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Abstract

Finding the maximum size of a matching in an undirected graph and finding the maxi-
mum size of branching in a directed graph can be formulated as matrix rank problems.
The Tutte matrix, introduced by Tutte as a representation of an undirected graph, has
rank equal to the maximum number of vertices covered by a matching in the associated
graph. The branching matrix, a representation of a directed graph, has rank equal to
the maximum number of vertices covered by a branching in the associated graph. A
mixed graph has both undirected and directed edges, and the matching forest problem
for mixed graphs, introduced by Giles, is a generalization of the matching problem and
the branching problem. A mixed graph can be represented by the matching forest matrix,
and the rank of the matching forest matrix is related to the size of a matching forest in the
associated mixed graph. The Tutte matrix and the branching matrix have indeterminate
entries, and we describe algorithms that evaluate the indeterminates as rationals in such
a way that the rank of the evaluated matrix is equal to the rank of the indeterminate
matrix. Matroids in the context of graphs are discussed, and matroid formulations for

the matching, branching, and matching forest problems are given.
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Chapter 1

Introduction

The problem of finding a matching or a related structure in a graph can be formulated
as a matrix problem. We focus on three formulations, each specific to a particular type
of graph.

The Tutte matriz was introduced by Tutte as a representation of a graph with undi-
rected edges. The number of vertices covered by a maximum matching in an undirected
graph is equal to the rank of the corresponding Tutte matrix. The branching matriz for
directed graphs has associations with Maxwell’s rule in electrical engineering, and with
Cayley’s formula for counting trees (Rényi [27]). The rank of the branching matrix is
equal to the number of vertices covered by a maximum branching in the associated di-
rected graph. A mized graph has both undirected and directed edges, and a matching
forest in a mixed graph was introduced by Giles [14] as a generalization of matchings and
branchings. The matching forest matrix is the sum of the Tutte matrix and the branching
matrix, and it has rank equal to the maximum number of vertices covered by a matching
forest in the associated mixed graph.

These three matrix representations and their relation to matching structures are de-

scribed in Chapter 3, after the necessary linear algebra tools are developed in Chapter 2.
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The entries in the Tutte matrix and the branching matrix are indeterminates, and gen-
eral methods for evaluating indeterminates as rationals in such a way that an evaluated
matrix has the same rank as the corresponding matrix of indeterminates are shown in
Chapter 4. Specific algorithms for evaluations of the Tutte matrix, the branching matrix,
and the matching forest matrix are given in Chapter 5.

Determining if a graph has a matching of a particular weight, rather than finding the
usual maximum or minimum weight matching, is an example of an ezact problem. The
possibility of using matrix formulations to find solutions to exact matching and exact
branching problems is discussed in Chapter 6.

The final chapter, Chapter 7, gives matroid formulations of the matching, branching,

and matching forest problem in graphs.



Chapter 2

Matrix rank

The rank of a matrix can be defined in several ways. We use a definition which explicitly
states the equivalence between rank and linear independence of vectors: the rank of a
matrix A is the maximum number of linearly independent columns in A. Equivalently,
the rank of a matrix is the maximum number of linearly independent rows. A matrix is
nonsingular if it has both full row rank and full column rank, and therefore, determining
if a matrix is nonsingular when the rank is known is trivial, as is calculating the rank
of a nonsingular matrix. We show that the problems of calculating the rank of a matrix
and determining if a matrix is nonsingular are equivalent. That is, if the rank of a
matrix can be determined efficiently, then so can nonsingularity, and if nonsingularity
can be efficiently computed, then so can matrix rank. Properties of matrix rank needed
in Chapter 3 are proven in this chapter. These are standard properties that can be found

in most linear algebra texts.
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2.1 Rank and nonsingularity

Let A = (a;;) be a matrix with rows indexed by R and columns indexed by C. If X C R
and Y C C| then A[X;Y] denotes the submatrix of A which uses rows X and columns
Y. The complement of X, R\X is denoted X, and similarly, Y = C\Y. The nonsingular
submatrix A[X;Y]is a mazimal nonsingular submatrix if for all # € R and y € Y, the
larger submatrix A[X Uz;Y Uy] is singular. A maximal nonsingular submatrix in A4 can
be constructed as follows:

Choose X C R and Y C C such that A[X;Y] is nonsingular. For example, choose
X =Y = (). While there exists € X and y € Y such that A[X Uz;Y Uy] is nonsingular,

replace X with X U {2} and replace ¥ with Y U {y}.

Theorem 2.1. The size of a maximal nonsingular submatriz of A is equal to the rank

of A.

Proof. Let A[X ;Y] be a maximal nonsingular submatrix of A. If X = R or Y = C then
the theorem is clearly true, so assume X C Rand Y C C. Let 2 € X and y € Y. Since
A[X U 2;Y Uy] is singular, row 2 is in the row space of A[X;Y U y]. This is true for
all z € X, and so by taking suitable multiples of rows in X, all entries in A[X;Y U y]
can be eliminated. If A = (@;;) denotes the matrix A after the Gaussian elimination of
A[X;Y Uy], then since Gaussian elimination does not affect rank, rank A = rank A.

Suppose there exists ¢ € X and j € Y such that @,;; # 0. Then
det A[X Ui;Y U j] = +a,; det A[X;Y] #0.

This implies that A[X U¢;Y U j] is nonsingular, which is a contradiction, and therefore
di; = 0 for every i € X,j € Y, and rank A = rank A[X;Y]. O
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2.2 Submodularity

The set of all subsets of the finite set X is denoted 2%. A function f : 2¥ — Z is

submodular if the inequality
F(A)+ F(B) > F(ANB) + f(AU B)

holds for all A, B C X.
Theorem 2.2. The rank function on the set of columns of a matriz is submodular.

Proof. Let M be a matrix with rows and columns indexed by X and Y respectively, and
assume A, B CY. Let Z be a maximal set of independent columns in M[X; AN B], and

extend Z to Z, where Z is a maximal set of independent columns in M[X; AU B]. Then

rank (AU B) = |Z|

—|ZNA|+|ZNB|-|Zn (AN B)|

_ _ (2.1)
=|ZNA|+|ZnB|-|Z|
=|ZNA|+|ZNB| - rank (AN B)
Both ZN A and Z N B are independent, and therefore
|ZN Al + |Z N B| < rank A + rank B. (2.2)
Submodularity follows from (2.1) and (2.2). O

The set of all matrices over the field F is denoted by M. A function f: Mr — Z is

submodular if the inequality

FIARX G YA]) + FA[X2; Y3]) > FA[XT N X2 Y1 UY3]) + fFA[XT U Xo5 Y1 NY2))
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holds for all A € M and all subsets of rows X, X5 of A and all subsets of columns Y;, Y;
of A.

Theorem 2.3. The rank function is submodular.

Proof. Let A = (a;;) € Mr, where F is any field. Let X and Y index the rows and

columuns respectively of A, and assume Xy, X3 C X and Y7,Y; C Y. Consider

51 | 1),

where I is the identity matrix, and X indexes the rows and columns of I. For any X' C X

and Y/ C Y, the following holds:
rank A[X';Y'] = rank B[X;Y' U X'] - |X'|.

In particular,

rank A[X;;Y;] = rank B[X;Y, U X;] — |Xy],
rank A[Xy;Y5] = rank B[X;Y, U Xo] — | Xsl,
(2.3)
rank A[X; N X2; Y] UYy] = rank B[X; (Y, UYy) U (X1 UXo)] — | X1 U Xy,

rank A[X; U X2; Y] NYy] = rank B[X; (Y1 NYy) U (X1 N Xo)] — | X1 N Xy

From Theorem 2.2, it follows that

rank B[X;Y; U X ]| +rank B[X;Y,U X3] >

rank B[X; (Y1 U X7) U (Y2 U X3)] +rank B[X; (Y1 UX7) N (Y2 U X)) (2.4)

Using that | X| + | Xo| = | X1 N X+ [ X1 UX,|, and (Y1 NY2) U (X1NX,) C (YTUX)N
(Y2 U X3), the Theorem follows from (2.3) and (2.4). O
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With Theorem 2.3 we can prove that a submatrix formed by the intersection of a
maximal set of independent rows with a maximal set of independent columns is nonsin-

gular.

Corollary 2.4. If X is a mazimal set of independent rows in the matrix A, and Y is a

mazimal set of independent columns in A, then A[X;Y] is nonsingular.
Proof. Let R be the index set for the rows of A, and let C' be the index set for the
columns. By the submodularity of the rank function,
rank A[X;Y]+ rank A > rank A[X;C]+rank A[R;Y].
Since X and Y are maximal independent sets,

rank A[R;Y] = rank A[X;(]=rank A,

and therefore A[X;Y] has full rank. O

2.3 Symmetric matrices

An n xn matrix A is symmetric if it is equal to its transpose: A = AT. A skew-symmetric
matrix is equal to the negative of its transpose: A = —AT. (Unless otherwise specified,
we assuime the field we are working over is the rationals.)

If A is a matrix with rows and columns indexed by V', and X C V| then A[X; X]is

a principal submatriz of A. The principal submatrix A[X; X]is denoted A[X].

Theorem 2.5. If A is a symmetric or skew-symmetric matriz, and X indexes a mazimal

set of independent rows of A, then A[X] is nonsingular.
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Proof. By symmetry, X is also a maximal set of independent columns of A. The theorem

then follows from Corollary 2.4. U

We note that Theorem 2.5 does not hold when A is not symmetric, as shown by the first
row in (§1).
Theorem 2.1 equated the rank of a matrix to the size of its largest nonsingular sub-

matrix. With a symmetric or skew-symmetric matrix, this can be strengthened to the

size of a largest nonsingular principal submatrix.

Corollary 2.6. The size of a largest nonsingular principal submatriz in o symmetric or

skew-symmetric matriz is equal to the rank of the matrix.

Proof. Let A be a symmetric or skew-symmetric matrix. The rank of A is an upper
bound on the size of a nonsingular principal submatrix, and, from Theorem 2.5, there is

a principal submatrix whose size is equal to the rank of A. O

Two properties of the determinant function are that det A[X] = det A[X]T and
det(—A[X]) = (=1)XIdet A[X].

Corollary 2.7. Skew symmetric matrices have even rank.

Proof. If A is skew-symmetric, then A[X]= —A[X]". From the above properties of the
determinant function it follows that a nonsingular principal submatrix of 4 must have

even size. The result then follows from Corollary 2.6. U

2.4 Nomnsingularity of the sum of two matrices

Let A and B be n X n matrices. Suppose every column of A except for one is the same
as the corresponding column in B. Let C' be the n X n matrix with columns equal to

those of A and B, and on the one column that A and B differ, the corresponding column
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of C' is equal to the sum of the column in A and the column in B. For example, if
A= (v1 vz as v4) and B = (u1 vy by va )7 then C' = (u1 vy az+bs v ) The linearity of

the determinant function states that
det A +det B =detC.

Repeated use of this linearity property yields an equation for the determinant of the sum
of two arbitrary matrices. The determinant of the empty matrix appears in the equation,
which by convention is 1. Assume the rows and columns of A and B are indexed by
V CZ,and for X = {ay,...,2x} CV and Y = {y1,...,yx} C V, define sign(X,Y) to
be (—1)2:?:1(””""'@”). The following is then standard.

Theorem 2.8. If A= (a;;) and B = (b;;), where i,j € V, then

det(A+B)= > Y sign(X,Y)det A[X;Y]det B[X;Y].

XCV YCV
IVI=1X|

We prove a weaker version of the theorem, where sign(X,Y) is replaced with +1.

Proof. For X C V, define C* = (¢;;) to be the V x V' matrix where

a;;, ifie X;
Cij =
bij, ifie X.
That is, CX[X;V] = A[X;V], and CX[X;V] = B[X;V]. Repeated use of the linearity

of the determinant function on the rows of A 4+ B gives

det(A+ B)= ) detC* (2.5)
Xcv
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For X,Y C V, define DXV = (d;;) to be the V x V matrix where

a;;, ift€ X and j€Y;

dij={b;, ifiecX andjeVY;

0, otherwise.

Then DYV[X;Y] = A[X:;Y] and DX¥Y[X;Y] = B[X;Y]. All other entries of D*+¥ are

DX’Y

zero, and therefore is singular whenever |X| # |Y|.

Repeated use of the linearity of the determinant function on the columns of CX gives

detC¥ = )~ det DXV, (2.6)
YCcv
[X|=1Y]
When | X| =Y, then
det DXY = + det A[X;Y]det B[X;Y]. (2.7)
Combining equations 2.5 to 2.7, the theorem follows. O
2.5 Pfaffians
Let A be a finite set, and suppose the subsets Xy,..., X; C X are disjoint and nonempty.

If A is the union of the sets X;, then II = X,..., Xy is a partition of X'. For X =

{1,...,2n}, let P(2n) be the set of partitions of A" into pairs. For example,

P ={{(1,2),3,9}, {13,249} {(149,23)}}
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For IT = {(i1,71)y- -, (iny jn)} € P(2n), define o7 to be the following permutation:
1 2 -« 2n—-1 2n
o =

The sign of oy is denoted sign(II). The sign function is invariant on the order of the

pairs in IT: permutations (111 ]21 g ;;) and (é ]22 3 ﬁ) have the same sign. Changing the

order within a pair, however, affects the sign function by a factor of —1: sign(il1 ]21) =
—sign(} 2).

Let A = (a;;) be a 2n X 2n skew symmetric matrix, and let II € P(2n). Define

apg = sign(ﬂ)ailjl o -a,'n]‘n.

The —1 factor that happens when the order within a pair (i, jx) of IT changes, is cancelled
with the —1 that comes from a;,;, = —a;,j,, and therefore ajr is well defined. The Pfaffian

of A is defined as

ITeP(2n)
For example,
0 al2 @13 G4
—aiz 0 (23 Qo4
pf = (12034 — Q13024 + G14023.

—ai3 —azz 0 asg

—a14 —ag4 —azs 0

If Ais m x m and m is odd, then P(m) is empty and pf A is identically zero. The

following two theorems relate the Pfaffian of A to the determinant of A, and give a row
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expansion formula for computing the Pfaffian. For their proof, see Godsil [16].

Theorem 2.9 (Cayley). If A is a skew-symmetric matriz, then
det A = (pf A)?.

Theorem 2.10. If A = (a;;) is a skew-symmetric matriz with rows and columns indezed

by X, then

pf A= Z(—1)1+iaupf A[X\(1U )]



Chapter 3

Matrix formulations

The adjacency matric A = (a;5), and the incidence matric B = (b;;), are two ways to
represent the graph G = (V, E) by a matrix. In the adjacency matrix, the rows and
columns are indexed by the vertices of G, with a;; = 1 if vertex ¢ is adjacent to vertex j,
and a;; = 0 otherwise. The incidence matrix has rows indexed by V and columns by E,
and is defined by b;; = 1 if vertex 7 is incident with edge j, and b;; = 0 otherwise. Graph
theory problems can often be formulated in terms of an appropriate matrix representation
of the graph: the ij!® entry of A* is the number of walks of length % between vertex i and
vertex j; a set of edges in G does not contain a circuit if and only if the corresponding
columns of B are independent over F.

Matrix representations for undirected graphs, directed graphs, and graphs with both
directed and undirected edges are given in this chapter. We explain how these represen-
tations determine the existence of specific structures, namely matchings, branchings, and

matching forests, in the associated graphs.

13
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3.1 The Tutte matrix

A matching in a graph G = (V, E) is a subset M of E such that every v € V is incident
with at most one edge in M. If M is a matching and v € V is incident to an edge in
M, then v is M-covered. A vertex which is not M-covered is M-ezposed. A mazximum
matching in G covers a maximum number of vertices, and the number of vertices missed
by a maximum matching is the deficiency of G, denoted def(G). The number of vertices
covered by a maximum matching is then |V| — def(G). A matching that covers every
vertex is perfect.

Let G = (V, E) be a graph, and let {z. : e € E'} be algebraically independent inde-
terminates. Form the skew-symmetric Tutte matric T = (t;;), with rows and columns

indexed by V, and

+z;, ifij € E,
tij =
0, otherwise.
Suppose G has an odd number of vertices. Then G can not have a perfect matching, and
we know from Corollary 2.7 that the skew-symmetric matrix T is singular when n is odd.

When G has an even number of vertices, consider the Pfaffian of T':

pfT= > b

IIeP(n)

Each IT € P(n) partitions V into pairs, and byy # 0 if and only if there is a perfect
matching in G which corresponds to II. Furthermore, by, = £by7, only when II) = II,,
and hence there is no cancellation of nonzero terms in the Pfaffian. Therefore G has a
perfect matching if and only if the Pfaffian of T is nonzero. Using Theorem 2.9 to equate

the square of the Pfaffian with the determinant, the following theorem is immediate.
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Theorem 3.1 (Tutte). If G = (V, E) is a graph with Tutte matriz T, then G has a

perfect matching if and only if T is nonsingular.

Suppose A C E. The subgraph of G whose vertex set is the ends of A and whose
edge set is A is denoted G[A]. The subgraph G[E\A] can be denoted as G\ A4, and when
A = {e}, we write G\a for G\{a}.

Similarly, if X C V, then G[X] denotes the subgraph with vertex set X and edge set
all e € E such that both ends of e are in X. The subgraph G[V\X] can be denoted as
G\X, and when X = {v}, we write G\v for G\{v}.

Corollary 3.2. If T is the Tutte matriz for the graph G = (V. E), and X C V, then

G[X] has a perfect matching if and only if T[X] is nonsingular.
Proof. This follows from Theorem 3.1. U

Corollary 3.3. IfT is the Tutte matriz for the graph G, then

rank T = |V| — def(G).

Proof. By Theorem 2.6, the rank of T is the maximum size of X C V such that T[X]
is nonsingular. By Corollary 3.2, T[X] is nonsingular if and only if G[X] has a perfect

matching. O

Let G = (V, E) be a bipartite graph with vertex partition V' = (V1,V3). If T is the
Tutte matrix for G, and A = T[V}; V3], then
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Therefore, in the bipartite case, the Tutte matrix 7' can be restricted to T[Vy; V3]. We

refer to T[V1; V3] as the bipartite Tutte matriz for G.

Corollary 3.4. If G = (V, E) is a bipartite graph with bipartite Tutte matriz T, then the

rank of T is the number of edges in a mazimum matching of G.

Proof. The rank of the bipartite Tutte matrix is half the rank of the corresponding
Tutte matrix. By Corollary 3.3, this is the same as half the number of vertices covered
by a maximum matching in G, which is equal to the number of edges in a maximum

matching. O

3.2 The branching matrix

Let G = (V, E’) be a directed graph. The directed edges E in G are called arcs, and if
an arc is directed from vertex v to u, then v is the tail of the arc, and u is the head. A
branching in G is a subset F C E where every vertex in V is the head of at most one arc
in F, and F contains no cycles. (See Figure 3.1.) A vertex which is not the head of any

arc in F is called a root of F; and if v € V is not a root of F', then F covers v.

b

€

Figure 3.1: A branching with root a.



CHAPTER 3. MATRIX FORMULATIONS 17

Let {z;; : (¢,7) € E} be algebraically independent indeterminates. The branching

matriz B = (b;;) for G has rows and columns indexed by V', and

—wij,  ifi#jand (i,j) € E;

bij = 10, if i # j and (i,j) ¢ E;

The entries in any row of B sum to zero, and therefore the branching matrix is singular.
A branching with exactly one root, such as the one indicated in Figure 3.1, is an arbores-

cence. The matrix in 3.1 is the branching matrix for the graph in Figure 3.1. (Note that

Tae 7£ xea-)

a b c d e
a Zeq 0 0 0 —Zeq
b 0 Zap 0 —Zqp 0
| —rae —woe (Tact+wpe) 0 0 (3.1)
d| —xaa 0 0 Tad 0
e \ —Tge 0 0 —Zge (Tge + Tae)

Theorem 3.5 (Chaiken and Kleitman). If B is the branching matriz for the directed
graph G = (V, E’), and v € V, then there is a one-to-one correspondence between arbores-

cences in G, rooted at v, and terms in the determinant of B[V \v].

Proof. Assume V\v = {1,...,n} and for i € V\v, define E; to be all a € E such that
7 is the head of a. Let II = {Ei}ieV\u7 and let IT* be the transversals of II. That is,
IT* consists of all arc sets aqy,as,...,a, such that a; € E, For all 4 € II*, define B,, to

be the branching matrix corresponding to G, = (V, p). Note that B, has one different
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indeterminate per row. Using the linearity of the determinant function, we can write

det B[V\v] = )  detB,. (3.2)
pell*
If 4 € II* is not a branching, then G,[U] has a circuit, for some U € V\v. It follows that
B,, decomposes into block diagonal B,[U] and B,[V\(vUU)]. The columns of B,,[U] sum
to zero, and therefore B, is singular.

Suppose p € II* is a branching. Up to simultaneous row and column permutations,
B,, is lower triangular. For example, if the order of the rows in B, corresponds to the
order of a depth first search in the branching u, then B, will be lower triangular. Since
each diagonal entry of B, is nonzero, it follows that B,, is nonsingular. Since simultaneous
row and column permutations do not affect the sign of the determinant and each diagonal
term in B, is positive, the determinant of B,, is positive.

Only transversals p € II* that are branchings contribute to (3.2), and the matrices
corresponding to the u € II* that are branchings each have a unique set of indeterminates,

and therefore there is no cancellation among the branching terms. O

Corollary 3.6. The arc set A is an arborescence rooted at v if and only if Hz’jeA Tj; 18

a term det B[V\v].

Corollary 3.7. If B is the branching matriz for the directed graph G = (V, E’), and

v €V, then G has an arborescence rooted at v if and only if B[V\v] is nonsingular.
Theorem 3.5 can be generalized.

Theorem 3.8 (Chaiken and Kleitman). If B is the branching matriz for the directed
graph G = (V, E’), and U C 'V, then there is a one-to-one correspondence between branch-
ings of G that cover U and terms in B[U]. In particular, there is a branching that covers

U if and only if B[U] is nonsingular.
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Theorem 3.8 can be proved by the same method as Theorem 3.5.

A mazimum branching in a directed graph is a branching with a maximum number
of heads, or equivalently, a minimum number of roots. If B is the branching matrix for
G = (V, E’), and B[U] is nonsingular for some U C V | then by Theorem 3.8, there
is a branching in G with |U| heads. Since the rank of B is an upper bound on the
size of a nonsingular principal submatrix of B, the rank of B is also an upper bound
on the number of heads in a branching of . This limit is attained; that is, G has a
branching with exactly rank B heads. To prove this we use an analogy to Theorem 2.5.
(If U C V is a maximal set of independent rows in a skew symmetric matrix A, then A[U]
is nonsingular.) For the branching matrix, the assumption that the set of independent

rows is maximal is not needed.

Lemma 3.9. If B is the branching matriz for G = (V, E’) and the rows U are independent

in B, then B[U] is nonsingular.

Proof. The proof is by induction on |U|, and is clearly true when U is empty. Let U C V
be k independent rows in B, and assume B[U\u] is nonsingular for all u € U. Choose
a minimal set X where U C X C V and rank B[U; X]| = rank B[U;V]. If X # U, then
choose z € X\U, and find u € U such that b, , # 0. (Such a u exists since B[U; V] does
not have any zero columns.) Then by, # 0, and by, has an indeterminate z that occurs
exactly once in B[U\u]. If B[U](z + 0) denotes the matrix B[U] with 0 substituted for

z, then by the linearity of the determinant function,

det B[U] = t+zdet B[U\u] + det B[U](z + 0).

By the induction hypothesis, B[U\u] is nonsingular, and therefore B[U] is nonsingular.
O
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It can now be shown that the rank of a branching matrix is equal to the maximum

number of heads in a branching of the associated graph.

Theorem 3.10 (Chaiken and Kleitman). IfG = (V, E’) 18 a directed graph with branch-

ing matriz B, then rank B s the mazimum number of heads in a branching of G.

Proof. From Theorem 3.8, the rank of B is an upper bound on the number of vertices
covered by a branching. If U C V is a maximal set of independent rows in B, then by
Theorem 3.9 B[U] is nonsingular, and by Theorem 3.8 there is a branching in G that

covers U. O

3.3 The matching forest matrix

A mized graph has both arcs and undirected edges. If G = (V| E, E’) is a mixed graph,
then (V,E) is an undirected graph, and (V, E’) is a directed graph. The underlying
undirected graph for G is the graph with all arcs in G replaced with undirected edges. In
a mixed graph, undirected edges have two heads: if e € F is incident to vertices v and v,
then both u and v are a head of e. The set F C EU E is a matching forest (Giles [14])

in G if
e cach v € V is the head of at most one element of F', and
e I contains no circuits in the underlying undirected graph for G.

So if F is a matching forest for G, then F\E is a matching in (V, E), F\E is a branching in
(V, E’), and F' is a forest in the underlying undirected graph for G. A mazimum matching
forest is a matching forest with a maximum number of heads. A vertex which is the head
of an arc or edge in a matching forest is said to be covered by the matching forest, and

a perfect matching forest covers all of V. Vertices not covered by a matching forest are
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roots of that matching forest and the deficiency of G is the number of roots of a maximum

matching forest.

d

g

Figure 3.2: A perfect matching forest in a mixed graph

If T is the Tutte matrix for (V, E) and B is the branching matrix for (V, E), then

T + B is a formulation for finding matching forests in (V, E, E).

Theorem 3.11. If G = (V, E,E’) is a mized graph with Tutte matriz T for (V, E) and
branching matriz B for (V, E’), then G has a perfect matching forest if and only if T + B

s nonsingular.

Proof. Suppose det(T 4+ B) # 0. From Theorem 2.8 there exist X,Y C V such that
T[X,Y] is nonsingular and B[X,Y] is nonsingular. Let Z C V be such that X U Z is a
maximal set of independent rows in 7. By Theorem 2.5, T[X U Z] is nonsingular, and by
Theorem 3.1 there is a perfect matching M of G[X U Z]. The rows X are independent in
B, and therefore so are X U Z. By Lemma 3.9, B[X U Z| is nonsingular, and by Theorem
3.5 there is a branching F of (V, E’) with heads X U Z. Letting J = M UF, J is a perfect
matching forest of G.

To prove the converse direction, suppose J is a perfect matching forest of G. Then

for some X C V, M = J N FE is a matching which covers X, and F = J N Eis a
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branching which covers X. By Theorems 3.1 and 3.5 respectively, both T[X] and B[X]

are nonsingular, and therefore det T[X]det B[X] # 0. If Y C V and Y # X, then any

term in the determinant of B[Y] has a different set of indeterminates than any term in the

determinant of B[X], and therefore det T[Y]det B[Y] # det T[X] det B[X]. By Theorem

2.8, T 4+ B is nonsingular. O

If all edges in G are undirected, then the branching matrix for G is zero, and Theorem
3.11 reduces to Theorem 3.1. As with the corresponding theorems for undirected graphs
and directed graphs, Theorem 3.11 generalizes for a matching forest covering U C V.

The proof is similar to Theorem 3.11.

Theorem 3.12. If G = (V, E,E’) is a mized graph with Tutte matriz T for (V, E) and
branching matriz B for (V, E’), and U C 'V, then B[U] is nonsingular if and only if G[U]

has a perfect matching forest.

It was previously shown that the rank of the Tutte matrix is the number of vertices
covered by a maximum matching in the associated undirected graph (Corollary 3.3), and
that the rank of the branching matrix is the number of heads in a maximum branching in
the associated directed graph (Theorem 3.10). Similarly, the rank of the matching forest
matrix is the number of heads in a maximum matching forest in the associated mixed
graph. We first prove that similar to the Tutte matrix and the branching matrix, the

matching forest matrix has a maximal nonsingular submatrix which is principal.

Lemma 3.13. Let G = (V, E, E’) be a mized graph with Tutte matriz T and branching
matriz B. If X is a mazimal set of independent rows in T 4+ B, then (T + B)[X] is
nonsingular, and therefore there is a nonsingular principal submatriz in T + B with size

equal to the rank of T + B.

Proof. Let X C V be a maximal set of independent rows of T 4+ B. Then there exists

Y C V such that (T+ B)[X, Y] is nonsingular, and from Theorem 2.8 for the determinant
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of the sum of two matrices,

> ) +detT[R,C]det BIX\R,Y\C] # 0.

RCX CCY
Ic|=IR|

Therefore there exists R C X and C' C Y such that both T[R,C] and B[X\R,Y\C]
are nonsingular. Choose a maximal set of rows Z such that R C Z C V and T[Z; V] is
nonsingular, and by Lemma 3.9, B[X\(RU Z)] is nonsingular. Therefore, again by the
formula in Theorem 2.8 for the sum of two matrices, (I'+ B)[X U Z] is nonsingular, and

since X is a maximal set of independent rows of T'+ B, Z C X. O

Theorem 3.14. If T + B is the matching forest matriz for the graph G, then the rank

of T + B is the number of heads in a mazrimum matching forest of G.

Proof. From Theorem 3.12, the number of heads in a maximum matching forest in G
is equal to the size of the largest nonsingular principal submatrix of T'4+ B, and from
Lemma 3.13, T'+ B has a nonsingular principal submatrix with size equal to the rank of

T+ B. O

When G is an undirected graph, Theorem 3.14 reduces to Corollary 3.3. When G is

directed, Theorem 3.14 reduces to Theorem 3.10.



Chapter 4

Optimal Evaluations

If the entries of an n X n matrix M are rational, then the determinant of M can be
computed in O(n?) arithmetic steps. When M has indeterminate entries, the determinant
of M has up to n! terms, and therefore cannot be computed in polynomial time.

Let M be a matrix obtained by substituting rational values for the indeterminate
entries in M. We call M an evaluation of M. If z is an indeterminate in M then 3
denotes the value of z in M, and M(z < z) denotes the evaluation with 2 substituted
everywhere for z.

Suppose the determinant of M is zero. Then for every value of Z, the determinant of
M is also zero, and therefore an evaluation of a singular matrix is also singular. However,
if M is nonsingular, it is possible to choose a singular evaluation M. TFor example,
M = (2 2) is nonsingular, but any evaluation with zZ3 = Z; is singular. If M is an
evaluation of M and rank M = rank M, then M is optimal. The methods for finding

optimal evaluations given in this chapter are used in the algorithms of Chapter 5.

24
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4.1 A Matrix Decomposition

A row or column in the matrix M = (m;;) is avoidable if it can be removed from A
without changing the rank of M. Equivalently, an avoidable row is a linear combination
of other rows in M.

Suppose the rows and columns of M are indexed by X and Y respectively, where X
and Y are disjoint. If U C X and V C Y, then M\ (U UV) denotes the matrix M with
rows U removed, and columns V' removed; that is, M\(UUV) = M[X\U;Y\V]. When
U={u}, M\u is used instead of M\{u}. (We note that in Chapter 5 where the results
of this chapter are applied, the row and column indices are not disjoint. However, for
convenience here we will use this notation, and the full form M[X\U;Y\V] will be used
only when necessary.) If y € UUV and y is not avoidable, then y is unavoidable, and
rank M\y = rank M — 1. There are two possibilities with respect to the avoidable set
of M\y compared to the avoidable set of M: a row or column that was avoidable before
y was removed will still be avoidable after the removal of 3, and hence the avoidable set
does not decrease, but a row or column that was unavoidable in M may become avoidable
in M\y.

The following decomposition of a matrix M is from Geelen [12]:

D(M)={2 € XUY :rank M\z =rank M}
AM)={2 € XUY : D(M\z)=D(M)},

C(M) = (X UY)\(D(M) U A(M)).

The avoidable rows of M are denoted by D®(M), and DY (M) denotes the avoidable
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columns. Similarly,

AR(M) = AM)N X, A%(M) = A(M)NY,

CR(M)=C(M)NX, CYM)=C(M)NY.

When the context is clear, D, C, and A are used for D(M),C(M), and A(M) respectively.
The rank 3 matrix (4.1)

has the following decomposition:

DR:{evf}v CR:{9}7 ARZ{h}v

DC = {avb}v CC = {Cv d}7 AC =

When a row or column is removed from a matrix, the rank decreases by at most one.

Theorem 4.1. If W is a set of rows and columns in the matriz M, then
rank M < rank M\W + |W]|.

We will prove that Theorem 4.1 is met with equality when W = A(M) U CE(M).

Lemma 4.2. If z is unavoidable in M, then D(M) C D(M\z). Specifically,
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(1) If v € A(M), then D(M\z) = D(M).
(ii) If = € CR(M), then DR(M) = D®(M\z), and DY (M) C DY (M\z).
(iii) For each x € CE(M), there exists = € CY(M) such that = € DY (M\z), and
x € DR(M\z).

Proof.

(i) This is a restatement of the definition of A.

(ii) Let * € C®(M). Since z is unavoidable, removing = does not decrease the avoidable
set. Further, since x is not in A, the avoidable set must actually increase. Removing
an unavoidable row does not affect avoidable rows, so the new avoidable element

must be a column.

(i) Let x € CR(M), and let z € DY(M\2)\D®(M). (Such a z exists, by part (ii).) If
z € AY(M) then z would be unavoidable in M\z, and rank M\{z, 2} = rank M —2.
This is a contradiction, since z € D(M\xz) implies rank M\{z, z} = rank M\z =

rank M — 1, and therefore z € CY(M).

O

Parts (i¢) and (44i) could equivalently have been expressed in terms of € CY(M). Part
() describes the effect on the avoidable set when an element of A is removed from the

matrix; the effect on the sets A and C is given by the following theorem.

Theorem 4.3 (Geelen). Ifx € A(M) then

D(M) = D(M\z),
C(M)=C(M\z), and

A(MN\z = A(M\z).
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Proof. Again, the avoidable set doesn’t change by definition. Let z € A(M) and let
y € C(M). By Lemma 4.2(7¢1), there exists 2 € C'(M) such that 2 € D(M\y), and hence
z € D(M\(yU z)). By Lemma 4.2(3), 2 ¢ D(M\z) and therefore the avoidable set of
M\z does not equal the avoidable set of M\{z,y}. Using 4.2(i7), y € C(M\z), and
therefore, when 2 € A(M), C(M) C C(M\z).

Suppose there exists u € A(M)\z such that v ¢ A(M\z). By Lemma 4.2 (¢), u is

unavoidable in M\z, and therefore v € C'(M\z), and

rank M\{z,u} = rank M\z — 1 = rank M — 2. (4.2)

By Lemma 4.2 (ii), u € C'(M\z) implies there exists v € C'(M\z) such that v is in the

avoidable set of M\{z, y}. This gives

rank M\{z,v} =rank M\z — 1 = rank M — 2 (4.3)

rank M\{z,v,u} = rank M\{z,u} = rank M — 2 (4.4)

Further, v € C(M\z) means v ¢ D(M) and since D(M\u) = D(M), it follows that
v & D(M\u). Therefore

rank M\{u,v} = rank M\u — 1 =rank M — 2. (4.5)

Two of x, u, v must be both columns or both rows, but all choices for pairs to be in the
same row or in the same column lead to a contradiction. For example, suppose x and v
are both rows. From equation (4.5), v is unavoidable in M\u, and from equation (4.4), v
is avoidable in M\{u, 2 }. This contradicts Lemma 4.2, and therefore A(M)\z C A(M\z).

By definition, D(M) = D(M\«z) for all z € A(M). Therefore, if C(M) C C(M\z)
and A(M)\z C A(M\z), then C(M) = C(M\z) and A(M)\z = A(M\=z).
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With Theorem 4.3, the decomposition of a matrix can be related to its rank.

Theorem 4.4 (Geelen). If M is a matrizc with decomposition D,C, A, then

rank M = |A|+ |[C| 4 rank M[D®; DY uCY].

Proof. From Lemma 4.3, each time an element from A is removed from M, the decompo-
sition stays the same. Hence when all elements from A are removed, the rank decreases

by the size of A:

rank M = |A| 4 rank M[D®uC®; DY uCY]. (4.6)

The sets C and D for M[D® u C®; DY U CY] are the same as the C' and D for M, and
the rank of M[D® U C®; DY U CY] decreases by one each time an unavoidable row is
removed. By Lemma 4.2(ii), removing a row from C does not affect row dependencies,

and therefore

rank M[D® U C®; DU CY) = |CE| + rank M[D®; D U CY]. (4.7)

Combining equations (4.6) and (4.7) gives Theorem 4.4. O
Corollary 4.5. Every row and column of M[D®; DC U C®] is avoidable.

Proof. Suppose M[D®; DY U C®] has an unavoidable column ¥. Since all columns from
A have been removed, y € C(M[D®; DY UC®]). From Lemma 4.2, there must also be a
row in C'(M[D®; D UC®]). However, by Theorem 4.3, all the rows in M[D?; DY U(CY]

are avoidable, and therefore M[D®; DY U CY] does not have an unavoidable column. [
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4.2 Series Classes

Two avoidable columns z and y of a matrix M are said to be in series, or codependent, if
rank M\{z,y} = rank M —1. If M is skew symmetric with row and column index V| and
x and y are avoidable, then = and y being in series is equivalent to rank M[V\{z,y}] =

rank M — 2. The following is standard.
Theorem 4.6. Codependence is transitive.

Proof. Let z,y and z be columns in a matrix M, and assume that z and y are codepen-

dent, and that z and z are codependent. Since y is avoidable,

rank M\y = rank M, (4.8)

and by the definition of codependent,

rank M\{z,y} = rank M\{y, z} = rank M — 1. (4.9)

Using the submodularity of the rank function,

rank M\{z,y} + rank M\{y, z} > rank M\{z,y, z} + rank M\y. (4.10)

Substituting (4.8) and (4.9) into (4.10) gives

rank M\z — 2 > rank M\{z,y, z}. (4.11)

Since rank decreases by at most one each time a row or column is removed, the inequality
of (4.11) is met with equality. Therefore the rank of M\{z} decreases by one when z is

removed, and rank M\{z, z} = rank M — 1. It follows that « and z are codependent. [
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Using the transitivity of codependence, the avoidable columns of M can be partitioned
into sets Dy, ..., Dy for some integer k, such that two columns z and y are in the same
set Dy, if and ounly if rank M\{z,y} = rank M — 1. The sets Dy,..., Dy are called the
series classes of M. Series classes in the context of matroids are discussed in Chapter 7.
Series classes determine which columns become unavoidable once an avoidable column is
removed. If D is a series class of M, the rank of D refers to the rank of the submatrix of

M of the columns in D.

Theorem 4.7. If there are k series classes on the columns of M, and M has n columns,

then rank M > n — k.

Proof. When one column is removed from each series class, the remaining » — k columns

are unavoidable. O

Corollary 4.8. If D is a series class on the columns of M, then the rank of D is at least

ID| - 1.

4.3 Improving Evaluations

One method for finding an optimal evaluation is to use a random evaluation, where
the indeterminates are chosen from a large set. This is discussed in Section 6.4. The
algorithms in Chapter 5 use a different approach: start with an arbitrary evaluation, and
change the value of an indeterminate if doing so improves the evaluation. If an evaluation
is not optimal, then a change which increases the rank is an improvement. Such a change
is not always possible. For example, the bipartite graph G in Figure 4.1 has a perfect
matching. (Edges af, be, ch, dg is one example.) From Corollary 3.4, the bipartite Tutte
matrix for G is nonsingular, but the evaluation in (4.12) is singular, and there is no single

change to an indeterminate evaluation which results in an optimal evaluation. A less
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e f g h

Figure 4.1: The bipartite graph G

restrictive definition for an improved evaluation than one with higher rank is needed.

Zea Reb Rec 0 1 -1 -1 0

Ztq 0 0 zpg ~ 2 0 0 1
r—|* A I (4.12)

Zga 0 0 24 2 0 0 1

0 2z Zhe Zhd 0 1 1 1

Improvement in an evaluation is denoted by ». If Ml and Mz are two evaluations of the

matrix M, then ]\Afz > Ml means either:
(7) rank M, > rank M; or
(¢¢) rank M, = rank M, and D(]\%) D D(]\Z); or
(iii) rank M, = rank My, D(M,) = D(M), and C(My) D C(My).

Strict improvement is denoted by . Conditions (¢i¢) and (ui¢) can alternatively be stated

as:
(v1') rank M, = rank ]\Afl, and for any row or column z, rank ]\Afz\x > rank ]\Afl\w,

(13i") rank M, = rank .7\/]17 and for any row z there exists a column y such that rank ]\/Ivz\{x, y} >

rank M;\{z,y}.
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Let D,C, A be the decomposition of M, where M is a matrix with indeterminate
entries. If an indeterminate occurs exactly once in M[D®; D], then the rank of M can

be increased with a single change to the value of the indeterminate.

Theorem 4.9 (Cunningham and Geelen). If » occurs exactly once in M[D?; D"]
and m times in M, then for any S C Z with |S| > m, there exists x € S such that

rank M (z < ) > rank M.

Proof. Assume that z occurs only once in M[D*; D], in row i and column j, and that
z occurs m times in M. Let ay, ..., a,, be indeterminates, and let Ma be the evaluation
M with the m entries of replaced with Z+aq,...,Z+ ay,,, such that Z+aq isin Ma [7; 7]
Choose rows X and columns Y such that ¢ ¢ X, j ¢ YV, and M[X;Y] is a maximal

nonsingular submatrix of M. Then

m
detMa[XUi;YUj]:chak +play, ..., am) +c, (4.13)
k=1
where ¢, ..., ¢, and ¢ are constants, and each term in the polynomial p(aq, ..., a,) has

degree at least 2 and at most m.
If @y =0fork=1,...,m, then c:detM[XUi;YUj]7 and since M[XUi;YUj] is
singular, ¢ = 0. If d¢ = 0 for Kk =2,...,m, then ¢; = det M[X;Y], and therefore ¢; # 0.
Let [ € {2,...,m}, and assume q¢; is in row ¢’ and column j’ of M. If i Z X Uior
J €Y Uj, then ¢ is not in MG[X U ;Y U], and hence ¢; = 0. Suppose i € X Ui and
J eYUy. Ifay=0for k€ {2,...,m}\[, then ¢ = +det M[(Xui)\i’; (YU7)\j']. From
the assumption that z appears only once in M[D®; D], either i/ or j’ is unavoidable,

hence M[(X Ui)\i’; (Y U j)\j] is singular. Therefore

=0 foralll € {2,...,m}. (4.14)
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Combining ¢ = 0,¢; # 0 and (4.14), equation (4.13) simplifies to
detMa[XUi;YUj]:clal +pla, ... am). (4.15)

Since the linear term ¢ya; is nonzero, it follows that Ma [X U;Y Uj]is nonsingular.
Let a be an indeterminate, and set a; = a — 2 for all k € {1,...,m}, so that M,
replaces each Z in M with a. The determinant of M(Z +— a)[X U Y Uj]is a non-zero
polynomial of degree at most m in a, and therefore has at most m integer roots. If .S is
any set of more than m integers, then there exists € S such that M(Z — ) [ XU Y Uj]

is nonsingular, and rank M(Z ) > rank M. O

When z does not occur exactly once in the avoidable set, an improvement can still be
guaranteed, but the required size of the set S may increase. Assume n is either the
number of columns in M or the number of rows in M, whichever is greater.

Lemma 4.10. If z occurs m times in M, and |S| = 2mn + k where S C Z, then there

exist at least k integers x € S such that M(Z —z) =M.

Proof. Let D,C, A be the partition of M, and assume S C Z, with |S| = 2mn + k. Let
i€ DR(M) and j € DC(M)7 and letM[X ;Y] be a maximal nonsingular submatrix of M
with ¢ € X and 7 € Y. The determinant of M[X; Y] is a polynomial of degree at most m
in 2z, and if z is not a root of the polynomial, then either rank M(Z < z) > rank M, or
rank M(Z + z) = rank M and i and j remain avoidable. There are at most n pairs ¢, j
to consider, and hence at most mn possible z for which either rank M(Z  z) < rank M
or rank M(Z + z) = rank M and D(M(z — z)) P D(M) Therefore, there exists
S’ C S such that |S'| = mn + k, and for all 2 € S’, either rank M(z + x) > rank M, or
rank M (z < x) = rank M and D(M(z < z)) D D(M).

If © € S is such that M(Z —x) Y M, then C’(M) is nonempty. Let ¢ € C’R(M). From
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Lemma 4.2 (i47), there exists j € CC(M) such that rank M\{i,j} = rank M — 1. Let
M[X; Y] be a maximal nonsingular submatrix of M\{z,]} The determinant of M[X; Y]
is a polynomial of degree at most m in Z, and therefore, at most m values of Z can make ¢
or j unavoidable in M(z < ). There are at most n sets of rows and columns to consider,

so there are at most mn possible such . Since |S/| = mn + k, this leaves at least k

different 2 € S’ such that M(z « z) = M. O

Lemma 4.11. Suppose Ml and Mz are matriz evaluations, and D, C, A is the partition

ofﬂl. Ifﬂz - Ml and rank MZ[DR;DCUC'C] > rank Ml[DR;DCUCC], thenl\% - ]\Afl

Proof. Suppose rank M = rank M, . Since rank M; = |A|+|CE|+rank M;[DR; DCUC?]
and rank M,[DR; DCUCC] > rank M;[DR; DUC?], the partition of Mj is different than
the partition of M. By assumption, D(M;) D D, and if D(M,) = D then C'(M;) D C.
It follows that either D(Mz) D D, or the avoidable sets of Ml and Mz are the same, and

C (M) D C. O

Statements similar to Theorem 4.9 can be made about improvements when an inde-

terminate occurs once or twice in M[D®; DY U CY].

Theorem 4.12 (Geelen).
(i) If z occurs exactly once in M[D®; D U CY] and m times in M, then there erists

re{l,...,2mn+ 2} such thatM(z(—w) >~ M.

() If z occurs exactly twice in M[DT; DY UCC], m times in M, and is in two different
series classes with respect to the columns of M [D®, DY U CY], then there exists

re{l,...,2mn+ 2} such thatM(z(—w) = M.

Proof.
(i) From Theorem 4.9, we can assume z occurs in M[D®; CY]. If S = {1,... ,2mn+2},

then from Lemma 4.10, there are at least 2 different z € S such that M(Z —z) -
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(i)

M. From Corollary 4.5, every row and column of M[DR; DY U] is avoidable, so
applying Theorem 4.9 to M[DR; DY U Y], it follows that in any set with at least

2 integers, there is an integer z in the set such that
rank M[DF; D¢ UCC)(2 « ) > rank M[D"; D U C“].

The theorem follows from Lemma 4.11.

Suppose m,; = z and mpr = z, where columns j and k are in two different
series classes of M[DR;D? U CC]. Then there exist X’ C DE\{i} and Y’ C
(DY U C9\{j,k} such that M[X’; Y’] is a maximum nonsingular submatrix of
M[D®: D U CY]. The determinant of M[X’ U {i};Y’ U {j}] is linear in %, and
therefore any change in Z will increase the rank of M[DR;DC U CY]. By Theo-
rem 4.4, either the rank of M increases, or the decomposition changes. There are
at most mn values for Z which make an avoidable row or column unavoidable, and
at most mn values for Z which remove a row or column from C. If z is not one of

these 2mn values and 2 is not the present value of z, then M(Z — ) > M.



Chapter 5

Rank completion algorithms

The formulations of chapter 3 involve calculating the rank of a matrix with indeterminate
entries. From the discussion in Section 6.4, the formulations are not directly useful
computationally. For example, when G is a bipartite graph with bipartite Tutte matrix
T, there are as many terms in the determinant of 7' as there are perfect matchings in G,
and therefore computing the determinant of T' has the same order as counting all perfect
matchings. Counting the number of perfect matchings in general graphs, even in the
bipartite case, is N"P-hard (Lovész and Plummer [22], pg. 307).

In the maximum branching problem for a directed graph, the substitution of any
positive rational for each indeterminate yields an optimal evaluation. This is because
such a substitution ensures each term in the determinate is positive, and therefore one
term in the permutation expansion cannot cancel another term. A similar approach is not
always possible for undirected and mixed graphs; there are Tutte matrices and matching
forest matrices for which every evaluation has both positive and negative terms in the
determinant.(See Chapter 6 for examples of such matrices.) Algorithms that use the
matrix decomposition to find an optimal evaluation of the bipartite Tutte matrix, the

Tutte matrix, and the matching forest matrix are given here. Each algorithm follows the

37
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same general method: given an evaluation M of M and a set of integers S, if there exists
an indeterminate z of M and a € S such that M(Z — a) - M, then replace M with

M(z < a).

5.1 An optimal evaluation of the bipartite Tutte matrix

An arbitrary evaluation of the bipartite Tutte matrix of a graph is either optimal, or can
be improved by changing the value of a single indeterminate. A stronger version of the

following theorem is in Geelen [13].

Theorem 5.1. If T is the bipartite Tutte matriz for the bipartite graph G = (V,E),
and T is an evaluation of T, then either T is optimal, or there exists e € E and a €

{1,...,2n+ 2} such that T(z, + a) > T.

Proof. Let D, A be the partition of T. If z is in T[D"; DY), then since every indeter-
minate occurs only once in the bipartite Tutte matrix, it follows from Theorem 4.9 that
rank T(Z < 2) > rank T for any  # 2.

Similarly, if z is in T[D®;CY], then by Theorem 4.12(4), there exists an integer z in
{1,...,2n+ 2} such that T'(Z « z) = T.

Both the rank and the size of the avoidable set are bounded, so improvements can be
made until the partition D, C', A of the evaluation T is such that all entries in T[D®; DU

C°] are zero. For such an evaluation,
rank T[D®; DY U €] = rank T[D®: D UC] = 0. (5.1)

With (5.1) and Theorem 4.4, it follows that rank T = |A| + |C®|. Theorem 4.1 states
that rank T < |A| + |C*|, and since the rank of T is an upper bound on the rank of any

evaluation of T, T is optimal. O
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Geelen proves that when an evaluation T is not optimal, there exist e € F and a €

{1,...,n} such that either rank T(z, + a) > rank T or D(T(z, + a)) D D(T).

5.2 Matchings

Suppose G = (V, E) does not have a perfect matching, but for any v € V, the subgraph

G[V'\v] has a perfect matching. Such a graph is called hypomatchable.

5.2.1 Hypomatchable graphs and odd components

Suppose the Tutte matrix T for G = (V, E) is such that every row and column of T is
avoidable, and rank T' = |V| — 1. Then T[V\v] is nonsingular for any v € V, and by
Corollary 3.2, the subgraph G[V\v] has a perfect matching for every v € V. Thus the
graph G is hypomatchable. Clearly a hypomatchable graph must have an odd number
of vertices. Two examples of hypomatchable graphs are given in Figure 5.1. The Gallai-
Edmonds decomposition of a graph, discussed next, finds hypomatchable components in

a graph.

Figure 5.1: Hypomatchable graphs

Assume G = (V,E) is a graph and let A C V. An odd component of G[V\A4] is a
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maximal connected subgraph of G[V\A] with an odd number of vertices. The number of
odd components in G[V\A] is denoted by odd(G\A4).

If M is a matching of G, then unless M contains an edge uw where u € A and w ¢ A,
then M cannot cover all of A. Consider the case that A is the single vertex v € V.
Suppose G[V\{v}] has two odd components. The vertex v cannot be used to cover
both odd components simultaneously, and therefore G does not have a perfect matching.
Similarly, if A C V is such that the number of odd components of G[V\ 4] is greater than
the size of A, then G can not be perfectly matched. Tutte’s matching theorem relates
the existence of a perfect matching to the nonexistence of an odd component that can

not be perfectly matched.

Theorem 5.2 (Tutte). The graph G = (V, E) has a perfect matching if and only if
odd(G\A) < |A| for all ACV.

Closely related to this is the Tutte-Berge Formula, which relates the deficiency of a
graph (number of vertices not covered in a maximum matching) to the maximum differ-
ence between the number of odd components in G\ A and the size of A. The deficiency

of G is denoted by def(G).

Theorem 5.3 (Tutte-Berge Formula). For any graph G = (V, E),

def(G) = max{odd(G\A) — |A| : ACV}.

5.2.2 The Gallai-Edmonds decomposition

Let G = (V, E) be a graph, and let D be the vertices not covered by at least one matching
in G. Let A C V\D be the vertices incident to a vertex in D, and let C'= V\(D U A).
Note that D, A and C are well defined.
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Theorem 5.4 (Gallai-Edmonds Structure Theorem). If G is a graph with D, A
and C' defined as above, then the following hold:

(i) every odd component of G\A is in G[D], and every component of G[D] is hypo-

matchable;
(1i) G[C] has a perfect matching;

(155) if M is a mazimum matching of G, then M perfectly matches G[C], and every

vertex in A is matched in M to a distinct component in G[D];
() the number of vertices covered by a maximum matching is |V| — (odd(G\A) — |A]).

It can be shown that (iv) implies (7), (¢7), and (7¢7). For a proof of the Gallai-Edmonds
Structure Theorem, see Lovasz and Plummer [22] pg. 93-98.

For an example of the Gallai-Edmonds structure for a graph, see Figure 5.2.

D =1{1,2,3,4,5,6,7,8,9}
A={10,11}

C = {12,13,14,15}

12
15

13

Figure 5.2: Example of a Gallai-Edmonds decomposition
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The polynomial time Edmonds’ Matching Algorithm for the undirected graph G =
(V, E) takes as input any matching M of G, and either finds a new matching M’ where
|M'| > |M], or finds A C V such that odd(G\A) — |A| > 0, and odd(G\A) — |A| is the
number of vertices not covered by M. From the Tutte-Berge Formula, M is a maximum
matching.

The partition D,C, A of an optimal evaluation of T is the same as the sets D, C,
and A from the Gallai-Edmonds decomposition of a graph: just as there are no non-zero
entries in T[D®; C“], there are no edges between vertices in D and C'; the hypomatch-
able components in G[D] correspond to the blocks from the series classes of T[D]; the
submatrix T[C] has full rank and the subgraph G[C] is perfectly matchable; and fi-
nally, the size of the maximum matching, |V| — (odd(G\A) — |A| can be rewritten as
|A| + |C| + |D| — (odd(G[D]) — | A]), and this is equal to 2|A| + |C|+ rank T[D?; D¢].

5.2.3 An optimal evaluation of the Tutte matrix

Similar to an evaluation of the bipartite Tutte matrix, an evaluation of the Tutte ma-
trix of a graph is either optimal, or can be improved by changing the value of a single

indeterminate. A stronger version of the following theorem is in Geelen [12].

Theorem 5.5. IfT is the Tutte matriz for the graph G = (V, E), and T is an evaluation
of T, then either T is optimal, or there exists e € E and a € {1,...,4n+ 2} such that

T(ze +a)>T.

Proof. Assume T is an evaluation with partition D,C, A. Since the Tutte matrix is
symmetric, the partition D,C, A of T is symmetric, and in particular, D = DY, Any
indeterminate in T[D®; CY] occurs exactly once in T[D®; C“], and therefore, from The-
orem 4.12(7), improvements in the evaluation can be made until all entries of T[D?; C]

are zero.
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Consider the series classes on the columns of T[D] By definition, the columns 2 and
y belong to different series classes if and only if rank f\{x, y} = rank T. Suppose that
the indeterminate z is in column ¢ and j, and that ¢ and j are in different series classes.
By symmetry, z is also in row j, and row j can be removed without affecting column
dependencies. Therefore rank f[V\j,V\{z,j}] = rank f, and there exist X C V\j
and Y C V\{i,j} such that T[X;Y] is a maximal nonsingular submatrix of . The
indeterminate z is not in T[X; Y], and although f[X Uj; Y Ut is singular, its determinant
is linear in Z. Hence f[X Uj;Y Ui](Z < 2) is nonsingular for any  # Z, and therefore
rank T(Z « 2) > rank T.

Suppose an evaluation T with partition D, C, A is such that every entry of T[D®; CY]
is zero, and each indeterminate pair z in T[D] occurs in the same series class on the
columns of T[D]. By Theorem 4.4, it follows that rank T = rank T[D] + |A| + |CF|.
From Theorem 4.1, rank T < rank T[D] + |A| + |CF|.

Let Di,..., D, be the series classes of T[D], and consider the submatrix T[D; Dy]
for an arbitrary series class Dy C D. Suppose z occurs in row ¢ and column j of T[D],
where j € Di. By the skew-symmetry of the Tutte matrix, z is also in row j and column
1. By the assumption that z occurs in two columns of Dy, ¢ € Dy, and every entry of
T[D\Dy; D] is zero.

The submatrix T[D] therefore consists of diagonal blocks T[D,],...,T[D,], and

rank T[D] = Z rank T[Dy].
k=1

Since all rows and columns of f[D] are avoidable, all rows and columns of each blocks

T[Dy] must be avoidable, for & € {1,...,n}. This same block structure must occur in
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T[D], hence

rank T[D] = Zn:rank T[Dy].
k=1
By Corollary 4.8, rank T[Dk] > Di| — 1 for all k € {1,...,n}, and since each row and
column is avoidable, rank T[Dy] = |Dy| — 1.
Each block f[Dk] is skew symmetric, so having rank one less than its size, means it
is an optimal evaluation of T[D;]. Hence rank T[D] = rank T[D], and T is an optimal

evaluation of T. O

Geelen proves that if an evaluation T is not optimal, then there exist ¢ € F and a €

{1,...,n} such that either rank T(z. + a) > rank T, or D(T(z + a)) D D(T).

5.3 Branchings

Any evaluation which substitutes positive integers for the indeterminates in the branching

matrix for a directed graph is optimal. This follows from Section 3.2.

Theorem 5.6 (Barahona and Pulleybank). If B is the branching matriz for the di-
rected graph G = (V, E’), and B is an evaluation of B with 2 > 0 for all indeterminates

z in B, then B is optimal.

If all the indeterminates in the branching matrix are evaluated as 41, then the deter-

minant counts arborescences in G.

Theorem 5.7 (Barahona and Pulleybank). If B is the branching matriz for the di-
rected graph G = (V, E’), and B is an evaluation of B with & = 1 for all indeterminates

z in B, then det B[V \v] is the number of arborescences in G with root v.
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Proof. Let A be the arc sets corresponding to arborescences of G with root v. From

Corollary 3.6,

det B = Z H X ;.

AeAijeAd
Hence if &, = 1 for all « € E, then det B = | A|. O
We note that determining if a directed graph has an arborescence is easy.

Theorem 5.8. The directed graph G = (V, E’) with r € V has an arborescence rooted at

r if and only if there is a directed path in G from r to v for allv e V.

In a strongly connected directed graph G = (V, E’), there is a directed path from v to

u for each vertex pair v,u € V.

Corollary 5.9. A directed graph G = (V, E) has an arborescence rooted at every v € V

if and only if G is strongly connected.

5.4 Matching forests

Hypomatchable undirected graphs (Section 5.2.1) have the property that for any vertex v
in the graph, there is a matching that covers every vertex except v. We will call a mixed
graph G = (V, E, E’) hypomatchable if G does not have a perfect matching forest, but for
every v € V, there is a matching forest in G that covers V\v.

A vertex v € V' is a cut vertex in a graph G = (V, E) if the edge set can be partitioned
into nonempty subsets Ey and E; such that G[F;] and G[E;] have only the vertex v in
common. A block in a graph G = (V, E) is a maximal subgraph G’ = (V’, E’) such G’

does not have a cut-vertex.
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Figure 5.3: A hypomatchable tree

Lemma 5.10 (Giles). If each block in a mized graph G is either a directed graph or an
undirected graph with an odd number of vertices, then G does not have a perfect matching
forest. Moreover, if G is hypomatchable, then each undirected block is hypomatchable,

and each directed block is strongly connected.

Lemma 5.10 can be proved by induction on the number of blocks.

If each block in a mixed graph G is either a hypomatchable undirected subgraph
of G, or a strongly connected directed subgraph, then we call G a hypomatchable tree.
(See Figure 5.3.) The algorithm presented in the following section finds an optimal
evaluation of a matching forest matrix, and, in the process, finds hypomatchable trees in

the corresponding mixed graph.

5.4.1 An optimal evaluation of the matching forest matrix

Similar to the algorithms for an optimal evaluation of the Tutte matrix and the bipartite
Tutte matrix, an optimal evaluation of the matching forest matrix is found by starting
with an arbitrary evaluation, and improving the evaluation by changing the value of an

indeterminate.
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Theorem 5.11. IfT+ B is the matching forest matriz for the mized graph G = (V, E, E’),
and T + B is an evaluation of T + B, then either T+Bis optimal, or there exist e € F,

g€ E, and a,b € {1,...,4|E|+ 2} such that (f+§)(2€ —a,zz4b) - T + B.

Let T + B be an evaluation of T + B, and let D, C, A be the partition of T + B. From
Theorems 4.9 and 4.12(7), a single perturbation can improve the evaluation if any of the

following three initial conditions are not satisfied by T + B:
1. The indeterminates in (T 4+ B)[D; D] appear in pairs.
2. The indeterminates in (T + B)[D?; C“] appear in pairs.

3. For any series class X on the columns of (f—l— E)[DR; DYUCY], the indeterminates

in (f + g)[DR; X] appear in pairs.

Assume the evaluation T+ B satisfies these three initial conditions, and let X C DYUC®
be a series class on the columns of (T + B)[DR; D¢ U C¢]. Consider the submatrix
(f—l— E)[DR; X]. If there is a nonzero entry in row 7 of (f—l— E)[DR; X1, then by condition
(3) and the structure of the matching forest matrix, column ¢ € X. Therefore all entries
of (T + B)[DR\X; X] are zero and (T + B)[D®; DY U] decomposes into blocks corre-
sponding to each of the series classes on its columns. Determining if T+Bis optimal is
equivalent to determining if (T + B)[X] is optimal for each series class X.

Let X C DYUCY be a series class. Define M = (m;;) and M = (1) to be (T+B)[X]
and (T + B)[X] respectively.
Lemma 5.12. FEvery row and column of M is avoidable, and rank M= | X |- 1.
Proof. From the previous observation that every entry in (f + g)[DR\X;X] is zero,
rank M = rank (f + E)[DR\X;X] > |X]| =1 (Corollary 4.8). Furthermore, since all

rows and columns of (T + B)[DR\X; X] are avoidable, every row and column of M is

also avoidable and the rank must be strictly less than the number of columns. O
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Lemma 5.13. Ify is a vector in the nullspace of M, and no change in the evaluation of

an indeterminate will make M nonsingular, then y; = y; for all arcs ij in G[X].

Proof. Suppose the vector y is in the nullspace of M and let ij be an arc in G[X]. Then

MIX; X\ily\y; = —y: M[X;4],
and in particular,
M[X\ily\yi = —y:i M[X\i; 1] (5.2)

From Lemma 5.12, M[X\z] is nonsingular, and since M(Z < a) does not have full rank

for any a € Z,
det M[X\i] = (=1)"t det M[X\i; X \j]. (5.3)

The lemma follows from using Cramer’s rule together with (5.3) to solve the system in

(5.2) for y;. O

The next step is to combine some columns of M and form a new matrix, denoted M.
The columns are combined in such a way that there is a bijection between vectors in the
nullspace of M and vectors in the nullspace M. For every U C X such that the directed
component of G[U] is a maximal connected subgraph of G[X], combine the columns U
of M into one column in .7\/27 where the new column is equal to the sum of the individual
columns. An example of this operation is Figure 5.4, where z,y, z are indeterminates
from the Tutte matrix, and a, b, ¢, d, e are indeterminates from the branching matrix. All
the entries of M come from the Tutte matrix, since the entries in a connected component

of the branching matrix sum to zero. Let X index the columns of M.
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a —a 0 O

0 0 1 -1 2 000 0 2 O

-bb —xz—-—y 0 O o -1 1 -5 3 00 o 0 -5 3

_ 0O 0 —2 0 O _ 0 5 0 =700 _ 5 0 -7
M= 0 y z ¢ 0 —c M= 0 -3 7 6 0-6 M= -3 7 0
0 0 0 —dd 0 0O 0 0 —-44 0 0 0 O

0 0 0 0 —e e o 0 0 o0 3-3 0O 0 O

Figure 5.4: Constructing M

Lemma 5.14. FEvery row and column of M is avoidable, and rank M= |X’| —1.

Proof. The rows of M are avoidable, and since combining columns in a linear way does
not affect row dependency, the rows of M are also avoidable.

Suppose y is in the nullspace of M, and assume column @ in M is the sum of columns
U,y ... 15 1D M. From Theorem 5.13, yiy = yi, = -+~ = y;;. It § is the vector formed
by replacing the entries y;,, ..., y;; from y with the single entry y;, , for all entries whose
corresponding columns in M have been combined into one column in .7\/E7 then ]\7@ = 0.
Similarly, a vector § in the nullspace of M can be expanded into a vector in the nullspace
of M, and therefore there is a bijection between the nullspace of M and the nullspace of
M. Since the nullspace of M has dimension 1, so does the nullspace of .7\/E7 and therefore

the rank of M is one less than the number of columns. O

If a single change to the entries of M can increase the rank of .7\/E7 then either the rank
of M also increases, or the bijection between the two nullspaces no longer holds. If the
bijection does not hold, then the property described in Lemma 5.13 no longer holds, and
there exist 7, j such that ¢j is an arc in G[X], and det M[X\z] # (1)1 det M[X\i; X\J].
A single change to the value of the entry corresponding to the arc ¢j will make M have

full rank. Next we consider series classes on the rows of M.

Lemma 5.15. If the rank of M cannot be increased by a single change to any entry, and

Y is a nontrivial series class on the rows of M, then M [Y; X ] has |Y| nonzero columns.
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Proof. From Corollary 4.8, rank ]\/Z[Y; X’] > |Y| — 1, and since every column in M[Y; X’]
is avoidable, there must be at least |Y'| nonzero columns. From Theorem 4.9(i¢), both
entries of an indeterminate pair occur in the same series class, and at most once in a single
row of the Tutte matrix. Therefore the number of nonzero columns cannot be more than

the number of nonzero rows, and hence M[Y; )A(] has exactly |Y| nonzero columns. [
Lemma 5.15 implies some structure of G[X].

Corollary 5.16. If the rank of M can not be increased by a single change in any entry,
and Y is a series class on the columns of M , then G[Y] has only undirected edges.
Moreover, if G[X] denotes the undirected components of G[X], then G[Y] is a mazimal

hypomatchable component of G[X].

Proof. If 1,7 € Y are such that ij € E, then by the construction of .7\/E7 columns ¢ and j
would be added together. This contradicts Lemma 5.15, and therefore there are no arcs
in GY].

Since ]\/E[Y,)/(\’] has exactly |Y| nonzero columns, there is a Tutte matrix 7[Y] such
each nonzero column in ]\/Z[Y,X’] corresponds to a column in T[Y]. Since ]\/Z[Y\y,f(\x]
has full row rank for any y € Y,z € X’, T[Y\y] is nonsingular. Therefore, there is a
perfect matching in G[Y] which covers Y\y for any y € ¥, and G[Y] is hypomatchable.

Any indeterminate in M[Y’; X’] occurs twice in MY X’], and therefore if 15 € E and

i €Y, then j € Y. Hence G[Y] is a maximal hypomatchable component of G[X]. O

Further structure in G[X] is obtained by considering more than one series class on the

rows of M.

Lemma 5.17. If the rank of M can not be increased by a single change to any entry,
and Yy, ...Yy are nontrivial series classes on the rows of M with [YiU---UYy| = m, then

]\/Z[Yl U---UYy; X] has at least m — k + 1 nonzero columns.
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Proof. From Theorem 4.7, rank ]\/Z[Yl u---u Yk;)?] > m — k. Hence there are at least
m — k nonzero columns, and since each column is avoidable, there are at least m — k + 1

nonzero columns. |

Corollary 5.18. If the rank of M can not be increased by a single change in any entry,

then each block of G[X] has either only undirected edges, or only directed edges.

Proof. Suppose G[X] has a block with both undirected and directed edges, and let B C
X be the vertices in the block. Consider the undirected components of G[B]. From
Corollary 5.16, the undirected blocks are hypomatchable subgraphs, each contained in
some G[Y;], where Y; is a series class on the rows of M. Assume G[B] has k undirected
components, corresponding to k series classes Y7, ...Y;. Also from Corollary 5.16, if a is
an arc in G[B] then the head of « is in a different series class than the tail of a. Since
G[B] is a block, there must be at least & arcs connecting the k& undirected components.
But then ]\/Z[Yl U---UYy; X] has at most [Y; U ---UY;| — k columns, which contradicts
Lemma 5.17. Therefore, any block of G[X] has either only undirected edges, or only
directed edges. O

Corollary 5.19. If the rank of M can not be increased by a single change in any entry,

then the undirected blocks of G[X] are hypomatchable.
Proof. This follows from Corollary 5.18 together with Corollary 5.16. U
We can now prove that the evaluation of M is optimal.

Theorem 5.20. If the rank of M cannot be increased by a single change to any entry,

then the evaluation M is optimal, and G[X] is a hypomatchable tree.

Proof. From Corollary 5.19, if the rank of M cannot be increased by a single change to

any entry, then the blocks of the corresponding subgraph G[X] are either hypomatchable
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undirected blocks, or blocks with only directed edges. From Lemma 5.10, G[X] does
not have a perfect matching matching forest. Since rank M = |X| — 1, the evaluation
is optimal, and since every row and column is avoidable, there is a maximum matching

forest in G[X] which misses any vertex in X, and G[X] is a hypomatchable tree. O

It follows from Theorem 5.20 that if an evaluation T + B satisfies the 3 initial conditions
regarding the location of indeterminate pairs in (T 4+ B)[D®; D¢ U C] and if for each

series class X C DY U CY, the submatrix (f + E)[X] is optimal, then T+ B is optimal.

5.4.2 A minmax theorem

From the Tutte-Berge Formula (5.3) for undirected graphs, a matching in the undirected
graph G = (V, E) can not cover more than |V| — (odd(G\A) — |A|) vertices, where A is
any subset of V. Both the Gallai-Edmonds decomposition and an optimal Tutte matrix
evaluation find a set A for which this inequality is met with equality. An inequality similar
to the Tutte-Berge formula can be given for the size of a maximum matching forest in a
mixed graph (Giles [15]).

Let G = (V,E,E’) be a mixed graph, and assume A C V is such that G\ A has k
hypomatchable trees. Let D C V be all vertices in such a tree, and define C' to be
VA(AU D). Suppose that there are no arcs directed from A or C to D, and suppose also
that there are no edges incident to both a vertex in D and a vertex in C, as in Figure 5.5,
where k& = 2.

If |[A| < E, then at least |A| — k vertices can not be covered by a matching forest in
G, and if tree(G\A) is defined to be the number of hypomatchable trees in G\ A4, then

the following theorem is immediate.
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Figure 5.5: Decomposition of a mixed graph

Theorem 5.21. If G = (V| E, E’) 18 a mized graph, then
def(G) > max{tree(G\A) — |A|: ACV}.

With an optimal evaluation of the matching forest matrix, Theorem 5.21 can be

strengthened to a minmax formula.

Lemma 5.22. If T + B is an optimal evaluation of the matching forest matriz for the
mized graph G = (V, E,E’), and D,C, A is the partition of T + E, then all entries in
(T + E)[DR; CY] are zero, and there are no arcs in G directed from a verter in AY to a

vertex in DR,

Proof. From Lemma 3.13, (T' + B)[X] is nonsingular whenever X is a maximal set of
independent rows in T+ B. Let z be any avoidable row of T' 4+ B. Since there exists a

maximal set of independent rows which does not include z, there is a maximal nonsingular
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submatrix which does not include column 2 and therefore column z is also avoidable.
Since T + B is optimal, if ¢ is an avoidable row in T + E, then it is also an avoidable
column, and D® C DY,

Suppose there is an entry in row ¢ of (T + E)[DR; CY]. Since column i is in DY, the
indeterminate occurs only once in (T + B)[D®;C?], and hence an improvement in the
evaluation can be made. This contradicts the assumption that T+ B is optimal, and
therefore all entries of (T + B)[D®; CC] are zero.

Similarly, suppose there is an entry in row i of (f + E)[DR; AY]. If the entry corre-
sponds to the head of an arc, then the indeterminate occurs only once in (T+ B)[D?; D],
and an improvement in the evaluation can be made. This is a contradiction, and therefore

there are no arcs directed from A® to DE, O
For an alternate version of the next theorem, see Giles [14].

Theorem 5.23. If G = (V| E, E’) 18 a mized graph, then
def(G) = max{tree(G\A) — |A|: AC V}.

Proof. Inequality was shown in Theorem 5.21. Let T + B be an optimal evaluation of the

matching forest matrix for G, and assume D, C, A is the partition of T + B. Then
V| — def(G) = rank T + B = |A| 4 |CT| + rank (T + B)[D®; D u CY]. (5.4)

Assume there are k series classes on the columns of (T 4+ B)[D®; D¢ U C¢]. From

Lemma 5.22 and the block structure of (T + B)[D?; DY U €€, it follows that

rank (T + B)[D®; D U C®] = rank (T + B)[D*; D] = |DF| - k.
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Each series class in (T—I—E)[D] corresponds to a hypomatchable tree in G\ 4, and therefore

(5.4) can be rewritten as

V] = def(G) = | A% + |CF| + | DF| — (trees(G\A®) — A7)

=|V] - (trees(G\Ac) - |AC|).

Thus the inequality in Theorem 5.21 is met with equality. U

5.5 Finding a matching from an optimal evaluation

Once an optimal evaluation of the bipartite Tutte matrix, Tutte matrix, or matching
forest matrix is found, the size of a maximum matching or maximum matching forest can
be determined from the rank of the evaluation. An optimal evaluation can also be used
to explicitly find the maximum matching or maximum matching forest.

Suppose the Tutte matrix T for G = (V, E) has rank r, and let T be an optimal
evaluation of T. By Corollary 2.6, there exists U C V such that |U| = r, and f[U] is
nonsingular. Then T[U] is nonsingular, and there is a maximum matching of G which
covers U = {uy,...u,} C V. Using the row expansion form of the Pfaffian (Theorem 2.10)
and the fact that the Pfaffian of T[U] is non-zero, there exists i € {2,...,7} such that
tuy . 7 0 and T[U\{uy, u;}] is nonsingular. Therefore, there exists e = uju; € E such
that G[U\{u1, u;}] has a perfect matching M, and then M U{e} is a maximum matching
of G. By repeatedly applying the process, a maximum matching can be found.Using the
ideas of Cheriyan [5], this method can be improved to obtain the matching in O(]V|?).

Similar arguments applied to an optimal evaluation of the matching forest matrix can

be used to explicitly find a matching forest in the corresponding mixed graph.



Chapter 6

Exact problems

Problems in graph theory often involve a maximum or a minimum, such as finding a
matching with a maximum number of edges. If weights are assigned to each edge in
an undirected graph, then the mazimum weight matching problem is to find a perfect
matching such that the total weight of all the edges in the matching is a maximum.
There exist efficient algorithms for finding a maximum or minimum weight matching
in an undirected graph (Edmonds [7]). Once the maximum and minimum weight of a
perfect matching in a graph are known, the ezact matching problem becomes interesting;:

does there exist a perfect matching with a particular weight?

6.1 The weighted branching matrix

Given a directed graph G = (V, E’) and weights w, for each a € E, the ezact weighted

arborescence problem is to determine if G has an arborescence of a specific weight. The
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weighted branching matriz, C = (¢;;), is a formulation for this problem, where

—fwis | if i # j and (1, ) € E;

¢ij =10, if i jand (i,5) ¢ E;

The weighted branching matrix solves the exact weighted arborescence problem.

Theorem 6.1 (Barahona and Pulleybank). If G = (V, E’) 18 a directed graph with
weights w, for each a € E, C' is the weighted branching matriz for G, and v € V, then
the number of arborescences in G with weight w and root v is equal to the coefficient of

t" in the determinant of C[V\v].

Proof. The weighted branching matrix is an evaluation of the branching matrix with
2o = t¥* for all @ € E. From Corollary 3.6, for each arborescence of G with root v and

weight w, t* is a term in the determinant of C[V\v]. O

6.2 The weighted Tutte matrix

Suppose G = (V, E) is an undirected graph with weights w for each e € E. If {z. : e € E}
are algebraically independent indeterminates, then the skew-symmetric weighted Tutte

matriz A = (a;;), with rows and columns indexed by V', is defined as follows:

2tV if ij € F;
ai; =

0, otherwise.

The next theorem follows immediately from the one-to-one correspondence between per-

fect matchings of G and terms in the Pfaffian of 7.
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Theorem 6.2 (Lovasz). If G = (V, E) is a graph with weights w. for each e € E, and
weighted Tutte matriz A, then G has a perfect matching of weight w if and only if the

coefficient of t in the Pfaffian of A is non-zero.

If G = (V,E) is a weighted bipartite graph, with bipartition Vi, V3, and A is the
weighted Tutte matrix for G, then the weighted bipartite Tutte matriz is A[Vy;Vs]. For
bipartite weighted graphs, Theorem 6.2 can be stated with respect to the determinant of

the bipartite Tutte matrix.

Theorem 6.3 (Lovasz). If G = (V, E) is a bipartite graph with weights w. for each
e € E, and A is the weighted bipartite Tutte matriz for G, then G has a perfect matching

of weight w if and only if the coefficient of t* in the determinant of A is non-zero.

The weighted Tutte matrix formulates a solution to the exact weight perfect match-
ing problem. In the given form, this formulation is not computationally useful, since it
requires computing the determinant of a matrix with indeterminate entries. If the inde-
terminates are evaluated as rationals, then, because of the sign factor in the determinant
function, two non-zero terms may cancel each other. The permanent of a matrix has a
similar permutation expansion to the determinant, except the sign function is absent: if

Ais an n X n matrix, the permanent of A is defined as

per A= Z A o(1) """ Apo(n)-
oES,

If A is the weighted bipartite Tutte matrix for the bipartite graph G, and each entry
a;; is evaluated as t", then the coefficient of ¢* in the permanent of A s equal to the
number of perfect matchings in G with weight w. This is not a computationally feasible

solution to the exact matching problem, however, since calculating the permanent of a

matrix is AP-hard (L.Valiant (1979)).
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6.3 Pfaffian orientations

Another possible solution for the exact weight matching problem is to choose signs for

the entries in the weighted bipartite Tutte matrix, a;; = £¢"¥, such that

Sign(g)al,o‘(l) *r o (n) >0

for all permutations . This problem was first posed by Polya in 1913. For example, in
the matrix (6.1), if a non-negative value is assigned to every + and a non-positive value
to every —, then every term in the determinant is non-negative. Such a matrix is called

stgn-nonsingular.

+ + -
0 + + (6.1)
+ - 4+

When the matrix is the Tutte matrix T for a general graph G, then giving a sign to
each indeterminate in T’ corresponds to assigning a direction, or orientation, to each edge
in G. A Pfaffian orientation of G is an orientation such that all the terms in the Pfaffian
of T have the same sign. A graph is Pfaffian if it has a Pfaffian orientation.

Suppose G is Pfaffian and bipartite. If each indeterminate a;; in the bipartite weighted
Tutte matrix A is evaluated as £t , according to the orientation of G, then the coefficient
of t* in det A is the number of perfect matchings in G with weight w.

Not all graphs are Pfaffian. For example, the 3 X 3 matrix that has a non-zero entry in
each term is not sign-nonsingular, and therefore the complete bipartite graph K33 does

not have a Pfaflian orientation.

Theorem 6.4 (Kasteleyn). Every planar graph is Pfaffian, and o Pfaffian orientation
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can be constructed in polynomial time.

Kasteleyn’s Theorem does not classify all Pfaffian graphs, as there are non-planar
graphs that are Pfaffian. A theorem of Little [20] proves that a bipartite graph is Pfaffian

if and only if it does not “contain” a K3 3.

6.4 Complexity and random evaluations

The idea of a random evaluation is presented in Lovasz [22]; if the entries of an evaluation
are chosen from a large enough set, then the probability that a matrix is nonsingular when
a random evaluation of it is singular can be made arbitrarily small. We first consider the

probability that a random integer vector is a root of a polynomial.

Theorem 6.5 (Zippel). If p(z1,...,%m) is a nonzero polynomial, the degree of x; in
p is at most d for all i € {1,...,m}, and a; are selected with uniform probability from
{1,..., M}, then the probability that p(a,...,an) =0 is no more than dwm.

Proof. The proof is by induction on the number of variables in the polynomial.

If m = 1, then p = p(a;) is a polynomial of degree at most d, and therefore has at
most d roots. The probability of selecting ay from {1,..., M} such that a is a root of p
is at most %.

Suppose the probability that (aq,...ay,) is aroot of a polynomial with m variables is at
most dwm when a; is selected with uniform probability from {1,...,M}fori € {1,...,m},
and the degree of any variable in the polynomial is at most d. Let p be a polynomial with

m + 1 variables, each of degree at most d. Then p can be written as

P(T1, 22,0 Tig1) = 90‘119(1 + w‘li_lyd—1 + ...+ z1y1 + Yo,

where y; is a polynomial with at most m indeterminates, and each indeterminate in ;
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has degree at most d, for i € {0,...,d}.

Suppose p(ay, az, ..., am41) = 0. Either g; = 0 for all ¢ € {0,...,d}, or some y; # 0,
and a; is a root of f(x) = 2%y + 29 Jg_1 + ...+ 2f; + o. The probability that 7; = 0
for all ¢ is bounded above by the probability that g; = 0 for some ¢, which is at most dﬁm
by the induction hypothesis. If g, # 0 for some 1 < ¢ < d, then f() has at most d roots,

and the probability that ¢y € {1,...,M} is a root of f is at most %. Combining the

two cases gives that the probability of selecting a root of p(z1, ..., %, ) when each a; is
selected at random from {1,...,M}, is at most dwm + % = d(nﬂ_l), and the theorem is
true by induction. O

Theorem 6.5 can be applied to the determinant of a matrix with randomly selected integer

entries.

Corollary 6.6 (Lovasz). If A = (a;;) is a nonsingular matriz with m different indeter-
minate entries, each occurring at most d times in A, and a;; are selected with uniform
probability from {1,..., M}, then the probability that A= (@;;) is singular is no more

d
than Wm .

Random evaluations provide a probabilistic solution to the exact matching problem

in bipartite graphs.

Corollary 6.7 (Lovasz). Suppose A = (a;;t") is the weighted bipartite Tutte matric
for the bipartite graph G = (V, E), where G has a perfect matching of weight w. If each

a;; is selected with uniform probability from {1,... M}, then the probability that the
[V]

coefficient of t* in the determinant of M is zero is no more than ;.

Proof. Since the coefficient of t¥ in det A is a polynomial with |21| indeterminates, each

of degree 1, the corollary follows from Theorem 6.5. U



Chapter 7

Matroids

In Chapter 2, the three concepts of matrix rank, matrix singularity, and linear indepen-
dence of vectors were shown to be equivalent, and in Chapters 3 and 5, these concepts were
used to prove the existence of certain structures in graphs. Matroids are an abstraction

of rank, singularity, and linear independence, and are discussed here.

7.1 Definitions and examples

Matroid theory began in the 1930’s with Whitney [32], and was expanded by Tutte [30]
and by Edmonds [9]. A matroid can be defined by a finite set S and a set of axioms,
together with either subsets of § or a function defined on subsets of §. We give three
definitions for a matroid.

The Independence Axioms
Let S be a finite set, and let Z C 25. The pair (8,Z) is a matroid if it satisfies the

following independence axioms:

(I1) The null set is in Z.

(I2) Every subset of a set in 7 is also in Z.
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(I3) For any subset X of S, the maximal subsets of X that are in 7 have the same

cardinality.

The set S is called the ground set of the matroid. If X € Z, then X is independent, oth-
erwise X is dependent. A circuit is a minimal dependent set, and a maximal independent
set is a base. From axiom (I2), only the bases are needed when listing the independent
elements of a matroid.

The Base Axioms
The base azioms restrict the matroid (S,7) to (S, B) where B ={X € 7 : X is a base}.

The pair (S, B) is a matroid if the following hold:
(B1) B is nonempty.
(B2) If By, By € B and z € By, then there exists y € By such that (By\z) U {y} € B.

Axiom (B2) is called the ezchange aziom for matroids.

Both the independence and base axioms define a matroid by giving restrictions on a
family of subsets of a finite set §. Alternatively, a matroid can be given by the set § and
a function defined on 2%. One such function is the rank function r, where r : 25 — Z+.

The Rank Axioms
If S is a finite set and r : 25 — Z7T, then (S,r) is a matroid if, for all X,V C 8, the

following rank azioms are satisfied:

(R1) r(X) < [X].

(R2) If X C Y, then r(X) < r(Y).

(R3) Submodular inequality: r(X)+r(Y) > r(XNY)+r(XUY).

The independence, base, and rank axioms are not an exhaustive set of matroid def-

initions. Other axioms use either different subsets of § than those described here, or a
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different function or operator on 2%. See Fujishige [11] or von Randow [31] for further
axiomatic definitions of matroids.

The different axiom sets are equivalent; for every matroid (S,Z) satisfying the inde-
pendence axioms, there are corresponding pairs (S, B) and (S, r) satisfying the base and
rank axioms respectively. For a proof of the equivalence of these axioms, together with
the span and circuit axioms, see von Randow [31].

The following examples are from Cook et al. [10], Fujishige [11], Recski [26], Truem-
per [28], and von Randow [31].

Partition Matroids
Let IT = Xy, ..., X§ be a partition of the finite set S, and let dy, ..., d; be nonnegative
integers. Consider (8,Z), where Z ={I € S:|INX;| < d; foralli=1,...,k}. Clearly
(I1) is satisfied, and if X C Y then (X NX;) C (Y NX;) and (I2) is satisfied. Assume
X C S8, and let Y € 7 be a maximal subset of X. Since |Y|= Zle Y N X;|, and Y| is
maximal, |Y' NX;| = min{d;, | X NX;|}. Therefore the size of Y depends only on X, IT, and
d;, and (I3) is satisfied. Thus (S,Z) satisfies the independence axioms, and is a partition
matroid.

Forest Matroids

For a graph G = (V, E), define Z to be all edge sets of forests in G. That is,
I ={F C E: F does not contain a circuit}.

Then (E,T) satisfies the three independence axioms for a matroid, and is called the forest
matroid. Similarly, if G = (V, E) is connected and B is the set of spanning trees of G,

then (E, B) satisfies the base axioms.
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Linear Matroids

For a matrix M with rows indexed by X and columns indexed by Y, let

I ={Y'CY : M[X;Y’] has full column rank}.

Consider (Y,7). Since the empty set is independent, (Y,Z) satisfies (I1). Any subset of
independent columns is independent so (I2) is satisfied. Axiom (I3) is also satisfied; if
A CY, then a maximal independent set of columns from A has size equal to the rank of
MI[X; A]. Therefore (Y,Z) is a matroid, called a linear matroid.

For Y’ C Y, define r(Y’) to be the rank of M[X;Y’]. Axioms (R1) and (R2) hold
for (Y,r), by properties of linear algebra, and Theorem 2.2 showed that submodularity
holds. Therefore the linear matroid also satisfies the rank axioms.

Two examples of linear matroids are the matching matroid and the branching matroid.

If G=(V,E)is a graph, let

I ={W CV: thereis a matching in G which covers W}.

Consider (V, 7). Axiom (I1) is satisfied, and if there is a matching M that covers W C V/,
then M also covers any subset of W, hence (I2) is satisfied. If T is the V' x V' Tutte matrix
for G, then by Theorem 3.1, there is a matching covering W C V if and only if T[U] is
nonsingular for some U D W. Let X C V. If W € 7 is a maximal subset of X, then
|W| = rank T[V; X], which is independent of W. Therefore (I3) is satisfied and (V,7)
is a matroid. (For a proof which uses augmenting paths to show that (I3) is satisfied,
see Cook et al. [10].) The branching matroid for a directed graph graph G = (V, A) is
defined by

I ={W CV: thereis a branching in G which covers W}.
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With similar arguments to those for the matching matroid, it can be shown that (V,7)

satisfies the independence axioms for a matroid.

7.2 Matroid duals

If M =(S,Z) is a matroid then the dual of M is M* = (§,7*), where

I*={X €8:X CY for some base Y € T}.

Equivalently, M* = (S, B*), where

B* = {B: B is a base for M}.

Theorem 7.1. The dual of a matroid is a matroid.

A proof of Theorem 7.1 is given in Cook et al. [10]. Note that Z** = Z and therefore
it M is a matroid, M** = M.

If M =(8,7) is a matroid, then X € S is coindependent if X is independent in M™.
This terminology is generalized; if Y is a matroidal term with respect to the matroid M,
then it is referred to as co-Y with respect to the dual M*. For example, X is a cocircuit in
M if it is a circuit in M™, and the complement of a base in M is a cobase (Fujishige [11].)

We construct the dual of the linear matroid defined by the independence axioms on
the columns of the matrix M. First, M is formed by Gaussian elimination on the rows of
M. Since we are only interested in independent columns, and column dependencies are
not affected by Gaussian elimination on rows, M can be used in place of M. A zero row

does not affect column dependencies, so this row is dropped, leaving the matrix M.
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10011 —~ 10

— 02020 — 01
M = 00111 J» M= 00
12132 00

Note that the first three columns of M are a base of the column space of M. To construct

M*, columns 4 and 5 are transposed, and the identity matrix is appended:

11110
M" = . (7.2)
101 01
Columns 4 and 5 are a base of M™.
Suppose M is a matrix representation of a linear matroid with groundset Y. If X C Y
is a base of M, then by Gaussian elimination on the rows, the columns X can be made

into the identity matrix (dropping zero rows if necessary.) Permute columns and relabel

the rows to form M, and construct M* as in (7.2) of the example:

X X X X
M= X(I C>7 M" = 7<CT I)-

We show that M* is the dual of M. Consider the column sets Z; and Zy of M, where

Z, C X, Zy C X, and |Z1| + | Z3| = | X|. By the construction of M,

det ].V[[_X’7 Zl U Zz] = det M[Zh Zz]
= det 0[717 Zz]
(7.3)
= det CTI:ZZ7 71]

From (7.3), Z1 U Z; is a base of M if and only if X\(Z; U Z;) is a base of M*, and
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therefore M* is the dual of M.

7.3 Matroid intersection and partition

Suppose My = (8,7;) and My = (S,Z;) are matroids on the same ground set S, with
rank functions rq and ry respectively. The matroid intersection problem is to determine
if there exists B C § such that B is a base in both M; and M;. Suppose X C & and

J EIl ﬁIz. Then
[T = 17N X[+ 70 (X)) < ra(X) +ra(X),

and therefore the minimum of r{(X) + ro(X) over all X C S is an upper bound on the
size of any set that is independent in both M; and My. This upper bound is met with

equality.

Theorem 7.2 (Edmonds). If My = (S8,Zy) and M, = (8,Z;) are matroids with rank

functions rq and ry, then
max{|J|: J € I; NIy} = min{ri(X)+r(X): X € §}

An algorithm of Edmonds solves the matroid intersection problem.
The matroid partition problem is to find a partition S;,.5; of the ground set § such
that Sy is a base of My = (§,Z;) and Sy is a base of My = (8,Z;). Suppose that J; C S

and Jy C S are disjoint, and that J; € Zy and Jy € Zy. If X C § and we let J = J; U Jy,
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then the following holds:

|| = [J\X|+ ] N X|
<IS\X|+ |i 0 X |+ [Jo0 X]|

< X[ 4 i (X) + r2(X).

This upper bound is met with equality.

Theorem 7.3 (Edmonds). If My = (S8,Zy) and M, = (8,Z;) are matroids with rank

functions rq and ry, then

max{|Jy U Jy|:J1 € Iy and Jy € I3)} = min{ri(X) + r2(X) + IX|: X €S}

The intersection and partition problems are equivalent, as is shown in Recski [26].

Theorem 7.4. The base pair (B, Bz) solves the partition problem for the matroids M,

and My if and only if (B1, Bs) solves the matroid intersection problem for My and M.

Proof. Assume B, is a base for the matroid M; and Bj is a base for My, and assume
My and M; have the same ground set §. Suppose (Bj, By) solves the matroid partition
problem for M; and M,. Then By U By = 8 and B; N By = ), and therefore B, = B.
Since Bj is a base for the dual of M, (Bl,Fz) solves the matroid intersection problem
for M, and M;. Similarly, if B is a solution to the matroid intersection problem for
M, and M3, then By = B, is a basis for My, and the pair (B1, B3) solves the matroid

partition problem for My and M. O

The intersection and partition problems can be generalized for more than two ma-
troids. Applications of the intersection and partition problem are given in the next

section.
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7.4 Matroid formulations

The three problems of finding a maximum matching in an undirected bipartite graph,
a maximum branching in a directed graph, and a maximum matching forest in a mixed
graph, all of which were formulated as matrix rank problems in Chapter 3, can be for-

mulated as either matroid intersection or matroid partition problems.

7.4.1 Bipartite matchings

Let G = (V,E) be a bipartite graph, with bipartition V' = V3 U V,. For each ¢ €
{1,...,|V1|}, define E; C E to be the set of edges incident with vertex v;. Then II; =

Ey, ..., Ey, is a partition of E. (See Figure 7.1.)

Figure 7.1: the edge partition II;

Let M; be the partition matroid with ground set E, partition II;, and intersection
sizes d; = 1 for all 7. (Cook et al. [10].) Define the partition matroid My similarly, with
respect to V5. Suppose F' C FE is independent in both M; and M;. Then every v € V is
incident with at most one edge in F', and therefore F is a matching in GG, and a solution to
the matroid intersection problem for M; and Mj; solves the maximum matching problem

in G.
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7.4.2 Arborescences

Let G = (V, E’) be a connected, directed graph. We describe matroids M; and Mj such
that a set that is independent in both M; and M; corresponds to a branching in G. (Cook
et al. [10].)

Let My = (E,F) be the forest matroid (Section 7.1) for the underlying undirected
graph for G. For each v € V, let X, = {a € E : v is the head of a}. A partition of
E is then given by Il = {X,, : v € V}. Let M; = (E,I) be the partition matroid with
respect to II, with d, = 1 for all v € V. The bold edges in the graph in Figure 7.2 are

an example of an independent set in M,. The common intersection sets for My and My

b

—

€

Figure 7.2: An independent set in M,

are branchings of G, and a solution to the intersection problem for M; and M; is an

arborescence in G.

7.4.3 Matching forests

For a mixed graph G = (V, E, A),let M; be the matching matroid for the undirected graph
G1 = (V,E) and let M3 be the branching matroid for the directed graph G, = (V, A4).

(The matching matroid and the branching matroid are described in Section 7.1.) If
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I C V is independent in M;, I, C V is independent in Mj, and I; and [ are disjoint,
then there is a matching M covering I and a branching F' covering I5 such that the union
of M and F is a matching forest that covers Iy U I;. Therefore, if I} U I3 is a partition
of V, then there is a matching forest in G that covers the vertices I with edges and the
vertices I, with arcs, and a solution to the matroid partition problem for M; and M,
solves the maximum matching forest problem.

We remark that an algorithm for finding a bipartite matching, branching, or matching
forest by the given matroid formulations requires an oracle for testing the rank in matroids

M1 and Mz.

7.4.4 Solving the intersection problem by rank completion

The maximum bipartite matching, maximum branching, and maximum matching forest
problems can be solved by a maximum rank completion of the bipartite Tutte matrix,
the branching matrix, or the matching forest matrix. For linear matroids, the matroid
intersection problem can also be considered as an optimal evaluation problem.

Suppose My and M; are linear matroids on the matrices 4; and Aj respectively, and
assume A; is nqy X m and Ag is ny X m. From section 7.2, we can assume nq is the rank
of My, and ng is the rank of M;. Construct the (ny +m) X (ng + m) matrices A and Z,

where

<1
A) 0 0

Zm

We will show that the rank of A+ 7 is determined by the size of the largest set of columns

independent in both A; and Ay, and therefore show that the matroid intersection problem
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can be solved by finding an optimal evaluation of A 4+ Z (Murota [24]).

Theorem 7.5. Let My and M, be representable matroids with matrices Ay and Ay re-
spectively, and suppose My and My have the same ground set V. If A and Z are the

matrices from equation 7.4, then
max{|J|:J € I; NIy} = rank (A+ Z) — |V].

Proof. Suppose the columns J C V are independent in both A; and A,, and assume
|J| = [. There is a set of rows, Ry, in Ay and a set of rows, Ry, in A, such that both
Aq[Ry; J] and Ay[Rg; J] are nonsingular. Let levl = Ay[Ry; V] and ;1; = Ay[Ry; V], and
relabel Ry and Ry as R. Consider the matrix K—I— 2, where

R v R v
R| 0 Ay R| 0 0
A= , and 7 = 2 (7.5)
are 0 V| o
Zm

Applying Theorem 2.8 to A+ 2, and using that a nonsingular submatrix of Z must be

a principal submatrix of Z[V], we get

det(A+2Z) = Y det Z[X]det A[(RUV)\X]. (7.6)
Xcv

When X C V, (RUV)\X = RU (V\X), and A[RU (V\X)] is nonsingular only if
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|[VAX| =1, or equivalently, |X| = m —[. Equation 7.6 can then be rewritten as

det(A+2)= > detZ[X]det A[RU (V\X)]. (7.7)

XCV
| X |=m—1

When X, X, C V are distinct, the determinant of Z[X] and the determinant of Z[X;] are
distinct, and there is no cancellation of terms in (7.7). By the assumption that J C V was
a common independent set, A{RU.J] is nonsingular and the term det Z[V\.J] det A[RU.J]
is nonzero. Therefore, from (7.7), the rank of A+ Z is at least m + 1.

To finish the proof, we note that we can choose a nonsingular submatrix 4 + Z with
size equal to the rank of (4 4 Z) by starting with the independent rows V' in A+ Z and
extending to a row base V U Ry, and extending the independent columns V in A + Z
to a column base V U R;. Letting A = A[VUR;;VURy] and Z = Z[V U Ry;V U Ry,
the matrix sum A + Z is nonsingular, and using equation (7.7), there exists a common

independent set of columns J in Ay and A,, where |J| = rank (A4 Z) — m. O
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