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Abstract

Phylogenetic analysis, or the inference of evolutionary history is done routinely by

biologists and is one of the most important problems in systematic biology. In this thesis,

we study two computational problems in the area. First, we study the evolutionary

tree reconstruction problem under the character compatibility (CC) paradigm and give a

polynomial time approximation scheme (PTAS) for a variation of the formulation called

fractional character compatibility (FCC), which has been proven to be NP-hard. We

also present a very simple algorithm called the Ordinal Split Method (OSM) to generate

bipartitions given sequence data, which can be served as a front-end to the PTAS. The

performance of the OSM and the validity of the FCC formulation are studied through

simulation experiments.

The second part of this thesis presents an eÆcient algorithm to compare evolutionary

trees using the quartet metric. Di�erent evolutionary hypothesis arises when di�erent

data sets are used or when di�erent tree inference methods are applied to the same data

set. Tree comparisons are routinely done by biologists to evaluate the quality of their

tree inference experiments. The quartet metric has many desirable properties but its

use has been hindered by its relatively heavy computational requirements. We address

this problem by giving the �rst O(n2) time algorithm to compute the quartet distance

between two evolutionary trees.
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Prologue

Once upon a time, a self-replicating molecule emerged on earth. Due to the self-

replicating capability of this molecule, it had the ability to make many copies of itself,

and those copies in turn could replicate and hence produce more copies. This process

quickly increased the abundance of this molecule on earth. But as the replication process

continued, di�erent forms of this molecule emerged due to the imperfect nature of the

replication process. This was the �rst sign of the forces of evolution at work. Billions

of years have past and it is indeed amazing to realize today that the descendents of that

molecule includes complex beings such as ourselves! If, billions of years ago, there existed

a recording device which somehow recorded the entire process of evolution from the emer-

gence of that �rst self-replicating molecule to today, it would be for sure a crowd-drawing

show. Of course such a device did not exist. What we need today is a telescope that

allows us to look back through time and discover how human beings and other species on

earth are related by evolution. Fortunately, evolution has been kind to us and has left

many tell-tale signs. And indeed, recent advances in �elds such as computer science and

mathematics has made the construction of such a time telescope more than just fantasy.

xi



Chapter 1

Introduction

The emerging �eld of bioinformatics has received an enormous amount of attention in

recent years as more and more biological data are produced in laboratories around the

world. These include genomic sequence data, gene expression pro�les, protein structure

information, as well as other clinical-related information. For example, a rough draft of

the human genome is already available, which contains three billion nucleotides and many

other genome sequencing projects are also completed or underway. The amount of data

is rising at an exponential rate and has far out-paced our ability to analyze them. This

problem induces the need to combine techniques from computer science and the physical

sciences, including mathematics, and physics, with the biological sciences to explore and

mine this information.

One of the most widely studied problems in bioinformatics is the inference of phylo-

genetic trees. A phylogenetic tree (see Figure 1.1) depicts the evolutionary relationship

among a set of species and other important evolutionary information such as the oc-

currences of speciation events and the length of lineages. Besides the intrinsic scienti�c

importance of studying the evolutionary history of organisms on earth, it has a wealth

of other applications. For instance, it helps biologists to better align protein and DNA

1



CHAPTER 1. INTRODUCTION 2

guinea pig mouse rat gibbon orangutan gorilla chimpanzee human

Figure 1.1: A phylogeny of eight species.

sequences [35]. It also helps in functional studies|knowing the function of a particular

gene in an organism says a lot about a similar gene in a closely related organism. It is, of

course, of great scienti�c interest to study the process of evolution itself. A phylogenetic

tree tells us a great deal about the mechanisms of evolution as well as various evolutionary

events and their causes. Please see [2] for sample applications of phylogenetic trees.

A phylogenetic tree T is characterized by its topology, the weight (or length) of its

edges, the root vertex, and the label of the leaves. More formally, an unrooted phylogenetic

tree is a acyclic connected graph (V;E) where degree-1 vertices are labeled bijectively by a

set S. T is also said to be labeled by S. A fully resolved phylogenetic tree only has degree-

3 vertices and leaves, otherwise the tree is unresolved. Furthermore, there is a function

f : E ! R that weights the edges. A rooted phylogenetic tree is an unrooted tree with

a single degree-2 vertex that is designated as the root. In this thesis, our focus will be

on the inference of the topology of a phylogenetic tree. The problem of determining the

weight and root of a phylogenetic tree is well-studied and is relatively easy compare to

the inference of the topology.
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To infer a phylogenetic tree, a blue-print of each organism is needed. Several types

of such blue-prints can be used. In the advent of molecular sequence data, a majority

of biologists use DNA and protein sequences as the signature of individual organisms as

opposed to the older approach, where a set of morphological features is used. The use

of molecular data, which was �rst proposed by Zuckerkandl and Pauling [76], has many

advantages. The obvious merit being that physical traits or phenotypic measurable quan-

tities are in fact just manifestation of the genome of an organism, or its genotype. Using

sequence information in theory covers all measurable morphological features of an organ-

ism and hence gives more information to infer the evolutionary history. Perhaps more

importantly, gene and protein sequences are the direct product of evolution and hence

gives us clues about the evolutionary processes that produced them [47]. In addition,

proteins, the functional building block of life, is the direct product of genes. The evolu-

tionary history of genes provides information on how functions are evolved [47]. Lastly, it

is possible to objectively evaluate an experiment based on the data it uses. Whereas when

morphological data are used, it is often very subjective regarding whether the right traits

have been used and whether the morphology set picked is large enough to answer the

questions asked. In experiments that involve micro-organisms such as bacteria, physical

traits are hard to measure and quantify. The use of sequence data greatly remedies this

situation. For instance, a novel branch of archaebacteria was identi�ed using sequence

information [67].

In practice, a phylogenetic tree not only can model evolution on the organismal scale,

but it is also frequently used for individual genes or particular segments in the genome.

Since the evolutionary force acts directly on gene sequences, the evolutionary history of a

set of genes is of great importance. For many studies, the input to the phylogenetic infer-

ence method is a set of protein or gene sequences from each organism. The resulting tree

is called a gene tree, whereas the tree in Figure 1.1 is called a species tree. Due to various
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biological reasons, a gene tree in general does not accurately re
ect the evolutionary his-

tory at the species level (one obvious reason being that the trees obtained from di�erent

genes are not necessarily consistent.) [10]. As more genomes are sequenced, methods

that utilize the entire genome are in active research (for example, see [41, 63, 49, 36]).

Clearly, the inference of phylogenetic trees is not exclusively biological, but also in-

volves mathematical modeling and algorithm design. For example, given two genes, how

do we determine their similarity? One way is to use a model of evolution, where mathe-

matical modeling is required. Given a model of evolution, eÆcient algorithms are needed

to calculate the pairwise evolutionary distances. Various algorithms that are based on

di�erent assumptions were developed to infer the phylogeny given pairwise distance infor-

mation. For instance, a method called Neighbour-Joining [60] is use widely by biologists.

Alternatively, we can totally abandon the use of pairwise distance information, and in-

fer the tree directly from sequence data, which often require fast algorithms to search

through the tree topology space for the optimal tree(s) with respect to certain criterion.

The success of a phylogenetic method or paradigm is greatly determined by its compu-

tational merit and the underlying model of evolution. In fact, we currently have relatively

simple models of evolution, but many formulations based on them almost all lead to in-

tractable computational problems. Methods that utilizes unrealistic assumptions often

give unsatisfactory results. Therefore, it is vital for computer scientists to design eÆcient,

robust, and accurate phylogenetic inference methods. This thesis takes one step in that

direction.

Due to the fact that the main audience of this thesis will be computer scientists and

mathematicians, we will begin with a brief introduction to the biological background and

concepts needed to understand this thesis. There are two main components in this thesis.

Chapter two �rst brie
y surveys the computational aspects of phylogenetic inference

and then presents an approximation algorithm that solves a variation of the well-known
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character compatibility (CC) formulation of the phylogenetic inference problem, which is

NP{hard. The algorithm is a so-called polynomial time approximation scheme (PTAS),

which can �nd a solution with arbitrary accuracy in polynomial time. Simulation studies

were performed to evaluate the biological relevance of this particular formulation of the

problem. In addition, an algorithm called Ordinal Split Method is also presented, which

is very fast and serves as a front-end to the PTAS. Simulation studies were also performed

to evaluate the method.

The second part of this thesis presents the �rst O(n2) algorithm to compare evolu-

tionary trees based on the quartet metric. Systematic comparison of evolutionary trees is

very important since inconsistencies (i.e. di�erent trees) often arise when di�erent data

sets are used, also when di�erent inference algorithms are used. A sensitive and accurate

method to compare trees can help the biologists to evaluate the quality of the result as

well as the evolutionary divergence of di�erent genes. The quartet distance metric has

some very nice properties, but has been hindered by its relatively heavy computational

requirements. Our algorithm is an order of magnitude faster than the best known method

and hence facilitates further the use of the quartet metric for large phylogenetic trees.

1.1 Some Biology

1.1.1 DNA/RNA and Protein Sequences

Deoxyribonucleic acid (or DNA for short) molecule is the genetic material of all living or-

ganisms except for some viruses. 1 The molecule consists of a phosphate back-bone chain

with molecules called nucleotides or bases attached. There are four types of nucleotides,

they are adenine (A), cytosine (C), guanine (G), and thymine (T). Furthermore, due to

1What is presented here is a simpli�ed version of \real" molecular biology, please consult [51] for a

detailed treatment.
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the di�erence in their molecular base structure, A and G are classi�ed as purines, while

C and T are pyrimidines. Figure 1.2 depicts the basic molecular structure of DNA. It

is a double helical structure with nucleotides attached at the inside of the phosphate

chain. Note that there are two phosphate chains running opposite of each other (i.e. it

is a double-stranded molecule) with nucleotides attached. Hydrogen bonds are formed

between adenine and thymine, as well as cytosine and guanine. The molecular structure

of the two ends of a phosphate back-bone chain is di�erent, one is called the 5' end and

the other is the 3' end. The sequence of a DNA molecule is typically obtained by reading

the nucleotide content from the 5' end to the 3' end. Note that a DNA sequence is just

a string with the alphabet fA;C;G;Tg. Every single cell of an organism consists of a

set of DNA molecules and their sequence content is the genome of an organism. The

genome encodes via the DNA alphabet all essential information for the functioning of the

organism.

Figure 1.2: The basic structure of DNA. Courtesy of Bruce Walsh [70].

While DNA stores genetic information, the building block of life is in fact protein

molecules. A protein consists of a polypeptide chain where di�erent amino acid molecules

are attached. There are twenty di�erent common kinds of amino acids and they are listed
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in Table 1.1. Again, a protein sequence can be represented by a string as in DNA except

the alphabet size is twenty instead of four.

The genome is an �xed entity of an organism, whereas proteins are dynamic. That is,

di�erent proteins are produced under di�erent circumstances. For instance, some proteins

are essential for the functioning of muscle cells, but not blood cells. Hence, proteins are

produced on-the-
y and their production is generally believed to be a two stage process.

To understand this process, it is important to know that proteins are in fact coded by

DNA sequences. Certain segments of an organism's genome, which are called genes or

protein coding regions, is responsible for the coding of proteins. The coding scheme is

very simple: every three nucleotides, or a codon codes for a single amino acid 2. Hence,

one can read o� the target protein sequence given a protein coding DNA sequence. Table

1.1 outlines this code. For example, the protein sequence

Ile Cys Lys Ala Val Leu Ile

can be coded by RNA sequence

AUA UGU AAG GCA GUC UUA AUA.

The �rst stage of protein production is called transcription, where double-stranded

DNA are opened up and the coding region is read by a biochemical molecule and the cor-

responding single-stranded molecule called ribonucleic acid (RNA) are produced, which

has the same sequence content as the original DNA sequence but with T replaced by

U. In the second stage, called translation, the RNA sequence is then transported to the

ribosome of the cell where proteins are produced based on the coding rules in Table 1.1.

2The �rst codon is typically a start codon, to signal the start of a protein coding region, while the last

codon is a stop codon, to signal the end of the coding region
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Amino acid Abbreviation Possible Codons

Alanine Ala or A GCU, GCC, GCA, GCG

Leucine Leu or L UUA, UUG, CUU, CUC, CUA, CUG

Isoleucine Ile or I AUU, AUC, AUA

Valine Val or V GUU, GUC, GUA, GUG

Proline Pro or P CCU, CCC, CCA, CCG

Phenylalanine Phe or F UUU, UUC

Tryptophan Trp or W UGG

Methionine Met or M AUG

Glycine Gly or G GGU, GGC, GGA, GGG

Serine Ser or S UCU, UCC, UCA, UCG, AGU, AGC

Threonine Thr or T ACU, ACC, ACA, ACG

Tyrosine Tyr or Y UAU, UAC

Cysteine Cys or C UGU, UGC

Asparagine Asn or N AAU, AAC

Glutamine Gln or Q CAA, CAG

Aspartic acid Asp or D GAU, GAC

Glutamic acid Glu or E GAA, GAG

Lysine Lys or K AAA, AAG

Arginine Arg or R CGU, CGC, CGA, CGG, AGA, AGG

Histidine His or H CAU, CAC

Table 1.1: The 20 possible amino acids and their possible coding condon. Courtesy of

Haoyong Zhang [75].

1.1.2 Sequence Evolution and Phylogenetic Trees

While the e�ects of evolution are clearly evident in the macroscopic level such as mor-

phological traits as discovered by Darwin, it can also be detected in the molecular level.

For example, closely related species typically have slightly di�erent forms of the same

gene, where the slight variations are mainly due to the force of evolution. An important

function of genetic information carriers such as DNA is to pass heredity information from

one generation to the next. Even though the mechanism of copying genetic information is

highly precise, inevitably there must be some imperfections (or mutation) in the process.

Consequently, these mutations plus other genetic e�ects (such as cross-over events) give
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rise to new types of blue-print of life, or new genotypes. It is very unlikely that these

mutations would give the mutated organism an evolutionary advantage. However, if they

do, these mutations are likely to be kept and after a long period of time, a speciation

event can happened when the group of mutated individuals can no longer exchange ge-

netic material with groups not sharing the mutations. A speciation event gives rise to

two distinct species and as time progresses, many such speciation events can happened

and hence diverse kinds of organisms proliferate on earth today.

The evolutionary history of a set of molecular sequences can be modeled by a phy-

logenetic tree as illustrated in Figure 1.1. A binary tree suÆces in most situations since

biologists believe that in nature, simultaneous speciation events seldom happen within a

single group of species [54]. Only the leaves of the phylogenetic tree are labeled, which

are present-day sequences. All internal nodes represent intermediate sequences that have

been present in the evolutionary history. If the tree is rooted, then the root sequence

is the common ancestor of all leave sequences. The tree can also be unrooted when the

direction of evolution is not of importance. But of course, such a tree only denotes the

relationship among the leave sequences and the exact evolutionary history are missing.

The edges of the tree can be weighted and can be used to denote evolutionary time,

mutation rate, or the total amount of mutation along that line of evolutionary change.

Furthermore, if a phylogenetic tree is believed to denote the true evolutionary history of

the sequences under study, it is called the phylogeny of the sequences. Two genes are said

to be homologous if their ancestral sequence are the same in the phylogeny. That is, the

two sequences were evolved from the a single ancestor sequence along the phylogeny.

A phylogenetic tree is not only a very nice model for the evolutionary history of

molecular sequences, it can also be used to model the evolutionary history of a variety

of objects. For example, the evolutionary history of human languages is of great interest

and a phylogenetic tree serves well as a modeling tool. Of course, the evolutionary history
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of a set of species themselves (i.e. not one of their genes or proteins) can be modeled by

a phylogenetic tree as well. Traditionally, biologists used morphological data to perform

phylogenetic analysis, individual species are the main objects under study and hence the

results are species trees. With the availability of molecular sequence data, most studies

are performed using single genes or proteins, which gives gene trees. However, many

biologists make assertions about species relationships from gene trees. Some researchers

have proposed the use of whole genomes to infer more accurate species trees. But some

argued that due to the di�erent rate of evolution among individual sequences within the

genome, it is not very meaningful to use the whole genome. While others disagree and

are searching for better whole genome analysis techniques.

1.1.3 Mutations

As discussed above, the ancestral sequences evolved along the edges of the phylogeny and

mutations occurred during the process. Mutations can be classi�ed into two main cate-

gories: gene mutations and genomic mutations. Gene mutations occurred within a small

locus of the genome and have only local e�ects such as alternating part of the structure

of the protein that the gene encodes. While genomic mutations typically a�ect a large

portion of the genome. It can change the order of the genes as well as inserting new se-

quences into the genome. While genomic mutations are very important for whole genome

analysis, variations among homologous genes (and hence the proteins they encoded) are

mainly due to gene mutations.

There are four types of gene mutations that are of interests in phylogenetic stud-

ies: substitutions, deletions, insertions, and inversions. A substitution occurs when a

nucleotide is replaced by another. For example, the DNA sequence ATATGTACA becomes

ATACGTGCA after two substitutions. An insertion event occurs when a new nucleotide is

being added to a sequence. While a deletion event refers to the removal of a nucleotide
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from the sequence. For example, ATACA changing to ATATGTACA is due to an insertion and

ATATGTACA changing to ATACA is due to a deletion. Lastly, an inversion event reverses the

ordering of a sub-sequence. For example, the sequence ATAGGAACCA becomes ATAAAGGCCA

after an inversion event on the sub-sequence GGAA.

ATATGTACA

GTATGACAATAATGTCA

ATTAGCCA ATGTCA GGACA GTCCTCATGACA

Figure 1.3: A phylogeny of four sequences. Courtesy of Haoyong Zhang [75].

For example, Figure 1.3 is a phylogeny of four sequences, and Figure 1.4 shows a

possible history of mutations.

For more details on molecular sequence evolution, please consult Molecular Evolution

[54].

1.2 Phylogenetic Analysis

The present-day molecular sequences we observed has undergone the evolutionary process

for millions of years. The main goal of phylogenetic analysis is to infer the history of their

evolution through the reconstruction of their phylogeny. More generally, phylogenetic

analysis infers the evolutionary history of a set of entities. The entities can be a set of

genes, the proteins they encode, a set of species, or even just some speci�c region on the
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ATATGTACA

GTATG-ACAATA CAATGT

AT A-G CAT C AT---GTCA G---GACA GT ATGACACCTC

inversion

substitution

substitution

substitution deletion
deletion

deletion

insertioninsertiondeletion

Figure 1.4: A possible mutation history of the phylogeny in Figure 1.3. Courtesy of

Haoyong Zhang [75].

genome. More formally, let S be the set of entities, where jSj = n, the problem is to infer

a phylogenetic tree T labeled by S. Obviously more information about each of entities

have to be provided in order to infer a tree. Usually a n�m matrixM is provided where

each row denotes one entity from S. Each row vector encodes information about each

entity. Two types of such information are typical. Recently, molecular sequence data are

used in most studies due to their abundance and its advantage over morphological data

[69]. Each column in M then denotes a particular base position of the input sequences

and m would be the length of the sequences. In cases where the input sequences are of

di�erent length, they need to be aligned where gaps are inserted to make their lengths

equal. For details on sequence alignment and related algorithmic issues, please consult

[35]. The input data could also be morphological data. In this case, each column of

M denotes a morphological feature. For example, a morphological feature could be the

shape of the wings of a species or the number of �ngers they have. The value in M(i; j)

denotes the value of morphology j of entity i.

To accurately infer the phylogeny, there must be some guideline to evaluate what
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the true tree should be like. Usually an optimization criterion is formulated so that a

solution can be evaluated. For example, one of the most popular method is the Maximum

Likelihood formulation [28] where the resulting phylogeny is the most likely among all

possible phylogenetic trees for S under a particular model of evolution. This method

is model dependent, models such as Jukes Cantor [43] and Kimura-2-parameter [50] are

often used. Chapter 2 contains further details and more example on di�erent formulations

of the phylogeny reconstruction problem.

The reconstruction of a phylogeny usually involves the inference of three components:

the topology, the edge lengths, and the root. Finding the root and edge lengths are well-

solved. For instance, a common strategy to determine the root is to mixed S with one or

a set of so-called outgroup entities and then perform the analysis. The outgroup entities

are chosen such that it is known a priori that they are evolutionarily far apart from the

entities in S. Hence, the resulting tree can be rooted at the point where the outgroup

subtree is attached. The rest of this thesis will focus on the inference of the topology of

the phylogeny.

In the following sections, detailed de�nitions that are of relevance for the rest of the

thesis will be given.

1.2.1 Bipartitions, Splits and Edges

Consider the unrooted Figure 1.5. If we remove edge e4 from the tree, we end up with

two trees where one is labeled by ff; g; hg and the other is labeled by S�ff; g; hg. More

formally, let S be the set of leaves of a tree T . A bipartition is a pair of non-empty

sets (X; Y ) such that X [ Y = S and X \ Y = ;. A bipartition (X; Y ) can uniquely

represent an edge e in T if the removal of e from T (i.e. T � e) results in two trees where

one is labeled by X and the other Y . (X; Y ) is often referred to as an edge, a split, or a

bipartition of T and we write e = (X; Y ).
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e

d

c

b

a

h

g

f

e1

e2

e3

e4

e5

e6

Figure 1.5: An unrooted, unweighted tree topology.

For instance, in Figure 1.5, we have,

� e1 = (fa; f; g; hg; fb; c; d; eg);

� e2 = (fc; d; eg; fa; b; f; g; hg);

� e6 = (fhg; fa; b; c; d; e; f; gg).

Observe that e6 is attached to a leave and we called such an edge trivial. More

formally, an edge (X; Y ) is called a trivial edge if jX j = 1 or jY j = 1. All internal edges,

that is, edges with no leaves attached are always non-trivial, while edges with leaves

attached are always trivial.

An unrooted tree T with n leaves is uniquely characterized by its n�3 internal edges.

We denote this set of non-trivial splits of T as splits(T ). Given S, the topology of T can

be obtained if we can accurately infer splits(T ) as it was shown that T can be constructed
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from splits(T ) in linear time [8]. Furthermore, given a set of splits �, we call it tree-like

if there exist a tree T such that splits(T ) = �. The above concepts are very important

as it reduces the inference of the topology of a tree to inferring its set of splits. This

is the underlying basis for formulations such as character compatibility and the perfect

phylogeny problem.

The term character is often used interchangeably with edges or bipartitions in some

literatures. The origin of this practice dates back to when phylogenies were mainly

constructed using morphological data. Consider if the characters are binary (i.e. there is

only two possible value for each character) and under certain conditions (see Chapter 2),

each edge (X; Y ) would denote two sets of species, one having a particular character and

the other not.

The concept of compatibility often arises in character-based phylogenetic analysis.

There are two important concepts of compatibility: compatibility among splits and com-

patibility among a tree and a set of splits. A set of splits B is compatible if there exists a

tree T such that for every � 2 B, � is an edge of T . Finally, a set of splits B is compatible

with a tree T if B[splits(T ) is compatible. Hence, given a phylogenetic tree T , splits(T )

is always compatible.

1.2.2 Quartets

Given a tree T , any subset of S induces a tree topology. For example, for the tree in

Figure 1.5, the set fa; b; f; g; hg induces the tree topology in Figure 1.6. Any size four

subset of S is called a quartet and the tree topology it induces is a quartet topology.

Figure 1.7 illustrates the four possible quartet topologies. If labels a; b is separated from

c; d, we write it as abjcd. Given a tree with n leaves, there are a total of
�
n

4

�
quartet

topologies and we denote the complete set of quartet topologies of T as Q(T ) or just Q

when the context is clear. It is well-known that Q is unique to T and given Q, T can
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b

a

h

g

f

Figure 1.6: The tree induced by fa; b; f; g; hg from Figure 1.5.

be determined in polynomial time [8]. This entails another paradigm for inferring the

topology of T : �rst infer the topologies of the quartets and then combine the quartet

topologies to form the �nal tree topology. Inferring the topology of quartets is much less

computational intensive and hence very accurate methods can be employed. The research

focus of the quartet paradigm is mainly on the combining stage since rarely the quartet

topologies inferred are compatible with each other. Please consult [47] for more details

on the computational aspects of the quartet method.

a a

b b

c c

d d

a b

c d

a b

cd

ab|cd ac|bd ad|bc (abcd)

Figure 1.7: The four possible quartet topologies.

Given a split e = (A;B), a quartet topology can be formed by picking two labels from

A and two labels from B. A total of
�
A

2

�
�
�
B

2

�
quartet topologies can be formed this way

and we denote the set as Qe = fabjcd j a; b 2 A; c; d 2 Bg. Furthermore, Qe is said to be
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induced by e.

The quartet concept is not only central to the quartet paradigm of reconstructing

trees, but it is also a very useful tree comparison metric. We will investigate the problem

of comparing trees using quartets in Chapter 3.



Chapter 2

Inferring Phylogenetic Trees|An

Approximation Algorithm for

Character Compatibility

2.1 Introduction

We have introduced the goal and some basic concepts of phylogenetic analysis in the pre-

vious chapter. In this chapter we will explore deeper computational issues in phylogenetic

analysis. We will �rst brie
y survey several popular paradigms for the reconstruction of

phylogenetic trees. This is follow by our new result: an approximation algorithm that

solves a variation of the Character Compatibility (CC) formulation. We called this vari-

ation Fractional Character Compatibility (FCC) and have performed simulation studies

to evaluate its biological relevance by comparing it to the CC formulation. The results of

the simulation study is reported. The approximation algorithm presented is a so-called

polynomial time approximation scheme (PTAS) where the optimal solution can be ap-

18
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Characters

Taxon 1 2 3 4

A 0 0 1 0

B 0 0 1 1

C 1 1 0 0

D 0 0 1 1

E 0 1 0 0

Table 2.1: A character state matrix that emits a perfect phylogeny.

proximated with arbitrary accuracy in polynomial time. To e�ectively utilize this PTAS,

we need an algorithm to generate a set of bipartitions based on the input sequences. We

have designed a method called the Ordinal Split Method (OSM) that serves as a front-end

to the PTAS. We also performed simulation studies to evaluate the OSM.

2.2 A Survey of Phylogenetic Reconstruction Methods

Before the advent of computers, phylogenetic analyses were mainly done by hand through

intuition and experience [29]. In addition, the old school of phylogenetic analysis favours

the use morphological data since molecular sequence data were scarce and unreliable

[69]. Biologists typically pick certain important morphological features of the species

under study and derive their phylogeny by analyzing the di�erences in these speci�c

traits. Recall that in a character state matrix M , each column can denote a particular

morphology under study and each row is a species. Hence, the jth trait of species i is

M(i; j). The morphological values can be encoded in any reasonable way. For example,

it can be binary to denote the presence or absence of the trait.
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C E B D A

2

1

3

4

Figure 2.1: A perfect phylogeny from the character state matrix in Table 2.1. Edge labels

indicate which character is under transition.

2.2.1 The Perfect Phylogeny Problem

The phylogeny reconstruction problem was not formulated in a formal fashion until the

50's, when Hennig [37] proposed a systematic way of �nding a phylogeny for a set of species

given a character state matrix. His method was to process one character at a time and

group those species that have the same character state to form a so-called monophyletic

group. This process will be repeated for each character and a tree will be constructed

based on these groups. Consider the character state matrix in Table 2.1. Character 1

suggests that C should be in a group of its own; character 2 suggests (fC;Eg; fA;B;Dg)

and so on. The tree in Figure 2.1 realizes this matrix. Note that for each character, the

transition from \0" to \1" occur in only one edge of the tree and there is no edge that

corresponds to a transition from "1" to "0".

De�nition 1 Given a label set S and a character state matrix M . A k-state character

ci induces the partition Pi = (s1; s2; :::; sk) of S such that each si where 1 � i � k is a set

of species sharing the same state in ci. Furthermore, S =
[

1�j�k

sj and si \ sj = ; for all

i and j such that i 6= j.
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Hennig's method �rst forms all Pi for each character i and then searches for a tree

that realizes all Pi. Intuitively, a tree realizes a partition P = (s1; s2; : : : ; sk) if each si

belongs to a di�erent subtree. Clearly, there are times this approach would not produce

a solution. Consider the instance S = fa; b; c; d; eg. If a binary character c1 induces the

split (fa; b; cg; fd; eg), while another character c2 induces (fa; dg; fb; c; eg), a tree that

realizes both partitions are not possible. Or by the concept introduced in 1.2.1, these two

splits are not compatible.

Hennig's method was based on the following assumptions:

1. No convergence (or parallel evolution) events occurred in nature. For example, the

eyes of humans and octopus are extremely similar in structure and function but

they are not genetically close. Hence their eyes were evolved independently of each

other. Most biologists believe that such events are rare for morphological features.

However, convergent DNA sites are very common [54].

2. Evolution is irreversible. That is, a character can not change back to one of its

ancestral states. Again, this is very common for sequences.

Given the above assumptions, the resulting phylogeny will have the following proper-

ties: both internal nodes and leaves that share the same state s with respect to a character

c must form a subtree. This implies that a transition from some state x to another state

s in c can only occur in one edge of the phylogeny. No other edge should correspond

to a transition to state s in c. A phylogeny having these properties is called a perfect

phylogeny. This leads to the Perfect Phylogeny problem:

Perfect Phylogeny (PP)

Instance: A label set S and a n � m character state matrix M , n = jSj where the

characters have r states
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Problem: Find a perfect phylogeny labeled by S

The PP problem is in general NP{hard [64]. However, polynomial time algorithms

exist for several restricted versions of the problem. For instance, if an ordering exists for

the character states, the problem can be solved eÆciently in polynomial time [56]. In the

special case where the characters are binary, it can be solved in O(nm) time [34] for both

ordered and unordered characters. The algorithm is based on the following observations

(assume that \0" is the ancestral state):

Let si1 be the set of species having state \1" with respect to character ci. Similarly,

let sj1 be the set of species having state "1" with respect to character cj . A binary

character state matrix emits a perfect phylogeny if and only if each pairs of induced sets

Pi = (si0; si1),Pj = (sj0; sj1) for i 6= j and 1 � i; j � m satisfy one of the following:

� si1 � sj1

� sj1 � si1

� si1 \ sj1 = ;;

O(nm) is a lower bound for the problem since every entry in the matrix needs to be

visited at least once. Hence the above algorithm is optimal.

The PP formulation does not have much practical value since real data rarely emit

perfect phylogenies. Although there are research interests in eÆcient algorithms for the

PP problem, they are mainly of theoretical importance. However, the study of PP leads

to other more practical formulations of the phylogeny reconstruction problem, which we

will discuss in more detail.
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2.2.2 Maximum Parsimony

One possible relaxation of PP is to �nd a tree that minimizes the number of parallel

and reverse evolution events. This leads to the maximum parsimony (MP) formulation,

which was �rst proposed by Edwards and Cavalli-Sforza [17].

As mentioned in the previous section, some biologists believe that parallel and reverse

evolution rarely occur in nature. Thus, every such event in the resulting phylogeny

corresponds to a hypothesis made in account of the event. The MP approach tries to

minimize the number of such hypothesis. More philosophically, it follows the principle

of Occam's Razor [53]: the simpler the explanation, the better. Felsenstein [27] among

others [24] has also tried to use statistical arguments to investigate the plausibility of the

MP formulation.

There are several variations of the MP formulation. Each of them has di�erent biolog-

ical assumptions that a�ects the de�nition of the criterion used to evaluate the optimality

of a tree. One of the most well-studied formulation tries to minimize the total number

of state changes in the tree. State changes are measured by a metric. For example,

Hamming distance is an instance of such a metric. The number of state changes between

the sequences ACGT and ACTT is 1 as measured by the Hamming distance since there is

only one nucleotide di�erence between the two sequences. In general, such a metric can

be de�ned as a function d that maps two state vectors (e.g. two rows in a character state

matrix) to a positive real number.

Given a tree T = (V;E), if we compute the value of d for each edge in T , we obtain

the parsimony score Sp(T ) =
X
e2E

d(e).

In general, the optimal tree (or the most parsimonious) Topt is the one with the

minimum Sp. This corresponds to a tree that contains the least number of parallel and

reverse evolution events. If this is not true, we can �nd another tree T such that it has
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less parallel and reverse evolution events. But each parallel or reverse evolution event

adds more state changes to the tree (assuming the distance metric is de�ned properly),

hence T is more parsimonious than Topt. This is a contradiction as Topt has the smallest

Sp among all possible phylogenies.

Computational Issues

The Maximum Parsimony formulation can be formalized as an optimization problem:

Maximum Parsimony (MP)

Instance: A label set S with a n �m character state matrix, a parsimony metric Sp

Problem: Find a tree T labeled by S with the minimum Sp(T )

MP is known to be NP{hard. There is quite a number of similarities between MP

and the well-studied Steiner tree problem [72], which is also NP{hard. The undirected

Steiner tree problem is the following:

Steiner Tree Problem (ST)

Instance: A weighted undirected graph G = (V;E) with jV j = n, jEj = m, edge cost

function c : E !R+, Z � V where jZj = p, and a positive integer B

Question:Does a tree Tz = (Vz; Ez), where Vz = Z, Ez � E and
X
e2Ez

c(e) � B exist?

The NP{Completeness proof for MP is also related to the Steiner tree problem, which

can be found in [33]. The problem formulation in that paper is slightly di�erent than

what we are studying here: the most important one is that labels in S are not required

to be the leaves of the resulting phylogeny.

A number of approximation algorithms exist for ST. However, none can be easily
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adopted for the MP problem. Let Topt be an exact solution to an instance of MP. Let I

be the set of internal nodes of Topt, where jI j = jSj� 2 (there are n� 2 internal nodes for

a binary tree with n leaves). Let's assume that I and an instance of MP are given, An

instance of ST can be constructed as follows:

1. Construct G: V = I
S
S, form E by connect every node in V to all nodes in V

except itself.

2. Let Z=S and c = Dp

A solution to the ST instance above would return a tree Ts that minimizes the to-

tal edge cost while all labels in S are connected. This seems to satisfy the maximum

parsimony criterion. However, this is still not a solution to the corresponding MP in-

stance since all members of S are leaves of Ts. This imposes more constraint on the

solution of ST. In addition, the set of internal nodes I were assumed to be given, which

is not realistic since the internal vertex space is exponential in size and it is non-trivial to

�nd the optimal set other than search through all combinations. This is the reason why

approximation algorithms for ST can not be trivially applied to approximate MP.

It turns out that even restricted versions of MP are NP{Complete. For example,

MP with two characters each of which has states on an integer scale (also known as

the Wagner Network problem), is known to be NP{Complete [29]. The proof is based

on the observation that the Rectilinear Steiner Problem (RSP), which is known to be

NP{Complete [31], can be reduced to this problem. In addition, MP with an arbitrary

number of binary characters has also been proven to be NP{Complete [29].

The inherent intractability of the maximum parsimony formulation ceases our hope

for exact eÆcient algorithms unless P = NP . To the best of our knowledge, there is no

known approximation algorithm with performance guarantees. Biologists are resolved to



CHAPTER 2. INFERRING PHYLOGENETIC TREES|AN APPROXIMATION

ALGORITHM FOR CHARACTER COMPATIBILITY 26

use either heuristics, which do not have performance guarantees and thus can lead to erro-

neous results. An alternative way would be to use use exhaustive search techniques, which

are only practical for a small number of sequences [69]. The use of branch-and-bound

techniques imposed constraints on the optimization criterion. In practical situations, it

can handle data sets with 20 or more labels depending on the speed of the machine as

well as the eÆciency of the implementation [69].

2.2.3 Character Compatibility

The character compatibility formulation is another approach to cope with the restrictions

of the perfect phylogeny formulation. Instead of accepting parallel and reverse evolution

events, the largest possible subset of the characters are picked such that a perfect phy-

logeny can be inferred. This corresponds to only using certain columns of the character

state matrix to reconstruct the phylogeny.

This can also be viewed as an optimization problem: pick the tree that is compatible

with the largest number of characters. A character c is compatible with a tree if and

only if for every state s of c, all nodes in the phylogeny having s with respect to c form

a subtree and the ordering constraints on the character states are preserved. Hennig's

method is in fact an instance of character compatibility.

De�nition 2 Given a set S of labels and a character state matrix M with character set

C, two characters c1,c2 2 C are said to be compatible if and only if a perfect phylogeny

labeled by S can be formed in accordance with any ordering constraints on the states of

these two characters.

Recall that if a character is binary, it induces an edge e = (A;B) on the phylogeny

where labels in A are in state 0 and B are in state 1. The compatibility concepts we
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introduced for splits and trees in Section 1.2.1 are precisely an instance of the above

de�nition.

De�nition 3 A set C of characters are mutually compatible if and only if a perfect

phylogeny labeled by S can be formed with all characters in C, such that all orderings

constraints on the states of these characters are preserved.

Again, the compatibility de�nition for bipartitions is an instance of the above de�ni-

tion for binary characters.

To use character compatibility for molecular sequence data, it is undesirable and is

often impossible to eliminate certain base positions in the sequence data so that the

remaining bases are compatible with each other. Typically, a method is used to infer a

set of bipartitions R and the task is to search for a tree T that shares the largest number

of internal edges with R. In fact, each bipartition in R is simply a binary character in the

CC formulation. Note that n� 3 bipartitions are needed to form a fully-resolved tree.

Given a set of characters, an interesting question is whether pairwise compatibility

implies mutual compatibility. As the Pairwise Compatibility Theorem (PCT) [29, 19, 20]

states, it is true for binary characters with or without a known ancestral state. Hence,

this also holds for a set of bipartitions. As for ordered multi-state characters, a coding

algorithm can be used to convert a multi-state character to a collection of binary charac-

ters, which are called binary factors of the multi-state character [21]. Hence, the binary

PCT can be extended to ordered multi-state characters. In general, two multi-state or-

dered characters are compatible as long as every binary factor of one is compatible with

every binary factor of the other. This was proved by Estabrook et al. [21].

Given ordered characters and the PCT, the test for mutual compatibility for a set of

characters reduces to pairwise compatibility testing. Theoretically speaking, testing the

binary factors is suÆcient. A condition for two binary characters to be compatible is the



CHAPTER 2. INFERRING PHYLOGENETIC TREES|AN APPROXIMATION

ALGORITHM FOR CHARACTER COMPATIBILITY 28

Characters

Taxon 1 2 3

A 0 0 1

B 0 0 1

C 1 1 1

D 0 0 1

E 0 1 0

Table 2.2: Characters 1 and 2 are compatible, while 2 and 3 are not.

following: Let (a; b) denote a row in the n � 2 matrix Mc extracted from M such that

it has the two character columns of concern. Two characters are compatible if and only

if (0; 1); (1; 1); (1; 0) are not simultaneously present in Mc. Consider the character state

matrix in Table 2.2, characters 2 and 3 are incompatible since the triple (0; 1),(1; 1),(1; 0)

are present while characters 1 and 2 are compatible. Again, this also applies to two

bipartitions.

Computational Issues

Since every multi-state character has a corresponding set of binary factors, the CC prob-

lem can be formulated in terms of binary characters. More importantly, binary characters

correspond to a set of bipartitions which are inferred from sequence data.

Binary Character Compatibility (BCC)

Instance: A binary n�m character state matrixM with n objects and a set C of binary

characters, where jCj = m.

Problem: Find the largest subset of C such that a perfect phylogeny can be inferred

from L.

BCC is NP{hard [15]. The proof is based on a reduction from the Clique problem.
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Clique

Instance: A graph G = (V;E), jV j = n jEj = m, and a positive integer B � n.

Problem: Find the largest subset L of V such that every member of L is connected by

an edge in E.

It is relatively easy to transform BCC to Clique: create a vertex for every character

and connect two vertices by an edge if and only if they are compatible. By the Pairwise

Compatibility Theorem, the solution to Clique corresponds to a set of compatible char-

acters. However, this is not very useful if one thinks that algorithms for Clique can be

used to solve BCC. It is well-known that Clique is NP{hard, and it is also NP{hard to

achieve an approximation ratio of n� for some � > 0 [4].

To reduce Clique to BCC, we form the character state matrix M as follows:

1. Create a matrix M of (3 � n) rows by n columns. Initialize all entries of M to 0.

Note that there are 3 objects per character to work with.

2. For each column i, enter 0 at row (3i� 2), 1 at row (3i� 1), and 1 at row 3i.

3. For all pairs of vertices vi and vj in G, if there is no edge connecting the two, at

column j, enter 1 at row (3i� 2), 1 at row 3i� 1, and 0 at row 3i.

The intuition behind the construction of M is that each vertex would transform

into a character and the goal is to make pairs of characters incompatible if there is no

edge connecting their corresponding vertices in the graph. Hence, a set of compatible

characters correspond to a clique in the graph. The formal proof can be found in [15].

BCC can be easily shown to be transformable to other variations of the CC for-

mulation [15], thus making all of them NP{Complete. These include unordered binary
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character compatibility, as well as ordered and unordered multi-state character compati-

bility.

2.2.4 Distance-Based Methods

While parsimony, character compatibility and many other methods use the character state

matrix directly to reconstruct the phylogeny, distance based methods utilize a distance

function to estimate how far apart is each entity from one another and then the tree is

inferred from the distance data.

Typically, a distance metric d is de�ned between two entities under study. In the

case of DNA sequences for example, d is de�ned as d : ffA;C;G;T; �gng2 ! R where �

denotes a gap. Gaps are needed to align two sequences of di�erent length. One of the

most important factors in the success of a distance-based method is the distance metric

used. It should re
ect accurately the amount of evolutionary divergence (i.e. amount of

mutation) among two entities. Many useful and interesting metrics have been devised

along with evolutionary model-dependent correction schemes. Please consult [54, 16] for

details.

Given a label set S, we can use d to compute the pairwise distances between all pairs in

S and they can be stored in a n�n symmetric square matrixD, called the distance matrix,

where D(a; b) is the distance between a and b. D is said to be additive if there exists a

tree T such that D(a; b) is the sum of the edge lengths in the unique path connecting a

and b in T . Conversely, if D is additive, then there exists a unique T that realizes the

distances in D. A widely used distance-based method, called Neighbour-Joining (NJ)

[60], reconstructs T if D is additive in O(n3) time. NJ is basically a clustering procedure:

it groups entities that are close together into groups. More formally, let V be a set of

tree nodes labeled by S. NJ �rst searches for two nodes x; y 2 V that are the closest

(i.e. D(x; y) is the minimum) and form a subtree from them. It then removes x and y
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from V and adds a pseudo-node pxy to V (i.e. V = V � fx; yg), which can be considered

as the parent of x and y. Finally, it computes the distance between pxy and every other

node m 2 V by the following formula: D(pxy; m) = 1
2
(D(x;m) + D(y;m) � D(x; y))

and updates D correspondingly. The above procedure is perform iteratively until only

one node remains in V , which is the root node. The distance updating formula makes

intuitive sense when D is additive. However, due to noise and stochastic errors in real

data, D is rarely additive and Neighbour-Joining can perform rather poorly in practice

[38, 39, 40].

The main advantage of distance-based methods is speed. Unlike parsimony or char-

acter compatibility, several popular distance-based methods all have relatively light com-

putational requirements. For example, another method called UPGMA [62], like NJ, also

runs very fast. However, almost all distance-based methods have hidden assumptions

that are unrealistic. The key to make them more robust might be to �rst, devise bet-

ter distance metrics, or second, make more realistic assumptions. The recent works of

Kearney [46, 45], which utilize the assumption of ordinality, has improved signi�cantly

the robustness of distance-based methods. We will apply orindality later in this chapter

to devise an algorithm to generate bipartitions from sequence data.

2.3 Fractional Character Compatibility

The NP{hardness of the character compatibility formulation leads to the search for ap-

proximate solutions. In this section, we change the BCC formulation to a version

called Fractional Character Compatibility, which is also NP{hard. However, we

will demonstrate that a polynomial time approximation scheme (PTAS) exists under this

formulation by using smooth-integer programming techniques.

We assume the input will be a set of bipartitions R obtained by another methods
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from a set of sequences labeled by S. We will give a bipartition inference method later.

When the input is a set R of bipartitions, CC can be re-stated as follows:

Character Compatibility (CC)

Instance: A set of bipartitions R labeled by S.

Problem: Find a tree T labeled by S such that jsplits(T )\ Rj is maximized.

T1 T2

e1 e2

a
a

b

c

d

e

f

g

h

b

c d
e f
g h

Figure 2.2: T1 and T2: T2 �ts (fa; b; c; dg; fe; f; g; hg) better.

Given a tree T , we call jsplits(T ) \ Rj the CC score of T . One criticism of the

CC score is its inability to use information provided by bipartitions that are not fully

compatible with T . For instance, consider the trees in Figure 2.2 and the bipartition

(A;B) = (fa; b; c; dg; fe; f; g; hg). Neither trees matched the bipartition perfectly, but

clearly T2 is a better approximation of (A;B) as it needs only one edge relocation to

match the bipartition, where T1 needs four. Based on this example, a new scoring metric

can be de�ned to measure how close a bipartition matches a split in a tree.

De�nition 4 Given two bipartitions (A;B); (C;D), the similarity score between the two

partitions is s((A;B); (C;D)) = maxfjA
S
Cj+ jB

S
Dj; jA

S
Dj+ jB

S
Cjg.

De�nition 5 The similarity score between a tree T and a bipartition (A;B) is s(T; (A;B)) =

maxe2splits(T )fs(e; (A;B))g.
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De�nition 6 The similarity score between a set of bipartitions R and a tree T is s(T;R) =X
(A;B)2R

s(T; (A;B)).

We are now ready to modify the CC formulation by using this new evaluation crite-

rion.

Fractional Character Compatibility (FCC)

Instance: Set R of bipartitions of label set S, jRj = m, jSj = n.

Problem: Find a tree T labeled by S where s(T;R) is maximized.

2.3.1 How Good is FCC?

Although the FCC optimization criterion makes intuitive sense, its biological signi�cance

as well as performance in real situations is unknown. Our goal in this section is to

demonstrate through simulation experiments that FCC performs well and it is worthwhile

to design eÆcient algorithm to solve it.

One of the intents of formulating FCC is to have a variation of CC that can be

approximated in an eÆcient manner (i.e. our PTAS). Therefore, our method is most

appealing to those whose intend is to use the character compatibility paradigm in their

phylogenetic studies. Hence, given an instance of the tree reconstruction problem, if the

a solution of FCC is at least as good as the solution of CC, then the formulation of

FCC is at least as good as CC and the people who intends to infer trees using character

compatibility would be at least as happy.

It is unclear how and could be very diÆcult to perform a theoretical analysis compar-

ing CC and FCC. Therefore, we have decided it would be more interesting and practical

to design a simulation study to perform the comparison. The main idea is to solve both
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CC and FCC on a given set of bipartitions and then compare the resulting trees to the

known \real tree" to see which one is closer. In case their performance is similar, we can

compare the CC and FCC trees to see how close they are. The closer FCC is to CC, the

better.

In order to control the tree parameter (i.e. making it known), we can either evolve

sequences on a tree topology and infer bipartitions from them, or we can use a set of

sequences that has a consensus phylogeny, which is typically generated by a well-tested

method like exact Maximum Likelihood or Parsimony. The advantage of the �rst ap-

proach is that we will have absolute control over the real tree topology whereas in the

latter approach, the trees are just created by another method. However, evolving se-

quences on a tree requires a realistic tree topology|it is very diÆcult to evaluate the

performance and often lead to unrealistic results if the topologies are randomly gener-

ated. This entails the use of some known \real" tree topologies just like the second

approach. However, this is a chicken-and-egg problem: how do we know what topologies

are real? Hence, axiomatically we must agree that certain trees are \real" and our best

bet is to use the consensus result of some well-tested methods. In addition, the �rst

approach uses somewhat arti�cial sequences that depends too much on the model of evo-

lution used while evolving the sequences whereas the second method uses real sequence

data. Given the above observations, we believe the second method would serve us better.

Of course, there is the possibility that the \real tree" is wrong and if the FCC tree is

closer to it than the CC tree, we would make the wrong claim that FCC is better. But

again, if the �rst method is used, this implies that the \real tree" that we used to evolve

sequences are wrong too and the result cannot be very meaningful.

In summary, the simulation experiment is as follows:

1. Randomly pick a set S of n sequence from the RDP database.
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2. Reconstruct phylogenies from S using both CC and FCC.

3. Determine the number of shared edges between the RDP tree and the CC tree.

4. Determine the number of shared edges between the RDP tree and FCC tree.

The above procedure is ran k times to obtain an average �gure.

Methods and Tools

The RDP database [55] contains a wealth of ribosomal RNA sequences from di�erent

species. The evolutionary history of various sequence families were constructed by a

version of Maximum Likelihood.

To perform the experiment, we need to solve CC and FCC. Since there is no known

eÆcient method, we will do this exhaustively. That is, search through the entire tree

space for the optimal tree. In addition, we will also need a means to generate bipartitions

from sequence data. We will use a method called Hypercleaning [5], which has been

proven to be robust and accurate in several experiments. Given S, Hypercleaning uses

a quartet inference method to generate a set of quartets Q and then search for a set of

bipartitions R that are within certain error range from Q. A parameter m is used to

control the amount of error allowed. The greater the m, the bipartitions in R are less

accurate with respect to Q. However, more bipartitions will also be generated given a

large m. In addition, the time complexity of Hypercleaning also depends on m: the higher

the m value, the slower. Each bipartitions generated by Hypercleaning has an associated

error value, which can be used to rank the bipartitions in R. A tree can be constructed

by picking the bipartitions with lower errors �rst and continue with bipartitions that are

compatible with the ones that have already been picked. It was demonstrated in [5] that

given a high enough m value, the above scheme tend to produce very accurate trees.
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Since both CC and FCC do not take bipartition weighting into account, we will ignore

the error value of the bipartitions generated by Hypercleaning.

Enumerating Evolutionary Trees

To solve CC and FCC optimally, the easiest way is to search the entire tree topology

space. Hence, we need a way to enumerate all tree topologies. Since both CC and FCC

work with bipartitions, the problem is equivalent to enumerating all sets of splits that are

tree-like. This turns out to be an interesting problem. A simple way is to start with a

star tree (see Figure 2.3) and split it into two partitions (i.e. a bipartition). Now each set

of the bipartitions correspond to a smaller star tree. Hence we can perform the splitting

recursively until a tree-like bipartition set is obtained.

The order that the partitions (i.e. star trees) are splited is very important. If we

were to split a single partition until it is fully-resolved, it would be impossible to obtain a

complete set of tree-like bipartitions. Instead, a breadth-�rst split (i.e. split the partitions

in the order that they are created) is required. A queue is needed to maintain the order

that the partitions should be splitted.

There is one caveat in the above algorithm, namely that it will visit a tree topology

more than once in the tree space since there are more than one set of split paths from the

star tree to an unrooted tree. This problem is illustrated in Figure 2.3. This would be

highly ineÆcient and makes even branch-and-bound implementations impractical. The

problem is caused by the fact that the tree is unrooted. Observe that if the tree is rooted

at a leave, then there would be only one single split path from the star tree. That is, we

can only split from top to bottom from the root node. Hence, we need to root the initial

star tree at a leave node r and then perform the splitting with the remaining leaves.

Figure 2.4 illustrates this idea.
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Figure 2.3: The top tree is a star tree (without any internal edge). There are two possible

ways to split it to obtain the tree at the bottom.

An Interesting Recurrence

The way we enumerate unrooted evolutionary trees entails a recurrence for the total

number of evolutionary trees, which has been studied by Felsenstein in the past [25]. Let

p(n) be the number of rooted fully-resolved evolutionary trees with n leaves. According

to our enumeration method:

p(n) =

dn
2
eX

i=1

�
n

n� i

�
p(n� i)p(i) if n is odd (2.1)
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Figure 2.4: If we root at a, there is only one way to split the star trees to obtain the �nal

tree on the right.

p(n) =

dn
2
eX

i=1

�
n

n � i

�
p(n� i)p(i) +

�
n

n=2

�
2

p2(
n

2
) if n is even (2.2)

In [25], Felsenstein uses a di�erent approach to determine that p(n) =
(2n�3)!

2n�2(n�2)!
,

which should be the same as the solution of the above recurrence given that our enumer-

ation procedure is correct. We will omit the proof of the correctness of our enumeration

procedure.

For unrooted trees, since our method roots the tree at a leave, p(n� 1) would be the

total number of unrooted trees with n leaves.

Simulation Result

Due to the heavy computational requirement of the exhaustive algorithm, we could only

perform our experiment on trees up to ten leaves (n = 10). However, since the tree

topologies are randomly chosen from the RDP and we run the experiment over many

iterations, we expect the result to be a fair assessment. Table 2.3 summarizes the result

for an experiment with k = 50. As noted before, m is the parameter that Hypercleaning
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uses to control the amount of error allowed in the bipartitions generated. When m is high,

some bipartitions generated could be less reliable. However, higher m values typically

gives more bipartitions and according to [5], a higher value is often required to generate

all bipartitions needed to resolve the tree.

m value fcc&rdp(%) cc&rdp(%) cc&fcc(%) greedy&rdp(%)

1 41 41 100 37

2 54 54 95 50

3 43 38 85 51

4 43 38 85 51

Table 2.3: Result of the simulation study.

Clearly FCC performs as well as CC for all m values. With m equals to 1 or 2,

the bipartition sets generated are small in size and they typically do not contain all

internal edges needed to reconstruct a fully-resolved tree. But they also tend to be highly

accurate, which is why when m is low, the performance of CC and FCC are almost

identical, whereas the greedy method is sub-optimal. As m gets higher, FCC performs

better than CC since the bipartitions have more error and by the nature of the similarity

score used in FCC, it can take advantage of bipartitions that are slightly o�. The greedy

method is better with higher m value since it also uses the weight associated with each

bipartition whereas CC and FCC do not use weights.

Discussions

After the above experiments, we can quite �rmly conclude that FCC performs as well as

CC and it is worthwhile to investigate eÆcient algorithm to solve it.

The experiment is, however, still 
awed in several aspects. Most importantly, the

above result only applies to small trees, we do not know what the situations will be until

further experimentation is performed on larger trees. However, we suspect the result
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would be similar since with larger trees, the number of erroneous bipartitions would scale

up and FCC is expected to pick up useful information from these bipartitions just as it

did for smaller trees. Secondly, the RDP trees are huge and by randomly taking a small

number of small topologies from it does not necessarily re
ect a good sample in the tree

topology space. Hence, strictly speaking the above result may not be valid for certain

tree topologies. However, this situation is hard to remedy until CC and FCC can be

eÆciently solved and a large sample size can be used in the experiment. In addition, the

result of any numerical simulation is bound to statistical errors.

Both CC and FCC are not formulated with weights on the bipartitions. However, the

performance of the greedy method with higher m values clearly demonstrates the impor-

tance of incorporating weight information. The sole reason why greedy performs better

when noisy data are present is due to the fact that it takes highly reliable bipartitions

�rst before considering the ones that are ranked lower. If CC and FCC were weighted, it

would of course outperform the greedy method by de�nition. However, the focus of this

chapter is still to approximate FCC as formulated, since our result is mainly of theoreti-

cal importance. In practice, weighted FCC can be employed to select optimal bipartition

sets produced by methods such as Hypercleaning. Although further experimentation is

needed to support the claim, we would still like to suggest that a branch-bound version

of FCC can probably be practically used to do bipartition selection|especially when the

dataset is \good" and the greedy tree is close to optimal. We leave that as future research.

2.3.2 A PTAS for Split Recombination

FCC is known to be NP{Complete [48]. Unless P = NP , the best one can do is to

design a polynomial time approximation scheme (PTAS) for the problem. That is, for

any �, the approximation algorithm would return a tree TAPP such that s(TAPP ; R) �

(1� �)s(TOPT ; R), where TOPT is the optimal tree. A PTAS is desirable as it allows us
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to achieve arbitrary degree of accuracy by varying the length of the computation.

The �rst important idea in approximating TOPT is to approximate an approximation

of TOPT , which we called a contraction of TOPT . The search space would be too large if

we approximate TOPT directly.
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Figure 2.5: From left to right: A tree T ; a 4{bin contraction T4 of T with bin roots w, x,

y and z; the kernel K of T4; and a completion of K [48].

De�nition 7 ([42]) Tk is a k{bin contraction of TOPT if there is a partition of S into

bins S1, S2, : : : Sk such that

� For each Si, jSij � 6n=k. Furthermore, there is a vertex vi of degree jSij+ 1, called

the bin root, that is adjacent to each vertex in Si.

� For each edge e of TOPT there is an edge e0 of Tk such that s(e; e0) � n � 6n=k.

k{bin contraction is being de�ned this way so that Tk is a good approximation of

TOPT and the speci�c details are derived from the requirements of the desired solution.

Suppose edge e of TOPT is the edge with the highest similarity score for a bipartition r

in R, then directly from the second property above, there must exist an edge e0 of Tk

such that s(r; e0) � s(r; e) � 6n=k. Hence, if Tk exist for any given TOPT and k, then

s(Tk; R) � s(TOPT ; R)� (6=k)mn, since there are m bipartitions in R.
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The existence of Tk can be proved by an algorithm that outputs a k{bin contraction

of an input tree T given k. This algorithm is given below, without loss of generality,

assume T is binary.

Algorithm k{Bin Contraction(T ) [48]

1. Root T at an arbitrary internal vertex. Let T (v) denote the subtree of T rooted at

v.

2. Traverse T , beginning at the root, such that for each vertex v visited:

If jT (v)j � 6n=k then

� contract all internal edges of T (v),

� label v as a bin root and

� continue traversal at v's parent.

Otherwise, continue traversal at an unvisited child of v.

3. For each bin root v with parent v0 and sibling u0:

If jT (v)j � 3n=k and u0 has a child u with jT (u)j � 3n=k then

� transfer the leaves in T (u) to the bin of v,

� contract fu; u0g and

� contract fu0; v0g.

4. For each leaf u of T not assigned to a bin, bisect the edge between u and its parent

with a new vertex v, and mark v as a bin root.

Step 3 tries to group smaller bins into one larger bin and step 4 is needed since a leaf

cannot be a bin root.
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Label each bin root with the size of its bin. Furthermore, remove all leaf vertices that

are attached and contract the edges and call the resulting tree K a kernel of Tk. Call a

bin root (now a leave in K) small if its label is less than 3n=k, otherwise, the bin root

is large with label in [3n=k; 6n=k]. Let s be the number of small bin roots and l be the

number of large bin roots.

Lemma 1 ([42]) s < 2l holds for Tk.

Proof:

Note that a bin root must be a leaf in K. By induction on the height of Tk: if u is an

internal vertex (i.e. not a bin root) of height h, then the lemma holds for T (u).

Base case (height = 1): let p and q be u's children and both must be bin roots. If

both p and q are small, then they would have been contracted by Step 1 of the algorithm

and u would be a bin root. Hence, one of them must be large. s < 2l holds.

For any vertex u of height h + 1, let p and q be its children. If both are bin roots,

they cannot be both small, otherwise the algorithm would have contracted their internal

edges and made u a bin root as in the base case. If neither p nor q are bin roots, then

the induction hypothesis applies and hence s < 2l. Finally, without loss of generality,

p could be a bin root but q is not. Let q1 and q2 be the children of q. If p is large,

then the lemma holds for T (q) by the induction hypothesis, hence the lemma also holds

for T (u). If p is small, then neither q1 nor q2 can be small, otherwise Step 3 of Bin-

Contraction would merge them with p. Let the number of small bins in q1 and q2 be

s(q1) and s(q2) respectively and the number of large bins in q1 and q2 be l(q1) and

l(q2) respectively. By the induction hypothesis, s(q1) < 2l(q1) and s(q2) < 2l(q2), hence

s(q1) + s(q2) + 2 � 2l(q1) + 2l(q2), and s(q1) + s(q2) + 1 < 2l(q1) + 2l(q2) for vertex u.

Hence, the lemma also holds for this case.

2
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Since each large bin has size at least 3n=k, thus l < k=3, otherwise we would end up

with more than n labels. So the total number of bins l+s < l+2l = 3l < 3�k=3 = k. This

gives an upper bound for the number of bins obtained after the contraction procedure.

Lemma 2 There is a k-bin contraction of TOPT .

Proof Sketch:

We need to show that Tk satis�es both properties of De�nition 7. First of all, the

number of bins is upper bounded by k. In case the number of bins is less than k, one

could choose not to merge certain pairs and obtain exactly k bins. By the design of the

Bin-Contraction procedure, each bin is guaranteed to be of size bounded by 6n=k.

For the second property of the de�nition, edges that were not contracted are com-

pletely preserved in Tk, hence the similarity score is n. For an edge e that was contracted,

it must belong to a bin with bin root u in Tk. To approximate e in Tk, the edge e
0 that

connects u to its parent can be used. Due to the bounded size of bins(i.e. < 6n=k), this

gives a lower bound on s(e; e0) of n� 6n=k. Consult [42] for more details.

2

For a given k and TOPT , we can obtain Tk with the above algorithm. Recall that re-

moving all leaves of Tk gives the kernel K with k leaves. Assume that Tk is unknown, and

we would like to form Tk from K given a set of bipartitions R inferred from data about

Tk. Tk can be approximated by assigning the labels in S as children of the leaves (or the

bin roots) of K to form T 0 such that js(T 0; K)j is maximized. We called T 0 a completion

of K. This gives a way to approximate Tk from K and an optimization problem can be

formulated as follows:

Label{to{Bin Assignment (LBA)

Instance: Set R of bipartitions of S and a binary kernel K with k leaves.
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Problem: Find a completion T 0 of K that maximizes s(T 0; R).

This give us a framework to approximate TOPT :

1. Form a set of bipartitions R from the character state matrix.

2. Fixed k, form all possible tree topologies with k leaves.

3. For each topology formed, solve the LBA problem to form T 0 and record s(T 0; R).

4. Return the tree with the highest similarity score.

Note that it only takes constant time for the second step since the number of trees

with k leaves does not grow as n grows.

The only problem that remains to be solved is the LBA problem, which can be

formulated as an integer program.

De�ne a set of variables x = (xsb) such that xsb = 1 if label s is assigned to bin b.

Otherwise, xsb = 0. For each label s, the following constraint is needed to ensure that

the label is only assigned to one bin:

X
b

xsb = 1

And in order to ensure the k{bin contraction property, add the following for each bin b:

X
s2S

xsb � 6n=k

Let T 0 be a completion of K. In order to evaluate s(T 0; R), each bipartition r 2 R

needs to be assigned to an edge in T 0. De�ne a set of variables y = (yie) such that yie = 1

if bipartition (Ai; Bi) is assigned to edge e of T 0. Otherwise, yie = 0. For each bipartition
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r, we also need to make sure that it is only assigned to one edge:

X
e

yie = 1

bin2

bin3

bin1

bin2

bin3

bin1

e

A B bin4

bin5

bin6

Figure 2.6: edge e induces bipartition (A;B). A and B can also be considered as two sets

of bins.

For each bipartition (Ai; Bi) 2 R, by de�nition, the similarity score s((Ai; Bi); T
0) is

an assignment to the variable yie such that the following is maximize:

pi(x; y) =
X

e=(A;B)2K

yie(
X
s2Ai

X
a2A

xsa +
X
s2Bi

X
b2B

xsb)

The �rst summation above can be interpreted as the process of trying all the edges

of T 0 such that the similarity score is maximize. Also note that the edge e above induces

the bipartition (A;B), where A and B can also be considered as sets of bins. This is

illustrated in Figure 2.6

Hence, for all bipartitions in R, the similarity score s(T 0; R) is:

p(x; y) =
X

1�i�m

pi(x; y) (2.3)

p(x; y) precisely expresses the optimization criterion in x and y. The goal is to �nd a
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0-1 assignment to x and y such that p(x; y) is maximize. In summary, the integer program

is:

p(x; y) is maximized

X
b

xsb = 1, for each label s

X
e

yie = 1, for each bipartition (Ai; Bi)

X
s

xsb � 6n=k, for each bin b

By the de�nition in [3], p(x; y) is called a smooth polynomial and an integer program

with a smooth polynomial as the objective function is called a smooth-integer program.

Arora et al. [3] gave a PTAS that solves smooth-integer programs.

De�nition 8 ([3]) An n-variate, degree-d polynomial has smoothness c if the coeÆcient

of each degree i monomial(term) is at most cnd�i.

De�nition 9 ([3]) A c-smooth degree-d polynomial integer program (PIP) is a PIP in

which the objective function is a c-smooth polynomial with degree at most d.

More speci�cally then, p(x; y) is a 1-smooth degree-2 polynomial with kn+m(k�3) =

O(m+n) number of variables (an unrooted tree with k leaves has (k�3) internal edges).

Arora et al. [3] proved that for each �xed � > 0, a PTAS runs in time O(n�) exist

that produces a 0-1 assignment z for a c-smooth integer program, such that � = 2c2d3=�2

and p(z) � p(z�) � �nd where p(z�) is the value of optimal assignment and n is the

number of variables in z. Hence, applying this PTAS to the LBA integer program would

give a 0-1 assignment for x and y that corresponds to a completion T 0 of K such that

s(T 0; R) � s(Tk; R)� �(m+ n)2 for any � > 0.
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T 0 is an approximation of Tk, which is an approximation of TOPT . We can relate the

performance of T 0 to TOPT through Tk:

s(R; T 0) � s(R; TOPT)� 6mn=k � �(m+ n)2 (2.4)

For any two bipartition (A;B), (C;D) of a label set S where jSj = n, s((A;B); (C;D))�

n=2 since jA [ Cj + jA [ Dj + jB [ Cj + jB [ Dj = n, thus jA [ Cj + jB [ Dj =

n� (jA[Dj+ jB [Cj), so if jA[Cj+ jB [Dj < n=2, then jA[Dj+ jB [Cj � n=2 and

vice versa. Hence, s(R; TOPT) � mn=2 since there are m bipartitions in R. If m = �(n)

then (1) becomes:

s(R; T 0) � s(R; TOPT)� c1s(R; TOPT)� c2s(R; TOPT), for some c1,c2 > 0 (2.5)

Hence the approximation algorithm satis�es the requirement of a PTAS such that for

each �0 > 0, the following is true:

s(R; T 0) � (1� �0)s(R; TOPT) (2.6)

Theorem 1 There is a PTAS for FCC.

The PTAS requires that m = �(n) in order to deliver the performance guaranteed.

This is in fact a reasonable assumption since only n� 3 edges are needed to reconstruct

a fully-resolved tree.

A More Practical Implementation Is Needed

The PTAS presented is the �rst known polynomial time approximation algorithm under

the character compatibility formulation. However, it is mainly of theoretical importance
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and it would not be practical to use the algorithm for large inputs. To illustrate, consider

the time complexity of the PTAS for the LBA problem: O(n2c
2
d
3
=�

2

). If we would like

the solution to be at least 90% of the optimal, the running time is O(n1600)! Clearly, this

corresponds to a very slow algorithm. In addition, if we would like 90% accuracy for the

�nal tree, this would impose a higher accuracy constraint on the solution of LBA, thus

making it even slower. This is the main reason why this algorithm was not implemented

to evaluate its performance with real data.

We suspect some new ideas are needed to make the algorithm practical, especially

during the implementation of the algorithm. One possible solution is to reduce the

number of variables in the smooth polynomial. For instance, it might be possible to

extract O(logn) labels from S and obtain a local optima by searching through all possible

assignments. Some of the unassigned labels can be put into a bin if it is clear that such an

assignment would maximize the increase in similarity score. After this process, a smooth

polynomial can be formulated for labels that have not been assigned.

2.3.3 Generating Bipartitions{The Ordinal Split Method

The PTAS described assumes that the input is a set of bipartitions. Furthermore, there

can only be �(n) bipartitions in the input. To generate such binary characters from

sequence data, we present here a distance-based method called the Ordinal Split Method

(OSM) that generates bipartitions based on ordinal assertions [45], which uses relative

proximity information rather than absolute distance measure to generate a set of biparti-

tions. The redundancy criterion is used to select the best �(n) bipartitions. Simulation

studies revealed that for trees of relatively long edges, over 90% of the bipartitions of a

given tree are recovered using this method.

Alternatively, the Hypercleaning method used in the FCC simulation can be used. In

fact, Hypercleaning generally performs better than the OSM for diÆcult data sets and
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it has the capability to use any quartet topology inference method. However, OSM was

devised before Hypercleaning and it runs extremely fast compare to Hypercleaning.

The bipartition generation problem based on distance data can be de�ned as follows:

Bipartition Generation (BG)

Instance: A symmetric square distance matrix M where M(i; j) denotes the observed

dissimilarity between sequence i and j.

Problem: Produce �(n) splits.

To generate M , a variety of techniques have been used to compute the observe dis-

similarity between a pair of sequences. For example, a simple way is to compute the

hamming distance between two sequences. More sophisticated techniques rely on models

of sequence evolution and use correction schemes to obtain more accurate measures of

the evolutionary distance between two sequences [54, 69].

Recall that given a tree with weighted edges, its edge lengths are said to be additive

if the distance between a pair of leaves is the sum of the edge lengths on the path

connecting them. If a distance matrix M is computed from such a tree (for each pair

of leaves), then M is additive and the tree can easily be reconstructed from M alone by

using the Neighbour-Joining Method [60]. However,M is rarely additive when computed

from real sequence data. This makes distance-based methods such as Neighbour-Joining

perform rather poorly in many situations. Instead of assuming M to be additive, a more

robust assumption called ordinality [45, 44] has proven to be quite e�ective when used

with sequence data [46]. An ordinal assertion is the statement of the form \M(x; y) <

M(x; z)", which gives relative proximity information (i.e. x is closer to y than to z) rather

than absolute distance assertions as in additivity.

To apply ordinal assertions to generate bipartitions from M , let d(x; y) be the real
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evolutionary distance between x and y. By the assumption of ordinality, if M(x; y) <

M(x; z) then d(x; y) < d(x; z). This entails a way to cluster the sequences into two

groups. De�ne Sxy = ft 2 S jM(x; t) < M(y; t)g and Syx = ft 2 S jM(x; t) > M(y; t)g.

Sxy contains the set of sequences that are closer to x than to y and Syx contains the set

of sequences that are closer to y than to x. It follows that (Sxy; Syx) is a valid bipartition

and we called it an ordinal split. Note that this bipartition corresponds to the edge on

the tree that contains the midpoint between x and y (see Figure 2.7). If this is done for

every pair of sequences (x; y) in S, we can generate O(n2) bipartitions.

for x and y
 midpoint

T(y,x)T(x,y)

m(x,y)

yx

Figure 2.7: The ordinal split corresponds to the edge where the midpoint between x and

y lies.

However, we only need �(n) bipartitions in order for the PTAS to work. To achieve

this result, we rank the O(n2) bipartitions by redundancy and pick the �rst n bipartitions

for the PTAS. We expect some of the bipartitions to be redundant since it is very likely

that multiple midpoints would fall on a long internal edge of T . After all, there are only

n � 3 internal edges. Hence, more redundant splits are more reliable and they represent

well-supported edges in the true tree. By picking the splits through redundancy, we

expect relatively long edges to be well-covered. We will consider shorter edges in Section

2.3.3.
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A Simulation Study to Evaluate the Ordinal Split Method

We have performed a simulation study to evaluate the e�ectiveness of the OSM method

for selecting good edges and its coverage of internal edges. Our goal is to have a known

evolutionary tree T and see how many real internal edges can the OSM generate from a

set of sequences arti�cially evolved from T . Also, we would also like to see the percentage

of internal edge coverage when the �rst �(n) bipartitions as ranked by redundancy are

used.

In the simulation, a randomly generated binary tree T with n leaves and mean branch-

ing length of b were generated. The simulation procedure is as follows:

1. Evolve a set of n sequences of length l on T according to the Kimura-2-Parameter

(K2P) [50] model of sequence evolution.

2. Compute a distance matrix M based on the n sequences and apply the Kimura-2-

Parameter distance correction scheme [54].

3. Generate a set of bipartitions R by the Ordinal Split Method and rank them by

redundancy.

4. Determine the edge coverage statistics when �(n) splits are picked.

5. Also determine whether more redundant bipartitions have a higher chance of being

a real internal edge. Given a bipartition r, this can be done via a search through

the internal edges of T to see if there is a match for r. In the spirit of the FCC

formulation, partial matches are scored by the similarity metric de�ned in De�nition

4

Step 1 needs a bit of clari�cation. When we say \to evolve" a set of sequences, we

mean to simulate the evolutionary process on T . Given an initial sequence that serves
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as the root sequence, we can simulate the process of evolution by mutating bases with

substitutions (insertions and deletions are in general hard to model and most popular

models do not incorporate them). Since the model of evolution is stochastic, we will run

the above procedure multiple times to obtain reliable results.

Several packages were used to help implement the simulation. We used the DNADIST

program in the PHYLIP [30] package to compute distance matrices from sequence data.

The SEQ-GEN program [57] was used to generate sequences along a tree based on the

K2P model. Finally, the LISTTREE program from [74] was used to generate random

tree topologies.

Trees With Long Edges

To �rst test whether the OSM is at all functional, we ran the simulation on a randomly

generated tree with relatively long internal edges (b = 0:05). The following parameters|

due to their resemblance to typical phylogenetic parameters|are used: n = 50; l = 500

and the transition to transversion ratio is 2. Figures 2.8 and 2.9 illustrates the result.

In fact, the result stays the same after l and the transition/transversion ratio are varied

within valid ranges.

The redundancy plot con�rms our prediction that the more redundant the split, the

higher the quality. The highly rank splits all have near perfect similarity scores. The

coverage plot is also encouraging in the sense that O(n) splits gives pretty good coverage

of the edges.

Tree Topologies From RDP

To better evaluate the OSM, we again extract four real tree topologies with relatively

short edges (with edges as short as 1�10�6) from the RDP and evolve sequences on them

to perform the above experiment. We suspect the OSM might perform more poorly on
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Similarity Score v.s. Redundancy Rank
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Figure 2.8: The similarity score of the splits inferred ranked by redundancy. The trend

is that the more redundant the split, the higher the similarity score.

Edge Coverage

Tree min(%) avg(%) max(%)

1 0 21.3 42.9

2 0 25.6 57.1

3 28.6 57.9 71.4

4 42.9 84.4 100

Table 2.4: Experiment result with RDP short edge trees.

trees with short edges since these edges might be too short to have a midpoint falling on

them. The simulation were ran 100 times and the average �gures are reported in Table

2.4. Tree 1 is the one with the most number of short edges and in general, OSM perform
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Figure 2.9: Internal edge coverage plot against the number of ordinal splits used. A linear

factor of the input size gives > 90% coverage.

rather poorly as expected.

Discussions

While our experiment con�rms that the OSM works well on trees with relatively long

edges, it fails to recover shorter ones. Hence, this would not be the most desirable generic

front-end for the PTAS. By the results in [5], we believe Hypercleaning would be a better

front-end for the PTAS. However, the OSM is fast (O(n2)) and can well-served as a �rst

step tool to generate \easy" bipartitions before more time-consuming algorithms such as

Hypercleaning are used to generate the shorter edges. For example, if the OSM can resolve
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certain long edges of the tree perfectly (i.e. produce bipartitions that are compatible),

then we just run Hypercleaning on the partitions (i.e. star subtrees) that are unresolved.

This would probably save substantial computational time. Further experimentation is

needed and we left them for further research.



Chapter 3

Computing the Quartet Distance

Between Evolutionary Trees

3.1 Introduction

The comparison of evolutionary trees is another fundamental problem in evolutionary bi-

ology. Di�erent evolutionary hypotheses (or con
icting phylogenies) arise mainly in two

situations. As we have discussed in Chapter 1, the tree inferred from a set of homologous

genes only represents the relationship among the genes under study, but not necessarily

the species themselves. It is often the case that di�erent genes lead to di�erent trees.

However, if the biologist would like to have a species tree, it is unlikely that trees inferred

based on di�erent genes would agree with each other. For instance, in a recent biology

paper [10] Cao et. al studied the phylogenetic relationship among primates (e.g. human

), ferungulates (e.g. horse), and rodents (e.g. mouse) using the genes on the H strand of

mitochondria DNA and found that two di�erent trees were constructed depending on the

gene used in the analysis. Di�erent evolutionary hypotheses can also arise when di�er-

ent phylogenetic reconstruction methods are applied to the same data set. The previous

57
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chapter showcases only a few popular phylogenetic reconstruction methods. However, a

diverse variations of various popular paradigms are used by di�erent schools of systemat-

ics. In many cases the trees inferred by di�erent phylogenetic methods would be di�erent.

In another recent study by Cammarano et. al. [9], the tree reconstructed using Maximum

Parsimony is distinct from the one reconstructed using Maximum Likelihood when the

EF-G(2) sequences are used to study the relationship between Archaea and Bacteria.

There are currently twomain approaches to resolve the issue of con
icting phylogenies.

In one direction, researchers are trying to utilize the information provided by the entire

genome to infer a species tree. Many di�erent notion of measuring genome similarity

has been proposed. This include genome rearrangements [49, 36], information-theoretic

metrics [73], and gene content [63]. An older and perhaps more mature approach is to

select a consensus tree (or trees) that best represents the information provided by each

con
icting tree [7]. A notable formulation is the Maximum Agreement Subtree method

[68, 7, 23, 22, 11, 66] for �nding a consensus tree among two or more di�erent trees. A

substantial amount of e�ort has been devoted to eÆcient algorithms for �nding the MAST

of two or many evolutionary trees, see [68] for a summary of results. While resolving

con
icting trees, biologists are also interested in knowing the degree of dissimilarity among

di�erent evolutionary trees so that the consistency of the analysis can be assessed. More

importantly, it is desirable to have an objective metric to compare trees so that the

statistical signi�cance of their di�erence can be evaluated numerically [65]. In addition,

the stability of the analysis results can also be evaluated. The distributions of various tree

similarity metrics are well-studied [65] and are very useful in testing statistical hypotheses.

Several distance metrics between evolutionary trees are currently in use [7]. In this

chapter, we study the quartet metric, which is based on common subtrees induced by

four leaves. This metric has several attractive properties, though its use has been limited

by the time required to compute the distance [65]. In this chapter, we address this
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problem by describing an O(n2) algorithm that computes the quartet distance between

two evolutionary trees.

3.2 Some Tree Distance Metrics

An evolutionary tree represents the direction of evolution by the location of its root,

the rate of evolutionary by its edge lengths and the history of speciation events by its

branching pattern or topology. Biologists are often interested in the distance between

two evolutionary trees independent of the direction and rate of evolution, which gives

an indication of how similar two trees are in terms of the relationships among leaves.

Various metrics have been proposed to measure the similarity based on the undirected

tree topology and we survey some of these below.

3.2.1 The Partition Distance

The partition distance (PM) [6, 61, 58] measures the number of splits (i.e. internal edges)

that are induced by one tree but not the other. Recall that an unrooted tree T can be

represented as a set of splits denoted as splits(T ) (i.e. non-trivial edges of the tree).

Given two trees T1 and T2, the partition distance between them is:

dp(T1; T2) = splits(T1) + splits(T2)� 2jsplits(T1) \ splits(T2)j

Which is basically the symmetric di�erence between the two sets of splits. This metric

is very easy to calculate and a linear time algorithm was given by Day [13]. Since there

are at most n� 3 internal edges for an unrooted tree, the range of this metric is 2n� 6,

which is very narrow and hence is not very sensitive in detecting �ner similarities. The

statistical properties of this metric is well-studied and the details can be found in [65].



CHAPTER 3. COMPUTING THE QUARTET DISTANCE BETWEEN

EVOLUTIONARY TREES 60

3.2.2 The Nearest-Neighbour Interchange Distance

The nearest-neighbour interchange (NNI) metric was introduced in [71]. It is based on a

tree transformation operation, called nearest-neighbour interchange. Figure 3.1 illustrates

the NNI operations. The NNI distance between two evolutionary trees is de�ned as the

minimum number of NNI moves needed to transform one to another.

e

C A

B D

e

D C

B A

e

B D

CA

Figure 3.1: The nearest-neighbour interchange operations. There are two possible nni

moves on an internal edge e: one transforms the top tree to the lower left one, the other

transforms the top tree to the lower right tree.

While it is known that a series of NNI operations can always transform one tree to

another, its biological signi�cance is unknown. In addition, it is NP-hard to compute the

NNI distance [12]. Hence in practice, it can only be used on small trees. A wealth of

theoretical work has been done on the distance, see [52] for further details.

3.2.3 The Robinson and Foulds Distance

The Robinson and Foulds metric (RF) [59] is also based on transformation operations.

It de�nes two operations: edge contraction and node expansion. And again the distance

between two trees is the minimum number of such operations to transform one to the
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other. For the ease of discussion, let internal nodes be labeled. Consider any edge

e connecting two nodes u; v labeled by the sets label(u) and label(v) respectively. A

contraction operation on e removes e from the tree and creates a new node w labeled as

flabel(u); label(v)g. An expansion operation is the opposite: given a node u with label

fl1; l2; :::; lng where n > 1, an expansion on u removes u from the tree and adds two new

nodes u1 and u2 and an edge e that connects u1 and u2. Also, label(u1) [ label(u2) =

label(u) and label(u1) \ label(u2) = ;. Figure 3.2 illustrates this distance.

a,b,c,d,e a,b c,d,e

expansion

contraction

Figure 3.2: The Robinson and Foulds operations. An expansion introduces an edge

whereas a contraction reduces an edge.

3.3 The Quartet Distance

For the duration of this chapter, we assume all evolutionary trees are unrooted. Given two

trees T1 and T2 with quartet topology sets Q1 and Q2 respectively, the quartet distance

is de�ned as the symmetric di�erence between the respective set of quartet topologies:

dQ(T1; T2) = jQ1j+ jQ2j � 2jQ1 \ Q2j (3.1)

For example, the quartet distance between the two trees in Figure 3.3 is 4.

The quartet metric does not su�er from drawbacks of other distance metrics. For
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a

b

c

d

e

Q1={ab|ec,ab|ed,ae|cd,be|cd,ab|cd}

a

b

e

d

c

Q2={ab|ec,ab|ed,ac|ed,bc|ed,ab|cd}

T
1

T2

d(T 1,T2) = 4

Figure 3.3: An example of the quartet distance. The quartet topologies in bold are

common to both trees. The quartet distance is the symmetric di�erence between the two

respective quartet topology sets.

instance, metrics that are based on transformation operations, such as NNI, ST and RF,

do not distinguish between rearrangements that a�ect the relationships between many

leaves and rearrangements that a�ect only a few. Moreover, the quartet metric can

be used to handle unresolved trees [18, 14] by counting the quartet topologies that are

unresolved separately. However, the NNI distance is unde�ned for unresolved trees and

it is known that the RF distance handles unresolved trees rather poorly. Figure 3.4

illustrates this problem. Basically, RF can make two fully resolved trees farther than

they are from an unresolved tree. This can be confusing and does not make sense in

certain situations. For example, one could argue that since an unresolved tree provides
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less information than a fully-resolved one, then why shouldn't it be farther away from a

resolved tree than another resolved tree?

human chimpanzee

gorilla

orangutan

gibbon

human

chimpanzee

gorilla

orangutan

gibbon

human

gibbon

gorilla chimpanzee

orangutan

2

2

4

Figure 3.4: According to the RF metric, an unresolved tree is closer to a fully resolved

tree than two fully resolved trees.

In addition, metrics that are based on the number of split di�erences (e.g. PM) are

unstable with respect to the placement of a few leaves. That is, they can make two highly

similar trees very distant. Figure 3.5 illustrates this potential problem. But the quartet

metric is more stable especially when n is large [65]. Furthermore, the quartet metric

has a far greater range than PM, and hence greater sensitivity [65] (see [18] for a more

detailed discussion on the biological advantages of this metric). More importantly, the

result of this chapter enables fast computation of the quartet metric and hence makes

this nice metric a more practical one to use for large trees.
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a

f

ee

T1

dc

g

g

f

ec

T2

db

a

Figure 3.5: There is no common internal edge shared between T1 and T2. But in fact

there are only two label swaps: a with g and b with c. Note that there are still a number

of quartet topologies shared between them, so the trees are not as far away by the quartet

metric, which is more accurate and re
ects the real situation.

3.4 Computing the Quartet Distance

To compute (3.1), we need to determine jQ1 \Q2j eÆciently. The naive approach would

be to compare the quartets one by one. This takes O(n4) time as there are
�
n

4

�
quartets.

To our knowledge, the best existing result is an unpublished algorithm that runs in O(n3)

time [65]. Our contribution is a simple algorithm that runs in O(n2) time. The algorithm

can also return implicitly the set of quartet topologies shared by two trees.

For simplicity, let the input to the algorithm be two fully-resolved unrooted evolu-

tionary trees T1 and T2 labeled by S. The algorithm can be easily extended to handle

partially-resolved trees. We will �rst give an overview of our algorithm and then follow

up with the details and analysis in subsequent sections.
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3.4.1 Algorithm Overview

The algorithm was motivated by the following observation. An internal edge e of the

tree partitions the leaf labels into two disjoint sets A;B � S such that S = A [ B. For

any two labels ai,aj from A and bi,bj from B, we have the quartet topology aiaj jbibj

and we say the quartet topology is induced by e. This association of quartet topologies

to internal edges gives us a simple framework to count common quartets. We only need

to consider the O(n2) internal edge pairings between T1 and T2. However, a quartet

topology can be induced by more than one edge. To avoid double counting, we perform

pre-processing on the input trees. In the pre-processing stage, each internal edge claims

as many induced quartet topologies as possible as long as the quartets it claimed have

not been claimed by any neighbouring edges. The quartet topologies claimed by each

edge can be encoded by a constant number of sets. Hence, we can determine the common

quartet topologies claimed by two edges by computing the size of certain set intersections.

The set intersection operation can be done in constant time if we pre-compute all possible

set intersections. This can be done in O(n2) time as follows. Given an evolutionary tree

T , let x; y; z be the neighbours of an internal node u. Three distinct binary trees rooted

at u can be formed by removing one of the subtrees rooted at x,y, and z (see Figure 3.8).

We called such rooted trees rooted subtrees of T . There are O(n) such rooted subtrees

for each input tree. The set intersection problem reduces to computing the common

leaves for each of the O(n2) rooted subtree pairings (one from each input tree). We can

process each pairing in constant time since we can �rst compute the pairings that involve

their children. It follows that the sizes of all set intersections (also the intersections

themselves) can be found in O(n2) time. Summing up the number of common quartet

topologies between each pair of internal edges, one from each tree, gives the total number

of agreed quartet topologies. This runs in O(n2) time since there are O(n2) internal edge
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pairings.

3.4.2 Claiming Quartet Topologies

In this section we describe the procedure that pre-processes each of the input trees such

that O(n4) quartet topologies of each tree are distributed into O(n) quartet topology sets

(or qt-sets), which is the key in achieving the O(n2) bound even though we are counting

O(n4) objects.

For the following discussions, if A,B,C,D are disjoint and proper subsets of S, we use

the following notations to denote qt-sets. AkB = fpqjrs j p; q 2 A; p 6= q; r; s 2 C; r 6= sg,

AkBC = fpqjrs j p; q 2 A; p 6= q; r 2 B; s 2 Cg, and ABkCD = fpqjrs j p 2 A; q 2

B; r 2 C; s 2 Dg.

Consider an internal edge e of an evolutionary tree. It partitions the leaf labels into

two disjoint sets A;B � S such that S = A [ B. We denote e as e = (A;B). For

any two distinct labels ai,aj from A and bi,bj from B, we have the quartet topology

aiaj jbibj. We denote the qt-set induced by e as Qe=(A;B) = faiaj jbibjjai; aj 2 A; bi; bj 2

Bg. This association of quartets to internal edges gives us a simple framework to count

quartets. A simple but incorrect idea would be to count common quartet topologies

across all possible pairing of internal edges, one from T1 and one from T2. Given an

edge e = (A;B) from T1 and e0 = (A0; B0) from T2, the common quartet topologies are

((A \A0)k(B \B0))
S
((A \B0)k(A \B0)) This immediately gives us an O(n3) algorithm

since there are O(n2) internal edge pairings and computing the set intersections takes

O(n) time using the trivial approach.

The problem with the algorithm just described is that a quartet topology can be

induced by more than one edge. For instance, given the tree in Figure 3.6, the quartet

abjcd is induced by both e1 and e2. This leads to incorrect counting.

In order to eliminate these duplications, we perform pre-processing on the input trees.
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Figure 3.6: abjcd is induced by both e1 and e2

In the pre-processing stage, each internal edge claims as many induced quartets as possible

as long as the quartets it claimed have not been claimed by its neighbouring edges. The

nice thing is that each edge can only claim a constant number of qt-sets as in the naive (but

wrong) algorithm. Hence, computing the number of agreed quartet topologies reduces to

computing the size of certain set intersections.

Let us consider a general con�guration of an internal edge e as illustrated in Figure

3.7. We will show how e claims its set of quartet topologies by examining its neighbour-

ing edges e1,e2,e3, and e4. Being greedy, if none of its neighbouring edges has claimed

anything, e claims as much as possible, that is, (A [ B)k(C [D). We denote the set of

quartets claimed by e as claimed(e). In the case where e1 has already claimed its set of

quartets, e cannot claim any of the quartets in Ak(B [ C [D). Hence it can only claim

Bk(C [D) and ABk(C [D), which does not intersect Ak(B [ C [D). Note that each

edge can at least claim ABkCD since they are only induced by e. Following this line

of reasoning, e can claim quartet topologies according to the rules in Table 3.1. We use

binary values to indicate whether the corresponding edge has claimed its set of quartet

topologies according to the same rules.
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Figure 3.7: An internal edge e with its four neighbouring edges. A,B,C, and D are

partitions of S.

e1 e2 e3 e4 quartets claimed by e

0 0 0 0 (A [ B)k(C [D)

0 0 0 1 (A [ B)kC,(A[B)kCD
0 0 1 0 (A [ B)kD,(A[ B)kCD

0 0 1 1 (A [ B)kCD
0 1 0 0 Ak(C [D),ABk(C [D)

0 1 0 1 AkC,AkCD,ABkC,ABkCD
0 1 1 0 AkD,AkCD,ABkD,ABkCD

0 1 1 1 AkCD,ABkCD
1 0 0 0 Bk(C [D),ABk(C [D)

1 0 0 1 BkC,BkCD,ABkC,ABkCD
1 0 1 0 BkD,BkCD,ABkD,ABkCD
1 0 1 1 BkCD,ABkCD

1 1 0 0 ABk(C [D)

1 1 0 1 ABkC,ABkCD

1 1 1 0 ABkD,ABkCD
1 1 1 1 ABkCD

Table 3.1: Quartet claiming rules.

Lemma 3 Given two neighbouring edges ei, ej, the claiming rules guarantee that claimed(ei)\

claimed(ej) = ;.

Proof: From the way rules are constructed. 2

As Lemma 3 states, the claiming rules only guarantee that two neighbouring edges
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would not claim the same quartet topology. To ensure global exclusiveness, that is, no

two internal edges would claim the same quartet topology, we need to avoid processing

two edges in sequence that are not neighbours of each other. This can easily be done by

ordering the internal edges by a depth-�rst traversal and process the edges in this order.

Given an evolutionary tree T , let Q be the set of quartet topologies of T , Eint be the set

of internal edges, and order(e) be the order of edge e given by the depth-�rst traversal.

Lemma 4 Processing Eint in a depth-�rst traversal ordering guarantees the following:

1. claimed(ei) \ claimed(ej) = ; for all pair of ei; ej 2 Eint such that ei 6= ej .

2.
[

e2Eint

claimed(e) = Q

Proof: If ei and ej are neighbours, then (1) follows from Lemma 3. Otherwise, assume

there exist a quartet topology pqjrs that were claimed by two edges ei = (ai; bi) and

ej = (aj; bj) which is not a neighbour of each other. This implies that pqjrs is in both

Qei
and Qej

. Let P be a path from ai to bj , clearly each edge in P induces pqjrs. Let e0
i

and e0
j
be edges in P which are neighbouring edges of ei and ej respectively. By Lemma

3, ei claims pqjrs if and only if order(ei) < order(e0
i
). Similarly ej claims pqjrs if and

only if order(ej) < order(e0
j
). However, these conditions can not be both true given

that the edge ordering is obtained by a depth-�rst traversal. If order(ei) < order(e0
i
),

then one must reach e0
j
before reaching ej since P is the only path to ej . Similarly, if

order(ej) < order(e0
j
), then e0

i
is reached before ei.

To prove (2), Assume there exist a quartet topology pqjrs that is not claimed by any

edge. By (1) and given that each internal edge claims all quartet topologies it induces

that have not yet been claimed by its neighbours, it follows that pqjrs is not induced by

any internal edge. But each quartet topology must be induced by at least one internal

edge.
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2

3.4.3 Computing the Set Intersections

After the above pre-processing, we need to compute the number of common quartet

topologies in each qt-set pairing among the two input trees. For each qt-set pairing,

this requires computing certain set intersections. For instance, AkB \ CkD = (A \ Ck

B \D) [ (A \DkB \ C).

In order to achieve the overall O(n2) time bound, we �rst compute all set intersections

that are needed. Clearly, we only need to consider a constant number of sets for each

internal edge e. Namely, there are six sets (refer to Figure 3.7): A,B,C,D,A [ B, C [

D. When computing the set of common quartet topologies between any two edges,

the intersections between any two such sets are needed. We pre-compute all such set

intersections by the following approach.

Given a tree T , we denote the set of labels of T as label(T ). Consider an internal

node u in the tree as illustrated in Figure 3.8. Recall that three distinct subtrees Tx,Ty,Tz

rooted at u can be formed by removing one of the subtrees rooted at x,y, and z. There

are O(n) such rooted subtrees for T and we called such a collection as the kernel forest

of T . Furthermore, label(Tx) [ label(Ty) [ label(Tz) = S.

Let �1 and �2 be the kernel forest of T1 and T2 respectively. For the following

discussions, let ti 2 �1 and tj 2 �2. De�ne ti \ tj = label(ti) \ label(tj). Clearly,

computing ti \ tj for all (ti; tj) 2 �1 � �2 gives the required set intersections.

Let height(T ) be the height of a rooted tree T . De�ne h(ti; tj) = maxfheight(ti); height(tj)g.

Lemma 5 All set intersections can be found in O(n2) time.

Proof: Order the elements of �1 � �2 by h in ascending order and process them in this

order. Clearly, trees with one node (the leaves) are processed �rst and their intersections
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Figure 3.8: An internal node induces three rooted subtrees, Tx, Ty , and Tz.

can be found in O(1) time. To determine any pair (ti; tj), let (til; tir) and (tjl; tjr) be the

children of ti and tj respectively. Hence, ti\tj = (til\tjl)
S
(tir\tjr)

S
(tir\tjl)

S
(til\tjr)

and each of (til \ tjl), (tir \ tjr), (tir \ tjl) and (til \ tjr) are known since their height is

smaller. The lemma follows since j�1 � �2j = O(n2).

2

Theorem 2 Given two unrooted evolutionary trees T1 and T2, the number of quartet

topologies shared by T1 and T2 can be determined in O(n2) time.

Proof: Once T1 and T2 are pre-processed (which takes O(n) time), the quartet topologies

of each tree are represented as O(n) qt-sets. The complete set of agreed quartet topologies

is the union of the common quartet topologies between all possible internal edge pairings

of T1 and T2. By Lemma 4, the above counting is guaranteed to be correct. Since the
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quartet topologies claimed by each edge are represented as a constant number of qt-sets,

we only need to consider all possible pairings of these qt-sets. From Table 3.1, possible

types of qt-set include XkY , PQkRS, MkNO. Hence there are six cases.

1. XkY
T
X 0kY 0

2. XkY
T
PQkRS

3. XkY
T
MkNO

4. PQkRS
T
P 0Q0kR0S0

5. PQkRS
T
MNkO

6. MNkO
T
M 0N 0kO0

Given that all set intersections are available after the O(n2) pre-processing procedure,

each of the above can be computed in O(1) time. Hence, computing the entire set of

common quartet topologies takes O(n2) time since there are O(n2) edge pairings between

T1 and T2.

2

Remark 1 Instead of just determining the size of set intersections, we in fact keep track

of what is in the set intersections so that the shared quartet topologies is also returned

implicitly by the algorithm. By implicit, we mean that the result is encoded as qt-sets

rather than individual quartets.

3.5 Discussions

We have presented an algorithm that computes all agreed quartet topologies between

two evolutionary trees in O(n2) time. Sometimes biologists are interested in comparing
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partially resolved trees. Our algorithm can easily be extended to handle such trees without

increasing the time bound.

The bottleneck of this algorithm lies in the fact that all O(n2) internal edge pairings

are considered. It would de�nitely be more eÆcient if some of these pairings can be

eliminated. Note that our algorithm does not naturally lead to an eÆcient solution for

�nding common quartet topologies for k trees. For k = 3, it would take O(n3) time and

for k � 4, straight counting would perform at least as good. It would be very interesting

to see if ideas in this chapter can lead to a better than O(kn4) algorithm for k � 4.

Finally, several problems are still open: is our algorithm optimal? Can a non-trivial

lower bound for computing the quartet distance be proved?
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