimates are depicted by solid bars 

while source distribution is depicted by a transparent white curve. Accuracy is calculated 

according to the minimum overlap between the two curves and then converted into a percentage 

of the source distribution’s surface area. A maximum accuracy score is only achievable by 

precisely estimating both the mean and variance of the source distribution. Left depicts an 

example of overestimation that would reduce overall accuracy while the right depicts an 

underestimation error.
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Participant’s accuracy for each of the eight distributions (i.e., four pairs of red and green 

distributions) were averaged across all four trials where they made their respective estimates 

(i.e., participants made 4 estimates approximately every 35 trials for each of the red and green 

distributions under each condition). These accuracy scores were then entered into a General 

Linear Model to examine the effect of distribution pairs on how well individuals were able to 

accurately estimate the source distributions. All data were analyzed using SPSS Statistics version 

20. 

 

4.4. Experiment 1: Results 

Analysis of participant’s overall accuracy revealed a main effect of distribution, 

F(2.2,53.24) = 7.17, MSE = .02, p < .01, colour, F(1,24) = 5.29, MSE = .01, p < .05, a 

distribution by colour interaction, F(3,72) = 8.70, MSE = .004, p < .001, and a distribution by 

colour by condition interaction, F(3,72) = 4.69, MSE = .004, p < .01 (Figure 4.4). However, 

follow-up analyses demonstrated that much of these effects were driven by the fourth 

distribution pair that both groups of participants observed. Namely, the distribution that features 

a wide Gaussian (green) overlapping with a narrow Gaussian (red) sharing the same mean.  

  



 77 

 

 

Figure 4.4. Experiment 1 Estimation Accuracy. Depicts distribution estimation accuracy for 

each distribution pair. Left panel shows performance for the distance condition pairs while the 

right panel shows performance in the overlap condition. Lines are coloured according to the 

distribution that was estimated by the participant. For this experiment the green distribution in 

the wide/narrow pairing was always wide while the red distribution was always narrow. 

 

Examination of accuracy estimates for this distribution pair revealed an overall reduction 

in accuracy for this final distribution pair relative to the three pairs that did not share the same 

mean, F(1,24) = 14.04, MSE = .02, p < .001. Furthermore, comparing the two distributions 

directly revealed that participants tended to perform worse at estimating the narrow (red) 

distribution relative to the wide (green) distribution, t(24) = 3.83, SE = .02, p < .01 (Figure 4.4), 

mistakenly estimating it as being much wider than it actually was. This suggests that participants 

tended to over-generalize their representation of variability to match the widest distribution 

observed at any given time. This is also consistent with other work in our lab demonstrating that 

participants have particular trouble transitioning from representing wide distributions to narrower 

distributions (Filipowicz, Valadao, Anderson, & Danckert, under review). 
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Figure 4.5. Experiment 1 Estimation Accuracy by Condition. Depicts distribution estimation 

accuracy as a function of distribution pair condition. Distance condition had distribution pairs at 

0.5SD, 1.0SD, and 1.5SD apart for distributions 1, 2, and 3, respectively. Overlap condition had 

distributions overlapping at 26%, 44%, and 66% for distributions 1, 2, and 3, respectively. 
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Indeed, when excluding this distribution pair, both main effects of colour, (F<1) and 

distribution, F(1.5,35.5) = 2.26, MSE = .01, p = .13, disappear, indicating that the uniquely 

difficult fourth distribution pair was driving these effects. In terms of between subject 

comparisons, while participants tended to estimate distributions more poorly when they were 

closer together (the overlapping condition, Figure 4.5), this difference did not reach statistical 

significance in the current experiment, F(1,24) = 2.28, MSE = .06, p = .14. 

 

4.5. Experiment 1: Discussion 

 In summary, results of Experiment 1 demonstrate that, without biasing the allocation of 

attention towards either of the two distributions, participants were able to estimate both with 

equal accuracy. While there was some indication that participants did more poorly overall when 

distributions overlapped with each other, this effect did not reach statistical significance. 

However, participants did particularly poorly at estimating a narrow distribution when presented 

in tandem with an overlapping wider distribution, a result that is consistent with prior work in 

our lab demonstrating difficulty in representing narrow distributions after first being presented 

with a wider distribution (i.e., this work showed each distribution sequentially as opposed to the 

interwoven presentation used here). 

 

4.6. Experiment 2: Introduction 

Given that the prior experiment demonstrated individuals were able to estimate two 

distributions simultaneously reasonably well, the central question of the current study was to 

explore whether or not the allocation of attention would improve an individual’s ability to model 
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their environment. The second experiment set out to test this hypothesis by examining 

performance in estimating two distributions while informally allocating attention preferentially 

towards one of them. 

 

4.7. Experiment 2: Method 

Participants 

 A total of 30 undergraduate students (M = 19.0 years, SD = 1.3 years, 12 male) from the 

University of Waterloo participated in the current experiment. All participants reported normal 

or corrected-to-normal vision and gave written consent to participation. As remuneration for 

their involvement, participants received bonus grade credit towards one of their Psychology 

courses that term. The experiment and all procedures were approved by the University of 

Waterloo, Office of Research Ethics. 

 

Procedure 

In contrast to the first experiment in which participants were asked to focus on both 

colours of ball drops, participants were now asked to attend only to the green ball drops, despite 

the fact that they’d later be asked to estimate distributions of both colours, a fact participants 

were informed of at the outset. This would allow for the exploration of the impact of selective 

attention on how well individuals represent regularities.  

Despite our request to participants that they focus only on green ball drops, we did not 

implement a mechanism in the current experiment to strictly enforce allocation of attention. 

However, one critical change made to the current experiment was in relation to how the balls fell 

into the landing slots. Given that the prior experiment displayed ball drops one at a time, it was 
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possible that, under the current instructions, participants would be able to shift their focus 

between distributions as interleaved trials of red and green ball drops were presented. Therefore, 

the current experiment displayed both red and green ball drops at approximately the same time. 

To accomplish this, a modification to the Plinko task rendered two ball drops, one of each 

colour, falling through the pegs at roughly the same time. A temporal jitter was implemented 

such that pairs of balls never landed at the same time (Figure 4.6).  Participants observed the 

same distribution pairs as in Experiment 1. Each trial consisted of the presentation of one green 

and red ball, with data being collected at trials 17, 35, 53, and 70.
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Figure 4.6. Simultaneous Plinko Task. Depicts a version of the Plinko task where participants 

would observe two simultaneous ball drops, one of each colour, rather than one colour at a time 

(as in Experiment 1). As with Experiment 1, participants also estimated both green and red 

distributions when prompted.
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4.8. Experiment 2: Results 

 Analysis of participants’ estimation accuracy reveals a main effect of attended colour, 

such that participants performed significantly better when estimating the attended as opposed to 

the unattended distribution, F(1,28) = 8.91, MSE = .01, p < .01. There was no main effect of 

distribution, F < 1, nor were there any significant interactions (Figure 4.7). 

 

 

 

 

Figure 4.7. Experiment 2 Estimation Accuracy. Depicts distribution estimation accuracy for 

all distribution pairs across both distance and overlap conditions as a function of attention. While 

no manipulation was used to sustain participant’s attention on the target distribution, they were 

asked to focus one distribution over another, despite knowing they would eventually have to 

estimate both. 

 

In contrast to Experiment 1, there was a significant effect of condition in this experiment, 

F(1,28) = 7.05, MSE = .03, p < .05. Specifically, participants tended to do worse overall when 
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estimating distributions that overlapped with each other relative to conditions in which the 

distribution differed in the distance between means (Figure 4.8). This was even true for 

distributions that participants were asked to attend to. Although the same effect was not 

significant in Experiment 1, it was numerically in the same direction – better performance for 

distributions differing in distance vs. overlap conditions (compare Figures 4.5 and 4.8). 

 

 

 

Figure 4.8. Experiment 2 Accuracy by Condition. Depicts distribution estimation accuracy for 

Experiment 2 as a function of distribution pair condition. Distance condition had distributions 

pairs at 0.5SD, 1.0SD, and 1.5SD apart for distributions 1, 2, and 3, respectively. Overlap 

condition had distributions overlapping at 26%, 44%, and 66% for distributions 1, 2, and 3, 

respectively. 

 

Interestingly, participants still tended to have difficulty estimating a narrow distribution 

that overlapped with a wide one. Counterintuitively, that was true particularly when participants 

were specifically asked to pay more attention to the narrow distribution, F(1,28) = 6.52, MSE = 

.01, p < .05 (Figure 4.9). Despite the improvement in accuracy when attending to a target 



 85 

distribution across all other distribution pairs, here they continued to estimate the attended 

distribution as being much wider than it actually was. 

 

 

 

Figure 4.9. Experiment 2 Overlapping Distribution Accuracy. Depicts distribution estimation 

accuracy for Experiment 2 as a function of attended distribution demonstrating a significant 

reduction in narrow vs. wide accuracy despite attentional focus. 

 

4.9. Experiment 2: Discussion 

 The results of Experiment 2, where we had participants allocate their attention towards 

one of the two distributions in each pair, demonstrated an improvement in estimation accuracy 

for the attended vs. the unattended distribution. In addition, while Experiment 1 showed 

performance trending downwards for distribution pairs that overlapped with each other, that 

effect was significant in Experiment 2. Finally, as with Experiment 1, participants had 
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considerable difficulty estimating the narrow distribution when it was presented in context with a 

wider distribution, despite the fact that they were asked to attend to it. 

 

4.10. Experiment 3: Introduction 

 Despite the fact that results of Experiment 2 showed a benefit of attention on 

representational accuracy, there was no direct measure to determine whether participants did 

indeed allocate their attention to the target distribution. Furthermore, the effect of attentional 

allocation was subtle, with the largest effects being the impact of placing the distributions in an 

overlapping configuration (i.e., the overlap condition and the wide/narrow distribution pair). 

Therefore, the purpose of the current experiment was to replicate the findings of Experiment 2 

while introducing an added element to the Plinko task that both enforced and measured the 

allocation of attention. 

 

4.11. Experiment 3: Method 

Participants 

 A total of 39 undergraduate students (M = 20.5, SD = 3.2, 6 male) from the University of 

Waterloo participated in the current experiment. All participants reported normal or corrected-to-

normal vision and gave written consent to participation. As remuneration for their involvement, 

participants received bonus grade credit towards one of their Psychology courses that term. The 

experiment and all procedures were approved by the University of Waterloo, Office of Research 

Ethics. 
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Procedure 

Participants completed a similar Plinko task to that of Experiment 2 with simultaneous 

ball drops of both red and green distributions. The same distribution pairs used in Experiments 1 

and 2 were also used here. The colour of ball drops that participants were asked to attend to was 

counterbalanced between participants. While the prior experiment presented simultaneous ball 

drops as a means to prevent participants from shifting their attention to the unattended 

distribution on trials where the unattended balls fell, there wasn’t a mechanism to encourage 

participants to sustain their attention on the target colour. Theoretically, participants could still 

attend to the other colour of ball drops despite instructions not to. 

To ensure participants sustained attention on the colour instructed, participants were 

given a dual Sustained Attention to Response Task (SART; Robertson et al., 1997) whilst they 

observed the ball drops (Figure 4.10). In the original SART task, participants are presented with 

a rapid sequence of numbers and are told to press a button to every number except one. 

Commission errors – a failure to withhold a response to the specified number – represent failures 

of sustained attention (Robertson et al., 1997). The total proportion of go stimuli was 67%, a 

proportion associated with minimal errors and limited influence of speed accuracy trade-offs 

(Wilson, Finkbeiner, de Joux, Russell, & Helton, 2016). 
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Figure 4.10. Plinko SART Task. Participants would observe ball drops from the top of the 

screen into one of 40 landing slots. As the balls fell between the 16th and 21st row of pegs, both 

red and green balls would change to an array of possible shapes or remain as circles. Participants 

were asked to press the mouse button if the colour ball they were attending to changed to any 

shape except for a star. 
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In the current experiment, the SART task was modified such that participants had to pay 

attention to one of two coloured distributions of balls. As the balls fell, both the attended and 

unattended balls independently changed to an array of possible shapes mid-fall. Participants were 

instructed to click the left mouse button when they saw the attended colour circle change to a 

square, diamond, triangle, or semi-circle. Participants were asked to withhold their response if 

they saw the attended ball change to a star or on trials in which the ball did not change. The 

change point on each trial occurred in the middle half of its travel time with its change point 

determined randomly within that range to prevent a perseverative response style. The middle 

range was chosen to avoid early or late stages of a ball’s trajectory. Early changes might mean 

the participant could ignore the ball’s continuing trajectory for that trial and late changes had the 

possibility of inducing a kind of attentional blink potentially impairing participant’s ability to 

accurately encode the shape’s final landing position (Dux & Marois, 2009). 

 

4.12. Experiment 3: Results 

Evaluation of participant’s performance on the SART task indicates that participants 

completed this component of the experiment according to instructions, with mean response 

accuracy of 89% (SD = .07%; Figure 4.11). As with the previous experiment, distribution 

estimation results showed a main effect of attended distribution on estimation accuracy, F(1,37) 

= 5.0, MSE = .01, p < .05 (Figure 4.12), demonstrating that participants performed better when 

estimating ball drops for the attended distribution (i.e., the same distribution for which they 

completed the SART task).  
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Figure 4.11. Experiment 3 SART Task Accuracy. Depicts histogram of SART accuracy for all 

participants in Experiment 3. 

 

There was also a main effect of condition such that, as with prior experiments, 

participants were less accurate estimating distributions that were overlapping with each other, 

F(1,37) = 7.82, MSE = .04, p < .01 (Figure 4.13). However, there were no other significant main 

effects or interactions. While Experiment 2 demonstrated an overall reduction in performance 

when participants had to estimate wide and narrow distributions that completely overlapped, this 

effect was not present in the current experiment, F < 1. However, as with all prior experiments, 

participants did a worse job overall at estimating the narrow distribution when it overlapped with 

a wide one, t(38) = -6.8, SE = .02, p < .001 (Figure 4.14). 
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Figure 4.12. Experiment 3 Estimation Accuracy. Depicts distribution estimation accuracy as a 

function of attention. Attended distributions were ones where participants completed the SART 

task whilst observing ball drops. 
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Figure 4.13. Estimation Accuracy by Condition. Depicts distribution estimation accuracy as a 

function of condition. As with Experiments 1 and 2, the distance condition placed distribution 

pairs 0.5SD, 1.0SD, and 1.5SD apart while the overlap condition had distribution pairs 

overlapping by 24%, 44%, and 66%. 
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Figure 4.14. Estimation Accuracy for Wide vs. Narrow Distribution. Depicts distribution 

estimation accuracy for the fourth and final distribution pair common to both groups. 

Specifically, the distribution pair that had a narrow distribution overlapping a wider distribution 

with the same mean. 
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4.13. Experiment 3: Discussion 

 Consistent with the results from Experiment 2, the results of Experiment 3 demonstrated 

an advantage in distribution estimation accuracy when participants completed the SART task on 

those ball drops. Additionally, participants continued to have relatively more difficulty with 

distributions that were overlapping. Notably, participants again had the most difficulty with 

estimating the narrow distribution when it overlapped with the wider one, even when asked to 

attend to it through the use of the SART task. 

 

4.14. Experiment 4: Introduction 

While the prior two experiments demonstrated that the allocation of attention improved 

participants’ ability to represent distributions, these effects did not extend to instances where the 

distribution pairs consisted of a wide and narrow distribution with overlapping means. Although 

the results consistently demonstrated lower overall performance as the distributions began to 

overlap significantly, the marked reduction in performance in the most difficult of distribution 

pairs warranted further exploration. Given that both the wide and narrow distributions always 

shared the same mean, it was important to explore whether the difficulty observed with this 

distribution pair was merely a result of that fact. That is, if participants’ past performance with 

these distributions was a true reflection of difficulty with narrow distributions in the context of 

wider ones, then separating the means of the distributions should still produce the same pattern 

of performance. However, in the event that the results reflect the fact that both distributions 

shared the same mean, then separating the means should modulate the effect. Additionally, while 

prior experiments demonstrated a performance improvement for attended vs unattended 

distributions, performance was relatively poor for narrow distributions that overlapped wide 
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distributions even though their attention was allocated to ball drops from the narrower 

distribution. Consequently, Experiment 4 set out to investigate whether attention affected the 

ability to represent these narrow distributions relative to when they were unattended in the 

context of overlapping with a wider distribution. 

 

4.15. Experiment 4: Method 

Participants 

 A total of 20 undergraduate students (M = 20.4, SD = 1.7 years, 6 male) from the 

University of Waterloo participated in the current experiment. All participants reported normal 

or corrected-to-normal vision and gave written consent to participation. As remuneration for 

their involvement, participants received bonus grade credit towards one of their Psychology 

courses that term. The experiment and all procedures were approved by the University of 

Waterloo, Office of Research Ethics. 

 

Procedure 

The current study contained distribution pairs consisting only of a narrow distribution 

overlapping with a wide distribution. There were a total of 4 distribution pairs, with the distance 

between means of the narrow and wide distributions differing slightly in each pair (4, 6, 8, and 

10 slots apart for distribution pairs 1-4, respectively), as opposed to previous experiments where 

the means of the wide and narrow distributions were identical. This allowed us to explore 

whether distance between distribution means would ameliorate the performance deficit observed 

in prior experiments where the narrow and wide distributions shared the same means.  
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As in Experiment 2, balls from each pair of distributions fell from the top of the pegs into 

one of 40 landing slots. Participants were asked either to attend to only green balls or red balls. 

The colour of the aforementioned distributions varied such that, regardless of which color 

participants were asked to attend to, there would always be two narrow and two wide 

distributions of that colour (Figure 4.15). This means that, taking the narrow distributions for 

example, they would always have two narrow distributions they did attend to and two narrow 

distributions where they didn’t regardless of whether they were asked to attend to green or red 

ball drops.  For example, for participants asked to attend to green balls, they would be attending 

to the wide distribution in pairs 1 and 4 and the narrow distribution in pairs 2 and 3. This allowed 

us to directly compare the effect of attention on representation accuracy of narrow and wide 

distributions within-subjects as opposed to prior experiments where participants were either 

attending to the wide or narrow distribution between-subjects as had been the case for all prior 

experiments in this chapter. Additionally, a third group of participants were given no instructions 

regarding the allocation of attention to serve as a control condition. The order of distribution 

pairs was counterbalanced across participants.  
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Figure 4.15. Experiment 4 Distribution Pairs. Top panel depicts distribution pairs used for Experiment 4. All distribution pairs 

consisted of a narrow distribution overlapping with a wider one, comparable to the fourth distribution pair in Experiments 1-3. Middle 

and bottom panels demonstrate how participants always attended to two narrow and two wide distributions when given instructions to 

attend to one ball colour. Solid lines denote attended distributions while dashed lines denote unattended distributions. 
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4.16. Experiment 4: Results 

To examine the hypothesis that prior results for one specific pair of distributions was due 

to the fact that the means were identical (i.e., the narrow and wide Gaussians), an analysis was 

run looking at estimation accuracy as a function of distribution (with the means of both 

distributions being further apart in each successive pair) and width (wide vs. narrow). As with 

prior experiments that demonstrated poorer estimation performance for narrow distributions 

when it overlapped with a wider one, there was a significant main effect of distribution width 

such that participants were less accurate at estimating the narrower distributions, F(1,18) = 

35.84, MSE = .04, p < .001 (Figure 4.16). There were no other main effects or interactions, 

suggesting that participants did not benefit in their estimations as a function of how far apart the 

wide and narrow distributions were placed relative to each other, all Fs ≤ 1. These results suggest 

that the difficulty noted in previous experiments with respect to poor performance in narrow vs 

wide distributions was not an artefact of the distribution means being the same. 
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Figure 4.16. Experiment 4 Estimation Accuracy by Distribution Width. Depicts estimation 

accuracy for the wide distributions in solid lines and narrow distributions in dashed lines. 

Distance between distribution means within pairs increased from left to right. 

 

 

 Given the only factor affecting performance in the distribution estimation task appeared 

to be the width of the distribution, focus shifted to the effect of attention on how well individuals 

estimated both wide and narrow distributions. As previously mentioned, individuals attending to 

either color of ball drops would end up attending to a combination of both narrow and wide 

distributions over the course of the experiment (Figure 4.16). Analysis of within-subjects effects 

revealed a main effect of distribution width, F(1,18) = 35.84, MSE = .02, p<.001, attention, 

F(1,18) = 4.6, MSE = .004, p < .05, and an attention by distribution width interaction, F(1,18) = 

5.12, MSE = .004, p < .05 (Figure 4.17).  
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Further exploration of the attention by distribution width interaction revealed that the 

primary improvement of estimation accuracy occurred when participants were attending to the 

narrow distribution. That is, under conditions where participants performed at their worst in prior 

experiments (i.e., the narrow distribution), performance was significantly improved when they 

were asked to focus on those ball drops relative to the condition in which they attended to the 

wider distributions (Figure 4.17). 

 

 

 

Figure 4.17. Experiment 4 Wide vs. Narrow Estimation Accuracy by Attention. Depicts 

distribution estimation accuracy for attended and unattended distributions as a function of 

distribution width. Green markers indicate no-instruction control performance. Asterisk denotes 

significant difference between attended and unattended narrow distribution estimation accuracy.  
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 With respect to whether these results represent a facilitative effect of focusing attention 

above and beyond passive observation or whether attention represents a gating mechanism, 

performance was also examined as a function of whether participants received a specific 

distribution colour to focus on or given no attention instructions at all. Overall estimation 

accuracy was comparable between the groups with no main effect of attention instruction, F < 1. 

While performance in the attention condition appears to be higher when participants attended to 

the narrow condition, this difference failed to reach statistical significance, F(1,18) = 2.26, MSE 

= .02, p = .15.  

 

4.17. Experiment 4: Discussion 

These results suggest that participants were able to represent both distributions quite well 

regardless of whether or not they were instructed to attend to either at the exclusion of the other. 

However, when asked to allocate attention to one of the distributions in each pair, participants 

were more accurate when they were attending to the narrow distribution than when they weren’t. 

Taken together, the results seem to suggest that attention gates the process of representing 

regularities, such that impairing the ability to freely allocate attention to the environment may 

impair performance. 

 

4.18. Discussion 

The results of the current study appear to demonstrate the robust and reliable role that 

attention plays in facilitating the building of mental representations. Through multiple 

experiments, our results demonstrated that individuals consistently did better at estimating the 

mean and variance of an unknown distribution of visual events when attentional resources were 
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allocated to those events. This was true regardless of whether participants were merely instructed 

to voluntarily attend to one of two distributions (Experiments 2 and 4) or whether there was a 

secondary task designed to enforce sustained attention on one distribution at the expense of the 

other (Experiment 3). These results are generally consistent with literature that shows attention is 

an important component of many visual learning processes including visual statistical learning 

(Baker, Olson, & Behrmnann, 2004; Turk-Browne, Junge, & Scholl, 2005), probability learning 

(Kabata et al., 2014), sequence learning (Kimura, Widmann, & Schröger, 2010), and implicit 

learning (Jiménez & Mendéz, 1999). 

However, when viewed in a broader context, these results indicate that individuals are 

quite capable of observing and representing multiple distributions simultaneously. This was 

particularly evident in the first experiment where no attentional constraints were placed on 

participants. That said, the results of the current study did demonstrate that individuals find it 

much more difficult to build a representation in the context of other competing information that 

are similar to the one being represented. Throughout all experiments, participants found it much 

harder to estimate distributions that overlapped with each other as opposed to when the 

boundaries of each respective distribution were separated from each other. This difficulty was 

exacerbated when the distributions shared the same mean (i.e., narrow over wide). This is 

consistent with literature demonstrating that similarity between targets and distractors require 

more attentional scrutiny (Rausei, Makovski, & Jiang, 2007), possibly explaining the overall 

lower performance under these circumstances. This is also consistent with work in our lab 

demonstrating that individuals have considerable difficulty shifting from representing a wide 

distribution towards a narrow distribution even when those distributions are presented 

sequentially (Filipowicz et al., under consideration). 
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In terms of the mechanism by which attention affects the model building process, the 

results of Experiment 1 strongly suggested that individuals were able to effectively represent two 

distributions at once without any attentional manipulations. While later manipulations did result 

in improved performance for the attended vs. unattended distributions, it appeared as though 

much of that difference resulted from a reduction in performance for the unattended distributions 

relative to Experiment 1 levels rather than a heightening of accuracy for the attended 

distributions (Figure 4.18). This is also consistent with results from Experiment 4 where we 

manipulated the target of participants’ focus as an independent variable while asking them to 

perform what was the most difficult estimation task from all three prior experiments. While 

participants did benefit from focusing on the narrow distributions relative to when their attention 

was on the wider ones, participants performed quite well when they were simply free to attend to 

either distribution relative to when their focus was constrained by task instructions. This is 

consistent with the results from Chapter 2 showing that participants were best able to represent 

regularity in their environment when working memory resources were freed up rather than 

exploited to hold recent events in mind, even when those events were relevant to the mental 

representation they needed to build in the first place.  
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Figure 4.18. Experiments 1-3 Combined Attended vs. Unattended vs. Control. Depicts 

relative performance across Experiments 1-3. Dashed lines indicate unattended distributions in 

each respective pair while solid lines indicate performance when attention was focused on the 

target distribution. Both Experiments 2 and 3 had significant main effects of attention. 

 

In summary, it appears that attentional resources act as a gating mechanism and are most 

helpful for the building of mental representations when they are freed up to passively observe 

visual regularity in the environment. Through multiple experiments, participants were 

consistently better at determining the underlying structure of a series of visually presented ball 

drops when they were focused on those events relative to a second distribution to which they 

were not. However, the overall pattern of performance under these circumstances were 

comparable to conditions where individuals were free to self-regulate the allocation of their 

attentional resources. To the extent that attentional resources act as a mechanism for building and 
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updating mental representation, it appears as though it serves as a gating mechanism in the 

information processing system as individuals seek to infer the structure of their environment 

through limited and efficient observation (Gershman & Niv, 2010; Gottlieb, 2012). 
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Chapter 5: General Discussion 

 The ability to build and update mental models of the environment represents an important 

component to effective and efficient decision making as it allows individuals to predict the 

consequences of action choices without over-sampling the environment (Griffiths & Tenenbaum, 

2006; Tenenbaum et al., 2011, Johnson-Laird, 2013). The current thesis explored mental model 

building and updating from the point of view of the neural correlates, and the ancillary cognitive 

abilities that facilitate the process. 

 Chapter 2 explored the brain regions putatively involved in facilitating mental model 

building and updating. Building on existing work in the literature with brain-damaged 

individuals highlighting a likely role of the right-hemisphere in this process (Danckert et al., 

2012), Chapter 2 investigated the neural regions that played an important role in the ability of 

healthy individuals to build and update mental models. Neurologically healthy participants 

played a serial zero-sum game with a computer that utilized a variety of potentially exploitable 

strategies. Results indicated that individuals were reasonably skilled at modeling and exploiting 

the bias of the computer opponent as demonstrated by steadily rising rates of optimal play choice 

over the course of each relevant epoch. Imaging data captured during these instances where 

individuals were able to model and exploit their computer opponent demonstrated significant 

activation in a variety of areas. Most notably, a network of parietal cortex, cingulate cortex, 

striate cortex, and prefrontal cortex.  

The network of regions activated likely contributes in distinct ways to model building 

and updating, with further research needed to elucidate the separable contributions of each 

region. Given research findings from other domains it is reasonable to speculate that the parietal 

cortex, classically characterized as an area important for the allocation of visual attention 
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(Mesulam, 1981; Hopfinger et al., 2000; Corbetta & Shulman, 2002; Ferber & Danckert, 2006), 

coupled with prefrontal cortex, typically implicated in executive control (Hare et al., 2009; Geng, 

2013), are involved in the exploration and accumulation of evidence in pursuit of a mental model 

(d’Acremont et al., 2013a; 2013b). Once built, such a model needs to be evaluated in the context 

of expected and observed outcomes. Relevant activations in both the anterior cingulate cortex, 

typically implicated in error detection and belief-based decision making tasks (Zhu et al., 2012), 

and striate cortex, typically characterized as representing or encoding relative risk and reward 

signals (Levin et al., 2012) may co-ordinate this process. These results are consistent with other 

work in our lab demonstrating their importance in the model building and updating process 

(Danckert et al., 2012, Stöttinger, Filipowicz, Valadao, Culham, Goodale, Anderson, & 

Danckert, 2015) in addition to patient studies that implicate a subset of these areas in patients 

who demonstrate difficulty with this ability (Danckert et al., 2012; Stöttinger et al., 2014). It is 

worth noting some limitations to this work that suggest future directions of research. First, the 

nature of the block-design coupled with a relatively smaller sample size limits the ability to 

detect areas of activation that come online the moment a model is built or updated and instead 

infers that these processes are underway throughout the block of trials. Nevertheless, our results 

are consistent with similar work employing more event-related designs (Stöttinger et al., 2015). 

A potentially fruitful avenue for future research would involve replication of these findings while 

exploring the temporal dynamics of how this network operates. It would be important to 

corroborate the purported roles that the above areas play in the updating process with research 

that isolates their role in context. In addition to utilizing event-related designs in future research, 

this investigation could involve the use of alternative imaging techniques with greater temporal 

resolution that fMRI (e.g., EEG/ERP). 
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Chapter 3 consisted of a series of behavioural experiments examining the role of 

Working Memory in model building and updating. Participants completed a serial prediction task 

asking them to estimate the mean of a distribution whilst completing a dual task that either 

constrained WM resources through the use of a 2-back task or a 0-back dual-task control that 

wouldn’t constrain working memory resources. While it was initially hypothesized that 

expending WM resources to focus on elements of the environment that contained information 

relevant to the model to be built (e.g., recent examples of the distribution), those were the 

conditions in which performance was at its worst. Specifically, participants were slowest to 

update their representations of the central tendency of a new distribution when they were asked 

to hold in WM information about the stimuli that were relevant or congruent with the model they 

needed up update (i.e., Location in E1, Shape in E2/3). These results are consistent with prior 

research demonstrating constrained WM resources impair the ability to learn and benefit from 

regularity in the environment and detect salient changes (Rouder et al., 2011; Annac et al., 2013; 

Travis et al., 2013). Taken together, Chapter 2 suggested that free WM resources represent an 

important gating mechanism to effective and efficient updating of mental representations such 

that constrained or reduced capacity may impair the process. However, these results are 

somewhat limited by the relatively constrained response choices made by participants, coupled 

with the fact that the presence of said models were inferred by the tendency to choose one of 

these limited options. This could be addressed in future research by increasing the range and 

complexity of possible response choices (as was done in the “Plinko task”). Additionally, while 

the results point to the importance of WM resources, further research could investigate the 

relationship between WM capacity or WM rehabilitation and the ability to build and update 

mental models. 
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 Chapter 4 examined the role of attention in the building of mental representations. Using 

a novel task (Filipowicz, Valadao, Anderson, & Danckert, 2014) designed to allow participants 

to input data that more closely reflected their internal representation, participants observed ball 

drops reflecting two distinct distributions of events. Across four experiments, a variety of 

manipulations were applied to alter the allocation of attentional resources to one distribution over 

the other. Results generally showed that, without any attentional constraints, participants were 

able to represent and report both distributions with comparable accuracy. However, when asked 

to attend to one of them, participants were significantly better at representing the attended vs. the 

unattended distribution. However, when taken together with data where participants were not 

told where or how to attend to the distributions (i.e., Experiment 4), performance in the attended 

conditions were not significantly different from controls. These results are consistent with the 

interpretation that attention, as with WM, act as a gating mechanism for the ability to build and 

update mental representations. Despite this conclusion, only a limited subset of the dataset 

directly contrasted attended vs. unattended in relation to a control condition without attentional 

constraints (i.e., Experiment 4). While Experiment 1 did demonstrate better performance for the 

distributions pairs without any attentional instruction, it’s important to note that the interleaved 

ball drops arguably made the task of representing each distribution more difficult than when both 

distributions displayed ball drops simultaneously. Additional research would seek to replicate the 

findings of Experiment 4 using distributions without equal means (as in Experiments 1-3) with 

simultaneous presentation of ball drops and comparable controls (i.e., no attentional 

instructions). 

 In summary, the work presented in this thesis contributes to a more comprehensive 

understanding of how individuals build and update mental representations of their environment. 
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The present research helps establish a working knowledge of the neural network that co-

ordinates this process including parietal cortex, anterior cingulate and anterior insula – regions 

implicated in both patient work and related fMRI studies (Karnath, 2004; Danckert et al., 2012, 

Stöttinger et al., 2014). These areas appear to play a co-ordinated role in the integration of 

evidence and the evaluation of predicted vs. observed outcomes. Additional data in this thesis 

outline the cognitive abilities that play a facilitative role as a gateway for incoming information, 

namely attention and working memory.  

  



 

 

111 

References 

Abla, D., & Okanoya, K. (2009). Visual statistical learning of shape sequences: An ERP 

study. Neuroscience Research, 64(2), 185-190.  

Albrecht, A. R., Scholl, B. J., & Chun, M. M. (2012). Perceptual averaging by eye and ear: 

Computing summary statistics from multimodal stimuli. Attention, Perception, & 

Psychophysics, 74(5), 810-815.  

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability 

statistics by 8-month-old infants. Psychological Science, 9(4), 321-324.  

Baddeley, A. (1992). Working memory. Science, 255(5044), 556.  

Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews 

Neuroscience, 4(10), 829-839. 

Baker, C. I., Behrmann, M., & Olson, C. R. (2002). Impact of learning on representation of parts 

and wholes in monkey inferotemporal cortex. Nature Neuroscience, 5(11), 1210-1216.  

Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in 

reward and decision-making. The Journal of Neuroscience, 27(31), 8161-8165.  

Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the value 

of information in an uncertain world. Nature Neuroscience, 10(9), 1214-1221.  

Berniker, M., Voss, M., & Kording, K. (2010). Learning priors for Bayesian computations in the 

nervous system. PloS one, 5(9), e12686.  

Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: 

using statistical regularities to form more efficient memory representations. Journal of 

Experimental Psychology: General, 138(4), 487.  

Brown, S. D., & Steyvers, M. (2009). Detecting and predicting changes. Cognitive 



 

 

112 

Psychology, 58(1), 49-67.  

Buchsbaum, B. R., Greer, S., Chang, W. L., & Berman, K. F. (2005). Meta‐analysis of 

neuroimaging studies of the Wisconsin Card‐Sorting task and component processes. Human 

Brain Mapping, 25(1), 35-45. 

Bulf, H., Johnson, S. P., & Valenza, E. (2011). Visual statistical learning in the newborn 

infant. Cognition, 121(1), 127-132.  

Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). 

Anterior cingulate cortex, error detection, and the online monitoring of 

performance. Science, 280(5364), 747-749. 

Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual 

context guides spatial attention. Cognitive Psychology, 36(1), 28-71. 

Cohen, J. D., McClure, S. M., & Angela, J. Y. (2007). Should I stay or should I go? How the 

human brain manages the trade-off between exploitation and exploration. Philosophical 

Transactions of the Royal Society of London B: Biological Sciences, 362(1481), 933-942.  

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in 

the brain. Nature Reviews Neuroscience, 3(3), 201-215. 

Culham, J. C., Danckert, S. L., De Souza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. 

(2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream 

brain areas. Experimental Brain Research, 153(2), 180-189.  

Curtis, C. E., & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working 

memory. Trends in Cognitive Sciences, 7(9), 415-423. 

d'Acremont, M., Fornari, E., & Bossaerts, P. (2013). Activity in inferior parietal and medial 

prefrontal cortex signals the accumulation of evidence in a probability learning task. PLoS 



 

 

113 

Comput Biol, 9(1), e1002895.  

d'Acremont, M., Lu, Z. L., Li, X., Van der Linden, M., & Bechara, A. (2009). Neural correlates 

of risk prediction error during reinforcement learning in humans. Neuroimage, 47(4), 1929-

1939. 

d'Acremont, M., Schultz, W., & Bossaerts, P. (2013a). The human brain encodes event 

frequencies while forming subjective beliefs. The Journal of Neuroscience, 33(26), 10887-

10897.  

d'Acremont, M., Fornari, E., & Bossaerts, P. (2013). Activity in inferior parietal and medial 

prefrontal cortex signals the accumulation of evidence in a probability learning task. PLoS 

Comput Biol, 9(1), e1002895.  

Danckert, J., Stöttinger, E., Quehl, N., & Anderson, B. (2012). Right hemisphere brain damage 

impairs strategy updating. Cerebral Cortex, 22(12), 2745-2760.  

Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates 

for exploratory decisions in humans. Nature, 441(7095), 876-879. 

De Gardelle, V., & Summerfield, C. (2011). Robust averaging during perceptual 

judgment. Proceedings of the National Academy of Sciences, 108(32), 13341-13346.  

Decety, J., & Lamm, C. (2007). The role of the right temporoparietal junction in social 

interaction: how low-level computational processes contribute to meta-cognition. The 

Neuroscientist, 13(6):580-593. 

Dinstein, I., Hasson, U., Rubin, N., & Heeger, D. J. (2007). Brain areas selective for both 

observed and executed movements. Journal of Neurophysiology, 98(3), 1415-1427. 

Domenech, P., & Koechlin, E. (2015). Executive control and decision-making in the prefrontal 

cortex. Current Opinion in Behavioral Sciences, 1, 101-106. 



 

 

114 

Donoso, M., Collins, A. G., & Koechlin, E. (2014). Foundations of human reasoning in the 

prefrontal cortex. Science, 344(6191), 1481-1486. 

Druker, M., & Anderson, B. (2010). Spatial probability aids visual stimulus 

discrimination. Frontiers in Human Neuroscience, 4, 63. 

Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, 

Perception, & Psychophysics, 71(8), 1683-1700. 

Ferber, S., & Danckert, J. (2006). Lost in space—the fate of memory representations for non-

neglected stimuli. Neuropsychologia, 44(2), 320-325.  

Filipowicz, A., Anderson, B., & Danckert, J. (2014). Learning what from where: Effects of 

spatial regularity on nonspatial sequence learning and updating. The Quarterly Journal of 

Experimental Psychology, 67(7), 1447-1456. 

Filipowicz, A., Valadao, D., Anderson, B., & Danckert, J. (2014). Measuring the influence of 

prior beliefs on probabilistic estimations. In P. Bello, M. Guarini, M. McShane, & B. 

Scassellati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science 

Society (pp. 2198–2203). Austin, TX: Cognitive Science Society. 

Filipowicz, A., Valadao, D., & Anderson, B., & Danckert, J. Rejecting outliers: Surprising 

changes do not always improve belief updating. Revise and resubmit to Decision. October, 

2016. 

Fischer, J., & Whitney, D. (2012). Attention gates visual coding in the human pulvinar. Nature 

Communications, 3, 1051. 

Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial 

structures from visual scenes. Psychological Science, 12(6), 499-504. 

Fiser, J., & Aslin, R. N. (2002). Statistical learning of higher-order temporal structure from 



 

 

115 

visual shape sequences. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 28(3), 458.  

Friston, K. (2012). Ten ironic rules for non-statistical reviewers. Neuroimage, 61(4), 1300-1310. 

Furl, N., & Averbeck, B. B. (2011). Parietal cortex and insula relate to evidence seeking relevant 

to reward-related decisions. The Journal of Neuroscience, 31(48), 17572-17582.  

Gaissmaier, W., & Schooler, L. J. (2008). The smart potential behind probability 

matching. Cognition, 109(3), 416-422. 

Geng, J. J., Soosman, S., Sun, Y., DiQuattro, N. E., Stankevitch, B., & Minzenberg, M. J. 

(2013). A match made by modafinil: Probability matching in choice decisions and spatial 

attention. Journal of Cognitive Neuroscience, 25(5), 657-669. 

Geng, J. J., & Vossel, S. (2013). Re-evaluating the role of TPJ in attentional control: contextual 

updating? Neuroscience & Biobehavioral Reviews, 37(10), 2608-2620. 

Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search 

implicitly in normal participants and patients with hemispatial neglect. Psychological 

Science, 13(6), 520-525. 

Gershman, S. J., & Niv, Y. (2010). Learning latent structure: carving nature at its joints. Current 

Opinion in Neurobiology, 20(2), 251-256. 

Gläscher, J., Adolphs, R., Damasio, H., Bechara, A., Rudrauf, D., Calamia, M., & Tranel, D. 

(2012). Lesion mapping of cognitive control and value-based decision making in the 

prefrontal cortex. Proceedings of the National Academy of Sciences, 109(36), 14681-14686. 

Gottlieb, J. (2012). Attention, learning, and the value of information. Neuron, 76(2), 281-295. 

Green, C. S., Benson, C., Kersten, D., & Schrater, P. (2010). Alterations in choice behavior by 

manipulations of world model. Proceedings of the National Academy of Sciences, 107(37), 



 

 

116 

16401-16406.  

Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predictions in everyday 

cognition. Psychological Science, 17(9), 767-773.  

Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves 

modulation of the vmPFC valuation system. Science, 324(5927), 646-648. 

Heilman, K.M., & Valenstein, E. (2011). Clinical Neuropsychology. New York, NY: Oxford 

University Press. 

Hohwy, J. (2012). Attention and Conscious Perception in the Hypothesis Testing 

Brain. Frontiers in Psychology, 3, 96. 

Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-

down attentional control. Nature Neuroscience, 3(3), 284-291. 

Ingre, M. (2013). Why small low-powered studies are worse than large high-powered studies and 

how to protect against “trivial” findings in research: Comment on Friston 

(2012). Neuroimage, 81, 496-498. 

Jiang, Y. V., Swallow, K. M., & Rosenbaum, G. M. (2013). Guidance of spatial attention by 

incidental learning and endogenous cuing. Journal of Experimental Psychology: Human 

Perception and Performance, 39(1), 285.  

Jiang, Y. V., Swallow, K. M., Won, B. Y., Cistera, J. D., & Rosenbaum, G. M. (2015). Task 

specificity of attention training: the case of probability cuing. Attention, Perception, & 

Psychophysics, 77(1), 50-66. 

Jiménez, L., & Méndez, C. (1999). Which attention is needed for implicit sequence 

learning? Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 

236. 



 

 

117 

Johnson-Laird, P. N. (2013). Mental models and cognitive change. Journal of Cognitive 

Psychology, 25(2), 131-138.  

Johnson-Laird, P. N. (2010). Mental models and human reasoning. Proceedings of the National 

Academy of Sciences, 107(43), 18243-18250.  

Jueptner, M., Stephan, K. M., Frith, C. D., Brooks, D. J., Frackowiak, R. S., & Passingham, R. E. 

(1997). Anatomy of motor learning. I. Frontal cortex and attention to action. Journal of 

Neurophysiology, 77(3), 1313-1324. 

Kabata, T., Yokoyama, T., Noguchi, Y., & Kita, S. (2014). Location probability learning 

requires focal attention. Perception, 43(4), 344-350. 

Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during 

intertemporal choice. Nature Neuroscience, 10(12), 1625-1633. 

Kadota, H., Nakajima, Y., Miyazaki, M., Sekiguchi, H., Kohno, Y., & Kansaku, K. (2009). 

Anterior prefrontal cortex activities during the inhibition of stereotyped responses in a 

neuropsychological rock–paper–scissors task. Neuroscience Letters, 453(1), 1-5. 

Karnath, H. O., Berger, M. F., Küker, W., & Rorden, C. (2004). The anatomy of spatial neglect 

based on voxelwise statistical analysis: a study of 140 patients. Cerebral Cortex, 14(10), 

1164-1172.  

Kimura, M., Widmann, A., & Schröger, E. (2010). Top-down attention affects sequential 

regularity representation in the human visual system. International Journal of 

Psychophysiology, 77(2), 126-134. 

Koehler, D. J., & James, G. (2010). Probability matching and strategy availability. Memory & 

Cognition, 38(6), 667-676. 

Kwon, O. S., & Knill, D. C. (2013). The brain uses adaptive internal models of scene statistics 



 

 

118 

for sensorimotor estimation and planning. Proceedings of the National Academy of 

Sciences, 110(11), 1064-1073. 

Levin IP, Xue G, Weller JA, Reimann M, Lauriola M, Bechara A. 2012. A neuropsychological 

approach to understanding risk-taking for potential gains and losses. Frontiers in 

Neuroscience. 6, 1-11  

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and 

conjunctions. Nature, 390(6657), 279-281. 

MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of 

the dorsolateral prefrontal and anterior cingulate cortex in cognitive 

control. Science, 288(5472), 1835-1838. 

Manginelli, A. A., Langer, N., Klose, D., & Pollmann, S. (2013). Contextual cueing under 

working memory load: Selective interference of visuospatial load with expression of 

learning. Attention, Perception, & Psychophysics, 75(6), 1103-1117. 

Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 

32(1), 4-18. 

Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent 

learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 22(2), 350. 

McGuire, J. T., Nassar, M. R., Gold, J. I., & Kable, J. W. (2014). Functionally dissociable 

influences on learning rate in a dynamic environment. Neuron, 84(4), 870-881. 

Mesulam, M. (1981). A cortical network for directed attention and unilateral neglect. Annals of 

Neurology, 10(4), 309-325. 

Miller, M. B., Valsangkar-Smyth, M., Newman, S., Dumont, H., & Wolford, G. (2005). Brain 



 

 

119 

activations associated with probability matching. Neuropsychologia, 43(11), 1598-1608.  

Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: time 

course of activation and resistance to interruption. Journal of Experimental Psychology: 

Human Perception and Performance, 15(2), 315. 

Nassar, M. R., Wilson, R. C., Heasly, B., & Gold, J. I. (2010). An approximately Bayesian delta-

rule model explains the dynamics of belief updating in a changing environment. The Journal 

of Neuroscience, 30(37), 12366-12378.  

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from 

performance measures. Cognitive Psychology, 19(1), 1-32. 

Paulus, M. P., Feinstein, J. S., Tapert, S. F., & Liu, T. T. (2004). Trend detection via temporal 

difference model predicts inferior prefrontal cortex activation during acquisition of 

advantageous action selection. Neuroimage, 21(2), 733-743. 

Paulus, M. P., Feinstein, J. S., Leland, D., & Simmons, A. N. (2005). Superior temporal gyrus 

and insula provide response and outcome-dependent information during assessment and 

action selection in a decision-making situation. Neuroimage, 25(2), 607-615.  

Paulus, M. P., Hozack, N., Zauscher, B., McDowell, J. E., Frank, L., Brown, G. G., & Braff, D. 

L. (2001). Prefrontal, parietal, and temporal cortex networks underlie decision-making in the 

presence of uncertainty. Neuroimage, 13(1), 91-100. 

Pearson, J. M., Heilbronner, S. R., Barack, D. L., Hayden, B. Y., & Platt, M. L. (2011). Posterior 

cingulate cortex: adapting behavior to a changing world. Trends in Cognitive 

Sciences, 15(4), 143-151. 

Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of Neuroscience 

Methods, 162(1), 8-13. 



 

 

120 

Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of 

signals. Journal of Experimental Psychology: General, 109(2), 160. 

Rangel, A., & Hare, T. (2010). Neural computations associated with goal-directed 

choice. Current Opinion in Neurobiology, 20(2), 262-270. 

Rausei, V., Makovski, T., & Jiang, Y. V. (2007). Attention dependency in implicit learning of 

repeated search context. The Quarterly Journal of Experimental Psychology, 60(10), 1321-

1328. 

Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). Oops!': 

performance correlates of everyday attentional failures in traumatic brain injured and normal 

subjects. Neuropsychologia, 35(6), 747-758. 

Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working 

memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2), 

324-330.  

Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone 

sequences by human infants and adults. Cognition, 70(1), 27-52. 

Saffran, J. R., & Wilson, D. P. (2003). From Syllables to Syntax: Multilevel Statistical Learning 

by 12‐Month‐Old Infants. Infancy, 4(2), 273-284. 

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old 

infants. Science, 274, 5294. 

Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone 

sequences by human infants and adults. Cognition, 70(1), 27-52. 

Saffran, J. R., Newport, E. L., Aslin, R. N., Tunick, R. A., & Barrueco, S. (1997). Incidental 

language learning: Listening (and learning) out of the corner of your ear. Psychological 



 

 

121 

Science, 8(2), 101-105. 

Shaqiri, A., & Anderson, B. (2012). Spatial probability cuing and right hemisphere 

damage. Brain and Cognition, 80(3), 352-360. 

Stadler, M. A. (1995). Role of attention in implicit learning. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 21(3), 674. 

Stöttinger, E., Filipowicz, A., Danckert, J., & Anderson, B. (2014). The effects of prior learned 

strategies on updating an opponent's strategy in the rock, paper, scissors game. Cognitive 

Science, 38(7), 1482-1492. 

Stöttinger, E., Filipowicz, A., Marandi, E., Quehl, N., Danckert, J., & Anderson, B. (2014). 

Statistical and perceptual updating: correlated impairments in right brain 

injury. Experimental Brain Research, 232(6), 1971-1987. 

Stöttinger, E., Filipowicz, A., Valadao, D., Culham, J. C., Goodale, M. A., Anderson, B., & 

Danckert, J. (2015). A cortical network that marks the moment when conscious 

representations are updated. Neuropsychologia, 79(A), 113-122. 

Straube, B., Wolk, D., & Chatterjee, A. (2011). The role of the right parietal lobe in the 

perception of causality: a tDCS study. Experimental Brain Research, 215(3-4), 315-325.  

Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-

Dimensional proportional system: an approach to cerebral imaging. Thieme, New York. 

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to Grow a Mind: 

Statistics, Structure, and Abstraction. Science, 331(6022), 1279–1285. 

Toro, J. M., Sinnett, S., & Soto-Faraco, S. (2005). Speech segmentation by statistical learning 

depends on attention. Cognition, 97(2), 25-34. 

Travis, S. L., Mattingley, J. B., & Dux, P. E. (2013). On the Role of Working Memory in Spatial 



 

 

122 

Contextual Cueing. Journal of experimental psychology. Learning, Memory, and Cognition, 

39(1), 208-219. 

Turk-Browne, N. B., Isola, P. J., Scholl, B. J., & Treat, T. A. (2008). Multidimensional visual 

statistical learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

34(2), 399–407. 

Turk-Browne, N. B., Jungé, J. A., & Scholl, B. J. (2005). The Automaticity of Visual Statistical 

Learning. Journal of Experimental Psychology: General, 134(4), 552–564. 

Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual 

anticipation triggered by statistical learning. The Journal of Neuroscience, 30(33), 11177-

11187. 

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. 

Science. 185(4157), 1124–1131.  

Uddin, L. (2014). Salience processing and insular cortical function and dysfunction. Nature 

Reviews Neuroscience, 16(1), 1-7. 

Unsworth, N., & Engle, R. W. (2005). Individual differences in working memory capacity and 

learning: Evidence from the serial reaction time task. Memory & Cognition, 33(2), 213-220. 

Valadao, D. F., Anderson, B., & Danckert, J. (2015). Examining the influence of working 

memory on updating mental models. The Quarterly Journal of Experimental 

Psychology, 68(7), 1442-1456. 

Vickery, T., Chun, M., & Lee, D. (2011). Ubiquity and Specificity of Reinforcement Signals 

throughout the Human Brain. Neuron, 72(1), 166-177. 

Walton, M., Croxson, P., Behrens, T., Kennerley, S., Rushworth, M.. (2007). Adaptive decision 

making and value in the anterior cingulate cortex. Neuroimage, 36, 142-154. 



 

 

123 

Wilder, M., Jones, M., & Mozer, M. (2009). Sequential effects reflect parallel learning of 

multiple environmental regularities. Advances in Neural Information Processing Systems, 

22, 2053–2061. 

Wilson, K., Finkbeiner, K., de Joux, N., Russell, P., & Helton, W. (2016). Go-stimuli proportion 

influences response strategy in a sustained attention to response task. Experimental brain 

research, 234(10), 2989-2998. 

Wolbers, T., Hegarty, M., Büchel, C., & Loomis, J. M. (2008). Spatial updating: how the brain 

keeps track of changing object locations during observer motion. Nature 

Neuroscience, 11(10), 1223-1230. 

Wolford, G., Miller, M.B., & Gazzaniga, M. (2000). The left hemisphere's role in hypothesis 

formation. The Journal of Neuroscience, 20(6), 1-4. 

Wojciulik, E., & Kanwisher, N. (1999). The generality of parietal involvement in visual 

attention. Neuron, 23(4), 747-764. 

Wolpert, D.M. (2007). Probabilistic models in human sensorimotor control. Human Movement 

Science, 26(4), 511–524. 

Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: voluntary versus 

automatic allocation. Journal of Experimental Psychology: Human Perception and 

Performance, 16(1), 121-134. 

Yu, A., & Cohen, J. (2009). Sequential effects: superstition or rational behavior? Advances in 

Neural Information Processing Systems, 21, 1873-1880. 

Yu, A., & Dayan, P. (2005). Uncertainty, Neuromodulation, and Attention. Neuron, 46(4), 681–

692. 

Yu, A. (2007). Adaptive Behaviour: Humans Act as Bayesian Learners. Current Biology, 17(22), 



 

 

124 

977-980. 

Zhao, J., Al-Aidroos, N., & Turk-Browne, N. B. (2013). Attention is spontaneously biased 

toward regularities. Psychological Science, 24(5), 667-677. 

Zhu, L., Mathewson, K., & Hsu, M. (2012). Dissociable neural representations of reinforcement 

and belief prediction errors underlie strategic learning. Proceedings of the National Academy 

of Sciences of the United States of America, 109(5), 1419-1424. 


