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Abstract

This thesis makes contributions to the solution of Hadamard’s problem
through an examination of the question of the validity of Huygens’ principle
for the non-self-adjoint scalar wave equation on a Petrov type D spacetime.
The problem is split into five further sub-cases based on the alignment of
the Maxwell and Weyl principal spinors of the underlying spacetime. Two
of these sub-cases are considered, one of which is proved to be incompati-
ble with Huygens’ principle, while for the other, it is shown that Huygens’
principle implies that the two principal null congruences of the Weyl tensor
are geodesic and shear-free. Furthermore, an unpublished result of McLe-
naghan regarding symmetric spacetimes of Petrov type D is independently
verified. This result suggests the possible existence of counter-examples of

the Carminati-McLenaghan conjecture.
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Notation and Conventions

Spacetimes
Spacetime signature: (+,—, —, —)
Tensor indices in the natural basis: «, 3, ... ; range: 0,... 3.

Abstract spinor indices: A, B, ... ,A, B, ...;range: 0, 1.
Component spinor indices: a,b,... , a, i), ...;range: 0,1
Symmetrization of indices: (ay - - - @)
Skew-symmetrization of indices: (ay - - - an)

Exclusion of indices from (skew-) symmetrization: |ag|

O, O ,a

Partial differentiation with respect to z%: %,

Covariant derivative: V,, or .,
The metric tensor: gug
The Riemann curvature tensor:

Rea,@’y Xe = Xapy — Xaws

X



The Ricci tensor:  Rap 1= R° 4,
The Ricci scalar: R := R®,

The Weyl tensor:

1
Capns = Raprs = JalrBsls — pisFoja + 3 B Jain9is
Trace-free symmetrization of a tensor:
[m/2] m
TS[TOél"'Oém] = T(Oél"'Oém) - Z Yooz " 'ga2k—1062k)T042k+1"'062m
k=1
where Ta,, ., .as, are obtained by solving the k := [m/2] equations which

results from contracting both sides of the above equation successively with

Q02 Q3 xq QA2f—1%2k
y 9 y oo g .

g

Spinor Equivalents

o the metric tensor:  g.p ¢— €aBEip

e the Riemann tensor!

Ropys ¢— —VascpEipéep — €aBecn¥ipep
—®  pepecpeip — Popig€aBésp

—2A (GACGBDGABGC‘D —|— GABGCDGADGB(})

o the Ricci scalar: R =24A

1The sign convention here is that of Newman and Penrose [36].



o the Ricci tensor:  Rog ¢— —2® 5,5 + 6 Aeape,ip

o the Weyl tensor:  Cagys ¢— —VaBcDEigEep — GABGCDEAB(}D

Grobner Basis Theory

(S): the ideal generated by a subset S of a ring R.

Flay,... ,®,]: the ring of polynomials in zy,...,®, with coeflicients in the
field F.
M: the set of all monomials in Flay,. .., x,).

~<: a monomial ordering on IM:

Let < be given monomial ordering on 91; then, any f € Flzy,... ,z,] can
be written uniquely as an F-linear combination of monomials, i.e. f =

Ek ¢;m;, such that foreach¢ =1,... k,¢; # 0, m; € M, and my > --- > my.

=1

e The support of f: supp(f) = {{mili =1,... ,k}.

The leading coefficient, le(f), of f is ¢;.

The leading monomial, lm(f), of f is m;.

The leading term, 1t(f), of f is cim;.

Each ¢;m; is called a term of f.

rem(f,(g1,...,9r)): the remainder of f € Flz,,... ,z,] with respect to the
ordered sequence (g1,...,gx) C Flz1,...,x,] produced by the Multivariate

x1



Division Algorithm.

Lm(S): the leading monomial ideal of the subset S C Flzy,...

respect to some monomial ordering).

, &) (with

lem(my,m2): the least common multiple of the monomials my, ms € M (with

respect to some monomial ordering). It is defined as follows:

lem(2]* ---apm af" - wg") =),
where v; := max{q;, 3;}, for each 1 = 1,... | n.
S(f,g): the S-polynomial of f, g € Flzy,... ,z,] (with respect to some mono-

mial ordering).

xi1



Chapter 1

Introduction

1.1 Historical Notes

In 1678, the Dutch physicist and mathematician Christiaan Huygens pub-
lished his Treatise on Light [27], in which he presented a theory for the
propagation, reflection, and refraction of light.

Huygens’ light theory is based on the assumption that light waves tra-
verse a medium of ether particles. Huygens drew two conclusions regarding
the propagation of light, both of which were later referred to as Huygens’
principle.

In 1923, Jacques Hadamard published his Lectures on Cauchy’s Problem
in Linear Partial Differential Equations [24], in which he mentioned that “...
it happened, as is often the case, the question [the formulation of Huygens’
principle] under discussion was badly set. Huygens’ principle can be taken
in several different senses, and these were not sufficiently distinguished.”

He then proceeded to present Huygens’ principle as the following syllo-

gism:

(A) Major Premise

The action of phenomena produced at the instant ¢ = 0 on the state of

1
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matter at the later time ¢t = ¢y takes place by the mediation of every
intermediate instant t = ¢, i.e. (assuming 0 < ' < #y), in order to find
out what takes place for ¢ = t;, we can deduce from the state at t =0

the state at t = ¢’ and from the latter, the required state at ¢ = t,.

Minor Premise

If, at the instant ¢ = 0 — or more precisely throughout the short
interval —e <t <0 — we produce a luminous disturbance localized in
the intermediate neighbourhood of O, the effect of it will be, for ¢t = ¢/,
localized in the immediate neighbourhood of the surface of the sphere
with center O and radius wt’: that is, will be localized in a very thin

spherical shell with centre O including the aforesaid sphere.

Conclusion

In order to calculate the effect of our initial luminous phenomenon
produced at O at ¢ = 0, we may replace it by a proper system of
disturbances taking place at ¢ = ¢’ and distributed over the surface of

the sphere with centre O and radius wt’.

The two conclusions regarding the propagation of light drawn by Huy-

gens

in [27] were the Minor Premise and Conclusion of Hadamard’s syllo-

gism. Despite the fact that Huygens based his theory on ether particles,

which is considered incorrect from modern perspectives, Huygens’ conclu-

sions nonetheless describe light waves accurately. This success is what led to

the continued study of Huygens’ principle.

Evidently, Hadamard’s Major Premise is an example of the general philo-

sophical belief in cause and effect, whereas the Conclusion is the superposi-

tion principle for linear wave phenomena. Modern researchers on Huygens’

principle have thus restricted their attention to Hadamard’s Minor Premise,

and throughout this thesis, Huygens’ principle will be taken in this sense.
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The settings in which Huygens’ principle can be studied are numerous.
It has been known for a long time that the ordinary wave equation in three
spatial dimensions satisfies Huygens’ principle while that in two spatial di-
mensions does not. (See, for example, [41].) Hadamard proved that in order
for Huygens’ principle to hold, it is necessary that the total number of di-
mensions of the underlying spacetime be even and greater than or equal to
four.

Huygens’ principle can also be extended to “wave” operators on smooth
sections of a vector bundle over a Lorentzian manifold of any dimension. (See
[23].) Researchers, including Czapor, McLenaghan, and Sasse, have studied
the validity of Huygens’ principle of Weyl’s neutrino equation and Maxwell’s
equations in spacetimes of certain Petrov types.

In this thesis, however, we will restrict our attention to only scalar wave

equations on spacetimes, i.e. 4-dimensional Lorentzian manifolds.
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1.2 Mathematical Preliminaries

1.2.1 Spacetimes

Definition 1.2.1 A spacetime is a pair (M, gog) where M is a connected,
non-compact, oriented, time-oriented 4-dimensional C'™ real manifold and

Jap 15 o C°° Lorentzian metric on M.

Remarks

o We require a manifold to be Hausdorft and second-countable. Propo-
sition 5.5.5 of [1] states that Hausdorfl, second-countable and locally
compact spaces are paracompact. Thus, manifolds, being locally Eu-
clidean, are automatically paracompact. Paracompactness implies ex-
istence of smooth partitions of unity, which in turn implies that an

integration process can be defined on manifolds.

e The following result (Proposition 37, Chapter 5, [38]) characterizes
Lorentzian manifolds: For a smooth manifold M, the following are
equivalent:

1. M admits a Lorentz metric.

2. M admits a time-orientable Lorentz metric.

3. M admits a nowhere vanishing vector fields.

4. Either M is non-compact or M is compact with Euler character-

1stic zero.

e A Lorentzian manifold is time-orientable if and only if it admits a
C> vector field that is everywhere time-like. (Lemma 32, Chapter 5,
citeONeill.)

o Let M be an n-manifold. Then
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1. M is orientable if it admits a volume element (any nowhere-

vanishing n-form.) (Theorem 9, §5.3, [43].)

2. M has a volume element if it is orientable and paracompact. (The-

orem 12, §5.3, [43].)

In what follows, (M, gng) will denote a spacetime, V, its Levi-Civita

connection.

1.2.2 Normal Neighbourhoods

Theorem 1.2.1 (Proposition 24, Chapter 3, [38]) For anyp € M and
any v € T,M, where T,M 1is the tangent space of M at p, there exists a
unique geodesic 7y, : I —» M such that

1. 4:(0) = v, and

2. Ifo:J— M is a geodesic such that o(0) = p and ¢'(0) = v, then
JC I and o =7,]s.

In the preceding theorem, 7, is called the inextendible geodesic of v €

T,M.
Definition 1.2.2 For any p € M, define

D, :={v € T,M | Domain(y,) 2 [0, 1]}.
The exponential map of M at p is the function

exp,: D, — M
v (1).



§1.2. Mathematical Preliminaries 6

Theorem 1.2.2 (Proposition 30, Chap 3, [38]) For each point p € M,
there exists a neighbourhood U C D, of 0 € T,M such that the exponential
map exrp, maps U diffeomorphically onto a neighbourhood U of p in M.

Definition 1.2.3 A subset S of a vector space is said to be starshaped about
vo €S if v €S implies vg +t(v —wvg) € S for all 0 <t < 1.

Definition 1.2.4 A neighbourhood U of p € M is said to be a normal neigh-
bourhood of p if U C exp,(D,) and exp,*(U) is starshaped about 0 € T,M.

Since given any neighbourhood W of 0 € T, M, there exists a neighbour-
hood U C W that is starshaped about 0 € T,M, it is evident that every

p € M is contained in a normal neighbourhood.

Theorem 1.2.3 (Proposition 31, Chap 3, [38]) IfU is a normal neigh-

bourhood of p € M, then for each point q € U, there exists a unique geodesic
v :10,1] — U from p to q. Furthermore, v'(0) = exp,*(q).

1.2.3 Geodesically Convex Domains

Definition 1.2.5 An open connected subset & C M is said to be geodesi-
cally convex if any two points p,q € Q can be joined by a unique geodesic in

Q.

Theorem 1.2.4 (Theorem 1.2.2, [17]) Every point p € M has a normal

netghbourhood that is geodesically conves.

Definition 1.2.6 (Quadratic Geodesic Distance) Let {2 € M be a geodesi-

cally conver domain. Then the quadratic geodesic distance between p,q €
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s defined by

<L¢%VV”®>? if p#4q
L(p,q) := )

0, if p=gq

where v is the unique geodesic between p and q when p # q, and (y',v') is
the scalar product of the tangent vector of v with itself.

Theorem 1.2.5 (Theorem 1.2.3, [17]) Let @ C M be a geodesically con-

ver domain. Then the map

': Ox — R
(r,q) +— T(p,q)

has the following properties:
1. It is C™ on  x Q and symmetric in its two arguments.

2. As a function of either argument, I' satisfies
(VI', VT') = 4T, (1.2.1)

where V is the gradient operator on scalar fields.

3. Let q be fized, and let v : s — x“(s) be a geodesic such that z*(0) = q,

with s being an affine parameter, then

VI =259/, (1.2.2)

where v = % s the tangent vector to the geodesic .
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1.2.4 Normal Coordinates

Definition 1.2.7 (Normal Coordinates) Let Q be a normal neighbour-
hood at p € M, with exponential map exp, : W — Q, where W is a
starshaped neighbourhood about 0 € T, M.

Let {eq,... ,es3} be an orthonormal basis for T,M. Define

=: W — R*
e, — (2% 2t 2% 2%)
Clearly, E is a smooth injection. Let U := ZE(W) C R*. Then Z is a
diffeomorphism from W C T,M to U C R*. Define ) :=Eo exp;l, i.e.,

b Q — W I

q — exp,l(q) =z, — (2% ' 2% 2%
Then v : Q@ — U is a diffeomorphism and (3,Q) a coordinate system con-
taining the point p. (¢,8) is called the normal coordinate system on
centred at p with respect to the orthonormal basis {eo, ... ,e3} at T,M.

Proposition 1.2.1 Suppose (1, 82) is a normal coordinate system on a nor-
mal neighbourhood Q centred at a point p € M. For any point & € 2, let
(2%, 2, 22, 23) = (x) represent the coordinates of x. Then, the following

statements hold:

1. ga,@(p) = dla’g(lv _17 _17 _1)

2. T (p) = 0, where I are the Christoffel symbols of the Levi-Civita

connection.

3. gap(m)r? = gap(p)z’.
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4. If, in addition, € is geodesically convex, then

L(p,2) = gap()x*a” = gap(p)z*z”,

where I'(p, z) is the quadratic geodesic distance between p and w.

Definition 1.2.7 can be found in [37]. The results stated in Proposition
1.2.1 can be found in Theorem 1.2.3, [17] and Proposition 4.1.18, [37].

1.2.5 Causal Domains

In this section (M, gag, Xa) is a spacetime which is time-oriented by the

everywhere time-like vector field X, on M.

Definition 1.2.8 Let 2 C M be open and connected.

For each p € (1, the future of pin Q, denoted by Jf(p), s defined to be the set
of all points q € Q such that there exists a causal, future-pointing piecewise

C! curve in  which starts from p and terminates at q.

The past of p in Q, denoted by J%(p), is defined similarly, but with “future-
pointing” replaced by “past-pointing”.

The boundaries of J(p) and J%(p) are respectively denoted by C%(p) and
Ce(p). The interiors of JE(p) and J%(p) are respectively denoted by DT (p)
and D% (p).

Let S C Q be any subset of Q. The future of S and past of S in Q are
respectively JP(S) := U, s JE(p) and JE(S) := U,.s J2(p).

PES peS ¥ —
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Definition 1.2.9 An open connected Q@ C M is said to be geodesically nor-

mal if it is a normal neighbourhood of each of its points.

It is trivial to see that every geodesically normal domain is also geodesi-

cally convex.

Theorem 1.2.6 (Lemma 1.2, Chap. 1, [23]) Let U C M be open and
p € M. Then there exists a geodesically normal domain Q such that p €
QCU.

Theorem 1.2.7 (Lemma 2.4, Chap. 1, [23] and Remarks) LetQ C M

be a geodesically normal domain, and p € . Then

= {q¢eQ|T(p,q) >0, X(T(p,-

(p) )

CHp) = {pyn{qeQ|T(p,q) =0,X(T(p,))|g >0},
(p) )
() = {pIn{qeQ|T(p,q) =0,X(T(p,"))ly <0},

where T' is the quadratic geodesic distance function on § and X s an every-

where time-like C'™ vector field which gives the time orientation of M.

Definition 1.2.10 An open, connected set g C M 1is called a causal do-
main if there exists a geodesically normal domain & C M containing o such
that for every p,q € Qo, J(p) N J2(q) is either a compact subset Qo or it is
empty.

Theorem 1.2.8 (Theorem 4.4.1, [17]) Every point in a spacetime has a

netghbourhood that is a causal domain.
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1.2.6 Hypersurfaces

Definition 1.2.11 A manifold S is a submanifold of M if

1. § s a topological subspace of M.

2. The inclusion map ¢ : S — M is C* and its differential di : TS —
TM: v d(i)(v), where d(¢)(v)[f] = v[foi], Vo € TS, and V¥V f €
C>®(M), is injective.

Theorem 1.2.9 (Proposition 31, Chap. 1, [38]) A subset S of an n-
manifold M is an m-dimensional submanifold if and only if at each point
p € 5, there is a coordinate chart p : U C M — U CR", with p € U, such
that S = =Y (W), where W C U is some some subset of U C R for which

exactly n — m coordinates on W are constant.

Definition 1.2.12 A hypersurface of an n-manifold is an (n—1)-dimensional

submanifold.

Definition 1.2.13 (Causal Character of Submanifolds) Let S be a sub-
manifold of a spacetime M. If T,(S) has the same causal character in T,(M)

for every p € S, then that same causal character is attributed to S.

Obviously, an arbitrary submanifold need not have a causal character.

1.2.7 Discussion of Assumptions

We have assumed our spacetime to be oriented. Since we will need to perform
integration on our spacetime, we need the existence of a volume element on
M, which is in general implied by paracompactness and orientability.

We need the time-oriented assumption because we need to be able to

distinguish (locally) past and future.
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In the preceding sections, we presented a series of rather technical defini-
tions and theorems, culminating in Theorem 1.2.8, which essentially states

that every point in a spacetime has a neighbourhood which

1. is diffeomorphic to a domain of Minkowski spacetime that is star-

shaped about the origin, and

2. contains the intersection of every pair of half null cones whose vertices

belong to the neighbourhood.

We will eventually formulate Huygens’ principle within causal domains only.
This allows us to make use of the fact that the local topology (in particular,
the topology of null cones) within a causal domain is characterised by the
quadratic geodesic distance function defined on it, as implied by Theorem
1.2.7.

On the other hand, by working within causal domains, our analysis can
only be carried out locally. This restriction results from the fact that Huy-
gens’ principle will be formulated as a property of the solution to the Cauchy
problem, whose general solution is constructed pointwise using the quadratic

geodesic distance and the local causal structure.
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1.3 Mathematical Formulation of Huygens’
Principle

In this section we will formulate Huygens’ principle for scalar wave equations
on a causal domain of spacetime, following the treatment of Friedlander [17].

In what follows, (M, g.g) represents a spacetime, V,, its Levi-Civita con-
nection. The word smooth will mean C'*. Q@ C M will represent a causal

domain, which has a piecewise smooth boundary 0f2.

Definition 1.3.1 A second-order linear hyperbolic partial differential oper-
ator P on C*(Q) is said to have metric principal part if

P=0+4A"V,+ B, (1.3.1)

[

where V, is the Levi-Civita connection on (M, gag), A% is any smooth vec-

tor field on Q, B is any smooth scalar field on Q, and O := ¢*PV, V5 =

Lot (Viglo™s).

The adjoint of P is the operator:
*Plv] := Ov — V4(A%) + Bv

The operator P is said to be self-adjoint if *P = P; otherwise, it is said

to be non-self-adjoint.

For brevity, we will refer to differential operators of the form (1.3.1) as
scalar wave operators on ).

It is trivial to see that P := O+ AV, + B is self-adjoint if and only if
A® 1s zero, by noting that

*Plv] := Ov—V4(A%)+ Bo
= Ov—A*V,v+ (B —divA)wv.
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Definition 1.3.2 A local Cauchy problem for the operator (1.3.1) on Q is

a boundary value problem of the following form:

Pu = f, on Q,

v = g, on S, (1.3.2)
g—z = h, on S,

where S C Q is a space-like hypersurface in M, f € C>*(Q), g,h € C>(S)

and g—z denotes the normal derwative of uw on S.

Definition 1.3.3 A subset S C Q is said to be past-compact if J%(p) N S
s either empty or compact for all p € Q. § is said to be future-compact if
Jf(p) NS is either empty or compact for all p € 2.

Theorem 1.3.1 (Existence and Uniqueness of the Forward Solution)
Let S C Q be a past-compact space-like hypersuface such that an(S) =S.
Suppose that f € C*(Q) and g,h € C>(S). Then the local Cauchy problem
(1.3.2) has a unique solution u € C=(JE(S)).

The following theorem, together with the preceding one, give a represen-

tation formula for the unique C'* solution to the local Cauchy problem.

Theorem 1.3.2 (The Forward Representation Formula) LetQ be a causal
domain and P := O+ A*V,+ B a scalar wave operator on 02(9). Let S be
a past-compact space-like hypersurface such that an(S) =S.

If u € C™>(Q), then for each xy € Jf(S)\S, we have

u(wo) = ul (o) + u®(20) + u! (o) + u (o),
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where

~ on cn UP(u)pur

1 +

- V Plu)p

T J I (mo)nTL(S

1

= o V+V( ) —uVVT + (uVT)A%) (1.3.3)
T Jgs

u (o) = 23/0( " (U(2<€,Vu> + (0 + (a,O))u) + V) do,.

U e 0> x Q) is defined by:

1 [*@) dt
U(zg,x) := exp _Z/ (Or + A*V, I — 8)— (- (1.3.4)
0

with the integral taken along the unique geodesic in §) starting at ©o and
terminating at ©. VT (zg,z) € C®(AT), where AT := {(p,q) e 2 x Q| p €

J2(q)}, is the solution to the following initial value problem:

{ P[V*t] =0, on At and (13.5)

Vt(zg,z) = Mfos(m) #dt, when © € C%(xo).

In (1.3.4) and (1.3.5), the operator P differentiates with respect to .

The proof of Theorem 1.3.1 can be found in [17] (Theorem 5.3.2.) In the
statement of Theorem 1.3.2, the vector field ¢ and scalar field  are unambigu-
ously determined by the 2-dimensional space-like hypersurface C%(zg) N S.
It is rather involved to establish their definition and existence, and since
their actual definitions, as we shall shortly see, play no part in the theory of
Huygens’ principle, we will omit them in this thesis but refer the interested
reader to Chapter 5 of [17]. Also the C* function V™ (zo,z) of € DY (o) is
defined to be the solution to the initial value problem (1.3.5), and the proof
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of its existence and uniqueness can be found in Section 4.3 of [17].

We next give a diagramatical motivation of the definition of Huygens’
principle. Let O be the worldline of an observer and S a space-like hypersur-
face. Let @y be some point on the worldline of O and in the future of S. Let
p be a point belonging to the intersection of S and the interior of the past
null cone of the point z,. We also suppose that all items mentioned above
are contained in some causal domain 2. This is illustrated in the following

diagram.

Iustration of Huygens’ Principle

The dash line indicates a “ripple” from the event p € S to the event xg.

If at p, a light signal is emitted towards O, it will be received by O at
the event g, travelling along a null geodesic indicated as the solid directed
line segment from p to ¢. If at some later point zy on the worldline of O,
another signal from p is received, say the one that travels along the dashed
line segment in the diagram, then that subsequent signal would be a “ripple”.
Intutively, this violates Hadamard’s Minor Premise, and Huygens’ principle
should therefore require that the forward solution to the local Cauchy prob-
lem at zo be independent of the Cauchy data on the interior of J%(z) NS,

Thus we make the following:
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Definition 1.3.4 The operator P := 0+ A*V, + B on C*(Q) is said to be
a forward Huygens operator in a causal domain § if for every xzq € £, and

every past-compact space-like hypersurface S, the support of the solution at
zo of the local Cauchy problem (1.3.2) is contained in C%(zo).

It is obvious that the “past” counterparts of Theorems 1.3.1 and 1.3.2

also hold, which allows us to define backward Huygens operator.

Definition 1.3.5 P := [0+ A*V, + B is a Huygens operator on a causal
domain  C M if it is both forward and backward Huygens.
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1.4 Further Development

1.4.1 Hadamard’s Criterion

The following necessary and sufficient condition for Huygens’ principle is

known as Hadamard’s Criterion.

Theorem 1.4.1 (Hadamard’s Criterion) The operator P := O+A*V,+
B is a forward Huygens operator in a causal domain € of the spacetime

(M, gap) if and only if
P[Ul =0, on C%(xy), for every zo € 1, (HC)

where U(xo, x) is the function as defined in Theorem 1.5.2.

Proor It is obvious from Theorem 1.3.2 that P := 04 A*V 4+ B is forward
Huygens if and only if both «(®)(z,) and u®(20) in (1.3.3) vanish for every
zo 1n the future of the Cauchy surface, for every local Cauchy problem. It is

also obvious from the definition of u(2)(w0) and u(3)(w0) that

Vt(zg,z) =0, u®(z0) = u® (o) = 0,
for every z € J%(zy), — for every zg € Jf(S),
for every zq € Q. for every local Cauchy problem.
(%) (&)

When we take into account that the C> Cauchy surface and Cauchy data
are otherwise arbitrary, we see that (*) is also a necessary condition for (A).
Therefore, (x) is in fact a necessary and sufficient condition for P to be
forward Huygens.

We next claim that (x) is in turn equivalent to (HC). Now, since V*

is the solution to the initial value problem (1.3.5), it is obvious that (HC)
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implies (x). Conversely, () implies

s(2)
/ Mdt:o, on C%(zp), (1.4.1)
0 U

since U # 0, being an exponential. Since z € C*(z) is also arbitrary, we see

that (1.4.1) implies that # =0 < P[U] =0, i.e. (%) holds. O

1.4.2 Trivial Transformations

Let P := O+ A*V, 4+ B be a scalar wave operator on a causal domain
Q2 C (M, gop). Then the following two types of transformations on P leave

invariant the Huygens nature of P:

(1) P[u] = A~'P[Au], where A is a nowhere vanishing C* function on

spacetime.
1 Plu] = =29 P[u), where ¢ is a C™ function on spacetime.
(ii) : p

Straightforward calculations show that in the case (i), P is a scalar wave
operator on  C (M, g.3). However, in case (ii) P is a scalar wave operator
on Q C (M, Gap), where Gog = €*?gap. (M, Gug) is a spacetime conformally
related to (M, gag)-

We state the above claim as a theorem:

Theorem 1.4.2 Let P := 04 A*V,+ B be a scalar wave operator on some
causal domain Q in (M, gag). Let $, A € C*(Q) and suppose X is nowhere
vanishing. Then the operator p defined by:

Plu] := A'e 2 P[A ] (1.4.2)

s forward Huygens if and only if P is forward Huygens.
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The preceding theorem follows immediately from Hadamard’s Criterion
and the transformation law of P[U] on C%(z), the latter of which we state

as the lemma below:

Lemma 1.4.1

[ﬁ[ﬁ]] = Lz¢>(m10)62¢ )‘(fo) a; P[U]

where the outer square brackets on either side indicates restriction to C%(zy),

and ay is a non-vanishing function on C%(zy).

OuTLINE OF PROOF  This proof follows that of McLenaghan [33].
Claim 1 By Theorem 4.5.1, [17],

G = %(U&F(F) + V) (1.4.3)

is a forward fundamental solution of P, i.e. P[G] ] = d5,, with support
in J¥(zo). By Corollary 5.1.1, [17], it is the only one with pole at zo and
support in J% (o).

Claim 2 P is the same type of differential operator as P and the funda-
mental solution of P is:

Alzo) 1 oy (1.4.4)

At
G:I?O - )\ 62¢(m0) o

To prove this, we proceed as follows: Since é;’o 1s the fundamental solution

of ﬁ, we have
PIGE) = 0uy2).

where gmo(:n) = ¢ * §,,(z). This transformation law follows from the defin-

tion of the Dirac delta distribution on a Lorentzian manifold with met-



§1.4. Further Development 21

ric g. It is defined, in terms of any local coordinate system (U, ¢), to be

0o () := 5(5"’17;‘) where zg,z € U, and ¢(zo) = Xo, ¢(z) = x. Taking into

account that g*# = e=2¢g*8 — |g|'/? = ¢*?|g|'/2, the asserted transforma-

tion now clearly follows. Therefore,
%e‘“’P[)\éjo | = e 6, (x),
and hence,
PIAGE ] = Ae 28, (x) = Aoe 274, (@),
where Ao := A(wo) and ¢o := ¢(w0). Consequently,

P [i 2 Gt ] = O ().
Ao 0

Now, by uniqueness of the fundamental solution of P, we conclude that

@+_)‘01 +

=) g O

Claim 3  Substituting (1.4.3) into (1.4.4) and equating the regular and

singular parts separately, we get:

~ Ao 1
U = aq T% (145)
~ Ao 1
+ Y +
Vo= v (1.4.6)
Using the fact that 5+(f) = % - 64(T) = L+ 64(T), we also have
=0 1
ve_ive (14.7)
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Claim 4 For brevity, we write ['(zo,z) as I', and differentiation is per-

formed with respect to € Q. Then, F=0<=T=0 implies

r ZG1F+CI,2F2—|—"' 5 (148)
where a; i1s defined to be
1 5@
ay = —/ e?*dt, (1.4.9)
S Jo

where the integration is carried out along the unique geodesic from z to =

with respect to an affine parameter s.

To see this, note that by (1.4.8) and Theorem 1.2.5, we have

r 25:
o P S —_—
T T = e | a2 g*T T s+ (2a1 g9*Pa1 T g) T + O(T?)
—24 da, 2
= 4e *%aqq a1+sd— '+ O(I7) (1.4.10)
S

On the other hand, g“ﬁf@fﬂ = 4T (by Theorem 1.2.5 again) implies
GPT Tp=4a;T +4aT? + - (1.4.11)

Thus equating the coefficients of I" in (1.4.10) and (1.4.11) yields

da
3—1 +a; = e2¢’,

ds

whose obvious solution is given by (1.4.9). Claim 4 is established.
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We now finish the proof of the lemma. By definition,
U [*@ plUj
V== ——dt
s /0 v 7’

which implies

% (3 ‘%) _ {#] , (1.4.12)

where the outer square brackets on the right hand side indicates restriction

to C%(zo) only. Similarly, we must have

d <~ 17+)
- S —=— =
ds U

By (1.4.7), we see that

d (vt d (5 VY ds

Claim 5 It can be shown via a straighforward calculation that

P(U]

- (1.4.13)

Y

(=)
5= / 2 dt, (1.4.15)
0

is an affine parameter for the unique null geodesic from z to = with respect

to the metric §os = ¢**gap. This immediately implies -
Substituting these into (1.4.14), taking into account (1.4.12), gives

R I S I

= s and j—f — 20,
E
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Substituting (1.4.5) and (1.4.16) into (1.4.13) yields:

_ay PIU] P[U]
W = | ————— 1.4.17
|:6 Y :| a1 )3\_0 321¢0 U ( )
Equivalently,
~ ~ 1A
[P[U]] _ [W L P[U]] . (1.4.18)
O

Definition 1.4.1 Two scalar wave operators P and P are said to be equiv-

alent if there exist smooth functions A and ¢, with A nowhere vanishing, such

that (1.4.2) hold.

1.4.3 The Conformally Invariant Scalar Wave Equa-
tion

In §2.1, we will discuss a sequence of necessary conditions for Huygens’ prin-

ciple that have been computed. The first one of these conditions is:

1 1 1
B—-A" _ — -A“A, —-R=0,
27 Ty gt ="

where R is the Ricci scalar of the underlying spacetime. For a self-adjoint

equation, it reduces to

B=ZR. (1.4.19)
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Further Development

§1.4.
Therefore, we conclude that any self-adjoint scalar wave equation satisfying

Huygens’ principle must have the form:
(1.4.20)

Du—l—%u:().

Equation (1.4.20) is called the conformally invariant scalar wave equation,

because of the following:

P =0+ % s equivalent to P = 0O+ 2 whenever

ol

Proposition 1.4.2
their underlying spacetimes are conformally related.

Proor  First, consider a general scalar wave operator P := [+ A*V, + B,
and let P := Ate72P[Au], as in (1.4.2). Tt is easy to see that if the principal
part of P comes from the metric ¢,g, then the principal part of P comes from

Gap 1= €*%gap. Thus, for suitable A and E, we may write

ﬁ[u] = ga,@ UsapB + ga U o + Eu
(O + A*V 4 + B) [u].

According to McLenaghan [33] and Walton [45], the coefficients of P and

P are related as follows:
go‘ﬁ =72 go‘ﬁ, or Jap = 2 Jap (1.4.21)

and A* = g*P A, (1.4.22)

Ag = Ay +2Va(In)) — 2V .9,

B=¢ (B4 MgV, Vs + A°V,(In ) (1.4.23)

P = 0O+ Z and let (M,gas) be the underlying space-

Now, suppose o
time of P. Let ¢ € C®(M) be given, and define A := e?. Let Plu] :=
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Ate 2 P[Au] = e 3 Ple?u]. Then P is a scalar wave operator on (M., jug),
where Jos = €¢**gos. By Theorem 1.4.2, P and P are equivalent. We shall
showthatﬁzi—l—§:]3.

We have already mentioned that the principal part of Pis O By the
choice of A, it is immediate from (1.4.22) that A* = 0, i.e. P is still self-
adjoint. Thus, it remains only to prove that B= R/6.

The transformation law of the Ricci scalar under a conformal transfor-

mation is as follows:
R=e¢ (R+69"VaVpp + 64°(Vad) (Vo)

The derivation of the above can be found, for example, in §3.4, [15]. Dividing
through by 6, we get

o | =

6
= ¢ (B + eV, Vg e(b) , (1.4.24)

R (5 TV <va¢><w>>)

where we have used (1.4.19) and V,Vge? = ¢?(V.Vsd + Vadp Vo) to
obtain the last equality. On the other hand, substituting A = ¢? and A% =0
into (1.4.23), we get

B=e¢ (B+e %PV, Vge?). (1.4.25)
Thus (1.4.24) and (1.4.25) together imply

B=

o | =
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1.4.4 Hadamard’s Problem & the Carminati-McLenaghan

Conjecture

The first working conjecture regarding the validity of Huygens’ principle was

the following one proposed by Hadamard:

Conjecture 1.4.1 (Hadamard’s Conjecture) Every Huygens’ operator is

equivalent to the ordinary wave operator in Minkowski spacetime.

Hadamard’s conjecture is now known to be false. We have so far restricted
our consideration to spacetimes, i.e. 4-dimensional Lorentzian manifolds. In
fact the question of the validity of Huygens’ principle was originally posed for
Lorentzian manifolds of any finite dimension. Hadamard himself proved that
Huygens’ principle implies that the dimension of the underlying manifold
must be even and greater than or equal to four. Stellmacher [44] constructed
counter-examples to Hadamard’s conjecture for all even dimensions > 4,
i.e. Lorentzian manifolds that are not equivalent to any “Minkowskian”
manifold (i.e. with a flat Lorentzian metric) but on which Huygens’ principle
1s satisfied.

In 1965, Gunther established further counter-examples: Any exact plane

wave spacetime, whose metric has the form (in Ehlers-Kundt coordinates,

[16]),
ds? = 2dv {du + (D(v)z2 + D(v)22 + e(v)zZ) dv} — 2dzdz,

is a non-conformally flat spacetime on which the conformally invariant scalar
wave equation satisfies Huygens’ principle. See [22].

For many decades, researchers have endeavoured to solve the following:

Hadamard’s Problem

Determine all equivalence classes of Huygens’ operators modulo the trivial
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transformations on the set of all scalar wave operators on spacetimes.

The following three facts:

(1)  The conformally invariant scalar wave equation satisfies Huygens’ prin-
ciple on any conformally flat spacetime and also on any spacetime con-

formally equivalent to an exact plane wave spacetime. See [30], [25],

[6] and [22].

(2)  These are the only known spacetimes in which Huygens’ principle is

valid for the conformally invariant scalar wave equation.

(3)  These are the only conformally empty' spacetimes on which Huygens’

principle is valid for the conformally invariant scalar wave equation.

See [32]

have prompted the proposition of the following conjecture by Carminati and

McLenaghan:

Conjecture 1.4.2 (Carminati-McLenaghan)

(1) Every non-conformally flat spacetime on which Huygens’ principle is
valid for the conformally invariant scalar wave equation is conformally

equivalent to an exact plane wave spacetime.

(2)  Every non-self-adjoint scalar wave equation that satisfies Huygens’ prin-
ciple is equivalent to a self-adjoint equation on a conformally flat space-

time or on an exact plane wave spacetime.

i.e. conformally related to an empty spacetime. A spacetime is said to be empty if its

Riccl tensor vanishes identically
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Petrov Type
Equation I ‘ II ‘ D ‘ 111 ‘ N ‘ 0
conformally invariant X | X |epw. |4/
non-self-adjoint T X |epw. |4

Table 1.1: Partial results towards the solution of Hadamard’s Problem

1.4.5 Summary of Known Results

The Carminati-McLenaghan conjecture is a “negative” conjecture in the
sense that it asserts the invalidity of Huygens’ principle except when the
underlying spacetime is either conformally flat or conformally equivalent to
an exact plane wave spacetime.

In the attempt to establish the Carminati-McLenaghan conjecture, re-
searchers have considered separately the disjoint classes of spacetimes by
their Petrov types. Necessary conditions for the validity of Huygens’ princi-
ple have been derived from Hadamard’s Criterion, and they have been used
to disprove the validity of Huygens’ principle for a particular Petrov type of
spacetimes by being shown to lead to contradictions in those spacetimes.

A spinor formalism has been commonly used since it offers a number of
computational advantages due to the general algebraic properties of spinors
which will be discussed in §2.2. Also, the Petrov classification of spacetimes
becomes more transparent in the spinor formalism where it can be determined
simply by examining the alignment of the principal spinors of the Weyl spinor.

Table 1.1 summarizes the results that have been obtained so far. The
symbol 4/ indicates the validity of Huygens’ principle has been established,
while x indicates the invalidity of Huygens’ principle has been proved. The
entry e.p.w. under the column for type N indicates that for Huygens’ principle
to hold on a Petrov type N spacetime, the spacetime must be conformally

equivalent to an exact plane wave spacetime. The empty slots indicate that



§1.4. Further Development 30

no results have been obtained for the corresponding cases. The case marked
with 7 is the case considered in this thesis.

The following is the list of citations of the results mentioned above.

e (Mathisson [30], 1939)  The non-self-adjoint scalar wave equation in

a conformally flat spacetime satisfies Huygens’ principle.

e (Ginther [22], 1965) Huygens’ principle is valid for the conformally
invariant scalar wave equation on any conformally flat spacetime and
also on any spacetime conformally related to an exact plane wave space-

time, the metric of which has the form (in Ehlers-Kundt coordinates):

ds? = 2dw {du + (D(v)z2 + D(v)22 + e(v)zZ) dv} — 2dzdz

e (Carminati & McLenaghan [9], 1986) The conformally invariant scalar
wave equation on a Petrov Type N spacetime satisfies Huygens’ princi-
ple if and only if the spacetime is conformally related to an exact plane

wave spacetime.

e (McLenaghan & Walton [34], 1988)  Any non-self-adjoint scalar wave
equation satisfies Huygens’ principle on a Petrov Type N spacetime if
and only if it is equivalent to an wave equation on an exact plane wave

spacetime.

e (McLenaghan & Williams [35], 1990)  There are no Petrov Type D
spacetimes on which the conformally invariant scalar wave equation

satisfies Huygens’ principle.

e (Anderson & McLenaghan [4], 1994) Derivation of a sixth necessary

condition (the 5-index condition) for Huygens’ principle.
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e (Anderson, McLenaghan & Sasse [5], 1999)  Any non-self-adjoint scalar
wave equation satisfying Huygens’ principle on a Petrov type III space-

time is equivalent to a conformally invariant scalar wave equation.

e (Czapor, McLenaghan & Sasse [14], 1999)  There are no Petrov Type
III spacetimes on which the scalar wave equation (self-adjoint or not)

satisfies Huygens’ principle.



Chapter 2

The Necessary Conditions

2.1 The Necessary Conditions in Tensor Form

In this section, we present the first six necessary conditions for Huygens’
principle derived from Hadamard’s Criterion and describe how they can be

obtained. Define

o= # (2.1.1)

Then, since U, being an exponential, is nowhere vanishing, ¢ vanishes when-

ever P[U] does. Thus, it is obvious that
0] =0 <= o =0 onC%ux), forevery z € Q, (2.1.2)

is another necessary and sufficient condition for Huygens’ principle.

McLenaghan [31] proved that (2.1.2) has the following consequence:

Lemma 2.1.2 (Lemma 4.1, [31]) If ¢ = 0 on CP(zo) (correspondingly

C%zo)) and if (Of;al...am denotes the m-th order covariant derivative of o

32
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evaluated at zy (m = 0 corresponds to the undifferentiated o), then

o

G iy oy K+ O™ = 0 (2.1.3)

)

for any choice of a future-pointing (correspondingly past-pointing) null vector

k* e T,y M.

McLenaghan then showed that (2.1.3) can be stated without reference to the

null vector k*:

Lemma 2.1.3 (Lemma 4.2, [31] and subsequent remarks)

If o =0 on C¥(xq) or on C%(xg), then for every integer m > 0, we have

o

TS[ Gy e ] = 0, (2.1.4)

where TS| ] is the operation of trace-free symmetrization.!

Note that it follows from Lemma 2.1.3 that the forward and backward Huy-
gens’ principle give rise to the same set of necessary conditions. For each
non-negative integer m, (2.1.4) thus gives a necessary condition of Huygens’
principle. The following nomenclature has been established to refer to these

necessary conditions:

m Condition Name of Condition
0 o=20 0-index Condition
1 00';04 =0 l-index Condition
2

TS[G.0p] =0 2-index Condition

m || TS[ 0.0, | = 0 | m-index Condition

1See Notations and Conventions of this thesis for the definition of the trace-free
symmetrization.



§2.1. The Necessary Conditions in Tensor Form 34

The above equations are useful because their left hand sides can be
expressed in terms of the tensors g,g, A® and B as appearing in P :=
O+ A*V, + B, (albeit via very long calculations carried out in normal
coordinates) thereby giving conditions on these quantities and hence on P,
whenever the validity of Huygens’ principle is assumed.

The calculations expressing the 0-index, ... , 5-index conditions in terms
of gap, A* and B can be found in [31], [3], [45], and [42]. These calculations
are lengthy, and at present, only the first six necessary conditions have been
computed for the non-self-adjoint scalar wave equation.

To state the necessary conditions in the desired form, we first make the

following definitions:

Rap = R (2.1.5)

R := R* (2.1.6)
Lo = —Rag—l—%gaﬁR (2.1.7)
Sapy = Lajpy) (2.1.8)
Capys = Rapys + 2gals L (2.1.9)
Hug = Apg (2.1.10)

Now, the first six necessary conditions can be stated in terms of these

quantities:

1 1 1
= B A", - CA"A, - >
2 4 6R
0 = H”a;y
2

(2.1.11)
(2.1.12)
v 1 u v N 1 uv
0 = Sup.”—3C af L, +5 HauHﬁ _ZgocﬁHWH (2.1.13)
0 = TS[3SaﬁMHM7+CMaﬁwa;V] ( )
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0 = TS[3CuapinC" 5" +8C" 5" Suws +408,5" S s

aB 5y
—8C" 5" Sy — 24C* 5" Syspa +4C* JVC . L
+12cuaﬁy0A75uLu>\ + 12Hua;ﬁ7HM5 - 16Hua;ﬁHM75
—84H" ClppH" 5 — 18HWH“[3L75] (2.1.15)

0 = TS[36C" 5" CrosryH*, — 6C" 5" AHo

€ afl vy vée
—1385, 5" Crysr H, + 6Sap H" 5.+ 6Chs ~ Hysue
_245045%7[{“5;5 + 120Ma3yLu7Hu5;e — 9CMQ5VWLMJHVE
_9Sa,3uL75HME] (2116)
Equations (2.1.11), ..., (2.1.14) were obtained by Giinther [21]. Equation

(2.1.15) was obtained by McLenaghan [33], and equation (2.1.16) was derived
by Anderson and McLenaghan [4].

The anti-symmetric rank 2 tensor H,g will be referred to as the (asso-
ciated) Mazwell tensor of P := 0 4+ A*V, + B. This is because if P is a
Huygens’ operator, then H,g satisfies (2.1.12), which has the same form as

the source-free Maxwell’s equations.



§2.2. The Spinor Formalism 36

2.2 The Spinor Formalism

This section is a summary of the theory of spinor analysis over a spacetime,
which uses concepts from the theory of complex vector bundles. For an

account of complex vector bundles, see [37].

2.2.1 Spin Structure on a Spacetime
Definition 2.2.1 Let (M, g.g) be spacetime.

(1) A spinor bundle over M is a vector bundle S, with base space M,

whose fibre is a 2-dimensional vector space over C.

(2)  Given a spinor bundle S over M, a spinor field of type (}7) is a smooth

tu

section of the vector bundle S77.

(3)  T(S[?) denotes the set of all spinor fields of type (12).

tu
Definition 2.2.2 Suppose there exists a spinor bundle S over M.

e A Levi-Civita spinor field on M is a smooth section € of SZJ that is

anti-symmetric and nowhere vanishing.

o A van der Waerden-Infeld correspondence is a map o from the set of all
smooth (contravariant) vector fields on M to the set of all Hermitian

spinor fields of type (33) which possesses the following properties:

— Linearity: o(ri Vi + r2 Vo) = r10(V1) + r20(Va), for all smooth
vector fields Vi, Vo on M and for all 1,75 € R.

— For every smooth vector field V. on M, we have
1
det(o(V)) = 1 | det(0)] (V. V)

with respect to any local basis of the fibre.
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Hereinafter, Penrose’s abstract index notation will be employed through-

out. A Levi-Civita spinor field will then be denoted by e*® and a van der

AA

a .

Waerden-Infeld correspondence by o

Definition 2.2.3 A spin structure on (M, gag) is a triple (S, eAB,aaAA)
where S is spinor bundle over M, eAB € S 20 is a Levi-Civita spinor field on

M and aaAA 1s a van der Waerden-Infeld correspondence between the smooth

fields on M and the Hermitian spinor fields in S Jp.

2.2.2 Spinor Algebra

We will make use of the following well-known facts from spinor algebra. Note
that each statement in this section holds at every point of the spacetime M,
i.e. the spinors in this section do not have to be smooth spinor fields on M.

For proofs of these results, see [19], [23] and [40].

(1)  The van der Waerden-Infeld correspondence is a bijection between the
set of vectors and the set of Hermitian (33)-spinors. This correspon-
dence extends in an obvious way from tensors to Hermitian spinors. As
a result, we call the image of a tensor under the van der Waerden-Infeld
correspondence its spinor equivalent. For example, if T%? is a tensor,

then ‘TaAA‘TﬁBBTaﬁ is its spinor equivalent.

(2)  Every spinor dyad {o#,:4} determines a complex null tetrad on M as

follows:
a _ a A—A a a A-A
l ol ;070" n o vt
a _ a A-A —a _ a A=A
m ol 0ttt m oL ito

(3)  Every spinor of the form T4,...4,, is the sum of the totally symmetric

spinor T4, ...4,,) and direct products of €4p’s with totally symmetric
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spinors of lower valence.

(4)  Every totally symmetric spinor Sy, ...4,, can be written in the form:

1 1
SAl"'Am = Oé(Al ---aAm), (2.2.1)
for some m (99)-spinors, é‘Am e ,ochm, which are called the principal

spinors of Sa,..a,,. PFurthermore, the principal spinors of a totally

symmetric spinor are unique up to ordering and scaling factors.

(5)  If a tensor Rag,s has the following symmetries:

Rapys = Biapine) = Bpajes), Rajpys) = 0, (2.2.2)
then its spinor equivalent has the form:

—VuBcpEip€ep — €aBecp Y ipep — Papepeontin — Popig€aBécn
—2 A (GACGBDEABEC‘D —|— GABGCDEADEB(})a
(2.2.3)

where W pep 18 a totally symmetric spinor, ®,5,5 1s a Hermitian

spinor symmetric in each pair of its indices, and A is a scalar.

(6)  The curvature tensor R,g,s has the symmetries in (2.2.2), and if its
spinor equivalent is expressed as in (2.2.3), then the spinor equivalents
of the Ricci tensor R,g, the Ricci scalar R, and the Weyl tensor Cgys

are as follows:

Rag — —2(I)ABAB—|—6A€ABEAB, (2.2.4)
R = 24A, (2.2.5)

Ca575 — _\IJABCDEABE(}D_GABGCDEAB(}D- (2.2.6)
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‘ Type H ¥ iBcD ‘ Alignment ‘ Vanishing Components
I a4 BB vc dp) N/ none
IT || awuasfBep V% P, ¥y
D || auasfoBn | N7 Uy, Uy, Ty, U,
M | apuapachp) | N/ o, U1, T,
N (A OB &c D) % Vo, Uy, Uy, P
0 0 all

Table 2.1: The Petrov Classification

2.2.3 Petrov Classification of Spacetimes

The spinor ¥ pcp in (2.2.6) is called the Weyl spinor. By (2.2.1), it can be
decomposed into four principal spinors. One method of defining the Petrov
classification of spacetimes is by the alignment of the principal spinors of the
Weyl spinor. For example, a spacetime whose four Weyl principal spinors
are pairwise independent is said to be of Petrov type I. If two of the four
Weyl principal spinors are aligned, with the other two independent, then
the spacetime is said to be of Petrov type II. The rest of the classification

continues analogously. This classification scheme is summarized in Table 2.1.

Since the Weyl spinor ¥ sg¢p is totally symmetric, with respect to any

spinor dyad {(%}i—o1, it can be expressed as follows:

Vaigep = Poooo C(lAC%;Cé'C})) — 4P 001 C(lAC%;CévC%) + 6Wo011 CEACECBC%)
—4Wi11 CEAC%CQ{%) + Pi11g C?AC%CBC%),

where Yoooo, ... ,P1111 are the spinor components of ¥ 4pcp with respect to
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the dyad {C,iq}i:O,l- We introduce the notational convention:

Uy = ‘1’00007 U, = ‘1’00017 U, = ‘1’00117 Vs = ‘1’01117 Wy = Wyqq3.

Definition 2.2.4 We say a spinor dyad is canonical to Wapcp if each of

its degenerate principal spinors is aligned with one of the dyad spinors.

The advantage in tackling the question of the validity of Huygens’ prin-
ciple by considering the distinct Petrov types separately lies in the fact that
some of the Weyl spinor components vanish with respect to any dyad that
1s canonical to the Weyl spinor, thereby simplifying the necessary conditions
(in spinor form) for Huygens’ principle listed in the next section. The van-
ishing components (with respect to a canonical dyad) of the Weyl spinor in

each Petrov type are shown in the third column in Table 2.1.

2.2.4 Spinor Analysis

We compile a list of the results and notations from spinor analysis that will

be useful in the sequel. For proofs of these results, see [19], [23] and [40].

(1) If S is a spinor bundle on M which admits a spin structure, then there
exists a unique linear connection D on S and a unique linear connection

D on S which have the following properties:

(a) ﬁX(EA) = Dx(&4) for all vector fields X, and for all (}3)-spinor
fields ¢4 on M,

(b) Dx(e*B) =0, for any vector field X on M,
(¢c) Dx(a(Y)) = a(VxY),

where V is the Levi-Civita connection on M. It is clear that there is an

obvious way of extending D and D to spinor fields of higher valences.



§2.2.

The Spinor Formalism 41

In the sequel, we will follow the convention of denoting both D and D
with V.

Define
VAA = UjAVi

The fact that the operator V ,; is independent of the coordinates z*
can be seen as follows: Let 2% and y® be two different local coordinate

systems. Then

B B
a V 3 = g -Vaa a
AA T 55 AA T 5F B
3 6£Ba
= 0 _8_
AA @yﬁ EWE
—_ a.
= UAAvafa

This shows that V ,; is independent of coordinate systems.

Recall that a spinor dyad {o?,:4} determines a complex null tetrad

{1%,n% m* m* } on M. Therefore, {0*,14} — now they need to be

smooth spinor fields — also determines four directional derivative op-
erators:

D = 1°Vy,za A = n%Vygpa

0 = man)/ama g = man)/ama

The operators D, A, §, and § are called the Pfaffian operators of the
spinor dyad {04, 14}.

It is often convenient to use a component notation to denote the Pfaf-

fians. To this end, we proceed as follows: Given any spinor dyad
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{Cf}a:()’l, define
—A
Oai := CfCa VAA

Then these operators coincide with the Pfaffian operators as follows:

D = Voo = (05,0)Va = {0 Vai = O
A = 0 WVojpe = (05,(ACHVa = A Vi = 85
b = m Ve = (05,00 Ve = (8 Vai = Oy
§ = MVojppe = (UjACf‘Zgl)Va = CfffVAA = Oy

(5)  Let {¢&,({} be any spinor dyad. The spinor coefficients with respect
to the (4 are defined to be:

abcc = Cb C C VCCCGB?
where x® are any local coordinates. The spin coeflicients satisfy

Fabcc' — Fbacc'-

Thus, with respect to each given spinor dyad, there are only twelve

independent spin coeflicients; these are usually denoted by

1= Lggpp o := Logoi p = Lyo10, 7= Doo1i
€ := [y100 B = Ty0i a:= Lo, v = Lo
m:="T1100 poi= L1101 A =T, v:="T;

(6)  The spin coeflicients with respect to any spinor dyad satisfy the follow-

ing equations:
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(a) Commutation Relations: For any smooth scalar function ¢

on M, we have

[aai)acd - acdaai)] §b = [efe(]‘_‘facdafcai) - ]‘_‘fcai)aed.) + Ef.é(]‘_‘f.i)d.caaé - ]-_‘f'd'i)aacé)] §b

(2.2.7)
(b) Newman-Penrose Field Equations
Ol ety = OiTacrs = € (Lopailacse + Lacpiladre — Tapsel yeay — TacpeT i)
+e (Fac‘ﬁféi)éf - Facﬁrééi)d> + Vacdr€sp
+A Eéll)(‘:’Cdeaf + Eadecf) + (I)aci)éefd (228)

The component form of (2.2.7) and (2.2.8) with respect to a spinor
dyad are displayed in Appendix A.

(7)  The Bianchi Identities in Spinor Form
The Bianchi Identities

ViuRappys =0
in spinor form have the form:
VP ®4pop = V(CB(I)AB)ABv

(2.2.9)
VE“B(I),ch,ciB = =3V M,
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When expressed with respect to a spinor dyad, (2.2.9) takes the form:

)

J— t' . N p .
_<ﬁ@m®mp+rmméwﬁ>v

apd-\:pabcp - a(ct @ab)d.t. — <3\:[Jpr(ab]'_‘cpr d ‘I’ \IJabcp]-_‘prrd'> - 2Fp(abt@c)pid.

30,40 + i@ = (@, Ty, 8,0

i pr tpp T
B <q)pri) Fa i—l_q)api) r 7 t> :

api)i

"+ 3 ?F-p>

(2.2.10)

The individual component equations of (2.2.10) are displayed in Ap-
pendix A.
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2.3 The Necessary Conditions in Spinor Form

In Chapters 4 to 6, we will make extensive use of the dyad form of the
spinor necessary conditions for Huygens’ principle. This section lists the 0-
index to the 5-index condition in spinor form, which can be obtained via a
straightforward conversion process from their tensorial counterparts given in
§2.1. The dyad forms of these equations, which can be obtained through
contractions with appropriate dyad spinors, are displayed in Appendix A.

The terms defined in (2.1.5), ... , (2.1.10) have the following spinor equiv-
alents:

Rap 3 28,545 +6Aeant g (2.3.1)

R +— 24A (2.3.2)

Lap — 28,55 — 2heantin (2.3.3)

Sapr < P popicon+ T ise.pacon (2.3.4)

Caprs ¢+ —Uapcpesigecp — eapecn¥ ipep (2.3.5)

H,s +— e€apdip+Eindan (2.3.6)

Using the above conversions, the spinor equivalents of the equations,
(2.1.11), ..., (2.1.16) — the tensor form of the necessary conditions for

Huygens’ principle — can be directly computed, and they are as follows:
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1 1 1
= B—-A* — -A“A,— -R 2.3.7
270 Ty 6 (2.3.7)
K
0 = dup 4 (2.3.8)
— K L
0 = \IJABKLKA LB +Vipki 4 BT
KL — KL —
Vap “Prrin+ Yis Pupii 10048945 (2.3.9)
—= K
0 = 3\IJABCK;K(A¢BC‘)+3\IJABC'K; (A¢BC)
— — K
_‘I’ABCKﬁb(AB;c")K — ¥ p¢ ¢(AB;C)K (2.3.10)
= KK — K
3‘I’ABCD;KK‘I’ABC'D; - 40‘1’(,4BC|K|fK (A‘I’BC'D)K; D)
K — L =K I
+4¥ (ABC;D)(A‘I’BC'D)L;K + 4V (ABC‘;D)(A\IJBCD)L;K
k= K —K %
—4V" 4pc ¥ iBeik x| Dyp) — 4Y (ABC‘\IJ(ABC|K;K| D)D)

X _ K —K K
T129% g ¥ aBeikip) kD) T 12 (iB¢Y apoix)p) KD)

_16\IJK(ABC(I)D)KK(A$BC‘D)K —32A%4pcn ¥ igep
—6¢a.c)cHPin) — 0P is.cp)cpPaB)

—42¢(aBdop) ¥ igcp — 429 igbp)Pasep
‘|‘16€75(AB;C(0'$AB;D)D) + 36¢(AB(I)CD)(C'D)$AB (2.3.11)

S[-69" , pexiPse.ppEE + 0¥ 450" ppbiskons
+24\IJKAB(,';KADD$BC';EE + 24\IJKABC(I)KDAD$BC‘;EE‘
_18\IJKABC;EE(I)KDAD$BC‘ + 18\IJKABC;KA(I)DEDE‘$BC'
—369%, 5 ¥ peppridpe — 13895, o i VsepsdpE
+60% o Usenidre + 68 4pepmsY inePico

+ c.c] (2.3.12)
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The following is a stronger form of equation (2.3.9):
0= \IJABKL;KA LB + \I’ABKL Prrip o ¢AB$AB- (2.3.13)

It was obtained by Wiinsch [46] and McLenaghan and Williams [35], and it
will be used in the sequel instead of (2.3.9).
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2.4 Transformation Laws of NP Quantities

Recall that the Huygens’ nature of an operator P := [0+ A*V, + B is in-
variant under the trivial transformations. We will exploit this freedom in
Chapters 4 and 6 to simplify the necessary conditions. In this section, we
shall present the transformation laws of the the spin coefficients, the cur-
vature spinor components, Weyl spinor components and the Maxwell spinor
components under a dyad transformation or a conformal transformation. The

derivations of these transformation laws can be found in [3] and [45].

2.4.1 Dyad Transformations

A dyad transformation is of the form:
o =e¥?y J = 6_“’/2(L + qo). (2.4.1)

To obtain the component transformation laws for ¥ gcp, dam, and ®, 5,45,
we simply need to contract the respective spinors with the transformed dyad.

For example,

\IJ6 _ \I’ABCD O/AO/BO/CO/D

— U.pcp (ew/20A) (ew/2OB)(6w/2OC) (ew/20D)
— (ew/2)4 U 450D OAOBOCOD
= 62w\:[}0.
The transformation laws of all other components of ¥ pcp, dap, and

®,5ip can be derived the same way. For later reference, they are listed

below:
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Ty = Toe™ (2.4.2)
o (T + Uyq) (2.4.3)
o, Wy +20,g 4 Uog’ (2.4.4)
VA e (3Wsq + 3¥1q° + Uog® + Us) (2.4.5)
v, e 2 (4W3q 4 6Uaq® + 401 ¢° + Uy + gt (2.4.6)

by = oc” (2.4.7)
P = dog+ ¢ (2.4.8)
Py = e (2h1q + ¢s + dod’) (2.4.9)
d, Bype ™) (2.4.10)
D, " (®o1 + Pooq) (2.4.11)
®oy " (28017 + Boog” + Pos) (2.4.12)
By, = Porg+ P11 + Poogq + B10g (2.4.13)
P, (280147 + 28117 + Poogq” + P107
+®Po2q + P12) (2.4.14)
P, e (481197 + 28217 + 2%014°T + 281047
+®907” + Poq’F + 2®@19q + Pag + Bgaq?) (2.4.15)

To derive the transformation laws for the spin coefficients under a dyad
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transformation, first note that if we define

Iz = vyogogy— aoglg — BiLpog + €tply
Ilgy = —Topog+ poply+ 010y — Kiply
Iz = vogog— Aoplg — pipog + miply,

then, we can express Vg o4 and Vggia as follows:

VBBOA == IBBOA —I-IIBBLA

VBBLA == IIIBBOA — IBBLA‘

Of course, the two sets of equations above hold with respect to any dyad.

On the other hand, we have

Vpsoa = Vpp (6w/20A)

1
= /2 (VBBOA + 50,4 VBB“’) ,

and similarly,

1 1
Vggpty = e~ v/? (VBBLA + gV g0y + o4 (VBBQ — §qVBBw> — §LAVBB1U> .

We can therefore compute the transformation laws for Iy, Ilgs and 11155,

and they will turn out to be

1
gy = e llgg (2.4.17)
[Ty = e (Ilgz+2qll55 — ¢TIz + Vgpq). (24.18)
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Contracting the preceding equations with the transformed dyad yields the

transformation laws for the spin coefficients, which are listed below:

1

e = (e+ §D(w) + gr)elzvts™®) (2.4.19)
1 1 Lo
A= (B+50(w)+go+Te+ 57D(w) + qgr)elz" ™7™ (2.4.20)
1 1- 1, 1—
o = (get 5gD(w) +¢* + o+ ZO(w) +gp)eTTTET(2.4.21)
1 1
Y = (@84 399(w)+ ¢’ + 7+ FA(w) + g7 + g
1 T e L (Cle-lw
+5agD(w) + gk + qa + 5d0(w) + gap)e 7T (2.4.22)
K= keliwts®) (2.4.23)
o = (o+ rKg)eFv=z® (2.4.24)
po= (gr+p)elzets® (2.4.25)
T = (qo+7+gr+ pg)elr (2.4.26)
r— e(_%“’"'%m)(ﬂ + 2ge + ¢°k + D(q)) (2.4.27)
o= (2¢8+ o+ p+0(q) + gr + 2qge
+¢%Gk + GD(q))e T E) (2.4.28)
N = (qr+2¢*e+ ¢’k + qD(q) + 2q + ¢*p
HA + 3(g))el-TwH™ (2.4.29)
Vo= (2¢B+ o+ ap+qd(q) +2q7 + v+ Alg) + ¢7
+qgr + 29°qe + ¢°gr + qgD(q) + 2qqa (2.4.30)

+qq°p + G+ go(g))el 2T
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2.4.2 Conformal Transformations

A conformal transformation can be considered to be the identity map from
(M, gup) to (M, e?*gas), where ¢ is a C> scalar function on M.

It is somewhat more complicated to obtain the transformation laws for a
conformal transformation. We first remark that a conformal transformation
does not a prior: stipulate the dyad and the van der Waerden correspondence
on the transformed spacetime. Hence, we will make use of this freedom and

choose the following:

1AB AB

_ / _
€ = €, €AB T C€AB;
1 AA b AA I _ ¢«
o, = %o, o%i = 0%,
/ r—1 / 1—r
0, = €2 04, 'y = €72 g,

as the van der Waerden correspondence and the dyad on the transformed
spacetime respectively. Then the transformation laws for Yapcp, ® 545,

bap, Igp, I1gz, 1155 are as follows®:

Vipop = e W 4pop
WBiB = e <(I)ABAB — P aiipys) T ¢;(A(A¢;B)B)>
Pup = e 2 pap

_ - _ 1 '
A/GABGAB = e 26 (AGABGAB‘|‘§€AB€AB¢;KK¢;KK>

,
I/BB = ¢ <IBB + §VBB¢_ OBLAVAng)
gy = "2 (1Igp+ 050"V 45)

IIIL, = e (Illgg+ 5"V 30).

Appropriately contracting the above equations with the transformed dyad

2See [45] for their derivations.
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yields the desired component transformation laws, listed below:

U = Y24 (2.4.31)
T = Py (2.4.32)
T, = Uye (2.4.33)
U, = Yye 047 (2.4.34)
\I}il — \IJ46_2¢T (2435)
ng = §b06¢(_3+r)7 gbll = §b16_2¢7 ¢; = ¢26_¢(1+r)‘ (2436)

HPF(P) — §(—e— 45+ p)AW)

| —

TR E A @)($) — a7+ D))
_i(_ﬂ +74+7—p)D(¢) — 35(5(@) + A+ iD(A(Qb))

- 360 + 1ADG) ) (24.37)



§2.4. Transformation Laws of NP Quantities 54

!
(I)OO

!
(I)Ol

!
(1)12

!
(1)22

02 Bog — 8(¢)r — S(@)R + D(¢)’ + (¢ + €) D(9)
_D(D($))) (2.4.38)

-5 (s = A = G310 + DD + (= p+ ()
+3(a A+ %)Did) — 3D0(9) — 33(D() ) (243
(@i — A($)o + 3($)* — (—B+ @)0(9) + D(H)A

—5(8(¢4))) (2.4.40)
6_2¢ ((1)11 ‘|‘ %D(qﬁ)A(gﬁ) ‘|‘ i(_g e p - G)A(¢)

PSP + (@47 — 7 P))

(B o= F)) + 3ty 4+ )D(8)

1 D(AW@) — 18(3(6) — 15(5(6)) - §A<D<¢>>) (2.4.41)
9 (B 4 B(HAMG) — £+ 3+ 7)AW)

5P St 7~ 7))

#5828 - 3AG)) (24.42)

e (B2 + A(P) + (—7 — 7)A(9)
+3()7 + 8(p)v — A(A($))) (2.4.43)
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Chapter 3
Grobner Bases

The necessary conditions for Huygens’ principle in spinor form are spinor
equations. Computationally, one works with the component equations which
are algebraic-differential scalar equations involving the spin coefficients, and
the components of the curvature spinor, the Weyl spinor and the Maxwell
spinor.

In Chapter 4, we will simplify these equations and eventually form a
number of purely algebraic systems of polynomial equations involving only
three spin coefficients and their complex conjugates. The theory of Grobner
bases is then used to prove that these systems admit only the zero solution,
which subsequently will lead to the desired result (to be stated there). In
this chapter, we present an account of Grobner basis theory that will be used
in Chapter 4.

The observation given in §3.1 is quoted from [29]. The development of the
theory from §3.2 to §3.5 is primarily adapted from [2] and [18]. The theory
behind the implementation of the MAPLE function gsolve() outlined in
§3.6 can be found in [11], [12] and [20].

96
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3.1 Solutions of Systems of Algebraic Equa-

tions and Ideals in a Polynomial Ring

Recall that if R is a commutative ring with identity, then the set R[z1,. .. , z,]
of multivariate polynomials with coefficients in R in the n indeterminates
Ti,...,o¢, itself forms a ring under the usual polynomial addition and mul-

tiplication, and the concept of an ideal in R[zi, ... ,z,] is thus well-defined.

Definition 3.1.1 A system of algebraic equations in n variables over a com-
mutative ring R with identity is a subset S C R[zy,... ,®,]. A solution of S
in R (or some super-ringt R > R) is an n-tuple (ry,...,r,) € R™ (or R")
such that s(r1,... ,1,) =0, for all s € S.

Given any subset S C R[z1,... ,%,), (S) is used to denote the set

(S) := {Zfisi

We remark that (S) is the smallest ideal of R[zq,... ,z,] that contains S. It
1s called the i1deal generated by S.

s; €S, fi € Rz, ... 75’3n]}

Theorem 3.1.1 Let S C Rlzy,...,%,]. Then, (r1,...,7,) € R", where
R > R is possibly some super-ring of R, is a solution of S if and only if it is

a solution of (S).

Proor  Since S C (S), if (r1,...,r,) is a solution of (9), it is necessarily a
solution of §.

Conversely, suppose (r1,...,7r,) € R" is a solution of S, and let p €
(S) be given. Then p = Ele fi s; for some fi,..., fr € Rlzy,...,z,] and

LA ring R is said to be a super-ring of the ring R if R contains R as a sub-ring.
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S1y-.., 8k € S. Therefore,
p(ri,...,rm) = Ele filrey .o ) si(re, .o )
= Ele filre,... )0
=0
Since p € (S) is arbitrary, (r1,... ,7,) is a solution of (5). O

Corollary 3.1.1 Let S,T C R[z1,... ,z,). If(S)=(T), then S and T have

the same solutions.

Thus, in order to find solutions of given a finite set of polynomials S =
{81,...,8:} C R[®1,...,2,], one can attempt to look for aset G = {g1,... ,9m},
with (G) = (S), which is “simpler” to solve than S. The corollary above en-
sures that G and S have precisely the same solutions. One application of
Grobner bases is that it provides an algorithm for constructing the “simplest”
generating sets of the ideal of a given system of multivariate polynomials. It
1s this application of Grobner bases with which we will be concerned in this

chapter.
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3.2 Multivariate Division Algorithm

Let F be a field. We seek to extend the Division Algorithm in the polynomial
ring Flz] over F in one indeterminate to the multivariate polynomial ring

Flz,... ,#,] over F in n indeterminates.

Definition 3.2.1 Let F be a field and Flzy,... ,x,] be the polynomial ring

in n indeterminates over F. A monomial in Flxy,... ,z,] is an element in
Fla1,... ,@,] of the form :B’f ...zl where i), is a non-negative integer for
each k = 1,... ,n. The set of all monomials in Fxy, ... ,x,] is denoted by
m.

Definition 3.2.2 A monomial ordering on IM is a total ordering < on M

that is compatible with the multiplication of monomials in the following sense:

(1) For any pair of monomials m, n, exactly one of the following holds:

m<mnorn-<1morm=mn.
(2)  mq < ms and my < mz => my < mg, ¥my,mq, mg € M.
(3) 1< m, for any monomial m # 1.

(4)  m1 < ms = mmy < mms, ¥Vm,my, my € M.

Example 3.2.1 (Pure Lexicographical Ordering)
The pure lexicographical ordering with x, < ©,_1 < -+ < %1, ts defined as
follows: :B’f ceegin < :13{1 cee I if i = G, i = Sk tkg1 < Jry1 for some

k1 <k<n.

It 1s routine to verify that the pure lexicographical ordering is indeed a mono-
mial ordering and its proof will be omitted. There are many other different

monomial orderings, however, in this thesis, the pure lexicographical ordering
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alone will suffice for our purposes. For other examples of monomial order-

ings, consult [2], [20] or [18].

We will fix the following notations. Assume a monomial ordering < has been
given on 9. Then, each f € Flxy,...,2,] can be written uniquely as an
F-linear combination of monomials in M, 1.e. f = Ele ¢;m;, such that for

eachi=1,... k ¢ #0, m; € M, and my > --- > my.

(1)  The support of f, denoted by supp(f), is the set {mg]i = 1,...  k}.
(2)  The leading coefficient, le(f), of f is c1.

(3)  The leading monomial, lm(f), of f is m;.

(4)  The leading term, 16(f), of f is cymy.

(5)  Each ¢;m; is called a term of f.

Definition 3.2.3 A polynomial f € Flxy,... ,2,] is said to be reduced with
respect to a set of non-zero polynomials P = {py,... ,pr} if either f =0 or
no monomial in supp(f) is divisible by any element of {lm(p;) |i =1,...  k}.

Multivariate Division Algorithm

INPUT:
e a monomial ordering < on the set 9 of monomials in Flay, ..., x,]

o fEF[x,... x,
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e a finite ordered sequence (g1,... ,gr) with
Vi=1,... k.

gi € Fley,... ,2,] and ¢; #0,

OUTPUT:

, ] such that

o uy,...,up1r € Fle,...

f=wuigr + -+ upgr + 7, (3.2.1)

, gr). 7 is called the remainder of

and r is reduced with respect to (g1, . ..

, gr); it will be denoted by rem(f, (g1, . -

f with respect to (g1, .. .
wy = 0,us :=0,... ,u :=0,7:=0,h:= f.

INITTIALIZATION:

WHILE h#0 DO
.k} | lm(g;) divides Im(h)} # @ THEN

IF {ic{l2..
io :=min{i € {1,2,... .k} | lm(g;) divideslm(h)}
=i
hi= b= 5 o

ELSE
r:=r+1t(h)
h:=h—1(h)

ENDIF
ENDWHILE

Of course, we need to prove that the Algorithm indeed terminates after

finitely many iterations, which turns out to be rather involved. It relies on

the fact that every monomial ordering is a well-ordering on 9, whose proof
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in turn requires the famous Hilbert’s Basis Theorem. To prove that the out-
put of the Algorithm does have the asserted properties, we will make use
of a lemma that states that the algorithm maintains a certain “invariant”

throughout the iterations.

We state here the termination and correctness theorem of the Multivariate
Division Algorithm. We then prove a number of the technical results we have

mentioned and return to the proof of the theorem after that.

Theorem 3.2.1 Given a monomzial ordering on the set MM of monomaals in

Fle1,... ,2,], a finite ordered sequence G = (g1,...,gr) of non-zero poly-
nomials in Wley, ...  x,], and f € Flzy, ... z,], the Multivariate Division
Algorithm produces wy, ... ,ug,v € Flxy,... , @,] such that

=g+ +urge +r (3.2.2)

with v reduced with respect to G and

Im(f) = max {lm(r), max {lm(u;) lm(gi)}} (3.2.3)

1<i<k

We will first prove Hilbert’s Basis Theorem, and subsequently a theorem to
the effect that every monomial ordering is a well-ordering. It is the well-
ordering that will be used to prove the termination of the Multivariate Divi-

sion Algorithm. We begin with a few definitions.

Definition 3.2.4 Let R be a commutative ring. An ideal I of R is said to
be finitely generated if there exist a finite number of elements rq,... .7, € R

such that I = (ry,... 1),
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Definition 3.2.5 Let R be a commutative ring. Suppose for every ascending
chain of ideals, Iy C I, C--- C I, C---, of R, there exists N € N such that
I,=1Iny,Vn>N. Then, R is called a Noetherian ring, and we say that the
Ascending Chain Condition on Ideals s satisfied in R.

Theorem 3.2.2 A commutative ring R is Noetherian if and only if every

tdeal of R is finitely generated.

ProOOF  Suppose every ideal of R is finitely generated, and let I; C I, C
.-+ C I, C--- be an ascending chain of ideals of R. Since the chain is ascend-
ing, it follows that I = |J,_, I, is closed under addition and multiplication
with elements of R, i.e. I is an ideal of R. By hypothesis, [ = (ry,... )
for some ry,... .1, € R. For each ¢ = 1,... &k, r; € I; hence, there exists
N; € N such that r; € Iy;. Let N = maxi<;<x{N;}. Then r; € Iy for all
i=1,...,kand so I = (r,...,7) C In. The Ascending Chain Condition
on Ideals is therefore satisfied in R.

Conversely, suppose R is Noetherian. Assume on the contrary that R
has an ideal I that is not finitely generated. I must therefore be non-empty.
Choose some r; € I and we have (r;) C I, since I is by hypothesis not finitely
generated. Choose some 7o € I\(r1); then, (r1) C (r1,r) C I. Since [ is
not finitely generated, this process can be continuted indefinitely, producing

a strictly ascending chain of ideals of R, contradicting the fact that R is
Noetherian. O

Theorem 3.2.3 (Hilbert’s Basis Theorem) If R is a Noetherian ring,
then so is R[z].

Proor Let R be a Noetherian ring and J an ideal of R[z]. By Theorem
3.2.2, it is sufficient to prove that J is finitely generated.
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For each n > 0, define
L, :={0}U{r € R|r =lc(p), for somep € Jwith deg(p) = n}.

We claim that each [, is an ideal of R, and I, C I,1;. To see this, let
s,t € I,, then there exist p,,p; € J, both of degree n, with leading coeffi-
cients s and t respectively. Then p, + p; i1s a polynomial in J of degree n
with leading coefficient s + ¢; therefore, s +¢ € I,,. Let r € R. Then rp, is a
polynomial of degree n in J with leading coefficient rs; hence rs € [,,. Thus,
I,, 1s indeed an ideal of R. For the second statement, note that for every
s € I, with p, a polynomial in J of degree n and leading coefficient s, zp,

1s a polynomial in J of degree n+1 with leading coefficient s. Thus, s € I,,41.

Since R is Noetherian, there exists N € N such that [, = Iy for all
n > N. By Theorem 3.2.2, for each ¢ = 1,... N, there exist r;; € I,
with j = 1,...  k;, such that I, = (r;1,...7,). By construction of the I,,’s,
foreachi=1,... ,N and j = 1,... ,k;, there exist f;; € J of degree ¢ and

with leading coefficient r; ;.

Claim 1: J =(fi;l7j=1,... , ki, i=1,... ,N).

Let J*:=(fi;l7=1,... .k, i=1,... ,N). Since each f;; € J, clearly
J*CJ. Let feJ If f=0,then f ey CJ* If f#£0,let n:=deg(f). If
n =0, 1.e. f is a constant polynomial, then f € I, C J*, since f is then the
leading coefficient of itself. We now proceed with an induction on n. Assume
all polynomials in J of degree less than or equal to n — 1 are in J*. We

consider the two disjoint sub-cases: n < N or n > N separately.

Suppose n < N. Let ¢ := le(f). Since f is in J, ¢ is in I, by defini-

) k
tion of I,,. But, I, = (rn1,... ,7nk,). Therefore, ¢ = > 77" 5,7, for some
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s; € R. Then g := Ef;l $ifni is a polynomial of degree n (since each

deg(fni) = n) with leading coefficient Ef;l $itn; = ¢. Thus, f —gis a
polynomial of degree at most n — 1 since their leading terms cancel. Since
g 1s an R-linear combination of f,;, ¢ is in J*. By induction hypothesis,

deg(f —g)=n—1<n=— f—geJ* Thus, f € J

Suppose n > N. Let ¢ :=lc(f). Then f € J and deg(f) =n = ¢ € L,.
But, I, = Iy = (*N1,... ,"Nky). Therefore, ¢ = ngl 8N, for some
s; € R. Now, g := Effl sifn,i 1s a polynomial of degree N and whose lead-
ing coefficient is Effl s;txi = c. Hence, f —z" Y g is a polynomial of degree
at most n — 1 since their leading terms cancel, implying f — z" ¥ g € J* by
induction hypothesis. As before, g € J* since g is an R-linear combination
of fy;. This implies 2"~V g € J*, which in turn implies f € J*. Claim 1 is

now proved and so is the theorem. O

We will use the following result to prove that every monomial ordering on

M 1s a well-ordering on M.

Corollary 3.2.2 If Flzy,... ,z,]| is the multivariate polynomial ring over
the field F, then Flay, ... ®,] is a Noetherian ring. In particular, every ideal
in Flay, ... @,] is finitely generated, and the Ascending Chain Condition on
Ideals is satisfied in Flzy, ... ).

ProoF  Recall that, whenever F is a field, F[ ] is a Euclidean domain, hence
a principal ideal domain, and thus trivially Noetherian. That Flzy,...  z,]
1s Noetherian now follows by a straightforward induction argument. The rest

of the statement follows from Theorem 3.2.2. O
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Theorem 3.2.4 Let 9 be the set of all monomials in Flzy, ...  ,x,]. Then,
every monomaial ordering < on M is a well-ordering on IM; i.e. for every
non-empty subset A C M, there exists my € A such that either mg = m or

mo < m, for all m € 2.

PrROOF  Suppose to the contrary that some monomial ordering < is not a
well-ordering. Then, there exists a non-empty subset A C 91 that contains
a strictly descending sequence of monomials, i.e. there exist mq, ms,... € 2A

such that
my > Mg > M3 > *+-

Claim 1: (mq,... ,mg) C (mq,... ,mpy1) for each k € N.

Note that the inclusion part is obvious, so to prove the Claim 1, we only need

to disprove the equality. If we had equality, then my1 € (mq,... ,my) and
k
Met1 = Zpi m;, p; € E“[iﬂl, e 7$n]- (3-2-4)

=1

Since the LHS of (3.2.4) is myy1, a monomial, myy; must equal one of the
elements of G = supp(z:f:1 pim;). However, every element of & is a multi-
ple of one of my, ms,... ,mg. Thus, myy; must be divisible by m; for some
¢t = 1,...,k. This is equivalent to myy; = mm; for some m € 9. By the
definition of a monomial ordering, we have 1 < m = m; = 1lm; < mm; =
mpy1. This contradicts the original hypothesis that the m;’s form a strictly

descending sequence of monomials. Claim 1 is proved.

However, Claim 1 now implies that we have the following strictly ascending

chain of ideals:

(ma) € {mama) C o C (. mig) © e
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This contradicts Hilbert’s Basis Theorem, or more explicitly, Corollary 3.2.2.
We conclude that every monomial ordering on M is a well-ordering on 9.

4

We have developed adequate technical results to prove the termination of
the Multivariate Division Algorithm after finitely many iterations. We now
state and prove one more technical lemma which will be used to establish

the correctness of the Algorithm.

Lemma 3.2.4 For the Multivariate Division Algorithm,

k
F=h=> uigi+r (3.2.5)
=1

holds at the end of every iteration of the Algorithm.

ProoF  In this proof, the “unprimed” variables denote the values of the
variables before a particular iteration of the WHILE loop and the “primed”
variables denote the values of the corresponding variables after the that it-

eration.

We proceed by induction on the number N of iterations that has been per-

formed. Consider the first iteration (N = 1). The initial values are:

h o= f
U, = O,V’I,
r = 0
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If the IF-segment was executed,

Therefore,

1t(£)
1t(giq )

-t

F-(f-
16(f
) 9

gio)

Thus (3.2.5) holds for this case.

Hence,

f=w

0gi+---+0gi-1+
wi gy + e+ g Gig1 +

we have

1t(f
f= lt(;io) )
1t(f

1t(£”0)) Giy

0, Vi # i

iy

jam)

1t(f)
16(gig )

gio +0gipy1+---+0gr +0

16(£)
16(giq )

Gio + Ui 41 Gigr1 + o Hup g+ 7

If the ELSE-segment was executed, then

S
= 0, Vi
= 1(f)

f = (F ~16(5))

Ie(f)

0gi + -+ 0gr +16(f)
wy g1+ ug g+’

Thus, (3.2.5) holds after the first iteration (N = 1) of the WHILE loop —
regardless of which segment of the IF-ELSE statement was executed.
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Our induction hypothesis states that (3.2.5) holds up to the end of the N-th

iteration of the Multivariate Division Algorithm. We now prove that this

implies that (3.2.5) still holds after N + 1 iterations.

Depending on which segment was executed last, we have either one of the

following:
IF:
ELSE:
Hence,
IF: f—=n
ELSE: f -/

W= h- 1332) Jio
Ui 1= Ui+ % Gio
w, = w, ViFig
roi= 7
h = h—1(h)
w, = wu;,Vi=1 k
= r+1t(h)

7= (1= gy )

(f = 1) + 55 i

<Ef:1 uigi + > T 1t2$§) Jio
Ei;,gio Ui gi + <ui0 + %) Gip T T
Ef:l uigi + 7'

f = (b= 16(h))
(f = h) +16(h)
(@1% r) +16(h)
Sy wigi o+ (4 16(h))
Ef:luggi‘Fr
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Hence (3.2.5) holds in either case, and the lemma is proved. O

We are finally ready to prove Theorem 3.2.1, and it is now rather straight-
forward after all the hard work.

ProOF OF Theorem 3.2.1.  We first prove termination. If given some input,
the Algorithm does not terminate, then we will have an infinite sequence
of non-zero polynomials h; € Flzy,... ,z,], ¢ € N, where h; is the value of
the variable h in the Algorithm after 7 iterations. Observe that the h;’s are
constructed by the Algorithm so that the lm(h;)’s form a strictly descending
sequence of monomials. But this contradicts the well-orderedness of 91 by
< (Theorem 3.2.4). We conclude that the Algorithm must terminate after

finitely many iterations.

To prove that (3.2.2) holds, suppose that the Algorithm terminates after N
iterations. By Lemma 3.2.4, (3.2.5) holds when the Algorithm terminates,
which occurs when h = 0. Equation (3.2.2) now easily follows when we sub-

stitute 0 into h in (3.2.5).

Also, we note that r is reduced with respect to G because each term of r 1s

not divisible by any of the lm(g;).

It remains to prove (3.2.3). First, (3.2.2) immediately implies that

() = e { ). s Q) |

1<i<k

For the reverse inequality, we argue as follows: Initially h := f, and in every

iteration, h is modified by subtracting its own leading term (and possibly
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adding some lower terms). Hence, after every iteration, lm(h) strictly drops
and so lm(h) < lm(f) after every iteration. Now for each ¢, u; is obtained by
16(h) 16(h)

adding terms () where () Ji cancels the leading term of h. Therefore,

we conclude that after each iteration,
Im(w;)lm(g;) < lm(h) <1lm(f), for each i.

Similarly, » is obtained by adding leading terms of A, and so lm(r) < lm(f).
It is now obvious that (3.2.3) follows. O



§3.3. Grobner Bases 72

3.3 Grobner Bases

The Multivariate Divison Algorithm has a number of “pathologies” in the
sense that the following phenomena, which do not occur in the univariate

case, do occur when there is more than one indeterminate:

Let G:={g1,...,9} C Flz1,... ,®,]. Given f € Flay,... ,x,],let rem(f, (g1,...

denote the remainder of the f with respect to G generated by the Multivari-

ate Division Algorithm (using a given monomial ordering). Then

e f€{(g1,...,qr) does not imply rem(f, (g1,...,9r)) = 0 (however, the

converse is obviously true).
e In general, rem(f, (g1,... ,9r)) depends on the ordering of the g;’s.

o (g1,.--,91) = I = (h1,... , h;) does not imply rem(f, (g1,... ,9)) =
rem(f, (h1,...,h.)), i.e. the representation of f+ I € Flay,... ,x,]/]

may not be unique if an arbitrary generating set for I is used as the

divisors in the Multivariate Division Algorithm.

For concrete examples of the above pathologies, consult [2] and [18]. Grébuer

bases were introduced to overcome the above difficulties.

Definition 3.3.1 Let S C Flzy,... ,z,] and let < be a monomial ordering
on the monomials in Fley, ... ®,]. The leading monomial ideal of S with

respect to < is the ideal
Ln(S) := (lm(f) | f € §).

Definition 3.3.2 Let [ C Flzy,... ,x,] be an ideal of Flzy,... ,x,]. Let <

be any monomial ordering on the monomials in Flzy, ... ,x,]. A finite subset

7gk))
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{91,-.. .91} C I is called a Grobner basis for I with respect to < if

(lm(g1),...,lm(gx)) = Lm(]).

Theorem 3.3.1 Let I be an ideal of By, ... ,x,] and let < be any monomial
ordering on the set of monomials in Flzy,... ,x,]. Then I admits a Grébner

basis with respect to <.

ProoF  This essentially follows from Hilbert’s Basis theorem. Flzy, ... , z,]
1s a Noetherian ring by Corollary 3.2.2; hence the leading monomial ideal
Lm([]) of I with respect to < is finitely generated, i.e. thereexist f1,...,fx €
I such that

(m(fy),... .lm(fy)) = Lm(I).

Therefore, {f1,..., fx}is a Grobner basis for I with respect to the monomial

ordering <. O

We now state and prove a series of results that describe how Grobner bases

remedy the pathologies with the Multivariate Division Algorithm.

Theorem 3.3.2 If{g;,...,gr} is a Grobner basis for an ideal I in Flay, ... @]

with respect to some monomial ordering, then (gi,... ,gx) = I.

Proor  Clearly, (g1,...,9xr) C I. Let f € I. Then, lm(f) € Lm([) =
(g1,...,9r ). This implies lm(f) = Ele pilm(g;), for some polynomials
pi € Flz1,... ,@,]. But, since lm(f) is a monomial, the RHS must collapse

to a monomial® for equality to hold. However, each term in the RHS is

%to lm(f) itself, in fact
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divisible by one of the lm(g;). This in turn implies that lm(f) is divisible
by lm(g;,) for some ¢; = 1,... , k. Thus, for a suitable monomial m; € M,
f and m; g;, have the same leading term, and thus Im(f — m; ¢;,) < lm(f).
Since f —my g;, € I, by the same argument, we can find ms € 9 such that
lm(f—mqgi, —magi,) < lm(f—mygi,). Clearly, this process can be continued
as long as f — 2221 m;g;; 7 0. However, for some finite s, it must be zero,
since otherwise { lm(f—>77_; m;gi;)}52, forms a strictly descending sequence
of non-zero monomials, contradicting the fact that < is a well-ordering on

M Now, f — 2221 m;g;; = 0 is equivalent to f € (g1,... . gr)- O

Theorem 3.3.3 Let{gi,...,gr} be a Grobner basis for an ideal I in Flxy, ...

Let the set M of monomials in Flay, ... @,] possess a fized monomial or-

dering <. Then rem(f1,(91,...,9x)) = rem(f2, (91,...,9x)) if and only if
f1— f2 € 1. In particular, rem(f,(g1,... ,9x)) = 0 if and only if f € I.

Proor  Suppose f; — fo € I. For brevity, let G denote the ordered se-
quence (g1,...,gx). Since f; —rem(f;,G) € I for ¢ = 1,2 and rem(f;,G) —

rem(fz, G) = (fo —rem(fz, G)) — (f1 —rem(f1,G)) — (f2 — f1), it follows that
rem(f1, G) — rem(fs, G) € I. This implies

lm(rem(f1, G) — rem(f2, G)) € Lm(I). (3.3.1)

On the other hand, rem(f;, G) is an F-linear combination of monomials out-
side Lm(I) = Lm(g1, ... , gx), since rem(f;, G) is reduced with respect to G.
In particular, if rem(f1, G) — rem(fs, G) # 0, then we must have

lm(rem(fi, G) —rem(f2, G)) ¢ Lm(]),

a contradiction to (3.3.1). O

751711]'
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Theorem 3.3.4 Let MM be the set of monomials in Fley, ... x,] and I an
ideal of Flxy,... ,x,]. Then Flay,... ,x,]/I is a vector space over F. Fur-

thermore, for every monomial ordering < on MM, {m + I|m € OM\Lm(I)}

forms an F-basis for Flzy,... ,z,)/1.
ProoF It is routine to verify that F[zy,... ,z,]/I forms a vector space over
IF.

Let the monomial ordering < be given. Let & = {m + I |m € 9\Lm(/[)}.

We first prove that & is an F-linearly independent subset of Fz, ... ,z,]/I.
Suppose $1,...,sy € © are distinct and there exist ¢1,... ,cy € F such that
181+ -+ cenysy €1 (3.3.2)

If c181 + -+ -+ ensn # 0, (3.3.2) implies Im(e181 + -+ + ensn) # 0 and
Im(cy81 + -+ + ensn) € Lm(]) (3.3.3)

Since the s;’s are distinct, lm(c¢y81+- - -+ ensn) must be equal to one of the s;.
(3.3.3) therefore contradicts the fact that s; ¢ Lm([) for everyi=1,... ,N.
Hence, we must have ¢;8; + -+ 4+ cysy = 0. Since the s;’s are distinct
monomials, ¢; = 0 for every ¢ = 1,... . N. This implies that & i1s F-linearly

independent in Flzy, ..., z,]/1.

It remains to prove that & spans F[z;,... ,z,]/I. Fix a monomial or-
dering < on the monomials in Flz;,... ,#,]. Then, by Theorem 3.3.1, [
admits a Grobner basis G = {g1,...,gr} with respect to <. Let f + 1 €
Flz1,... ,2,]/I. Then f+I =rem(f,G)+ I by the Multivariate Division Al-

gorithm. Since rem(f, G) is reduced with respect to G, every term of it is not



§3.3. Grobner Bases 76

divisible by lm(g;) for any ¢ = 1,... , k. On the other hand, Lm(G) = Lm(]),
G being a Grobuer basis for I, implies that for every p € I, lm(p) is divisible
by lm(g;) for some ¢ = 1,... k. These two facts together imply every term
of rem(f,G) is not divisible by lm(p) for any p € I. In particular, every
monomial in the support of rem(f, G) is outside of Lm(7), i.e. rem(f,G) is

an F-linear combination of monomials in &. Hence & spans Flaq, ..., 2,]/I.
0

Corollary 3.3.3 Let I be an ideal of Flzy, ... ,,] and let < be a monomial
ordering on the set M of monomials of W[xy,... ,x,]. Then

vem(f, G) = rem(f. &)
for any two Grobner bases G, G' for I with respect to <.

ProoF  Theorem 3.3.4 implies that

rem(f,G)+I = f+1 = rem(f,G)+1

Therefore, rem(f, G)—rem(f, G') € I, which in turn implies that Im(rem(f, G)—
rem(f,G’)) € Lm(]). On the other hand, the supports of both rem( f, G) and
rem(f, G') do not intersect L (7); in particular, suppose to the contrary that
rem(f, G) —rem(f, G') # 0; then, we must have lm(rem(f, G) —rem(f,G")) ¢
Lm([), a contradiction. O
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3.4 Buchberger’s Algorithm

In the preceding section, we defined Grobner bases and proved that using
them as divisors in the Multivariate Division Algorithm remedies the dif-
ficulties that otherwise could occur. We also proved that every ideal of
Flzy, ... ,#,] admits a Grobner basis, but we did not show how one can ac-

tually obtain a Grobner basis for a given ideal when a generating set is given.

We shall do so in this section by presenting Buchberger’s Algorithm. The
theoretical basis of Buchberger’s Algorithm is a theorem also discovered by
Buchberger (Theorem 3.4.2), whose proof requires the following theorem. It
gives stronger characterizations of Grobner bases than what we have devel-

oped so far. We will omit its proof. (See Theorem 1.6.2 in [2].)

Theorem 3.4.1 Let I be a non-zero ideal of Flxy,... ,x,]. The following
statements are equivalent for a set of non-zero polynomials G = {g1,... ,gr} C

I.
(1) G is a Grébner basis for I.

(2) [ el ifand only if rem(f,G) = 0.
(3)  feTlifandonlyif f =73 " higi, withlm(f) = max;<;<,{lm(h;)lm(g;)}.

(4)  For all0# f € I,1m(g;) divides lm(f) for some ¢ € {1,2,...  k}.

It turns out that the objects defined below play a pivotal role in constructing

Grobner bases.

Definition 3.4.1 Let 0 £ f,g € F[#y,... ,2,]. Then the S-polynomial of f
and g is defined to be

_lem(lm(f),lm(g))

S(f.g) == ) _ lem(lm(f),1lm(g))

1t(g)

f
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We will use the following technical lemma to prove Buchberger’s theorem.

Lemma 3.4.5 Let f1,...,fs € Flz1,... ,2,] be such that Im(f;) = X # 0,
foralli=1,... s. Let f =>.7_ cifi, withc; €F foralli=1,...,s. Then

for each i,3 with 1 <1< 3 <s,3d d;; €F,

m(f) <X —
such that f = El§i<j§8 di; S(fi, f;)-

Proor  Write f; = a; X + lower terms. Then by hypothesis, >"°_, ¢;a; = 0.
Since X = lm(f;) = lm(f;) = X = lem(lm(f;),lm(f;)), we have

X X

S(fi. f;) = ﬁfi_ﬁfj
= %fi—ifj-

Therefore,

[ = le1‘|‘1““|’csfs . .
= Clal(a—lfl)+02a2(a—2f2)—|-"'+03a3(—f3)

= 01611(6%1]81 - %fz) + (era1 + Czaz)(aizfz - 6%3]%) 4
1
= 16:5(f1, f2) + (€101 + c202)S(f2, f3) + -+
‘I’(Cla'l + -+ Cs—la's—l)S(fs—lv fs)-

1 1
+(erar + -+ -+ com1a5-1)( foo1 — a—fs) + (cra1 + -+ - + csas) — f

3

0

Theorem 3.4.2 (Buchberger) Let G = {g1,... ,gx} be a set of non-zero

polynomials in Flxy,... ,x,]. Let a monomial ordering < be given. Then G
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is a Grobner basis for the ideal I := (g1,... ,gr) with respect to < if and only
iffO’I“ all 4 7£ j; rem(S(givgj)7 G) = 0.

Proor If G is a Grobuer basis for I, then for all ¢ # j, rem(S(gi,9;),G) =0,
by Theorem 3.4.1.

Conversely, suppose rem(S(gi,g;),G) = 0 for all ¢ # j. Let f € I. Then the

set

f hi,... hy € Flzy,...
A=< X eM | X = max{lm(h;)lm(g;)}, OF some 1, 7kk € Fla,
1<eck such that f =3, hig

1s a non-empty subet of M. Since < is a well-ordering on M, X’ admits a

least element, say X.

If Im(f) = X, then the theorem follows by Theorem 3.4.1. Otherwise, we
have Im(f) < X, while X = max;<;<x{lm(h;)lm(g;)} for some hy,...  hy €

751711] }

Fla,... ,@,] such that f = Ele higi. Let S :={i € {1,... ,k}|lm(h;)lm(g;) =

X}. For each i € S, let X; :=1m(h;) and ¢; := lc(h;).

Then,

[ = Ef:l hig;
= Dieshigi + Ejes h;gi
= Y ies(ciXi + lower terms of h;)gi + D a5 hig;
= EieS i X;q;i + Eies(lower terms of h;)g; + EMS hjg;.

We will show that the assumption Im(f) < X implies that g := >, ¢ ;. Xig;
admits a representation g = Eﬁzl h.,g,, such that max;<,<{lm(h; )lm(g,)} <

v
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"
v

X. This in turn leads to a new representation for f = Eﬁzl h”g,, with

max {lm(h))lm(g,)} < X,

1<v<k

contradicting the minimality of X.

Now, g = > .5 ¢iX;gi such that lm(X;g;) = X for all 7 € S, but Im(g) < X.
By Lemma 3.4.5, there exist d;; € F such that

g= Y, diS(gi9)-
ijES it

On the other hand, since X = lm(X;g;) for all ¢ € S, we have X =
lem(Im(X;g;),lm(X;g;)) for all 4,57 € S with ¢ # j. Therefore,

X X
X9, X59;) = ——— X9 — ———— X,9; 4.1
S(Xigi, X;9;) 16(X;9) g 1t(X;9;) 395 (3.4.1)
X X
= 9i — 9j
1t(g:) lt(g;) ™7
X

where X;; := lem(lm(g;),lm(g;)). By hypothesis, rem(S(¢g;,9;),G) = 0,
which implies that rem(S(X;g;, X;g9;),G) = 0. This in turn implies that
forallé,j € S, i # j, there exist h;j,, € Flaq,... ,2,), v =1,... k, such that

k
S(Xigi, X;9;) = Z hiju gy
v=1
By Theorem 3.2.1, this implies

Im(5(Xigi. Xjg;)) = max {Im(hi;,)lm(g,)}.

1<v<k
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Since for all 7,5 € S,

X X
<1t(Xi9i) 16(X;95) 7

we see from (3.4.1) that for all i,5 € S, ¢ # 7,
Im(S5(X;gi, Xj9;)) < X.
Therefore, for all 7,5 € S, ¢ # 7,

max {lm(h;;, )lm(g,)} < X.

1<v<k

Now,

f = g+ Z(lower terms of h;)g; + Z h;g;

€S i¢s

= Z di;S(Xigi, X;59;) + Z(lower terms of h;)g; + Z hjg;
iGES,i#] €S j¢s
k

= Z d;; Z hijyGnu + Z(lower terms of h;)g; + Z hjg;

1,JESIF] v=1 €S j¢s

k
= Z ( Z dijhijl,> g, + Z(lower terms of h;)g; + Z hjg;

v=1 \ijESi#j ics ¢S
k
. 2 : "
- hygl/7
v=1

where h! are obtained simply by collecting terms and by the preceding ar-

guments, they satisfy (3.4), completing our proof. O
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We are finally ready to present Buchberger’s algorithm for constructing

Grobner bases.

Buchberger’s Algorithm

INPUT: F={f1,... ,f} CEl®1,... 2, with f; 0, fori =1,... s.
OUTPUT: G ={g1,... ,9r}, a Grobuer basis for (fi,..., fs).
INITIALIZATION: G := F, G .= {{fi, f;} | f: % f; € G}.

WHILE G # @ DO
Choose any {f,g} € G.
G:=G\{{f.g9}}
h:=rem(S(f,9),G)
IF h#0 THEN
G :=GU{{u,h} |for all v e G}
G :=GU{h}
ENDIF
ENDWHILE

The following is the termination and correctness theorem for Buchberger’s

Algorithm.

Theorem 3.4.3 Given F' = {fi,... , fs} with f; £ 0 for olli =1,... s,
Buchberger’s Algorithm will produce a Grobner basis for the ideal I = (f1,... , fs)

in finitely many iterations.
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Proor If Buchberger’s Algorithm does not terminate, then it would gen-
erate a strictly increasing sequence {G;} of sets, where each G; is the set G

in the i-th iteration of the Algorithm.

Each G, is obtained from G;_; by adding some h € I to G;_; where h is the
non-zero remainder, with respect to G;_1, of an S-polynomial of two elements

of G;_1. Thus Im(h) ¢ Lm(G;_1). Thus, we get

Lm(Gi) € Lm(Gz) € Lm(Gs) C -+

which 1s a strictly ascending chain of ideals. This contradicts Hilbert’s Ba-

sis Theorem. Thus we conclude that Buchberger’s Algorithm must terminate.

Now, FF C G C I implies that I = (f1,...,fs) C (91,.-.,9x) C I.
Therefore, G is a generating set of I. Moreover, by construction of G,
rem(S5(gi,95),G) = 0, for all g;,9; € G. Therefore, G is a Grobner basis
for I by Theorem 3.4.2. g
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3.5 Reduced Grobner Bases

An arbitrary ideal of Flz,,... ,z,] generally admits more than one Grébner
basis. In this section, we introduce reduced Grobner bases, a special kind of

Grobner bases which is unique for every given ideal of Flzq, ... , ®,].

Definition 3.5.1 A Grébner basis G = {g1,... ,gr} for anideal I of F[zy,...  x,]

with respect to a fired monomial ordering is said to be minimal if
(1) every element of G is monic, i.e. lc(g;) =1 foralli=1,... k, and

(2)  lm(g;) does not divide lm(g;) for all i # j.

Lemma 3.5.6 Let G = {g1,...,gx} be a Grobner basis for an ideal I of

Fley, ..., ®,] with respect to a monomial ordering <. Iflm(gs) divideslm(gy),
then {ga,... ,gr} is also a Gréobner basis for I with respect to the monomial
ordering <.

Proor By hypothesis, lm(g1) = mlm(g») for some monomial m. Let f €
Lm(gi,...,gx). Then,

[ = Zf:l pilm(g;)
= pilm(g1) + Ef:z pilm(g;)
= pm mlm(gz) + 25;2 bi lm(gl)7

for some p1,... ,px € Flz1,...,2,]. Therefore, f € Lm(gs,...,gr), and we

have

Lm(g2,...,9x) C Lm(g1,...,9x) C Lm(gs, ... ,gr)-

{g2, ... ,gr} is thus a Grobuer basis for I with respect to <. O



§3.5. Reduced Grobner Bases 85

Corollary 3.5.4 Given a Grébner basis G = {g1,... ,gx} for an ideal I of

Flay,... ,®,], a minimal Grébner basis can be obtained as follows:

(1) Eliminate oll g; for which there exists j # i such that lm(g;) divides
Im(g;).

(2)  Divide all remaining g; by lc(g;).

Lemma 3.5.7 IfG ={g1,... gk} and F ={f1,..., fs} are minimal Gréobner
bases for an ideal I of Flay, ...  ®,] with respect to a common monomial or-
dering, then k = s and, after renumbering if necessary, lm(g;) = lm(f;) for

everyt1=1,... k.

Proor  Since f; is in [ and G is Grobner basis for I, there exists g; such
that lm(g;) divides lm(f;). After renumbering if necessary, we may assume
lm(g;) divides lm(f1). Now since g; is itself in I, there exists some f; such
that lm(f;) divides lm(g;). This implies lm(f;) divides lm(f;). Since F is
a minimal Grobuner basis, we have j = 1. Therefore, lm(f1) = lm(g1) since

they divide each other.

Now, f5 is in I, so there exists ¢ = 1,... , k such that lm(g;) divides lm(f2).
Minimality of F implies that ¢ # 1 since lm(g1) = lm(f1). As before, we
may assuimne, after renumbering if necessary, Im(g2) = lm(f2). This matching

process continues until one of G or F' is exhausted.

It remains to show that & = s. Suppose to the contrary that & > s. In the
preceding paragraph we proved that, after renumbering if necessary, lm(g;) =
lm(f;), for ¢ =1,...,s. By minimality of G, and the fact that F' is a Grébner

basis for I,

ln(gess) ¢ (Im(g).... .Im(g)) = (Im(fy),... lm(f,)) = La(1),
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which contradicts the fact that ¢g,y1 € I. Similarly, s > k leads to a contra-

diction and we must have k = s. O

Definition 3.5.2 A Grébner basis G = {g1,... ,gr} for anideal I of F[zy,...  x,]

with respect to some monomial ordering is said to be reduced if
(1) G is minimal, and

(2)  each g; is reduced with respect to G\ {gi}, or equivalently, no non-zero
term in g; s divisible by any lm(g;), for every j # 1.

Theorem 3.5.1 Let I be an ideal of Flxy,... ,z,] and let a monomial or-
dering < on Flay, ..., x,] be given. Then I admits a unique reduced Grébner

basis with respect to <.

ProoF By Theorem 3.3.1, I admits a Grobner basis G = {g1, ... ,gr} with
respect to <. By Corollary 3.5.4, a minimal Grobner basis can be constructed
from G. So, without loss of generality, we assume G is a minimal Grobner

basis.

Let G’ := {rem(g;,G\{g:})|i = 1,... ,k}. Note that lm(g;) = lm(rem(g;, G\{4gi})),
for each i = 1,... ,k by minimality of G. Therefore, G’ is still a Grobner ba-
sis for I with respect to <. By construction, G’ is reduced. We have proved

the existence of a reduced Grobner basis for 7.

To prove uniqueness, observe first that by Lemma 3.5.7, any two reduced
Grobner bases must have the same number of elements, since both are min-
imal. Assume G = {g1,...,9x} and F = {f1,..., fr} are two reduced
Grobner bases for I with respect to <. By Lemma 3.5.7 again, we further-
more have lm(f;) =lm(g;), forall¢ = 1,... , k. Now, suppose to the contrary
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that for some s = 1,... ,k, f; # ¢;. Then,

fogiel = 0#£fi—giel
= 0 #lm(f; — g;) € Lm(]).

Since G is a Grobner basis, there exists some j = 1,... ,k such that lm(g;)
divides Im(f; — ¢;). Now, j # i because lm(f; — ¢;) < Im(g;) = lm(f;). Now
lm(f; — ¢;) is a non-zero monomial in supp(f;) or supp(g;). In either case, it
is divisible by lm(f;) = lm(g;), with j # 4, which contradicts the hypothesis
that both G and F are reduced Grobner bases. g

Note that the proof of the preceding theorem also provides a algorithm for

constructing the reduced Grobuner basis for a given ideal of Flaq,. .. , x,].
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3.6 Improving Buchberger’s Algorithm by In-
corporating Multivariate Factorization: the

MAPLE function gsolve()

In Chapter 4, we will need to determine the roots of a number of multivariate
systems of polynomials. As the preceding sections have indicated, one way
of achieving this is to consider the given system as generators of an ideal [
in some polynomial ring, and compute a Grobner basis for I with respect to
some (suitable) monomial ordering.

We presented Buchberger’s algorithm for obtaining Grobner bases in §3.4.
In practice, however, a straightforward implementation of Buchberger’s al-
gorithm may be unfeasibly inefficient. To determine the roots of the systems
of polynomials that appear in Chapter 4, we will use instead the function
gsolve() of the Groebner package of the symbolic algebra system MAPLE.

gsolve() implements a variant of Buchberger’s algorithm. Rather than
returning the reduced Grobner basis of the original system given to it, gsolve ()
computes the Grobner bases of “sub-systems” of the original system such that
the union of the roots of these sub-systems coincides with the roots of the
whole system. So, even though the reduced Grobner basis of the original sys-
tem may not be easily recovered from the output of gsolve() , the eventual
purpose of determining the roots of the original system is served.

In the remainder of this section, we will demonstrate the functionality of
gsolve() by working through a concrete example. We will, however, omit
the actual theory behind the implementation of gsolve() , which combines
multvariate factorization with Buchberger’s algorithm. For an account of
that theory, see Czapor [11] and [12]. Czapor is the author of the origi-
nal Groebner package in the MAPLE library, which includes the function
gsolve() .
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Consider the following set of polynomials:

fi = 4:B2—|—:By2—z—|—i
fo = 2z 4 yiz + % . (3.6.1)
fs = ziz— %:13 —y?

The reduced Grobner basis of the system (3.6.1) with respect to the pure

lexicographical ordering with = > y > z is

—3422% 4+ 7523 + 266z — 60 + 522* 4 2% — 826 + 1627,
1988y% — 48183722 4 1407741z — 595666 — 41972* — 25155523 + 12722° — 7675225,
3976z + 371042° — 6002° + 21112* 4+ 12206223 + 23283322 — 6803362 + 288814
(3.6.2)

Note that the first polynomial in the reduced Grébuer basis (3.6.2) factors

as follows:

—3422% + 7523 4+ 2662 — 60 + 522* + 2° — 82% + 1627

3.6.3
= (2 —1)(162° + 82° 4+ 92* + 612° + 1362% — 206z + 60). ( )

Thus the solution to (3.6.1) is obviously the union of the solutions to the

following two “sub-systems”:

z—1,
1988y% — 48183722 + 1407741z — 595666 — 4197z* — 2515552° 4+ 12722° — 767522°,
39762 + 371042% — 600z° + 21112* + 12206222 + 23283322 — 6803362 + 288814

(3.6.4)

162% + 82° 4+ 92* + 612% + 13622 — 206z + 60,
1988y? — 48183722 + 1407741z — 595666 — 41972* — 2515552% + 12722° — 7675226,
39762 + 371042% — 600z° + 21112* + 12206222 + 23283322 — 6803362 + 288814

(3.6.5)
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Now, the reduced Grobner basis of (3.6.4), with respect to the pure lexico-
graphical ordering with = > y > z, is

{22 +1,2—1,2y*> 11}, (3.6.6)
whereas that of (3.6.5) is

162% + 82° + 92* + 6123 4+ 13622 — 206z + 60,
28472 + 56642° + 55682* + 58662° + 2436522 + 59937z — 43978, (3.6.7)
5682 — 27362° — 2680z* — 27712% — 1179322 — 289462z + 21382

We shall say that the Grobner basis (3.6.2) decomposes into the compo-
nents (3.6.6) and (3.6.7). It is precisely the fact that factorization of the
Grobner basis polynomials leads to decomposition of the basis as illustrated
above that gsolve() exploits in order to enhance the efficiency of Buch-
berger’s algorithm.

We are now ready to discuss the output of gsolve() . We invoke the
MAPLE function gsolve(), with the system (3.6.1) as input, using the

following commands:

> with(Groebner):
> gsolve ({4*xA2+x*yA2-z+1/4,2xx+y\2*%z+1/2 , x\2%z-x/2-yA2} ,{x,y,2});

gsolve() then returns:

{[[162° + 82° + 92* + 612° + 13622 — 206z + 60, 284y> + 56642° + 55682+ +
586625 +243652% +599372— 43978, 5682 —27362° —268024 —277125— 1179322 —
289462 +21382], plex(z,y, 2), {z—1}], [ —1,2y*~ 1, 2z + 1], plex(z, y, 2), {}]}

This output is a set of two 1ist’s, each of which is of the form

[G,T.{5}];
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where G 1s a Grobner basis of a sub-system of the reduced Grobmer basis
(3.6.2) of the original system (3.6.1), T" is the monomial ordering with respect
to which G is constructed, and S is a set of polynomial(s) such that G is
indeed a sub-system only under the assumption that the polynomial(s) in S
are non-zero.

The first entry of first list is the Grobner basis (3.6.7) of the sub-system
(3.6.5) of the reduced Groébuer basis (3.6.2) of the original system (3.6.1).
Similarly, the first entry of the second list is the Grobuner basis (3.6.6) of the
other sub-system (3.6.4).

Note, incidentally, that the sub-systems (3.6.4) and (3.6.5) are not ex-
plicitly returned by gsolve() . We have identified them by first determining
the reduced Grobner basis of the original system (3.6.1) and then realizing
that one of the basis polynomial factors (see (3.6.3)). We computed them
in order to illustrate how to interpret the output of gsolve() . In general,
constructing the reduced Grobner basis from the output of gsolve() is nei-
ther easy nor necessary (as far as obtaining solutions to the given system is
concerned).

In this example, {z—1,2y*—1,2z+1} is a basis simple enough to allow us
to read off some of the solutions of (3.6.1); however, since the other basis is
rather complicated, in this case, we are unable to determine all the solutions
of (3.6.1) by inspection. Fortunately, in the systems that appear in Chapter
4, the decompositions happen to be sufficiently simple that we can read off
all the solutions to those systems.

The second entries, plex(z,y, z), indicate that the Grobner bases are with
respect to the pure lexicographical ordering with > y > z. The third
entry of the first list, {z — 1}, indicates that sub-system applies under the
assumptions that z — 1 # 0. Again, this is obvious from the factorization

(3.6.3).



Chapter 4

Reduction of the Problem &
Proof of the Inadmissibility of

Two Cases

4.1 The MAPLE Package NPspinor

The component equations of the spinor equations (2.3.7), ..., (2.3.13) (see
§2.3) are the primary tools we will use in Chapters 4 to 6.

Note that a totally symmetric spinor equation with n dotted and n un-
dotted indices has (n+1)? (symmetrized) components. Now, each of (2.3.7),
...y (2.3.12) is symmetrized in the dotted and undotted indices separately,
and hence the 0-index condition has one component, the 1-index condition
has four components, ..., the 5-index condition has thirty-six components,
etc.

The total number of component equations of (2.3.7), ..., (2.3.12) is thus
0+1)2+(1+1)>%+---+(5+ 1) = 91, and a considerable number of
them involve hundreds of terms. (See Appendices A and B.) In addition, the

spacetime must also satisfy the Newman-Penrose field equations, the Bianchi

92
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identities, which together give another twenty-nine equations. (See Appendix
A)

Due to the large number and sizes of the equations to work with, the use
of a symbolic algebra system is necessary. The computations in Chapters 4 to
6 are carried out using the symbolic algebra system MAPLE . The expansion
of the spinor equations (2.3.10), ... , (2.3.13) into their component equations
is performed using the MAPLE package NPspinor [13], developed primarily
by Czapor. The actual MAPLE code used for the expansion of (2.3.10), ...,
(2.3.13) can be found in Appendix C.

4.2 A Proposition on the General Petrov Type
D Spacetime

Proposition 4.2.1 The validity of Huygens’ principle for any non-self-adjoint
scalar wave equation on a Petrov type D spacetime implies that with respect to
any canonical spinor dyad (one in which the only non-vanishing component

of the Weyl spinor is W), the following equation holds:
KAV — RoAD = 0 (4.2.1)

ProoF Let M be a Petrov type D spacetime® on which there exists a non-
self-adjoint scalar wave equation that satisfies Huygens’ principle. Suppose
on the contrary that (4.2.1) does not hold with respect to some canonical
spinor dyad on M. Note, first of all, that this implies none of k. o, A, and v
can vanish with respect to this dyad.

Since the dyad is canonmical, all components of the Weyl spinor vanish

except ¥,. Equations (A.6.6), (A.6.11), (A.6.15) and (A.6.16) then lead to

I M could be just a geodesically convex domain of a larger spacetime.
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the following homogeneous linear system of equations in ¢g, ¢ and their

conjugates:

T,A 0 0 Wyo\ (oo
0 T\ s O o
Uk Uk 0 0 02
0 0 Wy Torv/) \ s

(4.2.2)

|
o o o o

The determinant of the coefficient matrix in (4.2.2) is —Qg@;(/{&j\l/—/_{a)\ﬂ).

Since ¥4 does not vanish on M, if (4.2.1) does not hold, then both ¢g, and
¢» must vanish (and so must their conjugates). This in turn implies ¢; # 0

and ¢; # 0, since by hypothesis the scalar wave equation is non-self-adjoint.
With the conditions that ¢y = do = ¢ho = po = 0, (A.6.7) and (A.6.12)

lead to the following homogeneous linear system of equations in ¢; and ¢;:

( 2Wsr OWon ) (?1) _ <0> (4.2.3)
—6\:[}2% —2\IJ2R le 0

Since ¢; # 0 and ¢; # 0, the determinant of the coefficient matrix in (4.2.3)
must vanish. This determinant is 32¥,W¥,k&, implying that s vanishes; this

contradicts our original assumption that (4.2.1) does not hold. O

4.3 Alignment of Principal Null Directions
between the Maxwell Spinor and the Weyl
Spinor

We decompose the question of the validity of Huygens’ principle on a Petrov

type D spacetime into sub-cases according to the alignment of the two prin-
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cipal null directions of the Maxwell spinor with the two doubly degenerate
principal null directions of the Weyl spinor.

We fix a canonical spinor dyad, {04, g}, for the underlying Petrov type
D spacetime, i.e. a spinor dyad with respect to which the only non-vanishing
component of the Weyl spinor is ¥,. Being totally symmetric, by equation
(2.2.1), the Maxwell spinor ¢4p takes the form:

PaB = {alB),; (4.3.1)

where ¢4 and (4 are the principal spinors of the Maxwell spinor.

The alignment of the Maxwell principal spinors with the Weyl principal
spinors determines which of the Maxwell spinor components vanish with
respect to the chosen canonical spinor dyad. This is shown in Table 4.1, where
0 and N represent the vanishing and non-vanishing of the corresponding

Maxwell spinor component respectively. Note that

(1)  Case 0 is the self-adjoint case.

(2) Case 1 and Case 4 are equivalent; so are Case 3 and Case 6. We can
see this equivalence by interchanging o4 and t¢g. So, there are in fact

only five geometrically distinct sub-cases that are non-self-adjoint.

We now give the geometric meaning of these sub-cases. First we express

¢ ap with respect to the chosen canonical spinor dyad {04, ¢} as follows:

$aB = Pota @t — 2¢104 @)+ P04 ® 0B, (4.3.2)

If both Maxwell principal spinors are aligned with, say ¢4, then we see from
(4.3.2) that ¢ = ¢» = 0. This corresponds to Case 4 shown in Table 4.1.
If both Maxwell principal spinors are aligned with o4 instead, then again by
(4.3.2), we must have ¢g = ¢ = 0. This corresponds to Case 1 in Table
4.1. Also, if one of the Maxwell principal spinors is aligned with o4 and the
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Table 4.1: Possible alignments between the Maxwell and Weyl principal spinors

‘CaseHgbABOC‘qﬁo‘le‘ﬁb‘z‘

0 0 010710
1 040B 0 0 N
2 O(ALB) 0 N 0
3 0O | N|N
4 LalB N 0 0
5 N|O|N
6 N|N|]O
7 N|N|N

other with ¢4, then clearly ¢g = ¢ = 0. This corresponds to Case 2. The

geometric interpretations of the other cases are similar.

4.4 Inadmissibility of Cases 1 and 4

This following proposition is the main result of this thesis. It states that
Case 1 and Case 4 as discussed in §4.3 are inadmissible if Huygens’ principle

is to hold on a Petrov type D spacetime.

Proposition 4.4.1 Let P := 00+ A*V, + C be a non-self-adjoint scalar
wave operator on a Petrov type D spacetime. If the Mazwell spinor (or ten-
sor) associated to A® is algebraically special and its degenerate principal null
direction coincides with one of the doubly degenerate principal null directions
of the Weyl spinor (or tensor) of the underlying spacetime, then P is not a

Huygens’ operator.

OUTLINE OF PROOF  Restated in terms of spinor components, this proposition

states precisely that, with respect to a suitable canonical spinor dyad of the



§4.4. Inadmissibility of Cases 1 and 4 97

underlying Petrov type D spacetime, Case 1 and Case 4 described in §4.3
are inadmissible for any Huygens’ operator. The alignment of the principal
spinors between the Maxwell and Weyl spinors in Case 1 or 4 is depicted in

the following diagram:

Case 1 or 4, Petrov Type D

AN

Lines:  Weyl principal spinors
Arrows: Maxwell principal spinors

We shall make extensive use of the necessary conditions for Huygens’
principle listed in Appendix A, with ¢; and ¢, set to zero. In other words, we
shall establish explicitly the inadmissibility of Case 4. The inadmissibility of
Case 1 then follows trivially since the two cases are equivalent geometrically.

The proof will proceed in the following steps:

(1)  We simplify the necessary conditions by eliminating sequentially four

sets of variables? and seven sets of Pfaffian derivatives.

(2)  Due to factorization of a number of the simplified necessary conditions,

the analysis splits into a number of further sub-cases.

(3)  In each such sub-case, ¥, is solved for as a polynomial expression of

a, 7, m and their conjugates. Subsequently, each sub-case is shown to

Zspin coefficients and components of the curvature spinor
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lead to a system of multivariate polynomial equations in «, 7, 7 and

their conjugates.

Grobner basis methods are used to prove that all these polynomial
systems of equations admit only trivial solutions, i.e. each implies that

all of a, 7, m and their conjugates must vanish.

Substitution of « = & = 7 =7 = 7 = @ = 0 into the expression
for ¥, obtained in Step (3) then implies that U, vanishes, contrary to
the original assumption that the chosen spinor dyad is canonical in the

underlying Petrov type D spacetime. O

ProoF oF Proposition 4.4.1  Suppose Proposition 4.4.1 is false, i.e. there

exists a Petrov type D spacetime (M, g,5) and a Huygens’ scalar wave oper-

ator P := O+ A*V,+ B on M such that the Maxwell spinor ¢4p associated

to A* has the form ¢ap = Potatp, with ¢ # 0, where {04, ¢4} is a spinor

dyad canonical to the Weyl spinor of (M, gag).

Let w be the smooth function defined on M by

do

ew

Then under the dyad transformation

0{4 — 611}/2 o 6—11}/2 LA

OA LA 9

the Maxwell spinor component ¢q transform as follows:

Uy
P = e” o = —¢2€750 =T, =0,
0

while ¢, and ¢}, remain zero. The above assertions follow from the transfor-

mation laws of the respective spinor components listed in §2.4.
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Next, let ¢ be the smooth function on M defined by e** = \IJQW; Under
a conformal transformation to (M, ¢**g,5), and the following choices for the

van der Waerden correspondence and spinor dyad:

6//AB _ 1AB

" _
= €77, €aB = €aB>
nAA ¢ 1 AA e [ Sy
o, = e?ol "4, o'y = €0,
r—1 1—vr
g = e, b= T,

U, transforms (see §2.4) as follows
Uy = 20,
As a result,

14 @g = (e72 W) (e @;) = TP, T, = ¢ et = 1

Y

i.e. U7 is identically unimodular. If we choose r = 1, then ¢ transforms (see

§2.4) as follows
6/ _ 6(r—3)¢> q% _ 6(r—3)¢> \IJ; _ 6—2¢> \IJ; _ \IJ;’

Therefore, under the above conformal and dyad transformations, we have

made
P/, =1 and ¢ = 0. (4.4.1)

Since the Huygens’ nature of P is preserved under trivial transformations,
P, the transformed operator of P under the above transformations, is also
Huygens’. In what follows, we assume that these transformations have been

made, hence (4.4.1) holds, and will drop the double prime.
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Without further mention, all references to the component necessary con-
ditions assume that the substitutions ¢g = ¥, as well as the Case 4 assump-

tions (¢o # 0, ¢1 = ¢ = 0) have been made. Then,

>
I
Sl
I

(A42) =
(Ad44) =
(A6.11) = | E=-x

o O

R
I
N
I

(V1)

Making the substitutions (V1) into the following equations give:

(A1l7) = §(r) = —op— 72— wa+7h — Ba
(A19) = A(r) = —uT — pm — 7y + 77 — By
(A.1.13) = S(p) = —pm + 7 — po — pf — By
(All4) = A(p) = —p* — pry — p7 — Do (D1)
(Adl) = I(Ty) = =Py 4 205
(A43) = A(T2) = —pUs + 2U,y
(A6.7) = | D(T;) = 3U,5(27p 4 66 — 95 + 30 — 2¢ — 9p)

If we now make the substitution (V1) into (A.6.5), and then make the sub-
stitution for A¥, and its conjugates as in (D1) into the resulting equation,

we get:

L 30, Ty (—fi+ 24+ 27) =0 (4.4.2)

(4.4.2) and its conjugate equation then imply:

vy=-p+5, and y=—-a+4%. (V2)
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Next, we show that g = 0. Employing an “implication chart”® as in (4.4.2),

we have:

720, U, A(p) + 720, WA () + 72055 A(P5)

+72WouA(Uy) — 14400, Wy fi — 11520, Uy
(A.7.21) OV 648, Uopd + 648U, Ty + 288T, B0y Ty

— 1152, Wyjiy — 144T, Wy A(y) — 144U, A(T5)y

—1440,U,A(7) — 144U, A(T3)7 — 1728U,y 0,7 = 0

CIEEY 19%, Ty (—Ap) — A() + 16p7 — Sy + 37
—9p® —9p* — 2®55 — 57 + 3fiy) = 0

WO 440, Ty (p — 1) = 0

= p—pp=0 (4.4.3)
On the other hand, from the unimodularity of ¥,, we have:

A(q}2$2 — ].) — \IJQA(\IJQ) —|— \IJQA(\IJQ) - 0
L 0, T,(2y —p+ 27— ) =0
O oW, Ty (u+ ) = 0 (4.4.4)

Hence, (4.4.3) and (444) = (V3)

3This technique of repeated substitutions will be routinely used in this proof and some
computational details will be omitted in later arguments.
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And, (V2) and (V3) = |y=79=0 (V2)

Using the unimodularity of ¥, again, we can obtain expressions for d¥, and

its conjugate; they are the missing Pfaffian derivatives of ¥y not solved for

in (D1).

5(\:[}2\:[}2 - ].) <~ \IJQ(S(\TJQ) —|— @25(\:[}2) — 0
@ —@2(\:[}27_'( - 2\:[}20_4 - 5(\:[}2)) - 0

We continue with our simplifications:

(A.1.13) ey By =Py =0
(A.1.14) Ve Byy = 0

(A.6.2) 287 30,0,(Tr +4a—-20)=0 — | B=1r+2a
(A.6.13) 2B 30,0,(T7 +4a-208)=0 — | f=1In+2a

(V4)
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The third set of solved Pfaffians is obtained by repeatedly substituting all of

V1), ..., (V4), (D1), and (D2) into:
(A1.6) = | A(e) = —ar—oaf — 177 —2aF — In7
—27TO_C—T7T—\IJ2—|—A—@11
(A18) = | () = —9/2rx7 —7ma—TUy—2A
Al115) = | A(a) = 0
(A115) (@) 25,
(Ab9) = S(a) = —%7704 —a?+ %@20 —n?
(A7.17) = o) = —%7_70 —3a0 + 370

Next, we note that:

(V1)...(V4)

(A.1.12)

)

(V1)...(V4)

=

(A.2.11)

(V1)...(V4)

(A.5.3)

(V4)(D1)...(D3)
—

I

46(a) — 146(7) — 80(a) — 4aa — 4977

—287a 4+ 4Py, —4A — 4P, =0

20(a) + 7 + Tam + T8,y + 12A — 43(a)

—2aa — 14na 4+ 20y — 2¢1; =0
§(a) =Irk — TaF + 20, + 6A —aa 4+ 30, — &y
A(®11) + 3A(A) =0
A(A) =0

—10A(Us)7 + 6A(Ts)a + 2A(0(P5))
—6WLA(T) + 26(A(Ps)) + TA(T2)7 =0
—U,A(7) =0
A(t)=0
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Therefore, the fourth set of solved Pfaffian derivatives is:

§(a) = jn7 — Jam + B0, 4+ 6A — a@ + 3T, — &y,

2

(D4)

Now substitute all of (V1) ... (V4), and (D1) ... (D4) into to the fol-

lowing three equations to obtain an (over-determined) system of equations

linear in the two Pfaffian derivatives A(o) and 6(7):

28(1) — 2A(0) — 272

(A1.16) =
—2T0 — 777'7' - 2@02 =0
(A56) — 2By, — 47?2 — 87 — 164> — 1872
o —97T — 307@ + 6A(c) 4 68(r) =0
(AT12) — —67% + 872 — 32a® — 64(7) — ATRT

—50Ta@ — 247a 4 2A(0) — 2842 = 0

Solving (4.4.5) and (4.4.7) yields:

7 10 11 8 1
§(r) = —7*——a’— ?7_77' — bra — 57?07 — §<I>02

6 3
1
A(o) = 47a+6a — 57?2 + 372 4+ 777 + 107

Substituting (4.4.8) and (4.4.9) into (4.4.5), we get

5

By = Z‘rz —7a* — 1271 — 1274 — b7a — 372

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)

(4.4.10)
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Therefore,

(4.4.8) — g % (4.4.10) =

1 21
5(r) = _57?2 +6a% + 77?7 +117a + 47a + $og + 477 (4.4.11)

(4.4.9) and (4.4.11) together give the fifth set of solved Pfaffians:

A(o) = 4Ara+6a* — 37% +37° + 777 + 107@
(D5)
§(r) = =37 +6a° + LA + 117a& + 47 + Doy + 477

If we apply the commutator relation (A.3.1) on ¥, and then make the sub-
stitutions (V1) ... (V4), and (D1) ... (D5), we get:

—U,(—247a — 54A(p) + 18A(p) + 5472 — 4T, + 120, + 8By,
+36ar — 1877 + bdrw + 2877 — 8A — 972 + 12677 + 367w
—1872 — 607a — 36a2 + 108a® + 372 — 12a71 — 12a7 + 27
—4277 4+ 180a7) = 0

(4.4.12)

(4.4.12) and its conjugate allow us to solve for A(p) (and A(p)), in particular,
they give:

Alp) = T2+ 20,428 4 2a7 + 7+ 2w — 2A

—in?+ Irn 4 Zra+ 207 + tna+ YoF

(4.4.13)
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We next substitute (V1) ... (V4), and (D1) ... (D5) and (4.4.13) into:

872 + 40, + 4B, + 1247 — 4577 + 1477 + 32A
(ALL7) = 37?4 4277 4 127a& + 3602 + 24nwa + 60a7 — 185(7)
+1877 — 18ar + 18P, =0

80(7) + 1872 + 2y + 200, — 208y, + 1247 + 11777
(A5.2) = 42677 + 32A — 37% + 48aa + 4277 + 36ma + 1877
+36a2 + 90ar + 24w + 60aT = 0
(4.4.14)

Solving (4.4.14) as a linear system for the two unknowns A and §(7) yields:

- 4 4 _ 2 9 1 4 2
é(r) = §‘P2 - 5‘1’2 + 5‘511 — 57’71' — §7T7Tl' — gac_v — g?‘l’@ — 3ar (4.4.15)
9 5 3= 1 3 9 5
A= -2 20, G, 4 &y, — Sar— orm— 2p7
167 16 2 gt gt g o gTm o gnn
3 5 3 21 3 _ 9 9 9
4+—7 — —ad— —FTT — —TA — —TT — —a° — —aT
32 4 16 4 16 8 8
3 15
—gra - goT (4.4.16)

The sixth set of solved Pfaffians is given by (4.4.13) and (4.4.15):

_ 4 _ 4y 2 _9 _ 1l 4 5 2.5
o) = Y — ¥+ ;P — 57 — 37T — Jaa — WA — 3aT

- D6
Alp) = 72+ 20,4 28 4 2a7 + 7+ Zam — 2A (D5)

—in?+ Irn 4 Zra+ 207 + tna+ YoF
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The seventh set of Pfaffians will be obtained by solving simultaneously eigh-
teen equations linear in eighteen unknown Pfaffians.* To build this system,

as usual we make the substitutions (V1) ... (V4), and (D1) ... (D6) into:

D(r) — A(K) — pT — pT — 0T — o — T€

(Al4) = 2D(a) — 25(6) — 2ap — 2a€ 4 8ae — TR0 — 4ao
- +5me — 2mp — 2%10 = 0

(A.15) — TD(7) +4D(a) — 26(€¢) — 2000 — 207 — T7p — 4ap
- +77E+ 4a€ — 2em + 2ea =0

(A.1.11) = 20(p) — 28(a) — 6pa — TpT + 200 — Tow — 2pT

—|—2Tp_ — 2@01 =0
(4.4.17)

It has been verified that every sub-system of this 18-equation linear system involves
more Pfaffians than equations. Hence, this large system has no smaller solvable sub-
systems for the Pfaffians.
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—16D(7) + 48D(7) + 32D(&) + 48A(k) + 4d(€) — 124(€) — 64(p)

+188(p) + 186(7) + 485(c) — 6075 — 32®0; + 1870 — 617p
(AB.7) = 4575 + 2470 + 147e — 94ap + 116aE — 126aa + 60ac

—108775 + 42p& + 36pT + 15p7 + 4807 + 23201 — T27¢

+1207e + 1120 + 6em — 60eax = 0

32D(w) + 32D(a) — 43(€) + 125(€) + 65(p) — 185(p) + 66(a)
+32®19 + 1675 — 32&6 — 4875 — 387weé + 9np + 3675
—18ap + 36ao — 3o + 38ap — 20a€ 4 28ae + 34me

+297p + 6o — 5475 =0

(A58) =

—96D(7) — 96D () + 32A(k) + 328(7) — 286 (€) + 205(€) + 424(p)
—308(p) + 420 (o) + 22475 — 64as — 27275 — 10we + 3lnp
(A.7.6) = +6075 — 14ap + 300 — 1287¢ — 14475 + 144pT — 647¢
+4807T + 12307 — 6ap — 44a€ — 92ae — 82mwe — 1177p
—6oa + 15076 =0
(4.4.18)
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32D(k) — 24D(7) — 16 D(a@) — 4d(€) — 40(€) + 64(p) + 64(p)
—2§(7) — 328g; — 32k€ — 96pk + 32ex — 352k0 + 64Kp

(A7.9) =  —670+517p + 3175 — 2270 — T47e + 146ap — 124a¢e
+58a0 — 48ac — 174pa — 93p7 — 2407 — 160 + 86emm
+132ea =0

—96D(7) — 96 D(a@) — 32A(k) + 208(€) — 28(€) — 300(p) + 428(p)

+428(5) + 328(0) + 1447p + 15070 — 1177p + 12376 + 6070
(A718) = —827e— 6ap — 92a¢ — 6as + 300a0 + 4875 — 14pa

—144p1 + 31p7 — 27207 4 2240w — 647€¢ — 1287€ — 640

—10er — 44eax =0

—32D(k) — 24D(w) — 16D(a) — 43(€) — 48(€) + 68(p) + 64(p)
—25(0) — 3219 — 32k€ — 64pk + 32ex + I6kp — 247G
(A.7.23) = —16as + 867 — 937p — 2275 — 1T4ap — 48ad + 3low
+146ap + 132a€ — 124 — T4me + Slmp + 58c v + 3525 K
—676 =0
(4.4.19)
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D(F) 4+ A(K) — 75 — 7D — 76 — 75 — T€
Conjugate of (A.1.3) — (T) + A(k) —Tp—7p— TG — "G — T¢
‘|’7_—€ — @10 e 0

2D(a) — 20(e) — 2aj — 2ea + 8aE — Tow — 4
Conjugate of (A.1.4) = (@) (€) ap e + 8ae o oo
+57€ — 27p — 2o, = 0
D(m) +4D(a) — 20(€) — 267 — 277 — Tnp — 4
Conjugate of (A.1.5) = (r) + 4D(c) (¢) ao T Tp ap
+Tne + dae — 2ne + 2 = 0

26(5) — 26(5) — 6ap — Tnp + 2a5 — TRG — 27
Conjugate of (A.1.11) = (7) (0) —6ap —Trnp +2a6 — TG — 27p
+2p7 — 2810 = 0

(4.4.20)
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[57 D] \IJ2

—2470 4 32D(&) — 36a0 + 544(p) + 126(€) — 186(a) — 4d(€)
—180(p) — 16D(7) + 1870 — 162pa — 4ae + Sdao — 20ea
+22ap — 135pT — 467€ + 457G + 26e7 + 6175 — 1607w
+3200 =0

—180(p) — 32D(a) — 44(€) + 64(a) + 16 D(7) + 546(p) + 126(e)
+7270 + 108ac — bd1o — 130ap — 4eax — 18ao — 20ae

+54pa — 1517wp — 46em — 157wa + 26me 4 45p7 4 1607

—320a =10

16D(r) + 548(p) + 128(€) + 65(c) — 46(e) — 188(p) — 32D(wv)
+108ad + 72wo — 5475 — 130ap — 4a€ — 180 — 20 e
+54ap — 151np — 46me — 1507 + 267e 4+ 457mp + 1670
—32a0 =0

—247G — 36aa + 125(€) + 548(p) — 188(a) — 185(p) — 44(E)
+32D(a) — 16 D(w) + 1875 — 162ap — 4ae + bdoa — 20aE
+22ap — 1357p — 46me + 4507 + 267 + 61lwp — 1670
+32a0 =0

(4.4.21)
The eighteen equations in (4.4.17), (4.4.18), (4.4.19), (4.4.20), (4.4.21) form
a closed system for these eighteen Pfaffians: D(x), D(x), D(7), D(1), D(T),
D(a), D(a), A(x), d(¢), 8(2), 8(p). 8(p), 8(7). d(e), 8(2), d(p), (p), ().
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The solution® to this 18-equation system for the above Pfaffian derivatives

1s:
8() = =7p— 00— 2Bo; + 2kE+ 2pk — Zen + Bro

——h”,p + @TU — %ﬂp — 11320877'('0' + %mf — %7‘(6 — %aﬁ
%5@ B 2302103__ + 1312%7_0 + 5 TU + 16141p0‘ B ;3(1)7“ + 3664309
AR s U U

—I-EPT 640p7r + 1 0'7' + %0‘7‘( — —T€ + == 249 — %ap
fgg €+ 133 %7‘(6 — % + %aa — %67‘( — %ea

—%5‘& — %7’0

5(p) = —i —(I>1o—|- @01——&e—p&—|— 6&—%/{0‘
o ot Binp s Boro— Bzo+ Bore-s 1o
29__—I— %5&5‘ — %aa — 14—77'0 — 7po_c + %7‘(6 — %ﬂ'ﬁ

—%7‘(’0‘ — ﬁap + %aa — %TG — 3037’p + 16p7’ — %TG
—%pT + %pﬂ' — ém’ — @077 + —T€ — —T€ + ?ég
—;’—an — %ae — %gﬂe + 13229017Tp — fggaa + 16067‘(’ + &7604
—|—15—1&/<u + %7’0

SMAPLE V Release 5.1 was used here.
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D(r) =

1, - 1 19 4 - 2 4 22
—55TP — E(I)lo + 55 Po1 — [5HE — SpR + g€k — KO
25325 | 5097 253 = 713 o
+2 ’ip TU + 640" P+t 1287 102077 + 9607T€ + 960 %
131 ~ 2969 —— 357~ 5 187 -~ , 503 1417
+ 960 X7 T 3300 — 247_0 — 102P + 9607T6 - 19207Tp

53 283 363 47 = 149 = 47 -
_19207”7 ~ 1929 p+ 3200‘0 — 207 € 160Tp + 32p7' - 487—6

—I-iéépT + 1823p7r — Lo — W 4 8 58Tz 4 B3,

1920 12 128 a8 240 960 %
—I-%OCE — %ae — %7‘(6 + %ﬂp — 2996501004 + éggeﬂ + %ea
—I—%(_f& + %7’0
—%Tp_ — (I>10 + 15(I>01 —/{6 — —ph”, + —Gh”, — %mf
—I'ls_o’ip o TU + 3207Tp + &mf o %mf + 4807T6 + }12(7)
—@&E—I— %0_45' — %aa — %7’0 — —pa + %7‘(6 — %ﬂ'ﬁ
—%7‘(’0‘ — @ap — %aa %TG — ﬂ7'p + 16p7’ ;27’6
sopT + 960p7T - 21407_ - _UF + _TG - ETG + 3438107
—I—%ae — %ae — %707 e+ %10777;) + zgéaa + 48067'(' + %ea
—|—117565'h”, + —7'0
i7'p_—|— §(I>10 — %@01 + %/{E—I— pr — 36/{ + Emf
—kp+ Zro — 275 — %ﬁ& + 2ro — Bre— Wap
+295‘E - %O‘U + i’ggaa + 3 TU + 32p04 - 1607T€ + g;g
;ggﬂ'(f + 127ap — fééaa —|— T€ —|— 3037’p — pT + —T€
—I-%pT — 320p7r + 0'7' + @077 — T€ + —T€ — %ap
—|—§’—Oa€—|— o€ + %7‘(6 — %ﬂp + %aa — %67‘(’ — %60&
—Ugk — Z75

5 10
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D(7) = 21 2(1)10 + (I>01 /ie —4dpk + —Gh”, — 45—4/«7
123 759— - 423—— 253 = 153== |, 593 =
+4’ip i + 3207 64 70 T 39070 T 197 € +
59 —_ 809 — 711 = 11 115 353
€+ 160%0 — 1600‘0 T4 270 — p a+ 1607T€ - i
83 — 205 279 17 = 177 1
—35070 — S30p 0 + 160040 — oTE— Tp —|— pT —
123 231 863
+ == 50 PT — 320p7r + —07' — T + —T€ — —T€ + Too
183 69 583 729 521 303 313
+ 80 o€ 16X~ 1607 € + 3207 P ~ 1607 + 160€7T +
+45k + 270
D(f) = Tp —|— (I>10 15@01 + 5 Iié + 3pfi — Gh”, + —mf
2, = 43 253 = = 381—— 253 — 7 == 713
3hp + 2077 — Gag™P 1287TU + 192077 ~ 9607 € ~ 960
131 == 2969 = 357 = 187 503
+ o6 X€ 960 ao + 32040 + TU + 192p0‘ 9607T€ +
53 283 363 193— 309 =
+19207TU + 192 ap — 3200“7 2407 € + 160Tp - 32PT +
347 347 953
+160pT + 1920P7T + ‘TT + 12897 — Te + 2407_E T 960
1153 213 2951 143 433
1600‘€+ e+ 960 T 6207 P p+ 960 7Y T 960¢T T 480¢%
22 = 21 =
— 150K 207’0
_ 3 11
D(a) = —= (I>1o + (I>01 — —Iiﬁ — pK + Gh”, — TKO
20125 | 393 167 5
—I-/ip - TU + 3207 p+ a2 "0 — %mf + 1607T€ + 160%
—— | 751 = 369 = 7= 37~ 167 793, —
0‘6 + 1600“7 160%X0 — 370 — 5P + 1607T€ 3207 P
37 561 23 = 303 23 =
3207”7 ap + 1600‘0 a0’ € Tp + 16pT 8 Te
—pT + %pﬂ' — ém’ — &077 + —T€ — —T€ + =
51 497 111 719 127
+ 0‘6 — 1694 — 1607 € + 3207P — 1607 + 160€7T + 60‘

11— 69 =
+ S OR + 207’0

160ap
7=
] TE

—604

3337
1920

ap
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= 27 3 381 — 57 ——
D(a) = 3Poy + Lo — 27p— Blas + Zro — Sxe

33—— 7 135—— 105 15 15
—|—32ap ae 5 o o+ oaf—l— 7'0 2pa 327'('6

—|—647Tp— 7T0'—|— ap— oaf—l— T€—|— Tp—16p7_'

—|—157_'€— 16p7’ — 129p7r — —07' + 2850‘7‘(’ — 217’6 + —T€
ap—l— ae—l— ae—l— 7T€—|— 7Tp—|— 1590a—l— 35 €T
—%ea — %TU‘
A(k) = —%7'_ — %(1)10 + %@01 — i/{@ — %phﬁ + 14—56& — %mf
+3RP = 370+ 5a0P + 270 — 153670 + 557 € + a0 0P
—% “+ 2996%9“ — 52000 = 3570 — 153 P8 + GGTE — 157D
—%7‘(’5‘ — %Oé_ + %a& — %7"6 — %Tp + 32p7' — %TG
—%m’ — Mpfr — %m—' — %gmr + %TG — %TG + ggg
—I-%OCE — %ae — %7‘(6 + gigﬂ'p — 2996501004 + éggeﬂ + %ea
—I—%(_f& + %7’0
de) = —%Tﬁ — Z(I>10 — 3@01 — Q&E — 14pr + Ee& — 1?—4&0
+14kp — 3217’0 + 26849037Tp + %mf — %mf — %7‘(6 + 4312701
—33—276& %&(_f — %707640 — %37'0 — @ a -+ %ﬂe — %ﬂ'p
o Bt e Bre— SBrg s Byr ?Zf%
B SN O S O
%0‘6 - %0‘6 - 2392401 €+ 5624803 - %00‘ 2312001 + 2126101

—|—1§4_/{ + 7'0
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§(e) = ZLrp— 20y + 20— Brp— Blrs 4 Zro + 2

—|— ocp—l——764€—@__—|—105040—|— ST0 — pa—Eﬂe

—|—647Tp— 7T0'—|— ap— oaf—l— T€—|— Tp— p7_'
—|—157_'E— 16p7’ — 129p7r — —0'7' + —077 — 217'e—|— —T€

ap—l— ae—l— ae—l— 7T€—|— 7Tp—|— aa+—e7r

—%ea — %7’0
ip) = 45 (I>10 + 15(I>01 Sp& + —Gh”, — %mf
+5KP — 10370 + GaoRP + iié“ ~ 10207 T 550 TE + Geo P
— 560 + Her 00 — 5 — 3570 + f53pG + SOmE — Topomp
—%7‘(’5‘ — %a + %aa — %TG — %Tp + 32p7' — %TG
+BLyr 4+ 287 4 Ro7 — Bon + Lre— Blre+ Bap
—I—%ae — %ae — %7‘(6 + gigﬂ'p — %aa — %efr + %ea
—|— mwc + —7'0
8(p) = Brp+ 2P0 — 200y + She+ 4pr — Sen + Lro
—4kp + 1637’0 + ggéﬂ'p — @mf — %7‘(’0‘ — 1go7re — %ap
+%ae - ?83“ + o + o+ 40— ne s 4
—|-3207T0' + 205 — %73040 —|— T€ + 18707__ pT + —T€
—%m’ + 39270p7r — —0'7' + &077 — T€ + —T€ — %ap
183a + 8 6ae + %7‘(6 — %ﬂ'p %aa — %efr — %eo‘c
44— 9=

50'/4,—37'0'
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o) = %Tﬁ + %(1)10 — 14—5(I>01 + 14—5&E—|— %phﬁ — Gh”, + —mf
—%hﬁp—l— %7’0 — %__— %__ + %7‘70 — %ﬂe — g%ga_
+itae — a0 + Bao + o+ ffpa - e + inp
T+ ;*zzap foa + Wy 2= Bor + e
14§OPT + 1920p7r + ‘TT + EZUT( - _TG + 33(7) - %O‘
—I—fg’OQE—I— %ae + %7‘(6 — %Fﬂ + %aa — %eﬁ — %ea
—%0‘& — %TU
5e) = — 3 (I>1o + (I>01 —Iiﬁ — pK + —m — 15—1/w
—I—&p — 7'0 + ggéﬂp + @ﬂ'(f — %ﬂ'(f + 1607‘(’6 + 12(7)
——&E —|— %aa — %aa — gTO' — —pa + %7‘(’6 — %ﬂ'ﬁ
—%7‘(’0‘ ocp_ + %aa — %TG — @Tp + 16p7’ — %7"@
—%pT + ;270p7r — é0'7_' — 2730‘7‘(’ + —T€ — —T€ + fég
—%a%—l— %ae — %7‘(’6 — ggg TP — Iégaa + 16067‘(’ + &7604
+3ak + 875
5(p) = 2 p—l— (I>10 15(I>ol—l— =Ke+ 3pfi— m—l——mf
—2kp+ Bro — Bxp— ‘1*77;“ + %7‘?0 — RE— ap
Siae — 2045 + Sao + Lo + Blpa — Bre + Lhny
19207”7 + 1109125ap B gggaa + ;2(7)7_6 + ‘11237? B pT + &776
+160pT + 1920P7T + ‘TT + EZUT( - _TG + %(7)7_6 - %ap
—|—160ae —|— ae + %ﬂe — %Fﬂ + %aa — %eﬂ — %ea
—%0‘& — %TU‘



§4.4. Inadmissibility of Cases 1 and 4 118

8(o) = —27p— P10+ 2PBo1 — KE— 2pK + zek — ko
+2rp— Bro+ Brp+ 2ins — Diro + Lilre 4+ Bap
—Bae+ 2265 — Slac — 515 — Sspa+ SB2re— Sinp
— oo — Bap+ Bag — JLre — 2275+ LpF — 1i7E
—I-%pT + %pﬁ + gm_' — %0‘7‘( + %TG — %T@—I— %ap
—I-%OCE— %ae — %7‘(6 + %ﬂp — %aa — %efr + %eo‘c
+285k + L7o

(D7)

Note that (D7) refers to the entire group of the eighteen Pfaffian derivatives
just determined. If we now make the substitutions (V1) ... (V4), and (D1)
... (D7) into (A.9.3), remarkably, we obtain:

—\112@2&(12042 + 107 — 2177 — 18aT + 672

_ (4.4.22)
+44¥, — 12aa — 217w — 18ar — ldwa) =0
(4.4.22) implies that we have either
Scenario 1 c=a6=0, or
. 1262 + 10ra — 2177 — 18aF + 672 + 447,
Scenario 2
—12atx — 2177 — 18ar — l4d7w&x = 0.
Scenario 1 We assume in this scenario that
c=0=0 (S1)

Substituting (S1), and (V4) into (A.1.2) gives:

d(r) = kKT + 12—9&7? + Tra (4.4.23)
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Substituting (S1), (V4) and the conjugate of (4.4.23) into (A.1.1) yield:
D(p) =7k + Tim + 2k + p* + pe + pe — kT + By (4.4.24)
Substituting (V1) ... (V4), (D1) ... (D7) into (A.7.19) now gives:

—U,0,(87% + 32a% + 327& + 1505 — 250p + 48k7 + 3op — 48KT

(A.7.19) —
+32ka — 180€ + 60€ + 28W, — 450% + 16D(o) — 164(x)) =0

(s1

272 4+ 8a® + 87a + 1267 — 1267 + 8k + TP, — 48(k) =0

(4.4.23) 2 8 -2 8 — — 26,.~ 16 20 ,. =
— 857 — %7a 4 Bpw + Lur 4+ Lya (4.4.25)

We next solve for ®;; and A in terms of the spin coefficents x, «, 7, # and

their conjugates:

5,50, 3(8(W2)) — 8(3(Ts)) = (—p + B)D(Ts) + (—p + p)A(Ts)
7 +(a— B)5(Py) +

(V1)...(V4)
LY B, + 87 — 28y, + 65U, + 14A = 0 (4.4.26)
(V1)...(v4) 1872 + 100, + 12®, — 8P4, + 12a7 + 3677

(D1)...(D4)

(A.1.17) +2077 + 32A — 37?2 + 24aa + 4277 + 2474 (4.4.27)

+1877 4 3602 + 36ar + 247a + 60aT = 0
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Solving (4.4.26) and (4.4.27) for A and ®q; gives:

1y = LU+ inw+ 27— 20, + lar 4 Lrr — In? 4 Taa

+87x + Tra+ 27 + Lo’ 4+ Lar + Tra+ Saf

— 372 __ 5 _ g, 1 = 1574 3 _1-2 ~
A = iT 12\112 3\112 SR + 5QT + 5770 — g7° + a&

+irntra+ 3rr+ 2 + dar + wa + Sof

(4.4.28)

Eliminating ¥, in (4.4.28) using (4.4.25), we have

_ 10~z 2122 | Ta= | 21 1~ 155 2 = | 49~
b, = RO+ T+ QT + STT + STF — 1557™ + Taa + TR
= 21 - 10-2 433 .2  5-2 20, _ 10
+Tra + LTT 500 + o + 5T SIRT — - Ra
13 65 .~ 25 .- , 21 143 8 — 35—
—ﬁmr—Emr—ﬁ/ia—l—gon'—l—iﬂa—ﬁw&—l—gon’

— 10-~ 372 4, 1=, 3 _ 1l - _ 5 -2 ~ =
A = 217T04—|-4T —|—204T—|-2T7T ST Tos ™ —|—OéOé—|-4T7T
~ 1 3, =4 102 , 79 2 , 5 =2 20 20 26
+ma + 47'7'—|— o1 + YEres + =T 21m’—l— 21/{04—|— o1 BT
65 25

= =~ 3 29 16 - 5 =
—LhAT — 7R+ SaT + Tma+ TR+ SoT

(4.4.29)

We have proved that (S1) implies both (4.4.25) and (4.4.29). We next list six
polynomial equations in «, 7, 7, &, 7, T and & which hold in Scenario 1 and

which will be used repeatedly to establish the inadmissibility of Scenario 1:

(D1),(D2)
==

(A.6.9) 204+ 3T +2a+3r=0 (4.4.30)

(51 —8ra — 12a% + 72 — 672

(4.4.9)
—1477 —20ra =0

(4.4.31)

] —87a — 1202 + 72 — 672
Conjugate of (4.4.9) — (4.4.32)
—1477 — 2007 =0
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—247a — 1872 + 140, + 14@2 + 16®,; — 138at
—6377 — 637w — 12177 + 32A + 37?2 — 84aa

Y1) (v
(A.7.24) Ry — 4277 — 96wa — 19877 — 187% — 60ra — 3682
—36a? + 372 — 138ar — 96am — 24na — 4271
—60ar =0
—407a& + 21072 — 15447 — 14777 + 3577w
—30177 — 3972 4 140aa + 49077 + 1127
ik —2107F — 4272 — 1407a — 68a% + 404a?
i ¢ (4.4.33)

+117% — 3267 — 40k — B2kT — B2KT
40k + 182a1 — 2247 + 2647 — 32Tk
—987%T + 7007 =0

The real and imaginary parts of (4.4.33) respectively are:

167a + 1272 4+ 2a7 + 1577 + 1577w — 4377 — 272 + 20aa
+2871 — 8ma — 3077 + 1272 + 407a + 24a? + 24a0® — 27? (4.4.34)
+2a1 — 8am + 167 + 2877 + 40T =0

—1527a + 12672 — 168a7 — 26277 + 25277 — 25672 + 2947w
+168ma — 12672 — 420T7&@ — 23642 + 23602 + 2572 — 32kT
40k — D2k — B2k — 40ka + 168ar — 168am + 1527«
—327Kk — 29477 + 4207 =0

(4.4.35)

We remind the reader that equations (4.4.30) to (4.4.35) hold in Scenario 1.
Next, we split Scenario 1 into two subcases. Recall that 6(¥s) = Uo7 —2T,a
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as shown in (D2). If we substitute (4.4.25) into it, we will get:

—276(7) — 8ad(a) — 4wé(a) — 4ad(7) + 13ké(7)
+1370(k) + 8k6(7) + 878 (k) 4+ 10kd (&) + 10ad (k)
+7% —4rwa? 4 27%a — 13672 — 87KT + 167K

—8a® + 16akt + 20ka® =0

= #(1297° + 1707a + 2427& 4 407% 4 16577 + 128a%) = 0
(4.4.36)

Equation (4.4.36) implies Scenario 1, i.e. (S1), further implies that either

one of the following must hold:

Scenario 1A k=0, or (4.4.37)

) 12972 + 1707a + 2427 &
Scenario 1B (4.4.38)
+407% + 16571 + 12842 = 0.

Scenario 1A Recall from (D1) that §(¥;) = —7¥y + 2¥,a. The

following series of substitutions, quite remarkably, leads to:

~275(7) — 8ad(a) — 473(a) — 4a3(7) + 133(7)
Iy 4.4.25 1 _5 5 g 1 g ~ 1 _5
I(Ty) = =Py 4 20 @12 +1376(k) + 8kd(7) + 87d(k) + 10kd (&) + 10ad(x)

—a7w? —4wd? — Axwa + 137k7T + 87kt + 107ka

+2a7? + 8aa’® + 8ara — 26ax® — 16art — 20aka = 0
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T2a®,; — 360aA — 1807A + 197xW¥y — 42xP1; — 66PT
—132U,a + 36@,1 7 — 156W,a — 787U, + 468akT
+144akT + 264axa + 14dara + 9937k7 + 4327 KT
+582nka — bdnw? + 14daa® + 36ar? + 2167a?
+90a7k + 7277k + 11777k 4+ 91Uy + 306kA = 0

(V1)...(v4)
(D2)...(D7)

(7 + 2a&) (472 + 167a + 12677 + 84ar
, ;;2,29) +1267% 4 2007 + 252ar + 12677 + 8447 (4.4.39)
+420a7F + 4207a + 336aa + 2840

+29477 — 137% + 16a2 + 25277) = 0

Equation (4.4.39) thus again implies Scenario 1A itself splits into two fur-

ther sub-cases:

Scenario 1A.1 a=—ir, a=-1ix or (4.4.40)
47?2 + 167a + 12677 + 84anw + 12672
200 252 12677 + 84aT
Scenario 1A.2 elma 2osar 4 1307 + Star (4.4.41)
+420a7 + 4207 a + 336aa + 2842

+20477 — 1372 4+ 16a% + 25277 = 0

Scenario 1A.1, or equivalently (4.4.40), leads to a contradiction, as we
presently show. Under the Scenario 1A.1 assumption (i.e. (4.4.40)), the
equation (4.4.34) becomes:

—272 4 672 + TRT + Trm — 1577 — 22 + 477 — 1577 + 672 + 477 =0
(4.4.42)
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Now, we have solved for Ac¢ earlier. Hence, the Scenario 1 assumption that
o =& = 0 gives us the following equation:
(51

—87a — 12a* + 7% — 672 — 1471 — 207a = 0
—(r+7)3r—7) =0

. —T T
= either { or {
-7

Substituting the two possibilities in (4.4.43) into (4.4.42) yields respectively:

(4.4.9)

(4.4.40)

I
Rl

)
I

3
(4.4.43)
3T

=
Il
=
Il

either 4477 = 0, or 10877 = 0. (4.4.44)

Equation (4.4.44) of course implies that 7 = 7 = 0. Equations (4.4.43) and
(4.4.40) then imply # = # = 0 and @ = & = 0 respectively. Therefore,
(4.4.25) implies that ¥, = ¥, = 0, contrary to the fact that ¥, is the non-
vanishing component of the Weyl spinor with respect to the canonical spinor
dyad we have chosen. We have proved that (4.4.40) leads to a contradiction,
and hence Scenario 1A.1 is inadmissible.

We next consider Scenario 1A.2. In this scenario, (4.4.41) holds and
the real and imaginary parts of (4.4.41) respectively are:

—T27a — 4272 — 112a7 — 8477 — 8477w — 8477w + 3In? — 224aa
— 9877 — 1687ta — 8477 — 4272 — 1407 — 100a2 — 100a® + 372 (4.4.45)
—112a1 — 168am — 27 — 9871 — 1407 = 0

1847a — 12672 + 168a7 + 25277 — 25277 + 1772 — 2947«
—336wa + 12672 + 4207a + 268a% — 268a® — 1772 — 168ar (4.4.46)
+336am — 1847ra + 29471 — 4207 = 0
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Also, substituting the Scenario 1A.2 assumption that x = 0 into (4.4.34)
yields:

—1527& + 12672 — 168at — 25277 + 25277 — 2572 + 20477«
+1687a — 12672 — 4207a — 236a% + 23602 + 2572 + 168ar (4.4.47)
—168am + 1527 — 29471 + 4207 = 0

Therefore, the equations (4.4.30), (4.4.31), (4.4.32), (4.4.34), (4.4.45), (4.4.46)
and (4.4.47) form a system of seven multivariate polynomial equations in the
6 indeterminates «, &, 7, 7, ®, 7. We will call this system System 1A.2,
since it arises in Scenario 1A.2. We claim that this system has only the
trivial solution, i.e. System 1A.2 implies all of a, &, 7, 7, @, T must vanish.

This can be proved using the following lemma:

Lemma 4.4.8 The Grobner basis for the ideal (in C[t,a, 7,7, &, T]) gener-
ated by the left-hand-sides® of the equations in System 1A.2 with respect to
the pure lexicographical ordering with T = a > ® > T > & > T decomposes

into the components:

{aa,7,7,m, 7w}, {7, 7 +2a,7, 37 +2a}, {a7, —3T+7,2a+37,7}.
(4.4.48)

The decomposition asserted in Lemma 4.4.8 can be computed using the
MAPLE function gsolve() . It is clear that each component in (4.4.48) leads
to the trivial solution when we take into account that {«,a} {r,7}, {m, 7}
are conjugate pairs. This in turn implies that Scenario 1A.2, or (4.4.41),
implies that all of a, @&, 7, 7, w, @ must vanish. Hence, by (4.4.25) again, ¥
vanishes, contrary to the fact that ¥, is the non-vanishing component of the

Weyl spinor with respect to the canonical spinor dyad we have chosen. We

Sconsidered, in the present context, as multivariate polynomials in the indeterminates
o, T, T, T, T.
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have therefore proved that Scenario 1A.2 is also inadmissible.
Since both Scenario 1A.1 and Scenario 1A.2 are inadmissible, Sce-

nario 1A is inadmissible.

Scenario 1B (4.4.38) and its conjugate are:

407% 4 2427 & + 16577 + 12972 4+ 1707a + 128a% = 0 (4.4.49)
4072 + 2427 + 16577 + 12972 + 17007 + 128a? = 0 (4.4.50)

Equations (4.4.30), (4.4.31), (4.4.32), (4.4.34), (4.4.49) and (4.4.50) form a
system of 6 multivariate polynomial equations in the 6 indeterminates «, 7,
m, &, T and @. We call this system System 1B. We claim that the following

lemma is true:

Lemma 4.4.9 The ideal in Clr, a, w, T, &, T] generated by the left-hand-sides
of the equations in System 1B has the Grébner basis {a, &, 7,7, 7,7} with

respect to the pure lexicographical ordering with 7 > a =7 > T = a = T.

Again, Lemma 4.4.9 can be proved via a computation using gsolve() .
Obviously, the Grobner basis in Lemma 4.4.9 leads only to the trivial solution.
By the same argument as in the two earlier scenarios, (4.4.25) implies that
U, vanishes, a contradiction. Thus, Scenario 1B is also inadmissible. We

conclude here that Scenario 1 is inadmissible. It remains to treat Scenario

2.

Scenario 2 In this scenario, the following equation holds:

1202 + 107 — 2177w — 18a7 + 672 + 44@2 — 12atx — 2177 — 18ar — 1dwax = 0
(S52)

We first obtain expressions for Ws, A, ®1;, $¢s in terms of «, 7, @ and their

conjugates. To begin, note that one of the Newman-Penrose field equations
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simplifies to the following:

1872 + 10%, + 120, — 8®,, + 12a7 + 3677

+2077 + 32A — 372 + 24aa + 427w + 247 @

+1877 4 3602 + 36ar + 247a + 60aT = 0
(4.4.51)

(V1)...(v4)

(A.1.17) (P1)...(D7)

Equation (4.4.51) and its conjugate form a system of equations linear in ¥,
and W,. If we solve this system, we get the following expression” for ¥, (the

expression for ¥, is not shown):

b - e B AL TS a0
2T T T Y T T’
10 16 5 , 12 _ 105 _ 60 _
——a7— —A— —7"— —aa+ —T7 + —7wa&
11 11 22 11 11 11
9 54, 180 _ 108, 90 , 9,
—— T —T ' — ——7a— —a&° 4+ —a° + —7
11 11 11 11 11 11
54 72 60 126 _ 150
—I—ﬁon' — ﬁonr + ﬁﬂa — FT(T + ion’ (4.4.52)

"Note that (4.4.52) is different from (4.4.25); and they are valid in Scenario 2 and
Scenario 1, respectively.
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We next assemble a system of equations linear in A and ®,;:

(V1)...(V4)
= (D1)...(D7)

[5, (S] \IJQ —5@2 — &nw + 2@11 — 5\:[}2 — 14A = 0

407a + 3072 — 12845 + 8047 + 6077 + 6077
(4452) +8n7 + 4A — 5r? + 80aa + 7077w + 40ra (4.4.53)
+6077 + 3072 + 1007a + 604 + 60

—572 4+ 80ar + 40a7 + 40w + 7077 + 100a7 = 0

—2407a + 21672 — 16, — 216a7 — 36077
445377 + 4077 + 64A — 4272 + 60aa + 5257w
(S2) (4':—'5>2) +302ra + 3677 — 18072 — 6007 — 36042 (4.4.54)
+420a2 + 3072 + 330ar — 240axw + 2787«
—4207T + 73807 =0

Solving (4.4.53) and (4.4.54) for A and ®,; yields:

_ 57 11 1 111 1

A= oma 3T part 257_Tf 1769” 2" 22”2
35 1295 373 3 _ 15 , 25 _
‘|‘—44OCOC —]_76 TT —88 7TO£—|——4TT—|——4T —|——2 T

15, 255 , 5_, 335

« —a" — -7 — —ar +hat — —7«
2 44 8 88 88
35 907

@11 = 577'0_6 —|— 57_'2 —|— 70_67_' —|— 77?7_' —|— ﬁ’rﬂ' —|— 57"7—'(' — @ﬂ'
305 595 _ 69 21 15 , 25 _

ﬂao_c + mTﬂ' + gﬂa + ZTT + ZT + ?7'04
E—2 @ 2 ?‘2 + @ + baw + E
5 « Y « 87T 33 aT an 33 T
35 431
—I—ZﬁT + goﬁ (4.4.56)

3 17 15 507 1 19 ,
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To get ®¢s, we note:

(V1)...(v4)

(A5.6) LT _20ra — 28a% — 4dgy + 572 — 1277 — 48T — 487 = 0

5
= By = 17_72 —7a* — 1277 — 1217 — b7a — 31" (4.4.57)

We are now ready to build a system of seven multivariate polynomial equa-

tions in the indeterminates «, &, 7, 7, W, 7.

(V1)...(v4)
(A.6.9) "7 20437 +2a+3r =0 (4.4.58)
—247a — 1872 4 140, + 140, + 160y, — 138a7
vy —03TT — 63rm — 12177 + 32A + 3n? — 84ad
(D1)...(D7)

—4277 — 967 — 19877 — 1872 — 607 — 36a°
—36a® + 372 — 138ar — 96am — 24w — 4277
—60at =0

(A.7.24)

167a + 1272 4+ 2a7 + 1577 + 1577 — 43n7

452 o 2w 4 20aa + 2871 — 8wa — 3077 4+ 1272

5 (¢4 ) e 4 200 + 2877w T 77 + 127 (4‘4‘59)
+40Ta + 24a% + 24a® — 272 4 2a7 — 8aF

+167wo + 2871 + 40T =0
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(A.9.1)

(V1)...(V4)
(P1)...(D7)

1057®, 4+ 607a% + 3372a + bdwr? + 18724
+102772% 4 72742 4 132aA + 1027A — 2472«
+367a% + 24a%a — 1280 — 36772 + 127D,
+54n72 + 32W,7 + 112¥,a — 6@, 7 + 150Tar
+50W,a + 4070, + 36a° — 127° 4 T2nax
+1277a + 1270ex + 18777 + 187aT =0

36856aTm 4+ 29436 aT + 11396ama
+20790a7m + 4683077 + 1813077«
+3307577m — 541207a% + 237672 &
—310207 7% — 541207% & + 4158772
—89767wa? + 105672 — 100327 &>
+1320a%a + 1584772 — 33968Tar
—15840&° — 13273 + 28455727
—252077? — bd2war — 1841077«
4129607 — 2679677 T — 17688 TaT
+273007a% + 19110072 + 13860772
+8712a72? — 1584an? 4+ 11924ra? — 81377
—780ma® — 13387 aF — 396772 + 277>
+17160&a® — 1386073 — 100447 aa
—9457 7w — B18 7o — 145207t = 0

(4.4.60)
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(A.9.2)

(V1)...(v4)
(P1)...(D7)

252aTrm + 8AT 4+ 192aaT + T2ara + 2767w
—8Py i — 8P T + 48Py + 48Pypax + 2147V,
+1277e + 18777 — 48Aa + 152A7 + 41772 + 80U, «x
—3672a + 48a%a + 60W,m — 20W50 + 60U, 7
—20Wsa — 8Py 7 — 8P T + 48P + 48P
+80U,a + 21470, + 162727 + 247aw

+27677 0 + 1927aa + 18777 + 144ar? + 520,71
+152A7 + 87A — 48aA + 144a7% — 36an? + 84na’
+2547 7 + 847a® 4 2527 aT + 162772 + 4l7w?
+48aa’® + 27 aa + 25477 + 247

+127aT + 52W,7 = 0

—36688arm — 12640aat + 7956ara
—11344a7n + 31927a7 + 2775877«
+6716777 + 553907 o + 1848772
+12767 2 — T0407&% — 15472a%
+57277% 4 12480 + 12834an?
+293487a? + 24939772 + 1825272«
—369677% 4 276487 + 17040a7>
—10392727 + 2194777? — 13878naw
—16058t7x — 253127ax — 734877 T
—118807ar + 79367a® — 6984ar?
—528772 — 194473 — 5016472
+14758an? — 22304ra® — 24513777
—99167a® — 179067 a7 — 62047 72
—96772 — 2992aa? — 90047 ax
—209497 7 — 145267 v — 41367 aT
+31687° =0

(4.4.61)
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(A.9.4)

(v1).

(v4)

(D1)...(D7)

12aa7 + 150077 + 12677 — 6@y + 407¥, + 1877
+18777 + 132aA + 102A7 4+ 50T, + 32,7 + 1120,
+5477% 4+ T27a? 4 6007 + 102772 4 18a72 + 33an?
—3677w2 4+ 367a% — 1273 + 36a® — 24axn? + bdrw? + 24aa’
+7277a — 12a®1; + 128407 + 105U,7 = 0

948aaT + 3614atw + 1880arma + 1106arw

+14227a7 + 282077a + 1659777 + 1659772

+1640ma® + 2616027 + 693772 + 1422072 (4.4.62)
+274ar? 4+ T71rr? 4 19807a% — 607> 4 13203

+514an? + 1320aa® = 0
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(A4.1)

—

5(\1}2) + 7T\IJ2 — 2\:[}204 =0

60arm — 312a&aa7 + 1207w + 264ara
+156a7m — 85(®11) + 320(A) — 8By 7
—36TaF + 252T7wa + 1877w — 18772
+3672a — 432a%a — 90772 — 21075 (7)
+60ma? + 600027 — 210772 — 21074(x)
+180a7? — 150an? + 24ad(a) + 10872
—180772 + 144war — 504r7a — T20Tax
+2167a% — 216a7? + 1572 + 360
+24ad(&) + 16a®; + 30md(r) — 64
—120an? 4 2078 (=) + 2167a® + 2078 (n)
+2527 7T — 2887’ + 32n A — 4327 aT
+2077% — 48aa® — 1807 d(7) + 2167 4(7)
—2887ad + 21674(7) + 216777 — 18078 (7
-|-156045( )+ 1567’5( )+ 1047w — 1807

)
5(7)
@) — 3678(7) — 108ad (T

+14475(a) — 360ad( )
—10870(x) + 144ad(7) + 1447 5(a) — 12073 ()
—120ad () + 252 S(r)+252 §(7) — 300ad(7)
—30078(a) — 1207 (&) — 120ad(rw) + 1873(7)

+1878(7) 4 21670(T )+3 ( ) + 360ad(r)

+432ad(a) + 144ad(7) =
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8076arm + 368aaT + 7868aTw + 3440am«
+6136a7r + 1296077 + 621677 + 10920777
—182167a% + 14527%a — 11220772 — 1953672 &
+396772 + 2706772 — 15847 a? + 184872«
—109127a% — 7624a’a + 2376772 + 2949772
—9768Tam + 3124ra® + 15272a%7 — 225672
(F1mes) 4356772 + 89T0aT2 — 4752a° — 1327°
Ay (4.4.63)
(v —1744am? + 8235721 — 38581w? — 8207aw
—1482077max — 102007 v — 18348777 — 198007 &T
+93847a? + 1590a1? + 154873 + 14473
+714403 + 2340772 — 3456a72 — 2528an?
+11967a? — 2022777 — 446470’ — 115647 T
—7260772 + 34772 — 514873 4 2912aa?
—67127ax — 11427 7w — 6847w — 80087 T = 0

—12a% — 107a + 2177 + 1874 — 672 — 440,

Conjugate of (S2) -
+12aa + 2177 4+ 18a7 + 1ldaw =0

5187 a — 39672 + 546aT + 81377
. . —81377w + 727% — 94577 — hd2n &
'(' ﬁ ) +39672 + 13387a + 780a% — 780a?  (4.4.64)
(P07 _797% — 5461 + 54207 — 5187«

+9457T — 1338aF =0

Equations (4.4.58), (4.4.59), (4.4.60), (4.4.61), (4.4.62), (4.4.63) and (4.4.64)
form a system of seven multivariate polynomial equations in the 6 indeter-
minates «, @&, 7, 7, w, and 7. We will call this System 2. As before, we may

use gsolve() to establish the following
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Lemma 4.4.10 The ideal in Clr,a, 7,7, &, 7| generated by the left-hand-
sides of the equations in System 2 admits, with respect to the pure lexi-

cographical ordering with @ > a = 7 > ® > & > T, the Grobner basis:

{2772 + 1247 + 20ma@ + n2 — 1277, 37 4 2& + 37 — w1, 20 + 7w, * + 2a}.
(4.4.65)

According to the last two members of the Grobner basis in Lemma 4.4.10,
we have the substitution: # = —2a, # = —2a&. Making this substitution into

the first two members of the basis yields the following system:

20+ 3T+ 2a+3r=0 (4.4.66)
277% + 1247 + 4a® — 40aa + 24at =0 (4.4.67)

Differentiating (4.4.67) with § and § respectively yields:

2770(T) + 6ad(T) + 676(a) + 107d(a)

4(4.4.67) = B B B
+10ad(7) + wd(w) — 676 (7)) — 674(T) =0

—216aat + 48ara + 144a7r — 24P 7
+108®,,7 + 107 ¥, — 120aA — 60772
—1447a% — 48a%a — 36772 — 16W,n
B0-8 —T6W,a + 308 + 188y 7 + 16U,a
—312naxw + 24a®,; — 486472 — 6an?
—1207a? — 1087 ar — 729772 — 157w
—24raa + 27077w + 2477wa — 1807 T
—127A + T27A 4+ 7270, — 367¥, = 0
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—2188aaT + 6294rar — 1584ra?
+118872a — T1727a% — 5048&%a
wasaasn  T28240°T 4 3465772 + 1278a7?
‘(%)) —1584a% — 1984rd@a — 39607GT (4.4.68)
Vi1)...(v4
(P1)--(P7) +24567a% + 2310ar? — 138672
+9040® + 2277772 — 5742472
+608aa’ =0
- 2T70(7) + 6ad(7) + 674(a) + 107 d(a
5(4.4.67) — 7o(7) + 6a(7) +670(a) + 10md(a)
+10&d(7) + wd(w) — 67 (7w) — 670(T) = 0
360aar + 216077 + 144anmo + 252aTn
—60@117" - 36@117_' - 24@200_4 —|— ]_]_07'('\:[}2
wuvy 1608 + 155777 — 216ma’ 4 972077
PLAPD 549772 + 1782072 — 138an? — 427 B.,
+64873 + 3373 + 1987 D4, + 144472
—78ar? + 210772 + 216aa® + 12677
+3607A + 2167A + 967U, + 6670, = 0
1396aaf + 13027aF — 3967a°
+1320&% a0 + 224802 T + 2977712
f;‘:i:iiﬁi:iéi +4734a7% + 1320Taa — 3967aT (4.4.60)
oy —32407a® — 990ar? — 1987°

—664a® — 99772 — 66aT>
—2512aa2 =0

Now, equations (4.4.66), (4.4.67), (4.4.68) and (4.4.69) form another multi-

variate polynomial system of equations in «, @&, 7 and 7. We call this system

System 2'. The following lemma can again be proved using gsolve() :
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Lemma 4.4.11 The Grébner basis of the ideal (in C[, o, &, T]), with respect
to the pure lexicographical ordering with T > a > & > T, generated by the
left-hand-sides of the equations in System 2’ decomposes into the following

components
{a,2a 4 37,7}, {7,a,37 + 2a}. (4.4.70)

Obviously, Lemma 4.4.11 implies « = & = 7 = 7 = 0, once we take
into account that {a, &} and {7, 7} are conjugate pairs. This in turn implies
that # = # = 0 by Lemma 4.4.10. By (4.4.55), (4.4.56) and (4.4.57), A =
$1; = ®g2 = 0. Lastly, by (4.4.52), ¥5 = 0, the same contradiction as in the
earlier cases. This proves that Scenario 2 is inadmissible, and the proof of

Proposition 4.4.1 is now complete. O



Chapter 5

Results for Symmetric Type D

Spacetimes

This chapter contains an independent confirmation of an unpublished result
of McLenaghan that any symmetric Petrov type D spacetime admits non-self-
adjoint scalar wave operators that satisfy all the necessary conditions that
have been worked out for the non-self-adjoint scalar wave equation. The
concluding result is stated in a different form from the original one obtained

by McLenaghan. The two forms have been verified to be equivalent.

5.1 Symmetric Spacetimes of Petrov Type D

Definition 5.1.1 A spacetime (M, gag) is a said to be symmetric® if its

curvature tensor Rogys satisfies Rogys.e = 0.

A symmetric spacetime can only be of either Petrov type 0, N, or D.

(See Cahen & McLenaghan [8].) As we have seen in Chapter 1, the question

LSome authors call this property local symmetry instead and reserve the term symmetry
for another related property which is of a global nature. For a discussion of these two related
concepts, see for ezample Chapter 8, [38].

138
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of the validity of Huygens’ principle in conformally flat (type 0) and type
N spacetimes has been solved. It has also been shown that the conformally
invariant scalar wave equation does not satisfy Huygens’ principle in any type
D spacetime. (See Carminati & McLenaghan [10].) The question, however,
remains open for the non-self-adjoint scalar wave equation on a general Petrov
type D spacetime.

Symmetric spacetimes of Petrov type D exist, (see §31.2, [28]), and ac-
cording to Cahen & McLenaghan [8], any such spacetime admits coordinates
with respect to which its metric has the form:

2dud 2d¢d¢
ds? = R (de (5.1.1)

2 N\ 2
R+8)uv R-B)¢¢

where R, the curvature scalar, and (3 are constant. The above coordinates
are called the Robinson-Bertotti coordinates.

According to Cahen & Deftise [7], any symmetric type D spacetime admits
a 6-parameter transitive isometry group due to the fact that its metric (5.1.1)
decomposes into the product of two metrics of constant curvature. Thus, the
local geometry at any point in a symmetric type D spacetime is identical to
that at any other point.

The Carminati-McLenaghan conjecture states that type D spacetimes
do not admit any Huygens scalar wave operator. However, the 0- to 5-
index necessary conditions for symmetric and type D spacetimes not only
fail to lead to contradiction but in fact admit “constant” solutions. This, to
some extent, suggests that symmetric type D spacetimes may allow counter-
examples of the Carminati-McLenaghan conjecture. This chapter presents
the details of how to construct scalar wave operators on a symmetric type D

spacetime that satisfy the 0- to 5-index neccessary conditions.
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5.2 Derivation of Results

By (2.2.3), the Ricci spinor, Weyl spinor and Ricci scalar of a symmetric

spacetime satisfy the following:

(I)ABAB;CC‘ = 0, (5-2-2)
‘I’ABCD;EE' = 0, (5-2-3)
A;AA = 0. (5.2.4)

In a Petrov type D symmetric spacetime, with respect to any canonical dyad
of the Weyl spinor, the component equations of the above spinor equations
take the form listed in Appendix B.

Equations (B.0.1),..., (B.0.4), and (B.0.13),..., (B.0.16) immediately show
that A and U, are constant, whereas equations (B.0.5),..., (B.0.12) implies
that

’7’:’]‘(’:0‘:/{;:]/:)\:IL[,:’]T:07 (525)

since ¥y # 0 in a type D spacetime. The vanishing of these spin coefficients,

when substituted into the Newman-Penrose field equations, gives:

(AL1) = By =0, (5.2.6)
(A13) = &y =0, (5.2.7)
(A7) = By =0, (5.2.8)
(A18) = A= %@2, (5.2.9)
(A1.9) = &y =0, (5.2.10)
(A1.14) = By =0. (5.2.11)
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Equation (5.2.9) further implies:
U, = U,. (5.2.12)
When we substitute (B.0.13), (5.2.5) and (5.2.6) into (A.5.4), we get
dopo=0 = o=y =0. (5.2.13)
Similarly, substituting (B.0.14), (5.2.5) and (5.2.11) into (A.5.5), we get
pods =0 =  $y=s=0. (5.2.14)

Now substitute (5.2.5), (5.2.13) and (5.2.14) into (A.4.1), (A.4.2), (A.4.3),
(A.4.4) yields

(A4l) =  D(¢)=0, (5.2.15)
(Ad42) =  A(p) =0, (5.2.16)
(A43) = d(¢) =0, (5.2.17)
(Add) = (¢1) =0, (5.2.18)

that is, ¢; is constant. Taking into account all the preceding results, namely,
(5.2.5), ... , (5.2.18), it can be routinely verified that all the component
necessary conditions for Huygens’ principle are identically satisfied except
two: (A.5.2) and (A.8.1). These two remaining equations under the above

substitutions simplify to

(A52) = 0=5pd —2V,®y, (5.2.19)
(A8.1) = 0=4U3 7420, — TPV, + 44, P11¢1. (5.2.20)
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Solving (5.2.19) for ®;; gives

(5.2.21)

which implies that ®;; is also constant, since ¢; and ¥, have been shown to

be constant. Furthermore, substituting (5.2.21) into (5.2.20) gives
4()* —T(41 4 ¢7) (¥2)* + 104747 = 0, (5.2.22)

which is quadratic in (¥2)?.

If we write the complex constant ¢; in standard form
b1 =U+1V,
and write A := (¥3)?, then (5.2.22) becomes
4A - 14U =V A+ 10U +V?)? =0, (5.2.23)

a quadratic equation in A with real coefficients. Since A = (¥,)?, where ¥,

is real, we seek real and non-negative solutions for A. Now the solution for

A (in C) of (5.2.23) is

TU? = IV2 4 23/0U* —178UV2 + 9V4, or

(5.2.24)
TU?—IV?— 1/9U* — 178U2V2 + 9V*

AU V) = {

and the discriminant of (5.2.23) is 4 (9U* — 178 U*V? + 9V*), which factors

to

(38U — 7V +2VV/10) (38U — 7V — 2VV/10) (3U + 7V — 2VV10) (3U + 7V + 2VV/10).
(5.2.25)

O
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We want to determine the set of (U, V) € R? such that both the discriminant
and the value for A(U, V) given in (5.2.24) is non-negative.

The following diagram shows, on the U-V plane, the lines along which
one of the factors of the discriminant (5.2.25) vanishes. It also shows the sign

of each factor (in the respective order) in the 8 different regions into which

the U-V plane is divided by these lines.

o+ 4
11

++—+ — +++
v I
++-—- — —++
A% I
+——— ——+-
VI VII
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Clearly, regions I, III, V and VII are where the discriminant (5.2.25) is
non-negative and hence A(U, V) given by in (5.2.24) is real-valued in those
4 regions (and only there).

Next, we observe that

T o T .\ 49 , 49 , . 49 _,
(ZU—ZV>_EU—§UV+EV,

which implies

T, T .\ 1 SR TP
-3 - Z¢9U4—178U2v2+9v4 :5((] +VH" >0
(5.2.26)
Therefore, we have
T . T, 1
i = Z¢9U4—178U2v2+9v4 : (5.2.27)

This implies that each possible root for A(U, V) in (5.2.24) has the same sign
as £U2 — £V2. It i1s now clear that in regions I and V, both possible roots
are non-negative, whereas in regions III and VII, both are strictly negative

(except at the origin). Thus we conclude that regions I and V are the desired

subset o or on wiic as 11 /N 1S non-negative.
bset of R2 (or C) on which A(U,V) as in (5.2.24) i gati

To summarize, we state the following

Proposition 5.2.1 If P := 0+ AV, + B is a non-self-adjoint scalar wave
operator on a symmetric Petrov type D spacetime, then, with respect to any
spinor dyad canonical to the Weyl spinor, the 1- to b-index necessary condi-

tions for Huygens’ principle simplify (or, are equivalent) to the following:

(1) t=p=c=r=v=A=pu=7n=0.
Poo = Por = Pyg = P21 = Poz = o = ¢ = 0.
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(2)  ¢1 is constant, and it is contained in the following subset of C:

U >0, U <0,
U+iVeC | sU-Tv-2Vy10<0, (|JS U+iVeCT | 3U—-7v-2vVi0 >0,
3U+ TV +2V/10 > 0 3U+TV +2VV/10< 0

(3) A= %\112, hence ¥y is real, and ®1, = g(bl&l.

(4)

4

TU? — IV?— 1/0U* — 17802V + 9V4,

4

(P,)* =

{ Ty —1V2 419U —178U2V2 + 9V4, or

where U and 'V are the real and imaginary parts of ¢, respectively.

Thus, Oy, A, and ®1; are all real constants.

The significance of this proposition is that it shows that the six neces-
sary conditions that have been computed for the non-self-adjoint equation
actually admit “constant” solutions in symmetric spacetimes of Petrov type
D. This can be demonstrated as follows: Choose any constant ¢; € C in
the admissible region as described in the proposition. This (together with
¢o = ¢ = 0) determines ¢4p via (4.3.2), which in turn determines the vector
A% via Ajg ¢ aBEip+€ad,p. Statement (4) of the proposition deter-
mines U, (up to sign), and statement (3) then determines A and ®,;, which
subsequently determine the metric (5.1.1) of the underlying symmetric type
D spacetime by the following two facts:

\IJQ = E, and q)ll = —g

Lastly, to complete the construction of P := O+ A*V, + B that will satisfy

all the known necessary conditions, we need only use the 0-index condition
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to determine B.

However, whether these scalar wave operators in fact satisfy Hadamard’s
Criterion (thus equivalently Huygens’ principle) is not known, but the propo-
sition does suggest that they could be counter-examples of the Carminati-
McLenaghan conjecture.

To determine whether these operators are indeed (forward) Huygens by
directly examining whether Hadamard’s Criterion is fulfilled, one needs only
examine the Criterion at any one point due to the presence of the transitive
1sometry group on the underlying symmetric type D spacetime. For exam-
ple, one may choose to examine Hadamard’s Criterion at the origin of the

Robinson-Bertotti coordinate system.



Chapter 6

Partial Results for Case 2

This chapter contains some partial results for Case 2 stated as the following

Proposition 6.0.1 Let P := O+ A*V, + B be a non-self-adjoint Huygens’
scalar wave operator on a Petrov type D spacetime such that each Weyl prin-
cipal spinor of the underlying spacetime is aligned with one of the principal

spinors of the Mazwell spinor ¢pap associated to Ap,g. Then,

(1) the principal null congruences of the Weyl spinor (tensor) are geodesic

and shear-free, and

(2)  there exists a conformal gauge in which the principal null congruences of

the Weyl spinor (tensor) are expansion-free, and the following equality

holds:

t=x. (6.0.1)

Note that the hypothesis on the alignment between the Maxwell and Weyl
principal spinors is just the Case 2 assumption discussed in §4.3. The align-
ment between the Maxwell and Weyl principal spinors in Case 2 is depicted

in the following diagram:

147
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Case 2, Petrov Type D

v
AN

Lines:  Weyl principal spinors
Arrows: Maxwell principal spinors

A null congruence is said to be geodesic if the curves it contains are all
geodesics. For the definitions of the shear, expansion (and the motivation
behind these definitions) of a geodesic null congruence, see, for example, §8.5

of [15].

PRrooOF

(1) By the hypothesis on the alignment of the Maxwell and Weyl principal

spinors, we have, with respect to any canonical spinor dyad,

$1 # 0, $o = ¢2 = 0. (6.0.2)

Equations (A.6.1) and (A.6.10), under the assumption 6.0.2, form the

following linear system:

( 6AT, —18\T, ) ( b ) ( 0 )
o _ Tl = : (6.0.3)
—18\T, 6AT, ot 0
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Since ¢; # 0, the determinant of the coefficient matrix, which is

—288W, W, A\, must vanish. Since U, # 0, we therefore must have
A=0. (6.0.4)

Again, under the assumption 6.0.2, the following pairs of equations

— (A.6.2) and (A.6.13), (A.6.7) and (A.6.12), (A.6.3) and (A.6.14)

— lead to three other homogeneous linear systems for q_51 sim-
1

ilar to (6.0.3). The determinants of these systems are, respectively,
—288\2[12@206, —288\2[12@2&/%, and —288U,U,uis. By the same argu-

ment as before, we conclude
c=r=v=20. (6.0.5)

Recall that the vanishing of £ and v i1s equivalent to the fact that the
principal null congruences of the Weyl tensor are geodesic, which is due

to the following fact (see [19] for a proof):

1°31P = DI* = (e4€I1*—km* —rm",
no‘;ﬁnﬁ = An® = —(y+F)n*+vm®+om".

The vanishing of o and A is equivalent to shear-freeness of these null

congruences. (See §8.5, [15].) The first assertion is proved.

Let ¢ be the smooth function on the underlying spacetime determined
by e** = ¢1¢;. Then, under the gauge transformation Jop = e* gup, b1

transforms as follows (See §2.4):

¢ = e ¢r. (6.0.6)
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Hence,

¢ €7§/1 = (6_2¢¢1)(6_2¢§1§1) =e i =e et =1, (6.0.7)

Therefore ¢] is identically unimodular. An examination on the trans-
formation laws of ¢y and ¢, shows that they remain zero under the
conformal gauge, i.e. the Case 2 assumption (6.0.2) still holds, which
in turn implies both (6.0.4) and (6.0.5) also hold under the conformal
gauge. We shall now drop the prime.

Substituting ¢; = 0 into (A.4.1) gives

D(¢1) = 2pd. (6.0.8)

Differentiating ¢; ¢; = 1 with the Pfaffian operator D and substituting
with (6.0.8) yields

D(p1 ¢ =1) = ¢1D(d1) + ¢1 D(¢1) =0
— 2¢1di(p+p) =0,

which immediately gives p + p = 0.

Substituting ¢» = 0 into (A.4.4) gives

A($y) = —2pdy. (6.0.9)

Differentiating ¢; ¢; = 1 with the Pfaffian operator A and substituting
with (6.0.9) yields

Alprgr=1) = ¢1 A(d1) + 1 A(hy) =0
— —2¢1¢n (p+ i) = 0,
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which gives p + i = 0. Now, recall that the vanishing of p + p and
i+ b is equivalent to the fact that both null congruences of the Weyl

spinor (tensor) are expansion-free. (See §8.5, [15].)

Substituting ¢o = 0 into (A.4.3) gives

5(y) = 271 (6.0.10)
Substituting ¢» = 0 into (A.4.2) gives

§(d1) = —2mhy. (6.0.11)

Differentiating ¢; ¢; = 1 with the Pfaffian operator § and substituting
with (6.0.10) and the conjugate of (6.0.11) yields

S(prdr=1) = ¢18(d1) + 1 8(¢1) =0
— 2¢1§$1 (_ﬁ- —I_T) = 07

which gives 7 = 7. O



Chapter 7
Conclusion

A scheme was outlined in §4.3 that can be followed in further study of Huy-
gens’ principle for the non-self-adjoint scalar wave equation on a Petrov type
D spacetime. In particular, the type D problem was split into 5 geometrically
distinct sub-cases based on the alignment of the Maxwell and Weyl principal
spinors.

The main result of this thesis was Proposition 4.4.1, which states that
Case 4 (hence also the geometrically equivalent Case 1) is incompatible with
Huygens’ principle.

For Case 2, it was shown that the two principal null congruences of the
Weyl tensor are geodesic and shear-free. Significant simplifications of the
component equations for this case have also been obtained (not included in
this thesis). It has been observed that a number of the component equations
of the 5-index condition factor after sufficient simplifications, and systematic
exploitation of these factorizations may eventually yield the solution to this
sub-case.

The result established in Proposition 4.2.1 was not used elsewhere in
this thesis. It is a result that holds in a general Petrov type D spacetime,

regardless of the alignment between the Weyl and Maxwell principal spinors.
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It may turn out to be helpful in the remaining cases (other than Cases 1 and
4) mentioned in §4.3.

Chapter 5 shows that on a symmetric Petrov type D spacetime, there exist
scalar wave operators that satisfy all the six available necessary conditions for
Huygens’ principle, which suggests the existence of counter-examples of the
Carminati-McLenaghan conjecture on these spacetimes. One may return to
an examination of Hadamard’s Criterion in the attempt to directly determine
whether these spacetimes are indeed counter-examples. The fact that the
underlying spacetime admits a 6-parameter transitive isometry group reduces
this problem to determining whether Hadamard’s Criterion is fulfilled at any
one point inside a given causal domain. An intelligent choice of the point of
examination should further simplify this problem.

It was also proved in Chapter 5 that any Huygens’ scalar wave operator
on a symmetric type D spacetime must satisfy the Case 2 assumption. It has
been conjectured by McLenaghan that all other sub-cases except Case 2 are
incompatible with Huygens’ principle, while Case 2 admits only the complex
recurrent! spacetimes whenever Huygens’ principle is to hold.

The symbolic algebra system MAPLE , and in particular, the MAPLE
package NPspinor, were essential computational tools used throughout this
thesis. The expansion of the spinor equations (2.3.13), ..., (2.3.12) have
been independently verified by Czapor (private communication). Further-
more, NPspinor was also used to successfully confirm the unpublished re-
sult of McLenaghan on symmetric type D spacetimes obtained by hand-
calculations. This serves as an additional verification for both McLenaghan’s
hand-calculations and for the dyad expansion by NPspinor. These compu-

tations should also be checked by a comparison of results with a symbolic

1A spacetime is said to be complex recurrent if its Weyl spinor ¥,pcp satisfies
Yipcp.pe = Kgp ¥apep for some smooth spinor field Kgp. Obviously, symmetric

spacetimes are special cases of complex recurrent spacetimes.
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algebra system other than MAPLE .



Appendix A

Necessary Conditions in
Newman-Penrose Form

A.1 Newman-Penrose Field Equations

D(p) —8(k)=p* + 06 + (e +&)p— Rr — (3a+ B — )k + Poo
D(o) —é(x) = (p+p)o+(Be—&o —(r—7+a+3B)r+ ¥
D(r) - A(r) = (r+m)p+ (T+m)o+ (e - &)1 — By +¥)r+ ¥1 + 201
D(a)—8(e) = (p+&— 26)a + 7 — Be — kA — Ry + (e + p)m + 19
D(B)—é(e) =(at+m)o+(p—eB— (pt+vr+(F—a)+ ¥,
D) - Ale)=(r+T)a+ (T+m)B—(e+ &)y — (v+F)e+7r—vi+ T2 — A+ By

D()\)—J(ﬂ'):p)\—l—é'u—l—ﬂ'Q—I—(oc—,é)ﬂ'—l/k—l—(E—SE))\—I—{)go

D(p)—b(m)=pp+or+mr—(e+&)p—(x—B)r —ve+ ¥s + 2A
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(A.1.1)

(A.1.2)

(A.1.3)

(A.1.4)

(A.1.5)

(A.1.6)

(A.1.7)

(A.1.8)
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D) —Alr) =T +m)u+ (t+m)A+ (v —F)7 — (Be+ &)y + T3 + & (A.1.9)

AN -6 =F-3y—p—@)A+ Ba+B+m—F)v— Ty (A.1.10)

8(p) = 3(o) = (@ +B)p— Ba—=PB)o + (p = p)7 + (1 — A)s — 1 + By (A.1.11)

§(a) —3(B)=pp—or+aa+pBB-208+ (p—p)y+ (n—m)e— ¥y + A+ &1y (A.1.12)
§(A) = d(w) = (p=p)v+ (n— W)+ (x+ B)u+ (& — 3B)A — U5 + & (A.1.13)

) —A(p) =1 + XM+ (v +A)p—or+ (r—a—38)v+ Ba (A.1.14)
§v)-AB)=(r—a-By+ur—ov—er— (v =7 - p)B+ar+ P12 (A.1.15)

§(1) = A(o) = po + Ao+ (1= a+p)m — (3v =)o — kv + o2 (A.1.16)
Alp)=8(r)=—pia—oX+ (v+¥)p— (F+a—-B)T+ve— Tz — 24 (A.1.17)

Ala) =8(y) = (e+p)v = (T+B)A+ (7 - Ba+ (B—T)y - T3 (A.1.18)

A.2 Bianchi Identities

5(\1’0) —D(\I’1)+D(<I)01)—5(<I)00) = (404—71')\1’0 — 2(2p-|— 6)\1’1 + 3xTo -|—(ﬁ'— 207—2,3){)00
+2(e 4+ p)Po1 + 20810 — 26B11 — APo2
(A.2.1)
A(\I’O) - 5(\1’1) -|— D(<I)02) - 5(‘:1)01) = (4’7 - N)\I’O - 2(2T-|— ,3)\1’1 -|— 30"1’2 - )\<I)00 -|— 2(77’ - ,3)‘:1)01
+20®11 + (26 —2e+ ﬁ)‘:I)OQ — 2rPq9
(A.2.2)

36(%1) — 3D(T2) +2D(B11) — 28(®10) + 6(Po1) — A(Pgo) =
3ATy — 9pTs + 6(05 — 71')\1’1 + 6r¥3 + (ﬂ —2p — 2y — 2’7)‘:1)00 + (20é + 27 + 277')‘:1)01
+ 2(7’ —2a + 77')‘:1)10 + 2(2ﬁ— p)‘:I)ll + 20P99 — Pg2 — 26P12 — 26Poq (A.2.3)
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3A(T1) — 35(T2) + 2D(B12) — 28(®11) + 6(Po2) — A(Po1) =
3Py + 6(’7 — N)\I’l —97¥5 + 60¥3 — 0Py + 2(ﬂ — = ’Y)<I)01 — 2;\‘:1)10 + 2(T-|— 277'){)11
+ (2a+ 2+ 7 —2B)Po2 + (25 — 2p — 48) P12 + 20821 — 26P22  (A.2.4)

35(¥2) — 3D(¥3) + D(®21) — §(P20) + 25(P11) — 2A(P10) =
6A¥; — 9n¥,y + 6(6 — p)\I’3 + 3r¥y, — 20Pyy + 2(ﬂ — = 2’7)‘:1)10 + (271' + 477')‘:1)11
+ (2,3 +2r+ 7 — 207){)20 — 26®P12 + 2(ﬁ —-p— E)<I)21 — &Py + 2290, (A.2.5)

3A(T2) — 36(T3) + D(P22) — 6(Pa1) + 28(B12) — 2A(P11) =
6v¥) — 9u¥y + 6(,3 — T)\I’3 + 30T, — 20Pg1 — 20P19 + 2(2ﬂ — N)q)ll + 2APg0 — 5\‘:1)20
+2(r+7—-28)P12 +2(B+ T +7)B21 + (p— 26 — 26— 2p)®22  (A.2.6)

5(\1’3) - D(\I’4) + 5(‘:1)21) - A(‘:I)Qo) = 3)\\1’2 - 2(05 + 271')\1’3 + (46 - p)\I’4 - 211<I>10 + 2)\‘:1)11
+(2v — 25 4+ @) P20 + 2(7 — a) P21 — 7 P22
(A.2.7)
A(\I’?)) - 5(\1’4) + 5(’:1)22) - A(‘:I)Ql) = 3v¥y — 2(’7 + 2“)\1’3 + (4,3 — T)\I!4 —2v®y) — Py
+22A815 4 2(v + B) P21 + (F — 28 — 2a) P9y
(A.2.8)

D(®11) = 5(210) — 5(®o1) + A(®00) + 3D(A) =
(2’7 — 4+ 2y — ﬂ)q)oo + (71' — 2a — 277')‘:1)01 + (ﬁ' —2& — 27’)(1)10
+2(p+p)P11 +3Po2 + 0Pro — P12 — kP (A.2.9)

D(®12) — §(®11) — §(®o2) + A(®o1) + 36(A) =
(27 — 1 — 20)®01 + #®oo — A10 + 2(F — 7)@11 + (7 + 28 — 20 — 7) @02
+ (2p-|— p— 25)‘:1)12 + 0P — kPao (A.2.10)

D(®32) — §(®21) — §(®12) + A(®11) + 3A(A) =
v®o1 + P10 — 2(u+ B)®11 — ABo2 — ABag + (27 — T+ 28) 812
+ (2,3—T-|—277’)<I)21 -|—(p-|—ﬁ—26—2€)<1)22 (A.2.11)
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A.3 The Commutation Relations

(AD — DAY ¢ = [(v+7)D + (e + )A — (7 + m)6 — (7 + 7)5] & (A.3.1)

(0D-D&Yé=[(@a+B—T)+rA —(p+e—&dF— o8¢ (A.3.2)

(0D —-Dé&)é=[(a+B—7)D+RA -G5— (p—e+&)3J]¢ (A.3.3)

(86 —88) ¢ =[(—n+ B)D + (~p+ p)A + (a = B)d + (—a+ B)S]¢ (A.3.4)

A.4 Maxwell’s Equations (2-index Condition)

D(¢1) — 8(do) = (7 — 2a)do + 20¢1 — r2

D(¢2) — (1) = —Ado + 271 + (p — 2€)¢bo

§(h1) — Aldo) = (1 — 29)do + 271 — o

§(p2) — A(d1) = —vo + 2ud1 + (1 —28)¢2

(A4.1)

(A.4.2)

(A.4.3)

(A.4.4)
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A.5 Component Equations of the 2-index Con-
dition

—9Uo 08 — 3‘1’2“6 — 3Uou7 — 3Vamy
—3¥sua + 3¥ A7 — 9¥sve + 9Ta7TA
43Uy + 3V a — 3¥svp — 18Tsum
+3¥smi + OVovp — 3Vave — 2V, Poy
0ABO(itE) —10¢2¢1 + 6(¥2)i — 55(¥2) A — 6A(T2)w (A5.1)
—é(‘I’g)OL - A(\I’Q),B —76M5(\I’2) - 511D(\I’2)
—5(\1’27)’7 — A(\I’Q )77' + 5(\1’2 )’7 — 3\1’27A(ﬂ')
—3‘1’25(“) - 3\1’2D(l/) - 3‘1’25(}\) - 5(A(\I’2))

—~A(5(3)) = 0

12¥ovk — 6¥opn + 6WoTT — 2A(D(\I’2))

—25(5(%3)) — 2D(A(¥3)) — 26(5(¥2)) — 2A(¥2)e

—25(\1’2),3 -|— 107’5(\1’2) -|— 25(‘1’2)0& - 10MD(\I’2)

+2g(\1’2)ﬁ' + 2D(\I’2)ﬂ — 257(\1’2 ),3 + 2D(\I’2)’7

—2A(\I’2)ﬁ + 2D(\I’2)’y + 25(‘1’2)6& — 25(\1’2)77'
(AZB) +6\I’25£T) — 6\1’2D(M) + 6\1’2A(p) — 6\1’25(71') (A.5.2)

+20¢>1¢>1 - 8\1’2{)117{— 10A(\I’2)p - 2A(\I’2)E

—108(T2)m 4+ 6T278 — 6Ta7a + 12¥s0 A

—6Us e + 6Vomm — 6Uoue + 24TVorm

+24%opp — 6Uspy — 6¥spy + 66U

—6¥omB — 6Pup =0

Qi

o(AtB)

405, P15 — 10A(\I’2)T — 2D(\I’2)l7 + 6Tous
+6¥sua + 6‘1’25(“) —6TomA + 2A(\I’2)6L
0(ALB)O A5 +26(¥y)y — 2§(‘I’2)j+ 106(¥o)pu — 12T 500
—24UoTp — 25(\1’2))\ + 2A(5(\I’2)) — 6TsTy
+6Top0 — 6T, A(T) + 6Ty + 25(A(\I’2))

+2A(¥2)8 — 1012 =0

(A.5.3)

T2®00 + 5podo + 8(¥2)R + 9¥arka
—3‘1’25(/@) + 3¥sk3 — 3Vq05 — 5/45(‘1’2)
LtABlAp -|—9\I’2p2 —6D(‘I’2)p+3‘1’2p6—3‘1’27’k (A.5.4)
—3\1’2D(p) + 3¥5pE — D(\I’Q)E — 9¥skm
+D(D(¥5)) - D(¥s)e = 0

9V + 3\1’25(11) — 3P, AX + 3¥sva
+é(A(‘I’2)) -|— GMA(\I’Q) -|— 9‘1’2“2 -|— 55(\1’2)11
OABOAp —5(\1’2)17-I— A(\I’2)7+A(\I’2)’7—9\I’2TV (A.5.5)
+3Vouy + 302 A(p) — 3Ty + 3y
+¥5 P20 + Sdopo = 0
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LABO ;i p

LABa(AZB)

O(ALB)ZA'B

OABl, R

—50’A(\I’2) + 5(5(\1’2)) + 5(\1’2)65 —9Us0pu
-|—9\I’27'2 - 65(‘1’2)7’ - 5(\1’2),3 -|— 9‘1’20”7
+3¥s kv — 3‘1’2A(0’) — 3Ts0y — D(\I’Q);\
—3¥sra+ 3¥o78 — 3‘1’25(7’) + 3\1’2p;\
+¥2 P02 + 52 =0

—3¥s7e — 3Us9p08 — 9¥s0a — 18Ts7p
+3¥s7e+ 9Vqom — 3Vgpa — 3¥s o7
—3¥skii+ 3¥o0T — 3Varky + 3‘1’20’6
—9Uory +9Vour + 3¥o71p — p(J(qlg))
—5(D(\I’2)) - 2\1’2{)01 - 10([)0([)1 -|— 5(\1’2)6
-|—65(\I’2)p + D(\I’Q)ﬁ' + 50’5(\1’2) + 6TD(\I’2)
—5(\1’2)E+ 5A(\I’2)K + D(\I’Q),B — 5(\1’2)ﬁ
+D(\I’2)6é + 3‘1’25(0’) + 3\1’2D(T) + 3\1’25(p)
-|—3\I’2A(K) =0

4\1’2{)10 - 10([)1([;0 -|— 107TD(\I’2) - 12‘1’2)\}6
—24%5pm + 26(¥2)a — 105(T2)p + 25(T2)e
—2D(\I’2),B + 2D(5(\I’2)) —6¥97a + 6T2p0
—6T38(p) + 6¥apa + 2A(¥2)R + 6T o me
-|—6\I’2D(7T) — 6Uome + 6Po i — 2D(\I’2)OL
—28(¥2)e+ 25(D(¥2)) =0

5¢acho + 5D(¥2)A 4 §(¥o)ax 4 9o w?
—9TspA + 3¥smar — 3UywB + 3Wa4(m)
+3¥su5 — S(\I’Q)B + 9¥she — 3T )e
-|—3\I’2D()\) + 3Tk + A(‘I’Q)& + 671'5(\1’2)
+35(8(T2)) + Todog =0

(A.5.6)

(A.5.7)

(A.5.8)

(A.5.9)
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A.6 Component Equations of the 3-index Con-

dition

OABCO(AtB¢)

O(ABLC) AR

OABCO(ABte)

Qi

O(ABLC)O(ABbe)

Qi

O(ABLC)O(AtB()

—18\1’72)\:;[7)1 - 3@23(}[)2) - 6‘i’2¢>2f)¢ -|— 6\i’2¢>1)\
—9([)25(\1’2) + 27¢hoWoT — 9Vovehy = 0

3828(¢o) +6¥215 — 6¥ahof + 27T
+9¢>05(\I’2) — 18¥95¢p1 — 9Vokgpy =0

18‘1’211(5} b 3\i’2A£¢>2) b 6\i’2¢>23’ -|— 6\i’2¢>1l/
+9Us A2 — 272 o fi — 9P A(T2) =0

—6¥ypov + 6¥3A(h1) + 6TacaT + 27 Tom
+9¢420(¥2) + 272 Vo + 9¢28(¥2) + 541 V2 fa
+18p1A(T2) — 6Taghrr + 62 A(d1) + 6TaghaT
—6Ta2d1 i+ 3T26(p2) + 6T2¢2B 4 5401 Vapu
+18)1 A(T2) + 6T 8 — 6Tady o+ 3T28(¢p2) =0

—54([7)17\1’271' — 18([7)173(7\1’2) — 6‘1’25(({7)1) — 6\1’2([;26'
+6Taofi + 18¢15(T2) — 541 V2T — 6Tah T
—3¥3A(Po) + 6F¥2o7¥ + 6F2pae — 6Tahym
+3¥2D(h2) — 27hoTapt — 9o A(T2) — 6T2¢ho A
+6U28(P1) + 6Tapop + 92 D(¥2) — 272 ¥2p = 0

OABCUABE 9T Apo + 9F25hy = 0

O(ALBCYLABC

O(ALBC) 6(ABZC)

9o D(¥2) — 27do¥ap + 621k + 3¥2 D (o)
—6T¥a o€ + 18¥2Rp + 9¥25¢9 = 0

6T23(¢p1) + 6T2¢2p — 6T2do A + 92 D(T2)
—27¢2Wap + 6¥a¢pops — 6¥20(p1) — 6¥agpoo
+18¢>15(\I’2) — 541 ¥or — 5491 Uo7 — 18([)15(\1’2)
—6¥2¢17 — 3¥2A(po) + 6T2¢hoy — 27 V2 /i
—9poA(¥3) — 61T + 3¥2D(h2) + 6Taghae =0

(A.6.1)

(A.6.2)

(A.6.3)

(A.6.4)

(A.6.5)

(A.6.6)

(A.6.7)

(A.6.8)
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—6¥2D(p1) — 6¥2¢2R + 6T2¢oT — 9o (T2)
+27¢oT2T — 6¥2¢1p — 3V28(do) + 6V2gp
0(AtBC)O(itB ¢y —6Tad1p - 3‘1’35(%) + 611’2¢>007 - 18¢>}D(‘I’2) (A.6.9)
+54¢1T2p + 6Tadom — 6¥2D (1) — 6Tadar
—9¢08(¥2) + 27 ¥or — 1841 D(¥2) + 54¢1 ¥25 =0

O(ALBCYO iB e —6Tordod + 6Fap1 XA — 3T28(ha) — 9Ty

—94ad(Ws) + 27y Bar — 18%s0dy = 0 (8.010)

LABCEABE —9Fs ko — 9FaRpe = 0 (A.6.11)

LABCO(ATpe) 92000 + 18¥ard + 6¥2d1x + 382 D(o) (A.6.12)
—6W¥scppe + 9¢>0D(\I’2) = 27¢o¥2p =0

LABCO(AFLE) —1§q’20¢;1 + 27550@27? + 9¢05()i’2) +6¥2¢10 (A.6.13)

+3¥28(do) —6T2po8 — 9¥arpy =0

O(ABLC)OABE —27s Top1 = 9h2A(¥2) — 6227 + 6¥261 7 (A.6.14)
=3T3 A(P2) + 9F2 Apa + 18F2ipy = 0

LABCOABC 9Wa0dy + 9¥aAdp = 0 (A.6.15)

OABCOABC —9‘1’211([32 — g\i’gfld)g =0 (A.6.16)
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A.7 Component Equations of the 4-index Con-
dition for Case 4

In the following equations, ¢;,¢1,$2, and ¢; have been set to zero'. These
assumptions correspond to the Case 4 assumptions as discussed in §4.3.

O(ALBCD)EABC"D 360‘1’20"1’21/ - 1152‘1’2)\‘1’27’ -|— 216\1’2\1’271')\ -|— 216\1’2\1’

0(AtBCD)O, (AY ABC)

LABCDEABC’D —432\1’20'\T’QS\ - 12([)0([;0;\2 =0 (A71)

26&5\
—72W2 U203 4 24¢oPo AT + 4328 (T2)Ta X 4 72T, T 5(X) (A.7.2)
+144F¥526(T2) =0

—26¢0 1D (o) — 268(do)boT — 26D (Po)dofi — 26o¥D (o)
—26¢om8(Po) — 38A(do)Poe — 3456T5pT2 5 + 1368k Ty 7
+1368F,7Uo7 — 720U 00 T95 + 72U, ¥o B8R + 216W,¥oRa
-|—72\I’2 \I’Q,BK -|— 216\1’2 \I’Q RO -|— 40([)071’([)005 -|— 64([)0’7([)06
-|—40¢>006¢>07T -|— 64¢>0M¢>06 - 216\1’2\1’2p6 - 216\1’2\1’2p6

+648T, Uo7 + 64¢oedo i — 6h0d(8(bo)) + L6A(do) D (o)
—432D(¥2)D(¥2) — 603 (3(¢o)) — 6o A(D (o)) — 603 (3(¢bo))_
—60 A(D(d0)) — 7292 D(D(¥3)) + 163(¢h0)3(ho) + 16D (o)A (o)
+168(cho)8(¢b0) — 6408 (8(bo)) — 72¥2D(D(¥2)) — 6o D(A(¢bo))
—6¢>0D( ( )) -|— 144\1’2pD(\I’2) -|— 72{’g§(‘1’2)f€ - 72\1’2\1’25( )
+144\I’2pD( 2) -|— 72\1’2 (\I’Q)K - 72\1’2\1’25( ) -|— 216\1’2\1’2D( )
+72\I’2D(\I’2)E 72\1’2D(\I’2)6 — 38([)0,35(([)0) — 385(([)0)([)0,3
—38poeA (o) — 26D (o) bo¥ — 26¢0d (o) — 268(bo ) ok
-|—1152\I’2pD( ) + 216\1’2\1’2D(p) + 72\1’2D(\I’2)E+ 72\1’2D(\I’2)6
+12¢0¢0 D (7) + 30¢08(do )7 + 30¢0D(do) it + 12¢0do D (i)
+30¢0 D(P0)¥ + 18p0€A (o) + 30¢o D(do)p + 12h0cho () (A.7.3)
430608 (o)™ + 12hodo D(11) + 300 D(ho)y — 6o A(o ) o
+30¢0 7(410)06 + 12¢odo A(e) — 6¢od(do)T — 6o A(do)p
+12h0dod (@) + 12¢>0¢>g5(ﬁ) + 18¢>0ﬁ§(¢>0) - §¢05(¢>0)T

+12¢0po A(€) — 6406 (do)T + 12¢odod(T) — 6h06 (o)™

+30¢08 (o) — 6doA(do)p + 184085 (do) + 12dodod(a)
+12¢>0¢>0 (@) — 6¢>0A7(¢>0)p — 360‘1’2J£5(‘I’2) + 1152D(\I£2)\I’2ﬁ
—3605(‘1’2)‘1’2& -|— 18¢>06A(¢>0) -|— 12¢>0¢>0D( ) -|— 216\1’2\1’2p
+216%3 W5 0% + 14400 P11 do — 144¥5 B0 ¥ + 88h0BdoB
+64poedoy + 40doadod + 40¢omdoT — 48 PoEy

+24¢oPoRT — 48¢odo 73 — 48 o i€ + 648W, ¥omk
—216W5 ¥y pg — 216U W3 pe + 12¢0¢bo pri — 48Pocho e

+24¢odora — 48PodomB + 24¢odo ki — 48Popoey

+12¢oPofip + 24dopo Ae — 48¢odo Box + 12¢ e Tax

+12¢0doB7 + 12dodo 77T + 12dodoTor + 12¢odo ST

+12¢0o7T + 12¢odo¥p + 12d0dop¥ + 12¢0¢0 oLt

—48¢odo B + 12¢0povp + 12d0¢0 o7 + 12d0popu = 0

lthe zero function in a neighbourhood of the event under investigation
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O(ABCIDYLABGD

O(ABC'D)9(A'BC D)

O(ABLCD)E(AZBCD)

—72\112%5(*) —144T565(T2) — 4325(T2)T25 — 245 (do )2
—12([)0([)0 ( ) -|— 32([)0)\5(([)0) - 1152‘1’20"1’27‘!’ -|— 360‘1’2)\‘1’2&
-|—216\I’2\I’2T0' -|— 216\1’2\1’2,30' - 72\1’2\1’20'05 -|— 36([)0([)071’)\
+12¢9poaX — 52dodo A8 — 12dodora = 0

(A.7.4)

—11526(02) Uo7 — 72U28(¥2)B + 1152¥om8(To) — 360T2AD(Ts)
+360A(\I’2) 20 — 72\i’2 7(\1’2 )B + 72\1’25(@2)05 + 72\1’2@2 A( )
—32([)0115(([)0) - 216\1’2\1’271' - 72‘1’2A(‘I’2)0’ -|— 216\1’2\1’25( )
-|—144\I’27T5(\I’2) + 72\1’25(\1’2)05 — 216\1’2\1’25(7) — 216‘1’2‘1’27’
—32¢>0)\A(¢>0) - 144\1127-5(\112) - 72\112\112D( ) + 72\1’2D(\112))\
+144T5 8o Uy + 4325(F2)86(T2) + 1368¥2 A Vo p — 3456 U nlo 7
72005005k 4 1368T2uT25 + T6dordoS + 52¢0 Aot (A.7.5)
-|—216\I’2 \1’271'04 - 648\1’2\1’2 )\p - 216\1’2\1’271',3 - 648‘1’2‘1’2“0’
-|—216\I’2 \I’QT,B - 216\1’2\1’27'05 - 216\1’2\1’2)\6 -|— 72\1’2\1’26)\

—216¥, U555 + 7202 P25 + 520 Ao + 24d0 A A (o)
+24¢06(do)v + 12¢0dod (1) + 12¢0do A(A) — 36¢odemv
—12¢opova — 12¢gdo Ay — 36¢>0¢>0M>\ + 12¢odovT

+72825(3(¥2)) + 72¥25(3(F2)) =

—12([)0([)0 ( )-I— 144\1’2 (\1’2)6— 24¢>0M5( ) 72\1’2 (\1’2)
—12([)0([)0 ( l+ 432\1’2 (\1’2)0' - 144\1’25( 2)6 -|— 265(¢>0)¢>0M
—432\1’2KA( ) - 144\1’2\1’2A( ) -|— 72\1’2 (\1’2)6 - 216\1’2\1’2D(ﬂ')
—576\112D(\i12)r + 576%¥256(¥2) + 38A(ho)PoB — 1152D(¥2) Uo7
—504A(T2)T2R + 5045 (¥2)T25 + 11526(T2)Tap — 30008 (o )it
+26¢0Ad(Po) — 12¢oPouT + 36dodomy — 24PoPo AT

+24dopove — 12¢opo pv — 12¢oPoyT — 30d0d (o)

-|—144\I’2\I’2 (7) — 18¢>0,3A(¢>0) — 3670\1’27TD(EI’2) — 14454 ( ( 2))
+6¢0A(5(¢o)) + 6¢05(A(o)) — 168(¢o) A(Bo) + 6403 (A (o))
—3605(\112)7 (7 2) + 36QD(\IIg)5(\IIg) + 6¢oA(S (¢>0)) + 729,55(D(¥2))
+144\I’2D(5(\I’2)) - 72\1’2D(5(\I’2)) - 16A(¢>0) (d)o) -|— 3888‘1’2p‘1’27’
—1224‘1’27"1’20’ -|— 3888\1’27T\I’Qp - 1224‘1’2“‘1’2& - 216\1’2\1’271'6
+216\I’2\I’26ﬂ' -|— 432‘1’2‘1’2&’7 -|— 144\1’2\1’2’}’}6 - 432\1’2\1’20'05
+144V,0, 85 + 432U, 075 — 4320, Vo i + 4320, Uy Te
—432W, U Te — 4320, W, 58 — 432W2 W por — 4o €

—T6¢opdoB — 52pomeoT — B4poadot — 40 AT

— 64 audoy — 40do Ao — 88¢ovPo B — 52homeo [t

+216%2¥sap + 216Wo W2 Bp + 24¢odo A8 — 2400 pv/

+36¢0 po picx + 480 Po 18 + 480 o By — 24dopora

—12¢odo T — 12¢9do YT + 24do oy + 48¢g o i

—30([305(([)0) - 30¢0D(¢>0)l/ - 12¢>0¢>9A(ﬂ') - 24([)707TA(7¢>0)
—12¢0od(X) — 12¢0dod (i) + 6o A(po )T — 12¢ado A(B)
—18poaA(¢o) — 1863 (do)y — 12¢0¢od () + 38h0v8(do)
+32¢0mA (o) + 265(d0) b0y + 38poA(do) + 32¢oub(do)
—432\1’2\1’2D ) + 144\1’2D(\I’2)OL + 144\1’2D(\I’2),3 + 432\1’2\1’25(ﬁ)
+26¢ovD(po) — T2¢0B21¢o — 1440UowD(T3) — 1440¥2p5(T2)
—12¢;0¢>0D(l/ - 12¢;0¢>0A(Oé) - 216@2\1’25(p) - 72\i’2D(\I’2)OL
—72\i’2D(\I’2 + 6¢;0A(¢>0)7’ — 360@23(\1’2)p =0

(A.7.6)

\_/\_//—\\_/\ .

~—
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0ABCDO(ipc D) 3600, Wo A — 1152T 00U — 2160, ¥opur — 2160, Uy

—72Wo Uo7y — 144F¥ovA(Ty) — 7202 T A(v) — 432F50A(T2) = 0

tABCDO(AlBED)

OABCDOALBED

O(AtBCDO(4BE D)

OABCDEABC‘D —432‘1’211@217:0

36002RYo0 — 1152U5kTsp — 216Wo U pr — 12¢h0 o B0
—12¢odoap — 12¢odooc — 12¢odoBp — 12¢odomo
—12¢o e fire — 40¢oepo™ — 40doedo — 84ehg Bpoe
—216¥o¥oex — T2WoUokE — 12¢0dory + T2¢h0Poel
—12¢opo st + 660D (8(o)) + 6doD(5(0)) — 16D(¢0)d(o)
—168(¢0)D(do) + 6¢0d(D (o)) + 6605 (D(¢bo)) + 48¢odoec
—12¢oPo YL — 24doPo AR + 48¢odoTE — 1200 pT ~
—T2¢0Po1¢0 + 432¥2rD(¥2) + 26¢0BD (o) + 26D (do) o™
+26D (o )o@ + 26¢0ed (o) + 6¢od(do)o + 72¥2¥2 D (k)
+144%>kD(¥2) — 30¢0ed(Po) + 6o A(do )k — 30 D (o)
—12¢0po D(B) — 18¢0&d(do) — 12¢0do D (@) — 30¢0 D (o )7
+6¢0 Ao )r — 300 D (o) + 608 (do)p — 120 o ()
+6¢08 (o) — 12dodod(€) + 6¢0d(do)p — 12¢odo D(T)

+385(¢>0)¢>0€ =0

360025 ¥y — 115205 A ¥, 7 4 216T5Tymh 4 216F, Fyad
—72%5 U203 + 24¢o o Av + 4325 A5 (T2) + 144T5 05 (T2)
+72%5¥55(A) =0

OABCDZABC’D —432\1’2)\@26 — 12([;0([)0)\2 =0

72¥5 U5 A(0) — 32A(do ) o — 216¥2To 72 — 1152T,76(T5)

—216\1’2@2732 + 144\1’2{)02@2 + 4325(\1’2)5(@2) + 72@25(5(\1’2))

+72W56(5(T2)) 4 1368WpWo X — 720Wak Ty — 3456WyT o7
+1368WVo0 Vo i — 36dg T — 12¢pgpoa — 12¢hgpo AY

—360D(T2) o) + 360T20A(To) + 11528(T2) Uo7 + 24¢g AA(Po)
—72\1’2\i’2D(;\) + 72\1’2D(\i’2)5\ + 144\1’27?5(@2) — 72‘i’2A(‘I’2)0’

+72\i’25(\1’2)07 — 72@25(\1’2 ),3 — 216@2‘1’25(7’) — 144@27’5(‘1’2)
-|—12¢>0(Z>0A(;\) + 12([)0([30177’ + 72\1’2@265\ — 216\1’2@2 e
—6480, o o + 2160, T 78 — 216U, Usra — 2160, g yo
+72W, U750 + 216T, ¥t — 648T, Ty Ap — 2160, ¥, 78
+76¢0Bboi + 520 vPo A + 52¢o oA — 36dodotA
+72\I’25(\I’2)6é — 72\1’25(\1’2 ),3 — 325(([)0)([)017 + 216\1’2\1’25(7?)
+24¢08(ho)7 + 12¢ood(7) = 0

(A.7.7)

(A.7.8)

(A.7.9)

(A.7.10)

(A.7.11)

(A.7.12)
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O(ABLCDYOPABED

O(ABCD)9(AB'C D)

O(ABLCDYOPABED

OABCDO(ABYED)

tABCDO(ABEYD)

—12¢o oD% + 1440T 50 To X + 1440057V, 5 + 4320, ¥y 7T
—432W, Woid + 432U, ¥ Ay — 144T, Ty Ay — 432F, Ty 0
—144T, U258 + 14405 T2 A(X) — 144T,T55(5) + 360A(T2) T X
—3608(T5) Uo7 =0

(A.7.13)

3888W,mWqfi + 3888Wypu¥oF — 1224To0 Ty p — 1224T, AT, 7
—64¢ordoii — 432U Uo 13 — 4320, Uo v + 1440, Vo ev

—T6dovdoT — 432Wo Uy NG + 216T, UoyT — 4320, Ty 7y

+432F o Womy + 432W Uo AT — 216T, Uy 37 — 52 Ao 7

+4320, Uove + 1440, o — 43205 U5 pr + 14405, A(5(T5))
—144F55(A(T2)) — 722 A(5(T2)) + 72T25(A(T2)) + 3605(T2)A(T5)
—360A(T2)8(T2) + 216T2T5/iB + 216T2 Uorfi + 366 o pv
+12¢>0¢>011’Y; 72\1’25(@2)7’7 :|— 72\1’25(@2)’2 + 72{’2A(\i’%),3
+360\I’2ﬂ5(\1’2) + 216\1’2\1’25(ﬂ) + 144\1’25(\1’2)’7 + 432T5, ¥, A(ﬂ')
—144%56(T5)y — 144V, A(To)o — 144T5 A(T3) B — 432T5 05 (T2)
—576T58( o) — 144T2 T2 5(N) + 144086(T2)To i + 576 T mA(T5)
+360T2A(U2)7 + 216U T A(F) + 72T A(Ta ) + 1440A(T2) T
+1152T57A(T2) — 504T2208(T2) + 50420 D(To) — 1152F5 ud(
+432%5D(T2)v + 1445 U5 D(v) + 32¢ovA(de) — 43202 T2 6(p)
—12¢>0¢>0A(l/) - 24¢>0A(¢>0)V =0

2T
vy

)

(A.7.14)

—144T,0A(¥2) — 432A(T2) Uo7 + 360T20To X — 1152F,5To 4

—216T U i — 216U ¥aiy — 72U Usiy — 72T T, A(D) = 0 (A.7.15)

—12¢opor? — 360206 (Ta) + 1440To0T5 7 + 1440, A To i
—4320, W + 4320 Uy 4 4320, To Ay — 1440, U5 Ay
—432%, Uova — 1440, T50P3 — 1440, T2 5(v) + 1440, T A(N)
+360T5AA(T2) =0

(A.7.16)

328(cho)por — 144T508( T2 ) — 432T508(¥2) — 72T T56(0)
—24¢08(P0) A — 12¢0¢08(X) + 360U AT¥ok — 1152F 00 Uo7
+216T2Tor0 + 12d0Po @A + 36¢oPoTA — 12¢do oo
+216T,¥580 — 7202 Ty0a — 52¢0Bdor = 0

(A.7.17)
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O(AtBCD)O(iBCD)

LABCDO(ABYE D)

6d0A(8(0)) — 165(do) A(o) — 16A(ho)d(¢bo) — 360D (¥2)d(T2)
+3608(¥2)D(¥2) + 72I125(D£ 2)) 4 6¢03(A(o)) + 144\112D( (¥2))
~144855(D(¥2)) + 605(A(¢o)) — 7222 D(5(¥2)) + 60 A(5(o))
—T2¢0 @120 + 328(do)boft — 12¢0od(i2) — 240 fid (o)
—432\1’2KA(\I’2) — 144\1’25(\1’2)6 + 144\1’25(\1’2)E+ 432‘1’25(‘1’2)0’
+1449,D(U5)a + 144¥2D(¥2)B — 30405 (po ) — 1224TokTo i
—1224W,0To 7 + 3888Wy7 W, 5 + 3888T5pToT — 40¢g poarh
+48¢pg oSy — 64popoay — 216¥, ¥oe + 216Wo Uoerr

—432W,; ¥y0a + 1449395 B0 — 64dododu + 48hodo s
—24([)0([)0110’ - 40([)0([)0)\71' -|— 216\1’2\1’205p -|— 216\1’2\1’2,3p
—88¢o B0 By + 24d0PoAB — 24dodopU + 36¢odo Ty

—64dodoer — 12¢9Po fiT — 52¢0PpoTY — 120 PoyT

—24¢opo AT + 24dodoaT + 24 PovE + 432W; Yoy
+144%, ¥ 5k — 12PodoTr — 12¢0dovT — 12dodop

—52po o7 + 36¢odo itk — T6dopo a3 + 432¥ o ¥a o
—432‘1’2‘1’2&“ - 432\1’2\1’2p,3 - 432\1’2\1’2p06 - 432‘1’2‘1’27’6
+432\I’2\I’2T6 + 48¢>0¢>07TM — 216\1’2\1’2 (7) — 18¢>0,3A(¢>0)

+3840 A(po)x — 30608 (do)y + 2608 (o)X — 1440D(¥2) Ty 7
—14405(\1’2)\1’2p -|— 144\1’2\1’25( ) -|— 576\1’2p5(\1’2) - 432\1’2\1’2D( )
—576\1’2D(\I’2 )T - 72\1’2D(\I’2)OL - 72\1’2D(\I’2),3 - 360\1’25(\1’2)
—12¢odod(X) + 32A(po)PoT + 388(do) oY + 6do A(po)T

—12¢0¢0 A(B) — 30¢0D (o) — 18¢06(do)¥ + 6o A(do)T
—12¢>0¢30A(6¢) + 26¢0d (([)0)’7 — 18¢>OOLA(¢>0) — 144\1’2\1’2A( )
—12¢>0¢>0D(l7) — 24¢>O7TA(¢>0) — 12¢>0¢>0A( ) — 360\1’27TD( 2)
—216\1’2\1’2D( ) -|— 72\1’25(\1’2)6 - 72\1’25(\1’2)6 - 504\1’2KA( 2)
+504¥508(T2) + 1152%5p8(¥2) — 1152857 D(¥a) + 26D (o) o
—12¢0¢od(v) — 12¢o0d (1) + 43282 ¥28(p) — 30¢0d (o)A

+38¢0 A (0 )B + 26008 (do )it — 120 pod(F) =
(A.7.18)

12¢opod () + 360‘I’2K5(‘I’2) — 12¢opo@? + 36¢0 Bo2 o
—36podoB% — 24podoT? + 1445 T26(x) + 12¢>0¢>0D( )
—144\1’2\1’2D( ) -|— 1440‘1’20"1’2p -|— 1440‘1’2&‘1’27‘!’ b 432‘1’2‘1’2p0’
+432W, U7k + 520 BT + 64oBdod + 40¢gedp X
—432‘1’2‘1’2&,@ — 144‘1’2‘1’2}606 + 432‘1’2‘1’20’6 — 144‘1’2‘1’20’5
—24¢opoAe + 12¢oofic + 12¢odoTk — 36dodo TR (A.7.19)
—25243 T2 + 168(cb0)8(bo) — 6608 (8(bo)) — 605 (5(o))
+12dodoyo + 24dodord + 12dodovo + 12dodopec
+30¢0D (o)A + 24¢o78(do) — 26¢036(¢o) — 26D(¢>0)¢1 A
—360¥20D(¥3) — 328(¢bo)do T — 388 (¢o)bocx + 1803 (o)
—6¢0 A(do)o + 12¢0¢od (@) + 3060 (¢0)B — 60 A(po)o
+12ho$od(B8) = 0
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O(ABLCD)LABCD

O(ABCtD)O(iBétD)

LABCDYABCD

O(ALBCD)LABCD

—252¢5 U2 + 165($0)d(o) — 6608 (6(¢b0)) — 6¢06(6(cbo))
-|—1440\I’27T\I’2K -|— 1440‘1’2p‘1’20’ b 432‘1’2‘1’2p0’ -|— 432‘1’2‘1’27’&
+52¢omeo S — 432 W3 RS + 64doadoS + 40 Ao
—144‘1’2‘1’20’6 b 144‘1’2‘1’2}606 -|— 432‘1’2‘1’20’6 -|— 24¢>0¢>0)\p
—24¢o o Ae + 36¢ PagPo — 244{0¢>0ﬂ' — 12¢opoa’
—36¢0p0B% — 6o A(ho )7 + 12Podod(cx) + 24¢ems (o)
+12¢9¢o 7( ) 4 12¢0do D(A) + 30¢03(d0)B — 60 A(po)&
+12¢0608(8) + 30¢0D (o)A + 18¢0d (o )x + 3606(¥2) T2k
—360D(EI’27)\I’26' — 38([)(1055(([)0) — 265(([)0)([)0,3 + 144\1’2\1’2 ( )
—32([)071’5(([)0) - 144\1’2\1’2D( ) - 26([)0)\D(¢>0) -|— 12([)0([)0“0’
—36¢odoma + 12¢opoRr + 12¢0do¥o + 12¢0bo i
+12¢9oye =0

(A.7.20)

—720U AT X + 1368V Tt + 1368V o7 — 3456 ot
4648 Worr — 2160 Wy iy — 216, Uo7y + 216T oy 112
+216\I’2\i’2ﬂ2 — 144\1’2{)22@2 + 72@2‘1’25(11) — 72@25(\1’2)11
—144\T’2MA(\I’2) + 72\1’2@23(17) — 72\1’23(@2)17 — 144\I’QﬂA(\i’2)
—72\1’2A(\i’2)’7 — 72\112A(\T12)'y — 216\1’2\T’QA( ) — 216\T’Q\I’QA(M)
—72\i’2A(\I’2) — 72\i’2A(\I’2)7 — 432A(\I’2)A(\I’2) — 72\1’2A(A(\I’2))
—72\1’2A(A( )) -|— 64([)011([)011 -|— 216\1’2\1’21/,3 -|— 72\1’2\1’20511

+216T, U258 + 72U, Toair + 648W o Uo7 — 216U, Uy 17
—216T5 0o iy + 360T208 (U2 ) — 1152T5uA(Ta) + 3605(To ) Ta0
—1152A(¥5) P55 =0

(A.7.21)

—6¢oD(D(¢o)) — 6¢0D(D(d0)) + 16D (¢0) D (o) + 12¢o o7k
+12¢0doBk + 12do o + 12¢odo Bk + 12dgdomr
+12¢>0¢>0KOL -|— 40([)0([)066 b 432‘1’2}6\1’2}6 b 36([)0([)06

—36¢0BoE> + 36doPoodo — 26¢9 D (o )e — 60 (do )R
—6¢08(do)r + 30h0 D (o) + 12dodo D (e) — 260 D (o )
—6¢08 (o )k — 608 (0 )R + 309 D(o )e + 120 o D (&) =

(A.7.22)

6603(D (o)) + 6h03(D (o)) + 640 D(8(o)) + 6o D(8(¢0))
+360VokToa — 1152T9RkTop — 216U, W5 ok — B4pgedo 3
—40([)077([;06 - 40([)006(506 - 72‘1’2@2&6 - 72([)0(1)10([;0
+432D(\I’2)\I’2K -|— 26D(¢>0)¢>0,3 -|— 38([)065(([)0) -|— 26¢>O7TD( )
+265(¢>0)¢>06 -|— 26¢>OOLD(¢>0) -|— 72\1’2\1’2D( ) -|— 144‘1’2}6 ( 2)
—18¢oed (o) — 12hado D(cr) — 30 D (o) + 6o A(po )R
—30¢0 D(o)ax + 6¢>9 6(¢o)e — 30¢0D(p0)B — 12¢0 ¢4 (€)
—30¢0&d (o) + 608 (o )p — 12¢0po D () + 6¢>0A(¢>0)
—12¢0h0D(B) + 6608 (o )5 — 216T5TseR 4 48gPoec
—12¢gpovR — 24dodo Ar + 48podome + T2¢0 o EB
—12¢opoda — 12¢opoBp — 12¢odoTE — 12¢odoRp
—12¢0poRT — 12¢odo Rt — 12¢opo pr — 12¢0do BF
—12¢odoap — 16D(¢o)8(do) — 168(cpo) D(¢o) + 660 (do0)p
—12([)0([)05(6) =0

(A.7.23)



A. Necessary Conditions in NP form 169

(ABLCD) (AB CD)

O(ABYCD)O(iBétD)

—4752WopyuWop — 4752007007 — 4752W,n ¥y 7 — 47520, pWs i
—864\1’2 \I’QKII -|— 1728\1’2 \I’Q PH — 432\1’2 \1’271',3 -|— 432\1’2 \I’Q T
+432%,¥5 07 + 864T, ¥ Ao — 36d0bo iy — 24¢0boTB
+88¢vhoT + T6dovdoft + T6poudoy — 432¥; ¥yrar
-|—432\I’2\I’2,3T - 36([)0([)0“’7 - 24([)0([)011,3 - 1728\1’2\1’271'7'
—1728\1’2\1’271'7' - 864\1’2\1’21'61/ -|— 432\112\112p'y -|— 432\1’2\1’2’7p
—432\1’2 \I’QTOé -|— 432\1’2\1’2,37' -|— 864\1’2 \I’Q )\0’ -|— 1728\1’2\1’2 pM
+432Fo Wy e + 432, Uoep + 4320, Uy e + 4320, Wqefi
—4320, Uo7 + 4320, st + 64¢grdod — 144\TIQD(\112)7
—24¢opofi° — 24dodop® — 12¢0he¥* — 12¢0pov?
-|—36¢>0<I)22¢>0 - 1152A\I’2\I’2 -|— 144\1’2A(\I’2)6 - 265(([)0)([)011
+144T,8(T;)a — 144F56(5(T3)) — 3965(F2)8(T3) + 396D (T3)A(Ty)
+396A(T2)D(T3) — 3965(V2)6(To) — 144FT25(5(T2)) — 144FT55(5(T2))
+144F%5 D(A(T2)) — 144T26(5(T2)) + 144T> D(A(T2)) + 144TA(D(T5))
+144¥5 A(D(¥2)) — 640 A(A(do)) — 6o A(A(¢o)) + 16A(do)A(o)
+64boppofi + 52¢ovdo T + 52¢0 o ¥ + 40 Ao A

+64doador + 24dodorT + 24¢oo T + 432¥2 ¥ yp

+12¢>0¢>05(l7) — 144\1’2D(\I’2)’7 + 144\1’25(\1’2)65 — 144\1’25(\1’2),3
+144%2 D (Vo )p — 144V (Vo) — 43205 Uo () — 4328, ¥ A(p)
—144T5pA(T5) + 144T25(To )7 — 144T,D(Ta )y — 144¥5D(T5)7
+144F55( T2 )7 — 432U T3 A(p) — 144T5pA(Ta) + 4320, T2 6(7)
—144F56(T5)B + 432T, U2 D(p) + 144T2A (T2 )e + 144T, A (T )e
+144FT5A(Ts)e — 144U,75(T2) + 144U, D (o) + 4322 T, D( )
+144W56(Ws)a — 144056(¥5)B — 432W,¥56(7) — 26¢008 (o)
+12¢0pod(v) + 30¢od (o )v + 24dou (do) + 30¢0s (do )7
+24¢0 A (o) — 38A(do)do¥ — 38¢0¥A(do) — 32A(¢o)do i
—32¢>0MA(¢>0) -|— 144\1’25(\1’2)05 - 1‘}4\1’2 (\1’2),3 -|— ‘}32\1’2\1’25( )
+18¢0 Ao )7 + 12d0P0 A(F) + 12¢0d0 A1) + 18¢0 Ao )y
+12¢>0¢>0A(’Y) + 12¢>0¢>0A(ﬂ) i1224A(\I’2)\I’2ﬁ —71224\1’271'5(7
+1224T578(To) + 1224D(F5) T i — 1224T5pA(To) — 12245(F
+1224T5uD(T5) + 12245 (¥2) P27 = 0

2)
2)¥om

(A.7.24)

—1224W,5p0oi — 1224V 57Ty X + 3888V, Wy 7 + 3888WorWs i
-|—12¢>0¢>0717’? — 76([)0([)017’1 — 52¢g o Av -|: 432W 5 Uo AT B
—432U o Uory 4 432U, Uo7y — 432V, Vs piv — 432U, Us icx
—432U,Uo i + 216W Uy i + 216ToUoapu — 216U, oyt
—144T5A(T2)B — 432T226(T2) — 576 T28(Ta )i — 432T5 T2 6(ja)
+432%,D(Uo)v + 576 WawA(¥2) 4 4322 Uy A7) — 12d0do A(v)
_24¢>0A(¢>0)13_ 3608(W2)A(T2) + 360A(T2)8(T2) + 144¥2A(5(T2))
—144T26(A(¥2)) + 72828(A(¥2)) — 7282 A(5(T2)) + 32A(do)bor
—144\1’2 ( 2) -|— 144\1’25(\1’2)’7 -|— 1440\1’2TA(\I’2) -|— 1440‘1’2“5(\1’
—144T5A(T2)a — 5046(T2)Ta X + 504D (T2)Taw + 1152A(T2) T
—11526(T2)¥afi + 360Toub(Ta) + 216U To8(p) + 722 A(Ts)a
+72\i’2A(\I’2 ),3 -|— 360\1’2A(\I’2 )T -|— 72\1’25(\1’2 )’y - 72@25(\1’2)
+216W2 02 A(T) + 432Ws Uove 4 1440, Ve — 4320, W5 A
+144T,Usad — 64¢doupoir + 216 W2 Uy + 360 po i
+144F%5T5D(7) — 144T5T55(X) = 0

(A.7.25)
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A.8 The O(ABLCD)B(ABZOD) component equation
of the 4-index Condition

The following is the 0(4BLCD)O(ABLE D) component equation of the 4-index
Condition. It is used Chapter 5.

961 b1 Pt — 24015285 — T2h1 P2 pB + 24¢o o DT — 36¢a ¢ pE + 48p2 1 p7
—36¢apoRa + 96¢1 p1ppt — 24h1Po AN — 48¢1doAB — T2¢h1dopcx + 24 P pat
—T2¢1¢208 + 24911 Ta — 2411 BT + 24¢1 0BT — 96¢1 2o + 48¢1do AT
—48¢1pocy — 48p1Pove — 24P oY + 432W 5 W yp — 12¢02 87 — 481 Pove
—24¢1 o @y + 24h11 VP + 24¢1 1 PY + 144h1d1 RD + 24¢1 1 i€ + 241 drefi
+48p1 oG — 48p1PaRY — 241 Pae — 36Po P27 B + 24Po oo — 24dodavo
—36p0go iy — 24podoTB + 48pad1 T + T2 06 — 36hadaT0 + 24popr fiF
—24¢0p2¥F + 12021 TE + 720201 AR — 24P2paRA + 242 p2 TR + 1221 Te
+72¢2b1 Ar — 24paparcr + 24adamr + 5201 pda B — 100847 ¥y — 100847 ¥y
+24¢1 173 — 24¢1pram — 481 PoAB + 481 hopT — 721 ok + 482 pm
—24¢adore — 36¢adoTa + 12¢2¢1 AP + 24P AP — 24d2Po AE — 961 2 pT
+48¢1 o AT — 481 oy + 1441y Ao + 12618 (¢>0)7 - 144‘I’2D(‘I’2)7 + 12¢2do ()
+12¢>2¢>1D( ) — 24¢odo i — 24¢>0¢>0M — 12¢a¢2” — 24pahoT — 12¢pae?
—24¢odom’ — 24hadap” — 12¢adoa” — 12¢o 87 — 4752T2uT2p — 4752857 T2 7
—4752\1’271'\1’271' b 4752\1’2p\1’2u b 864\1’2\1’21'61/ b 36¢>2¢>2p6 -|— 1728\1’2\1’2pu b 432\1’2\1’271',3
-|—432\I’2\I’2057T -|— 432\112\112p'y -|— 864\1’2\1’2 )\0’ -|— 24([)1([)2605 b 48([)1([)26,3 b 48([)1([)20’06
+48¢p1 parp — 96p1domp — 24¢1 b2 D(B) — 24126 (e) + 12¢1 D ()@ — 3641 D (¢2)0
—36p166(¢2) + 721D (1)1 + T2¢16(¢1)m + 24116 () — 60108 (d2) + 2461 o6 ()
+24¢1 7(431)06 — 24¢16(¢1)0 + 4841128 (Po) — 48416(d2)p + 60¢18(Po) A — 2461 ¢2d(0)
+12¢08(b1)7¥ — 208(do)P1ji + 401 pA (1) — T6hoaA(b1) + 32¢2pD(b2) — 26¢o AD (h2)
—26D(2)PoA + 32D(d2)dap + T6¢aed(d1) — 40¢176(b1) + 386(¢o) P28 + 2061 p3(2) B
—38([)0065(([)2) - 38A(¢>0)¢>0'y + 20A(¢>0)¢>1T - 38¢>O’YA(¢>0) - 144\1’2 ( (\I’ )) - 3965(\1’2)5(\1’
+396D(¥2)A(F3) + 396A (%) D(F>) — 3965(¥2)5(T3) — 121 5(A(ho)) — ;44\1:25(5(%)) _
—12¢31A( (¢0)) = 12¢1D(3(2)) — 12¢18(D(¢2)) — 24¢18(8(¢1)) — 120 A(8(p1)) — 12¢h28(D(p1)
—24¢18(3(¢1)) — 12¢08(A($1)) — 6¢2D(D(¢2)) — 12¢2D(8(¢1)) + 16D (h2) D(¢2) + 32D (h1)d(42)
+828(d2)D(¢1) + 32A(ho)3 (1) + 328(d1)A(o) — 144¥25(5(¥2)) — 12418(D(¢2)) — 12408 (
+82A(61)3(dn ) )+ 64D($1)A(d) + 645(6h)5
b1 2 ) 2
(¥ (A
¢

) +328(¢1

A )+646(¢>1(;6(¢31 + 64A(¢1)D(h1) + 165(h2)5 (o 1 3
+326(¢o ) A( )D ¢2) + 144¥3 D(A(T3)) — 144\1:25(5(\112))
+144%,D(A(¥2)) + 144%, A(D(¥ ))JE;44\1:2A(D( 2)) — 608 (8(¢p2)) — 2441 D(A($1)) — 12

(¢
(¢

(4; ) + 32D(b2)8 (1) + 165 (cpo )3 (
1

—24¢1 A(D(h1)) — 24¢16(6(h1)) — 6¢26(5(d0)) — 2461 D(A(b1)) — 24¢16(5($1)) — 2441 A(D (1)

—6¢>9A,( ($0)) — L1240 A(8(h1)) — 6o A(A(¢o)) — 6403 (8(h2)) — 122D (6($1)) — 12¢1.D(6(2))

—12428(D(¢1)) — 1261 A(3(d0)) + 520t — 88¢oad2B — 52¢17¢o¥ + 1641 7h1 7

+88¢01hoT — 52¢07P1T — 52¢hoed1 T + 88poedoe + 161 TP T — 52¢1 Tho &

—28¢p2rd1 L + 64dards B + 40dowd1 L — T6domp2 B + 40¢1 o T — 281 s i

—T6¢2BboT + 642 BpaR — 401 Thofi + 281 TG + T6¢ovho i — 64bovhad

—64¢o0doT + 28¢20d1 T + T6¢opudo¥ — 40¢dopdy T — 432W; Wy rar + 4320, ¥, B

+24¢1 o€ — 481 e — 481 P2 + 481 paRfi — 96 PoTit + 24h1 by 7O

+144¢1 p1 AT — 24¢1p1 T — 36Podopy — 24Podor + 48Pop1T i + T2odrvo

—1728\1’2\1’271'7' — 1728\1’2\1’271'7' — 864\1’2\1’21'61/ + 432\1’2\1’2ﬁ’7 + 432\1’2\1’2’7p — 432\1’2\1’27'05

-|—432\I’2 \I’Q,BT -|— 864\1’2\1’2 )\0’ -|— 1728\1’2\1’2 pM -|— 432\1’2\1’2 HE -|— 432\1’2\1’2 el -|— 432\1’2\1’2 ME

-|—432\I’2 \I’QEM b 432\1’2 \1’271',3 -|— 432\1’2\1’2 QT — 76([)27’([)006 -|— 40¢>2T§[)1p -|— 64([)011([)006

—28¢ovd1p — 52¢20Po it + 40Pa0dad + 64doudo it — 52Poppad — B4daTdoT

+52¢27h2R + 52hordoT — 40dordaR + 52¢1 udoa — 16¢1 ud1 5 — 88p2B8¢oa

+52¢28¢15 — 40p2rdo ¥ + 52¢2kdaT + 520 TdhoT — 64doTdhaT — 52¢h2 oo A
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+64¢p2ph2p + 400 Apo A — 52¢0 Ad2p — 28p1ppo v + 4001 pd2 T + 64 adov
—T6poadaT — 40p2pP1 T + T6h20P2€ + 28dg Ap1T — 64dg Ad2E — B4ghaecho A

+76Pa2edop + 28p1mPo A — 4017 p — 161 pp1 1 + 241 Poel — 241 PoTe

+24¢1 p17a — 2401 1 BT + 2401 P08y — 241 hoTT + 241 PaYk + 241 doEr

+96¢1 g1 — 241 p2TE — T2¢h12Te + 481 popv + 241 PouB — 24¢1 P2 B0
+96¢1 p1 AT — 24d1 po Ty — T21P0TY — T21PaTe + 241 PavE + 12¢o 1 3
+24¢odorT + 12¢od1vT — 241 o) + 24¢1¢a por + 12¢adrop — T2¢1 oy

+48¢1 poma — 481 ry — 241 $2EB + 24Pado Ao + 1201 ¥T + 24¢1 b1 0¥
+24¢117p + 144¢>;¢>1 Ky + 12¢>0¢>1 BB + 24¢1d1pe + 2j1¢>1¢>1 Ep + 24¢1 o 1P
—24¢ap2p® — 12¢odo¥’ — 24doda7? — 12¢0doy? — 12¢adoa® — 24dpda 7>

—504¢od2 T — 504¢oda o + 144¢2P01 1 + 36¢2Po2do + 1441 Prodo + 3600 P20 b
+36¢2®oo b2 + 3600 oo o + 57601 P11 1 + 14400 P21 d1 + 144¢1 B12go — 11524, T,
—12({)0({)2 7(,3) -|— 144\1’2A(\I’2)6 - 52([)0)\5(([)1) - 265(([)0)([)011 -|— 645(¢>1)¢>2p -|— 144\1’25(\1’2)
—408(p1) P17 + T63(b1 )paE + 52h2kA(P1) — 3616 (da) + 642 pd (1) — 12¢2¢15(p)

+72¢1 D($1)in + 72¢18($1) T + 241 $16(7) — 60176(¢2) + 328(¢0) b2 T + 12¢0od(9)
—48¢£D£¢ )T + 24([)1([30 4( ) + 48([)171’4(([)0) - 144‘1’2D()I’2) - 64([)07TA7(¢>1) - 525(([)1)([)9)\
+144\I’25(\I’2)6L - 144\1’25(\1’2),3 -|— 144\1’2D(\I’2)M - 144\1’271'5(\1’2) - 432\1’2\1’25( ) - 432\1’2\1’2A( )
—144T5pA(T5) + 144T25( T2 )7 — 1445 D(Ta )y — 144¥5D(T2)7 + 144T55(T2 )7 — 4320, T3 A(p)
—14495pA(¥o) + 43205 Wo8(7) — 144U56(¥2)B + 432W2 Wo D () + 144T, A(¥2)e + 144T5 A (T )e
+144T5 A(Vo)e — 144U578 (o) + 144To D (¥ )it + 432T2 U9 D(f) + 144T25(To ) — 144T25(¥2)3
—43205825(7) — T6A(¢1)doa + 40A(p1)b1 5 + 324276(do) — 266018 (do) — 645(b1)bo it
+526(h1) P25 + 52¢203(d1) — 64doud (1) — 64A(d1)PoT + 52A(h1 )pak + 64¢a7D(1)

—52¢ovD (1) — 385(da)Poa + 208(d2 )1 — 201 148 (do) + 38¢286(do) — 52D (¢1)ov
+64p(¢>1)¢>27' + 12¢0¢0 () — 300 A(¢2) + 30¢0d(Po)v + 24¢ouA (o) — 24¢0d(P2)T
—12¢0¢28(7) + 36¢0(d1 )1t — 120 A(¢1)8 — 300G A(p2) + 3006 (o )7 + 24¢oRA (o)

—24¢068 (d2)7 — 12¢0d26(T) + 36¢06(d1 )t — 12d A(P1)B — 30¢2RS () — 18¢2 D (2 )E

—12¢32¢>2D( ) -|— 36([12D(¢>1)7T -|— 12([12¢>1D( ) b 30¢>2K§(¢>2) b 18¢>2D(¢>2)6 b 125[)2¢>2D( )
+36¢2 D(d1)m + 302D (o)X — 12¢a¢p2 D(p) — 12261 )e + 242w (o) — 24¢2.D(p2)p
+12¢2¢0D(A) + 18426 (o) @ + 30h2D (o)X — 36256 (1) + 12¢2dod (@) + 60¢>1D(¢>0)l7

+36¢13(d0)¥ — 7261 pA($1) — T2¢18(d1)T + 24d1Po A() — 2411 A(D) + 12¢13 (o )y
+36¢1aA (o) — 12¢15 (2 )e — 601 RA(d2) + 2411 D (jz) + 16A(do) A(do) — 662D (D(¢2))
—20D(¢2) 17 + 38D(p2) e + 38¢aeD(d2) — 20¢1 wD (o) — 40D (1)1 it + 76D (1) 28
+26¢2k6(P2) — 32076 (d2) — 3262 )boT + 268(pz) o’ — 401 D (1) + T6¢23D (1)
—32A(do)Pojt + 26A (o) P27 + 40h178(b1) — T6dov(b1) — 768 (1)o7 + 408 (1)1 7
+26¢>20’A(¢>0) — 32¢0MA(¢>0) -|— 144\1’25(\1’2)05 — 144\1’2 (\1’2),3 -|— 432\1’2\1’2 ( ) — 24([)1([)2 ( )
+12¢1 D(¢a)ox — 361 D(h2)B — 24d1$2 A(R) — 18406(p2)B + 12d0h1 5 (1) — 2461 A(1)e
—24¢1A(db1)e + 24h1 o D(v) — 24¢11¢>2Q( T) — 24¢1¢10(T) — 12¢1A(p0)B + 241405 (7)
+24¢1 D(p1)v + 2461.D(h1)7 — 12¢2¢15(p) + 36p1aA (o) — 180 (¢2)B + 12¢0$16(R)
—12¢0¢23(8) — 12¢2¢2D(p) — 12¢28(¢1)e + 12d2do D(X) — 12416(¢2 )€ — 601 £A(p2)
+24¢1 1 D(1) — 244192 D(B) — 12¢226(k) + 12¢oD (1) + 122603 () — 36203 (1)
+18¢0 A(P0)¥ + 12¢0P0 A(F) — 12¢0d1 A(T) + 12¢06(¢1)7 — 12¢0d2 A(c) — 360 A1 )T
+12¢0{>0§£ ) + 1840 A(¢o)Y + 1200 A(y) — 12¢0d1 A(7T) + 24¢16(1 ) — 241 6(1)B
+24¢1¢08(\) — 24¢1¢25(p) + 18¢28 (o) + 12¢2¢08 () — 24¢1 A(p1)E — 24¢>1é(¢>1)
+24¢1 40 D(v) + 48j>17fA(¢>0) — 481 D (p2)T — 2412 D(7) + 240100 (1) + 241 (1)

—24¢18(41)B — 2441$28(0) + 241 D (1 )y + 2461 D($1)7 — 12d0d2 A(5) — 36¢oA(b1)T

+12¢0do A(f) + 24¢276 (o) — 12¢ad28(R) + 1242 D(d1)a — 242D (2 )p + 24616(¢1)a

—24$16(h1)8 + 48118 (Po) — 48415(d2)p + 24105 (N) + 6041 8(Po) A — 2461 ¢2(p)

—24¢1618(T) — 12¢1A(¢0 )8 + 2461 $08() 4 6061 D(¢o)v + 36¢15(do)y — T2h1pA(d1)

—72([)1 ( )T -|— 24¢>1¢>0A( ) - 24¢>1¢1A( ) - 1224A(\I’2)\I’2p - 1224\1’271'5(\1’2) -|— 1224‘1’27’5(\1’2)
-|—1224D( 2)‘1’2“ - 1224\1’2pA(\I’2) - 12245(\1’2)\1’271' -|— 1224\1’2MD(\I’2) -|— 12245(‘1’2)‘1’27’ -|— 20¢>1TA(¢>0)
+24P1po A(m) — 24192 A(k) =

\_/

(A.8.1)
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A.9 Component Equations of the 5-index Con-
dition for Case 4

This appendix contains the component equations of the 5-index Condition
used in Chapter 4 with the following substitutions made:

1. Case 4 assumptions
§b1:07 &1:07§b2:07 §b2:0.

2. Suitable conformal and dyad transformations have been chosen such
that

$o = Us.

3. The following equalities follow from the Case 4 assumption the Newman-
Penrose field equations, Bianchi identities, and the 0-index to the 4-
index necessary conditions. (See the proof of Proposition 4.4.1.)

_K'J’

=v=p=7
2) = Ala)

D1y = Pyy =0,
A(r) = A(A) = A(Bgy) = A(y;) = 0.

> > =
I

—~

The above substitutions are made before displaying the component equa-
tions in order to save printing space, since the full versions of these equations
are several times as long as what appears below. The following are the actual
form of the component equations from the 5-index condition that are used
explicitly in Chapter 4.
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O(ABCDE)9(AB*CDE)

I+ 4+ 4z
=5
EGS]
(SR
LR ) (%)

g & =
+RET
= 1|
e |2

%]

FI

S
=)

%]

%]
5

(=1
%]
=
%]

\‘

%]

25

2)A(6(¥2)) + ;—E‘T’%I)m‘l’za — L5y, 7®, Ty
1) U258% + ZA(5(T2))Tae — 23802 Trcx
2\I’§T+ %\i’zf\yz,@Q + %‘I’QT‘T’Q&Q
2l + 22 Ty rToar — 86(6(F2))5(T2)
2)R02¥s — 2 8(W2)78(¥2) + 226(¥2)8(¥2)8
U2)Wyad — 226(W2) Tafin — T2 Uy 7¥28(w)

yrad(¥s) + ﬁé(wz)\ifzaﬁ + 333@2)@2%5

S5 Uamd(¥2) — %8—85(\1'2)%647? + 18 5(8,)¥yma

(™
o

|
S
S o

k=2

5
4

+
S
|
o

I+ +
°’|§§|m

o
Sy~
—~

2
_@\p 75 (T _ @ T _ T, _

55 Yorwd(¥2) §(¥2)¥omp Uo7 ¥r8(a)
+ERS(8) Vaam + Lha(w2) w7 + H5(w0) Baar
_;2_58\?2%[35(\112) + %—5\11275(}12)ﬁ + L50(¥2) T80
+ I8 9,5 (m) Toa + LWy n ¥, 5(7) + L Fyms(T2)r
+26(T2) 7T — ;—53(@2)7‘}'2[3 + ZEU) A(p) T2 8
— B, (Wy) — 52T (Tp)a — gﬁwzfs(\pz)(

— 52 0(¥2)¥afa = RETEF(B) + 526(¥2)F20

— 2 T20(M)0(T2) — ZEwT2A(0) + FRT26(7) T2
+22_5\I’25(7T)\I’2:8 + _575(\1’2)7'\17’206 - E\I’QA(O')\I’QOC
_%\I’Qﬁ'\I’QOé,B + %\I’Qﬁ\I’Qﬁﬁ + %\1127?\1120407

+ 88 Ty rr w8+ DTy 6(r) + LWy 7Ty

~ Dy 8,78 — L8, n¥,748 + E5(T2)A(D(2))
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Appendix B

Component Equations for Type
D Symmetric Spacetimes

A symmetric spacetime satisfies (5.2.2), (5.2.3), and (5.2.4). This appendix
contains their component equations with respect to a dyad canonical to the
Weyl spinor.

The component equations of (5.2.4) are

Ll D(A) =0 (B.0.1)
040, A(A) =0 (B.0.2)
140 5(A) =0 (B.0.3)
04l S5(A)=0 (B.0.4)

The component equations of (5.2.3), ¥, pop.s = 0, are as follows:
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L(CLBOALD)O; 08 1279, = (B.0.5)
Ll(CLBOALD)OR 12p0, = (B.0.6)
LELCLBOALD)Og 1200, = (B.0.7)
LELELCLBOALD) —126P4, =0 (B.0.8)

0(A0BLDOC)050E 1200, = (B.0.9)
L0(A0BLDOC)OE —12\9, = (B.0.10)
LEO(AOBLDOC) O —12p0, = (B.0.11)
LELEO(AOBLDOC) 1270, =0 (B.0.12)
LELEO0(AOBLCYLD 6D(¥,) = (B.0.13)
0(A0BLCLD)0O50R 6A(T2) =0 (B.0.14)
LEO(AOBLCLD) O —66(T,) =0 (B.0.15)
L50(A0BLCLD)OE —60(Wy) =0 (B.0.16)

The component equations of (5.2.2), ®4p48.0c6 =0, are as follows:

O(ALB)B(AZB)OCBC‘
O(ALB)a(AZB)Lca(}
O(ALB)a(AZB)OCZ(}
O(ALB)a(AZB)LCZ(}
0(ALB)LjiLlp0C Oy
O(ALB)LjiLlpLlc O
OBOAa(AZB)OCZ(}
O(ALB)ZAZBOCZ(}
O(ALB)Ljlptote

0(ALB)0 j050C 0

A(P10) = —Poom + v P80 — 28117 + 28107

§(@10) = 28119 + Boop + 28100 — 0Py
8(®21) = —2®210 — 52y + 2A8171 + Poofi
§(®10) = —P20p — 28115 + Boo + 28103

D(®10) = —2®11& + Poom + 28106 — Book
A(®12) = 2®117 — Paa7 + Bo2v — 28127
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0B0AD ;OpLoly D(®22) = —2P32€ — 2P90e 4 28917 + 2&1om  (B.0.27)
0(4LB)0,0pL0 0 §(®12) = —2812a — Bop0 +2& 1A + Poap (B.0.28)
LALBO(jlg)00Te 8(®p1) = —2®11p + Booft + 28010 — 7P0s (B.0.29)
0(ALB)0 i03tcly D(®12) = —£®Pas + Bpam — 2P126 + 22117 (B.0.30)
0(ALB)0 i030C Ty §(®12) = —Boap — 28128 + APy + 2®111 (B.0.31)
LALBL jLjLoty D(®q0) = 2®00€ + 2Pgoe — 2®015 — 2®10x (B.0.32)
LALBT jT/0C0T §(®gg) = 2®gpax — 28015 — 2®10p + 28¢0f (B.0.33)
LALBO j03LC0; §(®02) = 28020 + 2®1 A — 2®190 + 2823 (B.0.34)
LALBT jT50C0s A(Pgp) = 28107 — 28017 + 2®007 + 2®00y (B.0.35)
LALBT jT/LCOn 0(®o0) = 2®gpa — 20P19 — 28019 + 2%o08 (B.0.36)
040BL i Titloly D(®20) = 2P90€ — 2P20e — 2821 + 2&19  (B.0.37)
0A0BL ;50004 A(Pg) = 2vP19 — 2®o0y + 2P207 — 2817 (B.0.38)
LALBO 05000, A(Pg2) = 2017 — 28027 + 2Pg2y — 2127 (B.0.39)
0A0BL ;Tplc 0 0(®a0) = 2®g0a — 2208 — 2P215 + 2®10p (B.0.40)
0B04D j050C Ty §(Pa2) = 28900 + 2®01 i + 2285 — 28403 (B.0.41)
0B04D j0pLcOy §(Pa2) = —2892a + 2®10p + 2891 A — 28403 (B.0.42)
0B0AD ;05000 A(Pgs) = 2P 191 + 28017 — 2P0y — 2P0y (B.0.43)
040BIL ;L5001 0(®a0) = —2P200 + 210 — 28517 + 2®505 (B.0.44)
LALBO( jTp)tcTg §(®01) = —Boap — 2081, + AP + 28,3 (B.0.45)
LALBO(jLp)0C0¢ A(Pp1) = — P27 + 7Poo — 22117 + 28017  (B.0.46)
0BOAD jlp)tcte D(®21) = —E®as + B0 — 2Pg1¢ + 22117 (B.0.47)
0BOAD jLp)0C0¢ A(Pa1) = 2vP11 — PooT + VPop — 2851y (B.0.48)
0BOAT( T3ty §(®91) = —Bo9p — 28218 + APy + 2®111 (B.0.49)
LALBO(jlg)tote D(®01) = —26%®11 + o7 + 216 — KBz (B.0.50)
LALBO jOpLoTy D(®2) = 2®@g2€ — 2826 — 26P12 + 28017 (B.0.51)
LALBO ;03001 §(®02) = 28p2a — 2®023 — 2812p + 2® i (B.0.52)



Appendix C
MAPLE (NPspinor) Code

This appendix contains the NPspinor code used to generate the component
equations of the spinor equations (2.3.10), ..., (2.3.13).

C.1 The 2-index Condition (2.3.13)

# Type D assumptions

#

WO:=0: WOc:=0: W1:=0: Wilc:=0:
W3:=0: W3c:=0: W4:=0: W4c:=0:

T1 := del( psil[A,B,K,L], X,Ac ) * eps[K,X]:
T1 := contract( dyad(T1) ):

T1 := del( T1, Y,Bc ) * eps[L,Y]:

T1 := contract( dyad( T1 ) ):

Tl := collect( T1, basis(T1), distributed ):

T2 := psilA,B,X,Y]*phil[K,L,Ac,Bc]*eps[K,X]*eps[L,Y]:
T2 := contract( dyad(T2) ):
T2 := collect( T2, basis(T2), distributed ):

T3 := 5%F[A,B]*Fc[Ac,Bc]:
T3 := dyad( T3 ):

cIII := T1 + T2 + T3: cIII := symm(cIII,[A,B]):
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cIIT :
cIIT :

symm(cIIT,[Ac,Bcl):
findsymm( ¢III, [A,B], nice ):

save cIII, ‘tD-cIII-symm.m‘:
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C.2 The 3-index Condition (2.3.10)

# Type D assumptions

#

WO:=0: WOc:=0: W1:=0: Wilc:=0:
W3:=0: W3c:=0: W4:=0: W4c:=0:

T1 := 3*del( psilA,B,C,K], X,Ac )*eps[K,X]:
T1 := contract( dyad( T1 ) ):
T1 := dyad( T1 * Fc[Bc,Cc] ):
T1 := symm( T1, [Ac,Bc,Cc] ):

T2 := del( Fcl[Ac,Bc], Cc,K ):
T2 := psil[A,B,C,X] * T2 * eps[K,X]:
T2 := contract( dyad( T2 ) ):
T2 := symm( T2, [Ac,Bc,Cc] ):

cIV :
cIV :

T1 + conj(T1) - T2 - conj(T2):
findsymm( cIV, [A,B,C], nice ):

save cIV, ‘tD-cIV-symm.m‘:



C.3. The 4-index Condition 184

C.3 The 4-index Condition (2.3.11)

C.3.1 Individual Symmetrized Terms

# Type D assumptions

#

WO:=0: WOc:=0: W1:=0: Wilc:=0:
W3:=0: W3c:=0: W4:=0: W4c:=0:

T1 := del( psilA,B,C,D], K,Kc ) * del( psic[Ac,Bc,Cc,Dc], X,Xc )
* eps[K,X]: T1 := contract( dyad(T1) ):

T1 := contract( Tl * eps[Kc,Xc] ):

Ti := 3 *x T1:

save T1, ‘cV-t1.m‘:

T2 := del(psilX,A,B,C],D,Ac):

T2 := T2 * del(psic[Bc,Cc,Dc,Lc],K,Yc):

T2 := dyad( T2 ):

T2 := contract( eps[K,X] * eps[Lc,Yc] * T2 ):
T2 := collect( T2, basis(T2), distributed ):
T2 := 4 x (T2 + conj(T2)):

T2 := symm( T2, [A,B,C,D] ):

T2 := symm( T2, [Ac,Bc,Cc,Dc] ):

save T2, ‘cV-t2.m‘:

T3 := eps[K,X]*del(psil[A,B,C,K],X,Ac):

T3 := T3 * eps[Kc,Yc]*del(psic[Bc,Cc,Dc,Kc],Yc,D):
T3 := contract( dyad( T3 ) ):

T3 := collect( T3, basis(T3), distributed ):

T3 := -40 * T3:

T3 := symm( T3, [A,B,C,D] ):

T3 := symm( T3, [Ac,Bc,Cc,Dc] ):

save T3, ‘cV-t3.m‘:

T4 := eps[K,Y]*psil[Y,A,B,Cl*del(del(psic[Ac,Bc,Cc,Kc],K,Yc),D,Dc):
T4 := contract( dyad( T4 ) ):

T4 := contract( eps[Kc,Yc] * T4 ):

T4 := collect( T4, basis(T4), distributed ):
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T4
T4
T4

-4 x (T4 + conj(T4) ):
symm( T4, [A,B,C,D] ):
symm( T4, [Ac,Bc,Cc,Dc] ):

save T4, ‘cV-t4.m‘:

TH6
TH6
TH6
TH6
TH6
TH6
TH6
TH6

eps[K,X]*psi[X,A,B,C]*del(del(psic[Ac,Bc,Cc,Kc],D,Xc),K,Dc):

contract( dyad(T5) ):

collect( T5, basis(T5), distributed ):
contract( eps[Kc,Xc] * T6 ):

collect( T5, basis(T5), distributed ):
12 * ( T5 + conj(T5) ):

symm( T5, [A,B,C,D] ):

symm( T5, [Ac,Bc,Cc,Dc] ):

save T5, ‘cV-t5.m‘:

T6

dyad(

T6
T6
T6
T6
T6

psil[X,A,B,Cl*phi[D,K,Kc,Ac]*psic[Bc,Cc,Dc,Xc]:
eps[K,X]*T6 ) ):

contract( eps[Kc,Xc] * T6 ):

collect( T6, basis(T6), distributed ):

- 16 *x T6:

symm( T6, [A,B,C,D] ):

symm( T6, [Ac,Bc,Cc,Dc] ):

save T6, ‘cV-t6.m‘:

T7

-32 * dyad( L * psi[A,B,C,D]*psic[Ac,Bc,Cc,Dc] )

save T7, ‘cV-t7.m‘:

T8 :
T8 :
T8 :
T8 :
T8 :

dyad( del(del(F[A,B],C,Cc),D,Dc)*Fc[Ac,Bc] ):
collect( T8, basis(T8), distributed ):

-6 x( T8 + conj(T8) ):

symm( T8, [A,B,C,D] ):

symm( T8, [Ac,Bc,Cc,Dc] ):

save T8, ‘cV-t8.m‘:

T9
T9

T9 :=

T9

dyad( del(F[A,B],C,Cc)*del(Fc[Ac,Bc],Dc,D) ):
collect( T9, basis(T9), distributed ):

16 *x T9:

symm( T9, [A,B,C,D] ):

T6

contract (
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T9 := symm( T9, [Ac,Bc,Cc,Dc] ):
save T9, ‘cV-t9.m‘:

T10 := dyad( F[A,B]*F[C,D]*psic[Ac,Bc,Cc,Dc] ):
T10 := collect( T10, basis(T10), distributed ):
T10 := -42 * ( T10 + conj(T10) ):

T10 := symm( T10, [A,B,C,D] ):

T10 := symm( T10, [Ac,Bc,Cc,Dc] ):

save T10, ‘cV-t10.m‘:

Ti1 := dyad( F[A,B]*phi[C,D,Cc,Dc]*Fc[Ac,Bc] ):
T11 := collect( T11, basis(T11), distributed ):
T11 := 36 * Ti1:

Ti1 := symm( T11, [A,B,C,D] ):

Ti1 := symm( T11, [Ac,Bc,Cc,Dc] ):

save T11l, ‘cV-t11.m‘:

C.3.2 cV.sum

read ‘cV-ti1.
read ‘cV-t2.
read ‘cV-t3.
read ‘cV-t4.
read ‘cV-t5.
read ‘cV-t6.
read ‘cV-t7.
read ‘cV-t8.
read ‘cV-t9.
read ‘cV-t10.m¢:
read ‘cV-t1l1.m¢:

~ ~ ~ ~ ~ ~ ~ ~

B 8 B8 B8BB8B8B BB

Tl := collect( T1, basis(T1), distributed ):
T2 := collect( T2, basis(T2), distributed ):
T3 := collect( T3, basis(T3), distributed ):
T4 := collect( T4, basis(T4), distributed ):
T5 := collect( T5, basis(T5), distributed ):
T6 := collect( T6, basis(T6), distributed ):
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T7 := collect( T7, basis(T7), distributed ):
T8 := collect( T8, basis(T8), distributed ):
T9 := collect( T9, basis(T9), distributed ):
T10 := collect( T10, basis(T10), distributed ):
T11 := collect( T11, basis(T11), distributed ):

cVnotsymm := T1 + T2 + T3 + T4 + Tb + T6 + T7 + T8 + T9 + T10 + T11:
cV := findsymm( cVnotsymm, [A,B,C,D], nice ):
save cV, ‘tD-cV-symm.m‘:
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C.4 The 5-index Condition (2.3.12)

C.4.1 cVI-symm-spinor-basis.txt

dyadspinor:=[o,i];
dyadspinorc:=[oc,ic];
indexlist:=[A,B,C,D,E];
indexlistc:=[Ac,Bc,Cc,Dc,Ec];

templist:=[]:

for ii from 5 to 0 by -1 do
templist:= [op(templist),[seq(l,mm=1..ii),seq(2,nn=1..5-ii)]];
od:

cVIbasis := []:

for ii from 1 to nops(templist) do

mul (dyadspinor[templist[ii]l[jjl][index1list[jjl],jj=1..5);
symm(%,indexlist);

findsymm(%,indexlist,nice);

cVIbasis := [op(cVIbasis),%]:

print (cVIbasis[ii]):

od:

cVIbasisc := []:

for ii from 1 to nops(templist) do

mul (dyadspinorc[templist[ii][jj]] [indexlistc[jjl],jj=1..5);
symm(%,indexlistc);

findsymm(%,indexlist,nice);

cVIbasisc := [op(cVIbasisc),%]:

print (cVIbasisc[ii]);

od:

save cVIbasis, cVIbasisc, ‘cVI-symm-spinor-basis.m‘:
save cVIbasis, cVIbasisc, ‘cVI-symm-spinor-basis.txt‘:
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C.4.2 gen-tD-cVI-symmetrize.txt

# re-write in terms of coeffs. "AA", and symmetrize over un-dotted
indices

#

tempsymm := rewrite(temp,As,’AA’):

tempsymm := symm(tempsymm,[A,B,C,D,E]):

# now re-write the coeffs. again (as "BB"), and symmetrize over
dotted indices

#
tempsymm := rewrite(tempsymm,Bs,’BB’):
tempsymm := symm(tempsymm, [Ac,Bc,Cc,Dc,Ec]):

# replace the spinor mess with un-evaluated symmetrizations
#
tempsymm := findsymm(tempsymm, [A,B,C,D,E] ,nice):

# finally, replace all coefficient values and save
#
As := AA: Bs := BB: tempsymm := eval(tempsymm) :

C.4.3 gen-tD-cVI-footer.txt

read ‘gen-tD-cVI-symmetrize.txt‘:
tDcVIt.termnum := eval(tempsymm) :

save tDcVIt.termnum, cat(‘tD-cVI-t‘,termnum, ‘-symm.m‘):
save tDcVIt.termnum, cat(‘tD-cVI-t‘,termnum, ‘-symm.txt‘):

C.4.4 Individual Symmetrized Terms

# Type D assumptions
#
WO0:=0: WOc:=0: W1:=0: Wlc:=0:
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W3:=0:

termnum

W3c:=0: W4:=0: W4c:=0:

= Y14

temp :=del(psilZ,A,B,C],K,Ac)*epslK,Z]:

temp :=collect(expand(contract(dyad(temp))) ,basis(temp),distributed) :
temp :=dyad(temp*del(del(Fc[Bc,Cc],D,Dc),E,Ec)):

temp :=expand(temp) :

temp :=collect(temp,basis(temp) ,distributed):

tempc:=conj(temp) :

temp :
temp :

-6* (temp+tempc) :

eval(temp):

read ‘gen-tD-cVI-footer.txt‘:

termnum
temp :=
temp :=
temp :=
temp :=
temp :=
temp :=

= 24
eps[K,Z]*del(psil[A,B,C,Z],D,Dc)*del(del(Fc[Ac,Bc],K,Cc) ,E,Ec):
contract (dyad(temp)) :

collect (temp,basis(temp) ,distributed):

6 * ( temp + conj(temp) ):
collect (temp,basis(temp) ,distributed):
eval(temp):

read ‘gen-tD-cVI-footer.txt‘:

termnum
temp :=
temp :=
temp :=
temp :=
temp :=
temp :=

= ‘3¢

contract (dyad(eps[K,Z]*del(del(psilZ,A,B,C],K,Ac),D,Dc))):
dyad( temp * del(Fc[Bc,Cc],E,Ec) ):

collect (temp,basis(temp) ,distributed):

24 * ( temp + conj(temp) ):

collect (temp,basis(temp) ,distributed):

eval(temp):

read ‘gen-tD-cVI-footer.txt‘:

termnum
temp :=
temp :=
temp :=
temp :=
temp :=
temp :=

1= 4¢

contract (dyad( eps[K,Z]*psil[Z,A,B,C]l*phi[K,D,Ac,Dc] )):
dyad( temp * del(Fc[Bc,Cc],E,Ec) ):

collect (temp,basis(temp) ,distributed):

24 * ( temp + conj(temp) ):

collect (temp,basis(temp) ,distributed):

eval(temp):
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read ‘gen-tD-cVI-footer.txt‘:

termnum
temp :=
temp :=
temp :=
temp :=
temp :=
temp :=

:= ‘B¢

contract (dyad(eps[K,Z]*del(psilZ,A,B,C],E,Ec)*phi[K,D,Ac,Dc]l)):
dyad( temp * Fc[Bc,Cc] ):

collect (temp,basis(temp) ,distributed):

-18 * ( temp + conj(temp) ):

collect (temp,basis(temp) ,distributed):

eval(temp):

read ‘gen-tD-cVI-footer.txt‘:

termnum

temp :
temp :=
temp :=
temp :=
temp :=
temp :=

= ‘6

contract (dyad( eps[K,Z]*del(psil[Z,A,B,C],K,Ac) )):
dyad( temp * phi[D,E,Dc,Ec] * Fc[Bc,Cc] ):

collect (temp,basis(temp) ,distributed):

18 * ( temp + conj(temp) ):

collect (temp,basis(temp) ,distributed):

eval(temp):

read ‘gen-tD-cVI-footer.txt‘:
read ‘gen-tD-cVI-header.txt‘:

termnum:=

temp :
temp :=
temp :=
temp :=
temp :=
temp :=

A
contract (dyad(eps[K,Z]*psil[Z,A,B,C]*del(psic[Bc,Cc,Dc,Ec],K,Ac))):
dyad( temp * F[D,E] ):

collect (temp,basis(temp) ,distributed):
-36 * ( temp + conj(temp) ):

collect (temp,basis(temp) ,distributed):
eval(temp):

read ‘gen-tD-cVI-footer.txt‘:

termnum
temp :=
temp :=
temp :=
temp :=
temp :=
temp :=

= ‘8¢

contract (dyad( eps[K,Z]*del(psil[Z,A,B,C],K,Ac) )):
dyad( temp*psic[Bc,Cc,Dc,Ec]*F[D,E] ):

collect (temp,basis(temp) ,distributed):

-138 * ( temp + conj(temp) ):

collect (temp,basis(temp) ,distributed):

eval(temp):

read ‘gen-tD-cVI-footer.txt‘:
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termnum := ‘9°¢:

temp := contract(dyad( eps[K,Z]*del(psil[Z,A,B,C],D,Dc)*F[K,E] )):
temp := dyad( temp * psic[Bc,Cc,Ec,Ac] ):

temp := collect(temp,basis(temp),distributed):

temp := 6 * ( temp + conj(temp) ):

temp := collect(temp,basis(temp),distributed):

temp := eval(temp):

read ‘gen-tD-cVI-footer.txt‘:

termnum := ‘10°¢:

temp := contract(dyad( eps[Kc,Zc]*psic[Zc,Ac,Bc,Ccl*Fc[Kc,Dc] )):
temp := dyad( temp * del(psi[A,B,C,D],E,Ec) ):

temp := collect(temp,basis(temp),distributed):

temp := 6 * ( temp + conj(temp) ):

temp := collect(temp,basis(temp),distributed):

temp := eval(temp):

read ‘gen-tD-cVI-footer.txt‘:
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