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Abstract

This dissertation first demonstrates the effectiveness of hydraulic tomography (HT) in

characterizing the heterogeneity of both the saturated and unsaturated zone parameters

through a laboratory unconfined aquifer. Specifically, a geostatistical inversion algorithm

that considers variably saturated flow processes (successive linear estimator (SLE) devel-

oped by Mao et al. (2013c))) in unconfined aquifers is utilized to obtain tomograms of

hydraulic conductivity (K ), specific storage (Ss), and the unsaturated zone parameters

(pore size parameter (α) and saturated water content (θs)) for the Gardner-Russo’s model.

The estimated tomograms accurately capture the locations of heterogeneity including high

and low K layers within the saturated and unsaturated zones compared to the true stratig-

raphy visible in the sandbox, as well as reasonable distribution patterns of α and θs for

the Gardner-Russo’s model. The estimated tomograms are then used to predict draw-

down responses of pumping tests not used in the inverse modeling effort. The simulated

and observed drawdown curves show an excellent agreement for observations in both the

saturated and unsaturated zones. Drawdown predictions of the geostatistical inversion ap-

proach are significantly better than those based on the homogeneous assumption. Results

of this study demonstrates the robust performance of HT that considers variably saturated

flow processes in unconfined aquifers and the unsaturated zone above it, and substantiate

the unbiased and minimal variance of HT analysis with the SLE algorithm.

Then, this dissertation investigates the importance of geological data in HT through

iii



sandbox experiments. Four geological models with homogeneous units are constructed

with borehole data of varying accuracy. These geological models are calibrated to multiple

pumping test data of two different pumping and observation densities. Results show that

both accurate and inaccurate geological models can be well calibrated and inaccurate

geological models yield poor drawdown predictions for model validation. Moreover, model

calibration and validation comparisons among layer-based geological models and a highly

parameterized geostatistical model show that the performance gap between the approaches

decreases as the number of pumping tests and monitoring locations are reduced. Next, four

geological models are populated with permeameter test K values for each layer and used as

prior mean information in geostatistical inverse models. Results show that the estimated

K tomograms preserve geological features especially in areas where drawdown data are

not available. Overall, this sandbox study emphasizes that accurate geological data is

important for incorporating into HT surveys when data from pumping tests are sparse.

Finally, this dissertation looks into the importance of geological data in HT through field

experiments conducted at a highly heterogeneous glaciofluvial deposit at the North Campus

Research Site (NCRS) of the University of Waterloo. Unlike the sandbox study in which the

stratigraphy is perfectly known, geological data are obtained from 18 boreholes at NCRS.

Two geological models of different resolutions are constructed. One model contains 19

layers while the other model merges some of the units resulting in five layers. Steady state

pressure head data of 14 pumping tests are selected from the site for model calibration and

validation purposes. The results are first compared with permeameter-estimated K profiles

along boreholes. Results reveal that the simultaneous calibration of geological models to

seven pumping test data yields K values that correctly reflect the general patterns of

vertical distributions of permeameter-estimated K. In addition, this study finds that using
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a geological model as prior information in the geostatistical inversion approach leads to

improved correspondence of K estimates to permeameter test results along wells, as well as

in preserving geological features where drawdown measurements are lacking. Therefore, the

field study suggests incorporating geological data for HT analysis based on geostatistical

inverse modeling approaches when reliable geological data are available.
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Introduction

1.1 Review of Hydraulic Tomography

Groundwater investigations and exploitation rely on the accurate characterization of sub-

surface conditions. Pumping tests are extensively carried out at areas of interest to probe

the responses and efforts are put in to obtain valid hydraulic parameters for future predic-

tions of various purposes, like coal mine exploitation and development of municipal water

supply. Based on the simplification of homogeneous aquifer assumption, type curves (e.g.,

Theis, 1935; Neuman, 1972, 1974) can be utilized to estimate the hydraulic conductiv-

ity and specific storage of the aquifer. However, hydrogeological issues like contaminant

transport also rely on the accurate characterization of aquifer heterogeneity especially at

finer scales. In order to deal with this issue, various approaches to build geological models

based on the knowledge of either large scale spatial or local scale distribution have been

developed (e.g., Koltermann and Gorelick, 1996; de Marsily et al., 2005).

At the local scale, when point measurements are available, traditional geostatistical

method such as kriging can obtain a high resolution hydraulic conductivity map based on

sample locations. The main criticism of kriging is that the interpolated maps may be too

smooth and not represent heterogeneity accurately. To overcome this limitation, indicator

kriging (Journel and Isaaks, 1984; Journel and Gomez-Hernandez, 1993) has been devel-

oped to include the irregular geometry of geological bodies, allowing for representation of
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CHAPTER 1. INTRODUCTION

main geometric patterns in space. Similarly, the Markov Chain approach (e.g. Carle and

Fogg, 1997; Weissmann et al., 1999), based on transition probability, directly interpolates

material categories to generate maps including soft information such as geologic stratig-

raphy. Alternatively, multiple point geostatistics (MPG) (Strebelle, 2002; Blouin et al.,

2013) that uses multi-point statistics extracted directly from training images can generate

subsurface heterogeneity maps (Comunian et al., 2011).

More complex methods like genesis models (e.g., Koltermann and Gorelick, 1996; Teles

et al., 2004) mathematically simulate geological processes that create the medium although

this approach requires a very large modeling domain to generate the deposits. Such a large

domain may not be practical for typical hydrogeological models.

Generally, the developed methods evolve to produce geological models that are more

realistic so that geological variability can be simulated at different scales. Then, these mod-

els are either assigned with assumed hydraulic parameter values or calibrated to available

hydraulic head data.

At the regional scale, a commonly adopted approach is the construction of deterministic

geological models based on available geological information (e.g., Refsgaard et al., 2012;

Troldborg et al., 2007). These models are then calibrated to hydraulic head data under

steady-state or transient conditions. Due to our limited knowledge of geology and con-

ceptualization uncertainty, a single geological model tends to produce biased predictions

(Troldborg et al., 2007). In order to consider the impact of model uncertainty, alternative

models are suggested by Refsgaard et al. (2012). When calibrated to only one kind of

data set, different conceptual models may perform equally well during the calibration pro-

cess but could yield quite significant differences in terms of prediction (Rojas et al., 2008;

Troldborg et al., 2007). Thus, Rojas et al. (2010) suggests that more data (e.g., pressure
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CHAPTER 1. INTRODUCTION

heads, permeability measurements) will likely better discriminate different geological mod-

els. Harrar et al. (2003) concluded that the structure of a geological model poses different

optimized values for individual zones, but when calibrating using sufficient data one can

constrain the inverse models so that the mean distribution of hydraulic conductivity of the

entire domain is well represented. Moreover, errors originating from model construction

will be compensated by biased parameter estimates during the optimization process (i.e.,

model calibration, see Troldborg et al., 2007). Evaluation of model uncertainty by Rojas

et al. (2008, 2010) revealed that the conceptual uncertainty will be a dominant source of

prediction uncertainty once models are used for predictions beyond the data used for cali-

bration. So far, experience from various previous studies show that deterministic geological

model uncertainty at regional scales can neither be avoided nor eliminated.

On the other hand, parameter estimation using either homogeneous or heterogeneous

conceptual models with a limited spatial observation of drawdowns induced by a single

pumping test may yield scenario dependent effective parameters as pointed out by Wu

et al. (2005); Straface et al. (2007); Wen et al. (2010); Huang et al. (2011); Berg and

Illman (2011b, 2013, 2015), and Sun et al. (2013). This scenario dependent behavior can

be attributed to the dependence of the estimated parameter on the heterogeneity around

the pumping location. Thus, new approaches have to be developed to address the need for

subsurface heterogeneity characterization.

Over the past two decades, hydraulic tomography (HT) has been proposed (e.g., Got-

tlieb and Dietrich, 1995; Yeh and Liu, 2000) as a new method to characterize the hetero-

geneous distributions of aquifer parameters. During hydraulic tomography experiments,

water is pumped or injected sequentially at various locations of the aquifer and pressure

head changes at different locations and elevations are observed. The extensive data col-
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CHAPTER 1. INTRODUCTION

lected from HT tests are then interpreted through inverse modelling to yield heterogeneous

K and/or Ss fields for the target area. Yeh and Liu (2000) developed the first inverse mod-

elling approach, steady state hydraulic tomography (SSHT), and demonstrated that the

usefulness of the method through computational experiments and a preliminary sandbox

study (Liu et al., 2002). Later, more extensive laboratory sandbox (Illman et al., 2007,

2008) and field (Berg and Illman, 2013) validation experiments were carried out to show

the robustness of this approach. SSHT uses the steady state pressure head data from

the drawdown curves and estimates only the K distribution and its corresponding uncer-

tainty. With laboratory experiments, Illman et al. (2010a) compared several traditional

approaches (i.e., permeameter tests, kriging) to SSHT through the prediction of pumping

tests not used during the calibration effort. Results showed the superiority of SSHT, which

accurately characterized the distributions of low and high K distribution and provided

better drawdown predictions of independent pumping tests.

Later, Zhu and Yeh (2005) extended the hydraulic tomography method to use transient

drawdown curves to estimate the K and Ss tomograms simultaneously, and demonstrated

this approach with one hypothetical three-dimensional heterogeneous aquifer. Liu et al.

(2007) validated transient hydraulic tomography using pumping test data in one controlled

sandbox with a prescribed heterogeneity pattern. Berg and Illman (2011a) then compared

the results from transient hydraulic tomography to traditional methods of characterization

using the sandbox data collected by Illman et al. (2010a). Berg and Illman (2011b) first

assessed this approach through field work at one field research site at the University of

Waterloo and concluded that the inverse estimation of K and Ss using multiple pumping

test data performed better than using data from single pumping tests.

As transient hydraulic tomography is computationally intensive, Zhu and Yeh (2006)
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CHAPTER 1. INTRODUCTION

developed a THT method that utilizes the zeroth and first temporal moments of drawdown

recovery data, instead of directly using the drawdown-recovery data. This approach was

then tested in one sandbox experiment by Yin and Illman (2009). The results of estimated

K tomogram was found to be comparable to the one estimated through THT by Liu

et al. (2007) using pumping tests data from the same sandbox aquifer. However the Ss

tomogram was not as robust, perhaps due to the loss of information on heterogeneity from

the drawdown-recovery curve resulting from the smoothing nature of the temporal moment

approach.

Along with the development of HT method, studies on hydraulic tomography have been

conducted through computational experiments (Bohling et al., 2002; Brauchler et al., 2007;

Xiang et al., 2009; Castagna and Bellin, 2009; Cardiff et al., 2009; Cardiff and Barrash,

2011; Liu and Kitanidis, 2011; Schöniger et al., 2012), controlled sandbox experiments

(Liu et al., 2002; Brauchler et al., 2003; Liu et al., 2007; Illman et al., 2007, 2008, 2010a,b,

2015; Yin and Illman, 2009; Berg and Illman, 2011a; Liu and Kitanidis, 2011; Schöniger

et al., 2015; Zhou et al., 2016) and field pumping tests (Bohling et al., 2007; Illman et al.,

2009; Brauchler et al., 2010, 2011, 2012; Castagna et al., 2011; Huang et al., 2011; Berg

and Illman, 2011a, 2013; Cardiff et al., 2009, 2012, 2013a; Berg and Illman, 2015).

Among the various studies, steady state (Illman et al., 2007; Cardiff et al., 2009),

temporal moment (Zhu and Yeh, 2006; Yin and Illman, 2009), transient (Zhu and Yeh,

2005; Liu et al., 2007), travel time (Brauchler et al., 2011), and oscillatory pressure signal

(Cardiff et al., 2013b) data have been inverted to map heterogeneity patterns. Compared

to hydraulic parameters estimated via traditional approaches, such as kriging of local scale

data or effective parameters by treating the aquifer to be homogeneous, Illman et al.

(2010a) and Berg and Illman (2011a, 2015) found that hydraulic parameters estimated
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CHAPTER 1. INTRODUCTION

through HT are significantly better in predicting drawdown responses. Furthermore, Ni

et al. (2009) through synthetic simulations and Illman et al. (2012) through sandbox ex-

periments demonstrated that HT results can significantly improve the predictions of solute

transport. Sun et al. (2013) conducted numerical experiments to investigate sampling time

strategy and boundary effects on the HT estimations. Although the extensive body of

research shows promising results of HT, there are still further aspects that need to be in-

vestigated, for both laboratory works and potential applications of HT in the field. Thus,

this thesis focuses on answering the following questions:

• Can hydraulic tomography be applied in unconfined aquifers where unsaturated flow

processes are important and cannot be ignored?

• How useful is geological information for hydraulic tomography analysis under labo-

ratory and field experimental conditions?

1.2 Geostatistical Inversion Approach

In this thesis, the simultaneous sucessive linear estimator (SimSLE) developed by Mao

et al. (2013c) for interpreting sequential pumping tests in unconfined sandbox aquifers was

used for both sandbox and field studies. This estimator is built from the successive linear

estimator (SLE) by Yeh et al. (1996) and an earlier version of SimSLE by Xiang et al. (2009)

for jointly interpreting sequential pumping tests, but has extended functions to analyze

variable saturated flow data. The SimSLE algorithm has a built-in finite element code

MMOC3 (for modified method of characteristics) (Yeh et al., 1993) to simulate groundwater

flow and solute transport under variably saturated conditions.
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In this algorithm, groundwater flow in an unconfined aquifer was assumed to satisfy

the Richard’s equation, which takes the following form:

∇ · [K(ψ) +∇(ψ + z)] +Q = [β · Ss + C(ψ)]
∂ψ

∂t
(1.1)

For steady state flow in a fully saturated heterogeneous aquifer, the equation could be

simplified as:

∇ · [K∇(ψ + z)] +Q = 0 (1.2)

subject to boundary and initial conditions:

ψ|Γ1 = ψ1, −K(x)∇(ψ + z)|Γ2 = q, ψ|t0 = ψ0 (1.3)

where, ∇ is the gradient operator, K(ψ) is unsaturated hydraulic conductivity term,

which equals to saturated hydraulic conductivity K when ψ ≥ 0, z is the elevation head,

Q is the source/sink term, β is a saturation index, which equals 1 if ψ ≥ 0 and equals 0

if ψ < 0, Ss is specific storage, C(ψ) is the specific moisture capacity, and t is time. ψ1

is constant head at boundary Γ1, q is the specific flux at boundary Γ2, and ψ0 is initial

pressure head at time 0.

The model developed by (Gardner, 1958) is used to represent the relationship between

K(ψ) and ψ:

K(ψ) = K · e(αψ) (1.4)

where α is a soil parameter representing the decreasing rate of K induced by decreasing

ψ. The corresponding θ − ψ relationship developed by (Russo, 1988) is the following:
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CHAPTER 1. INTRODUCTION

θ(ψ) = θr + (θs − θr) · [e0.5αψ[1− 0.5αψ]]
2

2+m (1.5)

where θs is the saturated water content, θr is the residual water content, m is a soil

tortuosity related parameter, and m is set to zero.

The flow equation is solved using the Galerkin finite element technique with either the

Picard or the Newton-Raphson iteration scheme in MMOC3 (Yeh et al., 1993).

Parameter estimation

SimSLE is a cokriging like inversion estimator and it conceptualizes the spatially varying

natural log values of a hydraulic parameter (e.g., LnK, LnSs) as a random field. The pa-

rameter field is first cokriged by conditioning on available hard data (e.g., measurements of

K and/or the observed pressure heads). During this step, the unconditional mean values,

variances, and correlation scales are needed as initial guesses and the covariance function

of the parameter should be known. In all the studies included in this thesis, the expo-

nential model is used for the covariance functions of the parameter fields. The cokriged

parameter field is then used in MMOC3 (Yeh et al., 1993) to solve the flow equation to

obtain the simulated pressure heads. Then, an iterative procedure is employed by SimSLE

to successively minimize the differences between simulated and observed pressure heads.

The iterative process continues until the difference between the two continuous estimated

hydraulic parameter fields or the largest head difference between simulated and observed

is smaller than a specified tolerance. More details to the algrorithm can be found in (Mao

et al., 2013c) and (Xiang et al., 2009).
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CHAPTER 1. INTRODUCTION

1.3 Structure of the thesis

This thesis contains results obtained from three studies. To clearly present each study, I

have summarized the objectives and works in Chapter 2 for each published paper. Results

of three papers are separately shown and discussed in Chapter 3, 4 and 5. Chapter 6 draws

conclusions from each study and briefly gives some recommendations for potential research

in the future.
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Objectives and Contributions

HT studies have been studied extensively using numerical models (e.g., Yeh and Liu, 2000;

Liu et al., 2002; Bohling et al., 2002; Zhu and Yeh, 2005; Xiang et al., 2009; Cardiff et al.,

2009; Cardiff and Barrash, 2011), controlled sandbox experiments (e.g., Liu et al., 2007;

Illman et al., 2007, 2008, 2010a; Yin and Illman, 2009; Berg and Illman, 2011a) and field

pumping tests (e.g., Bohling et al., 2007; Illman et al., 2009; Huang et al., 2011; Brauchler

et al., 2011; Berg and Illman, 2011b, 2013, 2015; Cardiff et al., 2009, 2012, 2013a). To

date, only a few studies describing the performance of HT tests in unconfined aquifers

have been conducted (Cardiff et al., 2009; Cardiff and Barrash, 2011; Zhu et al., 2011;

Berg and Illman, 2012; Mao et al., 2013c).

Cardiff et al. (2009) presented a study using a potential-based HT inversion approach

in an unconfined aquifer at the Boise Hydrogeophysical Research Site (BHRS), Idaho.

They only estimated the K of the unconfined aquifer. Through numerical experiments,

Cardiff and Barrash (2011) investigated the possibility of mapping the heterogeneous K

and homogeneous storage terms using transient hydraulic tomography (THT). Unsaturated

flow was ignored and instantaneous drainage of water was assumed from the unsaturated

zone as the water table drops.

Field studies showed that ignoring flow in the unsaturated zone and assuming gravity

drainage of water due to falling of the water table generally leads to estimated specific yield
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values that are substantially smaller those that would be expected on the basis of other

methods of measurement (see Nwankwor et al., 1984; Endres et al., 2007). Mao et al. (2011)

and Yeh et al. (2012) emphasized that the traditional analyses of pumping tests in uncon-

fined aquifers (e.g., delayed yield, (Boulton, 1954, 1963), and delayed water table responses,

Neuman (1972)) yield significantly smaller specific yield values (e,g,. Nwankwor et al., 1984;

Endres et al., 2007) and are physically incorrect. They suggested that a variably saturated

flow based mathematical model, which considers more realistic water release mechanisms,

is more appropriate for the analysis of drawdowns due to pumping in unconfined aquifers.

Through a sandbox study, Berg and Illman (2012) concluded that considering the het-

erogeneity of saturated zone parameters and that using an accurate effective value of the

unsaturated parameters is sufficient to accurately predict the drawdown response in the

unconfined aquifer. The numerical experiment study by Mao et al. (2013c) showed the

potential of characterizing unconfined aquifers using HT data while considering variably

saturated processes. To date, the joint estimation of both saturated and unsaturated zone

parameters using the HT approach have not been demonstrated through laboratory or field

experiments.

On the other hand, in a wide range of applications involving geological modelling,

geological data available at low cost usually consist of documents such as cross-sections or

geological maps and data from borehole logs or outcrop descriptions. Usually, the geological

information available is very helpful to build site specific geological models. Rarely, these

conceptualized models are calibrated to multiple pumping test datasets to estimate the

hydraulic parameters. Bohling et al. (2003) calibrated a simplified geological model with

equal-thickness layers as well as zonation based radar profiling. Results show that radar-

based zonation provide remarkably good correspondence with the direct-push slug test
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profiling, suggesting the importance of accurately delineating the layering. Compared to

the highly parameterized model adopted by a geostatistical inversion approach to interpret

the multiple and extensive pumping test data during HT tests, geological models provide

simpler ways to conceptualize the aquifers. When the hydraulic parameters are assumed to

be constant within the same layer, the inversion effort is considerably reduced due to the

fewer number of parameters that need to be estimated compared to geostatistical inverse

approaches which suffer from the non-uniqueness issue due to the highly parameterized

nature of the approach and insufficient observation data.

HT based on geostatistical inverse methods usually begins with a homogeneous initial

guess, which has been shown to be quite suitable when the pumping test data is abundant

(e.g., Yeh and Liu, 2000; Liu et al., 2002; Zhu and Yeh, 2005). Under field conditions, the

pressure head data alone might not be enough to perfectly characterize all important fea-

tures of the aquifer with high heterogeneity and when data densities are low. For example,

HT inversion results at the NCRS revealed a high K zone for the bottom clay layers (Berg

et al., 2011), indicating that more pressure head data or additional types of information

(e.g., geology or flux measurements) might be helpful in order to better characterize the

bottom clayey zone. Specially, geological data, as well as the seismic or ground penetrating

radar data could be quite abundant that could provide structural information of subsurface

units. In this thesis, I focus on including of geological data for HT analysis.

Thus, the main objectives of this thesis are:

• Validation of hydraulic tomography in a laboratory sandbox unconfined aquifer that

considers variably saturated flow processes;

• Investigating the value of geological information for HT interpretation through lab-

oratory sandbox and field experiments.

12
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Part I: Hydraulic Tomography in Unconfined Aquifer: Sandbox
Study

This part of the thesis addresses the scientific question that whether it is possible to

implement the HT survey and SLE algorithm that considers the variably saturated flow

for estimating heterogeneous saturated and unsaturated properties with real data. This

concept is tested in one controlled sandbox aquifer constructed by Berg and Illman (2012)

and the same data are used for this study. Details to this work are published in a paper

titled, ”Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox

study” by Zhao et al. (2015).

Specifically, two heterogeneous model cases are designed and compared: (1) Case 1, K,

Ss, α and θs fields are estimated; (2) Case 2, only K, Ss are estimated and the unsaturated

zone parameters for α and θs are assumed to be homogeneous. For both cases, I selected

five pumping test data from a HT survey conducted in a laboratory unconfined aquifer

and tested its ability to characterize the heterogeneity in saturated and unsaturated zone

hydraulic parameters. Then I validated the estimated tomograms of K, Ss, and unsaturated

zone parameters [pore size parameter (α and saturated water content (θs)] for the Gardner-

Russo’s model to predict pumping tests not used during model calibration and the results

are compared to those based on the homogeneous assumption.

13
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Part II: Geological model and Hydraulic tomography: Sandbox
Study

In this part, the importance of geological data in Hydraulic Tomography (HT) was

investigated through sandbox experiments. The pumping test data used in this work was

obtained from the same sandbox as Illman et al. (2010a). In the work of Zhao et al. (2016),

geological data was collected along boreholes for the interpretation of HT surveys. Four

groundwater models with homogeneous geological units constructed with borehole data of

varying accuracy are jointly calibrated with multiple pumping test data of two different

pumping and observation densities. Model calibration and validation performances are

quantitatively assessed using drawdown scatterplots and the results are compared to those

from a geostatistical inverse model. Thus, this part of thesis systematically investigates the

value of geological data for the interpretation of HT surveys.

In total, steady state head data from 24 cross-hole pumping tests were selected for model

calibration and validation purposes. Two study cases were designed using different numbers

of pumping and observation data for the purpose of model calibration and validation. Case

1 used pressure head data from eight pumping tests and 47 observation ports for model

calibration. In Case 2, I chose four pumping tests and 15 observation ports for calibration

, representing the situation with limited amount of data available.

On the other hand, four uncalibrated geological models were populated with perme-

ameter K values of each sand type and used as initial values for SimSLE, shown as Case 3

in Zhao et al. (2016). In Case 3, the pumping test data used as well as other initial inputs

for SimSLE were identical to Case 2 in terms of the number of pumping tests and mon-

itoring points. Thus, this case enabled the examination of the potential impact of using

geological models constructed from borehole data as prior distributions for geostatistical

inversions.
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Part III: Geological model and Hydraulic tomography: NCRS
Field Study

In this part, I continue the work of Zhao et al. (2016) on evaluating the importance of ge-

ological data for HT analysis, using data collected from a highly heterogeneous glaciofluvial

aquifer-aquitard sequence at a well-characterized field site. Model calibration and valida-

tion performances are compared among three approaches: (1) the effective value approach

by treating the site to be homogeneous; (2) two geological zonation approaches treating

each layer to be homogeneous; and (3) the highly parameterized geostatistics approach

using the Simultaneous Successive Linear Estimator (SimSLE) code developed by Xiang

et al. (2009).

The experimental data was collected at the North Campus Research Site (NCRS) lo-

cated on the University of Waterloo Campus, in Waterloo, Ontario, Canada. Previous

Quaternary geology investigations showed that main deposits in the study area belong to

the Waterloo Moraine (Farvolden et al., 1987; Karrow, 1979, 1993; Sebol, 2000), which con-

sists of multiple glacial till layers resulting from the advance and retreat of glaciers. The

continuous core samples obtained at the NCRS revealed sequentially deposited tills, from

younger to older age, as the Tavistock Till, Maryhill Till and Catfish Creek Till (Karrow,

1979; Sebol, 2000).

In the study area, the surface till is recognized as the Maryhill Till, composed mainly

of silty clay and accompanied with few stones (Karrow, 1979). The younger Tavistock Till

only exists rarely and mainly as erosional remnants. Underlying the Maryhill Till is the

Catfish Creek Till, which consists of stiff stony silt to sandy silt and is considered to be

extremely dense. This till is commonly hard and difficult to drill, and is referred as the

general base for our study.

A total of 14 pumping tests at the NCRS were selected for the HT data analysis. Nine
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pumping tests were initially conducted by Berg and Illman (2011b). Additional pumping

and injection tests were conducted during the fall seasons of 2013 and 2014 to obtain more

complete hydraulic response dataset for the site. Only the late time pressure heads from

ports indicating steady or quasi-steady state are selected for HT analysis. Among them,

seven pumping tests are used for calibration, while the other seven pumping tests are

selected for model validation purposes.

Two cases are considered (Case 1a and Case 1b) in the effective parameter approach.

Case 1a treats the aquifer to be isotropic, where only Keff is estimate and Case 1b treats

the entire simulation domain to be anisotropic, for which we estimate the effective Kx, Ky

and Kz.

Borehole logs of 18 pumping and observation wells are summarized from previous work

(Sebol, 2000; Alexander et al., 2011) and complied for the construction of the geological

model. Based on the soil types and corresponding depth information, 19 different lay-

ers representing seven different material types are defined along all boreholes. The layer

information between boreholes at different locations are interpolated to construct a three-

dimensional geological model with dimensions of 70m× 70m× 17m. Based on the layering

and soil types, two geological models (Case 2a and 2b) with different numbers of layers

are prepared for model calibration. One model consists of five layers (Case 2a), while the

other model includes all 19 layers (Case 2b). The five-layer geological model is constructed

by merging some layers with similar material, specifically layers 1 through 10 as layer 1*,

layers 12 through 14 as layer 12*, and layers 16 through 19 as layer 16*, which are mainly

composed of relatively low K clay and silt. Layers 11 and 15 are treated as two separate

zones for the highly permeable nature of sand or sand and gravel. The five-layer model

is constructed as a simplified model that only generally reflects the main high and low
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permeable zone features, while the 19-layer geological model is used to take full advantage

of the interpolated stratigraphy information. Additionally, once the geological model is

constructed, no adjustments are made to the geological structure during the calibration

phase.

Four scenarios (Case 3a, 3b, 3c and 3d) are considered for the geostatistical inversion

approach using different prior distributions. For Case 3a, a uniform mean K field is used

as the prior distribution for the geostatistical inversion before SimSLE starts to iteratively

condition the parameter field with pressure head measurements. For the other three cases

(Cases 3b – 3d), geologic information is used as prior knowledge for the inversion. Specifi-

cally, Case 3b use the estimated K values from Case 2a as the prior distribution; Case 3c use

the K estimates from Case 2b as the prior distribution; Case 3d use the 19-layer geological

model (Case 2b) populated with permeameter tested K values as the prior distribution.
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Hydraulic Tomography in Unconfined Aquifer:
Sandbox Study

The pumping test data used for this study are obtained by Berg and Illman (2012) in one

controlled sandbox aquifer. Nine pumping tests (Ports 3, 12, 13, 14, 31, 35, 37, 39 and 43)

conducted within the laboratory sandbox unconfined aquifer (Figure 3.1) have been selected

for HT analysis. Five tests (Ports 3, 12, 14, 31 and 43) are used for geostatistical inverse

modeling, and the other four tests (Ports 13, 35, 37 and 39) are kept for model validation.

Prior to the joint analysis of multiple pumping test data using SimSLE, saturated and

unsaturated zone parameters are estimated to provide reasonable initial inputs for the

geostatistical inversion. Then, I performed the very first validation work of THT in a

laboratory unconfined sandbox aquifer through jointly estimating hydraulic parameters

for both saturated zone and unsaturated zone.

3.1 Methods

3.1.1 Sandbox Description

The sandbox used for the validation of HT has been described in detail by Berg and Illman

(2012). Here, we only provide basic information of the sandbox, various equipment, and

additional work that has been completed more recently. The sandbox has dimensions of 244
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Figure 3.1: Front view of sandbox aquifer used for pumping tests showing layers and port
locations. Solid black circles indicate the pressure transducer ports; solid white circles
indicate the tensiometer ports; solid purple circles indicate the water content sensor ports.
Solid squares indicate the pumped ports to generate the drawdown data for inverse mod-
eling (calibration), while the dashed squares are pumped locations to generate data for
validation purposes.

cm in length, 122 cm in height, and 9.4 cm in depth. It was filled with different sediments

to construct a heterogeneous unconfined aquifer consisting of 17 layers. In order to simulate

unconfined aquifer flow conditions, we kept the top of the aquifer open to the atmosphere,

while there was no flow through all other sides of the sandbox. Pressure heads were collected

with 47 pressure transducers (Model S35; BHL Instruments) and 22 column tensiometers

(Model CL-029B; Soil Measurement Systems) installed within the upper zone experiencing

unsaturated flow, while water content data was collected with 24 water content sensors

(Model EC5; Decagon Devices Inc.). The tensiometers were equipped with Microswitch

pressure transducers. Figure 3.1 shows the front view of the sandbox, showing the port

and instrument locations as well as the layout of different layers.

Six different types of commercially sieved sands (F35, F45, F65, F75, F85 and F110)

and four types of silts (Sil-col-sil 45, Sil-col-sil 53, Sil-col-sil 106 and Sil-col-sil 250) were
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used to pack the sandbox. In particular, three lenses were packed at the top part of the

sandbox in an attempt to simulate aquifer heterogeneity in the unsaturated zone during

the pumping test. These three lenses, especially the silt lenses, have different saturated

and unsaturated hydraulic properties compared to the surrounding sandy material. Thus,

successfully mapping these lenses through HT may provide a visual test to the performance

of the SLE approach.

3.1.2 Description of Pumping Tests

Nine pumping tests were conducted in a tomographic fashion to stress the sandbox aquifer

at different locations (port 3, 12, 13, 14, 31, 35, 37, 39 and 43) at a constant pumping

rate of 60 ml/min with a peristaltic pump. Prior to each pumping test, the water level was

kept steady at an initial level of 112 cm from the bottom of sandbox to collect background

hydraulic head levels. During each pumping test, we collected data every 0.25 seconds from

the 46 pressure transducers and 22 tensiometers throughout all nine tests, which we found

to be sufficient in capturing the rapid transient pressure change throughout the sandbox

aquifer. The pumping test durations varied from approximately 1.8 h at port 43 located

in the upper portion of the sandbox to nearly 7.5 h at port 3 located near the bottom

of the sandbox. Among the nine pumping tests, data from five tests (ports 3, 12, 14, 31

and 43) were selected for HT analysis, while the other four test datasets were reserved for

validation purposes.
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3.1.3 Inverse Model Description

In this study, the THT analysis of pumping tests was carried out using the version of SLE

developed by Mao et al. (2013c). Groundwater flow in an unconfined aquifer was assumed

to satisfy the Richard’s equation (1.1). Meanwhile, the Gardner-Russo’s model developed

by Gardner (1958) (equation 1.4) and Russo (1988) (equation 1.5) were used to represent

the relationships between K(ψ), θ and ψ for the unsaturated zone flow. In one early study

by Berg and Illman (2012) for the same unconfined sandbox, the van Genuchten-Mulalem

model (van Genuchten, 1980; Mualem, 1976) were found to be suitable to fit the observed

water retention curves as well as suitable for the predictions of drawdown of different

drainage tests. However, it has been shown that the high nonlinearity of the van Genuchten-

Mulalem mdoel led to convergence issue for the current highly parameterized geostatistical

inversion problem in the variable saturated flow condition. Thus, the Gardner-Russo’s

model was selected here for its computational simplicity instead of the widely used van

Genuchten-Mulalem model.

3.1.4 Inverse Model Parameters

While the sandbox has overall dimensions of 244 cm in length, 9.4 cm in depth and 122 cm

in height, the model domain is only 112 cm in height, reflecting the height of the packed

sand and silt material within the sandbox. In order to characterize the hydraulic parame-

ters, the sandbox aquifer was discretized into 3, 645 finite elements using variable element

sizes, with an average dimension of 3 cm × 9.4 cm × 2.5 cm. This grid setting was kept

the same with that was used in the previous THT analysis of the saturated zone of the

same sandbox aquifer by Berg and Illman (2012). The top surface of the model domain is
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assigned a no flow condition, since it is open to the atmosphere and no significant amount

of water is gained or lost. The other five model boundaries (three sides and one in the front

and another in the back) are treated as no flow boundaries. As we have no available hard

data to condition the inverse model, only the pressure head data are used for the analysis.

The initial model inputs needed for the SLE inversion are described as bellow (Case 1 for

further discussion).

Initial values for K, and Ss

The distribution of saturated properties had been characterized by Berg and Illman (2012)

through a transient HT analysis of eight pumping tests under fully saturated conditions,

which can be used to obtain estimates for saturated hydraulic properties. They also ob-

tained effective values, Keff = 1.85×10−2 cm/s, Sseff = 3.94×10−5 /cm, through calibrat-

ing the pumping test data at port 22. Since it is more likely to obtain effective parameters

in the field, we use 1.85× 10−2 cm/s and 3.94× 10−5 /cm as the initial values.

On the other hand, to provide reasonable values for comparison of the saturated prop-

erties of different sandbox materials, K and Ss values were calculated for each material

based on the HT tomograms in Berg and Illman (2012). Specifically, K and Ss values for

the elements located in the same aquifer material, total of nine materials, were carefully

selected based on the layout of aquifer material and geometric means of K and Ss were

taken. The results are shown in Table 3.1.
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Figure 3.2: Moisture characteristic curves fit for different aquifer materials.

Initial values for α, θs, and θr

In order to obtain unsaturated hydraulic parameters for the upper areas of the sandbox

aquifer which experience negative pressures, the aquifer was drained starting from fully

saturated condition by pumping water at port 3. Meanwhile, the θ and ψ in the upper por-

tion of the aquifer was recorded at the locations indicated on Figure 3.1. We utilized the

parameter estimation program PEST (Doherty, 1994) to fit equation (1.5) to the observed

θ and ψ data obtained from the drainage experiments, and estimated α with a 95% confi-

dence interval for each material type. Results are shown in Table 3.1. Examples of the curve

fittings for five ports located in different material are shown in Figure 3.2. As water content

sensors were installed in the upper sandbox, we were only able to estimate the unsaturated

zone parameters for the five sand types (F35, F45, F110, Sil-co-sil 53, Sil-co-sil 106). In Ta-

ble 3.1, the numbers of fitting curves for each material type are also given, whereas N/A is

used to indicate no available data for curve fitting. Geometric means of α, θs, and θr values
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estimated at all water content ports from curve fitting of water content and closest pressure

head data are calculated as: α = 1.3 × 10−1 /cm, θs = 0.34 and θr = 0.06. These values

are used in the inverse model as the initial guesses for calibration of five pumping test data.

Variance and correlation scales

The SLE algorithm requires initial estimates of variances (σ2) and correlation scales (λx,

λz) of all estimated parameters (ln K, ln Ss, ln α, and ln θs) for the inverse model. Usually,

these statistical properties can be calculated based on available core samples. Through

numerical experiments, Yeh and Liu (2000) concluded that these statistical parameters

produce minor impacts on the inverse modeling results of K, especially when ample head

measurements are available. Since it is impossible to get precise values for these statistical

properties when the true distributions are unknown, we select the horizontal correlation

scales of K and Ss as λx = 150cm used in Berg and Illman (2012), while using the vertical

correlation scale λz = 30cm. Meanwhile, σ2
lnK = 1.0 and σ2

lnSs = 0.5 are used considering

that estimated Ss tomograms show less heterogeneous distributions compared to K tomo-

grams in previous studies (Liu et al., 2007; Xiang et al., 2009; Berg and Illman, 2011a,

2012). Since only unsaturated zone parameters in the upper portion of the sandbox are

being estimated, and unsaturated zone heterogeneity only has minor impacts in forming

the S-shaped drawdown curves (Berg and Illman, 2012), smaller correlation scales (λx =

100cm, λz = 10cm) and smaller variances (σ2
lnα =0.02 and σ2

θs
=0.001) are used as initial

estimates for α and θs.
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Table 3.1: Hydraulic Parameters Calculated for Each Material.

Material Type K(cm/s)a Ss(1/cm)a θbs θbr α(/cm)b Number of Curves

F35 2.63× 10−2 5.98× 10−5 0.34 0.04 0.20 6
F45 2.75× 10−2 4.84× 10−5 0.33 0.04 0.16 5
F65 5.60× 10−3 2.06× 10−5 N/Ac N/A N/A N/A
F75 3.20× 10−2 1.65× 10−5 N/A N/A N/A N/A
F85 8.78× 10−3 2.93× 10−5 N/A N/A N/A N/A
F110 1.24× 10−2 3.89× 10−5 0.34 0.15 0.02 2

Sil-co-sil 53 2.38× 10−2 7.19× 10−5 0.38 0.09 0.13 6
Sil-co-sil 106 4.34× 10−3 5.65× 10−5 0.35 0.08 0.14 4
Sil-co-sil 250 4.38× 10−3 1.86× 10−5 N/A N/A N/A N/A

a Data used for calculation of K and Ss for each material is obtained from Berg and Illman
(2012).
b Data obtained through drainage experiment and fit to Gardner-Russo’s Model.
c N/A represents that there are no data available for fitting Gardner-Russo’s Model

Data Selection

Based on the cross correlation analysis by Mao et al. (2013b), early time ψ data contain

the most information on Ss heterogeneity, while the late time head data in the saturated

zone contains the greatest information for K heterogeneity within the cone of depression,

and ψ data in the unsaturated zone contain most information on α and θs. Thus, we se-

lected ψ data from early, intermediate and late time based on the time-drawdown curves

for calibration purposes. We note that pressure transducers installed in the sandbox can

only record positive pressures. Therefore, the time-drawdown curves from upper portion

ports 58, 60, 62, 64, 66, 82, 84, 86, 88, 90 show no additional drawdown after the water level

drops below those ports. For these curves, only the early time ψ data are included in the

HT analysis. In total, we used 480 data points from five different tests for the inverse mod-

eling effort, including 400 data in the saturated zone and 80 data in the unsaturated zone.

The HT analysis is conducted by inverting the data from five pumping tests simultaneously.
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(a) K

(b) Ss

(c) α

(d) θs

Figure 3.3: Estimated tomograms of a) K, b) Ss, c) α, d) θs using sandbox pumping test
data. Solid squares indicate the pumping ports used for inverse estimation. Dashed squares
indicate the pumping ports used for validation purposes. ◦ indicates locations for pressure
transducers. • indicates locations for tensiometers.
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Computational Costs

For the cost side of HT analysis, the inversion is executed with 32 processors on a

PC-cluster consisting of 1 master and 2 slave nodes at the University of Waterloo. Each

slave node has 16 processors running with an average RAM of 4GB. Calibration of five test

transient data was completed with 64 iterations in two days using the SLE algorithm. Some

initial estimates, like K and Ss described in section 3.1.4, are based on previous calibration

of one single pumping test data in Berg and Illman (2012). Future application of HT in

unconfined aquifers under field conditions may require some effort to obtain reasonable

initial guesses when no previously collected data is available.

3.2 Results and Discussion

3.2.1 Visual comparison of K, Ss, α, and θs tomograms with

stratigraphy

The estimated tomograms for all four parameters (K, Ss, α, and θs) are shown in Figure

3.3, while Figure 3.5 shows the corresponding residual variance fields. The uncertainty

in estimates is represented by the residual variance of each parameter, which is set as the

value of initial estimate of parameter variance. After incorporating observed head data, the

residual variance represents the updated residual cross-covariance between the observed

heads and parameters to be estimated at the observed locations. Lower residual variance

suggests higher confidence in the estimates.

Figure 3.3a shows the estimated K tomogram revealing that the major stratigraphic

features shown on Figure 3.1 are captured quite accurately. To make this comparison
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clearer, we superimpose the K tomogram Figure 3.3a over the stratigraphy Figure 3.1, as

shown in Figure 3.4, which reveals that the low K zones are vividly captured. In particular,

the low K zones in the upper and right hand side are the most obvious. The Sil-co-sil 53

layer and F110 layer in the left hand side also show a low K value, although it is not as

pronounced.

Figure 3.4: Overlay of estimated K tomogram over the sandbox aquifer.

Examination of Figure 3.5a shows that the residual variance is lower at measurement

locations compared to the left and right boundaries regions. These results show that the

joint inversion of five pumping test data is quite robust in capturing the high and low K

patterns. This is critical for investigating contaminant transport problems in unconfined

aquifers, where correctly locating the low K layers will be beneficial, as those units can

store and release contaminants over long periods.

Compared to the K tomogram, the estimated Ss tomogram (Figure 3.3b) is considerably

smoother and shows no obvious layering. Physically, the Ss term is related to the porous

medium and water compressibility. The overall low Ss values, not including the zone along

the top boundary, seem to suggest that the porous medium and water compressibility in
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our unconfined sandbox aquifer is low in most of the model domain. This low Ss pattern

is found to be suitable in simulating the early time aquifer responses shown in Figure 3.8

and Figures A1-A3 in the Supplementary Information section. Since the Ss term only is

applicable in the saturated zone and is sensitive to drawdown curves at early times during

a pumping test in an unconfined aquifer (Zhu et al., 2011; Mao et al., 2013b), the narrow

and long region near the top boundary should not be considered to be reliable, although a

low residual variance zone is shown in this narrow region (Figure 3.5b).

Figure 3.5: Residual variances of estimated tomograms for: a) ln K, b) ln Ss, c) ln α, d)
ln θs.

For all pumping tests analyzed using the inverse model, only ψ data from the first 200

minutes is utilized and negative ψ are observed by tensiometers installed in the upper part

of the sandbox. Thus, we anticipate the code to obtain reliable heterogeneous distributions

of α and θs only in the upper region. Figures 3.3c and 3.3d show the α and θs tomograms,

respectively. Although the match is not exact, generally speaking, the low values of the

estimated α tomogram corresponds with the location of the low K layers, Soil-co-sil 106,

Sil-co-sil 53 and F110, while a relatively high α value zone is assigned to the narrow region

for F35 material in the upper part of the aquifer. This overall pattern is reasonable since
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our estimates for α through fitting the water content and pressure head curves also gives

high α values for high K sand material and low α for relatively low K material.

A similar layering pattern is also visible in the θs tomogram (Figure 3.3d). The relatively

high K regions are estimated as high θs zone, while the low K regions are estimated as low

θs zone. This may seem counterintuitive as low K material (i.e., silts and clays) typically

have high θs values (which corresponds with high porosity), and also are different to the

measured data by water content sensors, as shown in Table 3.1. This pattern change is

possibly caused by slow and partial drainage of low K layers and the use of unified value

of residual water contents (θr=0.06) for all the materials, whereas in reality the residual

water content for each material is different. In the lower part of the sandbox, both α and θs

show values close to the initial estimates, indicating that the inverse model does not change

the tomograms significantly. This is expected because no negative pressure head data are

available in this area of the sandbox and the inverse model is not sensitive to unsaturated

flow parameters in the saturated zone which is reflected in the high residual variance

values (Figures 3.5c and 3.5d). According to the above visual comparisons, we conclude

that the HT analysis, using the variably saturated model and the SLE algorithm, is able to

characterize both the saturated and unsaturated zone parameters quite reasonably using

pumping test data from the unconfined aquifer in this sandbox.
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Figure 3.6: Overall calibration scatterplot. Black circles are data selected from pressure
transducer ports, Solid triangles are data selected from tensiometer ports. Solid black line
is 1:1 line, indicating a perfect match. Dash black line is the best fit. The linear fit results
are also included.

3.2.2 Calibration and Validation Results

To evaluate the K, Ss, α, and θs tomograms generated by the THT analysis of the sandbox

data, we examine the quality of model calibration and validate all four tomograms simul-

taneously through the forward simulation of the four pumping tests not used in inverse

modeling effort.
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Figure 3.7: Validation Scatterplots for HT analysis Case 1 and Case 2 at different pumping
locations. Results of Case 1 are shown in (a)-(d), while (e)-(f) show results for Case 2.
The solid line is a 1:1 line indicating a perfect match. The dash line is a best fit line.
The linear fit results are also included on each plot. Black circles are data selected from
pressure transducer ports, solid triangles are data selected from tensiometer ports.
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Model Calibration

We first examine the quality of model calibration by plotting the observed drawdown from

the pressure transducers both in the saturated and unsaturated zones versus simulated

drawdown using the estimated K, Ss, α, and θs tomograms. Figure 3.6 shows that the

corresponding drawdowns are evenly distributed along the 1:1 line, and the coefficient of

determination (R2) between the simulated and observed values is 0.979, indicating a good

match for both pressure transducers in the saturated and unsaturated zones.

Validation of Sandbox THT

Another more important way to evaluate the tomograms is to predict pumping tests that

are not included in the HT analysis and to examine whether the various drawdown curves

can be predicted accurately throughout the duration of the pumping test. Figure 3.7 shows

the validation scatterplots for the pumping tests conducted at ports 13, 35, 37, and 39.

In Figure 3.7a, drawdown data are selected at seven time points, t = 1, 6, 10, 60, 100,

150, 200 min, covering early, intermediate and late time stages. In Figure 3.7b, 3.7c, 3.7d,

drawdown data at six time points, t = 1, 6, 10, 60, 100, and 150 min, are selected due to

the shorter pumping durations at port 35, 37 and 39. The R2 of all 4 tests vary from 0.859

at port 39 to 0.982 at port 13, indicating a fairly good correspondence between simulated

and observed drawdowns.
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(a) Tensiometer Ports

(b) Pressure transducer ports

Figure 3.8: Simulated and observed drawdown at a) pressure transducer ports and b)
tensiometer ports during the pumping test at port 13. The black solid lines are observed
data; the red lines are simulated drawdown using results from HT; the blue dashed lines
are simulated drawdown using homogeneous assumption. The layout of all the ports is
identical to the true layout in the sandbox.
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We also plot the simulated time drawdown curves for both pressure transducer ports

and tensiometer ports against the observed time-drawdown curves for the pumping test at

port 13 used for validation on Figure 3.8. The Supplementary Information section includes

additional matches from ports 35, 37, and 39 as Figures A1 through A3, respectively.

Examination of Figure 3.8 and Figures A1 – A3 in the Supplementary Information section

reveals that, although there are slight misfits for one or two pressure transducer ports at

the top of the sandbox, the overall match for both pressure transducer and tensiometer

data is quite good, especially for the pumping tests at port 13 (Figure 3.8), port 35 (Figure

A1) and port 37 (Figure A2). Here, we need to clarify that, since HT provides effective

parameter fields conditioned on the 480 given data points, we cannot expect the simulated

curves to perfectly match all the observed data. Based on these validation figures, we

conclude that the joint inversion of multiple pumping tests can estimate the unknown

saturated and unsaturated parameter fields quite well, which in turn benefit our ability to

predict the pumping response at unconfined aquifers.

Effect of Unsaturated Zone Heterogeneity

We next investigated the effect of unsaturated zone heterogeneity on both estimating sat-

urated zone parameters and subsequent drawdown prediction, by using fixed homogeneous

unsaturated zone parameters α = 1.3 × 10−1 /cm, θs = 0.34 and θr = 0.06 (Case 2 for

the following discussion), while the other inputs are identical to Case 1 for SLE inversion.

Results show that the inverted K and Ss tomograms (Figure 3.9a and 3.9b) have larger

spatial variances (σ2
lnK = 2.92, σ2

lnSs = 1.49) compared to Case 1 (σ2
lnK = 2.30, σ2

lnSs =

1.26). This kind of increase was attributed to the assumption of uniform spatial distribution

of unsaturated zone parameters in Mao et al. (2013c).
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(a) K

(b) Ss

Figure 3.9: Estimated tomograms of a) K, b) Ss for Case 2, with fixed unsaturated pa-
rameter α = 1.3 × 10−1/cm, θs = 0.34 and θr = 0.06. Spatial variances of the estimated
tomograms are σ2

lnK = 2.92, σ2
lnSs = 1.49.

Overall, Figure 3.9a is relatively different from Figure 3.3a for K tomogram, while

Figure 3.9b shows a similar Ss distribution pattern as Figure 3.3b. The K tomogram

captures low value zones in both saturated and unsaturated zones of the central sandbox

area. However, there is some loss in details with respect to the two low K zones near the

top boundary. Through numerical experiments, Mao et al. (2013c) concluded that effective

unsaturated parameters are sufficient for the estimation of saturated parameter patterns.

The relatively apparent changes in Figure 3.9a compared to Figure 3.3a indicate that the

impact of unsaturated zone is significant for identification of the layering pattern in our

36



CHAPTER 3. HT IN UNCONFINED AQUIFER: SANDBOX STUDY

sandbox study (also see Figure A4 for scatterplots), where the real drainage data was used

instead of model-based numerical experiment data and a large extent of the unsaturated

zone, that extended about 46 cm below initial water level (41.1% of the entire sandbox).

Figures 3.7e – 3.7h show the validation scatterplots of the same four pumping tests using

the estimated parameters from Case 2. Note that the time points selected for simulated

drawdowns are exactly the same to Case 1 as introduced earlier in Section 3.1.4. Compared

to Figures 3.7a – 3.7d from Case 1, Figures 3.7e – 3.7h show quite close results for Case

2, indicating that the use of homogeneous unsaturated zone parameters can also satisfy

drawdown prediction.

Comparison of HT Results with Homogeneous Model Results

We next simulate the drawdown response by assuming that all aquifer and unsaturated

zone parameters are homogeneous. The effective hydraulic parameters of the sandbox ma-

terial were estimated through coupling variably saturated flow model MMOC3 (Yeh et al.,

1993) with parameter estimation code PEST (Doherty, 1994). In order to provide a fair

comparison, we simultaneously calibrated the 480 data selected from 5 pumping tests which

are the same for SLE calibration. Such a large number of non-redundant data sets ensure

the requirement of necessary conditions as outlined by Mao et al. (2013a) for the inverse

problem for homogeneous aquifers to be well-defined. The effective parameters were esti-

mated as Keff = 1.47 × 10−2 cm/s and Sseff= 3.04 × 10−5 /cm for the saturated zone,

and αeff = 1.1 × 10−1 /cm, θseff = 0.40 for unsaturated zone, while fixing the residual

water content, θr = 0.06.
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Figure 3.10: Validation scatterplots of observed drawdown and simulated drawdown for: a)
homogeneous model, b) HT analysis Case 2, and c) HT analysis Case 1. The scatterplots
are shown for data at seven time points (1, 6, 10, 60, 100, 150, 200 min) of all four validation
pumping tests (port 13, 35, 37 and 39). The solid line is a 1:1 line indicating a perfect
match.

The drawdown curves obtained through the forward simulation treating the medium

to be homogeneous are plotted together with predictions based on the results from HT in

Figure 3.8 for port 13 [see Supplementary Information section for ports 35 (Figure A1),

37 (Figure A2), and 39 (Figure A3)]. The black solid lines are observed drawdown, while

the red solid and blue dashed lines are simulated drawdown based on HT results and

homogeneous assumption, respectively. The locations of all ports on Figure 3.8 are kept
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the same as the layout on the sandbox shown in Figure 3.1.

According to the simulated drawdown curves for both pressure transducer and ten-

siometer ports in Figure 3.8, the prediction based on the estimates of HT can accurately

capture the drawdown curves for all times at most ports. In contrast, the prediction based

on homogeneous assumption fails to capture the s-shaped trend typically observed during

pumping tests in unconfined aquifers. Specifically, during the early time (< 3 min) of the

pumping test, the prediction based on homogeneous assumption tends to yield larger draw-

downs compared to the observed drawdown in almost all the observation ports for all four

pumping tests. During the intermediate time (i.e., after 3 minutes), the drawdown predic-

tions based on homogeneous values is smaller than observed values. These results suggest

that the homogeneous model fails to capture the drawdown curves at early to intermediate

times. However, drawdowns from the homogeneous case match the late time data quite

well after the drawdowns have propagated throughout the saturated and unsaturated zones.

Therefore, while the homogeneous analysis may provide parameter estimates that could

be useful for late-time drawdown predictions, the accurate prediction of drawdowns for all

times will require a HT analysis that considers heterogeneity in all parameters. Overall,

these results indicate that HT with SLE algorithm is a promising way to characterize the

unconfined aquifer such that predicted drawdown response in unconfined aquifer is more

representative, compared to those based on homogeneous conceptual model.

Further comparisons of observed and simulated drawdowns at the same time points (1,

6, 10, 60, 100, 150, 200 min) selected from all four validation tests are shown in Figure

3.10a - 3.10c. Meanwhile, the R2, mean absolute errors (L1 norm), and mean square errors

(L2 norm) are used to evaluate the simulated and observed drawdown values obtained from

different cases: (a) homogeneous model, estimating effective parameters; (b) HT analysis
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case 2, only estimating heterogeneous saturated zone parameters, K and Ss; (c) HT analysis

case 1, estimating also heterogeneous unsaturated zone parameters in addition to K and

Ss. The scatterplots and quantitative statistics show that drawdown predictions for all

three cases are unbiased, and progressively improve as more heterogeneity is considered

during joint inversion of sequential pumping tests.

3.2.3 Overall Assessment of HT in Unconfined Aquifers

Performing HT to estimate the unconfined aquifer heterogeneity could be a difficult sci-

entific problem when the unsaturated zone is also considered, simply because additional

hydraulic parameters are estimated in the unsaturated zone to explicitly capture unsatu-

rated flow, which is highly nonlinear. Aside the work of Mao et al. (2013c), previous HT

analyses of unconfined aquifers have relied on various simplifying assumptions (e.g. Cardiff

et al., 2009; Cardiff and Barrash, 2011; Cardiff et al., 2012). In this study, we have validated

the new version of HT algorithm (Mao et al., 2013c) that more realistically considers the

unsaturated flow process using data from real pumping tests.

The validation results suggest HT could be used for future unconfined aquifer charac-

terization, especially at sites where unsaturated zone flow is critical. On the other hand, the

necessary conditions which enable the variably saturated flow inverse problems being well

defined should also be considered. This has been investigated by Mao et al. (2013a). They

stated that, “. . . in order to obtain a unique estimate of hydraulic parameters, along each

streamlined of the flow field (1) spatial and temporal head observations must be given; (2)

the number of spatial and temporal head observations required should be greater or equal to

the number of unknown parameters; (3) the flux boundary condition or the pumping rate of

a well must be specified for the homogeneous case and both boundary flux and pumping rate
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are a must for the heterogeneous case; (4) head observations must encompass both saturated

and unsaturated conditions, and the functional relationships for unsaturated hydraulic con-

ductivity/pressure head and for the moisture retention should be given, and (5) the residual

water content value also need to be specified a priori or water content measurements are

needed for the estimation of the saturated water content.”

For the study here, we preformed the inverse estimation using pressure head data

obtained from an unconfined sandbox aquifer drained to certain depths, instead of taking

advantage of fully drainage data which will enable us to get more complete drainage curves

for the tensiometer pressure transducers. Apparently, the listed necessary conditions are

not fully satisfied as only limited temporal and spatial data are used to capture both the

saturated and unsaturated zone heterogeneity of the sandbox aquifer. Therefore, it seems

that the selection of different initial values of K, Ss, α, and θs may pose some uncertainty

to the final estimates from the inverse modelling. In order to investigate this issue, two

additional cases are performed through changing only the initial values to K = 2.75×10−2

cm/s, Ss = 4.84 × 10−5 /cm, α = 1.6 × 10−1/cm, and θs = 0.33 (Case 3), which have

48.65%, 22.84%, 23.08%, 2.94% difference compared to values used in Case 1, respectively;

K = 2.63 × 10−2 cm/s, Ss = 5.98 × 10−5 /cm, α = 2.0 × 10−1 /cm, and θs = 0.34 (Case

4), which have 42.16%, 51.78%, 53.85%, 0% difference compared to values used in Case 1,

respectively. Note that θr = 0.06 is used in all inverse cases for consistency. Through visual

comparison and scatterplots of estimates (see Figures A5 through A8), we find that the

general tomogram patterns are basically the same and the estimates of different parameters

are close for all three cases. More inversion cases have been done although the results are

not provided here since the patterns are similar. On the other hand, changes in L2 norms

are plotted as a function of the number of iterations (see Figure A9) to show the different
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calibration behaviours for all three cases. Different initial guesses affect the calibration

processes during the early 10 iterations, but then gradually stabilized. Due to the use of

different initial values, the computational time differs among cases to reach the stabilized

L2 values: Case 1 (64 iterations over 48 hours), Case 3 (62 iterations over 60 hours) and

Case 4 (53 iterations over 36 hours).

Compared to pumping tests in fully saturated aquifers, there are greater complications

in analyzing pumping test data from unconfined aquifers through inverse modeling. During

pumping in unconfined aquifers, unsaturated zone flow may only be observed over limited

time allowing partial drainage of pores, which is also true for our study. Thus limited

range of pressure head data were available for characterize this unsaturated zone, and

parameters estimated from HT may thus involve great uncertainty. Based on the cross

correlation analysis by Mao et al. (2013b), head measurements in the unsaturated zone

during pumping in the saturated zone carry information about parameters close to the

measurement location only, as opposed to a greater region around the measurement location

in the saturated zone. In addition, the unsaturated zone parameters, α and θs, are more

sensitive to late time pressure head data in the unsaturated zone, indicating that inclusion

of more late time data from the unsaturated zone will likely better define the non-linear

inverse problem in unconfined aquifers. On the other hand, water content data can be used

together with the pressure head measurements for the inverse model and more negative

pressure head data can be obtained through the installation of additional tensiometer

ports in the sandbox aquifer, which will benefit the estimation of the unconfined aquifer

parameters. In addition, water content data collected during the drainage process such

as with neutron probes or geophysical tools may also be useful in further capturing the

unsaturated flow process and further improving the inverse modeling results. However,
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these are beyond the work presented in this study, but will lead to future research topics

on application of HT in unconfined aquifers.
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On the Importance of Geological Data for
Hydraulic Tomography: Sandbox Study

This part of the thesis shows the main results of the study in which the importance of

geological data is systematically investigated for HT through sandbox experiments. All the

pumping test data used in this study are obtained by Illman et al. (2010a). Calibration

results of different geological models and geostatistical models as well as their prediction

performances are presented and compared in the following sections.

4.1 Experimental setup

A synthetic aquifer was constructed in a sandbox by Illman et al. (2010a) through the cyclic

deposition of different size sediments under varying water flow and sediment feeding rates.

For each layer, an uniform flow rate was chosen and the coarser particles appeared to drop

first and progressively finer particles deposited on top, producing small-scale heterogeneities

within each deposited layers and larger scale heterogeneities of different layers mimicking

an interfingering natural fluvial deposit, as shown in Fig. 4.1a. The grain size distribution

available from Craig (2005) shows that the sands are well sorted. In particular, grain size

data in terms of d50, the particle diameter for which 50% of the weight is finer is provided

in Table B1 of the Supplementary Information section.

The sandbox has dimensions of 193.0 cm in length, 82.6 cm in height, and 10.2 cm in
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width. A series of 4-inch perforated plate/mesh combination was installed at each end of the

sandbox to serve as a porous media/water interface and to provide hydraulic control as well

as to avoid potential preferential flow. We constructed forty-eight ports along six columns

with eight ports each. Each column of ports represents a vertical well instrumented with

monitoring intervals. Then, core samples were extracted at each of the 48 port locations

and analyzed with a constant head permeameter to obtain local K values. Each horizontal

core is 1.28 cm in diameter and 10.6 cm in length. Visual inspections of the cores revealed

that the extracted materials are quite uniform and without obvious layering. Therefore,

we do not expect significant anisotropy in K within each layer and treat K to be isotropic

in all cases presented in this study. Table B1 lists the sand types and K estimates for

each layer in the sandbox aquifer. We provide the geometric mean of the calculated K

values, when multiple ports intersect a given layer. It is important to note that a sand

type itself does not provide a unique K value. That is, a 20/30 sand deposited at various

sections of the aquifer all have different average K values. This variation is likely a result

of sediment deposition, compaction during the sediment transport process as described,

as well as in situ coring and testing of each sample. This is also why that knowing the

geological structure does not necessarily mean that we have the accurate K distribution

of this synthetic aquifer.

We then conducted twenty-four cross-hole pumping tests at different ports with constant

pumping rates that ranged from 2.50 to 3.17 ml/s. During each test, the left, right and

top of the sandbox were connected and kept as constant head boundaries of 77.5 cm by

ponding water at the top and fixing the hydraulic heads at two ends (Illman et al., 2010a).

Meanwhile, we observed hydraulic head changes at all 48 ports until steady state conditions,

which were usually established in less than one minute. We then shut off the pump and
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monitored the hydraulic heads to full recovery.

We selected steady state head data from 24 cross-hole pumping tests conducted at

ports indicated on Fig. 4.1a and chose two study cases using different numbers of pumping

and observation data for the purpose of model calibration and validation. In Case 1, we

chose eight pumping tests (ports 2, 5, 14, 17, 26, 29, 44, and 47) along two well columns,

while drawdown data from 47 observation ports were selected from each test for model

calibration. The pumped port for each pumping test was excluded from the inverse analysis

because of a skin effect, which is likely to introduce error in the hydraulic head at the

pumped well and could have deleterious impacts on parameter estimation (Illman et al.,

2007, 2008).

In Case 2, only ports along the second and fifth well column from the left boundary

were kept for HT analysis and we chose four pumping tests (ports 26, 29, 44, and 47) and

16 observation ports for calibration (see Figure 4.5 for clear experiment setup). Through

this, we present a study case with limited amount of data, that mimics the presence of

only two wells screened at various elevations.

Case 3 was identical to Case 2 in terms of the number of pumping tests and monitoring

points, but we used geological models of varying accuracy populated with K estimates

from permeameter tests as the prior information for the HT analysis. All cases were then

validated with 16 independent pumping tests (ports 8, 11, 13, 15, 16, 18 20, 23, 32, 35, 37,

38, 39, 40, 41, and 42) not used in the calibration effort.

The spacing of the pumping and monitoring ports in Cases 2 and 3 does not follow the

suggestions by Yeh and Liu (2000) for an optimal observation density. However, this case

represents the typical field situation more closely than Case 1.
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4.2 Description of groundwater models

4.2.1 Forward model

We conducted all steady-state groundwater flow simulations with a variably saturated

flow and transport model MMOC3 (for modified method of characteristics) developed

by Yeh et al. (1993). Both geological and geostatistical models were constructed for the

synthetic aquifer which was discretized into 741 elements and 1,600 nodes, with an average

element size of 4.1 × 4.1 × 10.2 cm. A finer mesh was also tested, but the results did not

vary significantly (Illman et al., 2012). Therefore, for the purposes of consistency with

our previous studies that used this discretization (Illman et al., 2010a; Berg and Illman,

2011a), we utilized this coarser grid for all cases that we describe in subsequent sections. In

terms of boundary conditions, we set the side and top boundaries as constant head, while

the bottom, front, and back boundaries of the sandbox were set as no-flow boundaries, as

described in the previous section.

4.2.2 Inverse groundwater modeling with the geological zonation

approach

We constructed four geological models (GEO-GOOD, GEO-POOR1, GEO-POOR2, and

GEO-POOR3 ) to represent the characterization of aquifer layering of different accuracy,

shown as Fig. 4.1b through 4.1e. The main purpose of building these different geological

models was to examine the impact of accuracy in stratigraphic data on HT analysis. In a

different study, Illman et al. (2015) utilized a “perfect” geological model to conduct their

investigations. This model is also included as Fig. B1 so that it can be compared to the
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Figure 4.1: (a) Photograph of synthetic heterogeneous aquifer showing the layer (black) and
port (blue) numbers (modified after Illman et al. (2010a)). Red circles indicate the eight
ports (2, 5, 14, 17, 26, 29, 44, 47) pumped for hydraulic tomography, while the 16 black,
squares indicate the pumping locations (ports 8, 11, 13, 15, 16, 18, 20, 23, 32, 35, 37, 38, 39,
40, 41, and 42) for the independent cross-hole pumping tests used for validation purposes.
(b-e) are geological models built to represent four different descriptions of stratigraphy of
different accuracy and layer numbers for: (b) GEO-GOOD ; (c) GEO-POOR1 ; (d) GEO-
POOR2 ; and (e) GEO-POOR3.
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geological models that we describe below.

The different geological models included borehole information along six columns of

wells using Leapfrog Hydro (ARANZ Geo Limited). The underlying algorithm in Leapfrog

Hydro is the Fast Radial Basis Function method, which is effectively a way of implementing

dual kriging to fill in the gap between different boreholes and create different geological

layers. The grid used to create the geological models is identical to the computational grid

described earlier.

Among the four geological models, GEO-GOOD is constructed to represent the ideal

scenario in which the stratigraphy and thicknesses of all 18 layers are assumed to be ac-

curately known along all six columns of wells (Fig. 4.1b). A comparison of the actual

stratigraphy on Figs. 4.1a and B1 to Fig. 4.1b reveals that there are considerable differ-

ences in terms of layer shapes and how they terminate at the left and right boundaries.

The differences in the “perfect” geological model (Fig. B1) of Illman et al. (2015) and the

GEO-GOOD model arises from the fact that in the former, the stratigraphy is mapped

directly from Fig. 4.1a, while for the latter, the stratigraphy data along the six wells are

interpolated.

For GEO-POOR1 (Fig. 4.1c), random errors are introduced to the thickness data for

layers along boreholes by either arbitrarily increasing or decreasing the thickness values,

leading to the obvious deterioration of the interpolated stratigraphy. However, the lay-

ering sequences along each borehole are maintained. This kind of error is quite common

when collecting and recording core samples during well drilling. Compared to the actual

stratigraphy shown in the sandbox (Fig. 4.1a and B1), both the width and thickness of

the interpolated stratigraphy for this case varies, especially for the layers in the central

part of the sandbox.
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GEO-POOR2 represents the scenario with a simplified description of the stratigraphy

(Fig. 4.1d). In particular, we merge some layers with similar material types after intro-

ducing errors into layer thickness records, generating a simplified geological model with

only five zones compared to the actual stratigraphy consisting of 18 layers. Therefore, we

consider this case to mimic a scenario in which a geologist has neglected to log fine scale

stratigraphic details.

In GEO-POOR3, all 18 layers are present (Fig. 4.1e). However, we assume that the

geologist provides incorrect stratigraphy information to the groundwater modeller, thus

yielding the poorest geological model among the four cases (Fig. 4.1e). Unlike the GEO-

POOR1 model in which the layer sequences down each borehole are correct, the GEO-

POOR3 model is constructed based on stratigraphy information with errors even in the

locations of some layers. For example, layers 8 and 9 that should be on the right side of the

sandbox (Fig. 4.1a), appears on the left side in the GEO-POOR3 model. A comparison of

the actual stratigraphy (Fig. 4.1a and B1) and the one in the GEO-POOR3 model shows

that only layers 2, 16 and 18 are generally maintained at their original positions.

After the creation of the geological models, we transferred the grid in Leapfrog Hydro to

MMOC3. We automatically calibrated each geological model by coupling MMOC3 and the

parameter estimation code PEST (Doherty, 1994). Similar to the geostatistical inversion

that we describe next, all pumping tests were inverted simultaneously amounting to a

HT analysis for each of the layer-based geological models. For all layers in each geological

model, the K values were treated to be the same and an initial value of K was set as

0.19 cm/s with 1× 10−4 and 10 cm/s as the minimum and maximum bounds, respectively.

Thus, 18 parameters were estimated for the geological model in Fig. 4.1b, 4.1c, and 4.1e,

while only five parameters were estimated for the simplified geological model in Fig. 4.1d.
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4.2.3 Inverse groundwater modeling with the geostatistical ap-

proach

In order to provide direct comparisons to these geological models, we performed geosta-

tistical inversions of all pumping test data during the HT analysis using the Simultaneous

Successive Linear Estimator (SimSLE) code (Xiang et al., 2009). One important advan-

tage of SimSLE is that data sets are inverted simultaneously, instead of sequentially, thus

providing more constraints for the inverse problem (Xiang et al., 2009).

Previously, the initial value of the unconditional mean was obtained by calculating a

geometric mean of K values from the analysis of a pumping test by treating the aquifer

to be homogeneous and this value was assigned to the entire simulation domain. Previous

studies (e.g. Liu et al., 2002; Illman et al., 2007, 2008, 2010a,b; Berg and Illman, 2011a)

have shown the use of such a geometric mean value to yield robust HT results. However,

research has also shown that the use of a geometric mean value for the entire simulation

domain for HT analysis provides less detail to the heterogeneity away from locations where

data are available, resulting in smoothed tomogram with K values close to the prior mean

(Illman et al., 2015). The main reason for this is that no observation data is available to

update the estimates during SimSLE inversion (Xiang et al., 2009).

Here, we present two geostatistical inverse modeling cases. For the inversion starting

with a homogeneous field (Cases 1 and 2), the initial values were set as K = 0.19 cm/s,

σ2
lnK = 3.0, λx = 50 cm, λy = 10.2 cm and λz = 10.0 cm, which were estimated based on

the geostatistical analysis of single-hole test K data, as explained in Illman et al. (2010a)

and Berg and Illman (2011a). In addition, we also used heterogeneous geological models

(Fig. 4.1b - 4.1e) as the initial K distributions for the geostatistical inversions (Case 3). In
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particular, we assigned initial K values obtained from permeameter tests (Table B1) for

each layer of the geological models.

4.3 Model calibration and validation

We performed all calibration runs of geological and geostatistical models on the same PC

with a quad-core CPU with 24 GB of Random Access Memory. The eight test calibrations

(Case 1) were completed in about half an hour for the geological models, while geostatistical

inversions required approximately two hours. For Case 2 using four pumping tests and 16

observation ports, the calibration of geological models required about 15 minutes, while

the geostatistical inversion required less than 10 minutes.

To validate the estimated K distributions of calibrated geological and geostatistical

inverse models, the 16 pumping tests not used in calibration efforts were simulated for the

steady state drawdown at 47 observation ports. Earlier studies by Illman et al. (2007) and

Liu et al. (2007) revealed that the simulation of such independent tests provided the most

rigorous quantitative assessment of the estimated parameter distributions.

We assessed the quality of fits between simulated and observed drawdown for both

calibration and validation through scatterplots and the best-fit lines and coefficient of

determination (R2) provided on each scatterplot. We also calculated the mean absolute

(L1) and mean square errors (L2) for each pumping test to further evaluate the fit between

observed and simulated drawdowns. Those quantities were computed as:

L1 =
1

n
Σn
i=1 | ψi − ψ∗

i |

L2 =
1

n
Σn
i=1(ψi − ψ∗

i )
2

(4.1)
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where n is the total number of drawdown data, i indicates the data number, ψi and

ψ∗
i represent the estimates from the simulated and measured drawdowns, respectively. We

calculated the L1 and L2 norms for each case by evaluating the observed and simulated

steady state drawdowns at each port. We presented both norms as the L2 norm magnifies

large discrepancies and allows one to better assessments of different models.

4.3.1 Case 1: 8 pumping tests and 47 observation ports

Figs. 4.2a through 4.2d show the contour plots of the estimated K tomograms for the

four different geological models. In order to facilitate direct comparisons of K tomograms

obtained from the inverse models to the K measurements from core samples, we created a

K tomogram (Fig. 4.2g) based on the known stratigraphy (Fig. 4.1a and B1) and assigned

each layer with K values from permeameter tests.

Examination of Figs. 4.2a through 4.2d reveals that the distribution of high and low

K values is quite different among the four geological models due to the use of fixed zones

during the calibration process, which clearly shows the compensational effect of estimated

parameters for the model structure error (Refsgaard et al., 2012). That is, the calibration

process forces the model parameter values to produce simulations as close as possible to

observation data under a given structure error in the conceptual model. The overall patterns

in terms of the K values for the 18-layer models (GEO-GOOD (Fig. 4.2a), GEO-POOR1

(Fig. 4.2b)) look similar, but because the stratigraphy is different for each model, so are

the calibrated K values when they are compared for each layer.

On Figure 4.2a, the best model GEO-GOOD that assumes prior knowledge of the

stratigraphy, does not preserve the shapes and locations of layers. The layers are not

perfectly preserved because of the coarse grid that we use in this study. To maintain the
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Figure 4.2: Contour plots of different K tomograms (Case 1) using 8 pumping tests and 48
observation ports for calibration: (a) GEO-GOOD ; (b) GEO-POOR1 ; (c) GEO-POOR2 ;
(d) GEO-POOR3 ; (e) SimSLE and (f) residual variances calculated via SimSLE. (g) av-
eraged permeameter K distribution corresponding to the photograph of synthetic hetero-
geneous aquifer in Fig. 4.1a, with permeameter test K values from Table B1 assigned to
each layer.
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Figure 4.3: Scatterplots of observed versus simulated drawdowns (Case 1) using 8 pumping
tests and 48 observation ports for model calibration. (a) - (d) for the four calibrated
geological models with different descriptions of stratigraphy: (a) GEO-GOOD ; (b) GEO-
POOR1 ; (c) GEO-POOR2 ; (d) GEO-POOR3 ; and (e) SimSLE.
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exact shapes and locations of layers as shown in Figure 4.1b, an even finer grid (In Figure

4.2g, element size is 1 × 1 × 10.2 cm) will be needed for the finite elements instead of

the mesh used in the current study (element size is 4.1 × 4.1 × 10.2 cm). To perform fair

comparisons, we used consistent grids for both the geological and geostatistical inverse

modelling cases.

On the other hand, the simplified geological model GEO-POOR2 with only five layers

(Fig. 4.2c) yields a smoother K distribution than those of the other three geological models

with 18 layers. Both high and low K zones visible in GEO-GOOD and GEO-POOR1 are

missing in GEO-POOR2. Overall, we observe little variation in the calibrated K values for

all layers in GEO-POOR2 and the values of all individual layers are close to the estimated

mean K value.

GEO-POOR3 is the worst case in terms of the accuracy in stratigraphy. This case

reveals that some high and low K features are evident, but the locations of these layers

are quite different from GEO-GOOD and GEO-POOR1 revealing that the poor geological

information can have deleterious impacts on inverse modeling. In particular, some parts of

the aquifer with low K are shown to have high K and vice versa by comparing Figs. 4.2d

and 4.2g. The large differences in the resultant K distributions of the four geological model-

ing cases are a direct consequence of the trade-off of parameters for fixing the stratigraphy,

which are not allowed to adjust during the inverse modeling process (Refsgaard et al., 2012).

Figs. 4.2e and 4.2f show the estimated K tomogram and the corresponding ln K variance

through the simultaneous inversion of eight pumping test data with SimSLE. Because the

layer positions are not fixed and SimSLE estimates the parameters at each grid block, the

estimated K distribution shows smooth shapes of high and low K value zones. It is worthy

to note that SimSLE yields a K tomogram that captures the major K distribution features
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Figure 4.4: Scatterplots of observed versus simulated drawdowns (Case 1) for the 16 pump-
ing tests at the 48 observation ports used for model validation. (a) - (d) for four calibrated
geological models with different descriptions of stratigraphy: (a) GEO-GOOD ; (b) GEO-
POOR1 ; (c) GEO-POOR2 ; (d) GEO-POOR3 ; and (e) SimSLE.
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shown in Fig. 4.2g. Generally, the distribution pattern of the high and low K zones on Fig.

4.2e corresponds with most of the locations of the various sand bodies (see also Fig. 4.1a

and Table B1). However, we note that SimSLE does not capture the precise shapes of the

stratigraphic features with this data density. As stated previously, a given sand type does

not provide a unique K value from permeameter tests, thus we do not expect the exact

correspondence of the estimated K distribution with the stratigraphy. In particular, the

K tomogram (Fig. 4.2e) reveals three separate high K zones in the central portion of the

aquifer, which is different from the stratigraphy shown on Figs. 4.1a and 4.2g. Although

sharp stratigraphic boundaries are not explicitly recovered in the K tomogram obtained

from SimSLE, the general correspondence of the K tomogram to the stratigraphy is con-

sistent with previous studies by Illman et al. (2007, 2010a,b) and Xiang et al. (2009). In

particular, Illman et al. (2007, 2010b), Liu et al. (2007), and Xiang et al. (2009) all found

that salient features of a nonstationary K field can still be recovered with the sequential

(Yeh and Liu, 2000; Zhu and Yeh, 2005) or simultaneous successive linear approach Xiang

et al. (2009) that assumes a statistically stationary field. This is because the stationarity

assumption becomes less important when a large number of pumping tests and a dense

network of observation data are available for geostatistical inverse modeling (Xiang et al.,

2009).

We also note that the K values in Fig. 4.2e have a wider range, and hence, a higher

degree of K heterogeneity when compared visually to Fig. 4.2g. We later discuss the

reliability of the estimated K tomogram computed with SimSLE through model validation.

One significant advantage of using SimSLE for HT analysis is that it yields uncertainty

estimates that can aid in assessing the reliability of estimated parameters and to guide

future data collection. The ln K variance tomogram (Fig. 4.2f) reveals the uncertainty
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in the K tomogram, where the lowest variance values are shown where data is available

and near the bottom boundary where drawdown responses are strongest. Uncertainty is

highest where data are not available and near the side and top constant head boundaries

where drawdowns are weakest.

Figs. 4.3a through 4.3e show the calibration scatterplots of the geological models and

those from SimSLE. We provide the corresponding linear model fit, a 45-degree line and R2

values on each subplot. It is quite evident that SimSLE yields the best calibration result

(Fig. 4.3e) with the smallest bias and a least amount of scatter resulting in the highest R2

value among all subplots. The main reason is that the highly parameterized geostatistical

model has a larger degree of freedom to adjust the pressure head data than the zonation-

based geological models. Fig. 4.3 also shows that the geological model GEO-GOOD (Fig.

4.3a) has a slightly better fit than the poor models, and the simplified model GEO-POOR2

(Fig. 4.3d) has the worst fit due to lower degree of freedom, indicated by the R2 values

increasing from 0.91 to 0.98 for GEO-POOR2 and GEO-GOOD, respectively. Surprisingly,

we find that the poor geological models yield quite good calibration results in current cases

where only several K values are adjusted (18 for GEO-POOR1 and 5 for GEO-POOR2 )

to compensate for structural errors (Refsgaard et al., 2012). However, this does not mean

that the calibrated results are reliable and that the K values may be very different from

estimates that we obtain locally. Moreover, this does not necessarily mean that the well

calibrated poor geological model will perform well in terms of model validation.

We obtained a more quantitative assessment of the calibration results through the

calculation of the L1 and L2 norms. Fig. B2 in the Supplementary Information section

summarizes these results for each pumping test indicated by its port number. We also

computed an average value of both norms and ranked the models. The cells of each entry
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in the table were color-coded to facilitate an easier comparison of different entries. In

particular, we assigned the minimum value in the table a color of dark green, the maximum

value a color of dark red, and the 60-percentile value a color of yellow. We utilized a

60-percentile value instead of the median to enhance the contrast in color. These results

revealed that SimSLE yields the smallest discrepancy between the simulated and measured

drawdowns. In addition, results revealed that SimSLE yields the most consistent results

with lowest L1 and L2 values across all eight pumping tests. As seen from Fig. B3, GEO-

GOOD ranked second in terms of L1 and L2, GEO-POOR1 ranked third in terms of L1

and fourth in terms of L2, GEO-POOR3 ranked fourth in terms of L1 and third in terms

of L2, and GEO-POOR2 ranked fifth in terms of L1 and L2. It appears that the simplest

model (GEO-POOR2) ranked last and the completely wrong model (GEO-POOR3 ) ranked

somewhat better throughout all eight pumping tests because there were more adjustable

parameters for GEO-POOR3 to better fit the observed pressure head data.

We also assessed the groundwater models by simulating 16 additional pumping tests

not used in the calibration effort and comparing the simulated to observed drawdowns.

Fig. 4.4 shows the scatterplot of observed versus simulated drawdowns, while Fig. B3 in

the Supplementary Information section shows the corresponding L1 and L2 norms. Exami-

nation of both Figs. 4.4 and B3 reveals that SimSLE performs the best. We also note that

SimSLE provides the most consistent L1 and L2 norms for the 16 pumping tests, while

these values are less consistent for all geological models. With a high density of monitoring

ports and availability of a large number of pumping tests, the estimated K tomogram (Fig.

4.2e) obtained through SimSLE performs markedly better than the best geological model

(GEO-GOOD) for both calibration and validation, which is consistent with the findings in

Illman et al. (2015).

60



CHAPTER 4. GEOLOGICAL DATA FOR HT: SANDBOX STUDY

Figure 4.5: Contour plots of different K tomograms for different models (Case 2) using
four pumping tests and 16 observation ports for calibration: (a) GEO-GOOD ; (b) GEO-
POOR1 ; (c) GEO-POOR2 ; (d) GEO-POOR3 ; and (e) SimSLE.

61



CHAPTER 4. GEOLOGICAL DATA FOR HT: SANDBOX STUDY

4.3.2 Case 2: 4 pumping tests and 15 observation ports

One important aspect related to the potential value of including geological data into HT

data interpretation is its calibration and validation performances when a limited number

of pumping tests and corresponding monitoring data are available. In order to examine

this issue, we reduce the data used for calibration from eight pumping tests to four, and

only use observation data from 15 ports placed along two borehole columns instead of the

48 ports for calibration, while we simulated the 16 validation pumping tests and assessed

the results at all 48 observation ports. The geological models shown in Figs. 4.1b through

4.1e remain the same and are constructed using core data from six columns of wells as

described earlier.

Figs. 4.5a through 4.5d show contour plots of K tomograms through the calibration of

each geological model. Comparing to the K tomograms shown in Figs. 4.2a through 4.2d

for Case 1 with a larger number of pumping tests and monitoring ports, the patterns of high

and low K zones for all geological models are quite different, especially for the geological

model GEO-POOR3 (Fig. 4.5d). In contrast, while there are some differences in the K

values, the overall pattern for the GEO-GOOD model for Case 1 (Fig. 4.2a) and Case 2

(Fig. 4.5a) are quite similar. This suggests that a smaller number of pumping tests and a

limited number of monitoring points do not significantly impact the recovered tomograms

when the geological model is accurate. Hence, the collection of accurate geological data is

of paramount importance in obtaining good calibration results.

Figs. 4.5e and 4.5f show the estimated K tomogram using SimSLE and its correspond-

ing ln K variance. Compared to Case 1, there is a great loss of detail in the K tomogram

for Case 2, while the general K distribution shown in Fig. 4.5e is still similar to that

shown in Fig. 4.2e. Additionally, there seems to be a greater loss of heterogeneity in the
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Figure 4.6: Scatterplots of observed versus simulated drawdowns (Case 2) using four pump-
ing tests and 16 observation ports for model calibration. (a) - (d) for four calibrated
geological models with different descriptions of stratigraphy and (e) SimSLE.

area outside the two well columns than in between as shown in Fig. 4.5e compared to

Fig. 4.2e. The ln K variance (Fig. 4.5f) is higher near the left and right boundaries in

comparison to Fig. 4.2f.

The calibration results of Case 2 are also evaluated using scatterplots (Fig. 4.6) as

well as L1 and L2 norms (Fig. B4 in the Supplementary Information section). Based on

these Figures, it is evident that statistics show similar results to Case 1. It is interesting

to note that the calibration scatterplots from Case 2 (Fig. 4.6) improve in comparison

to Case 1 (Fig. 4.4), due to the fact that considerably less data are used for calibration,

while a consistent number of unknowns are estimated for each geological model in Cases 1

and 2. In terms of L1 and L2 norms, the ranking for Case 2 remains unchanged compared

to Case 1. That is, SimSLE ranked 1, while the rankings of the geological models are
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given between the parentheses: GEO-GOOD (2), GEO-POOR1 (3), GEO-POOR3 (4),

and GEO-POOR2 (5). As explained in Case 1, GEO-POOR2 ranks last due to the fact

that only five layers are calibrated, while the other geological models have 18 layers.

To further examine the model calibration results of the geological models for both

Cases 1 and 2, we plotted the K values and their corresponding 95% confidence intervals

in Fig. 4.7 with their values provided in the Supplementary Information section (Table B2

for Case 1 and Table B3 for Case 2). The 95% confidence interval is calculated based on

the assumption that parameters are normally distributed and on the basis of the linearity

assumption used to derive the equations for parameter improvement as implemented in

each PEST optimization iteration.

Examination of Fig. 4.7 reveals that estimated K values for some layers have narrow

confidence intervals, while others have large intervals. For example, estimated K values

from layers 1 through 3 of the GEO-GOOD model for Case 2, layer 6 of the GEO-POOR1

for both Cases 1 and 2, and layers 8 and 13 through 18 for GEO-POOR3 in Case 2

all exhibit large confidence intervals. The large confidence intervals are mainly due to

the stratigraphy being inaccurate and because only few observation ports are available in

those layers. Meanwhile, in addition to the varying values between Cases 1 and 2, there

are noticeable increases in the confidence intervals of the K estimates for each layer when

the amount of data used for calibration is reduced. This is especially true for layer 3 in

the GEO-GOOD model and layer 6 in GEO-POOR1 in which no observation ports are

available, and for K estimates in layer 7, 8, 13, 16 and 17 of the geological model GEO-

POOR3.

These results reveal that Case 2 calibration scatterplots for geological models have

improved compared to Case 1 in terms of quantitative metrics (R2, L1 and L2), due to the
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Figure 4.7: Estimated K values and corresponding 95% confidence intervals through PEST
calibrations of Case 1 and Case 2 for different geological models: (a) GEO-GOOD ; (b)
GEO-POOR1 ; (c) GEO-POOR2 ; (d) GEO-POOR3. In (c), same K values are used for
merged layers. Values are provided in Supplementary Tables B2 and B3.
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Figure 4.8: Scatterplots of observed versus simulated drawdowns (Case 2) for the 16 pump-
ing tests at the 48 observation ports used for model validation. (a) - (d) for four calibrated
geological models with different descriptions of stratigraphy and (e) SimSLE.

use of less data in Case 2 to be fitted by these models. Meanwhile, this also means that

in Case 2, less data is used to constrain the inverse model, leading to much wider 95%

confidence intervals, suggesting larger uncertainty of estimated values.

Model validation results are discussed next. Fig. 4.8 shows the validation scatterplots,

while Fig. B5 in the Supplementary Information section summarizes the L1 and L2 norms.

Examination of these results reveals that the gaps between SimSLE and the GEO-GOOD,

GEO-POOR1 and GEO-POOR2 models are now much narrower than in Case 1. For

example, in terms of the scatterplot (Fig. 4.8), results from SimSLE (Fig. 4.8e) look

slightly better with minimal bias in comparison to GEO-GOOD (Fig. 4.8a). On the other

hand, the L1 and L2 norms are very close.

The validation results from the other geological modeling results are about the same
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as in Case 1. However, GEO-POOR3 yielded prediction results that are closer to those

of GEO-POOR2, which yielded the worst prediction for Case 1 because of the simplified

parameterization. We also see from Fig. 4.7d that there are more changes in K estimates

for GEO-POOR3 in Case 2 compared to Case 1, suggesting that the estimates as well

as the quality of drawdown predictions in Fig. 4.8 are more likely to be affected by the

reduced amount of data for the geological models based on the totally wrong description

of stratigraphy. In this regard, proper regularizations may be important and imposed for

inverse problems (Doherty, 2003; Carrera et al., 2005) to yield more stable estimates.

Alternatively, using a simplified model with merged layers of similar aquifer material may

be more reliable due to more stable K estimates (Fig. 4.7c). The main reason for this is

that, as K values are assumed to be isotropic in our study, the GEO-POOR2 model merged

similar layer material resulting in the estimation of only five variables, while the other three

geological models required the estimation of 18 variables. The lower-complexity geological

model GEO-POOR2 will be more likely to be justified than the higher-complexity models

with a given amount of observed pressure data (Schöniger et al., 2015), thus leading to

more consistent estimates of K values as shown in Fig. 4.7.

Results from Cases 1 and 2 collectively suggest that when few pumping tests and mon-

itoring data are available, accurate geological data become increasingly important for ob-

taining good results of predicting independent pumping tests not used in calibration effort.

Furthermore, the compensational effect of estimated parameters for the model structure

errors after calibration is likely to be even more important when the biased model param-

eter values are used to predict variables beyond the calibration base (e.g., to predict travel

time or concentrations), as discussed in Refsgaard et al. (2012).
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Figure 4.9: Estimated K tomograms obtained via SimSLE inversions (Case 3) using un-
calibrated geological models as prior distributions: (a) GEO-GOOD ; (b) GEO-POOR1 ;
(c) GEO-POOR2 ; (d) GEO-POOR3.

4.3.3 Case 3: Geostatistical inversions with different prior K

distributions

Geostatistical inversions of HT data using SimSLE have proven to be more accurate in

drawdown predictions than the perfectly known layer-based geological model in Illman

et al. (2015). Previously, the geostatistical inversions started with an homogeneous param-

eter field obtained from available core information or geometric mean values estimated from

pumping test data. Using different initial values of K for inversion, Yeh and Liu (2000)

found minor impacts on the mean value of the estimated parameter field, and the pattern

of heterogeneous K distribution remained nearly the same. However, this was for a case

with a large number of pumping tests and monitoring data available for inverse modeling.

At actual field sites, such high-density data are rarely, if ever available. Previous studies

(Berg and Illman, 2011b; Castagna et al., 2011; Mao et al., 2013c; Illman et al., 2015; Zhao

et al., 2015) have shown that residual variances were higher away from available drawdown
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data.

Due to the limited number of pumping tests and lack of high-density monitoring net-

works at typical field sites, it would be natural to ask whether other data sets could be used

to augment monitoring well data. At many sites (e.g. Sudicky, 1986; Boggs et al., 1992;

Clement et al., 2006; Sudicky et al., 2010; Alexander et al., 2011), geological data, as well as

the seismic or ground penetrating radar data could be quite abundant that could provide

structural information of subsurface units. Therefore, in order to examine the potential

impact of using geological models constructed from borehole data as prior distributions

for geostatistical inversions, we utilized uncalibrated geological models (Figs. 4.1b – 4.1e)

populated with permeameter K values of each sand type, as shown in Table B1 as initial

values for geostatistical inverse modeling with SimSLE. All other initial inputs (e.g., σ2
lnK ,

λ) and data utilized for inverse modeling were the same as in Case 2 described earlier. The

inverse models were run on the same PC and the runtimes were very close to the geostatis-

tical inverse model run for Case 2 with a homogeneous K value as a prior distribution. In

order to check whether Case 3 inverse model runs have converged (Xiang et al., 2009), we

plotted the changes in L2 norms obtained from SimSLE runs as a function of the number

of iterations (Fig. B8). These results show that all four Case 3 inversions have reached

convergence. Fig. B8 also includes the L2 norms from the geostatistical inversion run from

Case 2, which reveals that the calibration process can be affected by the prior distributions

during the early iterations, but then gradually stabilizes after 100 iterations suggesting the

convergence of SimSLE (Xiang et al., 2009).

The estimated K tomograms obtained from the simultaneous calibrations of four pump-

ing tests (same data as Case 2) using permeameter K value as prior distributions are plot-

ted in Figs. 4.9a through 4.9d. As shown in Figs. 4.9a through 4.9d, the estimated K
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Figure 4.10: Calibration scatterplots of SimSLE inversions (Case 3) using uncalibrated
geological models as prior distributions: (a) GEO-GOOD ; (b) GEO-POOR1 ; (c) GEO-
POOR2 ; (d) GEO-POOR3.
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tomograms are similar in terms of the patterns of high and low K zones, and also sim-

ilar to the K tomogram obtained for Cases 2 (Fig. 4.5e) obtained with a homogeneous

prior distribution, due to using same datasets for calibration. However, the shapes as well

as the continuity of these high and low value areas are different from each other. The K

tomograms from Case 3 maintain more geological features from the stratigraphy of the

deterministic geological models (Figs. 4.2a through 4.2d). These features are obvious for

the areas around the boundary and between two well columns, where no monitoring ports

are available, especially in Figs. 4.9a, 4.9b, and 4.9d for which the three different 18-layer

geological models are used as prior distributions. We also calculate the spatial variances

of the recovered K tomograms shown in Figures 4.5e and 4.9a-4.9d. Results show that K

tomograms of geostatistical inversion models in Case 3 have slightly larger spatial vari-

ances (Figure 4.9a: σ2
lnK = 0.89; Figure 4.9b: σ2

lnK = 0.88; Figure 4.9d: σ2
lnK = 0.87) than

the geostatistical inversion model starting with a homogeneous prior distribution in Case

2 (Figure 4.5e: σ2
lnK= 0.75), except for the geostatistical model starting with the 5-layer

geological model GEO-POOR2 (Figure 4.9c: σ2
lnK = 0.74). The increase in the variance

reflects the heterogeneity information provided to the inverse model through the use of

available geological data as prior information, compared to the heterogeneity information

obtained only from pressure head data.

We additionally compared the observed and simulated drawdowns for model calibration

in Figs. 4.10 and Fig. B6, and model validation in Figs. 4.11 and Fig. B7. In Figs. B6 and

B7, we also included the geostatistical inversion results from Case 2, marked as SimSLE∗,

for comparison purposes.

Generally, the SimSLE results using heterogeneous prior K distributions compare fa-

vorably among each other and also to the case using an homogeneous prior distribution, in
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Figure 4.11: Validation scatterplots of SimSLE inversions (Case 3) using uncalibrated
geological models as prior distributions: (a) GEO-GOOD ; (b) GEO-POOR1 ; (c) GEO-
POOR2 ; (d) GEO-POOR3.
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terms of quantitative metrics (R2, L1 and L2) for calibration. When we use the estimated

K tomograms to predict drawdowns for individual validation tests, the SimSLE cases with

prior information of geology yield minor, but consistent improvements compared to the

SimSLE case with homogeneous prior distribution. Most notably, geological structures are

visible in these tomograms that are not in the homogeneous initial prior distribution case

(Fig. 4.2e). It should be recognized that real geological structures are never known and we

used the geological models derived from the same wells used for hydraulic testing in our

sandbox analysis. It is of interest to find that the improvements do not seem to impact

drawdown predictions of 16 pumping tests significantly, which on one hand, may be due to

the diffusive propagation of drawdown perturbation and, on the other hand, to the non-

uniqueness of the inverse problem as suggested by Bohling and Butler (2010) through the

pilot point approach that indistinguishable drawdown responses could be reproduced by

hydraulic parameter fields that vary significantly from each other. However, transport pre-

dictions may be different as solute transport is affected more significantly by the presence of

layer boundaries and fine scale heterogeneities present within layers defined by geologists.

However, further investigation of this issue is beyond the scope of this manuscript.

Overall, our sandbox study indicates that improvements to HT analysis are obtained

by including geological data as prior distributions for geostatistical inverse models when

abundant drawdown data and pumping tests are not available, as clearly shown in Figs.

4.11 and B7.

73



On the Importance of Geological Data for
Three-dimensional Steady-State Hydraulic
Tomography Analysis at a Highly
Heterogeneous Aquifer-Aquitard System

The laboratory study showed that geological data can be important in HT analysis. How-

ever, the laboratory studies are conducted under controlled conditions. Thus, this part of

the thesis examines the the importance of geological data for HT at field conditions. In

total, 15 pumping tests have been conducted at the NCRS and utilized for this study.

Nine pumping tests have been conducted by Berg and Illman (2011b) and six tests are

conducted by myself for this study.

5.1 Experimental Setup

5.1.1 Site Description

The collection of experimental data took place at the North Campus Research Site (NCRS)

located on the University of Waterloo (UW) campus, in Waterloo, Ontario, Canada. Pre-

vious Quaternary geology investigations showed that the main deposits in the study area

belong to the Waterloo Moraine (Farvolden et al., 1987; Karrow, 1979, 1993; Sebol, 2000),

which consists of multiple glacial till layers resulting from the advance and retreat of ice

lobes. During the 1970s, a 30-m long borehole was drilled to investigate the geology beneath
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the UW campus. The continuous core samples revealed sequentially deposited tills, from

younger to older age, as the Tavistock Till, Maryhill Till and Catfish Creek Till (Karrow,

1979; Sebol, 2000). In our study area, the surface till is recognized as the Maryhill Till,

composed mainly of silty clay accompanied with few stones (Karrow, 1979). The younger

Tavistock Till only exists rarely and mainly as erosional remnants. Underlying the Maryhill

Till is the Catfish Creek Till, which consists of stiff stony silt to sandy silt and is considered

to be extremely dense. This till is commonly hard and difficult to drill, thus is referred as

the confining unit forming the base of our model. Additional information on the geology

of the area could be found in (Karrow, 1993).

During our previous work at the NCRS (Alexander et al., 2011; Berg and Illman, 2011b,

2013), a nine-well pumping and observation network was developed for HT studies in a 15

m by 15 m area (Figure 5.1a and 5.1b). Four of these wells are continuous multichannel

tubing (CMT) observation wells with 10-cm long screens, shown in Figure 5.1b as CMT1,

CMT2, CMT3, and CMT4, while the other five are pumping wells (PW1, PW2, PW3,

PW4, and PW5). Three wells (PW1, PW3, and PW5) are screened at multiple locations

at one-meter intervals. The well screen lengths in these wells are one meter. The other two

pumping wells (PW2 and PW4) are nested wells, each including three wells extending to

different depths and with one-meter screens.

The site has been investigated through pumping tests and other traditional approaches

(i.e., core sampling, permeameter tests, grain size analysis, slug tests) by Alexander et al.

(2011), Berg and Illman (2011b) as well as through this study. Core samples have been

analyzed for all four CMT wells and five pumping wells. Soil core sample analyses from

the previous and current studies reveal that the main aquifer layers are between seven and

13 meters below ground surface and that this aquifer zone consists of two high K units
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Figure 5.1: (a) Plan view showing well locations at the NCRS situated on the University
of Waterloo (UW) campus. Solid filled circles indicate the locations where only geological
data are available. Dashed lines indicate four geological cross sections: A-A’, B-B’, C-C’
and D-D’ provided in Figure 5.2. (b) Well screen locations shown for wells clustering in
the inner 15 by 15 meter square area where pumping tests are conducted [from (Berg and
Illman, 2011b)].

separated by a discontinuous low K unit. Drawdown data from pumping tests indicate that

the permeable unit behaves as a semi-confined aquifer in our study area. Investigations

by Alexander et al. (2011) suggested that the low K unit separating the two aquifers is

discontinuous and is known to provide hydraulic connections.

5.1.2 Pumping Test Data

Thus far, a total of 15 pumping tests have been conducted at the NCRS and their details

are summarized in Table 5.1. Nine pumping tests (PW1-3, PW1-4, PW1-5, PW3-3, PW3-

4, PW4-3, PW5-3, PW5-4, and PW5-5) have been conducted by Berg and Illman (2011b)

of which four tests (PW1-3, PW3-3, PW4-3, and PW5-3) were used for THT Berg and

Illman (2011b) and SSHT analyses Berg and Illman (2013). During the fall seasons of 2013

and 2014, additional pumping and injection tests were conducted at wells PW1-1, PW1-6,

PW1-7, PW2-3, PW3-1, and PW5-1, to obtain a more complete hydraulic response data
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set for the site.

For this study, we utilized data from 14 pumping/injection tests to perform the SSHT

study at the NCRS. During the selection of data for model calibration and validation, only

the late time pressure heads from ports indicating steady or quasi-steady state are selected.

A quasi-steady state condition is determined from the observed time-drawdown curve in

which no significant change in drawdown with time is observed. These quasi-steady state

data are mainly obtained from pumping tests that have short pumping/injection durations,

such as PW1-1 and PW3-1 as shown in Table 5.1.

Among the selected 14 tests, seven pumping tests (PW1-1, PW1-4, PW1-6, PW2-3,

PW3-3, PW4-3, and PW5-3) are used for calibration, while the other seven pumping tests

(PW1-3, PW1-5, PW1-7, PW3-1, PW3-4, and PW5-5) are selected for model validation

purposes. Pumping tests used for calibration are widely spread over the top and bottom

pumping ports, as well as four corner wells in the central 15 m by 15 m pumping and

observation area to provide more spatially different flow information for the SSHT analysis.

In total, 195 pressure head data are selected for model calibration and 176 head data are

used for model validation.

5.1.3 Construction of Geological Models

In order to investigate the value of geological model for SSHT data interpretation, borehole

logs of 18 pumping and observation wells are summarized from previous work (Sebol, 2000;

Alexander et al., 2011) and complied for the construction of the geological model. Figure

5.1a shows the distributions of wells from which geological information are obtained. In

total, we used borehole logs from 18 pumping and observation wells completed to different

depths, ranging from six meters to 18 meters below ground surface. Based on the soil
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Figure 5.2: Cross sections of the geological model: A-A’, B-B’, C-C’ and D-D’, at the
NCRS. Numbers in cross section C-C’ and D-D’ indicate the 19 layers of different materials:
Clay (1, 4, 8, 12, 16, 18); Silt and Clay (17, 19); Silt (2, 7, 10, 14); Sandy Silt (6, 9, 13);
Sand and Silt (5); Sand (3, 11); Sand and Gravel (15). Screened locations are shown on
wells depicted in cross sections C-C’ and D-D’.
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Table 5.1: Summary of Pumping/Injection Tests Performed at the North Campus
Research Site (NCRS) on the University of Waterloo (UW) campus.

Well Location Pumping/Injection Rate (L/min) Duration (hour) Type

PW1-1 1.89 4.5 Injection
PW1-3 10.5 6.0 Pumping
PW1-4 6.30 8.5 Pumping
PW1-5 4.40 22.5 Pumping
PW1-6 0.95 6.5 Pumping
PW1-7 1.05 26.5 Pumping
PW2-3 1.91 7.0 Pumping
PW3-1 0.94 4.4 Injection
PW3-3 2.10 22.0 Pumping
PW3-4 1.50 22.0 Pumping
PW4-3 30.20 22.5 Pumping
PW5-1 0.85 4.5 Injection
PW5-3 7.80 22.0 Pumping
PW5-4 7.80 8.5 Pumping
PW5-5 8.10 22.0 Pumping

types and corresponding depth information, 19 different layers representing seven different

material types are defined along all boreholes.

The layer information between boreholes at different locations are interpolated using

the commercial software Leapfrog Hydro (ARANZ Geo Limited), to construct a three-

dimensional geological model with dimensions of 70m× 70m× 17m. The underlying algo-

rithm in Leapfrog Hydro is the Fast Radial Basis Function method, which is an effective

way of implementing dual kriging that interpolates the stratigraphy between boreholes

based on the known geological information from available wells. Four cross-sections (A-A’,

B-B’, C-C’, and D-D’, in Figure 1a) are extracted along different directions among the

central nine wells to illustrate the interpolated geological layers, as shown in Figure 5.2.

Moreover, the locations of wells and screens are also presented for cross-sections C-C’ and

D-D’.

Based on the layering and soil types, two geological models with different numbers of
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layers are prepared for model calibration. One model consists of five layers, while the other

more complex model includes all 19 layers. The five-layer geological model is constructed

by merging some of the layers with similar material, specifically layers 1 through 10 as layer

1∗, layers 12 through 14 as layer 12∗, and layers 16 through 19 as layer 16∗, which are mainly

composed of relatively low K clay and silt. Layers 11 and 15 are treated as two separate

zones for the highly permeable nature of sand or sand and gravel. The five-layer model

is constructed as a simplified model that only reflects the main high and low permeable

zones. On the other hand, the 19-layer geological model is used to take full advantage of the

interpolated stratigraphy information. While accurate geological data from 18 boreholes

are available for the site, we note that geological information could contain various errors

as discussed in a laboratory sandbox study of similar issues by Zhao et al. (2016). In

particular, Zhao et al. (2016) evaluated the impact of utilizing geological models of varying

accuracies for HT data interpretations, since the geology was perfectly known. However,

in this study, such perfect knowledge of geological information is not available. Therefore,

we instead examine the impacts of utilizing two geological models of different resolutions

to see whether it improves the HT analyses of pumping test data.

5.2 Description of Inverse Groundwater Models

Three different parameterizations were considered for inverting the HT data in this study:

(1) an effective parameter approach by treating the model as homogeneous, (2) a zonation

approach based on geological stratigraphy, and (3) a highly parameterized geostatistical

approach.

In order to simulate groundwater flow for both forward and inverse modeling, a three-

dimensional domain of 70m×70m×17m was discretized into 31,713 computational elements
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Figure 5.3: Scatterplots of observed versus simulated drawdowns for model calibrations
using seven pumping tests for the: (a) isotropic effective parameter model; (b) anisotropic
effective parameter model; (c) geological model with five layers; (d) geological model with
19 layers; (e) SimSLE starting with K = 8.0×10−6 m/s as prior mean; (f) SimSLE using the
calibrated five-layer geological model as prior distribution; (g) SimSLE using the calibrated
19-layer geological model as prior distribution; and (h) SimSLE using the uncalibrated 19-
layer geological model assigned with permeameter K values as prior distribution. The solid
line is a 1:1 line indicating a perfect match. The dash line is the best fit line. The linear
fit results are also included on each plot.
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with 34,816 nodes. This grid is similar to the one used previously by Berg and Illman

(2011b, 2013, 2015) in terms of the general layout, but has a slightly larger simulation

domain to include more wells with known borehole data. The elements are gradually refined

from the boundary areas to the vicinity of central well locations, decreasing from grid block

sizes of 5m × 5m × 0.5m to 0.5m × 0.5m × 0.5m. The computational grid is provided as

Figure C1 in the Supplementary Information section.

All steady-state groundwater flow simulations are conducted using the finite element

code MMOC3 (Yeh et al., 1993), which simulates groundwater flow and solute transport

under variably saturated conditions. For boundary conditions, the top and bottom faces

are defined as no-flow boundaries, while the other four faces are kept as constant head

boundaries, as in the previous studies by Berg and Illman (2011b, 2013).

5.2.1 Case 1: Effective Parameter Approach

We considered two cases (Case 1a and Case 1b) in the effective parameter approach. Case

1a treats the aquifer to be isotropic where we estimate only Keff and Case 1b treats the

entire simulation domain to be anisotropic, for which we estimate the effective Kx, Ky

and Kz. Previously, Berg and Illman (2015) compared the performance of this approach to

the geological modelling approach. However, data from only individual pumping tests were

used for calibration. Here, we simultaneously calibrated a total number of 195 pressure

heads selected from seven pumping tests. Parameter estimations were performed by cou-

pling the forward simulation code MMOC3 (Yeh et al., 1993) and the model-independent

parameter estimation code PEST (Doherty, 2005), and pressure head data selected from

seven pumping tests were simultaneously calibrated. An initial value of 8.0×10−6 m/s with

a minimum bound of 1.0 × 10−9 m/s and a maximum bound of 1.0 × 100 m/s were used
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Figure 5.4: Estimated K fields from the inversion of seven pumping tests for: (a) the
geological model with five layers; (b) the geological model with 19 layers; (c) SimSLE
starting with a uniform K = 8.0 × 10−6 m/s; (d) SimSLE using the calibrated five-layer
geological model as prior distribution; e) SimSLE using the calibrated 19-layer geological
model as prior distribution; (f) SimSLE using the uncalibrated 19-layer geological model
assigned with permeameter test K values for each layer as prior distribution.
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for PEST calibration. The initial value that we chose is the geometric mean of individual

K estimates obtained by matching the transient drawdown curve at each observation port

during pumping at PW1-3 well by Berg and Illman (2011b).

5.2.2 Case 2: Geological Zonation Approach

As introduced in the previous section, two geological models were constructed and cali-

brated: the 5-layer (Case 2a) and the 19-layer geological (Case 2b) models. Both geological

models were discretized using the same grid as in the other cases. K values of the elements

located in the same layer were treated to be uniform and isotropic. We calibrated both

geological models automatically also by coupling MMOC3 (Yeh et al., 1993)) and PEST

(Doherty, 2005).

The initial K value for calibrating the 5-layer geological model was also set as 8.0×10−6

m/s with a minimum bound of 1.0 × 10−9 m/s and a maximum bound of 1.0 × 100 m/s.

While for the 19-layer model, the estimated K values of Case 2a are used as initial values

for PEST calibration, in order to speed up the convergence of the PEST run. Results have

revealed that the inversion takes approximately 10-hours less when the 5-layer model results

are used as the input for the 19-layer model. We also found that this leads to improved

correspondence of the estimated K values with available high resolution permeameter K

data especially in the lower part of the simulation domain. The main reason for this is the

difficulty in obtaining enough drawdown data from low K clay/silt and clay layers located

at the bottom of the simulation domain, while pumping from wells located in the top layers

(PW1-1, PW1-3, PW3-1, etc.) of the aquifer-aquitard system at the NCRS.
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Figure 5.5: Corresponding residual variances of estimated ln K fields from the inversion of
seven pumping tests for (a) Case 3a: SimSLE starting with an uniform K = 8.0×10−6 m/s;
(b) Case 3b: SimSLE using the calibrated 5-layer geological model as prior distribution;
(c) Case 3c: SimSLE using the calibrated 19-layer geological model as prior distribution;
and (d) Case 3d: SimSLE using the uncalibrated 19-layer geological model assigned with
permeameter test K values for each layer as prior distribution.
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5.2.3 Case 3: Geostatistical Inversion Approach

The geostatistical inverse modeling of the same pumping test data as in the previous two

cases were conducted using the Simultaneous Successive Linear Estimator (SimSLE) code

(Xiang et al., 2009), which inverts all the data sets simultaneously, thus providing more

constraints to the inverse problem (Xiang et al., 2009) compared to when the data are

sequentially included in the inverse code (Yeh and Liu, 2000; Berg and Illman, 2013). In

SimSLE, natural log values of a hydraulic conductivity (i.e., ln K ) in the heterogeneous

field are treated as a stochastic process, and the stochastic conditional means of these

parameters are used for groundwater flow modelling in the aquifer.

The inversion process starts with cokriging using available measurements of hydraulic

property and pressure heads to produce the conditional property field, with the assump-

tions that the unconditional means, spatial covariance functions and structure parameters

(correlation scales λx, λy, λz and the variance, σ2
lnK) of hydraulic parameters are known.

In this study, the exponential covariance model is adopted for the estimated parameter

field. The initial guesses for correlation scales of the K field are set as λx = λy = 4m, and

λz = 0.5m, and the variance is set to be σ2
lnK) = 5.0, which are the values used by Berg

and Illman (2011b). The cokriged parameter field is then iteratively updated by SimSLE

to minimize the differences between observed and simulated heads.

Four scenarios (Case 3a, 3b, 3c and 3d) are considered for the geostatistical inversion

approach to meet our study purposes. In Case 3a, the inversion starts with a uniform

mean field of K = 8.0 × 10−6 m/s, which is the same as the initial K value used in

the effective parameter and geological zonation approaches. On the other hand, for the

other three cases (Cases 3b – 3d), geologic information is used as prior knowledge for the

inversion. Specifically, Case 3b uses the estimated K values from Case 2a as the prior mean
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distribution; Case 3c uses the K estimates from Case 2b as the prior mean distribution;

and Case 3d uses the 19-layer geological model (Case 2b) populated with permeameter

tested K values as the prior mean distribution. In Case 3d, the corresponding K values

for each layer are calculated as the geometric mean of soil sample measurements located

in the same layer and these values are listed in Table 5.3. In Table 5.3, permeameter test

K values of layer 5 and layer 19 are estimated to be the same as the values of layers 6 and

17, respectively, due to the fact that no core samples are available for layers 5 and 19, but

having similar soil material with layer 6 and 17.

Through Case 3b, 3c and 3d, we test the impact of using both calibrated geological

models and permeameter test K values as prior mean K distributions for the geostatistical

inversion approach. Thus, the findings of Case 3b and 3c would be more useful for practi-

tioners than Case 3d, since the collection of high resolution permeameter test results will

require considerable efforts.

5.3 Model Calibration

Inverse modeling of steady state data from seven pumping tests were performed on the

same PC with a quad-core CPU and 24 GB of RAM for the effective parameter and

geological zonation approaches. In terms of computational time, Case 1a took less than 15

minutes and Case 1b took approximately one hour. Similarly, Case 2a took about 4.5 hours

to estimate five unknown values, while Case 2b took about 40 hours for 19 unknown K

values. The long computational time is a direct result of running both forward simulation

and PEST optimization sequentially using a single CPU, which could be greatly reduced

if a parallel computing environment is implemented. On the other hand, geostatistical

inversions were performed on a PC-cluster using 16 processors with 192 GB of RAM. Due
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(a) PW wells

(b) CMT wells

Figure 5.6: Vertical log10K profiles along nine boreholes of (a) PW wells and (b) CMT
wells, for different calibration cases. Case 2a: the 5-layer geological model; Case 2b: the
19-layer geological model; Case 3a: SimSLE starting with an uniform K = 8.0 × 10−6

m/s; Case 3b: SimSLE using the calibrated 5-layer geological model as prior distribution;
Case 3c: SimSLE using the calibrated 19-layer geological model as prior distribution; and
Case 3d: SimSLE calibration case using the uncalibrated 19-layer model assigned with
permeameter test K values for each layer as prior distribution.
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to the highly parameterized nature of the model, geostatistical inversions took about two

hours for one SimSLE iteration, including time for both forward simulation and inverse

estimation of hydraulic parameters. In the current version of SimSLE, the inversion part

runs in parallel, but the forward model runs on a single CPU. Thus, the geostatistical

inversion approach took much longer than the other approaches, but all cases converged

within seven days.

To quantitatively assess the performance of model calibration and validation results

of all inversion models, the mean absolute error (L1) and mean square error (L2). The

calibration performances of all models were first evaluated by comparing the linear fit

between the simulated and observed pressure heads and overall L1 and L2 norms for seven

pumping tests. Figure C2 in the Supplementary Information section summarizes the L1 and

L2 norms of model calibrations as well as the corresponding ranks for all cases. The cells

of each entry in the table were color-coded to facilitate an easier comparison of different

entries. In particular, we assigned the minimum value in the table a color of green, the

maximum value a color of red, and the 60-percentile value a color of yellow. We utilized a

60-percentile value instead of the median to enhance the contrast in color.

5.3.1 Case 1 Results

The simultaneous calibration of the effective parameter model with data from seven pump-

ing tests for the isotropic Case 1a yielded an estimated Keff of 8.4 × 10−6 m/s and a

corresponding uncertainty indicated by the 95% confidence interval, which has an upper

limit of 9.8 × 10−6m/s and lower limit of 7.2 × 10−6 m/s. For the anisotropic Case 1b,

Kx was estimated as 1.04× 10−5 m/s with an upper limit of 1.54× 10−5 m/s and a lower

limit of 7.02 × 10−6 m/s, and Ky was estimated as 1.19 × 10−5 m/s with an upper limit
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of 1.68 × 10−5 m/s and a lower limit of 8.36 × 10−6 m/s. The effective K values in the

horizontal directions x and y are similar. The value of Kz was two-orders of magnitude

lower than Kx and Ky, estimated as 6.37 × 10−7 m/s with an upper limit of 1.08 × 10−6

m/s and a lower limit of 3.75× 10−7 m/s.

When treating the heterogeneous aquifer to be uniform, the estimated parameters are

found to be dependent on observation as well as pumping locations (e.g. Wu et al., 2005;

Straface et al., 2007; Wen et al., 2010; Huang et al., 2011; Sun et al., 2013; Berg and

Illman, 2013, 2015). The previous THT study by Berg and Illman (2015) found that the

effective parameters varied depending on the location of pumping tests when estimating

these values for each pumping test at NCRS. Therefore, the estimated effective K values

from Case 1a and 1b should be more representative of the test area in an average sense,

since the effective K values are estimated by simultaneously considering data from all seven

pumping tests.

Examination of the calibration scatterplots (Figure 5.3a) shows that, for Case 1a, the

linear fit has a slope of 0.36 and a coefficient of determination (R2) of 0.29 between sim-

ulated versus observed drawdowns. The linear fit from Case 1b improves when compared

to Case 1a, yielding a slope of 0.47 and a coefficient of determination (R2) of 0.40, when

treating the aquifer to be anisotropic.

In terms of the L1 and L2 norms, the calibration results of the effective parameter

model ranked at the bottom two (Figure C2): Case 1a ranked 8th and Case 1b ranked 7th.

We also notice that the L1 and L2 norms vary significantly from one test to another for

both cases. These findings suggest that, although it is possible to obtain relatively good

fits for some observation data points, overall, the effective parameter model cannot capture

the drawdown responses at the NCRS and the effective parameter cannot be deemed to be
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Table 5.2: Estimated K values and corresponding pos-
terior 95% confidence intervals for the 5-layer geological
model.

95% Confidence Intervals
Layer Estimated K (m/s) Lower limit Upper limit

1∗a 5.33×10−6 4.22×10−6 6.74×10−6

11 7.74×10−8 3.94×10−8 1.52×10−7

12∗b 5.12×10−6 4.47×10−7 5.87×10−5

15 6.38×10−5 4.63×10−5 8.78×10−5

16∗c 4.84×10−8 3.01×10−8 7.80×10−8

a Layer 1∗ is a merged layer of the original Layers 1 through 10;
b Layer 12∗ is a merged layer of the original Layers 12 through 14;
c Layer 16∗ is a merged layer of the original Layers 16 through 19.

representative of the site.

5.3.2 Case 2 Results

For this case, the simultaneous calibration of the 5-layer geological model (Case 2a) com-

pleted after 172 model calls. The drawdown scatterplot shows that the overall fit for the

5-layer geological model has a slope of 0.61 and a coefficient of determination (R2) of 0.56

between simulated and observed drawdowns (Figure 5.3c), which is better than the effec-

tive parameter cases (Figure 5.3a and 5.3b). The estimated K values and the corresponding

95% confidence intervals are listed in Table 5.2, while the estimated K distribution is pre-

sented in Figure 5.4a. Generally, the calibration of the 5-layer geological model yielded

the highest K value for the sand and gravel layer (layer 15) and the lowest K value for

the bottom merged layer 16∗, consisting of silt and clay layers (layer 16 through 19). K

estimates for merged layer 1∗ and 12∗ are close to the initial value of 8.0×10−6 m/s, which

may be the result of using a single layer for multiple soil types. In addition, the upper

sand layer (layer 11; Figure 5.2) known to have a high K value, was assigned a value of

7.74×10−8 m/s suggesting that the layer is a low K zone, which is inconsistent with known
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Figure 5.7: Scatterplots of observed versus simulated drawdowns for model validations
using seven pumping tests for the: (a) isotropic effective parameter model; (b) anisotropic
effective parameter model; (c) geological model with five layers; (d) geological model with
19 layers; (e) SimSLE starting with K = 8.0×10−6 m/s as prior mean; (f) SimSLE using the
calibrated five-layer geological model as prior distribution; (g) SimSLE using the calibrated
19-layer geological model as prior distribution; and (h) SimSLE using the uncalibrated 19-
layer geological model assigned with permeameter K values as prior distribution. The solid
line is a 1:1 line indicating a perfect match. The dash line is the best fit line. The linear
fit results are also included on each plot.
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geological information.

On the other hand, the calibration of the 19-layer model (Case 2b) took more than

800 model calls, due to the increased number of unknowns and for the reasons discussed

earlier. The linear model fit of the drawdown scatterplot showed an improvement over the

5-layer model, with an increased slope of 0.74, an increased R2 to 0.76, and lowered L1

and L2 norms (Figure C2). Examination of Figure C2 in the Supplementary Information

Section reveals that the calibration of the 5-layer geological model ranked 6th for both L1

and L2, while the calibration of the 19-layer geological model ranked 5th for both L1 and

L2. The estimated K values and corresponding 95% confidence intervals are listed in Table

5.3 and the corresponding K distribution is presented in Figure 5.4b.

Examination of Table 5.3 reveals that estimated K values for layers 3 and 5 have

significantly large 95% confidence intervals compared to those of the other layers. One

reason for this is that layers 3 and 5 only exist in narrow portions of the geological model and

also far from the pumping and observation wells, as shown in Figure 5.2, thus very few or no

observation data are available in these layers to provide the pressure head information for

model calibration. Similar results are found in Zhao et al. (2016) through their laboratory

sandbox study where the geological zonation information is perfectly known.

Comparing the results in Table 5.3 to Figure 5.4a, K estimates for the main sand

layers of the 19-layer model show some similarities to the 5-layer geological model, by

estimating a relatively high K value for Layer 15, while estimating a low K value for

Layer 11. Differences between the two geological models are obvious from Figure 5.4a and

5.4b. Firstly, more details about the interlayering of high and low permeability zones are

revealed in Case 2b for the upper part of domain than in Case 2a. Secondly, variations of

K estimates are introduced for low permeable layers (layer 16 to layer 19) at the bottom
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Table 5.3: Soil type, permeameter test K, estimated K values and corresponding posterior 95% confidence
interval limits for the 19-layer geological model.

95% Confidence Intervals
Layer Soil Type Permeameter Test K (m/s) Estimated K (m/s) Lower limit Upper limit

1 Clay 2.65×10−7 3.15×10−6 2.88×10−7 3.44×10−5

2 Silt 7.76×10−7 4.26×10−7 5.64×10−15 3.21×10+1

3 Sand 1.45×10−7 5.83×10−7 1.11×10−19 3.07×10+6

4 Clay 6.09×10−8 1.27×10−5 1.32×10−7 1.23×10−3

5 Sand and Silt 2.38×10−6a 8.51×10−8 8.41×10−31 8.60×10+15

6 sandy Silt 2.38×10−6 3.53×10−8 2.50×10−9 4.97×10−7

7 Silt 3.13×10−7 4.01×10−8 1.34×10−8 1.20×10−7

8 Clay 1.82×10−6 1.35×10−5 2.86×10−6 6.36×10−5

9 sandy Silt 5.04×10−6 5.40×10−5 2.14×10−5 1.36×10−4

10 Silt 7.47×10−6 2.34×10−5 4.50×10−6 1.22×10−4

11 Sand 1.32×10−6 1.05×10−7 4.90×10−8 2.23×10−7

12 Clay 3.74×10−7 3.66×10−8 5.54×10−9 2.42×10−7

13 sandy Silt 1.17×10−6 6.29×10−5 3.15×10−5 1.25×10−4

14 Silt 1.13×10−7 6.27×10−7 2.82×10−7 1.39×10−6

15 Sand and Gravel 1.22×10−5 6.66×10−5 5.31×10−5 8.35×10−5

16 Clay 2.01×10−8 5.84×10−8 2.32×10−9 1.47×10−6

17 Silt and Clay 2.44×10−8 4.18×10−7 2.95×10−11 5.94×10−3

18 Clay 4.72×10−9 2.37×10−7 6.16×10−13 9.15×10−2

19 Silt and Clay 2.44×10−8b 1.70×10−5 8.49×10−8 3.41×10−3

a K value for layer 5 is estimated as the value of layer 6;
b K value for layer 19 is estimated as the value of layer 17.

of the study area. More quantitative comparisons between the calibrated geological models

with the permeameter test results will be provided later.

5.3.3 Case 3 Results

Four scenarios are considered for the geostatistical inversion approach using different prior

distributions. The L2 norm changes during the calibration process for all four scenarios

and are plotted in the Supplementary Section as Figure C3. We selected inversion results

from the iteration step at which the L2 norm has stabilized indicating the convergence of

the inversion process as suggested by Xiang et al. (2009). The result from the 82th iteration

is selected for Case 3a, while results from the 62th iteration are selected for Cases 3b, 3c

and 3d (Figure C3). It is interesting to note that Case 3a with a uniform K value takes

more iterations to converge, when compared to Cases 3b – 3d in which various geological
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models are used as prior distributions.

For Case 3a, a uniform mean K field is used as the prior distribution for the geosta-

tistical inversion before SimSLE starts to iteratively condition the parameter field with

pressure head measurements. The drawdown scatterplot of Case 3a (Figure 5.3e) shows

significant improvement over the effective parameter (Case 1a and 1b) and the geological

zonation (Cases 2a and 2b) approaches, in terms of the R2 as well as L1 and L2 norms.

However, we see that there is an obvious drift for the data from PW1-6 from the 45 degree

line compared to those from the other pumping tests.

We observe from Figure C2 that all four geostatistical inversion scenarios yielded quite

similar L1 and L2 norms at the selected iteration number and ranked in the top four

consistently with the specified rankings given between the parentheses: Case 3a (4), Case

3b (3), Case 3c (1), and Case 3d (2).

Figure 5.4c provides the estimated K tomogram for Case 3a, while its corresponding

residual variance of ln K in Figure 5.5a. Examination of Figure 5.4c reveals that, in general,

the interlayering patterns of the high and low permeable zones are captured in the central

part of modeling domain, where ln K residual variances (Figure 5.5a) are lower. In addition,

a higher K zone is visible on the bottom left portion of the domain.

In the previous work of Berg and Illman (2013) who utilized four pumping tests (PW4-

3, PW1-3, PW5-3 and PW3-3) to conduct SSHT analysis of the same area, the entire

bottom area of the central model domain was estimated to have high K values, despite the

fact that core samples indicated the presence of low K silt and clay layers. In addition, the

lowermost ports situated in the low K zones did not yield measurable drawdown responses

during those tests.

In contrast, for this study, we obtained measurable drawdown responses from the bot-
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tom observation ports by pumping from port PW1-6 (Figure 5.1b) located in the lower

part of the domain. By including these additional drawdown data from the low permeable

zone, the inversion of all tests yielded slightly improved K estimates without showing the

entire bottom area as a high K zone (Berg and Illman, 2011b, 2013). However, our results

(Figure 5.4a) are still inconsistent with the known geology consisting of silt and clay layers

(Figure 5.2). For example, in the bottom left portion of the domain beyond the central 15

m by 15 m well cluster area, the K estimates (Figure 5.4c) and the residual variances of ln

K (Figure 5.5a) are generally high, due to the fact that no wells and pressure head data

are available in that region for model calibration.

In Case 3b, we extended Case 3a by using the K tomogram obtained from Case 2a,

which is the calibrated 5-layer geological model as the prior distribution for the geostatis-

tical inverse model. The drawdown scatterplot of Case 3b (Figure 5.3f) reveals an obvious

improvement compared to Case 3a (Figure 5.3e), in which a uniform mean K field is used

as the prior distribution. On the other hand, obvious differences can be seen in the esti-

mated K tomogram from Case 3b (Figure 5.4d) when compared to Case 3a (Figure 5.4c).

Specifically, K estimates from Case 3b (Figure 5.4d) reveal a pattern that preserves the

geological features of the K distribution of the calibrated 5-layer model, as well as the

heterogeneity features in the upper part of the K tomogram for Case 3a (Figure 5.4c).

For the bottom part of the simulation domain, the estimated K values in Case 3b

(Figure 5.4d) are significantly lower than Case 3a (Figure 5.4c). In addition, the low K

zone at the bottom of the simulation domain extends across the site. Both of these features

in Case 3d are more consistent with our knowledge of site geology (Figure 5.2).

The residual variance of ln K for Case 3b (Figure 5.5b) reveals that the variances are

relatively low within and in the vicinity of the well field. However, as in Case 3a, the
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variances are higher away from the well field.

The geostatistical inverse modeling of Case 3c was performed by using the K estimates

of the calibrated 19-layer geological model of Case 2b as the prior distribution. From

Figure 5.3, we observe that the calibration scatterplot between simulated and observed

drawdowns for Case 3c (Figure 5.3g) shows slight improvements compared to Cases 3a

(Figure 5.3e) and 3b (Figure 5.3f). The estimated K tomogram and the corresponding

ln K residual variance are provided in Figures 5.4e and 5.5c, respectively. Generally, the

main layering pattern shown in Figure 5.4e follows the pattern of the calibrated 19-layer

geological model (Figure 5.4b). In addition, we can clearly see more details to the geological

features throughout the site, because a 19-layer model is used as the prior distribution.

Case 3d uses the 19-layer geological model populated with permeameter test K values

as a prior distribution for geostatistical inverse modeling. This case could be viewed as the

scenario with most data included into the inverse model among all four geostatistical inver-

sion cases including pressure heads, geological data, and local K data from permeameter

tests.

Figure 5.3h provides the drawdown scatterplot for Case 3d which shows that the R2

value as well as the L1 and L2 norms have improved over Case 3a. However, the results

are comparable to Cases 3b (Figure 5.3f) and 3c (Figure 5.3g) suggesting that including

permeameter K data as prior information has not significantly improved the calibration

results.

Figure 5.4f provides the estimated K tomogram from Case 3d and the corresponding

ln K variance in Figure 5.5d. Compared to the K tomogram for Case 3a (Figure 5.4c),

the structural features shown in the geological model (Figure 5.2) are better preserved in

the recovered K tomogram (Figure 5.4f). Similar to Cases 3b (Figure 5.4d) and 3c (Figure
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5.4e), the heterogeneous K distributions and in particular, the layering is similar to prior

values. However, due to the inclusion of permeameter K data into the Case 3d model, the

K values for the lowermost layer consisting of silt and clay are more representative of site

geology in comparison to Cases 3a (Figure 5.4c), 3b (Figure 5.4d), and 3c (Figure 5.4e).

The residual variance map of ln K (Figure 5d) is similar to the other cases (Figures 5a –

5c).

Results obtained from calibrating Cases 3b, 3c and 3d suggest that when geologically

distributed K fields are used as prior distributions, HT analysis using the geostatistical

inversion approach yields K tomograms with geological features. This would be helpful for

HT to correctly capture the stratigraphic features for areas where only limited pressure

head data are available.

5.4 Comparison of estimated K with Permeameter

Test K

We then compared the estimated K values of all scenarios from Cases 2 and 3 to perme-

ameter K values obtained along the CMT and PW wells, as shown in Figure 5.6. This

comparison enabled us to examine the performance of different subsurface modeling ap-

proaches in terms of both intra- and interlayer K variations. Specifically, the calibration

of the simple 5-layer geological model in Case 2a captured the variation trend of vertical

K within a range of 0 m to 10 m above the bottom of modeling domain, while the K

variation in the 10 m to 15 m zone were generally missed due to the merging of layers in

the simplified geological model. It is important to keep in mind that once the geological

model is constructed, we did not make adjustments to the geological structure during the
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Figure 5.8: K estimates along D-D’ cross section for the: (a) 5-layer geological model;
(b) 19-layer geological model; (c) SimSLE starting with K = 8.0 × 10−6 m/s as prior
mean; (d) SimSLE using the calibrated five-layer geological model as prior distribution;
(e) SimSLE using the calibrated 19-layer geological model as prior distribution; (f) SimSLE
using the uncalibrated 19-layer geological model assigned with permeameter K values as
prior distribution.
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calibration phase of the study, although it is conceivable that such adjustments could be

made. We have not made such adjustments for this study because such modifications are

typically not attempted. Instead, the parameters of each geologic unit are adjusted during

the calibration phase.

In contrast, by treating the K values of each layer separately as unknowns, the 19-

layer geological model of Case 2b yields refined fitting of K profiles for the top 5 m to

15 m zone of the simulation domain, which can be clearly seen from Figure 5.6a and

5.6b, due to the larger number of adjustable parameters (19 for the model Geo-19) for

calibration. Meanwhile, K profiles obtained from both calibrated geological models showed

some inconsistency to permeameter K data along nine wells. Such inconsistency could be

attributed, on one hand, to using geological zonations with each layer to be homogeneous,

and on the other hand, to the compensation effect of parameter values to structural errors

(Refsgaard et al., 2012). These results collectively suggest that calibration of geological

models interpolated from borehole logs to multiple pumping tests is useful in terms of

providing general K estimates of the field. However, because the stratigraphy of geological

models is fixed in this study, fine scale variability in K within each layer cannot be captured.

Next, we compare the estimated K values from the geostatistical inversion approaches

(Cases 3a – 3d) to the permeameter K data.

A comparison of the results from Case 3a to permeameter test K values reveals that,

when a homogeneous K field is used as the prior mean, the geostatistical inversion approach

only captures the general features of high and low permeable layers within the range of 5

m to 12 m, and K estimates for the area away from the well field is relatively smooth. The

main reason for this is that no observation data are available to update the K estimates

during SimSLE inversion (Xiang et al., 2009). However, as shown in Figure 5.6, when
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geologically distributed K fields are used as prior distributions (Case 3b, Case 3c and Case

3d), the fits between the estimated and permeameter tested K values of all CMT wells and

PW wells are consistently improved. The improvements are most obvious for the high K

zone located between 4 m to 7 m above the bottom of the modeling domain, as well as the

low K zone near the bottom. This result supports the finding by ? through a synthetic case

study, that the prior knowledge of the site-specific geological structures can be important

for resolving the correct aquifer/aquitard features.

Additionally, we find from Figure 6 that the fit of K profiles in Case 3b with a 5-

layer geological model used as a prior distribution in the geostatistical inversion approach

is comparable to those from Cases 3c and 3d, in which a 19-layer geological model is

used. This finding indicates that a simple geological model reflecting the general geological

structure may be sufficient for being used as prior distribution in geostatistical inversion

approaches to characterize heterogeneity within the area of interest.

Another important feature of the estimated K tomogram of Case 3a (Figure 5.4c) is the

incorrect mapping of the clay zone at the bottom of the simulation domain, which is the

same finding by the previous studies of Berg and Illman (2011b, 2013). This is so despite

that additional steady state drawdown data from the pumping tests at PW1-6, where the

pumping took place in the bottommost low K zone was included for inverse modeling.

We see from the calibration scatterplot Figure 5.3e that fitting of pumping test PW1-

6 is poorer than the other tests. A potential cause for this poorer fit is that insufficient

amount of steady state drawdown information was provided to constrain the inversion

process and to guide the inverse model to correctly estimate more representative values.

However, the simple, five-layer geological model correctly identifies the lowermost layer

as a low K zone. One possible explanation is that the lower complexity 5-layer geological
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model is more likely to be justified than the highly parameterized complex geostatistical

model (Schöniger et al., 2015), with the given amount of observed pressure head data from

the lower portion of the simulation domain.

One potential solution to resolve the issue of inconsistency with geological knowledge

of the site may be to properly regularize the inverse problem as suggested by Doherty

(2003) and Carrera et al. (2005). Additionally, a THT analysis of the same pumping tests

may improve these results, since we are able to include more pressure head data to further

constrain the inverse problem. Such a study is currently under progress and will be reported

in the future.

Overall, the above comparisons suggest that the use of geological data is helpful for the

geostatistical inversion approach for HT investigations, in preserving structural features of

the hydraulic property field.

5.5 Prediction of Steady State Drawdowns

Next, we use the estimated K fields from all cases to predict the drawdowns of seven

additional pumping tests (PW3-1, PW 3-4, PW5-5, PW1-3, PW1-5 and PW1-7) not used in

the inverse modeling effort. These tests are selected from pumping ports located at different

areas of the modeling domain. For each pumping test, we selected only the drawdown

curves of the observation ports that reached steady state. The scatterplots of observed and

simulated drawdowns are shown in Figure 7. Linear fit results and L1 and L2 norms are

also included to evaluate the overall prediction performance for the seven pumping tests.

Meanwhile, Figure C4 in the Supplementary Information section summarizes the L1 and

L2 norms from each pumping test and their performance ranking of drawdown predictions.

Examinations of Figures 5.7a-5.7h and C4 reveal that, the results of drawdown pre-
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dictions improve gradually from the effective parameter approach (Case 1) to the highly

parameterized approach based on geostatistical inverse modeling (Case 3). The isotropic

effective parameter model Case 1a yielded results that ranked at the bottom in terms of

both L1 and L2 norms for drawdown prediction, while considering anisotropy in Case 1b

(6th: L1 norm and 7th: L2 norm) or using a 5-layer geological model (7th: L1 norm and

6th: L2 norm) improved the results. Additionally, prediction results of the complex 19-layer

model geological model ranked in the middle (5th in terms of L1 and L2). The geostatistical

model ranked at the top four in terms of L1 and L2 norms with very close prediction per-

formances. Specifically, geostatistical inversion Case 3a using a uniform prior mean ranked

4th, geostatistical inversion Case 3b using the 5-layer calibrated geological model as prior

distribution ranked 2nd for both L1 and L2, Case 3c using the calibrated 19-layer geological

model as prior distribution ranked 3rd, and Case 3d using the uncalibrated geological model

populated with permeameter K data as prior distribution ranked the 1st. These results are

consistent with findings from the laboratory sandbox study of Illman et al. (2015), that

the geostatistical inversion approach performed the best in terms of drawdown predictions

when compared with effective parameter and geological modelling approaches.

When geologically distributed K values were used as prior distributions, it is interesting

to note that the geostatistical inversion Cases 3b, 3c and 3d performed quite closely in

terms of model calibration and validation and only slightly better in terms of R2, L1 and

L2 norms than Case 3a, in which an uniform K prior mean value was used, given the

differences in the estimated K tomograms (Figures 5.4c - 5.4f). To examine this issue, we

plotted K estimates for geological and geostatistical models along cross section D-D’ for a

detailed comparison (shown in Figure 5.8). Examination of the cross-sections reveals that

there are large differences in the morphology of zones.
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These results on one hand, suggest that prior K distributions could affect the inversion

results differently when a highly parameterized approach is utilized in HT investigations.

Thus, one must use caution in selecting reasonable values for prior means. On the other

hand, we want to restate that the above comparisons of drawdown predictions were based

only on data from observation ports that reached steady state during each pumping test.

Most of the selected observation ports during each pumping test were located in the upper

and central part of the simulation domain. The number of observation ports located in

the lower part of the modeling domain selected for validation purposes was much lower,

due to the fact that no obvious responses were observed during pumping from ports in the

upper and central part of the domain (PW3-1, PW5-1, PW1-3, and PW 3-4) and that the

steady state had not been reached for model validation pumping tests from the lower part

of the domain (PW1-5 and 1-7). However, available drawdown curves indicate responses

in the observation ports located in the lowermost portion of the simulation domain. Thus,

THT studies will be needed at this site to provide more complete evaluations of drawdown

prediction performances between geological and geostatistical inversion approaches.
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6.1 Conclusions

Conclusions of this thesis are grouped in three parts.

Part I: Hydraulic Tomography in Unconfined Aquifer: Sandbox Study

• Based on the results of laboratory sandbox experiments, HT analysis that considers

variably saturated flow processes is able to vividly characterize the heterogeneous

distribution of K in both saturated and unsaturated zones. When unsaturated flow

is also considered, HT could capture the main heterogeneity pattern of the soil pa-

rameters for the unsaturated zone, such as the α and θs of the Gardner-Russo’s

model.

• HT inverted K tomogram yields significantly improved drawdown predictions com-

pared to models based on the homogeneous assumption, especially at early and in-

termediate time.

• When heterogeneity of unsaturated zone parameters is ignored, HT inverted K to-

mogram loses some accuracy compared to the case that considers both heterogeneous

saturated and unsaturated zone parameters. Thus, the HT algorithm that considers

variably saturated flow should be favored for accurate and higher-resolution charac-

terization of site heterogeneity for unconfined aquifers.
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Part II: On the Importance of Geological Data in Hydraulic tomography:

Sandbox Study

The results of steady state HT study in a laboratory sandbox lead to the following

findings and conclusions:

• When HT test data are jointly calibrated for layer-based geological models, geolog-

ical models that more closely represented the aquifer stratigraphy performs better

than geological models with errors in stratigraphy in terms of both calibration and

prediction of drawdowns.

• This sandbox study also shows that even poor geological models could be calibrated

quite well, while K estimates for each unit can be unreasonable compared to the per-

meameter K measurements due to the compensational effect of estimated parameters

for model structure error (Refsgaard et al., 2012 and Illman et al., 2015).

• When abundant HT data are used, the geostatistical inverse modeling approach per-

forms better than both good and poor geological models constructed from borehole

logs in terms of model calibration and validation. When the amount of data used

for calibration are reduced, performance gaps are reduced between the geostatistical

inversion model and the geological model that closely represents the aquifer.

• The use of geological models as prior K values for the geostatistical inversion ap-

proach leads to only slight improvements in model calibration and validation results,

however, leads to the preservation of geological structures.

Part III: On the Importance of Geological Data on Hydraulic tomography:

NCRS Field Study
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• Simultaneous calibration of geological models to multiple pumping test data yields

K estimates that generally reflect the K variation trends of permeameter test val-

ues along nine boreholes for the highly heterogeneous, glaciofluvial aquifer-aquitard

system at NCRS.

• Geological data is helpful in improving the results of HT when hydraulic test data

are lacking through its use as a prior distribution in the geostatistical inversion ap-

proach. Specifically, using reliable geological models instead of an effective K value

as prior mean fields is helpful for the geostatistical inverse approach in improving K

correspondence with permeameter test results and in preserving of geological features

for K tomograms.

6.2 Practical Recommendations and Future Studies

6.2.1 Practical Recommendations

The past HT studies have shown the importance of accurate delineating the hydraulic

heterogeneity for flow predictions and solute transport problems Illman et al. (2010b,

2012), mostly at laboratory and small field-site scales. Until now, only Illman et al. (2009)

and Zha et al. (2015, 2016) have only present studies of hydraulic tomography conducted

at the kilometer scale at fractured rock site. Thus, (Yeh et al., 2009) has proposed a river

stage tomography approach which takes advantage of natural stimuli such as flow changes

in river stages to estimate the aquifer properties over the basin scale.

Practically speaking, field implications of HT approach relying solely on pumping test

data could be limited due to the several factors, such as the domain size of the detectable

signals, duration of the the pumping test, and the quality of drawdown signals (Illman,
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2014). For future practical applications, HT could be helpful at field sites where high

resolution characterizations are needed and pumping data exists, such as at remediation

sites with pump and treat operations or where chemicals are injected into the subsurface

to destroy contaminants in the source zones.

Overall, HT should be useful where more accurate maps of subsurface hydraulic pa-

rameter heterogeneity are needed and its uncertainty quantified. The main strength of HT

is the accurate mapping of the hydraulic parameter distributions. As shown in this thesis

and previous studies, model calibration and validation performances reveal the robust-

ness of HT results. Another important strength of HT surveys over traditional subsurface

characterization methods is the accurate mapping of continuity/connectivity of high or

low K features. Such features often dictate groundwater flow and its storage. In terms of

contaminant transport, connected high K features can allow rapid migration of contami-

nants. Alternatively, low K features can act as long term storage reservoirs of contaminants.

Therefore, the accurate delineation of these features are essential in managing groundwater

resources and to clean them up efficiently when they become contaminated.

Based on the findings and conclusions of this thesis, some practical guidance can be

provided as following:

• In Part I of this thesis, while the setup of the experiments may not faithfully rep-

resent the setup of pumping tests in unconfined aquifers under field conditions, the

study is an intermediate step for its future applications to field aquifers. The results

emphasize the necessities of considering the variably saturated flow and unsaturated

zone heterogeneity during site characterization of the unconfined aquifers.

• Conclusions of studies in Part II and Part III show the importance of using geological

models for steady state HT. That is, reliable geological information and pressure head
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data should be jointly used for HT in order to produce refinements of the recovered

parameter distributions, which could in turn lead to better flow predictions.

6.2.2 Future Studies

Although HT has been developed and extensively tested from synthetic to field studies for

almost two decades, there are still many questions that remain unanswered and need to be

investigated for future research, such as:

• Evaluating the performances of geological models for HT analysis under transient

flow conditions for both laboratory and field conditions;

• Developing new geostatistical inversion methods for HT to directly take advantage

of different types of information (e.g., flux measurement, borehole logs, ground pen-

etrating radar data) other than pressure heads;

• Considering K anisotropy in geostatistical inversion methods for HT analysis for

highly heterogeneous sites.
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 4 

Figure A1. Simulated and observed drawdown at: a) pressure transducer and b) tensiometer 5 

ports during a pumping test at port 35. Black solid lines are observed data, red lines are 6 

simulated drawdown using results from HT; and blue dashed lines are simulated drawdown 7 

using the homogeneous assumption. The layout of all the ports in this figure is identical to the 8 

layout on the sandbox shown in Figure 1. 9 
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b) 13 

 14 

Figure A2. Simulated and observed drawdown at: a) pressure transducer and b) tensiometer 15 

ports during a pumping test at port 37. Black solid lines are observed data, red lines are 16 

simulated drawdown using results from HT; and blue dashed lines are simulated drawdown 17 

using the homogeneous assumption. The layout of all the ports in this figure is identical to the 18 

layout on the sandbox shown in Figure 1. 19 
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b) 24 

 25 

Figure A3. Simulated and observed drawdown at: a) pressure transducer and b) tensiometer 26 

ports during a pumping test at port 39. Black solid lines are observed data, red lines are 27 

simulated drawdown using results from HT; and blue dashed lines are simulated drawdown 28 

using the homogeneous assumption. The layout of all the ports in this figure is identical to the 29 

layout on the sandbox shown in Figure 1. 30 
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 32 

 33 

Figure A4. Scatterplots of estimated tomograms between Case 2 and Case1, a) ln K, b) ln Ss, c) 34 

ln α, d) ln θs. The solid line is a 1:1 line indicating a perfect match. The dash line is a best fit line. 35 

The linear fit results are also included on each plot. 36 

 37 
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 39 

 40 

Figure A5.  Estimated tomograms of: a) K, b) Ss, c) α, d) θs using different initial values (case 3). 41 

Spatial variances of the estimated tomograms are σ
2

lnK= 2.59, σ
2

lnSs= 1.29, σ
2

lnα = 0.12, σ
2

lnθs = 42 

0.01. 43 

 44 
 45 

 46 

Figure A6.  Estimated tomograms of: a) K, b) Ss, c) α, d) θs using different initial values (case 4). 47 

Spatial variances of the estimated tomograms are σ
2

lnK= 1.97, σ
2

lnSs= 1.05, σ
2

lnα = 0.10, σ
2

lnθs = 48 

0.01. 49 

 50 
 51 
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 53 

Figure A7.  Scatterplots of estimated tomograms between Case 3 and Case 1: a) ln K, b) ln Ss, c) 54 

ln α, d) ln θs. The solid line is a 1:1 line indicating a perfect match. The dash line is a best fit line. 55 

The linear fit results are also included on each plot.  56 

 57 
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 59 

Figure A8. Scatterplots of estimated tomograms between Case 4 and Case1, a) ln K, b) ln Ss, c) 60 

ln α, d) ln θs. The solid line is a 1:1 line indicating a perfect match. The dash line is a best fit line. 61 

The linear fit results are also included on each plot. 62 
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 64 

Figure A9.  L2 norms of the head as a function of iteration for: Case1 in black circles; Case 3 in 65 

blue squares; Case 4 in red triangles.  66 

 67 
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Table B1. Sand type and K (cm/s) estimates for each layer in the sandbox aquifer*. 
Layer Sand type d50 (mm) Core permeameter 

1 20/30 0.750 3.2×10
-2

 

2 4030 0.355 5.3×10
-2

 

3 F-85 0.151 7.1×10
-2

 

4 20/40 0.578 5.7×10
-2

 

5 Mix N/A   6.2×10
-2 **

 

6 Mix N/A 8.2×10
-2

 

7 #12 0.525 1.3×10
-1

 

8 F32 0.504 1.3×10
-1

 

9 20/40 0.578 8.7×10
-2

 

10 F-65 0.204 1.1×10
-1

 

11 #12 0.525 1.4×10
-1

 

12 16/30 0.872 3.4×10
-2

 

13 20/30 0.750 2.6×10
-1

 

14 F-75 0.174 9.8×10
-2

 

15 20/40 0.578 8.6×10
-2

 

16 Mix N/A 4.2×10
-2

 

17 F-85 0.151 4.5×10
-2

 

18 20/30 0.750 1.5×10
-1

 

Note: The layers labelled “mix” consisted of equal volumes of #14, F75, and 16/30 sands. 

N/A denotes that data are not available for using mixed sand types. 
* 
These core permeameter test results are adopted from Illman et al., (2010).

 

**
 This K of layer 5 is estimated as the mean value of K of layer 6 and 16 with same sand type. 
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Table B2. The K (cm/s) values and corresponding 95% confidence interval limits estimated for each geological model in Case 1. 

Layer 

Geo-Good Geo-Poor1 Geo-Poor2 Geo-Poor3 

Estimate 

95% confidence Interval 

Estimate 

95% confidence Interval 

Estimate 

95% confidence Interval 

Estimate 

95% confidence Interval 

Lower limit Upper limit Lower limit Upper limit Lower limit Upper limit Lower limit Upper limit 

1 1.33×10-01 9.47×10-02 1.87×10-01 1.32×10+00 9.75×10-01 1.80×10+00 1.69×10-01 1.47×10-01 1.96×10-01 3.18×10-01 2.06×10-01 4.89×10-01 

2 5.18×10-02 2.55×10-02 1.05×10-01 5.30×10-02 4.04×10-02 6.95×10-02 3.81×10-02 9.71×10-03 1.50×10-01 

3 1.00×10-04 6.27×10-11 1.60×10+02 1.16×10-01 9.56×10-02 1.42×10-01 9.62×10-02 7.81×10-02 1.19×10-01 

4 2.44×10-01 1.94×10-01 3.08×10-01 3.32×10-02 2.00×10-02 5.51×10-02 1.96×10-01 9.93×10-02 3.87×10-01 

5 3.89×10-02 2.93×10-02 5.16×10-02 3.36×10-02 2.37×10-02 4.77×10-02 5.94×10-02 5.11×10-02 6.91×10-02 3.62×10-02 2.19×10-02 5.98×10-02 

6 8.77×10-03 5.98×10-03 1.29×10-02 2.60×10-04 2.26×10-07 2.98×10-01 2.94×10-02 2.01×10-02 4.30×10-02 

7 1.25×10-01 8.51×10-02 1.82×10-01 3.04×10-02 2.12×10-02 4.35×10-02 2.70×10-02 1.60×10-02 4.55×10-02 

8 3.51×10-02 2.82×10-02 4.37×10-02 4.18×10-02 2.71×10-02 6.45×10-02 1.01×10-01 3.09×10-02 3.29×10-01 

9 1.66×10-01 1.30×10-01 2.12×10-01 2.66×10-01 2.11×10-01 3.36×10-01 2.49×10-01 1.81×10-01 3.44×10-01 

10 1.85×10-02 1.65×10-02 2.06×10-02 3.93×10-02 3.44×10-02 4.49×10-02 3.41×10-02 2.80×10-02 4.15×10-02 1.64×10-01 1.17×10-01 2.31×10-01 

11 1.15×10-01 4.90×10-02 2.70×10-01 1.14×10-01 6.81×10-02 1.91×10-01 4.57×10-02 3.44×10-02 6.07×10-02 

12 9.18×10-02 4.81×10-02 1.75×10-01 4.92×10-02 2.90×10-02 8.36×10-02 2.18×10-02 1.72×10-02 2.76×10-02 

13 4.45×10-01 3.78×10-01 5.25×10-01 5.22×10-01 4.13×10-01 6.59×10-01 3.91×10-01 2.55×10-01 5.98×10-01 

14 2.82×10-02 2.36×10-02 3.37×10-02 5.38×10-03 2.77×10-03 1.05×10-02 6.66×10-02 5.90×10-02 7.52×10-02 8.85×10-02 5.57×10-02 1.41×10-01 

15 1.07×10-01 8.04×10-02 1.42×10-01 9.87×10-02 7.33×10-02 1.33×10-01 7.55×10-01 4.95×10-01 1.15×10+00 

16 3.88×10-02 3.28×10-02 4.59×10-02 2.68×10-02 2.30×10-02 3.13×10-02 1.59×10-02 1.36×10-02 1.85×10-02 

17 3.70×10-02 3.13×10-02 4.39×10-02 1.95×10-02 1.44×10-02 2.66×10-02 7.46×10-01 2.61×10-02 2.14×10+01 

18 3.60×10-01 3.04×10-01 4.25×10-01 2.67×10-01 2.32×10-01 3.06×10-01 2.29×10-01 1.89×10-01 2.78×10-01 3.29×10-01 2.25×10-01 4.82×10-01 
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Table B3. The K (cm/s) values and corresponding 95% confidence interval limits estimated for each geological model in Case 2. 

Layer 

Geo-Good Geo-Poor1 Geo-Poor2 Geo-Poor3 

Estimate 

95% confidence Interval 

Estimate 

95% confidence Interval 

Estimate 

95% confidence Interval 

Estimate 

95% confidence Interval 

Lower limit Upper limit Lower limit Upper limit Lower limit Upper limit Lower limit Upper limit 

1 2.56×10-02 2.18×10-05 3.01×10+01 4.11×10+00 3.24×10-02 5.22×10+02 2.34×10-01 1.76×10-01 3.10×10-01 8.95×10-01 5.52×10-01 1.45×10+00 

2 9.87×10-04 1.81×10-10 5.37×10+03 3.79×10-02 1.53×10-02 9.36×10-02 4.48×10-02 3.32×10-03 6.06×10-01 

3 1.00×10-04 2.28×10-08 4.38×10-01 9.91×10-02 1.64×10-02 5.99×10-01 1.44×10-01 1.02×10-01 2.04×10-01 

4 3.35×10-01 2.69×10-01 4.18×10-01 1.19×10-01 5.40×10-03 2.63×10+00 7.53×10-02 1.94×10-02 2.92×10-01 

5 3.61×10-02 2.48×10-02 5.24×10-02 4.93×10-02 1.29×10-02 1.88×10-01 7.63×10-02 5.24×10-02 1.11×10-01 5.14×10-02 1.64×10-02 1.61×10-01 

6 1.62×10-02 8.39×10-03 3.11×10-02 1.96×10-02 1.29×10-11 3.00×10+07 3.37×10-02 1.65×10-02 6.88×10-02 

7 7.51×10-02 4.28×10-02 1.32×10-01 2.10×10-02 8.03×10-03 5.50×10-02 1.32×10-01 4.94×10-04 3.51×10+01 

8 3.04×10-02 2.56×10-02 3.62×10-02 3.35×10-02 1.54×10-02 7.32×10-02 3.76×10-01 3.23×10-05 4.38×10+03 

9 1.94×10-01 1.46×10-01 2.60×10-01 1.89×10-01 1.08×10-01 3.31×10-01 2.02×10-01 4.35×10-02 9.38×10-01 

10 1.98×10-02 1.65×10-02 2.36×10-02 4.05×10-02 3.11×10-02 5.27×10-02 1.91×10-02 1.15×10-02 3.16×10-02 2.89×10-01 6.60×10-02 1.26×10+00 

11 3.76×10-01 1.65×10-01 8.60×10-01 1.77×10-01 5.77×10-02 5.42×10-01 4.04×10-02 3.55×10-03 4.60×10-01 

12 1.32×10-01 3.10×10-02 5.62×10-01 4.40×10-02 8.52×10-03 2.27×10-01 1.29×10-02 2.10×10-03 7.88×10-02 

13 4.83×10-01 3.87×10-01 6.04×10-01 1.93×10+00 9.53×10-01 3.90×10+00 8.93×10-02 4.14×10-06 1.93×10+03 

14 2.07×10-02 9.13×10-03 4.68×10-02 3.72×10-03 3.69×10-04 3.74×10-02 8.66×10-02 6.14×10-02 1.22×10-01 5.79×10-02 5.68×10-03 5.90×10-01 

15 8.08×10-02 6.26×10-02 1.04×10-01 1.40×10-01 6.68×10-02 2.94×10-01 1.83×10-02 1.56×10-03 2.15×10-01 

16 2.28×10-02 9.74×10-03 5.33×10-02 1.61×10-02 8.83×10-03 2.93×10-02 5.64×10-02 1.10×10-03 2.88×10+00 

17 4.46×10-02 3.47×10-02 5.73×10-02 1.26×10-02 3.18×10-03 4.95×10-02 7.74×10-01 2.64×10-05 2.27×10+04 

18 3.46×10-01 2.09×10-01 5.73×10-01 2.81×10-01 1.42×10-01 5.54×10-01 1.40×10-01 7.06×10-02 2.79×10-01 8.44×10-02 1.58×10-02 4.50×10-01 
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Fig. B1.  “Perfect” geological model built based on accurate stratigraphy shown in Fig. 1a. 
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Fig. B2. L1 (upper, in cm) and L2 (lower, in cm
2
) norms of model calibrations of 8 pumping tests for Case 1. 

 

 

 

 

L1 Port 2 Port 5 Port 14 Port 17 Port 26 Port 29 Port 44 Port 47 Average Rank

Geo_good 0.022 0.067 0.074 0.094 0.116 0.106 0.121 0.113 0.089 2

Geo_poor1 0.036 0.080 0.086 0.121 0.178 0.130 0.128 0.116 0.109 3

Geo_poor2 0.077 0.120 0.146 0.260 0.262 0.233 0.340 0.178 0.202 5

Geo_poor3 0.033 0.066 0.114 0.128 0.206 0.158 0.241 0.166 0.139 4

SimSLE 0.019 0.021 0.033 0.033 0.058 0.033 0.024 0.024 0.031 1

L2 Port 2 Port 5 Port 14 Port 17 Port 26 Port 29 Port 44 Port 47 Average Rank

Geo_good 0.001 0.006 0.025 0.020 0.026 0.020 0.030 0.024 0.019 2

Geo_poor1 0.002 0.009 0.015 0.044 0.050 0.048 0.031 0.026 0.028 3

Geo_poor2 0.012 0.025 0.056 0.113 0.098 0.113 0.233 0.052 0.088 5

Geo_poor3 0.004 0.006 0.027 0.028 0.072 0.044 0.139 0.053 0.047 4

SimSLE 0.001 0.001 0.001 0.002 0.006 0.002 0.001 0.001 0.002 1
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Fig. B3. L1 (upper, in cm) and L2 (lower, in cm

2
)  norms of model validations of 16 pumping tests for Case 1. 

 

 

 

 

 

L1 Port 8 Port 11 Port 13 Port 15 Port 16 Port 18 Port 20 Port 23 Port 32 Port 35 Port 37 Port 38 Port 39 Port 40 Port 41 Port 42 Average Rank

Geo_good 0.077 0.067 0.088 0.107 0.203 0.142 0.120 0.087 0.096 0.109 0.119 0.149 0.310 0.202 0.140 0.164 0.136 2

Geo_poor1 0.074 0.112 0.195 0.376 0.128 0.140 0.129 0.144 0.185 0.127 0.202 0.208 0.272 0.177 0.140 0.171 0.174 3

Geo_poor2 0.109 0.205 0.149 0.215 0.233 0.205 0.394 0.254 0.264 0.198 0.166 0.245 0.348 0.277 0.192 0.178 0.227 5

Geo_poor3 0.206 0.136 0.103 0.252 0.176 0.108 0.313 0.126 0.175 0.147 0.152 0.213 0.372 0.269 0.189 0.123 0.191 4

SimSLE 0.058 0.060 0.189 0.120 0.154 0.072 0.082 0.065 0.082 0.040 0.154 0.096 0.270 0.174 0.089 0.141 0.115 1

L2 Port 8 Port 11 Port 13 Port 15 Port 16 Port 18 Port 20 Port 23 Port 32 Port 35 Port 37 Port 38 Port 39 Port 40 Port 41 Port 42 Average Rank

Geo_good 0.012 0.008 0.036 0.036 0.073 0.034 0.034 0.015 0.025 0.025 0.060 0.042 0.225 0.095 0.039 0.070 0.052 2

Geo_poor1 0.015 0.024 0.095 0.217 0.069 0.046 0.032 0.056 0.081 0.040 0.137 0.079 0.205 0.066 0.061 0.142 0.085 4

Geo_poor2 0.029 0.058 0.067 0.117 0.107 0.073 0.199 0.137 0.162 0.069 0.065 0.103 0.264 0.160 0.073 0.087 0.111 5

Geo_poor3 0.062 0.024 0.024 0.119 0.074 0.072 0.146 0.038 0.070 0.034 0.041 0.100 0.302 0.141 0.071 0.031 0.084 3

SimSLE 0.007 0.005 0.105 0.030 0.036 0.012 0.014 0.010 0.017 0.002 0.060 0.022 0.139 0.057 0.022 0.035 0.036 1
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Fig. B4. L1 (upper, in cm) and L2 (lower, in cm
2
) norms of model calibrations of 4 pumping tests for Case 2. 

 

 

 

 

 

L1 Port 2 Port 5 Port 14 Port 17 Port 26 Port 29 Port 44 Port 47 Average Rank

Geo-good 0.046 0.055 0.037 0.043 0.045 2

Geo-poor1 0.068 0.099 0.068 0.077 0.078 3

Geo-poor2 0.260 0.215 0.351 0.284 0.277 5

Geo-poor3 0.171 0.131 0.164 0.169 0.159 4

SimSLE 0.035 0.026 0.028 0.025 0.029 1

L2 Port 2 Port 5 Port 14 Port 17 Port 26 Port 29 Port 44 Port 47 Average Rank

Geo-good 0.003 0.004 0.002 0.003 0.003 2

Geo-poor1 0.007 0.022 0.006 0.010 0.011 3

Geo-poor2 0.098 0.088 0.202 0.129 0.129 5

Geo-poor3 0.048 0.040 0.032 0.037 0.039 4

SimSLE 0.002 0.001 0.001 0.001 0.001 1
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Fig. B5. L1 (upper, in cm) and L2 (lower, in cm
2
)  norms of model validations of 16 pumping tests for Case 2. 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

L1 Port 8 Port 11 Port 13 Port 15 Port 16 Port 18 Port 20 Port 23 Port 32 Port 35 Port 37 Port 38 Port 39 Port 40 Port 41 Port 42 Average Rank

Geo-good 0.092 0.062 0.072 0.136 0.242 0.141 0.120 0.087 0.101 0.103 0.074 0.128 0.358 0.256 0.172 0.264 0.151 1

Geo-poor1 0.074 0.137 0.236 0.379 0.190 0.219 0.150 0.203 0.174 0.193 0.189 0.203 0.260 0.200 0.187 0.163 0.197 3

Geo-poor2 0.169 0.211 0.224 0.226 0.235 0.228 0.532 0.301 0.297 0.195 0.178 0.260 0.336 0.269 0.197 0.174 0.252 5

Geo-poor3 0.131 0.253 0.130 0.404 0.288 0.257 0.276 0.227 0.181 0.182 0.227 0.246 0.357 0.329 0.244 0.161 0.243 4

SimSLE 0.083 0.070 0.128 0.362 0.326 0.149 0.129 0.111 0.134 0.128 0.126 0.171 0.221 0.162 0.128 0.105 0.158 2

L2 Port 8 Port 11 Port 13 Port 15 Port 16 Port 18 Port 20 Port 23 Port 32 Port 35 Port 37 Port 38 Port 39 Port 40 Port 41 Port 42 Average Rank

Geo-good 0.020 0.009 0.028 0.045 0.095 0.032 0.056 0.016 0.021 0.022 0.013 0.032 0.273 0.126 0.063 0.149 0.063 2

Geo-poor1 0.020 0.037 0.148 0.199 0.098 0.096 0.045 0.091 0.065 0.088 0.065 0.072 0.147 0.076 0.082 0.123 0.091 3

Geo-poor2 0.081 0.065 0.121 0.155 0.083 0.077 0.383 0.123 0.170 0.056 0.072 0.120 0.215 0.146 0.061 0.093 0.126 4

Geo-poor3 0.045 0.120 0.074 0.342 0.239 0.183 0.145 0.171 0.053 0.050 0.103 0.123 0.215 0.192 0.106 0.041 0.138 5

SimSLE 0.014 0.010 0.030 0.246 0.161 0.034 0.043 0.027 0.039 0.036 0.046 0.076 0.100 0.053 0.039 0.030 0.061 1
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Fig. B6. L1 (upper, in cm) and L2 (lower, in cm
2
) norms of model calibrations of 4 pumping tests for Case 3 (* denotes consistent 

results are used from Case 2 for comparison).  

  

L1 Port 2 Port 5 Port 14 Port 17 Port 26 Port 29 Port 44 Port 47 Average Rank

SimSLE* 0.035 0.026 0.028 0.025 0.029 2

SimSLE-Geo-good-Per 0.033 0.024 0.029 0.026 0.028 1

SimSLE-Geo-poor1-Per 0.034 0.025 0.029 0.028 0.029 3

SimSLE-Geo-poor2-Per 0.042 0.028 0.029 0.029 0.032 5

SimSLE-Geo-poor3-Per 0.035 0.028 0.030 0.025 0.029 4

L2 Port 2 Port 5 Port 14 Port 17 Port 26 Port 29 Port 44 Port 47 Average Rank

SimSLE* 0.002 0.001 0.001 0.001 0.001 3

SimSLE-Geo-good-Per 0.002 0.001 0.001 0.001 0.001 1

SimSLE-Geo-poor1-Per 0.002 0.001 0.001 0.001 0.001 2

SimSLE-Geo-poor2-Per 0.002 0.001 0.001 0.001 0.002 5

SimSLE-Geo-poor3-Per 0.002 0.001 0.001 0.001 0.001 4

APPENDIX B. SUPPLEMENTARY INFORMATION B

140



 

Fig. B7. L1 (upper, in cm) and L2 (lower, in cm
2
) norms of model validations of 16 pumping tests for Case 3 (* denotes consistent 

results are used from Case 2 for comparison).  

  

L1 Port 8 Port 11 Port 13 Port 15 Port 16 Port 18 Port 20 Port 23 Port 32 Port 35 Port 37 Port 38 Port 39 Port 40 Port 41 Port 42 Average Rank

SimSLE* 0.083 0.070 0.128 0.362 0.327 0.149 0.129 0.111 0.134 0.128 0.126 0.171 0.221 0.163 0.128 0.105 0.158 5

SimSLE-Geo-good-Per 0.083 0.060 0.122 0.318 0.307 0.110 0.117 0.078 0.116 0.106 0.100 0.160 0.213 0.145 0.114 0.133 0.143 1

SimSLE-Geo-poor1-Per 0.085 0.065 0.169 0.339 0.228 0.116 0.131 0.093 0.114 0.094 0.122 0.174 0.196 0.138 0.110 0.145 0.145 2

SimSLE-Geo-poor2-Per 0.083 0.062 0.114 0.329 0.283 0.141 0.128 0.096 0.116 0.116 0.123 0.169 0.183 0.159 0.127 0.133 0.147 4

SimSLE-Geo-poor3-Per 0.079 0.065 0.100 0.367 0.315 0.079 0.118 0.094 0.121 0.105 0.106 0.158 0.221 0.157 0.125 0.126 0.146 3

L2 Port 8 Port 11 Port 13 Port 15 Port 16 Port 18 Port 20 Port 23 Port 32 Port 35 Port 37 Port 38 Port 39 Port 40 Port 41 Port 42 Average Rank

SimSLE* 0.014 0.010 0.030 0.246 0.161 0.034 0.043 0.027 0.039 0.036 0.046 0.076 0.100 0.053 0.039 0.030 0.061 5

SimSLE-Geo-good-Per 0.014 0.007 0.065 0.177 0.148 0.022 0.040 0.014 0.034 0.034 0.036 0.059 0.087 0.049 0.035 0.054 0.055 3

SimSLE-Geo-poor1-Per 0.015 0.008 0.070 0.175 0.088 0.034 0.040 0.019 0.032 0.021 0.050 0.072 0.070 0.043 0.029 0.051 0.051 1

SimSLE-Geo-poor2-Per 0.014 0.007 0.029 0.189 0.124 0.035 0.040 0.021 0.032 0.034 0.044 0.073 0.069 0.049 0.038 0.054 0.053 2

SimSLE-Geo-poor3-Per 0.014 0.009 0.022 0.246 0.149 0.027 0.039 0.021 0.036 0.031 0.032 0.067 0.099 0.055 0.038 0.040 0.058 4
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Fig. B8. L2 (in cm
2
) norms changes as a function of iteration number for calibration Case 3; (* denotes consistent results are used from 

Case 2 for comparison).  
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Figure C1: Computational grid for NCRS.  
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Figure C2: L1 (upper) and L2 (lower) norms of model calibration of seven pumping tests.  

 

 

  

L1 Pw11 Pw14 Pw16 Pw23 Pw33 Pw53 Pw43 Average Rank

Case 1a: Effective Value Model (isotropic) 0.17 0.17 0.10 0.07 0.14 0.17 0.15 0.14 8

Case 1b: Effective Value Model (anisotropic) 0.15 0.17 0.09 0.07 0.14 0.15 0.18 0.13 7

Case 2a: Geo-5 0.14 0.15 0.06 0.07 0.11 0.14 0.07 0.11 6

Case 2b: Geo-19 0.06 0.11 0.06 0.04 0.08 0.10 0.13 0.08 5

Case 3a: SimSLE_uniform 0.04 0.05 0.09 0.03 0.05 0.05 0.04 0.05 4

Case 3b: SimSLE_Geo-5 0.04 0.04 0.03 0.03 0.05 0.05 0.05 0.04 3

Case 3c: SimSLE_Geo-19 0.03 0.04 0.03 0.03 0.04 0.04 0.05 0.04 1

Case 3d: SimSLE_Permeater K 0.03 0.05 0.03 0.02 0.04 0.04 0.05 0.04 2

L2 Pw11 Pw14 Pw16 Pw23 Pw33 Pw53 Pw43 Average Rank

Case 1a: Effective Value Model (isotropic) 0.05 0.10 0.03 0.01 0.04 0.07 0.04 0.05 8

Case 1b: Effective Value Model (anisotropic) 0.05 0.08 0.03 0.01 0.03 0.06 0.05 0.04 7

Case 2a: Geo-5 0.03 0.07 0.01 0.01 0.03 0.04 0.01 0.03 6

Case 2b: Geo-19 0.01 0.05 0.01 0.00 0.01 0.02 0.02 0.02 5

Case 3a: SimSLE_uniform 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.01 4

Case 3b: SimSLE_Geo-5 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 3

Case 3c: SimSLE_Geo-19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1

Case 3d: SimSLE_Permeater K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2
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Figure C3: Mean square error (L2 norm) as a function of iteration number. 
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Figure C4: L1 (upper) and L2 (lower) norms of model validations of seven pumping tests.  

L1 PW13 PW15 PW17 PW31 PW34 PW55 Average Rank

Case 1a: Effective Value Model (isotropic) 0.22 0.05 0.04 0.07 0.03 0.09 0.08 8

Case 1b: Effective Value Model (anisotropic) 0.21 0.03 0.06 0.06 0.02 0.09 0.07 6

Case 2a: Geo-5 0.22 0.05 0.04 0.06 0.02 0.10 0.08 7

Case 2b: Geo-19 0.15 0.06 0.04 0.04 0.02 0.12 0.07 5

Case 3a: SimSLE_uniform 0.10 0.04 0.04 0.03 0.03 0.11 0.06 4

Case 3b: SimSLE_Geo-5 0.08 0.03 0.04 0.03 0.02 0.10 0.05 2

Case 3c: SimSLE_Geo-19 0.09 0.03 0.05 0.03 0.02 0.08 0.05 3

Case 3d: SimSLE_Permeater K 0.07 0.03 0.03 0.03 0.02 0.09 0.05 1

L2 PW13 PW15 PW17 PW31 PW34 PW55 Average Rank

Case 1a: Effective Value Model (isotropic) 0.12 0.00 0.00 0.01 0.00 0.01 0.02 8

Case 1b: Effective Value Model (anisotropic) 0.09 0.00 0.00 0.01 0.00 0.01 0.02 7

Case 2a: Geo-5 0.08 0.00 0.00 0.01 0.00 0.02 0.02 6

Case 2b: Geo-19 0.04 0.01 0.00 0.00 0.00 0.02 0.01 5

Case 3a: SimSLE_uniform 0.02 0.00 0.00 0.00 0.00 0.02 0.01 4

Case 3b: SimSLE_Geo-5 0.01 0.00 0.00 0.00 0.00 0.01 0.01 2

Case 3c: SimSLE_Geo-19 0.02 0.00 0.00 0.00 0.00 0.01 0.01 3

Case 3d: SimSLE_Permeater K 0.01 0.00 0.00 0.00 0.00 0.01 0.01 1
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