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Abstract

Empirical likelihood and the bootstrap play influential roles in contemporary statistics.

This thesis studies two distinct statistical inference problems, referred to as Part I and

Part II, related to the empirical likelihood and bootstrap, respectively.

Part I of this thesis concerns making statistical inferences on multiple groups of samples

that contain excess zero observations. A unique feature of the target populations is that

the distribution of each group is characterized by a non-standard mixture of a singular

distribution at zero and a skewed nonnegative component. In Part I of this thesis, we

propose modelling the nonnegative components using a semiparametric, multiple-sample,

density ratio model (DRM). Under this semiparametric setup, we can efficiently utilize

information from the combined samples even with unspecified underlying distributions.

We first study the question of testing homogeneity of multiple nonnegative distributions

when there is an excess of zeros in the data, under the proposed semiparametric setup.

We develop a new empirical likelihood ratio (ELR) test for homogeneity and show that

this ELR has a χ2-type limiting distribution under the homogeneous null hypothesis. A

nonparametric bootstrap procedure is proposed to calibrate the finite-sample distribution

of the ELR. The consistency of this bootstrap procedure is established under both the

null and alternative hypotheses. Simulation studies show that the bootstrap ELR test

has an accurate nominal type I error, is robust to changes of underlying distributions,

is competitive to, and sometimes more powerful than, several popular one- and two-part

tests. A real data example is used to illustrate the advantages of the proposed test.

We next investigate the problem of comparing the means of multiple nonnegative dis-

tributions, with excess zero observations, under the proposed semiparametric setup. We

develop a unified inference framework based on our new ELR statistic, and show that this

ELR has a χ2-type limiting distribution under a general null hypothesis. This allows us to

construct a new test for mean equality. Simulation results show favourable performance

of the proposed ELR test compared with other existing tests for mean equality, especially

when the correctly specified basis function in the DRM is the logarithm function. A real

data set is analyzed to illustrate the advantages of the proposed method.
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In Part II of this thesis, we investigate the asymptotic behaviour of, the commonly

used, bootstrap percentile confidence intervals when the parameters are subject to inequal-

ity constraints. We concentrate on the important one- and two-sample problems with data

generated from distributions in the natural exponential family. Our attention is focused on

quantifying asymptotic coverage probabilities of the percentile confidence intervals based

on bootstrapping maximum likelihood estimators. We propose a novel local framework to

study the subtle asymptotic behaviour of bootstrap percentile confidence intervals when

the true parameter values are close to the boundary. Under this framework, we discover

that when the true parameter is on, or close to, the restriction boundary, the local asymp-

totic coverage probabilities can always exceed the nominal level in the one-sample case;

however, they can be, surprisingly, both under and over the nominal level in the two-sample

case. The results provide theoretical justification and guidance on applying the bootstrap

percentile method to constrained inference problems.

The two individual parts of this thesis are connected by being referred to as constrained

statistical inference. Specifically, in Part I, the semiparametric density ratio model uses

an exponential tilting constraint, which is a type of equality constraint, on the parameter

space. In Part II, we deal with inequality constraints, such as a boundary or ordering

constraints, on the parameter space. For both parts, an important regularity condition in

traditional likelihood inference, that parameters should be interior points of the parameter

space, is violated. Therefore, the respective inference procedures involve non-standard

asymptotics that create new technical challenges.
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Chapter 1

Overview

1.1 Background and examples

This thesis exploits two important statistical inference problems, both of which take their

motivation from real applications. We first introduce the research background by giving

several motivating examples.

For Part I of this thesis, our research is motivated by the existence of a particular type

of data which contains excess zero observations in addition to having skewed nonnegative

outcomes. In many applications, multiple groups of samples with such important features

are frequently encountered.

Example 1.1 Muralidharan and Kale (2002) considered such a data set after monitoring

rainfall distributions. Daily rainfall measurements were recorded over several years. There

were often dry days which were recorded as having zero rainfall. All other data points were

on a positive, continuous scale.

Example 1.2 Zhou and Tu (1999) provided an example involving the assessment of medi-

cal care expenditures. Here observations came from a control group and several intervention

groups. In each group, a majority of inpatients had zero cost due to no hospitalizations

during the study.
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There are many other examples in the literature, covering a broad range of applications,

such as fishery surveys (Pennington, 1983), life sciences (Taylor and Pollard, 2009; Wagner

et al., 2011; Gleiss et al., 2015), epidemiology (Bascoul-Mollevi et al., 2005; Bedrick and

Hossain, 2013; Hu and Proschan, 2015), health economics (Tu and Zhou, 1999), reliability

(Lambert, 1992), and tobacco consumption (Johnson et al., 2015). In addition, examples

in more complex settings can be found in a recent special issue of the Biometrical Journal

(Volume 58, Issue 2, March 2016) on “Models for Continuous Data with a Spike at Zero”.

The scientific issues motivated by these examples often involve two questions.

Q1. How to test if several such populations are homogeneous? that is, testing if the data

of each group are from the same underlying distribution?

Q2. How to make reliable inferences on the means of several such populations? for ex-

ample, when testing mean equality?

Note that there are situations in which the excess zero observations are due to censoring

or truncation (cf. Moulton and Halsey, 1995; Taylor et al., 2001). Modelling and analyzing

the zero values in these situations may require more knowledge about the underlying data

generating process, and thus are different from the “true” zeros that we consider in this

thesis.

Part II of this thesis is devoted to situations where the parameters of interest are

restricted by (linear) inequality constraints. These should be carefully differentiated from

ones which have logical constraints (cf. Anaya-Izquierdo et al., 2014). The nature of these

problems may be best introduced by using illustrative examples.

For a single scalar parameter, a boundary constraint can often be encountered in prac-

tice. Here we share two examples from physics and genetics.

Example 1.3 Feldman and Cousins (1998) provided an example from high energy Physics

when searching for neutrino oscillations. The observed signal can be formulated by the

equation X = S + B, where the true signal S, and the background noise B, are two

independent Poisson random variables, and B has a known mean b. Suppose the unknown

2



mean of X is θ, and hence θ ≥ b. It is further claimed, in Woodroofe and Wang (2000),

that the observed signal could be very weak which results in a challenging inference problem.

Example 1.4 Fu et al. (2006) investigated an example of genetic linkage analysis. The

distribution of the number of recombinations between genetic traits and marker loci is usu-

ally described by a binomial distribution (Ott, 1999). The recombination fraction, denoted

by θ, is a useful measure of genetic linkage. When the loci of two genes are completely un-

linked, θ achieves the maximum possible value of 1/2, and hence the recombination fraction

θ is constrained by θ ∈ [0, 1/2].

In multiple-sample problems, there are many real life examples where an ordering con-

straints can happen naturally. Here we mention two such examples.

Example 1.5 Follmann (1996) presented an example from a case-control study involving

blood pressure reduction. The treatment of sodium reduction is expected to have the effect

of reducing blood pressure, relative to the control group. Inference on treatment effects can

be made approximately by using normal distributions with ordered means.

Example 1.6 Li et al. (2010) considered an example from a pancreatic cancer biomarker

study. For each patient, the serum samples were assayed for two antigens. Higher levels

of the two antigens are known to be associated with higher risks of cancer. Therefore, for

each antigen with categorized levels, the means of the binary outcome variable modelled by

binomial probabilities should be ordered with regard to the levels.

More motivating examples, with either boundary or ordering constraints, can be found in

the book of Silvapulle and Sen (2004), and also in a special issue of the Journal of Statistical

Planning and Inference (Volume 107, Issues 1-2, September 2002) on “Statistical Inference

under Inequality Constraints”.

Interval estimation of constrained parameters is a key measure of statistical accuracy,

in additional to simply testing some pre-specified parameter point or set. In Part II of this

thesis, we investigate confidence intervals constructed by, the frequently used, bootstrap

percentile method. We aim to evaluate how reliable the bootstrap percentile confidence

interval is by answering the following three specific questions.
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Q3. Can it achieve nominal coverage level?

Q4. If not, does it over- or under-cover the true value of the parameter?

Q5. Can we more appropriately quantify the asymptotic coverage probability?

1.2 Main contributions and outline of the thesis

In this thesis, we study the empirical likelihood and bootstrap methods in problems that

are motivated from a wide range of practical examples.

In Part I, we attempt to answer the aforementioned scientific questions Q1–Q2 arising

in the context of multiple nonnegative distributions with excess zero observations. In many

applications, multiple populations may naturally share some common characteristics. It is

therefore desirable to borrow information across similar populations to improve inference

procedures. At the same time, we also hope to avoid making too specific parametric

model assumptions, which may not be realistic in applications. The density ratio model

(DRM) is therefore attractive because of its semiparametric nature. We propose to link the

distributions of the positive observations in multiple samples using the DRM, and build an

empirical likelihood ratio (ELR) based inference framework. Under this semiparametric

inference framework, we are able to exploit information from all the available data without

having to specify the underlying distributions. This framework is valuable since it adds

a semiparametric alternative to the existing class of fully parametric and nonparametric

approaches for modelling and making inferences on multiple nonnegative distributions with

excess zero observations. In Chapter 2, the DRM and its background are introduced.

In Chapter 3, we address the scientific question Q1 under the proposed semiparametric

setup. We propose an ELR test for the homogeneity of multiple nonnegative distributions

with excess zero observations. It is shown that the ELR has a χ2-type limiting distri-

bution under the homogeneous null hypothesis. In particular, the DRM assumption is

always satisfied under this null hypothesis, and hence the asymptotic size of the ELR test

can always be controlled at its nominal level even for misspecified basis functions. We

further propose a nonparametric bootstrap procedure which improves the finite sample
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performance of the ELR test. The consistency of the proposed bootstrap procedure is

established under both the null and alternative hypotheses. In addition, the proposed

bootstrap ELR is computationally fast since it uses logistic regression routines available

in standard statistical software, making it readily applicable in practice. The R code for

implementing the bootstrap ELR test is also available in Appendix A.1. The theoretical

and computational advantages of the proposed ELR test and the bootstrap procedure are

illustrated by simulation studies and in a real data example.

In Chapter 4, we address the scientific question Q2 under the same semiparametric

setup. We develop a unified inference framework, based on the ELR, for comparing the

means of multiple nonnegative distributions with excess zero observations. Specifically,

under the DRM assumption, the means of multiple samples can be estimated through

unbiased estimating equations, and we show that the empirical likelihood method provides

an effective inference platform. It is shown that this ELR has a χ2-type limiting distribution

under a general null hypothesis that includes mean equality as a special case. The numerical

calculation of this proposed ELR statistic is also discussed. We have written R functions

for implementing the ELR for testing mean equality, with the basis function in the DRM

being the logarithm function, and they are available in Appendix A.2. We illustrate the

good behaviour of the proposed ELR by finite sample simulation studies and also with

real data example, where the emphasis is on testing mean equality. The simulation results

show that the proposed ELR test can successfully control type I error in most scenarios,

and that it is not sensitive to unequal sample sizes. Compared with other existing tests

for mean equality, the ELR test shows a clear advantage in terms of power when the

correctly specified basis function in the DRM is the logarithm function. These conclusions

are further supported by a real data analysis.

In Part II of this thesis, we answer the scientific questions Q3–Q5 by showing an under-

standing of the behaviour of bootstrap percentile confidence intervals in the constrained

inference problems. In Chapter 5, the bootstrap procedure and bootstrap percentile con-

fidence interval are formally introduced.

In Chapter 6, we begin by investigating a simple normal example in which the mean

parameter is constrained to be nonnegative. In this example, we construct a confidence
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interval for the mean by using the standard bootstrap percentile method. We quantify its

exact coverage probability and observe that it can over-cover the true parameter when it

is on, or close to, the boundary. We next quantify the exact coverage probabilities of the

bootstrap percentile confidence intervals for two ordered normal means and their difference.

The results show that these intervals can under- and over-cover the true mean parameters,

but always over-cover the true difference of the two means, when the true mean difference

is on, or close to, the boundary.

As we have seen from the motivating examples, the constrained inference problems may

be associated with a wide range of data distributions. Therefore, we extend our exact finite

sample results for the one- and two-sample normal distributions to the class of distributions

in the natural exponential family.

We note that the non-standard coverage phenomena discussed above only occur when

the true constrained parameters are on, or close to, the boundary. Here the magnitude

of closeness crucially depends on sample size. This motivates us to propose using a local

asymptotic framework to study the behaviour of bootstrap percentile confidence intervals

for constrained mean parameters when the distributions are in the natural exponential

family. Under this proposed framework, similar phenomena as seen in the normal exam-

ples can be observed asymptotically for one- and two-sample constrained problems. Our

theoretical findings show that the bootstrap percentile confidence intervals may not always

offer correct coverage level, and hence should be used with caution.

Finally, in Chapter 7, the achievements of this thesis are summarized and discussed,

and possible directions for future research are highlighted.
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Part I

Empirical likelihood and the density

ratio model
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Chapter 2

Introduction to Part I

2.1 The semiparametric density ratio model

In this chapter, we introduce the definition and show the properties of the semiparametric

multiple-sample density ratio model (DRM) which will play an important role in Part I of

this thesis. Suppose we have m+ 1 independent groups of samples as follows:

xi1, . . . , xini
∼ Gi(x), i = 0, . . . ,m,

where ni is the ith group’s sample size which is a fixed number by design, and the Gi(·)’s
are cumulative distribution functions with common support which may be continuous or

discrete. Let dGi(x) denote the probability density functions or probability mass functions

of Gi(x), for i = 0, . . . ,m. The definition of the multiple-sample density ratio model

(Anderson, 1979; Qin and Zhang, 1997) is given as follows.

Definition 2.1 (Density ratio model) The Gi(x)’s are said to satisfy the multiple-sample

density ratio model if each dGi(x) satisfies

dGi(x) = exp{αi + β>i q(x)}dG0(x), i = 0, . . . ,m, (2.1)

for a pre-specified, non-trivial, basis function q(x) of dimension d, and unknown parameters

αi and βi. Clearly, α0 = 0 and β0 = 0 for an arbitrarily selected baseline group.
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This definition of the DRM does not require a specification on the baseline distribution

G0(x). Hence, the DRM belongs to the class of semiparametric models, in the sense that

it lies between the fully parametric and fully nonparametric approaches. It only specifies a

parametric form for the log density ratios, where the parameters αi’s and βi’s characterize

the discrepancy between dGi and dG0. Inference based on the DRM defined in (2.1) does

not depend on the form of G0(x) and hence is robust to any assumptions on G0(x).

We give now a brief review of the connections between the DRM and several classical

statistical models.

The DRM and multinomial logistic regression

Logistic regression models are widely used in analyzing data from case-control studies.

The earliest roots of the DRM may date back to Anderson (1979) who was modelling

multivariate logistic compounds, where a specific form of q(x) = x in the DRM was used.

The connection between the DRM and logistic regression can be explained by the

equivalence between prospective and retrospective sampling schemes (Prentice and Pyke,

1979; Qin and Zhang, 1997). For a prospective sampling scheme, a study is usually designed

by following a cohort of subjects over a period of time. Then we model the observed

outcome of disease status at the end of the time period. Suppose D = i for i = 0, . . . ,m

is the indicator variable of the ith disease group. Conditional on a covariate X = x, the

classical multinomial logistic regression model is

Pr(D = i|X = x) =
exp{α∗i + β>i q(x)}

1 +
∑m

k=1 exp{α∗k + β>k q(x)}
, i = 0, 1, . . . ,m. (2.2)

Due to the time and budget constraints, prospective sampling designs are sometime

not feasible. Instead, a retrospective sampling scheme is used, where subjects are included

in the study conditional on their disease status. Let Pr(X = x|D = i) = dGi(x) with

Gi(x) = Pr(X ≤ x|D = i). If Gi’s satisfy the DRM (2.1), then applying Bayes’ rule gives

Pr(D = i|X = x) =
Pr(X = x|D = i) Pr(D = i)∑m
k=0 Pr(X = x|D = k) Pr(D = k)

=
exp{α∗i + β>i q(x)}

1 +
∑m

k=1 exp{α∗k + β>k q(x)}
,
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where α∗i = αi− log{Pr(D = 0)/Pr(D = i)}. Therefore, the DRM (2.1) is connected with

the multinomial logistic regression model (2.2).

Note that logistic regression models and their related inference procedures are well es-

tablished in the literature. The connection between the DRM and multinomial logistic

regression provides a great computational advantage when implementing the DRM and

related statistical inference procedures. Besides, this connection also provides a justifica-

tion for borrowing the logistic regression model diagnostic and selection tools to related

purposes for the DRM. The details will be covered in later sections.

The DRM and parametric exponential family

Suppose we have m + 1 random variables, X0, X1, . . . , Xm, from the same exponential

family with probability density function or probability mass function

g(x;φi) = h(x) exp
{
w>(φi)T(x) + c(φi)

}
, i = 0, . . . ,m,

where φi is a parameter vector, and h(·), w(·), T(·), and c(·) are known functions, and the

common support of Xi should not depend on φi’s.

Let dGi(x) = g(x;φi), then the ratios dGi(x)/dG0(x), i = 0, . . . ,m, satisfy the DRM

assumption (2.1) with

αi = c(φi)− c(φ0), βi = w(φi)−w(φ0), and q(x) = T(x).

In the classical definition of the parametric exponential family, the form of h(x) must

be fully specified. A fundamental innovation in a semiparametric DRM is that the baseline

density dG0(x), the counterpart of h(x), is left unspecified as a nonparametric component

since it plays no role in the estimation of αi and βi. This adds to a good deal of flexibility

to the specification of the DRM. In Table 2.1, we summarize some special and important

members included in the rich DRM family.

As we can see from Table 2.1, the density ratio model assumptions are weaker than

a fully specified parametric model, since q(x) is the only component that needs to be

specified in the DRM (2.1). For example, the choice of basis function q(x) = log(x)
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Table 2.1: Examples of members in the family of the semiparametric density ratio model.

Parametric distribution Gi q(x) Description

Normal (µi, σ
2
i )

(
x, x2

)>
µi: mean; σ2

i : variance
Binomial (n, pi) x pi: success probability; n: known # of trails
Poisson (λi) x λi: rate
Negative Binomial (r, pi) x pi: success probability; r: known # of failures
Exponential (λi) x λi: rate

Log-normal (ai, bi)
{

log(x), log2(x)
}>

ai: mean in log scale; bi: variance in log scale

Gamma (ai, bi) {x, log(x)}> ai: shape; bi scale

Beta (ai, bi) {log(x), log(1− x)}> ai: shape; bi: scale
Weibull (k, λi) xk λi: scale; k: known shape

embraces the log-normal distribution of same bi’s, and the gamma distribution of same

bi’s. These commonly used examples in Table 2.1 also provide a guideline on choosing

some candidate basis functions q(x) in practice.

More discussions on the connections between the DRM (2.1) and other classical statis-

tical models can be found, for example, in Qin (1998) and Jiang and Tu (2012) for the Cox

proportional hazards model (Cox, 1972), and in Qin and Zhang (1997) and Gilbert (2000)

for the biased sampling problems.

A note on model space of the DRM

Although the DRM is flexible and has wide connections with classical statistical models,

it is worth mentioning some exceptions under the Definition 2.1. First, this definition

requires that all the Gi’s should have common support. This, for example, prohibits the

use of DRM to link the normal distribution with known variance (with support on R) and

the exponential distribution (with support on R+). Second, this definition also excludes the

distributions with support depending on unknown parameters, for example, the generalized

extreme value distribution and the generalized Pareto distribution. Lastly, the class of

finite mixture distributions also does not satisfy the definition of DRM, although it is not

unusual in applications.
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2.2 Dual empirical likelihood for the DRM

In this section, we review an inference procedure for the DRM which uses the empirical

likelihood (EL) method.

The EL method was proposed by Owen (1988, 1990, 1991). The EL is a nonparametric

likelihood that has many attractive properties analogous to the parametric likelihood but

requires no restrictive distributional assumption. In an important milestone paper, Qin and

Lawless (1994) showed that auxiliary information, in the form of a set of general unbiased

estimating equations, can be incorporated through the EL to improve the efficiency of

estimation and the EL ratio based confidence intervals. The monograph of Owen (2001)

serves as a comprehensive reference on empirical likelihood.

With the data structure as described in Section 2.1, if we treat all the distribution

functions Gi’s as unknown parameters, then the likelihood function is

m∏
i=0

ni∏
j=1

dGi(xij).

Under the density ratio model (2.1), the likelihood function becomes

L =
m∏
i=0

ni∏
j=1

exp{αi + β>i q(xij)}dG0(xij).

Following the generic recommendation in Owen (2001), we restrict the form of baseline

distribution G0(x) to be a discretized distribution with support being the union of the

combined observations of total sample size n =
∑m

i=0 ni. Specifically,

G0(x) =
m∑
i=0

ni∑
j=1

pijI(xij ≤ x).

Therefore, pij = dG0(xij) = G0(xij)−G0(xij−) is the probability mass assigned to xij.

For a compact presentation, let α = (α1, . . . , αm)>, β = (β>1 , . . . ,β
>
m)>, and θ =

(α>,β>)>. Then the empirical log-likelihood function of (θ, G0) can be written as

˜̀(θ, G0) = log(L) =
m∑
i=0

ni∑
j=1

{
αi + β>i q(xij) + log(pij)

}
,
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where we have the following natural constraints:

pij > 0,
m∑
i=0

ni∑
j=1

pij exp{αk + β>k q(xij)} = 1, k = 0, . . . ,m. (2.3)

Hence, the maximum EL estimator (θ̂, Ĝ0) of (θ, G0) is defined as the solutions that max-

imize ˜̀(θ, G0) over the constrained space (2.3).

For inference about θ̂, the profile empirical log-likelihood function would be much more

convenient to work with. We follow similar procedures to those in Qin and Lawless (1994),

using Lagrange multipliers to profile out the infinite dimensional parameter G0.

We first set up the Lagrangian function. For any given θ,

Λ(G0,λ) = ˜̀(θ, G0) + n
m∑
k=0

λk

[
1−

m∑
i=0

ni∑
j=1

pij exp{αk + β>k q(xij)}

]
,

where λ = (λ0, ..., λm)> are Lagrangian multipliers. The point {pi1, . . . , pini
: i = 0, . . . ,m}

that maximize ˜̀(θ, G0) must also be a stationary point of Λ satisfying

∂Λ(G0,λ)

∂pij
= 0 and

∂Λ(G0,λ)

∂λi
= 0. (2.4)

We note that

0 =
m∑
i=0

ni∑
j=1

pij
∂Λ(G0,λ)

∂pij

=
m∑
i=0

ni∑
j=1

pij

{
p−1
ij − n

m∑
k=0

λk exp{αk + β>k q(xij)

}

= n− n
m∑
k=0

λk

m∑
i=0

ni∑
j=1

pij exp
{
αk + β>k q(xij)

}
= n− n

m∑
k=0

λk (2.5)

where the last equation follows from the constraint (2.3).
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By solving (2.4) together with (2.5), the function ˜̀(θ, G0) achieves its maximum when

λ0 = 1−
∑m

i=1 λi and

pij =
1

n

1

1 +
∑m

k=1 λk[exp{αk + β>k q(xij)} − 1]
, (2.6)

where (λ1, ..., λm) solves

m∑
i=0

ni∑
j=1

exp{αr + β>r q(xij)} − 1

1 +
∑m

k=1 λk[exp{αk + β>k q(xij)} − 1]
= 0, for r = 1, ...,m. (2.7)

Using (2.6) to profile out the pij’s, the profile empirical log-likelihood function of θ, up to

a constant, not depending on the unknown parameters, is

˜̀∗(θ) = −
m∑
i=0

ni∑
j=1

log

{
1 +

m∑
t=1

λt[exp{αt + β>t q(xij)} − 1]

}
+

m∑
i=1

ni∑
j=1

{αi + β>i q(xij)}.

Therefore, the maximum EL estimator of θ can be obtained by θ̂ = argmaxθ ˜̀∗(θ).

Unfortunately, there are at least two potential issues for using ˜̀∗(θ) to make inference

on θ. First, in the computation of θ̂, we need to maximize ˜̀∗(θ) numerically. This may

not be an easy task since there are no analytical solutions for (2.7) in the definition of
˜̀∗(θ). Second, under the constraints (2.3), β = 0 implies α = 0 and hence the function
˜̀∗(θ) may not be identified in a neighbourhood of θ = 0. Therefore, θ = 0 is no longer an

interior point of the parameter space which violates the standard regularity conditions in

traditional likelihood inference.

Keziou and Leoni-Aubin (2008) and Cai et al. (2016) argued that the above two issues

of ˜̀∗(θ) can be resolved by optimising the following dual empirical log-likelihood function:

`(θ) = −
m∑
i=0

ni∑
j=1

log

[
ρ0 +

m∑
k=1

ρk exp{αk + β>k q(xij)}

]
+

m∑
i=1

ni∑
j=1

{αi + β>i q(xij)}, (2.8)

where ρk = nk/n for k = 0, . . . ,m.

We summarize the favourable properties of `(θ) by restating some key results of Keziou

and Leoni-Aubin (2008) for the two-sample case, and Cai et al. (2016) for the multiple-

sample case, in the following proposition.
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Proposition 2.1 (Properties of dual EL) Under some mild regularity conditions, for

example, those in Cai et al. (2016), then for `(θ) defined in (2.8) and θ̂ = arg maxθ ˜̀∗(θ),

we have

(a) `(θ) is a concave function in θ, and it is strictly concave when∑m
i=1

∑ni

j=1{1,q>(xij)}>{1,q>(xij)} is positive definite.

(b) `(θ) attains its maximum in a n1/3 neighbourhood of the true parameter θ∗ as n→∞.

(c) θ̂ = arg maxθ `(θ) and `(θ̂) = ˜̀∗(θ̂).

Proof. We only prove Part (c). The proofs of Part (a) and Part (b) can be found by

applying Theorem 3.1 in Keziou and Leoni-Aubin (2008) for the two-sample case, and

Lemma 2.3 and Lemma 2.4 in Cai (2014) for the multiple-sample case.

Recall that θ̂ = arg maxθ{˜̀∗(θ)}. Let λ̂ = (λ̂1, . . . , λ̂m)> be the solution of (2.7) with

θ being replaced by θ̂. That is, λ̂ satisfies

m∑
i=0

ni∑
j=1

exp{α̂k + β̂
>
k q(xij)} − 1

1 +
∑m

t=1 λ̂t[exp{α̂t + β̂
>
t q(xij)} − 1]

= 0, r = 1, . . . ,m. (2.9)

Plugging θ̂ and λ̂ into (2.6), we denote for i = 1, . . . ,m and j = 1, . . . , ni

p̂ij =
1

n

1

1 +
∑m

t=1 λ̂t[exp{α̂t + β̂
>
t q(xij)} − 1]

. (2.10)

In the first step, we find the explicit form of λ̂. For the convenience of our presentation,

we let

h(θ,λ) = −
m∑
i=0

ni∑
j=1

log

{
1 +

m∑
t=1

λt[exp{αt + β>t q(xij)} − 1]

}
+

m∑
i=1

ni∑
j=1

{αi + β>i q(xij)}.

Then ˜̀∗(θ) = h(θ,λ) with λ being the solution of (2.7) and ˜̀∗(θ̂) = h(θ̂, λ̂).

Note that when λ is the solution of (2.7), λi’s are actually functions of θ. When ˜̀∗(θ)

is maximized, the following equations should be satisfied, for k = 1, . . . ,m

0 =
∂ ˜̀∗(θ̂)

∂αk
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=
∂h(θ̂, λ̂)

∂αk
+

m∑
r=1

∂h(θ̂, λ̂)

∂λr

∂λr
αk

∣∣∣
θ=

ˆθ

= −λ̂k
m∑
i=0

ni∑
j=1

exp{α̂k + β̂
>
k q(xij)}

1 +
∑m

t=1 λ̂t[exp{α̂t + β̂
>
t q(xij)} − 1]

+ nk

−
m∑
r=1

m∑
i=0

ni∑
j=1

exp{α̂k + β̂
>
k q(xij)} − 1

1 +
∑m

t=1 λ̂t[exp{α̂t + β̂
>
t q(xij)} − 1]

· ∂λr
αk

∣∣∣
θ=

ˆθ

= −nλ̂k
m∑
i=0

ni∑
j=1

exp{α̂k + β̂
>
k q(xij)}p̂ij + nk

= nk − nλ̂k,

where the third equation is by (2.9) and (2.10), and the last equation follows from the

constraint (2.3). In summary, when ˜̀∗(θ) is maximized at θ = θ̂, the Lagrange multipliers

have the explicit solutions

λ̂k =
nk
n

= ρk, k = 1, . . . ,m.

Hence `(θ) = h(θ, λ̂).

In the second step, we argue that

∂`(θ̂)

∂θ
=
∂h(θ̂, λ̂)

∂θ
= 0. (2.11)

It can be easily verified that, for k = 1, . . . ,m

∂h(θ̂, λ̂)

∂αk
= −nλ̂k

m∑
i=0

ni∑
j=1

exp{α̂k + β̂
>
k q(xij)}p̂ij + nk = nk − nλ̂k = 0. (2.12)

For ∂`(θ̂)/∂βk, we notice that, for k = 1, . . . ,m

0 =
∂ ˜̀∗(θ̂)

∂βk

=
∂h(θ̂, λ̂)

∂βk
+

m∑
r=1

∂h(θ̂, λ̂)

∂λr

∂λr
∂βk

∣∣∣
θ=

ˆθ
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=
∂h(θ̂, λ̂)

∂βk
−

m∑
r=1

m∑
i=0

ni∑
j=1

exp{α̂k + β̂
>
k q(xij)} − 1

1 +
∑m

t=1 λ̂t[exp{α̂t + β̂
>
t q(xij)} − 1]

· ∂λr
βk

∣∣∣
θ=

ˆθ

=
∂h(θ̂, λ̂)

∂βk
, (2.13)

where in the last line, we have used (2.9). Hence, (2.12) and (2.13) together imply (2.11).

Hence θ̂ is a stationary point of `(θ). Due to the concavity of `(θ), we have

θ̂ = arg max
θ

`(θ).

Recall that ˜̀∗(θ̂) = h(θ̂, λ̂) and `(θ) = h(θ, λ̂). Then

˜̀∗(θ̂) = h(θ̂, λ̂) = `(θ̂).

This completes the proof. �

We note that property (c) in Proposition 2.1 states that the maximum point and maxi-

mum value of ˜̀∗(θ) are identical to those of the dual empirical log-likelihood function `(θ).

With property (c), the properties (a) and (b) guarantee that a unique θ̂ exists and it is

an interior point of the parameter space with probability one as n→∞. These properties

are important for the following discussion on the numerical computation of θ̂ and `(θ̂).

Subsequently, plugging θ̂ and λ̂k = nk/n into (2.6), we obtain

p̂ij =
1

n

1

1 +
∑m

k=1
nk

n
[exp{α̂k + β̂

>
k q(xij)} − 1]

.

Finally, we can estimate the distribution function Gk(x), for k = 1, . . . ,m, by

Ĝk(x) =
1

n

m∑
i=0

ni∑
j=1

exp{α̂k + β̂
>
k q(xij)}p̂ijI(xij ≤ x). (2.14)

Asymptotic properties

Under some mild regularity conditions, the
√
n-consistency of θ̂ and the asymptotic normal-

ity of θ̂ have been established in many situations; see for example, Qin (1998) and Keziou
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and Leoni-Aubin (2008) for the two-sample case, and Fokianos et al. (2001) and Chen and

Liu (2013) for the multiple-sample case. Based on these results, Qin and Zhang (1997)

and Zhang (2002) further showed that the semiparametric estimator {Ĝ0(x), . . . , Ĝm(x)}
in (2.14) converges weakly to a multivariate Gaussian process.

A note on computation

The solutions of θ̂ and p̂ij can not be found explicitly in general. In order to compute

θ̂, numerical optimization algorithms are required. To do this we can use the equivalence

between the DRM (2.1) and the multinomial logistic regression model (2.2). For a given

q(x), the log-likelihood function of the multinomial logistic regression model in (2.2) is

ˇ̀(α∗,β) = −
m∑
i=0

ni∑
j=1

log

[
1 +

m∑
k=1

exp{α∗k + β>k q(xij)}

]
+

m∑
i=1

ni∑
j=1

{α∗i + β>i q(xij)},

where α∗i = (α1, . . . , α
∗
m)> is the vector of intercepts and βi’s are vectors of regression

parameters interpreted as the log odds ratios associated with the ith group. Compared

with the dual likelihood `(θ) in (2.8), it is easy to find that

`(θ) = ˇ̀(α∗,β)−
m∑
i=0

ni log(ρi),

and αi = α∗i + log (ρ0/ρi) for i = 1 . . . ,m. This fact makes the computation of θ̂ and

`(θ̂) very straightforward using logistic regression routines, for example, via the R function

multinom available in the package “nnet” (R Development Core Team, 2014). Alterna-

tively, one can use the R package “drmdel” (Cai, 2015) for the dual EL inference under the

DRM; this includes solving more general computational problems in Chen and Liu (2013)

and Cai et al. (2016).

2.3 The DRM diagnostic and selection

Despite the flexibility of the DRM, (2.1), misspecifying the DRM can still have an impact

on the inference results (Fokianos and Kaimi, 2006). To assess the DRM assumption
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(2.1), a Kolmogorov-Smirnov-type goodness-of-fit test of Zhang (2002), for multinomial

logistic models based on case-control data, may be used. However, this may only be

helpful in identifying several competing models with suitable basis functions q(x). In

practice, Fokianos (2007) suggested selecting a suitable basis function q(x) in a DRM

among several competing models using Akaike’s information criterion (AIC) (Akaike, 1973)

which is defined as

AIC = −2`(θ̂) + 2(md+m).

Here `(θ̂) is the dual EL and md+m are the number of parameters in θ. The performance

of AIC was evaluated in Fokianos (2007), and it was shown to be robust for moderate

sample sizes.

2.4 Recent developments on the DRM

The idea of the DRM as a powerful semiparametric tool was not being fully recognized

until the establishment of the theoretical foundation of empirical likelihood by Owen (1988).

Later, the idea of the DRM was popularized by Qin and Zhang (1997) and Qin (1998).

In particular, Qin and Zhang (1997) demonstrated the equivalence between the DRM and

logistic regression models, and further developed procedures to assess the goodness-of-fit of

the logistic regression models based on case-control data. Qin (1998) formally established

the large sample properties of the maximum EL estimators of the DRM parameters in the

two-sample case.

We now selectively review some fundamental work for EL inference under the DRM.

For the multiple-sample estimation problems, Fokianos (2004) and Aubin and Leoni-Aubin

(2008) considered density estimation under the DRM. Diao et al. (2012) studies the esti-

mation efficiency of parameters in the DRM. Chen and Liu (2013) discussed the quantile

and quantile function estimation problem using the DRM. For the multiple-sample hy-

pothesis testing problems, Fokianos et al. (2001) constructed a Wald-type test of the linear

hypothesis about the DRM parameters in one-way layout. Zhang (2002) considered testing

the validity of the generalized logistic model with multiple categories based on case-control
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data using the connection with the DRM. Cai (2014) constructed an EL ratio statistic for

testing a general composite hypothesis about the DRM parameters. Wang (2014) proposed

a Wald-type statistic for testing the means of several populations under the DRM.

There has been a large literature that investigate the merit of the DRM in a wide range

of important statistical problems. For examples, Qin (1999), Zou et al. (2002) and Li et al.

(2016) applied the DRM to semiparametric mixture models. Guan (2004) and Hu et al.

(2008) extended the use of the DRM for the change point problems. Fokianos and Savvides

(2008) and Kedem et al. (2008) explored the use of DRM in the context of time series data.

Shen et al. (2012) and Chan (2013) implemented the DRM in the analysis of survival data.

Jiang and Tu (2012) and Jiang et al. (2016) studied making inference under the DRM

with censored data. Qin and Zhang (2003), Wan and Zhang (2007) and Wan and Zhang

(2013) examined using the DRM for optimally estimating receiver operating characteristic

curves. Davidov et al. (2010) and Davidov et al. (2014) generalized the DRM to inference

problems under order restriction.

Other significant recent advances include the work of Luo and Tsai (2012) and Huang

and Rathouz (2012) who introduced proportional likelihood ratio models to regress the

DRM parameter β on a set of covariates. Liu et al. (2014) built up a local empirical likeli-

hood framework to allow for varying coefficients in a DRM. The paper of de Carvalho and

Davison (2014) investigated modelling several multivariate extremal distributions using the

DRM. Chen et al. (2014) and Ning and Chen (2015) suggested a new pseudo-likelihood

framework for inference problems under the DRM. Qin et al. (2015) used the DRM idea to

integrate valuable auxiliary information from external large data sources for case-control

studies. Chen et al. (2016) relaxed the log-linear form of the DRM and proposed a mono-

tonic DRM to further improve the robustness of the inference procedures.

To the best of our knowledge, the semiparametric DRM has not been used in modelling

multiple samples with excess zero observations. In Chapters 3 and 4, we will model and

develop inference procedures for multiple samples with excess zero observations under such

a semiparametric framework.
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Chapter 3

Testing homogeneity for multiple

nonnegative distributions with excess

zero observations

3.1 Introduction

This chapter is devoted to answering the scientific question Q1 outlined in Section 1.1

of Chapter 1. That is, given multiple groups with an excess of zero observations, we

aim to test the homogeneity of their distributions. This hypothesis testing problem has

been considered as one of the fundamental problems in the literature; see for example,

Lachenbruch (1976, 2001, 2002); Tse et al. (2009); Bedrick and Hossain (2013); Johnson

et al. (2015). Specifically, suppose we have m+1 independent groups of samples as follows:

xi1, . . . , xini
∼ Fi(x) = νiI(x = 0) + (1− νi)I(x > 0)Gi(x), i = 0, . . . ,m, (3.1)

where ni is the ith group’s sample size, I(·) is an indicator function and the Gi(·)’s are cu-

mulative distribution functions with common support which may be continuous or discrete.

In this chapter, we concentrate on continuous distributions Gi(·)’s whose support consists

of nonnegative real numbers; but we proposed, in Section 7.1, ways that the method can
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be applied to discrete distributions. For random samples with excess zero observations,

the zero outcomes, in fact, contain valuable information and thus should not be simply

discarded. The above formulation, (3.1), which is a non-standard mixture model of a point

mass distribution at zero and a continuous nonnegative component, is an intuitive way to

account for the unique features of such data. Our interest is to test whether the m + 1

mixture distributions Fi’s are homogenous. In addition, one may also be interested in

testing the equality of their means. This topic will be further covered in Chapter 4.

In the literature, two-part tests have been widely used to compare groups of samples

from the non-standard mixture structure in (3.1). Lachenbruch (2001, 2002) comprehen-

sively studied two-part tests for two such populations. A two-part test is a two degrees of

freedom test based on the sum of a test statistic for the equality of the proportions of zero

counts and a conditional χ2-test statistic for the positive part. The test for the latter part

may be a nonparametric Wilcoxon-Mann-Whitney rank sum test or a two-sample t-test.

If more than two populations are under consideration, we can replace these tests with a

Kruskal-Wallis test or an ANOVA F -test, respectively. On the other hand, the parametric

likelihood ratio test can also be used for the second part after assuming a parametric form

on the nonzero data, such as a log-normal distribution or a gamma distribution. The two-

part tests and their extensions have been successfully implemented in various applications;

see for example, Bascoul-Mollevi et al. (2005), Taylor and Pollard (2009), and Wagner et al.

(2011). Further ideas and comparisons of some existing one- and two-part procedures may

be found in Delucchi and Bostrom (2004), Follmann et al. (2009), Hallstrom (2010), and

Hu and Proschan (2015).

In numerical studies (see Sections 3.3 and 3.6), we show that the existing two-part tests

are either inefficient when no parametric assumptions are made for the nonnegative com-

ponents or are not robust when the parametric models are assumed. In many applications,

multiple populations may naturally share some common characteristics. It is therefore

desirable to borrow efficiency across similar populations to improve testing power. At the

same time, we also hope that a test is robust to deviations from the model assumptions.

The semiparametric density ratio model defined in Chapter 2 is a natural tool to use here.

We propose to compare the distributions of the continuous nonnegative components in

(3.1), by the DRM to exploit information from all available samples. Let dGi(x) denote
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the density of Gi(x) for i = 0, . . . ,m. We link Gi(x) through the DRM such that

dGi(x) = exp{αi + β>i q(x)}dG0(x), i = 0, . . . ,m. (3.2)

for a non-trivial pre-specified basis function q(x) of dimension d, and corresponding un-

known parameters αi and βi (α0 = 0 and β0 = 0). Without specifying the baseline density

dG0(x), we propose a test based on the DRM that does not depend on the form of G0(x)

and hence is robust to the assumption on G0(x).

Under this semiparametric setup, we propose an empirical likelihood ratio (ELR) test

for homogeneity under (3.1) and (3.2). We show that the proposed ELR test is also a

two-part test: the first part tests the equality of zero proportions νi’s and the second part

tests the homogeneity in the continuous components of the model. We show that the

asymptotic null distribution of the ELR is χ2-type as the total sample size goes to infinity.

We also explore using a nonparametric bootstrap procedure to calibrate the distributions of

the proposed test statistic in finite-sample situations. This bootstrap procedure is shown

to approximate the null distribution of the ELR test statistic under both the null and

alternative hypotheses. Software implementing the bootstrap ELR test has been developed

in the R language (R Development Core Team, 2014) and is supplemented in the Appendix

A.1 at the end of this thesis.

We note that developing the limiting distribution of the ELR is technically challenging.

First, in the second part of the ELR, the number of observations, i.e., the number of

positive observations in each group, is a random number, thus differs from the work of

Fokianos et al. (2001), Zhang (2002), Cai et al. (2016) and this creates new challenges. In

particular we have to deal with random sums of independent and identically distributed

random variables. Second, the two parts of the ELR both have χ2-type null limiting

distributions. Hence we need to show asymptotic independence so that their summation

still has a χ2-type null limiting distribution. We comment that investigating the asymptotic

properties of the bootstrap procedure under both the null and alternative hypotheses is

also technically challenging. Existing results may not be directly applied. We refer to

Janssen and Pauls (2003) for more discussion.

We further note that under the null hypothesis of homogeneity, the DRM in (3.2) is

automatically satisfied regardless of the choice of basis function q(x). This is because the
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null hypothesis corresponds to a reduced form of the DRM with all αi = 0 and βi = 0. This

property is attractive because it ensures that the asymptotic size of the test can always be

controlled at its nominal level even if the form of basis function q(x) is misspecified. Hence

the size of the proposed ELR test is robust to both the choice of q(x) and the assumption

on G0(x).

The rest of this chapter is organized as follows. In Section 3.2, we present the ELR

test for homogeneity under the DRM, investigate its asymptotic properties, and propose

a nonparametric bootstrap procedure to calibrate its finite-sample distribution. We fur-

ther study the theoretical properties of the bootstrap procedure under both the null and

alternative hypotheses. In Section 3.3, we report some simulation results. A real exam-

ple is given in Section 3.4. For the convenience of presentation, all proofs and complete

simulation results are in Sections 3.5 and 3.6, respectively.

3.2 Main results

In this section, we present an empirical likelihood method for testing homogeneity of dis-

tributions under (3.1) and (3.2). For a compact presentation, let α = (α1, . . . , αm)>,

β = (β>1 , . . . ,β
>
m)>, and θ = (α>,β>)>. Under the condition (3.2), testing the null

hypothesis, that all the m + 1 groups of samples come from the same population, i.e.

F0 = · · · = Fm, is equivalent to testing

H0 : ν0 = · · · = νm and θ = 0. (3.3)

3.2.1 Empirical likelihood method

Let ni0 and ni1 be the (random) numbers of zeros and positive observations for the ith

group, respectively, for i = 0, . . . ,m. Without loss of generality, we use xi1, . . . , xini1
to

denote the positive observations for the ith group.

With the given multiple groups of observations from (3.1), the likelihood function of
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the parameters νi’s and Gi’s is

m∏
i=0

{
νni0
i (1− νi)ni1

ni1∏
j=1

dGi(xij)

}
.

Under the density ratio model (3.2), the likelihood function becomes

L =
m∏
i=0

νni0
i (1− νi)ni1

m∏
i=0

ni1∏
j=1

exp{αi + β>i q(xij)}dG0(xij).

Along the lines of empirical likelihood (see Section 2.2), we restrict the form of baseline

distribution G0 to be

G0(x) =
m∑
i=0

ni1∑
j=1

pijI(xij ≤ x).

Let ν = (ν0, . . . , νm)>, then the empirical log-likelihood function of (ν,θ, G0) can be

written as

log(L) = `0(ν) + ˜̀
1(θ, G0),

where

`0(ν) =
m∑
i=0

log{νni0
i (1− νi)ni1}, ˜̀

1(θ, G0) =
m∑
i=0

ni1∑
j=1

{
αi + β>i q(xij) + log(pij)

}
.

Here `0(ν) is the binomial log-likelihood corresponding to the number of zero observations

and ˜̀
1(θ, G0) is the empirical log-likelihood associated with the positive observations.

We have the following natural constraints:

pij > 0,
m∑
i=0

ni1∑
j=1

pij exp{αr + β>r q(xij)} = 1, r = 0, . . . ,m. (3.4)

Recall the derivation of dual empirical log-likelihood function in Section 2.2. By re-

placing ni in (2.8) with ni1, we have the following dual empirical log-likelihood function of

θ:

`1(θ) = −
m∑
i=0

ni1∑
j=1

log

[
ρ0 +

m∑
r=1

ρr exp{αr + β>r q(xij)}

]
+

m∑
i=1

ni1∑
j=1

{αi + β>i q(xij)}, (3.5)
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where ρr = nr1/n·1 for r = 0, . . . ,m with n·1 =
∑m

i=0 ni1. Note that this dual empirical

log-likelihood `1(θ) retains the nice properties given in Proposition 2.1.

Let (ν̂, θ̂) = argmaxν,θ{`0(ν) + `1(θ)} be the maximum EL estimate of (ν,θ). Clearly,

ν̂ and θ̂ maximize `0(ν) and `1(θ), respectively. Therefore, the ELR test statistic for

testing H0 is defined as

Rn = 2

{
`0(ν̂)−max

H0

`0(ν)

}
+ 2`1(θ̂),

where, in the last step, we use the fact that `1(θ) = `1(0) = 0 under H0. In Rn, the

subscript n denotes the total sample size, i.e., n =
∑m

i=0 ni.

3.2.2 Large sample property

In this subsection, we study the asymptotic distribution of the ELR test statistic Rn under

H0.

Suppose that the true value of ν is ν∗ = (ν∗0 , . . . , ν
∗
0)> under H0. The true value of θ

is 0 under H0. Then the asymptotic result in this section relies on the following regularity

conditions.

C1. ν∗0 ∈ (0, 1).

C2. limmin{n0,...,nm}→∞ ni/n→ ρ∗i , where ρ∗i ∈ (0, 1) for i = 0, . . . ,m.

C3.
∫ (

1,q>(x)I(x > 0)
)> (

1,q>(x)I(x > 0)
)
dF0(x) exists and is positive definite.

C4.
∫

exp{β>i q(x)}I(x > 0)dF0(x) <∞ in a neighbourhood of βi = 0 for i = 0, . . . ,m.

Condition C1 states that the parameter ν∗ is an interior point of the parameter space

of ν such that `0(ν) has regular properties. Condition C2 assumes that the ratio of each

group sample size to n converges to a constant as min{n0, . . . , nm} → ∞. For simplicity

and convenience of presentation, we write ρ∗i = ni/n and assume that it is a constant. This

does not affect our technical development. Under C1 and C2, there is no need to distinguish
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the stochastic orders with respect to n or ni. Condition C3 is an identifiability condition,

and it ensures that the components of {1,q>(x)I(x > 0)} are linearly independent under

F0(x), and hence q(x) can not be a constant function. Conditions C3 and C4 guarantee

that a second-order approximation of `1(θ) is applicable.

The limiting distribution of Rn is given in the following theorem. Let
d−→ denote “con-

vergence in distribution”.

Theorem 3.1 Suppose we have m + 1 groups of samples from (3.1) and condition (3.2)

is satisfied. Assume, also, that the regularity conditions C1–C4 hold. Under the null

hypothesis H0 given in (3.3), we have

Rn
d−→ χ2

m(d+1)

as n→∞, where χ2
m(d+1) denotes a chi-squared random variable with m(d+ 1) degrees of

freedom.

For the convenience of presentation, we defer the proof of Theorem 3.1 to Section 3.5.1.

We provide a remark on the result in Theorem 3.1 by considering the degrees of freedom

in the χ2-limiting distribution. Let Rn,1 = 2 {`0(ν̂)−maxH0 `0(ν)} and Rn,2 = 2`1(θ̂).

Then the ELR test statistic Rn = Rn,1 +Rn,2. Here the first part Rn,1 tests the equality of

zero proportions ν and is shown to have a χ2
m null limiting distribution. The second part

Rn,2 tests homogeneity and is shown to have a χ2
md null limiting distribution. For second

part we actually have total dim(θ) = m+md number of parameters, but the number of free

parameters is md since β = 0 automatically implies that α = 0. Adding the asymptotically

independent Rn,1 and Rn,2 together, we get that the null limiting distribution of Rn is

χ2
m(d+1). In addition, some technical difficulties in our proof have been highlighted in

Section 3.1.

3.2.3 A bootstrap procedure

As we show through simulations in Section 3.3, the approximation of the limiting distri-

bution to the finite-sample distribution of the ELR is not satisfactory in many situations.
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Intuitively we can see two possible causes: (i) Rn,1 and Rn,2 are not independent in finite-

sample situations; and (ii) even when the total sample size is moderately large, the asymp-

totic results can still be unreliable if the zero proportions, νi’s, are close to boundaries at

0 or 1.

A natural method for improving the finite-sample approximations is to use the boot-

strap (Efron and Tibshirani, 1993). Let Xω = {xωi1, . . . , xωini
: i = 0, . . . ,m} be the non-

parametric bootstrap sample, by resampling with replacement from the combined observed

data X = {xi1, . . . , xini
: i = 0, . . . ,m}. Let Rω

n be the ELR test statistic based on Xω.

Next we study the asymptotic properties of Rω
n under both the null and alternative

hypotheses, which depend on a new set of regularity conditions. Let F̄ (x) =
∑m

i=0 ρ
∗
iFi(x)

and ν̄∗0 =
∑m

i=0 ρ
∗
i νi.

D1. ν̄∗0 ∈ (0, 1).

D2. limmin{n0,...,nm}→∞ ni/n→ ρ∗i , where ρ∗i ∈ (0, 1) for i = 0, . . . ,m.

D3.
∫ (

1,q>(x)I(x > 0)
)> (

1,q>(x)I(x > 0)
)
dF̄ (x) exists and is positive definite.

D4.
∫

exp{β>i q(x)}I(x > 0)dF̄ (x) <∞ in a neighbourhood of βi = 0 for i = 0, . . . ,m.

The following theorem establishes the asymptotic properties of the proposed bootstrap

procedure.

Theorem 3.2 Assume that the regularity conditions D1–D4 hold. Then conditional on

the observed data X, we have

Rω
n

d−→ χ2
m(d+1)

in probability as n→∞. Hence

sup
x

∣∣Pr(Rω
n ≤ x|X)− Pr(χ2

m(d+1) ≤ x)
∣∣→ 0

in probability as n→∞.

The proof of Theorem 3.2 is given in Section 3.5.2. We give some remarks about

Conditions D1–D4 and the results in Theorem 3.2.
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(a) The proof of Theorem 3.2 does not rely on any information about ν and θ specified

under the null hypothesis in (3.3). Hence, the result is valid for the whole model

space under (3.1) and (3.2). That is, the true underlying model that generates the

observed data X can be from the null and also alternative hypotheses.

(b) Since Theorem 3.2 is proved to cover the cases that the observed data X is from the

null and also alternative hypotheses, we require the regularity conditions to cover

both cases. Conditions D1–D4 serve this purpose. They become Conditions C1–C4

when the observed data is generated under the null hypothesis. The comments for

Conditions C1–C4 in Section 3.2.2 can be similarly extended to Conditions D1–D4.

(c) The conditional asymptotic distribution of Rω
n always approximates χ2

m(d+1), under

both the null and alternative hypotheses that generate the observed data X. This

is a desirable property for a resampling method in hypothesis testing context (Pauly

et al., 2015). It ensures that the quantiles of the bootstrap distribution of Rω
n always

converges in probability to the quantiles of χ2
m(d+1), which is used to find a p-value

under the null hypothesis even if the null hypothesis is not true. Hence, together

with Theorem 3.1, the resulting bootstrap ELR test can asymptotically maintain

the nominal type I error under H0. This further implies that the ELR test can also

maintain its consistent power behaviour for any fixed alternative based on bootstrap

critical values.

Based on Theorem 3.2, the following nonparametric procedure is then suggested to

approximate the p-value of the ELR test.

Step 1. For each b from 1 to B, we repeat the following:

Step 1.1. Generate a bootstrap sample
{
x

(b)
i1 , . . . , x

(b)
ini

: i = 0, . . . ,m
}

by ran-

dom sampling with replacement from the combined observed data {xi1, . . . , xini
:

i = 0, . . . ,m}.

Step 1.2. Based on this bootstrap sample
{
x

(b)
i1 , . . . , x

(b)
ini

: i = 0, . . . ,m
}

, we

can calculate the bootstrap ELR test statistic R
(b)
n ;
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Step 2. From Step 1, we obtained a set
{
R

(b)
n : b = 1, . . . , B

}
. We approximate

the p-value of Rn by
∑B

b=1 I
{
R

(b)
n ≥ Rn

}
/B, where Rn is the observed ELR test

statistic.

Note that in Step 1.1 we separate the obtained bootstrap sample into m+ 1 segments with

each segment length ni and call the ith segment the bootstrap sample for the ith group,

for i = 0, . . . ,m.

The choice of B depends on the desired precision level. In our simulation, we set B =

999. We show in the next section that the ELR test coupled with the above nonparametric

bootstrap procedure produces accurate type I errors in almost all the simulation settings.

3.3 Simulation studies

In this section, we assess the finite-sample performance of the proposed ELR test and the

nonparametric bootstrap procedure through Monte Carlo simulation. We further compare

the proposed method with some existing methods:

• two-part parametric likelihood ratio tests (LRT) based on the assumption of a log-

normal distribution for the nonnegative part (LRT-LN) or the assumption of a gamma

distribution for the nonnegative part (LRT-GAM);

• the one-part Wald-type statistic (WTS1) proposed by Pauly et al. (2015) for testing

a linear hypothesis about the means without using any distributional assumptions

under very general heteroscedastic factorial designs, and also its two-part version

(WTS2);

• the one-part generalized ANOVA-type statistic (ATS) proposed by Brunner et al.

(1997), which was shown in Vallejo et al. (2010) and Pauly et al. (2015) to accu-

rately maintain the preassigned level in most cases and it is conservative for skewed

distributions;

• the one-part Kruskal-Wallis test (KW1), and its two-part version (KW2);
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• the one-part ANOVA F -test (ANOVA1), and its two-part version (ANOVA2).

The KW test, the ANOVA test, and the fully parametric LRTs are classical methods

to test the equality of multiple distributions. Their two-part versions are also classical

methods and are studied in Lachenbruch (2001). In the context of zero-excess data, it is

well known that skewness is an important characteristic. Vallejo et al. (2010) concluded

that the ATS method should be recommended when the distributions are moderately

skewed. Lastly, the WTS is a distribution-free and valid method in general heteroscedastic

factorial designs and may be adapted to the case with excess zeros (Pauly et al., 2015).

We fix the number of populations under consideration to be m + 1 = 3 and generate

random observations, conditional on all ν̂i’s 6= 0 or 1, from (3.1) with all the Gi’s being

log-normal, or all the Gi’s being gamma. Note that if any ν̂i’s = 0 or 1, then some test

statistics may not be well defined. This is not a problem in practice. However, note that,

when any true zero proportion νi is too close to the boundary 0 or 1, Anaya-Izquierdo

et al. (2014) found that boundary effects can dominate the sampling distribution of ν̂i.

Hence, the true νi’s are considered to be between 0.2 and 0.7 in our simulation settings.

A diagnostic tool was proposed in Anaya-Izquierdo et al. (2014) which defines how far

νi is required to be from the boundary so that first order asymptotics remain adequate.

Further, note that, when the combined sample contains only a few nonzero observations,

resampling methods may not be very helpful to remove such boundary effects (Chen et al.,

2003).

In the following, we use LN(ai, bi) to denote a log-normal distribution with mean ai and

variance bi both with respect to the log scale (i.e., the mean and variance of the associated

normal random variable) and GAM(ai, bi) to denote a gamma distribution with shape

parameter ai and scale parameter bi. The parameter settings under the null (LN1–LN3

and GAM1–GAM3) and alternative (LN4–LN15 and GAM4–GAM15) models are given in

Table 3.1.

We consider the case with equal sample sizes by setting ni to be 20, 50 or 100 for

i = 0, 1, 2; and also consider the case with unequal sample sizes that (n0, n1, n2) =

(50, 100, 150).
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For all tests, the type I error rates and power at the 5% significance level are calcu-

lated based on 10,000 repetitions. The type I error rates are calculated using the limiting

distribution and the bootstrap procedure proposed in Section 3.2.3 with B = 999. For fair

comparison, the bootstrap procedure with B = 999 is used to calculate the powers of all

methods. For the one-part and two-part WTS test statistics, the computation is completed

by using R package “GFD” (Friedrich et al., 2016). Following Pauly et al. (2015), we also use

the permutation method with 10,000 permutation samples (the default number in “GFD”)

to calculate the type I error rates and powers of one-part and two-part WTS tests.

For the clarity of presentation, we only present the results of ELR test under the

correctly specified basis function q(x). That is, ELR test under q(x) = {x, log(x)}> for

the GAM models; and ELR test under q(x) = {log(x), log2(x)}> for the LN models.

For more choices of q(x), interested readers may refer to Section 3.6. Moreover, we only

present the comparisons of the ELR test with the correctly specified LRT (which serves

as the benchmark test), the WTS2, and the KW2. The ANOVA2 has similar or even

less power than WTS2. The one-part tests are in general comparable to, or less powerful

than, the corresponding two-part versions. Hence, the power comparisons with ANOVA2

and one-part tests are not presented in this current section. Further, for WTS2 method,

bootstrap and permutation procedures give the consistent results; see Section 3.6. For

fair comparison, we only present the results using the bootstrap procedure for WTS2. In

Section 3.6, complete simulation results for all tests are available.

3.3.1 Type I error

The simulated type I error rates for the four selected representative tests are summarized

in Tables 3.2–3.3. We have observed, based on our simulation results, that the type I error

rates based on asymptotic distributions for all tests tend to be inflated, particularly, when

sample sizes are small for ELR, LRT and WTS2, and when sample sizes are small and

zero proportions are low for KW2. On the other hand, the bootstrap procedure provides

satisfactory adjustment to the type I error rates, except for LN3 and GAM3 with sample

sizes (20, 20, 20). In these settings, we may encounter a number of bootstrap samples

contain at most one nonzero observations. For such a bootstrap sample, some test statistics
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Table 3.1: Parameter settings for simulation studies. In the first column, each LN1–LN15 and

each GAM1–GAM15 denote mixture models whose continuous parts follow the distributions

LN(ai, bi) and GAM(ai, bi), respectively, for i = 0, 1, 2. The last two columns are the means

and variances corresponding to each model.

Model (ν0, ν1, ν2) (a0, a1, a2) (b0, b1, b2) Means Variances

LN1 (0.2, 0.2, 0.2) (0.0, 0.0, 0.0) (1.0, 1.0, 1.0) (1.65, 1.65, 1.65) (4.67, 4.67, 4.67)

LN2 (0.4, 0.4, 0.4) (0.0, 0.0, 0.0) (1.0, 1.0, 1.0) (1.65, 1.65, 1.65) (4.67, 4.67, 4.67)

LN3 (0.7, 0.7, 0.7) (0.0, 0.0, 0.0) (1.0, 1.0, 1.0) (1.65, 1.65, 1.65) (4.67, 4.67, 4.67)

LN4 (0.2, 0.3, 0.4) (0.0, 0.0, 0.0) (1.0, 1.0, 1.0) (1.32, 1.15, 0.99) (4.17, 3.84, 3.45)

LN5 (0.4, 0.4, 0.4) (0.0, 0.5, 1.0) (2.0, 2.0, 2.0) (1.63, 2.69, 4.43) (30.10, 81.82, 222.40)

LN6 (0.6, 0.6, 0.6) (0.0, 0.0, 0.0) (1.0, 2.0, 3.0) (0.66, 1.09, 1.79) (2.52, 20.66, 158.16)

LN7 (0.5, 0.6, 0.7) (0.0, 0.5, 1.0) (3.0, 2.0, 1.0) (2.24, 1.79, 1.34) (196.69, 56.15, 14.57)

LN8 (0.6, 0.6, 0.6) (0.0, 0.5, 1.0) (3.0, 2.0, 1.0) (1.79, 1.79, 1.79) (158.16, 56.15, 18.63)

LN9 (0.3, 0.4, 0.5) (0.0, 0.15, 0.34) (2.0, 2.0, 2.0) (1.90, 1.90, 1.90) (34.60, 40.97, 49.89)

LN10 (0.4, 0.5, 0.6) (0.0, 0.0, 0.0) (2.0, 2.36, 2.81) (1.63, 1.63, 1.63) (30.10, 53.95, 107.90)

LN11 (0.4, 0.5, 0.6) (0.0, 0.5, 1.0) (2.69, 2.05, 1.5) (2.30, 2.30, 2.30) (124.67, 77.32, 54.07)

LN12 (0.5, 0.5, 0.5) (0.0, 0.5, 1.0) (2.46, 1.98, 1.5) (1.71, 2.21, 2.88) (65.93, 65.93, 65.93)

LN13 (0.3, 0.4, 0.5) (0.0, 0.07, 0.15) (2.0, 2.0, 2.0) (1.90, 1.75, 1.58) (34.60, 34.60, 34.60)

LN14 (0.3, 0.4, 0.5) (0.0, 0.0, 0.0) (2.0, 2.07, 2.15) (1.90, 1.69, 1.46) (34.60, 34.60, 34.60)

LN15 (0.4, 0.5, 0.6) (0.0, 0.5, 1.0) (2.28, 1.88, 1.5) (1.88, 2.11, 2.30) (54.07, 54.07, 54.07)

GAM1 (0.2, 0.2, 0.2) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (0.80, 0.80, 0.80) (0.96, 0.96, 0.96)

GAM2 (0.4, 0.4, 0.4) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (0.60, 0.60, 0.60) (0.84, 0.84, 0.84)

GAM3 (0.7, 0.7, 0.7) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (0.30, 0.30, 0.30) (0.51, 0.51, 0.51)

GAM4 (0.2, 0.3, 0.4) (1.0, 1.0, 1.0) (2.0, 2.0, 2.0) (1.6, 1.4, 1.2) (3.84, 3.64, 3.36)

GAM5 (0.6, 0.6, 0.6) (1.0, 1.5, 2.0) (2.0, 2.0, 2.0) (0.8, 1.2, 1.6) (2.56, 4.56, 7.04)

GAM6 (0.6, 0.6, 0.6) (1.0, 1.0, 1.0) (1.0, 2.0, 3.0) (0.4, 0.8, 1.2) (0.64, 2.56, 5.76)

GAM7 (0.4, 0.5, 0.6) (1.0, 1.5, 3.0) (3.0, 2.0, 1.0) (1.8, 1.5, 1.2) (7.56, 5.25, 3.36)

GAM8 (0.5, 0.5, 0.5) (1.0, 1.5, 3.0) (3.0, 2.0, 1.0) (1.5, 1.5, 1.5) (6.75, 5.25, 3.75)

GAM9 (0.4, 0.5, 0.6) (1.5, 1.8, 2.25) (2.0, 2.0, 2.0) (1.8, 1.8, 1.8) (5.76, 6.84, 8.46)

GAM10 (0.4, 0.5, 0.6) (1.0, 1.0, 1.0) (2.0, 2.4, 3.0) (1.2, 1.2, 1.2) (3.36, 4.32, 5.76)

GAM11 (0.4, 0.5, 0.6) (2.0, 3.0, 4.0) (2.0, 1.6, 1.5) (2.4, 2.4, 2.4) (8.64, 9.60, 12.24)

GAM12 (0.4, 0.4, 0.4) (1.0, 1.5, 3.0) (2.0, 1.53, 0.92) (1.20, 1.37, 1.66) (3.36, 3.36, 3.36)

GAM13 (0.3, 0.4, 0.5) (1.5, 1.56, 1.66) (2.0, 2.0, 2.0) (2.1, 1.87, 1.66) (6.09, 6.09, 6.09)

GAM14 (0.3, 0.4, 0.5) (1.0, 1.0, 1.0) (2.0, 2.08, 2.20) (1.4, 1.25, 1.1) (3.64, 3.64, 3.64)

GAM15 (0.4, 0.5, 0.6) (2.0, 3.0, 4.0) (2.0, 1.52, 1.26) (2.4, 2.28, 2.02) (8.64, 8.64, 8.64)

may not be well defined. Our treatment is to simply delete such bootstrap sample. By

doing so, the type I error may be slightly inflated.

In Section 3.6, we demonstrate, by additional simulations, that similar conclusions on

the type I error rates can be drawn for the bootstrap ELR test under five particular basis

functions which may be incorrectly specified. This confirms that the asymptotic size of the
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Table 3.2: Type I error rates (%) for testing H0 at significance level 0.05 when data are generated

from a log-normal mixture model with parameter settings given in Table 3.1. The ELR test is

defined under q(x) = {log(x), log2(x)}>.

Model (n0, n1, n2)
ELR LRT-LN WTS2 KW2

asymptotic bootstrap asymptotic bootstrap asymptotic bootstrap asymptotic bootstrap

LN1

(20, 20, 20) 8.12 4.87 7.03 4.12 7.33 4.66 5.73 4.81
(50, 50, 50) 6.12 4.89 5.79 4.81 5.54 4.64 5.10 4.88
(50, 100, 150) 5.89 5.20 5.76 5.22 6.72 4.84 5.37 5.31
(100, 100, 100) 5.70 5.06 5.32 4.89 5.43 4.91 4.80 4.69

LN2

(20, 20, 20) 8.58 4.78 7.35 3.99 7.00 4.64 4.98 4.87
(50, 50, 50) 6.80 5.03 5.91 4.75 6.40 5.14 5.11 4.99
(50, 100, 150) 6.10 5.17 5.64 5.00 7.14 4.92 5.35 5.40
(100, 100, 100) 6.03 5.17 5.50 5.17 5.77 5.11 5.52 5.46

LN3

(20, 20, 20) 12.54 5.66 10.02 3.47 8.80 5.79 3.26 5.79
(50, 50, 50) 7.94 4.81 6.61 4.36 7.00 4.65 4.96 4.81
(50, 100, 150) 6.91 4.99 6.30 4.95 8.65 5.33 5.55 5.59
(100, 100, 100) 6.42 4.98 5.73 4.58 6.10 5.00 4.76 4.80

NOTE: the Monte Carlo error is 0.218 (%) under the null models LN1-LN3.

Table 3.3: Type I error rates (%) for testing H0 at significance level 0.05 when data are generated

from a gamma mixture model with parameter settings given in Table 3.1. The ELR test is defined

under q(x) = {x, log(x)}>.

Model (n0, n1, n2)
ELR LRT-GAM WTS2 KW2

asymptotic bootstrap asymptotic bootstrap asymptotic bootstrap asymptotic bootstrap

GAM1

(20, 20, 20) 7.97 4.63 7.06 4.39 8.04 5.18 6.13 5.16
(50, 50, 50) 5.98 4.53 5.38 4.38 6.18 4.98 5.09 4.97
(50, 100, 150) 5.58 4.81 5.33 4.67 5.82 4.74 5.04 4.93
(100, 100, 100) 5.67 5.09 5.42 5.09 5.54 5.06 5.12 4.94

GAM2

(20, 20, 20) 8.91 4.99 7.37 4.32 7.99 5.03 5.29 5.14
(50, 50, 50) 6.22 4.59 5.33 4.32 5.82 4.72 4.90 4.81
(50, 100, 150) 5.84 4.92 5.32 4.74 6.26 4.88 5.13 5.11
(100, 100, 100) 5.52 5.04 5.32 4.88 5.50 5.07 5.13 5.15

GAM3

(20, 20, 20) 11.95 5.75 10.01 3.66 9.68 5.10 3.10 5.60
(50, 50, 50) 7.87 4.99 6.94 4.64 7.34 4.77 5.13 5.02
(50, 100, 150) 6.70 4.95 6.16 4.84 7.42 5.01 5.04 5.07
(100, 100, 100) 6.60 4.99 5.90 4.77 6.36 5.24 5.33 5.39

NOTE: the Monte Carlo error is 0.218 (%) under the null models GAM1-GAM3.

ELR test is robust to the choice of q(x) and the assumption on G0(x).
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3.3.2 Testing power

For clarity and to aid discussion, we categorize the alternative model specifications into a

3× 4 table given in Table 3.4. For the rows, these are considered to include the scenarios

that the non-homogeneity is: due to both means and variances (Scenario R.I), mainly due

to the variances (Scenario R.II), or mainly due to the means (Scenario R.III). For the

columns, the specifications can be divided into scenarios in which: either the zero propor-

tions or the nonnegative components are held constant (Scenario C.I), the parameters bi’s

of nonnegative components are held constant (Scenario C.II), the parameters ai’s of non-

negative components are held constant (Scenario C.III), or all the parameters are different

(Scenario C.IV).

Table 3.4: Scenarios categorized according to the alternative model settings in Table 3.1.

Scenario C.I C.II C.III C.IV

R.I LN4 & GAM4 LN5 & GAM5 LN6 & GAM6 LN7 & GAM7

R.II LN8 & GAM8 LN9 & GAM9 LN10 & GAM10 LN11 & GAM11

R.III LN12 & GAM12 LN13 & GAM13 LN14 & GAM14 LN15 & GAM15

The simulated powers for four selected representative tests, adjusted using bootstrap

procedure, are plotted in Figures 3.1–3.2. Together with the additional simulation results

in Section 3.6, we make the following comments.

(a) There seems to be no single dominant method in terms of the power of the tests in

all the scenarios considered.

(b) The fully parametric LRT is known as the asymptotically most powerful test if the

parametric model is correctly specified. It can be observed that the proposed boot-

strap ELR test performs almost as well as the fully parametric LRT under correct

model assumptions in all the settings investigated. But not surprisingly, the boot-

strap ELR test performs better than the parametric LRT under incorrect parametric

assumptions, from the results in Section 3.6. These findings confirm that the boot-

strap ELR test is robust against the departure of parametric assumptions.
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Figure 3.1: Simulated powers (%) of rejecting H0 at significance level 0.05 when data are gener-

ated from a log-normal mixture model with parameter settings given in Table 3.1. The horizon-

tal axis denotes four combinations of sample sizes (n0, n1, n2) equal to (20, 20, 20), (50, 50, 50),

(50, 100, 150) and (100, 100, 100), from left to right.
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Figure 3.2: Simulated powers (%) of rejecting H0 at significance level 0.05 when data are gen-

erated from a gamma mixture model with parameter settings given in Table 3.1. The horizon-

tal axis denotes four combinations of sample sizes (n0, n1, n2) equal to (20, 20, 20), (50, 50, 50),

(50, 100, 150) and (100, 100, 100), from left to right.
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(c) The comparison with one-part tests is provided in Section 3.6. In some settings, the

one-part tests may preform slightly better than the corresponding two-part versions,

but can fail dramatically such as in Scenario C.IV for KW1, and in Scenario R.II

for ANOVA1, WTS1, and ATS. This phenomenon may be due to the fact that the

one-part tests ignore the mixture structure in (3.1). In general, the ELR test is more

powerful than the one-part tests except for KW1 under LN4, LN10, LN14, GAM4,

and GAM14. The performance of ELR test and KW1 are very comparable under

LN4, GAM4, and GAM14, while the KW1 is slightly more powerful for small sample

sizes. Under LN10 and LN14, the KW1 is more powerful than the ELR test for all

sample sizes. These two models belong to the case that the mixture proportions and

variances on the log scale (i.e. bi’s) are different in a log-normal mixture model.

(d) For all the two-part tests, the first parts are likelihood ratio tests for testing homo-

geneity in the zero proportions. Therefore, the power differences of two-part tests are

due to the second parts for testing homogeneity in Gi(x)’s. If both ai’s and bi’s are

different (i.e., Scenarios C.I and C.IV except for LN4 and GAM4), the ELR test is

the most powerful test, or one of the most powerful tests. For example, the ELR test

has the most advantage for LN7, LN8, GAM7, and GAM8. If ai’s or bi’s or both are

the same (i.e., Scenarios C.II and C.III, LN4, and GAM4), then KW2 and/or WTS2

could be sometimes more powerful than the ELR test except for LN6. This limitation

of the ELR test is mainly because the q(x) in the DRM (3.2) is over-fitted. If a more

parsimonious basis function q(x) is used, then the ELR test could become compara-

ble to KW2 and/or WTS2. More precisely, in LN13 and (n0, n1, n1) = (50, 100, 150),

the powers of KW2, WTS2, and ELR with basis function q(x) = {log(x), log2(x)}>

are 56.04%, 50.19%, and 47.25%, respectively. The most parsimonious basis function

under LN13 is q(x) = log(x). With this basis function, the power of the ELR test

increases to 55.33%, which becomes comparable to other two-part tests. Lastly, we

explain the trend exception of LN6. Note that in LN6, the means of Gi’s are only

slightly different compared with the magnitude of variances. Recall that WTS2 is

mainly designed for testing the mean differences in Gi’s. This explains why the WTS2

is less powerful than the ELR test for LN6. Also note that the non-homogeneity in

Fi’s under LN6 is only due to the differences in bi’s. Since the KW test is invariant
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to the monotone transformation (Kruskal, 1952), the KW2 is not able to detect the

differences in bi’s (the variances in log scale) of a log-normal mixture model. This

explains why the KW2 is much less powerful than the ELR test for LN6.

(e) To examine how sensitive the power of the ELR test is to the choice of q(x), more

comprehensive simulation results, that cover under-fitting, over-fitting, and misspec-

ification of a DRM, are given in Section 3.6. In general, we have observed that

the bootstrap ELR tests based on the correctly specified basis functions have higher

power than those based on the misspecified, under-fitted or over-fitted basis func-

tions. Hence, in practice, to achieve appreciable testing power, we suggest selecting a

suitable basis function q(x) in a DRM among several competing models using some

information criteria, for example, Akaike’s information criterion (AIC) as described

in Section 2.3. We note that our current hypothesis testing problem is slightly differ-

ent from that considered in Fokianos (2007). Hence, the use of AIC for selecting q(x)

and its impact on the power performance may deserve further investigation, which is

beyond the scope of this chapter.

3.4 Testing with a real data set

In this section, we employ a real data example to illustrate the proposed ELR test and the

nonparametric bootstrap procedure.

The aim of this real example was to investigate precipitation distribution changes which

plays an important role in meteorology. The data here is available from the website of the

University of Waterloo weather station data archive (http://weather.uwaterloo.ca/

data.html). The data set records daily precipitation measurements (in millimetres, and

in winter the number is referred to as the snow-water equivalent) for several years since 2003

based on the GeoNor T-200B Precipitation Gauge (installed in December 2002) located in

the North Campus of the University of Waterloo, Canada.

For illustration purposes, we consider the data for years 2003–2006. We are interested

in detecting if there are any precipitation distribution changes over these years. To reduce

the time dependence among the observations, we take every 4th measurement into our

39

http://weather.uwaterloo.ca/data.html
http://weather.uwaterloo.ca/data.html


analysis, i.e. the observations on days 1, 5, 9, . . . , 361, which gives a total sample size

n = 364. Similar conclusions were drawn when we considered other subsets of the data.

Some summary statistics are:

• the estimate of ν> is (0.3187, 0.3956, 0.4176, 0.4176) with sample sizes (91, 91, 91, 91);

• the sample means are (2.0923, 3.5396, 3.3978, 3.4978);

• the sample variances are (16.6392, 41.0662, 76.1044, 59.4987).

We further fit this data by log-normal mixture model and gamma mixture model under

the null and alternative hypotheses by the parametric maximum likelihood method. The

details are provided in Table 3.5. These models are used in our confirmative simulation

later on. It seems that the means and variances fitted by the gamma mixture model match

the real data quite closely.

Table 3.5: Fitted parameters for log-normal mixture model and gamma mixture model under the

null and alternative hypotheses for Waterloo precipitation data. The models LN16 and GAM16 are

fitted under the null hypothesis; and the models LN17 and GAM17 are fitted under the alternative

hypothesis. The last two columns are the means and variances corresponding to each model, and

1> = (1, 1, 1, 1).

Model (ν0, ν1, ν2, ν3) (a0, a1, a2, a3) (b0, b1, b2, b3) Means Variances

LN16 0.39× 1> 0.52× 1> 2.58× 1> 3.74× 1> 285.90× 1>

LN17 (0.32, 0.40, 0.42, 0.42)(0.18, 1.05, 0.36, 0.52) (2.18, 1.70, 3.08, 3.00) (2.43, 4.04, 3.91, 4.39)(70.62, 131.52, 559.29, 645.92)

GAM16 0.39× 1> 0.56× 1> 9.11× 1> 3.13× 1> 34.74× 1>

GAM17(0.32, 0.40, 0.42, 0.42)(0.65, 0.82, 0.46, 0.50)(4.72, 7.12, 12.69, 12.04)(2.09, 3.54, 3.40, 3.50) (11.92, 33.41, 51.40, 50.89)

We applied the proposed bootstrap ELR tests and other testing methods to test if the

precipitation distribution changed for the four years. The various test statistics and their

p-values based on 10,000 times bootstrap resampling are summarized in Table 3.6.

It is seen that the proposed ELR tests based on the first three basis functions all give

highly significant p-values at the 5% significance level. The bootstrap ELR test based
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Table 3.6: Test statistics, corresponding p-values, and related simulation results based on the

bootstrap procedures with B = 10, 000 for Waterloo precipitation data.

Method
Precipitation data Confirmative simulation

AIC Test statistic p-value LN16 LN17 GAM16 GAM17

ELR
q(x) = {x, log(x)}> 614.54 23.36 0.0070 5.40 82.81 4.96 90.74
q(x) = {log(x), log2(x)}> 616.78 21.12 0.0155 5.26 87.48 4.90 81.93
q(x) = {x, log(x), log2(x)}> 618.94 24.96 0.0210 5.16 81.63 5.18 86.08
q(x) = x 622.62 9.28 0.1746 5.41 42.52 5.02 75.76
q(x) = log(x) 619.97 11.93 0.0672 5.07 75.34 5.15 60.00

KW2 - 11.70 0.0696 5.14 77.22 4.98 65.62
KW1 - 2.33 0.5005 5.10 22.08 4.89 12.27
ANOVA2 - 7.84 0.2538 4.79 33.86 5.09 68.28
ANOVA1 - 0.91 0.4383 4.37 11.64 5.07 31.50
LRT-LN - 18.30 0.0155 5.12 87.58 4.45 66.74
LRT-GAM - 20.20 0.0361 4.48 44.06 4.89 90.74
ATS - 0.91 0.4383 4.37 11.64 5.07 31.50
WTS1 - 5.10 0.1870 4.96 19.76 4.87 47.94
WTS2 - 12.18 0.0747 4.87 42.32 4.96 82.37

on q(x) = {x, log(x)}> has the smallest AIC. Hence, the DRM with q(x) = {x, log(x)}>

provides the best fit to the data among the five commonly used basis functions as guided

by Table 2.1. Therefore, under a reasonably fitted DRM, we gain some evidence that the

precipitation distribution was changing over 2003–2006 based on the observed data. Even

though we are not able to exhaustively search all possible basis functions q(x), our ELR

test based on this fitted q(x) = {x, log(x)}> already has enough power of rejecting the

homogeneous null hypothesis at 5% significance level, and our conclusion is reliable. This

is because of the fact that misspecifing, over- or under-fitting the basis function q(x) in the

DRM may only result in some loss of power (Section 3.6), while the type I error can still

be controlled regardless the choice of q(x). The total computational time for obtaining

the p-value of bootstrap ELR test based on q(x) = {x, log(x)}> is around 2 minutes in an

IMAC with a 3.4-GHz Intel Core i7 processor.

The two parametric likelihood ratio tests also produce significant p-values, however,

at the risk of misspecifying the underlying parametric models, which may significantly

decrease the power of the parametric likelihood ratio test as we have discussed in Section

3.2.3. On the other hand, the proposed bootstrap ELR test guarantees the control of type
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I error with data-discovered underlying distributions and thus the conclusion is much more

reliable.

The above results may be further verified by the confirmative simulation with model

settings in Table 3.5. The simulation results are based on 10,000 repetitions. For each

repetition, B = 10, 000 bootstrap samples are used to calculate the p-value for each test.

For WTS1 and WTS2, we also use 10, 000 permutation samples to calculate the p-values.

The results are very similar to those from the bootstrap method and thus are omitted

here. The results are summarized in Table 3.6, which show that the resampling adjusted

type I error rates for all tests are well controlled for the null models LN16 and GAM16.

Since ai’s, and bi’s are all different, the ELR test with basis function q(x) = {x, log(x)}>

and LRT-GAM are the most powerful tests under GAM17. Recall that the alternative

model GAM17 well captures some characteristics of this data. The simulation results

under GAM16 and GAM17 further confirm that our findings for the ELR test with basis

function q(x) = {x, log(x)}> may not be obtained by chance.

3.5 Proofs

This section contains proofs of Theorem 3.1 and Theorem 3.2.

3.5.1 Proof of Theorem 3.1

Recall that the true value of ν is ν∗ = (ν∗0 , . . . , ν
∗
0)> under H0. The true value of θ is 0

under H0. The regularity conditions provided in Section 3.2.2 will be needed throughout

this proof.

Recall that Rn = Rn,1 +Rn,2 with

Rn,1 = 2

{
`0(ν̂)−max

H0

`0(ν)

}
, Rn,2 = 2`1(θ̂).

The roadmap for proving Theorem 3.1 is as follows. In Step 1, we argue that the null

limiting distribution of Rn,1 is χ2
m. In Step 2, we argue that the null limiting distribution
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of Rn,2 is χ2
md. In Step 3, we argue that Rn,1 and Rn,2 are asymptotically independent.

Theorem 3.1 then follows.

Note that `0(ν) is the summation of binomial log-likelihood based on ni0’s and Rn,1 is

the parametric likelihood ratio test statistic for testing the null hypothesis that ν0 = · · · =
νm. According to the classical likelihood theory (Serfling, 1980, Chapter 4), we have under

H0

Rn,1 =
1

n

∂`0(ν∗)

∂ν>
{
Σ−1 − ν∗0(1− ν∗0)1m+11

>
m+1

} ∂`0(ν∗)

∂ν
+ op(1), (3.6)

where Σ = 1
ν∗0 (1−ν∗0 )

diag(ρ∗0, . . . , ρ
∗
m) and 1m+1 is a (m+1)-dimensional vector with all ones.

It can be verified that

∂`0(ν∗)

∂ν>
=

{
n00 − n0ν

∗
0

ν∗0(1− ν∗0)
, . . . ,

nm0 − nmν∗0
ν∗0(1− ν∗0)

}>
.

By the central limit theorem, we have that

n−1/2∂`0(ν∗)

∂ν

d−→ N(0,Σ).

After some algebra, we can further check(
Σ−1 − ν∗0(1− ν∗0)1m+11

>
m+1

)
Σ
(
Σ−1 − ν∗0(1− ν∗0)1m+11

>
m+1

)
= Σ−1−ν∗0(1−ν∗0)1m+11

>
m+1

and rank
(
Σ−1 − ν∗0(1− ν∗0)1m+11

>
m+1

)
= m. Hence, it follows that

Rn,1
d−→ χ2

m.

This finishes Step 1.

In Step 2, we derive the limiting distribution of Rn,2 under the null hypothesis, which

requires the asymptotic properties of ∂`1(0)/∂θ, ∂2`1(0)/∂θ∂θ> and θ̂. To present these

results, we need some notation. In the following, the expectation, variance and covariance

are taken under ν∗0I(x = 0) + (1 − ν∗0)G0(x)I(x > 0), the true null distribution. Without

loss of generality, we assume that E{q(X)I(X > 0)} = 0. Otherwise a transformation

can be applied. Let Q =
{∑n0

j=1 q>(x0j)I(x0j > 0), . . . ,
∑nm

j=1 q>(xmj)I(xmj > 0)
}>

, Im

denotes a m ×m unit diagonal matrix, and 1m denotes a m-dimensional vector with all

entries being one. Further, let H = diag(ρ)− ρρ> with ρ = (ρ∗1, . . . , ρ
∗
m)>.
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Lemma 3.1 Assume the same conditions as Theorem 3.1. We have under H0, as n→∞

(a) ∂`1(0)
∂α = 0, ∂`1(0)

∂β
= {(−ρ, Im − ρ1>m)⊗ Id}Q + op(n

1/2), and

n−1/2∂`1(0)

∂β

d−→ N(0,V),

where V = H⊗ Var {q(X)I(X > 0)} and ⊗ denotes the Kroneker product;

(b) − 1
n
∂2`1(0)

∂θ∂θ>
→ U in probability, where

U =

(
(1− ν∗0)H 0

0 V

)
;

(c) n1/2α̂ = op(1) and n1/2β̂ = n−1/2V−1{(−ρ, Im − ρ1>m)⊗ Id}Q + op(1).

Proof. First, we consider Part (a). With `1(θ) defined in (3.5), it can be verified that for

r = 1, . . . ,m,

∂`1(0)

∂αr
= 0 and

∂`1(0)

∂βr
=

nr1∑
j=1

q(xrj)− ρr
m∑
i=0

ni1∑
j=1

q(xij).

We emphasize that in the above segment of the score function, the ρr and ni1’s are

random variables which prevent us from applying standard large sample theories directly.

We use indicator variables to circumvent this technical difficulty. Note that Conditions C1

and C2 imply that ρr → ρ∗r almost surely under H0. Then, for r = 1, . . . ,m,

∂`1(0)

∂βr
=

nr∑
j=1

q(xrj)I(xrj > 0)− ρ∗r
m∑
i=0

ni∑
j=1

q(xij)I(xij > 0) + op(n
1/2).

Therefore, we have an expression of the score function

∂`1(0)

∂α
= 0 and

∂`1(0)

∂β
= {(−ρ, Im − ρ1>m)⊗ Id}Q + op(n

1/2).

After some algebra, we can verify that

E
[
{(−ρ, Im − ρ1>m)⊗ Id}Q

]
= 0
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and

Var
[
{(−ρ, Im − ρ1>m)⊗ Id}Q

]
= nH⊗ Var {q(X)I(X > 0)} = nV.

Note that by using indicator variables, elements in Q are written as the summations of

independent random vectors. Therefore, applying the standard central limit theorem, as

the total sample size n→∞, we have

n−1/2{(−ρ, Im − ρ1>m)⊗ Id}Q
d−→ N(0,V).

Using Slutsky’s theorem, we further have

n−1/2∂`1(0)

∂β

d−→ N(0,V).

This finishes Part (a).

Next, we consider Part (b). It can be verified that, for 1 ≤ r, s ≤ m,

∂2`1(0)

∂αr∂αs
= −(δrsρr − ρrρs)n·1,

∂2`1(0)

∂αr∂β
>
s

= −(δrsρr − ρrρs)
m∑
i=0

ni1∑
j=1

q>(xij),

∂2`1(0)

∂βr∂β
>
s

= −(δrsρr − ρrρs)
m∑
i=0

ni1∑
j=1

q(xij)q
>(xij),

where δrs is 1 when r = s and 0 otherwise.

By noting that ρr = ρ∗r + op(1) and using indicator variables, we can write the above

second derivatives as sums over a constant range of all n observations. As an illustration,

we consider

∂2`1(0)

∂βr∂β
>
s

= −(δrsρr − ρrρs)
m∑
i=0

ni1∑
j=1

q(xij)q
>(xij)

= −(δrsρ
∗
r − ρ∗rρ∗s)

m∑
i=0

ni∑
j=1

q(xij)q
>(xij)I(xij > 0) + op(n).

Using the Kronecker product ⊗, ∂2`1(0)/∂θ∂θ> becomes

∂2`1(0)

∂θ∂θ>
= −H⊗

( ∑m
i=0

∑ni
j=1 I(xij > 0)

∑m
i=0

∑ni
j=1 q>(xij)I(xij > 0)∑m

i=0

∑ni
j=1 q(xij)I(xij > 0)

∑m
i=0

∑ni
j=1 q(xij)q

>(xij)I(xij > 0)

)
+ op(n).
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By applying the standard weak law of large numbers, as the total sample size n→∞,

− 1

n

∂2`1(0)

∂θ∂θ>
→ U =

(
(1− ν∗0)H 0

0 V

)
in probability, where we have used the fact that E{q(X)I(X > 0)} = 0. This finishes Part

(b).

Last, we consider Part (c). Note that θ̂ satisfies that

∂`1(θ̂)/∂θ = 0.

Conditions C1–C4 ensures that the matrix U is positive definite and hence we can apply

first order Taylor expansion to ∂`1(θ̂)/∂θ to obtain the approximation of θ̂ as follows:

0 =
∂`1(0)

∂θ
+

(
∂2`1(0)

∂θ∂θ>

)
θ̂ + op(n

1/2).

With Parts (a) and (b), we further have

θ̂ = U−1

(
0

{(−ρ, Im − ρ1>m)⊗ Id}Q

)
+ op(n

−1/2)

=

(
(1− ν∗0)H 0

0 V

)−1(
0

{(−ρ, Im − ρ1>m)⊗ Id}Q

)
+ op(n

−1/2),

which implies Part (c). �

We now move back to show the limiting distribution of Rn,2 = 2`1(θ̂) under H0. Since

`1(0) = 0 and U is positive definite, the second-order Taylor expansion can be used to

approximate Rn,2 as

Rn,2 = 2
∂`1(0)

∂θ>
θ̂ + θ̂

>
(
∂2`1(0)

∂θ∂θ>

)
θ̂ + op(1).

With Lemma 4.1, the approximation of Rn,2 is simplified to

Rn,2 =
1

n

[
{(−ρ, Im − ρ1>m)⊗ Id}Q

]>
V−1

[
{(−ρ, Im − ρ1>m)⊗ Id}Q

]
+ op(1), (3.7)

which converges in distribution to χ2
md. Note here rank(V−1) = dim(β) = md. This

finishes Step 2.
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The remaining step is to show Rn,1 and Rn,2 are asymptotically independent. In light

of Lemma 4.1 and asymptotic expansions (3.6) and (3.7), it suffices to show that

Cov

[
{(−ρ, Im − ρ1>m)⊗ Id}Q,

∂`0(ν∗)

∂ν

]
= {(−ρ, Im−ρ1>m)⊗ Id}Cov

{
Q,

∂`0(ν∗)

∂ν

}
= 0.

Recall that Q can be partitioned into m+ 1 blocks with each block being a d-dimensional

vector. For any 0 ≤ r, s ≤ m, the covariance between the (r+1)th block of Q and (s+1)th

element of ∂`0(ν∗)/∂ν is Cov
{∑nr

j=1 q(xrj)I(xrj > 0), ∂`0(ν∗)/∂νs

}
which is 0 when r 6= s

since the observations for the rth and sth groups are independent. When r = s,

Cov

{
nr∑
j=1

q(xrj)I(xrj > 0),
∂`0(ν∗)

∂νs

}

=
1

ν∗0(1− ν∗0)
Cov

{
nr∑
j=1

q(xrj)I(xrj > 0), nr0 − nrν∗0

}

=
1

ν∗0(1− ν∗0)
Cov

{
nr∑
j=1

q(xrj)I(xrj > 0),
nr∑
j=1

I(xrj = 0)

}

=
1

ν∗0(1− ν∗0)

nr∑
j=1

Cov {q(xrj)I(xrj > 0), I(xrj = 0)}

=
1

ν∗0(1− ν∗0)

nr∑
j=1

E {q(xrj)I(xrj > 0)I(xrj = 0)} = 0.

Hence Rn,1 and Rn,2 are asymptotically independent, and the null limiting distribution of

Rn = Rn,1 +Rn,2 is χ2
m(d+1). This completes the proof of Theorem 3.2. �

3.5.2 Proof of Theorem 3.2

The regularity conditions provided in Section 3.2.3 will be needed throughout this proof.

We first define some notation. Recall that Xω = {xωi1, . . . , xωini
: i = 0, . . . ,m} is the

nonparametric bootstrap sample from X = {xi1, . . . , xini
: i = 0, . . . ,m}. That is,

Xω|X ∼ F̂n(x) =
1

n

m∑
i=0

ni∑
j=1

I(xij ≤ x).
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For a given bootstrap sample Xω, let nωi0 and nωi1 be the numbers of zeros and positive

observations for the ith group, respectively, for i = 0, . . . ,m. Without loss of generality,

we use
{
xωi1, . . . , x

ω
inω

i1
: i = 0, . . . ,m

}
to denote the positive observations in Xω.

Recall the forms of ν̂ and Q defined in the proof of Theorem 3.1. The bootstrap version

of ν̂ is defined as ν̂ω = (ν̂ω0 , . . . , ν̂
ω
m)> with ν̂ωi = nωi0/ni for i = 0, . . . ,m. The bootstrap

version of Q is defined as

Qω =

{
n0∑
j=1

q>(xω0j)I(xω0j > 0), . . . ,
nm∑
j=1

q>(xωmj)I(xωmj > 0)

}>
.

Since Xω|X ∼ F̂n(x), it is easy to verify that

E (ν̂ω|X) = (v̄0, . . . , v̄0)> and E(Qω|X) = (n0q̄
>, . . . , nmq̄>)> := Q̄,

where v̄0 =
∑m

i=0 ni0/n and q̄ = 1
n

∑m
i=0

∑ni

j=1 q(xij)I(xij > 0).

The proof of Theorem 3.2 depends on the asymptotic properties of ν̂ω and Qω condi-

tional on the observed data X. As a preparation, we study them first. Let

Zω
n =


nω00 − n0ν̄0

...

nωm0 − nmν̄0

Qω − Q̄

 .

Let EF̄ and VarF̄ represent the expectation and variance calculated under F̄ . Also let

X ∼ F̄ (x). Without loss of generality, we assume that EF̄{q(X)I(X > 0)} = 0.

Lemma 3.2 Assume the same conditions as Theorem 3.2. We have, as n→∞

(a) conditional on the observed data X,

1√
n

Zω
n

d−→ N(0,Ω)

in probability, where Ω =

(
Ω11 0

0 Ω22

)
and

Ω11 = diag
{
ρ∗0ν̄

∗
0(1− ν̄∗0), . . . , ρ∗mν̄

∗
0(1− ν̄∗0)

}
,

Ω22 = diag
[
ρ∗0VarF̄ {q(X)I(X > 0)} , . . . , ρ∗mVarF̄ {q(X)I(X > 0)}

]
;
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(b) ν̂ω − ν̄∗ = Op(n
−1/2) and Qω = Op(n

1/2), where ν̄∗ = (v̄∗0, . . . , v̄
∗
0)>.

Proof. First, we consider Part (a). Note that nωi0 =
∑ni

j=0 I(xωij = 0). Hence conditional

on the observed data X, each row of Zω
n is sum of independently and identically distributed

observations. Then by the fact that Xω|X ∼ F̂n(x), we have

E

(
1√
n

Zω
n|X

)
= 0, Var

(
1√
n

Zω
n|X

)
= Ωn =

(
Ωn,11 Ωn,12

Ωn,21 Ωn,22

)
,

where

Ωn,11 = diag {ρ∗0ν̄0(1− ν̄0), . . . , ρ∗mν̄0(1− ν̄0)} ,

Ωn,22 = diag

[
ρ∗0

{
1

n

∑
i,j

q(xij)q
>(xij)I(xij > 0)− q̄q̄>

}
,

. . . , ρ∗m

{
1

n

∑
i,j

q(xij)q
>(xij)I(xij > 0)− q̄q̄>

}]
,

Ωn,21 = Ω>n,12 = diag(−ρ∗0ν̄0q̄, . . . ,−ρ∗mν̄0q̄).

After some calculus, it can be verified that E(q̄) = EF̄{q(X)I(X > 0)} = 0. Hence by

the weak law of large numbers, we have Ωn → Ω in probability. By Conditions D1–D4, Ω

is positive definite.

By Berry-Esseén inequality (Shao and Tu, 1995, Section 3.1, p. 74) together with

Cramér-Wold theorem (Serfling, 1980, p. 17), or the results in Janssen and Pauls (2003),

we get that, conditional on X,

Ω−1/2
n

1√
n

Zω
n

d−→ N(0, I)

in probability. Note that Ωn → Ω in probability implies that Ω−1/2
n → Ω−1/2 in probability.

By conditional Slutsky’s theorem (Cheng, 2015), conditional on the observed data X,

1√
n

Zω
n

d−→ N(0,Ω)

in probability. This finishes the proof of Part (a).
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Next, we consider Part (b). Since Ω is positive definite, we have nωi0 − niν̄0 = Op(
√
n)

and Qω − Q̄ = Op(
√
n).

It is easy to verify that E(ν̄0) = ν̄∗0 and Q̄ = Op(n
1/2) since EF̄{q(X)I(X > 0)} = 0.

Hence by the classic central limit theorem, we obtain that ν̄0 − ν̄∗0 = Op(n
−1/2) and Q̄ =

Op(n
1/2).

Combining the above results, we get that

ν̂ωi − ν∗0 = Op(n
−1/2), and Qω = Op(n

1/2).

This completes the proof of Part (b). �

We now move back to the proof of Theorem 3.2. For a given bootstrap sample Xω, we

define the bootstrap versions of `0(ν) and `1(θ) as

`ω0 (ν) =
m∑
i=0

log{νn
ω
i0

i (1− νi)n
ω
i1}

and

`ω1 (θ) = −
m∑
i=0

nω
i1∑

j=1

log

[
ρω0 +

m∑
r=1

ρωr exp{αr + β>r q(xωij)}

]
+

m∑
i=1

nω
i1∑

j=1

{αi + β>i q(xωij)},

where ρωr = nωr1/n
ω
.1 with nω.1 =

∑m
i=0 n

ω
i1. Then the bootstrap ELR statistic can be written

as Rω
n = Rω

n,1 +Rω
n,2 with

Rω
n,1 = 2

{
sup
ν
`ω0 (ν)− sup

H0

`ω0 (ν)

}
, Rω

n,2 = 2

{
sup
θ
`ω1 (θ)− sup

H0

`ω1 (θ)

}
.

With the results in Lemma 3.2, we are able to find quadratic approximations of Rω
n,1 and

Rω
n,2.

First, we consider Rω
n,1. Note that ν̂ω maximizes `ω0 (ν). Then Rω

n,1 = 2
{
`ω0 (ν̂ω)−

supH0
`ω1 (θ)

}
. By the second order Taylor expansion and Lemma 3.2, we have

`ω0 (ν̂ω)− `ω0 (ν̄∗) =
n

2

m∑
i=0

ρ∗i
1

ν̄∗0(1− ν̄∗0)
(ν̂ωi − ν̄∗0)2 + op(1). (3.8)
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Similarly, we have

sup
H0

`ω0 (ν)− `ω0 (ν̄∗) =
n

2

m∑
i=0

ρ∗i
1

ν̄∗0(1− ν̄∗0)
(ν̄ω0 − ν̄∗0)2 + op(1), (3.9)

where ν̄ω0 =
∑m

i=0 n
ω
i0/n. Combining (3.8) and (3.9) gives

Rω
n,1 = n

m∑
i=0

ρ∗i
1

ν̄∗0(1− ν̄∗0)
(ν̂ωi − ν̄ω0 )2 + op(1)

=
n

ν̄∗0(1− ν̄∗0)

m∑
i=0

ρ∗i {ν̂ωi − ν̄0 − (ν̄ω0 − ν̄0)}2 + op(1).

Let Sωn = (Sωn0, . . . , S
ω
nm)> with Sωni = ν̂ωi − ν̄0 for i = 0, . . . ,m. Then we can have a compact

form for Rω
n,1 as

Rω
n,1 = (

√
nSωn)>Σ∗(

√
nSωn)− ν̄∗0(1− ν̄∗0)(

√
nSωn)>Σ∗1m+11

>
m+1Σ

∗(
√
nSωn) + op(1),

where Σ∗ = 1
ν̄∗0 (1−ν̄∗0 )

diag(ρ∗0, . . . , ρ
∗
m). Using Part (a) of Lemma 3.2, we have, conditional

on X,

√
nSωn

d−→ N
(
0, (Σ∗)−1

)
in probability. Finally, we can further check that(

Σ∗ − ν̄∗0(1− ν̄∗0)Σ∗1m+11
>
m+1Σ

∗) (Σ∗)−1
(
Σ∗ − ν̄∗0(1− ν̄∗0)Σ∗1m+11

>
m+1Σ

∗)
= Σ∗ − ν̄∗0(1− ν̄∗0)Σ∗1m+11

>
m+1Σ

∗

and rank
(
Σ∗ − ν̄∗0(1− ν̄∗0)Σ∗1m+11

>
m+1Σ

∗) = m. Hence, by the conditional continu-

ous mapping theorem (Kosorok, 2008, Theorem 10.8) and conditional Slutsky’s theorem

(Cheng, 2015), conditional on X, we get that

Rω
n,1

d−→ χ2
m

in probability.

Next, we consider Rω
n,2. Let θ̂

ω
= argmaxθ`

ω
1 (θ). It can be checked that supH0

`ω1 (θ) =

0. Then Rω
n,2 = 2`ω1 (θ̂

ω
). Note that, no matter the original observed data X is from the null
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or alternative hypothesis, the bootstrapped observations for all groups are homogeneous.

This is because that the bootstrapped observations for all groups come from the same

empirical distribution function F̂n(x). Following Cai et al. (2016), we still have θ̂
ω
→ 0 in

probability and θ̂
ω

= Op(n
−1/2).

In the following lemma, we summarize some useful properties of ∂`ω1 (0)/∂θ, ∂2`ω1 (0)/∂θ∂θ>,

and θ̂
ω
, which are helpful to find the conditional distribution of Rω

n,2. The proof is similar

to that of Lemma 4.1 and hence is omitted.

Lemma 3.3 Assume the same conditions as Theorem 3.2. We have, as n→∞

(a)
∂`ω1 (0)

∂α = 0,
∂`ω1 (0)

∂β
= {(−ρ, Im − ρ1>m)⊗ Id}Qω + op(n

1/2);

(b) − 1
n

∂2`ω1 (0)

∂θ∂θ>
→ Ū in probability, where

Ū =

(
(1− ν̄∗0)H 0

0 V̄

)
and V̄ = H⊗ VarF̄ {q(X)I(X > 0)};

(c)
√
nα̂ω = op(1) and

√
nβ̂

ω
= 1√

n
V̄
−1{(−ρ, Im − ρ1>m)⊗ Id}Qω + op(1).

We now move back to Rω
n,2 = 2`ω1 (θ̂

ω
). By the second order Taylor expansion and

Lemma 3.3, we have the following quadratic expansion for Rω
n,2:

Rω
n,2 =

1

n

[
{(−ρ, Im − ρ1>m)⊗ Id}Qω

]>
V̄
−1[{(−ρ, Im − ρ1>m)⊗ Id}Qω

]
+ op(1).

After some algebra work, it can be verified that

{(−ρ, Im − ρ1>m)⊗ Id}Q̄ = 0.

Hence

Rω
n,2 =

1

n

[
{(−ρ, Im − ρ1>m)⊗ Id}(Qω − Q̄)

]>
V̄
−1[{(−ρ, Im − ρ1>m)⊗ Id}(Qω − Q̄)

]
+ op(1).
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Recall that Part (a) of Lemma 3.2 implies that conditional on X,

1√
n

(Qω − Q̄)
d−→ N(0,Ω22)

in probability and

1√
n
{(−ρ, Im − ρ1>m)⊗ Id}(Qω − Q̄)

d−→ N(0, V̄)

in probability. Note rank(V̄
−1

) = dim(β) = md. By conditional Slutsky’s theorem (Cheng,

2015), we conclude that conditional on X,

Rω
n,2

d−→ χ2
md

in probability.

Lastly, Part (a) of Lemma 3.2 implies that conditional on X, Rω
n,1 and Rω

n,2 are asymp-

totically independent. Hence, conditional on the data X,

Rω
n

d−→ χ2
m(d+1)

in probability. As a result, under both the null and alternative hypotheses,

sup
x

∣∣Pr(Rω
n ≤ x|X)− Pr(χ2

m(d+1) ≤ x)
∣∣→ 0

in probability. This completes the proof of Theorem 3.2. �

3.6 Additional simulation results

In this section, we add more simulations to assess the finite-sample performance of the

proposed ELR test and the nonparametric bootstrap procedure. The simulation settings

stay unchanged as in Section 3.3. We consider more competitors and more choices of basis

functions.

To examine how sensitive the power of the ELR test is to the choice of user-specified

basis function q(x) in a DRM, we consider the ELR defined under five particular basis

functions:
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• ELR1: q(x) = {x, log(x)}>, which is, in general, correctly specified under GAM

models but is misspecified under LN models;

• ELR2: q(x) = {log(x), log2(x)}>, which is, in general, correctly specified under LN

models but is misspecified under GAM models;

• ELR3: q(x) = {x, log(x), log2(x)}>, which covers both distribution families, but

perhaps at the price of over-fitting;

• ELR4: q(x) = x, which is correctly specified when the parameters ai’s in GAM

models are set to be equal, but otherwise, is under-fitting under other GAM models

and is misspecified under LN models;

• ELR5: q(x) = log(x), which is correctly specified when the parameters bi’s in both

LN and GAM models are set to be equal, but otherwise, is under-fitting under other

LN and GAM models.

Same as before, the type I error rates and powers at the 5% significance level are

calculated based on 10,000 repetitions. The type I error rates are calculated based on the

limiting distribution as well as adjusted by the nonparametric bootstrap procedure with

B = 999. The results are summarized in Tables 3.7–3.10.

As suggested in Pauly et al. (2015), we also use the permutation method with 10,000

permutation samples (the default number in “GFD”) to calculate the type I error rates and

powers of WTS1 and WTS2. The results along with those from the bootstrap method are

presented in Table 3.11. As we can see, the results from two resampling methods are quite

consistent.

54



Table 3.7: Simulated probabilities (%) of rejecting H0 at significance level 0.05 when data are

generated from a mixture model with parameter settings given in Table 3.1 and (n0, n1, n2) =

(20, 20, 20). The abbreviations “asym.” and “boot.” denote the asymptotic distribution and

bootstrap procedure, respectively, that are used in calculation.

Model
(n0, n1, n2) = (20, 20, 20)

ELR1 ELR2 ELR3 ELR4 ELR5 KW2 KW1 ANOVA2 ANOVA1 LRT-LN LRT-GAM ATS WTS1 WTS2

LN1
asym. 8.67 8.12 11.43 7.41 6.56 5.73 4.78 5.98 4.24 7.03 16.12 2.29 6.28 7.33

boot. 4.86 4.87 4.94 4.93 4.74 4.81 4.96 4.84 4.40 4.12 4.11 4.40 4.39 4.66

LN2
asym. 8.85 8.58 12.76 7.11 6.31 4.98 4.67 5.27 3.57 7.35 15.46 2.26 6.04 7.00

boot. 4.84 4.78 5.11 4.94 4.85 4.87 4.82 4.51 4.32 3.99 3.97 4.32 4.98 4.64

LN3
asym. 12.47 12.54 19.75 7.16 6.70 3.26 2.95 5.07 2.72 10.02 15.22 1.41 4.92 8.80

boot. 5.75 5.66 6.95 5.67 5.70 5.79 5.83 5.13 5.19 3.47 3.82 5.19 5.78 5.79

LN4 boot. 13.37 13.11 11.71 15.60 15.49 16.78 15.04 16.24 8.09 12.42 10.56 8.09 9.33 14.93

LN5 boot. 16.84 16.18 15.31 17.76 21.72 19.20 9.73 11.79 13.56 16.70 14.22 13.56 13.83 11.86

LN6 boot. 11.45 11.67 8.94 5.84 5.26 5.11 4.44 5.35 5.35 7.94 7.47 5.35 5.87 4.73

LN7 boot. 27.04 27.10 19.45 17.25 24.26 25.94 11.92 17.86 4.57 25.36 17.03 4.57 4.30 16.64

LN8 boot. 18.30 18.63 15.31 10.21 15.39 12.77 3.96 6.33 6.32 16.72 10.92 6.32 9.87 8.96

LN9 boot. 13.63 13.32 11.92 16.05 17.02 18.03 11.32 17.30 4.28 12.78 10.30 4.28 4.63 14.21

LN10 boot. 12.99 12.75 11.12 14.68 14.28 15.84 16.86 15.53 4.89 11.35 9.11 4.89 7.48 14.08

LN11 boot. 25.53 25.38 20.67 20.01 28.89 29.19 8.62 19.97 4.35 25.03 16.65 4.35 4.62 16.74

LN12 boot. 15.74 15.93 15.18 13.02 18.92 16.26 7.58 8.86 9.01 15.59 10.53 9.01 10.43 9.87

LN13 boot. 12.23 12.03 10.27 14.17 14.90 16.18 13.32 15.60 5.21 11.14 8.63 5.21 5.73 13.24

LN14 boot. 12.21 11.80 10.28 15.02 15.21 16.67 16.26 15.76 5.82 11.27 8.69 5.82 6.83 14.03

LN15 boot. 25.44 25.19 20.99 23.45 31.87 31.43 9.06 22.70 4.78 24.92 17.94 4.78 4.82 18.41

GAM1
asym. 7.97 8.53 11.00 7.54 7.02 6.13 4.98 6.59 5.31 16.48 7.06 3.78 7.17 8.04

boot. 4.63 4.59 5.05 5.18 4.93 5.16 5.20 5.09 5.13 4.12 4.39 5.13 5.14 5.18

GAM2
asym. 8.91 9.46 12.66 7.03 6.67 5.29 5.15 6.19 4.46 15.54 7.37 3.29 7.10 7.99

boot. 4.99 5.28 5.68 5.17 5.00 5.14 5.37 5.08 4.99 4.31 4.32 4.99 5.36 5.03

GAM3
asym. 11.95 12.03 19.53 6.72 6.34 3.10 2.86 5.24 3.04 16.25 10.01 1.71 5.94 9.68

boot. 5.75 5.72 6.55 5.32 5.28 5.60 5.69 5.02 5.16 3.27 3.66 5.16 6.06 5.10

GAM4 boot. 10.69 10.88 9.83 13.06 12.23 13.95 13.91 13.70 8.18 8.75 10.39 8.18 9.70 11.84

GAM5 boot. 19.72 18.72 18.64 24.40 27.88 23.40 8.04 22.60 16.08 19.08 18.32 16.08 15.46 22.20

GAM6 boot. 21.32 20.20 19.04 30.36 24.68 24.20 8.28 24.72 20.52 16.36 20.04 20.52 19.36 25.88

GAM7 boot. 24.15 24.26 15.71 12.93 15.67 16.02 12.51 12.97 8.93 21.77 21.52 8.93 8.03 12.39

GAM8 boot. 17.08 16.60 11.96 5.84 8.48 7.40 6.52 5.52 6.20 15.72 14.24 6.20 6.24 6.40

GAM9 boot. 19.83 19.58 17.49 24.09 27.23 26.28 9.48 25.55 5.03 18.75 19.85 5.03 5.13 20.73

GAM10 boot. 15.81 15.61 14.51 19.35 18.45 18.93 12.78 20.04 5.76 11.76 14.10 5.76 5.65 15.14

GAM11 boot. 28.01 27.90 23.57 30.23 34.99 33.10 7.68 30.98 5.06 28.84 27.57 5.06 5.36 27.26

GAM12 boot. 26.40 26.60 20.72 15.44 24.80 19.76 10.88 14.36 12.32 30.88 26.52 12.32 12.16 16.00

GAM13 boot. 12.41 12.16 10.46 14.95 15.05 16.01 13.33 15.13 8.59 10.69 11.63 8.59 8.19 13.54

GAM14 boot. 11.64 11.51 10.55 14.06 14.10 15.15 13.87 14.51 7.54 8.95 10.52 7.54 8.27 11.91

GAM15 boot. 20.52 20.64 16.22 18.97 21.84 22.08 9.57 19.08 6.09 19.34 18.65 6.09 6.67 17.11

* NOTE: the Monte Carlo error is 0.218 (%) under the null models LN1-LN3 and GAM1-GAM3.
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Table 3.8: Simulated probabilities (%) of rejecting H0 at significance level 0.05 when data are

generated from a mixture model with parameter settings given in Table 3.1 and (n0, n1, n2) =

(50, 50, 50). The abbreviations “asym.” and “boot.” denote the asymptotic distribution and

bootstrap procedure, respectively, that are used in calculation.

Model
(n0, n1, n2) = (50, 50, 50)

ELR1 ELR2 ELR3 ELR4 ELR5 KW2 KW1 ANOVA2 ANOVA1 LRT-LN LRT-GAM ATS WTS1 WTS2

LN1
asym. 6.54 6.12 7.76 5.68 5.30 5.10 4.70 4.79 3.71 5.79 17.17 2.87 5.33 5.54

boot. 4.91 4.89 5.12 4.84 4.82 4.88 4.66 4.61 4.27 4.81 4.43 4.27 4.58 4.64

LN2
asym. 7.30 6.80 8.61 6.38 5.61 5.11 5.21 5.03 4.00 5.91 17.71 2.88 6.03 6.40

boot. 5.20 5.03 5.35 5.23 5.11 4.99 5.30 5.04 4.64 4.75 4.81 4.64 4.97 5.14

LN3
asym. 8.22 7.94 11.17 6.78 5.85 4.96 4.81 5.24 3.48 6.61 15.87 2.22 5.64 7.00

boot. 4.95 4.81 5.21 4.95 4.98 4.81 5.10 4.83 4.46 4.36 4.30 4.46 4.91 4.65

LN4 boot. 30.92 31.64 26.51 37.01 37.44 38.17 32.38 38.35 12.49 31.56 22.84 12.49 12.95 36.45

LN5 boot. 46.68 47.21 42.03 38.38 55.90 52.77 18.52 26.44 32.33 47.95 33.48 32.33 33.17 28.58

LN6 boot. 29.57 31.80 23.79 10.93 5.59 5.48 4.98 8.93 9.59 30.09 25.47 9.59 7.96 7.29

LN7 boot. 75.05 77.55 68.25 34.90 63.56 64.08 21.11 36.43 4.72 78.32 44.61 4.72 4.92 35.84

LN8 boot. 55.57 58.62 49.54 11.45 37.49 34.98 8.05 8.18 7.47 60.74 26.03 7.47 10.84 11.77

LN9 boot. 32.30 32.46 28.42 36.08 39.79 40.01 21.20 38.29 4.46 33.01 20.97 4.46 5.31 34.82

LN10 boot. 29.90 30.28 26.21 33.05 32.25 33.11 36.13 36.23 5.55 29.92 19.96 5.55 7.50 31.54

LN11 boot. 66.19 69.06 60.39 40.45 68.02 67.29 13.65 41.81 4.54 69.47 36.35 4.54 5.23 39.56

LN12 boot. 43.82 46.36 40.58 19.68 46.95 43.90 11.79 14.03 15.88 47.83 20.62 15.88 17.66 16.81

LN13 boot. 28.39 28.41 24.66 33.19 34.70 35.18 27.42 35.70 5.95 28.69 17.69 5.95 6.99 33.10

LN14 boot. 28.02 27.94 24.18 33.39 33.81 34.53 34.44 35.51 7.43 28.13 17.04 7.43 9.19 33.67

LN15 boot. 65.33 67.27 59.70 47.24 71.53 70.16 12.82 47.50 5.84 68.30 40.11 5.84 6.23 44.32

GAM1
asym. 5.98 6.44 7.37 5.61 5.54 5.09 4.85 5.26 4.72 16.99 5.38 4.19 5.75 6.18

boot. 4.53 4.57 4.68 4.92 4.84 4.97 4.89 4.78 4.85 4.56 4.38 4.85 4.72 4.98

GAM2
asym. 6.22 6.65 8.53 5.48 5.37 4.90 5.11 5.04 4.87 16.63 5.33 4.13 6.11 5.82

boot. 4.59 5.03 5.23 4.59 4.75 4.81 5.10 4.65 5.05 4.64 4.32 5.05 5.02 4.72

GAM3
asym. 7.87 8.41 10.96 6.18 6.21 5.13 4.86 5.61 4.45 16.25 6.94 3.26 6.38 7.34

boot. 4.99 5.09 5.04 4.88 5.10 5.02 4.86 4.90 5.09 4.62 4.64 5.09 4.71 4.77

GAM4 boot. 31.49 31.37 27.29 37.41 37.55 38.51 33.90 37.90 14.98 22.96 31.95 14.98 14.96 36.24

GAM5 boot. 56.05 55.06 48.36 53.19 65.57 58.58 10.31 51.20 35.20 57.93 57.31 35.20 34.87 51.47

GAM6 boot. 64.21 59.67 57.43 74.41 56.39 61.44 10.65 66.09 55.67 42.29 66.21 55.67 57.77 72.73

GAM7 boot. 70.60 68.78 58.71 30.97 43.83 38.95 25.38 31.32 17.60 68.74 69.68 17.60 15.86 31.19

GAM8 boot. 48.83 46.86 38.13 5.44 15.21 10.04 6.10 5.42 5.22 52.46 48.29 5.22 5.33 5.41

GAM9 boot. 54.02 54.17 47.81 57.70 63.59 61.23 15.02 58.28 5.02 51.81 54.98 5.02 5.03 55.44

GAM10 boot. 37.59 36.19 32.70 45.02 41.25 43.23 22.30 46.37 5.85 25.98 37.73 5.85 5.44 41.08

GAM11 boot. 74.31 74.03 66.64 69.26 79.62 75.49 11.87 69.94 5.58 75.22 75.35 5.58 4.97 68.60

GAM12 boot. 71.34 70.19 61.37 25.50 60.15 46.88 17.17 25.08 20.86 80.17 73.86 20.86 20.66 27.74

GAM13 boot. 29.55 29.09 25.16 34.70 35.11 35.72 25.87 35.09 11.58 23.87 29.67 11.58 11.45 33.45

GAM14 boot. 27.90 28.18 24.24 33.73 33.70 34.55 29.30 34.33 11.17 20.74 28.48 11.17 10.94 32.34

GAM15 boot. 56.81 56.32 47.68 45.97 57.64 53.70 18.20 45.76 8.69 59.09 56.66 8.69 8.47 45.22

* NOTE: the Monte Carlo error is 0.218 (%) under the null models LN1-LN3 and GAM1-GAM3.
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Table 3.9: Simulated probabilities (%) of rejecting H0 at significance level 0.05 when data are

generated from a mixture model with parameter settings given in Table 3.1 and (n0, n1, n2) =

(100, 100, 100). The abbreviations “asym.” and “boot.” denote the asymptotic distribution and

bootstrap procedure, respectively, that are used in calculation.

Model
(n0, n1, n2) = (100, 100, 100)

ELR1 ELR2 ELR3 ELR4 ELR5 KW2 KW1 ANOVA2 ANOVA1 LRT-LN LRT-GAM ATS WTS1 WTS2

LN1
asym. 5.83 5.70 6.95 5.50 5.06 4.80 4.74 4.81 4.53 5.32 18.66 3.75 5.50 5.43

boot. 4.95 5.06 5.11 5.05 4.91 4.69 4.83 5.01 4.90 4.89 4.60 4.90 4.83 4.91

LN2
asym. 6.33 6.03 6.92 5.81 5.83 5.52 5.07 4.94 4.57 5.50 18.42 3.70 5.79 5.77

boot. 5.09 5.17 4.90 5.09 5.44 5.46 4.94 4.91 5.05 5.17 4.65 5.05 4.87 5.11

LN3
asym. 6.96 6.42 8.68 6.39 5.22 4.76 4.99 5.14 4.28 5.73 17.00 3.31 5.96 6.10

boot. 5.13 4.98 5.20 5.18 4.69 4.80 4.96 5.02 4.94 4.58 4.74 4.94 4.84 5.00

LN4 boot. 62.33 62.29 56.07 69.97 70.38 70.62 59.80 71.33 19.35 62.55 45.14 19.35 19.81 69.83

LN5 boot. 81.64 82.14 76.65 62.37 87.79 85.96 34.00 47.78 56.62 82.45 57.22 56.62 56.36 50.60

LN6 boot. 57.99 66.73 55.52 22.47 5.02 5.28 5.36 15.48 19.78 64.04 53.74 19.78 18.87 16.11

LN7 boot. 98.27 98.90 97.71 62.64 93.93 93.97 39.69 66.04 6.91 99.15 73.90 6.91 6.43 65.30

LN8 boot. 90.49 93.87 89.82 10.80 70.51 68.11 11.43 8.14 8.52 94.92 48.19 8.52 11.45 11.91

LN9 boot. 63.49 63.98 57.47 66.81 72.04 72.07 39.20 69.03 4.73 64.25 37.29 4.73 4.75 66.40

LN10 boot. 57.43 59.66 53.41 62.38 60.33 60.99 64.34 65.69 5.77 59.63 35.01 5.77 7.37 61.99

LN11 boot. 95.87 96.79 94.58 69.11 96.04 95.54 22.20 70.91 4.76 96.98 61.21 4.76 5.37 69.99

LN12 boot. 80.70 83.58 78.21 27.36 81.65 79.00 18.64 20.74 24.27 84.70 34.02 24.27 26.85 24.46

LN13 boot. 56.44 56.59 50.03 62.90 64.64 65.10 50.83 65.76 7.11 56.84 30.95 7.11 7.98 61.13

LN14 boot. 54.55 55.20 48.78 61.78 62.63 63.18 61.26 64.94 9.54 55.33 29.04 9.54 11.20 62.34

LN15 boot. 95.80 96.33 93.95 76.80 96.97 96.57 20.74 77.62 6.94 96.44 66.76 6.94 7.84 76.04

GAM1
asym. 5.67 6.24 6.63 5.52 5.38 5.12 4.98 5.34 4.78 17.75 5.42 4.51 5.36 5.54

boot. 5.09 5.26 5.18 5.16 4.93 4.94 5.08 5.06 4.92 4.92 5.09 4.92 5.17 5.06

GAM2
asym. 5.52 6.02 6.93 5.19 5.29 5.13 5.16 4.86 5.02 16.63 5.32 4.72 5.57 5.50

boot. 5.04 5.11 5.08 4.85 5.13 5.15 5.10 4.76 5.02 4.58 4.88 5.02 4.76 5.07

GAM3
asym. 6.60 6.93 8.58 5.92 5.61 5.33 5.24 5.64 4.98 17.13 5.90 4.26 5.95 6.36

boot. 4.99 5.02 5.42 5.23 5.12 5.39 5.24 5.26 5.19 4.64 4.77 5.19 4.79 5.24

GAM4 boot. 61.78 61.76 55.72 69.67 69.98 70.26 59.61 70.07 25.32 45.06 62.44 25.32 25.22 69.10

GAM5 boot. 91.19 90.72 86.60 85.62 94.83 91.62 16.22 84.82 64.91 89.86 91.49 64.91 64.77 84.17

GAM6 boot. 95.81 93.10 93.05 97.84 87.47 93.10 15.49 96.46 89.72 72.38 96.28 89.72 92.24 97.61

GAM7 boot. 97.15 96.58 94.58 58.61 78.81 70.04 45.99 59.00 34.11 96.61 97.26 34.11 34.20 58.97

GAM8 boot. 86.66 83.45 79.73 5.81 29.87 16.01 6.96 5.70 5.37 88.87 87.39 5.37 4.94 5.43

GAM9 boot. 88.92 88.73 84.74 89.58 93.16 92.06 25.22 89.81 5.05 85.27 89.44 5.05 4.85 89.11

GAM10 boot. 72.71 70.01 66.54 79.46 73.68 76.52 40.26 80.31 5.08 50.21 73.21 5.08 5.23 77.71

GAM11 boot. 97.75 97.73 96.48 95.48 98.62 97.63 19.10 95.65 4.73 97.82 98.00 4.73 5.02 95.41

GAM12 boot. 97.71 97.16 95.33 43.87 92.73 81.51 30.03 43.62 34.63 98.87 98.17 34.63 35.50 47.59

GAM13 boot. 57.58 57.50 51.11 64.77 66.00 66.10 46.48 64.95 18.77 47.77 57.94 18.77 19.20 63.98

GAM14 boot. 56.20 56.35 49.93 64.48 64.03 64.64 53.65 65.12 16.31 40.32 56.64 16.31 16.16 63.80

GAM15 boot. 90.39 90.27 85.75 78.83 90.02 86.52 32.15 78.88 11.85 91.44 90.63 11.85 11.99 78.48

* NOTE: the Monte Carlo error is 0.218 (%) under the null models LN1-LN3 and GAM1-GAM3.
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Table 3.10: Simulated probabilities (%) of rejecting H0 at significance level 0.05 when data are

generated from a mixture model with parameter settings given in Table 3.1 and (n0, n1, n2) =

(50, 100, 150). The abbreviations “asym.” and “boot.” denote the asymptotic distribution and

bootstrap procedure, respectively, that are used in calculation.

Model
(n0, n1, n2) = (50, 100, 150)

ELR1 ELR2 ELR3 ELR4 ELR5 KW2 KW1 ANOVA2 ANOVA1 LRT-LN LRT-GAM ATS WTS1 WTS2

LN1
asym. 6.36 5.89 7.05 5.86 5.66 5.37 5.17 5.22 4.57 5.76 18.44 4.67 6.65 6.72

boot. 5.23 5.20 5.17 5.11 5.20 5.31 5.20 5.18 4.91 5.22 4.92 4.71 4.84 4.84

LN2
asym. 6.27 6.10 7.36 5.86 5.62 5.35 5.49 4.97 4.71 5.64 17.56 5.07 7.12 7.14

boot. 5.11 5.17 5.03 5.02 5.30 5.40 5.53 4.92 5.11 5.00 4.60 5.00 5.06 4.92

LN3
asym. 7.51 6.91 8.89 6.82 6.01 5.55 5.18 5.73 4.47 6.30 17.18 4.92 7.90 8.65

boot. 5.23 4.99 4.97 5.53 5.63 5.59 5.36 5.45 5.11 4.95 4.94 4.98 4.83 5.33

LN4 boot. 52.19 52.06 46.28 59.48 59.94 60.23 51.88 60.47 18.51 52.54 37.53 9.42 10.12 55.89

LN5 boot. 72.73 74.01 67.33 57.12 80.83 78.34 26.24 27.40 34.00 74.82 47.67 60.89 58.95 54.60

LN6 boot. 41.76 48.34 36.55 12.75 3.17 3.67 4.64 5.09 4.67 47.98 34.54 23.52 18.74 17.53

LN7 boot. 96.20 97.50 95.97 60.03 90.59 89.04 37.73 59.23 13.75 97.78 76.20 3.62 3.57 54.65

LN8 boot. 88.02 91.84 88.14 16.35 69.40 62.63 9.36 8.38 8.83 93.09 52.37 12.26 17.30 16.99

LN9 boot. 54.16 54.25 48.31 58.97 62.78 62.77 33.81 57.56 4.58 54.69 31.67 3.92 3.75 55.49

LN10 boot. 48.79 49.73 42.84 52.33 50.71 51.48 57.40 52.76 5.59 50.00 28.01 2.67 2.33 48.60

LN11 boot. 91.70 93.67 91.06 66.09 92.85 91.28 19.01 62.00 5.08 94.00 59.85 6.38 7.58 62.82

LN12 boot. 73.02 76.75 71.53 29.48 75.40 70.09 14.78 13.80 15.34 77.72 31.57 28.60 32.33 31.05

LN13 boot. 47.17 47.25 41.93 54.19 55.33 56.04 44.91 54.73 8.10 47.84 26.26 3.40 3.30 50.19

LN14 boot. 46.01 46.05 40.50 52.69 52.99 53.82 54.19 54.04 10.96 46.10 24.39 3.65 3.46 48.19

LN15 boot. 91.18 92.46 89.67 73.39 93.93 92.64 18.05 67.55 4.17 92.83 63.53 9.63 10.87 69.35

GAM1
asym. 5.58 6.13 6.72 5.21 5.47 5.04 4.82 5.12 4.82 17.29 5.33 5.07 6.03 5.82

boot. 4.81 4.92 5.10 4.83 5.06 4.93 4.84 4.88 4.85 4.90 4.67 4.83 5.13 4.74

GAM2
asym. 5.84 5.77 6.80 5.08 5.14 5.13 4.95 4.72 4.84 16.85 5.32 5.15 6.44 6.26

boot. 4.92 4.67 5.01 4.74 4.73 5.11 5.06 4.62 4.98 4.36 4.74 5.00 5.08 4.88

GAM3
asym. 6.70 6.91 8.27 5.65 5.64 5.04 5.08 5.44 4.89 15.77 6.16 5.44 7.13 7.42

boot. 4.95 5.07 5.04 5.05 5.12 5.07 5.10 5.14 5.17 4.60 4.84 5.16 4.77 5.01

GAM4 boot. 50.98 51.15 45.07 59.47 59.59 60.33 52.07 59.74 22.79 36.11 51.81 15.91 15.89 56.81

GAM5 boot. 83.19 82.73 78.18 78.27 88.92 83.73 11.76 72.46 47.53 84.16 84.00 61.59 60.87 78.29

GAM6 boot. 85.10 81.32 79.12 91.50 72.02 82.84 10.86 80.31 66.63 56.41 86.14 89.32 88.55 95.35

GAM7 boot. 95.47 94.33 92.43 53.94 74.55 64.12 40.41 54.09 35.76 95.39 95.46 19.15 21.17 49.23

GAM8 boot. 85.14 81.84 79.21 8.80 33.97 16.83 6.92 8.51 7.75 88.37 85.96 6.62 5.97 6.46

GAM9 boot. 82.95 83.24 78.07 84.58 89.36 87.13 22.61 83.55 3.80 80.47 83.76 4.57 4.73 83.92

GAM10 boot. 62.27 60.63 55.95 70.53 63.55 67.20 35.48 69.22 3.92 42.86 62.66 4.47 4.21 69.84

GAM11 boot. 95.39 95.35 93.02 93.34 97.18 95.68 15.92 92.95 3.91 95.54 95.51 4.73 4.89 92.48

GAM12 boot. 96.78 96.14 94.59 47.00 91.43 77.35 25.36 43.71 31.37 98.68 97.38 29.71 36.02 44.80

GAM13 boot. 49.51 49.50 43.60 56.53 57.60 57.70 41.16 56.14 16.37 40.50 50.05 12.65 12.15 54.50

GAM14 boot. 46.84 46.53 41.31 54.36 53.91 54.70 46.38 54.45 13.80 32.23 47.29 9.23 9.10 51.95

GAM15 boot. 82.73 82.60 77.82 72.62 83.92 78.98 29.12 71.67 12.04 85.26 83.20 8.72 9.87 69.89

* NOTE: the Monte Carlo error is 0.218 (%) under the null models LN1-LN3 and GAM1-GAM3.
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Table 3.11: Results from bootstrap and permutation methods for WTS1 and WTS2 when data

are generated from a mixture model with parameter settings given in Table 3.1. The abbreviations

“boot.” and “perm.” denote the bootstrap and permutation procedures, respectively.

Model

(n0, n1, n2) = (20, 20, 20) (n0, n1, n2) = (50, 50, 50) (n0, n1, n2) = (100, 100, 100) (n0, n1, n2) = (50, 100, 150)

WTS1 WTS2 WTS1 WTS2 WTS1 WTS2 WTS1 WTS2

boot. perm. boot. perm. boot. perm. boot. perm. boot. perm. boot. perm. boot. perm. boot. perm.

LN1 4.39 4.77 4.66 4.76 4.58 4.50 4.64 4.80 4.83 5.02 4.91 5.02 4.84 4.99 4.84 5.02

LN2 4.98 4.90 4.64 4.88 4.97 5.33 5.14 5.27 4.87 5.39 5.11 5.17 5.06 5.20 4.92 4.97

LN3 5.78 5.70 5.79 5.78 4.91 4.76 4.65 5.00 4.84 5.21 5.00 5.07 4.83 5.32 5.33 5.53

LN4 9.33 9.34 14.93 15.48 12.95 12.83 36.45 36.99 19.81 19.83 69.83 70.05 10.12 9.72 55.89 56.10

LN5 13.83 14.74 11.86 13.08 33.17 34.69 28.58 29.62 56.36 58.08 50.60 51.42 58.95 60.00 54.60 55.28

LN6 5.87 5.42 4.73 5.13 7.96 8.78 7.29 8.00 18.87 20.64 16.11 16.88 18.74 19.87 17.53 18.76

LN7 4.30 4.70 16.64 17.33 4.92 5.66 35.84 36.66 6.43 6.78 65.30 66.04 3.57 3.72 54.65 55.55

LN8 9.87 8.86 8.96 9.30 10.84 11.53 11.77 12.37 11.45 12.08 11.91 12.15 17.30 17.48 16.99 17.38

LN9 4.63 5.69 14.21 14.93 5.31 5.71 34.82 35.86 4.75 4.97 66.40 66.92 3.75 3.70 55.49 56.11

LN10 7.48 8.02 14.08 14.43 7.50 7.63 31.54 32.78 7.37 7.57 61.99 62.39 2.33 2.73 48.60 49.64

LN11 4.62 5.33 16.74 17.98 5.23 5.68 39.56 40.49 5.37 5.90 69.99 70.52 7.58 7.97 62.82 63.06

LN12 10.43 10.90 9.87 10.82 17.66 18.55 16.81 17.32 26.85 26.70 24.46 24.89 32.33 32.40 31.05 31.51

LN13 5.73 6.45 13.24 14.00 6.99 7.64 33.10 33.90 7.98 7.94 61.13 63.36 3.30 3.11 50.19 50.89

LN14 6.83 7.87 14.03 15.07 9.19 9.88 33.67 34.59 11.20 10.62 62.34 62.69 3.46 3.69 48.19 49.18

LN15 4.82 5.61 18.41 19.64 6.23 6.53 44.32 45.05 7.84 8.11 76.04 76.61 10.87 11.07 69.35 69.97

GAM1 5.14 5.32 5.18 5.22 4.72 4.96 4.98 4.98 5.17 4.95 5.06 5.05 5.13 4.93 4.74 4.84

GAM2 5.36 5.04 5.03 5.13 5.02 5.20 4.72 4.88 4.76 5.05 5.07 4.97 5.08 4.97 4.88 4.90

GAM3 6.06 5.77 5.10 5.46 4.71 5.05 4.77 4.95 4.79 5.04 5.24 5.42 4.77 4.94 5.01 4.91

GAM4 9.70 8.83 11.84 12.24 14.96 15.01 36.24 36.20 25.22 25.01 69.10 69.13 15.89 15.91 56.81 56.69

GAM5 15.46 14.88 22.20 23.00 34.87 35.52 51.47 51.68 64.77 65.17 84.17 84.21 60.87 61.23 78.29 78.55

GAM6 19.36 18.88 25.88 26.48 57.77 59.49 72.73 73.52 92.24 92.38 97.61 97.62 88.55 88.71 95.35 95.45

GAM7 8.03 7.58 12.39 12.88 15.86 16.45 31.19 31.12 34.20 33.55 58.97 59.14 21.17 21.04 49.23 49.50

GAM8 6.24 6.44 6.40 6.20 5.33 5.47 5.41 5.43 4.94 5.11 5.43 5.45 5.97 6.64 6.46 6.49

GAM9 5.13 5.24 20.73 20.99 5.03 5.23 55.44 55.57 4.85 4.99 89.11 89.15 4.73 4.65 83.92 83.99

GAM10 5.65 5.86 15.14 15.34 5.44 5.88 41.08 41.26 5.23 5.09 77.71 77.83 4.21 4.44 69.84 69.78

GAM11 5.36 4.72 27.26 27.89 4.97 5.36 68.60 68.12 5.02 4.66 95.41 95.40 4.89 5.02 92.48 92.27

GAM12 12.16 12.80 16.00 16.16 20.66 21.29 27.74 27.97 35.50 35.29 47.59 47.60 36.02 35.45 44.80 44.78

GAM13 8.19 8.77 13.54 13.39 11.45 11.62 33.45 33.49 19.20 18.56 63.98 63.85 12.15 12.26 54.50 54.65

GAM14 8.27 7.54 11.91 12.09 10.94 11.32 32.34 32.64 16.16 16.21 63.80 63.67 9.10 8.83 51.95 51.99

GAM15 6.67 5.88 17.11 17.63 8.47 8.17 45.22 45.22 11.99 11.70 78.48 78.56 9.87 9.53 69.89 70.14
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Chapter 4

Semiparametric inference on the

means of multiple nonnegative

distributions with excess zero

observations

4.1 Introduction

In this chapter, we answer the scientific question Q2 outlined in Section 1.1 of Chapter 1.

That is, we would like to make inferences about the means of multiple nonnegative distri-

butions with excess zero observations. Recall that we have m+ 1 independent samples as

follows:

xi1, . . . , xini
∼ Fi(x) = νiI(x = 0) + (1− νi)I(x > 0)Gi(x), i = 0, . . . ,m, (4.1)

where ni is the ith group’s sample size, I(·) is an indicator function and the Gi(·)’s are

cumulative distribution functions with common support which may be continuous or dis-

crete. Again, in this chapter, we concentrate on continuous distributions Gi(·)’s whose

support consists of all nonnegative real numbers; but we proposed, in Section 7.1, ways
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that the method can be applied to discrete distributions. Under (4.1), the mean of each

Fi(x) can be expressed as

µi =

∫ ∞
0

xdFi(x) = (1− νi)
∫ ∞

0

xdGi(x), i = 0, . . . ,m.

Our interest is to make inferences about µ0, . . . , µm. These include testing the null hy-

pothesis µ0 = · · · = µm, and constructing confidence intervals for µi − µj and µi/µj, for

i 6= j.

The mean of a population with excess zeros has been considered an important summary

quantity. For example, in fishery and health economics studies, the population total often

has a crucial scientific meaning. The mean can provide information for recovering the pop-

ulation total, for example, for the total egg production of Atlantic mackerel (Pennington,

1983), and the total expenditure of patients (Chen and Zhou, 2006).

Inference on the means of two, or more, populations with excess zeros has been con-

sidered one of the most important, and fundamental, problems in many applications. For

example, Tu and Zhou (1999) showed that testing the mean equality of several of these

populations is a question of great importance in medical cost data analysis. Also, Zhou and

Tu (2000) argued that confidence intervals for the ratio of mean diagnostic charges in two

health groups can provide useful information on the magnitude of the relative difference

between the two groups.

A natural way to make inference on these means is by using fully parametric models.

Tu and Zhou (1999) and Zhou and Tu (1999) proposed to model Gi’s by the log-normal

distribution, based on which they developed a Wald and a likelihood ratio test, for testing

the overall mean equality. Confidence intervals for the two-sample mean ratio and mean

difference have been considered in Zhou and Tu (2000) and Chen and Zhou (2006), when

the positive data in both samples follow log-normal distributions. Although the log-normal

distributions are quite natural for modelling the positive observations, other parametric

models, such as the gamma distribution, have also been argued to be suitable in applica-

tions (Marazzi et al., 1998; Nixon and Thompson, 2004). However, as concluded in Nixon

and Thompson (2004), “when sample sizes are not large, different parametric models that

fit the data equally well can lead to substantially different inferences”. This fact may pose

an issue of model robustness in the fully parametric approach.
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Another approach is to use the nonparametric methods ignoring the mixture structure

(4.1). As we mentioned in Chapter 3, the nonparametric ANOVA-type statistic (ATS) and

the Wald-type permutation statistic (WTPS) are two representative methods for comparing

the means of multiple samples. The ATS, proposed by Brunner et al. (1997), is an extension

of the classical ANOVA F -test for heteroscedastic factorial designs. Brunner et al. (1997)

suggested using an F -distribution with random degrees of freedom to approximate the

finite sample distribution of the ATS. It can be shown that the ATS is equivalent to

the Welch two-sample t-test (Welch, 1938) when m = 1. More recently, the WTPS was

proposed by Pauly et al. (2015) for testing a linear hypothesis about the means without

any distributional assumptions, under very general heteroscedastic factorial designs. In

practice, the homoscedastic variance assumption is usually difficult to justify for multiple

groups of observations with excess zeros; see for example, Zhou and Tu (1999) and Section

4.5. Hence, it is appropriate to directly apply the ATS and WTPS methods. The empirical

likelihood method has also received considerable interest in dealing with such problems.

Chen et al. (2003) and Chen and Qin (2003) used it to construct the confidence interval

for the mean of a population with excess zeros. For the two-sample case, Taylor and

Pollard (2009) considered a test for the means, and Kang et al. (2010) and Wu and Yan

(2012) studied the constructions of confidence interval for the mean difference, by using

the empirical likelihood.

In many applications, multiple populations may naturally share some common charac-

teristics. It is therefore desirable to borrow efficiency across similar populations to improve

the inferential results. At the same time, we might also want that inferences do not rely

on any specific distributional assumption. In a similar way to Chapter 3, we propose to

model the distributions of Gi’s by the semiparametric DRM such that

dGi(x) = exp{αi + β>i q(x)}dG0(x), i = 0, . . . ,m (4.2)

for a non-trivial, pre-specified, basis function q(x) of dimension d, and corresponding un-

known parameters αi and βi (α0 = 0 and β0 = 0). In this chapter, we propose a unified

framework, based on an empirical likelihood ratio (ELR) statistic, for making inferences on

the means of multiple nonnegative distributions under (4.1) and (4.2). Software implement-

ing the proposed ELR for testing overall mean equality, with basis function q(x) = log(x)
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in the DRM, has been developed in the R language (R Development Core Team, 2014) and

is supplemented in the Appendix A.2 at the end of this thesis.

We note that deriving the asymptotic distribution of the proposed ELR statistic is

technically challenging. Due to its non-standard mixture structure (4.1), the summations

in the definition of the ELR (see Section 4.2) are over random numbers, i.e., the number

of positive observations in each group. Hence, standard large sample theory may not be

directly applied. In addition, we have to deal with a biased sampling problem (Qin, 1993)

induced by (4.2) together with estimating equations. Unlike Chapter 3, we do not have a

simple form for the profile empirical likelihood or dual empirical likelihood. This makes

the theoretical derivation more complicated; see Qin et al. (2015). After some technical

work, we show that the ELR enjoys a simple χ2-type limiting distribution.

The structure of this chapter is as follows. In Section 4.2, we formulate the research

problem, construct the empirical likelihood ratio statistic, and study its asymptotic prop-

erties. A numerical implementation is discussed in Section 4.3. Simulation results are

reported in Section 4.4, and a real data set is analyzed in Section 4.5. For the convenience

of presentation, proofs are given in Section 4.6.

4.2 Empirical likelihood inference under the DRM

4.2.1 Notation and problem setup

Let us first recall and introduce some notation. Recall that, as defined in Chapter 3, ni0

and ni1 denote the (random) numbers of zero and positive observations for the ith sample,

for i = 0, . . . ,m. Define n·0 =
∑m

i=0 ni0 and n·1 =
∑m

i=0 ni1 the total zero and nonzero

sample sizes, and let n =
∑m

i=0 ni denote the total sample size. Without loss of generality,

we use first ni1 observations xi1, . . . , xini1
to denote the positive observations in the ith

sample for i = 0, . . . ,m.

Let µ = (µ0, . . . , µm)> be the mean vector of the m+ 1 groups. The main goal of this

section is to develop a test for the following general linear hypothesis about the means

H0 : Cµ = d, (4.3)
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where the p × (m + 1) matrix C and p × 1 vector d have real, non-random, entries that

are completely specified under the null hypothesis and do not depend on sample sizes. We

assume that C has full row rank so that rank(C) = p (with p ≤ m+ 1).

We comment that formulation (4.3) is very flexible and includes many special cases.

For example, when

C =


−1 1 0 · · · 0

−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1


m×(m+1)

, d = 0m×1, (4.4)

then the hypothesis (4.3) becomes

H∗0 : µ0 = µ1 = · · · = µm. (4.5)

In our numerical studies, in Section 4.4, we focus on this special, though important, hy-

pothesis (4.5).

4.2.2 Empirical likelihood ratio

For a compact presentation, we use vector notation. Let ν = (ν0, . . . , νm)>, and θ =

(θ>0 , . . . ,θ
>
m)> with θi = (αi,β

>
i )> for i = 0, . . . ,m. Also, let ω(x;θ) =

(
ω1(x;θ1), . . . ,

ωm(x;θm)
)>

with ωi(x;θi) = exp{αi + β>i q(x)} for i = 0, . . . ,m.

Under the DRM (4.2) for the Gi’s, we can refine the definition of the means based on

the pooled positive samples

µi = (1− νi)
∫ ∞

0

xωi(x;θi)dG0(x), i = 0, . . . ,m. (4.6)

Under the general null hypothesis H0 in (4.3), we have Cµ− d = 0, or equivalently

E0 {g(X;ν,θ)} = 0p×1,
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where X ∼ G0(x) and E0 means that the expectation is taken under G0(x), and

g(x;ν,θ) =

 g1(x;ν,θ)

· · ·
gp(x;ν,θ)

 = C


(1− ν0)x

(1− ν1)xω1(x;θ1)

· · ·
(1− νm)xωm(x;θm)

− d. (4.7)

Therefore, the information about the means in null hypothesis H0 can come into a p-

dimensional unbiased estimating equation (4.7). For parameters estimated through unbi-

ased estimating equations, the empirical likelihood method has been shown to provide an

effective inference platform (Qin and Lawless, 1994). Based on the construction of unbiased

estimating equation (4.7), we proceed to develop inference procedures using the empirical

likelihood method.

Along the lines of empirical likelihood (see Section 2.2), we restrict the form of baseline

distribution G0 to be

G0(x) =
m∑
i=0

ni1∑
j=1

pijI(xij ≤ x).

Recall that, in Chapter 3, given multiple groups of samples from (4.1) in which the Gi’s

satisfy the DRM (4.2), the empirical log-likelihood function can be written as

˜̀(ν,θ, G0) =
m∑
i=0

log{νni0
i (1− νi)ni1}+

m∑
i=0

ni1∑
j=1

{
αi + β>i q(xij) + log(pij)

}
.

We always have the following set of natural constraints:

C1 =

{
(ν,θ, G0) : νi ∈ (0, 1), pij > 0,

m∑
i=0

ni1∑
j=1

pij = 1,
m∑
i=0

ni1∑
j=1

pij{ω(xij,θ)− 1} = 0m×1

}
.

Under the general null hypothesis H0 in (4.3), we also have the following set of constraints:

C2 =

{
(ν,θ, G0) :

m∑
i=0

ni1∑
j=1

pijg(xij;ν,θ) = 0p×1

}
.

The empirical likelihood ratio (ELR) statistic for testing the general null hypothesis

given in (4.3) is then defined via

Rn = 2

{
sup

(ν,θ,G0)∈C1

˜̀(ν,θ, G0)− sup
(ν,θ,G0)∈C1∩ C2

˜̀(ν,θ, G0)

}
. (4.8)
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For the convenience of presentation, the numerical evaluation of Rn is discussed in

Section 4.3.

4.2.3 Large sample property

In this section, we study the asymptotic distribution of the ELR statistic, Rn, for the

general hypothesis testing problem in (4.3) under (4.1) and (4.2).

Suppose that the true value of (ν>,θ>)> is (ν∗>,θ∗>)> under the null hypothesis H0.

Deriving the asymptotic distribution of Rn relies on the following regularity conditions.

R1. ν∗i ∈ (0, 1) for i = 0, . . . ,m.

R2. limmin{n0,...,nm}→∞ ni/n→ ρ∗i , where ρ∗i ∈ (0, 1) for i = 0, . . . ,m.

R3.
∫ (

1,q>(x)
)> (

1,q>(x)
)
dGi(x) exists and is positive definite for i = 0, . . . ,m.

R4.
∫

exp
{
β>i q(x)

}
dGi(x) <∞ in a neighbourhood of θ∗.

R5. The matrix U defined in (4.31), in Section 4.6, is positive definite.

R6. ‖∂g(x;ν,θ)/∂η‖ and ‖g(x;ν,θ)‖3 are bounded by some integrable function of x in

a neighbourhood of (ν∗>,θ∗>)>, where η = (ν>,θ>)> and ‖ · ‖ denotes Euclidean

norm.

Condition R1 states that the parameter ν∗ is an interior point of the parameter space

of ν. Condition R2 assumes that the ratio of each group sample size to n converges to

a constant as min{n0, . . . , nm} → ∞. For simplicity, and convenience of presentation,

we write ρ∗i = ni/n and assume that it is a constant. This does not affect our technical

development. Under Conditions R1 and R2, there is no need to distinguish the stochastic

orders with respect to n or ni. Condition R3 is an identifiability condition, and it ensures

that the components of {1,q>(x)I(x > 0)} are linearly independent under all Gi(x)’s, and

hence q(x) can not be a constant function. Conditions R3–R6 guarantee that a quandratic

approximation of Rn is applicable. The following theorem defines the asymptotic null

distribution of Rn under the general null hypothesis H0 in (4.3).

66



Theorem 4.1 Suppose we have m+ 1 groups of samples of the form (4.1) and condition

(4.2) is satisfied. Assume, also, that the regularity conditions R1–R6 hold. Under the null

hypothesis H0, given in (4.3), we have

Rn → χ2
p,

in distribution as n → ∞, where χ2
p is a chi-squared random variable with p degrees of

freedom, and p = rank(C) for some full rank C in H0.

For convenience of presentation, the proof of Theorem 4.1 is given in Section 4.6. Here we

make three remarks about Theorem 4.1.

(a) As a direct consequence of Theorem 4.1, the ELR test for the overall equality of

m+ 1 group means, (4.5), has a limiting chi-squared distribution with m degrees of

freedom, since the rank of C in (4.4) is m.

(b) The mean differences and ratios are two quantities commonly used to measure the

magnitudes of relative differences among the group means. The result of Theorem

4.1 is also useful for the construction of confidence interval, or region, for the mean

differences and ratios. As an illustration, suppose we are interested in constructing

the confidence interval for the mean difference δ = µ1−µ0 in the two-sample problem.

The unbiased estimating equation (4.7) can be replaced by

d(x;ν,θ, δ) = (1− ν1)xω1(x;θ1)− (1− ν0)x− δ.

Then, the ELR, defined in (4.8), becomes a function of δ, since this parameter δ is

incorporated through d(x;ν,θ, δ) in the constraint set C2. We denote it as Rn(δ).

It follows that the 95% ELR confidence interval for δ can be constructed as {δ :

Rn(δ) ≤ χ2
1,0.95}, where χ2

1,0.95 denotes the 95th quantile of the χ2
1 distribution.

(c) A Wald-type statistic may also be constructed based on the normal approximation

to (ν̂, θ̂) defined in Section 4.3. However, such a statistic is not invariant to trans-

formations (Critchley et al., 1996). For example, mean differences and mean ratios

are two different nonlinear transformations of (ν,θ). The Wald-type statistics for

testing mean ratios equal to one, and for testing mean differences equal to zero, could

lead to two different conclusions.
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4.3 Numerical implementation

In this section, we discuss numerical calculation of Rn, defined in (4.8), for some given C

and d.

We first discuss how to calculate sup(ν,θ,G0)∈C1
˜̀(ν,θ, G0) in Rn. Note that the opti-

mization problem of maximizing ˜̀(ν,θ, G0) subject to C1 for given (ν,θ) is identical to

the one discussed in Section 3.2. Following a similar profiling procedure as used in Section

2.2 and the results in Proposition 2.1, we have

sup
(ν,θ,G0)∈C1

˜̀(ν,θ, G0) = sup
ν,θ

`A(ν,θ)− n·1 log(n·1), (4.9)

where

`A(ν,θ) =
m∑
i=0

log{νni0
i (1− νi)ni1}+

m∑
i=1

ni1∑
j=1

{
αi + β>i q(xij)

}
−

m∑
i=0

ni1∑
j=1

log

[
ρ0 +

m∑
r=1

ρr exp{αr + β>r q(xij)}

]
, (4.10)

with ρr = nr1/n·1 for r = 0, . . . ,m. Note that, here, we use `A(ν,θ) to denote the dual

empirical log-likelihood to emphasize that it is defined under the alternative hypothesis.

The numerical calculation of (ν̂, θ̂) = arg supν,θ `A(ν,θ) and `A(ν̂, θ̂) = supν,θ `A(ν,θ)

can be solved straightforwardly via the connection with logistic regression, as discussed in

Section 2.2.

We next discuss how to calculate sup(ν,θ,G0)∈C1∩ C2
˜̀(ν,θ, G0) in Rn. We start with the

profiling procedure of ˜̀(ν,θ, G0) by profiling out the infinite dimensional parameter G0.

First, we set up the Lagrangian function. For given (ν,θ), define

Ψ(G0,λ, t) = ˜̀(ν,θ, G0) +
m∑
i=0

ni1∑
j=1

pijλ
>{ω(xij,θ)− 1}+

m∑
i=0

ni1∑
j=1

pijt
>g(xij;ν,θ),

where λ = (λ1, . . . , λm)> and t = (t1, . . . , tp)
> are corresponding Lagrangian multipliers.

The point {pi1, . . . , pini
: i = 0, . . . ,m} that maximize ˜̀(ν,θ, G0) must be a stationary

point of Ψ satisfying

∂Ψ(G0,λ, t)

∂pij
= 0,

∂Ψ(G0,λ, t)

∂λi
= 0, and

∂Ψ(G0,λ, t)

∂ti
= 0. (4.11)
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It follows from (4.11) that, for fixed (ν,θ), ˜̀(ν,θ, G0) attains its maximum at

pij =
1

n·1
· 1

1 + λ>{ω(xij,θ)− 1}+ t>g(xij;ν,θ)
, (4.12)

where the Lagrange multipliers, λ and t, solve following equations

1

n·1

m∑
i=0

ni1∑
j=1

ω(xij,θ)− 1

1 + λ>{ω(xij,θ)− 1}+ t>g(xij;ν,θ)
= 0m×1, (4.13)

and

1

n·1

m∑
i=0

ni1∑
j=1

g(xij;ν,θ)

1 + λ>{ω(xij,θ)− 1}+ t>g(xij;ν,θ)
= 0p×1. (4.14)

Therefore, using (4.12) to profile out pij, the profile empirical log-likelihood function of

(ν,θ) under the null hypothesis H0 given in (4.3) can be written as `N(ν,θ)− n·1 log(n·1)

with

`N(ν,θ) =
m∑
i=0

log{νni0
i (1− νi)ni1}+

m∑
i=1

ni1∑
j=1

{
αi + β>i q(xij)

}
−

m∑
i=0

ni1∑
j=1

log
[
1 + λ>{ω(xij,θ)− 1}+ t>g(xij;ν,θ)

]
. (4.15)

Then, it follows that

sup
(ν,θ, G0)∈C1∩ C2

˜̀(ν,θ, G0) = sup
ν,θ

`N(ν,θ)− n.1 log(n.1). (4.16)

Let (ν̃, θ̃) = arg supν,θ `N(ν,θ) be the maximum EL estimate of (ν,θ) under H0 in (4.3).

Hence, to calculate sup(ν,θ,G0)∈C1∩ C2
˜̀(ν,θ, G0), it is sufficient to obtain (ν̃, θ̃).

Unfortunately, the numerical calculation of (ν̃, θ̃) may not be an easy task since there

are no analytical solutions for λ and t in the definition of `N(ν,θ) in (4.15).

Let ψ = (ν>,θ>,λ>, t>)> and define

`(ν,θ,λ, t) =
m∑
i=0

log{νni0
i (1− νi)ni1}+

m∑
i=1

ni1∑
j=1

{
αi + β>i q(xij)

}
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−
m∑
i=0

ni1∑
j=1

log
[
1 + λ>{ω(xij,θ)− 1}+ t>g(xij;ν,θ)

]
. (4.17)

Then `N(ν,θ) = `(ν,θ,λ, t) with λ and t being the solutions of (4.13) and (4.14). Note

that, λ and t in `N(ν,θ) are actually functions of ν and θ.

Let λ̃ and t̃ be the solutions of (4.13) and (4.14) when (ν,θ) is replaced by (ν̃, θ̃).

Hence, `(ν̃, θ̃, λ̃, t̃) = `N(ν̃, θ̃). Further let ψ̃ = (ν̃>, θ̃
>
, λ̃
>
, t̃
>

)>. We summarize some

key properties of using `(ν,θ,λ, t) to find (ν̃, θ̃) = arg supν,θ `N(ν,θ) and `N(ν̃, θ̃) =

supν,θ `N(ν,θ) in the following proposition.

Proposition 4.1 For `(ν,θ,λ, t), defined in (4.17), and (ν̃, θ̃) = arg supν,θ `N(ν,θ), then

ψ̃ is a stationary point of `(ν,θ,λ, t). That is, ψ̃ is a solution of

∂`(ν,θ,λ, t)

∂ψ
= 0.

Proof. The result can be proved by the similar arguments as used in the proof of Propo-

sition 2.1. We sketch the key steps.

First, when `N(ν̃, θ̃) is maximized, the following equations are satisfied:

∂`N(ν̃, θ̃)

∂ν
= 0,

∂`N(ν̃, θ̃)

∂θ
= 0.

Further, note that since λ and t in `N(ν,θ) are the solutions of (4.13) and (4.14), they are

functions of ν and θ.

For illustration, we only show

0 =
∂`N(ν̃, θ̃)

∂βi

=
∂`(ν̃, θ̃, λ̃, t̃)

∂βi
+

m∑
r=1

∂`(ν̃, θ̃, λ̃, t̃)

∂λr

∂λr
∂βi

∣∣∣
(ν ,θ)=(ν̃ , ˜θ)

+

p∑
s=1

∂`(ν̃, θ̃, λ̃, t̃)

∂ts

∂ts
∂βi

∣∣∣
(ν ,θ)=(ν̃ , ˜θ)

=
∂`(ν̃, θ̃, λ̃, t̃)

∂βi
− 0 · ∂λr

βi

∣∣∣
(ν ,θ)=(ν̃ , ˜θ)

− 0 · ∂ts
βi

∣∣∣
(ν ,θ)=(ν̃ , ˜θ)
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=
∂`(ν̃, θ̃, λ̃, t̃)

∂βi
, (4.18)

where the second last line is followed from (4.13) and (4.14).

One can similarly verify as (4.18) that

∂`N(ν̃, θ̃)

∂η
=
∂`(ν̃, θ̃, λ̃, t̃)

∂η
= 0.

Hence ψ̃ is a stationary point of `(θ). This completes the proof. �

With the result of Proposition 4.1, (ν̃, θ̃) can be obtained by solving for a stationary

point, in fact a saddlepoint of `(ν,θ,λ, t), over the space of ψ. To numerically calculate ψ̃,

we minimize the sum of squares of ∂`(ν,θ,λ, t)/∂ψ by using the built-in nlminb function

in R. Once we obtain ψ̃, we calculate sup(ν,θ, G0)∈C1∩ C2
˜̀(ν,θ, G0) by (4.16).

Combining (4.9) and (4.16), we finished the numeric calculation of Rn by

Rn = 2
{
`A(ν̂, θ̂)− `N(ν̃, θ̃)

}
.

We have also written R functions to calculate Rn for testing overall mean equality, with

basis function q(x) = log(x) in the DRM, and they are available in the Appendix A.2 of

this thesis.

4.4 Simulation studies

In this section, we use Monte Carlo simulation to evaluate the finite-sample performance

of the proposed ELR test for testing the overall mean equality, that is an important case

covered by the hypothesis testing problem (4.3). The ELR test statistic is calculated by

the procedure in Section 4.3 with the forms of C and d given in (4.4).

We fix the number of groups under comparison to be m + 1 = 2 or m + 1 = 3. We

compare the type I error rates and the power of the proposed ELR test with the ATS of

Brunner et al. (1997) and WTPS of Pauly et al. (2015). Note that the classical ANOVA

F -test is designed for the assumption that the variances of Fi(x) are homogenous, which
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may not be satisfied in our setup. Recall that both the ATS and WTPS do not require

such an assumption. Hence in our comparison, we only include the ATS and WTPS.

For each test, the type I error rate and the power at the 5% significance level are

calculated based on 10,000 and 2,000 repetitions, respectively. The computations for the

ATS and WTPS methods use the R package “GFD” (Friedrich et al., 2016). Following the

suggestion in Pauly et al. (2015), we use 10,000 permutation samples (the default number

in “GFD”) to calculate the type I error rates and the power of the WTPS.

The random observations are generated, conditional on all ν̂i’s 6= 0 or 1, from (4.1)

with all the Gi’s being log-normal, or all the Gi’s being gamma distributions. Note that

if any ν̂i’s = 0 or 1, then some test statistics may not be well defined. This is not a

problem in practice. However, note that, when any true zero proportion νi is too close

to the boundary 0 or 1, Anaya-Izquierdo et al. (2014) found that boundary effects can

dominate the sampling distribution of ν̂i. Hence, in our simulation settings, the true νi’s

are considered to be between 0.3 and 0.7. A diagnostic tool was proposed in Anaya-

Izquierdo et al. (2014) which defines how far νi is required to be from the boundary so that

first order asymptotics remain adequate.

In the following, we use LN(ai, bi) to denote a log-normal distribution with mean ai

and variance bi both with respect to the log scale (i.e. mean and variance of the associated

normal random variable), and GAM(ai, bi) to denote a gamma distribution with shape

parameter ai and scale parameter bi.

The parameter settings under the null hypothesis (LN1–LN6 and GAM1–GAM6) that

all the means are equal, and the alternative hypothesis (LN7–LN15 and GAM7–GAM15)

are given in Table 4.1. Note that in the following we use the same model notation for

two- and three-sample comparisons when no confusion is caused. We consider the case

with equal sample sizes by setting (n0, n1) to be (50, 50) and (100, 100) for the two-sample

comparison, and (n0, n1, n2) to be (50, 50, 50) and (100, 100, 100) for the three-sample com-

parison. We also consider the case with unequal sample sizes by setting (n0, n1) to be

(50, 150) and (150, 50) for the two-sample comparison, and (n0, n1, n2) to be (50, 150, 100)

and (150, 50, 100) for the three-sample comparison. With the parameter settings in Table

4.1, these combinations of unequal sample sizes correspond to two cases where increasing
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the sample sizes is related with increasing variances (positive pairing) or with decreasing

variances (negative pairing).

Table 4.1: Parameter settings for simulation studies. In the second column, each LN1–LN16

and each GAM1–GAM16 denote mixture models whose continuous parts follow the distributions

LN(ai, bi) and GAM(ai, bi), respectively, for i = 0, 1 under two-sample comparison, or for i =

0, 1, 2 under three-sample comparison.

Scenario Model (ν0, ν1, ν2) (a0, a1, a2) (b0, b1, b2) Means Variances

Scenario I
(null)

LN1 (0.3, 0.3, 0.3) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (1.15, 1.15, 1.15) (3.84, 3.84, 3.84)
LN2 (0.7, 0.7, 0.7) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.49, 0.49, 0.49) (1.97, 1.97, 1.97)

Scenario II
(null)

LN3 (0.3, 0.5, 0.4) (0.33, 0.66, 0.48) (1.00, 1.00, 1.00) (1.60 ,1.60, 1.60) (7.38, 11.36, 9.04)
LN4 (0.5, 0.7, 0.6) (0.37, 0.89, 0.60) (1.00, 1.00, 1.00) (1.20, 1.20, 1.20) (6.39, 11.61, 8.35)

Scenario III
(null)

LN5 (0.3, 0.5, 0.4) (0.05, 0.29, 0.16) (0.80, 1.00, 0.90) (1.10, 1.10, 1.10) (2.64, 5.37, 3.75)
LN6 (0.5, 0.7, 0.6) (0.00, 0.50, 0.25) (0.94, 0.96, 0.89) (0.80, 0.80, 0.80) (2.64, 4.94, 3.24)

Scenario I
(alternative)

LN7 (0.5, 0.3, 0.4) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.82, 1.15, 0.99) (3.01, 3.84, 3.45)
LN8 (0.7, 0.5, 0.6) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.49, 0.82, 0.66) (1.97, 3.01, 2.52)
LN9 (0.6, 0.4, 0.5) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.66, 0.99, 0.82) (2.52, 3.45, 3.01)

Scenario II
(alternative)

LN10 (0.3, 0.3, 0.3) (0.00, 0.50, 0.25) (1.00, 1.00, 1.00) (1.15, 1.90, 1.48) (3.84, 10.44, 6.33)
LN11 (0.7, 0.7, 0.7) (0.00, 0.75, 0.50) (1.00, 1.00, 1.00) (0.49, 1.05, 0.82) (1.97, 8.84, 5.36)
LN12 (0.4, 0.6, 0.5) (0.00, 1.00, 0.50) (1.00, 1.00, 1.00) (0.99, 1.79, 1.36) (3.45, 18.63, 8.20)

Scenario III
(alternative)

LN13 (0.3, 0.3, 0.3) (0.00, 0.50, 0.25) (1.00, 0.80, 0.90) (1.15, 1.72, 1.41) (3.84, 6.46, 4.99)
LN14 (0.7, 0.7, 0.7) (0.00, 0.75, 0.50) (1.00, 0.80, 0.90) (0.49, 0.95, 0.78) (1.97, 5.76, 4.33)
LN15 (0.6, 0.4, 0.5) (0.00, 0.50, 0.25) (1.00, 0.60, 0.80) (0.66, 1.34, 0.96) (2.52, 3.63, 3.17)

Scenario I
(null)

GAM1 (0.3, 0.3, 0.3) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (0.70, 0.70, 0.70) (0.91, 0.91, 0.91)
GAM2 (0.7, 0.7, 0.7) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (0.30, 0.30, 0.30) (0.51, 0.51, 0.51)

Scenario II
(null)

GAM3 (0.3, 0.5, 0.4) (1.43, 2.00, 1.67) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.43, 2.00, 1.67)
GAM4 (0.5, 0.7, 0.6) (2.00, 3.33, 2.50) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (2.00, 3.33, 2.50)

Scenario III
(null)

GAM5 (0.3, 0.5, 0.4) (1.71, 1.20, 1.33) (1.00, 2.00, 1.50) (1.20, 1.20, 1.20) (1.82, 3.84, 2.76)
GAM6 (0.5, 0.7, 0.6) (2.00, 1.50, 1.75) (1.00, 2.22, 1.43) (1.00, 1.00, 1.00) (2.00, 4.56, 2.93)

Scenario I
(alternative)

GAM7 (0.5, 0.3, 0.4) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (0.50, 0.70, 0.60) (0.75, 0.91, 0.84)
GAM8 (0.7, 0.5, 0.6) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (0.30, 0.50, 0.40) (0.51, 0.75, 0.64)
GAM9 (0.6, 0.4, 0.5) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (0.40, 0.60, 0.50) (0.64, 0.84, 0.75)

Scenario II
(alternative)

GAM10 (0.3, 0.3, 0.3) (1.00, 2.00, 1.50) (1.00, 1.00, 1.00) (0.70, 1.40, 1.05) (0.91, 2.24, 1.52)
GAM11 (0.7, 0.7, 0.7) (1.00, 2.00, 1.50) (1.00, 1.00, 1.00) (0.30, 0.60, 0.45) (0.51, 1.44, 0.92)
GAM12 (0.4, 0.6, 0.5) (1.00, 2.50, 1.50) (1.00, 1.00, 1.00) (0.60, 1.00, 0.75) (0.84, 2.50, 1.31)

Scenario III
(alternative)

GAM13 (0.3, 0.3, 0.3) (1.50, 1.00, 1.25) (1.00, 2.00, 1.50) (1.05, 1.40, 1.31) (1.52, 3.64, 2.71)
GAM14 (0.7, 0.7, 0.7) (1.75, 1.25, 1.50) (1.00, 2.00, 1.50) (0.53, 0.75, 0.68) (1.17, 2.81, 2.08)
GAM15 (0.6, 0.4, 0.5) (2.00, 1.00, 1.50) (1.00, 2.00, 1.50) (0.80, 1.20, 1.13) (1.76, 3.36, 2.95)

To evaluate the performance of the ELR test with respect to the choices of user-specified

basis function q(x) in a DRM, we consider the following three scenarios that may be

encountered in practice:
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• Scenario I: all the distributions Gi’s are homogenous, and thus any basis function

is correctly specified under the models LN1, LN2, LN7–LN9, and GAM1, GAM2,

GAM7–GAM9.

• Scenario II: the parameters ai’s are not equal while the parameters bi’s are held

constant, and thus the basis function q(x) = log(x) is correctly specified under the

models LN3, LN4, LN10–LN12, and GAM3, GAM4, GAM10–GAM12.

• Scenario III: all the parameters ai’s and bi’s are not equal, and thus the basis function

q(x) = {log(x), log2(x)}> is correctly specified under the LN models LN5, LN6, LN13–

LN15, and the basis function q(x) = {x, log(x)}> is correctly specified under the GAM

models GAM5, GAM6, GAM13–GAM15.

In the following comparisons, the simulation results are discussed by the above three sce-

narios.

4.4.1 Scenario I

The simulated type I error rates of the ELR, ATS, and WTPS under Scenario I are sum-

marized in Tables 4.2–4.3, and the simulated power under the same scenario are plotted

in Figure 4.1. Here, the DRM (4.2) is correctly specified with any form of q(x). After

experimenting with several forms of q(x), the basis function q(x) = log(x) is recommended

since the ELR with such basis function has the most accurate type I error and the largest

power. Hence we only present the results under the basis function q(x) = log(x).

Based on our simulation results, our major observations for both the two- and three-

sample comparisons are summarized as follows.

(a) It can be seen from the results in Tables 4.2–4.3, that the proposed ELR test and

the WTPS method well control the type I error rates close to their nominal level.

However, the ATS method tends to be conservative for equal sample sizes; and when

the sample sizes are unequal it tends to be liberal for the two-sample comparisons.
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Table 4.2: Scenario I: simulated probabilities (%) of rejecting H∗0 when data are generated from

LN(ai, bi) according to the parameter settings given in Table 4.1. Here the ELR is defined under

basis function q(x) = log(x).

Model
Two-sample comparison Three-sample comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

LN1 (50, 50) 5.10 4.05 4.85 (50, 50, 50) 5.01 3.03 4.97
(100, 100) 4.83 4.84 5.15 (100, 100, 100) 5.10 3.77 4.75
(50, 150) 5.10 5.85 4.92 (50, 150, 100) 5.01 5.00 5.06
(150, 50) 4.94 5.91 4.84 (150, 50, 100) 5.14 4.75 5.08

LN2 (50, 50) 4.96 3.68 5.01 (50, 50, 50) 4.77 2.45 5.13
(100, 100) 5.07 4.04 4.73 (100, 100, 100) 4.87 3.01 4.98
(50, 150) 4.74 5.78 3.99 (50, 150, 100) 5.20 4.67 4.97
(150, 50) 4.77 6.15 4.25 (150, 50, 100) 5.15 4.79 5.02

NOTE: the Monte Carlo error is 0.218 (%) under the null models LN1–LN2.

Table 4.3: Scenario I: simulated probabilities (%) of rejecting H∗0 when data are generated from

GAM(ai, bi) according to the parameter settings given in Table 4.1. Here the ELR is defined

under basis function q(x) = log(x).

Model
Two-sample comparison Three-sample comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

GAM1 (50, 50) 5.16 4.68 4.82 (50, 50, 50) 5.47 4.34 4.99
(100, 100) 4.98 4.56 4.84 (100, 100, 100) 5.17 4.62 5.09
(50, 150) 4.83 5.89 5.18 (50, 150, 100) 5.28 4.82 4.94
(150, 50) 5.13 5.74 5.08 (150, 50, 100) 5.32 5.11 5.07

GAM2 (50, 50) 5.28 4.50 4.99 (50, 50, 50) 5.22 3.20 4.84
(100, 100) 5.02 4.94 5.16 (100, 100, 100) 5.10 4.15 5.15
(50, 150) 5.28 6.06 4.74 (50, 150, 100) 5.14 5.30 4.78
(150, 50) 5.06 6.12 4.88 (150, 50, 100) 5.18 5.15 4.97

NOTE: the Monte Carlo error is 0.218 (%) under the null models GAM1–GAM2.

(b) In terms of power, it can be observed from Figure 4.1, that the performance of the

proposed ELR test seems to be less sensitive to the sample sizes than the other two

tests. Although there is no uniformly dominant method for all the settings in Figure

4.1, the ELR test seems to be the most powerful for equal sample sizes and unequal

sample sizes with a negative pairing. For the unequal sample sizes with positive

pairing, the WTPS method may have some advantage over the ELR test for the LN

models, and thus it may be favourable in this scenario, while recalling that the ATS

method may have inflated type I error.
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Figure 4.1: Scenario I: simulated power (%) of rejecting H∗0 at significance level 0.05 when data

are generated from a log-normal mixture model with parameter settings given in Table 4.1. The

ELR test is defined under q(x) = log(x). The horizontal axis denotes combinations of sample

sizes (n0, n1) equal to (50, 50), (100, 100), (50, 150) and (150, 50) for two-sample comparisons; and

(n0, n1, n2) equal to (50, 50, 50), (100, 100, 100), (50, 150, 100) and (150, 50, 100) for three-sample

comparisons, from left to right.
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4.4.2 Scenario II

The simulated type I error rates for Scenario II are summarized in Tables 4.4–4.5, and the

simulated power for Scenario II are plotted in Figure 4.2.

Table 4.4: Scenario II: simulated probabilities (%) of rejecting H∗0 when data are generated from

LN(ai, bi) according to the parameter settings given in Table 4.1. Here the ELR is defined under

correctly specified basis function q(x) = log(x).

Model
Two-sample comparison Three-sample comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

LN3 (50, 50) 5.27 4.26 5.08 (50, 50, 50) 5.01 3.29 4.97
(100, 100) 5.12 5.31 5.74 (100, 100, 100) 5.19 3.74 5.08
(50, 150) 5.13 5.48 4.32 (50, 150, 100) 5.37 4.17 4.37
(150, 50) 5.11 7.37 6.22 (150, 50, 100) 5.28 6.27 6.51

LN4 (50, 50) 5.19 5.16 5.53 (50, 50, 50) 5.10 3.60 4.87
(100, 100) 5.34 4.89 5.42 (100, 100, 100) 5.41 3.85 5.79
(50, 150) 5.42 4.82 3.06 (50, 150, 100) 5.23 3.61 3.67
(150, 50) 5.36 8.88 7.52 (150, 50, 100) 5.47 7.18 7.67

NOTE: the Monte Carlo error is 0.218 (%) under the null models LN3–LN4.

Table 4.5: Scenario II: simulation probabilities (%) of rejecting H∗0 when data are generated from

GAM(ai, bi) according to the parameter settings given in Table 4.1. Here the ELR is defined under

correctly specified basis function q(x) = log(x).

Model
Two-sample comparison Three-sample comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

GAM3 (50, 50) 5.00 4.64 4.83 (50, 50, 50) 5.36 4.41 4.96
(100, 100) 4.84 4.57 4.69 (100, 100, 100) 5.16 4.79 5.10
(50, 150) 5.03 5.60 5.14 (50, 150, 100) 4.91 4.84 4.85
(150, 50) 5.11 5.43 5.16 (150, 50, 100) 5.09 5.10 4.83

GAM4 (50, 50) 5.10 5.21 5.39 (50, 50, 50) 5.04 4.29 4.91
(100, 100) 5.28 5.26 5.33 (100, 100, 100) 5.25 4.82 5.10
(50, 150) 5.16 5.02 4.38 (50, 150, 100) 5.30 4.84 4.69
(150, 50) 4.92 6.05 5.58 (150, 50, 100) 4.93 5.65 5.29

NOTE: the Monte Carlo error is 0.218 (%) under the null models GAM3–GAM4.

Based on our simulation results, our major observations for both the two- and three-

sample comparisons are summarized as follows.

(c) In terms of type I error control, it can be seen from the results in Tables 4.4–4.5,

that the ELR test under q(x) = log(x) always retains error rates close to the nominal
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level, and the results seem insensitive to whether sample sizes are equal or not. On

the other hand, the type I error rates of both ATS and WTPS methods seem to

be sensitive to whether the sample sizes are equal or not. For equal sample sizes,

both ATS and WTPS methods control the type I error satisfactory, although the

ATS method may be conservative in some settings. For unequal sample sizes with

positive pairing, both the ATS and WTPS methods are conservative in their type

I error rates; however, with the negative pairing, they tend to have inflated type I

error rates, particularly for the LN models.

(d) In terms of power, it can be observed from Figure 4.2, that the performance of the

proposed ELR test is, again, not as sensitive to unequal sample sizes as the other

two tests. Further, in all the settings in Figure 4.2, the ELR test is the most, or

one of the most, powerful tests, for both the equal and unequal sample sizes under

comparisons. In some special cases, the gain in power could be over 50%. Together

with the observations from the type I error rates, the proposed ELR test under

q(x) = log(x) is much preferred in this scenario.

4.4.3 Scenario III

The simulated type I error rates for Scenario III are summarized in Tables 4.6–4.7, and

the simulated power for Scenario III are plotted in Figure 4.3.

Based on our simulation results, our major observations for both two-sample and three-

sample comparisons are summarized as follows.

(e) In terms of type I error control, it can be seen from the results in Tables 4.6–4.7

that the ELR test, under basis functions q(x) = {log(x), log2(x)}> for LN models,

or q(x) = {x, log(x)}> for GAM models, may fail to keep the error under control,

except for the unequal sample sizes with positive pairing. In this scenario, the WTPS

method may also lead to inflated type I error rates in some settings. On the other

hand, the ATS method seems to have overall good control of the type I error, except

for the case of unequal sample sizes with negative pairing. Indeed, all three methods
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Figure 4.2: Scenario II: simulated power (%) of rejecting H∗0 at significance level 0.05 when data

are generated from a log-normal mixture model with parameter settings given in Table 4.1. The

ELR test is defined under q(x) = log(x). The horizontal axis denotes combinations of sample

sizes (n0, n1) equal to (50, 50), (100, 100), (50, 150) and (150, 50) for two-sample comparisons; and

(n0, n1, n2) equal to (50, 50, 50), (100, 100, 100), (50, 150, 100) and (150, 50, 100) for three-sample

comparisons, from left to right.
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Table 4.6: Scenario III: simulation probabilities (%) of rejecting H∗0 when data are generated

from LN(ai, bi) according to the parameter settings given in Table 4.1. Here the ELR is defined

under correctly specified basis function q(x) = {log(x), log2(x)}>.

Model
Two-sample comparison Three-sample comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

LN5 (50, 50) 6.00 4.97 5.53 (50, 50, 50) 5.82 3.89 5.89
(100, 100) 5.64 5.17 5.49 (100, 100, 100) 5.44 4.11 5.41
(50, 150) 5.28 4.49 3.31 (50, 150, 100) 4.93 3.58 3.68
(150, 50) 6.05 8.11 7.16 (150, 50, 100) 5.91 6.16 6.40

LN6 (50, 50) 5.68 4.74 5.57 (50, 50, 50) 5.36 3.43 5.33
(100, 100) 5.48 5.22 5.79 (100, 100, 100) 5.33 3.90 5.62
(50, 150) 4.91 4.70 3.10 (50, 150, 100) 5.23 3.85 3.73
(150, 50) 5.79 8.19 6.72 (150, 50, 100) 6.10 7.24 7.08

NOTE: the Monte Carlo error is 0.218 (%) under the null models LN5–LN6.

Table 4.7: Scenario III: simulation probabilities (%) of rejecting H∗0 when data are generated

from GAM(ai, bi) according to the parameter settings given in Table 4.1. Here the ELR is defined

under correctly specified basis function q(x) = {x, log(x)}>.

Model
Two-sample comparison Three-sample comparison

(n0, n1) ELR ATS WTPS (n0, n1, n2) ELR ATS WTPS

GAM5 (50, 50) 5.86 5.18 5.29 (50, 50, 50) 5.76 4.75 5.44
(100, 100) 5.40 4.92 5.03 (100, 100, 100) 5.21 4.61 4.85
(50, 150) 5.15 4.92 4.17 (50, 150, 100) 5.20 4.69 4.32
(150, 50) 5.76 6.20 6.01 (150, 50, 100) 5.59 5.96 5.83

GAM6 (50, 50) 5.91 5.46 5.63 (50, 50, 50) 5.93 4.60 5.53
(100, 100) 5.82 5.51 5.61 (100, 100, 100) 5.46 4.99 5.50
(50, 150) 5.42 4.96 3.90 (50, 150, 100) 5.22 4.45 4.02
(150, 50) 6.24 7.15 6.67 (150, 50, 100) 5.83 6.96 6.53

NOTE: the Monte Carlo error is 0.218 (%) under the null models GAM5–GAM6.

under comparison lead to inflated type I error rates when the sample sizes are unequal

with negative pairing. In general, for the cases of equal sample sizes and unequal

sample sizes with positive pairing, the ATS is a suitable testing method in this

scenario. In this scenario with more complex data distributions, the ELR and WTPS

methods seem to need larger sample sizes than those considered to give adequate

approximations.

(f) In terms of power, it can be observed from Figure 4.3 that the ATS method still has

consistent performance in the settings of equal sample sizes and unequal sample sizes

80



25
35

45

LN13 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

10
20

30
40

50

LN14 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

50
60

70
80

LN15 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

15
20

25
30

35
40

LN13 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

10
20

30

LN14 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

40
50

60
70

LN15 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

15
20

25
30

35

GAM13 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

5
10

15
20

25

GAM14 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg
20

25
30

35
40

45

GAM15 :  two-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

10
15

20
25

30
35

GAM13 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

5
10

15
20

GAM14 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

15
25

35

GAM15 :  three-sample comparison

Sample sizes

P
ow

er
s 

(%
)

50 100 pos neg

ELR ATS WTPS

Figure 4.3: Scenario III: simulated power (%) of rejecting H∗0 at significance level 0.05 when

data are generated from a log-normal mixture model with parameter settings given in Table

4.1. The ELR test is defined under q(x) = {log(x), log2(x)}>. The horizontal axis denotes

combinations of sample sizes (n0, n1) equal to (50, 50), (100, 100), (50, 150) and (150, 50) for

two-sample comparisons; and (n0, n1, n2) equal to (50, 50, 50), (100, 100, 100), (50, 150, 100) and

(150, 50, 100) for three-sample comparisons, from left to right.
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with positive pairing. However, keep in mind that the ELR and WTPS methods

both may fail to control the type I error rates. Therefore, no fair comparison can be

made with ELR and WTPS methods.

In summary, for testing mean equality in the three scenarios considered, the proposed

ELR test is robust against the assumption of parametric models that generate the data.

The ELR test generally performs best in Scenario II with basis function q(x) = log(x)

correctly specified in a DRM. As we may expect, the failure of selecting an appropriate

form of q(x) in a DRM may affect the control of type I error of the ELR test in some

settings, and potential convergence problem in computation can also be an issue.

In our simulation studies, the numerical procedure for calculating ELR, discussed in

Section 4.3, converges fast and is in general not sensitive to choices of initial values when

the basis function q(x) = log(x) is used in Scenarios I and II. However, when the basis

function of increasing dimension are specified in Scenario III, we found that the compu-

tation may not be very stable and a good choice of initial value can be helpful. Besides,

in our experience, the ELR with correctly specified basis function is also important for

convergence in Scenarios II and III.

In practice, a comprehensive DRM selection strategy, as described in Section 2.3, would

be encouraged at a preliminary stage of data analysis. We comment that such a preliminary

DRM selection procedure is not too restrictive. Given the difficulty in identifying a suitable

parametric model for many practical situations, the proposed ELR test can still be an

attractive and robust semiparametric alternative approach.

Combining the conclusions of our simulation results and numerical experience, we rec-

ommend using the ELR test when the basis function q(x) = log(x) is selected in the

DRM.

We also comment that for the three-sample comparisons, the unequal sample sizes

combinations presented in this section correspond to two extreme cases that are perfectly

positive, or negative, pairing with the unequal variances. For these cases with positive and

negative parings, the findings for ATS and WTPS methods are consistent with those in

Vallejo et al. (2010) and Pauly et al. (2015). We do not report all possible patterns of
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unequal sample sizes and variances combinations in simulation. For other combinations

that are somewhat in between those reported, the pattern of results do not exhibit large

difference from those reported. In general, the ELR test has been observed to be more

robust against unequal sample sizes when compared with the ATS and WTPS methods.

In the next section, we examine a real data example in which the relation between sample

sizes and variances are not dramatically positively or negatively correlated.

4.5 An illustrative real data example

In this section, we analyze a real data set from Koopmans (1981, p. 107). It arises in

a biological study of the seasonal activity patterns of a species of field mice. The mea-

surements are the average distances (in meters) travelled between captures by those mice

at least twice in a given month. One of the objectives in this study is to discover if the

mean measurements differ between the four seasons. In addition to the continuous positive

measurements, there are substantial proportions of zero values, especially in the fall and

winter data. Some summary statistics are:

• the sample estimate of ν> is (0.1765, 0.1111, 0.3704, 0.2941) with sample sizes (17, 27, 27, 34);

• the sample means are (26.9412, 30.8148, 13.0370, 15.0294);

• the sample variances are (679.3088, 1118.926, 178.8832, 293.5446).

As discussed in Section 4.4, we need to select a basis function q(x) in a DRM that

provides a reasonable fit to this data. We apply the AIC, discussed in Section 2.3, to select

a basis function in the DRM for the positive data in this example. The five candidate

basis functions are guided by Table 2.1. The results are given in Table 4.8. It can be

seen that the DRM with q(x) = log(x) has the smallest AIC among five commonly used

basis functions, and hence it is recommended in this example. Furthermore, we have also

applied the ELR test for homogeneity in distributions developed in Chapter 3 to this real

data set. The bootstrap ELR test for homogeneity based on q(x) = log(x) gives a p-value

of 0.0402, with 10, 000 times bootstrap resampling. With this preliminary data analysis,
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it seems reasonable to categorize this real data example into the Scenario II considered in

Section 4.4.2.

Table 4.8: AIC for five commonly used basis functions q(x) in a DRM for the positive field mice

data.
q(x) = log(x) x {log(x), log2(x)}> {x, log(x)}> {x, log(x), log2(x)}>

AIC 219.63 220.45 224.19 224.05 228.86

We further fit this data by log-normal mixture models and gamma mixture models,

under the null and alternative hypotheses, by the parametric maximum likelihood method.

Here the null hypothesis is that the means of measurements for all four seasons are the

same. The details are provided in Table 4.9. These fitted models will be used in our

confirmative simulation later on.

Table 4.9: Fitted parameters for log-normal mixture model and gamma mixture model under

the null and alternative hypotheses for field mice data. The models LN16 and GAM16 are fitted

under the null hypothesis; and the models LN17 and GAM17 are fitted under the alternative

hypothesis. The last two columns are the means and variances corresponding to each model, and

1> = (1, 1, 1, 1).

Model (ν0, ν1, ν2, ν3) (a0, a1, a2, a3) (b0, b1, b2, b3) Means Variances

LN16 (0.28, 0.21, 0.28, 0.23) (3.11, 3.03, 3.12, 3.05) 0.41× 1> (19.95, 19.95, 19.95, 19.95) (430.69, 362.72, 433.63, 376.22)

LN17 (0.18, 0.11, 0.37, 0.29) (3.29, 3.25, 2.91, 2.87) 0.37× 1> (26.68, 27.49, 13.84, 14.99) (539.26, 474.92, 248.75, 235.92)

GAM16(0.27, 0.20, 0.28, 0.23)(2.32, 2.13, 2.35, 2.20) 12.22× 1> (20.68, 20.68, 20.68, 20.68)(410.53, 362.76, 417.95, 381.00)

GAM17(0.18, 0.11, 0.37, 0.29)(2.88, 2.77, 2.10, 2.04) 11.24× 1> (26.65, 27.67, 14.87, 16.22)(451.68, 406.71, 297.12, 291.97)

We then applied the proposed ELR test, and other testing methods discussed in Sec-

tion 4.4, for the mean equality in this real data. The observed test statistics and their

corresponding p-values are reported in Table 4.10.

From the results in Table 4.10, the proposed ELR test as well as the other two tests

all produce significant p-values at 5% significance level. It is worth emphasizing that the

proposed ELR test provides the strongest evidence. Therefore, a nature followup concern is
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Table 4.10: Test statistics, corresponding p-values, and confirmative simulation for field mice

data. The ELR test is under basis function q(x) = log(x) in a DRM.

Pair Method
Field mice data Confirmative simulation

Test statistic p-value LN16 LN17 GAM16 GAM17

All four seasons ELR 12.40 0.0061 5.20 86.36 5.21 79.11
ATS 3.17 0.0435 3.92 68.11 3.99 62.07
WTPS 9.71 0.0388 4.83 76.58 4.67 66.88

Spring vs. Autumn ELR 5.65 0.0175 5.05 59.35 5.29 53.19
ATS 4.15 0.0542 4.36 47.32 4.61 42.50
WTPS 4.15 0.0431 4.56 49.07 4.61 43.05

Spring vs. Winter ELR 4.95 0.0261 4.91 57.24 5.23 45.97
ATS 2.92 0.1009 4.69 42.15 4.90 34.24
WTPS 2.92 0.0991 4.62 43.61 4.80 34.56

Summer vs. Autumn ELR 6.56 0.0105 5.16 79.56 5.29 74.43
ATS 6.58 0.0149 4.40 74.16 4.72 68.31
WTPS 6.58 0.0071 4.88 74.92 4.91 68.41

Summer vs. Winter ELR 6.62 0.0101 5.37 78.91 5.31 70.61
ATS 4.98 0.0319 4.50 71.83 4.77 62.69
WTPS 4.98 0.0262 4.80 72.96 4.92 62.91

to detect any potential pairwise mean differences. We further test for the two-sample mean

equality for six pairwise combinations of this data. The testing results for the significant

pairs are given in Table 4.10. We particularly highlight one pairwise comparison, that is,

Spring vs. Winter. The proposed ELR test in this two-sample mean comparison gives a

significant p-value of 0.0261 at the 5% significance level. In comparison, both the ATS

and WTPS methods fail to detect the mean difference for this particular pair at the 5%

significance level.

These results may be further verified by the simulation according to model settings in

Table 4.9. The simulation results based on 10,000 repetitions are summarized in Table

4.10. It can be seem that all the simulation results demonstrate very good agreement with

our real data analysis.
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4.6 Proofs

This section contains a proof of Theorem 4.1. The regularity conditions provided in Section

4.2.3 will be used throughout this proof. We first define some useful notation before we

proceed.

We emphasize that the definition of Rn in Section 4.3 involves the summation of random

variables over random numbers, i.e., the numbers of zero and positive observations are

random due to the mixture data structure. This fact prevents us from applying standard

large sample theories directly. In our proofs, we use indicator variables to circumvent this

technical difficulty. Let
∑

ij denote the summation over the constant range of all n pooled

observations (unless is otherwise specified), that is, j ∈ {1, . . . , ni} and i ∈ {0, 1, . . . ,m}.
For notational simplicity, let Q(xij) = {1,q>(xij)}>, so that ωr(xij;θr) = exp{θ>r Q(xij)},
for r = 0, . . . ,m, where we have set θ0 = 0.

Recall that η = (ν>,θ>)>. Note that the function `(ν,θ,λ, t) defined in Section 4.3

can be rewritten as

`(η,λ, t) =
m∑
i=0

log{νni0
i (1− νi)ni1}+

∑
ij

{
θ>i Q(xij)I(xij > 0)

}
−
∑
ij

log
[
1 + λ>{ω(xij;θ)− 1}+ t>g(xij;η)

]
I(xij > 0).

For simplicity, we have used `(η,λ, t) to denote `(ν,θ,λ, t), and g(x;η) to denote g(x;ν,θ).

Suppose the true value of η is η∗ = (ν∗>,θ∗>)>. Define

λ∗r =
ρ∗r(1− ν∗r )∑m
i=0 ρ

∗
i (1− ν∗i )

, r = 1, . . . ,m.

Let λ∗ = (λ∗1, . . . , λ
∗
m)> and t∗ = 0. We comment that λ∗ and t∗ together have the

following property: λ∗ and t∗ are the solution of

E

{
∂`(η∗,λ, t)

∂λ

}
= 0, E

{
∂`(η∗,λ, t)

∂t

}
= 0.

They play the role of “true values” of unknown parameters and hence are called the true

values of λ and t.
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Recall that ψ = (η>,λ>, t>)>, and from Proposition 4.1, the estimator ψ̃ of ψ under

H0 is the solution of
∂`(η,λ, t)

∂ψ
= 0.

Recall that η̂ = (ν̂>, θ̂
>

)> is the maximum empirical likelihood estimator of η under the

alternative model. Let λ̂ be the Lagrange multiplier λ correponding to η̂. Similarly to the

arguments in Proposition 4.1, we have that η̂ and λ̂ are the solution of

∂`(η,λ,0)

∂η
= 0,

∂`(η,λ,0)

∂λ
= 0.

Then the empirical likelihood ratio test statistic Rn can be rewritten as

Rn = 2
{
`(η̂, λ̂,0)− `(η̃, λ̃, t̃)

}
. (4.19)

Next we apply the second-order Taylor expansion on `(η,λ, t) around ψ = ψ∗ with

ψ∗ = (η∗>,λ∗>,0>)> to find the quadratic approximation of Rn, in which we need the

first and second derivatives of `(η,λ, t) at ψ = ψ∗.

First derivatives of `(η,λ, t)

We calculate the first derivatives of `(η,λ, t) as follows, for r = 1, . . . ,m and s = 1, . . . , p.

∂`(η,λ, t)

∂ν0

=
n00

ν0

− n01

1− ν0

−
∑
ij

t>∂g(xij;η)/∂ν0

1 + λ>{ω(xij;θ)− 1}+ t>g(xij;η)
I(xij > 0),

∂`(η,λ, t)

∂νr
=

nr0
νr
− nr1

1− νr
−
∑
ij

t>∂g(xij;η)/∂νr

1 + λ>{ω(xij;θ)− 1}+ t>g(xij;η)
I(xij > 0),

∂`(η,λ, t)

∂θr
=

nr∑
j=1

Q(xrj)I(xrj > 0)−
∑
ij

λrQ(xij)ωr(xij;θr) + t>∂g(xij;η)/∂θr

1 + λ>{ω(xij;θ)− 1}+ t>g(xij;η)
I(xij > 0),

∂`(η,λ, t)

∂λr
= −

∑
ij

ωr(xij;θr)− 1

1 + λ>{ω(xij;θ)− 1}+ t>g(xij;η)
I(xij > 0),

∂`(η,λ, t)

∂ts
= −

∑
ij

gs(xij;η)

1 + λ>{ω(xij;θ)− 1}+ t>g(xij;η)
I(xij > 0).
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For a compact presentation, we introduce additional notation. Denote λ∗0 = 1−
∑m

i=1 λ
∗
i

and h(x;η∗) =
∑m

i=0 λ
∗
iωi(x;θ∗i ). Define

hr(x;η∗) = λ∗rωr(x;θ∗r)/h(x;η∗), r = 0, 1, . . . ,m.

Notice a useful fact that
∑m

i=0 hi(x;η∗) = 1. Further, we denote ∆∗ =
∑m

i=0 ρ
∗
i (1 − ν∗i ),

and hence λ∗r = ρ∗r(1− ν∗r )/∆∗, for r = 0, . . . ,m. For a compact notation, let h(xij;η
∗) =

{h1(xij;η
∗), . . . , hm(xij;η

∗)}>,

Define

Sn =
∂`(η∗,λ∗,0)

∂ψ
=


∂`(η∗,λ∗,0)

∂ν
∂`(η∗,λ∗,0)

∂θ
∂`(η∗,λ∗,0)

∂λ
∂`(η∗,λ∗,0)

∂t

 =


Sn1

Sn2

Sn3

Sn4

 (4.20)

where Sn1 is a (m + 1)-dimensional vector, Sn2,Sn3 are m-dimensional vectors and Sn4 is

a p-dimensional vector with corresponding entries as follows:

Sn1 =
∂`(η∗,λ∗,0)

∂ν
=

(
n00

ν∗0
− n01

1− ν∗0
, . . . ,

nm0

ν∗m
− nm1

1− ν∗m

)>
,

Sn2,r =
∂`(η∗,λ∗,0)

∂θr
=

nr∑
j=1

Q(xrj)I(xij > 0)−
∑
ij

Q(xij)hr(xij;η
∗)I(xij > 0),

Sn3,r =
∂`(η∗,λ∗,0)

∂λr
= −

∑
ij

ωr(xij;θ
∗
r)− 1

h(xij;η∗)
I(xij > 0),

Sn4,s =
∂`(η∗,λ∗,0)

∂ts
= −

∑
ij

gs(xij;η
∗)

h(xij;η∗)
I(xij > 0),

for r = 1, . . . ,m and s = 1, . . . , p.

Second derivatives of `(η,λ, t)

We next calculate the second derivatives of `(η,λ, t) and evaluate them at the true value.
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We have

∂2`(η∗,λ∗,0)

∂ψ∂ψ>
=


∂2`(η∗,λ∗,0)
∂ν∂ν>

∂2`(η∗,λ∗,0)

∂ν∂θ>
∂2`(η∗,λ∗,0)

∂ν∂λ>
∂2`(η∗,λ∗,0)

∂ν∂t>
∂2`(η∗,λ∗,0)
∂θ∂ν>

∂2`(η∗,λ∗,0)

∂θ∂θ>
∂2`(η∗,λ∗,0)

∂θ∂λ>
∂2`(η∗,λ∗,0)

∂θ∂t>
∂2`(η∗,λ∗,0)
∂λ∂ν>

∂2`(η∗,λ∗,0)

∂λ∂θ>
∂2`(η∗,λ∗,0)

∂λ∂λ>
∂2`(η∗,λ∗,0)

∂λ∂t>
∂2`(η∗,λ∗,0)

∂t∂ν>
∂2`(η∗,λ∗,0)

∂t∂θ>
∂2`(η∗,λ∗,0)

∂t∂λ>
∂2`(η∗,λ∗,0)

∂t∂t>


where

∂2`(η∗,λ∗,0)

∂ν∂ν>
= diag

{
−n00

ν∗20

− n01

(1− ν∗0)2
, . . . ,−nm0

ν∗2m
− nm1

(1− ν∗m)2

}
,

∂2`(η∗,λ∗,0)

∂ν∂θ>
=

{
∂2`(η∗,λ∗,0)

∂θ∂ν>

}>
= 0,

∂2`(η∗,λ∗,0)

∂ν∂λ>
=

{
∂2`(η∗,λ∗,0)

∂λ∂ν>

}>
= 0,

∂2`(η∗,λ∗,0)

∂t∂ν>
=

{
∂2`(η∗,λ∗,0)

∂ν∂t>

}>
= −

∑
ij

∂g(xij ;η
∗)/∂ν>

h(xij ;η∗)
I(xij > 0),

∂2`(η∗,λ∗,0)

∂θ∂θ>
= −

∑
ij

{[
{diag{h(xij ;η

∗)} − {h(xij ;η
∗)h>(xij ;η

∗)}
]
⊗ {Q(xij)Q

>(xij)}
}
I(xij > 0),

∂2`(η∗,λ∗,0)

∂θ∂λ>
=

{
∂2`(η∗,λ∗,0)

∂λ∂θ>

}>
= −

∑
ij

{[
diag{ω(xij ;θ

∗)} − h(xij ;η
∗){ω(xij ;θ

∗)− 1}>

h(xij ;η∗)

]
⊗Q(xij)

}
I(xij > 0),

∂2`(η∗,λ∗,0)

∂θ∂t>
=

{
∂2`(η∗,λ∗,0)

∂t∂θ>

}>
= −

∑
ij

∂g>(xij ,η
∗)/∂θ − {h(xij ;θ

∗)g>(xij ,η
∗)} ⊗Q(xij)

h(xij ;η∗)
I(xij > 0),

∂2`(η∗,λ∗,0)

∂λ∂λ>
= −

∑
ij

−{ω(xij ;θ
∗)− 1}{ω(xij ;θ

∗)− 1}>

h(xij ;η∗)2
I(xij > 0),

∂2`(η∗,λ∗,0)

∂λ∂t>
=

{
∂2`(η∗,λ∗,0)

∂t∂λ>

}
= −

∑
ij

−{ω(xij ;θ
∗)− 1}g>(xij ;η

∗)

h(xij ;η∗)2
I(xij > 0),

∂2`(η∗,λ∗,0)

∂t∂t>
= −

∑
ij

−g(xij ;η
∗)g>(xij ;η

∗)

h(xij ;η∗)2
I(xij > 0),

and ⊗ denotes the Kronecker product.
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4.6.1 Some useful lemmas

In the proof of Theorem 4.1, we need the expectation of ∂2`(η∗,λ∗,0)/∂ψ∂ψ>, and the

expectation and variance of Sn. The following lemma is used to ease the calculation burden

in our later proofs.

Lemma 4.1 Suppose that f1 and f2 are two arbitrary vector-valued functions. Let X

denote a random variable from G0(x). Then

(a)

E

{∑
ij

f1(xij)I(xij > 0)

}
= n∆∗E0{h(X;η∗)f1(X)}.

(b) For r = 0, . . . ,m

Cov

{
nr∑
j=1

f1(xrj)I(xrj > 0),
∑
ij

f2(xij)I(xij > 0)

}
= n∆∗E0{h(X;η∗)hr(X;η∗)f1(X)f>2 (X)}
−n∆∗2ρ∗−1

r E0{h(X;η∗)hr(X;η∗)f1(X)}E0{h(X;η∗)hr(X;η∗)f>2 (X)}.

(c)

Cov

{∑
ij

f1(xij)I(xij > 0),
∑
ij

f2(xij)I(xij > 0)

}
= n∆∗E0{h(X;η∗)f1(X)f>2 (X)}

−n∆∗2
m∑
i=0

ρ∗−1
i E0{h(X;η∗)hi(X;η∗)f1(X)}E0{h(X;η∗)hi(X;η∗)f>2 (X)}.

Proof. For Part (a), we have

E

{∑
ij

f1(xij)I(xij > 0)

}
=

m∑
i=0

niE{f1(xi1)I(xi1 > 0)}

=
m∑
i=0

ni(1− νi)E0{ωi(X;θ∗i )f1(X)}
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= n∆∗
m∑
i=0

E0{λ∗iωi(X;θ∗i )f1(X)}

= n∆∗E0{h(X;η∗)f1(X)}.

This finishes Part (a).

For Part (b), we look at

Cov

{
nr∑
j=1

f1(xrj)I(xrj > 0),
∑
ij

f2(xij)I(xij > 0)

}

= Cov

{
nr∑
j=1

f1(xrj)I(xrj > 0),
nr∑
j=1

f2(xrj)I(xrj > 0)

}
= nrCov {f1(xr1)I(xr1 > 0), f2(xr1)I(xr1 > 0)}
= nrE{f1(xr1)f>2 (xr1)I(xr1 > 0)} − nrE{f1(xr1)I(xr1 > 0)}E{f>2 (xr1)I(xr1 > 0)}
= n∆∗E0{h(X;η∗)hr(X;η∗)f1(X)f>2 (X)}
−n∆∗2ρ∗−1

r E0{h(X;η∗)hr(X;η∗)f1(X)}E0{h(X;η∗)hr(X;η∗)f>2 (X)}.

This finishes Part (b).

For Part (c), we compare it to the result in Part (b) above. It is easy to find that

Cov

{∑
ij

f1(xij)I(xij > 0),
∑
ij

f2(xij)I(xij > 0)

}

=
m∑
r=0

Cov

{
nr∑
j=1

f1(xrj)I(xrj > 0),
∑
ij

f2(xij)I(xij > 0)

}
= n∆∗E0{h(X;η∗)f1(X)f>2 (X)}

−n∆∗2
m∑
r=0

ρ∗−1
r E0{h(X;η∗)hr(X;η∗)f1(X)}E0{h(X;η∗)hr(X;η∗)f>2 (X)},

where in the last line, we used a fact that
∑m

i=0 hi(x;η∗) = 1. This finishes Part (c). Hence,

the proofs of Lemma 4.1 are completed. �

With the help of Lemma 4.1, we calculate the expectation of ∂2`(η∗,λ∗,0)/∂ψ∂ψ>. For

notational simplicity, let h = {h1(X;η∗), . . . , hm(X;η∗)}>, ω = {ω1(X;θ∗0), . . . , ωm(X;θ∗m)}>

and g = {g1(X;η∗), . . . , gp(X;η∗)}>.
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Lemma 4.2 With the form of ∂2`(η∗,λ∗,0)/∂ψ∂ψ> given above and under H0 given in

(4.3), we have

− 1

n
E

{
∂2`(η∗,λ∗,0)

∂ψ∂ψ>

}
= A =


A11 0 0 A14

0 A22 A23 A24

0 A32 −A33 −A34

A41 A42 −A43 −A44


where

A11 = diag

{
ρ∗0

ν∗0(1− ν∗0)
, . . . ,

ρ∗m
ν∗m(1− ν∗m)

}
,

A>14 = A41 = −∆∗Cdiag(µ)diag
{

(1− ν∗)−1
}
,

A22 = ∆∗E0

[
h(X;η∗)

{
diag(h)− (hh>)

}
⊗ {Q(X)Q>(X)}

]
,

A23 = A>32 = ∆∗E0

{
[diag(ω)− {h(ω − 1)>}]⊗Q(X)

}
,

A24 = A>42 = ∆∗E0

[ {
diag(ω)(0m×1, Im×m)diag(1− ν∗)C>X − (hg>)

}
⊗Q(X)

]
,

A33 = ∆∗E0

{
(ω − 1)(ω − 1)>

h(X;η∗)

}
,

A34 = A>43 = ∆∗E0

{
(ω − 1)g>

h(X;η∗)

}
,

A44 = ∆∗E0

{
gg>

h(X;η∗)

}
.

Proof. The main idea for showing the results in this lemma is to apply the results in

Lemma 4.1 to each block of ∂2`(η∗,λ∗,0)/∂ψ∂ψ>. Because the proof for each block is

either trivial or is very similar, here we only show how to find A24 as an illustration.

Recall that

∂2`(η∗,λ∗,0)

∂θ∂t>
= −

∑
ij

∂g>(xij,η
∗)/∂θ − {h(xij;θ

∗)g>(xij,η
∗)} ⊗Q(xij)

h(xij;η∗)
I(xij > 0),

Hence, by treating the term in summation as f1(xij)I(xij > 0) in part (a) of Lemma 4.1,

we have

A24 = − 1

n
E

{
∂2`(η∗,λ∗,0)

∂θ∂t>

}
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= ∆∗E0

[{
∂g>/∂θ − (hg>)⊗Q(X)

}]
= ∆∗E0

[ {
diag(ω)(0m×1, Im×m)diag(1− ν∗)C>X − (hg>)

}
⊗Q(X)

]
.

This finishes the proof. �

With the help of Lemma 4.1, we now study the properties of Sn defined in (4.20).

Lemma 4.3 With the form of Sn = ∂`(η∗,λ∗,0)
∂ψ

defined in (4.20) and under H0 given in

(4.3), we have
1√
n

Sn → N(0,B)

in distribution as n→∞, where

B =


B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

 ,

and

B11 = A11,

B>12 = B21 = B2W,

B>13 = B31 = −B3W,

B>14 = B41 = −B4W,

B22 = A22 −B2SB
>
2 ,

B23 = B>32 = B2SB
>
3 ,

B24 = B>42 = B2SB
>
4 ,

B33 = A33 −B3SB
>
3 ,

B34 = B>43 = A34 −B3SB
>
4 ,

B44 = A44 −B4SB
>
4 ,

and B2, B3, B4, W , and S are defined as

B2 = ∆∗E0

[
h(X;η∗)

{
diag(h)− (hh>)

}
⊗Q(X)

]
,
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B3 = ∆∗E0{(ω − 1)h>},
B4 = ∆∗E0{gh>},
W = (1m×1,−Im×m)diag{(1− ν∗)−1}
S = {ρ∗−1

0 1m1>m + diag(ρ∗−1
1 , . . . , ρ∗−1

m )}.

Proof. We first show that E(Sn) = 0. The main idea is to apply the result of Part (a)

of Lemma 4.1. We only verify E(Sn2) = 0 since the other results are either trivial or very

similar. For the rth segment of Sn2 given in (4.20), we have

E(Sn2,r) = E

{
nr∑
j=1

Q(xrj)I(xij > 0)−
∑
ij

Q(xij)hr(xij;η
∗)I(xij > 0)

}

= E

{
nr∑
j=1

Q(xrj)I(xij > 0)

}
− E

{∑
ij

Q(xij)hr(xij;η
∗)I(xij > 0)

]
= n∆∗E0{h(X;η∗)hr(X;η∗)Q(X)} − n∆∗E0{h(X;η∗)hr(X;η∗)Q(X)}
= 0,

where we have used Part (a) of Lemma 4.1, and a similar fact that

E

{
nr∑
j=1

f1(xrj)I(xrj > 0)

}
= n∆∗E0{λ∗rωr(X;θr)f1(X)} = n∆∗E0{h(X;η∗)hr(X;η∗)f1(X)}.

Next, we verify that Var(Sn) = B. The key idea is to apply Parts (b)–(c) of Lemma

4.1 to the (r, s) entries or blocks of Var(Sn). Again, in the following we will only show how

to find B14 and B23 as an illustration, because the proof for other blocks are either trivial

or are very similar.

First, we find B14. For r = 0, . . . ,m and s = 1, . . . , p,

1

n
Cov(Sn1,r,Sn4,s) =

1

n
Cov

{
−nr1

ν∗r (1− ν∗r )
,−
∑
ij

gs(xij;η
∗)

h(xij;η∗)
I(xij > 0)

}

=
1

nν∗r (1− ν∗r )
Cov

{
nr∑
j=1

I(xrj > 0),
∑
ij

gs(xij;η
∗)

h(xij;η∗)
I(xij > 0)

}
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=
∆∗ν∗r

ν∗r (1− ν∗r )
E0 {hr(X;η∗)gs(X;η∗)} ,

where we have used a special case of part (b) when f1(x) = 1 in Lemma 4.1. Hence, for

r = 1, . . . ,m and s = 1, . . . , p, we have shown that

1

n
Cov(Sn1,r,Sn4,s) =

1

1− ν∗r
B4,sr.

Further, we can simplify 1
n
Cov(Sn1,0,Sn4,s) by recalling that h0(X;η∗) = 1−

∑m
i=1 hi(x;η∗).

Then

1

n
Cov(Sn1,0,Sn4,s) =

∆∗

1− ν∗0
E0 {h0(X;η∗)gs(X;η∗)}]

=
−1

1− ν∗0

m∑
r=1

B4,sr.

In summary,

B14 =
1

n
Cov(Sn1,Sn4) =

[
−(1− ν∗0)−11>mB

>
4 , diag

{
(1− ν∗1)−1, . . . , (1− ν∗m)−1

}
B>4
]

= −W>B>4 .

This finishes the proof of B14.

Next, we move on to find B23. For r = 1, . . . ,m and s = 1, . . . ,m,

1

n
Cov(Sn2,r,Sn3,s)

=
1

n
Cov

 nr∑
j=1

Q(xrj)I(xij > 0)−
∑
ij

Q(xij)hr(xij ;η
∗)I(xij > 0),−

∑
ij

ωs(xij ;θ
∗
s)− 1

h(xij ;η∗)
I(xij > 0)


=

1

n
Cov

 nr∑
j=1

Q(xrj)I(xij > 0),−
∑
ij

ωs(xij ;θ
∗
s)− 1

h(xij ;η∗)
I(xij > 0)


− 1

n
Cov

∑
ij

hr(xij ;η
∗)Q(xij)I(xij > 0),−

∑
ij

ωs(xij ;θ
∗
s)− 1

h(xij ;η∗)
I(xij > 0)

 . (4.21)

Applying the part (b) of Lemma 4.1 to the first term in (4.21), it becomes

1

n
Cov

 nr∑
j=1

Q(xrj)I(xij > 0),−
∑
ij

ωs(xij ;θ
∗
s)− 1

h(xij ;η∗)
I(xij > 0)


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= ∆∗E0 [−hr(X;η∗)Q(X){ωs(X;θ∗s)− 1}]

−∆∗2ρ∗−1
r E0{h(X;η∗)hr(X;η∗)Q(X)}E0 [−hr(X;η∗){ωs(X;θ∗s)− 1}] . (4.22)

Then applying the part (c) of Lemma 4.1 to the second term in (4.21), it becomes

1

n
Cov

∑
ij

Q(xij)hr(xij ;η
∗)I(xij > 0),−

∑
ij

ωs(xij ;θ
∗
s)− 1

h(xij ;η∗)
I(xij > 0)


= −∆∗E0 [−hr(X;η∗)Q(X){ωs(X;θ∗s)− 1}]

+∆∗2
m∑
k=0

ρ∗−1
k E0{h(X;η∗)hk(X;η∗)hr(X;η∗)Q(X)}E0 [−hk(X;η∗){ωs(X;θ∗s)− 1}] . (4.23)

Plugging in (4.22) and (4.23) to (4.21), we find

1

n
Cov(Sn2,r,Sn3,s)

= ∆∗2ρ∗−1
r E0{h(X;η∗)hr(X;η∗)Q(X)}E0 [hr(X;η∗){ωs(X;θ∗s)− 1}]

−∆∗2
m∑
k=0

ρ∗−1
k E0{h(X;η∗)hk(X;η∗)hr(X;η∗)Q(X)}E0 [hk(X;η∗){ωs(X;θ∗s)− 1}] . (4.24)

To further simplify the result, recall that h0(X;η∗) = 1−
∑m

i=1 hi(x;η∗). Then

E0{h0(X;η∗)h(X;η∗)hr(X;η∗)Q(X)}

= E0{h(X;η∗)hr(X;η∗)Q(X)} −
m∑
i=1

E0{hi(X;η∗)h(X;η∗)hr(X;η∗)Q(X)}, (4.25)

and

E0 [h0(X;η∗){ωs(X;θ∗s)− 1}] = −
m∑
j=1

E0 [hj(X;η∗){ωs(X;θ∗s)− 1}] . (4.26)

Using (4.25) and (4.26) to replace the term in (4.24) for k = 0, we find

∆∗2ρ∗−1
0 E0{h(X;η∗)h0(X;η∗)hr(X;η∗)Q(X)}E0 [h0(X;η∗){ωs(X;θ∗s)− 1}]

= ∆∗2ρ∗−1
0

[
E0{h(X;η∗)hr(X;η∗)Q(X)} −

m∑
i=1

E0{hi(X;η∗)h(X;η∗)hr(X;η∗)Q(X)}

]

×

−
m∑
j=1

E0 [hj(X;η∗){ωs(X;θ∗s)− 1}]


96



= −∆∗2ρ∗−1
0 E0{h(X;η∗)hr(X;η∗)Q(X)}


m∑
j=1

E0 [hj(X;η∗){ωs(X;θ∗s)− 1}]


+∆∗2ρ∗−1

0

[
m∑
i=1

E0{hi(X;η∗)h(X;η∗)hr(X;η∗)Q(X)}

]
m∑
j=1

E0 [hj(X;η∗){ωs(X;θ∗s)− 1}]

 ,

which together with (4.24) leads to

1

n
Cov(Sn2,r,Sn3,s)

= ∆∗2ρ∗−1
0 E0{h(X;η∗)hr(X;η∗)Q(X)}


m∑
j=1

E0 [hj(X;η∗){ωs(X;θ∗s)− 1}]


+∆∗2ρ∗−1

r E0{h(X;η∗)hr(X;η∗)Q(X)}E0 [hr(X;η∗){ωs(X;θ∗s)− 1}]

−∆∗2ρ∗−1
0

[
m∑
i=1

E0{hi(X;η∗)h(X;η∗)hr(X;η∗)Q(X)}

]
m∑
j=1

E0 [hj(X;η∗){ωs(X;θ∗s)− 1}]


−∆∗2

m∑
k=1

ρ∗−1
k E0{h(X;η∗)hk(X;η∗)hr(X;η∗)Q(X)}E0 [hk(X;η∗){ωs(X;θ∗s)− 1}] . (4.27)

It is very useful to introduce a group indicator Iij such that Iij = 1 if i = j and Iij = 0

otherwise. Hence, we simplify (4.27) to

1

n
Cov(Sn2,r,Sn3,s)

=
m∑
i=1

m∑
j=1

(ρ∗−1
0 + ρ∗−1

i Iij)E0 [hi(X;η∗)h(X;η∗)IirQ(X)]E0 [hj(X;η∗){ωs(X;θ∗s)− 1}]

−
m∑
i=1

m∑
j=1

(ρ∗−1
0 + ρ∗−1

i Iij)E0 [hi(X;η∗)h(X;η∗)hr(X;η∗)Q(X)]E0 [hj(X;η∗){ωs(X;θ∗s)− 1}]

=

m∑
i=1

m∑
j=1

(ρ∗−1
0 + ρ∗−1

i Iij)E0 [hi(X;η∗)h(X;η∗){Iir − hr(X;η∗)}Q(X)]E0 [hj(X;η∗){ωs(X;θ∗s)− 1}]

=

m∑
i=1

m∑
j=1

(ρ∗−1
0 + ρ∗−1

i Iij)B2,riB3,sj .

In summary, we have

B23 = B2SB
>
3 .
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This finishes the proof of B23.

Finally, recall that Sn in (4.20) is a sum of independent random vectors. Therefore, by

the classical central limit theorem, we have

1√
n

Sn → N(0,B),

in distribution, which finishes the proof of Lemma 4.3. �

4.6.2 Proof of Theorem 4.1

With above preparation, we now move back to derive the limiting distribution of Rn under

the null hypothesis given in (4.3) where H0 : Cµ = d. Using the similar arguments to

those in the proofs of Lemma 1 and Theorem 1 of Qin and Lawless (1994), and Theorem

2.1 of Chen and Liu (2013), we have

ψ̃ −ψ∗ = Op(n
−1/2), η̂ − η∗ = Op(n

−1/2), λ̂− λ∗ = Op(n
−1/2).

Recall that in (4.19)

Rn = 2
{
`(η̂, λ̂,0)− `(η̃, λ̃, t̃)

}
= 2

{
`(η̂, λ̂,0)− `(η∗,λ∗,0)

}
− 2

{
`(η̃, λ̃, t̃)− `(η∗,λ∗,0)

}
.

We proceed in three steps. In Step 1, we find the asymptotic approximation of ψ̃ − ψ∗,
which is used to find an approximation of `(η̃, λ̃, t̃) − `(η∗,λ∗,0). In Step 2, we find

the asymptotic approximation of η̂ − η∗ and λ̂ − λ∗, which is then used to find one

for `(η̂, λ̂,0) − `(η∗,λ∗,0). Combining Steps 1 and 2 together, we obtain a quadratic

approximation of Rn. In Step 3, we derive the limiting distribution of the quadratic

approximation.

We start with Step 1. Recall that

∂`(η̃, λ̃, t̃)

∂ψ
= 0.
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Applying the first-order Taylor expansion to the above equation, we have

0 =
∂`(η∗,λ∗,0)

∂ψ
+
∂2`(η∗,λ∗,0)

∂ψ∂ψ>
(ψ̃ −ψ∗) +Op(1).

Recall that

Sn =
∂`(η∗,λ∗,0)

∂ψ
.

Using Lemma 4.2, we further have

0 = Sn − nA(ψ̃ −ψ∗) +Op(1),

which implies that

ψ̃ −ψ∗ = (nA)−1Sn + op(n
−1/2).

Applying the second-order Taylor expansion to `(η̃, λ̃, t̃) − `(η∗,λ∗,0) and using Lemma

4.2, we get

`(η̃, λ̃, t̃)− `(η∗,λ∗,0) = S>n (ψ̃ −ψ∗)− 1

2
(ψ̃ −ψ∗)>(nA)(ψ̃ −ψ∗) + op(1).

With the approximation of ψ̃−ψ∗, we obtain an approximation of `(η̃, λ̃, t̃)− `(η∗,λ∗,0)

as

`(η̃, λ̃, t̃)− `(η∗,λ∗,0) =
1

2
S>n (nA)−1Sn + op(1). (4.28)

In Step 2, we partition the matrix A into blocks and denote them by

A =

(
Λ0 Λ1

Λ>1 Λ2

)
=


A11 0 0 A14

0 A22 A23 A24

0 A32 −A33 −A34

A41 A42 −A43 −A44

 .

Using the similar steps as in Step 1, we obtain the approximation of `(η̃, λ̃, t̃)−`(η∗,λ∗,0)

as

`(η̂, λ̂,0)− `(η∗,λ∗,0) =
1

2
S>n,−4(nΛ0)−1Sn,−4 + op(1), (4.29)

where Sn,−4 = (S>n1,S
>
n2,S

>
n3)>.
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Combining (4.28) and (4.29), we obtain the approximation of Rn as

Rn = S>n,−4(nΛ0)−1Sn,−4 − S>n (nA)−1Sn + op(1).

By the inverse of block matrix, we have

A−1 =

(
Λ−1

0 + Λ−1
0 Λ1A

−1
2.1Λ

>
1 Λ−1

0 −Λ−1
0 Λ1A

−1
2.1

−A−1
2.1Λ

>
1 Λ−1

0 A−1
2.1

)
,

where A2.1 = Λ2 −Λ>1 Λ−1
0 Λ1. After some algebra, we find that

Rn = − 1

n

(
Sn4 −Λ>1 Λ−1

0 Sn,−4

)>
(Λ2 −Λ>1 Λ−1

0 Λ1)−1
(
Sn4 −Λ>1 Λ−1

0 Sn,−4

)
+ op(1). (4.30)

From Lemma 4.3, we have

n−1/2Sn → N(0,B)

in distribution. As a result,

n−1/2
(
Sn4 −Λ>1 Λ−1

0 Sn,−4

)
= n−1/2(−Λ>1 Λ−1

0 , Ip×p)Sn → N(0,U)

in distribution, where U = (−Λ>1 Λ−1
0 , Ip×p)B(−Λ>1 Λ−1

0 , Ip×p)
>. Hence, to show the chi-

squared limiting distribution of Rn, the remaining task is to argue that

U = Λ>1 Λ−1
0 Λ1 −Λ2. (4.31)

Next, we present a lemma, which study the relationship between Λ−1
0 and B.

Lemma 4.4 Denote Λ−1
0 by

Λ−1
0 =

 A11 0 0

0 A22 A23

0 A32 −A33

−1

=

 A11 0 0

0 A22 A23

0 A32 −A33

 .

Then we have

(a)

A11 = A−1
11 ,

100



A22 = A−1
22 − A23A32A

−1
22 = A−1

22 − A23(A33)−1A32, (4.32)

A32 = (A23)> =
1

∆∗
{Im×m ⊗ e>}, (4.33)

A33 =
1

∆∗
{diag(λ∗)− λ∗λ∗>}, (4.34)

where e = (1, 0, . . . , 0)> is a vector with first element being 1 and others zero, and the

length of e is the same as that of Q(X); and

(b)

B2 = ∆∗A22A
23 = ∆∗A23A

33, (4.35)

B3 = ∆∗Im×m −∆∗A32A
23 = ∆∗A33A

33, (4.36)

B4 = ∆∗V −∆∗A42A
23 = ∆∗A43A

33, (4.37)

where V = Cdiag(1− ν∗)(0m×1, Im×m)>E0 {diag(ω)X} appears in (4.37), for simplicity.

Proof. Recall that from Lemma 4.2, we have found

A22 = ∆∗E0

[
h(X;η∗)

{
diag(h)− (hh>)

}
⊗ {Q(X)Q>(X)}

]
,

A32 = A>23 = ∆∗E0

{
[diag(ω)− {(ω − 1)h>}]⊗Q>(X)

}
,

A33 = ∆∗E0

{
(ω − 1)(ω − 1)>

h(X;η∗)

}
.

For part (a), A11 = A−1
11 is obvious. For the rest, since the inverse matrix of Λ0 is

unique, we only need to verify that

A22A
22 + A23A

32 = Imd×md, (4.38)

A22A
23 − A23A

33 = 0md×m, (4.39)

A32A
22 − A33A

32 = 0m×md, (4.40)

A32A
23 + A33A

33 = Im×m, (4.41)

with the forms of A22 = A−1
22 − A23A32A

−1
22 , A23, A32, and A33 given in (4.33)–(4.34).

We first establish some useful relationships. By the property of Kronecker product and

the fact that Q>(X)e = 1, we have

A22A
23 = ∆∗E0

[
h(X;η∗)

{
diag(h)− (hh>)

}
⊗ {Q(X)Q>(X)}

] 1

∆∗
{Im×m ⊗ e}
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= E0

[
h(X;η∗)

{
diag(h)− (hh>)

}
⊗ {Q(X)}

]
= B2/∆

∗. (4.42)

Similarly, we have

A32A
23 = Im×m −B3/∆

∗. (4.43)

Next, by the properties of the Kronecker product and the definitions of ω, h, and λ∗, we

have

A23A
33 = ∆∗E0

{
[diag(ω)− {h(ω − 1)>}]⊗Q(X)

} 1

∆∗
{diag(λ∗)− λ∗λ∗>}

= E0

{
[diag(ω)diag(λ∗)− diag(ω)λ∗λ∗>

−h(ω − 1)>diag(λ∗) + h(ω − 1)>λ∗λ∗>]⊗Q(X)
}

= E0

{
[h(X;η∗)diag(h)− h(X;η∗)hλ∗> − h(X;η∗)hh> + hλ∗>

+ {h(X;η∗)− λ∗0}hλ∗> − (1− λ∗0)hλ∗>]⊗Q(X)
}

= E0

[
h(X;η∗)

{
diag(h)− (hh>)

}
⊗ {Q(X)}

]
= B2/∆

∗. (4.44)

Also, we can similarly show

A33A
33 = B3/∆

∗. (4.45)

Then (4.42) and (4.44) together lead to

A22A
23 = A23A

33, (4.46)

which implies that (4.39) is correct and the two forms of A22 in (4.32) are the same.

Combining (4.43) and (4.45) gives

Im×m −∆∗A32A
23 = A33A

33, (4.47)

which implies that (4.41) is correct.

Next, (4.32) together with (4.46) give

A22A
22 = A22(A−1

22 − A23(A33)−1A32)
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= Imd×md − A22A
23(A33)−1A32

= Imd×md − A23A
33(A33)−1A32

= Imd×md − A23A
32.

This verifies that (4.38) is correct.

Lastly, (4.32) together with (4.46) and (4.47) give

A32A
22 = A32(A−1

22 − A23A32A
−1
22 )

= A32A
−1
22 − A32A

23A32A
−1
22

= A32A
−1
22 − (Im×m − A33A

33)A32A
−1
22

= A33A
33A32A

−1
22

= A33A
32.

This verifies that (4.40) is correct.

For Part (b), (4.35) follows from (4.42) and (4.44), and (4.36) follows from (4.43) and

(4.45). Here we only need to further verify (4.37). Recall that from Lemma 4.2,

A42 = ∆∗E0

[
Cdiag(1− ν∗)

{
(0m×1, Im×m)>diag(ω)X − (gh>)

}
⊗Q>(X)

]
,

A43 = ∆∗E0

{
g(ω − 1)>

h(X;η∗)

}
.

Similar to (4.42), we have

A42A
32 = E0

{
Cdiag(1− ν∗)(0m×1, Im×m)>diag(ω)X

}
−B4/∆

∗.

It can be verified that V = E0

{
Cdiag(1− ν∗)(0m×1, Im×m)>diag(ω)X

}
. Hence

A42A
32 = V −B4/∆

∗ (4.48)

Also, similar to (4.42), we have

A43A
33 = B4/∆

∗. (4.49)
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Finally, (4.48) and (4.49) together imply (4.37). This completes the proof of Part (b), and

hence that of Lemma 4.4. �

We now move back to verify (4.31) by following two steps. In Step 1, we find the form of

−Λ2+Λ>1 Λ−1
0 Λ1. In Step 2, we identify the form of U = (−Λ>1 Λ−1

0 , Ip×p)B(−Λ>1 Λ−1
0 , Ip×p)

>.

Combining the two steps together, we can verify (4.31).

For Step 1, we start with

Λ−1
0 Λ1 =

 A−1
11 0 0

0 A22 A23

0 A32 −A33

 A14

A24

−A34

 =

 A−1
11 A14

A22A24 − A23A34

A32A24 + A33A34

 .

By (4.37), we have

A32A24 + A33A34 = V >.

Using (4.32), we get

A22A24 − A23A34 = {A−1
22 − A23(A33)−1A32}A24 − A23A34

= A−1
22 A24 − A23(A33)−1A32A24 − A23A34

= A−1
22 A24 − A23(A33)−1V >.

Hence, we obtain

Λ−1
0 Λ1 =

 A−1
11 A14

A−1
22 A24 − A23(A33)−1V >

V >

 . (4.50)

With (4.50), −Λ2 + Λ>1 Λ−1
0 Λ1 can be rewritten as

−Λ2 + Λ>1 Λ−1
0 Λ1 = A44 + A41A

−1
11 A14 + A42{A−1

22 A24 − A23(A33)−1V >} − A43V
>

= A44 + A41A
−1
11 A14 + A42A

−1
22 A24 − A42A

23(A33)−1V > − A43V
>

= A44 + A41A
−1
11 A14 + A42A

−1
22 A24 − V (A33)−1V >, (4.51)

where in the last equation we have used (4.37). This finishes the Step 1.
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We now move to Step 2. With the form of B defined in Lemma 4.3, we can rewrite B

as

B =


A11 0 0 0

0 A22 0 0

0 0 A33 A34

0 0 A43 A44

+


0 W>B>2 −W>B>3 −W>B>4

B2W −B2SB
>
2 B2SB

>
3 B2SB

>
4

−B3W B3SB
>
2 −B3SB

>
3 −B3SB

>
4

−B4W B4SB
>
2 −B4SB

>
3 −B4SB

>
4

 . (4.52)

Let B(1) and B(2) denote the first and second matrix on the right hand side of (4.52),

respectively. Then

U = (−Λ>1 Λ−1
0 , Ip×p)B(−Λ>1 Λ−1

0 , Ip×p)
>

= (−Λ>1 Λ−1
0 , Ip×p)B(1)(−Λ>1 Λ−1

0 , Ip×p)
> + (−Λ>1 Λ−1

0 , Ip×p)B(2)(−Λ>1 Λ−1
0 , Ip×p)

>. (4.53)

With (4.50), after some algebra, we find that

(−Λ>1 Λ−1
0 , Ip×p)B(1)(−Λ>1 Λ−1

0 , Ip×p)
>

= A44 + A41A
−1
11 A14 + A42A

−1
22 A24

−V {(A33)−1A32A24 + A34} − {A42A
23(A33)−1 + A43}V >

+V {(A33)−1A32A22A
23(A33)−1 + A33}V >. (4.54)

By (4.37), we have

(A33)−1A32A24 + A34 = (A33)−1V >.

By (4.35) and (4.36), we further have

(A33)−1A32A22A
23(A33)−1 + A33 = (A33)−1. (4.55)

Combining (4.54)–(4.55), we obtain

(−Λ>1 Λ−1
0 , Ip×p)B(1)(−Λ>1 Λ−1

0 , Ip×p)
>

= A44 + A41A
−1
11 A14 + A42A

−1
22 A24 − V (A33)−1V >.

Next we find the form of (−Λ>1 Λ−1
0 , Ip×p)B(2)(−Λ>1 Λ−1

0 , Ip×p)
>. A key step is to argue that

(0, B>2 ,−B>3 ,−B>4 )(−Λ>1 Λ−1
0 , Ip×p)

> = 0. (4.56)
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After some algebra, it can be shown that

(0, B>2 ,−B>3 ,−B>4 )(−Λ>1 Λ−1
0 , Ip×p)

> = −B>2 A−1
22 A24 +B>2 A

23(A33)−1V > +B>3 V
> −B>4 .

With (4.35)–(4.37), (0, B>2 ,−B>3 ,−B>4 )(−Λ>1 Λ−1
0 , Ip×p)

> can be rewritten as

(0, B>2 ,−B>3 ,−B>4 )(−Λ>1 Λ−1
0 , Ip×p)

>

= −∆∗A32A24 + ∆∗A33A32A
23(A33)−1V > + ∆∗A33A33V

> −∆∗V > + ∆∗A32A24

= ∆∗
{
A33A32A

23(A33)−1 + A33A33 − Im×m
}
V >

= 0,

where in the last equation we have used a fact implied by (4.36) that

A32A
23(A33)−1 = (A33)−1 − A33.

The finishes the proof of (4.56).

With (4.56), we can simplify (−Λ>1 Λ−1
0 , Ip×p)B(2)(−Λ>1 Λ−1

0 , Ip×p)
> as

(−Λ>1 Λ−1
0 , Ip×p)B(2)(−Λ>1 Λ−1

0 , Ip×p)
> = (−Λ>1 Λ−1

0 , Ip×p)


0

−B2WA−1
11 A14

B3WA−1
11 A14

B4WA−1
11 A14

 = 0. (4.57)

Combining (4.53)–(4.57) leads to

U = A44 + A41A
−1
11 A14 + A42A

−1
22 A24 − V (A33)−1V >, (4.58)

which together with (4.51) implies that

U = Λ>1 Λ−1
0 Λ1 −Λ2.

This finishes the Step 2.

Therefore, we conclude that the quadratic approximation (4.30) of Rn converges to χ2
p

in distribution as n→∞, which completes the proof of Theorem 4.1. �
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Part II

The bootstrap with inequality

constraints
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Chapter 5

Introduction to Part II

5.1 The bootstrap method

In this chapter, we begin by introducing some basic concepts concerning the bootstrap

method. This has become a popular data resampling method for statistical inference

after its introduction by Efron (1979). Part of its popularity comes from its widespread

applicability and its simplicity, especially when the sampling distribution of a statistic is

unknown or very difficult to calculate or approximate. Efron and Tibshirani (1993), Shao

and Tu (1995), and Davison and Hinkley (1997) serve as excellent reference books on the

bootstrap.

In Part II of this thesis, our study focuses on the application of the bootstrap method,

under parametric model settings, but with an inequality constrained parameter space.

When the data is known to follow a parametric model, it is natural to use the paramet-

ric bootstrap. Therefore, here we briefly outline the parametric bootstrap procedure for

estimating the sampling distribution of a scalar statistic, and give the definition of its

consistency. We focus our review on the case where the observations are independent and

identically distributed (i.i.d.). It should also be mentioned that when talking about the

bootstrap, we are referring to the standard n out of n bootstrap, where n is the total

sample size.
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Suppose we have a sequence of i.i.d. random observations X = {X1, . . . , Xn} from an

unknown distribution P . In the parametric setting, the distribution P = P (θ) is completely

known, except for an unknown parameter θ ∈ Θ. Let θ̂n = θ̂n(X) be an estimator of θ.

Here and after, we use the simplified notation θ̂n. Throughout Part II of this thesis, we

concentrate on using the parametric maximum likelihood estimator θ̂n of θ based on the

observations X. Let Tn = Tn(X) be a scalar statistic of interest, and let

Hn(x; θ) = Pr(Tn ≤ x|θ)

denote its sampling distribution. The bootstrap method can be readily used to estimate

Hn(x; θ).

Let X∗ = {X∗1 , . . . , X∗n} be a parametric bootstrap sample such that X∗ is an random

sample from the parametric model P (θ̂n) for a given observed value θ̂n. With the bootstrap

sample X∗, we can similarly calculate T ∗n = Tn(X∗). Let

H∗n(x; θ̂n) = Pr(T ∗n ≤ x|θ̂n)

be the conditional distribution of T ∗n for a given θ̂n. Then H∗n(x; θ̂n) is called the parametric

bootstrap distribution of Tn, which can be used to estimate Hn(x; θ).

The following is a definition of the consistency of a bootstrap estimator (Shao and Tu,

1995, Section 3.1).

Definition 5.1 (Bootstrap consistency) Suppose ρ is a metric distance on the space

of all probability measures on R. We say H∗n(x; θ̂n) is ρ-consistent (or weakly ρ-consistent)

if

ρ
(
H∗n(x; θ̂n), Hn(x; θ)

)
→ 0, (5.1)

in probability under P (θ) as n→∞.

Recall that θ̂n = θ̂n(X) is a function of random observations X. Hence, the bootstrap

distribution H∗n(x; θ̂n) is defined as a random distribution function since it is conditional

on θ̂n, although we usually treat it as a conditional distribution for a given value θ̂n. Note

that a distance ρ is required in this definition. In the literature, Kolmogorov-Smirnov-type

distance is commonly used, while Mallow’s distance is also sometimes used. The consis-

tency of the bootstrap distribution is fundamental for further investigating the validity of

various bootstrap based inference methods.

109



5.2 Bootstrap percentile confidence intervals

Confidence interval (CI) estimation has been an important research focus throughout the

theoretical development of the bootstrap (Hall, 1988; DiCiccio and Efron, 1996). There

are many types of bootstrap methods for constructing CIs of a parameter. For example,

at least five common methods are described in Efron and Tibshirani (1993), and their

asymptotic properties can be found in Hall (1988) and Shao and Tu (1995). In Part II

of this thesis, we mainly focus on the method which is based on using the percentiles of

the bootstrap distribution of its estimator, which is usually referred to as the bootstrap

percentile confidence interval (Efron and Tibshirani, 1993). This type of bootstrap CI is

simple to implement and thus is widely used in practice (referring from Hall (1988): “Our

enquiries of users indicate that the percentile method is used in more than half of cases,

. . . ”). For a scalar parameter, the standard procedure to construct CI based on bootstrap

percentile method can be described as follows.

Suppose we consider the same setup as in Section 5.1. For a cumulative distribution

function F (x), the αth quantile of F (x) is defined as F−1(α) = inf{x : F (x) ≥ α}.

Definition 5.2 (Bootstrap percentile confidence interval) Let G∗n(x; θ̂n) = Pr(θ̂∗n ≤
x|θ̂n) be the bootstrap distribution function of θ̂n. Then a 100(1− α)% bootstrap percentile

CI for θ is constructed as[
q∗α1

, q∗1−α2

]
=
[
G∗−1
n (α1; θ̂n), G∗−1

n (1− α2; θ̂n)
]
, (5.2)

where G∗−1
n (α1; θ̂n) and G∗−1

n (1− α2; θ̂n) are the αth
1 and (1− α2)th quantiles of G∗n(x; θ̂n),

α1, α2 ∈ (0, 0.5) and α = α1 + α2.

Note that the endpoints of a confidence interval defined in (5.2) are random functions

of θ̂n, since they are obtained by conditioning on θ̂n = θ̂n(X) as a function of random

observations X. Then the probability Pr
(
θ ∈ [q∗α1

, q∗1−α2
]
)

is called the coverage probability

of a confidence interval (5.2) for θ, where Pr(·) indicates the probability distribution of X

under P (θ). In general, the exact coverage probability of a CI depends on the sample size

n, and may need to be calculated case by case. If the exact coverage probability of a CI is
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not easy to calculate, it is desirable to have its asymptotic coverage probability

lim
n→∞

Pr
(
θ ∈ [q∗α1

, q∗1−α2
]
)

being the nominal coverage level 1− α. This asymptotic coverage probability provides us

a useful approximation to the exact finite sample coverage probability of a CI. Hence, it

may help us to understand the finite sample behaviour of a CI. The following definition

gives the consistency of the bootstrap percentile confidence interval (Shao and Tu, 1995,

Section 4.2).

Definition 5.3 (Consistency of bootstrap percentile confidence interval) A boot-

strap percentile confidence interval for θ defined in (5.2), with nominal coverage level 1−α,

is said to be consistent if

Pr
(
θ ∈

[
q∗α1

, q∗1−α2

])
→ 1− α, (5.3)

under P (θ) as n→∞.

The next theorem reviews some sufficient conditions for the consistency of bootstrap

percentile CI. Let Hn(x; θ) be the sampling distribution of Tn = n1/2(θ̂n − θ), and let

H∗n(x; θ̂n) be its bootstrap distribution conditional on θ̂n.

Theorem 5.1 Suppose that the following conditions are satisfied:

(a) H∗n(x; θ̂n) is consistent with Hn(x; θ),

(b) limn→∞ supx |Hn(x; θ) − H(x)| = 0 for a continuous, and strictly increasing H(x),

where its density function is symmetric around zero,

then the bootstrap percentile confidence interval defined in (5.2) is consistent.

Despite the vast literature on the bootstrap method, its applicability under inequality

constrained inference problems seems to be not well understood. As we will show in the

next chapter, the conditions in Theorem 5.1 may be violated in problems with inequality

constraints, and thus the bootstrap percentile confidence interval may be inconsistent.
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Chapter 6

Quantifying the local asymptotic

coverage probabilities of bootstrap

percentile confidence intervals for

constrained parameters

6.1 Introduction

As shown by various examples in Chapter 1, in many applications there is useful prior

knowledge available about the parameters of interest, which can be expressed in terms

of linear inequality constraints. Research on developing statistical methods and theory

under such constraints has a long history; see Robertson et al. (1988) and Silvapulle and

Sen (2004). The general consensus is that, if the constraint information can be properly

incorporated in the analysis, we can expect to obtain more accurate estimation and more

powerful statistical tests. In this chapter, we concentrate on confidence intervals for the

constrained parameters when there are linear inequality constraints on the parameters

under parametric models. More specifically, we aim to answer the scientific questions

Q3–Q5 outlined in Section 1.1 of Chapter 1.
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For regular parametric models, there are mainly three types of methods to construct a

confidence interval (CI) for an unknown parameter: the Wald-, score-, and likelihood-ratio-

type. Under some regularity conditions, the maximum likelihood estimator (MLE) of the

unknown parameter is consistent and asymptotically normal. This property ensures that

the Wald-, score-, and likelihood-ratio-type statistics are asymptotical pivotal. That is,

their limiting distributions do not depend on the unknown parameter. This nice property

guarantees the consistency of the resultant confidence intervals based on their limiting

distributions. When there are linear inequality constraints on the parameters, the true

values of the parameters may lie on the boundary of the parameter space, which violates

commonly used regularity conditions. In such situation, the limiting distribution of the

MLE may not be normal. Instead, it becomes a complicated function of a normal random

variable or multivariate normal random vector; see Chernoff (1954) and Self and Liang

(1987). Because of that, the Wald-, score-, and likelihood-ratio-type statistics are no

longer asymptotical pivotal. In some situations, their limiting distributions do not have a

simple analytic form. We refer to Chernoff (1954), Self and Liang (1987) and Susko (2013)

for results on the likelihood-ratio-type statistic, and Silvapulle and Silvapulle (1995) and

Molenberghs and Verbeke (2007) for results on the score- and Wald-type statistics.

The bootstrap method reviewed in Chapter 5 can be intuitively applied to obtain the

bootstrap distributions of these statistics, which can then be used to construct confidence

intervals for constrained parameters. A natural question is how does the bootstrap method

perform in these situations? Surprisingly, some pioneer work, including Andrews (1997,

2000), showed that the bootstrap distribution is inconsistent with the sampling distribu-

tion of the MLE of an unknown parameter when it is on the boundary. Drton and Williams

(2011) discussed the application of the bootstrap method to hypothesis testing with the

likelihood ratio test. They quantified the asymptotic size of the bootstrap likelihood ratio

test under a boundary hypothesis and concluded that the size can be both below or above

the nominal level. Peddada (1997) studied the construction of confidence intervals for

order constrained parameters by bootstrapping the point estimator introduced in Hwang

and Peddada (1994). Li et al. (2010) investigated several bootstrap methods for construct-

ing confidence intervals for ordered binomial proportions via simulations and a real data

example.
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To the best of our knowledge, the asymptotic behaviour of bootstrap methods for

confidence interval estimation under inequality constraints still seems unclear, especially

when the true value of the parameter is near the boundary. The primary goal of this chapter

concerns quantifying the asymptotic coverage probabilities of the bootstrap percentile CIs

as reviewed in Section 5.2 for constrained parameters. We study the important one- and

two-sample problems with data generated from distributions in natural exponential family.

This chapter is organized as follows. In Section 6.2, we first consider one- and two-

sample problems with data generated from normal distributions. For the one-sample prob-

lem, the mean parameter is constrained to be nonnegative; and for the two-sample problem,

the mean parameter for the first sample is constrained to be smaller or equal to that of

the second sample. We quantify the exact coverage probabilities of the bootstrap per-

centile confidence intervals for both the one- and two-sample problems. Then, in Section

6.3, under a local asymptotic setup, these results are generalized to the constrained mean

parameters of distributions in natural exponential family. For presentational convenience,

the proofs in Section 6.3 are deferred to Section 6.4.

6.2 Results for the normal distributions

6.2.1 One-sample normal distribution

In this section, we consider a simple but generic setup motivated by Andrews (1997). The

results under this setup will shed light on the more complicated situation discussed in

Section 6.3.1.

Suppose X1, . . . , Xn is a random sample from a normal distribution with mean θ and

unit variance. The parameter space of θ is constrained to be C1 = {θ : θ ≥ 0}. We aim

to quantify the coverage probability of a bootstrap percentile confidence interval of θ as

reviewed in Section 5.2.

We start with finding the form of the MLE θ̂n of θ, and the sampling distribution of
√
n(θ̂n − θ). Based on n random observations X1, . . . , Xn from N(θ, 1), the log-likelihood
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function of θ, up to a constant not dependent on θ, is

ln(θ) = −n(X̄n − θ)2.

Then the MLE of θ is defined as

θ̂n = arg max
θ∈C1

ln(θ).

In the next lemma, we discuss the closed form of θ̂n and the distribution of
√
n(θ̂n − θ).

Define X̄n =
∑n

i=1 Xi/n and y+ = max(y, 0).

Lemma 6.1 Suppose X1, . . . , Xn are i.i.d. with distribution N(θ, 1) with θ ≥ 0 and the

true value of θ is θ0. Then θ̂n = X̄+
n and

√
n(θ̂n − θ0)

d
= max(Z,−

√
nθ0),

where Z is a standard normal random variable with zero mean and unit variance. Here
d
=

denotes “has the same distribution as”.

Proof. The MLE of θ can be equivalently defined as

θ̂n = arg min
θ≥0

(X̄n − θ)2.

It can be easily verified that θ̂n = X̄+
n . Hence

√
n(θ̂n − θ0) = max{

√
n(X̄n − θ0),−

√
nθ0},

which has the same distribution as max(Z,−
√
nθ0). This finishes the proof. �

Lemma 6.1 implies that
√
n(θ̂n − θ0) has the same distribution as Z+ when θ0 = 0.

Its distribution function is not continuous, strictly increasing, and symmetric. That is,

Condition (b) in Theorem 5.1 does not hold. Hence, the bootstrap percentile confidence

interval reviewed in Section 5.2 may not be consistent when θ0 = 0. This is confirmed in

the next proposition.

For the convenience of our presentation, we define some notation. Let X∗1 , . . . , X
∗
n

denote the bootstrap sample from N(θ̂n, 1), for given θ̂n, and let θ̂∗n = X̄∗+n denote the
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maximum likelihood estimator of θ based on the bootstrap sample, where X̄∗n =
∑n

i=1X
∗
i /n.

Further let

G∗n(x; θ̂n) = Pr(θ̂∗n ≤ x|θ̂n)

be the bootstrap distribution function of θ̂n, and q∗α be the αth quantile of G∗n(x; θ̂n). From

Lemma 6.1, we note that θ̂n is actually a function of random observations X1, . . . , Xn.

Hence, the bootstrap distribution G∗n(x; θ̂n) and its quantile q∗α are defined as random

functions in terms of θ̂n.

Proposition 6.1 Suppose we consider the same setup and assumptions as in Lemma 6.1.

Then

Pr
(
θ0 ∈ [q∗α1

, q∗1−α2
]
)

=

{
1− α1 − α2, if

√
nθ0 > Φ−1(1− α2)

1− α1, if
√
nθ0 ≤ Φ−1(1− α2)

,

where Pr(·) indicates the probability under the distribution of θ̂n given in Lemma 6.1,

Φ(·) is the cumulative distribution function of a standard normal random variable, and

α1, α2 ∈ (0, 0.5) with α = α1 + α2 ∈ (0, 1).

Proof. Note that

G∗n(x; θ̂n) =

{
0 if x < 0

1− Pr(X̄∗n > x|θ̂n) if x ≥ 0
=

{
0 if x < 0

Φ
{√

n(x− θ̂n)
}

if x ≥ 0
.

For a given true value θ0 ≥ 0, we have

Pr
(
θ0 ∈ [q∗α1

, q∗1−α2
]
)

= Pr
{
α1 ≤ G∗n(θ0; θ̂n) ≤ 1− α2

}
= Pr

[
α1 ≤ Φ

{√
n(θ0 − θ̂n)

}
≤ 1− α2

]
.

Then by the property of Φ(·), the above equation becomes

Pr
(
θ0 ∈ [q∗α1

, q∗1−α2
]
)

= Pr
{

Φ−1(α2) ≤
√
n(θ̂n − θ0) ≤ Φ−1(1− α1)

}
= Pr

{√
n(θ̂n − θ0) ≤ Φ−1(1− α1)

}
− Pr

{√
n(θ̂n − θ0) < Φ−1(α2)

}
.
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By Lemma 6.1, we have

Pr
(
θ0 ∈ [q∗α1

, q∗1−α2
]
)

= Φ{Φ−1(1− α1)} − Pr
{√

n(θ̂n − θ0) < Φ−1(α2)
}

=

{
1− α1 − α2, if

√
nθ0 > Φ−1(1− α2)

1− α1, if
√
nθ0 ≤ Φ−1(1− α2)

.

This finishes the proof. �

We comment that the exact coverage probability in Proposition 6.1 is a left-continuous,

piecewise constant, function of θ0 with a jump at Φ−1(1 − α2)/
√
n, for given n and α2

values. In Figure 6.1, we plot the exact coverage probabilities versus the true value of

θ0 for different sample sizes n at level α = 0.10 with α1 = α2 = α/2 as an illustration.

However, we note that different choices of α1 and α2 should give different graphs.
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Figure 6.1: Coverage probability of 90% bootstrap percentile CI for the non-negative mean of

univariate normal distribution with σ2 = 1 and α1 = α2 = 0.05.

In general, we can observe from Figure 6.1, that the bootstrap percentile CI behaves

conservatively in terms of its coverage probability. Specifically, when the true value θ0 is
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on, or close to, the boundary, a non-regular behaviour, that the bootstrap percentile CI

over covers the true parameter, can happen. Note that the degree of closeness of θ0 to the

boundary crucially depends on the sample size by an order of
√
n.

6.2.2 Two-sample normal distributions

The two-sample problem for the means is of great importance in statistical inference. In

this section, we consider the case of two independent normal populations with equal and

known variances, both set to be one, where the two means are known to satisfy an ordering

constraint.

Suppose we have independent observations Xij’s such that Xij ∼ N(θi, 1) for j =

1, . . . , ni and i = 1, 2. The parameter space of (θ1, θ2) is constrained to be C2 = {(θ1, θ2) :

θ2 ≥ θ1}. We aim to quantify the coverage probabilities of bootstrap percentile CIs for θ1,

θ2, and their difference ∆ = θ2 − θ1.

As a first step, we identify the form of the MLE of (θ1, θ2,∆). Let n = n1 +n2. The log-

likelihood function of (θ1, θ2), up to a constant not dependent on the unknown parameters,

is

ln(θ1, θ2) = −n1(X̄n1 − θ1)2 − n2(X̄n2 − θ2)2,

where X̄ni =
∑ni

j=1Xij/ni, i = 1, 2. The MLEs of θ1 and θ2 are defined as

(θ̂n1, θ̂n2) = arg max
(θ1,θ2)∈C2

ln(θ1, θ2) = arg min
θ1≤θ2

{
n1(X̄n1 − θ1)2 + n2(X̄n2 − θ2)2

}
and the MLE of ∆ is ∆̂n = θ̂n2 − θ̂n1.

Suppose the true value of (θ1, θ2) is (θ10, θ20) and let ∆0 = θ20−θ10. In the next lemma,

we summarize the explicit form of (θ̂n1, θ̂n2, ∆̂n) and the marginal sampling distributions

of
√
n(θ̂n1 − θ10),

√
n(θ̂n2 − θ20), and

√
n(∆̂n −∆0). For the convenience of presentation,

we let ω = n1/n ∈ (0, 1).

Lemma 6.2 Suppose Xij’s are independent, Xij ∼ N(θi, 1) for j = 1, . . . , ni and i = 1, 2,

and the true value of (θ1, θ2,∆) is (θ10, θ20,∆0). Then
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(a) the MLE of (θ1, θ2), subject to the constraint in C2, is

θ̂n1 = min{X̄n1, ωX̄n1 + (1− ω)X̄n2}, θ̂n2 = max{X̄n2, ωX̄n1 + (1− ω)X̄n2},

and the MLE of ∆ is ∆̂n = (X̄n2 − X̄n1)+;

(b)

√
n(θ̂n1 − θ10)

d
= min

{√
1

ω
Z1,
√
ωZ1 +

√
1− ωZ2 + (1− ω)

√
n∆0

}
,

√
n(θ̂n2 − θ20)

d
= max

{√
1

1− ω
Z2,
√
ωZ1 +

√
1− ωZ2 − ω

√
n∆0

}
,

√
n(∆̂n −∆0)

d
= max

{√
1

1− ω
Z2 −

√
1

ω
Z1,−

√
n∆0

}
,

where Z1, Z2 are two independent standard normal random variables.

Proof. We first consider Part (a). To identify the forms of (θ̂n1, θ̂n2), we consider the

following sample sizes dependent reparameterization

θ1 = η − (1− ω)∆, θ2 = η + ω∆,

or equivalently

η = ωθ1 + (1− ω)θ2, ∆ = θ2 − θ1.

Under the above reparameterization, the constraint θ1 ≤ θ2 then becomes ∆ ≥ 0, while η

is free of restriction.

Recall the log-likelihood function ln(θ1, θ2). Then the MLE of (η,∆) is

(η̂n, ∆̂n) = arg min
η,∆

[
n1

{
X̄n1 − η + (1− ω)∆

}2
+ n2(X̄n2 − η − ω∆)2

]
subject to the constraint ∆ ≥ 0. After some algebra, we find

(η̂n, ∆̂n) = arg min
η,∆

[
n
{
η − ωX̄n1 − (1− ω)X̄n2

}2
+ nω(1− ω){∆− (X̄n2 − X̄n1)}2

]
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subject to the constraint ∆ ≥ 0. Hence

η̂n = ωX̄n1 + (1− ω)X̄n2, ∆̂n = (X̄n2 − X̄n1)+,

which implies that

θ̂n1 = η̂n − (1− ω)∆̂n = min{X̄n1, ωX̄n1 + (1− ω)X̄n2},
θ̂n2 = η̂n + ω∆̂n = max{X̄n2, ωX̄n1 + (1− ω)X̄n2}.

This finishes the proof of Part (a).

We now come to Part (b). It can be easily verify that

√
n(θ̂1 − θ10)

= min

{√
1

ω

√
n1(X̄n1 − θ10),

√
ω
√
n1(X̄n1 − θ10) +

√
1− ω

√
n2(X̄n2 − θ20) + (1− ω)

√
n∆0

}
,

which has the same distribution as min
{√

1
ω
Z1,
√
ωZ1 +

√
1− ωZ2 + (1− ω)

√
n∆0

}
. The

sampling distributions of
√
n(θ̂n2 − θ20), and

√
n(∆̂n −∆0) can be similarly derived, and

are thus omitted here. This finishes the proof of Part (b). �

Lemma 6.2 implies that the sampling distributions of
√
n(θ̂n1 − θ10) and

√
n(θ̂n2 − θ20)

are continuous, and strictly increasing, but their densities not symmetric, and the sampling

distribution of
√
n(∆̂n − ∆0) is not continuous and strictly increasing, and its density is

not symmetric, when ∆0 = 0. That is, Condition (b) in Theorem 5.1 does not hold for
√
n(θ̂n1−θ10),

√
n(θ̂n2−θ20), and

√
n(∆̂n−∆0). Hence, the bootstrap percentile confidence

intervals for θ1, θ2, and ∆ may not be consistent when ∆0 = 0. This is confirmed in in the

next proposition.

For the convenience of presentation, we define some notation. Let X∗ij’s be the bootstrap

sample such thatX∗11, . . . , X
∗
1n1
∼ N(θ̂n1, 1) for given θ̂n1, and independently, X∗21, . . . , X

∗
2n2
∼

N(θ̂n2, 1) for given θ̂n2. Define X̄∗ni =
∑ni

j=1 X
∗
ij/ni, i = 1, 2. Further, let

θ̂∗n1 = min{X̄∗n1, ωX̄
∗
n1 + (1− ω)X̄∗n2}, θ̂∗n2 = max{X̄∗n2, ωX̄

∗
n1 + (1− ω)X̄∗n2}, ∆̂∗n = (X̄∗n2 − X̄∗n1)+

be the MLEs of θ1, θ2, and ∆, respectively, based on the bootstrap sample. Denote the

bootstrap distributions of θ̂n1, θ̂n2, and ∆̂n respectively by

G∗n1(x; θ̂n1, θ̂n2) = Pr(θ̂∗n1 ≤ x|θ̂n1, θ̂n2),
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G∗n2(x; θ̂n1, θ̂n2) = Pr(θ̂∗n2 ≤ x|θ̂n1, θ̂n2),

G∗n,∆(x; θ̂n1, θ̂n2) = Pr(∆̂∗n ≤ x|θ̂n1, θ̂n2),

and their αth quantiles by q∗1,α, q∗2,α, and q∗∆,α. From Part (a) of Lemma 6.2, we note that

θ̂n1 and θ̂n2 are both functions of random observations Xij’s. Hence, as defined above, the

bootstrap distributions G∗n1(x; θ̂n1, θ̂n2), G∗n2(x; θ̂n1, θ̂n2), and G∗n,∆(x; θ̂n1, θ̂n2), and their

corresponding quantiles q∗1,α, q∗2,α, and q∗∆,α are random functions in terms of (θ̂n1, θ̂n2).

Further, let Φ(0,Σ)(x, y) denote the joint cumulative distribution function (cdf) of a

bivariate normal random vector with mean vector 0 and variance-covariance matrix Σ,

and F12(x, y) denote the joint cdf of
√
n(θ̂n1 − θ10) and

√
n(θ̂n2 − θ20). That is, from Part

(b) of Lemma 6.2, F12(x, y) is the joint cdf of

min

{√
1

ω
Z1,
√
ωZ1 +

√
1− ωZ2 + (1− ω)

√
n∆0

}
,

and

max

{√
1

1− ω
Z2,
√
ωZ1 +

√
1− ωZ2 − ω

√
n∆0

}
.

Proposition 6.2 Suppose we consider the same setup and assumptions as in Lemma 6.2.

For α1, α2 ∈ (0, 0.5) and α1 + α2 = α, we have

(a)

Pr
(
∆0 ∈ [q∗∆,α1

, q∗∆,1−α2
]
)

=

{
1− α1 − α2, if

√
n∆0 > Φ−1(1− α2)/

√
ω(1− ω)

1− α1, if
√
n∆0 ≤ Φ−1(1− α2)/

√
ω(1− ω)

;

(b)

Pr
(
θ10 ∈ [q∗1,α1

, q∗1,1−α2
]
)

=

∫∫
I{α1 ≤ g1(x, y) ≤ 1− α2}dF12(x, y),

where

g1(x, y) = Φ {−C11(x)}+ Φ {−C12(x, y)} −Φ(0,Λ1) {−C11(x),−C12(x, y)} ,

with C11(x) =
√
ωx, C12(x, y) = ωx+ (1− ω)y +

√
n(1− ω)∆0, and

Λ1 =

(
1
√
ω√

ω 1

)
;

121



(c)

Pr
(
θ20 ∈ [q∗2,α1

, q∗2,1−α2
]
)

=

∫∫
I{α1 ≤ g2(x, y) ≤ 1− α2}dF12(x, y),

where

g2(x, y) = Φ(0,Λ2) {−C21(y),−C22(x, y)} ,

with C21(y) =
√

1− ωy, C22(x, y) = ωx+ (1− ω)y −
√
nω∆0, and

Λ2 =

(
1

√
1− ω√

1− ω 1

)
.

Proof. For Part (a), the proof is similar to that of Proposition 6.1.

For Part (b), we first find G∗n1(x; θ̂n1, θ̂n2) as

G∗n1(x; θ̂n1, θ̂n2) = Pr
{
X̄∗n1 ≤ x or ωX̄∗n1 + (1− ω)X̄∗n2 ≤ x|θ̂n1, θ̂n2

}
= Pr(X̄∗n1 ≤ x|θ̂n1, θ̂n2) + Pr

{
ωX̄∗n1 + (1− ω)X̄∗n2 ≤ x|θ̂n1, θ̂n2

}
−Pr

{
X̄∗n1 ≤ x, ωX̄∗n1 + (1− ω)X̄∗n2 ≤ x|θ̂n1, θ̂n2

}
.

Note that given θ̂n1 and θ̂n2,( √
nω(X̄∗n1 − θ̂n1)√

n{ωX̄∗n1 + (1− ω)X̄∗n1 − ωθ̂n1 − (1− ω)θ̂n2}

)
∼ N (0,Λ1) .

Then

G∗n1(x; θ̂n1, θ̂n2) = Φ{
√
nω(x− θ̂n1)}+ Φ{

√
n(x− ωθ̂n1 − (1− ω)θ̂n2)}

−Φ(0,Λ1)

{√
nω(x− θ̂n1),

√
n(x− ωθ̂n1 − (1− ω)θ̂n2)

}
,

which is a continuous and strictly increasing function. The coverage probability is

Pr
(
θ10 ∈ [q∗1,α1

, q∗1,1−α2
]
)

= Pr
{
α1 ≤ G∗n1(θ10; θ̂n1, θ̂n2) ≤ 1− α2

}
.

With g1(x, y) defined in Part (b), we further have

Pr
(
θ10 ∈ [q∗1,α1

, q∗1,1−α2
]
)

= Pr
[
α1 ≤ g1

{√
n(θ̂n1 − θ10),

√
n(θ̂n2 − θ20)

}
≤ 1− α2

]
.
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Together with the definition of F12(x, y), this finishes the proof of Part (b).

For Part (c), the proof is similar to that of Part (b), and is thus omitted. �

It appears that explicit expressions for the coverage probabilities of θ1 and θ2 are not

available. Fortunately, the coverage probabilities of θ1 and θ2 are written in terms of

bivariate integrals that can be easily evaluated using numerical methods. In Figure 6.2,

we plot the coverage probabilities for ∆, θ1 and θ2 versus the true mean difference ∆0, in

the case of sample sizes n1 = 25 and n2 = 75 at level α = 0.10 with α1 = α2 = 0.05 as

an illustration. Again, we note that different choices of α1 and α2 should give different

graphs.
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Figure 6.2: Coverage probabilities of of 90% bootstrap percentile CIs for two normal means

with ordering constraint, and common σ2 = 1 and α1 = α2 = 0.05. Left panel is for the mean

difference ∆, and right panel is for the two-sample means θ1 and θ2.

From Figure 6.2, we observe that the coverage probabilities for θ1 and θ2 can be both

greater or smaller than the nominal level, no matter what the values of θ10 and θ20 are,

but only depend on their true difference ∆0. These exact results show that the bootstrap

percentile CIs for θ1 and θ2 are no longer always conservative, but can significantly under

cover the corresponding true parameters when the constrained parameter is on, or close

to, the boundary. On the other hand, when the two-sample mean difference ∆ is the

parameter of interest, the bootstrap percentile CI for ∆ is still conservative.
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6.3 Results for natural exponential family

In the preceding section, we examined the exact finite sample coverage probabilities of

bootstrap percentile CIs under linear inequality constraints on the mean parameters when

data is generated from normal population(s). In many applications (see Section 1.1),

observations may come from distributions such as binomial or Poisson, in which their

mean parameters are subject to linear inequality constraints. In this section, we generalize

the results for normal distributions in Section 6.2 to the distributions belonging to the

general class of natural exponential family (NEF). For the convenience of presentation, all

the proofs in this section are deferred to Section 6.4.

6.3.1 One-sample NEF

In this section, we consider the one-sample problem with the linear inequality constraints

on the mean parameter when data is generated from the natural exponential family of

distributions.

Suppose X1, . . . , Xn is an i.i.d. sample from a distribution in the natural exponential

family with probability density function (pdf) or probability mass function (pmf)

f(x; θ) = a(x) exp {ψx− b(ψ)} , (6.1)

where ψ is the natural parameter, and θ = E(X1) = b′(ψ) represents the mean parameter.

It is assumed that b(·) is twice continuously differentiable with b′′(ψ) always positive. Let

σ2 = b′′(ψ) be the variance of X1 under f(x; θ). The parameter space of the mean θ of

X1 is constrained by C3 = {θ : θ ≥ d} for some fixed boundary d. Under this general

parametric setup, the explicit form of the coverage probability of the percentile confidence

interval of θ is typically unavailable, or has to be derived case by case. Therefore, it is of

interest to quantify the asymptotic coverage probability of the bootstrap percentile CI for

θ.

Similarly to Section 6.2.1, we first find the form of the MLE of θ. Based on n random

observations from (6.1), the log-likelihood function of θ, up to a constant not dependent
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on θ, is

ln(θ) = ψ

n∑
i=1

Xi − nb(ψ).

Then the MLE of θ is defined as

θ̂n = arg max
θ∈C3

ln(θ).

The following lemma finds the closed form of θ̂n.

Lemma 6.3 Suppose X1, . . . , Xn is an i.i.d. random sample from f(x; θ) defined in (6.1).

The MLE of θ subject to the constraint C3 is θ̂n = max(X̄n, d) where X̄n =
∑n

i=1Xi/n.

Let θ0 be the true value of θ. Next, we investigate the limiting distribution of
√
n(θ̂n−

θ0), which plays an important role in deriving the asymptotic coverage probability of the

bootstrap percentile CI of θ. As we have seen in Section 6.2.1, the coverage probability for

θ depends on how close the true value θ0 is to the boundary. The magnitude of “closeness”

crucially depends on how large the sample size is. Treating θ0 as a fixed value may not

be helpful for understanding the subtle results in Proposition 6.1 and Figure 6.1. Hence,

motivated by Proposition 6.1, we adopt a local asymptotic framework by allowing the true

constrained parameter varying in a n−1/2 neighbourhood of the boundary. More specifically,

we let θ0 = θ0,n = d+τn−1/2. The corresponding local parameter τ = n1/2(θ0,n−d) controls

the order of closeness of θ0,n approaching to the boundary d. This setup helps capture the

asymptotic distribution of the MLE in terms of τ , as stated in the next lemma.

Lemma 6.4 Suppose X1, . . . , Xn is a random sample from f(x; θ) defined in (6.1), and

the true value of θ is θ0,n = d+ τn−1/2 with τ being a fixed nonnegative local parameter not

depending on n. Let σ2
0 = b′′(ψ0) with ψ0 = b′−1(d). Then

√
n(θ̂n − θ0,n)

σ0

d−→ max

(
Z,− τ

σ0

)
,

as n→∞, where Z is a standard normal random variable. Here
d−→ denotes “converges in

distribution”.
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Lemmas 6.3 and 6.4 together extend the results in Lemma 6.1 from the normal distri-

bution to the class of distributions in NEF. With the help of Lemmas 6.3 and 6.4, we next

quantify the local asymptotic coverage probability of the bootstrap percentile CI for θ in

the next proposition. Let q∗α be the αth quantile of the bootstrap distribution of θ̂n. Recall

that the bootstrap distribution of θ̂n is similar to that considered in Section 6.2.1.

Theorem 6.1 Suppose we consider the same setup and assumptions as in Lemma 6.4.

Then

Pr
(
θ0,n ∈ [q∗α1

, q∗1−α2
]
)
→

{
1− α1 − α2, if τ > Φ−1(1− α2)σ0

1− α1, if τ < Φ−1(1− α2)σ0
,

as n→∞, where α = α1 + α2 ∈ (0, 1) with α1, α2 ∈ (0, 0.5).

This result generalizes the exact finite sample result in Proposition 6.1 for single normal

distribution to cover the NEF of distributions. If such an approximation remains good for

finite n, then this local asymptotic result provides us with information on how likely we

are to have conservative conclusions, when θ0,n is shrinking close to d.

To make our asymptotic results in Proposition 6.1 more appealing for practitioners,

we illustrate with two commonly used, and important, distributions in the NEF. Recall

the motivating examples in Chapter 1. The binomial proportion with boundary constraint

finds important applications in genetic linkage analysis (Example 1.4). The Poisson rate

with boundary constraint finds important applications in the signal with background noise

problem (Example 1.3). Next, we compare the exact coverage probability and asymptotic

coverage probability of θ under binomial and Poisson distributions.

Example 6.1 (One-sample binomial example) Suppose X1, . . . , Xn is a random sam-

ple from a Binomial(m, p) distribution with known m (for simplicity, let m = 1), and the

mean p subject to constraint p ∈ [d, 1] with 0 < d < 1. For illustration, we consider d = 0.5.

Under the this setup, σ2
0 = d(1− d) = 0.25.

Suppose the true value of p is p0,n = 0.5 + τn−1/2. Applying Proposition 6.1, the local

asymptotic coverage probability of the 100(1− α)% bootstrap percentile CI of p is

lim
n→∞

Pr
(
p0,n ∈ [q∗α1

, q∗1−α2
]
)

=

{
1− α1 − α2, if τ > 0.5Φ−1(1− α2)

1− α1, if τ < 0.5Φ−1(1− α2)
.
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The exact coverage probability of the 100(1−α)% bootstrap percentile CI for p can also

be calculated by noting the fact that a sum of independent binomial random variables still

has a binomial distribution. Combining these results, in Figure 6.3, we plot the asymptotic

and exact coverage probabilities of the bootstrap percentile CI as functions of p0 = p0,n. We

note that different choices of α1 and α2 should give different graphs. For comparison, we

also add the exact coverage probability of the bootstrap percentile CI for p without constraint.
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Figure 6.3: Asymptotic and exact coverage probabilities of 90% bootstrap percentile CI for the

proportion p of univariate binomial distribution with 0.5 ≤ p ≤ 1 and α1 = α2 = 0.05. Left panel

is for n = 100, and right panel is for n = 400.

In Figure 6.3, we observe chaotic behaviour with oscillation phenomenon of the cov-

erage probabilities due to the discrete nature of the binomial distribution. Hence, we can

not always expect the quantified exact coverage probabilities to achieve the nominal level,

even for the exact unconstrained case. In general, we can see a clear trend that the quan-

tified asymptotic local coverage probability shows a close agreement with the exact coverage

probability, as functions of p0, especially when the sample size increases.

Example 6.2 (One-sample Poisson example) Suppose X1, . . . , Xn is a random sam-

ple from a Poisson(λ) distribution with mean λ subject to constraint λ ∈ [d,∞) with d > 0.

For illustration, we consider d = 2. Under this setup, σ2
0 = d.
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Suppose the true value of λ is λ0,n = 2 + τn−1/2. Applying Proposition 6.1, we have the

local asymptotic coverage probability of the 100(1− α)% bootstrap percentile CI of λ is

lim
n→∞

Pr
(
λ0,n ∈ [q∗α1

, q∗1−α2
]
)

=

{
1− α1 − α2, if τ > Φ−1(1− α2)

√
2

1− α1, if τ < Φ−1(1− α2)
√

2
.

The exact coverage probability of the 100(1−α)% bootstrap percentile CI for λ can also

be calculated by noting the fact that a sum of independent Poisson random variables is

still has a Poisson distribution. In Figure 6.4, we plot the asymptotic and exact coverage

probabilities as functions of the true parameter λ0 = λ0,n. We note that different choices

of α1 and α2 should give different graphs. For comparison, we also add the exact coverage

probabilities of the bootstrap percentile CI for λ without constraint.
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Figure 6.4: Asymptotic and exact coverage probabilities of 90% bootstrap percentile CI for the

rate λ of univariate Poisson distribution with λ ≥ 2 and α1 = α2 = 0.05. Left panel is for

n = 100, and right panel is for n = 400.

Again, we can not always expect these exact coverage probabilities to achieve the nominal

level due to the discrete nature of the Poisson distribution. In general, we can see a clear

trend that the quantified asymptotic coverage probability shows close agreement with the

exact finite sample coverage probability, as functions of λ0, especially when the sample size

increases.
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6.3.2 Two-sample NEF

In this section, we generalize the results developed for the two-sample normal distributions

in Section 6.2.2 to distributions in NEF.

Suppose we have i.i.d. observations X11, . . . , X1n1 from f(x; θ1), and independently, we

have i.i.d. observations X21, . . . , X2n2 from f(x; θ2), with f(x; θ) belonging to the natural

exponential family. That is, f(x; θ) satisfies (6.1) and θ still represents the mean parameter.

The parameter space of the two means is defined to be C4 = {(θ1, θ2) : θ2 ≥ θ1}. Our

interest is to quantify the asymptotic coverage probabilities of the bootstrap percentile

confidence intervals of θ1, θ2, and their difference ∆.

As a first step, we identify the form of MLE of (θ1, θ2,∆). Let n = n1 + n2. Based on

the n random observations, the log-likelihood function, up to a constant not dependent on

the unknown parameters, is

ln(θ1, θ2) =
2∑
i=1

{
ψi

ni∑
j=1

Xij − nb(ψi)

}
.

The MLE of (θ1, θ2) is defined as

(θ̂n1, θ̂n2) = arg max
(θ1,θ2)∈C4

ln(θ1, θ2)

and the MLE of ∆ is ∆̂n = θ̂n2 − θ̂n1. The following lemma finds the closed forms of the

MLEs of θ1, θ2 and ∆. For the asymptotic purpose, we let ω = n1/n and assume that

ω ∈ (0, 1) does not depend on n.

Lemma 6.5 Suppose X11, . . . , X1n1 is a random sample from f(x; θ1), and independently,

X21, . . . , X2n2 is another random sample from f(x; θ2), with f(x; θ) defined in (6.1). The

MLEs of θ1 and θ2 subject to the constraint in C4 are

θ̂n1 = min
{
X̄n1, ωX̄n1 + (1− ω)X̄n2

}
, θ̂n2 = max

{
X̄n2, ωX̄n1 + (1− ω)X̄n2

}
,

and the MLE of ∆ is ∆̂n = (X̄n2 − X̄n1)+.
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Lemma 6.5 generalizes Part (a) of Lemma 6.2 from normal distribution to general distri-

butions in the NEF. We next generalize Part (b) of Lemma 6.2 to the class of distributions

in the NEF by considering the limiting distributions of
√
n(θ̂n1 − θ10),

√
n(θ̂n2 − θ10), and

√
n(∆̂n − ∆0), where (θ10, θ20) is the true value of (θ1, θ2) and ∆0 = θ20 − θ10. In a sim-

ilar way to the discussion in Section 6.3.1, fixing θ10 and θ20 may not be able to reveal

the subtle results discovered in Proposition 6.2 and Figure 6.2. Instead, to gain a better

understanding, we proceed by considering the following local asymptotic framework. Let

θ10 = θ10,n = η0 − (1− ω)∆0,n, and θ20 = θ20,n = η0 + ω∆0,n,

where ∆0,n = δn−1/2. Here η0 is a fixed value, and δ is a fixed, nonnegative, local parameter

not depending on n. Under this setup, we fix the true value of ωθ10,n + (1 − ω)θ20,n, i.e.

the overall mean of two samples, to be η0, and allow the true value of constrained mean

difference, ∆0,n = θ20,n − θ10,n, to vary in a n−1/2 neighbourhood of 0. Note that this local

setup is motivated from the observations in Proposition 6.2 and Figure 6.2: the non-regular

behaviour of the coverage probabilities of the bootstrap percentile CIs for θ1, θ2, and ∆

only occurs when ∆0 is a n−1/2 neighbourhood of 0.

Lemma 6.6 Assume that X11, . . . , X1n1 is a random sample from f(x; θ1), and indepen-

dently, X21, . . . , X2n2 is another random sample from f(x; θ2), with f(x; θ) defined in (6.1).

Suppose the true value of (θ1, θ2) is (θ10,n, θ20,n) ∈ C4 with θ10,n = η0 − (1 − ω)∆0,n and

θ20,n = η0+ω∆0,n, where ∆0,n = δn−1/2, η0 is a fixed parameter, and δ is a fixed nonnegative

local parameter not depending on n. Let σ2
0 = b′′(ψ0) with ψ0 = b′−1(η0). Then

n1/2(θ̂n1 − θ10,n)

σ0

d−→ min

{√
1

ω
Z1,
√
ωZ1 +

√
1− ωZ2 +

(1− ω)δ

σ0

}
,

n1/2(θ̂n2 − θ20,n)

σ0

d−→ max

{√
1

1− ω
Z2,
√
ωZ1 +

√
1− ωZ2 −

ωδ

σ0

}
,

n1/2(∆̂n −∆0,n)

σ0

d−→ max

{√
1

1− ω
Z2 −

√
1

ω
Z1,−

δ

σ0

}
,

as n→∞, where Z1, Z2 are two independent standard normal random variables.
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With the help of Lemma 6.6, we are able to quantify the local asymptotic coverage

probabilities of the bootstrap percentile CIs for θ1, θ2, and ∆ in the next theorem, which

generalizes the results in Proposition 6.2.

For the convenience of presentation, we define some notation. Let q∗1,α, q∗2,α, and q∗∆,α
denote the αth quantiles of the bootstrap distributions of θ̂n1, θ̂n2, and ∆̂n, similar to those

considered in Section 6.2.2. From Lemma 6.5, we note that θ̂n1 and θ̂n2 are both functions

of random observations Xij’s. Hence, the quantiles q∗1,α, q∗2,α, and q∗∆,α are as defined

random functions in terms of (θ̂n1, θ̂n2). Further let F12(x, y) denote the joint cumulative

distribution function of

min

{√
1

ω
Z1,
√
ωZ1 +

√
1− ωZ2 +

(1− ω)δ

σ0

}
,

and

max

{√
1

1− ω
Z2,
√
ωZ1 +

√
1− ωZ2 −

ωδ

σ0

}
.

That is, from Lemma 6.6, F12(x, y) is the joint limiting distribution of of
√
n(θ̂n1−θ10,n)/σ0

and
√
n(θ̂n2 − θ20,n)/σ0.

Theorem 6.2 Suppose we consider the same setup and assumptions as in Lemma 6.6.

Then, for α1, α2 ∈ (0, 0.5) with α = α1 + α2, we have, as n→∞,

(a)

Pr
(
∆0,n ∈ [q∗∆,α1

, q∗∆,1−α2
]
)
→

{
1− α1 − α2, if δ > Φ−1(1− α2)σ0/

√
ω(1− ω)

1− α1, if δ < Φ−1(1− α2)σ0/
√
ω(1− ω)

;

(b)

Pr
(
θ10,n ∈ [q∗1,α1

, q∗1,1−α2
]
)
→

∫∫
I{α1 ≤ g1(x, y) ≤ 1− α2}dF12(x, y),

where

g1(x, y) = Φ {−C11(x)}+ Φ {−C12(x, y)} −Φ(0,Λ1) {−C11(x),−C12(x, y)} ,
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with C11(x) =
√
ωx, C12(x, y) = ωx+ (1− ω)y + (1− ω)δ/σ0, and

Λ1 =

(
1
√
ω√

ω 1

)
;

(c)

Pr
(
θ20,n ∈ [q∗2,α1

, q∗2,1−α2
]
)
→

∫∫
I{α1 ≤ g2(x, y) ≤ 1− α2}dF12(x, y),

where

g2(x, y) = Φ(0,Λ2) {−C21(y),−C22(x, y)} ,

with C21(y) =
√

1− ωy, C22(x, y) = ωx+ (1− ω)y − ωδ/σ0, and

Λ2 =

(
1

√
1− ω√

1− ω 1

)
.

This result generalizes the exact finite sample result in Proposition 6.2 for two-sample

normal distributions to cover the general NEF of distributions. Finally, we apply the

results in Theorem 6.2 to a binomial example, which may be considered as a two-sample

special case of Example 1.6 given in Section 1.1.

Example 6.3 (Two-sample binomial distributions) Suppose we have two indepen-

dent samples Xij ∼ Bin(mi, pi) for i = 1, 2 and j = i, . . . , ni, with known mi, where

p1, p2 are subject to the constraint p2 ≥ p1. For illustration, we consider m1 = m2 = 1.

Let ∆ = p2 − p1. Then the restriction becomes ∆ ≥ 0. Further, we set η0 = 0.5 and

ω = 0.25.

Let the true values of p1 and p2 be p10,n = 0.5−0.75∆0,n, and p20,n = 0.5+0.25∆0,n, with

∆0,n = δn−1/2, and δ being a fixed nonnegative local parameter not depending on n. Under

the current setup, σ2
0 = η0(1−η0) = 0.52. In Figure 6.5, we graph the asymptotic and exact

coverage probabilities of the bootstrap percentile CIs for ∆, θ1 and θ2 versus the true mean

difference ∆0 in the cases of (n1, n2) = (25, 75) and (n1, n2) = (100, 300) at level α = 0.10

with α1 = α2 = 0.05. The asymptotic coverage probabilities are calculated by applying
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Theorem 6.2. The exact coverage probabilities are calculated by following the definition

of the bootstrap percentile CIs as reviewed in Section 5.2 and discussed in Section 6.2.2.

For comparison, we also include the exact coverage probabilities of the bootstrap percentile

CIs of p1, p2, and ∆ without using the constraint. We note that different choices of α1

and α2 can lead to different coverage behaviours of the confidence intervals, and hence give

different graphs.

As we can see from Figure 6.5, the quantified local asymptotic coverage probabilities

capture the general trend of the exact coverage probabilities. The two coverage probabilities

become closer to each other as the sample size increases.

6.4 Proofs for Section 6.3

6.4.1 Proofs of Lemmas 6.3 and 6.4

Recall that the parameter space for θ is C3 = {θ : θ ≥ d}, which is a closed convex set.

Then by Proposition 2.4.3 in Silvapulle and Sen (2004, p. 51), θ̂n equivalently minimizes

(X̄n − θ)2

subject to the constraint θ ≥ d. That is

θ̂n = arg min
θ≥d

(X̄n − θ)2 = max(X̄n, d).

This finishes the proof of Lemma 6.3. �

Next we come to the proof of Lemma 6.4. Recall that θ0,n = d+n−1/2τ and σ2
0 = b′′(ψ0)

with ψ0 = b′−1(d). Applying the central limit theorem for a triangular array gives∑n
i=1(Xi − θ0,n)√

nσ2
n

→ Z,

in distribution as n → ∞, where σ2
n = b′′(ψn) with ψn = b′−1(θ0,n) and Z ∼ N(0, 1).

Further, both b′−1(x) and b′′(x) are continuous functions, and θ0,n → d as n → ∞. Then
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Figure 6.5: Asymptotic and exact coverage probabilities of 90% bootstrap percentile CIs for the

proportions p1 and p2 and their difference ∆ of two binomial distributions with p1 ≤ p2, ω = 0.25

and α1 = α2 = 0.05. Left panels are for n = 100, and right panels are for n = 400.
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we have σ2
n → σ2

0 as n→∞. By Slutsky’s theorem, we have

√
n(X̄n − θ0,n)

σ0

→ Z, (6.2)

in distribution as n→∞. Together with the continuous mapping theorem, it follows that

√
n(θ̂n − θ0,n)

σ0

=

√
n{max(X̄n, d)− θ0,n}

σ0

= max

{√
n(X̄n − θ0,n)

σ0

,

√
n(d− θ0,n)

σ0

}
→ max

{
Z,− τ

σ0

}
,

in distribution as n→∞. This completes the proof of Lemma 6.4. �

6.4.2 Proof of Theorem 6.1

We first define some notation. Let X∗1 , . . . , X
∗
n be the bootstrap sample from f(x; θ̂n) for

the given θ̂n, and θ̂∗n = max(X̄∗n, d) be the MLE of θ based on the bootstrap sample, where

X̄∗n =
∑n

i=1 X
∗
i /n. Denote the bootstrap distributions of θ̂n and X̄n, respectively, by

G∗n(x; θ̂n) = Pr
(
θ̂∗n ≤ x|θ̂n

)
and Ḡ∗n(x; θ̂n) = Pr

(
X̄∗n ≤ x|θ̂n

)
.

Then

G∗n(x; θ̂n) =

{
Ḡ∗n(x; θ̂n) x ≥ d

0 x < d
.

Recall that q∗α is the αth quantile of the bootstrap distribution of θ̂n. Then

q∗α = G∗−1
n (α; θ̂n) = max{Ḡ∗−1

n (α; θ̂n), d}.

Therefore

Pr
(
θ0,n ∈ [q∗α1

, q∗1−α2
]
)

= Pr
[
max{Ḡ∗−1

n (α1; θ̂n), d} ≤ θ0,n ≤ max{Ḡ∗−1
n (1− α2; θ̂n), d}

]
= Pr

{
Ḡ∗−1
n (α1; θ̂n) ≤ θ0,n ≤ Ḡ∗−1

n (1− α2; θ̂n)
}
.
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Let

H̄∗n(x; θ̂n) = Pr

{√
n(X̄∗n − θ̂n)

σ0

≤ x
∣∣∣θ̂n} ,

which is the bootstrap distribution of the standardized X̄n. Then

Ḡ∗−1
n (α; θ̂n) = n−1/2σ0H̄

∗−1
n (α; θ̂n) + θ̂n.

Therefore

Pr
(
θ0,n ∈ [q∗α1

, q∗1−α2
]
)

= Pr

{
H̄∗−1
n (α1; θ̂n) ≤

√
n(θ0,n − θ̂n)

σ0

≤ H̄∗−1
n (1− α2; θ̂n)

}
. (6.3)

We next study the asymptotic property of H̄∗−1
n (α1; θ̂n), which is helpful for our proofs.

Lemma 6.7 Assume the same setup and same assumptions as in Theorem 6.1. Then

(a) θ̂n = d+ op(1) and σ̂2
n = σ2

0 + op(1), where σ̂2
n = b′′(ψ̂n) with ψ̂n = b′−1(θ̂n);

(b) supx |H̄∗n(x; θ̂n)− Φ(x)| = op(1);

(c) H̄∗−1
n (α; θ̂n) = Φ−1(α) + op(1) for any given level α ∈ (0, 1).

Proof. We first consider Part (a). Note that (6.2) implies that X̄n − θ0,n = op(1). Recall

that θ0,n = d+ n−1/2τ . Then

X̄n = d+ op(1).

This implies that

θ̂n = max(X̄n, d) = d+ op(1).

Recall that both b′−1(x) and b′′(x) are continuous functions. By the continuous mapping

theorem, we further have

σ̂2
n = σ2

0 + op(1).

This finishes the proof of Part (a).
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Next we consider Part (b). We start with the limiting distribution of
√
n(X̄∗n − θ̂n)/σ0

for the given θ̂n. Note that conditional on θ̂n,

E(X∗i |θ̂n) = θ̂n, and Var(X∗i |θ̂n) = σ̂2
n.

Let
d−→ denote “convergence in distribution”. Then, by Berry-Esseén inequaltiy (Shao and

Tu, 1995, Section 3.1, p. 74) or the central limit theorem (van der Vaart, 1998, Theo-

rem 23.4), conditional on θ̂n, we have

√
n(X̄∗n − θ̂n)

σ̂n

d−→ N(0, 1),

in probability. Recall that in Part (a), we have shown σ̂n → σ0 in probability. By condi-

tional Slutsky’s theorem (Cheng, 2015), we further have that, conditional on θ̂n,

√
n(X̄∗n − θ̂n)

σ0

d−→ N(0, 1),

in probability, which implies that

sup
x
|H̄∗n(x; θ̂n)− Φ(x)| = op(1).

This finishes the proof of Part (b).

With Part (b), then Part (c) is a direct application of Lemma 21.2 in van der Vaart

(1998). �

We now move back to the proof of Theorem 6.1. Applying Lemma 6.7 to (6.3) gives

Pr
(
θ0,n ∈ [q∗α1

, q∗1−α2
]
)

= Pr

{
−Φ−1(1− α2) + op(1) ≤

√
n(θ̂n − θ0,n)

σ0

≤ −Φ−1(α1) + op(1)

}

= Pr

{
Φ−1(α2) + op(1) ≤

√
n(θ̂n − θ0,n)

σ0

≤ Φ−1(1− α1) + op(1)

}

= Pr

{√
n(θ̂n − θ0,n)

σ0

≤ Φ−1(1− α1) + op(1)

}

−Pr

{√
n(θ̂n − θ0,n)

σ0

< Φ−1(α2) + op(1)

}
. (6.4)
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Recall that in Lemma 6.4, we have shown that

√
n(θ̂n − θ0,n)

σ0

→ max (Z,−τ/σ0) .

That is, the limiting distribution of
√
n(θ̂n − θ0,n)/σ0 is Φ(x)I(x ≥ −τ/σ0), which is con-

tinuous at x = Φ−1(1 − α1) and x = Φ−1(α2) if Φ−1(α2) 6= −τ/σ0. By the definition of

convergence in distribution, Slusky’s theorem, and (6.4), we have that if Φ−1(α2) 6= −τ/σ0

lim
n→∞

Pr
(
θ0,n ∈ [q∗α1

, q∗1−α2
]
)

= 1− α1 − α2I
(
Φ−1(α2) ≥ −τ/σ0

)
.

That is, for every continuous point of the limit function,

lim
n→∞

Pr
(
θ0,n ∈ [q∗α1

, q∗1−α2
]
)

=

{
1− α1 − α2 if Φ−1(α2) > −τ/σ0

1− α1 if Φ−1(α2) < −τ/σ0

=

{
1− α1 − α2 if τ/σ0 > Φ−1(1− α2)

1− α1 if τ/σ0 < Φ−1(1− α2)
.

This finish the proof of Theorem 6.1.

6.4.3 Proofs of Lemmas 6.5 and 6.6

Note that the parameter space C4 = {(θ1, θ2) : θ2 ≥ θ1} is a closed convex set. Then by

Proposition 2.4.3 in Silvapulle and Sen (2004, p. 51), (θ̂n1, θ̂n2) minimizes

n1(X̄n1 − θ1)2 + n2(X̄n2 − θ2)2.

That is,

(θ̂n1, θ̂n2) = arg min
(θ1,θ2)∈C4

{
n1(X̄n1 − θ1)2 + n2(X̄n2 − θ2)2

}
. (6.5)

Following the proof of Lemma 6.2, we have

θ̂n1 = min
{
X̄n1, ωX̄n1 + (1− ω)X̄n2

}
, θ̂n2 = max

{
X̄n2, ωX̄n1 + (1− ω)X̄n2

}
,

and ∆̂n = (X̄n2 − X̄n1)+. This finishes the proof of Lemma 6.5. �
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We now come to the proof of Lemma 6.6. For the convenience of presentation, we

introduce some compact notation. Write θ0,n = (θ10,n, θ20,n)τ , X̄n = (X̄n1, X̄n2)τ and

θ̂n = (θ̂n1, θ̂n2)τ . Let

Un = (Un1, Un2)τ =

√
n(X̄n − θ0,n)

σ0

.

Write Wn = ωUn1 + (1−ω)Un2. Recall that θ10,n = η0− (1−ω)∆0,n and θ20,n = η0 +ω∆0,n

with ∆0,n = δn−1/2, and σ2
0 = b′′(ψ0) with ψ0 = b′−1(η0).

Applying the central limit theorem for a triangular array, we have
∑n1

j=1(X1j−θ10,n)√
n1σ2

1,n∑n2
j=1(X2j−θ20,n)√

n2σ2
2,n

→ (
Z1

Z2

)
,

in distribution as n → ∞, where σ2
i,n = b′′(ψi,n) with ψi,n = b′−1(θi0,n). Further, we have

σ2
i,n → σ2

0 as n→∞, since θi0,n → η0 as n→∞ and both b′−1(x) and b′′(x) are continuous

functions. Therefore, by Slutsky’s theorem, we have

Un →

(
ω−1/2Z1

(1− ω)−1/2Z2

)
,

in distributions as n→∞.

We now come to the limiting distribution of n1/2(θ̂n1 − θ10,n)/σ0. Using the form of θ̂n1,

we have

n1/2(θ̂n1 − θ10,n)

σ0

= n1/2

{
min

{
X̄n1, ωX̄n1 + (1− ω)X̄n2

}
− θ10,n

σ0

}

= min

{
n1/2

(
X̄n1 − θ10,n

)
σ0

,
n1/2

(
ωX̄n1 + (1− ω)X̄n2 − θ10,n

)
σ0

}

= min

{
Un1,Wn +

n1/2 (η0 − θ10,n)

σ0

}
→ min

{√
1

ω
Z1,
√
ωZ1 +

√
1− ωZ2 +

(1− ω)δ

σ0

}
in distribution as n→∞.
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The proof for n1/2(θ̂n2 − θ20,n)/σ0 is similar, and hence is omitted. For ∆̂n, the proof

is similar to that of Lemma 6.4. This finishes the proof of Lemma 6.6, and hence is also

omitted. �

6.4.4 Proof of Theorem 6.2

The proof of Part (a) is similar to that of Theorem 6.1, and hence is omitted. Next we

concentrate on the proof of Part (b) as the proof of Part (c) is just similar.

We first define some notation. Let X∗11, . . . , X
∗
1n1

be the bootstrap sample from f(x; θ̂n1)

for given θ̂n1, and X∗21, . . . , X
∗
2n2

be the bootstrap sample from f(x; θ̂n2) for given θ̂n2.

Further, let (θ̂∗n1, θ̂
∗
n2) be the MLE of (θ1, θ2) based on X∗ij’s. Then

θ̂∗n1 = min
{
X̄∗n1, ωX̄

∗
n1 + (1− ω)X̄∗n2

}
, and θ̂∗n2 = max

{
X̄∗n2, ωX̄

∗
n1 + (1− ω)X̄∗n2

}
,

where X̄∗ni =
∑ni

j=1X
∗
ij/ni, i = 1, 2. Denote the bootstrap distribution of θ̂n1 by

G∗n1(x; θ̂n) = Pr(θ̂∗n1 ≤ x|θ̂n),

and the corresponding αth quantile by q∗1,α.

Next, we mainly consider Pr
(
θ10,n ≥ q∗α1

)
in Part (b) of Theorem 6.2. The other part

can be similarly proved. Note that

Pr
(
θ10,n ≥ q∗α1

)
= Pr

{
α1 ≤ G∗n1(θ10,n; θ̂n)

}
. (6.6)

For G∗n1(θ10,n; θ̂n), we have

G∗n1(θ10,n; θ̂n) = Pr
[
min

{
X̄∗n1, ωX̄

∗
n1 + (1− ω)X̄∗n2

}
≤ θ10,n|θ̂n

]
= Pr

(
X̄∗n1 ≤ θ10,n|θ̂n

)
+ Pr

(
ωX̄∗n1 + (1− ω)X̄∗n2 ≤ θ10,n|θ̂n

)
−Pr

{
X̄∗n1 ≤ θ10,n, ωX̄

∗
n1 + (1− ω)X̄∗n2 ≤ θ10,n|θ̂n

}
.

For i = 1, 2, let

U∗ni =
n1/2

(
X̄∗ni − θ̂ni

)
σ0

,
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and W ∗
n = ωU∗n1 + (1− ω)U∗n2. Then after some algebra, we have

G∗n1(θ10,n; θ̂n) = Pr
(
U∗n1 ≤ −Un1|θ̂n

)
+ Pr

{
W ∗
n ≤ −Wn − (1− ω)δ/σ0|θ̂n

}
−Pr

{
U∗n1 ≤ −Un1,W

∗
n ≤ −Wn − (1− ω)δ/σ0|θ̂n

}
. (6.7)

In next lemma, we study the asymptotic properties of

Pr
(
U∗n1 ≤ x|θ̂n

)
, Pr

(
W ∗
n ≤ x|θ̂n

)
, and Pr

(
U∗n1 ≤ x,W ∗

n ≤ y|θ̂n
)
,

which are very helpful in our proofs.

Lemma 6.8 Assume the same setup and same assumptions as in Theorem 6.2. Then

sup
x

∣∣∣Pr
(√

ωU∗n1 ≤ x|θ̂n
)
− Φ(x)

∣∣∣ = op(1), (6.8)

sup
x

∣∣∣Pr
(
W ∗
n ≤ x|θ̂n

)
− Φ(x)

∣∣∣ = op(1), (6.9)

sup
x

∣∣∣Pr
(√

ωU∗n1 ≤ x,W ∗
n ≤ y|θ̂n

)
−Φ(0,Λ1)(x, y)

∣∣∣ = op(1). (6.10)

Proof. Similar to proof as Part (b) of Lemma 6.7, we can show that, conditional on θ̂n,

√
ωU∗n1

d−→ N(0, 1), and
√

1− ωU∗n2
d−→ N(0, 1),

in probability. Further, conditional on θ̂n,
√
ωU∗n1 and

√
1− ωU∗n2 are independent. Hence,

conditional on θ̂n, we have ( √
ωU∗n1√

1− ωU∗n2

)
d−→ N(0, I2×2),

in probability. Then by Example 3.3 of Shao and Tu (1995), we have, conditional on θ̂n,

that ( √
ωU∗n1

W ∗
n

)
d−→ N(0,Λ1),

in probability. This implies (6.8)–(6.10) and finishes the proof. �
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Combining Lemma 6.8 and G∗n1(θ10,n; θ̂n) in (6.7), we obtain

G∗n1(θ10,n; θ̂n) = Φ(−
√
ωUn1) + Φ

(
−Wn −

(1− ω)δ

σ0

)
−Φ(0,Λ1)

(
−
√
ωUn1,−Wn −

(1− ω)δ

σ0

)
+ op(1)

= Φ {−C11(Un1)}+ Φ {−C12(Un1, Un2)}
−Φ(0,Λ1) {−C11(Un1),−C12(Un1, Un2)}+ op(1)

= g1(Un1, Un2) + op(1), (6.11)

where g1(x, y) is defined in Part (b) of Theorem 6.2.

Combining (6.6) and (6.11) and applying Slutsky’s theorem, we further have

lim
n→∞

Pr
(
θ10,n ≥ q∗α1

)
= lim

n→∞
Pr {α1 ≤ g1(Un1, Un2) + op(1)}

=

∫∫
I{α1 ≤ g1(x, y)}dF12(x, y). (6.12)

Similarly, we find

lim
n→∞

Pr
(
θ10,n ≤ q∗1−α2

)
=

∫∫
I{g1(x, y) ≤ 1− α2}dF12(x, y). (6.13)

Combining (6.12) and (6.13), we get

lim
n→∞

Pr
(
q∗α1
≤ θ10,n ≤ q∗1−α2

)
=

∫∫
I{α1 ≤ g1(x, y) ≤ 1− α2}dF12(x, y).

This finishes the proof. �
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Chapter 7

Summary, discussion, and future

work

7.1 Summary and discussion of the current achieve-

ments

In this thesis, we have considered, the empirical likelihood and bootstrap method, re-

spectively, in Part I and Part II, for some constrained inference problems. Here, we first

summarize what has been achieved in this thesis.

In Chapter 3, we dealt with the problem of testing homogeneity for multiple distri-

butions with excess zero observations. By assuming the semiparametric DRM for the

distributions of the positive data, we have developed an ELR test which can efficiently

exploit information from the pooled data and is robust against the risk of misspecification

of the underlying data distributions. Furthermore, the proposed ELR test guarantees that

the asymptotic size of the test can always be controlled at the nominal level under the null

hypothesis. The chi-squared limiting distribution of this ELR statistic has been derived

under the homogeneous null hypothesis. We have further suggested using a bootstrap

procedure to calibrate the finite sample distribution of the ELR. The consistency of the

bootstrap ELR has been established under both the null and alternative hypotheses. Cou-
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pled with the bootstrap, simulation studies and a real example showed that, for practical

sample sizes, the ELR test has accurate type I error, is competitive to, and sometimes more

powerful than, other existing tests. Finally, the proposed ELR test can be readily imple-

mented in practice by using logistic regression routines available in standard statistical

packages.

In Chapter 4, we discussed the problem of making statistical inferences on the means

of multiple distributions with excess zero observations. We followed the same modelling

framework as in Chapter 3 by using the semiparametric DRM to link multiple distributions

with excess zeros. Based on this semiparametric framework, we further proposed an ELR

statistic for making inference on the means, which allows us to make efficient use of the

entire sample information. The limiting chi-squared distribution of this ELR statistic

has been established under a fairly general linear null hypothesis on the means. This

result allows us to construct a test for mean equality, and confidence intervals for the

mean differences and ratios, as important applications. Simulation results showed that

the performance of the proposed ELR test under correctly specified basis functions in the

DRM is, in general, less sensitive to unequal sample sizes, in terms of both type I error

and power of the test, when compared with other popular tests for mean equality. With

extensive simulation studies and a real data example, we identified a scenario in which

the proposed ELR has superior performance in terms of type I error and power, and is

computationally stable for testing overall mean equality when the correctly specified basis

function is the logarithm function in the DRM.

As an important area of application, the ELR based semiparametric inference frame-

work developed in Part I can also be employed to deal with zero-inflated count data. For

these discrete problems we no longer have a clear distinction between the (discrete) zero

counts and the (continuous) positive data in the non-standard mixture model. Hence, we

adapt the idea of the hurdle model for zero-inflated count data (Min and Agresti, 2002;

Bedrick and Hossain, 2013) which models the zero and positive counts separately. That

is, in models (3.1) and (4.1), Gi(x) is the cumulative distribution function for the positive

counts. We then link Gi’s through the DRM (2.1), in which dGi(x) should be understood

as the probability mass function. Note that the commonly used zero-truncated Poisson

and zero-truncated negative binomial distributions both satisfy the DRM condition (2.1).
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As discussed in Bedrick and Hossain (2013), testing homogeneity under the two types of

mixture structures of the zero-inflated Poisson and the Poisson-hurdle model are equiva-

lent. Furthermore, it can be verified that the definition of the means under the mixture

structures of the zero-inflated Poisson and the Poisson-hurdle model are also equivalent.

Similar conclusions also apply to the negative binomial distribution. Therefore, for mul-

tiple groups of data containing discrete counts with zero inflation, the ELR for testing

homogeneity proposed in Chapter 3, and the ELR for making inferences on the means

proposed in Chapter 4, can both be directly applied.

The ELR based inference framework on the means, proposed in Chapter 4, can also be

extended to more general settings. For example, given that we have prior knowledge that

all, or part of, the group means are equal (Gupta and Li, 2006; Tsao and Wu, 2006; Fu

et al., 2009), then the proposed framework can be used to obtain refined inference results.

Further, if the number of estimating equations exceeds the number of parameters, our

proposed framework can be extended to incorporate such auxiliary information to further

improve the inference results (Qin and Lawless, 1994; Qin et al., 2015).

In Chapter 6, we studied the behaviour of the standard bootstrap percentile method

for constructing confidence intervals when the parameters are subject to inequality con-

straints. We concentrated on the important cases of one- and two sample mean problems

with data generated from the natural exponential family of distributions. We have quan-

tified the local asymptotic coverage probabilities of the bootstrap percentile confidence

intervals when the true constrained parameter is varying in a local neighbourhood of the

boundary. Under such a setup, the asymptotic results not only provide examples that the

bootstrap percentile method is not universally appropriate, but also give a quantification

of its coverage behaviour in a practically meaningful way. It has also been shown, by using

binomial and Poisson examples, that, the important cases that we have investigated can

find rich applications in constrained inference problems.

145



7.2 Future work

The proposed inference methods and frameworks in this thesis are expected to be very

promising for a number of research problems. In this section, we highlight some possible

future research.

7.2.1 Testing homogeneity for multiple groups of zero-and-one

inflated proportion data

The methodologies developed in Part I of this thesis is feasible to be generalized to data

with more than one degenerate component. For example, in modelling proportion data

it is common to have a zero-and-one inflated mixture structure. Multiple groups of such

samples have important applications, such as in transportation safety (Ospina and Ferrari,

2012), and in marine science (Sun and Gitelman, 2016). Specifically, we consider m + 1

independent groups of samples as follows:

xi1, . . . , xini
∼ Fi(x) = νiI(x = 0) + ωiI(x = 1) + (1− νi − ωi)I(0 < x < 1)Gi(x),

for i = 0, . . . ,m, where ni is the ith group’s sample size and the Gi(·)’s are cumulative

distribution functions with common continuous support on open interval (0, 1).

In the literature, research has focused on the use of Beta distributions for the Gi’s.

To allow for more model flexibility, and to make efficient use of all observations, the

semiparametric framework under the DRM can be introduced in this context. Partic-

ularly, the Beta distribution is a special example satisfying the DRM condition with

q(x) = {log(x), log(1 − x)}>. The scientific questions for this type of proportion data

include a test for homogeneity (Sun and Gitelman, 2016). Hence, an extension of the

empirical likelihood ratio test proposed in Chapter 3 would be useful and deserves further

investigation.
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7.2.2 Semiparametric estimation and comparison for multiple

Gini indices

The empirical likelihood method plays an active role for making inference on Gini index

(Qin et al., 2010; Peng, 2011). More recently, Wang and Zhao (2016) studied the inference

on the difference of two Gini indices using the empirical likelihood.

Suppose we have m+ 1 populations. Let Fi be the income distribution associated with

the ith population (e.g. country). For two independent random variables Xi and Yi which

share the same distribution Fi, the definition of the Gini index for the ith population is

Ginii =
E|Xi − Yi|

2µi
=

1

µi

∫ ∞
0

{2Fi(x)− 1}xdFi(x),

where µi =
∫∞

0
xdFi(x) for i = 0, . . . ,m. Hence, if we have good estimates of Fi(x)’s, we

can estimate the Gini indices and based on which inference procedures can be developed.

It may be possible to further introduce the semiparametric DRM to link the income

distributions across multiple populations. In the modelling of income distributions, David-

son (2009) considered three parametric distributions for Fi in simulation studies, which are

argued to be realistic in practice. Specifically, Davidson (2009) considered data generated

from the exponential distribution, the Pareto distribution, and the log-normal distribu-

tion. The exponential and the log-normal distributions are clearly in the DRM family; see

Table 2.1. Furthermore, the Pareto distribution with shape parameter λi and fixed scale

parameter belongs to the DRM family with q(x) = log(x). With this information, we see

the possibility to make better estimation and inference on multiple Gini indices under the

semiparametric setup discussed in Part I of this thesis.

7.2.3 Quantifying the coverage probabilities of bootstrap likeli-

hood ratio confidence intervals

For the constrained inference problems consider in Part II of this thesis, the likelihood

ratio is another popular way to construct confidence interval for a scalar parameter (or

joint confidence region for higher dimensional parameters). In practice, the confidence
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interval based on bootstrapping the likelihood ratio is desirable since it does not require

calculating the possibly complicated limiting distribution, and it is known for its finite

sample improvement. Hence, a natural question to ask is: can we also appropriately

quantify the coverage probability of bootstrap likelihood ratio function based confidence

interval, in light of the framework proposed in Chapter 6?

It is still convenient to look at a simple normal example with mean θ ∈ {θ : θ ≥
0} and variance one. It can be checked that the likelihood ratio is no longer a pivotal

quantity, and actually its distribution would depend on
√
nθ0 where θ0 is the true value

of θ. Therefore, we conjecture that the bootstrap likelihood ratio may also have some

non-regular behaviour. By numerical studies, we find that the coverage behaviour of the

bootstrap likelihood ratio based confidence interval for θ seems much more complicated

than the bootstrap percentile confidence interval, even in this one-sample case. Hence, it

becomes an interesting topic to be explored in the future.
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Appendix A

Appendix: R functions

A.1 R functions for Chapter 3

In this section, we provide R functions to implement the bootstrap ELR test proposed in Chapter

3:

• elr.part0: calculate Rn,1;

• elr.part1: calculate Rn,2;

• elr: compute Rn.

– It is integrated with five commonly used basis functions, as describe at the beginning

of Section 3.6 in Chapter 3.

• boot.elr: the main function.

– Inputs: “B” is the number of bootstrapped samples; “data” input must be a data

frame: 1st column is the group labels and 2nd column contains all observations (both

zeros and nonzeros, and the nonzeros could be discrete or continuous).

– Outputs: this function returns the values of the proposed ELR test statistics and

corresponding p-values calibrated using the nonparametric bootstrap procedure.
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As an illustration, we apply the bootstrap ELR with B = 999 to a data set generated from

the log-normal mixture with three groups in which (ν0, ν1, ν2) = (0.2, 0.3, 0.4), (a0, a1, a2) =

(0, 0.3, 0.5), and (b0, b1, b2) = (1, 1, 1). The output looks as follows with details given in the end.

$ELR.pvalues

obs.teststat boot.pvalue

qx=(x,logx) 17.63242 0.012012012

qx=(logx,logx^2) 18.09275 0.007007007

qx=(x,logx,logx^2) 19.43278 0.028028028

qx=x 16.76268 0.004004004

qx=logx 17.10396 0.001001001

The following gives the source R code for the above mentioned R functions.

library("nnet") # Load package for fitting multinomial logistic regression;

elr.part0 <- function(n){

n0 <- n[,1]

n1 <- n[,2]

alp <- n0/(n0+n1)

R0.alt <- sum(n0*log(alp))+sum(n1*log(1-alp))

alp0 <- sum(n0)/(sum(n0)+sum(n1))

R0.nul <- sum(n0)*log(alp0)+sum(n1)*log(1-alp0)

R0 <- 2*(R0.alt-R0.nul)

R0

}

##

elr.part1 <- function(x, qx=1){

x[,1] <- factor(x[,1])

group <- unique(x[,1])

m <- length(group)

n <- c()

for(i in 1:m){
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n <- c(n, sum(x[,1]==group[i]))

}

rho <- n/sum(n)

x1=x[,2]

x2=log(x1)

x3=x2*x2

if(qx==1){ result <- summary(multinom(x[,1]~x1+x2, trace=F)) } # q(x)=(1,x,logx)

if(qx==2){ result <- summary(multinom(x[,1]~x2+x3, trace=F)) } # q(x)=(1,logx,logx^2)

if(qx==3){ result <- summary(multinom(x[,1]~x1+x2+x3, trace=F)) } # q(x)=(1,x,logx,logx^2)

if(qx==4){ result <- summary(multinom(x[,1]~x1, trace=F)) } # q(x)=(1,x)

if(qx==5){ result <- summary(multinom(x[,1]~x2, trace=F)) } # q(x)=(1,logx)

loglik <- -result$value-sum(n*log(rho))

## if also need AIC for selecting basis function;

# cat(paste("AIC =", result$AIC), "\n")

R1 <- 2*loglik

R1

}

##

elr <- function(data, qx=1){

data[,1] <- factor(data[,1])

group <- unique(data[,1])

m <- length(group)

ncount <- c()

for(i in 1:m){

xx=data[data[,1]==group[i],2]

n00=sum(xx==0)

n11=sum(xx>0)

ncount=rbind(ncount, c(n00,n11))

}

part0 <- elr.part0(ncount)

part1 <- elr.part1(data[data[,2]>0,], qx)
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list(elrt=part0+part1)

}

## This is the main function;

boot.elr <- function(data, B){

data[,1] <- factor(data[,1])

group <- unique(data[,1])

m <- length(group)

N <- nrow(data)

boot.sample <- matrix(sample(data[,2], B*N, replace=T), N, B)

pvalues <- NULL

for(i in 1:5){

test <- function(y){

newdata <- data.frame(data[,1], y)

elr(newdata, qx=i)$elrt

}

R.boot <- apply(boot.sample, 2, test)

obs.teststat <- elr(data, qx=i)$elrt

pvalue1 <- mean(R.boot > obs.teststat)

res <- c(obs.teststat, pvalue1)

pvalues <- rbind(pvalues, res)

}

rnames <- c("qx=(x,logx)", "qx=(logx,logx^2)", "qx=(x,logx,logx^2)", "qx=x", "qx=logx")

cnames <- c("obs.teststat", "boot.pvalue")

dimnames(pvalues) <- list(rnames,cnames)

list(ELR.pvalues=pvalues)

}
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## An artificial data example;

set.seed(2016)

n10 <- rbinom(1, 50, 0.2); x1=c(rep(0,n10), rlnorm(50-n10, meanlog = 0, sdlog = 1))

n20 <- rbinom(1, 50, 0.3); x2=c(rep(0,n20), rlnorm(50-n20, meanlog = 0.3, sdlog = 1))

n30 <- rbinom(1, 50, 0.4); x3=c(rep(0,n30), rlnorm(50-n30, meanlog = 0.5, sdlog = 1))

group.lab <- rep(LETTERS[1:3], rep(50,3))

group.data <- c(x1,x2,x3)

artificial.data <- data.frame(group.lab, group.data)

## Outputs for the artificial data example;

boot.elr(artificial.data, B=999)

> $ELR.pvalues

> obs.teststat boot.pvalue

> qx=(x,logx) 17.63242 0.012012012

> qx=(logx,logx^2) 18.09275 0.007007007

> qx=(x,logx,logx^2) 19.43278 0.028028028

> qx=x 16.76268 0.004004004

> qx=logx 17.10396 0.001001001

A.2 R functions for Chapter 4

In this section, we provide R functions to implement the ELR based method proposed in Chapter

4, specifically, for testing mean equality, with the basis function q(x) = log(x) used in the DRM:

• loglik.alt: calculate the log-likelihood value under the alternative hypothesis via the

logistic regression routine;

• score: calculate the sum of squared error loss of the score functions;

• loglik.null: calculate the log-likelihood value under the null hypothesis of equal means;

• mele: minimizing the above score function for a given initial point;

• elrt: the main function.
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– The input contains four arguments, whereas it is sufficient to only supply the first

argument.

– Input 1: “dat” input must be a data frame: 1st column is the group labels and 2nd

column contains all observations (both zeros and nonzeros, and the nonzeros could

be discrete or continuous);

– Input 2: “ini” input can be either missing or contains user supplied vector of initial

values for the parameters; see the notes below for details.

– Input 3: “tol” input sets the tolerance level that controls the minimized value of the

objective function for each given initial point, with default 1e-8.

– Input 4: “max.ini” input controls the maximum number of different initial points to

use before convergence, with default 200; see the notes below for details.

– The output is a list object with following four components.

– Output 1: “$score” is the minimized value of the objective function.

– Output 2: “$elrt” returns the value of the proposed ELR test statistic Rn.

– Output 3: “$p.value” returns the corresponding p-value of the observed ELR test

statistic Rn based on the chi-squared null limiting distribution.

– Output 4: “$mele” returns the parameter estimates and the corresponding values of

the Lagrange multipliers under the null hypothesis; see the notes below for details.

As an illustration, we apply the proposed ELR to test the equality for two-sample means of

the mice data example in Section 4.5 with two groups, Spring vs. Winter. The output looks

typically as follows with details given in the end.

> elrt(artificial.data)

> $obj

> [1] 1.031804e-16

> $elrt

> [1] 1.171699

> $p.value

> [1] 0.5566329

> $mele

> [1] 0.128085525 0.327879781 0.429639613 -0.009463512 0.277062633 -0.053600908 0.453009705

> [8] 0.306526854 0.248136846 0.008831648 0.025351896
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Here we will refer to some notation as defined in Chapter 4. We provide some notes on details

of the above functions, and also give some tips for users:

• Note 1: the input “ini” is in the form of a vector containing initial of parameters ordering

as (ν0, . . . , νm, α1, β1, . . . , αm, βm, t1, . . . , tm).

• Note 2: if the input “ini” is missing, as default, we use the sample estimates of ν̂ as

initial value for ν, use the estimated parameters (α̂1, β̂1, . . . , α̂m, β̂m) obtained from logistic

regression as initial value for θ, and set the initial value for t at its true value zero.

• Note 3: for the input “ini”, we do not have to worry about λ by noting a fact as follows.

By setting the ∂`(η,λ, t)/∂ψ to 0, we get

λ̃r =
(1− ν̃r)nr0

ν̃rn·1
, r = 1, . . . ,m.

Hence, by incorporating this relationship, we can express λ = λ(ν) as function of ν in

order to reduce the dimension of parameters in optimization.

• Note 4: the input “max.ini” specifies the maximum number of times that we repeat the

following procedure to generate a new initial point or until a convergence is reached. Every

time when the default or user supplied “ini” does not result in a successful convergence,

we add a small random noise to the θ components in “ini” and create a new “ini” for the

next iteration. Note that we always suggest the initial values of (ν, t) at (ν̂,0).

• Note 5: “$mele” returns the parameter estimates of ν̃ and θ̃, and the corresponding val-

ues of Lagrange multipliers λ̃ and t̃, under the null hypothesis. The output is ordered as

(ν̃0, . . . , ν̃m, α̃1, β̃1, . . . , α̃m, β̃m, λ̃1, . . . , λ̃m, t̃1, . . . , t̃m). Here λ̃ (and each λ value in itera-

tions) is determined by the above relationship λ̃r = λr(ν̃r).

• Note 6: for understanding the programming of the below attached source functions, we

used lambda1 and lambda2 to stand for λ and t as used in Chapter 4.

• Tip 1: in some extreme cases that the positive observations of each group are well separated,

or nearly well separated, the algorithm can fail to converge, especially when some sample

sizes are too small or zero proportions are too large.

• Tip 2: our experiences suggest that these functions perform stable for up to four groups

comparison, with moderate sample sizes.
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The following gives the source R code for the above mentioned R functions.

library("nnet") # load package for fitting multinomial logistic regression;

##

loglik.alt <- function(dat){

dat[,1] <- factor(dat[,1])

group <- unique(dat[,1])

m <- length(group)

ncount <- c()

for(i in 1:m){

xx=dat[dat[,1]==group[i],2]

n00=sum(xx==0)

n11=sum(xx>0)

ncount=rbind(ncount, c(n00,n11))

}

n0=ncount[,1]

n1=ncount[,2]

rho=n1/sum(n1)

nu=n0/(n0+n1)

if(any(nu==0)){nu=nu+1e-10; warning("’some group observations are strictly positive’")}

lambda1=(1-nu[-1])*ncount[-1,1]/(nu[-1]*sum(ncount[,2]))

z1=dat[dat[,2]>0,2]

z2=log(z1)

result <- summary(multinom(factor(dat[dat[,2]>0,1])~z2, trace=F))

loglik <- sum(n0*log(nu))+sum(n1*log(1-nu)) - result$value-sum(n1*log(rho))

out <- matrix(result$coefficients, ncol=2)

out[,1] <- out[,1]-log(rho[-1]/rho[1]); theta <- as.vector(t(out))

return(list(value=as.numeric(loglik),m=m,ncount=ncount,nu=nu,theta=theta,lambda1=lambda1))

}

##
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score <- function(dat, par){

dat[,1] <- factor(dat[,1])

group <- unique(dat[,1])

m <- length(group)

z <- dat[dat[,2]>0,2]

nu <- par[1:m]

theta <- par[(m+1):(3*m-2)]

lambda2 <- par[(3*m-1):(4*m-3)]

w.matrix <- NULL; ee.matrix <- NULL; ncount <- NULL; log.nonzero.sum <- NULL

for(i in 1:m){

xi <- dat[dat[,1]==group[i],2]

n00=sum(xi==0)

n11=sum(xi>0)

ncount=rbind(ncount, c(n00,n11))

if(i>1){

wi <- exp(theta[2*i-3]+theta[2*i-2]*log(z))

w.matrix <- rbind(w.matrix, wi) # for q(x)=(1,log(x));

eei <- (1-nu[i])*z*wi - (1-nu[1])*z

ee.matrix <- rbind(ee.matrix, eei)

xi.nonzero <- xi[xi>0]

log.nonzero.sum <- c(log.nonzero.sum, sum(log(xi.nonzero)))

}

}

lambda1 <- (1-nu[-1])*ncount[-1,1]/(nu[-1]*sum(ncount[,2]))

deno <- 1+ as.vector(lambda1)%*%(w.matrix-1)+as.vector(lambda2)%*%ee.matrix

s1 <- ncount[1,1]/nu[1]-ncount[1,2]/(1-nu[1]) - sum(lambda2)*sum(z/deno)

ss.score <- s1^2

for(i in 2:m){

s2 <- ncount[i,1]/nu[i]-ncount[i,2]/(1-nu[i]) + sum(lambda2[i-1]*z*w.matrix[i-1,]/deno)

nume3 <- lambda1[i-1]*w.matrix[i-1,] + lambda2[i-1]*(1-nu[i])*z*w.matrix[i-1,]

s3 <- ncount[i,2] - sum(nume3/deno)
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nume4<- lambda1[i-1]*log(z)*w.matrix[i-1,]+lambda2[i-1]*(1-nu[i])*z*log(z)*w.matrix[i-1,]

s4 <- log.nonzero.sum[i-1] - sum(nume4/deno)

s6 <- sum(ee.matrix[i-1,]/deno)

ss.score <- ss.score + sum(s2^2,s3^2,s4^2,s6^2)

}

if(is.na(ss.score)| ss.score>1e10|is.nan(ss.score)){ val=1e10 }

return(ss.score)

}

##

loglik.null <- function(dat, par){

dat[,1] <- factor(dat[,1])

group <- unique(dat[,1])

m <- length(group)

z <- dat[dat[,2]>0,2]

nu <- par[1:m]

theta <- par[(m+1):(3*m-2)]

lambda1 <- par[(3*m-1):(4*m-3)]

lambda2 <- par[(4*m-2):(5*m-4)]

w.matrix <- NULL; ee.matrix <- NULL; ncount <- NULL; log.nonzero.sum <- NULL

for(i in 1:m){

xi <- dat[dat[,1]==group[i],2]

n00=sum(xi==0)

n11=sum(xi>0)

ncount=rbind(ncount, c(n00,n11))

if(i>1){

wi <- exp(theta[2*i-3]+theta[2*i-2]*log(z))

w.matrix <- rbind(w.matrix, wi)

eei <- (1-nu[i])*z*wi - (1-nu[1])*z

ee.matrix <- rbind(ee.matrix, eei)
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xi.nonzero <- xi[xi>0]

log.nonzero.sum <- c(log.nonzero.sum,sum(theta[2*i-3]+theta[2*i-2]*log(xi.nonzero)))

}

}

pkj <- log(1+ as.vector(lambda1)%*%(w.matrix-1)+as.vector(lambda2)%*%ee.matrix + 1e-20)

value <- sum(ncount[,1]*log(nu) + ncount[,2]*log(1-nu)) + sum(log.nonzero.sum) - sum(pkj)

return(loglik.null=value)

}

##

mele <- function(dat, par0){

res.alt <- loglik.alt(dat)

m <- res.alt$m

if(length(par0)!=3*(m-1)+m){

stop(" ’parameter dimension does not match the no. of groups and basis function!’ ")}

res <- nlminb(start=par0, score, lower=c(rep(0,m),rep(-20,(2*m-2)),rep(-2,m-1)),

upper=c(rep(1,m),rep(20,(2*m-2)),rep(2,m-1)), dat=dat)

obj <- res$objective

par.temp <- as.vector(res$par)

nu=par.temp[1:m]

ncount <- res.alt$ncount

lambda1 <- (1-nu[-1])*ncount[-1,1]/(nu[-1]*sum(ncount[,2]))

mele <- c(par.temp[1:(3*m-2)], lambda1, par.temp[(3*m-1):(4*m-3)])

loglik0 <- loglik.null(dat, mele)

elrt.temp = res.alt$value - loglik0

elrt = as.numeric(2*elrt.temp)

pvalue = 1-pchisq(elrt, df=(m-1))

return(list(score=obj, elrt=elrt, p.value=pvalue, mele=mele))

}
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## This is the main function to use;

elrt <- function(dat, ini, tol=1e-8, max.ini=200){

res.alt <- loglik.alt(dat)

m <- res.alt$m

alt <- c(res.alt$nu, res.alt$theta, rep(0,m-1))

lam1=res.alt$lambda1

if(missing(ini)==TRUE) ini=alt

res <- mele(dat, ini)

obj <- res$score

elrt <- res$elrt

j=0

while( (obj>tol | elrt<0 | is.nan(elrt) | is.na(elrt)) & j< max.ini ){

if(obj<10*m){

ini<-c(res$mele[c(1:(3*m-2),(4*m-2):(5*m-4))]+c(rep(0,m),rnorm((2*m-2),0,0.01),rep(0,m-1)))}

else{ ini <- alt + c(rep(0,m), rnorm((2*m-2),0, 0.1), rep(0,m-1)) }

val.null <- loglik.null(dat, c(ini[1:(3*m-2)],lam1,ini[(3*m-1):(4*m-3)]))

while(is.nan(val.null) | is.na(val.null)){

ini <- alt + c(rep(0,m), rnorm((2*m-2),0,sqrt(obj)/nrow(dat)), rep(0,m-1))

val.null <- loglik.null(dat, c(ini[1:(3*m-2)],lam1,ini[(3*m-1):(4*m-3)]))

}

res <- mele(dat, ini)

obj <- res$score

elrt <- res$elrt

j=j+1

}

if(j==max.ini){

cat(paste("\n", " !NOTE: the maximum number of different initial points reached:", j,

"; may consider increasing max.ini and/or tol to converge! ", "\n", "\n")) }

return(list(obj=obj, elrt=elrt, p.value=res$p.value, mele=res$mele))

}
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## Same illustrative artificial data example as used in last section;

set.seed(2016)

n10 <- rbinom(1, 50, 0.2); x1=c(rep(0,n10), rlnorm(50-n10, meanlog = 0, sdlog = 1))

n20 <- rbinom(1, 50, 0.3); x2=c(rep(0,n20), rlnorm(50-n20, meanlog = 0.3, sdlog = 1))

n30 <- rbinom(1, 50, 0.4); x3=c(rep(0,n30), rlnorm(50-n30, meanlog = 0.5, sdlog = 1))

group.lab <- rep(LETTERS[1:3], rep(50,3))

group.data <- c(x1,x2,x3)

artificial.data <- data.frame(group.lab, group.data)

## Outputs for this artificial data example;

elrt(artificial.data)

> $obj

> [1] 1.031804e-16

> $elrt

> [1] 1.171699

> $p.value

> [1] 0.5566329

> $mele

> [1] 0.128085525 0.327879781 0.429639613 -0.009463512 0.277062633 -0.053600908 0.453009705

> [8] 0.306526854 0.248136846 0.008831648 0.025351896
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